THE JOURNAL FOR PROFESSIONAL ENGINEERS
ELECTRONICS \& WIRELESS WORLD

Starting digital signal processing

Logic - a social science?

Ultrasonics and flow measurement

Up-dating the

 Marx generatorSmith's chart
Pioneers Faraday
Dipital Storace at 5800° What to Thu

24 K words pet channel recording memory?
$3 \quad 35 \mathrm{MHz}$ storage bandwidh for repeiliive sigrals?
416 non-volatile woveform memories?
5 On-screen tex display and on-screen cursor measuremen?
6 Roll mode down to 200 minutes/div?
7 Sweep speeds up to $5 \mathrm{~ns} /$ div?
8 Sensilivity down to $2 \mathrm{mV} /$ div with autoranging capabiliy?
940 division pretrigger display?
10 Digital sweep delay system?
11 Post storage processirg including waveform mútiplication?
12 Digital averag ng for ower noise?
13 Digital interpotation using sine or pulse algorithms?

14 Fully programmable front panel with 50 selting memories?
15 RS-232C compaitible interface plus optional IEEE-488 interface?
16 Full remote control and bidirectional waveform transfer?
17 Output to a dot-matrix printer, digital ploter or analogue ploter?
18 A free conventional oscilloscope to connect it to?
Surprisingly ir's only number 18 but you probably have that already!
The Thurlby DSA524* links to any standard oscilloscope (using only one cable) and converts it into a highly sophisticated digital storage 'scope with all the features listed above.
If you want to pay even less, the DSA511 has a few less features but costs only $£ 395$.
Send for full details nowd

AUGUST 1988 VOLUME 94 NUMBER 1630

This illustrated guide for the newcomer demonst rates some of the traps which await the unwary Alan Sewards

THE MOSMARX VOLTAGE MULTIPLIER

 748The Marx high-voltage impulse generator offers advantages over the Cockroft-Walton multiplier in d.c.-to-d.c. conversion. This version uses mos devices to provide higher efficiency
P.E.K. Donaldson

PHILIP SMITH'S CHART

759
However exotic your network-analysis machinery, you still rely on a Smith chart in the end. JW traces its development and use
Joules Walt

WIRES PLUS SWITCHES EQUAL DIGITAL CIRCUITS 769

The Calculus of Indications offers a general method for the design of digital circuits A. Medes

MEASURING BY
 ULTRASOUND

775
The use of ultrasonics for flow measurement has its attractions. but its limitations have reduced its popularity.
Frequency modulation overcomes some of
them
R.I. Redding

ITT SATELLITE CHIPS FOR BSB 778

After the Plessey-Philips chip-set announcements, rival DMAC and D2MAC chips are promised by ITT

INTELLIGENT POWER DEVICES

 782Recent developments in integrated circuits combining control circuitry and highpower driver stages
Sue Cain and Ray Ambrose

INDUSTRY INSIGHT 793
Insight's look at the bus scene reveals some interesting developments and comparisons

PIONEERS

825
Michael Faraday - 'patron saint' of electrical' engineers
W.A. Atherton

This computer-generated image and the similar image on the front cover represent the three-dimensional field around a bar magnet. Both images are the result of calculations over many cubes in space. In the front cover image. results are placed at the centre of each cube while in the other, they are randomly distributed in space.
The calculations were done on a 1000 processor DAP computer by Active Memory Technology of Reading.

COMMENT 739
BOOKS 750,772

RESEARCH NOTES 752

FEEDBACK 775

CIRCUIT IDEAS 767

TELECOMMS TOPICS 773
SATELLITE SYSTEMS 779
NEW PRODUCTS 786
RADIO COMMUNICATION 827
TELEVISION BROADCAST 830
RADIO BROADCAST 832

You con be the first to rent the new TEK 2440 portable digital storage oscilloscope because we are the first UK company to add it to our rental inventory
TEK2440:

- 500 Mscmples/s digitising speed
- 2ns glitch capture with 100% confidence at any sweep speed
- 300MHz onalogue bondwidth

TEK2230:

- 100MHz analogue bondwidth
- 20Mscmples/s

TEK2210:

- 50 MHz cnalogue bondwidth
- 20Msamples/s

You won't find a greater range of DSOs from any other rental compony!

SOUTH

O1 9778866
NORTH
0619987900
SCOTLAND
0506415757

RACKMOUNT CASES

19" Self. Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removeable Rear \& Side Panels. In 1U \& 2U Types, a Subplate Chassis is Mounted to Bottom Cover. In $3 U$ Type the Subplate is located on Iwo Rails Mounted Between The Side Plates.
$1 \mathrm{U}(13 / 4)$ height, 230 m depth
$£ 28.30$
$2 \mathrm{U}\left(3^{1 / 2}\right)$ height, 308 m depth .£33.60
$3 \mathrm{U}(51 / 4)$ height, 230 m depth .£41.00
Width Behind Front Panel 437m (All Types).
All prices include Postage \& VAT. Cheques, Postal Orders Payable to
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks SL6 1EX. Maidenhead 29450.

ENTER 17 ON REP'Y CARD

BROADCAST MONITOR RECEIVER 2 $150 \mathrm{kHz}-30 \mathrm{MHz}$

We have taken the synthesised all mode FRG8800 communications receiver and made over 30 modifications to provide a receiver for rebroadcast purposes or checking transmitter performance as well as being suited to communications use and news gathering from international short wave stations.
The modifications include four additional circuit boards providing: "Rechargeable memory and clock back-up *Balanced Audio line output "Reduced AM distortion * Buffered IF output for monitoring transmitted modulation envelope on an oscilloscope *Mains safety improvements. The receiver is available in free standing or rack mounting form and all the original microprocessor features are retained. The new AM system achieves exceptionally low distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally $-20 \mathrm{~dB}, 10 \%)$.
Stereo Disc Amplifier 3 and 5 *Peak Deviation Meter *Programme and Deviation Chart Recorders *Stabilizer *Frequency Shift Circuit Boards *10 Outlet Distribution Amplifier *Peak Programme Meter Illuminated Boxes, Circuit Boards and Movements *PPM5 Dual in-line Hybrid *Stereo Microphone Amplifier *Advanced Active Aerial *Stereo Coders Boards *PPM8 IEC/DIN -50/+6dB scale

SURREY ELECTRONICS LTD

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. Tel: 0483275997

Rupert and his PALs

EDITOR

Philip Darrington
EDITOR - INDUSTRY INSICHT Geoffrey Shorter, B.Sc. 01.6618639

DEPUTY EDITOR Martin Eccles 01.6618638

COMMUNICATIONS EDITOR
Richard Lambley 01.6613039

ILLUSTRATION
Roger Goodman 01.6618690

DESICN \& PRODUCTION Alan Kerr 01:6618676
ADVERTISEMENT MANACER Martin Perry 01.6613130

ADVERTISEMENT EXECUTIVE James Sherrington 01-661 8640
CLASSIFIED SALES EXECUTIVE Peter Hamilton 01.6613033

ADVERTISING PRODUCTION
Brian Bannister
01-661 8648
Clare Hampton
01.6618649

MARKETING EXECUTIVE
Rob Ferguson 01.6618679

REED
BUSINESS
PUBLISHING

FTor all save those connected with Rupert Murdoch's Sky Television. its decision to adopt PAL transmission represents a disappointment - if not a full-scale technical calamity. Provided that the launch in November is successful. the Ast ra satellite's f.m. carriers will relay Sky's four-channel package using the exist ing terrest rial encoding standard. Never mind the Europe-wide agreement to use MAC for future services: MAC decoder chips may not be available in quantity until this time next year. and the commercial interests who will finance d.b.s. television cannot wait. So they are using their commercial muscle to force the issue. Receiving terminals will go on sale in the high-streets at a mere 199 - a price which may well find our entertainment-hungry public thronging the pavements outside Dixons six deep. so long as the pictures it is offered are coloured sufficient ly brightly
But what does this development mean for the future of d.b.s. television: To an already confused situation. Sky has contributed a sizeable helping of further uncertainty. At some stage the public will discover that the Amstrad terminals it has lugged home are incapahle of receiving any of the other proposed d.b.s. services. Most of these will he in the 12 CHz broadcast band, while Astra is in the 11 CHz links band. And no-one has yet promised us a wideband front-end which can cope with both. Many channels will come from satellites at other orbital stations. calling for a complex steerable dish or even a separate terminal altogether. Many, including those originating in mainland Europe, will he in the D2MAC format: and very likely some of the remaining 12 services on Astra will be among them. A rival Astra passenger could he the newly-announced BT-Maxwell-W.H. Smith consortium. which has allied itself with DMAC. Other programmes. including British Satellite Broadcasting's three DMAC channels. will be encrypted and will be unwatchable without a decoder approved hy the broadcaster.

It is hard to imagine what viewers will make of all this. Certainly it will prove hoth complicated and costly for the nublic to equip itself fully to enjoy the broad spectrum of programme choice which the British Government seeks to foster.

It remains just conceivable that Skywill some day find itself alone in a world of MAC broadcasting; and, putting on a brave face, will decide to conform. But in the meantime British audiences will have suffered an unnecessary, dest ructive and expensive standards battle-along the lines of the VHS-versus-t he-rest t.c.r. wars of the last decade, where the winning system is not necessarily the best one and the public gets left with a lot of redundant plant. Murdoch, who is either laughably misinformed about MAC's advantages or else afflicted with a Nelsonian eye, dismisses MAC as a conspiracy among European manufacturers to make everyone buy another television set (by which he presumably means an additional r.f. front end). But that is what Skywill do too.
Whatever happens, Britain may well have been cheated of a unique opportunity for a worthwhile yet relatively painless improvement to its television system. Better colour pictures were only a part of the MAC package. By locking us into PAL for the foreseeable future. Sky is also snatching from us the benefits of multi-lingual sound channels, auxiliary digital radio senvices, expanded teletext and data capacity. and the prospect of an easy path to compatible high-definition television.

In the meantime. how's this for easy money" Murdoch's partner Alan Sugar of Amstrad has offered £ IM in cash to anyone who can show him a better picture than you get on a PAL set. Readers who work for Plessey. Philips, ITT. Nordic VLSI. the BBC or IBA should contact him care of Amstrad Consumer Electronics.

[^0] - 配 相

ENTER 5 ON REPLY CARD

"WE CAN TONE YOU UP FAST."

 RETROFIT TONE SIGNALING SYSTEMS For RADIOTELEPHONES - CTCSS //s -5/6 ToneO Selective Colling - AN Microphones - Control \& Display

FOR ANY GENERATION \& MAKE OF EQUIPMENT DESIGNED, BUILT \& FITTED

Private Mobile
Rentals Limited
industrial Estate, Gwaelod-Y-Garth Cardift, CF4 8JN, United Kingdom. Telephone: 0222810999 Telex: 497244 NOVCDF G
Fax: 0222813369

R.S.T. LANGREX R.S.T. SUPPLIES LTD

One of the largest stockists and distributors of electronic valves, tubes and semiconductors in this country.

Over 5 million items in stock covering more than 6,000 different types, including CRT's, camera tubes, diodes, ignitrons, image intensifiers, IC's, klystrons, magnetrons, microwave devices, opto electronics, photomultipliers, receiving tubes, rectifiers, tetrodes, thryatons, transistors, transmitting tubes, triodes, vidicons.
All from major UK \& USA manufacturers.
Obsolete items a speciality. Quotations by return. Telephone/telex or fax despatch within 24 hours on stock items. Accounts to approved customers. Mail order service available

LANGREX SUPPLIES LTD
 1 Mayo Road, Croydon, Surrey CR0 2QP
 Tel: 01-684 1166
 Telex: 946708
 Fax: 01-684 3066

Introduction to d.s.p.

This article raises and answers some of the questions asked by those working in digital signal processing for the first time.

ALAN SEWARDS

Most engineers are used to thinking of waveforms in terms of continuous functions: sinewaves produced by a signal generator. for example, which can be assumed to have started an infinite time ago and to continue for an infinite time into the future. Everyone knows that when you switch on a signal, a transient is produced, which results in a wide spectrum for a short time. Similarly, if the signal is switched on and off periodically. such as by pulse modulating a carrier, we see the spectrum of the signal modified by the effects of the pulsing. However. few realise when getting into digital signal processing that very similar effects are implicit in the processing, effects which result in modifications to the original signal and hence to the output of the digital processor.

The two most important effects of this type arise as follows: the fact that the signal is not continuous, but sampled, and the implicit assumption that the signal outside the collected block repeats what is in the block from past to future inlinity

Sampling of the continuous signal results in a series of numbers that fully define the signal according to the Nyquist theorem, provided that at least two samples are taken of the highest frequency contained in the signal. For real number sampling, the highest signal frequency for which this relationship is maintained is called the Nyquist frequency. We will return to the sampling frequency in a moment. Owing to the sampling process, we see the input signal as through an opaque fence with narrow gaps between the boards. For frequencies low compared with the sampling frequency, we get many samples per cycles. and the shape of the waveiom is preserved as seen through the fence. As the frequency gets higher, the number of samples per cycle decreases until, near the Nyquist frequency, it is difficult to

ABOUT DIGITAL SIGNAL PROCESSING

Abstract

By d.s.p. here we mean sampling an analogue signal and converting it to digital form with an analogue-to-digital converter, forming the samples into blocks of fixed length (such as 512 or 1024 samples), and processing the resulting time series by means of a fast Fourier transform This article discusses the principal problems associated with each of these stages. Illustrated in the graphs are the effects of sampling quantization into a number of bits, clock jitter and sampling aperture time. The text is non-mathematical and explains the various effects in simple terms. The examples use single sinewaves of different frequencies and the power spectra produced by FFTs of 1024.512256 and 128 samples. Notional sampling frequency is 19200 Hz and the signal frequencies displayed are $131 \mathrm{kHz}, 150 \mathrm{~Hz}, 262.5 \mathrm{~Hz}, 1106 \mathrm{~Hz} .2381 \mathrm{~Hz}$ $4781 \mathrm{~Hz}, 9125 \mathrm{~Hz}$, and 9469 Hz . Similar effects will be obtained with any proportional set of frequencies: for example, sampling at 19 MHz , with signal frequencies of $131 \mathrm{kHz}, 2.381 \mathrm{MHz}$ etc. Except where stated, the graphs of power spectrum plot decibels relative to the maximum value against frequency, with the x-axis covering 0.9600 Hz . Vertical grid lines are 1200 Hz apart; horizontal lines 20 dB apart.

recognize by eye the input signal through the fence (Fig.1.2).
The second effect is more subtle and farreaching in its impact. We noted that the signal samples are collected into blocks and then processed. These blocks are usually powers of two if the fast Fourier transform (FFT) or its derivatives are used (but do not have to be). If the sampling is such that a complete integer number of cycles of the input signal is contained in the block, it is easy to see that copying the block and placing the copies before and after the current block will result in smooth transitions at the block boundaries. However, if there is exactly an odd integer number of half cycles of the input signal in the block, there will be a strong discontinuity at the block boundaries (Fig.3.4).

Since the FFT process assumes continuity, in the latter case it thinks it is dealing with a signal with a periodic half-cycle discontinuity. Clearly such a signal will have a spectral content not present in the original signal. and this content appears in the FFT output. as we shall see. Another aspect of the block arises from the fact that, even though
we have assumed the signal is continuous, in fact we have no knowledge of it outside the block.

WINDOWING

The elfects discussed above produce some interesting results. First, the fence appears in the output of the FFT, meaning that we can only see the spectral content of the input time series as through the fence. Second. because of the finite time window which the block of data represents, the spectral content of the signal is spread. Third, the discontinuity resulting from any condition other than that where an integer number of full cycles of the input signal is present in the block results in spectral spreading, whose magnitude and appearance depends on how bad the discontinuity is. Figure 5 shows the power spectrum of the signal of Fig.3. $(150 \mathrm{~Hz})$, which has no discontinuity, and Fig. 6 the spectrum of a similar signal (Fig.4) with the maximum discontinuity (131 Hz). Note the vast differences in the power spectra.
These spectra were obtained by using the raw time series sampled data in the block. As

Fig.3. With this 150 Hz signal, the blocks of sampled data represent a whole number of cycles.
each of the samples has the same weight as any other, this is called a rectangular window (also known as the Dirichlet window). meaning that the input signal is seen as through a window which is zero outside the sampling period and unity within the block. Because the discontinuity has its worst effect at the beginning and end of the block, one can effect an improvement in the spectral spreading by using a window which reduces the influence of the beginning and end data samples. A large number of these windows have been devised ${ }^{1}$.

One of the windows commonly used is the Hann window. Although far from being the best window in terms of minimizing spectral spreading. it has the merit of being exceptionally easy to generate. It is a (cosine) squared window applied to the input signal (i.e. in the time domain). being zero at the start and finish of the block (Fig.7).

The window can also be applied in the frequency domain by a simple smoothing process - each spectral value is replaced by the sum of -0.25 times its neighbours plus 0.5 times itself. The effect on the spectrum of Hann weighting on the signal of Fig. 7 is shown in Fig.8. There are many much better windows than the Hann, but few as easy to implement.

Spectral leakage of the signal due to the discontinuity also depends on the number of samples in the block. This is because the width of the spectral peak and hence of the sidelobes is dependent on the number of samples. The more samples in the block. the longer the time duration of the signal
f.doooomodoce.00

Fig.4. Changing the signal frequency to 131 Hz results in an odd number of half-cycles per block, and a marked discontinuity at block boundaries.
processed, the narrower the peak, and the closer to the signal frequency cell the asymptotic fall-off of the window hegins. This fall-off is 6 dB per octave for the rectangular window, and 18 dB per octave for the Hann window. Figures 9 to 16 show the spectral leakage plots for a signal with maximum discontinuity (1106 Hz) for rectangular and Hann windows for 1024, 512, 256 and 128 samples per block. Note that the last line visible on the right of the Hanned examples has a high value because it has not been averaged.

SAMPLING FREQUENCY

According to the Nyquist criterion, if the signal of interest is to be fully recovered from the samples, there should be at least two samples per cycle of the highest frequency contained in the signal. Shannon showed that any band-limited signal can be represented by its samples, provided that the sampling frequency is at ieast twice the frequency of the highest Fourier component contained in the signal of interest. These reduce to the same thing except when I and Q sampling is done: the signal can be fully described if one I and Q sample are taken per cycle, meaning the sampling frequency can be the same as the highest frequency in the signal.

Another way of looking at this is that with normal time sampling, only the real array of values is filled with samples, the imaginary array being filled with zeroes. Thus there are 1024 actual values in the 2048 slots of the

Fig.5. Power spectrum of the 150 Hz signal in Fig.3. Vertical intervals are 20dB.

Fig.6. Power spectrum of the signal of Fig.4. The striking difference between this and Fig.5. is due to the discontinuity at block boundaries.

Fig.8. Spectrum of the Hanned signal, below left.

Fig.9. 1106 Hz signal (i.e. maximum discontinuity): 1024 samples, rectangular window.

Fig.7. Using windowing to reduce the effect of discontinuities: a Hann window applied to an 1106 Hz signal, seen in the time domain.

Fig.10. 1106 Hz signal (as Fig.9), Hann window.

Fig.11. Rectangular window, 512 samples.

Fig.12. Hann window, 512 samples.

Fig.13. Rectangular window, 256 samples.

Fig.14. Hann window, 256 samples.

Fig.15. Rectangular window, 128 samples.
real and imaginary arrays. If I and Q sampling is used at half the above sampling frequency, every other element of both the real and imaginary arrays will be zero, but, at the sampling times, both a real and an imaginary value will be obtained. We finish with 512 pairs of values, amounting to 1024 as before.

In practice, it is necessary to filter the signal to remove components above the Nyquist frequency which would otherwise be undersampled and folded down into the range of interest, appearing as phantom non-existent components. The need for this analogue filter before the a-to-d converter, and its finite cutoff slope, means that the Nyquist frequency must be typically 10-20 percent higher than the maximum frequency of interest: and for real sampling, the sampling frequency must be twice the Nyquist frequency. Figures 17,18 show how a frequency above the Nyquist frequency is folded down into the baseband spectrum. The higher frequency signal is actually at a frequency 15 times the lower frequency rather than the three times it appears, but is still less than the sampling frequency.

RESOLUTION

While the windowing procedures discussed above do result in reduced spectral leakage, this is not obtained without cost. As might be imagined, the width of the signal peak in the frequency domain depends on the length of time represented by the signal in the block of samples. (To a first approximation, the resolution is given by the reciprocal of the time represented by the samples in the

Fig.16. Hann window, 128 samples.

Fig.17. Two signals, 1106 and 15610 Hz , rectangular window.

Fig.18. Two signals, as Fig.17, Hann weighting.
block.) If weighting is used, this effectively throws away samples at the beginning and end of the block, reducing this time. Thus the width of the main lobe of the response increases. As compared with the rectangular window, the Hann weighted signal will have a main lobe width about $11 / 2$ times as wide. This can be seen in Fig. 19, 20, for a block of 1024 samples of 131 Hz . In these figures, only the first 64 spectral lines are plotted in order to show the main lobe widths.

The width of the main lobe is also affected by the number of samples in the block, and hence the length of time of signal represented in the block. The effect on the main lobe width of reducing the number of samples can be seen in Fig.9-16.
Resolution is important in the detection of a signal close to another signal. If the signals are of comparable amplitudes and close logether, it may be possible to see the two spectral peaks in the frequency domain if a rectangular window is used; if the Hann window is used the peaks may merge and blur. In contrast, if the second signal is much weaker than the first but a little further away in frequency, spectral leakage from the rectangular window from the strong signal will obscure the weaker, while the Hann weighted process will allow the weak signal to be seen. This is well covered in reference 1 , where descriptions can be found of windows which do a hetter job of obtaining narrow peaks and small spectral leakage.

PICKET FENCE EFFECT OR SCALLOPING

As we have seen (Fig.19, 20 and elsewhere). with a rectangular window the peak of a favoured signal (one with no discontinuity) occurs in one spectral line while that of a non-favoured signal is shared between two spectral lines. Not obvious from the figures (as the plots are normalized) is the power loss that results. Figures 21 and 22 show graphs of the first 50 points of two signals, one favoured and one not, for rectangular and Hann windows. The maximum spectral power of the non-favoured signal can be seen to be about 4 dB less than that of the favoured signal for the rectangular window case, and about 1.5 dB for the Hann case.

The smaller loss in the Hann window is due to the spectral averaging that occurs. As the input signal frequency is varied, the spectral power fluctuates up and down. gaing from a peak on one line, to be equally split between two lines and then back to a single line again. The effect is due to the sampling property discussed above, resulting in the viewing of the sinc x response (in the case of the rectangular window) through the fence used as an analogue earlier. When the sinc x peak is aligned on a gap in the fence (i.e. on a spectral line), only the peak is seen, as the sinc x function is zero at all the other gaps in the fence. When the sinc x function is aligned centrally on a board of the fence, one sees the two -6 dB skirts of the peak in the two adjacent gaps. Intermediate positions produce different relative amplitudes of the two skirts. For the Hann window, the response function is broader and a different shape, but the same principles hold.

Fig.19. Spectrum, 1024 samples, rectangularwindow.

Fig.20. Spectrum, 1024 samples, Hann window.

Fig. 21 (above). Frequencies 150 Hz and 382.5 Hz , rectangular window.

Fig. 22 (above). Frequencies as Fig.21, Hann window.

QUANTIZATION

Analogue-to-digital converters sample the signal, theoretically at least, at equally spaced instants of time, and quantize the signal into one of a number of levels, this number depending on the number of bits produced by the converter. Thus a 10 -bit a-to-d has 1024 possible levels for the signal. provided the full dynamic range of the converter is used. A one-bit a-to-d has only two levels. Since the input signal is continuous, quantization means that the sample which represents the signal at the sampling point will not in general be exactly the same as the actual signal value. This error, which gets larger as the number of bits is reduced, is called the quantization error, and the resultant spectral effects are called quantization noise. A signal at 131 Hz , quantized by a four-bit a-to-d is shown in Fig. 23.

Obviously it is desirable to use as many bits as possible to reduce the quantization noise. But as before, this has a penalty: more bits mean a more complex and expensive a-to-d and in general a slower a-to-d. Even if the a-to-d can produce the bits, more bits in processing cost memory space in storing the data and time in manipulating it. There is always a compromise here.

Figures 24 to 30 illustrate the spectral effects of reducing the number of bits on a signal consisting of a sine wave with the worst discontinuity $(131 H z)$. It can be seen that for more than about four bits the effect is to raise the noise floor. For four bits or fewer, the effect is to produce harmonically related lines of such quantity that they resemble noise.

To understand why so many harmonics are produced, it is necessary to remember that the spectrum is folded back at both ends. This can be seen in Fig.30, but is clearer in Fig.31, where a sinewave signal at 262.5 Hz is quantized to one bit, producing the familiar spectrum of a square wave ($1 / 3$ third harmonic, $1 / 5$ fifth. and so on). At the
Fig.23. Four-bit quantized signal $(131 \mathrm{~Hz})$.

DONOT BE MISLED.

The examples shown in this article illustrate how important it is to understand what it happening when digital processing of signals is attempted. Those who do not understand may find the results difficult to interpret, and may draw quite misleading conclusions. For example, on the basis for Fig.6, it would be easy to conclude that there was a continuum of signals right across the band or an underlying noise spectrum, in addition to the single frequency signal. Similarly, failure to appreciate that some sampling jitter might be present could lead to the belief that an inadequate number of quantization bits was being used (Fig.38). Digital processing of signals, used properly and with knowledge, can produce remarkable results. When in doubt, consult some of the excellent authorities quoted in the references given at the end.

Fig.24. This and Fig.25-30 show the effects of reducing the number of bits on a sine-wave signal with the worst discontinuity $(131 \mathrm{~Hz})$.

Fig.25. 16-bit quantization.

Fig.26. 10-bit quantization.

Fig.27. Six-bit quantization.

Fig.28. Four-bit quantization.

Fig.29. Two bits, Hann window.

Fig.30. One bit, Hann window.

Fig.31. Sine-wave signal $(262.5 \mathrm{~Hz})$, quantized to one bit, showing spectrum fold. back.

Fig.32. This and Fig.33-37 show the same spectra as Fig. $24-30$ for rectangularwindowed signals.

Fig.33. 10 -bit quantization.

Fig.34. Six-bit quantization.

Fig.35. Four-bit quantization.
upper frequency limit (Nyquist frequency), however. the harmonic spectrum can be seen to fold back, and again at the low limit (zero frequency). Figures 32 to 37 show the same spectra as Fig.24-30 for rectangular windowed signals; and it can be seen that, once the leakage floor is crossed, the effects (as would be expected) are the same. It is interesting to note that the spectral leakage is such for this window that leakage dominates over noise effects resulting from sampling with 10 or more bits of quantization. Of particular interest is the prominent line visible for the four-bit quantization case some two-thirds across the band. This is the 45th harmonic.

A formula is often quoted to relate the quantization noise to the number of bits, viz. $\mathrm{s}: \mathrm{n}=6 \mathrm{~m}+3 \mathrm{n}-1.25 \mathrm{dBm}$ where m is the number of quantization bits and n the number of bits of signal enhancement (e.g. FFT) or processing gain. Using 10 -bit quantization and an FFT of 1024 points ($\mathrm{n}=10$). s :n works out at 88.75 dB , quite close to what can he seen on Fig. 26.

In considering quantization noise, we must bear in mind that the noise is harmonically related to the signals, and processing through integration or other techniques may not achieve the gain effects expected. This will certainly he the case for small numbers of bits; but for larger numbers of bits, the noise will behave more like true random noise in this respect.

SAMPLING JITTER

As mentioned above, the a-to-d is supposed to take samples at exactly equally spaced intervals of time. If this does not happen, the result is a distortion of the signal being sampled, with consequent spectral effects. In practice. the interval between samples often has a jitter with noise-like properties. In this case the effects is to raise the noise floor. However, there is one important difference between this case and that of quantization, both of which have an increased noise floor. The difference is that sampling jitter affects the higher frequencies more than the lower, because a high-frequency signal will change more in a given time than a low frequency. Figure 38 shows the effect of a small amount of jitter (modelled as a random noise shift about the correct sampling points) for a high-frequency signal, and Fig.39, 40, 41 for progressively lower frequencies.

Such jitter can occur when the a-to-d sample is triggered by a software process: software timing can easily be off by a few microseconds. Other causes can lie in poor design of digital logic. The giveaway is usually that the effect is worse for the higher frequencies.
Although the amount of jitter in this example is rather high (mean of 0.5% of the sampling interval), it corresponds to about one part in 100000 of the time of one cycle of the lowest frequency shown (Fig.41) and produces a noticeable increase in the noise floor. Even one part in 1000000 of jitter produces a noise floor of approximately -120 dB . A good goal to aim for is that the jitter shall be no more than the time corres-

Fig.36. Two bits, rectangular window.

Fig.37. One bit, rectangular window.

Fig.38. Effect of sampling jitter on high frequency signal $(9649 \mathrm{~Hz})$.

Fig.39. As Fig.38, but with a mid•frequency signal (4781 Hz).

Fig.40. As Fig.39, but with a lower frequency signal $(2381 \mathrm{~Hz})$.

Fig.41. As Fig.40, but with a low frequency (131 Hz).

HOW IT WAS DONE

The illustrations in this article were pro duced by a program (Digproc) written in Turbo Pascal Version 4.0 running on a Compaq Portable II (AT equivalent) computer, and displayed on an EGA display. The graphs (which appeared in colour) were captured by a ram resident program called Inset and written to disc

Digproc uses a floating.point fast Fourier transform (FFT) which takes about ten seconds to perform a 1024 .point complex transform. The program starts by requesting the signal frequency to be simulated, the number of bits to be used in quantization, whether or not a Hann window is to be used the amount of jitter in the sampling time, and a parameter controlling the sampling aper ture time. This is followed by a section which generates the desired signal and modifies it as specified, writing the resulting signal values into the X array and calling the Plot routine to display the sampled time series on the screen. The FFT is then called, doing an in-place transform. If a Hann window has been specified, the averaging process is then applied separately to both X and Y arrays. The power spectrum is the computed by squaring and adding. Finally, the power spectrum is displayed in dB relative to the maximum value, and plotted as lines to emphasize the line nature of the results.

It is of interest to note that the FFT is capable of using a fast sine routine which employs a table look-up process rather than calling the trig, functions. When Digproc is started, the sine table is filled, and thereafter can be used instead of sin and cos. This has dramatic effects on the computation time involved - the FFT time is approximately halved if this routine is used.
ponding to the highest frequency signal changing amplitude by one bit.

APERTURE TIME

Analogue-to-digital converters are specified with an aperture time associated with their sample-and-hold circuit on the input. This circuit opens a switch for a brief period (the aperture time), during which the voltage of the signal is transferred to a capacitor. The switch then opens, isolating the capacitor from the signal. At some later time, the a-to-d starts to convert the voltage on the capacitor to a digital number. If the aperture time is too long, the signal voltage can change significantly during it, resulting in a capacitor voltage which may not represent the signal voltage at the desired sampling instant. As in the case of sampling jitter, the aperture time should be chosen such that the highest frequency component in the signal does not change by more than one bit during the time. Effects from this cause can be difficult to track down, as different a-to-d designs do different things during the aperture interval

References

1. On the use of windows for harmonic analysis with the discrete Fourier transform, Fredric J. Harris, Pro. IEEE vol,66, 51-83, January 1978. 2. Spectrum analysis - a modern perspective. Steven M. Kay and Stanley Lawrence Marple Jr., Proc IEEE, vol.69, 1380-1419, November 1981

Used equipment - with 30 days guarantee. Manuals supplied if possible. This is a very small sample of stock. SAE or telephone for LISTS. Please check availability before ordering. Carriage all units $£ 16$ VAT to be added to total on Goods and Carriage		
	TRIO OSCHLOSCOPES	
7000 RANGE TEKTRONIX 	 	
	NEW EQUIPMENT	
MARCONI MOD MEIERS IF $2300.2300 B .2304 \mathrm{FOM}$ 160 (1) Sul 144		
	 10, 100 MH ;	
(e)		
MARCONATEWHATORTT21 01.10 B Sleps		
	\qquad	
STEW ART OF READING Tel: 073468041Fax: 0734351696Callers welcome 9am to 5.30 pm. MON.FRI. (UNTIL 8pm. THUFS)		

ENTER 41 ON REPLY CARI)

HERRY'S

ELECTRONICS FORTBADE NDUSTHY, EXPORT, EDUGATION AND RETAIL

 Tel:01.724 0323 Nun - ALSO AT Audio Electronics 301 Edgware Road W2 01-7243564 SALES OFFICE 01-258 1831 Telex 298102 Fax 01-7240322

3 3/2 DIGIT 0.5" LCO

- 7000 HR BATTERY LIFE
- 0.1\% BASIC ACCURACY
- true rms
- 1000 V DC 750 V AC
- 10A AC/DC
- dIodelResistance test
- CONTINUITY buzZER

from $£ 99$ FREQUENCY COUNTERS
 - $100 \mathrm{MHz} .600 \mathrm{Mhz}, 1 \mathrm{GHz}, 1.5 \mathrm{GHz}$ MODELS
 3 GATE TIMES
 - RESOLUTION TO 0.1 Hz
 - $1 / 2$ " BRIGHT LED DISPLAY
 - mAINS/BATTERY
 - TCXO OPTION
 - LOW PASS HILTER

UNIVERSAL COUNTER-TIMERS from

- FREQUENCYDC -100 MHz - RESOLUTION TO 0.001 Hz
- ratio
- PERIOD
- time interval
- COUNT
- STOP WATCH
- RPM
- SIGNAL CONOITIONING

from
 $£ 110$
 FUNCTION GENERATOR

- 500 KHz and 2 MHz MODELS
- SINE sQuare. triangle ttl
- exterival am
- exterinal sweep
- O30V OUTPUT
- $\pm 15 \mathrm{~V}$ DC OFFSET
- 50 \& 2 and 60018 OIP
- $0.20 \mathrm{~dB} \cdot 40 \mathrm{~dB}$ ATTENUATOR

PAL PATTERN GENERATOR

$£ 199$

FULL SELECTION PATTERNS - VHF/UHF

- RF, COMP. VIDEO, IRGB O/P's 5.5. 6.0, 6.5 MHZ SOUND - SEPARATE OR MIXED SYNCS - iV OR TTL IRGB - VARIABLE VIDEO OIP - int/ext sound
- 20MHZ DUAL TRACE, COMPONEN TESTER. 295
- 15MHz dual trace battery

OPERATION £399

- 35MHz dUAL TRACE SWEEP
delar $£ 399$
- 50MHz dUAL tRACE SWEEP
delay f579
OSCILLOSCOPES

[^1] ENTFK 6 ON REPLY CARD

The Mosmarx voltage multiplier

Ad.c.-d.c. converter with excellent efficiency.

P.E.K. DONALDSON

TTwo voltage-multiplying arrangements. originally designed by physicists for use in the lahoratory and which work by switching charged capacitors, are shown in Fig.1. Both are presented in sextupler form. Figure 1(a) shows the Cockroft-Walton multiplier. contigured for a unidirectional square wave input: the circuit is familiar to electronics engineers. who have adopted it for use in nower supplies. There it provides a simple. if less flexible. alternative to voltage-changing circuits based on the charging and discharging of an inductance (switching regulators). Figure l(h) shows a Marx high-voltage impulse generator ${ }^{1.2}$, in which the caracitors are charged in parallel, via resistors, from a d.c. supply, and discharged in series via a string of spark gans. I have oiten thought that the Mars configuration ought to he more satisfactory than the Cockroit-Walton for small
d.c.-d.c. converters: to feed charge direct to each capacitor in the stack seems more elegant than pumping it all up from the bottom; yet I have never seen the Marx used. Recently the opportunity arose to compare the two arrangements: we needed a small. efficient device to make ahout 40 mA at 44 volts from a 9 volt hattery.
Figure 2 shows, in idealized form, the two phases of operation of a Cockroit-lialton multiplier. In 2(a) the generator, assumed to give unity mark-space ratio and he of low output resistance, supplies charge to the hottom capacitor on the right: simultaneously, the other left-hand capacitors supply charge to their onnosite numbers on the right. In 2(b), the generator has zero output and is effectively absent. The righthand capacitors supply charge to their opposite numbers up one storey on the left. The currents in the various branches. in terms of
the output current i, are as indicated.
When a capacitance C_{1}. charged to a voltage V_{1}, is suddenty connected to another capacitance C_{2}, charged to a voltage V_{2}. current will flow until the voltages are in equilibrium, but the process is always accompanied hy a loss of energy. however much or little resistance there is in the circuit. The loss is easily shown to be (1/2). $\left(\mathrm{C}_{1} \cdot \mathrm{C}_{2} /\left|\mathrm{C}_{1}+\mathrm{C}_{2}\right|\right) .\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}$. If a stabilized pover supply of voltage E is suddenly connected to a capacitance C previously charged to V. the hattery or power supply counts as a very large capacitor, so that the energy lost hecomes just (1/2).C.(E-1) ${ }^{2}$.
The Cockroit-Walton n-tupler carries out 217-1 such charge-transiers per cycle of operation, so it is important to minimize the rate of loss of energy at each transier site. That implies that the capacitors should be large: for if C_{1}. charged to V_{1}, is periodically

Fig. 1 (a) shows a Cockroft-Walton sextupler. At (b) is the Marx impulse generator. The spark gaps are arranged to break down under $2 V_{1}$ but not, normally, under V_{i}. If the bottom gap is forced to break down by the firing of an auxiliary local discharge, the other gaps break down in quick succession from the bottom upwards, briefly connecting all capacitors in series. An impulse rather less than $6 \mathrm{~V}_{\mathrm{i}}$ in amplitude is available from the top of the machine.

Fig.2(a) shows the idealized current flow in the CockroftWalton multiplier when the generator output is 'high'. The idealized current flow when the generator output is 'low' is seen at (b).

(0)

(b)
connected to C_{2}, which is supplying current to a load and whose voltage had fallen to l : just hefore the connection is made. then doubling C_{2} will halve $V_{1}-L_{2}$ and quarter $\left(\mathrm{S}_{1}-\mathrm{I}_{2}\right)^{2},\left(\mathrm{C}_{1} \cdot \mathrm{C}_{2}\right) /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$ cannot more than douhle. so the energy loss per cycle at the site of that transferwill he at least halved.

Granted that the capacitors should he large hut that microfarads cost money and take up space. how large should they he? A reasonable hasis is to let the ripple voltage across all capacitors he the same. For a converter working from about 10 volts input, a ripple of 100 ml per capacitor is sensihle. For the top right capacitor in Fig.2. the current is 40 mA . For a 20 kliz drive (a convenient frequency: see helow') the duration of each phase is $25 \mu \mathrm{sec}$ and

$$
\begin{aligned}
C=(i . t) /(\delta \mathrm{V}) & =40 \times 10^{-3} \times 25 \times 10^{-h} / 10^{-1} \\
& =10 \mu \mathrm{~F} .
\end{aligned}
$$

The other capacitors will be in the ratio of the currents through them; for the hottom right-hand capacitor, for example, the value would be $110 \mu \mathrm{~F}$.

Figure 3 shows the two phases of operation of a multiplier in the Marx configuration. In 3(a), all the capacitors are separately charged by a current 2i. while the resenoir capacitor supplies the load current. i. In 3(h), the capacitors discharge in series with current 2 i , of which i goes to the load, and i tops up the resenoir. Again, the capacitors are made proportional to their currents (apart from the resen'oir) so they are all 20 $\mu \mathrm{F}$.

COCKROFT-WAITON CONVERTER

Figure 4 shows a practical d.c.-d.c. sextupler in the Cockroft-Walton configuration. Since there is a supply rail available at $+V_{1}$, the circuit dispenses with the hottom diode and hottom capacitor in Fig. 1(a), connecting the point X instead to the positive rail: the sextupler is actually a quintupler standing on its supply rail. The reason for the strange arrangement of five p -channel fets in parallel. and five n-channel fets in parallel. to drive the diode capacitor network. will hecome clear in due course. Both types of fet have an R_{ti} of 2.5 ohms. The measured performance of the converter is:
voltage in $=8.51$. current in $=230 \mathrm{md}$ voltage out $=41.8 \mathrm{~J}$, current out $=37.2 \mathrm{~mA}$ power in $=1.96 \%$. power out $=1.553$ The efficiency at full is load $=79 \%$

In considering the losses in this converter, it is convenient to refer them to the output voltage. That is, to assert that a completely efficient sextupler supplied with 8.5 volts ought to make an output voltage of 51, then to enquire why this one only makes 41.8.

Charge transfer losses. Charge transier losses are prohably quicker to measure than to calculate. One builds the converter in lashup form, noting the on-load output voltage with the capacitors wired in that one expects to use. One then increases all the capacitors by some factor m . Which might conveniently he 2 . and notes the out put again: it should be a little larger than before. Increase all the capacitors again, $m=4$, say, then $m=8$. Note

Fig.3. Charging phase (a) and discharge phase (b) of a multiplier based on the Marx configuration. Note the more uniform current flow, compared with that of Fig.2(a).
the further small increases in output voltage. $\backslash_{\text {II }}$. If one then plots V_{11} against $(1 / \mathrm{m})$. the points should lie on a straight line. The value of $\mathrm{V}_{\text {" }}$, for which this line crosses the "y" axis gives the output voltage the converter would have if the capacitors were infinitely large. and there were no charge transier losses. The difference between this voltage and the voltage one actually gets with the capacitors one proposes to use is the voltage drop due to charge-transfer energy losses for the design. For the circuit discussed here, it comes to 3.5 volts.

Ohmic losses. These result from the appreciable $\mathrm{R}_{\text {un }}$ of the mos transistors. The consequent loss in output voltage is given by

$$
\begin{aligned}
& 2(\mathrm{n}-1) .1_{1 .} \cdot\left(\mathrm{R}_{\text {tn. n f channel }}+\mathrm{R}_{\text {tin. } \mathrm{n} \text { nthannel }}\right) \\
= & 2 \times 5 \times 37.2 \times 10^{-3} \times(2.5 \Omega+2.5 \Omega) \\
= & 1.86 \text { volts. }
\end{aligned}
$$

Voltage drop across Schottky diodes. There are ten of them. Assuming a loss of 0.35 volts across each. the total drop is 3.5 volts.
The total of nutput volts lost is therefore 8.9. Subtracting this from the ideal output voltage of 51, we see that the expected output voltage is 42.1. in tolerahle agreement with the ohserved figure of 41.8 .

Oscillator current. This is a loss which does not reduce the output voltage. It is a necessary evil. increasing slightly the current drawn at the input. The oscillator draws 4 mA . so the expected input current is six times the output current pius 4 milliamps. That comes to 227 mA , again in reasonable agreement with the measured value of 230 ml .

THE MOSMARX CONVERTER

Figure 5 shows a practical d.c.-d.c. sextupler
in the Marx configuration. in which mos transistors replace the spark gaps and hali the resistors: the remaining resistors are replaced hy Schottky dindes. This circuit is also arranged as a quintupler standing on its supply rail. When the oscillator output is high. n-channel iets Tr_{6} to Tr_{11} turn on. allowing charge to enter their respective capacitors via their respective diodes. When the oscillator output goes low. $\mathrm{Tr}_{\text {fi, }}$ In turn off again and p-channel iet $\mathrm{Tr}_{\text {, }}$ turns on, connecting the hottom plate of C_{1} to the supply rail and cutting ofi D_{1}. The source of Tr_{2} is now at approximately $+2 V$, while its gate is at V_{1} : therefore Tr_{2}, turns on, taking the bottom plate of C_{2} to $+2 \mathrm{~V}_{\text {, }}$ and cutting off D. In In like manner. $\operatorname{Tr}_{\text {3.h. }}$. turn on in quick succession. putting the top plate of C_{5} at approximately 6 V , whereupon the power supply and $C_{1}-C_{5}$ supply charge to the reservir capacitor via D_{6}. The process is terminated hy the oscillator output going low again. Tr_{1} turns off and $\mathrm{Tr}_{2} 5$ follow in succession. The turn-on of the n-channel transistors is delayed slightly to allow the turn-off of the p-channel devices to complete: the simple delay network. comprising one resistor and one small diode, greatly reduces the no-load input current.
The converter will work with any input voltage hetween 60° and 105^{\prime}. Below 61 there is insufficient voltage to switch the fets properly: above los, there is risk of destroying [) 5. which is a 60 volt device. L'sed as intended its measured performance is

$$
\begin{array}{rlr}
V_{1}=8.5 \mathrm{l} \\
\gamma_{n}=46.2 \mathrm{~V} & \mathrm{I}_{1}=250 \mathrm{mLA} . \\
\text { hence } P_{1}=2.13 \text { watts } & \mathrm{I}_{10}=41.1 \mathrm{~mA} . \\
P_{n}=1.9 \mathrm{watts}
\end{array}
$$

Efficiency al full hoad: 89.4"

Charge transfer losses. The measured loss in output att ributahle to transierring charge is 1.5 volts.

Fig.4. Practical Cockroft-Walton sextupler. The hex inverter is a 4049. P-channel fets 1.5 are Siliconix VP 0030 M . The n -channel fets are Ferranti ZVN 2106 A. The diodes are International Rectifier 11 DQ 06. v_{i}

Fig.5. Practical Mosmarx sextupler. $D_{1.6}$ are IR 11 DQ 06. $C_{1.5}$ are 22μ F. P.fets 1.5 are Silicon VP 0030 M . N.fets 1.5 are Ferranti ZVN 2106 A.

Ohmic losses. The expression for ohmic losses in this circuit is
$2(n-1) . I_{0} .\left(R_{\text {on. p channel }}+R_{\text {on. n cliannel }}\right)$ and is the same as that for the CockroftWalton circuit. It was to exploit this identity that the Cockroft-Walton converter was built with batteries of 5 parallelled lets of each type, to make it easier to compare the protagonists. In practice, the numerical value is not quite the same, because the Mosmarx gives more I_{o} into the same load. It is 2.06 volts.

Voltage drop across Schottky diodes. There are six of them. At 0.35 volts each, the total drop is 2.1 volts.

The total of output volts lost is therefore 5.7V. Subtracting this from the ideal output voltage of 51 V , we see that the expected output voltage is 45.3 V , a little less than my model act ually gave.

Oscillator current. 4 mA as before. The expected input current is six times $41.1 \mathrm{~mA}+$ 4 mA . or 251 mA , in excellent agreement with the observed figure.
The Mosmarx converter is clearly the more efficient, and the analysis confirms what one would guess from looking at the circuit diagrams. that it is more efficient because there are fewer diodes and fewer charge transfer operations. Small gains in the efficiency of both converters are achievable by various methods. all but one of which involve some cost. One may choose fets with lower $R_{\text {an }}$, which could result in a converter with greater overall size.
To increase the value of the capacitors
would, again. mean larger size. The Cockroft-Walton version is already overburdened with capacitors needing (neglecting reservoirs) $n-(1 / 2)$ times as much capacitor as the Marx for the same ripple.

Increasing the frequency will certainly raise the output voltage slightly, but one must bear in mind that the oscillator current is proportional to frequency, so there will be a corresponding rise in input current. The total effect of increasing the irequency is therefore liable to be disappointing, particularly when the converter is lightly loaded: in the latter case, the efficiency may actually decline.

None of these strategems can raise the efficiency of either converter beyond a certain point, because the effect of the diode drops imposes a fundamental limitation. The only way to gain any further improvements is to raise the input voltage (and therefore all other voltages) so that the effect of diode drops is proportionately less. In our application, unfortunately, this strategem was ruled out.

References

1. E.Marx. Investigations in the testing of insulators with impact voltages. Electrotech. Zeitung. 45. p. 652 (1924).
2. E.A. Richley. Marx generator for high-voltage experiments. Electronics and Wireless World. 93. p. 519 .

BOOKS

An introduction to satellite television by F.A. Wilson. Bernard Babani, £5.95. A good deal of this book is taken up with material not strictly relevant to the subject, as if the author wants to tell us all he knows rather than to stick rigidly to his task. Much of the first half of his text is taken up in describing the SI units of measurement, the atom, the nature of radio waves, television basics and even the principles of rocketry. Mysteriously, Ariane and Arianespace are mis-spelled every time they crop up. Despite an approachable style pitched at the absolute beginner, there is quite a bit of maths. A final chapter outlines the technique of setting up a receiving terminal. Equipment is described in general terms, with no mention of brand-names or programme services. Among the appendices are tables, formulae and a glossary. The book's scientific content might recommend it as an appealing way of presenting some practical physics to sixth-formers. Soft covers, large format $193 \times 263 \mathrm{~mm}$.

Introducing two, NEW top quality Temperature Controlled 50 Watt power irons from ANTEX. Superbly made and measuring only 22.4 cms long, they are available in a choice of voltages; particularly $240 \mathrm{~V} \& 24 \mathrm{~V}$.

They have a temperature range from 200° to $450^{\circ} \mathrm{C}$ with Analogue Proportional control to within $\pm 1 \%$, and heat up to $450^{\circ} \mathrm{C}$ in only 60 seconds. Both irons also incorporate a ceramic heater element and RTD sensor. Ideal
for Electrical \& Electronic Production work, Field Maintenance and Repair, or for Educational purposes.
TCS 240 (Temperature Controlled)
Operates straight from a 240 Volt AC mains input

ST5 Stand
Designed to give much increased stability and a greater clearance between the bit and the spring. The 3 bezels supplied with it, will allow it to be used with all Antex lrons \& many from other manufacturers.

24 PSU (Power Supply Unit) TCS 24 (Temperature Controlled) - A 50 Watt Power Supply Unit Operates in corjunction with a 24 Volts AC PSU

Ceramic transformers

Researchers at the Laboratoire dacoustoelectricite of the Université Pierre et Marie Curie in Paris report some interesting experiments with piezoelectric transformers (Electronics Letters Vol. 24 no 7). The idea of using piezoelectric materials to produce an electromechanical analogue of a transformer is itself about 30 years old, but despite numerous patents having been issued, very few practical devices have emerged.

The theory is essentially very simple: if two piezoelectric resonators are bonded together. then an input voltage to one of them causes mechanical movements which in turn induce a voltage in the second resonator.
What the French group have done is to build ceramic transior mers which. by ingenious design, are able to step up a small input voltage by at least 1000 times. The basic structure is as shown below:

The vital part of the construction is the orientation of polarization. In the case of the input plate this is across the thickness (as shown by the arrows) while in the output plate polarization is longitudinal. With this layout the transformation ratio is approximately equal to the ratio of inter-electrode distances, i.e. 200.

As it stands however this basic design is not very practical, the transformation ratio becoming drastically reduced as the output plate is loaded. By analysing the equivalent electrical circuit, the French researchers have been able to apply their resulting theory to developing an improved transformer which is much less sensitive to capacitive
loading. This they've achieved by paralleling a number of identica input resonators and carefully bonding them all together to the output element (lower diagram).

This second device, when fed with an input voltage of 5 V at between 80 and 160 kHz . is able to sustain a 2 mm spark at its secondary terminals.

The team concludes that, whilst this represents a very creditable step-up ratio of at least 1000, even better results could he achieved using a monolithic substrate.

> High-speed superconducting bearing

Cornell University engineers have developed a high-speed hearing that depends on the levitating effect of high-temperature superconducting materials. The bearing. which has achieved speeds of 66000 revolutions per minute. could make possible the development of superior rotors for gyroscopes. servo-motors and computer disc drives according to Professor Francis Moon, who heads the team.

High-speed magnet ic hearings now in use can achieve speeds of more than $100000 \mathrm{rev} / \mathrm{min}$ in a vacuum, but require complex feedback circuits to maintain stability. However, the superconducting bearing will be able to achieve speeds of up to $300000 \mathrm{rev} / \mathrm{min}$ and perhaps even one million rev/min in a vacuum because the levitating effect of the superconductor is self-stabilizing, needing no feedback control. Such higher speeds would permit the use in gyroscopes of smaller rotors with lower friction and fewer wear and heating problems.
The new device consists of a bearing made of an yttrium-barium-copper oxide superconducting ceramic cooled to liquid nitrogen temperatures. This bearing will levitate and propel a rotor containing rare-earth permanent magnets and is not affected by the high rotation speeds.
This levitation phenomenon, in which superconductors repel magnetic fields, is known as the Meissner effect. Moon and his
colleagues have measured the magnet ic forces generated by the new superconducting materials to a high degree of accuracy and have designed the system so that the Meissner effect provides extremely stable levitation forces between the bearing and the rotor

They are now experimenting with differently-shaped bearings and suspension designs to enhance the levitating force and achieve even higher speeds.

Superconductor recipe book

Researchers at the Carnegie lnstitution of Washington's Geophysical Laboratory believe that they can now predict which materials will behave as high temperature superconductors. At a meeting of the American Physical Society Dr Robert Hazen challenged other teams to act on his predictions and end the cookbook mentality that has hitherto pervaded superconductivity research. In fact with due deference to those in the catering profession, he believes that the search for ever-higher temperature superconductors is more like cooking aimlessly without a recipe.

That recipe may now be forthcoming if Dr Hazen and his colleagues are right. They've been analysing a whole range of currently available materials, all of which are ceramics based on layers of copper atoms, oxygen atoms and a variety of different metal atoms. The best materials also contain thallium, calcium or barium.

In the course of analysis, one general conclusion seemed to emerge: the more layers of copper atoms there are in the lattice structure, the higher the temperature at which superconductivity occurs. On this basis Hazen predicts that if materials are synthesized with more than the three layers of copper atoms found in today's best materials. then the goal of roomtemperature superconductivity might become that much closer. He helieves that four- or fivelayered materials are perfectly possible and is offering a case of beer to the first laboratory to succeed.

String pulling in space

String. as an engineering material, has never had a particularly good press. Even when wet its conductivity is not usually considered ideal even for telephone lines. But the ultimate insult. that of being "tied together with string' may soon have to be revised in the light of a theory put fonward by cosmologists at the Los Alamos National Laboratory. At its simplest this theory proposes that "cosmic strings" infinitesimally thin but hugely massive loops of energy - are responsible for the strange movements of some of the galaxies.
According to Y. Hoffman and W. Zurek (Nature vol. 333 no.6168) the galaxies are being pulled by the gravitational attraction of loops of cosmic string that were left over as remnants of the Big Bang, now thought to have marked the beginning of the Universe.

Cosmic string - if it exists has the weirdest of properties. More than 10^{12} times thinner than the diameter of an atomic nucleus. it is nevertheless incredibly massive. One metre of it could have a mass of 10^{12} tonnes. Or, expressed another way, a piece 10 light-years in length would weigh in at something like the total mass of our Calaxy.

But mind-boggling though this one-dimensional material is, its bizarre properties don't end there. According to the most recent theories, the early stages in the creation of the Universe must have witnessed what amount to huge tangles of cosmic string. But because the theories don't allow for loose ends. the pieces of 'string' must have existed either as endless loops or as lengths spanning the whole Universe - conceptually not much different.
Much of this cosmic string may have ended up losing energy and turning into black holes. The remainder could have exerted so much gravitational energy that it acted as 'seeds' around which galaxies formed. Or, according to other theories, the loops of cosmic string may act as superconductors. carrying in excess of 10^{20} amperes. Such currents would have the opposite eifect of

RESEARCH NOTES

gravitational attraction and repel any nearby material.

This 'push' and 'pull' may explain many of the irregularities that are observed in both the velocity and distribution of galaxies. It may also, if Heffman and Zurek are right, explain a finding last year by a group of Cambridge astronomers that some of the closest galaxies are all heading towards an apparently empty area of the sky.

Obviously this could be a mere random irregularity in the Universe, though the odds against it are huge. A loop of cosmic string is a neat alternative, but that stretches credulity in different ways. So what are ordinary mortals to believe?

The answer may come from practical attempts to find cosmic string. Although it would be much too thin to observe directly, it would bend light rays by its immense gravitational force. So a search in likely areas of the sky could well come up with a long row of double images of more distant galaxies.

If cosmic string is ever found it will undoubtedly provide a tremendous boost for theoretical cosmology. But for those of us accustomed to derogating the properties of string it may be something of a shock to discover that our Universe is organized much as W. Heath Robinson might have conceived it!

Potential progress

Two recent developments, one technical and the other political, may in future make it easier to define and measure our everyday unit of potential.

Taking these in reverse order, it may be of interest to know that there are four different 'volts' around the world: an American one, a Russian one, a French one and a 'rest of the world' volt. It's not that there's any disagreement over definitions: merely that our practical standards are based on slightly different experimental values of the Josephson constant.

By international agreement, the volt is now defined in terms of the output of a superconducting Josephson junction when exposed to microwave radiation of
a precisely defined frequency. So, given that frequency can easily be measured to one part in 10^{12}, the only practical limit on measuring potential is the value of the Josephson constant. Recent experiments have shown that some of the values on which present standards are based are in error by as much as eight parts in 10^{h}. International agreement is therefore being sought to specify a new worldwide volt that will be as acceptable in Moscow as it is in Washington, Paris or London.

One (electro-) motivating force is the parallel development of hardware capable of many times this order of accuracy. Physicists at Britain's National Physical Laboratory are, for example, able to calibrate secondary voltage sources accurately to five parts in 10^{8} with relative ease. Such secondary sources are usually the 1.018 V Weston cells beloved of O-level physics textbooks.

Until relatively recently. however, the limiting factor in making accurate comparisons has been the considerable disparity between the p.d. of a Weston cell and that of a Josephson junction. The latter is of the order of 2.5 mV when driven with a 10 CHz microwave source.

One obvious solution would be to fabricate a large number of series-connected Josephson junctions, though the lithographic problems and those of ensuring uniform microwave irradiation have made it an extremely difficult task in practice. Until a few months ago a chip with 2000 junctions was considered a major achievement.

Now comes news of a 19000 junction chip fabricated by the US National Bureau of Standards in Boulder, Colorado. This chip. in which niobium/lead alloy junctions are integrated into a microwave stripline, operates in a dewar at liquid helium temperatures. Total microwave input is around 100 mW , though each junction receives only fractions of a microwatt.

By varying the microwave frequency, the NBS team, led by Richard Krautz, are able to vary the terminal p.d. from 0.1 V to 14 V . In this way they can precisely match the p.d. of the source being calibrated, hence obviating another possible inaccuracy.

Overall calibration accuracy is claimed to be of the order of three parts in 10^{111}.

Now the NBS plans to make available the basic chip for around $\$ 6000$ or a complete voltage standard for $\$ 100000$. Demand is said to be considerable.

Molecular wire

Attemps to shrink integrated circuits and even the computers they comprise tend to be limited not by the active elements but by the pieces of "wire" that form the links. Dismantle any i.c. and it's instantly obvious that the lead out wires are the largest bits. Even the inter-element connections on the chip itself can be such as to slow down the inherent speed capability. So any attempt to produce faster or smaller transistors will only ultimately succeed if the wiring can be improved as well.

In the bizarre world of nanotechnology, where physicists are envisaging circuit elements the size of a rolecule that will process single electrons, wire is an acute embarrassment. It's therefore intriguing to learn (Journal of the Chemical Society 1988. p84) that a team at the University of Minnesota has created linear molecules that could act as interconnections between molecular electronic components. These linear molecules, which have been synthesized in lengths up to 7.5 nanometres. are based on chemical building blocks called imides and polyacenequinones. When chemically reduced they become effective conductors of electricity. They are also soluble in a variety of ordinary organic solvents, which allows them to be purified easily.

Just how they will fit into the rapidly developing molecular electronics scene is of course the key question. But in a world where components are likely to be synthesized rather than etched, the idea of self-growing wire is attractive. So also is something at least three orders of magnitude smaller than the finest wire that can be produced by existing lithography.

Assuming that such molecular wire can be successfully integrated with the other circuit elements currently being envis-
aged, the notion of molecular computers may not be as fantastic as we often imagine. And if a reduction in size by three orders of magnitude can be carried through an entire system, then a pocket-sized supercomputer is a perfectly reasonable forecast.

Go home Columbus!

Those of us who bemoan the widespread public ignorance of engineering may gain some solace from a study undertaken recently by Alan Lightman and Philip Sadler and published by the U.S. National Science Teachers" Association. Lightman, a physicist at the Smithsonian Astrophysical Obsewatory and Sadler, a Hanvard lecturer. have discovered that over 95% of second grade (primary) schoolchildren in the USA are convinced flat-earthers.

The two researchers discovered during a survey of 65 school classes that most six or seven-year-olds draw the Earth either as a giant pancake or as a round ball with a flat portion inside on which people live.

Whilst this latter picture may demonstrate Man's unlimited ingenuity to fiddle the evidence. Lightman and Sadler were curious to know why. in spite of Columbus. Cagarin et al.. the overwhelming majority of young children still think twodimensionally, at least where terra firma is concerned. The answer appears to be that children (only children?) tend to construct naive theories based on common-sense experience in this case that the school playground is flat. Therefore by extrapolation...

Lightman and Sadler (who would clearly have found Einstein a kindred spirit) believe firmly that one important role of education is to convince people that things aren't always what they seem to be. Kenneth Baker please note.

[^2]Image-10 is a high performance single board computer optimised for graphics intensive applications, and it's fast very fast. Motorola's 68010 cpu and Intel's 82786 graphics co-processor work concurrently to produce displays of dazzling speed and quality. All graphic operations, including window manipulation, are generated by dedicated hardware which frees the cpu to concentrate on running your programs
An impressive hardware specification is complemented by the availability of two professional disc operating systems.
OS-9/68K - A powerful UNIX like multi-tasking operating system supporting real-time applications. C, PASCAL, FORTRAN, BASIC, FORTH and PLuS languages available.
TRIPOS-3 - A well established multi-tasking operating system with propriety window management scheme. Supplied with assembler, disassembler, debugger, screen editor, BCPL and C compilers
Image-10 Specification:
Central Processor - MC68010 16/32 bit microprocessor Graphics co-processor - 182786 running with 16 Mhz pixel clock. Display resolution is 768 by 576 pixels (user definable). Actual resolution limited only by memory with instantaneous scroll and pan in any direction plus independent horizontal and vertical zoom from $\times 1$ to $\times 64$. Displayed colours may be $256,16,4$ or 2 at all resolutions Colour look-up table provides a pallette of 262,144 colours. Hardware managed windows.
Hardware generated lines, polylines, polygons, circles, arcs, fills, characters and bit block transfers at up to 20Mbitsec
Unlimited character fonts and character sizes supported
Memory - 2.0M byte (Image-10.20) or 512K byte (Image-10.05)
dynamic ram. 256 K byte fast static ram. Shipped with 64 K byte. 512 K byte eprom. Shipped with 128 K byte system firmware. 32 K byte high security battery-backed static ram plugs into RTC
Floppy disc - WD1772 controller supports one or two 5.25/3.5 inch drives. Format may be single/double sided, single/double density. Step rates selectable from $2,3,6$ or 12 m secs.
rates selectable from $2,3,6$ or 12 m secs. Bormat - Extended double eurocard. 218 mm by 243 mm .
Image-10 is available as a board level product or as a compact packaged system at prices starting

Winchester disc-SCSI interface capable of supporting up to 7 drives. Serial I/O - MC68681 provides two independent RS232 input/output ports. Independently programmable baudrates $50-38.4 \mathrm{~K}$ baud. External clock permits transfers up to $1 \mathrm{Mbi} / \mathrm{sec}$. IMSC012 link adaptor provides 20 Mbitsec transfers to optional transputer co-processor. Parallel I/O - Two NC68230 PIA's provide up to 48 lines of programmable input/output with multi-mode handshaking protocols. Disc operating systems use some of these lines for SCSl, parallel printer, mouse, digitizer etc.
Real-time clock - DS 1216 maintains date and time to $1 / 100$ th of a second.
Sound generator - SAA1099 generates stereo sound output. Contains six frequency generators, two noise generators, six mixers and twelve amplitude controllers.
User expansion - A full 16 bit buffered bus is available via DIN connector
£1,295

Micro Concepts

All prices shown exclusive of VAT and carriage
2 St. Stephens Road, Cheltenham, Gloucestershire GL51 5AA
Telephone (0242) 510525

ENTER 27 ON REPLY CARD

ADVERTISEMENT

PCB Manufacturers Which to choose?

With scores of PCB manufacturers falling over themselves to make your conventional boards, it can be very difficult to choose the right one.

You could however, choose a PCB manufacturer with more to offer. Such as assembly, panel printing, final build and design.

Slee Electro Products can provide you with these services and will still offer you competitive prices on your PCB's.
"We're hot on quality and delivery too. And being a member of the Printed Circuit Association, means we have to try harder."

Slee Electro Products

Unit 4, Grange Lane Industrial Estate, Carrwood Road, Barnsley, South Yorkshire S71 5AS, England.
Tel: 0226200717 . Fax: 0226731817
ENTER 43 ON REPLY CARD

ALL THE SCOPE YOU MAY EVER NEED ON PAPER!

We are not decrying today's excellent test instruments but we think you ought to know 1. No longer must you wait until a circult is built betore you can test it and 2. No longer must you wait until it is in production betore you can sample its behaviour statistically

Feedback

Relational analysis

‘Relational Analysis" - developed by J.A. Corbyn in your December 1987 issue - is to me very interesting but Ifind the traditional approach easier. It may be that 1 am lazy and resistant to ideas which depart from those we have grown used to over the years: hut for a given problem it is easy to look up the tables that give the MLT dimensions of the quantities involved and then carry out the conventional calculation. Furthermore I find that the problems resulting from the non-dimensional groups of quantities (which express the fact that particular physical laws are not important or their effects can be dealt with by keeping the physical parameters in a certain relation to one another in the problem concerned) can normally be avoided by a careful choice of variables.

The point made by J.A. Corbun that the MLT system and related units are an 'artificial' hasis for physics and dimensional analysis is not taken up because such deviations from 'received truth' are difficult to teach or to operate in practice. Although the computerisation suggested makes the new method easier to introduce. the old method too is. surely. equally amenable to computer solution, is it not?

I would, however, recognise that the paper does provide new insight into units and dimensions and is a useful reminder that in any given problem a greater physical understanding of what is going on may well he achieved by dispensing with MI.T as 'fundamentals' and using whatever quantities are suggested by the problem.
Richard Collins.
London. N4.

The observer in science

1 would like to thank B.E.P. Clement and C.F. Coleman (June letters) for bringing out some points which were not dealt with explicitly in my article on the observer in science (April 1988), namely, the brains proclivity to make and detect patterns: the
limits for perceptual resolution at low stimulus intensities: and that the observer sometimes operates through the medium of quite complicated apparatus.

Regarding modern physics experiments. Mr Coleman is quite right to emphasize that interaction takes place "between the equipment used for the measurements and the system observed. But he seems to dispute the fact that there can be an interaction hetween the human observer and the system observed. To amplify my brief and cursory remarks on this interdependence perhaps I could quote from a contribution by the American physicist I.A. Wheeler (University of Texas) to a book The Physicist's Conception of Nature (Reidel, Dordrecht. Netherlands, 1973). Discussing how the quantum principle has affected our understanding of nature. he writes:
"Even to observe so miniscule an object as an electron the experimental physicist|... must reach in. He must install his chosen measuring equipment. It is up to him to decide whet her he shall measure position or momentum. To install the equipment to measure the one prevents and excludes his installing the equipment to measure the other. Moreover, the measurement changes the state of electron. The universe will never aftenvards be the same. To describe what has happened. one has to cross out that old word 'observer' and put in its place the new word participator
T.E. Ivall.

Staines.
Middlesex

Defence mechanisms

With reierence to your June editorial "Deience mechanisms". I am not a pacifist, but the noral implications of sitting behind the argument you propose: 'If I did not do this work. somebody else certainly would. So it really doesn't make any difference whether 1. personally. am in volved: the work would get done in any case. are clearly out rageous. This may be easily seen if we replace 'work' by some specific action If I did not commit murder, somebody else cer-
tainly would... . Whilst this is a truism. as an argument it cannot begin to justify the action. If we are to maintain any moral integrity in whatever we do then we must be able to justify all our actions on their own merits and not on what other people might or might not do. And if 'murder'. who shall we begin with?!
C.P. Oates,

Newcastle-upon-Tyne.
If Mr Oates would care to re-read the leader in question, he will find that he has misunderstood it. The argument proposed was the exact opposite of that he suggests. - Ed.

Moving-coil head amplifier

1 would like to express thanks to Douglas Self for injecting a little bit of sense into the world of audio electronics (December. 1987). I would also like to express my dismay at seeing an experienced engineer like Graham Nalty spouting such utter nonsence.

Why is it that engineers, highly trained in the use of logic and experimentation. should resort to superstition. unsupported by experimental evidence, when discussing or designing hifit? Mr Self's approach, involving sensible and logical design techniques, and making high specification components unnecessary. can be justified purely on the grounds of listening to equipment designed in this way (which is after all what hi-fi is (or). If an amplifier really does benefit from the use of bulk foil resistors at $£ 10$ a pair, then I strongly recommend that you throw the design away and start again (who needs 4 ppm K^{-1} in an amplifier anyway?). There is enough nonsense around conceming hi-fi design (gold-plated 13A mains connections apparently being a good idea, for instance) without engineers who really ought to know better joining in.
Duncan Kitchin.
Peterhouse,
Cambridge.
1 read with some interest Mr Self's letter in EHW (June)
which commented on my previous letter (April). The distortion mechanism to which 1 referred is "dielectric absorption" and in simple terms is the absorption from an electrical signal into the dielectric and the release of that energy over a period of time after the original signal has passed. Methods of measurement of dielectric absorption have been published in The Audio Amateur and HiFi News.

Mr Self states that anyone who spends $\mathfrak{£} 10$ on a resistor is a fool. I suppose he reaches this conclusion from the famous saying "a fool and his money are soon parted". Certainly many of Audiokits customers have been prepared to part with $£ 10$ or more on a pair of bulk-foil resistors. A number of these people have later commented on the improvement in sound quality they have enjoyed as a result. I could give several valid reasons why bulk-foil resistors are superior but this is fully covered in an article in Practical Electronics ${ }^{1}$.

I have written many articles which cover the distortions in audio circuitry with applicable technical backup and these are listed in the references ${ }^{1}$ - ${ }^{7}$ below.
1 have indeed made measurements on capacitors in real-life circuit situations with the best instrumentation of all - my own ears. Whilst the human ear is not as constant as a metre of platinum in its measurement, it is the final arbiter by which any judgement can be made. Any measurements made using scientific equipment oi higher consistency are only valid provided they reinforce the judgements made with our own ears.

If any readers of EWW have the slightest doubt that passivecomponent quality is a very important factor in audio design, I recommend them to read the June issue of Hifi Choice. Audiokits submitted to review two pre/power amps with identical electronic circuitry and specification: differing only in cables. resistors. capacitors and a few semiconductors. These were tested both in the laboratory and in a hi-fi system for sound quality.
Finally. I was of the belief that it was man's determination to explore that got us to the moon. Scientific achievement only pro-

FeedBack

vided the means. Similarly it is my determination to improve the standard of audio reproduction that has led me in the direction of better passive components.

References

1. G. Nalty: Component technology. Practical Electronics Aug. Sept. 1987
2. G. Nalty: Constant care. Electronics Today International April 1988.
3. G. Nalty: Designing HiFi Amplifiers. Practical Electronics January. 1987.
4. G. Nalty: The upgradable amplifier, Electronics Today International July-Noveniber. 1986.
5. G. Nalty: $30+30$ amplifier. Practical Electronics Feh-April. 1987.
6. G. Nalty: Apex pre-amp \& power-amp. Evenday Electronics March-June. 1987.
7. G. Nalty: Virtuoso power-amp. Electronics Today International. Aprit-June. 1988.
8. M. Collins: Kit amplifiers, HiFi Choice June. 1988

Graham Nalty.
Audiokits.
Borrowash.
Derby.

The Catt Anomaly

I have come to regret the description "The Catt Anomaly" (EUW September. 1987), which is a question about the minutiae of classical electromagnetic theory. IEE officials are refusing to comment on the question on the grounds that they are being asked to pass judgement on some revolutionary theory of lvor Catt's. What we should rename "The TEM Charge Question" has nothing whatever to do with any new or revolutionary theory

My reply in January. 1988 to Alex Wilding did not relate directly to the Catt Anomaly. I pointed out that he had a fonvard E field and so was not even discussing a TEM wave, much less the Catt Anomaly.

The TEM Charge Question asks where the new charge comes from. to terminate the lines of electric flux which now exist between the top and bottom conductor. Wilding's last paragraph.

January 1988. contradicts Gauss's Law (Electricity and Magnetism, by S.G. Starling. Longmans, 1924, p.126), which says that rearrangement alone will not provide the negative charge needed to terminate the electric flux lines. Similarly. when John Matthews. EWW March. 1988. says"This will happen if all the electrons in the surface move up a little bit,..." he contradicts Gauss's Law. A modernized version of Starling's statement of Causs's Law is:

The total electric flux across a closed surface is equal to the total amount of electric charge within the surface.
Describe a closed surface just outside the lower conductor. Since we are discussing a transverse electromagnetic wave. all electric flux is in the plane normal to the wires. The total electric flux entering this surface equals the total charge within the surface. however it might be rearranged. Rearrangement of charge in/on the wires is irrelevant to the TEM Charge Question.
In his February. 1988 letter. Wilding says;
the speed of the Ichargel can be far below the speed with which the electric flux propagates|.
This seems to directly contradict Gauss s Law.
Wilding and Matthews are in good company when they (wrongly) think that rearrangement of charge within the conductor has a bearing on The TEM Charge Question. In his first (private) response to the question. Dr J. Brown. then Professor at Imperial College. thought that somehow. negative charge would find its way out from the inner recesses of the lower conductor to terminate the electric flux which appeared as the TEM step travelled by. Brown's published reply in EUW November. 1982, is on other lines.
In his January. 1988 letter, when R.J. Sharp writes, "... the effect is to concentrate...." the charge, he seems to contradict Gauss's Law. which of course is one of Manvell's Equations. div D $=\rho$.

The TEM Charge Question is about the detail of classical electromagnetic theory. It was first asked in UW August 1981. It has
nothing to do with any new or revolutionary theory. I have decided that if during the ensuing ten years, by August 1991. no generally approved answer to the question arises, then classical electromagnetism will have to relinquish its role as a credible theory. Until some coherent answer is delivered by accredited experts in e-m. classical electromagnetic theory is incomplete. lacking a feature which is essential in this age of digital electronics. Casual waffle like that from text books writers Robinson and Brown (WW. October 1982) is insufficient. Digital electronic designers are entitled to a clear. reasoned statement as to where the charge comes from which switches their high-speed gates.
As to the early part of Sharp's letter (EIIW. January 1988). I present a totally different view on the performance of a capacitor See for instance WW December 1978:
"no mechanism has ever been proposed for an internal series inductance in a capacitor.
Such internal series inductance does not exist. and the so-called self-resonant frequency of a capacitor is a myth.
Turning to the Joules Watt letter. February 1988, T.S. Kuhn is actually discussing the conservatism of the scientific community in the part of his book that J.W. quotes from. It is descriptive and not prescriptive. but by quoting very short segments. I.W. makes it appear othenwise. I am very willing to agree that Theory C (WV December 1980) has been blocked by the conservatism of the scientific community. Nearly ten years after its publication, there still does not exist one written comment on it by an accredited academic.
lvor Catt.
St Albans.
Hertfordshire.

Gyroscopes

Alex Jones in the May letters questions my interpretation of his dramatic gyroscope demonstrations. To lift a big. stationary gyroscope by one end of its shaft while keeping the shaft horizontal one must use both hands to exert a large torque. pressing hard downwards with the handat the end of the shaft. and pulling
upwards even harder with the hand closer to the rotor. However when one attempts to lift a spinning gyroscope by one end it begins to precess, the torque virtually disappears, and only its weight is left to be supported. I have used kitchen scales with a sliding balance weight to weigh a toy gyroscope. first at rest logether with its tower, and secondly spinning and precessing with one end supported on the tower. There was no visible change in weight, and any actual change must have been less than 20%. If any of your readers wishes to try for himself he should check that his gyroscope rotor is reasonably balanced. Until I filed its rim my gyroscope vibrated too much to stay reliably on its tower.

Standard kinetic theory shows that the motion of the centre of gravity of a rapidly spinning gyroscope is accounted for completely by the sum of external forces acting on it. However if there is in addition a residual torque about any axis perpendicular to the shaft of the gyroscope and it is free to do so it will precess about the direction perpendicular hoth to the shaft and to the torque axis. Thus if a gyroscope is supported at one end it precesses about the vertical through the point of support. However if the support produces any thrust horizontally and at right angles to the axis of the gyroscope it will tilt either progressively upwards or progressively downards. That I betieve accounts ior the phenomenon of the upwards tilting gyroscope Alex Jones described in the January 1987 letters.

C.F. Coleman.
 Grove.

Oxfordshire.

Damped circuits

B\&J Sound. of Kirkby Lane, Tat tershall, Lincoln LN4 4PD, have sustained extensive flood damage to their premises. which has ruined hundreds of their archive publications. Among these were copies of this journal for 1981 and 1982. If any reader has copies for sale. B.E! would he glad to hear from them. The telephone number is 0526 42869.

THE 'ALADDINS' CAVE OF ELECTRONIC \& COMPUTER EQUIPMENT

COLOUR MONITORS
PRINTERS
POWER SUPPLIES

Resiel
\qquad
B
BOSHERT 13090 same as above spec but outputs of +529.95 (B)
GREENDALE 19ABOE 60 War switch mode oupus $+5 \mathrm{~V} 6 \mathrm{a}+12$

20 " \& 22" AV Specials

Superbly made UK manuacatue pit tube all soldid state colour
 dition with 90 mony guarantee (F) 22 Monitor $£ 185.00$ (F)
 MONOCHROME

have minor screen marks. but still In veny usable condition. Filly VC type 751.75° " litra compact black \& white chassis 39.00 (C) Inpur. Ideal portable equipment elc. Suppled with fill dala KGM 3249 Green Screen. Ltrie used bint vaseo inpul. Fully tested 20 Black 2 White monitors by AZTEK, COTRON \& EATiON (EL Alsplicalions. Units have slandard composite video inp ins whth in tegral undio amp and spaker. Sold in good. used condition-tull only 855.00 (f) tested with 90 day gurantee.

FLOPPY DRIVE SCOOP Drives from Only £39.95

Other you prime product al al time SUPerlow pices. All unts unles siated are removed from oten BRANO NEW equipment IUll

 TCcepp the common slardard 34 way interdace connectior TANDON TM *01-4 FH 80 track double sided Only E39.95 (
 DISK DRIVE ACCESSORIES

8" DISK DRIVES

SUGART $800 / 801$ single sided refurbished SUGART 851 doulve esided refurbished
\&175.00 (E)

COMPUTER SYSTEMS

TATUNG PL2evo. Big broiter or the lamous EINSTE

 ${ }^{\text {age }}$ Full 90 dand NEW Ortginal price OVER 14400 Only £299(E) EQUINOX (IMS) S100 system capable of running either TURBO o Slandard CPM Mnt features heayy duy box cormaning a powertul

 Units in good condition and lested prior despatch, no documentation
at present hence price of only 5245.00 (F) S 100 PCB's IMS A465 64 K dynamic RAM 155.00 (B) (B)
controller $£ 85.00$ (B). IMS A862 CPU \& Vo 65.00 (B)

RECHARGEABLE BATTERIES

A Mainenance
A 300
12 V 3 Ah

© KESTREL COMPONENTS LTD.

* All items guaranteed to manufacturers spec.
* Many other items available.
'Exclusive of V.A.T. and post and package'

	$1+$	$50+$		$1+$	$50+$
74LS372	0.15	0.12	8 Meg	0.45	0.35
74LS244	0.30	0.21	16 Meg	0.45	0.35
74LS245	0.30	0.21	ILQ-74	1.50	1.35
74LS373	0.30	0.21	1488	0.25	0.16
6809	2.50	2.20	1489	0.25	0.16
6821	1.25	0.95	LM2901	0.80	0.60
6845	2.50	2.20	LM2917-8	1.50	0.75
6850	1.60	1.40	2764-25	2.50	2.30
6502	2.80	2.40	2764A-25	2.20	2.00
6522P	2.80	1.85	27C64-20	3.00	2.60
8031	2.80	1.70	27128-25	3.70	3.40
8085	1.60	0.95	27C128A-25	3.40	3.10
8253-5	1.90	1.30	27128A	2.98	2.72
LM319N	0.50	0.40	27256-25	3.30	3.12
32.768 Khz Crystal	0.25	0.16	27C256-25	3.50	3.22
1.8432 MHz	0.95	0.70	43256C12L	10.00	9.00
2.4576 MHz	0.75	0.65	ICL8211CPA	0.80	0.60
3.5795 MHz	0.50	0.35	TLO84CN	0.50	0.45
4 Meg	0.45	0.35	Z80ACPU	1.00	0.80
4.194304	0.45	0.35	Z80ACTC	1.00	0.80
6 Meg	0.45	0.35	Z80AP10	1.00	0.80

All memory prices are fluctuating daily, please phone to confirm prices.
178 Brighton Road, Purley, Surrey CR2 4HA Tel: 01-668 7522. Fax: 01-668 4190

ENTER 35 ON REPLY CAR

TELESCOPIC MASTS

- Pneumatic
- Hydraulic Ram Operated
- Winch Operated

1

Hilomast Ltd.

THE STREET, HEYBRIDGE, MALDON ESSEX CM9 7NB ENGLAND Tel: (0621) 56480 Telex: 995855

ENTER 9 ON REPI.Y CARD

Thandar Electronics Limited London Road. St. Ives. Huntingdon Cambridgeshire PE174HJ, England Telephone (0480) 64646 Telex 32250 Test THE LOGICAL CHOICE

Philip Smith's chart

J.W. asserts that the Smith chart is alive and well and living on the front of all those exotic network analysers.

JOULES WATT

My excursion into transmission lines from the point of view of guided electromagnetic waves, inevitably caused a flurry of comments about impedance charts.
"Are they still used?" I was asked. Someone else mentioned he used charts often, but enquired how they worked. Students wondered why they had to study them, when "computers and automatic test equipment solve all the problems now, right?". The answer is, of course, not always. To illustrate, I dug out an overlay transparency that fits the iront of an expensive network analyser screen and, in passing, booted up a personal computer which ran an r.f. circuitanalyser program. In both cases, a Smith chart ${ }^{2}$ appeared on the screen - either as the overlay or directly on the v.d.u.

In other words, although automatic equipment often compules solutions, we get them presented on a Smith chart. Therefore. to interpret the picture, r.f. engineers need a thorough grasp of the mathematical principles behind it.

I suppose a short way of saying all this is to point out that the mathematical modelling of transmission lines must yield the same equations that plot the chart. Because the analysis of other circuit elements turns up similar equations, we can plot their characteristics on the chart as well. From this views as you look further into the graphical tradition handed down to us by electronic engineers, the ramifications become wider and more subtle. Therefore you can present on a Smith chart much more than transmissionline problems, although I carry through that classical approach here. Lumped-impedance matching circuits, gain and stability circles for amplifiers, impedance-to-admittance conversion, the presentation of S (scattering) parameters and others all become clear on the overlapping co-ordinates of the chart.

Currently, however, as the earlier geometrical tradition in our maths teaching declines, visual imagery becomes neglected, to the detriment of learning. Shame on those who fail to exhort the next generation to see this heauty

A LITTLE FURTHER ALONG
 TRANSMISSION LINES

Electromagnetic waves on r.i. lines travel both ways. We usually work in terms of voltage and current waves, so that the forward voltage wave, which has a complex amplitude V^{+}, arises from the transmitter supplying r.i. energy. Waves travelling the other way usually result from reflection at a mismatch and we denote them by the complex amplitude V^{-}. The sum $\mathrm{V}^{+}+\mathrm{V}^{-}$gives

Fig.1. A wave travelling to the right on a line dies away according to α in the real exponential factor. The The imaginary exponential describes the phase along the line. The factor we always suppress, $e^{i \omega t}$ accounts for the time variation.
the total voltage at any point. A closer look shows standing waves now present; the voltage standing wave ratio (v.s.w.r.) is a significant talking point in line-matching problems. If you want to calculate the v.s.w.r., also delined as S, then take the voltage maximum, $V_{\text {max }}$ measured at appropriate points along the line and divide by $V_{\text {min }}$, measured at intermediate points. $V_{\text {max }}$ and $V_{\text {min }}$ turn out to be the sum and difference of the fonward and reflected wave amplitudes respectively,

$$
V_{\max }=\left|\mathbf{V}^{+}\right|+\mathbf{V}^{-} \mid \text {and } V_{\min }=\left|V^{+}\right|-\left|V^{-}\right|
$$

This means you can write

$$
S=\frac{V_{\max }}{V_{\min }}=\frac{\left|V^{+}\right|+\left|V^{-}\right|}{\left|V^{+}\right|-\left|V^{-}\right|}
$$

You probably expect the characterist ic impedance Z_{0} to enter the scene any moment now - and it does, to give the current waves.

$$
\mathrm{I}^{+}=\frac{\mathrm{V}^{+}}{Z_{0}} \text { and } \mathrm{I}^{-}=-\frac{\mathrm{V}^{-}}{Z_{0}}
$$

giving the total current

$$
t=1^{+}+1^{-}=\frac{V^{+}-V^{-}}{Z_{0}}
$$

In common with complex number theory. all these voltages and currents possess real and imaginary parts.

The propagation constant also figures prominently and Fig. 1 shows that by using
it. we can write down the voltages (or using Z_{0}. the currents) anywhere along the line including the termination - all in terms of the sending end values.

$$
\begin{aligned}
& \mathbf{V}^{+}=\mathbf{V}_{s}^{+} \mathbf{e}^{-\gamma x} \\
& \mathbf{V}^{-}=\mathbf{V}_{s}^{-} \mathbf{e}^{\gamma x}
\end{aligned}
$$

and at the load. distance 1 away,

$$
\begin{aligned}
& V_{L_{1}^{+}}=V_{s}^{+} e^{-\gamma \mid} \\
& V_{1}^{--}=V_{s}^{-} e^{\gamma i}
\end{aligned}
$$

You will find one other number important for further discussion, namely, the voltage reflection coefficient whose symbol nearly everyone agrees to take as ρ. The definition of p is.
reflected wave complex amplitude
forward wave complex amplitude
at any point.
This yields immediately at the sending end.

$$
\rho_{\mathrm{s}}=\frac{V_{\mathrm{s}}^{-}}{\mathrm{V}_{\mathrm{s}}^{+}}
$$

at the load.

$$
\rho_{L}=\frac{V_{L}^{-}}{V_{L}^{+}}
$$

and generally.

$$
\rho=\frac{V^{-}}{V^{+}}
$$

Because the voltages are complex. p is
complex too. Therefore it has a phase and amplitude like any other complex number.

$$
\therefore \quad \rho=|\rho| \mathrm{e}^{\mathrm{f} i t}(\text { see Fig.2) }
$$

All the ρs relate to one another, because all the voltages do

$$
\rho=\frac{V^{-}}{V^{+}}=\frac{V_{s}^{-}}{V_{s}^{+}} \frac{e^{\gamma x}}{e^{-\gamma x}}=\rho_{\mathrm{s}} e^{2 \gamma x}
$$

In a similar way we find the load reflection coefficient

$$
\rho_{0}=\frac{V_{s}^{-}}{V_{s}^{+}} \frac{e^{\gamma \mid}}{e^{-\gamma \mid}}=\rho_{\mathrm{s}} e^{2 \gamma \mid}
$$

You can ring some changes on all these at will. For example, by dividing ρ_{1}, by ρ, this turns up

$$
\begin{aligned}
\frac{\rho_{\mathrm{L}}}{\rho} & =\frac{\rho_{\mathrm{s}}}{\rho_{1}} e^{2(\gamma \mid-k)} \\
\rho & =\rho_{1} e^{-2 \gamma \mathrm{~d}}
\end{aligned}
$$

where $\mathrm{d}=1-\mathrm{x}$ is the distance measured back along the line from the termination in Fig. 3.
The total voltages anywhere also relate easily through the reflection coefficient

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{s}}{ }^{+}\left(1+\frac{\mathrm{V}_{\mathrm{s}}{ }^{-}}{\mathrm{V}_{\mathrm{s}}{ }^{+}}\right) \\
& =V_{\mathrm{s}}{ }^{+}\left(1+\rho_{\mathrm{s}}\right) . \\
& \text { Also } \\
& V=V^{+}(1+\rho) \\
& \text { and } \quad V_{1}=V_{\mathrm{L}}{ }^{+}\left(1+\rho_{\mathrm{L}}\right)
\end{aligned}
$$

So do the currents

$$
\mathrm{I}=\frac{\mathrm{V}^{+}}{Z_{0}}(\mathrm{l}-\rho),
$$

and so on.
I have just shown that all the wave amplitudes simply require you to know the fonvard wave voltages, given the reflection coeificients.

But now comes the pièce de résistance. We obtain all the impedances at any point along the line as well. You have to understand the definition first. The impedance z at any point appears from Ohm's Law as the quotient of the total voltage to the total current at that point.

$$
\frac{V}{i}=Z, \frac{V_{\mathrm{s}}}{I_{\mathrm{s}}}=Z_{\mathrm{s}} \text { and } \frac{V_{\mathrm{L}}}{I_{\mathrm{L}}}=Z_{\mathrm{L}}
$$

Sostraightaway,

$$
Z_{\mathrm{s}}=\frac{V_{\mathrm{s}}}{I_{\mathrm{s}}}=\frac{V_{\mathrm{s}}^{+}\left(1+\rho_{\mathrm{s}}\right)}{\frac{V_{\mathrm{s}}^{+}}{Z_{0}}\left(1-\rho_{\mathrm{s}}\right)}=Z_{0}\left(\frac{1+\rho_{\mathrm{s}}}{1-\rho_{\mathrm{s}}}\right)
$$

In a similar way, at the other positions,

$$
Z_{\mathrm{L}}=Z_{\mathrm{O}} \frac{1+\rho_{\mathrm{L}}}{1+\rho_{\mathrm{L}}} \text { and } Z=Z_{0} \frac{1+\rho}{1-\rho}
$$

By transposing, you can get expressions for the ρs, for example.

$$
\rho_{\mathrm{L}}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}
$$

Authors seem to be fond of writing even'thing in terms of the load reflection coefficient, ρ_{L}, so that using $\rho=\rho_{\mathrm{l}} \mathrm{e}^{-2 \gamma \mathrm{~d}}$ as an example, we can write the impedance z at

Fig.2. ρ is here represented as a phasor in the complex plane. The axes correspond to those upon which the Smith chart cen. tres (see later).

Fig.3. As in all good geometry, you should keep track of your coordinates. The impedances are those seen "looking in" at the points shown.

any point on a line at a distance d back from the load towards the transmitter as,

$$
Z=Z_{0}\left(\frac{1+p_{1} \mathrm{e}^{-2 \gamma \mathrm{~d}}}{1-p_{1} \mathrm{e}^{-2 \gamma \mathrm{~d}}}\right)
$$

You can see from the definition that ρ is dimensionless and because the reflected wave amplitude $\left|\mathrm{V}^{-}\right|$arising from a forward wave reliecting at a passive termination cannot exceed the incident amplitude $\left|\mathrm{V}^{*}\right|$. then

$$
|\rho|=\frac{\left\lvert\, \frac{V^{-} \mid}{\left|V^{+}\right|}<1\right.,}{}
$$

Now we are in a position to write the standing wave ratio S in terms of $|\boldsymbol{p}|$.

$$
\mathrm{S}=\frac{\left|\mathrm{V}^{+}\right|+\left|\mathrm{V}^{-}\right|}{\left|\mathrm{V}^{+}\right|-\left|\mathrm{V}^{-}\right|}=\frac{1+\frac{\left|\mathrm{V}^{-}\right|}{\left|\mathrm{V}^{+}\right|}}{1-\frac{\left|\mathrm{V}^{-}\right|}{\left|\mathrm{V}^{+}\right|}}=\frac{1+|\rho|}{1-|\rho|}
$$

ENTER THE COSH, SINH AND TANH

Bysubstituting

$$
\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}
$$

for p_{1} in the above equation ior Z we obtain

$$
Z=Z_{0}\left(\frac{\left.Z_{L}+Z_{0}\right) e^{\gamma d}+\left(Z_{L}-Z_{0}\right) e^{-\gamma d}}{\left.Z_{L}+Z_{0}\right) e^{\gamma d}+\left(Z_{L}-Z_{0}\right) e^{-\gamma d}}\right) .
$$

Rearranging.

$$
Z=Z_{0}\left(\frac{Z_{0}\left(\mathrm{e}^{\gamma d}-\mathrm{e}^{\gamma d}\right)+Z_{L}\left(\mathrm{e}^{\gamma d}+\mathrm{e}^{-\gamma \mathrm{d}}\right)}{Z_{0}\left(\mathrm{e}^{\gamma \mathrm{d}}+\mathrm{e}^{\gamma \mathrm{d}}\right)+Z_{\mathrm{L}}\left(\mathrm{e}^{\gamma \mathrm{d}}-\mathrm{e}^{-\gamma \mathrm{d}}\right)}\right) .
$$

You may be familiar with the hunerbolic functions,
$\cosh x=\frac{e^{x}-e^{-x}}{2}, \sinh x=\frac{e^{x}+e^{-x}}{2}, \tanh x=\frac{\sinh x}{\cosh x}$ If not, a quick look in ref. 3 should put you right. This means that you can write the equation for Z in terms of the hyperbolic functions, and it looks like,

$$
Z=Z_{0} \frac{Z_{0} \sinh \gamma d+Z_{L} \cosh \gamma d}{Z_{0} \cosh \gamma d+Z_{L} \sinh \gamma d^{\prime}}
$$

or $Z=Z_{0} \frac{Z_{0} \tanh y d+Z_{L}}{Z_{0}+Z_{1} \tanh \gamma d}$
at any point a distance d back from the load.
The last discussion assumes that some general propagation constant γ describes the waves on the line. This complex γ has real and imaginary parts.

$$
\gamma=\alpha+j \beta
$$

where the attenuation constant α measures how rapidly the wave dies away because of losses. The phase constant β yields how quickly we go through cycles of phase-angle change while travelling along the line. You pass through 2π radians if your journey takes up one wavelength along the line.

LOSSLESS LINES

Radio frequency line made with low-loss materials such as coaxial cables with p.t.f.e. dielectric. possess very small α 's. To a very good first approximation we call these lines lossless. In that case, $\gamma=\mathrm{j} \beta$ and the simh. cosh and tanh become transformed to the more familiar form of the \sin , \cos and \tan, which means we can write down the impedance Z back along such lines in the simpler form,

$$
\begin{equation*}
Z=Z_{0} \frac{\mathrm{Z}_{0} \tan \beta \mathrm{~d}+\mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{0}+\mathrm{j} Z_{\mathrm{L}} \tan \beta \mathrm{~d}} \tag{1}
\end{equation*}
$$

You can do many interesting things with this equation. For example, short circuit the end of the line - in other words, put $Z_{1}=0$, then.

$$
Z=j Z_{0} \tan \beta d
$$

This shows that you obtain an inductive reactance varying as $\tan \beta \mathrm{d}$ until at $\mathrm{d}=\pi / 4$ $\mathrm{Z} \rightarrow \infty$. This is the famous shorted quarterwave stub behaviour, of course. Put $\mathrm{d}=\pi / 4$ into (1) and you obtain the quarter wave transformer.

$$
Z Z_{\mathrm{L}}=Z_{\mathrm{o}}
$$

You can obtain many other results. For example, ask yourself what happens with an open circuit at the end, or with a lumped $Z_{\text {。 }}$ placed on as a load.
All this shows that we have an equation that models and predicts all the behaviour of
lines and stubs carrying sinusoidal waves, for which the impedance concept holds.

CHARTING A NEW COURSE

As you know, all impedances possess real (resistive) and imaginary (reactive) parts. If you study the graphical plot of this, you find yourself on the complex plane ${ }^{4}$. One particular transformation of this plane gives considerable new insight: the discussion in the box gives a brief outline of this geometric inversion, which, in our context, amounts to a transformation from impedance to admittance.

$$
Y=\frac{1}{Z}
$$

Beiore 1 look into this a little further, one tricky point that needs a brief word or two involves something called normalization. You will find a number of occasions on which a scale factor change simplifies everything. The important quantity in any problem - it could be the resonant frequency of a system, or, in the present context. probably the characteristic impedance Z_{0} - is the one that takes over the job of acting as the unit. Using the characteristic impedance as an example. we divide everything by Z_{0} so that all other impedances become multiples or fractions of it.

Doing this can be a little dangerous in that, as Z_{0} divides everything, the units (ohms) disappear and you have to watch the dimensions. Some authors (including myself) use upper-case symbols for unnormalized quantities and lower-case letters for normalized ones. Thus, for a pure resistance on the end of a line,

$$
\mathrm{r}_{\mathrm{L} .}=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{o}}}
$$

and so on. If you write equation (1) with a terminating resistance on the end in normalized form, it means you have divided by Z_{0} and the result looks like

$$
z=\frac{j \tan \beta d+r_{L}}{1+j r_{L} \tan \beta d}
$$

This is a simpler version of the most general form.

$$
z=\frac{a+b y}{c+d y}
$$

which in complex number theory has the grand title, the bilinear transtormation. You could rearrange it into a suitable form for a transiormation from the y to the z plane. Fortunately you can write the simpler, normalized equation (1) directly into the form

$$
z=\frac{\mathrm{A}}{\frac{\mathrm{~A}}{y}}+\mathrm{B}
$$

The Ay term transforms easily by means of the geometric inversion as discussed in the box. The B term is a shift along the axis.

Beady-eved readers probably noticed that I slipped in a pure resistance r_{L} as a termination, instead of the more general z_{L} in the normalized equation (1). I intended this. since it means we can start and finish some plots on the complex z-plane along the real axis, not out at some hard-to-find point 2 . We do not lose any generality. because the plots go right round the circumference of circles in any case and therefore encompass
every relevant impedance.
Add, then subtract $1 / r_{L}$, to the right-hand side of the normalized equation (1).

$$
\begin{aligned}
& z=\left(\frac{r_{\mathrm{L}}+j \tan \beta \mathrm{~d}}{1+j r_{\mathrm{L}} \tan \beta \mathrm{~d}}-\frac{1}{r_{\mathrm{L}}}\right)+\frac{1}{r_{\mathrm{L}}} \\
& z=\left(\mathrm{r}_{\mathrm{L}}-\frac{1}{r_{\mathrm{L}}}\right)\left(\frac{1}{1+j r_{\mathrm{L}} \tan \beta \mathrm{~d}}\right)+\frac{1}{r_{\mathrm{L}}}=r+j x
\end{aligned}
$$

which yields the precise form we require for the geometric transformation.

DRAWING THE CIRCLES

Step by step handling of each term and factor in the expression for z builds up an impedance chart. Start by inverting the plot of $1+j r_{1}, \tan \beta \mathrm{~d}$ in Fig.4(a) to get the circle in Fig.4b. Then magnify this circle by the factor

$$
\left(r_{\mathrm{L}}-\frac{1}{r_{\mathrm{L}}}\right),
$$

thus arriving at Fig.4(c). Finally, shift the circle along the axis by the amount of the term $1 / r_{1}$ to obtain the result in Fig.4(d).

Notice that a journey round the circle corresponds with a shift back along the transmission line through half a wavelength, because $\tan \beta \mathrm{d}$ goes through one cycle as d changes by $\mathrm{N} / 2$. From this you can see that voltage, current, phase and impedance conditions go through the whole cycle of possibilities, every half-wave shift back along an unmatched transmission line. A semicircular journey on the chart corresponds to a quarter-wave shift along the line and shows a reciprocal relationship. Where we start at high impedance, we end at low. High-voltage points become high-current points $\pi / 4$ away and so on. This confirms that quarter-wave sections of transmission line behave as transformers.
Every point on a given circle possesses the same $r_{1,}$, so as you choose different r_{1}, a whole family of circles - the constant resistance circles - appear on the plot. The standing wave ratio S remains constant on any one of these circles. In fact, because S equals the normalized resistance r_{L}, you can read off S as the value of r_{1} at the intersection of the circles with the resistance axis. From this, many authors use the alternative name "the S circles". Figure 5 shows them.

The other circles. A move around a constant S circle takes you on a journey back along the line, or fonward along it, if the move goes round the other way. Each point, therefore. represents a fixed position on the line. It looks as though we need another set of circles upon whose circumferences all the fixed points lie.
You can derive these circles in a similar way to the S circles. This time, add and subtract $1 / \tan \beta \mathrm{d}$ to the normalized equation (1)

$$
\begin{aligned}
\therefore z_{\text {in }} & =\left(\frac{r_{L}+j \tan \beta \mathrm{~d}}{1+\mathrm{r}_{\mathrm{L}} \tan \beta \mathrm{~d}}+\frac{\mathrm{j}}{\tan \beta \mathrm{~d}}\right)-\frac{\mathrm{j}}{\tan \beta \mathrm{~d}} \\
& =\left(\tan \beta \mathrm{d}+\frac{1}{\tan \beta \mathrm{~d}}\right)\left(\frac{1}{r_{\mathrm{L}} \tan \beta \mathrm{~d}-\mathrm{j}}\right)-\frac{\mathrm{j}}{\tan \beta \mathrm{~d}}
\end{aligned}
$$

$$
=r_{i n}+j x_{i n}
$$

Fig.4. Here we have a series of steps building up one set of circles on the rectangular impedance chart as discuss. $s \in d$ in the text.

Fig.5. The result of the transforming operation shown in Fig.4, yields a set of circles all encircling and related to the point " 1 ".
(

Fig.6. We go through essentially the same process as in Fig.4, but it is worth noting carefully the differences.

Fig.7. Again the result of the second transformation is circles, but as shown here, now they all intersect at the point " 1 "
on the z-plane.
Put $y=r_{L} \tan \beta d-j$ and plot it, but only for positive r_{L} as in Fig. 6(a). Invert it, to give Fig.6(b). Now magnify it by the first factor. giving Fig. 6(c). Finally, shift along the imaginary axis by

Figure 6d shows the final result.
As you chose different values for d, or rather for d , you get another whole family of circles, all cutting the S circles at right angles, as in Fig. 7. They can sensibly carry the name constant d, or probably better. constant d circles.

Figure 8 illustrates the final rectangular impedance chart we have fairly rigorously obtained. You can apply it straight away, but notice how it goes off to infinity for some values. This requirement ior a very large sheet of paper set people thinking of alternatives.

THE POLAR CHART

Quick thinking readers might already have begun to realise that the geometric inversion carried out in the box packs the whole of the infinite half plane, $z=r \pm j x$ from 1 on the " r " axis to ∞, into the unit circle on the transformed complex plane. But note, r has to be 1 or greater. Between 0 and 1, all the other circles out to infinity appear. You might wonder how, by excluding all interesting values of normalized resistance r_{L} less than 1 (i.e. $\mathrm{R}_{\mathrm{L}}<Z_{0}$). anything of value would accrue by further transtormations.

The answer is that values of r. less than 1 are not excluded, but negative values are. Negative resistive parts imply active devices - amplifiers. say - and we leave these out of the argument for now. The geometry that requires a plot from unity outwards means we start by shifting the axes so that $\mathrm{r}_{\mathrm{L}}=0$ begins at 1 . You might think doing that is too much of a wangle, but surprisingly the mathematics of transmission lines automatically fulfils this requirement. Also. the rectangular chart fails to bring in the important reflection coefficient ρ. You could write the complex number ρ in its rectangular components form $\rho=\rho_{\mathrm{r}}+\mathrm{j} \rho_{\mathrm{i}}$. But we can do better for the present purpose by looking at the other representation - its magnitude and angle.

$$
\beta=|\beta| / \phi-2 \beta d=\frac{z_{\text {in }}-1}{z_{\text {in }}+1}
$$

Notice that the 1 in the denominator adds to $z_{\text {in }}$ to give just the start we require. The left-hand side represents a family of circles centred on the origin, radius $|\boldsymbol{p}|$ which has a maximum value of 1 , however large or small $\left|z_{\text {in }}\right|$ becomes. The angle $\phi-2 \beta \mathrm{~d}$ steps out round the circumference according to values of d . In other words, the picture is a plot of ρ in polar coordinates: see Fig. 2.

The right-hand side contains $z_{i n}$, which is $r_{\text {in }} \pm j \mathrm{x}_{\text {in }}$, the rectangular axes of our earlier impedance chart, so that when inverted. these axes form the curves obtained. To geometrically invert $\left(z_{\text {in }}-1\right) /\left(z_{\text {in }}+1\right)$ add and subtract 1

$$
\begin{aligned}
\rho & =\frac{z_{\text {in }}-1}{z_{\text {in }}+1}-1+1 \\
& =-\frac{2}{z_{\text {in }}+1}+1
\end{aligned}
$$

As I mentioned, the 1 in the denominator of the first term means everything transforms into the unit circle. Figure 9(a) shows this denominator plotted. Do the geometric inversion, as in Fig. 9(b). Now magnify by 2. the numerator value, and rotate about the origin (because of the minus sign), so as to arrive at Fig. 9(c). Finlly shift the whole picture to the right by +1 , as instructed by the remaining term. The final result shown in Fig. 9(d) presents us with the Polar chart which, in its modern commercialised form, everyone calls the Smith chart ${ }^{2}$.
I find it interesting that, as early as 1930 , A.C. Bartlett derived and used the chart in his book on artificial transmission lines ${ }^{5}$. as his Fig.144, reproduced here as Fig.10, shows. This in no way detracts from the clarity with which Philip Smith rendered it as a tool for direct use as a saleable commercial item but shows that, yet again, there is nothing new under the sun.

INTERPRETATIONS

Success with the chart definitely improves with practice. You will find a large number of books with many practice examples at the ends of the chapters containing details of the Smith chart ${ }^{6 . \bar{\tau}}$. So if you are rusty with its use, or if you have yet to master it, now is the time to have a go.
But if you scrutinize the chart, a great deal comes out of it before approaching even the first example. The complete circles - the ones converging down to the point 1 on the right - come from the transformed lines parallel to the positive $r_{\text {in }}$ axis corresponding to fixed reactance values. They form the constant resistance circles on Smith chart. The other set of the partial circles cutting all the first ones at right angles. come from the transiormed vertical lines through fixed resistance values, parallel to the $\pm \mathrm{x}_{\text {in }}$ axes. This means that all the points of intersection of the circles yield or correspond to the various values of $z_{\text {in }}$ with a positive real part. Negative real parts would drive the point of interest outside the circumference of the chart. Indeed, you can obtain special charts with some of these outer regions plotted, to handle some of the reflection-amplifier analysis that turns up in microwave systems. |p| occurs with values greater than 1. which means negative resistance - or gain - has appeared on the end of the line.
Journeys round the chart correspond to travelling along the transmission line. One complete trip round corresponds to a half wavelength. Half way round naturally means a journey of a quarter wavelength. The value of $z_{\text {in }}$ at the start of a quarter wave journey. transforms to the diametrically opposite point, which an examination of the chart shows to be its reciprocal. From this, you can see the transforming action of a quarter wave stub again. The fraction cut off along the radius line through $z_{\text {in }}$ gives the value of $|\rho|$ and the angular position yields ρ. The rectangular values of ρ, ρ_{r} and ρ_{i} could be found by reinstating the discarded rectangu-

Fig.8. The final result is a the once popular Rectangular Impedance Chart which you can still use in its calibrated form shown. (Acknowledgements to "Services Textbook of Radio" 1966, HMSO and Wireless World)

Fig.9. In reality, these transformations amount to similar inversions already illustrated in Figures 4 and 6. But there are a few more interesting stages, such as the "rotate" operation. The final result is the Smith chart in d. (Acknowledgements as Fig.8)

Geometric inversion, or transformation $Y=1 / 2$
The general bilinear transformation from the complex y-plane to the corresponding complex z-plane is,

$$
z=\frac{a+b y}{c+d y}
$$

But simpler versions of this, based on the form $y=1 / 2$ always turn up in the present context. There may be a real scale factor multiplying this equation. A real term might be added to \mathbf{z}. which will be a shift in that plane. Finally, a term might be added to the whole of the right hand side. This would correspond to a shift on the y-plane. The result. generalized as far as we ever want to go in understanding charts, looks like.

$$
y=\frac{A}{z+B}+C
$$

and to transform this, one relies only on knowing how to handle the interpretation of $1 / 2$. Whether we go z to y, or y to z involves the same reasoning.

If y is the complex number of $g+j b$ and similarly z equals $r+j x$ then the transformation from the z-plane to the y-plane involves taking the reciprocal of complex numbers. Traditionally in this subject the reciprocation is called an inversion.

Consider the z-plane. If r remains constant and x varies, we get all the vertical lines. as in Fig. Al. Similarly, all the horizontal lines come from keeping x constant and varying r. Study the geometry in Fig.A2. Construct the circle $O B A O$ so that $O A=1 / O C$. The problem is to obtain the relationship between any point D on the vertical line and the corresponding point B on the circle. In other words, how does B vary as D varies?
Angle OBA is a right angle. O is common to triangle $O A B$ and triangle $O C D$. therefore these triangles are similar. In particular.

$$
\frac{O B}{O A}=\frac{O C}{O D}
$$

Using the condition that $O A=1 / O C$ we obtain $O B . O D=1$. This means that $O B=1 / O D$ for any D, indicating that the transformation $y=1 / 2$ maps any point z on the vertical line in the $z \cdot$ plane to a corresponding point y on the circle, which lies in the y-plane. All the vertical lines on the z-plane maps onto the various circles on the y-plane.
Applying this to admittance/impedance transformations shows that.

$$
\begin{aligned}
& \quad y=\frac{1}{z} \text { or }|y|\left\langle\phi_{y}=\frac{1}{|z| / \phi_{z}^{*}}\right. \\
& \text { Therefore }|y|=\frac{1}{|z|^{\prime}}, \phi_{y}=-\phi_{z} \text { and }
\end{aligned}
$$

and the upper semi-inifinite line segment on the z-plane maps onto the lower semicircle on the y-plane, because of the sign change in ϕ. The more remote vertical lines - produced as r tends to infinity, map into smaller diameter circles shrinking onto the origin - as y tends to zero. see Fig.A4.

Fig.Al. This shows that for a fixed r, as jx varies the phasor drawn from the origin to point z varies through all lengths z and in angle \oint_{2}, from $-\pi / 2$ to $+\pi / 2$ radians.

Fig.A2 By similar triangles, point D on the perpendicular through C in verts to point B on the circle. The higher D travels, the further B moves round the circle towards the origin.
Fig.A3 The actual inversion of all the sample phasors on Fig.Al appear as corresponding points on the circle shown here. A phase reversal places the top segment of the constant " r " line in Fig.Al onto the lower semicircular arc, as shown.
Fig. A4 The whole family of constant " r " lines on the z-plane map into a family of circles on the y-plane. The more distant " r " lines map into the smaller circles.

Fig.10. This Figure and discussion can be found in Bartlett's book of 1930^{5}. His Fig. 144 clearly shows the derivation of the Polar chart.
lar axes on the chart. but you will find this rarely done. On the other hand. drawing a circle round the centre of the chart through the point $z_{\text {in }}$ cuts the horizontal (resistance) line to the right of the centre at a value r_{b} and, as the standing wave ratio S , as we have defined it, equals $r_{L}\left(r_{L}>1\right)$, you can read off the v.s.w.r. directly. For this reason, the cirlces round the centre are called the S circles. They correspond to the rectangular chart S circles.

You soon get used to journeying arond the chart on constant-S circles. constant $-x$ circles and constant-r circles. In whatever way you have journeved. the point of arrival gives you $z_{\text {in }}$ straightaway. plus all the information about the reflection coefficient and the v.s.w.r. We make the dourneyings on the chart for some design or analysis purpose. The normalized value of 1 (at the centre) very often forms the terminus, because the matching condition of your system occurs there. So all the arcs and twists tend to home onto 1 and if you manage to do it, then your stub positions, lengths, capacitor and inductor values have all combined to match the system. whatever your starting impemdance point was

To be continued

References

1. Joules Watt. Poynting the way, Electronics \& Wireless World. p. I 15. Feb. 1988
2. P.H. Smith. Transmission-line Calculator, Electronics 12. p.29. Jan. 1939
An Improved Transmission-line Calculator. Electronics. 17 p. 130, Jan. 1944
3. C. Stephenson. "Mathematical methods for Science Students Chap, 8. Ityperbolic Functions" Longmans.
4. Joules Watt. "j" - real thoughts on the imaginary axis. Electronics of Wireless World. p. 938 Sept. 1987
5. A.C. Bartlett. "The Theory of Electrical Artificial Lines and Filters". p.136/137 Chapman and Hall 19:30
6. W.E. Everitt. "Communication Engineering". Chapters 10 and 12 contain a good account of the Smith Chart, essentially similar to mine. Third Edition, McGraw Hill, 1956
7. S.V. Marshall, "Electromagnetic Concents \& Applications". Chapter 12 derives the Smith Chart in a different way. The authors give similar applications. Second Edition. Prentice Hall, 1987.

Bibliography

Wireless World carried an interesting article on the Smith chart by R.A. Hickson in the January 1960 issue. who discussed the meaning the circles and hinted the method of derivation I adopted here.

The book, "Microwave Circuits" by V.F. Fusco Prentice Hall. 1987, contains a discussion of the chart and gives a program listing (BBC Micro) to plot the chart and enter impedance points via the keyhoard.

NEW 8051 DEVELOPMENT CARD

The new Cavendish Automation development card carries a full symbolic Assembler and text editor as well as the MCS-BASIC 52 package. It will allow the user to write applications programmes in either BASIC or Assembler.
The text editor supports ORG, LOC, HIGH and LOW directives as well as the current location (\$) and the + and - operators. Full source text editing is included, and the source file as well as assembled code may be blown into PROM/E²PROM on-card. A powerful feature of the system is that a function library of over 60 routines within the interpreter may be accessed using assembly language CALL instructions, enabling simple negotiation of floating point, logical operations, relational testing and many other routines.

FEATURES

- Only requires +5 V supply and dumb terminal
- Save assembled code or source text in PROM on-card
- Card I/O includes 9×8-bit ports and 2 serial lines.
- Very fast interpreter specifically written to access capabilities of '51 Family
- 32K user RAM, 16K user PROM (RAM jumpered to access code or data space)
- Card supported by over 50 other types of CAI/O and CPU target cards

So, for professional implementations at super-low cost, call us on (0480) 219457.
Cavendish Automation, 45, High St., St. Neots, Huntingdon, Cambs PE19 1BN. Tel: 0480 219457. Telex: 32681 CAVCOM G.
ENTER 19 ON REPLY CARD

ENTER 7 ON REPLYCARI

$4+11 \mathrm{GHz}$ SATELLITE TV RECEIVING EQUIPMENT

RECEIVERS, LNB's, LNC's, FEED HORNS, ANTENNAS, ANTENNA POSITIONERS, POLOROTORS, LINE AMPLIFIERS, ETC.

For further details contact:
HARRISON ELECTRONICS
Century Way, March, Cambs PE15 8QW Tel: (0354) 51289

The Archer Z8O \&BC

The SDS ARCHER - The $Z 80$ based single board computer chosen by professionals and OEM users. \star Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
\star OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
ENTER 52 ON REPLY CARI

The Bowman 68000 \&BC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM.

* Extended width versions with on board power supply and case
enter 53 on reply Card

Sherwood Data סystems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

Toroidal
 \& E.I.

 Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices

Toroidal Mail Order Price List

prices inclusive of VAT \& Postage
$15 \mathrm{va} 9.12,30 \mathrm{va} 9.48,50 \mathrm{va} 10.16,80 \mathrm{va} 11.02,120 \mathrm{va}$
$12.23,160 \mathrm{va} 14.44,225 \mathrm{va} 16.37,300 \mathrm{va} 18.05,500 \mathrm{va}$
$26.46,625$ va $30.66,750 \mathrm{va} 34.14,1000 \mathrm{va} 49.40$
Also available $1 \mathrm{k} 2,1 \mathrm{k} 5,2 \mathrm{k}, 2 \mathrm{k} 5,3 \mathrm{k}$. Prices on request.
Available from stock in the following voltages: 6-0-6,
9-0-9, 12-0-12, 15-0-15, 18-0-18, 22-0-22, 25-0-25,
30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220,
240. Primary 240 volt

Quantity prices and delivery on request

Air Link Transformers
Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel: 0279724425

Unfriendly GPIB Controller?

EARTH LOOP PROBLEMS?

RUN OUT OF INTERRUPTS?

DMA PROBLEMS?

M A INSTRUMENTS HAVE THE SOLUTION!
These problems are a thing of the past with the new high-performance IEEE 488.2 controller card and software for PC-compatibles from M A INSTRUMENTS.
Consider the advantages

- Full IEEE 488.2 command structure
- ALL popular languages supported, incl. TBASIC
- Versatile FORMATTED I/O: mix hex and text!
- (il) 24 MONTH guarantee
- Lifetime telephone HOTLINE support

Enhance your existing TMS9914 or uPD 7210 -based GPIB card with our IEEE 888.2 software upgrade
Phone us for details.

ENTER 33 ON REPLY CARD

Circuit ideas

Inductance synthesis

Theoretically, this circuit for synthesizing inductance to ground has no loss, and it does not need matched resistors. In practice, it can be used to produce low-frequency resonant circuits with a Q of about 1000 , its loss depending on capacitor loss and amplifier characteristics.

Adding the capacitor and resistor shown dotted turns the circuit into a sinewave oscillator. Because Q is high, the resistor, which provides, negative loss, can have a
very high value. This high value results in a waveform better than might be expected, but of course not as good as one produced using some form of quasi-linear amplitude control.

Negative loss can alternatively be obtained by moving the non-inverting terminal of the second amplifier upwards slightly on the divider, which may avoid the need for an awkwardly high-valued resistor.

In the second diagram, two of these circuits are shown connected back-to-back. This arrangement synthesizes an inductance
pi, in which $L_{1}=R_{1}, L_{2}=R_{2}$ and $L_{3}=R_{3}$. Its main application is very narrow bandpass filters with very low centre frequency. It is curious that only two capacitors are needed to simulate three inductors.
For wider pass bands requiring Q of only 20 or so, other circuits are probably less expensive. See 'A handbook on electrical filters', White Electromagnetics Inc., 1963, p. 175 for design data on passive filters of this type.
McKennyW. Egerton, jr.
Owings Mills USA

Isolating wideband balun

It is well known that a wideband balanced-to-unbalanced transformer of 4:1 impedance ratio may be realized using two equal-length transmission lines having characteristic impedance $2 Z_{0}$. These two lengths of transmission line must be surrounded with highpermeability ferrite, or wound onto two separate ferrite cores.
It is not possible to have d.c. isolation with this type of balun but it is possible with the arrangement shown here using four lengths of transmission line of characteristic impedance Z_{0}. They are connected in series/ parallel on one side to give impedance Z_{0} and are all connected in series on the other side togive impedance $4 Z_{0}$.
This type of d.c.-isolating wideband balun does not appear to have been described
previously. I have tested the idea using four 150 mm lengths of RG178B/U 50S coaxial cable. Instead of the ferrite tubes shown in the diagram, 16 Mullard FX2633 beads of Al3 ferrite were threaded onto each cable. These beads are a sliding fit on the cable.

I assessed the balun's performance by observing the pulse response at the input with a good quality 200Ω termination connected across the output. Rise-time

measurements showed that high-frequency performance was much better than the 250 MHz bandwidth of the oscilloscope being used for the tests. Low-frequency performance, determined by the number of ferrite beads, was assessed by observing the decay time constant on the amplitude of a longduration pulse input. The result was a decay time constant of $2 \mu \mathrm{~s}$.

A second version of the balun was made from four 1.5 m lengths of RG178B/U cable wound on four separate high-permeability ferrite toroids. This gave an inductance of 3 mH to each cable and resulted in a much longer decay time constant of $100 \mu \mathrm{~s}$. However, the high-frequency performance of this second version was very poor due to the self-capacitance of the toroidal windings.

It is clear that the linear layout shown here is essential for really good highfrequency performance.
T.H. O'Dell, London

Interrupt generation

I needed a circuit to interrupt a processor at precisely the positive peak of a lowfrequency sinusoidal signal. Here is a novel, inexpensive solution that produces an appropriate pulse with timing insensitive to typical amplitude and freqency changes.

Input to the circuit is a sinewave voltage proportional to the voltage of interest and scaled to approximately 10 V pk-pk. Output is a squarewave whose negative-going edge occurs at the input waveform's peak.

Component values shown are for a 50 Hz sinusoidal waveform and result in 0.1 ms
error in 20 ms . The circuit is suitable for higher frequencies provided that the capacitor is reduced inversely with frequency. Emitter and collector outputs of the LM31I are connected to give t.t.I. logic levels but they can easily be reconfigured to give logic
levels suitable for the inputs of any microprocessor.
G.D. Bergman
G.D. Bergman
King's College London

Overload cut-out for a.c. supplies at waveform peak

Tired of replacing fuse wire in a heavy-duty alternating supply, I designed this electromechanical cut-out. It has a continuously variable current threshold level, adjustable from about 1 mA , and it works when the overload is caused by a rectifier.

Diodes $\mathrm{D}_{3,4}$ are switched in and out by $\mathrm{TR}_{\mathrm{t} .2 \text {; }}$ normally these transistors are off. When an overload occurs during a positive half cycle, voltage across sensing resistor R_{s} switches Tr_{2} on, causing current to pass through D_{1}, the relay coil, D_{4} and Tr_{2}. Relay switch S_{2} causes the relay to latch on and switch S_{1} cuts out the supply. Bypass diodes $\mathrm{D}_{5,6}$ now come into play, and conduction is through $D_{1}, R L A, D_{4}, S_{2}$ and D_{5}. The relay remains latched on until the reset pushbutton is pressed. Operation during negative half-cycle overloads is similar since the circuit is symmetrical.
Note that the $8 \mu \mathrm{~F}$ smoothing capacitor must be initially charged through the transistors. Light-emitting diodes could replace $\mathrm{D}_{3.4}$ to provide an alternative overload indication, provided that their current ratings are not exceeded. A 470Ω resistor in series with the potentiometer will remove the dead band.
P.J. Ratcliffe

Stevenage
Hertfordshire

Don't waste ideas

We prefer circuit ideas contributions with neat drawings and widely-spaced typescripts but we would rather have
scribbles on the 'back of an envelope' than let good ideas be wasted.

Minimum payment of $£ 35$ is made for published circuits, normally in the month following publication.

NEXT MONTH

European h.d.tv standard. Tom ivall describes the events leading up to the September demonstration in Brighton of the 1250 line television system which is a step towards a compatible European, and possibly worldwide, production standard. The equipment is described in detail.

Efficient step-up switching regulator. Integrated circuits for switching regulation exist, but have their drawhacks. Messrs Chaffey and Perkins of the Medica! Research Council present a $90+\%$ efficent design to provide 44 V at currents from 1.5 to 60 mA from a 8.5 V NiCd battery.

Microcomputer-controlled keyboards. Many keyboards, for many purposes, are controlled by microcomputers. Jeff Wright of Motorola describes the pros and cons of several types and details the software and hardware techniques employed.

Probing for fast pulses. Another logic probe, but different. This design is able to capture "glitches" that are normally difficult to find by oscilloscope. The design lends itself to realisation by programmable logic, which makes for small size and allows pulse analysis for only a few extra components.

IEEE488 interface. John Adams' SC84 mic rocomputer, the design for which appeared in this journal some time ago, is adaptable and can accept extra facilities as plug-ins. This IEEE488 interface has been in use in a satellite instrument testing facility at $0 x$ ford, performing control and data-collection activities.

Pioneers - Alec Reeves. This month's subject in W.A. Atherton's series on the pioneers of communications is Alec Reeves, perhaps best known for his work on pulse-code modulation, although he was also the originator of Ohoe, the bombing aid used by the RAF in WWII.

Wires plus switches equal digital circuits

The Calculus of Indications applied to digital circuit design.

A. MEDES

Prompted by the continuing articles in this journal on the application of logic to digital circuits, logether with my own recent criticisms of logic' I shall present here not another notation for logic symbols but rather an original and selfcontained method that can be applied to the design of digital circuits. The method is called the Calculus of Indications and is rigorously developed by Spencer-Brown in Laws of Form².

Before I start with the calculus I would like to comment on some aspects of digital circuits that are not always made clear. Some confusion seems to arise from the way logic symbols are drawn, or rather from what is omitted from the symbols. For instance all silicon-chip gates (74 series t.t.1., 4000 series $\mathrm{c}-\mathrm{mos}$, etc.) have power and ground connections, but since all such gales have these two connections it is redundant to show them on the specific symbols. It is because only the input and output connections are shown on the symbols that it is sometimes, wrongly, assumed that the output is derived via some switching network from the inputs. Hence the problem of how an inverter can generate a high (5 V) at its output when there is nothing $(-0 \mathrm{~V})$ at its input.

There is a similar omission in the symbols used for switches. Here, the switch is usually drawn as a two-terminal device, the signal line that does the switching being omitted. With this extra signal added, be it someone's finger, relay coil current or transistor base current, the simple switch becomes less simple. Also, histable on-off switches and loggle switches are quite complex (even in their mechanical construction) compared with, say. a momentary contact switch. This complexity renders traditional logic useless for their description. In what follows I shall Iny to show how the Calculus of Indications can resolve these problems.

According to William of Occam, if we have two descriptive systems of equal scope, then the preferred system is the one with the simpler initial assumptions.

Considering logic, we find that it is a system originally intended for determining the truth or otherwise of verbal arguments. Developments by Boole, Pierce. Whitehead and Russell, Sheffer. Nicod and others generally tidied up the framework of logic and gave it a rigorous mathematical appearance.

In Sheffer's representation we take as
given the concepts: there is a class with at least two elements (say 0 and 1); there is a binary rule of combination (say a Nand gate with two inputs and one output); if the binary rule is applied to the same element, say A, then we define the result as $\operatorname{Not}(A)$; there are some initial (unprovable) equations such as $\operatorname{Not}(\operatorname{Not}(A))=A, A$ Nand $(B$ $\operatorname{Nand} \operatorname{Not}(B))=\operatorname{Not}(A)$ and $\operatorname{Not}(A$ Nand $(B$ Nand C) $)=\operatorname{Not}($ B) Nand A) Nand (Not (C) Nand A). From the above axioms we can then derive the rest of logic.
But there is also the unwritten notion that logical arguments must sound correct. So when Whitehead and Russell arbitrarily introduce the Axiom of Reducibility and its attendant Theory of Types, in Principia Mathematica ${ }^{3}$ they do so because "it has a certain consonance with common sense which makes it inherently credible". We shall return to this "common sense" later.

The Calculus of Indications takes only two axioms for its foundations and these axioms are of an arithmetical nature rather than the algebraic nature of logic's axioms. The algebraic theories of the calculus are then derived from the two axioms. Furthermore. the scope of the calculus can be extended beyond the scope that is allowed of traditional logic. So by Occam the calculus should definitely be preferable to traditional logic.
in what follows I shall present a practical interpretation of the calculus that should be more familiar to digital circuit designers than the formal presentation in Laws of Form. The names I use in describing the calculus shouldn't be taken too literally. The calculus is a mathematical construct and so we can name its parts in whatever way we choose; here I have chosen names that I think will give the reader the best feeling for the way the calculus works.

Fig.1. Open-collector n-p-n inverter. The transistor is effectively a two-terminal device.

The two axiomatic elements are the passive wire and the active switch.

The undisturhed wire will float at its recessive state until a point on it is actively driven to the dominant state. This dominant state will then propagate to all points on the wire. The usefulness of the wire is its ability to propagate a signal throughout its space.

The switch can be thought of as a twoterminal device that, while undisturbed at its input, will emit the dominant state from its output. In the formal description, the undisturbed switch is equated to the dominant state. When the switch is actively driven'at its input then it emits nothing from its output. The usefulness of the switch is its ability to cause change.
So the wire and the switch can be compared to the open-collector inverter in Fig. 1. In an n-p-n implementation, the wire floats at the positive voltage. the recessive state. until it is pulled down to ground. the dominant state. The switch with a floating input pulls its connector to ground, while the dominant ground state at the input will effectively disconnect the output. The emitter is connected to ground for all the switches so it may be thought of as an internal property of the switch. Thus the emitter is not a third terminal.
For $n-p-n t . t .1$ and $n-m o s$ the ground line is seen to represent the dominant state. explaining the term "current sinking logic". the floating high of unconnected inputs and the ubiquity of active-low signals. If we use $\mathrm{p}-\mathrm{n}-\mathrm{p}$ or p -mos, then the positive rail is dominant and the ground rail recessive.

Not too much should be made of this correspondence between the calculus and the practical implementation of t.t.1. In mos circuits. the transistors act as threeterminal switches and mos gates with equivalent functions to t.t.l. gates have different circuit arrangements. For instance, c-mos uses n-mos transistors to pull the outpul signal down and a complementary (not mirror image) arrangement of p -mos transistors to pull the output signal high. Nevertheless, the calculus can still give a full theoretical description of the c-mos circuil functions.

Figure 2 is a circuit of an open-collector Nand gate. Here, the signals on the wires that connect to the two inputs are separated by the input diodes. The fan-in of signals thus occurs within the gate whilst the wire connected to the output will fan-out to connect to several other gates.

Fig.2. Open-collector Nand.
Figure 3 shows that the opposite case is equally valid: a gate can have a single input and multiple outputs by simply sliding each diode along its wire to the previous gate. We do not have to introduce the concept of a diode into the calculus (or the circuit), since we can replace each diode with a switch the transistor), with the switch inputs tied to the common input wire. In practice, diodes are used as they are more economical than transistors.
So, as Fig. 3(c) shows, the wires do all the fanning-in and fanning-out, having many switch inputs and outputs tied to them while the switches are all simple, two-terminal devices which interconnect the wires.
From Fig. 2 we see that while the circuit is on the chip the pull-up resistors are relativety large, here $17 \mathrm{k} \Omega$. Once the signals travel off the chip, then to maintain speed the pull-up resistors have to be matched to the wire's transmission line impedance which is around $100-200$ ohm (the signals actually travel between the wires and the ground rail that is common to all switches). With a 5 V power rail this means that each switch would have to be capable of sinking $25-50 \mathrm{~mA}$ (i.e. a lot) and hence the development of the totem-pole output. The totem-pole uses a

second transistor between the pull-up resistor and the wire, disconnecting the pull-up while the output is in the low state. This in turn has led to the development of the tristate output since, if we have two totempole outputs connected to the one wire, with one pulling up and the other pulling down. then the result is a disheartening puff of smoke.

Totem-pole outputs are hest suited to circuit topologies such as that in Fig. 3(a) where the gate drives a single output wire and there is less chance of connecting the gates on the circuit board so that a wire is being simultaneously pulled up and down.

The high power cost of the pull-up resistor circuit can be lessened by using high-value resistors (most microprocessors available today use n-mos switches and pull-up resistors of about $40 \mathrm{k} \Omega$) or by reducing the supply voltage, power being proportional to V^{2} / R. Alternatively the c -mos approach can be used to reduce power drain (to virtually zero in the static case) but at the expense of using twice as many switches and more complex circuits. Since silicon switches are small compared with their interconnecting wires and the 5 V supply voltage is well standardized, the trend today is towards more c-mos circuits.

Figure 4 shows the basic elements of a neuron, or neve cell. Signals received at the input synapses are passively propagated via the dendrites to the soma where, when they cross some threshold value, the soma generates an output signal that propagates and is regenerated along the axon and out at its synapses. So here we see the similarity between the wires and switches of the calculus and another practical and very useful circuit device.

Now the neuron is a much more intricate device than, say, a Nand gate. The input synapses can be activating or inhibiting, an activating synapse being analogous to a non-inverting buffer and compensating for any signal loss, while the inhibiting synapses act as inverting buffers or as the switches of the calculus. Also, the output signal is not steady but pulsing and forms in a sense a switched mode power supply. The biochemical energy is supplied at about $0.1 V$ (in the form of varying ion concentrations across the cell wall) but to conserve effort the axonal current only flows in short pulses of a few

Fig.3. By 'sliding' the diodes along the wires to the previous gate, as in (b), a gate with one input and multiple outputs emerges. At (c), the gates are all simple switches.
milliseconds every few tens of milliseconds. The chemical lag of the synapses together with the resistance and capacitance of the dendrites then combine to smooth the signal.
And, most importantly, since the neuron is alive it can grow and so change its shape. This enables a neuronal network to effectively rewire itself by the selective attenuation of signals. This happens when the dendrite grows larger in volume and so snaller in electrical impedance under a preferred synapse, thus allowing more of that synapses' signal into the dendrite and thence to the soma, or else the dendrite atrophies under an undesirable synapse causing that synapse to see a greater impedance to its signal and become to an extent disconnected.
Despite these intricacies of the neuron's workings there is a strong correspondence at the fundamental level between the wires of the calculus and the neuronal dendrites which passively propagate the signals. And the switch and the soma with axon which are either at rest or can actively supply an energetic signal dependent on the state of their input. This correspondence is seen clearly by comparing Fig. 3(c) with Fig.4.
Returning to the calculus, we have in Fig. 5 the arithmetical initials, essentials the two axioms of the system.
The notation uses our usual convention that the signal flow is from left to right. The vertical hars represent the inverting switches with their inputs to the left and their "open-collector" outputs to the right. The lines connecting the switches are the wires, assumed to be suitably pulled to their recessive states. A circuit topology such as that in Fig. 3(c) will be used from here, since it is closer to the formal representation of the calculus. That is, each inverting gate will be shown with a single input but may have multiple outputs.

Figure 5(a) shows that if two switches are actively driving a wire to the dominant state then the result is the same as if only one switch is actively driving it. That is, two dominant states on a wire is the same as one dominant state. The switches are emitting the dominant state since their inputs are not connected to anything and so must be floating at the recessive state.

Figure 5 (b) tells us that if a switch has the dominant state at its input then its output is unaffected. That is, two inversions equals no inversions.

From the arithmetical initials we can derive the two algebraic circuits of Fig. 6 which become the initials of the algebra. In Boolean notation $6(a)$ is $\bar{A}+A=0$, and 6 (b) is $(\mathrm{A}+\mathrm{C}) \cdot(\mathrm{B}+\mathrm{C})=\mathrm{A} \cdot \mathrm{B}+\mathrm{C}$.

The algebraic variables are shown as a

Fig.4. Elements of a neuron, composed of 'wires' and 'switches'.
letter inside a circle. Each variable represents an unknown circuit of wires and switches, the output of which (either recessive or dominant) is the state of the wire attached to the variable. Variables can have multiple outputs or, to improve the clarity of complex circuits, the variables can be written down in several places around a circuit.
From the algebraic initials we can derive numerous consequences. some of which are shown in Fig.7. We can also prove theorems (for these feed-forward circuits) such as "any circuit can be rearranged so that it is no more than two switches wide" that is the signals need pass through at most two switches) and "any circuit can be rearranged so that there are not more than two connections to each variable".
We are now at the stage where we can rearrange circuits as easily as we can rearrange the more usual algebraic expressions. For instance, in algebra we use cross-multiplication to add two fractions whereas in the calculus we might use crosstransposition as a "short cut" in the manipulation of a circuit. Naturally, to do this easily we would have to do our homework. just as was the case with our primary school algebra.

This ease of manipulation becomes useful when we have a circuit such as the left side of Fig. $7(e)$ and we want to speed up the signal from A relative to B . With a few strokes of our pencil we have the right side of $\overline{7}(\mathrm{e})$ and now A has a shorter delay than B.

To solve the same problem with traditional logic we first rewrite the circuit in the Boolean notation, say $(A+B)+C)$ the start rearranging the expression, not forgetting that logical '+' and '. 'behave differently to numerical + and. . and ending up with $(\overline{\mathrm{A}} . \overline{\mathrm{C}})+(\mathrm{B}, \overline{\mathrm{C}})$, which does not make the propagation delays of A, B or C very apparent.
Alternatively. we can use Karnaugh maps: that is. draw a grid covering every possibility for the variables involved. fill in the spaces
corresponding to the given expression, and then try to extract another expression that suits our design goals. To me, the Karnaugh method is about as sophisticated as doing sums on your fingers; easy to learn but slow and nearly impossible when the numbers become large (more than about five variables).

Figure 8 shows some circuits with their sentential logic equivalents (true equated to the dominant state).

The Or gate shows that we can have a gate without any active elements. The active elements, the switches. are within A and B but we note that, if A is emitting the dominant state. then any change in the signal from B will not be noticeable. A must be recessive to allow the signal from B to pass. This is the reason for naming the two states "dominant" and "recessive".

The complementary nature of And and Or is made obvious by the circuit notation. Inverting the inputs and outputs of either produces the other.

Figure 8 (e) , assuming a fast switch or slow wire, is an oscillator. The sentential logic equivalent is the liar paradox or "this sentence is false"; something that is just not allowed in logic according to the Theory of Types (which in essence says that the inpuls and outputs of expressions must be of different types).

In digital circuit design this is called sequential logic. but if we look behind the name we find precious little theoretical backup. About the best that sequential logic can do is to break the circuit up into its combinatorial components and then, with much hand waving, say that the outputs are fed back to the imputs and everything starts again.

It is in this area that I believe that the calculus holds the greatest promise. It has a good formal and rigorous foundation and the step from the first-degree circuits. that is, without reedback. to the higher-degree circuits is a natural one. The situation is analogous to the step from real numbers to complex numbers ${ }^{1}$. and it is the methods of manipulating complex numbers that make a lot of engineering design possible. To my knowledge there has not been much theoretical work done on this aspect of the calculus so, for those interested in the mathematics of circuits. here lies an opportunity for original research.

The importance of these feedback circuits goes even deeper. If you ask a professional mathematician what is the foundation of mathematics they will probably tell you.

Fig.7. Consequences of the algebraic initials.
wrongly, that it is logic. That is, they prove theorems by using logical arguments. This leads to the ostrich posture, namely a headfirst dive into the sand. that many mathematicians adopt when you mention Codel's Incompleteness Theory". Though suitably obfuscated. this is just another example of the good old liar paradox. It is a well formed (and so true?) theory, that proves itself unprovable or vice versa.
The gist of the liar paradoses is that although they are embedded in a system that is supposed to give constant and unchanging results, the paradoxes are put in such a way that they must give different answers under

Fig.6. Algebraic initials.

Fig.8. Circuits with their normal logic equivalents.

(g) $0=$? ?
different initial conditions, that is at different times. Now, since nature doesn't seem to mind us building contradictory and timechanging circuits as in Fig. 8(e), perhaps there is nothing wrong with contradictory and time-changing theories in mathematics. especially as mathematics is often thought of as a model of nature. And perhaps these theories will even be useful, just as the oscillators in grandfather clocks and digital watches are useful in helping us count time.

Figure 8(f) is a bistable switch or R-S flip-llop or memory element. This is usually drawn as a figure eight but I think that the circular format makes the feedback more obvious. The sentential form is again seen to be self-referential but now, with the double inversion, it is not so contradictory. Rather the circuit is affirmative, which gives it its memory-keeping property

Figure $8(\mathrm{~g})$ is a D flip-llop, or with the dashed wire connected a toggle switch. The sentential form is by now long, incomprehensible and definitety self-referential, so 1 omit it. The circuit notation is also getting a bit much to draw every time we want to use a

D Ilip-flop, so for this and more complex circuits I think it sensible to adopt the rectangular box notation.

In summary, we see that by starting from only two simple and naturally appealing axioms we can develop a descriptive framework that covers all possible digital circuits. Taking a subset of the calculus that has no feedback we have a complete model of traditional logic, yet we are not fettered by the (common sense?) restrictions of logic and can.go on to investigate circuits of higher degrees.

In practice, we find that once we have done our homework we can use the calculus to rearrange circuits as easily as we can arrange algebraic expressions. And due to the close correspondence of the notation and physical devices we can easily implement a given circuit.

Should this calculus become popular enough that it is made available to engineering students I am sure that it would catch on and displace logic as an engineering subject, allowing logic to return to its rightful place amongst the social sciences. I hope this article will be a step towards the end.

References

1. Medes Archie., Computers, Language and Logic. EIWW February 1987.
2. Spencer-Brown G., Laws of Form. Allen \& Unwin. 1969.
3. Whitehead A \& Russell B., Principia Mathematica. Cambridge. 1927.
4. Godel K.. Monatsschrift für Mathematik und Phusik. 38, 1931.

The art of digital audio by John Watkinson. Focal Press (Buttenworth), $£ 37.50$. Thorough survey of digital techniques by the author of this magazine's long-running series on Compact Disc technology. Opening chapters supply an introduction to the principles of digital audio, and its pros and cons. Then the author describes in some detail the theory behind digital processing and recording and the complex methods of error correction used to ensure reliability. In the second half of the book, he analyses various practical digital audio systems, dealing at length with their hardware and sottware: rotary-head recorders (covering both ordinary video recorders and the new R-DAT consumer format), stationary-head recorders (including the DASH family of formats for the studio), digital audio in professional video recording and in the Video 8 format, disc drives for digital audio. and of course the Compact Disc. A clearly-written, comprehensive handbook for the engineer: expensive, but could well become the definitive work. Hard covers, 489 pages.

Introducing digital audio by R. Sinclair. PC Publishing, £5.95. Basic, non-mathematical treatment of digital techniques and systems, aimed at the technician, student or enthusiast. A section devoted to practical applications covers studio digital methods and the R-DAT and CD consumer systems. Also touched upon is digital sound synthesis and the MIDI system. Soft covers, 103 pages.

BOOKS

Mobile radio telephones in the UK by Dr R.C.V. Macario. Glentop Press, £9.95. In this comprehensive yet readable book, the author covers the basics of radio communication, the types of mobile radio systems and equipment in use today, digital technology and systems being developed for the future, and the current British regulatory set-up. Throughout, the approach is very practical, giving the reader a clear understanding of how everything works. The text is full of informative detail and is extensively illustrated with photographs and diagrams. This could be just the sort of book the mobile radio industry needs for the much-needed technician courses it is beginning to set up. Soft covers, 194 pages.

Shortwave frequency list by C.J. Both. De Muiderkring, The Netherlands, ISBN 90-6082-289-7 (available in the UK direct from PC Publishing at £4.95). Frequency-byfrequency table of h.f. broadcasting in the range $2260-21810 \mathrm{kHz}$, giving country of origin, station name and (where known) transmitter power. The impression made by the author's painstaking work is spoiled a little by the quaint language of the English
introduction, which ought to have been translated better. Soft covers, 96 pages, reproduced from draft-quality dot matrix print-out. PC Publishing is at 22 Clifton Road, London N3 2AR, telephone 01-346 0627.

68020, 68030 microprocessors and their coprocessors by P. Jaulent, L. Baticle and P. Pillot; translated from the French by Aidan Loyns (Department of Computer Science, University of Manchester). Macmillan Computer Science Series. £12. Practical guide to these advanced devices, intended for students of computing and electronic engineering who have to design with them as part of their courses. Section headings include signals description, bus operation, addressing modes, new instructions, exception handling. cache memory, pipes, barrel shift register and virtual memory. All three authors are concerned with microprocessor training in a French i.t. company. Soft covers, 205 pages.

An introduction to satellite television by F.A. Wilson. Bernard Babani, £5.95. A good deal of this book is taken up with material not strictly relevant to the subject, as if the author wants to tell us all he knows rather than to stick rigidly to his task. Much of the first half of his text is taken up in describing the Sl units of measurement, the atom. the nature of radio waves, television basics and even the principles of rocketry. Mysteriously, Ariane and Arianespace are mis-spelled

MPT 1327 for Europe?

The UK MPT 1327 trunked radio signalling protocol could be employed in other countries of Europe now that the French Ministry of Posts and Telecommunications has declared its intentions to license both public and private trunked mobile radio systems. Moves are also taking place in West Germany towards the licensing of public systems.

Band Three Radio L.td has been operating a public trunked radio system in the UK since last October using MPT 1327. This protocol is being contemplated for one or other of the French networks. If adopted, it will put pressure on Germany to achieve "contiguity". Furthermore, if frequency allocations are sensibly the same in all countries, manufacturing economies of scale could be obtained.
By 1992, the date for a European common market, networks could be linked. This would permit roaming and allow contact to be maintained with bases in another country.
According to Andrew Robb, Band Three's managing director, his company has no European ambitions. It is looking to international traffic i.e. roaming, but not to international subscribers. Well-established formulae exist to handle the splitting of tariffs.

Government Data Network

Racal-Scicon, a wholly-owned subsidiary of Racal Electronics, has been selected to build and operate the Government Data Network (GDN) - Europe's largest private data network. Racal estimates that this business, together with other network senvices contracts, will be worth more than $£ 1 \mathrm{G}$ over the next 10 years.
GDN is a pioneering project initiated by four Government departments and the Central Computer and Telecommunications Agency (CCTA). It is intended ultimately to handle most of the Government's civil data communications traffic on one lowcost. high-efficiency secure system. Racal-Scicon will finance, build, operate, manage and
maintain the UK-wide network while the Government will only pay as capacity is used on the system, saving the initial capital outlay othenwise needed for network infrastructure.

Initially, four Government departments - the Department of Health and Social Security, HM Customs and Excise, the Home Office and Inland Revenue - have committed to join the GDN service, with other departments expected to switch over to the network as communications demands rise.

Initially it will serve some 85000 terminals at more than 4000 Government locations. The system will employ packet switching to international standards and will incorporate high levels of in-built security. Individual departments will be prevented from obtaining unauthorized access to each other's data.

BT\&D sampling at 2.4Gbit/s

BT\&D Technologies, the British Telecom and Du Pont joint venture, has developed highperformance components for optical communications systems and test gear such as optical time domain reflectometers (t.d.rs) capable of working at $2.4 \mathrm{Gbits} / \mathrm{s}$.

The transmitter is a distributed feedback laser with a narrow spectral width of 0.1 nanometers, developed by British Telecom's research laboratories at Martlesham. It may be modulated up to $2.4 \mathrm{Gbit} / \mathrm{s}$ over a wide temperature range and it provides 1 mW of optical output. The source is based on InGaAsp buried heterostructure technology and is fabricated using BT\&D's proprietary version of the metallo-organic vapour phase epitaxy process for high reliability.
The receivers are $\operatorname{lnCaAsP} / / n P$ planar avalanche photodiodes. Offering high responsivity at 1.3 and 1.55 microns, the devices feature a guard ring stucture to produce a high signal to noise ratio. The structure provides low multiplied dark currents of less than $\ln \mathrm{A}$ at room temperature and gain-bandwidth suitable for high performance operation at speeds up to $2.4 \mathrm{Cbit} / \mathrm{s}$.

Competition in public payphones

Mercury Communications has placed an initial order with GEC Plessey Telecommunications (GPT) for telephones which will accept various methods of payment for use in its public payphone service. Another company, International Payphones L.td (IPL) plans to install 49000 public payphones over the next five years.

The Mercury service will be launched later this year and the company has stated that it will introduce a service which accepts a range of payment methods which will provide customers with a flexible, modern, high quality, reliable service.

It is believed that the initial order from GPT is for card-only machines but subsequent units will allow coins to be used.

Operating from eight regional centres throughout the British Isles, IPL claims that it will maintain a level of working payphones hitherto never experienced in Britain. Not being tied to either BT or Mercury, it will be in a strong position to purchase capacity competitively to the advantage of both itself and its customers.

DMC sets up in Scotland

Digital Microwave Corporation, a leading manufacturer of high performance short-haul communications systems, has opened a British subsidiary, DMC Telecom UK Lid. in East Kilbride. Scotland to capitalize on substantial sales in the UK and Northern European communications markets. Using thin film microwave integrated circuits operating at 18 and 23 GHz , DMC claims to be a pioneer in the use of GaAs fets, instead of Gunn diodes, in its amplifiers.

The parent company was formed in 1984 with the objective of taking advantage of the swing towards digital systems. While there was a proliferation of digital customer premises equipment (e.g. digital p.a.b.xs), the short-haul connection for the "last mile" was missing.

DMC won its first major UK contract, with Mercury Communications, in October 1985. Now the two companies have signed a two-year master purchasing agreement. The minimum value of the first year's procurement is expected to be in excess of $\$ 18$ million with releases to date totalling $\$ 11$ million for microwave and fihre optic equipment.
According to Ted Stocker, managing director of the newlyformed company, British Telecom could become a major user of DMC systems, its potential being at least ten times that of Mercury. In addition, "the UK forms the springboard for the rest of Europe".

Orbitel looking abroad

Orbitel Mobile Communications, the Plessey and Racal joint venture, and Matra Communication SA of France have entered into an agreement regarding the development and marketing of network equipment for panEuropean digital telephone systems.
Orbitel also confirmed that it has now submitted proposals to operators in a number of European countries to supply digital cellular equipment, ranging from validation systems to operational networks.

Mike Pinches, Orbitel's managing director, said: "Our agreement with Matra Communication is complementary to the one we have with Ericsson announced last October. This latest development enables us to present the pan-European network operators with a powerful grouping of companies which lead the field in mobile communications".

Start of Scandinavian link

The UK-Denmark 4 undersea cable got under way when the UK coast section of this £32 million system was successfully brought ashore at Filey in Yorkshire. The system will provide the first direct signal cable link between

Scandinavia and the UK, doubling existing cable capacity.

The system will be jointly owned by British Telecom and the telecommunications administration in Denmark, Finland, Nonway and Sweden. It will provide Scandinavia's link, via BT, into TAT-8, the first transatlantic optical fibre cable, due to be completed later this year.

UK-Denmark 4 contains four single-mode fibres operating at a wavelength of 1300 nm . Each fibre pair will operate at $280 \mathrm{Mbit} /$ s , the equivalent of 3840 telephone circuits. The complete system will incorporate 11 undersea repeaters spaced approximately 56 km apart.

Opto link to France

British Telecom, France Telecom and Mercury Communications have signed an agreement to provide the first optical-fibre submarine cable system between UK and France. The system, due to be in service in early 1989, will be supplied by the French company Submarcom.
When it opens it will add direct optical fibre links to France to those already provided by BT via its UK-Belgium cable, put into service in July 1987.

[^3]
Towards i.s.d.n.

I.s.d.n. the integrated services digitai network, is the long-term goal being striven for by telecommunication authorities all over the world. Many countries are moving from a pilot service and are now starting to offer a commercial service. But what is is.d.n.? Or really, what will it be?
When fully implemented it will be a universal digital network that will be used to deliver telecommunication services, be they voice, data or image. At present, for example, the telex network is different from the p.sit.n., the public switched telephone network. In addition, being digital, it will offer significant improvements in transmission quality together with a wide range of additional features.
It will enable network operators to achieve economies of scale because they will no longer need separate networks for separate services. In addition, both they and users will have the infrastructure necessary to allow new and innovative services to be introduced without delay
It is, however, a long uphill struggle extending at least to the end of the century to make i.s.d.n. universally available. Not only must the digitalization of the whole network have been completed, this conversion must have been completed in an appropriate manner right through to the subscriber's premises.
BT is moving ahead rapidly with the modernization of its network. All 53 digital trunk exchanges are now operational and 60 percent of originating trunk traffic has been loaded on to the digital trunk network. BT is not dragging its heels. According to data prepared by CEPT (the European Conterence of Posts and Telecommunications), 100 percent of UK traffic will be carried digitally by 1990 as compared with 75, 25 and 36 percent respectively for France, Germany and ltaly.

This digital infrastructure, together with digitai telephone exchanges, is a pre-requisite of i.s.d.n. However, even though nearly half of BT's subscribers will be connected to a suitable digital exchange by 1990, a large proportion of them, and in particular the domestic ones, will not be able to enjoy the advantages of i.s.d.n. This is because the necessary digital terminating equipment will not have been installed on their premises or in the corresponding locations in the telephone exchange. Thus, these subscribers will still have to use traditional analogue telephones.

What will occur is that signals from their telephones will travel, still in analogue form, to the exchange where they will be converted to digital form and transmitted

Preliminary solution Pilot operation Commercial operation
via pulse code modulation through the network until they arrive at the called party's exchange. They will then be converted back to analogue form in the subscriber's line card prior to travelling the last few tilometres.

Nevertheless, there are underlying benefits for all subscribers in the digital network. These include greater inherent reliability and, by the use of d.t.m.f. (dual tone multi-frequency) signalling instead of pulsedialling. much faster call set-up. In addition, the use of d.t.m.f. signalling allows easy access to computerrelated services such as voice mail. These systems are command-oriented and thus the user needs some simple method of keying in the required command numbers. (Where d.t.m.f. phones are not available at present the user has to hold a d.t.m.f. tone generator over the phone mouthpiece.)

British Telecom introduced its IDA (integrated digital access) pilot service in 1985 prior to any internationally agreed i.s.d.n. standards. Consequently, its pilot service does not conform to the standard that was subsequently adopted. This should not be interpreted as BT being 'out of step' with all the other countries; rather that it took a lead instead of just sitting on the fence.

Before the end of this year BT will be starting to provide a commercial i.s.d.n. - still known as IDA - and will expand it as rapidly as possible. It will, however, not wthdraw support from early users who committed themselves to the interim $80 \mathrm{kbit} / \mathrm{s}$ service. However, it is to be expected that those forward-looking organiza. tions which originally embarked on this service will decide to migrate to the full standard as soon as possible.

USING I.S.D.N.

I.s.d.n. will be offered as a $144 \mathrm{kbit/s}$ Basic Rate Access (BRA). This, otherwise known as single line access, will provide two $64 \mathrm{kbit} / \mathrm{s}$ " $B^{\text {" }}$ channels for voice or data plus the $16 \mathrm{kbit} / \mathrm{s}$ " D^{\prime} channel for signalling and lower speed data. While the majority of domestic subscribers will have no use for the additional capacity that this provides as we move, albeit slowly, into the information age, business users will want to enjoy the benefits of the higher quality and additional facilities that it will support.
For example, even the smallest business will rapidly come to appreciate the convenience of $64 \mathrm{kbit/s}$ transmission speed for electronic mail and other computer-delivered services as compared to the $1200 \mathrm{bit} / \mathrm{s}$ or so widely used today.
While domestic and small business users will use BRA, connections to p.a.b.xs will use Primary Rate (otherwise multiline) Access. In Europe and most countries of the world this consists of ${ }^{-30 B+D^{*} \text { on a }}$ $2 \mathrm{Mibit/} / \mathrm{s}$ digital trunk. In the USA and Japan, where the digital transmission ${ }^{~ T 1}$ ' standard is $1.544 \mathrm{Mbit} / \mathrm{s}$, the equivalent is ${ }^{-} 23 B+D^{\circ}$
Private networks, where the p.a.b.xs at each of a company's sttes are interconnected, will be able to install i.s.d.n.compatible terminal devices in the appropriate places within their organizations. After all, the strength of a chain is that of its weakest link. Consequently, the most sophisticated i.s.d.n. terminal device is reduced to the lowest common denominator (if it will operate at all) If the recelving end is not suitably equipped.

This is a vital aspect. Today, a telephone in one part of the world can connect through to any other no matter where it is. Similarly, as and when i.s.d.n. rolls out, inter-working must continue.

Measuring by ultrasound

Using ultrasonics for the measurement of gas flow

R.J. REDDING

Many measurements in industry and science are based on beams and wave motion. Radio and light beams hold sway for surveying and navigation, and movement is often best detected by the Doppler shift. We control aircraft and guide space craft, but at the domestic level control and measurement poses problems, possibly caused by the nature of electromagnetic radiation. Sound waves, which are almost a million times slower, are more appropriate.
The application of sound as a scientific measuring tool seems open to further development in the practical, everyday sphere and has much to commend it. It does not have the aura of danger possessed by nucleonics and lasers and, if confined to the ultrasonic region, is non-intrusive. The range of frequencies available for use is from a few tens of kilohertz to gigahertz, where the acoustic microscope out-performs the optical type.

One reason for the unpopularity of sound for measurement purposes is that the attenuation varies widely, roughly as the square of distance and as the square of the frequency. Further, the speed of sound clanges greatly between gases, solids and liquids and hence is much less dependable than elect romagnetic waves. On the other hand, it is easy to use comparator systems to show changes in composition, temperature or pressure, by a built-in reference or sample.
Perhaps the biggest impediments to the use of sound are the confusing effects of resonance, standing waves and reverberation that can occur. Large, low-frequency amplitudes can build up in structures with dramatic results!

This explains why almost all ultrasonic measurement and imaging is done on an intermittent or "pulse-echo" system, by a band of frequencies or a form of sharp-edged pulse: one endeavours to read the returned signal from some distant interface. Such "time-of-flight" sonar is the basis of distance imaging and flow measuring techniques and, whilst continuous-wave measurement is inherently superior, it is undeveloped at present.
This article suggests that pulse-echo ultrasound is on a par with "spark" radio transmitters and that the techniques and components we now use are directly applicable to sound waves to provide much-needed digital measurement systems for industrial and domestic purposes. Some techniques, frequency modulation for example, seem particularly applicable to sound waves because the altenuation varies as the square of the frequency.

A POTTED HISTORY OF CONTROL

In the late 1940s there was a move to apply servo-control to the automatic control of process plants. Originally, this used hydraulic and pneumatic power but, as a young electrical instrument engineer, I felt that electronics must be superior and joined a company that pioneered the use of electronic process control. This involves the risk of fire and explosion from electric sparks and led me to specialize in intrinsically safe design. Essentially, this means keeping the energy level so low that any sparking is innocuous. This was a major headache in the early days (and still is in some traditional industries), but electronic engineers have learnt that the lower the energy level. the better in many ways. Now it can be said that miniaturization and integration results from reducing the energy level and heating effects in the electronic circuitry. The blessing to me has been the improvement in reliability from eliminating the mechanical bugs!
However, the performance of control equipment is entirely dependent on the quality of the input, and it is measurement that determines the performance of any control system. Here again, the meaning of quality has changed with time, since accurancy, which takes seconds to acquire, is useless to control a plant; sometimes, all we really need is to know quickly when something is changed and in what direction.

A control system endeavours to counteract any disturbances, either intentional instructions or ambient or random input changes. The aim is to defeat time delays within the plant, so the essence of control is to detect that somet hing has changed and to continuously counteract such changes. The performance is therefore related to how sensitively we can measure and how fast we can get the result into a form we can use.

MEASUREMENTSAND TRANSDUCERS

Traditional measurements provide an analogue output and one can use a transducer to turn such a movement into an electrical signal. The standard signal in process control is a current of $4-20 \mathrm{~mA} \mathrm{d.c}$. (corresponding to the earlier, pneumatic $3-50$ p.s.i.) and to this day the bulk of electronic control equipment in computer-controlled plants uses such signals, to represent flow, pressure, temperature as the input information. Hence the vital links between the plant and the solid-state control equipment are analogue-to-digital converters.

Many measuring systems now give an electrical output, for example temperature sensors and pH monitors. Modern flowmeasuring systems give a digital output in terms of frequency, but there is still a tendency to convert these back to ana'ogue $4-20 \mathrm{~mA}$ to conform with standard practice.

There has always been a few stalwarts extolling the use of frequency signals, but invariably when such instruments have been produced they have not caught on against the "industry standard" analogue signals. The position is now changing because of the accent on information technology.

The purpose of this article is to show how frequency signals for process measurements can be easily obtained without physical transducing; therefore without the mechanical imperfections that make analogue measurement a slow, intrusive representation of the information we desire.

GAS DETECTIONIN THE NORTH SEA

In the 1970s, the oil and gas installation in the North Sea stretched engineering practice and the design of instrumentation was crucial to the protection of personnel from fire and explosion hazards. Not only had the equipment to wit hstand the harsh climate, but any electrical equipment had to be protected against the explosion hazard: flame-proof enclosure was not always convenient, for example on the smoke detectors for the fire alarm system! I hecame involved in making such equipment intrinsically safe and reducing the power level from kilowatts down to a few milliamps at low voltage.

One intractable problem area was gas detection. There may be thousands of detectors, each comprising a hot wire, elect rically heated so that any gas in the atmosphere would be oxidised on it, raising its temperature and so indicating its presence. These had to work even after power had been shut down. so the battery and wiring of the system was horrific. An incautious remark led to a challenge to do something better.

I felt we needed a beam system to detect change anywhere in the atmosphere and settled on a sound wave as the most innocuous and simple for the purpose (later. lasers were used, hut have since gone into a decline). The trouble with sound waves was reflection and the effect of standing waves. The principle used was that of the organ pipe, i.e. the note changes with the humidity, etc. The distance between a microphone and loudspeaker determines the frequency at which the air path will resonate, but any changes in the density of the air will show as a change in this frequency. A series of
parallel microphone-and loudspeaker paths covering the area of an oil rig could show when anything fresh happened anywhere in that volume of space, and in general we are looking for instrusion by lighter-than-air gases.

To avoid the nuisance of audible sound and the known effects of acoustic feedback, etc. I tried modulating an ultrasound beam. The work was being carried out in a "radio shack" with the chatter of a two-metre f.m. repeater as background. Suddently, I realized the special properties of f.m. transmission should be equally applicable to a sound wave, and a direct answer to the problem of multiple paths and reflections.

By employing a high carrier frequency. the beam becomes narrower and directional, and the signal-capture feature of detectors further helps in masking everything that is 3 dB below the intended signal path. Further, the standard v.h.f. chips are directly usable, and in fact the system looks like a v.h.f. transceiver for speech in which the aerials are replaced by piezoelectric transducers to convert the electric wave into the mechanical vibrations of sound.
By 1978 patents had been granted in the UK and the USA, and these showed that the use of frequency modulation on an ultrasonic carrier was novel, even if not unmarketable. I went to the USA, intent on selling or dropping the idea at the Instrument Society of America's annual show in Philadelphia. I choose a suitable company which faced the problem and also had a strong interest in gas detection, but the manager of the stand was preoccupied with a flowmeter leaking water on the floor of the stand. I remarked that it would be safer to use air instead, and he said "That's an ultrasonic one and they won't work on air". I realised that flow measurement was a better proposition and quite quickly made a deal with an old friend. Unfortunately his company was in the process of a patent battle involving ultrasound for detect ing vortices for flow measurement. Though we made progress for a while, my insistence that I had a novel measurement and nothing to do with vortex shedding led to a rift. However, by that time separate patent applications detailing the specialities of flow' measurement were well advanced in
the USA and in Europe, so the theme lived on.
It had become clear that I had a basic transducer system which, having no moving or physical parts, obviated the hysteresis and intrusion by which traditional transducing devices are rated. I believe that inventors should stick to simple mousetraps and not invent novel rodent exterminating systems, but radical and unorthodox ideas can be difficult to get published. Academics don't want to revise their lecture notes, and industrialists feel unsure unless they have a mathematical backup from some learned organisation, so the best hope is - DIY!

However, I also believe that "what isn't there can't go wrong," and since the only possible mechanical interface to cause trouble was the crystal itself, I felt this must be better than gears, levers and bellows. I therefore proceeded with the development of an idea which now looks promising, namely, an electronic gasmeter.

The principle of the domestic gas meter has been virtually unchanged for well over 100 years and performs well as a dispenser. but has many practical disadvantages today. Aiter years of internal research, British Cas PLC in 1987 presented industry with the problem of evolving a modern gas meter. Without going into detail, I give below an outline of one of the proposals that has just been accepted for proceeding to a "proof of concept" stage. Such a development takes at least five years and I hope there will be earlier usage in other areas, for example in the measurement of mass air flow for cars and fuel/air ratio for combustion purposes.

THE LIMITATIONS OF SONAR AND PULSE ECHO OPERATION

Traditional measurement by sound uses a sharp pulse front and endeavours to measure the time interval until its echo is received, usually by the same transducer. The main limitation to performance is the attenuation of sound, which is high in the case of air. In particular, the attenuation of the sound wave varies roughly as the square of the frequency. As a result, only the lower frequencies get through and the received pulse
front is rounded, timing becoming indefinite.

There are many practical tricks to improve the performance, such as resonating the crystal at a particular frequency, so that a pulse train is transmitted. One can also work on one of the later cycles of a pulse train or even measure the phase of the sent and received train. Thus, virtually all the technology is concentrated the resonant design of the piezo ceramic transducer, particularly if this is used for both transmitting and receiving.

The sequence of change from an intermittent to a continuous operation system is perhaps best shown succinctly in the 10 year old diagram Fig.1. One uses the highest frequency that will maintain a signal along the path and modulates it with the phaselocked loop so that the difference between the ends of the path is kept constant. This means that the frequency in the path is a very sensitive and continuous measure of the transit time. Further, because it is a frequency, it is independent of the speed of sound in the medium. The significance of this is that if one has beams in opposite directions, then the frequency will be the same in the absence of movement. If the lluid moves, then the velocity is turned into an electrical signal equalling $2 \mathrm{~Hz} \mathrm{~m} / \mathrm{s}$ irrespective of all other considerations. Therefore, it is a fundamental method of turning movement into frequency and hence its significance for flow measurement.

It is by no means limited to flow measurement, being in effect a comparator system, where if one has a sample, or a known reference, then the system can provide accuracy in terms of that known value, and the quality of the measurement is a function

Fig.1. Sequence of change from an intermittent pulse system to one using a continuous train of pulses. At (a) the basic. one-way timing method is shown, while (b) is the pulse-echo "sonar" system. Shown at (c) is a singaround measurement and at (d) a pulse repetition rate system. The system at (e) uses f.m. and the final COHMOD (coherent modulation) method is seen at (f).

Fig. 2 Flow measurement by the coherent modulation method.

Fig.3. Broadband feedback transducer.

Fig.4. Proposed wind-speed meter.
of the ingenuity with which the frequency measuring system is applied.
The elegance of a frequency as a signal instead of the usual 4-20 ma d.c. analogue signals and d-to-a converters, etc., has long been recognised but has been difficult to implement because of the need to conform to industry standards. However, the advent of IT and the use of so-called smart transducers using digital techniques to overcome the basic limitations of analogue measurement is now such that a move to frequency signals seems inevitable. The fact that the cost of cabling and wiring is now a vent large part of industrial process control makes the move towards frequency operation and eventually to radio use even more pertinent.

THE DESIGN OF COHMOD
 MEASUREMENT SYSTEMS

Electronic circuits for the COHMOD principle can follow radio, digital and analogue practice with little difference in performance. The main problem is invariably the transducer itself or rather its linearity in translating an electric signal into mechanical vibrations. The majority of previous ultrasound work used pulse-echo techniques and hence resonance techniques have enhanced the performance. Although these can be used over narrow bandwidths, the true operation of f, m. requires a linear bandwidth of at least a few per cent of the carrier frequency. The sensitivity of the COHMOD system is many times higher since it is not influenced by the amplitude of the signal. We only need a signal of the order of a microvolt to give a fully limiting f.m. signal. Consequently, the operating frequency is $10-100$ times higher than would be practicable with pulse operation and herein lies the clue to the performarice of the system.
Thus the design philosophy of the system. shown in Fig.2. is easily stated.

1. Select the path to be measured and determined the highest frequency which will give a received signal of the order of 10 microvolts.
2. The length of the measured path and the speed of sound in the medium concerned determines the COHMOD resonance frequency. The working frequency can be a fraction or multiples of this.
3. The deviation should be not less than the COHMOD resonance frequency and preierably many times more: 5% of the carrier frequency would seem ideal.

It is the bandwidth of the transducer which is the vital point. since one must keen the deviation within the linear range, otherwise spurious products and particularly lewer-frequency, minor-mode vibrations will occur in the medium and result in the reverberations and standing waves at frequencies not present in the electronics!

THE PRESENT COMMERCLAI
 POSITION

There are many transducers available for remote control and intruder detection in the range of $25-75 \mathrm{kHz}$, but these are highly resonant and cannot be frequency modulated over a significant range. Hence, their use is fraught with difficulty.

A few transducers designed for industrial proximity purposes operate around 200 kHz and employ a soft matching face to efficiently communicate into air. Such units have been used with success for flow measurements in pipes of several inches diameter. The only units known to work at higher frequencies, says 1 MHz , are specially made in Japan for rohotic purposes and are very expensive. For liquids and solids, of course, much higher frequencies and direct contact is possible. Units designed for pulse operation will operate with the continuous wave circuitry, but the performance improves greatly when the frequency can be increased by a factor of at least ten.
There is, therefore, a chicken-and-egg situation which requires a large mass market to cause the production of transducers in the range of 1 MHz and matching into gases. A new plastics material, polyvinyl dichloride (PVdF), is ideal for the purpose, but the know-how of manufacture is lacking or jealously guarded, and it is hoped that the British Cas meter initiative will result in some positive move.
A servo transducer has been mooted. using the "fly-hy-wire" philosophy as shown in Fig.3. An amplifier drives the crystal so that the output measured by the PVdF film makes the "demand"

MEASURING GASAND WIND WITH 40KHZ

To break the impasse on the supply of transducers. a colleague. M.H. Miessler. attempted to use the 40 kHz units which are very cheaply available. By using digital filter techniques, we avoid some of the problems. This resulted in a demonstration gas meter which showed promise of economy and low energy consumption, both of which are of vital importance to be domest ic gas meter.
The carrier frequency plays no part in the COHMOD system and can vary widely without significant effect, provided the carrier is much higher than the modulation frequency to avoid quantization effects. Therefore, we can move the carrier frequency and keep the number of actual cycles within the path constant over a small range. By exploiting the resonant properties of the 40 kHz transducer and the limited range required in a gas meter, it is shown practicable to make such a unit. In the analogue form of the circuit the power consumption is extremely low, e.g. 1 mA at 5 V d.c.

A DEMONSTRATION

As an illustration of the principle in another application, Fig. 4 shows a possible arrangement for a wind-speed indicator, using available components.
The unit is, in effect, two flow meters operating in the open air at right angles, with direction switching by means of an analogue switch 4066. It measures the wind velocity in two directions at right-angles. How one turns this into a display or utilizes it when sailing a boat. or to give the wind effect of wind on a microlite aircraft is up to the ingenuity of the experimenter. Pythagoras chips are available from Plessey but. at the moment, the price is prohibitive.

ITT satellite chips for BSB

British Satellite Broadcasting, the company which is to provide a direct satellite television senvice for the IBA. has placed an order with ITT Semiconductors for four million DMAC chip-sets. These components will form the basis of decoders for the complex DMAC transmission format in which BSB's programmes will be transmitted.

The chip-set, consisting of the DMA2280 decoder i.c. and the DMA2285 descrambler, will give access to the four programme services to be carried on BSB's satellite. Prototypes of the chips are to be made available to BSB in the autumn, with bulk production following next spring. This timetable should enable the manufacturers nominated by BSB to produce receivers in large numbers ready for the first programmes: the three-channel Hughes HS376 satellite is due for launching in August 1989. The ITT chips, in $1.5 \mu \mathrm{~m}$ c-mos technology, will be housed in 68 pin p.l.c.c. packages.

DMAC, the transmission standard to he used for the new services, was developed by the Independent Broadcasting Authority. It provides a component-coded vision signal (YUV) for high-quality picture reception free from the crawling patterns to which present day systems are prone, plus digital stereo sound and extensive data capacity for teletext and related services. and an easy upgrade path to E-MAC high-definition television. D.b.s. programmes from the BT Vision-Maxwell-W.H. Smith consortium will also be transmitted in DMAC; but those from Rupert Murdoch's Sky Television. via the Astra satellite. will be in PAL.
A descrambler will be needed for BSB's programmes because the company has decided to transmit even its advertising-supported services in encrypted form: UK viewers will not be asked to pay to receive these programmes (only the Screen channel, specializing in cinema films, will involve a subscription), but the system enables BSB to save money by buying only the UK transmission rights.
The other European d.b.s. standard, D2MAC. is tackled by ITT with a decoder in a single chip. D2MAC, a cut-down version of DMAC with reduced data and sound capacity, is favoured by French and German interests hecause its restricted bandwith is compatible with their existing cable television networks. But the private venture Astra satellite, expected to begin a service around Christmas. could end up carrying senvices in hoth MAC formats. Receivers may therefore need to have multi-standard decoders. However, even with all three MAC chips fitted, decoders using the ITT devices look as though they could be significantly less complex to manufacture than those with the rival Plessey-Philips chip-set (described in the May issue. pages 504-505).
ITT's D2MAC decoder i.c., DMA2270, is designed for integration into the company's Digit 2000 digital receiver system, but with suitable analogue-digital conversion could be used in any receiver chassis.
The decoder is able to treat different sound senvices automatically by decoding the address field of the packet header. Up to eight different sound channels are available for each television service. The sound processor section converts all types of sound packets into a sequence of 14 -bit samples. Medium-quality channels are converted up to the 32 kHz sampling frequency of the high-quality channels, so that subsequent stages deal with a single data format. Storage capacity for buffering the sound packages during processing is provided by an external 64 K d-ram.

One packet address is reserved for senvice and network identification data. This information is protected by a c.r.c. code and by repetition. Up to 720 bits of packet 0 data can be buffered within the i.c. and can be read for processing hy an external controller through a three-line serial bus.
Further information is available from ITT Semiconductors. 145-147 Ewell Road, Surbiton, Surrey KT6 6AW. Other new chips announced at the same time by ITT are the TPU2734 single-chip teletext processor, which now includes a Fastext capability, and the PIP2250 picture-in-picture processor. This overlays a secondary, one-third size picture on to the main television picture.

SATELLITE SYSTEMS

Data relay satellite

When NASA's space shuttle gets back into service - possibly in August this year - its first task will be to launch a tracking and data relay satellite owned by the American company Spacecom. The TDRS, or 'Tea-dress' as it's known in the trade, will first be taken into low Earth orbit. Here the doors of the shuttle orbiter's payload bay will open and the satellite will be ejected by a mechanical arm. A booster rocket attached to the TDRS will be fired and will propel the satellite from its low altitude into a geostationary orbit.
This spacecraft, called TDRSC , is the second in a system of data relay satellites which Spacecom is leasing as a service to NASA. TDRS-A was launched in April 1983, but TDRS-B was lost in the Challenger disaster of January 1986. The main purpose of the whole system is to provide better and cheaper communication with the many low Earth orbiting (LEO) satellites which hitherto have been working to ground stations.
Since the LEO satellites typically have an orbital period of about 100 minutes they pass overhead quite rapidly and so need an extensive chain of tracking ground stations around the
globe to keep in contact with them. NASA's existing ground station network is now over 20 years old and due for renewal. The cost of re-equipping this ground network would be considerable, so the TDRS system has been adopted as a cheaper alternative.

Thus the geostationary TDRS spacecraft 'look down' on the LEO satellites, and because of their advantageous positions in space can see them for much longer periods than is possible from Earth stations in a ground tracking network. There is just one Earth station for the whole TDRS system, at White Sands, New Mexico, USA, and this handles all the data communications, including text and graphics, between the LEO satellites and their respective mission control centres. Altogether the system, developed by TRW Space Communications, can deal with up to 2400 LEO satellite passes a day, and with data rates up to 300Mbit/s.

So each TDRS must be designed to relay data to and from many user satellites. In fact the TDRS-C can serve up to 32

System for relaying data to and from user satellites, in the communications payload of the TDRS-C multi-beam, multifrequency tracking and data relay spacecraft.
spacecraft simulaneously, including the shuttle orbiter itself. This entails two-way radiocommunication, multiple frequencies and multiple antenna beams. The accompanying block diagram of the TRW communications payload gives an outline of how the relay system is arranged. Altogether the satellite carries seven antennas and operates in three frequency bands, S , C and Ku .

There are two large antennas, with main reflectors of 4.9 m diameter, designed for singleaccess working with the user satellites. These big reflectors fold up like umbrellas for launching in the shuttle and are opened when the TDRS gets into orbit. A phased-array antenna of 30 helical elements forms and steers beams for up to 20 multiple-access users. The fourth and fifth antennas are for C- and Ku-band communications respectively.

Tracking, telemetry and command signals are handled by an S-band antenna, while the TDRS link with the White Sands earth station is provided by the seventh antenna, which has a two-metre reflector and works at Ku-band frequencies (downlink 1314 GHz , uplink $14-15 \mathrm{GHz}$) Because they handle the total data from a number of user satelilites, these links with the ground must have large bandwidths to cope
with the overall data rate actually 650 MHz for the downlink and 625 MHz for the uplink.
When the TDRS-C is deployed in space it measures 17.3 m from tip to tip of its two solar arrays. On the ground the spacecraft weighs 2 I 30 kg . It has an expected operational life of ten years.
The European Space Agency has plans for setting up a data relay satellite system for its own LEO operations. This will have two spacecraft in geostationary orbit, each capable of relaying data continuously to and from user satellites for more than half of each low Earth orbit.

Radio telescope baseline in space

One of the most successful radio astronomy techniques for locating and measuring emissions from radio stars has been the interferometer array formed by spaced receiving antennas. The late Sir Martin Ryle (who eventually became Astronomer Royal) did extensive mapping of cosmic radio sources with this technique at Cambridge University in the late 1940s and early 1950s. He used very simple horizontal dipoles laid out in a field and war surplus radar equipment

SATELLITE SYSTEMS

Thirty-two 27MHz transponders are carried in Japan's first commercial comsat, soon to be launched. The tw.ts of these 20W transponders can be seen level with the head of the upper technician standing on a platform. Built by Hughes, the HS393 Ku-band spin-stabilized satellite has an antenna with a 2.4 m main reflector and multiple-horn feed that will give a shaped beam to cover the four Japanese main islands and Okinawa island with a high e.i.r.p. of 50 dBW in the most densely populated areas. Frequency re-use is obtained by polarization diversity. The antenna system includes two offset reflectors, one sensitive to vertical polarization and the other to horizontal polarization. Also, the 32 -channel repeater system actually consists of two 16 -channel repeater sections, one for each direction of polarization.

Hughes are building two of these HS393 spacecraft for Japan Communications Satellite Company, a joint venture between themselves and two Japanese partners, C. Itoh and Mitsui. When deployed in geostationary orbit, with antenna reflector and cylindrical solar arrays fully extended, the 3.7 m diameter satellite will be 10 m high. Power from the two cylindrical solar arrays is in excess of 2 kW . The HS393 is similar to the HS376 to be used for Britain's d.b.s. service but very much bigger. It is expected to have a life of 10 years.
(see Wireless World, July 1951. pages 275-278). The heavens were scanned for radio sources by the rotation of the Earth, which moved the interference patterns of lobes and nulls across the sky.
Then in 1971 the Mullard Radio Astronomy Observatory was built near Cambridge and this used fixed and movable spaced paraboloid antennas to provide 16 interferometer pairs. These dishes can be programmed to track particular radio sources. Over the years a number of interferometer radio telescopes have been built around the world.
Since the resolving power of this technique rises with increasing distance between the spaced antennas, it makes sense nowadays to try and put one of the two antennas way out in space on a satellite. The result should be an angular resolution and radio image quality far superior to that obtained from Earth-based interferometers, where the maximum possible spacing is of course the Earth's diameter. This is the principle of a long-term ESA scientific project called Quasat (Quasar satellite).

As the name implies, one of its principal aims will be to study in greater detail the highly energetic radio sources in quasars (quasi-stellar objects). Originally Quasat was to have been a joint NASA-ESA project, but the Challenger space shuttle disaster put paid to all that because the satellite was planned to be launched by a shuttle. Now, ESA is preparing to go ahead alone, using the new Ariane-4 rocket to launch the spacecraft.

Essentially the Quasat spacecraft will be a 10 m offsetfed paraboloid antenna orbiting the Earth in an elliptical path with an apogee of 36000 km , a perigee of 5000 km and an inclination of 30°. Such a large dish in conventional construction could never be stowed in the nose of an Ariane rocket. It will therefore be an inflatable type, folded up for launching then blown up like a balloon and made rigid when in space. Obsenvation frequencies will be mainly in the $22.21-22.5 \mathrm{GHz}, 4.8-5.0 \mathrm{GHz}$ and $1.66-1.67 \mathrm{GH} \%$ radio astronomy allocations. A much lower frequency, 327 MHz in another radio astronomy allocation, will be used for observing pulsars.

Emissions from the radio sources thus received will be sent as analogue signals through a downlink to a network of telemetry stations on the ground. In this ground system they will be recorded digitally on magnetic tape and transported to a central processing station, which will also get similar tapes from ground-based interferometer arrays that had simultaneously observed the same radio sources. An atomic clock will be used for synchronizing the two sets of signals. After correlation and calibration the resulting data will be sent to radio astronomers for further analysis.

Such observations should tell the astronomers more about the massive black holes which are considered to be at the heart of quasars, providing their energy by enormous gravitational force. They should also give information on the origin of the jets which convey nower from the central objects at relativistic speeds.

So far, ESA has established that the Quasat project is technically feasible. An experiment using an American TDRS satellite (see item elsewhere) and ground-based radio telescopes in Japan and Australia has proved the principle. By the end of 1988 model spacecraft and payloads are expected to have been defined and cost estimates obtained. The next steps will be industrial system design and hardware development and testing. On present progress, Quasat could be launched some time in the period 1996-1997.

OTS-2 still working

The European experimental satellite launched in May 1978 as a test-hed and pre-operational spacecraft for the Eutelsat conmmunications system is stitl in operation (see WW reports, July and December 1978). It is heing used by the ESA to provide information for improving the design and operational techniques for the whole family of European comsats that have foliuwed in its wake.
The experimental satellite was built for the ESA by a European group of firms headed hy British

Aerospace (Hawker Siddeley Dynamics) and including as major partners ANT, ERNO, MATRA, SAAB and SELENIA. Called the Orbital Test Satellite-2, it was in fact the second flight model. An OTS-1 was built but was lost in the first launch attempt in September 1977, when the NASA Delta launching rocket failed shortly after lift-off from Cape Canaveral, USA.

After its first year in orbit, when most of ESA's experimental objectives had been achieved, the OTS-2 communications capacity was handed over to Eutelsat to develop the services planned for the operational ECS satellites. ECS-5, the last in the series, is due to be launched soon.
Eutelsat continued to use the experimental spacecraft till 1984, when all traffic was transferred to the ECS system which had then become operational. Since then, OTS-2 has heen kept working by the ESA for the purposes mentioned above.

Aeronautical satcoms nearer

Mobile communication services to aircraft through the Inmarsat system have been on the cards for a long time. The project has moved one more step nearer to reality now that the USA has formally accepted amendments to the Inmarsat convention and operating agreement that will allow this to happen. America is actually the 21 st country to agree, out of the 54 membercountries in the international co-operative.

The planned range of aeronautical services, the first of which is due to come into operation on commercial airline flights later this year, will include cockpit data and voice communications, as well as direct-dial telephone services for passengers.

Satellite Systems is written by Tom Ivall.

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
 R. Henson Ltd.

21 Lodge Lane, N. Finchley, London N12 8JG. 5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

ENTER 26 ON REPLY CARD

SMALL SELECTION ONLY LISTED RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Latest bulk Government release - Cossor Oscilloscope CDU150(CT531/3) $£ 150$ only. Solid state general purpose bandwidth DC to 35 MHZ at $5 \mathrm{MV} / \mathrm{Cm}$ - Dual Channel - High brightness display $(8-10 \mathrm{~cm})$ full delayed time base with gated mode - risetime 10NS illuminated graticule - Beam finder Calibrator 1 KHZ squarewave power $100-120 \mathrm{~V} 200 \mathrm{~V}-250$ volts AC - size W 26CM - 14CM deep - WT 12.5 KG - carrying handle, colour blue, protection cover front containing polarized viewer and camera adaptor plate - probe (1) - mains lead. Tested in fair condition with operating instructions $-£ 150.00$.
Racal RA17L Communications Receivers. $500 \mathrm{KC} / \mathrm{S}$ to 30MC/S in 30 bands $1 \mathrm{MC} / \mathrm{S}$ wide from $£ 175$. All receivers are air tested and calibrated in our workshop supplied with dust cover operation instructions circuit in fair used condition - Racal Ancillary Units for all receivers mostly always in stock - Don 10 Telephone Cable $1 / 2$ mile canvas containers or wooden drum new from $£ 20$ - Army Whip Aerials screw type F sections and bases large qty available now P.O.R. - Test Equipment we hold a large stock of modern and old equipment. RF and AF Signal Generators - Spectrum Analysers - Counters - Power Supplies - Oscilloscopes Chart Recorders all speeds single to multipen - XY Plotters A4 A3 - Racal Modern Encryption Equipment - Racal Modern Morse Readers and Senders - Clark Air Operated Heavy Duty Masts P.O.R. All items are bought direct from H M Government being surplus equipment price is ex-works. S.A.E. for enquiries. Phone for appointment for demonstration of any items, also availability or price change V.A.T. and carriage extra.

> EXPORI TRADE AND QUANTIITY DISCOUNTS JOHNS RADIO, WHITEHALI WORKS,
> 84 Whitehall road east, birkenshaw, bradford, boll 2ER IEL NO. (0274) 684007.

WANTED: REDUNDANT TEST EQUIPMENT - VAVES - PLUES - SOCKETS, SYNCHROS ETC. RECEIVING AND TRANSMITIING EQUIPMENT

Information:
Pattern Lid., London House, 243-253 Lower Morlake Road Richmond/Surrey TW9 2LL Tel. 01-948 5166/940 4625 For travel arrangements contact Commercial Trade Travel, Tel. 01-491 1312.

MESSE MUNCHEN
INTERNATIONAL

Intelligent power devices

Recent developments in integrated circuits combining control circuitry and high-power driver stages.

SUE CAIN and RAY AMBROSE

While chips integrating both signal and power elements have been in use for several years, recent developments have greatly expanded the capabilities of these lechnologies. With the latest processes, designers can integrate many circuits that were previously uneconomic or simply impossible. Moreover, the enlarged horizons of "intelligent' power technology and packaging are prompting new trends in the partitioning of systems.

Not only are intelligent power i.cs becoming more common, they are also becoming more intelligent, to the point where designers can aim to integrate a complete power subsystem. Moreover, the current and voltage capabilities of these technologies have increased dramatically, enlarging the field of applications.

Since systems designers are often responsible for partitioning electronic systems and specifying new devices, it is important for

Fig.1. The SGS 60 V bipolar process combines linear, logic, isolated-collector vertical p-n-p power transistors and low leakage diodes

Fig.2. Designed primarily for automotive applications this high-side solenoid driver exploits the structure of Fig. 1 to obtain very low saturation voltage.
them to understand the capabilities of the latest technologies. This is now more true than ever, hoth because i.c. technology has advanced so rapidly and because the latest generation of power i.cs have a much greater system' content.

NEW TECHNOL,OGIES

Intelligent power technologies have evolved from two earlier types: linear i.cs and discrete transistors.

Processes of the first type are enhancements of the basic planar i.c. structure, where all the connections are on the top surface of the chip. In contrast, those intelligent power technologies that have been developed from discrete transistor processes have a collector. or drain, contact on the lower surface of the die. A funadamental consequence of this structural difference is that, with processes of the first type. such as the Multipower. it is possible to integrate any number of isolated power transistors and interconnect them in any configuration.

Where a bottom contact is used, it is only possible to integrate a single power transistor, or several with common collectors (or drains). Therefore, conligurations such as the Hbridge cannot be integrated but higher current and voltage capability of several hundred volts is possible. This process is known as the SGS-Thomson VIPower ${ }^{\text {TM }}$ (Vertical Intelligent Power). Both technologies can be further sub-divided into those which are pure bipolar, and those which contain a mixture of binolar and mos structures. In both fields significant progress has been made recently.

PURE BIPOLAR

Just how far bipolar technology has advanced is illustrated by the SCS Multipower- $S^{2} P^{2}$ and Multipower-HDS ${ }^{2} \mathrm{p}^{2}$ processes.

The first of these, shown in Fig.1, is a 60 V process that integrates bipolar linear, i.i. logic, n-p-n and p-n-p power transistors, and a new low-leakage diode structure. A characteristic of this process is that it offers a new isolated-collector vertical p-n-p structure which is much closer to discrete p-n-p transistors in performance terms than the usual lateral p-n-p type. These transistors provide a current density of $0.8 \mathrm{Amm}^{2}$ at $\mathrm{V}_{\text {sat }}=1 \mathrm{~V}$
compared to $2 \mathrm{~A} / \mathrm{mm}^{2}$ for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ types, and a cut-off frequency of 20 to 30 MHz .

The possibility of integrating highperiormance power $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors on an intelligent power i.c. allows designers to choose any output conliguration. Moreover. the transistor's low voltage drop can be exploited for applications where drop-out is a critical parameter. Such an output stage can also withstand battery reversal indefinitely an important requirement in automotive application.

The process provides for the inclusion of a new. low-leakage diode structure that has a parasitic p-n-p gain about four orders of magnitude lower than conventional structures. which is convenient for the recirculation diodes in high power i.cs driving inductive loads.

The lirst device to be produced with this process is a relatively simple. high-side driver. originally designed to the specification of a customer in the automotive electronics market (Fig.2). A vertical p-n-p output transistor is used in this device to obtain very low saturation. high gain (about 30 with IA output current) and the ability to withstand load dump transients.

The second process is a similar pure-bipolar process which offers e.c.l. logic. However, the most important characteristic of the process is high density. Dimensioned for 20 V capability, it is aimed at low-voltage applications where more complex signal processing circuits are needed - up to 270 i.i.l. gates can be contained on one square millimetre of silicon. Current density is $6 \mathrm{~A} \mathrm{~mm}^{2}$ for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors and $2 \mathrm{~A} / \mathrm{mom}^{2}$ for p-n-p (at $\mathrm{V}_{\text {sat }}=\mathrm{IV}$ and $\mathrm{H}_{\text {fe }}=10$).

MIXED TECHNOLOGY

Considerable progress has also heen made in mixed hipolar/mos technology. Several mixed technologies of the 'vertical' type are already available but a significant development is the recent Multipower-BCI) process seen in Fig. 3 . which combines linear. c-mos logic. and double-diffused mos power transistors without placing any limit on the number and connection of the power devices.
Because d.mos power transistors are used, the mixed process enables efficiencies of above 95% and switching frequencies up to 500 kHz . In addition, there are no secondary breakdown limitations, paralleling of devices is simpler and there is an intrinsic "fast" recirculation diode in the power d.mos structure which is adequate for most applications.

The process allows the mixing of low voltage and medium voltage elements on the same chip: lateral d.mos transistors with a breakdown voltage of 60 V can be produced in an epitaxial layer dimensioned for 20 V linear and c -mos circuits.

The first product to be developed using this process is a motor driver (Fig.4). which uses four d.mos power transistors in a H -hridge output stage Assembled in a powerdip package this device can deliver 1.5 A at 54 V with no external heatsink.

VERTICAL PROCESSES

Other recently developed processes include bipolar and mixed vertical technologies
known as VIPower-MI and V|Power-M2. VIPower-M1 (Fig.5) combines 400 V n-p-n power transistors and bipolar low voltage (up to $30 \mathrm{~V}_{\text {(col }}$) drive circuits, while VIPower-M2 (Fig.6) will offer 80V d.mos power transistors and mixed c.mos/hipolar drive circuits.

Though these processes cannot be used for devices with bridge and half-bridge output
stages, they offer higher voltage capability and the vertical technology features a lower on resistance than the mixed bipolar/mos type.

CHOOSING THE RIGHT PROCESS

The choice of process depends on the output stage contiguration, current, voltage and the

Fig.3. A mixed technology, Multipower-BCD integrates linear, c-mos logic and power d.mos devices on the same chip. Unlike other mixed technologies, it places no limit on the number or connection of the power transistors.

Fig.4. A motor driver chip, is the first product to be made using the technology of Fig.3. The d. $\operatorname{mos} \mathrm{H}$-bridge output of this chip delivers 1.5 A at 54 A but needs no heatsink.

Fig.5. A bipolar process integrating $400 \mathrm{~V} n \cdot p \cdot n$ power transistors and 30 V drive circuitry.

Fig.6. Another 'vertical' power process, this combines 80 V d.mos power transistors and mixed c-mos/bipolar drive circuits.
complexity of the signal processing section.
Mixed bipolar/d.mos is the best for lowercurrent devices where the signal-processing circuitry is very complex. Pure bipolar processes, in contrast, are better for low-voltage. high-current applications, because the current density is much greater. However, future developments in mixed bipolar/mos are likely to erode this advantage in a few years.
One area where mixed technology will not replace the pure bipolar processes completely is automotive electronics, where high-energy load-dump transients occur on the battery rail. To withstand these transients. a d.mos technology must have a $B V_{\text {dss }}$ breakdown voltage greater than the neak dump voltage. while a bipolar n-p-n transistor can be turned olit to take advantage of the $\mathrm{BV}_{\text {cho }}$ breakdown voltage. which is much greater than the $\mathrm{BV}_{\text {ceo }}$ breakdown voltage.
Mixed bipolar d.mos technology will be-
come increasingly important in very complex power devices. In the near future it will he applied to produce specialized peripheral drivers, optimized for one load type.

POWER PACKACING

For a power i.c. the package is extremely important, since it determines both the power capability and the cost. At present, most high-power i.cs of the Multipower type are assembled in power-tab packages which are attached to a heatsink. or in special dual-inline packages with a leadframe designed to reduce thermal resistance. All of these packages are 'insertion' types. However, several trends have now emerged which call for the design of completely new power packages.
First. the increasingly widespread use of surface-mounting techniques and automatic assembly has required new power packages.

For medium power (up to 2 W) one solution is a plastic chip carrier with a special leadframe. Derived from the 44-lead plastic chip carrier. this package uses 33 leads for connections and the remaining 11 leads to transier heat to the substrate. It has a junction -to-case thermal resistance of less than $7^{\circ} \mathrm{C} / \mathrm{W}$, allowing dissipation up to 2 W .

For higher-power devices, development is concentrated on a new generation of packages. One package family heing studied has a junction-to-case thermal resistance of less than $5^{\circ} \mathrm{C} / \mathrm{N} .3-17$ pins. and a lead spacing of 50 mils. These packages will have a Small-Outline-width body and gull-wing leads, allowing the use of SO package handling equipment. The low therma! resistance of these packages is obtained by a copper heat spreader on the lower surface of the package which, when the package is soldered in place. is in contact with the substrate. The amount of power that can be dissipated in the device depends on the conduct ivity of the substrate.

In view of this trend there is now considerable interest in high-conductivity substrates and the various alternatives, such as a plastic board honded to an aluminium or copper sheet. Plated-through holes in the p.c.b. reduce the thermal restistance between the package and the metal sheet.

Another development is the inclusion of a copper heat spreader on the under-side of plastic chip carriers. These power chip carriers will, like many new packages, be premoulded types. which eliminate stress on the die caused by polymerization shrinkage of the moulding resin.

* Sue Cain is with BA Electronics and Ray Ambrose is with SCS Thomson Microelectronics (STM).

Ernst Ruska - pioneer of the electron microscope

The death was announced recently at the age of 81 of Ernst Ruska, Nobel prizewinner and co-inventor of the electron microscope. Ruska. whose work was only latterly recognised (he shared the 1986 Nobel Prize for Physics). began his experiments in the late 1920s as a student in Berlin and continued them as a sideline of his main work on television technology in the thirties.

Ruska and his colleague Max Knoll realised that if they could make an electronic analogue of the glass lens, it would then be possible to build a microscope capable, in theory. of magnifying up to a million times. This compares with an upper limit of about 2.000 times for the traditional light microscope. (The improvement is due to the short wavelength of a beam of electrons compared to that of light. Electron waves are small even on the atomic scale, whilst light is unable to detect less than half a micron.

By 1933 Ruska and Knoll had devised a practical electron lens and constructed a
microscope capable of magnitying 10.000 times. By modern standards it was a crude assembly consisting of an electron gun, a series of large electromagnets, and e.h.t. supply, a vacuum chamber and a fluorescent screen. Specimens had to be coated in carbon or metal and maintained under a high vacuum.

In the immediate post-war years, Ruska and other physicists around the world developed the electron microscope into a practical laboratory tool capable of magnifying half a million times. Its belated recognition by the Nobel Committee is therefore no reflection on the quality of that early technology. Ruska himself blamed no-one for failing to take it seriously. What has latterly assured him of a place among the great names of physics is not the technology but the window he opened on the world of the infinitesimally small, but infinitely important. Thanks to the electron microscope we can now 'see' viruses and atoms. J.W.

Reader questionnaire

May 1 thank all those readers - several thousands of them - who took the trouble to complete the recent questionnaire. We have scanned them all, with the considerable assistance of a computer, and intend to make the changes that seem feasible after everyone concerned has had a chance to discuss the results. If I can gather the findings together in a readable form, I will try to summarize them in a future issue. The hardest part, of course, is analysing the comments which weren't computer-readable.

Meanwhile, the "small token" I promised in the note accompanying the questionnaire form will go off to respondents as soon as can be managed, but please give us a few weeks to sort ourselves out. Ed.

HART - The Firm for QUALITY

Ultra high LINSLEY-HOOD 300 SERIES AMPLIFIER KITS.

Ulitra high quality. Mosfet output. Fully integrated $\cdot \boldsymbol{H}$-F amplifier kits by this superb sound qualiy with greater and 45 walls per channel. Capable of superb sound qualry wifh greater delicacy and iransparency of tone than
 buitding instructions as most components fit on the PCBs and setting-up only needs a mulimeter.
K 300.35 Total Parts Cost $£ 13828$. Discount Price for Complete Kn 598.79 K 300 -45 Parts Cosi £142.74. Kin
Riscount Price £ 102.36 . Reprints of Original Articles from 'Hi-Fl News: $£ 1.05$ (FREE with Kit)

LINSLEY-HOOD SUPER HIGH QUALITY AM FM TUNER SYSTEM

A combination of hs ultra high quality FM tuner and stereo decoder described in ETt and the Synchrodyne AM receiver described in ${ }^{-W W}$. Cased to match our 300 Sertes amplifiers this kit features a ready buth pre-aligned FM front end. phase locked loop IF demodulator with a response down to DC and an advanced sample and hoid stereo decoder. Ths luner sounds better than ine besi the fing phed exolica but, thanks HART engineering, remains easy to bulld
K400AM/FM. Full AM/FM Kı!
GREAT NEWS FOR KIT BUILDERS
As a result of popular demand we are now offering BLACK trontplates whth matching collet knows on our 300 Seties amplifters.
Price as option with kir
Tuner versions will be ready soon

SOLENOID CONTROLLED FRONT LOAD CASSETTE DECK
High quality (0.08% W8F) successor to our very popular SF925F. Ofters all standard facilities plus cue and revue modes all under remote. logic of
software control. Power requirements are simple with 12 v solenoids and $12 v$ motor with buill in speed control. Logic and criver chips are available. Deck with stereo head other heads to order.......................................
Full manutacturets data. Full manufactures cata.
HIGH QUALITY REPLACEMENT CASSETTE HEADS
Do your tapes lack treble! A worn head could be the problem. Tape heads are constantly improving and litting one of our latest replacement heads
coutd restore performance to befter than new! Standard mountings fin most decks and out TCI Test Cassette will make it easy to sel the azimuth spot on. As we are the actual importers you get
lowest prices. All our heads are suitable for Dolby machines.

HX 100 Standard Stereo Permalloy Head

| HC20 High Quality Permalloy Stereo Head |
| :--- | :--- |
| HS16 Sendust Alloy Super Head Oute simply the best Longer lite than permalloy higher out | antastic firequency response. metal tape capabality HO551 4. Track head for auto reverse or quadrophonic use. Full specilication record and play head § 14.60 Full data on these and other heads in our range are contained in our tree list

HART TRIPLE-PURPOSE TEST CASSETTE TC
One inexpensive test cassette enables you to sel up VU (Dorby) level, head azrmuth and lape speed withoun test equipment. Vital when ittling new heads. Complete with instructions \quad 〔4.66 Send for your FREE copy of our lists with full detals of our complete range of Kits. Componems. PCBs. Cassette Heads and Decks. - Overseas please send 5 IRCs for Airmail Post

ELECTRONIC KITS LTD 24 hr SALES LINE (0691) 652894 Please add VAT

COMMERCIAL QUALITY

 SCANNING RECEIVER

The IC.R7000, advanced lechnology, continous coverage communicalions receiver hos 99 programmable memories covering aircroft, morine, FM broodcast Amateur rodio, television ond weother sotellite bands. For simplified operation and quick tuning the IC-R7000 features direct keyboord entry. Precise frequencies con be selecled by pushing the digit keys in sequence of the frequency or by turning the main luning knob. FM wide/FM narrow/AM upper and lower SSB modes with 6 luning speeds: $0.1,1.0,5,10,12.5$ and 25 kHz . A sophisticated scanning system provides insiant access to the most used frequencies. By depressing the Auto - M switch the IC.R7000 automatically memorises frequencies that ore in use whilst it is in the scon mode, this ollows you to recall frequencies that were in use Reodou
is clearly shown on a dual-colour fluorescent display. Options include the
RC. 12 infra-led iemote contraller, voice synthesizer and HP. 1 heodphones

Isom (UK) Lid. Tel: 0227 363859. Telex: 965179 ICOM G N.B. Authorised Welsh distribution by Mins Communications Lid. Cardiff. Tel: 022224167.

Please send infarmation an Icam praducts \& my nearest Icam dealer.
Name/address/pastcode
\square

Status: Tel:
Post to:lcom (UK) LNd. Dept. WW, FREEEPOST, Herne Bay, Kent CTÍ8BR

The DIGIAC 1050 has been specifically designed to provide a single self-contained trainer that covers a.c./d.c. fundamentals, semiconductor circuits and digital electronics.
For full details on the DIGIAC 1050 send for our full colour brochure or call us on Norwich

信 (0603) 748001.

The DIGIAC 1050 features:-

- Self contained module with steel case and integral power supplies.
- Two curriculum texts available

FT02 - An Accelerated Introduction to Electricity/Electronics
FT04-A Comprehensive Study of the Fundamentals of Electricity/Electronics

- 26 independant circuit blocks with different configurations covering resistors, capacitors, inductors, op amps, diodes, relays, transformers and digital logic circuits.
- On-board switched faults - concealed by a lockable cover.
- Screen-printed circuit layout.
- Comprehensive Instructor's manuals available for both curriculum texts.

NEW PRODUCTS

Three-pronged wire twister

A wire twisting machine from Rush Wire Strippers should save users from the sore fingers associated with twisting stranded wire by hand before tinning or termination. The DCFT wire twister can be hand held or bench mounted with footswitch control and has three prongs mounted on a centrifugal head to twist st randed wires neatly and precisely. Rush Wire Strippers. Unit M. Hunting Gate. Andover SP10 3LU Tel: 026451347

Keyboard size reduced

A keyboard system which reduces the total surface area of a standard ASCII keyboard to 78 by 16.3 mm while relaining the feel of individual 19 by 19 mm keys and providing the same functions has been int roduced by Radiatron Components.
These keyboards operate on what the manufacturer calls a 'half step' principle by which the operator perceives two distinct 19 by 19 mm keys although his finger has only moved half the distance. Each key is divided into four smaller sub keys: if the noticeably raised centre point of the key is pressed then all four sub-keys make contact to make a combined signal. By moving his finger only 10 mm the operator presses the new group of four subkeys (two of the previous ones and two new ones) to produce a different combined signal. In this way each group of four keys has nine functions. Radiat ron Components Lid. Crown Road. Twickenham. Middlesex TW1 3ET. Tel: 01891 6839.

Interference protection for computers

Inlet filters which combine an integral switch. indicator lamp and fuse within a single unit protect office computer equipment and business machines from interference.

The filters are designed to protect sensitive circuils against highfrequency transients, including both symmetrical and asymmetrical power line interference in the frequency range 100 kHz to 100 MHz Available with 2, 4 or 6A cyrrent ratings, the Belling Lee l.2790) filters have a choice of snap-in or screw fixing. Belling Lee Lid. 540 Great Cambridge Road, Enfield, Middlesex ENI 3RY. Tel: 013635393

Automatic cable tester

All wires in a cable assembly are autonatically tested for open and short circuit using Cable Check 1 The unit tests individual conductors for continuity and isolation from other wires in a cableform, and gives audio/visual indication of any fault. The front
panel has two l.c.ds. to indicate the type of fault. Ideal for loom manufacture and testing, and for field testing multicore and ribbon cables, the tester is powered by rechargeable batteries. Cable Check Systems, 18 Quay Lane Cosport, Hants PO12 31.J. Tel: 0705528396

Acoustics and vibration measurement

A comprehensive new system of spectral analysis equipment for noise and vibration measurement in real time, together with post-processing power and storage capacity is available from IBruel and Kjaer

The basis of the 2133 system is the single channel 2123 narrowband analyser for conventional noise measurement. A second channel has been added to offer two-channel and
cross channel functions for measurement of sound intensity particle velocity and the complex cross-spectrum, making the instrument the most powerful intensity analyser in the company's range. Bruel \& Kjaer (UK) Lid, Harrow Weald Lodge. 92 Uxbridge Road, Harrow. Middlesex HA3 6BZ Tel: 01-954 2366.

Led module for large displays

A 16×16 led dot-matrix display module designed for large-scale displays such as public information boards, monitors and as a replacement for c.r.ts has the ability to generate both moving pictures and static graphic images on the black background

Designed by Toshiba, the module uses 256 lamps, which can display red or green with the addition of amber as a mixture of the two Single-colour modules are also available from the distributer Dialogue Distrihution. Fast scanning rates are obtained with the 20 MHz clock frequencies. Dialogue Distribution Ltd, Wical House, 403 London Road, Camberley, Surrey GU153HLL. Tel: 0276682001

Detecting static charge

Alightweight, hand-held electrostatic meter manufactured by Chapman Corporation is ideal for detecting static charges in electronic and other manufacturing areas where electrostatic build-up can present problems.

The device has a reading accuracy of $\pm 5 \%$ and a response time of 0.5 s . It incorporates a clear full-scale deflection meter with four scale ranges from ± 1000 up to $30,000 \mathrm{~V}$. Available from Teknis, it runs on a standard 9V PP9 battery and weighs only 257g. Teknis, Teknis House. Meadrow. Godalming, Surrey CU7 3HQ. Tel: 04868.5432

Productiontest generator

A new general-purpose r.f. test generator from Quartzlock Instruments is claimed to offer lower modulation distortion and better signal purity than any rival instrument. Harmonic distortion is 40 dBc down, nonharmonic distortion-80dBc and the noise floor -135 dBc .

Quartzlock's model 360A also spans an exceptionally wide frequency range (100 Hz to 100 or 110 MHz , in a.m. or f.m. modes. A special feature is an optional enhancement for testing receivers for West Germany radio's ARI, the traffic information broadcasting
system based on a 57 kHz subcarrier. Quartzlock also intends to add a test facility for RDS radiodata receivers. Remote-controlled operation is possible and an IEEE-488 interface can be added. Price is £3850. Quartzlock Instruments, Moor Road, Staverton, Devon TQ96PB; tel. 080426-282.

M \& B RADIO (LEEDS)

THE NORTH'S LEADING USED TEST-EQUIPMENT DEALER

oscilloscopes

Tektronix 7603 man liames	¢750
Tektronix 7604 man trames	¢650
Tektonix 770.4	
Plugs in slock 7At8, 7A17, 7852, 7853, 7A17.	
Telequipment $08350 \mathrm{MHz} \mathrm{O} / \mathrm{T}$	c325
Tetequipment D75 50MHz Oual Beam	C235
Telequipment 066 A 25 MHz	[175
Tekironax 465100 MHz	[650
Tektronir RM529 Wavetorm Monitot	¢150
Ouantity of Cossor CDU 150 Compact Solid State	
Oscilloscopes, Dual Beam 35 MHz with delayed timetase and probes each one tested and checked	
lor calibration	$\underline{175}$
Tektromu 603 Storage Monitor	¢550
HP 182 Scope Main Frame	¢350
Systems Video Pal Vector Scopes	5550
HPP 191A Wavelorm Monitors	$¢ 195$
Farnell DTB 12/14	¢195
Hameg HM605 60 MHz	[395

Signal generators

MarconitF 20151 TF2171

1010520 MHz

Marcon TF2016 TF2173 Sync AMFM COt2 10 I20MH2
Marconi TF $1066 / \mathrm{B} 10 / 470 \mathrm{MHz}$ AMF
Marcon IF $144 / \mathrm{H} 10 \mathrm{~Hz}$ to 72 MHz
Marcon TF 2012 AM FM 400 to 520 MH
Marconi TF 995 A A 5.5 to 220 MHz
Marconi IF2333 Transmussion Tes
Lyons PG73N Bi Polar Generator
HPzorc LF Osallato

```
Marcon, IF 1245, 246 O Mele
Marconi IF2700.LCA Burge
Marconi IF 1313A ,1% Bridge
Radiometer MM2 LCR Brocge
HP 3465A DVM
HP 3403C True RMS Vollmeter
HP 3400A RMS Volimeter
HP 400EL Volmmeter
HP 8170A Logic Partem Generator
HP1601 A Logic Analyser Plug in
HP 1600A IG07A Logic Analysor
*IP 1600A Logic Analyser
Bird Termaline 6254 100MW meler
Bird 8329-300 3008 2KW
Brod 83273008 1.000 wats
Bird 8201500 wall
HP3670A Data Generalo
H.1P2722A Nose Generator
HP651B Test Osc
```

SPECIAL OFFERS
Racal RA17 Communication Recewers 500kCS io
30 MHz . ex-mod quantily avalable \quad. 140
Bradley CTA7IC Electronc Multi-meter ACJOC
Volts MA f1 with RF probes to $1100 \mathrm{MH}_{2}$ Battery
operaled
Marconi Freq Meter Resonant 50010
1000 MHz
NUS Polyscons $11+200 \mathrm{MHz}$
HP3311A Function Generator
Marconi TF 2320 A Wave Analy
HP 3200 VHF OSC 1010500 MHZ
Levell TG150 Audio Osc
Gen Rad 1362 UHF Osc 220 to 920 MHz
Texscan WB711 500 MHz Sweeper
Fluke 6160A Frea Synthesizer 30 MHz
Advance 848330 MHz Sgg Gen
Arathoneter SMG 1 Siereo Generalor
AE Codasyn 201 O Osplay
AE Codasy
Ferograph HTS?
TS2
Marconi fr2331 Oistornon Facion

ALL PRICES PLUS VAT AND CARRIAGE
86 Bishopgate Street, Leeds LS1 4BB.
Tel: 0532435649
ENTER 31 ON REPLY CARD

With 40 years' experience in the design and manuacture of several hundred thousand transtormers we can supply:

QUDIO FREQUENGY TRAMSFORMESS OF ENEBY TYPE
 YOU NAME IT! WEMAKEIT!

Microphone transformers (all types). Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guitars. Multi-Secondary output transformers. Bridging transformers. Line transformers. Line transformers to B. T. Isolaing Test Specification. Tapped impedance matching transformers. Gramophone Pickup transformers. Audio Mixing Oesk transformers (all types). Miniature trensformers. Microminiature transformers for PCB mounting. Experimental transformers. Ultra low frequency transformers. Ultra linear and other transformers for Valve Ampliffers up to 500 watts. I iductive Loop transformers. Smoothing Chokes. Filter, Inductors, Amplifiers to 100 volt line transformers (from a tew watts up to 1,000 watts), 100 volt line transformers to speakers. Speaker matching transformers (all powers), Column Loud-speaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO. QLALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHL Y COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS HI-FI ENTHUSIASTS, BAND GROUPS AND PUBLIC ADDRESS FIRMS Expot is a speciality and we have overseas clients in the COMNONWEALTH, EEC, USA, MIDDLE EAST, etc.

Send for our questionnalre which, when completed, enables us to post quotations by return.

SOWTER TRANSFORMERS

Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941). Reg. No. England 303990

The Boat Yard, Cullingham Road, Ipswich IP1 2EG. Suffolk. PO Box 36, Ipswich IP1 2EL, England. Phone: 047352794 \& 0473219390 Telex: 987703G ENTER 30 ON REPLYCARD

NEW FROM NUMBER ONE SYSTEMS NEW

 PCB CAD, FOR THE PC/XT/AT, THAT YOU CAN AFFORD- HAVE YOU BEEN PUTTING OFF BUYING PCB CAD SOFTWARE? ARE YOU STILL USING TAPES AND A LIGHT BOX? HAVE YOU ACCESS TO AN IBM PCIXT/AT OR CLONE INCL. AMSTRAD 1640\& 1512?
WOULD YOU LIKE TO BE ABLE TO PRODUCE PCB LAYOUTS UP TO $17^{\prime \prime}$ SOUARE?
WITH UP TO 8 TRACK LAYERS AND 2 SILK SCREEN LAYERS? PLUS DRILL TEMPLATE AND SOLDER RESIST?
WITH UP TO EIGHT DIFFERENT TRACK WIDTHS ANYWHERE IN THE RANGE 002 to $533^{\prime \prime}$?
WITH UP TO 16 DIFFERENT PAD SIZES FROM THE SAME RANGE? WITH PAD SHAPES INCLUDING ROUND, OVAL, SQUARE, WITH OR WITHOUT HOLE, AND EDGE CONNECTOR FINGERS?
WITH UP TO 1500 IC's PER BOARD, FROM UP TO 100 DIFFERENT OUTLINES?
WITH AUTO REPEAT ON TRACKS OR OTHER FEATURES - IDEAL FOR MEMORY PLANES?
THAT CAN BE USED FOR SURFACE MOUNT COMPONENTS? WITH THE ABILITY TO LOCATE COMPONENTS AND PADS ON GRID OR TO.OO2" RESOLUTION?
WITH AN OPTIONAL AUTO-VIA FACILITY FOR MULTILAYER BOARDS? WITH THE ABILITY TO CREATE AND SAVE YOUR OWN SYMBOLS? THAT IS AS GOOD AT CIRCUIT DIAGRAMS AS IT IS AT PCB's? THAT CAN BE USED WITH EITHER CURSOR KEYS OR MOUSE? WHICH, WITH "EASY-PLOT", CAN ALSO OUTPUT TO A PEN PLOTTER? (A PHOTOPLOT DRIVER WILL BE AVAILABLE SHORTLY) WHERE YOU CAN LEARN HOW TO USE IT IN AROUND HALF AN HOUR? THAT ONLY COSTS $£ 275.00$ + VAT?
PLEASE CONTACT US FOR FURTHER INFORMATION

Output on dot matrix printer reduced from 2:1

EASY-PC, EASY-PC, EASY-PC

NUMBER ONE SYSTEMS LIMITED
REF: WW, HARDING WAY, SOMERSHAM ROAD
ST IVES, HUNTINGDON, CAMBS PE17 4WR
Telephone: 048061778

New PRODUCTS

Your picture on your presentation

For personalized presentations Digithurst's MicroEye i.c. can he used to input images of personnel, products or company logos into the picture maker module of IBM's Storyboard plus.
The card can capture images from
a colour video camera, a standard video recorder, or from any other video source. It works with IBM PC AT and compatibles, and IIBM PC XT and PS/2 Model 30. Digithurst I, td. 7 Church lane, Royston, Herts SC8 91C. Tel: 076342955

L.c.d. for temperature measurement

A new liquid crystal har-graph display with 101 elements is specifically designed to interface directly with an analogue-to-digital converter and display driver manufactured by G.E. Solid State (Intersil).

The I.c.d. is suitable for multimeter and temperature
measurement applications. Made by Hamlin Electronics, it measures 1.3 by 4.5 in . A complete analogue har graph can be produced using the ICL7182 converter/driver in a 40 pin package, an I.c.d. and three passive components. Hamlin Electronics Europe Litd, Park Road, Diss, Norfolk IP22 3AY. Tel:0379644411.

Testing telecommunications and data systems

Telecommunications and data systems can be tested with Seaward's LU250 hand-held multi-frequency oscillator.

The instrument has only two controls to master, enabling quick and accurate results to he achieved with the minimum of prior training Specially built for use in the field, it is backed by a three-year guarantee. Standard frequencies range from 0.3 102.713 kHz hut alternatives are available to suit customer requirements. Seaward Electronic Ltd, Bracken Hill, South West Industrial Estate, Peterlee, Co Durham SR8 2JJ. Tel: 0915863511.

Message display

Most types of programmable logic controllers and industrial computer systems can use the DAA 288 series of low-cost alphanumeric message displays to show operator information, alarnior troubleshooting messages.

Up to '255 messages can be stored in each unit hy the user with the aid of a simple terminal. programming

Erasable c-mos pals

Four new Texas Inst ruments erasable, 20 -pin, c-mos pals are compatible with t.t.I. and c-mos logic and program in t.t.I. levels.

The devices have virtually zero standby power requirement ($\mathrm{l}_{\text {ce }}=100 \mu \mathrm{~A}$ max) and lower operating power than is currently achieved by bipolar pal devices. In a variety of applications such as toys and mobile telephones, solar powered systems and some telecommunications systems the devices can replace conventional t.t.I. and c -mos logic. Online Distribution Lidd. Melbourne House. Kingsway, Bedford MK42 9AZ. Tel: 0234217915.
unit or personal computer, or by plug-in eprom. All messages can include variahle data superimposed in the standard text. The displays from ITT Instruments have green fluorescent figures with two rows of 40 characters. Longer messages, up to 175 characters can be shown as moving text. ITT Instruments, 346 Edinburgh Avenue, Slough, Berks SL1 4TU. Tel: 0753824131.

Ceramic chip capacitors

A complete range of miniature ceramic chip capacitors which is suited to surface-mounted applications on both p.c.h.s and hybrid i.cs is available from Bowmar.
Combining high performance and reliability with good frequency characteristics and low inductance. the series is available in preferred values from 0.5 pF to $0.1 \mu \mathrm{~F}$ Tolerances are as low as $\pm 0.25 \mathrm{~F}$ and voltage rating can be 25,50 or, on special request, 100 V d.c. Bowmar Instrument Ltd, 43-45 High Street. Weybridge. Surrey KT138BB. Tel: 0932851341

NEW PRODUCTS

Optical-fibre multiplexer

The 12416 channel optical-fibre multiplexer can be expanded to provide up to 64 data channels over the same pair of optical fibres.

Pirelli Focum has combined the benefits of optical-fibre communications anda ready to use. simple to install and operate format in this model. Configuration is made easy by a menu-driven liquid-crystal display and touch-panel control. A non-volatile ram storage protects all configuration details against unexpected power failure. Pirelli Focum L.td. Hunslet Trading Estate. Severn Road, leeds LS10 1BL. Tel; 0532775757

Data storage in industrial conditions

The Microcoder mass data-storage device has been enhanced by Wenger of Switzerland for industrial applications.
The all-steel housing of the device is designed to withstand conditions in production environments. The model ZE 701 can be directly connected to a standard RS 232 (or
optional current loop) interface for fast recording. Computer-generated operating instructions can be transferred to standard audio cassette tape at 2400 baud and data blocks individually identified by spoken instructions. A volume control, three-digit mechanical counter, loudspeaker and microphone are all incorporated. Wenger Printers L.td. Unit 10. The Valley Centre, Gordon Road, High Wycombe. Bucks HP136EQ. Tel: $04943 \overline{372}$.

Surface-mounted potentiometers

Murata claims its ГOTOIO1 series of single-turn potentiometers is the only surface-mounted potentiometer series suitable for both flow and reflows soldering with a temperature coeificient of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Measuring only 4.7 by 4 mm with a height of 2 mm . they are available with resistance values hetween 200 ? and 2MS. Murata Electronics (UK) Ltd. 5 Armstrong Mall, Southwood. Farnhorough. Hants GU140NR. Tel: 0252522111.

Modular connector system

The various connectors used in conventional automotive harnesses are replaced by just one simple contact crimped to every part lead with the Autocrat connector system from AB Controls \& Connectors.

Up to 30 such contacts can be inserted intoa single Autocrat shell Simple accessories allow these shells to be mounted in sealed or unsealed applications. The connector consists of three main parts: contacts, contact carriers and housings. A range of sealing and mount ing accessories is al so available. AB Controls \& Connectors Lid. Abercynon. Mid Glamorgan CF454SF. Tel: 0443 740331.

Micro-controller range

The new high-performance 6502 Plus c.p.u. is the main feature of Mitsubishis 8 bit c-mos microcontroller range. Known as the M3 7450 series. the new parts are upwardly compatible with the 740 series of micro-computers.
The 6502 single chip microcomputer has improved processing power: the instruction set caters for high-speed 8×8 bit multiplication and $16 / 8$ bit division. On board memory sizes are $4 \mathrm{~K} \times 8$ bits of rom plus 128×8 bits of ram. External

Miniature back-up cells

Equipment size can be reduced using a range of lithium batteries from Suvicon with heights of less than 5 mm .

The batteries, which have a nominal voltage of 3 V and capacities from 70 to 500 mAh , are particularly suited for power-supply back-up for solid-state memories. The smallest of the batteries is the CR2016, which has a diameter of 20 mm and weighs 1.8g. Suvicon Ltd. 2 The Square. Broad Street. Birmingham B15 IAP Tel: 021 6436999.

NEW PRODUCTS

Thumbwheel resistor array

Cermet thick-film resistors give a selected resistance value accurate to within $\pm 0.5 \%$ of the indicated value of a precision thumbwheel decade resistance unit.

Resistance ranges from 10S8 to $1 \mathrm{M} \Omega$ are available on the unit from Data Precision. Being modular, any number of switch elements can be assembled to give the required resolution, without affecting the accuracy. The unit is part of the T-Switch range made by Crameda in Switzerland. Data Precision Ltd. Fromson Building No. 1. Canada Road. Byीleet. Surrey KT147Jl. Tel 0932353879.

Co-axial patch panel

Neat termination of co-axial cables from control units and concentrators is possible using a patch panel marketed by Daturr.

Made from 2 mm mild steel to BS1449. it is equivalent to an IBM co-axial patch panel. There are 24 positions for the BNC bulkhead connectors, which should be fitted with standard isolation rings. Daturr can also supply the panel as a 32 -way unit. Daturr Lid. Albany Park. Camberley. Surrey GUI5 2PL. Tel: 0276681212.

Analogue-to-digital converters

Designed for high speed-data acquisition and medical instrumentation, Teledyne Philbrick's new series of 12 bit analogue-to-digital converters combine thick and thin film as well as fast converter technologies. The 4192 is the plug-in replacement for the Datel ADC500/505, while the 4193 and 4195. with a speed of 500 nsec max., are the first plug-in replacements for the Micro Networks NM5345/46. Teledyne Philbrick Microcircuits, The Harlequin Centre, Southall Lane, Southall. Middlesex UB2 5NH. Tel: 01571 9596.

Power supply is 30 mm high

The 35IV switched-mode power supply from Kepco is only 30 mm high and has three outputs: +5 V , $2.2 \mathrm{~A} ;+12 \mathrm{~V}, 1.8 \mathrm{~A}$; and $-12 \mathrm{~V}, 0.1 \mathrm{~A}$. It can cope with mains voltages from 95 to 264 V without tap or switch changes and is in the form of a p.c. card. An optional metal enclosure is available. Techmation Ltd, 58 Edgware Way. Edgware, Middlesex HA88JP. Tel: 019581345.

Interface gives low- cost logic analysis

An interface package has been designed to allowa low-cost Thurlby LA160 16- or 32 -channel logic analyser to be linked with an IBM PC/AT/AX or with most close compatibles.

It economically provides the facilities normally found in expensive logic analysis systems at a fraction of the cost according to Inst rumex. Connection via the RS 232C interface
package to the logic analyser eliminates the need for an oscilloscone for the display or timing diagrams or for any requirement for a specific serial interface printer. It also acts as a display terminal with printer echo for use with Thurlby disassembler roms. Instrumex L.td. Dorcan House. Meadfield Road. Langley. Berks SL. 3 8AL.
Tel: 075344878.

Portable spectrum analyser

Weighing less than 10 kg . the new R4131 spectrum analyer from Advantest covers the frequency range of 10 kHz to 3.6 GHz .

It has a measurement range of
-116 to +20 dBm with noise sidebands of -80 dBc or better. A trace marker gives frequency and level indication and a composite

Micro-drilling system

Accurate control of precision microdrilling production applications is offered to p.c.b. manufacturers by a high-speed. aut omatic, two-spindle c.n.c. drilling and routing machine. It is manufactured by Wessel in West Germany and is available in the UK through Astro Technology.

The drill's air -hearing spindles can run at speeds up to $120,000 \mathrm{rev} / \mathrm{min}$ and provide precision drilling to 0.1 mm diameter. Control is by a new, small. high-performance Wessel CompacTrol control unit which features a hard-disc highcapacity storage unit and three processors, which undertake multi-processor/multi-tasking operation and allow up to six drilling machines to run from a single control unit. Astro Technology Lid. Astro House, Little Park Farm Road. Segensworth West. Fareham, Hants PO155TI). Tel: 0489577233.

Switch is vandal proof

Resistant to hotli water and dust, the Bulgin MP33 switch is designed to stand up to aggressive use. It is particularly suitable for applications such as security call systems in areas with a high incidence of vandal ism. Operational within a temperature range of -20 to $+85^{\circ} \mathrm{C}$ the switch is rated at 1A 50V. Gothic Crellon I.td, 3 The Business Centre, Molly Millars Lane. Wokingham, Berks RG11 2EY. Tel: 0734788878.

VALVES				'SPECIAL OUALITY		Pinces are correct al lime ol press but may fluctuate Please phone tor tirm quotation V A. T. included.					
A1065	1.40	EFb0	0.65	PCLB2	0.95	28014	3.75	6 C	1.20	90	2.15
A2293	7.00	EF83	3.90	PCL84	0.85	28034	21.15	${ }_{6} \mathbf{C H} 4$	7.50	11 E 2	19.50
A2900	12.75	EF85	0.90	PCL86	0.80	29001	4.30	$6 \mathrm{CL6}$	2.75	12 A 6	1.00
AR8	1.15	EF86	1.45	PCLL805/85	0.95	1 A 3	3.80	6CW4	7.40	12AT6	1.95
ARP3	1.15	EF89	1.60	PDS00/510	4.30	1 L 4	0.65	6 Cx8	4.60	12 AT7	1.25
ARP35	1.15	EF91	1.60	PFL200	1.10	1 T 5	1.00	$6 \mathrm{CY5}$	1.15	$12 \mathrm{~A} \mathrm{l}^{12}$	0.95
${ }_{\text {ATP4 }}$	0.90	EF92	2.15	PFL200.	2.80	154 ist	1.00	606	2.50	${ }^{12} 12 \mathrm{AX7}$	1.10 1.80
${ }^{812 H}$	6.90	EF95	1.90	Pl36	1.60	${ }_{14}^{155}$	0.75	${ }_{6 F 6 G}$	1.95		1.80 1.90
CY31	2.40	EF96	0.60	PL81	1.30 0	$1 T 4$ 144 142	0.75 0.80	${ }_{6 F 7}^{6 F 6 \mathrm{~GB}}$	1.10 280	${ }^{12886} 12$	1.90
DAF70	1.75 0	EF183	0.75	${ }^{\text {PL82 }}$	0.70 0.90	$1{ }^{104}$	0.80	$66_{6} 7$	2.80	12 E 1	19.95
DAF96	0.90 32.80	EF184	0.75	${ }^{\text {PL83 }}$	0.90 0.90	${ }_{3 A 4}^{2 \times 2 A}$	3.80 1.30	${ }_{6 F 12}^{678 G}$	0.85 1.60	12.15 GT	0.55
DF92	0.65	EF812	0.75 1.85	PL504	1.25	3AT2	3.40	$6{ }^{6} 14$	1.15	12 K 7 CGT	1.15 1.25
DF96	1.15	EFL2	85	PL508	2.00	3828	17.50	6F 15	3.40	12 KBGT	
DH76	1.15	EH90	0.85	PL509	5.65	$3828{ }^{\circ}$	19.50	$6 F 17$	3.10	1207GT	1.15 0.80
D. 92	1.45	EL32	0.85	PL519	5.85	306	0.60	$6 F 23$	0.75	12 SH17	1.25
DY86/8	0.65	EL34.	3.25	Pl802SE	3.45	3 329	21.85	6F24	1.15	12SJ7	1.40
DY802	0.70	EL34.	5.95	PY80	0.70	3 S 4	1.45	6F33	10.50	12 SK 7	1.45
E92CC	2.80	EL82	0.70	PY81/800	0.85	4832	40.25	6FH8	18.80	12S07GT	2.20
E180CC	11.50	EL84	1.35	PY82	0.75	5R4GY	3.35	6GAB	0.65	$12{ }^{12} 4$	0.70
E1148	0.75	EL86	1.45	PY88	0.60	5U4G	1.85	6GH8A	0.90	1303	2.80
EA76	1.60	EL90	1.75	PY500A	2.10	5V4G	1.90	${ }_{6} \mathbf{H} 6$	1.60	130	0.90
EB34	1.15	EL91	6.50	OOVO310	5.95	5Y3GT	1.90	6.14	1.95	19 AO 5	1.85
E891	0.60	EL95	1.80	Oovor/10.	7.50	523	4.85	6 NaW	3.10	19G3	11.50
EBC33	2.20	El504	2.70	Oovo3/20a	27.50	524G	1.25	6 J 5	2.30	1966	10.35
EBC90	0.90	EL509	5.85	OOVO6/40A	28.50	5249T	2.20	6.5G	1.50	${ }^{19+15}$	38.00
EBC91	0.90	ELS19	7.70	covocial	54.10	6/3012	0.80	$6{ }^{6} 6$	2.20	2001	0.80
EBF80	0.95	EL821	8.05	OVO3,12	5.75	6487	0.70	606W	2.80	20p1	1.30
E8F89	0.80	EL822	9.95	SP61	2.50	${ }^{6 A C 7}$	1.15	6 GJEGC	8.45		
EC52	0.65	Ellbose	4.50	T121	45.00	6AG5	0.60		8.45	2524 C	0.75
EC91	4.00	EMBO	1.35	T22	45.00	6AkS	1.90	6.06	6.35	85	1.40
EC92	1.85	EMB7	3.00	UABCBO	0.75	6AR6	2.85	6 K 7	1.45	${ }^{\text {85A2. }}$	2.55
ECC82	0.95	EY51	0.90	UBF69	0.70	6ALL ${ }^{\text {6 }}$	1.50	6 LL	7.10	${ }^{5728}$	61.90
ECC83	1.10	EY81	1.10	UCC84	0.85	6AM5	6.50	6L6GC	8.10	${ }^{807}$ 807.	
ECC84	0.60	EY86/87	0.75	UCC85	0.70	6AM6	1.60	6L6GT/C	2.90	811A	13.50
ECC85	0.75	EY88	0.65	UCH42	2.50	6ANBA	3.80	6.18	0.70	812A	32.00
ECC88	1.10	Ez80	0.80	UCH81	0.75	6AOS	1.75	$6 \mathrm{LD20}$	0.70	813	28.50
ECC189	1.20	EZ81	0.80	UCL82	1.60	6AOSW	2.30	6106	8.45	$8^{813}{ }^{\text {. }}$	44.00
ECC804	0.65	GM4	8.90	UF41	1.85	6AS6	1.15	607G	1.30	${ }^{82913}$	16.00
ECF80	1.25	GN4	6.30	UF80	1.60 1.45	6AS7	4.95	${ }^{6 S A} 7^{\circ}$	1.80	8298 ${ }^{\circ}$	24.00
ECF82	1.15	GY501	1.50			6 6aU6	0.90	${ }_{6 S G 7}$	1.80	${ }^{8665}$	14.95
ECF 802	180	Gz32	1.90	UM80	1.80	6AX4GT	1.30	6SM7	180	${ }^{931}{ }^{\text {a }}$	13.95
ECH42	1.65	GZ33	4.20		2.30	6AX5GT	1.30			${ }_{954}^{931}{ }^{\text {c }}$	1980 1.10
ECH81	1.25	G234	2.45	UM84	0.95	${ }^{684}{ }^{\text {6BA }}$.	1.40	6SN7GT	1.50	$\xrightarrow{934}$	1.10 1.10
ECH84	0.90	G234.	4.40	UY82	0.70	68A6 6866	1.85		0.95		
ECL80	0.65	G237.	3.95	UY85	0.85	${ }_{\text {6BE6 }}$ 68.	1.40	6SR7	4.60	${ }^{5763}$	1.75
ECL85	0.75	K177..	14.00	VR105/30	2.45	${ }_{68666}^{686}$	1.85	$6 \mathrm{V6G}$	1.50	6060	
ECLB5	0.75 1.10	K188**	25.00	VR150/30	2.45	68666	1.75	6V6GT	1.40	6080	7.30
EF9	1.10 3.50	ML4	3.20 3.20	$\times 61 \mathrm{M}$	1.70	${ }_{66307 A}$		6×4	1.50	6136	2.80
EF22	3.90	M M $\times 12001$	29.50		4	6BR7 7	0.85 4.80	${ }_{6}^{6 \times 5 G}$	0.75 2.80	${ }^{6146 E 1}$	1.90 1.40
EF37A	2.15	N78	9.90	2759	19.90	6BW6	6.10				
EF39	1.10	00	. 80	28000	3.45	6w	5.5	724	1.90	5003	. 50
VALVES AND TRANSISTORS Telephone enquires for valves, transistors, etc Petall 749 3934. Trade and Export 7430899 FIELD TELEPHONE, CABLE TYPE D10 FIELD TELEPHONES TYPE 's. Tropical, In metal cases 10-line MAGNETO SWITCH-BOARO. Can work with every type of magneto tetephones. NEW PYE EQUIPMENT \& SPARES HARNESS " $A^{\prime \prime}$ " " $B^{\prime \prime}$ CONTRCL UNITS " A " Microphones No 5. 6. 7 connectors, trames. carrier sets, etc. c20 2.15 but below 2 kg . Parcels over 2 kg at Cost.											
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel: $01-7430899$ or 01-749 3934. Open Monday to Friday 9 a.m. -5.30 p.m.											

ENTER 14 ON REPLY CARD

Happy Memories

Part type	1 off	$25-99$	100 up
4116200 ns (Pulls) $\ldots \ldots .00 ~$.90	.85	

 41256/7 for latest cost and availability. We usually have 41464 some used devices at advantageous prices.

2114 200ns Low Power	..1.75	1.60	1.50
6116 150ns Low Power	. 5.50	*	*
6264 150ns Low Power	. 7.75	*	*
62256 120ns Low Power	. 9.95	9.25	8.65
2716450 ns 5 volt.	. 3.20	3.05	2.95
2532 450ns	. 5.40	4.85	4.50
2732 450ns	. 3.20	3.05	2.95
2732A 250ns	. 3.95	3.70	3.50
2764 250ns Suit BBC	2.85	2.65	2.50
27128 250ns Suit BBC	. 4.55	4.25	3.95
27256 250ns.	. 4.55	4.25	3.95
27C256 250ns	. 4.55	4.25	3.95
27512 250ns	. 7.65	7.25	6.99
27 C 512	. 7.65	7.25	6.99

Low profile IC sockets: Pins $\quad \begin{array}{llllllllllll}8 & 14 & 16 & 18 & 20 & 24 & 28 & 40\end{array}$
Pence $\quad \begin{array}{lllllllll}5 & 9 & 10 & 11 & 12 & 15 & 17 & 24\end{array}$
Please ask for quote on higher quantities or items not shown. Write or 'phone for list of other components, disk-drives, boards, special offers etc: and a DISCOUNT ORDER FORM.
Please add 50p post \& packing to orders under £15 and VAT to total. Access orders by 'phone or mail welcome.
Non-Military Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

HAPPY MEMORIES (WW),

FREEPOST, Kington, Herefordshire HR5 3BR.
(No stamp required but only second-class)
Tel: (054 422) 618 for sales. Fax on 628

You don't only get equipment when you buy from Carston...

"AS NEW" APPEARANCE

Garston Electronics Limited
2-6 Queens Froad. Teddington Middlesex TWII OLR Telex: 938120 (CARLEG G)
Tel: OI -943 4477
ALSO IN FRANCE Contact OCCASELEC
Telephone Paris (1) 46869701

NEW PRODUCTS

Sub-miniature fuse family

A quick-acting subminiature fuse designed for automated assembly applications can be supplied in bandolier form at required spacing.
The TDC fuse family from Hunter Electronic Components is constructed with axial plated-copper leads and insulated ceramic body. It has eighteen types covering ratings from 1/16 to 15A. Hunter Electronic Components Lid, Unit 3, Central Estate. Denmark Street.
Maidenhead. Berks SL6 7BN. Tel: 062875911 .

Millions of signal processing operations/s

Inmos don't only make transputers: another of its products is the Al00 digital signal processing chip which. like the transputer. can be used in parallel or cascaded to multiply the coefficients. Four of them are used on a VMEbus card produced by TCubed. It offers the speed of 1280 million operations/s which translates to a throughput of data of 10 M 16 -bit words/s. Applications include highspeed digital filters. imaging for radar, sonar and ultrasonic scanning. speech processing. pattern matching, waveform synthesis, convolution. correlation and matrix multiplication.

The board (VME-T3A4) consists of the processor array, 64 k words of stat ic ram, and memory and control logic stored in non-volatile memory. This memory stores commonly-used configurations which may be implemented through program control. Several data paths into and out of the A100 array are available and can be selected under program control. VME signals are controlled through the bus. Front pane connectors give access to additional high-speed ports which allow continuous processing without any delays caused by the speed of the VMEbus. Use of these connectors allows further boards to be cascaded for even higher throughput.

Optional plug-in modules allow further functions to be implemented. such as analogue signal sampling. also programmed through VME. An additional output the Cube-Bus, has been specifically designed to feed raw data at high speed to a mass storage device. such as a tape recorder.

The board may be run using a number of popular VME operating systems. T-Cubed Lid. Lansbury Estate, Lower Guildford Road. Knaphill. Woking. Surrey GU'2 2 EP P Tel: 0483797026.

Modular p.c.b. construction

Building a circuit from a number of sub-assemblies has always been an attractive idea, but in practice there is the problem of connecting the modules to the parent board. Flexicon think that they have found the answer in the grandly named Advanced Equipment Practice. Circuit carrier blocks, only 3.18 mm high. contain elastomer connectors. The modules are clamped onto these

Analogue input for VMEbus

A high-speed analogue input board for the VMEbus comes from Datel. An on-board 68010 microprocessor allows the DVME-601 a-to-d coprocessor to collect automatically m alt iple samples for transfer to host memory through 64 Khyte of dualported ram.

The board accepts up to 16 singleended or 8 differential analogue input channels. Up to 256 channel inputs are configurable with the addition of slave multiplexer boards in adjacent VME slots. Four a-to-d converter modules offer resolution choices of 12 . 14 or 16 bits and conversion speeds as fast as $4 \mu \mathrm{~s}$. Sample rates to local memory of up to 170 k samples/s are possible.

Conversions are started by a host command, local program, external t.t.1. trigger or by a local programmable timer. Full-scale inputs over the ranges of 0 to $+5 \mathrm{~V}, 0$ to $+10 \mathrm{~V} . \pm 5$ or $\pm 10 \mathrm{~V}$ are selected by links. The on-board instrumentation amplifier is programmed with a gain of 1 to 1000 .

The board's local microcomputer includes an 8 MHz 68010 processor. 64 Khytes of private ram. and 64 Khytes of dual ported ram, shared with the VMEbus. This memory is used for data blocks, command/ status information, subroutine addresses. bi-directional interrupts and opt ional programs downloaded to local ram for execution. Controlling programs reside in a
without soldering. Metal posts support the circuits and align the cor ductors. Individual modules can then be rapidly dismantled and replaced in the field. An additional advantage is that a higher density of solder-free interconnections is possible - up to 6912 on a Eurocard. Flexicon Systems LUd, Hitchin Street. Biggleswade, Beds SC18813N. Tel: 0767312086.
portion of on-board 64 K eprom. expandable to 128 K . The software caters for most applications and there is no need to write any local programs. The executive program may be cont rolled from the host. using any language compiled in 68010 code such as C. Basic or assembly. By programming the VMEhus interrupts, the board will operate with many popular host operating systems.

Many ways of managing data acquisition are included, such as writing to one buffer while the host reads the other. The DVME-601 does not have to stop sampling while the latest block of data is read, making it suitable for digital signal processing and other continuous recording applications. The DVME-601 may also be used for high-speed process control, analytical instruments, data acquisition and automated test systems. Datel UK, Intec 2 Business Park, Wade Road, Basingstoke, Hants RS24 0NE. Tel: 0256469085.

Optical wavelength multiplexer

The function of Sifam's WDM (wavelength division multiplexer) is to allow two different wavelengths of light to be combined. subsequently separated and transmitted through a single optical fibre. In telecommunications it is used to double the signal capacity of existing fibres. It is designed to have a split ratio of 100% at a wavelength of

1300 nm and 0% at 1550 mm . Better than 20 dB isolation between the two signals is claimed with less than 0.5 dB or 0.8 dB additional loss.

Sifam Lidd. Woodland Road. Torquay, Devon TQ2 7AY. Tel: 0803 63822.

Instrument control through computer windows

Control software for scientific and engineering instruments is provided by National Instrument's LabWindows. Programs are written in Basic or C and there is access to a built-in library of test procedures. graphics, data analysis and formatting, as well as extensive CPIB functions.

Instrument control is said to have been considerably simplified with menus in screen windows to select settings and generate the appropriate program code.
Standard library modules take care of most of the data analysis. formatting and presentation problems. Data analysis functions include array handling. statistical functions and matrix manipulation. Graphics programs includes line graphs. bar graphs. scatter diagrams with linear or logarithmic axes.

All-in-all the package is claimed to offer a quick and easy means of writing efficient programs for data acquisition, analysis and presentation. Integrated Measurement Systems LId, 306 Solent Business Centre. Millbrook Road West, Southampton SO1 0HW. Tel: 0703771143.

Optical fibre couplers

Techniques developed by Corning have dramatically reduced the cost of passive optical components. Etching processes, similar to those used in the production of silicon i.cs, are carried out on wafers of glass and result in the production of highly refract ive waveguide channels within the body of the glass substrate. Fibre pigtails are aligned with the channels and bonded into the glass. A ' Y 'shaped channel makes a two-way splitter or combiner and Corning's first 'Photocor' products were indeed tree couplers with one input and up to 32 outputs. On show for the first time at BEW were a series of star couplers which have the same number of inputs and outputs, i.e. 4 by 4.8 by 8 and 16 by 16 . Combined with the tree couplers these will find applications particularly in optical Ethernet and other computer networks. Corning products are available in the UK from Opora l.td. 21 Victoria Avenue. Harrogate HCl 5RD). Tel:042369307.

NDugitiy

Bus wars - the cartoon documentary account of behind-the-scenes IEEE standardization battles Market acceptance of Multibus I, VME, Multibus II \bullet Automotive serial bus set for wider application 0 Field narrows for factory fieldbus o Interface asics shrink VME systems \bullet Peripheral interface bus evolution • VME board design philosophy ©STE, VME dedicated boards replace logic analysers \bullet Three-bus concurrency for Siemens system buses 0 IEEE896 for beginners \bullet Future of Futurebus

COMPREHENSIVE STE bus HARDWARE SUPPORT

As you'd expect from a company with BICCVERO's reputation we're supporting fully the increasingly recognized STEbus architecture.

We offer you STEbus backplanes, terminators, extenders, and prototyping boards with interface, all complying fully with IEEE Standard P1000, Draft 3.2. And - better still - our comprehensive range of STEbus support products includes all the additional hardware, fully compatible with STEbus, you need to build your STEbus system. The range includes:-

Power supplies: Single or multi-output plug-in modules, or open frame switchers, up to 500 W .

Prototyping boards: A wide range of general purpose boards, plus PTH microboard and Speedwire
with STEbus interface.
Cardframes: Choose from the well-known industry standards, KM6 or KM7.

Racks and enclosures: Of all types, to suit your STE application.

Connectors: An extensive selection of two-part IEC 603-2 (DIN 41612) connectors, including pressfit.

Contact us now for more information on our STEbus hardware support products.

For immediate action, phone: 0703260211 (South).

VERO
 Elce
 ELECTRONICS

 BICC-VERO Electronics Limited, Flanders Road, Hedge End, SOUTHAMPTON, SO3 3LG. Tel: 0703266300 Fax: 0703 264159. Telex: 477984. a member of the ste manufacturers and users group

THE FUTURE OF FUTUREBUS

IEEE896, al so known as Futurebus, grew up alongside VMEbus. Both gained their final endorsement as standards by the IEEE last December. Yet, while its sibling has attracted a mass following as the dominant bus for 32 -bit systems, Futurebus is hardly off the mark. So far, not one Futurehus board is comnercially available.

This is not surprising for several reasons. Firstly, Futurebus is aimed at very high performance. Most system builders have been happy enough with VMEbus, with only a few designing the ultimate in 32 -bit systems for which Futurebus is intended. The major board makers, whose interest is vital to any bus standard, see little merit in being first. And for them an uncertain and restricted Futurebus market contrasts sharply with the booming VMEbus business.
Secondly, the board producers expect silicon. No chip maker has yet announced firm plans to implement Futurebus' sophisticated bus protocol and caching mechanisms. Unlike Multibus II, Futurebus does not theoretically need highly integrated devices - the protocols can be implemented in progranmable logic - but they would help enormously.

Thirdly, no major sponsor has emerged to put its muscle behind Futurebus to start the band-wagon rolling. The creators of the bus

797Multibus - the standard standard Four years after its launch how does Muttibus II compare in market acceptance with Multibus I and VME?

800IEEE896 for beginners Dubbed 'Futurebus'. the 32bit microprocessorindependent bus has met market resistance precisety because of its independence. As moves are afoot to change this, here's a resume of what it's about.
 Translating 68030 features into board-level benefits. VME board design should use and further the techniques of the microprocessor. savs Radstone's chief designer.

805
IEEE bus standards A complete listing of microprocessor bus activity including authorized project numbers and current standards. compiled by the IEEE computer society's microprocessor standards committee.

Interface asics for VMEbus Application-specific i.c. manufacturers are set to shrink VME circuitry.
took great pains to maintain manufacturer independence, unlike the designers of VMEbus and Multibus II who enjoyed heavyweight support for, and influence on. their efforts from the start.

Futurebus shows no favouritism amongst processor families. This is good news for builders of multiprocessing systems, but not for the standard. There was no obvious advantage to the major microprocessor makers in backing it. Indeed, with Motorola and Intel firmly behind VMEbus and Multibus II, there were reasons why two of the main forces would not.
Nevertheless, there are also strong reasons why Futurebus may yet come good. Systems continue to get faster and more powerful. Many engineers working some way off the leading edge are now pushing VMEbus to its limits. For their next generation they need another bus. Futurebus is a ready-made and tested alternative to designing their own and has few competitors.
Muttiprocessing with cache memories between the processors and bus, the system approach envisaged hy Futurebus' creators. is now very much in vogue. And Futurebus offers a clear future upgrade path. There are already firm plans to extend the bus to 64 and even 128 bits using exactly the same protocols and maintaining full compatibility

INSIDE

STEbus logic analyser speeds system development. Backplane buses speed system implementation... untess you encounter a bug. Then their key advantage becomes a debugging liability.

809The peripheral bus scene Catch up with evolving peripheral interfaces with this round up of threeyear trends. to be reported at New York's Buscon East in October.

R.G. Stewart's Bus wars A documentary account of events leading to establishment of the bus standards of the eighties. and introduced with some misgivings on the current scene.

VMEbus tracer outperforms logic analyser Single-board logic analyser simplifies VMEbus systems debugging and integration.
with boards designed now for 32 -bit systems. The long-awaited silicon will soon be here. Industry sources have revealed that the bus protocol and caching mechanisms will be in single-chip devices by the end of the year. This may be enough to spur the board makers into action. If not. the weight of a major processor maker almost certainly witl.
Nationat Semiconductor has head-hunted hey Futurebus figures - including the standards committee chairman and the inventor of the caching mechanisms - and is preparing a major board and system level strategy embracing Futurebus.

Further endorsement may also come from the VMEbus International Trade Association (VITA), currently discussing adopting Futurebus as VME II. Though some of the Futurebus pioneers may talk of a bus hijack. VITA's backing of the bus as heir apparent to VMEbus would give it a major impetus, whatever it happens to he called.

Before other standards emerged to cloud the issue. the IEEE had envisaged a family of just three buses for 8,16 and 32 -bit systems STEbus. VMEbus and Futurebus. The IEEE has played an almost god-like role in establishing the bus standards of the eighties. Perhaps it too moves in mysterious ways...

Brad Turmaine

814Fieldbus overview - the field narrows A comparison of contenders for an international standard field bus using twisted-pair cable and bus controller, pinpointing irreconcilable differences between them.

Controller area network Bosch's automotive serial bus may find much wider application in the future. according to semiconductor manufacturers.
 Single concept unifies three system buses Based largely on Multibus. Siemens' approach to buses provides a migration path along its 8,16 , 32hit structure as well as three-bus concurrency.
Cover. 80286-based microprocessor module from HTEC of Southampton is designed to combine the advantages of VMEbus power. form factor and performance with the broad software support of the IBM PC/AT.
(C) 1988 Reed Business Publishing. Industry Insight is edited by Ceoffrey Shorter and designed by Alan Kerr. Potential contributors should make contact on 01-661 8639. send an outline by fax on $01-6618913$, or mail articles to Industry Insight, Electronics \& Wireless IVorld. Quadrant House. The Quadrant. Sutton. Surrey SM2 5AS. Potential advertisers contact Martin Perry on 016613130 or James Sherrington on $01-6618640$.

Real Time In－circuit Emulation

－Connects to any existing development system e．g． IBM PC，VAX etc
－Universal mainframe design supports many microprocessors through the use of low cost configuration pods．To change processor simply change the pod．
－Real time CPU emulation with no wait states， provides powerful debug environment around users target system．
－Fully symbolic operation with local symbol storage．
－Optional $2 \mathrm{k} \times 48$ bit real time trace and overlay ram facility（up to 128 K bytes）．
－Use stand alone with dumb terminal or connect using dual RS232 Ports，into development system．
－Up to 32 cycle－qualified hardware breakpoints supporting range or wild card with logical connectives （e．g．and，or，then）．

Configuration Pads Available
$68010,68000,68008,6809,6802,6800,8086,8088$ ，V20， V30，8085，NSC800，Z80，HD64180，65SC816， 6502.

For a FREE literature pack or a no－obligation demonstration PHONE NOW（0254） 691131
Designed，manufactured and fully supported in the United Kingdom．

NEW MICROCONTROLLER RANGE WITH PERFORMANCE ANALYSIS

8051：（8052／32／51／31／59）
80515：（80512／515／535）
80C451：ZS8：
8048：（8048／50）

High Level Debug for PLM or＇C＇

FOR FREE DEMO DISK RING NOW ON （0254） 691131

ALSO AVAILABLE 68HC11 FOR ONLY £1，995．00

NORALMICROLOGICS LTD

Unit 6，Scotshaw Brook Industrial Estate，Branch Road， Lower Darwen，Darwen，Lancashire BB3 0PR．

Tel：（0254） 601131
Telex：635091 ALBION G（Att NORAL）
Fax：（0254） 680847

ENTER 64 ON REPLY CARD

MULTIBUS THE STANDARD STANDARD

I.here are many instances when it is wrong to use a standard bus. Ultra high volume products or special one-off customized products are often better implemented when the processor board and systems bus are hand-crafted. However there has been a clear trend from the late 1970s onward for systems designers to choose a standard bus and standard bus products to get a product to market fast, and take advantage of someone elses manufacturing economies of scale. Normally, a major criterion in choosing a bus has been its 'openness' - how clear, non-proprietary and popular its specification is.

The first of the really open buses, and now the most popular, was Multibus 1. In 1976 Intel produced the first commercially available single board computer, the iSBC 80/10, that integrated on a single board i / o, memory and c.p.u. The specification was made open, and hundreds of competitive and complementary products followed from across the industry. Later on, Intel's specification was reviewed and clarified by an IEEE task group, and became the IEEE 796 standard, well known today.

In the UK, as elsewhere, Multibus I is still growing fast despite (or maybe because of its ten years of history and development. Shipments of Multibus boards have now set record levels for ten successive quarters, and new Multibus products have the latest and highest speed c.p.us as well as state-of-theart peripheral and communications technology. However in the early eighties it became apparent that the 'traditional' buses (see Table) did not have all the features necessary

Four years after its launch, how does Multibus II compare

in market acceptance with

Multibus I and VME?
to build future multiprocessing systems: such as message passing, geographic addressing and virtual interrupts. Computer scientists and researchers reached a remarkable degree of agreement on these features, hence the similarities between Multibus II, Futurebus and Nubus. (As BI bus has remained largely proprietary to DEC , its use as a standard will be strictly limited.)

The only one of the advanced buses to have achieved volume revenue is Multibus II So four years after launch, how does it compare in market acceptance to Multibus I and VME? There are four success factors for industry standard buses: specification standardization, multi-vendor support, market revenue and profitability, and adoption by users.

Multibus II became IEEE1296 in June 1987, just three years after submission. This compares with seven years for Multibus I and five years for VME. The speed of adoption was testimony to the clarity and unambiguity of the specification. produced by Intel with contributions from 18 other companies. including from Europe: ICL, Bull, Ericsson, Matra, Siemens and Nixdorf. The lack of ambiguity is essential to someone wishing to mix boards from different vendors, which

As wellas

 supporting the shared-memony single-cycle protocol similar to that used by MB1. VME and PC-ATbuses, IEEE 1296 includes protocol for handling the two address spaces not found in traditional husesinterconnect space and message space - thus supporting the 'network-in-abox'architecture.

This exciting new VMEbus technology is now available from MSS. Features such as message broa dcast and true multiprocessing support mean VME/PLUS achieves the prak of performance.

049441661
MicroSystem Services Limited
VME/PLUS is a registered trademark of Force Computers
has been a well-documented complaint from users of other 32 -bit buses

In 1987 MBII single-board computer revenue was approximately $\$ 50$ million, with total MBII revenue $\$ 80$ million. This compares with $\$ 40$ million for MBI and $\$ 25$ million for VME in their third year. There are also a number of public major corporations launching MBII products; NCR and Prime, with departmental computers, Singer Link Miles and McDonnel Douglas, in flight simulation, Westinghouse, Siemens and Seiko for factory automation, and numerous others with projects undenway. Despite its rapid takeoff, MBII is a new bus, and does not yet have the market share of its publicity perceived competitor bus, VME. So what makes the Multibus community so certain that it will become the bus of choice by the 1990s? The answer lies in the features that differentiate an advanced bus from a traditional bus.
Multibus II can support two different architectural models; the shared-memory model and the 'network-in-a-hox' model. The shared-memory model is the traditional method of bus intercommunication, dating from when the c.p.u. and support functions would take a whole board. Typically several other boards would also be needed, to hold the memory for an average system and its i/o requirements. These restraints were essentially caused by limitations in v.l.s.i. that no longer apply. With today's denser silicon one can build c.p.u. boards with i/o and eight or more Mbytes of data. Modern systems will be increasingly made up of intelligent boards, each with their own c.p.u., with the need to communicate at a very sophisticated but convenient level. These v.l.s.i. developments were foreseen by the specifiers of MBII, and new facilities were added.
IEEE 1296 parallel system bus defines a number of protocols detailing how to use the bus. The simplest is the shared-memory single-cycle protocol, similar to that used by MBI, VME and PC-AT bus. There is also a sequential burst transfer protocol added for higher performance. It also includes the protocol for handling the two address spaces not found in traditional buses, interconnect space and message space. It is these two spaces that allow the 'network-in-a-box' model so necessary in a multiprocessing environment. To understand why these additions were made, look at what advanced systems now require.
Local area networks have become popular because they allow autonomous, intelligent units to intercommunicate and send data when required. High-level protocols like Transport are used to avoid unnecessary detail and complexity. This has also been recognised by systems designers as a desirable approach within the box, for builders of multiprocessing products. What one really wants to do is send messages between tasks running on different intelligent boards,

Multiboard subsystems communicating using defined protocols are treated as a single board, while boards within a subsystem communicate using shared memon' methods.

TRADITONAL AND ADVANCED MICROCOMPUTER BUS COMPARISON

Arbibration: centralized distributed
Interrupts: dedicated virtual
Parity
Geographical addressing
Message passing
Address width (bits)
20 or 22

Eurocard Dimension ". DIN
without getting bogged down in detail. This requires a software protocol, or programmable interface, for the transport level and above. Somebody who wishes to build a mass storage board, for example, should have a command level interface to the system bus, which logically sits between the operating system device driver and the i/o hardware. This way, one could upgrade to a higher performance board without having to change the device drivers. This also applies to other types of boards, for example lan boards and communications boards. What we are really saying is that future systems will require within them the equivalent of the ISO 7 -layer model.

The good news is that this was all fundamental to the design of MBII, and has now been defined in a body of documents that will be openly available and distributed. Multibus Systems Architecture will allow construction of both simple and highly complex systems, with communications between different boards at a transport command-
type level rather than at the bits and bytes level of existing buses. This is fundamental to the current success of MBII. It is not possible to graft these features onto existing buses and come up with a clean solution. The reason why MBII was described as late by its opponents is because of the massive amount of work necessary to reach industrywide agreement on these complex matters.
Specifying this level of detail up-front means that the silicon interface is also extremely clean. The message passing controller is a single-chip interface to the MBII PSB. It supports the full 32 -bit address and data, with a sustained burst transfer rate of $32 \mathrm{Mbyt} /$ /second. The controller decouples the local bus from the systems bus using high speed on chip fifo buffers. Multibus Systems Architecture takes full advantage of this device. It has been shipping for 18 months now, and was designed here in the UK.
By Sean Maloney, technical marketing manager for Intel (UK) Lid.

You're witnessing the second industrial revoluticn: a PC-compatible computer that runs on the world-standard, industryoriented STEbus.
Thanks to extensive use of custom ICs, we've packed our 'STE PC' on:o four boards: processor, serial/parallel I! 0 , disk and colour graphics controllers. This division of functions means that for many target systems - requiring only a CPU and I/0 the basic board cost will be less than $£ 350$!

There have been industrial 'clones' before. This one is different. The STEbus.standard is so similar to PC architecture that when we say Compatible, we mean it. Any software develcped for a standard PC will run, on boards designed expressly for industrial control and insrumentation applications.

STEbus is tased on compact, low-cost, singleEurocards with the reliable DIN connector interface. Standardised by the IEEE's P1000 committee, it's supported by orer 100 companies, opening the gateway to a massive choice of compatible boards. Just about any function you need is available off-theshelf. STE manufacturers even offer boards with a standard 'signel-conditioning' interface to a wide range of single-Eurocard real-world $1 / 0$. And the world of 19 -inch industrial enclosures, racking and accessories is jours to choose from.

It's never been so easy, or so cost-effective, to design industrial computer systems before. Just look at the diagram. everything that's listed (and more) is available from Arcom alone; over 50 board choices! TRUE PC-COUPATIBLITY ON THE INDUSTRY. PROVEN STEDUS

Arcom Control Systems Ltd., Units 8-10, Clifton Road, Cambridge CB1 4WH.
Phone: (022 ² 411200 Fax: (0223) 410457 Tlx: 94016424 ARCS G Easylink: 19014905

A member of the STE Manufacturers \& Users Group Distributors: Dean Microsystems (07357) 5155; Farnell Electronic Components (0532) 636311

WHAT IS THE IEEE896 BUS?

Ihirty-two bit microprocessors are forcing designers to leave behind the old standards and seek new ones that will not hold back the periormance these devices can achieve. Yet buses such as VME and Multibus 11 are subject to the same law of diminishing returns with time as their predecessors. Already their limitations are apparent to designers of high speed and performance multiprocessor systems.
The IEEE896 standard set out to satisfy the demand for a bus system that overcomes this technological obsolescence. It is the only standard that will allow significant advances in system performance with improved silicon technology. It favours no microprocessor type over any other and contains a host of features to ease the development of a diverse range of multiprocessor architectures.
The 896 bus is specified using cause and effect definitions rather than explicit timing constraints to allow designers to take advantage of improvements in devices. Specific synchronization delay figures, for example. are not given. Instead, the standard stipulates that all data lines must be available before the synchronization signal arrives on the bus. As boards with less skew become possible. the bus system can take advantage of them while still allowing older and slower designs to run alongside. Specified in this way, the bus will eventually be able to carry data at close to its theorectical maximum of $280 \mathrm{Mbyt} / \mathrm{s}$. Data rates of over $100 \mathrm{Mbyte} / \mathrm{s}$ are achievable now.
Buses sponsored by microprocessor manufacturers are naturally biased toward certain processor types. IEEE896 is not. Systems using differing types and makes of processor are therefore easier to implement.
The bus fully supports all the data alignment operations required by the latest generation of 32 -bit processors. To avoid favouring some processors over others, it does not justify or sideways shift the data on the bus when operands of smaller width than the bus are transierred.
Both message passing and cache handling features are supported. A tag bit on all data transfers to memory also allows system architectures that need to identify between data and address objects.
The standard specifies a 32 -bit multiplexed address/data bus using a single standard 96/96 pin connector to IEC 603-2 (DIN 41612) on a triple-high 280 mm -deep Eurocard format ($366.7 \times 280 \mathrm{~mm}$). It uses a true asynchronous protocol as the means to preserve technology independence (A synchronous protocol would have had a fixed

The 896 two-edged handshake for block transfers (top) is twice as fast as the more traditional four-edged handshake, used for single transfers.

This plot of effective bus bandwidth versus slave access time illustrates the speed advantage of the 896 asynchronous protocol for a typical well-designed implementation. Still higher performance may be possible in the future.

Elements of Futurebus are detailed in the 896.1 specification available from FMUG Unit 2, Rowan Close, St Peter's Parhway. Brockley, Northants, NN13 5UP, price £25. A Futurehus Tutorial costs £10.

clock rate and hence a limited future performance.)
It is specifically designed for 32 -bit data transfer but supports 8, 16, and 24-bit transfer equally well. It has a 4 Cbyte address space, with expansion capability built-in for future definition.
Four types of handshake are provided within the protocol. The two-edged handshake for block transters provides the biggest boost to performance. This is twice as fast as the more traditional four-edge handshake.

Handles multiple processors

Unlike some buses. 896 does not rely on a single permanent master to allocate control. The system is fully distributed in that all modules capable of exerting control over the bus participate in the control acquisition process. The two schemes widely used for deciding which module should next use the bus are 'priority', in which the most important module always wins. and "fairness", in which all modules take equal turns. Some systems. such as those for real-time control, will demand the first scheme while others. particularly those performing computingintensive tasks, may be better served by the fairness algorithm. The 896 bus provides both schemes within a single arbitration mechanism. In addition, modules may dynamically switch between the two algorithms.

Arbitration takes place in parallel with data transiers, so little or so no time penalty is involved. If the next module to use the bus has already been decided before the current master has finished. this can be pre-empted by a higher priority module which can then force re-arbitration. If no other modules

The early definition of the 896 -
Futurebus backplane format and connector pinout enabled BICC Vero Electronics to first market backplanes two years ago. Now the range has increased to include 5, 10, 15 and 21-slot versions as well as extender boards and rear-pluggable terminators. " A number of big names are ordering 896 product" says Ray Barnard BICC Vero's marketing manager. "We're unable to name them but FMUG say they expect announcements later this year. ${ }^{\text {" }}$
"The 896
Workshop in October should attract significant interest in this bus structure" says Alan Timmins of FMUG. who manage the DTIfunded awareness programme.

IBM-PC BUS Input/Output Cards

DIP-24 Opto-isolated digital input
DOP-24 Opto-isolated Darlington output
PIO-48 TTL level digital input/output
DPC-10 Pulse counter/timer/generator
DCM-16 8 Inputs, 8 Outputs, CTC
AIP-24 12 Bit ADC input
AOP-8 12 Bit DAC output
AIS-16 12 Bit isolated ADC input
TIP-8 Thermocouple input
SIO-2 RS232/422/485/20mA I/0
ST-24 Screwterminaladaptors
BXT Backplane extenders
BP-5/11 5/11 Slot backplanes

To obtain details of the full range of plug-in data acquisition and control cards for the IBM-PC/XT/AT, Model 30, Amstrad, Olivetti and compatibles - call us NOW!

Blue Chip Technology Limited, Main Avenue, Hawarden Industrial Park, Manor Lane. Deeside CH5 3PP. Telephone: (0244) 520222

ENTER 44 ON REIPIS CARD

Backplane transceiver logic settles much faster than t.t.l. and is guaranteed to trigger the receiver without reflections, radically improving the bandwidth of the bus.

The triple height Eurocard format allows dual and triple bus systems for higher total bandwidth or fault tolerance.

want the bus after a module finishes its transaction, the same module may continue to use the bus without arbitration.
Error detection on the arbitration process and the ability to broadcast an emergency signal to alt processors without taking control of the bus are also provided. These facilities, along with the flexible arbitration mechanism itself, give the bus a higher performance and wider application than other bus systems.

Backplane transceiver logic

As processor speeds have increased, so ton has the difficulty of propagating signals along the bus backplane. To avoid backplane bottlenecks in the future when boards run even faster, a new approach to bus driving was needed.
The key to sending signals quickly down the backplane lies in providing the transmitters with enough output current to cause the initial voltage step on the line to exceed the receiver threshold, otherwise the receiver will only be triggered after the signal has been reflected at least once hy the backplane terminations, reducing the effective speed at which signals propagate. As circuit boards are added the characteristic impedance of backplanes falls due to the extra capacitance and increases the current demand on the bus drivers. The traditional way to provide this additional drive capability has been to use bigger output transistors. Unfortunately. these present a larger capacitance to the bus making the driving problenı worse.

And as the characteristic impedance of the backplane should be low to help minimize noise and possible data errors, this makes the transmitters task still harder. In a 32 -bit system, 40 or more lines may often be switched simultaneously, so if the transmitters' output currents are high, large e.m.i, and ground shifts could affect reliability.

The new approach to these problems is to reject the t.t.l. totem-pole drivers commonly used for bus driving in favour of opencollector drivers in backplane transceiver logic technology. A reduced voltage swing (IV) lowers power consumption and a lowcapacitance series diode reduces quiescent capacitance to 5 pF , about a third of t.t.l's. Drive current is therefore kept down to 50 mA .

Since no reflections are needed, b.t.l. drivers have no setting times; propagation delays are thus much shorter than t.t.I. devices. Though the voltage swing is much less than b.t.l. so is its receiver threshold region (100 mV against 1.2 V for t.t.I.) and noise margins are maintained. Indeed, the most sensitive noise margin (in the low state) is greater in b.t.1. than t.t.1.

This backplane transceiver logic greatly improves the bandwidth that can be achieved on a backplane bus. especially when an asynchronous handshake is used. At the same time. data transfer integrity is
increased due to the proper matching of the transceiver to the backplane physics.

Cache handling facilities

Cache memories are the best way to boost the performance of systems with many processors sharing access to a system-wide address space. Yet 896 is the only bus standard to provide substantial support for implementing them. Other bus systems simply do not support protocols for maintaining consistency of data between multiple caches and main memory.
A highly efficient protocol allows various types of cache and non-caching masters to coexist on the same bus and share memory space while guaranteeing the coherence of the shared memory image. The bus provides a superset of all existing cache coherence protocols.
Write-back caches, in which the main memory is not updated until the data inside the cache is removed or flushed, generally create less bus traffic than write through caches which update the memory each time the data in them is ovenwritten.
Both types require that the address is broadcast on every cycle, but write-back caches demand several other mechanisms to ensure that a processor does not use data from its cache that has previously heen modified in another cache. The 896 bus supports these other mechanisms to allow the highest pertormance cache systems to be implemented.

Message passing

All the hooks required for message passing are included in the IEEE896 specification, but it is by no means the dominant approach to operating the bus.
Message passing encourages block transfers between modules which make better use of the bus since transaction overheads are reduced. However, the efficiency of many systems can be hindered by message passing and task partitioning; the processing overhead can be many times that of a comparable address-architecture system. Furthermore. since objects are generally much larger than pointers, the transier of objects between modules can produce signiticantly more bus traffic, unless programmers design their software to overcome these constraints.
Allowing many processors to share a large public memory resource is intuitively easier to understand and manage and can offer a higher performance if fast cache memories are placed between the processors and the bus. These reduce the bus traffic and help the processors avoid delays in accessing the system memory directly. Moreover, shared memory systems using caches are transparent to the programmer.

Fault tolerant attributes

The standard includes functions to ease the design of fault-tolerant systems. Only one of the three 96 -pin connectors on a board is

	a	b	c
1	OV d.c.	OVd.c.	OV d.c.
2	+5vd.c.	+5vd.c.	+5vd.c.
3	ADO	AD1	AD2
4	AD3	GAO	AD4
5	AD5	AD6	AD7
6	OV	BPZ	AD8
7	AD9	AD10	OV
8	AD11	AD12	AD13
9	AD14	GA1	AD15
10	BPY	AD16	AD17
11	OV	AD18	AD19
12	AD20	AD21	OV
13	AD22	AD23	BPX
14	AD24	GA2	AD25
15	AD26	AD27	AD28
16	OV	AD29	AD30
17	AD31	BPW	OV
18	CM0	CM1	CM2
19	CM3	GA3	CM4
20	CP	CM5	STO
21	OV	St1	ST2
22	AS	AK	OV
23	A1	DS	DK
24	D1	GA4	AP
25	AQ	AR	AC
26	OV	ABO	AB1
27	AB2	AB3	OV
28	AB4	AB5	AB6
29	SB0	RE	SB1
30	TG	S13	TP
31	+5Vd.c.	+5Vd.c.	+5Vd.c.
32	OVd.c.	OV d.c.	OVd.c.

initially used by the system. The spare connectors, along with built-in support in the protocols, allow dual or triple-redundant buses to be realised.

Parity bits are provided on each byte of the addresses and data, and on the control and arbitration signals. These are not needed for the electrical reliabilty of the bus but for fault detection in fault-tolerant systems. Live insertion and withdrawal of boards is another unique feature.

Target applications

- IEEE 896 bus allows rapid access to, and operations on, large bit-mapped graphics displays due to its asynchronous protocol. inherentr high performance, and range of facilities to support advanced workstation architectures.
- Tasks such as logic simulation and modelling can also benefil from the speed and high performance of 32 -bit processors combined with cache memory.
- Fault-tolerant system designers can take advantage of the many facilities 896 offers in this area.
- The rapid block-transfer mode and extensive task synchronization when reading and writing to buffers make the bus suitable for communications nodes.
- Real-time systems can be added to the list because of the high performance and dynamic priority allocation of the bus and its versatile event mechanism.

Silicon support

National Semiconductor has a range of transceivers, drivers and receivers for production and second sourced by Texas Instruments. National is also developing control devices for the bus protocol. Plessey Semiconductors is defining a transceiver with latch parity.

Backplanes, prototyping boards and packaging products are already available from a number of suppliers including BICC-Vero Electronics. Dedicated prototyping boards are under development. A considerable number of board and systems companies are known to be developing Futurebus products; announcements are expected over the coming months.

At Last!

PC-compatible Software on Industry Standard VME and STE Systems

XVME-682 High Performance PC/AT-compatible CPU on VME

SCPC88 Cost Effective 8-bit PCcompatible CPU on STE

Configure industrial I/O on standard buses using off-the-shell software packages running under MS-DOS.

From single board computers to complete rugged industrial microsystems with compatible disk controller, colour graphics, keyboard, printer and serial expansion, Dean Microsystems has it all.

Complete systems solutions supported by the most experienced specialist board-level distributor in the UK.

Call 073575155 to discuss your application now.

ENTER 61 ON REPLYCARD

DESIGNING 68030 INTO VME

(A)high performance bus system such as VME provides an ideal vehicle to take the 68030 into the market place and separate the system integrator from the complex task of ensuring that the processors immediate environment supplements its natural strengths. Such a board design is of course possible, but it is the design that has been done in sympathy with the original processor design goals which will yield the best and most versatile solution.
As a member of the 68000 family the 030 brings with it a wealth of software and only the most outrageous hardware design would not be able to take advantage of this. However the ease of porting existing software must be supported by hardware, which itself provides an upgrade path. For example, it must be possible to fit faster processors, or increase memory capacity as devices become available.
On-chip caches are the only way to ensure that a microprocessor's true performance can be realised economically. Typically the 68030 instruction cache achieves a hit rate of up to 82%, whilst the data cache can satisfy up to 48% of all data movement requirements. This corresponds to approximately 33% of processor cycles using its external bus. High performance can therefore be achieved with relatively low-cost dynamic rams and this allows useful quanti-

VME board design should use and further the

techniques of the micro-

processor,says Radstone's Colin Davies

ties of local ram to be provided (the current explosion in dram capacities as been matched only by the ability of operating systems to consume it!).
The 68030 echoes this philosophy and a technique known as cache burst filling has been incorporated into the microprocessor to take advantage of the fast access modes provided by most drams and improve the cache hit rate. Radstone Technology wished to take advantage of this technique in their PME68-30 series of boards and actually achieved burst fill access times of less than 25 ns , comparable to small, high power static rams. Indeed, Radstone were able to take this a stage further by simultaneously accessing four banks of dram and taking advantage of the fast output enable times provided by modern devices.
Provision of on-chip caches can mean that the 68030 will spend less than 50% of its time using its local bus. This allows our local

The microsystems division of the Plessey Company was recently sold to its management. with financial backing from venture capital specialists 3i. Called Radstone Technology, the new company produces over 5000 boards a month, mainly VME, Multibus and bubble memon'systems.

dram to be dual ported between the processor and VME, smplifying the task of system integration.

Even though the VMEbus allows a relatively simple and easily optimized interface to be provided, care must be taken to understand the design philosophy of the 68030 . The dynamic bus sizing allows it to read byte, word, three-byte or long word quantities over the VMEbus. However the 68030 cache expects data on its data lines to be valid for the entire width of the port being addressed. Thus a byte read from a 32 bit VME port would result in 32 bits of cache data being stored. Clearly hardware on the processor card must detect such situations and generate VME read cycles of the width of the port being addressed.

Increased integration reduces the board area required by the processor and its support chips. This allows more peripheral devices to be provided on a processor card. With careful choice and shrewd design these should not restrict processor performance. Polling such devices can be interesting; after the first access the data cache could easily service all future reads. It is of course possible to define areas of memory space as being non-cacheable but a hardware link to achieve this goal can save many hours of software development time!

Once the design has taken shape we have the framework of a high performance processor card. However the user's application must remain paramount and scope must be provided for value to be added to the product. Radstone Technology address this problem by allowing for firmware expansion and providing a custom peripheral expansion bus (Pexbus). Processor chip caches make it imperative that a simple method of observing software operation be provided. Truly dual-ported rams help or here in that the process should be able to read its own ram locally or over the VME bus, with all VME address and data lines being driven correctly. Now all that is required is to plug a standard VME bus monitor into the backplane and run code over the VME bus.

Thus we have the blueprint for a VMEbased product, but the design techniques used are important. The board design must always further the techniques used in the microprocessor that forms its heart. Only then will the design succeed and the user find it worthwhile taking advantage of the good support and documentation which any vendor must provide.

Colin Davies is leader of the processor design group at Radstone Technology (ex Plessey Microsystems), Towcester, Northants.

IEEE microprocessor standards committee projects

Title	IEEE standard	Project number	Active	Notes
Assy lang,	694			
Mufom	695	P695	J	Universal format for object modules
S100bus	696	P696	\checkmark	32 bit 5V revision
SBC		P697		Small business computer
FPA	754			Floating point arithmetic
HLL ext	755			
Multibus 1	796	P796		
FPA-RFI	854			Radıx, format independent
MOSI	855	P855	\checkmark	Operating system interfaces
EMP		P856		Evaluating micro performance
Futurebus	896.1	P896.2	\checkmark	32 bit multiprocessor bus
MIIT	949	P949	\checkmark	Media-independent information transfer
SBX bus	959			1/0 extension bus
STD bus	961			8bit single-processor bus
Versabus		P970	J	Larger board than VMIE
PC bus		P996	\checkmark	
STE bus	1000			Eurocard STD-iike
VMEbus	1014			Versa Modules Europe
VSB	1096			VME subsystem bus (IEC47B)
Mechanical	11101			Mech. core specs (896.1196,1296)
VMS bus		P1132	J	US adaptıon of IEC47B VMS
Forth		P1141	\checkmark	
Modula		P1151	J	Relates to IS0 w.g.
Smalltalk		P1152	\checkmark	

Pilot	P1154	J	
I Bus	P1155	J	Instrumentatıon bus
Rugged i/o	P1156	J	Concurrent with P1496
Scheme	P1178	J	Lisp-like language

Nubus 1196	P1196.2	J	Simple 32bit systems 32bit muliprocessor bus
Multibus II 1296			
Serial bus	P1394	J	
TDMı/o	Pl395	J	Physicalı/o configuratıons

[^4]
CONTROL AND MONITORING IN HALF A DAY *

EuroBEEB

high capability computer control and monitoring - as easy to use as a PLC

CAPABLE

EuroBEEB systems can be configured to include LCD, high resolution colour video and printer; full or simplified keyboard; digital and analogue i/o, with signal conditioning for transducers, thermocouples, etc; multi-station networking, serial i/o, IEEE-488 GPIB; disk drives: all in a $19^{\prime \prime}$ rack or compact enclosure.

EASY

Interrupt-driven Real-Time BASIC allows control of real-world analogue and digital i/o in the easiest possible way.

ECONOMIC

A EuroBEEB card costs $£ 295.00$, with similar reasonable prices for further facilities. Use your existing IBM PC or compatible or BBC Micro for development.

There are generous quantity discounts, and customised versions for special applications.

* Many EuroBEEB users have had real applications

[^5]
STEBUS LOGIC ANALYSER SPEEDS SYSTEM DEVELOPMENT

Ihe electronics manufacturing world has quickly latched on to the time-saving benefits to be gained by designing systems around buses such as STE. Thanks to word standardisation, you can have a product idea and be half way to implementing it within just a few days.

But there's a catch. Even though vour hardware components are. in theory, fully tested and functional, the designer often faces very complex problems when integrating the final system. The software is typically unproven, nearly every board in the system needs to be set up using dip switches or jumpers to function properly, and there is often a small element of custom hardware, perhaps some special interface. Several different highly complex elements - perhaps even multiple processors - are coming together for the first time, and more often than not, the first thing that happens when you switch on is ... nothing. But where's the problem? You check the power, waggle the cards, but still the system is dead. With everything connected on a common interconnection highway, here starts a problem that could take anything from a few minutes to a few days to resolve. Since the major factor behind buying ready-made computer modules is to speed project completion, it rather defeats the object of the game.

This scenario might seem unusual, but it is in fact, pretty typical. Arcom's STEbus applications engineering desk for instance, deals with probably 25 queries a week on just these kinds of issues, and this situation led us to define a simple analysis tool which fits the style and budget of board-level system design.

What we felt the system builder needed was a low-cost tool that would track activity on the bus, allowing attention to quickly be focussed on the cause of the problem: a logic analyser seemed the ideal instrument, but they are designed primarily for the board development market, and are generally too powerful, costly and cumbersome to set up for the system integrator. The solution was to design a stripped-down analyser with functions dedicated to bus lines, giving the systems engineer at-a-glance indication of bus status, with features that allow him to

Backplane buses speed

system implementation...

unless you encounter abug.

Then their key advantage-

one common interconnection

highway - becomes a debugging liability, says

Anthony Winter.

How Stela could be used to capture data. In this STEbus data transfer operation - a write cycle is shown - data will be latched by Stela after the falling edge of the data acknowledge signal.

quickly track faults down to specific causes. That's the concept behind the development of Stela, a logic analyser for the widely-used STEbus board system

STEbus analyser

Just like any other STEbus board, Stela is a plug-in. It performs four basic functions: monitors, latches, triggers and displays. Almost every STEbus line is monitored and converted to a meaningful display on the front panel. It is - in the parlance of logic analysers - a 'state' analyser rather than a timing analyser: it has no means of indicating that a particular STEbus transfer was marginal, but it will tell you, for example, what address you were trying to access.
You can set up the analyser to trigger on any kind of STEbus access for instance, to any specific memory or i/o address, or range of addresses, or combination of these parameters. You can also trigger on particular STEbus cycles qualified with 'busacknowledge', and switches allow you to set the instrument to recognise or ignore any command modifier. Further useful led displays constantly monitor STEbus' special signal lines, allowing an engineer to quickly recognise that an event is tied to say, a power glitch, but time-out, transfer error, system reset or some activity on the attention request lines. Data capture can be set for single-shot mode, or continuous trigger on every occurence, with results shown on seven-segment displays. And if this level of information is not adequate to resolve the problem, as it may not be in the development environment, a trigger-output signal is provided to activate a more sophisticated analysis instrument such as a timing analyser.
How useful is such a tool in practice? Here's an example of a typical debugging situation, to give you an idea. In this imaginary case, there are two hardware faults.

Problem: the system starts to work and then halts.

Solution: hit the system reset switch; Stela's reset led will flash in response. The 'bus time-out' led lights, indicating that a transfer did not occur within the maximum time allowed. Set Stela to single-shot acquisition

INDUSTRY INSIGHT

mode, press the arm button and reset the syistem. As the system halts. Stela now indicates that the timeout occurred at address 010 FCO . From here it's a simple matter to discover what board ought to reside at this address, remose it, and find that the fault is merely incorrect jumpering.

But the system still does not work. Bus activity takes place, but once again the system comes to a halt. Re-arming Sitela. in case there is some useful information on the bus, you discover that one of the "attention request' leds is on. In our imaginary system, this line is used for d.m.a., so you conclude that a link on the c.p.u. connecting busattention requests to d.m.a. inputs has not been made

The system now runs, hut Stela's usefulness does not stop here. In single-shot acquisition mode. the instrument's displays change whenever there is a hus access - unless Stela has triggered. In continuous acquisition mode. the display is updated whenever a trigger occurs. Our imasinary system is operating some code across STEhus. You can find out where this is, by setting the system for continuous acquisition and all the other switches to ignore".

Stela now triggers on every bus access. Starting with the highest order address switch, push the ignore switch upwards (ie. to the "do not ignore position). Then rotate the address switch until the triggered led flashes again. Repeating this simple action for all the other addresses switches. you can quickly find the exact address being accessed. Similarly, by using the 'command modifier switches. you can tell what type of hus access is taking place.

Once youve proved that the hasic hardware works, you can turn your attention to the software. Stela can also be used to dehug $\mathrm{j} / 0$-intensive programs written in a high-level language. For example, let's assume that you have a C program that seems to be loopingon an incorrect status bit in a register on a STEbus i/o board. If you rewrite the \mathbb{C} routine to print the value out for inspection, it will take some while to recompile and link. Instead. you set Stela to trigger on accesses to that i/o address and the display immediately shows you the databyte.
These examples give you an idea of the utility and power of a hus-specific logic analyser. At a cost of $£ 355$, this simple instrument could pay for itself in a single debugging session. With the fast-accelerating trend toward using hus-based components for systems design, tools like this will find a ready market and fuel further growth. And as the general complexity of systems grows - as is the case with STE - we expect that the availability of such tools will in some cases influence the hus selection process, being a further factor in the demise of the many unstandardized proprietany huses.

For further details contact Anthonsllinter at Arcom Control Systems

Silicon Support Board Manufacturers System Integrators/Manufacturers Compueer Manufacturers System Software Suppliers

With the increase in performance required by tomorrow's users a worldwide market exists for systems based on IEEE 896.1, FUTUREBUS.

- Ideal vehicle for building parallel processing, real-
time, multiprocessing and AI systems.
- Fault tolerant systems support.
- Highest bandwidth 32 -bit bus, >100 Megabytes/ sec.
- High integrity.
- World's most advanced Cache protocols.
- Architecture, processor and technology independent
- Fully distributed control.
- Defined and specific now.

The FUTUREBUS Manufacturers and Users Group
helps companies take advantage of this exciting market opportunity. At every level, from Silicon to Software.

FMUG: Working for 896 FUTUREBUS

Return the form below to

FMUG INFORMATION SERVICES

Unit 2, Rowan Close, St. Peters Park, Brackley, NN13 5UP, England
Telephone 073575608

Tell me mone ahout 896 FUTHREBUS!

Name \qquad
Company
Dept/Position
Address \qquad

Postcode/Zip
Country Phone

INDUSTRY INSIGHT

VMEBUS INTERFACE ASICS

Key features of a VMEbus interface circuit being developed by a US asic manufacturer were released to the US bus community at Buscon 88 West earlier this year. Dubbed VIC, the chip will let VME product designers reduce board space required for interface and control functions by 25%, releasing space for other functions. The chip is designed using a full standardcell approach and includes embedded programmable logic arrays. The 12,000 gateequivalent one-micron c-mos device will be housed in a 144 pin array and become a standard part in VTC's product line from the fourth quarter 1988.
The VIC features high current drive output and control logic on the same chip. It includes a bus arbiter and requester, interrupt handler and generator, system controller, and data transfer-bus controller. Other features are block transfer capability with a local d.m.a. controller at up to $40 \mathrm{Mbyte} / \mathrm{s}$. incorporation of buffers, interprocessor communication, a local bus for dram compatibility and optional use of Motorola, Intel or National processors. See diagram below.
The design initiative came from the VME Technology Consortium, a grouping of 23 US and European manufacturers formed to sponsor development of standard VMEbus interface hardware and who share chip development and production costs. VTC was chosen, says the consortium chairman Jo Ramunni, because it was the only company to meet the timing and cost objectives, as well as agreeing to add the part to its standard product line.

The concerted effort by arch competitors should improve the competitiveness of each

Application-specific i.c. manufacturers are set to shrink VMEbus circuitry

of them, says John Hodgson VTC's vice president: "We think the VIC development is the route more manufacturers should consider when costs are beyond each of them."
In their VME/PLUS family, Force Computers has included two cmos gate arrays to increase functionality as well as save on board space. Their first, a 132 pin array used on CPU29 and 32 boards, comprises 1600 gates to simply interface between processor. memory and i / o devices, but the second array is a $1.5 \mu \mathrm{~m} 20.000$ gate device with 280 pins. It includes a 32 bit dma controller with maximum data transfer rate of $30 \mathrm{Mbyte} / \mathrm{s}$ using a 32 byte fifo for burst transfer whilst a 020 or 030 processor accesses the local system memory or i/o devices.
The chip also includes address map decoding for local processor and dual-ported ram, 16 location monitors. software-controlled handling of interrupts. i/o interface, control of master/slave interface and message broadcast. The message broadcast function allows interrupts of one, some or all boards in a system, by sending the addressed boards an eight-bit message from an eight-stage fifo. Data transfers are completed in less than 330 ns which means that maximum theoretical bandwidth is $20 \times 3 \mathrm{Mbyte} / \mathrm{s}$.

INDUSTRY INSIGHT

THE EVOLVING PERIPHERAL BUS SCENE

\squareIterfaces resisted change for many years. Until the introduction of small Winchester drives. The storagemodule drive interface, first introduced by control data in the early 1970s, ruled supreme in the o.e.m. market. SMDI has changed and adapted since its introduction to increase transfer rate up to $3 \mathrm{Mbyte} / \mathrm{s}$ and improve status reporting, but it took place at a leisurely pace. Contrast this with the hurly-burly of today, where the pace has picked up to the point where it is hard to keep track of their status.

A device interface has no buffering and it is timing-critical. thus it requires a controller to make it useful to the host system. Controllers may be integrated into the host bus adapter as in open-bus systems such as Multihus and VMEbus, or appear as stand-alone boards. often referred to as bridge controller, packaged in near proximity to the discs to form a storage subsystem.

Three years ago. the chart of interface applicat ions was st raight forward. Device interfaces showed a progression of capability from the microprocessor support chips for floppies through ST506/ST412 on small Winchesters. The enhanced Small Device Interface picks up and extends the performance of ST506/ST412. High-performance edsi for $51 / 4 \mathrm{in}$ drives overlaps the s.m.d. interface used on 8 in and larger diameter disc drives.

SMD has a transfer rate limitation of 3 Mbyte/s so IPI- 2 (intelligent peripheral interface device, specific level 2), which is capable of 10 Mhyte/s was being groomed in the US approved standards committee X3T9.3 to take over the arena for discs with the higher transfer rates.

The situation for control interfaces between host and disc controller was similar at the low end. It was Shugart Associates Systems Interface that was being used to attach the ST506/ST4 12 drives, and the ASC X3T9.2 standardization effort for the small computer systems interface picked up and bridged the gap to IPI-3 (generic level 3). IPI-3 extends the range and functionality of the block multiplexer channel, which was first introduced on IBM mainframes back in 1964 and has since been adopted by other mainframe manufacturers. This all made for a very tidy picture and it was easy to predict which interface should be used in an application by looking at it sapplication environment.

A lot can change in three years and the picture in 1988 looks significantly different. Three new categories have appeared. all are embedded. The Shugart interface market has been ovenvhelmed by the progressive application of embedded host bus interfaces and embedded SCSI on desktops - this is a direct result of the dramatic reductions in the cost of l.s.i. protocol chips.

In the search for ever-lower costs on desktop systems, every characteristic of an interface gets looked at. The easiest way to find an interface is to look for a cable and connector. Find a connector and you have found an interface, and a cost item. The pressure to reduce

FUIUREBUS Wookshop

The first UK 896 FUTUREBUS Workshop will take place in Reading, Berks, on OCTOBER 12th and 13th - organised by The FUTUREBUS Manufacturers and Users Group to help UK companies take advantage of this exciting market opportunity.

With the increase in performance required by tomorrow's users a worldwide market exists for systems based on IEEE 896.1, FUTUREBUS.

- Ideal for parallel processing, real-time, multiprocessing and AI systems.
- Fault tolerant system support
- Highest bandwidth 32-bit bus, $>\mathbf{1 0 0}$ Megabytes/sec.
- High integrity.
- World's most advanced Cache protocols.
- Architecture, processor and technology independent.
- Fully distributed control.
- Defined and specified now

The workshop provides a unique opportunity to learn about advanced solutions to highest speed Data Transfer, Metastability problems, Multi-processor arbitration, the Bus Driving Problem, the wired-OR glitch and the Multiple Cache Problem
An opportunity not to be missed.
Return the form below to:
FMUG INFORMATION SERVICES
Unit 2, Rowan Close, St. Peters Park, Brackley, NN13 5UP, England
Telephone 073575608

Tell me more ahout The 896 FUTURERUS Workshop

Name
Company
Dept/Position
Address
\qquad Postcode/Zip
Country \qquad Phone
cost on personal computers means that everything gets examined closely.

Incorporating the cont roller function into the disc drive provides a very real benefit by eliminating cables and connectors. Compay was the first to introduce a disc drive with the embedded AT bus and IBM has followed suit by adopting the same approach in the PS/2. The Quantum Hardcard is a prime example of how to solve the same problem in the aftermarket.

The explosion in SCSI usage has been fueled by the ready availability of protocol chips. Intense competition between controller companies designing silicon has led to vast improvements in the performance and functionality provided for only a few dollars. The low-cost led SCSI to expand into the lowest end of the market, and the improved functionality resulted in its expansion into higher performance ranges, and increased suitability on midrange computer systems.

IBM introduced IPI-3 on its system 36. 38 and 9370 series. with the device generic command set embedded in its half-gigabyte dual actuator 8 in drives. One result of the expansion of embedded drives is a likely reduction in the application of IPI-2 discs in the market Another factor supporting this is the extended life of SMD. Large discs have not progressed in transier rate improvements as had been expected - discs with transfer rates of 4.5 Mbyte/s and higher are not expected until Comdex fall.

So the waters are muddied - instead of a simple progression in performance on device interfaces. There are embedded control interfaces to choose from. Embedded drives cover a wider range of periormance than device interfaces so they are more suitable to a wide range of applications. Unless a system needs several drives per controller. the embedded drive is an attractive alternative to a separate controller and drives.

In the area of control interfaces. SASI boards have disappeared in terms of marhet intluence. to be replaced by SCSI. At the opposite end. the dramatic improvements in SCSI performance have extended its application to the top of the mid-range, and this has resulted in reduced expectations of IPI-3 applications in midrange systems.

An analysis such as this is sweeping in its statements and exceptions can be found to disprove almost every one. It is meant only to describe the overall drift of events in the marketplace. and indicate relative rather than absolute progression.

The selection of the most suitable interface for an application was once relatively straightionward, but no more. The range of choices which must be faced and decided upon can be ovenwhelming to one who is not familiar with the both the application need and the alternatives that are suitable.

If you are going to select peripherals for a minicomputer, take a look at the choices almost every interface is suitable. Each has

Source: ENDL Consulting. Red indicates growth. grey indicates market shrinkage relative to 1985
its own merits of hackwards compatibility. ease of use future growth potential. Deciding which is hest for a particular application requires a thorough examination of the alternatives.

Expedience is the worst basis upon which to make a decision. Interfaces have extended lives, because their integration into a system affects not just hardware, but the operating system. device drivers. utilities support. diagnostics. training. spares. and so on. Once a decision is made it is hard to change because of the costs involved.

[^6]
(C) 1986 IEEE. Reprinted by permission trom IEEE Micro vol. 6 no. 4 August 1986, pp. 69.74 .

WAR AND PIECE

Iolstoy's book dealt with the drama of Russian life in the period of conflict engendered by Napoleon's invasion. The Bus War cartoons presented in IEEE Micro two years ago dealt with a decade-long period of conflict between various American and European firms and the IEEE Computer Society's standardization committees. However, in the latter case. the piece at stake was the piece of the action in the microcomputer bus business.
After a period of struggle, peaceful repose restores one's sense of balance. What happened? What will happen? The efforts of the Microprocessor Standards Committee and its working groups have now evolved a long list of bus standards (reproduced on page 805 -ed).

Also, the Computer Society's Computer Communications Technical Committee's working groups, ably guided by Maris Graube. established the widely used IEEE 802 family of local area network standards. In addition to the bus efforts, other standards developed by the MSC include:

> Assembly Language
> Relocatable Code Format
> Float ing Point Arithmetic
> Microprocessor Operating

IEEE 694 Systems Interface

IEEE 695

IEEE 554 \& 854
IEEE 855
The 754 floating-point arithmetic standard. embodying many of the ideas of Prof. W. Kahan of the University of California at Berkeley, has been incorporated into most of the fast microchip maths processors developed in the last decade. The high-quality arithmetic provided by IEEE 754 is a breath of fresh air to computer users, who suffered so long from arithmetic asphyxiation caused by the poor subroutine libraries provided by vendors.

Notably missing from the above list of hus standards is the IBM PC bus, a leading de facto bus today. Living in Silicon Valley. where many of the earliest personal computers originated. I witnessed the death of many firms when Big Blue decided to get a piece of the action. My sadness was heightened by the realisation of the gross technical inadequacies of the 1 BM PC: the limited addressing space of the 8088 microprocessor

R.G. Stewart, who has
followed numerous bus
proposals through IEEE's
microprocessor standards
committee, introduces his
pictorial history with an
unhappy look at the
current scene.

has burdened its users needlessly. The incompatibility problems of many clones or plug-in boards was basically due to the poor bus-transaction protocol. Most buses are either synchronous, using a clock to time transactions, or asynchronous using a strobe - acknowledge handshake between master and slave: the IBM PC bus has a clock, but (and I'm sure you'll think I'm kidding) it was not used to control bus transactions! Rather, a fixed time period was set to time-out transactions. Thus when clones upped the bus crystal frequency, and timed transactions to it, they were no longer compatible with Big Blue's piece of the action. There was no IBM bus specification published to let them know better.
Apple selected Nubus as the backplane bus for its Macintosh II computer using a 68020 microprocessor with 16 MHz clock, but Nubus is limited to a 10 MHz clock, so off-card transactions must run at half speed. Developed at MIT in 1979 Nubus is older than the other 32 -bit buses: 1 m sure some of you will think that it should be called Oldbus.

The latest bus being considered for development in the Microprocessor Standards Committee is called Superbus. The leader of a preliminary study group. Dr David Gustavson, is a veteran of the 696 and 896 battles shown in the cartoons, as well as of the efiorts which created Fastbus IEEE 960 and IEEE 754. The Superbus group hopes to
create a bus with a 1 gigabyte/second data transier rate, and able to support bus repeaters, distributed caches, and passive or active backplanes.

Finally, let me tell you why I am unhappy about aspects of the MSC's standards activities.

- Lack of support by vendors for useroriented standards, or standards they didn't originate. This is shown by the absence of significant support for the assembly language standard. What does MOVE A,B mean? - Inability to bring vendors together in 1983 at Wilsonville, Oregon to form a single bus from the Futurebus, Nubus, and Multibus 11 efforts.
- MSC acceded to virtually every request from industry to promulgate a company bus as a standard. This has led to a proliferation of buses rather the creation of fewer, but more universal buses.
- Significant features of Futurebus are still not widely used. National Semiconductor iradequately advertised its new bus drivers developed by Balakrishnan.
- The MSC Computer Society. IEEE, and even the US Government don't have anything like the clout of the market place. The good don't necessarilywin.

But then. I have personally benefitted! This article was prepared on the MITS Altair which led to the IEEE 696 standard. It still works. In fact, it works far better than it did initially! It crashes maybe once a year, not once every ten minutes. I think that getting the infant mortalities out of the chips, together with the 64 K byte memory card, helped greatly. The change in the bus master-slave transition protocol called for by IEEE 696, wherein one bus cycle is held in a predefined low state to allow driver glitches to settle, also helped to eliminate spurious disc erros. Further, 1 love the front panel if you have a hardware problem to resolve. My first memory card held 256 bytes, just about enough for a bootstrap loader. I also have an IEEE 696 system with a 68010 processor which has three memory cards, each containing two megabytes and using Dr Matthew Taub's bus arbitration method. So there is progress!
Peace. May a piece of the piece be yours.

VME BUS LOGIC ANALYSER

S.tate analysis in 32 -bit VME bus systems requires an instrument with characteristics found only in a very few instruments on the market, with a prohibitive high price for many development projects. A logic state analyser capable of collecting data on more than 90 channels simultaneously at speeds of at least 10 MHz is required, together with powerful trigger conditions and store qualifiers. Features like this, found only in instruments with a price tag of around $\$ 30,000$. are provided by a new single-board VME bus tracer from VMETRO A/S of Oslo for less than $\$ 5,000$. The bus tracer eliminates the time-consuming task of connecting more than 90 probes from a general-purpose instrument to the target system. Configuring an instrument with signal names is also eliminated.
The interesting feature of the bus tracer is that it does not require a separate terminal; by means of two RS232 serial ports the instrument may be operated from a terminal normally connected to the system. When the tracer is not needed, it may be placed in a transparent mode, which means that the on-board 68008 microprocessor routes all data directly from one serial port to the other. There is no need for physical connections of measurement probes, having some appeal for non-hardware engineers.
Integrating a logic analyser into the system offers potential for more efficient use of development resources, say VMETRO. If several engineers have to share one expensive instrument, this often leads to situations when a lot of time is spent guessing what is wrong before one takes the trouble of connecting a logic analyser. If this has to be disconnected from another system still more time is wasted, and perhaps another engineer is left with the guesswork.
The module is principally a state analyser with synchronous sampling of bus traffic up to 16 MHz . This gives good speed margin, since the maximum practical transfer rate of the VMEbus is 10 MHz ($40 \mathrm{Mbyte} / \mathrm{s}$). Activity on 95 bus signals is sampled, and when a predetermined trigger condition is met, the collected samples are presented to an ASCII

Single-board VMEbus tracer outperforms
 general-purpose logic analysers for VMEbus
 development

terminal. The module contains its own processor and software, and gives 2 K words of real-time trace of the data, address and control signals on the VMEbus.
Rather than displaying ones and zeros, many of the control signals are decoded into readable form. This is particularly useful for showing the bus master, transfer size and cycle status. The actual transfer size in each cycle is given by the values of the $\bar{A}_{01}, \overline{\mathrm{DS}_{1}}, \overline{\mathrm{OS}} \mathrm{S}_{0}$ and LWORD signals, and all the different combinations may be difficult to remember. The tracer decodes these signals and presents the transfer size as L.word. word. ubyte or lbyte, or in the case of unaligned transfers as UNAL L_{3} or UNN: 2 .

The bus tracer is equipped with an onboard oscillator for asynchronous sampling at 16 MHz to provide an expanded, detailed view of each cycle. This does not replace high-speed timing analysers for all hardware debugging, but is very useful for measuring the access time of memory boards and interrupt response time. To a limited extent this may also be used to detect timing errors on the handshake and control signals.

The trigger conditions available are specially tailored to the characteristics of the VME bus. The trigger menu includes the bus master level, a 32 -bit address window, a 32 -bit data word where any byte may be don't care, and 32 control signals where any signal may be included as 1,0 or don't care. The inclusion of the bus master level is possible because the bus-grant signals are clocked separately during each cycle. The bus grant lines are valid only during a very short period immediately after the bus arbitration process is finished. If the bus is sampled only when the address and data is valid, this important information would be lost. The VME tracer clocks the bus grant signals

when $\overline{\text { Bisis }}$ goes kow so that the actual bus level is available later in the cycle together with the address. data and cycle control signals. The address on the VMEbus does not include the least significant bit. instead data strobes are used to identify the valid bytes in a cycle. By using the data strobe $\overline{m s}_{1}$ as the least significant address bit. the VMEbus tracer represents odd byte addresses correctly.

The tracer provides powerful store qualifiers, using the address window, the granted bus level, or a combination of both as qualifier on the collected data. This means that the capturing of bus data is conditional on a valid qualifier so that the trace memory is not filled with uninteresting information. This is particularly useful in multi-processor systems if activity of only one c.p.u. is of interest. By using the bus level of this c.p.u.
as store qualifier, only cycles generated on this bus level are stored in the trace memory. VBT-320 VME bus tracer is equipped with a timer for measuring elapsed time between each sample. This time is stored together with each sample and is presented in a separate column in the trace display. This is particularly useful when a store qualifier is used. since the time between each qualifier sample may be long.

MIL-STD-1553 INTERFACE CARDS FOR: IBM, VME, MULTIBUS, UNIBUS \& Q-BUS

BUS-65515 IBM Interface, offers BC, RT \& MT functions. Compatible with IBM PC \& clones. Has onboard $4 \mathrm{k} \times 16$ RAM. enter 51 on reply carid
BUS-65517 Again an IBM Interface, this board is a complete MIL-STD-1553 work station. Concurrently runs BC, 30 RT's and monitor for integrated development, emulation and analysis of 1553 systems.enter 55 on reply card
BUS-65502 VME Interface offers BC, RT \& MT functıons with onboard $4 \mathrm{~K} \times 16$ RAM. Standard VME Eurocard.enter 56 on reply card
BUS-65505 UNIBUS Interface. Features as above. Standard one hex height UNIBUS Card. enter 57 on reply Card
BUS-65509 MULTIBUS 1 Interface. Features as above. Stand ard MULTIBUS card SIze. enter 58 on reply card
BUS-65512 Q-BUS Interface (Microvax). Features as above. Standard card size.

Ihe field bus is the lowest level in a vendor-independent industrial networking hierarchy. It allows real-time digital communication between sensors, actuators and local controllers in the process plant or on the factory shop floor. There are currently five contenders for an international standard bus, all using screened twisted-pair cable and all recognising the existence of a bus controller or master. However, there are major differences particularly in respect of media access and modulation/encoding methods. This article provides a brief comparison of the contenders, highlighting both the similarities and the irreconcilable differences between them.

A complete hierarchy of networks in a large industrial process plant might consist of the following levels.

- Plant level; broadbend MAP, communicating between computers, providing video links etc
- Cell level; carrierband MAP, linking controllers and consoles e.g. in the process control room
- Field level; field bus, communicating with sensors, actuators and local controllers in the process plant or manufacturing shop floor.

The higher level networks are of limited

	ERA	FIP	Foxboro Process discrete		Profibus Process discrete		Rosemount Process discrete
Application Layer	MIL.HDBK-1552	FIP		boro	None P	Published	Rosemount
Logical link Control	MIL-STD.1553B	FIP		boro ed HDLC		way 802.2	IEEE 802.2
Medium access	MIL-STD-1553B	MIL-STD-1553B (approx)	$\begin{array}{r} 1553 \mathrm{~B} \\ \hline \text { (ap } \end{array}$	/Bitbus prox)	$\begin{array}{r} \text { Prof } \\ \text { (token } \end{array}$	fibus passing)	IEEE 802.4
Physical layer	MIL-STD-1553B (modified for process applications)	MIL-STD-1553B (modified)	$\begin{aligned} & 15538 \\ & \text { (approx) } \end{aligned}$	Bitbus (approx)	Profibus f.s.k.	Bitbus (approx)	Rosemount f.s.k. phase phase contin coherent uous

value without the field bus, leading to a variety of organisations and groups taking part in the development and standardization activities. Five reached the stage of presenting contenders for adoption as the International Standard, all using screened twisted copper conductors as the physical medium. In alphabetical order these are:

ERA Technology leading a mainly UK group FIP of vendors and users a predominantly French group led by EDF and CGEE-Alsthom
US-based control and instrumentation company
Foxboro mens
Profibus Group from Germany, led by Sie-
Rosemount US-based company with military and process industry products.

All recognise the existence of a single bus controller or master with back-up as the normal situation in process industries. All agree that MAP is for higher level networks and is not suitable for field bus. There are some variations in bit rates but all have rates of between 200 K and $1 \mathrm{Mbit} / \mathrm{s}$ for a shorter manufacturing industry bus and rates of between 9.6 K and $62.5 \mathrm{Kbit} / \mathrm{s}$ for a longer process industry bus. All make some attempt at providing power via the communication medium with the simultaneous option of use in flammable atmospheres, although the emphasis on these options varies from one to another.
The major irreconcilable differences between contenders lie in two distinct areas

- medium access methods, and
- modulation/encoding techniques.

Media access methods

The ERA, FIP and Foxboro proposals all use central control by command/response time-

INDUSTRY INSIGHT

division multiplexing. This gives true real time capability for periodic data transfer, which is the normal situation for a field bus. Time jitter, the major limitation for control applications, is negligible with this approach as periodic timings are pre-determined. For aperiodic transfers, access times are bounded rather than preset.

The Profibus and Rosemount proposals use distributed control by token passing as their base standard and then offer a single initiator sub-set to fit more closely to the field bus application. Token passing is an efficient approach for transferring large blocks of data between computers or controllers, as in its use for higher network levels. In real-time control applications the variations in access time, even for periodic data transfers, is a major limitation.

The IEC field bus working group have recently agreed that only central control is acceptable for a field bus, primarily because of the real-time issues. Token passing can only be considered in single initiator form, which offers no advantage.

Modulation/encoding

The ERA and FIP proposals together with the Foxboro process industry variant, all use baseband signalling with Manchester encoding. This has three major advantages:

- no d.c. component, allowing transformer coupling at the bus
- self-clocking
- inherently high immunity to electrical interference

The Foxboro and Profibus manufacturing variants use baseband signalling with NRZ or NRZI encoding. These have the advantage of lowest signal frequency components for a given bit rate. but carry two major disadvantages:

The fielc bus provides the lowest level of an industrial network hierachy. It provides communication to sensors, actuators and local cortrollers on the factory shop floor or in the process plant. It differs from celllevel and plant-level local area networks such as MAP in three ways:

- true real-time opeation
- harsh industrial environment, e.g. electrical interference, flammable atmos pheres, and no remote power available
- short messages
- low cost per node.

To achieve high component volumes, and therefore low cost, logethe- with interoperability between vendors, requires a common international stancard. This is presently in the hands of IEC subcommitee 65C, working group 6, who are due to report on their work in September 1988. Various national committees of the IEC, such as BSI AMT/7 are providing information to the working group. The USA input has been delegated by ANSI to the Instrument Society of Ameriza (ISA) committee SP50, who have solicited proposals from the five major development groups.

- no guaranteed clock recovery time.

The Profibus proces variant and the Rosemount proposal both use frequency shift keying in either phase-continuous or phasecoherent form. This has the advantage of minimum low frequency component, allowing minimum size of coupling transformer if low bit rates are used. Interference immunity can be equivalent to that achieved by Manchester encoding with good choice or ratio between high and low signalling frequencies. A simple $2: 1$ ratio will result in much degraded performance in this respect. The disadvantages are

- highest frequency component for given bit rate
greater component count (requires a modulator).
The IEC field bus working group has agreed that only baseband sigpalling with Manchester encoding is to be included in the standard. Alternative approaches for process and manufacturing applications have been deemed unacceptable.

It is essential that there is a convergence to a single International Standard in the shortest possible timescale to make field bus a success, says Peter Burton of ERA Technology. At the present stage of preparation of the IEC working groups recommendations for a field bus standard, only two of the contenders are still fully compliant. The others are already in need of modification to follow the progress to an International Standard. It may well be that in the more detailed IEC work at the meetings in June and September, further changes will be required, affecting at least one of the two currently static proposals.

Contenders are progressively developing with the standards activities. Although the information on which this paper is based was obtained through direct participation in the relevant standards committees, the author cannot accept responsibility for any details which have been changed since the last published documents or verbal presentation.

INDUSTRY INSIGHT

CONTROLLER AREA NETWORK

Every car manufacturer in the world is investigating the practicalities of multiplexed wiring. This may mean anything from basic load switching, through medium-complexity communication between sensors and modules, to the highspeed data exchange required between engine management, transmission control and anti-lock brakes.
In its simplest form multiplexed wiring can be used for basic load switching so that only a small number of low current cables will be routed around the car along with one large power cable and the switching is performed at the load itself. In this form. it is debatable whether the system is economical compared to the standard harness due the large number of relays and solid-state switches involved. A more economical solution in vehicles with a high electronic content is to use a high-speed serial bus between modules. intelligent data collection

Bosch's automotive serial bus

may find much wider application in the future, according to semiconductor manufacturers
and intelligent load switching. This requires a serial bus which can guarantee passing messages quickly and reliably.

Controller Area Network overview

Controller Area Network is a system developed by Bosch which unlike existing LAN protocols has been optimized for interruptdriven, real-time environments like automotive. CAN is the main contender to becoming the industry-standard automotive

serial bus in Europe. However, for CAN to become an industry standard. the semiconductor companies have to develop the CAN interface chips and to this end Bosch have granted licences to Intel. Philips and Motorola.
The Society of Automotive Engineers have for many years been discussing serial communications for vehicles and have divided the requirements into three classes.
Class A: body control applications such as lights, power windows, mirrors, etc. where speed and integrity of data are not critical.
Class B: information transier between modules and sensors such as temperature or speed sensors to instrument cluster. In this case speed and integrity of data are moderate.
Class C: real-time communication between controllers such as engine management to transmission or anti-lock brakes. In this case high speed and high integrity of data are essential.
Table 1 shows the SAE definition of the protocols with data rates and latency times. The CAN protocol meets the requirements of all three classes.

The protocol is a multimaster protocol where messages are randomly transmitted on a serial bus Contention between masters is determined on a bit-by-bit basis in a non-destructive arbitration which results in the highest priority message gaining access to the bus. The protocol supports 2032 different messages of up to eight bytes of data and the highest priority message is guaranteed a maximum latency of $150 \mu \mathrm{~s}$ at the maximum bit rate of $1 \mathrm{Mbit/s}$. Other message priorities depend on the level of serial traffic and their relative message priority. Integrity of data is guaranteed through complex mechanisms such as bit stuffing, cyclic redundancy check algorithms and automatic retransmission of erroneous data.

CAN protocol

Unlike many serial communication protocols the CAN message contains no information relating to the destination address. Instead the message contains an identifier which indicates the type of information contained in the message. This has several important implications. Firstly. any nodes can be added or removed from the network without any change to the software. Secondly, this means that each node can then decide on the basis of the type of information whether the message is of interest to that particular node. Broadcasts to many nodes are therefore inherent in this svstem and the data will be consistent in that
either none or all of the nodes will reccive the message. An additional benefit is that the message may be prioritized on the basis of the type of information it contains. This allows for a multimaster system where any node may send data on the bus when the bus becomes free. and an arbitration scheme will ensure that the highest priority message will always succeed. In addition a node may send a remote frame" which will request another node to return a data frame. The bit-rate of the bus may be any value up to a maximum of 1 Mbit/s but must be the same for all nodes on the network and the messages may be of different lengths. as defined by a parameter within the message, up to eight hytes.

Arbitration

As a multimaster protocol the CAN interface must be able to resolve conflicts on the bus due to two nodes attempting to gain access at the same time. This is resolved by means of 'dominant' and 'recessive' hits. In a opencollector network with a pull-up resistor a zero would be the dominant level; the CAN electrical interface does not rely on pull-up resistors but must accommodate electrical conflicts with a given dominant level. A node which requires to transmit will monitor the bus until it becomes free, at which point the node may begin transmission. If two nodes begin transmitting at the same time each will monitor the bus level and compare it

Interframe
space
spame

Data frame
1 bit 12 bits (6 bits (Zero to eight bytes of data) 16 bits 1 biff bin 7 bits

> Arbitration field

Stan of frame

Acknowledge field
CRC field

Fig. 1. One data frame consists of seven different fields and can transmit up to eight bytes of data in each frame at IMbit/s.

Fig.2. Arbitration field contains identifier control priority.

Fig.3. Control field specifies the number of bytes in the message.

Fig.4. Cre sequence ensures high integrity of data.

agamst the bansmilted level. If a recessive hit is transmitted and a dominant hit delected then that node will immediately release the hus allowing the other node to continue undisturted. In this manner the message with the most significant dominant bitswill always take priority.

Errordetection

In addition to the arbitration lechnigut atready descrihed integrity of data is guaranteed by several error detection medhanisms in the form of al c.r.e. hit staffinge. and message frame thecks. These ensure that all global and local ertors at thansmitters are
defected as well as most forms of random errors resulting in a prohahility of undefected errors of less than 1 in $3^{2} 3.0(10$. Any compuption of the message is fagged by the node delecting the error. the message is ahortedand isatomatically retransmitted.

Data frame

The format for the transmission of a data frame consists of seven fields as shown in Fis. 1. The start-of-frame marker consists of a single dominant hit and serves to synchroni\%e all nodes in the system. "His is followed he the arbitration field which contains an eleven-hit message identifier plus a remote-
tramsmission-reyuest (r.t.r.) bil. Fig.2. The message identifier will decide the priority of the message by means of the most signiticant dominant bits. In asystem where zero is the dominant level the lowest binary number would be the highest priority. There is one restriction on the identifier in that the seven most significant bits cannot all be recessive as this signifies an end mark. This allows for 2032 possible message identifiers (0)0 hex to $\overline{6}$ Ef hex). The r.t.r. bit merely serves to signity whether the transmission is a data frame (dominant) or a remote frame (recessive).
Next is the control field which consists of

FIRST MOTOROLA BASICCAN DEVICE

Both Motorola and Intel are designing single-chip microcontrollers with a subset of the full CAN implementation on the same chip called HasicCAN. BasicCAN is optimized for class A applications and requires that much of the message handling is performed in software. but it can support classes B and C where the data rate or number of messages is low. One of the first of these to become available from Motorola will be the MC681C04.
The architecture of BasicCAN is identical to the full CAN with the exception that the management processor is removed and communication between the c.p.u. and the CAN interface is via a dual register with context switch. This means that all bus timings are the same hut only a limited number of messages could he received at the full data rate. BasicCil could therefore communicate on the same bus as a Class C full CAN but is optimized for the Class A applications.

MC68HCOACLI is only the first of mans single-chip processors that will he available from Notorola with the CAN interface. It is a low-cost device intended for use in the remote units for intelligent load switching. So that the main controller may communicate with these remote units it also requires a CAN interface and this will be implemented on Motorola's high performance m.c.u. families within the next few years.

- Motorola

Fig.5. Acknowledge fied enables the recering nodes to indicate receipt.

SAE serial bus classification into three levels

| | Speed
 (bit/s) | Latency
 (ms) | Error
 tolerance | No. of
 nodes |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Class A | 1 K | 20.50 | Low | 50.100 |
| Class B | $10 \mathrm{~K} \cdot 100 \mathrm{~K}$ | 5.50 | Medium | 10.50 |
| Class C | 1000 K | 5 | High | $5 \cdot 10$ |

Error flags superimposed ($6-12$ bits)
Fig.6. Emor fiane enahles any node to indicate that an error has heen detected.

Interface management processor

CAN architecture: The fill implementation consists of six main blocks - Fig. 7 . The interface management processor is the control device between the CAN interface and the main processor with which it communicates via the d.p.r.a.m. The i.m.p. computes the addresses tor communications huffer accesses and manipulates the appropriate control hits required to execute the c.p.u. transmit and receive commands. The bus timing logic provides the synchronization to the line and controfs the timing for the sampling of the receive data. The bit stream processor controls the transfer of parallel to serial data and controls the transceiver logic in reception, transmis sion, arhitration and error flagging.

CAN MAY CHALLENGE 15538US

The recently announced CAN v.l.s.i. interface chip from Intel, type 82526. handles the interface between microcontrollers and the serial bus, taking care of transmission. reception. error detection and correction. The 82526 integrates three major blocks on chip: The interface management processor. a quasi-dual-port ram. and the serial interface unit. The 82526 supports programmable transfer rate to $1 \mathrm{Mhit} / \mathrm{s}$, broadcast message transfer. up to 2032 different messages. a guaranteed latency time for high priority messages, non-destructive bitwise arbitration and error handling.

The 82526 implements the three-layer structure of the CAN protocol in hardware to keep the host free from Communications: work. The physical laver specifies signal level and bit representation. The transfer laver offers logic, fault confinement, acknowledgment, message framing and abitration. The object layer provides prioritized message handling, acceptance filtering. message buffering and automatic retransmission.

To date, CAN has achieved widespread adoption by car manufacturers and components suppliers and will start to appear on models rolling off the production lines in the early 1990s.

Because of its simple implementation. CAN is now being seriously investigated in other areas of industry. Large companies. who appear unwilling to announce their adoption of CAN, are taking up the network for industrial automation, avionics and defence work.

It is likely that CAN will replace certain uses of 1553 and link up electronics in applications that currently have the wiring complexity problems of the automobile industry.
six bits. Fig.3. The two leading bits are reserved and are transmitted as dominant bits while the next four hits indicate the number of data bytes to follow sero to eight). The data field then contains the corresponding number of data bytes and is followed by the "CRC field" (Fig. 4). The c.r.c. sequence consists of 15 bits and the polynomial calculation includes the start-offrame. the arbitration field. the control field and the data field. The c.r.c. sequence is then followed by the c.r.c. delimiter consisting of a single recessive bit. The next two bits are the acknowledge field and are hoth transmit-
ted as recessive bits hy the transmitter. Fig. 5.

Remote frame

The remote frame is a means for one node to request information from another node. One example might be where the dashboard controller requests information on engine temperature from the engine management system. In this case the dashboard controller would send a remote frame to the engine controller which would respond with a data frame.

Bit stuffing

In addition to the afore mentioned rules for error detection any data frame or remote frame is further coded by a method of hit stuffing. This process applies only to the start of frame arbitration field, control field. data field and c.r.c. sequence. If the transmitter detects more than five consecutive bits of the same level the sixth hit is automatically complemented. Conversely when decoding the data the reverse is applied. 'This technique allows the error flag to be implemented in the form of six consecutive dominant bits and all nodes will recognise this as an error.

Error frame

The error frame is a means hy which any node in the system may indicate to all others
Fig. 7. Architecture of the CAN interface minimizes processor overhead by implementing in hardware all address recognition, c.r.c. calculation and formatting.
the detection of an error condition. The error flag consists of six consecutive domimant bits and is recognised by alt other nodes as an error condition due to violation of the bit-stuffing rules. Due to different error flags being superimposed the flag may consist of up to a maximum of I? dominant hits. On detection or transmission of an error flag. all nodes will monitor the hus for a recessive bit and will then transmit a further six recessive bits before cont inuing (Fis. 6).

Overload frame

An everload condition will occur if a node in the system does not have time to process the data received hefore the next frame is received or if one of the nodes does not hehave the rules on interfiame spaces. Under these corditions an overload frame will be generated which looks very similar to the error frame.

Interframe spacing

To control and synchronize transmissions all data frames or remote frames must be serarated by an interframe space. Conversety error frames or overload frames may start inmediately atter the end-of-frame marker. The interframe space consists of an intermission and a bus-idle condition. The intermission comprises three recessive hits and the bus will then remain idle until one of the nodes begins a transmission.

By Pat hordan. systems engincering manager for simskechip macess at Motomols Furopean Semiconductor (imotip

INDUSTRY INSIGHT

SINGLE CONCEPT UNIFIES

 THREE SYSTEM BUSESIhe system designer has a number of difficult choices ahead when designing a new system based on standard buses. Can 1 find a solution to my problem from available board products? Will the cost of the system be acceptable? Will boards from different vendors interpret correctly? Will all the vendors offer support for their boards and will they be around to support their products in ten years time? Will the chosen configuration he easily upgradable as new facilities are required? Can I find software which will run together on the system to drive all the peripheral and i/o cards.
These sorts of questions provide a lot of unknowns to the designer which can seriously affect the timescales for a project. As a systems user for both data processing and

Based largely on Multibus, Siemens approach provides not only a migration path along its 8,16 and 32 bit structure but also three-bus concurrency, writes Andrew Tompkins

Triple backplane hierarchy gives freedom of choice for interfacing at any level.

industrial automation applications, Siemens is well aware of these potential problems and as a supplier has provided a multiple bus hierarchy which overcomes most of these uncertainties. As a 60 billion DM company. established in 1842 it can offer stability and a range of products difficult to match from any other supplier.
Three Eurocard buses have been incorporated to provide the backbone to the system architecture: 32 -bit Multibus II, Siemens 16 -bit AMS (Multibus I based) and 8 -bit SMP buses, see panel.

A common theme runs through all three bus systems. Physical, hardware and software compatibility are necessary for trouble free interoperation. All the buses are based on Eurocard from factors with 96 -pin DIN connectors and racking allows all types of

board to be intermixed in the same chassis. This explains the reasoning for adopting Multibus I electrically but physically changing it to a Eurocard format and getting it standardized. The hardware is based on Intel c.p.u. architectures, predominantly based on processors and microcontrollers. Many peripheral components are as complex to use as the c.p.u. itself and so there is also a common range of v.l.s.i. peripheral chips used throughout to simplify interfacing. A common hardware base enables a common software platform to be achieved. For realtime systems RMOS can be used on any of the three buses, with message passing support available for Multibus II. A universal monitor can run on all the c.p.u. cards and device drivers are available for the peripheral cards.

There are about 150 boards available from a single source. All the buses are based on open standards so special boards can either be obtained from other vendors or, if necessary, designed in house. This flexible system approach based on some common standards enables the system designer to choose freely amongst the available products to achieve his desired system, knowing that the products are hardware and software compatible.
The ability to freely migrate across bus structures means that the most economical solution can be found to a particular problem. The broad base of SMP boards brings a wide range of i / o functions to the AMS or Multibus II buses which would take many years to develop if the i/o capability was placed on the board directly. Additionally, the cost to the vendor of manufacturing and stocking a multitude of different types of complex Multibus Il boards would increase the price of the board prohibitively as well as increasing the cost of spares holding to the end user. Hence it makes sense to keep the Vo part of the system in small modular units which can be readily tailored to meet specific requirements.
Two examples show how the AMS bus uses the S.MP bus as an i/o bus and how the Multibus II bus may interface to the AMS and/or the SMP bus.

AMS to SMP link

The AMS bus fits completely within one 96 -pin DIN connector allowing the second connector to be used for the SMP signals. AII the AMS c.p.u. boards have the SMP bus interface allowing further memory and i/o

TRIPLE BACKPLANE HIERARCHY

- Multibus II (IEEE 1296) provides the highest capability with 32 -bit support for up to 20 bus masters and using a synchronous 10 MHz bus clock to enable a reliable 40Mbyte/s (32Mbyte/s sustained) transfer rate. In addition to performance, Multibus II, also offers many features such as automatic configuration, built-in diagnostics, parity checking and recovery, and message passing all of which increase reliability and reduce system downtime.
- The Advanced Microcomputer System bus is electrically identical to Multibus I but was repackaged onto a double-height Eurocard standard. In 1984 the bus was accepted as the IEC standard 47B.
- SMP bus is a mono master synchronous bus with eight-bit data and 1 Mbyte address capability based on a single-height Eurocard. The bus is now 12 years old with over 100 different products available from Siemens alone and around 25 other European manufacturers making boards.
boards to be connected for exclusive use by the host. As the SMP bus can be accessed without bus arbitration the boards can be addressed directly as an extension of the host board with memory, i/o, and control functions. The example below shows the AMS bus in a multimaster configuration with one AMS board linking into the SMP bus as a local bus extension.

Multibus II AMS and SMP

The Multibus II bus can be linked to the AMS and SMP buses in a functionally similar fashion but the interconnection needs to be more complex so that the performance of the Multibus II c.p.u. is retained. The Multibus II signals are heavily multiplexed and all fit onto one DIN connector thus providing the potential to bring the SMP bus out onto the second connector. However, the high performance processors available today such as the 20 MHz 80386 will require many wait states to be inserted when communicating

The AMS bus is used as a multiprocessing system bus whilst the SMP bus acts as a local bus to the AMS M16.

with a relatively slow i/o device which will adversely affect the c.p.u. performance.
To overcome this, the Multibus II board is linked through the OSM-B501 board with a triple ported 64 Khyte communications memory in the AMS and our buses, which enables the Multibus II board to run at optimum speed with memory mapped i/o. The Multibus II c.p.u may access the AMS and SMP buses directly, while accesses to the Multibus II c.p.u. are performed via the communications memory. The SMP bus may contain a master such as a d..n.a. controller to provide a zero wait state interface to the communications memory. The OSM-B501 additionally offers interrupt controllers to handle up to 16 non-vectored interrupt requests from the SMP and AMS buses to provide full interrupt support for each bus. The memory and i/o mapping are also controlled by jumpers and board specific registers on the OSM B501.

Extending Multibus II with the OME bus

The Multibus II host board is linked to the OSM-B501 via the OME interface. This is a

96 -pin DIN connector mounted directly on the new generation of Multibus II OSM B17 (8MHz 80186) c.p.u. and OSM B37 $(20 \mathrm{MHz}$ 80386) c.p.u. cards. The OME was designed to provide a high performance local bus extension with up to 64 Mbytes of direct memory access and as an interface to high performance modules such as high resolution graphics. The bus contains RAS and CAS signals for dram access, four d.m.a. and interrupt request and acknowledge signals as well as a demultiplexed address and data bus with the usual handshake signals. This powerful interface allows up to four daughter boards to be cascaded together.

Real-time operating system

The RMOS real-time multitasking multiprocessing operating system unites the 8086/

The OSM B37 board uses the OME bus to interface, wia the OSM B501, to both the AMS and SMP bus. The SMP bus is used with a d.m.a. controller for fast transfer of data to the host c.p.u. of up to 16 channels.

186/286/386 c.p.us on all three buses with a standard modular and easily configurable software platform which is available in both real and protected modes for the 80286 and 80386. Message-passing support is available for both real and protected versions of RMOS to support unsolicited and solicited transfers thus allowing the full bus bandwidth to be exploited on Multibus II.
The standardization and degree of interoperability of software with multiple buses can currently only be achieved by buying through one vendor who can provide support in all areas. The Multibus 11 IEEE 1296 standard already incorporates some software standards to ease board recognition and configuration which are essential for geographic addressing to be performed between different manufacturers.
Standardized software interfaces for device drivers to the operating systems are currently being developed, but software standards for peripheral controllers that will satisfy the requirements of the many manufacturers and users of Multibus II will need careful consideration and agreement.

The Waugh Isolation Amplifier allows you to make measurements from $\mathrm{DC}-1 \mathrm{MHz}$ on floating circuits up to 1500 Volts from earth yet keeping your scope safely grounded. For details of this and other scope add-ons ring Peter Waugh on 069-172-597

Negugh Instruments Limited

Camhelyg Isaf Glyn Ceiriog Llangollen
Clwyd LL20 7PB Tel: (069-172) 597

INTEL 82786 GRAPHICS ENGINE

- Hardware Windows
- Drawing at 2.5 Million Pixels/sec
- Fill at $30 \mathrm{Mbit} / \mathrm{sec}$
- BitBlt at $24 \mathrm{Mbit} / \mathrm{sec}$

TT786-HARNESS THE POWER..f395

- IBM PC Add-In
- 100\% CGA, EGA, and VGA Compatible
- 512 Kbyte to 4Mbyte Memory

Q` TT786 SOFTWARE LIBRARY ..f75

- C and BASIC
- Comprehensive Documentation

TEKTITE LTD
PO BOX 5
FELIXSTOWE, IP11 7LW
SUFFOLK, ENGLAND
0394-672117
TELEX: 987458

KENWOOD Oscilloscopes

bandwidths from 20 MHz to 150 MHz prices from £319 to £1695 (+ vat)

Trio oscilloscopes are back with a new name, new models, higher specifications and lower prices.
Take the Kenwood CS-1065 illustrated here; a 60 MHz , dual-timebase, three-channel oscilloscope costing only £795. It's part of an extensive range from one of Japan's most experienced producers.

Thurlby hold every model in stock for immediate delivery. Contact us now for a copy of the full-range brochure listing technical specifications and prices.

Thurlby Electronics Ltd.
Tel: (0480) 63570
New Road, St Ives, Cambridgeshire. PE17 4BG England.
ENTER 20 ON REPLY CARD

low-cost logic analysis

Today's digital circuitry can't be debugged with just a logic probe and oscilloscope. A logic analyser has become an essential tool.
The Thurlby LA 160 system puts logic analysis within the reach of every engineer with a wide range of options to suit many different applications.

- Prices from $\mathbf{£ 3 9 5}$ plus vat
 - Data pods for random logic - Personality modules for uPs
 - IBM.PC interface options - Microprocessor disassemblers

No other logic analyser system approaches the value for money of the Thurlby LA160. Contact us now for full technical data.

||Thurlby \mathbb{N} Thurlby Electronics Ltd New Road, St.Ives, Huntingdon, Cambs. PE17 4BG, England. Tel: (0480) 63570

ENTEK2I ON REPLY CARD

TF2370 Spectrum analyser

TF 1152AN1 RF oower meter 0-25W 250 MHz TF 1066B/6 AM/FM signal generator $10-470 \mathrm{MHz}$ TF 1245/1246 Q-Meter and oscillator TF2002B AM FM Signal Generator $10 \mathrm{KHz}-88 \mathrm{MHz}$ TF2011 FM signal generator $130 \cdot 180 \mathrm{MHz}$ TF2012 FM signal generator 400.520 MHz TF2016/2 173 AM/FM signal gen $10 \mathrm{KHz}-120 \mathrm{MHz}$ TF2092C noise receiver
TF2162 MF atnenuator $0-111 \mathrm{db}$ in 0.1 db steps TF2603 RF Millivoltmeter
TF2001 AF signal source/monitored attenuator TF2300 modulation meter AM/FM 10 1GHZ TF2300A as above with deviation to 1.5 KHz isd TF2300B modulation meter as above TF 2303 modulation meter AM/FM $2.5-520 \mathrm{MHz}$ TF2304 modulation meter automatic TF2700 Universal component bridge TF2356 level oscillator 20 MHz TF 2430 trequency counter 80 MHz 7 digits TF2501 power meter 0.3W isd DC-1 GHz TF2600B video voltmeter 1 mv -300V isd TF2604 electronic multi-meter TF2807A PCM multiplex tester TF1313A Universal Bridge 2828A/2829 digital simulator/analyser 2833 digital in-lline monitor TF2908 blanking \& sync mixer 60558 signal source $850-2150 \mathrm{MHz}$ 6460 RF power meter
$6460 / 6420$ power meter/microwave head TF893A audio power meter 1 mW -10W isd TF995A/5 AM/FM signal generator $1.5 \cdot 220 \mathrm{MHz}$ TF995B/5 AM/FM signal generator 0.2-220MHz

MARCONI INSTKUMENTS

2019 signal generator 'as new

TEST \& MEASUREMENT EQUIPMEN

GREEN 2601 RF wattmeter $0.3-300 \mathrm{~W}$ to 500 MHz

 PHILLPS PM2554 audio milli-volmeter PHILIPS PM6302 LCR component bridge PHILLPS PMS590 TV IF Modulator RACAL-DANA 90832-Tone slgnal sourc RACAL-DANA $9084 / 9934 A$ sig gen/GPIB VIace. 104M-RACAL-DANA 9303 digital $\mathrm{R}^{\prime} \mathrm{m}$ Vmeter d w 2 head TEKTRONIX 7 S11 sampling plug-in unitTEKTRONIX $S 1$ and $\$ 2$ samplling heads $£ 500$ RACAL $9918 / 04 \mathrm{~A} 560 \mathrm{MHz} 9$ digh counter WAYNE KERR B642 auto-balance bridge PM5565 Wavelorm montior
ORANETZ series 305 Phase-meter $2 \mathrm{~Hz}-700 \mathrm{KHz}$ WAVETEK 157 prog wavelorm synhesizer $100 \mathrm{\mu H} \mathrm{HZ}-1 \mathrm{MHZ}$ WAVETEK Sweep gee 1503. $450-950 \mathrm{MHz}$ TEKTRONIX 2213 60MHz oscliloscope SYSTRON DONNER 410 Sweep lunction generator PHILLPS PMB2511 ingle-pen recorder PHILIPS PMB235 multipoint recorder OSCILLOSCOPES - LARGE RANGE NOWIN STOCK FEEDBACK SFG606 sweep function generato
RIKADENKI 3 pen chan tecorder

ALL OUR EOUIPMENT IS SOLD IN EXCELLENT, FULLY FUNCTIONAL CONDITION AND GUARANTEED FOR 90 DAYS MAIL ORDERS AND EXPORT ENOURIES WELCOMED. PLEASE IEVAILABLE EX-STOCK AS AT COPY DAEE. GOOD OUALITY TEST EOUIPMENT ALWAYS WANTEO FOR STOCK. PRICES OUOTEO afe subject to adoitional vat.

HEWLETT PACKARD

3581A Wave analyser. $15 \mathrm{~Hz}-50 \mathrm{kHz}$. 30 nV
sensitivity. 80 dB dynamic range.

1122A power unit for let probes

 355 E \& F F ansistor fixture 435A/8481A RF power meter/head 608F AM signal generator UHF 8007 B pulse generator 8733A pin modulator 8600A \& 86632A Sig gen/mod section 400 F milli-voltmeter180 C 50 MHz oscilloscope
10529A Logic comparator
10529A10526T Logic troubleshooter 4342A Q-Meter
831 A distortor Voltmete
334A distortion meter
$5300 \mathrm{~B} / 5305 \mathrm{~B} 1300 \mathrm{MHz} 8$ digit counte 2673A thermal printer
$\sqrt{ } A^{\mu} \mu$-wave link analyser

ADDITIONAL EX-STOCK T \& M KIT

KEITHLEY 178 Dmm \& 179 Dmm
FLUKE 8050A DMM
TREND DATA Transmission test sel 1.8
RADIOMETER FRA3 audio wave analyser
WAYNE KERR 8601 RF Bridge
RACAL 9911 120MHz counter
RACAL 9912120 MHz counter
PACAL 9301 RF MVZ counter
BIRD 4370 RF wattmeter
VALRADIO Inverters 24 V DC-230V AC from SHIBASOKU envelope delay measuring se system NEW $£ 1.750$

TEXSCAN MODEL 9650 TRACKING SWEEP ANALYSER

$400 \mathrm{kHz}-350 \mathrm{MHz}$ tracking sweep generator and $\begin{aligned} & \text { spectrum } \\ & \text { analyser in one unit }\end{aligned}$

Pioneers

20. Michael Faraday (1791-1867): 'patron saint' of electrical engineers.

W A. ATHERTON

He had only an elementary education. "little more than the rudiments of reading, writing and arithmetic at a common day school". as he himself described it. Yet the Encyclopaedia Britannica has called him "possibly the greatest experimental genius the world has known". Many equally generous tributes have been paid to this unique man. He has been called the patron saint of electrical engineers and Humphry Davy's greatest discovery. The testimonial I like best, though, was spoken by a Cerman professor, F.W. Kohlrausch, and contains just four words: "He smells the truth". The "he", of course, was Michael Faraday.
Most of Faraday's long list of scientific discoveries lie in the fields of chemistry and electricity, and they took him into some odd corners. Oi his 158 published papers, about half relate to electrical science and a third to chemistry. The rest range over a variety of topics and include one, "On holding the breath for a lengthened period". Another. "Change of musket balls in shrapnel shells: Action of gunpowder on lead", almost sounds like a defence contract. Trinity House asked him to judge the viability of are lights for lighthouses, the National Gallery in London sought his advice on the preservation of art treasures, and he was even consulted over an idea for using hydrogen sulphide for gas warfare.

His contemporaries said he was a kind. gentle and proud man who had a simple manner and attitude.
As well as being one of the world's greatest scientists he was also a committed Christian and that must say something about those who profess that science and religion do not mix. His personal faith helped shape his philosophy and led him to accept the unity of the universe and the fallibility of men. Together these encouraged him to speculate and to publish what were virtually scientific heresies - including his famous cunced lines of force. From such speculations came the heginnings of electromagnetic field theory. In 1852 his agnostic friend John Tyndall wrote. "I think that a good deal of Faraday's week-day strength and persistency might be referred to his Sunday Exercises. He drinks from a fount on Sunday which refreshes his soul for a week. " ${ }^{\prime}$.
It would be nice to think that all electrical and electronic engineers know that Faraday made what is possibly the most important discovery in electrical science: that of electromagnetic induction. (It was discovered almost simultaneously by Henry in America.) Many know that he established the basic laws of electrolysis. But his great experimental skills and persistence, and his non-mathematical reasoning, also led him

to electromagnetic rotation (the hasis of electric motors). proof that the different 'types' of electricity (frictional, electrostatic. voltaic, etc.) are manifestations of the same basic phenomena, to a new theory of electricity, the dielectric constant, the rotation of the plane of polarization of light, and the start of classical field theory and the electromagnetic theory of light. He established several of our common terms. including electrode. anode. cathode electrolysis, electrolyte. paramagnetism and diamagnetism (which he discovered) and, I believe, dielectric. True to his character he chose these terms very carefully and with the help of William Whewell of Cambridge University.
Faraday played a major role in a pattern of experimentation and reasoning on electromagnet ism and related sciences which be-

A PLEA FOR PLAIN LANGUAGE

In 1857 Faraday, aged 66, wrote to the 26-year old James Clerk Maxwell as follows:
"There is one thing I would be glad to ask you. When a mathematician engaged in investigating physical actions and results has arrived at his conclusions, may they not be expressed in common language as fully. clearly, and definitely as in mathematical formulae? If so, would it not be a great boon to such as I to express them so? - translating them out of their hieroglyphics, that we also might work upon them by experiment. I think it must be so, because I have always found that you could convey to me a perfectly clear idea of your conclusions, which, though they may give me no full understanding of the steps of your process, give me the results neither above nor below the truth, and so clear in character that I can think and work from them."
gan with Oersted and culminated with Einstein and Planck.

Besides that, chemical engineers are proud of him too - for producing highergrade steels (1818), for making the first compounds of carbon and chlorine (the first "substitution" reactions, 1820), and for discovering benzene (1825). He was also an outstanding public lecturer: the annual IEE lecture to young people is named in his honour.

EARLYLIFE

Michael was the third of four children of James and Margaret Faraday. He was born on 22 September. 1791, at Newington, now part of Southwark in London but then in the country. His father, a blacksmith, had moved south from Yorkshire in search of work in the year that Michael was born. His ill health meant that the family was poor. Michael later recollected that he was once given a loaf of bread to sustain him for a week.

At 13 the young Michael hecame a newspaper delivery boy for a Mr G. Riebau, a French émigré who had fled the Revolution. Riebau sold books as well as newspapers, and he bound books too. Faraday was soon an apprentice bookbinder and so gained access to a large and ever-changing library.

Some of those books fired his love for science. One, Jane Marcet's "Conversations on Chemistry", remained a life-long favourite. Another, the Encyclopaedia Britannica, introduced him to electricity through an article by James Tytler, a "scientitic heretic" who saw electricity as a vibration rather than as a flow of particles ${ }^{1}$. How much this unorthodox viewpoint influenced Faraday's later approach to scientific reasoning is a matter for interesting conjecture.
Meanwhile, while Faraday bound books, a group of young men had hegun to meet in l.ondon to discuss scientific topics. They called themselves the City Philosophical Society. Faraday came across them early in 1810 and their lectures extended his education. $\ln 1812$, he was able to attend public lectures given by the great Humphry Davy. The tickets were a gift from one of the bookshop's customers - someone to whom electrical engineers should be grateful, for he provided an opening which Faraday turned into a career.

In October 1812. Davy was temporarily blinded in a laboratory explosion and Faraday was recommended as a temporary help. In December Faraday sent Davy a hound volume of the notes he had taken of Davy's lectures. The next March, when the Royal Institution, at which Davy was employed. sacked a laboratory assistant for fighting. Davy recommended Faraday for employment. So began, on 1 March, 1813, an association which was to last all of Faraday's working life ${ }^{1}$

Thus Faraday became assistant to Davy. one of the greatest scientists of the day. The respect Davy commanded may be judged by the welcome he received in Paris when he toured the continent in 1813-14, accompanied by his wife and by Faraday. Despite the conflict between Britain and France he was given safe passage and warmly received.

Fig.1. Faraday's apparatus for demonstrating electromagnetic rotation (simplified).

Faraday's early work at the Royal Institution was mainly concerned with chemistry. But in 1821 the editor of The Philosophical Magazine, a major scientific journal, asked him to review the flood of theories and experiments which had followed Oersted's discovery of electromagnetism and to separate fact from fiction. Somewhat reluctantly Faraday agreed.

His enthusiasm was soon aroused howev er; and, as usual, he repeated others' experiments with great care rather than merely accept their results. Whilst tackling Oersted's experiments he used a small magnetic needle to plot the pattern of the magnetic force around a current carrying wire. He soon realised that a single magnetic pole should rotate around the wire. Figure 1 shows his elegant experiment which showed the truth of this - the first conversion of electrical energy into mechanical motion and the basis of the electric motor (3, 4 September. 1821). On Christmas Day he showed his wife Sarah (they had married that year) and his brother-in-law that a wire could be made to rotate using only the Earth's magnetism. "Do you see, do you see, do you see, George?" asked Faraday in his excitement ${ }^{2}$. II shall never forget the enthusiasm expressed in his face and the sparkling in his eyes", his brother-in-law wrote later.

This, his first great success, also brought him the unpleasant and unjust charge of stealing the idea without acknowledgement.

(a)

(b)

Fig.2. (a) The ring experiment, electromagnetic induction; (b) conversion of magnetism into electricity. Both 1831.
W.H. Wollaston, with Davy, had tried a somewhat similar but futile experiment some months earlier. Two years later Faraday further aroused Davy's jealously by liquefying chlorine. something at which Davy had failed. In 1824 Davy unsuccessfully opposed Faraday's election to the Royal Society, but Faraday never repaid even this slur.

ELECTROMAGNETIC INDUCTION

Two years after Davy's death, in 1831, came Faraday's discovery of electromagnetic induction and the culmination of an 11-year search by scientists to find the reverse of Oersted's discovery: to produce electricity from magnetism.

Two coils of wire had been wound on opposite sides of a soft iron ring six inches in diameter. One coil was connected to a battery and the other to a simple galvanometer (a wire passing over a magnetic needle). Nothing happened whilst the battery was either in circuit or out of it. as others had obsenved previously, but the needle was deflected whenever the battery connection was made or broken. Whenever the primary current started or stopped it induced a current in the secondary. Faraday's breakthrough was the outcome of great mental exertion and very careful observation. It was 29 August, 1831.
One 24 September, magnetism was converted into electricity. A wire helix was wrapped around an iron cylinder and the wires led off to a current detector. Two 24 -inch bar magnets were placed so as to magnetize the iron cylinder. Whenever the magnetic circuit was made or broken a momentary current was generated. Later a current was generated by pushing a bar magnet into and out of a wire helix.

Faraday reported his results to the Royal Society in London and to the Academy of Sciences in Paris. Soon small hand-driven magneto generators were being produced by others. Gauss and Weber used one to power their experimental electromagnetic telegraph from 1835.
Precisely what process of thought led Faraday to near-perfect experiments for these discoveries is a matter for historical detective work.
It is known that Faraday was unhappy with the contemporary theories of electricity and magnetism and in particular with the concept that electric current is a simple flow of particles. He believed that the presence of what we now call electric or magnetic fields put the conducting medium into a state of strain. His lines of force represented the lines of strain. Vibrations in those lines
would somehow transfer energy without transferring matter. In parallel with this he look an interest in acoustics, especially in making flat plates vibrate in resonance to other vibrating plates - a sort of acoustical induction. He studied this topic up to just six weeks before his discovery of electromagnetic induction. Almost certainly he saw an analogy between acoustics and electricity.

Later he developed his ideas into a general theory of electricity and even extended them into a probing attack on the transmission of light though a vacuum ("Thoughts on ray vibrations", 1846). Here he saw radiation as a "high species of vibration in the lines of force". Later (1852) he speculated that lines of magnetic force existed as strains, not in material bodies, but in "the condition of space free from such material particles". Many historians of science see Faraday's "Thought on ray vibrations" as the embryonic form of Maxwell's electromagnetic theory of light. Indeed Maxwell's first paper of the series which led to his theory was a mathematical treatment of Faraday's lines of force.

Faraday, whose education equipped him with almost no mathematical skills, commented. "I was at first almost frightened when I saw such mathematical force made to bear on the subject, and then wondered to see that the subject stood it so well". He even wrote to the young Maxwell praising his skills at translating mathematics into clear evervday English.
By the late 1830s Faraday himself had been strained to the limit by his mental exertions and he suffered what has variously been called exhaustion or a nervous or mental breakdown. It has also been suggested that he was being slowly poisoned by the mercury he used for electrical connections. It was five years before he fully recovered, if indeed he ever did fully recover.

Between 1861 and 1865 Michael Faraday retired from his various duties and spent his remaining years under royal patronage in a house provided by Queen Victoria near Hampton Court. Since his illness of the late 1830s he had suffered increasingly from intermittent loss of memory. His last few years were spent in a state of mental confusion. He died on 25 August, 1867.
His ability to "smell the truth" led him to search without success for other physical phenomena which he believed to exist. Many of these have since been found, including magnetostriction and the Kerr and Zeeman effects. Another, a link between electricity and gravity, we have yet to find. Maybe one day it will become yet another Faraday Effect!

References

1. Dictionary of Scientific Biography
2. P. Dunsheath, "A history of electrical engineering", Faber, 1962.
3. L.P. Williams. "Michael Faraday", Chapman \& Hall, London 1965. (See also a summary in W.A. Atherton. "From Compass to Computer. a history of electrical and electronic engineering", Macmillan, 1984).

Next in this series of pioneers of electrical communication: Alec Reeves, inventor of pulse code modulation.

RADIO COMMUNICATIONS

Rural radio projects

Low-cost radio systems, both satellite and terrestrial, are emerging in new forms to provide thin-line communications for rural areas for both developed and developing countries in circumstances where more conventional teleconmunications are often ruled out on grounds of costs and lack of technical support. A major problem with sophisticated new technology is that systems have to be paid for in "hard" currencies whereas the resulting revenues are collected in "solt" currency.

The IEE's first International Conference on Rural Telecommunications, attended by over 200 delegates from more than 30 countries, underlined the problem of providing telecommunications for the extensive rural areas of such countries as Canada, Sweden and Ireland, where rural or remote areas may depend on domestic satellites. multiplexed optical fibres or conventional microwave radio relay systems, with costs subsidized by the major urban centres; and the more difficult task in vast areas of Africa where telecommunication facilities are still largely confined to the main towns, and not always these.

Competing ever more successfully with microwave trunks are the increasing number of optical libre systems by which paths of 50 miles or more can now be covered without intermediate repeaters. It seems increasingly likely that optical fibres will emerge as the dominant technology for international telecommunications, taking over from geostationary satellites with their inherent time-delay problems for two-way telephony, although satellites continue to be attractive for point-tomultipoint distribution of data and television channels. It was evident at the conference that there is now a distinct coolness towards satellite systems for rural coverage, mainly on grounds of costs which have not reduced to the extent confidently predicted a few years ago.

However, a means of providing a low-cost global electronic mail service by means of one or more low Earth orbiting satel-
lites using store-and-forward packet-radio technology was proposed by Jeff Ward (University of Surrey) in a paper written jointly with Dr Martin Sweeting. The feasibility of such a system has been shown by the results achieved on the university's amateur-radio satellite Uosat-2 in conjunction with Volunteers in Technical Assistance (VITA). A third University of Surrey satellite, due to be launched early next year, is being designed to use experimental as well as amateur radio frequencies in order to permit demonstrations of third-world commercial applications.

Jeff Ward suggested that a single dedicated satellite could provide an "overnight" electronic mail service to and from anywhere in the world, based on technology costing £1M-£5M for the space segment, $£_{2}^{2} 00000$ for launching as a secondary payload, with the Earth terminals costing $£ 2000-£ 10000$. He recognizes that "in developed countries, where businessmen are accustomed to instantaneous telephone communications, the delay inherent in low Earth orbiting store-and-forward communications may be viewed as intolerable. On the other hand, those who communicate via telex and electronic mail services rely on "near-enough real-time delivery". This often means that messages sent before the close of business one day must reach their destination by the start of business the next morning. Using certain sun-synchronous orbits, a single LEO store-andfonward communications satellite could provide such overnight electronic mail on a global basis." Packet switching using the amateur-modified (AX.25) protocol has proved well suited to such systems. Store-andfonward techniques were first used in the original communications satellites more than thirty years ago, and it is widely believed that operational systems have been or are being used by American and Russian military and intelligence agencies on account of the minimal groundstation requirements.

Jeff Ward pointed out that "it is well within the current state-of-the-art to build a portable, solar-powered terminal using a lap-top portable computer, a 10 -

Village station for Sierra Leone's rural telecommunications net. work. Even a thin-line facility is better than none.
watt v.h.f. transmitter, a singlechannel u.h.f. receiver, and collapsible vertical or helical antennas all capable of fitting into a suitcase, and invaluable to technical, agricultural or medical workers who need to communicate with their support bases from remote, rural areas".

Dr A.P. Gallois (Coventry Polytechnic) described how satellife television channels carrying PAI. NTSC or SECAMencoded pictures could be used to transmit (one-way) large quantities of data on low-level sub-carriers without significantly degrading the primary video or audio signals. His paper included an analysis of rain-fade margins in different parts of the world. The dala, like teletext, would ride piggy-back on existing television distribution or direct-broadcast channels, but the data stream would be continuous at say $300 \mathrm{kbit/s}$ using q.p.s.k. modulation of the sub-carrier rather than in teletext bursts. The use of geostationary satellites would eliminate the need for tracking antennas.

An extremely low-cost communal "village" system has been successfully set up in Sierra Leone, based on 27 MHz c.b. transceivers under microprocessor control. This was reported to the conference by Dr S.A.G. Chandler (University of Warwick) who noted that in many remote areas of developing countries, "postal services are far from comprehensive and telephone services non-existent. The only way to send a message is usually for someone to travel in person". A village network based at Bonthe began as a threestation experiment, has recently been extended, and it is hoped that eventually it could comprise 1000 to 2000 village stations bringing the entire population of
about 3.5 million people within about 5 km of a station. Users are expected to contribute to the capital costs, pay a minimal message charge and are being involved in the operation and maintenance under guidance from a technician at the base station. The control units provide selective calling and automatically close down the network overnight. Cost of a village station is roughly as follows: solar panels £96: c.b. type transceivers £53; microprocessor control units $£ 110$; antenna components $£ 20$; battery $£ 25$; a total of $£ 304$ plus shipping costs. The controllers also provide remote monitoring, log performance and supervise the power system. Amorphous silicon solar panels rated at 20 W peak provide a maximum charging current of about 1.2 A into a 12 volt doubleseparation lead-acid battery. The wire antennas are mounted on bamboo canes. Selected villagers are given a one-week training course covering a smattering of electricity and radio, operation. installation and basic maintenance. Many are clerks or police officers as these have some primary education, but even illiterate operators quickly became surprisingly competent, according to DrChandler.

He reports that "the commitment and enthusiasm of most of the Sierra Leonians involved, and the backing of the Bonthe Development Committee, are some of the most encouraging aspects of the project. It contrasts so markedly with the apathy and indifference sometimes described by expatriate experts, and augurs well for the final outcome".

Radio Communications is written by Pat Hawker.

01-208 1177 Technomatic Lidd01-208 1177

BBC Computer \& Econet Referral Centre

AMB 15 BBC MASTER $£ 346$ (0)

AMcos Turbo (65C - 021 Expansion Module
 aDJ22 Ret Manual Pan

Allee packel ol len 35 OS discs wath ertact
SVSTEM 1 128k Single 640 K O Ive and bundied sotiware [385 (a)
SVSEM 2 Syssem 1 with a 12 Mi Res RGB Manior [469 (d)
Second Drive Kul $£ 99$ (e) Exlension Cable lor eris 25 drive $£ 12.50$ (d)
View 30 User Guide $โ 10$ (d)
ADF S ROM (lor B wilh 1770 DF S \& B Blus) 526 (d)
ACORN Z80 2nd Processors 5329 (a)
MULIFORM Z80 2no Processor [289 (b)
MULTFORM Z80 2na Processor $\mathbf{2 8 8 9}$ (b)
IORCH Z80 2nd Processor ZEP 100
TZDP 240 ZEP 100 wilh Icchnomatc P0800P Cual otive wh bull in monitor stanc
META Version III - The only package available in the micro market that will assemble 27 different processors at the price offered Supplied on two 16K roms and two discs and fully compatible with all BBC models. Please phone for comprehensive leallet $£ 145$ (b).

We slock the full range ol ACORN nardware and lirmware and a very wide ran
peripherals tor the BBC For delailed specilications and pricing please send tor our leallet

PRINTERS \& PLOTTERS

EPSON	
EPSON LX86	¢189 (a)
Optional Tractor Feed LX80/86	70 (c)
Sheet Feeder LX80,86	[49 (c)
F×800	£319 (a)
F×1000	[449 (a)
EX800	£409 (a)
LO800 (80 col)	£439 (a)
LO1000	[589 (a)
TAXAN	
KP815 (160 cps)	¢249(a)
KP915 (180 cps)	c369 (a)
JUKI	
6100 (Dassy Wheel)	¢259 (a)
NATIONAL PANASONIC KXP1080 (80 col)	[149 (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial. parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours atso available. Please phone for details and prices.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $95^{\circ} \times 11^{\circ} \mathrm{C13(b)} 2000$ sheets $14^{\circ} \times 11^{\circ} \mathrm{E}$ ع $8.50(\mathrm{~b})$
Labels per 1000 s Single Row $3^{\circ} \times 17 / 16^{\circ}$ £5.25(d) Triple Row $2.7 / 16^{\circ} \times 17 / 16^{\circ} \mathrm{C5} .00(\mathrm{~d})$

MODEMS

All modems carry a full 日T approval
MIRACLE TECHNOLOGY WS Range WS4000 V21/23 (Hayes Compatible Inlelligent, Auto Dial/Auto Answer) WS3000 V21/23 Professional As WS4000 and with BELL standards and battery back up or memory
WS3000 V22 Protessional As WS300 V21 with 1200 baud full duplox \quad [450 (a) WS3000 V22 bis Professional AS V22 and 2400 baud full duplex. WS3022 V22 Professional As WS3000 but WS3024 V22 Professional As WS3000 but with only 2400/2400
WS2000 V21/N23 Manual Modem (D)
DATA Cable for WS series/PC or XT \quad I10 (d)
DATATALK Comms Package

- If purchased with any of the above modems

PACE Nightingale Modem V21/V23 Manual
(Offer limited to current stocks)
SOFTY II

SPECIAL OFFER 2764-25 £3.00 (d); 27128-25 £5.00 (d): 6264LP-15 £4.00 (d)
5.25- Single Drives $40 / 50$ switchable:

TS 8400 400K/640K

th irtegral mans power supply
.

- 11 $5.25^{\prime \prime}$ Dual Drives $40 / 80$ switchable:
TD800 800K 1280 K
gral maın
114 (b)

PD800 $800 \mathrm{~K} / 1280 \mathrm{~K}$ with integral mains power supply
PD800P 800K/1280K with integral mains power supply and monitor stand
3.5 " 80 T DS Drlves.

TS351 Single $400 \mathrm{~K} / 640 \mathrm{~K}$
PS351 Single $400 \mathrm{~K} / 640 \mathrm{~K}$ with integral mains power supply
TD352 Dual 800K/1280K
PD352 Dual $800 \mathrm{~K} / 1280 \mathrm{~K}$ with integral manns power supply
PD853 Combo Dual $5.25^{*} / 3.5^{\prime \prime}$ drive with ps

3M FLOPPY DISCS

Induslry Standard floppy discs with a lifelime guarantee. Dises in packs of 10

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE DIsc Head Cleaning Kit with 28 disposable cleaning discs
ensures continued optimum performance of the orives. $51 / a \varepsilon 12.50$ (d)

DRIVE ACCESSORIES

STAR NLI0 (Parallel Interiace)	209 (0)
STAR NL10 (Serial Interfacel ...	[279 (6)
Star Power Type	6229 (a)
BROTHER HR20	¢329 (a)
COLOUR PRINTERS	
Dotprint Plus NLO Rom for Epson versions lor FX, RX, MX and GLP (88C only)	£28 (d)
PLOTTERS Hitachi 672	E459 (a)
Graphics Workstation (A3 PIotrer) Piolmate A4SM	$\begin{aligned} & £ 599 \text { (a) } \\ & £ 450 \text { (a) } \end{aligned}$

Sirgle Disc Cable $\mathbf{\Sigma 6}$ (d)
10 Disc Library Case $£ 1.80$ (d)
$50=51 / 2$ Disc Lockable Box $£ 9.00$ (c)
Dual Disc Cable $\varepsilon 8.50$ (d)
100×5 Disc Storage Box $\mathbf{~ 6}$ (c)

RT256 3 PORT SWITCHOVER SERIAL INTERFACE 3 inpuly output of 1 inpula outpu
manual channel selection inpul outpul baud rates, independenliy selectable 7 Dwe bul oonveverino Darlly Hardware or sotware handshathe 256 K butter, mans
powered PB BUFFER Internal buther lor moss Epso supphed
P8128 128 K \qquad [99(c)

[99(c)

UVERASERS

UVIT Eraser with bullo in imer and mains indicator Builton salety interiock to avoid accidental exposure to the harmlul UV rays
It can handle up to 5 eproms al a lime with an average erasing time of aboul 20 mins $\mathbb{C 5}+\varepsilon 2$ p\&p. UV1 as above bul withoul the limer $£ 47+£ 2 \rho s p$ sers wilh handing capacity of 14 eproms uvisi has a buill in limer Boith otter lull buil in safety features UV140 £69. UV141 £85, p\&p §2.50

Serial Test Cable Serial Cable swichable al mothend

 atlowing pin options to be re routed on linked al etther end - making II possible to produce almost any cable coniguration on site
CONNECTOR SYSTEMS

Mains powered cunverters
Serial to Paralle

Serial Minl Test
Monitors RS232C and CCITT V24 Transmissions. indicaling stalus win dual colour LEDS on 7 mosi significant lines Connects in
Line
E22.50 (d)

Significant lines Connects in
Line
22.50 (d)

Serial Mini Patch Box
Allows an easy melhod to
reconfigure pin functions
without rewring the cable
assay Jumpers can be used
and reused

RIBBON CABLE arey metre			
10.way	10 p	36.way	1600
16 may	60.	40.way	1300
20-may	85	50 *ay	2000
26 -way	1200	64.way	2000
DIL HEADERS			
		Solder	10 C
14 pin		40 p	100 p
16 pm		50 p	110p
18 pm		600	-
20 pm		75p	-
24 pin		100 p	150p
28 pm		160 p	200 p
40 pin		200p	225p

ATTENTION

 Al pricee in this doubto pege ackertisement are subject to change whthout nottce. ALL PRICES EXCLUDE VAT Please add carrige 50p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d) £ 1.00

TELEVISION BROADCAST

Fitting sound to pictures

Two months after the IBA symposium on "the implications of dual-channel sound for Independent Broadcasting" (see Television Broadcast, June 1988) a wider-based and even more ambitious two-day "Sound with pictures conference", organized by the British section of the Audio Engineering Society, again brought more than 100 delegates to the IBA's London conference hall.

This brought out the paradox that the BBC with its considerable experience of stereo production (over 1700 programmes) and Nicam 728 digital transmission of about 500 programmes from Crystal Palace since July 1986, has now postponed sine die its operational introduction.

This decision, due to financial constraints, has not dimmed the enthusiasm of Jeff Baker (BBC). with his belief that "the cost increases that were assumed lin deciding to postpone the servicel are not an inevitable accompaniment to stereo sound [production|". He firmly rejected the idea that there is an inherent disparity between a small screen and a wide sound stage, pointing out that our eyes are more narrowly focused than our ears. He believes that the public does not want (and is unlikely to have in the foreseeable future) television screens covering one side of their rooms. But this does not mean that we should be satisfied with monophonic sound for television. He noted that several episodes of EastEnders have been successfully recorded in stereo with little additional time available for post-production sound editing, and at little extra cost.
Malcolm Johnson (BBC) out lined the steady development of audio post-production techniques since the milestone introduction of the SMPTE/EBU time code almost twenty years ago. He saw this as the key to modern "off-line" full-facility master/ slave sound dubbing on to recorded video. He stressed the importance of modern nondestructive sound editing: "at every stage if you make a mistake you can always go back and try again". For the future, he foresaw further interesting developments in the field of hard-disc
editing systems such as Audiofile and DAR's Soundstation II (described at the conference by Guy McNalley). These offer new opportunities for the manipulation of multitrack sound, held in the digital domain, with much quicker synchronization than earlier systems. Digital Audio Recording Ltd also exploits digital-sound techniques for its "Wordfit" automatic dialogue dubbing process which expands or compresses the duration of speech without changing its pitch, to improve apparent lipsynchronization with foreign languages.

It is clear that sound, so long considered the poor relation to all-important video, has now become one of the hottest topics in television. Cinderella, it seems, is now engaged to Prince Charming.

The question remains whether the set-makers, cast by some in the role of the Ugly Sisters, will provide good stereo receivers and whether viewers really want and are willing to pay for firstclass sound. In the USA, stereo sets currently amount to more than a quarter of sales. In a discussion period, R. Hoffner (NBC) commented that NBC had introduced stereo (analogue) sound in July 1985 and currently all new prime-time broadcasts were in stereo, transmitted in stereo by 141 out of its 208 affiliate stations; 11% of US homes with television had acquired stereo capability within three years - a positive reaction and a faster build-up than US colour. CBS intends to provide full primetime stereo in September. ABC's stereo policy is not finalized but seems likely to follow the other main networks; PBS is transmitting 30-40 hours of stereo per month. NBC has found the Dolby centre-channel concept helpiul. On costs. Hoffner pointed out that NBC relied mainly on independent production and was not paying any premium for stereo.

Malcolm Johnson (BBC) showed an extract from Casualty that impressively demonstrated the degree of sophistication achievable in enhancing the sound recorded during field production, though he recognized that care needs to be taken not to degrade dialogue intelligibility. particularly for hearing impaired viewers. He noted that
a 50 -minute mono programme can require some 18.19 hours of audio dubbing time, and warned that stereo will in some situations expand the time requirement

Fritz Sippl (AKG, Vienna) described systems based on the M-S (mono-surround) pick-up techniques used with or without transformation into the $X-Y$ format and combined with repro duction of on-screen sound from front-centre plus surround sound from sides and rear. He believes that home reproduction can be simplified greatly with M-S techniques as receiver manufacturers learn to incorpo rate decoders and projection loudspeakers (which can bounce the "surround" sound off the room walls, from positions on the side of receivers).
Andrew Vere (SVC Television), in a controversial presentation, explained why his facilities house has decided to leave the production of digital stereo sound (for commercials) to others, insisting that "clients will have to produce their sound track before they come to us or complete it after they have finished their editing. The cost of producing a digital audio system to complement our digital pictures facility would be so horrendously expensive that no would be prepared to use it". He pointed out that packages such as Quantel's Painthox combined with a 90 second digital disc store ("Harry") plus an audio editing package cost in the region of $£ 400000$. This would meet the requirements of graphic artists, video tape editors and sound mixers; but he insisted that these represent different skills: "From an operational viewpoint it represents a very expensive paint box, a very expensive edit suite and the most expensive sound mixing desk ever devised". He considers that the industry has allowed the work force to dominate its cost structure and its equipment purchasing policy: "Not enough thought has been given to the function of new equipment and the long-term effects of its purchase. Fundamental questions need to be asked each time a new piece of kit is evaluated: does it do the job quicker, does it do it cheaper - if the answer to either is no then a third question must be asked does it do something that the
market place wants that cannot be done any other way?". Later he conceded that it might sometimes have to be asked whether it does the job better. But he warned: "We must prevent the introduction of stereo sound increasing the cost of the job. The only way to do this is to leave the production sound to the experts rather than the facility houses"

Chris Daubney (IBA) noted that the Nicam 728 system, by retaining the mono analogue f.m. channel, provides broadcasters with a new degree of treedom that could be used to provide a superior mono channel that would not suffer the phase cancellations at some frequencies inherent in a straightforward balance of L and R channels. He demonstrated the difference between normal $L+R$ and the situation where one channel is delayed by, for example, 90° by means of an all-pass phase-shift network. However in the acous tics of the conference hall. the differences appeared to be too subtle to be readily appreciated by most of the audience. No decision had then been taken on the precise way in which the Nicam and mono channels will be established.
John Watkinson (Ampex) de scribed the differences between the D1 (component) and D2 (composite) digital videotape formats. It is clear from recent Ampex announcements that the more economical D2 formats (May issue, 437-438) is proving attractive to some major users: AME Inc. of Burbank, California the largest full-service video post-production company, is purchasing 50 Ampex VPR-300 D2 machines at a cost of about $\$ 5$ million. Today some 300 VPR300 and ACR-225 automatic cassette players, both with D2 format. have been ordered, including 38 VPR-300 machines for the Canadian Broadcasting Corporation, eight ACR-225 cartridge machines for Cosmos of Greenville, and some VPR-300 machines for the BBC for operational evaluation as a possible replacement eventually for C format machines. PAL customers, regarded as the main supporters of the component D1 format, have ordered more than 70 composite digital machines

Television Broadcast is written by Pat Hawker.

WM
 FIELD ELECTRIC LTD. 01-953 6009. Fax: 01-207 6375 3 SHENLEY ROAD, BOREHAMW00D, HERTS WD6 1AA.

TEST AND MEASUREMENT EQUIPMENT
1801 A Dual Chn, vertical amp plug in. new $£ 230$
Mult-funclion meter $3450 \mathrm{~B} £ 150$
. 651 B Test Oscillator 10 Hz to $10 \mathrm{MHz} £ 195$
Pe Voltage divider probe 10004D, new with manual, 10 m !1/10pt $\$ 85$
.P. 9895A 8" Lisk Drive, cased with PSU etc. new and boxed $£ 225$
mplete with manuals etc.
5000A Logic State Analyzer $£ 230$
C34-431C Ruggedized Power Meter 10 MHz to $40 \mathrm{GHz} \mathbf{\Sigma 8 0}$
33308 Automatic Synthesizer $0.13 \mathrm{MHz} £ 1.150$
P. 61 A Logic State Analyzer c/w probes etc $£ 850$
P. 6824 A DC PSU/Amplifier - $50+50 \mathrm{~V}$ DC $\Sigma 75$.
P. $8120 / 1082$ Thermistor Mount Cable. New $£ 80$
H.P. P486A Thermistor Mount 10011 Neg. $£ 125$.
H.P. 1803 A D.C. Diff. Offset ampllifier P/in. $\mathbf{\Sigma 7 5}$
Tektronix 286 sampling head multi-plex unit $£ 120$.

Tektronix 286 sampling head multi-plex un
Tektronix 178 Linear IC test fixture $£ 375$
Tektronix 178 Linear IC test fixture
Tektoonix FET Probe $6045 \$ 90$.
Tektronix S3A Sampling Head $£ 120$
Tektronix 7403 N Rackmount O'scope Mainframe, no guarantee tube Ok
$£ 200$
Tektronix D11 Storage O'scope Maintrame, no guarantee tube OK
£200.
Tektronix 7511 Samplling Amp P/in $£ 450$.
Tektronix 7892 Dual time base P/In $£ 450$
Tektronix 1 A4. 4 Trace Plug in $£ 75$.
Tektronix 1 A5 Comparator Plug in $£ 45$.
Tektronix 1 A5 Comparator Plug in $£ 45$
Exact Model 337 Digital phase gen. $4 \mu \mathrm{~Hz} / 100 \mathrm{MHz} £ 300$
Solartron Frequency Response Analyser Type 1310.02 Hz to 20 KHz
put range 10 MV AC DC to 300 V AC DC RMS $\mathbf{\$ 3 5 0}$

Dawe Transistor Strobotlash Type 12090 $£ 85$
Bell \& Howell Datatest Calibration Unit for FM systems $\mathbf{\$ 1 7 5}$
Somark Insularion'scope dual beam $35 \mathrm{MHz} £ 130$.
Singer Gerisch Phase Angle Voltmeter with 400 Hz P/in $£ 250$
Singer Gerisch Phase Angle Voltmeter with 400 Hz P/
Marcon Inst. 0.1% universal bridge TF $1313 \mathrm{~A} £ 260$.
aicur Ins 6100 Sol Stale Electrometer measu
kurrent source $£ 850$.

	Power supplies All 240V AC input unless stated. 5V 20 A s/mode $\mathbf{£ 1 8 . 5 0}$ 5V 40A s/mode $£ 25.00$, 5V 60A $£ 16.40$, 12 V 60A $£ 70.00$, Farnell SM $+5 \mathrm{~V} 1 \mathrm{GA} .+24 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V} 500 \mathrm{M}-5 \mathrm{~V} 1 \mathrm{~A}$. new data $£ 28.50$, Farnell SM 12 V 2.5 A ultra small $£ 38.00$, Farnell Fan Cooled $\mathrm{SM}+5 \mathrm{~V} 10 \mathrm{~A},-5 \mathrm{~V}$ $1 \mathrm{~A},+12 \mathrm{~V} 3 \mathrm{~A},-12 \mathrm{~V} .1 \mathrm{~A} £ 32.50$. 12 V 3 A Linear $£ 17.25$. Famell SM 6 V $40 \mathrm{~A} £ 26.50$, Farnell 6 V 5 A SM ultra small $£ 25.00$ 10.5V 30A SM $\mathbf{\$ 2 6 . 5 0 . 5 V}$ IA PC Card Regulated $\mathbf{\$ 8 . 6 0 , ~ Z X ~ P S U ~ 9 V ~ 1 . 4 A ~} \mathbf{\$ 8 . 9 5}$. Gould 379 . $5 \mathrm{~V} 40 \mathrm{~A}, 12 \mathrm{~V} 4 \mathrm{~A}, 15 \mathrm{~V} 11 \mathrm{~A}$. $\mathrm{s} /$ mode $\mathbf{\$ 5 9 . 0 0}$. Power supply makes are Fasnell Advance Gould Coutant AC DC. Aztek. Solartron. Special Offer: AC DC Electronics 5V, 60A. $12 \mathrm{~V} \times 2.2 .5 \mathrm{~A} 240 \mathrm{~V}$ or 115 V input $\mathbf{\$ 5 0 . 0 0}$
W	
$\angle 4$	
Finlay Microfilm FM1. portable micro fiche reader, 240V AC or 12 V DC input, c/with 6V 1.6 A AC adpt. 12V DC 6V AC adpt, tiche includes lens. gates or Nat Pan sealed lead acid cells $\times 3$, we cannot offer guarantee on cells 6 V 9 watt Quartz halogen bulb. carrying case, slze $81 / 2 \times 71 / 2 \times 5$ hard viryl $£ 24.95$ new and boxed	
	Card Mo. $1: 1 \times 280$ A DMA, 1×280 A CPU, $1 \times$ D8255 AC5 in holders, $1 \times 5 \mathrm{MHz}$, Xtal, $8 \times \mathrm{MB} 826415,1 \times \mathrm{SN} 74198 \mathrm{~N} .-53$ various chips, new ex.equpment. $£ 16.50$. Card No. $2: 1 \times$ WD 1933 B-01 in holder +16
	ex.equpment. $£ 16.50$. Card No. $2: 1 \times$ WD1933B- 01 in holder +16 various new ex-equip. $\mathbf{£ 1 2 . 2 5}$. Card No. 3: $2 \times$ D8255 AC 5, $2 \times$ HLCDO437P in holders +10 various $\$ 4.95$. Card No. 4 : LCD 6 digit display. 12 momentary plain keyboard rocker switches. 4 bar LEDs
$\begin{aligned} & \mathrm{MC} \\ & \mathrm{OC} \\ & \mathrm{BE} \end{aligned}$	Contraller. $8 \times$ MC68661 $8 \times$ MC14891. $8 \times$ MC1488P. 13 various chips all In holders, new ex-equipment. £18.95. Card No. 6: \$100 Backplane 20×100 phn connectors, new. £29.95. Card No. 7: Hard disk, floppy disk controller. S100 type, inc: D765AC. D8237 AC5. 8253. 8085A. 276464 K
	Card No. 8: Infra-red Remote Controller. 1AY-3-8470A Encoder Red Emitter 16 membrane keyboard $£ 350$ Card No 9 .
Hewlett Packard 86A Personal Computer with built in interfaces for 2 disc drives and ceatronics compatible printer, 64 k built in user memory, 14 user definable keys, display capacity 16 or 24 Ines $\times 80$ characters. c / w system demo disk, user programme, library pocket guide, tull user manual etc. comp' ete new in sealed boxes. $\mathbf{£ 3 5 0 . 0 0}$ discount for qty.	chlps inc block dia. chips in holders, new ex-equipment $\mathbf{\Sigma 2 9 . 9 5}$. Card No. 1010 Master Board 57.50 . Card No. 11 10-M Board $\mathbf{5 7 . 5 0}$. Card No 12 MC6845IL8 Motorola Ceramic $\mathbf{£ 1 2}+\mathbf{v a r l o u s ~ c h i p s . ~}$
	MPI Micro Peripherals ınc. $51 / a^{\prime \prime}$ full helght floppy disk drıves, 40 track
Variable P.S.U. all 240 V AC input, all metered Kingshill $501.0-50 \mathrm{~V} 0-1 \mathrm{~A}$ £35. $0.40 \mathrm{~V} 0-3 \mathrm{~A} \times 2 £ 115$. $0-20 \mathrm{~V} 0-10 \mathrm{~A} £ 115.0-50 \mathrm{~V} 0-3 \mathrm{~A} £ 85.0 .40 \mathrm{~V}$ $0-2 \mathrm{~A} \times 2 \mathbf{£ 1 2 5}$. Welr Maxireg 762.0-60V 0-2A 5140 . Lambda $0.40 \mathrm{~V} 0-3 \mathrm{~A}$ £98. 0-40V 0-1A $\times 2 £ 125$ Solartron $0-30 \mathrm{~V} 0-1 \mathrm{~A} \times 2$ 〔45. H.P. 6824 A $\pm 50 \mathrm{~V} \pm 1 \mathrm{~A} £ 75$. Oifronix $84010.40 \mathrm{~V} 0-1 \mathrm{~A} £ 50$ B81750-10V $0.7 \mathrm{~A} £ 98$ Sorensen SRL $40120.40 \mathrm{~V} 0-12 \mathrm{~A} £ 345.60$ 40-60V 0-4A $£ 260$. Lambda LMG $12.12 \mathrm{VDC}=5 \% 65 \mathrm{ADC} \operatorname{Lin} \mathbf{\$ 3 4 5} \mathrm{c} / \mathrm{p}$ detals please ring.	
	Berco Varlac. 0.272 V AC. 240 V AC Primary. 15 A cased, new. $£ 160.00$ cip 6.00.
SUPER SPECIAL OFFER Nec 12 " Green Phos Monitor. 7511 comp video input, high res. 240 V AC input, cased. 19.95 c/p 4.25 . NEC 9" Green Phos Monitor. 75 I 1 compvideo input, high res. 240 V AC input, cased. $£ 19.95 \mathrm{c} / \mathrm{p} 3.80$. Ex-equipment tested	SPECIAL OFFER TEST EQUIPMENT Fluke 8000 Series Digital Voltmeter sold with no guarantee $\$ 17.50 \mathrm{c} / \mathrm{p}$ 2.00. Solartron A200 Series Digital Voltmeter sold with no guarantee $\mathbf{£ 3 5 . 0 0}$ c/p 3.75.

We would like the opportunity to tender for surplus equipment
Official Orders/Overseas Enquiries Welcome/Order by phone or post. Open 6 days, half day Thursday. Postall rates apply U.K. mainland only. All test equipment carries warranty. All prices including 15% VAT \& c/p unless stated. Save time, phone your order for quick delivery with Access, Amex, Diners or Visa cards. Remember all prices
include VAT and c/p unless stated.
ENTER 22 ON REPLY CARD

ELECTRONIC COMPONENTS GUIDES FROM HEINEMANN NEWNES

Sensors and Transducers Keith Brindley
A components guide with up-to-date explanations of the theory, the types and the applications. There is a large number of transducers and it's not easy to choose the right one for a particular function. Keith Brindley has brought together as much of the required information as possible in this components guide so that engineers can view transducers in perspective, and by category, and then make an informed choice. 043490181 4/Paperback176pp/132 illustrations/E12.95 This is the first in a new series of components guides from Heinemann Newnes. Forthcoming volumes will cover Power Supplies; Cable and Wire; Electric Motors; Relays, Solenoids and Switches.

ORDER FORM

Marketing Dept, Heinemann Professional Publishing.
FREEPOST EM17 London WCIB 3BR
FREEPOST EM1 7 London WCIB 3BR.

Please send me:

_—_copyfies of Sensors and Transducers 0434901814 © ©12.95
Please add $£ 2.00$ for postage and packing. (Allow 28 days for delivery)

\square amex
\square access
\square vis
\square

SENSORS

transducers

(E) EPROM PROGRAMMER

AT LAST! Over 50 Generic Device Types.

. at a price to suit any budget! THE MODEL 18 PROM PROGRAMMER

* Types include 27 C - parts: EEPR

Stlll only
5189.95

* Automatic Data Rate setting 300-192000 Baud

Two independent Communications Protocols built in. Use with: any host computer with RS232 port and Terminal Emulator
MS-DOS, PC-DOS and CP/M-80 computers.
Fast Interactive algorithms automatically selected as appropriate.

- Upgradable for future types
* Designed, manufactured and supported in the UK
- Comprehensive User Manual.
* n.b. Devices other than 24/28 pin require low cost socket adapter.

Write or telephone for further details
ELECTRONICS, UNIT 2, PARK ROAD CENTRE,
MALMESBURY, WILTS SN16 OBX. Tel: 0666825146

SIGNATURE

 DATE
Credit card customers should use address as shown on credit card statement

 ENTER 54 ON REPLYCARD
Radials - buried or elevated?

For 50 years, medium-wave broadcast antenna systems have depended on monopole or T-wire radiators tuned against an extensive system of huried radials extending all round the mast(s).
This form of ground-plane, with copper (or in some cases aluminium) wires buried with aid of a mole plough, stems directly from the classic June 1937 Proc. IRE paper "Ground systems as a factor in antenna efficiency" by Dr George Brown, R.F. Lewis and J. Epstein of RCA. This showed conclusively that extensive radial systems resulted in higher radiation efficiency in sites of good, average and poor earth conductivity and sounded the death knell for simple earth spikes and single-wire counterpoise systems. In one test, at 3 MHz , the authors noted that radials laid on the surface were about as good as an equal number of wires buried to depths of about six inches. However, since buried wires permit agricultural use of the large sites needed to accommodate m.f. antennas with many radials, in practice the wires are almost always buried.
In the early 1980 s, a small group of retired engineers who were also radio amateurs Archibald Doty, John Frey and Harry Mills of Fletcher, North Carolina - recognized that, owing to the almost universal adoption of buried radials, there had been little recent investigation into the characteristics of antenna systems based on elevated (insulated) counterpoises and ground screens for use with electrically short vertical antennas.
Following some thousands of measurements they reported that the return currents of insulated radials of an elevated counterpoise system tend to be better distributed than with buried or surface radials. The group suggested that, for equal efficiency, a counterpoise system should be able to operate with fewer radial wires than the more conventional approach of burying the wires. A recent computer study "AM broadcast antennas with elevated radial ground systems", by Al Christman and Roger Radeliffe (Ohio University), Dick Adler (US Naval Postgraduate School), Jim

Breakall (Lawrence Livermore National Laboratory) and Al Resnick (Capital Cities/ABC Radio) in IEEE Trans on Broadcasting, provides further evidence that the use of elevated radials would provide superior performance than buried radials, allowing the collection of electromagnetic energy in the form of displacement currents rather than forcing it to flow through lossy earth in the form of conduction currents. So far this work has depended upon computer modelling antenna systems, using the NEC-GS "Methods of Moments" software developed at the Law rence Livermore National Laboratory, although field measurements are being planned.

The computer studies indicate that a radiator elevated several metres above earth and having only four elevated horizontal radials should theoretically outperform a ground-mounted antenna with 120 buried radials over any type of soil. A typical elevated radial systen would comprise (for 1 MHz) four 75 metre radials supported along their length at 15 m intervals by a mast which extends upwards to within 0.5 m of the radial. The height of the end mast for each radial is equal to the elevation of the radial above ground, but separated laterally from the tip of the radial by 0.5 m . The centre mast supports the monopole. Each mast is attached to a 2 m earth stake driven full-length into the ground. Masts and ground stakes of steel. radials of copper wires, and the monopole antenna constructed of aluminium. The four radials are bonded directly to the top of the
central mast, but insulated from all other support structures. The whole arrangement is thus similar electrically to the popular h.f. and v.h.f. "ground-plane antennas" originally also developed by Dr George Brown.

The authors conclude that, if the theoretical results are confirmed in practice, the construction cost and complexity of m .f. vertical monopole antenna systems could be reduced significantly. The elevated monopole antenna should also provide increased groundwave field intensity while attenuating skywave radiation.

Cycle 22 will see m.u.f. soar

The extreme difficulty of making accurate medium- and longterm prediction of optimum frequencies has long haunted h.f. broadcasters - particularly during the early years of a new solar cycle, owing to the large and unpredictable variations in the maximum magnitude of successive cycles. Solar cycle 22 , now recognized as having begun in September 1986, has seen solar activity rising rapidly in fits and starts. It now seems likely to rise to record or near-record heights despite a number of earlier predictions that this cycle would have a low maximum (much the same was predicted in the early days of Cycle 21 and subsequently proved wrong).

Writing in Nature (12 May. 1988) Dr Geoffrey Brown (University College of Wales, Aberystwyth) suggests that there is

According to an American computer study of m.f. transmitting antennas, elevated radials work better than buried ones. They should also cost less to construct.

now good evidence, based on the use of precursors such as the number of geonetric abnormal quiet days (a.q.ds) during the declining period of the preceding cycle, to predict a high peak sunspot number of 174 ± 35 with a maximum in 1990 ± 1. The relationship between a.c.ds and the magnitude of the following peak has been found to hold good back to 1885 , the earliest year for which data is available. If this prediction holds good it would make the peak of Cycle 22 one of the highest on record, and should provide broadcasters with many hours' use of the highest frequency h.f. allocations at 21.4 and 26 MHz , and maximum usable frequencies rising well above 50 MHz at times.

However, listening to h.f. broadcasts in western Europe is "on the way out", although still important in some parts of the world according to some observers at the recent International Radio Days 1988 conference at Antwerp - the conference formerly known as the European DX Conference. Other forms of international communications. including satellite-delivered television and high-quality sound for rebroadcast or cable distribution, and personal computer electronic mail are seen as bidding to diminish the h.f. radio audience, of which only a tiny minority now represents the short-wave enthusiasts interested more in receiving unusual or low-power transmissions than in listening to programmes.

According to a Russian representative at Antwerp, interference (jamming) with the reception of h.f. broadcasts to the USSR is now confined to broadcasts from two propaganda services (presumably the Americanfunded Radio Liberty and Radio Free Europe). The USSR has agreed to observe international agreements relating to satellite broadcasting.

Radio amateurs throughout the world have welcomed the cessation after many years of all Chinese broadcasts on frequencies within the world-wide exclusive amateur allocation of 7000 to 7100 kHz , now officially confirmed as having stopped in December 1987.

[^7]
SUPERKTT ELECTRONICS, inc.

BUY DIRECT FROM THE USA AT WHOLESALE PRICES AND TAKE ADVANTAGE OF THE \$... JUST A SAMPLING OF OUR PRICES!

1.C.'s	
TL081CP	$\begin{aligned} & \text { TI } \\ & \text { MOT } \end{aligned}$
LM319N	SIG
LM320K5	NSC
MC34002P	MOT
UA3406PC	FSC
MPO3467	MOT
LS37	HIT
LM392N	NSC
MN4035B	PAN
MN4042B	PAN
HCF4052BEY	PAN
MN4078B	PAN
M ${ }^{\text {d }} 40828$	PAN
M ${ }^{\text {N }} 40858$	PAN
HCF4086BEY	SGS
MN4519B	PAN
M ${ }^{\text {d }}$ 4539B	PAN
MC145848CP	MOT
MN4585	PAN
6331-1J	NMI
MP06700	MOT
SN74145N	TI
SN7433N	T
SN7445N	TI
SN74ALS04AFN	TI
74 HOON	SIG
$74 \mathrm{HO1N}$	NSC/SIG
$74 \mathrm{H108N}$	
74H10PC	FSCMOT
74 H 20 N	NSC
74 H 40 N	SIG
74 H 51 N	TI
74 H 55 N	TI
74 H 74 N	SIG/TI
74LS240N	FSC/PAN
74LS241PC	FSC
74L\$26	PAN
SN74LS322AN	II

WE HAVE 10M US DOLLARS
 IN STOCK! NEXT TIME,
 TRY US.

SN74LS323AN
DN74LS366A
DN74LS386
DN74LS90
SN74S02J
74S08PC
SN74S195N
74S32PC
SN74S51N
ULN2032A
74S240N
SN74S241N
UA7812UC
UA7912UC
N8T245N
N8T26AF
MC8T26AP
N8T97N
N9401N
96LS02DC
MICROPROCESSORS
WD1015PL $00-02$
FDC1797
WD1943MO0
D2147D2
COM2601
Al2625-5
SCB2673BC5N40
D2758
TMS2764-25JL
TMS27C256-25JL
TMS2732A30JL
AM27S181JC
TBP28L22N
Al4437
MM5290N4
SSI580CP
R6500-IEAB3
R6503AP
TI
PAN
PAN
PAN
TI
FSC
TI
FSC
TI
SPG
SIG
TI
FSC
FSC
SIG
SIG
MOT
NSC
SIG
FSC

WD
SMC
WD
NEC
SMC
BURR BROWN
SIG
INT
TIISGS
TI
TI
AMD
TI
AMICON
NSC
SSI
ROCK
ROCK
到~
MK68000P6A
S6802P
HD68.45P
AD7503JN
D8048C
M110B1
Z80HCPU
P8224
D8259AC
P8287
P8743H
N8X3i5N
MOSTEK
AMI
HIT
AD
NEC
SGS
SGS
INT
NEC
AMD
INT
SIG

TRANSISTORS \& SCR's

TIC2H6D
TIC216D
TIP2455
TIP2455
DIODES
1N4001
1 N4005
1N5225BRL
1N52258RL
IN5618
1N56́63
1N6:63
1N7:3A
OPTOS
H21A2
DL500
HDSPS523
HDSP5533
TPS603
TOSHIBA
COmPUTER
Kev Floppy dlsk drive - Chinon
ALL PRICES IN £ STERLING
SUPERKITELECTRONICS, INC.

TIME AND FREOUENCY

The Company is Registered to Def-Stan 05-21 (AQAP-1)

\star Synchronisation of remote sites.

* Time Stamping GMT/BST.

CHRONOMETERS

STANDARD FREQUENCY RECEIVERS

TIME CODE INSTRUMENTATION

* Quartz master/slave systems.

Accurate off-air standard (MSF Rugby).

* Calibration and reference for timers, counters, frequency meters.
Generators, Readers with high speed tape search and control. Timecodes IRIG A, B, vela, EBU, NASA, XR3.
Analogue, digital and self-setting analogue types (desk, wall or console mounting)
\star Public time displays for airports, bus, railway stations and factories.
A computer network monitoring and management system for synchronisation and fault reporting of up to 64 independent computers.
* Feasibility studies and consultancy.
* Small quantity manufacturing and test services.
* System design.
All the above can be supplied with a wide range of options and interfaces including Airborne, Military and
Commercial versions. Customised systems available.

European Electronic Systems Limited, Maldon, Essex CM9 GSW, UK.
 Telephone: 0245415911 Teleex: 995917 EULEC G Fax: 0245415785

P. M. COMPONENTS LTD SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK SPRINGHEAD RD, GRAVESEND, KENT DA11 8HD
 TELEX 966371 TOS-PM

Semiconductors

AAYI2	0.25	BC107A	0.11
AC126	0.45	8С1078	0.11
AC127	0.20	BC108	0.10
AC128	0.28	BC108B	0.12
ACl28K	0.32	8 CC 109	0.10
AC141	0.28	8 CC 1098	0.12
AC141K	0.34	BC114A	0.09
ACl42K	0.45	BC115	0.55
AC176	0.22	BC116A	0.50
AC176K	0.31	8 BC 117	0.19
AC187	0.25	8C119	0.24
AC187K	0.28	8 C 125	0.25
A 188	0.25	BC 138C	0.20
AC188k	0.37	BC_{140}	0.31
ACY17	1.15	BC 141	0.25
ADI 42	2.50	${ }_{8 C 142}$	0.21
AD143	2.50	${ }_{8 C 143}$	0.24
ADI 49	1.50	BC1478	0.12
D161	0.50	BC148A	0.09
A162	0.50	BC1488	0.09
F106	0.50	BC149	0.09
AF114	1.95	BC_{153}	0.30
AF121	0.60	${ }_{8} 157$	0.12
AF124	0.65	BC159	0.09
AFl2S	0.35	${ }^{8} 161$	0.55
AF126	0.45	BC1708	0.15
AF127	0.65	8 C 171	0.09
AF139	0.40	BC1728	0.10
AF150	0.60	BC1738	0.10
AF178	1.95	8 Cl 174	0.09
AF239	0.42	8 8177	0.15
ASY27	0.85	8 C 178	0.15
ASY77	1.50	BC182	0.10
ASZ16	1.75	BC18218	0.10
AUlO6	6.95	BC183	0.10

BC1841	0.09	80115	0.3
BC204	0.25	80124 P	0.59
BC2078	0.25	80131	0.42
8 C 2088	0.20	8 D 132	0.42
BC212	0.09	8 8133	0.40
BC2121	0.09	80135	0.30
BC213	0.09	BD136	0.30
BC2134	0.09	8 D 137	0.32
8 C 214	0.09	8D138	0.30
BC214C	0.09	BD139	0.32
${ }^{8} \mathrm{C} 2141$	0.09	BDI40	0.30
BC2378	0.15	80144	1.10
BC238	0.15	BDI50	0.29
8 B239	0.15	BDI59	0.65
BC251A	0.15	80160	1.50
BC252A	0.15	B0166	0.95
BC258	0.25	6DI79	0.72
BC258A	0.39	BD182	0.70
BC284	0.30	BD201	0.83
BC300	0.30	BD202	0.65
BC301	0.30	BD203	0.78
8 C 303	0.26	8D204	0.70
BC3078	0.69	BD222	0.46
B(327	0.10	BD223	0.59
8 8328	0.10	BD225	0.48
BC337	0.10	8D232	0.35
BC338	0.09	80233	0.35
BC347A	0.13	BD236	0.49
BCA61	0.35	BD237	0.40
BC478	0.20	BD242	0.65
BC527	0.20	8D246	0.75
BC547	0.10	8D376	0.32
BC548	0.10	BD379	0.45
BC549A	0.10	BD410	0.65
BC550	0.14	BD.334	0.65
BC557	0.08	BD436	0.45
BC558	0.10	80437	0.75
BC639/10	0.30	80438	0.75
BCY33A	19.50	BDS10	0.95

B0518	0.75	BF245	0.30
BD520	0.65	BF2561C	0.35
8D534	0.45	BF257	0.28
BD535	0.45	BF259	0.28
BD538	0.65	BF271	0.28
BD575	0.95	BF271	0.26
BD587	0.95	BF273	0.18
BD588	0.95	BF335	0.35
BD597	0.95	BF336	0.34
80695	1.50	BF337	0.29
80698	1.50	BF338	0.32
80701	1.25	BF355	0.37
BD702	1.25	BF362	0.38
80707	0.90	BF363	0.65
8Dx32	1.50	BF371	0.25
6D×538	1.65	BF394	0.19
8F115	0.35	BF422	0.32
BF119	0.65	BF 423	0.25
BF127	0.39	BFas7	0.32
BF154	0.20	BF458	0.36
8 F 158	0.22	BF 467	0.68
BF160	0.27	8F 493	0.35
BF173	0.22	B14995	0.23
BF177	0.38	844997	0.25
BF178	0.26	BFR39	0.23
8 BI 179	0.34	BFR40	0.23
BFI80	0.29	BFR81	0.25
BFI81	0.29	BFR88	0.30
BF182	0.29	8FR90	1.50
BF183	0.29	BrR91	1.75
BF 184	0.35	BFI42	0.35
BF185	0.28	BFT43	0.35
BF 195	0.11	BFW10	0.55
BF197	0.11	BFWII	0.75
BF198	0.16	BFWISA	1.15
8 F 199	0.14	BFW61	0.60
8F200	0.40	BFW92	0.85
BF240	0.20	BFX29	0.30
BF241	0.15		

0.30	BFX85	0.32
0.35	BFX88	0.25
0.28	BFYIE	1.35
0.28	BFY5C	0.32
0.28	BFY51	0.32
0.26	BFYG	0.77
0.18	BIY48	1.75
0.35	BR100	0.45
0.34	8R101	0.49
0.29	6R103	0.55
0.32	BR303	0.95
0.37	BRC4443	1.15
0.38	BRY39	0.45
0.65	BSW64	0.95
0.25	B5X60	1.25
0.19	Brloodi02	0.85
0.32	B1106	1.49
0.25	BT116	1.20
0.32	B1119	3.15
0.36	81120	1.65
0.68	8U105	1.95
0.35	Nul08	1.69
0.23	8U124	1.25
0.25	8Ul25	1.25
0.23	84126	1.60
0.23	BU204	1.55
0.25	BU205	1.30
0.30	BU208	1.39
1.50	BU208A	1.52
1.75	BU2080	1.85
0.35	Bu326	1.20
0.35	BU3265	1.50
0.55	8U407	1.24
0.75	8U408	1.50
1.15	84500	2.25
0.60	BU508A	1.95
0.85	BUS26	1.90
0.30	BU807	2.25

BuY698	1.70
BuY71	2.50
Buval	2.50
M 3000	1.98
MJE340	0.40
MJE350	0.75
MJES20	0.48
MJE2955	0.95
MPSAI3	0.29
MPSA92	0.30
MRF237	4.95
MRF450A	13.95
MRF453	17.50
MRF454	26.50
MRF455	17.50
MRF475	2.95
MRF477	14.95
MRF 479	5.50
OC16W	2.50
$0<23$	9.50
$0<25$	1.50
0 C 26	1.50
0 C 28	5.50
$0<29$	4.50
$0 ¢ 32$	5.50
$0 C_{42}$	1.50
$0 \subset 44$	1.25
$0(45$	1.00
$0 \subset 70$	1.00
0×71	0.75
0×72	2.50
0×75	1.50
$0{ }^{0} 81$	1.00
$00^{4} 4$	1.50
OC139	12.50
$0<171$	4.50
0 C 200	4.50
OC201	5.50

R20088	1.45
R2009	2.50
R20108	1.45
R2322	0.58
R323	0.66
R2540	2.48
R(A16029	0.85
RCA16039	0.85
R(Al6181	0.85
RCA16334	0.90
R(A16335	0.85
R(A16572	0.85
\$20600	0.95
SKE5F	1.45
T6021V	0.45
T602N	0.45
T6029V	0.45
T6036V	0.55
T9002V	0.55
T901IV	0.75
T9015V	2.15
T9034V	2.15
T9038V	3.95
THY15/80	2.25
ThYTS/8S	2.25
T1P29	0.40
T1P29C	0.42
TIP30C	0.43
TIP3IC	0.55
TIP32C	0.42
TIP33C	0.95
TIP348	0.95
TIP4IA	0.45
TIPAIC	0.45
TIPA2C	0.47
T1P47	0.65
T1P48	0.65
T1P50	0.65

Integrated Circuits

AN103	2.50	AN714SM	3.95	(AA) 102	2.95
AN124	2.50	AN7150	2.95	LAd140	2.95
AN214	2.50	AN7151	2.50	LA4031P	1.95
AN2140	2.50	BA521	3.35	(A4400	3.50
AN236	1.95	(Al352E	1.75	LA4420	3.50
AN239	2.50	(A3088	0.46	(A4422	2.50
AN240P	2.80	(A3123E	1.95	LA4430	2.50
AN247	2.50	(A313EM	2.50	(A446)	3.95
AN260	2.95	(A3) 405	2.50	1C7120	3.25
AN262	1.95	CA3140T	1.15	1C7130	3.50
AN264	2.50	ET6016	2.50	LC7131	5.50
AN271	3.50	HAll3 ${ }^{\text {W }}$	1.95	LC7137	5.50
AN301	2.95	HAllsow	1.50	LM323k	4.95
AN303	3.50	HA1306	1.50	LM324N	0.45
AN313	2.95	HA1322	1.95	LM380N	1.50
AN315	2.95	HA1339A	2.95	LM380NB	2.95
AN316	3.95	HA1366W	2.75	LM3837	2.95
AN331	3.95	HA1377	3.50	LM390N	3.50
AN342	2.95	HA1406	1.95	(M1011	3.15
AN362L	2.50	HA1551	2.95	M5155L	2.95
AN612	2.15	(A1201	0.95	M515131	2.30
AN6362	3.95	LA1230	1.95	M51521L	1.50
AN7140	3.50	LA3201	0.95	M83705	1.50
AN7145	3.50	[A410]	0.95	M83712	2.00

VIOEO SPARES \& heAOS Pleose phone with your recorder model no tor our quatation	Hitachivt5000	2.95	PYE 71341 Lead	8.50	
	Hitochi VT8000	1.25	PYE $713515 A D$	8.50	
	National Panasonic		PYE 731/25	8.5	
	NV300/333/340	2.95	RANK A774 6.35		
	Nationol Pana sonic		RANK AB23	6.95	
3HSSUUN for National	NV20008	3.75	RANK T20A	6.95	
3HS53N for Notionol Panosonic	National Panasonic	2.75	SIEMENS TVK701SIEMENS EUROPA	${ }_{7}^{6.95}$	
	NV/77				
	Notional Ponosonic Nv3000	3.75	THORN 1500	5.45	
	National Panasonic		THORN 1600 THORN 3500	5.45 7.95	
Ponasonic ${ }_{\text {a }}$	NV7000	2.75	THORN 8000 THORN 8500	li.95 6.15	
3HSSH for Hitachil 35.00	National Ponosonic				
$3 \mathrm{HSSU3N}$ for Notional	NV8600 $8610 / 86$	3.75	IHORN B500	7.15	
Ponasonic $\quad 35.00$	Sonyo VTC S000	1.75	ITORN 9000	8.508.500.90	
3 HSSP for Shorp $\quad 35.00$	Sonyo VTC5300		TVII STICK		
3HSSONA for Notionol	Sonyo VTCS500	2.753.75	TVI3 Stick	${ }^{0.90}$	
Panasonic industrial 75.00	Sonyo Vic9300		TVIB STICK	1.101.40	
3HSSU2N for National	Sonyo VIC9300p	3.90 3.50	${ }_{\text {TV20 STICK }}$		
Ponosonic 39.50	Shorp 6300		VARICAP TUNERS		
3HSSSF for Fisher/fidelity 35.00	Sharp 7300	${ }_{3} 3.50$			
3HSSR for Amsirod Soishol 3 .00	Shorp 8300	3.503.50	Elcioa3/05 mullard	8.65	
35.00	Sharp 9300		ELCIOA3/06 MULIARD		
FS3ES Ior Sony stes.0.7.erc 35.00	Sony ${ }^{6}$	$\begin{aligned} & 2.75 \\ & 3.50 \end{aligned}$	U321	8.65 8.25	
$\begin{aligned} & \text { PS3BT for Toshiba } 39.50 \\ & \text { PSAB2S for Sony SLC } 20 / 30 \text { etc } \end{aligned}$	Sony 7			8.25 8.25	
	Sony 19	${ }_{2} 3.95$	U324	11.00	
39.50	Sony sl8000/8080	3.75	Mermistors		
PS5B35 for Sony SIC8/9 eic	Toshiba 7540	3.50	VA1040	0.23	
Philips V2000(49.50 500	Toshiba 9800	1.50	VA 10565	0.230.450	
Philips V2000					
Akji vs930009500	E H T MuItipliers		VA1097		
Amstrod 7000/Soishol	decca	${ }_{6}^{5.45}$	PUSM BUTION UNITS		
Triumph 1.50	decca 80	6.95	deccaitio way	7.95	
Ferguson 3V16 2.75	decca 100	6.95	DECCA4WAY 7.95		
Ferguson 3V22/JVC	DECCA 120	$\begin{aligned} & 6.95 \\ & 6.35 \end{aligned}$	HITACHI A way	11.95	
HR3360/3660 2.95	dECCA 1730			10.35	
Ferguson 3V23/JVC	GEC 2040		GEE 2136 way		
HR7700 1.50	GEC 2110	5.45 6.95		9.50 10.50	
Ferguson 3V29/JVC 275	ITT CVC1-9	$\begin{aligned} & 6.35 \\ & 6.35 \end{aligned}$		10.5014.50	
HR7200 2.75	ITT CVC20/25/30				
Ferguson 3V31/JVC	ITT CVC45	6.95	geratel way	14.50 10.50	
HR7650 2.75	PHILIPS G8 (550)	6.95	NEONS 7 WAY RANK \& WAY RANK 6 WAY	12.5010.5010.50	
JVC HR3330/3600 2.75	PH1LIPS 69	$\begin{gathered} 6.00 \\ 6.50 \end{gathered}$			
Hiachi VT11/33 2.75	PYE 697				

Cathode ray tubes	additional corrioge		CME-2024W	35.0	D13.610GH	59.00	D14-173GM	53.00	DG7.32	45.00	F31-13GR	75.00				
A smoll selection	per tube.		CME-3132GH	35.00	D13.611GH	59.00	D14-181GM	53.00	OH3.91	45.00	M7-120W	10.00 10.	M24-1201C M 24.122 Wa	59.00. 59.00	M31-191GV	55.00
from our stock of	CME-822W	10.00	CRE- 1400	35.00	D13.630GH	59.00	D14-200GM	75.00	F16-101GM	55.00	M14-1006m	45.00	M28-131G	49.00	M31-195w	65.00
10,000 fubes.	CME-1428W CME 1523-W	35.00 2900	D10-210CH 10.230GH	45.00 35.00	D13.63509	59.00 7500	D16-100GH/97	65.00	${ }_{\text {F21-130GR }}$	75.00 7500			M31-182GV	53.00	M31-325GH	35.00
Pleose add £3	CME. 1523 W	29.00	306 H	35.00	D14-150GH	75.00	D18-160GA	69.00	F31-121D	75.00	M23-112GV	55.00	¢			

P. M. COMPONENTS LTD

SELECTRON HOUSE, SPRNCHEAD ENTERPRISE PARK Spring ead id, gravesend, kent dail Bhd

A selection from our stock of branded valves

APPOINTMENTS

> Advertisements accepted up to 12 noon 29th July for Sept issue

DISIPLAYED APPOINTMENTS VACANT: $£ 27$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 5.50$ per line, minimum $£ 48$ (prepayable). BOX NUMBERS: $£ 15$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: PETER HAMILTON, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed.

EGTIT

 ALWAYS AHEAD

 ALWAYS AHEAD IN HARDWARE, SOFTWARE ε SYSTEMS IN HARDWARE, SOFTWARE ε SYSTEMS £10,000-£30,000

 £10,000-£30,000}

With the most successful companies and consultancies - both large and small - throughout the UK: Offeririg first class salary/benefit packages - several include company car - plus excellent career advancement opportunities.
$\mathrm{BSc}, \mathrm{MSc}$ or PhD with interest and experience in any of these fields
DIGITAL SIGNAL PROCESSING; ADVANCFD PROCESSOR ARCHITECTURES; IMAGE ANALYSIS: GRAPHICS / SPEECH PROCESSING; LASER / FIBRE OPTICS; PARALLEL PROCESSORS; REAL-TME CONTROL / C³ SYSTEMS; RADAR; SONAR; COMMUMICATIONS; OSI / X400 NETWORKS; AN E IKB SYSTEMS; ANALOGUE E DIGITAL VLSI / ASIC DESIGN; SIMCILATION; MILIMETRIC SYSTEMS; SOFTWARE - C, PASCAL, ADA, OCCAM, 68000 ASM, MODULA, UNIX / VMS; CAD TOOLS.
ECM offers confidential and professional guidance: we will listen to your requirements and identify opportunities to suit your plans
Phone now for your FREE CASSETTE "Jobsearch Technology" and hear how ECM can help you to develop your career. Call ECM on 0638742244 - until 8.00 p.m. most evenings - or send your cv by FAX (0638743066) or mail to:

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED
THE MALTINGS, BURWELL. CAMBRIDGE. CB5 OHB.

Test Engineers

Racal Defence Radar \& Displays is at the forefront of defence electronics. and requires Test Engineers to maintain its market position into the 1990's. The main site is located at Chessington. Surrey within easy reach of London and the Southern Home Counties.

The Company has reached an exciting new era, developing new and updated radar systems which will shortly be moving into production

As a member of our production test team, you will gain a broad knowledge of our existing product and help to launch the new range of products, whilst working with the most sophisticated "state-of-the-art" test equipment. Your work will involve the diagnosis of complex faults to component level. and at the higher levels you will be involved in raising software programmes and overseeing projects from the development laboratories into production.

You should have a working knowledge of analogue and digital circuitry. with software and microwave knowledge an advantage, and you will have a minimum qualification of Technical Certificate /ONC. You will certainly have some experience of the testing and diagnosis of complex electronic systems. and a Forces background will be particularly welcome, although not essential.

Assistance with relocation will be given.
Interested? Please write to Mary Mackay, Assistant Personnel Officer at the address below, giving career history and current salary, or phone her for an application form.

Racal Defence Radar \& Displays Limited, 9 Davis Road, Chessington. Surrey, KT19 1TB. Tel: 01-397 5281 extension 2418 .

CLIVEDEN

Technical
Recruitment
FIELD SERVICE
ENGINEER
Either DECNAX or IBM PB Berks experience for expanding maintenance company c c $13 \mathrm{~K}+$ car TEST/BENCH ENGINEER Bucks Component level repair of microprocessor based systems $\begin{array}{ll}\text { TEST SUPERVISOR } & \text { c£11k } \\ \text { Bucks }\end{array}$ Supervisory experience required for small test department for networking company.

TEST ENGINEER

To repair analogue and digital systems for medical company.

DEVELOPMENT

TECHNICIAN
£101/2K

Experience of networks and communications.

Hundreds of other Electronic vacancles
Roger Howard C.Eng. M.I.E.E., M.I.E.R.E CLIVEDEN TECHNICAL RECRUITMENT 92 The Broadway, Bracknell, Berks RG12 1AR Tel: 0344489489 (24 hour)

Engineers required

Experienced engineers required for expanding Car Audio Service Company. Digital techniques requred. Interesting work with good prospects. Excellent salary. Please apply in writing DARDS ELECTRONICS

CONTRACTS

20 MICROWAVE TEST ENGS.
3.10 GHz

Very high earnings
SILICON VALLEY 0252877778
Florence Close, Yateley. Surrey GU17 7PH

University of Cambridge Department of Physics

ELECTRONICS TECHNICIAN

We are looking for an enthusiastic person with practical skills who will construct and test a wide variety of electronic apparatus for teaching and research. An ideal person will be aged 21-30. qualified to HTEC HND or equivalent. and have at least 2 years' industrial experience. Salary £7.145-£8.275 pa (under review). 8 weeks annual leave. Applications to The Secretary, Cavendish Laboratory,
Madingley Road,
Cambridge CB3 OHE

STATE OF THE ART BROADCAST TELEVISION EQUIPMENT
We are a flexible, growing company specialising in the research, development and manufacture of high performance analogue and digital microprocessor based video products for the Broadcast Television Industry.
Due to expansion, opportunities have arisen for:

$$
\begin{aligned}
& \text { TEST } \\
& \text { ENGINEERS }
\end{aligned}
$$

Applicants, preferably with a broad test background ideally in broadcast television, must possess the ability to test and set up at least some of the following:

Routing Switchers

Vision Mixers Digital Processor Systems
Benefits will include competitive salary; flexible working hours; 5 weeks' holiday; contributory pension scheme.
Please send $C \vee$ to:
Susan White, Abekas Cox Electronics, Hanworth Trading Estate, Hampton Road West, Feltham, Middlesex TW13 6DH. Tel: 01-894 5622.

CAPITAL

 lelephone: 01-8083050

THE UKS No. I ELECTRONICS AGENCY

LLECOTRONCS E XCINEERS if you are looking for a job in DESFOV FIELD SERTICE FECH ICO UL SALES

Telephone Vow for one of our FREE Jols lists or sent a full ev to the address belon.
Sacancies throughout the 1 h toE 18.000 pat
Capital Appointments Lud.. I'RLEEPOST London VI7 OBSK. Please send me vour list for \qquad Enginerss Vame (IIII)

Address \qquad

Post code

01-8083050-24 HOURS

GCHQ

TECHNICAL TRAINING FOR COLLEGE LEAVERS
For a rewarding career in the forefront of modern communications technology apply for

TRAINEE ENGINEERING TECHNICIAN

a) BTEC or SCOTVEC National Certificate in Electronics or Communications Engineering together with a GCSE English Language qualification at grade A, B or C (or equivalent). A GCSE in Physics or Technology would be desirable; or
b) BTEC Higher National Certificate or HND in Electronics or Communications Engineering.
Preference will be given to candidates under 25 years of age on 1 May 1989.
Candidates should demonstrate an interest in both analogue and digital communications.
Training involves a year in the GCHQ Technical Training Branch followed by 2 years' Directed Objective Training during which time students may study for their HNC if not already held.
Successful trainees will be engaged in the engineering support of GCHQ's modern communications systems.
Total pay package (including special pay additions):
Trainees aged 18 years $£ 6,634$ rising to $£ 9,471$ pa in 3 years.
After training salaries range from $£ 10,444$ to $£ 13,172$ with opportunities to progress further.
The Civil Service is an Equal Opportunity Employer.
Closing date for receipt of application forms 16 September 1988.
Write or telephone for application forms
to the address below:
PG/R THE RECRUITMENT OFFICE, GCHQ, ROOM Allos OAKLEY, PRIORS ROAD, CHELTENHAN, GLOS GLSE 5A, OR TELEPHONE (0242) 2329123

As a leading recruitment consultancy we have a wide selection of opportunities for high calibre Design. Development. Systems and supporting staff throughout the U.K. If you have expertence in any of the following then you should be talking to us for your next career move. ARTIFICIAL INTELLIGENCE • IMAGE PROCESSING • ANALOGUE DESIGN - MICRO HARDWARE \& SOFTWARE - GUIDED WEAPONS • C • PASCAL • ADA • RF \& MICROWAVE • ELECTRO-OPTICS • SIMULATION - C ${ }^{3}$ I • REAL TIME PROGRAMMING • SYSTEMS ENGINEERING • ACOUSTICS • SONAR • RADAR • SATELLITES • AVIONICS • CONTROL • ANTENNA - VLSI DESIGN

Opportunities exist with National, International and consultancy companies offering excellent salaries and career advancement. To be considered for these and other requirements contact John Spencer or Stephen Morley or forward a detailed CV in complete confidence quoting Ref. WW/101.

STS Recruitment, Telephone: (0962) 69478 (24 hrs), 85 High Street, Winchester, Hampshire SO23 9AP.

COURSES

Institute of Sound and Vibration Research with
Wakinson hememaional Corrnunicialions
A Comprehensive Practical Course
"Introducing Digital Audio" 21-23 September 1988 Contact: ISVR Short Course Sec,
University of Southampton SO9 5NH Tel: 0703559122 , extn. 2310. Telex: 47661 SOTONU G

ARTICLES FOR SALE

"WIRELESS WORLI"" 1956-61 COMPLETE. Offers? 06284 3022. 636

ARTICLES FOR SALE

LITESOLI) SOLIDEIMMATIC wave soldering machine model 800 with 90 Kg of solder and sturdy purpose made bench. $£ 1500$. Ferrograph frequency response analyser model RA200. £1600. Ferrograph RST2 test set with aux test unit. $£ 500$. Tel: (05036) 2013.

BANKIRUPT STOCK OF HITACHI LM236 640×200 dot matrix LCI dis plays. Modules include 20 IC drive and interface logic board. Current distributor price $£ 312$ each. Our price for sealed cartons of 15 display $£ 435+V A T$. Samples available for $£ 35+$ VAT. Carriage $£ 11.50$. Any order Send S.A.E. for data. Tel: 06003715 Specialist semiconductors, Founders House, Redbrook, Monmouth, Gwent.

[^8]
Assistant Telecommunications Technical Officers

Four vacancies exist at the Baldock International Monitoring Station in Hertfordshire, which present interesting and challenging opportunities to work in either the Engineering Support Group or the rapidly expanding area of Mobile Monitoring

Posts A: Two vacancies in Engineering Support Group
The group maintain, modify and install a wide variety of modern communication receiving and measuring systems. The systems, both fixed and mobile, cover the frequency range 10 kHz to 18 GHz

Posts B: Two vacancies in the Mobile Monitoring Section.
The section operates two mobile monitoring stations working throughout the country investigating and assessing the operating characteristics of VHF, UHF and Microwave systems. The equipment is both sophisticated and modern, using manual and computer control techniques to measure the parameters of these systems, which range from Private Mobile Radio, Band II Broadcast, up to Microwave links. You will be a member of a team of two, operating away from base. On the job training will be given. A clean driving licence is essential.

The Station is part of our Radiocommunications Division which is concerned with the efficient utilisation of the Radio Frequency Spectrum.

Applicants should be qualified to full BTEC/SCOTEC certificate or equivalent subjects relevant to Radio Telecommunications and have at least 2 years experience in the field of radio technology. Successful applicants must possess their own transport as the Station is not served by public transport. Salary range is $£ 7,816$ to $£ 11,089$. For further details and application form please write to Mr P L Ratcliffe, Department of Trafe and Industry, PM/PRTU, 1st Floor South, Allington Towers, 19 Allington Street, London SW1E 5EB, quoting reference E91764(EWW). The closing date for receipt of application forms is 12 August 1988.

The Civil Service is an Equal Opportunities Employer

dti

the department for Enterprise

ARTICLES FOR SALE

TO MANUFACTURERS WHOLESALERS BULK BUYERS. ETC.
 LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc
 CAPAClieRS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
 ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES
 SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
 ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
 TELEPHONE: 445 0749/445 2713
 R. HENSON LTD
 21 Lodge Lane, North Finchley, London, N. 12 (5 minutes from Tally Ho Corner)

GOLLEDGE
 ELECTRONICS

QUARTZ CRYSTALS OSCILLA. TORS AND FILTERS of all types Large stocks of standard items. Specarge stocks of standard items, Specials supplied to order. Personal and
export orders welcomed -SAE for lists export orders welcomed - SAE for lists please. OEM support thru: design advice, prototype quantities, production schedules. Golledge Electronics, Merriott, Somerset YA16 5NS. Tel: 046073718.

BRIDGES waveformn/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KiW meters, Oscilloscopes. Recorders. Signal generators - sweep. low distortion. true RMS, audio, RM deviation. Tel:040376236. (2616)

Please add 15% to all prices and $£ 1.15$ P\&P per order.
Rarities our speciality
Ask for price on any valve not lis:ted. Overseas enquiries welcom*. For quotations contact Martin Billington

BILLINGTON VALVES

el 0.103210729 Fax 0403210108 Telea 87271

ARTICLES FOR SALE
173 MHZ FM TELEMETRY

+ TELECOMMAND RADIO LINKS
Remote Switching
Voltage Monitoring
- Serial Data Transmission

ADENMORE LTD
27 Longshott Estate, Bracknell RG12 1RL Tel: (0344) 52023

ARTICLES WANTED

WANTED

Test equipment, receivers valves, transmitters, components, cable and electronic scrap and quantity

Prompt service and cash.

M \& B RADIO
86 Bishopsgate Street
Leeds LS1 4BB

0532435649

WANTED

STEWART OF READING
110 WYKEHAM ROAD,
READING RG6 1PL.
TEL: OT34 680011
TOP PRIIESPAID FORALL
TYPES OF SURPLUSTEST
EQUIPMENT, COMPUTER
EQUIPMENT, COMPONENTS
Etc. ANY QUANTITY

PLATINUM, GOLD, SILVER SCRAP. Melted assayed and paid for within 24 hours relay contacts, thermo couples, crucibles. Also printed circuit boards, plugs, connectors, palladium, hodium, tantalum and ruthenium. We have the technology to do the difficult refining jobs that others can't handle Totally free sampling service. Send samples or parcels (Regd post) or contact Eric Henderson. 0773570141 Steinbeck Refineries (UK) Ltd, Peasehill Industrial Estate, Ripley, Derbyshire DE5 3JG. No quantity too arge or small

495
FOR SALE AND WANTED TEST and production equipment, computers and DOS software. Dedicated microp rocessors Ltd. Unit B4 Acton Busines Centre, School Road, London NWIO 6TI). Tel: 01-965 2841 and 01-262 6902.

VALVES TRANSISTORS I.Cs WANTED also IC sockets, plugs, connectors, factory clearance etc. aives types PX4 PX25 KT66 \& KT88 espe. cially wanted. Billington Valves See left

SERVICES

TURN YOUR SURPLUS i.cs transistors etc. into cash immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES HARIIING \& CO 103 South Brink Wisbech. Cambs 0945584188 . (92)

SERVICES

 SV Neqative Stab PSU $£ 10$. Texcan UMF§20 Rotary Altenuator [15. Texcan UHF Bandpass Filter £12. Plessey Preciston Modules TV TXRX unnts: Sound and Subcarrier. Transmir ler IF. Combining Unit. Vision Oscillator \& Modulator. Receiver IF Input Receiver if etc all at $\Sigma 12$ ea. ATM Balanced Mixe $500-1,000 \mathrm{MHz} £ 15$. Texcan FP $50 £ 8$. Ouantity of BNC \& TNC cable assemblies $£ 2.50$ ea 5 A . 50 V variable PSU. stabilised $\mathbb{5} 65$. Brass one-way pressure valves $£ 2.50 .240 \mathrm{~V}$ motor with seven geared output drives $£ 10$. Fractio nal hp motors $£ 7-£ 12$. DC geared motor 6-24V. โ12

040-376236. 2016

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

MATMOS LTD, 1 church Street, Cuckfield, West Sussex RH17 5 Jz
 Tel: (0444) 414484/454377.
 COMPUTER APPRECIATION
 30/31 Northgate, Canterbury, Kent CT1 1BL
 Tel: (0227) 470512.

TRIUMPH ADLER/ROYAL OFFICE MASTER 2000 DAISY WHEEL PRINTERS 20 cpS , FULL IBM AND DIABLO 630 COMPATIBILITY, CENTRONICS INTERFACE. Features include underscore, bold, subscripts, superscripts underline etc. 132 column; micro proportional spacing. Complete with typewhee and ribbon, manufactured to highest standards in West Germany by Europe's largest typewriter manufacturer and offered elsewhere at over $£ 350.00$
£119.50 (carr. £6.50) - $£ 99.50$ each for quantities of $5+$
VICTOR SPEEDPAK 286.80286 based speed up card for IBM PC and most compatibles. Features cache memory and runs 6 to 7 times faster
$£ 99.50$ (carr. $£ 3.00$
PANASONIC Model JU-363 $31 / 2^{\prime \prime}$ floppy disc drives. Double Sided Double Density 80 track 1 megabyte capacity unformatted. Latest low component $1 / 3$ height design. SHUGART compatible interface using 34 way IDC connector. Will interface to just about anything. BRAND NEW. (We can offer at least 20% discount for quantities of 10 plus). Current model. We can supply boxes of 10 discs for $£ 15.95$ plus $£ 1.50$ carriage
PLESSEY Model T24 V22/V22 bis 2400 Baud MODEM Incle $£ 59.50$ (carr. £3.00 disc for IBM or MATMOS PC. Compact 1 MODEM. Including free software automatic modem featuring the lates rate recognition, operation on both oriny, $1200 / 2400$ Baud operation with auto bi uito cal and and private circuit (PC) and reception of andion allowing simultaneous transmission compact size ($9^{\prime \prime} \times 9^{\prime \prime} \times 2^{\prime \prime}$) BT in both directions over a single phone line V22bis service Sottware is includ approved and suitable for new PRESTEL V22bis service. Software is included for IBM PC, MATMOS PC, and (including
high speed Prestel) for BBC MICRO. BRAND NEW. NEW LOW PRICE high speed Prestel) for BBC MICRO. BRAND NEW. NEW LOW PRICE
£119.50 (carr. £5.00) - £99.50 each for quantities of $5+$
DUPLEX Model 100 green screen $12^{\prime \prime}$ high resolution monitor with composite video input. With tilt and swivel stand. BRAND NEW
£39.50 (carr. £5.00 ITT SCRIBE III WORKSTATION. Monitor sized unit with high quality high resolution $12^{\prime \prime}$ green screen monitor (separated video and sync), 5 V and 12 V cased switchmode power supply, processor electronics incorporating TEXAS 9995 and Z 80 H processors with 128kbytes and associated support chips, all BRAND NEW but with only monitor and power supply guaranteed working Original cost at least $£ 2.500$
£29.95 (carr. $£ 5.00$ ITT SCRIBE III KEYBOARD. Low profile keyboard for above with numeric keypad, serial interface. BRAND NEW but untested................. $£ 8.95$ (carr. $£ 5.00$)
TRANSDATA Model 307 ACOUSTIC MODEM. Low cost self-contained modem unit allowing micro or terminal connection to BT lines via telephone handset. V24 interface, up to 300Baud originate/answer modes, etc. BRAND NEW with manual
$\$ 14.95$ (carr. £3.00)

FUJITSU Model M2230AS $5 \frac{1 / 4}{}{ }^{\prime \prime}$ WINCHESTER disc drive 6.66 mbyte capacity unformatted. $16 / 32$ sectors, 320 cylinders. With ST 506 interface. BRAND NEW
£47.50 (carr. £3.00)
DRIVETEC Model 320 high capacity $51 / 6^{\prime \prime}$ disc drives. 3.3 mbyte capacity drive same manufacturer and same series as KODAK 6.6 mbyle drive 160 track. No further info at present. BRAND NEW ASTEC SWITCH MODE PSU. 5V (c) 8A; +12V (1) 3A; -12V (11 0.3A - 10 a tota 65W. Compact cased unit. Ex-equipment, tested …............... £14.50 (carr. £3.00) HEWLETT PACKARD Model 59307A dual VHF switch. DC to 500 MHz 50 Ohm switch for HP-IB
c18500
HEWLETT PACKARD Model 5045A digitał IC tester with CONTREL Model H310 automatic handler. With IEEE interface and print out of test results either pass/fail or full diagnostic including pin voltages at point of failure. With full compliment of pin driver cards and complete with substantial library of magnetic card test programs for 74 series TTL and other ICs. CONTREL handler allows fully automatic testing of ICs which are sorted into 2 bins. Price includes a second HP5045A (believed fully operational) for maintenance back-up $£ 550.00$ HEWLETT PACKARD Model 28C pocket calculator with graphics........ $£ 100.00$ CASIO Model FX8000 calculator with graphics and intertace.................. $£ 50.00$ ICOM micro2E 2 metre transceiver with carrying case $£ 150.00$ TIME ELECTRONICS Model 9810 programmable power supply $£ 160.00$ ITT PERFECTOR TELEX MACHINE. With $32 k$ memory, screen with slow scrolling etc. £350.00
HEWLETT PACKARO MODEL 5501A LASER TRANSDUCER. With piezoelectric tuning for precise control of wavelength for measuring applications $\quad £ 350.00$ VICKERS INSTRUMENTS MODEL M17 METALLURGICAL MICROSCOPE with binocular/micrographic head and all eyepieces. With 4 Microplan' objectives and Nomarski interference contrast .. $£ 1,00$ KRATOS MS30 DOUBLE BEAM MASS SPECTROMETER Approximately 8 years old with negative ion capability and fast atom bombardment (FAB). With gas and direct introduction sample probes and with gas chromatograph inlet system Output spectra are avalable directly via a HEWLETT PACKARD storage display and a UV recorder. An on-line DATA GENERAL DS60 computer system, which includes a graphics printer and two TEKTRONIX 4014 terminals, analyses
LUMONICS SYSTEM 2000 RUBY LASER with Q-switch and lrequency doubler. 0.3 Joule per pulse, 6 ppm.
£3,500.00
Please note: "VAT \& carriage (also + VAT) must be added to all prices.
\star VISA and ACCESS orders accepted.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 836-839

PAGE	PAGE	PAGE	PAGE
Airlink Transformers 766	Electronika-Munich............... 781	Kestrel Electronic	R Henson 781
Arcom Control Systems 799	Engineering Solutions 823	Components 758	Ralfe Electronics 824
Antex Electronics................... 751	European Electronic Systems..............	LJ Technical Systems 785	
Bicc-Vero Electronics.............. 794	Systems............................. 833	Langrex Supplies 740	Sherwood Data Systems 766
Black Star........................... 750	Field Electronics 831	Livingston Hire738/OBC	Slee Electro Products 754
Blue Chip Technology 801	Futurebus........................807/809	M \& B Radio (Leeds) 787	Stewart of Reading.............. 7478
Carston Electronics................ 791	Happy Memories 791		Surrey Electronics 738
Cavendish Automation 765	Harrison Electronics 765	M Q P Electronics...................... 831	
Colomor Electronics 791	Hart Electronic Kits 785	Micro Processor	Taylor Bros. (Oldham) IBC
Computer Appreciation 840	Heinemann Professional	Engineering 817	Technomatic828/829
Control Universal 805	Publications \qquad .831	Micro Systems....................... 797	Tektite 823
DDC (United Kingdom) 813	Hilomast............................ 758	Noral Micrologics................. 819	Thandar Engineertronics 758
Dean Microsystems 803	Icom(UK) 785	Number One Systems 787	'Thurlby Electronics IFC/824
Display Electronics 757	Icom	P M Components834/835	
	J D R Sheetmetal 738	Pineapple Software 740	Waugh Instruments 823
E.A. Sowter 787	John's Radio 781	Private Mobile Rentals 740	Wehster Electronics 765

[^9]R.F. EQUIPMENT MANUFACTURERS

PERFORMANCE \& QUALITY

19" RACK MOUNT CRYSTAL CONTROLLED VESTIGIAL SIDEBAND TELEVISION MODULATOR

PRICES FROM $£ 203.93$ (excluding VAT \& carriage) Prices CCIR/3 $£ 203.93$

CCIR/3-1 $£ 260.64$

19" RACK MOUNT VHFIUHF TELEVISION DEMODULATOR
PRIEE AT ONLY $£ 189.00$ (excluding VAT \& carriage)

NALLMOUNT DOUBLE SIDEBAND

PELEVISION MODULATOR

'RICES FROM ONYY £104.53 (excluding VAT \& carriage)

Prices

CCIR/3 SPECIFICATION	
Power requirement Video Inpus Audio Inpur FM Sound Sub-Carrie: Modulation IF Vision IF Sound Sound Pre-Emphasis Ripple on \mathbf{F} Saw Fi ter Output (an- channe $47-860 \mathrm{MHz}$) Vision to Sund Power Ratio Intermodulation Spurious Harmonic Output	- 240 V 8 Watl (avallable other voltages) - IV Pk-Pk 75 Ohm - 8 V 600 Ohm -6 MHz (available 5.5 MHz) - Negative $-38.9 \mathrm{MHz}$ - 32.9 MHz (available 33.4 MHz) - 50 us $-.6 \mathrm{~dB}$ $-+6 \mathrm{dBmV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$ -10 to 1 - Equal or less than 60 dB - $-40 \mathrm{~dB}(80 \mathrm{~dB}$ il fited with TCFLI filter or combined via TCFL4 Combiner/Leveller
CCIR/3-1	- Specification as above but output level 60 dBmV 1000 mV Intermodulation 54 dB
Other Opt ons Avai able	- I.F. Loop/Stereo Sound/Higher Power Output
Aternative Applicarions	- CCTV Surveillance up to 100 TV channels down one coax, telemetry camera control signals, transmitted in the same coax in the reverse direction.
802 DEMODULATOR SPECIFICATION	
Frequenc Range A.FC Corirol Video Ou:put Audio Ou:put Audio Mcnitor Oupput	$-45 \cdot 290 \mathrm{MHz}, 470-860 \mathrm{MHz}$ $-+1-1.8 \mathrm{MHz}$ - IV 75 ohm -.75 V 600 Ohm unbalanced -4 Ohms le by internal preset for PAL System I or BG
Options	- Channel selection via remote switching. Crystal Controlled Tuner. Stereo Sound.
CCIR/5 MODULATOR SPECIFICATION	
Power Requireme it Video Injut Audio In כut Vision to Sound Prwer Ratio Output Modulation Audio SLb-Carrie: Frequency Stabili y Intermoculation Sound P-e.Emphesis Double Sideband Modulator(unwa Combiner/Leveller)	$-240 \mathrm{~V}$ - IV Pk.Pk 75 Ohms - IV rms 30 K Ohms Adjuslable . 4 to 1.2 - 10 to ! $-6 \mathrm{dBmV}(2 \mathrm{mV}) 470.860 \mathrm{MHz}$ - Negative -6 MHz or 5.5 MHz - 25 Deg temperature change 150 KHz - less than 60 dB - 50 us ated sideband can be suppressed using TCFLA
CHANNEL COMBINER/FLLTER/LEVELLER 10 combine outputs of modulators	
 TCFL2 Channel Filter/ TCFL4 Channel Filter/ TSKO Enables up to $4 \times$ En	Combiner/Leveller. Insertion loss 3.5 dB Combiner/Leveller. Insertion loss 3.5 dB TCFLA or TCFL2 to be combined.

TAYLOR BROS (OLDHAM) LTD. BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.

Pental gives you the flexibility and power you need for the most advanced signal and network analysis solutions.
Livingston Hire's inventory is expanding all the time. So you can take advantage of the latest hardware design and test equipment. when you need it, without drawing on capital budgets.
Rental schemes range from one week, so you can meet peak demands and emergencies without affecting normal operations.
Fast order turnround and delivery anywhere in the UK is backed by full engineering support including inhouse maintenance and calibration.

Call your Livingston Helpline NOW for the rental solution: Tel: 01-977 8866. (South)
Livingston Hire
Tel: 061-998 7900 (North)
01-977 8866
Tel: 0506-415757 (Scotland)
EUROPE'S No. 1 IN ELECTRONIC EQUIPMENT RENTAL

[^0]: rant Subscription Services. Oikfield House. Perrymoun Rond. Haywards I leith. Sussex R1116:31)H. Telephune (0444 41212 . Please notify a change of address. USA: $\$ 116.00$ aimnail. Reed Business Publishing (USA). Subscription Ofice. 205 E. t'and Street. Ni' 10117 . Overseas advertis ink ageots: Frathee and Belgitm: Pierre Mussard, 18-20 Pace de la Madeleine. Paris 750108 . United States of America: Jay Feinnan. Reed Business Publishing Lid. 205 East 42nd Sireet. New York. Ny 10017 . Telephone (212) 367.2080 Telex 2:3827. USA mailing agents: Mercury Air freight International Latd. Inc.. Ioibl Englehard Ave. Avenel N.J. 07001. 2nd class postage paid at Rahway NJ Postmaster - send address to the alsove

[^1]: PRICES EXCLUSIVE OF CARRIAGE AND VAT. ALL PROOUCTS CARRY 1 YEAR GUARANTEE. FOR ILLUSTRATED DATA SHEET. PRICES, TECHNICAL ADVICE OR DEMONSTRATION CONTACT
 black star limited
 4 HARDING WAY, STIVES HUNTINGDON CAMBS PE17 4WR
 Tel: (0480) 62440 Telex: 32762

 ## Black

[^2]: Research Notes is written by John Wilson of the BBC External Senvices science unit at Bush House. London.

[^3]: Telecomms Topics is compiled by Adrian Morant.

[^4]: Study groups:
 Superbus
 Relatıonal data
 Graphics language interface
 Block structured tape formats
 System architecture

[^5]: up and running in half a day.

 ControlUniversal,137DittonWalk,CambridgeCB58QF Tel:(0223)244447—Fax:(0223)214626

[^6]: Hal Allan. publisher of the ENDL letter and the Bushooks is wice chairman of the U.S. ASC X.3T9.2 (SCSI). past vice-chairman of X3TO. 3 (IPI) and chairman of the ES/IIsteering committee.
 ENDL is at 14426 Black Walnut Court. Saratoga. CA 95070 (TX: 650-250-175\%). The above material was extracted from a presentation to be made at Buscon East, heing held in New York 4-6 October. Further details from Buscon, 200 Connecticut Avenue. Nowalk. CT 06856-4990. Tel 203852 0500. Tx 284997.

[^7]: Radio Broadcast is written by Pat Hawker:

[^8]: 640

[^9]: OVERSEAS ADVERTISEMENT AGENTS
 France and Belgium: Plerre Mussard, 18-20 Place de la Madelaine. Paris 75008
 United States of Amerlca: Jay Feinman, Reed Business Lid.. 205 East 42nd Street. New York. NY 10017 - Telephone (212) 8672080 - Telex 23827

