

Capacitors techniques and
applications
Curls, grads, divs and dels

Real-time colour palette

Mobile radio update
V.h.f. voltagecontrolled oscillator

Class B crossover distortion

ELECTRONIC BROKERS

This is just a sample of our huge inventory - contact us with your requirements.

All prices are exclusive of VAT and correct at time of going to press • Carriage and packing charges extra• A copy of our trading conditions is available on request

JULY 1987 VOLUME 93 NUMBER 1617

Features
 COVER

Research into biohybrid integrated circuits involves interconnections between neurons. Nerve cells in this electron micrograph are between a quarter and a tenth of a micron across. Last month's cover, which carried an incorrect caption, was an internal view of Motorola's 68020 32bit microprocessor.

NEW-WAVE ARCHITECTURE 671

The new architecture makes all bus devices intelligent so that bus activity is local to the processors, thus leaving the bus free for data transfer
by David Hunt and Keith Hodson.

MOBILE RADIO UPDATE

 678This years MRUA conference coincided with publication of the government-sponsored report on spectrum deregulation.

EUROPE'S CAPACITOR MARKET

688
Historically, the somewhat slow-moving and technologically mature capacitor industry has been overlooked by investment interest and p.r. hype. But there are changes afoot, both in market and industry... by Keith Thomas

CAPACITOR TECHNOLOGIES COMPARED 690
Engineers should have a good appreciation of the cost of various technologies for a
given capacitance value by Martin Baker

TERMINATIONS FOR CERAMIC CHIP CAPACITORS 692
 The low cost of nickel barriers vs the reliability of silver-palladium.
 MAXWELL'S E.M. THEORY REVISITED 697
 "If Maxwell's theory is about to be displaced we might take a nostalgic look at it once again"
 by Joules Watt

By 1990 a typical car might contain 500 capacitors, say AVX of Aldershot, leading to a very large volume of production if the estimate of 10 million new cars in Europe is realistic. See page 688 for an analysis of Europe's capacitor market.

PRESCALERS EXCEED 3GHZ

699
Bipolar i.c. technology has produced fast prescalers with a phase noise and speedpower performance better than with GaAs.

INTERMURAL TV SIGNALS

 705A well-placed dipole can often give better results than indoor Yagi or logarithmic arrays.

UNIVERSAL VCO WITH LOW PHASE NOISE

 707Analysis of noise behaviour for a variety of v.h.f. transistors shows that a j-fet produces the lowest phase noise by A. Decker

MODELLING YAGI-UDA ANTENNAS

710

Suite of Pascal programs calculates gain, impedance, current distribution and radiation pattern for any geometry, element thickness and operating frequency. by C.J. Railton

PIONEERS: Bell

716
by W.A. Atherton

[^0]
VIDEO FRAME STORE

721

Fast look-up table enables frame store to manipulate moving images in real time for flicker-free effects by D.E.A. Clarke

CACHE MEMORY DESIGN 727

External cache with 25 ns rams can take care of repetitive loops with the 68020 by D.Burns and D.Jones

EPROM PROGRAMMER-2

735
by B.J. Sokol

CROSSOVER DISTORTION IN CLASS B AMPLIFIERS
 739

Detailed tests on three amplifier modes, including a non-switching form of class B, give rise to some interesting conclusions by Erik Margan

LEETRONEX 87

 761Under Leeds University's Department of Electrical and Electronic Engineering this exhibition claims to be the best in electronics outside London.

REGULARS

COMMENT 66\%
FEEDBACK 683
CIRCUIT IDEAS 695, 706
APPLICATION NOTES 701
TELECOM TOPICS 731
RESEARCH NOTES 733
SATELLITE SYSTEMS 737
PRODUCTS 743 to 751
RADIO BROADCAST 753
RADIO COMMS 755

TV BROADCAST 757

UPDATE 762

APPOINTMENTS 764

ADVERTISERS INDEX 768

FULL PERFORMANCE TO ORIGINAL SPECIFICATION
*** AIL ITEMS ARB COVERED BY OUR COMPREHENSIVE PARTS \& LABOUR GUARANTEE ***

LOGIC ANALYSERS \&
DIGITAL TEST EQUIPMENT

HEWLETT PACKARD
1630G Logic state \&
timing. 65 ch .100 MHz
clock. . .£7950
4951A/1/100 Portable Protocol Analyser for serial data..£2500

TEXTRONIX
834 Datacom/Protocol
Analyser...£2000

OSCILLOSCOPES

PHILIPS
PM3266 100 MHz Fast
storage. Dual trace dual
timebase. . .£2950
TEETTRONIX
2215 60MHz dual trace
with delay...£625
2445150 MHz four
trace. Dual timebase.
$£ 2190$
2465300 MHz four trace with delay..£3200

7623A/7A18/7B53A 75MHz
Fast storage. Dual trace
Dual t/base.. $£ 1500$

SPECTRUM ANALYSERS

HEWLETT PACKARD
141T/8552B/8555A System
$0.01-18 \mathrm{GHz}$
. $£ 7500$
or with model
8445 pre-selector. $£ 9000$
3561A/001 Dynamic
Signal Analyser
...£7950

MARCONI

TF2370 110 MHz analyser with tracking
generator. ...£6850

SOLARTRON
1200 Dual channel L.F.
Signal
Processor/Analyser
£7250

SIGNAL SOURCES

MARCONI

2019 1GHz AM/FM phase locked. HP-IB. . $£ 2950$

PHILIPS

PM5190 $1 \mathrm{mHz}-2 \mathrm{Mhz}$ phase
locked. HP-IB
£1050

SPECIAL OFPERS

HEWLETT PACKARD 1630D LOGIC ANALYSER

State/Timing/Glitch
43 ch . 100 MHz . Clock mux . .£4250

WATANABE
MC6601-6Z
CHART RECORDER

6ch.flatbed. Overlapping pens. I/P voltages 1 mV 500 V .. $£ 500$.

ATLANTIC RESEARCH Interview 4600 PROTOCOL ANALYSER

Int. memory + data tape. Up to 19.2 kbps .£3250

MICRO DEVELOPMENT SYSTEMS

INTEL

Series 2
Series 3
Series 4 \& PDS series systems are all available.
CHECK NOW FOR BEST PRICES:

HEWLETT PACKARD

64100A/041 Logic development station.£5900

64600 Logic Timing Analyser....£2500

A WIDE RANGE OF THIS SERIES EQUIPMENT IS AVAILABLE. CALL US FOR THE LATEST INFORMATION!

COMPUTERS AND PERIPHERALS

CENTRONICS

353 200cps dot matrix printer. Centr. \& RS232 I/F. +NLQ mode ..£350

EPSON

FX100 Matrix
Printer...£325
MX100 Matrix
Printer...£195
HiWWLETT PACKARD
7475A/2 Eight pen
plotter HP-IB.. $£ 800$
82901A Dual Disc Drive HP-IB. . . $£ 150$

9817 Modular computer workstation....£1800

9826A Technical computer / controller. Internal disc...£1500

FULL SPECIFICATIONS OF THESE ITEMS ARE AVAILABLE ON REQUEST !

Prices EXCLUDE delivery \& V.A.T.

THE ABOVE EQUIPMENT IS JUST A SMALL SELECTION FROM OUR CURRENT STOCK !
stocks are always changing: If your requirement is not listed then please phone: we may weil be able to help you !

ARSTON ERECTRONICS ITD. 3 Park Rd. Teddington. Middx. Twil

Embarras de richesse

EDITOR

Philip Darrington
DEPUTY EDITOR
Geoffrey Shorter, B.Sc.
01.6618639

TECHNICAL EDITOR
Martin Eccles
01.6618638

PROJECTS EDITOR
Richard Lambley
01.6613039

NEWS EDITOR
David Scobie
01.6618632

DESIGN \& ILLUSTRATION
Alan Kerr
01.6618676

Roger Goodman
ADVERTISEMENT MANAGER
Martin Perry
01.6613130

Michael Downing
01.6618640

CLASSIFIED EXECUTIVE
Susan Platts
01.6613033

ADVERTISING PRODUCTION
Brian Bannister
(Make-up and copy)
01.6618648

Jackie Perry
01.6618649

PUBLISHER
Shobhan Gajjar
01.6618452

Whenever an engineering development to improve services is made possible, the broadcasting organizations are at pains to ensure that existing equipment is not rendered obsolete or, if it is made incompatible. long periods are allowed for any necessary changeover. One can cite the move to 625 -line television; the introduction of f.m. radio; the start of colour: the incorporation of teletext - all these were brought about painlessly. at no cost to those users who did not want the new service. except for the 625 -line change which took place over more than 20 years. and in some cases without the user even being aware of the development. These organizations have a duty to bring about change in this way and take a great deal of trouble to do so. They are concerned chiefly with providing the best possible service and the profit motive is absent.

But what of development in the rest of the consumer electronics market? It appears that no such scruples can exist alongside the need to create new markets. Each new development that emerges from the multinationals is, of course. an improvement on previous products, but at what cost to the public?

Admittedly. there are those who will acquire the newest. simply because it is available. But, if the majority have been persuaded to buy cassette recorders and black disc turntables at great expense. it is surely not unnatural for them to feel aggrieved when the next development uses optical discs and is totally incompatible with their equipment. If a music lover possesses a collection of cassettes, built up over ten years, does not the impending introduction of digital audio tape fill him with alarm and despondency?

It would be naive to expect the manufacturers of domestic electronic equipment collectively to refrain from introducing new techniques to the market until the previous generation of equipment had had a reasonable run. but there must surely be a less cynical way of progressing than to render collections of hardware and "firmware" obsolete at a stroke. The very least that can be done is to allow existing technology an extended period of obsolescence.

The consumer society is becoming, or has become. the victim of the pursuit of technology for its own sake. So far, society has been tolerant and even eager for new technology. but in the face of time scales of introduction and obsolescence which are shrinking to the point of bewilderment. it must eventually begin to react: the diminishing returns of "investment" in new methods of playing recorded music or watching television cannot escape notice for ever.

[^1]
GASFET RF PREAMPLIFIERS

These amplifiers provide the best noise performance available. Suitable for laboratory work or masthead use. Aligned to your specified frequency in the range of $30-1000 \mathrm{MHz}$.
TYPE 9006 N.F. 0.6 dB . Gain $10-40 \mathrm{~dB}$ variable. In the range $30-250 \mathrm{MHz} \ldots £ 71 £ 3 \mathrm{p} \& \mathrm{p}$. TYPE 9006 FM As 9006. Band II $88-108 \mathrm{MHz} \ldots £ 71+£ 3$ p\&p. TYPE 9002 Two stage Gasfet preamplifier N.F. 0.7 dB . Gain 25 dB adjustable. High Q filter. Tuned to your specified channels in bands IV or V...£93 + £3 p\&p. TYPE 9004 UHF two stage Gasfet preamplifier N.F. 0.7 dB . Gain 25 dB adjustable. High Q filter. Aligned to your specified frequency in the range $250-950 \mathrm{MHz}$ £93 + £3 p\&p. TYPE 9035 Mains power supply unit for above preamplifiers $\ldots £ 27.00+£ 4$ p\&p. TYPE 9010 Masthead weatherproof unit for above preamplifiers ... £11 + £3 p\&p.

RF SIGNALS SOURCES $10 \mathrm{MHz}-1 \mathrm{GHz}$

High stability phase locked oscillators operating directly on the signal frequency using a low frequency reference crystal. Miniature modules capable of accepting NBFM or FSK up to 3 KHz deviation which will effectively replace expensive signal generators in the lab to provide single specified frequencies. Linear amplifers are available to increase output power. TYPE 8034 Specify output in the range $10-150 \mathrm{MHz}$. Output $10 \mathrm{~mW}(+10 \mathrm{dBm}) \ldots £ 109+£ 3 \mathrm{p} \& \mathrm{p}$. TYPE 8036 Specify output in the range $150-1000 \mathrm{MHz}$. Output 10 mW $£ 163+£ 4$ p\&p.

FREQUENCY CONVERTERS

Transmitting frequency converter provides the performance required for television retransmission systems. TYPE $9113 \ldots £ 324+£ 6$ p\&p. Receiving frequency converter for weak signal reception ... TYPE 9114 $£ 324+£ 6 \mathrm{p} \& \mathrm{p}$.

BAND II FM TRANSMITTER

Single channel high stability phase locked loop FM exciter. 50 watts RF output. Complete in $19^{\prime \prime}$ racking case with mains power supply and fan cooling

TYPE 9292A (Mono) . . £1496 + £40 p\&p TYPE 9292B (Stereo) ... £1794 + £40 p\&p Complete amplifier and retransmission systems supplied with connectors. Comprehensive range of RF linear power amplifiers also available. Write or phone for full technical information.
Please add 15% VAT on total for UK sales. Please contact sales office for overseas post and packing rates.

RESEARCH COMMUNICATIONS LTD
 UNIT 3, DANE JOHN WORKS, GORDON ROAD
 CANTERBURY, KENT CT1 3PP
 TELEPHONE: CANTERBURY (0227) 456489

DESIGN, DEVELOPMENT AND MANUFACTURE OF RF
 COMMUNICATIONS EQUIPMENT

PINEAPPLESOFTWARE

Programs for BBC computers with disc drive. FREE updating service on all software.

DIAGRAM

PCB

Stil the only drawing program available for the BBC micro which gives you the ablity to draw really larg diagrams and scrolt them smoothly around the screen stopping to edit them at any ume it required Pineapples unique method of storing the diagram infor mation on disc means that the size of diagrams is imited only by the free space on disc. and not the amount of computer memory you have available (A blank 80 track disc will allow up to 39 mode 0 screens of diagram)
The superb print routinet supplied with the program enable large areas of the diagiam !o be printed in a single print run in a number of different sizes and rotated through 90 deg. if required Full use can also be made of printers which have a wider than normal carriage avallable.
The program is fully compatible with the Marconi Tracker ball described below
PLEASE STATE 40 or 80 TRACK DISC \& WHETHER STANDARD BBC OI MASTER VERSIONIS REQUIRED PRICE $£ 25.00$ + VAT

DIAGRAM UTILITIES

A suite of six utility programs which add additional features to the 'Diagram' drawing program. The utilities include the saving and loading of dreas of diagram 10 and from disc. The ability to display the whole of yout large diagram on the screen at one time fin either $4 \star 4$ or $8 \star 8$ screen format). The addition of borders and screen indents to diagrams, and the ability to shitl a whole diagram in any direction.

PRICE $\{10.00$ + VAT

MARCONI TRACKER BALL

This high quality device comes with its own Icon Artmaster drawing program and utilities to enable it to be used in place of keyboard keys. joysticks. or with your own programs
For Model B 8 B. (wilh icon Artmaster) $£ 60.00$. VAT Bare Trackerball ino solfware) $£ 4900$. VAT For Master Series (with Poinler ROM) $£ 5000$. VAT Poinler ROM available separately $£ 1250$ - VAT
\qquad

ROM

ADU is a new product which will prove invaluable to all users of the ADFS. (Including Winchester owners). The ADU Rom allows direct access to utilites which previously required the use of the ADFS utilites disc Many novel features are included in the commands allowing such facilites as the copying of alithe files on a DF disc onto ADFS in a single pass and Backing up between discs of oifferent size (including Winchesters) There is also a very powerful sector editor with automatic correction of CRC bytes and a menu routine with over 30 possible operations on $A D F S$ discs
Please write or phone for more deralls
PRICE $£ 29.00$ * VAT

This new release from Pineapple is a printed circuit board draughting aid which is aimed at producing complex double sided PCB's very rapidly using a standard BBC micro and any FX compatible dot-matrix printer
The program is supphed in EPROM and will run with any 32k BBC micro (including Master series). Also supplied is a disc containing a sample PCB layout to demonstrate the programs features.
By using an EPROM lor the program code the maximum amount of RAM is available for storing component ocation and ASCII identificatıon files etc. (Up to 500 components and 500 ASCII component descriptions may be stored for a given layout). These is no limit to the number of tracks for a given PCB , although the naximum size of board is restricted to $8^{\prime \prime}{ }^{\prime} 5.6^{\prime \prime}$
Using a mode 1 screen, tracks on the top side of the board are shown in red. while those on the underside are blue. Each side of the board may be shown individually or superimposed. A component placement screen allows component outtines io be drawn for silk screen purposes and component numbers entered on this screen may be displayed during track rouling to aid identification of roundels.
The print routines allow separate printouts of each side of the PCB in a very accurate expanded definition 11 or $2: 1$ scale. enabling direct contact printing to be used on resist covered copper clad board This program has too marry superb features to describe adequately here, so please write or'phone for more information and sample prinouts

PRICE $£ 85.00$ + VAT

TRACKERBALL ADAPTORS

Converter leads to enable the T rackerball to run mouse software and the mouse to run trackerball software (inc. DIAGRAM) Please state which way round when ordering. PRICE £8. 00 + VAT

MITEYSPICE

A new addition to our range o' engineering sotware. Miteyspice is a
simulator package with graphic display for any model BBC computer
As well as all the usual facilities available with this type of program, non-linear effects, small signal, noise measurements and sweeps may be performed. Component values may be swept, allowing component tolerances to be investigated as well as thermal performance etc. Comprehensive transistor modelling is incorporated using a 20 parameter Ebers Moil description The program is supplied on disc with a very comprehensive 49 page manual. Please write or "phone for more information.

PRICE £119 + VAT P\&P FREE

39 Brownlea Gardens, Seven Kings, Ilford, Essex 1G3 9NL. ซ Tel: 01-599 1476

ENTER 36 ON REPLY CARD

DM 105 - Pocket DVM from

A meter to literally suit all pockets - including the one that holds the wallet!

Its small size offers easy one hand operation, with large, clear. wide-angle display.
But sinall does not mean delicate; the DM 105 can withstand a 12
inch drop, without damage, due to its glass epoxy PC boards. shock mounted display and through thermoplastic case. Overloads are handled with similar certainty; the resistance range is protected up to 500 dc . AC voltage range to 800 V rms and DC voltage ranges up to 1000 V .
Battery life is typically 2000 hours and a I.O BATT indicator signals 20° b battery life remaining.
Ranges
DC Volts: $2 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}, 1 \mathrm{kV}$
AC Volts 200 V .750 V
Freq Range: 45 Hz - 450 Hz
DC Current: 2 mA .20 mA .
200 mA .2 A
Resistance: 2K. 20K. 200 K .2 M DC Accuracy
$=\left(0.5^{\prime \prime} \mathrm{r}\right.$ reading +2 digits $)$
Size: $130 \times 75 \times 28 \mathrm{~mm}$
Weight: 195 g
Accessories: Battery, test leads and manual.

Price 224.75

inc VAT

Please add 70p for post and packing.
This is just one of our range of quality Analogue and Digital multimeters.
Full details and specifications from:
Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts EN 10 7NQ
Telephone (0992) 444111 Telex: 22478 TRADE ENQUIRIES WELCOME
ENTER 55 ON REPPLY CARI)

The Archer Z8O 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

* Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
* OPTIONS: on board power supply, smart case,

ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
from $£ 185+$ VAT.
enter 45 on reply carid

The Bowman 68000 sBC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM.
\star Extended width versions with on board power supply and case.
from $£ 295+$ VAT.
ENTER 46 ON REPLY CARI)

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

TRAINING FOR TRAINERS

LAB-VOLT will be conducting a series of one day seminars on the following technologies:

- ROBOTICS - CONTROL
 - DIGITAL - MICROPROCESSORS
 - ELECTRICITY - ELECTRONICS
 - CIRCUIT CONSTRUCTION
 - TELECOMMUNICATIONS

Audio visual presentations and hands-on experience will be the main part of the seminars.
A certificate of achievement can be obtained upon satisfactory completion of a voluntary multiple choice test.
Please contact LAB-VOLT on 0480300965 or by fax on 048061654 for costs and dates.

Lab-Volt, Unit 6 Cromwell Mews, St. Ives, Cambs PE17 4BH, England

New-wave architecture

> The performance of traditional bus-based computer systems is
> limited by the bus itself. The new architecture makes all the devices on the bus intelligent, so that most of the activity is local to these processors and the bus is used for data transfer rather than program execution.

Agood understanding of system architecture is important for all users and potential users of microsystems. This article describes a novel approach to the problem of how to arrange the components of a microprocessor system to maximize the performance without excessive complexity and cost.

Modular computer systems made up of a series of p.c.bs and connected via a backplane bus were originally developed by the computer manufacturers as a way of increasing the flexibility of their systems. These bus-based systems allowed a wide variety of systems to be built from a relatively small number of components, which were the computer p.c.bs themselves. A well-known example of such a bus, prominent in the 1970s, was DEC's Unibus, to which some of the current buses, namely STE and VME, bear more than a passing resemblance.

It was the advent of the microprocessor which opened up this area to a wider audience. The original four-bit c.p.us were obsolete before bus standards were created but their replacements have spawned a diverse range of buses. The eight-bit buses have endured longer than most pundits would have predicted at the time of their introduction and in fact the STE standard has only recently emerged.

The first people to bring out bus-based systems for general use were the semiconductor manufacturers, whose first designs comprised a c.p.u. card, a memory card and i/o function cards, Fig. 1 .

The bus was really an extension of the microprocessor pins and it ran at the same speed as the processor clock. The bus was processor-specific and used for both program execution and data movement. This type of bus was very easy to implement and in general there was no contention for the use of the bus, the single c.p.u. being always in control. The bus was limited in the sense that once the system ran out of power, that was it; there was no easy way of increasing it.

MUITIPROCESSOR SYSTEMS

The next major advance was to modify the bus so that more than one processor could work with the same memory and i/o. This was achieved by adding some arbitration logic to determine which device had access

DESIGN PHILOSOPHY

Software concepts have formed an important part of the 'new wave' design philosophy. In software terms, the language runs at the top level with the hooks into the operating system below it. The operating system itself calls software modules which control the physical devices themselves. In standard VME systems, many of these modules are charged for separately or else the system engineer has to write them. In the 'new wave' approach, the hardware modules are intelligent and the software is an integral part of the module. It is as if we had a 'hardware operating system'.

Figure 1. The old pioneer: This is a simple system in which the bus is an extension of the microprocessor pins. In some designs the microprocessor address and data lines were taken directly onto the bus without any intermediate buffering.

Figure 2. Multiprocessors: The performance of a system can be increased by adding a second processor to the bus. A bus arbitration unit determines which c.p.u. has access to the bus.
to the bus. If, for example, a c.p.u. needed to access bus memory, it had to gain control of the bus first. This extra delay causes what is known as a wait state' in the c.p.u. and slows it down by typically 10%. In fact, the ability of a c.p.u. to handle wait states is fundamental for processors in multiprocessor systems. 'The alternative is to stop the c.p.u. clock temporarily). Adding a second processor to such a bus system did not result in a commensurate increase in performance. The main reason for this is that occasionally, a c.p.u. has to wait for access because the bus is already in use. In this type of system, the
bus is the limiting factor in system performance. Fig. 2.

The local execution bus technique uses the multiprocessor bus for data transfers but has a local bus for program execution. This goes a long way toward alleviating the problems described, Fig.3. The problem is that now, one has to be careful in the selection of card types. I have seen a recently produced system with a c.p.u. and local execution bus, except that, in this case, the disc controller was only capable of tranferring data into memory on the bus! The system was set up with an extra memory card
so that accessing data in this memory was penalised by way of unwanted wait states. The local bus was reserved for the system stacks only.
This idea can be extended to include a number of masters, each with their own execution buses. The c.p.us each carry on with their own tasks and the system bus is only used for intertask communication and i/o accesses. It is now the i/o accesses which limit system performance.
To overcome the problem of i/o accesses, an i/o slave bus can be used in conjunction with the main system bus. One particular solution, discussed in a recent issue of Electronics and Wireless World ${ }^{*}$, is to put in a bus coupler from the main bus to the i/o bus, which in this case were VME and STE respectively.

INDIVIDUAL INTELLIGENT SLAVES -THE NEW WAVE ARCHITECTURE

The ultimate solution for a fixed bus size is to assign to each i/o activity its own c.p.u. and its own local bus. It is now possible, because of the low cost of c.p.us and memory, to do this while keeping the prices of the cards about the same as those of the old, nonintelligent predecessors. Each card in the system has its own operational software and can therefore be used with any c.p.u. on the bus. In fact, these cards can be used to improve the performance of the older system described earlier.
The implication for system performance is that if many of the tasks of the system are executed in situ, bus activity is reduced. Its seems paradoxical that we have increased the efficiency of a high performance bus system by using the bus as little as often!
A crucial factor in deciding which bus to use for a given application arises here. The justification for eight-bit data buses has been that much of the i / o is in this format. This is

- STE as an i/o bus in VME systems, by Tim Ellsmore.
February issue. February issue.

Figure 4. Multiple master with global data memory: CPUs operate independently on their own execution buses, using the global r.a.m. for intertask communication. Now the i / o accesses on the bus are the major causes of bottlenecks.
true for serial data, ascii characters for video and printers, SCSI for disc data and indeed for GPIB protocol. If this is the case, the argument goes, most i/o operations will involve eight-bit transfers, so why go to the expense of a 16 or 32 -bit bus when a less expensive bus will do? Unfortunately, we have forgotten about the local intelligence of the i/o cards. These intelligent i / o cards can preprocess the data in their local memories. For example, they can join together two bytes to form one 16 -bit word prior to transmission on the bus. In this way, 16 -bit bus data transfers can take place with twice the throughput of the eight-bit systems.

Our new wave architecture system would comprise the following:

- Multiprocessors each with local execution

bus

- Data bus with communication memory and inter-c.p.u. interrupt facility
- Intelligent disc processor with local track buffer intelligent second management
- Intelligent video, keyboard and printer processor with a fifo buffer
- Intelligent i/o processor for analogue and digitali/o
- Intelligent serial processor with fifo buffers XXX processor

XXX means you name it: GPIB, advanced graphics, etc. This provides a loosely cou-
pled, open architecture providing elegance and efficiency!

COMMUNICATION ON THE BUS

A master is a device which is capable of initiating a data transfer, such as a processor card or a d.m.a. device. A slave is a device which can respond to a master either receiving data from the bus or putting data on to the bus as required. Traditionally, slaves were passive, but the new wave architecture features active slave boards.
Master-master communication. If master A wishes to send a message to master B it cannot do so directly. The master address lines are normally outputs only, so there is no way to establish a destination address for the data in master B. Therefore, a global ram, which is accessible to all masters, must be used. This memory could be found on a bus memory card or perhaps dual port ram on one of the masters.
Example: master A sends the string 'Hello' to master B.
A 1. Check semaphore bit is clear
A 2. Write message string into message block
A 3. Set semaphore bit (also causes irq on master B)
B 1. Master B receives vectored interrupt
B 2. Transfer message from local ran
B 3. Clear semaphore bit

Figure 3. Local execution bus (above): Technique uses multiprocessor bus for data transfers and local bus for program execution.
Multiple masters with local memory: Each c.p.u. card can run its own program in its own memory. The bus is used to access the slaves including i/o. Arbitration and control unit determines which device has control of the bus when more than one device requests it.

The ability to interrupt the receiving master once the message has been written to the global ram is essential for efficient operation of a multimaster system.

The communication ram is normal on the VME bus. The special feature is the interrupt semaphores. The interrupt vector could also be in the ram hence providing multiple transfer types. The standard bus arbitration deals with the problem of masters clashing and interrupt priority.
The example shown is parameter block passing. The same method can be used for any data length including single bytes. Master-slave communication. Although slaves have no mechanism for taking control of the bus, they may be capable of causing bus interrupts. They are much simpler than masters and this is why the 10 processor, described below, is very attractive solution in the new architecture.
The two commonly used data transfer methods used for slaves are basically the same as that for masters.

1. Using parameter ram: The parameter ram is local to the slave and may also appear on the bus as i/o data area. It generally does not need to be dual ported as the transfer of data is always under the control of a master.
2. Using first-in-first-out buffer: The slave can have a single byte for communication (read and write) which is effectively a window into the fifo itself. A status register is used to control the flow of data.

CASE STUDY OF NEW WAVE ARCHITECTURE

A real example of the new wave architecture has been implemented by PSI Systems of

The PSI New Wave Architecture showing VMEbus backplane, single-system c.p.u. and the intelligent i / o processor. The i / o bus is a low-cost 50 -way ribbon cable which connects the i/o processor to the signal conditioning modules such as relays and triac outputs. A second 50 -way ribbon cable is used for the analogue i/o bus (not shown).

Cambridge on the VMEbus. In this system, the master is a 68000 series c.p.u. capable of running a modern multitasking language under an operating system. Its local memory can easily accommodate 2MByte of ram and 2MByte of eprom. The VMEbus active slave boards include a text processor to control video, keyboard and printer, an i/o processor to control analogue and digital i/o and a disc processor to control hard and floppy disc drives.
The components of this system are effectively asynchronous and can work independently of each other. In fact, master-slave architecture is parallel processing. The key to the efficiency is that the backplane should only be used for data transfers, and the individual program execution is done locally . The master runs the controlling program at the same time as the slaves individually handle their specific tasks.

Now see how the new wave architecture works in practice, assuming that one of the tasks on that master requires a disc sector fetch and a second task is writing to the video screen.

USING THE DISC PROCESSOR

The task must first gain access to the disc processor to avoid collision with another task that may already be using the disc. The processor will have a 'test and set' bit for this purpose in its status byte which is read until it becomes clear. The test and set instruction will have left the bit set so that no other task can now interfere. The read-sector command is now written to the disc processor together with any data required
<read sector>, <logical sector number>.
At this point the task suspends. All of the other tasks will be continuing as normal and can still use the VME bus to access other slave processors. The disc processor is now loading the required sector into its local data ram which can also be read from the VMEbus. When the sector is ready, the disc processor interrupts the master and the task resumes. The master then copies the sector ram into its own local memory and the job is done.

Two interesting points arise from this example. The first is the disc access was done as an eight-bit transfer but the memory access was done as a 16 -bit ram-to-ram copy, the point being that the time spent on the VMEbus was very short. The second point is that it is very likely that the next sector request will follow the previous. This is already sitting in the disc processor's memory. In this case the next sector read will be extremely fast in fact at 16 -bit memory speeds. What we have here is the slave doing sector management.
This may sound simple and obvious but in many systems the architectures create a

Figure 5. The i/o slave bus: The i/o is accessed via a separate i/o bus via bus coupler (eg. from VME to STE). The i/o bus (eg. STEbus) can have its own processor(s), memory and i / o cards. In other designs, the coupler may be incorporated into one (or all) of the master c.p.u.s and the secondary bus may be manufacturer specific. Unfortunately, such solutions are quite expensive, incurring the cost penalties of two backplanes and the bus coupler itself.

Figure 6. The New Wave Architecture: Each card on the system bus has its own local microprocessor and memory. Analogue and digitial $i / 0$ is controlled by the i/o processor so that most i/o tasks do not require the use of the system bus. The system bus is now a data bus rather than an execution bus.

MANUFACTURE OF BUS SYSTEMS IN THE UK

> The first bus systems were produced by the major semiconductor manufacturers and as such they were a vehicle for the sale of their products. These products were used by system houses who found them wanting in some respects and as a result some went into design and manufacture themselves.
> Another group of manufacturers grew out of the add-on market. These companies originally developed cards for specific machines by adding extra i/o to standard computer systems or PCs. A fourth group grew out of the need of some of the larger companies for large numbers of cards for in-house use, particularly in testing and plant monitoring.
severe bus bottleneck by transferring the sectors directly onto the bus, either under master control or with d.m.a. transfer. Some even cause the shut down of all other tasks during the transfer.

Probably one of the worst architectures, and yet one of the most common, is where the execution bus and the data bus are the same thing. Now the master program execution is slowed down or stopped during a disc transfer.

USING THE TEXT PROCESSOR

Another prime area for master/slave efficiency is the text processor, which uses a different technique for communication to that of the disc processor. The text processor uses a single-byte data channel with a status register to semaphore data movement. Again the activities of the slave are completely asynchronous to that of the master.
Using the example of pRINT "Hello": in conventional systems each letter would be processed in turn. With the master/slave architecture the whole statement can be transferred in one go. The master can then continue executing its program while the text processor writes "Hello" to the screen. This is analogous to a printer spooler. In fact, the text processor also has a printer spooler of 64 Kbyte and a keyboard input. The keyboard processor stores the key strokes in a local buffer, so providing a type-ahead facility. The master takes the first key from the slave buffer, if the buffer is empty, the master can request that the text processor interrupt the master when a key comes in and then suspend its task. The task restarts when the next key is pressed.

USING THE INPUT/OUTPUT PROCESSOR

The simplest area of the computer is probably the most neglected. If the system c.p.u. is running the language in a control application, there are a number of operations which can be performed. The c.p.u. issues commands along the VMEbus to the i/o processor in the form

> <token>, <parameter>1. |<parameter2>1...

Because this slave is intelligent, these i/o operations can be processed locally.

I/O OPERATIONS

A. Digital operations

1. Bit-wise manipulation Immediate:
a. define hit as imput or output
b. turn off
c. turn on
d. invert existing output state
e. read external signal level

Real-time events:
a. positive edge detect
b. negative edge detect.
2. Byte control

Immediate:
a. output byte (write)
b. input byte (read).
B. Analogue operations

Using a 12 -bit, $12 \mu \mathrm{~s}$ analogue-to-digital

converter and a 12 -bit digital-to-analogue converter
Immediate:
a. read input a.d.c. channel
b. write output d.a.c. channel
c. read back samples.

Real-time events:
a. analogue input greater than defined limit
b. analogue input less than defined limit
c. sampling inputs over time

C. Intelligent operations

a. stepper motor control
b. Iinearization of transducers
c. three-term control loops

D. Local i/o programs

These are completely independent i/o control activities. The master can just set parameters and monitor the activity. The slave can interrupt for emergencies.

SIGNAL CONDITIONING

Returning to the architecture the final problem associated with i/o processing is connecting the physical devices in question, to the i/o cards, cards generally use t.t.1.compatible inputs and outputs with $0-10 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ analogue inputs and outputs. The devices. particularly power. tend to he physi-

The New Wave Architecture showing a 68000 c.p.u. i/o processor and signal conditioning modules.
cally large so that any one single height card is restricted to eight or possibly 16 channels.
It would be silly to put a slave processor in charge of eight relays even though processors now cost less than relays. A better solution is to construct separate i/o buses using low-cost ribbon cable. One for say 32 -digital lines and a second for 32 analogue lines. These cables could then plug in up to four conditioning cards apiece. This scheme is actually bus-independent and as such it eliminates the need for couplers to provide an eight-bit i/o subsystem to the 16 -bit VME. One i/o processor would then be in charge of 32 digital and 32 analogue lines and an on-board extension ģives an extra 32 digital and 32 anaiogue channels. Extensions to the i/o capability of the system could be made by paralleling i/o processors on the bus.

At first glance these new generation cards do not look any different from their contemporaries except for the single-height or 3 U form factor. (VME cards are more usually double-height or 6U.) However, another technique has been used to include the additional features. Looking at the underside of the cards. one sees all of the digital logic is surface mounted. The ability to keep
the size to single-height significantly reduces the overall system cost.
Furthermore. the i/o scheme described is actually an industry standard, busindependent scheme that has been implemented in the UK in both eight-bit STE systems as well as the PSI VME system. Taken as a whole, the new wave architecture removes the need for 'drone' cards such as VME-STE couplers, since the low-cost $1 / 0$ is now accessible from the VMEbus.

FINALLY

The new wave architecture removes bus hottlenecks of its predecessors without adding much to the overall cost. There is one further important advantage to the system designer. Because the slave processors are intelligent, all of the system software relating to that card is on-board. This saves the software designer a tremendous amount of time in installing the final system. Not only that, the slaves are processor-independent working for a high level command/data structure. This on-board software satisfies 95% of all requirements. but to cater for the minority 5% a down-loader can be added to the system so that system designers can write their own slave software.

David Hunt and Keith Hodson recently founded PSI Systems of Cambridge.

RTT SUSTEMS

OMODULATION METERS - FREQUENCY COUNTERS
 QR.F. TEST SETS
 - TRANSMISSION MEASURING
 - TRAINING
 OR.F. CIRCUIT DESIGN SERVICE

SIMPLY - ACCURATE TESTING
R.T.T. Systems Ltd. Enterprise House, Central Way, North Feltham Trading Estate, Feltham, Middlesex TW14 ORX Tel:01-844 1811

FIELD ELECTRIC LTD.

3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953 6009
Official Orders/Overseas Enquitries Welcome/Order by phone or post. Open 6 days, half day Thursday. Please ring for C/P details not shown. Postal rates apply U.K. mainland only. All test equipment carries warranty. All prices incl. 15\% VAT \& c/p unless stated

ENTER 9 (ON REPLYCARI)

Mobile radio update

Deregulation and the prospect of spectrum auctions were among the topics aired by the Mobile Radio Users'Association at its 1987 conference in Oxford.

With delicate timing. the Department of Trade published its consultants report on deregulating the radio spectrum just a few days before the conference began. ensuring that no-one there would run short of a topic of conversation. Copies of the fat yellow volume, the Yellow Peril as it was soon dubbed, were on sale at the conference office in Keble College and quickly became as much a part of delegates* hand-baggage as the inevitable cellular telephone.
Some of the background to the report was reviewed in the first session by Tony Nieduszynski. head of the DTI's Radiocommunications Division as it is now called. He listed steps towards deregulation already taken by his department: the UK frequency allocations table had for the first time been published (and a reprint was now on the way): non-governmental laboratories were to be appointed for type-approval testing of radio equipment, giving manufacturers and importers a choice of testing house (though approval certificates would continue to he issued by the DTI): low-power satellite iv reception had been legalized for those who had the necessary $£ 10$ licence (and indeed the DTI did not for its own regulatory purposes wish to keep any control over receive-only users).

On the fixed links side. RI) had lifted its rule by which assignments were refused unless the applicant could show that his needs could not be met by the public telephone networks. For some fixed senices. RI) was even thinking of offering remote on-line access to its database and assignment software: this would enable prospective users to try out different scenarios to see which hest suited their needs.
Looking ahead towards the concept of private-sector frequency planning organizations (FPOs) proposed by the consultants. Mr Nieduszynski spoke of moves already made in that direction. "We have increasingly sought and used opportunities to delegate management of blocks of frequencies to identifiable groups of users." he said.
For several years, frequencies for on-site pagers had been successfully managed by the Radio Paging Association. And very shortly. the BBC and the independent broadcasting contractors would be assigned jointly a pool of frequencies for their ancillary senvices. Day-to-day management of this would be controlled by the broadcasters themselves through what would effectively be a userFPO. Independent programme makers could expect to benefit from similar arrangements

WHAT THE CONSULTANTS PROPOSE

Deregulation of the Radio Spectrum in the UK is the title of the report commissioned by the Department of Trade and Industry in 1985 from the consultancy firm CSP International. This document examines the potential for relaxing the rules governing the radio spectrum, for transferring spectrum management to the private sector and for using market forces to ensure the economically efficient use of radio frequescies.
All civil uses of radio in the UK are covered by the report, but the authors have concentrated on the commercially valuable ranges between 30 MHz and 30 GHz .
Among the report's main recommendations are the following:

- For substantial portions of the spectrum, the present licences should be replaced by a Spectrum Management Licence. Under this system, private-sector Frequency Planning Organizations would sublicense spectrum to those who required it (other than to broadcast or telecommunications operators, who would need separate government authorization). British Telecom and Mercury Communications would be given the status of Major Users and would act as their own FPOs. Any potential user should have a choice of at least two FPOs to approach.
- Bands should be considered for early transfer to the new system where the number of individual licensees is very large, where the band is vacant or soon to become so (e.g. Band III), or where the present occupants have spare frequencies which they could usefully sublicense on commercial terms.
- FPOs and Major Users should be free to determine their range of services and charging structure.
- Spectrum Management Licensees might propose new technical specifications or alterations of existing ones. The DTI would refuse these only if they would cause international difficulties or unacceptable interference to other users' allotments.
- Fixed services bands between 1 GHz and 30 GHz should be managed by two FPOs and the two public telecommunications operators, BT and Mercury.
- Private mobile radio bands should be managed by four FPOs plus the Joint Radio Committee (which accounts for some 43000 mobile units in the gas, electricity and coal industry) as a Major User. Each would have both v.h.f. and u.h.f. allocations.
- SMLs should be licensed in the sound broadcasting area, in accordance with the recent Green Paper.
Bands for exclusive satellite use should continue to be managed by the DTI. The development of small-dish business satellite services in these bands should be encouraged. - Responsibility for monitoring and enforcement should be divided between the SMLs and the DTI's Radiocommunication Division.
- Amateur radio allocations should continue to enjoy a degree of protection, but the UK government should apply pressure in international discussions to avoid increasing these allocations or even to reduce them.

The consultants estimate the annual economic benefit of a 1 MHz portion of u.h.f. spectrum at $£ 75000$ for fixed services. $£ 1 \mathrm{M}$ to 4.6 M for mobile services and $£ 4 \mathrm{M}$ for television broadcasting. Radio paging, with its capacity for extensive re-use of frequencies. rates much higher. These figures, they believe, indicate the advantages to the economy of a re-allocation of spectrum.

Deregulation of the Radio Spectrum in the UK is published by Her Majesty's Stationery Office at $£ 9.50$. The body of the report consists of 182 pages and there are six appendices covering cost analyses, capacity requirements, a summary of spectrum allocation procedures in the United States, and a review of literature.

Comments on the report should be sent to the Spectrum Pricing Secretariat, Room 305, Waterloo Bridge House, Waterloo Road, London SE1 8UA.
a little later: and discussions were in progress with other user groups, including the water authorities. local government and the London courier companies.

For existing licensees, policies were being applied much more flexibly to take account of local circumstances: for example, facilities such as talk-through and reversefrequency working were being granted.

A major piece of deregulation soon to take effect would be the exemption from licens-
ing of a wide range of low-power devices. including radio microphones. garage door openers. toys. security alarms. bahy alarms. and alarms for the elderly. Some 25000 existing licences would be swept away hy the measure. which was to cover the induction bands, telemetn and telecommand bands. including 49 Miz . Aso exempt would be widetand alarms on 48 MHz : the loTl hoped that this deregulated slot would provide an opportunity for British industry to flourish.

OPPORTUNITIES

Several times Mr Nieduszynski returned to the theme of creating opportunities. It was this principle, he said, which lay behind his department's thinking in looking at deregulation and market forces: if the aim was to raise revenue for the Treasury or to cast off the Department's own responsibilities, he had not been made aware of it.

The question was how to increase opportunities substantially without doubling RD's staff. And he reviewed some of the ways in which the current licensing system fell short of perfection.

One failing centres on the operator who is inefficiently using spectrum which is in high demand by others. He has no incentive at present to do other than use the cheapest and possibly most spectrum-inefficient equipment, since he gains nothing by relinquishing frequencies. He cannot sell or sub-license unwanted spectrum. And if he lets Waterloo Bridge House hear of his position, he risks forfeiting the frequencies without compensation. The licensing authority could require him to buy more efficient equipment: but it had no means of judging how much extra cost the scarcity of spectrum warranted.

Other problems for RD included difficulty it had in judging which of its queue of applicants offer the schemes with the best chance of economic or commercial success; and the lack of incentive at present for seeking new ways of exploiting the spectrum. Most people expected to be told that no spectrum was available. And the user who had been given frequencies for one purpose but wanted to use them for something different risked losing them to someone else.

Mr Nieduszynski outlined possible ways of reducing this rigidity, many of which were discussed in CSP International's report.

One approach designed to increase exploitation of the spectrum was to license two or more franchisees to exploit the same piece of spectrum, as is the case in the USA with fixed links. The user would then have the choice of organizations able to provide him with his assignment.

Another approach, requiring the use of new technology, was the currently-proposed Private Advanced Radio System (PARS). With this, many users could have access to the same spectrum without interference: the equipment itself would select a free channel, and no user would have a pre-emptive right to any particular frequency.

- Later on, it might be possible to do away with all controls on certain bands $(60 \mathrm{CHz}$, for example) where it was unlikely that users would cause interference to each other.

But Mr Niedusynski reminded delegates that the report did not necessarily anticipate future policy: the Government had an open mind on these issues. It had asked to receive views and comments by 30 June.

A DEREGULATING ENVIRONMENT

[^2]ola Inc. of the USA, to give a picture of life in a deregulating environment. A series of Federal decisions since the 1970s had brought a considerable degree of private sector control to mobile radio and had proved very successful, he said.

Frequency co-ordinators designated for each sewice handled most of the administrative routine in issuing licences. They processed each application, dealt with technical and other issues and were allowed to_charge reasonable fees. Since co-ordinators were responsible for post-licensing problems such as interference, they had an incentive to get things right first time.
Matters of overall policy were still dealt with by the Federal Communications Commission, which continued to represent the US's international obligations to the ITU.

There were now some 9 M private transmitters in the US, said Mr Kennedy, and deregulation had created a very healthy climate. It had brought more services for business, especially in the fields of data and paging, lower costs, technical innovation and many direct and indirect public benefits.

A controversial proposal now before Congress was for frequency auctions. Radio users would file their licence applications in the normal way, but the fees would be determined by the auction. An annual revenue for the government of some $£ 350 \mathrm{M}$ was though possible, and Congress was naturally interested. Public safety services, radio amateurs and mass media were excluded from the proposal, though some felt that tu stations ought not to be.

Motorola's fear was that auctions could inhibit the introduction of new technology; if frequencies began changing hands very rapidly, future planning would become very uncertain.

. . OR CENTRALCONTROL?

Arguing the case for central control of the spectrum was Jorma Karjalainen of the Finnish PTT's radio department; though he admitted (to laughter) that some of the areas now being deregulated in the US had never been subject to regulation in Finland, through lack of regulatory manpower.

The spectrum was a limited natural resource, he said. Central control offered the advantages of consistency of policy, economies of scale important to a small country, concentration of scarce expert resources, and the ability to maintain up-to-date knowledge of spectrum usage for forecasting future trends.
Summing up the arguments, John Carrington of British Telecom Mobile Communications said he believed the regulation issue was a bit of a red herring. The proponents of both viewpoints were moving towards flexibility and the accommodation of new technologies.

Under the proposed system, he said, the idea was that RD would withdraw to a role of representing the UK at international fora and ensuring that FPOs' allocations complied with international regulations.

But it would presumably be necessary to give each FPO an allocation in each band; and for two FPOs, the inefficiencies this
would create might be an acceptable overhead. However, as the number of FPOs increased, this overhead would quickly become dominant. "By opting for spectrum pricing as well as deregulation", he said, "one is not so much throwing out the baby with the bathwater as selling the bath with the baby in it." A flexible approach that encouraged redeployment of frequencies, rather than a free-for-all, was what he wanted.

British Telecom, as a major spectrum user, is an obvious FPO candidate; and a questioner afterwards asked Mr Carrington whether his company could be sufficiently disinterested to act as an FPO on behalf of others. If there were two FPOs of equal stature, Carrington replied, effective competition would arise. Pressed by another speaker who wanted to know whether BT might turn away applications which might harm its own business, Carrington said that such worries could be ignored: colleagues in BT saw it as against their own interests to act in such a way. Another voice commented that spectrum pricing would not encourage better use because BT could afford to pay high rates. John Carrington replied that if pockets were deep enough the spectrum could be sterilized, and this was one of the pitfalls of deregulation. But BT had already discussed certain areas of spectrum which it could release for others to use.

In a later open-forum discussion, Mike Coolican of RD was asked about the reduction in strength of the Radio Investigation Service proposed by the report, since many users might expect interference to grow rather than diminish. Coolican said the report envisaged that each FPO would look after its own patch of ground. Unless Parliament gave FPOs policing powers, decisions would be enforced by contract law as in the US; though this, he added, could become a lawyers' charter. Otherwise. RIS would have to get whatever strength was needed.

The impression given during coffeebreaks was that many delegates thought CSPI's package of proposals unpractical in their present form: the report might be strong on philosophy but the technical issues affecting mobile radio had not been thought through. A worry expressed by one radio network operator concerned how interference problems might be resolved. At present, frequency conflicts can be dealt with quite simply by moving a channel or two following discussions with RD. But if rival FPOs were involved, each might blame the other and nothing would be done.

BAND III

Mobile radio's other hot topic of the moment is Band III radio. for which spectrum released by the closure of the v.h.f. television services is being reallocated. Martin Cain of RD's frequency planning unit outlined some of the difficulties with this band, which certainly sounds a nightmare. Since tv broadcasting continues to occupy Band III both in Ireland and in continental Europe. interference must be strictly controlled. Protection criteria have been agreed with the administration in France, Belgium and
the Netherlands and RD must observe them to the letter.

So far, the planners' activities have concentrated on the middle sub-band, with base transmitters in the range $200-208 \mathrm{MHz}$ and mobiles on $192-200 \mathrm{MHz}$.

A formula drawn up by the CCIR is used for calculating the total nuisance field due to the proposed UK stations; and it is possible to reach the agreed limit on a given channel with a single well-sited station in southern England. Because of the need to minimize interference around the vision carrier frequencies of the continental to channels, some frequencies are no-go areas; others near the sound and colour subcarriers are virtually so.

With regard to Ireland, the difficulties are almost worse. Mr Cain said that the broadcasting authority there had regarded the UK's intentions with deep suspicion. It had been talking of co-ordination radii of 700 km , which would impose severe restrictions on those areas of the UK not already subject to the agreements with France and the Low Countries.
A further worry is the prospect of secondharmonic interference from Band II broadcasting. There is little reason to suppose that the many unlicensed stations lose much sleep over this aspect of their operations.

One man who will have to cope with all these difficulties is Alan Sheward, who presented an update on GEC's national Band III p.m.r. network ${ }^{1}$, due to open for business in August. The system - now named GEC National One - would offer a wide range of voice and data services, including dispatcher-controlled or two-party calls, public telephone and p.a.b.x link-ups, voice messaging, store-and-forward messaging and vehicle tracking. With its simplified licensing formalities, the network would be responsive to users; and the common signalling standard for all Band III systems would mean a wide range of off-the-shelf equipment. Dealings with individual customers would be through third-party service providers, except in a very few cases which would require special permission from Oftel.

Some of the practical features of trunked Band III systems were discussed by Michael Vadon, formerly of BT and now a director of RT Radiotelephones, the regional Band III licensee for north-east England. From the user's point of view, he explained, the ready availability of Band III systems would be a big advantage. There would be no searching for base station sites, no waiting for equipment or for licences to come through - and so customers would buy before the whim passed. But a drawback would be higher equipment prices than for ordinary p.m.r.: the sets were more complicated and no world market existed for them.

MOBILE DATA

Most present-day mobile radio networks are voice-only systems; but with the inexorable growth of the computer the need for data transmission is growing rapidly. Systems incorporating data links are welcomed by planners because they can usually make a more efficient use of scarce radio channels.

Sweden's new Mobitex system offers efficient communication between data systems and mobile terminals (Ericsson).

One such system is Sweden's new Mobitex network, a trunked voice and data dispatch system operating in the 80 MHz region. Following a two-year trial, Mobitex entered public service last October. The system is to be marketed worldwide under the name MRS6000.

The network is co-ordinated via a single control channel, the same all over Sweden: by exchanging data over this channel, stations may set up a speech call on one of the associated traffic channels or transfer a data packet. If system loading is light, packets can be exchanged on the control channel. A minimum system would thus consist of just two channels: the control channel and one other.

Some of the trial Mobitex systems were described by Göran Berntson of Ericsson Radio Systems. One is at Cothenburg harbour, where it has apparently been used to good effect in speeding up cargo handling. When a ship is being unloaded. crane operators key in the number of each container as it emerges. A central computer responds with details of where the container should be placed. Also linked in to the network are lorry drivers approaching the port, who give early warning of their arrival. The dispatch centre can now plan their loading and departure automatically.

Also using Mobitex are the Swedish post office, whose vans now bring on-line postal and banking services to rural areas; and the regional alarm centres, which act as dispatchers for Sweden's emergency services. Print-outs from the mobile terminals ensure that personnel can work fast, without mistakes and in secrecy.

By 1990. the system will be fully expanded with 150 base stations, 60 area exchanges and 20 interlinked main exchanges.

A large data communications system now under development in Britain is that of the Automobile Association, the country's largest handler of motoring breakdowns. The AA's new operations centre at Stanmore is the focus of its activities in the London
area and has been in use since May, 1986.
Graham Warner of the AA described the new system, which makes use of data terminals carried by the area's 500 mobile patrols. The AA's workload was increasing by 10% per year, he said; and if the change to data transmission had not been introduced. the breakdown service would have become unable to cope by 1990. With the superseded radiotelephone system, London patrols often took as long as 15 minutes to contact the base station. Only five radio channels were available and each radio operator handled 35-40 mobiles.

Today, breakdown calls from AA members are received at Stanmore by an operator who can quickly locate each incident with the help of a computer-based gazetteer. This stores not only street names but names of buildings and other places of interest including public houses, together with their nicknames. Such information makes it possible to cut out time-wasting 'no trace' jobs. The system now estimates how long it will take help to reach the stranded motorist and co-ordinates the rescue operation.

Control positions are manned by two operators, each with an interactive screen capable of displaying job details and status information in 50 different screen formats.

Data communication at 1200 baud has proved reliable in London, even where there has been difficulty with voice. The system uses, just four of the AA's radio channels.

A second control centre at Thatcham is to become operational in October; and by I990 a network of 10 centres will extend coverage to the whole of the UK. The AA is now looking for terminals with improved facilities and price-performance for the remainder of its 3000 -vehicle fleet.

RADIO TELESWITCHING

Alan Dick of the Electricity Council provided an update on the teleswitching system ${ }^{2}$ by which a data signal on the BBC's long-wave Irarismissions is used to help trim electricity demand to match the generated output. The system, which since the meeting has brought the Electricity Council and the BBC a joint Queen's Award for Industry, is now
being used by most area electricity boards to replace clockwork switches for off-peak supply meters. A new application is in 'budget warmth' schemes, by which domestic customers can buy electric storage heating in return for a fixed weekly payment. The operating board uses weather forecasts to decide how much charge to provide and broadcasts teleswitching messages daily.

Now being developed in co-operation with Mullard Ltd is a new metering device with communications facilities - the Energy Management Unit or Emu. This can be read or re-programmed via a hand-held unit or remotely over telephone lines. Tariff and switching information can also be broadcast to it by one-way radio. Emus can handle up to six charging rates, allowing time-of-day and seasonal multi-rate tariffs. Security codes are used to prevent tampering. For the forthcoming trials, the system will be controlled from the area board's office by a desk-top PC. which will also act as an interface to the accounting computer.

The trials form part of a European project aimed, among other things, at showing whether customers can be coaxed by special tariffs into modifying their pattern of consumption and so reducing overall energy costs. Besides the 850 Emus to be installed in Britain, a further 150 will be in Brussels where they will be controlled over a cable to network.
Another remote-metering idea under investigation was to fit electricity meters with a radio device which would enable them to be interrogated and read by equipment in a nearby van. The customer's wiring and service cable would act as the device's antenna. Trials have already been conducted in the US on a 900 MHz version, by the Long Island Light and Power Company; though Mr Dick believed that a frequency in the range $1-3 \mathrm{MHz}$ would be more practical. But would the DTI be willing to allocate one? A single 8 kHz channel would be sufficient for the whole industry.
The cost of reading meters worked out at 80 p- $£ 2$ per year, and any electronic system would have to match this target.

CELLULAR-THE FUTURE

Steve Temple, another member of the RD's team, turned the spotlight on the future of mobile radio, where international developments may bring big changes over the next decade.
Planners, he said, had to think of the industry's needs ten years ahead, since experience showed that it took this time for new schemes (such as cellular radio) to reach fruition. Users should get together now with the DTI to ensure that preparations were made. Another mobile radio WARC would be needed around 1992.
Cellular radio in Britain had been a spectacular success, with more mobiles in service than anywhere else in Europe: 90000 new users were joining each year, compared with 22000 in Germany.
For the future, European heads of state had agreed in December that there should be a common standard for a future cellular system and there had been a directive from

Prototype Energy Management Unit, or Emu. The customer's installation can be linked to an extensive communications system controlled by the area board.

Brussels to keep channels available.

There was complete unanimity in Europe that a narrow-band t.d.m.a. system was the best technical solution. Thirteen administrations felt able to go forward with this system for 1991 implementation date, with only two (France and West Germany) holding back. [Since the meeting, those countries have agreed to support a modified specification containing features of their own proposals.] At least three large European markets would have to be available in 1991 for the system to be a success; but UK manufacturers would have a chance to become world-class contributors to it.

SATELLITES

Other centres of activity for planners included a new European radiopaging system for the mid-1990s and a so-called aeronautical public correspondence service. This last would give businessmen global com-
munications by portable telephone wherever they went. Satellites like those of Inmarsat would handle in-flight calls, though direct ground links for the heavily-populated European area might be cheaper. Mr Temple, whose hotel in Brussels had just charged him $£ 70$ for putting through a brief call to Florida, evidently felt strongly about this.
The introduction of satellite systems for global mobile radio is not as far off as it may sound, as delegates heard in a presentation by John Norbury, head of the radio communications research unit at the Rutherford Appleton Laboratory. Interest in the idea, he said, had been stimulated by the ATS-6 project of 1974 , with its 860 MHz communication transponder.
Later experiments with geostationary satellites - such as the Canadian M-Sat project - had been encouraging, but this class of orbit brought a considerable cost penalty for countries at moderate latitudes. To avoid the need for a tracking system, mobiles had to use omnidirectional antennas; and in North America a 15 dB margin over the free-space signal loss had been found necessary because of the satellite's low elevation. A much greater margin would be needed in cities. Link margin for satellite systems was expensive: one rule of thumb reckoned it at $£ 1 M$ per dB .
An alternative scheme, with which the speaker had been involved, was for a system using an inclined Molniya-type elliptical orbit: such a satellite would appear to hang overhead for perhaps 8-12 hours at a time, avoiding the problem of blockage by buildings. With a constellation of three satellites a 24 -hour service could be provided.

References

1. Trunked mobile radio in Band III, by P. J. Delow: Electronics \& Wireless World December 1986, page 51.
2. Broadcast radio-data, by D. T. Wright and S. M. Edwardson: Electronics \& Wireless World November 1986, page 63.
[^3]
"I've solved the problem, Charles. Livingston Hire can provide everything we need on rental terms".

8655 companies have already discovered the benefits of electronic equipment rental, and the number grows daily.

The Benefits of Rental

The comparative cost of renting can reasonably be estimated at 10% of the purchase price per month for short-term periods of up to three months, falling to about 6% per month for a period of one year or more.
Very often rental is the easier and more convenient way to acquire electronic equipment, the financial arguments being only part of the story. There are numerous occasions when rental is the undisputed, if not the only, solution.
Remember, with rental you pay only while you use the equipment. With ownership you pay all the time.
When renting you incur:

* No maintenance or repair costs
* No interest charges
* No calibration downtime
* No provision for replacement

And you can have the equipment:

* Returned the moment you finish with it
* Replaced if it becomes faulty without any
cost
* Changed if it becomes obsolete or technically unsuitable
* Returned during your works closure

In addition you can:

* More easily allocate costs to projects, production programmes or plants since they are fixed and known precisely in advance
* Optimise taxation
* Evaluation

When a manufacturer introduces a new electronic product and you want simply to evaluate thoroughly before purchase - RENT.

* Peak Demand

When you have a peak load or major re-calibration problem and you need temporarily to augment your own equipment - RENT.

* Panic need

When you have an emergency situation, a crash project or a plantequipment failure-RENT.

* Defined Short-term need When you require something special for a specific short-term project, contract or assignment - RENT
* Low utilisation

When you have a tight budget and utilisation is below an economic level to allow purchase - RENT.

* Long lead time

When you are given protracted delivery periods from a manufacturer but your contract or project must not be held upRENT

* Uncertain use patterns

When a contract specification is initially uncertain and you are unsure whether or not to include equipment in your capital budget plans - RENT.
Ring or write to Europe's No. 1 in electronic equipment rental for a free copy of our 164 -page product catalogue. We've over 16,000 items on inventory. Or ask for our booklet "The Case for Electronic Equipment Rental". We're here to help - whatever area you're in.

Livingston House, The Rental Centre, 2-6 Queens Road, Teddington, Middlesex TW11 OLB.

MARCONI INSTRUMENTS
MARCONI TF2371 200 MHz SPECTRUM ANALYSER

MARCONI 2019 SIGNAL GENERATORS

TF 2000 AM FM Sunal generatior 10 - 1000 MHz
IF2015A 1 AM FM Signal cererato 10.520 MH

20975A AMFM FM Signal generalor 15 -220MHZ

TF $1313^{10}{ }^{4}$. ACL Unver sail Componenn Broge
TF 1245 A 10 Mener 12468124

2829 PCM argat analyset

TF2910ya non linear distontion analyser

RALFE•ELECTRONICS
10 CHAPEL STREET, LONDON, NW1

TEST \& MEASUREMENT EQUIPMENT MARCON TF2905:8 Sine squared pulse and bar generator
MARCONi TF 2908 Blanking and sync mixer MARCO NI TF2502 AF Walmelet 10 W 1 so ${ }^{4} \mathrm{GHz}$ MARCON 124352 GHz 8 digit tequency counter
GREEN 2001 Wammeter 03 -300w to 500 MHz TELETYPE Terminat model 43 FS 232 vace
DATALAB DL905 Transuent recorder DATALABDL905 Transient recorder
TELLOUIPMET CT71 Hansislor curve tracer
TEKTRONIX 775 Transistor curve If TELEQUIPMENT D83 Osalloscoopes 50 MHz

OSCILOSCOPE - sTock, phone BRYANS 22020 XYT Polter A3

BRUEL \& KJAER 1402 Aandom noise gen DYMAR 785 modulation meters 30.480 MHZ AM FM

DYMAR $781 / \mathrm{SRF}$ power meter t .30W
GPW 7620 Telegraph \& Data generato
AVO VCM163 Valve charactertsicmete
RACAL 9301 AF Vormmeter 15 GH

ENTER 60 ON REPLY CARI

คค ค ค 人 \& 0536744664
 Ltd. 24 hr 7 days/week

ORDERS DESPATCHED SAME DAY BEFORE 3.30 m
DEPT (W7), 18 COLDORMEADOW AVENUE CORBY, NORTHANTS NN I89AJ

ICF7600D

 test signals for v.h.f. receiversSony's ICF76(0)D is a handheld broadcast receiver with synthesized shortwave tuning under the control of a dedicated microcomputer. Here's how the local oscillator signal and its harmonic can be used as an accurate calibration source for two and four-metre receivers without any direct connection.

The ICF7600D uses a variable first local oscillator operating above the selected frequency and this is provided by the synthesizer with considerable precision. Suppose that you wish to confirm that a two-metre receiver is tuned to channel $\$ 20$ (145.5MHz). Switch on the ICF7600)0 receiver and select 16.905 MHz . Hold the ICF7600I) close to the antenna. The squelch should lift and a strong c.w. signal should he indicated.

This is because the second harmonic of the l.o. falls within S20. Table one shows some of the S channels and their corresponding settings.

Two metre channel	AM setting
S14	16.830
S15	16.840
S16	16.855
S17	16.865
S18	16.880
S19	16.890
S20	16.905
S21	16.915
S22	16.930
S23	16.940

Formula one enables a frequency and its setting on the ICF760(0) to be calculated. Errors can occur since the test signals varies in 10 kHz steps whereas the S channels are in 25 kHz steps. However any variation in the ICF6600D will cause the test signal to favour either the oddnumbered S channels or the even-numbered S channels. This may in turn be checked against a two-metre repeater output.

The five-line program enables a microcomputer to calculate the corresponding a.m. settings between 112 and 171 MHz . This allows marine band and air-band receivers to be checked.

10 DEF FNF $(X)=X / 2-55.845$
20 PRINT * Frequency ${ }^{*}$ " ICF7600D " : PRINT
30 INPUT " Enter Frequency $\mathrm{MHz}^{\prime \prime}$;
40 PRINT $f, F N F(f)$
50 GOTO 30
a.m. setting $=\mathrm{i} / 2-55.845 \quad$ (1)

In the case of four-metre receivers the fundamental l.o. is used. This enables 5 kHz steps to be made and the formula for obtaining the a.m. setting becomes
a.m. setting $=\mathrm{f}-55.845$.

The procedure for four-metre tests is othemise indentical, for example, the ICF7600D would he set to 14.415 MHz a.m. to calibrate 70.26 MHz .

Other settings corresponding to frequencies from 56 to 76 MHz can be ohtained.

This unusual application of the ICF7600I) has been of great help for setting up receivers and converters in the absence of transmissions. The reader is left to work out how a 70 cm receiver test signal can be generated.
Mike Mucklow
Stony Stratford
Bucks

Betrayal of science by 'modern physics'

We can classify discipline as ranging from hard to soft: from physics, engineering, chemistry. biology: through sociology. psychology: to geography, history. literature, religion. The hard disciplines are described as science'
In a soft discipline, a model. the ory or fact is still of value even if it is imperfect, flawed.

The definition of a hard science could be that it is capable of sustaining a perfect, true, model. theory or fact.

For prestige reasons, the soft sciences - sociology and psychology - try to take on the mantle of the hard sciences by using 'scientific method: a method of arriv ing at rigid, 'true', facts, models and theories. They do this in order to gain access to the prestige and funding (NASA-type) that the hard sciences command. So we see subjects trying to move to the left, from soft to hard.

Unknown to the soft science careerists, struggling towards the left. the position of their colleagues at the hard, physics end is uncomfortable. This is because if a theory can be exactly true, it is also brittle: more vulnerable to complete overturn by new developments than is a softer, imperfect theory. Now career advancement is, if anything, a soft subject, not a hard one. So for career reasons, a traitor group in physics has developed a soft discipline called 'modern physics'. These careerists betray scierice by softening their discipline and so stablizing the theoretical status quo and with it their career status quo.

An individual's career in hard science is brittle, because it is based on more absolute, therefore more brittle, theories and models. He then makes his position more pliable, and his status and career more secure, by softening the brittleness of his discipline. In doing this he betrays his discipline in order to protect and further his career.
'Modern physics'. a bastard pseudo-physics, is a soft discipline which has been developed by career physicists unwilhng to risk a brittle career in hard science.

Meanwhile, the soft sciences (sociology and psychology) trying to obtain the prestige and funding of the hard sciences are not feariul of this brittleness. In any case 'modern physicists' are telling them that physics is soft.

The sign posts on the road from physics to modern physics from hard science to soft - are: uncertainty: (wave-particle) dualism: confusion of observer with ohserved: relativity: and the use of statistics and probability. Paradoxically, one of these, statistics. also signposts the opposite march of the soft sciences towards the hard.
Ivor Catt
St Albans

> Oscillator amplitude stabilization

In the gorod old days a filament bulh or an n.t.c. resistor was used for amplitude stabilization in Wien Bridge and phase shift oscillators. However, the sutput
amplitude. though stable, was often unpredictable and tended to change with ambient temperature. These days, active control circuits using fets, o.t.as or other analogue control circuits are generally employed. The major source of distortion in these type of oscillators is the non-linearity in the gain-control element (be it filament or fet).

This is well-known, but there is another factor that is generally overlooked. The output of the sinewave generator is rectified and smoothed by a low-pass filter before being fed to the active control element. Now even if the gain control element was perfectly linear, there would be a secondary source of nonlinearity since the a.g.c. bias voltage is not purely d.c. as it should be but contains traces of the oscillation frequency itself. The conventional remedy is to make the a.g.c. time constant as large as possible. but this is not the best solution.

Theoretically, it seemed, there was no way in which the control voltage could be made purely d.c. without an excessively long time constant. I was pondering over this problem for a long time when the identity $\sin ^{2} x+\cos ^{2} x$ = 1 occurred to me

If we take the two outputs of a phase-shift oscillator that are 90° out of phase, full-wave rectify them, feed them independently into voltage squarers, and add the resultant waveforms, we get a direct voltage proportional to the amplitude of the sinewaves but having no a.c. components in it.
(of course, this method isn't very elegant as analogue squaring chips are not exactly cheap. but it is certainly worth trying. I am not aware whether any of your readers have thought of this idea which 1 ieel is the solution to this problem.
R. Shankar

Madras
India

New markets

I read with interest the editorial in the April edition discussing new markets for the UK electronics industry. I would like to suggest another region where UK and Japanese companies may be able to find new markets.

The countries of Iatin Amer-
ica have historically traded with the United States. but in many of these countries governments are emerging which seek greater independence from the USA and are trying to reduce their technological dependence on the USA. Nowhere is this more true than in the Central American countny of Nicaragua. which finds itself embargoed by the US and has turned to European countries. the EEC and the Comecon nations for new trading partners.

I am about to go as a British volunteer to Nicaraga, to teach digital electronics and microprocessors at the National University of Engineering. I will be responsible for establishing an elect ronics laboratory at the university and advising local industry. I have over 10 years experience in industry: currently I am the manager of an electronics laboratory within Lucas CAV Ltd.

I would like to invite readers to consider donating equipment to this university laboratory. The primary benefit to companies would be that Nicaragua's new generation of electronics engineers would be trained using their equipment. What may be less obvious is that the university has some 21 different nationalities amongst its staff, a large proportion of whom are from other Latin American countries. The university also has visitors from all over the world: particularly Western Europe, the Comecon area, the United States and Latin America. Thus equipment given would be seen and used by an unprecedented variety of potential customers.
Any help offered will be a significant contribution to a poor third world country and will be genuinely appreciated. I can supply a detailed list of the equipment and components required on request (01-7433111 till the end of June, 01-9935631 after). Donald Power
34A Cowper Road
London W3 6PZ

Transistor sound

Having followed with amazement the debate about 'capacitor sound' (which can be practically nullified by using, where un-
avoidable, high quality electrolytics correctly biased and suitably hypassed) I should like to recall attention to the subject of 'transistor sound. " which is more noticeable. less controversial, and perhaps a more rewarding subject for investigation.

Most of the pundits will have read M. Hawksford's paper on charge quantization in bipolar devices. and the recommendations for minimizing the problem. This prompted a closer look at the extent of the effect: How it could be calculated for a given amplifier and, hopefully, reduced to negligible levels.

A few calculations showed that charge quantization is a property of small alternating currents and that it would present problems even to a perfect current-driven amplifier. Given that the charge on the electron is 1.6×10^{199} coulomb, it is immediately obvious that no bipolar amplifier can resolve a signal smaller than $3.2 \times 10^{-19} \mathrm{~A}$ per Hz (i.e. one electron per half cycle). At 10 kHz the smallest a.c. that can flow is $3.2 \times 10^{-15} \mathrm{~A}$, the only conceivable waveform of this current being rectangular. This current represents the threshold of fuzz from both the logical and aural points of view.

For any current-driven amplifier (i.e. bipolar input) the signal-to-fuzz ratio at the input will be $20 \log \mid \mathrm{I}_{\mathrm{in}} / 3.2 \times 10^{15} \mathrm{~dB}$ or a little more conveniently $20 \log \left|3.12 \times 10^{14} \mathrm{I}_{\mathrm{in}}\right| \mathrm{dB}$. Alternatively the ultimate signal resolution (u.s.r.) is equal to $3.32 \log \left|3.12 \times 10^{14} \mathrm{I}_{\text {in }}\right|$ bits at 10 kHz referred to a given input level, $\mathrm{I}_{\text {in }}$ (A r.m.s.).

For any amplifier it is only necessary to calculate the actual current (ignoring external load resistors etc) flowing into the amplifier at. say, $5 \mathrm{~cm} / \mathrm{s}$ recorded velocity for phono inputs or IV output for power amplifiers.

For example consider a typical op-amp phono preamp:

$$
\begin{array}{lr}
\text { Open-loop gain (} 10 \mathrm{kHz} \text {) } & 6000 \\
\text { Open-loop input } & \\
\text { resistance } & 1000 \mathrm{k} \Omega \\
\text { Closed loop gain } & 10 \\
\text { Cartridge output } & (5 \mathrm{~cm} / \mathrm{s}) 5 \mathrm{mV} \\
\text { Preamp output } & 50 \mathrm{mV} \\
\text { Differential input } & (50 \mathrm{mV} / \\
6000) & 8.33 \mu \mathrm{~V} \\
\text { Input current } & (8.33 \mu \mathrm{~V} / \\
100 \mathrm{k} \Omega) & 8.33 \times 10^{11} \mathrm{~A}
\end{array}
$$

(This is the net current flowing into the amplifier itself, not the
cartridge load resistor.) Thus

$$
\begin{aligned}
& \text { s.f.r. }= 20 \log \left[3.12 \times 10^{14} \times\right. \\
&\left.8.33 \times 10^{11}\right] \\
& \text { i.e. } 88.3 \mathrm{~dB} \\
& \text { u.s.r. }= 3.32 \log \left[3.12 \times 10^{14} \times\right. \\
&\left.8.33 \times 10^{11}\right] \\
& \text { i.e. } 14.7 \text { bits at } 10 \mathrm{kH} 1 \mathrm{z} \\
& \text { ref. } 5 \mathrm{~cm} / \mathrm{s} .
\end{aligned}
$$

Until bipolar input stages are redesigned to allow higher input currents it seems that it will be necessany to use valve or f.e.t. input stages for good signal resolution.
Roger C Lowry
Christchurch
New Zealand

Relativity

Professor Michael Butterfield (Feedback February 87) believes "that without space which permits geometrical shape and movement. our very existence would have no meaning". This is rather a strong philosophical point of view which implies that as a priority we must have "space" to begin with so that things can happen! Moreover, we have also assigned to this strange space many properties so that Dr H. Aspden is. therefore, more than justified to fill it with an ether if by doing so the explanation of physical phenomena becomes easier as well as more interesting and palatable!

It is not my intention in this brief letter to comment on the "Relativity Simplified" article but to emphasize that one of the manifestations of matter in the universe implies (create) the "idea" of space. Without the presence of matter there is not such a thing as "void" or "space" and consequently geometrical shape and movement is unthinkable. These aspects can only be directly associated with the energy and forces belonging to material objects. Equally, we cannot go beyond the world of material objects to look for an abyss of an infinite space. We can only consider the existence of a "medium" between any two objects that are acting upon each other (he it electromagnetically or gravitationally). We must. therefore, be concerned with the study of this limited and finite medium with respect to these objects and avoid at all cost extending our system to involve what is logically inconvceivable and in the process get lost in a
forest which neither God nor Nature had ever created.
Finally, universal time is far from being an outdated Newtonian concept that had to be thrown out of the window like a dead corpse before the arrival of the respectful Einsteinian world system at the front door. Granted that. for the sake of practical necessity, we are forced into accepting. for example, our own earth frame of reference to be stationary in the universe (i.e. zero energy level with respect to absolute motion). this only leaves us with a clock that can read local but not universal time (for the simple reason that so far we are unable to detect. and therefore correct for. our motion with respect to that point from which everything had started). If it is possible to arrive at this "common time" in a future theory, then we shall be in a position to do without measuring rods. forget about the concept of simultaneity as well as the bedside story of the paradox involving the far space travelling twins. I expect many so-called Relativists would then be only too happy to throw some of their own cherished and overprotected hypotheses of Einsteins's Special Relativity out of the window as well!
M. Zaman Akil

Al-Thubaeya
Kuwait

'Computers, language and logic'

I read the article entitled Computers. language and logic' by A . Medes but could not understand the purpose. I was unsure while reading it so when 1 got to the end, applied the objective test see if I could summarize what it was about. I couldn't really write down anything concrete. Alluding to something? Mathematics of higher degree circuitry? This is the sort of thing that I have been arguing for to reinstate causality.
Other than this there were occasional patches of comprehensibility but no overall coherence. The logical problem "I am a liar" was dealt with as a feedback process in a logic inverter to simulate the sequential process in our conscious awareness.
accepting one idea then the other, then back again.

Is the concept of causality still treated with contempt or are you becoming educated to understand your own mental processes: not to have double values, in engineering practice (causality rules the machine, intuitive knowledge) and in theoretical modelling (causality appears to vanish in asymptotic equilibrium formulat).

In the example here, it is presumed there is a propagation delay to explain oscillation. the logic unable to decide' on a consistent certainty.

How would you explain the theoretical inconsistency if you rephrase the problem, replacing the logic gate with an analogue amplifier and used the op-amp. formula for negative feedback?

The op-amp formula does not predict oscillation simply because this intuitive information is not programmed into its derivation which assumes, falsely. that stable equilibrium can exist for the feedback currents.

If causality is assumed with propagation delay, we use iterative analysis, the feedback process generates a nower series of terms (voltages) which IF it converges produces the op amp formula as its asymptotic form.

The instability hetween 0 and 1 states does not appear in the op-amp formula which passes through the logic value of $1 / 2$ (see maths texthook Divergent Series hy (c. H. Ilardy).

The author A. Medes seems to be struggling for an idea: "The calculus of logic can be used to describe some simple circuits. (no feedhack)...hut it is totally inadequate if we require rigorous mathematical description of other types of circuit". Logic says nothing ahout physical reality. Logic is merely a low-noise information storage medium - a medium for storing information or physical intuition derived from experience.

The required idea is causality. modelled by discrete element analysis. Interactions are described by iterative processes which might converge to an asymptotic limit under certain conditions of the feedhack interaction. The asymptotic limit is called. inappropriately, the 'generating function for the power series of the iterative process.

Justification for the use of the surd $V-I$ is: logical selfconsistency. It needs no more 'meaning' than its definition: when multiplied hy itself it gives - 1. In all complex formulae the real and surd elements remain linearly independent of one another hecause they cannot he combined in arithmetical calculations until all surds are transformed back to reals again (in some 'real' invarient).
In modelling physical situations $\mathrm{j}=\mathrm{V}-1$ arises in asymptotic formulae (of circular functions) when we assume equilibrium can exist for the amplitudes of sinusoidally varying responses.
The mathematics of complex number algehra is neat but hides a lot of physical assumptions that may not necessarily he valid. So don't he fooled by superficialities of appearance.
PJ Ratcliffe
Stevenage
1 lerts

Time and space

I enjoyed reading Scott Murray's article "If you want to know the time..." but searched in vain for the rider "ask a relativistic policeman". Can it really be that clocks at the pole and at the equator can cooperate to prove that Einstein was wrong?

Such a proposition is outrageous and 1 have it on good authority. The editor of Physical Review lefters has drawn my attention to an experiment* reported by NASA. It appears that in 1976 the NASA-SAO rockethorne redshift experiment proved that the theory of relativity was correct and that over a $10,000) \mathrm{km}$ range from the Earth light speed was the same in opposite directions within 3 parts in a billion. If this is true, then, as an antirelativist. I am defeated and Scolt Murray should hoist the white flag as well. No longer can Hireless llorld entertain us by encouraging dehate in this exciting arena of "relativity".
It wold indeed be sad if Wireless World followed the example of Applied Optics. The editor of this journal. published by the American Institute of Physics. had occasion to write at page 544 of the March 1977 issue: '/t was probably umwise for Applied (optics ever to have sentured into
the controversial area of relatioity theony land the various optical tests for it). In that area even the experts carn long swords and eniow duelling to the death. Unarmed editors of applied journals would he well advised to avoid that hatllefield'.
It appears that NASA did send a stable maser oscillator into space to test relativity As a clock. it hehaved as expected in slowing down as it returned to the stronger gravitational potential in its descent. This is just as scott Murray would predicl. But what about the time dilation effect due to motion? Well. since relativity references motion on the observer, the speed of the rocket was referenced on the Earth fiame and the time dilation terms were small enough to be ignored. The experiment performed by NASA has such small residual error that it could be said with confidence that the radio signals sent to the rocket travelled at the same speed as those sent hack from the rocket. No evidence of motion through the preierred frame was found, and the range was $10,0001 \mathrm{~km}$.

Now. what is fascinating about this experiment is that it was a major NASA project involving numerous scientists and amed at testing relativity. It was seen as an experiment to detect motion through the ether, hesides testing the effects of gravity Yet. in the analysis the time dilation was calculated as reterenced on the Earth frame, whilst the resulting equation was used to estimate motion relative to the preferred frame. Could one really credit such an error': When the time dilation formula is referenced on the preferred frame the resulting equation contains no terms which would allow the anisotropy to be tested. The effects cancel out completely. making the test completely inconsequential so far as detecting our motion through space is concerned.
Such is the arena of debate on this question of relativity. The Establishment scientist wants to believe in relativity and no one seems to question results which support relativity. All the venom is directed at those who seek the truth and need convincing.
In conclusion, it is relevant to mention that the so-called time dilation formula has only heen tested for atoms and particles
moving at very high speeds, speeds far in excess of any expected motion relative to the preferred frame. The privileged role of the relativistic obsewer has not been tested in this context.
H. Aspden
1)epartment of Electrical

Engineering
University of Southampton
"Vessot and Levine. Gen. Rel. and Gras: velloll 1979 p. 181.

Sibilant distortion

Your issue of March has just arrived here. In it John de Rivaz says (Circuit ideas) that sibilants are made unpleasant due to overmodulation. That they are often unpleasant or exaggerated is true, hut since Wrotham f.m. opened in 1951. I have heen led to helieve that this is due to an imbalance in the irequency response of the total overall audio system heing used. Judicial use of audio equalizers land not tone controls) seems to take care of most cases.

Your Dolhy-inspired article on digital audio equipment for hroadcasting in the same issue. with its variable hut closely controlled variable pre-emphasis. ought to provide the tools to check this prohlem which so worries purists.
By the way, the BBC World Service hroadcasts, although a.m. with limited audio top end. seem to have their audio so processed that voices sound natural and without undue emphasis of the sibilants. Mayhe a BBCC spokesman would care to explain how they do this.
Peter Ilirschmann
I laía
Israel
Unfortunately the BBC's re spomse did not arrive in time for inclusion in this issue.

Q-E

QUOTATION

Altn J. Smith
HYBRID ELECTRONICS LIMITED
Reference: 3449
Your Ref: RD 2327
VA Rating: 500VA
Regulation: Approx 4\%
E/S Screen: No
Lead Type: Solid
Lead Length: Standard 20 cm
Primary Windings: 0-220-240V @ 50 Hz
Secondary Windings: 25-0-25V @ 10A RMS
Other Requirements: Built to the general requirements of IEC 742
Class 2, IP00
Approx Weight: 4.2 Kg
Approx Dimensions: $140 \times 60 \mathrm{~mm}$
Mounting Method: 1 Steel + 2 Neoprene washers + Nut + Bolt
Prices: Prototype cost for first transformer: £41.80 Then:

$$
\begin{aligned}
10-24 & =£ 25.43 \\
25-99 & =£ 16.71 \\
100+ & =£ 14.81
\end{aligned}
$$

Quoted prices exclude V.A.T. and delivery charges.
We reserve the right to amend prices in accordance with current market conditions.
Minimum production batch $=10$ pieces
Minimum call off $=25$ off to qualify for discount price.
Despatch: Prototype Order: 7-10 days
(21 days for non standard core)
Quantity Orders: Please phone for current
lead time
Gold Service: 7 working days
(standard cores only)

Within the last 10 years ILP Electronics has become the largest manufacturer of toroidal power transformers in the UK.
Opposite we are displaying a typical quotation for a custom design transformer, in the months to come other examples will be shown. If you wish us to quote for an existing transformer or perhaps one for the future, our CAD assisted design team will be pleased to quote.
We have a large standard range from 15VA-625VA with primaries of 120/240V which are available ex-stock (up to quantities of 25) from our distributor Jaytee Electronic Services, 143 Reculver Road, Beltinge, Herne Bay, Kent CT6 6PL - Telephone: (0227) 375254 - Telex: 295141 TXLINK G Quote MBX 022735254.
All standard transformers are supplied with a full mounting kit comprising of 1 metal washer, 2 neoprene washers and nut, bolt + washer. On custom designs a variety of mounting methods are available including centre potting, threaded inserts etc.
Our design department offers a speedy quotation and prototype design service with full engineering support including field calls if required. Our manufacturing range is from 5 VA to 5 KVA with multiple primaries and/or secondaries, to U.K. and International standards. Price stability:
Our current policy is that prices are fixed for one year commencing 1st January 1987.
We also have expertise in designing for low acoustic noise, low stray fields and low temperature rise etc.
ILP ELECTRONICS LIMITED,
Cotton Road, Wincheap Industrial Estate, Canterbury
Kent CT1 3RB
Telephone: (0227) 454778 - Fax: (0227) 450507
Telex: 965780 ILPAMP.

CONTROL SYSTEM DESIGN AND SIGNAL ANALYSIS FOR THE BBC COMPUTER

CODAS.PLUS: An enhanced version of the successful CODAS package for control system design and simulation. Transient response, frequency response and root-locus. Features include transport delays, non-linearities, compensators etc. Inclusive price $£ 220$

- SIGMA: A flexible package for signal generation, manipulation and analysis. Unique high-level language, forward and inverse Fast Fourier Transforms, time and frequency domain convolution, multiplication etc. Features include flexible generation of signals and spectra, noise, non-linearities, quantisation. Inclusive price $£ 190$. All packages have been designed for rapid interaction and flexibility and are suitable for use professionally and in teaching. Comprehensive manual and tutorial session included. Details of these and other packages available on request.

A PAL PROGRAMMER CARD FOR IBM AND AMSTRAD COMPUTERS

This IBM PC/XT/AT and AMSTRAD compatible board will program a large range of 20 and 24 pin PALs. Menu driven programming software is provided, along with a detailed manual. A fact sheet is available on request.
Price: $£ 395.00$ + VAT
Available from: Guyvale Lid. 0462711434
Address: 79 Bury Road, Shillington, Hitchin, HERTS SG5 3NZ Telex: 265871 MONREF G (Quoting ref: KEY105 in the first line).

$$
\begin{aligned} & 15 \text { YOUR DEVELOPMI } \\ & \text { SYSTEM GETTIN } \\ & \text { OUT OF DATE? } \end{aligned}
$$

OURS WON＇T．IT＇S RASED ON AN IBM PC／XT／AT AND WILL ASSEMBLE AND DISASSEMBLE ANY PROCESSOR AROUND RODAY，

0525717148

PUS EMULATE UPTO
FOUR 27 SERIES EPROMS UPTO 27512 AT 150 ns

ALIFOR E695＋VN．

CPAGH BAPRIER．FREEPOST• FUTWICK•EEDFORD • MKA5 IYP • ENGLAND

ENTER 10 ON REIPLY CARD

OSCILOSCOPES

CROTECH SINGLE TRACE 2OMHz 3031／36 ¢ 199／220 $2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{div} 40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{div}$ ．Cal 0.2 V ．Component test 3031：CRT $1.5 \mathrm{kV} 5 \times 7 \mathrm{~cm} \quad 3036$ ：CRT $1.8 \mathrm{kV} 8 \times 10 \mathrm{~cm}$

CROTECH DUAL TRACE $20 \mathrm{MHz}(@ 2 \mathrm{mV}) 3132$ £ 285 $2 \mathrm{mV} \cdot 10 \mathrm{~V} / \mathrm{cm}$ ．Ch $1 \pm \mathrm{Ch} 2 . X \cdot Y$ mode．Cal 0.2 V 1 kHz sq． $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$ ．Auto，normal or TV trig． Component comparator．DC outputs． \mathbf{Z} input．CRT $2 k V$ $8 \times 10 \mathrm{~cm}$ ．
HAMEG DUAL TRACE 20MHz（＠2mV）HM203．6 £ 314 $2 \mathrm{mV} \cdot 20 \mathrm{~V} / \mathrm{cm}$ ．Ch $2 \pm \mathrm{Ch} 1 . X \cdot Y$ Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz} \mathrm{sq}$ 2Ons $-0.2 \mathrm{~s} / \mathrm{cm}$ ．Auto，normal or TV trig．Component test． CRT $2 k V 8 \times 10 \mathrm{~cm}$ ．

HAMEG DUAL TRACE 2OMHz（＠5mV）HM204－2 $£ 418$ $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$ ．Ch $2+\mathrm{Ch} 1 \mathrm{Sig}$ delay．$X-Y$ mode Y out $10 \mathrm{~ns}-1.25 \mathrm{~s} / \mathrm{cm}$ ．Sweep delay 100 ns .1 s Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz} / 1 \mathrm{MHz} \mathrm{Z}$ input．Comp test．CRT 2 kV $8 \times 10 \mathrm{~cm}$ ．

HAMEG DUAL TRACE 60MHz（＠5mV）HM605 £583 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$ ．Ch $2 \pm \mathrm{Ch} 1$ ．Sig delay．$X-Y$ mode．Y out． $5 \mathrm{~ns} .2 .5 \mathrm{~s} / \mathrm{cm}$ ．Sweep delay 100 ns .1 s ．Cal $0.2 \mathrm{~V} / 2 \mathrm{~V}$ $1 \mathrm{kHz} / 1 \mathrm{MHz} \mathrm{Z}$ input，Comp．test．CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ ．

LEVELL
 for INSTRUMENTS

HAMEG DIGITAL STORAGE 2OMHz HM2O5 € 498 2 mV －20V／cm．Ch1 +Ch 2 ．Single shot and $X \cdot Y$ modes． $20 \mathrm{~ns} 0.2 \mathrm{~s} / \mathrm{cm}$ Auto，normal or TV trig．Component test． Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz} 1 \mathrm{MHz} Z$ input．Two 1 K memories． 100 kHz sampling．Y out．CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$
HAMEG DIGITAL STORAGE 2OMHz HM208 £1460 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$ ．Ch $2+\mathrm{Ch} 1$ Single shot and $X \cdot Y$ modes． $20 \mathrm{~ns}-0.25 \mathrm{~s} / \mathrm{cm}$ ． 20 MHz sampling．Two 2 K memories Plotter output $0.1 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{~s} / \mathrm{cm}$ ．CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ ．
HITACHI DUAL 20 MHz V212／222／223 $£ 320 / 395 / 475$ $1 \mathrm{mV} \cdot 12 \mathrm{~V} / \mathrm{cm} \quad 20 \mathrm{MHz}$ at 5 mV ．Ch1 $\pm \mathrm{Ch} 2 . X \cdot Y$ Ch1 output． $100 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ ．Auto，normal or TV irigger． Cal 0.5 V 1 kHz square．Z input．CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ ． V222：Plus DC offset and ahemate magnity function V223：As V222 plus sweep delay $1 \mu \mathrm{~s}-100 \mathrm{~ms}$ ．

HITACHI DUAL 40MHz（＠5mV）V422／23 〔580／650 As $V 222 \mathrm{~N} 223$ but $40 \mathrm{MHz}, 20 \mathrm{~ns} / \mathrm{cm}$ and 12 kV on CRT．

HTAACHI QUAD 100MHz（＠5mV）V1050F 〔1095 Ch1／Ch2： $0.5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$ ．Trigger Ch3／Ch4： $0.2 \mathrm{~V} / \mathrm{cm}$ ． Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$ ．Signal and sweep delay．CRT $20 \mathrm{kV} 8 \times 10 \mathrm{~cm}$ ．

THURLBY 8 CHANNEL MULTIPLEXER OM358 〔179 increases any oscilloscope to 8 channels．Chore of trigger from any channel．Resporise DC－35MHz

LOGIC ANALYSERS

THURLBY LOGIC ANALYSERS LA160A／B ¢395／495 16 data channets．Clock DC－1OMHz（2OMHz for B）．Bmary． octal，decimal，or hex formats．

COUNTERS \＆OSCILLATORS

COUNTERS MET 100／600／1000／1500 £99／126／175／199 8 digit $0.5^{\prime \prime}$ LED 5 Hz up to $100 / 600 / 1000 / 1500 \mathrm{MHz}$ ． Rescolves 0.1 Hz ．Sensitivity 5 mV up to 10 MHz ．Low pass fitter．Mains／rechargeable battery powered．

EVELL RC OSCILLATORS TG152D／DM £99／125 $3 \mathrm{~Hz}-300 \mathrm{kHz}$ ． 5 ranges，acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 kHz ． 3% at 300 kHz ．Sine or square $<200 \mathrm{HV}$ to 2.5 V ms ．Distn． $<0.2 \% 50 \mathrm{~Hz}-50 \mathrm{kHz}$ ．TG 152 DM has an output meter．

LEVELL RC OSCILLATORS TG2000／DMP E139／175 1 Hz .1 MHz .12 ranges，acc $1.5 \%+0.01 \mathrm{~Hz}$ to $100 \mathrm{kHz}, 2 \%$ at 1 MHz ．Sine or square outputs $<200 \mathrm{~V}$－ 7 Vms ． Distortion $<0.05 \% \quad 50 \mathrm{~Hz}-15 \mathrm{kHz}$ ．Sync output＞1V． TG2000MP has outpur meter and fine frequency control．

LEVELL DECADE OSCILLATOR TG66A
¢ 330 $0.2 \mathrm{Mz}-1.22 \mathrm{MMz}$ ． 5 ranges． 4 digits．acc 0.3% 6 Hz 100 kHz Sine ourput＜30 V － 5 V ms ．$-2 \mathrm{~dB} /+4 \mathrm{~dB}$ and \checkmark scales．Distn．$<0.15 \% \quad 15 \mathrm{~Hz} \cdot 150 \mathrm{kHz}$ ．Mains／battery．

LEVELL FUNCTION GENERATORS TG302／3 £136／236 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges．Sine，square，triangle，pulse and ramp 20 mV to $20 \mathrm{~V} p \mathrm{from} 500$ ．DC offiset $0 /+10 \mathrm{~V}$ ．TL output．TG303 also has a CMOS output and 6 digit 10 MHz courater with INT／EXT swinch

OTHER INSTRUMENTS AVAILABLE－FREE DELIVERY MAINLAND UK－QUANTITY DISCOUNTS－VAT EXTRA
 LEVELL ELECTRONICS LTD．Moxon Street，Barnet，Herts．，EN5 5SD，England Telephone：01－440 8686 \＆01－449 5028

Europe's capacitor market

For many years the somewhat slow moving and mature capacitor industry has been overlooked by investment interest and PR pizzaz. But there are changes afoot, in both market and industry.

KEITH THOMAS

Fig.1. Percentage share of the total capacitor market enjoyed by the major dielectric families from 1982 to 1986.
capacity of technologies that have much less than average growth. Elsewhere, it is exclusively the ceramics houses that have been spending money.

The shake up of the industry has followed a radical shift in the technology used by circuit designers, as shown in Fig. 1. From this illustration it is evident that the dielectric flavour of the month is ceramic - and multilayer ceramic at that. The tantalum, aluminium and film industries have lost market share to cera-

Whilst the semiconductor industry worries itself about the cost of R\&D and strategic mergers to breech the \$1bn billings 'critical mass,' the capacitor industry worldwide is facing similar issues of profitability and technological and business change. Over the last two or so years, many household names in capacitors have declared the desire for a merger with a stronger group. Some have openly declared unprofitability followed by
rapid posting of 'For Sale' notices. Only in France is there evidence of bullish investment being made to increase manufacturing

Fig.2. Change in packaging of the tantalum capacitor elements note the rise in popularity of the chip packaging style.

Fig.4. Emerging popularity of the chip packaging style in the ceramic dielectric is largely at the expense of discs.

Fig.3. During the last three years consumer preference between paper and film capacitors has been almost static.

Fig.5. Since 1984 the package styles of aluminium capacitors have moved slightly away from the large cans and axials to small cans.

Fig.6. Smoothed forecast of the likely growth of capacitors in Europe to the end of the decade.
mic, which has trebled its share of the European market since 1982. Comparison with the US market will show an even stronger move towards ceramic, since the US does not have the installed and somewhat protected film dielectric manufacturing base that is characteristic of Europe.

Figures 2 to 5 show the movements within each dielectric of the packaging of the dielectric. It should come as no surprise that the chip package is becoming popular at the expense of the traditional parts. The trend to surface mounting is of course playing havoc with the relative market shares of each dielectric, since the ceramic capacitor is ideally suited to the surface mount assembly process - manufacture of a leaded part starts with a stand-alone chip. The other technologies must add extra manufacturing process steps to their capacitor element to protect it from the harsh soldering environment, shrugged off by the ceramic dielectric, thereby increasing cost. The most at risk from the move to SMT is the small aluminium and film dielectrics that shy from the soldering processes used.

Interestingly, the tantalum capacitor is forecast to fare well in this trend to SMT since no other dielectric can offer the volumetric efficiency at the cost, so the role of 'replenisher' or topper up of on-board capacitors will remain the domain of tantalum, whether leaded or chip. However, the move to SMD in all dielectrics is most pronounced in ceramic, in particular for consumer applications.

FOR THE FUTURE

The capacitor market is forecast to keep on growing. The relentless pace of the electronics industry is utilising electronics technology for more applications in all sectors. The computers, consumer, communications, instrumentation and control industries have depended absolutely upon utilisation of electronics, and now newcomers, the car industry, are starting to exhibit strong demand as they embrace electronics technology. The defence industry hit, with cutbacks worldwide, are utilising their somewhat reduced disbursement in a different manner. Gone are the projects for bigger guns - they are replaced with more sophisticated projects that improve control of weapons, and improve communications and intelligence, which all need electronics. So defence budgets are favouring a very strong

Fig.7. Expected movement of designer preference for each dielectric as the market grows in the coming years. Notice the enormous growth forecast for ceramics.
swing to more electronic equipment. The communications industry too is lifting off with strong demand for mobile communications: cellular radio is the driving force.

The capacitor element of this growth is forecast to grow about 9-10\% in 1987 and a little more in 1988-12-14\%. Beyond that pundits are already speaking of the next slowing down of demand that hits the electronics industry from time to time as supply, stocks and demand move out of line. During that time, SMD is forecast to grow rapidly by as much as 50% a year and it is clear that the winners are going to be ceramic and tantalum dielectrics. The others will find their niche which will keep some of the machines rolling - in many applications the traditional through hole technology remains the optimum choice - but it is clear that there are a galaxy of companies, large and small, that plan to move into surface mount in the comingyear.

In terms of numbers of units, the generaluse on-board capacitors dominate total demand. They are the most affected by the change in assembly technology and so massively influence the global numbers. For off-board capacitors, the large power correction capacitors, or the large aluminium cans, the growth pattern is individualistic
and it is misleading to offer a global growth figure since these capacitors tend to be end-use, application-specific. However, it is clear that in medium power applications, incumbent energy storage capacitors will be eventually replaced with smaller devices working at high frequency. The dielectric chosen for this application is most likely to be ceramic in the medium to long term although aluminium will continue to find favour in the short term. This is because the ESR of ceramic at 1 MHz is much lower than aluminium or wet tantalum, and at these frequencies the consequential capacitance required falls dramatically to a few microfarads. Savings can be made not only in terms of microfarads, but also in the size and cost of the magnetics which at 1 MHz are a fraction of those at 50 Hz or 40 kHz .
We may then refer to Fig 6 \& 7 to forecast the likely future for capacitor demand by dielectric and numbers of units sold. It looks sound for ceramic and not too bad for tantalum, but we trust the manufacturers of other dielectrics have already selected their niches.

Keith Thomas is vice-president of sales and marketing, Europe, for AVX of New York.

Capacitor technologies compared

Ceramic, plastics film, or electrolytic? With significant overlaps in capacitance value, it is important that design engineers have a good appreciation of the factors involved - especially in todays cost-
 sensitive markets.

MARTIN BAKER

Every year, as capacitor technologies improve and are stretched to new limits, the complexities and the economics of the enormous variety of styles, materials and performance characteristics become more difficult to understand.

Miniaturization, new materials and new production techniques have resulted in some radical, and many subtle changes in the range of capacitors available today.

The majority of capacitors used in electronic engineering fall within the spectrum of one picofarad (1 pF) to 220.000 microfarad (0.22 F) and are grouped into a number of main technologies. They include ceramicbased capacitors, film or plastics types and aluminium/solid aluminium/tantalum capacitors.

Each of these technologies cover typical capacitance values as shown in Fig. 1.

Perhaps the most complex area is the overlap of ceramic and film technologies for which the following comparisons and observations can be made.

FILM CAPACITORS

Plastics-film capacitors utilise one of four main plastics films for their dielectric material; each has advantages and disadvantages on performance, stability. dielectric strength, environmental resistance and cost.

The film dielectric is either stacked, or more commonly wound with electrode layers to form a capacitor cell. The electrode layers may be metal foil or the cell may be an integral winding of metallized film (the electrode layer being vacuum deposited onto the film). This metallized film construction realises a very size and cost efficient capacitor; it does, however, have a limited pulse load capability (see Table 1). A film/foil construction by comparison has significantly better power handling (pulse load) capacity but will be larger and more expensive.

Four main plastics films are used as dielectric material: polyester (PETP) polycarbonate, polystyrene and polypropylene. Each has its own unique features.

Polyester is by far the most commonly used material due to its low cost and reasonable performance characteristics. Moderate voltage ratings, pulse load characteristics, temperature and frequency stability all combine to produce the ideal purpose capacitor. The cell is almost always of metal-

Fig.1. The most cost-effective technology will vary depending on basic capacitance value and on a multitude of other interactive parameters.
lized film construction and frequently in a 5 mm lead pitch module for which capacitance values up to $1 \mu \mathrm{~F}$ can be produced reliably and economically.

Polycarbonate is a higher performance alternative to polyester for general purpose applications. Capacitors in this material command a price premium (typically +15 to $+30 \%)$ and offer improved stability of capacitance ($\triangle C$) with changes in temperature and frequency. Maximum voltage ratings and pulse load characteristics are also better than those of polyester. The use of polycarbonate capacitors in modern circuit-
$r y$ is declining and hence this dielectric is only offered by a few major manufacturers (eg Philips).

Polystyrene is probably the most commonly used material for precision 1\% tolerance capacitors. Usually in a film/foil construction, polystyrene provides optimum stability of capacitance with temperature change. The capacitance/temperature relationship is linear with a -125 ppm tempera-

Fig.2. Sintered ceramic electrode multilayer construction creates a size-efficient and reliable capacitor.

Table 1. Typical pulse load limits in $V / \mu s$ for metallized film capacitors (based on pulse voltages equal to the rated dc voltage)

Rated d.c. voltage	Lead pitch: dielectric:	5 mm MkT	$\begin{aligned} & 7.5 \mathrm{~mm} \\ & \text { MkT } \end{aligned}$	10 mm		15 mm		22.5 mm		27.5 mm	
				MkT	MkC	MkT	MkC	MkT	MkC	MkT	MkC
63		55	17	15	-	6	-	3	-	2	-
100		90	30	24	30	10	13	4	6	3.5	4.5
250		-	60	35	45	14	18	6	8	5	7
400		-	95	55	70	22	30	10	13	8	1

[^4]Table 2. Main plastics film dielectrics - typical parameters.

	Capacitance range (pF.nF. μ F)	Tolerance	Max. dc voltage	Temperature characteristic	Pulse load limit * $\mathrm{V} / \mu \mathrm{s}$	Temperature range ${ }^{\circ} \mathrm{C}$	Relative cost
Polyester (MkT)	1000pF-10 $\mu \mathrm{F}$	$\begin{aligned} & \pm 10 \% \\ & \pm 20 \% \end{aligned}$	630	$\begin{aligned} & \text { Non-linear } \\ & \angle C-3 \% \\ & \text { to }+7 \% \end{aligned}$	Typically $25-50$	$-55 /+100$	Low
Polycarbonate (MkC)	1000pF-10 $\mu \mathrm{F}$	$\begin{gathered} \pm 5 \% \\ \pm 10 \% \end{gathered}$	1000	Nun linear $\triangle \mathrm{C}< \pm 2 \%$	Typically 30-70	$-55 /+100^{\circ}$	
Polypropylene (precision) KP	47pF-62nF	$\pm 1 \%$	1000	$\begin{gathered} -125 \text { to } \\ -250 \mathrm{ppm} \end{gathered}$	High	$-40 /+100^{\circ}$	
Polypropylene (power) (Kp/mmkp)	1000pF- $1 \mu \mathrm{~F}$	$\pm 5 \%$	>2000	$\begin{gathered} -125 \\ \text { to }-250 \mathrm{ppm} \end{gathered}$	Very high eg 2000	$-55 /+85^{\circ}$	1
Polystyrene (kS)	10pF-0.22 $\mu \mathrm{F}$	$\begin{gathered} \pm 1 \% \\ \pm 2.5 \% \end{gathered}$	630	- 125pm	High	$-40 /+85^{\circ}$	High

* Pulse load limits based on 10 mm pitch capacitor for MkT/MkC across $100-400 \mathrm{~V}$ dc rated devices.
ture coefficient (t.c.) ie -0.0125% reduction in capacitance per degree of temperature increase above $22^{\circ} \mathrm{C}$. with capacitance values covering typically 10 pF to $100,000 \mathrm{pF}$ at $\pm 1 \%$ tolerance and with the stable and linear-t.c. polystyrene capacitors are most frequently used in applications requiring temperature compensation. also tuned circuits and filter networks.
Polystyrene is however relatively expensive and is significantly limited by its maximum operating temperature of around $85^{\circ} \mathrm{C}$. As a result polypropylene film/foil is becoming increasingly important for precision film capacitors. While still offering $\pm 1 \%$ tolerance on capacitance, a relatively stable t.c. (-125 to -250 ppm), and capacitance values approaching $0.1 \mu \mathrm{~F}$; polypropylene meets $-40 /+100^{\circ} \mathrm{C}$ environmental requirements and is less prone to thermal shock during soldering.
Polypropylene also performs well with high voltage and is consequently used in high pulse/small power capacitors. Metallised or double metallized polypropylene wound with foil can achieve voltage ratings in excess of 2000 V dc and is often an ideal choice for a.c. applications. Polypropylene capacitors have traditionally been used in deflection circuitry and as flyback capacitors in tv applications and are now being commonly used in switch-mode power supplies.
Table 2 summarises some of the characteristics of the principle film dielectrics.

CERAMIC CAPACITORS

Two construction methods are used for the manufacture of ceramic capacitors.

Single-layer types consist of a single rectangular or discoidal layer of ceramic material with a silver or (for higher reliability) copper electrode on each side of the ceramic. Leads are soldered to the electrode layers and the capacitor is protected by a moulded body or cost effective lacquered coating.

With multilayer devices very thin $120-25$ $\mu \mathrm{m})$ layers of ceramic interleaved with offset precious metal electrode layers are pressed and then sintered at high temperature to form a very compact and volumetrically efficient monolithic capacitor 'building hlock. Leads are soldered to this block or surface-mounted-type terminations are applied (Fig2).

Ceramic capacitors are spilt into two main

Fig.3. NPO dielectric outperform X7R, Z5U and Y5V but has a limited capacitance range and is expensive when measuring cost per picrofarad.
classes depending on the type of ceramic material used.
Class I types utilise low к materials which result in low losses and stable linear temperature dependance.

Class II types have higher losses and non-linear temperature characteristics; they are often subdivided into medium κ and high к materials.
The three most common industry classifications' for ceramics are NPO (or COG). X7R and Y5V/Z5U. Cost per microfarad and the performance characteristics of these materials are proportional

Table 3: The relative cost a performance of a film capacitor varies depending on which dielectric material is incorporated.

Type	Cost	Performance (stability of capacitance with changes in temperature. frequency and voltage)
NPO (COG) Most		
expensive	Best	
X7R	个5V/Z5U	Least expensive

NPO devices, and capacitors with a similar t.c. (always linear and usually between zero ($\mathrm{NP}(\mathrm{H}$) and -750 ppm (N750)). fall into the class I category. Capacitance values range from 1 pF to around $1,000 \mathrm{pF}$ for single layer devices and up to $10,000 \mathrm{pF}$ for multilayer types, are typically specified with $\pm 2 \%$ or \pm 5% tolerance. Class II devices show little or no capacitance change with increases in frequency or voltage and are therefore used in 'precision' applications in tuning and timing circuitry.

Class II devices include X7R (medium к) and Y5V/25U (high k) types. Both show non-linear relationships between capacitance change with temperature, voltage and frequency increase, see graphs 1-3. They are subsequently used in general purpose applications Y5V/25U material is most commonly used for decoupling capacitors while X 7 R is frequently interchangeable with polyester film.

CAPACITOR ECONOMICS

A simple cost comparison of the many different types of capacitor is impossible. In the precision area, polystyrene, polypropylene and class I ceramic, it is clear that the latter is most cost-effective for low values up to 1000 pF . Between 1000 pF and 4700 pF prices of ceramic and film are similar while for higher capacitance values film capacitors become more cost effective.
In the general purpose area. ceramics again are the most economic choice for lower capacitance values $(100 \mathrm{pF}$ to 10 nF). Between $10 \mathrm{nF}(0.01 \mu \mathrm{~F})$ and $0.47 \mu \mathrm{~F}$ ceramic and film prices are comparable. For higher values metallized polyester then becomes cost effective with metallized polycarbonate providing a higher performance but more expensive alternative.

Terminations for surface-mounted multilayer chip capacitors

The choice for terminations for ceramic chip capacitor is between the lower cost of the nickel barrier and the greater reliability of silver-palladium type

TThe spread of surface-mount technology heyond the realms of the thickfilm hybrid has promoted component manufacturers to re-assess the materials and techniques involved in the design and construction of surface mounted components. Much of this research is being concentrated on the metallized terminations of ceramic multilaver chip capacitors.

Unlike leaded, through-hole components. where the mechanical strength of the soldered joint is reinforced by the component lead. the s.m.d. must rely on the quality of the soldered joint alone for both electrical and mechanical integrity.

The advent of high-speed placement machines and improved mass-soldering methods mean that zero-defect soldering is the ultimate goal of the equipment manufacturer who is to capitalise on the costeffectiveness of surface-mount technology. It is essential that hoth the solderability and reliability of the component endterminations are at the highest possible level prior to assembly.

This article discusses the advantages and disadvantages of the two methods currently used in the manufacture of multilayer ceramic capacitor terminations. Comparisons are made between silver-palladium terminations and those using a nickel harrier hetween the internal electrode structure and the outer solderable layer of termination. Each type is evaluated for wettability during soldering, ability to withstand the temperatures and dwell-times involved in hoth wave and reflow soldering. resistance to demetallization at soldering temperatures. ability to maintain a solderable surface during handling and storage under varying conditions. and cost-effectiveness.

Prior to end-metallization. prefahricated ceramic capacitors are cut to length, fired. and subjected to a tumbling process under precisely determined conditions. This tumbling action rounds off the edges and corners of the ceramic to enable a subsequent tayer of either silver/palladium alloy or pure silver and nickel to be applied evenly over the surfaces, necessary to help prevent dissollution of the termination by molten solder.

TERMINOLOGY

Abstract

Wettability - Ability of the metal termination to be wetted with molten solder within a specified time without subsequent dewetting. It depends on the materials used for the termination and the level of contamination of the surfaces brought about by ageing, storage and handling.

Soldering temperatures - The soldering temperature will depend on the melting point of the solder used in the process. usually between 215 and $235^{\circ} \mathrm{C}$ for the majority of solders used in the manufacture of electrical circuits, but in some cases as high as $260^{\circ} \mathrm{C}$.

Dwell time - The time taken for the component to reach the soldering temperature and for the solder to flow in the joint area depends on the thermal demand of the component, which depends on the size, construction, and the materials used. Dwell time varies according to the soldering method used, typically five seconds for wave soldering, eight seconds for reflow, and up to 30 seconds for vapour-phase reflow.

Resistance to demetallization - Ability of the termination to withstand soldering temperatures without dissolving. Demetallization usually increases with extended dwell times.

Maintenance of solderability - Wettability of the termination surfaces is affected by ageing storage, transit, and handling. Materials used for the terminations and the manufacturing process can also effect ageing, and hence solderability.

SILVER-PALLADIUM TERMINATION

The composition of the silver-palladium alloy is very important and research has shown that the correct percentage of palladium is vital for the control of hoth demetallization and silver migration. Demetallization can cause a build-up of silver contamination in the solder bath. siving rise to the lormation of solder hridges on the
finished substrate. This can entail expensive and time consuming re-work. The migration of silver across the surface of the capacitor is an on-going problem during its whole lifelime, and can cause the degredation, breakdown, and ultimate failure of the capacitor in the field. Mullard ceramic chip capacitor terminations contain 35\% palladium, more than in any other brand, which experiments have shown to be sufficient to prevent silver migration under all but the most severe conditions (see Table).

Termination content Pd	$\mathbf{A g}$	Time for first signs of migration (min)	Time to short-circuit (min)
0	1.00	0.5	2.0
0.11	0.89	0.5	4.5
0.22	0.78	2.0	8.0
0.33	0.67	15.0	-
0.35	0.65	-	-

The silver/palladium alloy, in the form of a paste to which powdered glass is added, is manufactured 'in-house' under controlled conditions to ensure optimum composition and rheological properties, and quality control tests are carried out on each batch of paste. The paste is applied to the ends of the capacitor, usually by a controlled dipping method, to provide a uniform layer. This layer is approximately $35 \mu \mathrm{~m}$ thick on the top and bottom faces, and $100 \mu \mathrm{~m}$ on the end face after the capacitor has been fired a second time to form the alloy.

Wettability of silver and silver alloys is high, and well-proven in the electronics industry. and under normal conditions of storage and handling, less prone to oxidation than tin: lead.

Resistance to demetallisation. Glass is included in the alloy to improve adhesion of the metallization to the end faces, and also to reduce the rate of dissolution of the termination hy molten solder. Exhaustive tests have shown that Mullard ceramic multilayer chip
capacitors with silver-palladium terminations can withstand the temperatures and dwell times encountered during either wave. reflow or vapour phase soldering without any significant demetallization of the terminations. However. a small amount of silver dissolved into the solder joint beneath the component is advantageous when the finished substrate is likely to be subjected to thermal cycling: it renders the joint more compliant and enables it to compensate for thermal mismatch between the component and the substrate.

Maintenance of solderability. Regular quali$t y$ checks. including accelerated ageing tests to determine the effects of air pollution (IIS). oxidation in air, and corrosion on the silver-palladium terminations show that under normal storage conditions a high level of solderability is maintained for up to two years. However, under harsh conditions with a high level of air pollution, storage in a controlled environment is recommended.

NICKEL. BARIRIER TERMINATIONS

The manufacturing process for the body of a capacitor is the same as that for the silverpalladium type, but after tumbling to round off the corners and edges. the end connections are first formed by applying a controlled amount of pure silver paste. This provides a uniform termination approximately $35 \mu \mathrm{~m}$ thick on the top and bottom faces and $100 \mu \mathrm{~m}$ on the end faces after the second firing.
Because silver dissolves rapidy into molten solder. a 2 to $3 \mu \mathrm{~m}$ layer of nickel is plated onto the silver to prevent dissolution. Unfortunately. nickel is difficult to solder at the comparatively low temperatures and low flux activity necessan in the manufacture of electronic circuits. To overcome this, a further 10 to 12 $\mu \mathrm{m}$ layer of either tin or tin/lead is plated onto the nickel to improve its solderability.

Unlike silver-palladium terminations. where the composition of the termination and that of the capacitor electrodes are similar, the nickel barrier types may be subject to 'material transport' whereby pure silver from the base termination may diffuse into the silverpalladium of the electrodes. However, this can be overcome by careful control of the process parameters during the second firing.
Unless particular care is taken during the plating processes. conditions may arise that could lead to defects during assembly or in the field: If the chips adhere to one another in the plating container, or are not evenly distributed. the plated layer may not be of uniform thickness of may even be missing altogether. If the nickel layer is missing or intermittent. the underlying silver will be dissolved rapidly into the molten solder, so destroying the termination. A missing or intermittant layer of tin-lead, exposing the
nicket harrier will adversely affect the solderability of the termination.
In practice, a layer of tin, to which a very small amount of lead may be added to inhibit the growtr of tin 'whiskers', is preferred to eutectic tin-lead. This is because particles of the comparatively soft tin-lead may be produced by ahrasion during handling, which under humid conditions, can cause tracking between terminations or between conduc tors on the substrate.

During firing. microcracks may develop in the ceramic body of the capacitor. Ionic contaminants, inherent in the plating process. may hecome trapped in these microtracks. These contaminants are very difficult to detect and remove, and hecause they dissociate into free ions which are good conductors in humid conditions, may cause circuit failures in the field. They are also

Fig.1. The silver/palladium terminations of ceramic multilayer chip capacitors con. tain 35% palladium and are approximately $35 \mu \mathrm{~m}$ thick on the top and bottom faces, and $100 \mu \mathrm{~m}$ on the end faces. The rounded corners help prevent dissolution during soldering.

Resistance to demetallization. The nickel plating is an effective barrier to dissolution and affords total protection against demetallizatoon under even the most aggressive soldering conditions.
Maintenance of solderability. A solder sur face of pure tin remains solderable for a considerable time. However, there is a theory that the use of pure tin could give rise to the growth of tin whiskers, causing reliability problems. The addition of a small amount of lead to the tin. however, inhibits their growth. A tin-lead layer has good soldering properties when newly made but is susceptible to oxidation in humid conditions. so protection from the atmosphere is desirable.

OVERVIEW

The important factors to he considered when choosing between nickel barrier or silver/ palladium terminations are resistance to demetallization, solderability, the reliahility of both the component and the soldered joint, and the cost. With normal soldering temperatures and dwelling times, the resistance to demetallization of silver-palladium is high, and well within acceptable limits, providing the palladium-tosilver ratio is correct ($35 \mathrm{Pd}: 65 \mathrm{Ag}$) and the layer is of uniform thickness. This resistance decreases rapidly as soldering temperatures and dwell-times rise above normal levels. especially at the corners where the layer may be thinner.

Nickel barrier terminations on the other hand remain highly resistant even under the most aggressive conditions, providing the manufacturer employs a high level of quality control to ensure that the plating is uniformly deposited.

The solderability of both types remains high under normal storage conditions, whilst in a more aggressive environment the solderability of silver-palladium or pure tin is probably better than that of tin-lead. The extra plating processes required by the nickel barrier terminations, and the possibility of ionic contamination, can cause reliability problems in the finished product. On the other hand, the small amount of silver that dissolves into the joint with silver-palladium tends to strengthen the joint and so improve reliability. The present-day costs of noble metals. especially

Fig.2. The 2 to $3 \mu \mathrm{~m}$ intermediate layer of nickel prevents dissolution of the base termination during soldering.
highly reactive with metals and produce corrosive ractions.
Wettability. With effective plating, the wettability of the tin or tim-lead surface is good. better perhaps than silver-palladium, but any thin or void areas. exposing the nickel. greatly reduces the wettability.
palladium. makes the silver-palladium types marginally more expensive than the nickel barrier, even though more processing is required for the nickel barrier. With normal manufacturing processes and optmized storage and handling conditions, the deciding criteria may well be the slightly lower cost of the nickel harrier type and the greater reliahility of the silver-palladium.

This report is draun from information submitted hy Mullard L.td.

SOMP'S DELUX MEAOMO DNW

WITH BAR GRAPH DISPLAY
UNMATCHED VERSATILITY AND PERFORMANCE 3 YEAR WARRANTY
RELATIVE, FREQUENCY TEST, DATA HOLD FUNCTIONS SOAR'S ME 4040 DMM is part of the exciting 4000 series range of Bar Graph Display DMM's now available from SOAR. which incorporate the most advanced Japanese technology currently available. New custom designed chips and circuitry have produced an advanced range of DMM's with features only exepcted on models which are twice the cost.
The 4000 Series is a comprehensive range of five models which enables you to select the appropriate model for your own application. All models come with a three year warranty and are available direct to yourselves at prices starting from as low as £69.00.
SOAR'S complete range of T\&M Equipment has an enviable reputation throughout the world for manufacturing high quality products at extremely competitive prices. Extensive product planning takes place throughout the year which leads to products with total uniformity of operation. The range of equipment available is extensive, from a basic pocket DMM to the most sophisticated industrial energy monitor

SOAR

FEATURES ME4040:

- High speed autoranging
- High speed sampling with the use of a 40 segment bar graph display.
- Heavy duty rugged case and circuit, which is dust and grime proof and is designed to withstand accidential dropping
- Auto or manual ranging with continuity beeper and diode test
- Auto power down mode
- Relative, frequency and data hold functions
- High accuracy: DC V 0.3\% rdg.

Extended capabilities with the use of plug in adaptors which cover temperature, high AC/DC current, capacitance and transistor hie/loss measurements.

IEST \& WIESVIRNG EQUPMENT

For further details of SOAR'S ME4040 DMM logether with infor mation on the complete range of SOAR $T \& M$ Equipment contact.

INTERNATIONAL

[^5]
Z80 ■ CONTROL ■ Z80

CARDMASTER CPU

- 46 MHz Z8O CPU
- CPM compatible
- User transparent MULTT-TASKING
- Up 1032 K EPROM \& 16K RAM
- Watchdog crash protection
- RS232 \& RS422 Comms
- 2' 280 a PIO (one uncommitted)
- On board bus buffering
- Power-on jump hardware
- Euro-card construction

NOW FROM $£ 124+$ VAT
CUB MICROCONTROLLER

- 280 CPU
- $4 \times 280 \mathrm{a}$ P10's (64 V V lines)
-280aCTC
- AK Battery backed RAM (2K sup.)
- 4K EPROM (2K MCV2.0 sup.)
- Powerful monitor (MCV2.0)
- Eurocard construction

NOW FROM £108 + VAT
STARBURST V1.31
A CROSS ASSEMBLER FOR CP/M80 covers four major families of single chip uP's and uC's

* 8048 inc. 8741/2 8748/9/50
* 8051 inc. $8031 / 287518744$
* 6801 inc. 6800/1/2/3 68701
* 6805 inc. 6870563705

Supplied with a complete set of demonstration files
STARBURST V1.31 595.00 + VAT

CMR16 NOW FROM £199.00
Bare PCB's Available

	$1+$	$10+$
C/M CPU	28.50	25.65
C/M I/O	28.50	25.65
CUB	23.50	21.15
CMR16	40.00	36.00

Manuals on request
GNC ELECTRONICS
Little Lodge, Hopton Road,
Thelnetham, DISS IP22 1JN Tel: 0379898313
Requires Z80 CPU

ENTER 28 ON IREPLY CARI)

> EXPORT TRADE AND QUANTITY DISCOUNTS JOHNS RADIO, WHITEHALL WORKS 84 WHITEHALL ROAD EAST, BIRKENSHAW, BRADFORD BD11 2ER. TEL NO: (0274) 684007 WANTED: REDUNDANT TEST EQUIPMENT - VALVES-PLUGS - SOCKETS, SYNCHROS ETC. RECEIVING AND TRANSMITTING EQUIPMENT

Circuit ideas

Current limited 0-200V supply

An outline in the National Semiconductor data book provided the starting point for this $0-200 \mathrm{~V}$ power supply. Current limiting occurs at 30 mA , set by the $150 \Omega 2$ resistor, and load changes up to this point cause output variations of at most 0.2 V . Since the valve grid is connected to the output line, load compensation is very fast.

Most of the voltage is dropped by the valve; only about 20 V appears across the 317 . With my prototype, a short circuit with output set to 200 V causes no damage. M. McDermott London

Parallel data multiplexer with RS232 interface

Data on up to 64 digital inputs can be sampled and passed through an RS232 or similar serial port using simple interface hardware. A byte is sent to the uart, the lowest three bits of which (receive-data lines RBR $_{1-3}$) address one of eight 8 -bit ports. One clock cycle later DR goes low, resetting the DR flag and loading the uart for transmis-
sion by pulsing TBRL. Eight bits of data from the 74LS373 selected by the decoder are thus transmitted back to the computer.
After 64 clock cycles 4040 output Q_{5} goes high which loads a second byte for transmission by the uart. This second byte echoes the original chip address and the parity error flag. Hence each time a byte is sent to the
uart, two bytes are returned; one containing the input data and a second for error checking.

Details of serial buffers or bit-rate generators are not given as these will depend on your requirements.
G. Sullivan

Redditch, Worcester

Circuit ideas

Serial output A-to-D converter

Using a few c-mos i.c.s data from a multiplexed-output analogue-to-digital converter can be turned into an RS232-type serial bit stream. One channel of an analogue multiplexer is used to provide two inputs to the three-digit a-to-d converter. The circuit is suitable for battery operation.
Data is transmitted at 9600 baud, eight bytes every 50 ms . One counter/divider scales output of a stable timebase and the other controls three analogue multiplexers. One of these multiplexers selects from eight inputs to encode serialized bytes representing one b.c.d. digit.

A second counter/divider controls the serialization and digit-select multiplexers to produce a pattern of eight serial words.
$\underbrace{1001101}_{\text {input } 0} \quad \underbrace{100 \quad 1 \quad 10 \quad 1}_{\text {input } 1}$

Serialization and digit-select multiplexers include pull-up resistors at their outputs which function as pull-up resistors for the 3162 outputs. This feature, made possible by the analogue nature of the 4051 multiplexers, eliminates the need for individual multiplexers at each 3162 output.

Output from the digit-select multiplexer drives the timebase prescaler clear input so that the counter pauses until the desired digit appears at the 3162 b.c.d. outputs.

The converter performs a dual-slope analogue-to-digital conversion in approximately 5 ms and then outputs the hundreds, ones and tens digits consecutively. Each digit-select line is strobed for about 5 ms . Each digit is available for much longer than one byte time so the interval is filled with stop bits.

Only three digits need to be sent to digitize each input but the binary counter digit-select output has four states. The fourth digit-select multiplexer input selects the ones digit which is transmitted after the tens digit to fill this extra byte time.

Alternatively an And gate feeding $\mathrm{A}_{0,1}$ digit-multiplex inputs could drive the serialization multiplexer inhibit input to prevent transmission of the extra serial character. Input Y_{3} to the digit-select multiplexer could then be grounded instead of being connected to pin 3 of the 3162 . The spare section of the 4053 multiplexer could form this And gate.

The sixth bit of the transmitted word can be used to represent the position of a switch. Samuel Eisenpress
Santa Cruz
California

Complex filter using two i.cs

When feeding audio output directly into a low-power f.m. transmitter, severe intermodulation occurred due to h.f. out-of-band products. This was particularly noticeable during tape playback since residual bias noise caused audible beat notes.

My requirement was for steep roll-off filtering above 15 kHz with a deep notch at 19 kHz to eliminate stereo-tuner multiplex tone. This multiplex-tone and 3-pole lowpass filter uses only two i.cs and mainly preferred values. Its response is flat within 0.5 dB to $15 \mathrm{kHz},-24 \mathrm{~dB}$ at 19 kHz and -

20 dB at 30 kHz falling at $18 \mathrm{~dB} /$ octave.
A variation elminates the multiplex filter and gives a four-pole low-pass response but attempts to combine four-pole response with 19 kHz notch filtering foundered due to component interaction. No doubt computer modelling could overcome this but out here in the middle of the Pacific Ocean we have to rely on empirical solutions.
Tim Mason
Radio Vanuatu
Port Villa
Vanuatu

Maxwell's e.m. theory revisited

If Maxwell's theory is about to be displaced according to the many words in this journal recently, we might take a nostalgic look at it once again.

'JOULES WATT’

"Back to basics," we said, "before expecting a profound paradigm shift. You ought to know a little about the accepted norm." If Maxwell's theory is about to be displaced (no pun!) according to the many words in this journal recently, we might take a nostalgic look at it once again.
"You don't mean, er, those - curls and things...?" Not directly, but the curls - and the grads, divs, dels - do seem to remain unpopular with students, probably the reason is bad teaching again...
Yet the developed theory of electromagnetism still holds sway. If there are some phenomena such a theory does not explain, then any new model must explain all that has gone before - plus the new aspects. At least that is the way Thomas Kuhn outlined the situation..
But Maxwell remains a good model. displacement current and all. In saying this, I have mentioned a vital point. It is only a model. a kind of template held up against nature, as it were. If the picture fits. so well and good, we can predict some occurances and design a few things and earn some money.
Is it true? That is not a relevant question. We don't really care if it is absolutely true, we can never know that anyway. The point is, does it work? If yes, we go ahead and make our name, or even earn the money... Science and technology is pragmatic, whether pragmatism (in William James's sense ${ }^{2}$) is out of fashion or not.

For example, electrons - are they really there? Is displacement current real? A number of people have become hot under the collar recently (and not so recently), about the 'truth' of these ideas. But they have missed the point. Nothing is ever with certainty proved in science and therefore neither is the engineering based on it. It can only be refuted, when it fails to produce the goods. This time, Karl Popper ${ }^{3}$ had a few words to say on the subject, albeit my limited comments are a only a brief scratch on the surface.

WHAT DID MAXWELL SAY AND WHY?

When James Clerk Maxwell was at Edinburgh University, he came into contact with the philosopher William Hamilton. In the
cut and thrust of ideas, the relativity of human knowledge held sway, because Hamilton taught that we only know relations between things - not much about things in themselves. This links back to a Kantian view. All this affected the young Maxwell deeply.
At the same time, Maxwell came up against the strict teaching and acute experimental methods of the physicist James Forbes, which also impressed him. It left Maxwell always aware that his theoretical constructs must be refinable in the fires of experimental verification - a view rare in theoretical hysicists.

LINES OF FORCE

A little later. Maxwell deeply appreciated the work of Michael Faraday and one of his first important papers ${ }^{4}$ on Electromagnetism was his "On Faraday's Lines of Force" (1856). The 'mechanical' properties of the imaginary lines included the tension in length (which explained attraction) and their repulsion sideways (explaining repulsion itself). Maxwell modelled these properties mathematically.

This first paper was followed in 1861 by the paper "On Physical Lines of Force" ${ }^{\text {" }}$, because in the meantime William Thomson, later Lord Kelvin, had been in lively correspondence with Maxwell, and between the pair of them they had noticed all the analogies between: stream lines in fluid flow, lines of heat flow. electric current flow lines, lines of force in electric fields and lines of force in magnetic fields.

These analogy relationships give partial explanations. They are models, but cross fertilise thinking about different branches of physical science. Yet they warn us not to think electricity is really a fluid water, or really like a state of heat flow agitation...
Further discussion, this time with Stokes. had Maxwell contemplating Stokes' work showing that heat flow in a non-uniform crystal had a direction A not always parallel to the direction of maximum temperature gradients H .

$$
\mathbf{A}=\mathbf{T} \theta
$$

where \mathbf{T} is a tensor, describing the anisotropic crystal. Maxwell immediately applied the analogy to magnetism and distinguished
the two vectors which he called the "flow" B and the "force" \mathbf{H} and realised that in an anisoltropic magnetic medium (like some of our modern ferrites), the lines of force would not always be parallel to the lines of flux. The direct analogy in the electric case was flow lines of current density \mathbf{J}, with the force \mathbf{E} setting them up.
The trouble is that generations of students have been perplexed by these two 'different' vectors \mathbf{B} and \mathbf{H} describing the same thing magnetic field. You might have found this because of bad teaching again and a glance at these original papers often helps.

VECTORS

The analogies led Maxwell to discourse on two classes of vector functions existing in general, fluxes and forces. A flux B is subject to a continuity equation and is integrated over a surface. The picture is 'streaming across'. A force \mathbf{P} is a vector which is usually derived - but not always - from a single valued scalar function, the potential and is integrated along a line. It gives the concept 'force along'. The vectors \mathbf{B} and \mathbf{J} are fluxes. H and E are forces.

In Maxwell's earlier discussions and growing mental pictures, he stuck to threedimensional Cartesians (the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes). But by 1870 after much correspondence with Peter Guthrie Tait and William Thomson, Maxwell ${ }^{6}$ himself advanced the ideas of convergence (negative divergence), the curl and slope (later called the gradient). The extract from his paper is interesting:
"... 「or has, in general, also a vector portion, and I propose, but with great diffidence, to call this vector the Curl or Version of the original vector function.

It represents the direction and magnitude of the rotation of the subject matter carried by the vector σ. I have sought for a word which shall neither, like Rotation, Whirl, or Twirl, connote motion, nor, like Twist, indicate a helical or screw structure which is not of the nature of a vector at all."

Maxwell found Tait's enthusiasm for 'quaternions' invented by William Hamilton (not the philosopher. but another Hamilton, the mathematician), had given him the germ of vector analysis - especially via the use of Hamilton's operator 「. There was much humour in Maxwell's correspondence about Γ and his play on words regarding the possible names for it: Nabla, or even Atled had been suggested ${ }^{\text {T}}$.

Maxwell did not fully adopt the complicated quarternion ideas, but used the form

$$
r=\mathbf{i} \frac{\mathrm{d}}{\mathrm{dx}}+\mathbf{j} \frac{\mathrm{d}}{\mathrm{dx}}+\mathbf{k} \frac{\mathrm{d}}{\mathrm{dx}}
$$

and realised the vector properties of it in connection with the 'div' and 'curl' operations. It remained to Willard Gibbs in a pamphlet and Oliver Heaviside ${ }^{8}$ to oust 'quaternions' but to bring in the full modern vector analysis notation. You will still find it most entertaining to read Heaviside's pithy comments about Clarendon type faces and other notations. Maxwell and certainly Heaviside would immediately recognise our modern presentation of the equations.

Advancing an argument started by Thomson, Maxwell showed that any flux vector had two parts. It had a component from the curl of a force vector plus another part which was the gradient of a scalar function. For magnetism he wrote,

$$
\mathbf{B}=\operatorname{curl} \mathbf{A}+\operatorname{grad} \Psi
$$

and went on to say that in the absence of magnetic poles (or isolated magnetic charge) there are no sources and therefore $\operatorname{grad} \Psi=0$.
Therefore he had obtained a complete set of equations between B, H. J and \mathbf{E}. At this stage, still using Cartesian mathemațical arguments, Maxwell showed Faraday's electromagnetic induction is described in our modern notation by,

$$
\operatorname{curl} E=-\frac{\partial \mathbf{B}}{\partial t}
$$

and from this, by using $\mathbf{B}=$ curl \mathbf{A} showed

$$
\operatorname{curl} E=\operatorname{curl}\left(\frac{\partial \mathbf{A}}{\partial t}\right) \text { or } E=-\frac{\partial \mathbf{A}}{\partial t} .
$$

Maxwell called this new function \mathbf{A} the "electrotonic state" in recognition of Faraday's speculations about a hypothetical state of stress that must surround electrically or magnetically "charged' bodies.

STRUGGLES WITH MECHANICAL ANALOGIES

You will find Maxwell's struggles with how the fields extend around the sources contaned in the second "lines of force" paper". He tries analogy again with a kind of mechanical vortex model, see Fig.1. He extended the model from matter to space, postulating an ether to contain the vortices. Consider the array of vortices embedded in an incompressible fluid. When they rotate, centrifugal forces cause them to contract longitudinally and they exert radial pressure. This is exactly Faraday's proposal about the properties of lines of force.
But the concept drove Maxwell to see that electricity was not confined to a fluid in the

Maxwell's Figure 2 in his paper, "On Physical Lines of Force". The electric current was represented by the 'ball bearings' running from A to B and the resulting vortex motion was given to the imaginary 'cells' in the surrounding space as shown. The line p to q shows what would happen if another conductor was placed along there, thus explaining induction. One or two of the rotation direction arrows are incorrect.

The flow lines of a current form closed paths according to Maxwell. This means they must pass through the dielectric of a capacitor, including a vacuum. All the current there must be in the form of Displacement or Electric Flux variations as no actual electrons are emitted through the region.
conductor on this view of things, but was disseminated in space - and the energy was stored' in the space containing the fields... The function \mathbf{A}, which we now call the vector potential, acted as a kind of momentum term in the field. The equation $\mathbf{E}=\lambda \mathbf{A} / \lambda t$ was equivalent to Newton's equation between force and rate of change of momentum.
Now Maxwell hit upon the idea that the medium containing the vortices was elastic - hence the energy storage in the medium was by an elastic distortion. Two remarkable consequences quickly follow. Since the space surrounding a conductor is capable of an elastic displacement - a varying field displaces an equivalent current. This is the first glimmering of the "displacement current" postulate. Secondly, any elastic medium with density ρ and a shear modulus m can transmit transverse waves with a velocity.

$$
v=\sqrt{\frac{m}{\rho}}
$$

Maxwell inserted magnetic and electric
quantities (based as we now say on permittivity and permeability) and found the wave velocity would almost equal the then accepted value of the velocity of light. With some excitement he wrote in the "Lines of Force..." paper
"The velocity of light in air, as determined by
M. Fizeau* is 70.843 leagues per second (25 leagues to a degree) which gives
$V=314.858,000,000$ millimetres
$=195,647$ miles per second .
The velocity of transverse undulations in our hypothetical medium, calculated from the electro-magnetic experiments of MM. KohIrausch and Weber, agrees so exactly with the velocity of light calculated from the optical experiments of M. Fizeau, that we can scarcely avoid the inference that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena".

By 1865 Maxwell had written his paper "A Dynamic Theory Of The Electromagnetic Field ${ }^{\prime \prime 9}$. In it, he spelt out the full development of how the electromagnetic waves would propagate. Note the word "field" appears for the first time in the title. He had dropped the "vortices" intermediate analogy stage and relied on a few facts including the really original concept of the displacement current'. He effectively noted that the magnetic current is always a displacement current' $\partial \mathbf{B} / \partial$ t as there is nomagnetic charge in the Universe. Therefore why not some of the electric current at least in the form $\partial \mathrm{D} / \mathrm{dt}$? The total current then, is always closed and is a set of flow lines

$$
\mathbf{J}^{\prime}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}
$$

where J ' is the total current, J the conduction current and $\partial \mathrm{D} / \partial \mathrm{t}$ is the displacement current, D now being the electric flux or displacement vector. A changing current might set up a flow pattern in a capacitor like that in Fig.2.

ELECTRICITY, MAGNETISM AND LIGHT

Maxwell saw the significance of his construct. He wrote to his cousin, Charles Cay, "I have also a paper afloat, containing an electromagnetic theory of light, which till I am convinced to the contrary, I hold to be great guns."

Again. the philosopher Hamilton's influence on Maxwell in his youth can be seen. The build up via analogies, his development of the mechanical model - and then dropping it, and finally the analysis of the direct relations between the two classes of phenomena (magnetism and electricity) as a unifying structure - are all based on Hamilton's doctrine of the relativity of knowledge. Einstein said of Maxwell that he saw the future role of field theory in physics, complete with its describing differential equations and seeing that was his stroke of genius.
The revolutionary idea is not really the displacement current proper, (in spite of the heat under many collars!), but the whole 'dissemination' idea into the medium. Maxwell's formal energy densities in the medium which also link with some of Thomson's work, encapsulate this view:
$\left.\begin{array}{rl}\text { magnetic energy density } & =\mathbf{B} \cdot \mathbf{H} \\ \text { and electric energy density } & =\mathbf{D} \cdot \mathbf{E}\end{array}\right\}$ joule m^{3}
Maxwell writing at the end of his "Dynamics..." paper, even calculated the peak value of the electric field in sunlight, both in the solar constant at the Earth's surface and at the sun.
"The energy passing through a unit of area is

$$
W=\frac{P^{2}}{8 \pi \mu \Gamma}
$$

so that $\quad P=\sqrt{8 \pi \mu V W}$,
where V is the velocity of light, and W is the energy communicated to unit of area by the light in a second.
According to Pouillet's data, as calculated by Professor W. Thomson, the mechanical value of direct sunlight at the Earth is 83.4 foot-pounds per second per square foot. This gives the maximum value of P in direct sunlight at the Earth's distance from the Sun. $P=60,000,000$, or about 600 Daniell's cells per metre. At the Sun's surface the value of p would be about 13,000 Daniell's cells per metre."

The model Maxwell gave explained and predicted optical and electrical phenomena with great vigour and precision. Whichever vectors you take, strictly transverse waves in space appear because of the vector product nature of curl. The equations are the 'telegraphers equations' of space, and look like the transmission line equations Heaviside derived for waves on wires later:

$$
\begin{array}{ll}
\text { curl } \mathbf{H}=\mathrm{J}+\frac{\partial \mathrm{D}}{\partial t} & \text { with } \\
\operatorname{Durl} \mathbf{E}=-\frac{\partial \mathrm{B}}{\partial t} & \mathrm{~B}=\mu \mathrm{H} \\
\operatorname{cu} & \\
\mathrm{~J}=\sigma \mathrm{E}
\end{array}
$$

$\operatorname{div} B=0$
$\operatorname{div} D=\rho$.
The wholly transverse solutions eliminated the longitudinal wave requirements that had embarrassed earlier theories of light.

Heinrich Hertz's electrical generation and detection of long maxwellian waves, with all the predicted properties was a supreme vindication. The vast proliferation of engineering uses of these waves up to the present time is a further supreme example.

PREDICTING POWER AND USEFULNESS BUILD UP

But just as important, Maxwell predicted that the waves would exert a radiation pressure - thus disposing of the idea that any luminiferous pressure would he a crucial argument for a corpuscular theory of light. Lebedev proved the radiation pressure postulate experimentally in 1900. It explains the repulsion of parts of the tails of comets. Such radiation pressure is vital for Black Body radiation theory. It may be used to derive classically the time dilation formula of special relativity and explains how stars hold up internally, together with their allowed mass range...

Maxwell's famous Treatise ${ }^{11}$ sets out the on-going work in book form, but adds little
more to his papers and memoirs. In the late 1870 s he was about to write a deeper investigation into all these researches, but stomach cancer heralded his early death aged 48 in November 1879 - at the prime of his powers. As usual, we always speculate on what he might have achieved had he lived.

References

1. T.S.Kuhn, The Structure of Scientific Revolutions Univ. Chicago Press, 1970.
2. W.James, Pragmatism and Four Essays from the Meaning of Truth, Meridian Books, 1963.
3. K.R. Popper. Conjectures and Refutations R.K.P. 1972.
4. J. Clerk Maxwell, On Faraday's Lines of Force, Scientific Papers. 1855, 1856, reprinted by Dover, New York, 1952.
5. J.Clerk Maxwell, On Physical Lines of Force Scientific Papers, 1861, 1862.
6. J.Clerk Maxwell, On the Mathematical Classification of Physical Quantities, Scientific Papers. 7. Marwell had much to say with Tait, Thomson, and many others via the 'halfpenny post' after the Post Office introduced it in 1869. Tait was known as T' and Thomson as T'. These two authors wrote a "Treatise on Natural Philosophy" which was reviewed by Maxwell - who henceforth referred to it as "T and T"". Tait couldn't stand Tyndall. another scientist in the milieu, and referred to him as $\mathrm{T}^{\prime \prime}$ ("where $\mathrm{T}^{\prime \prime}$ is a quantity of the second order...'). Tait had written a book on Thermodynamics in which he had given an equation $\mathrm{dp} /$ $\mathrm{dt}=\mathrm{JCM}$. Maxwell then signed his cards:"...yours sincerely, dp/dt."
7. O. Heaviside, Electromagnetic Theory vol.1. chap 3. The Elements of Vectorial Analysis and Algebra, The Electrician 1893, Dover reprint.
8. J.Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Scientific papers.
9. J.Clerk Maxwell, Treatise on Electricity and Magnetism. Oxford. 1873. 2nd. ed. 1881. 3rd. ed. 1891.

Dividers faster than 3 GHz

Bipolar devices offer better phase noise and speed power performance than gallium arsenide equivalents

Advances in semiconductor processing and photolithography at Plessey have produced the first prescaler i.cs for frequencies above 3 GHz . They incorporate silicon biploar transistors with $1.5 \mu \mathrm{~m}$ emitters and 7 CHz f_{t} at 0.5 mW dissipation. Coupling these transistors with $5 \mu \mathrm{~m}$-pitch metal combines the high speed with high packing density.

Work is currently being done to increase speed of the new dividers to 6 CHz , which will make them useful for applications like directly synthesizing local oscillators in C-band satellite receiver front ends.

Initially, the SP8800 prescaler series consists of divide-by-two, four, eight and ten i.cs in surface-mount and dil packages. Sensitivity and overload performances are good, as Fig. 1 shows, and power dissipation/ radiation are low. Being bipolar, the devices inherently offer better phasenoise and speed/power performance than CaAs equivalents.

Applications include counter prescaling and frequency synthesis. Figure 2 represents a 3.5 GHz frequency synthesis loop with one of the new prescalers dividing by four and an SP8704 dividing by 128 or 129. With the world's first military-specification 20 mA 1.5 CHz synthesizer, Fig. 3, it will be possible to produce a two-chip military-grade frequency synthesis loop.

The SP8850 is currently under development: samples should be available in October.
Nick Cowley

Fig. 3

LOW COST ELECTRONICS C.A.D.

IBM PC (and compatibles), RM NIMBUS, BBC MODEL B, B + and MASTER, AMSTRAD CPC and SPECTRUM 48K
"ANALYSER" I and II compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits. GAIN and PHASE INPUT IMPEDANCE, OUTPUT IMPEDANCE and GROUP RELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1 Hz to 1.2 GHz . The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.
Circuits containing any combination of RESISTORS. CAPACITORS,
INDUCTORS, TRANSFORMERS. BIPOLAR and FIELD EFFECT
TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated - up to 60 nodes and 180 components (IBM version).

Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNEO R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TVI.F. and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.
STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".
Tabular output on Analyser I. Full graphical output. increased circuit size and active component library facilities on Analyser II.
Check out your new designs in minutes rather than days.
ANAL YSER can greatly reduce or even eliminate the need to breadboard new designs.
Used by INDUSTRIAL, GOVERNMENT and UNIVERSITY R \& D DEPARTMENTS worldwide. IDEAL FOR TRAINING COURSES, VERY EASY TO USE. Prices from £20 to E195.

Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service. For illustrated leaflets and ordering information please contact Ref: WW
Number (one Systems lit 1
Crown Street, St Ives, Huntingdon, Cambs. PE17 4EB.
Telephone: St Ives (0480) 61778

ENTER 42 ON REPLY CARD

A powerful control computer based on the new Hitachi 6303 Y and high level language Forth. $100 \mathrm{~mm} \times 72 \mathrm{~mm}$. 30 K bytes RAM, 16K dictionary RAM/PROM, 256 bytes EEPROM, 16K Forth. You can attach 64 key keyboard, LCD and $I^{2} C$ bus peripherals. Built in are interrupts, multitasking, time of day clock, watchdog timer, full screen editor and symbolic assembler. 32 parallel and two serial ports. Single poiver supply and low power 3 mA operational mode.
1 off $£ 194.95$ including manual and non-volatile RAM.

> Triangle Digital Services Ltd 100a Wood Street, London E17 3HX Telephone 01-520-0442 Telex 262284 (quote M0775) ENTER3IONREPLY CARD

Toroidal \& E.I. Transformers

As manufacturers we are able to offer a range of quality toroidal and laminated transformers at highly competitive prices

Toroidal Mail Order Price List
 \section*{prices inclusive of VAT \& Postage}

15va 7.95, 30va 9.18. 50va 10.16, 80va 11.36. 120va 12.07, 160va 14.20. 225va 15.21. 300va 17.04, 500 va 22.10 , 625 va 24.66 , 750va 28.75, 1000va 44.82. Also avalable $1 \mathrm{kZ}, 1 \mathrm{k} 5,2 \mathrm{k}, 2 \mathrm{k} 5$. 3 k . Prices on request.
Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12. 15-0-15. 18-0 18. 22-0-22. 25-0-25. 30-0-30. 35-0-35, 40-0-40. 45-0-45. 50-0-50. 110. 220. 240. Primary 240 volt.

Quantity prices and delivery on request
AUR \mathbb{A}

Air Link Transformers
Unit 6, The Maltings, Station Road,
Sawbridgeworth, Herts. Tel: 0279724425
ENTER 26 ON REPLY CARI)

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING

 PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG.
5 mins. from Tally Ho Corner
Telephone: 01-445 2713/0749

APPLICATIONS SUMMARY

Digital signal PROCESSING

Signal processing using analogue methods. where time and/or amplitude are continuous quantities, has several disadvantages compared to digital methods where time and amplitude are discrete quantities. State-of-the-art analogue-processors are approaching the limits of integration for silicon and their parameters are difficult to repeat reliably in mass production: time and temperature instabilities are also a problem.
New digital-signal processor architectures increase processing speed. Sequential processing (von Neumann) using a single hus architecture, where instruction and data signals share a common path, has been replaced by parallel processing (Harvard). In Harvard architecture. instruction and data paths are separated. This enables speeds to be increased by pipeline processing in which several tasks can be accomplished in a single instruction cycle.
Three stage pipelining (top diagram) is used with NEC's HPDTj230 to fetch an instruction. execule an instruction and store results in paratlel during a single 150 ns cycle. The TTe 30 advanced signal processor can be operated in either master or slave mode (hottom).

NEC applications handhook Increase

KEY TO DIAGRAMS

number crunching capabilities: digital signal processors' discusses the use of d.s. processors and applications including numerical control. speech processing, instrumentation and telecommunications.

APPLICATIONS SUMMARY

APPLICATIONS SUMMARY

Digital voice/data telephone set

Design of a digital voice/data telephone set is discussed in Motorola note AN968. This telephone set provides standard analogue functions while simultaneously transmitting 9600 baud asynchronous data from a computer or terminal.

The voice/data i.cs used are from the MC145422/26 universal digital-loop transceiver family. They provide $80 \mathrm{kbit} / \mathrm{s}$ fullduplex synchronous communication over 2 km on one twisted pair. A pulse/tone dialler and c-mos RS232 i.c. for communication with a computer or terminal are included in the design and an eificient switching p.s.u. provides an isolated supply from the twisted pair's 48 V .
Traditional tone signalling on the voice channel is used. Looked at from the p.b.x., the voice/data multiplexer appears as an ordinary telephone. The handset cradle switch is replaced by a relay. \mathbf{S}_{1}, that opens when the telephone is lifted.
Voice and data signals are converted to digital form compatible with the u.d.1.t. by the 14403 codec/filter and 145428 data-set interface respectively.
Ringing signal from the p.b.x. is detected, sampled and sent to the digital telephone where it feeds a loudspeaker

through an amplifier. Analogue voice signals are digitized and reconstructed by the codec/filter duplexer which is linked to the p.b.x. wires via the u.d.l.t.

Asynchronous data to and from the comput or data switch passes through the data-set interface. Outgoing RS232 data is synchronized and sent to the u.d.t.1. fullduplex data channel at 8 k bit/s. Conversion of incoming synchronous data to asynchro-
nous form is also performed by the data-set interface.
Direct current is applied to the twisted pair at the multiplexer and transputed over the wires, so no extra supply lines are needed.

Full constructional details are included in the seven-page note. A further note, AN949, describes the voice/data multiplexer.

Optimization of led operating conditions is discussed in Three-Five Semiconductor's note No.1. With low-voltage d.c. supplies. connecting a led is simply a matter of calculating an appropriate voltage-dropping resistor. Where the voltage drop is large or power consumption is important, low-power leds can he particularly beneficial.

With high voltage a.c. supply simple resistive voltage-dropping elements are wasteful, can be physically large, and do not take into account led reverse voltage. There are more efficient ways of driving leds from a high voltage a.c. source as this table shows.

Also included in the note are equations for calculating the voltage-drop elements and further information on each of the six methods.

LED DRIVING CONSIDERATIONS

	Supply	$V_{\text {led }} 2.2 \mathrm{~V} . V_{\text {D }}=0.6 \mathrm{~V}$	20mA standard led	10 mA high efficiency	2mA low current	Unit	Light output
1	$\begin{aligned} & 12 \mathrm{~V} \\ & \text { d.c } \end{aligned}$	R Power disstipated	$\begin{aligned} & 490 \\ & 0.196 \end{aligned}$	$\begin{aligned} & 980 \\ & 0098 \end{aligned}$	$\begin{aligned} & 4900 \\ & 0.0196 \end{aligned}$	$\begin{aligned} & 12 \\ & \text { W } \end{aligned}$	Constant
2	$\begin{aligned} & 240 \mathrm{~V} \\ & \text { a.c. } \end{aligned}$	R Power dissipated	$\begin{aligned} & 5930 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 11860 \\ & 237 \end{aligned}$	$\begin{aligned} & 59300 \\ & 0.47 \end{aligned}$	$\begin{aligned} & \text { !! } \\ & \text { W } \end{aligned}$	Pulsed 50 Hz
3	$\begin{aligned} & 240 \mathrm{~V} \\ & \text { a.c. } \end{aligned}$	R Power dissipated	$\begin{aligned} & 5945 \\ & 9.51 \end{aligned}$	$\begin{aligned} & 11890 \\ & 476 \end{aligned}$	$\begin{aligned} & 59450 \\ & 0.95 \end{aligned}$	$\begin{aligned} & \text { f? } \\ & \text { W } \end{aligned}$	Pulsed 50Hz
4	$\begin{aligned} & 240 \mathrm{~V} \\ & \text { a.c. } \end{aligned}$	R Power dissipated	$\begin{aligned} & 11830 \\ & 4.73 \end{aligned}$	$\begin{aligned} & 23660 \\ & 2.37 \end{aligned}$	$\begin{aligned} & 118300 \\ & 0.47 \end{aligned}$	$\begin{aligned} & !! \\ & W \end{aligned}$	Pulsed 100 Hz
5	$\begin{aligned} & 240 \mathrm{~V} \\ & \text { a.c. } \end{aligned}$	C Power dissipated	$\begin{aligned} & 0.533 \\ & \text { Negligible } \end{aligned}$	$\begin{aligned} & 0.267 \\ & \text { Negligible } \end{aligned}$	0.053 Negligible	$\begin{aligned} & \mu F \\ & W \end{aligned}$	Pulsed $50 \mathrm{~Hz}_{2}$
6	$\begin{aligned} & 240 \mathrm{~V} \\ & \text { a.c. } \end{aligned}$	C Power dissipated	$\begin{aligned} & 0.269 \\ & \text { Negligible } \end{aligned}$	0.134 Negligible	0.026 Negligible	$\begin{aligned} & \mu F \\ & W \end{aligned}$	Pulsed 100 Hz

APPLICATIONS SUMMARY

Capacitance of the dielectricfoil sensor varies with relative humidity. At 43% relative humidity. the sensor is 122 pF within 15% and its range is 10 to 90% r.h. Frequency of one of the two RC oscillators shown is fixed: in the other oscillator. C of the RC network is the sensor so its frequency varies with relative humidity
Frequency difference between the two oscillators is translated into a pulsed voltage with an average value proportional to the mark/space ratio. This voltage appears at the buffer i.c. output. Because the sensor characteristic is non-linear the average value varies non-linearly with humidity. A diode and passive components following the buffer linearize drive for the meter, pen recorder or led display

For calibration, the sensor is replaced by a $2 \% 118 \mathrm{pF}$ capacitor and the lixed oscillator

Battery powered hygrometer

A low-cost hygrometer running from a $100 \mu \mathrm{~A}, 4.5 \mathrm{~V}$ supply is one of ïve applications in the first VT \& S Bulletin from Mullard. Electronic hygrometers are lightweight and easy to maintain, operate and calibrate. Having electrical output. they are easily interfaced to other elect ronic equipment.
irequency adjusted for minimum meter
reading. This capacitor is then replaced by a $2 \% 159 \mathrm{pF}$ capacitor and the meter potentio meter is adjusted for maximum meter reading. With the sensor in place. the variable capracitor in the fixed oscillator is again adjusted until a known humidity is correctly displayed. Potassium carbonate in a sealed jar can be used for this. Operating frequency limits of the sensor are 1 kHz and 1 MHz

Other notes in the VT \& S Bulletin (varistors. thermistors and sensors) cover back-up lighting for fluorescent lamps at switch on, colour tue.h.t. supply protection. shaver-socket protection and using zincoxide varistors.

Addresses	London WCIE 7HD
Three-Five	015806633
PO Box 131. Swindon.	Motorola
Wittshire SN2 6XD	ITM Muiticomponents
Tel. 0793 618835	346 Edinburgh Avenue,
NEC Electronics	Slough,
Cygnus House,	Berkshire SL1 4TU
Sunrise Park Way.	Tel. 0753 824131
Milton Keynes MK14 6NP	Texas Instruments
Tel. 0908691133	Online Distribution
Mullard	Melbourne House
Mullard House	Kingsway
Torrington Place	Bedford MK429AZ

Supply-voltage supervisor

When a simple RC network controls the reset line of a microprocessor certain types of power failure can result in incorrect resetting.

At power up the TLizT05 supply-voltage supervisor delays rising of the reset line until supply voltage is fully on, as does an RC network. Unlike the RC circuit though, the 3705 pulls the reset line low when supply voltage falls below 3.6 V . When supply voltage rises above 3.6 V , the reset line goes high after a delay proportional to C_{r}. Output is undefined when supply voltage falls helow 2 V .

This circuit is from the Texas Instruments TL7705 applications sample available to designers. A small p.c.b. and three passive components are included in the kit.

Intermural tv signals

It is sometimes forgotten that a simple half-wave dipole correctly positioned can give a signal greater than the usual miniature indoor Yagi-Uda or log periodic antenna.

Television signals show regular standing wave patterns of maxima inside brick buildings. To investigate tyhe usefulness of this effect I made measurements of the geometry and magnitude of the signal pattern set up hy the 0.51 Gitz radiation from the Sandy, Beds transmitter in a brick room at grid reference 761431. The measuring system comprised a half-wave dipole with a sleeve balun feeding a TES MC661C signal-strength meter.
Measured along a line parallel with the y-axis the distance between successive signal strength maxima was 42.7 cm and, normalising the peak signal amplitude to unity, the amplitude at the minima was (0.32. Results parallel with the z-axis were 24.0 cm and 0.75 . These are sketched below.

At the position of minimum signal the direction of polarization was that of the incident signal, approximately N-S. Away from the minima it varied between directions parallel to the y-axis and to the z-axis.

ANAI.YSIS

The observed signal patterns were tested for compatibility with either a Fresnel or a Fraunhofer diffraction pattern orginating in apertures formed by the irradiated walls. They did not fit either form but a system of interference between direct radiation in the room and wall-reflected radiation was found to agree with experiment.

Consider next, direct radiation along d intersecting the once-reflected radiation r at the point (a, b), as depicted next column. The geometrical path difference between d and r is $2 \cos \theta(\mathrm{~L})-\mathrm{b})$. Allowing for a π phase change on reflection the optical path differ-

ence is $2 \cos \theta(D-b)+\lambda / 2$ where λ is the wavelength of the radiation. For the point (a,b) to be a position of maximum signal

$$
2 \cos \theta(\mathrm{I})-\mathrm{b})+\lambda / 2=n \lambda
$$

where n is an integer. The separation in values of b lor successive maxima is then

$$
(\lambda / 2) \sec \theta
$$

This is then the peak separation along the z-axis.

The reflected wave fails if the y-value of the point of incidence of r is negative, i.e. where

$$
a<4(\mathrm{D}-\mathrm{b}) \tan \theta .
$$

In addition. the optical path difference must equal or exceed λ for a maximum to be possible and so

$$
b \leqslant D-(\lambda / 4) \sec \theta \text {. }
$$

Note that this maximum value for h will be very sensitive to λ if θ approaches $\pi / 2$.
A similar analysis for radiation reflected from the wall at $y=W$ gives the peak separation along the y-axis as
$(\lambda / 2) \cdot \tan \theta \cdot \sec \theta$
This maxima pattern disappears if

$$
a<W-B \tan \theta
$$

or

$$
\mathrm{a} \leqslant \mathrm{~W}-(\lambda / 4) \tan \theta \cdot \sec \theta
$$

Equating measured and analytical values for peak separation along the z-axis gives

$$
42.7=(\lambda / 2) \tan \theta \sec \theta
$$

and for the y-axis

$$
24=(\lambda / 2) \sec \theta
$$

whence

$$
\theta=60.8^{\circ} \text { and } \lambda=23.4 \mathrm{~cm}
$$

The value of H agrees reasonably with the compass value of radiation direction. The free-space wavelength $\lambda_{11}=58.8 \mathrm{~cm}$ and so $\lambda_{1} / \lambda=2.5$.

Moreno discusses the effect on wavelength of the presence of dielectric material in an
enclosure showing, for microwaves, a value of 1.5 for λ_{4} / λ with material having a dielectric constant of 2.45 . I suggest that brickwork shows a dielectric constant of about 7 for the 0.51 CHz radiation under investigation, making the value of 2.5 for λ_{0} / λ reasonable.

If the reflection coefficient of the wall is R then the intensity maximum is proportional to ($1-R$) $+R(1-R)$ and the minimum to $(1-R)-R(1-R)$. The ratio of maximum to minimum amplitude will be $(1+R) /(1-R)$. Thus for y variations:

$$
\begin{gathered}
\max / \min =3.25 \therefore \mathrm{R}=0.28 \\
\text { reflection angle }=90^{\circ}-60.8^{\circ}=29.2^{\circ}
\end{gathered}
$$

For 2 variation:

$$
\begin{gathered}
\max / \min =1.33 \therefore \mathrm{R}=0.06 \\
\text { reflection angle }=60.8^{\circ}
\end{gathered}
$$

For radiation polarized normally to the plane of incidence the reflectivity should fall to zero when the incident and refracted angle add to 90°. If the incident angle is i and the refractive index η then

$$
i+\sin ^{-1}(\sin i / \eta)=90^{\circ}
$$

for zero reflectivity. As R falls from 0.28 with an incident angle of 29.2° to 0.06 at 60.8°. crude extrapolation puts $\mathrm{R}=0$ at an incident angle of 69°. hence

$$
69^{\circ}+\sin ^{-1}(\sin 69 / \eta) \approx 90^{\circ}
$$

making $\eta \sim 2.6$ and hence the dielectric constant ~ 6.8.

This analysis assumes throughout that the incident wave is parallel to the ground. or approximately so.

DISCUSSION

At a maximum the internal signal intensity should compare with the external value as $((I-R)+R(I-R)): I$. Taking the reflectivity R as 28% this ratio is $0.92: 1$ giving an internal signal amplitude of 96% of the external magnitude. The introduction of a lange capture-area antenna into the enclosure must be avoided or the signal pattern will be disturbed and constructive interference lost.

If an analagous pattern were obtained from the proposed satellite broadcasts it could he exploited, possibly by a printed array of linked dipoles with their size adjusted to accord with the diminished internal wavelength ${ }^{2}$. Such a system would avoid the cost and aesthet ic objections that roofmounted dish antennas may generate.

1. Microwave Transmission Data. T.Moreno. Doner Puhlications. 1958.

Circuit ideas

| Q_{3} | Q_{2} | Q_{1} | Q_{0} | i / p | $0 / p$ | Q as a
 function
 Of Q_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | D_{0} | 1 | Q_{0} |
| 0 | 0 | 0 | 1 | D_{0} | 0 | Q_{0} |
| 0 | 0 | 1 | 0 | D_{1} | 1 | Q_{0} |
| 0 | 0 | 1 | 1 | D_{1} | 0 | Q_{0} |
| 0 | 1 | 0 | 0 | D_{2} | 1 | Q_{0} |
| 0 | 1 | 0 | 1 | D_{2} | 0 | Q_{0} |
| 0 | 1 | 1 | 0 | D_{3} | 1 | 1 |
| 0 | 1 | 1 | 1 | D_{3} | 1 | 1 |
| 1 | 0 | 0 | 0 | D_{4} | 1 | Q_{0} |
| 1 | 0 | 0 | 1 | D_{4} | 0 | Q_{0} |
| 1 | 0 | 1 | 0 | D_{5} | 0 | Q_{0} |
| 1 | 0 | 1 | 1 | D_{5} | 1 | Q_{0} |
| 1 | 1 | 0 | 0 | D_{6} | 0 | Q_{0} |
| 1 | 1 | 0 | 1 | D_{6} | 1 | Q_{0} |
| 1 | 1 | 1 | 0 | D_{7} | 0 | Q_{0} |
| 1 | 1 | 1 | 1 | D_{7} | 1 | Q_{0} |

RY generator for RTTY

When designing hardware and software for RTTY reception it is useful to have a constant source of RTTY data.
Three outputs from a clocked 4 -bit counter feed A, B and C inputs of a multiplexer to select one of eight inputs.

RTTY characters consists of at least seven and a half units; a start bit, five data bits and one and a half stop bits. Using two stop bits, as with this circuit, does not cause problems.
Characters R and Y are usually used as a test message since they are complementary. For characters RY, the bit pattern is 10010101 10101011. The counter's leastsignificant bit provides the multiplexer data inputs.
As Q is a t.t.l. signal it can be used to drive the input of the computer directly. To allow

testing of the terminal unit, two spare Nand gates provide mark and space frequency: Values of R_{2} and C_{2} determine frequency shift. Each oscillator is enabled by Q and Q

Phase-check pulse generator

Witches-hat pulses like those often used to indicate phase on circuit diagrams are immediately obvious on an oscilloscope screen, unlike narrow rectangular pulses where the edges tend to disappear.

Low impendance output is provided by a unity-gain buffer; pulses produced are at 1 kHz with a peak level of 1 V .
D.R.G. Self

London.
outputs from the multiplexer.
Mixing of mark and space frequencies is done with a simple transistor Nand gate built around D_{1}, D_{2} and Q_{1}. Output is low-pass filtered by R_{6} and C_{4}. Reverse sense RTTY is obtained by swapping over Q and $\overline{\mathrm{Q}}$ multiplexer outputs.
P. Harrison

Lichfield
Staffordshire

Universal voltagecontrolled oscillator with low phase noise

An analysis of noise behaviour for a variety of v.h.f. transistors shows that a j-fet produces the lowest phase noise.

Ffor use in a v.h.i. synthesizer, a voltagecontrolled oscillator was required with low phase noise. The design was to be such that only the mount ing of a suitable tank inductor would guarantee operation at any centre frequency in the band between 10 and 300 MHz . As there is no general agreement on which kind of transistor provides the lowest noise in oscillators, the effect of transistor noise was investigated both theoretically and experimentally.
In the general v.c.o. circuit of Fig.1, the most suitable frequency determining element is an LC resonator electronically tuned by variable-capacitance diodes. The drawback is that the frequency is a non-linear function of the voltage, which results in the conversion of amplitude into phase noise. The same phenomenon occurs in the internal capacitances of the semiconductor devices in the amplifier. This counteracts the reduction of the phase noise normally expected when the oscillation amplitude is increased. Therefore there is some optimum oscillation amplitude for minimum phase noise. This explains the necessity of the amplitude control in Fig. 1.
So that the oscillation-sustaining amplifier does not affect the resonator Q , its input and output resistances should be much higher than the resonator resistance $\mathrm{R}_{\text {res. }}$. Hence the amplifier can be modelled as a voltagecontrolled current source. which is characterized by its large-signal fowward transconductance $S\left(V_{i n}\right)$. The oscillation amplitude is determined by

$$
\begin{equation*}
1-\mathrm{S}\left(\mathrm{~V}_{\text {in }}\right) Z_{\text {res }} / \mathrm{n}=0 \tag{1}
\end{equation*}
$$

where n is the voltage transformation ratio of the resonator. The large-signal transconductance can easily be determined graphically from the V-I transfer characteristic of the amplifier. This is shown in Fig. 2 for an amplifier with a single transistor. For a stable oscillation amplitude. it is necessany that S is a decreasing function of V_{in}. This is generally not the case for a single-transistor amplifier. apparent from Fig.2, at least not if the input direct voltage of the transistor is constant or cannot change very fast (within a few periods of the oscillation). The oscillation amplitude is finally limited by the supply voltage. This is to be avoided. however, because the transistor impedances will. in part of the oscillation
A. DEKKER

Fig.1. Non-linearity of semiconductor junctions results in conversion of amplitude into phase noise which counteracts the reduc. tion of noise due to increase in amplitude hence the need for optimization. Oscillation amplitude is related to transconductance (see text), obtained graphically from V.I transfer characteristic, Fig. 2.
period, be very low and strongly non-linear. resulting in increased phase noise.

This was the main reason to use a differential amplifier. Its large-signal transconductance decreases with increasing input amplitude. Fig.3, at least if it is greater than the input offset voltage. In addition, the input and output impedances of a differential amplifier are high. also when its output current saturates. Furthermore, the differential amplifier does not invert the phase, so that the resonator needs in principle no tap or coupling loop.

NOISE CONTRIBUTED BY
 SUSTAINING AMPLIFIER

The basic oscillator circuit is shown in Fig. 4 with fets, but hipolar transistors could also be used. The noise of this circuit has been analysed (ref. 1) under the assumption that the parasitic capacitance $\mathrm{C}_{\text {s }}$ of the source bias circuit has been compensated by the capacitor

C_{s}^{\prime} (ref.2). The result is the well-known formula

$$
\begin{equation*}
\mathfrak{c}(\Delta f)=c \frac{F k T}{P_{a r}}\left(\frac{i_{0}}{2 Q \Delta f}\right)^{2} \tag{2}
\end{equation*}
$$

where F is the noise figure of the amplifier. i , the frequency of oscillation. P_{a} the available

Fig.3. Unlike a single-transistor amplifier a differential amplifier has the virtue that large-signal transconductance is a decreasing function of input voltage.

Fig.4. Basic oscillator uses fets, though bipolar types could be used, which turn out to produce a lower phase noise by as much as 10 dB .
resonator power $\mathrm{V}_{0},{ }^{2} / 8 \mathrm{R}_{\text {res }}$ and c is a factor depending on the amount of a.m. to p.m. conversion, which equals 0.5 for low oscillation amplitudes V_{0} and 1 for the optimum value of V_{0}. The noise figure F for the differential amplifier is

$$
\left.\begin{array}{l}
1+\frac{b}{\cos \Phi}, \text { for } V_{0} \leqslant V_{m 1} \tag{3}\\
1+\frac{b V_{0}}{V_{m} \cos \Phi}, \text { for } V_{0} \geqslant V_{m}
\end{array}\right\}
$$

- where $b=0.5$ for bipolar transistors and $b=$ 1.5 for junction fets, V_{m} is defined in Fig .3 and can be considered as the maximum input amplitude for which the amplifier works linearly, and is the phase shift of the amplifer. Base and input resistances of the bipolar transistor have been neglected. The formula applies for a resonator transformation ratio of 1 and it has been shown that this ratio is optimum with respect to phase noise.

Formula 3 predicts that the lowest phase noise can be obtained using junction fets: for a differential amplifier with junction fets, V_{m} is typically 1 to 2 volts, whereas for a differential amplifier with bipolar transistors V_{m} is only 50 mV . This accounts for some 10 dB difference in phase noise.

NOISE CONTRIBUTED BY BUFFER AMPLIFIER AND CURRENT SOURCE

Current noise injected into the resonator by the buffer amplifier is amplified with the oscillator closed loop gain $1 /\left(1-S Z_{\text {res }} / n\right)$ and should thus be kept as low as possible. Voltage noise is of minor importance, since it does not
enter the oscillator. It only produces a noise floor which could raise the phase noise far from the oscillation frequency.

The input noise current density of both a bipolar transistor and a junction fet is proportional to $\mathrm{g}_{\mathrm{m}}\left(\mathrm{f} / \mathrm{f}_{\mathrm{T}}\right)^{2}$ for high frequencies. with g_{m} the low frequency forward transconductance. The best input device for the buffer amplifier is thus a low g_{m} junction fet with high transition frequency. The buffer input capacitance which loads the resonator is non-linear and may be lossy at high frequencies, and so it should be minimized. A source follower loaded by the high input impedance of an emitter follower keeps the influence of the gate-source capacitance low because there is no significant r.f. voltage across it. The emitter follower can provide the output power to drive e.g. a 50ohm line.

Current noise injected into the resonator can be further reduced by taking the buffer input signal from the sources of the oscillator transistors.

If the collector of a bipolar transistor providing the tail current of the differential amplifier is coupled directly to the sources of the oscillator transistors, half of its current noise will enter the resonator. This noise can be an order of magnitude higher than the current noise of the oscillator transistors and would therefore significantly increase the phase noise. The tail current source should therefore be carefully isolated from the oscillator circuit for high frequencies. The isolation also eliminates an extra non-linear capacitance in the oscillator circuit and so reduces a.m. to p.m. conversion.

EFFECTS OF l/f NOISE

Low frequency noise, in particular l/f noise. modulates the transconductance and junction capacitances of the oscillator transistors and so causes amplitude and phase noise. The amplitude noise is further converted into phase noise in the voltage-dependent junction capacitances.
The use of low frequency feedback decreases the noise in the collector or drain current and so the transconductance fluctuations. Further, the gate or gate bias circuit should have a low impedance at low frequencies. In bipolar transistors, the l/f noise source works in parallel with the base-emitter junction current noise source and therefore the effect of low frequency feedback by an emitter resistor is limited. The 1/f noise suppression is already nearly maximal for an emitter resistor equal to the absolute value of the total impedance of the base circuit.

In theory, the effect of transconductance fluctuations could be reduced by high frequency resistive feedback in the sources or emitters. This didn't work in practice, probably hecause of the phase lag and signal leakage to ground caused in combination with the parasitic capacitances.

It is often assumed that fets produce more $1 / f$ noise than bipolar transistors. But our experiments showed the lowest phase noise was consistently achieved using fets. Apart from the inherently lower high frequency noise of fets in oscillator circuits, the lower phase noise could also be caused by the weak dependence of transconductance on drain current, which reduced the effect of V/f noise. Furthermore, bipolar transistors with low $1 / f$ noise often have a high base resistance and are therefore not usable in v.h.f. oscillators.
Other sources of $1 / f$ noise are the transistor providing the tail current to the differential amplifier and the amplitude control circuit driving it. Tail current fluctuations cause amplitude noise, which is also converted into phase noise. Experiments showed that in general the lowest phase noise was obtained by shorting the low frequency tail current variations with a large electrolytic capacitor. Only if the oscillator transistors themselves produced a large l/f noise, was it favourable to make the amplitude control loop fast. so that the large amplitude noise of the proper oscillator was suppressed.

MINIMIZATION OF AM-TO-PM CONVERSION

The voltage dependency of the junction capacitances causes a.m.-to-p.m. conversion. The non-linearity of each junction capacitance should therefore be compensated by the non-linearity of another one at which the r.f. voltage is equal, but in antiphase. The gatedrain capacitances of the oscillator transistors are automatically linearized, since they are anti-parallel.
The gate-source capacitances are in antiseries, and thanks to the compensation capacitor C_{s}^{\prime} their voltages are opposite. The electronic tuning of the oscillator is accomplished by two matched varactors in antiseries, where any asymmetry in parasitic capacitances should be compensated.

OPTIMUM RESONATOR IMPEDANCE

The oscillator phase noise is inversely proportional to the resonator power, which in turn is inversely proportional to the resonator impedance, which should thus be made as low as possible. There is, however, a bound below which decreasing the resonator impedance does not improve any more or even deteriorates the oscillator c.n.r. This is caused by several factors:

At too low a value of the resonator impedance the oscillator transistors can no longer provide sufficient output power.

- The l/f corner frequency of transistors increases with drain or collector current.
- Due to the base resistance of bipolar transistors, the equivalent input noise voltage cannot be decreased below a certain threshold and will even increase when the collector current gets too high.

Then there is the practical problem of decreasing the resonator impedance while keeping a sufficient electronic tuning range because the capacitance variation of v.h.f. varactors is limited. The impedance couid be transformed downward by coupling the resonator via a tap to the osciliator circuit. This increases, however, the r.f. voltage to the varactors and so the a.m.-to-p.m. conversion.

CIRCUIT DIAGRAM

The circuit diagram of Fig. 5 needs little explanation. Oscillation frequency is determined by $L_{3}, C_{3}, C_{4}, D_{1}$ and D_{2}. Resistors R_{1} and R_{2} provide low frequency feedback to reduce the $1 / f$ noise and the input offset voltage of the differential amplifier. Their optimum value is a compromise between I.f. feedback and amplitude control range. Coupling capacitor C_{2} has a low impedance at the oscillation frequency, but forms practically an open circuit at low frequencies. Components L_{1}, L_{2} and C_{5} prevent the r.f. noise of Tr_{5} entering the oscillator and C_{6} shorts the transistor l.f. noise. The low-frequency decoupling capacitors are connected to the positive supply voltage to prevent modulation of the drain gate capacitances by noise on the power supply.

Capacitor values of C_{1} and C_{4} are of the order of some pF . They balance the voltages across the gate source junctions of the differential amplifier and across the varactors, to reduce a.m.-to-p.m. conversion. Besides, C_{1} improves the frequency response of the amplifier.

To change frequency by a large amount L_{3}, R_{1} and R_{2} are the only components that need to be replaced. If the electronic tuning sensitivity is not critical, the oscillator can be tuned with C_{3} over more than one octave.

PHASE NOISE MEASUREMENTS

The phase noise of the oscillator of Fig. 5 was measured using several types of transistors in the differential amplifier. The place of the tap on the resonator coil and the amplifier tail current were experimentally optimized for lowest phase noise. The results are shown in the table.

The Table shows that the lowest phase noise

Fig.5. To change frequency by a logic current, the only components to be charged are L_{3} and R_{1}, R_{2}. As it stands, it can be tuned over an octave with C_{3}.
can be obtained with junction fets. Besides. the phase noise of an oscillator with fets turned out to be less sensitive to the place of the resonator tap and the amplifier tail current.

TABLE 1. Lowest phase noise obtained at oscillation frequency of 100 MHz at 5 kHz from the carrierfor several types of transistors in the differentialamplifier.

Transistor	Remarks	$\mathbf{£ (5 k H z)}(\mathrm{dBc} / \mathrm{Hz})$
2N3823	v.h.hjunction fet	-116
BF198	v.h.f.bipolar	-106
CA3127	v.h.f. bipolar array	-105
BCY59C	low lif noise bipolar	-91
BFR90	low noise wideband	-80
BFQ69	low noise wideband	-70

The phase noise of the oscillator with the 2N3823, BF198 and CA3127 was close to the value estimated with equations 2 and 3 . The high noise of the $\mathrm{BCY59C}$ is probably due to its high base resistance. The extremely high phase noise obtained with the BFR90 and BFQ69 is caused by a.m.-to-p.m. conversion of amplitude noise generated by l/f noise. By increasing the speed of the amplitude control circuit. the phase noise was reduced to $-90 \mathrm{dBc} / \mathrm{Hz}$.

References

1. Dekker, A. P.: Approximate noise analysis of a feedback oscillator using a non-linear differential amplifier, to be published in AEÜ (Electronics and Communication. Fed. Rep. of Germany).
2. Dekker, A. P.: Compensation of parasitic source capacitance in a fet differential amplifier, Letters. vol.22. no.17. 14 Aug. 1986, pp.885-886.

A. P. Dekker is now with Nokia Telecom-

 munications. Espoo. Finland. having completed this work at the Dr Neher Laboratories of the Dutch PTT. Leidschendam.
Non-switching class B amplification

From page 742

Under nulling condition. $y=x+z$. and after elementary trigonometry:

$$
\begin{gathered}
\mathrm{B}^{2}=\mathrm{A}^{2}+\mathrm{C}^{2} \\
\mathrm{e}=\arctan (\mathrm{C} / \mathrm{A})
\end{gathered}
$$

Now as only the output and the error signal are recorded, substitute $A^{2}=B^{2}-C^{2}$. So finally

$$
\mathrm{e}=\arctan \frac{\mathrm{C}}{\sqrt{\mathrm{~B}^{2}-\mathrm{C}^{2}}}
$$

Appendix 2 - Experimental amplifier

To eliminate influence from other distortion mechanisms as much as possible careful circuit design and layout were needed. Sepa rate power supplies for the voltage gain stage and power stage were used and high current ground was separated from the signal ground (see ref. 13). Test equipment ground was connected to the input signal ground except for Fig. 8 recording, where the whole test set-up was floating and the test amplifier "live" output was connected to the transient recorder ground.

The voltage gain stage was designed around a high performance operational amplifier to simplify control over the openloop bandwidth and gain, which were chosen to represent typical values found in modern power amplifiers.

Bias control was designed to be variable over a wide range to achieve requirements tor class B and class A bias. The circuit must behave as a symmetrical low-impedance roltage source for the output stage. Class NSB operation was achieved by opening the contacts of Sla and Slb and adjusting the quiescent current to the same value as the one chosen for class 13 operation. Class : quiescent current was set to three amps.

Modelling Yagi antennas

A suite of Pascal programs calculates the gain, terminal impedance, current distribution and radiation pattern of moderate-size Yagi-Uda antennas for any geometry, element thickness and operating frequency.

C.J. RAILTON

In any antenna problem one is presented with a piece of metal in space with some kind of transmission line connected to it. In the metal there will be currents flowing. and in the space surrounding it there will be electric and magnetic fields. These may be the result of a signal fed via the transmission line, or the result of an incident field from a distant transmitter; in either case the currents and the fields are unknowns which need to be found.

Maxwell's equations give the information required to proceed. Firstly they allow calculation of the electric field anywhere in space resulting from a specific current distribution. Secondly, they require that the value of the total electric field tangential to a conductor is zero. The conductor can be thought of as providing a short circuit to the electric field. From these two conditions it follows that if the current distribution on the antenna is known and the tangential electric field is calculated anywhere on the antenna surface, then we will get minus the incident field.
In this form the problem becomes that of finding a function of space which, when certain mathematical operations are performed on it, give a specified answer. One way of tackling this is to approximate the unknown current function by a large number of point currents of unknown amplitude scattered over the metal surface. Clearly, if an infinite number of points were taken, the actual current could be represented exactly. But a sufficiently large number will give a reasonable approximation. Suppose also that instead of insisting that the field is zero everywhere on the metal, we insist that it be zero on a large number of selected test points scattered over the surface. These points could be, but do not have to be, the same as those at which the point currents were located. One could not evaluate the field at each test point resulting from each point current source and set each one to zero. This would result in a set of simultaneous equations from which the amplitudes of the point current sources could be calculated. The value of the current between the points could be found by interpolation. Thus the problem is solved.

In practice this method. known as point matching, will work if the number of points is high, which means that a very large array of simultaneous equations has to be solved. resulting in the requirement for much computer storage and processing, and the likelyhood of significant rounding error.

The method can be improved by using other approximations for the current. Suppose, for example, that the current on a wire were expressed as a truncated Fourier series. Suppose also that instead of using test points, weighted averages of the field are calculated over areas of the antenna and set to zero. The result of evaluating the simultaneous equations would then be the Fourier components of the current from which the current anywhere on the metal could be evaluated. By doing this, accurate results are obtained with smaller systems of equations. but the calculation of each coefficient of the simultaneous equations becomes more laborious.

The way in which the current is expressed as a combination of known functions, such as impulse functions or trigonometrical functions in the above examples, is referred to as expanding the current in a set of basis functions. The way in weighted average of the resulting field is taken is referred to as a test function. Clearly we have complete freedom as to what functions to use, and in theory they will all give the same answer. In practice, it is crucial that a good choice is made; the penalty is a great deal of computation and an inaccurate answer.

In the computer programs described, the basis functions and the test functions are the same. Each wire on the antenna is divided into segments, and the current in each segment is approximated by a suitable function. The greater number of segments specified for each wire, the more accurate will be the answer, and the greater the computation time. The points at which the antenna is connected to a transmission line must be in the centre of a segment. In the usual case of centre feeding this is no disadvantage. It is usually desirable, for best efficiency, to specify more segments on the driven element than on those elements towards the ends of the array. This is because greater inaccuracy can be tolerated on those elements carrying little current before the calculated parameters are unduly affected.

CENERAL THEORY

Analysing any radiating structure consists essentially of calculating the currents in the conductors and the fields surrounding them for a given excitation. This excitation can be a current or voltage generator as in the case of a transmitting antenna, or an incident field as in the case of a receiving antenna.

If the current distribution is known every-
where on the structure then it is comparatively easy to determine the resulting scattered fields anywhere in space. This is done by evaluating the following integral which is derived from Maxwell's equations:

$$
\begin{gather*}
E_{s}(r)=\int\left(r^{2}+k^{2}\right) G\left(r, r^{\prime}\right) J\left(r^{\prime}\right) d^{3} f^{\prime} \tag{1}\\
\text { where } G\left(r, r^{\prime}\right)=\frac{\exp k\left(r-r^{\prime}\right)}{\left|r-r^{\prime}\right|} \\
k=2 \pi / \lambda
\end{gather*}
$$

Determining the currents for a given incident field, however, is not so straightforward. To do this, use the fact that at the surface of a perfect conductor the tangential component of the total electric field must be zero. Any incident field induces a voltage across the conductor, and the resulting current produces a scattered field which exactly cancels the incident field on the conductor's surface. Since currents can only flow on conductors it follows that anywhere in space the scalar product of current density and the total electric field is zero. That is.

$$
\begin{equation*}
\left(E_{i}(r)+E_{s}(r)\right) . J(r)=0 \tag{2}
\end{equation*}
$$

where E_{i} is the incident electric field and E_{s} is the scattered electric field. Take the scalar product of both sides of equation 1 with $J(r)$ and substitute equation 2 into equation 1:

$$
\begin{gather*}
\int\left(\Gamma^{2}+\mathrm{K}^{2}\right)\left(\mathrm{G}\left(\mathrm{r} \cdot \mathrm{r}^{\prime}\right) \cdot J\left(\mathrm{r}^{\prime}\right)\right) \cdot J(\mathrm{r}) \mathrm{d}^{3} \mathrm{r}^{\prime} \tag{3}\\
=-\mathrm{E}_{\mathrm{i}}(\mathrm{r}) \cdot \mathrm{J}(\mathrm{r})
\end{gather*}
$$

and the problem is to find a function $J(r)$ such that this equation is satisfied for all values of r. Once we have managed to find such a function we know by the uniqueness theorem that it is the correct solution. A common method of solving such equations is the method of moments or weighted residuals, a special case of which is used in the computer program Galerkin's method.

The first stage in this method is to express the unknown current function $J(r)$ as a series of known basis functions $J_{s}(r)$:

$$
\begin{equation*}
J(r)=\sum_{s-1}^{\infty} a_{s} J_{s}(r) \tag{4}
\end{equation*}
$$

Any permissible function $J(r)$ can be represented by an infinite number of coefficients
a_{s} provided that the functions $J_{s}(r)$ form a complete set of functions that are non-zero only on the surface of a conductor. In theory, any such set can be used in the calculation but, as we shall see, some choices yield results more quickly and more accurately than others.
A simple way of arriving at a set of basis functions which illustrate the technique is to divide the conductor surface into a large number of small areas. On each area there would be one and only one non-zero basis function. Eact basis function would be nonzero on one and only one area where it would have a value of unity. As the number of areas into which the surface is divided increases, the real current distribution is more closely approximated. Such a set of basis functions would be appropriate for a solid metal body but there are better sets available for a wire antenna.
Substitute equation 4 into equation 1 to get the following expression for the scattered field:
$\int\left(\nabla^{2}+k^{2}\right) \sum^{2} a_{s} G\left(r, r^{\prime}\right) J_{s}\left(r^{\prime}\right) d^{3} r^{\prime}=E_{s}(r)$
Since the basis functions are non-zero only on the surface of the conductors, multiply both sides of equation 5 by each of the basis functions. integrating over all space and making use of equation 2 , gives

$$
\begin{align*}
\int\left(\nabla^{2}+k^{2}\right) & \sum_{s=1}^{\infty} a_{s} \int G\left(r, r^{\prime}\right) J_{s}(r) d^{3} r d^{3} r^{\prime} \\
& =-\int E_{i}(r) J_{r}(r) d^{3} r \\
r & =1 \ldots \infty \tag{6}
\end{align*}
$$

This is an infinite set of simultaneous equations for the infinite number of unknown coefficients, a_{s}, which determine the current distribution on the structure. In practice we take a finite number of basis functions and ignore the effect of the higher order terms of the sum.
With a good choice of basis functions, a_{s} tends rapidly to zero as sincreases so that this approximation will not cause significant errors. For example, if the first term in the series happened to be the actual distribution then all the terms except the first would be zero. Conversely if the functions are badly chosen and the basis functions are very different to the actual current distribution, then a large number of terms must be retained with the consequent increase in effort, rounding error and the likelihood of numerical instability.
In fact, if we had multiplied equation 5 by any set of test functions which are non-zero only on the conductors then we would end up with a valid set of simultaneous equations. If in addition the set of functions were complete, we could equally well proceed with this new set of equations.
The choice of test functions, like the choice of basis functions, is largely a matter of educated guesswork and experience. The case where the basis functions and the test functions are chosen to be the same is known as Galerkin's method. For the prob-

this assumed current would not be accurate. but would give a rough idea.
A better approximation can be obtained by using more than one basis function for each wire, such as the following

$$
\begin{align*}
J_{s p}(z) & =\frac{\sin k\left(z-z_{p-1}\right)}{\sin k\left(z_{p}-z_{p-1}\right)} z_{p-1}<z<z_{p} \\
& =\frac{\sin k\left(z_{p+1}-z\right)}{\sin k\left(z_{p+1}-z_{p}\right)} z_{p}<z<z_{p+1} \tag{8}
\end{align*}
$$

Fig.1. A single wire showing three overlapping piecewise sinusoidal functions. Current flowing in the wire is approximated by a linear combination of these three functions. The accuracy of the approximation can be improved by using a greater number of these basis functions.

Fig.2. E field at the point (z, φ) due to a piecewise sinusoidal current in the section of wire lying between points ($z 1,0$) and ($\mathrm{z} 3,0$) is calculated using equations 9 and 10.
lem under consideration (as well as many others) this choice leads to an efficient formulation.

Once a set of basis functions is decided equation 6 can be solved, allowing calculation of currents and fields in all space.

APPLICATION TO YAGI-UDA
 ANTENNA

The basis functions appropriate to a Yagi antenna must, from inspection of the geometry, have the following properties: they must be zero everywhere except on the wires and they must fall smoothly to zero at the ends of the wires.

Simple functions which have these properties are the following:

$$
\left.\begin{array}{rl}
J_{s}(z) & =\frac{\sin \left(k \mid z-l_{s} / 2 \|\right)}{\sin \left(\left.k\right|_{s} / 2\right)} \text { on wires } \tag{7}\\
& =0
\end{array} \quad \text { elsewhere } \quad\right\}
$$

where l_{s} is the length of the $s^{\text {th }}$ wire z is the distance measured from the centre of the wire.
This approximate current distribution is widely used in published tables for the self and mutual impedance of dipoles and for array antennas. In fact this approximation is only good if the wires are of the order of a half-wave long. For this assumed current distribution function, equation 5 becomes a set of simultaneous equations of order N where N is the number of wires. Solution of this set would give the magnitudes of the currents on each element. Results for parameters such as gain and impedance based on
where $\mathrm{p}=1 \ldots \mathrm{~N} z_{\mathrm{p}}=\mathrm{pl} /(\mathrm{n}+1)-1 / 2,1$ is the length of the $\mathrm{s}^{\text {th }}$ wire, and N the number of basis functions on the $\mathrm{s}^{\text {th }}$ wire.

Here we are approximating the current on the $\mathrm{s}^{\text {th }}$ wire by dividing it into N overlapping segments and specifying that each of the N basis functions are non-zero only on one segment.
These functions are shown in Fig. 1 for one wire. They form overlapping sinusoids that go to zero at the wire ends, as required by the boundary conditions. If N is chosen to be 1 then we recover equation 7 . As N is increased, the actual current can be better approximated, yielding a more accurate answer at the expense of greater computation.
We are at complete liberty to specify a different number of basis functions on different wires. Indeed, it is desirable to a specify a larger number of basis functions for the driven element than for the others, especially when calculating terminal impedance.
However, there is no guarantee that the solution will improve as the number of basis functions is increased. Although we are ensuring that the boundary conditions are being satisfied on the average in more places, we are saying nothing about how well they are satisfied in any one place. It is quite possible for the value of the calculated total field to oscillate widly about zero from place to place and still satisfy equation 6. But in practice, for sensibly chosen basis functions. Galerkin's method is well behaved.

Experience has shown that the piecewise sinusoidal basis functions given in equation 8 are well suited to the Yagi problem. In addition, with this choice of basis functions. the integral of equation 1 is available as in a simple closed form which can be expressed in cylindrical coordinates as follows:

$$
\begin{align*}
& E_{z}=j 30\left\{-\frac{\exp \left(-j k R_{1}\right)}{R_{1} k l / 2}+\right. \\
& \left.\frac{\exp \left(-j k R_{2}\right) \sin k l}{R_{2} \sin ^{2}(k l / 1)}-\frac{\exp \left(-j k R_{3}\right)}{R_{3} \sin (k l / 2)}\right\} \\
& E_{\phi}=\frac{j 30}{\phi}\left\{\frac{\left(z-Z_{1}\right) \exp -j k R_{1}}{R_{1} \sin (k l / 2)}+\right. \\
& +\frac{\left(z-z_{2}\right) \exp \left(-j k R_{2}\right) \operatorname{sinkl}}{R_{2} \sin ^{2}(k l / 2)} \\
& \left.\quad-\frac{\left(z-z_{3} \exp -j k R_{3}\right.}{R_{3} \sin (k l / 2)}\right\} \tag{10}
\end{align*}
$$

where the dimensions are defined in Fig.2.

Fig.3. Polar radiation patterns of a 30 MHz seven-element Yagi using wires of radius 25mm.

Fig.4. Polar radiation patterns of a 30 MHz seven-element Yagi, this time with wires of 10 mm radius.

In the case of a Yagi all the elements are parallel and so we need only concern ourselves with the z-directed field. No theoretical difficulty would prevent extension to elements placed at any desired orientation if required.

Substituting equation 9 into 6 gives

$$
\begin{equation*}
\sum_{p} \sum_{s} a_{s p} \int_{1_{r s} / 2}^{\operatorname{lras}^{2} / 2} J_{r_{4}} E_{z s p} d z=\int E_{z i} J_{r q} d z \tag{11}
\end{equation*}
$$

for $\mathrm{q}=1$...number of elements $\mathrm{r}=$ l...number of basis functions on the $q^{\text {th }}$ wire, and where $1_{r 4}$ is the length of the $r^{\text {th }}$ segment on wire q. $E_{\text {zsp }}$ is given in closed form by equation 9 .

The integral is the mutual impedance between the segments $r q$ and $s p$. Integration can be carried out numerically without undue trouble. The problem is now reduced to the evaluation of a number to calculate the values of the coefficients and hence the approximate current on the elements.

EXCITATION

We now have a computation method which allows us to find the currents on a Yagi antenna for a given incident field. To calculate useful parameters such as the gain and the terminal impedance, it is necessary to consider the incident field produced by a transmission line connected to the drive element.

Various models for the feed point of an antenna have been used and they vary in accuracy and complexity. A simple but effective one is the delta gap. Here we assume that the driven element has an infinitesimal gap at the driven point. Across this gap is applied a voltage source such as a transmission line. With this model, the integral on the right hand side of equation 11 becomes equal to the magnitude of the voltage sources times the value of the test function at the driven point.

Clearly this model is only an approximation of a real feed system, but it does give good answers and it is widely used.

Once the currents have been calculated by means of equation 11, the terminal impedance is immediately given as the drive voltage divided by the current in the driven segment. To calculate the gain we need to know the magnitude of the radiated field far from the antenna. For large distances equation 9 and 10 become

$$
\begin{align*}
& E_{z}=\frac{j 30}{R}\left\{-\frac{\exp -j k R_{1}}{\sin (k / 2)}+\right. \\
& \left.+\frac{\exp (-j k R) \sin k l}{\sin ^{2}(k l / 2)}-\frac{\exp -j k R_{3}}{\sin (k l / 2)}\right\} \tag{12}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{E}_{\phi}=\mathrm{E}_{\mathrm{z}} \tan \Phi \tag{13}
\end{equation*}
$$

where Φ is the angle of elevation of the point of observation.

The gain is given by

$$
\frac{\left(\left|E_{k}\right|^{2}+\left|E_{r}\right|^{2}\right) Z_{0}}{4 \pi P_{i n}}
$$

where $P_{\text {in }}$ is the total power delivered to the antenna.

PROGRAM DESCRIPTION

The program is split into three parts, partly for reasons of space and partly from convenience. It is possible to run the programs on most computers which have a Pascal compiler with very little change. The only machinespecific part of the program is the graphics routines which are written in $\mathrm{Z80}$ machine code. It is likely that equivalent graphics library routines would be available on other machines.

First of all, the program cerwires takes information from the keyboard about the geometry of the antenna to be analysed. It then produces a file which is used by the next part. This avoids the need to type in the geometry each time an analysis is to be done.

The actual analysis is carried out in the program vaci which calculates the currents on each segment for a given excitation and frequency. The radius of the wire used can be specified, as can the number of segments into which to divide each wire. In this way the accuracy of the solution can be traded against computer time.

The main procedures in the program perform as follows:
cetimp calculates the mutual impedance between segments of specified length and position at a given frequency and with the assumed piecewise sinusoidal current distribution. This is carried out by numerically evaluating the integral in equation 11. Function F is the integrand, and the integral is carried out by function cansint by means of the gaussian quadrature method.
clufac and clusonve solve the set of complex simultaneous equations represented by a coefficient matrix A and a vector B, the result is given in a vector X .
moself calculates the mutual impedance between all segments on a particular wire and sets the appropriate elements of the matrix zmat. Because all the segments on any given wire are the same length and are placed
contiguously, only one calculation per segment need be performed.
doothers calculates the mutual impedance between all segments on a given wire with all segments on another given wire and sets the appropriate parts of matrix zmat. Since, in general, the segments on different wires can be of different lengths, each value is worked out separately.
setinien requests information about the excitation of the antenna and stores the information in the structure driv.
doant calculates on each segment for a specified excitation and frequency and calculates the terminal impedance. For a twoelement array the mutual impedance between the wires is also calculated.
ourcure saves the calculated currents for use by the program plotfiel.D.
PLOTFIELII takes the information calculated by vaci and produces a polar of the far-field radiation pattern. By means of a screen copy routine, the diagrams together with annotations can be printed onto a dot matrix printer.

RESULTS

To show the sort of results which can be obtained from the programs two different

Fig.5. Gain as a function of frequency for the antennas of Figs 3 \& 4.

Fig.6(a) (below, left). Resistive part of the terminal impedance as a function of frequency, showing the effect of varying the wire radius.
Fig.6(b) (below, right). Reactive part of the terminal impedance of the seven-element array as a function of frequency for wire radii of 25 and 10 mm .

Yagis have been analysed. Figures 3 and 4 show a series of polar diagrams for a sevenelement Yagi with wire thicknesses of 25 mm and 10 mm respectively. Spacing is 3 m . Reflector length 4.75 m , driver length 4.55 m and director lengths are 4.39 m . Notice how the radiation pattern breaks down as the frequency approaches 31 MHz .

Figure 5 shows gain plotted against frequency for this antenna and Fig. 6 shows terminal impedance versus frequency. The effect of varying the element thickness can be clearly seen. This antenna was analysed by Thiele' for a frequency of 30 MHz and wire radius of 25 mm using a reaction matching technique. The results for gain and impedance are in good agreement.
These results, especially the plots against frequency, are not quick to obtain and an overnight run is likely to be the norm. The programs have, however, been designed to run with little intervention so that this should not present a great problem.

PROGRAM EXTENSIONS

Any moderately-sized array of parallel wires can be analysed by the programs as described. But it is possible to extend the programs to cope with skew wires or bent wires such as a folded dipole or a cubical quad. With different basis functions it would be possible to analyse the effects of metal structures in the vicinity of the antenna, as the case of vehicle-mounted antennas.

References

1. Anterna Theory and Design, by Stutzman and Thiele. Wiley, 1981. p226.
2. Radio Communication Handbook, Radio Society of Great Britain. 1969. pl4.22.

Enquiries about software described in this article should be addressed to the author at Cadney, Highfield Road, Whiteshill, Stroud, Gloucester CL6 6AJ.

Chris Railton is at the University of Bath. working for a Ph.D. on boxed microstrip circuits.

ERS - PRINTERS - PRINTERS - PRINTERS

SUPER DEAL? NO - SUPER STEAL

THE FABULOUS 25 CPS "TEC STARWRITER"

NOW ONLY £499 + VAT
 DIV PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student. Hobbyist or Robotics constructor to build a printer - plotter-digitiser etc, entirely to their own specification. The printer mechanism is supplied ready built aligned and pre fested but WITHOUT electronics. Many reature include alt optical shaft position encoder, NINE needle head. 2 xwo phase 12 V stepper motors for carriage and paper control, 9.5 Paper platten etc etc. Even a manufacturer's print sample to show the unit's capabilities Overaldimensions
Sold BRAND NEW at a FRACTION of cost ONLY $£ 49.50+p p \varepsilon 4.50$.

TELETYPE ASR33

DATA I/O TERMINALS

ndustry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reade Standard RS232 serial intertace deal as cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good condition. Only $£ 250.00$ floo stand $£ 10.00$. Carr \& Ins. $\{15.00$.

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporatio? Often seen in major Hotels prinfing up io the minte News and Financial inform BAUDOT CODE from a Current loop RS232 of TTL serial interface. May be printer or via a simple interface and filter enable printing of worldwide NEWS TELEX and RTTY services.
Supplied TESTED in secold hand 75 baud xtals and large paper roll. TYPE AE 11
50 Column ONLY 549.95 Spare paper roll for AE TYPE AF11

+ Ribbon £65.00 TYPE AH11R 80 CO ع185.CO
ASCII/BAUDOT
Carriage and Insurance $£ 7.50$

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES

ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

DEC CORNER

PDP 1140 System comprising of CPU. 124 k memory \& MMU 15 line RS232 interface RPO2 40 MB hard disk drive.
Tulo 9 rrack 800 BPI Mag iape drive, dual unning. BA11-MB 3.5 Box, PSU. LTC £395.00 DH11-AD $16 \times$ RS232 DMA
interface OLV11-J4 x EIA interface
DLV11-E Serial. Modem support UP11 Synch. Serial dara i/o 0200 Dilog - multi RK controlier KDF11-B M8189 POP 1123 LUS
LA30 Printer and Keyboard LA36 Decwriter EIA of
20 mA 100 D
MS 11 -JP Unibus 32 kb Ram MS11-LB Unibus 128 kb Ram PDP11/05 CDu Ram 256 Ram PDP11/40 Cpu. 124 k MMU RT11 ver 3 B documentation RK05-J 2.5 Mb disk drives KL3 JA PDP 8 async i/o M18E POP 8 Bootstrap optio $\checkmark 150$ VOU and Keyboard
VT 52 VDU and RS232 intertace

1,900.00

 £ 350.00 £ 190.00 £650.00£495.00 $£ 495.00$
£650.00 £650.00 £1,100.00 £270.00 £ 80.00 £450.00 $£ 850.00$ \& 450.00
$\kappa 1,850.00$ (670.00 $\begin{array}{r}\text { £ } 650.00 \\ \\ \hline\end{array}$ £ 175.00
E75.00
$\$ 175.00$
£250.00

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each.

> CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

Give your VT100 a Birthday"
 Brand New VT 100 Keyboards

 only $£ 85.00$1000's OF EX STOCK spares for PDP8, PDPBA PDP11, PD P1134 erc. SAE. for list. or CALL Sales olfice for derain
ALL TYPES OF COMPUTER EQUIPMENT AND SPARES WANTED FOR PROMPT GASH

All in one quality computer cabinet with integral cooling Originally made tor the famous DEC PDP8 cooling. Originally made tor the famous DEC PDP8
computer system costing thousands of pounds. Made to run 24 hours per day the psu is fully Made to run 24 hours per day the psu is fully
screened and will deliver a massive $+5 v$ DC at 17 a screened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 \mathrm{vDC}$ at 1 amp and -15 V DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries. etc. etc. Units are in good but used condition - supplied for 240 v operation complete with ull circuit and tech. man. Give your system that professional finish for only $£ 49.95+$ carr. 19 wide 16 deep 10.5 high Useable area 6 w 10.5 'h 11.5 "d.
Also available less psu. with fans etc. Internal dim. $19^{\prime \prime}$ w. $16^{\prime \prime d} .10 .5^{\prime \prime} h$ 19.95. Carriage £8.75

66\% DISCOUNT
 ON
 ELECTRONIC EOUIPMENT

Due to our massive bulk purchasing programme. which enables us to bring you th best possible bargains. we have thousands of ICs. Transistors. Relays. Caps. PCBs
Sub-assemblies. Switches etc. etc surplus to OUR requirements Because we don have sufficient stocks of any one item to include in our ads we are packing all these tems into the BARGAIN OF A LIFETIME Thousands of components at giveaway perhaps one of the most consistently usetul items vou will every buy"l Sold by weight.
$2.5 \mathrm{kIs} £ 5.25+\mathrm{po} £ 1.25$
$10 \mathrm{kls} £ 11.25+\mathrm{pp} £ 2.25$

GE TERMIPRINTER

printer terminals enables us to offer you
these quality 30 or 120 cps printers at a SUPER LOW PRICE against the
original cost of over 1000 Unit keyboard and printer mech with prin iypewriter Variable
column paper. upper
ondapar. upper - lower case vertical and horizolat serma standard
\qquad mplete with manual GE1200 $120 \mathrm{cps} £ 175.00$

SEMICONDUCTOR 'GRAB BAGS

\qquad guaranteed IC's full spec $100+£ 6.90$.
$200+£ 12.30,300+£ 19.5$

MAINS FILTERS

CUAE those unnerving hang ups and data glitches caused by mains interference with
professional quality filters. SD5A maich protessional quality filters. SD5A match Load ONLY E5.95. L12127 compac

EPROM COPIERS

lisfing EPROMS

Many other lunction tace serial and parallel $1 / 0$ UHF modulaio ONLY 195.00 - DD $£ 2$.
"GANG OF EIGHT" intelligent 280 controlled 8 gang programmer for ALL
single $5 v$ rail EPROMS up to 27128 . Will copy $827 \uparrow 28$ in ONL Y 3 MINUTES Interna IDIOT PROOF operation Only £395.00 + pp §300
"GANG OF EIGHT PLUS" Same spec as intertace for down line loading data from

COOLING FANS

\qquad

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

Pioneers

W.A. ATHERTON

7. Alexander Graham Bell
 (1847-1922): speech shaped current

What do the following items have in common: the National Geographic Society, the American magazine Science, aircraft ailerons. and sheep with four nipples? No. it's not Trivial Pursuit. All were steered into existence by the same man. the inventor of the telephone.

To most people the telephone is one of the greatest inventions of all time. Yet one American newspaper reporter wrole "It is an interesting toy . . . but it can never be of any practical value.

That reporter was not alone in dismissing the new invention. A British official thought it might prosper in the colonies but not in Britain since "we have an abundance of messenger hoys". And the great Western Union Telegraph company rejected an offer to huy the patent. "Bell's profession is that of a voice teacher." they observed. "Yet he claims to have discovered an instrument of great practical value in communication which has been overlooked by thousands of workers who have spent years in the fied.

The patent Western Union turned down was one of the most lucrative ever issued. for the commercial success of the telephone was as immediate as it was dramatic. Although Bell at first gave lectures and demonstrations to raise much-needed cash (reserved seats cost 50 cents and the lirst profit was \$149) the success of the telephone made him and his assistant. Thomas Watson. financially secure by 1881. The telephone was by then a mere live years old.

Western Union did. however. get one thing right in their assessment of Bell: he was indeed a teacher of the deat

Born in Edinburgh on March 3. 1847, he was christened Alexander. On his eleventh hirthday he decided he would like a second Christian name and chose Graham. He and his two brothers inherited a lamily tradition of teaching elocution. His grandfather had practised in London and his father was the inventor of a phonetic alphabet called Visible Speech. Both Bell's mother and wife were deaf. Helping deaf people learn to speah became his main career

Bell received his early education from his mother and he became an accomplished pianist. At ten years of age he started school

By the time he entered University Collese. London at 20, he had taught elocution at Elgin. Edinhurgh and Bath.
At university he studied anatomy and biology. But hefore that. in a letter to his father, he had written up his first scientific research. on the resonant pitches of mouth cavities. As a result of this he was introduced to the work of Helmholtz and gained his first knowledge of electricity.

His brothers died early from tuherculosis. Partly fearing for the health of their remaining son, the family quit Britain for the healthierclimate of Candada on August I. 1870

In Quehec. Bell taught his father's Visihle Speech to deaf pupils and began to teach teachers of the deal. In 1873 he was appointed professor of vocal physiology at Boston University. Nine years later he became a US citizen. and very proud of the fact he was too.

MAKING SOUNI VISIBLE

Work with the deaf turned Bell's intellect to all things related to the human voice. In searching for leaching aids he came across the phonautograph. a device with a conical mouthpiece and a stretched membrane
which vibrated in response to the voice. The mechanical vibrations were conveyed to a stylus which traced the wave pattern of the voice on to a moving piece of glass blackened with soot.
These and other attempts to make a visual record of a human voice for use as a teaching aid for the deaf were crucial to the invention of the telephone. The step from a mechanical record of voice waves on blackened glass to electrical waves in a wire was the mark of genius. But it did not come in a flash
For several years Bell had been actively interested in telegraphy and a parallel problem with which he now wrestled was how to use an intermittent electrical current to transmit musical tones via the telegraph. This he thought possible if the vibrations of the air could be somehow reproduced in an electrical current.

In the summer of 1874 he visited his father's home in Brantford. Canada, taking with him a human ear provided by the Harvard Medical School. The idea was to use the ear and the small bones of the ear to make an improved phonautograph: a piece of hay acted as the stylus. The human-ear phonautograph worked!
If the relatively massive bones of the ear

This instrument was used to transmit the first speech sounds electrically in 1875. The parchment diaphragm is attached to a magnetized metallic reed. Piture from AT\&T.
could be vibrated. thought Bell. why not a small piece of steed? The basic concept of the telephone now erystallized. though its practical achievement was still far away. When a practical realization came we can be thankful that the mouthpiece did not need a human ear cut from acorpse.
Whilst continuing his work with the deaf in Boston. Bell had for some time heen working on ideas for a multiple telegraph, one which would enatle simultaneous signalling of many messages to take place along a single line. By this time he had met a young machinist. Thomas A. Watson, and towards the end of 1874 they worked logether at Bell's idea for multiple telegraphy. In that same year Bell explained his telephone idea (o) the aged Joseph I lemre seeking his advice as to whether to putlish the idea so that others could work at it or to finish it himseli. Ilenry told Bell to finish the work himself. When Bell confersed that he did not have the electrical knowledge needed temry's advice washlunt: "(ect it!"

Bell meantime had ohtained financial backers: not for the telephone, but for the multiple telegraph, for which his hackers had greater hopes. When the telephone became a success Bell himself insisted that it be part of the agreement.)

A LITTIEACCIDIENT

With his experience of the phonatongraph and his mental concept of the telephone, a little acordent with the multiple telegraph equipment showed Bell how to achieve his dreamofelectrical speech.

The multiple (or harmonic) telegraph was to work as follows At the transmitter and recemer there were tuned vibrating reeds. A reed at the transmitter tuned to a frequency f_{1} could, according to the theory. send a pulsed signal which would only he detected by a reed also tuned to f_{1} at the receiver.

Several reeds tumed at different freyuencies $\left(f_{1}, f_{2}, f_{3}\right.$, etc $)$ should enable several pulsed signals to be transmitted simultaneously.
(On June e. 1875 , in the middle of a baking hot afternoon, Watson and Bell were retuning the reeds when one of Watson's transmitter reeds stuck. The adjustment screw had been screwed too far. To restart Watson plucked it and Bell. at the receser. gave a loud shout.

Held too hard, the reed had failed to interrupt the current and had produced a continuous sine wave instead. Betl recognised the answer to his dreams. The rest of the afternoon and evening were spent repeating and repeating the discovery.
By the time they parted Bell had sketched out a diagram of the first telephone and begged Wat son to try to huild it ready for the next evening. "And. as I studied the sketeh on my way home to Sakem on the midnight train." Watsom recalled. "l felt surel could do so." He did. The next evening the first faint sounds (not speech) were (ransmitted and received. As yet unintelligitle they proved Bell's basic idea.
Juring the ensuing months, work on the multiple telegraph took enforced priority over the telephone, along with ill healeh. personal crisis, and teaching duties. An American patent covering the telephone wats allowed on Bell's suth hirthday. March 3. 1876. It wasactually issued four days later.
(On the evening of March 10 . intelligible speech was acheved using a 'liquid transmitter and a tuned-reed receiver. In the new transmitter, designed by Bell and huilt by Whatson, a metal wire attached to a diaphragm was dipped into acidulated water. The water and wire were part of the electrical circuit. As sound waves vibrated the diaphragm. the wire moved up and down in the liguid and so varied the resistance of the circuit The telephome had arrised.

New transmitters and receivers followed.

An early British instrument. of about 1890: a wall telephone of the National Telephone Company. Picture from British Telecom.
some using liyuids and some emploging the relative movements of magnetized coils and pieces of iron. These were demonstrated at the Centennial Exhibition in Philadelphia on June 2.5 . 1876 (the day of Coster's last stand) and impressed all who saw them. Lord Kelsin, whowas one of the technical judges. ran the 100 -yard length of the gatlery from the recever to the transmitter to congratulate the insentor.

COMMERCIA SUCCESS

Watson, after some persuasion, resigned his well-naid full-time joh to take up full-time work on the telephone. He received a tenth share of the patent. In Nosember, using yet another new design. successful tests were condacted hetween Boston and North Conway in New Hampshire using a railway telegraphwire a distance of over 106 miles.
d ompany was formed in July 1875 two or thee months after the first regular telephone lines opened in Boston. Other Bell comannes followed swiftly for various reasons, and a reorganization in $18, N$ oreated the : American Bell Telephone Company:

Western l'nion meamwhile had set up in competition after the principle of the tele-
phone had become known. Bell sued for infringement of his patents and won. The Bell patents were repeatedly defended in the courts, on about foll cases, before the Supreme Court eventually upheld all Bell's claims.

Bell meanwhile had married Mabel Ifuhbard, one of his private pupils and the daughter of one of his financial hackers, on July 11, 1877. The marriage was long and happy despite the loss of two of their four children at hirth. In August they sailed to Europe to promote the telephone, leaving Watson in charge for over a year. At the time of the wedding a couple of hundred telephones were in operation.

By 1881 both Bell and Watson had moved on toother interests.

Bell continued his absorbing interest in teaching the deaf to speak well. His interest in hereditary deafness led him to studies of longevity and breeding. In 1909, after '20 years' selective breeding, he had a flock of sheep with four or more milk-producing nipples rather than the usual two! Therein lies a tale in itself.

In 1880 France awarded Bell the Volta Prize of 50000 francs. This he used to establish the Volta Laboratory Association in Washington to work with the deaf. Two years later he conceived the idea for the journal . 'cience which hegan publishing in 1883 . In its first eight years Bell and his father-in-law subsidized the journal to the tune of around $\$ 1000000$.

Bell also helped organize and finance the National Ceographic Society and was its president for several years, and he gave $\$ 5001$ to establish the Smithsonian Astrophysical Laboratory.

For the last 25 years or so of his life one of his main interests was aviation. With a gift of $\$ 50$ () () (t, he founded the Aerial Experiment Association under whose auspices some of the earliest flights took place in 1908. Bell and the Association held the patent for the design of alerons for wings and rudders.

He also invented a tetrahedral constructional technique known as space frame, tried to introduce the Montessori educational method to America, and developed an interest in designing hydrofoil hoats. One of his hydrofoils gained the world water speed record in 1919 at 70.86 miles per hour.

Amongst the honours Bell received was the freedom of Edinhurgh (his birthplace). the opening of the first trans-continental telephone link between New York and San Franscisco in 1915. and the naming of an islandafter him.

After his death in 192'2, at the age of 75 , he was buried in a rock tomb on top of a mountain. Every telephone in North America was silent for one minute during his funeral.

Vext in this series of pioncers of electrical communication will be ()liver /leaviside.

Tong . Itherton works at the Independent Broadcasting Authority's engineering trainins college in levon. His book, From Compass to Computer. A Histon'of Electrical and Electronics Engineering, was puhlished by Vacmillan in 1984.

68000-family Pascal machine

If you need to decide which computer language to use for your next industrial control system, one of the new breed of Pascal compilers may be ideal.

W.P.STANLEY

Pascal was designed as an easy-to-learn language to teach students how to write programs, which humble beginning it shares with Basic but unlike that language, Pascal enforces the concept of structured programming. To someone who has used Basic. Pascal may appear to be pedantic, it lacks a 'goto' statement for instance, but its strength is that it forces the programmers to understand the true nature of the task before starting to write a program. This means that the program is produced in the correct construction. if not in detail. the first time round as opposed to a poorly concieved core modified by layers of goto' statements and extra modifications to get it to work. Even if the time taken to write in hoth forms is the same, the real cost advantage of Pascal is that the resulting program is self-documenting to a large extent, which leads to easier and faster maintenance.

One of the strengths of Pascal is its comprehensive selection of data types available to the programmer, which now encompass boolean, character (byte), enumerated type. integer, longinteger, hex, longhex. real. string. array, record, devices and files. and pointers. The string functions, so long a weak point in Pascal, have now been enhanced to give similar performance to those in Basic, which has always enjoyed powerful string operators.

Pascal has been limited by some of the same problems as Basic in that it was only available in an interpretive form or with intermediate code output which produced slow executing programs. This tended to preclude control by the programmer as to where variahles were held: the compiler or interpreter allocated space in the memory. usually via the stack, or optionally on a reverse stack, the 'heap', without any bearing on the wishes of the programmer. For industrial control, or for any application which wants to poke its nose outside the confines of the operating system, it is essential to be able to access absolute addresses in the memory map to talk to i / o ports. This is now possible in Pascal hecause the user can
specify how the variables are held; on the stack (by default), at an extended (absolute) address, program counter relative, defined in another module or, on 16 bit processors. in a c.p.u. register.

A requirement for most programs is the ability to perform simple operations on all relevant classes of data without large procesing overheads; things like or. EOR. ANI, Na.io and shift. This limitation is overcome in the latest generation of Pascal compilers, which can produce compact 'romable' positionindependent object code that is frugal on memory and has a runtime library overhead proportional to the function used. To give figures for one particular compiler. the Omegasoft 68000 Pascal compiler. typical runtime overhead is between I and 3Khytes. with a minimum of about 50 bytes and a maximum of 10 K using every function and data type: the compiler efficiency is about 0.4 that of hand-coded assembler but the execution speed is fast. This compares well against a C compiler running on the same operating system; the code efficiency is about the same and the Pascal programs usually execute faster. This is not intended to show that Pascal compilers are 'better' than C compilers, simply that they are comparable and that C code is not automatically the optimum solution.

Another development, which has become more common in the later compilers, is to surround the compiler with a suite of utilities that make the task of converting the program into dehugged object code much easier. In the example of Omegasoft Pascal. this takes the form of a easy-to-use linkage creator which asks the user a series of questions about the physical properties of the hardware and produces a small assembler program as a result. This sets all the relevant stack pointers for the main Pascal program and also produces a procedural file which will assemble and link all the needed modules.

A type of utility that has become popular is the interactive dehugger, which will allow the programmer to dehug software at Pascal line level, to be able to breakpoint to a line

Can now compile programs from inside the editor so that syntax checking of a new piece of code is now very quick. Errors found by the compiler in this mode are passed back to the editor on a stack and can be popped off the editor on a stack, and cone popped the from error to error
Compiler now supports longreal types in the IEEE 64 -bit format and can support the 68881 floating point coprocessor as a peripheral.
A 'Pascal shell' provides a complete Pascal A 'Pascal shell' provides a complete Pascal keeps track of all the related files in a suite of programs so that when changes are made to one file it it easy to recompile and link all the modules back together with just a few keystrokes. It also allows considerable control over the recompila. tion: you can specify to recompile all files modified after a certain date and time, or after the date on a particular file. Only the files related to the task are kept inside the shell environment so that the rest of the operating system 'clutter' is not obscuring the work All the Omegasoft utilinot are catered for from inside the shell it is ies are catered for files then tell the shell to possible to edit a sel ormes, then the shell to recompile and load the debugger. leaving the user ready to start debugging, or recompile, assemble and link and produce 'romable' code files
An optimized 68020 version of the compiler will support f.p.u. (68881 and 68882) directly on the coprocessor interface with in-line code, and should be available in July or August.
Source code of the pascal shell. linkage creator, screen editor and runtime library are included for reference
number, display or change variables hy name. trace by line or by procedure. The more sophisticated dehuggers, usually found on 16 or 32 -bit processor versions, will allow assembler modules to he added for dehug along with other Pascal modules, and permit macro definitions of the debugger commands. They may even have an assembler-level dehug inside which will allow debug and disassembly of assember or Pascal programs. A software tool with this kind of capability is quite a large program in its own right. and a fully-fledged one may take over 100 Khytes of memon' space and assumes that the industrial $/ / 0$ hardware is in its own memory map. As it takes so much memory to support all these features, this kind of debugging is only found on the larger 16/32hit processors and although eight-bit versions are available, the powerful features have heen trimmed down to allow them to fit into a 64 Khyte address space.

To give another example, this time Omegasoft's 6809 Pascal compiler, where the debugger uses overlays to maximize the size of program it can dehug; has no assembler level phase and cannot support macros. though it can single-step, set hreakpoints, examine and change variables. It takes ahout 30 Khytes of memone which. when added to the operating system leaves about 15 to 20Khytes for the program to be debugged. should allow room for between 100 and 400 lines of Pascal, depending on the functions heing used. Many applications will fit into this space. but if not then it is possible to write larger programs as a series of modules. and debug the modules separately hefore joining them all together to produce the final object program.

For $16 / 32$ hit processors the overhead of 100 K for the dehugger in a development environment is not a prohlem as memory for these systems is now relatively cheap. If development is done on a modular hardware system such as l'ME, this may not be too much of a problem as the necessary func-

First introduced to the 6809 market in 1980, Omegasoft Pascal has been expanded and refined, with major extension to the ISO level 0 standard that allow its use for industrial control and other real-time applications. It is newly available from Certified Software Corporation of California (RCS Microsystems in the UK) to run under OS-9, P-DOS, Versados and CP/M-86K operating systems.
tions can be plugged into the target system so that in effect it is a development system with large amounts of ram and mass storage. After the dehugging is complete the excess items can be removed from the system. If the tarset system is a limited-function system that has been designed for a specific purpose without room to accommodate the host debugger, a different approach is needed. and this is provided by a target debugger.

This technique was first used by Digital Equipment Corp. for their Micropower Pascal' and has subsequently been adopted by other vendors. It involves writing a small program. usually in assembler, to copy data from the target serial port to and from ram on the target system. The bulk of the dehugger now resides in the tisers host or development system, which will have mass storage and plenty of ram. and the progran to be debugged is passed to the target via the serial port. When excecuted, this target debug affords the user the same power as the host debugger, but only requires a small
overinead in the target memon:
Pascal has become an excellent tool for writang software in the industrial control entironment. The standard lSO core compiler with its large selection of data types and extensive intrinsic libran functions has been extended to permit easy access to hardware and to overcome some of its prevous limitations. The result is that programs can be written in Pascal. which produces clear and concise listing documentation, that can be just as efficient and fast as any other compiler. Added to that are the benefits of interactive dehugging on a host or target system and the extra utilities for making stand-alone 'prommable' code easily. Could this be the language that reaches parts of your control system that other languages cannot reach?

Hilliam Stanley is Omegasoft product manager with RCS Microsystems of Hampton Hill. Widdx. tel. 01-97920(4)

IMAGE-10
 HIGH PERFORMANCE SINGLE BOARD GRAPHICS COMPUTER

High performance? they all say that. Ah yes, but. . .
Image-10 has three 16 bit processors working concurrently for dazzling speed and
Image-10 has a resolution of 768 by 576 pixels for intricate detail and
Image-10 has 256 on-screen colours giving photographic quality.
In fact Image-10 has all of the refinements asked of graphics intensive applications. Like hardware windows, hardware drawing, hardware zoom and pan, hardware character generation and hardware block moves. The only thing the cpu has to do is to run your applications.

Board Price £1295

Image-10 includes:
$\star 68010 \mathrm{cpu} \quad \star 82786 \mathrm{gdc}$
\star Floppy disc controller
\star Dual RS232 * Centronics

\star Battery backed clock	\star Mouse $\quad \star$ transputer ports
$\star 512 \mathrm{~K}$ dram $\quad 64 \mathrm{~K}$ sram	\star Stereo sound generator
\star Winchester disc controller	$\star 256 \mathrm{~K}$ eprom

\star Stereo sound generator

* 256 K eprom

SOFTWARE DEVELOPMENT SYSTEMS

Versatile, low cost, development systems based on Micro Concepts' single board computer, Microbox 3 A choice of powerful disc operating systems is available including Os-9/ 68 K , TRIPOS, and CP/M-68K

Features include
68000 microprocessor, 8 MHz clock 512 K dynamic ram, 64 K static ram. 128K eprom
On-board graphics controller offers: 80 column, 24 row, 16 colour text. 640 by 480,4 colour graphics. 320 by 480,16 colour graphics.
Floppy disc controller.
Winchester disc controller.
Dual serial RS232 ports.
Centronics printer port.
Up to 48 lines of parallel input/output.
Battery backed clock/calendar.
I/O expansion capability.
Double eurocard board format.
Hardware prices:
Fully built and tested Microbox 3 single board computer £650
System with dual 1M byte floppy disc drives.. \qquad System with 20M byte Winchester and single floppy drive

UNIVERSAL
CROSS ASSEMBLERS
for all
MSDOS OS-9 FLEX
computers

Supports the following devices

1802	809	8049
6502	8022	8080
6803	8039	8751
6808	80 C 48	6303
8021	8051	6802
80 C 35	8749	68 HC 05
8048	68000	8020
8050	6301	8035
8748	6801	8040
280	6805	80 C 49
1805	68 HC 11	8085
6800	8031	$Z 8$
6804	80 C 39	

Extensive directives support modular, conditional and structured program-
ming. Powerful Macro Preprocessor, xref generator and output conversion utilities provided.
COMPLETE SUITE \qquad £295 INCLUDES FULL 'C' SOURCE CODES NOT 68000)

MICROPROCESSOR CONTROLLED EPROM EEPROM and SINGLE CHIP MICRO PROGRAMMER

Programs the following devices:

2508	2516	2532
2564	$27(\mathrm{C}) 16$	$27(\mathrm{C}) 32$
2732 A	$27(\mathrm{C}) 64$	2764 A
$27(\mathrm{C}) 128$	27128 A	$27(\mathrm{C}) 256$
$57(\mathrm{C}) 256$	$27(\mathrm{C}) 512$	27513
2758	27011	2816 A
2817 A	2864 A	28256
48202	52 B 13	52823
52833	68732	68764
68766	8741	8742
8744	8748	8749
8748 H	8749 H	8751
8755	9761	CY7C282
CY7C292		DS1225
AT-ROM	PC-ROM	XT-ROM
ROP		

No Personality Modules required.
Controlled via RS232 interface.
Accepts Intel, Motorola, Ascii-hex and binary data. Ultra-fast, fast and standard programming modes.
Low and high byte programming supported.
Completely self contained but uncased.

Price £295

All prices shown exclusive of VAT and carriage

Video frame store

Fast look-up table enables the unit to manipulate moving images in real time for flicker-free special effects.

D. E.A. CLARKE

TThe frame store* is a powerful tool for image capture, but in its basic form it has no facilities for real-time image processing. Manipulation of images must therefore be done entirely by the host computer.
The look-up table is a significant enhancement because it enables the real-time manipulation of pixel grey-levels to be achieved either by selecting pre-programmed (rombased) tables or by down-loading computer generated tables from the host c.p.u. into an on-board high speed ram. These ram-based tables can be updated during the field blanking interval on a frame-by-frame basis.

Look-up tables can be devised for contrast-stretching (linear or non-linear), histogram equalization, image negation, clipping, noise magnification etc. and the effect of these operations can be observed on live as well as frozen images.

The look-up table is constructed on a single p.c.b. designed to stack with the rest of the frame store boards. Installation is extremely simple, involving ribbon cable jumpering to the other boards without any modifications (other than to add appropriate connectors).
Two memory sockets are provided, one for a high-speed ram chip (typically $2 \mathrm{~K} \times 8$, 60 ns) and one for a high-speed prom (typically $2 \mathrm{~K} \times 8,60 \mathrm{~ns}$). Both sockets can accommodate slower ram or eprom chips and 150 ns devices are adequate for the 256×256

[^6]

Fig.1. The look-up table allows pixel grey-levels to be manipulated in real time. Look-up data can be in rom, or can be downloaded into ram from the host computer.

Fig.2. All components fit on a single p.c.b. which can be jumpered to the other boards. A source of components is given opposite.
configured frame store which clocks at about 5.8 MHz .
The p.c.b. is configurable for several types of rom and ram devices in 24/28-pin and 300/600 mil packages.

SYSTEM CONFIGURATION

The look-up table is shown in block diagram form in Fig.1. The board is designed to be inserted between the sample bus and the digital-to-analogue converter on the analogue board as shown in Fig. 4 (upper). Both live and frozen image pixels are then processed in the same way but the image data in the frame store memory always contains true data. The colour palette can be located on the look-up table input bus or on the translated pixel output bus.

Two other configurations are also possible:

1. The look-up table can be positioned between the analogue-to-digital converter and the image memory as shown in Fig. 4 (lower) and the image data in ram will then be translated prior to storage as well as display.
2. Both configurations can be implemented simultaneously using two look-up table
boards to achieve both image write data translation and image read data translation at the same time.
The latter configuration cannot usually be justified for normal applications.

CIRCUIT OPERATION

The complete circuit is shown in Fig.2. Incoming eight-bit pixel data is retimed by IC_{402} which latches the data on the rising
edge of the sample clock; a complete clock cycle is then available for memory access because output data is latched by the d.a.c. and colour palette boards on the next rising edge of clock. This extra delay of one pixel causes the displayed image to be displaced to the right, and shifts into view a hidden pixel at the left of the picture while blanking the pixel on the right. This is of no consequence for displayed images since there are several perfectly valid hidden pixels, but image

Fig.3. Sequence for downloading data to the look-up table's on-board ram.
manipulation software should be designed to take the displacement into account.
The latched pixel data directly addresses the on-board rom or ram and the resultant output data becomes the new pixel value. It follows that 256 grey levels can be translated into 256 alternative values depenuing upon the contents of the addressed table.
Using $8 \mathrm{~K} \times 8$ memory devices gives the capability for up to 32 tables selectable by optional external switches.
Ram or rom-based tahles are selected by the host control signal romika which when high (or open-circuit) selects the rom or, if a rom is not fitted, the bypass buffer IC_{4103}. The bypass mechanism enables the frame store to be operated without the host's having to initialize the on-board ram. Various control signals are derived by IC_{408} and IC_{409}; these are 74HCT series devices as is the host data buffer $\mathrm{IC}_{4,1}$ for ease of interfacing and good noise immunity.
The host gains access by asserting S.CT which enables the address counter IC_{407}, enables buffers $\mathrm{IC}_{406}, \mathrm{IC}_{4111}$, disables latch IC_{402}, disables buffer IC_{403} and three-states the ram/rom output buffers. The ram is enabled hy taking romem low and data written by pulsing wR low. The address counter is incremented on the rising edge of $\overline{\mathrm{wR}}$ which provides for very fast table updating.
Taking SLCT high enables pixel translation by enabling the latch IC_{402} and either the rom or ram depending upon the control signal rom/RAM and disabling buffers $\mathrm{IC}_{401 \text { - } 4 / 46}$. Link 1 normally selects ck_{1}; Link 2 allows two look-up table boards to be individually programmed by pulsing the appropriate $\overline{W R}$ line.
Link 3 will normally be in position 1 for $2 \mathrm{~K} \times 8 \mathrm{ram}$ devices when pin 23 is $\overline{\mathrm{Wk}}$. Link 4 allows the use of rom devices when the polarity of pin 20 changes. Link 5 should be in position 2 when a rom is not fitted: this enables the bypass buffer IC_{403} (which can otherwise be omitted).

When the look-up table is positioned between the sample bus and the a-to-d on the analogue board, it must be disabled during c.p.u. frame memory update; the signal \mathbb{E} is used for this purpose and is selected by Link 6 in position 2.

PROGRAMMING

The sequence for programming the look-up table ram is shown in Fig.3. The sLCT line is taken low, rom $\overline{R A M}$ is taken low and data is output to $\mathrm{IC}_{401} ; \overline{\text { WR }}$ is then pulsed low and the cycle repeated. Finally, डा.CT is taken high to enable the look-up table.
This example program generates a table for negative displayed images:

PROGRAM NEGATIVE;

BEGIN ;

OUTPUT(SLCT) $:=0$;
OUTPUT (ROM/RAM) $:=0$;
FOR COUNT $:=0$ TO 255 DO BEGIN ; OUTPUT (DATAPORT) $:=$ NOT COUNT: \{OUTPUT NOT COUNT AS DATA\} OUTPUT(WR) $:=0 ;$ \{STROBE RAM AND INCREMENT ADDRESS\} OUTPUT (WR) :=1; END:
OUTPUT (SLCT) :=1;
END.

| Table 1: Link programming All are two-way change-over | |
| :--- | :--- | :--- |
| links | |

INSTALLATION

Note when installing the look-up table that there is an option for separate data buses for the d.a.c. and a.d.c. on the analogue board, as shown in Fig. 11 of the December 1986 article. The links which connect these buses together should be left open-circuit and an additional connector installed so that separate connectors are available for d.a.c. and a.d.c. data. There is provision for this on the p.c.bs available for this project.

The ribhon cable carrying pixel data between the memory board, colour palette (if fitted) and the converter board should now be connected as follows:

Fig.4. Two contrasting arrangements of the look-up table: above, the frame store memory always contains true data; below, image data is translated prior to storage.

memory \rightarrow look-up (input) \rightarrow a.d.c.

An additional jumper cable should be assernbled and used to connect

Pook-up (output) \rightarrow palette \rightarrow d.a.c.

Finally, the look-up table p.c.b. must be connected (in parallel with the other boards) to the pixel control bus and the host interface buses by clamping additional connectors to the appropriate ribbon cables.

FEATURES OF THE LOOK-UP TABLE
 - Eight-bit picture element data input
 - Eight-bit translated data output
 - 256 entries per table
 - Throughput to 15 MHz
 - Up to 32 rom-based tables
 - Up to 32 ram-based tables
 - Auto bypass
 - User-configurable hardware options - Simple installation

With the addition of a clock generator, an eight-bit counter to simulate incoming pcls and a d.a.c. at the output this design could also be used as a programmable arbitrary waveform generator with time resolution down to 65 ns . For a suggested design which avoids the need to modify the p.c.b. send a stamped, self-addressed envelope to the editorial office. Mark your covering envelope 'Video frame store'.
P.c.bs and components are available from Ipswich Electronics Ltd, Hadleigh Road Industrial Estate, Ipswich IP2 0HB, tel. 0473216056; semiconductor devices from Technomatic Ltd, 17 Burnley Road, London NW10 1ED, tel. 01-7231177.

A SELECTION FROM OUR STOCK OF BRANDED VALVES

Official orders welcomed Export supplied Please add 15% VAT (UK orders only) UK FREE DELIVERY

\section*{OSCILLOSCOPES

220240 V AC mains 8 dign Leo
 iivivity
£ 99.00
$£ 126.00$
$£ 175.00$
£ 199.000
Smy sensitivity
£219.00
\&PM elc
£285.00

DC POWER SUPPLIES 240V AC innul. Slabitised
varibble vulpui voltages Direct meler reasing bolis and amps. $2450 / 24$ volls $0 / 5$ amps $0 C$ 154 5/15 vilis $0 / 4$ amps $O C$ AIso l3.8V oc. 3 amps max. Fixed Ino meleri D/30V0/2 ampos DCLCO Disola

SWITCH MODE PSU's

Open Frame Models I/P 100/240V AC $\mathrm{s} \times 510$ to $5 \mathrm{5v}$ [atijusiable] 10 amp Enclosed Model 85/97w-5V6A-12V475A 12V05A $£ 19.95$

BENCH DMM'S 3 3. Digil LCO 10A	$\mathrm{L}-\mathrm{F}-\mathrm{Fate}$
AC/0C 20 meq. Buzer fic.	
$3220.25{ }^{\circ}$ 。	£ 89.00
32100.1% True Rms	$¢ 119.00$

STOCKISTS FOR

Logic Analysers • Insulation Testers - Temperature meters - Security Systems - Public Address • Communications • Tools • Computer Equipment - TV/Video Accessories• (See Catalogue)

ORDER BY POST OR PHONE. OPEN 6 DAYS A WEEK FOR CALLERS.

GENERATORS 220, 240VAC overalion

£110.00 \& 110.00 161020.2 HZ to 2 MHZ IG105 5H2 10 SMH2 OIement. TTL 0 160.00 TV-VIDEO PAL VHF/UHF $5.5 / 6 / 6$ SMHZ $£ 105.00$ sound cartiers RGB and SYNC O/P's. AM/FM sound mod
Colour elc
E199.00 Colour elc

GENERAL EQUIPMENT $\times 1 / \times 10$ Prooe kisis 1250 MH II $£ 10.00$ 200100 KHz - 110 MHz A.C OSC $£ 65.17$ 22020 HZ -200KHZ R.COSC CM200 Bench Dipitat Cap. Meler 2018 Audio Do mer Mer £89.00 2018 Audto Power Meter 220.00 YF501 Electronic Isulation Iazier $\mathbf{~} \mathbf{6 5 5 0 0}$ PF M200A 200 MHZ Pockel LEO Counter $£ 75.50$ OM 358 BCH Scope Mulliplerer $\quad £ 179.00$ KOM6 250 MHZ TR. OIP Meler $£ 43.04$

ANALOGUE

MULTIMETERS
101515 nnge pockel $10 \mathrm{~K} / \mathrm{V}$ £7.50 103s 19 пппоe 20k/v IOA OC $£ 10.39$ 1028219 range 10 AOC OC. He ZOKVE 12.6 HCzO1 19 Range ZOK V IzAAC/OC $£ 15.61$
 30108224 anoe $10 \mathrm{DOC} \cdot$ buzzer $30 \mathrm{~K} / \mathrm{V}$ £20.83 155 m 21 range $10 \mathrm{AaC/OC}$ 20\%/4 $\quad £ 22.57$ 5050E 41 Range FET roml/p 830A 26 Ranoe 10a Ac/DC 30 K V

PROBE/PULSER

6108 20MHZ Logic probe \& bleeper $£ 16.95$ 625 50MHZ Probe \& pulser O5HZ 500HZ $\quad \mathbf{£ 2 2 . 9 5}$

AC CLAMPMETERS with cases and leads
 4300 Autorange Digital 3000 A 500V cont test $\quad £ 85.00$

digital capacitance
METER Brange LCo 2000 10 2000 m ED Push buthon selection |6013) E55.00

LCR METER

IC200 18 range algital hand

Yeld lester 18 ra

hel 1 lestier
6 ranges resislance

7 ranges capaciliance
7 ranges induciance $\quad \mathbf{8 8 5 . 0 0}$

000

TIME WRONG?
MSF CLOCK IS EXACT
8 DIGIT display of Date. Hours. Minutes and Seconds
SELF SETTING at switch-on, never gains or loses, automaticGMT/BST and leap year. and leap seconds.
EXPANDABLE to Years. Months. Weekday and Milliseconds anduse as a STOPCLOCK to show event time
COMPUTER or ALARM output also, parallel BCD (includingWeekday) and audio to record and show time on playback
DECODES Rugby 60 KHz atomic time signals, superhet receiver(available separately), built-in antenna, 1000 Km range.
LOW COST, fun-to-build kit (ready-made to order) with receiverONLY £89.80 includes ALL parts. pcb. $5 \times 8 \times 15 \mathrm{~cm}$ case by-returnpostage etc and FREE Kit News' Get the TIME RIGHT.
GAMBRIDGE KITS
$4 \dot{5}($ WU) Old School Lane, Milton, Cambridge, Tel 860150

ENTERGONREPLYCARD

68020 cache design

On-chip cache memory increases performance but its size is limited. An external cache with 25 ns rams takes care of much larger repetitive loops.

DAVID BURNS and DAVID JONES

Acache is a high-speed memory local to the microprocessor that holds the most recently executed instructions or data. Being closely coupled to the microprocessor, cache memory can be accessed much faster than main memory.
Studies of modern programming techniques show that programs spend most of their time repetitively executing a few tight loops of code. Cache memory speeds up execution by holding loops just executed so that when they are used again they can be accessed much faster than if they were held in main memory or hack-up storage.
With the 68020, small loops of code are captured efficiently in the 256byte on-chip cache but performance can be increased still further by adding an external cache to hold larger repetitive loops.

A fast external cache increases performance particularly when low-cost dynamic ram is used for main memory. Access time of the dynamic ram is relatively long but refreshing and propagation delays increase overall access time even further.

When an external cache is used, a memory-management unit can be added to a 68020 system without performance degradation. With no external cache, adding a paged memory-management unit such as the MC68851 for example can cause the introduction of an extra clock cycle when accessing external physical memory.

Adding a large external cache allows the processor to execute considerable amounts of code from the cache without having to access main memory. Using fast static ram for the cache, no wait states are needed so processor operation is as fast as possible.

Size of the external cache has a great effect on the hit rate, i.e. the percentage of time that the processor is executing from the cache as opposed to main memory. From Fig. you can see that a considerable hit rate

Fig.1. With a 4 Kbyte cache, the processor executes from cache memory about 80% of the time.

Fig.2. Each data item in the cache has an associated tag entry to allow the data to be retrieved. In a fully-associative (content addressable) cache, the tag entry holds a full address and control bits.

ARTICLESIN THE SERIES

68000 family architecture	December 1986 ppl06-109
68020 architecture	January 1987
	ppl03-106
68020 extra instructions	February pp 209-212
68020 display processing	March pp 333,334
68881/68882 floating.point coprocessors	May pp 535-537
68851 memory-manage ment coprocessor	June pp614-616

Fig.4. Direct-mapped caches, top left, use only one comparator and replacement algorithms are unnecessary. A block the same size as the cache is produced by the index field so there is only one group.

Fig.5. Cache design for the 68020 using 32Kbyte organized in 8 Kbyte long words, top right. Cache entries are held in 32Kbyte of data ram while tag data with valid bit is held in tag ram.

Fig.6. When a cache hit occurs, data from cache ram is placed on the bus but when a miss occurs, halt and bus error signals are sent to the processor to make it retry the previous cycle. This is to allow time for cache updating.

Fig.7. Using 25 ns static rams a very fast cache can be made. The tag field consists of ram accessed by the address and control bus.
can be achieved using a 4 Kbyte cache. Increasing the cache size further results in only small improvement.
In a typical cache, each data item, be it 8 , 16 or 32 bits, has an entry associated with it called a tag field, Fig.2. This tag field contains information that allows the data to be located

Fig.8. Simplified cache control logic providing enable, disable and clear facilities.

In most caches the tag field contains a large proportion of the address bus, the function codes and a valid bit indicating whether or not a data item has been entered and is valid. Differentiation between user and supervisor address spaces is provided by the function-code entry.
There are three basic types of cache - fully

associative, set associative and direct mapped. Figure 2 shows a fully-associative architecture in which the tag field contains the complete address bus and function-code bits.

Each tag entry has an associated comparator. When an access begins, the present access address is compared with each of the tag fields and if a match is detected (a hit), it indicates that the associated data item can be used for the cycle. Because every tag has a comparator, the tags can be compared in parallel which speeds up the process.

By using the whole of the address bus as a tag there is no interdependence between the data items, unlike direct mapping, and so the hit rate of this type of cache will be very high and related closely to the physical size of the cache.

When a miss occurs, i.e. there are no tag matches, the cache must have some means of updating the entry so that it will be valid the next time that that address is accessed. To do this a 'least recently used' algorithm determines which entry when overwritten will least affect overall performance. When this item is updated, the tag field becomes the information currently on the address bus and the valid bit is set. The next time that the address is accessed a hit will occur.

Performance of this type of cache depends on efficiency of the replacement algorithm and relies on the fact that there is no interdependence betwen entries. On the other hand, fully-associative caches are expensive because of the number of comparators required and the complexity of the replacement algorithm.

Set-associative caches are cheaper. Instead of holding the whole of the address in the tag field, the set-associative caches use a number of low-order address bits as an index to a block of tag and data items, Fig.3. This index selects a tag from each group and compares it with the current access address. If one of these entries hits, the associated data entry is extracted.

The advantage of this type of cache over the fully-associative type is that the number of comparators required is only equal to the
number of groups (or sets) and not the number of entries. Size of the index field, and hence the number of entries per group, is thus a trade-off between the number of comparators and the cache hit rate. A replacement algorithm is still necessary for set-associative caches but a simpler roundrobin type algorithm can be applied instead of the least-recently-used one.

In a direct-mapped cache the index field produces a block size that is the same size as the cache itself so there is only one group, Fig.4. As a result, only one comparator is used and replacement algorithms are unnecessary so this is the easiest type of cache to implement and the cheapest.

Hit rates of direct-mapped caches are still quite high (proportional to the number of entries) but their performance is degraded by address interdependence. This interdependence is caused by the fact that the index field produces an offset into the cache which remains the same for addresses which are modulo with this index, i.e. they have the same index but a different tag field.
In execution this means that an entry can actually be replaced on the next cycle if the next access happens to have the same index; there is no way of determining when the entry was last used or how frequently it was used.

CACHE DESIGN EXAMPLE

A direct-mapped cache for data, supervisor and user accesses to and from memory is easiest to implement. Cache size depends on the hit rate required and how much you are prepared to spend on fast static rams but is typically 4,8 or 16 Kbyte ; in practice, 32 K byte is usually the upper limit.
Since the direct-mapped cache can be used for data accesses it should be designed to avoid stale-data retention. Stale data is data held in the cache from a previous read cycle; it represents data in memory that has been modified by an external processor write cycle. To prevent stale data, data from the processor is written simultaneously to both the cache and external memory on every write cycle. Data read from the cache is then always the latest data. This method is called write allocation.
Consider a 32 Kbyte cache for the 68020 organized in 8 K long words (32 -bit words), Fig.5. Cache entries are held in 32Kbyte of data ram and tag data with the valid bit is held in tag ram. The tag field could be 22 bits wide consisting of 17 high-order bits for addressing an individual entry in the 8 K long-word block of memory, three functioncode bits to distinguish between the types of memory access, and two size bits for accommodating misaligned data transfers (misaligned data is 32 bit data not resident on a 32 bit boundary in memory). The valid bit is set each time an entry is made in the cache.

On a cache hit, associated data is read from the cache data ram and placed on the bus. Logic i.cs control the data transfer direction to and from the tag and data rams. Address lines A_{15-31}, function codes FC_{0-2} and size values size $0_{0.1}$ update the tag field and information on the data bus is placed in the data rams.

Ideally, cache updating should occur
while the read cycle is executing. For this purpose, if there is a cache miss during a read cycle a signal must be produced early enough in the cycle to be fed back to the control logic. This signal places the tag and data rams in write mode, allowing data presented on the buses to be routed directly to the tag and data rams as well as to the processor.

This entry-update method is practical for processors operating between 8 and 10 MHz but for a 68020 operating at between 20 and 25 MHz with no wait states, the time available for entry updating may be too small. An alternative method could be to use the 68020 late-retry facility during cache misses as follows.

When a cache miss occurs the cachecontrol logic sends halt and bus-error signals to the 68020 simultaneously. This causes the processor to retry the previous cycle, allowing enough time to enable the tag and data rams for writing. On execution of the retired read cycle, data read from memory is written into the data rams and information on the address and control lines is written into tag ram, Fig. 6.

IMPLEMENTATION

The faster the 68020 becomes, the more difficult it is to design a system operating with no wait states. Therefore to gain any noticeable performance improvement from an external cache, very fast static memories are essential. Fast and ALS logic families make it possible to design a 68020 cache using 25 ns memories without resorting to custom or application-specific (asic) devices.
Logic required for the cache divides into four parts for entry updating, general control, tag-ram operation and data-ram operation. Figure 7 shows tag-ram logic with 16 K by 4 bit 25 ns rams. During a read cycle, addresses presented by the processor are used for indexing into tag ram, output of which is the previously described 22bit tag field. Provided that certain other conditions are met, if the 32 bit comparator indicates that tag ram output matches the current address and control lines the cache-hit signal CHIT is asserted.
Conditions that must be met before $\overline{\text { chit }}$ can be asserted are the true states of the valid bit and cache-enable signal and the untrue states of the i / o enable, cpu-space and ram-write signals. These conditions feed the last comparator stage.
On detecting a cache miss the control logic causes data presented on D_{0-31} to be placed in the tag rams. During the cache hit the F244 latch outputs are high impedance, thus isolating the address and control bus from the rams to prevent bus contention. Data-ram logic is similar except that four F245 bidirectional buffers are used for both isolating and directing ram data for writing/ reading; data direction is controlled by chit.
Signals produced by the entry-update logic are described in the panel. This logic can be implemented using simple two-input gates and D-type bistable devices from fast or ALS families.
Control logic can be implemented using the same simple i.cs; its complexity depends on the cache facilities required. For exam-

CMISS. Active when व्मा from the tag comparators is sampled during the middle of the 68020 s s_{3} clock cycle For this the $2 \times$ cuk input is used since it is twice that of processor clock ak.
$\overline{\text { DSACK (EXT }})_{0.1}$. These are DSACK 0,1 signals returned from the external device during a read cycle ($(\sqrt{w}$ high) when there is a cache miss.
RESET. Connecting the processor reset line into the entry-update logic ensures that the cache operates in its correct mode after reset.
$\overline{\text { DSACK }}_{\text {0.1. }}$. Cache control logic sends these signals to the processor on assertion of address strobe $\overline{\text { IS }}$ so the entry logic assumes a cache hit on each cycle.
HALT, BERR. On detection of a cache miss, omiss is asserted then these signals are simultaneously sent to the 68020 to make it perform a retry cycle.
WRITEN. Feeding the ram write-enable pin ($\overline{\mathbf{w}}$) drectly this signal allows data to be written during the retried cycle. It is produced from סSicck[EX] $]_{0,1}$ and asserted on or close to the falling edge of S_{4} of the processor clock During S_{4} the processor latches data.
FORCEN, Data ram isolation buffers are enabled by
signal to allow them to route data during the update
cycle.
inhibir. Produced within the update logic, this signal inhibits DSSCR $_{0,1}$ during the retry cycle for a cache miss.
ple, consider logic providing cache enable, disable and clear facilities. The valid bit is held in ram with a clear facility which allows all cache entries to be cleared.

In its simplest form, the control logic contains a bistable device which can be addressed by the supervisor when performing a c.p.u. access to an otherwise unused c.p.u. function (that is not access levels, breakpoints, interrupt-acknowledge or coprocessor space). This access is treated just like a normal memory cycle. One c.p.u.cycle causes the bistable device to enable the cache through cacheee. Another location clears entries in the cache by clearing the contents of valid-bit ram and a third location causes the bistable device to disable the cache.

Figure 8 is a simplified control-logic diagram. Signal CACHE-E is used in the comparator section as validout; both signals must be asserted before a cache hit is considered valid.

When the cache is first enabled or a cache clear command is issued, the valid-bit ram is cleared. Using the address lines shown, cache clear is initiated by a memory cycle at address 1070000_{16}, cache enable at address 2070000_{16} and cache disable at 4070000_{16}. When reading or writing to any of these addresses, DSACK $_{0,1}$ are returned to terminate the cycle but data on the bus is irrelevant.

David Burns and David Jones are applications engineers at Motorola's East Kilbride plant.

Monitoring the Atlantic Ocean Intelsat

Intelsat has awarded a contract to Mercury Communications Lid for the monitoring of IBS transponder usage on one of its satellites.

It will monitor the $11 / 12 \mathrm{CH} / \mathrm{m}$ heam received in Europe from the Atlantic Ocean Intelsat V satellite and fonward the data obtained to Intelsat's Washington headquarters. The major service carried on this satellite is the Intelsat Business Service (IBSS) which is a totally integrated digital senvice allowing carriers to offer voice. data, facsimile and video transmission. Mercury is the largest user in the world of IBS and its parent company. Cable and Wireless, is the largest operator of international communications satellite earth stations in the Intelsat system.

Toshiba to enter UK telecoms market

As part of its expansion plans, Toshiba has announced that it is to enter the UK telecommunications market. It will be launching Group 3 (sub 1 -minute) facsimile machines and hopes to receive approval in the Autumn to sell the first of its small key telephone systems in the L'K.
When announcing his company's entry into the UK business facsimile and key telephone market. Mr Shunki Yatsunami, chairman of Toshiba Intormation Systems (UK) Itd. forecast a turnover of $\mathfrak{E l o l}$ million $(\$ 150 \mathrm{~m})$ by 1990 for its full range of office automation products.

> Home banking network for Australia

Two Uk companies are te supply their products to the giant Westpac hank in Australia to enable it to provide its customers with full home and office hanking facilities. Known as Itandyline, the service allows West pace customers to transier funds. pay credit

The Royal National Lifeboat Institution (RNLI) is to replace its traditional call out devices, such as explosive flares, with radiopagers. British Telecom Mobile Communications has devised a suitable system and is supplying 2000 specially
cards, ohtain a statement and the balances in their accounts using a digiti\%ed voice delivery service. The complete 132 -port network incorporates Micro Scope Videogate network concentrators and Langston's Plll soft ware, and has heen supplied by their Australian agents. Thorn EMI Information Technology.

World record 565Mbit/s opto link

Telephone Cables L.td (TCL) has installed. on behalf of Mercury Communications Letd. what is claimed to be the longest. operational, unrepeatered, singlemode optical-fibre network in the world, working at $565 \mathrm{Mbit} / \mathrm{s}$ and 13010 nm using standard production fibre.

TCL installed the 10 -fibre to provide a 51 km two-way link from Wolverton to Mercury's Whitehall Satellite Earth Station. via Bicester in Oxfordshire. Even though it was expected to need a repeater at its midpoint. attenuation test results suggested that this would not be necessary. As Mercury wished to operate the cable at $565 \mathrm{Mhit} / \mathrm{s}$. further tests were carried out which provided necessary confirmation.

Not only has this assisted Mercung on this route by avoiding
adapted radiopagers over the next two years. The first batch of 1000 is being delivered to lifeboat stations which are, at present, hampered by poor communications or cumbersome call out procedures.
the need for a repeater site. it is now possible that most future routes can he planned without the need for repeaters, thus reducing costs and increasing reliability.

Renaults by packet switching

Renault, the French state-owned car company. is to extend its Direct Vehicle Ordering System (D) OS) throughout Europe. The system. developed in Paris hy the company itself, has been serving the company's French dealer network for the past two years. Now, at a cost in excess of $£ 1$ million, the 300) Renault dealers in the L'K have gone on the system which will now also be taken up in Cermany: Italy and other European territories.

The total investment by Renault in DVOS runs into several million pounds so far. This includes two Amdahl mainirames in Paris and a Tandem computer in London. Major connections are made via $X .25$ packetswitched networks - Transpac in France and British Telecom: PSis in the UK.

In Britain, it represents just the first phase of extensive computerized communications being built into the companys lik operations during the next
two or three years, aimed at putting the Renault network into the forefront of communications advances heing made in the automotive industry over the coming decade.

Small-dish satellite trials

Trials of a small-dish satellite business communications service were started by British Telecom in May. The senvice will allow users at terminals at many distant locations in Europe as well as the UK to exchange data easily and cheaply by satellite with their company's central computers.

The trial service is based on the Ven Small Aperture Terminals (VSATS) and uses dish antennas of 1.2 m (4ft) or 1.8 m (6if) diameter installed on customer premises. It will enable links to he set up quickly. even when terminals are moved to new locations.

It is centred on BT's Londen Teleport. its central satellite communications earth station in London's dockland. where equipment from Comsat Technology Products has heen installed to act as the network hub for the service, Any remote site may communicate with the hub, or to any other VSAT via the hub.

Applications to be evaluated during the six months trial include the distribution of news and images for information services. internal company electronic mail and other interactive corporate data communications.

First all-opto laser amplifier repeater

The first field trial of a laser amplifier repeater has been successtully carried out in a 120 km fibre link installed in the British Telecom network. All optical systems. when developed commercially. promise considerable savings in the cost of optical communications links, especially for undersea systems. By avoiding the need to convert the optical signal to an electrical one and then hack to light, they will be significantly cheaper and more simple to make. and their power
requirementswill he reduced.
Still in the experimental stage, it is the optical equivalent of the travelling-wave tube used as a microwave amplifier. When held helow threshold. it emits an amplified light pulse at one end in response to an incoming trigger pulse at the other.

It has been further demonstrated in the laboratory that. using wavelength-division multiplexing. it can simultaneously simplify separate sets of pulses at different light frequencies. It can also amplify such pulses when they are travelling in the device in opposite directions at once. These lab. tests were carried out over 50 km of fibre with wavelengths of 1525 and 1506 nm and data rates of 280 and $565 \mathrm{Mbit} / \mathrm{s}$. The light sources were distributed feedhack lasers while, at the receiving end of the system, channel filtering was achieved using fixed-wavelength interference filters.

The amplifier is a laser. modified by having its end faces coated to reduce their reflectivity. 501 times. thus destroying the lasing action. A steady voltage is superimposed hetween the upper and lower surfaces to establish an electric field across the cavity. As a result, when a pulse of light enters the cavity at one end, it stimulates the production of extra photons which leave the cavity at the far end.

> Expansion in second phone service

Residential customers and small husinesses in the Nottingham and Derby areas will take part in test marketing of the new Mercury 2300 telephone senvice. In addition. the company has extended its local call senvices for its directly connected customers in the Birmingham and Manchester areas.

The two Midlands cities are key locations in the Mercury "Figure of Eight" network, and have been selected to gauge the impact of the senvice with residential and smaller husinesses. It will offer cost savings averaging 15 per cent on long-distance calls, and up to 10 per cent on selected international routes including USA. Canada. Hong Kong and Bermuda. Mercury
will monitor the trial closely. carefully evaluating customer reaction and the degree of takeun as part of its plans for a nationwide service to complete with British Telecom.

To use the new senvice, customers will need to purchase a special Mercury Telephone at a cost of $£ 51.99$ (inc. vat) and pay an annual fee of $£ 8$. f'2 (again inc. vat) for an Authorisation Code. Calls are made using the customer's existing exchange line so that. to place a Mercury connected call, the trunk or international call is dialled in the usual manner except that, prior to commencing dialling. the M (Mercury) hutton on the phone must he pressed.

The local call senvice, which will he most heneficial to those companies with more than 30 exchange lines, was previously only available to directly connected customers in london. It will enable business customers to make savings of up to 30 per cent on local calls.

Fax expansion for British Telecom

With facsimile growing at an average of 101 per cent each year for the past six years and forecasts suggest that next year a further 75.000 terminals will be added to the 90,000 currently in operation. British Telecom has added two new machines to its range. They are a personal computer hased machine providing store and fonvard features for

fax, linked with test processing for the high volume user and compact. low-cost, desk-top machine incorporating an integral feature phone. The former. the MerlinFax PCloo provides the user with an icon-based menu display for ease of operation. At each stage, help information is available on request to guide the inexperienced user.

The latter, the HS20, is a joint product of British Telecom and Televerket, the Swedish PTT. and has already been launched on the Swedish market. Looking rather like a sophisticated feature phone it is claimed to incorporate sufficient features to satisfy' most users.

Prudential approach to telecommunications

Prudential Corporation. the insurance and financial services group, has taken delivery of the one-millionth line of Plessey's ISDX digital p.a.b.xs as part of the process of implementing one of the country's largest and most sophisticated private digital networks. Based on ISIDXs of various sizes it will extend from Scotland to the West Country.

To date, the number of extensions at Prudential's five I.ondon and Reading head sffice estahlishments and another selected nine offices around the country is 4,250 in the network featuring the latest d.p.n.s.s. (digital private network signalling system)
technology. This allows many features such as call diversion and call-back when free to be available between offices. In addition. Direct Dialling In (||)I) routes an incoming call directly to the called internal extension. At the present time. the company's 24 regional offices are being equipped with smaller ISIDX-SN exchanges on a standalone hasis. In due course, when this replacement programme is completed. they will be connected to create one of the largest and most sophisticated private digital telephone networks.

Since being launched as the II)X (Integrated Digital Exchange), and now offered with ISDN features. Plessey has sold over 3,000 of these switches worldwide and achieved a sales revenue of around $£^{2} 50$) million.

Packet switching cuts bank security costs

largest clearing hank. National Westminster, is to use its private X. 25 packet data communications network to carny alarm data from branches all wer the lik. This will enable it to dispense with the central alarm monitoring stations of security company Chubh Alarms L.td. Chubh is responsible for the security of 350 out of the hanks ? 200 hranches.

Chubh engineers and NatWest d.p. experts worked together on the system developed by Chubh and already in use hy two other European hanks.

Under the programme. bank hranches are being equipped with a specially developed interface unit which accepts signals from intruder alarm systems and the electronic security devices protecting Automatic Teller Machines (ATMs). When regularly polled hy one of the seven central monitoring stations around the UK. an interface inserts encrypted data packets into the private network. Chubh claims to have reduced the necessary data traffic by 90 per cent without sacrificing the level of security.

Telecomms Topics is written by Adrian Morant.

Intensive care biofeedback

What is probably the most sophisticated biofeedback system ever invented has heen developed by John Packer of the Department of Electrical and Electronic Engineering at the University of Melhourne. It's an automatic. computer-based device for stabilizing the blood pressure of seriously ill patients. This is normally achieved manually by regulating the infusion of different drugs, a task that involves taking hlood pressure readings usually every 30 seconds.

An obvious electric alternative would be to have a continuous blood-pressure sensor and connect it to a dispenser for two drugs, one to increase blood pressure and one to lower it. This would in theory eliminate any need for manual intervention by nurses. It isn't as simple as that. however.

Mr Packer says that there are several reasons why researchers in Britain, the USA and Australia have found difficulty in implementing such a biofeedback system for blood pressure control. One is noise from the blood pressure transducer caused by movement or by coughing: another is the variation in patients' response to a drug at different blood pressure levels.

These problems have now been taken care of hy the development of a computer program that can distinguish significant changes and convert them into an appropriate response. The system adapts to variations in patient sensitivity and incorporates a wide range of safety alarms. Patient data is displayed graphically on a v.d.u. and stored on disc for subsequent analysis by medical staff. Doctors and nurses can interact with the program through a standard keyboard.

Clinical trials involving more than 80 patients have been successfully carried out in intensive care and cardiac surgical units.

How the brain is wired

Speculation about how the human brain works has been a preoccupation since time im-
memorial and never more so since the advent of the computer. But whilst nerve cells or neurons behave in some ways like silicon switching elements. the similarities are in other ways quite limited. The switching rate of a neuron is. for example. thousands of times less than that of a typical c-mos gate. Neuronal architecture is also markedly different from that pioneered by von Neumann, being massively parallel. But of course, it isn't quite as simple as that or we would already be well on the way to suitcase-sized computers with human intelligence and consuming only a few tens of watts of power.

One of the most puzzling aspects of the brain is how it wires itself up in the first place during foetal development. Obviously hidden away in the genes there must be a sort of wiring diagram witten in molecular code. But it can't be just like a computer carcuit diagram because there simply isn't enough space on the genes for all the data. This has led molecular researchers to speculate that the brain must in some way self wire' itself.
Dr Adrian Aitken of the University of New South Wales has now provided a little more evidence that this is exactly what does happen. His first achievement was to make a preparation of an intact foetal rat brain without disturbing the structure. Ilitherto brain researchers have relied on making microscope slides from thin slices of tissue. In computer terms. Dr Aitken has discovered how to take the lid off whilst others are attacking the innards with a chain saw.

Having got inside the fretal brain, the next step was to follow the growth of the neuronal axons, the links or wires by which neurons connect themselves into the circuit matrix. The precise method employed was detailed and complex but it led Dr Aitken to some fascinating and significant conclusions.

Neurons, it seems, have molecules that cause the growing axons to follow a sticky trail in the brain tissue. It's as if the pin of an i.c. were to sniff out another i.c. and begin growing a wire link. Dr Aitken says that the "stickiness' of the top of a growing nerve fibre governs the direction in which it will grow. In this
way the nerves do not necessarily have to 'know' which other cells of the developing brain to connect to. All they have to do is follow the adhesive trail.

These findings, recently presented in a paper to the Australian and New Zealand Society for Cell Biology are significant theoretically and also clinically. In future research. Dr Aitken intends to examine more closely the mechanism of nerve-fibre guidance and he hopes that. with additional information, it may be possible to direct the growth of nerve fibres and ultimately determine their network architecture. This has application in the treatment of several nerves and also in the understanding of degenerative neurological conditions such as multiple sclerosis and Parkinson's Disease. Conceivably it might also facilitate brain transplants!

Unmasked chips

Implanting dopants directly into a silicon substrate is an attractive proposition for the manufacture of v.l.s.i microcircuits. Apart from avoiding the need for a mask such a technique would permit variations, either in the location or degree of doping.

A research programme involving Manchester University, the University of Manchester Institute of Science and Technology (UMIST) and IBT-Dubilier is currently looking at practical ways of implementing the CuhamDubilier liquid metal ion source.

shown in the diagram. The ion source consists of a positivelycharged needle of less than $10 \mu \mathrm{~m}$ diameter placed near an ion accelerator electrode. Liquid dopant is fed by capillary action from a reservoir behind the needle and is then emitted as a beam. Focussing is achieved by electrostatic or electromagnetic lenses.

For the system to work properly, the dopant material must meet certain tight constraints. It must flow over the needle without dissolving it. It must also have a suitable low vapour pressure. Unfortunately neither arsenic nor boron. the most common dopants. meet these criteria.

What the group have found is that certain alloys of the dopants do meet the criteria and that once the alloy has been ionized. the unwanted component can be separated by a technique analogous to mass spectroscopy. (Remember the ion traps on old cathode ray tubes?")

Where arsenic is concerned, an alloying material that works well is platinum together with a tungsten needle. With boron, platinum is also employed though rhenium is the preferred needle material. Computer studies are now going on at Manchester University to try and find three-component alloys that perform even hetter.

Flying power station

A new slant on power generation is a flying windmill being developed by Associate Proiessor Bryan Roberts at the University of Sydney. The Gyromill. as it's called, is a cross between a windmill and an autogyro and flies tethered by steel cables to the ground. These cables not only provide anchorage but also contain power cables and control circuits for ground command signals.

If the whole idea of putting a power station in the sky seems a little eccentric. Professor Roberts explains that there are two major advantages from this approach compared to the use of ground hased windmills. Conventional windmills of the sort now springing up around the shores of Britain are so close to the ground that the wind is both slower moving and more turbulent than higher in the atmosphere. Since the extractable power is related to the cube of the windspeed, the advantages of a few extra mile/h are obvious. Turbulence is a different and altogether more serious prohlem and has led to at least one windmill in the USA breaking up completely. If you doubt the im-
pact of turbulence on large structures near the ground, just recall how bumpy it gets as an aircraft is landing.

The Cyromill prototype has two contra-rotating blades, each 4 metres in diameter and each driving a 3 kW generator. Professor Roberts has already done the sums to show that this can easily be scaled up to several megawatts at least. Tests on the prototype have also shown that there are no serious problems.

When the windspeed exceeds about $25 \mathrm{~km} / \mathrm{h}$. the Cyromill will take off from the ground and hover like a kite, generating electricity as it does so. If the windspeed near the ground isn't quite strong enough for an unassisted take-off, then the generators can be employed in reverse as motors until the Cyromill is airhorne. The motors then revert to their normal role as generators.

The mechanics of the machine are extremely complex. to ensure that it will fly stably in all wind conditions up to gale force. If the wind does become dangerously gusty, then the Cyromill can adjust its blades so as to land safely and switch off. Professor Roherts hopes eventually to build a fully automatic version that will take off and land under full computer control. The computer would respond not only to the prevailing wind conditions but also to the needs of the electricity utility. Gyromills could be kept on the ground and then launched automatically at periods of peak demand.
At the moment, flying powerstations on this grand scale may be a little way off, even in Australia. But Professor Roberts believes that the idea may have immediate applications in areas like Antarctica where the problem of ground turbulence is exacerbated by icing and where diesel generators pose difficulties of their own. Flying at about 300 metres above the icy waters. a Gyromill would be fed by a steady stream of air. largely free from drifting snow.

Major research grants for antennas

Over the past few years the Antennas Croup in the Electronic Laboratory at the University of Kent has been awarded substantial research grants from the Science and Engineering Research Council and British Aerospace for work on satellite antenna systems. Recently the group has received two further grants, from the SERC and the Royal Signals and Radar Estahlishment, each of more than $£ 100,000$. The work of the group, surpervised by Dr Ted Parker, Reader in Radio Communications, and IJr R.J. Langley, Lecturer in Electronic En gineering, is concerned with studies of frequency-selective surfaces.
These can be used to construct component parts ('subreflectors') of communications antennas, which can then become capable of "perating on several wavebands simultaneously. therehy improving the efficiency and cost effectiveness of the system. In some of these applications, the surfaces have to be yuite tightly curved, and the aims of the project funded by RSRE are to improve the design procedures for curved surfaces and to develop manufacturing techniques.
In other applications, two or more surfaces are stacked together in cascade, or the suhretlectors have partly metallic and partly frequency selective surfaces. The grant from SERC is supporting a study of these more complex structures.

Electroluminescent blues

A paper published jointly by a team of applied physicists at Durham University and a group of chemists from UMIST describes what they claim is the first ever room-temperature blue luminescent device based on metal-insulator-semiconductor ($\mathrm{m}-\mathrm{i}-\mathrm{s}$) technology. This offers an alternative configuration to the more common $\mathrm{p}-\mathrm{n}$ junction used in opto-electronic devices.
The latest m-i-s diode employs

zinc selenide (ZnSe) as a $11-\mathrm{Vl}$ semiconductor. This is on a gallium arsenide substrate fabrication using metal organic chemical vapour deposition (m.o.c.v.d.) at room temperature
The 'insulator' part of the m-is structure is a LangmuirBlodgett (molecular thickness) film made of a silicon phthalocyanine compound. At an applied voltage of around 24 : a current of approximately 1 mA flows: this is thought to be limited by the internal resistance of the silicon phthalocyanine layer. Under such conditions the researchers report a blue-white emission from beneath the gold contact layer. Such light is said to be clearly visible under normal indoor lumination.
Further research is now in progress to establish the optimum thickness of the 'insulator' layer.

Magnetohydrodynamics to beat pollution

A research team at the University of Sydney has developed a prac tical means of improving the efficiency of existing coal-fired power stations, using a novel magnetohydrodynamic converter. Magnetohydrodynamics is the process whereby hot gases from the burning fuel can be used to generate electricity directly

In essence, the m.h.d. gener ator works by taking the hot gases and ionizing them with a seed material to make them electrically conducting. The gases then pass through a magnetic field in which charge separation occurs, resulting in a current flow between pairs of collector plates and an external circuit.

The Sydney m.h.d. generator differs from the usual approach of feeding the gases along a straight channel; instead it em-
ploys a disc structure in which the flow is radial. This makes the system more compact and enables it to produce much more power per unit volume than linear designs. It is also substantially cheaper because the magnet used is simpler in design Where the researchers, led by Dr Steve Simpson, have made substantial advances is in the development of insulating materials capable of withstanding temperatures of around $2000^{\circ} \mathrm{C}$.

The disc m.h.d.generator, one of only three of its kind in the world, has now been running successfully for almost a year at White Bay power station in New South Wales. Tests show that it is performing beyond expectations. The team is particularly pleased with the generator because they claim that the other two disc m.h.d. generators at Stanford University in the USA have not produced such encouraging results. Also encouraging are the results of a computer study which predicts that it should be possible to scale the design up

Although m.h.d. is still in its infancy in terms of development, many countries are now looking at the technology as a means of reducing pollution and getting more electricity from a given amount of fuel.

Where m.h.d. scores is that it makes use of very high temperatures at which conversion efficiency is high. And hecause the exhaust gases are still extremely hot by normal standards they can be re-used to boil up water and drive a turbine in the conventional way. The most practical way of employing an m.h.d. machine is therefore as a sort of -front end' to an existing station. But whether extensive use of m.h.d. would improve efficiency to the point where coal-fired power stations are as competitive and free from acid rain as nuclear stations remains to he seen

Research Notes is written by John Lilison.

Minimal eprom programmer

Special protocols devised to suit last month's hardware allow software to take over all the tasks in reading or writing eproms.

B.J.SOKOL

TThe simple hardware described in the June article can be controlled by any computer with a serial interface capable of communicating at 9600 baud. Creating the necessary software is not an enormous task. but is made vastly easier by the help of a high-level language such as Basic, Pascal. or C. Most of the procedures needed are available from such languages, with the exception of a few low-level functions which may require either machine code or system calls depending on the operating system in use. I have used the C language to implement the procedures for two different computers and three different operating systems and found the source code was portable in all cases with only the need for a few different assembly language routines to be bound in at link time.

Features of the program break down into three classes: the necessary, the fairly essentially useful, and the nice. Necessary are the features required to write and read eproms from and to disc files. The useful features add the capacity to display eprom contents. to verify eprom contents against files and to display informative screens and warning messages. The nice features may include provision of progress reports during programming. verifying and copying, differentiation during verification between reprogrammable and erasure-requiring faults. and file name and file size buffers to eliminate the need to retype the file identification if multiple copying and/or verification is required.

The necessan features are built from the following software functions:

1. initialize serial communication to 9600 baud, no parity, two stop bits. eight data bits: 2. open a disc file for reading or writing. and close it again:
2. flush the computer's and/or uart's serial receive buffer:
3. output an eight-bit character through the cerial port with no handshake:
4. wait for an eight-bit character to arrive through the serial port, input it, with no handshake:
5. do nuthing for 50 milliseconds ($\pm 5 \mathrm{~ms}$).

Some of these functions may not require programming: for example. on my CP/M machine dip switches set up the serial port parameters. Some functions may come as part of your language, and some may require machine code or assembly language programming.

Table 1. Hardware settings for different communica tion parameters (uart type 6402.80178502 etc .)

Pin	High	Low
35	No parity	Parity enabled
36	Two stop bits	One stop bit
39	Even parity	Odd parity

A detailed discussion of these functions will follow. but first let us assume they are provided. and consider the program from the top down. The two essential functions of the eprom maker are transfer of rom contents to and from disc files. These use the following program flows.

For reading: initialize, flush the buffer. open a disc file to read into. then repeat the following as many times as there are bytes to be read:
send a dummy byte (say, (1).
input a byte and store it as next in the file.
send another d 1 , imy byte.
input a byte and discard it.

After all bytes are read close the input file.
For writing: initialize, flush the buffer. open a disc file to write from, then repeat the following as many times as there are bytes to write:
fetch the first/next byte from the file and output it.
unless the fetched byt e is $\mathrm{FF}_{16 ;}$. delay 50 ms
input a byte and discard it. output the fetched byte again. input a byte and discard it.

Finally inform the user writing is done and close the output file.

CREATING PROCEDURES

If serial communication parameters are not available as listed above you may use different parameters and change the hardware in accordance with Table 1, perhaps with more dividers after the 4520 in the bit-rate generator.

Opening and closing disc files are func-
tions of any high-level language, and with most you can use buffered file i/o to save considerable execution time.
If a serial communication flush function is not provided it can be implemented by a software loop that repeats as long as there is a byte to be read from the serial port reading in a byte, discarding it, and trying again.
Outputting and inputting with no handshake may require an interface directly to the hardware of your uart, as operating system calls (for example under MS-DOS) may scan uti or other signals before sending or receiving serial bytes. The (not recommended) alternative to taking the trouble with software is to wire up a special DB25 serial plug involving pins 4,5,6 and/or 20 and perhaps others with the right combination of shorting links.
On a simple computer, like my CP/M machine, the delay procedure is implemented by simply entering a loop to count up to a constant number, uselessly. This is not practical with IBM p.c.-type machines for several reasons. One is that processor speeds vary greatly. Some machines use two or even three different processor speeds selectable by the user, and some turbos don't even have the standard 4.77 MHz as one of their options. Added to this is the difficulty that the various members of the Intel and NEC families of processor used in p.c.s queue instruction in an internal pipeline in differing ways, so that the time required to run a delay loop is not proportional to processor speed from one machine to another. Finally, a p.c. running DOS is not strictly a single thread machine, for the foreground task is stopped at intervals to allow d-ram refresh and for a system clock interrupt which may be trapped by memory-resident software.
The solution to these problems is to let the software figure out the delay parameters for itself. As in the simple case, a delay loop counter is used, hut the counter goes up to a variable limit rather than a constant one, and the variable is adjusted each time the program is entered.

The assembler and C functions given in Table 2 show how this can be done. The delay(n) function is tested 50 times by the adjust() function using an initial value for n which is about right to produce a 50 ms delay on an XT using a 4.77 MHz clock. DOS system calls 2Ch and 2Dh to set and read the time are bound in using assembler routines zerosec() and readsec(). These allow the number of seconds elapsed during the 50 in-line iterations of delay(n) to be measured. The resolution of these system calls is worse than 50 ms , but repetition of the delay means the timing of each delay call is measured to about $\pm 1 \mathrm{~ms}$, five times as accurate as is required for eprom programming.
Table 2 shows how time information obtained from readsec() can be re-formatted to an integer from the mixed binary and decimal format supplied by [OS (the high byte of the data word is seconds, the low byte is hundredths of seconds), then cast into a floating point form, and then divided into the expected number of 2.5 seconds to

Table 2. Two C and two assembler functions to adjust the delay function del(newfac) to 50 ms . Functions zerosec and readsec should be declared -public, assembled and then linked to the C program.

```
deley(timer)
    int timer;
    {
    int n;
    for (n=1; n<=timer; }n++)\mathrm{ ;
    }
```

adjust()
int timer, readsec (), factor, timfac, newfac;
float correct, timff;
factor=22.00;
zerosec (): /*zeroes seconds, leaves minutes \& hours*/
delay (factor):
delay (factor);
delay (factor):
.....and etc to fifty times ...
timer $=$ readsec();
/*returns sec in hi byte, hundreths in lo byte*/
timfac=(100*(timer/256) + (timer\&Oxff)) :
/*corrects this to an integer*/
timff=timfac;
/*casts this to a float*/
correct $=(250 /$ timff);
newfac $=($ correct * 2200.0) ;
printf ("The speed factor of your PC is \%f. \ln ", correct):
return (newfac);
3

obtain a correction factor for the original guess at the delay constant. A corrected constant is then returned to the calling main progam for use in the 50 ms delay loop when required. The entire process takes 2.5 seconds at most, and (for the sake of simplicity) resets the seconds counter of the system clock once to cause a 'loss' of at most 59 seconds.
Now we turn to useful aspects of the software. Menu screens can be designed to control of the various modes of operation. It is also useful to add a mode to display the contents of an eprom while they are being copied to a disc file.
A verify function is very helpful. It reads sequential bytes from the eprom but opens a file for reading rather than writing, and compares the eprom contents with sequential bytes from the file and displays any differences found.
The first of the nice functions memorizes the identity and size of the last file used to allow the re-use of the same data. This feature has certainly saved me enough in time and temper (and typing errors) to have made the tussle with string processing in its implementation worthwhile.
Another function puts blobs on the screen in blocks indicating 1 Kbyte processed, to give a progress report. One blob per 64 bytes gives just enough information during programming to give comfort that something is happening without wasting too much time doing screen writes. It is also useful that the
number of bytes to be programmed can be selected to be less than the full eprom length, allowing partial programming where this is suitable. To program the popular 2764 eprom fully takes eight minutes (less if there are 'blank' areas with FFs in them). A 27256 can take half an hour to program.

A final nice feature is an addition to the verify function that reports whether eprom erasure is required when there is a mismatch between a file and the eprom contents. Erasure is required when an eprom bit is low that should be high. The software reports each such mismatch with a message and an audible signal. This makes checking the suitability of an eprom for ovenvriting with a given file a matter of listening rather than careful watching. Silence during the verify function means overwriting is possible because all mismatched bits are high.

The author can supply executable software, a brief manual on disc, and a program useful for comparing two binary files. The basic version is available for a Morrow MD2 or MD3 CP/M system, or a Morrow with SWP coprocessor under CP/M86 or PC-DOS for $£ 10$ plus s.a.e. disc mailer from B.J. Sokol, 47 Gratton Road, London NW5 30X. The fully featured program as described here is available for PC compatibles with a COMI: serial port for $£ 15$ plus mailer.
Jerry Sokol started his design consultancy in the U.S. in the early 1960s. He also lectures in renaissance literature at London University.

More out of MAC

A new way of getting more television signals through a given satellite transponder bandwidth for te signal distribution or d.b.s. has won an international prize for a British researcher. Called D-SMAC, the system is the work of W.II. Dobbie of British Telecom Research Laboratories. Martlesham Heath, Suffolk. Mr Dobbie has won the $\$ 10,000$ Piero Fanti international prize for 1986 given by the Italian company Societa Telespazio S.p.A. It honours the late Dr Piero Fanti, who was Telespazio's first director general, and is awarded to the winner of a competition open to all students and researchers in countries which are members of INTELSAT. The prize was presented at a Washington, DC meeting of INTELSAT signatories in April this year.

The new D-SMAC system allows four to signals to be carried by a 36 MHz transponder channel, compared with the current maximum of two signals using the PAL standard. It is based on the existing D2-MAC system which has already been proposed for d.b.s. and cable tv in Europe. In the name D-SMAC. the ' D ' indicates that data is multiplexed with the video signal at baseband, the 'MAC' is the accepted abbreviation for multiplexed analogue components. while the ' S ' means that these analogue components are subsampled.

Basically the four to signals are transmitted through a 36 MHz transponder by frequency division multiplex (f.d.m.) that is, one to signal in 9 MHz . The techniques used to achieve good bandwidth efficiency include a non-linear pre- and postfiltering process, the subsampling mentioned above (called modified quincunx subsampling) and a method of adaptive interpolation which allows for practical analogue transmission. The system uses samples in the current to field for interpolation and so avoids an immediate requirement for frame delay/ stores and motion information.

Apart from signal distribution. Mr Dobbie's prizewinning paper states that the same technique could be used in d.b.s. to allow a

This antenna at British Telecom International's Goonhilly earth station, Cornwall, is to be used for the BTI Skyphone service - a satcom scheme allowing air travellers to make in-flight telephone calls from aeroplanes. The scheme follows from INMARSAT's 1985 decision to offer aeronautical mobile satcom services through its L-band maritime satellite network (January issue, p. 32). BTI Skyphone is one commercial system set up to exploit this new form of public telecommunications and will operate initially on transatlantic routes through INMARSAT's Atlantic Ocean satellite (MARECS B2) at $26^{\circ} \mathrm{W}$. International direct dialling will be possible for passengers. Voice signals will be digitally encoded, initially at $9.6 \mathrm{kbit} / \mathrm{s}$, and data transmission will be available through the system, initially at 600 bit/s. Standard airborne equipment will have up to four telephone channels per aircraft (four simultaneous calls). Avionics manufacturers are at the moment considering wall-mounting cordless units and integral seat-back units. Eventually the BTI Skyphone service could be extended to work through the INMARSAT comsats over the Indian and Pacific Oceans.
doubling of broadcasting capacity "without significant loss of quality compared with PAL in the short term, with the option of trading the increased capacity in a compatible manner for enhanced definition and aspect ratio in the future." The subsampling method "allows the enhancement information to he overlaid in an effective and simple manner."

Mr Dobbie works in a group concerned with terrestrial interfaces and baseband processing within the Radio and Satellite Communications Division at Martlesham. This outfit is now building a prototype codec based on the D-SMAC principle. It will be used for signal distribution trials over a typical satellite link probably later this year, to include subjective comparisons with current distribution systems.

Advanced communication through Olympus

Digital television, highdefinition tv, telecommunications to aircraft, adaptive channel coding, correlative phase modulation, simulated on-board processing and countermeasures against fading are among the many advanced radiocommunication experiments booked for the ESA Olympus satellite after it is launched next year.

This large multi-purpose comsat, weighing about 1.5 tonnes and measuring 26 metres from tip to tip of its solar arrays, is really an orbiting test-bed for anything that the European Space Agency and wher arga-
nizations may want to try out for the future. In geostationary orbit at $19^{\circ} \mathrm{W}$, the first flight model will carry four distinct payloads. One is for direct broadcasting projects, another is for specialized services (such as education, newsgathering, business), a third is for advanced communications experiments at $30 /$ 20 GHz , while the fourth is for propagation studies.
At a recent IEE colloquium on 'Satellite communications above 18 GHz an overall picture of the expected utilization of these payloads was given by C.D. Hughes of ESA. Noordwijk, Netherlands. Probably of most interest to E\&HW' readers is the intended advanced communications work at $30 / 20 \mathrm{CHz}$ - which of course is on the verge of the millimetre-wave region. The payload for this comprises three 30 W t.w.t. transmitters and two independently steerable spot beams with a beamwidth to the 3 dB contours) of 1°. The e.i.r.p. at beam centre is about 54 dBW . allowing the use of small diameter antennas for earth stations.

Altogether this payload provides one wideband channel of 700 MHz bandwidth and two narrow-bank channels of 40 MHz each. Uplinks are at 30 CHz and downlinks at 20 CH z.

ESA will use this payload for data relay experiments. These will be to and from the Eureca orbiting scientific platform due to be launched in 1989. This low-orbit vehicle will carry an inter-orbit communications module which will send and receive signals to and from the geostationary Olympus transponders. Eureca will be tracked by the steerable antennas of Olympus and the data originating from the platform will be transmitted and received by an ESA earth station in Europe.

In hroadcasting, said Hughes, there is a plan to demonstrate the ability of Olympus to relay high-quality television pictures and sound from remote parts of the world to European locations for broadcasting. In particular. using the steerable spot beams and ESA's air transportable earth stations, it will be possible to relay items of topical interest from, say. South America to a station in Europe, from where the Olympus d.b.s. payload can be emploved to distribute the
programmes. The European Broadcasting Union has shown interest in doing high-definition tv experiments using the $30 /$ 20 CHz payload.
The wideband capability of this payload will be used to make measurements of phase correlation in very wide band transmissions at millimetre-wave frequencies. There will also be a number of scientific experiments concerned with countermeasures for fading. These will include experiments with diversity, both in frequency and space. and with digital techniques for alleviating the effects of fading. Most of the more general experiments, for example a British Aerospace video conferencing project, will investigate fade countermeasures as a necessary part of radiocommunications at $30 / 20 \mathrm{CHz}$.
Many of the planned experiments are in the field of business communications using small earth stations, continued Hughes. The Canadian Communications Research Centre will set up an experimental network of stations for such business communications. It will also investigate the potential of on-board processing systems. using double-hop techniques and equipment on the ground to simulate a future satellite signal processor.
British Aerospace and the ESA are to run a business communications experiment in the UK involving data, voice and video conferencing. Initially the ESA's TDS-6 earth stations will be used for this experiment at three UK locations. Telespazio, in collaboration with the Politecnico di Milano and other Italian organizations, have also said they want to carry out business communications and teleconferencing experiments.
In data transmission, a number of European scientific organizations including the University of Graz (Austria), Rutherford Appleton Laboratory (UK) and CNUCE (Italy) will operate an inter-networking experiment. This will link together computer networks in the various countries to demonstrate the possibilities of high-speed operation of such systems. A further experiment called CODE (Cooperative Olympus Data Experiment) has been devised by an earth station working group consisting of rep-
resentatives from universities and sceintific establishments. This will involve linking together scientific and educational establishments using very small aperture terminals (February issue, p. 160 , on v.s.a.ts) throughout Europe.
Also using near mm-wave frequencies is the Olympus payload for propagation studies mentioned above. The general idea here is that the satellite provides a platform for source of electromagnetic radiation in space. These are in the form of beacon transmitters. Olympus carries three such transmitters, with frequencies of 12,20 and 30 CHz . They are all linearly polarized and accurately aligned with each other in polarization.
The 20 GHz beacon can be switched by telecommand between two orthogonal polarizations or made to switch automaticaly between polarizations at a rate of about 1 kHz . This feature allows accurate measurements to be made of differential polarization. The 12 GHz beacon has a global converage with a minimum e.i.r.p. within coverage of 10 dBW . The 20 and 30 GHz beacons have European coverage, each with a minimum e.i.r.p. of 24 dBW . They are mutually coherent, being derived from a single oscillator source within the satellite which is duplicated to ensure longterm reliability.
These beacon transmissions, said Mr Hughes, not only allow absolute measurements of attenuation and cross-polar effects at 20 and 30 CHz but also permit direct comparison simultaneously between 12-, 20- and 30 GHz phenomena. He felt this to be very valuable because it will enable the considerable amounts of propagation data already collected at 12 GHz to be scaled to the higher frequencies.

Offshore multichannel satcoms

Winds in the North Sea often reach speeds of over 100 knots $(185 \mathrm{~km} / \mathrm{h})$, so the dishes of any satellite earth terminals used there have to withstand hefty wind loadings which can deflect their radiation beams away from
the satellite position. In a new offshore terminal, claimed to be the first multi-channel satellite system used in the UK section of the North Sea oilfields, this problem is dealt with by sophisticated position-control servos which respond to the wind buffetings.
The new satcom terminal, built by Ferranti, is installed in a floating production vessel working at the Balmoral oilfield, 225 km north-east of Aberdeen. A very demanding specification meant that a radome could not be used for protection. To achieve the required pointing accuracy of 0.05° for the antenna tracking and pointing system in the fierce wind conditions the antenna mount is made very rugged and position-controlled by a servo system using multiple processors.

This system receives error signals from two sources. Dynamic variations are sensed by an attitude and heading reference unit while slow drifts are obtained from a step-track pattern. An input to the step-track system is provided by a receiver picking up signals from a beacon on the satellite. The two corrections obtained through these detection systems are combined and then used to control the antenna's azimuth and elevation motor drives.
Overall the floating satcom terminal provides voice and data communications at Ku band through the European ECS-2 space segment to a British Telecom shore station at Bridge of Don, Aberdeen. Transmitter r.f. power is 250 watts. Multiple channels are obtained by the s.c.p.c. (single channel per carrier) transmission method, a system widely used in satcoms for sending a large number of different voice or data signals through a single transponder. Modulation is by companded f.m.
Ten voice channels are initially available, with an option for expansion to 25 channels without alteration to the equipment. Data is transmitted in $64 \mathrm{Kbit} / \mathrm{s}$ circuits but with a Viterbi system of coding which results in an actual transmission rate of about $132 \mathrm{Kbit/s}$. Considerable use is made of voice digitizing and statistical multiplexing to achieve the highest possible transmission efficiency. Equipment redundancy is applied throughout.

It seems that the Balmoral
oilfield is a 'marginal' one from the business point of view, with a prospect of high recovery costs and small returns. Combined with the recent oil price drop, this makes a difficult situation for the suppliers of communications equipment, as the oil companies don't have much money to spare for capital investment at the moment.

International appointments

INTELSAT has elected His Excellency Susanta De Alwis, the Sri Lankan ambassador to the USA, as the new chairman of the international cooperative. He is supported by Juan Ciminari of Argentina, who was elected vicechairman at the same time. Mr Ciminari, who has a degree in electronic engineering, has worked for Motorola in Argentina and served as that country's Secretary of Communications.

After the somewhat dramatic dismissal of its previous director general (and his deputy) following an audit. INTELSAT has now appointed Dean Burch of the USA to this important post for a term of six years. A lawyer by profession, Mr Burch has had 30 years' experience in telecommunications, including chairmanship of the FCC and leadership of the US delegation to the 1985 WARC at Ceneva.
Newly elected chairman of the council of INMARSAT is a British communications engineer, Geoff Hall. He is currently head of satellite systems (planning and policy) in British Telecom International. In 1966 Mr Hall was in charge of the early UK satcom services operated through the country's first earth station at Goonhilly. Later he worked for the Comsat Corporation in the USA and was involved in the establishment of the INTELSAT organization. After his return to the UK, Mr Hall was given responsibility for all BT earth stations in this country.

He served as the INMARSAT council vice-chairman in 1986. Taking over this position now is Hideo Nagata, director of the satellite and radio communications department of Kokusai Denshin Denwa of Japan.
Satellite Systems was written by Tom Ivall.

Crossover distortion in class B amplifiers

Detailed tests on three modes of amplifier operation, including a non-switching class B type, using the same basic circuit produce a few surprises.

E. MARCAN

Ever since the publication of my circuit idea' I have received questions as to what extent the circuit was an improvement over the traditional arrange ment. Nearly every question emphasized the subjective sensation of distortion reduction achieved ${ }^{2}$.
At the time I had measured the circuit performance and tound that the circuit definitely posessed certain adrantages to justify publication, hut enough data was collected to give a precise answer (other than "come and listen for yourselves").

Now I can give some answers regarding electrical performance and offer some hints on what can be perceived. There are still unknowns however and further experiments are encouraged to throw more light on the subject.

MEASUREMENT TECIINIOUES

Historically. crossover distortion was the first distortion mechanism encountered in transistorized audio amplifiers ("transistor sound"). It was considerably reduced by employing the now common bias technique. ${ }^{3}$ and it is surprising how little attention it has received in literature since. By the discoven' and explanation of other distortion mechanisms it eventually faded into the background until the famous leedhack is feedforward error-correction debate, followed by the subjective evaluation debate. Although subjective evaluation was recognised to produce statistically unusable results', there remained an impression that not everything could be measured to correlate with the descriptions of what has been perceived by the "golden eared" ones. In fact there are many works that stress the output stage non-linearities as the major source of problems (refs 5, 7, 8, 10, 12) .
Various methods have been developed to evaluate anmplifier distortion. Most of them use steady-state signals to aid analysis. Several forms of distortion, however, have their origin in conditions that are variable by defimition ("What have sine waves to do with music?").
llaving experimented with different

Fig.1. The "subtraction" test set-up due to Baxandall can be used with both steady-state and transient signals and does not require a precision reference.
methods I finally decided that the 'subtraction' method' could affer most in flexibility as it requires no precision signal reference and can be used with both steadystate and transient signals.

Fig. I shows the test circuit. while Fig. '2 shows the experimental amplifier built to enable comparative measurements between standard class A and class B circuits and the circuit proposed' which will be referred to as class NSB (non-switching B). The circuit shown in Fig. 2 has the advantage of using the same devices in all the three modes. thus enabling direct comparison of test results. The front-end was built around a 5534 operational amplifier with open-loop gain of 60dB, unity-gain compensated by 22 pF , a 20 dB closed-loop gain. 40 dB overall feedback and 200 kHz closed-loop roll-off. The experinental amplifier performance is compared to another 5534 as its basic performance was considered acceptable by
power amplifier standards. This amplifier has also a high-frequency single-pole network which matches its high-frequency roll-off and phase to the experimental amplifier. The output signals of both amplifiers are summed together by a resistive network. Being of opposite phase. the output signals are effectively subtracted. leaving only noise and distortion at the nulling point. A further 5534 is used to prevent nulling point loading by other test equipment and to amplify the error signal $(\times 10)$ to increase the level as required by the input sensitivity of the test equipment.
Using a sine-wave generator at first to test the elass B performance it was noted that if the level of distortion was changed the high-frequency single-pole control had to be readjusted to give minimum output from the subtraction amplifier (Fig. 3). To investigate the pattern of the change the generator was replaced by the circuit shown
in Fig. 4. consisting of a square-wave generator driving two tunable band-pass filters both with independent Q-factor adjustment. At high Q settings the filters produce exponentially decaying sine waves simulating a real-life transient (Fig. 5, top trace). Such a signal offers the advantage of looking simultaneously at both distorted and undistorted amplifier response and make direct comparison.

By trying to get minimum output from the error amplifier it was noted that if the phase was nulled in the high signal level region where crossover spikes occured there remained considerable phase error in the low-level region where no switching distortion was heing produced (Fig. 5, middle trace). And vice versa: if the phase was nulled in the undistorted region a lot of uncompensated phase error appeared. broken by the crossover spikes (Fig. 5 , bottom trace). This means that only when the output signal amplitude falls below the level of transistor cut-off both amplitude and phase effects can be cancelled completely. Increasing quiescent current considerably reduced both phase error and crossover spikes, but they could not be entirely eliminated until the quiescent current was greater than the peak output current (essentially class A operation).
The obvious explanation is that when the class B output stage generates distortion the voltage gain stage is having a hard job to rebalance the error sensed by feedback. but it can only react with its own open-loop

Fig.2. The experimental amplifier circuit diagram function in three modes, A, B and non-switching B.
bandwidth and gain ${ }^{7}$. Also, the output impedance, being not near-zero under distortion conditions, forms an attenuator. together with the load which becomes part of the feedback loop. This is confirmed by Fig. 6 which shows error increase under capacitive load.
The degree and nature of distortion in class B configuration was a real surprise for it was expected that high distortion would show up at levels where the inactive output device becomes unbiased and eventually reverse biased (Fig. 7. top trace). That is also why it was expected that class NSB bias mode (Fig. 7, bottom trace) could be a better solution. In fact, in Fig. 8, where voltages across the output emitter resistances are recorded, the distortion threshold is reached

Fig.3. Class B operation: Output signal, top trace, 2V/div. Error signal, middle trace, $10 \mathrm{mV} /$ div. Decreasing quiescent current from 100 to 20 mA increases crossover spikes and phase must be readjusted: bottom trace. $10 \mathrm{mV} / \mathrm{div}$. Recorded with resistive load, timebase 2ms full scale.
when the output level falls below 100 mV (on 4 ohm load, 0.4 ohm emitter resistances and 100 mA quiescent current).

It was also found that distortion falls as the voltage gain stage bandwidth rises. which was expected ${ }^{8}$. This throws a bit more light to schemes of alternative frequency compensation networks ${ }^{9}$ and local error correction techniques ${ }^{10,11}$. While those methods reduce the errors considerably, the proposed circuit eliminates them in principle, enabling the overall feedback to be always effective. Comparing the recorded class B performance with class NSB recorded in Figs $9 \& 10$ shows the distortion generated with class NSB operation is very close to the noise floor. These figures are the same as can be achieved with class A

operation. Such performance speaks for itself.
The proposed class NSB circuit has several distinct advantages over similar circuits presented before ${ }^{12}$. First, it uses only negative feedback (in contrast to positive or combined positive and negative in similar circuits) to sense and prevent switching off (Fig. 7, bottom trace). Secondly, the quiescent current is sensed directly, thus no thermal feedback is needed to achieve thermal stahility. Third, thermal stability of the circuit does not rely mainly on high value of emitter degeneration resistance, so those resistances can be made small (less than (0.1 ohm) and so improve output impedance linearity in dependance of output current.

Fig.5. With exponentially decaying sine wave both distorted and undistorted class B response can be compared simultaneously. Top trace: test amplifier output. $2 \mathrm{~V} /$ div. Middle trace: phase nulled in distorted region shows uncompensated phase in undistorted

Fig.7. In class B operation the inactive output device becomes reverse biased: the output voltage is compared to the bias voltage under quiescent condition and with input signal applied, top traces, $2 \mathrm{~V} / \mathrm{div}$. No such condition is allowed in class NSB operation, bottom traces, $2 \mathrm{~V} / \mathrm{div}$. Resistive load, timebase 0.5 ms full scale.
 Fig.8. Class B output transistor currents (recorded as voltages across the emitter resistors) with zero current level shown for comparison. Vertical sensilivity $50 \mathrm{mV} /$ div., $R(e)=0.40 \mathrm{hm} . R(L)=$ $4.0 \mathrm{ohm}, \mathrm{l}(\mathrm{q})=100 \mathrm{~mA}$. Bottom trace shows the error signal at $20 \mathrm{mV} / \mathrm{div}$. Time base: 2 ms full scale.

Fig.9. Class NSB operation with 100 mA quiescent current shows no trace of phase error and no crossover spikes. Top trace: 2V/div., middle trace: $0.1 \mathrm{mV} /$ div., resistive load, bottom trace: $1.0 \mathrm{mV} / \mathrm{div}$., capacitive load, timebase: 0.5 ms full scale.

CONCLUSIONS

Although further investigation is needed several conclusions can be readily drawn from the data presented:

- Class B amplifier generates crossover distortion until the output signal current falls below the level determinated by the ratio of load impedance to emitter degeneration resistances and quiescent current setting.
- When crossover spikes are present a phase error is also generated ${ }^{7}$.
- Phase error is inversely proportional to the open-loop bandwidth of the voltage gain stage.
- Phase error is also dependent on the ratio of the amplifier output impedance to the load impedance.
- The envelope of the phase error signal stays in fixed proportion to the output signal envelope until a threshold is reached and it suddenly disappears (switching phase modulation)
- In complex signals the individual components are differently affected: the higher the frequency. the greater the phase error. This, and the previous point mean that phase coherence is lost during that part of a musical signal which bears dominant localization and definition' information.
- A cost and bias level compromise combined with thermal stability requirement has forced many designers of commercially equipment to underbias the output stage (for comparison. see ref. $8)$.

As a consequence, comparing amplifiers of different design shows differences that depend on open-loop bandwidth and gain as well as on output impedance and quiescent current setting. Also, using the same loudspeaker load doesn't guarantee freedom from load-induced differences.

Regarding audibility of the described performance bear in mind that many subjective evaluation sessions have reported objections which could be attributed to lost
phase coherence. Unfortunately, I have no means of performing a well-controlled listening session; someone with more experience in this field is invited to contribute. Of course. when listening to some digitally recorded piano I could definitely express my preference for classes A and NSB performance, even though not belonging to the "golden eared" category. but the opinion of a single person (and a strongly biased one who also knows what to listen for) can hardly have statistical meaning.

In fact, the phase errors recorded are of the order of 0.05 degrees at middle frequencies increasing up to several degrees at the top of the audio range. measured with a resistive load. Reactive loads and/or reduced open-loop bandwidth produces even greater phase error but to standardize measurement a reference reactive load and bandwidth are required to be defined.

But equally important. a statistically meaningful definition of the audibility threshold to switching phase modulation would be welcome. Only in regard to this threshold can the data presented here undergo relevant evaluation.

Finally, it has been demonstrated that both class A and class NSB are free from the effect described, thus highlighting the inherent quality of the NSB principle as a solution for crossover distortion.

References

1. E. Margan. Add-on current dumping, Electronics \& Wireless World, 1985. October, p. 40 .
2. G. Nalty, Feedback letter, Electronics \& Wireless World. 1986. February. p. 42.
3. M. Glogolja, "Biasing circuit for the output stage of a power amplifier - the $V_{\text {he }}$ multiplier", RCA application note AN 6297.
4. S. P. Lipshitz and J. Vanderkooy, "The great debate: subjective evaluation", Journal of the Audio Engineering Society, 1981, July August. p. 482.
5. P. Blomley. New approach to class B amplifier design. Wireless World, 1971, February. p. 57. March.p.127.
C. C. Ilaas, Design factors and considerations in full complementary symmetry audio power
amplifiers, Journal of the Audio Engineering Society, 1968. July. p. 321.
N. S. Pass, Active bias circuit for operating push-pull amplifiers in class A mode. US Patent 3995228 , 1976, November 30.
6. P. J. Baxandall, Audible amplifier distortion is not a mystery. Wireless World, 1977. November.p. 63.
7. M. Otala, Nonlinear distortion in audio amplifiers. Wireless World. 1977. January. p. 41 .
8. J. Lohstroh \& M. Otala, An audio power amplifier for ultimate quality requirements. IEEE Transactions on audio and electroacoustics, 1973. December, vol. AU-21, no. 6 . p. 545 .
9. E. M. Cherry, Nested differentiating feedback loops in simple audio power amplifiers, Journal of the Audio Engineering Society, 1982, May, p. 295.
10. M. J. Hawksford, Distortion correction in audio power amplifiers, Journal of the Audio Engineering Society. 1981, JanuaryFebruary, p. 27.
11. M. J. Hawksford, Distortion correction circuits for audio amplifiers. Journal of the Audio Engineering Society, 1981. JulyAugust, p.503.
M. J. Hawksford, Optimisation of the amplified-diode bias circuit for audio amplifiers, Journal of the Audio Engineering Society, 1984, January-Fehruary, p. 31 .
12. S. Tanaka. New biasing circuit for class B operation, Journal of the Audio Engineering Society, 1981, March, p. 148.
13. E. M. Cherry, a new distortion mechanism in class B amplifier, Journal of the Audio Engineering Society, 1981, May. p. 327.

Appendix 1 - Phase error calculation

The error signal undergoes phase modulation during the first rising edge of the output signal. Fig 5, whereupon a fixed phase relationship is established. If we neglect the exponential amplitude decay term as it is present in hoth the input and output signal as well as in the error signal, and label the input signal as sine, then the error signal is clearly a cosine. Looking at the amplitude nulling network under the correct nulling condition:

$$
\begin{array}{ll}
\text { reference signal } & x=A \sin \omega t \\
\text { output signal } & y=B \sin (\omega t+e) \\
\text { error signal } & z=C \cos \omega t
\end{array}
$$

turn to page 709

NEW PRODUCTS

Synthesized function generator

A fully programmable 2 MHz synthesizer/function generator with high 30 V peak-to-peak output and eight-digit resolution has heen introduced by Philips Test \& Measurement.
High output accuracy and repeatability is guaranteed in the PM5191 by direct synthesis of an output signal from a crystal oscillat or reference. ensuring that the stability is as good as that of the crystal. Plase noise is less than $80 \mathrm{dBc} / \mathrm{Hz}$.
Sinewaves, triangular signals. pulse trains and positive and negative ramps are the five outputs provided. with amplitude modulation being possible both internally and externally. The high output voltage can be set in r.m.s. peak-to-peak or dBm . a.c. and d.c. settings are completely independent within the $\pm 15 \mathrm{~V}$ window.
Manual operation is designed to be simple, with logical grouping of front panel cont rols and clear led readout of wavetorm. frequency and output setting. Frequency-related settings can be made precisely with numeric keys while preset frequency and level steps can be accessed by up/down buttons. The instrument can be operated remotely through a CPIB an incorporated into an automatic test system. P'ye Unicam L.td. York Street. Cambridge, CBI 2PX. Tel: 0223358866

Spectrum and logic analysers for hire

Instrument Rental now have two of the newest offerings from Tektronix. The 2710 is a low cost high performance spectrum analyser covering the range 10 kHz to 1.8 GHz . Due to the user-friendly display and no less than five separate parameter menus, the instrument's operation and set-up procedure is both quick and easy. Features include a marker mode to give direct readout of frequency and amplitude. automatic signal centering. user definable key steps, and wav eform storage of up to three separate traces

The Tektronix 1225 is a new logic analyser. It consists of 48 channels running at speeds of up to 100 MHz in asynchronous mode. Like the 2710 . the 1225 is extensively menu driven with the bare minimum of controls
for data entry and function selection. Features include glitch capture. multiple time bases. 2 k of memory per channel. built in hattery backed. real-time clock and non-volatile storage for eight front-panel set ups. Instrument Rentals (UK) Ltd, Dorcan House, Meadfield Road. L.angley. Berks. SL3 8AL. T`el: 0753 44878.

Static tester reaches 25 kV

Schaffner EMC's latest electrostatic discharge tester, the NSG 432 . will give test voltages of up to $\pm 25 \mathrm{kV}$. Part of the expanded NSG 130 series of test equipment, the new tester has a multi-tum potentiometer to enable setting the voltage with better resolution, from a minimum value of 2 kV : but rather than rely on the
potentiometer's linearity, the designers of the 432 have incorporated a digital voltmeter. All major test standards are catered for by the increased output available.

The instrument is supplied with a human-body model simulation to IEC801-2 (150 ohms. 150 pF), but other models can be simulated on request. The purchaser may specify positive or negative polarity (positive is standard). an E-field adaptor or an H -field generator which produces an associated burst of electromagnetic radiation. For semi-automatic testing, there is an optional counter which produces a preset number of discharges in succession. The NSG 432 has been designed so that future changes in standards can be met by simple modifications. Schaffner EMC L.Id. Headley P'ark Area 10. Headlev Road East. Woodley. Reading. RC545W. Tel: 0734 697179.

NEXT MONTH

Optical fibres. Short-haul optical-fibre data communication is an essential part of modern communications systems. This feature presents an overview of the techniques employed and the hardware available.

Pioneers. Next in this gallery of the founding fathers of electrical communication is Oliver Heaviside, the irascible genius whose insight into the physics of cables made long-distance telephone calls a practical possibility

Tone generation system. A microcomputer scans two electronic organ keyhoards and a pedal board. controlling up to 15 generators. which contain eproms holding the waveforms corresponding to 16 different stops. Attack and decay times are appropriate for each frequency and tone colour.

Q and stability. A further look at Q, with reference to the stability of oscillators used in timekeeping.

Curls and divs. Having mentioned Maxwell recently, JW finds himself taken to task for not explaining vector fields. It turns out to be not too difficult and certainly not stodgy.
A new look at gain/bandwidth product. The received wisdom is that the gain/ b.w. product of a feedback amplifier is a canstant, with reduced bandwidth at high gains. Is this true, or is it simply a matter of circuit design?

Variable-speed video. In the three years since our original series of articles on this subject appeared, the technique of replaying C -format professional v.t.rs at variable speed has advanced. John Watkinson deals with the new developments.

Inage localization. Using the wavefront reconstruction approach to predict image position in stereophonic sound systems with interchannel phase difference.

NEW PRODUCTS
 BRITISH ELECTRONICS WEEK

Credit card memory

The Aston Card has been given many additional applications. This creditcard sized memon plugs into equipment designed to use it or into a special adaptor to provide addition ram, rom or eprom to a computer or other digital device. An adaptor and plug-in p.c.b. has made it suitable for the IBM PC in addition to the adaptors already available for a number of other computers including the BBC. Commodore and Amstrad micros. Originally founded around eproms. the range has now beel extended to include lithiumbacked static ram (up to 1 Mbyte) and eproms, either of which can be used as a removable, solid-state. disc-like storage medium. Software provided with the system allows the cards to be formatted and the computer will treat them as if they were discs. Masked ronns for specific applications can be produced.

Some applications are security access, remote data capture and event recording, font and character changing in printers, software for programmable machines and soon. Further details from Cumana Ltd. The Pines Trading Estate, Broad Street, (;uildford. Surrey Clly3B3I. Tel: 14835013121 .

1Mbit dynamic rams

High speed and low power are the latest developments in Toshiba rams with packaging in standard dual-inline, plastic SOJ and ZIP formats for applications flexibility.

The new TC5110001P/J85 features an access time of 85 ns and a page mode cycle time down to 50 ns . The device is suitable for high-speed microprocessors operating at up to 16. M1

The TC514256PL, has an operating power figure of 358 mW reducing to 5.5 mW on standhy. Access time is lolons. As the standhy current is less than $10 r(\mu \mathrm{i}$ this device can replace c. mos rams in large battery-backed memoñ arrays. 'Joshiba (UK) Limited. Semiconductor Division, Frimley Road, Frimley, Camberley. Surrey, (11165)J. Tel: 1227562222.

Spectrum analyser from

 Rohde \& SchwartzThe FSA (Frequency Spectrum Analyser) from Rohde \& Schwart\% offers a dynamic range of 150 dBm in a 611% resolution bandwidth.
Covering a frequency range 100 Hz to 1.8 or 2 Ci dz, the FSA meets most requirements for the measurement of spectral distribution of signals. The quasi-continuous i.f. resolution and synthesiser tuning render the instrument suitable for both swept and fixed frequency analysis. All functions can be remotely controlled via the CiPll3 bus; thus ensuring simple integration intu larger test systems.

The FSA facilitates the highest available frequency accuracy by the use of syn thesisers throughout the instrument. With bands above 5MH Zz: synchronized start and stop techniques are employed - smaller hands use phase synchronized frequency steps. The FSA offers an intermodulation-free range of $>100 \mathrm{di} 3$ together with low s.s.b. phase noise of $<-114 \mathrm{dBc}$ at 1 KH Iz from the carrier. The resolution bandwidths: typically 6Itz to 3MI iz; the frequency span 100Hz to 2 CHz
and the level display range of 175 dB (-145 to $30 \mathrm{~d}(3 \mathrm{~m}$) make the FSA ideal for all applications of selective level measurement.
The FSA offers high operating convenience with parameter variation via step keys, direct entry. spinwheel or menu-dependent softkey operation. Automatic test routines include correction routines for level, frequency and bandwidth. internal self-test, adjustable automatic coupling for resolution handwidth, video bandwidth and sweep time, help functions, autozoom and autoranging. The FSA incorporates a 9 in (228 mm) colour monitor with free choice of colours for traces: graticule: softkey labelling and background. Furtherfeatures of the FSA are a.c./d.c. coupling; integrated a.m./f.m. demodulator and loudspeaker: Centronics interface and user port. Also connectors for external monitor; headphones and keyboard. Rohde \& Schwar\% UK Ltd, Rochuck Road. Chessington. Surrey KT9 ILP. Tel: 013978731

Tailor-made connections

Flexicon have set up a full-time special-projects team for hespoke connectors. Among their recent products is a low-profile chip-carrier socket which uses elastomeric interconnections to provide up to 224 ways. The socket projects only 2 mm above the surface of the p.c.b. and can be surface mounted. Holes are needed for the fixing and orientation of the socket. Mounting the chipexerts a minimum of stress and distortion to the p.c.b. The design ensures correct polarity and orientation during assembly.

Other specialist connectors have been a zero-insertion-force interconnection system for flatscreen display panels and a highdensity low-profile connector for the expansion modules of the Cambridge Computer's (Sir Clive Sinclair's) Z88 computer.

The company believes that there is an increasing marktt for bespoke connectors which are designed into a system rather than heing added as an afterthought. Flexicon Systems Ltd. Hitchin Street, Biggleswade. Beds SG188BH.Tel:0767.312086.

GTO snubber capacitors

Snubber capacitors are designed to carty the full load during the turn-off period in gate-turn-off thyristors. The capacitors produced by LCR Components have a peak current rating of 2000 A . The very short turnoff phase of some applications requires the capacitors to have a low inductance of about 30 nH , high r.m.s. current carrying capacity of 75A and a high dv/dt pulse rating of $2000 \mathrm{~V} / \mu \mathrm{s}$. The capacitors are available in the range $1.5 t 04 \mathrm{mF}$ with tolerances of ± 5 and $\pm 10 \%$. LCR claims to produce the largest range of capacitors in the UK. LCR Components, Woodfield Works, Tredegar. Gwent NP'24BHI. Tel: 049525:3131.

Surface-mounted resitors and inductors

BICC Citec have produced a number of surface-mounted resistive and inductive components.

The 3204 is a fully sealed chip potentiometer, suitable for dip or wave soldering. Range available is from 500Ω to $1 \mathrm{M} \Omega$, with a power rating of 0.1 W at an operating voltage of 20 V .

Resistance in the 3305 trimmer potentiometer ranges from 10 to $2 \mathrm{M} \Omega$. It is believed to be the first fully 0 -ring sealed chip trimmer. It has a power rating of 0.25 W at $70^{\circ} \mathrm{C}$ with an input voltage of 20 N . Temperature stability is within 100 p.p.m.

Also available on 12mm-tape reels is the 3600 range of chip inductors. with a range from 0.22μ to 220 mH . with an operating temperature from $-2510+85^{\circ} \mathrm{C}$. A tolerance of 10% is offered on values above 3.3 mll . Citec hasalso produced chip resistors and resistor networks for surface mounting. BICC-Citec Ltd, Westmead, Swindon. Wilts, SN5
7YT. Tel: 0793478301 .

Software \& Tools for Engineers CROSS-COMPILERS
For PCDOS, MSDOS, OS9/68K, CPM/68K CPM80, OS9/6809, FLEX
for generating new Forth applications, including ROM based turnkey systems fast, interactive, debuggable code, high or low level interrupts, technical support, source code, debug \& download tools, cioss assembler included. Practical solutions to real problems.
Cross Compiler core £250
Targets include source, RAM and ROM versions
Forth-83 targets
£225 Z80, $80 \times 86 / 8,680 \times 0$
Fig-Forth targets £175
6502/11Q, 8080/5, Z80/64180, 80×86/8, 1802, Z8, 6800/6303, 6809, 680×0, 99xxx
Forth-79 targets
£350
Bryte Forth 8031/44/51
HARDWARE for PCs
EPROM Programmer 2716-27512 £145
PAL Programmer MMI, NS, TI 20/24 pin £325
GAL/EPLD Programmer Lattice/Altera 20/24 pin
£350
NOVIX 5Mips co-processor - ready for NC5000
£852
MVP Microcoded - includes microcode tools £1225

ENTER 54 (ON RF:PLYCARI)

| (We sell all types of test equipment from |
| :--- | :--- |
| the simplest to the most sophisticated and |
| specialised. |
| All of the high quality second user |
| equipment we supply is fully calihrated |
| and meets the manufacturers original |
| specification. All equipment is fully |
| guaranteed. |
| We also huy gond quality under utilised |
| equipment. |

ICOM miroduces the IC R:000 advanced rechnolocr conimuous coveracie communications recelver "Vith 99 procrammabie mbmortes the IC P7000 covers aitcraft matine FM Droadcast Amateut rado television and :reathor satellite bands For smplifiea operation and quice tunino the IC R7000 falurns direct keyboard entry Precise frequencies car be selectea by pushina the dialt keys in sequerce of the frequency o! by 'urnina the main tunin 3 knob FM wide FM narrow AM upper and lower SSB modes \%ith 6 lunng speeas 01.0510 .2 כ and $25 k H$ a sophisticated scannind system pro:ides instan access to the most used frequencies By depressind the Auto M swich the IC-F7000 automatically men orises frequencies that are in use whilst it is in the scar. mode this allors you to recall frequencies that rere in use Reacout is Infra red remote corircller iolce synthesiset and HP I heachones

 RST Tel:01-677 2424 Telex:946708 RST

NEW PRODUCTS

Piezoelectric film

Polyvinylidene fluoride (p did) in a polarized form, with metallic conductive surfaces applied, offers remarkable piezoelectric properties and may be used for a see mingly: unlimited number of applications in transducers. It acts as a self-charging capacitor with the signal taken from the metal electrodes, Like pie\%oceramic material, it producesan output voliage when stressed and will change its physical dimensions when a voltage is a pplied across it: so it can he used both for microphones and loudspeakers. As a loadcell it can be used in pressure, strain, vibration and impact measurement. and in accelerometers. It has heen used to provide touch sensors for experimertal robots, and respiration and heartheat sensors for habies. The simplest example is its use as a switch and with 20 times the output of a ceramic transducer. proportional to the applied stress. it can drive a liquid-crystal display directly. The film can he incorporated into keyboards where the switches have the advantage of dirt and moisture resistance, hipolar output and the ability to he used in hattery-powered equipment, One specific successful application has heen in its
incorporation into a pressure sensitive graphics input tablet with an $x-y$ accuracy of 0.1 mm .
ine film also responds to infra-red radiation and can be used for temperature measurement. It is sensitive enough to detect a human hodeat limetres and be incorporated into intruder alarms. Further details, samples. experimentation kits and the film itself are available from the Pennwalt Corporation, 74 (ireat King Street.
 1144.

Solder rework station

Anew Weller multi-function hot gas workstation is suited to rework and reflow soldering/desoldering of microcomponents. The AH1700 station features a hot-gas pencil. siving a variable rate of gas flow, the temperature of which is adjustahle between $11^{\circ}{ }^{\circ}$ and $50^{\circ} \mathrm{C}$. Cias flow is turned on and off hy means of a footswitch. A hand-held vacuum pick-up tocil. connected to the work station, enables components to he positioned or remoned during reflow or desoldering. Atemperature controlled hot plate adjustahle between 30 and $250^{\circ} \mathrm{C}$ prowides preheating for ceramic or other components with poor heat conductivity. Weller equipment comes from Cooper Tools Litd. Seding Road. Wear, Washington. Tyne and Wear N 38913%. Tel: 091416 6ille.

Fast charging of NiCads

After extensive research into the hehaviour of nickel cadmiun hatteries under various pulsed charging conditions. Rediffusion radiosystems have developed a processor-controlled hattery charger that is capable of sensing the condition of the battern and recharging it accordingly. It is intended for use with the smatler NiCd hatteries commonly used in hand-held radios and other hattensoperated equipment as used hy public and emergency senvices.
At the heart of the BC 25 charger is a patented system for recognizing the fully charged state of a battery. Having this ahility, the charger can be used to rapidly charge each
batten' sa"ely with no risk of overcharging. It can also be used to trickle-charge hatteries only partly discharged. I full condition charse i.e. a controlled discharge followed hy a rapid recharge, is used for hatteries that have failed or may be suspect. I.edsare used to nendicate the status of each battery under charge and. in the condition mode. the capacity of the battencas a percentage of its rated capacity. The BC 25 is fully automatic and only needs the batteries to be loaded and removed. A manual switch alternates hetween rormal or condition charging. Rediffusion Radio Systerms I.td. Newton Road. Crawley, Wes: Sussex, RH1102PY'. Tel: 1293518855.

Pulse/echo cable fault locator

The first truly hand-held, batten powered. pulse-cthocable fault locator with l.c.d. read-out is claimed by Cossor. It has heen designed to he comfortable and easy to use by any operator. The CFI. 510 uses microprocessor terhnolgy and the l.c.d. is a dot matrix type with four ranges: 116 mm .36 mm . I 1610 m and 30100 m full-scale, with 1.6 resolution and a nominal di" 2

The nulse width is selected with each range and velocity factor set to 0.67 at switch-on and is adjustahle hetween 0.01 and 0, (4). With a weight of only 1 kg . the CFL.5lo is powered hy six. Wiells witha hattery life of up to threemonthe nomal asage. cossor Pilectronics Itd. The Pinnacles, Harlow Essex C.M19 533

Graphic chip set

New' from lio- -ek liectronics is the National Semiconductor advanced graphics chip set, a vil.s.i. system which utilizes parallel processing techniques to enable handling of an unlimited range of colours with no. reduction in performance.
The chip set comprises individual modules which enahle the user to design a system to meet specific requirements. Modules can be integratedwith a general-purpose microprocessor for black and white display or used to support unlimited colour planes for a high performance. high resolution colour graphics workstation, plotter, or printer.

Modules in the chip set inctude a 20. $\mathbf{2 H} \%$ raster graphics processor (r.g.p.) which has line drawing speeds of 10 million pixel/s in any directionand a powerful instruction set. enabling the user toincorporate proprietañgraphics algorithms into the system; a $30 \mathrm{MH} \%$ 'hithlt' processing chip which. dedicated tod single parallel memoṇ plane. enahles additional planes of colour to be added without degrading system performance: a vider clock generator which uses a low-frequency crystal oscillator and an on-chip digital phase-locked loop to produce a pixel frequency of up to 259 MIz : and a $285 \mathrm{MH} / \mathrm{video}$ shift register which has a 4 -word 16 -hit iffo huffer to ease timing prohlems. Hi-Tek Flectronics. Ditton Walk. Camhridge. C C 35 8(1)

Low-profile toroids
 To meet a demand for compact power

 supplies and audio equipment, I rake Transformers have developed a range of low-profile toroidal transformers. The PWI, range has about half the height of conventional toroids with equivalent ratings hut have a greater outside diameter. They have polvester tape insulation and steeved Alyingleads. The PWL transformers are offered in a range from 1010 to $8101:$Drake is now an independent company, having hought itself from its former parent, Blagden Industries. This has resulted in maintaining employment for io skilled workers. while moving toa new address near their former factory in Billericay. Brake Transformers Litd. Bruce Crove. Wickiond. Essex SSIl KBT. Tel: 112 or 5\%100t10.

New Products
 BRITISH ELECTRONICS WEEK

High-speed 10-bit d-to-a

Two ultra-high-speed digital-toanalogue converters have heen produced by batel. The ADC-510 and 515 can completea 10 -bit conversion in 425 ns and 650 ns . giving sampling rates of 2.35 and 1.54 MIIz respectively.

Features include initial errors of 31.s.h. maximum for offset and 5 l.s.h. maxinum for gain errors, different coding selections, indication of signals helow and above the full-scale range and the means to improve throughput hy putting a samplehold hack into the sample mode hefore the existing conversion is finished. There is a facility to programme the inpul voltage range. Other specifications include a maximum nonlinearity of ± 0.5 1.s.h. a minimum harmonic distortion below full scale of 6 () dB and high temperature stability. More information from: Datel l'K. Intec 2 Business Park, Wade Road, Basingstoke, Hants, RC240NE. Tel: 0256469185

Eraseable programmable logic array

Anceprom-hased programmable logic device from Exar isclaimed to have logic capabilities comparable with gate arrays and allows the use of multi-layer logic. The XR-ExCxin
 gates. Adranced logic architecture permits umlimited Bos)ean levels with up toten ilip-flopsat any level without using i / o pins. Term sharing at any level and logic-controlled input latehing are other features. The devices are designed to integrate a wide sariety of user-defined logsic functions ontora single package and offer a fast furnaround to save time and hoard space. The device is added to a wide range of electrically eraseable proms including two high speed c.mos eeproms. Exar Corporation. A: Moorbridge Road. Maidenhead. Berks. SL. 6 KPl. Tel:

Multi-purpose logic analyser

The Gould K50) can be configured from the front-panel keyhoard from :32 channels at 25 M 1 lz (1k samples per channel) toeight channelsat 100MHz (ak samples per channel). It can capture complex timing. state and microprocessor- oriented software events, including glitches. down to. 5 ns. Which are stored ina seperate memony and can be unambigurusly displayed alongside timing data.

Three external clock inputs with yualifiers are provided toallow the demultiplexing of complex events. while Could's Trace Control' feature offers four levels of complex-event definition with four trigger words plus one glitch word.

The K50lfeat ures a high-
resolution. non-glare 7 -inch $(178 \mathrm{~mm})$ c.r.t. which can show up to 17 channels across the complete memon' or he expanded for detailed viewings.

Channels or channel groups can be labelled. and two independent on-screen cursors and a trigser marker are used to indicate ahsolute and relative data position and value. The major instrument functions are
controlled by dedicated front-panel keys, while soft kevs guide the set -up of individual parameters. The 'search' and 'compare' functions display their results as highlighted events.

The $\mathrm{K} 5(1$ is supplied with eightchannel, high-impedance probe pods $(1$ megolom. 5pF), which each provideat. I . . or ± 91 variable threshold range and are protected to +510 V .

The analyser is supplied complete with IEEE-488. RS-E:32 and Centronics ports, plus trigger. restart and videoondputs. Also included is a hattery-hacked nomwolatile memory which saves the current stored data. three reference data sets and 16 set-up
conligurations.
A range of microprocessor analysis packages is arailahle, including disassembler soffware and interface adaptors for the 280 . 8085.5 , 15012 . (i8199.8186/8 and (6x00) processors. Price of the K 50 is X 2950 (plus tax). Coculd Electronies l.td., Instrument Systems. Roebuck Road. Hainault. Hford. Essex, lab:3UE.
Tel: $01-500$ lown.

Image processing on a PC

A two brard plug-in for the IBM PC (AT or RT) can create an image processing workstation ideal for applications such as machine vision. image enhancement. scientific, medical, sonar and geophysical image analysis. high-end graphics arts systems and simulation/trainings systems. Iesign innovations incorporated into the MIP-AT include arci-of-interest processing. real-time image operations, nominterlaced outputanda 3 ?-bit plane image huffer comprising fruar flexible 512 hy 512 hy 8 image hulfers which can be used in all prossible combinations. When combined with the capacity toperform combolutions. averogsing and subtraction. pattern matching and morphological transforms. this will
give the user performance previously available only at a much higher price. ()ther functions offered by the board are pan. scroll and zoont, real-time colour frame grab from a varictyo of imput sources such as RCCB or NTSC Colour. RS ITO monshrome. and multiple input andoutput look up tables.

The optional Mat rox Imager-AT package is specifically designed to complement the $\cdot \mathrm{ITP}-\mathrm{AT}$ and pronides a cost-effective solutionfor o.e.m's planning to develop their (x゙I soffware. This packige contains wer 150 library rout ines and is callable from ' ${ }^{\circ}$. Fortranand lascal Nicrosoft compilers. [Ensitron Computers l.td. Writ A. Airport Trauing Fistate. Bisgin I Iill. Kent

Maths on a personal computer

A new software package (Alathc: AD) allows the entering and solution of mathematical equations exactly as they would he written or printed in a maths text. In addition it can be used like a programming language to compute with variahles. and to produce graphs and tahles and add text. Cirect characters can he used as well as all mathematical symbels. The software handles real and complex numbers and computes unit conversions and dimensional analysis. Functions not provided can be defined by the user, although some adranced functions such as integration. differentiation, Fast Fourier transforms. cubic spline interpretation and statistical analysis arealready included. MathCal) checks for errors before it processes the equations, looking for undetined variables, mismatched units. missing parentheses and the like.

Math(AD) runs under MSS-1)OS2.0 or higher and is therefore suitable for IBS PC (XT or AT) and eompatibles. It requires 512 k of ram and IBM colour or enhanced graphicsur a Ilercules monochrome card. Outpul is to a dot-matrix or laser printer. Mathsoft International lid. Tamworth. Staffs. 137973k. Tel: $0 \mathrm{x}=\frac{7}{8} 86239$

Contact cleaners

Used toclean, lubricate and protect contactsand edge connectorsplated with precious metals (gold. silver. palladium etc) gold Elect rowipes are lint-free pads impregnated with a hend of contact-cleaner fluid and safety solvent. Packed in sachets, the disposable pads use a non-flammable solvent which is claimed to be sate on delicate components and sensitive plastics. As well as remosing contamination from contact surfaces. the pads leave a residual frace of lubricant which increases contact area and reduces contact resistance foi low and stathe level. Another adantage is that with the luhricating properties of the wipes. it is possible lo reduce the thickness of the precious metal plating. Elect roluhe I Idd. Blakes Road. Wargave. Berks. (iloxAll. Tel: 17 : 5023014.

CIRCUIT

SIMULATION
SOFTWARE

FOR

AC OR DC NETWORKS

 ACTIVE FILTER DESIGNS COMMUNICATION DESIGNS SIGNAL PROCESSING TRANSFER FUNCTION ANALYSIS ROOT LOCUS PROGRAMSTATIC THERMAL ANALYSIS PRINTER \& PLOTTER PROGRAMS PRICES RANGE FROM £79.95 to £125

Call now for more information $\overline{\overline{\text { BRIGDEN TECHNOLOGY }}}$

TEL: 0322331984

OR WRIIETO:
UNIT 24. ERITH BUSINESS CENTRE. ERITH HIGH STEEET, ERITH, KENT DA8 1QY
ENTER 27 (ON REPIS CARD

HART - The Firm for QUALITY

Please add VAT io all prices. Postage on orders up to £10-50p. £10 io £49-£1. Over £50-£1.50.

SOWTER AUDIO FREQUENCY TRANSFORMERS

You name it! We make it!
For the past 47 years we have concentrated on the design and manufacture of high grade audio transformers during which period our total sold exceeds half a million. We continually take full advantage of all the improvements in magnetic and insulating materials and in measuring techniques utilising the most up to date instrumentation.
We have a very large number of original designs made for clients all over the world but naturally there are certain types of Sowter Transformers which are in constant demand. These have taken into account the tendency towards small size without sacrifice of performance, particularly for PCB mounting, and a few of these are listed below. They can be supplied with or without mumetal shielding cans and performance requirements can be modified on request (utilising our readily available questionnaire) and generally without alteration in price.

We specialise in LOW COST AND QUICK DELIVERY which means a few days only or ex-stock.

TYPICAL PERFORMANCES

Sowter Type No	3575	4652	3678	6499	4079	6471	$\begin{gathered} \star \\ 6469 \end{gathered}$
Descriptoor	Ninature bridging transtormer	Line atpot	Muth primany microphone bansformer	Line output high level low distortion toroidal core	Spilter combiner transtormer	Widget mic. transformer for BT pruate systems	$\begin{aligned} & \text { Very high } \\ & \text { quality } \\ & \text { miccoophone } \\ & \text { transtormer } \end{aligned}$
impedances	1040. 10 k ? can befed from 50. 600 A	$\begin{aligned} & 600 \text { ou } 15002 \\ & \text { input or } \\ & \text { outpuls } \end{aligned}$	$\begin{aligned} & \text { Pys } 60.200 \\ & \pi 6000 \\ & \text { Sy } 5 \times 2 \text { down } \\ & \text { to } 1188 ? \end{aligned}$	6000.600\%	Balanced Primary Tw 20002 Secondanes	$\begin{aligned} & \text { P, } 6000 \mathrm{n} \\ & \text { s, } 60 \mathrm{on} \text { ? } \end{aligned}$	2002 Py for $1 \mathrm{k} \mathrm{N}_{\text {loading }}$ (Biliarl 8 ! step up
Frequency range	20 Hz 2 OKHz	$2 \mathrm{OH2} 2 \mathrm{OHH}$	3 OHz 2.20 HHz	2 OH 2.2 OHH	2042:20kHz	300Hz 3 3k.4. ${ }^{2}$	2 OHz 2OKH2
Performarce	± 0.108 over above range	$\begin{aligned} & \pm 0.2 \mathrm{v} \text { b over } \\ & \text { above range } \end{aligned}$	$=0.508$ over dover range	$\begin{aligned} & \pm 0.368 \\ & 40 \mathrm{~Hz} \cdot 15 \mathrm{kHz} \\ & \pm 0.50 \mathrm{~Hz} \\ & 20 \mathrm{~Hz} \cdot 20 \mathrm{kHz} \end{aligned}$	± 0.508 over above range	± 0.508 over above range	± 0208 over above range
Maximum level	$\begin{aligned} & 7,7 \mathrm{~V} \text { r.m.s. } \\ & \text { on secondary } \end{aligned}$	$\begin{aligned} & 775 V_{\text {rms. }} \\ & \text { on } 600 . \end{aligned}$	on $5 k \cap$ load OHIms at SOH2	$\begin{aligned} & 260 \mathrm{~d} \text { mat } \\ & 30 \mathrm{~Hz} \end{aligned}$	$23 \mathrm{~V} \text {.ms at }$ $30 \mathrm{~Hz}$	0.6VP.pon Primary	20V2r.ms. on Py 13 OHz
Maximum Distortion	WTh 10 V r.m.s. 3140 Hz only 0.12%	$\begin{aligned} & \text { On 660 } 10 \% \\ & \text { source } 0: 1 \% \end{aligned}$	Less than (10) akHz	$\begin{aligned} & 0.16 \text { at } \\ & 30 \mathrm{~Hz} \text { at } \\ & 2008 \mathrm{~m} \end{aligned}$	negligble 0.16 at 1kH2	neegigile	10.18 12 2012
Shieding	Electrostatic screens and mumetal can	Mumetal can in despred at extra cost	Mumetalcan	Toroval can	Mumetal can nged fixing bolts	PCB mountng	Mumetacan
Dimensions	33 mm diam 22 mm high	36 mm high . 43 mm . 33 mm	3 mm diam 22 mm high	50 mm diam .36 mm hygh	33 mm diam - 37 mm hygh	$\begin{aligned} & 111 \mathrm{~mm} \text { high } \\ & 19 \mathrm{~mm} \text { - } \\ & 17 \mathrm{~mm} \end{aligned}$	33 mmd dam - 22 mm high
Prices eaci at works	$\begin{aligned} & 1-52.1083 \\ & 50-59.7 \\ & 100-69.27 \end{aligned}$	$\begin{aligned} & 1-559.67 \\ & 50-6889 \\ & 100-28.69 \end{aligned}$	$\begin{aligned} & 1-589.67 \\ & 50-28.67 \\ & 100-68.41 \end{aligned}$	$\begin{aligned} & 1-5 \varepsilon .712 \\ & 50-£ 15.69 \\ & 100-515.35 \end{aligned}$	1-5814.59 50- 113.37 100- $\mathbf{1 1 3 . 0 8}$	$\left\lvert\, \begin{aligned} & 1-563.89 \\ & 50-£ 355 \\ & 100-[329 \end{aligned}\right.$	$\begin{aligned} & 1-5611.38 \\ & 50-610.12 \\ & 100-6992 \end{aligned}$

E. A. SOWTER LTD.

(established 1941) Reg. No. England 303990
The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk. PO Box 36 , Ipswich IP1 2EL, England.
Phone: 047352794 \& 0473 219390-Telex: 987703 G SOWTER

102	E	ROAD,					ELECT EN,			82	ГB	$: 021-47$ ex No: MID NGLA	$\begin{aligned} & 000 \\ & 242 \\ & \times \mathrm{G} . \end{aligned}$						
TRANSISTORS:				VALVES:		TYPE:		TYPE:	$\underset{\S}{\text { LIST: }}$	TYPE:	LisT:	TYPE:	LIST:						
TYPE: 2N3375	LIST:	TYPE:	$\underset{\text { LIST: }}{ }$	TYPE:	LIST:														
2N3375 2N3533	$\begin{array}{r} 11.25 \\ 1.90 \end{array}$	2SC1978	$\begin{aligned} & 6.40 \\ & 0.80 \\ & 0.80 \end{aligned}$	AH211A AH251 \dagger	$\begin{aligned} & 137.50 \\ & 100 \end{aligned}$	$\begin{gathered} \text { EF94 } \\ \text { ča } \end{gathered}$	$\begin{aligned} & 2.00 \\ & 2_{100} \end{aligned}$	OA 3	$\begin{aligned} & \mathcal{E} 50 \\ & \hline 20 \end{aligned}$	6AU5GT	2.70 3.80 3.80	813934935	1830.0018.00						
2 N 3632	12.95	2 SC 2237	11.50		31.50		+190	O83	2.50 2.50	6A28 ${ }_{\text {6BA6 }}$	$\begin{aligned} & 3.80 \\ & 1.70 \end{aligned}$								
$2 N 3733$ 2N3866	12.95 1.50	2SC2287 2SC2290	9.60 20.00		52.50 52.50	EFi84	1.80	${ }_{2}^{2 C 39 A}$	2.50 39.90	$\begin{aligned} & 6 \mathrm{BE} 6 \\ & 6 \mathrm{BH} \end{aligned}$		935 2050	41.20 4.80						
2 N 4416	0.75	MRF237	3.50	BT17	142.00	EL34	3.90		42.00	$\begin{aligned} & 68 H 6 \\ & 68,{ }^{68} \end{aligned}$	2.15 2.00		$\begin{array}{r}4.80 \\ 81.00 \\ \hline 8\end{array}$						
2N4427 2N5090	1.75 10.90	MRF238	11.90		130.00 12500	EL84	2.30 3.00	${ }_{2 E 26}^{2011}$	2.90 7.50	68K4C	2.50	5545 5557	95.00 24.50						
2N5109	1.95	MRF245	20.70 33.00	${ }_{\text {C3JA }}$	30.00	Et86 ${ }_{\text {E1519 }}$	210	${ }_{3.400 Z E I M}^{2 K 25}$	114.00	68N8 6826	3.50 2.50	5559 575	24.50 52.50 10.0						
2 N 5160	3.00	MRF247	33.30		36.00 56.00	EL803S	7.70 9.95	$\begin{aligned} & 3.5002 E 1 M \\ & 3828 \end{aligned}$	99.00 99.00	6C4 6CB	$\begin{aligned} & 2.50 \\ & 1.95 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 5277 \\ & 5867 \mathrm{~A} \end{aligned}$	${ }^{140.00}$						
2N5589	8.00	MRF433	9.00	${ }_{\text {ESOLCO}}^{\text {ESL }}$	11.00		13.75		15.00		2	58795965							
2N5590 2N5991	8.25 10.00	MRF449A	10.15 14.50	EBOL EBBCC	2100 390	EN32	1625 200	3 C 45	24.50				6.15 2.20						
2N5641	7.50	MRF 450 A	14.50	E99CC	$\begin{array}{r}750 \\ \hline 1755\end{array}$		190	$\begin{aligned} & 3 C \times 100 A 5 \\ & 4-65 A \end{aligned}$	72.00 52.50	6PC6 605	$\begin{aligned} & 8.00 \\ & 245 \end{aligned}$	$\begin{aligned} & 5965 \\ & 5991 \\ & 6130 \end{aligned}$	33.00 24.50 9.50						
2N5642 2N5643	10.20 11.85	MRF454 MRF454A	17.25 17.25	E1301	21.25 1.35		1.50 1.50	4-125A	60.00 7600		2.25	6146 A 61468	9.50 9.50						
2N5913	2.50	MRF455	16.50	EBC91	1.10	EZG17	24.50	-4.250A	110.00	6GK6	2.50 4.25	${ }_{63604}^{61468}$	4.95						
2 N 5944	8.20	MRF 458	17.20	EBF89	1.35 200	${ }_{\text {FG105 }}$	160.00 1500	4.400 B	110.00	${ }_{6}^{6 H 55}$	4.25 3.95 4.90	6550 6883	7.90 8.70						
2N5945 2N5946	10.60 11.50	MRF 475	2.30 2.15	ECC32	3.25	Gxu4	15.00 45.00	4.4000 4832	11000 30.50	6JB6A $6 . J E 6 C$	4.506.256.65	l 693 7027 7	3.95 6.50						
2N6080	7.00	MRF644	22.50	ECC81	1.90 1.90	GZ34 $\mathrm{KT666}$	5.35	4 C 35 A	135.00	$\begin{aligned} & \text { W156C } \\ & \text { EK7 } \end{aligned}$		$\begin{aligned} & 7929 \mathrm{~A} \\ & 7297 \end{aligned}$	4.203.20						
2N6081 2N6082	8.75 10.90	MRF646 MRF648	27.00	ECC83	1.90	KT77 $\mathrm{KT88}$	$\begin{array}{r}\text { 9. } \\ 150 \\ \hline 1.50\end{array}$	(1M AMP	55.00		$\begin{aligned} & 6.65 \\ & 2.50 \end{aligned}$	$\begin{aligned} & 72624 \\ & 77620 \end{aligned}$							
2N6083	11.95	MRF90,	32.75	ECC85	3.80 2.00		24.95 275.00	${ }_{\text {NAT }}^{4} \times 250 \mathrm{~B}$	48.00		$\begin{aligned} & 2.25 \\ & 6.40 \end{aligned}$		26.00 12.20 150						
2N6084 2SC1729	12.50 14.50	SD1013	9.75 2310	ECC91	2.00 2.00	ML. 8741 NL SEPIIES	265.00	4 $4 \times 350 \mathrm{a}$ $4 \times 150 \mathrm{~A}$	87.00	$\begin{aligned} & 6 L 6 G C \\ & 6 L 06 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 2.00 \\ & 4.10 \end{aligned}$	${ }_{75914} 75$	$\begin{array}{r}11.50 \\ 35.00 \\ \hline\end{array}$						
2 SC 1945	3.45	SD1019-5	22.80	$\begin{aligned} & \text { ECF80 } \\ & \text { ECF86 } \end{aligned}$	$\stackrel{5}{1.50}$	Qovo2-6 Qovo3-10	22.00	A	${ }_{5}^{33.75}$		$\begin{aligned} & 4.10 \\ & 6.25 \\ & 2.25 \end{aligned}$		45.65						
2SC 1946A 2SC 1947	16.00 8.50	SDI 127 SD 1134	3.10 3		1.65 1.80		5.30 7.00		2.10 3.50	${ }_{6011} 61$	$\begin{aligned} & 2.25 \\ & 305 \end{aligned}$	$\begin{array}{ll}7815 A L \\ & 7815 \mathrm{R}\end{array} \quad \begin{aligned} & 48.00 \\ & 53.00\end{aligned}$							
${ }^{2 S C} 1969$	180	SD 1136	11.90	ECFB01 ECHA1 ECL 82	2.30 190		57.50	5 U 4 GB5 V 4 GA	210	$\begin{aligned} & \text { 6UBA } \\ & 12 A T G \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.00 \end{aligned}$	8122 120.00 8906 Al 5500							
${ }^{2 S C 1970}$	1.40 3.50	SD1143	9.40 14.70	$\begin{aligned} & \text { ECL82 } \\ & \text { ECR86 } \\ & \text { EFBO } \end{aligned}$	${ }^{1} 160$	Or3 OY4. 255	63.00 69.80		2.50 2.30		1.90 1.90	${ }^{157282}$ CETRON 55.00							
${ }^{2 S C} 1972$	6.00	SD1272	14.70 10.95		$\begin{array}{r}1.70 \\ 300 \\ \hline\end{array}$	RG1.21	10.00	6AK5W 6AK6	2.50	$12 A V 6$$12 B A 6$	$\begin{aligned} & 2.00 \\ & 1.95 \end{aligned}$	810 82.00 812 A 49.00							
		SO1278	14.25	EF85 EF86	3.00	$\times \mathrm{XG1.2500}$	52.50		$\begin{aligned} & 1.80 \\ & 1.75 \\ & 1.80 \\ & 2.40 \\ & 4.30 \end{aligned}$										
INDUCTION AND DIELECTRIC HEATING SPARES					20	$\begin{aligned} & \text { XG5.500 } \\ & \text { XR1.3200 } \\ & \text { XR1.6400 } \\ & \text { OA2 } \end{aligned}$	7250 +12000	6AG5A 6AAS5 6AS7G 6A			$\begin{aligned} & 2.00 \\ & 2.70 \\ & 3.70 \\ & 3.75 \end{aligned}$	WE ALSO SUPPLY EIMAC TUBES AND ACCESSORIES							
INCL					1.50		2.00												
CERAMIC CAPACITORS		Solid state rectifiersRectifier valves		1000's Of Valves. TRANSISTORS IC'S IN STOCK. PLEASE ENOUIRE ON TYPES NOT LISTED.							PRICES - CORRECT AT TIMEOF GOING TO PRESSTERMS - PLEASE ADD \& 1.00P\&P AND VAT (it 15% to orders								
GRID LAMPS		oscillator val		BACKWARD WAVE OSCILL		KLYSTRONS		SOLID STATE REPLACEMENTS											
CARBONFRE		COOLING FANS/F	ters	CRT's IGNITRONS		RECEIVING TUBES		THYRATRONS tRANSMITTING TUBES											
WATER FLOW	Ches	elc. elc.																	

uamthand			
OSCILIOSCOPES		WINCHESTER ORIVES 51/4	
HPI80A	¢235	$10 \mathrm{MB} \mathrm{Full} \mathrm{Height} \mathrm{SI506} \mathrm{(New)}$	¢150
HP181A Storage mounframe	¢400	CORVUS IOMB/M for Apple	£220
TEk7603 Mainframe 100 MHz	£1750	40 MB Full Height Voice Coil Atosi 4036 7 Heads 40 mSec Averoge Access	Ca50
PLUG-INS		daisy printers	
$\begin{aligned} & \text { HPI 805A } \\ & \text { HPI825A } \end{aligned}$	£150	Diablo 630R0 Seriol	¢650
	¢150	Dioblo 630RO Sheel Feeder	¢175
TEK7A22 Diff AmplifierTEK7A26 Dual Trace Amp 200MHz	¢950	Olympia ESW3000 Parallel	C550
	¢1400	TEC Slorwriter F10/40 (New) 12 Bit $1 /$	¢550
TEK7B53A Duol Time Base TEK7B80 Deloyed Timebase 400 MHz	£1100	Olivetti PR 430 Serial	E375
	£950	MATRIX PRINTERS	
TEK7B85 Delaying Timebase	£1100	Texas Silent 700 Serial 80 Col Texos Silent 800 Seriol 132 Col	£125 £350
OVm's		Dec LA36 KSR Serial 132 Col	¢120
Datron $105151 / 2$ Digit Autoranging		Dec LA36 with Datasouth Board	£175
	£350	Memorex 2073 Seriat 80 Col	£110
Solartron 1765 Solartron $706561 / 2$ digit	¢750	AJ650 Ink Jet	£120
Solortron 7075	£500	PLOTTERS	
Solortron 7050	£450	HP7221C, HPIB, 8Pen A3 HP9872C	$¢ 875$ $£ 575$
VARIOUS TEST EOUIPMENT		HP9872S with Feed \& Curter	£720
HP5345A Counter Timer	£250	Colcomp 1012 Seriol 4 Pen	£120
HP3400A RMS Voltmeter	£425	VDU's	
HP5326A Counter Timer	£175	Televideo 925	£160
HP5370A Counter Timer 100 M Hz	£225	Televideo 950	£220
Fluke 895A Differential Voltmeter	£200	Pericom 7800	£125
Marconi TF2162 Arlenuator		Pericom 6803	£125
0.111 dB	$¢ 100$	HP2624 with Thermal Printer	£275
Morconi TF 2430 Freq Counter 80 MHz Racal Dana 9500 Counter Timer	¢200	${ }_{\text {HP2621 }}$	£150
	£250	HP2647A Grophics Terminal	£350
COMPUTER		OPSU's	
		Gould MG12-10 Switch Mode	¢25
DEC 11/03, DIV\|I.J, RXO1	E600	Gould MG24-5 Switch Mode	¢25
Tektronix 4051	$\begin{gathered} £ 600 \\ \text { £. } 1200 \end{gathered}$	Gould Iriple Output 15V11A, 5V40A-12V4A	
ENVIROMENTAL CHAmber for component lesting, etc. -55° +2000 ${ }^{\circ} \mathrm{C}$			¢1,200
ALL PRICES PLUS VAT AND CARRIAGE			
Ring Colin, 01-885 5522			
Unit 4, Hotspur Estate, West Road, Tottenham, London N17 0XJ.			

ENTER24ONREPLYCARD

ENTIER \& ON REPLIYCARI)

Multimeter includes transistor and frequency tests

Transistor $h_{\text {dest }}$ testing and freguency measurement panges are the less common additional functions on a new multimeter. The Metex $\$ 3650$ offers a large l.c.d. with auto-zero and a 30 -position range selection switch. The meter offers i.s.d. meaturements of voltage up to 750 V alternating: 10005. direct: 20A direct or alternating current, resistance from $2(0 \Omega$ (0) 20$) \mathrm{M} \Omega$: capacitance from 2 (h) pito $20 \mu \mathrm{~F}$ and frequencies up to 2 owkill Crotech Instuments Lid. 2 Stephenson Road. St. Ives, Huntingdon. Canbs. PE, 174WI. Tel: 0.48030181

Two processors in one

Arguments hetween engineers over whether to use $65(1)$ or 780) expertise in company projectsare resolved at once with Rockwell's dual processor chip. More serionsly, the duat architecturec.p.t. combines the fast i/o handling of the 6502 architecture with the versatile block move instructions of the Z8IO onto one chip, the two processors communicating through tri-port ram at locations 002010 on the 6502 and FEOO on the Z80. This ram is
accessible externally to allow multiple dual c. p.us to he connected together: hus contention arbitration is executed with an algorithm that accesses the tri-port ram to read preset device numbers. Tokeep the number of pins down the data bus is multiplexed with the lower eight hit. of the address hus, leading to 32 pins for each c.p.u. pather than the more usual 40. and the two-sided st ructure requires an upper and a lower p.c.b. Rockwell's specialist single-chip distrihutor is RCS Microsystems I.td 141 Uxhridge Road. Hampton Hill. Middx TWI2 IBL. Tel:01-9792294.

Sealed rechargeable batteries

Eight hatteries have been added to the Power-sonic range of sealed lead acid hatteries. The new versions range from an 8iaha 12 V model down to a $500 \mathrm{~m}: \mathrm{l}, 6 \mathrm{~V}$ hattery which is only 58 mm tong.

The advantages of these hatteries is that the need no topping-up and can be used in any position. They offer leak-pioof cases. suspended elect rolvte onercharge protection. cycle or tloat applications. high discharge rate and extended shelf life. Power-Sonic Eurome IId Cornwallis House. Howard Chase Basidon. Essex SS14 3BB. Tel: 0268 293353.

Soft-centred controller

Latest in a series of innovative products from Dallas Semiconductor is what they calla soft
microcont roller. Superficially the DS50100 resemhles a c-mos 8051, hut the package also contains an 8 K or 32K-bytestatic ram (6ik is promisedl and a ten-year lithium hattery. These and some trichs huilt into the processor make the unit proofagainst power failure. whether for a few instants or for much longer When the supply is restored the processor simply resumes execution from where is left off. with all data and registers intact - a feature which also makes the device very suitahle
for use in portable data gathering Sottware updates can be downloaded to the DS500K from remote sources over the telephone it need be. The huilt-in memorv can he partitioned dynamically into program and data areas hy the user

In addition, a software protection feature makes it possible to sive and load programs in encrypted form. If an unauthorized user tries to rese the lock hit. the f(1)-hit keyword is autonatically epased
Initial 1000 -off price of the $129 \mathrm{H} \%$ 32 K -byteversion is $\$ 80$ Details from Joseph Electronics in Birmingham on $021 / 6436888$.

low-cost logic analysis

Today's digital circuitry can't be debugged with just a logic probe and oscilloscope. A logic analyser has become an essential tool.
The Thurlby LAl60 system puts logic analysis within the reach of every engineer with a wide range of options to suit many different applications

- Prices from $£ 395$ plus vat
- Data pods for random logic
- 16 or 32 data channels - Personality modules for uPs
- IBM-PC interface options - Microprocessor disassemblers

No other logic analyser system approaches the value for money of the Thurlby LA160. Contact us now for full technical data

Thurlby

Thurlby Electronics Lto New Road, St.lves, Huntingdon, Cambs PE17 4BG, England. Tel: (0480) 63570

The highest quali:
The Hitachi name is synonymous with quality and reliability and is backed by a 2 ysar or 3 year warranty on every oscilloscope The heenest pricing
With prices starting at only $£ 320$ for a 20 MHz dual-trace model Hitachi's price-performance ratio can not be bettered
The largest range
Now totalling is models the Hitachi range covers bandwidths from 20 MHz to 150 MHz and digital storage models $106(0 \mathrm{MHz}$
The fastest service
We can supply any Hitachi 'scope immediately from stock and we back it with full calibration and after-sales service

For colour brochue giving specifications and prices ring (104811) 63570 Thurlh, Flectronics Lid.. New Road. St. Ives, Cambs. PEI7 4BG
ENTER 33 ON REPIVCARA

르뇨 Power Systems

EMS manufactures DC Power Supplies and Battery Chargers both linear and switch mode in a range from 5 VA to 3.2 KVA .
Also a complete range of Standby, UPS and Mains Stabilizer Systems 35 VA to 1 KVA. EMS specialises in the manufacture of customised products and has a full design and
development facility
EMS (Manufacturing) Limited,
Chairborough Road,
High Wycombe,
Bucks HP12 3HH.
Tel: (0494) 448484

Happy Memories

Part type	1 off	25-99	100 up
4164 150ns Not Texas	1.05	95	. 90
41256150 ns	. 2.45	2.20	2.10
41256120 ns	.. 2.59	2.35	2.25
41464 120ns.	. 3.35	2.99	2.79
2114 200ns Low Power	.. 1.75	1.60	1.55
6116 150ns Low Power	.. 1.40	1.25	1.20
6264 150ns Low Power	. 2.40	2.15	2.05
62256 120ns Low Power	. 8.75	8.50	8.25
2716 450ns 5 volt.	2.95	2.85	2.80
2532 450ns.	5.40	4.85	4.50
2732 450ns.	2.60	2.40	2.25
2732A 250ns	3.30	2.85	2.75
2764 250ns Suit BBC	. 2.65	2.50	2.40
27128 250ns Suit BBC.	.. 2.95	2.75	2.65
27256250 ns .	3.45	3.25	3.10
27512 250ns	.. 7.45	7.25	6.70
Low profile IC sockets: Pins	814	1820	2840
Pence	59	1112	1724

Please ask for quote on higher quantities or items not shown Data free on memories purchased, enquire cost for other.

Write or "phone for list of other items including our 74LS series and a DISCOUNT ORDER FORM

Please add 50p post \& packing to orders under $£ 15$ and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

> HAPPY MEMORIES (WW), FREEPOST, Kington, Herefordshire HR5 3BR. Tel: (054 422) 618
> (No stamp required)

ENTER 41 ON REPI.Y CARD)

FOR THE BEST CIRCUIT SIMULATION C.A.D.

Designers are turning to 'THOSE ENGINEERS' software. They keep ahead by knowing what is going on while free to experiment without the costs. delays and uncertainties of physical testing. Those Engineers software which creates a net list removes the chores and errors in documenting. Ask us too for schematic layout soltware.

\qquad
High capacity
High Speed Reference Manual

No risk trial
Low price
ECA-2 is an example of one of our circuil simulators
Transient analysis DC analysis AC analysis
Fourier analysis Tolerancing Temperature
Non-linear simulation Full ciode model Complex components Variants

Macro models
Probe
Dual mode

THOSE ENGINEERS software which is avalable from C 99 supports IBM PCs and compatibles and the range of BBC microcomputers As engineers in electronic and

THOSE ENGINEERS LTD. Sales: 106a Fortune Green Road
West Hampstead. London NW6 1DS.
Tel 01-435 2771. Telex 8950511 mark for mailbox 23332001

ENTER 39 (ON IRFIPIS (ARI)

Digits - not without tears

Digital audio is rapidly infiltrat ing into both radio and television broadcasting. although not without experiencing difficulties seldom foreseen by the early adrocates of "rugged golno-go. hands-off operation." Indeed, it is the abrupt change from go to no-go. that replaces the morecertain but more-gradual degradation of analogue signals. that is tending to cause unexnected headaches for transmission engineers. British Telecom engineers have reported encountering unexpectedly severe problems during the rare occasions when multipath tropospheric-propagation conditions exist right down to the levels of microwave towers.
In an ICAP87 paper. M.C.D. Maddocks and J.H. Stott of BBC Research describe problems experienced on a new digital u.h.f. link between Stockland Hill. Devon and Alderney intended to carry a multiplex of radio programmes from the UK to the Channel Islands radio transmitters. replacing existing analogue links. This was designed to provide reliable, high-quality audio. despite there being at least a 50 dB fading range on this long. over-the-horizon sea path. Propagation data were available from the existing analogue television links over this path, received on the IBA's adaptive antenna and (for diversity) a large parabolic dish reflector antenna.
Predictions suggested that signal-to-noise values should be sufficient for the digital link to be open for 99.85 per cent of the time. İree of objectionable cochannel interference 99.7 per cent of the time, indicating a total predicted performance of 99.55 per cent of time and a link operational time of 99.4 per cent. In practice, measurements on the experimental link taken over several months indicated a link operational time of 97.8 per cent with 89.5 per cent error-free seconds.

The BBC engineers noted that although the majority of link failures lasted less than ten seconds. there were a significant number of longer failures, subjectively more damaging and in-
creasing in frequency in early afternoon and late-night periods. both recognised as important radio broadcasting times. The link failures also posed the problem that they were neither so short as to be dissuised in the signal decoding, for example by muting. nor so long as to be very rare. While it is hoped to identify the reasons for the unexpectedly poor performance of the experimental link, it seems likely that a considerably more complex digital modem may prove necessary. No doubt all will come right in the end but it is another indication that digital transmission can throw up new problems.

Digital broadcasting

Some years ago the BBC conducted a programme of experimental terrestrial broadcasting of digital signals using the Band l v.h.f. transmitter at Pontop Pike. Although this was found to provide excellent quality reception at most, though not all. domestic locations, portable and mobile recention proved extremely dicey owing to the destructive effects of short-term multipath propagation - a condition that can still cause digital teletext to display "garbage" (error-prone) pages in some urban standing-wave situations. But teletext is not expected to have to cope often with the severe multipath of mohile reception.

Although both the BBC and IBA are planning to use digital stereo plus the conventional analogue channel) for television sound in the fairly near future. direct transmission of signals in digital form for terrestrial radio broadcasting in the UK seems to have been put on the backburner for the time being.

However. according to the Russian engineer F.I. Vlasor in a 1986 article in the OIRT journal Radio and Television, an experimental digital sound hroadcastingsystem was established in 1983 in Leningrad. and then in 1985 in both leningrad and Tallin using the "newly available" irequency of $100^{2} .656-\mathrm{MHz}$ (until recently East European v.h.f. broadcasting has tended to use frequencies around $7(0 \mathrm{MHz}$). No
details are given of the results achieved and the extent of any multipath problenıs but it is suggested that while the band 100 to 108 MHz would be suitable for only three analogue stereo networks. six stereo digital programmes could be accommodated as a multiplex within a $4-\mathrm{MHz}$ band. provided that all transmitters used the same carrier frequency and each sound signal (mono or one of a stereopair) is coded in a floating-point code with 10-hit mantissa and 3 -level codes. With a sampling frequency of 32 kHz , the hit-rate would be $4.096 \mathrm{Mbit} / \mathrm{s}$ with double phase-shift modulation.
F.I. Vlasov concludes that "at the present time we are participating in a revolutionary process of a radical change in sound broadcasting technology. Digital sound engineering is the technology of the 21st century: in our days it is making its first stens and conquering ever new fields."

It is clear from this paper that the Russian engineers are carefully following developments in digital audio engineering outside of the USSR. F.I. Vlasov regrets that standardization of encoding parameters has not been achieved with 48 kliz sampling used in digital studios. 44.1 kHz for laser (CD) sound. and 32 kHz for transmission links, with repeated rate-conversions increasing costs and. unless adequate measures are taken. reducing the quality of programme sound. Bit numbers and coding laws also differ: 16 bit linear coding has been standardized for CD. but 14 bit linear and 10 and 9.5 bit non-linear codes are used on transmission channels. Every attempt, he believes, should be made to avoid increasing still further the divergence between coding parameters.
He notes that CD records have created a need for improved reproduction systems and lists as suitable for monitoring purposes analogue loudspeakers having about 110 dB dynamic range and capable of maximum sound pressure levels of about 128 dB . in which category he puts the Technics B-10, Mitsubishi ISS505 and Junior (Kreisler) loudspeakers. adding "The monitor units of the English firms Tannoy (M-1000 and M-3000 units) and Bowers \& Wilkins (B\&W-80] and B\&II-8(8) also approach
meeting the requirements of digital."

But he also looks heyond the analogue systems. noting that Bell Laboratories have developed a system for immediate conversion of a digital signal with the decoding effected directly on the diaphragm. As a third possibility he notes the potential of adaptive systems such as that demonstrated by Acoustical Research in 1982 which includes adaptation to the acoustic characteristics of the listening room by the use of microprocessors, adding "In our opinion the development of adaptive sound reproduction systems constitutes the main trend of development in the near future, as it will be possible to create sound reproduction systems satisfying all requirements of the prospective digital sound channel."

Data broadcasting

The use of digital data carried on sub-carriers of v.h.f. broadcast stations seems likely to increase in the near future. Telerate (UK) litd have now launched their subscriber radio teletext service on the 97.3 MHz LBC channel in London, with the similar Telemet system on the Capital transmitter due later this year. The BBC has launched full test transmissions of the EbL' Radio Data Senice (RDS) in preparation for an official launch of the system in September, providing automatic location of the strongest signal. display of station name. alternative frequencies of a given service, time and date. This service is due to be available from all BBC v.h.f. transmitters in England by the autumn. and RDS may also soon be available on IBA transmitters. The successful introduction depends to a marked extent upon the willingness of semiconductor manufacturers to develop special purpose l.s.i. chips. with the usual chicken-and-egg quandary of firms being reluctant to incur heavy development costs until they have some evidence of a market demand; while broadcasters find it difficult to start a new senvice until receivers are available.

Radio Broadcast is written hy Pat Hanker.

RADIO COMMUNICATIONS

Packets on the move

While the Royal Signals are still striving to come to terms with organizational and management requirements for the Ptarmigan tactical $C^{3} \mathrm{l}$ line and radio battlefield communications system. a team at the Royal Signals \& Radar Establishment at Malvern has been busy investigating the possibility of introducing store-and-iorward digital packetswitching technology into combat net radio systems operating on a single narrow-band channel. Following the use of a smalt number of experimental units. the team intends to expand its work with the acquisition by commercial procurement of an experimental 25 station unit. With this, it is planned to develop and further refine the distributed algorithms so far developed based on the need for the packet switching to operate effectively in a highly mobile and hostile environment.

The current RSRE work is described by B.H. and T.R. Davies in some detail in an invited paper in a special issue (January, 1987) of Proc. IEEE. This issue devotes over 150 pages to the use of packet-switching technology for mobile-radio networks, mostly for militany-type applications. The guest editors apologize for the preponderance of militany-sponsored papers, explaining "This is due to the unfortunate lack of success that we experienced in including a paper on the application of this technology to the commerical and amateur sectors. This absence. however, should not undermine the importance of these areas of applications. In fact. some commercial systems are in use. including communications to field engineers and support of package delivery senices.

Meanwhile, the UK Royal Signals officers are still seeking to learn from early field experience of Ptarmigan and its radio-relay sector. Treffid, following its role in the 1986 "Exercise Summer Sales" in West Germany, which witnessed the first large-scale use of Ptarmigan at Corps level.

It is recognised that the Royal Signals faces the challenge of managing an area system superimposed on a hierarchical con-
mand structure, a frictionprovoking situation that is not proving easy to solve. Major C.R. Leach has written (J. Royal Signals Institution) "successful deployment of Ptarmigan relies on a close understanding of the difference between command of the trunk system and its efectronic managements." He stresses that the success of Ptarmigan is reliant on good-quality radio-relay links and that the burden of providing these depends on the ability of junior commanders. including the radio-relay detachment commanders, the Recce sergeants and the trunk-network commanders. Differences of opinion between these on such matters as the siting of the radiorelay units can jeopardize the effective operation of a whole Ptarmigan battlefield system.

Such large-scale militan' exercises are having increasingly to recognise that Warsaw Pact forces have developed a sophisticated concept of offensive electronic warfare (radio electronic combat support) and would certainly attempt to intercept. exploit and disrupt the communications of their enemy.

Supercool diodes?

The recent marked upsurge of R\&D interest in superconductivity has followed the discovery. initially by Bednorz and Miller of IBM Zurich but now apparently with Japanese scientists in the lead, of a completely new family of "high-temperature" oxideceramic superconductors and seen by some obsenvers as "an invention comparable to that of the transistor." For the communications engineers, it raises the possibility of improved lownoise devices for microwave. millimetre-wave and optical communications. The way seems open for improved diode detectors and mixers by means of super-Schottky diodes with junctions having a hybrid superconductor/semiconductor structure used with the relatively inexpensive liquid nitrogen coolant.
Superconductivity, first discovered by the Dutch physicist Heike Kamerlingh-Onnes in 1911, is the curious property of
many electrical conductors to change abruptly to a state of no measurable resistance when their temperature closely approaches absolute zero 10 K . $-273^{\circ} \mathrm{C}$. It was not until 1957 that a comprehensive theon of superconductivity was formulated by J. Bardeen. L..N. Cooper and J.R. Schrieffer (the "BCS" theony). This led to a gradually increasing exploitation. or at least investigations into the many potential applications in the 1960s. including the confirmation of some aspects of the "Josenhson effect" predictec by Brian Josephson in 1962 and which is seen as providing the key to the application of superconductivity for super-fast computers as well as for low-noise electronics.

Most of the R\&D on the Josephson effect has been targetted on the development of computers, with 1 BM concentrating on its use as a switching device (though reportedly largely abandoning this project a few years agol and Bell Laboratories seeking ways of using Josephson junctions to increase the speed and capacity of central computer memories.

But until the recent ceramicoxide breakthrough. superconductivity could only be achieved with the use of costly lyuid helium (boiling point 4 K) as the coolant. With the transition to a superconductive state of harium-yttrium-copper oxide fourd by Mitsubishi scientists to be over 90 K . the much cheaper and easier to handle liquid nitrogen (hoiling point 77 K) can be used as the coolant.

It could, however, be low noise communications that may benefit before computers. Temperature of the coolent is not the only problem in using Josephson-junction devices in computers. It has yet to be shown that it is possible to combine large numbers of such devices on to a single chip, hecause of the tendency for different stability problems to be found in each junction. This, however. would not necessarily prevent their use as discrete devises in low-noise applications. NEC have reported the develonment of a functioning Josephson device based on two layers of single-phase yttrum-harium copper oxide.

It may be recalled that the original low-noise receiver at Coonhilly Downs in the early 1961s was based on a heliumcooled maser having extremely low-noise parameters but. apart from expense, this proved to have too narrow a bandwidth for the later generations of communications satellites.

ICAP87

Among the near- 950 pages of the IEE's two-part Conference Book No 274 covering the recent \ln ternational Conference on Antennas and Propagation (ICAP87) at Sheffield U'niversity are no less than 179 papers and 47 poster presentations - formidable tomes indeed. However. they include not only the usual esoteric and highly mathematical analyses favoured by specialists in these fields but also quite a number of more down-to-earth (if that is the appropriate expression) and practical papers. These range from interesting historical sunveys of 100 years (dating from Heinrich Hertz) of antenna development and propagation research to practical engineering papers on the design of microwave towers with emphasis on wind hazards. The BBC has also come up with some lessons from the past. including explanations of how they tackled such unexpected problems as the Penge effect. "ghosts" in Preston. hazard-lamp hazards and the rusty-bolt effect that can give rise to spurious inter modulation products. It is also interesting to note that Marconi Research have been doing new design work on the 50 -year-plus Bruce rhombic antenna relating bandwidth to apex angle. Reception of v.h.f. signals in urban areas, including an improved Swedish model for hilly woodland from which it seems that a forest may theorectically be treated as a dissipative. lossy dielectric slab lying on a half-space ground. There is also an illuminating paper on height-gain at v.h.f. in urban, rural and oversea paths. The computer has made possible the use of the "Method of Moment" technique to predict antenna performance.

Radio Communications is writ
ten by Pat Hawker.

GETCORE ,
 N

OFCOMPACT POWER SUPPLY NUVOTEM

CUSTOM-DESIGNED TOROIDAL COMPONENTS

Their compact size and low magnetic interference make Nuvotem's toroidal transformers ideal for today's types of power supply and power requirements in a wide variety of electronic applications. The benefits are clear:

- Significant savings in weight and volume over conventional transformers.
- Competitive price.
- No air gaps - hum almosi completely eliminated.
- Nuvotem design and advisory service -
customised components for specific applications
- Highest standards of quality assurance - 100\% tested.
- Also available - a standard range - 15VA-500VA plus a range of filter chokes.

GET TOTHE CORE OF THINGS-

for further information complete and return the coupon or telephone Nuvotem today.

Name
Position
Company
y

Address

STEWART OF READING Telephone: 073468041

ER110 WYKEHAM ROAD, READING, BERKS RG6 IPL
Callers welcome 9 am to 5.30 pm . MON-FRI. (UNTIL 8pm. THURS)
ENTER 56 ON REPLY CARD

KESTREL ELECTRONIC

 COMPONENTS LTD.- All items guaranteed to manufacturers spec.
- Many other items available.

Exclusive of V.A.T. and Post and Package'

	$1+$	$50+$
6821	140	100
6502	330	280
6522	3.30	280
$65 C 02$	700	6.00
$6809 P$	320	285
$74 S 138$	0.30	025
$74 S 240$	040	035
$8085 A$	140	1.20
8255-5	1.80	1.65
4 meg Crystal	030	025
LM324	025	020
LM339	0.25	020
LM386	050	042
LM556	035	025

$\begin{array}{cc}1+ & 50+ \\ 240 & 2.20 \\ 3 . & 3 .\end{array}$ 2.20
340
370 4LS08 74 LS 21
74 LS 37 74LS37
74 LS 74 744 S 74
74 LS 86 744S8122 744 74LS245
7445367
7415373 744 S3374 744S374
7415399

1 0 13 0 13 0 13 0 15 0 13 0.13 0.13 020 0.40 0.44 0 23 0 40 0.40 0 30

$1+$	
13	
13	0
13	0
015	0
013	0
0.13	0
0.13	0
020	0
0.40	0
0.44	0
023	0
040	0
0.40	0
030	0

03 $50+$
010
010

> 178 Brighton Road,
> Purley, Surrey CR2 4HA
> Tel: $01-6687522$

ENTER 6:3 ON IREPLY CARD

Editorial Feature List

AUGUST 1987
Short-haul optical-fibre data communications is an essential part of modern communications systems. This feature presents an overview of the techniques employed and the hardware available.

SEPTEMBER 1987

Microwave semiconductor devices. These specialised components retain an air of mystery for many engineers. We present a feature on the physics of these devices and characterize the types now is use.
For further advertising details please ring
Martin Perry on: 6613130 or Michael Downing on 6618640

TELEVISION BROADCAST

Systems proliferate

At the height of the PAL/NTSC/ SECAM controversy in the 196its, at least one large organization issued a firm edict that its engineers should not attempt to develop any new colourencoding systems, but instead should concentrate on solving the problems of one of the three proposed systems which were showing an alarming tendency to proliferate new versions. Judging by the number of systems now emerging in the field of direct-broadcasting from satellite and for wide-screen h.d.tv, perhaps it is time that a similar ban should be imposed. The basic problem is to decide whether "compatibility" with existing standards is or is not an essential requirement for possible world standards.
There is at least still time for consideration, with American broadcasters at the moment more concerned with financial than engineering aspects of future television. partly resulting from the financial difficulties that have followed company take-overs or from lighting off such take-overs. in which the process of issuing "junk bonds" seems to have ed to overcapitalization and sparked off a drastic round of cost-cutting. Yet the increasing practice of using electronic production rather than film for some of the major American drama series and subsequent up-conversion to 625 lines does underline the need for an improved electronic production standard, whether or not this is the 1125 -line 60 Hz standard that has been opposed by European broadcasters. falthough German hroadcasters. but not the German Bundespost. have committed themselves to support of 1125 as a production standard).

William Dobbie of British Telecom Research is proposing a new MIAC system. designed for optimum bandwidth efficiency. which would allow two programmes of conventional quality to he transmitted in a single DBS channel, or alternatively would provide options for a single widescreen h.d.te transmission. In the LSA, Faroudja Laboratories have developed a technique for
improving the images of 525 -line NTSC. Dr William Clenn is advocating an h.d.tv system compatible with NTSC which could be transmitted with the aid of an extra 3MHz channel on terrestrial networks. Richard Iredale (1)el Ray Group) has a proposed HID-NTSC system that would be fully compatible. depends on a "TriScan" concept of smart scanning combined with disital processing in the receiver and would permit a change of aspect ratio to 14:9. Europe is still divided between support for the MAC variations including $B-$ MAC. C-MAC. D-MAC (Eu-MAC), D2-MAC etc. with subsequent "evolutionary" progress to wide-screenh.d.tw.

Selling technology

1986 was a boom vear for the High Street consumerelectronics shops, with no less than 3.9 million colour television sets reaching the retailers and rental chains; with videocassette recorders recovering to the 2 million levels achieved a few years ago: and with CD record players up fourfold on 1985 to almost 640.000) units delivered to the trade. With so many major Japanese firms now having UK factories it is also not surprising that exports of the so-called "brown goods" are also running at record figures.

But the retail trade is far from happy, claiming that profit margins are far too low. lord Chapple, chairman of BREMA. claims "l find it depressing that such an efficient and dynamic industry finds it impossible to bold prices at semsible levels which would allow reasonable margins to all involved." This reflects the row that broke out following an anroouncement earlier this year that some manufacturers were beginning to cut the $£ 50$-or-so price differential between sets fitted with the flatter, squarer picture tubes, now amounting to about 70 per cent of the produc tion of large-screen sets, and those with conventionally shaped picture tubes.

The BREMA chairman believes that technological innovation should be used to induce the public to pay "more reasonable" prices, quoting the example of
teletext. Yet my recollection of the early struggle to establish teletext as a viable operation is that it nearly died the death of public apathy until the Department of Trade \& Indastry stepped in. appointed Re Foot to promote the system energetically and induce the Treasurv to make, at least temporarily. financial concessions that enabled rental firms to charge virtually the same rentals as for remote-controlled sets not fitted with teletext decoders.

Then again. $B S B$, in planning to begin direct broadcasting from satellite by 1980, have widely publicized the figure of £20) as the likely "initial" cost of a suitable dish antenna plus the indoor unit including the MAC decoder. a decidedly optimistic figure that would not give much scope for "sensible margins". especially if the public came to expect that this would include installation costs.

Apart from the controversial digital audio recorders (DAT) which may finally aprear in High Street shops later this vear. another potential market that has yet to be developed is for consumer-priced electronic "stills" cameras. Casio have announced that they hope to launch the first such camera intended specifically for the consumer in the North American market very shortly. This camera uses the standard 2 -in videofloppy as standardized for professional cameras. This can hold up to 25 full frames or 50 fields of colour pictures. The Casio camera has an m.o.s image sensor capable of 280,0000 -pixel resolution, shutter speeds from one-eighth to one-thousandth of a second and the ability to take five fields continuously in one second. The camera will include the facility to playback on any television set (525-line models) without the need for a separate player unit.

The price in Japan is under £51\%.

Puzzles remain

The publication last November. coincicing with the many 50)year anniversary events, of the 500-page hook British Television

The Formative Years, by Professor R.W. Burns - was clearly
intended, and seems likely to remain. the definitive study of British television from the first Baird experiments in 1923 to the confirmation of the MarconiEMI 405-line system as the UK standard for Alexandra Palace in Fehruary 1933. It covers in considerable detail the 1926 to 1934 struggle by Baird to make 30-line television broadcasting the basis of a viable industry, against the well-founded opposition of the $B B C$. At first the BBC were supported in opposing Baird by the Post Office engineers, who also formed the executive side of the regulatory body. But then, following the success of Baird in obtaining political support and the belief of the Post Office's legal advisors that the then Wireless Telegraphy Acts did not cover the transmission of visual images. the Post Office attitude hecame increasingly ambivalent and in the end they virtually forced the BBC, alheit reluctantly, to agree to provide transmitters for experimental 30 -line transmissions.

Professor Burns has drawn widely, although at times rather selectively, upon the BBC and Post Office archives. But 1 wonder if 1 am alone in feeling that he has left a few important questions unaswered.
For example, how did Professor E. Taylor Jones come to write such an extraordinarily favourable report in the highly respected journal Nature (18 June. 1927) of the crude London/ Clasgow land-line demonstrations, writing "The image was perfectly steady in position, was remarkably free from distortion and showed no sign of the streakiness which was, I believe. in evidence in the earlier experiments... My impression after witnessing these demonstrations is that the chief difficulties connected with television have been overcome by Mr Baird and that the improvements still to be effected are mainly matters of detail." It is extremely difficult to helieve that this support fairly represented genuine results achieved in these hurriedly set up 1927 demonstrations. Was Professor Jones fooled? And if so who was responsible for "rigging" the demonstration?

Television Broadcast is written hy Pat Hawker.

01-208 1177 Technomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

AMB15 BBC MASTER (* tree soltware $£ 385$ (a)
AMB 12 BBC MASTER ECONel 5299 (a)
ADC08 512 Processor ADF 14 Rom Cantidge BBC MASTER COMPAC
Free bundied software within price
SYSTEM 1128 K Sngle 640K Dive and bundled sotware C385 (a)
SYSTEM 2 System it with a 12 " Hi Res RGB Monior $£ 469$ (a)
SYSTEM 3 ystem 1 with a 14^{*} Med Res RGB Monit $£ 599$ (a)
Second 35 Drive Kit $£ 99$ (c) Extension Cable for ext $525^{\text {(drive }} £ 10$ (d)
View 3.0 User Guide 510 (d)
ADF S ROM for Buin (d)
1770 DF S
ACO RN ZB (for 8 with 1770 DFS \& B Plus L26 (d)
MULTIFORM Z80 2nd Processor $£ 289$ (D)

120 ROM L15 (d)

 TZDP 240: ZEP 100 with Technomatic PD800P dual drve with buitrin monitor stand
META Version III - The only package available in the micro market that will assemble 27 different processors at the price offered. Supplied on two 16 K oms and two discs and fully compatible with all BBC models. Please phone for comprehensive leaflet $£ 145$ (b).

We stock the full range of ACORN hardware and firmware and a very wide range of other
peripherals for the BBC For detailed specificailions and pricing please send for our leaflet

PRINTERS \& PLOTTERS

EPSON	
FX800..	¢329 (a)
Fx1000	[449 (a)
EX800	¢409 (a)
EX 1000	5595 (a)
LQ800 (80 col)	¢439(a)
LQ1000.	¢609 (a)
LQ2500	[795 (a)
TAXAN	
KP815 (160 cps)	¢249 (a)
KP915 (180 cps)	[379 (a)
JUKI	
6100 (Daisy Wheel).5310 (a)
NATIONAL PANASONIC	
KXP1081 (80 col)	¢169 (a)
KX P 3131 (38K buffer)	E249 (a)
KXP3132 (32K buffer)	¢249 (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons avallable for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $9.5^{-} \times 11^{-} £ 13$ (b) 2000 sheets $14.5^{-} \times 11^{1} £ 18.50$ (b)
Labets per 1000 s: Single Row $3^{\prime-} \times 17 / 16^{\circ} £ 5.25(\mathrm{~d})$ Triple Row $2.7 / 16^{*} \times 17 / 16^{\circ} £ 5.00$ (d)

MODEMS

All modems carry a full BT approval MIRACLE TECHNOLOGY WS Range WS4000 V2 1/V23 (Hayes Compatible, Intelligent, Auto Dial/Auto Answer). WS 3000 V21/23 Professional As WS 4000 and with BELL standards and battery back up for memory.
WS3000 V22
but with 1202 Professional As WS300 V21/23
WS3000 V22 bis Professional As V22 and
2400 baud full duplex.
£585 (a)
The price of WS4000 and WS3000
modems includes a COMMSTAR \|ROM and BBC Data Cable.
WS2000 V21/v23 Manual Modem. DATA Cable for WS series/PC or XT Auto Dial Card
Auto Answer Card
WS2000 SK I Kit.
This offer can only apply if it is specified at the time of placing your order for the modem.

SOFTY II
This low Cost inlellyent eprom progiammer can program 27 16. 2516 . 2532. 2732. and with an adaptor, 2564 and 2764 Displays 512 bye
page on
TV
and
and

SPECIAL OFFER

264-25 £3.20 (d);
27128-25 £3.50 (d)
$27256 £ 5.50$ (d);
27512 £9.00 (d);
6264 LP-15 £2.80 (d)

RT256 3 PORT SWITCHOVE ERIAL INTERFACE 3nputil oulput of 1 input3 outpu
manual channel selection. Inouv output baud rates. indepenendently selectable 7 Dive bin. ododeve
parity Hardware ol soltware
 handshane
powered
pb buffer
iniernal Dutiter tor most Epson
printers. Easy to install Inst. Supplied
PBiz8
128 K ${ }^{2} 375$ (b) . 99 (c)

I.D. CONNECTORS			
No of ${ }^{\text {(SPD}}$	cooodble		
way	Plua	acle	Corn
10	${ }^{1485}$	- 125	120 p 1950 180
${ }^{26}$	1750	1500	2400 300
		- ${ }^{1600}$	320 p 340 p
	${ }_{235}{ }^{225}$	${ }_{2000}$	340p
D CONNECTORS No of Ways			
male: ${ }^{\text {a }}$ (25			
Ang Pins	120	180	230350
Solder	${ }^{60}$	85	125170
IDC	175	275	325
FEMALE:			
St Pin 1001400210380			
Ang Pins	160	210	275440
Solder 90 130 195 195			
St Hood $\quad 90 \quad 95100$			
ScrewLock			

5.25" Single Drives 4050 switchable: ${ }^{\text {DISC DRIVES }}$
$5.25^{\prime \prime}$ Single Drive

3M FLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee. Discs in packs of 10 5 $1 / 4$ Discs

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs
ensures continued optimum periormance of the drives. $51 / 4^{\prime \prime} £ 12.50$ (d) $31 / 2^{\prime \prime}$ £ 14.00 (d)

Single Disc Cable $£ 6$ (d)
10 Disc Library Case $£ 1.80$ (d)
$50 \times 51 / 2^{\prime \prime}$ Disc Lockable Box 59.00 (c)

Dual Disc Cable 88.50 (d)
$30 \times 5^{1 / 2 / 2}$ Disc Storage Box $£ 6$ (c)
$100 \times 5^{1 / 2} 2^{\prime \prime}$ Disc Lockable Box E 13 (c)

MONITORS

RGB 14	MONOCHROME
1431 Std Res179 (a)	TAXAS 12 HI -RES
1451 Med Res................................. $\mathbf{\sum 2 2 5}$ (a)	KX117 12 Green P31 885 (a)
1441 Hi Res 2365 (a)	KX118 12"P39..
MICROVITEC 14^{*} RGB/PALAudlo	KX11912 Amber......................... $£ 90$ (a)
1431AP Std Res 199 (a)	PHILIPS 12" HI-RES
1451AP Std Res £259 (a)	BM7502 green screen $\mathbf{E 7 5}$ (a)
All above monitors available in plastic or metal case.	BM7522 amber screen............................... $£ 79$ (a)
MICROVITEC 20 2030CS RGB/PAL/Audio c380 (a)	ACCESSORIES
2040 CS RGB/PAL/Aduio 5685 (a)	Microvitec Swivel Base (DS4 only)c20 (c)
TAXAN	Taxan Mono Swivel Base with
	Clock.....................................22 (c)
	Philips Swivel Base
MITSUBISHI	B8C RGB Cable55 (d)
XC1404 14 Med Res RGB, IBM \& BBC	Microvilec $£ 3.50$ (d)
compatible $\mathbf{\text { 219 (a) }}$	Taxan £5 (d) Monochrome $£ 3.50$ (d)

UVERASERS

UVIT Eraser with built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmful UV rays.
It can handle up to 5 eproms at a time with an average erasing lime of about 20 mins. $\mathbf{C 5 9}+\mathbf{~} 2 \mathbf{p} 1$ p. For industrial Users, we otfer UV1 $140 \& 47+£ 2$ p $\&$ p. sers with handling capacity of 14 eproms. UV141 has a built in timer. Both offer full built in salety feafures UV1 40 £69, UV141 £85, p\&p £2.50.

EXT SERIAL/PARALLEL CONVERTERS

Mains powered converters

Serial to Paraliel
Bidirectional Converter

Serial Test Cable	Serial Mini Patch Box	Serial Mini Test
Serial Cable switchable at both ends allowing pin options to be re-routed or	Allows an easy method to reconfigure pin functions	Monitors RS232C and CCITT V24 Transmissions.
linked at either end - making it possible	wuthout rewuring the cable	indicating status with du
to produce almost any cable	assay Jumpers can be used	colour LEDs on 7 most
configuration on site.	and reused. $£ 22$ (d)	
Available as M/M or M/F \quad E24.75 (d)		Line. $\quad £ 22.50$ (d)

CONNECTOR SYSTEMS

EDGE		AMPHENOL CONNECTORS			
CONNECTORS		36 way plug Cenironics			
2×6 wav (commodore) ${ }^{\text {- }} 300$		way skt Centronics			
${ }^{1 \times 43} \mathbf{3}$ way 260 p - 24 way 700 p 36 way	${ }_{\text {260p }}$	PCB Mtg Skt Ang			
	190p	24 way 700p 36 way			
1x77 way		GENDER CHANGERS 25 way 0 type			
EURO CONNECTORS		Male 10 Male			
DIN 41612 Plug Ski		Male to Female	c10		
2×32 way SI Pin 2×32 way Ang Pin 3×32 way SI Pin 3×32 way Ang Pin $10 C \operatorname{skn} A+B$ IDC Skt $A+C$	230p 275p	Female to Femal	¢10		
	2600 300p	RS 232 JUM			
	375 p 400 p	RS 232 JUM			
	400 p	24. ${ }^{\text {a }}$			
	400p	${ }_{24}^{24 .}$ Single end Male	c5. ${ }_{\text {c. } 25}$		
For 2×32 way please specify spacing $(A+B, A+C)$.		${ }^{24}$ Female Female	10.00		
		${ }_{24} 24$ Male Male Female	¢9.50		
MISC CONNS 21 pin Scarl Connector 8 pin video Connector		DIL SWITC			
		4-way 8 -way	${ }_{150 p}$		

RIBBON CABLE			
	grey	metre)	
10 -may	00 p	${ }^{34}$-way	160 p
16 -way	${ }_{60 p}$	40.way	180 p
20-way	${ }_{85 p}$	50-way	2000
26-way	1208	64-way	280 p
DIL HEADERS			
		Solder	10 C
14 pin		40p	100p
16 pin		50p	110p
${ }^{18}$ pin		60p	-
20 pin		75p	-
24 pin		100p	150p
28 pin		160p	200p
40 pin		200p	225p

ATTENTION

Alt prices in this double page

 advertisment are subject to change without notice. ALL PRICES EXCLUDE VATPlease add carriage 50p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d)
£1.00

Advertisements are expected to conform to rules and standards laid down by the Advertising Standards Authority. Most do. The few that don't we'd like you to write in about.

And if you'd like a copy of these rules for press, poster and cinema advertisements, please send for our booklet. It's free.

> The Advertising Standards Authority. We're here to put it right.

ASA Ltd., Dept. Y, Brook House, Torrington Place. London WC IE 7HN

[^7]
Leetronex 87

The 24th Leeds Electronics Exhibition (Leetronex) takes place at the Department of Electrical and Electronic Engineering, University of Leeds, between 30th June and 2nd of July. With over 100 exhibitors and a programme of lectures, the organizers are aiming to re-establish it as the best electronics show outside London.

TThe exhibition was created in 1963 through requests from a number of electronics instrument manufacturers who wanted to demonstrate their equipment to the expanding higher education market. The equipment was shown to a selected audience of university staff. The event was so successfil that it was repeated the following year and Leetronix became established. It grew to a peak of several thousands of visitors from all over the UK in 1979.
The economic recession of the early 1980s reduced the number of exhibitors and visitors. Last year, the Department of Electrical and Electronic Engineering took over the running of the show and made a major effort to re-establish it as "the best electronics
exhibition outside London." The 1986 exhibition increased its attendance by nearly 50% over the previous year. The presence of over 100 exhibitors this year suggests that their efforts have been rewarded.

The re-introduction of a programme of seminars, organized by the Yorkshire branch of the IEE, also helped to restablish the status of the show, already the longest running electronics exhibition in the UK.
The exhibition has several qualities that distinguish it from other shows; Any profit is used to improve the undergraduate teaching facilities; last year's profits were used to enhance the computer teaching laboratory. The show is supported by a number of leading national and international com-
panies and offers a link between industry and higher education.

PROGRAMME OF LECTURES

Lectures, sponsored by the Department and the Yorkshire Centre of the IEE, will take place in the Lecture Theatre (room 192) on the first floor.
Tuesday 30th June
1100h
The changing technology of electronic components and assemblies.
H.W. Ellis, Mullard Ltd.

1400h
Customized design of integrated circuits.
P. Forshaw, Ferranti Microelectronics Centre.
Wednesday 1st July

1100h

DBS receiver architecture and technology.
D.W. Walton, Thorn-EMI Ferguson Lid.

1400h

Satellite tv - the present and the future.
J. Hazell, British Telecom.

Thursday 2nd July
1100h
Modern tools for microprocessor software development.
L.M. O'Carroll. Computer engineering group, DE\&EE, University of Leeds.

4Mbit chip uses 'trench cell'

The first laboratory samples have been produced for a dynamic ram chip that can store four million bits of data. Produced by Siemens in collaboration with Philips, the 4 Mbit d-ram uses a 'trench cell' in which a trench only one micron wide is etched four microns deep into the silicon. Each trench cell, with a capacitance of 40 fF , stores one binary digit and occupies an area of only $5 \mu \mathrm{~m}^{2}$.
To obtain the more than 4 million memory cells on a silicon chip, 450 process steps in c-mos technology are necessary. Compared with the 1Mbit d-ram ($54 \mathrm{~mm}^{2}$), the storage capacity of the 4 Mbit device is quadrupled without doubling the chip area (91 mm^{2}). Typically the 4 Mbit chip can store the equivalent content of about 250 pages of typewritten text.

The Siemens part of the project has been supported by the Cerman government to the tune of DM240 million. Production is expected in 1989.

Engineers register broadened

The Engineering Council has set up a register for people who have gained either a degree, a Higher National Certificate or a Nationa! Certificate in engineering as the first step towards becoming a qualified engineer.

Up to now the Council, which has 300,000 Chartered Engineers, Technician Engineers and Engineering Technicians on its official register, has registered engineers in those three categories only after they have completed three stages: achieved the exemplified academic standard (known as Stage 1), completed an approved training period (Stage 2), and gained acceptable experience and professional responsibility (Stage 3). Now the Council's board for engineers' registration has approved the first list of candidates for registration at the Stage 1 academic level.

Professor Jack Levy, the Council's director for the engineering
profession, said: "We have the largest professional register of members in the United Kingdom, but the country needs many more to help us improve the competitiveness of British industry. We have already persuaded the Government to provide more engineering student places in universities and polytechnics but we are pressing for even more."

He stresses the importance of registering as soon as possible after gaining a recognised degree, Higher National Certificate or National Certificate qualification so that they quickly proceed to becoming qualified engineers in one of the three categories. The Council and the professional engineering institutions advise and encourage young entrants.
"Our titles and designatory letters of Chartered Engineer (CEng). Technician Engineer (TEng) and Engineering Technician (Eng Tech) are recognised guides to employers and others of the competence and standards achieved by registered engineers." says Prof. Levy. "We now urge the larger numbers who are completing their education in engineering and technology to register with us." Engineering Council, 10 Maltravers Street, London WC2R 3ER. Tel: 01-240 7891 .

Domesday extensions

Development has been designed to extend the applications of the interactive video system and Domesday discs developed by the BBC, Philips and Acorn Computers.

A new videodisc provides the users with a practical guide to ecology, taking as its basis the simulation of a Devon nature reserve. The 'Ecodisc' enables users to draft a plan for management of the reserve and its activities by discovering. learning and applying ecological knowledge and concepts.
Floppy-disc software offers enhanced facilities for the use of the Domesday discs. One enables the extraction of relevant pictures and information which can then be displayed independently. In autumn a further software package will enable users to integrate their own information with
the maps included on the discs.
Next year, an additional disc for the Domesday system will contain detailed maps down to street level with updated and new data sets for specific sectors of industry and commerce.

Spray-on superconductors

Scientists at IBM have found a way to spray-paint large and complex surfaces with hightemperature superconductor material. This raises the prospect of inexpensive, easy-to-apply magnetic shielding. computer wiring and other applications that might benefit from its properties and workability.

IBM has coated items of various sizes using an industrial technique called plasma spraying. Plasma spraying quickly heats a material to thousands of degrees and instantly deposits the substance on a surface where it resolidifies. After coating. objects are reheated to anneal the surface. At this stage the coating becomes superconductive. The material's superconducting properties were discovered last year, and the researchers helieve they are the first to quickly and easily coat complex shapes such as pre-formed wires, contoured and flat surfaces and even tubes made from ceramic, quartz and metals.
The materials, combinations of yttrium, barium and copper oxides, resemble flat black paint. After annealing, they become superconducting in the temperature range of liquid nitrogen 'warm' enough to be practical for many scientific and industrial uses. (Liquid nitrogen boils at 77K.) Most materials and wires that IBM researchers have coated become completely superconducting at temperatures as high as between 60 and 82 K . In addition to their ability to pass current without resistance, superconductors are impervious to magnetic fields, and might serve as an easy-to-apply and economical magnetic stielding. Superconducting wires for computer chip packages might also be made by plasma spraying. Coated thin lines have been added to ceramic substrates used for integrated circuits and microscopic holes have been successfully coated.

EXHIBITIONS

 \& CONFERENCES
22-26 June 1987

Laser 87 Opto-electronics, microwaves.
8th International congress and exhibition. Munich Trade Fair Centre, F.R. Germany, MMA, Messegelande, Postfach 121009 , D-8000 Munchen. FRG.
23-25 June 1987
KBS 87 \& Software Tools 87. Knowledge-based systems and software. Wembley Exhibition Centre, London. Online International, Tel: 01-8684466.
24-26 June 1987
APRS Show, (professional sound recording) Olympia, London.
24-27 June 1987
SMT 87 Berlin: Surface mount technologies, International Congress Centre, Berlin. Details from AMK Berline, Postfach 191740 , Messedamm 22, D-1000, Berlin 19, FRG.
26-30 June 1987
BKSTS 87, 10th international film and tv technology conference and Exhibition, Metropole Hotel, Brighton, BKSTS. Tel: 01 2428400.

30 June - 2 July
Leetronex ' 87 the 'premier exhibition of the North' Leeds University. Tel: 0532431751 ex 328. 30 June - 3 July
Exhibition of electronic musical instruments and systems at the London College of Furniture, Commercial Road, London E1. 4-16 July
Electronic Design Automation Show, Wembley Exhibition Centre.
7 July 1987
World final of the Micromouse competition. Maze-solving, self propelled computers will be running round the IEE, Savoy Place, London El at 1730h. Further details, and rules and entry forms, from Andrew Wilson at the Institution. Tel: 012401871 Ext. 260.
28 August-6September
Funkausstellung; International audio and video fair Berlin (incorporating MediaForum), International Congress Centre, Berlin. Details from AMK Berlin, Postfach $19 \cdot 17$ 40, Messedamm 22. D-1000, Berlin 19. FRG.

15-18 September 1987
Design Engineering Show, NEC, Birmingham, Cahners Exhibitions. Tel: 018915051.
EED 87, electronics in engineering design, NEC, Birmingham, Cahners as above.
Test and transducer; international conference and exhibition. Wembley Conference Centre, London. Trident International, Tel: 08224671

X-rays can preionize lasers

The use of X-rays to pre-ionize the carbon dioxide gas of highpowered pulsed lasers is being investigated at the British Aerospace Sowerby Research Centre.

Conventionally, gas preionization is achieved by subjecting the gas to ultra-violet radiation produced by spark discharges triggered off within the cavity of the laser. The research centre has produced the same effect by subjecting the gas to X-rays instead of ultra-violet radiation. Among the advantages of this is that greater volumes of gas can be ionized, enabling lasers of much higher intensity to be developed.

The area where the preionization occurs can be determined with greater precision.

leading to more efficient energizing of the laser. Laser tubes can be simplified, as only two electrodes are needed, and the laser gas remains purer as $u-v$ radiation can cause the gases to dissociate.

Experimental CO_{2} laser with x ray pre-ionization is claimed by British Aerospace's Sowerby research laboratories to demonstrate greater laser efficiency and less gas dissociation.

EXHIBITIONS
 \& CONFERENCES

23-27 September 1987
PCW 87; 10th Personal Computer World Show, Olympia, London.
29 September-1 October 1987 NAV 87. Navigation data, dissemination and display conference and exhibition, Heathrow Penta Hotel, Organized by the Royal Institute of Navigation. Tel: 01-5895021.
Semiconductor International; design, assembly, test, materials and chemicals, NEC Birmingham, Cahners Exhibition, Tel: 01-8915051.
5-8 October 1987
HDTV 87; International colloquium, Ottawa, Canada. Details from HDTV colloquium. Journal Tower North, 300 Slater Street, Ottawa, Ontario K1A 0CB, Canada.

Technological achievement

A high proportion of this year's Queen's Awards for Technology have gone to electronics companies.
Integrated switching. $A B$ Automotive Products for their processor-controlled switching system for use in cars. The system for the Jaguar XJ40 has over 200 auxiliary items that require switching.
ISO network system. BICC Data Networks for the development of the Isolan system of hardware and software links for a localarea network that conforms to the ISO standards. The system allows the mixing of coaxial and optical fibre cables within one network.
Computer-controlled looms. Bonas Machine Company for computer-aided patterning for Jacquard fabric weaving looms. Designs can be programmed in a few hours compared with four days for the old punched-card system.
Radio-controlled switching. The BBC in collaboration with the Electricity Council for remote switching of tectricity time switches. Low-frequency signals are added to the BBC's long and medium-wave broadcasts without affecting the audible signals.

Heat-detection system. Royal Signals and Radar Establishment in collaboration with EEV tubes for the development of heat detecting video cameras. The pyroelectric vidicon tube is capable of detecting temperature differences as little as $10^{-3} \mathrm{C}$.

Night vision (twice). RSRE/EEV are also responsible tor the award-winning night-vision system for aircraft, using new image intensifier tubes. Also The Royal Aircraft Establishment for their night vision system uses infrared sensors, night-vision goggles and head-up visual displays.

SMC autoplacement. Dynapert Precima for automatic placement of surface-mounted components. Machines can place up to 6000 components in an hour and can be programmed to handle up to 120 different components types.

Oil reserve simulation. Exploration Consultants of Henley on Thames for Eclipse computer simulations of gas and oil reserves.

Surface-mounted p.c.bs. Ferranti Computer Systems for metal-core multilayer p.c.bs that avoid the problems of thermal expansion and heat dissipation.
Computer-controlled cam lathe.
The Litton UK camshaft system automatically compensates for grinding-wheel wear and
achieves much higher accuracies than previously possible.
CD mastering. Nimbus Records for developing their own system of mastering compact discs. involving coating the masters with photoresist $0.12 \mu \mathrm{~m}$ thick. encoding of digital signals to control the laser writing beam. construction and control of the mastering lathe and control of the plating process. It cost about a tenth of the alternative system. exceeds the capabilities of that system and meets the expected requirements of the next generation of CDs.
Colour radar. Racal Marine Data for a digital scan converter in colour radar displays. It processes derived from a conventional radar scanner to be displayed in a high-resolution colour tv format. The system combines highspeed computing, video processing and memory management into a single small unit.

Self-calibrating data recorder. Racal Recorders for its Storehouse tape recorder for data acquisition. Its automatic calibration system allows the record and replay circuits to be set up in less than ten minutes instead of the hours previously needed.
Optical-fibre lasers. STC Defence Systems for 1300 m lasers for optical fibre communication. The devices allow repeaters to be 30 km apart at a data rate of

565Mbit/s, i.e. twice the range and four times the speed of former devices. They are claimed to be the first suitable for submerged use.

Aircraft simulators. Singer Link-Miles Ltd for functionally distributed simulation system for aircraft training. Processors are linked to provide real-time computing power beyond the scope of super-mini computers. the system is used in the first simulator for the new Boeing 747-400.

Network manager. Tech-Nel Data Products Lid, of Banbury. the NMX Network Management Engine which integrates hardware and software systems knowledge for fault detection, restoring, and diagnostics in a single processor-based fault-tolerant data communications.

Magnets for spectrometers VC Analytical Ltd. for the development of laminated magnets for fast-scanning mass spectrometers. Existing magnets offered limitations in meeting the demands of capillary column gas chromatography. The company developed lamination and machining techniques to produce magnets assembled from 100 or more 0.3 mm thick laminations. They meet the new requirements of medical and environmental biochemical analysis equipment.

Advertisements accepted up to 12 noon June 26 for August issue

DISPLA YED APPOINTMENTS VACANT: $£ 23$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 5$ per line, minimum $£ 40$ (prepayable) BOX NUMBERS: $£ 11$ extra. (Replies should be addressed to the Box Number in the advertisement, c'o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS) PHONE: SUSAN PLATTS, 01-661 3033 (DIRECT LINE)

Cheques and Postal Orders payable to REED BUSINESS PUBLISHING and crossed

Herts/N. London

THE UK's No. 1 ELECTRONICS AGENCY ELECTRONICS ENGINEERS if you are looking for a job in DESIGN, FIELD SERVICE, TECHNICAL SALES or SOFTWARE ENGINEERING.
Telephone NOW for one of our FREE Jobs lists or send a full cv to the address below. Vacancies throughout the UK to $£ 18000 \mathrm{pa}$ Capital Appointments Ltd., FREEPOST London N17 OBR. Please send me your list for Engineers Name (WW) Address. \qquad
Post Code

01-808 3050-24 HOURS

Professional Career Opportunities

The Easy Way to look for your new job from the comfort of your own armchair. Our well qualified consultants will carefully match your requirements against appropriate vacancies.

We have many clients seeking Engineers and Technicians at all levels and we are particularly interested in hearing from you if you have experience in the following:

- Technical Sales
- Quality Assurance
- ATE Design
- Technical Authors - Test Engineering - Maths Modelling

Your next step is to complete and return the attached coupon or telephone SIMON CANHAM on 044247311 or one of our duty consultants on 0442212650 during evenings or weekends
Execulive Recruitment Services
 Maylands Avenue. Hemel Hempstead. Herts. HP2 4L.T

(Mr/Miss/Mrs) ADDRESS

POST CODE

TEL NO

Type of position sought

Willing to relocate? Yes/No
Preferred locations
ref: WW

CLIVEDEN

PROCESSOR BASED WEIGHING EQUIPMENT
Test \& repair of food weighing systems. ع8,000 Hampshire
CELLULAR TELEPHONE SYSTEMS Experience of tault-linding analogue and digital systems. Training offered on a T E £12,000
TELEPHONE EXCHANGES
Surrey
Service and maintain PABX systems
throughout southern England.
to $£ 10.000+$ car
Berkshire
TRAFFIC AUTOMATION
Fault find and repair of digital control
systems throughout the UK
ع10,000 + car
Middlesex
COMPUTER PERIPHERALS
Repair a wide range of disc and tape
res.
8,000 Berkshire
DOCUMENT READER SYSTEMS
Experience in the repair of digital and
microprocessor equipment both in the U.K. and overseas
£12,000
Hampshire

Hundreds of other Electronic and Computer vacancies to £15.000 Phone or write:
Roger Howard C.Eng. M.I.E.E.M.I.E.R.E.
CLIVEDEN RECRUTMENT
92 Broadway, Bracknell, Berkshire RG12 1AR Tel: 0344489489

THE HATFIELD POLYTECHNIC SCHOOL OF NATUHAL SCIENCES. Senior Technician SCIENCES. Senior Technician -
Electronics. Salary $£ 7.536-£ 9,441$. To be responsible for a small Electronics Workshop. The successful candidate mus be an experienced electronics technician capable of fault-finding down to component level and with a genera knowledge of scientific equipment. Starting salary dependent upon qualifications and experience. Closing date: 15 July 1987 Application forms and further details from the Staffing office. The Halfield Polytechnic PO Box 109 Hatfield Herts Polytechac. PO Box 109. Hatield, Herts 19802 Plear telephone Harkeld (07072)

Project Engineering: The Mercury Challenge

In under five years Mercury Communications, part of the world-wide Cable and Wireless group of companies, has progressed from original concept to a position where it offers a viable alternative telecommunications service. But it does not end there. Today we are still committed to continued growth involving further, major, investment in facilities.
With our total commitment to digital technology, high capacity optical fibre cable and microwave links we can offer the kind of professional challenge you will find hard to equal today.

PROJECT ENGINEERS

Our London based team now has a few vacancies for Engineers to meet the challenge of our technology and fully utilise their skills. Reporting to a Senior Project Engineer your role will include working with the Design Function both on design work and equipment details. dealing with suppliers in conjunction with other departments on procurement matters and producing progress and status reports.

RADIO SYSTEM COMMISSIONING ENGINEER

Our London team has vacancies for Field Based Engineers
Your main role will be the commissioning of complex digital radio systems and testing of alarms on a SCADA network throughout the UK Extensive travel will be necessary.

Experience - five years' telecommunications experience, a recognised technical qualification and knowledge of digital systems, ideally with hands on experience of microwave power and radio systems. Good communication skills, commercial awareness and time spent in a project environment would be useful. Current driving licence is essential.
In addition to an attractive negotiable salary there is an excellent benefits package and outstanding prospects.
Please send a full CV to Susan Tomlinson,
Mercury Communications Limited, St. Martin's House, 140 Tottenham Court Road, London WIP 9LN,
or for any further information call on 01-387 9191, ext. 309.

Hardware/Software/Systems £9,000-£25,000

As a leading recruitment consultancy we hove a wide selection of apportunities for high colibre Design. Development, Systems and supporting statt throughout the UK If you hove experience n any of the following then you should be talking to us for your next career move

ARTIFICIALINTELLIGENCE * IMAGE PROCESSING *ANALOGUE DESIGN MICRO HARDWARE \& SOFTWARE \# GUIDED WEAPONS * C \# PASCAL ADA * RF \& MICROWAVE *ELECTRO-OPTICS \#SIMULATION* C3 REAL TIME PROGRAMMING * SYSTEMSENGINEERING * ACOUSTICS SONAR * RADAR * SATELLITES * AVIONICS * CONTROL \# ANTENNA VLSI DESIGN

Opportunities exist with National, International and donsultancy companies offering excellent salaries and coreer advancement

To be considered for these and other requiremenis contact John Spencer or
Stephen Mor ey or forward a detailed CV in complete cortidence quating Ref. WW/66.
STS Recruitment, 85 High Street, Winchester, Hants SO23 9AP. Tel: (0962) 69478 (24 hrs)

ELECTRONICS WORKSHOP computers. The ideal candidate will have TECHNICIAN (Grade 5) required in the had a recognised apprentice and at least 2 University of Reading, Department of Psychology. From mid-September 1987. The successful applicant will be required to advise staff and students on electronics problems and to design and construct a problems and to design and consiruct a Departmental research and teaching activities depend heavily on the use of
years of varied apprenice in alleasics. Knowledge of BBC BASIC ard of 6502 would be an advantage. Salary scale $£ 7696$ to $£ 9086 \mathrm{~b}$ p.a. Application form available from the Personnel Officer. University of Reading. Whiteknights, PO Box 217 Reading. Whiteknights, PO Box 217 , 875123 ext 220 . Please quote Ref 304 466

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc ELECTROLYTIC CONDENSERS, SPEAKERS, CONANECTING WIRE, CABLES

SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London, N. 12 (5 minates Irom Tally Ho Corner)

INVERTERS

DC-AC High Power
Gardners sq. wave type GR75108 IIP: 50V DC 85A
O/P: 240V 50Hz 4kVA £300 Also 2kVA £200-1kVA£150
H\&D Sinewave 600 W IJP: 24V DC
O/P: 230V 50Hz 600VA £240
CVT's: Cetronic Reguvolt 6kVA £290: 5kVA £250;4kVA £220; 2kVA £160.
GREENWELD ELECTRONICS LTD
443 Millbrook Road, Southampton. SO1 OXH. Tel: (0703) 772501/783720

BOX Nos

Box number replies should be addressed to.

> Box No
> c/o Electronics \&
> Wireless World Quadrant House,
> The Quadrant,
> Sutton,
> Surrey SM2 5AS

(Tu)島
 University of Wales MSC in Electronic Engineering

Analogue and Digital Systems; Computer Engineering; Signal Processing;
Communication Systems; Information Engineering; Control and Instrumentation; Medical Electronics; Integrated Circuits; Power Systems.

Diploma in Electronic Engineering

(successful completion allowing entry to the MSc scheme)
Circuit Design; Signal and Data Processing; Digital Systems;
Communication and Radar Systems; Microprocessors and Computer Controlled Systems.
Applications are invited for places on the above full-time, one-year courses commencing in October 1987.
Further details and application forms may be obtained from:
The Assistant Registrar, UWIST, PO Box 68, Cardiff CF1 3XA

[^8]
ARTICLES WANTED

WANTED

Test equipment, receivers valves, transmitters, com ponents, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB 0532435649

NANTED

STEWART OF READING
110 WYKEHAM ROAD, READING RG6 1PL. TEL: 073468041
TOP PRICES PAID FOR ALL
tYPES OF SURPLUS TEST
EQUIPMENT, COMPUTER
EQUIPMENT, COMPONENTS etc. ANY QUANTITY

AUCTIONS

On Friday 10th July at 12:00 noon JOHN RUSSELL \& CO will hold an imporant
SALE BY AUCTION of electronic testing \& recording equipment \& Computer development systems at: 3 Park Road. Teddington Middlesex. Spectrum analysers, signal analysers \& generators Comms cable \& mains test equipment. oscilloscopes \& accessories. recorders, etc, etc. Tektronix. Hewlett Packard, W \& G, etc. View on site 10.4 Weds 8 th \& Thurs 9th © 01-640 4424 for catalogues. Auctioneers. John Russell \& C 221 Western Road, London Sw19.

> FOR CLASSIFIED ADVERTISEMENTS RING SUSAN PLATTS 6613033

GOLLEDGE
ELECTRONICS

BRIDGES waveformn/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters, Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true RMS, audio, RM, deviation. Tel:040 376236. (2616) QUARTZ CRYSTALS 3 ${ }^{1 / 2 "}$ " FLOPPY DRIVES OSCILLATORS AND FHITERS of MITSUBISHI top quality new 3 all types. Large stocks of standard millisecond 80 track, only 32 mm high, items. Specials supplied to order. standard interface, will directly interface Personal and export orders welcomed - with PC's and will give 720K per disc. Very SAE for lists please. OEM support thru: quiet. Guaranteed in makers packing design advice, prototype quantities, unopened. These are the best quality drives production schedules. Golledge available. $£ 80$ with full specs. Call 010353 Electronics, Merriott. Somerset YAlio 2188 8231. Access, Visa, Mastercard 5NS. Tel: 046073718 . (2472) Eurocard.

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
(1391)

G.W.M. RADIO LTD

4042 Porlland Road Worthing Sussex. Tel: 090334897

P.C.B. ARTWORK DESIGN SEIRVICES. All requirements from:- SSI DS IML Screens \& resists circuit - logic (redrawing AR) to:- Lists, prototypes ε static tests. Liaison W. R.T. observed errors problems. D.F.Busk Hillsdale, Green Lane, Letchworth SG6 13/8D (0462)682154. 456
P.C.B's DESIGNED. Artwork capacity, available for single double sided. P.'I'H. and multi-layer P.C.B.s, also silk screens, solder masks. labels etc. For C.A.D.Photoplot, artwork \& photography, contact Mr. Willians. 49 Westbourne, Honeybourne, Evesham. Wores, WR11 5PT 'Tel? 0386832152.

409

TURN YOUR SURPLUS i.cs ransistors etc. into cash. immediate settement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES HARIJING \& CO, 103 South Brink, Wisbech, Cambs. 0945584188.

PIINTED CIRCUIT BOARIDS single and double sided manufactured to your specifications. We offer quality and fast service isame day on prototypes) at very keen prices. We supply copperclad material cut to size Artwork service available. Mondo Artwork service avarable. Mondo Twickenham, Middx. 01-8915412. 413

DESIGN, PROTOTYPING and BATCH PRODUCTION

Simple assemblies, PCBs, modules, or complete units Wide range of circuit techniques and power levels.
Support and advice service We offer a careful professional
service. at a careful price
T\& B Services,
18 Ashlin Grove, Lincoln, LN1 1LE. (0522) 39708

Please telephone or write for FREE HELPFULINFORMATION.

WANTED FOR CASH, SURPLUS AND REDUNDANT BROADCAST EQUIPMENT
Particularly medium-wave transmitters, FM transmitters, studio links (STL), studio furniture, affects, cart machines, AA3 carts. COMP SHOP HI-TECH 311 LONDON ROAD CAMBERLEY, SURREY Tel: 027629219

BIIINATON VITVES

NEW VALVES \& TRANSISTORS - Huge
range slocked. Rarities our specialit. Phone fo range slocked. Farities our specialit. Pho
ummediate qLotation, on any type. Sit for catalogue.
USEO VALVES - Tested. working sean, 28
day guarantes: KT66 GEC 56.6 CHE (Mazda day guarantes; KT66 GEC E6. 6CME (Mazda
CV4055) $£ 3,12 E 1 \varepsilon 6.90$, CV4024 M llard (spe OECCB1) 80. CV4003 Mullard (sp) Cial O ECC82) 700 . All excluding VAT We will buy vaives. compete shop clearance etc USED TEKTRONIX 465 DUAL TRACE perfectly, witt probes and lid $£ 750$ d alivered excluding VAT
NEW ELECTROLYTIC CAPACITO TS - Goulc $10,000 \mathrm{MFD}$ a 50 V , 18.7 Amp disct arge. Spe Our pice \&4 : VAT delivered.
NEW AUTO RANSFORMERS -
In-0 115-200-210-220-230 $240-25 \mathrm{C}$
Out-115V (@) 13.05A, or $200-250 /$ (aic 75 s §25 deliverec excluding VAT.
Many transtormers in stock, constant voltage autos. multhaps etc. etc. List avallable during July or phone yout enquing
delivered.
Mixed parcel of IC. transistors, relays. capacitors, resistors, potentiomelers, switches,
$25 \mathrm{Kg}-\mathbf{\Sigma 5}+$ VAT deliveled, $10 \mathrm{Kg}=\S 10+V A T$ delivered
Billington Valves, 39 Highlands Road Horsham, W. Sussex RH13 5LS.
Tel: $0403210729 ;$ Fax: 0403210108 ; Telex: 87271 PROOSS G
Callers weicome by appointment We accept Barclaycard. Govt. and export orders
welcome.

TEST EQUIPMENT

FOR SALE \& WANTED Buyers and Disposal Officers contact
COOKE INTERNATIONAL Unit 4, Fordingbridge Site Main Road, Barnham Bognor Regis
West Sussex PO22 0EB Tel: 0243 685111/2
Stock list available, send 500 to cover p\&p.

UK MADE HIGH QUALITY LOUDSPEAKERS AVAILABLE Dome Tweeters, Dome Mid-Range Woofers and Sub-Woofers. Uniquely Engineered Aluminium Voice Coils
For further information, please phone: 0473719212

INTEGRATED CIRCUITS: Large quantities for sale guaranteed in makers packing. Top quality Hitachi HM65256AP. 20 pseudo static RAM. NEC D80C42C programmable microprocessor, INTEL P80C88 CMOS microprocessor. SMC FDC765AC floppy disk controller. These -DC765AC floppy disk controller. These are all from discontinued product of top quality manufacturer. Call 01035321

Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Electronics \& Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £5 PER LINE. Average six words per line Minimum £40 (prepayable)
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 11$
- Cheques, etc., payable to "Reed Business Publishing" and cross "\& Co." 15\% VAT to be added.

NAME

ADDRESS

MATMOS LTD, 1 Church Street, Cuckfield, West Sussex RH17 5Jz
 Tel: (0444) 414484/454377
 COMPUTER APPRECIATION ${ }_{111 \text { Northgate, Canterbury, Kent CT1 1BH }}$
 Tel: Canterbury (0227) 470512. Telex: 966134 COMPAP G

PLESSEY Model T24 V22V22 bis MODEM. Compact automatic modem leaturing the lalest technology and the hignesi possible data rale over the ordinary phone syslem Offers: both V22 and V22 bis compattbility, 12002400 Baud operation with auto bit rate recognition, operation on both
ordinary phone (PSTN) and private circuit (PC) auto call and auto answer duplex ordinary phone (PSTN) and private circuit (PC). auto call and auto answer, duplex operation
allowing simultaneous transmission and reception of data at 2400 Baud in both directions over single phone line, compact size (9" $\left.\times 9^{\prime} \times 2^{1 / 2} 1\right)$ BT approved. BRAND NEW in both directions over a VICTOR SpeedPac IBM PC ACCELERATOR. Hall-wide 80286 accelerator Card for IBM PC and compatubles With 8kbyte cache memory and 7.2 MHz 80286 processor Offers AT/Personal System 2 performance for a iraction of the cost. Runs up 107.5 times faster BRAND NEW
ITT SCRIBE III WORD PROCESSING SYSTEM ITT SCRIBE III WORD PROCESSING SYSTEM. Professional system originally selling at around $£ 6,000$ without printer. Now oftered with software included and a variely of differing
optons (including hard disc. comms, etc) available. This system is avallable from us ALL BRAND NEW at the cost of current budget systems but with office-quality performance and features. With dual processor workstation (TI 9995 and 280 H). 12 " green display with slow scrolling. t 28 kbytes RAM. dual 500 kbyte SHUGART $5^{1 / 4} \mathrm{a}^{-}$lioppy disc drives and comprehensive Soltware
SAMURAI MOdel 516 computer 8086 based 128k true 16 bit machine with \quad E290.00 SAMURAI Model 516 computer 8086 based 128 k true 16 bit machine with iwin 8 NEC floppy disC drives (total 2.5 mbytes, IBM 3740 compatible) monochrome (green) high resolution
monitor. $2 \times$ AS 232 interlace. CENTRONICS parallelinterlaces and MSDOS with full set of manuals. We have now sold out of complete machines, but have about half a dozen without keyboards avalable ${ }^{\text {TOSHIBA Model T300 PC SYSTEMS } 808 B \text { (} 6 \mathrm{MHz} \text {) based system with 192kb mory } 295.00}$ TOSHIBA Model T300 PC SVSTEMS 8088 (6 MHz) based system with 192 kb memory. $2 \times$ half height DSDD floppy disc drives each of 655 kb capacily (unformatted), high resolution green display 25×80 characters. RS232 and CENTRONICS parallel interlaces. MS-DOS Ver. 2 and T-BASIC are included together with a diagnostic disc and manuals. We have low cost packages AS ABOVE, but with single floppy disc drive TOSHIBA Model T100 CP/M SYSTEM. With 64 kb RAM dual $500 \mathrm{~kb} 5 \frac{1 / 4 " \text { floppy disc drives. }}{\text { L2 }}$ setial and parallel interiaces BRAND NEW 149.00 MATMOS TERMINAL MATMOS PC with Ver. 2 EPROM for terminal emulaton. Probably the lowest cost terminal avalable anywhere. With set-up menu and with data rates up to 9600 Baud. Machine is easily modithed for split Baud rate operation. 75/1200B. EPROM plugs into ROM socket accessible from exterior. Emulation is VT-52 compatible for cursor addressing: and for character atributes as far as the MATMOS PC allows MICROSOFT BASIC is slill available from the keyboard. (EPROM Card on its own ©20.00: EPROM card with socket only for user's own
EPROM ©8.00.) BRAND NEW
 drives Uncased. 125K (single density) or 250 K (double density), 40 track; 100 tpi, soft sector: 3 ms track to 1rack time, standard 34 way edge connector: 12 V and 5 V powered (standard connector) with overall 3.7 W typical power consumption. These drives have been tested by us on the BBC with DFS on the AMSTRAD 6128 and on the TATUNG EINSTEIN, and are also known to be suitable for the AMSTRAD 664 and as a second drive for the AMSTRAD 464. Single-sided. 250 kD unformatted. BRAND NEW. Data cables are available from us for the AMSTRAD 6128 and BBC at $\mathbf{5 7 . 5 0}$ and an installation pack including data and power cables with instructions is avalable for the TATUNG Einstern at 12.00 . 524.95
CANON Model MDD220 TWIN $51 / 4^{\prime \prime}$ FLOPPY DRIVES. Cased BRAND NEW half height drives, double sided, double density, 80 track. 640 kb capacity pet disc Shugart comparibl interface, without PSU, per pair KIMTRON Model ADM 85H VOU 24×80 Intelligent VDU with TELEVIDEO $920 / 925$ emulation

DEC PDP $11 / 23$ SYSTEM with DLV11-J quad serial Interlace. TANDON 8 " floppy with MICRO DEV ASSOCS. Model MXV-21 controller. FUJITSU 8 . Winchester disC drive with DILOG DQ401 controller, 256 kb memory Contained in $2 \times 19^{\prime \prime}$ rack units in portable carrying case. Supplied with XENIX operating system complete with all original manuals and distribution ATARI Model 1024 STF personal computer with Model SC1224 medium resolution colour monltor. With light simulator plus all usual sottware. Originally purchased 1987 and as newN Model 463 A0 graph ploter \quad 〔565.00 CALCOMP Model 463 A0 graph plotter £325.00
TOSHIBA HIGH RESOLUTION COLOUR MONITOR IBM compatible with RGB input. BRANDNEW TOSHIBA LOW RESOLUTION COLOUR MONITOR IBM COmpatible with $£ 169.00$ NEW. APPLE PROFILE 5mbyle WINCHESTER disc drive for APPLE \| computers Complete with ProDos operaling system and additional imtertace for APPLE II.
FUJITSU Model M2230AS $51 / 4$ WINCHESTER disc drive 6.66 mbyte capacity $£ 275.00$ FUJITSU Model M2230AS $51 / 4$ WINCHESTER disc drive 6.66 mbyte capacity unformatted.
$16 / 32$ sectors. 320 cylinders. With ST506 interlace BRANDNEW
$£ 75.00$ DEC Model VT101 VDU with many lealures including non-volatie set-up. Slow scrolling etc............... 150.00 DEC Model BA11 MF box, power supply and 8 slot backplance for Q. bus. BRAND NEW ADAC Model 1822128 kbyte CMOS memory for Q -bus. With battery backup.
TEKTRONIX Model 7603 100MH2 OSCILLOSCOPE MAINFRAME with CRT TEKTRONIX Model 7403N 60MH2 OSCILLOSCOPE MAINFRAME With CRT readout £175.00 TEKTRONIX Model 7A18N. As above, but without CAT readout
TEKTRONIX Model 7B53 A 100 MHz dual limebase
TEKTRONIX Model 5 D 123 N15 converter with M2 sample/hold module.
EKT
TEKTRONIX Model $5103 / \mathrm{D15} 2 \mathrm{MHz}$ single beam storage oscilloscope with $2 \times 5 \mathrm{A1} \mathrm{£N} 50.00$
HATFIELD INSTRUMENTS Type 210550 Ohm attenuator \quad E550.00 BRYANS Model 45000 UV recorder with 6×45001 amplifiers $1 \mathrm{mV} / \mathrm{cm} .50 \mathrm{~V} / \mathrm{cm}$ and chart speeds from $1 \mathrm{~mm} / \mathrm{min}-500 \mathrm{~mm} / \mathrm{s}$. Timing line interval is adjustable from $0.02 \mathrm{~s}-10 \mathrm{~s}$ and Record TEKTRONIX Model 851 _ 195.00 TEKTRONIX Model 851 tigital tester. 'One knob lets you dial 22 functions 11 functions measure timing, two registet plus and minus peak voltages, three carry out DMM measurements
and one reads line voltage at the outiet ... the 851 measures its 4 input thresholds to adjust to the logic levels of the equipment being serviced. $51 / 2$ digit readout. 35 Mhz frequency/timing autoranging etc.
$\begin{array}{lll}\text { HEWLETT PACKARD Madel 59307A dual VHF switch. DC to } 500 \mathrm{MHZ} 50 \text { Ohm swich for HP-IB } & £ 95.00 \\ \text { M } 185.00\end{array}$ HEWLETT PACKARD Model 5045A digital IC tester with CONTREL H310 automatic handler. With IEE interlace and print out of test results etther pass/fat or lull diagnostic including pin voliages at point of lailure. With fuli complement of pin driver cards and complete with
substantial library of mag. card test programs for 74 series TTL and oiner ICS CONTREL handler allows fully automatic tes:ing of ICs which are sorted into 2 bins. Price includes a second HP5045A (believed fully operational) for maintenance back-up.
TEKTRONIX Model 577 SEMICONDUCTOR CURVE TRACER With 5 neads $\mathbf{~ C 1 , 9 5 0 . 0 0}$ TEKTRONIX Model 577 SEMICONDUCTOR CURVE TRACER. With 5 heads for various
diodes and transistors. In excellent condition.
$\mathbf{~ 1 , 9 0 0 . 0 0}$ TiME ELECTRONICS Model 9810 programmable power supply
$\begin{array}{ll}\text { TIME ELECTRONICS Model } 505 \text { DC current source. } 0.05 \% \text {. With leather case } & \mathbb{1 9 0 . 0 0} \\ \text { PLEA } & £ 75.00\end{array}$

- vat \& carriage
-All new equipment is guaranteed for 6 months.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 764-767

PAGE	PAGE	PAGE	PAGE
AELCrystals........................ 726	E\&WW Wal	Kestral Electronic Components	Ralfe Electronics 682
Adcola Products Ltd 669	E\&WW Feature List 756	倍	Research Communication....... 668
Advertising Standards	Electronic Brokers IFC, OBC	Lab-Volt …ac.a.a.a.a............ 670	
		Langrex Supplies 746	Solex International 694
Airlink Transformers 700	676	Levell Electronics 687	Stewart of Reading.................. 756
	B) Ltd Advert Card	Livingston Hire 681	Strumech Engineers............... 682
Barrie Electronics 694		MA Instruments..................... 726	Surrey Electronics Ltd 686
	GNC Electronics 694		Taylor Bros (Oldham) …….. 676
	Golten and Verwer Partners ... 6866 Guyvale Lid	Microprocessor Engineering.... 745	Technomatic Ltd758/759
Carston Electronics Ltd666,745	Guyvale Lid........................ 686		Telonic Instruments.............IBC
Channel Micro Products Ltd.... 750	Happy Memories 752	Number One Systems 700	Those Engineers Ltd669,753
Cirkit Holding Plc................. 669	Harrison Electronics.............. 745	Nuvotem Teo 756	Thurlby Electronics ...i_u_..... 752
Computer Appreciation 768	Hart Electronics 749	PM Components Ltd.........724/72	e Digital Services........ 700
Crash Barrier 687	Henson, R. Ltd	Pineapple Software 668	University of Leeds
Crotech Instrumentation Ltd 753	Henry's Audio Electronics 726	Process Communicator	e inser
		inse	
Display Electronics714/715	ILP Electronics Lld.......................... 745 ICOM (UK) Ltd	Quart-hand......................... 750	Webster Electronics 750 Withers, R Communication
E.A. Sowter 749		R'TT Systems Ltd................... 676	
EMS Manufacturing Lid 752	Johns Radio 694	Raedek Electronics 750	Xen Electronics 76
France and Belglum: Plerre Mussard, 18-20 Place de la Madelaine, Paris 75008 United States of America: Jay Feinman, Reed Business Publishing Ltd., 205 Easi 42nd Sireet, New York. NY 10017 - Telephone (212) 8672080 - Telex 23827			
Printed in Great Britain by E.T. Heron (Print) Ltd, Crittal) Factory, Braintree Road, Witham, Essex CM8 300, and typeset by Graphac Typesetting, $181 / 191$ Garth Road, Marden, Surrey SM4 4 LL for the proprietors, Reed Business Publishing LLd, Quadrant Hous, The Quadrant, Sutton, Surrey SM2 5 AS. O Reed Business Publishing Led 1987, Electroniscs and Wireless World can he obtained from the following: AUSTRALA and NEW 2EALAND; Gordon \& Gotch Lid. NDA: A. H. Wheeler \& Co CANADA: The Wm, Dawson Subscription Service Lid, Gordon \& Go			

Low cost electronic measuring instruments.

TFG $\mathbf{8 1 0 0}$

FUNCTION GENERATORS.

from
 £115

TFG 8101 gives sine, squars, triangular, pulss and ramp outputs over 0.1 Hz to 2 Mz with output voltages up to 20 V pk-pk.
TFG 8104 - all the featuresol the TFG 8101 with $0-100 \%$ ampltude nodulation and liequency modulation
$0 \sim \pm 10 \%$.

TFC 1200
 FRECUENOY COUNUERS.

from
£142

8 digit Frequency Counters: TFC $120110 \mathrm{~Hz}-100 \mathrm{MHz}$ direct; TFC $120410 \mathrm{~Hz}-80 \mathrm{MHz}$ drect, $50 \mathrm{MHz}-650 \mathrm{MHz}$ with pre scalar: TFC $120710 \mathrm{~Hz}-8 \mathrm{CMHz}$ direct, $50 \mathrm{MHz}-1000 \mathrm{MHz}$ with pre-scale

TPS 2000/4000 SERNES
 DCPOWER SUPPLIES.

from 598

Inexpensive DC Bench Pofwer Supplies with single or dua tracking -utputs or dual racking with fixec +5 volt rail. Outputs DC to 30 volts orDC to 60 volts win output currents 0-1, 0-2, J-3. 0-6 or 0-10 amps, dependinç on model

TFG B110 DIGITAL
 FUNGTION GENERATORS.

from
 £189

TFG 8111 - a combination Function Genera-or and Frequency Counter 0.1 Hz to 2 MHz sine, saeare, triangular pulse and remp outputs, with a 100 MHz 6 agit trequency courter.
TFG 8114 - is he TFG 8111, except 5 digit csunter plus output freqt encies up to 5 MHz and sweep, rigger, gate and burst functions.

8 dight Univers al Counter timers with frequ?ncy, period inte val, ratio and totalise functions: TFC $1=115 \mathrm{~Hz}-100 \mathrm{MHz}$ direct: TFC $12144 \mathrm{~Hz}-100 \mathrm{MHz}$ direct, $50 \mathrm{MHz}-650 \mathrm{MHz}$ with pre-scaler:TF; $12175 \mathrm{~Hz}-100 \mathrm{MHz}$ direct, $5 \mathrm{MHz}-1200 \mathrm{MHz}$ with pre-scaler.

TPS 20000/40000 SERUES DIGIVA DC POWER SUPPLIES.

from
 £130

Similar to he TPS 2000/4000 range but with digital voltage and currert measurement. Oigital meter cen also be used as DVM.

UFC 461313 MHz
FUNOTION CENERAUOR.
$\Sigma 549$

TFG 1613 offers sine, square, triangular, ramp, pulse, A.M F.M. sweep, trigger, gate; burst over 0.1 Hz to 13 MHz at up to 20.'pk-pk. Amazing value!

TDM 100 SERIES
 DIGITAL MULTMETERS.

from

£152

TON $104-3 / 2$ digit Bench Multimeter with \pm (C. $1 \%+1$ digit accuracy. Measures DC $\& \mathrm{AC}$ volts and cLrrent and resistance. High $1000 \mathrm{M} \Omega$ impedance
TON 105 - $4 / / 2$ digit true RMS Bench Multimeter with $\pm 10-4 \%+1$ digtt) accuracy. OC \& AC voltage and current plusresistance measurement

AC MILLIVOLT MEVIERS

TMV 300 SERIIES.

from
 $\Sigma 94$

TM/360 - a single channel AC Millivoltmeter with 1.s.d. TM/ 360 - a single channel AC Millvolimeter with i.s.d.
ranges from 1 mV to 300 V and bandwidth 10 Ha to 1 MHz . ranges trom 1 mV to 300 V and bandwidth 10 Hz to 1 MHz .
$\mathrm{TM} / 380-$ a two channel instrument, \uparrow s. d . rar ges 1 Mv to TM' 380 - a two channel instrument, f.
30 Cl and a 10 Hz to 500 KHz bandwidth.
30 CV and a 10 Hz to 500 KHz bandwidth. TM / 381 - also two channel, b
ane 5 Hz to 1 MHz bandwidth.

Electroncl brokers

[^0]: 68000-FAMILY PASCAL MACHINE 718
 If you are about to decide on a computer language for your next industry control system, one of the new breed of Pascal compilers may be ideal. by William Stanley

[^1]: Fi/cefrombs o Wimpos. Wiold is published momethty avialiable:l
 Industral liontre. Hopton Sitreet, 1 andan SES Telaphome

 Sultom, surrey sime basi cheques whold tre payable to Rowd Busman l'ullashus Lad Editorial \& Advertising

 NNNN to -ign off subseription rates: I yair thormal

 Prerrymant Ruadd. Haywards Heath. Sussex R11|6:31>1
 LSA: \$116ili iurmant. Reed lhasthes
 NV 10117 Owerseas advertising agents: France and Belgium: I'repre Mussird. 1 -20 T'lacte de lat Madeleone Rarls Bukis Cnited states of Ameriedal day Femmand
 :3s27 t'SA mailing agents: Mercury Arfiembt lmen hattonal B,d Ine. Ithbatenglehated Ave. Aveluel N, (17 (m)
 udderes to the illove"

[^2]: To start off the debate, the conference organizers had arranged three presentations to set out the pros and cons of deregulation.

 First came Michael Kennedy from Motor-

[^3]: Conference papers are available from the Mobile Radio
 Conference papers are available from the Mobile Radio
 Users' Association at $£ 25$ a set. The association's new Users Association at $£ 25$ a set. The association's new
 address is 28 Nottingham Place, London WIM 3FD. Tel. address is 28

[^4]: MKT: metallized polyester. MkC: metallized polycarbonate.

[^5]: 44 MAIN STREET
 BROUGHTON ASTLEY
 LEICESTER LE9 6RD
 TEL: (0455) 283486
 TELEX: 378353
 FAX: (0533) 544248

[^6]: -Earlier articles in this series appeared in Electronics d Wireless World from November 1986 to March 1987. A correction to a drawing in the March issue was given the following month at the foot of page 385 .

[^7]: This space is donated in the interests of high standards of adverusing

[^8]: INTELLIGENT SELF-MOTIVATING PERSON WANTED in large successful CD shop in central London for service and sales of CD players and audio equipment. Relevant City and Guilds. TEC or ONC qualification will be taken into consideration. Practical experience in digital equipment would be an advantage.
 Please phone in first instance to Mr Hosein or Mr Bull at Covent Garden Records on 01-379 7635/7427

