Wireless

OCTOBER 1986

Trends in oscilloscopes

C64 slow-scan tv • PC D0S filling system

 Putting the quality back into a.m. radio Pressure transducers • Novel Q meter
10\% OFF MARCONI INSTRUMENTS

Special offers on Selected Models for orders received by 30th September 1986

2022 AM/FM Signal Generator - Wide frequency coverage: 10 KHz to 1000 MHz

- Simple push button operation, large LCD display.
Comprehensive
modulation: AM/FM/PhM £2655

2440 Microwave Counter - Wide frequency coverage 10 Hz to 20 GHz 2304

- Fast acquisition time:only 200 ms typical FM/AM Modulation Meter to $1 \mathrm{GHz} \mathbf{£ 6 7 5}$ - High-stability oven-controlled $£ 32852610$

L3285 True RMS Voltmeter to $25 \mathrm{MHz} \mathbf{£ 1 0 8 0}$ 2305 Modulation Meter 2019A AM/FM Signa - 500 KHz to 2 GHz frequency range - Exceptionally fast auto-tuning, with low noise

- Modulation analysis, including $\mathbf{8} \mathbf{3 4}$ frequency and power

HAMEG

 OSCILLOSCOPES

HM 208 Digital Storage Oscilloscope - Real time or digital storage to 20 MHz - Low frequency event storage - max sensitivity 1 mv

- Special background memory useable with main memory
- Chart plotter output af $\quad \mathbf{E 1 3 0 0}$ HM 208 Digital Storage scope with IEEE

HM 60560 MHz Oscilloscope - Dual trace and sweep delay - Maximum sensitivity 1 mV - In-built component tester - Z modulation and $X-Y$ operation HM 203-5 20 MHz Standard Oscilloscope HM 204-2 20 MHz Multifunction Oscilloscope £365
HM 205 Digital Storage Oscilloscope - Real time to 20 MHz , storage to 100 KHz

- Resolution of 1024×256 points on X and Y axes
- Single and re-fresh modes
- Active video trigger for
stable TV triggering $\mathbf{£ 4 4 8}$

For the full stories, also latest news on Grundig, Thandar and Thurlby, contact: $\square \square \square \square \square$
\square
\square
$\square$$\square$ Electronic Brokers

140/146 Camden Street, London NW1 9PB

 Tel: 01-267 7070. Telex: 298694. Fax: 01-267 7363
Wirelessworld

 over 70 years in independent electronics publishing

October 1986
Volume 93 Number 1607

FEATURES

Putting the quality back into a.m. radio
 by J.L. Linley Hood
 Unusual design attempts to match the much sought-after sound of the pre-and post-war fivevalve radio.
 Mains communication without tears

How to interface data communication systems with the mains supply and expand into a costeffective paging system.

Microcontroller integrates peripherals

by Mike Catherwood
More features of the limited-issue chip controller chip for teaching and evaluation

Slow.scan tv in software

by G. Cameroni and G. Morellato
Direct transmission and reception of pictures by radio using only a Commodore 64 computer.

Ringing the changes on bels

by 'Joules Watt'
Think you know all about the decibel, eh?

Novel Q meter
 by McKenny Egerton, Jr

Alternative to the conventional Q meter is significantly easier to design and needs only a frequency counter.

Integrated pressure sensors in acoustics

by Gary Morton

How to choose signal-conditioned tranducers for a variety of acoustic applications.

Designing with dynamic memory 43 by Alan Clements
 Large memory arrays can be produced economically with dynamic ram provided care is taken over timing requirements, refreshing and the supply rail. Part 3 concludes the series.

IBM's PC filing system

Description of PC DOS complements our 1985 series on floppy discs.

Oscilloscope update

Speed and accuracy improve slightly since our last survey but oscilloscopes are much better at displaying difficult waveforms.
Component integration in 57 oscilloscopes
by J. Helferich and E. Kruisdijk Custom i.cs reduce oscilloscope manufacturing time and costs but also improve reliability.

Electronic ignition for

single-cylinder engines

by John Robins
Capacitor discharge unit replaces magneto ignition to give new life to garden machinery.

REGULARS

News commentary MSF cutback Amateur g.s.o. satellite? professional goe professiona	Circuit ideas	ELECTRONICS
Communications 11 commentary	Special offer See subscription offer envelope	min
$\begin{aligned} & \text { Parapsychology } \\ & \text { Antennas and planning } \\ & \text { GCHa again } \end{aligned}$	New products 71, 74 HF receivers	
13	Industrial Pascal Linescan processor	
	Appointments 75	
Long-wave frequency changes	Nexi month 32	page 6

Editor
PHILIP DARRINGTON
Deputy Editor
GEOFFREY SHORTER, B.Sc
01-661 8639
Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039 or 8637
News Editor
DAVID SCOBIE
01-661 8632
Art Editor
ALAN KERR
Drawing Office ROGER GOODMAN 01-661 8690
Advertisement Manager
ASHLEY WALLIS
01-6613130
MICHAEL DOWNING
01-6618640
Classified Executive SUSAN PLATTS 01.6613033

Ad. Production Controllers
BRIAN BANNISTER
01-661 8648
JACKIE PERRY
01-6618649
Publishing Director CLIVE FOSKETT 01-6613151
Electronics \& Wireless World
is published monthly USPS 687-540
Current issue price $£ 1.25$, back issues (if available) 11.06 at Retail and Trade Counter, Units 1\&2, Bankside Industrial Centre. Hopton Street, London SE 1 Telephone: 01-928 3567.
By post, current issue $£ 1.30$, back issues (if available) $£ 1.40$. Order and payments to 301 Electronics and Wireless World, Quadrant House. The Quadrant. Sutton Surrey SM2 5AS. Cheques should be payable to Business Press International Ltd.
Editorial \& Advertising offices: $E W W$ Quadrant House, The Quadrant. Sutton, Surrey SM2 5AS
Telephones: Editorial 01-661 3614. Advertising 01-661 3130 01-661 8469 Telex: 892084 BISPRS G (EEP)
Facsimile: $01-6612071$ (Groups II \& III)
Beeline: 01-661 8978 or 01-661 8986
300 baud, 7 data bits, even parity, one stop-bit. Send ctrl-Q, then EWW to start; NNNN to sign off.
Subscription rates: 1 year £18 UK and £23 outside UK
Student rates: 1 year $£ 11.40$ UK and £14.10 outside UK
Distribution: Quadrant House. The Quadrant, Sutton. Surrey SM2 5AS, Telephone 01-661 3248.
Subscriptions: Oak field House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 04444 59188. Please notify a change of address USA: $\$ 49.40$ surface mail, $£ 102.60$ airmail. Business Press International (USA). Subscriptions Office, 205 E. 42nd Street, NY 10117.
Overseas advertising agents:
France and Belgium: Pierre Mussard, 18-20 Place de la Madeleine, Paris 75008.
United States of America: Jay
Feinman, Business Press International
Ltd, 205 East 42 nd Street, New York,
NY 10017. Telephone (212) 867-2080
Telex 23827.
USA mailing agents: Expediters of the Printed World Ltd, 515 Madison Avenue Suite 917, New York, NY 10022, 2nd class postage paid at New York,
Postmaster - send address to the above
© Business Press International Ltd 1986 ISBN 00436062

Whether your application demands a $1.8^{\circ} \mathrm{Hybrid}$ Stepper Motor or one of our 7.5° or 15° Permanent Magnet Stepper Motors, we'll demonstrate how responsive a European manufacturer can be; providing standard variations if necessary and arranging delivery times which compare well.

We offer a choice of phase resistances and electronic controllers, and guarantee long life expectancy and high reliability.

For a complete literature pack, telephone Carol Pearce on Farnborough (0252) 513211, or complete the coupon below. Your first step in the right direction

Crouzet Limited

108 Hawley Lane, Farnborough, Hampshire, GU14 8HY. Telephone (0252) 513211. Telex 858612

SOWTER AUDIO FREQUENCY TRANSFORMERS

You name it! We make it!

For the past 45 years we have concentrated on the design and manufacture of high grade audio transformers during which period our total sold exceeds half a milion. We continually take full advantage of all the improvements in magnetic and insulating materials and in measuring techniques utiising the most up to date instrumentation.
We have a very large number of original designs made for clients all over the world but naturally there are certain types of Sowter Transformers which are in constant demand. These have taken into account the tendency towards small size without sacrifice of performance, particulariy for PCB mounting, and a few of these are listed below. They can be supplied with or without mumetal shielding cans. Performance requirements can be modified on request (utilising our readily available questionnaire) and generally without alteration in price.
We specialise in LOW COST AND QUICK DELIVERY which means a few days only or ex-stock.

TYPICAL PERFORMANCES							
Sowter Type No	3575	4652	3678	6499	4079	6471	6469
Description	Miniature bridging transtormer	Line output	Multi primary microphone transtormer	Line output high level low distortion toroidal core	Splitter combiner transtormer	Midge mic transformer for BT private system	Very high quality microphone transformer
tmpedances	$10 \mathrm{k} \Omega 10 \mathrm{kR}$ can be fed from 50.600 n	$\begin{aligned} & 600 \text { or } 150 \Omega \\ & \text { inputs or } \\ & \text { outputs } \end{aligned}$	Pys 60.200 of 6000 Sy $5 \mathrm{~K} \Omega$ down to $1 \mathrm{k} \Omega$	6002/600	$\begin{aligned} & 2002 \text { Bal. Py } \\ & \text { Two 2002 } \\ & \text { Sys. } \end{aligned}$	$\begin{aligned} & \text { Py } 600 \Omega \\ & \text { Sy } 60 \mathrm{k} \Omega \end{aligned}$	2001 Py for $1 \mathrm{k} \cap$ loading (Bifilar) $8: 1$ step up
$\begin{array}{\|l} \hline \begin{array}{l} \text { Frequency } \\ \text { range } \end{array} \\ \hline \end{array}$	20 k -20kHz	20.20 KHz	303.20kHz	20.20kHz	20.20 kHz	$300 \cdot 3 \mathrm{kaHz}$	20.20 kHz
Performance	$\begin{aligned} & .0 \text { ldB over } \\ & \text { above range } \end{aligned}$	- $025 d 8$ over above range	$\begin{aligned} & \text { O O } \mathrm{dB} \text { over } \\ & \text { above range } \end{aligned}$	$\begin{array}{\|c\|} \hline-03 \mathrm{~dB} \\ 40.15 \mathrm{kHz} \\ -0.5 \mathrm{~dB} \\ 20.20 \mathrm{kHz} \\ \hline \end{array}$	- 0 5dB over above range	-0.5 dB over above range	+02 d 8 over above range
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Maximumin } \\ \text { Level } \end{array} \\ \hline \end{array}$	7.75VO ms on secondary	$7.75 \mathrm{VR} \mathrm{m} . \mathrm{s}$. on 600Ω	$\begin{aligned} & \text { on } 5 \mathrm{k} \Omega \text { 3.4. } \\ & \text { R.m.s. at } \\ & 30 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 26dBm at } \\ & 30 \mathrm{~Hz}_{\mathrm{z}} \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{~V} \Omega \mathrm{~m} \cdot \mathrm{~s}, \mathrm{at} \\ & 30 \mathrm{~Hz} \end{aligned}$	$0.6 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}$ on Py	$\begin{aligned} & \text { 2.0Va.m.s. on } \\ & \mathrm{Py} \text { at } 30 \mathrm{~Hz} \end{aligned}$
$\underset{\text { Maximum }}{\text { Distortion }}$	$\begin{aligned} & \text { With 1ov } \\ & 0 . m \text { s. at } \\ & 40 \mathrm{Hzonly} \\ & 0.12 \% \end{aligned}$	$\begin{aligned} & \text { on } 600 \Omega \text { low } \\ & \text { source } \\ & \text { תo. } \end{aligned}$	$\begin{aligned} & \text { Less than } \\ & 0.1 \% \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.1 \% \text { at } \\ & 30 \mathrm{~Hz} \text { at } \\ & 26 \mathrm{dm} \end{aligned}$	$\begin{array}{\|l} \text { negligible } \\ \text { co.1\% at } \\ 1 \mathrm{kHz} \end{array}$	negligible	0.1\% at 20 Hz
Shielding	Electrostatic screens and mumetal can	Mumetal can if desired at extra cost	Mumetaican	Toroidal can	Mumetal can rigid fixing boits	$\begin{array}{\|l\|} \hline \text { PCB } \\ \text { mounting } \end{array}$	Mumetal can
Dimensions	33 mm diam $\times 22 \mathrm{~mm}$ high	$\begin{aligned} & 36 \mathrm{~mm} \text { high } \times \\ & 43 \mathrm{mmm} \times \\ & 33 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 33 \mathrm{~mm} \text { diam } \\ & \times 22 \mathrm{~mm} \mathrm{migh} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~m} / \mathrm{m} \text { diam } \\ & \times 36 \mathrm{~mm} \text { high } \end{aligned}$	$\begin{aligned} & 33 \mathrm{~mm} \text { diam } \\ & \times 37 \mathrm{~mm} \text { high } \end{aligned}$	$\begin{array}{\|l\|} \hline 111 \mathrm{~mm} \text { high } \\ 19 \mathrm{~mm} \times \\ 17 \mathrm{~mm} \\ \hline \end{array}$	$\begin{aligned} & 33 \mathrm{~mm} \text { diam } \\ & \times 22 \mathrm{~mm} \text { high } \end{aligned}$
Prices each at works	$\begin{aligned} & 15-\varepsilon 10.83 \\ & 50-£ 9.77 \\ & 100-69.27 \end{aligned}$	$\begin{aligned} & 1.5-5967 \\ & 50-£ 889 \\ & 100 \end{aligned}$	$\begin{aligned} & 15-1967 \\ & 50 \\ & 100 \end{aligned} \quad-28.671$	$\begin{aligned} & 1.5-\Sigma 1712 \\ & 50-\Sigma 15.69 \\ & 100-\Sigma 1535 \end{aligned}$	$\begin{aligned} & \hline 1.5-£ 14.59 \\ & 50-£ 13.37 \\ & 100-£ 13.08 \end{aligned}$	$\begin{aligned} & 1.5-£ 389 \\ & 50 \\ & 100-635 \\ & 100-6329 \end{aligned}$	$\begin{aligned} & 1.5-£ 11.38 \\ & 50-£ 10.12 \\ & 100-£ 992 \end{aligned}$

E. A. SOWTER LTD. (Established 1941) Reg. No. England 303990

The Boat Yard. Cullingham Road, Ipswich IP1 2EG, Suffolk. PO Box 36. Ipswich IP1 2EL. England. Phone: $047352794 \& 0473219390$ - Telex: 98703 G SOWTER

CIRCLE 76 FOR FURTHER DETAILS

HART - The Firm for QUALITY

LINSLEY HOOD 300 SERIES AMPLIFIER KITS

Superb, HART designed, integrated amplifier kits derived from
Ultra easy assembly and set-up with sound quality to please the
most discerning listener. Ideal basis for any domestic sound
systems if quality matters to you. Buy
K300-35, 35 Watt, Discount price for Complete Ki
K300-45. 45 Watt. Discount price for Complete Kit
RLH4\&5. Reprints of Original Articles from Hifi News
LINSLEY-HOOD SYNCHRODYNE AM RECEIVER
Very high quality kit for this recent design featured in 'Wireless world. Advanced construction system, approved by the Author, uses 3 double sided PCBS in a stacked layout for total stability, eas of construction and minimal wiring. This module will form the AM section of an ultra high quality AM/FM switched bandwidth tuner to match our 300 series amplifiers. Power supply and tuning gang will be included with the FM section

LINSLEY-HOOD CASSETTE RECORDER CIRCUITS
Complete very high quality low noise signal handling stages for any stereo cassette secorder Separate record and replay sections for optimum persemale. Swiched bias and equalisation to ater for chrome and terric lapes. very easy to assemble on plug-in PCBs. Complete with full instructions.
K800 Complete Stereo Record/Play Kit
$£ 33.70$
58.70
$860 \times$ Stereo Mic Amp Kit to suit
58.70

HIGH QUALITY REPLACEMENT CASSETTE HEAD
Do your tapes lack treble! A worn head could be the problem. Tape
heads are constantly improving and fitting one of our latest
replacement heads could restore pertormance to better than new!
Standard mountings fit most decks and our TC1 Test Cassette will
make it easy to set the azimuth spot on. As we are the actual
suitable for Dolby machines
HC20 Permalloy Stereo Head. Good quality standard head fitted as original equipment on man decks
HS16 Sendust Alloy Super Head Quite simply the best Longer life than permalloy, higher output tha
ferrite, fantastic frequency response
HQ551 4 -Track head for auto-reverse or quadrophonic use. Full specification record and play head
Special Offer Stereo R/P Heads.
HS 9510 2/4 Stereo DC Erase Head
HQ751E 4/4 Erase compatible with HQ551
,
HART TRIPLE-PURPOSE TEST CASSETTE TC1
One inexpensive test cassette enables you to sel up VU (Dolby) level, head azimuth and tape speed without test equipment. Vital when fitting new heads Complete with instructions.................. £4.66
Send for your FREE copy of our lists with full details of our complete range of Kits, Components. PCBs Cassette Head's and Decks: - Overseas please send 5 IRCs for Airmail Post.
Please add VAT to all prices. Postage on orders up to 110-50p. £10 to £49-£1. Over £50-£1.50.

THE WORLD OF

FOR ONLY £2.50

ELECTROMAIL-A BRAND NEW WAY TO BUY RS PRODUCTS.

- Over 12,000 products from a single source.
- The quality range - proven by industry.
Excellent stock availability.
24 hour ordering.
- 688 page catalogue.

Write or phone today for your copy of the new Electromail catalogue.
It's an invaluable technical reference packed with photographs and detailed descriptions of the complete product range.
Send $£ 2.50$ or, if phoning, quote your Access/Visa number.

The Electromail service is only available to UK customers

Dept. 200, PO Box 33, Corby, Northants. NN17 9EL TELEPHONE:
0536204555 를
Timers, counters, controllers
Tools \&e production aids
Transformers and wound components
Wiring accessories
Workshop equipment

PROFESSIONAL PC BASED PCB DESIGN PACKAGES

-00
-O QUICKPAD
-0

A Professional PCB Design System for only £895.00
QUICKPAD is a new BRITISH software package that turns your IBM PC into a high quality PCB artwork designer. No more hassle with traditional layout and tape up methods. No more waiting for a technician, draftsman or the CAD department. Its simple to use menu system makes it idea! for the novice or expert
QUICKPAD runs on an IBM PC (or clone) with a minimum of 512 K bytes RAM, dual floppies and Colour Graphics or Enhanced Colour Graphics Adaptor or Hercules
Monochrome Graphics card.
Technical Summary
"Up to $12^{\prime \prime}$ by 16 " board size

* Double sided artwork plus silk screen, solder resist and drilling chart.
* 0.010 "board resolution
« 4 standard track sizes ($0.080^{\prime \prime}, 0.040^{\prime \prime}, 0.020^{\prime \prime}$ and $0.010^{\prime \prime}$)
\& 4 standard pad sizes ($0.128^{\prime \prime}, 0.096^{\prime \prime}, 0.064^{\prime \prime}$ and $0.032^{\prime \prime}$)
* Artwork can be plotted on a wide range of output
devices
\& SIP, DIP and connector libraries
« Component names up to 6 characters long
* Comprehensive commands for copying and moving of pads and tracks (including rubber banding)
* Input via standard netlist

ش Easy to use menu system

Software $£ 895.00$ inc MOUSE

Demo pack £30.00
Note: All prices exclude VAT \& Delivery

CONGUIN SOFTWARE LTD.

Freepost, Morden, Surrey SM4 1BR Phone: 01-6409130

CIRCLE 82 FOR FURTHER DETAILS

Happy Memories

Part type	1 off	25-99	100 up
4164 150ns Not Texas,	. 95	. 85	. 80
41256150 ns	.. 2.25	2.15	2.05
2114 200ns Low Power	. 1.75	1.60	1.55
6116150 ns .	.. 1.40	1.25	1.20
6264 150ns Low Power	. 2.50	2.45	2.20
2716 450ns 5 volt	. 2.75	2.60	2.45
2732 450ns Intel type.	. 2.60	2.40	2.25
2764 250ns Suit BBC.	. 2.05	1.90	1.75
27128 250ns Suit BBC.	.. 2.30	2.20	2.10
27256250 ns .	. 3.70	3.45	3.30
Low profile iC sockets: Pins	814	1820	2840
Pence	59	1112	1724

Please ask for quote on higher quantities or items not shown.
All memory products Japanese or American manufacture.
Write or 'phone for list of other items including our 74LS series with DIY discounts starting at a mix of just 25 pieces.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total. Access orders by 'phone or mail welcome.

Non-Military Government \& Educational orders welcome for minimum invoice value of $£ 15$ net.

HAPPY MEMORIES (WW),
Newchurch, Kington,
Herefordshire HR5 3QR.
Tel: (054 422) 618
CIRCLE 39 FOR FURTHER DETAILS

special offer- save tets Tektronix 2215 Oscilloscope	COMMUNICATION RECEIVERS Racal RA $17 \mathrm{LL} 500 \mathrm{KHz} \cdot 30 \mathrm{MHz}$ with manual EDOYSTONE $730 / 4480 \mathrm{KHz}-30 \mathrm{MHz}$ wth manual only 1410 each ONLY $£ 110$ each	
ONLY 8475 each	MULTIMETERS AVO 9 Mk4 \|	dentical to AVO a wikd but scaded dflerently). Complete with
OSCILLOSCOPES	AVO 9 Mk44 \|dentical to AVO 8 Hk4 but scaleo diflerently) Compele with Bantrenes 8 Leads	
cuave tracer	Above tems in GOOD WOAKNG OROEF - appearance not A1 hence the	
Honix 485 Dual Traca 3501 MHz Delay Sweep - \quad [3,500		
	TEST SET No 1 (MMlary version of AVO 81 Complete with bateres	
	leaus 8 carrymp case	
	avo Model 73. Pockel Mullimeler (Analague) 30 tanges Compete witit batlores ${ }^{2}$ feads	
TELECUIPMENT D75 Oual Trace 504 Hz Deeay Sweep..... E350		
	PROFESSIONAL s GREEN SCPEEN MONITORS made Dy KGM lor Reaters. Gives Quafiny 80 column $\times 24$ ine Display Compositi Video in Cased. Good Condition NOW ONLY	
COSSER ${ }^{\text {a }}$		
SE LABS SM111 Dual Trace 18MHz AC or Exernal CC Operaton . E150		
EOUIPMENT 443 , Oual Trace $5 \mathrm{SM}-1$		
TEKTRONIX 434 STORAGE Dual Trace 25MHz E500		
GENERATORS		
MARCON TfR29509 Moble RADID Test Set ...	AVO TRANSISTOR TESTER TT 169. Hand held. GONOGO tor in silu testing. Complete win tatlerees. feads and instructions..........WOW ONLY E!2 (08 p £3)	
MACCON T TF2006 FM 10.1000 MHz		
MAACCIBUTFF2006 FM. 5000 Hz		
etreouncies		
	PMLIPS COLOURBAR GENERATOR type 5508 , video as Many tunctionsGRUM GRUNDIG COLOUR GENERATOR FGEE. Many I Unctions	
MARCON TFF1066 E/T AMFM 10MHz-470MHz		
	NEW EQUIPMENT HAMEG OSCILLOSCOPE 605, Dual Trace 60MHz Delay Sweep, Component Tester.	
H.P TEST OSCILLATOR E51A 10Hz 10 MHz		
H.P $43422^{\circ} \mathrm{O}$ Meter $\mathrm{E1.250}$	HAMEG OSCHLIOSCOPE 203.5 Dual Irace 20MHz	
MARCON C' Weler TF1245 wih TF 1246 or TF 1247 \% 5500	Component Tester .	
HP POWER METER 431C wilh therm slor Mounl 10Mizz-16GHz or S250	All other models available	
MAFCON AF MLLIVOLTMETER TF 2603 50k		
MARCON VIVEVOL METER		
ARCON. INSSTU UNVERSAL BHIDGE TH	APOLLO 10-100MHz. Ratio/Period Time interval etc ... $\$ 219$ APOLLO $100 \cdot 100 \mathrm{MHz}$ (As above with more functions) $£ 285$	
	BLACK STAR FREQUENCY COUNTERS (p\&p ¢4)	
	Meteor $100-100 \mathrm{MHz}$.	
HP FF MILIVOLTMETER 4114500 KHz .5004Hz	Meteor $600-600 \mathrm{MHz}$Meteor $1000-1 \mathrm{GHz}$	
ELTTANSISTOR ACMICCOVOLTIETERTM3B		
KEITHLEY ELECTROMETER Yppe 6108 with Agaplor $6105 \ldots .$.	BLACK STAR JUPITOR 500 FUNCTION GENERATOA Sine Square-Triangle $0.1 \mathrm{~Hz}-500 \mathrm{KHz}$ p\&p $£ 4$.	
SO AATBON TAUE RUS YO TIIETEF VM1484		
	HUNG CHANG DMM 6010 3 $1 / 4 / 4$ digt. Hand held 28 ranges including $10 \mathrm{Amp} \mathrm{AC} / \mathrm{DC}$	
$\begin{aligned} & 42 \mathrm{~K} \\ & \text { nanual } \end{aligned}$		
isolating transformers 240V input-240V output		
	D80¢2	

STEWART OF READING Telephone: 073468041 110 WYKEHAM ROAD, READING, BERKS RG6 IPL

[^0]
You can't close your eyes to our Summer

HUNDREDS OF EXCITING SUMMER SALE OFFERS FROM ELECTRONIC BROKERS, THE LARGEST STOCKHOLDER OF SECOND USER TEST \& MEASUREMENT EQUIPMENT IN EUROPE

SOME EXAMPLES FROM OUR HUGE SALE LIST

HEWLETT PACKARD 6940B

 MULTIPROGRAMMERData acquisition and control system for controllers or computers. Front panel control, GPIO or HPIB. Various I/O cards also available. 12 months warranty.
MLP £2146
SRICE $£ 950$

HEWLETT PACKARD 3437A

High speed $31 / 2$ digit system voltmeter
12 months warranty.
MLP $£ 2760$

TEKTRONIX 7904500 MHz SCOPE MAINFRAME
Able to accept up to 4 plug ins. CRT readout. We stock a large selection of plug ins. 12 months warranty.

SAVE £3500 +

MARCONI INSTRUMENTS TF 2006

AM/FM Signal Generator
$10 \mathrm{MHz}-1000 \mathrm{MHZ} 6$ months warranty.

salk
PREE
£1500

MARCONI INSTRUMENTS

 TF 2603 R.F.
MILLIVOLTMETER

1 mV to $3 V$ R.M.S. in 8 ranges
$50 \mathrm{KHz}-1500 \mathrm{MHz} .12$ months warranty.

SALE PRICE 495

WAVETEK 1080 1GHz SWEEP GENERATOR

Sweep from 1 MHz to $1 \mathrm{GHz} C W, \triangle F$ and full sweep modes. Digital readout. 1% display linearity. 12 months warranty.

MLP £3883

Electronic Brokers
 Electronic Brokers

140/146 Camden Street, London NW1 9PB
Tel: 01-267 7070. Telex: 298694. Fax: 01-267 7363

To: Electronic Brokers Lłd, 140-146 Camden Street, London NW 9PB
\square Please send me your Summer Test \& Measurement Sale brochure by return.

NAME:

COMPANY
ADDRESS:
\qquad

3 Shenley Road, Borehamwood, Herts WD6 1AA. 01-953 6009 Official Orders/Overseas Enquiries Welcome/Telephone Orders Accepted Open 5 days. $9 \mathrm{am} / 5 \mathrm{pm}$. Please ring for C/P details not shown. All test
equipment carries warranty. All prices incl. 15% VAT unless stated

POWER SUPPLYS ALL 240VAC INPUT	$\begin{aligned} & \text { Lambda metered } \\ & P S \cup .-4 \mathrm{O} \mathrm{O}-3 \mathrm{~A} \\ & \mathrm{P} 125.00 \end{aligned}$	Miatur Togle E1.00 each 10 tor £8 00	SPECIAL OFFERS
			New Manutacturers Surplus electronic wel protection systems sensors, control box - cables; idea for boats central heating. Detects water in diesel tank system $£ 20.00$4 tank system $\{35.00$ 4 tank system two.ensors C/P 3.50 S.A.E. for information
	Farnell G6-20 6V 20A Swith mode $603 \times 87 \times 105$ $£ 20.00 \mathrm{CP} 2.75$		
		Qelay sweep E529.00	PC.B. 9×2532 LL 45 Eproms $4 \mathrm{~K} \times 8$ bilsNow E12. 15 inc CIP
Farnell G6-5M 6 V 5A Switch mode$145 \times 88 \times 33$ $145 \times 88 \times 33$$£ 20.00 \mathrm{C} / \mathrm{P}: 75$		$\begin{aligned} & \text { Type } 178 \text { Linear I.C } \\ & \text { Testiviur } \\ & \text { C50.00 } \\ & \hline \end{aligned}$	Creme ASClicade
	TRANSFORMERS ALL 240V PRIM		i2VDC Audibl waming overice Kliamix Singele Tone Sold Slate Works trom 6 V E1.75
	(120-12V2A×2	Type 1A5 Ditherential E65.00	
			$\begin{aligned} & \text { Plasta boxes } 76 \times 100 \times 40 \mathrm{~mm} \\ & 4 \text { tor } 5.00 \mathrm{lnc} / \mathrm{P} \end{aligned}$
			Sonnenschein A200 Drytit Batts. New \& Boxed 12VDC. 5.7Ah Charging Volts 138 max. A.B.S. Case$£ 16.95$ inc C.
	$\begin{aligned} & 9-0.9 \mathrm{~V} / \mathrm{A} / \mathrm{P} \\ & \overline{2} 2.50 \mathrm{lnc} \mathrm{ClP} \end{aligned}$	PLEASE RING FOR VARIOUS TYPES OF PLUG INS	
			COPPER CLAD BOARD
		$\begin{aligned} & \text { Philips Type PM3212 } \\ & \text { Duat Tace O'scope } \\ & \text { 25MFz } \\ & \varepsilon 350.00 \end{aligned}$	SINGLE SIDED Inc C/P New $508 \times 380 \times 3 \mathrm{~mm}$ E7.95 No. 1 $457 \times 305 \times 3 \mathrm{~mm} £ 7.95$ No. 2 $380 \times 254 \times 3 \mathrm{~mm} £ 6.75 \mathrm{No} .3$ $254 \times 177 \times 15 \mathrm{~mm} £ 2.70$ No 4$178 \times 126 \times 1.5 \mathrm{~mm} £ 1.70$ No 5 $178 \times 126 \times 1.5 \mathrm{~mm}$ £1.70 No. 5
	$\begin{array}{\|l\|} \hline 7.601120 \mathrm{~A} \\ \text { E40.00 } \\ \text { GiP Please Ring } \end{array}$	$\begin{aligned} & \text { Verner Digital } \\ & \text { Counter Timer } 7737 \mathrm{~A} \end{aligned}$ $\begin{aligned} & 1000 \mathrm{MHz} \text { R } 4.50 \\ & \mathrm{E} 150.00 \mathrm{C} 4 \mathrm{P} 4 \end{aligned}$	
	$\begin{aligned} & 12-5 \mathrm{~V} 0-12-5 \mathrm{~V} 750 \mathrm{M} \\ & \mathrm{~A}^{7-7-7 V 1 \mathrm{~A}} \\ & \mathrm{E} .50 \mathrm{lnc} \mathrm{C} / \mathrm{P} \end{aligned}$		
	$\begin{aligned} & \text { Rack Case } \\ & \text { Ras } \\ & \text { 198.57 } \\ & \hline 190 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Filuke } 8120 \mathrm{~A} \text { IIgital } \end{aligned}$ $\begin{aligned} & \text { Multimeerer } \\ & \text { E115.0. } \end{aligned}$	
	$\begin{aligned} & \text { Type 7AAZ Dual } \\ & \text { Traccamp } \\ & \text { E275 } \end{aligned}$	$\begin{aligned} & \text { Advance Inst TC9A } \\ & \text { 3.MH.2 Timer Countier } \\ & 885.00 \end{aligned}$	Stepper Motors 4.5V 1.4A 2 Deg. Steps Sanyo Step-Syn 1038202 8.50 CiP Inc
	$\begin{aligned} & \text { Bit Waterprool } \\ & \text { Speake Unit } \\ & 512.50 \mathrm{CP} 200 \\ & \hline \end{aligned}$	Hewlett packard 180 A O'scope ${ }^{\mathrm{C}}$ iw 1801 A Dual Chn-Ver-Amp 50 MHz 1821A Time Base \& ${ }^{\text {E }} 5550.00{ }^{2}$	230 V AC $3 P / \mathrm{CO} 5$ Amp Conlacts. ${ }^{C / w}$ Base ${ }_{\text {Relays }}^{\text {E2.50 }} 1 \mathrm{lnc} \mathrm{CP}$
			Prestel Adaptor Model P. 1. Complete with remote control. Keypad $/ W$ Al Electronics CPU isolation T/X Modem 1200 Bauds rate. UHF Modulator PS.U IC SAY-3-1015D. AY-3-9710HK. PIC1650A-532 TY16502. AY-3-9752. New
$\begin{aligned} & \text { Lambda metered } \\ & \text { PSU } 0 .-4 \mathrm{~V} 0.1 \mathrm{~A} \times 2 \\ & £ 125.00 \end{aligned}$	Cherry Querty Keyboard New ASCI 		

CIRCLE 15 FOR FURTHER DETAILS

CIRCLE 43 FOR FURTHER DETAILS

173MHz FM TELEMETRY RADIO LINK

- Range dependent on environment but typically greater than 100 metres - Modular, Wall Mounting Transmitter + Receiver
툴 Direct Baseband Inputs + Outputs
- Approved to MPT1309
- Each Module $86 \times 104 \times 45 \mathrm{~mm}+$ requires only 30 mA dc at 7.2 V
- 'Add on' Modules for Remote Switching, Voltage Monitoring + Serial Data Transmission.

ADENMORE LTD

27 Longshot Estate, Bracknell, Berks. RG12 1RL Tel: 034452023

SMALL SELECTION ONLY LISTED - RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK	
vers- RA1217-Mechanical digit readout 1 ,	
	Quanity hile canvas containers - E20. Night
$1 \mathrm{MC/S}$ Wide - $£ 175$ - All re	
led	
led	ORiginal cost to Goverrment over $\mathrm{E}^{11,000}$ EAA
	AC sinewave output - various wattages. P.O.R.
	Tr 893 A - Power meter - 5^{50}, Racal
	-
98 SSE-ISB converto	
	ex worrs. S.A.E. for enquines, Phonitor
	aso avallability or price change
plain teleprinter paper - £50 Army Field	
EXPORT TRADE AND QUANTITY DISCOUNTS	
JOHNS RADIO, WHITEHALL WORKS,	
4 WHITEHALL ROAD EAST, BIRKENSHAW	
BRADFORD BD11 2ER. TEL NO: (0274) 684007	
WANTED: REDUNDANT TEST EQUIPMENT - VALVES - PLUGS - SOCKETS, SYNCHROS ETC. RECEIVING AND TRANSMITTING EQUIPMENT	

RACKMOUNT CASES

19"Self Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge. Brushed Anodised Aluminium. Case 18 gauge, Plated Steel with Removeable Rear $\&$ Side Panels. In $1 \cup \& 2 U$ Types a Subplate Chassis is Mounted 10 Botiom Cover. in 3 Type the Subplate is located on two Rails Mounted Between The Side Plates.

$$
1 \mathrm{U}\left(1^{3 / 4}\right) \text { height, } 230 \mathrm{~m} \text { depth.............. £27.00 }
$$ $2 \mathrm{U}(3 / 1 / 2)$ height, 308 m depth............. $£ 32.00$ $3 \mathrm{U}\left(5^{1} / 4\right)$ height, 230 m depth.............. $£ 39.00$ Width Behind Front Panel 437 m (All Tvpes).

All Prices include Postage \& V A. T Cheques, Postal Orders Payable to:
J. D. R. Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

CIRCLE 45 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R. Henson Ltd.

21 Lodge Lane, N. Finchley, London, N12 8JG. 5 mins. from Tally Ho Corner

Telephone: 01-445 2713/0749

CIRCLE 47 FOR FURTHER DETAILS

Wreléssiwìrld
 Editorial Feature List
 NOVEMBER
 $\overline{\text { Mobile Radios }}$
 With the launch of 900 MHz cellular radio last year and the release of Band III frequencies, mobile radio in the UK is enjoying a period of unprecedented expansion. November's special feature focuses on the systems and the equipment currently available.
 For further advertising details please ring
 Ashley Wallis on: 01-661 3130

NEWS COMMENTARY

Amateur g.s.o. satellites?

A future project for amateur communications satellites should include the long-term objective of having a chain of geosynchronous satellites in orbit according to Amsat-UK It may be possible to to use spare capacity on government or commercial satellites or fly amateur-built transponders on such satellites. A 30 GHz -up and 20 GHz -down link has been offered by NASA to qualified groups of experimenters on the proposed Advanced Communications Technology Satellite (ACTS) to be launched in 1988. But such links are not normally within the amateurs' province and would require gateways. Amsat's technical group points out in a recent discussion paper that microwave experience gained by these experiments would be of great value when it came to building their own
geostationary satellite.
NASA are still considering the proposal that ACTS could carry an amateur-built transponder at more familiar frequencies. Some other satellites are also possible carrier vehicles
Two more satellites in elliptical orbits are planned, PIII-C and D. The main transponders for these are already planned but the UK group could perhaps add digital or microwave transponders, beacons or imaging systems.
These elliptical orbit precess and make the sub-satellite point at a pogee change daily. Another orbit, the Molinya, with aninclination of 64.3° would produce a
geosynchronous orbit and the two sub-satellite points at apogee would remain the same, on opposite sides of the
globe. Stations near the points would see the satellite at near overhead for several hours, each time the satellite comes round. Such a satellite would provide a means of mobile communications, a mode of operation not possible with other orbits. With this in mind the Science and Engineering Research Council is funding a study of such a mission. Called T-Sat, the study is being undertaken by seven universities and a number of research establishments and due to be published this October. T-Sat is likely to introduce new engineering technologies and support an L-band mobile communication package. Only the feasibility study has been funded so far and although some of the planning is under way, it is unlikely to be launched before 1991.

Already into computer peripherals with what is claimed as the world's thinnest $31 / 2$ in floppy dise drive, Citizen Watch (UK) expand into consumer electronics with pocket tv, card radio, calculators and watches. Set for introduction early next year is a 2.7 in colour tv with l.c.d. of 109 by 480 elements. Currently available is the grey-scale model 06-TA with transmission type display for outdoor use (backlight optional). In the display drive circuits integrated with the l.c.d. panel, the control i.c. generates timing signals to drive the pulse-width modulated segment driver (right), scanning electrode driver (left), and line driver generator. ELECTRONICS \& WIRELESS WORLD OCTOBER 1986

MSF to close onh.f.

The MSF time and frequency standards service is to be withdrawn from the $2.5,5$ and 10 MHz bands. The withdrawal of the short-wave service is partly due to the popularity of the m.f. service according to the National Physics Laboratory; by comparison the h.f. service is little used. The introduction and availability of standard services in other countries removes the need to provide an international service, they say. The 60 kHz MSF standard time and frequency service will continue unchanged
Transmissions began in 1950 with a one-hour daily broadcast on 60 kHz . The s. w frequencies were added in 1953 and were used extensively for some years by aircraft pilots, amateur radio users and astronomers. In 1966 the m.f. service was extended to 24 -hours and later the codes that give full year, month, day, hour and minute were provided. The service proved valuable to a wide range of users who operate close time schedule systems.

This issue is the last in the present format From November, the appearance outside and in, the content and size all change Wireless World's approach to its subject, ever since it was first published under that name by Lord Iliffe, in 1913, following its acquisition from Marconi's, has been hybrid in the sense that it has appealed both to professional engineers and to those whose involvement is in their spare time. Lately, the 'spare-time' content has become closer to the 'professional', simply because the advance of technology requires a deeper understanding of the subject from anyone who takes part.
From the next issue, we recognize this and devote our content entirely to professionals. Articles on design techniques, advanced designs to illustrate these techniques, theoretical articles, tutorial pieces, the regular columns expanded and augmented by new ones - all will be familiar, but will be written or selected with the interests of the working engineer in mind. Papers on management and social matters closely connected with technology will appear and we will provide a market survey each month, starting with one on mobile radio.
The new design, with its square spine, many pages in colour and fifty per cent more pages, is clearly more costly to produce and this is reflected in the new cover price of $£ 1.95$. To offset this, the existing, UK subscription cost of $£ 18$ per year is retained and is now, for the first time, cheaper than buying twelve issues from a newsagent. It therefore makes good sense to take out a subscription and save $£ 5.40$.
Further, since it appears from conversations with readers that they occasionally experience difficulty in finding $E W W$ in newsagents we are offering a year's UK subscription at $£ 11.70$ for a limited period. This is equivalent to 98 p per issue and makes subscribing even better sense.

TEST ECUIPMENT

BRUEL \& KJOER 2409 voltmeters..
PHILIPS PM6307 wow \& flutter mete £325 STC attenuators DC. $1 \mathrm{MHz} 0 \cdot 100 \mathrm{db} \varepsilon 2$ ROHDE \& SCHWARZ SWOB polyscop 400 MHz

ROHDE \& SCHWARZ USVH selective UV-meter
HUGHES spot welding supplies $100 \mathrm{~W} /$
STODDART NM52A interference receive
EDDYSTONE EC958 communications receive
SYSTRON-DONNER frequency counter 605
50 MHz .. 5
SYSTRON-DONE
RADIOMETER FRA3 Audio wave analyser
AIRMEC 10 KV ionisation tester
BOONTON 778 capacitance bridge
SIERRA power meter 1-50W $144-470 \mathrm{MHz}$
KORTING 82512 colour pattern gen
CITRONIC 900 W audio power amp $1 / 2$-price BRYANS X-Y-T Plotter type 22020
FARNELL pulse generator system
BPL Component comparato
VALVE TESTER made for US Navy type TV10DU
TEKTRONIX 7 L 5 spectrum analyser P.I. 5 MH

* * STEPPER MOTORS * *

Brand new stock of 'ASTROSYN' Type 20PM-A055 stepper motors, 28V DC, 24 steps per rev. 15 oz-in torque " 1100 PPS . Body length $2^{1 / 22^{\prime \prime}}$, diameter $2^{\prime \prime}$, shaft $1^{\prime \prime}$ diam $\times 41 / 4^{\prime \prime}$ spirally threaded. Weight $160 z$. Price
each $£ 11.50$ (p\&p 50p). Connections supplied INC VAT
PHILIPS CONTROLS CORP. 14 V 48 Step per Rev 4-phase 2.75^{-}diameter. $£ 5$ each + VAT p\&p 50p

ESCAPDCMOTORS

Swiss-made precision 6 V DC motors with 70 m reduc tion gearboxes, giving tinal drive speed of $16 R P M$
6 V . Diameter $21,2 \mathrm{cms} \times 4 \mathrm{cms}$ long. PRICE INC VA $\stackrel{\&}{\text { CaRRIAGE }}$
(E-equip tested \& guaranteed

RALFE • ELECTRONICS
10 CHAPEL STREET, LONDON, NW1 TEL: 01 -723 8753 $\pi: 5 x^{2}-1010$

3490 A digital multi-meter

8733 A pin modulators. 851 B/8551B spectrum 4204 audio oscillator 8552A I.F unit. analyse 8553L R.F unit 110 MHz 8701A/2A/3A link analyser 5245 L 500 MHz counter 5243L 3GHz counter 182 T 100 MHz oscil oscope 8557A Spectrum Analyser unit $£$| B |
| :--- |
| 850 |

CONSTANT VOLTACE THANSFORMERS
ZENITH 240V Output 240 W ZENITH 240V Output 500W AUDE-LYONS 220 V 550W s65 550W sineSERVOMEX servo-controlled 3 KW . SERVOMEX servo-controlled $5 \mathrm{KW}{ }^{\text {£ }} 175$ CLAUDE-LYONS 220V 6KW servo

TF 2300 modulation meter
TF 144 H 72 MHz signal
 TF995B/5 sig. gen. AM/FM to 220 MHz $\mathrm{TF} 995 \mathrm{~B} / 5$ sig. gen. AM/FM to 220 MHz E 300
TF995A/5 sig. gen. AM/FM $1.5-220 \mathrm{MHz}$
TF2604 electronic mulit-meter
TF2604 electronic multi-met
TF893A audio power meter.
TF233A audxo power meler
TF2002 signal gene analyser
To 72 MHz
TF2002 signal gen to 72 MH
TF7910 deviation meter. TF2606 differential DC volmeter,
TF 1152 AFF power meter 50 ohm TF2612 attenuator. TF2430 80 MHz trequenc
TF 7200 universal bridge. TF2700 universal bridge.

PLEASE NOTE All our equipment is soid in exceilent condition, fully functional and
guaranteed tor 90 -days. Mail orders wel-
comed please telephone tor carriage quote guaranteed tor 90 -days. Mail orders wel-
comed please telephone tor carriage quote on
any equipment ALI PRICES ARE PLus comed, please telephone for carrage quol
any equipment. ALL PRIC
PLEASE.

COMMUNICATIONS COMMENTARY

The possibility of sending intelligible"speech" over data links at less than 100 bits per second by providing control signals derived from a digital vocoder to a voice synthesizer is already opening the way to new communications systems. Narrow-band systems with speech requiring no more spectrum space than a conventional radio-teleprinter circuit could clearly have a dramatic effect on overcrowded portions of the radio spectrum. The disadvantage, at least with current experimental systems, is that the speech is seldom an individually-recognizable reconstruction of the original. Further development is also needed to overcome the necessity to speak in a 'disconnected' manner more suitable for talking to computers than humans. Apart from spectrum conversation, on-line encipherment is relatively simple, making the technology attractive for military and other secure communications.
Work by the GTE Corporation in the USA has shown that by using artificialintelligence waveformrecognition matching techniques combined with words stored in a matching dictionary it becomes possible to transmit "speech" via meteor trails.
By sending data in highspeed bursts during the fleeting existence of the many random short-lived (typically 0.2 -seconds) ionized trails it has been possible for some 25 years or so to maintain rtty links over distances of about 800 miles on frequencies of the order of 50 MHz on a virtually "continuous" basis, although in fact there may be gaps of up to about 2 minutes between usable trails. High-speed bursts enable the throughput to average that of a conventional rtty link

The GTE work at Westboro, Mass. is the first reported success in adapting a meteorscatter "burst" link to speech
transmission, though snatches of speech have been reported by amateurs on the longerlasting trails that occur primarily during the meteorshower periods.

Now modfets

Just as basic gallium arsenide devices such as the mesfet have opened up improved possibilities for 12 GHz d.b.s. reception, so a new class of group III devices, the
"modulation-doped GaAs/ (Al,Ga)As heterojunction field-effect transistor" or modfet, as a form of high electron mobility transistor (h.e.m.t.), seems set to improve dramatically the outlook for millimetric communications. Experimental devices are being reported that offer ever lower low-noise performance at ever-higher frequencies: for example, at room temperatures, under 1dB noise figure up to about 10 GHz , under 2 dB up to 20 GHz , under 3 dB well above 30 GHz at 300 K , and with cooled devices promising to be comparable to the masers which first opened the way to satellite communications in the 1960s but soon tended to be discarded not only on account of high cost but also narrow bandwidth
A modfet amplifier can have a noise figure of 0.4 dB with 14 dB gain at 10 GHz at 77 K and a noise temperature of 3.5 K at 3.3 GHz with the device cooled to 15 K . It has been claimed that these devices are inherently superior to all other fet technologies in terms of achieving higher speeds of operation, lower power dissipation and lower nóise. With the concept of modulation doping, which combines features of both mos and mesfet devices, it becomes possible to realise more fully the potential of gallium arsenide in a fet structure Current work in Europe and the USA on h.e.m.t. devices looks like providing a further improvement not only in microwave and millimetric amplifiers but also as super-high-speed logic

Cordless outlaws

The Department of Trade \& Industry has warned dealers that it will soon be unlawful to manufacture, import, sell or possess unapproved cordless telephones. The maximum penalty for breaches of the Order to be made under the terms of the
Telecommunications Act will be a fine of $£ 2000$ and the Court can order forfeiture of the equipment.

DTl point out that "A cordless telephone is a radio apparatus which it is unlawful to install or use unless it is of a design approved for connection to the public
telecommunications system and marked as such. However it has not been unlawful to sell such telephones, and they have caused interference to other radio users."

No new legislation is required for such an Order but it has to be laid before Parliament. DTI state this is being done this summer. It is expected to come into force about the beginning of November. It is believed that DTI are also preparing a similar Order relating to unapproved CB amplitudemodulated transceivers.

Parapsychology

Many eminent scientists and engineers have expressed their firm belief or equally strong disbelief in forms of extrasensory perception in such manifestations as tableturning, clairvoyance, spiritualism, levitation, telepathy or correctly guessing the next or next-but-one card in the pack: Michael Faraday, Sir William Crookes, Sir Oliver Lodge, to name but a few. Indeed for at least 130 years scholars and scientists have carried out serious research and become convinced that they have demonstrated the existence. a 'psychic force' or a supernatural realm occupied by intelligent and superior beings. Current projects aimed
at receiving extra-terrestrial intelligence derive at least some of their support from inheritance of the popular Victorian belief that electricity and magnetism were occult forces.

But it must have surprised some readers to find in the usually staid Proc IEEE (June 1986) a very long tutorial review and critical appraisal of parapsychology research since the 1850s in an invited paper by Professor Ray Hyman.

He sits firmly on the fence in neither accepting nor rejecting the basic premises of his subject, but shows how both proponents and critics have deviated greatly from the standards of fair-play and rationality that he believes should characterise the best scientific arguments. However, he supports the view that the British
mathematician S.G. Goal, who in 1940 produced seemingly incontrovertible evidence in support of the 'displacement effect' in card-guessing games (made popular for psychic research by J.B. Rhine in 1934), was guilty of faking or at least 'massaging' his data. Hyman's main regret seems to be that each generation's best research efforts tend to be cast aside by subsequent generations of parapsychologists, to be replaced by entirely new 'best cases'. He suggests that not only does the evidence so far for psi lack replicability but, unlike that of other sciences, it is non-cumulative. He believes they need to get their own house in order before their experimental evidencp ready to be placed br scientific comm ${ }^{\text {י }}$ judgement. I ${ }^{+}$ argued thphenor of a.
tr

Multi-Function Calibrator 9822
 - 0-1000V AC/DC VOLTAGE
 - 0-10 AMPS AC/DC CURRENT
 - 10 ohm-10M ohm RESISTANCE
 BI-POLAR OUTPUT

 - 50 ppm ACCURACY (20 ppm optional) - IEEE-488 INTERFACE SELF-TEST FEATURE AUTOCAL
 Note: Time Electronics Ltd are approved to the following quality standards:
 MOD STD 05-24, NATO STD 05-26 AQAP4, MOD Reg No. 1HET01
 Complete product range of portable and programmable calibration equipment on show at
 ITAME STAND No. 1051

TIME ELECTRONICS
Botany Ind. Est., Tonbridge, Kent, England
DIRECT SALES © (0732) 355993 Telex: 95481

RFland planning
A 1985 joint circular from the Department of the Environment (16/85) and the Welsh Office ($42 / 85$) relating to Telecommunications Development included, as Annex A on policy, advice to local authorities on deal ing with planning applications to erect masts. Amongst its recommendations were: (6) Applications for permission for the masts often used by amateur radio operators, radio-taxi firms and many other private and commercial users, present fewer potential planning problems in terms of size and visual impact over a wide area. Such applicants will generally have less scope for using alternative sites or for sharing sites, and masts will often need to be located on the premises. (7) All users of radio equipment are required by the terms of wireless telegraphy legislation to avoid creating undue radio interference with other radio users, including domestic television sets and their equipment must be designed to minimise it. In most situations therefore, questions of potential interference are of no relevance to the determination of planning applications for the masts or antennas needed to operate a transmitter. Other controls should be assumed to deal with any radio interference problems. But in some cases significant interference can arise lawfully and unavoidably for various technical reasons. The Secretaries of State take the view that where there is firm evidence that significant and irremedial radio interference with other electrical equipment of any kind is a probability, or a certainty, or is already happening, as a consequence of any development that is a material planning consideration, to be weighed with all other considerations in the determination of an application. Planning authorities should not, however, attempt to explore, seek out or anticipate potential problems or radio interference, or be influenced in their approach by the clear evidence that significant radio interference will arise, or will probably arise, and that no practical remedy is available, will there be any justification for taking it into account in reaching a decision. Significant interference would be any
which materially impaired the normal use, effectiveness, or enjoyment of electrical apparatus in other premises on a regular or continuing basis.
The Policy statement also makes it clear that except in the most exceptional circumstances, planning authorities should not take into account "health and safety" factors concerning the radiated power output as these are subject to international standards.

It is also pointed out that many of the smallest antenna systems, including citizens' band antenna systems and also others which are very small in scale, are normally covered by the principle of "de minimis" or not considered sufficiently substantial in relation to the size of the building to have any material effect on the external appearance. Most
conventional television antennas, their mountings and poles are treated in this way and the local authorities are recommended to continue this approach. There is however evidence that some planning applications from radio amateurs are refused or delayed by fears of radiofrequency interference.

GCHQ

The appearance of a new book "GCHQ - the secret wireless war 1900-86" by Nigel West (pen-name of Rupert Allason), following in the wake of "The Puzzle Palace" and the many revelations of signals intelligence in The New Stateman tempts one to misquote Dr Samuel Johnson "it is like a dog's walking on his hind legs. It is not done well; but you are surprised to find it done at all."

It is not many years since the linking by a retired diplomat of Cheltenham when codebreaking was regarded as a front-page news sensation. Later the IBA found it prudent to have an interview outside the gates of GCHQ removed from a programme.

Yet it can be argued that excessive secrecy breeds inefficiency and sometimes conceals corruption. For many years, successive governments refused to acknowledge even the existence in peacetime of the Special (secret)
Intelligence Service and the
intelligence-gathering activities of GCHQ with its many radio intercept facilities - though the communications and computer industries had little doubt as to the purposes for which so much equipment was acquired. When The Times printed a story about the planned erection of a large satellite terminal near Bude, Cornwall the official Foreign \& Commonwealth Office line was that this was required for its diplomatic wireless service, a cover it has often used for the GCHQ staff manning listening posts in overseas embassies.
In his book Nigel West outlines the story first of Room 40 , then of the Government Code\& Cipher School (later GCHQ) and its move to its wartime home in and around Bletchley, known as "BP" or more formally as Station X .

Since GC\&CS was not funded by the Secret Vote (although it answered to but was not directed by "C", the head of SIS) Nigel West has been able to unearth details of its between-the-wars
"establishment" salaries etc. from the Public Records Office. He has apparently relied largely on the multitude of books on the Enigma/Ultra/ Pearl operations that have appeared since the original Polish and French books such as Gustave Bertrand's "Enigma" appeared in the early 1970s. Bertrand played a major role in sigint throughout the 1930s and 1940s, yet his book has never been translated or published in the UK despite this country's debt to his work in collaboration with the Poles. Nigel West has attempted, with only partial success, to flesh this out with an account of the special intercept service (Radio Security Service set up as part of MI5, but later under SIS control as MI8c) with its "voluntary interceptors", largely recruited from pre-war radio amateurs by Lord Sundhurst, drawing on the research of Paul Wright, G3SEM who inspired a BBC East tv programme The Secret Listeners and the surviving papers held by the present Lord Sandhurst.

As in his previous books on MI5 and MI6, Nigel West presents a mass of detail that reads most convincingly except for those parts of the
story of which the reader may have personal knowledge or can recognise the source. It is then that large numbers of minor and some major errors are apparent. Perhaps this book was written in a hurry, was poorly proof-read, depends too much on fallible memories, or on the need not to upset the D-Notice Committee. It could also be argued that the author is unduly prejudiced in favour of the Security Service, RSS and GCHQ, while against the wartime SIS(MI6) which is presented as a grossly inefficient organization; its disastersemphasised, its successes (and there were some) largely ignored. But the book may well succeed in enlightening the general public on the importance of signals intelligence and the emergence of its supremacy in wartime intelligencegathering, even though "humint" or the old-fashioned human spy remains important, as recent events have underlined.

In brief

Although the DTI raised fees for most of the licences issued under the Wireless Telegraphy Acts during July, the charges for amateur radio and CB licences remain unchanged.

The FCC has issued a Notice of Proposed Rule Making that will give American Novice licensees more operating privileges including the use of s.s.b. phone at up to 200 watts power between 28,300 and $28,500 \mathrm{kHz}$, plus access to the 220 MHz and 1.25 GHz bands. This follows requests by the ARRL who have become concerned that there are now 10,000 less novice licences than three years ago, with about as many dropping out of the hobby as upgrading to the higher grades of licence. Novices are currently restricted to morse operation on segments of some h.f. bands, after tak ing a 5 words per minute morse test and simple technical examination.

It seems likely that the next edition of the Highway Code will contain a specific recommendation that drivers should not use handheld microphones while in motion.
PAT HAWKER

BEST PRIGE COMPONENTS FOR HOBBYISTS, BUSINESS USERS, EDUCATIONAL ESTABLISHMENTS, EIC.

MEMORIES

We onty stock memories manufactured by established manufacturers whose
 DRAM 5v NMOS 150 nS

EPROM 5v NMOS 150nS	
2716 2K $\times 6350 \mathrm{nS}$	£2.25
$2372 \mathrm{~A} 4 \mathrm{~K} \times 8250 \mathrm{nS}$	£2.75
$27648 \mathrm{~K} \times 8250 \mathrm{nS}$	$£ 1.95$
$2712816 \mathrm{~K} \times 8250 \mathrm{nS}$,	£2.45
$2725632 \mathrm{~K} \times 8250 \mathrm{nS}$.	£3.95
EPROM 5v CMOS 250nS	
$27 \mathrm{C64} 8 \mathrm{~K} \times 8$.	$£ 8.50$
27 C 256 32K $\times 8$. 115.00
EEPROM	
$2816 \mathrm{~A} 2 \mathrm{~K} \times 8250 \mathrm{nS}$	£13.50
$2864 \mathrm{~A} 8 \mathrm{~K} \times 8300 \mathrm{nS}$. $£ 45.00$

(24 HOUR SERVICE)

LARGE QUANTITY TRADE DISCOUNTS, TECHNICAL ADVICE, ETC

30p 4512	$\mathbf{3 5 p}$
20p 4516	$\mathbf{3 5 p}$
35p 4518	$\mathbf{2 5 p}$
$\mathbf{3 5 p} 4528$	$\mathbf{3 5 p}$
$\mathbf{3 5 p} 4532$	$\mathbf{3 5 p}$
$\mathbf{2 0 p} 4538$	$\mathbf{4 5 p}$
$\mathbf{2 0 p} 4539$	$\mathbf{4 0 p}$
25p 4540	$\mathbf{4 0 p}$
30p 4555	$\mathbf{2 5 p}$

CIRCLE 60 FOR FURTHER DETAILS

MICROKIT LIMITED

BLAKESLEY, NORTHANTS NN12 8RB

HEAT
 TRANSFER

I was very interested to read the article on heat transfer in the August 1986 issue. Whilst Dr Smith covered the subject from the viewpoint of transistor failure, my interest in the subject lies in reducing temperaturegenerated distortion (t.g.d.) in audio amplifiers. Temperaturegenerated distortion occurs when the gain or base-emitter voltage of a transistor varies as a result of instantaneous changes in its junction temperature. When a transistor is handling a large audio signal, its instantaneous heat dissipation is equal to the instantaneous product of current times voltage. The variation in power dissipation causes the junction temperature of the transistor to rise and fall in relation to its ability to dissipate the heat generated.
I was surprised to note from Dr Smith's article that a TO220 transistor has a much lower thermal resistance from junction to case than a TO202. This is an area that I had been intending to research and a check through a manufacturer's catalogue yielded the information that the thermal resistance of different transistors reduced as the power rating increased. One exception was a transistor which had a much higher F_{t} and this had a thermal resistance about 10 times those of similar power rating. As a practical test, I replaced a pair of TO126 transistors rated at 12.5 watts with a pair of TO220 rated over 50 watts in part of an audio amplifier circuit in which the power consumption was 60 milliwatts per device. The difference in sound quality due to lower temperature generated distortion was easily audible. Graham Nalty
Borrowash
Derby

FREQUENCY ALLOCATIONS

Following Mr H.D. Ford's letter (August, 1986) I felt it would be worth explaining the current situation regarding frequency changes to the long-wave broadcast band.
At the World Administrative Radio Conference (WARC) held in Geneva in 1979 it was decided to bring all long-wave broadcast frequencies on to multiples of 9 kHz . In effect this means
decreasing all long-wave broadcast frequencies by 2 kHz . The reason for making this change is to help to reduce the effect of interference that can result from the harmonics or intermodulation of two or more broadcast signals. Any product formed in the receiver by these processes will, if all the carriers are located at multiples of 9 kHz , fall on a carrier frequency. This causes considerably less objectionable interference than if the product were to fall at say 2 kHz from the carrier as it could with the present situation. Locating carriers at 9 kHz multiples also simplifies the design of receivers that use synthesized local oscillators to cover both the long and medium wavebands.
All long-wave transmitters in Europe and Africa (Region 1) operating between 200 kHz and 236 kHz are due to change frequency on 1 February 1988. The BBC's Radio 4 long-wave network will change from 200 to 198 kHz on that date.
Obviously, this change is going to cause difficulty for some people who use 200 kHz as a frequency standard. This point was considered at the WARC, but since the long-wave signals involved are actually broadcast transmissions, and not specifically intended for time or frequency standards, it was felt that the needs of broadcasting must take precedence. It would, of course, have been impossible in any case for the UK to keep using 200 kHz when the rest of the world changed to 9 kHz multiples.
Henry Price
Engineering Information
Department
BBC
London

ELECTROLYTIC CAPACITORS

I would like to join in the great capacitor sound debate as after a great deal of practical work I generally have to agree with most of Mr Self's opinions. From purely static harmonic distortion tests, using an SA 1 and SA2 oscillator and distortion meter, I have found that all modern types of polyester, box or humbug type (C280), polypropylene, polycarbonate and Mylar capacitors when connected to the circuit of Fig. 1 do not exhibit any measurable distortion down to my limits of 0.0001% (1 ppm) However when using some, but not all, types of ceramic discs

they can have up to 100 ppm distortion irrespective of value, types unknown. Also all the miniature ceramic multilayer types and many surface mount types also have between 10 and 100 ppm distortion. The distortion is always thirdharmonic, indicating a symmetrical distortion of both halves of the sinewave.
It is also interesting to note that virtually all the humbug style capacitors I could find of over 10 years old also have this mysterious up to 100 ppm third harmonic. The maximum distortion occurring when $\mathrm{X}_{\mathrm{c}}=$ R. A very surprising result perhaps is that electrolytics do not exhibit any distortion without bias or with positive bias but show increasing signs of second harmonic with at least 2 V d.c. reverse. This was only tried on a small sample of 0.47μ. One point on which I would like to disagree with Mr Self is that of old plugs and sockets having distortion. This is also true; those with oxidized, tarnished contacts exhibit third-harmonic distortion from zero to around 50 ppm , dependent upon movement and contact efficiency, the effect improving as the contacts are moved repeatedly, presumably due to cleaning. From a practical point of view, it seems reasonable that any contact will have some resistance and a poor dirty contact will have a resistance which can be partly voltage dependent. This would be symmetrical, therefore giving rise to third harmonic distortion Also very tarnished i.cs fitted into i.c. holders exhibit distortion, as does an oxidized p.c.b. inserted into an edge connector.
One explanation of the 'old' polyester capacitors having relatively high distortion is that over the years moisture has entered via the leadouts, oxidizing the metal foil and contacts. Scraping and tinning the leads has no effect.

On the subject of d.c. component, I must again agree
with MrSelf in that any signal shape coming from a source such as a cartridge, microphone, tape, tuner, etc. cannot have a d.c. component even though the positive and negative peak values are widely different, the average will still be zero. If signals did somehow receive a net d.c. offset dependent upon wave shape, then clearly there would be an overall increase in the low-frequency spectrum giving a very muddled sound.

However, has no one in the audio field ever heard of d.c. restoration? This is the technique used by video engineers to restore the d.c. level lost from a picture in the path from transmitter through a tuner and i.f. to the output stage. Most low cost black and white tvs have simple a.c. coupling throughout, thereby losing any d.c. present at the source. This explains why the contrast level on a black and white tv often varies with picture content. This is totally unacceptable for a colour tv and so d.c. restoration is used. This consists in its simplest form of a black-level clamp potential formed by $\mathrm{R}_{1}, \mathrm{R}_{2}$ and a

diode D_{1} (Fig. 2). The capacitor stores the most negative peak; the whole signal then stands upon this, thereby finding an artificial d.c. level. It is, in fact, peak rectifying without further smoothing. The capacitor is forced to change its change on the negative cycle due to the low impedance diode but meets a high impedance on the positive cycle.
This circuit when fed with a steady state sinewave does not, as would be expected, clip the negative side, but simply changes its d.c. level. The steadystate distortion is then very low as measured after a short period of time. The first few cycles are severely clipped until d.c. restoration is complete. Clearly then, if an amplifier has a nonlinear input inpedance, such as a simple common-emitter stage, d.c.shift will occur, dependent upon the music waveform giving rise to an increased l.f. signal spectrum. It is therefore important to design preamplifiers with a constant
open loop input impedance, which is fortunately easy with modern ics.
The problem comes with power amplifiers. It is widely accepted that the power-amplifier stages often clip on transients: these can be positive or negative and therefore, if a.c. coupled, will rise to d.c. changes with a corresponding recovery time. In the the seventies it was fashionable to drive an amplifier into clipping with a sinewave for several cycles then remove the drive and measure the recovery time. This, being symmetrical, does not normally give significant d.c. offsets unless the amplifier really is sick, but the same technique should be used with a signal with a larger peak on one half cycle than the other. At the point of clipping since the feedback loop is broken the input impedance drops, giving the effect of d.c. restoration. Amplifiers with low feedback will therefore sound better giving less d.c. and low-
frequency spectra when asymmetrical clipping occurs.

The complete answer is obviously not to a.c.-couple the input or feedback networks to the power amplifier and then any amount of asymmetrical clipping can occur without generating any extral.f. components.

Preamps do not normally clip and therefore can be a.c.-coupled safely, provided their input impedance remains constant over the whole operating range and also that the feedback factor is also constant.
L.Sage

Sage Audio
Bingley
West Yorkshire

SHOOTTHAT POSTULATE

A scientific hypothesis or postulate is a peculiar beastie. It seems to be born of a synthesis of expérimental data combined with an extremely variable amount of intuitive leaps in the dark; the mix will probably always defy attempts at a precise definition. Once introduced, however, we are on safer ground with it as we can verify its "truth" by the severe test of comparison with experiment, and although no amount of corroboratory evidence will ever prove it true, it requires only one properly established, repeatable bit of evidence to disprove it. There is noother scientific basis upon which we can say it is wrong. Nor can any flat statement be accepted for a single moment, no matter what the 'authority' of its
author, without the factual evidence to supportit, either for or against
For more years than I care to admit, and nodoubt in common with many others, I have sought such evidence to disprove Einstein's "second postulate", but I must confess failure. I have seen much that corroborates it, but not one single, positive fact to contradict it. I am glad to see that this evidence has now become available, otherwise some of your correspondents (vide, for example, Mr Winterflood, Feedback, August, 1986) could not possibly make the totally unequivocal statements that they have done. It is unfortunate that none of them has actually bothered to quote the experimental evidence or any published reference to it, probably because they think that it is better-known than it in fact is. May I ask that they remedy the omission and give us chapter and verse?
Alan Watson
Pollenca
Mallorca

SYNCHRODYNES

I was delighted to read the series of articles by J.L. Linsley Hood on the synchrodyne a.m. receiver earlier this year. They were long overdue.

I have followed with interest the progress of the synchrodyne from the date of its first announcement by D.G. Tucker shortly after World War II. It was (predictably) instantly rejected by the commercial radio manufacturers, wedded as they were to the mass-produced superhet, but later rescued from oblivion (again rather typically) by the amateur radio community under the pseudonym of "directconversion receiver".
The amateurs, with no commercial axe togrind, came to recognise its special virtues as an efficient receiver of shortwave a.m. signals, needing no expensive or sophisticated components and easily constructed with the minimum of test equipment.

My only reservation about the Linsley Hood circuitry is that it is rather complex and, in view of the rarity of practical references to the synchrodyne system in the pages of $W W$, may cause some readers to conclude that all synchrodyne receivers are necessarily complex.
The word rarity is not misplaced. If we ignore block schematics referred to in passing, readers of $W W$ whose loyalty is exclusive have had to wait (I think) since August 1948
to see a diagram of a practical synchrodyne circuit.
As the astute Cathode Ray was quick to point out, the two broadcast bands (for which the recent circuitry was designed) are used almost universally for reception of a few powerful stations and the needs of knobtwiddlers are hardly worth catering for. So half a dozen preset capacitors and as many switches can, in practice, make all muting circuitry redundant.

The same goes for circuitry designed to extend the receiver's pull-in range, a great help when hand-tuning. Given a switchedstation design with an oscillator employing silicon semiconductors and fed from a voltage regulator device, the frequency drift in a domestic environment will be only a small fraction of the normal pull-in range. In practice, whistles caused by drift just don't occur.
Along such lines a fairly simple synchrodyne is possible, perfectly adequate to demonstrate the system's special advantages of low distortion and ease of construction, and above all its unique feature of postdetection selectivity control.

Such a design in the pages of $W W$ could well represent an attractive introduction to synchrodyne construction and perhaps act as a stepping-stone to the more ambitious continuous-tuned receivers as exemplified in Mr Linsley Hood's contribution.
D.B. Pitt

Nottingham

ENGINEERING COUNCIL EXAMINATION

During the academic year 1985/6 I gave a course of lectures to two classes for Courses 24I (Fields and Circuits) of the Engineering Council Part 2 Examination. The full course (all 6 papers) is very troublesome for most students and I would like to make some comments based on my experience.
The purpose of the Part 2 Examination is to provide a means for technicians and technician engineers to obtain the academic qualification for professional engineering status. Before a student can take Part 2 he must have passed Part 1 or its equivalent. But this does not mean that a topping-up operation is adequate. From the format of the questions on the papers I would say that the real purpose of the examination is to
test the roundedness and completeness of a technician's information. He could make heroic efforts collecting and studying course information but still be unable to pass an actual paper. For example text books, which are the normal source of information, do not usually provide answers to specific examination questions. A student intending to pass Part 2 must search around the various topics and acquire a proper understanding of the principles. His answers will reflect his understanding and overall command of the subject. This is very different from the techniques required to pass Part 1. Essentially the Part 2 probes for an understanding of fundamental principles and to assess a student's ability to manipulate those ideas. I am not criticizing the examination, but trying to point out the requirements that a student must satisfy for a successful result.

I would consider my only serious problem to be that classes must sit an examination which is set and corrected by another person(s). I could spend considerable time on a number of topics that might not appear on the paper. This happened with one of the classes because only a limited amount of time was available and the full course could not be covered. The papers can surprise lecturers as well as students. I have no criticism of the syllabus, which compares very well with a degree course at a university or technical college.
I never sat the examination and consequently cannot comment from a student's viewpoint. However, I noticed that most students rarely tired of having examination questions explained and answers thrashed out. I used approximately twothirds of the lecture time doing questions, but I cannot say that this approach improves a student's chances of getting through over any other method.

The full examination consists of six papers. For a student to pass all six papers at the same sitting is a considerable achievement. Under the present rules he must take three or more at the first sitting and I would favour taking three or four. Failure in any paper brings disappointment and frustration but I would always recommend a second attempt to a serious student.
These are purely personal comments. I would welcome the views of lecturers and students. Brian P. McArdle
Dundalk
Co Louth
Eire

TRANSFORM YOUR CONVENTIONAL SCOPES

 WITH THE D.S.P. SCOPE ADAPTORTYP 9060
2CH. 20 KHz FFT ANALSER
+DGTTAL STORACE SCOPE

4 MODES
 OF OPERATION

$\begin{aligned} & 2 \mathrm{CH} . \\ & \text { FFTA. } \end{aligned}$	- FULL ANTI-ALIAS FILTERS to provide genuine FFT analysis with no spurious results on all frequency ranges. 6. Frequency ranges from $0-20 \mathrm{~Hz}$ to $0-20 \mathrm{KHz}$. - 100/200 line resolution. - Fast update rate - minimum 1 Hz . - LOG/LIN vertical scale with 40 dB range. - Switchable averaging and choice of weighting (Hanning/rectangular).
$\begin{aligned} & 2 \mathrm{CH} . \\ & \text { D.S.O. } \end{aligned}$	- 512/1024 points. - Sample rate 50 KHz . - Timebase speeds $1 \mathrm{sec} / \mathrm{div}$ to $1 \mathrm{msec} / \mathrm{div}$. - Completely flicker-free display at all time base speeds.
DUAL MODE	Combines the features of D.S.O. mode and FFT mode to simultaneously display both time and frequency domains of the input signal.
BYPASS MODE	The adaptor is internally by-passed so that the host scope works as normal with no loss of facilities.

OTHER FACILITIES

- Full trigger facilities $A C / D C,+/-$ slope, level etc. - Single shot mode.
- Input 100 mV to 10 V full scale switchable.
- SCREEN DUMP facility to output direct to dot matrix printer.
NEXT NEW PRODUCT
High performance D.S.O. scope adaptor - To be released soon

> DEVELOPED AND MANUFACTURED IN THE U.K.

DATA ACQUISITION

 LIMITEDElectron House, Higher Hillgate, Stockport, Cheshire SK1 3QD. Tel: 061-477 3888 Telex:666839

by J.L. Linsley Hood
M.I.E.E.
Robins Electronics

Fig.1. I.f. transformer at (a) used in valve receivers. Alternatives shown (b) to (e) also provide band-pass response.

(a)

(b)

(c)

Putting the quality back into a,m. radio

This unusual design attempts to match the much sought after sound quality of the postwar five-valve radio designs.

It is perhaps a rather offhand commercial attitude to a.m. radio, rather than simple nostalgia or an affection for things using valves that has resulted in the relatively high prices paid for late pre-war or immediately post-war 'table' radio sets.

The reason for this is that these sets were built at a time when a.m. radio reception was the only kind there was, and considerable efforts were made by their manufacturers to achieve the highest practicable quality in the final output signal, and this is normally vastly better than that given by their contemporary equivalents.

There is, therefore, a temptation to the circuit designer to look at the possibilities in this field, and to see how to use some of the good electronic components now available, to put together a contemporary receiver design which would be at least as good as its valveoperated forerunners, without being excessively elaborate or expensive in its construction.

The circuit construction employed for these classic radio sets was invariably of the superhet form. This technique, as it was then employed, allowed the necessary selectivity to be obtained without undue curtailment of the wanted a.f. sidebands by the use of at least two pairs of bandpass-coupled tuned circuits.
These were typically of the form shown in Fig.1(a) where the required inter-circuit coupling is obtained by positioning the coils side by side within the common screening can, so that there is the required degree of mutual inductance.
In the average modern transistor radio, the a.m. i.f. transformers are most commonly of
the single-tuned circuit type, which does not give a very good compromise between selectivity and bandwidth, and this appears to be true regardless of whether these circuits are built from discrete transistors, or, more typically nowadays, with some single i.c. that combines the function of local oscillator, frequency changer, i.f. amplifier and demodulator on a single chip.

The fields in which improvement should therefore be sought are in the band-pass characteristics of the i.f. stages to give an optimum compromise between selectivity and bandwidth, in sensitivity, in the distortion introduced by the demodulator stage and in the quality of the subsequent audio amplification.

I.f. transformer design

Starting with the first of these, an immediate problem is that the majority of the small commercial i.f. transformers, designed for use with transistor radios, are of single-coil construction. Those of the type shown in Fig.1(a), though available, are not often used, and are therefore expensive and not very easy to come by Fortunately, there are a number of alternative methods of achieving a band-pass characteristic, of which I have shown the more practicable structures in Figs 1(b) -1 (e).

Most of the common i.f. coils have taps on their windings, or small secondary coils, to match the desired high dynamic impedance of the tuned circuit to the input impedance of the junction transistor, which would allow the use of the forms shown in Fig.1(c) or (e), and because the size of the coupling capacitor $\left(\mathrm{C}_{\mathrm{c}}\right)$ required for this layout (in the
range $100-1000 \mathrm{pF}$) is a lot larger than the likely stray capacitances, and the signal voltages are relatively low, these forms would lend themselves well to circuits in which the coupling capacitor value was altered, by switching, to give a choice of selectivities.

The layout of Fig.1(b) would be particularly well suited to a switched-selectivity i.f. amplifier, since the value of C_{c} for critical coupling could be of the order of a hundred times greater than that of the tuning capacitors $\left(\mathrm{C}_{\mathrm{t}}\right),\left(\mathrm{C}_{\mathrm{c}}=0.1 \mu \mathrm{~F}\right.$ if C_{t} is 1000 pF), and the r.f. voltage developed across C_{c} would be proportionately low, since one end would be returned to the chassis line.
For a fixed-selectivity i.f. amplifer, the layout shown in Fig.1(d) is probably the simplest answer, since it works equally well with a wide range of coils, whether or not these have tapped primaries or secondary windings.
The variety of amplitude response curves which are given by coupled tuned transformers of this type is shown in Fig.2, in which Fig. 2(a) shows the transmission/frequency characteristics of an under-coupled pair of tuned circuits (similar to that which would be given by two such tuned circuits in cascade), and 2(e) shows the effect of over-coupling two such tuned circuits. In practice, the coupling factor, k , would be chosen to give a response curve close to that shown in (c) called 'critical coupling', though some excursions on either side of this value could allow bandwidth alteration without too great a degree of departure from the desired flat-topped curve.

A comprehensive analysis of the design of band-pass coupled i.f. transformers is given

by Sandel ${ }^{*}$, and a summary of the design data for the type of circuit shown in Fig.1(d) is that for critical coupling the coupling factor (k) should be the reciprocal of the mean Q value for the two coils. If these have a Q of 100 , a fairly typical value, then the coupling capacitor $\left(\mathrm{C}_{\mathrm{c}}\right)$ should be C_{t}. k , where $\mathrm{k}=0.01$. If the tuning capacitors, $\left(\mathrm{C}_{\mathrm{t}}\right)$, are 1000 pF , then the coupling capacitor value should be 10 pF .
Having tested a number of miniature i.f. coils, the great majority intended for use as a single tuned circuit were found to tune over the range 450 470 kHz with a 1000 pF capacitor, and under these conditions, had a working Q value of about 100 . These coils would therefore be very suitable for this particular application.

Those with an internal tuning capacitor, usually housed in larger cans, are normally of higher quality, and have a higher L/C ratio, which leads to the use of a smaller value capacitor and also to a higher working Q value. The circuit layouts of Fig.1(c), or 1(e), would be more appropriate in these cases. Unless the secondary coil or tap ratio can be determined, it is impracticable to calculate the required value of C_{c}, but this may easily be determined by experiment and
*Sandel. B., Radio Designers Handbook, R. Lanford-Smith (Ed.), 4th Edition, (2), Chapter 26. Iliffe Ltd.
will usually lie in the range $100-800 \mathrm{pF}$.
Too high a Q value for the i.f. transformer tuned circuits is not very desirable where a series of these are to be operated in cascade; the effect of this is multiplicative in the steepness of attenuation of the skirt of the pass band. For example, with three such band-pass pairs, as might be used in a high quality receiver design, a Q value for each coil of 100 will give a pass band of about 12 kHz at -6 dB , and 20 kHz at -60 dB . A Q of 200 at each stage would reduce the useful pass-band from 12 to 6 kHz . For this reason I was quite happy to discover that the inexpensive miniature i.f.
coils were in the required Q range.

Sensitivity

To give the type of performance needed to match the oldstyle 'table' radio set, an aerial sensitivity of at least $10 \mu \mathrm{~V}$ is needed, for $6 \mathrm{~dB} \mathrm{~s} / \mathrm{n}$ ratio. Two i.f. gain stages using dual-gate mosfets will easily attain this value at the input to the i.f., assuming a 'detector' (demodulator) signal level of 100 mV , and two such i.f. stages will allow an adequate range of gain control by means of a signal-derived a.g.c. voltage, without the need to apply such a control voltage to the frequency changer, which might

Response curves provided by tuned circuits at Fig. 1 depending on degree of coupling, Fig.2. I.f. stage using circuit at Fig.1(d), with a.g.c. applied to fet amplifier rather than to frequency changer, Fig.3, and its response, Fig.4.Opamp demodulator, Fig.5.

Fig.6. Practical circuitbased on demodulator of Fig.5.

Fig.7.Signal-strength meter uses a.g.c. voltage from TP2.

Fig.8. Oscillator and frequency changer stage.

Fig.10. Audio output amplifier and power supply.

However, there is a useful op-amp configuration in which the gain of the op-amp is used to remove the diode dead-band and provide a precision fullwave a.c. rectifier, Fig.5.
Its method of operation is as follows. For the positive-going half of an input cycle, the output of IC_{1} will drive the cathode of D_{2} negative, until the potential at the junction of D_{2} and R_{2} is equal, and opposite to that applied to the input. In this mode, IC_{1} acts as a unity-gain inverting amplifier, and a negative-going current input is applied to the 'virtual earth' point at the inverting input of IC_{2}.

For a negative-going half cycle applied to the rectifier input, the output of IC_{1} will be positive, which will drive D_{1} into conduction, and D_{2} will be open-circuit. As the inverting input of IC_{1} also forms a 'virtual earth', there is no potential across R_{2} and R_{4}, and the current input to IC_{2} is simply that which flows from the source through R_{3}.
On both halves of the input cycle, therefore, a negativegoing current input is applied to the inverting input of IC_{2}, which causes an equal, but opposite current to flow from IC_{2} output, through R_{5}, to preserve the necessary voltage node at the inverting input. Resistor R_{4} must have a value
equal to half that of R_{3} so that there will be the required negative-going total current flow to IC_{2}, on the positivegoing input half cycle, when current is flowing through both R_{4} and R_{3}
I have shown a practical form of this circuit in Fig.6, in which two dual op-amps provide a low distortion demodulator and a.g.c. amplifier.
In this, $\mathrm{IC}_{2 \mathrm{a}}$ is a unity-gain impedance converting buffer stage to provide the desired low impedance drive to the precision rectifier without loading the secondary coil of the final i.f. band-pass circuit, and a small forward bias is applied to the diodes D_{1} and D_{2}, by means of R_{16} and R_{40}, to assist the circuit to operate in a nearly ideal manner.
It is easy to set this up. With no input to $\mathrm{IC}_{2 \mathrm{a}}$, (TP1 shorted to the 0 V line), the output of $\mathrm{IC}_{1 \mathrm{lb}}$ should also be zero. As R_{40} is gradually increased in value, current is fed through D_{1}, which causes the output of $\mathrm{IC}_{1 \mathrm{a}}$ to move negatively until D_{2} just begins to conduct. When this happens, the output of $\mathrm{IC}_{1 \mathrm{~b}}$ starts to go positive, as measured at TP3. The correct setting for R_{40} is at the threshold of this output voltage excursion.
Since one is only interested in the l.f. component of the output, the capacitor C_{26} re-

duces the h.f. gain of $\mathrm{IC}_{1 \mathrm{~b}}$, to leave only the modulation voltage. It is prudent to ensure that this part of the circuit is well screened from the aerial input, or otherwise there will be a spurious signal at twice the i.f., 930 kHz , which is within the medium waveband. Components R_{21} and C_{30} also help to remove the 930 kHz component from the audio outputline.
In practice, the incoming i.f. signal generates a mean positive potential at the output of $\mathrm{IC}_{\mathrm{lb}}$ that is proportional to the signal strength. This is amplified and inverted by $\mathrm{IC}_{2 \mathrm{~b}}$ to give an a.g.c. potential which becomes progressively more negative as the signal strength increases. Variable R_{41} sets the a.g.c. potential, in the absence of an incoming signal (TP1 shorted to the 0 V line), to +4 V which is a suitable value for the second gate of the dualgate mosfets. TP2 can also be used as a source of potential to
operate a signal strength or tuning meter, as shown in Fig. 7.
This provides an effective and fast-acting a.g.c. system, which holds the audio output substantially constant over a range of input signal strengths from $5 \mu \mathrm{~V}-5 \mathrm{mV}$. The inevitable penalty for such a sensitive receiver is that there is a considerable increase in aerial and other noise when the set is tuned between signals.

Oscillator and frequency changer

This is a conventional circuit layout, as shown in Fig.8, in which a single-gate depletion mosfet is used as a sourcecoupled oscillator, with the drive to the frequency changer being taken from the low impedance source electrode. The inclusion of R_{1} converts the drive waveform into a rounded square wave, of about 800 mV pk-pk amplitude, which gives good conversion efficiency in the frequency changer.

Although r.f. mosfets are somewhat dearer than bipolar junction transistors, their use in the oscillator, frequency changer and i.f. stages is amply justified by the performance advantages which they confer: high mutual conductance, high input impedance, and a relatively high output impedance, which lessens the extent of damping of the tuned circuits and removes the need for tapped coils.
Also, in the i.f. stages, the very low feedback capacitance of the dual-gate mosfet avoids problems of r.f. instability. In the frequency changer stage, the mosfet offers a second input electrode, unconnected to the signal gate, for local oscillator injection, and as an oscillator, the mosfet offers a superior performance in terms of output and frequency stability to any other transistor type.

Continued on page 29

Fig.9. Circuit diagram of receiver for long and medium waves. Additional coils and switching can be used to obtain h.f. coverage, but second-channel interference will be inevitable, though no more than in valve-operated receivers.

01-208 1177 Techomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

AMB15	B8C MASTER Econet computer 128K (only ANFS)			£395 (a)
AMB12				E319 (a)
AMC06				¢105 (b)
ADF13	Rom Cattridge	AD	Econet Module)
ADJ2?	Ref. Manual Part 1...... $\boldsymbol{\Sigma 1 4 . 9 5}$ (c)	ADJ23	Ref. Manual Part	£14.95 (c)
ADJ24	Advanced Ref. Manual			E19.50 (c)
View 3.0 User Guide $£ 10$ (d)				ide 510 (d)
BBC Dust Cover $£ 4.50$ (d)............ 1770 DFS Upgrade for Model B $£ 43.50$ (d)				
ADFS ROM (for 8 with 1770 DFS \& B Plus) £26 (d)64K Upgrade Kit for B plus $£ 35$ (d)				
ACORN Z80 2nd Processors £329 (a)................................... ACORN 6502 2nd Processor $£ 162$ (b)				
MULTIFORM Z80 2nd Processor £299 (b) ACORN IEEE Interface £269 (a)				
TORCH Z80 2nd Processor ZEP 100				£229 (a)
TZDP 240: ZEP 100 with Technomatic PD800P dual drive with built-in monitor stand £439 (a)				
META Version III - The only package available in the micro market that will assemble 27 different processors at the price offered. Supplied on two 16 K roms and two discs and fully compatible with all BBC models. Please phone for comprehensive leaflet $£ 145$ (b).				
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send for our leaflet.				

PRINTERS \& PLOTTERS

EPSON

 FX85 (80 col). FX105((336 col$)$
$\mathrm{L} 0800(80 \mathrm{col})$
TAXAN:
KP810 (80 col)
KP910 (156 col)
JUKI
6100 (daisy wheel)
NATIONAL PANASONIC KXP1080 (80 col) STAR NL 10 (Parallel Interiace) STAR NL 10 (Serial Interface)

£229 (a)	
	. 20 (c)
	$\underline{49}$ (c)
	£315 (a)
	. $£ 449$ (a)
	£459 (a)
	¢659 (a)
$\begin{array}{r} £ 219 \text { (a) } \\ £ 369(\mathrm{a}) \end{array}$	
£249 (a)	
£159 (a)	
$\begin{aligned} & £ 239 \text { (a) } \\ & \sum 279 \text { (a) } \end{aligned}$	

BROTHER
HR15 HR15 (Daisy Wheel) ...
COL OUR PRINTERS

s.

 EPLon J $\times 80$Integrex
.
RS . $£ 299$ (a)
 Canon PJ1080A...
Dotprint Plus NLQ Rom for Epson versions for $\mathrm{FX} /$ RX, MX PLOTTERS Epson H1-80 (A
Hitachi 672 (A3) Hitachi 672 (A3)
Graphics A3 Piotter Plotmate A4 A4M. A3M. £239 (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $9.5^{\circ} \times 11^{\prime \prime} £ 13\left(\right.$ b) 2000 sheets $14.5^{\prime \prime} \times 11^{\prime} £ 18.50$ (b)
Labels per 1000s: Single Row $3_{2^{\prime \prime}} \times 17 / 16^{n}$ 5.25(d) Triple Row 2-7/16 $\times 17 / 16^{\circ}$ £5.00(d)

MODEMS

MIRACLE WS 2000 - The world standard BT approved modem covering all standard CCITT and BELL (outside UK only) standards up to 1200 baud. Allows communication Answer with full software control enhance the considerable features already provided on the modem. Mains powered. WS 2000 £102 (c), Data Cable $£ 7$ (d), Auto Dial Card £26 (d), Auto Answer Card $£ 26$ (d).

WS 3000 RANGE - the new protessional series. All are intelligent and 'tayes compatible, allowing simply 'English' commands to control its many features. All models feature Auto-Dial with 10 number memory, Auto-Answer, Speed buffering. printer port, data security option etc. All models are factory upgradeable.
WS3000 V21/23 (V21 \& V23 + Beli£295 (a). WS3000 V22 (as above plus 1200 baud full duplex $£ 495$ (a). WS3000 V22bis (as above plus 2400 baud full duplex) $£ 650$ (b).
BBC Data Cable for WS3000 £7 (d). Data Cables for other micros avalable. The WS3000 range all have BT approval.
NEW WS 4000 'SCHOOLS' MODEM - a new low-cost high pertormance 'Hayes intelligent modem with A/Diai and AAnswer and V21/23 bis at £405. Other options available. please send for details.
GEC DATACHAT 1223 - An economically priced BABT approved modem complying with CCITT V23 standard capable of operating at $1200 / 75 \mathrm{bps}$ and $75 / 1200 \mathrm{bps}$ and $1200 / 1200 \mathrm{bps}$ pseudo fuil duplex. It is line powered, does no require external power source. It is supp
with software suitable for connecting to With software suitable for connecting to host of bulleting boards. Special Offer $£ 49$ (b).

SOFTY II

SPECIAL OFFER 2764-25 £2:00(d); 27128-25 £2:50(d); 6264 LP-15 £3:40(d);

${ }^{5.25}$ Single Prives $40 / 50$ switchable: DISC DRIVES
5.25 Single Drives $40 / 50$ switchable:
TS400 400K/640K

PS400 $400 \mathrm{~K} / 640 \mathrm{~K}$
PS400 400K640K with integral mains power supply ... (b) ع114 (b)
5.25" Dual Drives $40 / 80$ switchable:

TD800 800K 1280 K
PD800 800 K 1280 K with integral mains power supply.
PD800P 800K 1280 K with integral mains power supply and monitor stand
3.5" 80T DS Drives:

TS351 Single 400K 640 K
PS351 Single $400 \mathrm{~K} / 640 \mathrm{~K}$ with integrat mains power supply
TD352 Dual $800 \mathrm{~K} / 1280 \mathrm{~K}$.......................................
PD352 Dual $800 \mathrm{~K} / 1280 \mathrm{~K}$ with integral mains power supply
£205 (a) £229 (a)
$£ 249$ (a)

$£ 99$ (b)

3M FLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10 . 51/4" DISCS
$\begin{array}{llllll}40 \text { TSSDD } & £ 10.50(\mathrm{~d}) & 40 \text { TDSDD } & £ 12.75(\mathrm{~d}) & 80 \text { TSSDD } & £ 20.00 \text { (d) } \\ 80 \text { TSSDD } & £ 16.50(\mathrm{~d}) & 80 \text { TDSDD } & £ 16.50(\mathrm{~d}) & 80 \text { TDSDD } & £ 27.00 \text { (d) }\end{array}$

FLOPPICLENE DRIVEHEAD CLEANING KIT

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs
ensures continued optimum performance of the drives. $\begin{aligned} & 51 / /^{\prime \prime} £ 12.50 \text { (d) } \\ & 3^{1 / 2} £ £ 14.00 \text { (d) }\end{aligned}$
drive accessories

Single Disc Cable $\mathbf{£ 6}$ (d)	Dual Disc Cable $\mathbf{£ 8 . 5 0}$ (d)
10 Disc Library Casae $£ 1.80$ (d)	$30 \times 51 / 2$ Disc Storage Box $\mathbf{£ 6}$ (c)
$50 \times 5^{1 / 2^{\prime \prime}}$ Disc Lockable Box $\mathbf{£ 9 . 5 0}$ (c)	$100 \times 51 / 2$ Disc Lockable Bo $\mathbf{£ 1 3}$ (c)

MONITORS

MONITORS	
RGB 14"	MONOCHROME
1431 Std Res 1779 (a)	TAXAN 12 " HI-RES
1451 Med Res £225 (a)	KX1201G green screen £90 (a)
1441 Hi Res $£ 365$ (a)	KX1203A amber screen £98 (a)
MICROVITEC 14" RGB/PAL/Audio	PHILIPS 12" HI-RES
	BM7502 green screen £75 (a)
1431 AP Std Res....................... E 195 (a)	BM7522 amber screen................... 779 (a)
All above monitors available in plastic	HANTAREX HX12 £69 (a)
	HANTAREXHX12 269 (a)
or metal case.	ACCESSORIES Microvitec Swivel Base £20 (c)
TAXAN SUPERVISION II	Taxan Mono Swivel Base with
$12^{\prime \prime}-$ Hi Res with amber/green options. IBM compatible £279 (a)	clock (c)
	Philips Swivel Base £14 (c)
	BBC RGB Cable.............................55 (d)
MITSUBISHI	Microvitec............................. $£ 3.50$ (d)
XC1404 14" Med Res RGB. IBM \& BBC	Taxan $£ 5$ (d) Monochrome $£ 3.50$ (d)
compatible................................ £229 (a)	Touchtec -501255 (b)

UVERASERS

UVIT Eraser with built-in timer and mains indicator Built-in satety interlock to avoid accidental exposure Itcan handle up to 5 eproms at a time with an average erasing time of about 20 mins. $£ 59+£ 2$ p $\&$ p. UV1 as above but without the timer. $£ 47+£ 2 \mathrm{p} \& \mathrm{p}$ For Industrial Users, we offer UV140 \& UV141 erasers with handling capacity of 14 eproms. UV141 has a built in timer. Both offer full built in safety features
UV140 £69, UV141 £85, p\&p $£ 2.50$.
UV140 £69, UV141 £85, p\&p £2.50

\left.| Serial Mini Patch Box | |
| :--- | :--- |
| Allows an easy method to | |
| recontigure pin functions | |
| without rewiring the cable | |
| assay. Jumpers can be used | |
| and reused. | Serial Mini Test |
| | Monitors RS232C and CCITT |
| V24 Transmissions, | |
| indicating status with dual | |
| colour LEDs on 7 most | |$\right\}$| significant lines. Connects in |
| :--- |
| Line. |

The bufter offers a storage of 64 K . Data from three computers can be loaded into the buffer which will
continue accepting data until it is full. The buffer continue accepting data until it is full. The buffer
will automatically switch from one computer to wil automaticaly swich from one computer to
next as soon as that computer has dumped all its
data. The computer then is avaitable for other uses nexta. The computer then is available for other uses. LED bar-graph indicates memory usage Simple push button control provides REPEAT. PAUSE and
With 256 K £ 275 (b).
BBC Cable Set $£ 30$.

Serial Test Cable
Serial Cable switchable at both ends
allowing pin options to be re-routed or
linked at either end - making it possible
to produce almost any cable
contiguration on site.
Available as M/M or M/F $\quad \mathbf{E 2 4 . 7 5}$ (d)

CONNECTOR SYSTEMS

 Serial Cable switchable at both ends allowing pin options to be re-routed or to produce almost any cableAvailable as M / M or $\mathrm{M} /$

EDGE			AMPHENOL CONNECTORS			
			36 way plug Centronics (solder 500 p (IDC) 475 p			
2×6-way (commodore) ${ }^{\text {- }}$ - 3000	-	300p	36 way skt Centronics			
2×10-way	150p		(solder) 550p (IDC) 500p 24 way plug tFEE (solder)			
2×12 way (vic 20)	-	350p				
2×18 way 2×23 way $2 \times 81\}$		140 p 220 p				
2×23. way $\{2 \times 81\}$ $2 \times 25 \cdot$ way	225p	220p	24 way ski IEEE (solder)			
2×28 way (Spectrum)	200p		500p (IDC) 500p			
2×36 way	250p	-	PCB Mtg Skt Ang Pin 24 way 700 p 36 way 750 p			
1×43 way	${ }^{260 \mathrm{p}}$					
2×43 way	395 p		GENDER CHANGERS 25 way D type			
1×77 way 2×50 way $(100 c o n n$,	400 p 600 p	500p				
EURO CONNECTORS					£10	
DIN 41612 2×32 way St Pin 2×32 way Ang Pin 3×32 way St Pin 3×32 way Ang Pin IDC Skt A + B IDC Skt $A+C$	$\begin{array}{cc} \text { Plug } & \text { Skt } \\ 230 \mathrm{p} & 275 \mathrm{p} \\ 275 \mathrm{p} & 320 \mathrm{p} \\ 260 \mathrm{p} & 300 \mathrm{p} \\ 375 \mathrm{p} & 400 \mathrm{p} \end{array}$					
			Male to Female Female to Female			
			RS 232 JUMPERS			
			24. ${ }^{\text {ching }}$ (25 way			
	$400 \mathrm{p}$					
	400 p		$24 \cdot$ Sing	end Female	E5. 25	
For 2×32 way please specify spacing $(A+B, A+C)$.			$22^{24}{ }^{\text {. }}$ Fema	le Female	¢10.00	
			24."Male	Mate	¢9.50 ¢9.50	
MISC CONNS			DIL SWITCHES			
21 pin Scart Conne	ctor	200p	4-way	90p 6-w	105p	
8 pin Video Connec	ctor	200p	8-way	120p 10-w	150p	

RIBBON CABLE (grey/metre)			
10-way	40 p	34 -way	160 p
16-way	60 p	40-way	180p
20-way	85p	50-way	200 p
26-way	120p	64-way	2800
DIL HEADERS			
		Solder	IDC
14 pin		40p	100p
16 pin		50p	110p
18 pin		60p	-
20 pin		75 p	-
24 pin		100p	150p
28 pin		160p	200p
40 pin		200p	225p

ATTENTION

All prices in this double page advertisment are subject to change without notice. ALL PRICES EXCLUDE VAT Please add carriage 50p unless indicated as follows: (a) $£ 8$ (b) $£ 2.50$ (c) $£ 1.50$ (d)

ELECTRONICS \& WIRELESS WORLD OCTOBER 1986

Mains communication without tears

How to interface with the mains supply for data communication and expand into a cost-effective paging system

Nigel Gardner is consumer, automotive and packaging product marketing manager with National Semiconductor, Swindon. Prototype work by Mike Meakin.

Fig.1. Basic mains modem interface uses minimal components for complete digital interface.

Anumber of articles have been published in the past showing 'simple' methods of communication over the domestic mains. The general circuitry is simple enough for the data formatting prior to transmission, but the bugbear seems to be in the method of interfacing to the mains. One of the methods has been to inject the carrier signal between the neutral and earth. This suffers from one major drawback when the neutral and earth are bonded together at the electricity supply entry point.
The circuitry required for general interfacing tends to include a handful of transistors, regulators and passive components. Most of these components can be replaced by a single LM1893 circuit called a Biline ${ }^{\mathrm{TM}}$ carrier current transceiver. This circuit is a

Fig.2. Winding details for coupling transformer. Commercially available components are availablesee not on page 25.

Frequency allocation proposed in draft British Standard

Band A 40 to 90 kHz Reserved for electricity supply authorities

Band B 110 to 125 kHz Continuously available channels for occasional transmission
Band C 125 to 140 kHz Time-shared or burst mode, not continuous
Band D 140 to 150 kHz Fire and security equipment
Power levels: $116 \mathrm{~dB}(\mu \mathrm{~V})$ quasi-peak into 50 ohms , except band D which is $134 \mathrm{~dB}(\mu \mathrm{~V})$.
special type of f.s.k. modulator/ demodulator specifically designed for mains communications.

Circuit basics

With the impending release of a standard by BSI for communicating over the mains, there must be flexibility with the circuit design to enable the user to align the modem centre frequency within the allotted band. Table 1 shows the proposed frequency allocation. This may change when the specification is finally published, so any commercial user of this method of communication should check when the BS spec is published. The specification mentioned in the reference section was the only one available at the time of printing. However other countries will eventually produce their own specifications as this method of communication increases in popularity. Information about interference limits and test methods is contained in the Draft BS Spec listed at the end of this article. The LM1893 was designed to produce a sinusoidal output for minimum out of band harmonics.

The basic circuit for interfacing to the mains is shown in Fig.1. The transformer is either a Toko or Vacuumschelze type (see page 25) or a hand-wound design as shown
in Fig.2. The Toko design can withstand about 2 kV ; the Vacuumschmelze and homebrew types should withstand about 4 kV .
An alternative method of isolation is shown in Fig.3. This idea, originally published by Maplin in their Sept 1985 magazine, is a novel method of isolation. With slight modification to the mains transformer to include a dual secondary, a supply for the nonisolated circuit can be accommodated. Protection diode D_{5} is a transient absorber to prevent damage to the LM1893 by erroneous spikes on the mains and is an essential part of the protection circuitry for designs.

Simple control system

If a one-way control system is required, then Figs 4 and 5 could be a cost effective solution. The transmit circuit, Fig.4, is based around the 74C922 keyboard encoder, MM53200 garage door opener and the LM1893.

Operation is straightforward enough. The user depresses a key which is then decoded by the 74C922. The four-bit output is presented to four of the 12 input data lines on the MM53200. The remaining eight bits of input data are used as a 'house code' so that a number of controllers and

Fig.3. Novel method of isolation using optoisolators.

Fig.4. Basic mains control. Circuit diagram of keyboard encoder, parallel to serial pulse width modulator LM1893 wired for transmit mode only.
slaves can work on the same system.

During a key depression, the data available pin (12) of the 74 C 922 goes high. As the output pattern from the MM53200 is of a continuous nature in this configuration, the LM1893 is used to gate the data stream onto the main by controlling its $\mathrm{tx} / \mathrm{rx}$ pin. The drive for this pin is derived from a pulse stretcher made up from two gates of a CD4093 quad Schmitt circuit. The control input for this gating is obtained from the data available pin of the 74 C 922 .
At the slave end, Fig.5, the LM1893 is used in the receive mode only. Again this can even further reduce the circuitry to around eight components. The data recovered from pin 12 of LM1893 is then passed directly to the MM53200 configured in the receive mode, i.e. pin 15 low. When four consecutive correct code sequences are received from the master, the output line is switched low. This can be used to drive an led or with the addition of a transistor, any other load. The code for both master and slave must be the same, so the eight-bit 'house code' needs to be the set with switches.

These two units form the basic circuitry for simple mains control. With some modification an answerback signal can be sent and received to indicate the required slave has switched successfully - see Fig. 6.

When a key is depressed at the master end, the transmission sequence is sent via the LM1893; when released, the master reverts to the receive

mode. At the slave end, data received and demodulated by the LM1893 is fed to the MM53200. When transmission from master to slave is finished, a valid ouput from the data output line triggers the monostable into echoing the selected slave address. At
the end of the transmission, FF2 is clocked. This has two functions, one to switch the ouput load on and the other to toggle the D0 address bit of the MM53200. This allows the $\mathrm{n}+1$ number to turn off the slave by changing the least significant data bit. The FF2

Fig.5. Receiver for simple mains control. LM1893 wired for receive mode only driving the MM53200 digital decoder.

Fig.6. Mains control transmitter/receiver with hand shake. This enhancement of the basic system gives confirmation of correct reception.

Fig.7. Induction loop receiver using LM3361 and MM53200 digital decoder.

Fig.8. Using the LM1893 as an induction loop driver for use as a paging system.
circuitry can also be used on the simple set up of Fig. 5.
When the slave address is echoed to the master, the transmitted and received patterns are compared and, if correct, the user receives an audible or visual signal confirming that the correct action has been taken by the slave.

And now for something completely different

Once the basic interface has been mastered, the expansion of the system is endless. On the master unit, for example, if mains connections from the Toko transformer are replaced with an inductive loop then the circuitry forms the basis for a very cost-effective paging system together with a suitable receiver, as shown in Fig. 7 and 8. In this receiver, the signal is picked up by a ferrite rod aerial and fed to an LM3361 narrow band f.m. circuit. This device works to a low voltage with low power consumption. The output tuning is at the carrier frequency of 125 kHz , achieved by padding out a 455 kHz i.f. coil with a 2200 pF capacitor. Recovered data is fed through the internal Schmitt of the LM3361 to provide clean data to the MM53200

An alternative power supply and interface is shown in Fig.9. This transformerless circuit is intended for applications that do not have any connections exposed to the outside world. Care in the choice of components is essential to ensure a margin of safety.

The LM1893 as it stands will work to 4800 baud, but if error checking is introduced the effective rate is reduced accordingly. For data transmission in areas where the background noise on the power lines could effect overall performance a digital filter, like that shown in Fig.10, could be employed. This circuitry is currently being used on a commercial energy management system and has enabled the system to run at 2300 baud, with 144 bit data strings and a retransmission error rate of 0.01% over 1 million transmissions per day.

And finally

These circuits for connection to the mains are intended to re-

Fig.9. Transformerless power supply for applications needing only minimal current and no isolation.

Fig.10. Digital noise filter for clean recovery of signals from noisy mains.
move some of the pain associated with the transmission of data and control signals. The solutions given here are intended to give the interested engineer some ideas as to methods of interface. The medium for transmission is shown to be the domestic mains but the circuits will work just as well on a pair of wires dedicated as a networking bus. There will be less erroneous noise on a separate pair of wires and a reduction in transmission errors.
Further applications based on the simple interface with intelligence are intended, one being transmission of RS232 data from computers to one of a number of printers, another for interfacing a computer RS232 port to master control, which in turn controls up to 256 slaves. This is finished and will be published in the near future.
Each slave has four input, output and i / o lines for general interfacing to the outside world and forms the heart of an industrial or domestic control systems.
Watch this space for further details..

Further reading

Biline Carrier Current Networking Systems, National Semiconductor publication number 570075.
Carrier current protocol using an active repeater for consumer and industrial applications, Rob Lytle and Steve Strom. National Semiconductor. Mains tx/rx module,
Electronics (Maplin Magazine) September 1985.
Draft standard for communication and interference limits and measurements for mains signalling equipment, British Standards Institute Draft Spec. No. 85/28596.
LM1893 data sheet - linear supplement 1984, National Semiconductor.
Survey of mains signalling systems in the UK, ERA
Technology, Leatherhead.
Suitable transformers are type ZKB490/228-80-W insulated to 4 kV made by Vacuumschmelze of Hanau D-6450, Germany and imported by Rolfe Industries (see advertisement), and Toko's 707VX-A0242YUK, insulated to 2 kV and available from Cirkit Distribution.

Microcontroller chip integrates peripherals

More features of a specially-programmed controller for evaluation and education.

\mathbf{P}eripheral functions and memory within the S 2 single-chip microcomputer allow the device to be programmed to perform many tasks with very few components.

Last month's article described internal working of the chip and introduced a maskprogrammed multi-function version made available only to readers of this journal. This S2 chip includes a monitor which can be driven by a terminal through a serial link, and
routines for using the device as a pulse-burst generator, frequency meter and audio communication link using very little extra hardware.

Further routines are included for evaluating the data converter and watchdog time. This article describes using these and the speech-quality communication link.

Audio communication link

The internal eight-bit a-to-d converter and serial interface
are used to digitize an audio signal and transfer the data between two S 2 processors through a full-duplex serial link. Audio quality is surprisingly good, considering the limitations. Although this demonstration is of limited practical use because the serial interface is intended for local communications only, it forms a useful tool for illustrating some of the theoretical relationships commonly encountered in data communications.
For example the Nyquist

Mike Catherwood is microprocessor applications section manager at Motorola's semiconductor products division, East Kilbride.

LOW COST C.A.D.
 ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS!!

I.B.M. PC (and compatibles): BBC MODEL B, B+ and MASTER: AMSTRAD CPC and SPECTRUM 48K
ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits GAIN and PHASE, INPUT IMPEDANCE, OUTPUT (analogue) circuits. GAIN and PHASE, over any frequency range required. The programs are in use regularly for frequencies between 0.1 Hz to 1.2 GHz . The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated.
Circuits containing any combination of RESISTORS, CAPACITORS, INDUCTORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT INDUCTORS, TRANSFORMERS, BIPOLAR and FIELD EFFECT
TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated -up to TRANSISTORS and OPERATIINAL AMPL
60 nodes and 180 components (IBM version)
ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS, WIDE-BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV IF and CHROMA FILTER CIRCUITS, LINEAR INTEGRATED CIRCUITS etc.
STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop".
Tabular output on Analyser 1. Full graphical output, increased circuit size and active component library facilities on Analyser II.
Check out your new designs in minutes rather than days
ANALYSER can greatly reduce or even eliminate the need to breadboard new designs
Full after sales service with telephone query hot line and FREE update service
Used by INDUSTRIAL, GOVERNMENT and UNIVERSITY R\&D DEPARTMENTS worldwide. IDEAL FOR TRANING COURSES. VERY EASY TO USE. Prices from $£ 20$ - $£ 195$.

For further details and example computation or for details on our New DRAUGHTING program, please write or phone.

Dept WW, Crown Street,
St Ives, Huntingdon, Cambs. PE17 4EB.
Tel: (0480) 61778
CIRCLE 49 FOR FURTHER DETAILS

DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DG mini flat on its back? Need an upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older (and newer) equipment. We also deal in second-hand and surplus micro systems. Large SAE for current catalogue.
Sample stock: Nova 4×16-slot chassis (valid for MV7800 upgrade) with CPU \& memory board - £2000; Eclipse S 120256 KB CPU board - $£ 1200$; 50 MB 6067 Zebra drive subsystem $£ 2,500$; Eclipse S130 with 256 KB £1000; Eclipse CS/100 with 128 KB - £900; $10 / 12.5 / 20 / 25 \mathrm{MB}$ drive subsystems $£ 800$ each; 6125 tape streamer $-£ 3500$.

SILICDN GLEN LTD

Moray Street, Blackford, Perthshire, Scotland Callers \& Overseas Enquirers welcome or Telephone: 076482315 or 464
Telex: 295141 TXLINK G quoting MBX 076482315 on first line
Bulletin Board Sales Catalogue (Prestel Standard) on 076482465
CIRCLE 40 FOR FURTHER DETAILS

Analytical Software for Electronic Engineers from "Those Engineers"

THOSE ENGINEERS,

formerly Seasim
Engineering Software, have moved. Please note our new address: Those Engineers Ltd, Unit D1, Fairoaks Airport, Chobham Fairoaks Airport, Ch
Surrey GU24 8HX. Surrey GU24 8HX.
Tel: Chobham (09905) 6565
FOR MS DOS COMPUTERS (256k + RAM recommended) (state computer type when ordering)
ECA-2's 1986 edition expands the analytical power of the original to include Fourier analysis and sweep commands and adds graphics output to include Bode plots, DC transfer curves and transient timing diagrams. ECA. 2 is now the most potent analogue circuit simulator available. It offers friendiy interactive control and an optional batch mode. A proper diode model. temperature effects. bias \& operating point analysis, a transmission line model, non-linear effects wherein polynomials (to any order) or piece-wise linear characteristics are supported. Tolerances are used to compile worse case and Monte-Carlo analyses. Macro-models, complex models (eg capacitors with inductance and resistance) may be used. Voltages, currents, dissipations and power volts (a useful transistor secondary breakdown indicator) may be looked at anywhere in the circuit. Similar flexibility is offered for the input to a circuit which may come from a file or the output of a previous run Sparse matrix techniques allow ECA-2 to model typically 500 nodes in a circuit (depending on memory available). Price: $£ 465+$ VAT incl. p\&p. Updating service available, please ask for details.
EC-Ace is a subset of ECA-2 also offering AC, DC and transient analysis and high quality graphics output. Although it lacks some of the more advanced features of ECA-2. it can accommodate a very useful 100 circuit nodes and is available at the irresistible price of $£ 110$ + VAT incl. p\&p. Upgrade to ECA-2 available.
For the BBC MODEL B, B+ and MASTER (State 40 or 80 track when ordering)
Microspice. This is a remarkable suite of programs for simulating DC and AC analogue circuit behaviour including non-linear effects. Features such as its transistor modelling (20 parameter Ebers Moll) and an excellent manual have been quetly earning this program a reputation as the most useful ever produced for modelling small circuits. Price $£ 99+p \& p \cdot$ + VAT. (£2 UK or £5 overseas.)
Orders accepted from existing customers and educational bodies. Otherwise please send cheque with order to our new address. You may prefer to contact us through our One to One mailbox which can also be accessed by telex. Telex no. is 8950511 (ONEONE G) and our mailbox number which should be quoted at the start of the text is 23332001

CIRCLE 29 FOR FURTHER DETAILS

19" RACK MOUNTING CASES
A range of lightweight oluminium 19" rockmounting coses ot competitive prices, available in the following sizes.

Height	Depth	Price
1RU	89 mm	28.00
1RU	153 mm	28.50
1RU	254 mm	29.00
2RU	89 mm	30.90
2RU	153 mm	31.75
2RU	254 mm	32.60
3RU	89 mm	34.50
3RU	153 mm	35.25
3RU	254 mm	36.35

Front panel, 3 mm extrusion finished in dawn grey, all other panels 16 SWG clear anodised aluminium. It should be noted thot no constructional fixings are visible on the front panel.
For finishes or sizes different from above, or for details of our range of blank ponels, vent ponels, oudio and video jockfields. ponel punching and prototype manufacturing services, please call.

Please add 3.00 P\&P $+15 \%$ VAT
Ian P. Kinloch \& CO. Ltd
75 Milford Road, Reoding, Berkshire, RG1 8LG Tel: $(0734) 598867$ \& 599773
CIRCLE 18 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD OCTOBER 1986
criteria may be investigated by varying the low-pass filter cutoff points, or the effect on the signal-to-quantization-noise ratio may be observed by reducing converter accuracy through lowering the reference voltage. Relationships such as the Hartley-Shannon theory, which equates channel capacity to bandwidth and s-to-n ratio, may also be confirmed.

Software samples the a-to-d converter at 7.7 kHz and the serial-interface clock is set to operate at $100 \mathrm{Kbit} / \mathrm{s}$ (for a 4 MHz m.c.u. clock). Information is therefore passed at a rate equal to eight times the a-to-d converter sampling rate which is $6 \mathrm{Kbit} / \mathrm{s}$. This is lower than the channel capacity of the serial interface and consequently the converter sampling rate is the communi-cations-bandwidth limiting factor.

Two S2 demonstration devices are required for this application, one configured as a master (serial interface clock generator) and the other as a slave, Fig. 1. The serial interface is configured for threewire (receiver, transmit and clock) full duplex operation.
One byte of data is exchanged between the devices every 131 machine cycles; received data is placed on port A which then drives a low-cost MC1408L8 d-to-a converter Both input and output filters should have a cut-off frequency of less than half that of the a-to-d converter sampling rate, i.e. 3.8 kHz for a 4 MHz c.p.u. clock.
Switched-capacitor filters are easy to use and form effective low-pass filters. The c-mos MC145414 shown uses switched capacitors to form a dual fifth-order elliptic filter for low-pass operation. Two uncommitted op-amps are also included in the device.
Band limiting frequency of each filter is directly proportional to the input clock. For example, an input clock of 128 kHz provides a bandlimiting frequency of 3.6 kHz ; halving the clock rate halves the band-limiting frequency.
Each filter is functionally identical except that one provides 18 dB of gain within the passband and the other provides unity gain. In Fig. 1, an MC1455P1 timer is used in

astable modc to generate a clock signal that can be varied between 70 and 180 kHz .

Hardware for the audio communication demonstration was developed by Olivier Pilloud at Motorola's Geneva design centre.

A-to-d converter evaluation

This program allows you to directly exercise the analogue-to-digital converter in the MC6805S2 and to accurately evaluate its performance in the intended environment.

Fig. 1. One side of the S2 audio communication link. Lines $\mathrm{C}_{0,1}$ select the converter channel as in Table 2. Line B_{5} reads low internally. The d.c. 'Set' potentiometer is set to provide an average converter input d.c. signal level of about half way between V_{RL} and V_{RH}. For maximum converter accuracy, V_{RH} is tied to V_{cc} and $V_{R L}$ to ground. Adding an expander and compressor would improve s-to-n ratio.

Fig. 2. Analogue-to-digital converter evaluation. Three-bit digital code selects one of four channels or internal calibration voltages. For port B_{1} connections, see text.

Fig. 3. Using the auxiliary counter as a watchdog allows the processor to regain control after noise has caused erroneous operation.

Fig. 4. Results of the $\mathbf{S} 2$ selfcheck routine are shown on four leds (see Table 2). When the leds blink, the device

Figure 2 shows how a typical test board could be configured. The analogue channel is selected by setting inputs, port lines $\mathrm{C}_{0,1}$ and B_{0} to states corresponding to a-to-d converter control register bits 0 to 2, as defined in Table 1.

After initialization, conversion of the selected analogue input is continuous. The channel selected may, however, be changed without resetting the processor since the program reads the channel code inputs before each conversion. The conversion result placed on

port A bits 0 to 7 may either be the value after each conversion (port $B_{1}=0$) or a value averaged over four conversions (port $\mathrm{B}_{1}=1$).

A data-valid strobe is also generated on port B to indicate when another conversion result has been output. It will rise and remain high during the period that the value on port A is stable.

Auxiliary counter demonstration

The auxiliary or watchdog counter is a ten-bit fixedmodulus counter which may be used in conjunction with some simple software to help ensure reliable processor operation in environments which would otherwise encourage erratic behaviour. For example, should high-energy spikes appear on the power supply the m.c.u. may loose control and start to execute data patterns, causing a catastrophic system runaway.

A program using the auxiliary counter to avoid this regularly presets the auxiliary counter to its maximum value by inverting miscellaneous register bit 5 . Provided that this is done more frequently than the auxiliary counter time-out period, then a forced reset will not occur.
So if a program runaway does occur it is probable that the auxiliary counter will not be regularly preset, resulting in the m.c.u. being reset at counter overflow and the user program being restarted.

In this demonstration the program simply increments port B. A hard-wired option enables or disables the watchdog option by manipulating the auxiliary counter resetmask bit.

Therefore by operating two identical demonstration boards in the same adverse environment but with the watchdog enabled in only one, a direct evaluation of watchdog effectiveness can be made. Wiring is shown in Fig. 3.

The auxiliary counter may alternatively be used as fixedinterval polled timer, provided that the auxiliary counter reset-mask bit is set. Even though the instantaneous counter value cannot be read by the processor, this feature may still be very useful in applications requiring long time-outs.

Table 1. Control codes for analogue channel selection.

$\begin{aligned} & \text { Port } \\ & \mathrm{B}_{0} \end{aligned}$	C_{1}	C_{0}	Input
0	0	0	ANo
0	0	1	AN_{1}
0	1	0	AN_{2}
0	1	1	AN_{3}
1	0	0	$\mathrm{V}_{\text {RH }}{ }^{*}$
1	0	1	$\mathrm{V}_{\text {RL }}{ }^{*}$
1	1	0	$\mathrm{VRH}^{\prime} 4^{*}$
1	1	1	$\mathrm{VRH}^{1 / 2 *}$

*Internal levels for calibration.

Table 2. S2 self-test indications

Counter bit Indication

Counter bit 2			
2	0	indication	
0	0	0	Bad i/o or $\mathbb{N N T}_{1}$
0	0	1	Bad ram
0	1	0	Bad rom
0	1	1	Bad a-to-d converter
1	0	0	Bad timer A
1	0	1	Bad interrupt timer A
1	1	0	Bad INT $_{2}$ or aux.
			Counter
1	1	1	Bad interrupt timer B
Flashing	No fault		

Selftest and bootstrap loader

Applying a voltage slightly in excess of $\mathrm{V}_{\mathrm{cc}}+2 \mathrm{~V}$ to port line C_{0} during reset causes the device to select an alternative of vector on reset release, Fig. 5 .
The new reset vector points to the self-test program area. Within this space, a bootstrap loader program also exists which allows you to copy small amounts of test code from an external eprom into S2 ram and then execute it. The level of port line C_{1} immediately after reset is released determines whether the self-test routine or bootstrap loader is executed.
Self-test involves execution of a sequence of subroutines for testing rom, ram, timers, i / o, a-to-d converter and interrupts on a cyclic basis. Many of the routines may be called by the user. Leds display the result of the test, Table 2.

The bootstrap loader program continuously copies data from an external eprom at address zero onwards into S2 ram at address 40 to 7 F until port line C_{1} is pulled high. It then executes a JSR 40 intruction and runs the loaded program. The most significant eprom address lines may then be incremented and the pro-

cess repeated with another user test routine.
Test results may be displayed on any of the spare ports. This test procedure is obviously more flexible, but requires more hardware. Input/ output related tests are also difficult to realize properly

Useful monitor subroutines

Figure 6 of last month's article shows hardware required for communicating with the S2's internal monitor through a serial link at either 300 or 1200 baud. Note that the 300 / 1200 baud switch is only sensed at reset.
Being in standard 6805 code, sub routines within the monitor and many of those used for the special functions will be useful to software writers. A full assembly-language listing is available.*
Routines include low-level functions, such as writing/ reading a character to/from the terminal, and higher-level routines for reading and writing hexadecimal numbers for example.
Error conditions are usually indicated by the C bit being set on return from the subroutine. Table 3 is a list of the more useful subroutines and a short description of what they do. Any questions about how a

[^1]Table 3. Useful subroutines within the $\mathbf{S} 2$ monitor.

Label	Subroutine	Address
OUT3HS	Print address	B94
OUT2HS	Print byte pointed to by GET	B9C
PUTBYT	Print accummulator in hexadecimal	BAF
PUTNYB	Print lower 4 bits of A in hexadecimal	BBC
CRLF	Print carriage-return, line feed	BCE
PUTS	Print a space	BE7
GETBYT	Read hexadecimal byte	BF0
GETNYB	Read hexadecimal nibble	C01
GETC	Read a char. into accummulator	C1D
PUTC	Print character in accummulator	C44

Fig. 5. Small user programs in eprom can be loaded into the S 2 using this configuration. At reset, port line C_{0} is held high and directly after reset line C_{1} must be low. User code is executed when line C_{1} goes high. Resistors $R_{1,2,3}$ are $4.7 \mathrm{k} \Omega$.
particular subroutine works can probably best be answered by inspecting the source code.

In general, the subroutines shown in Table 3 try to preserve the registers that they do not use. Note that most of the routines expect to be able to use locations 56_{16} to $5 \mathrm{~B}_{16}$ in ram. As the interrupt vector jump table resides 50 and 55 , ram locations 50 to 5B should not be used.
Locations 40 to 4 F are standby ram and are accessible if the ram is powered through port line D_{6}.

In Fig. 8 of the September article, pins 17 and 18 should have been shown wired to $0 V$; the $V_{c c}$ supply connects to pin 16 and pin 7.

Quality radio

continued from page 19

Incidentally, if a single gate mosfet is not available, a dualgate device, such as the 3N201, can be used with the two gates joined together.

The complete receiver

I have shown the circuit of the complete a.m. receiver in Fig. 9 , which includes provision for switching between the l.w. and m.w. bands, $(150-300 \mathrm{kHz}$ and $550-1600 \mathrm{kHz}$).

Audio stage

I decided on a target performance of 3 watts into a 3 ohm load - a typical 'table radio' output power figure - at
not more than 0.05% t.h.d. with good reactive load behaviour, and with all crossover products being substantially less than 0.01%.
The circuit I eventually chose for the audio amplifier, which fully met this specification, is shown in Fig.10, as is also that used for the power supplies.

The final performance of the unit has proved very satisfactory, both in respect of its ability to recover very weak signals at good entertainment quality - completely unseen by my domestic 'trannies' - and in respect of its frequency stability and tonal characteristics.

CIRCLE 53 FOR FURTHER DETAILS

Slow-scan television in software

Direct transmission and reception of pictures by radio or telephone, using only a Commodore 64 computer.

Slow-scan television is a way of transmitting pictures over an audio channel. The method is greatly used these days allowing us to transmit and receive pictures all over the world both by telephone and by radio.
The signal transmitted is frequency modulated as follows

1200 Hz sync pulse
 1500 Hz black
 2300 Hz white

and frequencies from 1500 to 2300 Hz represent levels of grey. A picture is completed in about eight seconds, consisting of 128 lines each 66 ms long Sync pulses are 5 ms long (horizontal) and 30 ms long (vertical).
Considering the interest shown by our correspondents when we tell them our s.s.tv transmission was simply directly generated by a Commodore 64 using just software, we are sure our program will please lots of enthusiasts. These notes should fill a large gap in the literature: we often read about the use of computers for communication in rtty and c.w. but as far as we know, never has an important magazine published complete programs for using a computer with s.s.tv. Through this program the user of a C 64 will be able to transmit the full character set of the computer in s.s.tv.
To load the program type the list, verify and save it before the run. On run we open a window on the screen capable of containing eight characters by seven lines. The cursor has full movement in it; transmission can be actuated by pressing the 'left arrow'. After a few seconds for the basic version of the program the loudspeaker
will give out the characteristic s.s.tv sound.

We have also written a version of the program in machine code which allows the text to be transmitted instantaneously.

To stop transmission or modify text hold the key return pressed; during vertical sync (which can be found acoustically as a constant tone about every eight seconds) a routine scans the keyboard and if the return key is found pressed, stops the transmission.
Even if the list is quite long, those who load it will have the satisfaction to have something really complete and which is not, at the moment, on the software market. The program will free s.s.tv enthusiasts from the restrictions of special pens and flying spot scanners.

We succeeded in writing this program to receive s.s.tv via a Commodore 64 directly, without any dedicated interface, by just connecting the receiver a.f. output to the C64 user port. We combined s.s.tv rx and machine code Tx in the same program so we now have a program which puts s.s.tv immediately in your hands and eyes. F1 actuates the exchange rx/tx, F7 suppresses interrupts, allowing excellent clear pictures to be received. If you wish do contact us by s.s.tv.

Program description

1000-1130 load routines in machine code.
1320-1520 load video location from the keyboard.
1550 SYS20224 (\$4F00) routine fills all memory locations to be transmitted with black (\$FD).
1560-1590 gets characters from the screen. 1580 stores in 20479
(\$4FFF) the progressive number of the character picked up.
1610-1690 gets eight bytes from rom character and stores them serially from $\$ 4000$.
1700 SYS20736 routine in machine code finds starting address of s.s.tv characters, loads in memory bits contained in eight bytes from $\$ 4000$.
1750-1770 load horizontal sync grill.
1780 load vertical sync. 1790 SYS20480 routine transmits in s.s.tv, recognizing the memory location content. Every vertical sync verifies if a key is pressed - if positive, transmission is stopped and the program prepares itself to receive new text, otherwise transmission is repeated.
The sequence of operations to access the character rom are

1 -remove interrupt
2 - select character rom
3 - get the desired character 4 -remove character rom
5 -restore interrupt.
The character rom and register are both located from $\$ \mathrm{D} 000$ and $\$ \mathrm{DFFF}$; it is so required to select one of them depending on needs. First interrupt must be suspended by, in Basic, poke 56334, peek (56334) AND 254 , and in machine code by

LDA \#\$FE

AND $\$$ DC0E
STA \$DC0E.
The memory bank containing the character rom is selected by setting to 0 bit 2 in the control port, which is in location $\$ 01$. Remember, and with 0 set to zero, and with 1 leave unchanged; OR with 1 set, or with 0 leave unchanged. This

by Giuseppe Cameroni I2CAB and Giancarla Morellato I2AED

Giuseppe Cameroni and his xyl Giancarla Morellato graduated in commerce and chemistry and both got their amateur radio licences at about the same time, having met via the radio. Software and hardware experts, their knowledge of computing embraces all of the main languages together with the hardware of most personal computers on the market.

Though the receiver's audio output can be directly connected to pin B this circuit will give some input protection. The BC107 or 2 N 2222 circuit needs the a.f.gain set high; an op-amp allows a lower gain setting.

Even though it is possible to transmit s.s.tv pictures simply by placing the $t x$ microphone to the $t v$ monitor loud speaker, we suggest you connect, using shielded cable, pin 3 in the audio/video connector to the mike input of your transmitter via a potentiometer.

[^2]is the instruction in Basic:
POKE 1, PEEK (1)AND 251
and in machine code:
LDAA \# \$FB
AND $\$ 01$
STA $\$ 01$.
The character rom is now at our disposal. Characters are stored from \$D000 eight locations per character depend on their screen code. Each bit of the eight bytes corresponds to a point on the screen which could be put off if zero or on if the bit value 1
Capital letter A has got a screen value 1 , so it is memorized from D008 to D00F and the content of progressive memory locations is $\$ 18$ 3C 66 7E 66666600 , see example:

Byte	Bits	Picture
$\$ 18$	00011000	$* * \ldots$
$\$ 30$	00111100	$* * * *$
$\$ 66$	01100110	$* * * *$
$\$ 7 E$	01111110	$* * * * *$
$\$ 66$	01100110	$* * * *$
$\$ 66$	01100110	$* * * *$
$\$ 66$	01100110	$* * * *$
$\$ 00$	00000000	$\ldots \ldots$

Obviously capital B with, screen code 2 is situated from D010 and \$D017 and so on for all other characters

Now position the i/o bank with the Basic message
POKE 1, PEEK (1)OR 4
or in machine code,
LDA \#\$04
ORA $\$ 01$
STA $\$ 01$
Restore interrupt from Basic
POKE 56334, PEEK (56334) OR 1
In machine code

LDA \#\$01
 ORA $\$$ DC0E
 STA $\$ \mathrm{DC} 0 \mathrm{E}$.

Location $\$ 4 \mathrm{FFF}$ contains the progressive number of the character drawn on the screen locations; doubling this value and adding it to the base location ($\$ 4 \mathrm{E} 00$) in the address table gives the starting location of a certain character. In eight locations starting from $\$ 4000$ there are bytes obtained from the character rom, and it is necessary to translate these bytes into bits and store them with the memory locations to be transmitted.

We did that by using the instruction rol (rotate left) through which carry is loaded
with the left-most bit of the byte considered. This instruction is followed by BCC (branch carry clear) which verifies the state of the bit, following the routine store $\$ 00$ if the bit is on or $\$ F D$ if the value of the bit is off.

Loading example

Suppose the letter A is in the first position of the screen, the starting location to load the s.s.tv character is found from the table $\$ 4 \mathrm{E} 00$, and is $\$ 6200$.

From the rom character the letter A means $\$ 18 \$ 3 \mathrm{C} \$ 66$ etc. which will be arranged this way:
$\$ 6200000000$ FD FD 000000 $\$ 6240000000$ FD FD 000000 $\$ 62800000$ FD FD FD FD 0000 $\$ 62 \mathrm{C} 00000$ FD FD FD FD 0000 $\$ 630000$ FD FD 0000 FD FD 00
and so on over the character and all the text.

Picture transmission

Every line of video consists of 64 memory locations, the content of which actuates the transmission as follows
$\$ 00 \equiv$ white; frequency of 2300 Hz is transmitted for the length of a point (0.93 ms)
$\$ F D \equiv$ black; frequency of 1500 Hz is transmitted for the length of a point $(0.93 \mathrm{~ms})$
$\$ \mathrm{FE} \equiv$ horizontal sync; frequency of 1200 Hz is transmitted for 5 ms
$\$ F F \equiv$ vertical sync; frequency of 12000 Hz is transmitted for 30 ms

A different memory content is not recognized by the program just now. The content from $\$ 00$ to $\$ \mathrm{FD}$ would be suitable as transmit values for grey in some future expansion of the program.

The frame transmitted consists of seven text lines containing eight characters each. Every character is constituted by a matrix of 8 by 8 points; so the image definition will be
horizontal: 63 points: 8 by 8 -horizontal sync.
vertical: 128 points: 7 by 8 by 2
(every line is loaded twice) +16
lines of buffer
I inserted these 16 lines (eight supper and eight lower) to get the picture received easily with a substandard monitor.

Direct picture reception

At the beginning we initialize
the area of memory concerning the position of colour, actuate a 'clear' in all locations that will contain picture information, qualify the bit map and the multicolour mode; all these operations are necessary to present a memory location as a point with different levels of grey.

It is required to know accurately the frequency presented to the input (user port) of our computer to let it do all the operations concerning the composition of the picture; colour a point, actuate horizontal or vertical reset. This sampling of the input frequency must be done continuously in a very short time, by rewriting the NMI (mon-maskable interrupt) routine which is normally situated starting at $\$ \mathrm{FE} 47$ and modify for a new allocation by changing the content of the pointers $\$ 0318$ (nmi l.s.b.) and $\$ 0319$ (mNı m.s.b.)

The c.p.u. of the Commodore 64 has various jobs to carry out which, even if requiring very short time, continuously distract it causing holes in the sampling. To obviate this it is necessary of concentrate the attention of the c.p.u.; this is the function of key F7 which removes and restores video interrupts (bit 4 in location \$D011). Through this, exceptionally clear reception is achieved.
If the audio frequency gain in the receiver is kept high to saturate the input port our program directly presents s.s.tv pictures on the screen. It isonly necessary to connect the a.f. output to the pin B of the C64 (see diagram).
We merged the program for transmission and this one for reception into a single machine-code version. So this way of communication is immediate and completely accessible to the Commodore 64 owners; readers who desire this program (rtx sstv) do please contact us. The program allows, among other things, the direct reception of pictures transmitted from space during space shuttle flights
The program is entirely written in machine code and is presented in Basic just for easy loading; we suggest that once you have typed it to save it, verify it and run, when the reception of s.s.tv pictures is immediately available to you.

NEXT MONTH...

Video digitizer

To enable X-ray pictures to be transmitted between hospitals and important features emphasized while unwanted ones are eliminated, this 'frame grabber' uses high-resolution data converters working at 30 MHz . Images can be stored, transmitted overlow-bandwidthlinks and computer-enhanced or modified at will with as possible resolution of 512 by 512 elements, and a 16 -from-4906 colour palette.

Mobile radio

We survey techniques and equipment in modern private mobile radio systems, cellular radio has made a vast difference to mobile communications and this feature investigates trends in this area, pmr, cordless telephones and non-voice transmissions.

Turing's computable numbers Fifty years ago this month, Alan Mathison Turing published his famous paper "On computable numbers, with an application to the Entscheidungsproblem", which described in abstract the modern stored-program computer. Tom Ivallassesses the importance of the paper, which possibly influenced von Neumann's work in the USA.

50 Years of BBCtv
Also celebrating its fiftieth birthday, BBC televisionlooks back at engineering developments over the years and attempts to forecast the techniques of the future.

Sunspots and HF

A detailed investigation of variations in the F2 layer of the ionosphere uses a graphical method known as a Chronagram. This article explains the sometimes mysterious vagaries of ionospheric variations which affect h.f. - still the most common method of maritime
communication.
All these and many more in November's is sue, on sale Wednesday, October 15. Take a half-price subscription now - the offer won't last for long.

awoid

SOLDERING KIT
Free How To Solder booklet and pack of sotder

Professional Precision for the Amateur Enthusiast.

ANTEX has a worldwide reputation for quality \& service \& for many years has been one of the best known \& most popular names in soldering. Always at the forefront of technology, ANTEX is continually researching new and better ways of achieving more accurate, reliable, and cost effective soldering. On ANTEX Soldering Irons, the advanced design of the interface betweer the element \& the bit allows more efficient heat transfer to the bit and improved stability of the temperature at the point of contact with the work. Indeed, experiments have shown that an X525 watt iron can be used for tasks where a 40 watt iron would normally have been required.
ANTEX Soldering Irons exhibit exceptionally low leakage surrents \& hence are suitable for use on Static Sensitive Devices. Sophisticated temperature controlled soldering units have recently been added to the ANTEX range.

"The ancient Greeks had pipped us at the post. Star magnitudes differ by 4dB."

exactly one decibel attenuation. Thus the number of decibels of attenuation in any system where the input power P_{1} and output power P_{2} is known is

$$
\mathrm{A}(\mathrm{~dB})=10 \log _{10} \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} .
$$

If the system resistance was to remain constant, then $P_{1}=I_{1}{ }^{2} R$ and $\mathrm{P}_{2}=\mathrm{I}_{2}{ }^{2} \mathrm{R}$ so that

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~dB})=10 \log _{10} \frac{\mathrm{I}_{1}{ }^{2} \mathrm{R}}{\mathrm{I}_{1}{ }^{2} \mathrm{R}} \\
& =10 \log _{10} \frac{\mathrm{I}_{1}{ }^{2}}{\mathrm{I}_{2}{ }^{2}}+10 \log _{10} \frac{\mathrm{R}}{\mathrm{R}} \\
& =0 \\
& =20 \log _{10} \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} .
\end{aligned}
$$

But if the resistance levels are not the same, then the current ratio (or the voltage ratio) cannot be used to yield a meaningful dB figure. This is an error often seen now, with little thought by the student (and sometimes even by his teacher...).

Power gain or voltage gain?

As an example, consider an operational amplifier used as a voltage follower, whose output impedence is 50 ohms with input impedence 1 megohm, then the voltage gain is very nearly unity. Therefore the gain in dB is

$$
20 \log _{10} \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{i}}}=0 \mathrm{~dB} .
$$

and (as some beginning students often ask) what's the use of no gain? But the power input at the terminals of this amplifier is $V_{i}{ }^{2} / 10^{6}$ watts, and the output power is $\mathrm{V}_{0}{ }^{2} / 50$ watts. Therefore the gain is

$$
10 \log _{10} \frac{10^{6}}{50}=43 \mathrm{~dB} .
$$

So how can an amplifier have no gain and 43 dB gain at the same time? The answer is that the first result is meaningless: decibels compare power levels - not voltages or currents.

One further example might drive the point home. What is the gain of a transformer with a step-up ratio of $25: 1$? V_{0} will be 25 times V_{i}, therefore obviously the gain is

$$
20 \log _{10} \frac{25}{1}=28 \mathrm{~dB}
$$

But we are told that the transformer is 89% efficient, so 100 watts in will deliver 89 out. The other 11 waits warm up the device. This gives a power loss of just over 0.5 dB
Therefore the use of dB 's with anything other than power levels should be treated with great care.

Rootless wanderings

I have actually seen written somewhere on an advertisement "... the power output is 50 dB..." I wondered if this could mean that the power level was "relative to one wingbeat of a housefly", in which case there might be very little power available from the amplifier! Decibels can never indicate absolute power levels - only relative levels. Once again the telephone engineers in earlier times chose a standard reference level of one milliwatt in 600 ohms. This way of stating absolute powers is written as so many dBm . But even this notation was viewed with suspicion by august bodies like the IEEE, who stated $_{2}$ that "They did not recognise any letters attached to ' dB ' as meaningful...".

Other standards were established relative to this 1 mW level. In 1940, H.A. Chinn and colleagues ${ }^{3}$ reported on the standard then adopted by broadcasting groups in the USA regarding the calibration and meaning of what was to be called the 'volume unit' (VU). This was referenced to the 1 mW level in 600 ohms. The VU meters subsequently based on the standard became numerous in studios, and much more recently in home entertainment equipment.

Power referenced to one watt is also commonly met. Radio Amateurs now become familiar with transmitter power outputs as so many "dBW". Non-mathematical RAE candidates or people confused already with decibels find this formidable. One approach (also useful for rather more advanced engineers...) notes that 3 dB is a doubling of power. Thus 6 dB means a
a doubling of the doubling, 9 dB a further doubling and so on. Therefore when we learn that top band carrier levels must be not greater than 9 dBW , we reason: "first doubling, two watts second doubling, four watts the third takes us to eight watts".

The maximum peak envelope power on the main h.f. bands is 26 dBW , which means eight doublings (i.e. 24 dB watts. The further 2 dB takes this to around 400 watts.

Another point to notice is that 10 dB is exactly ten times. So another way of reasoning is to take, for example, the 26 dBW as two lots of 10 dB and a further two doublings (that is, 6 dB more). This is reasoned as "Ten dB on a watt is ten watts, a further ten dB takes us to one hundred watts, double, then double again - i.e. 400 watts exactly.
M.N. Lustgarten stirred up a small hornet's nest about the uses and misuses of dBs when he wrote a letter ${ }^{4}$ in the IEEE Proceedings, November 1971. The problem really was to do with the loose terminology that had crept in regarding units attached to the number in the argument of the logarithm ${ }^{5}$. Mathematically

Thus if $\mathrm{P}_{1}=3$ watts and $\mathrm{P}_{2}=$ 42 watts then the gain

$$
\mathrm{G}=10 \log _{10} \frac{42 \text { watts }}{3 \text { watts }}=11.5 \mathrm{~dB}
$$

which can also be written

$$
\begin{aligned}
\mathrm{G}= & =10 \log _{10} \frac{42 \text { watts }}{1 \text { watt }}- \\
& \quad 10 \log _{10} \frac{3 \text { watts }}{1 \text { watt }} \\
\therefore \mathrm{G} & =16.2-4.7 \mathrm{~dB}=11.5 \mathrm{~dB} .
\end{aligned}
$$

Weber and Fechner

Rather fortuitously, but with some interest, Ernest Weber (1795-1878) found that the smallest detectable physiological response $\Delta \mathrm{R}$ is proportional to the fractional change in the stimulus, given by $\Delta L / L$. G.T. Fechner ${ }^{6}$, integrated Weber's result and experimenters found that, for instance, the human senses follow the resultant logarithmic law quite well over quite wide ranges. Thus the Weber Fechner Law is well known in the life sciences: $R=k \log _{10} \mathrm{~L}$. This means that a decibel scale of, say, sound power appears as a linear scale to the ear. It happens to be one dB change in sound level is just discernible to the ear. The use of a decibel scale is very convenient when the range of hearing from the smallest sound to the

"How can an amplifier have no gain and 43dB gain at the same time?"

such numbers must be "pure", i.e. they must not be quantities with units in any of these transcendental functions. For instance if
$\begin{aligned} \mathrm{y} & =\log _{\mathrm{e}}(\mathrm{P} \text { watts }) \\ \text { then } \mathrm{P} & =\mathrm{e}^{\mathrm{y}}=1+\mathrm{y}+\frac{\mathrm{y}^{2}}{2!}+\frac{\mathrm{y}^{3}}{3!}+\ldots\end{aligned}$ and how can the dimensional quantity on the left (watts) be equal to a dimensionless set of pure numbers on the right?
Therefore the ratio of two quantities is alright - the units "cancel". For example

$$
\mathrm{N}=10 \log _{10} \frac{\mathrm{P}_{2}(\text { watts })}{\mathrm{P}_{1}(\text { watts })}
$$

is fine.
But even this is splittable by the rules of logs into

$$
\begin{aligned}
\mathrm{N}= & 10 \log _{10} \mathrm{P}_{2}(\text { watts })- \\
& 10 \log _{10} \mathrm{P}_{1} \text { (watts) }
\end{aligned}
$$

The answer is that the Ps must be thought of as the measure of the powers, in other words, as "how many times up on the basic unit is P_{1} ".
threshold of pain amounts to 10^{10}. This range of 120 dB is referenced to the lower threshold - taken as a sound flux of $10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$ at 1000 Hz .

But the ancient Greeks had pipped us at the post. They knew (by direct observation, presumably) that the light stimulus to our eyes has a logarithmic response relationship. Hipparchus divided the visible starts into six magnitude groups. These had equal subjective divisions from the first magnitude to the dimmest, or sixth magnitude. Later it was found that the ratio of the luminosity of the brightest to the dimmest (a difference of five magnitudes) was about $100: 1$. Therefore the ratio of luminosities from one magnitude to the next is $100^{1 / 5}=$ 2.512. We can write the ratio as $10 \log _{10} 100^{1 / 5}=4 \mathrm{~dB}$. Therefore stars one magnitude dimmer than a stated one are 4 dB down for the astronomers.

There can't be too many serious electronics events that enable you to save valuable time, do a very productive day's work and have the opportunity to enjoy yourself afterwards.
But that's the case with Internepcon - the electronic packaging show. This October, Internepcon in Brighton will play host to approaching 400 suppliers who'll be showing products for the contruction of electronics apparatus. And of those, nearly 100 companies will be new to the event. Not only that, the Show will boast Britain's largest ever collection of connectors.

Come and talk to top names like: Amp, Molex, Imhof, Schroff, Siemens, A B Elect, ITT Cannon, BICC-Vero, Plessey 2 Varelco, who'll be showing the latest in components, connectors, wire \& cable, racks, enclosures, PCBs and a lot more besides.

More than just an exhibition

If you've been to any of the previous 18 Internepcons, (and most of your industry has) you'll be aware that it enjoys a rather special atmosphere. For a start there's a great deal of cross-fertilisation between exhibitors and visitors. And second, it's evolved into more of a club because it's an event that depends upon the participation of both you and your colleagues.

High-powered, back-up Conference

As well as the 1000 's of products on show there's also an authoritative Conference alongside to give you practical help. Relevant topics and special insights into the latest equipment and materials in the electronic packaging field will be covered in depth. Topics to be covered will include: Surface Mount Devices \& Techniques, Connectors \& Interconnection Techniques, CAD/CAM, RFI/Static Protection, Printed Circuits, Hybrid Techniques and Automated Assembly.

COMPONENTS, CONNECTORS, WIRE\&CABLE,
 RACKS. ENCLDSL'RES. PCB'SETC, ... ANDIT'SIN BRIGHTON

Metropole Convention Centre (IRCIE 36 FOR FURTHIER DETAIIA

Brighton's such a nice place to do business in

Visiting Internepcon in Brighton does have its compensations. Because as well as being able to save yourself literally, months of product evaluation time you've got a coastal location that's been delighting visitors for years. It's brimming full of good places to eat, breathtak ing sights and exciting nightlife. So take this opportunity to spend a productive day (or why not stay over?) and then unwind in pleasant sur roundings.
So make sure you don't miss out at Internepcon in Brighton this October. For you and your colleagues to gain FREE entry to the Show just complete the coupon below or better still ring 018916471

[^3]

This early monolithic piezoresistive transducer is available in three forms gauge, differential and absolute - and includes thick-film thermistor temperature compensation external to the sensor element.

Transducer can be used as it is for musical instruments or close microphones, Fig. 2,
but for stand-off mics the port should be shortened to accept the wider angles,

Figs 3,4. Transducer requires only excitation voltage and coupling capacitor to function as a microphone, Fig. 5.

Integrated pressure sensors in acoustics

> Gary Morton of Hi-Tek examines the selection of integrated circuit pressure transducers as acoustic sensors in microphones and other pick-ups and explains their use in acoustics.

I
ntegrated-circuit pressure transducers are ideal as an acoustic sensor in microphones, hydrophones, sound level meters, musical instrument pickups, audiometers, and other sound detection applications. The i.c. transducer, of which a typical example is shown in Fig. 1, has a wide amplitude response (from zero frequency to 50 kHz) and a built-in operational amplifier that provides a high-level sig nal output for audio range (up to 30 kHz) pressure variations. Because the transducer diaphragm's natural resonance is outside the audio range $(\sim 50 \mathrm{kHz})$, it does not generate audio-range harmonics from input sound waves, which totally eliminates tricky mic-
rophone squealing even in heavy feedback situations. The i.c. pressure transducer's high accuracy, which can be further improved by auto-referencing, qualifies it for use in precision audio instruments.
With the pressure port tube in place, the i.c. transducer has a directional acoustic pickup pattern that can be broadened by reducing the length of the tube. If the tube is removed, the pickup pattern is similar to a high quality cardioid microphone. The transducer can be used for musical instrument pickups (Fig. 2) or for close-up directional microphones, but may require tube modification for other types of microphones. It is important to note that the port must be protected by an

Fig. 2

Fig. 5

Fig. 4

40
acoustically compliant material to prevent breath moisture from reaching the transducer circuit in any microphone, wind instrument, or other application where someone could blow into the port.

For stand-off microphones, the additional gain can be obtained by use of reflective sound collectors. A paraboloid reflector for directional pickup can be used, as shown in Fig. 3, or a hyperboloid for wide angle pickup, as shown in Fig. 4. In either case, the pressure port needs to be shortened to accept the wide angles within the acoustic system.

Acoustic transducer selection

For acoustic measurements, the most sensitive gauge pressure transducer is normally selected. The sound pressure waves are usually small, requiring high sensitivity, and the gauge inlet balances out atmospheric pressure. Since sound pressure waves go both positive and negative around the mean atmospheric pressure, a pressure transducer with a $\pm 5 \mathrm{psig}$ is ideal for the following applications. Devices which have a response centred at 15 p.s.i. (atmospheric pressure) can also be used and often have the advantage of not requiring an acoustic block for the gauge inlet.

For microphones and other audio pickups, the transducer only requires excitation voltage V_{E} and a $1 \mu \mathrm{~F}$ series capacitor to function effectively as a sound sensor, Fig. 5. The sound can be coupled in by any appropriate means as discussed above and by following the
general principles used for all acoustic pickups.
Conventional sound pressure level meters normally use a microphone pickup. The resulting signal is amplified, retified and used to drive a meter readout. Since the i.c. transducer's signal is already amplified, it eliminates much of the s.p.l. meter circuitry, Fig. 6. But to be accurate, the s.p.l. meter must be precisely coupled with the sound pressure level input. If an accuracy better than 3% of amplitude is required, either restricted temperature range or normal mode auto-referencing should be used.
In underwater sound pickup applications, an absolute pressure transducer is used. In this case, a very simple, hermetic enclosure needs to be used to protect the sensor. Fig. 7 shows an example.

The audiometer and tympanometer combines the capabilities of the i.c. pressure transducer for precise sensing of both audio pressure variations and static pressure. As shown in Fig. 8, this instrument uses an audio generator to teat the response of the human ear. The audiometer function relies on patient response and hence is only required to measure the a.c. amplitude (and frequency, if desired) of the audio signal entering the ear via the ear plug. The tympanometer measures the compliance of the ear drum without patient cooperation by comparing a.c. amplitude with d.c. level shift resulting from back pressure between the ear plug and the ear drum. Both normal mode and commonmode auto-referencing can be used to increase measurement accuracy.

Like the audiometer and tympanometer, the sphygmomanometer makes use of both a.c. and d.c. pressure detection level measurements. It measures the absolute blood pressure levels for the systolic and diastolic points while monitoring the phase of the heartbeat cycle for more accurate location of the "true" systolic point, the point where the apparent heartbeat at the point of measurement undergoes a change in phase.
In brass instruments, the musician's mouth and throat are part of the instrument's air

Fig. 6. Signal-conditioned type LX1801 eliminates much s.p.l. meter circuitry, though auto-referencing circuitry is required for errors of less than 3%.

Fig. 7. Absolute pressure types are required for underwater use, for exmaple SCX01DN.
column. As such, the input air pressure is an important determinant of pitch, volume and the tonal quality of the sound. But in the woodwinds, the musician's mouth and throat are not part of the air column; they are part of the reed. And as such the input air pressure is associated with pitch only, and not basically with the final quality of the sound. Thus the need of woodwind players for an external method to manipulate the tonal quality of their instruments.
Fig. 9 shows a fundamentally sound system for woodwind instruments - the musician's concept of the perfect microphone. It consists of an i.c. pressure transducer coupled tightly to the instrument's mouthpiece, serving both as a microphone and as a sound pressure meter. If the a.c. signal is modulated by the d.c. signal, the output of the sound system is quite similar to that of an instrument with squarelaw attack. The woodwind has now already acquired the attack quality of a brass; it's still up to the musician as to how the attack is to be used.
Such a system using microprocessor-controlled modulation gives an instrument of selectable bell size, a tonal quality that varies from "fat" (full and rich) to "crisp" (sharp and clear-edged), and something that no echo chamber could even achieve - selectable delay. A clarinet, for example, can be given the attack of a trombone with the bell of a sousaphone, and yet retain the clarinet's characteristic playing facility

Fig. 8. Instrument determines reponse of human ear for both dynamic and static pressure using transducer type SCX01DN.

Fig. 9. Microprocessor-controlled modulation can give an selectable delay and tonal quality to an instrument.

Before you specify your High Resolution Displays, let's get things crystal clear

When it comes to high resolution display technology, BARCO leads the world. Now, the existing range of BARCO displays from Cameron Communications has been enhanced by the new 6000 series. An
extremely flexible range of high resolution colour graphic displays for CAD/CAM, image processing, mapping, graphic artwork and other sophisticated applications. Add the
optional Touch Screen - Protouch and you have superb vision with the ultimate in userfriendly communication.

A truly remarkable range of products providing a cost effective OEM design solution and supported by BARCO's worldwide service network.

Cameron Communications provide a comprehensive customer support service as well as a customisation facility for your specific requirements.

So, if you need to get things crystal clear, ask Cameron Communications to put you in the picture. Why not start by telephoning for literature.

Cameron
COMMUNICATIONS
VISIONS IN TECHNOLOGY

Designing with dynamic memory

Large memory arrays can be produced economically with dynamic ram provided care is taken over timing requirements, refreshing and the supply rail. Part 3 concludes the series.

The simplified circuit diagram of the dynamic refresh generator on the 68000 board is given in Fig. 20, and its timing diagram in Fig. 21. A refresh clock operating at 7.54 kHz signals the need for a burst of refresh cycles every $1 /(7.54 \times 103)=0.133 \mathrm{~ms}$. This design does not carry out all refreshes in one burst - it performs eight cycles every 0.133 ms , completing all 128 row refreshes in $0.133 \times 16=$ 2.128 ms . By distributing the refresh operation over 16 bursts of eight cycles, the processor is not held up for any appreciable length of time.
The refresh control circuitry on the board uses the 68000 bus arbitration signals, $\overline{\mathrm{BR}}$ (bus request, $\overline{B G}$ (bus grant) and BGACK (bus grant acknowledge). When $\overline{B R}$ is asserted by a device wishing to control the system bus, the 68000 responds by asserting its $\overline{\mathrm{BC}}$ out put. The requesting device recognizes $\overline{\mathrm{BG}}$ and then waits until the end of the current bus cycle before asserting $\overline{\text { BGACK }}$ to claim ownership of the bus. Once $\overline{\mathrm{BGACK}}$ has been asserted, the requester may release $\overline{B R}$ and the old master releases $\overline{\mathrm{BG}}$. The new master owns the bus until it releases $\overline{\text { BGACK }}$.

A power-up, $\overline{\mathrm{POR}}$ (power-onreset from the processor control circuitry) goes low, clearing FF_{1} setting FF_{2}. Any welldesigned circuit should be similarly initialized and placed in a "safe state". In this state, \bar{Q}_{1} (i.e. $\overline{B R}$) is negated and \bar{Q}_{2} (i.e. NORM/RE) is low, signifying normal operation. When the refresh clock, a simple RC oscillator, generates a rising
edge, FF_{1} is set and $\overline{\mathrm{BR}}$ asserted. The 68000 detects the bus request and asserts bus grant $\overline{\mathrm{BG}}$ and-gate G_{1} detects the condition $\overline{\mathrm{BG}}=0, \overline{\mathrm{AS}}=1$ $\overline{\text { DTACK }}=1$, which occurs when the 68000 has relinquished the bus and forces input D_{2} of FF_{2} low. Note that the other two inputs to norgate G_{3} (at this time) are both low - one because we will assume $\overline{\text { HALT }}$ is negated and the other because $\overline{\mathrm{Q}}_{2}(\overline{\mathrm{NORM}} /$ $\overline{\mathrm{REF}})$ is low after FF_{2} has been preset.
When D_{2} is low, FF_{2} is cleared on the falling edge of the 1 MHz clock. Output Q_{2} is connected to the 68000 bus BGACK input and, while low, stops the processor from regaining control of the bus. At the same time, it forces the output of and-gate, G_{5} low, clearing FF_{1} and negating $\overline{\mathrm{BR}}$. Thus $F F_{1}$ has done its job in
this burst of refresh cycles and is once more in its initial state. When FF_{2} is cleared, its $\overline{\mathrm{Q}}, 2$ output goes high; it is also the NORM/REF line controlling the address multiplexer to the ram array. When high, norm/reF selects the address from the refresh column-counter (i.cs C1 and C2).

The output \bar{Q}_{2} is also fed back to the D_{2} input of FF_{2} via or-gate G_{3}, so that once \bar{Q}_{2} is high the flip-flop is held in this state and no longer depends on the state of $\overline{\mathrm{BG}}$ from the processor, as $\overline{B G}$ is automatically cleared following the negation of $\overline{\text { BE }}$. Flop-flop 2 is now "locked up", \bar{Q}_{2} high, and can only be released by the assertion of its $\overline{\mathrm{PRE}}$ (preset) input.

The final role played by \bar{Q}_{2} is to gate the 1 MHz clock in andgate G_{4}, the output of which is the pulsed $\overline{\text { RAS }}$ needed in the refresh cycle. Because \bar{Q}_{2},

by Alan Clements, Ph.D
Teesside Polytechnic

The three parts of this article are based on part of a book 'The 68000: software, hardware and interfacing' to be published next spring by PWS Boston, who are represented in the UK by Wadsworth International.

> MEX68KECB, referred to in September's article, is Motoroia's 68000 educational computer board, requiring power supply and v.d.u. terminal. The ECB has powerful monitor called Tutor which enables 68000 programs to be entered, debugged and executed. Although now somewhat dated its monitor is the basis of most educational and training systems on the market.

Fig.20. Dynamic refresh generator on the 68000 educational board distributes refresh operation over 16 bursts of eight cycles so that the processor is not held up appreciably. Timing diagram is at Fig.2, over.

Fig.21. Timing diagram for Fig. 20.

Fig.22. Structure of TMS4500A dynamic ram controller which produces additional MUX, CAS and RAS signals, and generates refresh control and arbiration signals required by the d-ram.
when low, allows counter C1 to operate, three bits of the refresh address appear on REFA ${ }_{01}$ to REFA $_{02}$ which form part of the dynamic ram's row refresh address. This counter is clocked at the refresh rate -1 MHz . A second-state counter, C2, is clocked by C 1 after eight cycles and provides the remaining four row refresh addresses REFAA $_{03}$ to REFA ${ }_{07}$.

After the three-bit counter

C1 has produced eight pulses, its Q_{d} output rises and disables and-gate G_{5}. This presets FF2, causing Q_{2} (i.e. $\overline{\text { BGACK }) ~ t o ~ b e ~}$ negated, freeing the processor by releasing $\overline{\text { BGACK }}$ and \bar{Q}_{2} (i.e. NORM/REF) to go low, disabling and-gate G_{4} and removing the refresh clock ($\overline{\text { REFRAS }}$). The system is now in its normal state, with $\overline{\mathrm{BR}}, \overline{\mathrm{BG}}$ and $\overline{\mathrm{BGACK}}$ all negated. The only change since the start of the cycle is that counter C 2 has been advanced by one, so that the next time the refresh clock generates a pulse, the following eight row addresses will be refreshed.

TMS4500A dynamic ram controller

I have always been surprised that the semiconductor manufacturers have done so little to make it easy to interface drams to microprocessors. Some d-ram controller chips have appeared, but most of them perform little more than address multiplexing and the generation of a refresh address. The designer still has to generate the $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$ and multiplexer timing signals. To be fair, it is not easy to design a d-ram controller because the timing requirements of d-ram chips are very stringent if they are to be operated at their limits.

Several controllers have been designed which include all timing and control functions on one chip and which can make a d-ram array look almost like a static ram array. One such device is the Texas Instruments TMS 4500 A . I am going to briefly overview the chip, but I do not intend to wade through the data sheet and applications manual in any detail here. Figure 22 illustrates its structure. A 16-bit address from the microprocessor is applied to RA_{0} RA_{7} and $\mathrm{CA}_{0}-\mathrm{CA}_{7}$ and is latched into the controller by the address latch enable input, ale. If the $\overline{\mathrm{CS}}$ input is activelow when it is latched by ale, a memory access begins.

The 4500 places the row address on its $\mathrm{MA}_{0}-\mathrm{MA}_{7}$ outputs and awaits a negativegoing edge at its $\overline{\mathrm{ACR}}$ or its $\overline{\mathrm{ACW}}$ input. These inputs (one for a read cycle and one for a write cycle) are used to multiplexer the column address onto $\mathrm{MA}_{0}-$ MA_{7} and to assert the $\overline{\mathrm{CAS}}$ output. All timing is performed by a clock input to the 4500 . Three of the inputs, TWST, FS_{0} and FS_{1} are used to program the clock frequency, the number of wait states per access (zero or one) and the length of the refresh cycle.

Although a refresh can be forced at any time by strobing the REFREQ pin, it is convenient to operate the 4500 in a hidden refresh mode. the 4500 performs a single refresh automatically at a rate determined by the clock input and its programming pins. If the controller is accessed by the processor when a refresh is due, either the processor or the controller must wait. An internal arbitration mechanism determines which goes first.
The recommended interface between a 4500 and a 68000 microprocessor is show in Fig. 23. The address on $\mathrm{A}_{01}-\mathrm{A}_{16}$ from the 68000 is latched into the 4500 by $\overline{\mathrm{AS}}$. The $\overline{\mathrm{ACR}}$ input is clocked by a delayed version of the $\overrightarrow{A S}$ pulse, providing a suitable RAS to cas delay.

Note that $\overline{\mathrm{ACW}}$ is permanently connected to V_{sc}. Two banks of d-ram are provided; one strobed by $\overline{\mathrm{LDS}}$ and one by $\overline{\mathrm{UDS}}$. A clever feature of this circuit is that the $\overline{\text { DTACK }}$ ackknowledge to the 68000 is derived from $\overline{\mathrm{CAS}}$ from the 4500

IBM's PC filing system

This description of PC DOS - a version of MS DOS-complements last years series on floppy disc filing systems for microcomputers.

Disc operating systems insulate the user from that way the data is stored on the disc, and allow the manipulation of sets of data (files) simply by referring to their names and common English words such as List, copy and erase.
Floppy discs are divided into concentric tracks, each divided into radial slices (sectors). A sector is of a fixed size for a particular system, for example, a PC Dos sector contains 512 bytes of useful data. The sector also contains the track number and sector number for identification, the sector size, and cyclic redundancy checking information, used to check whether data has been read or written correctly. A file may occupy one or a number of sectors, which may be contiguous or scattered over the disc. The user does not have to worry about this, as the dos keeps a directory of all the files on the disc, and which sectors each occupies.

IBM's PC DOS associates corresponding tracks on opposite sides of the disc to form a cylinder, which allows two tracks to be read from the disc without any movement of the read/ write head, with a consequent increase in speed over systems which use the two sides of the disc separately, for example CP / M. A PC Dos disc contains 40 cylinders, consisting of one track on each side of the disc, or one track only if the disc is a single-sided one. Each track is divided into 9,512 byte sectors. (Earlier versions had only eight sectors per track).

The directory

A disc operating system keeps a directory on the disc of all the files together with information
about which sectors each occupies. This is analogous to the index of a book which contains the chapter titles and the page number where the start of each chapter is to be found. Usually a chapter in a book occupies a number of consecutive pages, but this is not always the case on a computer disc; sectors occupied by a file may be scattered randomly over the disc. How PC DOS uses the file allocation table (fat) to overcome this difficulty is shown later.

In PC Dos the directory information (and some other system information) is always found in a fixed place on the first cylinder, and the rest of the disc is available for file data. This file space is divided into clusters, analogous to pages in the book. A cluster consists of two consecutive sectors. (On a single-sided disc a cluster contains only one sector.) The clusters are numbered, starting at cluster number 2, which starts immediately after the directory.

Directory format

The directory occupies seven sectors, starting with sector 6 of the first cylinder (sector 4 on eight sector/track discs). Each entry occupies 32 bytes as follows:

Byte no.	Content
$00-07$	File name
$08-10$	Extension 11
Attribute byte: $1=$ hidden file $2=$ system file	
$12-21$	Not used $=00$
$22-23$	Time $=\mathrm{h} \times 2048+\min \times 32$ $+\sec / 2$
$24-25$	Date $=(\mathrm{yr}-1980) \times 512$ + month $\times 32+$ day
$26-27$	Number of first cluster occupied File size $($ bytes $)$

File allocation table

Entry (cluster)	Value Meaning	
0	FFF	Double-sided, 8 sectors
	FFE	Single-sided, 8 sectors
	FFD	Double-sided, 9 sectors
	FFC	Single-sided, 9 sectors
1	FFF	Filler
2	003	Pointer to the next cluster
3	004	Pointer to the next cluster
4	005	Pointer to the next cluster
5	FFF	Last cluster in this file
6	000	Unoccupied cluster
7	000	Unoccupied cluster
8	FF7	"Bad track cluster

Frances Stubbs is a freelance programmer/analyst and microcomputer enthusiast, having pre7iously worked in Geneva at CERN. His degrees are in physics from Durham University.

Each of the seven directory sectors can contain up to 16 file names, thus a disc may contain up to 112 files.

File name and extension

The file name is supplied by the user when the file is written on the disc, for example by using the save command, and consists of up to eight characters padded by spaces, followed optionally by an extension of up to three characters, also padded by spaces. The extension is sometimes used to denote special types of files such as Bas for Basic files, ASm for assembly language source files, and Exe for executable machine code files. A character is represented by a byte of data, according to ascii.
Attribute byte: Enables the Dos to identify files which must be protected in some way from user interference. Not all of the attribute byte is used. If the first (least significant) bit is set $(=1)$ the file is a hidden file and will not appear if dos is asked to list the directory. Bit 2 set denotes a system file as distinct from a user file. A system file may also be hidden. Time and date: These entries contain the date and time at which the file was created in coded form, for reference.

File size: Contains the size of the file in bytes and used to find the actual size of the file if the last cluster is not full.
First cluster number: Number of the first cluster occupied by the file. Then dos goes to file allocation table (fat) to find where on the disc the rest of the file is.
File allocation table: The disc contains two copies of the FAT, starting at sector two of the first cylinder, each copy occupying two sectors (only 1 sector is needed for eight sector/track dises).

The file allocation table is a map of the total disc space available for files, and contains an entry of three hexadecimal digits for each cluster on the disc. The directory contains the number of the first cluster occupied by a file; the fat entry for that cluster contains a pointer to the next cluster in the file, and so on.

If the cluster is the last one in the file, the entry is FFF. In this way the dos can trace the sequence of clusters which
make up a file. no matter where they are on the disc. The entry for unoccupied clusters is 000 . If a cluster has been damaged in some way so that the Dos cannot successfully read or write to it, the entry is FF7, and PC Dos does not use clusters marked in this way.

If the fat is displayed on a v.d.u. it is not immediately obvious what it means, because a byte is displayed with the most significant digit in the left-hand position. For example, 12 means 2 in the 'ones' column and 1 in the ' 16 's' column. This is the 'obvious' way for human beings, as it is the way we write decimal numbers. But on a floppy disc or in a computer memory the least significant digit is written first. Taking the example of file allocation table entries shown, the entries for the first file would be written as
300400500 FFF
or rather 300400500 FFF
as the spaces are not there. Now as data is usually written
to a v.d.u. as bytes (two hex. digits), with the most significant digit appearing first for convenience, this would then appear as

03400005 F0 FF.

Erasing files

When a file is erased from the disc the first letter of the filename in the directory is changed to E5, and the fat entries for all the clusters which it occupied are changed to zero. The directory space and the file space which the file occupied are now available for further use. (Because the fat entries are changed to zero the information about where the file was is lost, thus unlike CP / M where this information is retained when a file is erased, pC dos files cannot easily be 'unerased'.)

Tree directory

More recent versions of PC Dos also support a tree directory structure. In this system the directory is called the root directory, and may contain
files which are themselves directories (subdirectories). An entry in the directory is flagged as a subdirectory name by having bit 4 of the attribute byte set. The subdirectory is now a file in normal file space. It has the same structure as the root directory, but can be any length. And it may itself contain further subdirectory names.

Each subdirectory contains two entries created by the dos to allow it to determine the position of the subdirectory in the 'tree'. The first of these is an entry whose name is ".", and which points to the first cluster of the subdirectory itself, and the second is an entry whose name is "..", and which points to the first cluster of the parent directory. These two entries also have bit 4 of the attribute byte set.
The tree directory structure allows any number of files to be stored on a disc and is particularly useful where hard discs with their much larger storage capacity are used.

Designing with dynamic memory
 continued from page 44

controller. If ever the 4500 is carrying out a refresh cycle when the 68000 requests a memory access, cAS remains high until the refresh has been completed and the 68000 is held up until the access can take place.
There are two approaches to the design of memory systems using controllers such as the TMS4500A. One is to assume that the circuit of Fig. 23 will work because it is from the manufacturer's application notes. The other is to take the data sheets of the 68000 , the 4500 and the d-ram chip and to put them all together to determine whether any parameters are violated.

Problems in dynamic memory design

Although this article has concentrated on timing diagrams, that is not the whole of the store. Dynamic ram is associ ated with at least two other nasty problems! the current taken is very "bursty" and the current taken by the V_{cc} pin can rise at a rate of $50 \mathrm{~mA} / \mathrm{ns}$ when the $\overline{\text { RAS }}$ input is asserted. This corresponds to a rate of
change of 50 million amps per second. Such a rate of change can cause the $V_{c c}$ voltage at the terminal of the chip to fall to a point at which erratic operation may occur. The power supply problem is solved by a combination of attention to the circuit layout and to decoupling. The power lines to each ram chip are made as wide as possible to reduce their impedance and a $0.1 \mu \mathrm{~F}$ capacitor is connected between ground and V_{cc} at each chip - or at least at every other chip. This capacitor provides the current surge required by the chip whenever RAS goes low.

Another peculiarity of the dynamic ram follows from the way in which it generates an internal back-bias supply. The back-bias does not stabilize for at least $200 \mu \mathrm{~s}$ after the initial application of V_{cc}. Therefore, d-ram should not be accessed until at least $200 \mu \mathrm{~s}$ after the system has been powered up.

Fig.23. The TMS4500A dynamic ram controller allows the 68000 processor to be connected to d-ram in
almost the same way as static ram.

Gould OS300 versus Douglas DC3
 os300

Proven worldwide
Inexpensive
Rugged construction Go anywhere
Piece of cake to fly
NATO approved
Two year guarantee U.K design and manufacture Modern spec: Available off-the-shelf

Proven worldwide
Inexpensive
Fugged construction Go anywhere Piece of cake to fly NATO approved

Goud Electronics Ltd., Instrument Systems, Roejuck Road, Hainacilt, Iford, Essex IG6 3UE Teleshone:01-500 1000. Telex: 263785.

HIGH-FLYING TECHNOLOGYYOU CAN TRUST.

*Mush as we admire the Dakota's traditional hard-working virtues, sadly its
last spec. update was in 1945. The Gould OS300, on the other hand, offers 1980's features-dual-trace with true 20 MHz operation, continuously variable amplifier sensitivity to eliminate loss of band width over the 2 mV set-ıp and brighter displays.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301
CIRCLE 8 FOR FURTHER DETAILS

LOW COST UNIVERSAL PROGRAMMER EPROMS EEPROMS MICROS

- Completely self contained unit
- No personality modules required
- Controlled via RS232 serial interlace
- Supporis Intel, Molorola and Ascii
hex data formats.
- Easily controlled by most computers.
- Fast and standard programming modes
- Low and high byte programming for 16 bil data
- Byte, block and chip erase for Eeproms

F
Price uncased £295 plus VAT.
Micro Concepts

- Eproms

2508/16/32/64
2758
2716/32/32A/64/64A/128/ $128 A / 256 / 512 / 513$ 27C16/32/64/128/256/512 68732/64/66

- Eeproms:

2816A/64A 52813/23/33 48Z02

- Micros.
$8748 / 48 \mathrm{H} / 49 / 49 \mathrm{H}$

Tel: 0242510525
2 St Stephens Road Cheltenham • Glos • GL51 5AA

CIRCLE 10 FOR FURTHER DETAILS

Simply Superior.

Meet COM 7000.
Technologically superior oscilloscope measuring systems from Kikusui.

With all the waveform measurement data right where you need it.

Right where you're looking - on the C.R.T.
Screen text display of sensitivity settings, timebase speeds, delay times, plus voltage and frequency read out.

Telonic Instruments Ltd., Boyn Valley Road, Maidenhead, Berks., SL6 4EG.
Tel: (0628) 73933.
Telex: 849131.

With band widths of 60,100 or 200 MHz , built-in digital storage and G.P.I.B. capability, depending on model.

Simply superior oscilloscopes you have to see.

Ask for data or demonstration.

OSCILLCSCOPE MEASURING SYSTEMS

Oscilloscope update

Speed and accuracy improve slightly but oscilloscopes are much better at displaying difficult waveforms.

0ver the past few years, oscilloscopes have become a little faster but their ability to display difficult waveforms has improved significantly. Accuracy has not improved greatly either, mainly because of limitations of the c.r.t.

Instead, there is now a greater emphasis on built-in measurement aids like voltage and frequency meters whose results are displayed on the c.r.t. Custom i.cs and digital logic are not only used in digital storage ościlloscopes.
Some new oscilloscopes even have auto-ranging for both amplitude and timebase. This need not cost the earth either.

For example the Grundig MO22 has automatic timebase selection and costs $£ 425$, which is not much more than a standard 20 MHz instrument.
There are few singlechannel oscilloscopes now and features like channel add and invert are standard. And, as expected, digital storage is becoming cheaper - Hameg and Farnell for example have d.s.os for under $£ 1000$.

Digital storage oscilloscopes cannot yet replace conventional real-time instruments, but the time will no doubt come. Hewlett Packard has stopped producing real-time oscilloscopes because d.s.os are better value for money. If component
costs keep falling, this will soon apply to oscilloscopes in lower price ranges.
As you can see from our table, Scopex has produced no new instruments, but we believe that the company is working on digital storage. If you are thinking of buying a low-cost digital storage oscilloscope it may be worth waiting to see what the company's next new product is.

Display

Despite the fact that custom l.s.i. circuits are being used in oscilloscopes, the c.r.t. still remains the best display device. The main change in the dis-
play over the past few years is the addition of colour
One method of adding colour is to place a fast l.c.d. filter in front of the c.r.t., as used by Tektronix. A method more suited to digital-storage oscilloscopes is to use a colour raster-scan c.r.t., as Hewlett Packard do in some of their new models. Once the waveform is digitized, it is just as easy to make raster-scan video signals from it as it is to turn it back to analogue form, given today's digital control i.cs. And, theoretically at least, raster-scanning allows an unlimited colour range.

Another advantage of the raster-scan method is that it

Storage oscilloscopes

Model	Chan.	Samp. rate max. MHz	Res. bits	Mem. Kbyte	Ana. b.w. MHz	Single shot b.w. MHz	Pretrig.	Trace exp'n hor./ vert.	Stored waveforms	Interpol'n	Curs.	Averaging	Time/ volts disp.	GPIB	Pen rec. o/p	$\begin{aligned} & \text { RS } \\ & 232 \end{aligned}$	Price $£$	Notes
ADVANCE																		
DS1525A	2	2	8	4	20			16/-		-							995	Analogue output
DS1526	2	2	8	4	20			16/-		-							995	HPGL serial
DS1527	2	2	8	4	20			16/-		-							995	GPIB interface
$\begin{aligned} & \text { GOULD } \\ & 4050 \end{aligned}$	2	100	8	1	35			10/-	2	-	-	-	-	-	-		6320	Waveform proc. option
HAMEG HM205	2	0.1	8	2	20				2								448	V division vertical
HM208	2	20	8	4	20	5	-	10/-	4	-				Opt	,		1300	Battery-backed memory
HEWLETT PACKARD																		
HP5180T	2	20	10	~16	10	10	-	-	4	-	-	\square	-	-			24384	High accuracy waveform analyser
HP5180U	4	20	10	~ 16	10	10	-	-	4	*	-	-	-	-			39971	High accuracy waveform analyser
HP5183T	2	4	12	<512	1	1	-	-	4	-	-	-	-	-			16675	High accuracy waveform analyser
HP5183U	4	4	12	<512	1	1	-	-	4	-	-	-	-	-			25054	High accuracy waveform analyser
HP54100D	2	40	7	~ 1	1G	10	-	-	2	-	-	-	-	-			16685	For repet. waveform; high speed
$\begin{aligned} & \text { HP54110D } \\ & \text { HP54200A } \end{aligned}$	$\begin{aligned} & \text { as HP: } \\ & 2 \end{aligned}$	$\begin{gathered} 54100 \mathrm{D} \\ 200 \end{gathered}$	$\begin{gathered} \text { but co } \\ 6 \end{gathered}$	lour	50	50	-	-	2	-	-	-	-	-			$\begin{aligned} & 18249 \\ & 4650 \end{aligned}$	
HP54201A	as HP5	4200A b	but 30	0 MHz	analog	gue band	dwidth										6778	
HITACHI VC6020	2	1	8	2	20	150k	-	10/-	2					-	-		1395	Analyser \& roll modes
IWATSU																		
DS8123	2	25G	8	0.5	100	100			2				-	-			12435	
DS6121	2	40	8	2.5	100	10	-	10/-	4	-	-	-	-	-	-	-	4335	100 MHz equiv. sampling
KIKUSUI																		
DSS6520	2	2	8	1	20	100k	-		2		-		-	Opt	-		2650	Ext. clock, roll mode
DSS6521	2	2	8	1	20	100k	-		2					Opt	"		1895	Ext. clock, roll mode
DSS5020A	2	1	8	2	20	50/400k	-	100/-	2	-					-		1145	Two a-ds, ref. store
DSS5040	2	25	8	2	40	1.25/10	-	100/.	2	-					-		1595	Two a-ds, ref. store
COM7061	4	20	8	4	60	1/8/60	-	100\%	4	-	-		*	-	-		3460	Counter/d.v.m. display

HITACHI OSCILLOSCOPES

NEED WE SAY MORE? Get details of all models - NOW from

r
DUTCHGATE LTD, Unit 6, 28 Botley Road, Hedge End, Southampton SO3 3HE.
B Botley (04892) 81487
CIRCLE 62 FOR FURTHER DETAILS

The Archer Z80 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users. \star Top quality board with 4 parallel and 2 serial ports, counter-timers, power-fail interrupt, watchdog timer, EPROM \& battery backed RAM.
\star OPTIONS: on board power supply, smart case, ROMable BASIC, Debug Monitor, wide range of I/O \& memory extension cards.
from $£ 185+$ VAT.

The Bowman 68000 §BC

The SDS BOWMAN - The 68000 based single board computer for advanced high speed applications.
\star Extended double Eurocard with 2 parallel \& 2 serial ports, battery backed CMOS RAM, EPROM, 2 countertimers, watchdog timer, powerfail interrupt, \& an optional zero wait state half megabyte D-RAM.
\star Extended width versions with on board power supply and case
from $£ 295+$ VAT.

Sherwood Datadxystens Itd

CIRCLE 25 For further details

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX. Tel. 02814-5067

Storage oscilloscopes

Model	Chan.	Samp. rate max. MHz	Res. bits	Mem. Kbyte	Ana. b.w. MHz	Single shot b.w. MHz	Pretrig.	Trace exp'n hor./ vert.	Stored waveforms	Interpol'n	Curs.	Averaging	Time/ volts disp.	GPIB	Pen rec. o/p	$\begin{aligned} & \text { RS } \\ & 232 \end{aligned}$	Price E	Notes
COM7101	4	50	8	4	100	2.5/100	-	100/-	4	-	-		"	-			4950	Counter/d.v.m. display
COM7201	4	50	8	4	200	2.5/100	,	100\%-	4	-	-		-	-			5950	Counter/d.v.m. display
LEADER LBO582S	2	5	8	2	35			- 2	2					-			2300	
$\begin{aligned} & \text { LeCROY } \\ & 9400 \end{aligned}$	2	100	8	64	125		-	100\%-	250	-	-	Opt.	,	-		2	8275	Sware opls, 2\% err.
MEGURO																	10615	As above but 1% error
MSO1270A		2	8	2	20	0.3	-	160/-	4	-	-						1399	Roll mode
NICOLET																		
110	2	1	8	1	20	0.2	-	100/-	2	-			-		-		1395	Gen. purpose portable
320	2	10	8	16	25	2	-	400/8	4		-		-	-	-	-	6950	Waveform processing; bubble memory option
370	2	1	10	16	0.3	0.2	-	400/8	4		-	-	-	-	-	-	9950	Signal averaging; bubble memory option
2090	2	50	8	4	25	10	-	64/64	8		-		-	Opt	-	Opt	8900	Disc drive option
PANASONIC																		
VP5740P	2	100	8	30	100	35	-	100/10	10	-	-	-	-	$\stackrel{\square}{\square}$	-		9785	Waveform transforms
VP5730P	2	100	8	2	100	5		10/10		-	-	-	.	Opt	\bullet		3940	Go/no-go testing
PHILIPS PM3305P	4	2	8	4	35	0.25	-	-/40	4					-			2450	
PM3310	2	50	8	1	60		90\%	2.5/5	4	-			-	Opt	Opt		4250	
PM3311	2	125	8	1	60	30	90\%	2.5/5	4	-			-	Opt	-		4500	
TEKTRONIX																		
2220	3	20	8	4	60	2	-	10/-	1	-		-		Opt	-	Opt	2650	Digital, non-storage
2230	3	20	8	4	100	2	-	-	4	-	-	-	-	Opt	-	Opt	3950	Cursors, c.r.t. readout
2430	4	100	8	1	150	10	-	-	6	-	-	-	-	-	-		7750	Dual acquisition
TRIO																		
MS1660	2	1	8	2	20		\cdots	-1-			-			-	-		2750	Dual timebase
MS1665	2	1	8	2				-/-			-			-	-		2350	Module, dual timebase
AWR TECHNOLOGY																		
Microview	2	0.1	8														150	Adapter for BBC Micro

gives manufacturers a wide choice of component sources, which is not the case with 1.c.d. filters.

One potential disadvantage is loss of resolution. Using an l.c.d. filter, resolution is that of the monochrome tube whereas with a colour c.r.t., resolution is governed by the number of dots on the tube. In practice though this is not a problem because the digital oscilloscopes using raster-scan c.r.ts allow zooming.

New facilities

For c.c.tv and computer servicing, Crotech has produced a 30 MHz dual-trace oscilloscope that is, surprisingly, claimed to be the first that can display composite 625 -line video signals as pictures. This simple addition removes the need for a video monitor.
Multi channel monitoring is the speciality of the Data Check 1880 which displays up to fourteen channels in bar-
graph form or displays the waveform of one of 28 channels. Using scanning for waveform monitoring removes the need for reconnecting probes. For many applications though, the 1880 's price of $£ 5000$ makes it less attractive than a few conventional real-time oscilloscopes with input multiplexers.
Both 488 and BBC computer interfaces are fitted to the Farnell 12 MHz DTS12T, which is probably the cheapest digital-
storage oscilloscope with computer interfacing. Software for bidirectional data transfer is supplied on floppy disc and an f.f.t./waveform analysis rom/ disc package is $£ 70$. At $£ 1195$, the 12 T brings computer waveform analysis within the reach of many educational users.

One example of oscilloscopes with built-in measurement devices mentioned earlier is the V1100A. This 100 MHz real time instrument gives onscreen display of direct/ \downarrow

Non-storage oscilloscopes

Model	Y b.w. MHz	sens. $\mathrm{mV} / \mathrm{div}$	Chan.	Sweep max. ns/div	Sweep dual/ delay	y delay	TV sync.	Screen size cm	Acc. pot'l kV	Price E	Notes
BECKMAN INDUSTRIAL											
9020	20	0.5	2	10	-			10x8	2	319	Variable hold-off
9060	60	5-0.1	3	20 (x10)	-	-	-	15.2	12	1095	Linear focus control
9100	100	5-0.1	3	50(x10)	-	-	-	15.2	18	1495	Linear focus control
CROTECH											
3337	30	5	2	40	-	-		10×8	10	425	Single-shot, XYZ mod. comp. trigger
3339	30	5	2	40	-	-	-	10×8	10	570	VDU mode, component tester
3031	20	2	1	40				10×8	1.5	195	Component tester, auto-trigger
3036	20	2	1	40				10x8	1.8	216	Component tester, auto-trigger
DATA CHECK											
1880	3	10	1/28	1000				10×8		\$7712	Multi-channel monitor; scan mode

Model	Y b.w. MHz	Y sens. $\mathrm{mV} /$ div	Chan.	Sweep max. ns/div	Sweep dual/ delay	Y delay	TV sync.	Screen size cm	Acc. pot'l kV	Price $£$	Notes
$\begin{aligned} & \text { FEEDBACK } \\ & \text { DOS650 } \end{aligned}$	15	5	2	500			-	10×8	1.8	275	Component tester built in
GRUNDIG M020 M022 M053	$\begin{aligned} & 20 \\ & 20 \\ & 50 \end{aligned}$	2 2 2	2 2 2	$\begin{aligned} & 50(\times 10) \\ & 50(\times 10) \\ & 10(\times 10) \end{aligned}$	-	-	-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 11 \end{aligned}$	$\begin{aligned} & 299 \\ & 425 \\ & 995 \end{aligned}$	Add, invert, $\mathrm{X}-\mathrm{Y}$, auto peak trigger Auto timebase, Z mod., hold-off Auto timebase with digital display
HITACHI V223 V225 V423 V425 V680 V1100A V1150	20 20 40 40 60 100 as 11	$\begin{aligned} & 5(\times 5) \\ & 5(\times / 5) \\ & \text { A but } 15 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 4 H z \text { ban } \end{aligned}$	$\begin{aligned} & 200(x 10) \\ & 200(x 10) \\ & 200(x 10) \\ & 200(x 10) \\ & 50(x \times 0) \\ & 20(x 10) \end{aligned}$ dwidth	-	-	-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 12 \\ & 12 \\ & 12 \\ & 18 \end{aligned}$	$\begin{aligned} & 450 \\ & 550 \\ & 650 \\ & 695 \\ & 1295 \\ & 2390 \\ & 2950 \end{aligned}$	Trigger delay Settings display, cursors Trigger delay Settings display, cursors Freq. $N /$ function screen display Freq. N/function screen display
HAMEG HM203-6											
IWATSU SS5705 SS5706 SS5712	$\begin{aligned} & 40 \\ & 30 \\ & 200 \end{aligned}$	$\begin{aligned} & 1(\times 5) \\ & 1(\times 5) \\ & 1(\times 5) \end{aligned}$	2 2 4	$\begin{aligned} & 10(\times 10) \\ & 20(\times 10) \\ & 10(\times 10) \end{aligned}$	-		-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 20 \end{aligned}$	$\begin{aligned} & 620 \\ & 495 \\ & 2500 \end{aligned}$	General purpose Trigger delay
KIKUSUI COS6100 COS5042 COS5100 COM7060 COM7100 COM7200	$\begin{aligned} & 100 \\ & 40 \\ & 100 \\ & 60 \\ & 60 \\ & 200 \end{aligned}$	$\begin{aligned} & 5(\times 5) \\ & 5(\times 5) \\ & 5(\times 5) \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 20(\times 10) \\ & 50(\times 10) \\ & 20(\times 10) \\ & 5 \\ & 2 \\ & 1 \end{aligned}$	-	-	:	10×8 10×8	$\begin{aligned} & 20 \\ & 12 \\ & 18 \\ & 12 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 2250 \\ & 685 \\ & 1095 \\ & 1835 \\ & 2775 \\ & 3675 \end{aligned}$	Military version of 6100A Eight traces, X - Y trigger hold off Eight traces, $X-Y$ trigger hold off Freq.N/funct. display, GPIB option Freq.N/funct. display, GPIB option Freq.N/funct. display, GPIB option
LEADER LBO310A LBO323 LBO324 LBO325 LBO510A LBO512B LBO514A	$\begin{aligned} & 4 \\ & 20 \\ & 40 \\ & 60 \\ & 4 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 1 \\ & 1 \\ & 1 \\ & 20 \\ & 10 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 20 \\ & 10000 \\ & 100 \end{aligned}$	-		-	$\begin{aligned} & 6 \times 4.8 \\ & 9.5 \\ & 9.5 \\ & 9.5 \\ & 10 \times 8 \\ & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.7 \\ & 12 \\ & 12 \\ & 1.5 \\ & 1.3 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 189^{\star} \\ & 875^{\star} \\ & 1050^{\star} \\ & 1675^{\star} \\ & 230^{\star} \\ & 290^{\star} \\ & 360^{\star} \end{aligned}$	$X-Y$, add, alternate, chop $X-Y$, add, alternate, chop $X-Y$, add, alternate, chop, 4 kg $X-Y$, chop, alternate
LBO516 LBO518 LBO522 LBO524 LBO526	$\begin{aligned} & 100 \\ & 100 \\ & 20 \\ & 40 \\ & 60 \end{aligned}$	0.5 0.5 0.5 0.5	$\begin{aligned} & 3 \\ & 4 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 40 \\ & 20 \\ & 20 \end{aligned}$	-	-		$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 2 \\ & 7 \\ & 12 \end{aligned}$	$\begin{aligned} & 1490^{\star} \\ & 1575^{\star} \\ & 395^{\star} \\ & 655^{\star} \\ & 950^{\star} \end{aligned}$	$X-Y$, eight traces $X-Y$, eight traces Chop, altemate, add, invert Chop, alternate, add, invert
MEGURO MO1251A MO1253 MO1255 MO1252	$\begin{aligned} & 20 \\ & 40 \\ & 100 \\ & 35 \end{aligned}$	$\begin{aligned} & 1(x+10) \\ & 1(x 10) \\ & 1(x 5) \\ & 1(x 5) \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 20(x 10) \\ & 20(x 10) \\ & 2(\times 10) \\ & 20(x 5) \end{aligned}$.	-	-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \\ & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 12 \\ & 19 \\ & 6 \end{aligned}$	$\begin{aligned} & 275 \\ & 455 \\ & 965 \\ & 360 \end{aligned}$	XY. Hold-off. Auto trigger level XY. Hold-off. Auto trig. level. Sweep delay XY. Hold-off. Auto trig. level. Dual sweep XY. Hold-off. Sweep delay
PANASONIC VP5610P VP5512P	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	5 2	3 4	$\begin{aligned} & 50 \\ & 20 \end{aligned}$	-		-	$\begin{aligned} & 7 \times 5.8 \\ & 15 \times 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 2147 \\ & 1433 \end{aligned}$	Auto-ranging, GPIB option, portable Eight traces
PHILIPS PM3050 PM3055 PM3206 PM3217 PM3256 PM3264 PM3267	$\begin{aligned} & 50 \\ & 50 \\ & 15 \\ & 50 \\ & 75 \\ & 100 \\ & 100 \end{aligned}$	2 2 5 2 2 2 2	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & 5(x 10) \\ & 5(x 10) \\ & 500 \\ & 100(x 10) \\ & 50(x 10) \\ & 50(x 10) \\ & 50(x 10) \end{aligned}$	"	-	:	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \\ & 2 \\ & 10 \\ & 10 \\ & 17 \\ & 10 \end{aligned}$	795 845 295 1075 1550 3995 1395	Auto timebase and level GPIB option, auto timebase and level
$\begin{aligned} & \text { SOLARTRON } \\ & 5070 \\ & 5220 \\ & 5224 \\ & 5227 \\ & 5228 \\ & 5229 \\ & 5277 \end{aligned}$	$\begin{aligned} & 12 \\ & 100 \\ & 100 \\ & 100 \\ & 250 \\ & 500 \\ & 100 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 2 \\ & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 4 \\ & 3 \\ & 3 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1000(x 5) \\ & 50(x 10) \\ & 50(x 10) \\ & 50(x 10) \\ & 10(x 10) \\ & 10(x 10) \\ & 50(x 10) \end{aligned}$:	-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 2 \\ & 12 \\ & 12 \\ & 12 \\ & 8 \\ & 18 \\ & 10 \end{aligned}$	1308 1911 2200 2700 3884 6020 5466	Bistable storage tube; compact Digital time, voltage measurement Digital time, voltage measurement Video measurements, multimeter Built-in multimeter Digital attenuator/timebase readout Storage tube; time/voltage readout
$\begin{aligned} & \text { TEKTRONIX } \\ & 2245 \\ & 2246 \end{aligned}$	100 100	2	4	2	-	-	\cdots	10×8 10×8	$\begin{aligned} & 16.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 1820 \\ & 2426 \end{aligned}$	C.r.t. readout, general purpose As above, but with "smart cursors"
$\begin{aligned} & \text { THANDAR } \\ & \text { SC110A } \\ & \text { TO315 } \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$			-	$\begin{aligned} & 3.2 \times 2.6 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$		Mains/battery portable Mains/battery portable
TRIO CS2150 CS1100	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 5(\times 5) \\ & 5(\times 5) \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{array}{ll} 20 & (\times 10) \\ 20 & (\times 10) \end{array}$	-	-	-	$\begin{aligned} & 10 \times 8 \\ & 10 \times 8 \end{aligned}$	$\begin{aligned} & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 2165 \\ & 1320 \end{aligned}$	Eight trace

Let HANIEC commit you tomemory

20MHz

Digital Storage
Oscilloscope
HM208 £1300
(£1550 with IEEE)
Dual Trace. Digital Storage 2 mV - $20 \mathrm{~V} / \mathrm{cm} .14 \mathrm{kV}$ CRT 20 MHz Bandwidth
Algebraic Add. Invert X - Y $4 \times 1 \mathrm{k}$ Stores. 20 MHz Clock Roll. Refresh . Pre-Trigger Memory Hold, Plotter Output Analogue T/B. $0.2 \mathrm{~s} / \mathrm{cm}-$ $20 \mathrm{~ns} / \mathrm{cm}$. Digital T/B $50 \mathrm{~s} / \mathrm{cm}-10 \mathrm{us} / \mathrm{cm}$
2 Years Warranty
Prices U.K. list ex. VAT
HAMEIE
FOR THOSE WHO COMPARE
74-78 Collingdon St.
Luton, Beds. LU1 1RX
Tel: (0582) 413174 Telex: 825484

CIRCLE 55 FOR FURTHER DETAILS

TESTINSTRUMENTS

A wide range of high performance instruments that put professional test capability on your bench.

COUNTERS - TF600 5Hz to 600 MHz . TF200 10 Hz to 200 MHz . TF040 10 Hz to 40 MHz : PFM200A 20 Hz to 200 MHz (hand-held model). TP600 prescales to 600 MHz . TP 1000 prescales to 1000 MHz

MULTIMETERS - TM351 01\% 31/2 digit LCD: TM356 0 25 \% 31/2 digit LCD. TM355 0.25\% $3^{1 / 2}$ digit LED, TM354 0.75 $\% 3^{1 / 2}$ digit LCD (hand-held model): TM451 0.03\% $41 / 2$ digt LCD with autoranging and sample hold TM452 0.05\% $41 / 2$ digit LCD with builtin frequency counter (hand-held model)
OSCILLOSCOPE - SC110A 10 MHz .10 mV sensitivity. 40 mm CRT with 6 mm gratıcule divisions.
THERMOMETERS TH3O1 $-50^{\circ} \mathrm{C}$ to $+750^{\circ} \mathrm{C} 1^{\circ}$ resolution; TH3 $2-40^{\circ} \mathrm{C}$ to $+1100^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{F}$ to $+2000^{\circ} \mathrm{F} 0.1^{\circ}$ and 1° resolution Both accept any type K thermocouple.

GENERATORS - TG1010.02Hz to 200 kHz Function Generator. TG102 02 Hz to 2 MHz Function Generator; TG 1055 Hz to 5 MHz Pulse Generatc TG501 0.005 Hz to 5 MHz Function Generator: TG5020005 Hz to 5 MHz Sweep Function Generator. TG503 0.005 Hz to 5 MHz Pulse Function Generator

LOGIC ANALYSERS - TA2080 8 channel 20 MHz TA2160 16 channel 20 MHz
ACCESSORIES - Bench rack, test leads, carryng cases mains adaptors probes themocouple probes. microprocessar disassembly optio

For further information contac:
Thandar Electronics Lid. London Road St Ives. Huntingdon. Cambs PE17 4 HJ Telephone (0480) 64646 Telex 32250

MEGURD OSCILLOSCOPES

 MO-1255 - 100 MHz OSCILLOSCOPE
 A new range of Test Instruments including:-
 Oscilloscopes, Spectrum Analysers, R.F Test Equipment, Signal Generators, Audio Test Equipment, Logic Analysers, Automatic P.C. Board Test Systerns.

 MLA-3300 - LOGIC ANALYSER
 The new range of Meguro equipment excels in the balance between price. performance and dependablity to produce a winging combination. Deflvery times are good and product suppo-t is second to none.

 MSO-1270 - DIGITAL STORAGE SC.JPE

Fieldtech Heathrow Limited, Huntavia House,
420 Bath Road,
Longford,
Middlesex UB7 OLL England.
Telephone: 01-897 6446
Telex: 23734 FLDTEC G
Fieldtech
Heathrow

VABVES				"SPECIAL QUALITY		Prices are as at going to press but may fluctuate. Please phone for firm quotation. V.A.T included.											
A10	1.40	EF85	0.60	PCL86	0.80	Z900T	2.45	${ }_{6} 6 \mathrm{CH} 6$	8.45	11 E	19.50						
A2293	8.80	EF86	1.25	PCL205/85	0.95	1 A 3	2.75	6CL6	2.75		1.00						
A2900	12.75	EF89	1.60	PCSO0/510	4.30	1-4	0.65	6CW4	8.50	12A	0.75						
AR8	1.15	EF91	1.60	PFL200	1.10	175	0.80	${ }_{6}^{6 C \times 8}$	4.60	12ALJ	0.95 0.95						
ARP3	1.15	EF92	2.15	PFL200	2.80	154	0.65	${ }_{6 C Y 5}$	1.15	12AX 7	0.75						
ATP4 $^{\text {ATP }}$	0.90	EF95	0.95	PL36	1.10	155	0.75	${ }_{6}^{60} 6$	2.50	${ }_{12 B A 6}$	1.25						
$\mathrm{B12H}$	6.90	EF96	0.60	PL81	0.85	${ }^{174}$	0.75	6F6G	1.95	128E6	1.25						
CY31	1.40	EF 183	0.80	PL82	0.70	$1 \cup 4$	0.80	6F6GB	1.10	12BH	2.85						
DAF96	0.85	EF184	0.80	PL83	0.60	$2 \times 2 A$	2.50	6 F7	2.80	12E1	19.95						
DET22	32.80	EF812	0.75	PL84	0.90	3A4	0.70	6F8G	0.85	12.J5GT	0.55						
DF92	0.65	EFL200	1.85	PL504	1.15	3AT2	3.40	$6 \mathrm{CF}^{12}$	1.50	12K7GT	1.15						
DF96	0.70	EH90	0.85	PL508	2.00	3828	12.00	6F14	1.15	12K8GT	1.25						
DH76	0.75	EL32	0.85	PL509	5.65	3828.	19.50	6F15	1.30	1207GT	0.75						
DL92	1.10	EL34	2.10	PL519	5.85	3D6	0.60	6F17	3.20	$12 \mathrm{SC7}$	0.80						
DY86/8	0.65	EL34	4.55	PL802S	3.45	3 E 29	21.85	6F23	0.75	12SH7	1.25						
DY802	0.70	EL82	0.70	PY80	0.70	354	0.70	6F24	1.75	$12 \mathrm{~S}, 7$	0.70						
E92CC	2.80	EL84	0.80	PY81/800	0.85	4832	18.25	6F33	10.50	$12 \mathrm{SK7}$	1.45						
E180CC	11.50	EL86	0.95	PY82	0.75	5R4GY	3.35	6FH8	18.80	12SQ7G	2.20						
E1148	0.58	EL90	1.75	PY88	0.60	5U4G	1.85	6GA8	1.95	12 Y 4	0.70						
EA76	1.60	EL91	6.50	PY500A	2.10	5 V 4 G	0.75	6 GH 8	1.95	13 D 3	2.80						
EABC8	0.80	EL95	1.25	QQV03/10	5.95	${ }^{5 Y 3 G T}$	0.95	6H6	1.60	${ }^{1306}$	0.90 1.35						
EB34	0.70	EL504	2.70	Oovo3/10 ${ }^{\circ}$	10.00	523	2.80	6.4	1.95	${ }_{\text {l9G3 }}$							
EB91	0.60	ELL509	5.85	cavo3/20A	27.50	5Z4G	1.25	604 W	3.10	19G3	11.50 10.35						
E8C33	1.85	EL519	7.70	Qovoci 40 A	28.50	524 GT	1.15	6.15	2.30	${ }_{19 \mathrm{H} 5}$	38.00						
EBC90	0.90	EL821	8.45	covos $40 A^{\circ}$	49.50	6/30LS2	0.90	6J5G	0.90	20 D 1	0.80						
EBC91	0.90	EL822	9.95	QVO3/12	5.75	6 AB7	0.70	6.6	0.85	20 E 1	1.30						
EBF80	0.95	ELL80SE	4.50	SP61	1.80	6 6AC7	1.15	6 6 6 W	2.80	${ }^{20} \mathrm{P}_{1}$	0.65						
EBF89	0.80	EM80	0.85	$\Pi 21$	43.70	6AG5	0.60	GJE6C	6.40	25L6GT	1.60						
EC52	0.65	EM87	2.50	$\pi 22$	48.30	6AK5	0.95	6JS6C	6.90	2524 G	0.75						
EC91	4.40	EY51	0.90	UABC80	0.75	6AK6	6.50	${ }^{6}$ du6	6.35	35W4	2.80						
EC92	1.85	EY81	0.75	UBF80	0.70	6AL5	0.60	6 K 7	1.45	85A2	1.40						
ECC81	0.95	EY86/87	0.60	UBF89	0.70	6AL5W	0.85	6KD	7.00	85A2.	2.55						
ECC82	0.95	EY88	0.65	UCC84	0.85	6AM5	6.50	6L6	4.60	807	2.20						
ECC83	0.75	EZ80	0.70	UCC85	0.70	6AM6	1.60	6L6GC	4.20	807*	3.40						
ECC84	0.60	EZ81	0.70	UCH42	2.50	6AN8A	2.50	6L6GT	1.95	812A	44.80						
ECC85	0.75	GM4	8.90	UCH31	0.75	6AO5	1.75	6 L 18	0.70	813.	28.50						
ECC88	0.80	GY501	1.30	UCL82	0.95	6AQ5W	2.30	6LD20	0.70	${ }^{813}{ }^{\circ}$	68.50						
ECC189	0.95	GZ32	1.05	UF41	1.35	6AS6	1.15	$6 \mathrm{LQ6}$	6.40	8298.	16.00						
ECC804	0.90	GZ33	4.20	UF80	0.95	6AS7G	4.95	6R7G.	$1 \begin{aligned} & 1.30 \\ & 1 \\ & 180\end{aligned}$	${ }_{866 A^{\circ}}$	24.00 5						
ECF80	0.95	GZ34.	1.05	UF85	0.95	6AU6	0.90	${ }^{6 S A T}{ }^{\circ}$	1.80	${ }^{\text {866A }}$	5.05 980						
ECF82	0.95	GZ34*	3.20	UL84	0.95	$6 \mathrm{AX4GT}$	1.30		1.80								
ECF801	0.95	GZ37.	3.95	UM80	0.90	6AX5GT	1.30	6 6Sk 7	1.35	931/ ${ }^{\text {a }}$	19.80						
ECH42	1.20	KT66.	15.50	UM84	0.70	6B4G	7.40	6SL7GT	0.85	954	1.20						
ECH81	0.70	KT77*	16.10	UY82	0.70	${ }^{6 B 46}$.	0.85	6SN7GT	1.60	955	1.20						
ECH84	0.80	KT88.	17.00	UY85	0.85	${ }^{6846}{ }^{\prime}$	1.50	6 697	0.95	956	1.20						
ECL80	0.70	KT88.	25.00	VR105/30	1.45	${ }^{\text {6BE6 }}$.	0.65	6Sk7	4.60	5763	5.75						
ECL82	0.75	ML4	3.20	VR150/30	1.80	68E6 ${ }^{\circ}$	1.85	6V6G	1.50	6060	1.95						
ECL85	0.75	ML6	3.20	$\times 61 \mathrm{M}$	1.70	6BG6G	1.60	6VGGT	1.30	6080	7.30						
ECL86	0.90	M $\times 120 / 01$	29.50	$\times 66$	1.80	68.16	1.30	6×4	1.50	6136	13.80						
EF22	3.90	N78	9.90	2749	0.75	6BQ7A	0.85	6X5GT	0.65	6146B	10.35						
EF37A	2.15	0^{42}	0.70	2759	19.00	68 F 7	4.80	6Y6G	0.90	8068	12.50						
EF39	1.10	$0 \mathrm{OB}^{2}$	0.80	z800U	3.45	6BW6	6.20	674	1.30	9001	0.95						
EF80	0.65	PCL82	0.95	28014	3.75	68W	1.80	724	1.90	9002	0.95						
EF83	3.90	PCL84	0.85	2803U	16.00	6C4	1.10	906	2.15	9003	0.9						
VALVES AND TRANSISTORS						NEW PYE EQUIPMENT \& SPARES											
Telephone enquiries for valves, transistors, etc: Retall 7493934 . Trade and Expont 7430899																	
FIELD TELEPHONE, CABLE TYPE D10 FIELD TELEPHONES TYPE ' J '. Tropical, in metal cases 10-line MAGNETO SWITCH-BOARD. Can work with every type of magneto telephones.												HARNESS "A"\& "B" CONTROL UNITS "A" "R""J1" "J2"					
						Microphones No 5.6. 7 connectors, frames. carrier sets, elc.											
POSTAGE AND PACKING CHARGES: $£ 1-£ 350$ p, $£ 3-£ 560$ p, $£ 5-£ 1080 p, £ 10-£ 15 £ 1.00, £ 15-£ 20 £ 1.50$, Over $£ 20 £ 2.00$ but below 2 kg . Parcels over 2 kg at Cost.																	
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd, London W12 Tel: 01-743 0899 or 01-749 3934 . Open Monday to Friday 9 a.m. -5.30 p.m.																	

CIRCLE 37 FOR FURTHER DETAILS

VAF
VACUUMSCHMELZE

ZKB 490/228 Isolating Transformer

Recommended by NATIONAL SEMICONDUCTOR for use with their BI-LINE mains carrier system to provide matching \& isolation.

- 4kv isolation - pcb mounting - encapsulated -

Other professional quality components from
VACUUMSCHMELZE (VAC) include:
\Leftrightarrow STORAGE CHOKES for SMPSUs
\& RFI SUPPRESSION CHOKES
क COMMUTATION CHOKES \& RECHARGING REACTORS
\& TRIGGER TRANSFORMERS FOR THYRISTORS \& GTOs动 CURRENT SENSORS \& TRANSFORMERS
\star TRANSDUCTOR CHOKES for SMPSUs
Contact: ROLFE INDUSTRIES
16 Church Street
Warnham
West Sussex RH12 3QW Tel: 040359799 Telex: 877972
$\left.\begin{array}{lllllllllllll}\hline \text { Model } & \begin{array}{l}\text { Y } \\ \text { b.w. } \\ \text { MHz }\end{array} & \begin{array}{l}\text { Y } \\ \text { sens. } \\ \text { mV/div }\end{array} & & \text { Chan. } & \begin{array}{l}\text { Sweep } \\ \text { max. } \\ \text { ns/div }\end{array} & \begin{array}{l}\text { Sweep } \\ \text { dual/ } \\ \text { delay }\end{array} & \begin{array}{l}\text { Y } \\ \text { delay }\end{array} & \begin{array}{l}\text { TV } \\ \text { sync. }\end{array} & \begin{array}{l}\text { Screen } \\ \text { size } \\ \text { cm }\end{array} & \begin{array}{l}\text { Acc. } \\ \text { pot" } \\ \text { kV }\end{array} & \begin{array}{l}\text { Price } \\ \text { (}\end{array} & \text { Notes }\end{array}\right]$
*Price includes probes
alternating voltage, decibel ratios, frequency, period, time delay and phase shift. All setting conditions and groundreference information are also displayed on screen. An important advantage of having all this information displayed is that it is automatically included on any screen photographstaken.
Most computer-controlled instruments have a facility to store and recall front panel settings, which allows frequently made measurements to be carried out quickly. Autoranging goes a step further.
The facility is not new but nor is it common. There were problems associated with setting for low duty cycle pulses but these are now being ironed out so the numbers of auto-

Advanced Bryans Instruments (Trio, Advance), 14 Wates Way, Mitcham, Surrey CR4 4HR, 01 6405624
Advid Electronics (Unaohm), 17A Mill Lane, Welwyn, Hertfordshire AL6 9EU, 0438714159
Antron Electronics Ltd (Polar), Hamilton House, 39 Kings Road, Haslemere, Surrey GU27 2QA, 042854541
AWR Technology, 67 Thornbridge Road, Deal, Kent, 0304367711.
Beckman Industrial Ltd, Queensway Industrial Estate, Queensway, Glenrothes, Fife KY7 5PU, 0592753811
Crotech Instruments Ltd, 2 Stephenson Road, St Ives, Huntingdon, Cambridge PE17 4WJ, 0480301818
Data Laboratories (Philips), 28 Wates Way, Mitcham, Surrey CR4 4HR, 01-640 5321.
Electronic Brokers Ltd (Grundig, Philips, Hameg) 140-146 Camden Street, London NW1 9PB, 01-267 7070
Electronic and Computer Work shop (Crotech) 171 Broomfield Road, Chelmsford, Essex CM1
ranging oscilloscopes should increase.

With oscilloscopes such as the new Tektronix 2445/2465 family, pressing one button sets signal level, period, duty cycle and trigger requirements. Bandwidth of these instruments ranges from $150-$ 350 MHz and besides autoranging, they also allow up to 20 stored front-panel settings.

Add-ons

On the premises that dedicated f.f.t. analysers are expensive and can be difficult to use and that microcomputer add-ons are slow and given spurious results, Data Acquisition has designed an f.f.t. add-on suitable for any two-channel oscilloscope with trigger input.

This two-channel analyser, which also acts as a 50 kHz sampling digital-storage unit, can send information through a serial link to a microcomputer for further analysis or to a printer.

As a fully anti-aliased analyser, the adaptor's span is selectable from $0-20 \mathrm{~Hz}$ or $0-$ 20 kHz with 100 or 200 -line resolution and up to 256 averages can be taken. Scaling is either linear or logarithmic, with $40 \mathrm{~dB} \log$ span, and Hanning or rectangular weighting is switchable.

Cross-transfer function ability is possible using the oscilloscopes's signal add and invert facilities. The f.f.t./digitalstorage adaptor will cost around $£ 800$.

For readers with a real-time
oscilloscope wanting faster digital storage there's a twochannel module made by Polar with 10 MHz sampling per channel and a 2 K -byte memory. An RS232 interface is now available for this unit which allows waveforms to be transferred directly to a computer so a real-time oscilloscope is not essential. The polar DS102 is £575, the RS232 interface is $£ 50$ and software for the IBM PC is $£ 25$. Resolution of the 102 is eight bits.
Bandwidth of Thurlby's eight-channel input multiplexer has been increased to 35 MHz . Costing $£ 179$, the OM358 displays both digital and analogue signals and has a calibrated attenuator. Any channel can be used as the trigger source.

1RY, 0245262149

Eletroplan Ltd, POBox 19 (Gould Tektronix, Leader, Thandar), Orchard Road, Royston, Herts SG8 5HH, 076345145
Farnell Instruments Ltd, Sandbeck Way, Wetherby, West Yorkshire LS22 4DH, 0937 61961
Fieldtech Heathrow Ltd (Meguro), Huntavia House, 420 Bath Road, Longford, Middx UB7 0LL, 01-8976446
Flight Electronics (Trio), Flight House, Ascupart Street, Southampton SO1 1LU, 0703227721
George Cook (Hamag Thurlby), 21 Manor Road, Kneresborough, North Yorkshire HG5 0BN, 0423862641.

Hameg Oscilloscopes Ltd, 74-78 Collingdon Street, Luton, Bedfordshire LU1 1RX, 0582413 174
Henry's Audio Electronics (Hitachi, Hameg. Crotech), 301 Edgeware Road, London W2, 01 7243564
Hewlett Packard, Literature sec tion, Eskdale Road, Winnersh Triangle, Wokingham, Berk-
shire RG11 5DX, 0734696622
Hitachi Denshi (UK) Ltd, 13-14 Garrick Industrial Centre, Garrick Road, London NW9 9AP, 01-202 4311
Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX, 0732865191
Le Croy, Elms Court, Botley, Oxford, OX2 9LP, 0865727275
Levell Electronics Ltd (Hameg), Moxon Street, Barnet, Hertfordshire EN5 5SD, 01-449 5028
Nicolet Instruments Ltd, Budbrooke Road, Warwick, CV34 5XH, 0926494111
Pye Unicam Ltd, (Philips), York Street, Cambridge CB1 2PX, 0223358866
Radio Supplies, PO Box 27, 39 Whitby Street, Hartlepool, Cleveland TS24 7BR, 0429 275750
RMR Measurements, 138 Lime Crescent, Cumbernauld G67 3PQ, 0236728170
Scopex, 117 Knowle Road, Mirfield, W. Yorks WF14 9RJ, 0924 490703
Siemens Ltd, Siemens House, Windmill Road, Sunbury-on-

Thames, Middx TW16 7HS, 0932785691
Solartron Schlumberger, Victoria Road, Farnborough, Hants GU147PW, 0252544433
STC Instrument Services (Iwatsu), Dewar House, Central Road, Harlow, Essex CM20 2TA, 0279 29522
Tektronix UK Ltd, Forth Avenue, Globe Park, Marlow, Buckinghamshire SL 7 IYD, 062846000
Telonic Instruments Ltd (Kikusui), 2 Castle Hill Terrace, Maidenhead, Berks SL6 4JPP, 062873933
Thandar Electronics Ltd (Leader, Thandar), London Road, St Ives, Huntingdon, Cambs. PE 17 4HJ, 048064646
Thurlby Electronics Ltd (Hitachi, Thurlby), New Road, St Ives, Huntingdon, Cambs. PE174BG, 048063570
Timebase (Hitachi), Unit 6, 28 Bottley Road, Hedge End, Southampton SO3 3HE, 04892 81487
Watetek (Panasonic), Tag Lane, Hare Hatch, Reading, Berks. 0753224121.

Component integration in oscilloscopes

Custom i.cs reduce oscilloscope manufacturing time and costs but also improve reliability.

0ne of the principal design objectives in Phi-lips'mediumfrequency oscilloscopes was a significantly reduced component count. Primarily to reduce manufacturing time and cost - thereby permitting a low selling price - this would also ensure high reliability and simplify service and troubleshooting.
To achieve this aim, a number of custom i.cs were specially developed with the expectation that large production volumes for these new instruments would allow the relatively high costs of developing custom i.cs to be recovered.

A number of the i.cs used are of particular interest and they are the preamplifier, channel switch, display logic/control circuit, peak-to-peak detector and auto level circuit and the integrated time-base logic circuit. These are all custom i.cs.

The preamplifier consists of a unity-gain amplifier, a $\times 10$ gain amplifier, a two-quadrant multiplier, a multiplier control circuit and power supply and switching circuits.

Only one of the two amplifiers is active at any time. This separation of the $\times 1$ and $\times 10$ amplifier sections provides a pulse response which is independent of the setting.

Signal delay is also almost constant for the different settings. Input sensitivities are $20 \mathrm{mV} / \mathrm{div}$. for the $\times 1$ amplifier, and $2 \mathrm{mV} /$ div. for the $\times 10$ amplifier and output is a symmetrical current of $100 \mu \mathrm{~A} /$ div.
To provide variable amplification, a two-quandrant multiplier is built in. The multiplier is a new development with eight transistors featuring stable multiplication and a pulse response independent of the multiplication factor over the entire range.

To translate control voltage from the variable potentiometer into a stable multiplication, the preamplifier has a special multiplier control circuit which limits the variable range from 1:1 to $1: 2.5$. A switching circuit with t.t.l.compatible input activates the $\times 1$ or $\times 10$ amplifier.

Switching of the vertical channels and trigger selection in the PM3055 is done by the integrated channel switch, Fig. 1.

This i.c. consists of two current switches to switch channels on and off, two inverters for inversion of channel B if required and two circuits for positioning or levelling the signals (dual timebase). The inverters are used as slope switches in the trigger path.

The display logic and control circuit was developed to control all the vertical channel switches, trigger selectors and timebase selector, Fig. 2.

Settings of the vertical display, trigger source and timebase mode are transmitted to the display/control circuit via the $I^{2} \mathrm{C}$ bus from the microprocessor in the front panel. After setting, the control circuit autonomously sends the correct signals to the channel switches, trigger switches and time base selector in a number of modes including alternate, chop, composite triggering, alternate time base etc.

In the 3055 , the display/ control i.c. makes it possible to display from one to eight traces. The i.c. controls A, B, add and trigger-view traces which can be displayed in main, main-intensified, delayed or alternate-time-base modes. This circuit operates in

The authors are with Philips' Enschede facility in The Netherlands.

Fig. 1. Vertical channel and trigger selection i.c.

Fig. 2. Settings for vertical display, trigger source and timebase mode are sent to this display logic and control circuit through the $I^{2} \mathrm{C}$ bus from a microprocessor on the front panel.

Fig. 3. Output current of this peak-to-peak detector/ auto-level i.c. feeds the trigger amplifier.

CIRCLE 81 FOR FURTHER DETAILS

MICROVIEW Digital Storage Oscilloscope/Spectrum Analyser
 BBC-B vn from £140
 ZX Spectrum vn £99.50

Features of the system include

* Dual Channeis with the gain of each controlled by a 10 position switch ranging from 10 mV to 10 V per division.
* Timebase selectable via a 12 position switch giving values ranging from 1 second to 250 micro seconds per division. and a maximum sample rate of 100 KHz .
* Spectrum analysis of either channel using the Fourier transform
* Large screen display of channels A, B A and $B A+B$ or $A-B$, with graticule and readout
* X and Y cursor movements with readout of amplitude and timing of displayed waveforms.
 Magnification of selected areas of the display.
* An auto or manual trigger.
*The facility to save or load wave forms using a tape cassette or disc.
* The ability to print selected waveforms. * Real time Spectrum Analysis available DEMO PACK $£ 5.00$.
AWR Technology, 67 Thornbridge Road, Deal, Kent CT14 9DZ. Telephone: 0304367711
CIRCLE 65 FOR FURTHER DETAILS

TIME WRONG?

MSF CLOCK is EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds
SELF SETTING at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds.
EXPANDABLE to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show event time
COMPUTER or ALARM output also, parallel BCD (including Weekday) and audio to record and show time on playback. DECODES Rugby 60 KHz atomic time signals, superhet receiver (available separateiy), built-in antenna, 1000 Km range. LOW COST, fun-to-build kit (ready-made to order) with receiver ONLY 889.80 includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb, by-return postage etc and list of other kits. Get the TIME RIGHT.

A member of the Coline International Group. 4
CIRCLE 79 FOR FURTHER DETAILS
two modes - peak-to-peak levelling and d.c. levelling.

In d.c. model the 16 -div. current is separated from 24-div. current. The 16 -div. part feeds the multiplier. Controlling the muliplier with the level potentiometer gives a level variable through 16 signal divisions. Residual current is fed directly as a common-mode signal to the output pins.
In the peak-to-peak mode, a part of the signal proportional to the signal's pk-to-pk value is fed to the multipler, controlled by the level potentiometer.

Residual current is modulated with the mean d.c. value of the signal's two peak values and fed to the output pins. Output current peak-topeak detector/auto-level i.c., Fig. 3, is fed to the trigger amplifier.
Using this principle in peak-to-peak mode gives d.c. rejection on both trigger and trigger-view signals independently of the waveform and signal duty cycle. In this mode, only the level potentiometer influences the position of the trigger view over signal amplitude.

Figure 4 shows the integrated timebase logic i.c. All main and delayed time-base logic for the new mediumfrequency oscilloscope family is incorporated in one fullcustom chip.
This chip starts and stops the main and delayed time-

Fig. 4. Implementation of the auto-set function shows both sections of the integrated timebase logic i.c.

Fig. 5. Both current-mode logic, top, and integrated Schottky logic, bottom, are used for the timebase logic i.c. of Fig. 5.

Fig. 6. Tube drive waveforms with intensified and delayed sweeps.
bases and opens and closes the seven output gates. It also cooperates with the vertical display-selection i.c. in alternating time-base mode.

Communication with the setting processor takes place through a serial bus and reaches the chip through a series-to-parallel converter. Also implemented in this timebase logic is the circuit that counts triggers on the trigger input during the main timebase sweep. This circuit makes the auto-set function possible (Fig. 4) which always endeavours to include at least three periods of the input signal on screen.
The chip has two sections containing the fast circuit and the other handling slower function-selection operations.
The first section is implemented in current-mode logic and the second in integrated Schottky logic, well known from its use in gate arrays, Fig. 5. Design of the fast section posed the greatest problems as it proved to be difficult to simulate analogue circuits running at twice the

bandwidth of the oscilloscope.
To ensure that none of the transistors saturates, the input Schmitt trigger and the bistable circuit that starts and stops the sweep are analogue.
Delay between the trigger inputs and the start sweep output is kept as small as possible, which makes the necessary delay line as short as possible. Function selection inputs are t.t.l.-compatible.

Intensity signals Z_{1} and Z_{2} make it possible to drive the c.r.t. with intensified and delayed sweeps, Fig. 6. The delayed time-base comparator is not incorporated on the chip.

Figure 7 shows triggering of main and delayed time-bases

Fig. 7. Main and delayed timebase triggering.
 SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK
SPRNGHSAD RD, GRAVESEND, KENT DA11 8HD

CIRCUITIDEAS

Hall-effect current detector

Alternating current flow in cables can be monitored using a linear Hall-effect device. This circuit detects current down to about 150 mA .
The potentiometer is adjusted for equal voltages at points A and B with no current being monitored. Directcurrent output can easily be fed into a computer for datalogging applications. A. Smith

Llanelli
Dyfed

Linesynchronized sawtooth generator

Sawtooth waveforms required for phase-control thyristor circuits must have a linear ramp, fast discharge to zero and a minimum dead time. This circuit provides such a sawtooth and operates on a single supply.

Using a reverse-connected transistor gives a very-low $\mathrm{V}_{\mathrm{ECsat}}$ of 1 to 10 mV , although it requires more base drive as β in this configuration drops to 0.1. Dead time, determined by R_{1} / C_{1}, is less than $100 \mu \mathrm{~s}$. A sawtooth repeating at every zero crossing can be obtained by inverting the comparator output, differentiating it then or-gating the two pulse trains to discharge Tr_{2}.
V.B. Kuber

Nashik
India

AC power supply with limiting

A simple current-limited a.c. power supply is handy for checking transformers and coils before applying full power. This supply can be used on its own or added to a d.c. power-supply unit with multitap mains transformer.

Alternating supply voltages from tappings on the main transformer are selected using a two-pole break-before-make switch. A useful selection of voltages is $3,4,5,6,20,22$ and 24 V .
A separate small mains transformer of say 6 V at 100 mA powers the circuit. Rectified current of 30 mA feeds the TIC226 gate to ensure positive switching.
Voltage proportional to the alternating test current appears across R_{8} and is available, rectified. across the potentiometer. This potentiometer is set so that Tr_{3} triggers at the desired r.m.s. current limit of for example 500 mA .

As Tr_{3} conducts, Tr_{2} latches both transistors on, turning off the led and denying base drive to Tr_{1}; the circuit under test is protected.

Pressing the reset button allows C_{1} to discharge, bringing the led on momentarily

At this point the button is released. If the excess load is still present, the led flickers and then remains off.
P.E. Thompson

Antibes
France

Stereo phase and level display

Live recordings have to be right first time, but when mixing multiple microphones by ear it is easy to make a listening error and have one of the microphones out of phase. Only after the recording is made can a fault like this be detected and by then it is too late.

By out of phase I mean that one microphone's position with respect to another is such that an acoustical phase shift occurs, causing colouration at certain frequencies. If a disc is made from the recording, too many out-of-phase signals cause undesirable needle movements, resulting in wooliness.
With this circuit, any general-purpose d.c.-coupled oscilloscope can be used to display a left-minus-right signal on the horizontal axis and a left-multiplied-by-right signal on the vertical axis.
Buffered left and right signals feed two rectifiers providing positive and negative signals for subtraction; rectifier symmetry is balanced using $R_{1,2}$. If the two input signals are identical, the $10 \mathrm{k} \Omega$ potentiometer can be adjusted for null.

Simultaneously, both

channels feed an MC1494 multiplier. Resistor R_{3} is adjusted for null output with a left-channel signal only and R_{4} nulls out put for a rightcharinel signal only.

Because IC_{3} is a multiplier, output follows a square law. A logarithmic amplifier could be used to linearize this circuit but balancing such an amplifier is difficult so it may
not be worthwhile. The v.u. meters are optional. Don Goodman Rubin Academy of Music Tel-Aviv University Israel

Sensitive dip oscillator for titrations

In fet r.f. oscillators a diode from gate to earth is often included to stabilize output voltage. Popular belief is that this produces a bias voltage by rectification, thus reducing circuitgain.
This cannot be so because the circuit still functions in the same way if the series capacitor in the tuned circuit is omitted and the gate thus connected to earth through.

The diode seems to work by clamping voltage across the tuned circuit to the diode's forward voltage level. Absorption of power from the tuned circuit, such as occurs when a tuned circuit resonant at the oscillator frequency is brought near, causes a reduction in diode current.
By placing a low value resistor in series with the
diode, this clamping current may be sensed, amplified and displayed on a meter. In this conventional Clapp oscillator diode current typically develops $10-100 \mathrm{mV}$ across the

1 k ת resistor.

The circuit can be applied as a very sensitive dip oscillator or as a metal detector. In analytical chemistry, I have used the circuit for high-
frequency titrations. The cell is the inductor, which consists of a few turns of wire round a breaker.
Lionel Sear
Truro Cornwall

"This is certainly a book to recommend to anyone involved in digital technology"*

A PRACTICAL INTRODUCTION TO THE NEW LOGIC SYMBOLS - 2nd Edition
 by Ian Kampel, CEng, MIERE

The new logic symbology is a signiticant advance in the fietd of digital electronics and a major international achievement. Digital engineers need to learn how to use and interpret this new logic symbology in order to stay at the top of their profession as the new symbols will soon be commonplace. This updated edition, with additional material, is written by an expert experienced in preparing complex techmical works in an accessible fashion, and prepared in collaboration with the International Electrotechnical Conmission
Contents: Introducing the symbols. An international language for digital engineers; Definitions; Composition of the symbol; Input and oupputs; Simple combinative elements; Delay elements; Dependency notation; Label sequences; Two-state elements; The common control block; Shift registers and counters; Coders; Signal level converters; Selectors; Memory;
Arithmetic elements. Using the symbols: A complex symbol analysed; Different levels of representation. Closely related symbols: Multiple signal paths; The changer symbol
Hardcover £11.50 approx 176pp Ihistrated
$216 \times 1.38 \mathrm{~mm} 0408030100$ August 1986

* Electronic Technology on the first edition

MICROPROCESSOR ENGINEERING
by B Holdsworth, BSc(Eng), MSc, CEng, FIEE
Microprocessor Enginecring gives a clear and authoritative account of the hardware and software techniques employed in microcomputing systems. B Holdsworth, author of the successful, Digital Logic Design, has in this, his new book. concentrated on the Intel 8085A but with full reference to other 8 -bit microprocessors so that thorough instruction is given on the design and programming of systems using those processors as central elements. This work will not only prove invaluathle as a textbook for undergraduate and postgraduate students of electrical and electronic engineering and computing, but will also be useful to technicians and engineers who are involved with microprocessors but who haw no formal training in the field

Contents: Preface - Arithmetic - Logic • Memory - Small computer architecture * The instruction set 1 , data transfer, arithmetic and logic operations - The instruction set 2 : jump, call, return and stack control • Assembty language programming and software aids - Program controlled input/output data transfers • Interrupts * Data conversion • Bibliography • Problems - Index.

Soficover £ 15.95 approx 304 pp Illustrated $216 \times 138 \mathrm{~mm}$ 0408013613 December 1986

BASIC Operational Amplifiers - J C C Nelson

This latest book in the Butterworths BASIC Series provides the reader with a sound understanding of the techniques of operational amplifier circuits and their practical limitations. It uses BASIC programs to eliminate the tedious repetitive calculation that has traditionally been an essential part of operational amplificr design. It is ideal reading for andergraduate and diploma students in electronics, computer studies and control systems.
Contents: Section headings: Introduction to BASIC © Introduction to operational amplifier circuits • Frequency response - Offset errors • Waveform generation - Introduction to active filters * Non-linear circuits.
$\begin{array}{lllllll}\text { Softcover } & £ 9.50 \text { approx } \quad 1.36 \mathrm{pp} & \text { Illustrated } 216 \times 1.38 \mathrm{~mm} \quad 0408015802 & \text { September } 1986\end{array}$

CIRCLE 32 FOR FURTHER DETAILS

EMS manufactures DC Power Supplies and Battery Chargers both linear and switch mode in a range from 5 VA to 3.2 KVA .
Also a complete range of Standby, UPS and Mains Stabilizer Systems 35 VA to 1 KVA. EMS specialises in the manufacture of customised products and has a full design and development facility.
EMS (Manufacturing) Limited, Chairborough Road,
High Wycombe,
Bucks HP12 3HH.
Tel: (0494) 448484

TELESCOPIC © MASTS
HAtH

Pneumatic

- Hydraulic Ram

Operated
Winch Operated

Hilomast Ltd.
THE STREET - HEYBRIDGE - MALDON
ESSEX - CM9 7NB - ENGLAND
Tel: (0621) $56480 \quad$ Telex: 995855

CIRCLE 11 FOR FURTHER DETAILS

Electronic ignition for single-cylinder engines

Capacitor discharge unit replaces magneto ignition to give new life to garden machinery

by John Robins

John Robins is a psuedonym for a well-known circuit designer now working as a consultant.

The initial requirement for a dry battery c.d. ignition system is a d.c. converter to generate a supply of some few hundreds of volts to which an energy storage capacitor could be charged, preparatory to its discharge through the primary of the ignition coil.
To a first approximation, the spark energy will depend on the energy stored in this capacitor, which is $0.5\left(\mathrm{CV}^{2}\right)$. This is in joules if C is in farads, and, conventionally, energy figures in the range $30-120 \mathrm{~mJ}$ have been suggested ${ }^{1,2}$. A $1 \mu \mathrm{~F}$ capacitor charged to 250 V with a stored energy of 62 mJ would offer two advantages over a higher voltage, lower capacitance system. The first is that the use of a 400 V d.c. capacitor offers a sensible safety margin and such capacitors are easier and cheaper to obtain than higher voltage units. The second benefit is that such an operating voltage would be readily obtainable from the primary winding of a small 240 V mains transformer. If this could be used as the step-

up unit, it would save the difficulty of winding a special unit. Most conventional d.c. converter circuits employ selfoscillating systems, with the positive feedback required to sustain oscillation derived from additional transformer windings. In his article ${ }^{1}$, Cooper proposes the use of a low power multivibrator to drive the inverter transistor, and this seems an eminently sensible move in that it allows a readily determined operating frequency independent of the
transformer output load, and avoids difficulties in start-up if the supply or transformer load conditions are such that the oscillator fails to oscillate.

The basic circuit that I used is a symmetrical, base and emitter-coupled multivibrator of the type shown in Fig. 1. The operating frequency is effectively determined by $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{R}_{1}$ and R_{5} and this delivers an alternating square-wave drive to the bases of Tr_{3} and Tr_{4} via the current limiting resistors \mathbf{R}_{6} and \mathbf{R}_{7}. These transistors

Fig.1.Simplified d.c. converter using base and emitter coupled multivibrator actually uses Darlington transistors for the output pair.

Fig.2. To prevent the voltage rating of the storage capacitor from being exceeded control transistor $\mathbf{T r i}_{1}$ is added. If the output voltage exceeds limits set by R_{1} and R_{2}, D_{1} conducts to reduce oscillator drive.

Fig.3. With the intermittent use a single-cylinder twostroke engine might get a 9 V dry battery could last up to several months - less than the cost of fuel.

The case for electronic ignition

The energy of the spark from a magneto depends on the current in the primary coil, which depends greatly on the speed with which the pole pieces pass the fixed coil unit. So if one's arm is weak or the engine doesn't turn freely, the spark can be inadequate to start the engine.

Additionally, with the passage of the years, vibration and age can weaken the strength of the magnet, or worn crankshaft bearings can increase the air gap between the magnet and the magneto coil poles, which will reduce the energy of the magneto and make the feeble slow-speed spark even weaker. Finally, and more catastrophically, the ingress of moisture into the coil windings can cause electrical leakage or chemical corrosion of the fine secondary wire.
With a new machine, replacement of the flywheel unit or magneto coil shouldn't be difficult but in the case of an elderly appliance the model may be obsolete, or the makers out of business.
A number of electronic ignition systems have been described in the technical press, but these have normally been intended for use with multiple cylinder, relatively high performance motor car engines, for which high engine speed was a greater consideration than economy of d.c. supply, so this article takes a fresh look at the circuit possibilities with the specific aims of achieving good d.c. economy and simplicity of construction.
are Darlington types, to reduce the required drive current through Tr_{1} and Tr_{2}. I used MJ3001s because they were to hand, but less expensive devices such as the TIP121s would be entirely adequate.
In the collector circuit of the power stage I used a small mains transformer with a centre-tapped low voltage winding. The high voltage 240 V a.c. winding is used with a rectifier bridge to supply the energy storage capacitor.

In general, the maximum output current which could be drawn from such a circuit will increase as the operatoring frequency increases, and some experimentation with two small p.c.b.-mounting transformers of this type, one 1.5 VA and one 3VA, showed that both were quite happy up to a few kHz . The standing 'quiescent' current of the inverter stage increased with frequency, especially beyond about 3 kHz , as the core losses increased.

An operating frequency of about 1 kHz was therefore chosen as a reasonable compromise between these two conflicting requirements. This gave a standing quiescent current of $15-20 \mathrm{~mA}$ in the prototype when operated from a 9 V supply, but would provide an adequate high voltage supply to allow operation at $3000 \mathrm{rev} / \mathrm{min}$, which seemed a suitable upper speed limit.

Secondary voltage control

Under light load conditions, it is probable that the rectified secondary voltage from the step-up transformer could rise to high levels due to the peak rectification of inevitable voltage spikes, and this could cause the working voltage of the energy storage capacitor (C_{4} in Fig. 2) to be exceeded.
The oscillator/drive circuit has therefore been elaborated, as shown in the full circuit diagram of Fig. 2, to include a control transistor in the multivibrator emitter circuit. This is normally turned full on by base current supplied through R_{3}. However, if the inverter output voltage increases beyond predetermined limits, set by R_{1} and R_{2}, the diode D_{1} conducts and progressively 'throttles back' the oscillator drive.

This also helps to cut back the quiescent oscillator cur-
rent once the energy storage capacitor is fully charged. Since it was intended that the unit would operate from a 9 V dry battery it was not thought worthwhile to stabilize this supply, though a very low output current regulator in the emitter circuit of Tr_{1} would be all that was needed.

HV capacitor discharge circuit

The output voltage from the inverter step-up transformer is rectified by a bridge-connected group of four 1N4007 diodes and feeds the energy storage capacitor through the limiting resistor, R_{12}, which serves to restrain the momentary increase in oscillator current when the capacitor is discharged.
Since Cooper ${ }^{1}$ observes that failure of capacitor discharge units is almost always due to the failure of the thyristor, I decided to use a generously rated $(13 \mathrm{~A}, 600 \mathrm{~V})$ component for this, since the difference in cost between this and a less rugged device was very small.
The thyristor should be fired when the contact breaker points open, and it is very desirable that it should not fire again when the points reclose. This requirement is met by the circuit built around Tr_{1} and Tr_{2}, which fires the thyristor cleanly and reliably without the need for a 'diac', for which, in any case, the available d.c. supply voltage would be too low.

Contact breaker points

It is normally assumed in the design of capacitor discharge electronic ignition systems that the lower the current which passes through the contact breaker points, the better will be their longevity. Up to a point, this is true, but the points normally operate in an atmosphere of oil vapour from the engine, and it is desirable that enough current should flow through these points to burn off any thin insulating film which may form. This is unfortunately incompatible with the design requirement that the direct current consumption for the unit should be as low as possible. I therefore opted for a $1 \mathrm{k} \Omega$ resistor for R_{19}, with an led in series with it. If it is suspected that the points may not be closing satisfactor-
ily, the led will verify this point. Also, the $0.47 \mu \mathrm{~F}$ capacitor across the points will contribute a small amount of discharge energy $(23 \mu \mathrm{~J})$ to assist in keeping the points oil film free.
The whole unit fits comfortably within a small ($114 \times 64 \times 55 \mathrm{~mm}$) diecast metal housing, with external leads to the primary of the ignition coil, battery, and contact breaker points.

The relationship between running speed for a single cylinder two-stroke engine and d.c. supply demand, at 9 V input, is shown in Fig.3. For the sort of usage such machines get, one or two hours at a time, a 9 V dry battery could well last many months, and cost substantially less than the petrol used to power the appliance.

For the benefit of those whose skills are mechanical rather than electrical, convert the existing magneto-operated c.d. unit as follows. Disconnect the h.t. lead from the magneto to the spark plug, and the internal connection between the magneto high current (primary) winding and the contact breaker. The contact breaker will almost invariably consist of an insulated moving contact and a fixed contact connected to the chasis of the machine. Identify the insulated point, from which the magneto primary winding is to be disconnected, and provide an adequately robust connection from this point to the c.b. input lead of the c.d. unit. Provided that the carburation is satisfactory, the machine should start easily and run freely.

References

1. Cooper. R., Wireless World, March 1982, pp74-76 and 87
2. Anderson. D., Wireless World, November 1974. p426. 3. Watkinson. J., Wireless World, July 1974. pp216-219.

$423 \times 8=£ 165^{*}$

An electronic solution to your cabling and interfacing problems.

The 8-way RS423 "Comptons SOFT SWITCH", developed at the National Physical Laboratory, is now available from:-

The Soft Option Ltd. Osbourne House Lower Teddington Road Hampton Wick KT1 4ER Tel: 01-977 7670

Trade enquiries welcome.

* Price excluding VAT and delivery.

Fibre-Optics EDUCATOR

For teaching fibre-optics and telecommunications in schools, colleges, universities and technology training centres.

Transmits analogue and digital data over free-space and optical fibres using red light.

Plus many other applications, including numerous measurement experiments.

Designed and Manufactured in the U.K.
For further details contact:
ELLMAX ELECTRONICS LTD.,
Unit 29, Leyton Business Centre,
Etloe Road, Leyton,
ELLMAX ELECTRONICS
Telephone: 01-539 0136

CIRCLE 64 FOR FURTHER DETAILS

AFFORDABLE ACCURACY

Quality Multimeters from

A comprehensive range of Analogue and
(Pushbutton or Rotary Switched) Digital Models

ANALOGUE

$\mathrm{HM}-102 \mathrm{BZ}$ - 10 ADC Range, $20 \mathrm{kS} / \mathrm{VDC}$, Buzzer, Battery Test Scal SM-102R - Longes HM-102R - Low end voltage ε current ranges. Jack for Audio o/p voltages $£ 11.00$
HM-1015-Rugged, Pocket sized meter, for general purpose use50 16 measuring ranges
Battery, Test Leads and Manual included with each model.
Please add 15% for VAT and 70 p for $\mathrm{p} \varepsilon \mathrm{p}$

DIGITAL

HC-7030
0.1% Accuracy. Standard Model $£ 39.50$ HC-6010
0.25% Acc HC-50 Accuracy. Standard Mode! $\mathbf{£ 3 3 . 5 0}$ 0.25% Accuracy. TR Test Facility $\mathbf{8} 39.50$ DM. 105 0.5\% Accuracy. Pocketable $\mathbf{\Sigma 2 1 . 5 0}$

All models have full functions and ranges and teature $31 / 2$ digit $0.5^{\prime \prime}$ LCD display - low battery indication - auto zeroE suto polarity

- ABS plastic casing - DC AC 10 amp range (not DM-105) - Overload protection on all (not DM-batery, spare fuse, test leads and manual.

Full details and specification from:

Park Lane, Broxbourne, Herts EN10 7NQ Telephone (0992) 444111 Telex 22478 TRADE ENQUIRIES WELCOME

R. WITHERS (I) ITD. AGENT TO THE STARS!

RWC are main agents/distributors for Yaesu, Icom, Kenwood, M Modules, Jaybeam, Tonna, Revco Antennas, Cleartone, Mutek, AKD, Drae, FDK, Welz, Tait and Neve Radiotelephones to name but a few! We are able to supply: Receivers (inc. scanning), Transmitters, and complete communication systems including antennas for all types of location and applications. We specialise in custom systems HF-UHF.

TUNE INTO OUR SPECLALIST SERVICE!

\star We manufacture our own range of VHF/UHF beam and Raycom mobile antennas and 13.8V DC PSU's 3-12A.
\star We're the only company in the UK that produces modular VHF/UHF Raycom power amplifiers (15-50 watts output).
\star We supply a large range of specialist RF power transistors/modules imported directly from Japan.

* We supply/repair amateur/business radio systems.
* We check transceivers on our spectrum analyser - £12.50 for a comprehensive report while you wait!
\star Only supplier of modified Yaesu FRG $9600 \mathrm{MII}(60-950 \mathrm{MHz})$ and Revco RS 2000E (60-179 and $380-520 \mathrm{MHz}$) scanning receivers.
\star Probably the UK's largest seller of used radio equipment.
\star We offer the largest selection of radio allied services under one roof. CALL NOW FOR FULL DETAILS.

EXPORT AND TRADE ENQUIRIES INVITED
584 Hagley Road West, Quinton, Birmingham B68 OBS.
Tel: 021-421 8201 (24hrs) Telex: 334303.TXAGWM-G

CIRCLE 4 IFOR FURTHER DETAILS

GRS - PRINTERS - PRIWTERS - PRINTERS

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter-digitiser etc, entirely to the own specification. The printer mechanism is supplied ready built, aligned and pre tested but WITHOUT electronics. Many teatures include all metal chassis, phosphor bronze bearings, 132 character optical shaft position encoder, NINE needle head, $2 \times$ two phase 12 V stepper motors for carriage and paper control, $9.5^{\prime \prime}$ Paper ptatten etc etc. Even a manufacturer's print sample to show the unit's capabilities
Overall dimensions $40 \mathrm{~cm} \times 12 \mathrm{~cm} \times 21 \mathrm{~cm}$.

SUPER DEAL? NO - SUPER STEAL
THE FABULOUS 25 CPS "TEC STARWRITER"
quality. Micro-process
a fraction of its original cost

Industry standard, combined ASCI! 110 baud printer, keyboard and 8 hole paper tape punch and reader Standard RS232 serial interface deal as cheap hard copy unit or tape prep for CNC and NO machines. TESTED and in good condition. Only $£ 250.00$ floor stand £10.00. Carr \& Ins. £15.00.

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporation. the minute News and Find printing up to BAUDOT CODE from a Current UNIT RS232 or TTL serial interface May be rinter or via a simple interface and filter o any communications recelver to TELEX and RTTY services.
Supplied TESTED
TESTE with DATA 50 and 75 baud xtals and large paper roll
TYPE AE11
50 Column ONLYE49.95 Spare paper roll for AE
£65.00
TYPE AH11R 80 C £185.00 ASCII/BAUDOT

Carriage and
7.50

TELETYPE ASR33 DATA I/O TERMINALS

 intertace with handshake Supplied absolutely BRAND NEW with 90 day geran and FREE daisy wheel and dust cover. Order NOW or contact sales office for more Feed $£ 140.00$. Spare daisy wheel $£ 3.50$ Carriage $\&$ Ins (UK Mainland) $£ 10.00$.> NOW ONLY £499 + VAT

DIY PRINTER MECH

GE TERMIPRINTER

A massive purchase of these desk top hese quality 30 or 120 cps printers omprises of full OWERTY electronic keyboard and printer mech with print ace similar to correspondence quality enables full width - up to 135120
column paper. upper lower case tandard RS232 serial inte tace interna standard

Guaranteed working GE30 £130.00 GE1200 $120 \mathrm{cps} £ 175.00$

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 riacs diodes. bridge recs. etc. etc spec with manufacturer$50+£ 2.95100+£ 5.15$
Th 2 seres. A gigantic purchase of an enables us to ofter 100t-mixed mostly TTL" grab bags at a price which
wo or three chips in the bag would C's full spec. $100+£ 6.90$.

MAINS FILTERS

URE those unnerving hang ups and data glitches caused by mains interference with box size up to 1000 watt 240 V oad ONLY E5.95. L12127 compact

EPROM COPIERS

Toolkit" for copying. writing. modifying and Isting EPROMS of the 2516. 2716 2532. 2732 range Many other functions include integral keyboard. cassette inter
face serial and parallel i/o UHF modulato ONLYE195.00 + pp 2.50
-GANG OF EIGHT" intelligent 280 controlled 8 gang programmer for ALL copy 827128 in ONLY 3 MINUTES. Interna LCD display and checking routines fo
IDIOT PROOF operation Only $£ 395.00+$ pp $£ 3.00$
"GANG OF EIGHT FLUS" Same spec as above but with additional RS232 seria nterface for down line loading data from
orputer etc. ONLY $£ 445.00+$ pp $£ 3.00$

COOLING FGNS

OXER 5landard 120.120 .38 mm Ians OIder 110 OENTAUR 5.50. Low Voltage DC Fans BuHLER 69.1122 .8 .16 V DC
 CAPSI) PANSONIC FB. 12C 12 H 12 V DC 5 blade f 1800

Give your VT100 a Birthday Brand New VT100 Keyboards 1000's PDP11, PD P1 134 etc. SAE. for list or CALL sales office tor details. SPARES WANTED FOR PROMPT CASH SPARES
PAYMENT.

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY £450.00 each.

CALL FOR DETAILS
COMPUTER/SYSTEM CABINET \mathcal{E} PSU

switched moua PSU, mains filtering

 cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the psu isscreened and will deliver a massive $+5 v$ DC at $17 \mathrm{amps},+15 v \mathrm{DC}$ at 1 amp and $-15 v D C$ at 5 amps. The complete urit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc etc. Units are in full circuit and tech. man. Give your system that professional finish for only $£ 49.95$ + carr $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime} \mathrm{h} 11.5^{\prime \prime} \mathrm{d}$
Also available less psu, with fans etc. Internal dim $19^{\prime \prime} w_{1} 16^{\prime \prime} \mathrm{d}, 10.5^{\prime \prime} \mathrm{n}$. £19.95. Carriage £8.

66\% DISCOUNT on
 ELECTRONIC COMPONENTS COMPONENTS EQUIPMENT

best possible bargains. we have thousands of ICs. Transistors. Relays. Caps. PCBs Sub-assemblies, Switches etc. etc. surplus to OUR requirements. Because we don? tems into the BARGAIN OF A LIFETIME Yhousands of compe packing ail prices. Guaranteed to be worth at least 3 tımes what you pay. Unbeatable value and perhaps
weight.
$2.5 \mathrm{k} / \mathrm{s} £ 5.25+\mathrm{pp} £ 1.25$
$10 \mathrm{kls} £ 11.25+p p £ 2.25$
$5 \mathrm{kIs} \mathrm{E} 6.90+£ 1.80$

1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
Don't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

Z80 ■ CONTROL ${ }^{\text {sin }} \mathbf{Z 8 0}$

CARDMASTERCPU

- 416 MHz 280 CPU
- CP/M compatible
- User transparent MULTI-TASKING
- Up to 32K EPROM \& 16K RAM
- Watchdog crash protection
- RS 232 \& RS 422 Comm
- $2 \cdot$ Z80a P iO (one uncommitted)
- On board bus buttering
- Power-on jump hardware
- Euro-card construction

NOW FROM 199 + VAT
CUB MICROCONTROLLER

- 280 CPU
- $4 \times 280 \mathrm{a} \mathrm{PlO} \mathrm{o}$ (6410 lines)
-280aCTC
- 4 K Battery backed RAM (2 K sup.)
- AK EPROM (2 K MCV2.0 sup.)
- Powerful monitor (MCV2.0)
- Eurocard construction

NOW FROM $186+V A T$
STARBURST V1.31
A CROSS ASSEMBLER FOR
CP/M80 covers four major families of single chip uP's and LC's

* 8048 inc. $8741 / 2$ 8748/9/50
* 8051 inc. 8031/2 87518744
* 6801 inc. 6800/1/2/3 68701
* 6805 inc. 6870563705

Supplied with a complete set of demonstration files.
STARBURST VI. 31 £95.00 + VAT
Requires Z 80 CPU

CMR16 NOW FROM

£165.00
Bare PCB's Available

CM CPU 28.50 $10+$ $\begin{array}{lll}\mathrm{C} / \mathrm{M} \mathrm{I/O} & 28.50 & 25.65\end{array}$ $\begin{array}{lll}\text { CUB } & 23.50 & 21.15\end{array}$ CMR16 40.00 36.00

Manuals on request GNC ELECTRONICS Little Lodge, Hopton Road Theinetham, DISS IP 22 1JN Tel: 0379898313

CIRCLE 19 FOR FURTHER DETAILS
HIGH QUALITY - LOW PRICES

4+11GHz SATELLITE TV RECEIVING EQUIPMENT RECEIVERS, LAB's, LNC's, FEED HORNS, ANTENNAS, ANTENNA POSITIONERS, POLOROTORS, LINE AMPLIFIERS, ETC.

HARRISON ELECTRONICS
Century Way, March. Carbs. PE 15 8QW Tel: (0354)51289

RF
 U.S. supplier of RF POWER DEVICES. POWER
 Prices LOWER than current domestic prices. Query us for immediate needs.

A quality source for a complete range of RF POWER devices - From 230 MHz , SSE 12.5 V 728 V transistors - $14-30 \mathrm{MHz}$ CB/AMATEUR 27-50 MHz , low band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band FM $-156-162 \mathrm{MHz}$ VHF MARINE RADIO FM $-130-175 \mathrm{MHz}$ HI-BAND VHF FM - 108-152MHz VHF AIRCRAFT AM - 22540 MHZ UHF $28 \mathrm{~V}-$ 407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

MR 450 MRF 453 MRF 646 BLY88A BLY90 BLY93A .2N3553 .2N4933 .2N5109 .2N3375 .2N5016 . 589 2N4128 .2N5070 .2N5591 .2N6080 .2N4427 .2N5090 2N5634 .2N6083 .2N4431.2N5102 .2N5918 2N6084
\square TIC Semiconductor inc.
18 WEST 21st STREET NEW YORK, N.Y. 10010 U.S.A. TEL: (212) - 6756722 TELEX: 284564 TICS UR CIRCLE 9 FOR FURTHER DETAILS

CIRCLE 33 FOR FURTHER DETAILS

Toroidal \& E.I. Transformers

As manufacturers we are able to offer a
range of quality toroidal and laminated
transformers at highly competitive prices

Toroidal Mail Order Price List

prices inclusive of VAT \& Postage
15 va 7.95 , 30va $9.18,50 \mathrm{va} 10.16,80 \mathrm{va} 11.36$, $120 \mathrm{va} 12.07,160 \mathrm{va} 14.20$, 225va $15.21,300 \mathrm{va} 17.04,500 \mathrm{va} 22.10,625 \mathrm{va} 24.66,750 \mathrm{va} 28.75,1000 \mathrm{va} 44.82$. Also available $1 \mathrm{k} 2,7 \mathrm{k} 5,2 \mathrm{k}, 2 \mathrm{k} 5,3 \mathrm{k}$. Prices on request.
Available from stock in the following voltages: 6-0-6, 9-0-9, 12-0-12, 15-0-15, 18-0 18, 22-0-22, 25-0-25, 30-0-30, 35-0-35, 40-0-40, 45-0-45, 50-0-50, 110, 220, 240 Primary 240 volt.

Quantity prices and delivery on request

AIR
ANS NT LINK

Air Link Transformers

Unit 6, The Maltings, Station Road, Sawbridgeworth, Herts. Tel:0279 724425 CIRCLE 4 FOR FURTHER DETAILS

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost full band satellite TV systems.
Complete satellite receiving system from $£ 495.00+$ VAT .
Write or telephone for details, or call in at our factory showroom.
NETWORK SATELLITE SYSTEMS LTD

Units 7-8
Newborn Bridge Industrial Estate Hartlepool, Cleveland TS25 1UB Tel: (0429) 274239 or 869366

CIRCLE 17 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD OCTOBER 1986

NEW PRODUCTS

Low voltage references

Teledyne Semiconductors say their new bandgap references offer a much wider reverse current range than alternatives currently available. The 1.25 V type's range is from $15 \mu \mathrm{~A}$ to 20 mA (TSC04), while the range of the 2.5 V device is $20 \mu \mathrm{~A}$ to 20 mA . They are available in two temperature coefficients, 0.01% per deg C and half that value ($50 \mathrm{ppm} / \mathrm{deg} \mathrm{C}$). These low vol tage references, accurate to 2%, are used for data acquisition converters, multimeters, and battery powered telecommunication circuits

Enter 200 on reply card

Industrial Pascal for 68000

OmegaSoft Pascal takes the Pascal framework and expands the basic data types, operators, functions and memory allocation to fit the needs of real-time systems. "With the rising cost of writing real-time control software" says Bill Stanley of RCS Microsystems, "the advantage of using a high level language are widely recognised". The compiler generates assembly language for assembly and link to run on the larget system. As a true relocation assembler and linking loader is used, only those runtime modules required are linked in, providing a smaller object module than other compilers. Large Pascal programs can be split into conveniently sized modules to speed the development process. Procedures, functions and variables can be referenced between Pascal modules and assembly language modules using Pascal directives

The compiler package includes an interactive, symbolic debugger, which allows setting of breakpoints, displaying and changing variables, and tracing statements as well as a full relocatable macro assember and linking loader, and a full screen editor which can be used with a variety of intelligent terminals.

Full source code is included for the runtime library, debugger, screen editor and other support utilities.

Versions are available to run under OS9/68000 and Versados and a subset of this Pascal is available for 6809 program generation
Enter 201 on reply card.

HF receiver has i.s.b. mode

Rediffusion new h.f. receiver is a high performance, synthesized, programmable receiver intended for the professional communications market. Based on the company's R500 receiver, it adds independent sideband operation to the list of mode available - c.w., m.c.w., a.m., l.s.b and u.s.b. with optional f.s.k. data High-speed data up to 2400 baud can be received.

Channel, frequency and mode are set through a keypad on the front panel and shown on two liquid crystal displays. Operating parameters for up to 63 channels at a time can be stored in the
equipment's memory and brought into operation by selecting channel number and pressing a 'use' button. Frequency is selectable in 10 Hz steps in the range 60 kHz to 30 MHz .

Local, extended or remote control is available, and the receiver can be integrated into a computer-controlled net work

The R505 is the latest addition to Rediffusion's Series 2000 range and shares 80% of functional modules with the DU505
transmitter drive unit. Rediffusion Radio System Ltd

Enter 202 on reply card.

Microprocessor crystals

Long-established in the field of manufacture and supply of professional crystals from 10 kHz to 360 MHz , Webster Electronics announce that they now offer one of the wider ranges of crystal for microprocessor use, from 1 to 60 MHz . Specification provides a setting accuracy of $\pm 30 \mathrm{ppm}$ measured at $23^{\circ} \mathrm{C}$ and with a temperature coefficent of $\pm 20 \mathrm{ppm}$ over a working temperature range of -10 to $+60^{\circ} \mathrm{C}$.

All crystals are made in Europe by the manufacturing division of a West German company and claimed to be extremely high quality. 'They are encapsulated by the resistance weld method

In addition the company factor a range of oscillators, including 14 pin oscillators with t.t.l. output covering the range 250 kHz to 70 MHz , crystal filters, and communication antennae F. Webster (Electronics \& Engineering) Ltd.

Enter 204 on reply card

IBM/AT-compatible mother-board and graphics card

According to Microkey their 286 VLSI is capable of fulfilling many roles in the electronics marketplace, its specially designed i.cs implementing the functions of an IBM/AT but in a much reduced area and parts count. In the space saved Microkey implement four serial channels and a parallel printer channel to allow for standalone applications. Multi-user environments can be easily implemented. 1 Mb ram is standard together with a real-time clock and battery back-up. Firmware comes from Aware Software of the USA and is compatible with IBM's firmware, allowing most present software and hardware packages to run on the basic card. The processor is an 8 MHz 80286 on the standard unit 6 MHz is selectable on the card and a 10 MHz version will be available early 1987 , and the board has a socket for the 80287 co-processor Eight standard slots for cards are implemented: six 16-bit slots, two 8-bit.

To complement Microkey's IBM-compatible product the VLSI Microkey 1000 graphics card
implements the following functions: Hercules graphics standard, IBM's EGA, CGA, MDA and is therefore compatible with software designed to run on them. The board has 256 K ram screen buffer, a ram-based character
generator, virtual device interface and a light pen interface. The 13.5 by 4 in board fits any short slot in a Microkey 286 VLSI, IBM PC, XT or AT and most compatibles

Enter 203 on reply càrd

low-cost PC based logic analysis - from Thurlby

Thurlby Electronics Ltd New Road, St. Ives, Cambs PE17 4BG Tel: (0480) 63570

Now you can use your IBM-PC or compatible computer as the basis of a sophisticated logic analyser system.

LA-PC Link is an interface package which links your computer with the low-cost Thurlby LA- 160 logic analyser to provide facilities normally associated with only the most expensive analysers.

- Sophisticated data state listings

Up to 32 words per screen in multiple data formats.
Scrolling by line, page or word, plus random page access. Rapid screen compare facility. Full repetitive word search. - High resolution timing diagrams

Sixteen channels of 64,256 or 1024 samples per screen Instantaneous pan and zoom. Moveable channel positions Dual cursors with automatic time difference measurement - 16 or 32 channels, clock rates to 20 MHz Operates with all versions of the LA-160 with or without LE-32. - Comprehensive data annotation

Each data and control input can be allocated a user-defined label Data files are date/time stamped and can be fully annotated.

- Full disk storage facilities

Data files can be saved to disk and recalled for comparison Data includes the analyser's set-up conditions and all annotation - Versatile printing facilities

State listings and timing diagrams with annotation can be printed - Colour or mono display; keyboard or mouse control

Colour, monochrome or text-only modes suit any display adaptor Parts of the programme can be controlled by a mouse if required. - Terminal mode for uP disassemblers

Acts as a terminal for use with Thurlby uP disassembler ROMs
If you already have an LA- 160 logic analyser the LA-PC Link interface package costs just $£ 125$. If you don't, an LA- 160 with LA-PC Link costs from £ 520 .

The world's most advanced low-cost bench multimeter! Thurlby 1905a £349+VAT

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$.
- Full ac and current functions as standard

A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St.Ives, Cambs. PE174BG
||Thurlby №t
Tel: (0480) 63570
designed and built in Britain
CIRCLE 57 FOR FURTHER DETAILS

Now Thurlby makes logic analysis affordable !
 from

the new Thurlby LA-160

$£ 395$ +vat

- 16 channels, expands to 32 - 2 K word acquisition memory
- Clock rates up to 20 MHz - Non-volatile reference memory
- State and timing displays - Search and compare facilities
- Selectable display formats - Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach
Contact us now and get the full technical data.

$\|$ Thurlby $\boldsymbol{d e n}_{\text {digned and bull in }}^{\text {Britain }}$

Thurlby Electronics Ltd
New Road, St. Ives, Huntingdon
Cambs. PE17 4BG, England. Tel: (0480) 63570

CIRCLE 38 FOR FURTHER DETAILS

VIDEO TERMINAL BOARD

Requires ASCll encoded keyboard and monitor to make fully configurable intelligent terminal. Uses 6802 micro and 6845 controller. Program and character generator (7×9 matrix with descenders) in two 2716
EPROMs. Full scrolling at 9600 baud with 8 switch selectable rates. RS232 interface.
Bare board with 2 EPROMS and program listing -
$£ 48$ plus VAT. Assembled and tested - $£ 118$ Send for details or CWO to:
CORTEX CONTROLLERS
50 St Stephens Place Cambriage CB3 OJE Telephone (0223) 68000
CIRCLE 16 FOR FURTHER DETAILS

Reduce Designer Fatigue

Linc-Ace System

CIRCLE 28 FOR FURTHER DETAILS

Development boards

Offered as a low-cost rapid development tool for prototype construction is the 85000 series of computer boards centered on an 8085 singleboard computer. The potential on-board memory capacity of 98 K byte can be extended by use of an inhibit line.
Peripheral boards include a communications board, based on Intel's 8256 muart, and a display board for driving Epson character or graphics l.c.ds. Each of the peripheral boards includes a development section designed for use with the BICC-Vero Speedwire system. Three voltages and a ground plane are available as well as data, address and control buses which are distributed through the development area so that devices can be added and wired easily. Timing has been optimized to accept a wide variety of ram and rom chips. Control signals can be altered by shortingjacks and memory size and addressing modes can be selected by a series of 8 -way dil switches. Languages can be installed in roms, and an assembly-language programming service to complete the operation. Automation and Control Technology, Cofton Road, Barton, Exeter EX2 8QW. 205 on reply card

Satellite dish

The 'square' offset receiving and transmitting dish from Sat-Tel is claimed to overcome many of the problems associated with elliptical or circular antennae. It offers equal performance from both polarizations and a very low sidelobe response, and a 1.4 m dish gives a similar performance to 1.8 m circular.

The same company offers SBR80, a satellite beacon monitoring receiver which can locate a non-transmitting satellite. Beacon signals are typically 40 dBW lower than transmission signals. The SBR80 used in conjunction with Sat-Tel's multi-standard broadcast quality receiver, could prove useful in
circumstances such as electronic news gathering, where a satellite needs to be accurately located prior to a transmission. Space
Communications (Sat-Tel) Ltd, 9 Edgemead Close, Round Spinney, Northampton NN3 4RG.
218 on reply card

Portableh.f. receiver

The use of microprocessor and l.s.i. devices in the Yaesu field portable transceivers enables them to offer full professional' facilities but remain physically small and weigh only 5.8 kg including NiCd battery pack. The frequencysynthesized circuits produced a 10 W (5W on a.m.)
transmitter ranging from 2 to 30 MHz with reception down to 500 kHz . Upper or lower sideboard, carrier wave and a.m. transmission and reception are all included. Other facilites include high/ low power selection; receiver squelch and noise blanking; a meter for signal strength, transmitter power or battery condition; the receiver has an offset (clarifier) control. A transmitter tune switch can simplify zero beat frequency interference by other transmitters.

A wide range of optional extras include a high capacity rechargeable NiCd battery pack, a quick charger, various antennae and antenna tuners, as well as a telephone-style handset and a backpack carrying case. Amcomm-ARE, 373 Uxbridge Road, London W3 9RN.
219 on reply card

Audio components

Precision components for builders of audio equipment and service engineering are offered by Audiokits. These include IAR Wonder capacitors (imported from the USA), Filmcap reservoir capacitors and Holco precision metal film resistors. Audio Precision Components, 6 Mill Close, Borrowash, Derby DE7 3GU.
220 on reply card

Weather map receiver

Combining the functions of receiver and printer, the Marinefax TR1 has a microprocessor-based programmable memory. It incorporates all the worldwide radiofax frequencies and can be set to select the time and frequency of the desired from any chosen transmitter. The instrument will turn itself on, select the desired transmitter and frequency, receive the chart and turn itself off. This cycle can be programmed to occur for up to 250 on/off sequences. Ten frequently used services can be accessed
by a single push button, all other stations are chosen from prompts given by the display and any other frequency can be keyed into the receiver. The receiver can be tuned in 0.1 kHz steps to capture transmitters using odd frequencies
The instrument incorporates a thermal printer to give dry paper recordings of the received chart. CNJ Services, Churchfield House, Upcott, Latton, Swindon, Wilts SN6 6DS. 210 on reply card

Linescan processor

Microprocessor Analyser (MIA) from IPL is a standalone vision system module designed to operate with IPL's 5000 series high speed linescan camera. The camera is connected directly to the MIA which is based on the 68000-based microcomputer, which processor handles the camera data and can be programmed according to the specific needs of the customer
The unit allows connection of up to four cameras for complex problems, whilst the VME bus structure allows for
further expansion.
MIA offers a choice of inputs via keypad, opto-isolated, differential and t.t.l.compatible lines. Outputs include relays, analogue, large character display, parallel printer port.

Typical applications are in the automotive and steel industries for non-contact dimension gauging and process control. Integrated Photomatrix Ltd, Grove Trading Estate, Dorchester DT1 1SY.
227 on reply card

Appointments

Advertisements accepted up to

 12 noon October 1 for November issueDISPLAYED APPOINTMENTS VACANT: $£ 23$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): £5 per line, minimum $£ 40$ (prepayable) BOX NUMBERS: $£ 11$ extra. (Replies should be addressed to the Box Number in the advertisement, coo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS) PHONE: SUSAN PLATTS, 01-661 3033 (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed

- With the most successful companies and consultancies - both large and small - throughout the UK \& Europe: Offering first class salary/benefit packages (several include co. car) with excellent career advancement opportunities.
Experience in any of these fields would be a particular plus:
HIGH SPEED SIGNAL PROCESSING: REAL-TMME 16/32BIT, ARRAY, PIPELINE OR BIT SLICE ARCHITECTURES; SOF WARE - C, PASCAL; ADA ASM-VMSUUNIX EtC: A \& EXPERT SYSTEMS: IMAGE \& GRAPHICS PROCESSING: LASER/FIBRE-OPTICS: SONAR: RADAR: COMMUNICATIONS: CUSTOM VLSI DESIGN: ANALOG/RF CIRCUIT DESIGN.
ECM offers confidential and professional guidance: we will listen to your requirements and identify opportunities to suit your plans. Phone now for your FREE CASSETTE "Jobsearch Technology" and hear how ECM can help you to develop your career.
Call ECM on 0638742244 - until 8.00 p.m. most evenings - or send your cv (no stamp needed) to

CLELNCLIC
 require
 Broadcast and Professional Video Engineers
 Viewplan Broadcast, the Broadcast division of the U.K.'s leading AN and

 Video hire company Viewplan plo require the following engineering staff: Based at our new Brantford, Middlesex engineering base. Energetic engineers preferably with 'manufacturers experience of VTR, Digital Effects, Camera, or related products.Based at our London Broadcast headquarters, an Engineering Supervisor to oversee a small team of professional engineers maintaining our very wide range of VTR, Digital Effects and Camera hire products
Engineers and Technician Engineers to work with the Engineering Supervisor in maintaining the high technical standard of our product lime A competitive salary package is offered along with excellent career opportunities within this young expanding company
Experienced engineers and engineers who wish to broaden their product base and have at present experience in at least one of our product lines and are educated to degree. HND/HNC or equivalent level should send their CV's to:

MIKE HANCOCK, VIEWPLAN BROADCAST, UNIT 6/7,
INDESCON COURT, MILLHARBOUR, MILL WALL DOCKS, LONDON E14 9TM

UNIVERSITY OF KENT
 AT CANTERBURY ■■■

A Seagoing Measurements Technician

Applications are invited for the above post, to assist in a shipboard radio interference measurements programme with the Noise Measurement Group in the Electronic Engineering Laboratories
The position would suit a person who has recently obtained an MRGC or with a suitable technical background in electronics.
The contract has a duration of one year in which it is expected that about nine months will be spent on ocean passages.

Salary $£ 5,401-£ 5,831$ and subsistence while at sea. Further information from Mr A. Rawlings (0227 66822 Ext 309).

Please apply with a curriculum vitae and the names and addresses of three referees to Mr I. R. Stone, Assistant Registrar, Faculty of Natural Sciences, The Registry, University of Kent, Canterbury, Kent CT2 7NZ quoting reference T87/1 WW Closing date: 8 October, 1986.

opoorimens wanomor

Edinburgh (031) 2265381 Leeds (0532) 580510 Manchester (061) 8325856 Birmingham (021) 6431994 Leicester (0533) 544193 Milton Keynes (0908) 666872 Bishop's Stortford (0279) 506464 London (01) 6370781 Bristol (0272) 211035 Bracknell (0344) 481808 Maidstone (0622) 687171 Crawly (0293) 514071

Salaries 88,000 to $\$ 30,000$ pa.

As the UK's leading specialist sales and technical recruitment consultancy, we provide a FREE service to engineers seeking a career move
If you have experience in digital, analogue, microprocessor or
communications technologies (either hardware or software), ideally with a recognised qualification, we have hundreds of vacancies throughout the UK in R \& D. Design, Manufacturing, Test, Service and Sales.
Call your nearest branch for more information or send a comprehensive C.V. (no stamp required) to:-

[^4]
Senior Design Engineer

For exciting development of computer graphics products for television use
Experience in Digital and Analogue design, and an understanding of video technology would be essential. You would be required to manage a small development team, and be able to take products from conception through to production. If you have an active enthusiasm for Computer graphics together with a liking for a small but expanding company you would be ideally suited to this job.
Salary dependent on age and experience up to $£ 15,000$

Design Engineer

For assisting in the design of Computer Graphics products Experience in at least one of the following fields would be required. Digital Design, Analogue Design, Video Engineering You would have the opportunity to participate in many aspects of design, from CAD or schematics and PCB layouts to prototyping. Salary depending on age and experience from $£ 8,000$ to $£ 12,000$. Applications in writing please, together with full C.V. to The Technical Director, Spaceward Microsystems Ltd., The Old School, Stretham, Cambridge CB6 3LD.

NORWICH VIDEO PRODUCTION COMPANY

Seeks enthusiastic and experienced person to repair and maintain video equipment, assist on shoots and provide editing, duplication and administrative support. Essential requirements are past job experience in maintaining video/TV systems, genuine video production experience and organisational flair.
Exceptionally nice working environment in a city that offers a very desirable lifestyle. Salary negotiable. Good prospects for advancement Full details and CV to: I. McLaren, 5 Curtis Road, Norwich, Norfolk NR6 6RB

The Polytechnic of NorthLondon

Re-advertisement

RESEARCH ASSISTANCE IN MICROWAVE/ OPTOELECTRONICS

Applications are invited for a research assistant in the Department of Electronics and Communications Engineering and Applied Physics. The post is initially for one year but extension is possible subject to satisfactory progress. The work will involve collaboration with industrial or other external organisations. The work will involve investigations into methods for accomplishing microwave signal delay with applications for radar test systems.
Salary: $£ 7,170-£ 7,953$ (Inclusive of London Allowance) Application form and further details are available from The Personnel Office, The Polytechnic of North London, Holloway Road, London N7, quoting ref. R10AD Telephone: 6099913 (24 hour answerphone service) Closing date for the receipt of applications is 14 days from the appearance of this advertisement.
THE POLYTECHNIC OF NORTH LONDON IS AN EQUAL OPPORTUNITIES EMPLOYER AND THEREFORE PARTICULARLY WELCOMES APPLICATIONS EMPLOYER AND THEREFORE PARTICULARLY WELCOMES
FROM WOMEN ETHNIC MINORITIES AND THE DISABLED.

THE START OF SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge . . . why not join us in GCHQ?

We are recruiting

RADIO OFFICERS

who after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an RO extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at £5,817 at age 19 to $\mathbf{\Sigma 6 , 9 2 0}$ at age 25 and over during the training and then $£ 7,954$ at 19 to $\mathbf{\Sigma 1 0 , 1 6 2}$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 13,777$ inclusive of shift and week-end working allowances.
application form phone $024232912 / 3$
or write to:
 The Recruitment Office
Priors Road
A1108
Glos GL525AJ
2806 North London). Duties involve (i) maintenance of the Observatory's telescopes and associated equipment, (ii) development of improved electronic equipment, (iii) development of electron control of data acquisition by modern optical detection systems. The appointee
would be expected to undertake evening would be expected to undertake evening
and occasional night-work. Qualifications ONC or City $\&$ Guilds or equivalent. Salary in range $£ 6,749 £ 7,813+£ 765$ LW. 5 weeks' annual holiday. Further details and application forms from Personnel Officer, (Technical Staff CJ27), University College London, Gower Streel, London WCIE 6BT

IMPERIAL COLLEGE OF

 SCIENCE AND TECHNOLOGY Department of Electrical Engineering
ELECTRONICS

 TECHNICAN
£8,639 to $£ 9,953$ inc.

Required to work in the Microprocessor Teaching Laboratory. The successful applicant will be engaged on the manulacture, repair and servicing of digital electronic apparatus particulariy microcomputers and their peripherals.
Candidates must hold a formal qualification such as a City and Guilds or National Certificate in electronics, and up to date practical experience is essentia Initial salary point to be determined by age and experience.
Excellent terms of service including superannuation scheme

Applications to include a CV and the names of two referees to be sent to: Departmental Superintendent, Department of Electrical Engineering Imperial College, Exhibition Road, London SW7 2BT.
Closing date: 24 September, 1986

CHVEDEN

1. DATACOMMS SYSTEMS Field Service Engineer with experience of Field Service Engineer with expe BM channel equipment. Networ $£ 12,000+$ car, Berks.
2. RADIO SYSTEMS

Technical author with radio comms experience to lead a team producing books
10,000+, Birmingham
3. PROCESS CONTROL EQUIPMENT

Support of electrical control systems for industrial and commercial purposes. £9,500 + car, Berks.
4. SATELLITE COMMUNICATIONS Repair and service a range of systems which are ship and shore-based. £9,000, Surrey.
5. BROADCAST/CAMERA SYSTEMS Support and commission a range of Support and commission a range of £12,000, Surrey.
6. CAD/CAM SYSTEMS

Analogue/digital and microprocessor experience c£10,000, Hants.

Hundreds of other Electronic and Computer vacancies to โ15.000

Phone or write
Roger Howard C.Eng. M.I.E.E. M.I.E. R.E. CLIVEDEN RECRUITMENT

92 Broadway, Bracknell, Berkshire RG 12 1AR
Tel: 0344489489

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{£ 6 , 0 0 0 - £ 2 0 , 0 0 0}$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388

$2+1$ lun Answering Sorvic

Please send me a TJB Appointments Registration form Name

Address

CLASSIFIED RATES ARE:

Displayed:
£23 per single column centimetre

Linage: £5 per line (minimum £40)

Radio Engineers, Electronics Lecturer, TV and Electrical Engineers Cutout for the Third World?

Voluntary Service Overseas is now receiving details of jobs for February 1987 departure. Requests include: Radio and TV Instructor, Bangladesh Electronics Lecturer, Indonesia Electrical Engineer, Sri Lanka Radio Engineer, Belize Hospital Engineer, Bangladesh

You will need a professional qualification and relevant work experience.

VSO volunteers should be without dependants and willing to work for payment based on the local rates. Postings are for two years and most employers should be prepared to grant leave of absence.

For more information, please complete and return.

[^5]

is working
overseas
Charlity no 313757
VSO also needs: builders, engineers, teachers, horticulturists, community \& heallh workers, fishermen and many more
(22p S A.E. appreciated)
Post to Enquiries Unit, Voluntary Service Overseas, 9 Belgrave Square, London SW1 X 8PW.

EWW/10/86

ARTICLES FOR SALE

```
Vacuum pump. rotary and diflusion, {98
Stereoscopic. prismatic. binocular microscope
4-lens turret, wide-field oculars, high resolution,
applications in all fields. some with universa
stands, £175-£340. Precision, long-tocus
microscope light source, convergent, divergent
and locussed iltummation, £65. Aircratt Radio
Audo Frequency Linear Sweep Generator
E69. Sine/square audio/ ultrasonic generator
£35 Optical Stereo Scannert Comparator
Battery Portable Vibration Analyser, £65
Ultrasonic Detector - Carburation Balance,
gas/exhaust leak. refrigerant leak locator etc,
Chart Recorder. Monocular microscope, £79
Sippican Micro Spot-welding head, £59
Wayne-Kerr Portable VHF Frequency
Standard, twelve crystal positions, XI, X3, X9,
X18,TX, Band 1, 2, 3, &75. Precision Decade C
& R boxes.Transistor Analyser. W.K. Bridge
Source and Detector. Direct Proportional
Laboratory Cailibration Digita& Voltmeter, £79
Folding microphone stand, £10. Heavy duty
sland, &15. I\muF 440V capacitors. 35p, ea
(minimum order twelve). High volage
capacitors, various etc. etc. 040-376236
```


When replying to classified advertisements, readers are recommended to take steps to protect their interest before sending money

BRIDGES waveformn/transistor analysers. Calibrators, Standards Millivoltmeters. Dynamometers. KW meters, Oscilloscopes Recorders. Signal generators - sweep, low distortion, true RMS, audio, RM, deviation. Tel: 040376236 . (2616)

IMPORTS/EXPORTS of all kinds of Electronics and Computers. Please send your enquiry or product details to DEDICATED MICROPROCESSORS
G.W.M. RADIO LTD.

PCE'S MANUFACTURED Prototype, small/large production runs, single, double-sided, P.T.H. screen printing, panels, labels, solder masking \& photography Orbitechnic Circuits, The Rear of 127 Woodlands Road, Ilford, Essex. Tel: 01-5535211.
(154) TEKTRONIX OSCILLOSCOPES $221560 \mathrm{MHz} £ 495,568230241 \quad 1 \mathrm{GHz}$ system £495, $454 \mathrm{~A} \quad 150 \mathrm{MHz} £ 475,661$ 3.9 GHz £495, PCB Sub-assemblies, Transistors, Delay-lines, viewing hoods, valves. $1 \mathrm{~L} 5 £ 375,7 \mathrm{~B} 50 \mathrm{~A} £ 295$, 3A74, £85. Telequipment D83 £325. HAMEG 70 MHz £415. H.P. Delay. lines 1100A $£ 65$, Transformers 9100 1472 (new) £25. Brimar C.R.T.s. Manuals. Tel: (01) 868-4221.(293).
NOW AVAILABLE - Bumper Catalogue - 170 pages - for collectors of vintage radio, audio \& TV equipment. Price: $£ 2.00$ post paid UK, $£ 3.00$ post paid overseas. Vintage Wireless Co. Ltd., Cossham Street, Mangotsfield, Bristol BS17 3EN Phone: 0272565472 .
(208)

40/42 PORTLAND ROAD, WORTHING. SUSSEX.
40/42 PORTLAND ROAD, WORTHING. SUSSEX.
Tel: O903 34897 Marcon IF 79!D Devation Meter $4-1024 \mathrm{MHz} £ 85$ Buyers callect. Eddystone EB37 Solid State Recelver
similar to ECIO but no BFO $150 \mathrm{KHz}-350 \mathrm{KHz}$ simiar to ECMO but no. BFO $150 \mathrm{KHz}-350 \mathrm{KHz}$
$+550 \mathrm{KHz}-22 \mathrm{MHz}$ V $£ 65$ inc. Pye Bantams $\mathrm{H} / \mathrm{BFM}$ with batery box and microphone $£ 25$ inc. Pye W 25 FM mobile untts solid state High power Wesiminsters 10
chamnel. ex car telephone high band. no control gear (units only) $£ 40 \mathrm{inc}$. Signal generator advance iype
B 4 B directly callibated from 30 KHz to $30 \mathrm{MHz} £ 35$ inc. Pye $460 / 461 \mathrm{UHF}$ base $£ 40$ inc. Fantavox publicaddress Amps. 20 watts 48 or 16 ohm Ot 70 Voll line
output 230 V . AC. or 12 V DC $£ 29$ inc. p\&e. Pye Bantam HP1 AM mid band. examole frequency IX
107 MHz Rx 139 MHz Will mod to arr band sets only no
mucs or battery but with dry battery yray $\& 25$ inc $p \&$.

GOLLEDGE

ELECTRONICS
QUARTZ CRYSTALS OSCILLATORS AND FILTERS of OSCILLATORS AND FILTERS of
all types. Large stocks of standard all types. Large stocks of standard
items. Specials supplied to order. items. Specials supplied to order. Personal and export orders welcomed -
SAE for lists please. OEM support thru: SAE for lists please. OEM support thru: design advice, prototype quantities, production schedules. Golledge Electronics, Merriott, Somerset YA16 5NS. Tel: 046073718.

CHEAP L.E.D. DISPLAYS. 7600 pieces, 0.3 inch, common anode, left hand decimal, high light output, standard red, industry standard pinout, graded and colour coded, minimum quantity 100 . Price 20 p each. Also lots quane cheap opto, fibre-optics etcetera. Trade enquiries welcome. Ring: Ian at Trade enquiries welcome. Ring: Ian at
Fibre-Data Limited on Tadley (07356) Fibre-Data Limited on Tadley (07356)
77444 .

BUSINESS FOR SALE

NORTHERN
 BASED RADIO COMMUNICATION COMPANY FOR SALE

Well established profitable business with further potential for growth. Proprietor retiring. Offers invited
Box No 318

UNIQUE OPPORTUNITY

etail/wholesale/surplus business established 30 years. Valuable freehold site centre, busy year round, south coast town, stock, goodwill, site, £425,000. Directors retiring, realistic valuation.
Box No 311

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further-details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

* MICROCOMPUTERS
* PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH offer, phone, COMPUTER APPRECIATION Oxiord (0865) 55163 Telex 838750

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement. Tel: 01-208 0766 Telex: 8814998
(2491)

USED TEST EQUIPMENT

FOR SALE \& WANTED
Buyers \& Disposal Officers Contact COOKE INTERNATIONAL Unit 4 Fordingbridge Site Main Road Barnham Bognor Regis Tel. 024368 5111/2 0EB Tel. 024368 5111/2 (179)

TURN YOUR SURPLUS ics transistors etc. into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. Contact COLES HARDING \& CO, 103 South Brink Wisbech, Cambs. 0945584188.

QUALITY USED EQUIPMENT

Hewlett Packard Synthesizer 8660 C main frame with keyboard entry 86602 ERF section $1-1300 \mathrm{MHz}$
86631 B Auxliary section AM/Pulse mode Fully restored $£ 5,000$.00
Hewlett Packard Vector Voltmeter 8405A measures voltage and phase $1-1000 \mathrm{MHz} £ 1.850 .00$
Hewlett Packard Spectrum Analysers Price and details on application. Marconi PCM Tester/Analyser Kit TF2807A PCM multiplex tester
TF2828 PCM digita simulator TF2829 PCM digital analyser Al as new complete $£ 2.950 .00$
This and other equipment can be inspected at COOKE INTERNATIONAL
Unit 4. Fordingbridge Site. Main Road. Barnham. Bognor Regis PO22 OEB
Tel: $0243685111 / 2$

BOX NOs

Box number replies should be addressed to:

Box No
c/o Electronics \& Wireless World Classified Dept Quadrant House The Quadrant Sutton, Surrey SM2 5AS

ELECTROLOOM (BEDS)

Competitive rates for a reliable service including PCB \& CABLE ASSEMBLIES FULL CHASSIS WIRING SUB \& FINAL ASSY. WELCOMED

PLEASE CONTACT:
0525-378590
for immediate attention

BILLINGTON VALVES
SEND TODAY FOR OUR FREE CATALOGUE OF THERMIONIC VALVES
Auddr, Lransninting and indusslua Iypes siocked SAE please
We amm lo be the cheapest source anymhere' We have huge
 Slocks and SpECILULISE IN
VALVES AND TRANSISTORS
Whole sate inquiries welcome! Export inquiries welcome! WE WILL BUY vaIVES AND TRANSISIORS'

 23 Irwin Drive. Horsham. W. Sussex RHI2 INL. Mall Orders Only: Callers strictly by appointment only.

WANTED Test equipment, computers, components. Any quantity.
Good prices paid. Immediate settlement. Give us a ring; Unit 6,28 Botley Road, Hedge End, Southampton. Hedge End, Southamp

FRUSTRATED ELECTRONICS INVENTORS
Individuals or companies Contact:
Mr G. R. Nicholson on 0242578030

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& B RADIO

86 Bishopsgate Street Leeds LS1 4BB 0532435649

STEWART OF READING
110 WYKEHAM ROAD READING RG6 1PL

TOP PRICES PAID FOR
ALL TYPES OF
SURPLUS TEST EQUIPMENT, EQUIPMENT, COMPONENTS etc. ANY QUANTITY

ـ

CIRCLE 5 FOR FURTHER DETAILS

MATURE, FRIENDIY EPROM PROCRAMMER

GANG-OF-EICHT D.피ㄴㅔㅐ

Redesigned to Your Specification

GANG-OF-EIGHT is a successful product, because of its performance and unbeatable price. Since the launch we have taken careful note of comments made by engineers who have called us. This gave us a wish-list of extra features and revisions to work by. The result is an improved G8 which should suit you even better - it is just what you asked for.

25 and 27 Series to 512K

 G8 will handle 2516, 2532 and 2564 EPROMS, as well as all 27 series from 2716 to 27512.
FAST and SLOW

 Programming Method You can use a FAST, intelligent algorithm to program larger EPROMS, which speeds up the programming operation by a factor of five, at least. G8 will also program the old-fashioned way, with 50 ms pulses.
Voltage Selection

There are three different voltages selectable (by switches) anc these are each resettable (by potentiometers) over a wide range. The factory-setting is 25 volts, 21 volts and 12.5 volts.

Liquid Crystal Display

 G8 shows the EPROM type, the Program-Method and the Pro-gram-Voltage and changes the display when you reset the switches. You always know what is happening with G8.
Two Key operation

G8 has only two keys - START and RESET - simple to operate, yet it does all the useful things you need. Before every programming cycle it checks that you have not programmed any of the EPROMS already, reporting any which match the master. Then G8 tells you if any are not blank, so that you can erase them. Only if the EPROMS pass these tests does G8 start programming (but G8 will try to program unerased EPROMS, if you ignore the ERASE message and press START again - something else you asked for).

Checksum Facility

G8 will calculate and display a 6digit checksum of your master EPROM, when you press START and RESET at the same time. This helps you to identify EPROMS which are unlabel ed, and provides a simple check on the integrity of your dala.

Tuneful, too

G8 provides audible feedback, to avoid the necessity for constant monitoring - that is, it makes noises so you don't need to watch it: rising and falling arpeggios as the program starts and finishes; occasional tones to remind you that your EPROMS are ready. Data is audible when uploading and downloading.

Option - Steel Case

G8 normally comes in a plastic case, which is light and durable. However, some of you want your G8 in a steel case, and this option is available now.

Option - Bidirectional RS232 Serial Interface

G8 was ntended as a fast, lowcost prołuction copier, but frequent enquiries made us think again and design a version which could be used for development purposes, capable of uploading and downloading in a variety of serial lormats: INTELHEX, MOTOROLA S, TEKHEX, ASCIIHEX and BINARY. Links on your serial cable select the format.

Quick delivery

We know you don't want to wait, so we keep lots of Gang-of-Eight programmers in stock. If you are in a real hurry telephone us - we will save your time and arrange the fastest delivery possible.

No Risk Trial:

Refund Guaranteed

Without any questions asked, you get your money back if you do not get along with your G8, provided you return the product within 14 days.
(we subtract only carriage expenses).

Terms

Cheque with order or credit-card.
Dataman
Lombary House, Cornwall Road,
Dorchester, Dorset DT1 1RX
England
Telephcne: (0305) 68066
Telex: $\mathbf{4 1 8 4 4 2}$ DATAMN G
add for RS232 option
£50.00 add for steel case option

E35.00 to basic
GANG-CF-EIGHT
2395.00
postage is tree BUT please add VAT in U.K

2955 Radio Communications Test Set $£ 5,750$
11 test functions, including full duplex radio test - Revolutionary design: fast and casy to use - High clarity CRT shows all settings plus measurements in digital or analog forms Tones encode/decode facilities

- 38 instrument settings in non-volatile memory - Spin-wheel frequency/level control in addition to front panel buttons
- Single and two-port operation.

2305 Modulation Meter 500 kHz to $2 \mathrm{GHz} £ 5,260$

- 500 kHz to 2 GHz frequency rangc - Outstanding 0.5% basic accuracy Exceptionally fast auto-tuning, with low noise - Modulation analysis including frequency and power Non-volatile memory to store user settings - Excellent stereo separation - Automatic self calibration, advanced diagnostics

2382/80 Spectrum Analyser £13,150 and Display $£ 5,350$

- Audio to UHF coverages: $100 \mathrm{~Hz}-400 \mathrm{MHz}$ Outstanding resolution, with 3 Hz minimum resolution filter bandwidth
0.025 dB amplitude resolution
- Superb level accuracy $\pm \mathrm{IdB}$, with auto calibration - Frequency response better than $\pm 0.4 \mathrm{~dB}$ - Fully GPIB programmable capability
- Two steerable markers for levels and frequencies Self calibration for repeatability of measurements.

6960 Option 001 Digital RF
Power Meter $£ 1,900$

- Simple push-button or systems application Unparalleled accuracy, through sensor correction - Non- wolatile storage of frequently used settings - W or dB readings, plus ofliser capability-- Single-key auto-zero operation

Average factor selection to reduce noise or improve resolution advanced GPIB facilities.

2022 AM/FM Signal Generator 10 kHz to $\mathbf{1 G H z} £ 2,950$ Wide frequency cover: 10 kHz to 1000 MHz . - Compact, rugged and lightweight - Comprehensive"modulation: AM/FM/PhM - Simple push button operation, large l.CD display - Non-volatile memory for 100 settings - The perfect service/rmaintenance tool.

2440 Microwave Counter 20 GHz

 £3,650Wicle frequency coverage: 10 Hz to 20 GHz - High sensitivity and resolution - Fast acquisition time: only 200 ms typical - High-stability oven controlled crystal oscillator - Overload capability up to 27 dBm

- High AM/FM tolerance - Built-in GPIB.

CIICLE TI FOR FURTHER DETAIIC

through

ELECTRONIC
Electronic Brokers are now distributors for a full range of Marconi Test Instruments including Signal Generators, Microwave Counters, Power Meters, Modulation Meters.
 Spectrum Analysars, Radio Communication Test Sets and other general test andmeasuring equipment. For further information and a colour brochure please contact our Sales Office.

The first name in test equipment distribution

[^0]: Callers welcome 9 am to 5.30 pm . MON-FRI. (UNTIL 8pm. THURS)

[^1]: *Assembly-language listings cost $£ 2.50$ from the editorial office. Please mark your A4 envelope ' S 2 '.

[^2]: Copies of the complete machine language program containing both transmission and reception in s.s.tv (RXT SSTV) are available on disc or cassette directly from the authors for £15 (L30,000) (two sheets of instructions are included) at via Damiano Chiesa 26, 27029 Vigevano, Italy. Cost is reduced to £10 by sending a floppy disc. Basic listings that accompany this description are available from the editorial office.

[^3]: To: -rte:nepcen-the Electronic Packaging Show, Cahners
 To: rte:nepcen-the Electronic Packaging Show, Cahners
 ■ Yes I'n plar cing a trip to the Show. Please send m^{2} ${ }^{-}$REE ickets plus a Conference Programme - Iam interas iad in exhibiting.

 NAME
 PDSTION
 CRE ANISFION
 ADIPRESS
 TミLミFHONE PO_ POSTCODE
 $\mathrm{T} \equiv \mathbf{L} \equiv \mathrm{X}$
 Ne-cre uncer 13 atmit:ed
 111II

[^4]: II $_{1} r_{1}$ Engineering Recruitment
 A Division of ATA Selection and Management Services Lid
 FREEPOST, Bishop's Stortford. Herts. CM23 2BR

[^5]: I'm interested in volunteering My qualifications / experience are

