3-D graphics

Eprom programmer

Optical fibres

SPECIAL OFFER Real-time clock with 8 K by 8 bit

THERE'S A PHILIPS INSTRUMEVT

 THAT'S JUST RIGHT FOR YOU
AT ELECTRONIC BROKERS

OSCILLOSCOPES

PM3206 COMPACT LOW COST PORTABLE 15MHZ

- Automatic triggering for stable trace Easily portable and lightweight IV Triggering on line and frame Dual trace with 5 mV sensitivity - X - Y measurement facility ${ }^{-1}$ External Z modulation.
5295.00

PM3256 FULLY RUGGEDIZED PORTABLE 75MHZ

- Designed for harsh field environments © Dual timebase with independent triggering Alternate display of main and delayed timebase - Trigger view as third channel display Multi sourced triggering and trigger filters Tough compact unit with shoulder
strap.
£1,550.00

REAL-TIME 5OMHZ
Analogue storage with variable persistence - Auto erase and auto store facilities \quad High $2 \mathrm{~m} V$ sensitivity across full bandwidth Alternate display of main and delayed timebases Easy auto mode triggering with level control Versatile facilities combined with easy operation.
$52,995.00$

PULSE GENERATOR

PM5712 FAST RISE TIMES TO 50MHZ

- Wide amplitude range 200 mV to $10 \mathrm{~V} \quad 1 \mathrm{~Hz}$ to 50 MHz frequency range \quad Fast rise and fall times $4 \mathrm{nS}=10 \mathrm{nS}$ to 100 mS pulse duration and delay - Variable DC offset -5 V to +2 V Single, double and $\mathrm{T} / 2$ pulse modes.
5995.00

LINE RECORDERS

PM8251A/PM8252A SINGLE AND DUAL PEN RECORDERS

- Wide sensitivity 1 mV to 50 V - 250 mm chart with up to 12 speeds Fast pen response and accuracy Standard remote control facilities In Dip marker and inverter switch Zero suppression -110% to $+210 \%$.

$$
\begin{gathered}
8251 \mathrm{~A} \\
2750^{.00} 51,050.00
\end{gathered}
$$

FREQUENCY COUNTERS

PM6667/PM6668 HIGH RESOLUTION COUNTERS

Built in intelligence for easy operation 7 digit high contrast LCD read out High stabillty X-tal oscillator Range to $120 \mathrm{MHz}(6667$), to 1 GHz (6668) High 15 mV sensitivity Auto triggering on 6667/01 6668/01 all waveforms. $5349.00 ; 495.00$

X-YRECORDERS

PM8043 COST EFFECTIVE A4 FORMAT

- 5 time base speeds from 0.5 to $10 \mathrm{~s} / \mathrm{cm}$ - Sensitivity 2 mV to $1 \mathrm{~V} / \mathrm{cm}$ in 9 calibrated ranges - High rigidity lightweight chassis High pen speed accelerations Switchable low pass filter for interference free recording Ergonomically designed front panel lay out.
£1,245.00

DIGITAL MULTIMETERS

PM2519 MULTIFUNCTION MEASURING CENTRE

- Digital display with analogue bar graph Fast autoranging with manual option Relative measurements for all parameters Direct gain with selectable references Frequency to 1 MHz true RMS IEEE compatibility with PR2519/51
version
£299. ${ }^{\circ 0}$ £495.00

GRAPHIC PLOTTER

PM8154 INTELLIGENT X-Y DIN A4
Up to 6 colour pen capability Writing speeds up to $400 \mathrm{~mm} / \mathrm{s}$ Instruction set simplifies programming Electrostatic paper hold down 1 Specify B version for IEEE 488 /IEC 625

- Specify S version for RS232N24
$\mathbf{8 1 5 4 B}$
$\mathbf{8 1 5 4 S}$ £1,195.00 $£ 1,195^{.00}$

Wirelessworld

over 70 years in independent electronics publishing

May 1986
Volume 92
Number 1603

FEATURES

New directions for marine d/f
by J.D. Last
Despite the growth of modern
navaids, radio direction finding is
still in common use.

6800 hoard-5

by R.F. Coates
To conclude this series, a selection of programming examples.

Eprom programmer for the

Apple II

by P.B. Unstead and A.

Blunden

Expanding the Apple: the second in
a series of lab. interfaces.

An introduction to 3D graphics

by H.W. Gleaves
Using microcomputer Basic to produce "three dimensional" images in perspective.

Fibre Optics '86

If you think fibre optics is not for you, this event might surprise you.

Senstivity analysis

by J. Lidgey
Generally used for filter analysis, the technique is just as valid in many other branches of electronics.

Timing by remote control

by P. Ferris

Self-contained, microprocessorcontrolled timer for up to eight appliances, with 100 on-off settings.

Measuring tape speed

by M.E. Theaker
A simple and accurate method of ensuring the correct speed of cassette tapes.

10bit digltal recorder

by T. Loughlin

Using modern data-conversion i.cs,
very low-frequency analogue signals can be recorded on tape with high accuracy.

Special Offer

A battery-backed, real-time clock/calendar with a 64 Kbit , non-volatile ram at a special price of $£ 35$. It will hold data for ten years and keeps track of hundredths of seconds, tenths, seconds, minutes, hours, days, date and year in computer or controller applications. A description appears on p.27.

REGULARS

News 6	Communications 31.	Whalesswords
Radio data next year	commentary	
Digitally assisted television	Jamming	\% ${ }^{2}$
IBA planning satellite	Space outlook	
service	Thermionics	mom
Feedback 21		asermom
Von Neumann	Circuit ideas T.t.1.-to-cmos line driver	
Black boxes XY plotter	T.t.1.-to-c Development interface	
Electrolytics and	Quad switch as SR latch	
distortion	New products 60,67	Front cover shows examples of "30" graphics provided by H.W. Gleaves and described in his article starting on p.35.

Editor
PHILIP DARRINGTON
Deputy Editor
GEOFFREY SHORTER, B.S
01 -661 8639
Technical Editor
MARTIN ECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039 or 8637 (lab.)
News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager ROGER GOODMAN
01-661 8690
BETTY PALMER
Advertisement Manager ASHLEY WALLIS
01-661 3130
MICHAEL DOWNING
01-661 8640
Northern and Midland Sales BASIL McGOWAN 021-356 4838

Classified Executive
SUSAN PLATTS
01-661 3033
Advertising Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Electronics \& Wireless World
is published monthly
USPS NO 687-540
Current issue price 95p. back issues (if available) £1.06, at Retail and Trade Counter, Units $18: 2$, Bankside Industrial Centre. Hopton Street, London SE1. Tel. 01-928 3567
Available on microfilm; contact editor.
By post, current issue $£ 1.30$. back issues (if available) $£ 1.40$, order and payments to EEP Sundry Sales Dept, Quadrant House, The Quadrant. Sutton. Surrey SM2 5AS. Tel. 01-6ib 3378.
Editorial \& Advertising offices: Quadrant House, The Quadrant. Sutton. Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-661 3130 01-6618469 Telex: 892084 BISPRS G (EEP) Facsimile: 01-661 2071 (Groups II \& III) Beeline: 01-661 8978 or 01-661 8986. 300 baud. 7 data bits, even parity, one stop-bit. Type control-Q, then EWW to start; NNN. to sign off
Subscription rates: 1 year $£ 18 \mathrm{CK}$ and $£ 23$ outside CK.
Student rates: 1 year $211.40 \mathrm{U}^{\mathrm{K}} \mathrm{K}$ and £14.10 outside LK
Distribution: Quadrant llouse. Th Quadrant, Sutton, Surev SME $\overline{\mathrm{S}} \mathrm{A} \mathrm{S}$ Telephone 01-661 3248.
Subscriptions: Oakfield House Perrymount Road, Haywards Heath, Sussex RH16 3D)H. Telephone: $014+4$ 54188 . Please notify a change of address US.A: $\$ 49.40$ surface mail. $\$ 102.60$ aimail. Business Press International (USA). Subscriptions Office. 205 E. 4?nd Street. NY 10117.
Overseas advertising agents
France and Belgium: Pierre Mussard, 18 - 20 Place de la Madeleine. Paris 75008. United States of America: Jay
Feinman. Business Press International Lid. 205 East 42nd Street, New York, NY' 10017 - Telephone (212) $867 \cdot 2080$ - Telex: 23827.

ISA mailing agents: Expediters of the Printed Word L.td. 51.5 Madison Avenue, Suite 917, New York, NY 10022 , 2nd class postage paid at Ne'w York. lostmaster - send address to the above.
© Business Press International Ltd 1986 ISBN 004.3 6062?

CIRCLE 51 FOR FURTHER DETAILS.

CIRCLE 48 FOR FURTHER DETAILS.

CONTACT MULTIPOWER

 FOR: LINEAR POWER SUPPLIES DC TO AC INVERTERS UNINTERRUPTIBLE PLUs IEEE PROGRAMMABLEPSUs MULTIPOWER Electronics Ltd. 01-668289826 CHIPSTEAD VALLEY RD, COULSDON CR 3RG TWX 926395 CIRCLE 78 FOR FURTHER DETAILS.

This is just a sample of our huge inventory - contact us with your requirements.

OSCILLOSCOPES

Hewlett Packard		
Tektronix		
212	Miniscope 500 KHz	£350
2445	150MHz 4 Channel Scope	£2475
465B/OM44	100 MHz Scope DMM	£2000
465B	100 MHz Scope	£1450
475A	200MHzScope	£2350
475	150 MHz Scope	£2000
475A/DM44	200) MHz Scope/DMM	$£ 2750$
485	350 MHz Scope	£4950
634 opt 1,20	Display Monitor	¢750
7603	100 MHz Mainframe	£1950
7704A	200MHz Mainframe	£2850
7854	WaveformProcessing Mainframe	£11000
7904	500 MHz Mainframe	E6850
A large selection of 7000 series plug-ins available at up to 60\% saving on list. Please call for quotations.		
ANALOGUE METERS		
Fluke		
B87AB	Differential Voltmeter	£850
9318	Differential Voltmeter	£750
Marconi		
TF 2603	RF Milivoltmeter	£550
ANALYSERS		
Anritsu		
MS 628	Spectrum Analyser $10 \mathrm{KHz}-1700 \mathrm{MHz}$	¢7250
Hewlett Packard		
332A	Distortion Analyser	¢600
1615A	Logic Analyser	$¢ 950$
8903A opt 01	Modulation Analyser	¢4800
$182 T+8559 A$	Spectrum Analyser	$¢ 9350$
3582A	Spectrum Analyser	¢7750
Marconi		
TF 2330A	Wave Analyser	¢850
TF 2337A	Automatic Distortion Meter	¢450
TF 23003	Modulation Meter	$¢ 950$
TF 2809	Data Line Analyser	¢650
Radiometer		
BKF 10	Automatic Distortion Analyser + REC61 Plotter	E150
Thandar		
Tektronix		
308	Data Analyser	£1750
WM 4905	Mixer Set(491/492) New	¢6000

Marconi Instruments

Analogue/Digital Station MINT CONDITION OUR PRICE $£ 59,950$

SIGNAL SOURCES

Hewlett Packard
214 A
8007 B
8007 B
8011 A
8015 A opt 02
8616 A
$86260 A$
86908

86908	S
4204 A	D
3314 A opt 01	F
3325 A	

$3314 A$ opt 01	FigitatiOsclllator
Funcion Generator	
3325A	
Marconi	FunctionGenerator
TF2002B	AMIFM SignalGenerator

TF 2002B	AM/FM Signai Generator
TF 2006	AM/FM Signal Generator

£1950

Wavetek
 166

186
185
18

TEKTRONIX \mathbf{G}.

TEKTRONIX G.P.T.E.
ENORMOUS SAVINGS - NEW LOW PRICES - SAVE UP TO 80\%

AM 501	Op. Amp.	E75
DC503	Counter	E75
DC504 opt 01	Counter	E95
DC508	Counter	¢125
DC 508A	Counter	¢500
DD 501	Digital ${ }^{\text {Delay }}$	¢300
DM 501 opt 02	Digital Multimeter	¢75
DM 502A opt 02	Digital Multimeter	E100
FG501	Function Generator	E95
FG 502	Function Generator	£150

$$
\begin{aligned}
& \text { ATHTOUCHMDiAS } \\
& \text { 6THETIIR }
\end{aligned}
$$

All prices are exclusive of VAT and correct at time of going to press © Carriage and packing charges extra© A copy of our trading conditions is available on request
$0 \Rightarrow$ 号 Fectronic Brokersi 总

LOW COST C.A.D.

ATTENTION ALL ELECTRONICS CIRCUIT DESIGNERS!!
 IBM PC, BBC MODEL B and SPECTRUM 48K

ANALYSER I and II compute the A.C. FREQUENCY RESPONSE of linear (analogue) circuits. GAIN and PHASE, INPUT IMPEDANCE OUTPUT IMPEDANCE and GROUP DELAY (except Spectrum version) are calculated over any frequency range required. The programs are in use regularly for frequencies between 0.1 Hz to 1.2 GHz . The effects on performance of MODIFICATIONS to both circuit and component values can be speedily evaluated
Circuits containing any combination of RESISTORS, CAPACITORS NDUCTORS, TRANSFORMERS, BIPOLAR AND FIELD EFFECT TRANSISTORS and OPERATIONAL AMPLIFIERS can be simulated up to 60 nodes and 180 components (IBM version).
Ideal for the analysis of ACTIVE and PASSIVE FILTER CIRCUITS, AUDIO AMPLIFIERS, LOUDSPEAKER CROSS-OVER NETWORKS WIDE-BAND AMPLIFIERS, TUNED R.F. AMPLIFIERS, AERIAL MATCHING NETWORKS, TV I.F. and CHROMA FILTER CIRCUITS LINEAR INTEGRATED CIRCUITS etc
STABILITY CRITERIA AND OSCILLATOR CIRCUITS can be evaluated by "breaking the loop'
Tabular output on Analyser I. Full graphical output, increased circuit size and active component library facilities on Analyser II
Chock out your new designs in minutes rather than days
ANALYSER can greatly reduce or even eliminate the need to breadbord new designs.
Full AFTER SALES SERVICE with TELEPHONE QUERY HOT LINE and FREE update service.
Used by INDUSTRIAL, GOVERNMENT, and UNIVERSITY R \& D DEPARTMENTS worldwide. IDEAL FOR TRAINING COURSES. VERY EASY TO USE. Prices from $£ 20$ - £ 195 .

DRAUGHTING

 BBC MODEL B"DRAWERI" enables quality drawings to be created, and modified, quickly, easily and with the minimum of hardware. Positional input is by standard joystick. All of the major mprogram elements are written in machine code giving exceptional speed of operation.

features

is Rubber Banding for drawing lines.
Is Solid or Dotted lines types.
\& Circles, arcs and partial or complete elipses.
Vertical or Horizontal Text.
at Pan and Zoom.
Merging of drawings and library symbols from disc.
s. Snap to a user defined grid.

Absolute or Relative cursor co-ordinates
displayed on screen.
\therefore Output to standard dot matrix printer \& price - $£ 45$ ex VAT.
\qquad

For further details please write or phone quoting Dept W.W.

[^0]Telephone: St Ives (0480) 61778

MIMUM HARDWARE REQUIRE
\Rightarrow BBC Model B.
is Single or Dual Disc Orive -40 or 80 track.
मे T.V. or monitor
म G Games Joystick with "fire button"

- Dot Matrix Printer (Epson 80 series of Epson compatible - BBC defautt mode preferable).

ELECTRONICS LTD. Telephone $01-943$ Used test equipment and computer specialist

CIRCLE 77 FOR FURTHER DETAILS.

QuadrantPicture Library

Over a million photographs and transparencies from the turn of the century to the present day; cutaway drawings and illustrations; colour prints of civil and military aircraft; directories from the early 1800 s and much more besides for advertising and PR agencies, authors, publishers, TV programmers and solicitors. Interested? Then write or telephone QPL at
Quadrant House, The Quadrant, Sutton,
Surrey SM2 5AS (Tel: 01-661 3427/8).

MEMORIES

WITH free

0707280228 PIN LOW PROFILE SOCKET

DEvICE	PRICE	DEVICE	PRICE
2532-30	4.50	4116-15	1.50
2532-45	4.20	4116-20	1.20
2716-35	3.45	4164-15	1.40
2716-45	2.95	4532-20	1.83
2732-25	5.95	4564-15	4.33
2732-35	5.45	6116 LP3	1.99
2732-45	4.50	8118	1.92
2764-25	1.85	81256-15	2.95
27128-25	2.50	8264-12	2.45
27256-25	6.15		

COMPONENTS

PART NO. PROCESSORS \& PERIPHERALS 6502
6502A
6520
8520A
6522
6522A
6532
6532A
6551
HC CMOS
74HC00N
74 HCO 02 N
74HC03N
74HC04N 74HC08N 74HCl07N 74HCl09N 74HCl0N 74HCl12N LS ITL
74ISOON 74LSION 74ISO2N 74LS03N 74LS04N 74LS05N 74LS08N 74LS09N 74LSION

1 + PRICE
4.60
5.60
3.25
3.85
4.18
7.28
4.9
5.4
5.90
0.38

0.487

74F08PC
74F109PC
74F11PC
74F139PC
74F151
FERRANTI DATA CONVERTERS

ZN404

ZN423
ZN425E-8
ZN425J-8
AN426E-8
ZN427E-8
ZN427]-8
ZN428E-8
ZN428J-8
$1+$ PRICE
000 CMO
4000
0.40

4002
0.32
0.32

4006
1.02

008
0.79
$4010 \quad 0.76$
4011
0.76
0.32

AIRCHLLD FAST
F00PC .61
$\begin{array}{ll} & 0.61 \\ & 0.61\end{array}$.61

61

61

 54

All prices exclude VAT and carriage and are subject to stock availability.

NEWS COMMENTARY

 Radiodata to hegin next yearFrom the autumn of next year programme-labelling data will be carried by all BBC f.m. radio stations in England. The extra signals will make possible the development of push button radio sets with fully automatic tuning. This, the BBC hopes, will put an end to the increasing difficulty many listeners have in finding the stations they want.
In the initial phase, to begin in September 1987, the new Radio Data Signalling (RDS) transmissions will carry five items of information:

- a programme identification code, very frequently repeated. which uniquely identifies the transmitting station: this helps the receiver to find the service chosen by the user and to select the strongest signal.
- a programme service code, a label of up to eight characters which could be displayed on the receiver (e.g. "BBC YORK') or passed to a voice synthesizer.
- a list of alternative frequencies for the same service: with car radios, for example, this could speed up the retuning process on passing from one transmission area to another. Where networks are split between wavebands, the list could include l.f. and m.f. stations.
- 'other network' information to allow, say, automatic switching to another station when a traffic announcement is to be broadcast.
- clock time and date.

These features are cheap to implement, says the $B B C$ because they require no editorial input by the broadcaster.
But if RIDS is a success with audiences, a range of other services could be added later. These might include a text block of up to $64+$ characters to carry programme details. phone-in numbers, newsflashes or even advertisements; identification codes for individual programmes; and a telex-like text channel for downloading programme factsheets or computer data.
The BBC's RDS transmissions meet a specification laid down by the European Broad-

The radio jungle to the west of London: stations shown below the diagram have yet to make their appearance. RDS will bring in the ones you want by tuning and retuning the set automatically.
casting Union after a decade of technical work and inter national discussion. And this month the system is expected to be adopted as a world standard by the CCIR.
The data stream, at 1187.5 $\mathrm{bit} / \mathrm{s}$, is carried at 57 kHz with a deviation of $1-2 \mathrm{kHz}$ of the main f.m. carrier. It can coexist with mono or stereo programmes and with most existing subcarriers offered by broadcasters, although some 57 kHz systems in the USA would need to move to accommodate it. However, the MBS radio-paging system used in Sweden is now being changed to make it compatible with RDS.
Several European broadcasters are working on plans for RIDS, although at present only Sweden is running a service - an experimental operation on one channel only In Britain, the IBA carried out tests of RDS last year in the London area but has not yct decided to launch a service. N_{0} doubt the commercial broadcasters, as a loose federation of separate stations, have rather
less to gain from automatic tuning than a national broadcaster who carries the same programme on many frequencies.
The cost of self-tuning RDS sets will depend on whether i.c. makers are prepared to commit themselves to the system. But the BBC says the prospects for its success are good: a recent survey found that over 70% of adult listeners would be prepared to spend an extra $£ 15$ on a basic $£ 25$ portable set if it could have RIDS. And users of car radios are said to have found the idea of RDS especially attractive.

However, although several Japanese firms are said to be working on prototypes, there are no signs yet of a rush to launch RDS sets. And in Britain, Mullard tell us they have no plans at present to produce the necessary i.cs.
Full details of the RDS format are given in an EBU document, "Specification of the radio data system RDS for VHF/FM sound broadcasting' ${ }^{\prime}$ technical publication 3244/E.

In brief

Up to 2×109 bytes of information can be stored on both sides of a 12 in optical disc and 600 MB on a 4.75 in compact disc. Such discs are likely to have a similar impact on information technology as the microcomputer, according to a report from the US Technical Information Service. The report includes a detailed assessment of optical disc technology and is available in the UK from Microinfo Ltd, Alton, Hants.

Kef Electronics, makers of loudspeakers, are to have a new head of research in the person of Dr Richard Small, who has left his post as a senior lecturer in the University of Sydney. He is the author of Direct radiator electrodynamic loudspeaker systems, which has been reprinted four times and received a Silver Medal award from the AES.

Digital assistance for tv signals

Experiments at BBC's Research Department have produced a system for transmitting analogue picture signals along with high datarate digital signals carrying control or supplementary information about the picture. One application of this Digitally-assisted tv (DATv) could be to reduce the bandwidth of high-definition tv so that it can be accommodated within a single DBS channel, previously planned for 625 -line tv services. DATV is a bandwidth compression technique intended for use with high quality tv signals. The digital control signals assist in the reconstruction of the picture without degradation. One example of the use of the digital
component is to carry information about which parts of the picture are static and which are moving. It is possible to repeat the static information and only transmit the changing part of the picture. Such techniques are common in bandwidth-saving exercises, but the Datv experiments have shown that it is possible to apply them to HDTV with a bandwidth reduction by a factor of between two and four.
Another example is the reconstruction of a sequentially-scanned picture where, to save bandwidth in transmission, the signal has been converted from sequential to interlaced scanning.
DATV can also be used to improve the performance of

625 -line tv systems which have associated digital capacity, such as the $\mathrm{MAC} /$ packet family of transmission standards. However this use restricts the freedom to exploit the full potential of DATV compared with its use to facilitate the transmission of HDTV systems using more than 1000 lines.
Charles Sandbank, deputy director of research said:
"DATV is a powerful technique for squeezing HDTV signals through the bottleneck of transmission channels, using the sort of technology that will be available in our homes in the 1990's. I am confident that it will play an important role in establishing a European broadcasting strategy for hDTV."

Light at the end of the tunnel?

The Council of the Electronic Components Industry Federation (ECIF) reported recently that their industry seems to be pulling out of the recession. Most sectors reported encouraging signs. In paticular the semi-conductor manufacturers noticed an increase in demand; enquiries for application-specific i.cs particularly were encouraging. The council thought that leadtimes might soon lengthen but warned that another 'boom and bust' cycle was in nobody's interest and if it
were to be avoided, equipment manufacturers must recognise that the 'supply tap' cannot be turned on and off rapidly, and that ordering must be planned accordingly. The ECIF were seeking urgent talks on this with customer trade associations.
It was agreed that glimmers of light were appearing at the end of the tunnel, and the council concluded that overall prospects were for a significantly better 1986 than 1985.

After Alvey

The Information Technology (1986) Committee has been formed to look into ways of preserving and maintaining the momentum generated by the Alvey programme. Sir Austin Bide, chairman of British Leyland and former chairman of Glaxo is heading a committee drawn from the IT industry, IT users and academics. The new committee has been organized by Sir Robert Telford, chairman of the Alvey steering committee. A major task for the committee is to establish a proper balance between national and European efforts including the UK relationship with Esprit, Eureka and Race
The Committee is to report its findings by October 1st.

A good idea? Patent it!
All too often, says the Chartered Institute of Patent Agents, adequate safeguards are not taken to prevent ideas being poached by others, and many entrepreneurs come unstuck in the race to get their idea to the marketplace. The most common mistake is to tell others about the idea before asking for professional advice, only to find that as a result all hope of protection has then been lost.
Manufacturers are well aware of the legal wrangles which can follow discussions of purveyors of unprotected ideas and many will refuse to negotiate with inventors until the proper legal protection has been applied for.
To counter these problems the Institute has launched a campaign to help inventors and entrepreneurs bring their ideas safely into fruition. A working party of patent agents and financiers is looking into the whole area of invention, and the funding of projects in their early stages.
Patent agents believe they must promote a better understanding of the forms of legal protection available for new ideas and of the registration systems involved. They have issued free leaflets as introductory guides to patents, trade marks and registered trade marks, design registration and design copyright, and service marks for service businesses. Available from the Chai iered Institute of Patent Agents, Staples Inn Buildings, London WC1V 7PZ.

WALLCHART OF FREQUENCY ALLOCATIONS

[^1]
Electron heam writing on GaAs

At its base in Towcester, Plessey 3-5 Group is installing a Cambridge Instruments EBMF 10.5 electron-beam tool. This will enable the consistent production writing of gate lengths down to $0.2 \mu \mathrm{~m}$ on gallium arsenide metal semiconductor field-effect transistors (MESFETS). The first product to benefit from this abilty will be a 40 GHz MESFET currently under development. Direct writing of features on monolithic
microwave i.cs will also be possible.
The equipment allows the fabrication of fine geometries by a highly focussed beam of electrons to expose a specially formulated resist, thus reducing the size of the features compared with that previously possible with photolithographic techniques. Computer control provides a high degree of automation.
Such short gate lengths wil not only lead to higher
frequency devices but also improve the signal/noise performance of current MESFETS at frequencies down to X-Band.
Microwave power devices will also benefit; large device structures can have total gate widths of several centimeters and gate lengths of $1 \mu \mathrm{~m}$. Such devices are used in phasedarray radars and as solid-state replacements of travelling wave guide tubes.

Knowledge hase for Esprit

A five-year project, funded by the European Esprit programme, is to be undertaken on research into knowledge-based systems. Such systems are one aspect of 'artificial intelligence' research. They acquire knowledge from experts in a specific field; combine this with codes of practice and/or other rules and regulations, and then programme a computer to analyse and give
a prognosis based on the acquired knowledge. One successful example has been used in medical diagnosis.
The software required is intrinsically different from conventional programs. In order to apply it effectively in industry, a better understanding of the methods and techniques for building such systems is needed. Ways of applying the disciplines of software engineering in this
new area need to be found. This could also reflect back by providing insights into writing more conventional software.
The work should be of interest to all researchers in providing a better understanding of the way such systems operate. It should also provide modes of operation in applying similar techniques to new areas and for increasingly complex applications.

The work is to be led by STC.

Britain dominates the comms RACE

Yet another European acronym to go alongside Esprit and Eureka is Race; Research in Advanced Communications for Europe.
The European Commission has announced details of contracts to be awarded and Geoffrey Pattie, IT minister, is very proud that: "there are more British participants than there are from any other member state. Of the 192 participanto, 52 are British. British enterprises are leaders in 14 of the 32 successful consortia and there is a British presence in 26. This shows that Britain is ready, willing and able to take a leading part in colaborative research in Europe, which is important both for Europe and for British companies."
The aim of the Race programme is to establish a strong Community
manufacturing industry in broadband communications and to accelerate the emergence of a viable and
competitive Community market for telecommunications equipment into the next century.

IBA plans DBS service

The Independent Broadcasting Authority if proceeding with plans to persuade contractors to provide up to three direct-broadcasting-by-satellite channels. This follows the bringing into action of sections 37 to 41 of the Cable and Broadcasting Act which provide for the contractors to make the financial and other arrangements for the provision of satellite transponders, subject to the specification of the IBA, which as broadcaster will be responsible for ensuring that the services are of high quality.

John Witney, IBA's director general, warmly welcomed the opportunity to provide additional services; "After much discussion as to how DBS could be introduced to the UK, we are enthusiastic at the prospect. We shall be proceeding with all speed while aiming to ensure that the firmest possible basis is laid."
The service, if suitable contractors are found, could be broadcasting by 1990. It is likely to be funded by advertising and/or subscription.

In brief

We have received bitter complaints from manufacturers of modems who are frustrated by the red tape and delays in getting BATB approval for their equipment. Nazir Jessa of Watford Electronics points out the Catch-22 situation that he is caught in with Watfords Le Modem: "If I wait for approval before I put Le Modem on sale, I could find that the technology is out of date. Alternatively I could sell (am selling) the modem without approval and risk customer disatisfaction."
According to Nazir the situation is made more ridiculous because the device is constructed from BT approved components and is actually being offered with a three-month free subscription to Micronet, partly owned by BT.
Similarly vociferous is Barry Krite of DataStar Systems, distributors of the Magic Modem: "BT's marketing policy supposes that modems without BATB approval are potentially dangerous, despite the fact that they themselves sell modems without approval. Until our modem is approved, customers such as government depatments and schools, who are obliged to buy approved products, can't by the Magic Modem." Barry is even more frustrated with the knowledge that the modem has been successfully tested in the BT labs but is still awaiting official approval.

Ceefax, BBC's teletext service is now using six lines in the tv signal compared with the four in previous use. This speeds up the time it takes for the required page to come round. The improvement is the result of the new computer equipment which also increases the efficiency of the system by taking over some of the 'housekeeping' tasks from the contributing journalists. There has also been improvement in the subtitling service: it is now possible to transmit subtitles on both channels simultaneously. The teletext signals are now generated at the point of programme origin, bypassing the Ceefax computers.

ANALOGUE METERS

LEVELL AC MICROVOLTMETERS TM3A/B £159/179 16 ranges $15 \mu \mathrm{Vfs} / 500 \mathrm{Vfs}$, accuracy $1 \%+1 \% \mathrm{fs}+1 \mu \mathrm{~V}$. $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ scale. $\pm 3 \mathrm{~dB} 1 \mathrm{~Hz}-3 \mathrm{MHz} .150 \mathrm{mVfs}$ output. TM 3 : 83 mm scale. TM3B: 123 mm scale and LF fiter.

LEVELL BROADBAND VOLTMETERS TM6A/B£249/279 16 LF ranges as $\mathrm{TM} 3 \mathrm{~A} / \mathrm{B}+8 \mathrm{HF}$ ranges $1 \mathrm{mVfs} / 3 \mathrm{Vfs}$. accuracy $4 \%+1 \%$ fs at 30 MHz . $\pm 3 \mathrm{~dB} 300 \mathrm{kHz}-400 \mathrm{MHz}$

LEVELL DC MICROVOLTMETER TM8
£135 28 linear ranges $\pm 3 \mu \mathrm{~V} / \pm 300 \mathrm{~V}$ and $\pm 3 \mathrm{pA} / \pm 300 \mathrm{nA}$ plus 2 log ranges for nulling. Outpun $\pm 300 \mathrm{mv}$ at fs .
LEVELL MULTITESTER TM11
£179
$50 \mu \mathrm{~V} / 500 \mathrm{Vfs}$ ac, $50 \mathrm{pA} / 500 \mathrm{mAfs}$ ac, $150 \mathrm{u} / 500 \mathrm{Vfs}$ dc. $150 \mathrm{pA} / 500 \mathrm{mAfs} \mathrm{dc}, 0.2 \Omega$ to $100 \mathrm{G} \Omega$. lin/log nuil Diode/LED test. Optional RF, HV and Temperature.

LEVELL TRANSISTOR TESTER TM12 £199 Transistor, diode and zener leakage to 0.5 nA at $2 \mathrm{~V}-150 \mathrm{~V}$ Breakdown to 100 V at $10 \mathrm{MA}, 100 \mathrm{AA}, 1 \mathrm{~mA}$. Gain at $1_{\mu A}-100 \mathrm{~mA}$. $V_{\text {sat }}$ and $V_{\text {be }}$ at $1 \mathrm{~mA}-100 \mathrm{~mA}$

LEVELL INSULATION TESTER TM14 €220 Log scale covers 6 decades $10 \mathrm{M} \Omega-10 \mathrm{~T} \Omega$ at $250 \mathrm{~V}, 500 \mathrm{~V}$ 750 V . $1 \mathrm{kV} ; 1 \mathrm{M}-1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}-100 \mathrm{~V}$; $100 \mathrm{k}-100 \mathrm{G} \Omega$ at 2.5 V 10V: $10 \mathrm{k}-10 \mathrm{G} \Omega$ at 1 V . Current $100 \mathrm{pA}-100 \mathrm{HA}$.

DIGITAL METERS

LEVELL DIGITAL THERMOMETER DT1K
$-120^{\circ} \mathrm{C} /+820^{\circ} \mathrm{C}$, acc $0.2 \% \pm 1^{\circ} \mathrm{C} .3$ digit 8.5 mm LCD A standard Type K thermocouple socket is fitted. Bead couple is supplied. Battery life $>3000 \mathrm{hrs}$.

LEVELL DGGITAL CAPACITANCE METER 7705
£49 $0.1 \mathrm{pF}-2000 \mathrm{\mu F}$, acc 0.5%. $31 / 2$ digit 12.7 mm LCD

THURLBY DHGITAL CAPACITANCE METER CM200 £89 1 pF to $2500 \mu \mathrm{~F}$, acc 0.2%. $41 / 2$ digit 9 mm LCD. Fast settling. 3 readings per second. Mains/battery

HC DVGITAL MULTMMETERS HC5040/5040T £37/39 $31 / 2$ digit 12.7 mm LCD. Up to 1 kVdc , 750 Vac , $10 \mathrm{~A}, 20 \mathrm{M} \Omega$. Resolution $100 \mu \mathrm{~V}, 100 \mathrm{nA}, 10 \mathrm{~m} \Omega$ (5040T: $100 \mathrm{~m} \Omega$). Buzzer. dcV 0.25%. Battery life 2000hrs. 5040T: has a TR test.

THURLBY DMMs 1503/1503HAN1504 £169/185/199 $43 / 4$ digit 9 mm LCD. Up to $1.2 \mathrm{kVdc}, 750 \mathrm{Vac}, 10 \mathrm{~A}, 32 \mathrm{M} \Omega$. 4 MHz . Resoln. $10 \mu \mathrm{~V}$. $10 \mathrm{nA}, 10 \mathrm{~m} \Omega$. Mains / bartery. 1503: dcV 0.05%. 1503HA: 0.03%. 1504: True ms ac.
THURLBY INTELLGENT MULTMETER 1905a E349 $51 / 2$ digit 13 mm LED. Up to $1.1 \mathrm{kVdc}, 750 \mathrm{Vac}, 5 \mathrm{~A}, 21 \mathrm{M} \Omega$. Resoln. $1 \mu \mathrm{~V}, 1 \mathrm{nA}, 1 \mathrm{~m} \Omega$. dcV 0.015%. Computing and storage functions. RS232/IEEE interface options.

COUNTERS \& OSCILLATORS

COUNTERS MET 100/600/1000/1500 £99/126/175/199 8 digit O.5" LED. 5 Hz up to $100 / 600 / 1000 / 1500 \mathrm{MHz}$. Resolves 0.1 Hz . Sensitivity 5 mV up to 10 MHz . Low pass fither. Mains/rechargeabie battery powered.

LEVELL FUNCTION GENERATORS TG302/3 £136/236 $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$ in 7 ranges. Sine, square, triangle, pulse and ramp 20 mV to 20 Vpp from 50 S. OC offset $\mathrm{O} / \pm 10 \mathrm{~V}$. TL output. TG303 atso has a CMOS output and 6 digit 10 MHz counter with INT/EXT switch.
LEVEL RC OSCMLATORS TG1520/DM
£99/125 $3 \mathrm{~Hz}-300 \mathrm{kHz}$. 5 ranges, acc $2 \%+0.1 \mathrm{~Hz}$ up to 100 kHz , 3% at 300 kHz . Sine or square $<200 \mathrm{~V}$ to 2.5 Vms . Distn. $<0.2 \% 50 \mathrm{~Hz}-50 \mathrm{kHz}$. TG1520M has an output meter.

LEVELL RC OSCILLATORS TGZOOD/DMP $£ 139 / 175$ $1 \mathrm{~Hz}-1 \mathrm{MHz} .12$ ranges, acc $1.5 \%+0.01 \mathrm{~Hz}$ to $100 \mathrm{kHz}, 2 \%$ at 1 MHz . Sine or square outputs $<200 \mathrm{HV}-7 \mathrm{~V}$ ms. Distortion $<0.05 \% \quad 50 \mathrm{~Hz} \cdot 15 \mathrm{kHz}$. Sync output $>1 \mathrm{~V}$. TG200DMP has oulput meter and fine frequency control.

LEVELL DECADE OSCILLATOR TG66A
$£ 330$
$0.2 \mathrm{~Hz}-1.22 \mathrm{MHz}$. 5 ranges. 4 digits, acc 0.3% $6 \mathrm{~Hz} \cdot 100 \mathrm{kHz}$. Sine output $<30 \mu \mathrm{~V}-5 \mathrm{~V} \mathrm{~ms}$. $-2 \mathrm{~dB} /+4 \mathrm{~dB}$ and V scales. Distn. $<0.15 \% \quad 15 \mathrm{~Hz}-150 \mathrm{kHz}$. Mains/battery.

LEVELL

for INSTRUMENTS

LEVELL DECADE BOXES

C410 : 1OpF to 111, 110pF, acc $1 \% \pm 2 \mathrm{pF}$. £ 49 R401/410: 4 decs. 1Ω or 10Ω steps, acc 1%, 2.5W $£ 49$ R601/610: 6 decs. 1Ω or 10Ω steps, acc 1\%, 2.5W E 63 R601S : 6 decades. 1Ω steps, acc 0.3%, 2.5W $£ 75$ R701 : 7 decades. 1Ω steps, acc $1 \%, 2.5 \mathrm{~W} \quad$ E72

BENCH POWER SUPPLIES

THURLBY SINGLES PL154/310/320 E159/125/155 $0.5^{\prime \prime}$ LED digit meters, acc 0.1%, resoln. 10 mV .1 mA . $<0.01 \%$ change for 50% load change. Remote sense. 154: 0-15V 0-4A. 310: 0-30V 0-1A. 320: 0-30V 0-2A.

THURIBY DUALS PL3100MD/3200MD
£269/339 Two 0-30V 0-1A (2A on 320) with isolated, senies tracking, series or parallel modes of operation.
THURLBY TRIPLES PL310K/320K
f275/345
310K: $0-30 \mathrm{~V}$ at $0-1 \mathrm{~A}, 0-30 \mathrm{~V}$ at $1 / 2 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at $31 / 2 \mathrm{~A}$. 320K: $0-30 \mathrm{~V}$ at $0-2 \mathrm{~A}, 0-30 \mathrm{~V}$ at $1 \mathrm{~A} \& 4 \mathrm{~V}-6 \mathrm{~V}$ at 7 A .

CROTECH SINGLE TRACE 20MHz 3031/36 £ $195 / 216$ $2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{div}$. $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{div}$. Cal 0.2 V . Component test. 3031: CRT 1.5kV $5 \times 7 \mathrm{~cm}$. 3036 : CRT $1.8 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

CROTECH DUAL TRACE 2OMHz (@2mV) 3132 £ 285 2 mV -10V/cm. Ch $1 \pm \mathrm{Ch} 2$. X-Y mode. Cal 0.2 V 1 kHz sq. $40 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or $T V$ trig. Component comparator. DC outputs. Z input. CRT 2 kV $8 \times 10 \mathrm{~cm}$.

CROTECH DUAL 3OMHz (@5mV) 3337/39 £425/570 $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm} \mathrm{Ch} 1+\mathrm{Ch} 2$. Signal delay. $\mathrm{X}-\mathrm{Y}$ mode. $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Signal delay. $X-Y$ mode. 1 kHz square. Z input. CRT $10 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.
3339: VDU mode. Component tester. DC outputs.
HAMEG DUAL TRACE 2OMHz ($\mathrm{S}_{2} 2 \mathrm{mV}$) HM203-5 £270 $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. X-Y. Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz}$ sq. $20 \mathrm{~ns}-0.2 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Component test. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. Long decay CRT f 25 extra.

HAMEG DUAL TRACE 2OMHz (@5mV) HAR204-2 £365 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Sig delay. X-Y mode. Y out. $10 \mathrm{~ns}-1.25 \mathrm{~s} / \mathrm{cm}$. Sweep delay 100 ns 1 s . Cal $0.2 \mathrm{~V} / 2 \mathrm{~V} 1 \mathrm{kHz} / 1 \mathrm{MHz}$. Z input. Comp. test. CRT 2 kV $8 \times 10 \mathrm{~cm}$.

HAMEG DUAL TRACE 6OMHz (@5mV) HM605 $£ 515$ $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. Ch $2 \pm \mathrm{Ch} 1$. Sig delay. $X-Y$ mode. Y out $5 \mathrm{~ns}-2.5 \mathrm{~s} / \mathrm{cm}$. Sweep delay $100 \mathrm{~ns}-1 \mathrm{~s}$. Cal $0.2 \mathrm{~V} / 2 \mathrm{~V}$ $1 \mathrm{kHz} / 1 \mathrm{MHz}$. 2 input, Comp. test. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HAMEG DGGTAL STORAGE 20MHz HM208 £1300 $1 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}$. $\mathrm{Ch} 2 \pm \mathrm{Ch} 1$. Single shot and $X-Y$ modes. $20 \mathrm{~ns}-0.25 \mathrm{~s} / \mathrm{cm}$. 20 MHz sampling. Two 2 K memories. Plotter outpurt $0.1 \mathrm{~V} / \mathrm{cm}, 10 \mathrm{~s} / \mathrm{cm}$. CRT $14 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACHI BATTERY DUAL 20MHz (@5mV) V209 £680 $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{div}$. Ch $1 \pm \mathrm{Ch} 2$. X-Y mode. Cal 0.5 V 1 kHz . $50 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trig. Intemal rechargeable batt. or mains. CRT $1.5 \mathrm{kV} 5 \times 6.3 \mathrm{~mm}$.

HITACHI DUAL 2OMHz V212/222/223 £299/395/450 $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. 20 MHz at 5 mV . Ch $1 \pm \mathrm{Ch} 2$. X.Y. Ch1 output. $100 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. Auto, normal or TV trigger. Cal 0.5 V 1 kHz square. Z inpurt. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. V222. Pus DC offset and attemate magnify function. V223: As V222 pus sweep delay $1 \mu \mathrm{~s}-100 \mathrm{~ms}$.

HITACH DUAL 4OMHz (O5mV) V422/23 £580/650 As V 222 N 223 but $40 \mathrm{MHz}, 20 \mathrm{~ns} / \mathrm{cm}$ and 12 kV on CRT.

HTTACH TRAPLE GOMHz (@5mV) V650F £780
Ch1/Ch2: $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Trigger Ch3: $0.2 \mathrm{~V} / \mathrm{cm}$. Ch 1 output. Dual time bases $5 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $5 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$. Signal and sweep delay. CRT $10 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACH QUAD 100MHz (@5mV) V1050F £ 1095 $\mathrm{Ch} 1 / \mathrm{Ch} 2: ~ 0.5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Trigger $\mathrm{Ch} 3 / \mathrm{Ch} 4: 0.2 \mathrm{~V} / \mathrm{cm}$. Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~ns}-50 \mathrm{~ms} / \mathrm{cm}$. Signal and sweep delay. CRT $20 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACH QUAD 100MHz V1070/1100A £1580/2390 Ch1/Ch2: $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. CH3/Ch4: $0.1 \mathrm{~V}-0.5 \mathrm{~V} / \mathrm{cm}$. Dual time bases $2 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$ and $2 \mathrm{~ns} .50 \mathrm{~ms} / \mathrm{cm}$ Digital display of set values. CRT $18 \mathrm{kV} 8 \times 10 \mathrm{~cm}$. Digital display of set values. CRT $18 \mathrm{kV} 8 \times 10 \mathrm{c}$
V 1100 A : Digital display of ACV , DCV, frequency.

HTACH DGGTAL STORAGE 10MHz VC6015 £ 1350 $5 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm$ Ch2. Single shot and $X-Y$ modes. $100 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. 1 MHz sampling. Two 1 K memories. Plotter output $1 \mathrm{~V} / \mathrm{cm}, 5-10 \mathrm{~s} / \mathrm{cm}$. CRT $2 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

HITACHI DIGITAL STORAGE 4OMHz VC6041 £3850 $1 \mathrm{mV}-12 \mathrm{~V} / \mathrm{cm}$. Ch $1 \pm \mathrm{Ch} 2$. Single shot and $X-Y$ modes. $20 \mathrm{~ns}-0.5 \mathrm{~s} / \mathrm{cm}$. 40 MHz sampling. Two 4 K memories Plotter output $1 \mathrm{~V} / \mathrm{cm}, 2-10 \mathrm{~s} / \mathrm{cm}$. CRT $12 \mathrm{kV} 8 \times 10 \mathrm{~cm}$.

THURLBY 8 CHANNEL MULTIPLEXER OM358 £179 Increases any oscilloscope to 8 channels. Choice of trigger from any channel. Response $\mathrm{DC} \cdot 35 \mathrm{MHz}$.

LOGIC ANALYSERS

THURIBY LOGKC ANALYSERS LA 160A/B £395/495 16 data channels. Clock $D C-10 \mathrm{MHz}(20 \mathrm{MHz}$ for B). Binary, octal, decimal, or hex. formats. 2 K word acquisition memory. Non volatile ref memory.

SaRels 4300 SERIES SET THE STANDARD

- A range of small steel enclosures enabling smaller installations to be completed with ease.
- Optional plain or glazed door with locking variations are available ex stock.
\square Split design permits mounting within the door as well as on the standard backplate.
虚 4300 Series is strong and gives good protection against dust and liquids.Attractive epoxy powder paint finish.

CIRCLE 33 FOR FURTHER DETAILS

STEWART OF READING Telephone: 073468041 Exd 110 WYKEHAW ROAD, READING, BERKS RG6 1PL

CIRCLE 50 FOR FURTHER DETAILS

CROSSWARE

FULLY SUPPORTED QUALITY SOFTWARE

As exhibited at MDS '86

Is it really possible to use the BBC micro and a single disc drive to assemble more than 4 megabytes of source code?
Yes... if you're using one of our XR-series cross-assemblers and making full use of local labels.
But there is more to our software than that. So much more in fact that we will send you a free comprehensive data sheet to tell you about it.
Since 1984, industry has been using our cross-assemblers to develop applications ranging from defence systems to software for the Amstrad; and education has found them an ideal aid for teaching microprocessor system development
They are available immediately from stock and are supplied on 16 k ROMs, each with one or more utilities discs. They're Econet compatible and run on any model B or B+ fitted with Basic II and a 1.20 or later operating system

Order Code	Target Processors	Price
6801XR	6800,6801,6802,6301...6301X	£48.00
6805XR	6805,146805,6305	£48.00
6809XR	6809 family	£48.00
8085XR	8085,8080A	£48.00
280XR	280, HD64180	£48.00
68000×R	68000,68008	£56.00
65C02XR	65C02, 65SC02, 6502	£38.00

Further information from:
(prices exclude VAT)
CROSSWARE PRODUCTS
2 The Lawns. Melbourn, Royston, Herts SG8 6BA
Telephone: 076361539

CIRCLE 16 FOR FURTHER DETAILS.

RESEARCH COMMUNICATIONS LTD.
UNIT 3, DANE JOHN WORKS, GORDON ROAD, CANTERBURY, KENT CT1 3PP TELEPHONE: CANTERBURY (0227) 456489

GASFET RF PREAMPLIFIERS. Aligned to your specified frequency in the range $30-1000 \mathrm{MHz}$. Masthead or local use
TYPE 9006 N.F. 0.6 dB . Gain $10-40 \mathrm{~dB}$. variable. In the range $30-250 \mathrm{MHz} \ldots \varepsilon 65+\varepsilon 2 \mathrm{p} \& \mathrm{p}$
 TYPE 9002 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain 25 dB . adjustable. High Q filter. TunTYPE 9004 UHF two stage Gastet preamplifier. N. f .0 .7 dB . Gain 25 dB adjustable. High Q filter. Aligned to your specified frequency in the range $250-700 \mathrm{MHz} \ldots \ldots$ TYPE 9035 Mains power supply for above units $4.50+\varepsilon 3 p \& p$ TYPE 9035 Mains power supply for above unitsi.................................... $50+\varepsilon 2 \mathrm{p}$ p\&p

TYPE 8034

TYPE 8034 PHASE LOCKED SIGNAL SOURCE using low frequency reference crysta Specify output in the range $1-600 \mathrm{MHz}$. Output 10 mW . +10 dBm
TYPE 9182 FM EXCITER $\pm 75 \mathrm{KHz}$. deviation. Output 10 mW
c99.50 $+£ 2 \mathrm{p} \mathrm{\& p}$ $£ 205+\varepsilon 5 p \& p$ TYPE 9086 FM TRANSMITTER $88-108 \mathrm{MHz} .50$ watts RF output. 24 V + supply. Complete modular systel! $\mathrm{c} 800+£ 40 \mathrm{p} \& \mathrm{p}$ TYPE 9087 As above with integral mains power supply unit

TYPE 9152
TYPE 9159
TELEVISION LINEAR POWER AMPLIFIERS Tuned to your specified channels in bands IV or V. (or $400-900 \mathrm{MHz}$).

TYPE 9261150 mV . input, 20 mW output. TYPE 925220 mW . input, I watt output. TYPE 92591 watt input, 8 watts output.
 $\varepsilon 210+\varepsilon 12 p \& \rho$
$£ 240+£ 12 p \& p$

TYPE 9051

TMOS WIDEBAND LINEAR POWER AMPLIFIERS $4 / 10 / 20$ watts RF output. Without tuning. Power gain $13 \mathrm{~dB} .(\times 20) .24 \mathrm{~V}+$ supply
TYPE $9046100 \mathrm{KHz},-100 \mathrm{MHz} .4$ watts
$\varepsilon 89.50+\varepsilon 3.50 \mathrm{p} \& \mathrm{p}$
TYPE $905115 \mathrm{MHz}-200 \mathrm{MHz} .4$ watts
TYPE $917115 \mathrm{MHz}-200 \mathrm{MHz} .10$ watts
TYPE 9172 As above with integral mains power supply unit
TYPE $917415 \mathrm{MHz}-200 \mathrm{MHz} .20$ watts

TYPE 9175 As above with integral mains power supply $50+\varepsilon 3.50 p 8 p$
$140+\varepsilon 20 p \& p$
$\varepsilon 210+\varepsilon 30 \mathrm{p} 8 \mathrm{p}$ $\varepsilon 255+\varepsilon 20 p \& p$
$\varepsilon 325+\varepsilon 30$ p\&p

TYPE 9155
TYPE 9157 TMOS RF LINEAR POWER AMPLIFIERS. Tuned to your specified frequency in the range $10-250 \mathrm{MHZ}$.
TYPE 910510 mW input, 1 watt output. 24 V . + supply...
$£ 190+£ 12 p \& p$
$£ 270+£ 15 p \& p$
TYPE 91551 watt input, 30 watts output. 24 V . + supply TYPE 9156 AS above with integral mains power supply unit.. $£ 30+£ 30$ p\&p TYPE 9106100 mW input, 10 watts output. 24 V . + supply. $£ 390+£ 30 p \& p$
$£ 195+£ 15 p \& p$ TYPE 91585 watts input, 80 watts output. 24 V . + supply $\varepsilon 370+£ 20 \mathrm{p} \& \mathrm{p}$ TYPE 9157 As above with integral mains power supply unit

CIRCLE 7 FOR FURTHER DETAILS.

Callers welcome
 by appointment
 SAE for LIST
 and enquiries

CIRCLE 38 FOR FURTHER DETAILS.

RF POWER
 U.S. supplier of RF POWER DEVICES. Query us for immediate needs.

A quality source for a complete range of RF POWER devices - From 230 MHz , SSB 12.5 V 728 V transistors $-14-30 \mathrm{MHz} \mathrm{CB} /$ AMATEUR 27-50 MHz , low band $\mathrm{FM}-66-88 \mathrm{MHz}$, mid band $F M-66-88 \mathrm{MHz}$, mid band FM $-156-162 \mathrm{MHz}$ VHF MARINE RADIO FM $-130-175 \mathrm{MHz} \mathrm{H}-$ BAND VHF FM $-108-152 \mathrm{MHz}$ VHF AIRCRAFT AM - $22540 \mathrm{MHZ} \mathrm{UHF} 28 \mathrm{~V}-$ 407 - 512 UHF CATV/MATV CLASS A linear transistors - A SMALL indication of types are listed below. SEND FOR OUR FREE BROCHURE AND/OR CONTACT FOR IMMEDIATE QUOTES.

MRF450|MRF453 MRF646|BLY88A BLY90|BLY93A 2N3553 .2N4933 .2N5109 .2N3375 .2N5016 ..589 2N4128 .2N5070 .2N5591 .2N6080 .2N4427 .2N5090 .2N5634 .2N6083 .2N4431 .2N5102 .2N5918 .2N6084

TIL Semiconductorlnc.
18 WEST 21st STREET NEW YORK, N.Y. 10010 U.S.A. TEL: (212) - 6756722 TELEX: 284564 TICS UR CIRCLE 10 FOR FURTIER DETAILS

UNIVERSAL DEVELOPMENT SYSTEM (for BBC Microcomputer model B or B+1)

If you're not really serious about Microprocessor development you can probobly get away with using a "toy" assembler - like the one for the BBC thot uses BASIC.
But for people who program for a living, meeting project deodines and documentation stondords is no game. A professional programmer needs fost, precision tools, not something tho
And there is no more powerful and professional Assembler availoble, within fifty times the price, than the INIVERSAI DEVELOPMENT SYSTEM META Assembler
Not only does this one Assembler, supplied on two 16K ROMs ond two discs, ollow you to write code for almost all the moior Microprocessors (using the oppropriate stondord codes, eg LD (HL), A ets in 280, MOVE.B DO, lobel (A2, D5. L) etc in 68000; see tobie for full list) but it olso:

- includes o fully integrated Editor, with features such as search.
search/replace, back copyldele and a hist of teotures speciolly designed with the Assembly programmer in mind
- is able to Assemble several MegoBytes of source and produce
unlimited object code
- con sustain over 16,000 overoge 32 -bit labels simultoneously
- is able to pass string or expression parometers to mocros or modules
- includes a full booleon and orithmetic assembly-time cruncher
(brackets to eight levels!)
- includes over fiffy directives to facilitote ne stoble IN/ELSE/ENDIF
onditionols, every common lype of doto equate (FCB/EQUB/DATA
C.B etc
- Con send object code during Assembly to RS423, disc files, EPROM Emulator(s) etc, ond in Intel Hex, S-record, staright binory etc formats.
The META Assembler hos been on sole for over o yeor; we've sold tundreds into Universities, Polytechnics ond to both lorge ond smoll industry
Low-cost ond high performance is ossured in oll Crash Barrier products. The complete META Assembler packoge, for example, costs just $£ 185$, yet it os sembles for oll the listed processors.
Pleose telephone for your free 8-poge brochure on the whole UNIVERSAL DEVELOP MENT SFSTEM (which includes the PORTAL EPROM Emulotors, the Universol Logic Anolyser and the Multiple EPROM Progrommer).
Isn't it time you stopped toying with your ideas ond got properly tooled up?
 series; 8080,$8085 ; 8400$; ALL 6500 series incl. ALL CMÓS, $65 C 812$ ond 65 C 16 . HD6 $4180,280,28$ and more!

CRASH BARRIER FREEPOST FLITWICK BEDFORD MK45 IYP

CIRCLE 9 FOR FURTHER DETAILS

TKO25	11,95

 STKA
STK433
STKA
STK
STK
STK
TA
TBA
TBA
SA
TB

\%ex ex

decca 100	7.95
DECCA 1700 MONO	9.95
decca 1730	8.95
DECCA 2230	8.25
GEC 2040	8.95
GRUNDIG 1500	15.45
GRUNDIG 510-6010.	2222. 5011.6011
	13.46
ITT CVC20	8.20
17 CVC 30	8.25
PHILIPS G\&	8.50
PHILIPS G9	8.99
PHILIPSG11	13.99
PYE 725	10.95
RBM T20A	12.40
tandberge 90*	14.15
TELEFUNKEN 711A	11.15
THORN 1590	9.50
THORN 8000	23.50
THORN 9000	9.95
THORN 9800	22.40

CATHODE RAY TUBES Please add $£ 3$ additional carriage per tube.

	$\begin{aligned} & 9.000 \\ & \hline 25.00 \\ & \hline 5.00 \end{aligned}$	D87.36 067.32	$\stackrel{55.00}{45.00}$

M38-1216A	65.00
M38-1226W	65.00
m38-140LA	65.00
M38.142LA	65.00
M38-34 1 P31	65.00
M38-344P39	65.00
M40 120w	59.00
M43-12LG/01	85.00
M44-120LC	85.00
M44.120GA	65.00
M 50 -120GH	65.00
M50-120GR	65.00
M50-120GV	65.00
M50-120LC	65.00
M61.120W	75.00
S6ab	45.00
SE4/DiP7	45.00
SE42BP31at	55.00
SE428P31	55.00
SE5FP31	55.00
T937	65.00
T948N	85.00
T948H	65.00
V4150LC	55.00
V5004GR	59.00
V5004LD	59.00
v6001	85.00
V6007DP31	59.00
V6008Gw	59.00
V6034WA	59.00
V6048CAL	59.00
$\checkmark 6048 \mathrm{~J}$	49.00
V60648P31	55.00
V6064CLA	55.00
V6069GH	55.00
V6070p31	65.00
$\checkmark 7030$	59.00
V7031GH	59.00
$\checkmark 7031 / 67 \mathrm{~A}$	59.00
V7035A	49.00
V7037GH	45.00
V8004GR	65.00
V8006GH	65.00
V8010a	66.00
VCR139A	11.50
2 BPI	13.50
38PI	11.50
3 DPI	11.50
ЗН/OBM	55.00
${ }^{3} \mathbf{W}$ P:	18.50
4 EPI	30.00
${ }^{58 P 1}$	9.00
58 HP 1	30.00
68HP1FF	30.00
58HP31	30.00
5 CPP	10.00
6EP7/S	39.00
13 PPY	13.50
$13 \mathrm{BPA4}$	17.50
$17 \mathrm{DWP4}$	25.00
32./1085	89.00
88D/898/890/89L	
	15.00
1273	39.00
1564	45.00
1844	80.00
9442 E 1	75.00
95447 GM	75.00
95449GM	75.00 78.50

ENEW VIDEO SPARES \& HEADS

A SELECTION FROM OUR STOCK DF BRANDED VALVES

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M8223 4.50 \& as \& UF \& K 11.50 \& 68G6G 3.00 \({ }^{\text {6 }}\) 6K \& \& \& \(8724 \quad 27.50\) \\
\hline M8224 2.00 \& OS92/10 5.00 \& UFB5 \(\quad 1.20\) \& 3A/147J 7.50 \& \& \& SO7GT \& \\
\hline M8225 3.95 \& 0595/10 4.85 \& UF69 \(\quad 2.50\) \& \(3 \mathrm{~A} / 167 \mathrm{M} 10.00\) \& \({ }^{68 \mathrm{H} 8} \quad 1.50{ }^{\text {¢ }}\) \& 2.50 \& \({ }^{13037} 3.200\) \& \\
\hline ME1401 29.5 \& OS108/45 4.00 \& UL44 \(\quad 3.50\) \& \({ }^{3.2} \times 18\) \& 68J6 \(1.20{ }^{68}\) \& 2.95 \& 13073.20 \& 9.95 \\
\hline ME1402 29.50 \& 0S150/15 6.95 \& UL85 0.85 \& \(3 \mathrm{~B} 3 \mathrm{~A} \quad 3.95\) \& \({ }^{68 \mathrm{KK} 4}{ }^{4.00}{ }^{\text {6L }}\) \& 2.50 \& 309 320 \& 931 A \\
\hline ME1501 14.00 \& OS 150/30 1.15 \& Uu5 3.50 \& \begin{tabular}{ll}
\(3{ }^{34} 4\) \& 1.10 \\
\hline
\end{tabular} \& \({ }^{68 \mathrm{KK} 7 \mathrm{~A}} 1.95{ }^{1.95}\) \& 3.15 \& \({ }^{3}\) DE7 72.50 \& 954 \\
\hline \(\begin{array}{lll}\text { MH4 } 4 \& 3.50\end{array}\) \& 0S150/45 7.00 \& UU7 8.00 \& \({ }^{3 \text { ALL } 5} 00.95\) \& \({ }_{68 L 6} 195.00{ }^{\text {6LI }}\) \& 3.95 \& \({ }^{3027}{ }^{2} 2.95\) \& 100 \\
\hline MHL6 \({ }^{\text {4.00 }}\) \& as 1200 3.95 \& Uub 9.00 \& \({ }^{3 \text { AT2 }} \quad 3.35\) \& \({ }^{\text {6BL8 }} 1.15\) 6L6GC \& 2.95 \& 13 ET 1145.00 \& 95 \\
\hline ML4 4.50 \& as 1202 \& 50 \& \(382 \quad 3.00\) \& \& \& 13 EM7 \(\quad 3.50\) \& \(12994{ }^{1}\) \\
\hline MS4B 5.50 \& 15 \& UY85 0.70 \& \& M6 \(\quad 155.00\) \& 4.5 \& \begin{tabular}{lll}
66 F 5 \& 2.95 \\
\hline 187
\end{tabular} \& 3.00 \\
\hline MU14 \({ }^{3} 3.50\) \& \& 250 \& \begin{tabular}{ll}
387 \\
\& \\
3824 \& 4.50 \\
\hline 1000
\end{tabular} \& \& 1.95 \& \(\begin{array}{lll}1 / 457 \& 1.95 \\ 178 \text { E3 } \& 2.50\end{array}\) \& 16263 \\
\hline M21-100125.00
N37
12.50 \& \(\begin{array}{ll}\text { as1206 } \& 1.05 \\ \text { OS1207 } \& 0.90\end{array}\) \& \(\checkmark 2384\) \& \(\begin{array}{ll}3824 \& 1000 \\ 3826 \& 24.00\end{array}\) \& 68EN7 \(4.50{ }^{\text {6.F6 }}\) \& 7.50 \& 170 W4A 2.95 \& 2050w 4.95 \\
\hline \begin{tabular}{ll}
N37 \& 12.50 \\
\(\mathrm{N78}\) \& 9.85 \\
\hline 8
\end{tabular} \& - \({ }^{\text {a } 1208}\) \& 295.00 \& \(328 \quad 1200\) \& 68n 3.95 6LJB \& 2.50 \& 17EW8 0.95 \& \(2050 \quad 3.95\) \\
\hline \(\mathrm{OA}^{\text {a }} 00.85\) \& OS1209 \(\quad 3.15\) \& V240C/4k \& \(3826 \quad 1.50\) \& \({ }^{6805} 00.75{ }^{605}\) \& 95 \& 17328 \& 2051
3534 \\
\hline OA2WA 2.50 \& \(\begin{array}{ll}\text { OS1210 } \& 1.50 \\ \text { OST1211 } \& 1.50\end{array}\) \& \({ }^{2255.00}\) \& \(\begin{array}{lr}3 \mathrm{3C4} \\ 3 \mathrm{C} 23 \& 1.00 \\ 19.900\end{array}\) \& \(\begin{array}{lllll}\text { 6805 } \& 0.75 \\ 6807 \mathrm{~A} \& 0.72 \& 6 \mathrm{NJ} \\ 6 \times \mathrm{N7} 7\end{array}\) \& 2.50
2.50 \& \begin{tabular}{ll}
1803 \\
19805 \\
1905 \& 6.00 \\
\hline 1.50
\end{tabular} \& \(\begin{array}{rrr}3534 \\ 4044 \& 10.95\end{array}\) \\
\hline \(\begin{array}{ll}083 \& 2.50 \\ 082 \& 0.85\end{array}\) \& \(\begin{array}{ll}\text { OS121, } \& 1.50 \\ \text { OS } 212\end{array}\) \& \({ }^{\text {V24IC/1K }} 195.00\) \& \(\begin{array}{ll}3 C 23 \& 19.00 \\ 3 C 45 \& 24.00\end{array}\) \& \({ }_{\text {6BL7GTA }}{ }^{\text {6eala }}\) \& 1.50 \& \(19 A \cup 4 G T 2.50\) \& \({ }_{927} \quad 15.00\) \\
\hline OB2WA 2.50 \& OS1213 50.00 \& v339 3.50 \& ЗС66 \(\quad 1.50\) \& 6 68R5 0.70 6P25 \& 4.00 \& 1963 17.00 \& 25.00 \\
\hline OC2 \(\quad 2.50\) \& as \(1215 \quad 2.10\) \& V453 12.00 \& \({ }^{3 C N 3 A} \quad 2.50\) \& \& \({ }^{4} .00\) \& \& \(\begin{array}{ll}4212 \mathrm{E} \& 250.00 \\ 4313 \mathrm{C} \& 4.00\end{array}\) \\
\hline 1.50 \& as 1218 5.00 \& VLS631 10.95 \& \({ }^{3 C 56} \quad 0.95\) \& \& 2.00 \& 1906 \(\quad 9.000\) \& \(\begin{array}{ll}4313 \mathrm{C} \& 4.00 \\ 4328 \mathrm{D} \& 9.00\end{array}\) \\
\hline 0031.70 \& [37 \({ }^{3} \mathbf{9} 5.50\) \& 4.50 \& \begin{tabular}{ll}
3 Cx \& \\
\(\begin{array}{ll}\text { 3CY5 }\end{array}\) \& 2.50 \\
\hline
\end{tabular} \& \begin{tabular}{llll}
68R8A \& \& 2.15 \\
6857 \& 5.50 \& 607 \\
\hline 607 GT
\end{tabular} \& 1.75
1.20
1. \& \(\begin{array}{ll} \\ 2042 \\ 2001 \& 10.50 \\ \& 0.70\end{array}\) \& \({ }_{5636}^{43285} 5\) \\
\hline \& \begin{tabular}{ll}
OV03.12 \& 5.75 \\
\hline OV05.25 \& 1.75
\end{tabular} \& \begin{tabular}{ll}
VP133 \\
VR75/30 \& \\
\hline 1.00
\end{tabular} \& \({ }_{308} \quad 4.50\) \& EW4 1.50 6R76 \& 3.15 \& 20LF6 7.95 \& 50 \\
\hline \({ }^{3} 1.75\) \& \multirow[t]{2}{*}{avo6-20 29.50} \& \begin{tabular}{ll}
VR7530 \\
VR101 \& 3.00 \\
\hline 100
\end{tabular} \& \(\begin{array}{ll}3021 A \& 29.50\end{array}\) \& 68W6 5.35 654A \& 1.50 \& \& \\
\hline OM6
ORP43 \& \& \(\begin{array}{ll}\text { V105/30 } \& 1.50\end{array}\) \& \({ }_{3 E 22} \quad 4950\) \& 68W7 1.50 6SA7G \& 1.35 \& 20 P 1 \& \\
\hline 3.95 \& \multirow[b]{2}{*}{av2.2500} \& VR150/30 1.15 \& зез9 39.50 \& 68W8 400 6SC7 \& 1.50 \& 20 P 30.60 \& \\
\hline \& \& 50 \& . 95 \& \& 1.35 \& \(20 \mathrm{P} 4 \quad 1.95\) \& \(5670 \quad 3.25\) \\
\hline P4 \& \& \& \& 50 6SH7 \& 1.35 \& \(20 \mathrm{P5}\)-1.15 \& \\
\hline PABC80 0.50 \& \& 1.50 \& \begin{tabular}{ll}
3 3V4 \\
\(\begin{array}{ll}\text { 3WagG }\end{array}\) \& 2.50 \\
\hline 250
\end{tabular} \& \begin{tabular}{llll}
6826 \& 2.50 \& 6537 \\
\hline 687
\end{tabular} \& 1.20 \& 21 2108 2.50 \& 4.50 \\
\hline 0.75 \& ar 4.250
OY4.400
76.000 \& \(\begin{array}{ll}\text { W21 } \\ \mathbf{W} 77 \& 4.50 \\ \mathbf{W} \& 500\end{array}\) \& \(3 W 4 G T\)
485518 \& \& 1.35 \& \begin{tabular}{ll}
2481 \\
25068 \\
\hline 29.95 \\
\hline 29
\end{tabular} \& \begin{tabular}{ll}
5692 \& 3.50 \\
\hline
\end{tabular} \\
\hline \begin{tabular}{ll}
PC88 \\
PC92 \& \\
\hline
\end{tabular} \& R10 4.00 \& W729 \(\quad 1.00\) \& 5 \& \({ }^{6 C 5}\) \& 0.85 \& 25L6GT 1.75 \& \({ }_{596}^{5696}\) \\
\hline \(\begin{array}{ll}\text { PC97 } \& 1.10\end{array}\) \& \multirow[t]{2}{*}{\begin{tabular}{ll}
R16 \\
R17 \& 12.00 \\
\(R 1780\) \\
\hline 1.50
\end{tabular}} \& W739 \(\quad 1.50\) \& \& \& 1.35 \& \({ }^{25806} \quad 1.75\) \& \\
\hline РС800 \(\quad 1.10\) \& \& \(\times 24 \quad 4.50\) \& \({ }^{4.1258}\) \& \begin{tabular}{lll|l}
6686 \& 1.50 \& 7507 \\
\hline 6.11 \& 250 \& \\
\hline 857
\end{tabular} \& 1.35 \& \& 5718
57785
5725 \\
\hline PC900 1.25 \& \multirow[t]{2}{*}{\begin{tabular}{ll}
R18 \\
月19 \& 2.50 \\
R20 \& 2.50 \\
\hline 2.20
\end{tabular}} \& \(\begin{array}{ll}\times 66 \times 65 \& 4.95 \\ \times 76 \mathrm{M} \& 1.95 \\ \times 8\end{array}\) \& \begin{tabular}{ll}
4.2504 \\
\(4.400 A\) \& 87.50 \\
\hline 8.50
\end{tabular} \& \& 1 \& \(\begin{array}{ll}\text { 290617 } \\ 30 \mathrm{Cl} \& 0.50 \\ 0.40\end{array}\) \& \(5726 \quad 1.50\) \\
\hline \(\begin{array}{ll}\text { PCCB4 } \& 0.40 \\ \text { PCC85 } \& 0.54\end{array}\) \& \& XC24 \(\quad 1.50\) \& 4.10004425.00 \& \& 3.50 \& \begin{tabular}{ll}
30 \& 18 \\
\hline 1.48
\end{tabular} \& 5727
5749 \\
\hline \(\begin{array}{ll}\text { PCC88 } \& 0.70\end{array}\) \& \multirow[t]{2}{*}{} \& \(\begin{array}{ll}\mathrm{XC25} \\ \mathrm{XC25} \\ \mathrm{CLW} 4 \& 0.50 \\ \& 150\end{array}\) \& \begin{tabular}{ll}
4832 \& 35.00 \\
48074 \\
\hline
\end{tabular} \& \& 1.15 \& \& 5749
5750 \\
\hline PсС89 0.70 \& \& \(47 \quad 1.50\) \& \({ }^{27}\) \& \& 1.50 \& \(\begin{array}{ll}\text { 30FL1 } \& 1.00 \\ 30 \mathrm{FL2} \& 1.35\end{array}\) \& \begin{tabular}{ll}
5750 \\
5751 \& 1.85 \\
\hline 2.95 \\
\hline
\end{tabular} \\
\hline PCC189 \& \(\begin{array}{ll}\text { RG1-125 } \& 4.95 \\ \text { RG1-240A } 14.50\end{array}\) RG3-250A 3.50 \& XFW50 \& \(\begin{array}{ll}4826 \\ 4 C 27 \& 195 \\ 45.00\end{array}\) \& \& 1.25
1.50 \& \(\begin{array}{ll}3 \text { 30L2 } \\ \text { 30FL12 } \& 1.35 \\ 0.95\end{array}\) \& \(\begin{array}{ll}5763 \& 5.75\end{array}\) \\
\hline \(\begin{array}{ll}\text { PCC805 } \& 0.70 \\ \mathrm{PCC806} \& 0.80\end{array}\) \& \[
\begin{aligned}
\& \text { RG3-250A } 3.50 \\
\& \text { RG3-1250A }
\end{aligned}
\] \& XG1-2500 \({ }_{50}\) \& \begin{tabular}{ll}
\(4{ }_{4}{ }^{4} 28\) \& 25.00 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { 6CDGGA } \& 1.950 \\ 450\end{array}\) \& 1.00 \& \(\begin{array}{ll}305 L 13 \& 1.10\end{array}\) \& \({ }^{5814 A} \quad 3.25\) \\
\hline PCE \& \({ }^{35.00}\) \& \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { XG2.6400 } \\
135.00
\end{array}
\]} \& \begin{tabular}{ll}
\(4 C 35\) \\
\hline 4.85500
\end{tabular} \& \begin{tabular}{llll}
6CF6 \& 1.50 \\
\(66 G 7\) \& 1.50 \\
\hline
\end{tabular} \& 1.00
1.50 \& \(\begin{array}{ll}30 \text { L14 } \& 1.25 \\ 30 L 14 \& 0.45\end{array}\) \& \begin{tabular}{ll}
5823 \\
5829 Wa \& 9.50 \\
\hline 8.50
\end{tabular} \\
\hline \({ }_{\text {PCFF88 }}^{\text {PCF82 }}\) \& \multirow[t]{2}{*}{} \& \& \({ }_{4 C \times 1000}{ }^{\text {a }}\) \& \& 1.00 \& \(\begin{array}{ll}30.15 \& 0.60\end{array}\) \& \(5840 \quad 3.50\) \\
\hline \({ }_{\text {PCF84 }}{ }^{\text {PCFP82 }}\) \& \& \& 425.00 \& \(\begin{array}{lll}\text { 6CL3 } \& 3.95 \& 6 \times 5 \mathrm{GTY}\end{array}\) \& 1.00 \& \(30117 \quad 0.60\) \& \(58.42 \quad 11.00\) \\
\hline PCF86 \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { RPL } 16 \& 12.00 \\ \text { RPY } 13 \& 250\end{array}\)} \& X \(\times 1628 \mathrm{FT} \quad 7.50\) \& \(4 \mathrm{C} \times 4000 \mathrm{~A}\) \& \begin{tabular}{lll|l}
6CL6 \& 3.25 \& 6x8B
\end{tabular} \& 2.25 \& 3094MR 1.00 \& \begin{tabular}{ll}
5847 \\
5879 \& 10.95 \\
\hline 8.50
\end{tabular} \\
\hline 1.20
PCF8 \& \& XNP12 \& 1000 \& \& 4.5 \& \({ }^{30 \mathrm{P} 12} 1.00\) \& \\
\hline PCFF87 0.40 \& \& XR1-1600 \& \({ }^{4} 4 \times \times 250849.00\) \& \& 2.00 \& \({ }^{301818} 00.60\) \& 5886
5894 \\
\hline \(\begin{array}{ll}\text { PCF200 } \& 1.80 \\ \text { PCF201 } \\ 1.80\end{array}\) \& \[
\begin{array}{rr}
\text { RPYB2 } \& 2.50 \\
\text { RT3-250 } \& 15.00
\end{array}
\] \& \(\times \mathrm{x} 132004\) \& \({ }_{4032}{ }^{125.00}\) \& 6 6C56 0.75 \& 3.50 \& 30PL1 250 \& \(5899 \quad 4.50\) \\
\hline \(\begin{array}{ll}\text { PCFF201 } \& 1.80 \\ \text { PCFEOO } \& 0.40\end{array}\) \& \multirow[t]{2}{*}{\begin{tabular}{l}
RR3-1 25035.00 \\
AS613 45.00
\end{tabular}} \& 79.50 \& EIMAC 59.50 \& \({ }^{6 C W 4} 46.50\) \& 2.50 \& \(30 \mathrm{PL} 13 \quad 0.60\) \& \(5963 \quad 1.75\) \\
\hline \({ }^{\text {PCFF80 }} 11.35\) \& \& 600A \& \(4 \mathrm{C} \times 2508 \mathrm{M}\) \& \(\begin{array}{lll}6 \mathrm{CY5} \& 1.00 \\ 605 \& 765\end{array}\) \& 3.50 \& \(\begin{array}{lll}30 \mathrm{PL} 14 \& 1.75 \\ 3150\end{array}\) \& \(\begin{array}{ll}5965 \\ 6005 \& 2.25 \\ \& 1.85\end{array}\) \\
\hline PCF802 0.60 \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { RS685 } \& 54.95 \\
\text { RSS688 } \& 52.15
\end{array}
\]} \& Y502 25.00 \& \(4 \mathrm{C} \times 2\) \& \(\begin{array}{llll}\text { 606 } \& \& 2.50 \\ 60 C 6 \& 2.35 \& 7 C 6 \\ 7 E 7\end{array}\) \& 2.50
2.50 \& \& \begin{tabular}{lr}
6005 \\
6012 \& 1.85 \\
\hline 6.00
\end{tabular} \\
\hline PCF805 1.25 \& \& \begin{tabular}{ll}
Y502 \\
\(Y 65\) \& 25.00 \\
\hline 6.95
\end{tabular} \& \& \(\begin{array}{llll}\text { 60C6 } \& 2.35 \\ 60.88 \& 0.95 \& 7 \mathrm{H7}\end{array}\) \& 2.50 \& \({ }^{\text {ЗЗA/ }} 158 \mathrm{M} 19.50\) \& \({ }_{6021} \quad 3.65\) \\
\hline \begin{tabular}{ll}
PCFF806 \\
\hline PCF809 \& 1.00 \\
\hline 1.25
\end{tabular} \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { S6F17 } \& 5.95 \\
\text { S6F33 } \& 28.95
\end{array}
\]} \& Y65100 75.900 \& \({ }_{4 C \times 1250}\) \& \(\begin{array}{llll}6016 \& 1.15 \& \text { 7AU7 }\end{array}\) \& 1.50 \& \(3545 \quad 4.50\) \& \begin{tabular}{ll}
6057 \\
6058 \\
\hline
\end{tabular} \\
\hline PCH200 \(\quad 1.50\) \& \& YJ1060 2655.00 \& EIMAC 125.00 \& \& \({ }_{2}^{5.50}\) \& \(\begin{array}{ll}\text { 35L6GT } \\
3573 \&\)\begin{tabular}{ll}
\text { 2.00 } \\
\hline 1.85
\end{tabular}\end{array} \& \begin{tabular}{ll}
6058 \\
6059 \& \(\begin{array}{l}3.95 \\
3.75\end{array}\) \\
\hline 6.9
\end{tabular} \\
\hline PCL \& \[
\begin{array}{ll}
\text { S11E12 } \& 38.00 \\
\text { A } 30 / 2 \mathrm{~K} \& 12.00
\end{array}
\] \& YL1020 29.00 \& \(4 \mathrm{C} \times 350 \mathrm{~A} 95.00\) \& \(\begin{array}{llll}\text { 60068 } \& 2.50 \\ \text { 6076 } \& \& 784\end{array}\) \& 2.50 \& \& \begin{tabular}{ll}
6059 \\
6050 \\
\hline 600
\end{tabular} \\
\hline PCL \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { S } 104 / 1 \mathrm{~K} \& 10.00 \\
\mathrm{~S} 109 / 1 \mathrm{~K} \& 15.00
\end{array}
\]} \& YL1070 195.00 \& \(4 C \times 350 \%\)
\(4 \times C 15008\) \& \begin{tabular}{lll}
6DT6A \& 1.50 \\
\(60 W 4\) \& 2.15 \& 888 \\
\hline 8810
\end{tabular} \& 2.50
2.50 \& \& \({ }_{6062}{ }^{\text {a }}\) \\
\hline \(\begin{array}{ll}\text { PCL84 } \\ \mathrm{PCL85} \& 0.75\end{array}\) \& \& \& 398.50 \& 6E5 \(\quad 3.95{ }^{8895}\) \& \& \(42 \quad 6.95\) \& \\
\hline \(\begin{array}{ll}\text { PCLIS5 } \& 0.80 \\ \text { PCLE6 } \& 0.85\end{array}\) \& \multirow[t]{2}{*}{\(\begin{array}{ll}\text { S130 } \\ \text { S130p } \& 5.59 \\ \mathbf{S c} 109\end{array}\)} \& \& \(4 \mathrm{GS7} \quad 3{ }_{2}{ }_{2} \mathbf{2 5}\) \& 6EA4 \(4.95{ }^{\text {6F }}\) \& 1.95 \& \(47 \quad 6.00\) \& \\
\hline \({ }_{\text {PCLIB00 }}{ }_{0}{ }_{0} .80\) \& \& 12.00 \& \(4 \mathrm{GV7} \quad 2.25\) \& 6EA7 2.50 1002 \& 1.25 \& 50A5 1.50 \& \(6067 \quad 1.95\) \\
\hline PCL805 \(\quad 0.90\) \& \& \(2359 \quad 9.00\) \& \(4152 \quad 75.00\) \& 6EA8 2.50 1008 \& 2.50 \& \({ }^{50 C 5} 50.95\) \& 6072 \({ }^{6080}\) \\
\hline PD500 3.50 \& SCII 120055.00 \& 5515.00 \& \begin{tabular}{lr}
\(4 \mathrm{SC6A}\) \& 2.25 \\
\(4 \times 150 \mathrm{~A}\) \& 3500 \\
\hline
\end{tabular} \& \& 2.95 \& \(\begin{array}{ll}50 C 566 \\ 505 H 5 \& 1.15 \\ 50\end{array}\) \& \(\begin{array}{ll}\text { 6080 } \& 8.8 \\ 6080 \mathrm{WA} \& \mathbf{8 . 5 0} \\ 9.50\end{array}\) \\
\hline PD510 \({ }^{3.65}\) \& \[
\begin{array}{ll}
\text { SC } 1 / 1300 \& 6.00 \\
\text { SC } 1 / 200 \& 9.00 \\
\text { St }
\end{array}
\] \& 4.00
8.00 \& \& \& -0.75 \& 50EH5
50.Y6 \& 6132 Ca \\
\hline PEN25

PEN 2.00 \& \multirow[t]{2}{*}{| SP41 | 5.00 |
| :--- | :--- |
| SP42 | 3.00 |
| S48 | |
| 0.05 | |} \& $27000 \quad 3.00$ \& ${ }_{5} 51152 \mathrm{M}$ 9.00 \& 6EU7 1.95 \& 2.50 \& $52 \mathrm{KU} \quad 2.00$ \& $\begin{array}{ll}8136 \\ 811468 & 2.50 \\ 8.50\end{array}$

\hline PEN400D 2.50 \& \& 274900.60 \& \&	6EU8	
6EV7	1.75	
2.95	10	\& 0.78 \& 53CG

615 PT $\quad \begin{aligned} & 15.00 \\ & 4.50\end{aligned}$ \&	61468
6155	
615.50	
6.50	

\hline PEN45 ${ }^{\text {P }}$ \& \multirow[t]{2}{*}{\[
$$
\begin{array}{lr}
\text { SP48 } & 4.95 \\
\text { SS501 } & 35.00 \\
\text { ST11 } & 1.50
\end{array}
$$

\]} \& \& | 5A170K |
| :--- |
| 5A.180M | \& 6EV7

6EW6 \& \& 615PT
7581 \& 6156
6156

\hline $\begin{array}{ll}\text { PEN45DD } & 3.00 \\ \text { PNE46 } & \\ 2.00\end{array}$ \& \& z800U
28030 \& 5A-206K
5A-206 \& \& 0.65 \& ${ }_{75 \mathrm{C}} 72 \mathrm{Cl}$ \& $6157 \quad 2.50$

\hline PEO6-40N 4200 \& ${ }_{\text {ST11 }}{ }^{\text {STV280/40 }}$ \& ZA1000 12.50 \& 5 5.mb $\quad 2.15$ \& \& 95 \& \& ${ }^{6158} 3.20$

\hline PFL200 0.9 \& \multirow{3}{*}{STV280/80} \& ZA1001 $\quad 1.50$ \& \& \& 1.50 \& ${ }^{83} \quad 8.50$ \&	6201
6205	
605	
6.45	
6.95	

\hline PL21 2.50 \& \& ZA1002 $\quad 1.50$ \& | 5AR4 | |
| :--- | :--- |
| 5 | 2.00 |
| | | \& \& 1.50 \& $\begin{array}{ll}84 \\ 854 \\ 854 & 3.00 \\ 6.50\end{array}$ \& $\begin{array}{ll}6205 \\ 6211 & 6.95 \\ 2.50\end{array}$

\hline PL3 \& \& ZM1005 8.00 \& \& \& 1.00 \& 8.851
$85 A 2$ \& $\begin{array}{ll}6211 \\ 6267 & 2.50 \\ 4.50\end{array}$

\hline PL38 $\quad 1.50$ \& \[
$$
\begin{aligned}
& \text { SU42 } \\
& \text { TB2.5/300 }
\end{aligned}
$$

\] \& ZM1021 8.00 \& | 58.110 |
| :--- |
| 58.254 M |
| 10.50 | \& \& +1.95 \& \& 6350

\hline $\begin{array}{ll}\text { P181 } \\ \text { P181A } & 0.72 \\ 0.72\end{array}$ \& \multirow[t]{2}{*}{${ }^{\text {TB2.5/300 }} 8$} \& \& | 5B-254M |
| :--- |
| 58.255 M |
| 19.50 | \& \& 2.50 \& $\begin{array}{ll}900{ }^{\text {90, }} 1 & 2.70\end{array}$ \& $6360 \quad 4.50$

\hline Pl82 0.60 \& \& ZM1082 9.00 \& ${ }^{56-256 M} 9.900$ \& ${ }_{6 F 14} 61.00{ }^{12}$ \& 1.50 \& $90 \mathrm{CG} \quad 13.50$ \& ${ }^{6386} \quad 14.50$

\hline ${ }^{\text {Pl83 }} 00.52$ \& $$
\begin{aligned}
& \text { TB2-300 } 46.00 \\
& \text { TB3-2000 }
\end{aligned}
$$ \& M 1177 7000 \& 58-257M 9.00 \& $6 F 17 \quad 2.75 \quad 12 \mathrm{Al7}$ \& 0.65 \& $90 \mathrm{CV} \quad 12.50$ \& 6545

\hline 0.78
1.00 \& \multirow[t]{2}{*}{TBL-2-300 275.00} \& \& S8-258M
5c22

125.00 \& \& 1.95

2.50 \& $\begin{array}{lr}91 \mathrm{AGG} \\ 92 \mathrm{AGG} & 9.00 \\ 99.50\end{array}$ \& | 6545 | |
| :--- | :--- |
| 650 | |
| 650 | $\mathbf{1 0 . 9 5}$ |

\hline Pl95 1.75 \& \& ZM1263 400 \& 5J180E2500.00 \& \& 1.00 \& $92 \mathrm{AV} \quad 12.50$ \& 6688 $\quad 6.50$

\hline $\begin{array}{lr}\text { PL302 } \\ \mathrm{Pl345} & 1.1 .00 \\ 12.50\end{array}$ \& \multirow[t]{2}{*}{TD1-100425.00

T003.10 35.00} \& ZM1612 3.00 \& | 584 GB | 3.50 |
| :--- | :--- |
| 584 CY | | \& \& ${ }^{0.65}$ \& $95 \mathrm{Al} \quad 6.50$ \& 6870

6887

\hline \& \& \& \& \& ${ }_{3}^{2.95}$ \& $10081 \quad 10.00$ \& | 68838 |
| :--- |
| 9.95 |

\hline P504 1.15 \& | ToD4 | |
| :--- | :--- |
| T05 | 5.50 | \& ${ }^{1}$ AC6 $^{1} \quad 1.20$ \& $5 \mathrm{LUGG} \quad 2.50$ \& $6 \mathrm{F33}$ 17.00 12A27A \& 1.95 \& ${ }^{108 C 1} 1.50$ \& ${ }^{6973}$

\hline PL.508 1.75 \& \multirow[t]{2}{*}{\[
$$
\begin{array}{ll}
\text { TP25 } & 1.50 \\
\text { TSP4 } & 7.00 \\
\hline T M & 150
\end{array}
$$

\]} \& ${ }^{1 / 4 E 43.50}$ \& | 5U4GB | 2.50 |
| :--- | :--- |
| 5VAG | | \& \& 4.50

1.50 \& 15082
15002 \& $\begin{array}{ll}7025 \\ 7027 \mathrm{~A} & 2.50 \\ 4.50\end{array}$

\hline PL509 4.85 \& \& $\begin{array}{lr}1836 \mathrm{~T} & 1.95 \\ 1822 & 10.00 \\ 180\end{array}$ \& $\begin{array}{ll}\text { SV4G } \\ 5 \times 3 \mathrm{GT} & 1.25 \\ 1.95\end{array}$ \& $\begin{array}{llll}6607 & 2.95 & 12886 \\ 666 G & 5.50 & 12866\end{array}$ \& 1.95 \& 15002
15004
1505 \& $7032 \quad 2.00$

\hline $\begin{array}{ll}\text { PL519 } \\ \text { PLB02T } & 4.95 \\ 3.50\end{array}$ \& \multirow[t]{2}{*}{$$
\begin{array}{lr}
T T 11 & 1.50 \\
T T 21 & 45.00
\end{array}
$$} \& ${ }_{1824}^{1822} \begin{array}{ll}14.95\end{array}$ \& $524 \mathrm{GT}{ }^{0.85}$ \& \& 2.50 \& 1550 G 25.00 \& $7059 \quad 2.50$

\hline ${ }^{\text {PlL820 }}$ \& \& $1827 \quad 55.00$ \& 6/3012 \& 6GH8A 0.80 128LE \& 1.75 \& $1858 \mathrm{~T} \quad 1.50$ \& $7167 \quad 3.95$

\hline PL5557 29.50 \& \multirow[t]{2}{*}{\[
$$
\begin{array}{ll}
\text { TT22 } & \mathbf{4 5 . 0 0} \\
\text { TT } 100 & 57.00
\end{array}
$$

\]} \& 1835 A 29.50 \& ${ }_{6817203 \mathrm{~K}}^{68.00}$ \& \& 2.75 \&	211	
	33.50	
754		
1500		\& $\begin{array}{ll}7189 & 3.50 \\ 7193 & 7.50\end{array}$

\hline $\begin{array}{ll}\text { PY32 } & 0.60 \\ \text { PY33 } & 0.60\end{array}$ \& \& $\begin{array}{ll}\text { CC1 } \\ \text { C5GI } & 2.50 \\ 2.50\end{array}$ \& 6A

6 A8G \& \& | 2.50 |
| :--- |
| 1.95 | \& $\begin{array}{ll} \\ 274 \mathrm{~A} & \\ 307 & 5.00 \\ 50.00\end{array}$ \& 71993

\hline $\begin{array}{ll}\text { PY33 } & 0.50 \\ \text { PY81 } & 0.70\end{array}$ \& TTR-31MF 65.00 \& 2.50 \& \& $66 \vee 7{ }_{2.50}{ }^{6650}$ \& 1.20 \& $328 \mathrm{~A} \quad 15.00$ \& $7247 \quad 2.95$

\hline PY82 0.70 \& \multirow[t]{2}{*}{TY2-125A85.00 TY4.400 85.00} \& \& 6AF4A
6AG5 \& $\begin{array}{lll}\text { 6GW6 } & 2.50 \\ 6 G Y 5 & 3.95 & 120068\end{array}$ \& 3.50 \& 3888
4854

485 \& | 7360 | |
| :--- | :--- |
| 7462 | 13.50 |
| 15.00 | |

\hline ${ }^{\text {PYB3 }} 00.70$ \& \& | $163 G T$ | 2.50 |
| :--- | :--- |
| 1.36 GT | 2.50 |
| 1.50 | | \& | 6AG5 | 1.50 |
| :--- | :--- |
| 6AG7 | 1.95 |
| 68 | | \& \& 3.50

2.50 \& 42545
4.314 \& $\begin{array}{ll}7462 & 15.00 \\ 7475 & 5.00\end{array}$

\hline PY88
PY500A \& TYE-600W 365.00 \& $\begin{array}{ll}\text { 1J3GT } & \\ 1 \mathrm{Nz} & 2.50 \\ 4.50\end{array}$ \& 6AH6 $\quad 2.50$ \& ${ }_{6}^{6 H 3 N} \quad 1.10$ 12E1 \& 17.95 \& ${ }_{572 \mathrm{~B}}^{43} \quad 65.00$ \& $7488 \quad 125.00$

\hline РY800 0.79 \& TYS $2 / 250$ \& 1 NSGT 2.50 \& ${ }^{6 \text { AJJ4 }} \quad 2.00$ \& \& -38.00 \& $705 \mathrm{~A} \quad 8.00$ \& $7527 \quad 85.00$

\hline PY801 \& 18.20 $\begin{array}{r}375.00 \\ 2.75 \\ \hline\end{array}$ \& \& | 6AJ7 | 2.00 |
| :--- | :--- |
| 6AK5 | 1.50 |
| 1.50 | | \& \& 3.95

4.50 \& \begin{tabular}{lr}
708 A

715 C \& 8.00

45.00

\hline

 \&

7551

7558

\hline
\end{tabular}

\hline \multirow[t]{2}{*}{83.300 54.95} \& \& $\begin{array}{ll}1 / 255 \\ 174 & 0.90 \\ 170\end{array}$ \& $\begin{array}{ll}\text { 6AK } & \\ \text { 6AK }\end{array}$ \& \& 4.50 \& $724 \mathrm{~A} \quad 275.00$ \& 75886

\hline \& U19 \& 1 l 4 \& 6 6AL5 0.60 \& | 6HS6 | 4.95 | 121565 |
| :--- | :--- | :--- | :--- | \& 3.95 \& $726 \mathrm{~A} \quad 75.00$ \& | 7587 | |
| :--- | :--- |
| 75914 | 29.50 |
| 8.95 | |

\hline 1359.50 \& $\begin{array}{r}424 \\ \\ 425 \\ \hline\end{array}$ \& $105 \quad 8$ \& 6AM4
6AM5 \& \& 3.50
2.95 \& $\begin{array}{ll}803 \\ 805 & 14.95 \\ 89.00\end{array}$ \& $\begin{array}{lr}7591 \mathrm{~A} & 4.95 \\ 7609 & 47.00\end{array}$

\hline ${ }^{085} 3500$ \& 426 \& | $1 \times 2 \mathrm{Br}$ | 1.40 |
| :--- | :--- |
| 122 | 8.95 | \& | 6AM5 | 1.50 |
| :--- | :--- |
| 6 a | | \& \& 1.95 \& ${ }_{807} 81.95$ \& $7733 \quad 5.50$

\hline OEO3.10 4.95 \& \& 2AS15A 11.50 \& 6AN5 2.65 \& \& 1.50 \& $810 \quad 85.00$ \& 77788

\hline OE08-200 \& 50.00 \& $\begin{array}{lll}287 & 1.50 \\ & 1822\end{array}$ \& | 6ANBA | 2.65 |
| :--- | :--- |
| 6×005 | |
| 175 | |
| 178 | | \& 6.J7

B.186A \& 95 \& . 00 \& (15 ${ }^{49.50}$

\hline OF40 ${ }^{\text {a }}$ 65.00 \& - | ¢ |
| :---: |
| 192 |
| 1 | \& | 2823 |
| :--- | :--- |
| 283 |
| 23.50 | \& ${ }_{6 A 08} 0.85$ \& | 6JE5C | 4.95 | 12567 |
| :--- | :--- | :--- | :--- | \& 4.75 \& ${ }_{813}{ }^{17} \quad 23.50$ \& $\begin{array}{rrr}78068 \\ 8012 & 15.00 \\ 8905\end{array}$

\hline OP25 1.00 \& \multirow[t]{2}{*}{4192
493
495} \& $2 \mathrm{C} 39 \mathrm{ABA} \quad 39.50$ \& 6AR5
6AR8 \& \& 1.95

1.95 \& \& | 8950 | |
| :--- | ---: |
| 18042 | |
| | 70.50 |
| 180 | |

\hline \& \& | $2 \mathrm{C4O}$ | 37.00 |
| :--- | :--- |
| $2 \mathrm{C42}$ | 29.50 |
| 20 | | \& 6AR8

6AS5 \& \& \& \& $\begin{array}{r}18042 \\ 18045 \\ \hline 10.50 \\ \hline\end{array}$

\hline \& \multirow[t]{2}{*}{B01
$A B C 80$ 0.75} \& $\begin{array}{ll}42 & 29.50 \\ 0.75 \\ 0.75\end{array}$ \& 6ASE
6AS6

CAS7 \& | 6×76 | 2.00 | $12507 G 1$ |
| :--- | :--- | :--- |
| 6 | | | \& 1.95 \& B66A \& $18046 \quad 11.50$

\hline QOEO6-40 \& \& $2 \mathrm{CY5} \quad 1.50$ \& \& \& \& \&

\hline Oavoz-6 $\begin{gathered}\text { 45.00 } \\ 19.50\end{gathered}$ \& \multirow[t]{2}{*}{| AF42 | 1.00 |
| :--- | :--- |
| $8 F 80$ | 0.60 |} \& $\begin{array}{ll}2021 & 1.50 \\ 2021 w & 2.50\end{array}$ \& 6AT6

6AT8 \& audio tape heads \& \& CALLERS W \& COME

\hline Oavo3-10 5.50 \& \& ${ }_{2 E 22} \quad 49.00$ \& \& \& OPE \& MON-THUR 9 \& M-5.30PM FRI

\hline Mullard ${ }^{\text {oavo 3-10 }} 15.00$ \& \multirow[t]{2}{*}{| C81 | 1.50 |
| :--- | :--- |
| 0.60 | |
| 1.75 | |} \& \& \multirow[t]{2}{*}{| 6AU6 | 0.95 |
| :--- | :--- |
| 6AV6 | 0.75 |
| 0.0 | |} \& Suronevese \& \multicolumn{3}{|l|}{9AM-5.00PM}

\hline Oovos-20 \& \& | $2 J 42$ | 93.00 |
| :--- | ---: |
| $2 J 55$ | |
| 35000 | | \& \& \multirow[t]{2}{*}{ELECTRO-OPTICAL} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{- 24-HOUR ANSWERPHONE SERVICE ACCESS \& BARCLAYCARD PHONE}}

\hline 2, \& $\begin{array}{ll}\text { UC92 } & 1.20\end{array}$ \& \multirow[t]{2}{*}{$\begin{array}{ll}2 \times 25 & 27.50 \\ 2 \times 25 \\ \text { Haytheon }\end{array}$} \& 6AWBA
6 ¢ \& \& \& \&

\hline $\bigcirc{ }^{\circ} \mathrm{OVO3-208}$ \& $\begin{array}{ll}\text { UCC84 } & 0.70 \\ \text { UCC85 } & 0.60\end{array}$ \& \& \& \multirow[t]{2}{*}{} \& \multicolumn{3}{|l|}{ACCESS \& BARCLAYCARD PHONE ORDERS WELCOME}

\hline Qavoe-40A \& UCF80 1.00 \& ${ }^{2 K 28} \quad 95000$ \& ${ }_{6678}^{6488} \quad 5.985$ \& \& \multicolumn{3}{|r|}{UK ORDERS P\&P £ 1}

\hline Qavob-40A \& | UCH21 | 1.20 |
| :--- | :--- |
| UCH41 | 2.50 | \& | 2 K 29 | 250.00 |
| :--- | :--- |
| 2×48 | |
| 140.00 | | \& | 687 | |
| :--- | :--- |
| 688 G | | \& VMME AOD Cht inses \& \multicolumn{3}{|r|}{\multirow[t]{6}{*}{PLEASE ADD 15% VAT EXPORT ORDERS WELCOME CARRIAGE AT COST EASE SEND YOUR ENQUIRIES FOR ecial ouotations for large REQUIREMENTS.}}

\hline Mulard 45 \& UCH42 2.50 \& $2 \mathrm{~K} 56 \quad 250.00$ \& $6810 \quad 1.95$ \& \& \& \&

\hline Quvo -50 \& | UCH81 | |
| :--- | :--- |
| UCL82 | 0.65 |
| 1.75 | | \& ${ }^{3 A 5} 510780$ \& 68A6

68A 7 \& \& \& \&

\hline $203-2$ \& $\begin{array}{ll}\text { UCL82 } & 1.75 \\ \text { UCL83 } & 2.50\end{array}$ \& $\begin{array}{ll}\text { 3A/ } 1078 \\ 3 \text { /108A } & 12.00 \\ 9.00\end{array}$ \& ${ }_{6 B A B A} \quad 3.50$ \& cosm \& \& \&

\hline \& UF41
UF42 \& 3A/1098 11.00 \& \& Ux8 \& \& \&

\hline 5/20 \& $42 \quad 1.15$ \& 3A/1100 12.00 \& \& 8108 O.200 Cans 0 \& \& \&

\hline
\end{tabular}

The Archer Z80 8BC

The SDS ARCHER - The Z80 based single board computer chosen by professionals and OEM users.

* High quality double sided plated through PCB
$\star 4$ Bytewide memory sockets - upto 64 k
* Power-fail and watchdog timer circuits
* 2 Serial ports with full flow control
$\star 4$ Parallel ports with handshaking
* Bus expansion connector
\star CMOS battery back-up
\star Counter-timer chip
* 4 MHz Z 880 A

OPTIONS:
\star SDS BASIC with ROMable autostarting user code

* The powerful 8 k byte SDS DEBUG MONITOR
* On board 120 / 240 volt MAINS POWER SUPPLY
* Attractive INSTRUMENT CASE - see photo.
$\star 64 \mathrm{k} / 128 \mathrm{k}$ byte DYNAMIC RAM card
* 4 socket RAM - ROM EXPANSION card
* DISC INTERFACE card

Sherwood Data Systems Ltd

Sherwood House, The Avenue, Farnham Common, Slough SL2 3JX.Tel. 02814-5067
CIRCLE 18 FOR FURTHER DETAILS.

$5 \cdot 0_{1} 1 \cdot 0_{1}$ PSU

AC INPUT
240 V 50 Hz
open frame unit
DIMENSIONS
$80 \mathrm{~W} \times 196 \mathrm{~L} \times 35 \mathrm{H}$

CORNER

MOUNTING
PlLLARS:-
61×185

- SPECIAL OFFER
- HI-SPEC TRANSFORMER TO BS415
- LINEAR REGULATED PSU WITH 5v TRIMPOT
- EX STOCK - DIRECT FROM MANUFACTURER
- TOROID FITTED THERMAL FUSE
- OUTPUT FUSE ON PCB

'QTY DISCOUNTS
LIMITED
QUANTITIES

E
ALLOW 14 DAYS FOR
delivery.
Make cheque (crossed) or P.O for $£ 12.50$ payable to: ST IVES WINDINGS LTD.
post ST IVES WINDINGS LTD
To:- 4 Edison Road, Industrial Est. ST IVES CAMBS. PE17 4LT
Tel: 048062978
TELEX 826717 REF 110
CIRCLE 14 FOR FURTHER DETAILS.

RUCBY TIME?

MSF CLOCK IS EXACT

8 DIGIT display of Date, Hours, Minutes and Seconds
SELF SETTING at switch-on, never gains or loses, automatic GMT/BST and leap year, and leap seconds
EXPANDABLE to Years, Months, Weekday and Milliseconds and use as a STOPCLOCK to show when something happened. COMPUTER or ALARM output also - parallel BCD (including Weekday), accurate minute and second pulses and audio to record and show time on playback.
DECODES Rugby 60 KHz atomic time signals, superhet receiver
(available separately), built-in antenna, 1000 Km range.
LOW COST fun-to-build kit (ready-made to order) with receiver, ONLY £89.80 includes ALL parts, $5 \times 8 \times 15 \mathrm{~cm}$ case, pcb, by-return postage etc and list of other kits. TIME RIGHT.
CAMBRIDGE KITS
45(WE) Old School Lane, Milton, Cambridge. Tel 860150

CIRCLE 75 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD MAY 1986

012474060
 HARDWARE
 Qume 1／2 Height D／Drive Graphix Plus Hyperam Card
 Megaplus Serial Option
 Paradise Multidisplay Card
 Quadcolour Card
 Visi－On Mouse
 Grappler＋Parallel
 Luxor 14 －inch colour monitor Cluster Cable Kit IBM PC Cluster Program－IBM Plan 2000 Networ
 Emudec Box
 Dacom Buzzbox Modem
 SOFTWARE APPLE Price E
 Quickfile I
 Apple Accoss
 Asci Dictionary
 Maillist Manager
 PFS File
 PFS Graph
 PFS Apple
 Multiplan
 Supercala li
 Systematics financial applications Systematics General Ledger
 Systematics Purchase Ledger
 Forth
 Vlasak Sales Ledger
 Softcard
 Apple III System Software
 Visicalc Manual
 Viside Pascal
 Orbit
 Busifile（Management Info）
 PHONE NOWI STOCK IS STRICTLY LIMITED First come－first served！
 SOFTWARE MAC
 EP Start
 Front Desk Scheduler
 Main St．Filer
 Megatorm
 Megamemerge
 PFS Report
 PFS File
 Helix
 Macwrite MacPaint
 Omnis II
 Management Edge
 Sales Edge
 Negotitation Edge Fillevision Filevision Intro to Science TK Soiver Music Works
 Mac Primer Stock Portiolio Systern Stock Portiolio Systern Apple Mac Primer（Book）
 SOFTWARE IBM
 Price E
 SNA 3270 ＋RJE－iBM
 VOTE Emulatio
 CP／M 86
 Cobol Compiler－IBM
 APL Program Microsott Cobol Compiler
 Microsoft Basic Compiler
 Microsoft Basic Intptr
 PFS File－1BM
 PFS Graph－IBM Cardbox－IBM
 Carrbiast PC Blast
 D．Graph
 ${ }^{P C C}$ Tutor intro to DOS
 PC Tutor System Build Budget
 System Build Budget System Buld Cashflow
 System Build Cas Rep
 System Build Multi Regres
 System Build Mail Shol System Buid Project
 System Buid Project System Build Sates F／Cast
 System Build Sales F／Cast Easytiler

A range of telescopic towers in static and mobile models from 7.5 to 36 metres with tilt－over facility enabling all maintenance to be at ground level．

Designed in accordance with CP3 Chapter V；part 2； 1972 for a minimum wind speed of 140 kph in conditions of maximum exposure and specified by professionals world－wide where hostile
environments demand the ultimate in design，quality and reliability．
Suitable for mounting equipmentin the fields of．
Communications
Security surveillance－CCTV
Meteorology
Environmental monitoring
Geographical survey
Jefence range－finding
Marine and aero navigation
Froodlighting
Airport approach lighting
Further details available on request．

STRUMECH ENGINEERING LIMITED Portland House，Coppice Side，Brownhills Walsall，West Midlands WS8 7EX，England Telephone：Brownhills（0543） 374321 Telex： $\mathbf{3 3 5 2 4 3}$ SEL．G．

CIRCLE 8 FOR FÜRTHER DETAILS．

CIRCLE 56 FOR FURTHER DETAILS．

ERS - PRINTERS - PRINTERS - PRINTERS

SUPER DEAL? NO - SUPER STEAL THE FABULOUS 25 CPS "TEC STARWRITER"

NOW ONLY £499 + VAT dIY PRINTER MECH

Brand New surplus of this professional printer chassis gives an outstanding opportunity for the Student, Hobbyist or Robotics constructor to build a printer - plotter-digitiser etc, entirely to their wn specification. The printer mechanism is supplied ready buil aligned and pre tested but WITHOUT electronics. Many features nclude all metal chassis, phosphor bronze bearings, 132 character pptical shaft position encoder, NINE needie head, $2 \times$ two phase 12 V stepper motors for carriage and paper contro, 9.5 Paper platten etc etc. Even a manufacturer's print sample to
Sold BRAND NEW at a FRACTION of cost ONLY £49.50 + pp $£ 4.50$.

TELETVPE ASR33

 DATA I/O TERMINALSIndustry standard, combined ASCII 110 baud printer, keyboard and 8 hole paper tape punch and reader. Standard RS232 serial intertace Ideal as cheap hard copy unit or tape prep. for CNC and NC machines. TESTED and in good condition. Only $£ 250.00$ floor stand £10.00. Carr \& Ins. £ 15.00

EX NEWS SERVICE PRINTERS

Compact ultra reliable quality built unit made by the USA EXTEL Corporation Otten seen in major Hotels printing up to the minute News and Financial information. the unit operates on 5 UNIT
BAUDOT CODE from a Current loop. BAUDOT CODE from a Current loop, RS232 or TTL serial interface. May be printer or via a simple intertace and filter enable printing of worldwide NEWS, TELEX and RTTY services.
Supplied TESTED in second hand condition complete with DATA, 50 and 75 baud xtals and large paper roll. TYPE AE11

ONLY £49.95
Spare paper roll for $A E$
TYPE AF11R 72 I

+ Ribbon
TYPE AH11R 80 Col
ASCII/BAUDOT
£65.00
£185.00
Carriage and Insurance $£ 7.50$

DEC CORNER

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

PDP 1140 System comprising of CPU, 124k memory \& MMU 15 line RS232 intertace. RPO2 40 MB hard disk drive.
TU10 9 track 800 BPI Mag tape drive, dual track system. VT52 VDU, etc etc. Tested and running ${ }^{\text {BA1 }}$-MB $3.5^{\prime \prime}$ Box, PSU, LTC DH11-AD 16 KRS232 DMA
intertace
DLV11-J4 \times EIA interface
DLV11-E Serial. Modem suppo DUP11 Synch. Seriai data i/o DO200 Dilog - multi RK controlie DZ11-B 8 line RS232 mux board KDF11-B M8189 PDP 1123 PLUS LA30 Printer and Keyboard 20 mA loop $\varepsilon 395.00$

MSII-JP

MS11-LB Unibus 32 kb Ram MS11-LD Unibus 256 kb Ram PDP11/05 Cpu Ram, i/o etc
PDP1 1/40 Cpu, 124 k MMU RT11 ver 3B documentation kit RKO5-J 2.5 Mb disk drives
M18E PDP 8 Bootstrap optio VT50 VDU and Keyboard

VT52 VDU and RS232 interface
1,900.00 £350.00 ع190.00
$\varepsilon 650.00$ £650.00
E495.00 ${ }_{\varepsilon 650.00}$
£1.100.00 £80.00 £270.00 $\begin{array}{r}\text { £80.00 } \\ \text { E450. } \\ \hline\end{array}$ £450.00
$\varepsilon 850.00$ £450.00 1,850.00 \$70.00 £650.00 £ 175.00
$\varepsilon 75.00$
$\varepsilon 175.00$ £175.00
ع 250.00

MAG TAPE DRIVES

Many EX STOCK computer tape drives and spares by PERTEC, CIPHER, WANGO, DIGIDATA, KENNEDY etc. Special offer this month on DEI Cartridge tape drives ONLY $£ 450.00$ each.

CALL FOR DETAILS

COMPUTER/SYSTEM CABINET \& PSU

switched mode PSU, mains filtering, and twin fan

 cooling. Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to run 24 hours per day the psu is fully screened and will deliver a massive +5 vDC at $17 \mathrm{amps},+15 \mathrm{v}$ DC at 1 amp and -15 v DC at 5 amps . The complete unit is fully enclosed with removable top lid, filtering, trip switch, power and run leds mounted on ali front panel, rear cable entries, etc. etc. Units are in good but used condition - supplied for 240 V operation complete with full circuit and tech. man. Give your system that professional finish for only $£ 49.95$ + carr. $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep $10.5^{\prime \prime}$ high. Useable area $16^{\prime \prime}$ w $10.5^{\prime \prime} \mathrm{h} 11.5^{\prime \prime} \mathrm{d}$Also available less psu, with fans etc. Internal dim. $19^{\prime \prime} w, 16^{\prime \prime} \mathrm{d}, 10.5^{\prime \prime} \mathrm{h}$ £19.95. Carriage £8.75

ELECTRONIC
COMPONENTS EQUIPMENT

Due to our massive bulk purchasing programme. which enables us to bring you the
best possible bargains, we have thousands of ICs. Transistors. Relays. Caps. PCBs, Sub-assemblies, Switches etc. etc. surplus to OUR requirements. Because we don't have sufficient stocks of any one item to include in our ads we are packing all these
items into the BARGAIN OF A LIFETIME Thousands of components at giveaway tems in to the BARGAIN OF A LIFETIME Thousands of components at giveaway prices. Guaranteed to be worth at least 3 times what you pay. Unbeatable value and perhaps
weight.
2.5 k ls $£ 5.25+\mathrm{pp} £ 1.25$
$10 \mathrm{kls} £ 11.25+\mathrm{pp} £ 2.25$
$5 \mathrm{kls} \varepsilon 6.90+\varepsilon 1.80$

Give your VT100 a Birthday! Brand New VT100 Keyboards only $£ 85.00$
1000's OF EX STOCK spares for PDPB PDP**: PDP11, PD P1134 etc. SAE for list, pDP8A sales office for details. SPARES WANTED FOR PROMPT CASH

[^2]GE TERMIPRINTER

A massive purchase of these desk top printer terminals enables us to offer you hese quality 30 or 120 cPS printer original cost of over £iooo Unit comprises of full QWERTY, electron lace similar to correspondence quality ypewriter Variable
olumn lull width - up to $13.5^{\prime \prime} 120$ lower case andard AS232 seriat interface, internal rand and horizontal tab seltings and quiet operation plus many baud eatures Supplied complere with manua eatures. Supplied complete with manua GE1200 120 cps $£ 175.00$
Untested GE30 E65.00 Optional floor

SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 nclude transistors digital.riacs, diodes, bridge recs, etc. etc dil devices guaranteed brand new full guaranteed
$50+\mathbf{E} 2.95100+\mathbf{E} 5.15$
74 Series A gigantic purchase of an across the board" range of 74 TL series mostly TTL" grab bags at a price which normally cost to buy. Fully guaranteed al C's full spec. $100+\mathbf{E 6 . 9 0}$

MAINS FILTERS

CURE those unnerving hang ups and data litches caused by mains interference with rotessional quality filters SD5A matc oad ONLY 85.95 . L12127 compac ocket up to 750 watts ONLY £9.99

EPROM COPIERS

The amazing SOFTY 2 The "Complete Toolkit" for copying, writing. moditying and listing EPROMS of the 2516 , 2716 2532,2732 range. Many other function ace, serial and parallel i/o UHF modulato ZIF socket etc.
ONLY $£ 195.00+$ pp $£ 2.50$.
"GANG OF EIGHT" intelligent $Z 80$ controlled 8 gang programmer for ALL single $5 v$ rail EPROMS Up to 27128. Will Copy 827128 in ONLY 3 MINUTES, Interna CD display and checking routines fo pp E3.00.
"GANG OF EIGHT PLUS" Same spec. as above but with additional RS232 seria interface for down line loading data from

COOLING FANS

Koep your hot parts COOL and RELABLE with oul range on
COLING FANS ETR $126 L 21240 \vee 55$ bade equipment fan
 Unning 240 V operation. NEW E6. ${ }^{2}$. OXER standard $120 \times 120 \times 38 \mathrm{~mm}$ tans Order 110 OR
$240 \mathrm{O}, 3$ or 5 blade, NEW at $£ 10.50$ or tested EX EOUIPMENT 550. Low Votrage DC Fans. BUHLER 69.11.22 8.16vDC itmost silont urninger guaranteed 10.000 hr life. Measures

by J.D. Last, Ph.D., M.I.E.E. (GW3MZY)

Dr David Last is a Senior Lecturer

 in the School of Electornic Engineering Science at the University College of North Wales, Bangor where he teaches Microelectronics. Although he has researched and published papers and patents in the fields of semiconductor and integrated circuit devices and non-linear circuits he now spends most of his time on radio systems. He was joint winner of a Design Council award recently for the rear-heater radio receiving aerial for cars described In February, E \& WW. He concentrates largely on radionavigation systems for ships, aircraft and land vehicles - with a special interest in remote tracking and automatic vehicle location systems and acts as a Consultant on radio navigation and communications to a number of companies and public bodies.Fig. 1. Fixing the position of a ship by taking bearings on two radiobeacons. The automatic direction-finder shows the bearing of the beacon relative to the ship's heading. The compass measures the heading relative to magnetic north and these two measurements give the magnetic bearing of the beacon.

New directions for marine d/f

Marine d/f is dying, long live marine d/f.

AIthough radio direction- 500 beacons in Europe and finding is the oldest North Africa are organized and simplest form of radio navigation, it is still the one installed on the greatest number of ships, and aeronautical radio-beacons outnumber all other radio navigation aids for aircraft. The technology of direction-finding, developed before the first World War, has been changing rapidly, the latest receivers employing microcomputers and data-processing techniques. In parallel with these developments in the technology, an inter-governmental radio conference held in Geneva ${ }^{1,2}$ agreed radical changes in the transmission formats of maritime radio-beacons. These open the door to the development of a new generation of receivers which promise to revolutionize radio directionfinding.
Alongside the most modern techniques, the earliest method of direction-finding ' - turning the aerial by hand until the signal received is at a minimum and then noting the direction in which the aerial is pointing - is still in widespread use. Automatic direction-finders employ a similar technique and a pointer shows the bearing of the transmitter relative to the heading of the ship, as in Fig. 1. From this relative bearing and the magnetic heading measured by a compass, the bearing of the radio-beacon is calculated and a line of position drawn through the location of the beacon on a chart. Two or more such lines of position should intersect at the receiver.
Maritime radio-beacons are simple, low-frequency, nondirectional transmitters installed at coastal sites and on lightvessels. Figure 2 shows some of the beacons which serve the English Channel. The frequencies, power levels and transmission standards of the more than

North Africa are organized
under an old intergovernmental agreement - the Paris Plan of 1951. The prime object of the Paris Plan was to minimize interference between radiobeacons, but in achieving this laudable aim the Plan has seriously inhibited the development of radio direction-finding. To see how this has happened - and how the new Geneva agreement has freed the logjam - we must look at the way the Paris plan attempted to squeeze a quart of beacons into a pintpot of spectrum.
The marine radio-beacon frequency band, from 285 to 315 kHz , is divided into just 14 channels, spaced 2300 Hz apart (top of Fig. 3). However, so many beacons must share each channel that it is only possible to space co-channel groups sufficiently far apart to achieve about 14 dB of the 30 dB protection ratio on which the Plan is based.

The remaining 16 dB of protection is obtained by amplitude
modulating the signals of each group of beacons with a different audio tone, one of a set of tones between 354 and 1052 Hz . The idea is for operators to measure bearings by turning their receiving aerials until they hear a null in the tone of the wanted beacon, all interfering tones being carefully ignored the 'audio null' method of direction-finding.

Beacons may be identified by the callsigns which they transmit in Morse code or by the unique combination of carrier frequency, tone and time-slot.

When the systems was designed, some 35 years ago, radio direction-finding was the principal radio navigation aid for ocean-going and coastal ships. Installation was made mandatory under the Safety of Life at Sea Convention for all ships of more than 1600 tons. The receivers on these 'Convention ships' must meet typeapproval specifications based on the Paris Plan. But ironically, the great majority of these receivers are operated as

automatic direction-finders, automatically seeking the null direction of the carrier signal not the modulation - so the interference protection provided by the audio tones is lost. Moreover, these receivers are used much less frequently nowadays because the ships carry radar, Decca or satellite navigation systems which give more accurate fixes, automatically and continuously. So the people for whom the system was designed don't often use it - and when they do they don't use it as it was designed to be used!
Instead, the main customers of the radio-beacons are the pleasurecraft sailors - relatively rare birds in 1951 but found in large flocks now. They generally carry few other electronic navigation aids, so radio direction-finding - still the cheapest form of radionavigation - is very important to them. It has been estimated that more than $70,000 \mathrm{~d} / \mathrm{f}$ receivers were sold by UK manufacturers in the decade up to 1983 , principally to pleasurecraft sailors.
Small-craft receivers don't have to be type-approved nor conform to the Paris Plan. This has freed designers to be highly innovative in developing receivers for this large market, which demands ease of operation, low cost and high performance - preferably simultaneously!
For example, one popular receiver has only 10% of the volume, 6% of the weight, 4% of the cost and 0.14% of the power consumption of a Convention ship receiver! Though a few small craft receivers are cheap and nasty, at least one claims to meet the typeapproval specification for convention ship receivers.

Many small-craft receivers are hand-held. They include a built-in ferrite-rod aerial, a meter or headhones to show the signal null as the receiver is rotated and a magnetic compass to measure the bearing of the beacon when the null has been found. A hand-held receiver appears deceptively simple; in fact it contains a frequency synthesizer for channel selection and a precise clock to identify the transmission timeslots, since the most users cannot read the Morse code identification.

The most sophisticated smallcraft direction finders are very advanced. Taking bearings under microprocessor control and storing the positions of beacons in memory, they calculate the ship's position and display it as a latitude and longitude or even as a bearing to steer and distance to run to the next viewpoint ${ }^{3}$.
But all these receivers, just like the Convention ship ones, measure bearings using the carrier only and ignore the aduio modulation. So they all dispense with the protection provided by the audio tones. This is one of several ways in which the radio-beacon system, which now looks very oldfashioned in concept, is out of step with its users (and their receivers). Other problems include a shortage of channels which is seriously inhibiting the development and improvement of the service, especially in areas of dense shipping movement. But, of course, the channels are few because the transmissions are wide - wide enough to accommodate the modulating tones which the users ignore!
The six-minute transmission sequence is also very unpopular. Navigators want frequently-updated position fixes with no 'skew' errors due to the movement of the ship in the intervals between taking the two or more bearings used to plot the fix; a ship travelling at 20 knots may sail a nautical : mile in the interval between measurements on beacons in the same group. A few bea.cons - generally low-powered :ones - operate continuously at present; it would be desirable for all beacons to do so or to be in groups of three at the most.
The Paris Plan actually obstructs the development of the art. For example, although it is now possible to measure and record the bearing errors 'due to the ship's structure and

Fig. 2. Radio-beacons covering the English Channel. Most are arranged in groups of six, transmitting in turn on the same frequency. Each table shows the carrier and modulation frequencies of the group and the names, callsings and protected ranges of the individual beacons.

Fig. 3. Channel assignments in the l.f./m.f. marine radio-beacon frequency band: (upper) the present paris Plan arrangement showing the modulating side-tones (lower), the new Geneva Plan narrow channels. In both cases the sidebands of the Morse transmissions are omitted.

Fig. 4. Transmission sequence of a group of six radio-beacons.
Transmissions start on each minute of the clock and are identified by callsigns transmitted in Morse code.

Acknowledgements

The author acknowledges the advice of Mr F.E.J. Holden of Trinity House Lighthouse Service and Mr W.
Paterson of the Northern Lighthouse Board in the preparation of this article.

References

1. 'Final Acts of the Regional Administrative Radio Conference for the Planning of the Maritime Radionavigation Service (Radiobeacons) in the European Maritime Area', International Telecommunications Union, Geneva, 1985.
2. Paterson, W., 'Proposed changes to maritime radiobeacons'. Paper 6.6.1, Conf. of the International Association of Lighthouse Authorities, Brighton, 1985.
3. Barratt, J., 'Automated direction finder', Wireless World, p57-60, 1982.
4. Bozic, S.M., 'Digital and Kalman filtering', Edward Arnold, London 1979.
5. 'Le système RANA p17 - extrait de la documentation technique', Service des Phares et Balises, Paris, 1979 (in French).

Fig. 5. Under the new Plan, some radio-beacons will be in groups of three, although many will transmit continuously on individual frequencies. The Morse transmissions are retained and short data transmissions are introduced at one-minute intervals. New 'high-tech' direction-finders will use these to measure bearings and read the beacons' identities, locations and ranges.
to apply corrections automatically, the Paris Plan requires the errors to be plotted and corrections applied by the operator!
These criticisms of the present system - together with a call for much greater automation of receivers - have led to new radio-beacon transmission standards being agreed: in April 1992 the Geneva Plan of 1985 will replace the Paris Plan of 1951 .
The new Geneva plan totally abandons the use of modulating tones. The resulting narrowband transmissions can be spaced by only 500 Hz , so creating 62 channels, in place of the previous 14, in a slightly. expanded band (bottom of Fig. 3). Although these are sufficient channels to do away with the grouping of beacons and allow every beacon to operate continuusly without mutual interference, some national administrations will continue to group many of their beacons. They argue that navigators find it more convenient to receive beacons in the same area on a common frequency. In no case, however, will there be more than three beacons to a group.
At first glance, the transmission sequence in Fig. 5 looks remarkably little altered: the long transmissions have been. retained - though slightly shortened - for the use of hand-held receivers. The! Morse code identification is still there too, but the carrier is keyed instead of the modulation. This means that receivers must have beat-frequency oscillators (b.f.os) but most already have them to receive certain (A1A) aeronautical radio-beacons.
In fact, the new transmis-
sions are compatible with the old receivers, even though the channels have been packed so much more tightly together. Most small-craft receivers already have very narrow bandwidths, since they require only the carrier for direction-finding. The Geneva Plan protects the older Convention ship receivers which have wider passbands by not allocating adjacent channels to beacons in adjacent areas. So the existing receivers should take the changes in their stride and no-one is forced to buy a new receiver.
The 'revolution' is in the short transmissions, shown in Fig. 5, which are radiated at one-minute intervals and allow a new generation of 'high-tech', automatic, processor-controlled receivers to be developed. Beacons which are grouped in threes will each transmit rapidly in turn so that these hightech receivers can take and store sets of bearings with negligible skew errors at oneminute intervals.
But the short transmissions contain provision for something more: the identity, latitude and longitude of the beacon transmitted in digital form. Using this information, together with the measured bearings, the receivers will compute the ship's position and show it in digital form or even on a moying map display. The data transmissions will use narrowband frequency-shift keying either conventional f.s.k. at 100 baud, $+/-85 \mathrm{~Hz}$ shift (similar to the marine telex system) or minimum shift keying (m.s.k.) at 40 baud. The choice between f.s.k. and m.s.k. will be made by a World Administrative Radio Conference in 1987.
Although these data

each time a bearing was measured. Cleverer receivers would use a Kalman filter ${ }^{1}$ to model the dynamics of the ship, modifying and displaying the position estimates continuously on a moving map display. Position inputs from other navigation receivers could be combined to give an integrated navigation system.
So the new transmission standards make possible the development of revolutionary direction-finding receivers which operate wholly automatically, providing the navigator with a continuous view of his position. No such receivers exist, of course, and it is sensible to question when or even whether - they will be appear. To create such receivers requires no technique is not already known and understood nor any which is especially expensive - as ever in electronics, the greater the role of the processor, the lower the production cost. The most advanced direction-finders already compute positions automatically, using beacon data typed in by the operator who must also specify the beacons to be used. The new transmissions simply remove the restrictions on the further development of such receivers, providing automatic input of beacon data, automatic selection of beacons and easier identification.
If there is no technical obstacle to the development of these high-tech receivers, will their development be plain sailing? Pessimists would say not - pointing to the falling costs and ready availability of smallboat receivers for the hyperbolic navigation systems (several for Decca Navigator alone), the rapidly growing use of satellite receivers and the promise of NAVSTAR. "D/f", they say, "is dead"!

But d/f has been a-dying for years and, while doing so, maddeningly continues to grow! There are now more radiobeacons and more receivers than ever before. It has been estimated by the International Association of Lighthouse Authorities (IALA) that throughout Europe, a quarter of a million people depend on direction-finding as their primary means of radio navigation, whilst some 57% of Convention ships repor that they
still use d/f
Part of the reason is that, while Decca and LORAN-C are only available in parts of the world (not by any means in all of Europe), while present satellites give quite infrequent position fixes with significant errors due to the vessel's movement and NAVSTAR is subject to delays and fiscal cut-backs, radio-beacons are available in both advanced and developing countries. They are operated in each state by local administrations, not by overseas government agencies or companies; their technology is simple and operating costs low.
One or two possible glimpses of the future have been given by the French, who have suggested that radio-beacons will not so much die as be metamorphosed into something new. For some years certain French radio-beacons have transmitted 'differential Omega' data. Omega is a world-wide, v.l.f. hyperbolic navigation aid. Because of periodical changes in the ionosphere, Omega receivers experience position errors which are substantially constant over large areas. So the errors measured at fixed stations on land are broadcast as 'differential Omega corrections' and used to correct the fixes of marine receivers in the same area. The US Coast Guard are likewise proposing to use radio-beacons to broadcast differential data to improve the accuracy of fixes made using the proposed NAVSTAR (GPS).
In addition, the French have developed and installed a hyperbolic radio navigation system - RANA - operating in the radio-beacon frequency band ${ }^{5}$ and IALA are studying the possibility of precisely synchronising the carriers of groups of beacons to form hyperbolic systems. These beacons could be used not only for good old-fashioned direction-finding but simultaneously for precise hyperbolic navigation to accuracies of a few metres!
Whether that will happen or not I do not know. But I suggest that the next few years will prove interesting and that, in its 'death throes', radio directionfinding will make far more waves than many suspect.

BLACK BOXES

The magic of amateur radio still exists and, in some ways, with greater power, despite the proliferation of black boxes. High equipment costs do present problems to newcomers to the hobby and to the image amateur radio presents to the public

Outsiders look upon amateur radio as 'more expensive CB' and turn away. People generally are unimpressed with communications technology: crystal-clear colour tv coverage of cricket in Australia or the latest pictures from Uranus are taken for granted.

There is nothing wrong with radio amateurs using black boxes, however expensive. Japanese equipment manufacturers release new models every year and people buy them. It must be fun being wealthy! As far back as I can remember, big powerful stations have existed in places such as Kilowatt Alley, but the casual listener is not to know how those operators are qualified to run expensive equipment. I know that many of them have started on the factory floor, worked their way up through all aspects of electronics design and manufacture, to retire as multi-national company directors. They are entitled to enjoy the amateur radio they can afford.

We have to accept that black boxes are and ever will be an established part of amateur radio. Thanks to new technology and manufacturing techniques, equipment now represents far greater value per pound earned than in the 1950 s . But there is a very great deal that experienced amateurs can do to portray the existence of the low cost approach to our hobby.

These days, beginners come into amateur radio 'backwards', starting with v. or u.h.f. f.m. with zero interference and no 'need' for internationally recognised operating procedures, then progress into h.f. and wonder what hit them! The B licence causes problems in forcing one to start at v.h.f., where it is difficult to home brew gear, so one is compelled to buy. It might be better to have beginners introduced directly into h.f. where a valve oscillator/p.a. transmitter is within everyone's reach.

The formative years of prelicence short-wave listening are missing, so there is a great need for magazine articles, club lectures and shack visits, to fill the gaps in the amateur radio education process. Dealers need to advertise their black boxes in order to make a living: consequently magazines, including the RSGB Radcom,
unavoidably present the expensive image that turns a lot of potential enthusiasts away from the hobby. So there is a need for as much exposure of el cheapo amateur radio as possible, such as construction information, QRP and SWLing.
Public interest can be roused. Try featuring Morse code communication at your club's next appearance at the local hobbies exhibition or rally. You'll be amazed how the public associates old up-down key technology with 'real radio'. A microprocessor c.w. decoder and v.d.u. make the interest even greater.
The future of amateur radio depends upon us making the most of new technology and keeping alive vital interest in the basics of radio, communication and electronics.
Denzil S. Roden, G3KXF
Sompting
Lancing
West Sussex

YES MINISTER

The letter from David Rudd of the Department of Transport (March 1986) well illustrates the capabilities of innovation and originality that our public servants have. The abdication of planned and responsible spectrum allocation in favour of the discredited monetarism of his current masters is a perfect though late demonstration of the supine theorising to which our country is subject.
If, as he alleges, the spectrum is abused by vandals, selfish, large, and obdurate, using outdated techniques and unsuitable frequencies, is it not the fault of our public servants? Are the established bully-boy users to be confirmed in their place by the size of their purse? Do the "small latecomers" have bigger purses? If there are bad practices, stop them. In this regulation-ridden society I am sure that suitable regulations exist. If they too are out of date, I would be happy to offer my services, but to pretend that spectrum renting will solve abuses generated by managerial deficiencies is an arrogance.

Another arrogance is the pretence that the present secret practices of allocation would somehow be ended by the transfer of money. Is it not possible for administrators to display their competence in public? The dissemination of claptrap through the media of papers, lectures, letters etc. still leaves it as claptrap; it cannot be mistaken for a display that would bring any credit to the propagator.

I will always be indebted to the Department of Transport for defining "arcane" for me, but now they have no buses to run could they leave the spectrum alone? It may well need attention but surely not from them.
D. E. Kershaw

Marton
Blackpool
Lancashire

ELECTROLYTICS AND DISTORTION

I have read with interest, in February $1986 E \& W W$, letters from White and Self, on the subject of electronic components affecting the subjective sound quality of audio amplifiers.
White seems to sit on the fence and invoke a whole host of variables along the record/replay chain to explain perceived differences in the final sound quality. Self uses a very strange logic to 'prove', that because his and others' tests on capacitors show only limited deviations from the ideal, then somehow they cannot affect sound quality. Self argues that the proponents of 'better capacitors' have dreamt up "new effects", which Self argues cannot exist without "a theoretical mechanism for the operation of the effect that is logically consistent if not actually plausible"

Does Mr Self genuinely believe that an implausible theoretical mechanism is of any value in furthering the present state of development of audio amplifiers?
In the real world, a great many well liked and widely sold amplifiers, make extensive use of non-aluminium electrolytic capacitors. Aluminium electrolytic capacitors are certainly the cheapest; hopefully manufacturers that use non-aluminium ones have a good reason for doing so. Amplifier manufacturers tend to make more sales and therefore profit, when their amplifiers sound better than their competitors and I think Mr Self should give credence to this fact and examine its implications.
Familiarity with a range of presently available amplifiers reveals that non-aluminium electrolytics are prevalent in very low level circuitry, in direct contradiction to Mr Self's implausible depolarisation theory which predicts quasi-perfect behaviour from aluminium types at these tiny signal levels.
I agree that these subjective observations should be confirmed by suitable tests and statistical analysis but I suggest that manufacturers have little to gain from this. It can be more properly explored in university research
departments, if there are any left to do this work after current government cuts. Hopefully we may also see a capacitor model produced from measurements down to microvolt and nanoamp levels, which will predict nonlinearities of an audible proportion.

Mr Self knows of no mechanism whereby a sinewave can be left intact and yet music 'mangled'. There exists a phenomenon called phase distortion which can be of such a magnitude as to render speech unintelligible after transmission over, for example, long unloaded telephone lines. This is quite a serious distortion when one considers that speech, when infinitely clipped is still intelligible. Furthermore a linear low-pass filter, at say 100 Hz , will not produce any harmonic distortion but can be said to mangle music considerably.
From my present (unconfirmed) observations (a) aluminium electrolytics are the worst sounding capacitors commonly available, and (b) back-to-back aluminium electrolytics (which incidentally will not cyclically depolarise) are little, if any, better.

B. Powell

Crimson Elektrik
Stoke-on-Trent

VON NEUMANN

I was somewhat disappointed by the January article (p.6) "Von Neumann's elephants." There are several statements with which I would take issue. Computable Numbers is certainly a landmark paper in the history of numerical methods. However, modern computers did not start to appear until some years later.

The machine described in Turing's paper does not have a Von Neumann architecture. The program quite clearly resides in the "head" in the form of
"configurations", which approximate to the routines being executed at any moment.

Furthermore (though I am open to correction on this) I believe that the machines on which Von Neumann actually worked did not have subroutine capability, being effectively large calculators. There is a case to be made for all modern computers being derived from the Babbage architecture and the machines designed and worked on by Turing and others after 1945. Turing's major claim to fame, I submit, is the profoundly practical nature of his genius, and the fact that (unlike other mathematicians) he was prepared to teach himself the electronic engineering he needed to make his prosposals concrete.

RISC computers are one thing, and the data-driven architectures alluded to in the article are quite
another. The basis of the RISC principle is the building of fast machines by limiting the instruction set to instructions and addressing modes that can be executed without appreciable microcode, while providing a partly exposed microarchitecture that provides good hooks for complex operations. RISC machines typically employ numerous registers to speed context switching but this is not essential. The Pyramid superminicomputer and the new Acorn ARM processor are members of the species; the TMS32010 DSP uses RISC techniques to such effect that its execution speed is comparable with bit-slice designs. RISC machines do not avoid the Von Neumann bottleneck, however; in fact they may actually worsen it in one respect. Microcoded processors typically do not use the buses with great efficiency (in fact the old 6502/6800 designs leave the bus dead for half the memory cycle time.) It is thus possible to have multiple processors sharing one set of utilities. A RISC machine with highly efficient bus utilisation cannot share the bus without having to wait for program and data.
If I may suggest a slightly different analogy, the new generation of 32 bit c.p.us resemble Rolls-Royces and the RISC processors resemble racing motorcycles. (The Intel 386, with an enormous array of bells and whistles, perhaps more closely resembles one of those Cadillacs modified for desert oil sheiks, but this is getting rather silly.) I suspect choice is largely a matter of market forces or personal preference. The Transputer is apparently a way out of the bottleneck - it has serial links between processors to relieve the bus overhead problem - but consideration shows that some time must be consumed in interprocessor communication. No doubt Inmos have looked very hard at the trade off between parallel processing costs and sophisticated memory architectures for processor-to-processor messaging, but my own feeling is that the Transputer architecture has as its major virtue the ease of connecting multiple processors rather than the avoidance of bus limitations.
One of the worst bottlenecks in computing is the backing store. The problem is that where numerous users share a large data base, any modification made by one must reach all. Reductions in the cost of semiconductor memory do not necessarily help this problem since the ability to store very large amounts of data in ram transfers the bottlenecks from disc to ram without changing its nature. My own pessimistic conclusion is that it is the field of mass storage
peripherals that we need a revolution - not in c.p.us. Historically, peripherals have always been the performance limiters, especially when one considers total program run-time rather than c.p.u. execution time. Anybody who doubts this should reply honestly to one simple question; last time your driving licence was updated, how long did it take?
Martin Bacon
Taunton
Somerset

CLASS B OUTPUT

There would seem to be very few new circuits under the sun. A circuit similar is that described by Mr Nalty in 'Circuit Ideas' (February 1986) was previously published by Mr Edwins in Hi Fi News and Record Review, October 1971. This circuit differed only in detail from that submitted by Mr Nalty; in the Edwins circuit three diodes were used to generate the bias voltage.

Having built one of these circuits some ten or twelve years ago, and used it ever since, I would state that the quality of sound it helps produce is significantly superior to the traditional class B circuit. When first built the circuit was extensively tested for distortion both at high and low signal levels The only conclusion reached was that better measurement equipment was required, as it was discovered that what was being measured was the 'distortion' output of the oscillator. The equipment used was manufactured by Radford and was of a very high standard - type numbers have been forgotten.
R. T. Wrigley

Ware
Hertfordshire

MATHS PUSHERS

I feel that Ivor Catt is aiming at the wrong target with his polemic, in recent issues, against mathematics and mathematicians. I would like to take one example, a topic which he has touched on several times over the years in $W W$: the use of Fourier series.
Mr Catt has held up to scorn the assertion of a certain FRS that 'reality is made up of sine waves", and has pointed out that Fourier expansions are no more than a computational tool, sometimes useful and sometimes not. It is mere fantasy to suppose that the description of a single square pulse as a continuous spectrum of sine waves has a better claim to reality than the pulse itself. Fantasy becomes absurdity when one contemplates
the action on such a pulse of a perfect low-pass filter (which is defined by what it does to sine waves): its output must begin before the leading edge of the pulse arrives.

All this is true. But is it the fault of mathematicians? Around ten years ago I was studying pure mathematics at Edinburgh University. I recall that in the course on partial differential equations, the lecturer pointed out (as Mr Catt has done in your columns) that the most general solution of the wave equation:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

is $u=f(x+t)+g(x-t)$, for arbitrary (sufficiently differentiable) functions f and g, and not, as is sometimes supposed, some complicated Fourier series. Who, then, are these people who believe that "reality is made of sine waves"? I went to the library of the university where I currently work, and looked at a random selection of books on p.d.es on the mathematics shelves. All of them gave the general solution, and those books which treated Fourier expansions at all did so only at a much later point. Then I looked on the shelves for physics and engineering. Out of ten books, only two gave the correct general solution. The remainder all dove straight into separation of variables, superposition and Fourier transforms, and never mentioned the general solution at all. It seems that physicists and engineers do not suffer from too much mathematics, but too little, and too little understood.
Richard Kennaway
School of Information Systems
University of East Anglia Norwich

ENERGY TRANSFER

There is no problem with electric current theory as questioned by Mr Fant (Letters, March 1986).
The resistance of a wire is inversely proportional to crosssectional area at zero frequency (d.c.). Without getting bogged down in EM theory (Theory M.
Theory H and Ivor Catt's Theory C!) it is broadly true to say that a time-varying EM field cannot exist inside a perfect conductor and that when it penetrates a good, but not perfect conductor, its magnitude drops off as the depth increases. A good analogy is that it is 'seeping' into the conductor, and the rate of seepage depends on the conductivity and the frequency. The skin depth is a convenient measure of this rate of seepage. Since the drop off is exponential,
it is useful to define the skin depth as the depth at which the magnitude of the field has dropped to $1 / 2$ or $\exp (-1)$ of its surface value. The current is not confined to a surface region as Mr Fant perhaps thinks, and the skin depth is not a magic depth below which current cannot penetrate.
At high frequencies, the skin depth is indeed small - a few micrometres at v.h.f., but even at 50 Hz the skin depth is only about a centimetre. There is no point, then, in making power cables more than a few centimetres in diameter, as the central portion would not carry much current. I am led to believe that this is why the cables on overhead transmission lines are often bunched as a group of four small cables rather than one larger one. David Gibson Broadstone
Dorset

MAXWELL'S EQUATIONS

Maxwell's equations are merely more precise formulations of the following phenomena, verifiable by experiment:

1. Changes in the spatial distribution of an electric field are attributable to a magnetic field which changes as a function of time.
2. Changes in the spatial distribution of a magnetic field are attributable to an electric field which changes as a function of time.
Maxwell's equations merely state the empirically observed phenomena described above in the "shorthand" notation of vector analysis, a particular branch of mathematics which lends itself very nicely to the expression of spatial and temporal changes in a symbolic form and thereby avoid the cumbersome and imprecise sentences written above.
In my opinion, Maxwell's great contribution lies not in any inherent truth or mystical quality (not to mention "obvious truism") attributable to the equations themselves but in the manner in which it made possible the derivation of a unified theory that explained diverse phenomena manifested in Faraday's
experiments covering a broad field known today as electrostatics, electric circuit and network theory (both lumped constant and distributed parameter versions), skin effect, antennae, wave propagation, etc. from just two basic equations stating "obvious truisms". As a matter of fact, Maxwell's equations actually predicted the existence and behaviour of radio and microwaves since, at the time of their
publication, these had not yet been discovered

It seems that Maxwell's equations are beautiful examples of the so-called scientific method, whereby a large and diverse group of natural phenomena observed experimentally can be explained within the framework of a unified theory, which is even capable of predicting future discoveries.
Maxwell's equations make statements of obvious truisms much like Euclid's postulates from which a lot less obvious truisms were later derived, much to the surprise of everyone. However, Euclid's postulates were not the last word in geometry, much as Maxwell's equations were not the last word in electromagnetic theory.
Catt's rather extertaining equations presented by him as a parody of those of Maxwell, might still turn out to be great milestones in science, should they somehow become recognized as a theoretical framework for a large group of phenomena observed empirically.
I would like to present a modest contribution of my own, most humbly called Shaw's theorem. To conserve space, illustrations will be dispensed with. In a recent scientific experiment. I placed an apple on the table, and a few minutes later, another apple was also placed thereon. This experimental fact may be expressed in the following mindboggling mathematical jargon:
$a+a=2 a$
This, of course, represents only an obvious truism, since it is only a symbolic expression of the facts observable in my experiment. (The astute reader might even predict, as an inevitable outcome of my revolutionary discovery, that if the symbol a means a banana, the equation would still be valid! But let us leave such discoveries to posterity . . . before Mr Catt would hastily remind us that the above equation does not teach us anything about fruit . . .)
It seems to be fashionable today to say that scientific theories are nothing but tautologies and obvious truisms, purposely obscured by mathematical jargon. In defence of the mathematical jargon, I wish to say that motion and change in time and space will if expressed in mathematical "shorthand" notation, necessarily involve "a mixture of integrals, divs, curls" called 'headspinning brew" by those who never understood their function as merely shorthand symbols, easily manipulated and visualized by means of simple rules even by first-year university students. As to tautologies and obvious truisms, logical thinking is a process which needs to start from a set of first
principles or axioms, accepted by everyone as being obvious truisms, unprovable and fundamental. Thus any sort of
"truth"derived from a set of axioms can only be relative and confined with respect to the framework of the axioms from which it was derived. Change one of the axioms and you end up with an entirely different setwof "truths". (This actually happened to one of Euclid's postulates which gave rise to a new kind of geometry.) In fact, you can invent any set of axioms you wish and derive any "truths" from them you wish. These, however, become scientific truths only whenever verified by experiments, providing that somehow they relate to our real world (another bad choice of words). In fact, Mr Catt's funny equations teach us just that.
I. Shaw

Pretoria
Republic of South Africa

XY PLOTTER

In the excellent 'X.Y. plotter update' article in December 1984, author P.N.C. Hill, the formulae printed for the calculation of the best next step to take in the plotting of a 'straight line' (at the bottom of page 77) requires, on most computers the use of 'floating point' routines, which of course tend to be relatively slow and not directly amenable to translating into a machine code program.

A rework of the formulae is shown below: it now requires for its solution only the use of simple integer additions, and can be coded up with no great difficulty (my own Z80-based home-built plotter uses this method).
It is written in program form as the computer's own screen can demonstrate the line draw 10 INPUT "LINE FINISH
POINT (X)"; XF
20 INPUT "LINE FINISH
POINT (Y)''; YF
$30 \mathrm{~B}=\mathrm{XF}$
$40 \mathrm{C}=\mathrm{YF}$
$50 \mathrm{~F}=0$
60 IF $\mathrm{F}=1$ THEN $\mathrm{A}=\mathrm{A}+\mathrm{YF}$:
$\mathrm{C}=\mathrm{C}+\mathrm{YF}$
70 IF $\mathrm{F}=2$ THEN $\mathrm{D}=\mathrm{D}+\mathrm{XF}$:
$B=B+X F$
80 IF ABS $(\mathrm{A}-\mathrm{B})<\mathrm{ABS}(\mathrm{C}-\mathrm{D})$
THEN 90: ELSE 100
$90 \mathrm{Y}=\mathrm{Y}+1$: PLOT X,
$\mathrm{Y}: \mathrm{F}=2: \mathrm{GOTO} 60$
$100 \mathrm{X}=\mathrm{X}+1:$ PLOT
$\mathrm{X}, \mathrm{Y}: \mathrm{F}=1: \mathrm{GOTO} 60$
The program is shown only working in the first quadrant, lines 90 and 100 being altered to suit the machine in use.
J. Jardine

Dewsbury
Yorkshire

68000 hoard - 6

Bob Coates ends his description of the monitor software with details of some applications

TO illustrate some of the techniques we have discussed, we will now look at some simple programming examples.
We shall touch briefly on accessing the duart and p.i.t. but these devices are very complex and it is beyond the scope of this series to deal with them in any depth. Interested users should therefore obtain the Motorola data manuals. These are fairly voluminous documents! The data manuals will be obtainable from Magenta Electronics, who are producing a package consisting of manuals for the processor and for the duart and p.i.t.

When using Kaycomp with only a terminal and with no access to a 68000 assembler, it is feasible to assemble by hand but it is a somewhat laborious task. This problem will be solved by the introduction of the eprom-based assembler for the board.

Other recommended reading is '68000 Assembly Language Programming' by Kane, Hawkins and Leventhal, published by Os-borne/McGraw-Hill. The necessary information to hand-assemble is available from this, the MC68000 User's Manual and the MC68000 Programming Card from Motorola.

In the examples which follow, the listings were produced by an assembler which uses a different convention for denoting hex constants from Motorola's, h ' 1 F ' being equivalent to $\$ 1 \mathrm{~F}$ etc. The assembler directives are also different, but should be self-explanatory.

The examples start at address 400400_{16} which is the lowest ram address that the user may use; 400000_{16} to $4003 \mathrm{FF}_{16}$ are reserved for use by the monitor.

Example 1

A very simple example is sufficient to demonstrate the trace function and the use of breakpoints when running a program. Using the $M O$ command, enter the object code, which is the second column of the listing, into memory at the address shown in column 1 .

The first three lines of the program preset three of the processor's registers, $\mathrm{d}_{0}, \mathrm{~d}_{1}$ and a_{0} with 0,0 and 100_{16} respectively. The loop section of the program then adds 1 to $d_{0}, 10$ to d_{1} and subtracts 2 from a_{0}.

First try putting a breakpoint at address 40040 A . Now run the program using $G O$ 400400.

The registers should now be displayed with their preset values as the breakpoint has been hit.
Next set another breakpoint at 400412 . This must be a different breakpoint number from the
previous one, as we shall continue from the previous break.
When we use the C N command, it looks to see which breakpoint was encountered and starts from there; so it must not be moved in the meantime. $C N$ will restart the program, cancelling the first breakpoint and displaying the registers again as it encounters the next one. Here we should see that the registers have been altered by the appropriate amount.

The operation may be seen more clearly if the trace function is used. Remove the breakpoint at 400412 by setting the address of that breakpoint to 0 using $B n$. Now start the program using TR.

Enter 400400 for both trace and program start. Registers should now be continuously displayed after each instruction is executed. Execution can be suspended by control-S.
Leave it running for a while and see what happens to d_{1}. The add instruction on this register is byte-length only so it will be seen that when the count passes FF it wraps around to 00 . The upper six digits always remain unchanged.

Example 2

Our second example illustrates monitor calls and how the 40/80 column formatting may be used.

The lea instruction loads a_{6} with the address of the start of the string. Then pdatam is called with the two lines . . .

trap \# 11

data 0 , pdatam
The word data is an assembler directive which means 'form a byte containing the value of 0 and pdatam'; pdatam is equated to 6 , so the assembler inserts this value.
After printing the string, which is terminated by the null byte, the next trap instruction causes a return to the monitor.
Try first running this program with the column mode at 80 , then at 40 . You will see that in the 40 -column mode an extra new line is inserted after the word 'is'. This is due to the data line h ' 8 d ', h ' 8 a ' which are the Ascii codes for carriage-return and line-feed with bit 7 set to 1 . The description of platam explains the difference.

Example 3

The MC68230 peripheral interface/timer i.c. is not used by the monitor, so this example will check whether the device is working or not (if fitted).
The base address of the p.i.t. is h 'A00001' and the first line sets a_{0} to this value. All references to the p.i.t. are then made using the 'register indirect with offset' addressing mode. The three registers of the device we are going to access are equated to their offset from the base address of the device.

The next line sets up the mode of operation of the p.i.t. (refer to the manual) and line after sets the data direction register for port A of the 68230 to all eight lines as outputs.

Then the program enters a loop where the port A outputs are set alternately to 01010101 and 10101010 with a delay in between. This delay is about one second with a 10 MHz clock and pro-rata for other clock frequencies. On

Supplies for this project are available from Magenta Electronics, 135 Hunter Street, Burton-on-Trent, Staffordshire DE14 2ST. The p.c.b. alone costs $£ 18.90$; with eproms and monitor, $£ 41.78$; with assembler also, $£ 58.38$. Prices include v.a.t., but please add 60p for postage.
looking on the port A pins on P5 with a 'scope, logic probe or even a voltmeter, you should see each output toggling.

Example 4

Now on to the interrupts. The interrupt output of the duart goes to the processor IPL1 input, the one on the Kaycomp wired for user-vectored interrupts. Accesses to the duart are made in a similar manner as in example 3 using 'register indirect with offset' addressing.
First the user interrupt vector number we are going to use, 64 , is put into the interrupt vector register (i.v.r.) of the duart. This value is passed over the data bus during the interrupt acknowledge cycle to tell the processor which vector address to fetch. If the register is not set, it holds a default vector which points at the 'uninitialised interrupt vector'.
Later, try padding out this line with NOPs and see what happens, but operate 'reset' before running it.
Next in the program, the jmp. 1 instruction opcode and the address of the service routine are placed in the vector \#64 ram block at h '400082'.
Finally, interrupts are enabled in the duart for characters received (refer to duart manual) and

the processor's interrupt mask is set to level 1 one lower than the level of the interrupt generated by ILP 1 .
The program then hangs up in a loop waiting for an interrupt.
This may seem a little pointless (in practice the processor would be off somewhere doing something useful), but it serves to demonstrate the principle.
An interrupt will be generated when a terminal key is pressed and processing will jump to vector $\# 64$ location where it will find the ram address h '400082'.
There it will execute the jmp.l h ' 4004 EA ' instruction which is the start of the exception processing routine. This first gets the character from the transmit/receive buffer register (trba) of port A of the duart. The 'trap \#11, 0009' call prints the two-character hex equivalent of the Ascii key; the next trap instruction adds a space after them.
The duart receiver is then reset and reenabled, because the previous monitor calls (which were not designed to be used at the same time as duart interrupts) upset the receiver operation.
The 'return from exception' instruction then causes processing to return to the next instruction after where it left off, the 'hang-up' loop again, until the next interrupt.

Example 5

This example shows one way of accessing a peripheral on the G64 bus.
The card I have chosen is the Syntel SYNADC2 which is an analogue i/o card having eight 12 -bit analogue inputs and two 12 -bit analogue outputs. It is unlikely that many readers will have this card, but I include the example to illustrate the principles of external bus access and handling auto-vectored interrupts.
The card must be configured as follows:
Address switches - all on (FFF801 16 , bottom of VPA).

$$
\begin{aligned}
& \mathrm{J} 1: 1-3 \\
& \mathrm{~J} 2: 1-2 \text { and } 3-4 \\
& \mathrm{~J} 5: 1-2 \\
& \mathrm{~J} 6: 2-4
\end{aligned}
$$

An analogue input should be provided on P2, pin 15 (positive) and P2, any even pin (negative) for channel 0 .
The G64-VPA range on the Kaycomp is FFF801 to FFFFFF; that is, the top 2K-bytes of the memory map. This is so that accesses to these absolute addresses may be made with a word-length address operand.
One of the above jumpers connects the interrupt output to the IRQ line of the G64 bus, which is in turn connected to IPL0, giving a level 1 interrupt. The a-to-d card generates an interrupt when a conversion is complete.

Channel zero is selected on the a-to-d card in the program after the jmp. 1 instruction has been set up in the autovector 1 ram space, as with the previous example.
The conversion is then started by writing (it does not matter what) to the a-to-d register.
The ADC2's interrupt output is then enabled and the processor's interrupt mask set to its lowest level, 0 , to allow interrupts at level 1 . It then hangs up and waits for the interrupt to
occur, which will be about 35μ S later after the a-d has finished converting.

Processing than jumps via address 400016 to 'excep'. Here, after clearing d_{0}, the 12 -bit conversion value is obtained from the card and placed in d_{0}. The 12 bits are obtained by reading two consecute addresses of the ADC 2 card, the eight most significant bits from the first and the four least significant from the second.

However, because there is no a_{0} line on the 68000 , the processor a_{1} output goes to a_{0} on the G64 bus and so consecutive addresses appear at alternative addresses to the processor. So we need, in this case, to read FFF809 and FFF80B.

Here the move p (move peripheral) instruction comes to the rescue. It addresses alternate loca-
tions (odd or even), two or four depending upon the size attribute, word or long-word.

The read word is shifted right four bits to right-justify it as, through a peculiarity of this card, the data comes out left-justified.

The value read will be between 0 and FFF_{16} (4095) for an input range of 0 to +10 volts. So next it is scaled to represent millivolts by multiplying by 10000 and dividing by 4095 .

The divu instruction exits with the result in d_{0}, bits $0-15$ being the integer result and bits $16-31$ the remainder. We are not interested here in the remainder, so bits $16-31$ are forced to zero. Next this binary value is converted to b.c.d. and then displayed as eight decimal digits, being the rsult of the conversion in millivolts

SmartWatch real-time clock with ram

With most computers, adding a real-time clock involves at least plugging in a separate p.c.b. Adding non-volatile ram can mean yet another p.c.b.

A computer real-time clock needs address decoding, a crystal, power-down switching and a battery. Unless expensive electricially-erasable proms are used, non-volatile ram also requires power-down switching and a battery. Normally add-on clock and non-volatile ram facilities constitute two separate p.c.bs.

With SmartWatch however - the subject of our special offer on page 65 - the clock and all its associated circuits are built into an 8 mm -high socket. What is more, the clock's lithium battery and power-switching circuits also connect to the top of the socket so the 8 K -by-8bit ram fitted becomes non-volatile and remains so for 10 years.

Timekeeping information includes hundredths of seconds, seconds, minutes, hour, day, date, month and year. At the end of the month, the date is automatically adjusted for months with fewer than 31 days, including correction for leap years. Whether the clock operates in 12-hour mode with a.m./p.m. indication or 24 -hour mode is selected by software.

Manufacturer of SmartWatch, Dallas Semiconductor produces various 'sockets', some with a ram and battery but no clock and some with a clock but no ram back-up facility so that eproms can be fitted. Other

Building components into a socket gives a real-time clock and battery-backed ram that plugs into many modern microcomputers without hardware modifications.

products include electronic keys and tags, an add-on serial port, silicon delay lines and an 'intelligent battery'. These are all available through Joseph Electronics in the UK.

Accessing SmartWatch

Plugged into a computer 8 K -by-8bit ram socket, the device appears in the memory map as a normal 8 K -by-8bit memory. Only when a unique 64bit data stream is sent to the socket does the clock respond. After this initiation stream, the next 64 bits written to or read from the memory area go to or from the clock.

This method of accessing the clock means that only one byte of processor address space is needed, and only when the clock is addressed. With many

will only need to be read once when the computer is switched on. From then on, timekeeping can often be taken over by the computer.

Any ram byte can be chosen for accessing the clock because the clock-access sequence through data-line zero depends only on states of the ram read, write, output enable and chipenable lines, i.e. those lines indicated on the diagram. Address line transitions during this period are irrelevant as far as the clock is concerned but data

is only transferred via data-bit zero. If need be, the one ram byte affected can be stored elsewhere temporarily while the clock is read.

Any read from the ram area sets the 64 bit code pointer in the clock circuit to its first location, which means that when the clock is to be accessed, a read operation normally precedes the string of initialization bits to be written. It also means that should the initialization sequence ever be interrupted by a read operation, the pointer will be set back to the first code bit.

Minimum and maximum signal levels on all lines controlling the clock are 2.2 V logic high and 0.8 V logic low. Lines not controlling the clock go straight through the socket to the c-mos ram.

In some ram sockets, mainly in 6502-based computers, the output-enable signal is active during memory writing, which means that SmartWatch cannot be used without hardware modification. Next month we'll show such a modification and a SmartWatch control program for the BBC microcomputer.

All pins on the SmartWatch socket except pins 20,26 and 28 pass straight through to the c-mos static ram.
by P.B. Unstead and A. Blunden

Below: memory dump of the code generated by the main listing (right).
CCOO 78 A9 00 8D Cl CO 80 C'3 CCO CO 80 C2 CO A9 FF 8D CO CC10 CO A9 038 8D FE O3 A9 EU CC18 8D FF 03 A9 3F 8D C3 CJ $\begin{array}{lllllllll}C C 20 & A D & C 2 & C O & A 9 & 34 & 8 D & C 1 & C O\end{array}$ CC28 AD C0 CO 58 AZ 45 AO 15 $\begin{array}{llllllll}\text { CC30 } & 84 & 23 & 20 & 4 \mathrm{~B} & \mathrm{CD} & 20 & 90 \\ \mathrm{CE}\end{array}$
$\operatorname{CC3B} \quad 29 \quad 03 \mathrm{DO} 01604 \mathrm{~A} 4 \mathrm{~A}$ 6A
$\begin{array}{lllllllll}\text { CC4O } & 85 & F 9 & A 2 & 30 & \text { AO } & 28 & 20 & 4 B\end{array}$ CC48 CD A2 21 AO 99204 AB CD CC50 A9 AO 8D DE O7 8D DF IJ 1 CC58 A9 C1 8D E1 $17 \begin{array}{ll}\text { A } 2 & 06 \\ \text { AO }\end{array}$ $\begin{array}{llllllll}\text { CC60 } & 15 & 20 & 08 & \text { CD AO } & 24 & 20 & 08\end{array}$ CC68 CD A0 $95 \quad 20 \quad 08$ CD A5 F9

 $\begin{array}{llllll}C C 80 & C O & A Z & 04 & 20 & 30 \\ C D & A 9 & \mathrm{FF}\end{array}$
 CC90 A5 F9 05 FF 8D CO C0 AZ
 CCAO FE 8D CO CU AO UU A5 F9 CCA8 1014 Bl FA 85 E3 80 CL CCBO CO 20 2E CD A9 8B 20 A8

 CCC8 CD 20 5C CD 20 7E CD FD CCDO OB 20 8B CD E6 FE DD C7 CCD8 E6 FF DO B4 A5 F9 $10 \quad 03$ CCEO 20 E6 CC 4 C OO CC AO 08 CCE8 AZ 08204 CD CD Ab FC 05 CCFO FD DO 08 A9 C6 8D 5607 CCF8 8D bl $07 \quad 20$ 3A CD A2 40 $\begin{array}{llllll}C D O D \\ & 20 & 4 B & C D & 40 & 90 \\ C F & \text { EA EA }\end{array}$ $\begin{array}{llllllll}\text { CDO8 } & 20 & 0 B & C D & 20 & 9 D & C F & 20 \\ 25\end{array}$ CDIU CD OA OA UA OA 95 F9 Cy $\begin{array}{llllllll}C D 18 & 20 & 90 & C E & 20 & 25 & C D & 15 \\ \text { F9 }\end{array}$ CD20 95 F9 C8 CA 60 C9 C0 90 $\begin{array}{llllllll}\text { CD28 } & 02 & 69 & 08 & 29 & 0 F & 60 & \text { A2 }\end{array} 08$ CD30 48 8A 4 D C3 CO 8D C 3 CO CD38 $68 \quad 60 \mathrm{AD}$ C3 CO 10 FB AD CD40 C2 C0 60 8A 4D C1 C0 8D
 $\begin{array}{lllllllllll}C D 50 & 38 & 6 A & 99 & 4 F & 07 & \text { CA } & 88 & 90\end{array}$ $\begin{array}{llllllll}\text { CD58 } & \text { F4 } & 68 & \text { A8 } 60 \text { A5 } & \text { FC } & 29 & 07\end{array}$ CD60 DO 0320 8E FD A5 E3 D1 CD68 FA 0891 FA 20 DA FD A9 CD70 A0 28 FO 02 A9 DD 20 FO CD78 FD A2 02 4C 4 A F9 A. $5 \mathrm{FC}^{\prime}$ CD80 DO 02 C6 FD CG FC DO OL CD88 A5 FD 60 E6 FA DU 02 E6 CD90 FB 60

Eprom programmer for Apple II

The second in a series of laboratory add-ons for the Apple and other 6502 computers

The real-time clock interface card which was described in last month's article included a 2 K eprom programmed with firmware to run the clock. The remaining $1 \frac{3}{4} \mathrm{~K}$-bytes are free to hold code to provide a variety of other useful functions, such as the one described here.
The 6821 p.i.a. consists of two parallel ports A and B each with two control lines $\mathrm{CA}(\mathrm{B})_{1} \mathrm{CA}(\mathrm{B})_{2}$ and is located at the absolute address C0C0 using 7421 gates and 7425 gates to decode the address bus. The R/W (read/write) and E (enable) pins are driven directly from the edge connector of the Apple. The reset line, pin 34, is tied permanently high so that the chip can only be initialized under program control.
The eleven lines required to address the eprom are provided by the eight lines of port A programmed for output. For programming purposes the eprom is split into eight blocks each of 256 bytes.
These are accessed by latching the three highest address lines, A_{8} to A_{10} through a 7475 latch (Fig. 1). The block is obtained through the p.i.a. outputs, PA_{0} to PA_{2}, which are latched by control line CA_{2} used as an output.
The latch-enables, which are active high, are obtained by taking CA_{2} low-high-low under program control.
Having latched the block address, the eight data lines of port A provide the low byte of the address to the eprom, A_{0} to A_{7}, whilst CA_{2} is held low to disable the latch. The fourth bit of the latch allows PA_{7} to be used, in conjunction with a 7432 gate, to control the PGM/READ pin of the eprom; again, CA_{2} is

| | | |
| :--- | :--- | :--- | :--- |

Below: subroutines. For details, see April issue.

0000ccea 204BCD		JSk	prhag	print Lisv oft		******	****	***********	
D000CCED A5FC		LDA	data ${ }^{\text {dat }}$		$00000 C^{4} 43$ 8A	crax	TXA		
OOOOCCEF O5FD		ORA	data+4	if no data left.	0000CD44 4DC1C0		EOR		
OOOOCCF 1 DODB $0000 C C F 3$ A9C6		ENE	$\neq F$	then skip Ascil' F	0000 CD 47 adcico		EOR	prati	change selected
0000 CCF5 805607		STA	scrn+6		$0000 C D 47$ O000CD4A 00		STA	pia+1	bits of CRA
0000 CCFB BD5707		STA	scrn+7	change "ON' to (1FFr					
0000 CFFB 203ACD	on	JSR	poll		0000 CD 4 B 98	prhdg	TYA	******	
OOOOCCFE A24C		LDX	\# 84 C	watt until IRQB is set	0000004 C 48		PHA		
$0000 C D 0032048 C D$		JSR	pridg	print RETURN" and watt	$0000 C D 4 D$ BDFFC7	next	LDA		save Y register
$0000 \mathrm{CDO} 3 \mathrm{4C9DCF}$		JMP	keyin		0000 CD 5038	next	SEC	table-1, x	read character
0000CD 07 EA		NOP			$0000 C D 51$ 6A		ROR	A	(not inverse field)
	*******	***	*******				STA	scrn-1, Y	prant it
0000 CDOP 200BCD	1 niput 4	JSR	2 nput2	anput two hex digits	0000 CD 5688		DEX		next character
$000060082090 C F$	1 nput 2	JSR	keyin	character from keyboard	0000 CD 57 goF 4		BCC		next screen iocation
OO00CDOE 2025CD		JSR	$\mathrm{d}_{1} \mathrm{glt}$	one digit	0000 CD59 68		PLA	next	odd value marks end
$0000 \mathrm{CD11}$ OA		${ }_{\text {ASL }}$	${ }_{\text {A }}$		-000cd5a as		TAY		of message
O0000CD 13 OA		ASL	A	shift digit	0000 CD 5 B 60		RTS		
0000 CD 14 OA		ASL	A	to top four bits	0000 CDSC A5FC	*******	****	*****	
00000015 95F9		STA	data, X	and save.	$0000 C D 5 E 2907$	privat	LDA	data+3	output <cr)
$00000 \mathrm{CD} 17 \mathrm{C8}$		INY		next screen location	$0000 C D 600003$				every elght bytes
00000 D18 209DCF		JSR	keyın	keyboard	00000062 20bEFD		BNE	skip	
$0000 C D 18 ~ 2025 C D$ $0000 C D I E ~ 15 F 9$		JSR	${ }_{\text {digit }}$		00000065 A5E3	skip	LDA	crout	
0000 CD 20 95F9		STA	data, ${ }_{\text {data, }}$	Join two digits and	00000067 D1FA		CMP	(data+1), Y	
$00000 \mathrm{CD} 22 \mathrm{C8}$		INY		next screen location	00000069 08 01 Fa		PHP		
0000 CD 23 CA		DEX		next byte	0000006 C 20DAFD		STA	(data+1), Y	store data in ram
0000CD24 60		RTS			$0000 \mathrm{CD6F}$ a9a0		LDA	proyte	print data on v.d.u.
$0000 \mathrm{CD} 25 \mathrm{C9C0}$	digit	CMP	\#at	Ascil	$0000 C D 71 ~$ 000000728002		PLP		merk 15
000000279002		BCC	nume	1 f numeric, skip	$0000 C D 74$ A9DD		BEQ	same	old value differs
D000CD29 6908		ADC	\#8		0000 CD 76 20F0FD	same	JSR		Ascli
0000CD2B 290F 0000CD2D 60	numc	AND	\#3F	select four low bits	$0000 C D 79$ A202		LDX		print two blanks
	****	****	********		0000CD 7B 4C4AE9		, MP	Prbl2	
D000CD2E A208	cb2	LDX	* 8	manual level	0000CD7E A5FC	decnob	LDA		
$0000 C D 3048$	crbx	PHA		save accumulator	00000080 D002		BNE	lobyte	
$0000 \mathrm{CD} 3240 \mathrm{CS3C0}$		EOR	Prat 3	change selected	$0000 C D 82$ 00000884 C6FD		DEC	data+4	data bytes
$0000 \mathrm{CD} 35 \mathrm{BDC3C0}$		STA	Pie +3	bits of CRB	0000 CD6 D002	Lobyte	DEC	data+3	zetc tlag is set
00000003868		PLA			D000cd88 A5FD		LDA	returnl	clear ors retiorn
0000 CD 3960		RTS			0000CD8A 60	returnl	RTS	data+4	
0000 CD 3 A ADC 3C0	poil	LDA	P1a+3		0000CD8B E6FA	*******	****	********	
0000 CD 3 D 10FB		BPL	Poll	watt untal bit 7 is set	00000880 D002	1ncram	INC	data+1	increthent vecior
0000 CD 3 F ADC 2 CO		LDA	Pia+2	clear interrupt	0000CD日F E6FB		INC	return2	tic tatm
0000CD42 60		RTS			0000 CD 9160	returnz	RTS		

Table 1 (above): control register fromat of the 6821.

Below: this Basic program modifies the code generated by the main listing so that the software can program its own eprom.

[^3]used as a latch enable.
For the read mode PA_{7} is low and CB_{2}, programmed as output, is transmitted to pins 18 and 20 of the eprom. Data is then read through port B while CB_{2} is pulsed low-high-low.
In programming mode, PA_{7} is latched high and the or gate holds pin 20 high; CB_{2} is pulsed high-low-high for 50 ms while the data is held on port B output. Line CB_{1} senses the 25 V programming supply and so provides circuit protection through software.

Software

Externally the p.i.a. appears as four consecutive register locations, but internally there are six registers: three for each of the two ports. The data direction register $\quad D D R A(B)$ and the input/output register ORA(B) share a register location; the unique locations are occupied by the respective control registers. The shared addresses are Base (A port) and Base +2 , (B port). The port is programmed by writing to the corresponding bit of the DDR; 0 configures a line for input and 1 configures it for output.

The register selected to appear at the shared address is controlled by the status of bit 2 of the appropriate control register. If bit 2 is cleared the DDR is accessed; if set, the i/o register is selected.
The control register format is given in Table 1: Bits 7 and 6 are interrupt flag bits for the $\mathrm{CA}(\mathrm{B})_{1}$, $\mathrm{CA}(\mathrm{B})_{2}$ control lines; the flag is set to logic 1 when the programmed transition occurs on the appropriate control line. If the interrupt is disabled the related IRQ line from the p.i.a. will not be taken low and the processor will not be interrupted. The flag bit will however be set; it is cleared by reading from or writing to the port.
In the same way, the $\mathrm{CA}(\mathrm{B})_{2}$ control lines are programmed by switching bit 5 ; if bit $5=0$, the line is an input. The $\mathrm{CA}(\mathrm{B})_{1}$ lines operate only as inputs.
For input control lines, a further bit specifies which transition will set the IRQ flag bit. If the transition is to be 1 to 0 , a zero must be written to the appropriate bit. The logic state written to the bit indicates the status of the line after the transition has occurred.
For $\mathrm{CA}(\mathrm{B})_{1}$, bit 1 is used to control the transition whilst bit 4 indicates the required transition on those $\mathrm{CA}(\mathrm{B})_{2}$ lines configured as inputs. When the lines $\mathrm{CA}(\mathrm{B})_{2}$ are configured for output, if bit 4 is set to 1 the status of the control line is determined by the
status of bit 3 ; if bit 3 is set the line is high.

Firmware

The 6502 code is entered by Call (52224). The user then selects Exit, Read or Burn. Exit may be followed by Call (52526): Poke 249,0 : Call (52290) in order to read a rom. The user next enters the eprom start address, number of bytes and ram start address in hex notation.
In Read mode, the program then copies the specified area of the eprom to ram and indicates whether the byte previously held in ram was the same, for verification. In programming mode, the program asks the user to insert the 25 V connection and burns the code into the eprom, displaying the data as it does so.

Self-programming

With a few modifications, the code can be used to generate its own firmware. Enter the code into ram at $\$ 6800-\$ 6 \mathrm{FFF}$, then copy it, using the Basic program (table 4), into ram at $\$ 5800-\$ 5 \mathrm{FFF}$.
The program alters the high bytes of absolute addresses \$C7, \$CB, \$CC, \$CD and \$CF to new values $(\$ 57, \$ 5 B, \$ 5 \mathrm{C}, \$ 5 \mathrm{D}$ and $\$ 5 \mathrm{~F}$). The eprom programmer may then be operated by calling the modified code with CALL (23552).

JAM TODAY

Unless a solution to the problems of deliberate interference can be found at the second session of the World Administrative Radio Conference for the planning of the h.f. broadcasting bands, due to be held at Geneva from January 27 to March 13, 1987, little progress is likely to be achieved and the conference may collapse. This pessimistic view was expressed by Bert Gallon, chief engineer of BBC External Services, in a recent "Waveguide" broadcast.
At peak listeining times as much as 60 to 70 per cent of available spectrum is being badly affected by jamming. This affects listeners in countries far beyond those to which the jamming is directed.

The Russians are currently jamming, in an extremely sophisticated manner, the Russian-language programmes of the BBC, Voice of America, Deutsche Welle, Radio Free Europe, Radio Liberty, Radio Israel and Radio Peking. The only other country jamming BBC transmissions is Poland. China jams programmes from the USSR. With the narrow 5 kHz channel spacing and the mixture of very high and medium power transmitters on h.f., the jamming spreads over more than the target channel and can pause problems as far away as South America and Australia.

The USSR has an elaborate and costly network of groundwave jammers for urban areas of more than 100,000 population and powerful skywave jammers to blanket suburban and rural area. Over the years, they have learned a great deal about the technique of jamming, seldom wasting power on what they regard as "harmless" programming but switching on very quickly when an "objectionable" programme begins, following any sudden changes of frequency promptly and effectively.

Non-deliberate interference arises mostly from poor spectrum management and lack of experience in some countries. The h.f. broadcast spectrum is the least well regulated of any of the broadcasting allocations, and is seen by many governments
primarily in terms of national prestige and propaganda.

The jamming problem, unfortunately, could easily spread to the microwave bands for satellites, with their increasing use for such purposes as the world-wide television exchanges already in operation by the United States Information Agency, and the future possibility of high-power direct-broadcast satellites targetted at East Bloc countries. There is a popular view that d.b.s. is impossible to jam. In fact this could be done all too easily by squirting signals at the receiver of the satellite transponder.

Although jamming is contrary to the radio regulations, it could be argued that a United Nations recommendations on space broadcasting states that this should not be targetted towards another country without the agreement of the country concerned. It would, for instance, be one thing for the Federal Republic of Germany to put out their own national programmes on a satellite whose footprint extended over the whole of East Germany and beyond, but quite a different matter if the satellite carried programmes expressly for that area. A majority of viewers in East Germany can, in fact, already receive West German television from terrestrial transmitters, and viewers who take advantage of this are no longer harassed by the authorities as they once were. But then East German tv can be viewed as far west as Hamburg and I am told is popular because of the spectacular State-subsidized films with, as the cinema used to proclaim, "a cast of thousands".

USA IN THE RED

For many years one has thought of the USA as the heart-land of radio communications and electronics, the large domestic market giving the economies of scale that made their products sellable in every country that could find the dollars to pay for them. Yet in 1985, the USA had a world-wide electronics deficit of an estimated $\$ 8600$-million, almost 40 per
cent more than in 1984. The main reason is the enormous deficit of about $\$ 17,500$-million with Japan, much of it due to importing $\$ 11,700$-million worth of consumer products from that country. Only in computers did the USA achieve a worldwide positive balance. Japan's NEC has taken over from Texas Instruments as the world's largest supplier of integrated circuits. One result has been the hardening of the yen/dollar exchange rate by about 25 per cent in recent months, with Japanese firms trying to hold their market shares in capital equipment by not raising prices to an equivalent degree, but already losing some of their consumer-market to Korean industry.

ARCTIC LINKS

Providing communications in the Arctic presents severe problems both in terms of the very difficult h.f. propagation conditions (polar cap absorption and extreme multipath) and in the provision of light-weight, easily-powered radios that will continue working at the sort of extreme low temperatures that can cause co-axial cable, unless especially treated, to disintegrate at a touch.
The three-year "transglobe" expedition of 1979-82 under the leadership of Sir Ranulph Fiennes experienced their most difficult radio problems while in the Antarctic and later in the Arctic. I recall talking to Lady Virginia Fiennes, the base station operator, at Racalex 82. She explained that on occasions propagation was so bad that s.s.b. from the forward man-pack set had to give way to slow morse. The biggest worry was that of providing electric power for the portable units at times when the petrol-electric generators carried on the motorised sledges were not available.
During early March, Sir Ranulph Fiennes, with scientist Oliver Sheppard and radio engineer Lawrence Howell, left Heathrow on the first stage of a new probe into the Arctic to be made from a base camp on Ward Hunt island some 400 miles from the North Pole.

This time the plans include a satellite link from the base camp to the UK, plus the use of Racal 10 -watt manpack sets and a 100 -watt h.f. transmitter to maintain links with North America and Portishead Radio. The manpack sets have been tested down to temperatures as low as minus 45 degrees Centigrade. The team are using special lightweight (500 lb) sledges made by British Aerospace and designed to stay afloat should they fall through the ice with a full 600 lb load. They are seeking - scientific information on atmospheric pollution and the structure of the ice shelf.

SPACE OUTLOOK

The UK may or may not have a high-power d.b.s. system in operation by 1989 or 1990 . We shall have to wait and see what response there is to the IBA advertisements. Meanwhile the provisional timetable for other European high-power and intermediate-power satellites is that the French TDF-1 and West German TV-SAT could be launched later this year, both providing up to four channels from orbital position 19° East with transponders putting out more than 200 watts of r.f. If all goes well TDF-1 should be receivable over much of the UK with small dishes, and may have an English-language service provided by Robert Maxwell, but it is by no means certain that there will not be further delays. The Japanese Yuri BS-2b (not receivable in Europe) was launched in February with three 100 -watt transponders, but it will be some time before anyone can be sure that these will not suffer a similar fate to two of those on BS-2a. The
"intermediate power" Luxembourg SES satellite being built by RCA is expected to be launched in 1987 with a capacity of 16 television channels. With 45 watts per channel and an e.i.r.p. of 50 dBW it should be receivable over most of west Europe on dishes of about 0.9 to 1.2-metre diameter. It has an Ariane launch booked. The American hold on geostationary launches
following the Shuttle disaster
seems bound to increase the pressure to get on to Ariane.
Papers presented at a recent IEE colloguium on
"Operational experience in the use of the European communications satellites for television tansmission" was concerned exclusively with the use of the Eutelsat F1 ($13^{\circ} \mathrm{E}$) and $\mathrm{F} 2\left(7^{\circ} \mathrm{E}\right)$. F 1 carries a number of the services for European cable systems. F2 includes EBU news and programme exchanges and occasional use for satellite news gathering (SNG).
Most speakers agreed that the Eutelsat systems have been very successful but equally it is clear there have been a number of problems. The drop in performance of the transponders used for Sky Channel and the Belgian film channel has so far not seriously affected the services, but has shown an unexpectedly high rate of degradation of two of the Telefunken travelling wave tubes.
There is also a difficulty in making meaningful cost comparisons between satellite and terrestrial links due to fluctuating exchange rates and the use of Swiss Gold Francs on terrestrial links and European currency units (ecus) on the leased space segments.
A major problem for SNG is the need for frequency coordination before a 14 GHz uplink can be used from a temporary site.
For equipment designers there is still the problem of the different transmission standards including deviation (bandwidth), pre-emphasis, audio, sub-carrier spacing, audio bandwidth plus the different colour encoding systems, etc. The outlook for a single European transmission standard is still unsettled, while a world transmission standard grows ever less likely. Latest contender to enter the h.d.tv stakes is a BBC concept called digitally assisted television (d.a.tv) that involves the transmission of analogue picture signals together with high data-rate digital signals carrying control or supplementary information about the picture and claimed to put an h.d.tv picture into home receivers, even when the bandwidth of the signal has been reduced.

TVI TURN-ROUND

What appears to be a major change in the official DTI approach to difficult cases of radio-frequency interference, following the phasing-out last year of free investigation by the Radio Investigation Service, was disclosed in a Parliamentary reply by Mr John Butcher, Secretary of State for Trade and Industry. The reply, combined with the belief that new licence regulations for amateurs are in the offing, is causing many rumours to circulate about future power restrictions.

Mr Butcher stated:
"Problems can arise when high power radio transmissions are made in close proximity to radio and television sets, or indeed a range of electrical apparatus not designed to receive radio. Such problems can be exacerbated by equipment which is deficient in its ability to reject unwanted signals or in the case of radios and televisions which have an inadequate or defective aerial or no aerial at all. The problem is growing because more and more homes now contain a great range of electric equipment; and high power transmitting equipment is now more widely available to the growing number of amateur radio licensees.
"Radio amateurs generally take a responsible attitude to the problems their transmissions cause. Equally, manufacturers are keen to produce equipment which has adequate immunity.
Regrettably, a few amateurs and manufacturers do not have a responsible attitude; it is they who cause problems.
"My officials are currently discussing with BREMA and the RSGB the implications for them of the new standard for television immunity currently under discussion internationaly and procedures for dealing with individual cases where interference is caused. I would like to see sensible immunity standards observed by all manufacturers and importers of radio receiving and radio sensitive equipment. Where possible and appropriate these will be enforced by order. Similarly, manufacturers and importers of radio and non-
radio equipment should seek to ensure that their products do not cause interference to radio users. Orders exist for some types of equipment and where appropriate others will be made.
"Where it proves impossible to resolve individual problems and the affected apparatus has been brought up to a
reasonable level of immunity, I intend to vary the terms under which the relevant amateurs are licensed; where necessary (and I hope it will not be necessary often) licences will be revoked.
"In this particular case (at Eastcote, near Pinner) I will vary the powers which the amateur is licensed to use and restrict his use of certain bands. If this does not resolve the problem, I shall further review the position."
While few amateurs would disagree with the DTI's analysis of the problem, many are extremely worried at the new threat of varying or revoking a licence where the transmitter is causing breakthrough and not harmonic interference. This reverses the procedure that has existed for many years. This has meant that an amateur causing breakthrough interference will not be prevented from operating within the terms of his licence except temporarily while the RIS team advise the viewer on a cure. Furthermore, only appliances intended to receive radio or television have been the concern of the D.T.I.
It is understood that British Standard BS905, intended to improve the immunity of $t v$ receivers primarily against $C B$ 27 MHz interference is being put aside in favour of the European specification. While this will help minimise the problem of breakthrough from low-power transmitters there may remain problems of breakthrough interference in close proximity to high-power transmitters unless the sets are fitted with additional filters as in the past. It seems likely that the DTI will wish to introduce regulations restricting the effective radiated power of amateur transmitters, particularly on microwave bands, where high-gain antennas can result in very high e.r.p. from relatively lowpower transmitters.

THERMIONICS

The 50th anniversary of the introduction by RCA Radiotron of the 6 L 6 valve in 1936 has sparked off a good deal of nostalgia among radio amateurs who still recall with something approaching genuine affection the series of beam tetrodes that included the 6L6, 807 and 813 that filled so many transmitter sockets over many years. I wonder if solid state devices will come to be remembered in this way? How long before we are talking nostalgically of the 555 or even the OC171?
For many amateurs, the valve is still the easiest and surest way to obtain lots of r.f. watts. The 813 is still in demand for s.s.b. linear amplifiers, along with the modern high-perveance valves that can be decidely more temperamental unless carefully handled.
I note that the British Vintage Wireless Society is sponsoring a three-day, 15-lecture course on "Early Wireless - the thermionic age past and present"' at Imperial College, London SW7, July 7 to 9. A snag for retired engineers and amateurs is that the fee, including lecture notes etc, is $£ 85$. Course organizer is Dr L.L. Freris, Electrical Engineering Department, Imperial College, London SW7 2BT.

Looking through the list of topics one wonders how many of the present generation of amateurs are familiar with such techniques as reflex, neutrodyne and superinductance. But the use of the valve in modern transmitters and hi-fi equipment is also to be covered. The possibility of a considerable return to thermionics as a protection against equipment damage from nuclear electromagnetic pulses is still on the cards, with the American Naval Research Laboratory claiming to be working on microminiature thermionic devices.

PAT HAWKER, G3VA

CIRCUIT IDEAS

Quad switch as SR latch

A set/reset bistable latch can be configured from two sections of a 4016 or 4066 cmos quad bilateral switch.
Two transmission gates are cross-coupled as shown. Closing S_{2} causes gate a to be non-conducting; point A is therefore high and so gate b conducts. Because gate b is conducting, point B is low, holding gate a open when S_{2} is released.
When S_{1} is closed, gate b is open circuit, point B goes high and gate a conducts, making point A low and so holding gate b non-conducting. The truth table is shown.

If a known power-up condition is required, C_{1} may be added across S_{1} to make sure that gate a is conducting and gate b is open circuit at switch on.

Automatic power switch and headphone amplifier

I have used this batterypower switch and the headphone amplifier for about a year now with my Sony Walkman DD and Sennheiser HD430 headphones.
Amplification is needed as the Walkman has a 32Ω output and the headphones are 600Ω.
Audio is amplified by Tr_{1}, rectified by D_{1} and charges C_{1} to switch on the mosfet Tr_{2}. Resistor R_{2} determines delay between loss of audio and switch off, which is usually greater than 1 min .
Value of R_{1} is determined by fitting a $2.2 \mathrm{M} \Omega$ potentiometer in its place and adjusting it so that $\mathrm{V}_{\text {out }}$ is zero with no audio, rising to $V_{\text {in }}$ within a few seconds when audio appears.

Power consumption is 5 mA when switched on and about $130 \mu \mathrm{~A}$ when off; if the unit is switched off for long periods, add a normal power switch. Philip Bosma Enschede The Netherlands

${ }^{x}$ All capacitors except these are tantalum

Line driver

In order to drive c-mos at a distance, an active pull-up is required.
Active current sinking is provided by a high-voltage t.t.1. 7406 inverter or 7407 buffer while the BC183L acts as a current source when the t.t.l. output goes high.
This circuit has been used to drive a c-mos input at 2 MHz over 3 m of twisted pair. J. Shaw Dunfermline Fife

Inexpensive 150V regulator

Using a 100 V complementary pair as a shunt regulator provides a solid-state alternative to neon stabilizers. Point X is held at 75 V relative to either rail, providing 150 V . At 100 mA , amplification of the TIP41C/42C pair is greater than 100 . David Hoare Leicester

Note:- each transistor on $6^{\mathrm{c}} \mathrm{C} / \mathrm{W}$ heatsink

Development interface

This Z80 Spectrum interface reads most single-rail eproms and reads and writes non-volatile rams and battery-backed eprom emulators such as the GR2716.

We use assembly language on the Spectrum for developing industrial control applications software. Code is assembled then transferred to an emulator using the interface.
To transfer eprom content to ram starting at $\mathrm{C}_{0} 00_{16}$,
or to transfer contents from C000 onwards to an emulator,

	ORG	B030	
	LD	BC,0800	$; 1000$ for
LOOP2	LD	HL,C000	4K devices
	LD	A,(HL)	
	OUT	(1F),A	
	INC	HL	
	DEC	BC	
	LD	A,B	
	OR	C	
	JR	NZ,LOOP2	
	RET.		

Supply switching linked to the zero-insertion force socket allows eproms to be inserted and removed while the computer is powered.
Hamid Mustafa
Sola ADC Lenses
Ireland

Rounde on I.E Saw Filter Output tany channel 47.860 MHz V ision to Sound Power Ratio Intermodulation
Spurious Harmonc Output
$240 V 8$ Watt lavailable in other voltages
$\vee \mathrm{Pk}$ Pk 75 (hm $V P_{k}$ Pk 75 Ohm
$8 V 600 \mathrm{hmm}$
MHz (available 5.5 MHz)
Negative
38.9 MHz
32.9 MHz (available 33 amHz)

50us
6 dB
6 dB
$+6 \mathrm{dEmV}(2 \mathrm{mV}) 75 \mathrm{Ohm}$
5 to 1
Equal or less than $60 d B$
$-40 \mathrm{~dB} / 80 \mathrm{~dB}$ if fitted with TCFL
bined via TCFLA Combiner/Leveller Soecification as above trut output level 60 dB mV

	CHANNEL COMBINER/FILTER/LEVELLER to combine outputs of modulators
TCFL2	2 Channel Filter/Combiner/Leveller, Insertion Loss 3.5 dB TCFL4
4SKO	Chamel Filter/Combiner/Levelier. Insertion Loss 3.5 sB
TSKO	Enabies up to $4 \times$ TCFLL or TCFL to be combined

TAYLOR BROS (OLDHAM) LTD
 BISLEY STREET WORKS, LEE STREET, OLDHAM, ENGLAND.
 TELEPHONE: 0616523221 TELEX: 669911

CIRCLE 32 FOR FURTHER DETAILS

DATA GENERAL MINICOMPUTER PARTS AND SYSTEMS

Does your application need those multi-user megabytes but your budget stretch only to a PC? Or is your old DG mini flat on its back? Need an upgrade? Second printer? Hardware support? As traders in commercial systems, we always have stock of older (and newer) equipment. We also deal in second-hand and surplus micro systems. Large SAE for current catalogue
Sample stock: Eclipse S 130 (CS/60) 8-line mux, 40MB - £5500; D211 screen-£570;6123 Micronova/CS100 streaming tape £ 3400; CS 10 C3,4-line mux, $12.5+1.2 \mathrm{MB}$, console - £1500; NEC APC, colour, 10 MB , Autocad, A1 plotter \& digitiser £4000. 3001 pm drum printers - £ 400

SILICDN GLEN LTD

Moray Street, Blackford, Perthshire, Scotland
Callers \& Overseas Enquirers weicome on Telephone: 076482315 or 464
Telex: 295141 TXLINK G quoting MBX 076482315 on first line Bulletin Board Sales Catalogue (Prestel Standard) on 076482465

CIRCLE 35 FOR FURTHER DETAILS.

BEST PRICEMEMORIIES

All the latest fastest devices not to be confused with slower old stock offered elsewhere

DRAM			EPROM		
5 NMMOS	150ns		5 VNMOS	250ns	
4164	$64 \mathrm{k} \times 1$	£1.20	2716	$2 \mathrm{k} \times 8$	£3.25
41256	$256 \mathrm{k} \times 1$	£2.80	2732	$4 \mathrm{k} \times 8$	£3.25
4416	$16 \mathrm{k} \times 4$	£2.95	2764	$8 \mathrm{k} \times 8$	£1.95
41464	$64 \mathrm{k} \times 4$	$\Sigma 5.90$	27128	$16 \mathrm{k} \times 8$	£2.85
SRAM			27256	$32 \mathrm{k} \times 8$	£4.95
5 V CMOS			$27 \mathrm{C64}$	$8 \mathrm{k} \times 8$	£8.50
6116	$2 \mathrm{k} \times 8$	£1.65	27C256	$32 \mathrm{k} \times 8$	£15.00

$8 \mathrm{k} \times 8$
£3.50
ORDERS OVER £25 DEDUCT
10% DISCOUNT ADD 15% VAT SENT POST FREE. ORDERS UNDER £25 ADD 15% VAT PLUS 50p P\&P. OVERSEAS ADD £2 P\&P NO VAT

MICROKIT LIMITED

MANOR PARK. RAUNDS
NORTHANTS NN9 6PD
Technical advice etc., please phone 093362642024 hour service

LOOK AHEAD!

 WITH MONOLITH MAGNETIC TAPE HEADSDOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES. SAVE EEE'S ON REPAIR CHARGES Our replacement video heads fit most models of VHS or Betamax VCR's. Following our replacement guide and with a practical ability, you can do the whole job in your own home with our head replacement kit. ${ }^{\text {WEAD }}$ REACMENT KIT

VMC-02 KIT ONLY £19.95 inc. VAT. + £2.50 p\&p
(Kit does not include video head)
TELEPHONE US NOW FOR INFORMATION OF THE REPLACEMENT HEAD FOR YOUR VIDEO RECORDER. CATALOGUE: For our full Catalogue of Replacement Video and Audio Cassette/Ree to Reel Heads, Motors, Mechanisms, etc. Please forward $50 p$ p\&p.
THE MONOLITH ELECTRONICS CD. LTD. 5-7 Church Street, Crewkerne, Somerset TA18 7HR, England. Telephone: Crewkerne (0460) 74321 Telex: 46306 MONLTHG

by H. W. Gleaves

An introduction to 3 D graphics

Principles for producing threedimensional images in perspective are discussed, with an implementation example in QL Basic.

Hugh Gleaves initially trained as an Electronics Engineer, became interested in computing, and took a position as a computer programmer for London-On-Line Local Authorities, L.O.L.A., in Enfield, Middlesex. There he learnt how to produce structured modular program using PL/1, and also the fundamentals of database programming.

Hugh's main interest however is in computer applications rather than data processing and he took the opportunity of studying for an HNC in cad/cam at Merton College in Surrey, having been with L.O.L.A. for 3 years.
Hugh's other interests include computer graphics, electronics and artificial intelligence.

Many personal computer users regard computer graphics especially 'three dimensional' computer graphics - to be both complex and specialized. For these reasons many people avoid one of the most interesting and effective applications of a personal computer.

To fully understand the subject requires great effort and study; modern state-of-the-art computer graphics, is a highly developed subject, demanding the highest performance possible from computers.

Forming an introduction to the subject, this article demonstrates how a microcomputer graphics system for constructing object outlines is developed. These outlines, or "wire frames', are in perspective and can be constructed in any position and orientation.

Superbasic on the Sinclair QL is used to show how the graphics system is implemented. Elementary algebra and trigonometry are used but you can skip over these and just use the programs without studying their internal workings if you wish.

Applications for such graphics software are up to you; one obvious use is games, but time taken to compute the images has to be taken into account. It would be interesting to see how the software presented here performs when written in assembly language or speeded up by some other method such as compilation.

Because we want to be able to view objects in the graphics system from any position and orientation, a description of the objects must be present. This
description takes the form of a numerical model of objects in the artificial world, or environment.

Three-D artificial environment

Such a model constitutes what is termed a 'three dimensional artificial environment', or simply 3D a.e. Given a 3D a.e. and appropriate software, it is possible to produce perspective images of the environment from any position and orientation. The environment used in this system has an hierarchical structure as shown in Fig. 1.

Every object in the 3D a.e. is referred to as a body. Each body is referenced by its body number and constructed from a number of polygons. A cube for example has six polygons. Furthermore each polygon has a number of vertices.
Finally each vertex has three coordinates uniquely identifying its position in space.

Because our 3D a.e. takes this form, it means that all objects in the 3D a.e. must be constructed from plane, that is flat, polygons, but this is not a significant restriction.
Thus the 3D a.e. contains the description of real, material objects and does not relate to the viewer in any way. It is a generalized description of the objects to be viewed.
The 3D a.e. is a data-base, but is implemented in Superbasic as a number of arrays. Since the 3D a.e. only contains array references, integer arrays can be used to save memory and increase system speed.

The vlewing process

Now comes the problem of constructing an image of the region of the 3 D a.e. in view. Imagine that you are inside a tv camera that floats freely in the 3D a.e. and can be pointed in any

desired direction and in any orientation.

The imaginary camera itself has coordinates, $\mathrm{C}_{x}, \mathrm{C}_{y}, \mathrm{C}_{2}$, as well as three orientation components, roll, pitch, and yaw. Parameters roll, pitch and yaw are three angles that uniquely specify the imaginery camera's direction, and are measured with respect to the camera's co-ordinate system.
There are thus two coordinate systems. The first describes all points in the 3D a.e. including camera position and the second is an identical coordinate system that is fixed with the camera, i.e. each point in the environment has two sets of coordinates, those relating to its position in the 3D a.e. and those relating to its position relative to the camera.

To compute the image seen by the camera, the position of all points in the environment relative to the camera needs to be known. These relative coordinates depend on the camera position and orientation in the 3D a.e. and can be calculated from the real coordinates.

The process of obtaining these coordinates is transformation - a mathematical term to describe the process of obtaining coordinates in one system given the coordinates in another system.

Transformation takes place in two stages in the program (to follow). In the first stage, translation, the second coordinate system is placed at the specified position with axes parallel to the original coordinate system. New co-ordinates of any point can then be found very simply, as Fig. 2a shows.

The second stage takes the previously found coordinates of a point and rotates the
coordinate system through the specified angles. New coordinates of any point relative to the coordinate system can then be calculated as shown in Fig 2b.
A similar set of equations exists for three dimensions. Our imaginary camera can now be placed anywhere in the 3D a.e. pointed in any direction, and coordinates of any point in the 3D a.e. with respect to the camera can be calculated. Calculation takes place in two steps as described above.
Given the camera's position and orientation, six numbers in all, the position of any point in the 3D a.e., relative to the camera can be calculatec. But this is only half the story. A twodimensional picture still has to be constructed from the 3D data. This final stage of the 3D a.e. manipulation involves finding screen coordinates of a point given its 3D coordinates in space. This is simply another transformation process, Fig. 3.

Several types of transformation are available that allow a two dimensional image to be produced. This article is primarily concerned with a class of transformations known as perspective transformations.

In a perspective transformation, a point in space known as the focal point is designated and a surface is introduced, in our case a plane surface, between the focal point and the scene to be viewed. Now, an image is 'projected' onto the plane or screen.
Projection takes place as follows. For every point in the 3D a.e., or portion of the environment being viewed, construct a straight line from that point to the focal point. The position on the screen that this line penetrates is the projection

The cover photograph is an example of an advanced 3D graphics processor. Software producing this picture the subject of a future article - is based on the principles and programs dealt with in this issue. Wireframe objects, like those on the right, are produced using software to be shown in the next issue.
Shown left is an object drawn in full perspective 31). The system supports full colour, polygon outlining, back face removal, and hidden feature removal. An automatic surface area calculator is included that can calculate the total surface area of any 3D body in the system, which brings it into the realm of simple CAD.
The photograph is taken directly from the monitor, and shows just one facility of the powerful menu orientated system. Other facilities are object Load/Save on microdrive, and an improved form of motion control. How the system works and is implemented are discussed in a future issue, together with details of how you can obtain copies of the software.

Fig. 1. Hierarchical structure of the 3D a.e. data base.
of the point in the 3D a.e. If this process is carried out for every point in the scene, and points on the screen joined in the same order that they are joined in the scene, then a perspective image will have been produced on the screen.

Perspective transformation

There is a simple mathematical relationship between the point's true coordinates and the coordinates of its projection. The equation relating this is derived with reference to Fig 3.

The diagram shows the simple geometrical relationship between the true and per-

Fig. 2. Translation of (ij) coordinate system (a) and rotation of the (ij) coordinate system (b).

| Vertex | x | y | z |
| :--- | ---: | ---: | ---: | ---: |
| 1 | 0 | -1 | 0 |
| 2 | -1 | 0 | 0 |
| 3 | 0 | 0 | -1 |
| 4 | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 |
| 6 | 0 | 1 | 0 |

Table 1. Example coordinates.

Fig. 3. Principle of perspective transformation.
spective points. Returning to the imaginary camera, you can see that it is merely a screen and an imaginary focal point. Coordinates of the camera are simply the coordinates of the screen.
The diagram also shows that the screen is located at the origin of its own coordinate system. It is in relation to this system that all points in the 3D a.e. are specified, after the aforementioned transformations are carried out.
Now, x and y coordinates of a point projected onto a screen have to be determined, say x_{1}, y_{1}, z_{1}. From Fig. 3 you can see that a triangle is formed by F, $\left(x_{1}, y_{1}, z_{1}\right)$ and the z axis. It should also be evident that a triangle is formed by points F, (x, y) and the origin.
Since both of these triangles

form the same angle at F, they are similar triangles. This means that the ratio of any two sides, is the same for both triangles. So for the point x, y

$$
\frac{y}{D}=\frac{y_{1}}{D+Z_{1}}
$$

which means that

$$
y=\frac{D \times y_{1}}{D+Z_{1}}=\frac{y_{1}}{1+\left(Z_{1 / \mathrm{I}}\right)}
$$

A similar argument applies to the x coordinate of any point on the screen. So that you can see for a given point x, y, z in the 3D a.e., its projection, i, j is given by

$$
i=\frac{x}{1+(Z / D)}
$$

and

$$
j=\frac{y}{1+(Z / \mathrm{D})}
$$

This final transformation allows points to be plotted on the QL's screen, and if the points are joined in accordance with the 3D a.e. data-base, a line or 'wire frame' image in perspective will be produced on the screen.

Sofiware for wireframe drawings

We are now in a position to examine some preliminary software for producing wire frame images of objects of any shape provided that they can be constructed from straight lines.
Program List 1, to be shown in the next article, is modular which allows the important functions and procedures to be used in any program. The main role of this program is a to allow objects to be set up in the 3D a.e., and to view those objects from desired position. When 'viewing', you should try to prevent the camera from turning its back on the scene, since this program does not make any attempt to prevent transformation of invisible points.

The first procedure, SETUP, allows a rudimentary method of defining the 3D a.e. data-base. The next major procedure, view places the camera at the origin of the 3D a.e. The image from this position is then drawn, and the user prompted for camera commands.
Entering positive x, y and z values causes the camera to move right, up or forward respectively by the desired amount. Negative values will move the camera in the opposite sense.

If you imagine that you are sitting in your chair facing the QL screen, then the orientation commands are described as follows. Entering a negative value causes the camera to turn towards the right, up through the specified angle, entering a negative pitch value causes the camera to turn upwards through the specified angle and entering a negative roll value causes the camera to rotate along its axis of viewing in a clockwise direction through the specified angle. Positive values will turn the camera in the opposite direction.
If you adjust the orientation and not the position then it is as if the camera has not moved, but simply turned about its centre.

Octahedron example

To give you an idea of how the program works, try the octahedron example, firstly using the SETUP facility to describe the octahedron to the 3D a.e. data-base.
Because 'wire frame' images are used, it is not essential to describe every face of the body, i.e. you make a cube from just four wire frame squares, the two remaining faces appear automatically. This can be a great saving for many bodies. the octahedron being the case in point.

In fact only four faces of the octahedron need be described to give a correct image. Try entering the following data, after first entering ERASE and sETUP. The octahedron has four polygons, 1, 2, 3 and 4 . Polygon 1 has vertices 1,4 and 5 , polygon 2 has vertices 1,2 and 3 , polygon 3 has vertices 4,3 and 6 and polygon 4 has vertices 5, 2 and 6 .

Table one gives the x, y and z coordinates of each vertex. When you have finished describing the body, the program will end and tell you so. You should now enter vew:

Software for producing wireframe images will be presented in the next section.

CIRCLE 22 FOR FURTHER DETAILS.

CIRCLE 21 FOR FURTHER DETAILS.

PINEAPPLE SOFTWARE

Programs for the BBC model 'B' with disc drlve with

 FREE updating service on all softwareARE YOU GETTING THE MOST FROM YOUR DOT MATRIX PRINTER AND DISC DRIVE?
DIAGRAM is a new program which really exploits the full potential of the BBC micro and will enable you to obtain printouts of a size and quality previously unobtainable from your system.

MARCONI TRACKER BALL AND ICON ARTMASTER PLUS DIAGRAM SOFTWARE
f 76.50
ALL ORDERS SENT BYRETURNOFPOST
39 Brownlea Gardens, Seven Kings, Mford, Essex IG3 9NL
TO Tel:01-599 1476.
CIRCLE 31 FOR FURTHER DETAILS.

PROBABLY THE ONLY DEVELOPMINT SYSTEM YOU'LL EVER NEFD
 . runs FLEX, a powerful, well supported operating

 system; and gives access to a vast range of high level languages, Compilers and Cross Assemblers including: Z8, 8048, TMS7000, TMS320, 6800, 6802, $6808,6801,6803,6301,6805,6502,8085,8080, Z 80$ 68000.

Its attractive modular design allows for easy expansion as your demands increase.
The complete system comprises:

- a 6809 Industrial Controller with 64K DRAM, battery backup, and Real Time Calendar Clock
- the new CMS Floppy Disc Controller, supporting up to three Quad Density 3.5* or 5.25 Disc Drives iww futm as standard - the recently introduced 40/80 Column Teletext Card with Centronics Printer Port and Serial Communications to an IBM style keyboard. All housed in an extremely rugged Industrial rack
This has to be the Best Value For Money on the MDS market today!

ら気
 Cambridge
 Microprocessor Systems Limited

CIRCLE 68 FOR FURTHER DETAILS

SATELLITE TELEVISION

Buy direct from the manufacturers, low cost full band satellite TV systems. Write or telephone for details, or call in at our factory showroom.

Agents and Distributors required. NETWORK SATELLITE SYSTEMS LTD

Units 7-8
Newburn Bridge Industrial Estate Hartlepool, Cleveland TS25 1UB Tel: 0429869366

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937
Telex: 892301 HARTRO G
CIRCLE 23 FOR FURTHER DETAILS.

CIRCLE 36 FOR 1 URTHER DETAILS.

CIRCLE 15 FOR FURTHER DETAILS.

AIR LINK

Fibre Optics '86

If you don't think fibre optics is for you this event should convince you otherwise.

The Fibre Optics '86 Exhibition, held in hall D of the Earls Court exhibition centre, is part of British Electronics Week consisting of four exhibitions taking place simultaneously at Earls Court and Olympia. It aims to bring together leading manufacturers of fibre optic components and systems to show their latest products to a 'broadly based audience of engineers, managers and commercial staff', and includes lasers, local area networks and optical sensors. It is open from 28 April to 1 May in hall D of the Earls Court exhibition centre - a different venue from last year's Olympia - and a list of exhibitors accompanies our stand plan.

For about a $£ 100$ a day an accompanying conference, held at the nearby London West Hote] 29 April to 1 May, discusses recent developments in fibre components and applications in both sensing and communications. If you are unable to attend you will be able to buy a set of conference papers after the event (only abstracts are available at the event from, strangely, publishers in the USA - SPIE*), and if you want copies of previous conference papers (all British) you'll have to buy them from America. To help newcomers get down to basics there are tutorial sessions on 'Basic fibre optics' (28 April), and 'Optical fibre sensor technology' (29 April), both of which cost around $£ 100$ but for companies wishing to acquire the basics quickly this is probably a cost-effective way. (There is also 'Business opportunities in fibre optics', which the brochure shows as a listing of applications, and 'Industrial applications of expert systems', which connection with fibre optics isn't at all clear.)

[^4]- K-Tech claim a typical loss of less than a decibel for all Diamond SA single-mode connectors, using $6 / 125 \mu \mathrm{~m}$ fibre, including new types MMS40 to BT spec and MMS11 the first to be approved to DIN standard. Also new are optical attenuators for single to multimode and vice versa use with values from 2.5 to 30 dB , and several tool sets. EWW 301 for further details.
- Kaptron, a new principal for Centronic Sales, specialise in fibre optic components and specialist test gear including Polytrope, an IBM PCcontrolled automatic fibre alignment equipment. EWW 302 for further details.
- BICC Optical Components Unit at Prescot are to introduce a series of test equipment, the first of which is a stabilized light source for accurate on-site attenuation measurements. The emitter is a 1300 nm edgeemitting l.e.d. whose output is chopped at 270 Hz (the normal power meter frequency) but which can be externally modulated or operated c.w. We're told the price of $£ 3,450$ is about half that of its (laserbased) competition. EWW for further details.
- Fused couplers for fibre sizes of 62.5 and $85 / 125 \mu \mathrm{~m}$ are now made by ADC Fiber Optics in addition to existing types for $50 / 125, \quad 100 / 140 \mu \mathrm{ml}$ gradedindex and $100 / 140,200 / 240 \mu \mathrm{~m}$ step-index fibre. EWW 304 for further details.
- Belling and Lee Intec fibre components, modules and connectors are to be distributed by Cirkit Distribution following an agreement signed at $\mathrm{FO} \quad{ }^{\prime} 86$.
- Cossor's optical time domain relectometers will be marketed in the USA by Wilcom Products, a subsidiary of communications co. Plantronics Inc.

New at Electro-Optics, Brighton

- As well as standard single mode optical fibres York Ventures and Special Products of Chandler's Ford make both ultralow and high birefingent fibres. The high birefringent type avoids polarization noise and signal fading in fibre gyroscopes and other interferometric sensors, for links to polarization-sensitive devices and for coherent communication. York's fibre has a beat length of less than 2 mm : beat length is a measure of polarization holding ability. (Any phase difference between the two orthogonal modes gives rise to beats.) Ultra-low birefringence is useful in devices where the polarization plays an important

Data link modules typical of those currently available for point-topoint use and local area networks. This Plessey pair can operate up to 125Mbit/s in either NRZ or Manchester biphase encoding ($50 \mathrm{Mbit} / \mathrm{s}$) at distances of up to 2 km .

IBM PC-controlled fibre optic alignment aid by Polytrope (Centronic Sales).

		Product	Focom Systems	61	S
Exhibitor	Stand	code	Fotec - see Centronic		
Accris Electronics	45		Fujitsu Microelectronics	66	C
ADC Europe	24	C	Galvoptics GEC Optical Fibres	68 70	C.I
AG Electro-Optics	52 36	C	General Optronics	42	
Ando - see Aspen	36		Grass Valley Group	35	
Anritsu Europe	47	TM	GTE Slyvania	63	
Aspen Electronics	40	TM, C	Hall and Watts	67	
Bausch \& Lomb UK	51	1	Hirschmann - see Electroustic		
Belling Lee Intec	79	C.S	Honeywell Control Systems	62	C.S
Bentham Instruments	41	1	Holtek Optronics	14	
BICC Group	48	FSSM	ICI Stratos		C
Buehler	81	M	Instruments Technology	2	I
Burleigh Instruments	16	C	Kendal Hyde	71	M
Centronic Sales	75	C., TM	K-Tech Micro Precision	80	C
Centronic	75	C	Lambda Photometrics	4	TM,
Codenoll - see Thorn EMI			Laser Lines	31	C,TM,I,S
Comtec Cable Associates:	73	1	Lasertron	21	C
Cossor Electronics	26	TM	Leetec	22	C
Datarange Communications	43	S	E. Leitz (Instruments)	46	TM, I
Delta Controls	83	1	Lightwave	74	
Ealing Electro-Optics	30	C, 1	Logitech	39	M
Electroustic	76	S	Melles Griot UK)	28	C
Engis	89	M	Micron Semiconductor Microwave Systems	28	C
Epitaxx Inc	32	$\stackrel{C}{C}$	Microwave Systems Mullard	89	C
Fibre Data Fibre Optic Links	44 23	C.F	National Physical Lab	57	
Fibre Optic Systems	37	S	NEC Electronics (UK)	60	C
Fibre			NKT (UK)	29	S

role for example in electric or magnetic sensors. In ordinary single-mode fibres birefr ingence is generally sensitive to temperature, pressure and vibration making calibration of polarization difficult. York's fibre, made by a preform spinning process patented at the University of Southampton, can have zero birefringence in nearly all situations; linear retardance is less than a degree, with no variation of polarization with temperature. EWW 305 for further details.

- Radiall fibre optics connectors are now available through Norbain Electro-Optics, following a clistribution agreement with the French manulacturer. Covered are the SMA style connectors for five sizes of p.c.s. multimode fibre, the new FMA types, and the very low loss Optaball range also suitable for monomode fibre. Emitting and photodiodes from RCA, TRW, Siemens, and EC\&G's Vactec were newly shown at Brighton but a surprise announcement was the exclusive rental agreement with STC for its range for time domain reflectometers.
- Temporal disperser is the name Hamamatsu give to their 30 GHz long wavelength optical oscilloscope. Based on a sychronized streak camera, it connects with a conventional camera - TV or still - and temporal analyser for real time operation together with other
peripheral equipment to allow measurement of chromatic dispersion of single-mode fibres. The multidimensional detectors are able to record time, position or wavelength, and light intensity, and allow time-resolved spectroscopy up to a wavelength of $1.6 \mu \mathrm{~m}$. Observations of long wave phenomena have been impossi ble with conventional streak cameras because of the low efficiency of the photocathode in the range 1.3 to $1.6 \mu \mathrm{~m}$. The streak unit, type C1587, uses a synchroscan tube in which a simusoidal sweep voltage aplied to the tube's deflection plates is synchronized with repetitive light pulses, for example from a dye laser. Integration of streak images occurs on the phosphor screen or by direct readout. Hakuto International, EWW 306 for further details.
- Gallium aluminium arsenide emitters and a $\mathrm{p}-\mathrm{i}-\mathrm{n}$ photodetec tor are newly available from Motorola distrubutors Gothic Crellon. Designated type MFOE3200 and 3201 and MFOD3100, the devices are housed in a new low-cost rugged plastics-capped package that fits standard device receptacles. The two emitters launch 10 and $20 \mu \mathrm{~W}$ into $100 \mu \mathrm{~m}$ tibre and are 850 nm diocles with a bandwidth (60 MHz) claimed to be higher than any other emitter in the price range. Enter EWW 307 for further details.

Norbain Electro Optics	11	C
Oceonics SPL	84	S
Optical Fibres	56	F
Optical Publishing Co	6	
Optilas	18	C
Optronics	69	C
Oriel Scientific	53	C, I
Philips Kommunikations	85	
Photon Control	33	1
Pirelli General	54	F
Plessey Optoelectronics	25	C
Prior Scientific Instruments	55	1
Radiall Microwave Components	38	C
RCA	34	C
REL	78	S
Rofin-Sinar Laser	5	TM
Sira	3	TM
Special Gas Controls	87	C, F
Spectrolab	15	1
Stratos - see ICI		
Sumitomo Electric Europe	77	C, F
System Donner - see Thorn EMI		
TBL Fibre Optics Group	64	F
Thorn EMI Measurements	90	C, S
Vickers Instruments	1	TM
Walmore Electronics	82	C, S
Product codes: connectors/components - C; fibres/cables $-F$; test and measurement - TM; systems - S; optical instrumentation - I; coating and lapping - M.		

Stabilized modulated light source for attenuation measurement (B1CC).

SMA-style connectors, often referred to as the ‘industry standard' of connectors, are frequently used in data transfer applications. The range of Radiall SMA types now available from Norbain, together with the Optaball range which have average losses as low as 0.35 dB . New ceramic-ferrule SMA types are added to the Optical Fibre Technologies range from Walmore, as are two new biconical types with ceramic capillary. Multimode version is field-installable using procedures for Dorran Photonics connectors. with which they are mateable. Telecommunciation systems usually use flat contact (FC) connectors such as Sieko's NTT type. Their latest development is the point contact (IPC) type, bottom,
in which the end surface is polished to a convex spherical shape, said to "drastically reduce" connection and return loss compared to the similarly constructed FC connectors.
EWW 308 (Radiall) EWW 309 (Walmore).

by John Lidgey

Dr F. J. Lidgey is Principal Lecturer in Electronics, Oxford Polytechnic

SENSITIVITY ANALYSIS — WHAT IS IT AND WHAT CAN IT DO?

Whilst generally used for filter analysis, the sensitivity analysis is just as valid in many other branches of electronics.

Sensitivity analysis is a fairly simple mathematical technique that is most often used in electronics as an aid to help establish whether a particular active filter will perform to the required specification, and if so, what tolerance and temperature coefficient the components should have.
Though quite useful in this context, sensitivity analysis is a very useful technique that may be applied to many circuit problems and the results obtained are valuable to the circuit designer.

Definition

The informal (not absolutely precise) definition of the sensitivity function is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}} \approx \frac{\Delta \mathrm{Y}}{\mathrm{Y}} / \frac{\Delta \mathrm{X}}{\mathrm{X}} \tag{1}
\end{equation*}
$$

and it is the ratio of the normalized variation of parameter Y to the normalized variation of parameter X . If the variation $\Delta \mathrm{X}$ is infinitely small, then

$$
\begin{equation*}
S_{X}^{Y}=\frac{X}{Y} \cdot \frac{\partial Y}{\partial X} \tag{2}
\end{equation*}
$$

Equation 2 is the formal defini-

tion. To illustrate the meaning of $\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}}$ consider the following example.
Suppose X represents temperature, T , and Y represents a resistor value R, the value of which is inversely proportional to temperature, i.e. $\mathrm{R}=\mathrm{A} / \mathrm{T}$, where A is a constant. Then using equation 2 gives

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{T}}^{\mathrm{R}}=\frac{T^{2}}{\mathrm{~A}} \cdot \frac{\partial\left(\mathrm{~A} \cdot \mathrm{~T}^{-1}\right)}{\partial \mathrm{T}} \\
& \mathrm{~S}_{\mathrm{T}}^{\mathrm{R}}=-1 .
\end{aligned}
$$

Using the informal definition in (1), the fact that $S_{T}^{R}=-1$ means that if the temperature were to increase by 1% then the resistance would decrease by about 1%. As can be verified using equation 2 , if the resistor happened to be inversely proportional to T^{4} then the value of $\mathrm{S}_{\mathrm{T}}^{\mathrm{R}}=-4$ and then the change of R would be four times as great.

Mathematical relationships

A very helpful relationship in simplifying calculations of sensitivity values is derivet neit.

Suppose Z is defined by the expression $\mathrm{X}=\mathrm{c}^{2}$ or $\mathrm{Z}=\ln \mathrm{X}$. Differentiating gives

$$
\frac{\partial \mathrm{X}}{\partial \mathrm{Z}} \cdot \frac{\partial \mathrm{X}}{\partial \ln \mathrm{X}}=\mathrm{e}^{\mathrm{Z}}
$$

or

$$
\begin{equation*}
\frac{\partial \mathrm{X}}{\partial \ln \mathrm{X}}=\mathrm{X} \tag{3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial Y}{\partial \ln Y}=Y \tag{4}
\end{equation*}
$$

Rewriting equation 2 using 3 and 4

$$
\begin{align*}
& S_{X}^{Y}=\frac{X}{Y} \cdot \frac{\partial Y}{\partial X}=\frac{\partial X}{\partial \ln X} \cdot \frac{\partial \ln X}{\partial Y} \cdot \frac{\partial Y}{\partial X} \\
& S_{X}^{Y}=\frac{\partial \ln Y}{\partial \ln X} \tag{5}
\end{align*}
$$

To illustrate the value of this formulation of S_{X}^{Y}, consider the following example. Suppose $\mathrm{Y}=\mathrm{AX}^{\mathrm{P}}$, where A and P are not functions of X, then from equation 5

$$
\begin{aligned}
& S_{X}^{Y}=S_{X}^{A X^{P}}=\frac{\partial \ln A X^{P}}{\partial \ln X}=\frac{\partial \ln A}{\partial \ln X} \\
& S X=+P \cdot \frac{\partial \ln X}{\partial \ln X}=P .
\end{aligned}
$$

This is the proof of the first identity shown in the Appendix, and the others can be verified in a similar way. The identities ease the complexity of evaluating $\mathrm{S}_{\mathrm{x}}^{\mathrm{Y}}$ using the definition of (2).

Applicalion to negative feedback systems

Negative feedback results in a lower overall system gain and closed-loop gain in much less sensitive to open-loop amplifier performance. This classical result can be simply shown by evaluating the sensitivity of the closed-loop gain to the openloop gain. If we use the symbol A_{F} for the feedback gain and A for the open-loop gain with β for the feedback factor, then the standard relationship between these parameters is

$$
\begin{equation*}
A_{F}=\frac{A}{(1+\beta A)} \tag{6}
\end{equation*}
$$

$$
\mathrm{S}_{\mathrm{A}}^{\mathrm{A}_{\mathrm{F}}}=\frac{\mathrm{A}(1+\beta \mathrm{A})}{\mathrm{A}} \cdot \frac{\frac{\mathrm{~A}}{(1+\beta \mathrm{A})}}{\partial \mathrm{A}}
$$

$$
\begin{align*}
& =\frac{1}{(1+\beta \mathrm{A})} \\
\mathrm{S}_{\mathrm{A}}^{\mathrm{A}_{F}} & =\frac{\mathrm{A}_{F}}{\mathrm{~A}} . \tag{7}
\end{align*}
$$

The closed-loop gain is almost the same as the inverse of the feedback network gain, provided that the open-loop gain is much larger than the closedloop gain. This fact is clear from equation 6 , and from equation 7 this makes

$$
\mathrm{S}_{\mathrm{A}}^{\mathrm{A}_{\mathrm{F}}}=\frac{\mathrm{A}_{\mathrm{F}}}{\mathrm{~A}} \rightarrow 0
$$

Turn now to a standard op-amp non-inverting amplifier with closed-loop voltage gain of

$$
\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{IN}}}=A_{\mathrm{F}}=\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)
$$

where R_{2} and R_{1} are the feedback resistors linking the output to the op-amp with the inverting input terminal and the inverting input terminal and earth respectively.

To establish the sensitivity of A_{F} to each of the resistors without much effort and no differentation, use the identities shown in the Appendix:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{R}_{2}}^{\mathrm{A}_{F}}=\left(\frac{\mathrm{A}_{\mathrm{F}}-1}{\mathrm{~A}_{F}}\right)=\mathrm{S}_{\mathrm{R}_{1}}^{\mathrm{A}_{F}} \tag{8}
\end{equation*}
$$

Clearly if $A_{F}>1$ then the sensitivity values given in equation 8 approach unity in magnitude.

On the face of it none of these results are particularly surprising nor startling. However, if the values obtained were not small but yielded figures of 10 or more we might well be alarmed as this would suggest a large change of the circuit parameter Y as a result of a change in circuit component X . This does occur if positive rather than negativee feedback is used in a particular application.

Applicatlon to actlve filters

The circuit shown on Page 46 is of a second-order band-pass filter and from analysis the centre frequency f_{o}, the quality factor Q, and the centre frequency gain A_{0} are given by the following expression:

$$
\begin{aligned}
& \mathrm{f}_{0}=\frac{1}{2 \pi} \cdot \frac{1}{\sqrt{C_{1} R_{1} C_{2} R_{2}}} \\
& A_{0}=-\frac{C_{1}}{C} \cdot \frac{R_{1}}{\left(R_{1}+R_{2}\right)} \\
& Q=\frac{1}{\left(R_{1}+R_{2}\right)} \cdot \sqrt{R_{1} R_{2}} \cdot \sqrt{C_{1} / C_{2}}
\end{aligned}
$$

The table shows that the $\mathrm{S}_{\mathrm{x}}^{\mathrm{X}}$ values are reasonable with no high sensitivity effects evident. In fact, they are all within the range -1 to +1 . Other constraints permitting, if R_{1} were set to equal R_{2}, then

$$
\mathrm{S}_{\mathrm{R}_{1}}^{(Q}=0=\mathrm{S}_{\mathrm{R}_{2}}^{\mathrm{Q}}
$$

and

$$
\mathrm{S}_{\mathrm{R}_{1}}^{\mathrm{A}_{\mathrm{o}}}=\frac{1}{2}=-\mathrm{S}_{\mathrm{R}_{2}}^{\mathrm{A}_{\prime \prime}}
$$

If the sensitivity tabulation resulted in any values being five more it would be wise to consider discarding the circuit in favour of an alternative yielding lower sensitivity to componnent variation.

The second-order active band-pass filter shown above has the characteristics:
centre frequency

$$
\mathrm{f}_{\mathrm{o}} \frac{1}{2 \pi} \frac{\sqrt{ } 2}{\mathrm{R} \cdot \mathrm{C}}
$$

centre frequency gain

$$
\mathrm{A}_{0}=\frac{\mathrm{K}}{(4-\mathrm{K})}, \text { and }
$$

quality factory

$$
\mathrm{Q}=\frac{\sqrt{ } 2}{4-\mathrm{K}}
$$

One of the poorest aspects of this particular circuit comes to light when evaluating the sensitivity of Q to variations in amplification gain K. It is relatively easy to show that
$\mathrm{S}_{\mathrm{R}}^{\mathrm{R}}=2 \sqrt{ } 2 . \mathrm{Q}-1$.

Clearly if Q is 10 say, this gives a value of $\mathrm{S}_{\mathrm{K}}^{\mathrm{Q}} \approx 27.3$.

This is intolerably high as a $+1 \%$ change in K results in about 27% change in Q! Having discovered this most disastrous feature for moderately high values of Q, the designer would be well advised to abandon this circuit completely and seek a replacement to achieve the desired band-pass response.

Appendix

Useful identities for
sensitivity analysis
Definition

$$
S_{X}^{Y}=\frac{X}{Y} \cdot \frac{\partial Y}{\partial X}=\frac{\partial \ln Y}{\partial \ln X}
$$

1. $Y=A X^{P}$, where A and P are not functions of X
$\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}}=\mathrm{P}$
2. $S_{X}^{Y}=-S_{X}^{1 / Y}$
3. $\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}_{1} \mathrm{Y}_{2}}=\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}^{1}}+\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}_{2}}$
4. $\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}_{1} / \mathrm{Y}_{2}}=\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}_{1}}-\mathrm{S}_{\mathrm{X}}^{\mathrm{Y}_{2}}$
5. $\mathrm{S}_{\mathrm{Y}}^{\mathrm{Y}}: \mathrm{N}=\frac{1}{\mathrm{~N}} \cdot \mathrm{~S}_{\mathrm{X}}^{\mathrm{Y}}$
6. $S_{X}^{Y_{1}+Y_{2}}=\frac{Y_{1} S_{X}^{Y}+Y_{2} S_{X}^{Y_{2}}}{Y_{1}+Y_{2}}$

Introducing the S/58 bus

Simpler

communications between computers.

The notoriously difficult art of getting computers and their peripherals to talk to one another is about to become a great deal easier, with the launch of the $\mathrm{S} 5 / 8$ serial interface.
After extensive preparatory work by Government bodies and British industry, a detailed specification of $\mathrm{S} \overline{5} / 8$ has just been published by the British Standards Institution.
The new arrangement is certain to receive a warm welcome from anyone who has to struggle with RS232 and its endless permutations of data format and electrical connections. For with $\mathrm{S} 5 / 8$, incompatibility has been designed out.

All physical and electrical aspects of S5/8 (it stands for serial, 5 volt, 8 -pin) are defined in the published proposals: as far as the user is concerned, it is a 'plug and run' interface. There is only one kind of interconnecting cable and only one permissible signalling format and data rate.

But S5/8 offers further benefits: in place of the costly 25 -way connector, it is based on cheap, compact eight-pin DIN connectors. Logic levels are compatible with 5 V c-mos i.cs and are appropriate for portable and other low-power equipment.
Already, six manufacturers are using $55 / 8$ in their products and many more have said they will adopt it when it becomes a British Standard.
We hope to publish shortly an article giving full details of $S 5 / 8$. But in the meantime, the specification is available under the BSI reference number DD 153. BSI Sales Department, Linford Wood, Milton Keynes MK14 6LE.

INDUSTRIAL CONTROL with BBC BASIC

- MODULAR EUROCARD EXPANSION provides high-voltage, high-current digital I/O, Analogue I/O, Serial Communications, Memory to 1 MB, Disk, Video, Keyboard and IEEE-488 interfaces all under the control of BASIC.
- HI-RESOLUTION COLOUR GRAPHICS allows user-friendly displays and mimic diagrams to be easily generated using simple BASIC routines
- CONTROL NET - an intelligent distributed system for remote monitoring and control can be configured at minimal cost.
- SIGNAL CONDITIONING - A range of modules are available for transducer interfacing.
- TECHNICAL SUPPORT-Our experienced team of eight internal and regional sales engineers are available to support your application.

The EuroBEEB SYSTEM
offers a fast, modular solution for the engineer designing intelligent control and monitoring systems. Typical cost-effective applications include
■ PLANT MONITORING - AUTOMATED TESTING - PROCESS CONTROL - FACTORY SUPERVISION - REMOTE DATA AQUISITION - INTELLIGENT INSTRUMENTATION

Real-Time BASIC allows a powerful system to be configured in the minimum time. This event driven, multi-tasking extension to BBC BASIC allows the user to control the CUBE range of Eurocard expansion modules simply and efficiently.
BBC Micro or IBM PC can provide low cost development support, data analysis and display facilities for EurobeEB.
Rugged stand-alone systems can be configured by adding disk, video and keyboard interfaces to EurobEEB.

See us at
LONDONCONTROL and INSTRUMENTATION, Earls Court, June 3-5, Stand V32

Control Universal Ltd, 137 Ditton Walk. Gambridge CB5 80F. Tel: (0223) 244447.
CIRCLE 63 FOR FURTHER DETAILS

Consumption 3mA. Fully meets BS5428-9

SURREY ELECTRONICS LTD.
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG Tel: 0483275997

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner

[^5]

CIRCLE 24 FOR FURTHER DETAILS.

MULTIVISION FROM
 \square

AVAILABLE NOW

Four cameras, any type including high quality $1^{\prime \prime}$, into one monitor, recorder, time lapse recorder, microwave or Slow Scan system
\& Can be retrofitted into any existing CCTV installation with full compatibility. No special or additional cabling required.
is A full picture in each quadrant utilising the full area of the camera tube for maximum definition. Individual cameras may be selected if required.
Freeze frame, to instantly freeze motion in any quadrant for closer inspection.
is Full alarm facilities including video loss alarm. Cunningly freezes the last picture before video is lost and activates the alarm.
is Security lockout prevents unauthorised operations of controls

ROBOT (U.K.) LTD

Building 33, East Midlands Airport Castle Donington. Derby DE7 2SA Telephone Derby (0332) 812446, Telex 37522

Reithley ${ }^{2} 130$ a \& 186.

Ready and willing to give you the accuracy and flexibility you've come to expect from all handheld DMM's. On the one hand, the new 130A has the design and performance of our most popular 130 model but with greater basic DVC accuracy - 0.25\% and the need to calibrate only once every two years - all this at no increase in price.

On the other, there is the new unbeatable value 136 a high performance full autoranging $41 / 2$ digit DMM permitting precise measurements in 22 ranges of ACIDC voltage, resistance AC/DC current including 10A capability. If you could use an extra pair of hands, or would just like to find out about our complete range of DMM's - phone 0734861287 or contact a Keithley distributor now.

KEITHLEY
 Keithley Instruments Limited 1 Boulton Road Reading Berkshire RG2 ONL Telex 847047

| Berkshire | $(0734) 861287$ | | Glasgow | $(02367) 28170$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Essex | $(0279) 29522$ | | $(01) 6390155$ | |
| Gwent | $(0633) 280566$ | | London | $(0287) 32397$ |
| Eire | $(0001) 984147$ | | Hertfordshire | $(07073) 38623$ |

CIRCLE 17 FOR FURTHER DETAILS

CP/M Plus (vers 3)

For NASCOM and Gemini computers

Fatares
CP/M 2.2 file compatibility
Banked memory system
Fast warm boot from banked memory
Faster disk access:-
Directory hashing, memory cashing, multi sector I/O
Better implementation of USER levels
Greatly extended and user friendly utility commands
20 transient utility commands
Includes MAC the DRI assembler
Multi command entry on single line
Multiple drive searching facility
Console redirection
Password file protection
Date and time file stamping
Larger disk and file handling
29 additional BDOS calls
Extended BDOS capability by easily attached RSXs
Winchester, floppy and virtual disk
Mixed drive/formats
Full source code of BIOS supplied
PLUS PLUS PLUS !!!!!!!!!!!

Excluding post and packing and VAT

Developing Systems

Consider our modular approach Nasbus/80 Bus compatible
CPU card
Z80 CPU incorporating memory mapping 64k RAM on board (expandable)
Z80 S10 providing two RS232 channels
CTC providing programmable baud rates
P10 providing parallel/centronics I/O
Parallel keyboard port
VIDEO card (VFC)
80 by 25 line output
Fast memory mapped display
On board floppy disk controller
Can be used with CPU card under CP/M Available in kit or built and tested
DISK card (MPI)
Mixed $3^{\prime \prime}, 3.5^{\prime \prime}, 5.25^{\prime \prime}, 8^{\prime \prime}$ drives supported
SASI Winchester interface
Z80 S 10 providing two serial channels
CTC providing programmable baud rates

RAM card

64 k to 256 k (in 64 k steps)
Supports $64 / 32 \mathrm{k}$ paging 4 k mapping
Available in kit or built and tested
CLOCK card (RTC)
Attaches to any Z80 P10
Retains Centronics parallel output
Battery backup
PRICES

CPU	£230	MPI	£185
VFC	£199	RAM (64k)	£150
RTC	£35	RAM (256k)	£285
	ex	iage and VA	

$\bar{A} I$ prices exclude carriage and VAT

CONTACT:
TMAP $A D$ Systems Ltd
Unit 2 Stoneylands Road, Egham, Surrey
Tel: 078437674

 IIRCLE 28 FOR FURTHER DETAILS.

Happy Memories

Part type	1 off	25.99	100 up
4116150 ns	.. 1.25	1.15	1.10
4164 150ns Not Texas	. 98	. 88	. 80
41256150 ns .	2.50	2.35	2.10
2114 200ns Low Power	. 1.75	1.60	1.55
6116150 ns ...	1.45	1.30	1.20
6264 150ns Low Power	. 2.85	2.55	2.35
2716450 ns 5 volt.	.. 2.95	2.65	2.45
2732 450ns Intel type	. 2.75	2.45	2.25
2764 250ns Suit BBC.	1.90	1.75	1.70
27128 250ns Suit BBC.	. 2.50	2.25	2.05
$27256250 n s . .$.	3.95	3.75	3.60

Low profile IC sockets: Pins 814161820242840 Pence 59101112151724
Available now - The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.

74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $£ 15$ and VAT to total.
Access orders by 'phone or mail welcome.
Non-Military Government \& Educational orders welcome., £15 minimum.

HAPPY MEMORIES (WW), Newchurch, Kington, Herefordshire HR5 3QR.

Tel: (054 422) 618

Timing by remote control

Contruction, testing and setting up of a versatile Z 80 timer that uses coded r.f. bursts through the mains wiring

Veroboard could be used as the board layouts are not critical; though having built the prototype on Vero strip-board, I don't recommend it for the processor board.
The usual anti-static precautions should be taken with the m.o.s. i.cs in the system. As long as a good quality earthed soldering-iron is used, the only ic that needs to be in a socket is the eprom (so that the program can be changed).
Assuming all three boards have been built, do not connect them together until the 5 volt supply rail has been checked. If that is o.k., switch off and connect the processor board. Switch on again, and check for a 601 Hz squarewave at interboard connection 16. This indicates that the c.t.c. is generating interrupts, and that the processor is servicing them to multiplex the display. (If the squarewave is not there, refer to the section on fault-finding). Next, check that there is a 601 Hz rectangular waveform at connection 17 , and that its dutycycle can be varied between 10% and 90% with the brightness control.

If all is well, switch off, connect the display/keyboard and switch on again. With any luck the first four seven-segment digits will be reading $00: 00$ and all the day leds will be flashing. This is the clock display, and the flashing leds indicate that the clock needs setting. Set the clock as described in the Operation section, and check that it keeps reasonable time over a minute (i.e. that it isn't running at half or double the proper rate).

The clock accuracy over long periods depends entirely on the crystal oscillator. This can be set by measuring the processor
clock frequency at pin 6 of IC_{1}, and adjusting $\mathrm{C}_{\mathrm{t} 1}$ to trim it to exactly 1 MHz . Note that an accurate frequency counter is necessary for this job; a residual gain or loss of one second per day (which should be achievable), is equivalent to only 11.6 Hz error in 1 MHz .

If an accurate counter is not available, all you can do is to adjust the trimmer by trial and error until the daily gain or loss is acceptable. I had to use this method myself, and it only took six tweaks of the trimmer to reduce the initial error of 18 seconds per day to about two seconds per week.

Carrier frequencies

To determine the best carrier frequencies for a particular location, the impedance/frequency characteristic of the mains wiring has to be measured. To do this, enable the transmitter by temporarily disconnecting link E between the processor and transmitter boards (or, if the interboard links are made with ribbon cable, lift one end of R_{210} and R_{213} out of the board). Connect a $1 \mathrm{k} \Omega$ resistor in series with C_{206}, and monitor the transmitted signal on the neutral wire with an oscilloscope. The chances are that a large 50 Hz component will prevent proper triggering of the oscilloscope; if so, connect a 10 nF capacitor in series with the oscilloscope input, and $7.5 \mathrm{k} \Omega$ resistor across it, to filter out the 50 Hz . Now adjust the 'on-frequency' potentiometer, and watch for a peak in the output amplitude. There should be one somewhere between 100 and 500 kHz , and its actual frequency can be measured approximately on the oscilloscope. If there are two or more peaks, use the one with the
largest amplitude, or if they are the same, use the one at the lowest frequency. Once the peak has been found, remove the $1 \mathrm{k} \Omega$ resistor and reconnect $\mathrm{C}_{20,6}$ directly to the neutral mains wire. Adjust 'set output level' for a peak-to-peak amplitude of 4 volts.
Table 1 gives the receiver filter frequencies obtained with various preferred resistor values in the filter circuit. Find the frequency nearest to your measured peak, and use the ones either side of it for the carrier frequencies. The frequencies given are theoretical; actual values are likely to be slightly lower due to phase shifts within the op-amps and stray capacitance on the printed-circuit board.

Rather than trimming each filter to an accurately defined carrier frequency, it is simpler to build the first receiver using preferred value components, and then trim the carrier frequencies at the transmitter to match. As long as 1% tolerance components are used for the filters, and the same construction is used for all receivers, the filters should all match each other without individual trimming.
Connect an oscilloscope to the output of IC_{301} in the receiver. Disable the transmitter, and adjust 'set Q' (upper) from the clockwise end until the filter stops oscillating. Enable the transmitter, and adjust 'set off frequency' on the transmitter board for maximum amplitude on the oscilloscope. The other carrier is selected by temporarily connecting a $4.7 \mathrm{k} \Omega$ resistor between the base of Tr_{201} and the 5 volt rail. Transfer the oscilloscope probe to the out of IC_{302}, and adjust 'set Q ' (lower) from the clockwise end until the filter stops oscillating. Then adjust 'set on frequency' for maximum amplitude.

Once the filters have been set up, the rest of the circuit can be checked against the waveforms

The author asks us to point out two alterations to the transmitter circuit on page 67, February issue: the preset potentiometer at Tr_{1} should have a 100 kohm value, not 10 k , and a 100 nF capacitor, C_{10}, was omitted between the bases of Tr_{7} and $\mathbf{T r}_{8}$. (One constructor found that a 100 pF ceramic capacitor connected between $\mathbf{T r}_{6}$ and $\mathbf{T r}_{8}$ bases cured his 1 MHz oscillation.) And in the receiver circuit, page 68, C_{1} should be returned to the neutral line, not to the earth line. Incidentally, two of IC_{6} gates had the wrong symbol: the type number is correct.
The line that leaves the address bus at $\mathrm{IC}_{8 \mathrm{a}}$ on page 65 is A_{2}; the brightness control is a 47 kohm logarithmic potentiometer; and on IC_{9} it is the inverting inputs that are grounded.

Tr_{1} collector to 0 V . If the 601 Hz waveform appears, experiment with the values of C_{1} and R_{8}; the aim is to increase the length of the not-reset pulse, because it must remain low for some time after the clock oscillator has started up. As a last resort, wire a reset pushbutton across C_{1}. The software can distinguish a reset from a power-up, so you won't lose your stored timer settings if the button is pushed accidentally; though you will have to reset the clock.

If all the appliances to be controlled are in the same room as the control unit the f.s.k. control unit can be dispensed with. Instead of IC_{13} this circuit provides a directlyconnected signal to operate each opto-coupled switch.
Tables below refer to the receiver circuit on page 68 of the February issue.

Table 1

Filter resistors	Frequency (kHz)
3.0 k	531
3.3 k	482
3.6 k	442
3.9 k	408
4.3 k	370
4.7 k	339
5.1 k	312
5.6 k	284
6.2 k	257
6.8 k	234
7.5 k	212
8.2 k	194
9.1 k	175
10 k	159
11 k	145
12 k	133
13 k	122
15 k	106
16 k	99.5

Table 2

Channel	R319
1	11 k
2	22 k
3	33 k
4	43 k
5	56 k
6	68 k
7	75 k

of (February). To do this, reconnect link E between the processor and transmitter boards (or refit R_{210} and R_{213}). Put the control unit in Normal (clock display) mode if it isn't already, then press 'next step' and 'last step' together, which invokes the Test 1 function; the system transmits the output status word 20 times per second, making the receiver waveforms readily visible on the oscilloscope. (This is achieved by toggling channel 0 's output at 20 Hz , so make sure there isn't an appliance plugged in to the control unit).
At this stage, it is worth checking the duration of the transmitted r.f. burst (the junction of C_{301} and R_{301} is a convenient place to look). It should be about 16.5 ms . it doesn't matter if the trailing edge judders a little, so long as the burst length never falls below 15 ms .
The timing pre-set should be adjusted to make the trailing edge of the pulse at IC_{305} pin 7 coincide with the centre of the receiver's data bit, in the waveform at IC_{307} pin 10. To help identify which part of the waveform corresponds to a particular channel, press the corresponding timer enable key, and that channel will be toggled at 1 Hz . This is also useful for checking that a receiver does not respond to changes in adjacent channels.
The last check to be made with the oscilloscope is to confirm that the trailing edge of the pulse at IC_{305} pin 9 is well clear of both the channel 7 data bit and the end of the transmission.

As a final check when the lid has been fitted to the receiver box, press the up-key (with the control unit in Test 1 mode), to invoke Test 2 . The system now transmits once per second instead of twenty times. Set the timer enables so that all the channels are toggled at 1 Hz , then use the output on/off keys to put the channel under test in the opposite state to that of the
other channels. Any missed or wrongly-received codes will now be easy to spot by watching the receiver led. Don't worry if an occasional code is missed, for instance when the fridge motor cuts in and out - that just indicates that the noise-rejection logic works. But not more than two consecutive codes should be missed.
When you're convinced that all the recievers are working correctly, press the normal key to stop the transmissions and return the control unit to the clock display.

Fautt-finding

The following is necessarily only a brief outline of the sort of problems most likely to be encountered in a system of this type. It is based on the assumptions that all the components have been correctly fitted, and that the eprom contains the published machine code.
If there is no 601 Hz waveform on interboard connection 16, check for a clean 1 MHz squarewave on in 6 of the processor chip. If it isn't there, check the 2 MHz waveforms at the outputs of $\mathrm{IC}_{8 \mathrm{c}, \mathrm{d}}$. You may find only one of these waveforms present an impossible situation at first glance. But what is really happening is that the oscilloscope probe is adding enough extra capacitance to make the circuit oscillate when it is applied to one of the outputs, but not the other. The solution is to fit a small capacitor (between 10 and 30 pF) between the apparantly working output and 0 V .

If you have a 1 MHz clock but still no 601 Hz at point 16 , the most likely culprit is the powerup reset circuit ($\mathrm{C}_{1}, \mathrm{D}_{1}, \mathrm{R}_{8}$ and Tr_{1}). Try momentarily shorting

Software

The timer's operating program occupies the first 2 K bytes of the processor memory map, i.e. from 0000 to 07 FF . If a 2732 or 2732 A eprom is used, the next 2 K bytes, from 0800 to 0 FFF , are available for additional functions.
The 1 K byte ram occupies addresses 8000 to 83 FF . The stack grows downwards from 807 F ; it is difficult to predict how far down it grows, because it depends on exactly when a key is pressed, which key it was, which step routine is implemented, whether another interrupt was being serviced at the time, etc. Running the program on a simulator, I have only caught the stack pointer as far down as 805 E , i.e. 17 levels, so with 64 levels available it is unlikely ever to run out of ram.
Addresses 8080 to 80 BF are used as a general scratch pad area and display store the interrupt vectors are also kept here rather than in rom to allow the software to change the function of an interrupt; the Test function, for example, operates by changing the 20 Hz interrupt vector.
Addresses 80C0 to 80DF (32 bytes) are reserved for future use. The hundred timer settings are stored in blocks of eight bytes each, from 80E0 to 83FF, the highest ram address. Table 3 shows the storage format and the scratchpad allocations. The time digits are stored in packed b.c.d. form in the setting blocks, to use the ram space efficiently. In the display blocks, it is more important to minimize the execution time of the multiplexing routine (which runs 601 times per second); so the digits are stored in seven-segment form, ready to be written to the display leds.

Interrupt structure

Although there are only two sources of interrupts, namely the 20 Hz and 601 Hz c.t.c channels, the priority between them had to be carefully defined to meet the following requirements:

- To maintain a regular rate of multiplexing the display, which is essential to avoid visible flicker, the 601 Hz channel must be allowed to interrupt any routine currently in progress including its own keyboard service routines, which in some cases can take tens of milliseconds to run.
- To maintain accurate timekeeping, the 20 Hz channel must be allowed to interrupt keyboard services; fortunately it need not interrupt the display multiplexing/keyboard scanning routine, which only takes about $330 \mu \mathrm{~s}$.
- When the clock minute increments, the 20 Hz interrupt service routine (i.s.r.) has to search for, examine, and possibly act upon, all the active timer settings; a process which can take more than the 50 ms interval between interrupts. The 20 Hz channel must therefore be able to interrupt its own service routine.
- The 601 Hz i.s.r. cannot be allowed to enter a keyboard service routine if it has interrupted a 20 Hz i.s.r because the 20 Hz routine will be using the c.p.u. registers. (The original contents, needed for keyboard servicing, are saved on the stack at the start of the 20 Hz routine and replaced at the end).

The first three of these requirements are easily met by clearing the c.t.c. channel's interrupt flag and enabling further interrupts, (using the EI and RETI instructions), before entering a potentially timeconsuming routine. The 20 Hz i.s.r. takes care of the fourth requirement by manipulating the Key Enable status in ram location 80BE. This location is set to FF (key services disabled) before the 20 Hz i.s.r. enables interrupts, and the original contents and reinstated at the end of the 20 Hz i.s.r. along with the processor register contents.

Flowchart

Space does not permit publication of a fully commented
assembly-language listing of the software. However, such a listing would only be of more use than the flowcharts to constructors who intend to modify the program, and such people are likely to have sufficient knowledge of Z 80 assembler and machine code to disassemble small blocks of code. To assist in this, each block in the flowcharts has alongside it the eprom address of the first instruction corresponding to the process written inside the block. The following paragraphs should also help.
Most accesses to the scratchpad area of ram are made using indexed addressing via the IX register; the first byte of the
instruction is always DD, and the third byte is the displacement, which in this application is the same as the lower half of the ram address. For example, at eprom address 216 is the machine code DD 7E BB, which disassembles as LD A, (IX +BB). This loads the accumulator from ram address 80 BB , whose function can be looked up in Table 3.
Testing for a keyboard row or for a particular key is done with bit test instructions, which are recognisable by the fact that the first byte is always CB. The meanings of the individual bits in registers C, D and E are given in Table 4.
If the existing code is moved
around to make room for additional functions, remember that the seven-segment look-up table must remain on a 256 -byte page boundary. Also, beware of relative jumps which go past your added code. The safest, if not the most elegant, way of adding code into the middle of a routine is to insert a Call instruction inplace of the last three bytes (or more if necessary to make up a complete instruction) before the place where you want to put the added code. The Call is to an address above the end of the existing program, and at that address should be the instructions replaced by the Call, followed by your additional code.

Table 3. Scratchpad ram allocations and setting storage format

Table 4. Flags
Register C

Bit		Meaning of Flag (when at logic 1)
7		Seconds count is enabled
6		Minutes count is enabled
5		The CHECK subroutine is enabled
4		Non-control keys are enabled
3		Settings for a particular CHANNEL are being examined/altered
2	Settings on a particular DAY are being examined/altered	
1	REATed settings are being examined/altered	
0	A NEW setting is being entered	

Register D

Bit		Pressed Key	
7	Set clock	Repeat	Channel 7
6	Last step	Saturday	Channel 6
5	Next setting	Sunday	Channel 5
4	Down	Monday	Channel 4
3	Jp	Tuesday	Channel 3
2	Next Step	Wednesday	Channel 2
1	Normal	Thursday	Channel 1
0	New setting	Friday	Channel 0

Flowchart

Copies of the flowchart annotated with eprom addresses and too extensive to print here are available from the editorial office in return for a stamped and addressed envelope marked 'Remote timer'. Included is the hexadecimal listing, some notes on battery backup, components lists and p.c.b. hints.

Register E

Bit	Key Row
7	Control
6	Days \& repeat
5	Timer enable/disable
4	Output on/off
3-0	Not used

3-0 Not used

Operation

To set the clock when power is first applied (the day leds should be flashing):

1. Set the day by pressing the appropriate key.
2. Press 'next step'. This makes the tens-of-hours digit flash; use the up and down keys to change it if required.
3. Use the next step up and down keys to step through and change the other three clock digits in the same way. 'Last step' can be used to correct a previous digit if a mistake is made.
4. With the right-hand digit flashing, press 'next step' or 'normal' on a time signal. The seconds start counting from zero at this point.
To correct the clock time:
5. Press 'set clock', which makes the seconds digits flash.
2 a . If the clock is less than half a minute fast or slow, press 'normal' on a time signal. This sets the clock seconds to zero, and if the clock was slow, (i.e. if the displayed seconds were 30 or more), the clock time is incremented by one minute.
2 b . If the clock is out by more than half a minute, press 'next step' repeatedly to step through days, hours and minuts, using the day keys or the up and down keys to correct whichever part of the display is flashing. The seconds count is not affected unless the units-ofminutes digit is altered; in which case the seconds are set to zero and will resume counting when 'next step' is pressed again. If the tens-ofminutes digit is altered, the minute will not increment
when the seconds change from 59 to 00 . The minute count is re-enabled on returning to normal mode, which is done by pressing 'next' step' while the units-of-minutes digit is flashing.
To enter a new timer setting:
6. Press 'new setting'. If the display shows 'full', there are already a hundred settings stored, and one must be cancelled to make room for the new one (see below). Normally, the active led flashes, and the on-time is set to 00:00. At this stage the up key may be used to change active to suspended if required.
7. Press 'next step', which makes the repeat led and all the day leds flash. Any combination of days may be selected; the last one you select is stored as the last day, and its led flashes to remind you which one it is. If the last day is deselected, the nearest selected day to the left becomes last day instead.

If repeat is selected, the repeat led flashes. By definition, there is no last day stored in the setting ram, but the last selected day is still held in a register, and becomes last day if repeat is deselected.

If there is only one day selected, it cannot be deselected because a setting with no days would be pointless; another day must be selected first. 'Next step' will also be ignored until at least one day has been selected.
3. Press 'next step' four more times to step through the four digits of the on-time, using the up and down keys to change each one while it is flashing.
4. Pressing 'next step' again
causes the on-time to be copied into the off-time. In most cases this means that some of the off-time digits can be skipped, or only need to be incremented by one or two. At this stage the tens-of-hours-off digit is flashing; the off-time is corrected to the exact time required in the same way as the on-time.
5. With the units-of-minutes-off flashing, pressing 'next step' causes the channel leds (which double as timer enable leds in the normal clock display) to flash. Any combination of channels may be selected, though in practice it is unusual to select more than one.
6. Press 'normal' or 'next step' to return to the clock display.
7. If 'normal' is pressed at any stage when no channels are selected, the setting is cancelled and the display goes blank except for the cancelled led, the colon and any output leds which were already on. Press 'normal' again to return to the clock display, or press 'new setting' to start again.
To examine and alter stored settings:

1. Press 'next setting'. The repeat led and all the channel and day leds flash.
2. To examine all settings for a particular day or channel, or all repeated settings, press the corresponding key; to examine all stored settings regardless of content, press 'next setting' again. The first appropriate setting (if there is one) is displayed with active or suspended flashing. If the setting is not a repeated one, the last day also flashes. If there are no such settings
stored, the display shows 'none'.
3. Use the 'up' and 'own' keys to rotate the
active/suspended/cancelled status if required. 'Next step' may be used to step through the rest of the setting; whichever part is flashing may be altered. ('Next step' is ignored if the cancelled led is on, as there is no point in altering a setting if you're going to cancel it).
4a. At any stage in the above, 'next setting' may be used to display the next appropriate setting (if there is another one). If the previously displayed setting was left with no channels selected or with the cancelled led on, it is deleted from the setting ram. If there are no further stored settings appropriate to the group selected at '2' above, the display shows 'none' with a day, repeat or channel led lit to remind you which settings you were examining. If you were looking at all stored settings, all the channel leds are lit.
4b. Pressing 'normal' at any stage restores the clock display, unless the last setting to be displayed was left with no channels selected or with the cancelled led on. In those cases, the setting is deleted from the setting ram, and the display is blanked except for the chancelled led, the colon and any output leds which were already on. Press 'normal' again to restore the clock display; or press 'next setting' to return to step ' 2 ' above; or press 'new setting' to set up a new setting from scratch.

Measuring tape speed
 by M. E. Theaker, B.Sc., M.I.E.R.E.

A simple and accurate method of ensuring the correct tape speed

It is often important to ensure that the speed of a cassette recorder is reasonably close to its correct speed, either to ensure the correct pitch of music or the correct frequency of relayed data.
One method of doing this is to use a standard-frequency tape and measure the output of the cassette recorder on a frequency meter. Having neither at my disposal, I devised a method which only requires a watch, a pair of vernier calipers and a cassette. Basically, the method consists of measuring the thickness of the tape and then measuring the time for a given number of revolutions of the cassette when playing the recorder or player. The cassette used should preferably be a C60 (although a C90 will do), it must be of screwed construction and the tape hubs should be clearly visible. (The latest range of Sony cassettes are particularly good for the purpose as the tape clamp provides a very easy reference when counting the hub revolutions.)

Measuring tape thickness

If your cassette recorder doesn't have a counter, this will be the most laborious part of the process. Run the cassette from start to finish and count the total number of revolutions of the take-up hub. Most cassette recorders, however, have a counter driven from the take-up hub, and this makes the process much easier.
First, the ratio of the hub revolutions to the counter is found by noting the change in counter reading for, say 20 revolutions of the take-up hub and then dividing the change of reading into $20-\mathrm{k}=\mathrm{n} / \mathrm{c}$. Now play the cassette from one end to the other and note the change in the counter reading. The number of revolutions of tape (including the leaders) is k times the change in counter reading.

With the cassette wound to
one end, unscrew the cassette and measure the diameter of the empty hub (h) and the diameter of the full spool (f) using the vernier calipers. The total thickness of the tape on the full spool is ($\mathrm{f}-\mathrm{h}$)/2, and if the number of revolutions is nT , then the thickness of the tape, $\mathrm{t}=(\mathrm{f}-\mathrm{h}) / 2 \mathrm{nT}$.

It is wise to do all of your calculations in one set of units, preferably millimetres, so if your calipers measure in inches don't forget to convert the measurements to millimetres first. Tape thicknesses are, typically, $18 \mu \mathrm{~m}(0.018 \mathrm{~mm})$ for C90 cassettes and $12 \mu \mathrm{~m}$ (0.012 mm) for C 90 s .

Tape speed

If the counter on the recorder is coupled to the feed hub instead of the take-up hub then see Method 2 (later). Having reassembled the cassette, rewind it to the start. Either by direct counting or using the recorder's counter, count the number of revolutions of the hub for, say, 5 minutes (using a watch or stop watch). Do not time the first few revolutions, since this will lead to starting errors, but
do note the exact number of revolutions n_{1} at which you start to time. After timing for a duration d seconds (the longer the better) note the number of revolutions n_{2}. If you are using the recorder's counter don't forget the conversion factor k . The tape speed is,

$$
\begin{aligned}
& \mathrm{s}=\pi\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \\
& \frac{\left[\mathrm{h}+\left(2 \mathrm{nT}+2-\mathrm{n}_{2}-\mathrm{n}_{1}\right) \mathrm{t}\right]}{\mathrm{d}} \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

and, since the correct speed of cassette recorders is 47.625 mm / s ($1 \frac{7}{8}$ i.p.s.) the speed error is

$$
\mathrm{e}=\frac{(\mathrm{s}-47.625)}{0.47625}^{\%}
$$

These calculations can easily be carried out with the aid of a scientific calculator, but for those who need to carry out the calculation many times (for example, when adjusting the speed of a recorder or player) a short computer program is included at the end of this article. Although written for the Spectrum, it can easily be adapted for any other computer. The tolerance permissible for pro-

[^6]fessional recorders is $\pm 0.5 \%$ and for domestic recorders $\pm 2 \%$.

Method 2. If the counter is driven from the feed spool instead of the take-up spool then the same basic timings are made, but the equations used are
Tape speed

$$
\begin{aligned}
\mathrm{s}= & \pi\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \\
& \frac{\left[\mathrm{h}+\left(2 \mathrm{nT}+2-\mathrm{n}_{2}-\mathrm{n}_{1}\right) \mathrm{t}\right]}{\mathrm{d}}
\end{aligned}
$$

Error

$$
\mathrm{e}=\frac{(\mathrm{s}-47.625)}{0.47625} \%
$$

Making a speed test tape

Having determined the speed of a recorder, it is now possible, with the aid of an audio signal generator and a frequency meter, to make a standard speed tape. Using the frequency meter, set the signal generator frequency to $1 \mathrm{kHz} \times(100+\mathrm{e}) / 100$ and then record several minutes of this signal. When replayed on any machine the speed error will be indicated on a frequency meter, the tens of Hertz indicating units of percentage error and units of Hertz indicating tenths of one percent error. For maximum stability of the test tape a C60 (or shorter) cassette must be used.

Derivation of the formula

The length of tape on the first revolution of the hub is $\pi \mathrm{h}$, where h is the diameter of the hub. The length of the second revolution is greater since its diameter is larger by twice the thickness of the tape (t). Its length is $\pi(h+4 t)$ and so the length of the nth revolution is $\pi[\mathrm{h}+2(\mathrm{n}-\mathrm{l}) \mathrm{t}]$
The total length of the first n revolutions of tape is equal to the sum (addition of the lengths of each revolution. This sum is an arithmetic series whose first term is π and whose common
difference is 2π. The total length of tape for n turns is $\mathrm{L}=\pi \cdot \mathrm{n}(\mathrm{h}+(\mathrm{n}-1) \mathrm{t})$

Using this equation and the information found when measuring the thickness of the tape, you can calculate the total length of the tape in the cassette by making n equal to the total number of revolutions of the cassette (nt) The nominal length for a C60 cassette is 90 m and for a C90 is 135 m , plus a leader of about 0.5 m at each end. The length of tape between n_{1} and n_{2} revolutions is

$$
\begin{aligned}
\mathrm{L}_{2}-\mathrm{L}_{1}= & \pi \mathrm{n}_{2}\left[\mathrm{~h}+\left(\mathrm{n}_{2}-1\right) \mathrm{t}\right]- \\
& \pi \mathrm{n}_{1}\left[\mathrm{~h}+\left(\mathrm{n}_{1}-1\right) \mathrm{t}\right]-
\end{aligned}
$$

$$
\begin{aligned}
= & \pi\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \\
& {\left[\mathrm{h}+\left(\mathrm{n}_{2}+\mathrm{n}_{1}-1\right) \mathrm{t}\right] }
\end{aligned}
$$

Similarily, if the revolutions of the feed spool are counted, then the length of tape is

$$
\mathrm{L}=\pi \mathrm{n}[\mathrm{~h}+(2 \mathrm{nT}+1-\mathrm{n}) \mathrm{T}]
$$

where nT is the total number of turns on the cassette. The length of tape between revolutions n_{1} and n_{2} in this case is

$$
\begin{aligned}
& \pi n_{2}\left[h+\left(2 n t+1-n_{2}\right) t\right]- \\
& \pi n_{1}\left[h+\left(2 n t+1-n_{1}\right) t\right] \\
= & \pi\left(n_{2}-n_{1}\right) \times \\
& {\left[h+\left(2 n t+2-n_{1}-n_{2}\right) t\right] }
\end{aligned}
$$

Accuracy

The accuracy in measuring the speed error (and the speed) is dependent upon the accuracy with which the various measurements have been made. If the difference between the full-spool diameter and the hub diameter is measured to within 0.1 mm then the apparent speed error will be 0.05% An error of 1 in determining the total number of revolutions will introduce an error of 0.02% The most critical is the measurement of the duration of the revolutions from n_{1} to n_{2}. If the number of the
revolutions for the entire side of a C60 cassette (30 mins) is timed with an accuracy of 0.5 s , then an error of 0.03% will be introduced, which brings the total error of 0.1% If, however, the revolutions for the first 5 minutes are timed to an accuracy of 0.5 s , then the resulting error is 0.15%, bringing the total error to 0.22%. It is important, therefore, to carry out the time measurement over as long a period as possible to achieve the highest possible accuracy.
by T. Loughlin B.Sc. (Hons.)

10hit digital recorder

Using modern data conversion i.cs, very-low-frequency analogue signals can be recorded on tape with high accuracy.

My circuit for recording low-frequency analogue signals on ordinary audio quality tape recorders ${ }^{1}$ has been used in medical establishments including the Royal Victoria Hospital and City Hospital in Belfast East Dulwich Hospital.
Response from users has suggested that increased resolution giving greater dynamic range would be desirable. This is particularly so when recording electrocardiograms where commonmode potentials can cause the e.c.g. to 'wander' - an effect known as base-line drift.

The circuit described here uses ten-bit conversion devicies while retaining the same basic recording technique as the 8 bit recorder. This gives four times the resolution as before at the expense of sampling rate, which is reduced by around half, assuming the same data rate.
At 4800 baud, a rate which most reasonable recorders should handle, the sample rate is 267 Hz , making the unit suitable for many data logging applications and certainly sufficient for most medical applications.
A digital recording technique is used to reduce the effect of
tape recorder wow and flutter on the recorded signal. Good quality domestic audio recorders have a frequency range of approximately $50 \mathrm{~Hz}-10 \mathrm{kHz}$. To record signals from d.c. -100 Hz , say, some form of modulation is required to shift the base-band frequency into the recorder audio band.
Analogue techniques such as frequency and pulse-width modulation may be used but these techniques suffer from the inherent disadvantage that tape wow and flutter causes a direct modulation of the carrier signal. Upon replay and demodulation, noise thus induced has a frequency range within the base band so it cannot be filtered out.
One technique used is to record a reference d.c.` channel which upon demodulation is summed in antiphase with the signal channel thus reducing the noise component of the signal.

In the digital system however the effect of wow and flutter is eliminated since timing is established by a crystal controlled replay circuit which updates the analogue output at fixed intervals. Distortion is then a function mainly of quantizing noise and bit drop-out error. The quantizing/stepping effect
can be reduced by filtering the output since the frequency of the error noise is equal to the sample rate (approximately).
The a-to-d converter used here is the Ferranti ZN432E which is reasonably priced. Input bias and offset resistors R_{1-6} are chosen to give a 0 to +2.5 V input voltage range at R_{5}, Fig. 1. For other ranges refer to the data sheets ${ }^{2}$.
Op-amp IC $_{16}$ provides shifting and scaling for input signals while $\mathrm{IC}_{16 \mathrm{~b}}$ provides some anti-alias filtering. The ZN432E draws typically 35 mA so battery operation is not as practical as with the 8 bit circuit using a c-mos 8703 converter.
The 10 bit a-to-d converter requires a start-conversion signal closely synchronized to the clock driving its internal successive-approximation register (sar). Precise timing generation will be described later but the clock used is the 16 times baud rate clock derived from $\mathrm{IC}_{7 \mathrm{~F}}$ through dividers $\mathrm{IC}_{3 \mathrm{~b}}$ and IC_{11}. The data is then multiplexed into the uart IC_{1} transmitter-buffer register through selector IC_{5} and gates $\mathrm{IC}_{6 \mathrm{a}, \mathrm{b}, \mathrm{c}}$ wired as a selector gate.

Data is placed on the tape as two nine-bit sequences per 10 bit
sample as shown in Fig. 2a. As can be seen from the diagram the uart is configured for a 6bit character length, one stop bit and even parity. Five character bits, TBR_{1-5}, are used for either the five most significant or five least significant bits of the sample word; character bit 6 , $T B R_{6}$, known as 'Byte', is used to indicate most or least significant.

At power-up time, reset circuit $\mathrm{IC}_{2 \mathrm{a}}$, Fig .1 , resets the uart. When $\mathrm{IC}_{2 \mathrm{a}}$ pin 3 goes low again the transmit-register-empty (TRE) flag, IC_{1} pin 24, goes high after 18 clock cycles on the clock falling edge (Fig.2c).
Transmitter-buffer-registerload ($\overline{\mathrm{TBRL}}$), connected to TRE, then initiates transmission of the first character which will be invalid. On the next clock rising edge, data in the transmit register transfers to the transmit buffer causing TRE to go low.

Now assuming that 'Byte', IC_{3} pin 1, is high then TRE is gated to start conversion on the ZN432E. This pulse will be closely aligned with a clock low pulse thus meeting the timing criteria for this device. The falling edge of TRE toggles the 'Byte’ bistable device.

Fig. 1. Record section. Analogue signals are converted into a 10 bit digital word and fed to the uart in sections.

Fig. 2. Record timing. In this system, a logical one is encoded as a rising edge and a logical zero as a falling edge.

A problem may arise here. START CONVERTION going low initializes the ZN432E sar so data present at uart inputs TBR_{1-5} will change. The maximum hold time requirement for the uart is 90 ns so the delay from TBRL high through $\mathrm{IC}_{2 \mathrm{~b}} \mathrm{IC}_{4}$ and IC_{5} must be greater than this.

However since typical propagation delay of IC_{5} is 160 ns and the typical uart data hold time is 40 ns , problems should not normally arise. If this does cause a problem then delay the start-conversion pulse from TRE.

The converter takes 11 clock cycles or $143 \mu \mathrm{~s}$ at 4800 baud to make a conversion. When the uart has finished transmitting the first character TRE goes high (Fig. 2c). Output of 'Byte' is low

Fig. 3. Replay section. High-level replay signal would normally suffer from phase distortion but here it is applied to a phase-equalizing circuit.
at this stage gating the lower five bits of the sample into the uart. Signal $\overline{\text { TBRL }}$ loads the transmitter-buffer register and the TRE (TBRL) rising edge transfers this data into the transmit register and starts transmitting it. 'Byte' low output inhibits the start-conversion pulse and is also transmitted as bit six.

The falling edge of TRE toggles the 'Byte' bistable device high, Fig. 2b, and the five most-significant data bits are loaded into the uart by TBRL being low with bit 6 high. When the uart i.c. has finished transmitting the lower five data bits and associated bits, TRE again goes high on a clock falling edge. The five mostsignificant data bits and 'Byte' are loaded into the transmit register ready for transmission.

Being high, 'Byte' output gates a start-conversion pulse to the a-to-d converter, Fig. 2c, which begins taking a new sample while the upper five bits are transmitted. The sequence thus repeats itself and is self
driven.
Serial output data from the uart, IC_{1} pin 25 , is encoded into a biphase form by $\mathrm{IC}_{9_{9}}, \mathrm{IC}_{8 \mathrm{a}}$ and $\mathrm{IC}_{7 \mathrm{c}}$ (Fig. 1) as shown in Fig. 2a. In this system a one data bit is encoded as a rising edge and a zero as a falling edge of the digital output to the recorder ${ }^{3}$.

Output level is around 50 mV . Inspection of the output waveform shows that the highest frequency present is equal to the baud rate used e.g. at 4800 baud the maximum is 4800 Hz .

High level replay signal from the recorder would normally suffer from a phase distortion caused by the recording process itself ${ }^{4}$ and appears usually as shown in Fig.4a.
This signal is applied to a phase-equalizing circuit comprising $\mathrm{IC}_{199_{\mathrm{a}}}$ and associated components (Fig.3) to compensate for this distortion. It is then amplified, $\mathrm{IC}_{19 \mathrm{~b}}$ and squared, $\mathrm{IC}_{2 \mathrm{c}}$, to obtain a t.t.1.-level signal that is close to the original recorded signal.

The biphase decoding circuit comprises $\mathrm{IC}_{7 \mathrm{~b}}, \mathrm{IC}_{8 \mathrm{~b}}, \mathrm{IC}_{2 \mathrm{~d}}$, and $\mathrm{IC}_{7 \mathrm{~b}}$. Clipping circuit $\mathrm{IC}_{7 \mathrm{~b}}$ produces a narrow pulse for each transition of the encoded digital signal. Counter $\mathrm{IC}_{8 \mathrm{~b}}$, driven by the $16 \times$ uart clock, counts to 12 or greater unless reset by clipper output pulses. If the counter goes to 12 or greater. $\mathrm{IC}_{2 \mathrm{~d}}$ output goes low then high causing bistable device $\mathrm{IC}_{9 \mathrm{~b}}$ to toggle.

Output of $\mathrm{IC}_{9 \mathrm{~b}}$ as can be seen from the timing waveforms is decoded serial data. It is however possible that bistable device $\mathrm{IC}_{9 \mathrm{~b}}$ may be in the wrong state initially in which case the decoded data will be inverted. This produces a parity error and/or a frame error signal from the uart which cause bistable device $\mathrm{IC}_{17 \mathrm{~b}}$ to toggle. Output Q of this bistable device drives exclusive-or gate $\mathrm{IC}_{7 \mathrm{~d}}$ pin 13 which gates decoder output to the uart serial input; the net ${ }^{1}$ effect is to invert the data stream seen by the uart. The circuit then rapidly synch-

ronises itself to incoming data, Fig. 4 d .
Assuming then that a correct stream of data is being received the problem is to reconstruct the 10 bit analogue samples. When a full character has been received, data-received flag $\mathrm{DR}, \mathrm{IC}_{1}$ pin 19, goes high in the middle of the stop bit on the clock rising edge, Fig. 4c.

Data-received bistable device $\mathrm{IC}_{17 \mathrm{a}}$ is driven by the inverted clock so the next clock falling edge transfers DR to its outputs. Signal Q of $\mathrm{IC}_{7 \mathrm{a}}$ is used to reset DR via $\overline{\mathrm{DRR}}$ to prepare for the next character and the next clock falling edge transfers DR low to $\mathrm{IC}_{17 \mathrm{a}}$ output which is thus a pulse one clock period wide.
If the received character contained the lower five bits of the sample then bit $6, \mathrm{IC}_{1}$ pin 7 , is low so bistable-device output is gated via $\mathrm{IC}_{13 \mathrm{~b}}$ to register IC_{12} which stores the data.

The next received character will contain the five higher bits of data and bit 6 will be high so the data received pulse is gated vja $\downarrow_{13 \mathrm{a}}$ to the output d-to-a converter, IC_{15}, Fig. 4b. The five lower bits from IC_{12} and the five upper bits from the uart are thus clocked into the DAC1000 output register and the analogue output attains the latest value.
The output d-to-a converter obtains its reference voltage from the ZN432E a-to-d
converter so ensuring good tracking between the two devices. However the output, IC_{18} pin 6 , will be inverted so after filtering $\left(\mathrm{IC}_{10 \mathrm{a}}\right)$ to remove quantizing noise it is inverted ($\mathrm{IC}_{10 b}$). If no signal is being received or the replayed data is incorrect for some reason then parity or frame-error signals inhibit output-latch pulses and cause the 'signal present' lamp to go out.
The circuit described here was built and tested to determine the validity of the design concept and has been used to good effect for recording e.c.g. signals. Certain features which contribute to the absolute overall accuracy of the system are not included such as converter offset and gain adjustment potentiometers. Note however the use of separate analogue and digital power supplies and grounds.

Dynamic sampling accuracy
can be improved by using a sample-and-hold circuit such as the LF398, which may be connected as shown in Fig. 5. The circuit as shown without a s / h device will have a dynamic sample error of 2% on a 50 Hz full scale sinewave input ${ }^{5}$.

Thomas Loughlin graduated from Queen's University Belfast with a B.S.c. (Hons) Electrical and Electronic Engineering in 1979. Now he is a Senior Medical Physics Technician at the Regional Medical Cardiology Centre in Belfast developing equipment for use in cardiology, including computer hardware and software. Prior to that he worked as an analogue and digital designer and as a systems engineer on computer control ssystems. Thomas' current project involves displaying physiolôgical signals using very high resolution graphics.

Fig. 4. Replay timing. Synchronization of the circuit with incoming data occurs rapidly.

References

1 Loughlin T., Analogue recording using digital technique, Wireless World, Feb. $1983 \mathrm{pp} 74 / 75$.

2 Ferranti Semiconductors, ZN432E 10 Bit Successive Approximation Monolithic A/D Convertor Data Sheet, 1982.

3 Koanantakool, T., 4800 Baud Cassette Interface, New Electronics, Vol 12, No 21, October 301979 , p. 36.

4 Smith, P. Zorkoczy, P. I., Data Recording on Audio Cassette, Wireless World, February 1982, pp 50-52, 62.

5 Clayton, G. B., Data Convertors, Macmillan Press. London. 1982, pp 45-46.

Fig. 5. Dynamic sampling accuracy can be improved by including a sample-andhold amplifier such as this one.

THE ALL-ELECTRONICS/ECIF SHOW ${ }^{-}{ }^{-1}$

 PAt Olympia, in Hammersmith, London, the British Electronics Week has come round again. Occupying even more space, with a greater number of exhibitors, the show has become a major event in the electrical/electronic calendar. From the 29th April to the first of May, Olympia will be full to overflowing with exhibitors.

The week actually consists of four exhibitions; The All-Electronics/ECIF Show, Circuit Technology, Electronic Product Design, and Fibre Optics. A fifth section has been announced for inclusion in the Week in 1987; Power Sources and Supplies. We had planned to provide a map of the stands and a list of exhbitors, but this would have taken up too much of our space; it is better left to the catalogue, available at the Show; instead we have concentrated on presenting some recent announcements of new products by exhbitors. Some companies are very chary of releasing details of products to be launched at the Show; so we will report on such releases after the event.
Your correspondents will have the unenviable task of attempting to visit every stand in this mammoth circus. For those unwilling or too busy to spend too much time there, we would recommend that you get a catalogue and then find a spot to sit down and read the sections that interest you. This will save a lot of time. Also at the entrance to the Show there are stations that can provide computer print-outs of the positions of the stands that have the products that may interest you.

Olympia has its own underground station, served during exhibitions by a shuttle train from Earls Court, which is the exhibition hall for the Fibre Optics section.

Function generator

Among the products to be displayed by Global Specialities is the Sovereign 8200 series of synthesized 20 MHz function generators. Fully programmable through the GPIB interface, the generators provide sine, square and triangle waves and pulses with variable amplitude, symmetry and offset over a 2 mHz to 20 MHZ frequency range. The
company are also showing d.c power supplies, surfacemounting breadboards using plastic leaded chip carriers, a low-cost universal countertimer and a wide range of rack systems and test-andmeasurement instruments. Global specialities corporation (UK) Ltd, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ. EWW 207 on reply card. Stand no. 260.

SIL resistors

High volume production and improved manufacturing techniques have allowed AllenBradley to extend the range of its 700 series of cermet resitor networks in single in-line (SIL) packages. The resistors are available in 4 to 14 -pin packages with resistances from 22Ω to $2.7 \mathrm{M} \Omega$. They are connected internally to a common bus (style A), as individual resistors (style B) or as digital line terminators (style E). All are fully tested. Allen-Bradley Electronics, Ennia House, High Street, Edenbridge, Kent TN8 5LY. EWW 216 on reply card. Stand No. 106.

Alternative to tantalum

Subminiature electrolytic capacitors with radial leads are suggested as a low-cost alternative to tantalum beads. The Waycom WSQ series has a capacitance range of 0.1 to $100 \mu \mathrm{~F}$ with rated voltages from 6.3 to 63 V . The aluminium capacitors are cased in aluminium with welded internal connections. High-grade paper separators for long-term reliablity. BA Electronics Ltd, Hitchin Road, Arlesley, Beds SG15 6SG. EWW 212 on reply card. Stand No. 482.

Mains filter

Compufilter has been designed to remove noise, r.f.i., and voltage transients from mains lines used with microcomputers and allied peripherals. Each model comprises a series of filters designed to eliminate both incoming and outgoing interference by providing a

high level of attenuation. A two-stage filter protects against incoming asymmetry and includes a transient suppressor. Each socket is protected against asymmetry and is isolated from the others. There is a choice of output socket types. Each output is limited to 3A. Cetronic Power Products Ltd, Hodeston Road, Stanstead Abbotts, Ware, Herts SG12 8EJ. EWW 209 on reply card. Stand no. 561.

DATAMAN

 Lombard House, Cornwall Road, DORCHESTER, Dorset DT1 1RX phone 030568066 telex 418442micro engineering circle 34 For further details.

AFFORDABLE ATE
Diagnoses bus troubles Helps mend micro boards Z80, 6502, 6800, 8085 All covered by one product Disassembler included Plugs into micro socket Hand-held probe identifies ADDRESS, DATA and CDNTRDL lines at a touch.

Prints a memory map of an unknown system showing RDM, RAM, I/D and EMPTY ADDRESSING SPACE

LOGS all tests and responses on PRINTER and ALPHA LCD Non-volatile memory retains test sequences CHECKSUM, RAMTESTS, READS/WRITES MEMORY \& I/D Reports location of SHDRTS on ADDRESS and DATA busses Prints out memory contents in ASCII, HEX or SQURCE CDDE

You cannot expect to mend

 microprocessor products with a meter and a scope. How many repairs would pay for your Super DOC? Super DOC. $£ 395$
PROM
 EDITOR

Displays HEX on standard TV with text-editing facilities inserts and deletes shifts and copies bytes and blocks of code EMULATES EPRDM in circuit using romulator lead supplied

Uploads and downloads using serial and parallel routines - RS232, Centronics PROGRAMS \& EMULATES 2716 2732 2532
Useful for development particularly for piggy-back single-chip micros
Adaptor is available
to program 2764 \& 27128
"Our expensive equipment stays on the shelf
for weeks - but SOFTY is used every day" says big-budget customer
 EPRDM type is set by switches erasure is checked automatically control is simple - two keys Alpha liquid crystal display checksum facility 6 hex digits FAST or NDRMAL programming PIUS VERSIDN also has: serial RS232 program \& check CTS or DSR handshake ASCII, SIMPLE HEX INTELHEX MOTOROLA S or TEKHEX GANG-OF-EIGHT $£ 395$ GANG-OF-EIGHT plus 445

780 TVTOR

Designed for Schools Council to teach $Z 80$ machine code MENTA uses TV for display shows STACK \& PRDGRAM in HEX

Editing facility includes direct keyboard ASSEMBLER RS232-output DISASSEMBLER

Used to write \& debug short machine-code routines MENTA is a complete controller with 24 bits of I/C used for ROBOTICS
TEACHER'S GUIDE, PUPIL READER MODULES (egg. A to D) available MENTA . £ 99

computer barca ins

-ring for our BEST DFFER OLIVETTI M21, M24 with $10 M B$ hard disk if req. AUTO-CAD \& 424 created this $A D$
also EPSON PX8 EPROM ERASERS from $£ 39$ BUY [T AND TRY IT refund guaranteed less postal expenses, if goods returned intact within 14 days PRODUCT IS USUALLY IN STOCK TODAY DESPATCH IS POSSIBLE PHONE FOR A LITERATURE PACK

STOP PRESS STOP PRESS STOP PRE

WHAT'SNEXT!

Leetronex

1-3 JULY 1986
LEEDS ELECTRONICS EXHIBITION OF COURSE

Don't forget to visit us.

STOP PRESS STOP PRESS STOP PRE

Organised by

The Department of Electrical and Electronic Engineering,
The University of Leeds, Leeds LS2 9JT.
Telephone (0532) 431751 Ext. 328

SMALL SELECTION ONLY LISTED
RING US FOR YOUR
REQUIREMENTS WHICH MAY BE IN STOCK

Portabie Battery or Mains Dstilloscope. SE Laboralories 111 Oscilloscope - Solid State - General purpose - Bandwidth DC to $18 / 20 \mathrm{MC} / \mathrm{S}$ at $20 \mathrm{MV} / \mathrm{CM}$ Rise time 19NS - Calibra Display $10 \mathrm{CMS} \times 8 \mathrm{CMS}$ - Power AC -95 Volts to 100 190 Volts to 260 or 24 Volt OC battery - Size. W 25.5 .CM - H25.5CCMS - 56 CMS Deep WT 11.4 KGS - Carrying handle - Tested in fair condi-
tion with operating instructions £ 120.00 .
ath operating instructins

Latest Bulk Governmant Releasa - Cossor Dscilloscope CDU 150 (CT531/3) \& 150 only. Solid siate genaral purpose bandwidth DC to 35 MHz at $5 \mathrm{MV} / \mathrm{CM}$ - Dual Channel - High brightness display ($8 \times 10 \mathrm{~cm}$) Futi deiayed time base wht gated mode - Risoitme 10WS - Illuminated qraticule - Beam finder - Cailbrator volis $A C-5 z z E 26 C M-41 \mathrm{Cm}$ deep-WI 12.5 K.G. carrying handla - colour blue - protaction covestront contalning polarized viewer and camara adaptor plate - probe (1) - Mains lead. Toctied in Fali, condition with
operating instructions - $£ 150.00$.

Communication Recievers. Racal 500KC/S to 30mc/s in 30 bands $1 \mathrm{MC/SWIDE}$ - RA17 MK11 $£ 125$. RA17L £150. AA117E £200. New Metal Louvred Cases for
above $£ 25$. All receivers are alr tesied and callibrated in our workshop - supolled with dust cover - oper tion instructions - circuit - in fair used condition. Racal Synthesisers (Decade frequeney generators) MA350B Solld State for use with 一 Ma7s - RA217-RA1218

Elc $£ 100$ to $£ 150$. MA250 - $1.6 \mathrm{MC} / \mathrm{S}$ to $31.6 \mathrm{MC} / \mathrm{S}$ £100. MA1350 for use with RA17 ractiver $£ 100$. MA259G Precision frequency standard 5mC/S $1 \mathrm{MC} / \mathrm{S}-100 \mathrm{KHz} \$ 100$ 10 5150 . Panoramic Adaptor AA66 £150. RA137 and RA37 $£ 40$ to $£ 75$ LF convertors
 EC964/7K Solid state - single channel - SBB mains or hatiery $-1.61027 .5 \mathrm{mC} / \mathrm{S}$ and 40010535 KHz § 100 wilh manual Plessey PR155G Solid State 60KC/S - $30 \mathrm{mC/S} 5400$. Creed 75 Teleprinters - Ftted tape ounch and gearbox lor 50 and 75 bauds - 110 volls AC supply - In original transpont tray sealed In polythene

- lik new $\{15 E A$ Aedilon $\Pi 11$ Audio Tele printer convertor recelver solid stale - supply 110 of 240AC Made for use with above teleprinter enabing print-out ot messages recieved from audio inpuif of communication receiver $\{15$ with circuit lested. Rediton TT 10 Convertor as above but inciudes transmilt facilities $£ 20$.
0 scilloscopes - stocks always changing Tekironix Scillosccopes - stocks always changing Texdronix
$465-100 \mathrm{MC} / \mathrm{S} \mathrm{E} 750$. Fm Hecorder Sanghmd Sabre 11114 channels $£ 350$. Transtel Matrix printers AF11R - 5 level Baudot Code - up to 300 Bauds - for print out on plain teleprinter paper $£ 50$ to $£ 100$. Trans2 and CCITM 5) Like new 100 Army lield telephone sets. Type F - Land J-Large quantity in stock E6 to £15 depending on type and quantity P.O.R. Don 10 Tolephone Cable - half mite canvas containers £20. Night viewing Infra-red AfV periscopas - Twin Eyepiece - 24 volt dc supply £100ea. Original cost to
government over $£ 11,000$ ea. Static Invertors -12 or government over
24 volt input -240 volt AC sinewave output - various wattages P.O.R. XY Ploters and pen recorders various - P.O.R Ferrograph series 7 Tape recorders mono f100. Stereo el50. Signal Generatorn various TF995/A3 £60. TFB010/8\&-10MC/S to 485MC/S £90 HP608 £50 HP614A $£ 100$ HP618B £ 100 HP620A $£ 100$
 TF893A Power meler f 50 Aerial mast assombly 30 ft high complete wth 16 fit whip aerial to mount on topguyropes - insulators - Ba se and spikes etc., in heavy
 1 A4 $£ 100$ ME50. All items are bought direct from H.M. Government being surplus equipment: Price is Ex works. S.A.E. for enquiries. Phone for appointmen tor demonstration of any items. Also availability or price change. V.A.T. and carriage extra

EXPORT TRADE AND QUANTITY DISCOUNTS GIVEN JOHNS RADIO (0274) 684007 WHITEHALL WORKS, 84 WHITEHALL ROAD, EAST BIRKENSHAW, BRADFORD BD11 2ER

WANTED REDUNDANT TEST EOUPMENT
WANTED REDUNDANT TEST ECUIPMENT -
RECEIVING AND TRANSMITTING EQUIPMENT VALVES - PLUGS - SOCKETS SYNCHROS

CIRCLE 19 FOR FURTHER DETAILS.

TDS 900
 FORTH COMPUTER

You've heard that -

* Industries from brewing to aerospace use FORTH
* It is easy to learn and apply
* It is interactive, yet is compiled for speed
* Assembler code can be included
* Development is done on the target system
* Your VDU, IBM compatible or BBC programs the TDS900
* TDS900 series computers have a full-screen editor
* TDS900 series has both N-channel and C-MOS versions
* TDS902 consumes 25 mA and has 62 K bytes memory
* Execution times in microseconds can be measured
* TDS900 cards have hardware multiply and 16 bit timer
* They have interrupts, both internal and external
* Some have non-volatile memory, some 9.8 MHz clocks
* TDS971 offers RS232 and IEEE-488 expansion
* TDS972 adds RS232, A to D and parallel ports
* TDS973A gives opto-isolation on 32 input/outputs

FORTH computers start at $£ 99$

$\sqrt{5}$Triangle Digital Services Ltd 100a Wood Street, London E17 3HX Telephone 01-520-0442 Telex 262284 (Ref M0775)

British rival for Amiga

The new Amiga computer from Commodore with its exceptionally fast graphics created a good deal of interest at the recent Which Computer? show. But now comes a British rival to the Amiga, the Microbox 3, which on paper outpaces it.
Microbox 3 is a colour graphics computer designed around the 68000 (or 68010) processor running at 8 MHz and Motorola's Raster Memory System chip set. It offers 40 different screen modes, with resolution ranging up to 640 by 500 pixels, plus features such as a 4096 -colour palette, eight re-usable sprites and a virutal screen of up to 512 K in size with smooth horizontal or vertical scrolling. The video standard is 625 -line PAL or NTSC and the output can be genlocked to an

external video source.
The board carries 512 K of D-RAM plus 128 K of system rom and has room for 64 K of
user rom. An 8M-byte plug-in expansion board with a floating-point co-processor is promised. Also on the way is a

Transputer co-processor.
There is a twin 800 K floppy disc interface built in and a choice of four operating systems - CP/M68K (GEM), OS-9/68K, Tripos and SMS-2, which should enable the machine to run most software designed for the Amiga or the Atari 520ST. In addition there is an SCSI bus interface for a 20M-byte hard disc.
Other details include a realtime clocks, a stereo sound generator, a dual RS232 port, parallel printer port, mouse interface and a built-in emprom programmer.
The board alone, is available at $£ 650$; boxed versions of the computer with built-in discdrives will be ready later. Applications suggested by the makers include image processing, engineering work, video games and Kanji wordprocessing. Micro Concepts, 2 St Stephen's Road, Cheltenham, Gloucestershire GL51 5AA. EWW 220 on Reply Card.

FFT on the BBC

A second-processor board will allow the BBC Micro (or many other computers) to perform fast Fourier transformations very rapidly; 1024 complex points in less than 50 ms using 16-bit two's complement arithmetic. Magnitude scaling is included to maintain a high dynamic range. Computing power is provided by the TMS 32010 digital signal processor from Texas Instruments with 4 K of program memory and 64 K of 16 -bit memory with 100 ns access time. The instruction set is optimized for singal processing. For example a 16 by 16 to 32 -bit multiply takes only 200 ns and 32 -bit accumulates can be pipelined with the loading of the next operand.
A hardware interface enables the transfer of data and programs between the BBC and the TMS at about $2 \mathrm{Kword} / \mathrm{s}$. Operation is controlled by software running on the BBC . It takes assembled program data from discs, sends them to the TMS for processing and displays the results either graphically or as a table of numbers.
A compatible a-to-d board is
available to allow processing of incoming data in real time, sampling at frequencies up to 500 kHz for 8 -bit resolution.
The processor board, interface and software to perform FFTs and design matching filters is all bundled together to provide a development system for the TMS processor in a variety of real-time digital signal processing applications such as spectral analysis, finite and infinite impulse response filters. It make a useful teaching aid for students of digital signal processing. Practical applications include the possibility of recording sound in real time digitally with a resolution comparable with that on compact discs; real time encryption is also possible.
The hardware can be used with other computers since it only requires two i/o ports on the host. Enquiries about adapting the interface to work on any host computer bus would be welcomed by Graham Sutherland and James Ervine, 71 Linden Gardens, London W2 4HJ. EWW 211 on reply card.

Signal generators

Two new signal generators cover the frequency spectrum from 10 Hz to 450 MHz in overlapping ranges. The audio frequency model has an accuracy of $+3 \%$, generating sine waves up to 1 MHz and square waves up to 100 kHz with a rise-time of 200 ns . Output voltage is variable from 0 to 4V, flat to within 1.5 dB with an output impedance of 600Ω.

The r.f. model covers six bands from 100 kHz to 150 MHz on fundamentals extending to 450 MHz on harmonics, with a continuously variable output of 0 to 0.1 V .
r.m.s. Modulation is by an internal 1 kHz tone or can be supplied externally. The provision of an external crystal socket makes it easy to use for spot frequency calibration. Available through MS Components Ltd, Zephyr House, Waring Street, London SE27 9LH. EWW 213 on reply card. MS are part of the Steatite Group who are also showing a range of r.f.i. protection and shielding products; capacitor and resistors; semi-conductors, cells and batteries and many other products. Stand No. 219.

Battery-powered oscilloscope

The new T0315 oscilloscope from Electroplan is a dualtrace 15 MHz instrument weighing only 4.5 Kg . The low weight and small dimensions make it suitable for field service and for application where a.c. power may not be available. It has sensitivity ranges from 2 mV to $10 \mathrm{~V} /$ division in 12 ranges, automatic selection of chopped
or alternate mode, and tv line or frame display. It can operate from batteries or a.c. mains with internal rechargeable batteries offering up to two hours of continuous operation. Electroplan Ltd, PO Box 19, Orchard Road, Royston, Herts SG8 5HH. EWW 217 on reply card. Stand No. 132.

Compact switch-mode power

Peak current may be drawn from all outputs in this 350 W switched-mode power supply. The F350 is a compact, open frame supply that can provide 5 V at $50 \mathrm{~A},-5 \mathrm{~V}$ at $5 \mathrm{~A},-12 \mathrm{~V}$ at 5 A and +24 V at 5 A . Power-failure indication is included and pulse overload capability is available on all outputs. 'Power trading' between the outputs is used. Meeting a number of IEC, BS, VDE and TG standards the supply is intended for use on computer systems with disc drives, printers and other
electromechanical devices that demand high peak power.
Powerline are displaying a wide range of other products including the Vicor VI100 d.c.-d.c. converter that switches at zero volts. It is claimed to produce half the heat of a conventional switched-mode regulator and to have a minimum efficiency of 80% - typically 90%. Powerline Electronics Ltd, 9 Nimrod Way, Eglar Road, Reading, Berks RG2 0EB. EWW 211 on reply card. Stand No. 118.

Modular measurement systems

The introduction of a family of Eurocard computer products comes from Measurement Systems. Modular 96 supports the Unix-like OS-9 operating system, giving multi-user, multi-tasking capability. OS-9 can be contained in a rom and can be used in turnkey systems, with or without discs. The family includes a wide
selection of rom, ram and i / o functions including disc, parallel, serial, isolated parallel, GPIB, analogue and graphics interfaces.
A key feature is that all the modules in the range are provided with OS-9 software at no extra cost. Support includes comprehensive documentation, regular
training courses and on-site consultancy to ensure rapid system development. Available through R.C.S. Microsystems Ltd, 141 Uxbridge Road, Hampton Hill, Middlesex TW 12 1BL. EWW 218 on reply card. Stand No. 527.

Surfacemount connectors

In order to obtain the best benefits from surface-mounted p.c.b.s, it is necessary that all the components used should mount on the surface. Erni, in West Germany have come up with two-part connectors specifically developed for surface mounting. They conform to DIN 41612 and allow the use of conventional p.c.b. size, spacing and racking. The materials used are suitable for vapour-phase and reflow soldering. Fixing holes are supplied and the makers recommended screwing or rivetting the body to the p.c.b. Available through Radiatron Components Ltd, Crown Road, Twickenham, Middlesex. EWW 214 on reply card. Stand No. 375.

ANOTHER BRIGHT IDEA from A.B.I.

is Are you spending hours repairing faulty printed circuit boards?
is Do you find the high cost of traditional ATE cannot be justified?
is Do you wish you had a low cost, simple-to-use circuit board tester that would provide a cost-effective digital test and repair facility?

If you can answer "Yes" to any of these questions, you should make a point of visiting us on Stand 493 at the All Electronics Show at Olympia, April 29th to May lst, where we will be launching our NEW

IN-CIRCUIT DIGITAL IC TESTER

If you would like complimentary tickets or preliminary product information, please contact us:

A.B.I. Electronics Ltd.,
Unit 21 Aldham Ind. Est., Wombwell, Barnsley, S. Yorks S73 8HA
Tel. 0226751639 Telex 547376 CEAG G (for ABI)

CIRCLE 37 FOR FURTHER DETAILS.

SmartWatch
 A battery-backed real-time clock/calendar with 64 K bit nonvolatile ram for under $£ 35$.
 This real-time clock/calendar from Dallas Semiconductor includes a battery-backed c-mos ram capable of holding data for

 10 yearsSmartWatch keeps track of:
Hundredths of seconds - seconds - minutes - hours - day
date - month - year in any computer or controller application.

Looking like a 28 -pin socket, SmartWatch fits into a computer's 8K-by-8bit memory socket* - without any hardware modifications on most computers.

For memory read/write operations, no software modifications are required either.

Normally the computer sees SmartWatch as a standard memory i.c. but when a special code is sent to the socket, internal address decoding triggers the clock/calendar function, allowing time and date information to be read and written.
This means that both clock and memory occupy the same computer address range and no external decoding is required.

Only a small software routine is needed to trigger the clock function and read and write time/date information.

Built into the socket are the real-time clock, a lithium battery, address decoding and power-down switching.
Because of their extremely low power consumption, the 6264-type static memory i.c. and clock/calendar remain powered for 10 years using the same battery.
*JEDEC pinout

Send to:-E\&WW SmartWatch Offer.
M.S. Components, Zephyr House, Waring St., West Norwood London, S.E. 27 9LH.
Offer applies to U.K. only. Please allow 28 days for delivery. Price includes data sheet.

[^7]
Sowter Transformers
 With over 45 years' experience in the design and manufacture of several hundred thousand transformers we can supply
 AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES
 Microphone transiormers (all types), Microphone Splitter/Combiner transformers

 Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to B T. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types) Miniature phone Pickup Minsfors ransforfers frequency transformers, Ultra linear and oxperformers for Tran mers, Ulra sistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers 1,000 watts), 100 volt line transformers to speakers, Speaker matching tran
(all powers), Column Loudspeaker transformers up to 300 watts or more.

We can design for RECORDING QUALITY, STUDIO QUALITY, HIFI QUALITY OR P.A. QUALITY, OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS, Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quotations by return.

E.A. Sowter Ltd.

Manufacturers and Designers
E.A. SOWTER LTD. (Established 1941): Reg.No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP1 2EG, Suffolk P.O. Box 36, Ipswich, IP1 2EL, England Phone: 047352794 and 0473219390 Telex 987703G Sowter

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.

Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:
E.M.S. Manufacturing Limited Chairborough Road High Wycombe Bucks Tel: (0494) 448484

ALL-TIME CP/M MICROCOMPUTER SYSTEM BARGAIN!

Fantastic bulk purchase of a major European manufacturer's entire stock of this top-quality machine enables us to retail it at far below its manufacturing cost. ALL FEATURES LISTED are INCLUDED as STANDARD:

- COMPLETE with EITHER single or double (as illustrated) TEAC half-height $51 / 4^{\prime \prime}$ double-sided, double-density floppy disc drives. Formatted capacity: 320 Kb per drive.
- 4 MHz Z80A CPU
- 64Kb RAM (in 4164 chips)
- 28 Kb EPROM containing monitor \& MICROSOFT BASIC
- CP/M Version 2.2
- 80×24 display with colour block-mode graphics
- Exceptionally high quality styled keyboard with numeric keypad \& 6 function keys
- Centronics parallel interface
- RS232N24 serial interface selectable 300-9600 Baud
- UHF Modulator for TV, RGB \& composite video output
ROM port. (A Word-Processor ROM is available at $£ 59$ + VAT)
- 6 month full guarantee

With DUAL floppy: £199.00 (£228.85 inc. VAT) With SINGLE floppy: $\mathbf{£ 1 3 5 . 0 0}$ ($\mathbf{£ 1 5 5 . 2 5}$ incl. VAT) Carriage: $£ 9.50$ (incl. VAT) Visa \& Access accepted LOW COST PRINTERS AVAILABLE

Available ONLY from:COMPUTER APPRECIATION, 111 Northgate, Canterbury, Kent CT1 1BH. (0227) 470512
MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484454377 (0444) 73830
12492
CIRCLE 61 FOR FURTHER DETAILS.

LOW COST UNIVERSAL PROGRAMMER EPROMS EEPROMS MICROS

- Completely self contained unit.
- No personality modules required.
- Controlled via RS232 serial intertace
- Supports Intel, Motorola and Ascii
hex data formals.
- Easily controlled by most computers
- Fast and standard programming modes.
- Low and high byte programming for 16 bit data
- Byte, block and chip erase for Eeproms

Price uncased $£ 295$ plus VAT

Micro Concepts

- Eproms

2508/16/32/64
2758
2716/32/32A/64/64A/128/
128A/256/512/513
27C†6/32/64/128/256/512
68732/64/66

- Eeproms
$2816 A / 64 A \quad 52 B 13 / 23 / 33 \quad 48202$
- Micros
$8748 / 48 \mathrm{H} / 49 / 49 \mathrm{H}$

Tel: 0242510525

2 St. Stephens Road - Cheltenham - Glos - GL51 5AA CIRCLE 64 FOR FURTHER DETAILS.
ELECTRONICS \& WIRELESS WORLD MAY 1986

Logarithmic video amp

Among the products to be displayed by Exar is the XR-7000 a log video amplifier i.c. with a wide bandwidth, suitable for many applications from audio to radar and including test instruments, video and audio systems, smoke tectors, ultrasonic detectors, medical instrumentation and so on. The single-chip device has seven logarithmic stages which may be cascaded for increased dynamic range.

Total bandwidth is 30 MHz . Also included are most of the parts for a precision signal processing system; so there is an internal band-gap reference, a differential summing amplifier, an on-chip temperature sensor and power supply regulators. Exar Corporation, Zilos House, Moorbridge Road, Maidenhead, Berks. EWW 205 on reply card. Stand No. 389.

Power supplies

Advance Power Supplies have extended several of their ranges. The d.c. driven Powerflex range now includes a PD500 which has a nominal input of 48 V , but which will operate between inputs of 40.5 and 63 V , believed to be the widest input operating voltage swing in the world. Outputs are available in four versions: 5 V at $60 \mathrm{~A}, 12 \mathrm{~V}$ at $30 \mathrm{~A}, 24 \mathrm{~V}$ at 13 A and 48 V at 7A. Plug-in

p.c.bs offer auxiliary outpurs of $5,12,15,18,24$ and 48 V . 'Power trading' between outputs is a standard feature.
The Powermag A1500 is a $5 \mathrm{~V}, 300 \mathrm{~A}$ switchmode power supply working from 110 V or 220 V a.c. inputs. These are nominal and the supply will operate from almost any a.c. supply and input frequency. Its largest dimension is 280 mm .
To complete the additions to the Advance range there are the Powerite A200 series of five-output, 200 W openframe power supplies. They use 100 kHz EEIS to allow the use of small tansformers and be 'highly efficient and reliable'. The supplies operate from a.c. mains and offer a main output of +5 V at 40 A , with auxiliary outputs of $-5 \mathrm{~V}, 5 \mathrm{~A},+12 \mathrm{~V}$, $5 \mathrm{~A},-12 \mathrm{~V}, 5 \mathrm{~A}$ and $+24 \mathrm{~V}, 8 \mathrm{~A}$. Advance Power Supplies Ltd, Raynham Road, Bishop's Stortford, Herts CM23 5PF. EWW 255 on reply card. Stand no. 251.

Desolderer free from static

A new addition to OK Industries' 'Ånti-static' range of products is this desoldering pump, the DP3, which conforms to standards of electrostatic-free materials. It has a conductive tip that is easy to clean and change.

Presently available at a special offer of $£ 3.16$ inclusive -40% off the list price. OK Industries UK Ltd, Dutton Lane, Eastleigh, Hants SO5 4SL. EWW 210 on reply card. Stand No. 250.

Telecomms transformers

An expansion of its range of audio transformers f̣or telephone coupling applications, is the TA series from Dale-ACI. All the new models are desgined to meet FCC part 68 requirements. A wide range of sizes, mounting configurations and circuits are available to provide line isolation, four-wire to two-wire hybrid termination, impedance matching and line balance
functions over a frequency range of 300 to 3500 Hz for data and voice applications. Modifications to the impedance, frequency response or other electrical characteristics are available to meet specific design needs. Dale-ACI Components Ltd, River Park Industrial Estate, Berkhamstead, Herts HP4 1HL. EWW 215 on reply card. Stand No. 99.

High-frequency power sensor
 Marconi Instruments has added a high-frequency, 50Ω power sensor to its range of detectors for use with its digital and analogue power

 meters. The new sensor, 6913, extends the upper limit of the overall sensor frequency range to 26.56 Hz and a 50 dB power range from +20 to -30 dBm . Applications for measurement
in microwave, radar and satellite communications. Marconi Instruments Ltd, Longacres, St Albans, Herts AL4 0JN. EWW 206 on reply card. Stand no. 357.

Low-cost data logger

A comprehensive range of industrial and scientific data capture tasks can be performed by the Vela data logger from Data Harvest. At its heart is a 6802 processor, 8 -bit d-to-a and a-to-d conveters, rom software and 4 K of battery-backed c-mos ram. Sockets are available internally for additional applications roms. There are four analogue inputs plus an additional pulse input for counting, timing and triggering. Internal pulses for timing and triggering are also provided. Various transducers and sensors can be connected directly to the inputs, or through amplifiers and signalconditioning units which are available as optional extras and themselves plug directly to the inputs. The instrument can be mains or battery powered and the recorded data is retained in memory for later downloading. Vela's programs are selected by simple pushbutton instructions, selected the front panel. These include transient recording, data collection, timing, pulse counting and waveform generation. Channel number and required parameters are all selected through the membrane keyboard and shown on the led display at the top of the panel. After an event is captured it can be stepped through with the recorded values being displayed on the leds. All of the four channels can be used simultaneously.
The instrument can also output its data to an analogue oscilloscope or a
microcomputer. Both can display the recorded waveform and it is possible to step through he sequence to get spot values at the cursor. This has the added advantage of turning the laboratory oscilloscope or micro into a digital storage oscilloscope. The micro has the addition advantage of being able to store the recorded events as waveforms or as tables of data, make comparisons and perform such analyses as FFT and statistics. The data can also be output to a printer to obtain a graph of the
waveform or a table of the data. Graphical output can also be obtained on a pen plotter and as the data is all recorded, there is not disadvantage in the slow speed of the plotter Vela may be connected to a BBC micro, an Apple II and many other computers.

Applications are very numerous as the instrument has been designed to be as versatile as possible. If it is possible to use a sensor it is possible for Vela to record the output. Some examples are structural stress analysis using accelerometers and pressure sensors. Analysis of gases, recording the vibrations in machinery and then analysing potential failure, using FFT etc. Data Harvest believes that its instrument will become a standard piece of lab equipment alongside the multimeter and the oscilloscope. They also believe that at the low price of $£ 375$ there is no rival for use in industry or higher education. The instrument is also being marketed under their own name by a well-known component distributor and is featured as a new product in the latest edition of their catalogue. Data Harvest Ltd, 28 Lake Street, Leighton Buzzard, Beds LU7 8RX. EWW 222 on reply card.

Fans on show

Papst needs two stands - one each in the All Electronic and Electronic Production Design shows - to display all their air-moving products. New are a range of 25 mm rugged a.c. fans and 120 mm electronically commutated d.c. models. Also on display is an "intelligent" cooling system that can automatically control d.c. fans to suit varying requirements of ambient temperature and operating load. Papst Motors Ltd, East Portway, Andover, Hants SP10 3RT. EWW 208 on reply card. Stands no. 101 and 1031.

Assembler + emulator = instant development

Developing object-code software for a target system presents problems. However one solution is to use an eprom emulator. Such a device is the Portal emulator one port of which plugs into the development system and the other to the target. Portal has the advantage of being developed by Andy Green, who also wrote the Meta assembler - and of being cheap. When a program is assembled by Meta, in the machine code of the target system, the object code is immediately available on the target and may be run instantly. Meta can translate a program into machine code for all the popular 8 -bit processors (68000 is under development). This means that the Meta/Portal combination can be used on a wide variety of target processors and is not dedicated to one specific system. Up top four Portals can be chained together and addressed individually and can be used in sockets for a 2716 up to a 27512 i.e. 64 Kbyte . Two may be used together, one each for the high and low data strobes of a 68000 system. The system runs from the user port on a BBC micro with no hardware
modification. Meta is on two roms. Crash Barrier. Freepost Flitwick, Bedford MK45 1YP. EWW 219 on reply card.

BIRD 43 Wattmerer
KNIGHT SWEEP GENERATOR $3-220 \mathrm{MHz}$ AIRMEC 10 KV Ionisation teste............
AIRMEC 2OKV IONISATION TESTER 209 BRUEL \& KJOER Voltmeter 2409 SULLLVAN inductance bridge
11.11 H discrimination .002 HH 11. 11 H discrimination 002 uH
GENERAL RADIO Capacitance bridge BPL RC\&L Component comparator with 12

$$
\begin{aligned}
& 150+V A T \\
& 60
\end{aligned}
$$

$$
\begin{aligned}
& 60 \\
& \text { asures } L \text { to } \\
& 375+V A A O
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asires } L \text { to } \\
& 375+V A T \\
& 7 A A
\end{aligned}
$$

$$
125+\text { VAT }
$$

 HEWLETT-PACKARD 3465 A DMM 250 +VAT
 POLYSCOPS SWOB $1 \& 11 ~$
BOONTON $77 B$ Capacitance limit bridge GEN RAD Oscillator 450 -1050MHz
GENRAD 1606 A RF Bridge
AMBER 4400 Audio test s
OATRON 1051 DMM
OATRON 1051 DMM................1150+VAT
SYSTRON DON $0-1 \mathrm{~A}$ Current limiter power unit. $0-50 \mathrm{~V}$ in 5 decades FEEDBACK INSTRUMENT CYGNET 5125

HEWLETTT-PACKARD EOUIPMENT

HEWLETT-PACKARD 3490A DMM
HEWLETT-PACKARD 34655 D MM
HEWLETT PACKARD 8405 Vector Voltm
HEWLETT PACKARD 608 -series sig
HEWLETT. PACKARD 608 -series sig
HP $1.41 T$ Spectrum anal ser. hone for low quote
\cdots wanted for HP 8551 A Aly sers- B WOS
ALSO REOU IRED FOR STOCK GOOO B51/855 ALSO REQUIRED FOR STOCK GOOD $851 / 855$
HEWLETT-PACKARO 1707 A 75 MHz Oscilloscope

ESCAP DC MOTORE

$t+$ STIEPEBMOTURS $t+t$

Brand new stock of 'ASTROSYN' Type 20PMAU55 stepper motors. 28V DC. 24 steps per re
15 oz-in torque $(a$ loopPS. Body length $21 / 2$ diameter $2=$ shat $1 / 4^{4}$ diam $\times 4 / 4 / 4$ spiral threaded. Weight $160 z$ Pri
50pl. Connections supplied 250 + VAT $175+$ VAT - 95 +VAT €350+VAT

55 decades | 5 decades |
| :--- |
| ETT |
| 125 |
| 12. | . $£ 500$ /pair

BRUEL \& KJOER

MARCONI TEST EQUPMENT

\section*{$|$| $-\infty$ | |
| :---: | :---: |
| $\rightarrow 0$ | $-\infty$ |}

TF2370 SPECTRUM ANALYSER. F2331 Distortion meter

TF868 Universal bridge
TF230; Programmable Mo
TF2607 ACIDC Voltmeter.
TF 1245 Q M Meter 8 oltmeter
F 10.470 MHz
TF995B/5 AM/FM sign gen ${ }_{\text {TF }}^{\text {TF }}$ TF2604 Electronic Vortmeter TF893A Audio power meter
TF2700 Universal bridge TF 2000 Audio sig genattion TF2330 Wave analiser audio.
TF2002
TF7 TF2002 MF/HF AM sign
TF7910 Deviation meter.
 TF1 152 A RF power m
TF2162 Attenuator....
TF2430 80MHz coun

SERVOMEX SKW
PLEASE NOTE All our used equipment is sold in itull workeng condirion and caries 390 day wart

* COMPUTER PERIPHERALS * 1.6MB 8" FLOPPY DISC DRIVES - New Stock

BRAND NEW At a surplus price, Fuly Shugart compaitbe 'M

 ndustry standard1.5 M yytes. Pow

 Recen stock or brand new COUTANT ESM-Series Power Supples
 stabilised 24 V an 240 V AC , nnut Measires $5 \times 8 \times 111$ Fulit enctiosed. In
carriage $£ 5$)

HP SPECTRUM ANALYSER 1.2 GHz

$8^{\prime \prime}$ SHUGART DISC DRIVES

A bulk buy
enables
Specitication
nables us to offer them at a ridiculously low price
Specification includes $1,5.220 \mathrm{MHz}$ trequency coverage,
EM Deviation $0-5 \mathrm{KHz} \& \mathrm{O}-15 \mathrm{KHz}$.
 0.002% frequency drift. Co
$1 \mathrm{uV}-100 \mathrm{mV}$ to within ${ }^{2} 1 \mathrm{db}$

CIRCLE 74 FOR FURTHER DETAILS

Forthright/

 ———................. noe
Forth and Engineers

The programming language Forth has much to offer electronics engineers wishing develop microprocessor based boards assembier or machine code would be used. and ROMmed. Forth can give substantial advantages over this approach, such as programming at both machine and high levels, rapid and interactive development of code, and high speed and compactness. A cross compiler will then allow a Forth application deveroped and debugged on a particular operating system, such as on a desktop micro, to be transferred to run on a given processor in ROM.

WORK FORTH MSDOS or CPM £48.00 extensions View-trace or
Floating Point....................... $£ 35.00$ HS FORTHMSDOS $\mathbf{\Sigma 2 3 0 . 0 0}$ FORTH 09FLEX or OS9 ... $£ 175.00$

SUMMER COURSES - 3 day

introductory and advanced Forth
courses with notes and working
software
£375.00
We are the Forth specialists, we also stock a large range of books, listings, and implementations for machines ranging from Amstrad to Atari ST. IBM PC to PDP11

Eorth mitus

 Prowt Compilation
\#orth allow:

 Gfvelomment

* full cons $k=1$ of hartwire thigh siseath arideambenctress Crout Aumpthuthot allaw detrigged forth mejtationon thewedrment OS to be anttery ant HOktimed lato targe? syskem

Hoditystams

 FSX I It 2509 fart core fouy ondy antcis)
Trerent
$780,802065,8988 \% 8,9070,20,5502$ $6512,1892,6800,6901-8303$.
 por latgot.

MicroProcessor Engineering Ltd

 21 Hanley Road, Shirley Southampton SO1 5AP Tel: 0703780084
HART - The Firm for OUALITY

LINSLEY HOOD 300 SERIES AMPLIFIER KITS

 Superb, HART designed, integrated amplifier kits derived from Linsley-Hoods articles in 'HiFi News'Ultra easy assembly and set-up with sound quality to please the most discerning listener. Ideal basis for any domestic sound systems if quality marters to you. Buy the complete kit and save pounds off the individual com ponent price.
K300-35. 35 Watt. Discount price for Complete Kit
K $300-45.45$ watt Discount

K300-45. 45 Watt. Discount price for Complete Kit.
RLH 485 . Reprints of
RLH4\&5. Reprints of Original Articles from 'HiFi News
Complete very high quality
Separate record and replay sections for optimumding stages for any stereo cassette recorder cater for chrome and ferric tapes. Very easy to assemble on Switched bias and equalisation to instructions
 $860 \times$ Stereo Mic Amp Kit to suit....
RLH 1 \& 2 Reprints of original Articles

Complete stereo record, replay and bias system for reel-to-reel recorders. These circuits will give studio quality with a good tape deck. Separate sections for record and replay give optimum per formance and allow a third head monitoring system to be used where the deck has this fitted K900W Stereo Kit with Wound Coils and Twin Meter Drive.
RJS 1 Reprints of Original Articles
\& 1.30 no VAT
HIGH QUALITY REPLACEMENT CASSETTE HEADS
Do your tapes lack treble! A worn head could be the problem Tape heads are constantly improving and fitting one of our lates replacement heads could restore performance to better than new will make it easy to set the azimuth spot on. As we are the actual importers you get prime parts at lowest prices. All our heads ar suitable for Dolby machines.
HC20 Permalloy Stereo Head. Good quality standard head fitted as original equipment

than ferrite, fantastic frequency response..9.91
head....track head for auto-reverse or quadrophe and other heads in our range are contained in our tree list.
Full
HART TRIPLE-PURPOSE TEST CASSETTE TC 1
One inexpensive test cassette enables you to set up VU (Dolby) level, head azimuth and tape speed without test equipment. Vital when fitting new heads. Complete with instructions... $£ 4.66$ Send for your FREE copy of our lists with full details of our complete range of Kits, Components, PCBs, Cassette Heads and Decks:- Overseas please send 5 IRCs for Airmall Pos
Please incld part cost of Post, carefulpacking and insurance as follows: Orders up to $£ 10-50$ o,
orders $£ 10$ to $£ 49-£ 1$, orders over $£ 50-£ 1.50$.

CIRCLE 54 FOR FURTHER DETAILS

01-208 1177 Technomatic Lid 01-208 1177

BBC Computer \& Econet Referral Centre

AMB15 BBC MASTER Foundation computer $128 \mathrm{~K} \ldots . . \ldots . ~ £ 435$ (a)
AMB 12 BBC MASTER Econet computer 128 K Ionly ANFS 348 (a)
A MC06 Turbo (65C-02) Expansion Module
£ 348 (a)
ADF13 Rom Catridge....... 13 (b) ADF10 Econet Module......... 43 (c) ADJ22 Ref. Manual Part I. $\mathbf{5 1 4 . 5 0}$ (c) ADJ23 $\begin{array}{lll}\text { (c) Ref. Manual Part It.f14.50 (c }\end{array}$ ADJ24 Advanced Ref. Manual..f19.50 (c)

BBC Dust Cover $£ 450$ (d)
1770 DFS Upgrade for Model 8 f43.50(d) ADFS ROM (for B with 1770 DFS \& B plus) ACORN 280 2nd Processors $\mathbf{£ 3 2 9}$ (a)

64 K Upgrade Kit for B plus $£ 35$ (d)
MULTIFORM 280 2nd Processor... 6502 2nd Processor f162(b)

TORCH 280 2nd Processor ZEP 100.
£ 299 (b)
TZDP 240: ZEP 100 with Technomatic PD800P dual drive with built-in monitor stand $\mathbf{C} 469$
META-ASSEMBLER. Both an editor and Macro-Assembler. Meta can assemble most $65 \mathrm{xx}, 68 \mathrm{xx}, 6804,6805 / 6305,6809,8048,8080 / 8085,280$, 1802 and more. Please phone for comprehensive leaflet. Meta-Assembler £126(c)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS \& PLOTTERS	
EPSON: LX-80 NLQ 195 (a)	Optional Tractor Feed...................£20 (c)
EPSON FX RANGE	
FX85 (80 coll ¢ 315 (a)	FX105 (136 col)..................... $\mathbf{4 4 4 9}$ (a)
EPSON JX80 4 colour printer.. 4435 (a)	
EPSON LQ Range:	
LQ800 (80 col)......................... $£ 595$ (a)	LQ1500 (136 coll 2 K buffer \ldots........ $\mathbf{E 8 7 5}$ (a)
	32K buffer........£950 (a)
TAXAN:	
KP810 (80 col)........................ £160 (a)	
DAISY WHEEL:	
BROTHER HR15......................£285 (a)	JUKI6100............................ £ 289 (a).
CENTRONICS GLP (NLO) Printer... £ 109 (b)	Tractor feed.............................f 14 (d)
DOTPRINT. + NLQ Rom for Epson..	f28 (d)
Epson HI-80 PLOTTER................ $£ 325$	Integrex Colour Printer................ $£ 569$ (a)

PRINTER ACCESSORIES

We hold a wide range of printer attachments (sheet feeders, tractor feeds etc) in stock. Serial, parallel, IEEE and other interfaces also available. Ribbons available for all above plotters. Pens with a variety of tips and colours also available. Please phone for details and prices.
Plain Fanfold Paper with extra fine perforation (Clean Edge):
2000 sheets $9.5^{\circ} \times 11^{\prime \prime} £ 13(\mathrm{~b}) 2000$ sheets $14.5^{\prime \prime} \times 11^{\prime \prime} £ 18.50$ (b)
Labels per 1000 s: Single Row $3_{2}^{1-} \times 17 / 16^{\prime \prime} £ 5.25$ (d) Triple Row $2-7 / 16^{\prime \prime} \times 17 / 16^{\prime \prime} £ 5.00$ (d)

MODEMS

MIRACLE WS 2000
The world standard BT approved modem covering all standard CCITT and BELL (outside UK only) standards upto 1200 baud. Allows communication with virtually any computer system in the world. Expandability to Auto Dial and Auto Answer with full software control enhance the considerable features already provided on the modem. Mains powered. WS $2000 £ 102$ (b), Data Cable $£ 7$ (d),

NEW WS 3000 RANGE - the new professional series. All are intelligent and 'Hayes' compatible, allowing simply 'English' commands to control its many features. All models feature Auto-Dial with 10 number memory Auto-Answer, Speed buffering, printer port, data security option etc. All models are factory upgradeable.
WS3000 V2123 (V21 \& V23 + Bell £295 (a) WS3000 V22 (as above plus 1200 baud full duplex $£ 495$ (a) WS3000 V22bis (as above plus 2400 baud full duplex $£ 650$ (b)
BBC Data Cable for WS3000 £6(d). Data
Cables for other micros available
The WS3000 range all have BT approval.
GEC DATACHAT 1223: An economically priced BABT approved modem complying with CCITT V 23 standard capable of operating at $1200 / 75 \mathrm{bps}$ and $75 / 1200 \mathrm{bps}$ and 1200/1200bps pseudo full duplex. It is line powered does not require external power source. it is supplied with software suitable for connecting to PRESTEL, Micronet 800 , Telecom Gold and a host of bulieting boards $£ 86$ (b)
$\begin{aligned} & \text { SOFTY II } \\ & \text { This iow cost intelligent epromprogrammer can program 27.6. } 2516, \\ & \text { 2532. 2732, and with an adaptor, } 2564 \text { and 2764. Displays } 512 \text { Dyite }\end{aligned}$
2532. 2732, and with an adaptor, 2564 and 2764 Displays 512 byle and par-
$\begin{aligned} & \text { Softyll } \\ & \text { Adaptor }\end{aligned}$
adaplor
$\begin{array}{r}2764 / \\ \$ 25.00\end{array}$

,		Sol St Hood Screw Lock	$\begin{array}{llll} 195 & 325 & 375 & - \\ 90 & 95 & 100 & 120 \\ 130 & 150 & 175 & - \end{array}$	
SPECIAL OFFER 2764-25 f2:00(d); 27128-25 f2:50(d); 6264 LP-15 £3:40(d);				
		TEXTOOL ZIF		
ACORN IEEE INTERFACE£ 278 (a)	INDUSTRIAL PROGRAMMER EPB000 5695 (8)	SOCKETS 28-pin £9.10		$\begin{array}{r} 24-\operatorname{pin} £ 7.50 \\ 40-\operatorname{pin} £ 12: 10 \\ \hline \end{array}$

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, with a newly-extended 14 model range that represents the best value for money available anywhere.
V-212/222 20 MHz Dual Trace $\quad \mathrm{V}-650 \quad 60 \mathrm{MHz}$ Dual Timebase V-223 $\quad 20 \mathrm{MHz}$ Sweep Delay $\quad \mathrm{V}-1050 \quad 100 \mathrm{MHz}$ Quad Trace (illustrated) \quad V- $1070 \quad 100 \mathrm{MHz}$ Four Channel V-209 20 MHz Mini-Portable $\quad \mathrm{V}-1100 \quad 100 \mathrm{MHz}$ DMM/Counter V-422 40MHz Dual Trace V-134 10 MHz Tube Storage VC-6015 10 MHz Digital Storage V-509 50MHz Mini-Portable VC-6041 40 MHz Digital Storage Prices start at $£ 299$ plus vat (20 MHz dual trace) including a $2 y r$. warranty. We hold the range in stock for immediate delivery.
For colour brochure giving specifications and prices ring ($\mathbf{0 4 8 0} \mathbf{6} \mathbf{6 3 5 7 0}$ Thurlby Electronics Lid, New Road, St. Ives, Cambs. PE17 4BG
CIRCLE 57 FOR FURTHER DETAILS.

Add 8 channels to your 'scope New Thurlby OM358 multiplexer $£ 179$ vat
 The Thurlby OM358 gives any oscilloscope an 8 channel display. Observing many waveforms simultaneously can be essential when analysing sophisticated equipment. Application areas include microprocessor based products, data transmission systems, A to D converters, frequency synthesizers etc. The OM358 is ideal for digital equipment (it can often solve problems that would otherwise need a fast logic analyser) but, unlike dedicated logic test instruments, it is equally suited to analogue waveforms,
 The OM358 has a bandwidth of 35 MHz and 3% calibration accuracy. Each input has an impedance of $1 \mathrm{M} \Omega-20 \mathrm{pF}$ and accepts signals up $10 \pm 6 \mathrm{~V}$. An 8 channel, 4 channel, or single channel display can be selected with triggering from any channel. Colour data sheet with full specifications available.
 $\|$ Thurlby $\mathbb{E} \begin{aligned} & \text { Thurlby Electronics Ltd } \\ & \text { New Road, St.Ives, Cambs }\end{aligned}$
 designed and built in Britain PE174BG Tel: (0480) 63570

CIRCLE 58 FOR FURTHER DETAILS.
The world's most advanced low-cost bench multimeter! Thurlby 1905a £349+VAT

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$.
- Full ac and current functions as standard

A sophisticated computing and logging DMM

- Linear scaling with offset; null/relative
- Percentage deviation; running average
- dBV, dBm general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options
Thurlby Electronics Ltd
New Road, St.lves, Cambs. PE1748G $\quad \|$ Thurlby
Tel: $(\mathbf{0 4 8 0}) 63570$

CIRCLE 59 FOR FURTHER DETAILS.

Now Thurlby makes logic analysis affordable ! from

the new Thurlby LA-160

$£ 395$ +vat

- 16 channels, expands to 32 - 2 K word acquisition memory
- Clock rates up to 20 MHz - Non-volatile reference memory - State and timing displays - Search and compare facilities - Selectable display formats - Hard-copy data print-out

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is as essential for observing digital signals as an oscilloscope is for observing analogue signals, and now Thurlby puts one within every engineer's reach.
Contact us now and get the full technical data.
\qquad Thurlby Electronics Ltd
New Road, St.Ives, Huntingdon
Cambs. PE17 4BG, England. Tel: (0480) 63570

AFFORDABLE ACCURACY

Quality Multimeters from

Cirkit

comprehensive range of
Analogue and (Pushbutton or Rotary
Switched)
Digital Models

ANALOGUE
HM-102BZ - 10ADC Range. 20k Ω VDC Buzzer. Battery Test Scale 19 measuring ranges
HM-102R $\$ 12.5$
ranges. Jack for Audio o/p voltages ... $£ 11.0$ 20 measuring ranges
HM-1015-Rugged, Pocket sized meter. for general purpose use
16 measuring ranges
Battery. Test Leads and Manual included
with each model
Please add 15%
lor VAT and
dIGITAL
HC. 7030
0
0 1\% Accuracy Standard Model $\quad \$ 39.50$
HC-6010
0.25\% Accuracy. Standard Model $\quad \mathrm{S} 3350$
HC-5010
0.25\% Accuracy TR Test Facility $£ 39.50$ DM-105
0.5% Accuracy Pocketable $\$ 2150$
All models have full functions and ranges and leature 3^{3} y digit U5 LCD display - low battery plastic casing - DC AC IUdmp range (not DM-105) - Overload protection on all ranges battery spare fuse, test leads and manual

Full details and specification from:
Cirkit Distribution Ltd
Park Lane, Broxbourne, Herts, EN10 7NQ
Telephone (0992) 444111 Telex 22478 TRADE ENQUIRIES WELCOME

CIRCLE 67 FOR FURTHER DETAILS.

Amateur Radio \& Electronics Hobby Fair

To be held at Wembley Conference Centre, Saturday 5th \& Sunday 6th July 1986
is The first Two Day Fair to be held in the South of England. A major new event in the Amateur Radio Calender.
\& Over 200 retail \& manufacturers stands - plus lots more.
is See future publications for more details.
The organisers are: Amateur Radio Promotions,
Woodthorpe House, Clapgate Lane, Birmingham
B32 3BU - Telephone: 021-421-5516.

20 MHz Digital Storage
Outstanding 20 MHz max. sampling rate. $4 \times 1 \mathrm{k}$ Memory. 8bit vert. resolution. Digital Timebase from $50 \mathrm{~s} / \mathrm{div}$. to $10 \mathrm{us} / \mathrm{div}$ Stores XY-Operation . Single/Refresh/Roll Mode. Analogue
Output. IEEE-Bus optional. Sensitivity $1 \mathrm{mV} / \mathrm{div}$. $-20 \mathrm{~V} / \mathrm{div}$.

HM605

60 MHz Dual Trace
Sensitivity $5 \mathrm{mV} /$ div. at $60 \mathrm{MHz}, 1 \mathrm{mV}$ at 5 MHz . Automatic peak-value or normal triggering to 80 MHz . Delay Line Variable Sweep Delay. Timebase from $2.5 \mathrm{~s} / \mathrm{div}$. to max. $5 \mathrm{~ns} / \mathrm{div}$. Unique fast-risetime $1 \mathrm{kHz} / 1 \mathrm{MHz}$ calibrator. Y-Output. High-resolution 15 kV CRT

HM204

£ 365
20 MHz Dual Trace
Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} /$ div., 1 mV at 5 MHz . Timebase from $1.25 \mathrm{~s} / \mathrm{div}$. to max. $10 \mathrm{~ns} / \mathrm{div}$. DELAY LINE . Variable sweep delay Single sweep. Automatic peak-value trigger to 50 MHz . Y-Output Z-Modulation. Overscan indicator

HM203

£270
20 MHz Dual Trace
Western Europe's best selling 20 MHz - Scope! Sensitivity
$2 \mathrm{mV} / \mathrm{div}$. Trigger bandwidth 40 MHz . Timebase from $0.2 \mathrm{~s} / \mathrm{div}$. to max. $20 \mathrm{~ns} / \mathrm{div}$. . $X-Y$. Component Tester

FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX Tel: (0582) 413174 Telex: 825484
CIRCLE 26 FOR FURTHER DETAILS.

Advertisements accepted up to 12 noon May 7th for June issue

DISPLAYED APPOINTMENTS VACANT: $£ 21$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 4.50$ per line, minimum $£ 33$ (prepavable) BOX NUMBERS: $£ 10$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant. Sutton, Surrey SM2 4AS). PHONE: SUSAN PLATTS, 016613033 (DIRECT IINE)

Cheques and Postal Orders payable to BUSINESS PRESSINTERNATIONAL LTD. and crossed

THE BEST APPROACH

£7,000-£30,000 + CAR

\star Where does your interest lie: Graphics; CAD; Robotics; Simulation Image and Signal Processing; Medical; Automation: Avionics Acoustics; Weapons; Comms: Radar; Opto and Laser?
\star Experienced in: VLSI; Microprocessor Hardware or Software Digital and Analogue circuitry; RF and Microwave techniques?

* There are hundreds of opportunities in: Design: Test; Sales and Service for Engineers and Managers
* For free professional guidance: Call: 0638742244 (till 8pm most evenings) or write (no stamp needed) to

@) PIONEER

TECHNICAL LIAISON ENGINEER WITH A DIFFERENCE C $£ 11,000$

The successful candidate will join a small engineering team, responsible for the technical support of our full range of Hi Fi, Car Audio and Video products
$\mathrm{He} /$ she will be responsible for the technical evaluation of products which includes investigating and resolving product problems, answering dealers' and consumers correspondence, telephone enquiries and giving advice relating to Pioneer products and after sales service
The applicant for this very important and interesting position will have at least five years experience in repairing domestic audio and video products and should ideally be quqlified to City and Guilds in radio and television and/or HNC in electronics or equivalent, and must have experience in dealing with technical correspondence
Benefits include four weeks annual holiday, rising to five weeks, contributing pension scheme and private health cover
For further information or an application form, please contact:-

Mrs. C.A. Burridge.

Pioneer High Fidelity (GB) Limited, 1-6 Field Way, Greenford, Middlesex.

Telephone: 01-575 5757
(225)

BRITISH GEOLOGICAL SURVEY ELECTRONICS ENGINEER

The Survey has a vacancy for an Electronics Engineer in its Marine Operations Research Programme. The successful candidate will work in a small electronic engineering section of four people, responsible for the development, modification and maintenance of electronic equipment in support of the Survey's marine survey work. The equipment uses analogue and digital techniques in systems of both commercial and in-house design. The work will normally involve participation of offshore and inshore surveys for up to 70 days each year, for which there are generous allowances in addition to salary
A wide variety of equipment is used on these surveys including specialist navigation and data logging systems and a range of shipborne and towed geophysical sensors. Prior experience of geophysical equipment would be useful but not essential. The work requires a blend of sound theoretical and practical ability.
The appointment will be at Scientific Officer or Higher Scientific Officer level
Qualifications
Degree or equivalent in electronics. For appointment as Higher Scientific Officer candidates must have at least 2 years relevant postgraduate experience
Salary
Depending on qualifications and experience, salaries will be within the following scales, which are currentiy under review

Scientific Office.
£6190-£8561
High Scientific Officer
£7788-£1054
Starting salaries may be above the mirimum. Occupational Pension Scheme
Location
The post will be located at Edinburgh, but staff appointed to the Survey are liable to serve in any part of the United Kingdom or overseas
For further details and an application form, write to Establishments (Recruitment Section, British Geological Survey, Keyworth, Nottingham, NG 12 5GG. Closing date for receipt of completed application form is 30 April 1986.
Please quote reference: $\mathrm{HS} / \mathrm{C} 4 / E D / 1$
228)

FREE OFFER!

Clip this advert for tree career gurdance and help in finding your next position. We have a wide selection of the best appointments in Digital, Analogue, KF, Microwave, Microprocessor, Computer, Data Cumms and Medical Electronics, and we're here to serve wur interests.
Call us now for posts in Design, Test, Sales or Field Service, at all levels from $£ 6,000-£ 18,000$.

11 Westbourne Grove, L ondon W_{2} lell: 01-229 9239.

RIVERSIDE HEALTH AUTHORITY WESTMINSTER HEALTH AUTHORITY

 DEPARTMENT OF PHYSICSChief Electronics Technician is required to take charge of a small but active electronics workshop. You should have advanced experience in electronics, microwave techniques, medical instrumentalism and computer technology.
Informal enquiries to: Dr JP Nicholson on 01-8289811 ext 2505. Salary: $£ 9157-£ 11,154$ (inclusive of London Weighting). Application forms and job descriptions available from the Personnel Department, Queen Mary Nurses Home, 20 Page Street, London SW1. Tel: 01-4000296 (24 hour service). Please quote reference number A/2191.
Closing date: 30 April, 1986.

Solid State Logic

Oxford \cdot England

TECHNICAL DOCUMENTATION MANAGER

Solid State Logic manufactures an advanced and comprehensive range of audio mixing consoles and studio computers for the recording and broadcast industries.
We require a Technical Documentation Manager to co-ordinate the production of the complex technical manuals for our complete range of products. The successful applicant wiil be responsible for all technical writing and the efficient use of computer and drawing office resources, including CAD.
Applicants should have proven ability as a clear and concise technical writer, and be able to work to tight timescales on your own initiative. You will be expected to gain a detailed understanding of the present product and to possess the necessary energy and imagination to motivate the small team for which you would be responsible.
This is a demanding but rewarding post, as part of a friendly Research and Development team based in rural Oxfordshire.
Please request an application form from:
Solid State Logic, Stonesfield, Oxford Ox7 2PQ or telephone 0993898282.

Edinburgh (031) 2265381 Leeds (0532) 580510 Manchester (061) 8325856 Birmingham (021) 6431994 Leicester (0533) 544193 Milton Keynes (0908) 666872 Bishop's Stortford (0279) 506464 London (01) 6370781 Bristol (0272) 211035 Bracknell (0344) 481808 Maidstone (0622) 687171 Crawley (0293) 514071

Salaries 88,000 to $\$ 30,000$ p.a.

As the UK's leading specia ist sales and technical recruitment consultancy, we provide a FREE service to engineers seeking a career move If you have experience in Microprocessors (H/W or S/W), Digital or Analogue technologies, ideally with a recognised qualification, we have hundreds of vacancies throughout the UK in R \& D, Design, Manufact uring, Test, Service and Sales
Call your nearest branch for more information or send a comprehensive C.V. (no stamp required) to:-

The independent local radio station for South Wales has a vacancy for an Engineer, Grade ILR 2, based in Cardiff.
The successful applicant will enjoy a wide variety of work including project design and development, technical maintenance and Studio and Outside Broadcast operations.
Applicants should be qualified to Degree/HND level in Electronics and have experience in broadcasting or a related field. A clean driving licence is essential.
Salary is in accordance with current ACTT rates. Apply in writing, including a full C.V. to:-

DAVE COCKRAM, CHIEF ENGINEER, RED ROSERADIO PLC.

ROSERADIO
P.O.BOX301.
ST. PAULS SQUARE, PRESTON, PRIIYE

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHQ?

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new.
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $\mathbf{£ 4 , 9 8 8}$ at age 19 to $\mathbf{£ 6 , 0 2 8}$ at age 25 and over during training and then $\mathbf{£ 6 , 8 3 2}$ at 19 to $\mathbf{£ 8 , 9 1 5}$ at 25 and over as a Radio Officer. Increments then follow annually to $£ \mathbf{1 2 , 3 2 8}$ inclusive of shift and weekend working allowances
application form phone 0242 32912/3
or write to

The Recruitment Office A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ
(2806)

人
 Nationwide Building Society

has vacancies for two
 TELECOMMUNICATIONS ENGINEERS

at its Administrative and Computer Centre at Princes Street, Swindon
The computer system, a Sperry 1100/92, supports a network of over 2000 terminals in the Society's branch offices
The successful applicant will join a small team responsible for the maintenance and development of the Society's telecommunications networks. He or she will be involved in a range of teleprocessing ac tivities, including the identification and isolation of faults and the general maintenance of microprocessor and communications equipment. The position is seen as a career opportunity and necessary training will be provided

Experience of at least one of the following items is required

Switching/Statistical Multiplexers
 Network Control Systems

Microprocessors

Modems

British Telecom lines and equipment
Candidates should preferably hold an HNC/HND or Higher TEC Cer tificate/Diploma in Electrical/Electronic Engineering.
Commencing salary in the range $£ 8,115$ to $£ 8,934$ per annum subject to review on 1 April. The Society has its own Superannuation and Sickness schemes. Fringe benefits include four weeks one days annual holiday entit/ement, staff restaurant and, after a qualifying period of three years service, concessionary mortgage facilities.
Please telephone for an application form, 01-242 8822, Ext 2582
R N Wharton, Recruitment Manager Nationwide Building Society New Oxford House, High Holborn London WC1V 6PW

Nationwide Building Society an Equal Opportunity Employer

CLIVEDEN

1. SERVICE ENGINEER

Repair and install laser printing equipment.
$\mathrm{f} 12,000$ plus Car. N.W. London.
2. SYSTEMS ENGINEER

To provide technical support on a wide range of mini and micro systems.
f13. 000 + Car. Berks.
3. TEST ENGINEER

Repair and calibrate a wide range of pocket and radio pagers. £ 10,000. Hants.
4. FíELD SERVICE

Repair of mini and micro based texts processing equipment.
£10,000 + Car. Berks.
5. TÉST ENGINEERS

RF/VHF/UHF radio telecoms equipment.
equipment.
6. SERVICE ENGINEER

To provide support on discs and tape drives. c. $£ 13,000+$ Car. Berks.

Phone or write:
Roger Howard C.Eng. M.I.E.E. M.I.E.R.E. CLIVEDEN RECRUITMENT
92 Broadway, Bracknall. Berkshire RG12 1AR
(2598)
92 Broadway, Bracknall. Berkshire RG12 1AR
Tel: $0344489489 \quad(2598)$

SCOTTISH OFFICE
 DIRECTORATE OF TELECOMMUNICATIONS WIRELESS TECHNICIAN

$\mathbf{£ 6 , 8 1 0 - £ 9 , 3 1 7}$ (currently under review)

Applications are invited for 1 post of Wireless Technician in the Central Services Department of the Scottish Office. The post is based in Edinburgh.
Candidates must have a sound theoretical and practical knowledge of Radio Communications Systems both fixed and mobile, in the frequency range HF to 2 GHz . They must also be able to use test equipment and simple machine tools. A sound basic knowledge of digital techniques would be an advantage. They should have a minimum of 3 years appropriate experience and should hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification or higher or equivalent standard. Some assistance may be given with re-location expenses.
A valid UK driving licence is essential.
For full details and an application form (to be returned by 9 May 1986) write to Scottish Office Personnel Division, Room 110, 16 Waterloo Place, Edinburgh EH1 3DN (or telephone 0315568400 Ext 4317 or 5028). Please quote ref PM(PTS)1/3/86.
The Civil Service is an equal opportunity employer.
(229)

The Civil Service is an equaloporiunitemployer.

COURSES

URSES

University of Wales
MSc/Diploma course in Electronics
(Digital Systems, Control,
Communications, Medical Electronics)
MEng Course in
Systems Engineering
(Automation, Robotics and Information Systems)
Applications are invited for places on the above fulltime, one-year courses commencing in October 1986.

Further details and application forms (returnable as soon as possible) may be obtained from the Assistant Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.

Appointments

telesomic

Telesonic Marine Ltd., A rapidly expanding Company, have the following vacancies
A BENCH SERVICE ENGINEER. The candidate will be experienced in the service of Yacht Marine Electronic Equipment, or have good general Marine Electronics background. You should live in, or close to London. The ability to work unsupervised is essential. Salary $£ 6000$ to $£ 8000$ neg.
A TRAINEE INSTALLATION ENGINEER. The candidate will have a good general knowledge of Marine Electronics, and be able to use their hands. The candidate will be required to work overseas, so a passport is essential. You should also hold a valid UK driving licence. Starting salary $£ 6000+0 / T$ and overseas working neg.
Reply to Mr. Spackman on 018374106

ELECTRICAL/MECHANICAL ENGINEER

required pronto by video manufacturing company situated near Ringwood in Hampshire
Responsible person in small team. ONC Level.
Salary dependent on experience.

Tel 0202825253

ELECTRONIC TECHNICIAN

INTERESTING WORK
REPAIRING, MANUFACTURING AND DEVELOPING ELECTRONIC FLASH EQUIPMENT FOR A LEADING PHOTOGRAPHIC DISTRIBUTOR IN CENTRAL LONDON. Applicants should have a knowledge of basic electronics to City \& Guilds standard but experience in this field is not essential. A driving licence would be an advantage. Salary negotiable

Telephone Tony Beveridge on
01.8334737 for an interviow

Classified

AR'IICLES FOR SALE

"'GRAND CLEARANCE SALE, on Saturday May 24th, 10 a.m. to 5 p.m. at: Unit 2, The Maltings, 135 Ditton Walk, Cambridge (near football stadium) Examples; Keyboards 88 key with $8748 / 8048 £ 4$ ea, 2 for $£ 7,3$ for $£ 8$. Marconi 801D $£ 35$. TFPM43/42 transmission level test set $£ 25$, TEK 520 vectorscope $£ 195$ Crystal calibrator RCA WR99A $£ 25$, Micro development systems, TEK 8002 with 8024 intelligent terminal, ices for 8085 and $Z 80 \mathrm{c} / \mathrm{wSW}$ and doc. $£ 850$ Zilog Z80 dev. syst. c/w SW and doc. £450, MDS800 Intel less discs $£ 100$ SMS $30008 \times 53000(8 \times 300$) micro controller dcev. syst $£ 350$. TEK 4610-1 photoplotter $£ 25$, Versatec V80 Hi res printer/plotter $£ 400$. Perkin Elmer laser gauge, offers?, TEK GMA 102 and 103 graphics screens new unused $£ 95$ ea, HP7221B4 colour digital A3 plotter RS 232 + HP1BI/F $£ 350$, TEK 611 storage screen + terminal two for $£ 75$, Linear transducers and readout units various from $£ 15, H P 5000$ A logic analyser $£ 100$. HP3420 ratiometric voltmeter $£ 80$, ESR meter $£ 50$, Gauss meter $£ 50$, Penrecorders single pen and multi point, Printers, Centronic $705 £ 75$, ASR Teletype £50, DRI $6330 £ 45$, Drum plotter CIL 60002 pen 2 speed AO size $£ 250$, RRC viewdata plinths $£ 35$ ea. Many more items, power supplies, Components, Subassemblies, PCB's etc. prices from a few pence to pounds. No reasonable offers refused.

TO MANUFACTURERS, WHOLESALERS BULK BUYERS. ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES,
SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFORMERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADOIN'S CAVE
TELEPHONE: 445 0749/445 2713
R. HENSON LTD

21 Lodge Lane, North Finchley, London, N. 12 $(5$ minutes from Tally Ho Corner)

MUST SELL $2 \times$ Ferrograph audio analyser ARA1 Wayne Kerr digital display store, ADS1 Scopes Gould 053000 A telequipment D83, Telonic 122 $3+$ Scopex 4S6, National VP3830A, National auto distortion meter VP772A, Sweep generator VP8820B, Marconi universal bridge TF1313A, Marconi D.F.M. TF2430, Interlab SQ10 S19, Gen Linstead E.V.M. M2B, Kingshill dual p.s.u. 36 V5C $4 \times$ DB300A P.S.U's V.s.u. 36 Vit $4 \times$ DB300A P.S.U's Venner digital counter 7734,
digital multimeter

WAVEGUIDE, Flanges and dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Earth Stations, O1-228
7876 , 22 Howie Street. London SW11 4AR.(2099)

DIGITRON 1751 Thermocouple Meter Hewlett Packard digital multimeter 3476 A inductance meter DLM 307 2xdandridge decade box drs/abcde digital scale Gravitron 300/3000, counting scale, GEM 120 drawing copier, Astra pillar drill 1000 plus D3F Netrik sockets $5000+$ Jack sockets 100,000 plus pots $2 \times$ Arso air conditioners, banding machines etc, etc, conditioners, banding machines etc, etc,
Dave Roberts 0512271919 Day 051428 , Dave Roberts 0512271919 Day 051428
1845 evenings. 128

Quantities of surplus capacitors 15000 mfd., 40 volt approx, and PO style relays approx 10000 ohms coil. Telephone (0243) 861221.

M ARTELLASERS

1 mW LASER HEAD COMPLETE WITH POWER SUPPLY KIT $£ 139.00$ +VAT. P.P. INCLUDED. MAINS \& BATTERY OPERATED POWER MODULES AVAILABLE. OFFICIAL ORDERS FROM GOVERNMENT DEPTS WELCOME
MARTEL LASER CO. LTD.
17/19 Whitworth Street
West Manchester • M1 5WG
United Kingdom
Telephone: 0612-2280965
222

Vacuum pumps: CRT regunning, lasers, vacuum tools - pen, chuck etc., inductor encapsulation, microscopy, furnace, semiconductors, freeze drying. lost wax pump $£ 59$, diffusion pump $£ 49$. Gas pump $£ 59$, diffusion pump $£ 49$. Gas
flow-meters
£5-£ 15 . Twin-pem chart flow-meters $£ 5-£ 15$. Twin-pem chart
recorder $£ 79$. Ultrasonic Detector for mechanical faults, gas/carburation/exhaust/vacuum/pressure leaks etc., £85. Densitometer f25. Micro-spot welding heads $£ 59$. Small single/3-phase converter £35. B. \& K. LCR Bridge £35. Low-R Ohmmeter, 5 -range $£ 45$. Autocharger E. 2080 £ 25 . Coating thickness Gauge $£ 25$. Centrifuge $€ 49.500 \mathrm{gm}$ f39. H-P Audio Analyser (individual harmonics) f 69 . Double-pulse Generator £49. Schlumberger Compact Compact-33 Data Logger $f 50$. Wow/Fiutter Meter f65. Meter-Flow Frequency/DC Converter $£ 25$. W_K Portable VHF Frequency Standard $£ 45$. Muirhead D 746 A Impedance Converter £ 20. etc. etc. 040-376236.
(2016)

TELEQUIPMENT 'SCOPES
Spares, Manuals. S54A, £125. Philips 10 MHz . £100. Test Gear. Ochremill 0785 814643.

FM \& MW BROADCAST EQUIPMENT

A special range of high quality transmitters, power amplifiers, stereo encoders, UHF repeater links, compressors, antennas. Powers 10 w to 1 kw .
Built to high specifications at an economic price. Meets IBA \& Home Office specifications.
Full catalogue available.
Cyberscan International, 3 Eastcote View, Pinner, Middx HA5 1AT.
Tel: 01-866 3300
'215

MODEMCHIPAM7910 (With Data), £ 17.80 inc. VAT/P\&P. I/C sockets, turned pin contacts on terminal carriers, fraction cost price. Also comprehensive valve stocks. Lists of both, S.A.E. Access/B'Card. Linway Electronics 843 Uxbridge Road, Hayes End. Middx. UB4 8HZ. Tel. 01-5733677

Classified

G.W.M. RADIO L.TD., $40 / 42$ Pomland Koad. Worthing, Sussex. Test equipment, receivers, oscilloscopes components etc. Marine equipment. For Sale and Wanted. Large or small lots. Many miscellaneous baryains tor callers. Amateur equipment stocked. A.V.O. 8
with case and leads efo inc. V. A.T. and with case and leads 560 mc . V.A. T, and
P\&P. A.V.O $\{35$ meter only checked and in good order. Tel. 1950334897

19" RACK MOUNT

CASES. Industrial Quality Fully enclosed with separate chassis.
$1 \mathrm{U} \times 250 \mathrm{~mm}$ depth at £ 18.84 $1 \mathrm{U} \times 300 \mathrm{~mm}$ at $£ 21.352 \mathrm{U} \times 250 \mathrm{~mm}$ at $£ 22.052 \mathrm{U} \times 300 \mathrm{~mm}$ at $£ 24.69$ $3 \mathrm{U} \times 250 \mathrm{~mm}$ at $\{25.223 \mathrm{U} \times 300 \mathrm{~mm}$ at £27.99 P\&P £3 + VAT. Also 4U sizes Newrad intrument cases. Unit 19. Wick Ind. Est. New Milton. Hants. BH25 6SJ. Tel: (0:125) 621195.

PCB ARTWORK DESIGN Low Cost 7. Day Turnaround *Prototype P'CP's *Circuir Design *Call Systems *PCR hand assembly. Phasor Circuits, 12 Kendal Rd.. Rushey Mead, Leicester: Tel. 0533830953 (209)
PCB's MANUFACTURED prototspes. smali/large production runs. single, double sided, P.T.H screen printing, panels, labels, solder masking \& photography. Orbitechnic Circuits. The rear of 127 Woodlands Road. Ilford, Essex. Tel: 01-553 5211.

GOLLEDGE

ELECTRONICS
QUAKTZCRYSTALS OSCILLATORS ANI FILTERS of all types. Large stocks of standard items. Specials supplied to order. Personal and export orders welcomed - SAE for lists please. OEM support thru:- design advice, prolotype quantities, production schedules.
Golledge Electronics. Merriott. Somerset TA165NS. Tel: 046073718 (2472)

BRIDGES waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators sweep, low distortion, true RMS, audia, RM, deviation. Tel. 040376236 . (2616)

QUALITY SECOND USER TEST EQUIPMENT From Translab Whatever your requirements we can help. Oscilloscopes, signal analysers. power supplies, etc. We have a huge selection all fully refurbished to original manufacturers specification with warrants: Send now for our free price-list to Translab Electronic Services, 38 Matlock Close. Rugly CV21 ILB. 227

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service
Quality workmanship by professionals at economic prices Please telephone 01-646 5686 for advice or further details.

TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

1.8.ELECTROMILS
 TOTAL SYSTEMS DESIGN

USED TEST EQUIPMENT FOR SALE \& WANTED

Buyers \& Disposal Officers Contact COOKE INTERNATIONAL Unit 4 Fordingbridge Site Main Road Barnham Bognor Regis West Sussex PO22 OEB Tel. $0243685111 / 2$

* MICROCOMPUTERS * PERIPHERALS
* INSTRUMENTATION

For fastest, best CASH otter phone
COMPUTER APPRECIATION Oxford (0865) 55163 Telex 838750

When replying to classified

advertisements, readers are recommended to take steps to
protect their interest before

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capa citors and related electronic stock. Immediate settlement Tel: 01-208 0766 Telex: 8814998

M \& B RADIO

86 Bishopsgate Street

 Leeds LS 1 4BB 0532435649 RING SUSAN PLATTS 6613033-

WANTED

test equipment, receivers, valves, transmitters, com ponents, cable and electronic scrap and quan tity. Prompt service and cash. Member of A.R.R.A.

Specialising in the design and manufacture of

 industrial control and data acquisition systemsOffering applications consultancy electronics
design and software compliation
Please telephone 0622-674192
11 Broomshaw Road Maidstone Kent ME 169 HS

DISC COPYING FORMAT CONVERSION

We can convert your files 10 and from most Ceive $€ 750+$ Disks lif tequired) + VAT
For details contact Clive Walier at Chiatronix Lid, 238 Old Bedford Road, Luton, Beds. LU2 7 EQ Tel- (0582) 21010
(Callers by appointment please)

TURN YUUR SURPLUS i.cs transistors etc into cash immedate settlement. We also welcome the opportunily to quote for complete factory clearance Contact COLFS HARDING \& CO 103 South 0945 584188 Wisbech. Cambs. 0945

RF-Design, development prototyping. batch production. HF/VIHF RX/lX. etc. For help and assistance. Phone 07918 6149. NOw (24hr ansaphone). 11 PO Communications, 20. Farnham Avenue. Hassocks, Sussex. BN68NS

WE USE ONLY 10\% OF OUR MENTAL POTENTIALS

MANUFACTURERS SURPLUS STOCKS

Electronic Components, Test Gear, Radiotelephones, Computers Photographic and Video Equipment. All at knockout prices Export and Trade Enquiries Welcome Catalogues Available from
B. BAMBER ELECTRONICS, 5 STATION ROAD

LITTLEPORT, CAMBS. Phone: ELY (0353) 860185

NOW AVAILABLE - Bumper Catalogue - 170 pages - for collect ors of intage radio, audio \& T/V equpment Price: 22.00 post paid U.K., $£ 3.00$ post paid oversers. Vintage Wirelase Co td Cossham Stweet Mangotsfield ta., Cossham Sieet, Mangotsfield Bristol BS 17 3EN. Phone 0272-565472

TELEQUIPMENT SPARES Genuine parts at give away prices (X10) at only $£ 5.49 \mathrm{incl}$. VAT. Ylus large (X 10) at only 55.49 iticl. VAT. Fus latge selection ot popular electronic components. Nottingham 10602 $587225 / 587241$. High Speed Technology Ltd.. Technology House, Prospect Road 2a Carlton, Nottingham 4G4 1LA. (231)

SPECTRUM ANALYSER software for BBC B microcomputer, based on machine-coded FFT. Inchuding graphical display, calibrated measurements, manual. $£ 120$ Detaits from: Structured Software if Athelstan Close. Bromborough, Wirral. Merseyside. L62 2EX (197)

Exporting to U.K.? Send us a sample board and all components to produce to your returements here at home base. Wave soldering etc. .same atp plies to U.K. Manland companies. Interested? Telephone: Walton on-Thames (0932) 22061224 hour telephone answering.

ARE YOU MAKING THE MOST OF YOURSELF WHY NOT FURTHER YOUR TRAINING IN ELECTRONICS?

We offer:

CNAA B ENG. IN ELECTRONIC ENGINEERING
A four year part-time degree course for those working in industry. Attendance one full day each week. The course is based upon modern electronic engineering with a strong computing theme.
Entry Qualifications: BTEC HNC or equivalent in Electrical and Electronic Engineering or Applied Physics.

BTEC HND ELECTRONIC ENGINEERING

A two year full-time course which combines an up-to-date technological education with a considerable 'hands on' experience of a wide range of modern equipment and techniques.
Entry Qualifications: One pass at 'A' level in an appropriate subject, or a BTEC Certificate or Diploma or equivalent.
BTEC HND IN ENGINEERING (SOFTWARE)
(subject to approval)
A two year full-time course is designed with industry to provide the education, including hands-on experience, which is essential for a software engineer.
The course also provides basic engineering training as specified by the EITB.
Entry Qualifications: One pass at ' A ' level or a BTEC Certificate of Diploma; the final selection will be by interview

SHORT COURSES IN ELECTRONIC ENGINEERING

A number of short courses are provided each year on topics which include analogue or digital microprocessors, digital signal processing and computer aided circuit design. These courses normally include hands-on experience
Additional courses may be provided in response to specific request from industry.
For further details contact the department of Engineering, Cambridgeshire College of Arts and Technology, Cambridge CB1 1PT. TELEPHONE (0223) 352973 or 352979

CAMBRIDGESHIRE COLLEGE OF ARTS AND TECHNOLOGY

London-Yorkshire Motorway: Route M1
Major Maintenance: 1986/87 Programme Provision of Site Radio Telephone System
Applications are invited from companies wishing to be considered for the supply and maintenance of this system on the basis of a medium term hire contract. The equipment is to be used for a period of approximately four months during the maintenance programme in South Bedfordshire,

Companies wishing to be considered should apply to The County Surveyor, County Hall, Cauldwell Street, BEDFORD MK42 9AP
1202)

SENIOR DESIGN ENGINEER required to join a rapidly expanding electronics company researching and developing video and hi-fi products. A degree in electronic engineering and a minimum of five years experience in the field of analogue engineering is required. Experience with digital or audio design would be advantageous but not essential. The successful candidate should be self-motivated and able to work with the minimum of supervision within a small research laboratory developing high quality products. Since the company has divisions in the U.S.A. and the Far East there may be opportunities for travel. Salary will be negotiable but will be commensurate with this important position.

Please send CV to: Pat Kerridge, Technical
Secretary/Administrator
NAD Electronics Lid.,
Adastra House, 401.405, Nether Street, London, N3 1QG or telephone 3494034 for further information.
(178)

CLASSIFIED ADVERTISEMENTS

 Use this Form for your Sales and WantsPLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW
To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate £4.50 PER LINE. Average six words per line. Minimum £36 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus $£ 10$
- Cheques, etc., payable to "Business Press International Ltd." and cross "\& Co." 15\% VAT to be added

THE 16 BIT MSDOS SAMURAI S-16

Brand new surplus stock of this high quality machine which originally retailed at £2400.
-8086 based (4.6MHz clock rate)
-128K memory with parity
-twin half height 8 " floppy disc drives
(total 2.3MB formatted)
$\bullet 12^{\prime \prime}$ green phosphor monitor included

- ONE parallel \& TWO serial interfaces included
-MSDOS \& manuals included
- VICTOR/SIRIUS format
- Manufactured by HITACHI to highest possible standards
- Much public domain software available
-90 day full guarantee

PRICE
$\varepsilon 485.00+$ VAT
CARRIAGE: $£ 9.50$ (incl. VAT)

Available ONLY from:
COMPUTER APPRECIATION, 111 Northgate, Canterbury, Kent (O227) 470512
MATMOS Ltd., 1 Church Street, Cuckfield, W. Sussex RH17 5JZ. (0444) 414484/454377
CIRCLE 52 FOR FURTHER DETAILS.

Wrelesessiwôrld INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 74-79

PAGE
ABI Electronics Ltd
AEL Crystals.
Airlink Transformers Ltd.
Amateur Radio Promotions

Barrie Electronics Ltd...
Beckenham Peripherals
Cambridge Kits
Cambridge Microprocessor
Systems Ltd.
Carston Electronics Ltd.
Cirkit Holdings PLC
Computer Appreciation.
Computer Source.
Control Universal Ltd.
Crash Barrier.
PAGE
PAGE
PAGE
... 65 Electronic Brokers.....IFC, 3, OBC
40
.40 EMS Mfg. Ltd........................... 66
.72

Crossware Products.
Crotech Instruments.
Cybernetic Applications.

Dataman Design.
. .49 .. 11
 .14

41 Happy
Field Electric Ltd........................... 2
Fulcrum (Europe) Ltd.
. .14
66.73
..66,
6,80
$-\ldots .48$
. .48
8 Henson, R. Ltd
Hilomast Ltd......
.10
.11
.42

Display Electronics

CIRCLE 49 FOR FURTHER DETAILS.

overseas advertisement agents

France and Belgium: Pierre Mussard, 18 - 20 Place de la Madelaine, Paris 75008
United States of America: Jay Feinman, Business Press International Ltd, 205 East 42nd Street, New York, NY 10017 - Telephone (212) 867.2080 - Telex: 23827
Printed in Great Britan by Ben Johnson, Printers Lid, Oldhill, Dunstable, and typeset by TypeFast Lid., 2.6 Northburgh St., London ECl, for the proprietors, Business Press International, Quadrant House, The Quadrant, Suton, Surrey SM2 5AS

Now! Tek quality and expert advice are just a free phone callaway.

Dial 100 and ask for Freefone Tek-scope
Tektronix UK Ltd
Fourth Avenue, Globe Park. Marlow Bucks SL7 1 YD Tel: (06284) 6000
Telex: 847277 \& 847378

[^8]
Tektronix

2955 Radio Communications

Test Set £5,750

- 11 test functions, including full duplex radionest - Revolutionary design: fast and easy to use - High clarity CYT shows all settings plus measurements in digital or analog forms - Tones encode/decode facilities
- 38 instrument settings in non-volatile memory - Spin-wheel frepuency/fevel control in addition to front panel buttons
E Single and (wo-port operation.

2305 Modulation Meter 500 kHz to $\mathbf{2 G H z} £ 5,012$

- 500 kHz to 2 GHz frequency range - Outstanding 0.5% basic accuracy - Exceptionally fast atotoning, with low noise - Alodulation analysis including fregucocy and power - Non-volatile memory to store user settings - Excellent stereo separation
- Automatic self-calibration, advanced diagnostics.

2382/80 Spectrum Analyser $£ 13,150$ and Display $£ 5,350$
EAuclio to 1 HF conerages: $100 \mathrm{~Hz}-400 \mathrm{MHz}$ - Oustabling resulution, with 3 Itz minimum resolution filter bandwidth - 0.025 dB amplitude resolution - Superb level accuracy \pm IdB, with auto calibration - Frepucney response better than ± 0, fill - Fully GPIB programmable capability - Twostecrable markers for levels and frepuencies - Self calibration for repeatability of measurements

6960 Option 001 Digital RF Power Meter $\$ 1,945$ - Simple push button or sistems apphication - Unparalleled accuracy through sensor correction - Non-volatile storage of frequently-used scttings E W or dB readings, plus offser capability - Single-key auto-zero operation

- Average factor sclection to reduce noisc or improse resolution advanced (;PIB facilitic's.

2022 AM/FM Signal Generator 10 kHz to $1 \mathrm{GHz} £ 2,950$ - Wide trequency cover 10 kHz to 1000 MHz - Compact rugged and lightwe cight - Comprehensive mochatation Ay/W/Phy - Simple push - Jutton operation, large LCD display E Non-volatile menory for 100 settings - The pertect service/maintenance tool

2440 Microwave Counter 20 GHz £ 4,100

- Wide frequency coverage: $10 \mathrm{H} / 1020 \mathrm{GHz}$ - High scrasitivity and resolution - Fast acquisition time: only 200 ms typical - High stability oven controlled crystal oscillator - Overload capability up to 2^{-}- 113 m - High AM/:M tolerance - Built - in GPIIs.

through

Z
二
The first name in test equipment distribution
$\square \square \square \square \square \square \square \square$ Electranic Brokers 140-146 Gamden Street, London, NW1 SPB Tel: 01-267 7070 Telex: 298694 Fax: 01-267 7363
Electronic Brokers\| 马all

[^0]: 9 A Crown Street, St lves, Huntingdon, Cambs, PE1 7 4EB.

[^1]: It is over ten years since the original frequency allocation wallchart was produced and it is, of course, well out of date. Many changes have taken place during that time and it has been clear for some time that a continuing demand had to be satisfied. In response to repeated requests for a new chart, we have produced a new version, which will be presented as a loose insert with the June issue, on sale on Wednesday, May 21.

 Many schools, universities and commercial laboratories still have the original chart, and we expect a large demand for the new one. Readers may find it useful to place an advance order for the journal with their newsagents, or take out a subscription, to ensure that they do not miss this once-only opportunity.

[^2]: 1000's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EQUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS: POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.

[^3]: 10 FORI $=25624$ TO 28671 20 X=PEEK(1)
 30 IF $X=205$ THEN $X=93$
 40 FOKE (I-4095), X
 50 NEXT
 60 POKE 23763,91
 70 POKE 23887, 87
 80 POKE 23672,92
 90 POKE 23778,92
 100 POKE 23781,92
 110 POKE 23607,95
 120 POKE 23813,95
 130 POKE 23821,95
 140 POKE 23834,95
 150 CALL (23552)

[^4]: * PO Box 10, Bellingham, Washington, 98227-0010, USA.

[^5]: Telephone 01445 2713/0749

[^6]: 10 REM Tape speed program
 20 INPUT "Counter factor (revs/count)?"; k
 25 INPUT "Counter on take-up, y / n ?"; a\$
 30 INPUT "Full spool diameter (mm)?"; f
 40 INPUT "Input hub diameter (mm)?"; h
 50 INPUT "Total revolutions?"; $n T$
 60 LET $\mathrm{t}=(\mathrm{f}-\mathrm{h}) /\left(\mathbf{2}^{*} \mathrm{nT}\right.$)
 70 LET L $=\mathrm{Pl}^{*} \mathrm{nT}^{*}\left(\mathrm{~h}+(\mathrm{nT}-1)^{*} \mathrm{t}\right) / 1000$
 80 PRINT "Tape thickness +"; t " "mm"
 90 PRINT "Tape length $=$ "; L; "metres"
 100 INPUT "Start count?"; c1
 110 LET n1 = $\mathrm{k} * \mathrm{c} 1$
 120 INPUT "End count?"; c2
 130 LET n2 $=k^{*}$ c2
 140 INPUT "Time (sec)?"; d
 150 IF d $=0$ THEN GOTO 20
 170 IF a $\$=$ " n " THEN GOTO 200
 180 LET $s=P I^{*}(n 2-n 1)^{*}\left(h+(n 2+n 1-1)^{*} t\right) / d$
 190 GOTO 210
 200 LET $\mathrm{s}=\mathrm{Pl}^{*}(\mathrm{n} 2-\mathrm{n} 1)^{*}\left(\mathrm{~h}+\left(\left(2^{*} \mathrm{nT}\right)+2-\mathrm{n} 1-\mathrm{n} 2\right)^{*} \mathrm{t}\right) \mathrm{d}$
 210 LET e $=(\mathrm{s}-47.625) / 0.47625$
 220 PRINT "Tape speed $=$ "; \mathbf{s}; " mm / s "
 230 PRINT, "Error $=$ "; e, "percent"

 ## 240 GOTO 100

 If the hub revolutions are counted directly, then enter 1 for the counter factor. To change the cassette and recorder conditions enter 0 for "Time" and this will take you back to the start of the program.

[^7]: To: E\&WW SmartWatch Offer, M.S. Components, Zephyr House, Waring St., West Norwood, London, S.E. 27 9LH.

 ## Please send me:

 SmartWatch(s) with memory @ $£ 33.95$ each inclusive of V.A.T.. post

[^8]: The Company reserves the right to modify designs, specifications and change prices without notice

