Wredesswidt

April 1985 85p

Choosing a crystal

Current follower

FARNELL IkW AUTORANGING POWER SUPPLIES

Compact, lightweight and efficient swilch mode power supplies

For bench or rack mounting in manual or systems applications

Fast remote programming speed

Auloranging output

Constant voltage, constant current

Operaling modes:
Local or bus control
Remote programming
Remote sensing
Aulo parallel
Auto series
Auto tracking

Ten turn voliage and current controls

Digital disploy of vollage, current, over vollage setting and stafus flags

Bar graph indication of voltage/current capacity

Front panel adjustable over voitage limit

Front panel output enable switch

Current moniloring oulput

GPIB oplion provides:

Bus control of voltage and current
Bus measurement of voltage and current
Clear LED indication of bus control, listen, talk SRQ

The Programmable AP Series

RADIOCODE CLOCKS LTD

SPECIALISTS IN ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EQUIPMENT

- Off-air frequency standards
- Intelligent time systems
- Caesium/Rubidium based clocks \& oscillators
- Master/slave systems
- Time code generators/readers - Record/replay systems - Intelligent display systems - Precision ovened oscillators - Time/frequency distribution systems

NEW PRODUCTS

- MINIATURE RUBIDIUM OSCILLATOR MODULE
Lower power, fast warm up, optional output frequencies, programmable frequency offsets.

- RUBIDIUM FREQUENCY

 STANDARDHigh performance, compact and rugged instrument. 2 U rack or $1 / 4$ ATR case options.

- INTELLIGENT OFF-AIR FREQUENCY STANDARDS
Microcomputer controlled
instruments, directly traceable to N.P.L., precision ovened local oscillator, comprehensive monitoring and status information, real time synchronisation.

- LOW COST MSF

FREQUENCY STANDARD
Instant operation, directly traceable to N.P.L., self-contained portable unit, no scheduled frequency changes, 24 hr transmission, real time synchronisation

Radiocode Clocks Ltd*

Unit 19, Parkengue
Kernick Road Industrial Estate, Penryn. Falmouth, Cornwall. Tel: Falmouth (0326) 76007 (*A Circuit Services Associate Co.)

CIRCLE 32 FOR FURTHER DETAILS

CHUM ONE A

 Industrial Computer

£258

* Control BASIC and Z80 Assembler Language
* On Board EPROM Programmer
* Detachable Hand-Held Keyboard and Display
* 4K Bytes of Battery Backed Memory
* Up to 64 Relay Outputs
* Up to 64 Opto-Coupled Inputs
* 4 Analogue Inputs
* 1 Analogue Output
* RS232 Interface
* Cassette Back-Up Memory
* Real Time Clock

The Chum One A offers the complete solution to all measurement and control problems. Programs can be written, tested and modified in RAM then at a touch of a switch blown into an EPROM.

WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD LEAMINGTON SPA CV31 3AY (0926) 34311

The ICOM IC-125T's small size enables
unobtrusive installation in any
vehicle, a strong security factor
This mobile transceiver from ICOM offers a great deal to dealers suppliers and users of PMA mobiles for CBS message handling and smal. private installations where security is concerned. Despite its smal private installations where security is concerned. Despite its sma
proportions the IC-125T has 25 watt output and is synthesized.

This enables the 125 T to be quickly programmed by inserting diodes in the matrix board. As no crystals are needed there is no frequency tuning. no fuss, no waiting, the customer that wants his radios yesterday can have them' Quick demonstrations on a prospective customers own frequency can be quickly arranged

The ICOM IC-125T has, over the years proven to be an extremely reliable radio, as have the handheld sets IC-H2 and H6

125 T features include: 25 W output, 5 tone Selcall option CCIR, ZVE and NATEL with revertive call and alarm light, socket for additional equipment, programmabie call tones, capacity for CTCSS etc, forward facing loudspeaker, microphone, DC lead, mobile mounting kit, black vinyl finish Size $50(\mathrm{H}) \times 150(\mathrm{~W}) \times 180(\mathrm{D}) \mathrm{mm}$

For more details contact your local ICOM dealer. If you are unable to locate an ICOM dealer in your own area or country, contact Thanet Electronics Ltd at the address below.

Thanet Electronics Ltd

 143 Reculver Road, Herne Bay, Kent, Tel:(O227) 363859/363850 Iсом CIRCLE 23 FOR FLLRTHER DETAIIS.

over 70 years in independentleleatonics publishing

April 1985

FEATURES

JUL - 51985
Volume 91 number 1590

17
Accurate current followers
by F.J. Lidgey and C.
Toumazou
Current mirrors and an op-amp combine to form
an accurate current follower.

24
How long is a piece of wire?
by J. Wiseman Efficiency and radiation resistance of electrically short transmitting aerials leave a lot to be desired.

33 GPIB instruments

Some additions to the feature that appeared in March.

38

Indoor loop aerial for short waves
by S. Mukherjee
When used with a communication receiver, a loop can help to reduce interference.

43

Principles of optical storage - 2
by J.R. Watkinson
Focus and tracking mechanisms for the third part of this definitive series on compact discs.

48

Variable-speed video playback
by J.R. Watkinson
A discussion on digital filtering brings this series to an end.

51

Choosing a quartz crystal
by G. Huyler These complex components are seldom properly understood - even by those who specify them.

57

Sampled-data servos

by D.M. Taub
Sampling and aliasing are explained in this second part of Dr Taub's analysis, which goes on
to show how samplingservo performance in magnetic-disc track following can be simply computed.

69

Radar and television

 - interchange and spin-offby R.E. Young
The series on British electronics continues with an article on the mutual benefits of radar and television development.

77

Vehicle location in mines and tunnels by D.J.R. Martin Adapting leaky feeder communication systems to indicate the positions of vehicles.

80

 The new logic symbols - 2by Ian Kampel
Dependency notation and the common control block.

REGULARS

6
Comment and news Leapfrog
Acorn rescued
Britain lags in micro race Future of Band 111 Electronic signalling

19

Books

Arthur C. Clarke Into to the Cable Age Basic and Forth B.B.C. Micro

26

Circuit Ideas

Digital distorter
Vectored interrupts
Modem data separator Auto repeat for Hall keys

63

Communications
Thin lines? Cold crash
Phone in-flight Cable e.m.c.
GaAs fets on 144 MHz

Letters

Preamplifier design
Baird television
SOE
Energy transfer
83
New products
16-bit micro for schools
Digital storage for oscilloscopes
Low-cost disc drives

Editor
PHILIP DARRINGTON
01-661 3128
Deputy Editor
GEOFFREY SHORTER, B.Sc.
01-661 8639
Technical Editor
MARTINECCLES
01-661 8638
Projects Editor
RICHARD LAMBLEY
01-661 3039 OR 8637
News Editor
DAVID SCOBIE
01-661 8632
Drawing Office Manager ROGER GOODMAN
01-661 8690
Technical Illustrator BETTY PALMER

Advertisement Manager BOB NIBBS, A.C.I.I.
01-661 3130
MICHAELDOWNING
01-661 8640
ASHLEY WALLIS
01-6618641
Northern Sales HARRY AIKEN
061-8728861
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY
01-661 3241

International Agents and the Advertisers Index appear at the back of this issue.

It's a whole new board game......with our 7000 Series

Many operations and tasks are now possible through BASIC which could previously only be accessed ir ASSEMBLER.

Taking advantage of the new-generation software-on-silicon devices Cavendish Automation has already implemented a complete range of computer boards with full support specifically for industrial control applications. Our system enables very rapid interactive development of user software for super-easy deployment in the target system.
Static MOS RAM boards (to 128k), Power down control boards, Decoder boards providing further address line decoding, watchdog, Real-time clock/calendar, plus additional output flags and $1 / 0$. Mass storage devices. Backplanes. PSU and battery packs. Drive boards offering power output, pulse generation, or externally gated outputs. Multi-channel expandable ADC, Remote switch units for power, sound or V.I.S. of vision
For Industrial Control of Data Acquisition at board, sub-system or turn-key leve Cavendish Automation

BASIC LANGUAGE CONTROLLER

[^0] Telephone: 0480219457 Telex: 32681 CAVCOM G
CIRCLE 81 FOR FURTHER DETAILS.

A GENUINE OPPORTUNITY TO PURCHASE THE AUDIO DISTRIBUTION CONSOLE

MODEL
RTM4-100 SYSTEM SPECIFICATION

DISTRIBUTION FACILITIES

The following distribution facilities are provided
I Single channel radio distribution from integrai variable AM/FM tuner
2 Single channel cassette tape distribution from integrai cassette player
3 Four channel mixed speech distribution from any standard 200 ohm impedance microphones
Note that the output of all facilates can be mixed if required and that bass and treble control is provided on the mixed output.
RECORD FACILTY
The integral cassette tape recorder can be used to record the mixed output of the four microphone channels and the radio distribution channel
CONSOLE
DIMENSIONS. $\quad 465 \mathrm{~mm}$ High $\times 435 \mathrm{~mm}$ wide $\times 330 \mathrm{~mm}$ deep approximately
POWER SUPPLY. $\quad 200 / 250$ Volts A C. 50 Hz
AMPLIFER: 100 Watts RMS

$$
100 \text { volt line output }
$$

PRICE 5556 inc VAT and Delivery (Mainland only)
Weight 28 Kilos Nett, approx.
TERMS C.W.O. export enquines welcome. We find it impossible to advertise all we stock. Please telephone, write or telex for further enquries. Personal callers always wetcome.

Electronc Eaurment Co.

SPRINGFIELD HOUSE TYSSEN STREET. LONDONE.8. 2ND TEL NO. 01-249 5217 TLX: 8953906 EECO G

CIRCLE 63 FOR FURTHER DETAILS.

RACKMOUNT CASES

19*Seif Assembly Rack Mounting Case with lift off Covers. Front Panel 10 gauge, Brushed Anodised Aluminium, Case 18 gauge, Plated Steel with Removeable Rear \& Side Panels In 1 U \& 2 U Types, a Subplate Chassis is Mounted to Bottom Cover. in $3 U$ Type the Subplate is located on two Rails Mounted Between The Side Plates
$1 \mathrm{U}\left(1^{3 / 1 / 4)}\right.$ height, 230 m depth............. $\mathbf{f 2 7 . 0 0}$
$2 U\left(3^{1 / 2)}\right.$ height, 308 m depth............ $\mathbf{£ 3 2 . 0 0}$
$3 U\left(5^{1 / 4}\right)$ height, 230 m depth............ $\mathbf{£ 3 9 . 0 0}$

Width Behind Front Panel 437 m (All Types).

All Prices include Postage \& V.A.T. Cheques, Postal Orders Payable to:-
J. D. R..Sheetmetal, 131 Grenfell Road, Maidenhead, Berks. SL6 1EX. Maidenhead 29450.

CIRCLE 65 FOR FURTHER DETAILS.

We're not kidding.

This board offers all you need to implement a simple controller. And you can develop your application on it as well. All you need is access to a VDU since the board comes with its own BASIC interpreter and PROM programmer. On-board is a $Z 8,4 k$ of CMOS RAM (expandable to 16 k), one ROM socket, 40 lines of parallel I/O and a serial interface. For $£ 169$! For this and our large range of $1 / 0$ boards, give us a call.

Arcom

Arcom Control Systems

Unit 8, Clifton Road, Cambridge CB1 4BW Telephone: (0223) 242224
Arcom products are distributed by
Crellon: (06286) 4300, Dage: (0296) 33200.
HI-Tek: (0223) 213333

Keithlet 513048186.

Reaty and willing to give you the accurac and flexibility you're come to expect from al, handheld DMM's.

On the one hand, the nev 130A has the design and performance of our most pexular 130 mcdel but with greater basic DVC accuracy - -2.25% and the need to calibrate only once every two jears - all this at no increase in price.
On the other, there is thenew unbeatable value 136, a high performance full auturanging $41 / 2$ Jigit DMM permitting precise measurements in 22 ranges of AC/DC voltage, resistance AC/DC current including 10A capability.

If you could use an extra par of hands, or would just like to find out about our complete range of DVM's - phone 0734861287 or contact a Keithley distributor now. Prices start at $£ 69.00$

Keithlev Instruments Limited 1 Boulton Road
Readin' Berkshire RG2 ONL Telex 847047

Berkshire	(0734) 8612E7	Glasgow	(02367) 28170
Essex	(0279) $295=2$	London	(01) 6390155
Gwent	(0633) 2805玉6	Cleveland	(0287) 32397
Eire	(0001) 9841 2	Hertfordshice	(07073) 38623

CIRCLE 8GFOE FURTHER DETAILS

Leapfrog

There are rumblings in the micro market. Some of the big names are gone and others look none too healthy. It would therefore appear that the public has realised that paying three or four hundred pounds for a machine to fill up spare room in a cupboard is not the most rewarding way of employing one's disposable income.

A quick survey among one's circle of acquaintances (nonengineering ones) reveals that around 70% of those with school-age children bought microcomputers for them about a year or eighteen months ago
because "the school had one" or because the children "plagued my life out for one" or simply as a result of being informed by advertisers that the modern school child would develop ingrowing toenails without one.

The acquisition of a computer by the average household has not, in the main, resulted in an explosion of enthusiasm for information technology. Indeed, after a short period for the novelty to wear off, a barely suppressed yawn has become the more common response to computer exposure. For, having bought the computer, parents' expectations of immediate and dramatic metamorphosis of child into technocrat have been blunted by the sight of their progeny playing games
involving frogs, invaders from space and monkeys climbing trees, the result of failure in most of the games being instant liquidation. After achieving proficiency at these somewhat recondite pursuits, the keen edge of enthusiasm for modern technology dulls and the computer is put away with the other expensive toys, such as skateboards.

The intention of the makers of computers, at least in the beginning, was to introduce users to computing easily and gently by means of games programs. But the notional progression from games - the programming of computers to do something useful and interesting - seems not to have happened. The introductory
booklets that come with computers do try to lead one into a programming attitude of mind, but many of them are quite difficult to follow, particularly for children, and with so many games available, many owners have been led to the belief that that is what computers - at least home computers - are for.
It is possible that a rapid change of direction on the part of those developing programs for sale may halt, or even reverse, the current trend towards computer rejection. But someone is going to have to do something rather rapidly, because there may not be many affordable machines to buy quite soon.

- Germany has more engineers with micro expertise than Britain or France. British firms send more engineers on training courses that the French but they send more technicians. The Germans train more of both. There is a considerable shortage of trained personnel in all three countries.
In conclusion the report recommend as vital the need to train more technical people, to provide finance for education and to kindle economic expansion. The British are not too far behind to catch up.

Britain lags in chip race

Despite Mr Pattie's assurances to the Americans, mentioned in our news of last month, that Britain was leading Europe in the use of integrated circuits, The Policy Studies Institute offer a different viewpoint. They have surveyed more than 3500 factories in Britain, Germany and France and have discovered that:

- Britain is behind Germany in using microelectronics in products, but ahead of France. - In all three countries the most commonly expressed obstacle to the use of microelectronics is the lack of people with specialist technical expertise.
- Twice as many British manufacturers, compared with German or French, blamed the economic recession for their lack of utilisation of the devices and a similar proportion found it difficult to get finance for new projects.
- One thing that was not a British problem was opposition by trade unions which was seen as a threat by half as many British as by their continental counterparts. Over half the British firms said that they consulted their workforce before introducing new technology compared with 40% in Germany and 23\% in France. - In all three countries about three-quarters of the factories using microelectronics report that there has been no reduction in the number of
people employed. Of the remaining quarter, some have had increases in employment but almost twice as many have cut staff. Where applications are used in products there has been a majority of increases in numbers employed, though there was detected an overall decrease of one or two jobs per factory. There is a possibility however that higher rates of use
and more advanced applications could lead to greater effects on employment but so also could the inability to keep up with our international competitors in making use of the new technologies.
- In all three countries there has been a slowing down in the introduction of new applications, compared with two or three years ago.

Space cooperation with China

A Memorandum of Understanding (i.e. some degree below a formal agreement) on space collaboration has been signed between Britain and China.

This marks an advance in Britain's relations with the Chinese space authorities, who are rapidly developing their own independant satellites and launching systems. The Memorandum will enable regular exchanges of space scientists to take place, as well as paving the way for cooperation in satellite technology developments.

Mr Li Xue, first Deputy Minister of Astronautics, who signed the Memorandum with our Geoffrey Pattie, also lead a large delegation of Chinese space technologists on a tour of British space research establishments including British Aerospace and Marconi Space

Systems. - A different agreement has been signed between Marconi Electronic Devices Ltd. and the Chun Shu Rectifier plant in Beijing. MEDL. have licenced the Chinese plant to establish a manufacturing plant for power thyristors and silicon rectifiers. The British company will also be providing know-how and
support for the Chinese plant and will be training Chinese technologists in the UK. The first stage of the agreement is the provision of a $£ 100 \mathrm{k}$ technology transfer data pack coupled with the purchase of $£ 300 \mathrm{k}$ of semiconductor devices and piece parts made by MEDL at Lincoln.

1Mbit d.ram from Japan
 Toshiba have announced that
 the standby mode.

they have succeeded in developing a one megabit dynamic ram. Using microlithography they have used a 1.2 micron geometry to get 2.25 million elements onto a chip of silicon 4.78 by 13.23 mm . The device has an access time of 70 ns and consumes 270 mW during operation and 15 mW in

The company claims that its success is due to a method of being able to reduce the area of isolation between elements while maintaining the isolation. This uses buried oxide isolation (or BOX) where grooves are etched into the silicon substrate and the grooves are then filled with an oxide film to perform
the isolation. In conventional methods, the oxide can protrude onto the areas where elements are formed and this both increases the useable size of each element and the size of the isolation zone, making it difficult to achieve a geometry of less then two microns. The

BOX isolation has the added advantage of forming capacitors on the side walls of the groove as well as on the surface, leading to a more efficient memory element. Toshiba have no plans yet to produce the device in quantity.

World plan for f.m.

More than 53000 stations in the band 87.5 to 108 MHz are allowed for in the Agreement signed as a result of the Regional Aministration Conference for the Planning of v.h.f. Sound Broadcasting. The conference was convened by the International Telecommunications Union following the 1979 WARC decision to extend
the band above 100 MHz to 108 MHz .
The frequency assignment plan, known as the Geneva Plan, takes in such considerations as the prevention of interference with aeronautical radionavigation stations which occupy the nearest band and the procedures for its own modification. The Plan is to become operative in mid-1987 and is planned to meet the requirements of sound broadcasting services with the f.m. band for a further 20 years.

Acorn rescued

One could hardly think of a computer company more stable than Acorn with its BBC marque and its wide use in education. Yet like so many other computer companies it was suddenly plunged into a "cashflow crisis" and nearly collapsed altogether. The crisis seems to have been brought about by the pre-Christmas over-estimate of the number of Electron computers to be sold and the post-Christmas decision to reduce the price of the Electron to that of the Sinclair Spectrum, compensating those dealers who had a stock of Electrons with the difference in price.
The rescue has come from a seemingly unlikely source,

Olivetti the Italian typewriter giant who have expanded into word processors and business computers and are themselves part owned by A T \& T. They have bought a 49.5% share in Acorn and have the option to take a majority shareholding if they so desire. Hauser and Curry, Acorn's founders and joint managing directors are to stay on the board along with their recently appointed chief executive, Alex Reid, though it is thought that there will be a new supremo appointed by Olivetti.

The Italian company is rated second to IBM in the European IT market and tenth in the world. They produce the M24 Personal Computer which their extensive advertising claims is "significantly faster and more powerful then the IBM PC." Their investment in Acorn suggests an attack on the world educational computer market.

High-speed semiconductor

The giant Japanese electronics company, NEC, have announced the development of a new semiconductor material which is constructed from several layers alternating between gallium arsenide (GaAs) and aluminium arsenide (AlAs). The material is produced by molecular beam epitaxial growth to enable very thin layers to be grown on the crystal's substrate. This 'superdoped' lattice structure greatly improves the conductivity of the electron supplying layers and enables the making of very high-speed devices with up to about 10 picoseconds per gate. Indeed at low temperatures, such as that of liquid Nitrogen at 77 k , a switching speed of $5 \mathrm{ps} / \mathrm{gate}$ is possible. Previous
tests on mixed crystals of AlGaAs proved that their conductivity was reduced by the active energy of doped impurities. It is thought that this was due to imperfections in the crystal structure around the dopants and the new material completely overcomes this while retaining the very low threshold voltage variation associated with the mixed material crystals.
NEC also claim that the new material will enable the control of the physical properites of materials artificially on an atomic level and permit the development of such new devices as hetero-bipolar transistors and high-power semiconductor lasers. The material might also be used in the production of components in ultra-high-speed computers as the switching speed approaches that of Josephson devices. A prototype ring oscillator is likely to be the first practical application of the material and this will confirm its theoretical properties.

Tentative plans for Band III

Geoffrey Pattie, Minister for IT, has announced the initial decisions on the future use of Bands I and III, left vacant by the demise of 405 -line tv. Much of Band III is to be used for mobile radiotelephones using trunking and providing common base station and message handling services.
Prevailing opinion, following the responses to the governments consutative document, favoured the adoption of a common signalling standard for trunked systems and the preparation of such a standard is making good progress. However there is some conflict with the new cellular radio telephones which it is felt should not have to compete with a rival system until it is better established. There is still the possibility of operating a nationwide mobile service with no, or only restricted, access to the public switched telephone network. Such a service would
not conflict with cellular radio and could offer more efficient use of the band as calls are usually much shorter over radio than those interconnected with the telephone system.
So the plans will possibly include the introduction of one or two non-interconnected national networks with the further possibility of local networks which may have p.s.t.n. interconnection in the major conurbations. Further advice from the Director General of Telecommunications is being sought.
There were further responses to the Consultative document, including plans for Band I, which are still under consideration.

In brief

Advanced Micro Devices of California are to invest $£ 144 \mathrm{M}$ on a new wafer fabrication plant at Greystones, Co. Wicklow, Eire. The plant will produce microprocessor, telecommunications and memory products and will create 650 jobs, over a third of them highly skilled. Construction of the plant will commence this year with production underway by the end of 1990.

Improved interlocking at British Rail

Abstract

Two applications of information technology techniques have been installed in railways. The first is a solid-state interlocking (SSI) system for a new signal box at Leamington Spa. Interlocking systems have been very important in railway management as they ensure that no conflicting train movements are set up. Signals and points are locked and originally the interlocking was entirely mechanical, offering a severe restriction on the range of each installation. Later, and until now, electro-mechanical relays have been used in profusion to control electrically operated points and signals.

 The London Bridge signalling centre uses more than 34 thousand relays to control up to 100 trains simultaneously over 150 miles of track. The replacement of these by a solidstate system would need about 20 cabinets of equipment, reducing the space required by more than half and elimination 12 small trackside buildings. The Leamington Spa system requires only one cabinet. It isto be run in parallel with the existing relays without connection to the signals or points. Initially it is to be connected to a "dummy load", a computer which will simulate the equivalent of several years of operation. Gradually it will be tested on specific sections of the lines and will eventually take over. To the signalman and driver there will be no difference and they will continue to operate exactly as before.
With SSI the interlocking is performed centrally by microcomputers which communicate through serial data links with lineside terminals directly controlling the signalling equipment. Cross-checking duplicate and triplicate systems are used to ensure safety and availability. Built-in diagnostic facilities enable faults to be detected and rectified speedily. The system was conceived by British Rail and developed by them in conjunction with Westinghouse Brake \& Signal and with GECGeneral Signal.

Private science

Japan is often looked to as an example of how we should succeed commercially. If we look more closely at that success however, it is possible to see that they are very good at exploiting ideas, of turning them into commercial propositions, but that they also have a very thin basis of original thought, of generating the same ideas that they are so good at exploiting.
Now, the Department of Education and Science is trying to emulate the Japanese by finding private sector funding lor science research. We understood that the Research Councils were set up to fund research so that it would be free from commercial pressures. The whole philosophy of the present Government is exactly the reverse of this? that public
funding (of almost anything) is inherently bad and that commercial pressure is somehow the return to a 'real' world.

Great Britain has always been proud of its contribution to world scientific knowledge. Many practical and useful inventions have come from an academic study of apparently obscure phenomena but that have turned out to be commercially exploitable.

The private sector are looking for fast returns on inyestments. They are unlikely to be willing to finance basic research that may look as if it is going nowhere. But this is the very research which will eventually lead to closing the gaps in our knowledge and ultimately to products and services and so improve the quality of our lives.

> GANG-OF-EIGHT is our FAST EPROM PROGRAMMER which handles CMOS or NMOS EPROMS from 2716 to $27256(25 \times X$ too) using FAST or NORMAL programming methods.

FAST programming 27128 s takes 2 minutes, NORMAL programming takes 14 . All possible levels of Vpp are covered including 25,21 and 12.5 volts. $G 8$ has an LCD which tells you what you're doing - or doing wrong. BLANK CHECK, VERIFY and CHECKSUM facilities are included Good value. £395 GANG-OF-EIGHT-PLUS is now available. PLUS what? Well, PLUS an RS232 INTERFACE which lets you download in INTELHEX, MOTOROLA S, TEKHEX, ASCII, SIMPLE HEX etc
Oh, yes, PLUS 50 quid too, but you might think it's worth it
£445

SOFTY 2, our intelligent EPROM PROGRAMMER/EMULATOR, plugs into a TV, shows you memory and lets you TEXT-EDIT in HEX (INSERT, DELETE, SHIFT BLOCKS without overwriting or rewriting etc). It also calculates ADDRESS-OFFSETS in hex, UPLOADS and DOWNLOADS in SERIAL and PARALLEL, saves programs on TAPE, and PRGGRAMS, COPIES and EMULATES EPROMS 2716, 2732 and 2532. Great DEVELOPMENT TOOL for PIGGY-BACK SINGLE-CHIPPERS and other small microsystems. TV lead ROMULATOR-cable with 24 pin DIL Plug and power supply included, ready to plug-in and use

2764 and 27128 ADAPTOR lets SOFTY 2 handle larger EPROMS for
£195

280 DEVELOPMENT TOOLS

MENTA is a 280 development system designed by DATAMAN for the SCHOOLS COUNCIL. MENTA has a built in ASSEMBLER and TV hex display: it lets you enter program in hex or mnemonics and execute them FULL SPEED or A STEP AT A TIME. All the REGISTERS and the STACK are displayed on-screen and you can SEE MEMORY CONTENTS CHANGING as instructions are executed. MENTA is a microsystem with 24 bits I/O - it can be used as a controller for ROBOTS and intelligent machines. MENTA aכpears in GCE syllabusses; a TEACHER'S GUIDE, PUPIL READER and WORKSHEETS are available - also CONTROL MODULES - UNIVERSAL I/O, A to D, D to A, MOTOR and VARIABLE SWITCHED INPUT for less than $£ 20$ each. A MENTA with TV flylead and power-supply costs

 SW

MICRODOCTOR is for DIAGNOSIS, finding troubles in microsystems. You just plug into the micro processor socket, READ and WRITE to the MEMORY and I/O. MD does CHECKSUMS, RAMTESTS on memory, checks for SHORTS on the bus, and prints memory in HEX or ASCII. You can also DISASSEMBLE and print the SOURCECODE In Z80, 6502, 6800 or 8085 mnemonics.
When your SCOPE or MULTIMETER can't find the problem - consult the MD. When you order say which processor or ask about multiprocessor MD
I.C.T. (Intelligent Connectiv ty Tester) is the project name for a 40 pin dual-in-line CUSTOM-CHIP developed by DATAMAN.
The chip is called the MT72017 and it will appear soon in BARE-BOARD TESTERS, IDC CABLE TESTERS and LOOM ASSEMBLY EQUIPMENT all over the world. An EVALUATION-SYSTEM/CONTROLLER for the MT72017 is available or a EUROCARD and you can BUILD YOUR OWN custom connection-pattern tester for E295
The controller has full docurrentation, source-code, circuit diagram, parts-list and a description of opera tion. Each MT72017 tests 25 points and a single controller will handle hundreds of 'em - thousands of test-points
MT72017 chip prices: $£ 12.50$ (1 to 99) $£ 11.25$ (100-999) $\mathbf{£ 1 0 . 2 5 (1 0 0 0} \mathbf{u p})$. We do not sell samples of the MT7 2017 without a controller.

LOGIC ANALYSER TA2080 by THANDAR with SPECIAL MODS by DATAMAN which gives RS232 interface and prints TIMING and STATE diagrams - and DISASSEMBLES Z80, 6502,6800 code on the screen or printer
THANDAR TA2080
£1950 DATAMAN RETROFIT
£295
EPSON AND NEC COMPUTERS QX10, HX20 a d PX8, PC8800. ALL COMPUTERS are sold with a free bundle of useful software written by DATAMAN.
OLIVETTI TYPEWRITER INTERFACES designed by DATAMAN for ET1 21 and 221 - cheaper than a DAISYWHEEL printer RS232, HPIB (IEEE) and PARALLEL including fitting
£195
EPROM ERASERS from.
$£ 39.00$

[^1]
-MAMEE MORE THAN JUST ONE STEP UP

HM208 £1200.
Dual Trace, Digital Storage $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$ 2 CMHz Bandwidth Algebraic Add, Invert $\mathrm{X}-\mathrm{Y}$, Component Tester $4 \times \mathrm{lk}$ Stores, 20 MHz Clock, Roll, Refresh, Pre-trigger.

HM605 £515.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
60 MHz Bandwidth Algebraic Add, Invert
$X-Y$; Single Shot Delay Sweep,
Var Hold-off Component Tester, 14kV CRT
HM204-2 £365.
Dual Trace $1 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add, Invert $X-Y$: Single Shot Delay Sweep,
Var Hold-off Component Tester
HM203-5 £264.
Dual Trace $2 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$
20 MHz Bandwidth Algebraic Add. Invert $\mathrm{X}-\mathrm{Y} \quad$ Component Tester
2 Year Warranty

HPMEE

FOR THOSE WHO COMPARE
74-78 Collingdon St. Luton, Beds, LU1 1RX Tel: (0582) 413174 Telex 825484

CIRCLE 33 FOR FURTHER DETAIIS.

The technology of television won't stand still: satellites, cable, video, equipment interfacing, high-definition. Follow developments month by month in this unique magazine for all those interested in the technology of domestic TV and video.
April's main feature is The Practicalities of Satellite TV Reception

- basic receiving systems
- technical terms explained
- different aerial systemstheir pros and cons
- alignment and setting up

April issue out now!

ELECTRONICS C.A.D. "ANALYSER"

PERFORMANCE ANALYSIS of LINEAR CIRCUITS using the BBC MODEL B AND SINCLAIR SPECTRUM 48K MICROS

Simulates Resistors, Capacitors, inductors, Transformers, Bipolar and Field effect Transistors and Operational Amplifiers in any circuit configuration.

Performs FREQUENCY RESPONSE ANALYSIS on Circuits with up to 30 Nodes and 100 Components, for Phase and Gain/Loss, Input Impedance and Output Impedance.

Ideal for the analysis of ACTIVE and PASSIVE / FILTERS, AUDIO, WIDEBAND and R.F. AMPLIFIERS, LINEAR INTEGRATED CIRCUITS etc, etc.
"ANALYSER" can greatly reduce or even eliminate the need to breadboard new designs.

USED BY INDUSTRIAL AND UNIVERSITY R\&D DEPARTMENTS WORLD WIDE.

VERY EASY TO USE. PRICES FROM EZO
PAYMENT BY ACCESS OR AMERICAN EXPRESS WELCOME.
For further details write or phone NUMBER ONE SYSTEMS
DEPARTMENT WNW
9A CROWN STREET, ST IVES
HUNTINGDON
TEL: 048061778
CAMBS. UK. PE 17 4EB.
TELEX: 32339

Mectronic Brokers Test \& Measure CHECK OUR

 Fluke 8024B

 Fluke 8024B
 Thandar TM 355

Philips PM 3206 15 MHz , compact portable, dual trace 5 mV
sensitivity, auto and TV triggering, variable time Philips PM 3219

C2795 50 MH , analogue storage with variabie
persistence, auto erase and auto store facilities, 2mV sensitivity, delayed time base. Hameg HM 605
 Z modulation, X-Y operation, inbuilt componen
Hameg HM 204-2 sensitivity $\uparrow \mathrm{mV}$, variable hold off, $X-Y$ operation Z modulation, component tester.

Hameg HM 203-5 consita, dual trace, add and invert, maximum sensitivity $2 m V$. automatic and normal Hameg HM 103 10 MHz C167 10 MHz , single trace, maximum sensitivity 2 mV , all Hameg oscilloscopes have 2 year warranty

Thandar SC 110A 10 MHz , battery powered portable, bright line and economytriggering for battery conservation TV frame and line triggering. Senstivity 10 mV
to 50 V
:286

16 channels, 20 MHz logic analyser, 15 nS gliteh capture, 252 word data and reference memories, automatic or manual compare
between memories personality options. between memories. personality options.
Philips PM 3302 Philips PM $\mathbf{3 3 0 2}$
20MHz Digital Scope, 2 Channels, DC-20MHz
BENCH \& HANDHELD BENCH
DMMs

Philips PM 2519/01 ع299 4 ia digit. LCD with analogue bar frequency to 1 MHz , true RiMs, dB. relative reference. PM $2519 / 5 \uparrow$ with
IEEE interface Philips PM $£ 515$
Philips PM $2518 \times / 11$ £199 display auto/manual ranging, true + z^{2} to 20.A Fluke 8050A C36 conductance, diode test true RMS. relative reference DC accuracy 0.03%. 8050A-01 Fluke 8012A 3 le digit, LCD. low ohm resistance range seven monductange seven RMS. DC accuracy 0.1%. 8012A-01 Ni-Cd Fluke 8010 A
$3^{1 / 2}$ digit LCD. 10 A current range, seven $\mathbf{C 2 4 3}$ functions include conductance, diode test, true
RMS. DC accuracy 0.1%. 8010 N N-Cd battery Fluke 80604
$41 / 2$ digit, LCD ten functions include $\mathbf{~} 306$ conductance, diode test, continulty, dB
frequency. true RMS. OC accuracy 0.04%
relative reference mode
Fluks $8062 A$
Fluke $8062 A$
$4^{1 / 2}$ digit. LCD seven functions include diode
test and continuity, relative reference, OC
accuracy 0.05%, true RMS. self diagnosis test

then

Electronic Brokers are leading suppliers of electronic test and measuring equipment. Our distribution division handles the major names in the industry: Philips, Fluke, Hameg, ICE, Thandar,
$3^{1 / 2}$ digit. LCD, eleven functions include peak ho on voltage and current, audible and visual logic evel detection. DC accuracy 0.1%
Fluke 80268
3 Y/2 digit LCD. einht functions include conductance, audible continuity true RMS OC accuracy 0.1% all 20 series DivMs have 2 year Fluke 80208
3 It digit LCD, eight functions include conductance, diode test audible continuity, DC Fluke 8021日
3112 digit $\mathbf{~ 1 3 9}$ and high speed audible continuity OC accuracy test leads provided
Fluke $8022 B$
$£ 114$
3 li digit. OC accuracy 0.25%, optional accessories avalable to
capabilities
Fluke JF $77 \quad \mathrm{C} 110$ 3\% digit, LCD with analogue bar graph,
auto/manual ranging, DC accuracy 0.3%, touch and hold facility, supplied with carrying holster. Fluke JF 75
$3^{11 / 2}$ digit, LCD with analogue bar graph, autormanual ranging, OC accuracy 0.5%, seven fonctions include diode test and audible
Continuity
Fluke JF
73
31/2 digit, LCO with analogue bar graph, auto 72 anging, DC accuracy. 70 six functions include diode test, all 70 series DMMs have 3 Fluke JF 25
$3^{1 / 2}$ digit LCD with analogue bar graph £193 ruggedized construction, auto ranging, DC accuracy 0.1%, touch-hold facility, extensive
 3^{112} digit. LCD with bar graph. ruggedized construction, auto ranging, accuracy 0.1^{10} touch-hold
operation
Thandar TM 351
3 Yla digit LCD 29 ranges of measurement 115 accuracy 0 1\%, diode test battery life typically 4000 hours, complete with batteries and test leads

Thandar TM 451
4 1/2 digit. LCD display \quad c19 al ranping with function legends. sample/hold facility on all ranges audible continuity
3^{112} digit, O. $5^{\prime \prime}$ bright LED. 29 ranges of C85 measurement. OC accuracy 0.25% battery or nains oper ation, diode check, supplied with test
leads.

Thurlby 1905A
C325 $5^{1} 12$ digit, bright $\mathrm{LEQ}, 1 \mu V, 1 \mathrm{~m} \Omega, 1$ nA sensitivity. computing functions, true RMS and IEEE interface options

ANALOGUE MULTIMETERS

Philips PM 2505 [158 62 measuring ranges. 10 Mn input impedance automatic polarity indication. low power I.C.E. 680 R

C32 I.C.E. G80R
80 measuring ranges, sensitivity $20 \mathrm{~K} \Omega / \mathrm{V}$ OC
accuracy $1 \%, 12 \mathrm{~cm}$ mirror scale, overload
I.C.E. 680G

48 measuring ranges, sensitivity 20Kı/V ©C
accuracy 2%. 20 cm mirror scale. overioad protection
I.C.E. M8o
40 measuring ranges. sensitivity $20 K \Omega /, D C$
accuracy 2%, wide range of accessories extend accuracy 2%, wide range
measuring capabilties

PULSE, FUNCTION
 PATTERN GENERATORS

Philips PM 5712

$$
\text { ! ampiruda } 200 \text { meve }
$$

c. 955 1 Hz to 50 MHz ins, amplitude 200 mV to 10 V ,
pulse duration and delay 10 nS to 100 mS couble normal or inverted pulse, ext triggering sync Philips PM 5326

C 175 RF generator 100 kHz to 125 MHz , AM/FM modulation, 5 digit counter displays RF carpier
marker and external frequencies. 50 mV RF

Philips PM 5134
c 1495
Function generator 0.001 Hz to 20 MHz , frequency display sine, square, triangle, TL int
or ext sweep AM/FM modulation, output 2 Vipp Philips PM 5133 C1145 Function generator 0.01 Hz to 2 MHz , frequency sweep. log or lin, output 2OVpp, selectable 50n Philips PM $5132 \quad \mathrm{C625}$ function generator 0.01 Hz to 2 MHz . sine. pulses, int or ext sweep, output 30 Vpp . pulses, int or ext sweep, output 30 Vpp .
selectable 50 or or 600 a .

Thurlby, GP Industrial, Claude Lyons, Coline, Compact Instruments.

These products are stocked in depth in our spacious new premises at Camden Town, ready for

 Electronic Brokers

ment Instrument Distribution Division

INV EN T ORY:

Philips PM 5131
Function generator 1 Hz to 2 MHz , sine square tri-angle. TL, int or ext sweep, output 30 Vpp into 50Ω. stepped and variable
attenuation.

Philips PM 55191
Pattern generator, 20 combination test patterns, full AF coverage, electronic tuning with and frame sync. Phitips PM generator, 5 test patterns for mono and colour, video output for CCTV and monitors
output in VHF and UHF range, 1 kHz tone for Thandar TG 101
Thandar TG $101 \quad$ C110 Function generator O .02 Hz to 200 kHz . sine, square. triangle, variable
external sweep $10 \mathrm{~V} p \mathrm{p}$ output into variable Thandar TG 102 £160 Function generator 0.2 Hz to 2 MHz . sine,
square, triangle. TTL output, variable OC oftset, external sweep. 2OVpp output into variable 50 n Thandar TG 105
Pulse generator 5 Hz to $5 \mathrm{MHz}, 10 \mathrm{nS}$, amplitude triggered modes. TTL output, pulse width Thandar TG 501
Functiongenerator 0.005 Hz to $5 \mathrm{MHz} \sin 295$ square, triangle, ramp, pulse, TTL variable DC oftset, variable start/stop phase. 20Vpp into Thandar TG 502 Sweep/function generator 0.005 Hz to 5 MHz Sine, square, triangle. TTL, internal sweep log
lin, ariable sweep rate and marker duration, sweep and pen-lift outputs.

Pulse/function generator 0.005 Hz C495 sine, square, triangle, ramp. TTL, normal double adjustable base line
COUNTERS \&
COUNTER/TIMER

Philips PM 6670/01

Counter/timer. 0.1 Hz to 120 MHz , period, pulse width, single and average time interval, count
phase APM, ratio, high resolution. 10 mV sensitivity.

OUR SE

prompt despatch to all parts of the country. Electronic Brokers offer full technical support and expert advice on all aspects of electronic test and measuring.
$\check{5} 55$
15 | Philips PM 6671/01

Philips PM 6672/01
Counter/timer. D. 1 Hz to 1GHz. period pus width. single and average tume nterval, count
phase, RPM, ratio, high resolution, 10 mV Philips PM 6668/01 Counter, 10 Hz to $1 \mathrm{GHz}, 7$ digi: LCD display. auto triggering on all waveforms, 15 mV
sensitivity, high stablity crysta oscillators Philips PM 6667/01 C304 Counter, 10 Hz to 120 MHz . 7 digit LCD display.
self diagnosis routine auto trig zering 15 mV sensitivity, high stablity oscillator.

Thandar TF 200 Counter. 10 Hz to $200 \mathrm{MHz}, 8$ digit LCD, battery powered. 10 mV sensitivity, time average period
totalize and reset. TP 600 pre-scaler, 40 MHz oo 600 MHz available at $£ 45$. Thandar PFM 200A
Counter. 20 Hz to $200 \mathrm{MHz}, 8$ digit bright LED 0.1 Hz selectable gate times mains adaptor and TP600 pre-scaler available

POWER SUPPLIES

Thurlby PL $154 \quad$ ¢149 0 to $15 \mathrm{~V}, 0$ to 4 A , bench power supply, twin LED dispiays meter voltage and current, high
stability and resolution, remote sense facility.

Thurlby PL 320 Oto 30V, O to 2A, bench power supply, constant control Thurlby PL 310 Oto 30V, 0 to 1A bench power supply, meter OC output switch, resolution 50% output switch, load regulation $<0.01 \%$ for
£118
19
MISCELLANEOUS

Thandar TH 302 Thandar digital thermometer. LCD display of ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$, range - $40^{\circ} \mathrm{C}$ to $1100^{\circ} \mathrm{C}$, resolution 0.1° and
supplied).

Thurlby multiplexer expands any oscilloscope to
triggering from any channel, band width 35 MHz ,

Compact tacho-probe for use with \square MMs or \quad 70
Compact tacho-probe for use with $\square \mathrm{MM}$ s or
frequency counters. 2 speed ranges from 100 frequency counters, 2 speed ranges from 100
to 20.000 RPM, accuracy 1%, non-contact range 1 m .

LINE CONDITIONERS

Claude Lyons LVC 500 C330
5 . 1200 VA rating, line voitage conditioner,
supply frequency $48-63 \mathrm{~Hz}$, incorporate ultra supply trequency

Claude Lyons LVC 250
£256
2.5A, 6OOVA rating, line voltage conditione input/output, compact and portable for easy Claude Lyons LVC 65 C175 . 5 A. and noise suppression. All LVC units have? year warrantly.
EPROM PROGRAMMERS EPROM programmer, 16 character fluorescent all EPAOMs. powerful editor, RS232C interface. GP男 EPROM programmer, 16 character display menu devicermode selection, programmes al pass/fail indication. Q

Visitors are welcome to our showrooms where all products are on display and demonstration. For customers wishing to order by phone, we offer a 24 hour answering service

Electronic Brokers Ltd 140-146 Camden Street London NW1 9PB Telephone 01-267 7070 Telex 298694

All prices exclusive of VAT. Carriege end dapacking charges extra on alltems unless otherwise stated.
A copy of our trading conditions is avalable on request. time of going to press

IEEE TALKER/LISTENER CONTROLLER

- Program in BBC BASIC, FORTH, PASCAL.
- Conforms to IEEE488 1978 specification.
- Suitable for communication with up to 14 devices.
- Complete software drivers available.
- Full Talker/Listener controller.
- Programmable interrupts
- Serial/Parallel poll.
- Single or dual primary address recognition.
- Full technical support
- 6502 and 6809 development systems.

CIRCLE 72 FOR FURTHER DETAILS.

CIRCLE 60 FOR FURTHER DETAILS.

BRAND NEW ELECTRONIC COMPONENTS

\section*{Q_MAR
 QUALITY .25W CARBON FILM RESISTORS
 Qty | $1-9 \mathrm{~K}$ | $10-24 \mathrm{~K}$ | $25-49 \mathrm{~K}$ | $50-99 \mathrm{~K}$ | $100 \mathrm{~K}+$ |
| :--- | :--- | :--- | :--- | :--- |
 Price | $4-25$ | $3-95$ | $3-70$ | $3-45$ | $3-25$ |
| :--- | :--- | :--- | :--- | :--- |}

Price per 1000. Sold in multiples of 1000.
Small quantity prices available.
LEAD-FORMING SERVICE AVAILABLE
Save assembly time and money with pre-formed leads. Size setting £2-00 plus £1-50 per 1000 .

Bectronic Brokers Second User Test and Measurment Bquipment Division

THE SOURCE OFALL GOOD USED TEST EQUIPMENT

OSCILLOSCOPES

TEKTRONIX 7000 SERIES

7313 ont 01 ว5MHz Bistable Storage Oscilloscope Mainframe
$49 \mathrm{~cm} / \mu 5$ Stored Writino Sneed (MLP E4,932) £2,225 7633100 MHz Storage Mainframe (MLP 17 794) £4,950 7854 opt A1 Waveform Processing Oscilloscope

MLP E16,221) £12,500 7000 SERIES PLUG INS
7 A 11 Fet 250 MHz Amp
7419600 MHz (MLP E2,669) $£ 1,600$
7 A 19600 MHz ST Amplifer
(MLP E2,422) £1,600
7 A26 200 MHz DT Amplifier
(MLP £2,356) £1,650 7B53A 0.05 μ S Timebase (MLP E 1,434) £985 7B80 10nS Timebase
$7 B 8510 n S$ Delay Timeb 1.405) £960 (MLPE1,609) £925
PM3232 10MHz True Dual Beam Oscilloscope
c495
PMЗ266 100 MHz Transfer Storage
(MLP £5,095) £3,500

TEKTRONIX

212 Miniature 500 KHz D T Battery Oscilloscope (MLPE1,746) £650

LOGIC ANALYSERS

FLUKE

3010A Programmable PCB Logic
Tester (MLP E19, 153) C8,000 HEWLETT PACKARD 1615 A 20 MHz
£3,000

SIGNAL ANALYSERS

HEWLETT PACKARD
3585A Spectrum Analyser
$20 \mathrm{~Hz}-40 \mathrm{MHz}$
$141 T+855$ (MLP E20,069) £16,650 Analyser $10 \mathrm{~A}+8555 \mathrm{~A}$ Spectrum Analyser $10 \mathrm{MHz}-18 \mathrm{GHz}$
MARCONI
TF2330A Wave Analyser £1,095 TEKTRONIX
491 Spectrum Analyser
$1.5 \mathrm{GHz}-12.4 \mathrm{GHz}$
$\mathbf{£ 3 , 0 0 0}$
$1.5 \mathrm{GHz}-18 \mathrm{GHz}$
$\mathbf{8 3 , 5 0 0}$
$1.5 \mathrm{GHz}-26.5 \mathrm{GHz}$
$\mathbf{6 4 , 0 0 0}$
$1.5 \mathrm{GHz}-40 \mathrm{GHz}$
$\mathbf{8 4 , 5 0 0}$

TR502 Tracking Generator for 7L12, 7L13, 7L14
(MLP £6,332) £3,000

TR503 Tracking Generator for 492 or 496 (MLP £E,332) 〔4,250

TEKTRONIX TM500 \&

TM5000 SERIES
00501 Digital Delay Delay to 99,999 events
(MLP E1 155) 977
FG501 Low Frequency Function
Generator, 0.001 Hz to 1 MHz sine
square, triangle, pulse and ramp
FG502 Function Generator $£ 375$ FG502 Function Generator 11 MHz sine, square, triangle.
Pulse and ramp to 1.1 MHz
MLP E773) 5565
FG503 Function Generator 0.1 Hz to
3 MHz sine, square anc triangle
(MLP £528) 5400
PG505 Pulse Generator 10 Hz to
100 KHz pulse width 5 nsec to
0.5 sec (MLP C864) 4450

PG508 Pulse Generator 5 Hz to
50 MHz pulse width 10 nsec to
msec (MLP £1,904) £1,250 RG501 Ramp Generator 10μ s to 10 s ramp duration 10 V gate out,
SC501 5MHz Single Channel Plug-in Oscilloscope 10 mV sensitivity. occupies single TM500 series compartment (MLP £1,166) 〔500 SC502 15 MHz Dual Channel Plug-in Oscilloscope $1 \mathrm{mV} /$ div sensitivity,
20ns/div calibrated sweep
Occupies two TM500 serie compartments CMLP E2, 131) с900
SC504 80 MHz Dual Channel Plug-in Oscilloscope $5 \mathrm{mV} /$ div sensitivity
5ns/div calibrated sweep, true X-Y SG502 Low Distortion Signal
Generator 5Hz-500KHz (MLP E776) £525
SG504 Signal Generator
$245 \mathrm{MHz}-1050 \mathrm{MHz}$, 107) 100
SG5505 Oscillator 10 Hz to 100 KHz sinewave Ulitra-low distortion -
0.0008% THD (MLP C696) £400 TG501 opt 01 Time Mark Generator
(MLP £2,213) £1,450

TEKTRONIX TV TEST

EQUIPMENT

380 Portable NTSC Vector/
Waveform/Scope
[2,750 521A Vectorscope

④,500

DISPLAYS

HEWLETT PACKARD
1332 A High Resolution X-Y Display $9.6 \times 11.9 \mathrm{~cm}$ Display Area option ${ }^{\text {Mod) }}$) and option 330 (covers Feet etc. to Medical Standards) (MLP £2, 190) $\mathbf{~ 1 , 2 5 0 ~}$

SIGNAL SOURCES

HEWLETT PACKARD

214A Pulse Generator to 1 MHz Double Pulse Mode 100V. 200 watts output
c950
612 A UHF Signal Generator
ع1,100
$450-1250 \mathrm{MHz}$
4204A Digital Oscillator. $10 \mathrm{~Hz}-1 \mathrm{MHz}$ NEW CONDITION
£760

8011 A opt 001 Pulse Generator 20 MHz with Pulse Burst 16 V output (MLP E1,079) £6 $8732 B$ Pin Mor with option 004 37B Fin Moduator 1.8-4.5 G1z

MLP E1.902
8601A Sweeper O.1-110Mhz (MLP E4.502) £1,950 86240B Sweeper Plug In 2-8.4GHz
(MLP E6,152) £4,200 86260A Sweeper Plug In
$12.4-18 \mathrm{GHz}$
(MLP E4, 195) £3,600
8698 B Seeper Plug In
$0.4-110 \mathrm{MHz}$
£1,000
6601 A Sweeper
$100 \mathrm{KHz-1} 0 \mathrm{MHz}$
£1,950
MARCONI
TF2015 AM/FM $10-520 \mathrm{MHz}$
(MLP ©2,175) £1,450
TF2120 Waveform Generator Sine,
Square. Triangular and Ramp
$0 / \mathrm{p}$ Waveforms $0.0008 \mathrm{~Hz}-100 \mathrm{KHz}$
c750
TF2169 Pulse Modulator $10-520 \mathrm{MHz}$
for use with TF2015, TF2016 and
other generators
TF2170B Synchronizer for TF2002B
1600
6058 Signal Generator $7-12.5 \mathrm{GHz} \underset{\text { C850 }}{ }$

GENERAL EQUIPMENT

AVO
Model 8 (various versions) $\mathbf{~} 80-£ 85$ BIRD
4311 Peak Power Meter

BRYANS SOUTHERN

29300 A4 Size

$X-Y$ Ranges: 0.25 mV to $10 \mathrm{~V} / \mathrm{cm}$ 10 Ranges
Slew Speed: $70 \mathrm{~cm} /$ second
Timebase: 0.1 to $50 \mathrm{sec} / \mathrm{cm}$ in
9 Ranges
(MLPE1,637) £1,000

26001 with 2×26116 Amplifiers and 26201
 Timebase. A4 Size
 $X-Y$ Ranges: $50 \mu \mathrm{~V}$ to $10 \mathrm{~V} / \mathrm{cm}$ in 17 Ranges
 Slew Speed: $150 \mathrm{~cm} / \mathrm{second}$ Timebase: 0.05 to $50 \mathrm{sec} / \mathrm{cm}$ in 9 Ranges (MLP E2,661) £ 1,400 26001 with 2×26116 Amplifers and 26202 Power Unit instead of Timebase
 (MLP £2.443) £1,250

FLUKE

$887 A B A C / D C$ Differential Voltmeter (MLP £3,044) £ 1,750
8921 A DVM Wideband, autoranging
True RMS Readout in volts or dB.
Bandwidth $10 \mathrm{~Hz}-20 \mathrm{Mhz}$
(MLP £1,326) £695
893A AC/DC Differential Voltmeter \quad [750
931 Differential Voltmeter
11,000
HEWLETT PACKARD
427A Analogue AC/DC/Ohm Meter 467A Power Amplifer DC E810) £495 3406A RF Voltmeter to 1.2 GHz
(MLP £2,395) £1,500
$7040 A$ X-Y Recorder $1 \mathrm{~V} /$ Inch
(MLP E1,882) C850

HEWLETT PACKARD

MICROWAVEACCESSORIES
P382A Attenuator 12.4-18.0GH
(MLPE1, 100) C425
X382A Attenuator 8.2-12.4GHz
(MLPE1.100) $£ 425$
752C Directional Coupler
$5.85-8.2 \mathrm{GHz}$
¢600
1910A Termination 5.3-8.2GHz £175
11692 Dual -Directional Couple
$2-18 \mathrm{GHz}$ (MLP E2,025) £1,500 MARCONI
CT596 (6460/1) Wattmeter
$10 \mathrm{MHz}-18 \mathrm{GHz}$. $0.3 \mu \mathrm{~W}-10 \mathrm{~mW}$.
Extended to 1 W with
6534/4. 20db attenuator $\quad £ 1,500$ TF1313A LCR Bridge 0.1\%
(MLPE1,470) $\mathbf{~} 775$
Test Set TF2333 MF Trans Test Set £850 2438 Counter/Timer DC-520MHz
TF2700 LCR Bridge (MLP E908) £795 TF2702 Inductance Analyser $£ 1,500$ RACAL
tore 4DS FM Taperecorder £3,950 TEKTRONIX
576 Curve Tracer
1503 TOR Cable 701 Atten (MLP E4,931) £3,000 ator $50 \Omega 0.79 \mathrm{db}$ in 1 db steps

DEC COMPUTERE
Electronic Brokers Second User
Computer Division tolds hupe stocks
Computer Division tolds huge stocks
of al popular DEC Processaris, Oisk
Orives Peripherals and Optons.
Ohone or write for 1 Etest catalopuc
Phone or wnte for latest catalgov

Electronic Brokers are Europe's largest specialists in cualitv second user test equipment. Established 17 years ago, we have pioneered the second user concept in Britain, and many overseas territories. To support our growth we have a skilled team. This includes trained sales staff, whose role is not only to sell, but provide a helpful information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Our maxim is service, and those who have dealt with us will know that we endeavour to always live up to our reputation.

Electronic Brokers Guarantee
Unless otherwise stated, all test equipment sold by us carries a 12 month warranty. When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians All prices exclusive of VAT. Carriage and packing charges extra on all items unless otherwise stated

A copy of our trading conditions is available on request.

Electronic Brokers Telephone 01-267 7070 Telex 298694
 CIRCLE 201 FOR FITRTHER DETAILS.

A low-cost professional Logic Analyser the new Thurlby LA-160 from $£ 395$-vat

渴 15 data channels, expandable up to 32

- 2,000 word data acquisition memory
- Non-volatile reference memory
- Powerful search and compare facilities
- Clock rates up to 20 MHz
* Data state and logic timing displays
* Binary, octal, decimal or hex formats
- Hard-copy data print-out option

An essential instrument for today's electronics

An oscilloscope and logic probe are not enough to unravel the complexities of today's electronic equipment. A logic analyser is now the essential tool for digital electronics work both hardware and software. With prices measured in $£ 1,000$ s, however, many engineers have been denied the use of one. Until now!

Innovative design and high volume production using the latest component technology provide the

Thurlby LA-160 with performance exceeding many high-cost analysers but at a price measured in $£ 100$ s.

The LA-160 enables digital information to be precisely recorded and then examined in detail either as a data state display or as a logic timing diagram (via the user's own oscilloscope).

Contact us now for a full colour technical data sheet.

Thurlby EV designed and built in Britain

Thurlby Electronics Ltd., New Rd St.lves, Huntingdon, Cambs. PE17 4BG Tel: (0480) 63570 Tlx: 32475

CIRCLE 20 FOR FURTHER DETAILS

The world's most advanced low-cost bench multimeter!

 Thurlby 1905a

A complete high performance bench DMM

- $51 / 2$ digits; 0.015% acc; $1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}$ - Full ac and current functions as standard A sophisticated computing and logging DMM
- Linear scaling with offset; null/relative - Percentage deviation; running average - dBV, dBm general logarithmic calculations - Limits comparison; min and max storage
- 100 reading timed data logging
- RS232 and IEEE-488 interface options

Thurlby Electronics Ltd
New Road, St.lves, Cambs. PE174BG \quad / \mid Thurlby A
Tel: (0480) 63570
designed and built in Britain
CIRCLE 21 FOR FURTHER DETAILS.

Digital storage oscilloseopes

from Hitachi

(6)

more specd, more memorys more features

The new Hitachi VC-6041 combines a 40 MHz A-D converter with 8 K words of acquisition memory to provide ultra high resolution capture of high speed transient events.
A wealth of state-of-the-art features includes signal averaging, roll mode, variable pre-trigger, post storage expansion to \$100, digital voltage and time readout, pen recorder output, and a GPIB data option. If your application is a little less demanding choose the VC-6015, it's the easiest to use digital storage 'scope around. It has dual channel storage at 1 MHz clock rate, 2 K word memory, variable pre-trigger, X 10 post storage magnification and a full pen recorder output, yet it costs only £1,450.
We hold the complete Hitachi 'scope range in stock for immediate availability. Ring us now to get full specifications and prices or to arrange a demonstration on (0480) 63570.
Thurlby-Reltech Instruments, 46 High Street, Solihull, W.Midlands, B91 3TB

Accurate current follower

Current mirrors and a conventional op-amp combine to form an accurate current follower. Its advantages are illustrated in a universal voltage amplifier design exhibiting high gain, bandwidth and stability.

This current-follower circuit uses a conventional operational amplifier and two current mirrors. We analyse the circuit to show its most-significant characteristics, and a prototype is shown to perform well in practice. Using this circuit together with two voltage followers we have constructed a universal voltage amplifier. Theoretically, this universal amplifier structure is extremely stable and exhibits high gain and bandwidth simultaneously; experimentation has shown this to be true.
A current follower is the antithesis of a voltage-follower. The ideal current follower has zero input impedance, infinite output impedance and unity current gain. The circuit is effectively a current-buffer enabling the maximum available current to be transferred from a signal source and fed into a nonzero-impedance load. This application together with others has been discussed by Nordholt ${ }^{1}$ and Lidgey ${ }^{2}$.
In this article a simple currentfollower circuit is developed using a conventional op-amp and current-mirror circuits. The cur-rent-follower produced is then employed in a universal amplifier as described in the second reference. This amplifier uses only voltage and current-follower circuits together with resistors to define the closed-loop gain. The performance of such an amplifier is extremely good. The bandwidth is wide and it is not inversely related to the closedloop gain, and no stability problems exist as there is no direct feedback from output to input.

Improved current-follower circuit

In order to appreciate the final
design, it is worthwhile considering the simple current-follower circuit, Fig. 1. One end of the load is held close to zero volts by feedback action of the op-amp, however the load is essentially floating as neither side may be connected directly to ground. Despite this drawback, the circuit does have some interesting features. Input impedance is extemely low as nearly all the input current is drawn through the load by the action of negative feedback. Input current only differs from the load current by the current flowing into the op-amp which is extremely small due to the high open-loop voltage gain and input impedance of the opamp.
Most applications require a circuit able to feed a grounded load and so a modified version of Fig. 1 is needed, Fig. 2. The feedback path from the inverting input to the op-amp output is now a short circuit which further reduces the input impedance compared with the circuit of Fig. 1.
As before, input current is drawn around the feedback path by the op-amp. Positive input current flows in a path around the feedback loop into the op-amp output and through to the supply lead of the op-amp to the negative power supply. Widlar's currentmirror current-sink ${ }^{3}$ is used to sense this supply lead current via the diode connected transistor Tr_{2} and then reflect this current in Tr_{4} to the load. Similarly negative input current results in an equal positive supply current which is reflected into the load by a $p-n-p$ current-mirror current source comprising transistors $\operatorname{Tr}_{1.3}$.

The circuit is essentially that of an op-amp configured as a transresistance stage, the output of which is taken through the power
supply leads. As the op-amp is directly coupled, the output effectively phase splits and the two complementary current mirror source and sink circuits recombine the split phases into a ground connected load.

Accuracy of the current following action is limited by the current mirror performance. As discussed by Lidgey ${ }^{4}$ the ratio of image to reflected current, K, in the simple Widlar type of current mirror is given by
$K=\beta /(\beta+2)$
Clearly an accuracy of 2% will result if the current gain, of the mirror transistors is 100 . This is not regarded as acceptable and the improved current-mirror developed and analysed by Wil-

by F.J. Lidgey Ph.D., B.Sc., M.I.E.E. and C. Toumazou B.Sc.

Fig. 1. Simple current follower circuit. Although one end of the load is held close to zero volts by feedback action, the load is essentially floating and may not be grounded.

Christofer Toumazou completed an OND in Technology in 1980 From North Gloucestershire College of Technology. He then joined Oxford Polytechnic obtaining a first class honours BSc in Engineering in 1983. Currently he is studying for an M.Phil/Ph.D on op-amp circuit design, supervised by the co-author of this article. His research programme also includes part-time lecturing at the
Polytechnic.
John Lidgey is Principal Lecturer in electronics at Oxford Polytechnic. His teaching and research are both in the area of analogue circuit design and applications. In addition he is actively engaged in industrial electronics consultancy.

Fig.2. Most applications require a current follower load to be grounded. Modifying Fig. 1 as shown allows this.

Fig.3. Final current follower design with improved currentmirror circuits.

Fig.4. Incremental model of the current follwer input stage. Open-loop input and output impedances, R_{i} and R_{o}, are typically 1 M and 100Ω respectively.
son 5 is used to replace the two Widlar type current mirrors. Figure 3 shows the final current follower circuit design using these improved current mirror circuits.

Follower analysis

The incremental model of the opamp is shown in Fig.4. Resistance R_{i}, typically $1 M \Omega$ or so, is the open-loop input impedance and R_{o}, typically 100Ω or so, is the open-loop output impedance. The dependent voltage generator, A. v_{i} represents the high open-loop differential voltage gain of the op-amp, where A is of the form
$A=A_{o} /\left(1+j f / f_{p}\right)$
Factor A_{0} is typically 10^{5} or so and is the d.c. open-loop voltage gain of the op-amp. Frequency f_{p}, the upper -3 dB cut-off frequency, is typically 10 Hz or so. This upper cut-off is introduced by the manufacturer through an internal on-chip frequency compensation network to ensure that the opamp will not oscillate when used with any value of resistive negative feedback.
Analysis of the circuit yields the current transfer ratio i_{0} / i_{s} of
$\mathrm{i}_{\mathrm{o}} / \mathrm{i}_{\mathrm{s}}=$
$\mathrm{i}_{\mathrm{o}} / \mathrm{I}_{\mathrm{s}}=$
$1 /\left[1+\mathrm{R}_{\mathrm{v}} /\left(\mathrm{R}_{\mathrm{s}}(\mathrm{A}+1)\right)+\mathrm{R}_{\mathrm{o}} /\right.$
($\mathrm{R}_{\mathrm{i}}(\mathrm{A}+1)$)
Practically, as $\mathrm{R}_{0} \ll \mathrm{R}_{\mathrm{i}}$, then (3) reduces to
$\mathrm{i}_{0} / \mathrm{i}_{\mathrm{s}} \approx(\mathrm{A}+1) /\left(\mathrm{A}+1+\mathrm{R}_{\mathrm{v}} / \mathrm{R}_{\mathrm{s}}\right)$
Clearly from (4) the current transfer ratio is close to unity for high values of A. Solving for the small-signal input impedance $Z_{\text {in }}$ gives the following equation
$Z_{\text {in }}=$
$v_{i n} / i_{i n}=R_{o} /\left[(A+1)\left(1+R_{v} /\right.\right.$
$\left.\left.\left(\mathrm{R}_{\mathrm{i}}(\mathrm{A}+1)\right)\right)\right]$
Again, since $R_{0} \ll R_{i}$,
reduces to
$Z_{\text {in }} \approx R_{0} /(A+1)$
It is interesting to note that load resistance R_{L} is effectively isolated from the op-amp output and as a result the effect of changing the load has negligible influence on the closed-loop performance
of the op-amp. Furthermore compared with Lidgey's follower circuit which gave an input impedance of
$\mathrm{Z}_{\mathrm{in}}=\left(\mathrm{R}_{0}+\mathrm{R}_{\mathrm{L}}\right) /(\mathrm{A}+1)$
the follower described here has a lower and therefore more ideal value of input impedance.

Consider now the frequency response of the follower. Substituting for A into (4) using (2) and so obtaining the frequency response of the current transfer ratio, then
$\mathrm{i}_{0} / \mathrm{i}_{\mathrm{s}} \approx\left[1+\mathrm{j} \mathrm{f} /\left(\mathrm{f}_{10}\left(\mathrm{~A}_{0}+1\right)\right)\right] /$
$\left[1+\mathrm{K}_{2}+\mathrm{j}\left(\mathrm{f} . \mathrm{K}_{1}\right) /\left(\mathrm{f}_{\mathrm{p}}\left(\mathrm{A}_{0}+1\right)\right)\right]$
where K_{1} is $\left(R_{s}+R_{\mathrm{t}}\right) / \mathrm{R}_{\mathrm{s}}$ and K_{2} is $R_{o} /\left(\mathrm{R}_{\mathrm{s}}\left(\mathrm{A}_{0}+1\right)\right)$.

Substituting the symbol GB for the gain-bandwidth product of the op-amp, which is equal to $\mathrm{f}_{\mathrm{p}}\left(\mathrm{A}_{0}+1\right)$, and negleting K_{2} as generally $A_{0} \gg R_{0} / R_{s}$, then (8) reduces to
$\mathrm{i}_{\mathrm{d}} / \mathrm{i}_{\mathrm{i}} \approx(1+\mathrm{j} / \mathrm{GB}) /(1+\mathrm{j} / /(\mathrm{GB} /$
To a first order approximation one may assume that the frequency response of the currentmirror section of the circuit is much higher than the remainder and so the frequency response of the follower, dominated by the op -amp section, is given by
$\mathrm{i}_{\mathrm{L}} / \mathrm{s}_{\mathrm{s}} \approx\left(\mathrm{i}_{\mathrm{L}} / \mathrm{i}_{\mathrm{j}}\right) \cdot\left(\mathrm{i}_{\mathrm{o}} / \mathrm{is}_{\mathrm{s}}\right)=-\mathrm{K}(1+\mathrm{j} \mathrm{f} /$
$\mathrm{GB}) /\left(1+\mathrm{j} f /\left(\mathrm{GB} / \mathrm{K}_{1}\right)\right)$
where K is the mirror performance ratio of reflected to image current.

Equation (10) demonstrates that the bandwidth of the follower is essentially independent of the load impedance used.

General purpose voltage amplifier

Any of the four basic amplifier configurations may be constructed using up to two voltage followers and up to two current followers as described by Lidgey. The circuit of Fig. 5 is a voltage amplifier built using two voltage followers cascaded with a central current follower. Resistors R_{1} and R_{2} define the voltage gain, A_{v},

Fig.5. Universal voltage amplifier using 741 op -amps and current mirrors constructed from bipolar transistor arrays.

$A_{v} \approx \mathrm{R}_{2} / \mathrm{R}_{1}$
assuming that each of the three followers has precise unity gain.

A prototype circuit of Fig. 5 was built using 741 op -amps and current mirrors constructed from two bipolar transistor arrays, these being a 2 N 3046 and a CA3096. It is essential to use single-chip well matched transistors for current mirror circuits ${ }^{4}$. Frequency response of the prototype is shown in Figs. 6a, b for two different values of K_{1}, the voltage gain being set by R_{2}.

One can see from the experimental results that the bandwidth does not alter when R_{2} is changed to give different values of voltage gain. It is interesting to note that
the conflict between gain and bandwidth generally encountered with more conventional designs using internally compensated opamps, does not occur with this structure of amplifier.

Bandwidth of the voltage followers is approximately 1 MHz and the frequency response of the circuit is limited mainly by the current follower. Increasing R_{d} results in a reduction of K_{1} and hence an increased frequency response of the current follower circuit, as indicated by equation (9). Although bandwidth will tend to increase by increasing R_{k}, to maintain a fixed voltage gain R_{2} must be increased in proportion. However there is a limitation on
the size of R_{2} and hence the voltage gain possible due to the finite output impedance of the current follower; measured at 10 kHz to be $3 \mathrm{M} \Omega$.

References
 1. Nordholt. E.H., Extending Op-amp capabilities by using current-source power supply, IEEE Trans. Circuit and Systems. vol. C'AS-29, No.6, June 1982, pp.411414.
 2. Lidgey, F.J., Current Followers, Electronics and Wireless World. February 1984, pp.40-43.
 3. Widlar, R.J., Some circuit design techniques for linear integrated circuits, IEEE Trans. Circuit Theory. Vol.CT-12, 1 lecember 1965, pp.586-590. 4. Lidgey, F.J., Looking into Current Mirrors, Wircless World, October 1979 , pp.57-58.
 . Wilson B., Current Mirrors, Amplifiers and Dumpers, Wireless World, Vol. 78

 No. 1551, December 1981, pp.47-50.Fig.6. Frequency response of the voltage amplifier for $\mathrm{K}_{1}=2.5$ (a) and $\mathrm{K}_{1}=10$ (b).

BOOKS

Ascent to Orbit, a scientific autobiography by Arthur C. Clarke: John Wiley and Sons, 226 A4 pages, hard covers. Sumptuous coffee-table book celebrating the technical writings of one of Wireless World's tutelary heroes. Includes numerous facsimiles of papers published both here and elsewhere, on astronautics, astronomy, tv waveforms, pentominos, flight, rocketry, the space elevator and of course communications satellites.

8086/88 Assembly Language Programming by Leo J. Scanlon: Prentice-Hall International, 214 pages, soft covers, $£ 15.45$, ISBN 089303424 X. A good introduction for the newcomer. It assumes no prior knowledge of machine code, or even of binary and hexadecimal numbers. Later chapters deal with high-precision mathematics, methods of handling lists and tables and the use of the 8087 number-cruncher.

Bar Code Technology and Applications: Optosonic Press (P.O. Box 883, Ansonia Station, New York, NY10023, U.S.A.), reference PTP-055-X, \$110.00 plus $\$ 10$ carriage on orders from outside the U.S. Loose-leaf compendium of 140 U.S. bar-code patents covering the years 19751982. Other volumes deal with liquid crystal compounds and devices, surface acoustic wave devices, magnetic bubble domain devices, personal and industrial robots and fibre optics.

Basic and Forth in Parallel by

 S.J. Wainwright: Bernard Babani (Publishing), ref. BP138, 95 pages, soft covers, $£ 1.95$, ISBN 0 85934113 5. Making the transition painlessly. Includes a Forth stack simulator written in ZX Basic for Spectrum users.
Beyond Broadcasting: Into the

 Cable Age by Timothy Hollins: BFI Publishing (British Film Institute), 385 pages, soft covers, \{5.95, ISBN 0851701485 . A detailed study of cable experience in the U.S. and Canada and a discussion of the prospects for Britain. Plans for cable systems, their likely effects on the cinema and broadcasting and so on. The author believes cable will one day be as central and valuable to our society as the telephone and broadcasting; though his postscript on some of the recent reverses for cable must have shaken his faith a little.The BBC Micro Machine Code Portfolio by Bruce Smith: Granada Publishing, 212 pages, soft covers, $£ 7.95$, ISBN 0246 12643 4. A collection of 75 assembly-language routines from the technical editor of Acom User: among them are screen-
dumps, timers, programs for handling and sorting lists, arithmetic routines, programming utilities and more. Some of the longer listings are also given in bar-code format for the MEP's bar-code reader. All are available on disc and cassette.

The BBC Micro Rom Book by Bruce Smith: Collins, 280 pages, soft covers, $\mathfrak{£} 9.95$, ISBN 000 383075 6. How sideways roms work and how to write one, with programming examples drawn from Beebugsoft's Toolkit rom. Includes circuit details and software for a simple eprom programmer. Major listings are repeated in bar-code form in a 72 page appendix. Text is not always easy to follow, but at present this is the only book of its kind - or as the author puts it, twice, it's rather unique.

XIXINROGER CARD FRAMES SET THE STANDARD

－Manufactured from anodised aluminium their robust design and accurate construction ensuring easy to use， trouble free operation．

国 Conforms to DIN 41494 part 1，DIN 41612， DIN 41617．Connectors and Backplanes can be fitted in the same frame．
－Developed for single or double Eurocards in 3 U and 6 U heights．
（ Delivery ex－stock in kit component form or fully assembled．
－Complete with identification and tapped strips for easy positioning．

CIRCLE 25 FOR FURTHER DETAILS

Andelos 68000 SYSTEM

Powerful 68000 runs at 10 MHz without wait states．Up to 32KB EPROM and 4 or 16KB fast static RAM． 24 line programmable parallel I／O port．RS232 programmable serial port．Comprehensive monitor in 2764 Eproms． Optional plug－in Eprom programmer card．Cross Assemblers for Z 80 based microcomputers．Code can be developed，downline loaded to 68000，debugged， and then written into Eprom．
＊10MHz 68000 CPUBoard．
from£295＋VAT
＊EPROMPROGRAMMER card
£95＋VAT
＊CROSS ASSEMBLER for Z80 hosts．．．from£55＋VAT

Andelos Systems

Telephone：（0635） 201150
Solina，Bucklebury Alley，Coid Ash，Newbury，Berkshire RG16 9NN
CIRCLE 66 FOR FURTHER DETAILS

If you need assistance in HiF/audio service:

Here's all the help you need

Philips versatile PM 5109 LF generator and unique combined distortion meter/oscillator, the PM6309, give you all the help you need for HiFi and audio service applications. They're easy to operate - and economically priced
PM5109 brings together all the high technology features you require from a test instrument. It offers symmetrical or asymmetrical outputs; pure sine wave signals; a wide $10 \mathrm{~Hz}-100 \mathrm{kHz}$ frequency range and switchable output impedances. A high 30 Vpp amplitude in the asymmetrical mode, with stepped and continuous attenuation; a 10 Vpp floating output in the symmetrical mode, and useful TTL or DIN loudspeaker outputs are
further benefits. In addition, there is a choice of low-distortion or fastsettling modes.

PM 6309 is a simple-to-operate distortion meter that can handle all types of audio equipment. It has been specially designed to provide appropriate signal generation plus an accurate distortion measuring capability within a single instrument

It offers a built-in RC oscillator total harmonic distortion (THD), 3rd harmonic distortion and rms measuring facilities. It not only measures distortion according to DIN 45500 - but also determines the distortion figure accurately when unstable audio signals are being applied.

Fully automatic operation means that all you do is connect the input, select the test frequency - and then read-out the distortion. Separate two-channel testing is also possible for stereo equipment.

Use the inquiry service to obtain further information

Inquiry No.
PM 5109 LF generator 74
PM 6309 distortion meter
75

Philips Test and Measuring

 Pye Unicam LtdYork Street, Cambridge CB1 2PX Tel (0223) 358866 Telex 817331

GN13

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System BBC Computer \& Econet Referral Centre BBC Computers:

Model B: $£ 300$ (a) B+DFS: $£ 346$ (a)
Model B+Econet: $£ 335$ (a) B+Econet+DFS £399 (a)
ACORN 10 Mbyte Hard Disc $£ 1300$ (a)
ACORN 2nd Processors: 6502 : £175 (a) Z80: $£ 352$ (a)
TORCH UNICORN: Z80 Card: £275 (a) Z80 Disc Pack: £650 (a)
UNICOMM Communications Package: $£ 159$ (b)
20 Mbyte Hard Disc+400K Floppy: $£ 1950$ (a)
We stock the full range of ACORN hardware and firmware and a very wide range of other peripherals and firmware for the BBC. For detailed specifications and pricing please send for our leaflet.

PRINTERS

EPSON: RX80FT £225 (a); FX80 £315 (a) FX100 £435 (a); RX100 £345 (a) RX80T £215 (a) KAGA TAXAN: KP810 £255 (a); KP910 £359 (a) BROTHER: HR15 £340 (a); JUKI $6100 £ 340$ (a). GRAPHICS PLOTTER WORKSTATION Complete $£ 490$ (a) Basic Plotter £270 (a)

ACCESSORIES

EPSON Serial Interface: 8143 £28 (b); 8148 with 2 K buffer $£ 57$ (b). EPSON Paper Roll Holder $£ 17$ (b); FX80 Tractor Attach $£ 37$ (b); RX/FX80 Dust Cover $£ 4.50$ (d) EPSON Ribbons: MX/RX/FX80 $£ 5.00 ; \mathrm{MX} /$ RX/FX100 $£ 10$ (d).
JUKI: Serial Intertace $£ 65$ (c); Tractor Attach, $\mathbf{£ 9 9}$ (a); Sheet Feeder $£ 199$ (a); Ribbon $£ 2.50$ (a) BROTHER HR15: Sheet Feeder £199; Ribbons - Carbonor Nylon £4.50; Multistrike $£ 5.50$ (d); 2000 Sheets Fanfold with extra fine pert. 9.5in. - £13.50; 14.5 in . $£ 18.50$ (b). BBC Parallef Lead £8; Serial Lead $£ 7$ (d).

MIRACLE WS2000

The ultimate world standard modem covering all common BELL and CCITT standards up to 1200 Baud. Allows communication with virtually any computer system in the world. The optional AUTO DIAL and AUTO ANSWER boards enhance the considerable faciities already provided on the modem. Mains powered $£ 129$ (c) Auto Dial Board/Auto Answer Board $£ 30$ (d) each (awaiting BABT approval). Sotware lead $£ 4.50$
TELEMOD 2:
Complies with CCITT V23 1200/75 Duplex and 1200/12 half Duplex standards that allow communications with
VIEWDATA services like PRESTEL, MICRONET etc. as well as user to user communications. Mains powered. $£ 62$ (b) as user to
BUZZBOX
This pocket sized modem complies with V21 300/300 Baud and provides an ideal solution for communications between users, with main frame computers and bulletin boards at a very economic cost. Battery or mains operated. $£ 52$ (c) Mains Adaptor $£ 8$ (d) BBC to Modem data lead $£ 7$

SOFTY II

This low cost intelligent eprom programmer can program 2716, 2516, 2532, 2732, and with an adaptor, 2564 and 2764 Displays 512 byte page on TV - has a serial and parallel $1 / 0$ routines. Can be used as an emulator, cassette interiace. Sette interiace. $£ 195.00$ (b) Adaptor for 2764 / Adaptor for 2764/.... $£ 25.00$

Al prices in ATTENTION

 subject to change without notic ALL PRICES EXCLUDE VATPlease add carriage 500 unless indicated as follows (a) $£ 8(b) £ 2.50$ (c) $£ 1.50$ (d) $£ 1: 00$ ACORN IEEE INTERFACE
A full impiementation of the IEEE-488 standard, providing computer control of compatible scientific \& technical equipment, at a lower price than other systems. Typical applications are in experimental wor in academic and industrial laboratories. The inter face can support a network of up to 14 other compati ble devices, and would typically link several items o test equipment allowing them to run with the optimum of efficiency. The IEEE Filing System ROM is supplied £282.

INDUSTRIAL PROGRAMMER

EP8000.

This CPU controlled Emulator Programmeris a pow erful tool for both Eprom programming and develop ment work. EP8000 can emulate and program a eproms up to $8 K \times 8$ bytes, can be used as stand alone unit for editing and duplicating EPROMS, as a slave programmer or as an eprom emulator $£ 695$ (a)

DISC DRIVES

These drives, fitted with high quality JAPANESE mechanisms are supplied in attractive steel cases painted in BBC colour. The drives are fully Shuggart A 4000 compatible. All dual drives are supplied with integral power supply whilst singles are supplied with or without power supply All drives come complete with data \& power cables, manual and BBC formatting disc.
$1 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TS55A £100 (b); CS55A with pSU $£ 125$ (b)
$1 \times 200 \mathrm{~K} 40 / 80 \mathrm{~T}$ SS: CS55E with pSu £150 (b)
$1 \times 200 \mathrm{~K} 40 \mathrm{~T}$ DS $£ 115$ (a)
$1 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS: TS55F £ 125 (a); CS55F with pSU £169 (b)
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS: TD55A with psu $£ 250$ (a)
$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS TD55M with psu $£ 310$ (a)
$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ DS TD5M with psu $£ 310$ (a)
$2 \times 400 \mathrm{~K} 40 / 80 \mathrm{~T}$ D TD55MP in flat pack with built-in plinth $£ 325$ (a)
C 100 TEC with psu §125 (a); CS55F with psu §169 (a)

Authorised Distribuitor

Data Recording Products

3M FLOPPY DISCS

Industry Standard floppy discs with a lifetime guarantee Discs in packs of 10 40 Track SS DD $\quad £ 15$ (c) 40 Track DS DD £18 (c) 80 Track SS DD $£ 22$ (c) 80 Track DS DD $£ 24$ (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning Kit with 28 disposable cleaning discs ensures continued optimum performance of the drives. $£ 14.50$ (c)

Single Disc Cable $£ 6$ (d)
10 Disc Library Case $£ 1.80$ (d)
30/40 Disc Lockable Box £14 (c)
Dual Disc Cable $£ 8.50$ (d)
30 Disc Storage Box $£ 6$ (c)
100 Disc Lockable Box £19 (c)

MONITORS

MICROVITEC 14in. \& 20in RGB
1431 Std Res $£ 165$ (a); 1431 Ap std Res PAL/Audio $£ 210$ (a):
1451 Med Res $£ 240$ (a); 1441 Hi Res $£ 399$ (a); 2030 CS Std Red $£ 380$ (a); 2040 CS Hi Res $£ 685$ (a) Plinth for 14in. Monitors $£ 8.50$.
Microvitec Monitors with TTL/Linear Inputs also available.

KAGA TAXAN 12in. RGB

Vision II Hi Res £235 (a); Vision IIl Super Hi Res $£ 340$ (a) Green Screens; KAGA 12G £99 (a); SANYO DM811 112CX £90 (a); BBC Leads: KAGA RGB $£ 5$ Microvitec $£ 3.50$; Monochrome $£ 3.50$ (d) SANYO CD 3125 NB 14 in. RGB Std Res £179 (a)

UVERASERS

UV1T Eraser with built-in timer and mains indicator Built-in safety interlock to avoid accidental exposure to the harmiul UV rays.
It can handle up to 5 eproms at atime with an average erasing time of about 20 mins. $£ 59+£ 2$ p\&p.
UV1 as above but without the timer $£ 47+£ 2$ p\&p. For Industrial Users, we offer UV140 \& UV141 erasers with hand ling capacity of 14 eproms. UV1 41 has a built in tumer. Both otier full built in satety features UV140 £61, UV141 £79, p\&p £2.50.

PRINTER BUFFER

This printer sharer/butter provides a simple way to upgrade a multiple computer system by providing greater utilisation of available resources. The buffer offers a storage of 64 K . Data from three computers can be loaded into the buffer which will continue cally switch from one computer to next as soon as that computer has dumped all its data. The computer then is available for other uses. LED bargraph indicates memory usage. Simple push bution control provides. REPEAT, PAUSE and RESET functions Integral power supply. £245 (a). Cable set 130 .

CONNECTOR SYSTEMS

by J.J. Wiseman

The International Maritime Organisation is presently rearranging maritime radio with greater emphasis on use of 2182 kHz for distress and intership working. There will be a temptation to use only whips. At 2182 kHz they will have a small radiation resistance, under 1 ohm , and the current problem of 500 kHz short-wire aerials having this kind of radiation resistance, swamped by leakage losses in rough weather, will then be repeated. Nothing will have been gained by the change over...

Bibliography

Cutting, F. Simple method of calculating radiation resistance. Proc. IRE April
1922.

Everitt, W.L. Communication Engineering. McGraw, 1937
Jasik, H. (ed) Antenna Engineering
Handbook. McGraw Hill, 1961
Laport, E.A. Radio Antenna Engineering, McGraw Hill, 1952
Lindenblad \& Brown, Main considerations in Antenna Design Proc.IRE Jun 1926
Brown, W.W. Kadio frequency tests on antenna insulators Proc.IRE Oct 1923 Wiseman, J.J. Anybody seen our ship? Nautical Review May 1979
Ballantyne, S. Kadiation resistance of simple vertical antenna at wavelengths below the fundamental Proc. IRE Dec 1924.
Smith \& Johnson, Performance of short antennas. Proc.IRE Oct 1947.

How long is a piece of wire?

Efficiency and radiation resistance of electrically short transmitting antennas especially of the inverted-L kind - leave a lot to be desired.

Technical literature on transmitting antennas, as found in libraries and bookstores or published in popular journals, seems to fall into two categories. The subject is either presented as page after page of complex mathematics, written by PhDs to be read by other PhDs, or it comes as a cookbook or catechism, which everybody 'knows' by heart but few really understand in-depth but find convenient for every day practical use. Thus "A quarter-wave vertical has 50 ohm feed, a half-wave dipole 74 ohms, end-fed halfwaves have 600 ohm line" and there are similar psalms to be sung for Yagis, rhombics and other exotica. As all have a radiation resistance far greater than any likely losses, they all work without problems and with good and predictable efficiency. Amen and praise the mathematicians, who made it all possible and put it in a book of revelations. When multiband specials are described, their design often contains more 'art' than science, and performance is assessed subjectively.

They are usually justified in terms of s.w.r., which doesn't necessarily say everything about efficiency as a radiator.

People to whom 'bigger' usually means 'better' have become accustomed to seeing very satisfactory mobile communications carried out with antennas less than a metre in length (at v.h.f/u.h.f.), and some have come to believe that 'short' is good enough at any frequency, and it is the layman the coathanger bender - more often than not who puts up the money and 'does it himself'. In h.f. mobile applications, land vehicles, small boats (and even large boats), the whip or short wire antenna will be all that is possible, yet may be required to operate over a wide frequency spectrum. Accurate information on performance is hard to find. All that the ARRL Antenna Book has to say is that "Information about the radiation resistance of antennas of less than quarter wavelength is difficult to come by" and leaves it at that. This is the 'no mans land' of aerials.

Antennas of less than $1 / 4$ are not supposed to exist, but at very low and low frequencies they cannot really be avoided; it is hardly possible to erect a $\alpha / 1500$-metre vertical for a 50 kHz military transmitter. It is in this area that the performance of the electrically short antenna has been most thoroughly studied; the enormous cost in engineering structures involved has made it essential. Such antennas may have to operate with radiation resistance of only 0.05 ohm . The subject had been well covered by the 1930s but was published not in books, rather in Proceedings of I.R.E., and similar, and therefore inaccessible to the general reader. The experience is transferrable to

other short antennas.

Radiation resistance is plotted against actual antenna height in the graph below in degrees ($1 / 4=$ 90°). Various 'rules of thumb' exist for computing radiation resistance for short antennas. The 1930 Admiralty Handbook of Wireless Telegraphy, offers the rule $\mathrm{R}_{\mathrm{t}}=160 \pi^{2} \mathrm{~h}^{2} / \lambda^{2}=1580 \mathrm{~h}^{2} /$ λ^{2} and Martin and Carter of RCA Laboratories, N.Y., (1961) repeat the same equation. ' h ' is the effective height of the antenna, equal to actual height (1) when base current is equal to top current. For any other current distribution, effective height is that of a rectangle having equal base and equal in area to that under the curve of current distribution. Laport gives $\mathrm{R}_{\mathrm{T}}=10 \mathrm{G}_{0}{ }^{2}$ where G_{0} is the electrical height of the antenna in radians and transforms this into $R_{r}=0.1215 \mathrm{~A}^{2}$ where A is the degree-ampere area of the plot of current distribution. In any event, the curve of $R_{T}: 1$ is a parabola, or a family of parabolas. For $\mathrm{R}_{\mathrm{T}}=1$ ohm, aerial height (without top loading) has to be about 18 electrical degrees, or with top loading, giving linear current distribution, 9 degrees. Compare this with R_{r} for a y_{1} grounded vertical: 36.57 ohms according to Everitt, who provides the full mathematical derivation. This R_{r} will be "the same for an antenna 2.5 metres high at $30 \mathrm{MHz}, 250$ metres high at 300 kHz or 777 miles high at 60 Hz ". Similar considerations will apply for antennas of less height. How fortunate were the early aviators who could reel out their trailing aerial to any convenient y_{1} !
A ' 22 -foot' whip is a popular antenna for small water craft. It can be required to operate in marine R/T bands, at, or close to $2,4,6,8,12,16$ and 22 MHz .

The 22ft whip has a physical length of 6.7 metres, $\lambda / 4$ at 11.19 MHz (neglecting 'and effect'), near ${ }^{1 / 4}$ at $12 \mathrm{MHz}, 3 \lambda / 8$ at 16 and λ / z at 22 MHz . But at 2 MHz it is only 0.045λ, and at 6 MHz only 0.13 of a wavelength. At these frequencies it is "electrically short." Table 1 reveals the shift in performance.

Losses will occur by inductive heating of material of the whip and any adjacent metal, and in the earth connection. Low-loss connection to the water may be difficult to achieve with a wood or glass fibre hull. Assuming lumped losses of 1,3 and 5 ohms then

$$
\text { efficiency }=\frac{\mathrm{R}_{\mathrm{r}}}{\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{\text {loss }}} \times 100 \%
$$

Efficiency is given in Table 2 for a 22 ft whip, Tables $3 \& 4$ give equivalent data for a 12 ft whip. When the whip is operating at less than $2 / 1$ it is capacitive. Parallel leakage at the base insulator can be converted to series equivalent resistance

RP Insulator leakage
RS Series equivalent of Rp
R_{L} Copper lasses \& radiotion resistance (constant)
For equivalence, power absorbed in R_{p} must equal power absorbed in R_{s} :
$\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{p}}}=\mathrm{I}^{2} \mathrm{R}_{\mathrm{s}}=\mathrm{R}_{\mathrm{s}}\left(\frac{\mathrm{V}^{2}}{\mathrm{R}_{\mathrm{s}}{ }^{2}+\mathrm{X}_{\mathrm{c}}{ }^{2}}\right)$
$\frac{1}{R_{p}}-\frac{R_{s}}{R_{s}{ }^{2}+1 / \omega^{2} C^{2}}$
$\therefore \mathrm{R}_{\mathrm{p}}=\frac{1}{\mathrm{R}_{\mathrm{s}} \omega^{2} \mathrm{C}^{2}}+\mathrm{R}_{\mathrm{s}}$.
As R_{s} is very small compared to R_{p}, last term can be neglected, giving
$\mathrm{R}_{\mathrm{p}} \approx \frac{1}{\mathrm{R}_{\mathrm{s}} \omega^{2} \mathrm{C}^{2}}$ and $\mathrm{R}_{\mathrm{s}} \approx \frac{1}{\mathrm{R}_{\mathrm{p}} \omega^{2} \mathrm{C}^{2}}$
series equivalent leakage being inversely proportional to $\mathrm{f}^{2} \& \mathrm{C}^{2}$. If $\mathrm{C}=40 \mathrm{pF}, \mathrm{f}=2 \mathrm{MHz}$, and $\mathrm{R}_{\mathrm{p}}=$ $1 \mathrm{M} \Omega$, then R_{s} is about 4 ohms, about doubling or trebling the existing lumped losses. If this halves Q, then $I_{a e}$ is also halved,
and so is Z_{r}, resonant input impedance of parallel circuit formed by the whip and its associated tuning inductance. If the coupling can't cope, the reduced load offered to the p.a. valve or transistor reduces its efficiency as a generator, further reducing I_{ac}.
With a wire antenna, given the voltage distribution - highest at the far end, then leakage at the far end will have worse effect than the same leakage at the feed point ($z_{\mathrm{r}}=\mathrm{E} / \mathrm{CR}_{\mathrm{s}}$).

Merchant ship antennas

Forty metres of wire bent into an L, with a 15 metre vertical portion is not untypical. This length is better than $\%$ at 2 MHz (vertical portion 36 degrees, $\mathrm{R}_{\mathrm{r}}>16$ ohms and low L/C ratio), better than one wavelength at 8 MHz or higher; radiation resistance is 30ohms or more in any h.f. band, and h.f. efficiency is high under any conditions. At 500 kHz , the vertical portion has an actual height of 9 electrical degrees, the remaining 15 degrees (25 metres) being 'top loading'. According to the commercial designers, the top loading does not radiate; it is called the 'suppressed portion'. They concentrate attention on radiation from the vertical portion to achieve a desired field strength at a given distance, and include any radiation from the top and its associated radiation resistance in the 'losses'. A well designed symmetrical top with equal currents flowing in opposite directions might not radiate much at all (e.g. T-antenna), but an inverted-L is going to radiate two components, that from the vertical section being the most predictable and most useful.

The full 40 metres of wire (24°) in the inverted- L has a potential radiation resistance of about 1.9 ohms at 500 kHz , (not necessarily fully realised). As shown right, the current distribution in the vertical portion is, for practical purposes, a trapezium of the dimensions indicated
Area
$=\frac{(0.2588+0.04067)}{2} \times 9=2.995$
Effective height
$=\frac{2.995}{0.4067}=7.36^{\circ}(12.27 \mathrm{~m})$
Radiation resistance
$=1580\left(\frac{\mathrm{~h}^{2}}{\lambda}\right)=0.66 \mathrm{ohms}$

Table 1. Performance of 22ft whip aerial

Frequency (MHz)	2	4	6	8	12
Length (electrical deg.)	16	32	48	64	96
Radiation resistance (Ω)	0.78	3	7	12	37
Current to radiate $50 \mathrm{~W}(\mathrm{~A})$	8.0	4.08	2.67	2.04	1.16
Power radiated by 1A current	0.78	3	7	12	37

Table 2. Efficiency of 22ft whip aerial

Frequency (MHz)	2	4	6	8	12
1Ω loss	44%	75%	87.5%	92%	97.4%
3Ω loss	20.6%	50%	70%	80%	92.5%
5Ω loss	13.5%	37.5%	58%	70%	88%

Table 3. Performance of 12 ft whip aerial										
Frequency (MHz)	2	4	6	8	12					
Length (electrical deg.)	8.8	17.5	26.3	35	52.6					
Radiation resistance (Ω)	0.25	1.0	2.0	3.7	8					
Current to radiate 50W(A)	14	7.1	5	3.7	2.5					
Power radiated by 1A current	0.25	1.0	2.0	3.7	8.0					

Table 4. Efficiency of a 12ft whip aerial

Frequency (MHz)	2	4	6	8	12
1Ω loss	20%	50%	67%	85%	89%
3Ω loss	7.7%	25%	40%	55.2%	72.7%
5Ω loss	4.8%	16.7%	28.6%	42.5%	61.5%

Looking at it another way, the trapezium is equivalent in area to a triangle of equal base and height 1 , so that $0.4067 \times 1 / 2=2.995$, so that $1=14.73^{\circ}$ (24.55 metres) .
So the top loading effectively increases actual antenna height, as far as the vertical portion is concerned, from 9 to 14.73°. An antenna of this height without top loading also has $R_{r} \approx 0.66 \mathrm{ohms}$, as can be verified from the curves on page 24 .
If a 400 -watt transmitter puts 10 amps up such an aerial, the power radiated from the vertical portion, omnidirectional and vertically polarized, will be 66 watts, and best efficiency about 16.5%. If leakage causes $I_{a c}$ to fall to 1 amp, then power radiated drops to 0.66 watts, and transmitterantenna efficiency down to a miserable 0.165% : Current in the capacitive branch of a parallel resonant circuit (the aerial) $=I_{c}$ $=$ QI. Introduction of 20Ω series resistance, equivalent to $20 \mathrm{k} \Omega$ parallel leakage, would decimate the Q , and the loss of resonant impedance Z_{r} that goes with it adds loss of p.a. generator efficiency, or simply trips the overload. At the same time it is difficult to ignore the fact that at 10 amp base current, current at the 'bend' is $10 \times 0.2588 / 0.4067=$ 6.4 A . The top is 15° in length, R_{r} at least 0.68 ohm , and power radiated from the top $=(6.4)^{2} \times$ $0.68=28 \mathrm{~W}$, most of it fired off in the direction of other planets, and

not to other ships. Total power radiated is $23.5 \%, 16.5$ usefully. When radiation from the flat top exceeds that from the vertical portion, a limit is reached.
Perhaps an inverted-L is not a very good investment. The optimum top loading for this antenna would be about 81° non radiating, producing a rectangular pattern of current distribution in the 9° vertical and accepting more current at less potential. Area of current distribution is then 9 , and a triangle on the same base has height $18^{\circ}, \mathrm{K}_{\mathrm{r}}$ about lohm. Further increase in R_{r} would require an increase in vertical height beyond the present 9°.
Optimum top loading doubles the effective height and quadruples radiation resistance (R_{r} for a simple 9° aerial is 0.25Ω). Even then, to maintain a radiated 10 watts, 3.2 A aerial current is required.

Auto repeat for Hall-effect keys

Surplus Hall-effect keyboards can be obtained cheaply, but they often lack a repeat key or auto-repeat function. Many Hall-effect keys produce a single pulse when pressed, as opposed to a continuous output, and so do not lend themselves to this function. This design provides delayed auto-repeat on such keyboards and requires only three connections to the existing circuit.

The key matrix of a Hall effect keyboard is powered by a d.c. souce, usually +5 V or +12 V . The pulse produced by pressing a key is translated into an Ascii value and a strobe pulse by the keyboard conroller. This additional circuit switches the power supply to the matrix so that while a key is pressed, a pulse is produced each time that the supply goes from low to high, resulting in multiple strobe pulses. Supply to the controller is continuous of course.

Auto repeat at 10 Hz starts about 1 s after pressing a key. Repeat frequency is determined by R_{1} / C_{1} and delay period by
the 4518 dividers; both are adjustable. The only connections between this and the existing circuit are the strobe pulse, power supply and key-matrix supply driver. Keys on which auto-repeat is not required may be connected to the continuous supply.
An extended strobe pulse is available. This is for use in terminals or computers using keyboard polling where the normal strobe pulse may be too short. All i.cs are cmos so adaptation for other supply voltages is easy. Note that the transistor is not intended to switch large capacitive loads, so make sure that there are no large decoupling capacitors in the key-matrix supply circuit.

In steady state or after power up, IC_{38} is reset and $\mathrm{IC}_{4 \mathrm{a}}$ pin six is low. Pins eight and nine of $\mathrm{IC}_{4 \mathrm{~b}}$ are both high so the transistor is saturated and a continuous current flows through the key matrix.

Pressing a key produces a positive strobe pulse at the input and resets both counters, $\mathrm{IC}_{1 \mathrm{a}, \mathrm{b}}$. After this narrow pulse, both counters count up to 20, output Q_{1} of $\mathrm{IC}_{1 \mathrm{~b}}$ becomes high and the counter stops.
The counter output low-to-
high transition generates a pulse to drive the transistor base and clock input of $\mathrm{IC}_{3 \mathrm{~b}}$. The transistor opens for a short time, producing one pulse in the matrix. If at this point the key is still pressed, a new strobe pulse occurs and restarts the counters; this pulse is stretched to around 10 ms by the circuit around $\mathrm{IC}_{2, i, c}$. This strobe pulse is fed to the D input of a bistable device, $\mathrm{IC}_{3 \mathrm{~b}}$. Clock input of this device is triggered by the delayed matrix pulse through $\mathrm{IC}_{4 \mathrm{c}}, \mathrm{IC}_{3 \mathrm{~b}}$ is set and the reset condition of IC_{3} is removed through $\mathrm{IC}_{4 \mathrm{~d}}$ and $\mathrm{IC}_{2 \mathrm{f}}$.

At the next counter time-out, $\mathrm{IC}_{3 \mathrm{a}}$ is set and asymmetrical clock pulses from $\mathrm{IC}_{2 \mathrm{a}, \mathrm{b}}$ are sent through $\mathrm{IC}_{4 \mathrm{a}, \mathrm{b}}$ to the transistor. The matrix is now switched at the clock rate until the key is released. After release, the strobe pulses disappear, $\mathrm{IC}_{3 \mathrm{~b}}$ is reset and the circuit returns to its steady state.

Karel Pauwels

Melsele
Belgium

Asynchronous data separator for modems

An economical solution is shown for the asynchronous data separator requirement in modems having a three-to-two frequency ratio

Timings shown relate to a standard recommended by the EEA* for data transmission over radio systems. At 1200 baud, a logical one is defined as one cycle of 1200 Hz and a logical zero as one and a half cycles of 1800 Hz , transmitted with phase continuity, Fig. 1. The signalling rate may also be 600 baud, when a logical one is two cycles of 1200 Hz and a logical zero three cycles of 1800 Hz .

The system is a synchronous one in that the receiver must be brought into synchronism with the transmitter in order to retrieve the data with the least chance of errors. Since it is necessary to derive the bit rate from the data transitions themselves, a means of asynchronous data separation must be used first, Fig. 2.

Received tones are limited to provide a square wave sequence with zero crossings corresponding to those of the input waveform. The sequence is then delayed by one and a half bit periods at 1200 baud and exclusive or'd with itself. This process is then repeated, but with a delay of one sixth of a bit period, to provide the retrieved data, as shown in the timing diagram. No modification is required for 600 baud operation. The bit pattern used in the example is 110011 at 1200 baud or 101 at 600 baud. The practical example shown uses a 4731 quad 64 -bit shift register as the delay element. Three of the registers are connected in tandem to provide the half bit-period delay.

Dividing a 3.6864 MHz crystal oscillator by eight conveniently provides the 460.8 kHz clock. Since the delay is achieved by a sampling method, a one-bit uncertainty on the 460.8 kHz clock exists in the delay value. This takes the form of glitches

[^2]varying in width between zero and two microseconds at the output. These are removed by RC filtering at the output gate.
L. Thomas

Comdial Communications Cardiff Wales

Fig.2. Separator

Fig. 3. Timing diagram
1200 Baud waveforms

Data represented by tones

(A) Ex-Ord witt (B)

Fig.4. Practical implementation

Digital distorter

While working on a digital sound processing system, I hit upon the idea of using an eprom to distort the waveform coming into the system. Distortion can vary from simple clipping, which simulates an overdrive pedal, to as complex a nonlinear function as required.
In my system, two eproms provide 16 -bit resolution and 16 transfer functions are stored including linear, which has no effect on the signal, and fullwave rectify which doubles the frequency of a sinewave input. This circuit is an 8 -bit version for simplicity and cheapness. One of 16 functions is selected using four switches.

Capacitors C_{1} and C_{2} are chosen to give the required sample rate and conversion times respectively. Input and output low-pass filters are essential and it is also useful to be able to adjust input gain for the best s / n ratio.
G. Hardy

Department of Physics Nottingham University

Vectored interrupts on 68series processors

There is only one IRQ interrupt-request address for all peripherals on 68 xx -series microprocessors but eight or more are possible using continuous scanning under control of the processor E clock. When an interrupt signal is detected, it is latched and the counter holds a value corresponding to the interrupting peripheral. The counter content is used by the processor as part of the service address for its interrupt-service routine; note that address line A_{4} is changed to zero. This gives a pair of bytes to each peripheral in the range FFE0 to FFFF_{16}.

The number of peripherals can be increased to 16 by an extra 74LS150 and gates to make A_{5} zero when the IRQ service occurs. On the 6809, a dual system can be
implemented for IRQ and FIRQ.
A.W. Roscoe

Enfield

Middlesex

What you make with our boards is up to you!

85000 Processor Board

Fully buffered 8085 processor User defined memory size 2 K to 96 K bytes RS232C serial interface with D connector Field selectable addresses Can be used as single board computer 64 way bus connectors between boards Single Eurocard $220 \times 100 \mathrm{mms}$

85001 Display Board

For use with EPSON alphanumeric LCD's Sizes from 16×1 to 40×4 characters Local memory for message storage Bus also directly compatible with MCS 51 Spare 8-bit I/O port on board Prototyping area drilled to accept BICC-VERO Speedwire pins

85002 Communications Board

Programmable serial interface On board baud rate generator Five 8 -bit programmable timer/counters Two 8-bit programmable parallel I/O ports 8 level priority interrupt controller Prototyping area drilled to accept BICC-VERO Speedwire pins

> Automation and Control Technology
> Cofton Road, Marsh Barton. Exeter EX2 80W Tel: 37190 CIRCLE II FOR FURTHER IDETAILS.

CIRCLE 29 FOR FURTHER DETAILS.

FIELD ELECTRIC LTD.

3 SHENLEY ROAD, BOREHAMWOOD, HERTS.
Telephone: 01-953 6009
OPEN SIX DAY'S A WEEK 9AM-5PM THURSDAY 9AM-1 PM CALLER'S WELCOME
SPECIAL OFFER FARNELL FAN COOLED
P.S.U. $+-5 /+-12 £ 28: 00 \mathrm{c} / \mathrm{p}$ 3:50.

SHUGART 8018^{n} I).DRIVE'S COMPLETE
WITH P.S.U. ETC: IN CASE $\{200: 00+15 \%$ V.A.T. RING FOR C/P
PLESSEY $2 / 4$ MEGABYTE (MAX) GENERAL
PURPOSE RANDOM ACCESS MEMORY SYSTEM
CAN BE USED FOR MAINFRAME/MINI MICROPROCESSOR'S P.O.A.
NEW \& BOXED GOULD 6V.D.C. 40AMP
SWITCH MODE P.S.U. £60:00 C/P 2:00
ALL PRICE'S INC VAT UNLESS STATED
CIRCLE 57 FOR FURTHER DETAILS.

\section*{| Equipment • Communications | |
| :--- | :---: |
| INSTRUMENTS STOCKED | |
| SCOPES | |}

SCOPES

POWER SUPPLIES (UK C/P $£ 2.00$)

CIRCIE 52 FOR FIIRTHER DETIILS

connect with quality

The Oryx name means a range of soldering tools and accessories designed to meet any modern requirement. Our comprehensive range includes lightweight, cordless rechargeable soldering irons, the famous "Super" and "Viking" standard designs and lightweight and temperature - controlled models. All with a wide selection of tip designs and sizes. The unique Portasol butane gas soldering iron completes the range. Oryx also supply the largest range of SR desoldering tools, including the new anti-static pump, power supply units, safety stands and solder pots.

1 D-advanced design at an ordinary price

GREENWOOD ELECTRONICS DISTRIBUTORS
Toolronge 073422245 Reading. S.T.C. Electronic Services 027926777 Harlow. Verospeed 0703641111 Eastleigh. Electroplon 076341171 Royston. Engineering and Electronic Supplies 063954162 Wales. Cabbies $01-6992282$ London. Buck \& Hickman U.K. Anglia Components 094563281 Cambridge. EI.C. Ltd. 072736311 St. Albans. Willowvole Electronics 0734860158
Reading. Longs 0932861241 Surrey Reading. Longs 0932861241 Surrey.
Please telephone or write for further information to
Greenwood Electronics Portman Road, Reading, Berkshire, RG3 1NE Tel: Reading 0734595844 . Telex: 848659

LANCREX SUPPLESTD

Southern Otfice \& Headquarters Dorcan House. Meadfield oad. Langley. Berks SL. 38 AL 1×01897243
$\times 935371$

Northern Office Crossford Court. Dane Tet: 0619736251

Aberdeen Office reenbank Crescent ast Tullos Ind Est. Aberdeen Tel:0224 8990522

Scottish Office Murraysgate Industrial

FUNCTION GENERATOR $0.1 \mathrm{~Hz}-500 \mathrm{kHz}$

* Sine, Square, Triangle, TTL * Accuracy typically 1% of

Computer network inks Instrument Rentals offices at Heathrow. Manchester Edinburgh and Aberdeen, for instant product avalability anywhere nt the U.K

Write to us for your tree datapack oday, or 'phone us before 3 p.m. and it will be in the post to you the same day.
output

* Typically $0.02 \mathrm{~Hz}-700 \mathrm{kHz}$
* 7 switched ranges with coarse and fine frequency controls
* $\pm 30 \mathrm{~V}$ output capability range
* Variable DC offset
* External A.M. facility
* External sweep facility
* Short circuit protection all outputs JUPITER 500 (inc. P \& P and VAT) f 128.80 Colour leaflet with specifications and prices available from: BLACK STAR LTD, (Dept.WW) 4 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ, England. Tel: (0480) 62440 Telex: 32339
es,

CIRCLE 40 FOR FURTHER DETAILS.

GPIB instruments

Some additions to our March list

Anorad produce a range of precision servo-controlled positioning tables. Their Intelligent Axis Control System is a rackmounting unit capable of accepting up to six axis control cards. Inputs can be from optical or mechanical switches, or direct from laser interferometers. Automatic calibration is provided. Laser Lines Ltd, Beaumont Close, Banbury, Oxfordshire OX 16 7TQ. EWW250

Aerotech's Unidex III positioning system is a fast programmable movement controller for use with d.c. servos or stepping motors. The rack-mounting control unit can store up to 99 randomly-accessible programs. Up to 32 Kbytes of battery-backed storage can be provided. Laser Lines Ltd, Beaumont Close, Banbury, Oxfordshire OX16 7TQ. EWW251

Bentham: the model 266 a-to-d converter is a dual 12 -bit integrating converter with programmable sensitivity. It can poll up to 16 inputs and can read any two of them simultaneously. The price is $£ 750$. There is a dual drive unit for stepping motors complete in a box with its own power supply at $£ 605$, for use with (among other things) a range of movable positioning stages giving up to 250 mm of travel with a positioning accuracy as close as 0.5 microns. A programmable monochromator photometer system allows the user to analyse optical radiation in the ultra-violet, visible and infra-red regions. Applications include measurements of spectral loss in optical fibres and end-point detection in plasma etching. Two software packages are available for the HP-85 microcomputer. Bentham Instruments Ltd, 2 Boulton Road, Reading, Berkshire RG2 0NH. EWW252

Druck make a range of pressuremeasuring equipment based on silicon strain-gauges. Instruments with GPIB interface include digital pressure indicators for up to 15 channels (from £920), available with a variety of integral or remote transducers for pressures great and small (from about $£ 300$ extra); and a pressure controller-indicator (from about $£ 2500$). Druck Ltd., Fir Tree Lane, Groby, Leicester LE6 0FH. EWW253

IMS offer a multi-channel measurement and control interface. The chassis unit holds up to four modules which can be chosen from a range embracing high-resolution a-to-d and d-to-a converters,
thernocouple inputs and relay units. Optional extras include a penal-mounting dot-matrix printer and a 32 K ram module. IMS Electronics, Unit R6, Riverside Industrial Estate, Bridge Road, Littlehampton, West Sussex BN17 5DF. EWW254
Kepco produce in the USA an extensive range of linear and switch-mode power supplies, including modules for o.e.m. use, hardware and accessories. The range includes models for bench or laboratory use and for automatic test systems and there are highvoltage and bi-polar versions. All programmable models are GPIBcompatible, and in some cases even such features as over-voltage protection can be programmed. Techmation Ltd., 58 Edgware Way, Edgware, Middlesex HA8 8JP. EWW255

Microlink is a low-cost modular interface for connecting laboratory instruments to microcomputers. Plug-in units are available for applications in electronics and physics, engineering, chemistry and life sciences. Among them are counters and timers, a real-time clock, a stepper-motor controller and a heart-rate timer. Basic mainframe for seven modules costs $£ 420$; module prices range from $£ 105$ for an analogue input to $£ 450$ for a temperature unit. Control software can be supplied for Apricot, Apple, BBC, CBM, IBM, Hewlett-Packard and Sirius microcomputers. Biodata Ltd, 6 Lower Ormond Street, Manchester M1 5QF. EWW256

Mowlem Microsystems' Autonomous Data Acquisition Unit allows monitoring of up to 16 transducer channels simultaneously. An internal microcomputer with battery-backed memory offers a wide range of data logging functions, giving the unit a substantial degree of independence from the host computer. Modules include a-to-d inputs, signal conditioners, analogue outputs, cards for thermocouples and platinum resistance devices, a dual stepping-motor controller card, a relay card and a choice of straingauge cards. For closed-loop control an optional process control interface is available. Prices for a working system start at about £2,900. Mowlem Microsystems Ltd, Eastman Way, Hemel Hempstead, Hertfordshire HP2 7HB. EWW257

Rikadenki produce a series of graphics plotters extending from one-pen and two-pen flat-bed types to multi-pen recorders with up to 10 channels. Plug-in input modules can be chosen from a range which covers temperature, pressure and torque as well as a.c. and d.c. electrical measurements. Other modules offer features such as autoranging and automatic zero suppression. Rikadenki Mitsui Electronics (U.K.) Ltd, Oakcroft Road, Chessington, Surrey KT9 1SA. EWW258

Saunders and Associates manufacture two GPIB-controllable crystal impedance meters. Low and high frequency versions are available, covering quartz crystals

Below: An A3-size graphics plotter from Rikadenki; and (bottom) the Druck DPI500 pressure instrument which can measure or control pressures in any specified units.

The Guildline digital platinum resistance thermometer mentioned in last month's survey costs less than we thought: the current price is $£ 1,780$.

Below: IEEE488 communications card for the Triangle TDS 900 Forth computer; and (bottom) an Amplicon model 87 digital panel meter with GPIB control software running on an IBM personal computer.
in the ranges 8 kHz to 1 MHz and 1 MHz to 60 MHz . The crystal to be evaluated is mounted in an environmental test chamber (also bus-controlled) where it can be heated or cooled as required. Roditi International Corporation Ltd, Carrington House, 130 Regent Street, London W1R 6BR. EWW259

Techne make a range of laboratory equipment which includes environmental test enclosures, thermo-regulators, water baths, stirrers, coolers, sample concentrators and density gradient columns. Techne Cambridge Ltd., Duxford, Cambridge CB2 4PZ. EWW260
Time Electronics specialize in calibration instruments. Their 9800 series includes voltage and current sources and calibrators (from £975), resistance boxes (from $£ 820$), a 24 -way relay-switch unit with six command modes ($£ 580$), two precision power supplies (from £595), a speech synthesizer with a 280-word industrial vocabulary, a rotary trimmer adjuster ($£ 620$) and

a scanner system (master control frame costs $£ 490,10$-channel modules $£ 120$ each). All can be supplied free-standing or in rack mounts. Also available is a complete multimeter calibration set based on an HP86 microcomputer. Calibration certificates can be provided and are traceable to the National Physical Laboratory. Time Electronics, Botany Industrial Estate, Tonbridge, Kent TN9 1RS. EWW261
YEW products are available from Martron Ltd, Park Street, Princes Risborough, Buckinghamshire. EWW262

GPIB and your micro

As an alternative to the purposebuilt GPIB controllers available from several of the manufacturers in our lists, it is possible to use a microcomputer with a suitable interface and software. Sources of interfaces for some common micros are listed below:

Apple II: $£ 250$ from E.D.A. (Software) Ltd, 10 Victory Road, Chertsey, Surrey. EWW263
Apple II: $£ 130$ from CIL Microsystems Ltd, Decoy Road, Worthing, Sussex BN14 8ND. EWW264
BBC Micro: IEEE interface and software in rom, £282. Acorn Computers Ltd, Fulboum Road, Cherry Hinton, Cambridge CB1 4JN. EWW265
BBC Micro (CST Procyon) and Sinclair QL: from Cambridge Systems Technology, 30 Regent Street, Cambridge. EWW266
Apricot (£285), Apple II ($£ 242$), BBC ($£ 235$), IBM-pc ($£ 376$): interface cards and software (from £95) from Biodata Ltd, 6 Lower Ormond Street, Manchester M1 5QF. EWW267
DEC Rainbow and IBM-pc: Amplicon Electronics supply an IBM interface card ($£ 499$) by National Instruments. Software includes a comprehensive program for configuring the bus ($£ 66$) and Labtech Notebook (£975), a program for data acquisition, control and analysis (it also interfaces to Lotus 1-2-3 and Symphony). Amplicon Electronics Ltd, Richmond Road, Brighton, East Sussex BN2 3RL. EWW268
Sharp MZ80B: GPIB card (£149) and cable (£49) from Sharp Electronics (U.K.) Ltd, Thorp Road, Newton Heath, Manchester M10 9BE. EWW269
Several microcomputer board systems have GPIB controllers either as a standard feature or as options:

CMS: Cambridge,
Microprocessor Systems, 44a

Hobson Street, Cambridge CB1 1NL. EWW270

IBS Z80 computer: Irvine
Business Systems Ltd, 1
Montgomery Place, Irvine, Ayrshire KA12 8PN. EWW271

Triangle TDS900 Forth computer: IEEE communications card from Triangle Digital Services Ltd, 100a Wood Street, London E17 3HX. EWW272

Instrument distributors

Carston Electronics Ltd, (second-hand test equipment, new and used computer equipment): 99 Waldegrave Road, Teddington, Middlesex TW11 8LL. EWW273
Electronic Brokers Ltd, (new and used electronic test and measuring equipment, computers and peripherals): 140-146 Camden Street, London NW1 9PB. EWW274
Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Hertfordshire SG8 5HH. EWW275
Instrument Rentals: this company also has some secondhand instruments for sale. Dorcan House, Meadfield Road, Langley, Slough, Berkshire SL3 8AL.

EWW276

Lawtronics Ltd, 139 High Street, Edenbridge, Kent. EWW277

Livingston Hire, Shirley House, 27 Camden Road, London NW1 9NR. EWW278

Rental Electronics Ltd, 7 Arkwright Road, Reading, Berkshire RG2 0LU. EWW279
STC Instrument Services, Edin burgh Way, Harlow, Essex CM20 2DF. EWW280

Further reading

International Electrotechnical Commission IEC publication 625-1.
IEEE Standard Digital Interface for Progranmable
Instramentation, The Institute of Electrical and Electronics Engincers, 30 November 1978. IEEE bus standard, P.R. Ellefsen, Wireless World, June 1980 , pp. $75-78$.
Fisher and Jensen's Pet and the IEEE 488 from Osborne (1980), although written specifically for Ret users, gives a technical description of GPIB and lists maufacturers, mainly in North America, of controllers, instramerits, comnectors and peripheral devices. It also includes a comprehensive bibliography.
Many manufacturers produce application notes and technical descriptions relating to GPIB,

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transfor mers. Input and Output transformers, Direct Injection transformers for Guitars Multi-Secondary output transformers, Bridging transformers, Tapped impedance matching transformers, Gramophone Pickup transformers. Audio Mixing Desk transformers (all types), Miniature transformers. Microminiature transformers for PCB mounting, Experimental ransformers, Uitra low frequency transformers Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Ampli fier to 100 volt line transformers (from a few watts up to 1,000 watts). 100 volt line transformers to speakers, Speaker matching transformers (all powers). Column
Loudspeaker transformers up to 300 wants or more. Loudspeaker tr
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPE TITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. MarIV standard types are in stock and normal dispatch times are short and sensible. MIXING DESK MANUFACTURERS RECORDING STUDIOS HI-FI ENTHUSIASTS BAND GROUPS, AND PUBLIC ADORESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quota tions by return

E. A. Sowter Ltd. Menufecturern and Dealgners

```
E. A. SOWTER LTD. (Entablished 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Roed, Ipswich IP 12 EG, Suffolk P.O. Box 38, Ippwich, IP1 2EL, England Phone: 047352794 and 0473219390
Talex 987703G Sowter
```


Happy Memories

Part type	1 off	25-99	100 up
4116 200ns	1.25	1.15	1.10
4164 150ns Not Texas	3.35	3.10	2.90
2114 200ns Low Power	1.75	1.60	1.55
2016 150ns Like 6116	3.65	3.35	3.10
6116 200ns Low power	7.75	Call	Call
6264 150ns Low power	14.85	13.75	13.20
2716450 ns 5 volt	3.85	3.45	3.30
2732 450ns Intel type	4.75	4.25	4.10
2732A 350ns	5.25	4.69	4.50
2532 450ns Texas type.	3.85	3.45	3.30
2764 300ns Suit BBC	. 5.40	5.00	4.80
27128 300ns Suit BBC	10.50	9.50	8.65

Low profile IC sockets:
Pins 814161820242840 Pence 1213141618242738
Available now - The ROAM BOARD for the BBC Micro. Reads Roms via a Low Insertion Force Socket and saves their contents as files, then reloads a file into its sideways Ram as required. Full details on request.
74LS series TTL, wide stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50 p post \& packing to orders under $£ 15$ and VAT to total. Access welcome, 24hr'phone service on (054 422) 618 Non-Military Government \& Educational orders welcome., £15 minimum.

> HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY
> Tel: (054 422) 618 or 628

IRVINE BUSINESS SYSTEMS LTD

* $2 \times$ Z 80 CPU's (4MHz)
* 64K DYNAMIC RAM
* UP TO 32K EPROM
* FLOPPY DISK CONTROLLER FOR 3", 5" and 8" Disk Drives
* $2 \times$ RS232 SERIAL I/O CHANNELS
* I/O MAPPED VIDEO GEN. 80 Cols. 24 Lines
* $4 \times$ PARALLEL I/O CHANNELS
* PARALLEL KEYBOARD PORT (POWERED)
* IEEE 488 INTERFACE
* HARDWARE REAL TIME CLOCK
* 2×8 BIT SWITCHES (I/O MAPPED)
* MONITOR PROGRAM IN PROM
* PROM BASED SOFTWARE AVAILABLE such as ASSEMBLER/EDITOR, and XTAL BASIC WITH IEEE DRIVERS
The IBS 750 is an Industrial Quality Product designed for reliability and ease of use. It is normally supplied fully-built and tested but is also available in a number of partially-built options
The Monitor PROM contains 22 user commands which will assist in writing and de-bugging of the SBC's console and printer requirements by just opening or closing links on the PCB. The same configured version of CP/M 2.2 is available for various Disk sizes. A complete Development System and Desk Top Computer based on this board is available with a variety of Disk Drive sizes and case styles to suit users requirements and environment.

Tel (0294) 75000/73333

LOW COST INDUSTRIAL AND SCIENTIFIC COMPUTER

The Kemitron Solo has been developed using the most up to date technology to create a low cost computer which retains the power and flexibility of the well established Kemitron 2000 and 3000 series.

This is a system designed by Engineers for Engineers - a real computer at the price of a desk top micro

The best established and most popular microprocessor and operating system combined with the high reliability, compact and ruggedised design enable this computer to tackle problems throughout Industry and Science.

SPECIFICATION

\author{

- Z80A, 4MHz microprocesso
}
-64K RAM
- 2 RS232 serial channels
- Single 3.5" micro-floppy disk (300K)
-CP/M 2.2 operating system
- 5 expansion slots
- Aluminium casing
- Power supply, mains filter
- Diskettes, leads and documentation

Total Cost -
OPTIONS

- Up to 128K RAM on-board - Silicon disk (256K+)
- Second micro-floppy disk
- Real time clock + battery
- Colour graphics or terminal
- Analogue and digital inputs/outputs
- Communications (RS422, IEEE, etc.)
- Languages (Basic, Pascal, etc.)
- Applications programs (control, logging, etc.)
At $£ 990.00$ this has to be the most cost effective 280, CP/M system for industrial applications available today.
Send for our literature now!

INIXISIRIAL \&SCIENTIFK COMIUTLERS

Kemitron Limited, Hawarden Industrial Park, Manor Lane, Deeside, Cluyd CH5 3PP. Telephone: (0244) 536123 (4 Lines) Telex: 61471
CIRCLE 56 FOR FURTHER DETAILS.

CIRCLE 5 FOR FURTHER DETAILS

Unit 19, Wick Industrial Estate, Gore Road New Milton, Hants BH25 6SJ Tel: New Milton 0425621195

LATEST DESIGN

Pre-amp Kit (complete) $£ 98+$ VAT 100W Power-amp Kit (complete) £135 + VAT P\&P £2 per order
Send S.A.E. for details and prices of part kits. Conversion hardware for fitting both units into a $\mathrm{Hi}-\mathrm{Fi}$ tower system and also 19" Rack mounting options.

OSCILLOSCOPES

PHILIPS Test \& Measuring

by S. Mukherjee

Indoor loop aerial for short waves

Loop antennas are useful indoors, where they often provide rather more protection than a rod aerial against noise from electrical appliances. If an outdoor whip or long wire antenna cannot be used for short wave reception, it may be worth constructing a compact indoor loop.
The loop antenna illustrated here has a main loop which is tuned to the band being received, and a small coupling loop which extracts the signal at a lowimpedance level for connection to the receiver via coaxial cable. Both loops are screened against interference by making them from coaxial cable with a short
gap in the outer conductor at the top of the loop. The screening (coax.outer) is earthed symmetrically at the bottom of each loop, using the outer of the downlead as an earth connection.

You can make a frame for the loop from wooden laths or bamboo poles using simple tools. Ideally, the frame should allow for easy rotation of the antenna (to maximize pickup and avoid unwanted nulls in the figure-eight shaped directional pattern). It should also be easy to move about to find the best spot in the room which, in general, is likely to be a short distance behind a window, but which varies from building to building.

Diameter of main loop	700	440	350	mm
Diameter of coupler	140	105	80	mm
Tuning cap. max.	500	200	100	pF
Tuning range	$4-9$	$8-18$	$18-26$	MHz

Best results will be obtained using a well-screened communications receiver fitted with a low impedance ($50-80 \mathrm{ohm}$) antenna socket: with poorly screened receivers, stray pickup will bypass the loop and increase vulnerability to interference.
Tune the loop to a weak but steady transmission, using a large, insulated knob on the tuning capacitor to reduce hand effects (better with an insulated extension spindle as well). Mount the capacitor on a panel or platform of insulating material fixed near the top of the main loop.
In some receivers the antenna terminals sit at a d.c. potential above 'earth'; with these, insert blocking capacitors (say 10 nF) between antenna and receiver.

The table gives dimensions for circular loops but square loops of equal area may also be used.

Fig. 1 (facing page). Finished aerial, with (inset) detail of tuning capacitor.

Fig. 2 Construction of aerial

PHONE 0474813225

INTEGRATED CIRCUITS

SEMICONDUCTORS

DIODES

AA119
BA115
BA145
BA148
BA154
BA156
BA15
BAX
BAX
B810
BT15
BY1
BY1
BY1
BY
BY1
BY
BT
BT
BY
BY

 BD204
BD222

TBA520 TBA53 TBA53 TBA5 TBA5 TBAS TBA5 TBA5 TBA5 TBA TCA TCA TCA TCA TDA TDA TDA TDA TDA TD TDA TD TD TD TD TD
 TBA520 TBA530 TBA530 TBA540 TBA540

0.70 0.46

 NNONO啫

NEW BRANDED CATHODE RAY TUBES
 PER TUBE FOR CARRIAGE

LINE OUTPUT TRANSFORMERS

EHT MULTIPLIERS	
ITT CVC20	6.35
T1TCVC30	6.35 6.96
PHILIPS 685	6.96
RANK T20A	7.91
THORN 3000/3500	5.80
THORN 9000	8.00
UNIVERSAL TRIPLER	5.45
REPLACEMENT ELECTROLYTIC CAPACITORS	
DECCA $30(400-400 / 350 \mathrm{~V})$	2.85
DECCA $80 / 100(400 / 350 \mathrm{~V})$	2.99
DECCA 1700	
(200-200-400-350V)	3.55
GEC 2110 (600/300V)	2.25
ITT CVC20 $200 / 400 \mathrm{~V}$)	1.80
PHILIPS G8 $600 / 300 \mathrm{~V}$)	2.25
PHILIPSG9 (2200/63V)	1.19
	2.35

$\mathbf{6 5 . 0 0}$		
65.00	M50-120GV	$\mathbf{6 5 . 0 0}$
$\mathbf{6 5 . 0 0}$	M50 120 LC	$\mathbf{6 5 . 0 0}$

65.00	M50-120GV	
65.00	M50 120 LC	65.00
65.00		65.00 75.00
65.00	M61.120 W	75.00
65.00	S6AB	45.00
65.00	SE4/D/P7	45.00
65.00	SE42BP31AL	55.00
65.00		55.00
160.00	SE52AP31AL	55.00
160.00	SESFP31	5500
185.00		65.00
19.00	T948N	65.00
45.00	T948H	65.00
5500		59.00
45.00 17500	V 4150 LCV 42548	55.00
175.00 175.00		65.00
175.00 55.00	V4274GH	65.00
45.00	V4283W	65.00
55.00	V5004GR	65.00 59.00
55.00	$\checkmark 5004 \mathrm{LD}$	59.00
55.00	V6001GH $\checkmark 6006 \mathrm{G}$	65.00
55.00		65.00
55.00	V60070P31	59.00
55.00	v6007GW V6008GW	65.00
55.00		59.00
55.00 55.00	V6008W	65.00
55.00	V6034WA V6048CLA	59.00 59.00
55.00	V6048F	59.00 65.00
55.00	8 J V6052GH	49.00
59.00		65.00
59.00 5900	v6052GR	65.00
59.00	V6064848P31	55.00
55.00	V6064CLA	55.00
59.00		55.00
59.00	V6070P31	49.00
55.00	V7016A $\checkmark 7030$	65.00
55.00 49.00	$\checkmark 77030 \mathrm{CH}$	59.00 5900
49.00	V7031/67A	59.00
49.00		49.00
55.00	$\checkmark 7037 \mathrm{GH}$	45.00
55.00 55.00	V8004GR V8006GH	65.00
55.00 55.00	V8010A	65.00 65.00
55.00		9.00
55.00	3 BP 1	13.50
53.00 55.00	$\begin{aligned} & 4 \mathrm{EP}, \\ & 4 \mathrm{NP}, \end{aligned}$	30.00 1850
55.00 65.00		18.50 55.00
65.00	$3 \mathrm{H} / \mathrm{OBM}$	55.00 9.00
65.00	58P1 58НP1	30.00
69.00	5Внp1FF	30.00
59.00		30.00
55.00 55.00		10.00
55.00 55.00	6EP7/S	39.00 13.50
59.00	$\begin{aligned} & 13 \mathrm{BP4} \\ & 17 \mathrm{DWP4} \end{aligned}$	13.50 1750
59.00		25.00
59.00	$32 J / 1085$$880 / 898 / 89 \mathrm{D} / 891$	W9.00
55.00		- 1500
59.00 59.00	1273 1564	39.00
59.00	1844	39.00 45.00
59.00	$\begin{aligned} & 9442 \mathrm{E1} \\ & 95447 \mathrm{GM} \end{aligned}$	80.00
59.00		75.00
65.00	95449GM	75.00
65.00 65.00		78.50
65.00 75.00	TAPE HEADS	
75.00 75.00	MONO HEAD	${ }_{1.50}$
75.00	AUTO REVERSE STEREO HEAD	3.50
75.00		2.95
65.00	ELECTRO-OPTICAL	
65.00		
65.00 65.00		25.00
65.00	$\stackrel{967231 \mathrm{MAM}}{ }$	19.00
65.00 65.00	WIREWOUND RESISTORS	
65.00	4 Wan	
65.00		2R4-10K 0.20
65.00	7 Watt \quad R	R47-22K 0.20
6500 65.00	11 Watt	1 185 15K 0.25
65.00	17 Watt	$1 \mathrm{R}-15 \mathrm{~K} \quad 0.30$
65.00		
655.00	Valve and crt bases	
65.00	B5D $\quad 5.50$	$\begin{array}{ll}\text { B138 } & 0.50\end{array}$
65.00	B7G 0.25	B14A $\quad 3.00$
59.00	B7G SKID 0.25	12PIN CRT 0.95
85.00	B8G $\quad 1.50$	NUVISTOR 2.95
${ }_{85} 65.00$	$\mathrm{B8H} \quad 0.70$	OCTAL 0.35
65.00	B9A 0.35	SK610 35.00
85.00	B9A SKT 0.40	UX5 1.75 1.75
65.00	B9G 0.75	UX7 $\quad 1.75$
65.00	B10B 0.20	CANS 0.30

DECCA 100	7.95
decca 1700 Mono	9.95
DECCA 1730	8.95
decca 2230	8.25
GEC 2040	8.95
GRUNDIG 1500	15.45
GRUNDIG 5010 6010. 2222 5011-6011	13.45
17 CVC20	8.20
iT CVC30	8.25
PHILIPS G8	8.50
PHILIPS G9	8.99
PHILIPS G11	13.39
PYE 725	10.95
RBM T20A	12.40
TANDBERGE 90*	11.15
TELEFUNKEN 711A	11.15
THORN 1590	9.50
THORN 8000	9.20
THORN 9000	9.95
THORN 9800	22.40
THORN MAIN TRANSFORMER	

PHONE
 0474813225

 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOOY
A SELECTION FROM OUR STOCK OF BRANDED VALVES

TELESCOPIC MASTS

Pnetmatically operated telescopic masts.
25 Standard models, ranging from 5 metres to 30 metres.

Hilomast Ltd

THE STREET HEYBRIDGE - MALDON ESSEX CNS 7NB ENGLAND Tel. MALDON (0621) 56430 Te ex No. 995855

NEPTUNE 16 axes 8 bit control $5 y$ siem. 25 Kg capactry. 1120 mm leach
NEPTUNE II / Axes, 12 Drt control system
25 Kg capacity. 1120 mriveach
MENTOR DC servo desktap robot. 8 dit control system 300 gm capaciry. 420 mm leadh

Rovoss programmed frum keybard or thated.

Put West Portway Industrial Estate, Andover SP10 3WW Hberne'lc A private and independent company giving prompt. II Appllcations personal service. CIRCLE 7 FOR FURTHER DETAILS.

โ.

 We have taken the synthesised all mode FRG7700M communications receiver

 and made several modifications to provide a receiver for re-broadcast purpose or checking transmitter performance as well as being suited to communicationsPRINCIPAL MODIFICATIONS: Radically redesigned front end stages yielding improved noise figure and overload levels. TOIP -2 dBm (originally -21 dBm) Flat audio frequency response on both $A M$ and SSB \star Lower AM distortion Baianced audio line output \star Buffered IF output for monitoring transmitted moduation envelope on an osciloscope \downarrow Mains safety improvements.

The receiver is available in free standing or rack mounting form and all the original features are retained. The new am detector board achieves exceptionally ow distortion: THD, $200 \mathrm{~Hz}-6 \mathrm{kHz}$ at 90% modulation $-44 \mathrm{~dB}, 0.6 \%$ (originally 20dB, 10\%). Reviewed Broadcast Sound, March/April 1984
Stereo Disc Amplifier 3 and $4 \star$ Peak Deviation Meter $\$$ Programme and Deviation Char Recorders $\boldsymbol{*}$ Stabimzer Frequency Shift Circuit Boards 10 Outlet Bistribution Amplifier Peak Programme Meter Illuminated Boxes, Circuit

$$
\text { Boards and Ernest Turner Movements } \ddagger \text { Stereo Mıcrophone Amplifier }
$$

SURREY ELECTRONICS LIMITED
The Forge, Lucks Green, Cranteigh, Surrey GU6 78G. Tel: 0483275997

\& MITSUBISHI

MGF-1400
MGF-1402
MGF-1412

FROM STOCK

Aspen Electronics Limited

UK representative for Mitsubishi Electric
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

CIRCLE 64 FOR FURTHER DETAILS
ELECTRONICS \& WIRELESS WORLD APRIL 1985

Principles of optical storage - 2

by J.R. Watkinson

Focus and tracking mechanisms

The requirement for a monochromatic light source is economically met using a semiconductor laser. The laser output requires stabilization, since the output is very temperature dependent. To prevent thermal runaway, a feedback photodiode controls the current source feeding the laser. To extract a useful signal, the pickup must be capable of separating the reflected light from the incident light. Fig. 7 shows two schemes to do this.
In (a) a half-silvered mirror reflects some of the returning light into the photosensor. This is not very efficient as some of the reflected light is lost by transmission. In the example shown at (b) the separation is by polarization. A polarizing prism passes light from the laser which is polarized in a plane at right angles to the page. This light is passed through a quarter-wave plate that rotates the plane of polarization through 45°. Following reflection from the disc, the light is again rotated through 45°, making the plane of polarization parallel to the page. The polarizing prism reflects this light into the sensor.
Stresses set up by moulding plastic can cause birefringence, so there have been some reservations about the feasibility of the second approach. The quality of disc moulding achieved, however, meant that birefringence could be neglected, and the polarizing beam splitter is used widely in the Sony consumer CD players, for example. Sony professional players and Philips players retain the semi-silvered mirror approach.
As the frequency response of he replay mechanism (unrelated to the audio response) of the spot size, care must be taken to keep the beam focused on the information layer. Disc warp and thickness irregularities
cause focal plane movement beyond the depth of focus of the optical system, and a focus servo is needed. The depth of focus of the optical system, and a focus servo is needed. The depth of field is related to the numerical aperture which is defined, and the required accuracy of the focus servo follows from that: approximately $\pm 1 \mu \mathrm{~m}$.
The focus servo moves a lens along the optical axis to keep the spot in focus. Because dynamic focus changes are largely due to warps, the focus system must have a frequency response in excess of the disc rotational speed. A moving coil actuator is often used for this owing to the small moving mass which this permits. A cylindrical magnet assembly is used, coaxial with the light
heam; Fig. 8 shows that it is almost identical to that of a loudspeaker.

Focus error system

A focus error system is necessary to drive the lens: Here are a number of ways in which this can be derived.

A cylindrical lens is installed between the beam spliter and photosensor, Fig.9. its effect is that the beam has no focal point on the sensor. In one plane, the lens appears parallel-sided, and has negligible effect on the focal length. The image is an ellipse whose aspect ratio changes as a function of position. Between the two foci, the image will be circular. The aspect ratio of the ellipse, and hence the focus error, is determined by dividing

The Compact Disc and its supporting equipment uses a dramatic cross-section of modern technology. The use of data converters, lasers, 1.s.i. circuits, servos, error correction, advenced channel codes, video equipment, photochemistry moulding and electroplating alone makes the CD system worthy of study by anyone interested in contemporary clectronics.
This series describes the system in detail and shows how many of the parameters were arrived at. Mathematics is kept to a minimum and buzzwords defined as they occur.

Fig.7. Two schemes to separate reflected and incident light. Light from the disc can be directed to the sensor by a semi-silvered mirror (a), or a combination of polarizing prisnt and quarter-wave plate can separate the beams (b).

Fig.8. Moving-coil focus servo can be coaxial with the light beam. Magnet assembly is almost identical to that of a loudspeaker.

Fig.9. In the cylindrical lens or astigmatic focus method an elliptical spot on the sensor, whose aspect ratio is detected by its four-quadrant nature, produces a focus error signal.

Fig.10. Knife-edge focus method requires only two sensors, but is very critical on knife-edge position.

the sensor into four quadrants. Connected as shown, a focus error signal is generated. The readout signal is the sum of the four quadrant signals.
In the knife-edge method of determining focus, a split sensor is also required, Fig. 10. At (a) the focal point is coincident with the knife-edge, and it has no effect on the beam. At (b) the focal point is to the right of the sensor. At (c) the focal point is to the left of the knife-edge and descending rays are interrupted, reducing the output of the lower sensor. The focus error is produced by comparing the output of the two halves of the sensor. A drawback of the knife-edge system is that the lateral position of the edge is critical, and adjustment is necessary. To overcome this problem, the knife-edge is replaced with a pair of prisms, shown at (d) to (f). Mechanical tolerances only affect the sensitivity, without causing a focus offset.
The cylindrical lens method is compared with the knife-edge prism method in Fig. 11, which shows that the cylindrical lens method has a much smaller capture range. A focus-search mechanism will be required, which moves the focus servo over its entire travel, looking for a zero crossing. At this

time the feedback loop can be completed and the focus servo will remain on the linear part of the characteristic. The spiral track of CD starts in the centre and works outwards. This is deliberately arranged because there will be less vertical runout near the hub, and initial focusing easier.

Track following

The track pitch is only $1.6 \mu \mathrm{~m}$, much smaller than the accuracy to which the player chuck or the disc centre hole can be made. A track-following servo keeps the spot centralized on the track in one of several ways.

In the three-spot method, two additional light beams are focused on the disc track, one offset to each side of the track centreline. Fig. 12 shows that the amplitude of the side spot modulation changes differentially with tracking error. The laser head contains a diffraction grating to produce the side spots, and two extra photosensors onto which the reflections of the side spots are focused. The side spots feed a differential amplifier.

A tracking error can be derived from a split sensor, because one side detects more modulation than the other when off track, Fig. 13. Such a technique may be prone to develop an offset, due either to component drift or to contamination of the optical system and a further tracking system may be necessary to obviate periodic adjustment.

It is interesting to compare different designs of laser pickup. In the Philips laser head (Fig.15) the dual-prism focus method is used, which combines the output of two split photosensors to produce the focus error. The focus amplifier drives the objective lens which is mounted on a parallel motion

Fig. 11 Knife-edge method may have a capture range of 1 mm , whereas the astigmatic (cylindrical lens) may have a range of only $40 \mu \mathrm{~m}$, requiring a focussearch mechanism.
Fig. 12. Three-spot method of producing tracking error compares amplitude of side spot signals. Side spots are produced by a diffraction grating and require their own sensors.
Fig.13. Split-sensor method of producing tracking error focuses image of spot onto sensor. One side of spot will have more modulation when off-track.
Fig.14. Dither applied to readout spot modulates the readout envelope, to enable a tracking error signal to be derived.

Fig. 15. In the Philips laser head, focus error is derived by the dual prism method, using split sensors. Focus error $(A+D)-(B+C)$ drives focus motor which moves objective lens on parallel action flexure. Radial differential tracking error is derived from split sensor $(A+B)-(C+D)$. Tracking error drives entire pickup on radial arm driven by moving coil.
formed by two flexural arms. Capture range of the focus system is sufficient to accommodate normal tolerances without assistance. A radial differential tracking signal is extracted from the sensors as shown in the figure.
Additionally a dither frequency of 600 Hz produces modulation which is synchronously rectified to produce a drift-free tracking error signal. Both errors are combined to drive the tracking system. As only a single spot is used, the pickup is relatively insensitive to angular errors and a rotary positioner can be used, driven by a moving coil. The assembly is statically balanced for good resistance to lateral shock.

In the Sony laser head, used in consumer players, Fig.16, the cylindrical lens focus method is adopted, requiring a four quadrant sensor. As this method has a small capture range, a focus-search mechanism is necessary so that when a disc is loaded the

Fig.16. The Sony laser head uses a four-quadrant sensor and two extra sensors (E,F) for the side spots. Tracking error ($E-F$) and focus error $(\mathrm{A}+\mathrm{C})-(\mathrm{B}+\mathrm{D})$ drive the twoaxis device. objective lens is ramped up and down while the focus circuit looks for a zero-crossing in the focus error. The three-spot method is used for tracking; the necessary diffraction grating can be seen adjacent to the laser diode.

Tracking error is derived from side spot sensors (E F). Because the side-spot system is sensitive to angular errors, a parallel-tracking laser head is essential. Cost-effective linear motion is obtained by using a rack and pinion drive for slow coarse movements, and a laterally moving lens in the light path for rapid fine movements, and a laterally moving lens in the light path for rapid fine movements.
The same lens is moved up and down for focusing by the

so-called two-axis device, which is a dual moving-coil type of mechanism. Unfortunately the two-axis device is not statically balanced in many players,
making them more shock sensitive than necessary, though the problem was overcome in laser heads designed for portable players.

Background note on optical polarization

Polarization. In natural light, the electric field component is in many planes. Light is said to be polarized when the electric field direction is constrained. The wave can be considered as two orthogonal components. When these are in phase, the polarization is said to be linear. Where there is a phase shift between components, the polarization is said to be elliptical, with special cases at $\pm 90^{\circ}$ known as circular polarization.

To create polarized light,
anisotropic matenals are generally necessary. Polaroid material, invented by Edwin Land, vinyl which is made anisotropic by stretching whilst hot. Oriented long-chain molecules form a structure that is rendered conductive by soaking in iodine. The transmission axis is perpendicular to the direction of stretching, since electric fields parallel to the long chains are absorbed

A material whose refractive index is anisotropic is said to be
birefringent. If a linearly polarized wavefront enters such a medium the two orthogonal components propagate at different velocities, causing a relative phase difference proportional to distance. Where the thickness of the material is such that a 90° phase difference is caused, the device is a quarterwave plate. Where the plane of polarization of the incident light is at 45° to the axes of greatest and least refractive index, the two orthogonal components will be
equal in magnitude, and the result will be circular polarization.

Similarly, incident circularly polarized light will be returned to the linear state. Thus linearlypolarized light which has passed through a quarter-wave plate and been reflected back again will be linearly polarized but in a plane at right angles to that of the incident light. This principle can be used in conjunction with a polarizing prism that passes light in one plane but reflects light in the other plane.

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

CHANNEL CONVERTERS
TCUU UHF-UHF Single channel converter. Gain adjustable $+2 d B-16 d B$. Maxi mum output +2688 my . Crysta controlled oscillator Power requirement
TCUV $\quad 14 \mathrm{~V} 25 \mathrm{~mA}$. (Quote Channels required). (A Thote Channel: required)
TCVU As TCUU except UHF to UHF converter. (Quote Channel: required).

SINGLE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63dBmV. Regulator + or $-8 \mathrm{8dB}$. Power equire ment 14 V 210 mA .
TAG4063 Gain 40dB, maximum output 64 dBmV . Regulator + of -16 dB . Power requirement 14 V 210 mA .
SINGLE CHANNEL AMPLIFIERS
TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBmV . Power requirement
TSS 3062 Gain 1230 dB adjustable: Maximum output 62 dBmV . Power requirement 14 V 26 mA .

dRIVER AMPLIFIERS

TS1030FM FM driver amplifier. 10dB Gain. Maximum output 30dBmV Power requireTS1030B3 ment 14 VV 10 mA A Band III driver amplfier. 100 B gain. Maxinum output 30 dBmV . Power TS1030UHF Uequirement 14 V 10 mA driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require ment 14 V 10 mA .
TS1040S Single channel UHF driver amplifier. 10 dB gain. Maxinum output 400 BmV Power requirement 14 V 10 mA . (Quote channel required).
distribution amplifiers
TE2042 Domestic distribution amplifier. 1 input, 1 output. Gain 20dB. Maximum
TE1638 Domestic distribution amplifier, 1 input, 2 outputs. Gain 160 B. Maximum output: 2 at 38 dBmV
TS $2046 \quad 40-860 \mathrm{MHz}$. Gain 20dB UHF. 18 dB VHF. Maximum output 46 dBmV
TS2846- $40-860 \mathrm{MHz}$. Gain 28dB UHF, 220 dB VHF Maximum output 46 dBmV .
TS2845 Separate UHF/UHF inputs. Gain 280B UHF, 22dB VHF. Maximum output
TS2054 46dBmV
TS2060 $40-860 \mathrm{MHz}$ Gain 20dB UHF. 18 dB VHF. Maximum output 59 dBmV
TS5565 $40-860 \mathrm{MHz}$ Gain 20dB UHF, 180 B VHF. Maximum output 600 BmV

REPEATER AMPLIFIERS

REPEATER AMPIIFERS
TSCC6E00
Repeater. Gan $16-36 d B ~ U H F, ~$
TSO-30dB VMF. Maximum output 60 dBmV

QUALITY AT LOW COST
 TAYLOR BROS (OLDHAM) LTD

 LEE STREET, OLDHAM - TEL. 061-652 3221 - TELEX 669911
Variable-speed video playback

The series concludes with a discussion of digital filtering

The type of digital filter used in TBCs is the equivalent of the analogue delay-line comb filter. The entire approachh to TBC design is that delay is easy to achieve in the digital domain, and this applies equally to the delays in the filters.

The operation of an analogue filter will be examined first, since this will be used as an analogy in the description of the digital filter.
Reference to Fig. 9(a) shows that an input signal enters an operational amplifier both direct and via an analogue delay. The phase difference between the ends of the delay is a function of the input frequency, and is given by:

$$
\frac{\text { delay period }}{\text { signal period }} \times 360^{\circ}
$$

The op-amp output is the vector sum of the two inputs:

$$
\frac{1}{2} V_{\mathrm{in}}+\frac{1}{2} V_{\mathrm{in}} \sin \theta
$$

where θ is the phase angle between the inputs. When the delay period exceeds the signal
period, the phase difference given by the first expression will exceed 360°, and clearly subtracting 360° or multiples thereof does not change the vector sum. There will thus be a series of signal periods all of which have the same gain. The frequency response becomes repetitive, hence the term 'comb filter'. Figure 9(b) shows several frequencies, all of which suffer complete cancellation due to effective inversion by the delay, and Fig. 9(c) shows frequencies which give unity gain because the delay is an integer multiple of the signal period. Figure 9(d) shows the overall frequency response, which has a rectified cosine shape. Note that the peak spacing is at the reciprocal of the delay period.

A sharper response peak can be achieved by using two delays, as in Fig. 10(a). The op-amp now has three inputs. Figure 10(b) shows the situation where a frequency which suffers 180° shift in each delay is applied. Since the twice delayed signal and the input

(d)

frequency
signal will add, they must receive half as much gain as the signal from the centre tap. The op-amp thus has input gains of $+\frac{1}{4},-\frac{1}{2}$ and $+\frac{1}{1}$. The frequency response shown in Fig. 10(d) is a cosinusoid, in which the peak spacing is the same as for Fig. 9.

Figure 11 shows a relative of the two-delay filter of Fig. 10. The difference is that the weights and phases of the inputs are all the same at $+\frac{1}{3}$. When the input frequency suffers a phase shift of 120° there will be complete cancellation. The system acts as a comb filter with the response shown in Fig. 11(b), where the first null is at one third of the reciprocal of the delay.

Transferring to the digital domain, signal voltage is represented by a binary number, delay is achieved using latches, and a full adder performs the function of the op-amp. Figure 12 shows the digital equivalent of Fig. 10. The constraint in this kind of digital filter is that the delay periods available are all integer multiples of the sampling period. As the

Ampex (G.B.) Ltd.

Fig.9. Simple comb filter at (a) has delay in one input of adder. At some frequencies, (b) delay causes cancellation, whereas at others (c) delayed and undelayed signals are in phase. Frequency response shown at (d).

Fig. 10. Two-delay comb filter at (a). In (b) certain frequencies suffer 360° shift in one delay, but since oncedelayed signal has twice the weighthing, there is cancellation.
At (c) is 180° resultant phase shift in one delay, removed by inverting input, permitting unity gain. Response at (d) is cosinusoid.

(a)

(b)

Fig.11. Comb filter working on 120° delays to give cancellation. Response at (b).

Nulls are 1/3D, 2/3D, etc.
Fig. 12. Digital Y/C separation at $4 \times \mathrm{F}_{\text {sc }}$ uses pairs of latches to give 180° phase shift at subcarrier frequency.
Binary adders and dividers
give weighting of $+1 / 4,-1 / 2$,
$+1 / 4$ to three samples.
Chroma output is subtracted from the input to give
luminance. Compare with analogue filter of Fig. 10.
There is only one response
peak at F_{sc}, since Nyquist
limit for $4 \times{ }^{\mathrm{ss}} \mathrm{F}_{\mathrm{sc}}$ sampling is reached at $2 \times \mathrm{F}_{\mathrm{sc}}$.

Fig.15. Opposite page BVT2000 DOC incorporates luminance interpolation for second field synthesis. Plus and minus V chroma memories are selected alternately at 7.8 kHz . During long dropouts in shuttle, plus/minus control inverts chroma every two lines $(3.9 \mathrm{kHz})$. Dropout inhibits writing the delays, preventing corrupt data entering the system.
at $3 \times \mathrm{F}_{\mathrm{sc}}$. Figure 13 shows a digital filter for a $3 \times \mathrm{F}_{\mathrm{sc}}$ TBC. Since division by three is difficult in binary, a close approximation is given by multiplying by 85 ($64+$ $+16 \times+4 \times+1 \times$) and dividing by 256 (eight-bit shift)
The $4 \times \mathrm{F}_{\mathrm{sc}}$ filter of Fig. 12 has a gain peak at subcarrier frequency, and the output will be chroma. To obtain luminance, chroma samples are simply subtracted from input samples. The $3 \times \mathrm{F}_{\mathrm{sc}}$ filter of Fig. 13 has a gain null at subcarrier, and the output will be luminance. In this case chroma is obtained by subtracting the filter output from the input samples. In each case separate sample streams of luminance and chrominance result.
Owing to V -switch it is necessary to store two lines of chroma, but only one of luminance, and this storage can be ram or shift registers. During a dropout, samples from the luminance memory and the appropriate chroma memory are selected instead of input samples. A dropout during the burst will leave the luminance intact, but will destroy the chroma for the entire line. This is usually referred to as chroma dropout, and is dealt with by using 2 H previous chroma for the entire line, in conjunction with the current luminance.
Figure 14 shows the $3 \times \mathrm{F}_{\text {sc }}$
DOC of the Ampex TBC- 2 . Input
data are Y / C separated and the chroma is subject to a 1H delay before being combined with the luminance once more. This has the effect of adding previous line chroma to current luminance. The composite signal then suffers a further 1 H delay, making the output the requisite 1 H prior luminance with 2 H prior chroma. The elegant position of the Y/C adder eliminates the need for a separate 1 H Y delay. During dropout, the multiplexer selects memory data instead of input data, and these data are also recirculated to the memory inputs to prevent bad data entering the system. This DOC precedes the main memory and is operated almost directly by the v.t.r. r.f. level.

At the opposite extreme is the Sony BVT 2000 shown in Fig. 15. Since this unit offers colours in shuttle and Y interpolation during odd/even field mismatch, it is necessarily complex. As luminance interpolation requires a dedicated 1 H delay, there are three memories, luminance, +V chroma and $-V$ chroma. This DOC resides after main memory, so that it works at reference timing. The dropouts which it corrects took place several lines earlier owing to the advance of the v.t.r. The TBC must store for each line of video additional data which records where any dro-

pouts occurred. This is the function of the Y DO memory. Similarly burst dropouts are remembered in the C DO (Chroma Dropout) memory.
Normal dropout compensation consists of selecting 2 H previous chroma for the entire line, and 1 H prior luminance at the points determined by the YDO memory. In shuttle, the head may jump within the field, causing a long dropout as the head crosses the guard band. In this case, the data from before the dropout are repeated until valid video from the new track resumes. Owing to the PAL four line sequence, the chroma must be taken on alternate lines from the $+V$ and $-V$ memories, $(7.8 \mathrm{kHz})$ and every pair of lines, chroma must be inverted by subtracting it from luminance instead of adding (3.9 kHz).

During interpolation, the Y

ADD signal will cause 1 H prior luminance and current luminance to be averaged by adding and dividing by two. Chroma wiih the appropriate V -sense is then added. Since Y interpolation depends on spatial alignment of samples on adjacent lines in a field, the BVT 2000 uses phase
alternate line encoding (see Part 2) to overcome the 3.9 kHz rate burst inversion relative to H sync.
The memory system of this unit thus has five separate elements: video, luminance dropout position, chroma dropout status, chroma inversion status and velocity error.

Fig. 13. $3 \times \mathrm{F}_{\mathrm{sc}} \mathrm{Y} / \mathrm{C}$ seperation approximates closely to divide by 3 of Fig. 11.
Fig. 14. DOC of TBC-2 saves 1 H of memory by combining Y and C after first chroma delayy. Input MUX switches to previous line information during dropout.

Choosing quartz cystals

These complex components are seldom properly understood - even by those who specify them

by Gordon Hulyer

Gordon Hulyer is quality assurance manager at Cathodeon Crystals in Linton Cambridge. He is active on both British and international standards committees for piezoelectic devices.

Raw material and finished product - a group of glassholder quartz crystals.

There are two aspects of quartz crystals used as frequency controllers which are opposite yet equally valid. One is that they are essentially simple components with only two terminals; that simplicity has ensured their continued and expanding use since they were first used for radio more than 40 years ago. The other is that they are complex components, seldom properly understood even by those who specify them for use in electronic circuits.

It is this second aspect that this article seeks to expound in the interests of users, because failure to specify the correct type of unit for a specific task can result in unnecessary cost as well as failure in performance. For example, it pays to be very specific about the temperature range within which the unit will operate. Failure to do so may result in a crystal exhibiting unwelcome errors in service.

Furthermore, the most important development of quartz crystals in recent years has been the improvement in long-term stability or ageing properties, as a result of improved cleaning and
encapsulation techniques, so it is important to make the right choice in relation to this, among many other parameters.
Because quartz crystals are piezoelectric devices, relying on mechanical motion to generate electrical properties, they are susceptible to mechanical as well as electrical problems. Thus stiction (static friction) manifests itself, in electrical terms, as a variation in crystal impedance with drive level; and as with mechanical stiction, the impedance characteristic has hysteresis. For this reason, it is extremely difficult to specify a quartz crystal in such a way that it will operate reliably in an unspecified semiconductor circuit particularly a circuit designed for low power consumption, as this is usually associated with a situation where the crystal is being driven at a low drive level, i.e. in the region of maximum stiction.

The crystal

Need for care in specifying crystal units arises from the methods employed to manufacture them. In fact a specification will effect-
ively determine how the unit is or has been made, and with the now widespread use of integrated circuis instead of discrete components it has become even more important to exercise care.
Each crystal unit is cut from the mother crystal at a precise angle in relation to the crystallographic axis; this angle - usually the "AT angle" - is chosen in relation to Young's modulus of the material, the piezoelectric coupling, and the acoustic velocity, in such a way as to produce a crystal which, in its performance, will be as nearly independent of temperature as possible. After cutting, the crystals are individually sorted into several grades, and then all are lapped to within a half light-band of flatness. Electrodes subsequently deposited on the opposite faces of the crystal serve not only as electrical contacts but also finalise the frequency of the unit: by precise, automatic deposition of the thin gold or silver electrode the physical mass of the unit can be adjusted to give the desired frequency.

The required operating temperature range and frequency tolerance will therefore determine

What is a quartz crystal?

A quartz crystal is cut from a bar of manufactured quartz. It is cut very precisely in relation to the crystallographic axis of the crystal and is formed into a thin disc, rather like an optical lens. Two electrodes are secured to it, one on each side, by vacuum deposition of silver, gold or aluminium.
When a voltage is applied to the electrodes the crystal changes its shape due to its piezoelectric properties, thus causing a stress to be applied to the crystal. If this stress is varied by reversing the applied voltage, the crystal will be subjected to an alternating stress and will tend to vibrate at its natural frequency. Thus resonance is initiated. The frequency of resonance is so precise with quartz crystals that they can serve as frequency determining devices, and they are considerably more precise than a tuning fork because of the high purity of the quartz material.
A quartz crystal may operate in its fundamental mode - generally up to 30 MHz - or at the
third, fifth, etc., overtones, as shown below. The mode of vibration is in thickness shear, so the critical dimension controlling the frequency is in " Y ", i.e. the thickness of the plate. The vibrations are. shown extending to the edge of the plate, but in practice the plate is designed to confine the vibrations to the centre, in the area of the exciting electrodes.
Strictly speaking, this unit is a resonator. When it has been encapsulated - in one of several possible ways - it then becomes what is generally known as a "quartz crystal". If the quartz crystal is then built into a appropriate electronic circuit it becomes a quartz crystal oscillator, i.e. a complete frequency controlling system.
Relevant crystal theory is summarized on page 54. For those who wish to study the relevant standards, refer to British Standard 5069, for standard outline and pin connections of quartz crystal units, and to those listed on page 54 .

Pretty, but seldom used nowadays in the manufacture of crystal units, except in very low frequency applications: yield is much higher with synthetic quartz.
how the crystal plate is cut in relation to the crystallographic axis of the raw material. Its geometric shape and diameter are determined by the parameters $\mathrm{L}, \mathrm{C}_{1}$, R, and C_{0} amongst others (see

section headed "Parameters").
The crystal electrode material, its method of deposition, and mass are all determined by what is specified by the user. In the event of a particular parameter not being specified, it will almost certainly mean that the unit supplied may not necessarily be the one needed. It will have been made by one of the manufacturer's standard methods, which may or may not match the user's requirements.

Holders

Crystal holders are of four types, and are universally known by their names: solder seal, resistance weld, cold weld, and glass.
Solder-seal holders, the least expensive, suffer from poor longterm ageing performance as it is impossible during manufacture to completely eliminate the flux residue. Also it is extremely difficult to achieve the low level of leaks required for good long-term performance. They should therefore be considered only when there is nothing of equivalent dimensions available in one of the other types

Resistance-weld holders are currenly the most popular form of encapsulation. They are a distinct improvement on solder seal holders, but they require local heating during the welding operation and are therefore not as reliable as cold-weld or glass holders. Except where ultra-high long-term stability is required, resistance-weld holders can be used for all applications. Typical uses are for microprocessors, data communication modems, pageing systems, mobile and portable radio, and military communications. The resistanceweld method gives a good clean construction at relatively low cost.
Cold-weld holders are more expensive, but they give an improvement in long-term ageing compared with resistance-weld units, and a significant improvement over solder seal. The encapsulation is achieved by heatless welding of the can and base - a very high pressure being applied over a localized area to cause the two surfaces (usually copper) to flow together to form a homogeneous bond. The process is carried out in a vacuum or in nitrogen. There is thus neither flux residue nor local heating of any significance. The two surfaces, however, must be
free of contamination and oxidation, and this is usually ensured by depositing a thin layer of nickel place on each surface so that the nickel ruptures during sealing. For applications similar to those for resistance-weld holders, cold-weld holders may therefore be preferred if price constraint is not a major factor.

Glass holders are 'a must' for applications where ageing is of paramount importance. The base and envelope are sealed together by radio-frequency heat melting the two surfaces so that they fuse together. By means of a ring of Kovar (a nickel-iron alloy having the same coefficient of expansion as glass), the heat is concentrated in the contact area, and the whole process is carried out under vacuum after de-gassing at about $500^{\circ} \mathrm{C}$ to remove any organic matter. The main applications for glass holders are frequency standards, satellite navigation, measuring instruments, microwave beacons, and synthesizers.

Parameters

There are at least ten parameters affecting the choice of a quartz crystal unit. The properties of a quartz crystal can be represented by an equivalent circuit consisting of an inductor L, capacitance C_{1}, resistance R , shunted by a second capacitance C_{0}, as shown on page 54. Capacitance C_{L} is an external load capacitance specified, if required, by the user.

These four parameters are constant and independent of frequency and amplitude changes, providing the crystal unit is operated in the correct way. The parameters $\mathrm{L}, \mathrm{C}_{1}$ and R are termed the "motional parameters" of the unit; f_{s} is the series mode, f_{p} the parallel mode.

A manufacturer or supplier needs to know, in addition to the nominal operating frequency, the following, which significantly affect the design criteria:

- frequency accuracy (calibra-
tion or adjustment tolerance)
- frequency stability with temperature
- frequency stability with time (ageing).
These first three parameters constitute the 'accuracy' of the crystal. They should be selected with care as unnecessary over-specifying only serves to make the crystal more expensive. Typical values for the four types of holder are given in Table 1. Other
important parameters are - operating temperature range - maximum resonant resistance (e.s.r.) (R)
- motional inductance L or motional capacitance C_{1} - parallel capacitance C_{0} - power dissipation (drive level)
- unwanted responses
- holder style
- load capacitance (C_{I})
- environmental factors.

The choice of holder is determined mainly by (1) the longterm stability required, (2) environmental factors, (3) operating frequency (blank diameter), and (4) the price the user is prepared to pay. If the crystal is to be used in a potentially hostile environment, e.g. guided missile and satellite applications, it is important to consult the manufacturer as a ruggedized mounting can be chosen to suit the particular application.

Applications

Table 2 gives typical application in order of cost, starting with the most expensive, set against certain general parameters and other features.

From a manufacturing point of view, the lower unit costs are associated with the larger volumes of production. It is not practicable to correlate the four types of holders directly with this list, though the glass holders would normally only be used for the upper group of applications and some of the second group. It is advisable to consider resist-ance-weld holders for all other applications.
Whenever conditions permit it is always advisable to discuss your application with the manufacturer; experience in other areas could be extremely beneficial when considering your particular needs.

Crystal oscillators

It is possible to produce R CorLC oscillators which have a stability of 0.1% under ideal conditions, but this is unlikely to be sufficient if the "Rule of 10 " is followed, i.e. over-specify to a factor of 10 , or even 100 , to be sure of the required reliability and integrity. Thus a desired accuracy of 0.1% becomes ideally a requirement for a frequency source with an accuracy of 0.001%, or 10 ppm .

Setting accuracies of ± 0.1 minutes of arc prior to cutting are needed in positioning quartz to achieve the required performance.

Even the simplest of crystal oscillators will achieve an overall accuracy of 100 ppm for all reasons (setting accuracy, temperature, ageing, etc.). Such devices therefore provide a costeffective solution to the less stringent electronic requirements.
These "clock oscillators" are available in various outlines to suit situations where either height or area (as on p.c.bs) is limited. A survey of models commercially available has shown that they have accuracies in the

Table 1. 'Accuracy' of crystals comprises three parameters

	Solder seal	Res. weld	Cold weld	Glass
Adjustment tolerance, ppm	± 15	± 10	$\pm 7 \frac{1}{2}$	± 5
Frequency/temperature tolerance,				
ppm at $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	± 15	± 10	± 10	± 10
ppm at $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$	± 40	± 30	± 30	± 30
Ageing at $85^{\circ} \mathrm{C}$, ppm/annum	$\pm 10-15$	$\pm 3-5$	± 2	$\pm 1-2$

These values are dependent on other factors, particularly frequency.

Table 2. Quartz crystal applications against features

Applications	Features
Frequency standards	Excellent long-term stability
Satellite navigation	Good quality factor
Measuring instruments	Frequency precision
Microwave beacons	Vibration immunity
High-resolution radar	Radiation hardened
Airborne radar	
Missile control	
Military communications	Good stability
Base stations	Custom frequencies
Synthesizers	Clean spectrum
Instrumentation	Low noise
Navigation aids	Local supply
Auditable quality	
Airborne radio	
Radar	
Satellite tv	Rugged
Mobile and portable radio	Custom frequencies
Pageing systems	Wide temperature range
Security alarms	Rapid delivery
Automotive electronics	
Mainframe computers	
Rescue beacons	
Television sets	Microprocessors

Table 3. Stability of four main types of crystal oscillator

	Accuracy in ppm	Remarks
Clock oscillators	50 to 2000	Low cost Logic compatible
Simple package	5 to 100	Standard crystal oscillator Tuneable to frequency
Temperature compensated	0.2 to 5	Low power consumption Instant warm-up Modest cost
Oven controlled	0.001 to 1	High precision Long warm-up High power consumption Expense rises rapidly with stability

The clock oscillator is the basic crystal oscillator. A distinction is drawn
between simple-package and clock oscillators, as clock oscillators often do not incorporate any means of frequency adjustment.

D.I.L. OSCILLATORS 250KHz to 70 MHz

The AEL 970-Series of quartz crystal oscillators offer the user the advantages of a modular frequency source - releasing valuable p.c.b. space, good frequency stability, and better start-up characteristics. EX-STOCK
We carry a range of standard frequencies in stock ready for immediate despatch.
FAST PROTOTYPE MANUFACTURE
Any frequency 3.5 MHz to 20 MHz can be manufactured within 3-4 weeks.
HIGH VOLUME OEM CAPABILITY
In addition to the above we can supply any
frequency 250 KHz to 70 MHz in production quantities.

CIRCLE 77 FOR FURTHER DETAILS.

- OUARTZ CRYSTALS/FILTERS -

MP Types, close tolerance and low TC and ageing types. 2-Pole and 4-Pole Filters. Many OEM's and in Common Market have chosen us as their supplier due to our competitive prices and excellent service. We would be pleased to have an opportunity to quote for your bulk requirements.

We also supply a range of passive components incl. capacitors, fuses/thermal fuses, trimmers, heat shrink sleeving, etc.

Europa Components \& Equipment Ltd. Barnet Lane • Elstree • Herts WD6 3RD

 Tel:(01)953 2379 Tx 929507 ECECIRCLE 61 FOR FURTHER DETAILS.

QUARTZ CRYSTALS FOR COMMUNICATIONS AND MICROPROCESSOR APPLICATIONS

These quality crystals are manufactured in a wide range of frequencies to the highest standard as demanded by internationally accepted Military and Commercial specifications.
KW Crystals have approval by NATO to supply NATO Equipment Manufacturers (under the MIL/C/3098 standard).
The holder styles that are available include HC6U, HC18U, HC25U and HC33U. Mode of application is fundamental, third or Nth overtone We offer competitive prices together with a fast delivery service

K W COMMUNICATIONS LTD Vanguard Works, Jenkins Dale, Chaltham, Kent ME4 5RT.
 Tel: 0634815173

range 50 to 1000 ppm (0.005 to 0.1\%).

For more demanding applications, crystal oscillators which are temperature compensated or oven controlled are recommended. Table 3 shows the stability of the four main types of crystal oscillator.

Simple packaged oscillators (SPXO) are the least complex. Some have a remote frequency control capability, i.e. they incor-

CRYSTAL THEORY
 EQUIVALENT CIRCUIT

L - Dynamic or motional inductance (mH)
C_{1} - Dynamic or motional capacitance (fF)
R - Equivalent series resistance (ohms)
C_{0} - Parallel or static capacitance ($\mathrm{\mu} \mathrm{~F}$)

Note 1. L, C, \& R are not true electrical components. They are apparent values of inductance, capacitance and resistance which serve to model the mechanical/piezoelectric performance of the vibrating crystal in the region of resonance.
2. Units shown in brackets are those normally used for AT-cut crystals.

CIRCUIT EQUATIONS - basic crystal

Series resonant frequency

$$
\mathrm{f}_{\mathrm{s}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}_{1}}}
$$

Parallel resonant frequency
$\mathrm{f}_{\mathrm{p}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ where $\mathrm{C}=\frac{\mathrm{C}_{1} C_{0}}{\mathrm{C}_{1}+\mathrm{C}_{0}}$
In practice, an allowance usually has to be made for 'strays' ($\mathrm{C}_{1.2}$ opposite).

Quality factor
$\mathrm{Q}=\frac{2 \pi \mathrm{f}_{\mathrm{s}} \mathrm{L}}{\mathrm{R}}=\frac{\mathrm{l}}{2 \pi \mathrm{f}_{\mathrm{s}} \mathrm{C}_{\mathrm{i}} \mathrm{R}}$
Capacitance ratio

Figure of merit

$$
M=\frac{Q}{r}=\frac{1}{2 \pi f_{5} C_{0} R}
$$

CIRCUIT EQUATIONS - with external load

Frequency deviation from resonance
$D=\frac{C_{1} \times 10^{6}}{2\left(C_{o}+C_{1}\right)}$
(ppm)

Note 1. Series capacitance (C_{1}) shifts frequency upward.
2. Parallel capacitance ($C_{1.2}$) shifts frequency downward.
3. Deviation (D) from resonance (f_{s} or f_{p}) is the same but of opposite sign if $C_{L 1}=C_{1.2}$.
4. The effect of a trimmer may be readily assessed by calculating $D \& D^{\prime}$ for $C_{1} \& C_{1}^{\prime}$ and subtracting.
5. Units are correct for $\mathrm{C}_{1}, \mathrm{C}_{0}$ and C_{I} in pico farads. Also below

Pulling sensitivity

$$
\mathrm{S}=\frac{-\mathrm{C}_{1} \times 10^{-6}}{2\left(\mathrm{C}_{0}+\mathrm{C}_{\mathrm{L}}\right)^{2}} \quad(\mu \mu \mathrm{~m} / \mathrm{pF})
$$

Apparent series resistance (with $C_{L 1}$)
$\mathrm{R}_{\mathrm{e}}=\mathrm{R}\left(1+\frac{\mathrm{C}_{\mathrm{o}}}{\mathrm{C}_{\mathrm{L} 1}}\right)^{2}$
(ohms)

Parallel impedance (with $\mathrm{C}_{\mathrm{L} 2}$)
$R_{p}=\frac{1}{R\left[2 \pi f_{s}\left(C_{o}+C_{L 2}\right)\right]^{2}}$
porate a variable capacitance diode in the frequency circuitry, and are called voltage-controlled cyrstal oscillators (VCXO). They are more susceptible, in frequency control, to variations in power supply voltage, but the user can add extra voltage immunity .

Temperture-compensated oscillators (TCXO) are characterized by a temperaturedependent reactance in the frequency control loop, designed to compensate for variations of frequency with temperature. They are expensive because the reactance has to be synthesized to make it complementary to the cubic-shaped dependence of the AT-cut crystal, and this has to be
optimized for each crystal.
Oven-compensated oscillators (OCXO) achieve stabilities of 1 pp 10^{10} per day be means of extremely precise temperature control using a built-in double oven and vacuum flask, together with careful circuit design. These crystal oscillators are used as "secondary standards". For most applications, however, a singleoven design is adequate, giving stabilities of 0.1 ppm in respect of temperature variations.
The physical dimensions of the space available for the crystal oscillator may also have a bearing on the choice. The height or area may be restricted; in either case there will be a specific unit which is suitable.

> Further reading
> Virgil E. Bottom. Introduction to Quartz Crystal Unit Design. Van Nostrand. 1982.
> Marvin E. Frerking. Crystal Oscillator Design and Temperature Compensation. Van Nostrand, 1970.
> Benjamin Parzen: Design of Crystal and other Harmonic Oscillators. Wiley, 1983.
> Ballato. A. Resonance in Piezoelectric Vibrators, Proc IEEE vol 5. Jan 1970, pp.150-151
> Holbeche \& Allen: The Influence of Series Reactance on Quartz Crystal Resonators. Proc IEE vol 130, part G no.4, August 1983, pp. 145-152

> International standards
> IEC 122: Quartz crystal units for frequency control and selection. IEC 122-1 (1976): Standard values and test conditions.
> IEC 122-2 (1969): Guide to the use of quartz oscillator crystals. IEC 283 (1968): Methods for the measurement of frequency and equivalent resistance of unwanted resonances of filter crystal units. IEC 302 (1969): Standard definitions and methods of measurement of piezoelectric vibrators operating over the frequency range up to 30 MHz .
> IEC 444 (1973): Basic method for the measurement of resonance frequency and equivalent series resistance of quartz crystal units by zero phase technique in a pi-network.
> 444-2 (1980): Phase offset method for measurement of motional capacitance of quartz crystal units.
> BS 9610 (1982): Quartz crystal units of assessed quality: generic data and methods of test.

Thick amorphous metals

Amorphous metal alloys can have interesting properties, such as hardness combined with ductility, magnetic softness and very high corrosion resistance. Until recently they could only be produced in strips of less than 0.05 mm thick but much thicker nickel-titanium and nickel-zirconium compounds have now been produced using a technique known as rapid diffusion.

To create amorphous metals, extremely rapid cooling from the molten state is required to ensure that a crystalline structure has no time to form during solidification. Current
techniques involve spraying the melt onto a cooled rotating copper drum but to achieve a sufficiently high cooling rate the resulting layers must not be more than 0.05 mm thick. Rapid diffusion, however, has been used to produce strips of up to 1 mm thick and even tubes.

This new technique involves rolling together alternate, $25 \mu \mathrm{~m}$-thick layers of nickel and zirconium. Subsequent annealing for around 150 hours at between 300 and $350^{\circ} \mathrm{C}$ causes the nickel atoms to diffuse into the zirconium layers. At these temperatures, the zirconium atoms are practically immobile and an amorphous structure stable up to about $500^{\circ} \mathrm{C}$ is formed.

Sampled-data servos a new analysis

Sampling and aliasing are explained in this second part of Dr Taub's analysis

One can regard a sampled-data signal as being formed by taking the corresponding continuous signal and multiplying it by a sampling waveform which consists of impulses occurring at regular intervals, see Fig. 2 (February issue). Such a waveform is shown in Fig. 5 and because of its shape is sometimes called a 'comb function.' Each impulse in the waveform is considered to have infinitessimal duration and infinite magnitude, but its integral with respect to time is finite.

The sampling process

The literature on the subject generally takes the integral as being unity, so that each impulse becomes what is known as a Dirac function, see section 4.2 of ref.5. However, the mathematical expressions become simpler if one takes the integral as being equal to the sampling interval T, and this is what is done here*. There is nothing against this provided that one does it consistently, and that the corresponding change is made when converting a sampled-data signal back to continuous form (part 3).

We can thus say that the sampling waveform consists of Dirac pulses of weight T ocurring every T seconds. In Fig. 5 and other diagrams showing sampled-data waveforms, the height of each impulse shown should be taken as representing its integral with respect to time.
In many cases, something very close to the sampling process described above actually takes place: that is to say, a continuous signal is gated with a sampling waveform consisting of very narrow pulses. In other cases, such as the one quoted in part 1 , no continuous signal exists; nevertheless, the sampled-data signal is the same as if the continuous signal had existed and the sampling process had taken place.

Representation of trignometric functions by exponentials

'Throughout this paper, trignometric functions will be represented by their exponential equivalents. As a reminder, the relationships between the two are

[^3]$\cos \theta=\frac{1}{2}\left(e^{\theta}+e^{\theta}\right)$
$\sin \theta=\frac{1}{\sqrt{2}}\left(e^{1 \theta}-c^{, \theta}\right)$

Spectrum of the sampling waveform

The sampling waveform is periodic and can therefore be expressed as a Fourier series. The fundamental frequency is the sampling frequency $f_{s}=$ $1 / T$ and the corresponding angular frequency is $\omega_{\mathrm{s}}=2 \pi / \mathrm{T}$ (The term 'frequency' used in this paper will often relate to ω rather than f , but this will be clear from the context).

Using the exponential form of the Fourier series (Section 3.2 in ref.5) the sampling waveiorm $\mathrm{p}(\mathrm{t})$ can be expressed as

Between the integration limits $-\mathrm{T} / 2$ and $+\mathrm{T} / 2, \mathrm{p}(\mathrm{t})$ consists of a single Dirac pulse of weight T occurring at t $=0$, i.e.

$$
p(t)=T \delta(t) . \quad-\frac{T}{2}<t<\frac{T}{2}
$$

where $\delta(t)$ represents the Dirac pulse. Equation 2.2 therefore simplifies to

$$
p(t)=\sum_{m=-\infty}^{\infty}\left[\int_{\frac{T}{2}}^{T} \delta(t) e^{-j m \omega_{s} s} d t\right] e^{j m \omega_{s}}
$$

From the definition of the Dirac pulse, $\delta(t)$ is zero everywhere except at $t=0$, and so it is only at $t=0$ that the integrand in the above expression can have a finite value. $\mathrm{e}^{-\mathrm{m}} \mathrm{m}_{1}$ t can therefore be taken as constant at its $\mathrm{t}=0$ value, i.e. as 1 , and brought outside the integral sign. This gives

$$
\mathrm{p}(\mathrm{t})=\sum_{\mathrm{m}}^{2}\left[\int_{-\infty}^{\infty} \frac{7}{\frac{1}{2}} \delta(\mathrm{t}) \mathrm{dt}\right] \mathrm{e}^{\mathrm{Jn} \omega_{\mathrm{a}} \mathrm{t}}
$$

from the definition of the Dirac pulse, the integral in the above expression is 1, and so

$$
p(t)=\sum_{m=-\infty}^{\infty} e^{m \omega_{t} t}
$$

The term in this summation corresponding to $\mathrm{m}=0$ can be looked on as a constant vector lying along the real axis, while those corresponding to positive and negative values of m represent counter-clockwise and clock-wise-ratating vectors respectively. All these vectors have unit magnitude, and at $t=0$ they all lie along the real axis, i.e. they have zero phase angle. They can thus be represented in the form of a line spectrum as shown in Fig 6.

Another way of representing $p(t)$ is in terms of trignometric functions. The line at $\omega=0$, corresponding to m $=0$, represents a d.c. component of unit magnitude. From equation 2.1, the lines at ω_{s} and $-\omega_{\mathrm{s}}$, corresponding to $\mathrm{m}= \pm 1$, represent the term 2 $\cos \omega_{\mathrm{s}} \mathrm{t}$; those at $2 \omega_{\mathrm{s}}$ and $-2 \omega_{\mathrm{s}}(\mathrm{m}=$ $\pm 2)$ represent $2 \cos 2 \omega_{\mathrm{s}} \mathrm{t}$, and so on. Therefore equation 2.3 can be expressed as

$$
p(t)=1+2 \sum_{m=1}^{\infty} \cos m \omega_{t} t
$$

.. 2.4

Spectrum of sampled cosine wave

The cosine wave that is to be sampled is given by

$$
q(t)=Q \cos \left(\omega_{0} t+\Phi_{n}\right)
$$

or, using the equivalent exponential form of equation 2.1,

$$
\begin{aligned}
& \mathrm{q}(\mathrm{t})=\frac{\mathrm{Q}}{2}\left(\mathrm{e}^{1\left(\omega_{0} t+\omega_{0}\right)}+\mathrm{e}^{-\mathrm{J}\left(\omega_{0} t+\boldsymbol{\phi}_{0}\right)}\right) \\
& =\frac{Q}{2}\left(e^{d} \phi_{n} e^{j \omega_{0} t}+e^{->\Phi_{n}} e^{-\jmath \omega_{0} t}\right)
\end{aligned}
$$

Fig. 5. Sampling waveform consists of impulses of weight T occuring every T seconds.

Fig. 6. Frequency spectrum of the sampling waveform. All the components have an amplitude of 1 and a phase angle of Φ
The spectrum of $q(t)$ thus consists of two components, both of magnitude $\mathrm{Q} / 2$. One occurs at $\omega=\omega_{o}$ and has a phase angle φ_{0}, and the second at ω $-\omega_{0}$ with a phase angle $-\varphi_{0}$. That is to say, the component at $-\omega_{0}$ is the

by D.M. Taub, M.Sc.,Ph.D.

Fig. 7. Frequency spectrum of cosine wave $Q \cos \left(\omega_{0} t+\varphi_{0}\right)$. The components at $+\omega_{0}$ and $-\omega_{0}$ have the same amplitude but opposite phase angles.

Fig. 8. Spectrum of the sampled cosine wave. The effect of sampling is to cause the two components to be repeated indefinitely at intervals of ω_{s}.

Fig. 9. When ω_{0} lies between $\omega_{s} / 2$ and ω_{s} (ie: cosine-wave frequency between 1 and 2 times the Nyquist frequency) the spectrum is exactly the same as if we had sampled $Q \cos \left[\left(\omega_{s}-\omega_{0}\right) t-\varphi_{0}\right]$.

Fig. 10. For ω_{0} between ω_{s} and $2 \omega_{8} / 3$ the spectrum is the same as if we had sampled Q cos $\left[\left(\omega_{0}-\omega_{8}\right) t+\varphi_{0}\right]$.
complex conjugate of the component at ω_{0}. The spectrum is shown in Fig. 7.
The effect of sampling is to multiply $\mathrm{q}(\mathrm{t})$ by the sampling waveform $\mathrm{p}(\mathrm{t})$, i.e. to multiply equation 2.5 by 2.3 .

The product, $v(t)$, is

$$
\begin{aligned}
v(\mathrm{t})= & \frac{\mathrm{Q}}{2}\left[\mathrm{e}^{\mathrm{t}} \mathrm{e}^{\mathrm{J} \mathrm{e}_{0} t} \sum_{m=}^{\dot{m}} \mathrm{e}_{\alpha}^{\mathrm{Jm} \omega_{s}}+\right. \\
& \left.\mathrm{e}^{-\mathrm{j} \psi_{n}} \mathrm{e}^{-\mathrm{J} \omega_{n}, 1} \sum_{n=-\infty}^{\infty} \mathrm{e}^{\mathrm{m} \omega_{l}!}\right]
\end{aligned}
$$

$$
\begin{align*}
= & \frac{Q}{2}\left[\mathrm{e}^{\psi_{n}} \sum_{\mathrm{m}}^{\infty} \mathrm{e}_{-\infty}^{\mathrm{j}\left(m \omega_{\mathrm{s}}+\omega_{\mathrm{s}}\right) t}+\right. \\
& \left.\mathrm{e}^{-\mathrm{l}^{\mu_{1}}} \sum_{\mathrm{m}=-\infty}^{\infty} \mathrm{e}^{\mathrm{j}\left(m \omega_{\mathrm{s}}-\omega_{1}\right) t}\right]
\end{align*}
$$

The spectrum representing this equation (Fig.8) consists of an infinite set of components at $\omega=m \omega_{\mathrm{s}}+\omega_{0}$, all of phase angle φ_{0}, and another set at $\omega=m \omega_{\mathrm{s}}-\omega_{0}$, all of phase angle $-\varphi_{0}$. The magnitude of every component is $Q / 2$.
The effect of sampling has thus been to cause each of the spectral conponents of $q(t)$ to be repeated indefinitely at intervals of ω_{s}.

Aliasing

Figures 7 and 8 were drawn showing ω_{o} as being less than $\omega_{\mathrm{s}} / 2$, but the equation for $v(t)$ is true no matter what the value of ω_{0}. It is important therefore, to see what happens to the spectrum as ω_{0} increases. Referring to Fig. 7 as ω_{0} increases, the lines at $\omega=\omega_{0}$ representing magnitude and phase move to the right, and those at $\omega=-\omega_{0}$ move to the left. The effect of sampling is to cause all these lines to be repeated at intervals of ω_{s}, and

so transferring attention to Fig. 8, all the lines at $m \omega_{s}+\omega_{0}$ will move to the right, and all those at $m \omega_{\mathrm{s}}-\omega_{0}$ will move to the left.
When ω_{o} passes the value $\omega_{5} / 2$, all the right-moving lines and left-moving lines pass each other, and so while ω_{o} is in the range $\omega_{\mathrm{s}} / 2$ to ω_{s}, the sam-pled-data spectrum appears as in Fig.9. The point to note is that this is the same as would be produced if $q(t)$ had and angular frequency of $\omega_{\mathrm{s}}-\omega_{\mathrm{o}}$ and a phase angle of $-\varphi_{0}$.
As ω_{0} passes the value of ω_{s}, a second crossing of the right-moving and left moving lines takes place, so that for ω_{o} between ω_{s} and $3 \omega_{\mathrm{s}} / 2$ the spectrum is as shown in Fig. 10. This is seen to be exactly the same as Fig.8, so that within this range of ω_{0}, the sampled-data spectrum is indistinguishable from what would be produced if $q(t)$ had an angular frequency $\omega_{\mathrm{o}}-\omega_{\mathrm{s}}$ and its phase angle were unchanged at φ_{0}. As ω_{0} continues to increase, further crossings of the right-moving and left-moving lines take place, causing the above two spectra to repeat alternately.
Thus when one encounters a spectrum of the type shown in Fig. 8, there is no way of telling whether it arose from sampling $Q \cos \left(\omega_{0} t+\varphi_{0}\right)$, $Q \cos \left[\left(m \omega_{\mathrm{s}}+\omega_{0}\right) \mathrm{t}+\varphi_{\mathrm{o}}\right]$ or $\mathrm{Q} \cos$ [$\left(m \omega_{\mathrm{s}}-\omega_{0}\right) \mathrm{t}-\varphi_{0}$], where m is any positive integer. Equally well, it could have resulted from sampling a combination of these frequencies with appropriate amplitudes and phase angles. This phenomenon of the sampled version of one frequency looking exactly like that of another, is known as aliasing.
To complete the picture, we examine what happens when ω_{o} is an odd multiple of $\omega_{s} / 2$ i.e. $(\mathrm{m}+1 / 2) \omega_{5}$, and when is an integral multiple of ω_{s}.
When $\omega_{\mathrm{o}}-(\mathrm{m}+1 / 2) \omega_{\mathrm{s}}$ every spectral component with a phase angle $+\varphi_{0}$ will coincide with one whose phase is $-\boldsymbol{\varphi}_{0}$. As they are equal in magnitude, the effect of adding them is to add the real parts and cancel the imaginary parts, giving the spectrum shown in Fig. 11. A similar combining of spectral components takes place when $\omega_{0}=m \omega_{s}$, and the resulting spectrum, shown in Fig. 12, is the same as would be produced by sampling a d.c. signal of magnitude Q $\cos \varphi_{0}$.

Gain of sampled-data signal processor

A sampled-data signal processor accepts a sampled-data signal at its imput and produces the same type of signal at its output. Suppose that the input is the sampled version of $Q_{0} \cos$ ($\omega_{0} \mathrm{t}+\varphi_{\circ}$) or any of the frequencies and phase angles giving the same spectrum, shown in Fig.8. Then provided that the processor is linear, the output will have a similar spectrum, the components recurring at the same values of ω, though of course their magnitudes and phases will be different. Let the output components have a magnitude $Q_{1} / 2$ and phase $\pm \varphi_{1}$ as shown in Fig. 13. then the gain at all
the values of ω represented by $m \omega_{\mathrm{s}}+$ ω_{0} (m any positive of negative integer) will be

$$
\begin{aligned}
H\left[j\left(m \omega_{s}+\omega_{n}\right)\right] & =\frac{\frac{Q_{1}}{2} e^{i \phi}}{\frac{Q_{u}}{2} e^{\phi_{n}}} \\
& =\frac{Q_{1}}{Q_{u}} e^{\left(\omega_{1}-\phi_{n}\right)}
\end{aligned}
$$

and at all values of ω represented by $m \omega_{s}-\omega_{0}$, it will be

$$
\begin{aligned}
H\left[j\left(m \omega_{5}-\omega_{0}\right)\right] & =\frac{\frac{\mathrm{Q}_{1}}{2} \mathrm{e}^{-\mathrm{J} \phi_{1}}}{\frac{\mathrm{Q}_{0}}{2} \mathrm{e}^{-\mathrm{f} \phi_{0}}} \\
& =\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{0}} \mathrm{e}^{-\int \Phi_{1}-\phi_{\omega}}
\end{aligned}
$$

This equation draws attention to two important properties concerning the gain of a sampled-data signal processor. The first is that the magnitude and phase are periodic, repeating at intervals of ω_{s}; the second is that between $\omega_{\mathrm{s}} / 2$ and ω_{s} the magnitude characteristic is the laterallyreversed form of that between 0 and $\omega_{\mathrm{s}} / 2$, and the phase characteristic is laterally-reversed and of opposite sign. Thus if the gain over the range 0 to $\omega_{\mathrm{s}} / 2$ is known, it is known everywhere.

A typical sampled-data gain characteristic is shown in Fig. 14.

APPENDIX

Effect of using unit impulses in

 sampling waveformTo keep the mathematical expressions as simple as possible, it has been assumed in the main text of this paper and in the programs, that the sampling waveform consists of impulses of weight T (part 2), and that on conversion back from a sam-pled-data signal to a continuous signal. the output immediately following a sample of weight T has unit value (part 3). In practically all the published literature, however, sampling is assumed to be done with unit-weight impulses. Therefore to help relate the material presented here to other publications, the principal equations for unit-weight sampling pulses are given in this Appendix. The equations are numbered as in the main body of the text but with the prefix U to indicate unit-weight impulses.

Sampling waveform:

$$
\begin{align*}
& p(t)=\frac{1}{T} \sum_{m}^{\infty} e_{-\infty}^{\mathrm{m} \mathrm{e}^{2} \mathrm{t}} \\
& =\frac{1}{\mathrm{~T}}\left[1+2 \sum_{\mathrm{m}=1}^{\infty} \cos \mathrm{m} \omega_{\mathrm{s}} \mathrm{t}\right] . \\
& v(t)=\frac{Q}{2 T}\left[e^{4 \cdot} \sum_{m=-\infty}^{\infty} e^{\left(m m u_{2}+\omega_{n}\right) t}+\right. \\
& \left.\mathrm{e}^{-\phi_{n},} \sum_{-1}^{\infty} \mathrm{e}^{\mathrm{J}\left(\mathrm{~m} \omega_{n}-\omega_{n}, n\right.}\right]
\end{align*}
$$

REFERENCES

1. J.J. Distefano, A.R. Stubberud and I.J. Williams. 'Feedback and Control Systems' (Schaum's Outline Series, McGraw-Hill, New York, 1976).
2. M. Healey. 'Principles of automatic control', (Hodder and Stoughton, London, 1975).
3. M.K. Haynes. 'Magnetic recording techniques for buried servos'. IEEE Transactions on Magnetics, Vol. MAG 17, 1981 pp tions on
2730-4
4. N.H. Hansen. 'Head-positioning system using buried servo', ibid pp 2735-8.
5. P.A. Lynn. 'Introduction to the analysis and processing of signals' (Macnillian, London. 1973).
6. B.C. Kuo. Analysis and synthesis of sampled-data control systems' (PrenticeHall, Englewood Cliffs, NJ, 1963)
7. A.M. Tropper. 'Matrix theory for electrical engineering students' (Harrap, London, 1962).
8. S. Goldman. 'Transformation calculus and electrical transients', (Prentice-Hall, and electncal tra
9. D.M. Taub. 'Programs for computing 9. D.M. Taub. Programs for computing
sampled-data servo performance', IBM sampled-data servo performance' IBM
Technical Report no.12.199, (IBM United Kingdom Laboratories, Hursley, May 1982).

Fig. 11. When ω_{0} is $1,3,5,7$, etc times $\omega_{s} / 2$ all components have an amplitude $Q \cos \varphi_{o}$ and zero phase angle.

Fig. 12. When ω_{0} is $2,4,6,8$ etc times $\omega_{8} / 2$ the spectrum is the same as if we had sampled a d.c. signal of amplitude $\mathbf{Q} \cos \varphi_{0}$.

Fig. 13. The output spectrum of a sampled-data signal processor has the same repetitive nature as the input spectrum.

Fig. 14. Typical sampled-data gain characteristic showing its repetitive nature.

JUMP ONTHEIEEE BUS
 CAIL 018901477

SE 2750 INTERFACE CONVERTER

A COMPLETE SOLUTION TO YOUR INTERFACING
PROBLEMS BETWEEN THE IEEE BUS, SERIAL, 8/16 BIT PARALLEL AND BCD DATA SYSTEMS

Phone or send for details of the range of IEEE Bus compatible instruments from THORN EMI Datatech:-

SE 2650
SE 2450

- IEEE Bus Controller

SE 1700

- Frequency Response Analyser
- Programmable Digital Filter System
- Transient Recorders

SE 2750 - Interface Converter
SE 3000/
7000/9000 - Instrumentation Tape Recorders
SE 6400 - Galvanometric Recorders
 - CIRCLE 95 FOR FURTHER DETAILS.

IT WON’T COST YOU A PENNY.

BEING WITHOUT ONE COULD COST YOU DEARLY.

The 1985 Midwich catalogue is now available,
absolutely free.
It's the most comprehensive catalogue yet, containing many of the latest and very best computer components on the market, at highly competitive Midwich prices and a service that is second to none.

Which means it will provide your organisation with a vital source of information including numerous
technical specifications and pin-out diagrams.
Fill in the coupon and send for your copy today. cover why no organisation can afford to be without one.

You'll soon dis- $\overline{\begin{array}{l}\text { Reply } \\ \text { Gilray Road, Diss, Norfolk } 1 P 22 \\ \text { REU } \\ \text { Cover Why no }\end{array}} \overline{\text { Mider }}$ Company Limited Gilray Road, Diss, Norfok 22 3EU

Name
Organisation/Company
Position \qquad
Address \qquad
_Postcode
Tel. No \qquad

Now! Tek quality andexpertadvice are justa free phone callaway...

Our National Order Desk line gets you fast delivery of the industry's leading value/performance portables... and technical advice from experts!

The 60MHz 2213A, 2215A and the 100 MHz 2235 and 2236 offer unprecedented reliability and affordability, plus the industry's first 3 year warranty on labour and parts, CRT included.

All 2200 series scopes have the bandwidth for digital circuits and sensitivity for low signal analogue measurement. The sweep speeds for fast logic families, and delayed sweep for fast, accurate timing measurement. The top of the range 2236 combines a counter/timer/DMM with the scope to provide fast, easy measurements for voltage, resistance and temperature

[^4]These UK manufactured 'scopes are obtainable through the National Order Desk. Call us to order or obtain literature, or to talk to our expert on 'scope applications.

...talk toPete

Dial 100 and ask for Freefone Tek-scope

Tektronix UK Ltd
Fourth Avenue, Globe Park, Marlow, Bucks SL7 1 YD
Tel: (06284) 6000
Telex: 847277 \& 847378

Tektronix

Thin-lines?

Sir Donald Maitland, introducing the 130 -page report of the Independent Commission for Worldwide Telecommunications Development, of which he was chairman, showed how the gap in telecommunications facilities in industrial countries and those in developing countries is widening rather than narrowing, and is now grossly unbalanced. He said: "There are more telephones in Tokyo than in the whole of Africa. Three-quarters of the 600 million telephones in the world are concentrated in just nine countries. Half the world's population live in countries with less than one telephone for every 100 persons. With certain exceptions the services in developing countries are poor or indifferent and in more remote areas there is no service at all." Some African countries have less than one telephone per thousand of the population compared with 500 in London which is by no means top of the table.

The report identifies the problem, shows how good telecommunications can become the future trade routes of the world and proposes the setting up of a new "Centre for Telecommunications Development (CTD)" under the aegis of the ITU among its 59 recommendations. Less happily, if one digs into the report, one discovers why it will prove extremely difficult to reverse the processes by which those rich in
telecommunications get richer, the poor get ever poorer. Poor countries have to beg or borrow the hard currency for such capital-intensive projects; aid tends to go to what are regarded as higher-priority projects and tend to restrict choice of systems to specific exporting countries; revenues from the system are in local "soft" currencies; advanced digital technology requires software expertise often not available locally; modern telecommunications economics favour high-capacity broadband all-digital systems, whereas the most urgent requirement is often for thin-line links to community telephones in the interior.

When I drew Sir Donald's attention to the clear disparity
in the comments received by the Commission from Third World administrators/operators and the advice tended by manufacturing countries, he insisted that the way ahead must be digital rather than analogue, making full use of satellite communications rather than less ambitious "alternative technology" or older electromagnetic systems.

The Commission's 59 recommendations fall into four main groups: enccuraging national and international organizations to give higher priority to investment in telecommunication; encouraging the upgrading and expansion of existing networks; methods of financing the required investment of some $\$ 12$ billion/year; and recommendations aimed at making the ITU more effective.

The Commission was set up as a result of ITU's
Plenipotentiary Conference, Nairobi 1982 and had a remit to identify and recommend methods, including novel ones, for stimulating
telecommunication development in the developing world. In practice the report is stronger at identifying the problems than finding easy or novel ways of overcoming them. Sir Donald is convinced there is no single remedy, novel or otherwise. The ITU Administrative Council may establish the CTD at its meeting in July, but it will be many years, if ever, before the gross unbalance seems likely to be reversed and everybody is within reach of a telephone.

Cold crash

The loss of a tall television antenna-support mast is a serious matter at any time, but even more so when the cause is not immediately obvious. The history of tubular steel masts, as contrasted with triangular lattice masts or concrete towers, has been chequered. In the UK, a three-year-old 1265 ft tabular mast at Emley Moor collapsed in cold weather in March 1969, ascribed to a combination of assymetrical icing of the guy wires and oscillation of the mast due to vortex shedding at relatively low wind speeds. This led to the installation of counter weights to dampen oscillation
on the Winter Hill and Belmont masts of basically similar design. Earlier a tubular mast at Waltham collapsed during construction. Ground subsidence at the Mendip site at one stage caused concern. In mid-January,
Westdeutscher Rundfunk suffered the loss of a 977 ft (298m) tubular steel mast in the Teutoburger forest for reasons that are by no means clear. The mast, completed in 1970, comprised 2.2 m -diameter sections formed from 9 mm thick sheet steel bolted together in 5 m sections for the first 230 m , then thinning to 1.5 m diameter.

It fell at $6.26 \mathrm{a} . \mathrm{m}$. after a calm but cold night in temperatures around $-20^{\circ} \mathrm{C}$ following a week in which temperatures had not risen above $-15^{\circ} \mathrm{C}$. Although such a long cold period is unusual in this region, similar masts in higher sites in other parts of West Germany are subject to more severe conditions. Two guy cables and four cable-totower connections apparently gave way but neither wind nor ice loading seem to have been the cause; subsidence or ground movement has not been ruled out, but it remains a mystery why the 15 -year-old mast collapsed in circumstances apparently linked with an extended period of sub-zero temperatures.

Phone in-flight

With cellular mobile/portable radio, pay-phones on some British Rail intercity trains, cordless telephones, radiopagers capable of displaying 90 character messages, submerged fibre-optic cables and more and more satellite circuits it may seem that, in some countries, the ability to talk to anyone, anywhere, anytime is fast approaching. The snag is that the usable electromagnetic spectrum is finite and can be rendered ineffective by overcrowding.
The FCC has recently ruled that pay phones in civil aircraft are in the nature of a luxury for the privileged few and have refused to allocate frequencies around 900 MHz specifically for this purpose, requested by Airfone Inc. to expand its present experimental service (in

22 aircraft) to more than 300 aircraft operated by 26
American airlines. The system provides direct links to ground rather than via satellite.

The use of satellites to upgrade aviation communications, navigation and air traffic control as part of the proposed National Airspace Plan is not arousing much enthusiasm from the Federal Aviation Administration who oppose the adoption of unproven technology in an allembracing system and are currently up-grading its a.t.c. computers, secondary radar data subsystem (Mode S) and installing microwave landing systems at the rate of about 100 airports a year.

Sound archives

There is a well-founded belief that those of us who live in London make less use of its facilities than visitors. It was only recently that I discovered the British Library National Sound Archive at 29 Exhibition Road, London SW7 (01-589 6603) with its remarkable free listening service available by appointment on weekdays. The NSA (formerly British Institute of Recorded Sound) now holds nearly half a million discs and 35,000 hours of recorded tape. Its collection reflects recorded sound from early wax discs to digital compact discs, plus recordings of many BBC broadcasts. While the emphasis is on music (Western art music, international music, jazz, pop etc.) there are also specialist areas such as wildlife sounds, drama and spoken music. Recordings are supplemented by printed catalogues, discographics, periodicals, reference books etc., which can be consulted without prior appointment. It also runs information and transcription services, including the supply of tape copies of deleted commercial recordings to companies and organizations, provided they have copyright clearances.

TV in 1881?

Whether or not you agree with Herb Brodkin's dictum that "Television is busily destroying the world" the current series of 13 hour-long programmes
produced by Granada is certainly attempting to show how the medium has captured the world. The second programme "The Race for Television" attempts to trace the early history up to 1945 during which technology had not then been overwhelmed by the power of the programmes. This episode will have been transmitted by the time these notes appear.

According to the synopsis, it traces Baird's sad history, from his early days to his eventual defeat by the rival electronic system and I suspect treats his story rather more sympathetically than did Professor J.D. McGee in his "Rutherford Memorial Lecture" delivered at Christchurch, New Zealand in October 1982 and published recently in Proc. R. Soc. Lond. A393 pp 193-214 (1984).

Prof. McGee, who, with W. Tedham, was responsible for electronic camera development at Hayes from January 1932, considers that the first demonstration of "real television" was that given by Ayrton and Perry at the Royal Society of Arts, London in 1881 using two oscillating mirrors and modulating a light beam passing through a Kerr cell, though limited by mechanical inertia of the moving parts. Ayrton \& Perry however postulated the minimum requirements for worthwhile television as 15 pictures per second, and 100 lines of 100 pixels per line - significantly more than Baird was able to achieve 45 years later.

Of the later mechanical systems, McGee considers they were doomed to failure for reasons that Campbell Swinton repeatedly emphasised, adding: "Of course there could be no objection to experimenters exploring the possibilities of mechanically-based methods, but what was inexcusable was the propaganda and political pressure exerted to have the mechanical system adopted by the broadcasting tv system. Anyone who saw the quality of the pictures then (as I did) would have had to be incredibly naive to accept the system as being worthwhile for a public broadcasting service."

Amateur Radio

Cable e.m.c.

The cabling of UK cities, seen euphorically by some as the first step to a broadband electronic grid, has receded almost out of sight. It is now clear that the high-tech., 30channel, star-switched interactive systems planned to give wideband channels into and out of millions of homes has stalled, perhaps for decades. The newly formed Cable Authority has made it clear that applicants for the franchises being offered this year will not be rejected if they offer something less ambitious.
Yet the Electrical Research Association has just completed a major study that underlines the need for high technical standards if the many problems of electromagnetic compatibility (e.m.c.) with cable systems are to be avoided.
ERA Report No 84-0059 (£135 to non-members, $£ 99$ members) investigates r.f. leakage into and out of both tree-and-branch and switched star cable systems. The report confirms that two components stand out as having significantly more effect on e.m.c. performance than others: the tap-off units and the safety isolators.

ERA concludes that whilst radiated emissions from the systems examined might not cause unacceptable interference (though experience at Milton Keynes and in the USA must surely lead to some doubts), the immunity to external fields required substantial irhprovement to avoid interference, particularly from amateur and mobile radio transmitters. But with the present commercial doubts on cable, it will be surprising if the stringent technical standards called for by ERA are engineered into all systems.

GaAs fets on 144 MHz

For several years there has been increasing use by radio amateurs of high-gain, lownoise pre-amplifiers based on
the use of gallium arsenide field effect transistors not only on microwaves but also on the 144 MHz v.h.f. band. These devices tend to be more expensive than even the best performance on the higherfrequency bands. Unfortunately they are easily destroyed by transient voltages unless care is taken in the switching sequences when used as masthead amplifiers in conjunction with transmitters and are more vulnerable than silicon devices to static electricity during construction.
A number of American amateurs have recently been strongly advocating the use of GaAs devices on 144 MHz , partly on the basis of "wide dynamic range," despite doubts expressed in the UK whether this is achieved with conventional circuitry. Thirdorder intermodulation distortion intercept points appear to be more likely to be in the region of OdBm than the $10-12 \mathrm{dBm}$ often claimed. Noise performance around 1 dB , achievable with good silicon devices, is often the highest usable sensitivity due to external noise levels on 144 MHz .

An exception to the general rule, permitting an input third order intercept of 10 dBm and output intercept of 23 dBm , with a noise figure of under ldB, has shown to be achievable with an MGF1202 device on 144 MHz by the use of "noiseless" nondissipative negative feedback. This is generally regarded as suitable only for high-cost amplifiers for professional applications but Chris Bartram, G4DGU of muTek has been marketing a switched preamplifier of this type (Model GFBA 144e) with the feedback adding only about 0.15 dB to the noise figure but almost 10 Db to the intercept point.
But without non-dissipative feedback there is little evidence that these devices live up to the myth of wide dynamic range.
Fortunately for 12 GHz dbs receivers, for which GaAs devices are virtually essential, dynamic range is of little consequence since the signals from geostationary dbs transmissions tend to show only a moderate spread of signal strenths, with fading limited to conditions of very heavy rain, wet snow and some variation of polarization during hail storms.

In brief

The British Amateur Radio Teleprinter Group now has a s.s.b. a meeting point for amateurs interested in any aspect of data communications, including r.t.t.y., Amtor and "packet radio." BARTG transmits an r.t.t.y. news bulletin on 3.5, 14 and 144 MHz at various times on Sundays. Information on these and other BARTG services is available in leaflet form ("BARTG and the Eighties" and "BARTG and data communications") available free (large S.A.E.) from John Beedie, GW6MOK, PO Box 3, Llandeile, Dyfed, Wales (telephone 0558 822286).

Slow-scan television at lowcost is possible using home computers though not all the software being offered for this application is entirely successful or as flexible as it might be. Dutch amateurs are setting up an amateur-television repeater (input 1252.5 MHz output 1285.5 MHz) at Soest in central Holland with 40 W peak erp and horizontal polarization. A 1.3
GHz a tv repeater is also planned for Crawley, Sussex expected to cover North Sussex and Surrey as GB3CT. The repeater has been built for £150.
The possible standardization of 134 MHz as the nominal centre frequency of home DBS receivers, with a 30 MHz passband (110 to 149 MHz) is causing some anxiety to the many thousands of 144 MHz users who fear e.m.c. problems due to direct break-through. Tests carried out by the DTI show that harmful interference can be avoided but the margins are narrow and would be lost unless the indoor units, cable connectors, etc., provide a degree of isolation unusual in consumer equipment.
Even if British manufacturers follow DTI recommendations and, for example, use fully screened metal enclosures for the indoor units, it would be difficult to ensure compliance of imported equipment.

Kelso Amateur Radio Society is organising a 2nd AngloScottish rally at Kelso's Tait Hall on Sunday, May 5. Other rallies include: March 24 White Rose Rally, University of Leeds (details G4NDU);

Pat Hawker, G3VA.

TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 14 DA YS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty

$62 \times \underset{\text { Regulation }}{34 \mathrm{~mm}} 19 \%$			$\begin{gathered} 80 \times 35 \mathrm{~mm} \\ \text { Regulation } 13 \% \end{gathered} 0.9 \mathrm{~kg}$		
$\begin{aligned} & \text { SERIES } \\ & \text { No } \end{aligned}$	$\underset{\text { Volts }}{\text { SECONDARY }}$	$\begin{gathered} \text { RMS } \\ \text { Current } \end{gathered}$	2×010 2×019 2×012	$\begin{gathered} 5.6 \\ 9.9 \\ 12.9 \end{gathered}$	416 277 208
0×010	6.6	125	2×013	$15+15$	166
0×011	9+9	083	2×014	18.18	138
0×012	12.12	063	2×015	22+22	113
0×013	15.15	050	2×016	$25 \cdot 25$	1 00
0×014	18.18	042	2×017	30-30	083
0×015	22-22	034	2×028	110	045
0×016	25.25	030	2×029	220	022
0×017	$30 \cdot 30$	025	2×030	240	820
(encased in ABS plastic)			80 VA		
$\begin{aligned} & 30 \mathrm{VA} \\ & 70 \times 30 \mathrm{~mm} \end{aligned}$		045 Kg	$\begin{gathered} 90 \times 30 \mathrm{~mm} \\ \text { Pegulation } 12 \% \end{gathered} 1 \mathrm{Kg}$		
Regulation 18\%			3×010	${ }^{6} \cdot 6$	
1×010	6.6	250	3×11	+ $9+9$	4.44
1×011	9.9	166	3×012	12.12	333
1×012	12.12	+25	3×013	$15+15$	266
1.013	15.15	100	3×014	18.18	222
1×014	18.18	083	3×015	$22+22$	181
1×015	22.22	068	3×016	25.25	160
1×016	25.25	060	33017	30.30	133
9 $\times 017$	$30 \cdot 30$	050	3×023	110	072
			3×029	220	036
			3×030	240	033

Why a Toroid?

* Smaller size \& weight to meet modern 'slimline' requirements Low electrically induced noise demanded by compact equipment.

High efficiency enabling conservative rating whilst maintaining size advantages.

Lower operating temperature
Why ILP?
Ex stock delivery for standard 240 V range
Fast prototype service available 3 weeks despatch for special orders
2 year no quibble quarantee No price penalty for call-ott order

CIRCLE 28 FOR FURTHER DETAILS

CIRCIE 38 FOR FURTHER DETAILS

Kensthase ContactsCLEAN

 BY USING A DIACROM SPATULA

No other cleaner has all these advantages:-

1. Oniy 100% pure natural diamond grawis arée uill sen
2. Blades are veated with hard chrome to rentorce the setting of the diamond grans. to obviate loosening or breakaway during use This process also prevents clogging of the diamonded surface ty residues resulling from use
3. All diamonded blades are rectifed to ensure an absolurely smooth surface by eliminaing diamond grains which
scraiching durng use
4. All diamond grants are engidily callbrated to ensure a perfectiy uniform grain size of either 200300 or 400
5. The chrome gives a very weak co efficient of fiction and the "gidity of the nyion handle is calculated to permit proper utilisation and vet plant enough to avoid unidue pressures on highty delicale relays

- Gran size 200 thickness $55 / 100 \mathrm{~mm}$. both faces diamonded For quick cleaning of industrial
relays and switching equipment. etc
- Gran 5 Ize 300 thickness $55,100 \mathrm{~mm}$
- Granione cars compuer
contacit 400 inckness 25100 mm one face diamonded For sensitive relays and tuny contacis. Two close contacts ta

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRISUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supolied to the M.O.D. U.K.A.E.A., C.E.G.B. British Rail and other Public Authorities: also major industrial and electronic users throughove the Unitod Kimgdom. CIRCLE 39 FOR FURTIER DETAILS.

The Microvalue Group dealers shown below represent part of the Gemini network For expert advice and full details on the Gemini System, contact your nearest dealer today.

AMERSHAM COMPUTER CENTRE LTD

18 Woodside Road, Amersham, Bucks HP7 0BH Tel: 0240322307 Telex: 837788

BUSINESS \& LEISURE LTD
16 The Square, Kenilworth, Warwickshire CV8 IED Tel: 0926512127

CENTIFLEX MICROSYSTEMS LTD

Unit 6, Perry Road, Staple Tye, Harlow
Essex CM 187 NW
Tel: 0279442233

ELECTROVALUE LTD

28 St. Judes Road, Englefield Green, Egham, Surrey TW20 0HB
Tel: 078433603 Telex: 264475
E.V. COMPUTING

700 Burnage Lane, Manchester Mi9 1NA
Tel: 061-4314866

HENRYS RADIO

404 Edgware Road, London W2
Tel: 01-402 6822

LEEDS COMPUTER CENTRE

55 Wade Lane, Merrion Centre, Leeds LS2 8NG Tel: 0532458877

OFF RECORDS LTD

Computer House, 58 Battersea Rise
Clapham Junction, London SW 11 iHH
Tel: 01-2237730
SKYTRONICS LTD
357 Derby Road, Notlingham NG7 2DZ
Tel: 0602781742
SPARTACODE LIMITED
69 London Rood, Bognor Regis
West Sussex, PO21 IDE
Tel: (0243) 826161

GM813 CPU/64K RAM BOARD - This card provides system 4 $\mathrm{MHz}, Z 80 \mathrm{CPU}, 64 \mathrm{~K}$ user RAM and both serial and parallel I/O.
GM811 CPU BOARD - An industrial standard $4 \mathrm{MHz}, Z 80$ controller board with parallel and serial I/O together with a variable Bytewide memory capacity.
GM888 CPU BOARD - A new card featuring the Intel 8088 processor to provide a dual processor system.
GM832 SVC BOARD - Provides conventional 80×25 or 40×25 screen format together with graphics capability. Includes full keyboard support and overseas character sets.
GM862 256K RAM BOARD - Supports both page mode and extended addressing facilities and can be used with all of the Gemini CPU cards.
GM833 512K RAM-DISK BOARD - Provides 'psuedo disk' facility in a MultiBoard system.

> GM829 FDC/SASI BOARD - Combines floppy disk controller and SASI board supports up to four floppy disk drives plus Winchester controller cards.

GM837 COLOUR GRAPHCS BOARD -256×256 sixteen colour graphics display. Output to either PAL UHF or RGB.
GM816 MULTI I/O BOARD - Provides three Z80A PIO devices plus CTC and battery backed Real Time Clock.
GM848 SERIAL I/O BOAFD - Utilises two Z80A SIO chips providing four synchronous/asynchronous serial channels with software selectable baud rates.
GM836 NETWORK INTERFACE BOARD - Provides RS422 communication protocol for networking CPU boards.

The dealer's choice

Gemini Microcomputers Ltd., 18 Woodside Road, Amersham, Bucks, England HP6 0BH. Tel: \{02403) 28321. Telex: 837788 CIRCLE 27 FOR FURTHER DETAILS.

* * NI-CAD BARGAINS * *

Ex-equipment but little-used, re-chargeable Nickel-cadmium
 E3- Masures 6001×1.
 PANTEC 'BANAMA' MULTI-METERS/ A Weare agents for the Pantec range of instruments
neluding the famous 'BANANA' meter meluding the tamous 'BANANA meter
illustrated
FULL
ONE
IOWEAR GUAANTEE. LOWEST U K. PRICE only Y25inc VAT \& carriage
Briet spec as follows $20 \mathrm{KOhm} / \mathrm{ODC}$ OKOhml
V.AC. Res stance $\times 1 \times 100 \times 1000 \mathrm{hm}$. 5 rang $V . A C$ Res stance $\times 1 \times 100 \times 10000 \mathrm{hm}, 5$ range
DC.V 3 range AC. VC Current to 2.5 A . Send

- OPTICAL ISOLATORS

SPERRY UNIVAC M4000 opto-ISolator unts providing 2kV of
Insulation between Modems and Terminals 25 way ' D 'conneciors

1) BECKMAN TURINS COUNTER DIALS

\star * GROSS-HATCH GENERATORS $* *$
LABGEAR CDLDURMATCH CM6004PG LABGEAR CDLDURMATCH CM6004PG, OHF reieviston pattern generators
gwang cross-hatch, dot and greay scale
patterns. Fully tested and guaranteed NOW JUST £20 Inc VAT \& p\&p
 LABGEAR COLOURMATCH CM6010RG Gated RaInoow colour pattern getmerators. Cross-hatch/dol 8 gated rainbow (RGB)
 KORTING 82512 PAL/NTSCCOlour 8 pattern gen.
Mail Order customers please add $£ 250$ poslag ع275+ Mal Order customers please add $£ 2.50$ postage each item.

RALFE • ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: $01-7238753$

1000 WATI AUDIO AMPLIFIERS

- z-rntr

 2VDC Battery Inout o 230V AC Output © 125
watts crystal-controlled 50 Hz time -base
scillator tully enclosed in blue-steel cases watts crystal-controlled 50 Hz t time-base
oscillator. wally enclosed in blue-steel cases
with with integral 13 A socket. Dimensions appox
$4 \times 0 \times 10^{\circ}$. BRAND NEW 560 ins VAT \& * MANS STABULSERS * Small quantify ayalable of brand-new Gould
ECVN250A constant voliage transtiomers $109-260 \mathrm{VAC}$ ninput to 240 V AC ountut en 250 watts. $£ 45$ each , VAT ($\mathrm{p} \& \mathrm{p}$ £3)

TEKTRONIX Type 529

* SWEEPERS *

TELDNIC 2003 Sy stem. $800-1500 \mathrm{MHz}_{2}$ 〔325 TELONIC SM2000 with $500-900 \mathrm{MHz}$ plug-1n
KNIGHT KG-687 3-220MHZ $£ 150$ Televiston Waveform Manitors

EOOYSTOME COmmunications receivers $770 \mathrm{R} / 1$ Covering $19-165 \mathrm{MHz}$ \&
$770 \mathrm{U} / 2$ Covering $150-500 \mathrm{MHz}$

* COMPUTER PERIPHERALS *

1.6MB 8" FLOPPY DISC DRIVES - New Stock
GRAND NEW AI a surplus price. Fuly Shugart compatible MFE CORPORATION Model M-700 OOUBLE-SIOED Industry Slandard 8°

DRE AOMOA ORIJES

 SHUGART 8° Flopay dives model SA800. Condition as new $\underset{1}{ } 150+$ vat

* MULTH-RNL LINEAR PSUIS *

Recent stock of brand rew CDUTANT ESM. Seres Power Supplies al Sutputs $5 V$ \& $15 A$ and $\pm 12 V$ to $\pm 15 V$ Oqu.5A each and an un-
 cariiage 5)

* SWITCH-MODE POWER SUPPLIES *

- CENTRIFUGAL BLOWERS *

TORAN Type U62B1 230 V Cap'Start (supplied). very powertul (200w 3.000 rpm) centitugal lans for large rack cool ing of

PLEAEE NOTE Allithe pre-owned equipment show has been carafully yested In our works hop and

(1) 13 down on production problems

With PANAY/ISE you securely position your work exactly where you want it. PANAVISE tilts, turns and rotates and the range includes interchangeable heads and base mounts.
In this range of professional robust bench tools there is a unit to fit your every requirement. Also illustrated is a small selection of Oryx Inserters and Extraction tools.

15 -advanced design at an ordinary price
 GREENWOOD ELECTRONICS DISTRIBUTORS

Toolrange 073422245 Reading. S.T.C. Electronic Services 027926777 Harlow. Verospeed 070364111 Eastleigh. Electroplan 076341171 Royston. Hawnt Electranics 0217842485 Birmingham. Engineering and Electronic Supplies 063954162 Wales Cobbies 01-699 2282 London. Buck \& Hickman U.K. Anglia Components 094563281 Cambridge. EIC. Ltd. 072736311 St. Albans. Willowvale Electronics 0734860158 Reading. Longs 0932861241 Surrey
Please telephone or write for further information to:
Greenwood Electronics Porman Road. Reading.Berkshire RG3 1NE Tel: Reading 0734595844 . Telex: 848659

Radar and television interchange and spin-off

by R.E. Young,

B.Sc.(Eng.),F.I.E.E.,
M.R.Ae.S.

Continuing the survey of British invention and innovation in electronics, with a look at the benefits of radar and television research.

On February 26th 1935, a response at a range of about eight miles was received from an aircraft flying through 50 -metre beamed radiation from the BBC (World) transmitting station at Daventry ${ }^{1}$. In less than four months (on June 16th, 1935), the first British radar installation was in operation at Orfordness on the Suffolk coast, providing cover which enabled "... an aircraft to be followed for more than 40 miles".

There is no need to stress the vital nature of these "momentous events of 1935", as A.P. Rowe has called them. They were to continue with, if anything, increased speed. Thus operationally acceptable height measurement and determination of azimuth (bearing) was developed within a matter of months; and by March 13th 1936, the new Bawdsey (Felixstowe) station "... successfully located... an aircraft flying at 1500 feet at a distance of 75 miles".

The achievements had the sure foundations on which the unequalled expansion of British radar was based. Following those already quoted, salient points in this expansion were:

- completion of the first CH (Chain Home) "Floodlight" stations for operational capability by August 1937
- completion of the 20 station chain to cover the entire eastern approaches to Britain before the beginning of World War II onSeptember 3rd 1939
- 'One and a half metre' CHL (Chain Home Low) - rotating beam - stations against low fliers developed, installed and brought into operation by the end of September 1939.
The CHL stations supple-
mented, and worked in conjunction with the main CH stations; and from the beginning of 1940 were joined by a succession of GCI (ground-controlled interception) stations also working on $1 \frac{1}{2}$ metres. These were followed rapidly by 'ten-centimetre' wavelength installations embodying the cavity magnetron - radar's master invention.

This impetus was repeated in the other sectors of British radar. Thus the wide range of airborne systems, which gained enormously when the cavity magnetron was introduced, were produced on time scales quite comparable with the remarkable ones already quoted. Similar results were achieved with the various Naval radar systems evolved by ASE (Admiralty Signal Establish ment); and with the systems developed by the associated research establishments for the Army and the other services.
An immediate example is afforded by the short-wave transmitting valves developed by HM Signal School (later ASE) and suitable for high power pulse working, and which were employed in the 'Main Chain' stations coming under the aegis of TRE (Telecommunications Research Establishment). Valves for high (peak) power operation at $1_{2}^{\frac{1}{2}}$ metres were produced by industry to meet the crucial installation programmes for the CHL and GCl stations.
In a sense the whole country was involved with radar which had become almost a way of life for a significant proportion of its population, both service and civilian; and it may even be said that the United Kingdom had become a national-scale 'cluster' (see Article 1 in this series, $E W W$

March 1985)

This group of propositions may seem extravagant; but illustrations will be used not only to give substance to them, but also because of their importance for today. First of all, only a brief mention has been made of TRE its work is accurately documented - in 'Science at War' (ref. 1) and by A.P. Rowe (ref. 2); and its unique position in the mainstream of World War II radar development is well known. The full value and extent of this mainstream work can be seen in the account already given of the remarkable project time successes achieved from Daventry and Orfordness onwards. However, it is in connection with the way that 'thinking was kept right' that is of the utmost importance here. This can be seen in its fundamental form with the Daventry test.
The position at Daventry is probably best highlighted by saying that if this experiment had failed or - much more likely had been misinterpreted, then the appearance of radar in Great Britain could have been delayed indefinitely, certainly beyond the danger point of 1939. That the experiment was successful can be ascribed to two main causes. The first was the technical quality of the equipment itself and correspondingly of the thinking that lay behind it; and the second was the penetration shown in the observation of the displayed signals, and particularly of their analytical interpretation.
It must be remembered that this was a completely new world where even the basic principle of '... getting enough (reflected radio energy) back from the aircraft' was in doubt; and where it

Fig.1. Paraboloid Aerial Reflector for Television Radio Link under Construction.
might not be possible to anticipate all the unforeseens. That they were anticipated, and all false trails avoided, was to give the solid base for the breakthrough expansion which followed, and represents in many ways the culmination of work which had begun at the Radio Research Station, Slough with Watson Watt as Superintendent. Here, amongst a wide variety of research activities, notably on radio propagation, classical work was carried out on cathode-ray tube measurement and other techniques ${ }^{3}$.

One aspect of the c.r.t. work is of particular interest in this instance. This was an installation set up to enable two observers, widely separated at the ends of a 550 km base line (Slough - Leuchars in Scotland), to determine the direction of arrival of atmospherics by means of cathode-ray direction-finders. A continuous watch was maintained over a selected period, and on "Now" from the 'control' observer passed over the permanent line between the two stations, simultaneous readings of screen trace bearing being 'written down serially' by an assistant at Slough, listening in parallel on the line. The individual atmospheric source 'fix' was then determined from the intersection; and this is probably one of the first examples of a well-engineered operational scheme for such (radio) direction finding. It was typical in that it
embodied many of the basic techniques which were to be adopted for radar, and which incidentally, employed 'filtered' data-reduction methods.
As indicated - and as will be appreciated - this 'hands-on' process, some of it almost automatic, was to be a feature of the radar expansion of World War II, and was to continue as spin-off after it.

A particularly apposite illustration of how spin-off could develop comes from the early days of operational radar. When the original group of three stations became available, difficulty was found in reconciling the plots of aircraft obtained from the three sites with their different radio (physical) characteristics and variation between observers (cf. the 'base line' atmospherics method). The problems of correlating aircraft tracks and reporting them quickly were tackled by setting up 'filter rooms', the first of these being at Bawdsey; and the second - the derivation of corrected plots and their transfer to standard 'grid' form - by the development of a converter. This converter, which became inevitably known as the 'fruit machine', was a digital computer with electromechanical logic based on automatic telephone practice and demanding auto-matic-exchange type maintenance.

The success of this system and of those who operated it, may be judged by the remark made by Air Marshal Dowding on seeing the converter that "... it would not be long before the scientists replaced the Commander-inChief of Fighter Command by a gadget!" (ref. 2). It is valuable to reflect that this remark, possibly with the replacement of 'gadget' by 'gimmick', would be just as likely to be made in similar circumstances today.

Apart from its technical interest, this incident is one further example of experience and knowhow built up during World War II still being relevant, and in many respects, up to date at the present time. This can be taken further in the broadening of the statement made in the first article that the basic technology of that time does not have to be rediscovered, i.e. that the very expensive process of clearing the obscure problems that can be expected in the early stages of a project does not have to be carried out, or at least can be greatly reduced. (In an extreme case, as already indicated, these initial problems can be so intractable that this particular line of development has to be abandoned despite its being likely to succeed in the end.

Television - the build up of technology

High technology, defined as 'advanced engineering permeated by electronics' came to the British public "... (with) the inauguration of the television outsidebroadcast service in May, 1937 for the Coronation" (ref. 4)
This outside broadcast, outstanding in its success, was even more noteworthy for the organisation and speed of technical achievement which lay behind it. Typical of this speed was the installation of the special low-loss - balanced pair - 'television cable' for video transmission, which was carried out by the Post Office well within a year of its being authorised by the Television Advisory Committee. Active collaboration by the Post Office continued with the development by the BBC of entirely new techniques and equipment to enable video signals to be transmitted over ordinary telephone cable pairs (ref. 5). Facilities provided by the Engineering Department of the PO London Telecommunications Region made it possible to install the repeater equipment
in exchanges with, perhaps, only one route-mile of separation between them.
This solution to the problem of bringing the OB signals to the permanent television cable for onward transmission was much more practicable (and cheaper) than the alternatives of a radio link or a special wideband cable, for the built-up areas being covered. Also by the use of existing telephone cable network, it was possible for circuits to be provided within a matter of a few hours; which was a significant advantage both in terms of engineering and of programme service availability.

This pioneering work, a model of engineering $\mathrm{R} \& \mathrm{D}$, will be described later in this article mainly with regard to the major advance that it represented in television technology; but also as an illustration of how a climate of technical confidence' can be created.
It may be noted that an earlier article by S.H. Padel, concerning the principles underlying this work appeared in World Radio for August 12, 1938, i.e. in the same year as a foundation paper by MacNamara and Birkinshaw was published on the London Television Service Journal of the IEE December 1938).
This paper was, in fact, a description of the World's first high-definition television service with its 45 MHz transmitter at Alexandra Palace in North London covering the large concentration of population in London itself and in surrounding areas including the Thames Valley. Thus an appreciable number of people in Great Britain were brought into contact with modern - albeit black and white - television some years before the outbreak of World War II in 1939.

Before this, low-bandwidth television had been broadcast to cover much the same region on a service basis. Programmes on the Baird 30 -line system were transmitted from the BBC station at Brookman's Park during the early 1930s; and although the results were crude in comparison with those achieved later in the decade, they provided information - obtainable in no other way - on possibilities of applying these low-bandwidth techniques in other fields and working by analogy from them.
As will be seen, these possibilities were indeed taken up much later; examples which will be
described in subsequent articles include the tv-based 'Independent Check' instrumentation of aerospace and suggestions made for crisis control ("big-system" automation and telemetry, in this series).

This question of how and when to take advantage of earlier or analogous work forms part of the final discussion in this article. However, in the meantime, it is possible to throw more light on the 30 -line tv case by examining the results that could be obtained under the right conditions.
With the Nipkow disc and modulated neon light source of the receivers that were commercially available, the picture, usually described as being of postagestamp size, was not really acceptable. On the mirror-drum monitors used in Broadcasting House, London, at the time (programmes from Studio BB), the picture was of elongated postcard size, the line structure - with vertical scanning - was coarse, while the difficulty of synchronising the rotating drum resulted in some wander. Nevertheless, fulllength pictures of individuals were quite recognisable, i.e. specific 'data' was being transmitted over a low-bandwidth circuit, while the effects of faulty synchronisation could be assesed.
This was an interim stage to be followed by cathode-ray tube sets produced by enthusiasts within the range of Brookman's Park. The received pictures, although afterglow was present, were of sufficient quality to show, amongst other things, that such systems could be applied successfully to the transmission of the detail required, for example, instrument dial readings. Also this was being done under conditions which it would be difficult to set up now, including that of restricted bandwidth.
Reverting to the BBC system for sending television signals over ordinary telephone cables, one can best illustrate the extent of this achievement by quoting S.N. Watson who has used the words "technical audacity" to describe A.R.A. Rendall's action in putting up this project. Dr Rendall's concept of taking balancedline working to its ultimate limit, and countering the impossibly high' losses of the cable at video frequencies ($30 \mathrm{~dB} / \mathrm{km}$ at 2 MHz) by specially developed equalisers and amplifiers was soon shown to be highly successful. In its final form the BBC system had pro-
vided four OB line links by September 1938, while this had been expanded to eighty for the next twelve months ending September 1939 (ref. 4).
The equipment is shown schematically in Fig. 2 and, in addition to the video equalisers and amplifiers, included special phantom (rejector) and balanced-tounbalanced repeating coils; and made possible the transmission of surprisingly high quality pictures over circuits with 2 MHz attenuation values lying between 60 and 70 dB (refs 4 and 5).

It is worthy of note that this was a 'small team' project, with six engineers as a maximum involved in the R \& D work- and that the climate of confidence it generated has, in effect, continued to be of value up to the present time. Thus the basic principles established by the original BBC work provided as a minimum this climate for embarking upon a project in water-supply monitoring which broke new ground. This was a remote control scheme for the East Anglian Water Company with surveillance television signals sent over an 8 km length of telephone cable (refs 6 and 7).

Direct interchange between television and radar can be seen in the way in which a technique evolved in the field for adjusting phase equalisation was eventually developed to become a pulsetesting method for use in radar.

One of the main forms of phase distortion encountered with BBC telephone-cable video was once described as 'pseudo-ringing' which appeared as a short duration spurious signal on vertical edges in the picture. Correction of this phase distortion could be carried out most easily when a 'flagpole' type of signal source could be brought into the picture. It was in fact a flagpole at Earl's Court which became more than familiar during pre-transmission testing when it provided the welldefined short video pulse required.

Much later on, these ideas were recalled during the development of a special video display system for a magnetron-based type of radar set. The response to pulses was all-important in this system and it was realised that a simple method of testing this existed in the 'magnetron pulse' monitoring signal which was available to be fed into the video input for viewing on a waveform display. Not only did this enable

Fig.2. Video Repeater for Telephone Cable
actual pulse response to be observed, but also provided an indirect method of determining frequency response.

This account is given in some detail to show how the 'innovative know-how' of the original television technique was, as it were, passed on to another area of technology - that of radar. It is relevant to note that this process was continued later with a further transfer to yet another field telemetry.

Innovative know-how has been adopted to cover that combination of original thinking and informed practical ability which so often is found to lie at the root of successful and economical engineering development. The example chosen to illustrate how smooth transfer from radar to television could be achieved is that of the design and manufacture of a directional aerial system for a television radio link which was being developed for the $4-500 \mathrm{MHz}$ band. The production of this aerial system soon turned into a project in its own right. It had become clear that the cost of development by a firm new to the field would be prohibitive. However, it had become equally clear that the techniques evolved for radar (system) working at the same order of frequency could be used as a basis for the television case.
Thus with the paraboloid (dish) reflectors required for the directional aerials it proved possible to evolve a method of construction that was both economical and technically acceptable. Briefly, the primary technical (radio) requirement was for the surface of the dish to be maintained within close tolerances as near as possible to those of an equivalent optical reflector; while for narrow-beam aerials for point-to-point working, it was vital for the dish - and the radiating element in it - to be held rigidly on their line-of-sight axis.

Full recognition must be made of the success achieved in meeting these requirements, particularly the way in which the fitters evolved techniques of their own to keep the reflecting mesh
(chicken wire) surface to the requisite close tolerances on its tubular steel supporting framework. This was of low-cost construction made of standard electrical conduit with a robust secondary framework of high-grade 'steam' tube forming the rigid supporting structure required. As will be gathered from the photograph, brazing was used extensively; an air-acetylene flame being adopted on the basis of radar experience which had shown that a satisfactory joint was made at temperatures which did not cause mechanical distortion. It is perhaps superfluous to note that these craftsmen, with their innovative know-how, came from the pool which has existed for many decades in the 'super cluster' of London and the Thames Valley.

The overall picture

As has been shown, and in terms of the pre-war period up to 1939, development in Britain of both radar and television technology took place on much the same time scale: The fundamental radar equipment was carried out at Daventry in 1935, and 30 -line television was being broadcast by the BBC in the early 1930s. The first three CH stations - forming a basic chain - were completed by August 1937, the historic television outside broadcast of the Coronation was made in the BBC high-definition service earlier in that year.
In both of these areas, work was essentially at $R \& D$ level during this period and carried out largely with the 'small-team' approach. In 1939 the position changed with unprecendented speed when the full radar expansion was set in motion, and the build-up of resources, both human and material, began. At the same time, the television service was shut down, not to be resumed until the end of the war.
The point to be stressed here was the far-reaching changeover which took the form of bringingtogether of many people with diverse technical experience produced a national-scale cluster of
remarkable strength, as noted earlier. (The shut-down of the BBC television service was not all loss in that it released a number of engineers, already familiar with basic techniques, for the radar programme.)

As will have been realised from the examples already given, full advantage was taken of the breadth of experience that had become available, particularly as it affected constructive liaison with industry; and, above all, the various aspects of systems engineering which arise when electronics meets the outside world.
The view has tended to develop over the years in the UK that modern technology is so advanced and is changing so rapidly that each new departure in it is a matter for specialists. Nevertheless it is suggested that although the opportunities for gaining wide-ranging experience in the UK may be more restricted than they were, say, 5-10 years ago; there is still a major requirement for technologists at all levels who know enough of more than one field of engineering to be able to exercise managerial or control over, for example, the interface problems which arise almost as a matter of course with complex systems engineering. An even more important managerial function, perhaps seen at its best in the programme of expansion of British radar, is that of coordinating and directing the R \& D work for such complex systems, and in relation to the other organisations working on the project.
This does not mean that specialists have made other than a major contribution to engineering R \& D in the United Kingdom. This aspect will be brought out in later articles, as for instance with the intervention and development of the cavity magnetron, and the achievements of British universities.
In conclusion, it is suggested that although the British capability for the management of $R \& D$ is far from being lost, more emphasis might be given to the acquistion of all-round engineering capability, and particularly in the electronics context.
One of the main arts in running a complex project is to know when to take advantage of analogous work which one has carried out in the past, even in a separate but associated field; and it is in this fund of experience and again know-how, that much of the hidden strength of the country lies.

UINSLEY-HOOD 300 SERIES AMPLIFIERS

35 Watt Complete Kit. Mosfet O/P $£ 79.50$
E83.50

LINSLEY-HOOD 100-WATT MOSFET

 POWER AMPLIFIER

LINSLEY-HODD CASSETTE RECORDER

 CIRCUITSComplete record and replay circuits for very high quality low noise stereo casserte recorder. Circuits are optimised tor our
HS 16 Super Quality Sendust Ailoy Head. Switched bias and equalisation to cater for chrome and feric tapes. Very easy to
assemble on pluo-in PCBs Complete with full instructions

STUART TAPERECORDER CIRCUITS

Complete Studio quality record/Play electronics to bring that oid valve machine back to Ife fuid detais
in our REPRINT.

PW WINTON STEREO AMP

Super HiFi Mostet Amplifier Kit giving 50 Watts per channel at $.014 \%$ distortion, housed in attractive SPECIAL OFFER, NOW ONLY $\mathbf{f 8 9}$. Reprint of descriptive articles 85p (No VA

Do you tapes lack treble? A worn head could be the problem fitting one of our replacement heads could estore performance our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower
prices tor orime pars. Compare us with other suppliers and seel prices tor prime parts. Compare us with other suppliers and see
The following is a list of our most popular heads, all are suitable for use on Dolby machines and are ex-stock. HC20 Permalloy Stereo Head This is the st original equypment on most decks thed
$\mathbf{5} 11$ HM90 High Beta Permalloy Head A hard weating. tighe pel HS16 Sendust Alloy Super Head the best head we $\mathbf{8 8 . 0}$ Longer life than Permalloy, lingher outpu: than Ferrite faniastic
trequency response
$\mathbf{i g} 91$ HO551 4. Track Head for auto-reverse or quadrophonic use. Ful Please consult our list for technical data on these and on Special Purpose Heads ther
Double Mono (2/2) Record/Play head Replaces R484
SM166 Standard Mounting $2 / 2$ Erase head. Compatible with
above or HQ5514 Track head. Sem double gap high effi-
$\begin{array}{lr}\text { ciency } & £ 1.50 \\ \text { H561 Metal Tape Erase Head Full double gap } & £ 4.90\end{array}$

HART TRIPLE-PURPOSE TEST

 CASSETTE TC1head azimuth and tape speed. invaluable when fitting now
Tape Head De-magnetiser Handy size mans operated un prevents build up of residual head maỵnetisation causing nolse Curved Pole Type for inaccessible heads $\quad \underset{4.85}{\mathbf{E 4 . 5 4}}$ Send for your free copy of our LISTS Overseas mease send 2 Please add part cost of post packing and ins

INLAND

$\begin{array}{ll}\text { INLAND } \\ \text { Orders up to } 10-50 \mathrm{p} & \text { OVERSEAS } \\ \text { Please send }\end{array}$

OSCILLOSCOPES

SIGNAL GENERATORS

HEWLETT PACKARO620A 7-11GHZ £350

 MARCONITF995A/2 AM/FM $1.5-220 \mathrm{MHZ}$ £200 MARCONITF144H/4 10 KHZ - 72 MHZ \&65

MULTIMETERS

 Complet: with Batieries. Leads (Un-used) P\&P $£ 5$ AVD 8 Mk5 Complete with Batteries leads $\&{ }^{\&}$ \&
carrying case P\&P 87. AVOTESTSETNO I (Very similario AVOBX) EBO^{280} Complete with Batteries. leads \& cartying case AVO MULTIM:NOR. Compiete with Batieries. Ieads \& carying case $P \& P \Sigma 3 \quad £ 22.50$
 ImV-300VFSO KNGSHILL STABLLISED PSU Model 500.0${ }_{\S 7}{ }^{600}$ - VARIAC 5 AMP Input 240V: Dutput $0-265 \mathrm{~V}$.
 - 11110 hms (4decade) Un-used. P\& P $£ 7$ ¢25 All above Instruments in Working Order and
Supplied with Manual \quad No Manual)

NEW EQUIPMENT

HAMEG OSCILLOSCOPE 605. Dual Trace 60 MHZ Delay Sweep Component Tester 5515

BLACK STAR FREQUENCY COUNTERS P\&P £4 Meteor $100-100 \mathrm{MHZ}$
Meteor $600-600 \mathrm{MHZ}$
Meteor $600-600 \mathrm{MHZ}$
Meleor $1000-1 \mathrm{GHZ}$
599
$\varepsilon 126$
£
 GENERATOR Sine/Square/Triangle 0.1 HZ 500 KHZ . P\& P $£ 4$.
HUNG CHANG DMM 6010 32 digit. Hand held 28 langes including $10 \mathrm{Amp} \mathrm{AC} / \mathrm{CC}$. Complete with batteries \& leads. P\& P $£ 4$ E 533.50

OSCILLOSCOPES PROBES Switched 1 1: $\times 10$. P\&P

TANDON $51 / 4{ }^{7}$ FLOPPY DISC DRIVES $1 / 2$ HEIGHT

 SingleSided Doutie Density $£ 75$$£ 100$

STEPPER MOTORS

 unch. $21 /$ da tor
Type 3.
24
 Type 4200 Steps 120 V (3 wire) 250 inch . $2^{2 / 4} / 44$
dia P\&P and VAT extra

This IS A VERY SMALL SAMPLE OF STOCK,
SAE Or Telephone tor tIISTS
Please check avalabilly betore ordering
Pease check avalability betore ordering
VAT to be added to Total of Goods 8

STEWART OF READING

110 WYKEHAM ROAD, READING, BERKS RG6 1PL
Telephone: 073468041
Callers welcome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive
CIRCLE 48 FOR FLRTHER DIETILSS

The Micro-view digital storage Oscilloscope/Spectrum 48K Analyser BBC B
Features of the system include:

- Dual Channels with the gain of each controlled by a 10 position switch ranging from 10 mV to 10
\checkmark per division
* Timebase selectable via a 12 position switch giving values ranging from 1 second to 250 micro
seconds per division, and a maximum sample rate of 100 KHz .
- Spectrum analysis of either channel using the Fourier transform
- Large screen display of channels $\mathrm{A}, \mathrm{B} \mathrm{A}$ and $\mathrm{B} \mathrm{A}+\mathrm{B}$ or $\mathrm{A}-\mathrm{B}$, with graticule and readout of set tings.

$\underset{\text { Eechinology }}{\text { C/UUT }}$mplitude and timing of displayed

Magnification of selecied areas of the display
An auto or manual trigger The facility to save or load wave forms using a tape cassette.
The ability to print selected waveforms on the 2X printer.

AWR Technology, Simmonds Road, Wincheap, Canterbury, Kent Telephone: Canterbury (0227) 459000
CIRCLE 17 FOR FU'RTHER DETAILS.
ELECTRONICS \& WIRELESS WORLI APRIL 1985

PREAMPLIFIER DESIGN

I thank Mr Armstrong for his continuing interest in my approach to preamplifier design. I also note that he has not yet seen fit to make any objective measurements with which to back up his claims. While Mr Armstrong seems to think that it is a little insensitive of me to draw attention to this, it is the kind of gross tactic that one must get used to if joining in the rough and tumble of the correspondence columns. Being a professional audio designer, I have my reputation (such as it is) to consider, and people who try to demonstrate that I don't know what I'm doing by quoting myth rather than fact can expect little mercy.
To continue playing Bacon to Mr Armstrong's Artistotle, I append below the test setup for trying to wring distortion out of electrolytic capacitors. The oscillator/distortion analyser used is a Sound Technology 1710A, which still has a reasonable claim to be the state of the art in distortion measurement. The minimum t.h.d. levels measurable scross most of the audio bandwidth are of the order of 0.0012% on my example. Starting at 1 kHz and an oscillator level of +20 dBm (7.75V r.m.s., the largest signal level you could expect to meet in an op-amp audio system) no additional t.h.d. is detectable until the frequency is reduced to 30 Hz , when about 0.003% third harmonic is produced. This increases to about 0.05% at 10 Hz , the lowest frequency the Sound Tech will provide.
It may appear at this point as if all I have done is prove myself wrong, but this is not so. As I said in my first reply, the use of unbiased electrolytics to pass audio assumes that the voltage across the capacitor in the reverse direction never exceeds about a volt. If it does, then you have a significant signal loss occurring, and you have, accidentally or deliberately, made a high-pass filter of most dubious accuracy due to the wide tolerance of electrolytic capacitors. Not very nice.

This is why in the test set-up distortion occurs at about 30 Hz with the values shown; it is at this point that the peak voltage
across the capacitor reaches 1.4 V , which appears to be when depolarisation occurs in practice. Naturally distortion results as the capacitor dielectric film starts to come undone. Measurements with different values of $\mathrm{R} \& \mathrm{C}$ confirm that the signal voltage across the capacitor is the crucial factor in the onset of distortion. The moral is simply; don't let your electrolytics experience any significant signal voltages across them in the audio band. Use them as coupling capacitors rather than filter elements.

I must confess that I am still a little unsure about exactly what Mr Armstrong means by dielectric absorption in this context, and so I don't feel I should comment. I hope that he will enlighten me.

I resist the temptation here to go on about undue attention to connectors. While gold-plated or gold-flashed connectors are normally considered to have a higher ultimate reliability, especially in hostile environments, it should be obvious that the audio world, and the wider one of electronics, contains thousands and millions of non-gold contacts working quite happily. The effects of a sudden lapse into rectification would be so audibly dire that it would be immediately obvious. Spending money on gold fittings for the hifi may have an emotional appeal, (it costs so much it must be better) but not really a logical one.
Finally, the hoary old argument about what people do to the music before it gets to you, i.e. shove it through electrolytics and non-noble connectors from noon till nighttime. Just because arguments are old, it doesn't mean they're wrong. If it was necessary to build mixing-desks and tape machines as if they were satellites then it would be done; but it isn't. The professional audio market is a highly competitive one, and customers want machinery to do the job properly, and no messing with hifi fashions. If Mr Armstrong really wants to worry about a quality bottle-neck he might do worse than consider the analogue tape-machine, still in use in most studios throughout the land.
D.R.G. Self

London E. 3.

BAIRD TELEVISION

I was indeed interested on reading in the January 1985 issue, under "Communications Commentary" the paragraph on Swinton and Baird.

I do not know if you are aware that in the Royal Television Society Journal over the past year there has been considerable correspondence on whether Baird was the "inventor" of television or not. I joined the Scophony Company in 1930 as the first engineer there to work on the inventions of G.W. Walton. The success of that company was quite considerable, in that in 1935 we were demonstrating high definition optical mechanical pictures on large screen and in 1937 at various cinemas, including the Odeon Theatre in Leicester Square, on an 18 ft . screen.

I met Baird many times in those early days and at no time did we feel that his company had anything specific to offer, in that the Nipkov disc was so well-known and the work of Jenkins in America in the early part of the century was also well published; in fact I do have a book published by Jenkins in 1925.

Without wishing to enter into this "who did what" saga, I enclose photocopies of a tv system devised by a Frenchman called Dussauds which apparently was demonstrated in the great Paris Exhibition in 1900 . There are one or two technical inaccuracies in the reprint but the whole system is quite feasible and probably did work, not with a complete figure but certainly a head such as Baird demonstrated. The extract comes from a book entitled Victorian Inventions. The synchronisation of his system compared to Baird's solid drive shaft is interesting as he used clockwork to drive the Nipkow discs and clockwork mechanism for accurate timekeeping was known and devised in the 17th century some major town hall clocks built in those early days are still running.

In my many years associated with television in the pre-war days, with radar during the war, and my gas detection company post-war, I have always found that looking
backwards at the inventive genius of people in the latter part of the last century and the early part of this exercises the mind to invent again with all the devices which have become available in those very few years.
Joshua Sieger
Poole
Dorset

LIGHTNING STRIKE

A point might be added to the interesting article in the October issue Lightning Strike. Conductors carrying large currents will experience a shearing force at any bends; this can be seen by drawing a vector diagram of the currents at a bend. It is therefore good practice to keep lightning conductors as straight as possible, and make necessary bends very gradual.
J. Schmelzer

Albuquerque
New Mexico
USA

SOE

It was kind of Pat Hawker to mention my name in his "Here \& There" column (E \& WW, Dec., 1984). But I have to report that he has misremembered a telephone conversation I had with him last year. Bill Hudson, our first SOE agent in Jugoslavia, landed in Montenegro in 1941. I did not join SOE until May 1943 and, after a hectic apprenticeship in Cairo, was sent to Tito's G.H.Q. in charge of Signals at our Mission there from December 1943 until May 1945.

Partly in connection with the BBC-tv films on SOE, I was trying to establish just what Hudson's radio problems had been. (Tragically, he was out of contact for many months.) He could remember only that his main set had been called a "MK III"; he did not know where it had originally come from; it was mains only; it was in a stout wooden box; and it weighed around $80-100 \mathrm{lb}$. (Just the job for the mountains of Montenegro, on foot).

Hudson was given this monster by British Intelligence in Malta. Pat Hawker could not confirm precisely what configuration this particular Mk

III would have been in. So G3EUR produced for the BBC, at almost no notice, a "mockup" of the Mk III in its familiar HRO configuration. This was rushed to Jugoslavia for the BBC's filming - but, as so often happens on these occasions, appeared in the final version of the film only in very long shot, and only for a second or two.

Hudson's radio operator (as I learned only after the war) was Sgt Veljko Dragićević of the Royal Jugoslav Army in Egypt, detailed to accompany two Jugoslav officers sent in by SOE along with Hudson. These two officers were evidently intending to join the Royalist General Mihailović. Hudson had a wider brief - to contact all resistance groups. In the event, they met first the Montenegrin Partisans, who took them on to Tito's GHQ - then in Serbia, at Užice. At this point, Sgt Dragičević, having seen the Partisans in action, volunteered to joint them. Hudson (who had a high regard for Dragičević) felt he could not object. Tito in dire need of both operators and sets - welcomed the new volunteer, but insisted that the Mk. III be returned to Hudson for his onward journey to Mihailović's HQ.

When I arrived at Tito's GHQ in December 1943, Tito's Chief Signals Officer, in charge of a rather effective W/T network covering the whole country, not to mention a link with Moscow, was none other than Major Veljko Dragičević. We became good friends - but ironically no-one in our Mission, or in SOE, then knew that Veljko was in fact one of SOE's most valuable contributions to Tito's successful war effort! Veljko, for his part, never told me his story - thinking, no doubt, that I must certainly have known all about it, but had been too polite to refer to what we might have regarded as his "desertion" from Bill Hudson's mission.
Sadly, Veljko was killed during the German airborne landing on Tito's GHQ in May 1944. Otherwise, he would no doubt have been only too pleased to tell us the full story of Hudson's notorious "MK. III".
By the time I went to Tito's GHQ, G3EUR and his colleagues in SOE were already in production with their classic
"No. 3, Mk. II", or "B 2",
"War Station" behind the Pyramids (known as "M E 8") - with its 40 RCA ET 4332s at 250 watts; AR 88s to match; and rhombics galore. So we were no longer dependent on the (for our purposes) altogether less satisfactory Intelligence network and equipment.
Soon after Fitzroy Maclean took over our contacts with Tito, his Mission formally ceased to be a part of SOE This explains why the BBC decided to bring their SOE film on Jugoslavia to an abrupt end with Maclean's arrival. What the BBC did not mention was the fact that all Maclean's communications, and all the apparatus of air supply drops (including the laborious business of drawing up "G 1098" lists of authorised equipment for "Partisan Guerilla Corps, Division, Brigade and GHQ Signal Detachments", and getting the stuff from British and US Signals Depots from all round the Mediterranean) remained the exclusive responsibility of SOE until the end of the war. And it turned out that Army and RAF Signals Units were generally not able to cope effectively with the guerillastyle communications which were required in and around the Adriatic in the closing stages of the war by Marine Commandos and others.
However (with the honourable exception of F2WL's "Secret Warfare", on the French Resistance experience) the remarkable story of SOE Signals continues to elude the historians. As one of them noted at the end of the war, after going through SOE's (still secret) archives, this part of the SOE story "can be told adequately only by technicians, to experts. . .". Yet even Major-General Nalder's magisterial "History of British Army Signals in the Second World War" makes no mention of the crucial role of Royal Signals personnel in SOE - or of SOE's sets, beyond a passing reference to "miniature components" not available to the Army in 1942, although they had proved "very successful in suitcase sets made for special operations".

If any of your readers have any experience of SOE Signals activities, or personalities, in

Cairo, Bari, or the Balkans
generaliy, I should be very glad
to hear from them.
H.W. King

Oban
Argyll

ELECTROMAGNETIC ENERGY TRANSFER

I would like to reply to letters in the January issue following my article in September and October of 1984.

I regret that I cannot comment on P.J. Ratcliffe, since I see no reason for mixing $e-m$ and entropy. Have they been mixed up together before, I wonder?

Ouida Dogg (sic) compares Galileo's travails with mine. Certainly the scandalous, unprofessional behaviour of the Establishment (in my case officials of the I.E.E., Inst. Phys. etc.) closely parallels that of the Church in Galileo's case, except that the Church and its supporters at least bothered to supply some philosophical justification for what they did to Galileo. Disclosure of my research has been delayed for more than ten expensive years. There is no point in giving names, because every single member of the scientific establishment behaved irresponsibly in my case. As Oliver Heaviside wrote;
"If you have got anything new, in substance or in method, and want to propagate it rapidly, you need not expect anything but hindrance from the old practitioner - even though he sat at the feet of Faraday. Beetles could do that. . . But only give him plenty of rope, and when [as now in my case] the new views have become fasionably current, he may find it worth his while to adopt them, though, perhaps, in somewhat sneaking manner, not unmixed with bluster, and make believe he knew all about it when he was a little boy!" See I. Catt et al., Digital Electronic Design vol 2, p323, pub. C.A.M. Publishing.
Ivor Catt
St. Albans
Herts.
The NPL definition of the ampere is bad science purely because of the difficulty in getting infinitely long
conductors. If we are to imagine them as the definition requires, we must make sure that they are a fair extrapolation of the finite shorted line. Chris Parton (December, 1984) gets into a tangle as he unwinds his reels of wire to infinity because he assumes they are initially quiescent. Why not extend the forward and backward wave system of the finite case to infinity along with the conductors? If you must speculate how this could be set up in a finite time from a quiescent state, why not allow a distributed e.m.f. instead of applying it at one point?

On the subject of transmission lines, Ivor Catt, who provoked this discussion, should get his car seen to if, as he says, it suffers from an energy dance at the speed of light. Wot no dielectric insulation? I hate to think what reflections will build up when the conductors touch.

Finally I was intrigued to learn from Mr O'Reilly that open lines are 'always terminated by free space with an approximate impedance of 377 ohms'. This should be of considerable interest to transmitter designers, especially at e.l.f., where they have great difficulty in getting anything radiated at all. But now all they have to do is install a 377 ohm feeder to the outside where it is cut off cleanly. The r.f. will run up the line and obligingly launch itself into free space unhampered by any aerial. Since this effect is independent of frequency, or even geometry, it must be explanation of another phenomenon which has always puzzled me: the fact that my batteries always go flat during storage. Obviously they are being shunted by free space. It would also explain the wellknown standby consumption of mains sockets, amounting to 153 watts, if they are not properly switched off at the wall, a fact well appreciated by builders in these energy conscious days, when it comes to specifying the number of sockets in a room. This effect was, in fact, first brought to public attention by James Thurber, whose aunt lived in dread of electricity leaking out and getting around the house. D.H. Potter

Axminster
Devon

Vehicle location in mines and metros

Leaky-feeder systems providing radio communication for mines and underground railways may be simply adapted to indicate positions of trains and other vehicles

Abstract

Underground environments such as mines and tunnels commonly present two requirements with regard to the men and vehicles that may be travelling within them. In the first place there is usually a communication requirement: miners may need to keep in touch with a surface base either simply for their own safety or so that they may be diverted to attend to problems where their particular skills are urgently required; vehicles in the same mines, often manriding trains carrying over a hundred men, may need continuous radio contact to comply with safety regulations.

Secondly, there is an increasing need for a close automatic check on the movements of those same vehicles and perhaps even of individuals. In mining, where track circuit signalling is rarely used, the position of a locomotive can be in serious and dangerous doubt to a central despatcher; and given the nature of a mine it is not unknown for the driver himself to be insufficiently certain or even confused. In the corresponding metro case, modern signalling methods.remove all dangerous uncertainties; and yet there is also evidence of a need for an independent and perhaps closer check on the situation, or even of a less expensive method.
In the underground world, mobile communication is almost entirely through leaky-feeder propagation of v.h.f. radio signals, to overcome the severe limitations on natural propagation in such conditions. As its name implies, a leaky feeder is a type of transmission line that has deliberately been made to be imperfect, so that the internal
field extends for a distance of a wavelength or more outside the feeder itself and so allows communication with mobiles in the vicinity; a very common type is a coaxial cable in which the outer braided screen has been applied with a loose weave. Repeater amplifiers are inserted in the feeder to restore the losses periodically. This is the basis of the communication systems with which most mines and metro systems are now equipped ${ }^{1.2}$.

But, because of the propagation difficulties, the use of radar as generally known is impracticable in these circumstances, and the same consideration has precluded the development of any form of radio direction finding or distance measurement. As the need for position monitoring by radio means has become apparent, therefore, proposed solutions have centred on the installation of wayside beacons or interrogators operating in similar manner to the 'bus beacons' in increasing use. Such systems, of course, give a very precise indication of the passing of the beacon, but the information still has usually to be relayed to a central control point; this can be done by a normal leaky-feeder radiocommunication link from the vehicle or by fixed lines from the wayside points. The devices may be considered expensive, and perhaps a maintenance liability, where fairly close or frequent updatings on the position are required. There is also the factor that if the position information is lost it cannot be retrieved until the vehicle next passes a wayside point.

The proposal to be described allows the position of the vehicle or personal set to be established
purely by reference to the signals being transmitted through the leaky-feeder system itself. There are no wayside beacons or interrogators to be installed, and the position can be redetermined at any time if stored information is lost.

New location principle

The basis of the location principle is that a radio signal being transmitted from base to a mobile or personal set (or in the opposite direction) can be systematically modified during its passage through the leaky-feeder system in such a way that the location of the mobile set can be deduced from the total extent of the modification observed in the received signal.
The operation may be followed by reference to Fig. 1, which is adapted from the formal patent specification ${ }^{3}$. Here, B is the fixed base station in communication with a mobile station V through the leakage fields of the feeder LF. The necessary modification to the signal is effected through special 'marker devices' interposed in series with the feeder at suitable intervals and denoted by M1, M2, M3, and so on. Such markers may or may not, as appropriate, be integral with any repeaters that may be present in the system. The modification imparted to the signal may take a number of forms, for

Fig. 1. Leaky-feeder system with position markers

Fig. 2. Skeleton diagram of position marker
example amplitude or phase modulation, but the simplest is probably the introduction of a short interruption or 'notch' in the radio-frequency carrier. Such a simple form of modification is probably not easily removable or reversible by a subsequent marker device, and so in this case the method of determining position amounts to counting the total number of separate notches imparted to the signal as finally received. The position-determining operation is initiated by either the base or mobile station, in introducing the first notch into its own transmission; each marker detecting such notch or series of notches then adds it own contribution to the series.
The marker device might take the simple form shown in Fig. 2, in which INPUT denotes the connection to the incoming leaky feeder from the direction of the base station or preceding marker and OUTPUT denotes the connection to the outgoing leaky feeder and any further markers.

The incoming r.f. signal is rectified by capacitor C_{1}, diode D_{1} and resistor R_{1} and then smoothed by choke RFC_{1} and capacitor C_{2} to produce a steady direct voltage across C_{2}. Interruptions in the imcoming signal cause corresponding interruptions in this voltage and the resulting pulses are passed through the differentiating circuit comprisiing C_{3} and R_{2} to the counter circuit IC_{1}, which determines when the final pulse in a series has been received, and thereupon passes a signal to the timing circuit IC_{2}.
This in turn initiates the required further interruption in the outgoing signal path, setting its interval and duration. In Fig. 2 this has been shown as though by a mechanical relay RL, though in practice a PIN diode or other solid-state method would prob-
ably be used.
Where the signal being coded is originating at a mobile transmitter the arrangement requires some elaboration. In the first place, the signal level in the feeder will be far lower and there will certainly be need for some amplification in advance of the notch detection circuits. But more fundamentally, the number of notches in the incoming signal will no longer be fixed, being itself already dependent on the location of the mobile rather than as before on the position of the marker in the chain, and so a simple counter cannot indicate when the last notch has been received. This can be decided instead by arranging that the additional notch applied by each marker is initially of smaller width than the rest. This will identify it to the following marker within the time duration of a normal notch, whereupon it can be extended to the normal width before addition of the new narrow notch.
In practice, leaky feeder systems more than about a kilometre in length normally incorporate repeaters in the line to compensate for losses. These are usually line-powered.

As shown in Fig. 2, the relay contact RL_{1} (or its equivalent solid-state device) will interrupt not only the r.f. signal but also any line-fed d.c. supply. It may be necessary to provide a d.c. bypass in some system arrangements: but in fact the situation as shown can lead to an attractively simplified system, fo the sensing may be carried out on the d.c. supply instead of on the r.f. signal. This does presume that it is the base-station carrier that is being coded, and that the system is powered from a single d.c. supply at the base-station transmitter; and to maintain uniformity between the markers it becomes necessary to replace the initiating

interruption of the carrier by an interruption of the d.c. supply.

Two-stage coding

If the number of markers in a system is large, either because of the length of the system or because a high resolution of position is being sought, a disadvantage may arise in the resulting long series of notches taking an unacceptable time - perhaps several seconds - for the location process, especially if the frequency of interruptions is limited by bandwidth considerations of the signal. In such cases it is possible to carry out the location process in two stages, with consequent reduction in the total number of interruptions involved.

For example, suppose that a particular system requires the use of 99 markers. In the simple scheme described this would result finally in a series of 100 interruptions, to be counted for any vehicle in the final section. In the improved variation only every 10th marker will respond to a series of fewer than 10 interruptions and add its further interruption; the intervening markers will respond only to trains of notches exceeding 10 . Thus, on this interrogation the number of notches received by the mobile will denote only the decade in which it is located. This information is then relayed to the base station, which thereupon initiates a further series of interruptions.

This new intitiation, however, consists of sending not just a single notch but a series of notches corresponding to the number 10 decremented by the number of notches previously counted. As before, every 10th marker will respond by incrementing the number of notches by one. But when the number of notches reaches 10 every subsequent marker will respond. This transition will occur when the previously determined decade is reached. Thus, the number of notches then received in excess of 10 will denote the number of the section within the decade.

References

1. I.J.R. Martin: Leaky feeder communication in tunnels. Wireless World. 88 (1557), pp 70-5. June 1982, and 88 (1558), pp 33-7, July 1982.
2. P. Delogne: Leaky feeders and subsurface radio cummunication, Peter Peregrinus and IEE, 1982, 283 pp.
3. D.J.R. Martin: Vehicle location system, Brit. Pat. Appln No. 8324686

LEADER GENERATORS

A complete range of generators including audio, function, RF, pattern, etc. In each type several models are available offering specifications suitable for most requirements and excellent value.

Pattern

LCG-399A PAL. Colour Bar. RF and Video outputs. Patterns.

Audio

LAG-27 10Hz to 1 MHz LAG-120A 10 Hz 10 1 MHz LAG- 125 10Hz to 1 MHz

Function

LFG-1300. 002 Hz to 2 MHz Sine. Triangle Square + Int Sweep

RF
LSG-17 01 to 150 MHz
LSG.215 0.1 to 120 MHz
LSG-216 01 to 30 MHz and 70 to 115 MHz
Programmabie, PLL Synthesized
LSW. 2512 to 300 MHz

by Ian Kampel, M.I.E.R.E

The new logic symbols - 2

Since manufacturers' data sheets are already changing gradually to the new standard and more and more of the larger companies will comply, everyone concerned with digital electronics will sooner or later have to come to terms with the new standard.

The reader is here reminded of one important point explained last month. If polarity indicators (triangularly shaped qualifying symbols on inputs and outputs) are employed in a diagram, this means that voltage levels (i.e. high or low) are known for given logic states, so making logic convention irrelevant. (A polarity indicator on an input or output serves to indicate that a low level external to the element corresponds to an internal logic 1 -state.) If negation symbols are used on any inputs or outputs, then no polarity indicators should appear on any inputs or outputs, and it is also necessary to define the logic convention (i.e. positive or negative). Since only pure logic is represented internally within a binary logic element, only negation symbols may be used to signify inversion, for here polarity indicators have no place.

In this article a mixture of postive logic convention and usage of polarity indicator diagrams will be found: a positive logic convention may be assumed if polarity indicators are not present.

Dependency notation

The dependency notation allows the relationship between inputs, outputs, or inputs and outputs to be defined without the need for showing all the elements and interconnections involved. The aim is to supplement qualifying symbols (symbols associated with inputs and outputs) in complex elements, not to replace simple elements in their own right. For use of the dependency notation in simple elements makes them more complex, whereas their use in inherently complex symbols provides a sim-
plification. (The logic of this apparent enigma will become clearer later on.)

In order to simplify the following text, the abbreviation ' I / O ' is used to represent the phrases: 'input or output' or 'inputs or outputs'.
The dependency notation is accomplished by:

- Labelling the I/O affecting other I/O with a particular symbol denoting the relationship involved followed by an identifying number;
- Labelling each I/O affected by that affecting I/O with that same number. Where the affected I/O already has a label denoting its function this label is prefixed by the dependency notation number.

And, or, negation and interconnection dependency

The label ' G ' is used to denote an And dependency. Figure 9 demonstrates this, where the dotted lines on the binary logic element signify that only a portion of a complex element is under consideration. The ' 1 ' number label shows a relationship between all of the inputs shown. The ' G ' label associated with input b signifies that this input has an And relationship with other I/O having an identical number (' 1 ' in this case). Thus there is a straightforward And relationship between inputs a and b as the equivalent logic diagram alongside shows; in the case of input c, the bar over the label ' 1 ' signifies an inversion (i.e. is Anded with the inverse of b).

Figure 10 shows G dependency between an output and an input; output b is Anded with input a (remember we are only consider-
ing a part of a more complex symbol). It should always be borne in mind that these internal labels refer to internal logic states; therefore, if there had been an external negation symbol on the output of this symbol - as depicted in Fig. 11 - then it is the internal condition which is Anded with the input, as shown in the equivalent logic diagram, not the inverted external condition. Note that a ' 1 ' is used as the general qualifying symbol for a negating (i.e. inverting) element.
A dynamic input is signified by the familiar 'notch' qualifying symbol as shown for input b in part (a) of Fig. 12. The equivalent logic diagram in part (b) of the figure serves to make the point that only input b is a dynamic input in this case: it does not mean that inputs a and b are Anded prior to a dynamic input to the main element; thus a and b in part (a) of the figure are not equivalent to the logic diagram shown in part (c) of the figure. Two (or more) affecting inputs with the same dependency letter and number stand in an Or relationship to one another, as shown in Fig. 13.
The label ' V ' is used to denote a conventional Or dependency, as depicted in Fig. 14. In this case, output b is Ored with output a internally, therefore not affecting output a itself, as shown in the equivalent logic diagram.
The label ' N ' is used to indicate negate (or exclusive-Or) dependency, as shown in Fig. 15.
Interconnections are simplified in complex elements by use of Z-dependency. The ' Z ' label signifies interconnection; thus, the internal state of the output of the element shown in Fig. 16 is interconnected to the shown effective
input by nature of the Z-dependency. Note once again how this does not affect the outpu at a.

Set/reset dependency

Set/reset dependency (S / R) is not so easily shown in brief, so we must suffice here to show one example only. Figure 17 depicts an SR bistable (or latch) which has reset (R) overrides on both outputs. As the truth table shows, the logic 1 -state at the a input has no effect when a logic 1 -state also exists at the b input (NB. 'nc' in the truth table signifies 'no change'.)

EN inputs and EN dependency

The label 'EN' signifies an enable. Thus the input shown in part (a) of Fig. 18 is an enabling input affecting all outputs. The inverted triangular qualifying symbol shown against the outputs signifies a three-state output. If the enable only affects certain I/O then EN dependency notation is called for, as shown in part (b) of the figure. In the latter case, input a affects input c and outputs d and e , whilst input b only affects output f .

Mode dependency

Mode (M) dependency is one of the more complicated relationships, and an example of this is given in Fig. 19. In such situations, the effect of an affecting I / O on an affected I/O is summarised below, where separate segments of a label are separately considered when separated by oblique strokes:

- If the affecting I/O is at a 1 -state then affected I/O are enabled; - If the affecting I/O is at a 0 -state then affected I/O are disabled; sets of labels containing the appropriate dependency number should be ignored.
Figure 19 illustrates various points in connection with mode dependency, and also introduces a labelling method used for indicating a range of dependency numbers, i.e. $0 / 3$ in this example for the M (mode) input. The fractional form of representation indicates modes ranging from 0 to 3 ; thus the dependency numbers $0,1,2$ and 3 within such an element must be reserved for mode dependency use.
The bracket around inputs a and b to the element signifies binary grouping. The associated labels of ' 0 ' and ' 1 ' simply signify bit significance in this instance (they are not dependency num-

bers); thus the ' 0 ' on input a indicates that this is the least-significant bit of the binary grouping, the ' 1 ' on input b signifies the next bit significance (and so on with ' 2 ', ' 3 ', etc, as necessary in cases where there is a larger binary grouping). From this we may assume the following mode identities in accordance with inputs a and b :

INPUTS		
a	RESULTANT	
0	0	MODE
0	1	0
1	0	1
		2

Input modes are therefore dependent upon the binary input on a and b. Outputs e, f and g are mode affected outputs since they contain labels in the range 0-3. Let us consider each of these outputs in turn.

Output e has a mode dependency in modes 2 and 3 , and in these modes, the label set specifies negation (XOr) dependecy when input c is at a 1 -state due to the N4 association; in all other modes output e stands at its normally defined state as if it had no labels.

Output f also has a negation
dependency when the mode dependency is operative since this is also dependent upon the N4 affecting input c; when the mode dependency is not operative the output stands at its normally defined state as if it had no labels. Mode dependency exists in the 0 mode, which is equivalent to specifying $(1 / 2 / 3) 4$ in the label, i.e. mode dependency exists in all cases except Mode 0, giving an effect in Modes 1, 2 and 3.

Output g has a negation dependency with input c in Mode 2 and an And dependency with input d in Mode 3; in all other modes the output stands at its normally defined state as if it had no labels.

Input h in the only affected input with mode dependency. This input only has an effect on the element in Mode 2, and Mode 2 effectively enables the And relationship specified by G6 between inputs h and j. Another point to note is the commas in the qualifying symbols for inputs h and j. Where commas exist, it implies that the dependency relationships indicated should be applied in the indicated order where each relationship is separ-

Fig.9. G dependency between inputs

Fig.10. G dependency between output and input

Fig.11. G dependency between output and input, showing that it is the internal state of the output which is Anded.
Fig.12. G dependency with dynamic input.

Fig.13. Identical affecting inputs are in Or relationship.

Fig. 14. V dependency
between two outputs.
Fig.15. N (negate) or XOr dependency.

Fig.16. Z (interconnection) dependency.

Fig.17. S (set) and R(reset) dependency.

Fig. 18. Examples of (a) EN input and (b) EN dependency.

Fig.19. M (mode) dependecy.
Fig.20. A (address)
dependency.

Fig.21. Common-control box in use.

Fig.22. Octal flip-flop with common enable (74LS377)

Fig.23. 4-bit bistable latch
(7475)

Fig.24. Quint Or with one common input and complementary outputs.

Fig.25. 8-bit shift register with parallel load facility (74165)

Fig.26. 4-stage bidirectional counter with parallel loading and common reset.

ated by a comma. Thus input h has no effect until Mode 2 is true, after which G6 becomes valid when input h is true, to be Anded with input j, so making the interconnection dependency valid when j is also true; all this - and only all this, results in a 1 -state being output at k . Thus the label ' 6 ' associates h and j , and the label ' 7 ' associates j and k .

Address dependency

Address (A) dependency is relatively easy to understand if mode dependency is understood, for there can be many similarities, as may be seen from Fig. 20. Binary grouping is indicated by the bracket on the inputs, and the fractional qualifying symbol indicates the range $0-3$ as it did in the previous example. This time the letter ' A ' signifies address dependency within the given range. All this equates to four independent A labels (A0, A1, A2 and A3), as shown in the equivalent logic diagram. A different device might have four separate input lines to achieve the same effect, and in such a case, the input lines would be separately labelled as A0, A1, A2 and A3 respectively.

Shift registers and counters

The previous part of this article indicated how a number of identical elements can be represented in the form of an array. In these early examples there was no inter-relationship between the elements, but if such exists, this is most easily represented by the use of the common control box. This is the 'robot-head' appendage on top of the example array shown in Fig. 21. Any I/O associated with the common control box has an effect on several or all
of the elements in the associated array. Input a in Fig. 21, for example, is a common And input to all the elements, as shown in the equivalent logic diagram.

Figure 22 depicts an octal flipflop with a common enable (EN) input on pin 1 (active when low), and a common dynamic clock input on pin 11. I have intentionally economised by not previously introducing one further dependency input: control (C) dependency, to be seen on the clock input in this case. When an affecting control input is at its internal 1-state then the affected inputs have their normally defined effect on the function of the element. In this case, it may be seen that this facility is used to signify a clocking effect on a D-type input on pin 3. The similar lower elements in the array are also labelled '1D' by implication (see Part 1). Thus input data may be clocked into all eight-bits of the register on the positive-going clock edge at pin 11, providing that the input at pin 1 is low.

A variation on this theme is shown in Fig. 23. In this case, four D-type latches are shown, the upper pair controlled by the input on pin 13, and the lower pair by the input on pin 4. (Note that true and false outputs are shown for each element in this example).

Figure 24 depicts a quint Or array with one common input on pin 22 , and complementary outputs.

The common control box

Shift registers and counters are clearly prime examples of binary logic elements which can be efficiently represented by using the common control box. The general qualifying symbols of 'SRG'
and 'CTR' signify shift register and counter respectively.

Figure 25 is an 8-bit shift register; this is immediately signified by the 'SRG8' general qualifying symbol within the common control box. The particular device here represented has a parallel (or 'broadside') load facility (the 74165 device). Parallel loading is achieved by taking the input on pin 1 low: in this case, control dependency C3 enables inputs on pins 11 to 14 and 3 to 6 . For shifting to occur, C 3 must be false, therefore the input on pin 1 must be high (this is the SHIFT/LOAD input). A high on pin 1 makes G1 true, and this combined with either pin 15 or pin 2 high establishes the required conditions for shifting. When this condition occurs, the dynamic input C 2 is satisfied to give a right shift (indicated by the right pointing arrow); this corresponds to a top-to-bottom shift with respect to the symbol. Note that the input on pin 10 is a serial input enabled only when shifting. Note also the complementary outputs on the bottom (right-hand) stage.
Figure 26 depicts a 4 -stage binary counter, as signified by the 'CTR4' general qualifying symbol. This has separate count up $(+)$ and count down (-) clock inputs to the common control box, a parallel loading facility controlled by the C 1 input, and a common reset (CT=0 signifies count $=0$).

Conclusion

That concludes this brief look at some of the more complex aspects of the new logic symbols.

Next month I conclude this series with a look at the practical application of the new logic symbols and illustrate how they may be applied to give different levels of detail according to needs.

Acknowledgements

The author is greatly indebted to the following:

Mr. D.B.J. Hicks of the British Standards Institution, Messrs. C.J. Stanford and L. van Rooij, General Secretary and Deputy General Secretary of the International Electrotechnical Commission, for their invaluable assistance in the research work for my book, Mr. N. Warnock-Smith of Butterworth Scientific Ltd., for his kind co-operation in the use of illustrations from my book for this article, and Mrs. J. Molyneaux, who penned the excellent illustrations.

Touch-screen sensor

Computers can be used by the youngest children and the handicapped if the input is not confined to the keyboard. One demonstration of this is the Touchtech 501, an add-on device tailored to fit Microvitec colour monitors. It detects the interruptions in infra-red beams along x and y coordinates and can therefore sense the position of any stylus or finger pointed
at the screen and can be used with menu software to enable easy access to the computer. The first soft ware package has been produced by the Government's Microelectronics in Education programme and demonstrates the capabilities of the system. It works specifically with the Acom/BBC micro plugging into the RS423 serial interface. It has its own on-
board processor to decode the i.r. beam pattern and transmits to the host computer at $9600 \mathrm{bit} / \mathrm{s}$. Versions for other computers are due later in the year. The device is being marketed first in the educational sector and is expected to sell for about $£ 210$ which Microvitec claim is a fraction of the cost of other touch screen devices. Microvitec plc, Futures Way, Bolling Road, Bradford, W Yorks BD4 7TU. EWW207

Low-cost disc drives

After considerable investment and research work, Servicon Dynamics have managed to cut the price of $3^{\prime \prime}$ disc drives to very low prices. A single-sided double density is $£ 129.95$ and a double headed drive is $£ 199$. Both have the same capacity as a $3^{\prime \prime}$ disc may be flipped over and both sides used, but the single headed drive can only
access one side at a time while the two record/replay head have access to the full 400 K formatted disc capacity.
The units are direct replacements for $5^{1} / 2^{\prime \prime}$ drives and are supplied with cables and a manual suitable for use with the Acom/BBC micro. The same company has produced a BBC d.f.s. which is compatible with
second processors, has auto density/tracking capability, includes a formatter on rom and is claimed to be fully Acorn compatible. They have also announced a disc drive for the Sinclair Spectrum which will be available soon, which have 128 K of storage with expansion up to 256 K , will incorporate an RS423 interface and will cost under $£ 100$. The Crescent range of disc drives is marketed by Servicon Dynamics Ltd, 186 Cirencester Road, Charlton Kings, Cheltenham, Glos GL53 8DZ. EWW216

Single-chip data acquisition

An eight-channel analogue multiplexer, a sample-and-hold circuit and an eight-bit a-to-d converter are all combined into a single chip from Siliconix. The chip gas at 14 kHz data rate making it suitable for voice grade communication digitizing. It has a low power consumption of 5 mW and may be used in battery-operated equipment. Claimed to have a maximum linearity error of 0.5 I .s.b, the 81520 is safe to use in feedback and control systems. Input voltage range is 3 to 5.5 V and it is housed in a 28 -pin plastic or ceramic d.i.l. package. Available from Dage (GB) Ltd, Eurosem Division, Rabans Lane, Aylesbury, Bucks HR19 3RG. EWW213

Eprom emulator

8 K and 16 K eproms may now be emulated for the development of target systems in conjunction with an Acorn/ BBC micro. It allows the computer to share a block of memory with a target system. The unit is a p.c.b. with 16 K of c. mos ram and a battery backup. One 28 -way connector fits into a 'sideways' rom socket on the computer while another plugs into the rom socket of the target. As a bonus the emulator may be loaded with rom software and used as a sideways ram by the computer. It comes with software to allow for the easy loading and editing of the emulator memory from disc. The software is in fact provided loaded into the emulators memory and may be saved to disc by the user. 195 for the 8 K version or $£ 119$ for 16K. Benwick Electronics, 5 Church Street, Wimblington, March, Cambs PE15 0E8. EWW214

Fluxgate sensor

Readers may remember a WW project of a fluxgate compass in October, 1982. Now Medical Magnetics have produced a similar system for the detection and measurement of magnetic fields. The complete system consists of a fluxgate transducer element which is sensitive to magnetic fields. It produces a signal voltage at its output terminals when the logitudinal axis is aligned with an ambient magnetic field vector. The output follows a cosine law when the transducer is moved out of alignment with the field. The associated electronics on a small p.c.b. generate a drive signal for the transducer element and processes the output signal. The sensitivity of the transducer is better than 65 nT for an output of 1 mV . This is to be compared with the ambient magnetic field in the UK of about $20,000 \mathrm{nT}$. this refers to system SA2. SA1 with a longer transducer is even more sensitive at $15 \mathrm{nT} / \mathrm{mV}$. Unlike the Hall-effect device, the fluxgate sensor is highly directional and largely independant of ambient

temperature. This makes it very suitable for compass applications and for low fieldstrength magnetic surveys. The low cost of the system ($£ 45$
inclusive) makes it available for use in educational work. Medical Magnetics, 19 Norwood Drive, Chester, Cheshire. EWW218

Storage module for oscilloscopes

An add-on digital storage module is designed to capture analogue signals at speeds of up to 10 M samples/second. Stored as a 1024 by 6 bit data stream the waveform can be displayed
on a standard oscilloscope. The 81000 has 12 input sampling frequencies to capture events as fast as 100 ns or as slow as 0.5 s . It also has selectable
input and output voltage ranges. Sumatron Ltd, Hamilton House, 39 Kings Road, Haslemere, Surrey GU27 2QA. EWW215

Hard disc controller

A controller for Winchester discs is incorporated in a kit which also includes data handling components. These Intel devices are the iSBC 215, a generic Winchester controller capable of supporting two 5.25 in disc drives and make use of Seagate ST412 standard interface. Also included is the iSBC 213 Data seperator kit which can handle data transfer at $5 \mathrm{Mbit} / \mathrm{s}$, using $\mathrm{m} . \mathrm{f} . \mathrm{m}$. A scrambler card matches the controller pin-out with the ST412 interface. The controller is interfaced to the host processor through Multibus memory and can address directly 16 Mbytes of system memory. The kit includes enough on-board ram to buffer one full data sector and the system uses this buffer in all data transfers. On-board diagnostics and error checking are provided and an erroneous data burst up to 32 bits long can be detected. The controller has bus connectors for expansion and may be connected to a flexible controller or tape streamer for backup. Available from Rapid Recall Ltd, Denmark Street, High Wycombe, Bucks HP11 2ER. EWW211

Card mounted converters

The very small size of the Rifa PKA range of d.c./d.c. converters is made possible by having a switching rate of 300 kHz . They feature shortcircuit protection, soft start, transient protection and low r.f.i, an efficiency of 80% and an m.t.b.f. of 200 years, though how this can be measured is beyond us. Campbell Collins are now mounting them on Eurocards and so provide more flexibility by permitting the voltage adjustment to be mounted on the board. A number of combinations of output voltage are available, from $5 \mathrm{~V}, 12 \mathrm{~V}$, $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$; the units are rated at 30 W and if high power is required the units may be connected in parallel. Campbell Collins Ltd, 162 High Street, Stevenage, Herts. EWW219
$+15 \%$ VAT to all orders. All in-stock items despatched same day unless notified

CARBONFLIM
SKHGHILAB
LOW NISE

E.M.S. POWER SYSTEMS

Solve all your Power Prublems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited
 Chairborough Road
 High Wycombe Bucks
 Tel: (0494) 448484

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 1AU
TEL. 0934416033
CIRCLE 43 FOR FURTHER DETAILS.

SATELLITE TV RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Dishes Receivers, Downconverters, Low Noise Amplifiers, Feed Horns available. Complete systems installed anywhere in the world. A full report on reception feasibilities at any location is available - price $£ 25.00$. Please state Longitude and Latitude.

Pin grid sockets made to order

It is now possible for Harwin to make pin grid array sockets to a customer's specification for little extra cost than producing standard d.i.l. configurations. The company has produced for specific customers 97 and 117way sockets. They feature low insertion force: it is easy to remove the i.cs, and they are therefore suitable for testing components. Harwin Engineers 8A, Fitzherbert Road,
Farlington, Portsmouth, Hants PO6 1RT. EWW222

Rotary switches

Binary-coded decimal or hexadecimal outputs are available from a range of miniature rotary switches. They come in a flat format for screwdriver operation, with knobs for manual control and/or with indicators. The switches are said to be highly reliable with hard gold plated on nickel for the contacts. They are
sealed against flux, solder or dust. The pins are arranged in d.i.l. formation for p.c.b. mounting. Maximum contact ratings are 30 V switched but 100 V can be tolerated when not switching. Maximum switched current is 125 mA . BarlecRichfield Ltd, Foundry Lane, Horsham, W Sussex RH13 5PX. EWW212

Farad capacitors

As electronic apprentices we were taught that the Farad was an unmanageable quantity. Picofarads were o.k. but one Farad would need a capacitor as large as a large block of flats. Not so. National Panasonic have produced Gold Cap electrolytics with up to 3.5 F capacitance which are no bigger than ordinary capacitors and may be used instead of battery back-up to preserve the
contents of c.mos and n.mos memories during power-downs. Taking its power from the 5 V d.c. rail, a 3.3 F capacitor will take some 500 hours to discharge into a 1 Mohm load and is claimed to have extremely low self-discharge characteristics. Available through Ajax Electronics, Wessex Road, Bourne End, Bucks SL8 5IDT. EWW210

32-Bit development system

An evalution package to aid designers considering the implementation of Motorola's 6802032 -bit processor has been introduced. Benchmark 20 , as it is known, consists of a single-board computer based on the processor, with 1Mbyte of d.ram, a four-slot VERSAbus chassis with power supply and built-in firmware to allow benchmarking and code debugging.
The system includes paged memory management and is
fully compatible with Motorola's VERSAmodule system, allowing simple implementation of user target systems. It is designed for use with such software development hosts as the VME/ 10 or EXORmacs and has full capability of data transfer between these systems. NewTek Distribution, Beadle Trading Estate, Ditton Walk, Cambridge CB5 8QD. EWW220

16-bit micro for education

A 16-bit microcomputer designed specifically to meet the needs of science and education has been launched by Research Machines Ltd. The RM Nimbus is built around the Intel 801868 MHz processor and is claimed to be three times as fast as an IBM PC, or roughly the same speed as the IBM PC AT, and yet costs 20% less than a PC or about half the price of an AT, for an equivalent configuration.
The Nimbus computer is supplied in a number of versions with varying amounts of memory, number of disc drives, and network facilities but they all include the MS-DOS operating system, a minimum of 192 K memory (including 64 K for graphics) high resolution colour graphics, Piconet network and a full range of $1 / o$ ports. The range starts with the Nimbus PC 1 which has one $3 \frac{1}{2}-$ in. fioppy disc drive for $£ 945$. At the top of the range is the Nimbus X10 with one floppy disc drive and a 10 Mbit hard disc for $\mathfrak{£ 2 0 7 6}$. There is also a network server model with a wide selection of packaged software, two floppy drives and MS-NET software for use
with the network interface; this is the SPCN2 which costs £2508 to Further and Higher Educational establishments, $\mathfrak{L} 400$ less to schools. A terminal model, TN, for use with the network has no discs, 320 K of ram and costs $£ 898$ to F. and H.E. colleges with a $£ 153$ reduction to schools.

Optional extras include a floating-point mathematical processor, external $5_{2}^{\frac{1}{2}}$-in disc drive for using proprietary software for other MS-DOS computers, memory can be extended to 1Mbyte. Standard features on all models include printer interface, mouse or joystick interface, two rom cartridge sockets, a softkey socket, music and voice output and power rails together with the built-in network interface.

Every model has four expansion sockets inside the casing and any model can be upgraded to the level of other models in the range with additional disc drives, including hard disc. The computer has an emphasis on its graphics capabilities and RML have designed their own v.l.s.i. graphic processor which, according to Mike Fischer, the Managing Director, has been optimised for the emerging software which combines text graphics multiple fonts of typeface and mouse interfacing,

all with colour. "By designing our own graphics processing chip, we have been able to achieve five to twenty times the graphics speed of competitive systems at a lower cost."

He also explained that with computer literacy starting younger, there is a growing need for more sophisticated computer power in the secondary school in
administration, business studies and in computer-aided design. The company will continue to manufacture and support the 380 Z and 480 Z 8 -bit computers and have further plans for software and peripheral development for these. Research Machines Ltd, Mill Street, Oxford OX2 0BW. EWW205

Forth in control

Although known to us for their Tiny Basic control boards, Essex Electronic Centre have now produced a Forth microcontrol card. Measuring only 80 by 100 mm , the board is built around the Rockwell R65F12 single-chip microcomputer which incorporates a 4 K Forth kernel. The board may be connected to any RS232Ccompatible terminal to provide a Forth computer. The full capability of the processor is utilized to provide 40 input/ output lines through ribboncable connectors and there are two 28 -pin sockets for the provision of ram and/or eprom. An autostart feature makes it easy to use the system in process control and instrumentation applications.

The Essex Forth Microcard can function as its own development system when used in conjunction with the

Rockwell RF1 development rom and an RS232 terminal or host computer. Field testing can be carried out using a terminal together with the micro-monitor resident in the R65F 12 kernel. The board is available at a special introductory one-off price of $£ 119$ while the development rom which, of course, may be reused for further applications, costs £75.37. Essex Electronics Centre, University of Essex, Wivenhoe Park, Colchester
CO4 3SQ.
EWW206

Call in at your 'local" for a CROTECH
 LONDON \& HOME COUNTIES
 Audio Electronics Henry's
 Carston Electronics Kentwood Electronics Aughton Instruments The Instrument Centre Maplin Electronics
 London W2 01.7243564 London W2 01.7240323 Teddington 01.9434477 Reading $\quad 0734.698040$ Strood 0634.724751 Dunstable 0582-602739 Benfleet 0702.554155
 MIDLANDS \& NORTH
 Northern Instruments The Instrument Centre Electronic Measurement
 Services
 Leeds
 0532.791054
 Brierley Hill 0384-293898
 Radio Telephone Service Derbyshire $\quad 0332$-41235
 SCOTLAND
 RMR Measurements Cumbernauld 02367-28170
 IRELAND
 Electronic instrument
 Brokers (IRL) Ltd. Dublin Dublin 857119
 \section*{Cratech instruments Limitē̈d}
 2 Stephenson Road, St. Ives, Huntingdon, Cambs. PE17 4WJ
 Telephone: (0480) 301818

EAST ANGLIA
Electronic \& Computer
Workshop
Cirkit

Chelmsford 0245-262149 Broxbourne 0992-444111

CIRCLE 41 FOR FURTHER DETAILS.

RECHARGEABLE BATTERIES

EX-STOCK INTEGRATED CIFCUITS
$6116-200 £ 4.50,6116-250$ £3.95,
$6264 \mathrm{LP}-150 £ 22.00 .4164-200 £ 3.50 .4864-150 £ 4.00$ $62641 \mathrm{P}-150 £ 22.00 .4164-200 £ 3.50 .4864-150 £ 4.00$,
$4116-300 £ 1.20,2114 £ 1.75 .6800 £ 2.50,6821 £ 1.00$,

HOT LINE DATA BASE DISTEL© HE ORIGINAL FREE OF CHARGE dial up data base ON LINE NOW 01-679 1888 MAINS FILTERS

Anderson Jacobson AJB10 VIDEO DISPLAY TERMINAL largest peripheral manufacturer the AJ510 Protessional VDU terminal has 100 many features to inctude in space internal $Z 80$ cpu control ver readable $15^{\prime \prime}$ no control, very creen 24 lines ny glare green screen, 24 lines by 80 characters. ASCII character set with lower addressing numeric key pad etc. Supplied in good TESTED

COOLTHO YA: 8

v equipment fan complete with
Finger guard EP .0 s
GOUU JE-3AR Dim $3^{\prime \prime} \times 3^{\prime \prime} \times 25^{\prime \prime}$ compact
very quet running $240 \vee$ operation NEW 86.05
QUHLER 69.11.22. 8.16 VOC micro
servo motor for extremety high air flow
almost silent running and guaranteed 10,000
hr life Meesures onty $62 \times 62 \times 22 \mathrm{~mm}$
Current cost $\mathbf{~} 32.00$ OUR PAICE ONLY
E12.95 complett whit data.

an supplied tested EX EOUIPMENT $240 v$ a
C6 25 of $110 \vee$ at 4.95 or BRAND NEW 240
at E 1050.1000 's ot other tans Ex Stock

BUDGET RANGE VIDEO MONITORS

Ala arice YOU
EQIPMENT
standard composile for 240 y working pre tested and set for up to 80 co
BBC micro Even where MINOR S naffected 1000's SOLD TO DATE will display up
brushed allov case B/W only $£ 32.95$ monitor fully enclosed
ONLYE55.00 Carriage $£ 10.00$

A Major company's over production problems, and a special BULK PURCHASE enable TWO outstanding offers.

COLOUR MONITOR SPECLALS 'SYSTEM ALPHA' 14" Multi Input Monitor.

Made in the UK by the famous REDIFFUSION Co. for their own professional computer system this monitor has all the features to suit your immediate and future allow direct connection to most makes of micro computers and VCR's. An internal speaker and audio amplifier may be connected to your system's output or direct to a VCR machine, giving superior colour and sound quality. Many other features include PIL tube, Matching BBC case colour, Major controls on tront panel, Separate Contrast and Brightness - even in RGB mode. Two types of audio input, Separate Colour and audio controls for Composite Video input, BNC plug for composite input, 15 way 'D' plug for RGB input, modular construction etc. etc.

This must be ONE OF THE YEAR'S BEST BUYS!!!
Supplied BRANO NEW and BOXED, complete with DATA and 90 day guarantee
SUPPLIED BELOW ACTUAL COST- ONLY E1 $49.00+$ Carr. SUPPLIED BELOW ACTUAL COST - ONLY£149.00 + Carr.
DECCA RGB 80-100 Monitor.

Little or hardly used manufacturer's Surplus enables us to offer this special
converted DECCA RGB Colour Video TV Monitor at a super low price of only £99.00 a price for a colour monitor as yet unheard of!! Our own interface, safety modification and special $16^{\prime \prime}$ high definition PIL tube, combine with the tried and tested DECCA $80 / 100$ series chassis to give 80 column definition and picture guality found only on monitors costing 3 TIMES OUR PRICE. In fact. WE be seen to be believed. Supplied complete and ready to plug directo to a BBC MICRO computer or any other system with a TTL RGB output. Other features include internal audio amp and speaker, Modular construction, auto degaussing $34 \mathrm{H} \times 24$ D, 90 day guarantee Supplied in EXCELLENT condition, ONLY £99.00

+ Carr. Also available UN-MODIFIED but complete with MOD DATA. Only $£ 75.00$ + Carr. Also available UN-MODIFIED but complete with MOD DATA. Only £75.00. Carriage and insurance on monitors $£ 10.00$

DATA MODEMS

our super range of DATA MODEMS prices and types to sulf all applic
and budgets"
TELECOM and aie miade to the highes Standard for continuous use and telability
RS232 intertaces are standard to all our
modems. so will connect to ANY
with an RS232 serial intertace.
DATE
this ad
MODE
high 3a. 300 baud. Compact unit o
Standard CCITT tones. CAl Lemode maly MODEM 20-1. 75-1200 baud. Compact
Mor use as subscrber end loPRESTEL
MICRONET or TELECOM GOLD Tested w
data $E 39.95+$ PE6. 50
MOOEM $20-2$ Same
MOOEM 20
baudesien
TRANSDATA 307A 300 baud acoustic
COupler. Brand new with RS232 intertace
ONLY $£ 49.95$
DACOM OSL
DACOM OSL2123 Multı Standard Modem
$1200-1200$ half duplex
Auto answer via MODEM OI CPU CALL oI
ANSWER modes plus Bed sianew fully
guaranteed OWLYE268.00 + PEE450.
200 or 2400 baud using $2780 / 3780$
2 or 4 wire working etc et
CBOO OUR PRICF E185.00.
ATEL 4800. RACAL MPS4800 high speed

CEFLAY

 atictreturs
SPECIAL 300 BAUD MODEM OFFER

Another GigANs ittle used 2B data modems allows US to make the FINAL REDUCTION and for YOU to oin the exciting world of data communications at an UNHEARD OF PRICE OF ONLY E29.95 Mad the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the 2B has all the standard requirements for data base. business or hobby communications. All this and more"

- 300 baud full duplex Full temote control CCITT tone standards Supplied with fuil data - Modular construction - Direct isolated connectio	

SAVE SUPER PRINTER SCOOP BRAND NEW CENTRONICS
 739-2

인ำ

DEC CORNER

PDP 1140 System comprising of CPU.
24 K memry +MMM 6 M line RS2 32
tertace. FPO 240 MB hard disk drive.
$\begin{array}{r}\text { and running } \\ \mathbf{E 3 7 5 0 . 0 0} \\ \hline\end{array}$ BA11-MB 35 Box. PSU.LTC $\quad 5385.00$ DH11.AD $16 \times$ RS232 DMA
intertace
c2100.00 DLVII-E Serial. Modem support $£ 200.00$ DO200 Dilog c650.00
\qquad D211.B M819 PDP 1123 ard $£ 650.00$ KDF11-B M8189 PDP $1123+$ E1100.00
LA36 Decwriter ElA or 20 maloop 8270.00 LAX34-AL LA34 tractor feed \quad E85.00
 MS11.LD Unibus 256 kb Ram MSC480£450.06

$〔 499.00$
$\varepsilon 45000$

PDP11/05 Cpu. Ram. I/ PDP11/40 Cpu. 124 kMMU ع1850.00 $\begin{array}{lr}\text { RKO5. } & 2.5 \mathrm{Mb} \text { disk drives } \\ \text { K } & \varepsilon 70.00 \\ \mathbf{K 5 0 . 0 0}\end{array}$ $\begin{array}{lr}\text { KL8JA PDP } 8 \text { async } 1 / 0 & £ 175.00 \\ \text { MIBE PDP } 8 \text { Bootstrap option } & £ 75.00\end{array}$ VT50 VDU and Keyboard -
\qquad
1000's of EX STOCK spares for DEC
PDP8. PDP8A. PDP1 1 systems \&
peripherar equipment and Apares want
cor PROMPT CASH PAYMENT

I

ERS - PRINTERS - PRINTERS - PRINTERS PRINTERS - PRIWTERS - PRINTERS - PRI

SUPER DEAL? NO - SUPER STEAL!?

The FABULOUS 25CPS TEC Starwrter

and full control via CPM
a fraction of its original cost. printing. switchable include bi direc 163 charac!ers per lin nternal butfer standard fiction feed roilers for single sheet or continupus pape Supplied absolutly BRAND NEW with 90 day quarantee and FR and oust cover. Order NOW or contact sales office tor more informaticn Optional extras RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Trac or feed
$£ 140.00$ Spare daisy wheel $£ 3.00$ Carriage \& Ins UK Mainland $£ 10.00$.

PROFESSIONAL KEYBOARD OFFER

An advantageous purchase of brand new surplus allows a great OWERTY, full travel ALPHAMEAIC 7204/60 full ASCII 60 key, upper, lower + control key, parallel TL output plus strobe. Dim $12 " \times 6^{\prime \prime}+58-12$ DC. EJ8. 90 .
DEC LA 34 Uncoded keyboard with 67 quality, GOLD, normally open swieches on
standard X matrix Comolete with 3 LED indicators \& i/o cable - ideal nicro

66\% DISCOUNT
 OMP RONENT EQUIPVENT

bargains, we have thousands of C S . Transistors, Relays. CaPs. PC S s Sub-assembties
Switches, etc. etc surplus to our requirements. Secause we don t have sufficient siacks LIFETIME. Thousands of components at giveaway orices' Guaranteed to be wan at least fimes what you pay. Unbeatable valuell Sold by weight.
HOkls $£ 10.25+$ pp $£ 2.25 \quad 20 \mathrm{kls} £ 17.50+£ 4.75$

GE MODEL 30

A large purchase of these stand alone terminal units offers an EXTREMELY LOW PRICE for a professional printer for direct
connection to your micro. The printer has a standard RS232 serial interface with sw tchable rates of 110,200 and 300 baud. Upper and lower case characters are printed by a matrix head with character widths up to 132 columns. Unit accepts standard fan fold sprocket fed paper from $4^{\prime \prime}$ to $9.5^{\prime \prime}$. Many other teatures such as nu meric keypad, electronic keyboard
motor on/off and FREE floor stand. Supplied in good S/H working co GARRIACE GINS. E 10.00

EXTEL PRINTERS

EX NEWS SERVICE compact, quality bu it 50 column matrix printer, type AE 1 : Unit operates on 5 BIT BAUOOT code
from current loop, RS232 or TL serial interfaces. May be connected direct to micro, or comms receiver via simple filter network to enable printing of most world
wide NEWS. TELEX and RTTY services Supplied in tested second hand condition with 50 and 75 baud xtals, data sheet and large paper roll ONLY $\mathbf{E 4 9 . 9 5}$. CARR $£ 6.00$ Spare paper rolls $£ 4.50$ each

GE TERMIPRINTER

A massive purch ase of these desk top printer terminals enables us to otfer you
these quality 30 cps printers at a SUPER LOW PRICE ageinst their original cost o over £ 1000 . Unit comprises of full OWERT electronic keyboard and printer mech with print face similar to correspondence qua typewriter. Variable forms tractor unit
enables full witt 7 -up to $13.5^{\prime \prime} 120 \mathrm{co}$ paper. upper - lower case, standard RS232 serial intertace, internal vertical and horizontal tab settings, standard ribbon adjustable baud rates, quiel operation plus
many other teatures. Supplied complete with manual. Guaranteed working E/ 150.00 untested $E \Omega S .0$, optional floor stand E 12.50

THIßTYPE ASB3S

1/0 THBLMTALS

fully fledged ind ustry standard ASR33 data erminal Many features including ASCll keyboard and printer for data I/O auto data detect circuiny. 232 serialinterlace. 1 baud, 8 bit pape tape punch and reader cheap and reliat te data storage Supplied good condition and in working order Options: Floor s and $£ 12.50+$ VAT
KSR33 with 20 ma loop interface $£ 185.00+$
Sound proot enclosure $585.00+$ VAT

20,000 FEET OF ELECTRONIC AND COMPUTER GOODIES ENGLAND'S LARGEST SURPLUS STORE - SEEING IS BELIEVING!!

D.C. POWER SUPPLY SPFCLALS

ExperImentors PSU Ex-GPO. All silicon electronics. Outputs give $+5 v$ @ 2 amps $+12 \mathrm{~V} @ 800 \mathrm{ma}-12 \mathrm{~V}$ @ $800 \mathrm{ma}+24 \mathrm{v} @ 350 \mathrm{ma}$ and 5 v foating © 50 ma .
Dim $160 \times 120 \times 350 \mathrm{~mm}$. All outputs are fuly regulated and short Eircuit proof. Supplied in NEW or little ised condition. Complete with circuit.
Only $£ 15.50+2 £ 2.50$ pp
FARNELL 5 Volt
FARNELL 5 Volt 40 amps. Type number G6-40A. This miniature s witching PSU measures only 160 mm wide 175 mm deep and 90 mm high, yet detvers a massive 40 amps!! Fully regulated and smoothed with over voltage protection etc. 240 volts AC input. Supplied BRAND NEW and boxed with circuit at a fraction of the current list price. Only $£ 130.00+£ 3.00$ carr $\&$ ins.
 ${ }^{2} 2 \mathrm{mos}$ fill
LAMDA LMCC5V 110 V AC input with 5 volts DC at 8 to 10 amps faliy regulated

PERIPHERAL SYSTEM SUPPLY. Runs almost any system. Fully yased unit supplied in a brand new or rittle used condition. Outputs give 5v \& 1 amps "+
$15 \cdot 17 v$ E 8 amos" $15-17 v @ 8$ amps and " $+24 v @ 4$ amps. All outputs are $15 \cdot 17 v$ a 8 amps " $15-17 v @ 8$ amps and "+" $24 v @ 4$ amps. Alloutputs are
crowbar protected and the 5 volt output is tuly regulated. Fan cocled. Supplied crowbar protected and the 5 volt output is
tested with circuit. $£ 55.00+\& 8.50$ carr.

1000's of other POWER SUPPLIES EX STOCK -
CALL SALES OFFICE FOR DETAILS

DUAL DISK DRIVE/ WINCHESTER CASES

Very smart, fully enclosed case un custom made to accept two full reight $51 / 4^{\prime \prime}$ floppy disk drives or two $51 / 4^{" \prime}$ winchesters such as the RHODIME RO200 or TANDEM series etc. An internal switched mode PSU supplies all the required voltages to enable you to plug in our drives and go!!
Other features include mains filter internal cables with standard drive connectors, space for internal PCB, standard fan cut out and mounting, air filter. Overall dimensions $28 \mathrm{cmW} \times 30 \mathrm{~cm} \mathrm{D} \times 19 \mathrm{~cm} \mathrm{H}$ ONLY ES5.00 $+£ 6.00$ CARR.

ULIRA COMPACT ACCOUSTIC MODEM - COUPLER

Major manufacturer's over production and a b TRANSOATA 307 A ultra compact, BT APPROVED 300 baud full duplex accoustic moden at a fraction manufacturer's ist price . The unit of erates on the
standard CCITT V21 frequencies with RS232 standard CCITT V21 frequenc
interface via 25 way 'D' skt.
interrace via 25 way ' D ' skt.
Combine the adjustable cup
Combine the adjustable cup system, which fits almost any phone with the benefit of No jacks or phone cables" ar d a light weight of only 1.2 Kg and sou have a truly portable modem!! Suppliec complete with data, 90 day guarantee and ready to use. ONLY £49.95 + £3.00 pp

PROFESSIONAL 6 FOOT 19" RACK CABINETS LARGE 19 " equipment cabinet. Tota doors. An internal sub fram $63^{\prime \prime}$ nigh is pre drilled for stancard 19 pre ariled or slancarcter
equiment etc Other
teatures include intern tone blue and grey finish with alloy trims.
Mounted on 4 heavy Mounted on 4 heavy
duty castors, mains panel etc. And at a
current cost rom current cost from
IMHOFS of over §500 A snip at ONLY
$£ 125$ Suppled E125. Supplied in NEW Carriage 222.00
Ext. Dim $72.5^{\prime h} \mathrm{x}$

SFMICONDOCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

 include transistors, digital, linear, IC striac guaranteed brand new full spec. with man aclurer's markings, fully guaranteed $0+$ E8.93 100- 25.15 . TL 74 Serles A pigantic Durchase of an across the boerd range of 74 TL serie mostly $T 1$ " grab bags at a price wh mostly TL grab bags at a price which two cost to buy Fully guaranteed all I.C's fullspec $100+\varepsilon 6 \$ 0200+\varepsilon \$ 2.30300+\varepsilon 19.50$

NORTH STAR HOBIZON

Pro S 100 system with dual $5^{\prime \prime}$ floppy

 drives, software, manuals etc £850.00 Call sales office for details
LOGICAL KEYBOARD

 Heavy duty unit in atrractive satin alloy

Making a ver, useful keyboard, ideal for
persons uniamiliar with or conf sersons unfamilar with or Confused by the
standard OWERTY layout. Al! keys generate
the equivalent ASCI Oututs and the equivalent ASC paralle \mid TLL C ctput with stro. A 7 bit latched direct connection to any similar micro pori etc. Many other features such as internal
$240 v$ to $5 V$ PSU, MAINS ON/OFF switch. Supplied with data
ONLY $£ 25.95$ Post and packing $£ 4.50$

1000 's of other EX STOCK items including POWER SUPPLIES, RACKS, RELAYS, TRANSFORMERS, TEST EOUIPMENT, CABLE, CONNECTORS, HARDWARE, MODEMS, TELEPHONES, VARIACS, VDU'S, PRINTERS. POWER SUPPLIES, OPTICS, KEYBOARDS etc. etc. Give us a call for your spare part requirements. Stock changes almost daily.
non't forget, ALL TYPES and QUANTITIES of electronic surplus purchased for CASH

Itseasy
 to complain about advertisements. Butwhich ones?

Every week millions of advertisements appear in print on posters or in the cinema.

Most of them comply with the rules contained in the British Code of Advertising Practice.

But some of them break the rules and warrant your complaints.

If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code.

Then, if an advertisement bothers you, you'll be justified in bothering us.

The Advertising

 Standards Authority. If an advertisement is wrong, we're here to put it right.ASA Ltd, Dept 2 Brook House, Torrington Place, London WC1E 7HN

pantechnic

- design manufacture and supply POWER AMPLIFIERS HIGH POWER ASSEMBLIES CONTROL CIRCUITRY
- for application in

INDUSTRY PUBLIC ADDRESS $\mathrm{HI}-\mathrm{FI}$

- available

OFF THE SHELF CUSTOMISED C A D DESIGNED
tel. 01.361.8715 132 High Road telex 266873 New Southgate PANTEC G LONDON N111PG.

CIRCI.E 90 FOR FURTHER DETAILS

For more details regarding advertising Contact Bob Nibbs 01-661 3130

[^5]

PRECISON COLD MULT METERS Lentase

A new range of suberb at protessional multimeters at 1010 incredibly low prices. 20μ A AC/DC FSD ranges! 10 Ms) input impedance up all ranges (+100 pFAC) 10 A ACIDC to $1,000 \mathrm{VDC}$, 31 ranges including continuly $1 / 2$ digit, $1 / 2$ inch $20 \mathrm{M} \Omega 2$ and diode test $3^{1 / 2}$ digit, ressed buzzer and aspaty Srobes, Satead prosockets, bench stand Battery, test leads tected to UL 1244 . and insiruction P.C.B for long-term reliability and consistent high-precision (Dasic ORE ONLY $£ 36.95$-VAT PRECISION AT A GOLDEN PRICE ON OU request.

CIRCLE 93FOR FURTHER DFTAILS

The PC-16 16-bit computer provides PERFECT COMPATIBILITY with the IBM PC/XT range. The motherboard can be supplied in two versions for stereoscopic conveneince. The ' N ' version has no memory on board and the ' B ' version with space for 64 to 256 K RAM. Addition of the Memory Expansion Card provides a further 64 to 512 KB of RAM. BASIC FEATURES INCLUDE

* 8088 CPU operating at 4.77 MHz
* Provision for 8087 co-processor
* Four DMA channels
* Three TIMER channels on board * 8 EXPANSION SLOTS SYSTEM-5 PC16 (B/3) - PRICE $£ 1599$ - Main computer employing ' B ' board with 128 K on board (upgradeable to 256 K on board) PLUS Colour/Graphics adaptor providing signal capable of running monochrome displays on RGB output for full colour. Multi I/O card, providing floppy drive controller for two drives, one parallel port, one serial port, one games port with batter backed clock calander. RAM extension card for 512K. Two DS/DD floppy drives. 83-key keyboard All complete, built \& tested in case with power supply together with Concurrent (multiuser, multitasking)(P/M, CCP/M manual, Basic manual and computer operations manual - ready to run! DRIVES - MEGABYTES FOR MICROPOUNDS!

MOTHERBOARD 'B', 8-slot, 128K ... £449 MOTHERBOARD 'N', 8-slot £329 MULTIFUNCTION card with 128 K (expandable to 256 K) one PLL-port, one SER-port (2nd option) Clock/ Calendar with backup 259 MONOCHROME adaptor with printer port
MULTI I/O CARD - one pll, one serial port, one games port, floppy drive controller, clock calender with battery backup

14in RGB HI-RES MONITOR (640dots
$\times 300$ lines) $\mathbf{8 8 5}$ 12in HI-RES GREEN MON ….......... 889 64K RAM EXTEND MODULE £59 DS/DD FLOPPY DRIVE (500 KB unformatted.
unformatted
WINCHESTER DRIVE
CONTROLLER........................... $\mathbf{£ 4 2 5}$
512 K RAM BOARD - comes with 128K RAM installed fully IBM compatible
PC Case.
$\varepsilon 299$
$£ 98$

WINCHESTER DRIVE 12MB complete with controller …...................915 ey) MBLE KEYBOARD (83 KEYTRONIC 5150 K/BOARD......... $\mathbf{\Sigma 1 7 5}$ KEYTRONIC 5151 K/BOARD...... $\mathbf{E 2 1 0}$ SWITCHING POWER SUPPLY $\mathbf{E 1 0 5}$ ADD SERIAL PORT KIT£23 FLOPPY DRIVE CONTROLLER ... $£ 109$

RAM CHIPS
 4164 NEC/MITSUBISHI

64K DRAMSAT £2.35 each

* RUNS MS/PC-DOS \& CP/M 86
* READS \& WRITES IBM-PC format
* Accepts IBM-PC Peripherals
* Up to 256K RAM ON BUARD

5 ${ }^{\frac{1}{4} \text { " Half height } 500 \mathrm{kB} 40 / 80 ~}$ 5. Half height $1 \mathrm{MB} \mathrm{40/48}$. 5. "Half height $1.6 \mathrm{MB} 40 / 80$ $5 \frac{1}{4}^{\text {* }}$ Half height $2 \mathrm{MB} 40 / 80$. $3^{\prime \prime}$ Half height 500 kB $3^{\prime \prime}$ Half height 1 MB $8^{* \prime}$ Full size 1.6 MB 8^{n} Half size 1.6 MB MR521 Half height 12.75 MR (unformatted) Hard Disk MR522 Half height 26MB (unformatted) Hard Disk (unformatted) Hard Disk £691
All brand new, boxed, with built in controller standard power requirments. Full documentation and technical details
$£ 119$ £125 £159 £199 £119 £125 E 309 £282 $£ 492$

Add 15% VAT to all prices given. Remember, VAT is also applicable on carriage at 15%. Terms CWO. DEALER ENOUIRES WELCOME. FOREIGN enquiries if possible by telex please. However French \& German speaking staff at your disposal MONEY BACK GUARANTEE. SEND E 100 for our latest catalogue of over 3000 tems, computers peripherals, consumables , pobotics etc etc

- COMPONENT PACKS

All Brand New except where marked Price: £1 per pack
Order 12 you get one extra FREE
Please add £1 post if order under £20

| $1-$ | 5 | 13 amp ring mann junction boxes |
| ---: | ---: | ---: | :--- |
| 2 | 5 | |

13 amp luses for ring mains
surface mounting switches
Hush switenes intermediate type
in fiex hine switches
inflex hine switches
in flex line swithces
80 watt brass cased elements
mains transformers with 6v 1a secondaries
mains trarisformers with tiv la secondaries
extension speaker cabinet for 6 .
speaker
exiension speaker cabinet for 6 ;
octal bases for relays or valves
glass reed switches
OCP 70 photo transistors
assorted gemanium trans istors 0 C 45 etc
ape heads, 2 record 2 erase
15000 mid computer capacitors
d.r. similar ORP 12
oit1 micro switches
mains interference
mains interference supprassors
25 watt crossover units
40 watt 3 way crossover
screws and sell tappers

way: $2 p 6$ way, $1 \rho 12$ way
tape dack counters
6 digit counter 12 v
6 digit cou nter mans voltage
NOAC in fllght stereo unit (s.
NICAO battery chargers
key swith with key
key switch with key
numdity switches
aersol cans ol lCi Dry Lubricant
$\times 1$ metre length colour-coded wires
air spaced 2 gang tuning condensors
solid diae lectric 2 gang tuning condensors
compres sion timmers
Long \& medium wave tuner kil
$\times 465 \mathrm{KC}$ If transtormers
rocker switches 10a mains SPST
rocker switches 10a mans SPOT
rocker switches 10a manns SPO
rocker sw tches 10a SPOT
rocker 5 sw tches 10a SPOT
24 hour time switch manns operated
6 hour clockwork time switch
2 lever switches 4 pole changeover up and
2 ever swithes 4 pole change
6v operated reed switch relays
neon valves - make good night lights
$\times 12 v D C$ or $24 \mathrm{vC} \AA C 0$ retays
$\times 12 \mathrm{2C} 2 \mathrm{O}$ very sensitive relay
$\times 12 v 4 C 0$ relay
(second hand)
ows ol 32 goid plated ic sockets (total 320
sockets)
ligs aw puzzle
collis house switch
ieiephone handsets
tiat solenoids - to make current tianstormes
lerrite rods $4^{\circ} \times 5^{\circ}-16^{\prime}$ dia
ferrite slab serials LW\& MW
2002 fas pieces
Mullard Thyristor trigger module
assorted knobs I sp indles
assorted knobs
dift thermostats

Most items available in quantity at good discounts. Access \& Barclay cards welcome

\author{

- N.B. ELECTRONIC SUPPLIES
 34 America Lane, Haywards Heath, Sussex RH16 30 U (24hr phone ordering 0444 454563)
}
in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.
R.Henson Ltd.

21 Lodge Lane, N. Finchley, London, N.12. 5 mins, from Tally Ho corner Telephone 01445 2713/0749

CIRCLE 45 FOR FURTHER DETAILS

Toroidal Transformers

as manufacturers we are able to offer a range of quality Toroidal Transformers at highly competitive prices and fast delivery.

Mail Order Price List

- the business micro market is worth 8620 m per year
- almost 80% of business micros are sold through dealers
- only Micro Business magazine reaches those dealers
- if you're launching a new product, it can be advertised on the front cover of Micro Business

So if Micro Business isn't on your media scheduie yet, call Ken Walford on 01-661 3139, today.

Appointments

Advertisements accepted up to 12 noon March 29th for May Issue

DISPLLAYED APPOINTMENTS VACANT: $£ 19$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 4.00$ per line, minimum $\$ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies shouid be addressed to the Box Number in the advertisement. c/o Quadrant House. The Quadrant, Sution, Surrey SM2 4AS). PHONE: IAN FAUX, 016613033 (DIRECT LINE)

Cheques and Postal Orders payable to BUSINESSPRESSINTERNATIONALLTD. and crossed.

THE BEST APPROACH

£7,000-£30,000 + CAR

\star Where does your interest lie: Graphics; CAD; Robotics; Simulation Image and Signal Processing; Medical; Automation; Avionics; Acoustics; Weapons; Comms; Radar; Opto and Laser?
\star Experienced in: VLSI: Microprocessor Hardware or Software: Digital and Analogue circuitry; RF and Microwave techniques?
\star There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers

* For free professional guidance: Call: 0638742244
(till 8pm most evenings) or write (no stamp needed) to

Product Development Engineers

Dolby Laboratories, famous for its audio noise reduction systems, was founded by an engineer. A company that believes in engineers and engineering, we are small enough for individual contributions to be recognised yet well established with the resources to implement and capitalize on innovations.
We are looking for Senior and Junior Engineers, who are probably electronics graduates, to staff a new Product Development Section in the UK. Reporting to the Managing Director, the group will be responsible for translating agreed product 'outlines' into manufacturable units. The emphasis is on creative engineering and design.
Salaries will be competitive.

For more information contact:

Gary Holt, Dolby Laboratories Inc., 346 Clapham Road, London SW9 9AP 01-720 1111 (2537)

SOUND ENGINEER

Applications are invited for the newly-created post of TECHNICAL ASSISTANT to the studio's HEAD OF TECHNICAL SERVICES.

The successful candidate will work in the field of SOUND ENGINEERING for film post-production, and must have a thorough theoretical background in electronics and light electrical engineering. Ability in project management is a priority, involving audio and control systems, planning, specification and installation, with skills at the drawing board and development bench. A working understanding of remedial and routine maintenance is required, and experience with video systems would be an advantage
The prospects for advancement would be best for an applicant having a good manner and appearance, an even temperament, and the abiiity to deal with clients, to handle administrative duties and to write clear English. The suggested age range is 28 to 40 years.
In conformity with studio practice, membership of ACTT (the Association of Cinematograph, Television and allied Technicians) would be expected, and due weight would be given to applications from present members. Non-members should be willing to apply for acceptance by this union.
Please forward a full c.v. (quoting ref: ACN/GFL/A) to:Personnel Dept., Pinewood Studios, Pinewood Road, Iver, Bucks SLO ONH.
Tel:Iver (0753) 651700

ELECTRONIC ENGINEERS FOR MARINE SYSTEMS

Hunting Surveys \& Consultants Ltd has vacancies for Electronics Engineers to work on both the theoretical and practical aspects of Marine Survey Instrumentation Systems
Applicants are required in two areas

- Qualified to degree level with a broad electronics experience, having an emphasis on digital circuitry, computing and micro-processing techniques and capable of taking overall responsibility for initial circuit design while working with minimum supervision.
- With not less than 3 years' electronics experience including a broad knowledge of digital circuitry and microprocessing techniques
Candidates (preferred age 23-30) should be physically fit and prepared to undertake periods of operational work in both the North Sea and overseas. In addition to basic salary and staff conditions, generous allowances and leave are granted for work away from base
If you are bored by routine and seek a real challenge, please send for an application form to:

BORED ?

Then change your job!

1) TEST CALIBRATION ENGINEERS To work on a variety of micro based instruments and A.T.E. Windsor instrume
L12000
2) REMOTE CAMERA EQUIPMENT Test engineers to work on high speed digital systems to $£ 10,000$. Surrey 3) TECHNICIAN ENGINEER For maintenance of VAX pdpll and flight simulation systems. Middx. To £11,000
3) DATA PROCESSING EQUIPMENT Customer service engineer to work on PDP8 and PDP11's, printers and graphics displays. $£ 12,000+$ car. Berks/Bucks
4) MARINE SERVICE ENGINEER To maintain a variety of marine communications and navigation systems. Surrey. To $£ 10,000$ 6) DEVELOPMENT/TEST ENGINEER To design and support a variety of medical systems. £10,000. Berks/ Middx

Hundreds of ot'ver Electronic and Computer vacancies to $£ 12,500$ Phone or write
Roger Howard, C.Eng., M.I.E.E., M.I.E.R.E.
CLYEDEN BOMSILTANTS
92 The Brosdway, Bracknell, Berkshire

The Queen's University of Belfas The Computer Centre HEAD OF HARDWARE SUPPORT AND COMMUNICATIONS DIVISION E14,136-E17,706 (under review)
As part of the Senior Management team reporting to the Director of the Computer Centre, the successful applicant will lead a group of seven data-communications. hardware data-communicatuons, hardware tenance programme. The post offers an invigorating opportunity to take over a senior managerial, technical and motivational role in a very active and stimulating University environment.
Applicants, male or female, should preferably be university graduates or equivalent in electrical or electronic engineering; demonstrating a comprehensive, in-depth knowledge and practical experience of data-commuactive managerial and technical expertise and a thorough knowledge of the general field of computing. Salary scale (Universities Other Salary Scale (Universities Other
Related Staff Grade III): $£ 14,137-$ Related Staff Grade III): $\varepsilon 14,137$ -
£17,706 (under review from 1.4.85). initial placing according to age, experience and qualifications. Assistance with relocation.
Applications, including a full curriculum vitae and the names and addresses of three referees should be sent to the Personnel Officer. The Queen's University of Belfast. Northern Ireland BT7 1 NN , from whom further particulars may be obtained.

THE START 0 F SOMETHING NEW

If you are leaving College and planning a career in modern communications or if your present job lacks interest and challenge why not join us in GCHO?

RADIO OFFICERS

who are after initial training will become members of an organisation that is in the forefront of communications technology. Government Communications Headquarters can offer you a satisfying and rewarding career in the wide field of communications. Training involves a 32 week course (38 weeks if you come straight from Nautical College) which will fit you for appointment to RADIO OFFICER.
Not only will you find the work as an R O extremely interesting but there are also good prospects for promotion opportunities for overseas travel and a good salary. Add to this the security of working for an important Government Department and you could really have the start of something new
The basic requirement for the job is 2 years radio operating experience or hold a PMG, MPT or MRGC or be about to obtain a MRGC. Registered disabled people are welcome to apply.
Salaries start at $£ 4,762$ at age 19 to $£ 5,755$ at age 25 and over during training and then $£ 6,399$ at 19 to $£ 8,510$ at 25 and over as a Radio Officer. Increments then follow annually to $£ 11,741$ inclusive of shift and weekend working allowances.
For full details and lapplication form phone 0242 32912/3

The Recruitment Office A/1108 Priors Road
CHELTENHAM
Glos GL52 5AJ

ANDROMICA (TV) Ltd.

Senior Installation

Engineer

Working directly for senior management, the successful applicant will be responsible for installations of CCTV and security equipment using monochrome and colour CCTV equipment. A proven background in the field of top quality systems installation together with an ability, when required, to take charge of small teams of engineers is a requirement. Overseas travel is a possibility although the work will mainly be UK/London based.
An excellent employment package is on offer to a flexible, hard working person with a good ability to communicate. Apply in writing to
ANDROMICA (TV) Ltd., 34 Rockingham Road, Uxbridge, Middlesex UB8 2TZ
or ring Mr Bird on 0895-57971

Electronic Engineers What you want, where you want!

Abstract

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $\mathbf{5 6 , 0 0 0}-\mathbf{£ 2 0 , 0 0 0}$. If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL

 PERSONNEL SERVICES,12 Mount Ephraim, Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

(24 Hour Answering Service)

Please send me a TJB Appointments Registration form Name

Address

Electronic Engineers and Technicians

They're asking for you in Alexandria.
 Voluntary Service Overseas is looking for experienced

 and qualified Electronic Engineers and Technicians to work with and help train members of third world communities in Egypt (University of Alexandria Research Centre) and in Sri Lanka (Chilaw Diocesan Industrial Centre).Applicants should be aged between 20 and 65 . without dependants and willing to accept no more than the 'local' rate of pay.

If you have the right qualities and experience and you're free to go, please believe you're needed urgently!
(For more information, complete and return the coupon now.)

I minterested in volunteering. my
qualifications or experience are

Whynot?
Address

EWW/3/85
Posi to Enquiries Unit Voluntary Service Overseas 9 Belgrave Square London SW 1×8PW (S A E appreciated) Charity No 313757

ELECTRONICS RESEARCH at the UNIVERSITY OF ESSEX

Graduates who have (or final year students who expect to obtain) a first or upper second class honours degree are invited to apply for research leading to a higher degree (M.Sc., M. Phil. or Ph.D) in the following areas:

Acoustic Noise and Vibration Cancellation Audio Engineering Computer and Information Systems Computer-Aided Design Digital Transmission Display Systems Image Processing Optical Communications Radio and Satellite Systems Teletraffic and Performance Engineering

Further information and application form available from: Dr. G.J. Ritchie, Chairman, Department of Electrical Engineering Science (WW), University of Essex, Wivenhoe Park, Colchester CO4 3SQ.
(2424)

HOCKEN SOUND BIRMINGHAM

Senior Electronic Service Engineer required to maintain amplifiers, tape decks, speakers, lighting controllers etc.,
The successful candidate will possess practical experience in audio systems, as well as having formal qualifications. Should be self-motivated. Join our exciting \& expanding company. Please contact Barbara Delaney on 021459 '4242.

Appointments

Telecommunications Engineering Technicians

Openings in Servicing and Maintenance

 Upto£8,873Our business is to install and maintain the communications equipment used by the Police and Fire Brigades in England and Wales - some of the latest you will find in operation anywhere,

We have a number of vacancies at our Service Centres in various parts of the country, for Telecommunications Engineering Technicians with practical skills in locating and diagnosing faults in a wide range of equipment from computer-based data transmission to FM and AM radio systems

The work provides excellent opportunities for extending your technical expertise, with specialised courses and training to keep you up to date on developments and new equipment. There are also opportunities for day release to gain higher qualifications.

Applicants, male or female, must be qualified to at least City \& Guilds Intermediate Telecommunications standard and possess a current driving licence. Some

Home Office

travelling will norm ally be volved. istered disabled persons can

course apply.

The Home Office is an equal opportunities employer

Salary will be on a scale £6501 to $£ 8873$ a year with generous leave allowance and pension scheme

Good prospects for promotion.
If you are completing your service, please write for further details and an application form, quoting reference $W W / 2$ to: Miss M Andrews. Home Office, Directorate of Telecommunications, Horseferry House, Dean Ryle Street, London SW1P 2AW

Directorate of

Telecommunications

BCS LABORATORY DUPUTY HEAD

Due to expansion we have a vacancy for an experienced standards engineer to carry out calibration on DC and LF instrumentation in our laborayory, which is approved by the British Calibration Service. This position would ideally suit someone in the calibration field wishing to further their career prospects.
Experience in this type of environment is a necessity.
An attractive salary, pension and BUPA benefits will be offered, also relocation expenses where applicable.

Apply in writing giving details of employment to date:

Mr.J.Macalister

DMR Ltd.,
Unit 19
Salisbury Square, Radford, Nottingham NG7 2AB.

We have the following vacancies for engineers to join our young and expanding company based in west London. We are sole UK importers of specialised broadcast equipment and are now designing and manufacturing a range of our own products for the television industry.

SERVICE ENGINEER

We require a service engineer preferably with experience of video equipment or similar area of electronics. The applicant should be able to maintain character generators, time base correctors, vision mixers etc...

TEST ENGINEER

We require an engineer to test, align and fault find on a new range of products designed and manufactured by ourselves. There would be opportunities for involvement in other areas of the production process.
Salaries would be dependent upon experience and qualifications. Please send CV to the address below.

POLARVIDEO
2-5 Powis Mews, London W11. Telephone 01-727 III

Appointments

Communications DESIGN FROM START...

At II M. Government Commmications Centre were using the very latest ideas in electronics technology to design and develop sophisticated communications systems and installations for special Government needs at home and overseas.

With full technical support facilities on hand, it's an environment where you can see your ideas progress from initial concepts through prototype construction, test and evaluation, to the pre-preduction phase, with a chance to influence every stage. Working conditions are
pleasant, the surroundings are attractive, and the care prospects are excellent.

Ideally were looking for men and women who have studied electronics or electronics related subjects to degree level or equivalent and have had some experience oldesign, whether obtained at work or through hobby activities. Appointments will be made as I Higher Scientific Officer ($\mathrm{E} 7,135-\mathrm{f} 10,039$) or Scientific ()flier (85,909 £8,153) according to qualifications and experience.

For further details please write to the address given below. It would be particularly helpful if an outline of your personal interests and practical experience could be included.

The Recruitment ()Nicer, HMG; (C: I tanslope lark, Buckinghamshire MK197BII.

TO FINISH

Satellite communications

Marconi Space Systems are rapidly developing their Portsmouth Space Centre As a result of the success of the satellite communications business, a number of posts have been created for Engineers and Technicians at all levels of seniority including Project Manager/Principal level
There is a full range of engineering facilities concentrated on one site. New facilities include an antenna test range second to none
We require men and women for the
following areas

- Synthetic Aperture Radar
- Radar Systems Analysis
- RF/Microwave Systems
- Antenna Development
- Software/Hardware Development

\square
ADDRESS
\qquad

TEL. NO. Home \qquad
Work Space Systems

- Mission Analysis
- Attitude \& Orbital Control
- Data Handling
- Power Systems
- Quality Systems Assurance
- Test/EMC/Environmental Engineering
- Assembly, Integration and Test
- Ground Support Equipment
- Electronics Components Acceptance Testing
- Electronic Space Parts

Complete the coupon and send it to Jack Burnie, Marconi Space Systems Ltd, Browns Lane, The Airport. Portsmouth Hats. PO3 5PH, or telephone him on 0705 674019 quoting ref. BL 28

The Publishers take all reasonable care to ensure that classified advertisements are genuine, but readers must satisfy themselves that they will be obtaining what they require before entering into transactions,
particularly if they involve large sums of money.

for your classified adverts ring 3033

WANTED

SERVICES

SURPLUS

We offer good prices for test equipment, components, redundant computers, PCB's connectors. Immediate settlement.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU
Telephone: (0703) 431323
(1832)

E C COMPONENTS

We buy large and small parcels of surplus I/C, transistors, capacitors and related electronic stock. Immediate settlement Tel: 01-208 0766 Telex: 8814998
(2491)

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices.
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM
(1391)

STEWART OF READING

110 WYKEHAM ROAD
READING RG6 1PL
TEL NO: 073468041
TOP PRICES PAID FOR
ALLTYPES OF SURPLUS TEST EQUIPMENT,
COMPUTER EQUIPMENT
COMPONENTS etc.
ANY QUANTITY.
(2616)

WANTED

SURPLUS ELECTRONIC COMPONENTS AND EQUIPMENT
We also welcome the opportunity to quote for complete factory clearance 5 STATION ROAD, LITTLEPORT, CAMBS. Phone: Ely (0353) 860185

WANTED

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap and quantity. Prompt service and cash. Member of A.R.R.A.

M \& BRADIO
86 Bishopsgate Street Leeds LS1 4BB 0532435649

CASH CASH CASH for surplus electronic components and equipment \& also non ferrous metals. Factory clearance no problem. Phone John Turne: 367-6773.
(2529)

WANTED

All types of surplus electronic components and equipment. We specialise in factory clearance. SGS Electronics,
The Vineyard, Bowley Lane, Boddenham, Herefordshire HR1 3LF. Tel (056) 884532
(2541)

TURN YOUR SURPLUS i.cs transistors etc. into cash, immediate settlement. We also welcome the opport unity to quote for complete factory clear-
ance. Contact COLES-HARDING $\& \in 103$ South Brink, Wisbech, Cambs. ${ }^{0945}$ 584188.

PCB REPAIRS BY EXPERTS.

For fast, reliable diagnosis and repair of most printed circuit boards UK and overseas, contact the experts: Jaecrow Systems Services, 29/31 Lower Coombe Street, Croydon, Surrey CR9 1LX. Ring 01-680 9191 for full details without
obligation.
Quote ret: EW485
(2471)

SMALL BATCH PCBs, produced trom your artwork. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TlRNAROUND. Details: Winston Promotions, 9 Hatton Piace, I.ondon
ECIN 8RU. Tel. $01-4054127 / 0960$ (9794)

DESIGN AND MANUFACTURE. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, 27 Longshot Estate. Bracknell,
Berks. Tel: Bracknell (0344) 52023 .

DESIGN AND DEVELOPMENT SERVICE. RF transmitters and receivers. Telemetery U.H.F. V.H.F. Anologue and digital circuits, control systems. Full manufacturing facilities. RCS Electronics, Wolsey Road, Ashford, Middx. Phone Dr. Eri Falkner on 53661

CAPACITY AVAILABLE

TW ELECTRONICS LTD

THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances.
TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the cusand cl
tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of confo For further detity - our final assurance. For furth
works:

Bionhaim Industrial Park Bury St. Edmunds
Suffolk IP33 3 UT tolephone: 02843931 (1466)

SMALL SELECTION ONLY LISTED
RING US FOR YOUR REQUIREMENTS WHICH MAY BE IN STOCK

Portable Battery or Mains Oscilloscope. SE Laboralories 111 Oscilloscope - Solid State - General pur-
pose - Bandwidth DC to 18/20MC/S al 20MV/CM pose - Bandwidth DC to 18/20MC/S al 20MV/CM Rise time 19 NS - Calibrated Sweep - Callibrator--
Display $10 \mathrm{CMS} \times 8$ CMS - Power AC- 95 volts $10100-$ Display 10CMS $\times 8$ CMS - Power AC - 95 Volts $10100-$
190 volts to 260 or 24 Volt DC battery - Size 190 Volts 10260 or 24 Volt DC battery - SIze
W $255 \mathrm{CM}-\mathrm{CM} 25.5 \mathrm{CCMS}-56 \mathrm{CMS}$ Deep WT11 4KGS - Carrying handle - Tested in far

Latest Bulk Government Reiease - Cossor Osciilo scope CDU150(CT531/3) $£ 150$ only. Solid state general purpose bandwidth DC 1035 MHz at $5 \mathrm{MV} / \mathrm{CM}$ - Oual
Channel - High brightness display ($8 \times 10 \mathrm{~cm}$) Full
 - Illuminaled graticule - Beam finder - Calibralor volls Aq-Size W 25 CM - 41 CM deep - WT 12.5 K .G carrying handle - colour blue - protection cover ront containing polarized viewer and camera adaptor plate - probe (1) - Mains lead. Tested in Fair condition with perating instructions - $£ 150.00$.

Communtation Recievers Racal $500 \mathrm{KC} / \mathrm{S}$ to $30 \mathrm{ML} / \mathrm{S}$ in 30 bands IMCISWIDE - RA17 MK11 £125. RAT7L £150. RA117E £200. New Metal Louvred Cases for above $£ 25$. All receivers are air tested and calibrated in our workshop - supplied wilh dust cover - operation
instructions - circuit - in fair used condition. Racal Synthesisers (Decade Irequency generators) MA 350 B Solid Slate for use with - MA79 - RA217 - RA1218 Etc $£ 100$ 10 £ 150 . MA250- $1.6 \mathrm{~mL} / \mathrm{S}$ 10 $31.6 \mathrm{MC} / \mathrm{S}$ £100. MA1350 Ior use wilh RA17 receiver $£ 100$. $1 \mathrm{MC} / \mathrm{S}-100 \mathrm{KHz}$ § 100 io $£ 150$. Panoramic Adaptor RA66 £150. RA137 and RA37 §40 to §75 LF convertors $1010980 \mathrm{KC} / \mathrm{S}$. RA218 Independent SSB unit 550 RA98 SSB-ISM Covertor $£ 50$. RA 121 SSB-ISB convertor $£ 75$. $\mathrm{EC} 964 / 7 \mathrm{~K}$ Solid state - single channel - SBB -
mains or battery -1.6 to $27.5 \mathrm{MC} / \mathrm{S}$ and 400 to 535 KHz £100 with manual Piessey PR155G Solid State $60 \mathrm{KC} / \mathrm{S}$ - 30mc/S £400. Creed 75 Teleprinters - Filted lape punch and gearbox for 50 and 75 bauds - 110 volis $A C$ supply - in original itrans suor tray sealed in polythene - lik new eisea. Redilon Thr Audio Teleprinter con Made tor use with above ieleprinter enabling print-ou of messages recieved from audio inpul of communicaLion receiver $£ 15$ wilh circuit tested. Rediton TT10 Convertor as above but includes transmit faciilities $£ 20$ 0scilloscopes - stocks always changing Tekironix
$465-100 \mathrm{MC} / \mathrm{S}$ § 750 FM Recorder Sanghmd Sabre 11114 channels $£ 350$. Transtel Matrix printers AF11R - 5 level Baudot Code - up to 300 Bards - fo print out on plain teleprinter paper $£ 50$ to $£ 100$ Trans el AH11A - As above but arso 8 tevelascil (CCIT N hone sets. Type $F-L$ and \downarrow - Lare quantityin stock £6 to £ 15 depending on type and quantity $P 0$.R Don 10 Telephone Cable - hal mile canvas contaners 20 Night viewing intra-red AFV periscopes - Twin yepiece - 24 volit dc supply £100ea Original cost to 24 voltinput -240 volit AC sinewave output - various wattages PO O XY Ploters and pen recorders vafious - PO R Ferrograph series 7 Tape recorders mono 100. Stereo $£ 150$ Signal Generators various IF144H/A4 £90 TF1060/2 $£ 60$ HP606A - $£ 90$ £ 140 HP608 £50 HP6 14A 100 HP618B § 100 HP620A 100 Marconi TF1064B/5 §100 TF791 Deviation meter $£ 100$ TF893A Power meter $£ 50$ Aerial mast assembly 301 high complete with duty carrying bag - new £ 30 Racal trequency counter Type $836 £ 50$ Tektronix plugs-ins - \dagger A $1 £ 50,1$ A2 $£ 40$. AA $£ 100 \mathrm{M} £ 50$ All tems are bought direct from H M Government being surplus equspment Price ts works SAE for enquiries Phone for appointment price change VA.T and carriage extra

EXPORT TRADE AND QUANTITY DISCOUNTS GIVEN
JOHNS RADIO (0274) 684007 WHITEHALL WORKS
84 WHITEHALL ROAD,
EAST BIRKENSHAW, BRADFORD BD11 2ER

WANTED REDUNDANT TEST EQUIPMENT -
RECEIVING AND TAANSMITTING EQUIPMENT RECEIVING AND TRANSMITTING EOUIPMENT
VALVES - PLUGS - SOCKETS SYNCHROS

ARTICLES FOR SALE

(QUARTZ CRISTALS OSCILLATORS AND FILTERS of all lypers. lange stochs of sandard hems. Specials suppled to order. Peremal and caphet orders weleomed - S ME for lists please. OEN support thru:- dessin advice promotyph
quanutaes. productoon schedules. Golledar Electronics surrith
Golledge Electronics. Merriont, Somerset TA16
ENCAPSULATING EQUIPMENT FOR.coils, transformers, components, degassing silicone ubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metallisRoad, Croydon CR0 2QP. 01-684 9917 (9678)

MORSE READING PROGS.Work on clean signals without hardware interface. ZX81 1K UNEXPANDED MEMORY. Translated code with word and line spaces for easy reading Automatic scroll action. $£ 7$ incl. (2532) WAVEGUIDE, Flanges and dishes. All standara sizes and alloys (new material only) from stock. 7876 . 22 Howie Street, London SW11 AAR. (2099)

Chart recorders 1,2,6,20 pen. Stabilised power supplies. I'ye Megohmmeter $0.3-200,000 \mathrm{M}$-ohm. Muirhead Variable Air Standard Capacitor, micrometer head to $1 / 10.000 ~ £ 39$. Sullivan Air Capacitor standard $\mu \mu \mathrm{F}, \mathcal{L} 25$. EHT meter. 1,2,3,4,5 KV EHT Supply. 20 -amp variable resistance box $\mathcal{L} 29$. Video oscillator. AF Wave form Analyser. Taylor-Hobson Surface Recording \& Measurement equipment Amplifier/supply unit, Rectilinear recorder, transducer 295 . Pressure transducers. GEC Insulation Flashover test-set £30. Industrial Cleaner Concentrate car 230. Industrial Cleaner Concentrate, car dorant, antiseptic, anti-static, dilute: $25-50$ dorant, antiseptic, anti-static, dilute $25-5$ times $\mathcal{L} 3 /$ itre, one large drum only avaial ble. Oscilloscope Ignition Analyser Unit diagnostic manual $£ 39$. FM/AM Devia tion/Modulation Meter $£ 75$. FM/AM Generator $\mathcal{L} 89$. 1 HP single phase capacitor motor £35. 1 hp 45 . Micro Spot Welding heads $\mathcal{L} 35$. 55 . Books, manuals, carcuit infomation etc., Siemens Capacitance
040376236

FM BROADCAST EQUIPMENT

A special range of high quality transmitters, power amplifiers, stereo encoders, UHF repeater links, compressors, antennas etc.
Built to high specifications at an economic price. VHF/UHF data and telemetry systems (MPT 1309) available ex-stock.

Full catalogue available.
Cyberscan International, 3 Eastcote View, Pinner, Middx HAS 1AT. $01-8663300$
(2542)

T.I. DATA BOOKS

Opto Electronics $\quad £ 5.00$ Linear Circuits $\quad £ 9.00$ TTL (7th Ed.) Vol. 1. $\quad £ 9.00$ TTL (7th Ed.) Vol. 2. $\quad £ 8.00$ Understanding' series $£ 4.50$
Post free CWO. SAE for full list
MG Books, 24A Newgate,
Barnard Castle, Co
Durham DL12 8NG
Tel: (0833) 31130
(2540)

CROSS ASSEMBLERS. $68013 / 63036805$ 65002 Processors. BIBC, Commodore 64 or fet. Fast machine conmodere execution. Pet. Fast machine code execution. Suprorts expressions. directives, macros etc. Performance warranty. $\mathcal{L} 20$ each (B13C - CWO) full details (s.a.e. please) Tylek Lid.. 2 Parkview, Cashgreen, Stroud, Glos. 0.45-36-7725
(25.34)

SER VISCOPE

EAST STREET, FARNHAM, SURREY. TEL: 0252722666 CONTACT: G.P. SKINNER A SELECTION OF TELEVISION AND ELECTRONIC COMPONENTS FOR DISPOSAL

6 PF Ceramic Cap

470 PF Pulse Ceramic 12K PYE 731/728 - Mains Switch TEC - 8000/8500 Therm Cut Out GEC - 1040/Therm Cut Out N4002
BC308B
BD137
BC307
BAX 13
TAA661
PHIL 210 - Brightness Knob
PHIL 210 - Volume Knob
TEC 1500 - Brill/on-off Knob
CATHODE RAY TUBES COLOUR
A51 - 110X/A51-220X A67-120X A56 - 120X

ALL AT KNOCK DOWN PRICES

- FOR A DETAILED LIST PLEASE APPLY TO

0252-722666
CLASSIFIED ADVERTISEMENTS
Use this Form
for your Sales and Wants
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM
RIL G8 Focus Control
PHIL G8 UHG Tune
VRRistor - E299/DC/p348
IEC 1400 Mains Dropper
PHIL 210 Frame Out Put Transtormer PHIL G8 AFC Assembly
PHIL G8 - Vision Selectivity Assembly
PHIL G8 - Vsion Gain Assembly
PHIL G8 - Sound Selectivity Assembly
PCF 80
PL36
EF 184

MERCURY WETTED REED RELAY

 No contact bounce or noise. OK for "SPARKLESS" use. D.P.C. 0.5 v 10 mA Coil, 0.1" grid pcb. Clare HGS2MY-508 ex IBM1-25, £2.80, 25, £2.15, 100, £1.85 p\&p 50 p LINDEN ELEC. 15 Garden St Darlington 0325/462367

(2425)

REFURBISHED DLABLO SERIES 30 disk drives. Removable model £225. Fixed model $£ 175$ includes power supply and I/O able. - Computer Peripheral Services 0953-883827. Professional disk drive refurbishment and repair service. Specialists in CDC, Wangco, DRE \& others.
(2533)

WAYNE KERR FREQUENCY RESPONSE ANALYSER ($20 \mathrm{HZ}-30 \mathrm{KHZ}$ and 200 HZ - 200 KHZ) plus 4 -trace digital store. Type RA200/ADS1. Excellent condition. 22800 o.n.o. Tel. (063878) 518.

When replying to classified advertisements, readers are recommended to take steps to protect their interests before sending money
(2519)

BUSNESS OPPORTUNITY

MARKETING OF ELECTRONIC EQUIPMENT PRODUCTS. Distributor seeks additional products which will fit in to sectrome production and test areas. Reply Harrison. Grange Electronics L.td., Stone Lance Industrial Estate, Wimbourne, I or set. BH21 lHD). Tel: 0202-884752.

OPTOELECTRONICS DATA BOOK 1984

 Price byTexas 6.00
digital electronic Circuits

 8. SYSTEMS by N.M. Morris PRICE: $£ 5.45$MICROELECTRONICS A PRACTICALINTRODUCTION by

SOLDERING IN ELECTRONICS by R.J. Klein Wassin Wassink PRICE: $£ 51.00$ OP TICAL FIBER COMMUNICATIONS BY G. Kerser

PRICE: $£ 9.50$
DIGITALIMAGE ANALYSIS
by S Levialdı
SEMI-CUSTOMIC DESIGN \& VLSI
PRICE: $£ 73.50$
INTRODUCTION TO MOS LSI DESIGN by J Mavor PRICE: $£ 18.50$

HANDBOOK OF BATTERIES \& FUEL CELLS by D Linden PRICE E63.00 THE DESIGN \& DRAFTING OF PRINTED CIRCUITS by D. Lindsey

- all prices include POSTAGE \star
THE MODERN вооК $\mathbf{C O}$.
BRITAIN'S LARGEST STOCKIST of British and American Technical Books
19-21 PRAED STREET LONDON W2 1NP
Telephone: 01-4029176
Closed Saturday 1 p.m Please allow 14 days for reply or delivery
(2245)

To "Wireless World" Classified Advertisement Dept
Quadrant House, The Quadrant, Sutton, Surrev SM2 5AS

- Rate £4.00 PER LINE Average six words per line Minımum $£ 25$ (prepayable)
- Name and address to be included in charge it
used in advertisement
- Box No. Allow two words plus $f 5$
- Cheques, etc., payable to "Business

Press International Lid" and cross "\& Co
NAME
ADDRESS (2533)

[^6]PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION

[^7]

Appointments Vacant Advertisements appear on pages 96-103

PAGE	PAGE	PAGE
AEL Crystals 54	European Electronic Syst	Orientation Ltd
AKq Acoustics Ltd........................... 92	Back cover ${ }_{\text {European }}$ Computer \& Equipme	
Airlink Transformers 94	European Computer \& Equipmen	
AMmplectronics....................................... 11	Famell Istruments Inside Front Cover	
Andelos System's 20		
	Gemini Micro Computer6/67Greenwood Electronics68	Quartz Crystals Co. Ltd (The) 54
		Radio Code Clocks Ltd 1
	Hameg Oscilloscopes 10	Radford Electronics.......
Andio Electroni	Happy Memories.............................. 35	Radio Society of Great
Automation \& Control Technol	Harris Electronics.............................. 4	Ralfe Electronics (PF).
AWR Technology	Harrison Bros14, 146	R. Henson L
	Hart Electronics............................. 74	
	Henrys/Audio Electronics 29	
	Hilomast Ltd................................... 42	
C\&A Electronics 14	Hitech .. 73	
Cambridge Microprocessor Systems 14	ILP Electronics Ltd........................... 65	Sowter (EA)
Carston Electronics 60	Integrex Ltd 32	Special Product Distribution
Cavendish Automation 4	Interface Quatz Devices 56	Stewart of Reading
Chester Kemitron 36	Instrument Rentals (UK) Ltd 32	Surrey Electronics
Colomor Electronics Ltd 93	Irvine Business Systems...................... 35	
Conquin Software Inside back cover		Taylor Bros
Cricklewood Electronics	J. Bull (Electrical) Ltd	Technical Projects Ltd 89
Crotech Instruments 89	JDR Metals.................................... 4	Technomatic Ltd22/23
Cybernetic Application 42		Tektronix..................................... 62
Dataman Design 9		
Digitask Business Systems 94		Thacker \& Sons (AH)
Display Electronics90/91	Langrex Supplies/RST Valves................ 31	
	Maplin Electronic Supplies 93	Thorn EMI Data Technology 60 Thurlby Flectronics Ltd . 16
$\underset{\text { Electronic Brokers.................................. } 12 / 13 / 15}{\text { ECM }}$	Measurement Devices Ltd 92	
	Micro Busi	
Electronic Equipment Co. 46Electrovalue	Midwich 61	TK Electronics 36
EMS Mfq Ltd 86	Newrad Instrument Cases 36	
Essex Electronics	Number One Systems 10	Warwick Design Group
OVERSEAS ADVERTISEMENT AGENTS France and Belgium: Pierre Mussard. 18 - 20 Place de la Madelaine, Paris 75008	Japan: Mr Inatsuki, Trade Media - IBPA (Japan). B. 212 . Azabu Heights, 1.5.10 Roppongi, Minato-ku 106. Telephone: (03) 5850581 .	Jack Mantel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415 - Telephone (216) 6211919 Ray Rickles, Ray Rickles \& Co. P.O. Box 2028. Miami Beach, Florida 33140 - Telephone (305) 5327301.
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget. Telephone: 225008 - Telex: Budapest 22-4525 INTFOIRE	United States of America: Jay Feinnan, Business Press International Lid, 205 East 42nd Street, New York, NY 10017 Telephone (212) 867-2080 - Telex: 23827. Jack Farley Jnr. The Farley Coi. Suite 1584, 35 East Walker Drive, Chicago, lllonois 60601 - Telephone (312) 63074. Victor A. Jauch, Elmatex International, P.O. Box 34607 , Los Telex: 18-1059.	
		Ste 119. Houston, Texas - Telephone (713) 78386
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan. Telephone: 347051 - Telex: 37342 Kompass.		Consultants Lid., 915 Carlton Tower, 2 Carlton Street, Toronto 2
		-Also subscription agents.

[^8]INDEX TO ADVERTISERS

AEL Crystals

54
AKq Acoustics Ltd.................................... 92
Airlink Transformers 94
Electronics
Andelos System's
11

Armon Products Ltd. 89
Aspen Electronics...................................... . 42
Andio Electronics 104
Automation \& Control Technology 29
AWR Technology 74
Beckenham Peripherals............................ 74
Black Star Ltd ... 32
Bytron .. 14
C\&A Electronics 14
60
Carston Electronics
4
Caver Authro...... . 93
Colomor Electronics Ltd
.. Inside back cover
Cricklewood Electronics .85

Cybernetic Application 9
Dataman Design
.. 94
Display Electronics90/91
ECM (Europe) Electronics
$12 / 13 / 15$
Electronic Equipment Co. 4
Electrovalue ... 66
EMS Mfq Ltd... 86

OVERSEAS ADVERTISEMENT AGENTS

France and Belgium: Pierre Mussard. 18-20 Place de la

Budapest XIV Varosliget
Telephone: 225008 - Telex: Budapest 22-4525

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via
34051 - Telex: 37342 Kompass.

Back cover
Famell Istruments Inside Front Cover
Field Electric Lid 29
Gemini Micro Computer66/67
Greenwood Electronics30/68
Hameg Oscilloscopes............................... 10
Happy Memories.................................... 35
Harris Electronics.
4,86
Harrison Bros .29
Lt 42
.73
65

Integrex Ltd
uatz Devices 56
(UK)35
J. Bull (Electrical) Ltd 94
Keithley 54Maplin Electronic Supplies93
Micro Business 95Newrad Instrument Cases36
Number One Systems

[^9]
CIRCUIT BOARD DESIGN WTHOUT THE TEDUM

smARTWORK lets the design engineer create and revise printed-circuit-board artwork on the IBM PC or compatibles.

Forget tape. Forget ruling. Forget waiting for a technician, draftsman, or the CAD department to get to your project. smARTWORK software turns your IBM PC or compatible into a professional, high quality drafting tool. It gives you complete control over your circuit-board-design - from start to finish.

What makes smARTWORK so smart is that it understands electrical connections. Conductor spacing is always correct, lines do not become too narrow, and connecting lines do not intersect other conductars. smARTWORK can automatically find and draw the shortest route between two conductors. Or you can specify the route.

smARTWORK is the only lowcost printed-circuit-board artwork editor with all these important advantages:

- Complete interactive contral over placement and routing
- Quick correction and revision
- Production-quality $2 \times$ artwork from pen-and-ink plotter
- Prototype-quality $2 \times$ artwork from dot-matrix printer
- Easy to learn and operate, yet capable of sophisticated layouts
- Single-sided and doublesided printed-circuit boards up to 10×16 inches
- Multicolour or black and white display
- 32 user selectable colour combinations; coincident points may be displayed in contrasting colours
- Can use optional Microsaft Mouse as pointing device

System Requirements

- IBM PC, XT or compatible with 192K RAM, 2 disk drives and DOS 2.0
- IBM Colour/Graphics Adapter with RGB monitor or $\mathrm{B} \& \mathrm{~W}$ monitor
- Epson MX-80/MX-100 or FX-80/FX-100 dot-matrix printer
- Houston instruments DMP-41 pen-and-ink plotter (optional)
- Microsoft Mouse (optional)

The Smart Buy
At $£ 895$ (+VAT) smARTWORK is exceptional value, particularly when compared to conventional engineering workstation costs.

Write to the address below or use the enquiry card for more information on smARTWORK. Or call Richard Lambert on 0524381423 to arrange a FREE demonstration or to discuss your requirements.

Starter kit comprising of: SAM 2001 PC, monochrome monitor, FX-100 dot matrix printer, DOS2.0, smARTWORK, 1 Year on-site maintenance and much more £3995.00

Starter kit plus 10M hard disk drive
£4995.00
Colour monitor $£ 395.00$
Microsoft Mouse
$£ 149.00$
Pen and ink plotters
from
£1795.00
smARTWORK
£895.00
smARTWORK Demo cisk.....£10.00

10\% Discount on all Orders processed and paid for betore 28th February 1985.

Note: All prices exclude VAT and are subject to change without notice
Terms: Strictly CASH WITH ORDER.

Spot On!

Time has been our business since 1974. Precision has been our aim. We have experience in display, code generation, off air time, off air frequency and frequency standards. Single units to the largest system.

Our time is at your disposal.

European Electronic Systems Limited, Woodham Mortimer Place Maldon, Essex. CM9 6SW Telephone: 024541-5911. Telex: 995917

Time Code Reader.
MSF Rugby Simulator.

Tape Search System.
Radio Clock (5 mSec)

Radio Clock ($500 \mu \mathrm{Sec}$)

Made in England
CIRCLE 3 FOR FURTHER INFOHMATION

[^0]: we offer solutions and professional implementation.

[^1]: If you need more data send for a FREE LIT-PACK and an ORDER FORM or, better still, JUST BUY THE PRODUCT AND EXAMINE IT - you may return any item within 14 days for A FULL REFUND (we deduct only postal charges). Add $£ 2.50$ for carriage to orders below $£ 100$. ADD VAT TO ALL UK ORDERS. Terms: cheque with order. Dealers who mean business welcome. Goods normally in stock - TODAY DESPATCH IS POSSIBLE - please phone us DATAMAN DESIGNS, LOMBARD HOUSE, DORCHESTER, DORSET DT1 1RX. TELEX: 418442 . PHONE '0305) 68066

[^2]: *Electronic Engineering Association,
 Leicester House,
 8 Leicester Street
 London WC2H 7BN.

[^3]: * To help relate the theory as presented here with the general literature on the subject, the principal expressions for a sampl-ing-impulse weight of unity are given in the Appendix.

[^4]: The Company reserves the right to modify designs, specifications and change prices without notice

[^5]: This space is donated in the interests of high standards of advertising.

[^6]: REMITTANCE VALUE \qquad ENCLOSED

[^7]: NUMBER OFINSERTIONS

[^8]: Jack Mantel, The Farley Co., Suite 650, Ranna Building Cleveland, Ohio 4415 - Telephone (216) 6211919. Ray Rickies, Ray Rickles \& Co.. P.O. Box 2028, Miami Beach Tom P3310-Telephone (305) 5327301.
 Tin Paks, Ray Rickles \& Co., 316 Maple Drive N.E., Atlanta. Georgia 30305. Telephone (404) 2377432.
 the Loughin Business Piess international. 15055, memorial位. Housion, Texas - Telephone (73) 7838673

 Consultants Lid., 915 Carlton Tower, 2 Carlion Street, Toronto 2 Also subscription agents.Also subscription agents.

[^9]:

