

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $x 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules. Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

- EP8000 $8 \mathrm{k} \times 8$ Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - $£ 49$ - SA27128 Programming adaptor - $£ 69$ - SA25128 Programming adaptor - £69 - EP4000 4k x 8 Emulator Programmer - $£ 545+£ 12$ de-

FEATURES

- Software personality programming/emulation of all EPROMs up to $8 k \times 8$ bytes including 2704,2708 , 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.
- No personality cards/characterisers required.
- Use as stand alone programmer, slave programmer, or EPROM development system.
- Checks for misplaced and reversed insertion, and shorts on data lines.
- Memory mapped video output allows full use of powerful editing facilities.
- Built-in LED display for field use.
- Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
- Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery - BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Modute - £190 Prinz video monitor - £99 UV141 EPROM Eraser with timer - £78 GP100A 80 column printer - £225-GR1 Centronics interface - $£ 65$

Acorn's GPIB/BBC interface - above - is described by its originator on page 24. Photo by courtesy of Acorn Computers and Optimus Graphic Design.

NEXT MONTH

Differential temperature integrator developed at the O.U. provides weekly average temperature differences between each of three house zones and outside, as a measure of insulation quality.

Voltage multiplying converter provides 120 volt supply from a 9 volt battery.

Adaptable typewriter interface connects computer parallel output to a daisy wheel printer Pascal is used to show how a printing routine is constructed.

Improving colour television decoding continues with David Read's decoder circuit.

Current issue price 85p, back issues (if available) $£ 1.06$, at Retail and Trade Counter, Units $1 \& 2$. Bankside Industrial Centre, Hopton Street, London SE Available on microfilm; please contact editor
By post, current issue $£ 1.30$, back issues (if available) E1.40, order and payments to EEP General Sales Dept, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01-661 8668
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Telephones: Editorial 01-661 3614 Advertising 01-661 3130. See leade page Telex: 892084 BISPRS G. Subscription rates: 1 year $£ 15$ UK and Subscription rat
f19 outside UK
Etudent rates: 1 year Elo UK, Student rates: 1 year f10 UK, and £12.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone: 01.6613248.
Subscriptions: Oakfield House,
Perrymount Road, Haywards Heath Sussex RH16 3DH. Telephone: 0444 459188. Please notify a change o address.
USA: $\$ 49.40$ surface mail, $\$ 102.60$ air Business Press International (USA). Subscriptions Office, 205 E.42nd Street NY 10017
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue Suite 1217, New York, NY 10022. 2nd Suite 1217, New York, NY 10022. (C) Business Press International Ltd 1984 ISSN 00436062

Wirelesseworld

FEBRUARY 1984

FREEDOM - OR LICENCE?

22

COMMUNICATIONS COMMENTARY

IEEE488 INTERFACE FOR THE BBC MICROCOMPUTER

by A. M, May

MICROPROCESSOR PROGRAMMING SIMPLIFIED

by R. A. M. Lavib

EDISON'S ELECTRIC INDICATOR
by D. Thackeray

CIRCUIT IDEAS

MICROCOMPUTER ORGAN INTERFACE - FORTH IMPROVISATION by h Casson

CURRENT FOLLOWERS

by . N Lidycy

44

LEITERS TO THE EDITOR

ACIIVE FILTER CALCULATIONS
by . Limsley Houd

MORE ACTIVE FILTER CALCULATIONS

by K. Kraus

ELLIPTIC FLLTER DESIGN USING TI59
 by M Kraus

58
COMPENSATED ACTIVE SUMMER
新 A. M. Solumat

NEWS OF THE MONTH
II and Muyy Cmuse ralamity

Hectuser show

IMPROVING COLOUR TELEVISION DECODING - TUBE LIMITATIONS

by D. C. D. Reat

INDUCTANCE MEASUREMENT

by D. R8 Fownes
MORSE ON A ZX81
by C. Hexamm

NEW PRODUCTS

ESTABLISHED 30 YEARS. U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RECORD Mak: BSR GARRARD GARRARO GOLORING	DECKS	240	volt AC.	$f 2$
	Madel -	Drive	Cartridge	Price
	P170	Rim	Ceramic	
	6200	Rim	Ceramic	f24
	SP25	Rim	Magnetic	E36
	G102	Belt	Magnetic	E30
AUTOCHANGERS 240 VOLT				
BSR	Budget	Rim	Ceramic	£18
BSR	Deluxe	Rim	Ceramic	$\underline{50}$
BSR	Deluxe	Rim	Magnatic	f26

FAMOUS LOUDSPEAKERS

MAKE	MODEL	SIZE	watts	OHMS	PRICE	ST
G000MANS	HIFAX	71/2×41/4	100	4/8/16	E30	E
G000MANS	WOOFER	8 in	25	4/8	$\underline{\mathrm{E}} .50$	¢1
G00DMANS	HB WOOFER	8 in	60	8	¢12.50	11
WHARFEDALE	WOOFER	8 in	30	8	$\underline{59.50}$	0
CELESTION	DISCO/GROUP	10 in	50	$8 / 16$	f19	G7
G00DMANS	HPG/GROUP	12 in	120	8/15	£29.50	17
G000MANS	HPD/DISCO	12in	120	8/15	£29,50	12
G00DMANS	HP/BASS	15 in	250	8	f72	53
G00DMANS	HP0/BASS	18in	230	8	[84	[4

THE "INSIANT" BULK TAPE ERASER

 Suitable for cassettes and all sizes of tapereels. AC mains $200 / 250 \mathrm{~V}$. Hand held size with switch and lead (120 volt to order) Will also demagnetise small tools. Tape Head Oemagnetiser only $\mathfrak{f 5}$.

ALUMINIUM CHASSIS $21 / \mathrm{hin}$ deep $6 \times 4 \mathrm{f1.75} ; 8 \times 6 \quad \mathbf{G 7 2 0} 10 \times 7$ 2.75; $12 \times 8 \mathrm{£} 3.20 ; 14 \times 9 £ 3.60 ; 16 \times 6 \mathrm{f} \mathbf{3} ; 16 \times 10 £ 3.80 ; 12 \times 3 £ 2.20 ;$ $14 \times 3 \mathrm{fz} .50 ; 13 \mathrm{~kg} \underset{2}{ } .80$
ALUMINIUM PANELS 6×4 55p; $8 \times 690 p ; 14 \times 390 p ; 10 \times 7 \mathrm{f1.15}$ 12×8 £1.30; $12 \times 590 \mathrm{p} ; 16 \times 6 \mathrm{f} 1.30 ; 14 \times 9 \mathrm{f} 1.75 ; 12 \times 12 \mathrm{f} 1.80 ; 16 \times 10$ 2.10.

ALUMINIUM BOXES. $4 \times 4 \times 1 / 2 \mathrm{f} 1.20 .4 \times 21 / 2 \times 2 \mathrm{f} 1.20 .3 \times 2 \times 1 \mathrm{f} 1.20$ $6 \times 4 \times 2 \mathrm{f} 1.90 .7 \times 5 \times 3 £ 2.90 .8 \times 6 \times 3 \mathrm{f} 3.10 \times 7 \times 3 \mathrm{£} .60 .12 \times 5 \times 3 \mathrm{f} 3.60$ $2 \times 8 \times 3 £ 4.30$.
1.10. OP £1.30. Ede

MINI-MULTI TESTER
De luxe pocket size precision moving coil instrument Impedance + Capacity - 4000 o.p.v. Battery included 11 instant ranges measure: DC volts $5.25,250$, 500. AC volts $10,50,500,1000$. DC amps 0- $£ 7.50$ $250 \mu \mathrm{~A}, 0-250 \mathrm{~mA}$. Resistance 0 to 600 K ohms. Post 50 p
De Luxe Range Doubler MULTI-METER 50,000 o.p.v. $7 \times 5 \times 2$ in. 50 Micro Amp 43 Ranges, $1,000 \mathrm{~V}, \mathrm{AC}-\mathrm{DC}, 20 \mathrm{MEG} 10 \mathrm{amp} \mathrm{DC}$
f 19.50
PANEL METERS $50 \mu \mathrm{a}, 100 \mu \mathrm{a}, 500 \mu \mathrm{a}, 1 \mathrm{ma}, 5 \mathrm{ma}$, $50 \mathrm{ma}, 100 \mathrm{ma}, 500 \mathrm{ma}, 1 \mathrm{amp} .2$ amp, 25 volt, vu $21 / 4 \times 2 \times 11 / 4$. Stereo VU $31 / 4 \times 15 / 8 \times 1$ in. £5. p.p. 50 p
RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5 i n$.

$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 120 \mathrm{p}$.
$2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V}$ £1.40; 150 mFF 100 V £ 1.20 2250 mF 50 V 70 p . $3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 4700 \mathrm{mF} 40 \mathrm{~V} \mathrm{f} 1.63 \mathrm{~V}$ E1.80.
CAPACITORS WIRE END High Voltage
$001, .002, .003, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$
1 MF 400 V 14 p .600 V 15 p .1000 V 25 p.
22 MF 350 V 12 p .600 V 20 p .1000 V 30 p
${ }_{47 \mathrm{MF}} 150 \mathrm{~V} 10 \mathrm{p} .600 \mathrm{~V} 25 \mathrm{p}$. 1000 V 30 p . 1750 V 50 p
HIGH VOLTAGE ELECTROLYTICS
$2 / 500 \mathrm{~V} \quad 45 \mathrm{p} \quad 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} \quad 8+16 / 450 \mathrm{~V} \quad 75 \mathrm{p}$ $8 / 450 \mathrm{~V} \quad 45 \mathrm{p} \quad 100+100 / 275 \mathrm{~V}$ 50p $\quad 16+16 / 350 \mathrm{~V} \quad \mathbf{8 0 p}$
$\begin{array}{llllll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 50 \mathrm{p} & 32+32 / 350 \mathrm{~V} & 85 \mathrm{p}\end{array}$
$\begin{array}{llllll}32 / 500 \mathrm{~V} & 95 \mathrm{p} & 32+32+32 / 450 \mathrm{~V} & 95 \mathrm{p} & 32+32 / 500 \mathrm{~V} & \text { €2 } \\ 50 / 450 \mathrm{~V} & 95 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} & \mathbf{9 5 p} & 50+50 / 300 \mathrm{~V} & 50 \mathrm{p}\end{array}$

Books and Components Lists 32p stamps. Minimum postp 665 for SAME DAY DESPATCH. Cash prices include VAT

BAKER AMPLIFIERS BRITISH MADE PA150 Watt MICROPHONE VOCAL AMPURER £129 4 channel mixing, 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm, volume, treble, bass. Presence controls on each channel. Master 150 Watt MIXER AMPLIFIER 4 Inputs f99 Discotheque, Vocal, Public Address. Speaker outlets for 4,8 or 6 ohms. Four inputs, 20 mv 50K ohm. Individual volume controls "Four channel" mixing. Slave output. $16^{\prime \prime} \times 8^{\prime \prime} \times 51 / h^{\prime \prime}$. Wt 1416: Master volume control. British made. 12 months guarantee. 240 V A.C. 120 V to order. All transistor and solid state. Post $£ 2$. 100 Volt Line Model, 150 watt $£ 114$. MONO SLAVE, 150 watt $E 80$. Baker Stereo Slave $150+150$ watt 360 watt Mono $£ 125$. Post $£ 4$ BAKER MOBILE PA AMPLSFIER. All transistor, 60 watt RMS, 12 v DC \& $240 \mathrm{VAC}, 4$ inputs 50 k . Aux +2 mics +1 phono.
Output 4-8-16 ohm +100 volt line. $£ 89$ p.p. $£ 2$.
BAKER PORTABLE DISCO 150 watt. Twin console + amplifier +
mike and headphones + twin speakers $£ 300.300$ watt $£ 399$. Carr £30. Console + decks + pre-amp £95. Carr. £12.
PA CABINET SPEAKERS, Completo. 8 ohm 60 watt $17 \times 15 \times 9$ in. E27. Post f 4.4 or 8 or 16 ohm 75 watt $23 \times 15 \times 11 \mathrm{in}$. $\mathbf{5} 2.90$ watt $32 \times 15 \times 11$ in. $£ 71.150$ watt $\mathbf{£ 8 0}$. Carr. $\mathbf{f} 10$ Black vinyl covered

FAMOUS BAKER LOUDSPEAKERS

MADEL	INAHES	OHMS	WATTS	TYPE	PRICE	POS
MAJIOR	12	4-8-16	30	HI-FI	16	f2
SUPERB	12	8-16	30	HI-FI	126	¢2
AUDITORIUM	12	8-16	45	HI-FI	$\underline{24}$	$\underline{\square}$
AUOITORIUM	15	8-16	60	Wooter	$\ldots 37$	¢
GROUP 45	12	4-8-16	45	PA	E16	¢2
0 O 75	12	4-8-16	75	PA	520	$\underline{\text { f }}$
GROUP 100	12	8-16	100	PA	$\underline{726}$	E2
DISCO 100	12	8-16	100	Disco	f26	f\%
GROUP 100	15	8-16	100	PA	535	f2
OISCO 100	15	8-16	100	Disco	1535	¢2

SpEAKER COVERING MATERIALS. Samples Large S.A.E B.A.F. LOUOSPEAKER CABINET WAOOING 18 in wide 35p h MOTOROLA PIEZO ELECTRIC HORN TWEETER, 33 /3in. square $\mathfrak{f 5}$ 100 watts. No crossover required. 4-8-16 ohm, $73 / 4 \times 31,4 \mathrm{in}$, $£ 10$ HORN BOXES. complete 200 watt E 30 . 300 watt $\mathfrak{f 3 5}$. Size $16 \times 6 \times 6$ in, post 4.
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 53 100W $f 4$ 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$. 40 watt rating. £4. 60 watt $\mathrm{f6}$. 100 W f 8. LOUOSPEAKER BARGAINS. Please enquire, many others in stoc $4 \mathrm{ohm}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathfrak{£} .50 ; 61 / \mathrm{in}, 8 \times 5 \mathrm{in}, \mathfrak{£} 3$; $8 \mathrm{in}, £ 3.50 .6 / 2 \mathrm{in} 20 \mathrm{~W} .7 .50$.
 $8 \times 5 \mathrm{in}, \mathrm{E} 3 ; 8 \mathrm{in}, \mathrm{f} 4.50 ; 10 \mathrm{in}, \mathbf{E 5} ; 12 \mathrm{in}, \mathrm{f6} .8 \mathrm{in} 25 \mathrm{~W} \mathbf{6 6 . 5 0} 60 \mathrm{~W}$ f12.50 15 ohm, $21 / 4 i \mathrm{in}, 31 / \mathrm{in}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \mathfrak{Z 2} .50 .61 / \mathrm{in} 10 \mathrm{~W} \mathrm{E5}$. 8 in ff . $10 \mathrm{in} £ 7$.

INSIGHT VISION SYSTEMS LIMITED
Unit 1, Merebrook Hanley Road, Malvern, Wores WRI3 6NP, England Tel (0684) 310001 Telex 334480 INSIGT'G'

DESIGNERS AND MANUFACTURERS OF HIGH QUALITY CCTV CAMERAS \& SYSTEMS $0 \mathrm{~F}=\mathrm{y}$
 This self-contained black and white camera has been developed for use in situations where space is at a premium but the need for high quality is of paramount importance. Features include
 LOW POWER CONSUMPTION - AUTOMATIC VIDEO BLACK LEVEL
 - MOTORISED VIDICON RACKING

We believe this is the smallest corkECTION Contact Andrew Smith on (0684) 310001

WW - 044 FOR FURTHER DETAILS

APOLLO 68000 SYSTEM

Powerful 68000 runs at 10 MHz without wait states. 16 KB EPROM and 4 KB fast static RAM, expandable. 24 line programmable parallel I/O port. RS232 programmable serial port. Comprehensive monitor in 2764 Eproms. Optional plug-in Eprom programmer card. Cross Assemblers for Z 80 based microcomputers. Code can be developed, downline loaded to 68000, debugged, and then written into Eprom.

* 10 MHz 68000 CPU Board.
$\mathrm{£} 295+$ VAT
* EPROM PROGRAMMER card £95+VAT
* CROSS ASSEMBLER for 280 hosts from.
$£ 55+$ VAT
APOLLO SOFTWARE. TeI: (0635) 201150
The Alley, Cold Ash, Newbury, Berkshire RG16 9NN

TELESCOPIC MASTS

Pnexmalically operated telescopic masts.
25 Stardard models, rang ing from 5 metres to 30 me eres.

ANALYSERS
Howlett Packard
334 A Distortion Analyser 3581 A Wave Analyser 3582a Duat-Chernel Spectrum $0.02 \mathrm{~Hz}-25.5 \mathrm{KHz}$........
5004 Signature Analyser Marconi
TF2330A Wave Analyser Tektronix
Tektronix
AA501 opt 01 . Dstortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ AA501 opt 01 . $\operatorname{stortion~} 10$
to Less than 0.0025\%
DAS 9103 opt 0102 . Logic DF1000.00 DF1 Display Formatter For 7D01. E850.00 308 Portable E Channel 20 MHz Data 4 Analyser $01,0 \mathrm{~B}$] Spectrum Analyser 0.00 $50 \mathrm{KHz}-21 \mathrm{GHz} \ldots . . .{ }^{13000.00}$ 492 P [opt 01. 2. 3] Programmable Version 7 L 12 Spectrum Analyser $100 \mathrm{KHz-1.8GHz}$ フL13 Spectrum Analyser $1 \mathrm{KHz}-1.8 \mathrm{GHz}$ ᄀL18 Spectrum Analyser $1.5 \mathrm{GHz} \mathrm{E} \mathbf{6 0 \mathrm { GHz }}$ TR503 Tracking Generator for $492 / 496$ TR503 Tracking Generator [for 492/496 $5 L 4 \mathrm{~N}$ Spectrum Analyser $20 \mathrm{Hz-100KHz} \mathbf{8 2 3 5 0 . 0 0}$ 700116 Channed 100MHz Sample Rate 7D02/01 Logic A valyser ©3950.00

OSEILLOSCOPES

Howlett Packard
1332 A High Gualizy CRT Display $9.6 \times 11.9 \mathrm{~cm}$. 1744A 100MHz Variable Persist 1500.00 Storage. 1809A 100 MHz 4 Channel Plug in c2000.00 1821A Timebase Jug in . ©1000.00 Phillips PM3232 Dual Beam 10 MHz ©495.00
PM3244 50MHz 4 Tektronix 305 Portable battery scope/DMM DT $5 \mathrm{MHz} \quad$............. 975.00 335 Dual Trace 35 MHz Small portable with 200 C Trolley for 400 Series \& 120.00 465100 MHz Portable $E 1500.00$ 466100 MHz Storage 3750.00 7313 100MHz Storage Mainfrarne $\mathbf{C 2 2 5 . 0 0}$ 544150 MHz Vanable Persistance Storage Mainframe \quad £1600.00 7603 100MHz Mainframe \quad £1950.00 7704 A Scope DC-200MHz Mainframe. 7613 Storage Scope Mainframe
$\square \mathrm{C}-100 \mathrm{MHz}$
£3250.00 7844 Dual Beam 400 MHz Maintrame
$£ 7750.00$ 7854 Waveform Processing Scope $\begin{array}{ll}\text { DC-400MHz } \\ 7904 \text { opt } 02 & \text { £9 } 500 \mathrm{MHz} \\ \text { £5350.00 }\end{array}$

SIGNAL SOURCES

EH Labs

132 A Pulse Gen
Hewlett Packard 204C Oscillator 14A Oulse Ger 117204 Pulse M Jdulato 124 Sig Gen
$£ 1200.00$ 81800.00 E8550.00 E550.00 c850.00 E1450.00 2450.00
$\mathbf{C 3 9 5 0 . 0 0}$

80044 Pulse Gen 8011A-01 Pulse Gen 80138 Pulse Gen 8640A Sig Gen Marcani
F2008 Sig Gen
TF2015 Sig Gen
TF2015/1 SigGen.
TF2169 Puise Modulator
TF2120 Waveform Gen
Wavatek

TEKTRONIX PLUG INS Wo stock a complete range of Plug ins

 for use with 7000 and 5000 series Mainframee.
TEKTRONIX TM500

SERIES

We stock sary wide range of thase versatile modular equipments

MISCELLANEOUS

Avo
Model 8 Multimeters E80.00 VCM 163 Value Characteristic Meter. E485.00
7 Electricians Multimeter $\mathbf{6 8 5 . 0 0}$

Bruel E Kjaer

613 Sound Level Meter. $\quad \$ 850.00$ 613 Filter
Datalabs
DL901 Transient Reconder DL905 Transient Recorder 095.00

Fluke
5154 Portable Calibrator. \quad ¢1750.00 845 AB Null Detector . 318 Diff V'Meter. 2005A Precision Power Amplifier. 8921A DMM c695.00
Hewlett Packard.
467A Amplifier
415 E VSWA Meter
3556A Psophometer. 5SA Trans Test Set Marconi
F1313A LCR Eridge. TF2603 RF Millivoltmeter. F2604 Electronic Voltmeter Racal
9514 Counter/Timer IEEE Toktronix
06 Square Wave Generator 1 ns ricetime $10 \mathrm{~Hz}-1 \mathrm{MHz}$ without accessories. §175.00 91 Constant Amplitude Generator 550.00 832 Data Comms Tester . 8925.00 833 Data Comms. Tester £1350.00 2701 Step Attenuator $50 \Omega 079 \mathrm{~dB}$ in 1 dB
steps. DC to $2 \mathrm{GHz} \ldots \ldots . . \mathbf{E 2 9 5 . 0 0}$

SPECIAL OFFER
 TEKTRONIX. A complete
 Measurement System. 501 TM506 C/W FG501, SC501 PS501-1, YMAR WARRANTY. DC503. 1 YEARWOATHE LOT

Please note: Prices shown do not include VAT or carriage.
Electronic Brokers Ltd., 61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694

Electronic Brokers

No other cleaner has all these advantages：－
1．Oniv 100% pure natural diamond grains are utilsed．
2．Blades are treated with hard chrome to reinforce the setting of the diamond grains． diamonded surface by residues fesulting trom use

3．All diamonded blades are rectrifed to ensure an absolutely smooth surface by ellminating diamond grains which may rise above the surface This eliminates all excessive scratching during use
4．All diamond grains are rigidly calibrated to ensure a pertectly uniform grain size of either 200.300 or 400

5．The chrome gives a very weak co efficient offtiction and the rigality of the nylon handie as highly delicate relays．
－Grain size 200 thickness $55 / 100 \mathrm{~mm}$ ．．both faces diamonded For quick cleaning of industrial relays and switching equipment．etc ，both faces diamonded．For smaller equipments．Tke teleohone relays computer relays．etc
－Grain sıze 400 thickness $25 / 100 \mathrm{~mm}$ ．．one face diamonded．For sensitive relays and tinn contacts two close contacts facing each other can be individually cleaned．because only on

Sole Distributors for the United Kingdom SPECIAL PRODUCTS（DISTRIBUTORS）LTD 81 Piccadilly，London W1V OHL．Phone：01－629 9556 As aupplied to the M．O．D．，U．K．A．EA．，C．E．G．B．Britizh Rail and other Public Aurthorities： also major induatriel and electronic usere throughout the United Kingdom．

UK and Export Agents：OIACROM， 17 Hancock Nunn Houre，London，NW3
WW－ 033 FOR FURTHER DETAILS

WW－ 028 FOR FURTHER DETAILS

DEGSAL
a selection from our huge stocks．All items reconditioned unless otherwise stated．

WINTER＇83／＇84 CATALOGUE NOW OUT
Send for your Free copy

DISK DRIVES

RKO7ED 28M1日 NEW．．．．．．．E2，500 RKO7PD 28MB NEW．．．．．． 2,500 RLO1A 5MB．
RMO3AD 67VB NEW RM80 124NB RPO6AB 176MB

UNIBUS OPTION

AR11 A／D Conv． DD11A／B Backplanes DD11CK Backplane DL11E Seria IV DMC11AL I／P Link DMC11AR Network Link DMC11DA EIA Link
DMC11MDVModem Lin DMC11MD V／Moden
DMF32 Multiplexor DR11C Gen．Pur：I／O DR11K Digital I／O DR11WDMAI／F DU11DA Synch．I／F DZ11D 20mA MUX FP1 1C Floating Point FP1 1E Fioating Point KE11B Ex．A－ith KE44A CIS \qquad KG11A CRC Option KJ11A Stack：Limit E995 ． 6,250 ．69，500 27，500

£650 $£ 250$ £125 £275 £395 C975 $£ 895$ £575 | 2575 |
| :--- |
| | 875 £2，750 ©350 c425 6850 $\Sigma 195$ 5995 £2，750 £1，800 ¢595 $£ 995$ $\$ 350$ 575

KK 11 A Cache Memory KMC11A Aux．Proc． KT11D Memory Mgt． KW11L RT Clock
KW11P Prog．Cloc 1，500 $£ 695$ 5750 5425 $£ 75$ KW11P Prog．Clock c． 345 XY11 Plotter I／F $£ 275$

PDP11 SYSTEMS

 Just a few from the many configurations available PDP11／34A 256KB $2 \times$ RKO7 Disk Drives H960 Cabinet VT100 Console £11，500PDP11／40 32KW Core $2 \times$ RKO5 Disk Drives H960 Cabinet LA36 Console £4，750 11／23AB Processor 12 BKB MOS Memory DLV11J 4 －line interface $2 \times$ RLO1 Disk Drives VT100 Console Cabinet 57500

PRINTAREANB VBUS

ANDERSON JACOBSON

AJ832 30cps Daisy Wheel Printer with Keyboard，Stand and RS232 Interface
AJ860 RO Desktop Matrix Printer $120 \mathrm{cps}, \mathrm{RS} 232$ Interface ．． $\mathbf{5} 59$

DATA PRODUCTS

B300 Band Printer
M200 Matrix Printer with
Stand
22，750
E1，875 case，NEW ．．．．．．．．．．．．．．．．．．．．E2，500
24701200 Lpm Drum Printe NEW
£5，500

DEC

LA34 30 cps JECwriter IV from
A35 30 cps 70 DECwriter with stand， $20 \mathrm{~mA} \mathrm{I} / \mathrm{F}$
． 8250 EIA I／F
£275
LA36 30 cps ＜SR OECwriter II
with stand，20mA I／F
$£ 295$
EIA I／F
£325
LA180PD $18 J \mathrm{cps}$ Matrix Printer with stand，parallel I／F ．．．．．．．．．E495

DIABLO

1345A RD Daisy Wheel Printer
with stand，parallel $1 / F \ldots \ldots \ldots 1,100$ 1355HS RO Daisy Wheel Printer， parallel I／F
£850

1620 KSR Daisy Wheel Printer
EIA I／F ．．．．．．．．．．．．．．．．．．．．．．．．． 795
1640 KSR Daisy Wheel Print 1650 Daisy Wheel Printer 1650 Daisy Wheel Printer EIA I／F．

1，350
£1，275

HAZELTINE

1410 VDU Terminal
e295 1420 VDU Terminal 0295 1500 VDU Terminal 25 1510 VOU Terminal E325 8020E Executive 80 VDU 6395
.6675 ESPRIT VDU Termina

E395

OUME

S5／SS Daisy Wheel Terminal⿷625

RUTISHAUSEN
Sheet feeder for Diablo Daisy
Wheel Printer
£375

TEXAS

745 Portable 30 cps terminal with integral acoustic coupler ．．．．．．£850

Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694

Electron：c Brokers
胞

RADIOCODE CLOCKS
 SOLVE PROBLEMS

ATOMIC TIME FREOUENCY AND SYNCHRONISATION EQUPPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l. f. transmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range.
The new RCC 8000PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000 S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min . Slave distribution amplifier - maximum flexibility for the largest master/słave installations requiring dual standard operation, multiple circuits and complete master/slave backup.

NEW OPTIONS

A continuousły expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include.

- IRIG B precision serial o/p

RS232/V24 1 mS resolution

- General purpose parallel o/p FSK record/replay system Keypad entry of alarm times
- Time code generators - Intelligent slave systems - Standard frequency outputs - Stopclock operation - Calibrated systems for Calibrated systems for
increased accuracy

Radiocode Clocks Ltd** Unit 19, Parkeng Cornwall. Tel: Falmouth (0326) 76007 (*A Circuit Services Associate Co.)

E.M.S. POWER SYSTEMS

Solve all your Power Problems by contacting E.M.S.
E.M.S. specialise in systems to eliminate your power problems.
Products range from 35VA switched square wave Power Packs to 1KVA fully uninterruptible sine wave systems.
E.M.S. also manufacture chargers which range up to 60 amps .

For further details please contact:

E.M.S. Manufacturing Limited Chairborough Road
High Wycombe
Bucks
Tel: (0494) 448484

Electronic Brokers

Cerser finy Easicesybtem choice Esex Tiny Basic Computer is an ideal ruptspr. Its crystal controlled process control o critical accurate tim ensures relitents. while ing and fast response entered and tele operation Pratchdog timer and then be tested from an Programs can ber Instant ROM COpied into EPR RS232 terminat develooment modules may be Alternativel.
E185

C Escesemyfiarrimer

© sscere 0pto-lsolatan Connects to the Essex Tiny BASIC System bus
to provide an additional 123 ptoisial
and 12 . and 12 opto-isolated out 12 3pto-isolated inpus voltage $=1500$ external equirment card for safe
 \section*{
 \section*{

 A four slot backplane with printer and termina

 A four slot backplane with printer and termina Annectors to accect these cards Annectors to accect these cards

 Ale:

 Ale:

 A powertul software utilities package that pro

 A powertul software utilities package that pro vides the user with an enhanced editor and al vides the user with an enhanced editor and al assembly language assembly language

 * Text Editor * Assembler

 * Text Editor * Assembler

 * Disassembler * Debug Monitor E ES

 * Disassembler * Debug Monitor E ES Supplied as a 4 K EFROM} Supplied as a 4 K EFROM}

Test Equipment DSTRIBUTORS

For detailed our complions of range send for new catalogue.'

- Philips PM 2517X Handheld DMM E172 Multi-function, 4 diglt autoranging with manual override True RMS to 10Amp. Battery operation. Uptional accessories extend measurement capabilities

Philips PM 3207 15MHz Oscilloscope £325 Tough light-weight portable for field service triggering, X - Y operation, add and invert

4 Philips PM

5107 Function Generator £295 Designed for audio and educational applications. Low distortion LF generator 10 Hz to 100 kHz , sine and square waveforms. TLL output

Philips PM5503 Pattern Generator £139 Small, light-weight for TV servicing, Five different test patterns for colour and monochrome Tone for audio checking. Video

- Philips PM 6667/01 Frequency Counter £290 High resolution digit computing counter from 10 Hz to 120 MHz . Auto ranging on all waveforms. PM 6668/01 [$£ 425$] performs to 1 GHz .

- Hameg HM 103 10MHz Oscilloscope E158 Single trace, suitable for field servic or home constructor. Two year warranty applies to this and all Hameg instruments

Hameg HM 203-4 20MH Oscilloscope £264 Dual trace for general purpose applications trigger ng add/invert and component tester

$\sqrt{\text { rent }}$

- Hameg HM 204

20MHz Oscilloscope £365 High
performance instrument with sweep delay. Versatile triggering to 50 MHz , variable hold off controi, Z modulation and "tternal ilfumnated graticule.

空

I.C.E. Microtest $\mathbf{8 0}$ Multimeter $\mathbf{£ 1 9}$ Compact meter in robust case
40 rarges of measurement with high sensit'sity and accuracy. Large range of inexpensive accessonies.

ADD 15\% VAT TO ALL PRICES Carriage and Packing extra Electronic Brokers Ltd., 61165 Kings Cross Road, LondonWC1X 9LN.Tel:01-8331166. Telex 298694 Electronic Brokers 1

PRACTICALLY ALL THE WIRELESS PARTS YOU'LL EVER NEED, GATHERED TOGETHER IN ONE CATALOGUE...

Coils, crystals, filters

TOKO coils, filters chokes. UNI crystals, filters, NTK and Murata ceramic filters. Probably the broadest stock ranges of these types of component in the world, and a full service from AMBIT INDUSTRIAL MARKETING to support the OEM with custom requirements.

Semiconductors for radio communications

ICs, Varicaps, FETS, MOSFETS, RF Power for HF, VHF, UHF. A broad selection that will meet the majority of requirements in receiver and transmitter designs

High Performance Coax Relays, switches etc. PC and connector relays engineered to the highest standards, plus a broad range of electro-mechanical support including push, toggle, and keyboard switches, rotary switches, plugs sockets etc.

New Black Star Frequency counters, Weller and Antex soldering tools, plus a wide selection of all types of equipment and tools for home and work.
(3) -an- Weller :annoinco

Communications Technology

for the enthusiast

(and professional)
200 North Service Road, Brentwood, Essex CM14 4SG
Tel: Consumer (0277) 230909. Industrial (0277) 231616
Telex: 995194 AMBIT G.
Data: (0277) 232628 REWTEL" (300 baud duplex)

* REGIONAL SALES COUNTERS

Solent Component Supplies, 53 Burffields Road,
Portsmouth
Broxlea, Park Lane, Broxbourne, Herts

SATELLITE RECEIVING EQUIPMENT

1.9M, 2.5M and 5M Harrison Dishes. Sat-Tec R5000 4 GHz Receivers. Avcom COM-2B 4GHz Receivers. California Amplifier 4GHz LNAs. Chaparral Horns. Harrison Feed Horns.
Demonstrations by appointment only.
For further details contact: Harrison Electronics, 22 Milton Road, Westclitf-on-Sea, Essex SS0 7JX. Telephone: Southend (0702) 332338.

WW - 018 FOR FURTHER DETAILS

Get started in Fibre Optics

.. . with our new fibre optic experimental kit.

Features include:

- 0-10Mbit/s (NRZ) guaranteed to 15 m with Polymer Cable. (Can be extended by using a glass fibre).
■ TTL Compatible.
- No tools required to terminate cable
- Fully tested modules.
- Complete with transmitter, receiver connectors and 5 m of Polymer Cable.
- Also a full range of components for glass systems available.

Electroustic Ltd.

Hayward House, Northchapel, West Sussex, GU28 9 Hi Tel: (042 878) 611/2. Telex: 858966

MIDWICH

Microcutters. $£ 3.21$ Light weight hardened and precision ground. Flush cutting. Screw joint, return spring, cushion-grip handles. Safety wire-retaining clip.

Set of $3 £ 3.63$
Scraper|Knife, Hook|Probe, aids to soidering/desoldering| assembly. In plastic wailet.

Solder. $\mathbf{£ 0 . 9 0}$
Top grade resin flux cored 60/40 wire, 18 swg, in handy plastic dispenser. Approximately 3 metres (26gm).

g. in handy plastic

ADAMIN Electric Stylus. $\mathbf{£ 1 5 . 0 4}$
Writes like a ballpoint in Gold, Silver, Copper or 6 colours, on card, plastics, leather etc. Personalise wallets, bags, albums, books, electronic equipment, Operates at 4.5 v from its own plug/ varm Prices finclude pfop and vat Send order winced with coloured foils.
Prices include p ¢ p and VAT. Send order with ChequelPO. Ring for Ačeessivisa sales, or ask for orikt orms LIEAT SOLDERING DEVELOPMENTS LTD. DEPT. W
97-99 GLOUESSTER ROAD, CROYOON CRO 2DN. 016810574

FORTH COMPUTER

Build

the TDS900

into products.
Programme it with a VDU
and your forecasts become fact.

Software costs are significant in all industnal applications of microprocessors. They cannot be amortised over the large quantities associated with personal computers and electronic games. This C-MOS embedded computer card aims at resolving this problem by including FORTH high level language programming and developmental facilities. The software can be written quickly and made to work correctly at lowest possible expense Using a high level programming language rather than assembler gives a fast reaction time to market opportunities. Production products use ges a last reand as an in the protorpes

No microprocessor developent system
No microprocessor development system is needed since the card contains a screen editor working with simple visual display units (VDUs) lso has the compiler for the FORTH source code Debugging is intierent in the FORTH language and once the code is working. this can be output to a PROM programmer

Use of C.MOS throughout has brought the power consumption down to 28 mA , making the TDS 900 especially suitable for portable and battery-driven applications

WW - 048 FOR FURTHER DETAILS

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industrial CV136 - CV138 - CV329-CV345-CV2209 - PL508 - PL509 - PL519 - PCL805

PY500A
Phone/write to
PYPE HAYES RADIO LTD.
606 Kingsbury Road
Birmingham B24 9PJ
021-373 4942

An in-depth series in understanding todays world of electronics.

FromTexasInstruments.

The Understanding Electrontes Sertes was specially developed and witten to give vou an in-degth knowledge of this informany to the compreniensicc, ye cass munderstand As informative for the electronics buff as for someone who's simply interested in whar's going on today
Together the library will give you the must complete range of tutes avalable. Take advantage of our special otier and choose
the hook, or hooks you want from the tiles helow. You"ll find whole new worlds of advanced technology untolding before you.
L. Understanding Electronic Control of Energy Systems. Ist edition. Ref. LCB 6642 . Covers motor, generator, power distribution,
heanne air condtroning. nremail combuston engine solar and nuclear heatne, air condtroning, intermad combuston engine, solar and nuclear systems. Softhond 272 pages it. 50
2. Understanding Electronic Security Systems.
Ise editun. Ref. LCB 720 L A complete gude coveriny the hasics of hard
wired, photosensintive, nffrared, ultrasonic and microwavesystens and their use in difterent applicanons. Softbound 128 pages. $£ 2.95$. 3. Understanding Solid State Electronics
 state devices. Softhound 282 puges. $£ 4.50$. 4. Understanding Digital Electronics. Ir edinun. Ref. LCB 3 hl Dexcrites digiral elecronics in easy-to-follow srages. It covers the
nainn fannlies of dipatal integrated circuits and data processing systems. Soffbound 260 puges. 8450 .
5. Understanding Microprocessors. Ist edirion. Ref. LCB 4023. An indepth look ar the maagic of the solid stare chep, Whar they are, , what they do. Applicanons of 8 -bin and 16 -bit mancrop
6. Understanding Computer Science, |ve eumen Ref. LCB 547 L Thus book relis you in everyday English how roday's compurer has been developed, what goes on unside 4 , and how you tell it what to do.
Softhound 278 pulpes $£ 450$
7. Understanding Communications Systems. hituition Ref. I.CB + izL An 8. Understanding Calculator Maths. Istedrion Ref. LCB 332 L Briws torether the basic ntornanion-tormulae, tact, and marhenancal tuols- you need to "untock" the teal power of the hand-held calculatur.
9. Understanding Optronics. Lot ediume. Ref. LCB 5472. Optronuss st the application of light and electronics to pertorm a wide Opronucs s the application of light and electronises to pertorm a wide
range of usefil rasks From car headlights to missile guidance systems.
10. Understanding Automotive Electronics.
t edinum Ref. LCB 577 L Leam how electronics is bengy applied to autornobles. How whe basic meechancail, electricul and decer romnic tunctions and the new. mucroprocessors and micfocomputers are bengy antlied in
innovative ways tor vehisle drive train sontrol, motion control and movan, was, lor veline dive train som 58 , motion control and 11. Understanding Telephone Electronics,
lot eulrion. Ref. LCB 714L. The powethul, paxsinve thrust of electronics is makng the relephone an even more important commuritation limk, Conventroral telerhone fundamentals, analog and digital tietronics, pnncuples, newer dygital rechniques and hardiare implementarion are covered in this book Softhound 288 pages. $£ 4.50$
12. Understanding Electronic Control of Automation Systems. Ist edition. Ref. LCB bra4l. This hook is about automation-

How to order
Fill in the coup in helowv orit comeone else has alr
List reference numbers and quantities required. 2. Calkulate rotal order value. Adu $£ 1.50$ tor postage and packing.
3. Send the list, plus your cheuue 3. Send the list, plus your cheque payahle to Tex PO Bux 50 . Market Hatborc
Allow 30 days for delivery

Texas
InsTRUMENTS

GOULD OSCILIOSCOPESSE AHICHERSIANDARD

The Gould Os300 Dual Trace 20MHz Scope
 A tough, professional instrument you cal trust - at a price you can afford! * Max. sensitivity $2 \mathrm{mV} / \mathrm{cm}$. * Stepped and continuously variable attenuator and timebase controls. \star D.C.coupled triggering

 and "active" T.V. sync separator. * 'Add' and 'Invert' for differential measurements. $\star X-Y$ facilityBuilt to do more - safely, reliably and for longer. Ask for our 8 page data sheet for full details and applications information.

Electronics
Design \& Test Systems Division
Gould instruments Limited
Roebuck Road. Hainault. IItord. Essex IG6 3UE Telephone 01-500 1000 Telex 263785

01-452 1500 Tbehnovatic Lid $01-4506597$

BBC Micro Computer System

 OFFICIAL DEALERPlease phone for availability

Software from ACORNSOFT/ PROGRAM POWER/GEMINI in stock

BBC Model B £348
B + Econet £389
B + DFS $£ 409$
B + DFS + Econet $£ 450$
Carr £7
Model A to B Upgrade
Kit $£ 75$
Installation £15
LANGUAGE ROMs
BCPL Rom + Disc + Manual $£ 87$
PASCAL-T Rom £44
WORD PROCESSOR ROMs
VIEW 16k Rom $\mathrm{E}^{2} 2$
WORDWISE 8k Rom $£ 32$
Carr £1.50

FLOPPY DISC INTERFACE £95 \& £15 installation

BBC COMPATIBLE DISC DRIVES

All drives are supplied with necessary cables
Single Drive without PSU: 100k £150; 200k £215; 400k $\mathbf{f} 225$
Single Drive without PSU: $400 \mathrm{k} £ \mathbf{2 0}$
Dual Drive with PSU: $2 \times 100 \mathrm{k} £ 335$; $2 \times 200 \mathrm{k} £ 440$ *: $2 \times 400 \mathrm{k}$ £490
*These drives are switchable 40/80 drives
$40 / 80$ Switch Module for $1 \times 400 \mathrm{k}$ and $2 \times 400 \mathrm{k}$ Drive $£ 32$ DISKETTES
40 track SS $£ 15$; 80 track SSDD $£ 24$
80 track DSDD £26
BBC FLOPPICLENE DRIVE HEAD
Cleaning kit with 50 disposable discs $£ 14.50$

TORCH Z-80 PACK

Your B.B.C. computer can be converted into a business machine at a cos slightly higher than an 800k disc drive. The Torch pack with twin disc rive and a 280A processor card greatly enthances the data storing and processing capability of the computer. (NOTE: In BBC mode the disc pack functions as a normal BBC drive.). Z80A card comes with 64 k of AM and a CP/M compatible operang syst a Systems/Demo disc, a CORFFECT sotware package and COMANEX, a business managemen ame. The PERFECT software package comprises of a DATABASE game. The PERFECT Software package comprises of a $£ 1,000$. The complete package for only $£ 730$. Installation $£ 20$. Carr. $£ 8$.

CASSETTE RECORDER

SANYO DR101 Data Recorder $\mathbf{£ 3 4 + £ 2 . 5 0 \text { car }}$ riage
BBC Tape Recorder $£ 28.50+\mathbf{£ 2} 50$ carriage Cassette Lead $£ 3+£ 1$ carriage HOBBIT Floppy Tale $£ 135+£ 2.50$ carriage HOBBIT Zero Memory Option $£ 25+\mathbf{£} 1$ riage
Computer Grade C12 cassette $\mathbf{5 0}$ p each. $£ 4.50$ for $10 £ 1$ carriage

MONITORS

MICROVITIC $143114^{\prime \prime}$ RGB Std Res $\mathbf{E 2 1 5}$ MICROVITEC 1451 14'' RGB Med Res $£ 320$ MICROVITEC 1441 14" RGB Hi Res $£ 440$ MICROVITEC $20310^{\prime \prime}$ RGB Std Res $£ 28$ KAGA VISION 12"' RGB Std Res $£ 230$
KAGA VISION III $12^{\prime \prime}$ RGB Hi Res $£ 385$ KAGA 12' GREEN Hi Res $£ 106$ SANYO DM8112CX $12^{\prime \prime}$ Green Hi Res $£ 99$ All leads included. Carriage $£ 7$

PRINTERS \& PLOTTERS

EPSON FX80 £350 EPSON RX80 FT £270 EPSON FX-100 £555 NECPC80 23BE.N $\mathbf{E} 310$ SEIKOSHA GP 100A £170 SEIKOSHA GP 250X $£ 199$ SEIKOSHA GP 700A Colour $£ 375$ JUKI 6100 Daisy Wheel $£ 365$ MCP 40 Col Printer/Plotter $£ 129$ GRAPHICS Plotter $£ 270$ Carriage $£ 7$

BBC EPROM PROGRAMMER

A fully self-contained Eprom Programmer with its own power supply, able to program 2516, 2716/32/32A/64/128 single rail Eproms. \star Personality selection is simplified by a single rotary switch * Programming voltage selector switch is provided with a safe position. * Warning indicator to show programming in progress. addresses on the EPROM adaresses on the Epr softw

* Full editor with ASCII disassemble

Programmer complete with cables, soffware and operating instructions $£ 79.50+£ 2 \mathrm{p} .8 \mathrm{p}$

PRODUCTION PROGRAMMER: P8000
P8000 provides reliable gang programming of up to 8 EPROMS simultaneously with device sizes up to $16 \mathrm{k} \times 8$ bytes. Devices supported range from 2704 to 27128 in single and three rail versions. Simple menu driven operation ensures easy eprom selection and reliable programming in minimum programming times. $\mathbf{f} 695+\mathbf{£} 6$ carriage.

ACCESSORIES

Parallel Printer Lead $£ 10+\mathbf{£ 1}$ carriage Serial Printer Lead $£ 8+£ 1$ carriage Epson Serial Interface $\mathbf{2 K} \mathbf{£ 6 0}+\mathbf{f 1}$ carriage NEC Serial Interface $£ 42+£ 1.50$ carriage Epson Paper Roll Holder $£ 17+\mathbf{£ 1 . 5 0}$ car riage FX80 Tractor Attachment $\mathbf{£ 3 7}+\mathbf{£ 1 . 5 0}$ carriage Paper Fanfold 2000 sheets $\mathbf{£ 1 3 . 5 0}+\mathbf{£ 2 . 5 0}$ carriage

TIME-WARP'

REAL-TIME-CLOCK/CALENDAR
A low cost unit that opens up the total range of Real-Time applications. With its full battery backup, possibilities include an Electronic Diary, automatic scientific applications, recreational use in games, etc - its uses are endless and are simply limited by one's imagination. Simply plugs into the user port - no specialist installation required - No ROMS. Supplied with extensive applications solftware. £29.

BOOKS (no VAT: p\&p flbook)

Assembly Lang Prog. for BBC f8.95 Assembly Lang programming on BBC Micro by Ferguson and Shaw Basic Prog. for BBC. BBC An Expert Guide Easy Programming on BBC Further Programming on BBC introducing BBC Micro rogramming the BBC 30 Hour Basic 35 Educational Programs BBC Sound \& Graphics Creating Adventure Programs Discovering Machine Code Structured Programming The Friendly Computer Book BBC Beyond Basic BBC

EPROM ERASERS

UV1T Eraser with a built-in timer and mains indicator. Built-in safety interlock to avoid accidental exposure to the harmiul UV rays. It can handle up to 5 eproms at a time with an average erasing time of about 20 mins. $\mathbf{f 5 9}+\mathbf{f 2} \mathbf{~ p \& p}$.
UV1 as above but without the timer $\mathbf{£ 4 7}+$ f2 p \& p .
UV140 up to 14 Eproms $\mathbf{£ 6 1}$
UV141 as above but with timer $£ 79$

- SPECIAL OFFER
$2532 \quad \mathbf{£ 3 . 5 0} \quad 27128-3 \quad \mathbf{£ 1 5}$
$2732 \quad \mathbf{£ 3 . 5 0} \quad 4164-2 \quad £ 4.50$

Large number of other titles stocked

RH LIGHTPEN

The Acorn-approved superior design, with a programmable 'push tip' switch, status indicator LED and an interface box. Supplied complete with manual, full software and basic demo programs. Colour graphics programs will be avalable separately. £ 39.50 .

SMARTMOUTH

The 'infinite vocabulary' self-contained speech synthesiser unit. Uses only 5-10 bytes per word - no ROMs required - simply plugs into the user port. (Has Aux. Audio output skt.). Supplied with Demo/Development programs and simple software instructions, $£ \mathbf{~} \mathbf{3 7}+\mathbf{£} \mathbf{2 p}$. \& p.

NEW COMPREHENSIVE CATALOGUE AVAIL-

ABLE - PLEASE SEND FOR PRICE LIST

MALE
Solder
Sold
Ang

 IDC 15 -way plug 34 p . Socket 400 p
IDC 25 -way plug 385p. Sockel 450 p TEXTOOL ZIF $\begin{array}{ll}\text { SOCKETS } & 24 \text {-pin } £ 5.75 \\ 28 \text {-pin } £ 8.00 & 40 \text {-pin } £ 9.75\end{array}$

DIL SWITCHES 4.way 70 p

CONNECTOR SYSTEMS

JUMPER LEADS

 1 end
2 ends

24" Ribbon Cable with Sockets				
	20 -pin	26-pin	34-pin	-
1 end	160p	200p	280p	300p
2 ends	290p	${ }^{370} \mathrm{p}$	480p	525p
Ribbon Cable with D Conn.				
25 -way	le 500p		Fema	le 550p

AMPHENOL CONNECTORS

36 -way plug Centronics Parallel
Solder $£ 5.25$ IOC $£ 4.95$
36 -way socket Centronics Parallel
Solder $£ 5.50$
24 -way plug IEEE Solder $£ 5$

24 -way socket IEEE Solder $£ 5$

RIBBON

 CABLE(Greysmeter

EURO CONNECTORS
RS 232 JUMPERS

(25.way D)		
$24^{\prime \prime} \mathrm{Sin}$	end Male	c5. 00
24" Sin	end Female.	c3. 25
24* Fer	-Female	£10.00
$24^{\prime \prime} \mathrm{Ma}$	Male	69.50
24"M	emaie	69.50
DHL HEADERS		
	Solder Type	IDC Type
14 pin	40 p	100p
16 pin	50p	110p
24pin	100 p	150p
40pin	200p	225p

CABLE T.V. HEAD END AND REPEATER AMPLIFIERS

ChANNEL CONVERTERS
TCUU UHF.UHF Singie channel converter. Gain adjustable $+2 \mathrm{~dB}-16 \mathrm{~dB}$. Maxt mum output +26 dBmV . Crystal controlled oscillator. Power requirement 14 V 25 mA . (Quotet Channels required)
TCUV AS TCUU except UHF to VHF converter (Quote Channels required)
TCVU As TCUU except VHF to UHF converter. (Quote Channels required).

SINGIE CHANNEL AUTOMATIC GAIN CONTROL AMPLIFIERS
TAG4863 Gain 48dB, maximum output 63dBmV. Regulator + or $-8 d B$. Power
TAG4063 Gain 40dB, maximum output 64dBmV. Regulator + or - 16dB Power requirement 14 V 210 mA .

Single channel amplifiers
TSS4663 Gain $28-46 \mathrm{~dB}$ adjustable. Maximum output 63 dBmV . Power requirement
TSS3062 Gain $12 \cdot 30 \mathrm{~dB}$ adjustable. Maximum output 62 dBmV . Power requirement 14 V 26 mA

DRIVER AMPLIFIERS
TSIO30FM FM driver amplifier. 10dB Gain Maximum output 30dBmV. Power require
TSIO30B3 ment 14 V 10mA. Band III driver amplifier 10 dB gain. Maximum output 30 dBmV . Powe requirement 14V 10 mA
TS 1030UHF UHF driver amplifier. 10 dB gain. Maximum output 30 dBmV . Power require ment 14 V 10 m
Single channel UHF driver amplitier 10dB gain. Maximum output 40dBmy ower requirement 14 V 10 mA . (Ouote channel required).
distribution amplifiers
TE2042 Domestic distribution amplifier 1 input, 1 output Gain 20dB. Maximum
TE1638 output 42 dBmV
TE1638 Domestic distribution amplifier. 1 input, 2 outputs. Gain 16dB. Maximum
TS2046 output: 2t $\quad 40-860 \mathrm{MHz}$ Gain 20 dB UHF. 18 dB VHF Maximum output 46 dBmV
TS2846 $\quad 40-860 \mathrm{MHz}$ Gain 28 dB UHF, 22dB VHF. Maximum output 46 dBmV
TS2845 Separate UHF/UHF inputs. Gain 28dB UHF, 22 dB VHF. Maximum output
TS2054 46dBmV
$40-860 \mathrm{MHz}$. Gain 20 dB UHF, 18 dB VHF Maximum output 54 dBmV
IS $2060 \quad 40-860 \mathrm{MHz}$ Gain 20dB UHF, 18 dB VHF Maximum output 60 dB BV
REPEATER AMPLIFIERS
TSC3660 Repeater. Gain 16.36 dB UHF, $10-30 \mathrm{OB}$ VHF Maximum output 60 dBmV
TSC3665 Repeater, Gain $16-36 \mathrm{~dB}$ UHF, $10-30 \mathrm{~dB}$ VHF, Maximum output 'cd dmV
TSC3060 Repeater, Gain 10 -30dB VHF. Maximum output 60 dBmV

QUALITY AT LOW COST TAYLOR BROS (OLDHAM) LTD

LEE STREET, OLDHAM - TEL. 061-652 3221 -TELEX f f 311

WW - 054 FOR FURTHER DETAILS

Happy Memories

Part type		1 off	25-99	100 up
4116200 ns		1.25	1.15	1.10
4164 200ns		4.95	4.40	4.20
6116/2016		3.85	3.45	3.30
6116 150ns Low power		5.25	4.70	4.50
2716 450ns 5 volt		3.15	2.85	2.70
2716 450ns three rail		5.75	5.00	4.65
2732 450ns Intel type		3.85	3.45	3.30
2532 450ns Texas type	3.85	3.45	3.30
2764 250ns...	Call	Call	Call
27128 300ns.	Call	Call	Call
Z80A-CPUf2.99	Z80A-P10........		A-CTC	f2. 99
6522 PIAf3. 70	7805 reg..		2 reg	f0.50

$\begin{array}{llrllllllll}\text { Low-profile IC sockets: } & \text { Pins: } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 & 40 \\ & \text { Pence } & 12 & 13 & 14 & 16 & 18 & 22 & 24 & 27 & 38\end{array}$

Soft-sectored floppy discs per 10 in plastic library case
5 inch SSSD $£ 17.00 \quad 5$ inch SSDD $£ 19.25 \quad 5$ inch DSDD $£ 21.00$ 5 inch SSQD £23.95 5 inch DSQD £26.35

74LS series TIL, large stocks at low prices with DIY discounts starting at a mix of just 25 pieces. Write or 'phone for list.

Please add 50p post \& packing to orders under $f 15$ and VAT to total Access \& Visa welcome. 24-hr 'phone service on (054 422) 618 Government \& Educational orders welcome, $f 15$ minimum Trade accounts operated, 'phone or write for details

HAPPY MEMORIES (WW) Gladestry, Kington Herefordshire HR5 3NY Tel: (054 422) 618 or 628

WW - 012 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner Telephone 445 2713/0749

WW - 036 FOR FURTHER DETAILS

TOROIDALS

 field and, thanks to I.L., P., PRICE. to vour requirements with no price penalty.| $\underset{\substack{50 \mathrm{VA} \\ 80 \times 35 \mathrm{~mm} \\ \text { Regulation } 13 \%}}{0.9 \mathrm{Kg}}$ | | |
| :---: | :---: | :---: |
| 2×010 | $6+6$ | 416 |
| 2×011 | $9+9$ | 277 |
| 2×012 | $12+12$ | 208 |
| 2×013 | $15 \cdot 15$ | +66 |
| 2×014 | 18.18 | 138 |
| 2×015 | $22+22$ | 113 |
| 2×016 | 25.25 | 120 |
| 2×017 | $30+30$ | 083 |
| 2×028 | 110 | 045 |
| 2×029 | 220 | 022 |
| 2×030 | 240 | 020 |
| 80 VA | | |
| $\begin{gathered} 90 \times 30 \mathrm{~mm} \\ \text { Regulation } 12 \% \end{gathered} 1 \mathrm{Kg}$ | | |
| 3×010 | 6.6 | 664 |
| 3×011 | 9.9 | 444 |
| 3×012 | -12+12 | 333 |
| 3×013 | $15+15$ | 266 |
| 3×014 | $18+18$ | 222 |
| 3×015 | $22 \cdot 22$ | 181 |
| 3×016 | $25+25$ | 160 |
| 3×017 | 30.30 | 133 |
| 3×028 | 110 | 072 |
| 3×029 | 220 | 036 |
| 3×030 | 240 | 033 |

Prices inciuding $P \& P$ and VAT

VA	Size	$£$	VA	Size	$£$
15	0	7.43	160	5	12.90
30	1	8.08	225	6	16.30
50	2	10.10	300	7	18.55
80	3	10.81	500	8	25.73
120	4	11.73	625	9	31.63

Mail Order - Please make vour crossed cheques or postal orders pavable to ILP Electronics Ltd. Trade - We will open your credit accoun保 receipt of your first

Why a Toroid? - Smaller size \& weight to mee modern 'slimline' requirements. * Low electrically induced noise demanded by compact equipment.

* High efficiency enabling conservative rating whilst maintaining size advantages.

Why ILP?

* Ex-stock delivery for smal quantities.

Gold service available. 21 days manufacture for urgent deliveries

- 5 year no quibble guarantee. Realistic delivery for volume
orders.
* No price penal ty for call off orders.

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated

Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed

PRIMARY

OUTER

OUTER
 mecondary

SECONDARY
WINDING
insulation
phimary

WW - 047 FOR FURTHER DETAILS

Audio Jackfields?

间 FUTURE FIM DEVELORMENIS
114 Wardqur Street, LondonWIV 3LP, Téephone: 01-434 3344. Telex 21624 ALOFFD G Cables Allotrope-LondonWl.

WW - 040 FOR FURTHER DETAILS

To obtain further details of any of the coded items mentioned in the editorial or advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp.
These service cards are valid for six months from the date of publication.
Please use capital letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION

 AGENTS 380 Lonsdale Street. Melbourne 3000. Victoria

Bolgium : Agence et Messageties de la Press 1 Rue de la Petite-ILE Brussels 7

Japen: Western Publications Distibution Agency. 170 Nishi-Okubo Tokyo 160

Lebenon : Levant Distulbutors Co.. P.O. Box 1181 Makdesi Street, Halim Hanna Blag, Beirut Malaysia: Times
Distributors Sdn. Bhd Distributors Sdn. Bhd
Times House, 390 Kim Seng Road Singapote 9, Malaysia.

Melta; W. H. Smith
Continental Lid, 18a Scots Street. Valleta
Now Zealend: Gordon \& Gotch (New Zealand) Lid, 102 Adelaide Road. Wellington 2

Nigeria: Dally Times of Nigeria Ltd, 3 Kakawa Street. P.O. Box 139. Lagos
Norway: A/S Narvesens Kloskompani, Bertiand Narvesens vei 2, Osio 6

Portugal: Livarta
Bertrand s.e.t.l Apertedo 37, Amadora
south Afrlca: Contral Nows Agency Lid, P.O. Box 1033, Johannezburg
Spaln: Comercial Atheneum s.a. Consejo de Clento, 130-136 Barcelone 16

Sweden: Wennegren Wweden: Wennegien 25 Stockholm 30

Ewizzerland: Navilie \& Cle SA, Rue Levrler E-7. CH-1211 Geneve 1 Schmidt Agence AG. Savogelstrasse 34 . 4002 Basle
U.S.A. John Barios

Business Press International Business Press Inter
205 East 42nd Streat New York, N.V. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE Licence No CY258
Wrelessswirld
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professional Readers

Wireless World, February 1984
WW 8462
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Name of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E		

Position in Company
Nature of Company/Business
No. of eminloyees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wirelessiworld Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

> Subscription Manager, Business Press International Ltd, Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Enquiry Service for Professional Readers only.

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name.

Position in Company

Name of Company

Address.

Telephone Number

Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Wirelefsworld subscription Order Form
Wireless World, February 1984 WW 8462

UK subscription rates
1 year: f14.00
Overseas 1 year: £17.00
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. made payable to

USA \& Canada subscription rates
1 year: $\$ 44.00$

BUSINESS PRESS INTERNATIONAL Ltd.
\qquad

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV.
Varosliget - Telephone : 225008 -
Telex: Budapest $22.4525 \cdot$ NTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6. 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Ropponigi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barpes.

- Business Press International

205 East 42 nd Street.
New York, NY 10017 - Telephone:
(212) 6895961 - Telex: 421710

Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone :
(312) 63074

Victor A Jauch.
Elmatex International,
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301 Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432

Mike Loughlin. Business Press Internationa 15055 Memorials, Ste 119, Houston, Texas 77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch. International Advertising Consultants Lid. 915 Carlton Tower, 2 Carlton Street.
Toronto 2 - Telephone (416) 3642269

[^0]
LOCICANALYSERS

TA2080

8 channels, 20 MHz , timing and state 252 byte data and reference memories 23 bit triggering with trigger delay by events andior clocks Compare and search facilities. Composite video output. Microprocessor disassembly (Z80, 6800 and 6502) and RS232 option

TA2160

16 channels, 20 MHz , timing and state 252 word data and reference memories. Can be configured as two independent or linked 8 channe analysers with separate clocks and independently set parameters. 34 bit triggering on two levels with trigger delay by events and/or clocks Powerful compare and search facilities. RS232 interface, composite video output. Microprocessor disassembler options for Z80, 8085, 6809 and 6502

Both analysers can display data either as any 8 channels in timing diagram format, with cursor, window and expansion facilities, or in state format with cursor, memory compare and word search features. All inputs are high impedance and variable threshold
Optional accessories include the TA232P serial data (RS232) pod and TP55 video printer.

For further information contact
Thandar Electronics Ltd. London Road, St Ives. Huntingdon. Cambridgeshire PE17 4HJ Telephone: (0480) 64646. Telex 32250

WW - 019 FOR FURTHER DETAILS

With the new LM2A logic monitor from GSC, you can see just what's going on in an integrated circuit for only $£ 103$.* The LM2A's sixteen LED indicators show the static and dynamic logic states of all the pins on 14 or 16-pin IC packages, and GSC's unique Proto Clip provides rapid, reliable contact with the circuit. You can use the LM2A with different logic families, too. A front-panel switch lets you select TTL or C-MOS, and a variable threshold control covers any voltage from +1 V to +9 V for other logic levels. It's small and light enough to hold in the hand, and operation is simplicity itself.
Take the logical course of action - fill in the coupon now.
Price excluding P\&P and 15% VAT
global specialties corporation

G.S.C. (UK) Limited, Dept. 7 L Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ Telephone: Saffron Walden (0799) 21682 Telex: 817477

Accurate Digital Multimeters at Exceptional Prices

ARMON ELECTRONICS LTD.

WW - 025 FOR FURTHER DETAILS

PANASONIC 12" MONITORS $£ 95$
 \square monochrome green screen \square high quality and reliability genuine 80 character and high resolution display
 RING NOW ON OUR HOTLINE 0865726639

Crystals HC6U Ex. Equip. $5.000 \mathrm{mc} / \mathrm{s}, 7.000 \mathrm{mc} / \mathrm{s}, 8.000 \mathrm{I} . \mathrm{M} . \mathrm{C} . \mathrm{mc} / \mathrm{s}$, $9.000 \mathrm{mc} / \mathrm{s}$. Also Glass Crystal $100 \mathrm{Kc} / \mathrm{s}$, to fit B7G base. All at $£ 2 \mathrm{p} \& \mathrm{p}$ paid
Telephones - Type 706 good condition $£ 5$ p\&p paid Small 230 V fans, $4 \mathrm{in} . \times 21 / 2 \mathrm{in}$. 2,500 r.p.m. $£ 4.50$ p\&p paid.
Pye Pocketfone PF1, battery charger, 12 way with meter $\mathbf{£ 1 0}$ p\&p paid. Ex-Gov. 27 ft telescopic aerial close to 5 ft . Good condition, complete with all base \& fittings $£ 45$ p\&p $\overline{\text { Baid. }}$. Callers welcome $£ 25$.
Pye Pocketfone Nightcall for PF1/TX/RX. New boxed $£ 17$.
Whip aerial Ex-Gov. 4ft collapsible $£ 1$.
Ni-Cad batteries for Pye PF1 RX. 5 for $£ 2$ p\&p paid. Min. order 5. PFI TX batteries $\mathbf{E} \mathbf{2}$ each p\&p paid.
All these batteries are ex-eq. but good condition
AVO multiminor test meter. Tested. $£ 20$. Ex eq. p\&p paid
AVO ?X. Tested. Ex. eq. $\mathbf{£ 4 0} \mathrm{p} \& \mathrm{p}$ paid.
Opening fimes: Monday-Friday 8.30am-5pm, Saturday 8.30am-12noon
please allow 14 davs for deliver
A. H. THACKER \& SONS LTD

HIGH STREET, CHESL YN HAY, NEAR WALSALL, STAFFS
WW - 027 FOR FURTHER DETAILS

THE WORLD'S FIRST AND ONLY AUTOMATIC MICROPHONE SYSTEM FROM SHURE.

$318 \mathrm{H} \times 88.9 \mathrm{~W} \times 76.20(\mathrm{~mm})$

Whenever someone has something to. say in public, it's often the microphone system that makes or breaks their speech.

Clicks. Pops. Crackles. Background noises and missed syllables. Just a handful of the hazzards that can turn a speaker's finest hour into a fiásco.

Which is why we'd like to introduce you to something completely new - the Shure AMS. Microphone, mixer and advanced logic technology, combined in a totally dedicated. system.

In short - a sound revolution.

At the heart of the AMS are anglesensitive microphones. Speak into any one of them within its own 120° 'window of acceptance' and it turns on; change the surrounding audio conditions

and it compensates. Quickly. Quietly. Automatically.

The rear panel of every AMS mixer features logic terminals that not only give unprecedented flexibility but also eliminate many of the usual adjustments and controls.

As a result no other unit sets up as quickly; handles as easily. And for larger gatherings, AMS mixers combine simply to effectively control over 200 mics.

Thé new Shure Automatic Microphone System. It makes speeches not mistakes.

make frizectes

EHURE

You simply can't make it any clearer.

Technical Editor MARTIN ECCLES 01-6618638

Projects Editor RICHARD LAMBLEY
01-661 3039

```
News Editor
DAVID SCOBIE
01-661 8632
```

Drawing Office Manager ROGER GOODMAN 01-661 8690

Technical Illustrator BETTY PALMER

Advertisement Manager
BOB NIBBS, A.C.I.I.
01-6613130
BARBARA MILLER
01-661 8640
ASHLEY WALLIS
01-661 8641

Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838
Classified Manager
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director
DAVID MONTGOMERY 01-661 3241

Freedom - or licence?

To speak of culture is to brand oneself a poseur, a pretending aesthete, an unwordly, impractical bore. "When I hear anyone speak of Culture", Goering is said to have remarked, "I reach for my revolver". His other activities make it seem unlikely that he was impelled to deliver this thought by considerations of market potential, but nevertheless it seems to be in tune with the outlook of producers of software for the millions of storedprogramme video display devices that nightly hypnotise a large part of the population.

In an ideal world, the 'freeing' of television programmes from the autocracy of established broadcasting organizations would be a step in the right direction. Why, it may be asked, should the viewing public be constrained by the views of three or four broadcasting authorities, when it can use a video recorder/player to display any one of thousands of programmes, and even make its own?

The world is, however, far from ideal. Freedom is always to be sought assiduously, but when it turns to licence, controls may be required as a regulator.

Engineering applied to domestic 'information systems' has an enormous capability - to inform, to entertain, to instruct and educate - the application of just one form, the v.c.r., being limited only by man's small imagination. People's breadth of view and understanding of others' problems and aspirations could be vastly enhanced by a proper choice of software. Freedom from the shackles of broadcast television as it currently exists
could open wide the accumulated knowledge and wisdom of the world.

And what do we find? A wealth of material, certainly. But into which category of mental stimulation should one place an instructional film on ventilating the frontal lobe of the brain by means of a Black and Decker, or some such? Or, indeed, anyone of the cosy little stories designed to encourage the more flamboyant tendencies in the human psyche? The proliferation of such atavistic products of diseased minds is one, regrettable, result of 'freedom'.

The promise of dozens of extra channels of broadcast television by satellite and cable does not do much to encourage hope for the future, either, if the American scene is taken as an example.
Demoralising as it may be, it seems true to say that alternative viewing - that not originated by BBC or IBA - comes nowhere near exploiting the promise of the word 'freedom'. The IBA has to keep market forces well in mind, more so than the BBC, but there are overriding constraints on both organizations of public decency and overall quality. BBC and IBA have unparalleled reputations in both engineering and programme making. With the awful example of video tapes before us, it hardly seems sensible to allow optical, satellite or cable television to flout the laws governing broadcast television simply because they employ different media to carry the signal or because satellite is not, strictly speaking, broadcast. The dissemination of any kind of information to the public should not be solely a moneymaking venture.

Hearing and seeing

Engineers would find it easier to optimize high-fidelity sound systems and high-definition television if only they knew more about human hearing and seeing. It has, for instance, been said of the human auditory system that "The ear presents some of the most disputed problems of human physiology. Regarded purely technically the ear is of comparatively simple construction, so that one might hold the view that an accurate examination would immediately expose the purpose and function of each individual constituent part. Exactly the opposite is the case, and all theories are still full of contradictions."

In particular, the ability of many people to distinguish very small differences in pitch and the ability to locate the direction of sound from extremely small time differentials cannot be explained by the conventional theories. Similarly, the human visual system can detect vernier misalignments with an extraordinary accuracy that cannot be accounted for by simple optical or anatomical considerations - the socalled hyperacuity.

A controversial new theory of hearing has been advanced by Hugo Zuccarelli (New Scientist, November 10, 1983) who claims to have developed an electronic recording system that produces spatial effects in a monaural channel. He argues that the ear does not simply and passively receive sound. It also generates a sound wave that interacts with external sound to produce an acoustic hologram or interference pattern. As evidence in support of his theory he notes that several people have succeeded in recording continuous sound at about $1-2 \mathrm{kHz}$ emitted in the ears of individuals. Just as each piece of an optical hologram produced by coherent light contains the information for a solid image, so, he argues, the acoustic hologram developed in each ear provides full directional information. No details of his recording system have so far been released.

The question of whether conventional "stereo" is really necessary was raised also by Yoshimutsu Hirata in the October 1983 issue of Wireless World (pages 60-63) where he showed how ambience can be added to the mono sound transmitted by a.m. radio and television stations. Ever since the pioneer work by Alan Blumlein, engineers have been struggling to reproduce spatial effects without really being sure how the ear/brain system really works!

Current work on digital sound and vision seeks to overcome fidelity problems by transmission at very high data rates, even though human sensors are relatively slow acting devices. Sony, however, have managed to pack four digital stereo audio channels into a 6 MHz channel for use with multichannel cable tv systems, basically using the Compact Disc format. Four hi-fi stereo channels, with 8 bits of synchronization and 4 service bits form a 168 -bit word
with a sampling rate of 44.1 kHz and a data rate of about $7.4 \mathrm{Mbit} / \mathrm{s}$.

Millimetric rain scatter

The effects of rain-scatter at frequencies between about 10 to 20 GHz are well documented. Scatter signals can, for example, result in much interference to terrestrial microwave systems from the high-power up-link satellite communications terminals. Heavy rain can also be used by amateur 10 GHz -band enthusiasts to provide extended range contacts from locations shielded by hills. But millimetric signals, although scattered by rain drops, are themselves severely attenuated by rain, with the result that rain-scatter effects tend to be far less evident.

A Japanese rain-scatter experiment in the millimetric range $(34.8 \mathrm{GHz})$ has been described by Jun Awaka, Kenji Makamura and Hideyuri Inomata in IEEE Trans. Ant. E Prop., vol. AP31 no. 5, September 1983. Using 10 -watt c.w. transmitter power with 10 -metre dish aerials roughly 45 km apart, it was shown that for a small percentage of time relatively strong signals could be received as a result of rain scattering. However for this to happen there has to be an isolated region of heavy rainfall at the scatter point but with no rain over most of the path. During the field test such conditions were infrequent.

Drive by data

Many schemes for providing traffic and vehicle-navigation information have been proposed but have floundered because of cost or lack of radio frequencies or both. However a new "Autoscout" system, developed by Siemens and Volkswagen, is currently undergoing road tests in Wolfsburg, Federal Germany. An on-board microprocessor control unit, plus magnetic field sensor, provides a form of inertial navigation, displaying both direction and bearing of the keyed-in destination on an 1.c. display. However, information on local routes, detours etc are provided from beacon units mounted on traffic lights. Cost is kept low and spectrum problems overcome by the use of low-cost infra-red beacon transmitters. These continuously emit data on the main roads in the area. The vehicle control unit selects only data applicable to the destination the driver has keyed into his unit. It is claimed that Autoscout could even direct drivers to a specific building, garage or parking space.

If the idea catches on, quantity production could bring vehicle unit costs down to that of a good car radio, with correspondingly low costs for equipping traffic lights with infra-red beacons, it is claimed.
The Merriman Report appears to have
removed any incentive for mobile two-way radio to switch to pilot-carrier s.s.b. in 5 kHz channels. Yet J.P. McGeehan and A. J. Bateman of Bath University remain convinced that their system of feed-forward signal regeneration could overcome the severe multipath propagation effects shown up in the field trials a few years ago. They consider that the potential advantages of mobile s.s.b. on frequencies up to 1 GHz should continue to be investigated. Their f.f.s.r. circuitry could be integrated on a single chip, using current large-scale integration techniques, as simple add-on circuitry to pilot s.s.b. systems.

Exit Radio Officers?

For some time, Inmarsat, the organization set up to provide satellite communication with the world's shipping, has believed that emergency position-indicating radio beacons carried on ships, lifeboats and fitted on buoys designed to float free from sinking ships, will form an integral part of a future global maritime distress and safety system. In the 1990s Morse radiotelegraphy will be replaced, Inmarsat believe, by a combination of satellite and terrestrial telephone and data communications. All countries are expected to make mandatory the carrying of low-power distress beacons. Ships equipped with satellite communication systems are already permitted in some countries to use their facilities in harbours and territorial waters, forbidden on h.f. and m.f.

Shuttle success

The in-flight 144 MHz transmissions by Dr Owen Garriott, W5LFL, during a number of orbits of the Columbia space shuttle during the STS -9 mission certainly attracted world-wide publicity for the hobby. Even if the technical value of the experiment, using a low-power handheld transceiver, was questionable, it did mean that many more amateurs became interested in the calculation of orbital data, tracking and mixed polarization, etc. It also underlined how much terrestrial v.h.f. ranges are restricted by the curvature of the earth and local obstructions, with signals receivable during 8 -minute windows from the 250 km high spacecraft. Unlike for the Oscar satellites, standard 144 MHz transceivers were all that was needed.
Dr Garriott also came up on a number of unscheduled occasions despite experiencing difficulties with his lightweight headset in high ambient noise. He recorded most incoming signals on tape, but succeeded in two-way contacts with a number of amateur stations including that of King Hussein, JY1.
Impressive also was the role of the
national societies, including RSGB, in providing their members with up-to-date information on the flight. Far less impressive, and of serious concern, was the amount of unnecessary interference, some deliberate, some caused by sheer bad operating.

AMATEUR RADIO

Grenada and Spratly

Similar publicity, but in more contentious circumstances, surrounded the activities of KA20RK/J37, an amateur station operated by Americans on Grenada during the invasion of the island by American and East Caribbean forces.

The US State Department waived limitations on third-party traffic and many of the transmissions from this only radio link with Grenada were used on tv and radio stations. The American government stated that it was "well pleased" with the role played by radio amateurs in keeping open this news channel, and providing information as to the safety of the American medical students and their families.

But from this side of the Atlantic the situation could be seen quite differently, opening up the risk of putting the whole question of reciprocal licensing and the licensing of foreign nationals into jeopardy. It is one thing to provide emergency communications during a natural disaster such as an earthquake or hurricane, but the events on Grenada can hardly be regarded in this light. It differs also from the use made of amateur radio in 1982 in the Falkland Islands on behalf of the government responsible for the issue of the licences!

The sensitivity of the Third World countries to anything remotely resembling "covert" amateur activities is well established but often overlooked by Americans and Europeans. The disaster, resulting in the loss of two lives, that overtook the 1983 German DX-pedition to the Spratly Islands ($W W$, July 1983, page 23) when the Siddartha was sunk by Vietnamese gunfire had overtones that were not widely reported at the time.
According to a lengthy report headed "Hide and seek spy" in The Strait Times of Singapore, one of the German survivors, Baldur Drobnica, was an official of the West German "Office for the Protection of the Constitution", a secret counter-intelligence organization. Although there is no reason to doubt that he was on holiday at the time, it led inevitably to suggestions that the expedition might not have been so innocent as it appeared and that, in any
case, any expedition to these disputed islands unwisely courted disaster.

Those resident in the Far East point out that, to an extent not appreciated in the West, national security is there a highly sensitive issue. Any suggestion of amateur transmitters being involved in political or covert activities makes the position of licensed amateurs, particularly if not nationals of the country concerned, much more difficult. They urge that when planning such expeditions the greatest care should be taken not to bring upon the hobby such unfortunate publicity and unnecessary loss of life.

10.1 MHz and s.s.b.

Last September I reported the mounting problems of international "planning" of the use of the amateur bands and questioned the extent to which the International Amateur Radio Union is justified in assuming a "regulatory role" without becoming more accountable to the wishes of a clear majority of radio amateurs. An example of IARU pressure on national societies had arisen in respect of the then use of s.s.b. by South Africans in the 10.1 MHz band.

Dave Perry, ZS1SG, bandplanner for S.A.R.L., has written to point out that although the society approved s.s.b. operation on the band in 1982 this was changed at the 1983 a.g.m. and members are now advised to adhere to the IARU recommendations.
Nevertheless, he points out, many South African amateurs remain concerned about the validity of IARU's reasoning and initial assessment. SARL are to raise this subject at the 1984 IARU Region 1 conference.
South Africa is the only country in Region 1 south of the Mediterranean area with appreciable activity. The distances involved means that 10.1 MHz is not being used for telegraphy during daytime, since the relatively small number of c.w. enthusiasts are usually not interested in working stations in their own country. Yet the band would be excellent for internal working on s.s.b., especially for mobile operation over distances up to 2000 km .
SARL now finds it difficult to justify to its members the IARU's ban. In Europe circumstances are very different yet even those of us who are c.w. enthusiasts suspect that complete banning of s.s.b. on 10.1 MHz , at all times of the day and night, is difficult to justify on a world-wide basis.

Cable and MDS

American amateurs continue to complain about the interference problems caused by signal leakage into and out of multichannel cable tv systems that often distribute some
programmes in the 144 MHz band or within or close to other amateur frequencies. The cable people, on the other hand, claim that there is no problem with cor-rectly-installed well-maintained systems and tend to put at least some of the blame on to the significant number of viewers (including amateur radio enthusiasts) who run 300 -ohm twin cable close to the coaxial cables in order to receive subscription channels without payment. Even where the tv programmes are encrypted or scrambled this is often of an unsophisticated type that enables those with technical knowledge to descramble the signals. The "pirate" coupling wires, it is claimed, are one of the main causes of leakage problems, with signals radiated from the twin wire.

Rather similar disputes have arisen from those increasingly used multichannel microwave distribution systems (MDS) in which the high-power omnidirectional microwave transmitters at about 2.15 GHz are used to send programmes, often initially carried over distribution satellites, to homes. In some locations MDS has considerable economic advantages over cable.

The MDS operators are convinced that many of their subscription channels, are being pirated and in a recent lawsuit named 40 radio amateurs as being among some 3000 "pirate" viewers, on the evidence that they had 2 GHz aerials on their roofs. The cases have now been dropped after most of the amateurs named had signed as affidavit that they had not used the aerials to receive Home Box Office subscription channels, and pointing out that the MDS frequencies are close to the 2.3 to 2.45 GHz amateur band. But it is clear that the bad feeling between American radio amateurs and the cable and MDS oeprators has not yet ended.
I understand that interest is being shown in the UK in microwave distribution systems although these do not have any of the interactive facilities advocated in the Cable and Broadcasting Bill.

In brief

The $23-\mathrm{cm}$ beacon, GB3WX, that incorporates weather telemetry, is now back in service . . A number of earth-moon-earth tests are being organized on the 2.3 GHz band where it is possible that some moonbounced signals could be heard on dishes of only 4 ft diameter. . . . The Bury Radio Society has a Ham Feast at Mosses Community Centre, Cecil Street, Bury, Lancs on February 5 . . RSGB National VHF convention is at Sandown Park Racecourse, Esher, Surrey on March 24.
RSGB National Amateur Radio Exhibition is at the National Exhibition Centre, Birmingham on April 28-29.

PAT HAWKER, G3VA

IEEE488 interface for the BBC Microcomputer

The BBC Microcomputer lacked a GPIB (IEEE488) interface - until Intelligent Interfaces designed this one for Acorn.

Many features of the BBC Microcomputer make it eminently suitable for use in the research and development laboratories of educational and industrial establishments. These include its fast structured Basic interpreter, high resolution colour graphics and a number of input/output interfaces for connecting peripheral equipment. However, it did lack an IEEE488 interface, an omission now rectified by Acorn Computers. This article includes a short introduction to the IEEE488 standard* and describes the hardware and software design of the interface.
The IEEE488 (GPIB) interface has been adopted by major instrument manufacturers throughout the world as a means of connecting instruments such as digital voltmeters and spectrum analyers to one another and to a controlling computer to form automatic test equipment systems. A number of computer and peripheral equipment manufacturers have used the interface to connect computers to disc units, graphics plotters and so on.
The IEEE488 standard specifies a system for exchanging digital data in bitparallel, byte-serial form at up to 1 Mbytes between a number of devices in a local area. The interface makes use of two types of messages: interface messages used to manage the interface (commands) and de-vice-dependent messages (data).
Up to 15 devices, including the controlling computer, can be connected using IEEE488 standard cable assemblies. These have a plug and socket at each end permitting star or linear interconnection of devices. The connectors are provided with two securing screws which allow them to be stacked on the socket of each device. The standard permits individual cable lengths of up to 4 m and a total cable length in a system of 2 m per device or 20 m , whichever is the shorter. The cable consists of eight data lines, three handshake lines and five control and management lines. The three handshake lines are used

[^1]
by Andrew G. Ray

to transfer data berween devices; the slowest device determines the rate at which this occurs.

Each device in an IEEE488 system must have a unique address. Some devices have only one address (a primary address) whilst others have extended addressing (both primary and secondary addresses). Secondary addresses are often used to select different functions within the same device: for example an analogue-to-digital converter with a number of inputs may have the input selected by the secondary address.

A device can have the ability to send data (act as a talker), receive data (act as a listener) or do both (act as a talker-listener), or manage the system (act as a controller). Only one device in a system can act as system controller. This is the device which has the control function when the system is initialized.

In my experience, the use of even a fairly simple IEEE488 system transforms research and development work. Apart from the obvious advantage of speed, performing a test automatically has other advantages:

- repeatability, as the test is defined by the program running on the controlling computer
- fast analysis, as the computer can rapidly compare the results of different tests
- faster development, as the results of a test are almost instantly available.
The third advantage means that decisions in the course of development are based on facts rather than speculation and enable further tests to be planned in an informed fashion.

Complex IEEE488 systems, working at high data transfer rates, usually employ a minicomputer as controller. However, most systems consist of one or two instruments connected to a microcomputer and this offers an extremely cost-effective automatic test system.
The overall objectives in the design of the Acorn interface were to allow it to act
as system controller and operate as controller, controller-talker and controller-listener with the ability to pass control to another device on the bus and request it back. Additionally, the interface was required to be easily used from any language running on the computer or a second processor.

Hardware

Two approaches to the hardware design were considered: the use of peripheral interface adaptors (p.i.a.) with t.t.l. open collector drivers and terminating resistors; or else the use of an 1.s.i. general-purpose interface bus adaptor (g.p.i.a.) with IEEE488 bus transceivers.
The first requires all interface functions, such as source and acceptor handshakes, to be implemented in software. This imposes an unacceptable burden upon the processor and significantly reduces total system performance. In the second approach the g.p.i.a implements most interface functions, interrupting the processor only when action is required.
The 6502 microprocessor of the BBC Microcomputer has many tasks and makes extensive use of interrupts, and so the second approach was chosen. As the controller function was to be implemented, this restricted the choice of 1.s.i GPIB adaptors. It soon became apparent that the Texas Instruments TMS9914A was the most suitable in that it was the most easily interfaced to the 6502 microprocessor and, together with the Texas SN75160A and SN75162A octal GPIB transceivers, resulted in a compact circuit board layout.

Connection to the 1 MHz bus of the computer is via a 34 -way ribbon cable. A 34-way header provides a feed-through connection to further 1 MHz bus peripherals. Resistor packs provide optional $2.2 \mathrm{k} \Omega$ pull-up and $2.2 \mathrm{k} \Omega$ pull-down terminations for the 1 MHz bus. All 1 MHz bus lines are buffered. A clean NPGFC select signal is produced by an RS flip-flop formed by three gates on IC_{6}. Address decoding is performed by gates of $I C_{5}, 6,7$. The read and write registers of IC_{1} are located in page $\& F C$ between $\& F C 20$ and \&FC27. Two gates of IC_{9} are used to produce a chip-enable signal, qualified by

the buffered 1 MHzE signal. This ensures the correct timing relationship between the processor and the TMS9914A. Note that both register select and data lines of IC_{1} are designated using the Texas Instruments convention. This is opposite to that used for 6502 -based systems, such as the BBC Microcomputer.

The crystal and IC_{8} generate a 5 MHz clock for IC_{1}. Trigger output from IC_{1} is available at PL_{3}; however, this is not fitted in the standard interface. Link 1 determines whether the interface is system controller and link 2 determines whether the outputs of IC_{2} are open-collector or three-state.

Software

To enable ease of use with any high level language and permit parameters to be passed as variables, the IEEE488 software was designed to appear to the BBC Microcomputer operating system as an additional filing system. The IEEEFS is selected by ${ }^{\text {IIEEE, in the same way as }}$ other filing systems.
Communication between a language and the interface is via two channels. The first is the command channel used for transmitting IEEEFS commands and receiving information on the state of the interface. The second is the data channel used for reading and writing data to other 488 devices. IEEE commands are sent to the IEEEFS by PRINT\# via the command channel. Data is sent to and received from other devices by PRINT\# and INPUT\#via the data channel. These channels must be OPENed before use.
The table lists the commands available. Full simple English syntax produces easily readable programs. However, the use of upper and lower case together with minimum abbreviations eg L. for LISTEN, makes rapid entry of programs possible. The experienced user of IEEE488 systems will appreciate the functions of most commands but the following facilities are worthy of note.

The state of the interface is available through the STATUS command which returns a 32 -bit status word. For example, this can indicate whether the computer is controller in charge, or if another device is requesting service, whether a source handshake or timeout error has occurred, etc.

Although it is not part of the standard, an optional timeout after 2.5 seconds is provided to avoid waiting interminably for a device which never responds.

Data can be sent and received as strings of up to 255 characters or, through the use of the READ and WRITE BINARY commands, as longer sequences of binarycoded data.

The standard does not specify a particular delimiting character for strings. The END OF STRING command enables the default delimiter of linefeed to be redefined as either one or two characters.

The TRANSFER command permits the computer to carry out some other task while a talker sends data to a listener or listeners on the bus. The end of this sequence is indicated in the status word.

Commands are available that allow both serial and parallel polls to be conducted. All addressed and universal commands specified in the IEEE488 standard can be sent, e.g. GO TO LOCAL, LOCAL LOCKOUT etc.

The TAKE CONTROL and REQUEST CONTROL commands enable control to be passed to another device and requested back.

Example

The following example program in BBC Basic might be used for obtaining the frequency response of an amplifier. An input signal is provided by a programmable signal generator and the output signal is measured with a digital voltmeter.

In the example, lines 10 and 20 select the disc filing system and open a file for storing the results of the test. Lines 30,40 and 50 select the IEEEFS and open the command and data channels.

Line 60 is used to specify the primary address of the computer. This can be any primary address not used by an instrument in the system.

Line 70 returns the IEEE488 system to a known state; line 80 enables the remote operation of the devices in the system; and lines 90 and 100 pass the primary addresses of the signal generator and digital voltmeter to the IEEEFS.

Line 120 commands the signal generator to listen and line 130 sets its signal amplitude and frequency. Line 140 commands

```
    10*DISC
    20 result%=DFENDUT ("FESULTS")
    SO *IEEE
    40 cmd%=DPENIN("COMMAND")
    SO data%=OFENIN("DATA")
    60 FFINT#Cmd%,"BEC DEVICE NUMBEF",1
    PRINT#cmd%,"CLEAR"
    FRINT#Cmd%,"REMOTE ENABLE"
    siggen%=OFENIN("7")
100 dVm%=DPENIN("\Xi")
110 FOR frequency%=1000 TO 10000 STEF 100
        FFINT#cmd%, "LISTEN", siggen%, "EXECUTE"
        FRINT#data%,"0.IV,"+STR年(frequeney%) +"Hz"
        FRINT#cmd%, "UNLISTEN"
        FRINT#Cmd%,"TALK", dvm%
        INFUT#data%,reading#
        FRINT#Cmd% "UNTALK""
        response=20*LOG(VAL(reading*)/(0.1*0.7071))
        *DISC
        FRINT#result%, frequency%,response
        *IEEE
        NEXTfrequency%
230 CLOSE#dvm%
240 CLOSE#5igqen
250 *DISC
260 CLDSE#result%
```


Microprocessor programming simplified

A new technique for transferring a program directly to machine-code language avoids the necessity of writing the program out in high-level or assembly language

To write a new program it is often necessary or desirable to set up the sequences in the form of a flowchart. This may then be translated into a computer language, be it high-level, assembly or machine-code depending on the facilities available to the user. In all cases the process of translation can be tedious and time consuming. In order to speed up the process, a simple method is presented here to enable flowchart steps to be entered directly into the system by defining a number of key functions with symbols. It is no longer necessary to key in assembly mnemonics or even remember their exact abbreviations. The symbol sequences can be added to the flow chart and then keyed in.
The proposed symbolic forms of the instruction set are presented in Table 1. Although this particular set is for the Intel 8085 processor, it may be adapted quite easily for use on other processors. The blocks at the left of each instruction represent the keys used, in their correct order.

by Gemal A. M. Labib

It can be seen that the number of keystrokes for each instruction is less than that required with the usual assemblers. There are few symbols and they are easy to remember. For example, the arrow keys, \rightarrow, \leftarrow, are used for data transfer between registers, register pairs and memory as well as for jumps and return instructions. Similarly, the + and - signs are used for increment, decrement, add and subtract, as well as positive and negative condition flags. Although not shown in the table, every statement must end with a comma terminator.
The symbolic assignments of the keys are shown in Table 2. In order to minimize the number of keys required, two or three functions are assigned to most keys. Eight hexadecimal numeric keys are used as control keys for editing and program execution. The other keys are used to enter some instruction mnemonics and logic operators. 16 further keys are used for the other symbols shown in Table 1. The function of the eight control keys are as follows:
Stmnt start positions the cursor at the start of the current statement.
Clear deletes the statement at the cursor position.

Flowchart of the software that implements Tables 3 and 4.

Forward and backward position the cursor at the next or previous statement.
Delete and insert operate on individual keystrokes at the current cursor position.
Single step allows statements to be translated into machine-code and to be executed one at a time. Following the execution of a statement, control is returned to the operating system so that register and memory contents may be checked.
Run causes program statements to be transfered to a secondary buffer. They are translated into machine code as a whole, and the program executed.
A few notes may help to avoid syntax errors and simplify key entry. 1. Instructions dealing with register pairs should begin with the (rp) operand. 2. No statement should begin with a numerical operand or the Immediate marker. 3. The source and destination register, register pairs or memory operands may be reversed

Table 3: First position

Mnemonic	Binary coded hexadecimal	Next entry link
A	38	1
B	00	1
C	08	1
D	10	1
E	18	1
L	20	1
M	28	1
A	30	2
B	07	3
C	00	3
D	01	3
E	02	3
H	03	3
L	04	3
M	05	3
BC	06	4
DE	00	5
HL	10	5
SP	20	5
PSW	30	6
L	30	18
M	28	14
A	30	14
B	38	14
C	00	14
D	08	14
E	10	14
H	18	14
	20	14

if the appropriate arrow symbol is included. 4. All instruction statements must be terminated by a comma.
The driving software that handles the machine-code translation operation of the entered statement is detailed in two tables. The data contained in the tables is specific to the 8085 processor but by following certain rules the software can be applied to a variety of processors.
Table 3, the first position table, contains three fields for each entry: the mnemonic field contains the ASCII codes for the symbols that may appear at the start of each statement; the binary code field contains the corresponding binary combination that will be transferred to the first byte of the assembled machine-code instruction; the next-entry link specifies the group of entries in Table 4 which are related to each symbol in Table 3. Table 4,

Table 1. Symbol sequences needed to produce the full instruction set. Variables r and $r p$ represent registers or register pairs; $d 8$ and d16 are single or doublebyte constants.

Table 2: Key assignments

Original Key label	Assigned Label	Original Key label	Assigned label
0	CALL/NOP	K1	A/RSTO/PUSH
1	HLT/ROT	K2	B/RST1/POP
2	DAA/COMP	K3	C/RST2/Left
3	CMA/OR	K4	D/RST3 $/ \rightarrow$
4	STC/EXOR	K5	
5	CMC/AND	K6	H/RST5/Right
6	IN/RST	K7	L/RST6/C
7	OUT/INT	K8	M/RST7/nc
8	Stmint Start	K9	HL/+
9	Clear	K10	BC/-
A	Delete	K11	DE/Z
B	Instert	K12	$\mathrm{PC} / \mathrm{nz}$
C	Forward	K13	PSW/even
D	Backward	K14	SP/odd
E	Single Step	K15	Stack Top/b/Immed.
F	RUN	K16	Stack Top/b/lmed.

Table 1. Symbol sequences needed to produce the full instruction set. Variables r and rp represent registers or register pairs; d 8 and d 16 are single or doublebyte constants.

the next position table, contains four fields for each entry: the mnemonic field is similar to that in Table 3, except that the position for the symbol is after the first position; the binary code field contains the corresponding binary combination that will be added to the contents of the first byte of the assembled machine-code instruction as long as the related symbol is not numeric (otherwise the binary code will be transferred to the second or third byte of the assembled instruction or added to that byte's contents depending on whether it is the first or second hexadecimal digit in the byte) the current entry link and next-entry link determine whether the symbol is a part of a symbolic sequence which will produce a valid instruction code.

The flow chart shows how the lists are used by the driving software, and how the translation is accomplished. It can be seen that there are a number of error traps so that it is impossible to terminate a statement with anything other than a comma; to key in more than eight symbols (including the comma) in any one statement; or to use any non-valid symbol combinations. The software described in the flowchart occupies about 280 bytes of memory. Features may be added such as the ability to display the next instruction address; and display the next statement number during program entry; to have a user-defined starting address; and to save programs on tape or disc in their symbolic format for further editing or modification.

When setting up the tables, the fol-
lowing rules should be adhered to:

1. The first position table: a. If symbol used at the start of a statement represents different instruction groups, it will have multiple entries in the table with the appropriate binary codes. These can be distinguished by having different next-entry links; b. Symbols that use the same key should always use the same ASCII code; c. Each entry will require three bytes of memory.
2. The next-entry table: a. All symbol sequences must be linked with and terminate with the comma entry; b. As for 1 lb above; c. Symbols with several different binary codes must not have the same current entry link; d. Each current entry link must have a corresponding next entry link; e. The minimum memory space required for each instruction is four bytes, expandable in segments of two bytes; f. Mnemonics having the same current entry and next entry links may be grouped together so that both fields are stored once only for the

Table 4: Next position

Mnemonic	Binary coded hex.	Current entry	Next entry
\leftarrow	40	1,2	7,8
B	00	7,8	32,32
C	01		
D	02		
E	03		
H	04		
L	05		
A	07	7,8	32,32
M	06	7	32
$0-F$	$00-$ FO	12,16	13,17
$0-F$	$00-0 F$	13,17	16,32
B	00	9,10	32,32
C	08		
D	10		
E	18		
H	20		
L	28	9,10	32,32
A	38	9	9
M	30	32	
\rightarrow	40	3,4	9,10
\leftarrow	01	5,6	11,11
I	00	11,15	12,16
\leftarrow	06	14	15
PUSH	C5	5,18	32,32
POP	C1	5,18	32,32
	-	32	0

whole group. This will reduce the size of the table.

The tables printed here demonstrate the MOV, MVI, LXI, Push and Pop groups. By following the sequence of the flow chart any instruction within these groups may be assembled. For example, the instruction MOV AB; by reference to the 8085 instruction set it is found to have the hexadecimal code of 78. The Key depressions A, forward arrow, B, comma, used in conjunction with the links give the numbers 38,40 and 00 which when combined give 78.

MNN

Edison's electrical indicator

Last November, on the Centenary of Edison's patent of the thermionic diode, James Franklin argued that Edison had no idea of the significance of his invention and that therefore this could not be taken as the birth of electronics. Here Desmond Thackeray of Surrey University replies

The interest Wireless World has in the realms of electronics brings with it the responsibility for acknowledging inventions (and their inventors) of significance. A use for one electronic invention of great importance, the thermionic diode, was patented by Thomas Edison ${ }^{1}$ some 20 years before J. A. Fleming thought to use it as a wireless detector. In these two decades, and even before 1883 when my story starts, there was a great deal of investigation into the physics of rather gassy vacuum tubes and the emission from heated and cold surfaces. This work came to fruition in a number of useful inventions, such as the Braun cathode-ray oscillograph tube ${ }^{2}$ of 1897, the Wehnelt oxidecoated cathode ${ }^{3}$ of 1904 and the CooperHewitt mercury pool rectifier ${ }^{4}$ of 1903.

by Desmond Thackeray, Ph.D.

Fleming himself reported ${ }^{5,6}$ in 1890 and 1896 that unidirectional current flowed through an Edison thermionic diode when its filament was heated by an alternating current (though these are not his own words). What Fleming had observed was the process of rectification; but apparently it had little significance to him at the time. One must remember that alternating power supplies were very much a novelty, and rejected by Edison himself.
So, naturally, Edison's American patent no. 307,031 filed November 15, 1883, for
an "Electrical Indicator" did not cover the application of his thermionic diode to the conversion of the despised alternating current into his well-regarded direct current. And he did not claim novelty for the diode itself, seemingly regarding it as simply an electric lamp, the use of which as an electrical indicator, and for controlling generators, he wished to cover. Edison must have observed that the emission from his hot carbon lamp filaments only appeared when the filaments were visibly hot, and then increased super-proportionately as the filament current was raised. By connecting the filament to his power lines "changes in the candle-power of the lamp (filament), and consequently in the electromotive force of the source of supply, are made apparent". His diagram

(Fig. 1) shows a galvanometer in the plate (anode) circuit to display the changes in filament emission current. The arrangement no doubt exhibited a very high sensitivity to small changes in power line voltage. It seems therefore a completely practicable application of the thermionic diode in any situation where a plant engineer actually required a more sensitive indicator than say a conventional voltmeter with offset zero. But we cannot be sure that there was such a need.

Edison continues the quoted sentence "or . . . instead . . . are made to affect circuit controlling apparatus, automatic regulators or other electrical apparatus. . . ." Here he is envisaging the galvanometer as a relay; and later in the patent he specifies how this may be interfaced to the generator control via "a mechanism such as shown ${ }^{7}$ in my patent no. 287,524". Whether or not this latter mechanism worked successfully hardly matters, because Edison could have used here any "sure-fire" interface, such as a reversible motor driving a field rheostat. Clearly, what Edison had invented in 1883 was not only a sensitive incremental electronic voltmeter, but also a complete electronic servo-controller of the discontinuous (or bang-bang) kind. Again we might wonder whether a control system of such high sen sitivity (loop gain?) was actually needed, and would be used. There could also have been stability problems to solve. Writing in the magazine Scientific American in March 1969, George Shiers ${ }^{8}$ draws attention to the historic importance of what he calls "this first patent in electronics"; but he does add the rider that it "was of no commercial value". I think that this is rather a brief dismissal of the topic, arising because Shiers' article is really concerned with the string of thermionic developments that were eventually to contribute to early wireless.

Even in wireless, generator regulation must have had some value; but the modest d.c. stability required so long ago could probably have been met adequately with simpler techniques, compound winding of the generator, or the buzzing relay once ubiquitous in automobile battery charging; and so Edison's invention lay idle. It seems to have been the exigencies of World War I, requiring sensitive valved receivers intolerant of such interference sources as buzzing relays, that prompted H. M. Stoller ${ }^{9}$ to use a thermionic diode (called a Kenotron by the General Electric Company of America) to stabilise the output of an aircraft generator supplying thermionic tubes.
Gerald Tyne, in his magnum opus "Saga of the Vacuum Tube" 10 , devoted more than a page to the TB1 Kenotron (Fig. 2) and said that "approximately 4,500 of these were delivered to the Signal Corps." Then if one turns to the contemporary account ${ }^{11}$ by Van der Bijl in the "Thermionic Vacuum Tube", there is a circuit diagram of a regulator (as devised by Stoller) and some regulation curves.
"Edison triumphs at last" we might say? Sadly, not so; there is one little flaw here. The circuit shows that the plate current of the diode (20 to 130 mA) actually flows

Fig. 2. Early regulator diode, the TB1, as used in American aircraft equipment during the first World War
through the differential field winding of the generator itself, so providing continuous regulation without steps. This was a simplification seemingly not envisaged by Edison in his original patent, though the wording "in any suitable manner" was obviously intended to pave the way for alternatives and afterthoughts.

The British version of the Edison patent ran^{12} to a second edition in 1922; and Stoller was into hardware again ${ }^{13}$ in 1929 with a more sophisticated regulator which added three triodes and a saturable reactor to the diode. This time he was regulating an alternating voltage, for the Edison invention (unlike other methods) would work just as well for regulating an alternating supply as it would when controlling a d.c. generator. Considering how bitterly Edison himself had once opposed alternating supplies, it seems ironic that this work of Stoller should have applied Edison's invention in just that field. Benson quotes ${ }^{14}$ a number of later usages, during the next 20 years or so; but it is doubtful whether the users gave much credit to the patent Edison filed on November 15, 1883.

So, should we have been toasting Thomas Edison on November 15, 1983, for the first electronics patent ever? I think that we should. The Germans set us an example by honouring 100 years of the Edison effect itself, in organising a conference on electron tubes May 18-20, 1983, in the Garmisch-Partenkirchen congress centre. In its way, this helped to compensate for much neglect of Edison's invention, which preceded such currently important thermionic devices as the ca-thode-ray tube of Braun, the X-ray tube of Coolidge, and the flourescent lamp.

Fig. 3. One of the modern successors to the TB1, the GE10, though not equivalent in ratings, has a straight tungsten filament rather than the hairpin or carbon loop filament of the Edison tube.

References

1.T. A. Edison, Electrical Indicator US Patent 307031 of October 21, 1884, filed November 15, 1883
2. F. Braun, Ann. der Physik, 1897, vol. 60, pp. 552-9.
3. A. Wehnelt, German Patent 157845 of January 15,1904
4. P. Cooper-Hewitt, Electrician, vol. 50, January 16, 1903, pp. 509-11
5. J. A. Fleming, 1890, Proc. Roy. Soc. 47, p. 120.
6. J. A. Fleming, 1896, Phil. Mag. 42, p. 99 and Proc. Phys. Soc. 14, pp. 238-9.
7. T. A. Edison, Regulator for DynamoElectric Machines, US Patent 287524 of October 30, 1883, filed December 8, 1882.
8. G. Shiers, The first electron tube, Scientific American, March 1969, pp. 104-10
9. E. B. Craft \& E. H. Colpitts, Radio telephony, Jour. A.I.I.E., 1919, vol. 38, pp. 305-35
10. Gerald F. J. Tyne, Saga of the Vacuum Tube, Sams 1977, pp. 147-8.
11. H. J. van der Bijl, Thermionic Vacuum Tube, McGraw-Hill, 1920, pp. 142-4.
2. T. J. Handford, British Patent 2988 of February 8,1884 .
13. H. M. Stoller \& J. R. Power, Precision regulator for alternating voltage, Electrical Engg, 1929, vol. 48, pp. 110-3
14. F. A. Benson, Voltage Stabilised Supplies, Macdonald, 1957, pp. 254-61.

020

Thermally-controlled power supply

Supply shown controls power in a low-resistance load such as a single turn of Nichrome wire using feedback from a diode temperature sensor located near the load. Voltage across the diode is compared with the current/temperature setting potentiometer by an op-amp. A second op-amp

Don't waste good ideas

We prefer ideas with neat drawings and widely-spaced typescripts, but we would rather have scribbles on the "back of an envelope" than let good ideas be wasted.
Submissions are judged on originality or usefulness - not excluding imaginative modifications to existing circuits - so these points should be brought to the fore, preferably in the first sentence.
Minimum payment of $£ 30$ is made for published circuits, normally early in the month following publication.
compares the summed outputs of the first comparator and output sensing resistor with the voltage across a reference diode. Output-current limiting with a $100 \mathrm{~m} \Omega$ resistor is about 7A. The circuit was used to
control the temperature of a small zonemelting furnace with good results.
C. L. Barczac

Itajuba
Brazil

Prom elimination

Using a circuit such as this one designed for 8080 -based microcomputers, loading an operating system from cassette directly into ram means that no proms are required - not even for storing cassette-driving software. This increases system speed and reduces cost by allowing all of the microprocessor address space to be filled with rams.
While data is being loaded from cas-
sette, this simple modification slows the microprocessor down to match the data rate of the cassette by forcing it into processor-wait states. Synchronization between the cassette data rate and the processor is automatic. With the switch set for loading, the processor ready input is controlled by this circuit, as are data-ready reset (DDR) and receiver-register disable (RRD) signals. With the reset button pressed the processor wait line goes low,
forcing the ready signal at pin 9 of $\mathrm{IC}_{2 \mathrm{~b}}$ low and, the processor enters the wait state.

When the cassette player is started, the uart data-ready (DR) output goes high for each byte received. On each low-to-high transition of this signal the high wait-state condition is transferred to the ready line from $\mathrm{IC}_{2 b}$ and the processor is released from its wait state to process the byte received. Immediately after the $\mathrm{IC}_{2 \mathrm{~b}}$ ready

Keyboard encoder

Besides being cheap, this keyboard encoder has roll-over protection, letters-only shift lock and can produce 128 ASCII characters and 128 control codes. It is not necessary to unlock the shift key to type single lower-case characters - an led status indicator prevents ambiguity. When function key S_{5} is locked, shift lock is released so that bit seven may be active with shifted or unshifted characters or control codes, providing an eight-bit set of codes.
Circuit IC_{2} is a 16 -line decoder for key-
Keyboard connections

Row	ASCII column								
	7		6	5	4	3	2	1	0
0	P				@	0	SP		
1	O		A			1			
2	R		B			2			
3	S		C			3			
4	T		D			4			
5	U					5			
6	V	V	F			6			
7	w	w	G			7			
8	X	K	H			8			
9	Y		1			9			TAB
10	Z		J			:			
11	1		K			;		ESC	
12			L	1					
13			M	.			*		
14 15		DEL	N				1		

output goes high, $\mathrm{IC}_{2 \mathrm{a}}$ forces the DDR line high and clears the uart data-ready output.

If the program retrieved from cassette is as follows

NOP
NOP

NOP

LXI
H, 0000_{16}
MVI M, byte 1
INX H
MVI M, byte 2
INX H
MVI M, byte 3

INX H
MVI M, byte n
HLT
NOP

NOP

the processor stores the operating system programs contained in bytes 1 to n starting at memory location 0000. After the program is loaded, the switch is set to the normal position and the reset button pressed to execute the loaded program.
G. A. M. Labib

Heliopolis
Cairo
board scanning and IC_{3} is a priority encoder for sensing. Input sequence of IC_{3} is the reverse of the priority sequence to provide positive logic at the three data outputs. Each of the 16 decoder outputs is connected to three character switches to provide four least-significant ASCII bits. Switches one to three provide shift-lock, shift and control functions respectively and further optional switches four and five provide control lock and determine the
state of bit 7 for special functions. Shift operates differently on letters and numbers by gating which controls bit 6 .

Minimal screen flicker and program interruption will occur when the decoder is driven by vertical sync. from the v.d.u. I used a 7493 instead of developing software.
E. Goodchild

Rotorua
New Zealand

This circuit was developed to display up to 512 points logged to 9 -bit resolution on a tv point-digitizing system. Only 2 K bytes of memory are used since it is not necessary to reserve a memory location for each possible coordinate on the screen.
Video memory consists of just two MK4801AN, 70ns byte-wide devices. During data loading, video memory is connected to data and address buses of the digitizing system (in this case Z80-based) at the points indicated on the diagram through software-controlled three-state buffers; outputs of these buffers are highimpedance while the display is in use. The memories are divided into four pages of 512 bytes designated $\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{Y}_{0}$ and Y_{1}.
Data outputs of X memory are connected to one side of an eight-bit comparator, the other side of which is fed by the lower eight bits of a nine-bit counter. This counter is clocked by an 8 MHz crystal oscillator gated by a modified line-sync. pulse ${ }^{\star}$ which also resets the counter. Similarly Ymemory data output is compared with an eight-bit counter clocked by line-sync. pulses and cleared by a field-sync. pulse. The state of the line-sync. pulse from the TDA2571A sync. separator is latched on field-sync. pulses by the field-identifying bistable i.c. to determine which of the two
*Line sync. pulses from the TDA2571A have a 46\% duty cycle and are satisfactory for field identification but must be modified for oscillator gating and counter reset.
fields of the $2: 1$ interlaced picture is currently being displayed. Output from the bistable i.c. (l.s.b. Y) is connected to A_{9} of the Y memory and is used to select either page Y_{0} or Y_{1}. The X counter's most-significant bit (m.s.b. X) is connected to A_{9} of the X memory and selects either page X_{0} or X_{1}.
Active-low comparator outputs feed a NOR gate, the output of which is injected into the video signal to produce a positive bright-up pulse when X and Y comparisons are true. This pulse is also used to clock a 9 -bit video memory counter, connected to address lines $\mathrm{A}_{0.8}$ of the video memory, which selects the next set of coordinates for comparison. After field 1, i.e. after one complete picture has been displayed, this counter is reset. Four bytes of memory are required for each point displayed and the two bytes not holding coordinates are filled with null characters, i.e. 01_{16} for $\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{Y}_{1}$ and FF_{16} for X_{1}. During line and field blanking the comparators are disabled so coordinates represented by these bytes have no effect. Blanking pulses are regenerated from sync. pulses but this is not shown on the diagram.

Coordinates must be stored in the video memory in time-sequential order with field zero before field one and low-value Y coordinates in a field before higher values and the same for X coordinates within a line. Bytes stored in video memory are not true coordinates but related to them.

X coordinate <255 - store X coordinate
directly in X_{0} and put FF_{16} in corresponding X_{1} location.
X coordinate $>255,<511$ - store X coor-dinate-256 in X_{1} and put 01_{16} in corresponding X_{0} location.
Even Y coordinate - store Y coordinate/2 in Y_{0} and put 01_{16} in corresponding Y_{1} location.
Odd Y coordinate - store (Y coordi-nate-1)/2 in Y_{1} and put 01_{16} in corresponding Y_{0} location.
Values of X and Y lower than say 10 will occur during the blanking period and will not be compared or displayed. Possible hexadecimal addresses for the four pages of video memory connected to the processor buses would be

$$
\begin{array}{ll}
\mathrm{X}_{0} & 1000-11 \mathrm{FF} \\
\mathrm{X}_{1} & 1200-13 \mathrm{FF} \\
\mathrm{Y}_{0} & 1400-15 \mathrm{FF} \\
\mathrm{Y}_{1} & 1600-17 \mathrm{FF}
\end{array}
$$

Examples of five points loaded into video memory are shown in this table

$\begin{aligned} & \text { Coordinates } \\ & (\mathrm{Y}, \mathrm{X}) \end{aligned}$		Y0	Y1	X0	X1
40	40	20	01	40	FF
160	258	80	01	01	02
160	262	80	01	01	06
41	60	01	20	60	FF
301	286	01	150	01	30

J. M. Graham

Dunstaffnage Marine Research
Laboratory
Oban
Argyll

Non-linear rotation sensor

Useful when both coarse and fine adjustments have to be made using the same rotary control, this circuit provides between one and 16 pulses for each slot passing the sensors, depending on the disc's rotary speed. These pulses increment or decrement counters depending on the direction of rotation of the disc. Any number of counters may be used, whether binary of b.c.d. Resistor \mathbf{R}_{4} is chosen to suit the disc and R_{3} is to set the 555 timer to the highest frequency possible.
D. F. Cook

Cleveland
Yorkshire

Fig. 1 (b)

Simple divide-byfraction circuit

A stable p.l.1. with a frequency range of 0.01 Hz to 100 kHz may be obtained using the XR-2207 v.c.o. and an XR-2208 operational multiplier. These i.cs are used in two ways - to design a divide-byfraction circuit shown schematically in Fig. 1(a) and a low-noise amplifier as shown in Fig. 1(b). In both cases the mathematical treatment is the same and can be derived using Fig. 1(a). Since

$$
\mathrm{f}_{\mathrm{in}}=\mathrm{V}_{\mathbf{l}} / \mathrm{V}_{\mathrm{cc}} \mathrm{R}_{1} \mathrm{C}_{\mathrm{l}}
$$

and

$$
\mathrm{f}_{\text {out }}=\mathrm{V}_{2} / \mathrm{V}_{\mathrm{cc}} \mathrm{R}_{2} \mathrm{C}_{2}
$$

it follows that

$$
\mathrm{f}_{\text {out }}=\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{R}_{2} \mathrm{C}_{2}} \mathrm{f}_{\mathrm{in}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \mathrm{f}_{\text {in }}
$$

for $\mathrm{C}_{1}=\mathrm{C}_{2}$. Also, the system functions as a simple divide-by-fraction circuit in which the fraction frequency is set by the ratio of $\mathrm{R}_{1}: \mathrm{R}_{2}$.

The same holds for Fig. 1(b). Under the assumption $f_{\text {out }}=f_{\text {in }}$,

$$
V_{1}=R_{1} V_{2} / R_{2}
$$

i.e. the circuit may be used as a low-noise amplifier. A practical circuit is shown in Fig. 2. Values of R_{1}^{\prime} and C_{1}^{\prime} can be calculated according to the lock and capture range as usual.
Kamil Kraus
Rokycany
Czechoslovakia

Microcomputer organ interface improvisation by Forth

Complete details of a vocabulary that will provide polyphonic improvisations when used

 with the Nascom 2 organ interface described in the June and July 1983 issuesThe Forth application to provide simple polyphonic extemporizations from a given theme was decribed in outline in last July's issue. Full details of this are now given, including the entire vocabulary (List 3) and a glossary.
The first steps were to find Forth and to put it in a convenient place in ram. This was done by assembling 8080 FIG-Forth release 1.1 (a public domain listing) under the Nascom Zeap editor assembler. Having removed most of the comments, a month of spare-time typing yielded a 40 K edit buffer which took about 15 minutes to assemble. The origin was placed at 1500_{16}, leaving space below Forth for the essential parts of the organ interface plus a substantial scratchpad area for additional console fields. A Forth-compiled editor from the Forth Installation Manual was added, together with simulation of virtual memory, to suit a Nascom 2 with 64 K of ram but without discs.
Forth uses postfix or reversed Polish notation, e.g. HEX $2 \mathrm{~A}+$. when entered returns the answer C. Code groups are separated by spaces. Each group is interpreted as a word (a command, variable or constant) or, if it is not in the vocabulary, a number if possible. Thus FFFF is meaningless in standard Forth unless operation is in a suitable number base such as hexadecimal, which as above is achieved by the word HEX. In this simple example the two code groups after HEX are interpreted as numbers and are transferred to the stack. The + pops them into the HL and DE register pairs respectively, adds them and pushes the answers back onto the stack. The . (pronounced 'dot' although 'print' might be more appropriate) displays the answers and leaves the stack empty.

At first sight, a screen of Forth code such as List 2 might be incomprehensible whilst having a startled appearance because of the sprinkling of exclamation marks, but the mysteries soon fall away.! is pronounced 'store' and it is a word which does just that, e.g. 9400 TUN !

by R. D. Easson

stores the value 9400 (in whatever number base has been set, being 16 throughout this article) in the variable TUN, which was created with initial value 7400 by loading 0 of List 2. The complementary word is @, pronounced 'fetch'. C! and C@ are the equivalents for single-byte numbers, although these are kept on the stack as two-byte numbers, one byte being zero. Double-precision (four-byte) numbers are also provided for but are not used in this article. The letter U as in U . or $\mathrm{U}<$ indicates unsigned, so that positive 16 bit numbers can go up to FFFF. (Any number base can be used. If HEX B250 is entered and operation than changes to base 36 (by DECIMAL 36 BASE!) the number is returned by as Z 80).

Forth has two stacks. The principal one is referred to as the parameter or computation stack, or just as the stack. The other one is called the return stack, used mainly as a temporary parking area for numbers which would otherwise get in the way on the parameter stack.

DUP, SWAP, OVER, DROP and ROT (pronounced rote, short for rotate) and their four-byte equivalents rearrange the stack. ROT, for example, brings the third (two-byte) item to the top. DUP duplicates the top item; OVER duplicates the second item and pushes it on top; SWAP swaps the two top items; and DROP drops one item.
Conditional tests such as $=$ take two parameters from the stack, replacing them with the true (1) or false (0) result, which is in turn destroyed when the test result is used.
An example of a definite loop occurs in List 2 , line 1 , as far as 'loop'. This also illustrates one use of the return stack. The 'limit' for the first loop (10 H) and its 'index' (initially 0) are put to the return stack when the loop is executed. The

Forth word I copies the top item on the return stack to the parameter stack, thus allowing the index to be used as a parameter in the loop itself, as in the same example from List 2.
Examples of indefinite (conditional) loops occur in List 2 lines 14 and 15 and in List 3 Screen 6 lines 2 and 3. Forth does not have a 'goto' instruction so that its users are forced to structure their programs and not to be quite so lazy as they might otherwise be.
Perhaps Forth is best known for its socalled self-compiling ability, meaning not that it compiles itself but that it is compiled by Forth. In many applications, such as the one described in this article, this need mean no more to the user than that Forth words may be strung together to form new words, as is done throughout List 2 and List 3. For example, line 7 of List 2 comprises the 'colon definition' of I.PDPS. When this is loaded, I.PDPS is compiled as a new word in the Forth dictionary. I.PDPS can then be used, which causes the words in its definition to be executed, i.e. the value of variable TUN is fetched, incremented, the result stored at 1430 H , and similarly for IMP. I.PDPS will disappear after a cold start unless the appropriate Forth start-up parameters are changed. In this way a program can be developed on screens, which may be held in virtual memory or in ram, until a satisfactory version is obtained. This can then be loaded from cold and kept in the protected dictionary. It is not necessary to use the editing screens: the vocabularies of Lists 2 and 3 could be compiled directly.

For the application of Forth described in this article it is not necessary to delve into it more deeply, but ORCF from List 1 is taken as an example of a Forth word. Lines 8140 to 8155 comprise the 'head' and lines 8160 to 8240 form the 'body'. The code pointer distinguishes between the different kinds of word (machine code, colon definition, constant or variable). If ORCF were written in Forth rather than

1545		8000		ORG	1545H				
1545		8005		ENT					
1545	0 A	8010	NEXT	LD	A（EC）				
1546	15．51	8015		DEFS	1ESIH				
3397	00	8020	DUMF＇	DEFE	0				
3398	0010	8025		DEFS	10 H				
33E：5	85	8030		DEFE	B5H		UUCF 1		
33E：6	55554346	8035		DEFM	／UUCF／				
33EA	E1	8040		DEFE	＂1＋80H				
3ЗеЕ	9033	8045		DEFW	DUMF－7		Vocabulary－link to		
33 ED	EF33	8050	unce 1	DEFW	\＄＋2		Code poiriter		
33EF	CS	8055		PUSH	EC $(1430 \mathrm{H})$		Save forth If		
33 CO	2A3014	8060		LD	HL（1430H）		MSE of CFF lo E		
33 C 3	1600	8065		LD			LSE of CFF to C		
$33 \mathrm{C5}$	4 E	8070		LD	C（ HL ）				
33C 6	79	8075		LD	A C		Fto A		
33C7	D6FF	8080		SUE：	EFF．		Firisshif		
33C9	2806	8085		JR	2 OBH		erid of frame		
33CE	23	8090		INC	HL		lnc FDF		
33 CC,	7 E	8095		LD	A（HL）		Data to fie		
33 CD	02	8100		LD	（EC）A		corisole field		
33 Cr	23	810.5		INC	HL	；	Inc PDF f		
33CF	1894	8110		JF	－DAH	！	Go back for more		
$33 \mathrm{D1}$	C1	8115		FOF＇	EC		Return forth		
3302	23	8120		INC	HL		Irec Fodp		
3357	22.3014	8125		LD	（1430H）HL	；	Fark for		
33D 6,	C34515	81.30		JF＇	NEXT		－Forth Lriterpr	ter	
3309	00	8135		DEFE	0				
33DA	84	8140		DEFE	84H		OKCt		
33D	4 5 5243	8145		DEFM	／0RC／				
33 DL	C6	8150		DEIE：	＂ $\mathrm{r}+\mathrm{\$ 80H}$				
33 DF	E533	B15s		DEFW	uucf 1－8		voe－1rim to yuk		
33 E 1	533	8160	OfCF	DEFW	\＄＋2		Code poriter		
33 E 3	［） 4	8165		EXX	；Save 1 F				
3359	0610	8170		L0	$\mathrm{E}^{10 \mathrm{H}}$		Set byter courit		
3356	E 1	8175		FOF	${ }^{\mathrm{H}} \mathrm{L}$ ．		Top stact item to		
335 7	09	8180		EXX	；		（2ras CF source 8	dest	
33E． 8	E1	8185		FOF	HL		Next stack 1tem		
33 E 9	D9	8190		ExX	；		（1st CF source）		
335．A	7E	8195		L．D	A（ HL^{\prime} ）		Load byte from 2		
33EE	D9	8200		EXX					
ЗЗеС	E6	820E		OR	（ HL ）		Combitie twe CF bust		
33ED	23	8210		INC	HL．		Inc CFP		
33EE	D9	8215		EXX					
33EF	77	8220		LD	（ $\mathrm{HLL}^{\text {－}}$ ） A		Combiriers byte to 2		
3350	23	8225		INC	HL		Ita Cff		
33F 1	1057	8230		DJNZ	－7		Loop until corie		
33F3	D9	8235		EXX	；		Returrif		
3354	C34515	8240		JP	NEXT		Goto Forth Interpr		
33F7	85	8245		DEFE	85.		Cc4／3		
3318	4343342 F	8250		DEFM	CC4／				
33 FC	E3	8255		DEFE；	$\cdots 3+80 \mathrm{H}$				
3350	Da33	8260		DEFW	ORCF－7		Voc－link to OfCF		
33 FF	0134	8265	CF／33	DEFW	\＄＋2		Code poititer		
3401	00	8270		NOF＇					
3402	211814	8275		L．D	HL 1418 H		；Ready Fu poiniter		
3405	D9	8280		EXX	；Save IF＇				
3406	0618	8285		L．	E＇ 18 H		；Set reste courit		
3408	2A3214	82.90		LD	HL，（14：32		；keady outprst For		
340E：	110014	8295 8300	；	LD	DE 140 OH	$\begin{array}{r} i \\ 150 \end{array}$	Ready FO pointer register riumber．		
340 E	$1 A$	8305		L．	A（ DE^{\prime} ）		；Load f0 byte		
340 F	D9	8310		EXX					
3410	96	8315		SUE	（HL）		；Sub FU byte from	FO	orie

List 1．Four Forth words in machine code provide fast communication between the Forth stack and the interface console and data fields．Two further words hasten semitone transposition．

3411	2807	8320	Jk	29 H	；How if there＇s no charige
3413	7E	8325	LD	A（ HL ）	：Ready FU ryte
3414	D9	8330	ExX		
34.15	73	8335	L0	（ HLL. ＇）E＇	；Fegrio．to data fiela
3416	23	8340	INC	${ }^{1} \mathrm{~L}$	；Ince status to data field
3417	77	8345	Lo	（HL＇）${ }^{\text {HL }}$	；Inc Fop（FO）
3418	23	8350	INC	HL	
3419	D9	8355，	EXY	HL	Iric fu pointer
341 A	23	8360	INC	HL	Tre fu poirter
34.15	19	8365	EXX		Iric Fo poiniter
3410	13	9370	INC	DE	Luop urital dore
3410	10 F	93／5	DJNZ	－1	Feady frame byte
341%	3FFF	8300	Lod		Frame byte to data fld．
3421	77	8395	LD	（HI，＇）A	Ince PDP（FO）to Tposti．
3422	23	8390	INC		Fark PDP（FO）
3423	223214	B395	LD	（1432H）Hit	Feturn IF
3426	D？	3400	EXX	；	
3427	00	8405	NDF		Goto Forth Interpreter
3428	C34515	8410	JP	NEXT	Goto forth lilerpretar
342E	83	8415	DEFE	B3H	CF．
342 C	4346	8420	EFM	／CF／	
342 E	EE	8425	DEFE	CP43－8	Voc－1int to CC4／
3425	F733	8430	DEFW	CP43－8	
3431	3334	8435 CF	OEF	\＄${ }^{2}$	Cave Pormer
3433	D9	8440	ExX	DE	Desturation from sta
3434	D1	8445	FOF	HL，	Source from stact
3435	E． 1	8450	FOF	HL	Set byte courit
3436	0 11000	845	Lo	\＆${ }^{\text {c }}$	Do CF transfer
3439	EDEO	8460	LDIR	：	Feturn IF
343 E	D^{9}	8465	ExX	，	Goto Interpteter
343 C	C34515	8470	JF	NEXT	2／MOD
343 F	95	8475	DEFE：	85，	
$34+1$	2．141341	：1490	DEFM	$2 / \mathrm{MO}$	
3＂4＂	C4	a485	DEIE	－0．80H	－Ver lint to Ct
$344^{\text {c }}$	1）${ }^{4}$	9490	DEIW	Cf \％	Vise litip to
2147	4034	3455 MOL	DEIW	31：	Code poiriter
34.4	11	$\mathrm{E}^{\text {con }}$	FOF	H	geliti divite bo ？
294 A	［ C	Star	3x．	11	rave alotient
2小4	5.4	45.10	10	${ }^{11}$	；）Save arotiert
$3+415$	＇小	\％1\％	1．1）	\ddagger L．	
$34+$	： 101100		L）	${ }^{\text {HL }}$	
2911		85，	St	NC： 5	？）
3450	210104	850	1．．${ }^{\text {b }}$	HLL 1	
3956	F	0530，	Fust	HL	；Muotierit to st
14：	$\mathrm{n}^{\text {² }}$	8590	FUSH	DE	＊Mootierit to stack
2458	C3453	8545	${ }^{\text {JF．}}$	NEXT	－Goto Interpreter
34，\％	8	gesio	DEIE	63H	2＊M
34.8	3，A	95	DLFM	＇2\％	
345	Ct	45611	Defer	M $M+80 \mathrm{H}$	c－lint to 2／
34\％	2F34	85，	OEFN	Most－	－Coce poiriter
34．1	6.334	85 70 ML	DEC	＋${ }^{\text {＋}}$＋	；Get deta from stack．
344.3	［．1	81.7	POF	HL	；Get deta from stack
3464	$\mathrm{CE} 2^{\circ}$	8596	SLin	L	；Shift carry if
34.4	3004	的505	JFi	NC 0	；）Adr carry ir
3468	110001.	8590	［1）	DE 0100 H	；）preserit ario
346 L	14	85，94．	ADO	HL Df	；）Pustr ariswer
34.6	F_{5}^{5}	8600）	FUSH	4 HL	；Coto Iriterpreter
3400	（345its	8605	JF＇	NE XT	；Goto Iriterpreter

machine code it would have a different code pointer（the address of a machine code routine called＇do colon＇）followed by a series of two－byte numbers called the parameter field，being the code pointer addresses of the words which would form the body of the definition．When such a word is executed，each code pointer ultimately leads to a machine code routine， which might be many levels below it．
＇Starting Forth＇by Leo Brodie（Prentiss Hall，1981）provides a more detailed introduction to Forth．

Forth as＇composer＇

Following the installation of Forth，the next thing was an interesting test to see whether Forth and the organ interface software would co－exist．Fortunately they did．Four Forth words were then written to enable Forth to work in the interface data fields（in data format）and console fields．These were written in machine code （List 1）rather than Forth partly to achieve faster operation（a challenge to someone to prove that Forth is faster？）but mainly because the elements of three of them already existed，the extra one being ORCF．

The next objective was to achieve the simplest kind of improvisation，a parallel doubling of the theme at any chosen interval（and，as it happened，at any desired pitch for each part）．Thus far，
therefore，a sledgehammer to crack a walnut，but of course with further development in mind．

It took two weeks of spare time from the coexistence test to reach this objective，the additional nine－word vocabulary for which is shown in List 2，which also illustrates two console fields．T．OUT later became the two words TOR2 and OWT，but the other eight words all survive（albeit with sonme changes）in the current vocabulary （List 3）which was completed five weeks later．Certain weaknesses were identified in the vocabulary of List 2：
－use of hexadecimal addresses rather
than variables and constants（this becomes tedious if more than a few such numbers are required）
－lack of clear functional allocation of console fields
－badly structured multiple function of T．OUT
－eccentric way of leaving the WHILE loop，with the bogus conditional in ？AA inefficient use of／MOD and 2 for the nine－bit divide and multiply by two required for semitone transposition． （The substitution of $2 / \mathrm{MOD}$ and $2 \star \mathrm{M}$ also on List 1 speeded things up by a factor of three．）

```
CCEETET
    O HEX 740Q VAK TINN BAOU VAF: IMF
```



```
        10 DO 1414
        10 0 DO OD2O I + Ce 2/MOD ROT + 0D20 I + C'
        IF gO FLSE O THEN LOOF DROF;
```



```
        2+1432, 2+14:30
        U.CFS UUCFL IIDOO 1418 CF DDO0 0018 CF,
```



```
        AA 1430 2- AAAA = IF. Improvisistior, completed
        GUST THEN 1;
        CIFGANUM I,CF I.EDFE EEGIN DODE ?AA WHILE
    S W.CFST,OUT REGEAT;
```

140080 FF TF FF FF FF FF FF
14080000000000000000
$\begin{array}{lllllllll}1910 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 \\ 1418 & G 0 & F F & \text { F F } & \text { FF FF FF FF FF }\end{array}$
$\begin{array}{lllllllll}1418 & 90 & \text { FF FF FF FF FF FF FF } \\ 1420 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$
$\begin{array}{llllllllll}1420 & 00 & 00 & 08 & 00 & 00 & 00 & 00 & 00 \\ 1920 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00\end{array}$
List 2．Nine－word vocabularly provides improvization as parallel＂organum＂in two parts．Two of the console fields as set by I．CF are also shown．

```
1 LIST,
    0 HEX G400 VAR TUN 8900 VAR IMF I VAR FI 1 VAR FOO 1 VAF P1
```



```
        ODOO CON FI ODIG CON FD 1418 CONFO VAK IMF2 9100 VAF IMF3
        143日 CON F1 1450 CONF2 1460
        14E:0 CON OFZ 14CB CON OF3 14EO CON OF 4 O CON F4 1498 CON OF
        14EO CON OFZ 14CB CON DFS 14EO CON OF4 O UAR FOFU O VAF FOFD
        U.CFI FI O 1430 ' UUCF: 1430 E FI '
        I.CF 100 DO OFIB + I + C! LOOF 8 0
        LOOFE DOFI LOOF BOFIC' FD CF: FUCF FO CF
        TU OFOF
        +CI 1 +LDOFFROF I + CO 2*M + DUF FFF SWAFFU % + I
        TO a +LOOF DROF
```



```
    15
    zluSt
        TDE: }060\mathrm{ OD FDCC + I + CO 2/MOD ROT + FDC + I + C'
        IF 80 ELSE O THEN LOOF DFOF
        CSOHE: FOFHE O = 0= IT FOFHE O O DO TDE: LOOF THEN
        CSCE: O DO OF 1 12 + I + 0 0=0= IF I I IEEAVE THEN LODE:
        O}=\mathrm{ IF OF2 FD + + 0 0= IF DUF DF1 12 + + SWAF DF2 C
        TUAF 0 0 6 DO FU TRDHE FD OF? CF, THEN 1 TMEN DROF
        + C' 1 + OOF DFGFF, SWAFFUE + I
        THIIA OFS OOF DROG
        THDA OFZ FD CF TIA TUA TU OF: CF
        TKCUHA OF 2 FD LT TDE: TDF. TD OFS CF
```



```
        1 THEN DROF: SF OF2 FU CF TRUHA FU OF2 RIT THEN TIHMA
    1E: AMS CSCE c'SCR;
O-
MLIST
SCF: £
    TRIN FOFUS O= 0- IT FOFU B 0 NO TAJ IONF THEN
    TOR FOFD B 0= 0= IF FOFE O DO ID LONE THEN
    TORZ}\mathrm{ TKD TRULIFD O + FUQ + NECF
    TORZ TRD TFUHNB + FUB + OROF TY Q + FUS B + ORCN
```



```
    TK.1-2
    TR2-1 6 0 RO TDe LONF TD ;
```



```
    MF. (% 1+FO
```



```
    OWT rry% FMFOCO
TKIAD
6 TKIAL
NA, FIE O GAAA = O= ; 
    MWIT "Improvisation completed " QUIT ;
    U.CFS DUF 3 = IF TORS ELSE TON2 THEN OWT FEFEEAT OROF KWIT
    ORK T2 Ce T2 1+CE T! C: T1 1+C! T2 C! T: 1+C!
    D3FT3CET3 1+CE T3 C: T3 1+ C:
```



```
    OOD1 FOO DUF POFU EOF3 EOF2 ' I.PDFS DU!
```



```
    FI Fi,
    UDOF2 FOFU O FOFD P IF FD ELSE FU THEN OF 2 CF
    LUDF2 F2 FI CF, P2 O FI U.CFI FI O P2: FI FUCF% FI F2 CF
```

The operation of TU and TD (and, later on, TR1-2 etc) may be understood from the particular wiring sequence (chosen by chance before even translate mode has been planned) for the 128 connections to the keying registers. The three divisions of the organ for which the interface was designed are designated M1 (Manual 1 or Hauptwerk), M2 (Manual 2 or Rugpositiv) and Pedal, with 49 notes on each manual and 30 on the pedal, allocated as in Fig. 1. The odd feature of this arrangement is that a carry from the top (most-significant bit) of one register appears at the bottom of the register below it in the numerical sequence.
List 2 serves as an introduction to the larger vocabulary of List 3 , in which the earlier weaknesses are corrected although Forth experts could no doubt find many more. In the shorter vocabulary, the only word which the user need know about is ORGANUM, which unlike the List 3 version does not take any parameters from the stack, so that it is necessary to edit and reload the Forth source code if different transpositions are required. In the List 3

List 3. Larger vocabulary provides organum and canon
in two or three parts, variation on a theme
("'melisma") and variation with accompaniment
("motet'). AMS harmonizes two of the parts.

3
4
: UDF3 F3 FI CF F3 PI : U.CFI FI F3 CF
FI FU CF TR1-2 TR2-FFU OF3 CF, FI EF3: ;
TOFEF AMS FUCF B + FU $8+$ OFCF
TORCF3 OF 1 OF 2 TORCF OF3 3 + FU B
UDEF UDF 1 UDF2 OF 1 OF2 TOFCF:
OIFTR T2 TA E OF OF2 TOFCF
$\begin{array}{lll}\text { DOT1 } & F_{1} \text { e DUF T1, DIF } 2+F_{1}: \\ \text { DIFT1 } & \text { T1 }\end{array}$

DIFT3 T3 ETA E-1-T3: ; OUFFI! P2:

T2* T2 a 2×12
£ 日
U IF DOD1 UDF 1 O OF IF DOD1 UDEP DOT1 DOT2 ELSE T1 O T2
UDF 2 OF 1 DF 2 TORCF DJFT1 DOT2 THEN THEN OWT : 0002
2CLEOF EEGIN UDRD2 ?AA WHILE FEPEAT WRAA
2CANON STUP 2CLOOF KHIT:
UDF2M F2 FI CF: F2 EPI, U.CF
FI OF2 CF
FI OFZ CF: ;
UDRD.M T1 O T2 E 2DUF = IF DOD 1 UDF 1 UDF2M DOT 1 DOT2 2DREF THEN TMEN FI FU CF: OWT ; DOT1 ELSE DDD2 UDF2M DIFT1 DOT2 MLODF EEGIN UDFD.M ?AT
MLELISMA EEGIN UDED.M ?AA WHILE REFEAT HEAA ;
UDRD3 T1 ET T2 E US IF T1 E
IF DOD1 UDF1 TORCF OIFT2 OIFT3 DOT
If DOD 1 UDF 1 UDF 3 TOFCF 3 DIFT2 DOT1 DLSE T1 E T3 E
ELSE DOD3 UDF 3 TORCF3 DIFT1 DIFT2 DOT3
LIST
ELSE T2 E T3 E UK IF T1 E T2 E =
IF DOD 1 UDF 1 UDF 2 TOFCF 3 DIFT3 DOT 1 DOT2
ELSE T1 DOD 2 UDF 2 TORCF3 DIFT 1 DIFT3 DOT2 THEN
IF DOD 1 UDF 1 UDF2 UDF3 TORCF
ELSE DOO3 UDF 3 TORCF 3 DIFT1 DIFT2 DOT2 DOT3
ELSE T2 - T3 0 = IF DOD2 UDF:2 HDF. 3 TORCF3 DIF ELSE DOD3 UDF3 TORCF 3 DIFT1 DIFT2 DOT3 THEN 1 DOT2 DOT3 then then then owt ;
3CLOOF EEGIN UDFDB PAA WHILE REFEAT WRAA
3CANON STUF 3CLOOF K'WIT

0 K
10 LIST
SCFi \& 10
: UDEFF UDF 1 UDFZF OFI OF? TORCF
UDKDZF T1 TZ E IF DOD 1 UDEFF DOT 1 DOT2 T2* EL_SE T1 e
OF1 OF2 IF DOD1 UDF. 1 OF2 OF 1 TOFCF DIFT2 DOT1 ELSE DOD2 UDF. $2 F$
OF1 OFZ TOFCF DIFT1 DOT2 T2* THEN THEN OHT;
2FCLOOF EEGGIN UDROZF ?AA WHILE REFEAT WFAA
DU2: F1 E DUF O T1 , D1R T1 o EOF 3 e $10 \mathrm{~m}+$ TZ

MOTET E:OFMO STUF

 2CLOOF KhIT

15

vocabulary five words are available to the user: ORGANUM, 2CANON, MELISMA, 3CANON and MOTET, executed as described in the glossary. (Apologies for the fanciful use, or misuse, of some of these terms).
It is assumed for the harmonization rule that the improvisation is a strict duo or trio, that is, with a single line of notes on each of two or three divisions of the instrument.
An incidental point is that some of the words can be used degenerately (e.g. 000 0 MELISMA) to strip out the redundant information which can be caused by L in translate mode. The difference is not usually significant: a saving of perhaps 20% of memory.
I am indebted to Ernest Hart for

Fig 1. Allocation of the 16 keying registers. By accident rather than design, the register numbers count in the opposite sense to the bit numbers. Registers also overlap between divisions of the organ. Register and bit-number registers $0-7$ are used for stops and thumb-pistons.
drawing my attention to the theme of Tallis' canon, arranged with remarkable forethought about 400 years ago to give the improvization vocabulary something to get its teeth into. The theme comprises four phases of eight notes, each having the same value. The phrases are

G	G	F\#	G	G	A	A	B
G	C	C	B	B	A	A	G
D	C	A	B	B	A	A	G
D	E	F\#	G	B	A	A	G

To get consistent results the theme
needs to be in strict time, which can of course be achieved by the use of translate mode. If the notes are crotchets the first of each pair of repeated notes can be treated as a dotted quaver followed by a semiquaver rest. The possibilities appear endless - for example, by changing TUN and IMP one can produce an intricate three-part canon form from a melisma of a melisma of the original theme.
An improvement needed before the vocabulary is developed any further is to
provide buffers in the console fields, between the three divisions of the organ, to avoid the ambiguities which can occur at the extremes due to the shared registers (Fig. 1). The structure of the two-part words could also be improved to provide any of the three permutations, and more could be done to provide variation of speed between parts, rather than just having T2* in UDRD2P. Beyond that, some rules for the movement in pitch of one part in relation to another might be useful. WNW

Current followers

Adaptable universal op-amp can be used in any of four basic configurations

The conventional operational amplifier such as the 741 type is a very high voltagegain stage, the single-ended output voltage being proportional to the difference voltage between the two input terminals. This basic amplifier is easily configured into two gain stages, a trans-resistance stage and a voltage-gain stage, as shown in Fig. 1.

It is not so simple to configure the conventional operational amplifier to produce a current gain stage with well-defined current transfer ratio, low input impedance and high output impedance; nor a transconductance amplifier with well-defined transfer ratio, high input impedance and high output impedance.

There have been a number of proposals to develop a universal operational amplifier which has a differential input and a differential output. Such a circuit has the distinct advantage that it may be configured into any of the four basic amplifier stages without the complex multiple-pair resistor-matching requirements that typify many current and transconductance amplifier circuits using conventional operational amplifiers.

Current-follower characteristics

A current follower is a circuit with extremely low (ideally zero) input impedance and an extremely high (ideally infinite) output impedance. The net performance when used with a signal source is to produce a current drive to a load equal in value to the short circuit current obtainable from the input signal source, as shown schematically in Fig. 2 (a). In contrast, Fig. 2 (b) shows the better known voltage follower. Comparing the two shows that the current follower is the antithesis of the voltage follower.

Practically, it is simple to configure the standard operational amplifier as a voltage follower, it being merely a special case of the voltage amplifier shown in Fig. 1. However, realisation of a current follower is not so straightforward. Nordholt* has shown that a current follower may be constructed using a balanced current source and sink with two series-connected Zener diodes strapped across the supply pins Figure 3 (a) shows a schematic of the circuit. The result is that the amplifier is effectively biased with floating d.c. supplies and the circuit behaves as a conventional operational amplifier, with the exception that it has a differential output as well as input. This basic building block can be configured into almost any type of

[^2]by F. J. Lidgey
Ph.D., B.Sc., M.I.E.E.

amplifier, as shown by Nordholt. In this article, attention is restricted to using this differential-input, differential-output operational amplifier as a current follower, as shown in Fig. 3 (b).

Practical current follower

Taking the circuit of Fig. 3 as a basis, I built the current follower shown in Fig. 4 for evaluation purposes. It is not suited for direct implementation as an integrated circuit, but it is feasible to produce a similar performance from a circuit which could be manufactured relatively easily as a singlechip device.
The section of the circuit associated with $\mathrm{OA}_{1}, \mathrm{Tr}_{1}, \mathrm{D}_{1}$ and R_{1} produces a constantcurrent source of about 20 mA . Similarly the circuitry associated with $\mathrm{OA}_{2}, \mathrm{Tr}_{2}, \mathrm{D}_{2}$ and R_{2} produces a constant current sink of about -20 mA . The potentiometer in the current source bias network provides trimming of the source to enable the output offset to be reduced to zero. The load current is limited by the maximum output available from the operational amplifier; for example, if OA_{3} is a 741 , then the limit is approximately $\pm 10 \mathrm{~mA}$.

Dr Lidgey is Principal Lecturer in electronics, Department of Engineering, Oxford Polytechnic

Analysis of the current follower

An incremental equivalent circuit of the current follower is shown in Fig. 5, the operational amplifier being modelled by the input impedance of R_{i} (typically $1 M \Omega$), output impedance of R_{0} (typically 100Ω) and dependant generator A. V_{i} in the output circuit, where A is

$$
A=\frac{A_{0}}{\left(1+i f / f_{p}\right)}
$$

A_{0} is typically 10^{5} or so and f_{p} is the internal compensation pole, typically at 10 Hz , giving the amplifier unconditional stability when used with any value of resistive feedback. The amplifier's bias network is assumed to be ideal, giving a full differential input/output performance. From the diagram the input current $\mathrm{i}_{\text {IN }}$ is
$\mathrm{i}_{\text {IN }}=\mathrm{i}_{\text {OUT }}+\mathrm{i}_{\mathrm{i}}=\mathrm{i}_{\text {OUT }}+\mathrm{v}_{\text {IN }} / \mathrm{R}_{\mathrm{i}}$
Solving Kirchhoff's voltage law gives the input voltage
$v_{\text {IN }}=-A . v_{\text {IN }}+i_{\text {OUT }}\left(R_{o}+R_{L}\right)$.
Combining equations (1) and (2) to eliminate $v_{I N}$, the current transfer ratio is obtained,

1
$\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\text {IN }}=\frac{}{1+\left(\mathrm{R}_{0}+\mathrm{R}_{\mathrm{L}}\right) / \mathrm{R}_{\mathrm{i}}(\mathrm{A}+1)}$
Generally $R_{i}(A+1) \gg\left(R_{o}+R_{L}\right)$ and so $\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\text {IN }} \approx 1$

Using the binomial expansion, equation (3) gives
$\mathrm{i}_{\mathrm{OUT}} / \mathrm{i}_{\mathrm{IN}} \approx(1-\mathrm{E})$
where $E=\left(R_{0}+R_{L}\right) / A(A+1) R_{1}$ is the error in the current follower from the

(a) Conventianal op-amp with floating supplies

(b) Current follower

Fig. 3. Op-amp using floating power lines and giving effective differential output. Current follower arrangement shown at (b).

Equivalent circuit with on ideal current follower
(a) Current follower stage

Equivalent circuit with an idea! voltage follower
(D) Voltage follower stage

Fig. 2. Current follower at (a) produces current into R_{1} equal to current available into short circuit from i_{s}. Voltage follower at (b) ideally provides voltage across R_{1} equal to opencircuit voltage from source.
ideal. To assess the accuracy of the current follower E can be evaluated for particular values of the circuit components. For example, taking the typical values stated earlier for the operational amplifier gives the d.c. value of E as

$$
\begin{aligned}
& \mathrm{E}=10^{-8}\left(1+0.01 \mathrm{R}_{\mathrm{L}}\right) \\
& \mathrm{E}=1.01 \times 10^{-7} \text { for } \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega
\end{aligned}
$$

The accuracy of the circuit is clearly excellent at low frequencies; however, the
performance degrades at the higher frequencies where the product of $(\mathbf{A}+1) \cdot \mathrm{R}_{\mathrm{i}}$ reduces due to the high-frequency roll-off in the operational amplifier gain A .

Whilst equation (3) above is correct for the ratio of output current to input current the input current i_{IN} will not be equal to the Norton equivalent signal source current, is, unless the input conductance is infinite.
Referring to the circuit of Fig. 2 (a), the

Note OA1 $23-74$: DA3 offset pot is trimmed to zero the output when the input is short-circuited and R_{5} is used to zero the output when the input is open-circuited.

Fig. 5. Incremental model of current follower of Fig. 4.
significant parameter for assessment of the current follower is the ratio $\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\mathrm{S}}$. Now $\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\text {S }}=\left(\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\text {IN }}\right) .\left(\mathrm{i}_{\text {IN }} / \mathrm{i}_{\text {S }}\right)$
and clearly one also needs to evaluate the second term $\mathrm{i}_{\mathrm{IN}} / \mathrm{i}_{\mathrm{S}}$. From Fig. 2 (a)

$$
\mathrm{i}_{\mathrm{IN}} / \mathrm{i}_{\mathbf{S}}=\mathbf{R}_{\mathbf{S}} /\left(\mathbf{R}_{\mathrm{S}}+\mathrm{Z}_{\mathrm{IN}}\right)
$$

where $Z_{\mathrm{IN}}=v_{\mathrm{IN}} / \mathrm{i}_{\mathrm{IN}}$.
From equations (1) and (3), the input impedance Z_{IN} is given by
$\left.1 / Z_{\text {IN }}=1 / R_{i}+(A+1) / R_{0}+R_{L}\right)$
$\therefore Z_{\mathrm{IN}} \sim\left(\mathrm{R}_{\mathrm{o}}+\mathrm{R}_{\mathrm{L}}\right) /(\mathbf{A}+1)$
as the second term of the r.h.s. of equation (6) is dominant. Taking (4), (5) and (7) gives
$\mathrm{i}_{\text {OUT }} /$ is $\left._{\text {S }} \sim \mathbf{R}_{\mathbf{S}} / \mathbf{R}_{\mathrm{s}}+\left(\mathbf{R}_{\mathrm{o}}+\mathbf{R}_{\mathrm{L}}\right) /(\mathbf{A}+1)\right)$
Equation (8) shows that if the operational amplifier gain A is high then the follower will behave almost ideally, i.e. $\mathrm{i}_{\mathrm{OUT}} / \mathrm{i}_{\mathrm{S}}=1$. But, if the operational amplifier is a utility device with dominant-pole compensation, then by combining equations (3) and (8) the complete current transfer function is obtained

Fig. 6. Frequency response of current follower shown in Fig. 4.

It is likely that R_{i}, the input impedance of the operational amplifier, will be significantly higher than ($\mathrm{R}_{0}+\mathrm{R}_{\mathrm{L}}$) and so K_{2} tends to zero and equation (9) reduces to

$$
\begin{equation*}
\mathrm{i}_{\mathrm{OUT}} / \mathrm{is}_{\mathrm{s}} \approx \frac{(\dot{\mathbf{l}}+\mathrm{jf} / \mathrm{GB})}{\left(1+\mathrm{K}_{1} /\left(\mathrm{A}_{0}+1\right)\right)\left(1+\mathrm{j} \mathrm{f} /\left(\mathrm{GB} / \mathrm{K}_{1}\right)\right)} \tag{10}
\end{equation*}
$$

and for $K_{1} \ll A_{0}$ this expression reduces still further to
$i_{\text {out }} / i_{\text {S }} \approx 1 /\left(1 \mp \mathrm{j} \mathrm{f} / \mathrm{GB} / \mathrm{K}_{1}\right)$
giving $a-3 d B$ frequency of $f=G B / K_{1}$.

$$
\begin{equation*}
\mathrm{i}_{\text {OUT }} / \mathrm{i}_{\mathrm{S}}=\frac{\left(1+\mathrm{i} / / \mathrm{f}_{\mathrm{z}}\right)^{2}}{\left(1+\mathrm{K}_{1} /\left(\mathrm{A}_{0}+1\right)\right)\left(1+\mathrm{K}_{2} /\left(\mathrm{A}_{0}+1\right)\right)\left(1+\mathrm{jf} / \mathrm{f}_{\mathrm{p} 1}\right)\left(1+\mathrm{i} f / \mathrm{f}_{\mathrm{p} 2}\right)} \tag{9}
\end{equation*}
$$

where $f_{z}=f_{p}\left(A_{o}+1\right)$ is voltage gain-bandwidth product of the operational amplifier (GB), $\mathrm{K}_{1}=\left(\mathbf{R}_{\mathrm{o}}+\mathrm{R}_{\mathrm{L}}\right) / \mathbf{R}_{\mathrm{S}}, \mathrm{K}_{2}=\left(\mathrm{R}_{\mathrm{o}}+\right.$ $\left.R_{L}\right) / R_{i}$,

$$
\begin{aligned}
& f_{p 1}=\frac{\left(A_{0}+1+K_{1}\right)}{\left(1+K_{1}\right)} \cdot f_{p} ; \\
\text { and } & f_{p 2}=\frac{\left(A_{0}+1+K_{2}\right)}{\left(1+K_{2}\right)} \cdot f_{p} .
\end{aligned}
$$

Figure 6 shows a plot of the current transfer function for the circuit of Fig. 4 using two different values of K_{1}. The performance of the follower is good, with measured upper -3 dB frequencies in

Fig. 7. An i.c. with two current and two voltage followers would enable any of these circuits to be easily obtained.
close agreement with the theoretical value predicted from equation (11).

Proposed general-purpose 'follower' amplifier

Using current followers and voltage followers as basic building blocks it is feasible to develop an extremely useful quad operational amplifier, the proposed circuit containing two voltage followers and two current followers. With this general-purpose integrated circuit it can be configured very easily into any of the four basic amplifier types.

Figure 7 shows the circuit diagrams for a current gain stage, a voltage gain stage, a transconductance and a transresistance stage based on the proposed follower i.c. As an example, examine the first shown, which is a current amplifier. The input into the first current follower provides a low input impedance and drives the input current through resistor R_{1}, converting the input into a voltage drive. The second drive of the amplifier is a voltage follower which transfers the voltage $\mathrm{i}_{\mathrm{IN}} . \mathrm{R}_{1}$ to a lowimpedance voltage source driving into R_{2}. As the third stage is a current follower with

(a) Current amplifier $A_{i}=R_{1} / R_{2}$

(b) Voltage amplifier $A_{v}=R_{1} / R_{2}$

(c) Transconductance amplifier $G_{T}=1 / R$

(d) Transresistance amplifier $R_{T}=R$
low input impedance, the input current drive to this third and tinal stage is $i_{i N} \cdot R_{1} / R_{2}$, which is equal to the output current feeding the load \mathbf{R}_{L}. with

$$
\mathrm{i}_{\mathrm{OUT}}=\mathbf{R}_{1} / \mathbf{R}_{2} \quad \mathbf{i}_{\mathrm{IN}}
$$

and clearly the current gain is

$$
\mathbf{A}_{i}=\mathbf{R}_{1} / \mathbf{R}_{2}
$$

Using this same approach it is relatively easy to verify the remaining three basic amplifier circuits shown in Fig. 7.

This proposal for a general-purpose 'follower' operational amplifier is extremely
simple to configure into any type of analogue amplifier. Feedback is localized to each follower, there being no output to input feedback.

As a result, any phase lag from input through to output is insignificant in terms of controlling the stability of each of the amplifiers. The frequency response will depend somewhat on the values of voltage and current-defining resistors, but no instability is likely to be encountered if each of the followers is internally compensated, and a broad bandwidth is possible with careful choice of resistor values. It is interesting to note that none of the resis-
tors are used as feedback components but as voltage-to-current and current-tovoltage converters.

It is feasible for a single i.c. to be constructed with two voltage followers and two current followers on the chip, thus providing a general purpose quad operational amplifier. With such an i.c. any of the circuits of Fig. 7 can then be constructed, the only additional components required being a maximum of two fixed resistors.

Thanks to R. D. Coombes and C. Toumazou for the experimental evaluation of the follower.

Microcomputer organ interface

Glossany comtinued			Execute as BOF2 BOF3 POFU POFD BOFMO MOTET (BOF2 is for the accompaniment, BOF3 for the melisma).		M2 part was a semitone below the M1 one (i.e. if the bytes were equali.
Two-part accompaniment					
UDP2P	similar to UDP2. but the second part is transposed to Pedal.	Harmonization between M2 and M1 (see Fig. 1 and associated text on register allocation.		TUA	transpose upabove Transpose the M2 part of FU up one semitone.
UDBPP	similar to UDBP but with one part in Pedal.	CSCB of the	CA are not symmetrical because offset between corresponding nd M2, e.g. HC3 is 1401 and RB ?	THUA	transpose harmonization up above. TUA OF2 twice. (See
UDFDO2P	simitar to UORD2 bet one part (Pedal) moves at half the speed of the other.	is OE essen above	ese names above (and below) ean "assume the M2 part is ow) the M1 one". Hence the	THDA	transpose harmonization down above. TDB OF2 twice.
2PCLOOP	two-part accompaniment loop. UDRD2P until end of input data field is reached.	M2 par was ab	for THDA, which transposes the (temporarily) to see whether it e M1 part).	TRUHA	transpose up harmonization above. TUA by POFHA semitones.
Motet DU21	store initial values of duration	TDB	transpose down below. Transpose the M2 part of FD down one semitone.	$\csc A$	correct semitone clash above. Compare the active byte (if anyl in the M1 part of OF1 with the corresponding one in the M2 part of OF2. TRUHA if the M2 part was a semitone above the M1 one (THDA makes such bytes equal, THUA restores the offset).
	variables T1 and T2 for motet, after accompaniment has been written	TRDHB	transpose down harmonization below. TDB by POFHB semitones.		
MOTET	write output data field as "motet" in three parts, from IMP3. Firstly write the two-part ac-	CS	check semitones. Find which byte if any in the M1 part of OF1 is non-zero.		
	write Melisma from IMP. then combine the two witrh offset BOFMO, from IMP3. IMP3 < IMP2 so that the accompaniment might be overwritten.	CSCB	correct semitone clash below. Compare the active byte if any) in the M1 part of OF1 with the corresponding one in the M2 bart of OF2. TRDHB if the	AMS	augment minor seconds. CSCB then CSCA. If POFHA = POFH $8=2$, minor seconds between the M1 and M2 perts are augmented, i.e. turned into minor thirds).

IEEE488 interface

the signal generator to cease listening.
Line 150 commands the digital voltmeter to talk and line 160 obtains a voltage reading from the digital voltmeter as a string of ASCII characters. Line 170 commands the digital voltmeter to stop talking.

Line 180 converts the amplifier output voltage reading as an ASCII string to the amplifier's response in dB . Line 190 selects the disc filing system and line 200 prints the results to disc.

Line 210 reselects the IEEEFS for
further measurements; lines 230 and 240 cancels the reference to the digital volmeter and signal generator; and lines 250 and 260 close the results file on the disc.

For assembler programmers, all the IEEE commands are available through a single operating system OSWORD call which makes use of a command code in the parameter block.

For users who wish to simulate a simple talker-listener device, i.e. one not possessing the control function, the option select link must be changed to the not-system-
controller position and the TMS9914A programmed directly. The excellent Texas Instruments TMS9914A General-Purpose Interface Bus (GPIB) Controller Data Manual contains all the information required to do this.

Every effort was made in the design of the interface and the writing of the User Guide to facilitate the use of IEEE488 instruments by the occasional user of the BBC Microcomputer and it is hoped that this article gives some idea of the potential. of this powerful combination.
\cdots

Literature received

An eight-page catalogue from Lascar Electronics describes the company's range of digital panel meters, which include l.e.d. and l.c.d. voltmeters with $31 / 2$ and $41 / 2$ digits and a choice of six- or eight-digit counter-timers. Lascar Electronics Lid, Module House, Whiteparish, Salisbury. WW 401

Maplin Electronics' 1984 catalogue runs to over 500 pages. For the first time it includes construction kits and educational courses by Heathkit, whose products Map-
lin now distribute. The catalogue is available from branches of Maplin or W. H. Smith for $£ 1.33$, or by post for $£ 1.65$ from Maplin Electronic Supplies Ltd, PO Box 3, Rayleigh, Essex SS6 8LR.

WW 402
The 1984 edition of Hobby Herald, BICCVero's catalogue of products for the hobbyist, lists several new items among which are some insulation-displacement connectors for use with ribbon cable and a range of British Telecom-style pluggable telephone connectors. Hobby Herald costs 50 p from BICC-Vero Electronics Ltd, Indust-
rial Estate, Chandlers Ford, Hampshire SOS 3ZR. Tel. 02415-62829. WW 403

More than $21 / 2$ million components are held in stock by Comway who have recently issued the llth edition of their catalogue. It not only lists the available components but also has some useful specification and dimensional details. Along with semiconductor devices and microprocessor development systems is a range of connectors, switches and other hardware, Comway Lid, Market Street, Bracknell, Berks RGI2 1QP.

WW 404

BUS STANDARDS

I was pleased to see the article on the IEEE 696 (S 1000) Standard in the December issue. I congratulate the author on an interesting and informative article. In passing, the author mentioned several other IEEE standards activities: 796, 896 and the Euro-STD bus; unfortunately, some of the information presented was out of date. I would like WW readers to be informed of the current status of these activities:

The Euro-STD bus evolved into the STE bus because the working group could not reconcile the signal specification of the STD bus with their goals of processor independence and longevity of the standard. The IEEE standards board approved the PAR (project authorization request) number P 1000 to the working group in February, 1983. The P1000 specification now provides 20 address bits, 8 data bits, and a simple, but processor independent, asynchronous handshake. Pl000 recommends single Eurocards and uses the IEC603-2 (DIN41612) connector. It is intended primarily for use in cost-sensitive applications which still require the modularity afforded by a bus. The P1000 draft is due to be voted out of the working group for public comment in January 1984. Information on the current status of the P1000 standard may be obtained from the European secretary: Timothy Elsmore, GMT Computer Systems, Newport House, 22 Hartfield Road, London SW19 3TD. I should point out that although the original Euro-STD bus is not now an IEEE effort, it is still the basis of several commercial products. GMT Computer Systems manufacture and market boards to the original Euro STD bus specification.

The P796 (Intel's Multibus) specification (incorrectly called A796 in the article) was approved by the IEEE standards board along with the P696 specification in December 1982. Copies of both the 696 and 796 standards may be obtained from: IEEE Service Center, Atten tion CP Dept, 445 Hoes Lane, Piscataway, New Jersey 08854, USA.

The VME bus has been the subject of IEEE standardization efforts since January 1983. The IEEE standards board issued the PAR number P1014 for the 'versatile backplane bus' (VME) in September 1983. The P1014 working group are currently re-writing the VME specification in the IEEE standards format, and expect to complete their work in early 1984. Information and current status of the P1014 activity may be obtained from the Chairman: Wayne Fischer, 82 Shereen Place, Campbell, California 95008 , USA.

The IEEE P896 work has progressed much further than is suggested in the article. Indeed, the work has now been completed and a proposed specification is available. The P896 working group voted to release their completed draft for public comment in September 1983 P896 is a very high performance backplane bus providing a 32 -bit highway governed by a fully asynchronous and technology independent protocol. Although P896 has a decentralized arbitration scheme, multiple bus locking features, and an independent serial highway, mak ing it ideal for fault-tolerant systems, it is primarily intended for high-performance gen-eral-purpose multiprocessor systems. P896 pro vides its complete signal-set on a single IEC603 2 (DIN41612) connector, and is intended for use on double and triple Eurocards up to 280 mm deep. The UK IEE hosted a colloquium on the P896 specification in London on November

29 to provide UK industry with advance information on this potentially far-reaching standard. ${ }^{\star}$ Information on the P896 draft specification may be obtained from Andrew Wilson, Computing and Control Division, IEE, Savoy Place, London WC2R 0BL

UK involvement with the IEEE bus activities is co-ordinated by the IEE Working Party on Backplane Buses at the IEE address given above. Other work on microprocessor standards is carried out in the BSI Committee ECL/OIS-1. I should like to point out to Wireless World readers that participation in (particularly the IEEE and IEE) standardization activities, is open to anyone who has the time and energy, as well as the technical knowledge, to contribute to these standards
Paul L. Borrill
IEEE Microprocessor Standards Committee

* Reported in News January issue, page 45 Please read IEE for IEEE in line 10 of that item. - dep. ed.

BEHIND THE MICRO

From my experience when buying a micro a year ago, it seems that you make no mention of the biggest single difficulty confronting someone trying to choose a suitable machine. I do not expect you to overcome this difficulty, but it would have been wise if you had printed the very prominent warning "Many manufacturers' specifications are barely true and are carefully designed to mislead"

I wanted a machine for mathematical work and was looking for something which you would describe as being in the basic price range of $£ 2,000$ to $£ 3,000$, i.e. a complete price of perhaps $£ 10,000$. I will give you two examples of misleading specifications. One manufacturer claimed to supply Fortran, but it did not emerge until late in the discussions that this was a very cut down subset of Fortran, lacking some essentials such as double precision variables. Another manufacturer said that Fortran was available on his micro, but it emerged that it was necessary to compile the source code on a bigger machine of his, and then transfer the object code to the micro. One manufacturer never mentioned this snag in any of his literature; the other one only mentioned it in very small print on a part of the sheet where you would not expect to find such information. A specialist dealer who stocked one of the machines was completely unable to understand (and still less to answer) technical questions in the area of languages.

In short, to get reliable information on which to base a rational choice is exceedingly difficult. J. G. D. Pratt West Horsley
Leatherhead

AURAL COGNITION

I owe many thanks to D. Wattson (Letters, September 1983) for the extraordinary precision with which he has stated the problem of aural interfacing between a cognitive biological unit (the brain and/or whatever else) and a multinoise environment.

It gave me the idea that if the buffering stated therein cannot be implemented with hardware, nature most probably resorts to software. The idea may appear original, but it is not mine. It appeared initially in the WW editorial of January 1982, viz. that nature interfaces with
humans through programming. In the case of aural cognition, I think, nature makes use of variable microprogramming techniques, that obviously, like instruments, we are destined to utilize but are not yet able to understand
Some experimental hints along these lines. A person (or animal) may be microprogrammed to fall asleep in a sound-polluted environment. Subsequent silence will set the flags of software interrupt, overflow will occur, forcing awaken ing. A second example: People exist that hear voices. Maybe flow of the microprogramming instructions energizes the interface (the ear) by an output, which bounces and returns to the unit, masqueraded as input. In this respect the program generates virtual inputs that do not manifest elsewhere in the world.

I began setting up experiments along similar lines. And I have had another idea: Declare the computer a severe mentally-handicapped configuration. Then program (microprogram will be the final objective) it toward cognitive research; e.g. the computer having memorized via transducers the sounds " a " and " b " to search in real time a stream of words and let all phonemes other than "ab" pass through unmemorized but to operate software interrupt when there is "ab" or seems to be. It will not be easy.
G. Xenoulis

Toronto
Ontario

THE PERSUADERS

Your editorial in the October issue whilst putting forward a valid point of view was nevertheless somewhat confused.

Truth is absolute and can be neither accentuated nor minimized. Morality is a function of truth and therefore has no degree nor shades of grey, less than moral is immoral and morality is what we should be concerned about.

The society in which we live is immoral, as are all societies because they deny all human beings that most fundamental of human rights, the truth.

Education must be defined as teaching the truth and the methods by which truth can be comprehended.
Therefore it is evident that we do not educate our young, rather we indoctrinate them with the dogmas of our current society, paying little regard as to the relevance of our teachings to the truth.

The minds of children are naturally dedicated to the process of determining the truth but the continual brainwashing together with the instilling of irrational fear stimulates a child's emotions and inhibits logical thinking.
This is no more apparent than when following puberty the teenager exhibits a somewhat confused pattern of behaviour.

To achieve a moral society we must assert our dedication to the truth, to logic and discipline our emotions to the role of slave, not master.

By believing in illogical dogmas whether religious, political or whatever, we abdicate our responsibilities to the human race.
Norman Webster
Leyland
Lancashire

FOWBERRY ENERGY SAVER

It is good to see engineers turning their skills to
the saving of natural resources, so I was pleased to read of Mr MacHarg's device which is saving energy in Fowberry Tower*. I too have been devoting some time to this subject, so I hope he will not object to me offering some comments.

I do not feel that the question of thermal lag and temperature overshoot is the fundamental one. After all the system, overshoots and all, is set up to give the desired average temperature, usually about $80^{\circ} \mathrm{C}$, and the water temperature cycles by a few degrees about this. The temperature of the gas side of the heat-exchanger may briefly overshoot further, but the associated stored energy is small.
It seems to me that the main achievement of the Fowberry energy saver, as illustrated in Fig. 1 , is to reduce the boiler temperature as demand falls. This must be a valuable objective. The $80^{\circ} \mathrm{C}$ set-point is appropriate for full output, either in extreme weather or when a rapid increase in temperature is required. Under normal steady conditions in the most common mild, damp weather, the heat demand is much less than this. To avoid guarantee claims, heating installers err on the side of over-capacity, and as fuel costs increase house occupiers improve their heat conservation. The result is a lot of powerful boilers running at a fraction of their full output. On a day when the outside temperature was $7^{\circ} \mathrm{C}$ my gas boiler was running with a duty cycle of 20%. Its own constant loss at $80^{\circ} \mathrm{C}$ is 7.5%, so over 37.5% of the input was going straight up the flue!

The efficiency, especially at part load, will be improved if the boiler temperature is reduced. A simple-minded calculation on my above example, assuming flue losses proportional to the temperature difference between the boiler and the combustion air, suggests that the boiler could be run at $32^{\circ} \mathrm{C}$ if the house is at $20^{\circ} \mathrm{C}$, giving 20% of the fixed losses. Even if this is over-optimistic, and if boiler temperature has to be kept up to avoid corrosive condensation, the potential for saving is considerable.

I too considered using thermostat off-time as a measure of heat demand. The problem is that it is an awkward function of heat demand so an open-loop strategy which does not use a fairly accurate model will give far from optimal results. Hence in Fig. 1 only a $10^{\circ} \mathrm{C}$ reduction in boiler temperature has been achieved at most. What is needed is a variable which will respond to changes in boiler temperature, so that a closed-loop strategy may be employed.

The philosophy I have arrived at is to compare radiator flow and return temperatures. Assuming thermostatic valves on all radiators, the return temperature is $10-20^{\circ} \mathrm{C}$ below flow temperature with valves fully open, falling quite sharply towards room temperature as they commence to control. The economiser cuts off the boiler if this differential exceeds a limit of around $30^{\circ} \mathrm{C}$ and brings it back on when the differential falls to about $5^{\circ} \mathrm{C}$, the pump staying on constantly. The result is a limit-cycling controller which adapts boiler temperature to hold the differential at an average of $17.5^{\circ} \mathrm{C}$ with the highest-set thermostat wide open. There is an overide when hot-water heating is demanded, since this is best served by a short interval at $80^{\circ} \mathrm{C}$.

I have tested this scheme briefly using my

* Diode D_{5} should be reversed in the circuit on page 27 (December). The 78 L 12 i.c. regulates a 12 -volt rail and not 5 V as shown. Mr MacHarg tells us that capacitors $\mathrm{C}_{3}, \mathrm{C}_{6}$ and C_{7} must be low-leakage types.

ZX81 as the controller, and it certainly reduces average boiler temperature on a mild day to around $40-50^{\circ} \mathrm{C}$. Heating time from cold and response to sudden valve-opening are unimpaired, the boiler temperature going straight to $80^{\circ} \mathrm{C}$ until the disturbance is corrected.
Because the ZX81 obliterates Radio 3 and crashes a little too frequently I am now building an analogue version (two i.cs) for a long-term trial, to see whether the potential 50% loss reduction is achieved.

The possible improved performance over the Fowberry device is achieved at the cost of some convenience, since temperature sensors have to be fitted in the appropriate part of the system. It is only applicable where radiator thermostats are fitted. Systems with a single room thermostat inherently adapt the average boiler temperature to demand, but the lack of temperature control in the other rooms causes overheating, discomfort, or both.
C. Hargis

Bristol
The pulsing boiler controller described in Mr MacHarg's article (December issue) possesses some disadvantages. If one increases the thermostat setting during a period of pulses of reducing width it must be irritating to have to wait whilst the controller decides that the boiler should run for longer bursts. The "short cycling" that a pulsing controller of this type produces is not desirable - supply dips - boiler condensation - wear and tear on the boiler starting gear - thermal expansion stresses etc.
An alrernative that I have had in use for some

years uses one relay and is arranged to fire the boiler if the boiler thermostat and the room thermostat or the cylinder thermostat call for heat. Judicious selection of a boiler start-up time delay which "grades" with the room thermostat heater time lag will ensure that "short cycling' of the boiler will not occur.

In normal operation the boiler thermostat will only switch off when no room heating is required ie in warm weather. Boiler control is usually carried out by the room thermostat relay.
J. R. Ball

Timperley
Cheshire

The author replies

Everything introduced by man into his domain provides disadvantages (not the least the sheer expense of convenience), and the problem is always to reduce untoward priorities which are in effect resonances: integration is made easier by increasing frequency which tends to avert
catastrophe by reducing big swings into little roundabouts. Firstly, I ask Mr Ball, how often he should wish to adjust his thermostat if it is carrying out adequately the function for which it was designed? If it possesses an off-position, turning it off for a few seconds would simulate high demand with immediate response from the energy saver: judging from his letter, his system is in dire need of some "optimization" because if his room thermostat only controls his boiler directly he must be wasting a lot of energy.

It is unclear what Mr Ball means by supply dips, but if he is referring to the supply of heat then the opposite is the case because by supplying a little and often greater constancy is achieved whereas with his own system which introduces a boiler delay temperature troughs are inevitable: the human body dislikes these and quite gladly turns up the temperature to overcome them, neglecting the slight but constant over-temperature which is thus provided wastefully between them if not actually enjoying it. Boiler condensation is a permanent potential hazard from the products of combustion, the degree to which the hazard is realised being largely determined by the time allowed for the boiler to cool down: timer-controllers and timeswitches, including the human variety, are far greater culprits in this respect. He has a point over wear and tear on the starter gear, but even the cost of repeated replacement should be well offset by the saving of energy in all but the smallest installations. Thermal expansion stresses obviously would be increased in frequency but it is difficult to see how they would not be reduced in severity at the same time, both effects being desirable and good engineering.

A much more important point, brought to my notice by a well-known firm of burner manufacturers, is that it might be undesirable to use the energy saver with larger burners for which a pre-firing purge is provided: this blows clean and probably cold air through the boiler for periods of from 10 to 30 seconds before each ignition and obviously cools the boiler fractionally, and greater frequency of purging increasing the energy wastage up the flue. It is suggested that the energy saver may make the heart of an excellent and inexpensive "optimizer" when used with efficient thermostats, more particularly to control a central heating pump or other distribution means when a boiler serves a dual purpose including the heating of domestic hot water for which purpose it must run at a constant temperature. Those wishing to use one in this mode during the winter may care to devise a switching means so that its attentions may be channelled in the appropriate direction for the season, or, as he with the vested interest is bound to suggest with tongue in cheek, why not improve the operation of all thermostats by applying an energy saver to each and every item which is thermostatically controlled?

Following exhortations from the said burner manufacturers, further development has been carried out with the specific aim of producing improved "optimizer" characteristics which are an extension of the original thinking, the accent being upon greater versatility and thus only indirectly upon greater general energy saving. The possibility of supplying thick-film microcircuits is being investigated, obviating much assembly and testing time for those who may wish to set up in business assembling and selling the device at their own rate, but all this takes time and testing.

As the designers and manufacturers of a very successful energy saving product for gas boilers we were compelled to write to you after reading the design for the Fowberry Energy Saver.
Our energy-saving product is called the Gasaver which has a patent application pending on the design. The unit principally inserts a fixed delay into the boiler off-period of about four minutes and has proved to give reductions of between 20 and 30% gas consumption in average domestic situations. We spent a lot of time experimenting with variable delays and quite complex self-regulating versions of our product but in the end our simple and cheap design (£40) has proved to be entirely adequate. The benefits of the more complex schemes were very small when the increased cost of the product was considered. The Fowberry design is complex and therefore more likely to fail in service, a factor which is very important when dealing with low cost consumer goods.

Mr MacHarg quite rightly points out that boiler-cycling, or 'hunting' as it is often called, wastes fuel but a number of his points are not accurate and the solution proposed, we feel, is probably only relevant to his own system which has the consideration of secondary heat input, something few of us have, let alone 80 tons of timber!
The initial argument concerns the thermal inertia of boilers. A lot of modern boilers use very low water content heat exchangers which have very little thermal mass and extremely good rates of exchange. These boilers suffer from the fact that there is little lag in heating the water back to the desired temperature setting and in fact tend to cycle more than boilers with cast exchangers which have greater thermal mass, and therefore lag.
The 'holiday cottage' effect only occurs, in our experience, when the boiler is undersized for the heating installation. In practice we find that boilers are often oversized which as any heating engineer will tell you is by far the best way. This oversizing allows for additional radiators and also compensates for crude heating requirement calculations. Both our own measurements and users reports show that our design has never caused a noticeable change in room temperature or comfort levels.

One of the losses caused by cycling is the gas wasted during ignition. Since the boiler doesn't light immediately some gas goes straight up the chimney followed by the familiar 'whoosh' sound. The Fowberry design actually causes the boiler to pulse during the On period and this must waste some considerable amounts of gas in itself! The pulsing action will also confuse some boilers such as the Potterton Netaheat, which has its own relay-based timer arrangement for the ignition sequence, a process which takes approximately 45 seconds.

The Fowberry design also has some basic omissions. The first omission is a bypass switch which is necessary for boiler maintenance and also in case of unit failure. The second omission is the facility to work with 24 V control systems. Glow-Worm boilers, which have been nearly 50% of our installations, all use 24 V systems, and a number of new designs are using 24 V with integral transformers within the boiler.
Should Mr MacHarg feel that we have been unjust in our comments then we add that we will gladly challenge his design in a domestic situation under controlled conditions.
David V. Goadby
Pixel-Plus Ltd
Nailstone
Warwickshire
I was alarmed to see the suggestion that sheets
of polythene should be nailed over ceiling joints and insulation. While this may cause no problems in a large and well ventilated house, there is a very real danger of condensation occurring within the loft insulation of a small, well sealed modern house. The problem arises because the combination of a near airtight structure and a high occupancy (in terms of persons per cubic metre) frequently leads to high temperatures and high levels of water vapour in the house. This water vapour will, to a greater or lesser extent depending on the particular construction, penetrate through the ceiling and into the insulation. While the base of the insulation will be close to the internal temperature of the house, the top will be close to the much lower loft air temperature, and condensation of the percolating water vapour in the upper, colder sections of the insulation is very probable. Sporadic, short lived outbreaks of condensation can usually be tolerated if there is an airflow over the insulation allowing fairly rapid drying out, but if Mr MacHarg's suggestion were implemented, ventilation would be eliminated and the condensed water would remain for long periods and help to promote an outbreak of dry rot.

The heat saving adduced by Mr MacHarg for his polythene sheets is truly minimal if adequate insulation is installed: the penalties could be very severe. The advice to readers is quite unequivocal - don't do it.
Nicholas Pillans
Thames Polytechnic School of Architecture Dartford
Kent

555 MARK/SPACE CONTROL

The " $555 \mathrm{mark} / \mathrm{space}$ control circuit" of Filanovsky and Piskarev (Circuit Ideas, September, p.68) can be simplified to:

C charges through R_{1} and the diode, and discharges through \mathbf{R}_{2}. The diode gives a constant offset during the charge time of $\approx 0.6 \mathrm{~V}$, effectively reducing $\mathrm{V}+$ by this amount and so slightly increasing the charge time (by a predictable amount). Discharge time is unaffected.

Replacing R_{1} and R_{2} with variable resistors will produce an independent control of on and off times.
John Bonell
Leicester Forest East

CURRENT DUMPING REVIEW

About the September and October articles: 1. The distorting dumper V_{be} is there modelled by a voltage generator. Then the circuit becomes linear, allowing the effect on output of
this generator to be studied by itself. As mentioned, current despatched by it through Z_{1} of Fig. 11 (all references are to the October article) meets an unpredictable emitter input impedance at Tr_{2}. This is due to the presence of \mathbf{R}_{12} as seen through the emitter, and it results in some loss of current through the 180Ω shunt path. Thus Tr_{2} current gain enters the balance condition through the new factor λ, to yield

$$
\begin{equation*}
\lambda \cdot \frac{Z_{4}}{Z_{1}}=\frac{Z_{3}}{Z_{2}}+\frac{1}{g Z_{p}}\left[1-k+\frac{Z_{3}}{Z_{0}}\right] \tag{9}
\end{equation*}
$$

The meaning of the symbols is explained. The third term is called the gain term, because it depends on the parameter g of the driver amplifier. Mr Baxandall (Letters, December issue) supports the view that this term is much too small to figure, given the tolerance errors likely to be present in the other terms.

He also insists on ignoring λ, and proposes to stick to $Z_{4} / Z_{1}=Z_{3} / Z_{2}$. Then, with 5% components, each side of his equation may depart 10% from its designed value due to tolerance errors. This unbalance is measured by defining a quantity e such that when his left hand side is multiplied by ($1-\mathrm{e}$) it again becomes equal to the right hand side. His e may rise in size to 0.2 or so. The reasoning would hold for (9) if λ was absent.

But λ is present, and nothing has been found against it. As explained, it may descend to 0.65 if Tr_{2} has its minimum gain. Baxandall has set $Z_{4} / Z_{1}=Z_{3} / Z_{2}$, and if the 5% errors possible in these components conspire with this value of λ then the left hand side of (9) above falls to 0.53 of its right hand side. (Now e=-1.) Nearly 100% increase in the value of Z_{4} is required to rectify matters! It is R_{12} which is causing the new factor λ and its uncontrollable variations. It must go.

Nonsense, replies Baxandall. The design is splendidly uncritical, and takes such things in its stride. But surely we are trying to find the correct value for Z_{4} ? Is a 100% error of no interest? Actually the article already mentions apparatus to evaluate this suggestion. As just shown, ignoring λ instead of disposing of it has pushed up the maximum value of e by a factor of five. Equation 13 she ws that crossover distortion promptly multiplies by five. Uncritical? Distortion follows e in direct proportion. It has been overlooked that an amplifier is a slave to its feedback loop, and any signal delivered to its input thereby is faithfully reproduced at the output. Accurate balance of (9) is essential, and R_{12} must be removed to kill the uncontrollable λ.
2. From the first patents onwards current dumping has been explained as a method for nulling the distortion caused by the variable dumper V_{be}. As this varies during the signal cycle it produces no effect at the output terminal. The easiest picture is perhaps the bridge model of Fig. 8, where the essence of the technique is revealed as setting the bridge balance equation off balance by a small but precise amount: the gain term in (9) above. Mr Baxandall supports the view that this term is too small to figure. Worse, there is a reason of principle why it must be ignored. It is real and constant, while the other two terms of (9) are imaginary and proportional to frequency. The gain term must be neglected, and the equation balanced without it. This throws out any current dumping, as the term has always been understood, and establishes the deafening thesis that the Quad 405 current dumping amplifier (as it is named) is not using the current dumping techniques.

£ $180:$ A RECORD FOR DISC DRIVES? of 51/4"Slimline Double Sided 40 TrackD Drives. Formatted single density 200 K .,double density 400 K .
 And record value at only $£ 179.95$ and that includes everything-VAT, carriage, all necessary leads and a 12 month guarantee. You can order by post (see coupon below) or direct at our showroom.

OPUS 3"MICRODRIVE. Alse avalable from with smith
Double Sided 40 Track Drive $1 / 2$ Megabyte
Unformatted

- Twice the capacity on line of other avaibable drives
-200K Single Density-400K. Double Density
- Ex stock delivery
- 3 ms access time
- Lowest power consumption-direct drive
- Includes case. leads and utilities disc
- lotally compatible with $5 \frac{1 / 4 " \text { drives }}{}$

Single Drive $\mathbf{2 2 9 . 9 5 .} \quad$ Dual Itive £459.95.
51/4" JAPANESE DISC DRIVES.
 ()pus 5401 single Sided fo Track-250K Unformatted Formatted: 100K. Single Density, 200 K Double Densitv_ $\mathbf{\$ 1 7 9 . 9 5}$ Opus 5402 Double Sided 40 Track - 500 K . Unformatted. Formatted 200 K Single Density. 400 K Double Density__ $\mathbf{\$ 2 2 9 . 9 5}$ Opus 5802DOuble Siclec 80Track-1 Megabytu Unformated. Formatted $\ddagger 00 \mathrm{~K}$. Single Density, 800k Double Density.
$\$ 299.95$ Switchable 80/40 Track

- $\quad 1 / 2$ Height \bullet Includescase leadsand utilituesclisc - Fastaccesstime - Stateolthe Art Technology - Ex stock delivery - I.ow power consumption

DUAL DRIVES.

All Dual Drives are metal cased with separate power supply
 Opus Dual 5401b) Single Sided 40 Track. 200k 400 ok on line_ $\mathbf{\$ 3 7 9 . 5 0}$ Opus Dual 5402D Douhled Sided 40 Track. fook 800 K on line $£ 459.95$ Opus Dual 5802D Double sided 80 Track 800 K .1 .6 Megabute on line__ $\mathbf{8 5 9 9 . 9 5}$

PRINTERS.

EPSONFX ${ }^{\text {POF }}$ (\$410
EPSONFX 100	\$549
EPSON RX 80F ${ }^{\text {¢ }}$	\&315
Il KI 6100 Daisywhecel	\& 435
Parallel printer leads to BBC	\&12

MONITORS.
$\begin{array}{ll} & \mathbf{8 8 9 . 9 5} \\ 12^{\prime \prime} \text { GreenScreen_ Amber foreen } & \mathbf{8 9 9 . 9 5} \\ 12^{\prime \prime} \text {. } & \mathbf{8 . 9 . 9 5}\end{array}$
Lead to connect to BBC Mioro__ $\mathbf{~ 2 3 . 9 5}$

- Ex-stock delivery - 24 MII B Bandwidth - Limited quantiry

14"JVC Colour Monitor - Med Res.
14"JVC Colour Montor-High Res
£279.39

THE ORGANISER DESK.

- Top shelf for Monitor Printer
- large DeskTop Area
- Lower Shelf for Paper/Book Storage
- Teak Finish
- On Castors
- Self Assembly
- Ample room in front of the shelf for rou to sit comfortably.
Only $£ 59.95$
FLOPPY DISCS.

Cartridges $\mathbf{2} .75$ cach or $£ 25.95$ for 5
$51 / a^{\prime \prime}$ Discs - with fill 5 yoar warranty + free plastic library case.
-/S © D $\$ 19.95$ for 10
S/SD D $\mathbf{A} 23.95$ for $10 \quad$ S/S 80 Track $\mathbf{\$ 2 9 . 0 0}$ for 10
DSD D $£ 26.95$ for $10 \quad$ D S $80 \operatorname{Track} \$ 31.95$ for 10
$8^{\prime \prime}$ Discs.

Double Density disc filing system for BBC Micro £99.95
GOVERNMENT \& EDUCATION DISCOUNTS GIVEN.
QUANTITY DISCOUNTS GIVEN. DEALER ENQUIRIES INVITED.
OPUS SIPPLIES LTD.
158 Camberwell Rovad. London SE 5 OEF
Opening hours: 9.00.6.00 Monday Friday: 01.7018668
9.00 .130 pm Saturday: 01.7036155

STOP PRESS.

Phone us for latest dealer price list
ALL ITEMS ARE GUARANTEED FOR 12 MONTHS AND ARE SUITABLE FOR USE WITH BBC AND OTHER LEADING MICROS.

CONNECTION PATTERN TESTER

FAST EPROM PROGRAMMER

NINE TEXTOOL ZIPDIP SOCKETS
CCD ALPHA DISPLAY
80\% CUT IN PROGRAMMING TIME USING MANUFACTURERS' SUGGESTED ALGORITHMS (e.g. 2764 takes 1.25 mins not 7 mins typical) SWITCH-SELECT OF EPROM TYPE (NO MODULES)

FOR CABLES LOOMS, BARE PCBS, ETC
 are required to discover its connection pattern. An old-fashioned method would be to use a buzzer, with a probe in aach hand to complete the circu which means that 653,796 tests are required to check a PCB with 1,144
component pade. The rosults can be compared with a previously lasaned partern or formed into a standard ASCII file (a list of what-is-connected with what) and transmitted
 ICT usez CUSTOMLSI dosignod by DATAMAN A a also provide a COMPLETE You noed can be futros, beds-of-nails, N.C. drilling from your artworks otc

BUS EXERCISER/DIAGNOSTIC AID

VAT $\begin{aligned} & \text { Switched Input Module Analogue/Digural } \\ & \text { Complete set of all above including MENTA }\end{aligned}$

EPROM PROGRAMMER/EMULATOR

Plugs into microprocessor socket, reads and writes to system ROM RAM and $1 / 0$
RAM and $1 / 0$
prints memory contents in HEX, ASCII or ASSEMBLER MNEMONICS Prints MEMORY MAP of addressing space
Performs CHECKSUMS. TESTS RAM, prints addresses and bits which
Tests data lines for SHORTS to rails, other data or address lines Tells engineer of address/data faults impossible to find with other tools Easy to program. retains sequences for testing up to fifteen different products in permanent memor, 6500, 6800 and 8085 format with approprate disassembler (say which you want)
MICRODOCTOR
£295.00
Conversion card \& ROM (Changes configuration and disassembler e.g.
280 to 6 say which)
10 Rolls Thermal Paper

EPSON thondor NEC

 \%

WE HAVE COMPUTERS, LOGIC ANALYSERS, PRINTERS, SOFTWARE IN STOCK INCLUDING QX10, HX20. TA2080 THANDAR TA 2080 - DATAMAN ADDS RS232 OUTPUT AND DISASSEMBLERS 12 K of retrofit ROM and interface board allows printing complete D or R store in STATE or

Some may wish at this stage to change the established meaning of current dumping, so the same thesis is restated without using these words, in the form it had in the article: The bridge network in the Quad 405 has no power to cause nulling of the distorting dumper V_{be} There is no escape from this: balancing (9) above without the third term cancels the coefficient of V in the feedback voltage C found in constraint (4) in Fig. 12. Thus no fraction of dumper $V_{b e}$ is fed back to the driver, contrary to what is required in Fig. 8

As an example it was shown that once the gain term was abandoned, the amplifier could easily be converted into a traditional type of identical performance. Mr Baxandall observes that this is not a practical proposal, as the alternative is not stable at r.f. The error is admitted. But it only affects the example. The deafening thesis is unaffected, and the grounds for it untouched. Indeed, collecting and strengthening some of Mr Baxandall's remarks, his comments fuse with that thesis to yield the following key paragraph.

Admit that the Quad 405 is quite incapable of using the current dumping technique. Its feedback circuits have no power to null the dumper distortion, even if all components have zero tolerance error. Instead, its operation is to be explained in the following quite different manner. Firstly, drop the usual bias arrangements on the output transistors, thus disposing of ad justments and thermal problems. Then use a powerful driver amplifier together with massive negative feedback to remove the distortion so generated. But note that every powerful ampli fier has a capacitor within it to ensure Nyquis stability. Observe that C in Fig. 11 is just that capacitor. Indeed if the driver triple is thought of as a single transistor then C is in just the classical position. Admit that C will cause a drop in the gain of the driver when it is handling the h.f. components introduced by the quasi-rectangular $\mathrm{V}_{\text {be }}$, thus allowing measurable cross over distortion to reappear. So add L to modify the feedback at h.f. provided by the capacitor C . Remove R_{12} and ignore tolerance errors. Then use bridge technique ($\mathrm{Z}_{4} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{2}$) to cancel the $\mathrm{V}_{\text {be }}$ let through by C . However, this V goes on to distort the output volts E in the usual way It is left to the usual negative feedback from \mathbf{E} to reduce this (constraint 4 now shows feedback is given by $\mathrm{hC}=\mathrm{pE}$ nearly.) No V is fed back. And certainly not the appropriate small fraction of it required to arrange cancellation of V in E . (This is current dumping.)
If sound, this key paragraph would require adjustments all round. Except for the stability errors admitted here, the two articles stand. Previous explanation of this amplifier is regarded as erroneous. L does nothing directly to cancel the effect of V on output. What it does is to cancel the crippling effect C would otherwise have on driver gain when it is handling the higher a.f. components of V. This restores the usual negative feedback at those frequencies. The inventive step is the addition of L. And UK patent $2278 / 74$ with US patent $3,970,953$ must be examined to discover how much is still relevant to this remarkable amplifier. But focus on the circuit itself, and introduce tolerance errors. With R_{12} removed e can rise in size to 0.2 only, and the correction provided by L to cancel the V let through by C is between $4 / 5$ and $6 / 5$ of that required. Distortion is indeed divided by five or more. (Two or more with R_{12} included as at present.) This good effect is clearly not enough to outweigh dropping the usual bias arrange-
ments, and the amplifier must be expected to have higher crossover distortion than with bias but no L. These are worst-case figures and cannot simply be tested on a single specimen.
3. After theory, practice. Baxandall now ob serves that this discussion has lost meaning, because we have fallen below the distortion levels caused anyway by wiring pickup and the like. Figures would be needed in support. And if provided they furnish a point against the superier claims of this amplifier. Are the figures in line 1 of Table 1 that good compared to other amplifiers? (As Mr Baxandall observes, the arrangements discussed in lines 2 and 3 are unstable and thus must be withdrawn from the discussion.)
M. McLoughlin

Haberdashers' Aske's School

Elstree
Michael McLoughlin's analysis of current dumping contains some interesting observations, but clashes strongly with our earlier analysis (June, July 1978) and a later more com plete paper of ours in the Journal of the Audio Engineering Society*. We shall address three relevant points in the debate

Mr McLoughlin argues (part 1, page 41) that a feedforward explanation does not exclude other explanations, and suggests that Peter Bax andall's letter does not support feedforward. We disagree strongly. In negative feedback two or more signal paths to the output are not necessary. It may appear that there is only one, but that is because current dumping has intertwined the feedforward and feedback paths. It coes not really matter how one "derives" current dumping, a feedback explanation alone is insufficient. We struggled many hours over these concepts, and are quite sure that no feedback taken singly from the load can achieve what current dumping does. Thus we are forced to include the concept of feedforward in the des cription of any circuit that is capable of complete cancellation of distortion in principle, although a simple feedforward scheme may not be evident in a particular realization of the concept.

A second point concerns the practicability of current dumping, using components of standard tolerance so that the bridge is not quite balanced. Table 1 of part 2 is quite misleading. It implies that a resistive bridge is better than a reactive one, and that a "traditional amplifier" is better than both. We wish Mr McLoughlin had tried out each of these options experimentally, for unless the theory is done fairly the comparison is not meaningful. Examination of our AES paper shows some comparisons, using a model experimental circuit, which contradict Table l. When the bridge is unbalanced, there are error pulses, but they are very brief (microseconds) and do not give rise to a large harmonic distortion. On the other hand an unbalanced resistive bridge (ignoring for the moment the infinite implied gain-bandwidth of the amplifier A) results in roughly a squarewave error with substantial harmonic distortion. In a traditional amplifier the necessary finite gain-bandwidth (for stability and other reasons) generally gives greater error pulses than current dumping.

To make the process clearer, consider a current dumping amplifier that has a reasonably

[^3]balanced bridge. The distortion error pulses will be small but not negligible. How shall we compare it to normal feedback? Can we short Z_{4}, the inductor? This increases the distortion greatly, by about the inverse of the relative bridge balance accuracy. In addition, the circuit stability usually suffers, because the inductor tends to feed back a stabilizing signal representing the derivative of the load current. It may be argued that, when Z_{4} is shorted, Z_{3} (the resistor) should also be removed to be more representative of a normal class B amplifier. This helps a great deal, actually, but does not approach the low distortion of the original slightly unbalanced current dumping circuit. In addition, removal of Z_{3} significantly destabilizes many practica realizations, necessitating in some cases a reduc tion of the gain-bandwidth of A, resulting in a greater error. In any event, although there may be theoretical situations where a 10% bridge unbalance is worse than a "similar" traditional amplifier, we do not know of any practical cases where this would be true. Contrary to Mr McLoughlin's assertion, Z_{2} or its equivalent cannot be removed in a traditional amplifier. It is necessary for feedback compensation in some form.
A third point is that Mr McLoughlin casts a doubt on our interpretation that eddy currents are at work in the inductor. We can assure him that the bridge was optimally balanced (by ad justment of Z_{3}) to produce our oscillogiams in our AES article, the only circuit change being the type of inductor. Our Fig. 9 (b) and Fig. 10 contain distinctly different time constants, the latter being about twice as long as the former With some effort the error residual could be calculated in each case, but to simply speculate on a few of the obvious time constants does not seem very fruitful to us.

In summary, we welcome many details of analysis and insight offered by Mr McLoughlin, but we disagree on some of the basic points. No only is current dumping necessarily viewed as error feedforward, but its use in practice significantly improves the performance of audio power amplifiers. It should also be noted that there is nothing inherent in the "current dumping" concept which necessitates the "dumper" stage being class C (i.e. biased off). This clearly was a conscious design decision made by Quad to eliminate the need of quiescent current adjustment and it has been shown in experiments that the residual distortion is below audibility. In addition we believe that feedforward audio amplifiers by other manufacturers are clearly derived from the genius shown in the Quad 405.

L. Vanderkooy

S. P. Lipshitz

University of Waterloo
Waterloo
Ontario

The author replies

Nothing said about the Quad 405 in my articles appears to have been overturned. I made three incautious comparisons with other arrange ments, and these had to be withdrawn on grounds of instability. Unfortunately these com parisons bulked large in the conclusions, which have now been rewritten to yield my letter above. Until it is clear whether they will prevai I prefer not to comment on anything other than the Quad 405. I agree that if $\mathrm{e}=0.2$ then a fivefold decrease in distortion is to be expected if a short on L is removed. Inverse of the rela tive bridge balance accuracy, as our friends sug gest. This deals completely with their second point, as the other comparisons mentioned are
not related to the Quad 405. Their third point about the inductor is their own, and this damaging criticism of the Quad 405 would benefit by confirmation from a second authority.

This leaves their first point, that feedforward alone is the only correct explanation of current dumping. (See also the second sentence of their last paragraph above.) This assertion fully confirms my account of their views. But the italics indicate a great deal. Feedback, it seems, is not feedback unless it is taken singly, and from the load. Whereas feedforward apparently, may be simple, or a good deal more elastic. With this special language current dumping violates the feedback definition on both counts, and can only be feedforward.

But starting with Walker in the patents and continuing through Baxandall many authors have given perfectly correct explanations in terms of voltage fed back to the input from one or two points near the load. This use of the term feedback is entirely natural, even though it does violate the above curiously narrow definition. There is nothing wrong with this usage, and opposition to it should be dropped. Nothing is at stake: the equivalance of the two explanations (and three others!) was demonstrated in the Sept/Oct articles.

THUNDERSTRUCK

I must admit when I read Chirp's account 'Thunderstruck' in WW (Random Echoes, November) it was with some smug satisfaction, that it should happen to such an august company as IBM. Really it should be recognised that this is something which has arrived with microprocessors. The c.p.u. has only to skip one byte (or word) due to electrical interference and it will lose synchronism with the program it is executing. In general it will not regain synchronism of its own accord and the equipment it is supposed to be controlling will remain mute or continually 'doing something'.
These effects will not be evident in equipment which may do a '9-to-5' job, because the power-up reset each morning will keep everything in order, on the other hand those equipments which operate continuously can, for no explicable reason cease to function. This latter is in the category of 'press reset' and everything will be allright again.

On the subject of reset, this is another button which has been gained with microprocessors. It is either resoundingly prominent on the front panel, or coyly hidden around the back somewhere, or a magic theree key operation which performs the same function. Alternatively reset can be generated from a circuit at power-up which brings the equipment into the catagory of: 'If it goes screwey, switch off, wait a moment, then switch on again' - it'll be OK then!

It is so easy to blame exterior forces - the, 'It wasn't me' syndrome but there are opinions that invasion by alpha particles can disrupt the internal saved states of the c.p.u. and sent it 'bananas'. On this score it is interesting to note that Hitachi's $8 \mathbf{k} \times 8$ bit ram has been constructed to allow for this (New Electronics March or April 83, I think).

What can be done? It should be an essential part of every microprocessor design to have some delay circuit completely separate from the microprocessor circuit and definitely not under software control which is kept reset. The input to this circuit should be one bit from the system which is simply toggled by the software at
perhaps, say, 100 ms or 1 second period, the output should go to the c.p.u. where a suitable interrupt can be generated should the toggling action stop, ie, c.p.u. lost. This can be thought of as a 'kickstart' or a kick in the pants to the c.p.u.! A word of warning, some microprocessors will ignore interrupts when they are lost and need a reset followed by the suitable input.

The type of circuitry which comes to mind is two monostables in cascade, e.g. 74LS123, the first as the 'hold-off' delay, the second to create the 'kickstart'. Another circuit that can be used if delays need to be some seconds is the 'Van Der Veen' timer, sketched above, designed by a former colleague of mine and named afier him. Not posthumously I hasten to add.

By now you are probably asking yourself, 'How does this Joker know all this?', well, it happened to me! I would like to find an answer to the problem, perhaps this could be food for thought for those more qualified than myself to examine it.
Alan W. Roscoe
Enfield
Middlesex

SOFTWARE BY RADIO

With reference to your news item on page 39 of the December issue, concerning Radio West's 'Datarama' programme, I noted that no commencement date was given for the programme which transmitted home computer software, etc, but the intimation was that they were the first to do so.

Whilst only inspection of the transmission schedules reveals the real 'first' (I think Radio Victory in Portsmouth also claim the honour), I feel it should be noted that BBC Radio Leeds commenced transmission of a magazine-type programme for computer enthusiasts entitled "Abacus: the computer programme", transmitted fortnightly, started on the Sth October, 1982, and was presented by Dave Banks, Pete Bradley, Martyn Croft and the writer. The content was, and is still, of a magazine nature and included regular experimental transmissions of home microcomputer software, as well as news, reviews, and technical contributions.
The programme is now in the third series, and we hope that software transmission will start again in the new year.
D. R. Coomber

Co-presenter, Abacus
Leeds

XY PLOTTER

In his article ("Computer-controlled xy plotter", January) P. N. C. Hill invites suggestions for an algorithm to draw a straight line between any two points on the plotting area. I have written software for a plotter similar to that he describes and have developed such an algorithm.
The algorithm involves tracking along the required line drawing line segments which fol-

low it as closely as possible. At each step along the line there are two or three points to which a line segment might be drawn (by stepping the X motor, the Y motor or, if possible, both motors together). The point is selected which has the smallest perpendicular distance from the required line. A segment is drawn to this point and the process repeated until the line is complete.

In the figure the perpendicular distance of the point $\left(X_{2}, Y_{2}\right)$ from the line from (0,0) to ($\mathrm{X}_{1}, \mathrm{Y}_{1}$) is

$$
\delta=\operatorname{ABS}\left(\frac{\mathbf{X}_{1} \mathrm{Y}_{2}-\mathbf{X}_{2} \mathrm{Y}_{1}}{1}\right)
$$

where 1 is the length of the line from $(0,0)$ to $\left(\mathbf{X}_{1}, Y_{1}\right)$. This theorem is derived from the formula for the Vector Product of two vectors. For any given line 1 is constant, therefore to determine which of a group of points is nearest to the line calculate $\mathrm{ABS}\left(\mathrm{X}_{1} \mathrm{Y}_{2}-\mathrm{X}_{2} \mathrm{Y}_{1}\right)$ for each of the points and select the point giving the lowest value. The line is complete when $\mathrm{ABS}\left(\mathrm{X}_{2}\right)$ $\geqslant \operatorname{ABS}\left(\mathrm{X}_{1}\right)$ and $\operatorname{ABS}\left(\mathrm{Y}_{2}\right) \geqslant \operatorname{ABS}\left(\mathrm{Y}_{1}\right)$.

It is necessary to adapt the above equations to allow the line to start from an arbitrary point instead of $(0,0)$. All the variables may be expressed as integers to increase the speed of execution and to prevent accumulating errors.
Richard Griffiths
Whitchurch
Cardiff

TECHNOLOGY AND PEOPLE

"Why then is it such a common observation of human life, that those who do what they like rarely seem to like what they do?" - S. C. Elliston (Letters, December).
If we replace the first "like" with "choose" and introduce the time function of learning, the problem disappears: the discovery of dislike is retrospective.
If we then replace "choose" with "are pressurised by events to do", at least a part of the problem becomes clear: none of us has, ever has had, nor ever will have, complete freedom of choice, more especially in a period of massunemployment!

The more creative an individual is, the more free he or she is to choose, but the more attempts there will be to manipulate simply because the world takes man-made providence and Providence with a capital P, for granted.
There is also such a thing as monotony, a source of dislike, the permanent plateau of nonfulfilment in which no learning occurs with the consequent failure of information intake for pleasure-giving processing. Such monotony is commonly provided by an ignorant preoccupation with material pleasures - i.e. non-thinking pleasures such as eating, ambishing non-creatively, and mating, and throwing one's self about in an ape-like monkey-hop to some strange cacophony actually calculated to hold the mind in such ignorance while making a lot of lovely lolly. It seems perhaps that one should never cause or assist the process of thought in case it starts a rebellion! The true question really is, which is the worse evil - the destructive and vandalistic rebellion of non-thought, or the more constructive rebellion of thought?

Mr Elliston's question stems from the same sort of problem mentioned also in December by David A. Chalmers, being the absence of definition for the word "like": it also demonstrates some misunderstanding that the pleasure to
which Professor Campbell refers is a subconscious one rather than the conscious one of the senses: one thinks for pleasure, but in the absence of information for processing one is limited to the simple experience of the frustration of not understanding the cause of one's frustration. One must experience the pleasures of thought before one may realise that one needs to know more if one is to experience further pleasure.
That is why the teaching process is so very, very difficult in the early stages, and even more so in the case of the autist.
J. A. MacHarg

Wooler
Northumbria

In his letter, published in WW November, 1983, W. M. Dalton hit a nasty land-mine that I first noticed some years ago. Let me first quote the moment when he hits it.
"Let us start from known facts. (1) Light is an electromagnetic phenomenon: demonstrated by Faraday and Kerr. (2) Light is not a static problem: it is ocillatory (Hertz). (3) The electric and magnetic fields are at rightangles and always 90 degrees out of phase. Some recent textbooks show these in-phase - an unparadonable error."

I am anxious that Mr Dalton expands on why this error is unpardonable, and what disasters this error might lead us into.
First let me list some non-recent textbooks which show these in-phase.
G. W. Carter, Professor of Electrical Engineering in the University of Leeds, in his book The Electromagnetic Field in its Engineering Aspects, (Longman 1954) draws the \bar{B} and E fields in-phase on page 271. Significantly, although he emphasises that E and B are at right angles (page 274) he never seems to say in the test that B and E are in phase.
A. F. Kip, Professor of Physics, University of California, Berkeley, in his book Fundamentals of Electricity and Magnetism, (McGrawHill 1962) draws the H and E fields in-phase on page 322. On that same page the text says that the two fields are perpendicular to each other, but does not state that they are in-phase. Again significantly, I cannot find mention in the text that they are in-phase.
O. Heaviside F.R.S., in his book Electromagnetic Theory Vol 3, 1912, in art. 452, page 4, wrote
"The General Plane Wave . . . the slab may be of any depth and any strength, and there may be any number of slabs by side behaving in the same way, all moving along independently and unchanged. So $E=\mu \mathrm{vH}$ expresses the general solitary wave, where, at a given moment, E may be an arbitary function of x. ."
[Replace $\mu \mathrm{v}$ by $V \mu / \epsilon-I$. Catt]
Whereas some books (Carter and Kip) vaguely indicate that E and H are in-phase, other books seem to fail to discuss relative phase at all see for example Gullwick 1959, Bewley 1933. The trap was nicely set for Dalton, and he has my sympathy.

Now let us turn to my article in Wireless World, July 1979, entitled The Heaviside Signal.
"We have shown that the passage of a TEM wave and all the mathmatics that has mushroomed around it does not rely on a causality relationship (or interchange) be-
tween the electric and magnetic field. Rather, they are co-existent, co-substantial, co-eternal."
In that article I compare and contrast two mutually contradictory versions of the transverse electromagnetic wave. I believe that the full realisation that E and H are in-phase deals a death-blow to one of those versions, the rolling wave, and leaves the other, the Heviside signal, the victor.
Because the differential of \sin is \cos and the differential of cos is minus sin, half-witted mathematicians have invaded the physics of the TEM wave and imposed a spurious story that E causes H causes E. Since \sin, cos and - \sin are 90 degrees out of phase, part of their phoney baggage is to imply that E and H are 90 degrees out of phase. (See my article in WW in March 1980.) Because the sine wave is amenable to mathematical high jinks, another part of their baggage is to imply that a TEM wave is sinusoidal. It's time we cleaned the claptrap out of electromagnetic theory.
Ivor Catt
St. Albans
Hertfordshire

FORTH PROCESSORS

In his comparison of processors for Forth language implementation and his subsequent reply to one of your correspondants (Letters, November) Brian Woodroffe has made some incorrect statements and unfair comparisons in relation to the 18088 processor.

Firstly, it is clear that his published code for the NEXT routine is far from optimal. It uses two instructions to ensure that on exit from the routine, the DX register is one greater than the BX register. This is clearly unnecessary since the 6809 code for NEXT performs no equivalent action, and any use of the value in DX can use BX instead - probably with less code involved since BX can be used as an index register while DX cannot. I can only assume that the 8088 code was translated from the 8085/Z80 code, which performs a similar (but in this case necessary) action, and that it is intended to work with other Forth routines translated from the 8085. It is equally clear that the 6809 code is in no way a translation of the 6800 code.

It is therefore possible to code NEXT as follows:

LODSAX

XCHGAX,BX
JMP WORD PTR (BX)
which mimics the 6809 register usage and, being only four bytes long, can be coded inline. This is approximately twice as fast as the code given by Mr Woodroffe and therefore, on his figures, is about 50% faster than the 6809.

Mr O'Connor (Letters, September 1983) has already pointed out that the 8083 code for ADD can likewise be shortened. In his reply (Letters, November), Mr Woodroffe correctly points out that BP will not have a fixed relationship to SP but is wrong in asserting that Mr O'Connor's first example is incorrect. It appears that Mr Woodroffe is unaware that the 8088 can leave the result of an ADD or other operation in memory rather than in a register, and ADD [BP], AX does just that.
Another feature of the 8088 which is particularly useful in Forth is its ability to push and pop memory locations as well as registers, using all the usual addressing modes. Finally, the 8088 has several more registers than the 6809 making it possible, for example, to keep the top-
of-stack item in a register instead of in memory. These features are adequate compensation for the drawback of not having a stack pointer relative addressing mode. To illustrate this, I show 8088 versions of the 6809 routines which Mr Woodroffe illustrates (Forth Language, November). These routines use the DI register to hold the top of stack operand, but even without this optimisation the code need be no larger than the 6809 versions.
Apart from these comparisons, I have enjoyed Mr Woodroffe's illuminating series on the Forth language.
D. Crocker

Woking
Surrey

APPENDIX. Some Forth routines in 8088 code. DI register holds top of stack value; initial DW $\$+2$ and final NEXT macro omitted.

$"+":$	POP ADD	AX DI,AX	$; 3$ bytes
MINUS:	NEG	DI	$; 2$ bytes
"@":	MOV	DI,[DI]	$; 2$ bytes
"!":	POP	WORD PTR[DI]	
	POP	DI	$; 3$ bytes
DUP:	PUSH	DI	$; 1$ byte
OVER:	MOV	BX,SP	
	PUSH DI, MOV DI,[BX]	$; 5$ byies	
DROP:	POP	DI	$; 1$ byte

CLOSED LOOP

Your correspondent James A. MacHarg (Letters, November) likens Wireless World's Letters section to the House of Commons; a more appropriate name, perhaps, would be Physics Commons. Physicists need these rare, popular outlets not just to air their views but also to realise their own shortcomings. We have all thought that we knew something until we try to explain it! Furthermore, a problem that may baffle one physicist may be obvious to another. If only the young Einstein had had the advantage of a Physics Commons the world would have been spared his silly theory of Special Relativity.
Mr Macharg's interpretation of my expression "closed loop" is fascinating. I was merely describing to electronic specialists the sort of closed-circuit arguments which are employed to uphold Special Relativity. One begins such closed-circuit arguments by assuming something is true. After that, one can argue along any circuit and prove that something really is true!

I take it that Mr MacHarg's explanation why phoney closed-loop arguments are used to support Special Relativity is because of the mind-boggling conclusions of that theory. Presumably, if one can accept that mass is energy then one can accept closed loop arguments! However, when the error in Special Relativity is corrected, mass becomes and energy becomes movement of that mass. One's mind is deboggled overnight!

A. H. Winterflood

London N10

Letters in reply to Ian McCauslands' article 'Problems in Special Relativity' appear on pages $71 \mathcal{E}$ 72.

Active filter calculations

Using programmable calculators it is a simple matter to write a sequence of operations to allow transmission of bootstrap and Sallen and Key circuits to be calculated.

The bootstrap and Sallen and Key filter circuits make convenient unity-gain circuit modules that can be implemented using standard operational amplifier gain blocks. With the availability of programmable calculators it is a simple matter to write a sequence of operations that allows the transmission of these circuits to be calculated for any desired component values, with greater potential accuracy and much less labour than would be involved in instrumental measurements. For my own interest I have done this exercise for the Texas Instrument TI58/59 calculators and for the Hewlett Packard HP-65.

While I have no doubt that better mathematicians than I would be able to simplify both the calculation and the resultant program, these do work and give accurate answers. In all cases, the program is written so that the circuit parameters Q and ω / ω_{0} are entered into the calculator memory stores, and the transmission in decibels is given when the desired frequency is entered and the program sequence initiated.

I have assumed that the operational amplifier behaves in an ideal manner, having a very high open-loop gain, giving unity gain in the voltage-follower mode and a sufficiently high input impedance for the effect of this to be neglected. This assumption is fully valid for the TL071. It is also assumed that the source impedance seen by the filter is low.

Third-order I.p. bootstrap filter

The first part of the transmission expression for a third-order low-pass bootstrap filter refers to the active circuit, and the second part to the passive RC element. The expression is

$$
\begin{aligned}
& 20 \log _{10} \frac{\sqrt{\left[\left(1-k^{2}\right)+\mathrm{A}^{2} \mathrm{k}^{2}\right]^{2}+\mathrm{A}^{2} \mathrm{k}^{6}}}{\left(1-\mathrm{k}^{2}\right)^{2}+\mathrm{A}^{2} \mathrm{k}^{2}} \\
& \quad+20 \log _{10} \sqrt{\frac{\mathrm{~A}^{2}}{\mathrm{~A}^{2}+\mathrm{k}^{2}}}
\end{aligned}
$$

where $k=\omega / \omega_{0}$ and $A=1 / Q$ and $\omega=2 \pi f$. Turn-over frequency is

$$
\omega_{0}=\frac{1}{\sqrt{\bar{C}_{1} \mathrm{C}_{2} \mathrm{R}_{1} \mathrm{R}_{2}}}
$$

and $Q=\frac{\sqrt{x y}}{1+y}=\frac{\sqrt{R_{1} C_{2} / R_{2} C_{1}}}{1+C_{2} / C_{1}}$,

by J. L. Linsley Hood M.I.E.E.

with $x=R_{1} / R_{2}$ and $y=C_{2} / C_{1}$. To use the program shown, enter the chosen values of Q and press B. Enter ω / ω_{o} and press A. Alternatively, enter f_{T} store 08, enter f, press C . Read out transmission in dB .

TI58/59 program

LRN			48	$=$
1	2nd LBL		49	2nd LOG
2	B	enter Q	50	\times
3	1/x	generates	51	2
4	x^{2}	A^{2}	52	0
5	STO		53	=
6	0		54	STO
7	R/S		55	4 2nd order
8	2nd LBL		56	RCL
9	A		57	1
10	x^{2}		58	+
11	STO		59	RCL
12	1	k^{2}	60	0
13	x		61	$=$
14	RCL		62	$1 / x$
15	0	A^{2}	63	x
16	$=$		64	RCL
17	STO		65	0
18	2	$A^{2} k^{2}$	66	$=$
19	+		67	$\checkmark \times$
20	1		68	2nd LOG
21	1		69	\times
22	-		70	2
23	RCL		71	0
24	1		72	=
25)		73	STO
26	STO		74	5 1st order
27	3	$1-k^{2}$	75	+
28	${ }^{2}$		76	RCL
29	x^{2}		77	4
30	+		78	=
31	RCL		79	2nd FIX
32	2		80	1
33	x		82	R/S
34	RCL		LRN	
35	12			
36	x^{2}		LRN	
37	$=$		83	2nd LBL
38	$\checkmark x$		84	C
39	\div		85	x
40	(86	RCL
41	RCL		87	8
42	3		88	1/x
43	x^{2}		89	$=$
44	+		90	2nd INV
45	RCL		91	ENG
46	2		92	A
47)		LRN	

In practice, it is probably more convenient in the design of the filter circuit to choose the required Q and operating frequency, and then derive the values of Rs and Cs for this.

The method is as follows. Try an arbitrary ratio of $\mathrm{C}_{2} / \mathrm{C}_{1}=\mathrm{y}$ (say 1). Then

Fig. 1. Low-pass bootstrap filter of $20 \mathrm{~dB} /$ octave for $Q=2.2$.

$$
C_{1}(\mu F)=\frac{10^{6}}{2 \pi f_{0} R_{2}(1+y) Q}
$$

$R_{1}=R_{2} \frac{Q^{2}(1+y)^{2}}{y}$ and $C_{3}(\mu F)=\frac{10^{6} \mathrm{Q}}{2 \pi f_{0} R_{3}}$.
If this gives awkward or non-standard values, try another value for $\mathrm{C}_{2} / \mathrm{C}_{1}$.

Third-order h.p. bootstrap filter
The transmission expression in the case of a high-pass filter is

$$
\left.\begin{array}{rl}
20 \log _{10} 0 & \sqrt{\left[A^{2} k^{2}-k^{2}\left(1-k^{2}\right)\right]^{2}+A^{2} k^{2}} \\
\left(1-k^{2}\right)^{2}+A^{2} k^{2}
\end{array}\right) . \begin{aligned}
& \frac{A^{2} k^{2}}{\left(1+A^{2} k^{2}\right)}
\end{aligned}
$$

Fig. 2. High-pass bootstrap filter of 20 dB /octave for $Q=2.2$.

LRN	10	0	k
1 2nd LBL	11	${ }^{2}$	
2 B	12	STO	
3 1/x	13	2	k^{2}
4 STO	14	+ $/-$	
51	15	$+$	
6 R/S	16	1	
7 2nd LBL	17	$=$	
8 A	18	STO	
9 STO	19	3	1-k ${ }^{2}$

To use, enter Q, press B. Enter ω / ω_{0}, press A. Alternatively, enter f_{0} in store 9 , enter f and press C.
Q and ω_{0} are as in the previous case, but here $x=C_{2} / C_{1}$ and $y=R_{1} / R_{2}$. Again, it will probably be more convenient to choose the required Q and operating frequency, and then derive the necessary values for the Rs and Cs.
Method. Try an arbitrary value of $\mathbf{R}_{1} / \mathbf{R}_{2}=\mathbf{y}$ (say=1). Then

$$
\begin{aligned}
C_{1}(\mu F) & =\frac{10^{6}}{2 \pi f_{0} R_{2}(1+y) Q} \\
C_{2} & =C_{1} \frac{Q^{2}(1+y)^{2}}{y}, \text { and } \\
C_{3}(\mu F) & =\frac{10^{6}}{2 \pi f_{0} R_{3} Q} .
\end{aligned}
$$

A Q -value in the range 2 to 2.2 will give a reasonably flat response for the third-order filter. (For convenience I have defined Q in a manner that differs from the true circuit magnification factor and hope to be forgiven for this small transgression.)
The phase shift produced by these filters may be calculated as follows.

Low pass

$$
\phi=\tan ^{-1} \frac{K\left[A^{2}-2 A^{2} k^{2}-A k-\left(1-k^{2}\right]\right.}{A\left[A^{2} k^{2}+\left(1-k^{2}\right)-k^{4}\right]} .
$$

High pass

$$
\phi=\tan ^{-1} \frac{\mathrm{~K}\left(\mathrm{k}^{2}+2 \mathrm{~A}^{2}-1\right)}{\mathrm{A}\left(\mathrm{~A}^{2} \mathrm{k}^{2}-\mathrm{k}^{2}+\mathrm{k}^{4}-1\right)}
$$

Programs for the HP65 (or similar RPN calculators) are as follows.
To use, set MC to run, enter program. Enter value of Q , press A (displays Q).

	65 high in chara	-pass and cteristics			
1	LBL		44	RCL 6	
2	A	enter 0	45	RCL 5	
3	${ }_{1} \times$		46	$\stackrel{+}{f^{-1}}$	
5	STO 1	A	48	\checkmark	
6			49	RCL 5	
7	\checkmark		50	RCL 4	
8	STO 2	A^{2}			
9	DSP		52	\checkmark	
10	-		53	x	
11	4			+	
12	RCL 1		55	RCL 7	
13	g		56	$\stackrel{+}{\square}$	
14	${ }_{\text {1/x }}^{1 / x}$		58		
15	${ }_{\text {RTN }}$	displays O	59 60	STO 7	
17	D		61	RCL 2	
18	STO 3	k	62	+	
19	${ }^{-}$			\div	
20	\checkmark		64	E	
22	STO4	k^{2}	65	+	
23	RCL 2		66	RTN	
24		$A^{2} k^{2}$	67	LBL	
26			68	C	enter
27	RCL 4		70	RCL5	${ }_{\text {for }} / \omega_{0}$
28			71	RCL 4	
29	STO 6	1-k ${ }^{2}$		RCL 6	
30				\times	
31 32	$\stackrel{V}{\mathrm{VCL}} 5$	$\left(1-k^{2}\right)^{2}$			
32 33	${ }_{\text {RCL } 5}$			f^{-1}	
33 34	${ }_{\text {f }}{ }^{-1}$			RCL 5	
35	\checkmark	bottom line	78		
36	STO 7	of eqn		RCL 7	
38	DSP			\div	
39	-			E	
40	1			+	
$\begin{aligned} & 41 \\ & 42 \end{aligned}$	RTN			RTN	
$\begin{aligned} & 42 \\ & 43 \end{aligned}$	LBLB	enter ω / ω_{0}	for Ip		

Enter value of $\omega / \omega_{0}(k)$, press B. This displays transmission in dB for low-pass filter. RCL 7 shows transmission of active second-order filter. For high-pass filter, enter ω / ω_{0} and press C. RCL 7 again shows transmission of second-order part of circuit.
HP65 program for high-pass and lowpass phase characteristics

LBL	37	RCL
A	38	RCL
9	39	2
1/x	40	\times
STO 1	41	-
E	42	RCL
STO 7	43	RCL
DSP	44	\times
-	45	-
4	46	RCL 5
RTN	47	-
LBL	48	RCL
E	49	\times
f^{-1}	50	RCL 5
\checkmark	51	RCL
RTN	52	+
LBL	53	RCL
D	54	E
STO 2	55	-
	56	RCL
STO 3	57	x
RCL 7	58	\div
\times	59	f^{-1}
STO 4	60	tan
1	61	
RCL 3	62	1
-	63	8
STO 5	64	0
DSP	65	-
-	66	RTN
0	67	LBL
RTN	68	C
LBL	69	D
B	70	0
D	71	RCL
0	72	RCL

73	2	86	1
74	x	87	-
75	+	88	RCL
76	1	89	\times
77	-	90	\div
78	RCL 2	91	f^{-1}
79	x	92	Tan
80	RCL 4	93	
81	RCL 3	94	1
82	E	95	8
83	+	96	0
84	RCL 3	97	+
85	-	98	RTN

To use, set MC to run. Enter program. Enter Q, press A. Enter ω / ω_{0} and press B for low-pass phase shift, or press C for high-pass phase characteristic.

As a check, both of the validity of the caculations shown above and of the program written for them, the predicted and measured characteristics of two circuit embodiments, the treble and rumble filter circuits employed in the modular preamplifier design (Wireless World, Oct. 1982 to Feb. 1983) are shown in Figs 5 and 6, and a steeper cut treble filter, having a Q of 2.2. and an f_{0} of 5.9 kHz , is shown in Fig 7.

Sallen and Key filter

The widely used Sallen and Key circuit shown in Figs 3 and 4 can be used as a third-order filter with a following or preceding passive filter element, similar to that shown in Figs 1 and 2. It is, however, most commonly employed as a secondorder filter element having an ultimate attenuation rate of -12 dB /octave, and it is for this form that the equations and program below are derived. As previously, $\omega / \omega_{0}=\mathrm{k}$ and $\mathrm{A}=1 / \mathrm{Q}$, and here

$$
Q=\frac{\sqrt{x y}}{1+x}
$$

In the low-pass circuit, $x=R_{1} / R_{2}$ and $y=C_{3} / C_{4}$ and in the high-pass form, $y=C_{1} / C_{2}$ and $x=R_{3} / R_{4}$.

Transmission expressions are
Low pass $\frac{\left(1-k^{2}\right)-i k A}{\left(1-k^{2}\right)^{2}+(k A)^{2}}$

High pass $\frac{k^{2}\left(k^{2}-1\right)-j k A\left(k^{2}\right)}{\left(k^{2}-1\right)^{2}+(k A)^{2}}$

Fig. 3. Low-pass Sallen and Key filter of 12dB/octave

Fig. 4. High-pass Sallen and Key filter of 12dB/octave

Fig. 5. High-pass bootstrap filter

Fig. 6. Low-pass bootstrap filter. Frequency scale in kHz .

Fig. 7. Low-pass bootstrap filter with $Q=2.2$

TI58/59 transmission and phase for Sallen and Key filters

LRN		53	1
1	2nd LBL	54	
2	A	55	STO
3	2nd CP	56	3
4	STO	57	x^{2}
5	0	58	+
6	x^{2}	59	1
7	+1-	60	RCL
8	$+$	61	0
9	1	62	X
10	$=$	63	RCL
11	STO	64	1
12	2	65	$)^{2}$
13	x^{2}	66	x^{2}
14	+	67	=
15	RCL	68	STO
16	0	69	4
17	x^{2}	70	RCL
18	x	71	${ }^{0}$
19	RCL	72	x^{2}
20	1	73	x
21	x^{2}	74	RCL
22	=	75	3
23	STO	76	$\stackrel{\square}{\text { R }}$
24	3 denom	77	RCL
25	1/x	78	4
26	x	79	$=$
27	RCL	80	$\xrightarrow{x}{ }^{\text {t }}$
28	2	81	RCL
29	$=$	82	0
30	$x \rightarrow t$	83	x
31	RCL	84	RCL
32	0	85	1
33	x	86	R
34	RCL	87	RCL
35	1	88	2
36	\div	89	\div
37	RCL	90	RCL
38	3	91	4
39	$=$	92	=
40	INV	93	INV
41	2nd $\mathrm{P} \rightarrow \mathrm{R}$	94	2nd $\mathrm{P} \rightarrow \mathrm{R}$
42	$x \rightarrow t$	95	$\underset{R}{ } \rightarrow$ t
43	R/S	96	R/S
44	2nd LBL	97	2nd LBL
45	B	98	E
46	2nd CP	99	2nd LOG
47	STO	100	X
48	0	101	2
49	${ }^{2}$	102	0
50	STO	103	
51	2	104	R/S
52	-	LRN	

Enter $\mathrm{Q}, \mathrm{l} / \mathrm{x}$ and store $01(\mathrm{l} / \mathrm{Q})$. To use, enter ω / ω_{0}, press A for low-pass. This displays gain. For high-pass, enter ω / ω_{0}, press B. This displays stage gain. In both cases, for phase press $x \rightarrow t$. To obtain result in dB , press E .

The HP65 program for the same circuit is shown below.

HP65 Sallen and Key filter transmission characteristics

1	LBL		23	RCL 2	
2	E		24	${ }^{\mathbf{x}}$	
3	f^{-1}		25		
4	\checkmark		26	STO 4	$A^{2} \mathrm{k}^{2}$
5	RTN		27	RCL 3	
6	LBL	enter Q	28	+	
7	A		29	RCL 3	
8	E		30	RCL4	
9	9		31	\pm	
10	1/x		32	E	
11	STO 1		33	\div	
12	RTN	A^{2}	34	f	
13	LBL		35	\checkmark	
14	B		36		
15	E		37	LOG	
16	STO 2	k^{2}	38	2	
17	1		39	0	
18	RCL 2		40	x	
19	-		41	RTN	
20	E		42	LBL	
21	STO 3	$\left(1-k^{2}\right)^{2}$	43	C	
22	RCL 1		44	E	

45	STO 2	61	-
46	RCL 2	62	E
47	\uparrow	63	RCL 1
48	1	64	RCL 2
49	-	65	X
50	\times	66	+
51	E	67	E
52	RCL 1	68	\div
53	RCL 2	69	f
54	3	70	\checkmark
55	g	71	f
56	y^{\times}	72	LOG
57	\times	73	2
58	+	74	0
59	1	75	x
60	RCL 2	76	RTN

To use, set MC to run, enter program. Enter chosen Q value, press A. Enter ω / ω_{0}. Press B for low-pass tansmission in dB. Press C for high-pass transmission.

Appendix

The equations for the transmission of these two filter systems are shown below for the generalized form. The actual transmission for the $\mathrm{h}-\mathrm{p}$ and $1-\mathrm{p}$ circuits can be obtained by substituting R or $\mathrm{l} / \mathrm{j} \omega \mathrm{C}$ for the impedance blocks denoted by Z_{1}, Z_{2}, etc.
H or bootstrap filter

$$
\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{Z_{2} Z_{3}+Z_{3} Z_{4}+Z_{2} Z_{4}}{Z_{1} Z_{3}+Z_{2} Z_{3}+Z_{3} Z_{4}+Z_{2} Z_{4}}
$$

In the law-pass case, this becomes

$$
\frac{1+j \omega R_{2}\left(C_{1}+C_{2}\right)}{1+j \omega R_{2}\left(C_{1}+C_{2}\right)-\omega^{2} R_{1} R_{2} C_{1} C_{2}}
$$

and in the high-pass case

$$
\frac{j \omega C_{1}\left(R_{1}+R_{2}\right)-\omega^{2} R_{1} R_{2} C_{1} C_{2}}{1+j \omega C_{1}\left(R_{1}+R_{2}\right)-\omega^{2} R_{1} R_{2} C_{1} C_{2}}
$$

Sallen and Key filter

$\frac{E_{\text {out }}}{E_{\text {in }}}=\frac{1}{1+Z_{1} / Z_{4}+Z_{2} / Z_{4}+\frac{Z_{1} Z_{2}}{Z_{3} Z_{4}}}$.
In the low-pass case, this becomes

$$
\frac{1}{1+j \omega \mathrm{C}_{4}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)-\omega^{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{3} \mathrm{C}_{4}}
$$

and in the high-pass case

$$
\frac{\omega^{2} R_{3} R_{4} C_{1} C_{2}}{\omega^{2} R_{3} R_{4} C_{1} C_{2}+j \omega R_{3}\left(C_{1}+C_{2}\right)-1}
$$

These can be transformed into more easily manipulable forms, of the type quoted in the article above, by the use of the relationship

$$
\omega_{0}=1 / V R_{1} R_{2} C_{1} C_{2}
$$

or its appropriate equivalent depending on the component numbering, and the simplifying relationships $R_{1} / R_{2}=x$ and $C_{1} / C_{2}=y$, again using the appropriate component numbering.

More active filter calculations

Time-saving programs for the TI59 calculator give poles and filter order for both Tschebycheff and Butterworth low-pass filters

As a rule, filter requirements are expressed by the maximal attenuation of the passband $A_{\max }$, the minimal attenuation of the stopband $\mathrm{A}_{\min }$, and by the normalized frequency Ω. With these values only the filter order n and the poles $\mathrm{s}_{\mathrm{k}}=\sigma_{\mathrm{k}}+\mathrm{j} \gamma_{\mathrm{k}}$ of the transfer function of a normalized low-pass filter need to be calculated. If the poles are known, the resonance frequency and the quality factor Q are easily obtained by
$\omega_{0}=\sqrt{\sigma_{k}^{2}+\gamma_{k}^{2}}, \quad \mathrm{Q}=\frac{1}{2}\left[1+\left(\frac{\gamma_{k}}{\sigma_{k}}\right)^{2}\right]^{1 / 2}$.
Hence the programs of both the Tschebysheff and Butterworth normalized lowpass filters have to give n and s_{k} as well.

1. As the Tschebysheff approximation is explained in detail in the reference ${ }^{1}$, only the formulas needed to understand the programs are given. The loss of an order n Tschebysheff low-pass filter is

$$
\begin{equation*}
\mathrm{A}(\Omega)=10 \log \left\{1+\left[\epsilon \mathrm{T}_{\mathrm{n}}(\Omega)\right]^{2}\right\} \tag{2}
\end{equation*}
$$

where the T-polynomial of order n is

$$
\mathrm{T}_{\mathrm{n}}(\Omega)=1 / 2\left[\left(\Omega+\sqrt{ } \Omega^{2}-1\right)^{\mathrm{n}}+\right.
$$

$\left.\left(\Omega-\vee \Omega^{2}-1\right)^{n}\right]$.
3

by Kamil Kraus

The passband ripple $A_{\text {max }}$ is related to ϵ by

$$
\begin{equation*}
\epsilon^{2}=10^{0.1 \mathrm{~A}_{\max }-1} \tag{4}
\end{equation*}
$$

Equations 2 and 3 are used to calculate the filter order n. After some manipulation ${ }^{1}$ the expressions for the real and imaginary part of roots yield

$$
\begin{align*}
& \qquad \begin{array}{l}
\sigma_{k}=1 / 2 \sin \frac{\pi}{2} \frac{1+2 k}{n}\left(K^{1 / n}-K^{-1 / n}\right) \\
\qquad k=0,1,2, \ldots \\
\gamma_{k}=1 / 2 \cos \frac{\pi}{2} \frac{1+2 k}{n}\left(K^{1 / n}-K^{-1 / n}\right), \\
\text { where } \quad K=\frac{1}{\epsilon}+\sqrt{\epsilon^{2}}+1
\end{array} .
\end{align*}
$$

In program 1 we find n in $X \geqslant t$ and displayed before the pause, σ_{k} : STOOOSTO07, γ_{k} : STO20-STO27.

Example. Given $A_{\max }=0.4576 \mathrm{~dB}$, $A_{\min }=32 \mathrm{~dB}$ and $\Omega=2.0926$, we obtain $\mathrm{n}=4$ and

$$
\begin{array}{ll}
\text { STO00 } & \sigma_{1}=-0.1800241922 \\
\text { STO01 } & \sigma_{2}=-0.4346168463 \\
\text { STO20 } & \gamma_{1}=1.021002054 \\
\text { STO21 } & \gamma_{2}=0.4229128979 .
\end{array}
$$

2. The order n of the Butterworth normalized low-pass filter is calculated using the equation

$$
\begin{equation*}
\mathrm{n}=\frac{\log \left[\left(10^{0.1 A \min }-1\right) /\left(10^{0.1} \mathrm{Amax}-1\right)\right]}{2 \log \Omega} \tag{7}
\end{equation*}
$$

and the roots are
for n even

$$
\begin{equation*}
\mathrm{s}_{\mathrm{k}}=\exp \left[\frac{\mathrm{j} \mathrm{\pi}}{2 \mathrm{n}}(2 \mathrm{k}-1)\right] \mathrm{k}=1,3,5, \ldots \tag{8}
\end{equation*}
$$

for n odd

$$
s_{k}=\exp i \frac{\pi k}{n} \quad k=2,4,6, \ldots
$$

In program 2, n is displayed before the pause, σ_{k} : STO11-STO19, γ_{k} : STO20STO29.
continued on page 57

Elliptic filter design using TI-59

Using this program the design of an elliptic low-pass filter takes only a few minutes

Many of programs concerning electronic filter design have been published and the calculation of Tschebycheff and Butterworth low-pass filters are in the subroutine to the TI-59, to my knowledge a simple program to solve a normalized elliptic low-pass hasn't yet been published. To overcome the rather difficult theory of elliptic integrals and elliptic functions little mathematics has been used to calculate the filter order, zeros and poles of the Tschebycheff rational function.

Program commentary

In designing an elliptic filter four values are given: $A_{\text {max }}$ maximum passband loss, $A_{\text {min }}$ minimum stopband attenuation, ω_{B} upper passband edge, ω_{H} upper stopband edge. These values enable zeros and poles of the Tschebycheff rational function $\mathrm{R}_{\mathrm{n}}(\mathrm{x}, \mathrm{L})$ to be estimated. Calculate first
$L^{2}=\frac{10^{0.1 \text { Amin }}-1}{10^{0.1 \text { Amax }}-1}$ and hence $\beta=\arcsin (1 / L)$
then

$$
\begin{equation*}
\mathrm{k}=\sin \alpha=1 / \mathrm{x}_{\mathrm{L}}=\frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{H}}}, \tag{1}
\end{equation*}
$$

hence

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{\omega_{\mathrm{B}}}{\omega_{\mathrm{H}}}\right) . \tag{2}
\end{equation*}
$$

With α and β the filter order n may be computed by means of complete elliptic integrals as functions of x_{L}^{-1} and L^{-1}. To overcome the difficulty of evaluating complete elliptic integrals the modular function as defined in Appendix by equation Al is used. Supposing k is known, q can be computed by means of the Newton's approximation formula given by equation A2. Using the relation between q and complete elliptic integrals K together with the complementary integrals \mathbf{K}^{\prime} the filter order n is given simply by equation A3. As the zeros of $\mathrm{R}_{\mathrm{n}}(\mathrm{x}, \mathrm{L})$ are given by
and $\quad x_{z \gamma}=s n \frac{(2 \gamma-1) K}{n}$ for n even
the elliptic function sn u must be calculated. To simplify this task q_{1} given by equation A4 has been introduced, which makes possible to express the competent elliptic function $\mathrm{sn} \mathrm{u}^{\prime}$ by equation A5. Once zeros of $\mathrm{R}_{\mathrm{n}}(\mathrm{x}, \mathrm{L})$ are known the poles may be computed by

$$
\begin{equation*}
\mathbf{x}_{\mathrm{P} \gamma}=\frac{\mathbf{x}_{\mathrm{L}}}{\mathrm{x}_{z \gamma}} \tag{4}
\end{equation*}
$$

by Kamil Kraus

Besides poles and zeros of $R_{n}(x, L)$, one might want to know where $R_{n}= \pm 1$ or $\mathrm{R}_{\mathrm{n}}= \pm \mathrm{L}$ as these points determine the location of the maximum passband or minimum stopband attenuation. The location of maxima x_{m} is

$$
\begin{gather*}
x_{m, \gamma}=\frac{(1+2 \gamma) K}{n} \text { for } n \text { odd } \\
x_{m}=\frac{2 \gamma K}{n} \text { for } n \text { even } \tag{5}
\end{gather*}
$$

and
The location of minimum stopband attenuation is given by equation 4 , where $x_{m \gamma}$ is inserted instead of $\mathbf{x}_{z \gamma}$.
The program written for the T159 follows the sequence of equations from equations A2 to A5. First, the program answers the question: is $\mathrm{k}^{2}<0.5$ or $\mathrm{k}^{2}>0.5$?, and then approximates q_{1} and q_{2} using A2. To get n as an integer the calculated value of n is rounded downwards and then 2 is added. In the final part of the program, the elliptic function according to A5 is computed. Here two cases are to be distinguished: n is even, zeros are stored in STO 11-20 and the maximas are stored in STO 21-29, when n is odd the location of zeros and maxima is interchanged!
To compare the results obtained using this program with the values calculated by another method the example given in ref. 1 is solved. Here, instead of $\mathrm{x}_{z \gamma}$ and $\mathrm{x}_{\mathrm{m} \gamma}$ frequencies are given so we have to multiply the results by 20 .

Program appears on page 59
Example. To find the zeros and maxima of normalized elliptic low-pass filter which has $\mathrm{A}_{\text {max }}=0.1 \mathrm{~dB}, \mathrm{~A}_{\min }=30 \mathrm{~dB}, \mathrm{f}_{\mathrm{B}}=20$ and $f_{\mathrm{H}}=26$. First find $\mathrm{x}_{\mathrm{L}}=1.3$ and $\mathrm{L}=207.0952$, hence $\alpha=50.28486277^{\circ}$ and $\beta=0.276664^{\circ}$. With these values calculate $\mathrm{n}=4.656928611$ rounded to $\mathrm{n}=6$.

Calculated zeros

ref. 1 zeros
STO11: 6.254545988
6.296

STO12: 15.72067887
15.622

STO13: 19.60740999
19.566

Calculated maxima
ref. 1 maxima
STO21: 11.67429795 11.66

STO22: 18.28716445
18.18

STO23: 20.0
20.0

A comparison shows that the results obtained are sufficiently accurate to be used in designs of elliptic low-pass filters.

Appendix

The modular function ${ }^{2}$ is

$$
\begin{equation*}
k^{2}=16 q-\frac{1+4 q^{2}}{1+8 q^{2}+24 q^{2}} \tag{A 1}
\end{equation*}
$$

Newton's approximation formula is

$$
\begin{equation*}
q_{n+1}=q_{n}-\frac{f\left(q_{n}\right)}{f^{\prime}\left(q_{n}\right)} \tag{A2}
\end{equation*}
$$

where $\quad f(q)=64 q^{3}-24 k^{2} q^{2}+\left(16-8 k^{2}\right) q-k^{2}$

$$
f^{\prime}(q)=192 q^{2}-48 k^{2} q+\left(16-8 k^{2}\right)
$$

The relation between q and the complete elliptic integrals $K\left(1 / x_{L}\right)$ and its complementary form $K^{\prime}\left(1 / x_{L}\right)$ by ref. 2 , is

$$
\begin{aligned}
& \frac{\mathrm{K}_{1}^{\prime}\left(1 / x_{L}\right)}{\mathrm{K}_{1}\left(1 / x_{L}\right)}=\mathrm{K}_{1}, \quad \mathrm{q}_{1}=\mathrm{e}^{-\pi \mathrm{K}_{1}} \Rightarrow \frac{\mathrm{~K}_{1}^{\prime}}{\mathrm{K}_{1}}=-\frac{1}{\pi} \ln q_{1} \\
& \frac{\mathrm{~K}_{2}^{\prime}(1 / L)}{\mathrm{K}_{2}(1 / L)}=\kappa_{2}, \quad \mathrm{q}_{2}=\mathrm{e}^{-\pi \mathrm{x}_{2}} \Rightarrow \frac{\mathrm{~K}_{2}^{\prime}}{\mathrm{K}_{2}}=-\frac{1}{\pi} \ln q_{2}
\end{aligned}
$$

so that the filter order n is

$$
\begin{equation*}
\mathrm{n}=\frac{1}{\pi^{2}} \ln \mathrm{q}_{1} \cdot \ln \mathrm{q}_{2} \tag{A3}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
\mathrm{q}_{1}=\exp \cdot\left(\pi^{2} / \ln q_{1}\right) \tag{A4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{sn} \mathbf{u}^{\prime}=\sin \mathrm{y}\left(1+4 \mathrm{q}_{1}^{\prime} \cos ^{2} \mathrm{y}\right) \tag{A5}
\end{equation*}
$$

where $u^{\prime}=u / K=2 y / \pi$ and $u=2 \gamma K / n$ for n odd, $u=(2 \gamma-1) K / n$ for n even.

References

1. Daniels, R.W.: Approximation Methods for Electronic Filter Design. McGraw-Hill, New York, 1974.
2. Jahnke-Emde: Tables of Higher Functions. B.G. Teubner Verlag, Leipzig, 1952.

coninued from page 55

Example. Given $A_{\min }=28 \mathrm{~dB}, \mathrm{~A}_{\max }=3 \mathrm{~dB}$, $\Omega=2.2382$, we obtain $\mathrm{n}=4$ and

$$
\begin{array}{ll}
\text { STO11 } & \sigma_{1}=-0.3826834324 \\
\text { STO12 } & \sigma_{2}=-0.9238795325 \\
\text { STO20 } & \gamma_{1}=0.9238795325 \\
\text { STO21 } & \gamma_{2}=0.3826834324
\end{array}
$$

These values are in full agreement with those in reference 2.

References

1. Approximation Methods for Electronic Filter Design, by R. W. Daniels. McGraw Hill, New York, 1974.
2. Tabellenbuch Tiefpässe, by G. Pfitzenmaier. Siemens, Munich, 1971.

Compensated active summer

Adding two op-amps and six resistors to the basic summing amplifier can reduce phase and magnitude errors to negligible levels.

It is well known that the complex openloop gain characteristics of operational amplifiers (op-amps) degrade significantly the performance of the weighted summing structures. With the introduction of lowcost dual and quad op-amps having closely matched characteristics which track with changes in temperature and voltage, active compensation techniques have proved very attractive. Recently several active phasecompensated weighted summers using two op-amps have been described ${ }^{1}$. It has been shown that for low frequencies the two op-amp compensated summer has phase and magnitude errors proportional to $\left(\omega / \omega_{t}\right)^{3}$ and $\left(\omega / \omega_{t}\right)^{2}$, where ω_{t} is the unity gain bandwidth of the op-amp. That is, the phase error of the two op-amp summer is reduced to a negligible level; whereas the magnitude error remains a second order term, as that of the uncompensated summer.
Most recently, active compensated amplifiers using three op-amps have been considered ${ }^{2}$; however, the reported are not suitable by their nature for realizing generalized weighted summers for both positive and negative gains.
With the circuit described here, at low frequencies the phase and the magnitude errors are proportional to $\left(\omega / \omega_{t}\right)^{3}$ and $\left(\omega / \omega_{t}\right)^{4}$ respectively. That is, both the phase and the magnitude errors are reduced to negligible levels. The design equations assume the use of mismatched op-amps, although the special case of matched op-amps will also be considered.

Compensated summer

The circuit is shown right. The voltage $\mathrm{V}_{11}, \mathrm{~V}_{12}, \ldots, \mathrm{~V}_{1 \mathrm{~m}}$ represent the m inverting inputs and the voltage V_{21}, V_{22}, \ldots, $\mathrm{V}_{2 \mathrm{n}}$ are the n noninverting inputs. Let the open loop gain of each of the three opamps be represented by the single pole model given by

$$
\begin{equation*}
A_{i}(s) \approx \frac{\omega_{\mathrm{ti}}}{\mathrm{~s}} \text { for } \mathrm{i}=1,2,3 \tag{1}
\end{equation*}
$$

where ω_{t} is the unity gain bandwidth of the op-amp and is ideally infinity. By

[^4]
by A. M. Soliman

direct analysis of the circuit, the generalized expression of the output voltage V_{0} is

$$
\begin{align*}
\mathrm{V}_{0}= & {\left[\frac{(\mathrm{K}+1)}{\mathrm{G}^{+}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{~V}_{2 \mathrm{i}} \mathrm{G}_{2 \mathrm{i}}\right)-\right.} \\
& \left.\frac{\mathrm{K}}{\overline{\mathrm{G}}} \sum_{\mathrm{i}=1}^{\mathrm{m}}\left(\mathrm{~V}_{\mathrm{li}} \mathrm{G}_{\mathrm{li}}\right)\right]\left[\frac{\mathrm{K}_{1}+1}{\mathrm{~K}_{2}+1}\right] \cdot \epsilon(\mathrm{s}) \tag{2}
\end{align*}
$$

where
$\mathrm{G}^{+}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{G}_{2 \mathrm{i}}, \mathrm{G}_{2 \mathrm{i}}=\frac{1}{\mathbf{R}_{2 \mathrm{i}}}(\mathrm{i}=1,2, \ldots \mathrm{n})$
$\mathrm{G}=\frac{1}{\mathrm{R}}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{G}_{1 \mathrm{i}}, \mathrm{G}_{1 \mathrm{i}}=\frac{1}{\mathrm{R}_{1 \mathrm{i}}}(\mathrm{i}=1,2$
$\epsilon(s)$ is the remaining error function of the

Basic summing amplifier is A_{1}. Compensation of the summer is achieved by A_{2} and A_{3} and a few resistors: these reduce phase error to a third order term and magnitude error to a fourth order term.
compensated circuit and is equal to
$\frac{1+s \tau_{2}+s^{2} \tau_{2} \tau_{3}}{1+s \tau_{3}+\left(\frac{\mathrm{K}+1}{\mathrm{~K}_{2}+1}\right)\left[s \tau_{1}+s^{2} \tau_{1} \tau_{2}+s^{3} \tau_{1} \tau_{2} \tau_{3}\right]}$
where

$$
\begin{equation*}
\tau_{1}=\frac{\mathrm{K}_{1}+1}{\omega_{\mathrm{ti}}}(\mathrm{i}=1,2,3) \tag{5}
\end{equation*}
$$

Choosing $\mathrm{K}_{2}=\mathrm{K}$, equations (2) and (5) become
$\mathrm{V}_{\mathrm{o}}=\left[\frac{\left(\mathrm{K}_{1}+1\right)}{\mathrm{G}^{+}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{V}_{2 \mathrm{i}} \mathrm{G}_{2 \mathrm{i}}\right)-\right.$

$$
\left.\frac{K\left(K_{1}+1\right)}{(K+1) G} \sum_{i=1}^{m}\left(V_{1 i} G_{1 i}\right)\right] \cdot \epsilon(s)
$$

$$
\begin{equation*}
\epsilon(s)=\frac{1+s \tau_{2}+s^{2} \tau_{2} \tau_{3}}{1+s\left(\tau_{1}+\tau_{3}\right)+s^{2} \tau_{1} \tau_{2}+s^{3} \tau_{1} \tau_{2} \tau_{3}} \tag{8}
\end{equation*}
$$

Examining the above equation for the remaining phase and magnitude errors, it is seen that by taking

$$
\begin{equation*}
\tau_{1}=\frac{\tau_{2}}{2}=\tau_{3} \tag{9}
\end{equation*}
$$

will yield relatively negligible phase and magnitude errors over a prescribed frequency range. The compensated error function reduces to

$$
\epsilon_{c}(s)=\frac{1+2 \tau_{1} s+2 \tau_{1}^{2} s^{2}}{1+2 \tau_{1} s+2 \tau \tau s^{2}+2 \tau_{1}^{3} s^{3}}
$$

From the above equation, it is seen that the phase and the magnitude errors of the compensated circuit are given respectively by

$$
\begin{aligned}
& \phi \equiv \arg .\left[\epsilon_{\mathrm{c}}(j \omega)\right] \approx 2\left(\tau_{1} \omega\right)^{3} \\
& =2\left[\left(\mathrm{~K}_{1}+1\right) \frac{\omega}{\omega_{\mathrm{tl}}}\right]^{3} \\
& \gamma \equiv\left|\epsilon_{\mathrm{c}}(j \omega)\right|-l \approx 4\left(\tau_{1} \omega\right)^{4}
\end{aligned}
$$

$$
=4\left[\left(\mathbf{K}_{1}+1\right) \frac{\omega}{\omega_{t 1}}\right]^{4}
$$

where $\quad \omega \tau_{i} \ll 1(i=1,2,3)$
Thus with the conditions of equation (9) being satisfied and at frequencies such that $\omega \tau_{i} \ll 1(i=1,2,3)$, the phase error is reduced to a third order term and the magnitude error is reduced to a fourth order term.

The gain requirements are controlled by the parameter K . The compensation conditions can be satisfied by selecting the resistors $K_{1} R_{1}, K_{2} R_{2}$ and $K_{3} R_{3}$. The design equations for K_{1}, K_{2} and K_{3} are obtained from equations (6) and (9) and are

$$
\begin{gathered}
\mathrm{K}=\mathrm{K}_{2}=2\left(\mathrm{~K}_{1}+1\right) \cdot\left(\frac{\omega_{\mathrm{t} 2}}{\omega_{\mathrm{t} 1}}\right)-1 \\
\mathrm{~K}_{3}=\left(\mathrm{K}_{1}+1\right)\left(\frac{\omega_{\mathrm{t} 3}}{\omega_{\mathrm{t} 1}}\right)-1
\end{gathered}
$$

It is not necessary to use matched op-amps with this generalized summer. If matched op-amps are used however, the design equations simplify to

$$
\begin{aligned}
\mathrm{K}=\mathrm{K}_{2} & =2 \mathrm{~K}_{1}+1 \\
\mathrm{~K}_{3} & =\mathrm{K}_{1}
\end{aligned}
$$

It should be noted that the above design is based on the choice $K=K_{2}$. Other choices for the parameter K are possible.
It is worth noting that the three port v.c.v.s. reported most recently ${ }^{3}$ is a special case from this generalized summer by setting $\mathrm{m}=\mathrm{n}=1$ and $\tau_{3}=\mathbf{0}$.
wavis

References

1. A.M. Soliman. Novel active phase compensated inverting amplifier, Frequenz vol. 34 no. 8, pp 238-240, August 1980. M. Ismail and A.M. Soliman. Novel active compensated method of op-amp VCVS and weighted summer building blocks,
Proceedings IEEE Int. Symposium on Circuits and Systems, Tokyo, pp 922-925, July 1979.
A. Rodriquez-Vazquez and J.L. Huertas. Novel active compensated weighted summer, Electronics Letters vol. 16 no. 10, pp 394-395, May 1980.
2. S. Natarajan and B.B. Bhattacharyya. Design of actively compensated finite gain amplifiers for high frequency applications, IEEE Trans. on Circuits and Systems vol.
CAS-27 no. 12, pp 1133-1139, December 1980.
R. L. Geiger and A. Budak. Design of active filters independent of first and second order operational amplifier time constant effects, IEEE Trans. on Circuits and Systems vol. CAS-28 no. 8, pp. 749-757, August 1981.
3. A.M. Soliman. New phase compensated three port VCVS with controlled gain difference, L 'Onde electrique vol. 61 no.12, pp 39-41, December 1981

Elliptic filter program

Advanced IT and Alvey

The first four definition studies for largescale demonstrator projects under the Alvey programme for advanced information technology have now been started by ICL, GEC Electrical Projects, Racal Research and Marconi Avionics. A further six studies are to be commissioned, leading to the final selection of about five projects to be implemented over the five years of the programme.
GEC, working with the Artificial Intelligence Department of Edinburgh University and the National Engineering Laboratory, East Kilbride, are developing a 'Design to Product' system for a completely automated factory where design concepts are input at one end and the finished product, which includes maintenance data, will energe from the other. The system will automatically provide all the detailed design work, process planning,
machining of parts and assembly all with a minimum of human intervention. The demonstrator will provide a skeleton system for the whole process.

An efficient service to the public in their contact with the complexities of the legislature system is the aim of ICL in partnership with the DHSS and Logica. This could be achieved by using knowledgebased decision systems and improved usermachine interfaces. Mobile information terminals could bring many new facilities to road users and business people on the move. Part of Racal's study is the development of terminals which will use all the other technologies developed through the Alvey programme to form the basis of multi-purpose data communications, processing and display console for mobile and portable use. Racal will be working with a consortium including SPRL, BL

Technology, the Human Science and Advanced Technology Research Group, Loughborough University and the Transport and Road Research Laboratory
'Replacement of man underwater' for the inspection and maintenance of installations in gas and oil fields is the goal of the project proposed by Marconi Avionics in association with Offshore Engineering Ltd.

The Alvey programme follows the Alvey Committee Report recommending a national research programme into advanced information technology costing $\$ 350 \mathrm{M}$ over five years. It aims to combine the strengths of industry, the academic sector, research organizations and the Government to work in four specific key technologies: very large scale integration, software engineering, user-machine interfaces and intelligent knowledge-based systems. The programme works in collabortion with ESPRIT, the European Strategic Programme for Research and Development in Information Technology.

Refurbishment of the complete vision system at Studio 4, BBC Television Centre, London, has been carried out by Link Electronics. The equipment includes six Link 125 colour cameras, a Grass Valley vision mixer, 13 colour monitors, 41 monochrome monitors and a complete package of distribution and interface systems as well as test equipment.

OU to study IT in education

Appropriately for a university that was founded on mass communication, the Open University has been commissioned by the EEC to study the future use of information technology in education and training. The outcome of the study will be recommendations, all financially valued, for action by the EEC to stimulate the appropriate use of IT-based educational
technology in the member states. Eight researchers, under the direction of Dr Peter Zorkoczy, will take six months to look at media, educational technology, computing, electronics and communications.

The team is anxious to contact individuals and organizations who are considering the use of such technologies in their training programmes. They are the EEC Project Office, Block T12, The Open University, Walton Hall, Milton Keynes MK7 6AA.

Secondary radar will oust primary

Marconi Radar have introduced a monopulse secondary surveillance radar system that can provide greater directional accuracy, and which is capable of operating the proposed Mode S, where each aircraft can be individually 'interrogated' to establish a data link. New techologies being introduced into s.s.r. systems, Marconi say, mean that they are set to replace primary radar as the main source of air traffic control data. In secondary surveillance radar all aircraft within a specific distance from the airfield, fitted with a transponder, receive digital coded signals transmitted from the ground station and automatically transmit back details of the identity and height of the aircraft.

The first element in the system is a new, patented, large vertical-aperture antenna, specifically designed for monopulse working which can produce three azimuth patterns at both 1030 and 1090 MHz . This forms the means of considerably improved sidelobe suppression and direction finding, and also reduces the 'clutter' caused by ground reflections and false targets, such as buildings or aircraft on the ground.

The transmitter/receiver, known in this context as an interrogator/responder, is completely solid-state including the final output power stage of 500 W to 2 kW . The monopulse receivers have parallel outputs from balanced channels to allow very accu-

Optical memory

Another development in optical disc storage devices capable of holding vast amounts of memory has been announced in Japan by Hitachi. At the same time they have announced the development of an electronic filing system based on the optical discs. A 12 in optical disc can store up to 1310 Mbytes per side, the equivalent of 20000 A4 size pages. In addition images and illustrations can be included. The average access time is 250 ms . Hitachi is making available an optical disc "library" which uses 16 discs with an average access time of 5 s and another with twice the capacity, 32 discs, accessed within 6s. The discs are designed to work with Hitachi computers and work stations but are also available with GP1B interfaces for use with other computers.
The electronic document filing system,

Hitfile 60, consists of a disc controller, a high-resolution display unit, keyboard, scanner, printer and facsimile adaptor with one or more optical discs. At the maximum configuration this system can hold 8640Mbytes of data, or about 1.3 million A4 documents. Documents are stored as facsimile images of the document produced by a scanner. Each document may be entered into up to eight different files and then can be retrieved from any of these. A document retrieved on a display can be magnified or reduced in size by simple control from the keyboard or a 'mouse' and for high-speed magnification and reduction, Hitachi offer an image processor as an option. The 15 in monochrome display produces a high resolution picture composed of 1728 by 368 dots, enabling a user to read newspaper type characters with ease. Different models of document scanner and output printer depending on the degree of speed and resolution required.
any new standard.
Although Marconi admit that such equipment exists elsewhere and that there is an American rival, they feel that they have achieved the same objectives in a very efficient way with a system that is capable of many expansions and extensions to offer an air traffic control data system to last well into the 21st century. Marconi say they expect to capture a good proportion of the potential market of 1000 systems worldwide.
rate direction finding on single inputs.
The decoding equipment includes special logic to ensure the retention of wanted data in poor or ambiguous signal conditions. A high-speed data bus is employed with bit-slice processing. Outputs to other circuits in the unit are used to form plotting data expressing the range, azimuth, identity and altitude of all s.s.r. targets within the radar cover. All formats for digital outputs are programmable and therefore may be reconfigured to take in

Decoding and plot extraction modules for the Marconi Messenger secondary surveillance radar use many processors interconnected by a high speed data bus. (Inset) The Large Vertical Aperture antenna used with the system.

Computer for railway signals . . .

A trial installation of a new computer system capable of automatically setting signalled routes for trains has been commissioned at the new Three Bridges signal box controlling the London-to-Brighton main line. The Automatic Route Setting system is superimposed on the signalling safety interlocking system and covers about 13 km . It can cope automatically with substantial deviations from the timetable without the signal operator's intervention, though it may be manually over-ridden. The system uses two microcomputers. One is linked to the signalling train identifier and to the regional master timetable system; the other takes into account any deviations and routes the trains so as to minimize any aggregate delay. During development of the system at BR's R \& D Division at Derby, considerable use was made of a large simulation package, or in everyday terms, a train set.-This enabled engineers to produce a software package capable of general application throughout BR and assisted them in exploring the interactions and interfaces between the signalling system, the signal operators and the computer

. . . and traffic signals

A remote monitoring and control system for traffic lights has been developed by Stonefield Electronics Ltd and Leicester County Council. The system, known as REMAC, can automatically call up a central control room if a fault develops at a set of signals. It also enables the control room operator to check the correct working of the signal lamps and vehicle detectors and to verify the timings of the signal sequences. It works equally well for lightcontrolled pedestrian crossings. Using normal telephone lines, through an integral modem, REMAC only calls if there is a fault, there is no need to keep the lines open. Provision is made for the system to contact a maintenance contractor or to dial more than one centre or a standby central co-ordinator. The system can work in conjunction with microprocessor-based traffic controllers.
Stonefield produce a self-contained computer to work the system. With a colour v.d.u. and a disc memory that stores the details of each junction so that if a call comes in the junction may be automatically displayed with symbols for lights, road markings, traffic sensors etc. There is also space to display the reported fault. The computer can also hold traffic flow information so that the gravity of a fault may be assessed. The first production model of REMAC has been installed at Slough, Berks with the central terminal at the Department of Transport South East Regional Office.

Micro User Show

The BBC Microcomputer continues to consolidate its reputation as a machine for the experimenter, and among the computer games at last December's Micro User Show in London some interesting new add-ons were visible.

A 6809-based second processor board from Cambridge Microprocessor Systems provides the basis of a versatile development system for industrial applications. The card, which can be fitted inside the computer or mounted in a rack externally, carries two 28 -pin eprom sockets and 64 K of ram with optional battery back-up. Software is available to allow standard FLEX discs to run on the BBC, giving access to a wide range of high-level languages including Pascal, Fortran, C, PL9, Forth and BCPL. Basic price is $£ 249$ and the system is available also as a single-board controller. C.M.S., 11 St Margaret's Road, Girton, Cambridge CB3 OLT, tel. 0223-276791

Second processors were being shown by other exhibitors, including Acorn themselves (Z 80 and 6502) with a 16032 promised, and Watford Electronics (Z80A). The Watford unit has 16 K of rom space and 64 K of ram, with room internally for a further 64 K . Expansion options include a hard disc interface, additional serial channels, an IEEE488 interface, a real-time clock and a prototyping board. The operating system is CP/M 2.2 and the price $£ 299$. Watford Electronics, Cardiff Road, Watford, Herts, tel. 0923-40588
Acorn also showed their IEEE488 instrument interface (described elsewhere in this issue, and featured on our cover); the unit, styled in a case to match the computer, costs $£ 282.60$.

One drawback of the standard BBC Micro is that high-resolution graphics are incompatible with long user programs, since in some display modes the operating system sequesters up to 20 K of ram to store the screen display. A board from Cambridge Microcomputer Consultants, the Aries B20, provides a substitute for this lost memory. Paging is carried out automatically, allowing programs as long as 28 K to run even in the highest resolution modes. The board, which costs $£ 86.91$, fits inside the computer case; and, for compatibility with software which makes direct acesses to the screen, it can be enabled or disabled from the keyboard.
The same company offered at the show yet another IEEE488 interface; its price, £195, includes software on disc or cassette. C.M.C. Ltd, Freepost, Cambridge CB1 1BR, tel. 0223210677.

From SJ Research comes the Control Rom, a useful piece of firmware which its designers believe will do for control applications what high-level languages have done for computing in general. Plugged into one of the BBC Micro's paged rom sockets, it enables data to be written to or read from specific bits on the i/o ports as easily as loading or saving to disc or tape. Its commands are available to any language which can support filing systems. The rom can handle up to 32 channels at once, giving direct access to the computer's memory space, and it has two
special channels suitable for communication with Control Universal's 8 -bit and 12 -bit analogue cards. As a bonus, the rom has a 'terminal' mode allowing communications via the RS 423 port. The price is $£ 39$, and a version will be available for the Acorn Electron. S. J. Research, 108 Mill Road, Cambridge CB1 2BD, tel. 0223 69927.

Commotion Ltd, who were showing the Control Rom, also had an interesting miniature servo interface - the Beasty. Designed for uses in micro-robotics, this module makes it possible to control up to four servo mechanisms, including standard model aircraft servos, through software or directly from the computer keyboard. The Beasty is accessed via a single pin of the computer's user port. It costs $£ 43.45$ from Commotion, 241 Green Street, Enfield, Middlesex EN3 7SJ, tel. 01-804 1378.

Among many other new roms for the BBC Micro was a very flexible machine code data base program, Beebase 1 , which enables the creation of files of up to 20,000 characters with potentially unlimited storage capacity on tape or disc. Up to 25 data fields are possible in each record, with a maximum of 250 characters per field. Beebase-1 is supplied with a Basic printer routine on cassette which could easily be adapted to print data in a variety of unconventional formats - including, for example, tables. GCC (Cambridge), 66 High Street, Sawston, Cambridge CB2 4BG, tel. 0223-835330.

For plotting graphs and charts, a graphics dump rom from D. A. Computers includes fast machine-code routines for several popular dotmatrix printers, including models by Epson, Seikosha and NEC. The rom can be called from

This 6809 second processor card from CMS comes with a $2 K$ monitor rom and linking software in BBC Basic.

For the technocat who has everything: a servo control module which plugs in to the BBC Microcomputer.
software or from the keyboard and it offers a choice of print densities and magnifications. The screen can be printed complete or in part, in four or eight shades of grey or in plain black-and-white. The rom costs $£ 15.66$ from D. A. Computers, 104 London Road, Leicester, tel. 0533-549407.

Beebug Publications have added to their range of software a Basic programmer's aid in rom, to complement their Exmon machine code monitor. The Toolkit includes a powerful, screen editor, an error trap, a 'bad program' recovery routine and many other utilities for manipulating Basic programmes. Toolkit and Exmon cost $£ 23.48$ each, or to Beebug subscribers $£ 14.35$. Beebugsoft, P.O. Box 109, High Wycombe, Buckinghamshire HP11 2TD.

Prices quoted do not include v.a.t. or delivery.

New frequencies for land mobiles

A technical specification for land mobile radio services operating in the frequency range 174 to 225 MHz has been published by the Radio Regulatory Division of the DTI. The specification lays down the parameters and related methods of measurement for fm equipment including digital signalling techniques.

The method of measurement described in the specification have been aligned with CEPT recommendations to enable British manufacturers to compete in European markets.

This frequency band was released from 405-line tv service, due to close down at the end of this year. Among the user groups to be assigned channels in the new band will be the power industries who will be displaced from the 105 to 108 MHz band when this is re-allocated to fm broadcasting services.

Cellular radio - first details

Plans for the implementation of a cellular radio system have been unveiled by Telecom Securicor Cellular Radio, the joint venture between BT and Securicor who were offered one of the two licences to start a cellular service. The switching system to be used is TACS (Total Access Communications System), which is a UK development of AMPS, the system which has had trial operation in Chicago. The heart of the system is a non-blocking, digital mobile switching exchange (EMX) that controls signalling and voice communication within the cell system as well as connecting with the public switched network. Each cell site contains a base site controller and multichannel transmit/receive equipment. Each unit may be expanded to handle up to 64 channels on a single antenna. EMX keeps track of caller and switches between base stations as the caller moves between cells, 'handing-off' the call to each new cell and switching to a free channel in that area. This process is unnoticed by the user and the channel previously occupied is free for re-use. There is to be a multi-layered hierarchy of areas; the base station comes within a location area, which is connected to an EMX, joined to others through a service network with an overall sytems area. All this is
invisible to the user who needs only to dial a user's number to be connected anywhere in the country.

TACS includes a dedicated control channel, has allocated channels without hunting for a vacant channel; it uses 6 kHz supervisory audio tones and offers good recovery and registration of signals. Data may be transmitted on the $\mathrm{SKb} / \mathrm{s}$ "Manchester' signalling system which offers five repetitions of each block of data.

Capacity of the system may be expanded by reducing the size of each cell in heavily populated areas. The minimum size of a cell is about 1 km radius around the transmitter. The system has 25 kHz bandwidth and as there is no need for guard bands between adjacent channels broadband transmission is possible to reduce interference. Further noise reduction is achieved by using expansion and compression. In theory there could be as many users as now use conventional telephones, with no reduction in sound quality.
User equipment is not provided by TSCR but many manufacturers are said to be planning car-based and portable sets. These are likely to include many facilities associated with office telephones such as an internal memory for frequently dialled numbers, automatic re-call of engaged

The power needed to accelerate particle beams in the Large Electron-Positron (LEP) storage ring, at CERN, Geneva, is provided by r.f. cavities fed by klystron tubes. There will be 961 MW klystrons, with six feeding each r.f. station in the LEP to provide up to 86 GeV per beam. The prototype transformer and rectification equipment, supplied by Bonat Brentford of Crawley, incorporates an input transformer and two high tension transformer rectifiers to provide the d.c. supply to the klystrons. The h.t. transformers step up the voltage to 100 kV and the rectified, thyristor controlled supply can provide up to 36 A d.c. This is sufficient to drive only two of the 1 MW klystrons for experimental work.
numbers, call transfer, conference calls and so on. Initially, a car-based set could cost as much as $£ 2,500$, but mass production and the use of very similar sets in the USA, could bring the price down considerably. Data facilities with the use of a modem and a portable computer could mean connection with electronic mailboxes, databases and word processors.

There is no attempt at co-operation between TSCR and their rival licencee, Ra-cal-Milgo, and two independent parallel systems are to be developed. The only way that a caller on one system will be able to contact another on the rival will be through the public switched network.

TSCR expect to have an operational system in London by the beginning of 1985 and to cover 90% of the UK population by 1989, or sooner.

Patented brainware

A solution to the problem of copyright and computer programs is suggested in a Government Green Paper. It proposes that in a sweeping reconstruction of the patent laws such works are 'intellectual property' and like other ideas or inventions they should be covered by patents. Because of current delays in the patenting system they also propose streamlining the Patent Office by making it a separate statutory body, independent of the Department of Trade and Industry, and breaking the monopoly of the Patent Agents.

One way of speeding up the system, the paper suggests, is to introduce a 'petty' patent which would have a ten-year life and provide the owner of an idea with a simpler form of protection, without the long and costly procedures of a full patent. Other forms of intellectual property, such as designs, would also be transferred from copyright to patent protection.

In the Green Paper, the academic world is castigated for freely exchanging information, nationally and internationally, without any attention to the possible commercial application of their ideas. On the other hand school pupils are encouraged to copy software without any thought to copyright. All fields, including small businesses, should be encouraged to look to the protection and commercial exploitation of their intellectual property. Employees who develop ideas should be given the right to take over their inventions if employers do not intend to exploit them.
Another new departure from existing procedures would be the right to challenge the validity of a patent even after it has been granted.
The paper proposes an Intellectual Property and Innovation Bill to bring together all these ideas.

More News appears on page 71.

Improving colour television decoding

This third installment of David Read's decoder article continues the January discussion of a PAL modifier with adaptive notch and follows with colour tube problems.

Some of the colour prints in this article are referred to in previous insialments. Colour print 1 relates to the first part, in December, page 76 and prints 2-5 to the fanuary article. Due to last-minute alteration of figure numbering, figure numbers in the last (fanuary) paragraph did not match properly with the illustrations. This paragraph, repeated with correct numbering, precedes the concluding paragraphs of part 2, followed below by part 3 on tube problems.
Traces in Fig. 24 (January) show the inverting and non-inverting inputs; the output summing point is shown in the bottom trace of Fig. 25. The envelope timing is matched, i.e. the two traces of Fig. 24 are delay-adjusted to obtain the $64 \mu \mathrm{~s}$ spacing, and the colour subcarrier phase and amplitude values are also balanced to achieve cancellation. In the top two traces of Fig. 25 the carrier frequency has been shifted slightly be removing the 25 Hz term and changing $1 / 4$ to a $1 / 2$ in the subcarrier expression, the result being that the subcarrier is now stationary with respect to line timing. You can now see that phase (group delay) in the gaussian chroma bandpass filter and the cheap DL60 chroma delay line, below, reduce the ability to obtain cancellation at the vertical colour transition where the sidebands gen-

erated are large. Residual error is shown in the bottom trace, Y-out, Fig. 25. Some is also due to the changed rise times of the subtracting chroma transitions due to the reduced bandwidth of the chrominance signal. Comparison of the two traces in Fig. 24 shows this rise-time difference. Colour print 5 shows the effect of the reduced rise time on the chroma-only display.
For the horizontal colour bars signal, however, where the combing action across the adjacent lines could make cancellation worse, the notch has to be switched back

by D. C. A. Read
B.Sc. (Eng), M.I.E.E.

into circuit. (A mixed vertical and horizontal colour bars signal could be used, as in colour print 6, but the small areas detail would not show up in the colour printing when showing the whole screen. This test pattern is useful for showing defects in adaption switching, where vertical and horizontal transitions occur.) With the sort of notch indicated in Fig. 17 (a) (January) the picture is visibly softened, but with an electronically switched notch, as in the present application, the notch depth and

Fig. 26. Line-rate sweep signal fed to the modifier comb circuit. (Tr, and ${T r_{2}}^{2}$ bases). Lower trace shows adaptive notch 'snapping in' as explained in the text.
width can be set according to the analysis. Fig. 26 shows the effect with the notch switched in and Fig. 27 with the notch out. The extra marker on Fig. 27 indicates the
subcarrier frequency, the other markers are in 1 MHz steps.

Comb decoding techniques reduce the moving dots on coloured edges, i.e. the cross-luminance, but they also increase the luminance bandwidth so that luminance detail can be displayed up to 5.5 MHz . The last grating on test card F is at 5.25 MHz and if the main criterion is to have a better luminance resolution then it must be considered whether the display tube is capable of displaying the higher frequencies and, if not, whe ther application of high frequency luminance to the tube could result in a worse picture. Moiré beat patterns might occur due to the structure of the tube and the luminance highband detail. The high frequencies may not be usefully displayed,

Fig. 27. Trace of the ouput of the modifier comb circuit with the adaptive notch nonoperative, (gate of f.e.t. is at OV and is thus switched off).
and the beat pattern could degrade the picture. Slow panning of the camera could also result in high frequency components producing additional moving beats and twitter.

Colour tube limitations

Part 3 - Inability of the modern colour tube to display full bandwidth liminance

New colour tubes, such as the Philips 30 AX self-aligning 110% in-line gun, have fully interchangeable picture tube and deflection yokes that are truly self-aligning and self-converging. When these tubes are replaced it is merely a matter of the deflection unit being pushed against the tube neck onto registering lugs. In such in-line tube arrangements the corrections nor-
mally achieved by external magnet sets are carried out in the neck of the tube by two, four and six-pole fields, produced by thin magnetic wire rings within the electron gun and which correct all that was previously carried out externally on the tube neck.
Other advantages are that the phosphor has an improved pigmentation providing.

1. Three-line chroma decoding, no luminance. Colour print forms Fig. 12 (b), referred to in Fig. 12 caption, part one, December 1983 issue, page 78
2. Line sweep skew with PAL modifier in the luminance signal, as per page 53 January 1984 issue. (Two-line chroma decoding, one narrow line delay.) 3. Result of comb filtering across three lines with wideband 64μ delays, as in

Fig. 12(a) and 12(c) block diagram See page 78 December 1983 issue
4. Non-linearity is evident when the signal overloads in processin stages, producing indecipherable patterning due to harmonic generation
5. Effect of reduced rise-time due to gaussian bandpass filter and narrow chroma delay line, on chroma-only display with two-line chroma decoding. See Fig. 24
page 56 January 1984 issue. (No luminance.)
6. Displayed signal is a mix of vertical and horizontal colour bars. The decoding effects are not clear as detail would not show up in the colour printing. This test pattern is useful for showing up defects in adaptive switching where vertical and horizontal transitions occur.

7. Line sweep skew with one-line chroma decoding (no luminance).
8. Line sweep skew with two-line chroma decoding (no luminance).
9. Line sweep skew with three-line chroma decoding (no luminance, two wideband delay 'ines used.) See also Fig. 12, page 78, December 1983 issue.

Fig. 28. Typical slot shadow-mask tube with its phosphor faceplate.
Fig. 33. Triad tube face structure, as used on earlier and some current high resolution c.r.ts. Centre circle is shadow mask hole.
Effective sampling frequency
Slot sets in picture width $=530 / 0.81=654$
To display a black-to-white cycle two
shadow-mask slots will be required.
Therefore the number of cycles per
active picture width is $654 / 2=327$. Time
of active picture width is $64 \mu \mathrm{l}$ (line
length) - $12 \mu \mathrm{~s}$ (line blanking) $=52 \mu \mathrm{~s}$ so
period for one cycle $=52 / 327=159 \mathrm{~ns} \equiv$
6.3 MHz . This is the nominal cut-off
frequency, which is half the sampling
frequency. Note also that
fs $3=12.6 / 3=4.2 \mathrm{MHz}$ where width
modulation starts.
Fig. 29. Derivation of effective sampling
frequency for $26 i n 30 A X$ in a $T X 10$
receiver.
greater light output and the tube guns have quick-heating cathodes, giving a picture 510 seconds after switch-on, also the spot defocusing with high beam current and deflection defocusing in the corners is very much reduced by what the Mullard manufacturer describes as a quadrapole lens. The tube doesn't require adjustment for convergence, colour purity or raster orientation, and together with its reduced deflection energy, improved raster shape, general sharpening up of the spot, and soft flash on the e.h.t., it seems a very attractive component.

Sampling properties of the tube face
 Figure 28 shows a typical shadow-mask

 tube with its phosphor faceplate. The upper section illustrates how the slots in the metal shadow mask are stood back from the glass screen to ensure that the electron beams from three guns in the tube neck only reach the appropriate phosphor stripes. The spacing of these stripes determines the subjective performance of the tube with high frequency luminance.Considering the green gun, which produces the images that the eye is most sensitive to as far as revolving detail is concerned, the video signal is effectively sampled by the spacing of the green vertical stripes illuminated by the gun as it scans across the screen. The Nyquist theorem states that the sampling frequency must be at least twice that of the highest signal frequency. Any higher frequencies would reappear in a lower frequency spectrum: this is called an aliasing component. The pitch of the stripes can be 0.83 to 0.795 mm , but for calculation an average figure of 0.81 mm spacing is used.

As an example of the effect of stripe spacing, consider the dimensions of a 26 in 30AX tube in a Ferguson TX10 receiver. The measured screen diagonal is 633 mm
and as 660 mm is the metric equivalent of 26 in , this must therefore be presumed to be an interpreted or a projected dimension of an ideal display tube that is considered square. Progressing from this slight deceit, more significant for displaying pictures is the usable width of the tube, which is 530 mm (17 in). Dividing 530 mm by the 0.81 mm stripe spacing gives a total of 654 RGB stripe sets in the picture width. From this, Fig. 29 derives an equivalent half sampling frequency of 6.3 MHz .

The structure of the stripes is clearly visible in Fig. 30 on the left-hand side of the screen. The tube, as used on a JVC 6 in 12 -volt portable receiver, is typical of the coarse slot type. In the displayed line sweep, the frequency of the video signal increases to the right of the screen, and you can see that at one-third of the frequency the spacing is beginning to be width-modulated, and at half the sampling frequency it is not displaying anything useful at all. Therefore accurate representation of horizontal luminance detail is prevented in the 26in 30AX tube because luminance bandwidth is reduced to

On page 79 of the December issue David Read suggested a novel method of decoding. Perfect still picture decoding with reduced impairment with movement could be achieved by reducing subcarrier frequency by 6.25 Hz . Both U and V signals are in antiphase over one picture period, as the lower part of Fig 14 showed; unfortunately the caption incorrectly referred to raising the subcarrier. The upper part, which should have shown 90° of f_{sc} as 56.39 ns , not ms, related to the decoding arrangement of Fig. 13(b).
Apologies for numerical slips in the captions; in Fig. 9 which gave 6 instead of $64 \mu \mathrm{~s}$, Fig. 10 which gave 54 and not 56 ns , and in Fig. 13 (b) the subcarrier is of course 4.433. . not $4.422 \ldots \mathrm{MHz}$.
4.2 MHz , as derived in Fig. 29. Applying text card F directly from a slide scanner and with no PAL coding or decoding, luminance resolution was of display value up to 4.5 MHz . At 5.25 MHz it was clear that some vertical lines were displayed but their spacing was modulated. With a line sweep test signal the Moire patterning was pronounced. So in spite of the improved bandwidth from the comb, the final video

Fig. 30. Photograph of video line sweep
Fig. 31. Vertical sweep on the slot tube. applied to slotted shadow-mask tube shows patterns caused by slot sampling.

Fig. 32. Circular zone plate on the slot tube.
drive to the tubes was allowed to roll-off, typically 1 to 2 dB down at 4.5 MHz , and 3 to 4 dB at 5.5 MHz .

Observing Fig. 28, it seems possible that there would be a display problem due to the horizontal bridges supporting the structure of the shadow mask. For a 26 in tube the horizontal spacing between the vertical stripes is 0.759 mm . The vertical spacing is 0.810 mm , so there could be difficulty in sampling on a vertical sweep. In Fig. 31 the Moire patterning is not apparent, but there is a significant interference in the 625 -line sampling structure beating with the vertically increasing frequency, i.e. the number of cycles per increment of picture height beating with the 625 line raster. This produces a very prominent horizontal 'twitter'. The evidence therefore shows that the problem due to the line structure interfering with vertical video detail is far greater than that of the shadow mask. Looking closely at the picture on Fig. 31, the only effect of the shadow mask structure is that some lines appear to be straight and others appear as a row of white dots. At normal viewing distance this is not apparent and the horizontal twitter is the dominating effect.

The vertical stripes have a different effect on diagonal luminance information as might be expected, shown in Fig. 32, along a diagonal luminance line the vertical stripes generate a castellation of 'knotted rope' effect. Radially (from the centre) the zone-plate test pattern represents increasing spatial frequency. The fundamental television system gives a square display of detail, so that fine luminance information will be in the corners, although the slot shadow-mask structure tends to prevent this being displayed. In the horizontal direction width modulation is clearly visible before the Moiré patterning builds up.

Vertically, there seems to be more resolution available. This is because the bridges supporting the shadow mask are small in area compared to the horizontal spacing between individual slots. This spacing is typically $1 / 6$ of the vertical slot spacing, as shown on Fig. 28. On the new higher resolution tubes, which use 0.6 mm spacing berween the vertical slots,
the horizontal support distance is only 0.1 mm . For the more common 22 in colour tube, the spacing between the vertical slots measured with a travelling microscope, is about 0.8 mm . Usable screen width is 444 mm and from these figures the sampling frequency is calculated to be approximately 10.6 MHz . Maximum display frequency is now limited to 5.3 MHz but as the Moiré patterning clearly starts at a lower frequency, the 26 in tube with similar slot spacing is evidently the minimum tube size for which it is worth trying to improve the luminance resolution. On a smaller tube, improved luminance resolution would only make this Moiré patterning more visible without fine detail being effectively displayed.

When viewing closely these types of slot tubes, the structure of the shadow mask is certainly discernable, as seen on all three photographs, Figs. 30,31 and 32.

Colour tube using triad hole spacing

In most high resolution tubes using the triad spacing and the dot structure is not particularly discernable. They also use lower spacing, a typical figure being 0.68 mm compared with 0.83 mm for some of the slot tubes. The equivalent half sampling frequency for 0.68 mm is 7.4 MHz (22in tube). Fig. 33 shows a triad phosphor screen where the interaction between the shadow mask structure and the video information is less noticeable. Also, low frequency Moiré patterning occurs at a later point as a result of the higher half sampling frequency. With the triad structure, the step effect on luminance diagonals is again not apparent. Viewing both a slot tube and a triad tube side-byside the convergence drift on the triad tube causes an effective reduction of resolution, and on balance the slot tube is more stable. To take advantage of the increasing display resolution from higher luminance bandwidth it is certainly necessary to use either a 26 -in slot tube or the triad structure.

With microprocessors in the home and the greater uses of electronic graphics there are now available higher resolution (slot spacing 0.4 to 0.6 mm) RGB monitors capable of displaying up to 80 characters per line; but although greater detail can be displayed their screen sizes seem to be
limited to 20 in at the moment. The electronics driving the new tubes are also much improved. Supply rail regulation on the Ferguson TX 10 receiver for example is excellent, with a switched-mode power supply stabilizing all rails; with the e.h.t. supply separate from the line scanning, an extremely stable picture is obtained even in the presents of widely varying picture level. Overall, this enables the receiver to be set up with no overscan, so that the transmitted pictured can be visible to the full width of the screen (as paid for in the licence fee).

If the stability is not good, the 'coverup' method is to deliberately overscan the picture. This can have some advantage, in that a small amount of overscan causes the sampling frequency to be effectively increased e.g. by about 0.3 MHz for 5% overscan. Most sets sold in the shops have $7-10 \%$ overscan. So, if a 22 or 26 in set appears to be extremely stable on picture size with brightness changes, it is certainly worth reducing any excessive overscan.

Competition news

Twelve entries have been selected for the finals of our competition, which are to take place on January 30th. There are six prizes to be won and the winners will receive their awards from Princess Anne. The list of finalists is:

David Battison of Cambridge, whose Miaphone provides a speak-back facility for blind disabled typists. With the help of this device, the young user for whom it was designed is now able to type and prepare non-braille correspondence.

Chris Batchelor of Stockport, designer of the Speakeasy. About the same size as a portable radio, this incorporates a keyboard and an allo-phone-type speech synthesizer.

- Michael Bolton and Alastair Taylor of Aberdeen: their entry is a computer inferface using a pneumatic suck-puff transducer.
- T. G. Clarkson of London SE13, whose eyecontrolled communicator allows a severely disabled person to select data presented on a television screen, using eye-movements to direct a cursor
- Ian Dilworth and David Boley of the Univer sity of Essex, who have entered a v.h.f. wireless alarm system for use in hospitals or old people's flats.

Tony Heyes of Nottingham University, whose entry is a microprocessor-based sonar aid for the blind.
S. Ishiguro of Guildford, whose Touchvision enables the blind reader to follow ordinary printed text

- William McCarthy, who lives in Edinburgh. His entry is an audible electronic depth gauge for the visually handicapped
- Ian Mitchell of Hull, designer of another speech device, the TAB or Talking Box, produed as a communication aid for a group of children with speech difficulties

Henry Myatt of Harrow, who has designed a braille printer. This reproduces ASCII text from a microcomputer as braille characters on thin card.

- Phil Pickersgill and N. J. Stewart, who lives in Wokingham: their entry is the Frenchay speech-slowing aid, a device to help stammerers control and so improve their delivery.
- J. W. Smith of Haverhill, Suffolk, whose infra-red remote control device allows a user to switch up to 30 electrical appliances. ${ }^{-}$

Inductance measurement

Simple practical method, hard to find in the textbooks

The inspiration for writing this article arose recently when I found myself in the radio shack looking for a coil of specific inductance. I had gone to a good deal of trouble to calculate the value of inductance required for this particular function and was now faced with the daunting job of going through my box of inductors, trying various coils until one worked satisfactorily. After ten minutes of trial and error and getting nowhere I came to the conclusion that there must be an easier way.

I began thinking of ideas for measuring the values of pre-wound inductances using basic test equipment which most enthusiasts have available in their radio shack. The method of measurement I eventually decided on is an application of two mathematical rules, the "cosine rule" and the "sine rule".

Looking at the phasor diagram of Fig. 1, if the frequency applied to the circuit shown is changed, then X_{L} will change in direct proportion thus the phase angle α will also change.

For the purpose of inductance measurement, this phenomenon can be ignored as it is allowed for within the calculations. This can be verified by measuring the voltages at a number of different frequencies and repeating the calculations. As will be shown, once this phase angle has been calculated the value of inductance can be derived.
The test equipment required for this inductance measurement are

- low frequency oscillator with variable

by D. R. Fownes

frequency and amplitude

- alternating voltmeter
- resistor whose value is known accurately and measures about one quarter of the d.c. resistance of the coil whose inductance is to be measured (perhaps a decade resistor).
The frequency generator should be set to oscillate at about 100 Hz to 500 Hz as long as it is known. It will be apparent when the frequency is sufficient as the algebraic sum of $\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}$ will be greater than the applied voltage, V_{T}. Output amplitude is not critical as it is measured as part of the test.

When the oscillator is running voltages $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ and V_{T} as shown the circuit must be measured as accurately as possible. Once these values are established, the inductance is simply calculated by substituting them into the formulae below.

From the diagram

$$
\cos \alpha=\frac{V_{R}^{2}+V_{R}^{2}-V_{L}^{2}}{2 V_{R} V_{T}}
$$

And as $\sin \alpha=\sqrt{1-\cos ^{2} \alpha}$, inductance can be calculated from

$$
\mathrm{L}=\left(\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{~V}_{\mathrm{R}}}\right)\left(\frac{\mathrm{R}}{2 \pi \mathrm{f}}\right) \sin \alpha .
$$

Example. To test the method I used a lowfrequency oscillator set to 100 Hz with an output amplitude of 2 V r.m.s., laboratorytype inductor with an inductance of 1 henry, decade resistor set to 200 ohms, and a d.m.m. set to measure 10 V a.c. full scale, all connected as in Fig. 2 to measure the voltages: $\mathrm{V}_{\mathrm{T}}=2.000 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0.373 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=1.714 \mathrm{~V}$. This gave $\cos \alpha=0.804$ and therefore $\sin \alpha=\sqrt{ } 1-\cos ^{2} \alpha=0.594$, hence $\mathrm{L}=1.01 \mathrm{H}$.

$$
\begin{aligned}
\text { Check. } V_{X L} & =V_{\mathrm{L}} \sin 44.2=1.194 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{LR}} & =\sqrt{\mathrm{V}_{\mathrm{XL}}^{2}-\mathrm{V}_{\mathrm{L}}^{2}}=1.229 \mathrm{~V} \\
\therefore \mathrm{~V}_{\mathrm{T}} & =\sqrt{\left(\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{LR}}\right)^{2}}+\mathrm{V}_{\mathrm{XL}}^{2}=1.998 \mathrm{~V} .
\end{aligned}
$$

Since 1979 David Fownes has been employed as an electronics technician by a company producing aircraft power controls for both ministry and civil aircraft, and which currently has a world lead in fly-by-wire technology. He gained City and Guilds full technological certificate in power engineering and O.N.C. in electronics at technical college during his apprenticeship. Mr Fownes believes that due to new technological advances in powered flight we are now witnessing the most exciting developments in aviation history since the Wright Brothers' first flight.

Morse code on a ZX81

This Morse code system enables the computer to be used as an electronic Morse keyboard and runs on a 16K ZX81 under Basic.

This article is in two parts: the first describes the hardware necessary to make a ZX81 microcomputer function as a Morse code keyboard. The second part describes system operation in detail and includes a listing of the software. Sending Morse code with this system is very much like typing.
The hardware is a simple interface to an existing ZX81 and provides a single bit (serial) output port. All the hardware is external and it is not required to make any internal hardware modifications to the ZX81.
Address decoding is provided by the two chips 74LS32 and 74LS00, Fig. 1. The single-bit output port is designed from a 74LS74 D-type flip-flop and is enabled in the address range decimal 8192 to 16383 inclusive. Data to the D-type is derived from the least significant bit of the data bus. Three types of outputs are provided. Output OP_{1} drives an 1.e.d. which is lit according to the transmitted code. Output OP_{2} drives a c.m.o.s. tone generator and a speaker. This output is useful in practising Morse code or for listening to the code during transmission. Output OP_{3} is intended for switching a c.w. transmitter for Morse code transmission.
The hardware can be built on a small piece of stripboard, interfacing to the ZX81 via a 23 -way edge connector. The

by D. Ibrahim

hardware requires no setting up.

Software

Special care has been taken to ensure a fast
output. With this approach it is possible to achieve a fast execution time.
In the software listing lines 100 to 198 convert the input characters to Morse code. Only the letters A-Z, numerals $0-9$ and the space key are included in the program, though it is possible to extend the list to include other characters e.g. period, comma, question-mark, etc. The

Fig. 2 In decoding, for example, the message "MORSE
$T X^{\prime \prime}$, each dot is converted to ' 0 ', each dash to ' 3 ', characters are separated by ' 2 ', and words are separated by ' 3 '.
execution speed. A message (upto a carriage return) is read from the user's terminal. The length of a message can be as long as you like, limited only by memory size. Once a message is received from the keyboard, it is converted to Morse code, with the proper inter-letter and inter-character spacings. The complete message is then sent to the output port. It is important to realise that a character is not sent as soon as it is received; a complete message is first received and decoded and then sent to the

decoding is

- each dot is converted to a " 0 "
- each dash is converted to a " 1 "
- individual elements of a character are separated by a " 2 "
- individual words are separated by a " 3 ".
Fig. 2 shows how the message "MORSE TX" is decoded. Line 205 calculates the transmission speed and stores it as variable " T ". The input message is stored in the string variable " L ". The command input "END" transfers commands back to the ZX81 operating system.

Lines 500 to 510 call the appropriate output subroutines to drive the serial output port. The program runs in fast mode and the usual Morse code timing rules apply :

- a dot (" 0 ") is one unit-time
- a dash (" 1 ") is three unit-times
- characters are separated (" 2 ") by three unit-times
- words are separated (" 3 ") by seven unit-times.

Sending Morse code with the system described is very much like typing. Transmission speeds of over $30 \mathrm{word} / \mathrm{min}$ can easily be achieved. Line 205 has been adjusted to provide a correct speed in the range of about $1-20$ word $/ \mathrm{min}$. For higher speeds there is a non-linear relationship between the speed and the delay generated by the pause statement of the ZX81. It should therefore be necessary to scale up the required speed appropriately before entering to the computer.

PROBLEMS IN SPECIAL RELATIVITY

Recent issues of Wireless World have seen writings by many people who feel disenchanted with the Special Theory, but whose case has been put in such a way as to cause further polarization of respective camps.

As a student, I was privileged to be lectured by Dr G. J. Whitrow, then Reader in Mathematics at Imperial College, who was then, and still is, one of the world's foremost authorities on this subject. I vividly remember the model posed by Whitrow in which the time-travellers would be taken round a circle at infinity, thus avoiding the problems of accelerated frames of reference. As a mere student, my protestations at the physical unreality of this model were, I feel, looked on as based on youthful inexperience. Many years later during the course of one of my many public lectures in an unrelated field I was charmed by the attendance of Otto Frisch, the pioneer of nuclear fission, himself a considerable mathematical physicist. In conversation we lightly stepped on the territory of Special Relativity and I found that the same feelings were aroused in me as to the response of what I might call the hierarchy of the world's physicists. I found again the attitude of the master talking to the schoolboy.

Undoubtedly, there may be many of us who are intellectually ill-equipped to appreciate the foundations of something as profound as the Special Theory, but I must stick to my feelings that the application of theoretical structures in those areas in which their approximations are so clearly invalid is extremely dangerous. Furthermore, the "instantaneous" light signals which formed a key element of teaching in my days as a student of this subject seem to me to be totally divorced from physical common sense.

Surely, if signals are to be sent, reflected from a moving body and then received by a detector in the frame of the sender, the entire mathematical problem must be worked out clearly and with great attention to a "feet on the ground" approach. Without labouring the point we should have to ask when is a signal regarded as being received by the detector (how much of it do we have to perceive before we draw useful conclusions)?

Overall, as an average mathematical physicist, I still feel as unconvinced by the use of Special Theory in conditions of accelerated frames of reference as I did as a student some 25 years ago. It is, therefore, a great pleasure to see a level-headed article such as this essentially reiterating those doubts I have as a non-member of the family of scientists who are brow-beaten into believing in the general applicability of a theory in those areas in which its validity is in doubt. At the same time, I have sufficient humility to accept that there are many people of greater intellect than myself but, sad to say, that large body has been incapable of presenting its case to me in a convincing fashion.
N. J. Phillips

University of Technology
Loughborough
Before worrying too much about 'Problems in Special Relativity' (Prof. I. McCauseland, October issue) it would be as well to find out just what the relevant predictions of Special Relativity really are. Suppose that one has a set of observers at rest with respect to one another and spaced out along a line, that they synchronise their clocks according to conventional procedures, and that another observer B is in motion relative to them along the same line. Then

Special Relativity predicts that each time he encounters a new member of the initial set of observers he will find that observer's clock registering a time further in advance of his own. From the way this statement is framed it evidently doesn't matter whether B is considered to be moving relative to the other obsevers, or to be at rest while they move relative to him.
The key point here is that one observer is encountering a sequence of observers. The situation can be reversed by associating B with another string of observers moving along the same line, but this time at rest relative to him and with their clocks synchronised with his. Then each observer of the first set will have the same kind of experiences as B as he encounters in succession the observers of B's set. This seems thoroughly paradoxical until one realises that simultanetaneity does not transfer between inertial frames, i.e. that when the first set of observers synchronise their clocks B's set claim that they have made systematic errors in the synchronisation, and conversely when B's set synchronise theirs. This appears to be the situation envisaged by McCrea (M12), where the M denotes a McCausland reference. Dingle never did catch on to the failure of simultaneity, and some of his most impressive paradoxes result from ignoring it ${ }^{1}$
The second prediction involves introducing a kinetic assumption to the effect that at any instant an accelerated clock keeps the same time as the clocks in the frame in which it is instantaneously at rest (see Hill ${ }^{2}$). Originally Einstein appears to have made this assumption implicitly rather than explicitly, since it follows naturally from the idea that world lines in Minkowski space must be continuous. It then becomes possible (pace G. Stadlen (M11)) for Special Relativity to deal with accelerated clocks, including a polar clock and a clock located at the equator, provided that one ignores gravitation effects. As a result two or more encounters between two clocks may occur, and one is faced with the phenomenon of differential ageing, as in the socalled twin paradox. These are the conditions Einstein had in mind in making the statement about an equatorial clock losing time with respect to a clock at one of the poles. Professor McCausland didn't try very hard to arrange a meeting of clocks: a clock carried by a jet aircraft flying round the equator in the opposite direction to the earth's equatorial motion at appropriate speed would have done very nicely. This is essentially G. J. Whitrow's response (M7) to Dingle's supplementary question.

Dingle's original question is paradoxical from the beginning, it does not correspond to any specific prediction of Special Relativity, and therefore it cannot be answered without making some guess as to what he might have had in mind. J. M. Ziman's response, with a clear indication in the quotes round "Dingle's 'question' " that he thought the 'question' should be rephrased (M5), was the General Relativity answer to the question of which clock registers the greatest time between any two events at which it is present when there are gravitational fields to consider.

Finally Professor McCausland might have mentioned why Einstein excluded pendulum clocks from his observation about the timekeeping of equatorial clocks. The reason is that a peadulum does not in itself constitute a clock; the clock consists of the pendulum together with the earth.
C. F. Coleman

1. H. Dingle, Nature Vol. 197 1963, 1248. 2. E. L. Hill, 'The Theory of Relativity', Handbook of Physics, ed E. U. Condon and H. Odishaw (McCraw Hill, 1967).

The theories of relativity and quantum mechanics are the two major leaps forward in physics this century, and they appear to have attracted more than their fair share of controversy. One reason for this may be that most of our everyday experience of physical phenomena happens to be in the area where both theories agree with Newtonian mechanics.
As far as we know, neither relativity nor quantum mechanics contain any inconsistencies - and this is despite the effort put in to trying to discover them, by people of Einstein's calibre. Special Relativity is so well established among physicists that attempts to discredit it tend not to be taken seriously. However, a theory as rich as Special Relativity cannot be demonstrated to be consistent - just as we know that arithmetic cannot be shown to be consistent.

There are problems with both theories, and these arise from the fact that while the assumptions on which they are based are simple, the application of the theories contains subtleties. These subtleties lead exponents and opponents of the theories to make slips of thought which lead them to the conclusion they require.
For example, people often claim that they have found an inconsistency in Special Relativity by applying it to a physical example. They claim that when they attempt to do this, they obtain a result which is clearly false.
Problem $\xrightarrow[\text { Special Relativity }]{\text { + Newtonian Mechanics }}$ falsity
In fact, they have inadvertently added some Newtonian idea (which is inconsistent with Special Relativity). It is this combination of theories which produces the false result.

$$
\text { Problem } \xrightarrow[\text { Relativity }]{\text { Special }} \text { falsity }
$$

It is this slip which Dingle makes. Although (as I pointed out earlier) we cannot prove that Special Relativity is consistent, we can at least conclude that as there are mistakes in Dingle's argument, his case is not proven.
To turn to the specific example of the two clocks, Special Relativity does not say that one is faster than the other - in fact it denies the existence of absolute speed both of objects and of clocks. Special Relativity is a theory of measurement denying the existence of absolute space and time against which to measure the speed of material particles and clocks.
In McCausland's reference 10 Einstein is writing many years before formulating his general theory of relativity, and is using a very simplified model of two clocks. One is at a pole (i.e. stationary with respect to the fixed stars), the other is moving with the equator. He concludes that an observer who is stationary with respect to the fixed stars measures the clock on the equator as going more slowly than that situated at a pole. His argument here avoids the complication of gravitation, except in so far as it is the mechanism by which the moving clock traces its path. He excludes pendulum clocks from the argument, not through oversight, but because he realised that to include them he would have to include the effects of gravity. This would have complicated the argument unnecessarily.
A. D. Vella

Oxford Polytechnic

The author replies
Mr Coleman raises several interesting points. Referring to my statement that Ziman's answer
does not apply to the polar and equatorial clocks because they do not meet, he says that I didn't try very hard to arrange a meeting of clocks. I had thought that it was Ziman's responsibility to show how his answer applied to that case, not mine. However, let us consider Coleman's suggested clock carried by a jet aircraft flying round the equator in the opposite direction to the earth's equatorial motion at appropriate speed. I assume that by "appropriate speed" he means a speed equal to the earth's peripheral velocity at the equator; such a clock would be stationary relative to the polar clock, and would presumably work at the same rate. In that case, Einstein's prediction corresponds to a prediction that the airborne clock would work faster than the earthbound equatorial one. Now, if Ziman's answer is applicable to the comparison of those two clocks, as Coleman implies it is, then in order to deduce Einstein's result using Ziman's answer one would first have to show that the airborne clock was in free fall between the two meetings of the clocks, or for one full circuit of the earth. It is fairly obvious that the clock in question does not travel between the two meetings by free fall, but could perhaps be made to do so if one made the small extra step of removing the earth; however, Coleman does not seem to have that possibility in mind, since he stipulates that the clock is to be carried by a jet aircraft. It is also unclear how he uses this example to justify Whitrow's answer, since what he says does not alter the fact that the earthbound equatorial clock is not in an inertial frame.

Coleman also tells us that Ziman's response shows a "clear indication" that Ziman thought Dingle's question should be rephrased. But Zi man did not say it should be rephrased; he said it was "a perfectly reasonable question to which science should indeed given an answer". Professor Ziman is a prolific writer who may be assumed to have sufficient command of the language to be able to say what he means without requiring readers to indulge in mind-reading. If he believes that Dingle's question ought to have been rephrased, he should tell us so himself.

Coleman goes on to say that Ziman's response was the General Relativity answer to the question. But the whole point of Dingle's question was to find out what justification was given by the Special Theory for one clock to work faster than the other. So Coleman is supporting the view that Dingle's perfectly reasonable question has not been answered.

Finally, let us consider one of the most important topics of all - the synchronization of clocks. Coleman mentions synchronization and then goes on to say that Dingle never did catch on to the failure of simultaneity. Let us consider this problem in more detail.

First of all, Dingle was careful to distinguish between simultaneity of events and synchronization of clocks; see, for example, his letter in The Listener dated 30 December 1971. He also pointed out, in Science at the Crossroads, that when a pair of relatively stationary clocks are synchronized they are synchronized for all observers. Although this is a crucial part of Dingle's argument, I can recall only one review of his book that discusses synchronization, and it agrees with Dingle that synchronization is independent of the observer; that review is Stadlen's, which was cited in my article.

Since Einstein argued, in his original paper on Special Rrelativity, that observers moving relative to the pair of synchronized clocks would find that they were not synchronized, let us now
consider Einstein's original definition and argument.

Einstein gave a definition of synchronization in the following way. Two clocks A and B are at rest relative to one another, and a flash of light is emitted from \mathbf{A} and reflected back from \mathbf{B} to \mathbf{A}. If the reading on B at the moment of reflection is halfway between the readings of A at emission and return of the flash, the clocks are synchronized. Any observer, in any state of motion, would see the same set of three readings, and woud reach the correct conclusion about the synchronization of the clocks. (If desired, the experiment could be done in darkness, and the only three clock readings seen by anyone would be the readings illuminated by the flashes; the observer need not consult his own clock, nor indeed need he posses one.)

Now consider the argument by which Einstein concluded that observers moving relative to a pair of clocks would find that they were not synchronized. The argument involves a rigid rod aligned with the x axis of a stationary reference frame, and moving longitudinally along the x axis; at its ends A and B are two clocks, and along the x axis arc several stationary clocks which are synchronized with one another. A flash of light is emitted from A and reflected back from \mathbf{B} to \mathbf{A} to test for synchronization.
The crucial fact about this experiment is that each of the clocks at A and B is constrained to give the same reading as the stationary clock that happens to be adjacent to it at any instant. I say "constrained" deliberately, because it turns out from results derived later in the theory that the clocks at A and B, if they were running freely, would not continue to give the same readings as the stationary clock adjacent to them as they move along, but would fall further and further behind the stationary clocks. To make them continue to show the same readings as their stationary neighbours they would have to be continually readjusted, in which case they would not be regularly-running clocks. To put it more bluntly, they would not be clocks at all, for their clock works could be removed and their readings adjusted by demons to correspond to the readings of the adjacent stationary clocks. Even more simply, the "clocks" could be removed altogether and replaced by mirrors which would simply reflect the appropriate readings.

In the experiment, the flash of light reflected from B arrives back at A, the end of the rod from which the flash was emitted. Since A has by then moved on, relative to the stationary row of clocks, the clock then opposite A is not the same one as the one that was opposite A when the flash was emitted; the reading at \mathbf{B} is therefore not halfway between the two clock readings at end A of the rod. Therefore, according to Einstein "observers moving with the moving rod would thus find that the two clocks were not synchronous".
But Einstein is not using his definition of synchronization in reaching that conclusion. The "clocks" at the ends A and B of the rods are not regularly-running clocks, but merely objects which reflect the readings of the stationary clocks beside them. Since the definition requires the reflected flash of light to return to the regularly-running clock from which the original flash was emitted, and since it does not do so until after it has passed the new position of end A of the moving rod, it is not valid to make any inference about synchronization of clocks from the reading of the clock at the new position of A. Einstein's conclusion is therefore unjustified.

Reply to A. D. Vella
Dr Vella states that Dingle made an error, but does not identify a specific error. He goes on to say, referring to the two clocks, that "Special Relativity does not say that one is faster than the other - in fact it denies the existence of absolute speed both of objects and of clocks." I do not hink that a statement that one clock works faster than another is a claim about absolute rates of clocks, but in any case it was Einstein himself who stated explicitly that the equatorial clock must work slower than the polar one.

Vella goes on to say that the polar clock is stationary with respect to the fixed stars, which is not true. He then says, referring to Einstein: "He concludes that an observer who is stationary with respect to the fixed stars measures the clock on the equator as going more slowly than that situated at a pole." Vella implies that it is the state of motion of the observer that determines which clock is measured as the slower one, but this is not what Einstein said; he stated that the equatorial clock must work more slowly than the polar one.

In view of the two statements that I have quoted from Dr Vella's letter, I would ask him to answer, with a simple yes or no, the following question: Would an observer on the equator measure the clock at the pole as going more slowly than that situated on the equator?

Reply to 7. C. Laine
After a fairly obscure derivation, Mr Laine concludes that "it is the travelling clock which runs slower than the stationary clock". Exactly. But the theory says that either clock can be taken to be the stationary one (as Laine seems to agree when he says that "stationary" is a relative expression), so Laine's statement supports Dingle's claim that the theory requires each clock to work slower than the other.

Laine then goes on to talk about observation, in an apparent attempt to avoid the obviius result of the statement quoted above. But that does not remove the problem. As I pointed out in Wireless World in October 1980, Professor P. C. W. Davies, in his book Space and Time in the Modern Universe, makes the following statement about two clock-carrying observers in uniform relative motion: "It is not that each observer merely sees the other clock running slow, it actually is running slow - a real physical effect." [Emphasis in the original.] In any case, the observer is not an essential part of the special theory, as has been pointed out by H . Reichenbach, one of the contributors to the book Albert Einstein: Philosopher-Scientist, edited by P. A. Schilpp, who wrote that "In a logical exposition of the theory of relativity, the observer can be completely eliminated".

General comments

Without exception, critics of my article have failed to answer my main point, which is that defenders of the theory have published arguments which are inconsistent with one another and/or with Einstein's own statements. Clear evidence that there are problems in the theory is provided by the fact that these inconsistent statements remain uncorrected. The alternatives are clear: either some of those scientists' statements are wrong, or the theory from which those scientists claim to have deduced their statements is internally inconsistent. Therefore, unless the defenders of the theory can remove the inconsistencies by showing that some of their statements are wrong, they have themselves proved that the special theory is untenable.

Program allows ZX81
 keyboard to generate
 Morse code

```
gEM "MORSETX"
REM *(C) COPYRIGHT D. IBRAHIM*
POKE 8192,0
GOTO 200
POKE B192,1
PAUSE T
PAUSE T
    POKE 8192,0
    PAUSE T
    POKE 16437,255
    RETURN
    POKE 8192,1
    POKE 8192
    POKE 16437,255
    POKE 8192,0
    POKE 8192
    PAUSE T
    POKE 16
PAUSE Y 
    RETURN
    RETURN 
    PAUSE R 16437, 255
    RETURN
    REM "CODE DECODING"
    FOR I = 1 TO LENGTH
    IF L$(I) ="A" THEN LET P $ ="01"
    IF LS(J) ="B" THEN LET P $="1000"
    IF LS(I) ="B" THEN LET PS ="1010"
    IF L$(I)=C IF L (I) ="D" THEN LET P$="100"
    IF L$(I) ="D THEN LET P$="O"
    IF L$(I) ="E" THEN LEET P$="O"
    IF L$(I) "F
    IF L$(I) = "G" THEN LET P$="1100
    IF LS(I) ="I" THEN LET P$="00"
    IF LS(I) ="J" THEN LET P $ ="01:1"
    IF LS(I) ="J" THEN LET P$="0111"
    IF L $ (I) ="L" THEN LET P $ ="0100"
    IF L$(I) ="L" THEN LET P$ ="0.00
    IF L$(I) ="'N" THEN LET P$="10"
    IF I.$(I) ="N" THEN LET P$="10"
    IF L$(I) ="O" THEN LET P $="111"
    IF L$(I) ="P" THEN LET P$="0110"
    IF L$(I) ="Q" THEN LET P$="1101"
    IF L.$(I) ="R" THEN LET P$="010
    IF L$(I) ="S" THEN LET F$ ="000
    IF L $(I) ="U" THEN LET P $ ="001"
    IF L (I) ="V" THEN LET P $ ="0001"
    IF L$(I) ="V" THEN LET P$="001"
    IF & (I) ="X" THEN LET P$="1001"
    IF L$(I) ="X" THEN LET P$="1001"
    IF L$(I) ="Y" THEN LET P$="1010"
    IF L$(I) ="Z" THEN LET P$="1100"
    IF L$(I) ="1" THEN 作 P$="01111"
    IF L$(I) ="2" THEN LET P$="00111"
    IF L$(I) ="3" THEN LET P$ ="00011"
    IF L$(I) ="4" THEN LET P$="00nO1"
    IF L$(I) ="5" THEN LET P$ ="CC000"
    IF L$(I) ="6" THEN LET P$="10000"
    IF L$(I) ="7" THEN LET P$ ="'11000"
    IF L $(I) ="8" THEN LET P $ ="11100
    IF L$(I) ="9"THEN LET P$="11111"
    IF L$(I) =" " THEN LET R$=R$ + "3
    IF L$(I)<> "" THEN I.ET R$ = R$ + P$
    IF L$(I)<<>"" THEN I.ET R$ = R$ + PS
    IF L$(I+1)<>""ANDL\(I)<>""
    MET I
    NEXT I
    RETURN ",
    PRINT "ENTER THE TRANSMIT SPEED (WPM):"
    INPUT WPM
    LET T = 50/(2.08*ABS (WPM - 2.4))
    LET X = 3*T
    LETY Y = %*T
    LET Z = 6*T
    LETR$ =",
    PRINT "ENTER THE MESSAGE:"
    INPITT LS
    INPUT L$
    IF L$="END" THEN STOP
    IF L$="END" THEN STOP
    LET LENGTH = LEN L$
    FAST
    FAST
    GOSUB 110
    PRINT
    PRINT "START OF TRANSMISSION"
    FOR I=1 TO LEN R$
    IF R$(I)="0" THEN GOSUB 50
    F R$(I)="1", THEN GOSUB SO
    F R$(I)="1" THEN GOSUB 60
    FR$(I)="2" THEN GOSUB 70
    IFR$(I)="3" THEN GOSUB }8
    EXT I
    CLS
    CLSINT "END OF TRANSmISSION"
    SLOW
    GOTO 210
pauSE Y
    NEN LET R$ = R$ + "?"
    LET X = 3*T
    PRINT ,
```


How reliable is Cruise?

A study of the technical aspects of the ground-launched Cruise missile has cast doubts on the system's reliability. An engineering critique of the system says that on purely technical grounds, there are good reasons for not deploying it. The Ground Launched Cruise Missile, A Technical Assessment, written by electronics design engineer, Tim Williams, and published by Electronics for Peace, concludes that the system as been insufficiently tested, and has been rushed into production for political reasons; it has not been designed or built to the standards required for deployment in Europe. Particular areas for concern are pinpointing; the over-hasty system software testing; inadequate manufacturing quality control; the use of unproven systems concepts could lead to longterm unreliability; the competence and training of maintenance personnel and operators is below the standard necessary.

The report, which took a year to prepare, draws on a number of sources including Congressional hearings, technical articles and the manufacturers' own material. In the pamphlet, Tim Williams states: "the hazard posed by a system which involves transportable nuclear warheads is greater than for any other cur-

Optical fibre cables have been laid by BT between Luton and Milton Keynes along the A5 trunk road. Joining successive lengths of the fibres must be carried out so that they are lined up to within 0.05 microns on a fibre 8 microns thick. Alignment and electric fusion are carried out on this automatic machine, developed by $B T$, shown here operated on site by technician John Guile. A pair of cables use a multiplexed monomode transmission system to carry up to 2,000 phone calls at once.
rently deployed nuclear weapon. Acceptance of deployment is an offer of hospitality to an untested, unreliable, bugridden system that could turn out to be fatal to its hosts." History has overtaken Mr Williams, the system is already here.

Electronic scrap recycled

The first refinery in the world designed and built specifically for electronic scrap has been opened by Engelhard Industries. A wide range of precious metal bearing materials have hitherto been too expensive to recover, but the new Cinderford plant built at a cost of $£ 2.2 \mathrm{M}$ uses a combination of processes, equipment and computer control to optimize the recovery efficiency. Electronic scrap amounts to thousands of tonnes a year in Europe alone, and locked within it lies a potential fortune in precious metal.

The process involves calcination, burning at very high temperature to burn off the plastic and to reduce the raw metallic scrap to an ash. The ash is pulverized in a vibratory crusher and then separated into different sized particles by a series of sieves where an electro-magnet sorts out the ferrous scrap. These and the non magnetic fractions are taken to a melt shop for separate refining. Computer analysis of the 'fines' determines the precise type and quantity of flux to be added to optimize melting. The powdered mixture is rolled into pellets for the furnace.

Nine induction melting furnaces are used in the melting process and the hot impure metal is cast into bars which consist of mixtures of silver, gold and plati-num-group metals in a greatly enriched form suitable for processing in a conventional refinery. Particular care has been taken to keep air and noise pollution to an absolute minimum.

Another dish in the Docks

Following the announcement of BT's satellite earth station in London's dockland, Mercury Communications have received outline planning permission for the use of East Wood Wharf on the Isle of Dogs, London for a satellite station of their own. Two dishes are to be installed: an eightmetre dish providing to distribution within the UK, to be operational in March. A 13 m unit for transatlantic television and digital telecommunications should enter service in May. Both systems are supplied in containerized form by Marconi Communication Systems. In summer an 18 m dish will come into operation for further communications with North America. This is to be sited in Tackley, Oxfordshire at a disused quarry within 400 m of a railway line and BR's wayleaves, used by Mercury. Like BT, Mercury have an eye on providing programmes via satellite to cable operators as well as communications to remote and offshore sites.

Rotary encoder

A compact, lightweight photointerruptor type of rotary encoder is shown in the photograph of the Sharp GP-IR04. This uses an infra red led and an integrated photodiode to provide three types of two-phase output; a sinewave, a cosine wave and an index output. Different slotted discs are used in the five models to give resolutions of $96,100,192,200$ or 360 pulses per revolution. Besides their compact and lightweight design, the encoders feature high accuracy through the laser trimming of the circuitry and a high frequency respose because of the use of a laser diode with very good thermal characteristics. The encoder can detect arc angles, count revolutions, measure rotational speed and indicate rotational direction. It has applications in a variety of tools and instruments including micrometers and vernier calipers but the small size suggests that it would be highly suitable for robotics. Available through Hero Electronic Ltd, Dunstable Street, Ampthill, Beds MK45 2JS WW 301

5Mbyte disk with back-up

The availability of the Memorex 410 series of hard discs with removeable disc back-up storage has been announced. Each disc has 5.2 Mb formatted capacity and are packed together in a standard
5.25 in disc housing. The removeable cartridge disc has been designed in the style proposed as an ANSI standard. The next drive in the range, the 415 , available soon,

WW 301

will offer a main disc storage capacity of 10.48 Mb witn the same 5.24 Mb disc fitting into the slot for back-up. A range of controllers and the drives themselves are from Craft Data Ltd, M and M House, Frogmore Road, Hemel Hempstead, Herts HP3 9RW. WW 302

Low-cost eraser

It has always surprised us that something as simple as a light-proof box and an ultraviolet lamp should cost as much as many available on the market. A more realistic price of $£ 19.95$ is asked for the Uvipac eprom eraser which can operate on up to three eproms at once in a unit only 90 by 80 mm . Erasure time varies from 5 to 20 minutes depending on the device. A built-in 15 -minute timer costs $£ 5$ more (prices inclusive of v.a.t.) Ground Control, Alfreda Avenue, Hullbridge, Essex SS5 6LT WW 303

Bespoke firmware

A number of utility programs are available as listings or programmed roms with user guides. They include m / c monitors for the 8080 , 8085 and Z80 processors; Tiny Basic, Contol Basic, floating-point mathematics packages, serial communications interface; an eprom programmer which includes verification before 'burning'; and a number of system simulation packages. Isis for example is an interactive computer program which enables the user to solve nonlinear differential equations and may be used as a replacement for an analogue computer to solve problems in dynamics and transient behaviour of continuous systems, such as servo systems or automatic control systems. Most of these are designed to run on 8080,8085 or Z80-based microcomputers, and some may be run through CP/M. The manufacturers say that they may make the programmes available for use on other computers. Simulaton Systems Ltd, The Gables, North End, Yatton, Bristol BS 19 4AS. WW 000

Mike power

A battery unit to provide power for condenser microphones where no power feed is otherwise available, is provided by the AKG B18. Running off two PP3-type batteries, the unit may be connected to balanced and unbalanced amplifier, mixer or tape recorder inputs. The compact casing is provided with a swivel clip for attaching to the user's belt and a led indicates the battery status Weighing only 130 g , the unit provides opportunities to use condenser mikes when it would otherwise be impossible. AKG Acoustics Ltd, 191 The Vale, London W3 7QS.
WW 305

Real-time analyser for PC

An add-on 1/3-octave real-time analyser board uses the processing and display facilities of the IBM Personal Computer. RTA 331 consists of 31 two-pole filters from 20 to 20 kHz and has a package of assembly-language routines called from Basic. It features instantaneous display, variable decay rates and averaging periods, peak hold and weighting functions, display of two independant bar graphs. It includes a pink noise generator which may be controlled through the program as may the input gain. Eight-bit sampling at 20 kHz means that it can store up to 22 seconds of input in 128 K bytes of memory. Similar systems are available for use on Apple, TRS80 and Commodore computers. Marquee Electronics Ltd, 90 Wardour Street, London W1V 3LE.
WW 306

Hand-held dmm

A three-and-a-half digit, l.c.d. multimeter comes from Keithley in their model 130A. This model claims a 0.25% accuracy on the direct voltage range and has current measurement up to 10 A on both a.c. and d.c. The sensitivity is $100 \Omega \mathrm{~V}, 1 \Omega \mathrm{~A}$ and $100 \mathrm{~m} \Omega$ in the

respective ranges and the meter can also be used for diode checks. It is protected against overloads and has indicators for polarity and if the battery voltage drops. The meter is warranted for two years and needs to be recalibrated after about the same period. Battery and fuse may be replaced without taking the meter apart. Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks RG2 0NL.
WW 307

Image
 store/processor

By using the latest processors and dynamic read/write memory, Cambridge Research say that they can produce Alphascan, an image frame store and processing system, for a fraction of the cost of any (Far East) rival. The system has a wide range of applications in scanning microscopy, medical scanning instruments, data transmission, image processing, ultrasound imaging, and displays for nondestructive testing, amongst many Signal collection at slow scan rates and c.r.t. presentation of the final image is standard and a number of software extensions permit digital processing, quantification, image analysis, two and three-dimensional measurement, disc storage and printer options. Cambridge Research Instruments, Chesterton Mill, French's Road, Cambridge CB4 3NP.
WW 308

Domestic timer

A plug-in time switch for home or business use provides the accuracy of digital quartz timing with a neat compact case and a number of useful features. It is accurate to the minute, unlike most mechanical time switches and it can remember up to three on/off times which are protected in the memory against power failure by an internal battery. Any setting may be overridden by a touch of a button and programs may be suspended whenever the normal routine is not required, for example, at weekends. The unit, called Tempo, displays the time and the display is also used when setting the switch times and for checking them. Because of its accuracy, the time switch may be used to control remotely the recording of radio programmes, for alarm calls or for setting security systems. It may also be used to turn lights on and off around the house to deter burglars. Tempo, at $£ 19.95$ inclusive $+£ 1.95$ postage and packing is available by post from Tek Marketing, Burrel Road, St Ives, Huntingdon, Cambs PE17 4LE

WW 309

PCB CAD

A computer-aided design system for p.c.bs has been developed by Dyad. The Chroma-cad system includes a high-resolution colour monitor with a second monochrome monitor displaying numerical information simultaneously. There is a dedicated keyboard and a

WW 308

trackerball for rapid cursor movement. Developed for the creation of multi-layered designs, a complete board can be output to a plotter to produce camera-ready masters; or transmitted to a bureau for the production of higherstandard masters. The system uses two processors (Z80 and 8088) with the $\mathbf{Z 8 0}$ acting as a systems organiser while the 8088 is solely concerned with controlling the colour display. Drawings for p.c.bs up to 32 m each side, working to a tolerance of 0.001 m , is possible while up to $80 \mathrm{i} . \mathrm{cs}$ or their equivalents may be handled on the standard system. With memory expansion boards, the capacity can be increased. Component layout, or whole sub-circuits may be stored to and recalled from a library held in disc memory. Different layers of a board are displayed in different colours. Images may be selected for displaying together and the image may be 'panned' across or 'zoomed' into for a closer look. A variety of plotters, including photoplotters may be used and the system may be optimized to find the best combination of pad size and track width for particular pens, inks or paper. The makers point out that Dol grants are available for those companies purchasing CAD equipment. Dyad Developments, The Priory, Great Milton, Oxon OX9 7PB.
WW 310

Tiny support package

A useful addition to the Essex Tiny Basic single-board computer is Alex. Intended for developing machine-code routines on the INS 8073-based system, it includes an assembler, enabling source code to be entered at a terminal; a disassembler for examining code already in memory; a text editor to allow lines to be altered without rewriting it all and a monitor routine which allows memory to be examined, copied, modified, compared and tested with a debugging program. Alex is supplied on a 4 K eprom with a comprehensive users' manual. Essex Electronics Centre, University of Essex, Colchester, CO4 3SQ. WW 311

[^5]

Compumotor

Advantages over both stepper motors and d.c. servo motors are claimed for the Compumotor motor-and-control combination. Smooth linear acceleration over intermediate incremental positions compares with the stop/start magnetic detents of the stepper motor. This means that much less high frequency energy is transferred to the driven system so mechanical damping and dissipation can be greatly reduced. It provides high torque over a wide speed range and is claimed to have a much better slow-speed control combined with high resolution. Similar comparisons may be made with the d.c. servo motor system. With an increase in low speed torque while "the elegant simplicity and completeness of the
Compumotor packages mean shorter design, specification, procurement and check-out times". Open and closed-loop configurations are available and the accuracy at slow speed frees the system from hunting the final position, as is common with many servo systems. The Compumotor is available with a variety of resolutions, up to 50000 steps per revolution with a maximum step rate of $50000 \mathrm{steps} / \mathrm{s}$. Output
power is from 0.001 to 2.5 horsepower. Unimatic Engineers Ltd, 122 Granville Road, London NW2.
WW 312

Miniature cctv

What is claimed to be the smallest available self-contained monochrome ty camera with broadcast-standard picture quality, the Insight 75 includes $\times 10$ automatic gain, edge enhancement, automatic black level, motorised vidicon racking, built-in iris drive servo and an external lock. All this is in a package which fits into the palm of a hand and yet provides a resolution of 600 lines, a 56 dB signal/noise ratio and a power consumption of 1.6 W . A socket is provided for clip-on modules including a battery pack and a remote control unit. Applications include robotics, scientific research and surveillance. The system has been successfully used in surveying sewers and drains, boreholes, ducts and pipelines, for which purposes the manufacturers have devised and patented lighting and contro systems. Insight Vision Systems Ltd, Unit 1, Merebrook Industrial Units, Hanley Road, Danemoor, Malvern, Worce WR13 6NP. WW 313

WW 313

Inter-pcb connections

A double-decker p.c.b. connector obviates the need to use multi-layer boards. Using 0.1 in pitch dual-inline socket frames incorporting special stepped stand-offs with pin ends compatible with standard p.c.b. holes, collar supports ensure that the p.c.bs are held rigidly at 15 mm parallel spacing. 17 options cover six to 64 -pin d.i.l. packages which may be used with extender boards to add, e.g. more memory to a computer board. Test facilities may be added to a board using this system. Scott Electronics Ltd, 50 London Road, Sevenoaks, Kent TN131AS.
WW 314

How pure are your sines?
A quick visual check on sinewave purity is provided by a pair of oscilloscope graticules which incorporate accurate sinewave traces printed on them permanently. The regular graticule is removed from the oscilloscope and the Sinecheck may be attached to the face of the c.r.t, alignment marks are provided. According to the designer, it is possible to monitor sinewave purity with a precision limited only by the fineness of the trace. Graticule 1 has a complete sinewave and may be used for initial setting up. It is itself adequate for most purposes, but for the more demanding occasion, graticule 2 may be used for further testing. This latter has two traces; a positive and negative half cycle. The graticules are available to fit up to a 100 by 80 mm working area. Other sizes may become available if there is sufficient demand. The pair of graticules are available for $£ 2$. Enquirers should include screen working dimensions and a stamped addressed envelope to Sinecheck Graticules, Freepost, Watford, Herts WD1 8FP.
WW 315

In brief . . .

Three-stage power darlington transistors made by TI can switch voltages up to 1150 V and currents up to 20A. They can withstand overload conditions up to 33 kV . Available from VSI Electronics (UK) Ltd, Raydonbury Industrial Park, Harlow, Essex CM19 9BY. WW 316
Two variations of Mains input filters are stocked in 1, 3, and 6A versions. The standard version (WF100) meets the 0.5 mA leakage current standard for digital equipment while the WF100B meets the need for less than $5 u A$ for medical applications Comway Ltd, Market Street, Bracknell, Berks RG12 1 QP. WW 317

WW 314

Hitachi Oscilloscopes

New from Hitachi are three low-cost bench scopes with bigger screens and extra features in a new slimline ultra-lightweight format. The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to 40 MHz 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 60 MHz and 100 MHz 2 miniature field portable models, 20 MHz and 50 MHz 3 storage models, one tube storage, two digital storage
Prices start at $£ 295$ plus vat (model illustrated) including 2 probes and a 2-year wa-ranty. We hold the range in stock for immediate delivery
For colour brochure giving specifications and prices ring (0480) 63570. Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB

Tomorrow's World . . . Today

Performance: Total R/T measurement - Semi automatic interactive instruments that work alone Full Duplex Testing Built-in Selcall and Pilot Tone - 300W Power meter Sinad Meter Fully protected Portable for field use (12v) Up to 1.7 GHz available.

Cost effectiveness: Only minutes to test a system Easy to train new staff More economical than individual units - Less bench space required 24 -hour service support Easy payment terms Loan set for evaluation.

Whether you're seeking performance or cost effectiveness you can now enjoy the best of both worlds with the RTT comtest. Its unique feature and UK service support ensure it's the best buy today or tomorrow.

紫

RTT Division of Hanworth Enterprises Ltd, Enterprise Fouse, Central Way, North Feltham Trading Estate, Feltham, Middx TW14 ORX. Tel: 01-844 1811
WW - 041 FOR FURTHER DETAILS

$$
\begin{aligned}
& \text { Where } \\
& \text { business is } \\
& \text { making } \\
& \text { contact }
\end{aligned}
$$

For the communications industries worldwide, the United Kingdom is currently a focus of attention.

There's so much accelerating change - in telecommunications services, in the increased use of mobile and cellular radio, in the re-cabling of the country, and in the spread of information technology and electronic office systems.

Your prime opportunity to renew (and make) contact with the people and organisations at the heart of these developments is at COMMUNICATIONS 84 .

Once again, the latest presentation of this established event has attracted hundreds of companies - from the world over - who market communications products and services.

They are there to discuss how their organisations can help your business.

Whatever aspect of communications is your concern, you can view and compare the alternatives - comfortably, cost-effectively and conveniently under one roof.

Attend the associated conference too, and add further to the value of your visit.

The time and place are right, so make a date. Communicate with the communicators at COMMUNICATIONS 84.
ww - 057 FOR FURTHER DETAILS

15-18 May 1984 $\begin{gathered}\text { Naionan IExhibition Contre } \\ \text { Bimiminhtame Envand }\end{gathered}$

Communications 84 is organised by Industrial \& Trade Fairs Limited, Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG England 8 021-7056707 Telex 337073

INTERNATIONAL EXHIBITION OF TELECOMMUNICATIONS, RADIO AND INFORMATION TECHNOLOGY PRODUCTS AND SERVICES
Please send me the visitor information pack for COMMUNICATIONS 84, which includes details of the conference programme, easy travel arrangements, and free registration card for the exhibition.

[^6]
'P.W. WINTON' TUNER AND AMPLIFIER

Tuner. Comptete Kit.
Amplifier. Comptote Ki
£ 163
. .208
SOLENOID CONTROLLED HI FI/DIGITAL CASSETTE MECHANISM

Front loading deck with full solenoid control of all functions Fitted 3-digit memery counter and Hall IC Motion Sensor. Stan dard erase and stereo R/P Heads. Cheapest price ever for all
these features. Only $£ 38.90$ plus VAT. Full technical specification

LINSLEY-HOOD 100-WATT MOSFET POWER AMPLIFIER
by the renowned John Linsley-H. pubished in Wireless World the standard by which the rest are judgedt Our kit, approved by the designer, has massive heat sinks and power supply and
includes all components needed to build. Case size 412 mm wide, 254 mm deep and 145 mm high Automatic switched speaker protection is included as standard. Cos
over $£ 120$. Dur complete stereo kit price $£ 105.50$.

THIS MONTH'S SPECIAL OFFERS

DOLBY 'B' NOISE REDUCTION IC LM101 Marvellous opportunity for home experimenters, build your
own noise reduction systam. Supplied complete with showing typical application. Abbolute knockout price only
E 3.50 for two inc. VAT and post.

COMPLETE STEREO CASSETTE DECK

 Brand new high quality top-loading Cassette Deck completewith Record/Play electronics. Supplied with connection data and circuit diagram. Automatic chrome/ferric switching. Only neests
pest.

COMPLETE STEREO TUNER MODULE Three band LW/MW/FM Stereo Tuner fully assembled on PCB
$165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wired. Facility provided to driveduning meter and stereo only $\mathbf{e 7 . 9 9}$ inc. VAT and post.

Latest MPU controlled 80 Track Drives, support single or
double density. Fully compatible with Teac. Shugart and many other full and half height drive
80 Track. Single side
ull manua! for each type $\mathbf{£ 1 4 . 5 0}$ No VAT

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Fitting one of our replacement heads could restore perfcrmancer to better than newl Standerd mountings make firting easy and our TC1 Test Cassette helps you set the azimuth spot-on. We are the actual importers which means you get the benefit of lower prices for prime parts. Compare us with other suppliers end soel for use on Dolby machines and are ex-stock. HC20 Permalloy Stereo Head. This is the standard head fitted as
original equipment on most decks original equipment on most decks,
HMiso High Beta Permalfor Head. A hard-wearing, higher performance head with metal capability,06
HS 16 Sendust Alloy Super Head. the best head we can find
 Hos51 4-Track Hoed for auto-reverse or quadrophonic use. Full specification record end playback head................................4.
Please consult our list for technical data on these and other Special Purpose Heads.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enables you to set up VU level,
head azimuth and tape speed. Invaluable when fitting new heads. Only $£ 4.66$ plus VAT and 50 p postage.

Tape Head Do-magnetiser. Handy size mains operated unit
prevents build up of residual head magnetisation causing noise on playback... Curved Pole Type for inaccessible heads.

COMPONENTS
We now list a wide range of individual components many of which which also gives further information on our Kits.

inland
 Orders up to $£ 10-50$ Orders $£ 10$ to $£ 49-$ Orders over $£ 50-£$
 PLEASE ADD VAT
 to all prices

overseas
Please send sufficient to cover

MAIUFACTUURERS \& DISTRIBUTORS

COMMERCIAL CONTINENTALCRADLE RELAYS
Medium duty miniature plug-in relays, fully interchangeable with other Brizish and Cont
Medium duty miniature plug- in relays, fuly interchangeable with other British and Continental types
ooid flashed silver contacts. Maximumm switch ing voltage 1 amp. 110 V AC/DC (100va). YPE 24A02C18A. 2-pole changeover rated at t amp with a coil resistance of 430 ohm. nominal voltage
12 V DC; approx. dimensions, length 24 mm , width 19 mm . height 30 mm . Price E15 for 10 , E135 for 100 ,

CONTNENTALCRADLE SERIES SOCKET
YYPE FR 10 . Cradle including clip manut
 V.A.T. FR 18. Cradie including clip manufactured for type 25 relay as listed above, P.C.B. mounting. Price
$£ 6$ for $10, £ 27$ for 50 , $£ 49$ for 100 , $£ 220$ for 500 . Sample sent for $75 p+25 p$ P. \& P (E1. 15 inc V.A. T)
$180^{\circ} 5$-Pin Din PCB Mounting Socket designed for convenience when mounting in rows with flush fit lip; approx. dimensions, height 24 mm , width 21 mm . depth 15 mm . Price $£ 4.50$ for 50 , $£ 8.50$ for 100 , $£ 50$
for $500, £ 75$ for 1,000 . Sample 10 sent for $£ 1+30 \mathrm{p}$. \& P. ($£ 1.50$ inc. VA.T.)

METAL FILM RESISTOA TYPE FZ4. Manufactured by C.G.S. Semi-precision with a standard tolerance of $\pm 2 \%$ and a temperature co-efficient of better than 100 pp
100 R to 1 MO . All bandoliered. $£ 2.50$ per $\uparrow, 000$ any one value.
DOUBLE-POLE SINGLE.THROW ROCKER SWTCH

CONTEMPORARY-STYLE DUAL-POWER INDICATOR with green and red rectangular neons mounted in a black nylon body with snap in lugs. rated 250 operating temp up to $85^{\circ} \mathrm{C}$. Approx. dimensions,
height 33 m , depth 30 mm . Width 32 mm . Neon size $20 \mathrm{~mm} \times 10 \mathrm{~mm}$, Price $\mathrm{f5}$ for $10, \mathrm{E} 23$ for $50, \mathrm{E} 2$ for
$100, \mathrm{E} 190$ for 500 . Sample sent for $65 \mathrm{p}+35 \mathrm{p}$. 8 P

Single-Pole Singla-Throw Rocker Switch
Snap mounting with a black nylon body with orange centre rocker action, rated at 250 v 10 amps ,
ambient temperatures $85^{\circ} \mathrm{C} ;$ height 34 mm , depth 14 mm . width 32 mm . Price $E 3$ for $10, £ 1350$ for 50 ambient tomperatures $85^{\circ} \mathrm{C}$; height 34 mm , depth 14 mm . Width 32 mm . Price $£ 3$ for $10, ~ £ 1350$ for 50
$£ 25$ for 100 . 1113 for 500 . Semple sent for $40 \mathrm{p}+20 \mathrm{p}$ P \& P. 69 p inc. V.A T .). PANEL-MOUNTED FUSE HOLDER in hard black plastic screwdriver release, for 20 mm fuses up to 6.3 amp $250 v$ with low panel profile, and shockproof construction; approx. dimensions , length 38 mm mt
hole dia. 13 mm . Price $£ 4$ for 10 , m 18 for 50 , $£ 33$ for 100 , $£ 150$ for 500 , $£ 270$ tor 1,000 , $£ 480$ for 2,000 , Ministure Low-Loss Co-Ax RG178B/U
High-quality cable with silver-plated, copper-clad steel strandec conductor $7 / 0.1 \mathrm{~mm}$ extruded P.T.F.E
insulation. The screen is silver-plated copper wire. The insulation. The screen is silver-plated copper wire. The outer sheath is FEP and coloured brown dia
1.91 mm (temperature range $-55{ }^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$). Characteristic impedance $50+\cdots 2 \mathrm{n}$, nominal capaci-
tance 106 PF/Mmaximumattenuation 400 MH .
 for $£ 30+$
Terms c.W.O. Please add 5% to all orders for carriage plus 15% V.A.T. Export enquiries welcome. We
find it impossible to advertise all we stock. Please ter callers always welcome

WW - 073 FOR FURTHER DETAILS

VALVES			Minimum Order f1				VALVES VAT IS INCLUDED		
A1065		EF89	PFL200 1.10						
	75	EF	${ }_{\text {PL81 }}{ }^{\text {P136 }}$	2900	2.45	6BW	1.80	12	70
			PL82		0.85		0.50	${ }^{12 A T 6}$	
	0.60	EF	PL83 0.60	1L4	0.50	6 C	0.55	$12 \mathrm{AT7}$	
		EF	PL84 0.95			6 CC			
			PL504 1.00		0.4				
			PL509	155	0.45				
		EL32 1.10	PL519 ${ }^{5.80}$	1 U 4	0.8		1.15	${ }_{128}^{128}$. 25
		EL34 $\quad 1.80$	PL8		1.40	6D6		128	5
DL92			Pr80 0.70	$2 \times$	2.50		50	12 E	
		${ }_{\text {EL }}^{\text {EL37 }}$							
		EL84	PY	${ }_{3 B 28}$	12.00	6F	0.85		
E1	7.70	EL86	PY5			65	1.50		
		EL90	aovo3/10 3.				15	12	
			QCVO3-20A						
		EL509							
		ELB21	Qovo6/40A ${ }^{36.5}$	5 L	1.80	$6{ }^{6}$			
		EL8					50		
			avo3-12	5	0.95		1.95	19 A	
			Sp61 1.80	523	1.50		60	1963	1.50
			$\Pi 21 \quad 23$.				5.85		
					1.05		35	19 H 5	39.55
			UBC						
		EY38	$\begin{array}{ll}\text { UAFAL } & 1.20\end{array}$						
	0.60		UBF80 $\quad 0.70$	6A	0.60	${ }_{6}^{6} 5$	65		
			UBF89 $\quad 0.70$	6 A	1.15	6 J	0.90	252	0.75
			UY						
		OA	UY85	${ }_{6 \text { 6A }}$		6 6S	5		
		OB	VR105/30 1.25	6AX		65		5763	
			VR150/30 1.35	6A	0		50		
		${ }_{\text {PCLIB6 }}{ }_{\text {PCL8 }}$		${ }_{68}^{68}$	0.60		0.95		0
	0.60 0.75	PCL805/850.	$2759 \quad 1900$		1.60	6x	0.65	88	
VALVES AND TRANSISTORS Telephone enquiries for valves, transistors, etc: retail 749 3934. trade and export 7430899 FIELD TELEPHONE, CABLE TYPE D10 HARNESS "A" \& "B" CONTROL UNITS "A" "R" "J1"* "J2." Microphones No 5, 6, 7 connectors, frames, carrier sets, etc. FIELD TELEPHONES TYPE Tropical, in metal cases. 10-1ine MAGNETO SWITCH- BOARD. Can work with every type of magneto telephones. PRICES MAY VARY POSTAGE: $£ 1-£ 345$ p; $£ 3-£ 555$ p; $£ 5-£ 1060$ p; $£ 10-£ 1580 p$; $£ 15-£ 20100 p$.									
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd,London W12 Tel. 01-743 0899 or 01-749 3934.0 pen Monday to Friday 9 a.m. 5.50 p.m. ww. 20									

YOU HAVENT

 SEEN ANYTHING LIKETHIS ONA COLOUR MONITOR BEFORE.An RGB monitor fromJVC offering a resolution of 370×470 pixels for less than $£ 150$?

We guarantee you won't see another bargain like that in this or any other micro mag-or in any other supplier's showroom.

For we've managed to acquire the sole distribution rights to these superb machines and we are able to offer them at an unbeatable price.

There are two models available: medium resolution (370×470 pixels) at $£ 149.95$, and high resolution (580×470 pixels) at $£ 229.95$. (Both excluding VAT.)

The units have a $14^{\prime \prime}$ screen and are suitable for the BBC Micro, Lynx, Oric, Apple, BM and most other leading micros.

They are robustly constructed in a handsome cream casing. And come with a full year's guarantee.

Delivery is good: your monitor should arrive by courier service within ten days of our receiving your order.

You can order by filling in the coupon below and posting to: Opus Supplies Ltd., 158Camberwell Road, London SE5 OEE. Or by telephoning 01-7018668 quoting your credit card number. Or, of course, you can buy in person at our showroom between $9-5.30 \mathrm{pm}$, Monday-Saturday.

MODEL REFERENCE	1302 - Medium Resolution	1302-2 High Resolution
RESOLUTION	570x 470 Pixels	580×470 Pixels
C.RT.	$14^{\prime \prime}$	$14^{\prime \prime}$
SUPPLY	$220 / 240 \mathrm{v} .50 / 60 \mathrm{~Hz}$.	220/240v. 50/60Hz.
E.H.T	Minimum 19.5kv Maximum 22.5 kv	Minimum 19.5 kv Maximum 22.5 kv
VIDEO BAND WIDTH	6 MHz .	10 MHz
DISPLAY	$\begin{aligned} & 80 \text { characters by } \\ & 25 \text { lines } \end{aligned}$	80 characters by 25 lines
SLOT PITCH	0.63 mm	0.41 mm
INFUT VIDEO	R.G.B. Analogue TTL Inpui	R.G.B. Analogue/ TTL. Inриt
SINC	Separate Sync on R.G.B Positive or Negative	Separate Sync on R.G.B Positive or Negative
EXIERNAL CONTROLS	On off switch and brightness control	On/iff switch and brightness control

To Opus Supplies Ltd., 158 Camberwell Road, L.ondon SE5 OEE
Please send me Medium Resolution Colour Monitor(s) at $\{149.95$ each (ex. VAT)
High Resolution Colour Monitor(s) at $£ 229.95$ each (ex. VAT).
Connection lead(s) at $£ 6.00$ each
I understand carriage per monitor will cost an extra $£ 7.00$.
(N.B. A Medium Resolution Monitor including VAI, lead, and carriage costs $£ 187.39$. A High Resolution Monitor including VAT, lead, and carriage costs £279.39.)
I enclose a cheque for \mathfrak{s} __Or please debit my credit card account with the amount of s My Access/Barclaycard

You need Electronic Components? You need us!

AEL COMPONENTS concentrates on the demands of export markets. Our success is built on meeting the requirements of overseas buyers for electronic components. We supply:
Organisations Worldwide with Electronic Equipment to Maintain. Equipment Manufacturers. Universities, Training Colleges and Schools for training projects.

SEMICONDUCTORS

From germanium diodes to microprocessor circuits. You will use a selection from many of the 250,000 types currently available. Our extensive purchasing power and VAST EXPERIENCE enables us to supply more types than any other single source. We are better qualified than most to offer suitable replacements for obsolete types.

PASSIVE COMPONENTS

To complete your package, we recognise a wide variety of RELAYS - CONNECTORS - LAMPS, etc., and can offer all types of RESISTORS and CAPACITORS against specification.

ELECTRONIC TUBES

We know and can supply 30,000 types using our extensive cross referencing capability to give you the best buy. All leading UK, USA, Western European and Japanese brands are available, in addition to our own competitively-priced AEL brand. It is part of our service to stock or be able to source the increasing number of tubes difficult to locate.

AEL COMPONENTS DIVISION, GATWICK HOUSE, HORLEY, SURREY, ENGLAND RH6 9SU TEL: HORLEY (02934) 5353 -TELEX: 87180 - CABLES: ÁEROCON TELEX HORLEY

WW - 062 FOR FURTHER DETAILS

WW - 059 FOR FURTHER DETAILS

FIBRE-OPTICS EDUCATOR

A New Concept in Optical Equipment

The Fibre-Optics Educator is a low-cost, versatile instrument designed primarily for organisations involved in or about to enter the field of fibre-optics.
It can function as:
TEST EQUIPMENT e.g. for accurate fibre attenuation measurements to a range of 50 dB , optical level measurements, and for testing out analogue and digital optical transmitters and receivers. Also, it may be set to give an audible indication of low level infra-red radiation using the analogue loudspeaker output or the digital buzzer output, with a length of optical cable acting as a probe. TRANSMISSION EQUIPMENT for both analogue and digital data, over free-space as well as optical fibres. It is also ideal for:
TRAINING engineers, technicians and executives in the growing field of fibre-optics. Suitable for industry, colleges and technology training centres.
The Fibre-Optics Educator comprises fully portable optical transmitter and receiver units, optical cables, together with numerous accessories, a comprehensive manual, and carrying case.

Designed and Manufactured in the U.K
For further details contact
ELLMAX Electronics Ltd
Unit 29, Leyton Business Centre, Etloe Road, Leyton, London, E10 7BT Tel: (01) 5390136

WW - 017 FOR FURTHER DETAILS

* $\quad=-\quad$ MARCONI SIGNA Tr2002AS (iflustrated 72MH2. AM/FM. $\mathrm{C750}$ TF 2002 . As Bbove bu ${ }^{£ 450}$
 ```MARCONI TF1066B. \\ 470MHz. 0.2uV-200mV output FM Deviator.```
 MARCONI TFGesAL5. AM/FM Generator. Narrow

 $72 M H Z$ e295
 MARCON TF1064B/5. AM/FM Signal generator covering in three ranges $68.108,118.185$ gnd 450
 470 MHz . FM fixed deviations of $3.5 \& 10 \mathrm{kHz}$. AM

'DOLBY' NOISE WEIGKTING FILTERS Cat. No. SBA. Noise woig £40 each ($+\mathrm{f} 1 \mathrm{p} \mathrm{\& p}$)

BECKMAN TURNS COUMTER DIALS
turn "Helipots", Brand diam... Counting up to tions. Only $\mathbf{£ 2 . 5 0}$ each.

RFI RECENER

Stoddart Model NM52A. RF Noise \& Field intensity measuring receiver. $375 \mathrm{MHz}-1 \mathrm{GHz}$ c/w power measuring

KAY SOUND SPECTROGRAPH

Model 6061 B with Amplitude Display, scale magnifier $85 \mathrm{~Hz}-16 \mathrm{kHz}$ Complete sound spectrograph in excellent condition

$\star \times$ STEPPER MOTOAS $\boldsymbol{*} \star$

Brand new stock of 'ASTROSYN' Type 20PMA055 stepper motors. 28 V DC. 24 steps per rev 15 oz-in torque @ 100PPS. Body length $21 / 2$. threaded. Weight $160 z$. Price each $£ 15$ ($p \& p$ 50p). Connections supplied.

MARCONI TF2600. Twelve
 SD. Wide-band to 10 MHz . MARCONI TF2603. Frequency ran MARCONI TF2604. Electronic Multi-meter AC/DC 300 mV Full scale to 300 V (1 kV DC) Re sistance ranged. AC Frequency range 20 Hz 1500 MHz .
 t CONSTANT VOLTAGE TRANSFORMERS $\star \star$ ADVANCE VOLSTAT; Type. Model MT140A Mains input $190-260 \mathrm{~V}$ AC. Output 230V AC ©

 150 W . Price each $£ 20+$ VAT $+£ 2$ carriage
TEKTRONIX 453. Dual-trace 50M

TEKTRONIX 565. Dual time-base. Differen
tial plug-ins.

£350.

MARCONI TF2210. Dual-trace, 100 MHz ,
sweep-delay $£ 350$
DYNAMCO D7200 Mains/Battery portable.
Dual-trace 15 MHz £225.
N.B. We have a frequent stock turnover of good, used 'scopes. Should you have a specific requirement for any item of test equipment we would be pleased to receive

MARCONI TF2502 RF Power meters. DC-1G MARCONI TF2701 In-Situ Universal component Bridge $£ 250$ MEGGER-5KV Insulation tester. Hand-crank PHILPS Model PM8041. X-Y Recorder
MARCONI TF2343A Quantization Distortion Meter $£ 150$ HEWLETT-PACKARD 3450A Multi-Function Digital Multi-Met ROHDE \& SCHWARZ SDR AM signal generator 10.480 MH TGL Spectrum Ana!ysers model SA102. $0-500 \mathrm{MHz}$. Brand new factory units. $0-500 \mathrm{MHz}$. Send for specifications. $£ 650$.

INSULATION TESTERS \boldsymbol{t} Transistorised 'Metrohm' 250 V Transistorised 'Metrohm' 250V \& Transistorised 'Megger' $500 \mathrm{~V} \mathbf{£ 6 0}$ Supplied in fully tested excellen

 cond\star BRUEL \& KJAER \star
Model 2006 Heterodyne Voltmeter. AM/FM/Voltage and Modulaton measure
$240 \mathrm{MHz} £ 165$
P. F. RALFE ELECTRONICS

 \section*{SWEEPERS \star
 \section*{SWEEPERS \star
 TELONIC
 Sweep generato
 ystem type 2003. Fitted with} Mrker, attenuator, Detector plugunits and Generator covering MUIRHEAD
FACSIMLE UNITS
MUFAX 'COURIER' facsimile re-
ceiver type KA49-CH and transmit-
ters K400 AMCH in stock in excel-
lent condition £250 per pair. lent condition £250 per pair. ipment shown has been carefully LEASE NOTE. All the pre-owned equipned where necessary. It is sold in first-class operational condition and most items carry a three months guarantee. For our mail order customers we have a money-back scheme. Repairs and servicing to all equipment at very reasonable rates. PLEASE ADD 15% VAT TO ALL PRICES ADD 15% TAT ALL PRICE.

COMPUTER PERIPHERALS * 8' ${ }^{\prime}$ FLOPPY DISK DRIVES
DRE (Data Recording Equipment) Model 7100 Single-sided floppy disk drives in stock now at vastly reduced prices. Supplied BRAND NEW in manufacturers sealed cartons. CAPACCTM-
0.8 MBytes. Hard/Soft sectoring ANSI/ECMA Stan0.8 MBytes. Hard/Soft sectoring ANSI/ECMA Standards compatiole. Measures $4 / 2 \times 81 / 2 \times 14$. Werg if required + $\mathbf{f} 10$ + VAT. 7200 (Double-sided) $\mathbf{£} 250$

8' WINCHESTER DRIVES

United Peripherals type 3100 Minidisc Drives CAPACITY over 19MBytes. Power supply require$17 \times 8 \times 7^{\prime \prime}$. Limited quantity only available in BRAND NEW condition. $\mathbf{2 5 0}$ each + VAT. Carriage details as above.

4000-SERIES HARD DISK DRIVES

Data Recording Equipment 4000 -Series exchangeable IBM-type 5440 Disks. Units available ex-stock quotation.

DISK CARTRIDGES

Surplus BASF 12-Sector RK05 cartridges available . small quantity only remaining at $£ 15$ each. Car rage each $£ 1.50$

SWITCHING POWER SUPPLIES $\$$

The following DC power supplies are available now from stock in limited quantities. All fully tested and guaranteed.
 $5 \mathrm{~V} @ 60 \mathrm{Amps} \ldots £ 4019 \mathrm{~V} @ 30 \mathrm{Amps}$ All prices + VAT please. Carriage +

\star CENTRIFUGAL BLOWERS

'TORIN' Type U62B1. 230V Cap'Start (supplied), very powerful (200W. 3,000rpm) centrifugal fans for large rack cooling or enclosure extraction applet 6×4
cations. Overall dimensions $20 \times 12 \mathrm{cms}$, outle cms. BRAND NEW. Surplus stock. $\mathbf{£ 1 5}$ each inc. VAT, pp $£ 1.50$.

t	ROTRON INSTRUNENT
	CDOLNE FANS
*	Supplied in fully tested excellent condi-
\checkmark	$115 \mathrm{~V}, 41 / 2 \times 4^{1 / 2} \times 11 / 2^{\prime \prime} \mathrm{f5}$. 230 V same size
*	£5.50. $115 \mathrm{~V} 3 \times 3 \times 1^{1 / 2^{\prime \prime}}$ £4. $230 \mathrm{~V} 3^{\prime \prime}$ size, brand new £6. Also small quantity 115 V
1	$4^{1 / 2 / 2}$ ' size, brand new $£ 6$. Postage each +
-	50 p please. WW10

DIN LTITI2 TWO PART EUROCARO (INDIRECT EDGE) CONNECTORS
 MADE IN ENGLAND BY DOWTY UECL

SPECIFICATION: Designed to BS9525 and DIN 41612. Flame retardant polyester moulding. Twin cantilever socket contacts. at $20^{\circ} \mathrm{C}$. Working Voltage 350 V D.C
All below types available ex-stock.

All below types available ex-stock.								
All below ty	No. of	Termination		$\begin{aligned} & \text { Moulding } \\ & \text { Size } \end{aligned}$	Contact Rows used	Order Code	Price ea. 10-99 pcs	Price ea. 100-499 pcs*
Connector	Contacts 32	Termination	$2.54 \mathrm{~mm}$	2 ROW		20100	£0.60	$\begin{aligned} & £ 0.51 \\ & £ 0.72 \end{aligned}$
PLUG	32	90° SPILL	2.54 mm	2 ROW	A+B	20500	£0.85	${ }^{\text {£0.72 }}$
PLUG	64	90° SPILL	2.54 mm	2 ROW	$A+C$ $A+B+C$	21100	£1.20	£1.00
PLUG	96	$90^{\circ} \mathrm{SPILL}$ -	2.54mm	2 ROW	$\stackrel{A}{A+B}$	20202	£0.75	£0.63
SOCKET	32	4 mm STRAIGHT SPILL	$\underline{2.54 m m}$	2 ROW	A	20206	£0.75	E0.63
SOCKET	32	13 mm WIRE WRAP	2.54 mm	2 ROW	$A+B$	20602	£1.20	£1.00
SOCKET	64	4 mm STRAIGRT SPILL	2.54 mm	2 ROW	$A+B$	20606	£1.20	£1.00
SOCKET	64	13mm TIRAIGHT SPILL	2.54 mm	3 ROW	$A+C$	21002	£1.20	£1.00
SOCKET	64	13 mm WIRE WRAP	2.54 mm	3 ROW	$A+C$	21006	f1.30	£1.10 $\mathbf{1} .53$
SOCKET	96	13 mm WIRE WRAP	2.54 mm	3 ROW	$A+B+C$	21206	f1.80	
* Further qu	discoun	on application*						

/p $\Gamma_{\text {JPR ELECTRONICS }}$
UNIT M, KINGSWAY INDUSTRIAL ESTATE, LUTON, BEDS LU1 1LP
TELEPHONE: LUTON (0582) 410055 . TELEX 925859 Attn J.P.R.

WW - 006 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

 IBM GOLFBALL PRINTERS from E70 EACH + V.A.T.INTERFACE FOR IBM GOLFBALL $£ 40+$ V.A.T CENTRONIC 779 PRINTERS $-\mathrm{f} 200+$ V.A.T. CENTRONIC 781 PRINTER - $£ 225+$ V.A.T. POWER UNITS 15 VOLT 10 AMP - E20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8-INCH BURROUGHS FLOPPY DISC DRIVES

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, MALDON, ESSEX PHONE MALDON (062 1) 57440
Hours: Mon-Fri. 9am to 5pm. Sat. till 1pm

AMBISONIC SURROUND SOUND DECODERS

Ambisonic surround sound gives a realism in the reproduction of music that is hard to describe without using hackneyed expressions like 'natural' and 'being there'. Positioning of the performer becomes obvious and the acoustic of the original environment comes through to the listening room. The Minim decoders also provide enhanced results from conventional stereo material. We can now supply UHJ encoded records, tapes and compact discs And don't forget our other products:

PROGRAMMABLE WEEKLY TIME SWITCHES
TELEVISION SOUND TUNERS
please send me information on Timeswitches/Television Tuners/Ambisonics
Name.
Address
Minim Electronics Limited, Lent Rise Road
Burnham, Slough SL1 7NY. Tel. Burnham 63724 ww2

| |
| :--- | :--- | :--- |

Callers weicome 9 a.m. to 5.30 p.m. Monday to Saturday inclusive

066 FOR FURTHER DETAILS

PHONE
 P. M. COMPONENTS LTD
 TELEX
 0474813225
 SELECTRON HOUSE, WROTHAM ROAD
 966371 3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY

A SELECTION FROM OUR
STOCK OF BRANDED VALVES

HK90
HL2K
HL23OD
HL41
$H L 410 D$
H

W97
W72
W72
W27 W7781
W729
W739
$\times 24$

ZEMER DIODES
BASES ETC.
${ }^{8776}{ }^{876}$ Skirefo 0.15
B8G
B9A
B90
${ }^{\text {B9AA }}$ Bxitrod 0.20
$\begin{array}{ll}\text { B108 } & 0.30 \\ \text { B13B } & 0.16 \\ & 0.50\end{array}$

$14 \times \mathrm{P}$

BZX61 0.15

TUERMSTORS	MTtitics

CALLERS WELCOME

- ENTRANCE ON A227

50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE
OPEN MONDAY TO FRIDAY 9a.m.-5.30p.m

C 24 HOUR ANSWERPHONE SERVICE
CCESS AND BARCLAYCARD ORDERS WELCOME
UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%
EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

- Protects against ingress of dust and liquids IP55 (BS5490 1977, IEC 529 1976).
- 1.5 and 1.75 mm steel bodies and 2 mm steel doors.
- Smaller sizes fitted with advanced polyurethane gaskets. Larger sizes (600×600 and above) fitted with neoprene gaskets.
- Wide range of chassis systems including plates DIN rail, telequick and gland plates.
- Standard finish is textured beige polyester powder paint.
- Glazed doors - wide choice from stock.

Think big - think Sarel Sarel Limited
Cosgrove Way, Luton. Beds. Tel: Luton 20121
Please send me full details of how Sarel's 8000 Series
of cabinets and accessories set the standard.
\mid Name
\mid Position
Company
Address
Sarel Limited, Cosgrove Way, Luton, Beds

WW - 064 FOR FURTHER DETAILS

Your SPECIALIST SUPPLIERS for - CONNECTORS

Not only will you find a wide selection of all the usual types you may require in our A-Z products list; necessary by today's ever-advancing electronics - just one more example of how much better Electrovalue serves you.

Please mention this journal when getting in touch with Electrovalue

D SERIES CONNECTORS

$9,15,25,37$ or 50 way connectors with corresponding covers and retainers. Gold plated contacts. M
For connecting ribbon cable to PCBs. Insulation Displacement Type: 16, 20, 26,34 or 40 way, 1A per socket. Straight or right angle plug fitting; cable socket has RPC CONNECTORS
5 way and 7 way chassis plugs and sockets. DIN style layout. Gold-plated pins OTHERTYPES per socke.
OTHERTYPES

BRITAINS LEADING QUALITY COMPONENT SUPPLIERS-SEND FOR FREE 32 PAGE A-Z LIST ATTRACTIVE DISCOUNTS-FREE POSTAGE-GOOO SERVICE \& OELLVERY

 EV Computing Shop: 700 Burnage Lane, Manchester (061) 4314866

TEST EQUIPMENT

Marconi TF20028 AM/FM 10 KHz -88MHz.

Fluke $8600 \mathrm{~A} 41 / 2$ digit DMM
Fluke $8020 \mathrm{~A} 31 / 2$ digit DMM (New)
Cese for above (New).
GEC Super 50 Selectest.
Philips PM2454 AC Millivoltmeter 0-2MHz IuV-300V
Sullivan AC Test Set
Leader LAG-27 Audio Sio
H.P. 5000 A Logic Analyser.
Philips 2522A $41 / 2$ digit OMM

Philips 25214 42 digit O
Sanwa Multimeters......
Pantac Electro Multimete
25A/600v Clamp Meters.
Houston DP 10 Incremental XY Plotter
Leader Function Generator 2 MHz
Advance OS 1000 B Dual Trace 20 MHz Scope.
Leader LB05108 4MHz Single Channel Scope (New
Scopex 4S6 6MHz Single Channel Scope.
Lerder LSG-17 150MHz AM Signal Generator (New).
Telequipment O75 50 MHz Duel Trace Delay T/B Scop
Scopex 30-4D Dual Trace 30MHz Scope Dual Channel
Advance OS 350060 MHz Scope with DM3010 DMM option
Advance OS 25515 MHz Dual Trace Ş̧ope.
Tek. 564 Storage Scope..
J. Jloyd PL 100 X X Y Ploter with spare Amp

Leader LTC 905 Curve Tracer (New
H.P. 9815 A Desk Too Computer
H.P. 9815A Desk Top Computer
A.P. ${ }^{\text {Systron Don }}$ 940-190 M C 62 Set Directional Coupler (New)

Systron Donner $7344441 / 2$ digit DMM MiEEE interfaced
Pecker 5000 Prom Programmers
Tek 191 Constant Amp. Signal Generator 100 MHz
Tek. Amplitude Calibrator
3Phase
Tekhase Variac 6A.
Tek. Type MPlup-in....
Tek. Type iA6 Plug-in
H.P. 85Desk Top Computer

Yaesu Musen YC1000L Data Logger 600 MHz Timer Counter, D
Yaesu Musen YC1000L Data Logger 600 MHz Timer Counter
24-hr. clock, Thermometer and printer, all in one box (New)
Leader LCR 740 LCR Bridge (New)...................
H.P. 612 UHF Signal Generator 450 . 250 MHz
H.P. 612 UHF Signal Generator 450-1250MHz
Tetequipment D67 25 MHz Dual Channel Delay T/B Scope
Telequipment

Telequipment D67A 25MHz Duat Channel T/B Scop
Marconi TF $801 / \mathrm{D} 470 \mathrm{MHz}$ AM Signal Generator...
R \& S SMAF AM/FM Signal Ge.................
Leader Video recorder head checker Beta or VHS (New)
40kv Metered Test Probe (New)
H.P. $1803 A$ Differential plug-in.
H.P. 1803 A Differential plug-in.
H.P. $1821 \mathrm{~A} / \mathrm{T} / \mathrm{B}$ plug-in

Electrohome $19^{\circ} \mathrm{B} / \mathrm{B} / \mathrm{W} \mathrm{X}$ - Y Monitors.
Tek. 113 Delay Cable.
H.P, 608 C 470 MHz AM Signal Generator
Weir $30 \mathrm{~V} / 2 \mathrm{~A} .60 \mathrm{~V} / 1 \mathrm{~A}, 15 \mathrm{~V} / 4 \mathrm{~A}$ M

TIMEBASE
94 ALFRISTON GARDENS

HARD DISK DRIVES

$\begin{array}{ll}\text { Exchangeable type (via lid removal) } & \text { E295.00 } \\ \text { me302g PSU unit for } 2 \text { drives } & \text { E } 125.00\end{array}$

Plus in house repair, refurbishing service.

CALCOMP PLOTTERS

9363 colour digital incr
 inlace and accessories -TT

7184 colour digital 8×5
(cost 25,000) 1 only at

AOT LINE DATA BASE DISIMFLC
THE ORIGINAL FREE OF CHARGE dial up data base Oixill
 MAINS FILTERS

COMPUTER 'CAB'

Alm one quainy computer

mode PSU, Mains filtering, and twin fan cooling.
Originally made for the famous DEC PDP8 computer system costing thousands of pounds. Made to will deliver a
hours per day the PSU is fully screened and will massive $+5 v D C$ at 17 amps , 15 vDC at 1 amp and -15 DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch, Power and 'Run LEDs mounted on Ali front panel, rear cable entries, etc etc. Units are in good but used condition - supplied for $240 v$ operation complete with full circuit and foch only Glve your system that professional inish for ong

COOLTHG FAES

Keep your hot pant COOL and AELIAALE with our range of BRNO NEW professional

ETRI $99 \times U O 1$ Dim. $92 \times 92 \times 25 \mathrm{~mm}$.
Miniature $240 \times$ equipment fan complete with finger quard E9.95.

BUHLER 89.11.22. 8 V operation. N VC micro
miniature reversible tan Uses a brush
servo motor for extremely high air flow. servo motor for extremely high air flow,
almost silint running and guaranteed 10,000 hr life. Measures only $62 \times 62 \times 22 \mathrm{~mm}$.
Current cost $£ 32.00$ OUR PRICE ONLY £12.95 complete with data. MUFFIN-CENTAUR standard $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25$
fan supplied tested EX EQUIPMENT $240 \vee$ at $\S 6.25$ or $110 v$ at $£ 4.95$ or BRAND NEW 24 at E10.50 1000 's of other fans Ex Stock

SCOOP!

SAVE $£ 250$

SUPER PRINTER SCOOP CENTRONICS 739-2

The "oo Evernting P Pinerer at oncee thay win Never be

 repeated. Standard Centronics interface, full grapnic
 at a ridiculous price of only $£ 199.00$ Options: carriage $\&$ insurance $E 10.00$ Interface Cable £ 10.00

BRAND NEW CASED WORD PROCESSOR KEYBOARDS

DRE 7100

8" Disk Drives

 New £225 + VAT
VIDFO MONITORS

Designed for continuous use as a data display station, unit is totally housed in an attractive brushed aluminium case with
OFF BRIGHTNESS and CONTRAST controls mounted to one side. Much controls mounted to one side. Much
attention was given to construction and reliability of this unit with features such as supoly, all components mounted on two fibre glass PCB boards - which hinge out f or ease of service, many internal controls
linearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and wigh def graphics and 132×24 lines. Units are secondhand and may have screen Units are. However where burns exist they are Although unguaranteed all monitors are tested prior to despatch. Dimensions approx. $14^{\prime \prime}$ high $\times 14$ wide by 1 deep. Supplied complete with 24" CASED Again made by the KGM C with a similar spec as the 12 monito
Originally used for large screen data display. Very compact unit in lightweight alloy case dim silicon electronics and composite video input make an ideal unit for schools, clubs,
shops etc. Supplied in a used but working condition.
OMCYE55.00 PLUSE9.50 GARR E IMS.
SEMICONDUCTOR 'GRAB BAGS'

Mixed Semis amazing value contents

include transistors, digital, linear, I.C.'s tri
diodes, bridge recs. etc etc. All devices diodes, bridge recs., etc. etc. All devices
guaranteed brand new full spec. with manu facturer's markings, fully guaranteed. $50+E 2.95100+55.15$. TTL74 Series A gigantic purchase of an
"across the board" range of 74 TTL series "across the board" range of 74 TTL series

DEC CORNER

MOSTEK CRT 80E Brand new dual

 eurocard, 280 based VT100 PLUS \quad f499.00 RKO5.J 2.5 Mb disk drives $\quad \mathbf{\Sigma 6 5 0 . 0 0}$ PDP1 105 Cpu , Ram, i / O. \quad E450.00 PILOG DO100 RKOS LSI $4 \times$ RKOS diskE $\$ \mathbf{5 0 . 0 0}$ LAXX-NW LA 180 RS 232 serial interface $\begin{array}{ll}\text { and buffer option } \\ \text { LAX } 34-\mathrm{AL} \text { LA34 tractor feed } & \mathbf{E 2 3 0 . 0 0} \\ \mathbf{E P 5 . 0 0}\end{array}$ $\begin{array}{ll}\text { LA34 Keyboard assembly } & \text { £ } \\ \text { BCO5W-15 interface cables } & \mathbf{2 8 . 0 0}\end{array}$ H317B interface adaptor $\mathbf{£ 2 9 5 . 0 0}$

DSFLAM ELEETROMITS

5 kis $£ 5.90+£ 1.80$ $20 \mathrm{kls} £ 17.50+£ 4.75$

ATL PRICES PLUS VAT
 AKL PRICES PLUS VAT

QUALITY INTERFACE CABLES \& CONNECTORS

SUPER DEAL? NO - SUPER STEAL!!
The FABULOUS 25CPS TEC Starwriter Daisy wheel printer at a fraction of its original cost. RANDEW AT ONLYE499+ VAT= spec the TEC Stanwriter heavy duty die cast heavy duty die cast
chassis and DIABLO tyfe chassis and DIABLO tyFe
print mechanism giving
superb registration and superb registration an
print quality. Microprocessor electronics
offer full DIABLO/QUME command compatabilit. and full control via CPM Wordstar etc printing, switchable 10 or 12 pitch, full width 381 mm paper har dling with upto 163 characters per line friction teed rilil interface with handshake. Supplied absolutly BR NOW NE whact síles office for more information Optional extras: RS23 ${ }^{\text {and }}$ data cable $£ 10.00$. Tech manual $£ 7.50$. Tractor feed £ 140.00 Spare daisy wheel £ 3.00 . Carriage \& Ins. (UK Mainland) £10.00.

$$
\begin{aligned}
& \text { 66\% DISCOUNT } \\
& \text { COMPONENT } \\
& \text { EQUIPMENT } \\
& \text { 66\% DISCOUNT }
\end{aligned}
$$

Due to our massive bulk purchasing programme which Relays, Cap's, P.C.B. s. Sub-assembles,
bargains, we have thousands of I.C.'. Trar sistors, Rerner Switches, etc etc. surpl.s to our requirements. Because we donto the "BARGAIN PARCEL OF
one tem to include in ou ads. we are packing all these items into
 $10 \mathrm{kls} £ 10.25+\mathrm{pp} £ 2.25$

पHLETMP1 A8B531~ I/O TERMINAIS
Fully fledged industry standard ASA33 data terminal. Many features including Ast data keyboard and printer for datal interface. 110 baud, 8 bit paper tape punch and reader fo off line data preparat on and ridiculously cheap and reliable data storage. Supplied in good condition and in working order Options: Floor stand $\mathbf{E} \mathbf{1 2 . 5 0}+\mathrm{VAT}$ KSR33 with 20 ma loop interface $\mathbf{E} \mathbf{1 2 5 . 0 0}+$

SOFTY 2

The amazing SOFTY 2. The complete "10okkit tor the open heart software surgeon. Copies, of the 2516,2532 variety. Manyotherfeatures include keyboard, UHF modulator. Cassette units costing 7 times the price! Only

DATA MODEMS

Join the communications revolutems Made io most strmgent spec and designed to operate for 24 hrs per day Units are made to the a 25 way 'D' skt. Units are sold in a tested and working condition with data Permission MODEM 2B "Hackers Specia," 'ully fledged modes. Data i/o via standard RS232 25 way
D' socket. Just 2 wire connection to comms ready to run $\mathbf{6 5 5 . 0 0}$. MICRONET, PRESTEL OTTELECOM GOLD 1200 baud receive. Data i/o via RS232 0 socket Guaranteed working with data Eud.
MODEM $20-2$ same as $20-1$ but 75 baud MODEM $20-2$ same as $20-1$ but 75
receive 1200 baud trans mit $£ / 30.00$ baud in full duplex mode over 4 wire circ half duplex mode over 2 wires. $\$ 130.00$
MOOEM $13 A$ compact, async, same size as telephone base Up to 300 baud, full duplex over 2 wires, but call mode only $\mathbf{7 5} .00$
DATA PUMP MODEM compact unit up to duplex over 2 wires BELL specification with dest etc. 240 voperation. Supplied complete with da: a 65.00 carr.
For more information For more information or details of other type
of ex stock modems contact sales office. All prices quoted arefor U.K Mainland, paid cash with order in PoundsStirling PLUSVAT. Minimum order valueE2.00. Minimum Credit Card orderf 10.00 Minimum BONAFIDE account orders Ifom Governmen warehouse open Mor-Fn 9.30 - 5.30 Sat. 10.15 - 5.30 . 32 Biggin Way. Upper Norwood, London SE19.3XF Telephone 01-6794414 Telex 27924

BX80 colour MATRIX PRINTER

Especially designed for use with the BBC Microcomputer

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Prints in 7 colours on plain paper. Colour screen printing in ALL modes (inc. mode 7 Teletext). Uses RS423 output (cable supplied). Printer RS423 input has 2.5 K bytes buffer. In mode 7 Teletext, printer has a 2 page store with printout size option. 125 cps primary colour speed for listing, etc. Screen dump listing supplied.

also
Black and White printer interface for BBC micro-Epson MX*/RX/FX80 3.5K byte buffer: all modes inc. mode 7 Teletext. Uses RS423 o/p.
Board, RS423 cable + listing £95+VAT
Apple II parallel interface card for $M X^{*} / R X / F X 80$ gives hi res screen dumps, etc. C/w cable $£ 59+$ VAT
Ribbons for MX/RX80 $£ 5.50+$ VAT
Ribbons for BX80 $£ 5+$ VAT
${ }^{*}$ M M $15+\mathrm{VAT}$ requires printer ROM change, add £15+VAT

NEW model VRX80 black/white viewdata printer, 3.5 K byte buffer, $£ 425+$ VAT

Quick, neat and easy!

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. £4.30 including postage, packing and V.A.T.
Overseas orders add 35p per binder
Nat. Giro No. 5157552.
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to:
[iST:THD 42 Hoxton Square

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston

PR1 2XQ

Telephone 077257560

Fylde Electronic Laboratories Limited.

0
-
WE ARE DETERMINED TO CONTNUE OFFERING THE BEST USED TEST EQUIPMENT - FULLY GUARANTEEDAT THE BEST PRICES

All equipment calibated to manufacturers orisinal specification WATCH THIS SPACE for our regular money saving special offers all fully guaranteed

C. Nron Electronics Lfd.

Shirley House, 27 Camden Rd, London NW1 9NR
Tel: 01 - 2675311 Telex 23920 (Euhire)

B. BAMBER GLECTRONICS

Rohde a Schwarz Enograph Type BN 18531, f60
Rohde \& Schwarz Sweep Signal Generator Type BN 4242/2,50 kHz to 12
Rohde \& Schwarz U.H.F Signal Generator Type BN 41026, 1000 to 1900 $\mathrm{MHz}_{\mathrm{I}} \mathrm{£} 125$.
Rohde \& Schwarz Group Oelay Measuring Equipment Indicator, £50. Rohde \& Schwarz Group Delay Measuring Equipment Modulator/Demodulator, f 50 .
Rohde \& Schwarz Power Signal Generator Type BN 4105, 30 kHz to 300 MHz $£ 125$.
Rohde \& Schwarz U.H.F. Millivolt Meter Type BN $1091,20 \mathrm{mV}$ to $10 \mathrm{~V}, \mathrm{f} 50$. Airmac Modulation Meter Type 210, 3 to 300 MHz , f95
Hewlett Packard S.H.F. Signal Generator Model 618 B, 3.8 to 7.6 GHz, $\mathrm{f120}$
Bryans X.Y Ploner Mode Wab, E50
Selartron Pulse Generator Type G0 1005 Model 2 H A, f 60
Pye 12 V Power Unit Type AC 15, £25.
Wandal Golterman Carrier Frequency Level Meter, Type TFPM 76, £60. Rohde \& Schwarz Video Skop Type BN 4241, $\mathrm{E250}$.
Schomantol Frequency Meter Type FDI, 30 to 900 MHz , £50
Tektronix Delay Cable Type 113, 550 .
Bruel \& Kjoer Vibration Meter Type 2502, £50
Advance Pulse Generator Type PG 54, £ 40.
Systron Donner L.F. Spectrum Analyzer Model $805,200 \mathrm{~Hz}$ to 1.6 Mhz , £550 Ministry Oscilloscope Type CT 436 Dual Beam D.C. to 6 MHz , f85
Marconi 100 -Want 7db Attenuator Type TM 5280,150 to 185 MHz , $\mathbf{f} 40$
Pye Aerial Tuner Unit Type ATU 4,2 to 9 MHz , Pre-set, £15.
A.I.M. Electronics Pulse Generator with Clock Generator, $\mathbf{6} 65$.

Marconi V.H.F. Signal Generator Type TF 1064B/5M, f125.
Marconi Tx \& Rx Output Test Set Type TF 1065, f85
Marconi 1/1\%\% Universal Bridge Type TF 1313, $£ 20$. Tektronix L-C Meter Type 130, E65.
Heathkit Harmonic Distortion' Meter Type $1 \mathrm{M}-12 \mathrm{U}, \mp 20$
Marconi Sanders Microwave Sweep Generator Type 6600A, 10 to 15 GHz C270.
Pye Vanguard Type AM 25 B. High Band Less Control Gear, f10 Rohde \& Schwarz Polyskop 11 Type BN 425/50, £350. A.E.W. Process Cycling Oven, 6600 Twin Clothes Lockers, nests of 2 with keys, $£ 20$. Louvred Lin Bin Panels, $4^{\prime} 6^{\prime} \times$,
Kodak Roll Film Drying Cabinet with Hangers, $£ 150$. Potter Line Printer Type LP 3000, £150

PDP-8/L Computer System, Dectape Units and Inierace Unit, £650. Digital Decwriter 11 Printer with keyboard, 100 Rohde \& Schwarz Z-g Diagraph Type BN 3562, 300 to $2400 \mathrm{MHz}_{\mathrm{M}}$ f 85 Tektronix Rack Mount Oscilloscope Type RM 45, £50 Marconi V.H.F. Alignment Oscilloscope Type TF 1104/1, 1150. Tektronix Sampling Oscilloscope Type 661 with 4 S2 plug in, $£ 120$ Avo Valve Tester Type CT160, £30
Advance Oscilloscope Type OS25A, DC to $3 \mathrm{MHz}, \mathrm{f} 120$. Telequipment Oscilloscope Type D43, DC to 10 MHz , 1000 . Telequipment Oscilloscope Type $\$ 43, \mathrm{DC}$ to $10 \mathrm{MHz}, \mathrm{f} 85$.
Telequipment Oscilloscope Type S S Tektronix Rack Mount Oscilloscope RM17, DC to 10 MHz , f85 Tektronix Oscilloscope Type 317, DC to $15 \mathrm{MHz}, \mathrm{f} 120$. Marconi R.C. Oscilloscope Type TF1101, $\mathbf{6 6 5}$.
Airmec Millivolt Meter Type 301A, £75.
Advance Audio Generator Type $\mathrm{H} 1, £ 20$.
Tektronix Oscilloscope Type 543A with Type B plug in, £160.
Tektronix Oscilloscope Type 531A with Type H plug in, $£ 160$. Pye Base Station Type F27, A.M. Low Band, £50. Sander \& Kioer Microphone Amplifier Type 2604 , $£ 50$. Bruel \& Kjoer Microphone Amplifier Type 2603, f 50 . Labgear Compak 8 Transceiver less mike, aerial, etc, f50. EM1 Oscilloscope Wide Band Amplifier Type 7/1, £25. Airmec Sweep Signal Generator Type $352,20 \mathrm{~Hz}$ to 200 kHz , 45 . Belix Variable Power Unit, 0 to 50 V at 2 amp, f 40. BTR Silvertown Anti-Static and Conductive Footwear Tester, $£ 25$. Dawe True RMS Valve Voltmeter Type 612A, 520. Rohde \& Schwarz Power Signal Generator Type BN41001, 0.1 to 30 MHz £75.
Marconi Distortion Factor Meter Type TF142F, £85. Marconi A.M. Signal Generator Type TF 144H/4S, £125. oktronix Time Mark Generator Type 180A, £125. Marconi F.M. Signal Generator Type TF 1066B/1, £280. Marconi F.M. Signal Generator Type TF 1066B/6, £300. Marconi Carrier Deviation Meter Type TF 791 D, 995 Airmec Modulation Mater Type 409, $£ 120$.
Marconi Universal Bridge Type TF 868 , £50.
Marconi A.M./F.M. Signal Generator Type TF 995A/5, £230 Marconi Vacuum Tube Voltmeter Type TF 1041 C, $£ 25$. Marconi R.F. Power Meter Type TF 1020A4, 300W, 75 ohm, 665 Marconi R.F. Power Meter Type TF 1020A1, 100W. 50 ohm, $£ 65$

garRand car cassemt

 PLAYER MECHANISMS
2-Volt motor, stereo head, brand

BASF CHROMDIOXID
 VIDEO CASSETTE TAPE

for use with Philips N1500/1700 VCR. $50 p$ p.p. plus V.A.T. 10 for $£ 35$ plus V.A.T 50p p.p. p.
post paid.

RADIOSONDE RS21

METEOROLOGICAL BALLOON

 TRANSMITERwith Water Activated Battery, contains allweather sensors, fully solid state, $\mathbf{E 5}$ each plus $£ 1$ p.p. plus V.A.

CHARLES AUSTIN TWO-STAGE

 AIR PUNPType F65 DEH, complete with pressure regulator, 240 vac., chassis-mounted with f5 p.p. plus V.A.T.
P. \& P. or Carriage and V.A.T. at 15% on total must be added to all orders. Callers very welcome, strictly between 9 a.m. and 1 p.m and 2 and 5 p.m. Monday to Friday inc.
Barclaycard and Access taken
Official orders welcome ww??

pantechnic

THE POWERFET
SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high-powered amplifier ever. fet SYSTEM amp
Features
W (single ended)
HIGH POWER. 1.2kW (single ended)
LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink

- LOW VOLUME. $1 / 15$ Cubic foot inc. Heatsink

OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω (200 W into 8Ω)
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~F}\end{array}\right.$
OR $\left\{\begin{array}{l}1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc., etc.
Having been closely involved in a wide variety of OEM applications of their amp boards. Pantechnic became aware of numerous implementation problems often left untackied by other amp board manufacturers. These problems specifically of considerably lengthened OEM product development time.
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics, and increase the efficiency of the transistor to heatsink thermal circuit. The combined effect of this has been to dramatically ncrease the volumetric efficiency of the amplifier/heatsink assembly. The SYSTEM Ampoffers 1.2 kW of power in a space of $180 \mathrm{~mm} \times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$, excluding PSU and Fan.
The basis of this considerable advance is the PANTECH 74 Heat Exchanger, newly designed and manufactured by us. By eliminating the laminar air flow found in conventional, extruded heatsinks, heat transfer to the environment is greatly

The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate mplifiers of 300 W each (downrateable with cost savings to 150 W). These can be paralleled, increasing current capability or seriesed (bridge in pairs) doubling voltage capability. In consequence a large variety of amplifier/load strategies can be implemented
As ever Pantechnic offer a full range of customising options including DC coupling, ultra-high slew, etc. Contact Phil Rimmer on 01-800 6667 with your particular application problem

A wide renge of other amplifiers and other modules availabie.

PAMIEBUNLS (DAD, MYZ $)$ Technical Enquiries 174 WOOLON STEET MJEROOL 25 ENH TCL $051-498.848$

HF ANTENNAS

\star MODE; Full half wave operation.
\star BANDS; Up to 4 spot frequencies.
\star POWER; Receive to 800W (PEP).
\star SWR; Better than 1.5:1 on channel.

THE SMC TRAPPED DIPOLE ANTENYA
 has been developed to satisty the needs of commerical and military users. It is capable of

 operation between 2 and 30 MHz on as many as four spot frequencies - each capable of accommodating many channels. Excellent matching and efficiency with a single coaxial teed is offered by the use of SMC HId traps and the incorporation of a ferrite balun in afull half wave design. NB Power absorbing terminating resistors are not employed. The full half wave design. NB Power absorbing terminating resistors are not employed. The
antenna may be deployed using one or two suppor masts, installation lincorporating SMC light duty portable masts) can be easlly effected by two people in half an hour.
HF SSB TRAISCEIVER

TM180 "PIONEER" HF SSB TRANSCEIVER. 1.B-18MHz, 6 channels 100 watts RF output
measuring only $95(\mathrm{H}) \times 240(\mathrm{~W})$ $\times 310(0) \mathrm{mm}$ and weighing 6 kg May be operated as a base or May be operated as a base o menting our trap dipole and HW4 mobile aerials. Prices start at $£ 700$, making this unit not only very attractive but highly
competitive.

SOUTH MIDLANDS COMMUNICATIONS LTD.

SM HOUSE
Telex: 477351 SMCOMM G
OSBORNE ROAD, TOTTON
SOUTHAMPTON SO4 4DN
WW - 050 FOR FURTHER DETAILS

IDEALLY SUITABLE FOR
COMPUTER SYSTEMS APPLICATIONS
(60 MHz Bandwidth
$\square 5 \mathrm{mV}-20 \mathrm{~V}$ Sensitivity at 60 MHz
1 mV Sensitivity at 30 MHz
Timebase Range $5 \mathrm{~ns}-2,5 \mathrm{~s} / \mathrm{cm}$
Reliable Triggering to 80 MHz
Normal and Peak Value Triggering
Alternate Triggering
Variable Sweep Delay
14kV Rectangular CRT
Y-Output
$1 \mathrm{kHz} / 1 \mathrm{MHz}$ Calibrator
Built In Component Tester
2 Years Warranty

Prices U.K. list ex. VAT

For free data sheets of the full range contact:

Teleph Telex:	$\begin{aligned} & 103 \\ & 103 \\ & 98 \end{aligned}$	76) 271 76) 4249 911		our Ans	phon	rvice)					Lane tree. $\times \mathrm{CM}$			Byy with Accens
		$\begin{aligned} & \text { POWER TR } \\ & \text { 1y other typ } \end{aligned}$	$\begin{aligned} & \text { ANSISTS } \\ & \hline \text { is avail } \end{aligned}$			National	$\begin{gathered} \text { NEW } \\ \text { Varian, } \end{gathered}$	LVES ullard, RCA		VIDIC				$\begin{aligned} & \text { vave } \\ & \text { NONS } \end{aligned}$
2N2857	${ }^{2} 06$	SD 1006	200	2 2SC3020	12.22 1205 1	AH221 AH238	$\begin{aligned} & 35.00 \\ & 3500 \end{aligned}$	$\begin{aligned} & 6 \mathrm{CL6} \\ & 6 \mathrm{CW4} \end{aligned}$	3.40 6.85		2335 21.35			
2 N 3137	270	SD 1012 FL	830 825	MRF 221 MRF 224	$\begin{array}{r}1205 \\ 12.50 \\ \hline\end{array}$	AH238	$\begin{aligned} & 35.00 \\ & 13.50 \end{aligned}$	${ }^{6}$ CW4 4 60K6	6.85 1.00	$20 \text { PE } 14$	21.35 24.33	${ }_{2}^{2 M 53}$	4000 4750	all magnetrons NEW and from
2N3375	920 200	SD 1013	8.25 25.00	MRF 231	12.36	E88CC	2.20	6005	550	20 PE 19	24.33	$2 \mathrm{M107A}$	4000	manulacturers such
2N3733	1320	SD 1089	2850	MRF 233	1000	E180F	9.50	6006 B	400	${ }_{4848}^{20} 40$	2753 2500	2 M 131	103.50	as
2N3866	100	SD 1098	3610	MRF 234	6.50 1260	ECC81	1.50	6EAB	2.40 2.46	${ }_{72624}^{484}$	25.00 25.26	2M 170 2 M 172 H	40.00 4500	LITTON
2N3926	11.26 1182	SD 1127 SD 1135	260 842	MRF ${ }^{\text {MRF }} 2388$	12.60 16.00	ECC83	1.70	${ }_{6} 644$	420	7735A	2526	2 M 172 J	4000	matsushita
2N4416	075	SD 1136	1180	MRF 240	18.55	ECC88	1.60	${ }^{655}$	180	8541	32.69 2300	2 M 182	10350	TOSHIBA
2N4427	100 850	SD 1143	10.41 12.50	MRF 243	28.08 30.10	ECCO1	800 2.75	${ }_{\text {6JSES }}$	300 500	${ }_{9677 \mathrm{M}}$	2300 31.00	2M196	113.00	
2N4440 2N5016	850 872	SD 1229 FL	${ }_{8.80}^{12.50}$	MRF 247	30.10	EF86	160	6K6GT	2.75			ny	types	
2N5090	1680	SD 1272	11.20	MRF 260	5.00	${ }_{\text {ELL34 }}^{\text {EL }}$	400 150	6 KLO $6 \mathrm{LO6}$	500 6.00	Vidicon	lable	aval	for	approved deaiers 8
2N5109 2N5160	130 380	SD 1272FL	1120 1275	MRF 262	11.00	ELL80	20.00	6SN7GTE	275	Newvico				service agents
2N5179	086	SD 1407	25.00	MRF 264	1100	KT77 PL509	7.50 5.50	${ }_{5728}^{12877}$	2.00 30.00					
2N5485	082	SO 1410	21.06	MRF ${ }^{\text {M }}$ 314 401	25.00 1184 18	Qovo 3-10	500	575A	4000					
2N5486 2N5589	088 570	SD 1412 SD 1415	31000 33.00	MRF 406	12.83	QQVO3-20A	50.00	5760	350					
2N5590	8.57	SD 1418	30.00	MRF 421	3157	Qovo6-40A	45.00 580	5726 5763	2.40 4.90			OTHER PR	Ducts	
2N5591 2N5635	8.90 620	SD 1428 SO 1429	26.00 1598	MRF 433	16.21 14.00 1	20217	285	5814 A	325		iodes			Transistors
2N5636	1250	SD 1434	30.00	MRF 450	1500	3.4002 $3.500 z$	8200	5842	$\begin{array}{r}11.20 \\ \hline\end{array}$					
2N5637 2N564,	1425 735	SO 1444 SO 1451	3.60 19.50	MRF 450A	1140 1700	${ }_{\substack{3 \\ 3.5002 \\ 3}}$	82800 2800	6012	12.00	High Voltag	vacuur			licon Controlled Rec
2N5642	9.90	SD 1488	29.00	MRF 454	1880	${ }^{3828} 4 \times 2508$	1495	$602{ }^{6}$	$\begin{array}{r}3.40 \\ 1000 \\ \hline\end{array}$					
2 N 5643	1300 250	2SC 730	450	MRF 455	1600	$4 C \times 2508$ 4 CV 350 F	7345	61598	16.00			display	vices	
${ }_{2} \mathbf{2 N 5 9 4 4}$	${ }_{8}^{2} 20$	${ }_{2 S C 1177}$	688 1814	MRF 460	18.78	5 U 498	320	6201	6.00					
2N5945	8.95 1563	2SC1306	144	MRF 464	3500	${ }_{6 \text { 6AK6 }} 6$	400 1.00	6360 6550 A	5.00		gas	ven seg	nd	ric readout tur
2N5946 2N6080	15.63 600	2SC 1307 2SC 1678	234 1.94	MRF 472 MRF 475	3.50 2.50	6AK5 6AK6	2.00	6588	8.00 1200			Burrough	uivalen	
2N6081	875	2SC1945	445	MRF 476	2.20	6ANBA	3.20	${ }^{6973}$	3.00					
${ }^{2} \mathbf{2 N 6 0 8 2}$	9.00 1200	2SC1946A	1854	MRF 477	18.70	6A05A	2.15	7558 7586	9.5		um fluo	en seg	no al	(caisplay
${ }^{2} \mathbf{2 N 6 0 8 4}$	13.20	${ }_{2 S C} 1970$	2.50	MRF 604	330	6AS7G	7.00	75914	3.80			ivpe of did	lay lechr	weicome
2N6094 2N6095	800 890	2SC1971 2SC1978	1032 8.00	MRF 607 MRF 629	3.20 4.50	${ }_{\text {6ASGT }}$	1.35 450	7868 7905	$\begin{array}{r}540 \\ 19.50 \\ \hline\end{array}$					
2N6096	2020	2SC2166	170	MRF 646	2624	6AU6A	230	7984	19.50					
2N6097	+330	2 SC 2237	1500	MRF 648 MRF 091	38.14	6AN8A	2.50	807	200	Norma	stock 11	peed by	n pos	
SD 1005	720	2SC2538	82	MRF 091	3.00	6BABA	3.40	$8_{811} \mathrm{~A}$	12.50			al Ord	or Chea	h ord
ALSO AVAILABLE: A replacement guide to dozens of Motorola Transistor part numbers.						68Н6	190	813	50.55					
							1.80 2.80	$\begin{aligned} & 833 \mathrm{~A} \\ & 8417 \end{aligned}$	100.00 5	CRED		availa	subjec	proved reterenc
						${ }_{6}^{6886}$	2.30	866A	15.00			£ 1.00 to ord		
Stocks of original RF Devices from such manufacturers as: MOTOROLA. RCA, GE, TRW, MSC, ACRIAN TOSHIBA, FUJITSU, NEC, MITSUBUSHI, PHILLIPS, AMPEREX and others						6CD6GA	4.65	872A	19.50	postage				
						POWER TUBE ACCESSORIES						areexcluding V		
						CONNECTORS		finger stock SOCKETS		guarantee		ins tor any types not listed SA.E		

FREOUENCY COUNTERS
 HIGH PERFORMANCE HIGH RELIABILITY LOW COST

The brand new Meteor series of 8-digit Frequency Counters offer the lowest cost professional performance available anywhere

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz} \quad \star$ Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star$ Battery or Mains
* Setability $0.5 \mathrm{ppm} \quad \star$ Factory Calibrated
* High Accuracy
* 1-Year Guarantee
* 3 Gate Times
* $0.5^{\prime \prime}$ easy to read L.E.D. Display

PRICES (Inc. adaptor/charger, P\&P and VAT)

METEOR 100	$(100 \mathrm{MHz})$	$£ 104.36$	Illustrated colour brochure
METEOR 600	$(600 \mathrm{MHz})$	$£ 134.26$	with technical specification

METEOR 1000
$(1 \mathrm{GHz}) \quad £ 184.36$ and prices available on request

RZM $\begin{aligned} & \text { Dosigned and } \\ & \text { manufactured } \\ & \text { in Brithin }\end{aligned}$
Black韦Star
BLACK STAR LTD, 9A Crown Street, St.Ives, Huntingdon, Cambs, PE17 4EB, England. Tel: (0480) 62440 Telex: 32339
WW - 043 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full information from

HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1 Phone: 01-837 7937
Telex: 892301

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast
RADFORD AUDIO LTD.

10 BEACH ROAD

WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033
WW - 049 FOR FURTHER DETAILS

WW - 052 FOR FURTHER DETAILS

-reprints

If you are interested in a particular article/ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Michael Rogers, Electrical-Electronic Press. Phone 01 6613457 or simply complete and return the form below.

To Michael Rogers, Reprints Department: Quadrant House, The Quadrant Sutton, Surrey SM2 5AS
I am interested incopies of the article / advertisement headedfeatured in

WIRELESS WORLD

on page(s)in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel. No

THRULINE ${ }^{\circledR}$ Directional Wattmeters TERMALINE ${ }^{\circledR}{ }_{\text {RF }}$ Coaxial Load Resistors TENULINE ${ }^{\circledR}$ Attenuators and accessories from stock

Aspen Electronics Limited

The exclusive UK representative for Bird Electronic
2/3 Kildare Close, Eastcote, Ruislip Middlesex HA4 9UR
Tel: 01-868 1188 Tlx: 8812727

WW - 060 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS. Lamp housings and lens systems manufactured as :tandard off the shelf models or to specific design
K. T. Manners Design Ltd.
P.O. Box 936, London, W4 4NW Telephome: 01-994 7155. Telex: 28604

Appointments

Advertisements accepted up to 12 noon Tuesday, February 7, for March issue subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm).
LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable).
BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, clo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

FOR TOP ELECTRONIC APPOINTMENTS

$\mathbf{£ 7 , 0 0 0 - £ 2 2 , 0 0 0}$

\star Where does your interest lie: Graphics; Comms; Robotics; Simulation; Image and Signal Processing; Medical Automation; Avionics; Acoustics; Weapons; Radar; Opto and Laser?
\star Experienced in: Microprocessor Hardware or Software; Digital and Analogue circuitry; RF and Microwave techniques?

* There are hundreds of opportunities in: Design; Test; Sales and Service for Engineers and Managers
* For free professional guidance: Dial 100 and ask for FREEPHONE JOBLINE or send your C.V. (no stamp needed) to:

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LIMITED

Electronic Engineers What you want, where you wan!!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells, Kent. TN4 8 AS.
Tel: 089239388
(24 Hour Answering Service)

LEADING LONDON RECORDING STUDIO

requires

Young Person

with good basic knowledge of physics and electronics to train as chief maintenance engineer
The successful applicant will be trained to work with the latest audio equipment including solid state logic, Studer, etc

Apply in writing to Box No. 2402

UNIVERSITY OF SURREY

ELECTRONIC/ELECTRICAL

 ENGINEERING OPPORTUNITIESThe industrial Electronics Group in the Department of Electronic and Electrical Engnneering at the University of
Surrey has vacancies tor Jechnicians IEngineerst who Surrey has vacancies tor techicians and
are keen to further their experience in a wide range of eiectronic fields and are qualified to ONC level or higher

The work will involve operating on a proiect basis, covering all phases of prototype equ
ture development and documentation

The Group at present consisis of a small team of Professional Engineers and Technicians who liaise clasely with
academic staff in problem solving for industry. Proiect acauemic staff in probelem solving for indistry. Projects
usually entail the development of novel instrumentation covering communication, non-destructive testing and signal processing fields with increasing emphasis on microprocessor based systems

The commencing salary will te within the range of 55.15
to $£ .332$ on Grade 3. 4 or 5 technician salary scale to $£ 7.332$ on Grade 3. 4 or 5 technician salary scale (according to age, qualifications and experiencel for
$361 / 2$ hour week). Excellent working conditions including the possibility of day-release study for higher qualifica tions.
For turther information or to arrage a visit contact the Statr Officer, University of Surraye a Guldford contact the
GU2 $5 \times \mathrm{H}$
 pleted application forms must be returned by 31 st Jan
uary 1984 pary 1984
un

Career Opportunities in the High Technology Broadcast Industry

Abstract

Located in Hampshire, Sony Broadcast is an internationally renowned world leader in the professional broadcast television industry. Our extensive product range includes cameras, VTR's/VCR's, sophisticated editing control systems and now the exciting new range of Betacam equipment. Applications are now invited from experienced engineers who feel they have the potential to develop with the Company.

Field Service Engineer

The successful candidate will be engaged in the service, repair and commissioning of our extensive range of equipment. This will involve travel throughout our marketing territory of Europe, the Middle East and Africa. Full product training will be given where necessary Applicants should have several years experience gained in the broadcast television industry, either in operations or allied manufacturing industries, and up-to-cate knowledge of VTR's and cameras is essential

Senior Project Engineer-Systems

To co-ordinate a small team responsible for the manufacture and commissioning of complex static and mobile television systems including dubbing and editing systems, full production studios and EFP packages. This is a challenging and responsible position and candidates should have direct experience of sound and television principles. A background in project management together with the ability to plan and meet deadlines is also required.

Engineer-Customer Acceptance

To join a department responsible for the evaluation of product performance. Key activities will include conducting customer acceptance tests, the provision of engineering support to our inspectorate and an involvement in the establishment and maintenance of ATE. There will be a significant involvement with
customers. Candidates aged 25 plus should possess HNC electronics or equivalent together with $5+$ years experience in a high technology electronics environment.

Lecturer

To corduct theoretical and practical courses on our range of equipment. The department boasts excellent lecturing facilities together with a technical publications department and library. Applicants, educated to at least honours degre level electronics, should be able to present ideas clearly and have the ability to assimilate state of the art broadcast technology. Previous lecturing experience would be an advantage, although training in teaching skills and on our product range will be given where appropriate.

Product Engineer

We are looking for a professional electronics engineer to join our Product Management team. The person appointed will provide technical support to the Marketing and Engineering divisions of Sony Broadcast. This position combines in-depth technical involvement with interdepartmental and customer liaison, and there will be an opportunity for overseas travel. Applicants should be honours graduate electronics engineers, preferably experienced in the electronics industry. Full product training will be given where necessary.

If you like the thought of enjoying the success of world leadership together with a highly attractive salary and benefits package, write with details of career to date and present salary to David Parry, Personnel Department, Sony Broadcast Ltd, City Wall Hol'se, Basing View, Basingstcke, Hants RG212LA. Telephone (0256) 55011

Sony Broadcast Ltd.
City Wall House Basing View, Basingstoke Hampshire RG21 2LA United Kingdom

Appointments

SYSTEM PROJECT ENGINEERS

The Ampex Broadcast Systems Group based in Reading, Berkshire, supplies complete television studio and mobile systems to broadcast installations worldwide.
Owing to expansion of the group's activities, we are now looking for Systems Project Engineers to join our innovative project teams involved in the design installation and commissioning of television studio and outside broadcast vehicle projects.
These appointments involve occasional overseas travel for on-site commissioning.
Key requirements are:

* Thorough knowledge of video and audio principles - HNC/Degree in Electronics preferred.
* Experience in broadcast tèlevision industry.
* Previous knowledge of TV systems an advantage.

Attractive salaries and benefits, which include pension, life assurance, permanent health scheme, Bupacare option, product training, overseas allowances and relocation expenses where appropriate.

Please contact Maureen Brake for an application form:

AMPEX

ampex great britain limited
ACRE ROAD
READING RG2 OOR
TEL. READING (0734) 875200

VIDEO ENGINEERS

Rediffusion Consumer Manufacturing Ltd is seeking an intermediate and a senior video engineer with OND, HND or similar qualifications, together with a knowledge of modern consumer electronics circuitry techniques, to join a small team looking after Rediffusion's mammoth investment in domestic video recorders and video disc players.
In addition to analysis of performance and long term reliability factors, assessment reporting is an important part of the team's function and the ability to express oneself verbally and in writing is essential. Our laboratories are situated at Chessington within easy commuting distance of the surrey countryside. Attractive salaries and the usual big company benefits, which include assistance with relocation expenses, are offered to suitably qualified and experienced engineers. If you believe you can make a significant contribution to our video projects please write to or phone:-

Harry Brearley,

Rediffusion Consumer Manufacturing Ltd., Fullers Way South,
Chessington, Surrey. KTY 1HJ.
Telephone: 01-397-5411.

CUSTOMER SERVICE TECHNICIAN
$\mathbf{f 6 , 0 0 0 - £ 8 , 5 0 0}$
Uue to continuing expansion, a vacancy exists for a first-class technician in our busy Service Department.
The successful applicant will be engaged primarily in the repair and calibration of our mand to undertake site visits in support of our systems activities.
visits in support of our systems activities. he or she will have practical expe and embedded microprocessor circuitry. Some understanding of high level programming and IEEE 488 BUS is desirable.
programming and IEEE 488 BUS is desirable. application form to:

David Marsh, Customer Service Manager
DATRON INSTRUMENTS LIMITED
Hurricane Way, Norwich Airport
Norwich NR6 6JB

Telecommunications

Marathon's Aberdeen office is the nerve centre of a private wire system linking the Aberdeen office with the Peterhead Shore Base and the Brae-A platform. We currently have two vacancies within the Telecommunications function for experienced individuals to become part of a small team. This group has overall responsibility for our communications networks, comprising data, telex, facsimile and all voice equipment.

Telecommunications Analyst-Onshore

Working at Marathon's Aberdeen office you will be responsible for the efficient day-today running of the network. You will be required to provide technical support to users and to produce clear and concise progress reports on system development and maintenance. There will be some opportunities to be involved in the specification of various systems.

Candidates will be qualified to HNC level with at least three years' experience of speech systems, data lines and international circuits; you should also have some relevant practical experience. Relocation assistance, as appropriate, is available for this position.

Telecommunications Technician-Offshore

Working offshore on a 2-week rotation you will be responsible for all telecommunication and radio equipment on the platform. As an experienced technician, your main functions will be to undertake repair work, preventive maintenance and faultfinding. You will form part of the offshore maintenance group and report directly to the Topsides Maintenance Supervisor.

A City \& Guilds or ONC qualification is required for this position and your three years' experience should include some time offshore.

For both positions, we are offering competitive salaries supported by an attractive range of benefits including noncontributory pension scheme, subsidised BUPA and generous offshore allowances where appropriate.

Please write or telephone for an application form to:

Ian M Drysdale, Employee Relations Representative, Marathon Oil U.K., Ltd., Marathon House, Rubislaw Hill, Anderson Drive, Aberdeen AB2 4AZ. Tel: (0224) 576133.

Appointments

Radio Systems Planning Engineers Middlesex

Over the past 35 years IAL has been involved in almost all areas of communication technology and has developed an expertise for which demand continues to expand worldwide. Consequently we now need additional Engineers to join the Telecommunications Engineering Department at our Headquarters near Heathrow.

These appointments represent excellent career moves for Engineers with varying levels of qualifications and experience and offer complete involvement in a planning and consultancy role on modern radio communications systems. These systems will be in the HF to SHF
bands and range from point to point links through mobile area coverage schemes to broadband microwave links.

A generous starting salary can be expected depending on position, qualifications and experience, plus an excellent benefits package which includes Pension and Life Insurance Scheme and relocation expenses where appropriate.

For further details phone the Technical Recruitment Officer, on 01-574 5134 or write to him at Recruitment Services Division, IAL, Aeradio House, Hayes Road, Southall, Middlesex, UB2 5NJ. Please quote Ref. K004.

IAI

THE HIGH TECHNOLOGY TASK FORCE COMMUNICATIONS SYSTEMS COMPUTER SYSTEMS AND SERVICES
 MEDICAL SERVICES
 AVIATION SYSTEMS AND SERVICES-WORLDWIDE

WANTED

School-leaver for busy West End electronic component factors
Qualifications minimum O level Maths, English, Physics/Electronics
Good salary for enthusiastic applicant Apply Box No. 2441

CAREER IN
 MUSIC ELECTRONICS

Music Electronics company specialising in the design of electronics for music indus try requires an engineer to join design team.
Duties will include design and test, knowledge of digital, analogue, C.A.D., micropro cessors.
Ability to work on own initiative. Knowledge of music and sound would be appreciated but not necessary. Ideal candidate will have HTC or HTD, HNC/HND degree or equivalent.
Sound knowledge of business administration will be expected. Excellent promotional prospects.
Salary negotiable. Position would suit ambitious graduate Applicants write with full C.V. to
music electronics co.
c/o Kynastons (Business Consultents)
Block D, Metropolitan Wharf
Wapping High Street, London, E. 1
Telephone: 01-265 0722 (24-hour phone) or 01-806 5127 (Evenings)

TECHNICAL AUTHORS

We have vacancies for experienced and trainee technical authors, to write handbooks on some of the latest technology electronics equipment.
Prospective trainees should have a sound knowledge of electronics and the ability to express themselves concisely in the written word
We offer varied and interesting work, pleasant working conditions an an attractive salary

Applications to:
The Manager Engineering \& Technica Publications Ltd 12 Shute End Wokingham, Berks

Telephone Wokingham (0734) 790123

Appointments

Trainee Broadcast Engineers

We are responsible for broadcasting the programmes of Independent Television, Channel Four and Independent Local Radio. The continued growth of our broadcasting services means we have a number of vacancies for Trainee Broadcast Engineers who, on completion of their training, will work in a challenging and secure environment.
The selected candidates will embark on our 18 -month residential training course which commences in June 1984. It will be conducted at our Training College, in Devon, and also at the Newcastle Polytechnic. The course is designed to give you a training in Broadcast Transmission Engineering that is second to none. It demands a high standard of understanding and personal commitment from those selected to undertake it. During the course we will pay you a salary and in addition, all your fees, accommodation and meals.
Applications are invited from men and women who hold an HND/HNC/HTEC in Electrical or Electronic Engineering or the City and Guilds Telecommunication Technicians Full Technological Certificate with some appropriate experience; or who are qualified or about to qualify to First Degree level in Electrical/Electronic Engineering or related disciplines.
Your salary while training will be $£ 6,652$ per annum. On the satisfactory completion of training, your salary will be $£ 8,421$ and will rise by annual increments to $£ 10,461$ per annum; further progression to $£ 12,966$ per annum is possible.
Employment benefits include a free life assurance and personal accident scheme, a contributory pension scheme, generous relocation expenses and subsidised mortgage facilities.

INDEPENDENT BROADCASTING AUTHORITY
An Equal Opportunities Employer

For a fully illustrated booklet and application form, please write to Mike Wright, Personnel Officer - Engineering Regions, IBA, Crawley Court, Winchester, Hants. S021 2QA. Or telephone the Personnel Office between 9 am and 4 pm Monday to Friday on Winchester 822574 or 822273.

LOGEX ELECTRONICS RECRUITMENT

Specialists in Field \& Customer Engineering appoint ments, all locations and disciplines.

Logox House, Burleigh, Stroud Gloucestarshire GL5 2PW 0453883264 8 01 -290 0267 (24 hours)

> CHELSEA COLLEGE University of London
> ELECTRONICS WORKSHOP TECHNICIANS

required for interesting work for Electronics and Physics research and teaching. Includes prototype instrument design, development and construction and the servicing and construction and the servicing electronic equipment.

Experience and qualifications in Electronics (particularly digital) at an appropriate level are essential. Inclusive salaries

Grade 6 - £8,452 to £9,852 p.a. Grade 5 - £7,529 to £8,582 p.a
Further details and application forms from:
Mr M. E. Cane, Chelsea College Department of Electronics Pulton Place, London SW6 5PR.
(2433)

LOOKING FOR NEW HORIZONS?

Your experience and qualifications could take you to one of the more pleasant Middle East countries where vacancies currently exist for:

Fully frained

ELECTRONIC TECHNICIANS

With a minimum of five years experience in servicing maintenance and repair, including defect diagnosis, of various types of military ground based electronic equipment. These unaccompanied posts include free accommodation, medical care and free air travel to the UK for frequent leave periods.

Attractive salary with bonus and allowances normally free of UK Tax. For further information write to: Company Personnel Manager, Airwork Limited, Bournemouth - Hurn Airport, Christchurch, Dorset BH23 6EB.

Airwork
Limited

Brighton Polytechnic
Learning Resources
require an
ELECTRONIC ENGINEER
($£ 7,191$ - 58,712) to maintain an unusually wide range of colour television and audio-visual equipment, including video recorders, monitors and cameras, to develop now maintenance
procedures for implementation by Learning Reprocedures for implementation by Learning Re-
sources staft, and to improve existing video and sources staff,
AV facilities.
Application forms and further dettils avaitable
from the Porronnal Otfice nic, Mithras House, Mouisocoomb, Brighton
 Closing date: February 18 th. 1984

BOX NOs.

Box number replies should be addressed to:
Box No
c/o Wireless World, Quadrant House The Quadrant, Sutton, Surrey SM2 5AS

Graduate

 Electrical/Electronic/ Telecommunications Engineers-Research and Development to support Emergency Services
The Directorate of Telecommunications, London, is
responsible for the excensive facilities used by the police, fire, prison and associated services in England and Wales Graduate Engineers ensure that the Emergency Services derive maximum benefit from the use of modern technology in areas such as communications.
The training and experience given to Graduate Engineers ranging from the initial interpretation of a non-technica statement of requirement through to the design, develop ment and contract definition - is carefully planned by a senior engineer and covers the training requirements of the IEE for corporate membership.
You must have a good honours degree (preferably at least upper 2nd class) in electronics, telecommunications, or electrical engineering or an allied subject approved by the IEE.
Your starting salary will be $£ 7900$ or $£ 8190$ depending on experience. Completion of training (usually one or two years) leads to a salary scale rising to $£ 10,930$. Salaries include E1250 Inner London Weighting. Promotion prospects.
For further details and an application form (to be returned by 3 February 1984) write to Civil Service Commission, Alencon Link, Basingstoke. Hants, RG21 11B, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours) Please quote ref: T/6139.

> Home Office

ELECTRONICS APPOINTMENTS IG6,000-£16,000 DIGITAL, MICROPROCESSOR, COMPUTER DATA COMMS, MEDICAL Design. Test. Sales and Field Service Engineers - ary and car free. confidential service and improve your sal andects. UK and overseas. contact:

Suffolk County Council LOWESTOFT COLLEGE OF FURTHER EDUCATION DEPARTMENT OF MARITIME STUDIES
 Required as soon as possible
 LECTURER GRADE 1
 To teach
 ELECTRONICS, TELECOMMUNICATIONS AND
 NAVIGATIONAL AIDS
 Up to TEC LEVEL V standard

Candidates should hold appropriate academic qualifications and have recent industrial experience in one of the above subject areas

Salary: Burnham Teachers in FE Establishments Lecturer Grade 1 £5,649-£9,735
Further particulars and application form may be obtained from The Principal, Lowestoft College of Further Education, St Peter's Street, Lowestoft, Suffolk NR32 2NB (sae please)
Closing date 14 days from advertisement.

TEST EQUIPMENT DESIGN ENGINEERS

Rediffusion Consumer Manufacturing design and manufacture a full range of advanced specification colour television recelvers and monitors.

We are looking for experienced Electronic Design Engineers to help us maintain our industry lead in sophisticated computer controlled test gear for production testing of our products. Future test equipment will be an interesting mix of digital and analogue circuitry aimed at increasing the automation of the production testing operation.

If you are able to conceive, design and implement production test equipment with minimal supervision, we'd like to hear from you.

These positions are based in our Chessington Engineering Centre but some visits to our factorles in the North East and Lancashire will be required at infrequent intervals. Salaries are obviously dependent on quallfications and experience, but will reflect the importance of future test gear projects to the Company's long term development.

Interested ?... Then write or phone:
Harry Brearley,
Rediffusion Consumer Manufacturing Ltd., Fullers Way South, Chessington, Surrey. KT9 1 HJ . Telephone: 01-397-5411.

REDIFFUSION

University of Wales

> MSc/Diploma Course in Electronics M Eng Course in Systems Engineering (Automation, Robotics and Information Systems)

Applications are invited for places on the above full-time, one-year courses commencing in October 1984.

Further details and application forms (returnable as soon as possible) may be obtained from the Assistant Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.

A CAREER IN
 TECHNICAL AUTHORSHIP

Tutortext offer full training by correspon dence course in this field to personnel with technical backgrounds Send for free brochure to: TUTORTEX SERVICES 55 Lightburn Avenue, Ulverston Cumbria LA12 ODL. Tel: $0229 \underset{(2436}{5633}$

SMALL BATCH PCBs
produced from your artwork
Very competitive rates Speedy deliveries
BLACKBURN \& HARRISON
7 Rope Walk, Bridlington East Yorkshire YO15 20 Y Telephone: 0262601054
(2422)

Appointments

TVS, the voung and forward-looking ITV programme company serving the South and South-East, requires a

Project \& Installation Engineer

The position is based in the Southampton studios, but the successful applicant will be responsible for the design and development of electronic projects for all the Company's studio centres, and will be required to liaise with and. where necessary, advise the Project and Installation Department on all aspects of electronics.

Candidates should have a thorough knowledge of current electronic devices and circuit design, and ideally a background of digital techniques. Where possible, he/she should be able to write and amend computer software. A basic knowledge of television techniques and practice would he an advantage

ACTT terms and conditions apply
If you feel you have the qualifications to fill this demanding position, apply in writing with a detailed CV , and quoting reference $54 / \mathrm{S} / 83$. to:

The Personnel Manager

Television Centre Southampton SO9 5HZ
TVS is an equal opportunities employer.

the best view of the South

Teleco is a proven innovative company providing Measurement-While-Drilling (M.W.D.) services to major oil companies worldwide. As a result of highly successful technical advances coupled with increased international growth, we are experiencing a period of expansion. Presently we have vacancies for:-

ELECTRONICS TECHNICIANS

The successful candidates will possess practical
experience of digital and analogue systems as well as having formal qualifications such as ONC or equivalent C \& G qualifications in Electronic Engineering. Applicants should realise that this is shore based.
Included in the total package of company benefits are competitive salary, contributory pension scheme and good working conditions. Applicants should realise that relocation to the Aberdeen area is essential. Removal assistance will be provided.
Interested applicants should write enclosing a C.V
stating salary requirements for the attention of:-
Miss F. Skinner, Personnel Co-ordinator
TELECO OILFIELD SERVICES LTD.
Barclayhill Place, Portlethen, Aberdeen AB1 4PF

Agency enquiries are not requested.

LABORATORY ENGINEERS

BBC Engineering Research Department Kingswood Warren, Tadworth, Surrey

Research Department has vacancies for Laboratory Engineers in two separate areas of work.

1) Duties include work with mobile units which are concerned with investigations into aspects of UHF and VHF transmitter propagation and reception, and with the developnrent of new broadcasting services. Although based at Kingswood Warren, Laboratory Engineers must be prepared to travel and work for periods anywhere in the U.K., this includes some week-end working. Candidates must be able to drive.
2) Duties include the construction and testing of experimenta equipment and some design and investigation work concerned with one or more of the following areas of research: video, sound and data origination, processing, recording, distribution, transmitting and receiving equipment using analogue and digital techniques. The work may also involve the use of microprocessors and the manipulation of associated soltware
Please indicate any preference for either of the two areas of work. Applicants should possess a degree in Electrical Engineering. Electronics or Physics; HNC/HND (Electrical); Higher TE C. or City and Guilds Full Technological Certificate in Teleconms, and have a good knowledge of electronic technology. An interest in broadcasting engineering and computer techniques is desirable
Starting salary according to experience in the range of $£ 7,904$ $£ 8,522$ rising to $£ 11,167$ per annum. The appointments carry with them the usual benefits - Pension scheme etc., associated with a large employer.
Write for application form to: Research Executive, BBC Research Department, Kingswood Warren, Tadworth, Surrey KT20 6NP, or telephone Mogador 832361 (STD Code 0737).

We are an equal opportunities employer

OXLEY ${ }^{\circ}$ D

ELECTRONIC/RADIO ENGINEER

Oxley Developments Company are Manufacturers and Consultants in the field of passive electronic components and supply the control systems, instrumentation and communications industries throughout the world.
We are currently seeking an Electronic/radio Engineer with a natural enthusiasm backed up by extensive experience of radio and electronic design and development Whilst a high standard of academic achievement is a prime requirement, consider able importance is also attached to the practical application of knowledge.
Oxley Developments Company is privately owned and has enjoyed steady and consistent international growth built upon an extensive range of unique products date will have unrivalled opportunities to expand work horizons and to pursue profes sional advancements both at home and abroad.
The factory and research facilities are located on the edge of the Lake District National Park.
In the first instance, please request an application form from

The Personnel Director
Oxley Developments Company Limited
Priory Park
Ulverston
Cumbria LA12 90G
Telephone: (0229) 52621

ARTICLES FOR SALE

ENCAPSULATING EQUIPMENT FOR coils,
transformers, components, degassing silicone transformers, components, degassing silicone
rubber, resin, epoxy. Lost wax casting for brass, rubber, resin, epoxy. Lost wax casting for brass,
bronze, silver, etc. Impregnating coils, transforbronze, silver, etc. Impregnaung coins, transfor-
mers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning merallising. Research \& Development. Barratts, Mayo Road, Croydon CR0 2QP. 01-684 9917. (9678)

SERVICE SHEETS. C. T.V. s/Music C £3 others $£ 2$ plus l.s.a.e. Repair data including all eltcuits - any named TV or video 29.50 . L s.a.e. for quotation, free sop mag and service sheet. et
W'orld's largest service repair manual stockists. [TISW'W'| 76 Church St., Larkhall, Lanarkshire ML9 1HE. (For fast quotes phone 0698883334

TV-am has the following vacancies for engineers up to the grade of senior engineer.

VTR ENGINEERS

To perform all operational duties including time code editing with 1" C format and BVU machines.

MAINTENANCE AND DEVELOPMENT ENGINEERS

Responsible for maintenance and installation of VTRequipment, computer editors, vision mixers, ENG equipment, radio links, audio desks and electronic graphic devices.

MASTER CONTROL ENGINEERS

To carry outtechnical assessment of broadcast material, the ordering and testing of sound and vision circuits, arranging satellite facilities and radio links.

If you have recent broadcast experience in one of the above fields and are interested in further information, please phone Chris Collingham or lan Stuart on01-2674300, ext. 205/6.

ANYONE BRIGHT OUT THERE?

QUAD - innovators in the field of audio - have a vacancy for an additional design engineer to join a small group in their laboratories in Huntingdon, Cambridgeshire.

A sound basic knowledge of electronics and/or electro-acoustics is essential together with the drive, energy and experience needed to make a significant contribution to the future development of high quality audio.

If you would like to know more then please write or telephone -
M.P. Albinson,

Quad Electroacoustics Ltd.,
HUNTINGDON, Cambs., PE18 7DB.
Tel. (0480) 52561
QUAD
for the closest approach
to theoriginal sound

Brighton Polytechnic soovirieverannco isoluares
 VIDEO PRODUCTION ENGINEER

Required to work in smatl professional tearn making video and audio production for training mature technicians in industry. Southtek is an MSC-funded distance-learning materials in many arees of new technology, from appreciation and basic skills up to advanced applications of microprocessors and analogue electronics.
We need an engineer who can achieve high technical standards in ope ating and maintaining) a wide
variety of equipment: on studio or location video recordings, VT editing (to C-Format); telecine. VT copying and zudio recording and mixing.
In the first instance, the contract wil run to the end of December 1985, but
may be extendable thereafter. Secondments will be considered.

Salary: $£ 9,060$ to $£ 10,539$.

For application forms and further details contact the Personnel Officer Brighton Polytechnic, Mithras House Telephone: Brighton 693655 (ext. 2535).
(2440)

TRAINEE

 RADIO OFFICERSFirst-class, secure career opportunities
A number of vacancies will be available in 1984 for suitably qualified candidates to be appointed as Trainee Radio Officers.
If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post.
Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly. On successful completion of 35 weeks' specialist training, promotion will occur to the Radio Officer grade. Registered disabled people may be considered.

SALARY AND PROSPECTS:

Trainee Radio Officer: $£ 4,579$ at 19 to $£ 5,481$ at 25 and over. On promotion to Radio Officer: $£ 6,270$ at 19 to £8,182 at 25 and over. Then by 4 annual increments to $£ 11,182$ inclusive of shift working and Saturday and Sunday elements.

For full details please contact our Recruitment Office on Cheltenham (0242) 32912/3 or write to:

Recruitment Office, Government Communications Headquarters, Oakley, Priors Road, Cheltenham, Gloucestershire, GL52 5AJ.

B\&TELECTRONICS

13 TANNERS HILL DEPTFORD, LONDON, S.E.B TEL: 01-692 1441 1,000s ELECTRONIC. ELECTRICAL MECHANICAL ITEMS
Xenon Tubes. Type XBLU 50/00 Eclatron $\mathcal{q} .50$ each P\&P 60p. Quantity discounts. P.O.A Xenon Flashers. Complete panel with dual flash rate, $12-18$ volts DC, inc. Tube, Base, Fuse
Holder, 10 metres connecting wire. Full instrucHolder, 10 metres connecting wire. Full instruc-
tions. 3 months' guarantee Complete package only $\mathrm{f} 10+\mathbf{f} 1.80$ P\&P. Discounts. P. 0 A. Enamelled Copper Wire. 090, 080, . 180 MM $\mathrm{e5}$ per 1kg Reet + f1.8C P\&P.
AvO 8 Movements. Mk 3 plus spares, plus damaged Meters P.O.A. Will sell as one lot. $€ 400$.
Measured Pressure Transducers $\mathbf{f 2 5}$ each. S.A.E LISTS.

Meters Mcoil, dc plastic, as used in Japanese and 10 units, app size 5.5 mmx 4 mm . We have Power W. V.U. Signal, or Battery level. 100 or
200 micro amp fsd. $£ 1.50$ each. P\&P 60 p .

BRIDGES, waveform/transistor analysers. CaliBRIDGES, waveform/ransistor analysers. Cal
brators, Siandards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Signal generators - sweep, low distortion, true RMS, audio, FM, deviation. Tel 040376236.
VALVES, PROJECTOR Lamps, 6000 types, lisi 75p, world wide export. Cox Radio (Sussex) Lid., The Parade, East Wittering, Sussex. Phone (024
366) 2023 . 366) 2023.

WIRELESS WORLD FEBRUARY 1984

Classified

ARTICLES FOR SALE

Vibration Analyser f69. Haematocrit heads for centrifuge $£ 25$. Centrifuge $£ 49$, etc Marconi $10-300 \mathrm{MHz}$ generator f 29 , Battery operated portable distortion meter E 25 . Stabilized PSUs. High intensity optical fibre twin light supply $£ 35$. 30 KV EHT meter $£ 25$. Heavy dutv spot welder with one-side and two side welding heads, ideal low-cost rapid production prototype and runs of metal cases, fabrications, etc., £250. Plastic sealer packaging components, screws, et
£20. Single to three phase converte 2KW 240/115 transformer $£ 35$. Stainless steel locking grips £6. Small vacuum pump and motor $£ 29$. Compressor $£ 30$. RF thermocouples T2H/60JB f5 ea. Microtest microwave power meter £25. TIL Microwave milliwattmeter $£ 25$. Marconi TF 890 RF Test Set £35. 19100.9600 MHz). Rank Wow/Flutter Meter $£ 75$. Pve Megonmeter $£ 45$. Philips EHT Generator $£ 35$. 040376236

MICROWAVE TEST GEAR. Quantity available, mainly Marconi: Sanders, Digital am fm S Cen 6 Electronic Salos $1 d$, 40 Lydd, Kent. Tel: 067920252.

EX WD Radio equipment and test equipment. Over S00 sets in stock from 28. S1 Sop for illustrated catalogue (including $£ 1$ voucher). Herts. Tel: Watford (0923) 49456 . (1974)
waveguide, Flanges and Dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations,
$01-228$, 7876,22 Howie Street, London $S W 11$ 4AR.

VACUUM EQUIPMENT for encapsulation Degassing oll wions and resins. CR'T regunming clant, tis snd colour. Barrets, hayo Ruad. WIRELESS WORLD FEBRUARY 1984

ELECTRICAL AND ELECTRONILS ENGINEERS

AUSTIN ROVER

Aussin Rover have established a reputation for innovative electronics design with the Austin Maestro and future models will incorporate further advancements. Toensure that these are achieved the design and development function is being expanded to create exciting opportunities at several levels

Advanced Wiring Systems

£6,300-£9,000
Work involves the development of advanced data transmission systems for passenger vehicles. Experience of EMC, norse and suppression as applied to electronics systems design and an appreciation of multiplex wiring systems and fibre optics would he an advantage. Applicants should he Graduates in electronics and have electronic design experience.

JonathanLee
 Technical Recruitment,

(03843) 4436. (24 hrs) Knighton House,62 Hagley Road, Stourhridge, West Midlands DY8 I(D)

VIDEO LINE SELECTOR converts your chean scope into a video waveform monitor

PATTERN GENERATOR

ALSO 12 VOLT ADAPTIONS OF IKEGAMI $9^{\prime \prime}$ \& $12^{\prime \prime}$ MONITORS Contact Andrew Smith
INSIGHT VISION SYSTEMS LTD
Unit 1, Merebrook. Hanley Road, Malvern
Worcs WRI3 6NP. Tel (0684) 310001

> 536 10MHz X-Y + CA, L \& T units
> 502, 200, UV/CM dual beam, idea for audio.

Circuit Design Engineers

As a highly successful manufacturer of electronic components vital to modern industry, we are used to responding to rapid expansion. To meet the phenomenal growth potential of our quartz crystal unit at Harlow, we have created these opportunities, which are expected to be the first of several over the coming months. Career development for the successful applicants, whether along the managerial or technical path, has great potential.

SECTION LEADER. OSCILLATORS

Launch your management career with this responsible position, in which you would lead a team in the design and development of crystal oscillators and provide technical support to the production teams.
As a real, commercially biased, achiever you must be highly motivated and organised and have a minimum of five years' circuit design experience, including two as a project leader, in a closely related development environment. A degree or equivalent in Electrical Engineering. Electronics or a related subject is essential.

RF CIRCUIT DESIGN ENGINEER SAW SUBSYSTEMS

Advance the state of the art, design SAW subsystems including oscillators, discriminators and synthesizers in the frequency range $100-1.500 \mathrm{MHz}$.
You will need to have an Electronics or Physics degree and have gaıned at least two years' experience in RF design
We offer highly competitive salaries, pleasant working conditions and a range of benefits including membership of an excellent sports and social club. Harlow is a modern town, surrounded by traditional villages and market towns. Communications to London and all parts of the South East are excellent with the M11, M25 and fast rail services close at hand. Relocation assistance, where appropriate, is generous.
Please send a full c.v. or telephone for an application form, to Annette Evans, Personnel Manager, Quartz Crystal Unit, STC Components, Edinburgh Way, Harlow, Essex, CM20 2DD. Telephone: 027926811 ext 2526

STC COMPONENTS

Printed Circuit Boards to your specification from artwork through to finished board.
$\sqrt{5} 3080$

QUICK DELIVERY COMPETITIVE PRICES

GBGFTan onco

 ELECTBANIGS= LiMTTED 6 E. 035 Grosvenor Road.
Twickenham, Middlesex TEL 01. 891 1923/1513 Telex. 295093

CAPACITY AVAILABLE

TW ELECTRONICS LTD THE PCB ASSEMBLERS

More and more companies are investigating the advantages of using a professional subcontractor. Such an undertaking requires certain assurances. TW are able to satisty all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning.
Every batch of completed boards is is sued with a signed certificate of conformity and quality - our final assurance. For further details, contact us at our new works:

Bionhoim induatrial Perk Bury St. Edmunda
8uftolk iP33 3UT
Telephone: 02843931 (1466)
FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Compe titive hourly rates, and high standard of work. Halstead Designs Limited. Tel: Halstead (0787 477408.

BATCH PRODUCTION wiring and assemb? to sample ir drawings. McDeane Electricals I 19b Station Parade, Ealing Common, Laidon w5 Tel. $01-9928976$

PCB/ELECTRONIC ASSEMBLY

* Circuit Design \& Development - Prototyping
- Pre-production Consultancy
* Full Production Capability
* Component Sourcing \& Stocking \star Complete Test Facilities
STAGECRAFT (ELECTRONICS) LTD 3 Churchfield Road Acton Central, W3 6BH
Tel: 01-993 1852/3660 (2203)

Box number replies should be addressed to:
Box No.
c/a Wireless World Quadrant House The Quadrant Sutton, Surrey, SM2 5AS
(9956)

SURPLUS

We offer good prices for test equipment, components, redundant computers PCBs connectors immediate settle ment.

TIMEBASE
94 Alfriston Gardens
Sholling, Southampton SO2 8FU Telephone: (0703) 431323

PX25, PP5/400, PX4, PP3/250 VALVES, new or used, high prices offered. All other valves considered for purchase, small or large quantities Mangorsfield, Bristol BSil 3EN. Tel. 0272 565472 .

ANTIQUE RECEIVING VALVES
Unused and boxed In large quantity
Tsutom Yoshihara C1-105, Deguchi-cho 34 Suita-shi, Osaka 564 JAPAN

WIRELESS WORLD FEBRUARY 1984

MENDASCOPE LTD Repair and recalibrate oscilloscopes
All makes - all models SCOPEX. SAFGAN. OIder TEK \& TQ MENDASCOPE LTD Otter House, Weston Underwood
OIney MK46 5JS I: Bedford (0234) 7124

EPROMM
PROGRAMMING
From list andior existing. EPROM for most $5 v$
N.MOS types. Charge $f 2.50+12$ pence per 32
words manually entered. Erasing and EPROMS
also availiable.
Bandtey Chipware
28 Boroughgate
Appleby
Cumbria CA16 6AG
Tel: 0930 51027

> பilliaாாร
> P.C.B. Artworks FAST TURNROUND

> Cost effective specialist layo
and master artwork WILIAMS ARTWORK
> gray LANE, MORETON-IN-MARSH. GLOS
> Telephone 0386832152 - to 9 p.m.

DESIGN AND CONSULTANCY of microprocessor, digital and analogue equipment. Complete service from feasibility and design to prototype and commissioning, Advice on test and design of Electronics, 24 Timbermans View, Basildon, Essex. Tel O 2685558831 . (2295) TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES-HAR-
DING \& Co 103 South Brink, Wisbech, Cambs. DING \& Co, 103 South Brink, Wisbech, Cambs. 0945-4188. Imme jiate settlement. We also welcome the opportunity to quote for complete fac-
tory clearance. LESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small
batch production. - Adenmore Limited, 27 Longshot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023 .

Senior Development Engineer

Granada houses and manages one of a number of small research and development laboratories whose work is funded and directed jointly by all the Independent Television Companies. The function of these laboratories is to investigate new techniques, theories and equipment in relation to broadcasting in its widest sense.
A vacancy exists for a Senior Development Engineer to work in the Granada Manchester laboratory. The work requires a thorough knowledge of colour television fundamentals and applicants may be asked to work with any of the basic technologies encompassed within the general framework of broadcasting. This may include colorimetry, optics, magnetic recording, r.f. and microwaves, digital and analogue circuit design. Work is undertaken in a small, recently-fitted laboratory and applicants will be responsible for complete projects from specificatıon to final documentatıon.
This is a specialised appointment, providing freedom of expression for men or women of experience and ability. Commencing salary depending on experience, either $£ 11417$ or $£ 12974$. The usual large company benefits also apply including Relocation Assistance, Contributory Pension Scheme and free Life Assurance.
Written applications including a full cv together with details of relevant experience in any of the above-mentioned fields should be sent by 30th January 1984 to:

6
 Bob Connell, Ref: A4
 Granada Television Ltd., Quay Street,
 Manchester M60 9EA.

GRANADA TELEVISION

(2419)

SERVICES

DESIGN SERVICES. Eiectro.. design development and production service available for
digital and analogue instruments. RF Transmir digital and analogue instruments. RF Transmir
ters and receivers, telemetery and con:rol ters and recevers, telemetery and con rol
systems. 20 years' experience. R.C.S. Electronics Wolsey Road, Ashford. Middlesex. Phone Mr Falkner 53661
P.C.B.s \& PANEL LABELS to your requirements Design - Prototypes - Production G. N. SLEE CUSTOM PRODUCTS, 78 Derry Telephone: (0709) 895265

SMALL BATCH PCBs, produced from your art work. also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. De-
tails: Winston Promotions, 9 Hatton Place, London EC1N 8RU. Tel. 01-405 4127/0960.

A COMPLETE SERVICE

From design and pcb manufacture to assembly, wiring, testing and despatch to complete units. Suppliers to B. Quick service at competitive rates.
supplied at OEM prices if required.
Techtronic Design Lid, Unit 20, Low Mills, Low Mills Lane, Ravenstharpe, Dewsbury W. Yorks. Telephone: (0924) 499500
(3033)

PROTOTYPE

INSTRUMENT FASCIAS

Photo-dyed Matt Black on Silver, 19 swg- 1 mm
Anodised Aluminium, from your Positive Art Anodised Aluminium, from your Positive Art work Transparency, $£ 4.50$ plus $10 \mathrm{p} / \mathrm{sq}$ in inc
VAT P\&P. SAE for price list of other gauges colours, tooling. etc.
ESENCD - Signs, Labels, Mimics, Dials, etc Pappercorns W. Eaton Socon/St. Neots, Huntingdon, Cambs. PE19 3J

Telephone: (04*0) 74454 (2434)

PROFESSIONAL DESIGN SERVICE. Analogue/RS circuitsystem design. Specialising in microwave amplifier, oscillator and network design. MOTOROLA 6805;6809 series microprocessor design/development capability. All work carried out to a high standard by competent professional engineers. Trontech, Electronics Design Services, 81 Finchampstead Rd., Wokingham, Berkshire. Tel: 0734790103

PROGRAMMED LOGIC SERVICES personalise most programmable devices: EPROMs, BI PROMs, IFL, PAL*. Services include design, prototyping, production, testing, marking. Truth-table entry or masters copied at reasonable rates. PLS, Victoria House, London Road, Cheam, Surrey SM3 8HY. Phone: 01-644 8095
("MMI trademark). (MMI trademark).

ANALOG COMPUTERS LIMITED CAPACITY NOW AVAILABLE FOR:

Design \& Development, Complete Artwork Service, Camera Work, Prototype thru to Production PCB Manufacture/Assy.

5 Cork Street, Eccles, Maidstone, Kent, ME 20 7HG TELEPHONE $10622 \backslash 79987$ TELEX 965633

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy. Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-646 5686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST, MITCHAM

COMPUTER APPRECIATION

16 Walton Street, Oxford OX1 2HQ - Tel: Oxford (0865) 55163

RAIR Model 320 Black Box Microcomputer System with twin 51/4n. floppy disc drives, 128 KB memory 10MB 8in Winchester disc drive 8 -line terminal muttiplexor (inct. printer interface). Software include MP/M and CP/M is available for the 8085 based machine PDP $11 / 03$ SYSTEM comprising LSI $11 / 2$ processor with EIS/FIS, 64 KB memory, PERTEC Model 300020 MB front-loading disc drive (fully RK-05 compatible), DILOG Model OQ100 disc drive controller, DLV11, LPV11, LEAR Siegler Model 200180 cos bidirectional matrix printer (with serial and parallel interfaces) HAZELTINE Model 1552 VDU ($24 \times 80, V T-52$ compatible). With RT- 11 operating system and 6 cartridges
ERTEC Model PCC 2000 SYSTEMS We have a quantiv of brand-new surolus machines available. The asic machine features 8085 processor P100 bus, detached keyboard with numeric and function pads, CENTRONICS interface, daiswwhel printer interiace (suitable NEC, QUME, OIABLO). CP/M available from us
PERTEC Model 3000 10MB hard dise for above with single card controller CENTRONICS MODel 702 matrix printer for above 120 cos , bidirectional, microprocessor controlled and of high quality. BRAND NEW above. 55eps text printer featuring bidict.................................. TEXAS INSTRUMENTS Model 771 Microcomputer System with green 24×80 display, keyboard and integral Silent 700 type thermal printer and Model FD800 dual Bin. floppy disc drives. Based on TMS9900 16-bit processor and with 64KB memory. With operating system

MANNESMAN/TALLY Model M80MC matrix printer. With microprocessor control, 200cps bidirectiona printing with U / L case, self test, all electronics on single card (30 ics), heaw-duty mec 7 anism for serious commercial use. Original cost in excess of $£ 1,200$. BRAND NEW ransformer is available at c . $£ 15$ from Samsons)
ANNESMAN Model M78 mitix printer Similar to above but earlier version. 240v operation COMMODORE Model 8027 daisywheel printer for PET. I
-
OIGITAL EDUIPMENT Mod PTS 100 SYSTEM PDP11 processor with $64 K B$ memory and twin 8in. floop disc drives and two RS232 interfaces in compact deskiop case, BRANO NEW IGITAL EQUIPMENT Model BAIIMF 8-slot backplane for Q-bus PDP1I with switch panel. Complet with LSII1/1 processor, BRAND NEW
FACIT Model 4020 high-speed tape reader. With parallel mterface
RANSTEC Model 1200 12in. green screen monitor, BRANO NEW
HITACHI 12in. metal-cased monitor, BRAND NEW
TEKTRONIX Model 4601 hard copy unit for 400 Series graphics terminals
GOUL BAYANS Model $50000^{\text {"CDMPUGRAPH" A3 ploter with intelligent RS232 interface Current }}$ E285 GOULD-BRYA
EKTRON X Model 611 graphics display (with a 1 mm wide burn at extreme bottom of screen).......... $\mathbf{E} \mathbf{Z 5 0}$
\star All prices are exclusive of V.A.T. and carriage Visitors by telephone appointment, please

Wrelesiswowhd
 INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 94-105

	PAGE	PAGE	PAGE
Aero Electronics (AEL) Ltd	10,80	Global Specialities Corp................... 17	Pantcchnic 88
Ambit International. 8	Gould Instruments 11	P.M. Components Ltd 82, 83
Antex Electronics	Cover III	G.P. Industrial Cover II \& IV	P\&R Computer Shop 81
Apollo Electronics 2	Greatech Electronics 90	Pype Hayes 10
Armon Electronics Ltd		Greenweld 16	
Aspen Electric Ltd			Radford Laboratory Instruments Ltd 90
Audio Electronics	... 15	Hameg 89	Radiocode Clocks Ltd
		Happy Memories 14	Radio Component Specialities 81
B. Bamber Electronics	88	Harris Electronics (London) 90	Ralfe P.F.. 92
Barrie Electric Ltd		Harrison Brother Electronic Dist 9	Research Machines......................... 18
Black Star	$\begin{array}{r} 90 \\ 14 \end{array}$	Hart Electronic Kit \qquad $\begin{array}{r}78 \\ 3 \\ \hline\end{array}$	RTT Division of Hanworth 77
Broadfield \& Mayco	14	Hilomast Ltd .. 20 H.W. International	
	87		Samsons Electronics 92
Colomor Electronics		ILP Electronics Ltd 4, 16	South Midland Communication........... 88
Communique	18	Industrial \& Trade Fair Ltd	Sowter Ltd (EA) 80
Computer Appreciation	. 106	(Communications 84) \qquad 77	Special Products Distribution Ltd.......... 5
Cricklewood Electronics	... 19	Insight Vision Systems 2	Stewart of Reading 82
		Integrex Ltd 86	Surrey Electronics Ltd 2
Dataman Designs 48		
Display Electronics 85		JPR Electronic 81	Taylor Bros (Oldham) Ltd 14
			Technomatic Ltd........................12/13
Easibind			Teledigital Computers...................... 91
Electronic Equipm		Langrex Supplies Ltd 93	Texas Instruments 11
Electronics Brok	.3,5,7	Light Soldering Development 10	Thandar Electronics Ltd 18
Electroustic Ltd			Thanet Electronics Ltd 5
	$\begin{aligned} & \text { … } 84 \\ & \ldots . . \end{aligned}$	Manner K.T. Designs 92	Thurlby Electronics 77
EMS Manufacturing	. 6	Midwich Computer Co 9	Timebase.................................... 84
Essex Electronics 7	Minim Electronics 81	TK Electronics .. 6
Future Film Developmen	16	Opus Suppliers47, 79	
Fylde Electronic Labs. 86	Orion Scientific Products.................. 14	orld Pliers Offer 89

Global Specialities Corp
 G.P. Industrial IV
Greenweld 16
Hames 14
Harris Electronics (London) 90
Hart Electronic Kit 78
H.W. International 20
ILP Electronics Ltd 4, 16
(Communications 84) 77
Integrex Ltd 86
JPR Electronic
Langrex Supplies Ltd 93
Light Soldering Development
Manner K.T. Designs 92
Minim Electronics 81
Opus Suppliers 7Technomatic Ltd14exas Instruments11
Fylde Electronic Labs 86
Pantcchnic 88
P\&R Computer Shop 81Radford Laboratory Instruments Ltd90
Radiocode Clocks Ltd 6
Ralfe P.F. 81
9Research Machines
RTT Division of Hanworth 77Sarel Electric Ltd84
South Midland Communication 88Special Products Distribution Ltd.5Surrey Electronics Ltd2

Japan: Mr. Inatsuki, Tracie Media - IBPA (Japan), 8. 212.

Jack Mantel, The Farley Co., Suite 650, Ranna Building. Cleveland, Ohio 4415 - Telephone (216) 6211919
Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 5327301.
Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlante, Georgia 30305. Telephone (404) 2377432.
Mike Loughlin Business Press International, 15055 Memorial Ste 119, Houston, Texas 77079 - Telephone (713) 7838673.

Canada: Colin H. MacCulloch, International Advertising Consultants Lid., 915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269.

* Also subscription agents.

OVERSEAS ADVERTISEMENT AGENTS

F-9100, Boulogne, Paris

Haly: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estaro Via Mantegna 6, 20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.

Hungary: Ms Edit, Bajusz
Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE

[^7] International Lud, 1984 . Wireless World can be obtained abroad from the following: Al New Age and NEW : William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News Distribution Inc., 14 th floor, 111 Eighth Avenue, New York, N.Y. 10011

THE NEW ANTEX TCSU－D temperature control digital soldering unit has joined the Antex range advancing the science of soldering
 With the New Antex TCSU－D High－Value，high－performance

unit．Its simple design incorporates an LED display and a unique ULA integrated circuit，custom－built for Antex by Ferranti
Tight temperature control can be maintained by setting the station－ then removing the knob，preventing any further alteration，for laboratory，for workshop，for production－line．Joins the most sophisticated range of soldering equipment．Irons，bit，kits，stands，units and accessories－each at the forefront of soldering technology．It＇s just one more advanced from Antex．
For the very latest in the science of soldering send for a
catalogue now

Please send literature and price list to：
I Name
I Address
I Telephone
\qquad
\qquad
Excluding V．A．T．（15\％）and
Lostage \＆Packing

Made in England． Our products are widely distributed by widely distributed
wholesalers and wholesalers and
retailers throughout the U．K．Please try your local dealer．

Lーーーーーー－and keep up to date with wwz the science of soldering the science of from ANTEX

TCSU1 Soldering Station
For safe 24 volt temperature－controlled
miniature soldering iron，variable tip miniature soldering iron．variabie tip
temperature $65-430^{\circ} \mathrm{C}$ ，antistatic temperature $65-430^{\circ} \mathrm{C}$ ，antistatic
earth connection，with XSTC or CSTC＿ron
R．R．P $£ 52.50$
ST4 Stand
R．R．P．$£ 1.75$
－ 15 Watts
Stainless steel
shaft only．
240 and 115 volts
R．R．P．$£ 5.20$
50 and 24 volts
R．RP $£ 5.40$

SK5 Solderirg kit Contains model CS230 iron and the ST4 stand R．R．P．$£ 7.00$
SK6 Soldering Kit
Contains model
x5230 iron and the
ST4 stand
R．R．P $£ 7.25$
SK5－BP anc SK6－BP
Soldering Kits
Fitted with safety plugs．
SK5－BP kit R．R．P．$£ 7 . \mathrm{BO}$
SK6－BP kit A．A．P．£B． 00

TCSU－D temperature control digital solcering unit．
－Temiperature range－ambient to
$495^{\circ} \mathrm{C}$－Bit temperature maintained
to $\pm 5^{\circ} \mathrm{C}$－Zero crossing switching－ Detachabie sponge－tray and includes the world－famous ANTEX Iron．R．R．P．£67．50

ANTEX（Electronics）Ltd．，
Mayflower House，Plymouth，Devon．Telephone： 0752667377 Telex： 45296

P8000 - THE PRODUCTION PROGRAMMER THAT HANDLES ALL NMOS EPROMS

[^0]: *Also subscription agents

[^1]: * The 488 general-purpose interface bus standard, which is identical with IEC625-1 apart from connectors, was described by P. R. Ellefson in 'IEEE bus standard' Wireless World June/July 1980 pages 75-8.

[^2]: * Nordholt, E. H. Extending Op-Amp Capabilities by using a Current-Source Power Supply.'IEEE Trans. Circuits and Systems, vol. CAS-29, no. 6, June 1982.

[^3]: * John Vanderkooy and Stanley P. Lipshitz, "Feedforward Error Correction in Power Amplifiers," Journal of the Audio Engineering Society, vol. 28 1980, pp 1-16.

[^4]: Ahmed Soliman received the B.S. degree in electrical engineering from Cairo University, and the M.S. and Ph.D. degrees from the University of Pittsburgh. He is currently in the department of electronics and communications engineering at Cairo University

[^5]: IFyou would like more information on any of the items featured here, enter the appropriate WW reference numberfsl on the mauve replypaid card bound in this issue. Overseas cards require a stamp

[^6]: Name
 Company
 Address
 I

[^7]: Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, for the proprietors, Business Press International Lid., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS. © Business Press International Lid 1984 , Threless Wo ord can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lrd. INDIA: A. H. Wheeier \& CO. CANADA: The WIm

