

The over and outperformer

Front cover is John Linsley Hood's strain-gauge weighing scale, photographed by Alan McFaden

NEXT MONTH

Battery charger. A Wireless World design for recharging up to 15 NiCd cells in series. It has automatic shutdown and uses a switch mode source.

Careers. Where you should train, where you should go for a job and how much you can expect to be paid - all investigated by an experienced job-finder.

Tone-burst gate. Provides burst or square-wave output with variable duty cycle of 1 9999 to 9999-1.

Video disc information retrieval. Using a computer and disc player in an interactive information storage system.

Current issue price 80p, back issues (if available) $\mathbf{f 1}$, at Retail and Trade Coun ter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue f 1.23 , back issues (if available) $£ 1.80$, order and payments if available) 1.80 , order and payment to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey
SM25AS Tal: 01-661 8668 . SM2 5AS Tel: 01-661 8668
Editorial 8 Advertising offices: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS.
Telephones: Editorial 01-661 3614. Advertising 01-661 3130. See leader page.
Telex: 892084 BISPRS G.
Subscription rates: 1 year £15 UK and f17 outside UK.
Student retes: 1 year f9.35 UK and £11.70 outside UK.
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone 01-661 3248.
Subscriptions: Oakfield House, PerrySubscriptions: Hawwards Heath Sussex mount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 04444
USA: $\$ 44$ surface mail, $\$ 93.80$ air
USA: $\$ 44$ surface mail, $\$ 93.80$ airm
Business Press International (USA).
Subscriptions Office, 205 E.42nd Street, NY 10017
USA mailing agents: Expediters of the Printed Word Lid, 527 Madison Avenue Suite 1217, New York, NY 10022. 2nd class postage paid at New York.
C) Business Press International Ltd 1983 ISSN 00436062.

NireFOR EVERYTHING IN ELECTRONICS essworld

THE PERSUADERS

COMMUNICATIONS COMMENTARY

STRAIN-GAUGE WEIGHING SCALE

by d. L. Lnsley Hoot
PRECISION PREAMPLIFIER
hyll. sell
CURRENT DUMPING REVIEW
by M, McLoughin

RAPID-UPDATE DIGITAL RATEMETER

by P.D. Coleridge-Smith

MICROCOMPUTER ANALYSIS OF LADDER NETWORKS

by L. E. Weaver

51
 NEWS OF THE MONTH

occam moytamming Satelite news Lightlibe nutiplexar
WORLD TIMING ASSESSMENT USING H.F. BROADCASTS
by R. C. Macarimand ©. R. Mumb

CIRCUIT IDEAS

Dot matrix display s-dipit counter Curemt sensof
IMPROVING STEREO AT L.F.
by Y. Huata

63
 PROBLEMS IN SPECIAL RELATIVITY

by M. McCausland

USING A MICRO TO PROCESS 30-LINE BAIRD TV RECORDINGS

ASSEMBLY-LANGUAGE PROGRAMMING
by R. F. Coates
FORTH COMPUTER
by E. Woutrothe
NANOCOMP TO TTY INTERFACE
byP. c. Batm

LETTERS TO THE EDITOR

NEW PRODUCTS

VERTICAL RANGE FROM 3－10 SOCKETS ALL EX－STOCK！
SPECIALS TO ORDER

OLSON ELECTRONICS LIMITED

WHEN IT COMES TO POWER FOR RACKS IT MUST BE OLSON

5－7 LONG STREET LONDON E2 8HJ TEL：01－739 2343 TELEX 296797

WW－ 032 FOR FURTHER DETAILS

Out of this world for value！

ETNot our extro－ferrestrial friend，but a versatile bench power supply－

－the ET30／2

Frimodest price it will provide you with：
Whatputs of 0 to 30 volts d．c．at 1 amp or 2 outputs af 0 to 15 volts d．c．af 2 amps or 0 to 30 volts d．c．at 2 amps or 0 to 60 volts d．c．of 1 amp or 0 to 15 volis d．c．of 4 amps ．

[^0]

THE POWERFET SPECIALISTS

OEM USERS

Pantechnic present the most adaptable high－powered amplifier ever fet SYSTEM AMP
Features
－HIGH POWER． 1.2 kW （single ended）
－LOW VOLUME． $1 / 15$ Cubic foot inc．Heatsink
－VERSATILE．Delivers more than 1 kW into $1 / 2$ to 8 ohms
OR $2 \times 600 \mathrm{~W}$ into 2 to 8Ω
OR $4 \times 300 \mathrm{~W}$ into 2 to 4Ω（ 200 W into 8Ω ）
OR $\left\{\begin{array}{l}1 \times 600 \mathrm{~W} \text { into } 2 \text { to } 8 \Omega \\ 1 \times 300 \mathrm{~W} \text { into } 2 \text { to } 4 \Omega \\ 1 \times 150 \mathrm{~W} \text { into } 4 \text { to } 8 \Omega\end{array}\right.$
Etc．，etc．
Having been closely involved in a wide variety of OEM applications of their amp boards．Pantechnic became aware of numerous implementation problems often lize and thermal efficiency became particularly aggravated at high powers and considerably lengthened OEM product development time．
By including thermal design in the totality of board design it has been possible to reduce the size of the electronics，and increase the efficiency of the transistor to heatsink thermal circuit．The combined effect of this has been to dramaticaly
increase the volumetric efficiency of the amplifier／heatsink assembly．The SYSTEM increase the volumetric efficiency of the amplifier $\times 102 \mathrm{~mm} \times 77 \mathrm{~mm}$ ，excluding PSU Amp oote
and Fan
The basis of this considerable advance is the PANTECH 74 Heat Exchanger，newly designed and manufactured by us．By eliminating the laminar air flow found in
conventional，extruded heatsinks，heat transfer to the environment is greatly enhanced．
The flexibility of the 1.2 kW amp stems from its division into 4 potentially separate amplifiers of 300 W each（downrateable with cost savings to 40 W ．These can be paralleled，increasing current capability or seriesed dridge in pairs）doubling voltage capabifit
implemented
As ever Pantechnic offer a full range of customising options including DC coupling， As ever Pantechnic offer antrant phil Rimmer on 01－800 6667 with your particular application problem
A specs，as ever，are exemplary
wide range of other amplifiers and other modules available．

 17．HOLIOL SBEET LTERPOOL L25 5NH

WW－ 036 FOR FURTHER DETAILS

the courici

ANALYSERS
Hawlott Packard
1615ANOO1 Logic Analyser． 50044 Signature Anatyser． 64750.00日407A8412A Network Analyse c550．00

Marconi
MF2303 Mod Meter ．．．．．．．．．．．．．．．$£ 480.00$
Tsktronix 01 ．Distortion $10 \mathrm{~Hz}-100 \mathrm{KHz}$ to Less than 0．0025\％． 01450.00 DAS 9103 opt 01 D2 Logic Analyser DF1 Display Formatter For 7001 ． 8850.00 30 A Portable A Channel 20 MHz Data Analyser 22100.00 491 Spectrum Analyser $10 \mathrm{Mz200.00}$ 492 （opt 01，0日）Spectrum Anelyser $50 \mathrm{KHz} \mathbf{8 1 3 0 0 0 . 0 0}$ 492 P ［opt 01．2，3］Programmable Version 7 L 5 Spectrum Analyser with opt 25
［Tracking Gen］and L3［ 50Ω inputt $20 \mathrm{OHz}-00$ 7 L 12 Spectrum Anatyser $100 \mathrm{KHz-1.8GHz}$
$\mathbf{E 6 0 0 0 . 0 0}$ 7L13 Spectrum Analyser $1 \mathrm{KHz}-1.8 \mathrm{GHz}$ 7 L 14 Spectrum Analyser $10 \mathrm{KHz-1.8GHz}$ 7 L 18 Spectrum Analyser $1.5 \mathrm{GHz}-60 \mathrm{GHz}$ TH502 Tracking Generator（for 7L12． 13 \＆ 14］
TR503 Tracking Generator［for $492 / 496$
series $]$ $\left.\begin{array}{l}\text { series］} \\ 5 L 4 N\end{array}\right)$ 22350.00 £2450．00 .23850 .00

DMMM＇s	
Fluke	
802OA 31／2 digit 0.1%	
Basic DC Accuracy	
7 functions．$£ 75.00$	
THESEDMMS ARE	
UNUSED	
GODAY WARRANTY．	

OSCILLOSCOPES

Howlatt Packerd
$1332 A \mathrm{High}$ Guality CRT Display
$9.6 \times 119 \mathrm{gcm}$ 1809 A 100 MHz 4 Channel Plug In 2000.00 1821A Timebase Plug in ．．．．．．． $\mathbf{£ 1 0 0 0 . 0 0}$ Philips
Tektronix．
Tehtronix．
305 Portablery
305 Portable battery scope／DMM．DI 00 335 Dual Trace 35 MHz Smal portable with delay T＇Base
200C Trolley for 400 Series ．．．．．． 1300.00

\＆120．00 7313100 MHz Storage Main c120．00 7603100 MHz Mainframe \quad| E 2225.00 |
| :--- |
| 1850.00 | 544050 MHz Manframe \quad E1000．00 544150 MHz Variabie Persistance Storage Mantrame

£1800．00 E2500．00 7613 Storage Scope Manframe e3250．00 7834 Storage Scope Mainframe $\mathbf{~} 72000.00$ 7844 Dual Beam 400MHz Mainframe 0.00 7854 Wavetorm Processing Scope 0000.00 7904 opt $02,03500 \mathrm{MHz} \quad \mathbf{5 3 5 0 . 0 0}$

TEKTRONIX PLUG INS

 We stock a complete rangs of Plug Insfor uee with 7000 and 5000 serios Mainfremes．

TEKTRONIX TM500

SERIES

We stock a very wide ranga of thase vereatile modular equipments

TEKTRONIX TV TEST

 EQUIPMENT
141 A SigGen

1485RWaveform Vonitor 651 HR PAL Monitor
655HR－1 Monitor．
656HR PALSECAM Monitor
C 1500.00 1500.00
+3200.00 E2100．00

MISCELLANEOUS

Avo
VCM
VCM 163 Value Chэracteristic Meter 90 C485．00
C85．00

Brual C Kjeer

Datalabs
DL905 Transient Recorder
Fluke $595 A$ Portable Calizrator
845 AB Null Detector
931 B Diff V＇Meter
19004 Counter／Timer Bi．．．．．．．．．．．\＆810．00 1000 Councer／Timer 80 MHz ．£225．00 2020A－3－6 Printe ．．．．．e500．00 3010A Logictester．Self Contained． 8.00日9214DMM

Hewlett Packerd
 Hewlett Packard 32008 Oscillator

 467a Amplifier．c950．00 415E VSWR Meter 214 A Pulse Gen
3556 A Psophometer 3556 A Psophometer
435A Power Meter．
 3552A Trans Test Set ．．．．．．．．．$£ \mathbf{1 , 5 0 0 . 0 0}$ 53008／5306A DMM／Counter． $\mathbf{\$ 1 , 2 0 0 . 0 0}$
8013B Pulse Generator ．．．．．．．．．．750．00 8350A 3525 A

Cs，500．00
4815A Vector Impedance Meter

11720a Pulse Modulator

ع3850．00 Marconi
TF1313A LCR Bridge
，1850．00
TF2120 Waverige ．．．．．．．．．． $\mathbf{2 7 5} .00$

TF2603 RF Millivoltneter \quad E $\quad . \quad . \quad$ E50．00

 $\begin{array}{ll}\text { TF2000 Oscillator } & \text { E575．00 }\end{array}$ TFEO15／2＋TF2171 AM／FM Sig Gen $\mathbf{C 1 8 5 0 . 0 0}$
Racal

9514 Counter／Timer IEEE＿．．．．．e850．00 9917A／04A Counter 560 MHz ع850．00 Toktronix
106 Square Wave Generator 1 nS risetume $1 \mathrm{OHz}-1 \mathrm{MHz}$ withou：accessories © 175.00 191 Constant Ampltude Generato

E250．00
832 Data Comms－ester．．．．．．．E825．00
日33 Data Comms－ester ع1350．00
2701 Step Attenua or $50 \Omega 0.79 \mathrm{~dB}$ in 1 dB $\begin{array}{ll}\text { steps．DC to } 2 \mathrm{GHz} & \text { E295．00 } \\ 2901 \text { Time－Mark Generator．．．．．} & \mathbf{E 1 8 5 . 0 0}\end{array}$

Please note：Prices shown do not include VAT or carriage．
Electronic Brokers Ltd．，61／65 Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694

TEONEX ELECTRONIC VALVES AND SEMICONDUCTORS

SERVING THE WORLD FOR 30 YEARS

We specialise in the supply of Industrial Valves of British, European and USA manufacture, and semiconductors from the Philips Group. Many types, including obsolete and obsolescent types, always available from stock.

Features include:

-0-10Mbit/s (NRZ) guaranteed to 15 m with Polymer Cable. (Can be extended by using a glass fibre)

- TTL Compatible
- No tools required to terminate cable
- Fully tested modules.
- Complete with transmitter, receiver connectors and 5 m of Polymer Cable.
- Also a full range of components for glass systems available

Electroustic Ltd.

Hayward House, Northchapel, West Sussex, GU28 9HL Tel: $(042$ 878) 611/2. Telex: 858966

Audio Measuring Instruments, Audio Amplifiers, Loudspeakers and Loudspeaker Components for the professional and enthusiast

RADFORD AUDIO LTD.

10 BEACH ROAD
WESTON-S-MARE, AVON BS23 2AU
TEL. 0934416033
WW - 005 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRIITEERS from E70 EACH + V.A.T.
INTERFACE FOR IBM GOLFBALL £40 + V.A.T
*BRAND-NEW LA36 DEC WRITERS - SALE E200 EACH + V.A.T CENTRONIC 779 PRINTERS $-£ 325+$ V.A.T CENTRONIC 781 PRINTER - $£ 350$ + V.A.T. POWER UNITS, 5-VOLT 6-AMP-£20 EACH FANS, PCBs, KEYBOARDS AND LOTS MORE 8-INCH IBM FLOPPY DISC DRIVES.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440

WW - 057 FOR FURTHER DETAILS

TEST EQUIPMENT

20 cm Variable
Electrohome 19＇B8W X－Y Monitors－NEW（details available）
Philips PM 3244 4－Channel 50MHz Sweep Delay Scope ．． 895
Tek． 465 B 100 MHz Scope with DM44 Option－complete with all probes，temp．probe manuals and pouch－as new
Tek． 7 L 18 Spectrum Analyser Plug－in 1.5 to 60 GHz －as new．
Tek． 221360 MHz Scope－as new．
Philips 2522A 41／2 digit DMM
Fluke 8000A $3^{1 / 2} 2$ digit DMM ．．
Fluke 8030A Battery／Mains $3^{1 / 2}$ digit DMM
Fluke 8600A $41 / 2$ digit DMM
Systron Donner 6250A 8－digit Timer Counter BCD output
Tek． 7870 Plug－i
APLAB 25 V Metered PSU
Racal $907641 / 2$ digit DVM
H．P． 7100 B 2 －pen chart recorder with 17500A and 17505 A P
Tek． 3 A6 Plug－in
Tok． 2 A63 Plug－in ．．．．．．．
Leader LB0510 4 MHz Single Channel Scopes－NEW
Marconi TF144H Signal Generator 20 KHz to 72 MHz ．
Marconi TF2410 8－digit 120MHz Counter with 100MHz Video Amp 600MHz Co．．．．．．．．．．．．．．．．．．．．．．．．．．．
and 3.4 GHz Converter P．I．units．．
Tek．Type M4 Channel Plug－in
Tek．Type CA，Z，P Plug－ins
Tek． 56410 MHz Storage Scope with $3 A 382867$ Plug－ins
Tek． 564 B 10 MHz Storage Scope with 3 A 3 \＆2B67 Plug－ins
Systron Donner 7344A DMM 41／2 digit IEEE
Telequipment D43 Oscilloscope
Telequipment D83 large screen 50 MHz Delayed Sweep Scope
Rohde \＆Schwarz Inductance Meter Type LRT $0.1 \mathrm{uH}-1 \mathrm{H}$ ．．．
Tek．Type 184 Time Mark Generators
Tek．Type 191 Constant Amplitude Generators
Tek．Type 106 Fast Rise Pulse Generators．．．．．．．．．．．．．
Singer Synchro Resolver Test Set
Hedin Furnace－ 20° to 184 C 50 MHz Storage Scope +1825 A \＆ 1801 A P H．P．184C
Fluke 8050 A Battery／Mains $41 / 2$ digit DVM
Flann 0－90dbs \times Band Variable Attenuators－unused Selectest Super 50 Multimeter
Houston DP10 Incremental Plotters
Tek． 661 Sampling Scope with 5 T3 \＆ 4 St Plug－ins
Bendix Digitiser Complete with $3^{\prime} \times 4^{\prime}$ Table
DRI Series 30 2．5 MegaByte Disk Drives

TIMEBASE

4 ALFRISTON GARDENS，SHOLING，SOUTHAMPTON SO2 8FU TELEPHONE： 431323 （0703）

Callers welcome

早电明

6FT．PARABOLIC DISHES FROM ONLY $£ 85$ plus va．t．

6 ft ．dia．dishes，feed horns and electronics for use in 4 GHz satellite reception．GaAs Fet tran－ sistors，SMA connectors，P．T．F．E．，etc．available． Please send s．a．e．for full details and data sheets．

Farrison Bros．

22 Milton Road，Westcliff－on－Sea，Essex SS0 7JX Tel．Southend（0702） 332338

DECSAI：
 a selection from our huge stocks．All items reconditioned unless otherwise stated． AUTUMN＇ 83 CATALOGUE now out send for your free copy

SPECIAL PURCHASE OFPDP11／34A PROCESSORS

11／34A CPU
MS11JP 64KB MOS Memory DL11W Console Interface KY1 1LB Programmers Panel， M9312 Bootstrap
BA11L $51 / 4^{\prime \prime}$ Chassis
ONLY ER，500

DEC LSI PROCESSORS

11／03LXKD11HA CPU，
KEV11 EIS／FIS，BDV11AA
Terminator／Bootstrap．
BA11N $51 / 4$ Chassis with
Backplane and Power Supply No memory included．

NEW £1200

11／03N KD11QCPU，
KEV11 EIS／FIS，BDV1 1 AA Terminator／Bootstrap．BA11P 51／4＂Chassis with Backplane and Power Supply，MSV1 1DD 32KW MOS

NEW \＆1495

DEC MAG TAPE

TE16Slave
£4，500
TE16 Master with TMO2
£5，750
TE16 Master with TM03
E6，250
TS11 Inc．Unibus Ct
NEW E6，250
TU77 Master with TM03
NEW E14，500
All above include DEC Cabinet

DEC DISK DRIVES

RK07ED 28MB
E2，500 RKO7PD 28MB E2，500 RL01A 5MB E995 RMOZAD 67MB NEW
£6，250
RMO3AD 67MB NEW
£6，250
RM05AD 256MB NEW £14，750 RM80 124MB $\mathbf{£ 9 , 5 0 0}$ RX11 BD Dual Floppy $\mathbf{£ 9 9 5}$ RX211BD Dlal Floppy

ع1，725

DECSCOPE TERMINALS

VT50AB20rr A VT50－AF EIA
VT52－AB20mA VT52－AF EIA VT55－EB20mA $£ 199$ VT55－EF EIA $E 225$

T55－FB＋Copier 20 mA
VT55－FF＋Copier，EIA $\mathbf{\Sigma 7 5 0}$

scopp
 sugchase of

TAKTRONX
 GRAPHICS EQUIPMENT

EX－DEMONSTAATION STOCK IN ORIEINAL MANUFACTURER＇S

HIGH RESOLUTION BIG 8CREEN

GRAPHICS DIEPLAY TERMINALS

4014－1，4015－1 and 4016－1
19 in．Screen providing 4096X by
3120Y displayable points or 8512 alphanumerics［models 4014 and 4015］．25in．Screen providing 4096X by 3120 y displayable points or
15，000 alphanumerics［model 4016］． APL Character Set［model 4015］． Plot－10 compatible．Prices include Enhanced Graphics Option．Extra Memory Option and Programmable Keyboard Option．
4014－1 £6，950．4015－1 £7，250． 4016－1 £8，950．
Other Tektronix graphics equipment currently available includes 4006－1 4010－1，4027，4051，4952．
606／606A／606B and 611

ADD 15\％VAT TO ALL PRICES
Electronic Brokers Ltd．， $61 / 65$ Kings Cross Road， LondonWC1X 9LN．Tel：01－2783461．Telex 298694

VALVES										
	CRTs									

SMC HIRE DIVISION

ANNOUNCEMENT

THE FOLLOWING ITEMS ARE AVAILABLE FOR HIRE FROM STOCK AT REALISTIC PRICES. WHERE HOME OFFICE RADIO LICENCES ARE REQUIRED SMC MAKE ALL THE ARRANGEMENTS.

1. 2-WAY HAND PORTABLE RADIOS
 2. BASE STATIONS FOR USE WITH ABOVE

3. 60-FOOT TRAILER-MOUNTED TOWER
4. 1.6 KW PETROL GENERATOR

Apply for details to:

SOUTL MIDLANDS COMMUNIGATIONS LTI. SW HOUSE, OSBORNE ROAD, TOTTON SOUTHAMPTON SO4 ADN. ENGLAND TEL: 0703857393 TELEX: 477351 SWCOMM G

WW - 053 FOR FURTHER DETAILS

STEWART OF READING 110 WYKEHAM ROAD, READING, BERKS RG6 1PL Telephone: 073468041
Callers welcome $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. Monday to Saturday inclusive

Electronic Brokers

 Test Equipment DISTRIBUTORS
\rightarrow Philips PM 2517X Handheld DMM £172 override. True RMS to 10 Amp . Battery operatıon Optional accessories extend measurement capabilties

Philips PM 3207 15MHz Oscilloscope £385-

Tough light-weight portable for feld service

work with big screen. Dual trace,
triggering, $X-Y$ operation, add and invert

- Philips PM

5107 Function Generator £295
 Designed for audio and educational applications. Low distortion LF generator Hz to 100kHz sine and square

Philips PM 5501 Pattern Generator $£ 296$ Cormpact unit or tivent test patterns for colour and monochrome Tone for audio checking. RF switchable

$333333 / 150$
 $=$

- Philips PM 6667/01 Frequency Counter £290 High resolution
7 digit computing counter from 1 OHz to 120 MHz . Auto ranging on all waveforms PM 6668/01 ($£ 425$) performs to 1 GHz

Fluke 8022B Handheld DMM E99-

 diode test. Extensive overload protection and two year

8010A Bench portable DMM E210 Exceptional pe formance
$\frac{1}{2}$ digt, true RMS meter
even functions with 10 Amp

Fluke 8026B Handheld DMM £180 -
versatile $3_{\bar{⿺}}^{-}$digit, with true RMS capabilty. Eight functions include

Electronic Brokers Ltd., $61 / 65$ Kings Cross Road, LondonWC1X 9LN.Tel:01-8331166. Telex 298694

CX80 colour MATRIX PRINTER

New low price $\mathbf{£ 7 9 5}$ + V.A.T.

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

IITECREK LIMITED

74-78 Collingdon St. • LUTON, Beds. LU1 1RX • こ (0582) 41.31.74 • Telex 825484

PRECISION DUAL AXIS CONTROL STICK

Suitable for use with Computers, Robotics, Machine Tools Widely used by Government departments and industry

SUPER SMOOTH PRECISE ACTION . SEPARATE FINE TRIM ADJUSTMENT . ACCURATE CENTRING LCNG-LIFE MOULDED NYLON PARTS
Available in kit form - easily assembled. Standard version - Carbon track pots. 1 off £8.50, P\&P 75p. De luxe version Conductive plastic film pots. 1 off £12.80, P\&P 75p. Send SAE for full details of sticks and servos suitable for Robotics. OEM and trade enquiries invited, Barclaycard and Access accepted.

SKYLE:IIER, DEP 10, ARPPOTI HOUSE, PURIEY WAY CROMOH SU1:
 WW - 049 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS

If you are Rebuilding or Manufacturing TV Tubes - Wie are the leading suppliers of Electron Guns and TV Tube Components to the TV Tube Industry. We specialise in all aspects of Electron Mount Technology.
Our product range includes more than 250 gun types for Colour, In Line, Mono and Display Tubes along with Mount Parts, Bases, Getters, Sealoffs, and all other associated items for TV Tube Production. A Full Technical Back-up and Advisory Service is available to all customers Worldwide.
Please request our current catalogues and Data Information.

Telephone: (0789) 764852764100. Telex: 312354 Grifem G

WW - 006 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.
Full Information from
HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1
Phone: 01-837 7937
Telex: 892301

Midwich
EAST ANGLIA'S LEADING SUPPLIER OF MICROCOMPUTERS AND COMPONENTS TO EDUCATIONAL ESTABLISHMENTS.

'DOLBY' MOISE WEIGKTING FILTERS
Cat. No 98A. Noise weighting filters for CCIR/ARM signal-to-noise ratio measurements. As new units. f 40 each (+f 1 p\& p).

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 new with mounting instruc tions. Only $£ 2.50$ each.

RFI RECENER

Stoddart Model NM52A. RF Noise \& Field intensity measuring receiver. $375 \mathrm{MHz}-1 \mathrm{GHz}$ c/w power supply unit.

MAY SOUND SPECTROGRAPH

Model 6061 B with Amplitude Display, scale magnifier. $85 \mathrm{~Hz}-16 \mathrm{kHz}$. Complete sound spectrograph in excellent condition.

\star AUDIO WATTMETERS \star

Switchable $1 W$ \& $10 W$ FSD. Internal $3.5 \& 8$ Ohm load impedances. Housed in grey enamelled case $6 \times 6 \times 3^{\prime \prime}$. Large easy to read $3^{\prime \prime}$ sq. meter. Scope output provision. £ $10(+£ 1)$
HEATHKIT Model AW-IU. Internal load switchable 3, 8, 15 \& 600 Ohm . Meter scaled 0-50W (+ dB scale). 5 Ranges from 5 mW - 50 W FSD. Mains powered. $£ 25(+£ 1)$.
MARCONI TF893A. 1mW-10W Full scale in 5 ranges. Impedances $2.5-20 \mathrm{~K}$ Ohm in 48 steps. Direct calibration in Watts and dBm. $£ 85(+£ 2)$.
GPO JACK SOCKET STRIPS. 20-WAY Type 320 (3pole) $\mathbf{£ 2} 50$ ea. Type 520 (3 -pole with switching
contacts) $£ 4$ ea. Please include 350 each for contacts) £4 ea. Please include 35 p each for postage on these. GPO type 316 Jack plugs for
above 20 p ea. ($10+$ post free). Plus VAT please. Also recent stock of new, mint condition 720 Type £6 each.

* CONSTANT VOLTAGE TRANSFORMERS 'ADVANCE VOLSTAT; TYpe. Model MT140A. 150 W . Price each $£ 20+$ VAT + £2 carriage.

DSCILIDECOPES

TEKTRONIX 453. Dual-trace 50 MHz
TEKTRONIX 565. Dual time-base. Differen tial plug-ins.
SOLARTRON CD1740. 50 MHz sweep-delay E 350 .
MARCONI TF2210. Dual-trace, 100 MHz Sweep-delay $£ 350$.
DYNAMCO D7200 Mains/Battery portable Dual-trace 15 MHz £225.
N.B. We have a frequent stock turnover of good, used 'scopes. Should you have a specific requirement for any item of test equipment we would be pleased to receive

your enguiry.

MARCONI TF2502 RF Power meters. DC-1GHz, 10 w fsd $£ 350$. MARCONI TF2701 In-Situ Universal component Bridge $\mathbf{£ 2 5 0}$. MEGGER-5KV Insulation tester. Hand-crank.
PHILIPS Model PM8041. X-Y Recorder.
MARCONI TF2343A Quantization
MARCONI TF2343A Quantization Distortion Meter $£ 150$
HEWLETT- PACKARD 3450 A Multi-Function Digital Multi-Meter.
ROHDE \& SCHWARZ 'SDR' AM sianal
HEWLEIT-PACKARD 608 C . AM signal generator $0.3-1 \mathrm{GHz}$.
TGL Spectrum Analysers model SA102, 0.500 MHz . Brand new factory units. $0-500 \mathrm{MHz}$. Send for specifications.

- INSULATION TESTERS *

 Transistorised 'Metrohm' 250 V \&500 V 500 V $£ 40$ Transistorised 'Megger' $500 \mathrm{~V} £ 60$ Supplied in fully condition

SWEEPERS t TELONIC Sweep generator system type 2003. Fitted with Marker, attenuator, Detector plugin units and Generator covering $800-1500 \mathrm{MHz} £ 325$

* DISC CARTMIDEES BASF 12-Segment Single Hard Disc Cartridges. Brand new surplus stock. £20 ea.

- DE POWER SUPPLIES

APT. Ex-computer supplies. Program variability 6 supplied. Three sizes available 5A. Connections Prices $£ 20$, $£ 25$, and $£ 30$ respectively io $\&$ p $£ 350$) FARNELL. Current limited. 13.17 VDC ($a 2 \mathrm{p}$ £ $£ 15.27$. 32V@1A£10.12V@1A£10(+£1.50 p\&p). COUTANT5V@5A (7 $\times 5 \times 3^{\prime \prime}$). £20 ($+£ 1$ p\& p) VARIABLE 0-30V@1A. Volt-metered $£ 25(+£ 1)$ FARNELL5V switching@60Amps. (Measures $13 \times$ $\left.5 \times 6^{\prime \prime}\right)$. Recent special purchase $£ 50$ only ($+£ 3$ p\&p).
MULLARD Dual $\pm 12 \mathrm{~V}$ @ $1 \mathrm{~A} @ 0.4 \mathrm{~A}, \mathrm{£} 10(+\mathrm{f} 1)$.

$\star *$ STEPRER motohs $* *$

Brand now stock of 'ASTROSYN' Type 20PMA055 stepper motors. 28 V DC. 24 steps per rov. 15 oz-in torque @ 100PPS. Body length $2^{1 / 2^{\prime \prime}}$, threaded. Weight 160 . Price each $£ 15$ (p\&p 50pl. Connections supplied.

MARCONILITVOLI MEISURENENI, MALOGHE MARCONI TF2600. Twelve ranges 1 mV -300V FSD. Wide-band to 10 MHz .
MARCONI TF2603. Frequency range 50 kHz -
1.5 GHz . High Sensitivity from 300 uV . MARCONI TF2604 Elom 300 uV . $\mathrm{AC} / \mathrm{DC} 300 \mathrm{mV}$ Full scale to 300 V (1 kV DC). Re. sistance ranged. AC Frequency range 20 Hz . 1500 MHz .

B BRUEL \& KJAER $\boldsymbol{*}$ Model 2006 Heterodyne Voltme
Voltage measurements to 240 MHz .

```
AM/FM/
```


CLAUDE LYONS 240V AC

\star REGULATORS

Small quantity available of constant voltage mains regulators. Continuous current rating 5 A . Model no. CVR-1200. Input 204-252V. Output adjustable $200-254 \mathrm{~V}$ AC $\pm 0.3 \%$. $45-65 \mathrm{~Hz}$. Condition as new. (Dims- $11^{\prime} \times 7^{\prime} \times 6^{\prime \prime}$. Weight 20Kgs). Price $\mathbf{f 9 5}$ ea. + Carriage 55.

	ROTRON NSTRUNEN	
	COOLNE FMNS	
	Supplied in fully tested excellent condition	
	as follows:	
	$115 \mathrm{~V}, 41 / 2 \times 41 / 2 \times 11 / 2^{*}$ £5. 230 V same size	
	£5.50. $115 \mathrm{~V} 3 \times 3 \times 11^{\prime \prime} 2^{\prime \prime} £ 4.230 \mathrm{~V} 3^{\prime \prime}$ size,	
	brand new £6. Also small quantity 115 V	
	$4^{1 / 2}{ }^{\prime \prime}$ size, brand new E6. Postage each +	
	50p please.	

The professional communications receiver for point to point, ship to shore, and general coverage radio work. RANGE $100 \mathrm{KHz}-30 \mathrm{MHz} \star$ MODES AM, SSB, CW, RTTY and optional FM \star CPU based 10 Hz step digital PLL synthesizer with DUAL VFO's \star Frequency display 6 digit to $100 \mathrm{~Hz} \star$ STABILITY less than 50 Hz after one hour \star POWER SUPPLY 117 or 235 V AC and optional 12 V DC \star IF - 1st 70.4515 MHz , 2nd 9.0115 MHz , 3 rd 455 KHz , 4th $9.0115 \mathrm{MHz} \star$ Optional transceive units and filters available.

THIS SUPERB RECEIVER IS PRICED AT £433.91 + VAT

Contact us for more details on this and other ICOM professional communications equipment.

PMR - MARINE - AMATEUR

Dealer enquiries welcome

Thanet Electronics CDICOM
 143 Reculver Road, Herne Bay, Kent
 Tel: 0227363859 . Telex 965179

Keesthase Contacticlean

by usinga

DIACROM SPATULA

No other cleaner has all these advantages :-
Blades
Blades are treated with hard chrome to reinforce the setting of the diamond grans to diamonded surface by residues resuiting from use
. All diamonded blades are recufied to ensure an absolutely smooth surface by eliminating diamond grains which max rise above the surface This elimanates all excessive
cratching during use
200300 or 400
5. The chrome gives a very weak co efficient of friction and the rigidity of the nylon handle calculated to permi! proper utilisation and yet pliant enough to avoid undue pressures on
highly delicate relays

- Grain size 200 thickness $55 / 100 \mathrm{~mm}$ both faces diamonded For quick cleaning of industria felays and switching equipment. etc
Grain size 300 thickness 55
Grain size 300 thickness $55 / 500 \mathrm{~mm}$ both faces diamonded. For smaller equipments. like telephone relays. computer relays, etc
Grain size 400 thickness $25 \% 100 \mathrm{~mm}$
Grain size 400 thickness $25 / 100 \mathrm{~mm}$. one face diamonded for sensitive relays and tiny lace of the sparula is abrasive

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A.. C.E.G.B. British Rail and other Public Authorities also major industrial and electronic usors throughour the United Kirggdom.

WW - 035 FOR FURTHER DETAILS

TELESCOPIC MASTS

Pneurr at cally operatec telescopic masts． 25 Sta dard models，ranging from 5 metres to 30 me－res．

Cosser finy Easicerystem
The Essex Tiny Basic Compurer is an ideat
choice for data accuusition and proce and
systems．
 to criflical evecurale tunmeand fitier and inter． ensures revents，while the watastresponse entered and testederation．Prouchdog timer and then be costed from an Programs can be Instant ROM De copied into EPRO RS232 terminal development modules may be used Alt eornatively．

CC Essex：Bufficriimer A convenient means of buffering the $1 / O$ ines of the Essex Tiny BASIC Computer provides
24 inputs． 16 outputs and tour hardware timers．

Connects to the Essex Tiny BASIC System bus
and 12 opto－isolated outpopio－isolated inputs volfage $=1500$ external equipercard for sate
 auaileble．．．

Hilomast Ltd

THE STREET HEYBRIDGE－MALDON ESSEX CM9 7N3 ERAGLANE Tel．MALDON（0621） 56480

Telex Na． 995855

Essex Backiplene

A four slot backplane with printer and termina connectors to accept these cards．

Alex＇

A powerful software utilities package that pro vides the user with an enhanced editor and al the tools needed to program efficiently ir assembly language．
＊Text Editor＊Assembler
＊Disassembler＊Debug Monitor EES Supplied as a 4K EPROM with comprehensive manual．

Essex Electronics Centre
Wivenhoe Park．Colchester，Essex CO4 3SQ Telephone：Colchester（0206） 865089

LOOK AHEAD!

 WITH MONOLITH MAGNETIC TAPE HEADS -

 WITH MONOLITH MAGNETIC TAPE HEADS -

 VIDEO HEAD REPLACEMENT KIT

 VIDEO HEAD REPLACEMENT KIT}

DOES YOUR VCR GIVE WASHED OUT NOISY PICTURES - ITS PROBABLY IN NEED OF A NEW HEAD - FAST FROM OUR EX-STOCK DELIVERIES.
SAVE £££'S ON REPAIR CHARGES OUR UNIVERSAL REPLACEMENT VIDEO HEADS FIT ALL MODELS OF VHS OR BETAMAX VCR's. FOLLOWING OUR REPLACEMENT GUIDE AND WITH A PRACTICAL ABILITY, YOU CAN DO THE WHOLE JOB IN YOUR OWN HOME WITH OUR HEAD REPLACEMENT KIT.

CATALOGUE

For our full Catalogue of Replacement Video and Audio Cassette/Reel to Reel Heads, Motors, Mechanisms etc. Please forward 50 p P. \& P.

KIT CONTAINS - NEW VIDEO HEAD, 5 CLEANING TOOLS, HEAD CLEANING FLUID, CAN OF AIR BLAST, INSPECTION MIRROR ANTISTATIC CLOTH, VHS/BETAMAX MAINTENANCE MANLAL, CROSS HEAD SCREWDRIVER, HANDLING GLOVES, MOTOR SPEED DISC, SERVICE LABEL. HEAD REPLACEMENT GUIDE.

HOW TO ORDER,
please state CLEARLY THE MAKE AND MODEL OF YOUR RECORDER. THERE ARE TWO VERSIONS OF THE VHS HEAD AND YOUR ORDER CAN BE PROCESSED FASTER IF YOU CHECK THE SIZE OF THE CENTRE HOLE OF THE HEAD WHICH WILL BE EITHER 5 mm OR 15 mm DIAMETER.

VHS KITS $£ 53.25$ BETAMAX KIIT £65.25 Prices include P. \& P. and V.A.T.

MONOLITH THE SPECIALISTS SUPPLIER TO MOST OF THE U.K.'s LEADING DISTRIBUTORS ANDSERVICE ORGANISATIONS

GLOBAL SPECIALTIES CORPORATION

GSC (UK) Limited
Freepost-Saffron Walden, Essex CB11 3AQ Tel: Saffron Walden (0799) 21682 Telex: 817477

EP8000

EPROM EMULATOR PROGRAMMER

The new microprocessor controlled EP8000 Emulator Programmer will program and emulate all EPROMs up to 8 k $x 8$ sizes, and can be extended to program other devices such as $16 \mathrm{k} \times 8$ EPROMs, Bipolar PROMs, single chip microprocessors with external modules.
Personality cards and hardware changes are not required as the machine configures itself for the different devices.
The EP4000 with $4 \mathrm{k} \times 8$ static RAM is still available with EPROM programming and emulation capacity up to $4 \mathrm{k} \times 8$ sizes.

EP8000 8k x 8 Emulator Programmer $£ 695+£ 12$ delivery BSC8 Buffered emulation cable - £49 SA27128 Programming adaptor - £69 SA25128 Programming adaptor - £69 EP4000 $4 \mathrm{k} \times 8$ Emulator Programmer - $£ 545+£ 12$ de-

FEATURES

© Software personality programming/emulation of all EPROMs up to $8 \mathrm{k} \times 8$ bytes including 2704, 2708, 2716(3), 2508, 2758A, 2758B, 2516, 2716, 2532, 2732, 2732A, 68732-0, 68732-1, 68766, 68764, 2564, 2764. Programs 25128, 27128 with adaptors.

* No personality cards/characterisers required.

露 Use as stand alone programmer, slave programmer, or EPROM development system.
Checks for misplaced and reversed insertion, and shorts on data lines.

* Memory mapped video output allows full use of powerful editing facilities.
(Built-in LED display for field use.
. Powerful editing facilities include: Block/Byte move, insert, delete, match, highlight, etc.
- Comprehensive input/output - RS232C serial port, parallel port, cassette, printer O/P, DMA.
輱 Extra $1 \mathrm{k} \times 8$ scratchpad RAM for block moving.
livery BSC4 Buffered emulation cable £39 BP4 (TEXAS) Bipolar PROM Module - £190 Prinz video monitor - £99 UV141 EPROM Eraser with timer - $£ 78$ GP100A 80 column printer - £225 GR1 Centronics interface - $£ 65$

Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

Write or phone for more details

DISTRIBUTORS REQUIRED

GP Industrial Electronics Ltd.

Tel: Plymouth (0752) 332961
Telex: 42513
Unit E, Huxley Close, Newnham Industrial Estate, Plymouth PL7 4JN

The lightweight mast with 101 applications

The smoothly operated QTM Mast comes fitted with handpump or can be vehicle mounted with 'Power Pack' for extension and retraction. Available in a range of heights up to 15 metres, the OTM mast can provide the ideal answer
for

- Mobile Radio Telephone
- Police Mobile HO (UHF)
- Field Telecommunications
- Floodlighting
- Anemometer and Wind Measurement

CLARK MASTS

Find out more about the OTM series by writing or phoning:
U.K.

CLARK MASTS LTD. (W W.) Evergreen House, Ringwood Road, Binstead Isle of Wight, England PO 33 3PA Tel Isle of Wight (0983) 6369 Telex. 86686

- Environmental - gas sampling collector - High level photography
- Meteorology
* And a host of other uses
(20

EUROPE
GENK TECHNICAL PRODUCTS N.V.W.W. Woudstraat 21, 3600 Genk Belgium
Telefoon 011-380831
Telex 39354 Genant B

"Instruments for Industry"

This superb range of hand held and beich multimeters offers a unique choice of $31 / 2$ or $41 / 2$ digit specifications and features. Engineering excellence at competitive prices with numerous supporting ac cessories to suit design, pro duction and service needs Now available ex-stock from one of the U.K.'s most experenced electrical measurement specialists. The complete range of Anders instruments and panel meters is described in the "Instruments for Industry" catalogue.

For your personal copy contact:

ANDERS ELECTRONICS LIMITED

48-56 Bayham Place
London NW1 0EU
Tel: 01-3879092. Telex: 27364

WW - 024 EOR FURTHER DETAILS

WW - 065 FOR FURTHER DETAILS

IRVINE BUSINESS SYSTEMS LTD.

KEYBOARDS FROM $£ 95.00$ 12' P31 MONITORS FROM $£ 95.00$

CP/M 2-2 FOR
IBS 750 £ 95.00
DOCS $£ 15.00$

51/4"' TEAC DISK DRIVES 250K FD55A $=\mathbf{f 1 5 9 . 0 0}$ 500K FD55E $=\mathbf{£ 1 8 9 . 0 0}$ IMB FD55F $=\mathbf{£ 2 4 9 . 0 0}$ Subject to Yen fluctuation

SWITCH MODE POWER SUPPLY +5V@7amps
+12V@ 3 amps 80W
$+12 V @ 1$ amp
+12V@1amp

- 5V@1 amp
£79.95

A SINGLE CARD COMPUTER FOR ONLY
the IBS 750 s.b.c.

- 4 MEG Z80 CPU

64KRAM

- 16K PROM
* $5^{\prime \prime} \& 8^{\prime \prime}$ DISK

CONTROLLER
$\star 80 \times 24$ VIDEO GEN

- $2 \times$ SERIALI/O
* $4 \times$ PARALLELI/O
\star IEEE 488 INTERFACE
* KEYboard port
\star HARDWARE RTC
\star MONITOR IN PROM
\star BARE BOARD
AVAILABLE
@ $\mathbf{f 9 9} 95$

NEW BUDGET ACCOUNT $£ 1,000$ INSTANT CREDIT ON ANY PRODUCTS

10% Deposit $+24 \times$ Monthly Payment Credit Limit. A.P.R. 30.6\%
MADE IN IRVINE SCOTLAND BY IRVINE BUSINESS SYSTEMS LTD.

WW - 047 FOR FURTHER DETAILS

AMPLIFIERS

Over the last few years we have received feedback via the general public and industry that our products are from Taiwan, Singapore, Japan, etc... ILP are one of the few 'All British' electronics Companies manufacturing their own products in the United Kingdom. We have proved that we can compete in the world market during the past 12 years and currently export in excess of 60% of our production to over twenty different countries - including USA, Australia and Hong Kong. At the same time we are able to invest in research and development for the future, assuring security for the personnel, directly and indirectly, employed within the UK. We feel very proud of all this and hope you can reap some of our success.
I. L.Potts - Chairman
In keeping with ILP's tradition of entirely self-contained modules featuring, integral heatsinks, no external components and only 5 connections required, the range has been optimized for efficiency. flexibility, reliability, easy usage, outstanding performance, value for money.
With over 10 years experience in audio amplifier technology ILP are recognised as world leaders.

PRE.AMP SYSTEMS
Please send for details.

Module Number	$\begin{aligned} & \hline \text { Output } \\ & \text { Pow } \\ & \text { Water } \\ & \text { rms } \end{aligned}$	$\left\|\begin{array}{c} \text { Load } \\ \text { Impedance } \\ \Omega \end{array}\right\|$	$\begin{aligned} & \text { DISTO } \\ & \text { TiH. } \\ & \text { TYpat } \\ & \text { Thkz } \end{aligned}$		Supply Voltage Typ	Si2e mm		$\begin{aligned} & \text { Price } \\ & \text { inc. } \\ & \text { VAT } \end{aligned}$
HY30	15	4.8	0.015\%	<0.006\%	± 18	$76 \times 68 \times 40$	240	
HY60	30	4.8	0.015\%	<0.006\%	± 25	$76 \times 68 \times 40$	240	¢9.55
HY6060	$30+30$	4.8	0.015\%	<0.006\%	± 25	$120 \times 78 \times 40$	420	¢18.69
HY+24	60	4	0.01\%	<0.006\%	± 26	$120 \times 78 \times 40$	410	¢20.75
HY128	60	8	0.01\%	<0.006\%	± 35	$120 \times 78 \times 40$	410	¢20.75
HY244	120	4	0.01\%	<0.006\%	± 35	$120 \times 78 \times 50$	520	E25.47
HY2a8	120	8	0.01\%	<0.006\%	± 50	$120 \times 78 \times 50$	520	£25.47
HY364	180	4	0.01\%	<0.006\%	± 45	$120 \times 78 \times 100$	1030	£3841
$\mathrm{H}^{+} 368$	180	8	0.01\%	<0.006\%	± 60	$120 \times 78 \times 100$	1030	${ }^{\text {E38,41 }}$

Protection Full load line. Slew Rate: $15 \mathrm{v} / \mu \mathrm{s}$. Risetime: $5 \mu \mathrm{~s}$. S / N ratio: 100 db . requency response (-3 dB) $15 \mathrm{Az}-50 \mathrm{KHz}$. Input sensitivity: 500 mV rms .

Module Number	Module	Functions	Current Required	Price inc. VAT
Hy6	Mono pre amp	Mic/Mag. Carindge/Tuner/Tape/ Aux + Vol/Bass/Teble	10 mA	¢7.60
HY66	Stereo pre amp	Mic/Mag. Cartr dge/Tuner/Tape/ Aux + Vol/Bass/Treble/Balance	20 mA	£14.32
$\mathrm{H}^{\times} 73$	Guilar pre amp	Two Guitar (Bass Lead) and Mic * separate Volume Bass Treble + Mix	20 mA	£ 15.36
HY78	Stereo pre amp	As HY66 less tone controls	20 mA	£14.20

Most pre-amp modules can be driven by the PSU driving the main power amp
A separate PSU 30 is available purely for pre amp modules if required to
5.47 (inc. VAT). Pre-amp and mixing modules in 18 different variations.

For ease of construction we recommend the $\mathbf{B 6}$ for modules HY6-HY $13 € 1.05$
MOSFET MODULES

Module Number	Ourpur Power Watts ITms	Load Impedance Ω	DISTORTION		Supply Voltage Typ	Size mm	$\begin{aligned} & \text { WT } \\ & \mathrm{gms} \end{aligned}$	Price inc. VAT
			t. H.D. Typat 1 KHz	$\begin{gathered} 1, M_{1} \mathrm{D} . \\ 60 \mathrm{~Hz} / \\ 7 \mathrm{KHz} 4: 1 \end{gathered}$				
MOS 128	60	4.8	<0.005\%	<0.006\%	± 45	$120 \times 78 \times 40$	120	
MOS 248	120	4.8	<0,005\%	<0.006\%	± 55	$120 \times 78 \times 80$	$4{ }^{4}$ () ${ }^{\text {a }}$	1.89.80
MOS 364	180	4	<0.005\%	<0.006\%	+55	$120 \times 78 \times 11(1)$	(1)\%	

Protection: Able to cope with complex loads without the need for very special
Sew rate \quad protection circuitry (fuses will suffice).
$20 v / \mu \mathrm{s}$. Aise time: $3 \mu \mathrm{~s}$. S/N ratio: 100 des
Frequency response $(-3 \mathrm{~dB}): 15 \mathrm{~Hz}-100 \mathrm{KHz}$. Inpur senstivity 500 mV in
NEW to ILP' In C_{ar} Entertainments $^{\text {n }}$
C15
Mono Power Booster Amplifier to increase the butput of yout existing car radio
Cery easy to use.
Robust construction
$£ 9.14$ (inc. VAT)
Mounts any where in c
Outpur power maximum 22 w peak into 4Ω
Frequency response $(-3 \mathrm{~dB}) 15 \mathrm{~Hz}$ to 30 KHz , T.H.D. 0.1% at 10 w 1 KHz
S/N ratio iDiN AUDIOI BOdB, Load Imperance 3Ω
pir sensitivity and impedance (selectable) 700 mV rms into $15 \mathrm{~K} \Omega 3 \mathrm{~V}$ rms into 8Ω

C1515
Stereo version of C15
£17.19 (inc. VAT)
Size $95 \times 40 \times 80$. Weight 410 gms .

Model Number	For Use With	Price ine VAT
PSU 72 x	$2 \times \mathrm{HY} 248$	1214
PSU: 73 X	1 * HY364	1 21.4
PSU 74 x	$1 \times \mathrm{HY} 368$	1行品
PSU 74.5	$2 \times \mathrm{MOSO} 2 \mathrm{AK} .7 \times \mathrm{Mus} 30 \mathrm{H}$	1/4

[^1]
TOROIDALS

The toroidal transformer is now accepted as the standard in industry, overtaking the obsolete laminated type. Industry has been quick to recognise the advantages toroidals offer in size, weight, lower radiated field and, thanks to I.L.P., PRICE.
Our large standard range is complemented by our SPECIAL DESIGN section which can offer a prototype service within 7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penatty.
*Gold service available. 21 days manufacture for urgent deliveries.
*Orders despatched within 7 days of receipt for single or small quantity orders.
*5 year no quibble guarantee.

The benefits of ILP toroidal transformers
ILP toroidal transtormers are only hatt the weight and height of ther lammated equivalents and are available with 110 V . 220 V or 240 V primaries coded as to lows.
IMPORTANT: Regulation - All voltages quoted are FULL LOAD Please add regulation figure to secondary vothage to oblain off load voltage

NEW PRODUCTS

HYBRID REGULATOR MODULES

The HR314 and HR614 regulated power supplies provide a constant 13.8 volt d.c. output at up to 3 Amp or 6 Amp respectively. The modules are encapsulated to an integral heatsink and are fully short circuit protected making them suitable for home or bench running of CB, car stereos or any 12 volt d.c. equipment required for many hobby or professional applications.
$\begin{array}{ll}\text { HR314 } & \text { £10.23 inc. VAT } \\ \text { HR614 } & \text { £18.51 inc. VAT }\end{array}$

For 110 V primary insert 0 in place of x in type number
For 220 V primary (Europe) insert 1 in place of X in type nurnbe:
For 240 V primary (Uk) insen 2 in place of X in type number
Also availabie at Electrovalue, Maplin.
TECHNICAL SPECIFICATIONS

MODULE	HR314	HF6614
Output Voltage	* $13.8 \mathrm{v} \pm 5 \%$	+13.8v ${ }^{\text {5 }}$ "
Output Current	Up to 3A	Up io 6a
Current limit (nominal)	3.5A approx	7 A approx
Maximum Input Voituge	- 30 v	-30\%
Minimum Input Voltage	+16v	-16v
Maximum input Voltage for nominal output current	+20v	, 20v
Maximum output current al 30 v input	1.8A jpprox	3.5A approx
Output ripple (100 Hz) See Note 1	10 inV ams	10 mV mms
Size in mm	$76 \times 68 \times 40$ high	$120 \times 18 \times 40 \mathrm{high}$

POWER SUPPLY UNITS: comprising toroidal transformer plus $90 \times 50 \times 55 \mathrm{~mm}$ high printed circuit board containing smoothing and rectification
PSU31X Suitable for running one HR314 at full rated currens. f13.17 inc. VAT PSU56X Sutable for running one HR614 at tult rated current. E19.13 inc. VAT

For 110 v operation insert 0 in place of X - brown primary leads.
220 V (Europe) operation irsert 1 in place of X-pink primary leads 240v (UK) operation insert 2 in place of X - orange primary leads.

For mail order please make your crossed cheques or postal orders payable to ILP Electronics Ltd. Barclaycard/Access welcome. Trade orders standard terms.

WW - 019 FOR FURTHER DETAILS

OPUS Autumn offens

 JVC 14" COLOUR MONITOR OFFER

 JVC 14" COLOUR MONITOR OFFER}

This month's offer is another winner - a consignment of 14" R.G.B. colour monitors manufactured by J.V.C. - at prices never seen before in the U.K
Suitable for use with BBC Micro.

RGB MEDIUM RES £199

Resolution, 370×235. Pixels.
Display, 80 characters $\times 25$ lines. Slot Pitch 63 mm .
Input Video-RGB Analogue with TTL input.
STNC - Separate SYNC on RGB. Features, On/Off switch
with pilot light. Brightness control.
Power $220 / 240 \mathrm{~V} 50 / 60 \mathrm{HZ}$.

RGB HIGH RES £299

Resolution, 580×235. Pixels
Display, 80 characters $\times 25$ lines. Sloth Pitch 41 mm .
Input, Video - RGB Analogue with TTL input.
SYNC - Separate SYNC on RGB.
Features, On/Off switch with pilot light.
Brightness control. Power, 220/240V $50 / 60 \mathrm{HZ}$

* Fast ex-stock delivery.
* 1 year warranty
* Quantity and Educational discounts available.

DISC DRIVE DISCOUNTS

Japanese manufacture.
Slimline * Low Power Consumption

* Ideal for use with BBC, Dragon, etc.

Canon MDD 6106 S/S 40 Track
100 K S.D. 200 K D.D.
£129.95
National Panasonic D/S 40 Track
200K S. D. 400 L D.D.
Cases and Leads as for TEAC.
£159.95

TEAC DISC DRIVES

* Latest technology
* $1 / 2$ height * Fast access time
* Direct drive mechanism
* Hardware $40 / 80$ switchable.

TEAC 55A - S/S 40 Track
100K S.D. 200K D.D. $£ 139.95$
TEAC 55F - D/S 80 Track
400 K S.D. 800 K D.D.
£229
£9.95
Case to hold 1 drive
Dual case with PSU
£39.95
P. Lead $\mathbf{£ 5}$ Ribbon Lead $\mathbf{£ 1 2}$ Dual Ribbon Lead $\mathbf{£ 1 5}$ charge.

The first nationally available dual sided 3" Drive offering 500K. Capacity

* 200K. Formatted S.D.
* 400K. Formatted D.D
* Japanese Manufacture
* Fully compatible with $51 / 4^{\prime \prime}$ Drives
* One touch cartridge loading
* 3 ms . Access time
* Direct Drive

Single Drive * 200K/400K. Only £199
Dual Drive * 400K/800K. Only
£399

FREE

on first 100 orders received
We will supply case and leads free of

MEDIA

Complete with all Leads and ready to run
Case has PSU.

* Dual 200K. Drive
£319.95
* Dual 400K. Drive £349.95
Dual 800 K Drive as illustrated. 40/80 Switchable.

800K
£499.95

ACORN D.F.S. NOW IN STOCK

Ben Motincham - stan 23

Disc Cartridges 1 off
Pack of 5
SEE US AT THE PCW SHOW -
BARBICAN/STAND
BBC MICRO USER SHOW
NOTTINGHAM
*STAND

DPUS CIUPPLIES

158 Camberwell Road, London SE5 OEE
Tel: 01-701 8668 (3 lines)
01-703 6155/6/7
Government and Educational weanime orders welcome

Lynx, Oric, Apple il, Apple III and IBM etc. it's safe to put a cheque in the post today. Because if you find someone who's cheaper, we'll refund the difference.

Editor:
PHILIP DARRINGTON
01-661 3128
Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639
Technical Editor:
MARTIN ECCLES
01-661 8638
Projects Editor:
RICHARD LAMBLEY
01-661 303.9
News Editor:
DAVID SCOBIE
01-661 8632
Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I. 01-661 3130

BARBARA MILLER
01-661 8640

Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN 021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106
IAN FAUX
01-661 3033
Production:
BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director DAVID MONTGOMERY
01-661 3241

The persuaders

In the long term, it will probably be of benefit to the population as a whole to be aware of and familiar with 'new technology'. In a matter of a few years, people will, perhaps, come to accept the use of computers, interactive services, automatic manufacture and all the other aspects of life in the 'eighties. Maybe it will make for a happier life, given that jobs can be found or that the use of enforced leisure can be made productive. But whether a post-Orwell society is to be acceptable or not, it is disturbing to hear that the Government is to spend many thousands of pounds on persuading us that technology is good for us. And it is even more worrying that the money is to go towards the support of university research into the best ways of convincing the population that next year is only coincidentally 1984 -" . . . to secure greater acceptance of new technologies by developing their positive aspects and minimizing their negative aspects . . ." in the words of a DTI report.

Their new role of advisors on the techniques of public relations may possibly cause some of the researchers furiously to think. While it is generally conceded that the practical application of research is nowadays a praiseworthy object - in additon, of course, to pure research in the accumulation of knowledge with no immediate application - it is a legitimate view that scientists ought to be concerned rather more with defining the truth than with assisting the Government to manipulate it.

The acceptance or otherwise of technology by the public is a matter for the public itself to decide. Teach them the benefits, by all means, but do not try to conceal - "minimize" - the drawbacks. A home computer may well fill the leisure time of a lathe operator with transports of delight, gaining a whole-hearted convert to the concept of information technology. But when he discovers that just such a computer is going to operate his lathe and make him an ex lathe operator, he will not find it easy to listen to anyone wanting to minimize the negative aspect of his experience. He might even express the opinon that someone could, perhaps, have mentioned the possibility of redundancy to him before the event, instead of accentuating the positive and eliminating the negative.

What these social science researchers are being asked to do is suspect and should be examined very carefully before research contracts for the Government are taken on. The very most a scientist should do in these circumstances is to investigate the possible consequences of a comprehensive embrace of technology in all human activities and to lay the options before the public. Once the facts and all the prognoses are present, we need no accentuation or minimization of the truth to help us decide what kind of society we wish to live in. To suggest otherwise is to credit politicians with the possession of greater wisdom than 60 million of the rest of us - a proposition which some may be disposed to question.

Pure and applied

Recently the Royal Society organized a valuable one-day colloquium on research that brought together some 70 engineers, scientists and academics whose work contributes to either the commissions of the International Union of Radio Science (URSI) or the more down-to-earth study groups of the International Radio Consultative Committee (CCIR). This could be the forerunner of annual meetings to bring these pure and applied groups into closer touch with each other's work and objectives.
Whether such laudable aims will ever be met fully remains to be seen. The meeting made evident how wide a gap currently exists between research scientists and those concerned with the practical operation of systems for telecommunications, maritime and aeronautical radio, military systems and broadcasting. Neither side seems happy with the way the spectrum is parcelled out and the pecking order of research projects.

It is also clear that the impact of digital techniques is tending to distort the pattern of university and industrial training. Several speakers spoke of a growing shortage of radio-frequency and radio-propagation specialists, resulting from students and teachers preferring the mathematical certainties of digital electronics to the more vague, but often more challenging, analogue systems. Then again, r.f. propagation studies and research projects tend to involve time-scales appreciably more than three years and cannot be easily fitted into university courses.

The academics are also frustrated because the decisions of CCIR, spectrum regulation, etc. are seldom determined by the solutions of pure science, even when available, but more often by political and commercial considerations on the principle of 'the least objectionable to the greatest number'. Several speakers referred to the great gulf that exists between radio physics and practical applications. The academics stressed the difficulty of providing input to CCIR and other international groups. Those who cannot afford to attend the long CCIR meetings find their thoughts are overshadowed by "strong characters with their own pet ideas." Input from nonattenders is often wasted.

Using millimetres

Several of the speakers at the Royal Society meeting concentrated on the renewed interest in utilizing frequencies between 30 and 300 GHz , though paying tribute to the early pioneers such as Bose in India who carried out some surprisingly sophisticated work in the era of spark transmission. There was also renewed interest during the period 1947 to 1978 for the proposed tele-
communications trunk waveguide system, involving frequencies between 30 and 110 GHz , finally abandoned in 1978 in favour of optical fibres.

Free propagation is much affected by the absorption bands though, perhaps surprisingly, communications interest is often concentrated on the frequencies with especially high absorption. Such frequencies are ideal for short-range covert communications links that effectively are immune to detection, interception or jamming.

In a review of British and European firms working on millimetric components and systems, Patrick Sargeaunt (Marconi Research Centre) mentioned EMI at Wells, GEC Hurst Laboratories at Wembley, Philips at Redhill, Plessey at Caswell, EEV (magnetrons), etc. Systems work includes 25 GHz satellite systems (GECStanmore), 35 and 95 GHz radar (EMI, Decca, Marconi, British Aerospace), 30 GHz British Telecom links, 40 GHz AEGTelefunken railway communications, 30 900 GHz modelling techniques (EMIWells), $300-500 \mathrm{GHz}$ receivers (ESA) and measurement techniques up to 1 THz at NPL.

Aerial puzzles

Almost every m.f. broadcasting station uses some variation of the vertical monopole aerial, with either a single omnidirectional element or a directional phasedarray, based on the classic work of Dr George Brown and his RCA colleagues in the 1930s. For h.f./v.h.f. communications, the quarter-wave element is often raised and the ground system of up to about 120 buried earth radials replaced by a few elevated and insulated radials.
One would have imagined that by now both theory and practice of such aerial systems would have been fully and unambiguously developed. Yet recently a surprising number of controversies have arisen.

For example, Archibald Doty, together with two other retired engineers in the USA, has shown the advantages of the once-popular "counterpoise" or elevated ground-screen, noting that the currents flowing in buried radials are not, as conventionally postulated, uniform but depend upon ground conductivity in the immediate vicinity of the individual wires. Les Moxon has similarly shown the value of counterpoise systems and has also drawn attention to the common misconception that the input impedance of a groundplane antenna with horizontal radials is 36 ohms, the same as for grounded monopoles with an extensive earth system; he notes that Brown's original papers showed clearly that the correct figure was nearer 18 ohms, though this was subsequently overlooked in many later standard text books.

In IEEE Trans. on Broadcasting (Vol. BC-29, No 1, March, 1983) Wright, Klock and Jubera show that the feed impedances of practical m.f. broadcast monopoles often vary greatly from the theoretical value. They have been able to prove that much of this variation is due to the effect of guy wires, previously not taken into consideration in calculating the impedance.

Helically-wound loops

For many years there have been determined efforts to improve the radiation efficiency of miniature h.f. transmitting aerial elements. Loading coils, top-hat capacitances, folded elements, ferrite-loaded elements, single-turn and multi-turn small loops, the normal-mode helix: all these and other techniques have been used with some degree of success, but all imposing compromises.
In theory any element, no matter how small in terms of wavelength, can radiate all the power fed to it; in practice severe difficulties are experienced in feeding energy into a short element without losing most of the energy in the coupling networks, incurring significant power losses due to the very low radiation resistance relative to ohmic losses, and the narrow bandwidth of high-Q elements.
Alec Clelland, DJOFL/G3UUQ, has drawn my attention to a recently published European Patent Application (EP 0043 591 A1) by James F. Corum of West Virginia. This covers a large family of aerials based on the reduction in size of a fullwave loop element by winding it helically in the form of a torus. The conductor is configured to establish a closed standing wave path to inhibit the velocity of propagation and support a standing electromagnetic wave. The inventor claims that although such elements can have a much smaller physical size than existing aerials they possess greater radiation resistance and hence greater efficiency than conventional loop aerials of similar size, and can radiate controllable mixtures of vertically, horizontally and elliptically polarized waves. He describes practical examples of such aerials for use from l.f. to v.h.f., using circular and square loops for broadcast, communications, amateur radio and c.b. frequencies. Bandwidth, however, would appear to remain restricted.

Hazards

The American Center for Disease Control, Atlanta, has recently warned that many r.f. dummy loads manufactured as recently as the late 1970s used cooling oil containing polychlorinated biphenyls (PCBs), a man-made chemical that has been linked with liver cancer. Even fumes from a hot-running load are stated to be dangerous in poorly ventilated situations.

PCBs were used in the UK for about 40 years until 1977 in oil-cooled transformers, high-voltage and fluorescent-lamp capacitors, dummy loads, etc.

A legal battle in New Jersey is centred on the question of possible health hazards from hand-held transceivers. General Electric (US) is being sued by the father of a 14 -year-old boy, who alleges negligence in not providing the warning recommended by the US federal government in 1973. If the claim succeeds, American amateurs fear the case could be used as a basis for local authority legislation that might severely restrict the use of handheld amateur radio. It is generally believed that hand-portables with an output of less than about 5 watts can be used without risk, even with short normal-mode helix aerials not far from the eyes.

Aerial tower restrictions in Burbank, Illinois are being legally contested by radio amateurs on the grounds that they represent a violation of constitutional rights of free speech and civil rights.

Here and there

An American study by International Research Development foresees the development of combined power and fibre optics cables which would carry into homes not only tv programmes and all interactive telecommunications but also electric power. The power cable would provide the necessary supportive package for the fragile glass fibres.
An investigation by NHK of Japan into the feasibility of introducing s.s.b. into h.f. broadcasting suggests that in a transitional period the carrier could be reduced by 6 dB to permit continued use of envelope detection. Later 12 dB suppression would be used with synchronous detection. Tests over various paths have underlined the advantages of s.s.b. including lower susceptibility to selective fading distortion. Carrier suppression of more than 12 dB , however, would lead to degradation of quality due to the difficulty of achieving proper carrier extraction for synchronous demodulation.
Recently I reported the use by 50 American stations of the Harris linear a.m.-stereo system: by early summer the number had risen to 67, but the more interesting development is that this includes 10 m.f. stations in Australia and New Zealand, and also Radio Mundo Brazil.

RCA chairman, Thornton F. Bradshaw, has established a $\$ 100,000$ grant for the electrical engineering department of Purdue University in memory of television pioneer Dr Vladimir Zworykin who died last year at the age of 92 . Zworykin received more than 120 U.S. patents ranging from television to medical electronics.

Return to Post Office

On the day following the publication of the Merriman Report, the Department of Trade and Industry announced the transfer, from September 19, of amateur radio licensing to the Post Office from the Radio Regulatory Division, now part of DoTI. This is expected to lead quickly to computerization of the records and to reduce the time in dealing with applications to a maximum of ten days at peak times and five days normally. Applications will be processed by post when sent to: Radio Amateur Licensing Unit, Chetwynd House, Chesterfield, Derbyshire S49 1PF (telephone Chesterfield (0246) 207555) who will also issue the application forms. Amateur radio was administered by the Post Office for many years until the setting up of the short-lived Ministry of Posts and Telecommunications.

While most amateurs, particularly those who have recently passed their RAE, will welcome the promised speed up in licensing process, there is some fear that this change is a further step towards making amateur radio 'up-market c.b.' as a form of revenue-collecting, leisure-time hobby rather than at least to some degree a self-training and experimental service of technical investigations in support of radio science and technology. The vast increase in licences over the past decade to 48,000 reflects the introduction of the Class B v.h.f.only licence and the multi-choice form of RAE, combined with the complete absence in the UK of any form of incentive licensing.
With the majority of its licensed members now holding the Class B licence, RSGB policy appears to be changing. The 1983 president Don Baptiste, CBE, is on record as stating "the Class B permit is in no way to be regarded as inferior to the Class A version but simply reflects an interest in v.h.f./u.h.f. technique rather than in h.f.-bands communications". The Society claims there is "little or no demand" for a novice licence intended to encourage training in Morse. A number of Class B members are lobbying for the society to support code-free licences for h.f. operation.

85% of "optimum"

In the August "Letters to the Editor", Paul Thompson suggested that I was mistaken in believing that the Woodpecker roughly follows the m.u.f., and thought it more likely that the troublesome over-the-
horizon radar follows the "optimum traffic frequency" (f.o.t.). While I am not privy to the Russian procedures, I believe this suggestion arises from a common misconception of the definition of f.o.t. Far from being a true "optimum frequency" it is a purely notional frequency, usually taken as 85 per cent of the m.u.f., in order that h.f. communications links are not disrupted by the considerable daily and hourly variations and errors in the predicted values of the m.u.f. A frequency-agile system such as the Woodpecker, that disregards IFRB frequency assignments and Radio Regulations, would clearly be made more effective by keeping as near to the m.u.f. as possible. It is indeed a typical piece of misplaced engineering jargon that defines f.o.t. as the optimum frequency!

There is, however, an important exception to the idea that one should always use the highest possible frequency for a specified path. This is for around-theworld "long-path" transmissions where using the daylight m.u.f. may result in much less favourable propagation than using a "darkness" or grey-line chordalhop path at much lower frequencies. A good example is to be found in using 10 or 14 MHz bands to contact Australia in the European mornings even when the daylight m.u.f. may well be above 21 MHz .

In brief

Headquarters station of the RSGB at Potters Bar, normally GB3RS, is additionally using the call GB3WCY (World Communication Year) on Friday afternoons until the end of 1983 , mostly on the 7 MHz band

American amateurs are no longer legally required to keep a detailed station \log, one result of F.C.C. "deregulations"

Ray Cracknell, Z22JV, beacon operator and transequatorial propagation pioneer, whose efforts to renew his British amateur licence were noted in the July issue is, after all, being granted his old G2AHU licence without having to take the RAE and Morse test . . . The next Radio Amateurs Examinations will be on December 5, 1983; March 19 and May 14, 1984 . . . RAE courses and/or Morse classes are starting this September in a number of further education centres, etc. RAE classes at Basildon, Birmingham, Colwyn Bay, Crawley, Derby, Dudley, Durham, Heckmondwyke, London (Acton and Brixton), Manchester, Melton Mowbray, Newcastle-upon-Tyne, Newquay, Nottingham, Orpington, Morley, Portsmouth, St Austell, Stamford, Turnford, Walsall, Wakefield and Witney; Morse classes at Bromsgrove, Cheshunt, Grantham, Heckmondwyke, London (Acton, Beckenham) and Manchester . . . The Midlands VHF Convention will be held at the British Telecom Training School, Stone, Staffs on Saturday, October 15

PAT HAWKER, G3VA

Strain-gauge weighing scale

A range of 0.1 g to 1 kg , with a high degree of linearity and low drift, is obtained from a novel, simply made load cell and an improved d.c. amplifier. The instrument will also measure temperature, using a thermocouple.

The old familiar swinging arm balance has now almost entirely disappeared from our shops and laboratories, to be replaced by electronic weigh scales with fixedposition pans and digital displays, a change which will be regretted by very few of those who have to use them in the course of their work. Such a scale is a very convenient thing to have around the house - though at the moment, rather expensive.

Since one of my hobby interests is photographic chemistry, in which the weighing out of chemicals for various processing solutions is a frequent activity, my thoughts have turned from time to time towards the construction of such an instrument. In the consideration of this, my view has been coloured by the relatively limited facilities and skills which are at my disposal in the mechanical field, and the solution which I have adopted has therefore tended to favour electronic rather than mechanical complexity. Manufacturers would choose a different compromise - but then they are not contemplating a one-off exercise.

The basic elements of an electronic balance, to give it its more usual name, are a load cell, some form of electronic amplifier having zero and gain adjustment facilities, and a digital display system. Since digital display elements are now readily available commercially, at a sensible price, this part of the task presents no problem. The load cell is a different matter, alas, and my own searches through manufacturers lists did not disclose any suitable cell at less than several hundred pounds in cost, which would defeat the purpose in mind.

The methods available for determining the weight of a body placed on a weighing pan fall into three broad categories; a simple strain gauge load cell; a pan suspended on a spring mount with a linear displacement transducer attached to the suspension so that the displacement under load produces a suitable signal output; and a force balance of some kind, such as an electrically energised solenoid in which a magnetic plunger is held against the applied load by electromagnetic force, its position being held substantially constant by some closed-loop servo-system based on a position sensing element, which

by John L. Linsley Hood

increases the current through the solenoid, as the load increases, to maintain the status quo.
Other systems have been employed for this purpose, such as those based on a resonant element whose period of artificially sustained low-level oscillation changes as the mass on the weighing pan is altered, but the three listed above represent the main stream of electrical weighing systems.

Of the methods listed, undoubtedly the spring system with a displacement transducer would have the greatest ability to withstand overloads and misuse, but of the non-contacting displacement transducers, the linear differential transformer is the most suitable, and this is an element which would be difficult to construct for oneself while preserving adequate linearity. The idea of using a differential grating, with a photocell, and simply counting the alternating cycles of light and dark was a beguiling one, but the finest grating easily available (old Dufaycolor reseau) offered only $40 \mathrm{l} / \mathrm{mm}$, and if a range of $10,000: 1$ or even $1000: 1$

Fig. 1. Wire load-cell principle. Anchor ring A is fixed, B and C move and vary tension on wires.

Fig. 2. Connexion of wire elements to form Wheatstone bridge.
was sought, the displacement would need to be substantial, with consequent problems of linearity.
Similarity, with a desired maximum load of 1 kg , a suitable solenoid for a force balance would need to be a massive one. I therefore returned to the consideration of possible strain-gauge systems which might possibly meet the basic specification of a measuring system which would operate over the range $0-1 \mathrm{~kg}$, with a possible resolution of 0.1 g . To avoid the need for any sophisticated engineering in the suspension system, it was desired that there should be no moving or pivoted elements, and that the total suspension should be of the taut wire form.

These considerations led to the evolution of the structure shown in Fig. 1. In this a pair of fixed members A-A served as anchor points for resistance wire elements MM, NN, SS, TT, connected to the central movable bushes B and C urged outwards to tauten the wire elements by the tensioning screw Z. Under a

Fig. 3. One side of load cell. Where wires $M M$ and $N N$ cross, plastic film used for insulation.

Fig. 4. Completed cell.
downward load W, the elements $M M$ and NN become less taut, and the elements SS and TT become tighter. If then, the four elements are connected in the Wheatstone bridge form shown in Fig. 2, there is a resultant electrical unbalance, and a measurable output voltage if a load is applied to B-C.
In a practical form, the member A-A is an annular ring and B and C are smaller discs mounted in the centre of this, as shown in the plan view of Fig. 3. In the prototype, the strain gauge element was made from a 4×4 in square of $3 / 8 \mathrm{sin}$ 'Perspex' sheet, from which the outer ring, 4 in o.d., and 3 in i.d., and the two inner bushes each $3 / 4$ in o.d. were cut. A series of 141.3 mm holes was then drilled, uniformly around the periphery of the inner bushes, and a corresponding series of 12 similar holes, plus two pairs of tapped holes to hold solder tags, was then made in the outer ring, so that the whole could be strung with resistance wire, as also shown in Fig. 3. The wire starts and finishes at the solder tags and is looped around standard Vero type solder pins inserted into the holes, and anchored there by applying a hot soldering iron to the head of the pins so that they move inwards under the influence of the applied heat and pressure, and cause the softened Perspex to grip them firmly, when it cools.

The mechanical structure of this load cell is shown in Fig. 4, and the central bushes, in 'exploded view', in Fig. 5. The tensioning screw ' Z ' was made from an 0BA cheese-head screw, on to the head of which a piece of $1 / 4$ in brass spindle was soldered, with a screw slot on the lower end to allow it to be rotated to tension the wire elements.

After some inward debate, supported by experiments, it was decided to make the wire elements from 44s.w.g. Nichrome, obtainable (if one is patient) from the Scientific Wire Co, of London E4. Strain gauges are usually made from one of the zero temperature-coefficient $\mathrm{Cu}-\mathrm{Ni}$ alloys, such as 'Eureka' or 'Constantan.' However, Nichrome has a higher specific resistance, which is helpful, and is very much stronger, which avoids the aggravation of the wire breaking during the threading up.
A relatively crude test suggested that the breaking strain of the 44 s.w.g. Nichrome is in excess of 1 kg , so that if the angle of the wire elements to the horizontal is 20°, and there are 28 of these bearing the downward load, the cell should carry $28 . \sin 20^{\circ} \mathrm{kg}$ (less the pretensioning force, say 1.2 kg) before rupture. Since this is some 8.3 kg , it would appear that the structure would be adequately strong for its purpose. As even finer wire, such as 46s.w.g., would undoubtedly be usable, with a higher gauge output, if the awkwardness of handling such a fine wire could be tolerated. Some form of jig such as shown in Fig. 7, to hold the central bushes in position is essential during threading up, and some care must be exercised both to ensure that the loops of wire sit against the Perspex at the base of the pins, and that the threading tension is

Fig. 6. Pan mounting. Coupling pin is pointed to ensure load is applied vertically when object in pan off-centre.

Fig. 8. Layout of instrument.
between a conical hole in the centre of the top plate and the bottom of the hole drilled in the tensioning screw, as shown in Fig. 6. The top plate itself is then held against lateral movement by a 'spider' made from three webs cut from 0.002 in brass shim, anchored at the edge of the plate in which a suitable aperture has been cut to allow the upper scale plate to be accessible.

In my own instrument, the circular strain gauge, the electronics, power supply and display unit were mounted in a $8.5 \times 5.5 \times 2$ in diecast box, with the top balance plate and coupling linkage housed on top of it, as shown in Fig. 8. Although I feel that the choice of the positions within the box in which the separate components are to be mounted can well be left to the judgment of the constructor, the layout which I adopted was to have the display element mounted at the front of the upper face, with the main zero-adjust knob below this. The other controls were grouped on the right-hand side of the box, for the convenience of a right-handed user, and some space was left at the rear for a small, internally screened, compartment to house the power supply transformer, rectifiers and reservoir capacitors. This then left an unoccupied left-hand wall on which the small electronic amplifier panel, assembled, on a piece of 0.1 in perforated 'Vero' strip. board, could be mounted on short, threaded stand-off pillars.

The unit was then finished, mechanically, by four stick-on rubber feet on the detachable lid which forms the base of the lower box, and a disc of cork was then stuck on to the upper pan plate to provide a small degree of mechanical shock isolation to the strain gauge element from items dropped upon the pan.

Electronics

As mentioned above, my deliberate choice in this design was to use the simplest practicable mechanical load measuring element and to accept the extra complexity which this would impose upon the electronic circuitry used with this. Inevitably, the problems in d.c. amplification, from such low-output signal levels as those from a strain gauge bridge,

Fig. 9. Negative supply mirrors fluctuations in positive line.
centre around the presence of zero drift. With modern i.c.s, this need not be due to inadequacies in the d.c. amplifier itself, but will arise in respect of the input signal.

The inevitable difficulty due to differential thermal effects upon the resistance wires of the load cell has already been mentioned. This can only be minimized by restricting air movement within the weigh scale housing, by using a well-sealed container box, and within the strain-gauge element by the use of thin polythene diaphragms interleaving the windings to diminish internal air cooling effects. Fortunately, in my experience using the prototype, this only affects the long-term zero setting, which is adequately stable during any one weighing for the

Fig. 10. Improved d.c. differential amplifier.
beginning and end zero readings to be the same within the $\pm 0 . \lg$ basic uncertainty of the reading.
However, there is a more insidious difficulty, due to random excursions of the voltage of the + and -5 V supply lines. With a $2 \mathrm{mV} / 100 \mathrm{~g}$ bridge sensitivity, the required 0.1 g zero stability represents $2 \mu \mathrm{~V}$. Using the standard $\pm 5 \mathrm{~V}$ i.c. regulators as the basic bridge supply brought home to me that random fluctuations of a few mV in their output potential, could represent common-mode voltage swings of a few mV at the output terminals of the bridge. To achieve the

Fig. 11. Complete circuit diagram.
required input voltage stability of better than $2 \mu \mathrm{~V}$ demanded a common-mode rejection capability from the d.c. amplifier of some $70-80 \mathrm{~dB}$. This was much greater than attainable from a low-drift op-amp used in the conventional differential amplifier mode. The first improvement in the performance of the system was therefore made by the use of a separate d.c. supply system for the negative line, shown in Fig. 9, in which the operation of the circuit is such that a negative supply is generated which closely matches, in opposite polarity, any random excursions of the positive supply line, as seen at the strain gauge bridge pick-off point at the junction of R_{12} and C_{10}.
The second circuit improvement relates to the design of the d.c. differential amplifier itself, shown in Fig. 10. The

normal 'instrumentation amplifier' layout employs two i.cs (as IC_{1} and IC_{2}) arranged to have a high gain to signals applied differentially to their inputs, but only unity gain in respect of signals applied equally to both. A third i.c. op-amp is then used as a differential amplifier to reject the residual common mode output.

Unfortunately, it is impracticable to employ negative feed-back around such an op-amp differential amplifier without making the two inputs unsymmetrical, so that there is a higher gain from the noninverting input than from the inverting one. Conventionally, this shortcoming is remedied by inserting an attenuator network in the non-inverting input limb, but this would only work for a fixed-gain stage as the differential amplifier, and would preclude the use of this stage as an active integrator to slug the response of the circuit to unwanted l.f. noise.
In the improved arrangement shown, an additional inverting stage $\mathrm{IC}_{3(\mathrm{a})}$, ($1 / 2$ LF353) is inserted in one of the output limbs from the input differential amplifier pair, so that $\mathrm{IC}_{3(\mathrm{~b})}$ can be used as a summing amplifier, in which commonmode signals, now presented in opposition, will cancel at the 'virtual earth' input point, while differentual signals will be added at this point. There is then no difficulty in making the gain of $\mathrm{IC}_{3 \text { (b) }}$ adjustable to provide for a full scale calibration adjustment on the $0-100 \mathrm{~g}$ scale, and in putting a suitable value integration capacitor $\left(\mathrm{C}_{7}\right)$ across this i.c. to give a suitably 'dead-beat' response to the weigh scale reading. (This is advantageous when weighing up chemicals by pouring them into the pan, since they are likely to be lumpy, which would give an apparently jerky character to the meter reading.)
The $0-100 \mathrm{~g}$ and $0-1 \mathrm{~kg}$ scales are switched by an output attenuator on the output of $\mathrm{IC}_{3(\mathrm{~b})}$, rather than by switching VR_{4}, to avoid shifts in the d.c. zero from one range to the other. If suitable facilities are available for determining resistor values, R_{20} and $V R_{5}$ could be replaced by a fixed $1 / 10$ resistive attenuator. With the 0 0.1999 V digital panel meter unit employed, it was possible to switch the decimal point so that the 100 g range read 100.0 g and the 1 kg range read 1000 g , as the scale was switched.
A small $6 \mathrm{VA} 6-0-6 \mathrm{~V}$ mains transformer powers the unit, feeding a pair of 5 V i.c. voltage regulators to provide a stable voltage line for the i.cs and the bridge, unaffected by mains voltage fluctuations, and a l.e.d. is fed from the positive 5 V line to warn that the unit is on.
Any convenient and suitable transistors can be used for Tr_{1} and $\mathrm{Tr}_{2}, \mathrm{IC}_{1}$ and IC_{2} should be a low-drift, low-noise i.c. type. In the prototype I have used the excellent OP-27 types, available from Precision Monolithics Inc., (Bourns in UK) because I had a pair of these to hand, though there is little doubt that other, less expensive, instrumentation type low-drift operational amplifiers, such as the LM725, would serve equally well. With these i.cs, the zero stability, with both inputs taken to 0 V , is well within the 0.1 mV output
requirement over a period of 24 hr , which vindicates the original decision to use a d.c. energized bridge, in that the residual problems due to differential thermal effects in the strain gauge would be present equally in an a.c. energized system. The d.c. systems avoids difficulties due to inadvertent signal coupling through wiring stray capacitances. The circuit of the complete weigh-scale amplifier is shown in Fig. 11.

Temperature compensation

Although the bridge system is very nearly fully symmetrical, inadvertent asymmetries in the mechanical construction, coupled with the physical changes, due to thermal effects, of the structure of the load cell, lead to a negative temperature coefficient in the prototype of some $5 \mathrm{~g} /{ }^{\circ} \mathrm{C}$. A first-order compensation for these is provided by the thermistor/resistor network across the limb of the bridge feeding the non-inverting input.

Use and setting up

As indicated earlier, it is probable that one's first attempt(s) at wiring up the strain gauge element will be less good than those made when one has gained a little more familiarity with the problems involved in getting the wires to sit in the required positions, and with uniform tension when the tensioning screw is tightened. Fortunately, with a suitable jig to hold the separate parts of the strain gauge while the wire is applied, it doesn't take too long to pull it apart and try again. So, it is sensible to build the electronic amplifier and power supply unit before one makes the load cell so that this can be tested after it has been assembled.
A slightly disconcerting effect, initially, is the way in which the output signal will vary up and down, in a random manner, after the tensioning screw is adjusted, or readjusted, as the tensions in the individual wires in the strain gauge rosette
accommodate to one another by slipping round the anchoring pins. The process can be speeded up a bit by gently tapping the tensioning screw, but ultimately one must just be patient and wait a few hours for the load cell to settle down again. This accommodation of the individual wires to a state of uniform tension is also responsible for the hysteresis (failure of the gauge to return to zero after a load has been applied and removed) which is an annoying feature commonly found in freshly constructed load cells. Normally this effect will progressively lessen as weights are applied and removed during the calibration process of setting VR_{4} and VR_{5}, for appropriate f.s.d. readings.
If hysteresis persists, one must conclude, with regret, that the strain gauge cell has not been built adequately well, and have another go. In the prototype, the hysteresis is now, after some time in use, of the order of 0.2 g following an applied load of 200 g . I have, I think, in the course of developing the prototype, rebuilt the load cell five times, though some of these were in the pursuit of hoped-for design improvements. I still have the feeling that I could make it a bit better, to equal the performance given by one of the earlier versions, where I had got the wire tension particularly uniform.

The static tension applied to the wires by the tensioning screw should be adequate to make the gauge linear over the range of loads which it is desired to apply: further tightening is of no benefit.

In use, the zero adjust pot. VR_{1} and the fine zero adjust pot. ${V R_{3} \text {, both of which }}$ are 10 -turn types, should be set to a position near to their mid point. The 10R coarse zero-adjust pot. $\left(\mathrm{VR}_{2}\right)$ should be adjusted, slowly, until the reading is somewhere within $\pm 100 \mathrm{gms}$ on the 1 kgm scale range. The zero set pot. VR_{1}, in parallel with VR_{2} can then be adjusted to set the meter reading within the $\pm 2 \mathrm{gms}$ range covered by the fine zero control,

Fig. 12. Stability is such that temperature measurement can be carried out. Circuit shows offset voltage source and input switching.
which is the normal operating zero control of the instrument.
The linearity of the prototype, when checked against a set of good-quality chemical balance weights, was within 0.2% over the range $0-250 \mathrm{gms}$, with the major contribution to this being the small remaining hysteresis. It is probable, therefore, that the scales could be set up adequately by pouring a measured quantity of water into a suitable vessel mounted on the weighing pan, in the absence of appropriate calibrated weights, without incurring unacceptable errors in intermediate readings.

Adjusting temperature compensation

As mentioned above, because the final strain-gauge load cell, in the prototype, was not completely symmetrical, there is a
residual long-term sensitivity to changes in ambient temperature, which require the zero to be reset more often, in day to day use, than is desirable. A simple thermistor compensation circuit is therefore connected across the +3.4 V supply and an input to the amplifier. (Which input is required will depend on the final straingauge temperature characteristics, which will depend on its construction.) The easiest way to adjust the trimmer resistor VR_{6} is to put the whole instrument in a refrigerator, and then, after removal, as it warms up to room temperature, adjust VR_{6} so that the scale reading drifts neither up nor down.
The total power consumption of the instrument is less than 2 watts, and there is no detectable change in the temperature of the housing, compared with the ambient, over a 12 hour period. To prevent errors due to air currents entering the instrument
through the exit hole surrounding the load cell shaft, a thin polythene diaphragm is fixed under the top load plate to seal the unit. If it is desired to turn the instrument over, for access to the electronics, the lid of the upper box, carrying the load plate and its coupling pin should be removed to obviate possibly heavy loads being applied to the load cell, which might affect its calibration.
The gain and stability of the amplifier unit is sufficiently good for the instrument also to be usable, with a copper/constantan or chromel/alumel thermocouple inpur, $\left(40 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ as an accurate digital thermometer, provided that a suitable switching input socket is employed, and an appropriate temperature-dependent offset voltage source to act as a 'cold junction' reference is provided. A suitable circuit is shown in Fig. 12.

VNO

Wheelchair word-processor

This communication aid for the disabled is not an entry for our competition, but it does show the sort of results that can be achieved by volunteers working to a restricted budget. Designed for those whose faculty of speech is impaired or perhaps lacking altogether, the Writing Box can be produced in a variety of configurations to match the needs of the individual user. The device is the work of a non-profitmaking group in Belgium and cost around $£ 300$.
The liquid-crystal display shows four lines of 40 characters, while for longer texts there is memory capacity for up to

6500 characters. Writing and editing is possible using a keyboard, although users with a lesser degree of dexterity can choose from a range of unusual input devices including foot switches, eye-movement detectors, blow pipes and sound-operated switches.

The fourth line of the display can act as a menu to help in obtaining the right characters; and a subtle feature of the unit is the capability for storing and displaying messages defined by the user. For example, three switch-pushes might produce "lift me up a bit, please". In addition to this, there is a word memory
holding up to 500 longer words which can be adapted to the requirements of the individual: words which would normally call for 14 or more pushes can thus be produced with four or five.

For more elderly patients there is another mode of operation, simpler to use but slower; and for children who have not yet learned to read there is even a sort of video game designed to familiarise them with the box and its method of operation.

The output of the box is available in RS232 serial code for connection to a printer. Power comes from a built-in rechargeable battery giving 11 hours of continuous operation and the unit has an energy-conserving standby mode to which it reverts when not in use.

Precision preamplifier

Abstract

Many designers have not, until recently, considered op-amps a suitable choice for preamplifier designs of the very highest quality. Newer types now obtainable have changed this and Doug Self's new design exploits the 5534 op-amp

Until relatively recently, any audio preamplifier with pretensions to above-average quality had to be built from discrete transistors rather than integrated circuits. The 741 series of op-amps was out of the question for serious audio design, due to slew-rate and other problems, and the TL071/72 types, though in many ways excellent, were still significantly noisier than discrete circuitry. In an article some years ago ${ }^{1}$ I attempted to show that it was still feasible to better the performance of such devices by using simple two or threetransistor configurations.

The appearance of the 5534 low-noise op-amp at a reasonable price, has changed this. It is now difficult or impossible to design a discrete stage that has the performance of the 5534 without quite unacceptable complexity. The major exception to this statement is the design of low-impedance low-noise stages such as electroni-cally-balanced microphone inputs or moving-coil head amplifiers, where special devices are used at the input end.
5534 op-amps are now available from several sources, in a conventional 8-pin d.i.1. format. This version is internally compensated for gains of three or more, but requires a small external capacitor (515 pF) for unity-gain stability. The 5532 is a very convenient package of two 5534s in one 8 -pin device with internal unity-gain compensation, as there are no spare pins.
The $5534 / 2$ is a low-distortion, low-noise device, and a typical audio stage could be expected to generate less than 0.005% t.h.d. over the range $1 \mathrm{kHz}-20 \mathrm{kHz}$, leaving the residual distortion lost in the noise of all but the most expensive analysers. Noise performance obviously depends partly on external factors, such as source resistance and measurement bandwidth, but as an example consider the moving-magnet disc input stage shown in Fig. 3. When prototyped with a TL071, the noise (with a 1 k resistor input load) was -69 dB with reference to a 5 mV r.m.s. 1 kHz input. Substituting a 5534 improved this to -84 dB , a clear superiority of 15 dB .
Another advantage of this device to the audio designer is its ability to drive lowimpedance loads (down to 500 ohms in practice) to a full voltage swing, while maintaining low distortion. This property is much appreciated by studio mixer designers, whose output amplifiers are still expected to drive largely fictitious 600 ohm loads. As a comparison, the TL071 is only good for loads down to about $2 \mathrm{k} \Omega$.

Architecture

As explained in a previous article ${ }^{1}$, the most difficult compromise in preamp. design is the distribution of the required gain (usually at least 40 dB) before and after the volume control. The more gain before the volume control, the lower the headroom available to handle unexpectedly large signals. The more gain after, the more the

by D. Self

noise performance deteriorates at low volume settings. Another constraint is that it is desirable to get the signal level up to about 100 mV r.m.s. before reaching the volume control, as tape inputs and outputs must be placed before this. The only really practical way to get the best of both worlds is to use an active gain-control stage - an amplifier that can be smoothly varied in gain from effectively zero up to the required maximum.
If the input to the disc stage is a nominal 5 mV r.m.s. (assumed to be at 1 kHz throughout the avoid confusion due to RIAA equalization) from either movingmagnet cartridge or moving-coil head amp , then 26 dB of gain will be needed to give the 100 mV which is the minimum it is desirable to offer as a tape output. This can easily be got from a single 5534 stage, and taken together with the supply rails $(\pm 15 \mathrm{~V})$ this immediately fixes the disc input overload at about 320 mV r.m.s. A figure such as this is quite adequate, and surpasses most commercial equipment.
One must next decide how large an out-
put is needed at maximum volume for the 5 mV nominal input. 1 V r.m.s. is usually ample, but to be certain of being able to drive exotic units to their limits, 2 V r.m.s. is safer. This decision is made easier because using an active gain-control frees us from the fear of having excessive gain permanently amplifying its own noise after the volume control. Raising the 100 mV to this level requires the active gain stage to have another 26 dB of gain available; see the block diagram in Fig. 1.
The final step in fixing the preamp. architecture is to place the tone-control in the optimum position in the chain. Like most Baxandall stages, this requires a lowimpedance drive if the response curves are to be predictable, and so placing it after the active gain-control block (which has the usual very low output impedance) looks superficially attractive. However, further examination shows that (a) the ac-tive-gain stage also requires a low-impedance drive, so we are not saving a buffer stage after all, and (b) since it uses shunt feedback the tone-control stage is rather noisier than the others ${ }^{2}$, and should therefore be placed before the gain control so that its noise can be attenuated along with the signal at normal volume settings. The tone-control is preceded by a unitygain buffer stage with low output impedance and a very high input impedance, so that the load placed on line input devices does not vary significantly when the tape-monitor switch is operated. This brings us to the block diagram in Fig. 1. Figure 3 shows the circuit diagram of the complete preamplifier. The components

Fig. 1. Block diagram. Tone-control placed before gain-control block to reduce noise from tone-control.

around A_{1} and A_{2} make up the movingmagnet disc stage and its associated subsonic filter. Disc preamp. stage A_{1} uses a quite conventional series feedback arrangement to define the gain and provide RIAA equalisation. This provides a clear noise-performance advantage of 13 dB over the shunt feedback equivalent ${ }^{2}$, which is sometimes advocated on the rather dubious grounds of "improved transient response". The reality behind this rather woolly phrase is that the series configuration cannot give the continuously descending frequency response in the ultrasonic region that the RIAA specification seems to imply, because its minimum gain is unity. Hence sooner or later, as the frequency increases, the gain levels out at unity instead of dropping down towards zero at 6 dB per octave. As described in refs. 1 and 2, when a low-gain input stage is used to obtain a high overload margin, "sooner" means within the audio band,

Fig. 3. Complete circuit diagram. Decoupling capacitors for i.cs must be close to packages.
Fig. 2. Evolution of active gain-control stage. That due to Baxandall, chosen for this design, is at (d).

and so an additional low-pass time-constant is required to cancel out the unwanted h.f. breakpoint; once more it is necessary to point out that if the low-pass time-constant is correctly chosen, no extra phase or amplitude errors are introduced. This function is performed in Fig. 3 by R_{8} and C_{11}, which also filter out unwanted ultrasonic rubbish from the cartridge.
It was intended from the outset to make the RIAA network as accurate as possible, but since the measuring system used (Sound Technology 170 A) has a nominal accuracy of $0.1 \mathrm{~dB}, 0.2 \mathrm{~dB}$ is probably the best that could be hoped for. Designing RIAA networks to this order of accuracy is not a trivial task with this configuration, due to interaction between the time-constants, and attempting it empirically proved most unrewarding. However, Lipshitz, in an exhaustive analysis of the problem, using heroic algebra in quantities not often seen, gives exact but complicated design equations ${ }^{4}$. These should not be confused with the rule-of-thumb time-constants often quoted. The Lipshitz equations were manipulated on an Acorn Atom microcomputer until the desired values emerged. These proved on measurement to be within the 0.2 dB criterion, with such errors as existed being ascribable to component tolerances.
Design aims were that the gain at 1 kHz should be 26 dB , and that the value of R_{3} should be as small as feasible to minimize its noise contribution. These two factors mean that the RIAA network has a lower impedance than usual, and here the loaddriving ability of the 5534 is helpful in allowing a full output voltage swing, and hence a good overload margin.
There is a good reason why the RIAA capacitors are made up of several in parallel, when it appears that two larger ones would allow a close approach to the correct value. It is pointless to design an accurate RIAA network if the closetolerance capacitors cannot be easily obtained, and in general they cannot. The exception to this is the well-known Suflex range, usually sold at 2.5% tolerance. These are cheap and easy to get, the only snag being that 10 nF seems to be the largest value widely available, and so some paralleling is required. This is however a good deal cheaper and easier than any other way of obtaining the desired closetolerance capacitance.

Metal-oxide resistors are used in the RIAA network and in some other critical places. This is purely to make use of their tight tolerance (1% or 2%), as tests proved, rather unexpectedly, that there was no detectable noise advantage in using them.

The recently updated RIAA specification includes what is known as the "IEC amendment". This adds a further $6 \mathrm{~dB} / \mathrm{oc}$ tave low-cut time-constant that is -3 dB at 20.02 Hz . It is intended to provide some discrimination against subsonic rumbles originating from record warps, etc, and in a design such as this, with a proper subsonic filter, it is rather redundant. Nonetheless the time-constant has been included, in order to keep the bottom oc-

Fig. 4. Law of gain-control pot., approximately linear over main part of range.
tave of the RIAA accurate. The time-constant is not provided by $\mathrm{R}_{3}, \mathrm{C}_{3}$ which is no doubt what the IEC intended) but by the subsonic filter itself, a rather over-damped third-order Butterworth type designed so that its slow initial roll-off simulates the 20.02 Hz time-constant, while below 16 Hz the reponse drops very rapidly. Implementing the IEC roll-off by reducing C_{3} is not good enough for an accurate design due to the large tolerances of electrolytic capacitors. However, the $\mathrm{R}_{3}, \mathrm{C}_{3}$ combination is arranged to roll-off lower down (3 dB at about 5 Hz) to give additional subsonic attenuation.
Capacitor C_{1} defines the input capacitance and provides some r.f. rejection. A compromise value was chosen, and this may be freely modified to suit particular cartridges.

The noise produced by the disc input stage alone, with its input terminated with a lk resistor to simulate roughly a movingmagnet cartridge, is -84.5 dB with reference to a 5 mV r.m.s. 1 kHz input (i.e. 100 mV r.m.s. out) for a typical 5534A sample. The suffix A denotes selection for low noise by the manufacturer. When the 1 k termination is replaced by a short circuit, the level drops to -86 dB , indicating that in real life the Johnson noise generated by the cartridge resistance is significant, and so the stage is really as quiet as it is sensible to make it.

Subsonic filter

As described above, this stage not only rejects the subsonic garbage that is produced in copious amounts by even the flattest disc, but also implements the IEC roll-off. Below 16 Hz the slope increases rapidly, the attenuation typically increasing by 10 dB before 10 Hz is reached. The filter therefore gives good protection against subsonic rumbles, that tend to peak in the $4-5 \mathrm{~Hz}$ region.

This filter obviously affects the RIAA accuracy of the lowest octave, and so C_{12}, $\mathrm{C}_{13}, \mathrm{C}_{14}$ should be good-quality compo-
nents. A 10% tolerance should in practice give a deviation at 20 Hz that does not exceed 0.7 dB , rapidly reducing to an insignificant level at higher frequencies. The tape output is taken from the subsonic filter, with R_{12} ensuring that long capacitative cables do not cause h.f. instability. If it really is desirable to drive a 600 ohm load, then C_{15} must be increased to $220 \mu \mathrm{~F}$ to maintain the base response.

High-impedance buffer

This buffer stage is required because the following tone-control stage demands a low-impedance drive, to ensure that operating the tape monitor switch S_{2} does not affect the tape-output level. If the input selector switch S_{1} was set to accept an input from a medium impedance source (say 5 k), and the buffer had a relatively low input impedance (say 15k), then every time the tape-monitor switch was operated there would be a step change in level due to the change of loading on the source. This is avoided in this design by making the buffer input impedance very high by conventional bootstrapping of $\mathbf{R}_{15}, \mathbf{R}_{16}$ via C_{17}. This is so effective that the input impedance is defined only by R_{14}. Unlike discrete-transistor equivalents, this stage retains its good distortion performance even when fed from a high source resistance, e.g. 100 k .

Tone-control stage

Purists may throw up their hands in horror at the inclusion of this, but it remains a very useful facility to have. The range of action is restricted to $\pm 8 \mathrm{~dB}$ at 10 kHz and $\pm 9 \mathrm{~dB}$ at 50 Hz , anything greater being out of the realm of hi-fi. The stage is based on the conventional Baxandall network with two slight differences. Firstly the network operates at a lower impedance level than is usual, to keep the noise as low as possible. The common values of 100 k for the bass control and 22 k for the treble control give a noise figure about 2.5 dB worse. Even with the values shown, the tone stage is
about 6 dB noisier than the buffer that precedes it. Both potentiometers are 10k linear, which allows all the preamp. controls to be the same value, making getting them a little easier. The low network impedance also reduces the likelihood of capacitative interchannel crosstalk. Once again, implementing it is only possible because of the 5534's ability to drive lowvalue loads.

Secondly, the tone-control stage incorporates a vernier balance facility. This is also designed as an active gain-control, with the same benefit of avoiding even small compromises on noise and headroom. The balance control works by varying the amount of negative feedback to the Baxandall network, and therefore some careful design is needed to ensure that the source resistance of the balance section remains substantially constant as the control is altered, or the frequency response may become uneven. Resistors R_{22}, $\mathbf{R}_{23}, \mathrm{R}_{24}$ define this source resistance as 1 k , which is cancelled out by R_{17} on the input side. The balance control has a range of +4.5 to -1.0 dB on each channel, which is more than enough to swing the stereo image completely from side to side. If you need a greater range than this, perhaps you should consider siting your speakers properly.

Active gain-control stage

An active gain-control stage must fulfil several requirements. Firstly, the gain must be smoothly variable from maximum down to effectively zero. Secondly, the law relating control rotation and gain should be a reasonable approximation to logarithmic, for ease of use. Finally, the use of an active stage allows various methods to be used to obtain a better stereo channel balance than the usual log. pot. offers.

All the configurations shown in Fig. 2 meet the first condition, and to a large extent, the second. Figures 2(a) and 2(b) use linear controls and generate a quasilogarithmic law by varying both the input and feedback arms of a shunt-feedback stage. The arrangement of Fig. 2(c), as used in the previous article, offers simplicity but relies entirely on the accuracy of a log. pot. While 2(a) and 2(b) avoid the tolerances inherent in the fabrication of a log. track, they also have imperfect tracking of gain, as the maximum gain in each case is fixed by the ratio of a fixed resistor R_{m} to the control track resistance, which is not usually tightly controlled. This leads to imbalance at high gain settings.

Peter Baxandall solved the problem very elegantly ${ }^{1}$, by the configuration in 2(d). Here the maximum gain of the stage is set not by a fixed-resistor/track-resistance ratio, but by the ratio of the two fixed resistors R_{a}, R_{b}. A buffer is required to drive R_{a} from the pot. wiper, because in a practical circuit this tends to have a low value. It can be readily shown by simple algebra that the control track resistance now has no effect on the gain law, and hence the channel balance of such a system depends only on the mechanical alignment of the two halves of a dual linear pot. The resulting gain law is shown in Fig. 4,
where it can be seen that a good approximation to the ideal \log (i.e. linear in dB) law exists over the central and most used part of the control range.
A practical version of this is shown in Fig. 3. A_{5} is a unity-gain buffer biased via R_{25}, and $\mathrm{R}_{26}, \mathrm{R}_{27}$ set the maximum gain to the desired +26 dB . Capacitor C_{25} ensures h.f. stability, and the output capacitor C_{26} is chosen to allow 600 ohm loads to be driven. A number of outwardly identical Radiohm 20 mm dual-gang linear pots were tested in the volume control position, and it was found that channel balance was almost always within $\pm 0.3 \mathrm{~dB}$ over the gain range -20 to +26 dB , with occasional excursions to 0.6 dB . In short, this is a good way of wringing the maximum performance from inexpensive controls, and all credit must go to Mr Baxandall for the concept.
At the time of writing there is no consensus as to whether the absolute polarity of the audio signal is subjectively important. In case it is, all the preamp. inputs and outputs are in phase, as the inversion in the tone stage is reversed again by the active-gain stage.

Power supply

The power supply is completely conventional, using complementary i.c. regulators to provide $\pm 15 \mathrm{~V}$. Since the total current drain (both channels) is less than 50 mA , they only require small heatsinks. A toriodal mains transformer is recommended for its low external field, but it should still be placed as far as possible from the disc input end of the preamplifier. Distance is cheaper (and usually more effective) than Mu-Metal. Since the 5534 is rated up to $\pm 20 \mathrm{~V}$ supplies, it would be feasible to use $\pm 18 \mathrm{~V}$ to get the last drop of extra headroom. In my view, however, the headroom already available is ample.

Construction

The preamplifier may be built using either 5534 op-amps or the 5532 dual type. The latter are more convenient (requiring no external compensation) and usually cheaper per op-amp, but can be difficult to obtain. To compensate each 5534 for unit gain, necessary for each one, connect 15 pF between pins 5 and 8 . Note that the rail decoupling capacitors should be placed as close as possible to the op-amp packages this is one case in which it really does matter, as otherwise this i.c. type is prone to h.f. oscillation that is not visible on a scope, but which results in a very poor distortion performance. It must also be borne in mind that both the 5534 and 5532 have their inputs tied together with back-to-back parallel diodes, presumably for voltage protection, and this can make fault-finding with a voltmeter very confusing.

Only 2.5% capacitors should be used in the RIAA networks if the specified accuracy is to be obtained. Resistors in Fig. 3 marked ${ }^{\star}$ should be metal oxide 1% or 2%, for reasons of tolerance only. Each of these resistors sets a critical parameter, such as RIAA equalization or channel balance, and no improvement, audible or otherwise,
will result from using metal oxide in other positions.
Several preamp. prototypes were built on Veroboard, the two channels in separate but parallel sections. The ground was run through in a straight line from input to output. Initially the controls were connected with unscreened wire, and even this gave acceptable crosstalk figures of about -80 dB at 10 kHz , due to the low circuit impedances. Screening the balance and volume connections improved this to 90 dB at 10 kHz , which was considered adequate. It must be appreciated that the crosstalk performance depends almost entirely on keeping the two channels physically separated.

Some enthusiasts will be anxious to (a) use gold-plated connectors; (b) by-pass all electrolytics with non-polarized types; or (c) remove all coupling capacitors altogether, in the pursuit of an undefinable musicality. Options (a) and (b) are pointless and expensive, and (c) while cheap, may be dangerous to the health of your loudspeakers. Anyone wishing to dispute these points should arm themselves with objective evidence and a stamped, addressed envelope.

Specification

(Based on measurements made on three prototypes, with Sound Technology 1710A).

Moving-magnet
noise ref. $5 \mathrm{~m} \nabla$ r.m.s., 1 kHz input $-81 \mathrm{~dB}$

Line inputs

noise ref. 100 mV r.m.s. i/p
$-85 \mathrm{~dB}$
maximum input
9 V r.m.s. maximum gain
$+26 \mathrm{~dB}$
treble control range
$\pm 8 \mathrm{~dB}$ bass control range
$\pm 9 \mathrm{~dB}$
vernier balance control -1 dB to +4.5 dB volume control channel balance $\pm 0.3 \mathrm{~dB}$ distortion ($1 \mathrm{kHz}-20 \mathrm{kHz}$)
0.005\% maximum output
9.5V r.m.s.

References

1. Self, D. High-Performance Preamplifier. Wireless World, Feb. 1979.
2. Walker, H.P. Low Noise Audio Amplifiers.

Wireless World, May 1972, pp. 233-237.
3. Linsley-Hood, J. "Modular Preamplifier."

Wireless World, Oct. 1982, p. 32 onwards.
4. Lipshitz, S.P. "On RIAA Equalisation Networks." J. Audio Eng. Soc., June, 1979. p. 458 onwards.
5. Baxandall, P. "Audio Gain Controls." Wireless World, Nov. 1980, pp. 79-81. WNO

Current dumping review-2

Current dumping is a circuit technique which claims to abolish all crossover and other distortion caused by a class B output stage. This analysis shows that in precisely this respect the performance of current dumping is notably inferior to that of a traditional amplifier of similar design.

Discussion so far can be summarized by reference to Fig. 8, where V represents the distorting dumper V_{be} and its quasirectangular behaviour. Signal input has been ignored as it is the influence of V on E which is to be studied.
The aim is to ensure that variation of V does not affect E. If A is taken as finite this cannot be done by balancing the bridge in the usual fashion. For no change at E then implies no change at C or at B, implying change at E contrary to hypothesis. What is required is for the bridge to be a little off balance, so that when E remains constant a small amount of V is fed back to the amplifier: enough to shift B appropriately. Clearly then the small bridge unbalance required is inversely proportional to the gain A. Algebra will handle the details, and dumper distortion will totally cancel, however V behaves.
As mentioned, taking A as infinite leads to destruction of the system. The bridge would require to be balanced as normal, because A now requires no input voltage. Whence if E is not varying with V the negative input of A might as well be connected to E instead of to C . Then Z_{1} and Z_{2} can be removed, and Z_{4} replaced by a wire.

Previous discussion was based on a floating signal source, which is not attractive. Further, the floating "zero volts" rail required frequent corrections to the algebra. Divan and Ghate (WW April 1977) remove these irritations, and bring the theory to a new level with the circuit of Fig. 9. They include $Z_{i n}$ together with the gain-setting element Z_{f} hinted at by Walker, and take A as finite. Their balance condition (6) is derived in two lines in Fig. 9 , and contains all earlier results.

Invalidity

Murmurs have been heard that much of this debate is invalid. Suppose that the output current through Z_{L} in Fig. 9 is sinusoidal. Then the current marked i through Z_{4} supplies most of it, but it is switched off during crossover. Meanwhile $\mathrm{I}-\mathrm{i}$ flowing through Z_{3} supplies what is wanting. Then both of these currents depart dramatically from the sinusoidal form.

Now the interest of this analysis lies largely in the study of the very successful

Quad 405 amplifier design that uses the technique. But in that amplifier Z_{2} is a capacitor and Z_{4} an inductor. When currents and voltages depart from the sinusoidal it is impossible to attach impedance values to these components, and the symbols used above for such quantities have no meaning. Take the case of Fig. 10, where a 'square' voltage wave is

by Michael McLoughlin

applied to a capacitor and series resistor. The ratio V / I wanders through most values from zero to infinity throughout the cycle, and there is no constancy about it at all. In these circumstances one may certainly not note the current through C , and divide by $j \omega \mathrm{C}$ to obtain the voltage across this component. Fig. 10 certainly presents an extreme case, but if Z_{2} is a capacitor it is
just the case of Fig. 9. A quasi-rectangular voltage is applied to this component, and the current is to be derived by multiplying by $\omega \mathrm{C}$!
If V in Fig. 10 is a sinusoid then the current I has that form also. If we agree to make comparisons with a certain time delay between these two variables, then a constant of proportionality which does not vary with time will again emerge. And the complex number analysis has been developed to mechanize the accounting. And it would be valid in this circuit to resolve V into sinusoids, use complex numbers on each separately to deduce the consequent I, and add the results. Of course the results would be at different frequencies. But this does depend on the circuit being composed of only linear components, where the output due to a sum of inputs is sure to be the sum of what each would produce separately.
This might be tried in Fig. 9, by

Current dumping

Basic current dumping circuit fig. 8 (a) may be redzawn as a bridge (b) with the distorting dumper $V_{\text {teg madelied as }}$ a voftage generator of similar behaviour. Signal can be neglected: it is this voltage generator that can produce no outputate.
Hypothesis: Edoes not vary whea V does, Then "t is useless to balance the bridje as normal for no change at E then impties nome at C, or at B_{k} resufting in change at E contrary to hypothesis. Slight imbalance at C is required instead. Then if Vincreases E remains unattered, but there is a slighe fall at C: enough io ift 8 sutficiently to gnsure E is unaffected. The imbalance required is both slight and eriticat. and the arrangement is verv sensitive to tolerance etrors.

resolving the currents i and $\mathrm{I}-\mathrm{i}$ into sinuoids, and discussing each component separately. But Fig. 9 does not show a network composed of linear elements: base-emitter junctions are non-linear in the extreme. This route is barred.

One example of the many possible consequences of reckless resolution into sinusoids is provided by the ordinary a.m. detector. Suppose that such a circuit is supplied with a carrier modulated by a tone. The output is of course the tone, plus a d.c. level. But now resolve the input into sinusoids: the carrier plus two sidebands. Taken separately each of these would produce only a d.c. levels and when added they yield only a d.c. level: the tone has vanished. Conclusion: no detector detects!

Validity

Such criticisms do appear to apply to most of the previous discussion, including of course our own treatment in Fig. 9. However the bridge model of Fig. 8 escapes untouched. Here the troublesome non-linear dumpers have been replaced by a voltage generator, and in determining' whether a circuit is composed of linear elements the generators do not have to pass any tests. (Detailed information about the behaviour with time of this generator will be required later.)
Could this trick for turning a non-linear into a linear circuit be applied elsewhere, perhaps in the a.m. detector mentioned above? It can, provided that sufficient information is available about the nonlinear voltage V . In the case of the detector the diode must be replaced by V , and when V has to be specified it will be given audio elements suitable for producing the correct output, now that the r.f. cannot yield it. The procedure is valid enough, but in this case scarcely attractive.

Advance to Fig. 9 again. Replace the dumpers by transistors of constant current gain but zero $V_{b e}$, in series with a voltage generator to be inserted at G. These odd transistors are linear elements: their emitter current in response to a sum of base currents is just the addition of what each would produce separately. And the $\mathrm{V}_{\text {be }}$ generator may produce such voltage as it sees fit, while the signal at A varies, without violating the linear character now

Table 1. Discontinuity in sinusoidal output E at crossover. Theory provides these figures when tolerances are taken into account. Case 1 offers two transitions per crossover, and the figure in the text has been doubled, as $\mathrm{e}=0.2$ now. Using closer tolerance components would benefit the first two cases equally. Adding bias components would benefit all three cases equally.

Organisation	Vpk-pk	Notes
1. As supplied	7.0 mV	$\propto E$ and $\propto f$
2. Resistive bridge	0.6 mV	at all E and f
3. Traditional amplifier	0.15 mV	at all E and f

Transitions at crossover: Quad 405
$e=0.2 \quad f=13.2 \mathrm{kHz} \quad E=1 \mathrm{~V}$ r.m.s.

Fig. 9. In Divan and Ghate model for current dumping V_{B} / A
must exist

between the

input terminals
of A. So V_{N} may be derived from V_{S}. The result is equated below to V_{N}, as derived by Millman's theorem (provedin

Fig. 6):

$$
V_{5}-\frac{\mid Z_{L}+(1-i) Z_{3}}{A}=Z_{p}\left[\frac{\mid Z_{L}+(\mid-i) Z_{3}}{Z_{2}}+\frac{I Z_{L}+i Z_{4}}{Z_{I}}+\frac{V_{s}}{Z_{i n}}\right]
$$

This is a linear bond between V_{s} and I if the terms in i balance out:

$$
\begin{equation*}
\frac{Z_{4}}{Z_{1}}=\frac{Z_{3}}{Z_{2}}+\frac{Z_{3}}{A Z_{p}} \tag{6}
\end{equation*}
$$

possessed by the network. Naturally we shall oblige G to follow the real $V_{b e}$. The network is now linear, but has two input signals.
When deprived of their V_{be} the two dumpers together make a single linear element. Admittedly a slight violation of linearity will occur on passage from one dumper to the other, because their current gains will not be equal. Apart from this detail, the model now offers a rigorous treatment of the bulky non-sinusoidal currents and voltages in the reactive bridge components. And on a second reading it will be possible to see that this assymetry must degrade a little further the result in the first line of Table 1 , thus strengthening our conclusion there.

The two inputs at V_{s} and G in Fig. 9 may now be considered as sums of sinusoids, and the influence of these on output may be anlysed one frequency at a time. Or V_{s} and G could be considered separately. And handling one frequency at a time the usual complex number analysis may be employed, with the final output counted as the sum of the separate outputs produced by all these components. Using these tricks a valid proof of (6) can now be given, after the style of what follows.

Quad 405 circuit

The full circuit may be inspected in the operating manual, or in Walker's article Fig. 11 offers his simplified version, with Z_{1} to Z_{4} clearly marked, and values are attached.
Recall that the generator V in Fig. 8(a) really represents the two complementary dumpers. Their emitters are connected to D and bases to B . So Walker identifies the circuit of Fig. 11 with that of Fig. 8(a). But there is a difficulty. Not only has an extra transistor Tr_{2} appeared, but Z_{1} and Z_{2} are connected to opposite ends of it. Now dumper V_{be} variation will inject current

Fig. 10. Current when a rectangular wave voltage is applied to a capacitor and series resistor.
via Z_{1} into Tr_{2} emitter, and if the driver gain is large this current might just as well be considered as injected into the collector circuit directly. To effect this transfer is just the role of a transistor. Thus if the input signal in Fig. 11 is set at zero, then from an a.c. viewpoint Z_{1} can be considered as connected directly to the collector, to identify with the layout of Fig. 8.
But if minimum figures are taken for the gains of the transistors in the driver, its input impedance is about $50 \mathrm{k} \Omega$, and during crossover its voltage gain is only about 77 . Thus at 1 kHz the capacitor C presents an impedance to Tr_{2} collector of $\mathrm{Z}_{\mathrm{C}} / 77$ or $17 \mathrm{k} \Omega$. The collector will feed such a load without difficulty. The current is provided by $\mathrm{Z}_{1}=500 \Omega$, and is injected into the emitter with little difficulty. But that resistor could not be expected to feed $17 \mathrm{k} \Omega$ without change: Z_{1} may not really be considered to be connected to the collector, and Fig. 8 is not an accurate model for the real circuit of Fig. 11.

Vanderkooy and Lipshitz handle the difficulty in just the opposite way, by considering Z_{2} to be disconnected from the collector and joined instead to the emitter. Transistor Tr_{2} becomes part of the driver amplifier, and the circuit again identifies with that of Fig. 8(a). From the figures

Fig. 11. Walker's simplified circuit of the Quad 405 amplifier, omitting current limiting and h.f. trim components. I have further omitted the LM301A op-amp that provides $V_{\text {in. }}$. It operates in class A, is not part of the current dumping circuitry, and receives only a d.c. feedback - not shown - from Z_{L} to centre the working point of the dumpers) Minimum $h_{F E}$ for a BDY77 is 40; for the other transistors shown it is 50.

Fig. 12. In this current dumping model A, B, C, D, V denote voltages, small letters admittances. DEFINITIONS
k : dumper $i_{b}=k i_{e}$
$b=q+r+s$
$m=l+s+t$
$n=f+p+u: \frac{u}{n}=\lambda \approx 1$
$g^{\prime}=g-q$
$Z_{P}=\frac{1}{h+q} ; Z_{Q}=\frac{1}{n}$
CONSTRAINTS

$s(V+D-E)+q(V+D-C)+r(V+D)+k[t(D-E)+p(D-B)]=-g C$
(1) $-(s+k t) E=-b V-[b+k(t+p)] D+k p B-g^{\prime} C: n(s+t)(h+q)$
(2) $(s+t) D=m E-s V ; n B=u A+p D:(s+t)$
(3) $n(s+t) B=u(s+t) A+p m E-p s V ;(h+q) C=u B-u A+q V+q D: n(s+t)$
(4) $n(h+q)(s+t) C=-u(s+t)(f+p) A+(n q t-p s u) V+m(p u+q n) E$

ARGUMENT

Write $w E=x A+y V$ where
$w=(h+q)[m n(-s-k t+b+k(t+p))-k p p m+n /(s+k t)]+g^{\prime} m(p u+q n)$
$=(h+q)[m n(q+r)+k p m(f+u)+n l(s+k t)]+g^{\prime} m(p u+q n)$
$x=u(s+t) / k p(h+q)+g^{\prime}(f+p) l$
$y=-b n(s+t)(h+q)+(b+k(t+p)] p(h+q) s-k p(h+q) p s+g^{\prime}(p s u-n q t)$
RESULT
$y=0 \Rightarrow g^{\prime}(p s u-n q t)=(h+q)[b n t-k n s(t+p)+k p p s]: \div g^{\prime} s t n$

Approximate admittances at 1 kHz (moduli in mhos)
$p=10^{-3}, q=10^{-6}, r=10^{-3}, s=10^{-2}, t=50, t=0.1, t=10^{-2}, u=3 \times 10^{-2}$,
$h=2 \times 10^{-5}, g=2.0<k<1 / 40$.
just given for the driver of Fig. 11 it is clear that above 1 kHz it works as an operational amplifier, ensuring that most of the current supplied by Tr_{2} is drawn away through C , while leaving only a small amount to work the driver itself. Now as the current gain of Tr_{2} from emitter to collector is unity, C could indeed syphon off this current with similar effect at the emitter instead.
But this alteration does obscure an important factor. In Fig. 11 the element Z_{1} is marked as 500Ω, but in fact any current due to dumper V variation flowing into Tr_{2} emitter is also affected by the emitter input impedance found there. Owing to the presence of R_{12} this may be as high as $3.3 \mathrm{k} / 50+25 / 6=70 \Omega$, causing a 14% increase in the effective value of Z_{1}. If now Z_{2} is connected instead to the emitter and there syphons off its current from that flowing into the driver, then scarcely any of the current supplied through Z_{1} remains to flow into the emitter. Not much impeding voltage arises, and the 14% adjustment required in the value of Z_{1} disappears. If a bridge is to be balanced then a 14% adjustment in the value of one arm is serious, and Z_{2} may not be reconnected as proposed in any accurate model of Fig. 11.
It seems possible that Z_{1} and Z_{2} were initially connected to the same point of Tr_{2}, but were later separated as part of the h.f. trimming programme evident in the full circuit.

Quad 405 model

Fig. 12 offers a model for Fig. 11. The driver has been reduced to linearity by its specification in terms of mutual conductance. The dumpers are so reduced by thinking of them as transistors of equal current gain but zero $V_{b e}$, in series with a generator to simulate the latter. The driver is equipped with input impedance $Z_{\text {in }}$ and output impedance Z_{0}. Gain-setting element Z_{f} appears. Delivery of feedback to both ends of Tr_{2} is properly represented. Finally Z_{T} is in series with Tr_{2} emitter to stand for the input impedance found there.

The circuit may now be analysed in terms of the two input voltages A and V . Because the components are all linear these may be treated separately, and as sums of sines. Thus complex number analysis is valid. But the twin menaces of this sort of analysis are suffices and denominators. It has been possible to avcid both by giving each impedance a second unbracketed symbol to represent its admittance.

The definitions section of Fig. 12 starts by defining k to account for dumper current gain, and there follow names for concatenations of symbcls that will arise. About half the remainder may be omitted at first reading, and the new balance condition (8) can be attained quite quickly.

Constraints

Solving the circuit of Fig. 12 consists in obtaining the relationship between the three voltages A, V and E . To build relationships it has been necessary to introduce voltages B, C and D, so these are to be eliminated.

Observing that the current flowing away
from the driver is equal to what it provides, then line 1 collects the variables (capitals) in this constraint, using the shorthand defined. Line 2 starts by defining E, using Millman's theorem if sV is added to both sides.

From an a.c. viewpoint the upper end of u is at potential A, and so later in line 2 Millman's theorem is used to define B. If this equation is multiplied by the factor on its right it may be rewritten as (3) by using (2).

This captures D and B in terms of desired variables. It is just a little harder to do this for C. A constraint is given for it later in line 3. If the two terms in q on the right are transferred to the left hand side, the equation is justified as a statement that the current flowing away from C is just what is delivered there by Tr_{2}. Multiply the equation in its present form by $n(s+t)$ as suggested on its right. It should be possible to arrive at line 4 without a pencil, using (2) and (3) to remove D and B. Collecting first the terms in A yields a coefficient uu(s +t$)-\mathrm{un}(\mathrm{s}+\mathrm{t})$, equal to what is written. Collecting the terms in E out of B and D is easier. And the coefficient for V is simpler than expected because two terms nqs have cancelled.

Argument

The peak of difficulty is already passed, and (8) is within reach. Focus on line 1 of constraints. If the equations at the start of the next three lines were used to remove D, B and C from line 1, a gigantic equation would result. But it would only contain the desired variables E, A and V. So it would have the form of (7). If $\mathbf{y}=\mathbf{0}$ then certainly E and A are bound into proportionality, and the sinusoid V has no effect on E, leaving it free from distortion.

You are therefore dispensed from pursuing w and x in (7): it suffices to study y alone. Now (7) is to be considered as derived from line 1 after first multiplying that line by the factor noted on its right. This suffices to prevent the generation of any fractions. So multiply line 1 as stated, and collect on its right hand side the terms in V only, including those V found when D, B and C are substituted. Hopefully this will give y as stated.

Balance equation

First note that two terms bns $(\mathrm{h}+\mathrm{q})$ cancel out in y. Now write the result line. Then divide as stated, remembering $u / n=$ λ. But write the result in terms of impedances rather than admittances, and (8) will appear. If this holds then $y=0$ in (7), and the distorting V does not influence the output.

Relation to other balances

Equation 8 now provides the balance condition for the Quad 405. It includes the driver output impedance Z_{0}, and the double delivery of feedback is studied. The emitter input impedance of Tr_{2} is included, and the balance is altered by the new factor λ on that account.

Suppose first that this emitter input impedance is zero ($\lambda=1$ and $Z_{Q}=0$). Then if Z_{o} is also excluded by setting it infinite, (8) reduces to the balance
condition of Vanderkooy and Lipshitz. But if $\cdot \mathrm{Z}_{\mathrm{o}}$ tends to zero while g becomes large, so that $\mathrm{gZ}_{\mathrm{o}}=\mathrm{A}$, the driver has become a voltage amplifier. And then (8) takes the form of (6), though Z_{P} is not the same because of the isolating effects of Tr_{2}. Of course, setting g infinite reduces (8) to the basic $\mathrm{Z}_{4} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{2}$.

But none of these things are true when λ is taken into account. If the input transistor has its minimum gain of 50 , then as suggested earlier $Z_{T}=70 \Omega$, and so $\lambda=$ 0.65 . Inserting this new factor disturbs all previous balance conditions. The gain of Tr_{2} may rise to 300 , yielding $\mathrm{Z}_{\mathrm{T}}=15.2 \Omega$ and $\lambda=0.90$, which is still serious. It appears that the balance of the bridge is critically dependent on the gain of the particular transistor inserted at Tr_{2}.
Listed below (8) are approximate values, and it is clear that Z_{3} / Z_{2} can be dismissed from the square bracket of (8). And the fractions that remain fall by about an order of magnitude a time: $1, Z_{3} / Z_{o}, k, Z_{4} / Z_{1}$. It follows that for all attainable purposes the balance condition simplifies to

$$
\begin{equation*}
\lambda \cdot \frac{Z_{4}}{Z_{1}}=\frac{Z_{3}}{Z_{2}}+\frac{1}{g Z_{p}}\left[1-\mathrm{k}+\frac{\mathrm{Z}_{3}}{\mathrm{Z}_{0}}\right] . \tag{9}
\end{equation*}
$$

Bridge balance

Many balance conditions have been published, but no-one has yet inserted the four Z values of Fig. 11 into their result. This may be because the simple condition $Z_{4} / Z_{1}=Z_{3} / Z_{2}$ reduces to $L=R_{1} R_{3} C$, and it shows a 6% unbalance.

To find figures for g and Z_{P} in (9), consider the two 560Ω resistors in Fig. 11. These provide a nominal 50 mA current sink for the dumper bases, and around crossover this current is provided by the driver. Now lmV applied to the driver input mostly reaches the 40872 base, causing the usual 4% alteration in its collector current. This change is 2 mA , which shows that the driver mutual conductance g is around $2 \mathrm{amps} / \mathrm{volt}$. Assume minimum transistor gains, and follow the electrode impedances associated with 50 mA current output back to the input terminal: the impedance there is just over $50 \mathrm{k} \Omega$. This is a fair figure for Z_{P} also, because even at 10 kHz the reactance of Z_{2} is still $133 \mathrm{k} \Omega$. So $\mathrm{gZ} \mathrm{P}_{\mathrm{P}}$ in (9) is 10^{5}, or more if the transistor gains exceed minimum.

Take $\lambda=1$ for the moment, and suppose f is the standard frequency of 13.2 kHz at which Vanderkooy and Lipshitz run their tests: then the three terms of (9) work out in millionths as 498j, 468j, and 10 or less. The first two terms are imaginary and the third is real. Then the best that can be done is to balance off the first two terms by $\mathrm{Z}_{4} / \mathrm{Z}_{1}=\mathrm{Z}_{3} / \mathrm{Z}_{2}$, and ensure that the third term is small. The designers appear to have done this. But there is still that unexplained 6% unbalance between the large terms.

But the two imaginary terms of (9) should really be balanced off by

$$
\begin{equation*}
\lambda \cdot \frac{\mathrm{Z}_{4}}{\mathrm{Z}_{1}}=\frac{\mathrm{Z}_{3}}{\mathrm{Z}_{2}} . \tag{10}
\end{equation*}
$$

Now the median gain of Tr_{2} is 175 , so its
emitter input resistance may be 3300/17, $+25 / 6=23 \Omega$, yielding $\lambda=0.852$. The three terms in (9) now work out in millionths as $424 \mathrm{j}, 468 \mathrm{j}$, and 10 or less. The first term is now some 10% down on the second, and the Quad 405 bridge appears to be out of balance by this amount in the opposite direction.
An easy way to correct this would be to reduce Z_{1} by the same factor $424 / 468$, which could be done by connecting in parallel a $4.8 \mathrm{k} \Omega$ resistor. Now Vanderkooy and Lipshitz did vary the resistance of Z_{1} to achieve minimum crossover distortion, and they demonstrate their results with oscillograms. Their finding: for best balance Z_{1} requires a resistor in parallel of "about 5 k ". This confirms that there is a systematic unbalance of some 10% in the Quad 405 bridge, though the precise figure varies sharply with the gain of Tr_{2}.

Conclusion on circuit design

Clearly the dv/dt limiter R_{12} with C_{6} that is causing unpredictable λ must be placed earlier in the circuit and not here. The low impedance source driving Tr_{2} must be allowed direct access to this transistor, and resistors must be kept out of this area. Another way of making the same point is to observe that extra input currents flow during crossover, and the input impedance of a current dumping circuit varies wildly as a result.

There are only three terms in (9), and the third is by far the smallest at typical frequencies. If 5% components are used, as in the 405 , then each of the first two terms can vary 10% by tolerance errors. Then one side of (9) may exceed the other by 20% on that account. Then it is useless to seek circuit sophistication to eliminate the unbalancing effects of k (dumper base current) in (9): any such effects are orders of magnitude less than tolerance errors. Although T. Hevreng has solved this problem in a way that must command admiration (May 1979), such a solution is not of practical utility. The correct conclusion is the inverse: k affects the balance of (9) so little that it is not worth using Darlington type dumpers to reduce it. And the Quad 405 designers were right not to bother. Equally, H. S. Malvar is not really practical in enquring after say 10% variations ing during the signal cycle.

Minor effects

Vanderkooy and Lipshitz point to the upper 560Ω resistor in Fig. 11 as an unbalancing element. It can be modelled as connected from V+D to \mathbf{D} in Fig. 12. And a mesh-star tranformation with \mathbf{Z}_{3} and Z_{4} shows that the effect is to reduce both these values by 8%, leaving unaltered the balance of the first two terms in (9). The lower 560Ω is effectively connected from D to ground, and a similar transformation with the new value of Z_{4} and the load shows that this time Z_{4} is effectively reduced about $11 / 2 \%$, but without other compensations in (9). Thus these resistors do not affect the possibility of bridge balance.
These two authors also point to the unbalancing effect of the compensation
components R_{23} and C_{11} in Fig. 11. These load the driver output a little, but they can be included in the symbol Z_{0} of Fig. 12, so that the bridge can still be balanced. Their effect on the driver input can be seen as follows. Suppose the driver output rail in Fig. 11 is falling at $10^{6} \mathrm{~V} / \mathrm{s}$: then 0.33 mA flows out from C_{11}, causing the top of R_{23} to fall 0.4 V . If the first transistor in the driver has a collector impedance of $100 \mathrm{k} \Omega$ when its base current is held constant, then $4 \mu \mathrm{~A}$ will be drawn through it. An identical disturbance to its current would be produced by increasing its base current by $0.1 \mu \mathrm{~A}$ or less. Meanwhile, in response to the driver output ramp, Z_{2} is delivering 0.12 mA , which is being fed to it from Tr_{2}. Then 0.1% increase in the value of Z_{2} would increase the current in it by $0.1 \mu \mathrm{~A}$, which would come from the driver input terminal. Conclusion: the disturbance to the input can be well modelled by imagining Z_{2} is increased by up to 0.1%. Compared with the tolerance error of that component this is a trivial correction.

An equivalent amplifier

Because reactive components have been used the first two terms of (9) are imaginary, and so the best that can be done to balance it is to insist on (10). But this means psu $=\mathrm{qnt}$. So no V appears in the equation for C in line 4 of Fig. 12. Voltage C represents the mix of both signal and feedback, and it controls the output completely. And the equation for it is now

$$
(h+q) C=-\lambda(f+p) A+\frac{m}{s+t}(\lambda p+q) E .
$$

Provided that C is bound to A and E in this way any method of deriving it may be used, and will produce the same output voltage as before. For example, disconnect q in Fig. 12 and connect it in parallel with h. Then C will arise as just specified if a current equal to the expression on the right of this equation is injected into Tr_{2} emitter. So replace f and p in Fig. 12 by f^{\prime} and p^{\prime}, but connect the right hand side of the latter directly to E . The upper end of \mathbf{u} may be considered to have potential. A. Then by studying only the components now connected to B it is easy to verify that the current entering Tr_{2} emitter is correct if

$$
\begin{gathered}
\mathbf{p}^{\prime}+\mathrm{f}^{\prime}=\mathrm{p}+\mathrm{f} \\
\mathbf{p}^{\prime}=(\mathbf{p}+\mathrm{q} / \lambda) \mathrm{m} /(\mathrm{s}+\mathrm{t}) .
\end{gathered}
$$

If these values are fitted the amplifier will have the same performance as the current dumping circuit. Further, Z_{4} can now be shorted and its influence absorbed into V , about which we have never had to be specific. The amplifier is now shorn of its current dumping components Z_{2} and Z_{4}, but with three others adjusted it will have identical performance.
These modifications alter the output load slightly, but that has never been a factor. Also a 520Ω load was removed from D in Fig. 12. A mesh-star transformation between this, Z_{4} and Z_{L} shows that this removal is equivalent to increasing Z_{4} by $11 / 2 \%$. Reduce it again and operation is

The problem

In 1975 a new type of audio amplifier was annoukced, called the "current durping" amplifier. Deacribed in the US patent as "distortion-free", more than 60,000 units have now been sold, With retall velue exceeding f15 million, and the desigh has won a Queen's Award to ladustry, Yet in the lively discussion that resutted in this journal, one group insists that the amplifier works by feedforwatd, another schoof disajrees and says it uses feedback. whilth a third party maintains it is all a grave error: the performance is actually worse than that of a traditional circuit.
Has then something useful been invegted, and it so eractly what is it?

A solution:

Part 1, September issiee, explained and simplitied previous contributions in this journal. The feedforward and feedback explanations are not rivals, but valid atternatives, The bridge modet deveioped was shown to be of greater power than the others.

Pant 2 now explains the central idea of the invertion, with an improved statement for the bslance that must hald between the four key components in the bridge The third party in the debate appears to be correct the ides is spcith by errors due to the tolerancen of the components. When these are allowed for, the insertion of the current dumping comporients ectually dogrades the smplifier pertormance. Fig. 8 sxplains the central idea at stake.
as before. And the new Z_{4} can be absorbed into V as previously.

Infertility?

Current dumping then is doing nothing useful, because of the particular bridge balance chosen. Observations of this tenor by Halliday, Olsson and Bennett were reported toward the end of Part 1, and this view is now supported by the model of Fig. 12.

Such algebra invites an explanation. The trouble seems to start with (9). Faced with that requirement a designer unsure of his g may make it large and forget it, relying on (10). And with the Quad 405 the imaginary character of the first two terms in (9) compels the designer to resort to (10).
Now redefine Z_{1} in (9) as $Z_{1}=Z_{1} / \lambda$. This means that we propose to account for the 23Ω or so impedance found at the emitter of Tr_{2} by thinking of Z_{1} as altered slightly to include its resisting effects. The circuit now identifies well with that of Fig. 8 with $Z_{1}{ }^{\prime}$ fitted there. Now multiply (9) by Z_{1}^{\prime} / Z_{3} to yield the alternative form.

$$
\begin{equation*}
\frac{Z_{4}}{Z_{3}}-\frac{Z_{1}^{\prime}}{Z_{2}}=\frac{Z_{1}^{\prime}}{g Z_{p} Z_{3}}\left[1-k+\frac{Z_{3}}{Z_{0}}\right] . \tag{11}
\end{equation*}
$$

Earlier we expected the bridge ratios in Fig. 8 to be slightly out of balance if the effect of V on E was to cancel, and (11) establishes the required difference. And this difference was expected to be inversely proportional to driver gain, as it is here.

But the designers have decided to neglect the gain term, found on the right of (11), and instead have set these bridge ratios equal by (10). But the entire purpose of current dumping is to define correctly the small amount by which the two bridge ratios need to be out of balance if the effects of V are to cancel. The idea is destroyed by any implementation that proposes to ignore the gain term in (11) and set these fractions equal. Such a move discards the essence of the dumping technique. And as shown above it is then possible to alter the amplifier into a conventional structure of identical performance.

Tolerances

The above criticism was based on the designer's decision to rely on (10). But further difficulties now arise, because the components he specifies to do this will not have their nominal values, but (in the Quad 405) may each be 5% out. This issue has been treated by T. C. Stancliffe (November 1976.)

The analysis in Fig. 12 will yield an accurate assessment of the effect of tolerances. Equation 8 there will not now balance exactly, but it may be made to do so with the actual components used if the left hand side is multipied by $(1-e)$. We shall made no capital out of λ as a simple design improvement can remove this factor. Then e can reach 0.2 in magnitude. Prefacing the equation with $(1-e)$ is equivalent to asserting it with an extra leading term $-e \lambda Z_{4} / Z_{1}=-e \lambda p / t$ instead. Then the previous equation can be asserted, with an extra leading term -èpg'sn = -epg'su. The previous line for y remains valid, but y is clearly now epg'su. Now multiply constraint line 1 by the factor on its right, do the elimination and verify that x in (7) is correctly stated. To verify the expression given for w, note that the last term in its first square bracket will be needed to reconcile the first term there. Examine w and x in the light of the approximate admittances listed. Dismiss the entire square bracket in w by writing out just its largest products

$$
\mathrm{h}[\mathrm{tu}(\mathrm{r}+\mathrm{kp}+\mathrm{kl})] .
$$

The last of these is the largest, but it is many thousand times smaller than the last term of w, approximated by

$$
w=g m p u \quad x=g u(s+t)(f+p) \quad y=e p g s u
$$

Actually if all its products are multiplied out (7) contians initially 284 terms. But cancel gu in the expressions just given, and that equation reduces with great accuracy to

$$
\mathrm{mpE}=(s+t)(f+p) A+e p s V
$$

The contribution to E from A may now be studied. As may be readily explained from Fig. 12 if V is held constant, there is a gain of $1+Z_{1} / Z_{f}$, followed by an output impedance $Z_{3} / / Z_{\mathbf{4}}$.

Tolerance unbalance

Of greater interest here is the contribution to E from V :

$$
\begin{equation*}
E=\frac{\mathrm{es}}{\mathrm{~m}} \mathrm{~V} \approx \frac{\mathrm{es}}{\mathrm{t}} \mathrm{~V} \approx \frac{\mathrm{Z}_{4}}{\mathrm{Z}_{3}} \mathrm{~V} . \tag{12}
\end{equation*}
$$

This strikingly simple expression can be explained from the elementary model of Fig. 8. Consider the error in equation 8 as concentrated in Z_{4} : the value fitted is too large by a fraction e, because balance is achieved when (8) is multiplied by ($1-\mathrm{e}$). Thus in Fig. 8 instead of the correct Z_{4} the value is a fraction e larger. Once V is fixed, potentials B and D are in the merciless grip of the amplifier there. And as Z_{4} is small, moving the tap at E off the balance point by CZ_{4} yeilds (12).

Consider first the easy case where all components are resistive. Now V passes in almost rectangular fashion between -0.7 and 0.7 V , the transition occuring during the length of each crossover. As the factors in (12) are real the distortion E given there will have the same waveform. Take e at its maximum value of 0.2 or so. Take $\mathrm{Z}_{3}=$ 47Ω and $Z_{4}=0.1 \Omega$: the amplitude of the rectangular distortion contributed to E is given by (12) as 0.6 mV pk - pk .

Now suppose that Z_{4} is inductive. As the square bracket term in (8) is small, errors in the others will dominate and e will still be real. Then it is legitimate to regard E in (12) as derived by forcing a current $\mathrm{eV} / \mathrm{Z}_{3}$ through this inductor, where V is a sinusoidal component of the distortion voltage. But the inductor is a linear compoent, so the various sinusoidal currents can be recomposed into a current $\mathrm{eV} / \mathrm{Z}_{3}$, where V now represents the full quasi-rectangular distortion voltage waveform. If L is an inductor and v is the rate of change of V this produces $\mathrm{E}=\mathrm{Lev} / \mathrm{Z}_{3}$.

To obtain a figure for v suppose that at E the signal output is Asin $\omega \mathrm{t}$: then near upward crossover its slew rate is A ω. To maintain this during crossover $\mathrm{V}+\mathrm{D}$ has to slew an extra Z_{3} / Z_{L} times as fast (where Z_{L} is the load and does not refer to the inductor.) So V itself has to slew at $\mathrm{A} \omega \mathrm{Z}_{3} / \mathrm{Z}_{\mathrm{L}}$. This provides the figure for v above, yielding distortion

$$
\begin{equation*}
E=e A \omega L / Z_{L} \tag{13}
\end{equation*}
$$

constant during crossover but zero elsewhere.

Optional calculus

Calculus supports these manoevres. The argument is sketched in Fig. 13, and as investigation is concentrated on bridge unbalance the gain A has been taken as infinite. Signal has been set at zero and only the effect of V is studied. If the volts at the upper bridge vertex are x then the current through C is as stated, whence the volts at the lower vertex may be written. The two voltages must differ by V , yielding the constraint given. With the forcing function shown for V this is an easy specimen of its kind, and the full solution is sketched. As V passes the point A then x follows the broken curve shown. This may be accurately specified by saying that at A the voltage x falls by m / n, but the exponential columns shown at the origin are added back to x. At D the voltage may be said to make the same jump upward, and then to suffer the subtraction of the same columns to yield a curved transition. And y is as

Constraint: $\frac{d x}{d t}+n x=n V$, where $n=\frac{1}{R_{7} C}=\frac{1}{T}$

Fig. 13. With the forcing function V of slope m as drawn, x and y develop as shown. The volts y are in effect a pulse of amplitude $-m / n$ constant during crossover but zero otherwise, as the time constant $T=R_{1}$ $c \approx 0.06 \mu \mathrm{~s}$ only.
shown: a rectangular pulse lasting for the crossover but modified briefly at each end by the same set of exponential columns.

Rewrite (8) with $\mathrm{Z}_{1}=\mathrm{Z}_{1} / \lambda$ in place, to the exclusion of Z_{1} and λ (the final terms in the square bracket are frivolous and may be ignored.) Now suppose the error is concentrated in $\mathrm{Z}_{1}{ }^{\prime}$. Because for balance this equation had to be multiplied by $1-e$ it follows that $Z_{1}{ }^{\prime}$ is just a fraction e too small. In terms of Fig. 13 the resistor \mathbf{R}_{1} after being set at Z_{1} / λ turns out to have a tolerance error making it a fraction e too small.

Now suppose the change in output volts E in Fig. 12 which results from a change in V is zero. Then

$$
\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{i}+\mathrm{j})=\frac{\mathrm{dx}}{\mathrm{dt}}\left[\frac{1}{\mathrm{R}_{3}}-\frac{\mathrm{R}_{1} \mathrm{C}}{\mathrm{~L}}\right] .
$$

If $R_{1}=L / R_{3} C$ as before then $i+j$ is constant, consistent with zero change in E, and the problem is solved. But now change R_{1} to 1 - e times this expression. Examine the way in which the volts y were originally established: an additional -ey volts now appears at the lower vertex of the bridge, transmitted to Z_{L} / R_{3} with short time constant $L / R=0.4 \mu \mathrm{~s}$. Appeal to the sketch of y : the resultant output E is a rectangular pulse of amplitude em / n for the duration of crossover. Insert for m the slew rate \mathbf{v} derived earlier, and (13) follows. It is true that the new volts y do alter slightly the
constraint given, but this is a second order effect.

Programmed model

If Z_{4} in Fig. 11 is to be recognised from the start as an inductor L , then a fourth model of current dumping naturally arises. Suppose the output volts at the load are coasting steadily upward to zero from below. Then a steady voltage exists across L, with the left hand side positive. When the lower dumper goes off, the current in L has reached zero and it stays zero. There is no final spectacular rate of change to generate a transient, and all that happens is that the steady voltage just mentioned suddenly collapses. This provides the nega-tive-going steady voltage pulse just discovered, which is applied to Z_{1} and the resultant steady current integrated into a rising voltage ramp on the right of Z_{2}. The simplest algebra shows that if $L=R_{1} R_{3} C$ the resultant current ramp through $\mathrm{Z}_{3}=$ R_{3} maintains the rate of ramp of amplifier output voltage identical with its value before the lower dumper turned off.

We are left with a picture of current dumping where as crossover approaches L is programmed with a steady voltage measuring the output ramp rate. When the dumper stops conducting this programmed voltage collapses, duly executing the measures required to hold output ramp rate unaltered.

In more abstract terms L differentiates the dumper current and C recovers it by integration, together with a negative sign. As a result Z_{3} passes a current equal and opposite to any sudden change in dumper current. Vanderkooy and Lipshitz make some observations on L in their article on feedforward error correction ${ }^{\star}$ in which they produce oscillograms to show that while a good inductor causes no trouble, an inductor wound with thick wire on a narrow former causes sharp distortion spikes during crossover, Fig. 10. The proposed explanation is that eddy currents are at work in the inductor. You might doubt whether the gentle usage just explained is apprpriate to produce such transients, and the oscillogram does resemble their Fig. $9(b)$, showing what happens when the bridge is unbalanced. But if this assertion is confirmed it would be a reason to expect still worse results in the first line of Table 1 , reinforcing the conclusions below.

Test case

In their WW article Vanderkooy and Lipshitz provide oscillograms of crossover distortion for $\mathrm{A}=1.4 \mathrm{~V}$ at $\mathrm{f}=13.2 \mathrm{kHz}$ with $Z_{L}=10 \Omega$. When the bridge was unbalanced by reducing Z_{1} by an unspecified amount, rectangular distortion pulses did indeed appear for the duration of crossover. They observed best balance when Z_{1} was reduced 10%, implying an e $=-0.1$ for their amplifier when Z_{1} is restored to its original value. Then according to (13) there should be a rectangular pulse of just $31 / 2 \mathrm{mV}$ height lasting for the duration of crossover. The oscillograms

[^2](their $4 \mathrm{c}=5 \mathrm{a}=6 \mathrm{a}$) are not easy to read, but offer 4 mV pk-pk amplitude. The pulse appears to be rectangular, but to include as well perhaps a 60% overshoot on return. The overshoot then decays with time constant about $5 \mu \mathrm{~s}$. All this is encouraging, and can be made more so.
Taking median gain figures for the transistors in the driver, its input impedance would be $460 \mathrm{k} \Omega$, combining with $\mathrm{C}=$ 120 pF to yield $55 \mu \mathrm{~s}$ time constant. This is not likely to be the decay involved. But C_{6} with R_{12} yields $3.3 \mu \mathrm{~s}$, or slightly more if the source driving V_{in} offers some impedance at r.f.

With the output described, crossover lasts $2.2 \mu \mathrm{~s}$, as seen in Fig. 11 from the effect on output of 1.4 V transition at the driver output. Then initially C_{6} offers a short circuit to ground for the rectangular pulse offered to it via Z_{1} and Tr_{2}. But as the pulse developes it begins to compare with $3.3 \mu \mathrm{~s}$. Then C_{6} has largely charged, and the pulse faces almost R_{12} instead of a short to ground. And when the pulse has finished C_{6} has to discharge. It forces reverse current into Tr_{2} and causes the overshoot noticed, which then decays as it should with time constant 4 to $5 \mu \mathrm{~s}$. The oscillogram provided is now well explained.

If the experiment were repeated with larger A, then crossover time would fall in proportion, and C_{6} would not have time to develop significant charge. The circuit would tend to behave more as if R_{12} were shorted. Thus as A rises in this way the circuit moves from something like 10% unbalance in one direction, passing zero to arrive at 6% unbalance in the other.
These figures were justified earlier. Then as A rises in (13) the quantity e first falls towards zero and then rises on the other side. So initially not much increase in output distortion is expected, as these factors are behaving in opposition. But after a while distortion should rise rapidly, perhaps after the style of a square law, when both factors are pulling in the same direction. This is just what is reported: as A was increased up to 14 V there was little increase in distortion, but as A climbed by a further factor of 2.5 distortion rose by a factor of five (observe approximate square law behaviour!)
Further progress would require more and clearer oscillograms.

Traditional amplifier

How does crossover distortion in the circuit of Fig. 11 compare with that present in an equivalent traditional amplifier? Some comparisons have been based on shorting Z_{4} while leaving Z_{2} in place but these need not detain us. It is clear that the capacitor Z_{2} will then seriously inhibit the driver in its attempts to produce rapid transition of its output voltage during crossover. Hence no traditional amplifier would contain such a component.
A comparison was made above with a traditional amplifier, and it was found that there was no difference. But this supposed a dumping amplifier that had been perfectly balanced by (10). Now compare a dumping amplifier with unbalance leading
to (13) with a traditional amplifier, and figures become essential.

The circuit of Fig. 11 may be converted into the equivalent traditional amplifier by shorting Z_{4}, and also removing Z_{2}. further, R_{12} should be shorted and C_{6} removed: impedance cannot be tolerated in this area, and dv/dt limiting must be done earlier instead. Copy the circuit of Fig. 12 with these simplications.

Then D becomes equal to E , and if study is confined to the effects of V on E then C becomes just a multiple of E . As Tr_{2} emitter input impedance is now low B can be taken as zero and all three unknown voltages that previously had to be eliminated have now vanished. The problem can be solved in two lines by applying the same current constraint as previously, and the contribution to E due to V becomes

$$
\mathrm{E} \approx-\frac{1}{g Z_{i n}} \cdot \frac{Z_{1}}{Z_{3}} V
$$

As all components are resistive, E will just follow the waveform of V in this fashion. The worst figure of $50 \mathrm{k} \Omega$ for $Z_{\text {in }}$ produces 0.15 mV pk-pk to complete Table 1.

Results

Current dumping has aroused much interest, and there have now been some 20 contributions to the discussion in this periodical alone. It has been suggested here that when the analysis takes account of the delivery of feedback to both ends of Tr_{2} a new factor λ appears in the bridge balance (9). The new factor is due to the presence of R_{12} and may vary between 0.65 and 0.90 depending on the gain of Tr_{2}. Supposing that this gain has its median value it would appear that a 10% bridge unbalance is built into the design of the Quad 405. This result has been accurately verified by Vanderkooy and Lipshitz. Conclusion: R_{12} is causing unpredictable consequences and it must go. The bridge must be balanced.
But suppose this is accepted (or indeed rejected). Then the best attempt at bridge balance is to ensure that (10) holds. But this destroys the whole system, and an amplifier of traditional type and identical performance results if the dumping components Z_{2} and Z_{4} are removed, provided three other elements are adjusted.

Finally, tolerance errors prevent perfect balance of (10), and further distortion results, degrading the current dumping amplifier below its traditional equivalent. Final figures are in Table 1. It seems to be an improvement to use resistive rather than reactive dumping elements, and a further improvement to abandon them altogether.

The gain term in (9) is about 10^{-5} in the Quad 405 , and it will almost certainly be small in any implementation of current dumping. Given the tolerances of the other terms it will scarcely be possible to take it into account. Then objections would apply unaltered to any alternative dumping circuit.
Part 1. On page 43 of the September article, the lower Z_{4} in equation 5 should read Z_{1}.
vaN

The new $\mathbf{Z 8 0}$

Coinciding with the introduction of the 32bit Z80000 mid next year Zilog plan to introduce the Z 800 8/16-bit family of processors with Z80 software compatibility. With clock rates of up to 25 MHz (preliminary information) and memory manipulation features, these devices will also make full use of current high-speed rams and, besides providing a stop-gap for the eight-to-sixteen bit transition, the family will act as input/output processors for the 16 -bit Z8000. There are four devices: two with a 16 -bit data bus, the $Z 8116$ and 8216; and two with eight bits, the Z8108 and 8208 . The 82 versions are physically larger than the other two i.cs and have four direct-memory access channels and builtin uart: all of the i.cs have four 16-bit counter timers.
The new processors have an integral memory-management unit that allows them to access either 512 K -bytes or 16 M bytes, depending on the type, and they have 256 bytes of memory which, when configured as a 'cache', may be programmed to contain either instructions or data, or both. This speeds up program execution by reducing the number of external bus accesses. Operation and updating of the cache is automatic.
Although the instruction set will be expanded and augmented, all Z80 instructions are compatible with binary. Basic addressing modes of the Z 80 will be augmented with the addition of a base-index mode and 16-bit displacements for indexed, program-counter-relative and stack-pointer-relative modes. These new addressing modes are incorporated into many of the old Z80 instructions. Additions to the instruction set include $8 / 16$-bit signed and unsigned multiply and divide, 8/16-bit sign extension, and a test-and-set instruction for use in multi-processor applications. Sixteen-bit instructions include compare, memory increment/decrement, negate, add, and subtract.

Largest of the 2800 family, the 16 -bit 8216, with $Z 80$ instruction compatibility. Of the four devices, the two eigth-bit versions are compatible with the $Z 80$ bus and the two 16-bit versions are designed for use with the 16-bit Z-Bus.

WW314 for further information

Rapid-update digital ratemeter

The normal method of digital frequency measurement is slow and inaccurate at very low frequencies, such as those encountered in medical research. This design enables pulse rate to be determined after only two heart beats.

It is often necessary to measure the heart rate of subjects undergoing intermittent exercise. When equipment for such application is to be used outdoors, it is essential that it should be robust, consume little power, be accurate to within 1% and indicate heart-beat between $40-240$ beats per minute.

The need for robustness ruled out the use of a moving-coil meter: low power requirements and the need for legibility in daylight dictated the choice of a liquidcrystal display.

Rate conversion itself necessitated careful consideration. Rapid settling fol-
*Academic Department of Surgery, Royal Free Hospital, London NW3.

by P. D. Coleridge Smith* MA FRCS

lowing switch-on and frequency change was required, since the subjects of the study were connected to the equipment immediately following exercise. An 'instant' indication of heart rate was essential and the meter had to be capable of closely following the change in rate.

A variety of analogue solutions were
Fig. 1. Circuit diagram of complete ratemeter. Layout on stripboard is not critical.
considered, from diode-pump ratemeters to analogue inverse-function generators. The simpler solutions would have taken too long to respond, the more complex suffered drift and difficult setting-up procedures. All, of course, would have required digital conversion before display.

These problems led to the final, all-digital design, in which a 10 bit binary counter measures the period between input pulses. An eprom uses the count as its address input, and contains a look-up table of rates at each of the 1024 points of the 10 bit counter, the data derived from the eprom being latched into display decoder/drivers: the circuit includes under- and overflow indication as well as leading-zero suppression. The instrument gives an accurate

Hexadecimal dump of eprom contents. This table also includes values for addresses where $\mathbf{n}<100$, for de velopment purposes. These may be altered as suggested in the text to indicate meter "overflow" if required.

indication of rate after the arrival of only two input pulses and correctly updates it after each subsequent pulse. It can be used in any application where the frequency of the input signal is 500 Hz or less, and is well suited to use below 5 Hz where other techniques involve excessive integration periods.

The low-level signal amplification and pulse extraction are achieved conventionally, using a high input-impedance differential amplifier to extract the subject's electrocardiogram voltages - of the order of $1-2 \mathrm{mV}$ peak - peak, which is subsequently converted to c.m.o.s. levels for connection to the ratemeter.

Circuit description

$\mathrm{IC}_{1(\mathrm{c})}$ forms a 1 MHz crystal oscillator, which is divided by 2048 in IC_{3}, resulting in an output of 488.28 Hz to IC5. These
counters are controlled by IC_{2} and IC_{4}, a decoded decade counter.
When the ratemeter input (pins 8,9 and 12 of IC_{2}) is low, IC_{4} counts up until the decoded 'l' output goes high. $\mathrm{IC}_{2(\mathrm{~b})}$ then applies a high level to the clock-enable input of IC_{4} and further counting ceases, whereupon a high level at the input again enables counting, with outputs 2 to 9 being taken high in sequence. The low level at IC_{4} clock-enable also enables the 2716 eprom.

Output ' 2 ' from IC_{4} resets IC_{3}, preventing any change in the count of ICs during the look-up procedure. This ripple counter, IC_{5}, provides the address for IC_{6}, which holds the rate data in a look-up table.

Output ' 3 ' latches the high-order data from IC_{6} into display driver/latches $\mathrm{IC}_{8,9}$. The carry output of IC_{4} then goes low, selecting the lower half of the look-up table
in IC_{6}, the data from which is latched by the ' 5 ' output into IC_{10}.

Outpur ' 7 ' then resets IC_{5} ready for the next measurement cycle, the count output of IC_{4} remaining at ' 0 ' until the input goes low again.
$\mathrm{IC}_{\mathrm{la}, \mathrm{lb}}$ and half of IC_{7} provide a precise $1: 1$ duty cycle square-wave drive for the 1.c.d. driver i.cs and display. A $31 / 2$ digit device has been used for convenience, with unused segments tied to the back-plane.
The entire look-up cycle takes place at a 1 MHz clock rate, and is therefore complete in less than 9μ s.
Should the interval between successive positive input transitions exceed that taken to count through the first ten stages of IC_{5}, output Q_{11} of IC_{5} will go high. This inhibits further clock pulses to the counter chain via $\mathrm{IC}_{1(\mathrm{~d})}$ and stops the eprom address from IC_{5} at zero This location (0) in eprom contains a range underflow indi-

Fig. 2. Memory map of 2716 eprom.
cator - " 000 " in my original design.
The data in the eprom is derived from the simple formula:

$$
\text { rate } \left.=60 f_{i} / n \text { (pulses per minute }\right)
$$

where f_{i} is the input frequency to IC_{5}, 488.28 Hz in the diagram shown, and n is the eprom address in the range $0-1023$. The rate for each of the memory locations was calculated and rounded to an integral number before being programmed using a
microprocessor-based system. For locations with $\mathrm{n}<100$, the entry was replaced with ' 999 ' to indicate meter overflow, since the accuracy in this address range does not fulfil design criteria.

The high-order digits are stored in the upper half of the eprom memory range in b.c.d. form, that is from 1024-2047 (decimal), while low-order digit data is located in the upper half of each byte from address $0-1023$. The remaining half byte in each of these locations is not used in this application. Leading-zero blanking is accomplished by substituting a non-b.c.d. value ($0-\mathrm{F}$ hexadecimal) in place of the relevant zero. The CD 4543 responds to this code by blanking the digit concerned. Figure 2 is the complete memory map for the eprom.

Power is derived from a 9 volt battery via a 78L05 supply regulator to ensure that the rail requirements of the 2716 are not exceeded. The entire circuit consumes about 30 mA , of which the eprom accounts for the greatest part.

Construction

The layout is non-critical and the prototype was constructed on Veroboard.

Setting-up is not required, since the clock runs within 0.1% of 1 MHz without adjustment. The display oscillator should provide a final-drive frequency within the range $30-100 \mathrm{~Hz}$ on pin 15 of IC_{7} for optimum performance, and this again usually requires no adjustment.

Additional ranges

For an indication in Hertz, merely reprogram the eprom. Alternative frequency ranges can be accommodated by selecting the appropriate output from IC_{3} to give a minimum of 100 counts in IC_{5} at the high end of the frequency range (for 1% accuracy), bearing in mind that the meter will "underflow" after 1023 counts at IC C_{5}. The required data for the eprom is easily calculated from the formula given above.

The remaining half of IC_{7} can be used to divide the input signal by two, thus updating the display on alternate positive input transitions. The output from IC_{3} must then be taken from Q_{12}, not Q_{11}, to ensure that the correct frequency is displayed. This is useful if the input frequency is slightly irregular and averaging over two consecutive periods is required.

MNT

Electronic Prototype Construction by Stephen D. Kasten, 398 pages. Prentice/Hall International, $£ 15.25$, soft covers. How to lay out and manufacture your own p.c.bs.

Mastering Electronics by John Watson, 382 pages. Macmillan, $£ 10.00$ hard cover. Electronics for the beginner - from basic physics to radio, tv and computing.
Learning Timex Sinclair Basic by David A. Lien, 331 pages. Compusoft Publishing, 535 Broadway, El Cajon, California 92021, USA, $\$ 14.95$, soft cover. For ZX 81 owners.

Learning IBM Basic by David A. Lien, 421 pages. Compusoft Publishing, $\$ 19.95$, soft cover. For the IBM personal computer.

Science and Engineering Sourcebook by Cass Lewart, 96 pages. Prentice/Hall International, $£ 8.45$, paper cover. Scientific and engineering programs for the Sharp PC1211 and TRS-80 pocket computers.

Beginner's Guide to Computers by T. F. Fry, second edition. Newnes, 186 pages, $£ 4.35$, soft cover. Introduction to computers, both great and small, and their uses.
What do you do after you plug it in? by William Barden ir, 198 pages. Prentice/Hall International, £9.30, paperback. Chatty guide for newcomers to the microcomputer.

The World Connection by Timothy Orr Knight, 142 pages. Prentice/Hall International, $£ 8.45$, soft covers. The romance of the micro, by a 16 -year-old enthusiast.

Using 6502 Assembly Language by Randy Hyde. Prentice/Hall International, £16.95, paper cover. Aimed mairily at Apple II users.
iAPX 88 Book by staff of the Intel Corporation, 80 pages. Prentice/Hall International, $£ 11.00$, paper cover. All about the Intel 80888 -bit microprocessor.

Microprocessors and Digital Systems by Douglas V. Hall, second edition, 464 pages.
McGraw-Hill, $£ 19.00$, hard cover.
Comprehensive guide for the technician.
Security Electroncis by John E. Cunningham, third edition, 255 pages. Prentice/Hall International, $£ 11.85$, paper cover. Techniques for keeping intruders out of cars, property and computers.

Basic Electrical Installations by Michael Neidle, third edition, 79 pages. Macmillan, f3.95, soft cover.

Electrical Installations and Regulations by Michael Neidle, third edition, 99 pages, Macmillan, $£ 4.95$, soft cover.

Electrical Installation by A. O. Akintante and J. M. Hyde, 146 pages. Macmillan Introduction to Technology Series, Macmillan, $£ 3.25$, soft cover.

IC Timer Cookbook by Walter G. Jung, second edition, 384 pages. Prentice/Hall International, $£ 15.25$, soft cover. Everything there is to know about the 555 and its cousins.

A $\mathbf{Z 8 0}$ Workshop Manual by E. A. Parr, 184 pages. Bernard Babani, $£ 2.75$, soft cover. Assembly language and machine code for the ZX81, Spectrum, Nascom, TRS80 etc.

Easy Add-on Projects for Spectrum, ZX81 \& Ace by Owen Bishop, 182 pages. Babani, £2.75, soft cover. 17 projects including a light-pen, a model railway controller and an anemometer, with software suggestions in Basic and Forth.

Video User's Handbook by Peter Utz, second edition, 500 pages. Prentice/Hall International, £11.95, soft cover. Production methods and tv techricalities for community tv people.

Computer Communication Techniques by E. G. Brooner and Phil Wells, 142 pages.

Prentice/Hall International, $£ 13.55$, soft cover. Details of the various interface standards and protocols, plus an outline of public data systems, computer networks and packet radio.

Radio and Television Servicing, 1982-83 models edited by R. N. Wainwright, 767 pages. Macdonald, $£ 22.50$, hard cover. Circuit diagrams and servicing hints for a wide range of British and foreign sets.

SPSSX User.s Guide (SPSS inc.), 806 pages. McGraw-Hill, $£ 24.25$, soft covers. Mammoth guide to the SPSSX computer language and its uses.

Microelectronics: practical approaches for schools \& colleges edited by Graham Bevis and Mike Trotter, 94 A4-size pages plus two small wall-charts doubling as overhead projection transparencies. BP Educational Service, with the Microelectronics Education Programme and BBC Schools Radio, $£ 2.75$, soft cover. Lots of things to do, andhow to do them; great fun for beginners young or old.

Microcomputer companiesin the UK (eurolec 58) edited by John Beaven, 370 pages, soft cover. $£ 32$ plus $£ 2$ post and ,acking from Eurolec, 6 Woodbury Lane, Clifton, Bristol BS8 2SD. Guide to more than 1700 micro hardware and software suppliers.

A user guide to the UNIX system by Rebecca Thomas and Jean Yates, 510 pages. McGrawHill, £12.95, soft cover. At-the-keyboard tutorial course for users of this computer operating system, widely used on machines from mainframes to micros.

IBM Personal Computer Technical Reference Manual. International Business Machines, £31, loose-leaf with ring-binder. How the hardware works, for engineers and programmers. Includes circuit diagrams and operating system rom losting.

Microcomputer analysis of a ladder network

Flow diagrams enable a program for ladder network insertion loss and its delay
equalization written for a ZX81 to be modified for other computers

Since the publication of my article "Network analysis with a ZX81" in Wireless World (August and September 1982 issues) I have received appeals for help in adapting the program for micros other than the ZX81. Such a procedure is always full of well-concealed traps even when the dialect of Basic is nominally the same, and after many tedious hours at the v.d.u. I am convinced that in nearly every instance it pays handsomely to start by understanding how the program work, and then to rewrite it for one's own machine and in one's own way. This is all the more valid when the program was originally written for the ZX81, which has certain idiosyncracies.

What I have done, therefore, is to rewrite the program slightly in a form which is likely to be more generally acceptable to other micro-computers, while keeping the overall format the same to facilitate crossreferencing. The result is given in the form of a series of flow diagrams which point to the relevant lines in the original. As a further aid, these lines or sequences of lines are reproduced in an appendix.

First, a brief review of the method of analysis of the network and the development of the fundamental algorithm. Figs $1(\mathbf{a})$ and $1(\mathbf{b})$ show the two possible configurations, the first with shunt input and the last with series. We need to determine the ratio of the voltage across the output termination RI to that of the generator feeding the output termination RO, that is $\mathrm{e}_{0} / \mathrm{e}_{\mathrm{i}}$, complex quantity, say $\mathrm{a}+\mathrm{jb}$. Then the insertion loss is $10 \log _{10}$ $\left(a^{2}+b^{2}\right) / 4$, and the insertion phase shift

by L. E. Weaver

$\beta=\arctan (\mathrm{b} / \mathrm{a})$.

The starting point is the A-matrix for the input termination which, as it must always be considered to be in series, is

$$
\begin{array}{ll}
1 & \mathrm{RI} \\
0 & 1
\end{array}
$$

The A-matrix of the first reactance arm is then added by matrix multiplication, followed by all of the other arms in sequence. Finally, the output termination is added in shunt. The process can be generalized as follows.

Stage 1: data input

The program can be conveniently divided into distinct stages, each with its own flow diagram. The first step is the input of the basic data, i.e.

- FO is starting frequency for the computation (MHz)
- FM is finishing frequency (MHz)
- DF is frequency step (MHz)
- D is dissipation constant
- FD is the frequency associated with D. Remember that D is a function both of the resistive component of a reactor and its reactance. Usually, FD is made the frequency of maximum D over the range of interest, also in MHz .
- RI is the value of the input termination (ohms)
- RO is the value of the output termination (ohms)
- the number of branches NM. These must be alternately series and shunt, or vice versa.
The next step is to input the reactance values into the arrays $L(N)$ and $C(N)$, where N is the number of the branch starting from the input. Each reactance arm is allowed one inductor and one capacitor, where either may be allocated the value zero. This is not a restriction on the applicability of the program. It was demonstrated back ir the original article

(August 1982) that arms with three or more components can be dealt with by means of a simple device.

The method used should be clear from the flow diagram of Fig. 2. Each arm in succession is flagged by means of the arrays $T(N)$ and $G(N)$ to indicate unambiguously whether it contains a series resonant circuit, a parallel resonant circuit, an inductor only, or a capacitor only. Although it is not shown in Fig. 2, it is very disirable to STOP the program when all entries have been made, and GOTO a subroutine listing all inputs with the corresponding branch numbers. Without a check of this kind, errors are all too likely. If at some point in this process the matrix has become

$$
\begin{array}{ll}
\mathrm{Z}_{11} & \mathrm{Z}_{12} \\
\mathrm{Z}_{21} & \mathrm{Z}_{22},
\end{array}
$$

then after the addition of a series arm Z_{s}, this becomes

$$
\begin{array}{ll}
\mathrm{Z}_{11} & \mathrm{Z}_{12}+\mathrm{Z}_{\mathrm{s}} \cdot \mathrm{Z}_{11} \\
\mathrm{Z}_{21} & \mathrm{Z}_{22}+\mathrm{Z}_{\mathrm{s}} \cdot \mathrm{Z}_{21}
\end{array}
$$

and after the addition of a shunt arm Z_{p}

$$
\begin{array}{ll}
\mathrm{Z}_{11}+\mathrm{Z}_{12} / \mathrm{Z}_{\mathrm{p}} & \mathrm{Z}_{12} \\
\mathrm{Z}_{21}+\mathrm{Z}_{22} / \mathrm{Z}_{\mathrm{p}} & \mathrm{Z}_{22}
\end{array}
$$

At the end, after the addition of the output termination, the matrix element $\mathrm{Z}_{11}=\mathrm{e}_{0} / \mathrm{e}_{\mathrm{i}}$ gives the insertion loss and phase. The element Z_{21} is not unimportant as it is the input impedance of the network as seen through the input termination RI. However, in the original program this was not required, so that the second row of the matrix does not enter into the computation and may therefore be ignored.

The final result is a pair of what must more correctly be called algorithms, although for the sake of convenience they will still be referred to as matrices:

$$
\begin{aligned}
& \mathrm{Z}_{11} \mathrm{Z}_{12} \rightarrow \mathrm{Z}_{12}+\mathrm{Z}_{\mathrm{s}} \cdot \mathrm{Z}_{11} \\
& \text { addition of series arm } \mathrm{Z}_{\mathrm{s}} \\
& \mathrm{Z}_{11} \mathrm{Z}_{12} \rightarrow \mathrm{Z}_{11}+\mathrm{Z}_{12} / \mathrm{Z}_{\mathrm{p}} \mathrm{Z}_{12} \text { addition of shunt arm } \mathrm{Z}_{\mathrm{p}}
\end{aligned}
$$

Each term can be a complex number so

Passive networks are alive and well. . In spite of some predictions, passive netvorks are still in wide spread usk. especiatly in the form of video low-gass fikers. Their performance is defined in terms of the change in the transmission of a chrcult having a datingble in. pedence when opened atd the fitter inserted; the relevant paratheters are in: sertiont loss and dobup detay. To improve the transient respornse it is utwaly necessary to add constantressid. fance chalay correction sections which ideath laprove the groun delay tharec: terisitc whout modifyling the loss. In the Atgust and Septenter reaues, a program showed how to compute efl of tifis on a simple doniestic microcomt puter. The besilg wat a mative asdilion of the suecessive fadder mpedances. which reducid to a simple elgoritim: Biscipation coutd pacily be taken into account. This program than been slighty moditied and presenter again in a nore generatized fom to enahle readers to adsp it to indilidital needs.

that an array of the form $\mathrm{A}(1,4)$ is required for the representation of the working matrix, where $A(1,1)+j A(1,2)$ is used for Z_{11}, and $A(1,3)+j A(1,4)$ for Z_{12}.

Stage 2: computation of loss and delay

This part of the program has been modified slightly from the original to make it more transportable, although the general format and the line numbering have been left unchanged to facilitate cross-referencing. The flow diagram is given in Fig. 3; bracketed numbers against the boxes are the relevant line numbers. For the sake of those without access to the September 1982 issue these program segments are provided in the Appendix, again with minimum changes. Any changes needed for a particular machine or dialect of Basic should be fairly evident.

One vital piece of information is re-
quired before computation can start, that is whether the first arm of the ladder is in series or shunt. This input sets the first element of the $\mathrm{M}(\mathrm{N})$ array to -1 or +1 respectively. Execution can then proceed to the setting up of the initial matrix, that corresponding to the input termination RI. Because the 'matrix' is now only a single row, array $\mathrm{A}(1,4)$ suffices. At the same time, the arm number N is set to 1 .
The arrays of flags $T(N)$ and $G(N)$ are then interrogated to determine the type of reactance arm, the real part Re and the imaginary part Im of which are then determined by the appropriate program segment. These are next combined with the matrix $\mathrm{A}(1,4)$ either as series or shunt impedances as directed by the array $\mathrm{M}(\mathrm{N})$. At the end of each pass N is incremented by 1 and the sign of $M(N+1)$ is inverted compared with $\mathrm{M}(\mathrm{N})$, thus maintaining the alternating sequence of series and

shunt arms. This is an in-place calculation, so that as soon as $\mathrm{N}=\mathrm{N}+1$, the loss and $\tan \beta$ may be computed from $A(1,1)$ and $\mathrm{A}(1,2)$. However, the last-mentioned does not provide the group delay, which is defined as $d \beta / d \omega$, where the d 's represent infinitesimally small increments in β and $\omega=2 \pi \mathrm{~F}$. Although there are a few networks whose group delay can be calculated directly, the best one can do in the general case is to add a small increment to F and recalculate β. In the present instance this was chosen to be 0.001 , although even smaller values are possible depending upon the quality of the arithmetic of the micro.

The two values for $\tan \beta$ are held in the arrays $\mathrm{P}(1)$ and (2), hence tan $\Delta \beta$ can be computed from the familiar trigonometrical relation tan $\Delta \beta=(\mathrm{P}(2)$
$\mathbf{P}(1)) /(1+\mathbf{P}(1) \cdot \mathbf{P}(2)$. In fact, there is no need to take the arctan of this expression to
obtain $\Delta \beta$: with video filters the incremental angle in radians is so small as to be equal to its tangent to a high degree of accuracy. For example, suppose the group delay is $1 \mu \mathrm{~s}$, a likely value for a video filter. Then one can see by inspection that the angle will be about 0.006 rad . The second term in the expansion of $\tan \Delta \beta$ is $(0.006)^{3} / 3$, the first being $\Delta \beta$, so the error is evidently completely negible. The group delay in $\mu \mathrm{s}$ is then $\Delta \beta /(.002 \mathrm{I})$. These computed values are stored in the array $X(R)$ for use in Stage 3 of the program.

As the variable S is incremented by 1 with each pass, $S=3$ indicates that the computation of the group delay has been terminated. At this point, 0.001 is subtracted from F and DF added to it, and the whole process is repeated for the new frequency unless F is found to be greater than FM, when the program is stopped. This allows the computed values to be

750	$\operatorname{LET~} A(1,3)=\mathrm{RI}$ (initial matrix)
760	$\operatorname{LET} A(1,1)=1$
770	LET $A(1,2)=0$
780	LET $A(1,4)=0$
900	REM L ONLY
910	LET RE $=F D * L(N) * D / 2$
920	LET $\mathrm{IM}=\mathrm{L}(\mathrm{N}) * \mathrm{~A}$
940	REM C ONLY
960	LET RE $=\mathrm{D} /(2 * F D * C(N))$
970	LET IM $=-1 /\left(A^{*} C(N)\right)$
1020	REM SERIES LC
1030	LET $H=\operatorname{SQR}(1 /(L)(N) * C(N))$
1040	LET $\mathrm{X}=\mathrm{A} / \mathrm{H}$
1055	LET RE $=H^{*} \mathrm{D}^{*} \mathrm{~L}(\mathrm{~N})$
1060	LET IM $=\mathrm{H} * \mathrm{~L}(\mathrm{~N}) *(\mathrm{X}-1 / \mathrm{X})$
1070	REM Parallel lc
1080	LET $H=\operatorname{SQR}(1 /(L) N$ * $\mathrm{C}(\mathrm{N})$)
1090	LET $X=A / H$
1110	LET $J=(X-1 / X) *(X-1 / X)+D * D$
1120	LET Ll $=\mathrm{H}^{*} \mathrm{~L}(\mathrm{~N})$
1130	LET RE $=\mathrm{Ll}{ }^{*} \mathrm{D} / \mathrm{J}$
1140	LET IM $=-\mathrm{LI*}(\mathrm{X}-1 / \mathrm{X}) / \mathrm{J}$
1170	LET DE $=~ R E^{*} \mathrm{RE}+\mathrm{IM}{ }^{*} \mathrm{IM}$ (${ }^{\text {a }}$ (addition of shunt arm)
1180	$\operatorname{LET} A(1,1)=A(1,1)+(A(1,3) * R E+A(1,4) * I M) / D E$
1190	$\operatorname{LET~} A(1,2)=A(1,2)+(A(1,4) * R E-A(1,3) * I M) / D E$
1250	$\operatorname{LET~} A(1,3)=A(1,3)+A(1,1) * R E-A(1,2) * I M \quad$ (add series arm)
1260	$\operatorname{LET~} A(1,4)=A(1,4)+A(1,1) * I M+A(1,2) * R E$
1330	$\operatorname{LET} A(1,1)=A(1,1)+A(1,3) / R O \quad$ (addition of RO)
1340	$\operatorname{LET~} A(1,4)=A(1,2)+A(1,4) / R O$
1400	LET LO $=A(1,1) * A(1,1)+A(1,2) * A(1,2) \quad$ (insertion loss
1410	LET $\mathrm{B}(\mathrm{S})=10 * \operatorname{LOG}(\mathrm{LO} / 4) / \mathrm{LOG}(10) \quad$ computation)
1420	$\operatorname{LETP} P(S)=A(1,2) / A(1,1) \quad(\tan \beta)$
1510	LET $\mathrm{X}(\mathrm{R})=((\mathrm{P}(2)-\mathrm{S}(1)) /(1+\mathrm{P}(1) . \mathrm{P}(2)) /(.002 * \mathrm{PI}) \quad(\mathrm{d} \mathrm{B} / \mathrm{d} \omega$)
1840	LET $T=F / F(M) \quad$ (lst order equaliser sections)
1850	LET S = PI*F(M)* ($1+\mathrm{T}$ *T)
1860	LET $Z(R)=Z(R)+1 / S$
1880	LET T $=\mathrm{F} / \mathrm{F}(\mathrm{M})$
1890	LET U $=(1-T * T) *(1-T * T)$
1900	LET S : $(1+T * T) * K(M) /(U+K(M) * K(M) * T * T)$
1910	LET $2(R)=2(R)+S /(P I * F(M))$
1920	LET $M=M+1$
2100	FOR $R=1$ TO 15 (add loss from dissipation in
2110	LET L = 17.37*PI* $\mathrm{F}^{*}(Z(R)-X(R)) * D$ delay equaliser)
2120	$L E T D(R)=D(R)+L$
2130	(output $D(R)$ as required)
2140 N	NEXT R

listed, printed, or displayed as required.
One special point - the imaginary part of a capacitative impedance contains F in the denominator, so an error will be shown unless measures are taken. The simplest precaution is to replace $F=0$ by some very small quantity initially, and then to restore $\mathrm{F}=0$ at the end of the relevant computation. This may be $1 E-6$, or even less depending upon the micro, so no practical error is involved. The published program used a more complex method where division by zero is avoided at each step where it could occur, but the suggested alternative is just as effective. It is not shown in the flow diagram of Fig. 3 for the sake of clarity.

Stage 3: group delay equalization

 Group delay equalization is carried out by means of constant-resistance equalisers, used as a combination of first and secondorder sections. Although higher orders exist, they are rarely used because of their complexity and difficulty of adjustment. In any case, all possible characteristics are feasible with only first and second orders.First-order sections are defined by a single resonant frequency only, whereas second-order types require a shape factor K in addition to the resonant frequency FR. During the initial data entry it is convenient to make $\mathrm{K}=0$ for a first-order section, providing an automatic indicator of the type of section. The only other input needed is the total number of sections V . Because of alignment problems, it is advisable to use not more than four unless unavoidable.
In the flow diagram in Fig. 4 the variable M is used as a counter, and as FR and K are entered they are stored in the arrays $F(M)$ and $K(M)$ respectively. Then the already-computed group delay values for the filter in $Z(R)$ are copied into the array $\mathbf{Z}(\mathbf{R})$. The reason for this becomes evident later. A maximum of 15 frequencies is assumed, but this number is convenient rather than significant, and can readily be changed.

The next step is to calculate the group delay of each section in turn for the frequency F and to add it to the value held in $Z(R)$. This is repeated for all frequencies up to the limit chosen of FM. But for equalization the deviations from flatness are easier to deal with if the output has the form of the equalized delay with the zerofrequency value subtracted, that is $\mathbf{Z}(\mathrm{R})-\mathbf{Z}(1)$. This last quantity is also important and should be made available.

The program is stopped at this point for inspection of the results. Revised figures for $K(M)$ and $F(M)$ can then be entered, and as the original filter delay is still held intact in array $\mathrm{Z}(\mathrm{R})$, the process can quickly be repeated.

The question then remains of the dissipation of the delay equalizer, often far from negligible, and gives rise to undesirable undulations in the pass band loss characteristic of the filter. Provided D is not too large, say not greater than 0.02 , Mayer's theorem is capable of furnishing a very good approximation to the variations due to the equaliser dissipation, and leads
to a very simple subroutine (line 2100) The published program gives the actual variations, but by adding another line just after line 1410 to hold the insertion loss figures $B(1)$ in a new array $D(R)$, it is simple to provide the sum of the two, that is the filter loss plus the delay equalizer dissipation loss.

NewBrain modification

To provide some check on the portability of the program, it was typed into a NewBrain AD with only minor modifications, such as the omission of all LET commands and GOTO's in conditional statements. The general format, and the line numbering were deliberately left intact. A useful feature of this micro is the ability to choose the dimension base of arrays to be unity, as in the ZX81, or zero

Flow diagram for delay equalization

as in many other machines, so there was no need to change any array dimensions as the program was entered.
The results were very satisfactory. The speed of the program was very noticeably increased, and the accuracy was estimated to be at least an order of magnitude better. In addition, the high-resolution graphics were a valuable aid. The program could
obviously be improved still further by rewriting it specifically for this particular computer. In general, this is the approach recommended to anyone wishing to use this method of network analysis. Even the flow diagram is not sacrosanct, and once the general principles have been grasped it may prove advantageous to modify it to suit one's own circumstances.

Flat cables and i.d.c. connectors along with suitable accessories and tools all constitute part of the Scotchflex system described in a 32 -page brochure which also gives details of a breadboarding system for the rapid production of prototyping cricuits. Copies are available from Carolyn Morris, Electronics Products Group, 3M United Kingdom Plc, PO Box 1 , Bracknell, Berks RGI2 1JU.

WW 401

Cable identification products, including cable sleeves and markers, tools to fit them, cable ties and heat-shrink tools are all described in a catalogue from SiegristOrel Ltd, Hornet Close, Pysons Road Industrial Estate, Broadstairs, Kent CT10 2LQ.

WW 402

A six-page fold-out brochure gives full technical information on an 'advanced' carrier frequency instrumentation amplifier which may be used with a variety of bridge transducers. It features an automatic system to balance the bridge in amplitude and phase. Once balanced, the amplifier may be locked by touching a switch. The balance values are automatically stored. The 5 kHz carrier frequency allows measurements up to 2000 Hz . The KWS 83 brochure is available from Hottinger Baldwin Messtechnik, Howard House, The Runway, Ruislip, Middlesex HA4 6 TH .

WW 403

Advance product information has been received on the Ferranti ZN440/ZN441 video a-to-d converters. ZN440 has a 16 MHz sample rate and the converters may be stacked so that the initial 6 -bit resolution may be expanded to 7 or 8 bits. The ZN441 has a 10 MHz sample rate. Applications include high-speed data acquisition, video and radar data conversion, digital signal storage and image processing. Ferranti Electronics Ltd, Fields New Road, Chadderton, Oldham OL9 8NP. WW 404
A wide range of DIN two-piece p.c.b. connectors are detailed in a 26 -page catalogue of the $100 / 101$ range from Panduit Ltd, Lordswood Industrial Estate, 61-65 Revenge Road, Chatham, Kent ME5 8YT. WW 405
British Standard 4727 is, or will be when it's complete, a glossary of electrotechnical, power telecommunications and electronics, lighting and colour terms. Group 01 of Part 1 gives the fundamental
terminology of those terms common to power, telecommunications and electronics. In effect it is a useful dictionary of units, effects and functions. BSI, 2 Park Street, London W1A BS.

The components catalogue of Ambit International seems to grow bigger each time it is issued. The latest version is in two forms: an industrial version available free to bona fide professional customers, and the consumer/enthusiasts edition available through newsagents at 80 p. All items are described and priced and there is the Rewtel system for ordering goods via a computer link-up. Ambit International, 200 North Service Road, Brentwood, Essex CM14 4SG.

WW 407

The services of C \& S Antennas, who design and make broadcasting and specialised antennae, are described in a glossy brochure. Their extensive $\mathrm{R} \& \mathrm{D}$ facilities enable them to offer aerials for almost any application. C \& S Antennas Ltd, Knight Road, Strood, Rochester, Kent ME2 2AX.

WW 408

Computer peripheral equipment, including cartridge tape drives and storage systems, tape communications terminals and printers is described in the catalogue of Quantex equipment. Details are also given of the Diabolo-compatible userprogrammable impact printer, Model 7040; and a Model 410 high-density cartridge tape streamer and Winchester backup system. The catalogue comes from Euro Electronics Ltd, Twyman House, 31 Camden Road, London NW1 1YE.

WW 409

A colourful wallchart provides full technical specification of the Sharp range of l.e.ds and l.c.d. devices. Some 42 types are described with type number, colour, lens (shape and type), luminous intensity, viewing angle, current requirement and package outline. The chart is available from Impectron Ltd, Foundry Lane, Horsham, W. Sussex RH13 5PX.

WW 410

Until recently the design of l.s.i. circuits has been the exclusive province of the large semiconductor manufacturers. Now i.cs can be designed by equipment engineers and to help this happen MEDL has produced a design guide, Designing on Silicon with MEDL. This 58-page publication introduces the subject, guides an engineer through the various stages and lists the library of gate array cells and other building blocks available. Marconi Electronic Devices Ltd, Doddington Road, Lincoln LN6 0LF
WW 411
More on p. 56

WW - 031 FOR FURTHER DETAILS

ELECTRONIC COMPONENTS

\star ELECTRONICS \star COMMUNICATIONS \star COMPUTING \star VIDEO \star AUDIO $\star 3 \times £ 1$ DISCOUNT Vouchers as usual

Adaplors	Copper Clad PCB
Aerosols	${ }_{\text {cores }}$
Ammeters	Coils
Ampitiers	Convente
Audio Leads Auto Modulion Meter	
${ }_{\text {Ald }}$ Autio Moduation Meler	Data B
Batenes Beads-Fentive	Die Cast Boxes
	Displays
Bridge Rectiliers	Dot Matix LCD Module
Bulbs	Double Balanced Mixer
Cable	Drating Aids
Cable Accessori	Drawng Pen
Cabiner Feet	Drills
Cage Jacks	Drive Cord
Capacitors	Earpieces
	melled Copper W
Casserte Mechansms	Encoder Rotary
Caps - Keytops	EPROM Eraser
Ceramic	Equipment Cases
Cermet P reset	Etchung Kit
Chassis Punches	Elch Ressist Pen
Chargers - Batery	Feme Chonde
Choxes - Min Fixed Cleaning Elocks	${ }^{\text {Femme }}$
Clocks-LCD	File Set
cmosics	Fillers
Computer Leads	Fixed Inductors
Cornectors	Fluorescent D
Co-ax Relay	
Contact Cleaner A	Furction Generators

Generators	Screwdrivers
Helical Filter	SCRs
High Pass Filter	Semiconductors
ICs	Silicon Compound
IF Transformers	Silicon Diodes
Keyboard Switches	Silver Plated Wire
Keypad	Sleeving
Keyswitch Ceps	Stereo Decoders
LCD Displays	Switches
LCD Modules	Tape Mecharism
Lever Swntches	Terminal Blocks
Linear ICs	Thermometer
Linear Phase Filters	Transformers
Low Pass Filters	Transformers Mains
Mechanical Filters	Trim Tools
Meters	Trimmers
Minianure Loudspeakers	TVI Filters
Miniature Relays	TV Modulators
Mixer Diodes	Variable Inductors
Ni -Cad Batteries	Varicap Dioces
Noise Measuring Equipment	Video Adaptors
Oscilloscopes	Video Leads
Oscilloscope Probes	Voltmeters
PCB Aids	Voltage Regulators
PCB	VU Meters
Potentiometers	Zener Diodes
Presets	Zero Insert Force Socket
Quartz Crystals	Z-8 Development Systems
Resistors	
Resonators	
Rotary Switches	
	Heswners
VISA	[

ambit wremanoman $=\underline{\square}=$
200 North Service Road, Brentwood, Essex CM14 4SG
Telephone (Consumer Sales/Enquiries) 0271-230909 - Telephone (Industrial Sales/ Enquiries) 0271-231616 - Telex 995194 AMBIT G - Data 24 hrs (RS232/300 baud) 0277232628; REWTEL

Marconi Type R1020 Hinged Antenna Column. Easy to raise Easy to lower
 * Immensely strong, corrosion resistant MATHWEB* g.r.p. column in a rugged steel tabernacle
 * Lightweight, easy to install, and can be safely lowered by one man
 * Can support a number of VHF/UHF antennas
 * Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance
 * Available in heights from 11 to 19.5 metres

OTHER MARCONI SUPPORT STRUCTURES

Include the MATHWEB* Lattice Aritenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB is a registered trademark of the BP Group

Marconi

Communication Systems

Antenna Systems Division

Marconi Communication Systems Limited,
Lane Works, Waterhouse Lane, Chelmsford CM1 2QX, England Tel: 024567111 Telex: 99201

Sowter Transformers

With 40 years ${ }^{\text { }}$ experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY

TRANSFORMERS OF EVERY TYPE

 YOU NAMEIT! WE MAKEIT! OUR RANGE INCLUDESMicrophone transformers (all types). Microphone Splitter/Combiner transformers. Input and Oufput transformers, Direct injection transformers for Guitars, Multi-Secondary output transtormers, Bridging transiormers, Line transformers to G.P.O, isolating Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chakes, Fikter, Inductors, Ampli. fier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching ransformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPE TITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS, Many standard types are in stock and normal dispatch times are shor and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS,
BAND GROUPS. AND PUBLIC ADDRESS FIRMS Expor is a speciality and we BAND GROUPS. AND PUBLIC ADORESS FIRMS. Export is a speciality and we Send for our questionnaire which, when completed, enables us to post quotation
tons by return.
E. A. Sowter Ltd.
E. A. SOWTEA LTP. (Eathblichad 1s41) : Reg. No. Encland 303seo Tho Boat Yard, Cullinghmm Roed, Ipuwich IP1 2Zc. Suffolk P.O. Box 36, bpwich, 1P1 2EL, Enthnd Talox 9877036 Sowter

WW - 016 FOR FURTHER DETAILS

WW - 028 FOR FURTHER DETAILS

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTIties of components become redundant. We are CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Ledge Lane, N. Finchley, London, N. 12.5 mins from Tally Ho corner Telephone 445 2713/0749

WW - 022 FOR FURTHER DETAILS

Program development with Occam

In advance of bringing out the Transputer, Inmos' advanced microprocessor, the company have launched development systems using their Occam language. The language has been available for nearly a year in an evaluation kit and has proved to be particularly useful for system designers, says Inmos, and so the 'system builders' workstation' has been developed with this in mind, giving some meaning to the phrase 'software engineering'. The language is based on the concepts of concurrency (doing different things at the same time) and communication. It is especially designed for use with multiple interconnected processors. Inmos claim that it is easy to understand, encourages structured programming with a syntax specially designed for interactive use. Many of the problems of programming microprocessors are solved with Occam by formalising the notions of input and output, in-
terrupts, priorities and real-time. Using these eliminates the need to use real-time executives, or machine-code debugging. An Occam program by its nature reflects the structure of the application, describing how the hardware is arranged and providing the specification and implementation of each component. The formal structure of the language leads naturally to correct programs which may be transformed, preserving the function, much as logic functions may be transformed by Boolean algebra.

The workstation, based on a 16 -bit 8088 processor, features 600 K twin disk drives, 256 K of memory, 800×400 pixel graphics. Software packages are available for the Sirius/Victor 9000 and for VAX/MMS computers. Further packages for the Intel iApX 8086, the Motorola M68000 and, of course, the Inmos Transputer, are planned.

Surelv one of the good things about crossing the Atlantic single-handed would be to get away from the telephone. Not so for computer programmer Mike Spring who has taken a Racal radiotelephone to the Azores and back. It provided a link back home for weather information and emergency uses. Mike was paralysed from the waist down after a motoring accident and his voyage was to help to publicise a fund-raising campaign by the Pain Relief Foundation.

Shy computer firm comes out of the closet

Founded in 1977 at about the same time as Apple Computers, the American company Alpha Micro has depended on word-ofmouth recommendations for new customers. Although sales were steady, they did not have the meteoric rise of some other manufacturers (though they did get some good customers; NASA use them for their Automated Management Information Centre, a central data base system). All this changed with the appointment of a new chief executive, the company's president Richard Cortese. He suggested an aggressive approach to sales and marketing and (for example) a UK branch of the company has been opened.
Alpha Micro computers range from the AM-1000 desk-top business computer which can support seven terminals up to the AM-1092 which can accommodate over 40 users. They are all based on the M68000 processor and offer multi-tasking facilities. Software bas played an important part in the development of the company and their own operating system, AMOS is claimed to be faster than Unix, although Unix may also be used, as can $C P / M$ and a variety of programming languages. Alphawrite is a multi-user word processing system. Alpha Microsystems (UK) Ltd, 56 Herschel Street, Slough, Berks SLI 1PY.

End of the Newbrain?

The Newbrain microcomputer may have become one of the first casualties of the home computer boom following a decision by its manufacturers to go into liquidation. Grundy Business Systems, who bought the Newbrain design from Newbury Laboratories in 1981 have blamed 'severe cash-flow problems' - caused, it seems, by their attempts to expand production too quickly.

The Newbrain was designed at Sinclair Radionics by Sir Clive Sinclair; and on his departure to form his new company Sinclair Research the design was transferred to Newbury Laboratories. The machine was put on sale in May 1982 by Grundy after Newbury had decided to redirect their efforts into computer peripherals. Described at the time as "the most powerful hand-held microcomputer in the world', the Newbrain had come close to being chosen by the BBC as the machine to accompany their television series on microcomputers; and although the BBC went on to adopt the Acorn machine instead, the Newbrain was soon selling, according to its makers, up to 5000 machines a month at a price of $£ 199$. The Newbrain, however, lacked some of the features which home computer buyers were coming to expect - such as sound output and colour and the availability of games software. Attempts by the makers to promote it as an economical machine for small business uses do not seem to have been enough to save it; nevertheless, Grundy hope to be able to find another buyer.

Ethernet wins one race

When Xerox developed Ethernet, the local area networking system, it was generally considered to be too late and not good enough to be accepted as a LAN standard. However IEEE study group 802 has presented its standardization proposals to the International Standard Organization. It is recommending a 'carrier sense multiple access with crash detection' (csma/cd) system which is closely based on

Ethernet. This has been selected in preference to the 'token ring' (IBM) system and the wideband (Wang) system. Liason between the IEEE and the European Computer Manufacturers' Association to get a closer correspondence between the Ethernet-based standards adopted by both is to be carried out by Siemens.

News in brief

The Prime Minister is particularly pleased that there are now a million teletext tvs in UK homes. She pointed out at a recent conference that it is the most accessible information technology product and "paves the way for other new products based on the home tv set!" Also a healthy home market can lead to "a vigorous attack on overseas markets". A recent survey showed that 98% of all teletext and viewdata installations throughout the world use British technology.

- The Japanese video market has found a need to be able to examine the gaps in video tape magnetic heads so that they may be manufactured to the fine tolerances required. The size of the gap varies from 3 to 0.3 microns and the makers have found that they can see these best with microscopes made by Vickers Instruments, originally developed for use in semiconductor manufacture.
- Telephones for the hard of hearing work on the induction loop principle. However the latest generation of telephones cannot be inductively coupled to present hearing aids. In answer to a Parliamentary question, Under-secretary for Industry John Butcher has said that discussions with the Royal National Institute for the Deaf and the British Association for the Hard of Hearing are being held to find solutions so that the disabled people will also benefit from advances in technology. Provisions in the Telecommunications Bill will also protect the interests of the disabled.
- Amateur radio licensing has been transferred from the Radio Regulatory Division to the Post Office. The Post Office is to computerize the operation and it is prepared to guarantee a turn-round in normal conditions of five working days and at peak times of ten. The PO currently issues CB licences over the counter but all applications for radio amateurs' licences will be processed by post from the Post Office Headquarters in Chesterfield.
- Having attracted a number of 'high technology' companies to take space in their new Science Park, the University of Warwick suffers the embarrassment of not having any buildings ready until later in the year.

To overcome this, Warwick University is offering room in the academic buildings to four companies: Warwick Computer Designs, ABCO Technology, both in the microprocessor applications field, a surface coating company and a MIY Home Systems, who make a variety of devices for use in the home.

- John Alvey, the Chairman of the advisory committee on research into information technology, has been appointed Engi-neer-in-chief on the Board of British Telecom. He was formerly BT's Senior Director, Technology.
- The Youth Training Scheme is providing 700 young people throughout the UK with one-year courses in electronics, data processing or 'high technology office skills'. The scheme is to be managed by Control Data, through their training Institutes, at six different cities. The courses are to include 13 weeks of practical on-thejob training, a prerequisite of the YTS scheme, will take place in factories or offices near the Institutes which are biased towards computing or electronics.
- The pioneer in cheap micros, Sinclair's ZX81, is now being sold with a 16 K rampack and a software cassette for $£ 45$, inclusive. This price makes it suitable for buying as a dedicated controller, for example, being less than some control devices or time clocks currently available.
- Transatlantic teleconferencing has become possible because of some techniques developed by BT at Martlesham. Although it has been possible to send tv pictures across the Atlantic, the link capacity required, equivalent to about 1000 telephone calls, has imposed excessive costs. The new digital service saves by sending only the changes in a picture and by using a new coder/decoder to send good quality pictures on digital links at $2 \mathrm{Mbits} / \mathrm{s}$, equivalent to 30 telephone calls.
- Unemployed engineers who have had experience in industrial research and development can apply for a Wolfson Industrial Research Fellowship. Applicants must propose a project that they will work on during the tenure of their Fellowship. There is no restriction on the projects chosen, except that each should show a reasonable expectation of commercial or industrial benefit in the medium term. Preference will be given to applicants in the age range 25 to 35 years. The scheme provides each research Fellow with a stipend appropriate to age and experience and to the laboratory where the research will be carried out to provide for overheads and expenses. Fellowship of Engineering, 2 Little Smith Street, London SWIP 3DL.
- A new British transistor manufacturer is soon to appear. Concentrating their efforts into testing and supplying semiconductors to BS and defence standards, Semelab in Lutterworth, Leicestershire also manufacture transistors from supplied wafers. They use stringent quality control tests to meet those same standards. A new factory has allowed them to expand their operation and they plan to get diffusion equipment to enable them to manufacture complete devices. One area that they aim to cover is discontinued transistors that the major companies can't be bothered to make any more but for which there is a continuing demand.

Multi-function multiplexer for light fibres

Faced with the problem of getting the same information as they were getting down 200 pairs of twisted copper wires and yet using optical fibres, the BBC has developed a flexible control system for switching audio, communications and control circuits through small cables. Fibre optics were chosen because they are unaffected by electro-magnetic interference and can be routed through conduit carrying mains power cables, if necessary. A master circuit at each end of a link allows 16 data channels to be routed through it. Each channel can carry up to 255 different coded commands giving a capacity of 4080 commands. Because the system is inter-active and two-way 2040 executive actions may be switched or remotely controlled. Different interface circuits may be plugged in to allow a circuit to perform specific functions; a two-way digital control interface allows commands to individual switches, indicators and remote control devices to be coded and sent over the system, an RS232 or RS422 interface allows the system to be used with any equipment using these interface protocols as in computer peripherals, printers and display units, an analogue interface provides eight send and return lines and is for use with remote variable analogue controls. The channel port itself conforms to the Centronics 8 -bit parallel standard, which enables any system to be fitted to any combination of the available interface

circuits. The design is to be marketed by Pilkington Fibre Optic Technologies Ltd, and their first customer is - of course the BBC who have ordered 50 of the multiplexers for use in remote switching of tape machines in their local radio stations.

Satellite news

Several hundred million pounds are to be spent by Marisat for their next generation of marine communications satellites. These will replace the current programme with capacity leased on nine spacecraft, three of which are still to be launched. They are requesting tenders from satellite manufacturers from all over the world and stipulate that the craft should be capable of being launched from Ariane, the Space Shuttle or from the Soviet rocket, Proton. The system is to have more power and more capacity than the existing system; 125 telephone channels, compared with 40 on the Marecs satellite. Possible extension to the use of the system could be in aircraft communication which could add significantly to the efficiency of air-traffic control and as the satellites will play an important part in maritime safety and distress systems, they should be powerful enough to be able to relay distress calls from small
transmitters as might be carried by a liferaft or emergency beacon. Another use mooted is for land communication to particularly isolated areas, though Inmarsat stress that maritime communication must have first priority. However, exactly such access has been granted to the Australian research base in Antarctica and to an Italian offshore drilling platform in the Adriatic Sea. These services will be used chiefly for the transmission of data to analysis centres.

The European large telecommunications satellite (L-Sat) has recently been rechristened Olympus and is likely to be launched from an Ariane 3 rocket late in 1986. This has been the subject of a contract between ESA and Arianespace. Another contract between them is for the launch of three satellites which are to be improved versions of Meteosat.

Brains trust for electronic brain research

Following the Alvey Report, five members of the Alvey programme steering committee have been appointed. They are Philip Hughes, chairman of Logica Holdings; Dr Keith Warren, director of technology and strategic planning at Plessey; Colin Southgate, chief executive, Thorn EMI Information Technology; John Leighfield, managing director, BL Systems, and Professor Eric Ash, head of the department of electronic and electrical engineering at UCL. Professor Ash will also represent SERC and Colin Fielding (Ministry of Defence) with Roy Croft from the DTI will complete the panel under the chairmanship of Sir Robert Telford.

The Committee has been set up to coordinate research in industry, academic centres, research organisation and the Government to "mobilise UK strength in advanced information technology". Four particular areas have been selected: very-large-scale integrated circuits, software engineering, intelligent knowledge-based systems (often called expert systems), and $\mathrm{man} / \mathrm{machine}$ interfaces. Much of the work will be directed towards the development of 'fifth-generation' computers.

World timing using h.f.
 broadcasts

Using the apparatus described, and a versatile h.f. receiver, time signals of several h.f. stations have been found to be in error - some fast, some slow, some varying from day to day.

1983 is designated World Communications Year and one of its main objectives is to stimulate the development of improved communications infrastructures, most particularly in the developing countries. Often, improved communications means more rapid communications which implies good time keeping at all places. Even in everyday life, one now tends to time activities to the nearest minute, and the modern wristwatch can maintain this accuracy over a period of one year without resetting.

The common method of re-calibrating one's watch or time keeping device, is to use the hourly broadcast time signal, or a time information service on the fixed wired network. In each country the nation's master clock is controlled by a central bureau: in the UK we have the National Physical Laboratory, who maintain Greenwich Mean Time, as well as the other standards of time, e.g. UT, CAT.

Historically, GMT is the primary time standard of the world and there clearly would be no problem of having a uniform world time if the world need not be divided into twenty-four time zones (making the one mean solar day), and if GMT could be instantaneously and easily distributed. It is this last point that requries each country to have its own time bureau, and this is the matter of principal interest in this article. In practice, one can travel from nation to nation with a dependable master (atomic) clock and keep checking each bureau. Alternatively one can compare all the receivable time markers at one place on the earth, and after making due allowance for the time delay in a signal coming from a particular nation, check whether each bureau's clock has the same time (plus or minus the time zone hours differences).

Such a procedure is also important because frequency is the inverse of time and the clock at each bureau must of necessity be its standard of frequency. Errors of frequency can in fact be more of a nuisance

[^3]
by R.C. V. Marcario and G. R. Munro

than an error of time. For a full discussion of the relation between errors in time and frequency refer to reference 1. (For a valuable textbook on standards of frequency and time see ref. 2.)
It is common practice to indicate zone time by means of radio 'pips' or tones. In the UK the hour is marked by the beginning of the sixth of a set of five 100 ms tones plus a sixth 500 ms 1 kHz tone. In many countries, one also has special standard frequency and time transmission, see reference 3 . In the UK the 60 kHz MSF Rugby transmitter, located at $52.35^{\circ} \mathrm{N}$, $1.17^{\circ} \mathrm{W}$, radiates a standard frequency, on/ off modulated with coded one-second signals. This enables clock calibration to an accuracy of a few microseconds to be achieved over the UK (4).
Despite direct satellite broadcasting, the
broadcasting of national news and views by means of short wave radio is as active today as ever. The World Radio \& TV Handbook lists the frequencies and times of each nation's transmissions in an extensive manner, and indeed if one receives such signals the hourly time marker tones are often heard. One therefore has access to that particular nation's time bureau, except for the propagation delay. Fig. 1 illustrates the basic arrangement for comparing a local clock with a distant clock. With access to a number of hf receivers, multiple comparison can be arranged. This article describes some simple circuitry for setting up such an arrangement.

Comparison apparatus

Because of h.f. sound bradcast signals often being noisy, and also to more clearly separate the time marker tones from the programme material, a tunable bandpass filter, centred at say 1 kHz is placed between the h.f. receiver's audio output and the signal recorder, as shown in Fig. 1. The most suitable signal recorder is a

Fig. 1. Signal received on h.f. receiver is compared with a minute pulse marker generated from an MSF 60 kHz receiver and displayed on a storage oscilloscope.

Fig. 2. Trace (a) in timing waveforms is part of the MSF signal format, but is not necessarily displayed: trace (b) is the style of the time pip tone received from an overseas h.f. station; trace (c) is generated within the MSF receiver and acts as the oscilloscope trigger pulse.

Fig. 3. Minute marker in this typical time comparison display is seen followed by the time tone waveform, from Radio Prague on 5.93 MHz in the example shown at top. Time scale is $2 \mathrm{~ms} /$ div. (09.15h 18 March 1983).

Fig. 7. Second time comparison display, bottom is over a distance of about 9250 km , observed for Radio South Africa on 27. 79 MHz (14.00h 18 March 1983). Time scate $8 \mathrm{~ms} / \mathrm{div}$.
stonage oscilloscope because the time scale appropriate for the study is a few milliseconds. Examples of records are given below. In the other path is part of a receiver for the 60 kHz MSF transmission and some

Fig. 4. Aerial amplifier for the 60 kHz MSF signal. FET gives a high impedance input and so works off a short whip antenna. The cmos gates are operated in a linear mode and provide sufficient gain at 60 Khz to drive a phase-locked loop detector, Fig. 5. This unit should be screened.

180
'Fig. 5. MSF signal format is reconstituted from the 60 kHz on/off carrier using the Signetics 567 tone detector. Output is raised to cmos level using 4011 gate. Trigger timing is set using a dual 4098 monostable.
logic for triggering the display on the minute on the hour, for example. One does not need to build a complete time-code receiver (5), just part, and an easily constructed system is described next.
That part of the MSF signal which occurs around the minute time is shown in Fig. 2(a). The slow time code information is distributed over the 60 second interval, each second occurring at the negative edge of these long pulses. After the 60 th second
a set of short pulses (10 ms duration) constitute the fast time code. The edge of interest is the negative 60th second edge, which is displayed on the oscilloscope and gives the marker for GMT Fig. 2(b). The oscilloscope is required to trigger on the fifty-ninth second plus a suitable delay. Therefore the trigger circuit counts 58 pulses from the last trigger, and after a variable delay triggers the oscilloscope ahead of the one minute marker (c). The

type of received time tone from the distant h.f. transmitter is shown at (d).

When these signals are combined together on the oscilloscope a pattern like Fig. 3 is observed. In this instance this was a time signal from Prague on 5930 kHz at 21.30 h UK time. The delay between the local g.m.t. and the received signal should correspond to the great circle path propagation delay, discussed below.

Trigger and timing circuit

A practical front-end circuit for receiving the MSF signal using a short-wire antenna is shown in Fig. 4. The circuit conveniently fits inside a standard Eddystone box. The f.e.t. provides a high input impedance, followed by a double-tuned circuit. Because linearity is not important for the receiver a cmos-linear amplifier using a feedback-coupled 4011 gate is used, providing a clean MSF signal carrier, except under very noisy signal conditions.

The carrier envelope contains the time information. The Signetics 567 p.1.1. time decoder will operate directly from the preamplifier, and a circuit is shown in Fig. 5. With buffering, a positive or negative code option at cmos level is available.

There are several options for triggering the display oscilloscope depending on how far one intends to make the system partially or fully automatic, because one needs to prime the trigger on the 58th second of the hour and have the 59th second produce a trigger pulse, delayed by about 990 ms . We had the advantage of having a complete MSF time-code receiver and display and several options. The receiver would recognise the 59th second and give a delayed trigger pulse, using a 4098 monostable. The advantage of having a complete clock is that one now has a record of the time plus most of the required circuits already built; the type of display shown in Fig. 3 was therefore not difficult to arrange. To avoid further cmos circuitry we therefore leave the description of these circuits, as those already described set up the MSF code signal at cmos level (Fig. 2(a)) and one can arrange the required signal pattern according to any particular requirement.

Expected results

The negative edge marker is the local MSF GMT minute time, plus the propagation delay between Rugby and one's location. In our case NPL inform us that the delay is $695 \pm 2 \mu \mathrm{~s}$; allowing for some circuit delay, we therefore took the delay as being 0.7 ms . The start of the distant station time marker (usually on the hour or the half hour) was assumed to be the first cycle peak of the received tone; therefore their local time would be the distance between the two marks, less the great circle h.f. path delay, plus 0.7 ms . The h.f. path propagation delay would cause the distant station to appear later than the GMT marker, if its clock was on time.

The h.f. path delay can be estimated to within about $\pm 0.5 \mathrm{~ms}$ using the data from reference 1 shown as Fig. 6, assuming the great circle path distance can be calculated from a knowledge of one's own position and that of the distant transmitter. One does not know the transmitter's exact location, as an error of a few hundred kilometers will only produce a time delay error of, say, $\pm 0.5 \mathrm{~ms}$ (Fig. 6), which is not too important in some cases. The calculation of the path distances requires access to haversine tables (references 1 and 6) and a procedure is given in the Appendix.

Using the apparatus described and a versatile h.f. receiver one can collect interesting results. For example, Fig 3 showed Radio Prague, which is some 1350km distance, whilst Fig. 7 shows the recording for Radio South Africa on 27.790 MHz , and distanced at 9250 km . The delay on the received time tone is such that the first marker pulse of the MSF fast code can also be seen on the display.

We do not intend to discuss which stations have clocks running exactly in synchronism with GMT, as many results and careful calibration would be necessary. But we should say that several stations appear to be in error by orders of tens of milliseconds, some fast, some slow, some varying from day to day. A study on the basis of the method of national clock keeping would appear to fit in with the spirit of WCY83.

MaNy

Appendix

Calculation of great circle distance
Require longitude of receiving and transmitting site, i.e. L_{OR} and L_{OT}, then let $\mathrm{L}_{\mathrm{ORT}}=\mathrm{L}_{\mathrm{R}}-\mathrm{L}_{\mathrm{T}}$. Require latitude of receiving and transmitting site, i.e. L_{R} and L_{T}. If the two locations are on the same side of the equator, let

$$
\mathrm{L}_{\mathrm{RT}}=\mathrm{L}_{\mathrm{R}}-\mathrm{L}_{\mathrm{T}}
$$

If the two locations are on the opposite sides of the equator, let

$$
\mathrm{L}_{\mathrm{RT}}=\mathrm{L}_{\mathrm{R}}+\mathrm{L}_{\mathrm{T}}
$$

Then the great circle distance (D) equation is
hav $\mathrm{D}=\cos \mathrm{L}_{\mathrm{R}} \cos \mathrm{L}_{\mathrm{T}}$ hav $\mathrm{L}_{\mathrm{ORT}}+$ hav L_{RT}
where hav is haversine, from tables 1,6 and one second of arc is 1.853 km .
The single hop mode delay, for distances less than 4000 km , can be read off Fig. 6. For greater distances, a multihop model is required. This if distance is $D(>4000 \mathrm{~km})$, and the number of hops is $\mathrm{N}(>2)$, then the total delay is
$\Delta t=N \times$ delay per distance D / N

References

1. Frequency and Time Standards, HewlettPackard application note, AN52.
2. P. Kartaschoff, Frequency and Time, Academic Press 1978.
3. J. McA. Steele, Standard frequency transmissions, Wireless World, Sept. 1967, p. 443.
4. Time and Frequency Service Notices, National Physical Laboratory, Teddington, Middx, TW11 0LW.
5. P. G. Giles, P. J. Hart, and I. Thomas, Radio clock for the reception and display of MSF time-code transmission, Mullard Tech. Comm, No.140, Oct. 1978, P. 402.
6. D. A Moore. Basic Principles of Marine Navigation, Kandy Publications 1964.

The new edition of the MS Components' Catalogue has increased considerably in size to reflect the addition of some 2,500 new products. A useful addition is the index to semiconductor i.c.s. MS Components Ltd, Zephyr House, Waring Street, West Norwood, London SE27 9LH.

WW 412

A 625-page hard cover book is needed to describe the full range of Wandel and Goltermann precision electronic measuring instruments. It includes details of a.f. and r.f. voltage and level generation and measuring equipment, analogue and digital data communications meters, distortion measurement, some general-purpose instruments and automatic measuring systems. Wandel and Goltermann, Postfach 45, Muhleweg 5, D-7412 Eningen, F.R.G.

WW 413

Interfacing the Real World to Your Computer is the title of a 16 -page booklet which illustrates methods of interfacing sensors, transducers, output actuators and other devices. Products described include signal conditioners, two-wire transmission, alarm systems, analogue input/output sybsystems and remote, intelligent i/o subsystems. Analogue Devices Ltd, Central Avenue, East Molesey, Surrey KT8 OSN.
WW 414
More on p. 48

Multicharacter dot-matrix display

Designed as the display section of a terminal emulator for computer fault diagnosis, this expandable circuit drives a 16 -character alphanumeric display from ASCII code. The four character Hewlett Packard HDSP2000 display is a seven-by-five dotmatrix type comparable in cost to 16 -segment devices but it has constant-current l.e.d. drivers and is larger and easier to read. LCD modules with more functions exist but would limit the circuit to very low data rates. Electrically the display is a $28-$ stage first-in-first-out shift register with programmable constant-current l.e.d. drivers; character display is by external column strobing.

ASCII data may be asynchronous or read from ram addresses by the 7493 counter whose division factor n is equal to the number of display characters. Upper-case characters generated by the 74 S 262 are selected on lines B_{1-7} and converted to serial form by gating on each column output (shown abbreviated for clarity) while IC_{1} cycles through row addresses n times. Display blanking occurs while data is clocked in. On completion of the character count the divide-by-n period signal goes low, triggering the 74121 monostable i.c. which stops the clock and unblanks the display for 2 ms . After the pulse, column

address counter IC_{3} is incremented and the cycle repeats. Quinary counter IC_{3} ensures that any random state at switch on synchronizes with $\mathrm{IC}_{1,2}$ during the first count sequence. This method will not work with 2513 character generators which have no row address-zero output.
For flicker-free display each column must be strobed at at least 100 Hz hence the chcice of a 2 ms display period; clock frequency determines the duty cycle by seven times the number of display characters. Component values shown drive a 16 character display.
N. A. C. Simons

London W10

Regulator with negligible i/o voltage

When high or medium current is required from a voltage regulator, input/output voltage difference must usually be greater than IV. Using a converter to increase the input voltage allows this differential to be reduced to the series-pass transistor saturation voltage. The basic circuit shown for a load of a few hundred mA can be used to provide a regulated 5 V supply from a 6 V battery. Ratings of the 7660 limit the input to below 10 V .
A. Kerim Fahme

Autolight
Aleppo, Syria

6-digit decade counter

This circuit for up to six digits counts up or down between .000000 and 999999 and gives over and underflow indications. Positive edge transitions on the count-up line increment the least-significant digit and positive-edge transitions on the countdown line decrement the same digit. Buffered signals C_{u} and C_{d} represent carry and borrow indications respectively from the second most-significant digit

When the counter under or overflows the 74156 decimal-point, decoder 1Y3 output goes low, causing the under/overflow line to go high. This keeps C_{u} and C_{d} inputs of the lowest-order counter low and disables decimal-point decoder outputs. In this situation the counter is disabled and must be reset by the active-high clear input.
G. A. M. Labib

Cairo
Egypt

For $2 d B$ steps: $R_{1}=1 \mathrm{k} 2, R_{2 / 2}=22 \mathrm{k}$, $R_{2} / / R_{z}=4 \mathrm{k} 53$

Logarithmic dividers using equal resistors

These circuits, one a bar-display VU meter and the other a step attenuator, illustrate a logarithmic potential divider in which only the last section of the ladder, consisting of R_{2} and R_{Z} in parallel, need contain a nonpreferred resistor value. All other resistors in the ladder are one of two values. Where A is the voltage drop for each stage equations for values are as follows

$$
(\mathrm{dB})=20 \log _{10} \mathrm{~A}
$$

Z is the ladder impedance. As only one resistor is equal to Z it is better to choose either R_{1} or $R_{2} / 2$ as a standard value so that resistor packs may be used.

$$
\begin{aligned}
& R_{1}=\frac{Z\left(A^{2}-1\right)}{2 A} \\
& R_{2}=\frac{Z(A+1)}{A-1}
\end{aligned}
$$

John D. Thompson
Lewes
East Sussex

One-out-of-seven rom selector

Designed for the Acorn Atom which has only one spare rom socket though several roms are available, this circuit selects one rom from a possible total of seven by poking address $\mathrm{A} 000_{16}$ with the required rom number ($0-7$). Zero is automatically selected on power up (and reset if required)
allowing a specific rom to be selected by default, e.g. a utility rom.
The circuit is based on the fact that a rom is never usually sent data from the processor. A write operation to the block Axxx is indicated by R / \bar{W} and $\overline{C E}$ both being low; this is detected by the two enable inputs of IC_{1} - a 74173 four-bit register which latches the data lines $\mathrm{D}_{0}, \mathrm{D}_{1}$ and D_{2} to its outputs on a rising edge at its

Cheap voltage doubler

Originally designed to enable a 12 V stack of NiCd cells to be charged from a 12 V car supply without splitting the stack, this doubler can deliver around 2A depending on the type and value selected for the pump capacitor.

To prevent a large current flowing through the two output transistors during the transition period, a four-phase clock is used. The slave RC network has a 90 degree phase lead over the oscillator. The
outputs of the slave RC network and the oscillator may thus be combined to produce non-overlapping output pulses. These pulses are fed direct to power Darlingtons which have sufficient gain for the power stage.

The pump capacitors actually require a value of only a few microfarads, but must be able to handle the currents involved. The cheapest solution is to use larger-value electrolytics.
Paul Stephenson Hull
clock input.
Now R / \bar{W} and $\overline{C E}$ are both set when the address lines are stable (ignoring propagation delays of about 50 ns), however, the data is not present and stable for 650 ns . IC_{2}, a 74121 , is a monostable which provides a rising pulse 700ns after R/W goes low latching the data bus contents to the outputs of IC_{1}.
The latch outputs provide the input data for IC_{3}, a 74155, which is a dual 2-to-4 decoder configured as a 3-to-8 decoder (active low). IC_{3} has a clear input which is active high and can be driven in one of two ways. Firstly it can be taken to RES giving a clear operation (sets decoder output 0 low) on any system resets including power up. However, remember that if the rom is part of the operating system (e.g. a utility rom) then system vectors will have to be changed before a new rom is selected. This can be overcome by using the second method, that is, clear on power up only $\overline{(\mathrm{POW})}$. The system vectors can be reset by executing BREAK from the keyboard immediately after selecting a new rom. For example say rom 5 is wanted then:

$$
? \# \mathrm{~A} 0 \mathrm{C} 0=5
$$

is typed in direct mode followed by RETURN and BREAK. Any rom can be elected from within a program by:

$$
? \# \mathrm{~A} 000=\mathrm{n}(\mathrm{n}=0,1 \ldots 7)
$$

All the control lines required are available at the original rom socket $\left(\mathrm{IC}_{24}\right)$ with the exception of R / W which can be taken from b30 of pl6. The circuit should work with any 1 MHz 6502 processor.
D. C. Grindrod

Sutton Coldfield
West Midlands

Improving stereo at l.f.

Abstract

Spatial effect in a stereophonic sound system decreases at frequencies below 800 Hz in comparison with a concert hall. This method for increasing the l.f. spatial impression of two-channel stereo reproduction can also be used to add ambience in mono reproduction.

The spatial impression obtained when listening to sound in a room is related to the human biaural hearing property. When one hears sounds of the same amplitude and phase at both ears one, has no spatial impression and the sound image centres. On the other hand, hearing sounds of the same amplitude but several different phases at both ears, one has a spatial impression. The degree of spatial impression with steady-state random noise can be related directly to the interaural cross-correlation coefficient (i.c.c.), viz. the simple cross-correlation coefficient between sounds at both ears introduced by Damaske ${ }^{1}$. Curves of equal spatial impression using an i.c.c. depending on frequency of an applied random noise were given by Anazawa ${ }^{2}$, but this measure cannot express well the difference between the spatial impression given by mono and stereo sound reproduction. In a room of reverberation time of more than 0.3 s , there is no clear difference between the coefficients in mono and stereo sound fields. The spatial impression discussed here is

by Y. Hirata

the sort usually called ambience or 'surrounding sound' in audio.

The spatial sensations created by musical sound that involves many transient or pulsive sounds and steady-state random noise are different providing that the i.c.cs are the same, which is easily examined by experiments. Our hearing has an ability to locate a pulsive sound that is followed by many echoes of different incident angles. In other words, our hearing is less sensitive to early reflections that reinforce the direct sound ${ }^{3}$. Such a hearing property is important and should be reflected in quantifying spatial impressions for musical sound ${ }^{4}$. The rate of subjective intensity of a direct sound reinforced by early reflections is approximately given by the definition of Thiele ${ }^{5}$ as the ratio of the energy of early reflections within 50 ms , including the

Fig. 1. Family of perceptual interaural cross-correlation (PICC) curves of equal acoustic spatial impression (ASI). Full spatial impression is indicated by $A S I=100 \%$ and no impression by $A S I=0 \%$ (below).

Fig. 2. Plan view of arrangement of loudspeakers and a listerner for compiling p.i.c.c. curves shown in Fig. 3 for stereo reproduction.
direct sound, to the total energy arriving at a given location in a room. We use this definition, D, tentatively as the weighting of the subjective intensity of a direct sound, and define the perceptual interaural cross-correlation coefficient (p.i.c.c.) by:

$$
\begin{equation*}
\mathrm{PICC}=\mathrm{DR}_{0}+(1-\mathrm{D}) \mathrm{R}_{\mathrm{E}} \tag{1}
\end{equation*}
$$

where R_{0} is the i.c.c. of the direct sound, unity for normal incidence, and R_{E} the i.c.c. of reverberant (incoherent) sounds, expressed by

The author

Born in Tokyo, 1940, Yoshimutsu Hirata graduated from Waseda University in 1965 and received the degree of Dr Eng. by work on the acoustic property of mufflers with air flow in 1970. He was a researcher at Waseda University from 1970 to 1981, and from 1982, Dr Hirata became an independent researcher and consultant in the areas of room acoustics, noise control, electroacoustics, signal processing, and audio in general. A previous article investigating listening tests of amplifier sound in the October 1981 issue, described a new technique for quantifying amplifier sound using an asymmetric test signal with no d.c. component. We reported one of his earlier techniques back in 1974 when we met Dr Hirata at a London acoustics congress presenting a paper on multiplexing by digital comb filtering (News, October, 1974).

FIg. 3. PICC curves for stereo sound reproduction in a listening room of reverberation time $O T_{L}$ is shows small AS/ in low frequency band compared with an AS $=60 \%$ for the middle seat of a concert hall. Broken line shows $T_{L}=0.3 \mathrm{~s}$.

$$
\begin{equation*}
R_{E}=\operatorname{sinkr}(f) / \operatorname{kr}(f) \tag{2}
\end{equation*}
$$

where $k=2 \pi f / c$ is the wave number' c the speed of sound' and $r(f)$ the acoustic distance between both ears, which is approximately $30 \mathrm{~cm}^{6,7}$. Early reflections very close to a direct sound make a sound source appear somewhat more extended, which may be accounted for by the reduction of R_{0}. Such an effect, neglected here, should be given special consideration ${ }^{8}$.

From equation 1, PICC $=1$ for a single source in an anechoic room (free field) where $\mathrm{D}=1$, and PICC $=\mathrm{R}_{\mathrm{E}}$ in a reverberation chamber (diffuse field) where $\mathrm{D}=$ 0 . In an anechoic room one gets no spatial impression, while one gets full spatial impression in a diffuse field such as a reverberation chamber or stone cathedral which might have a reverberation time as long as 10 seconds. For convenience we introduce here ASI as the index of acoustic spatial impression, expressed by

$$
\begin{equation*}
\text { ASI }=(1-\mathrm{D}) \times 100(\%) \tag{3}
\end{equation*}
$$

Full spatial impression is indicated by ASI $=100 \%$ and no spatial impression by ASI

Flg. 5. Spatial impression of reproduced sound at low frequencies cannot be increased simply by reducing the recording source definition. PICC curves are for stereo sound reproduction where $D_{H}=0.3$ implies too reverberant source and $D_{H}=$ 0.7 too dry source. (Broken line shows the normal case of $D_{H}=0.5$.) Reverberation time of listening room is $T_{L}=0.3$ s la typical value).

$=0$. Fig. 1 shows a family of p.i.c.c. curves depending on the frequency with ASI as parameter. The definition at a middle seat position in a concert hall is typically 0.4 , where the p.i.c.c. is given by the curve indicated by ASI $=60 \%$. Because one does not localize reverberant sounds, one gets the maximum ASI of 100% instantaneously at all seats in a hall for reverberant sounds heard, for example, at a rest after the stop of a fortissimo. Widespread plural sound sources of the same timbre also gives one a spatial impression, expressed by eqn 1 , where the mean ICC value for plural direct sounds of several incidence angles is used for R_{0}. The grey area of Fig. 1 indicates the region where one gets a feeling of unnaturalness, viz. an excessive spatial impression or a separate impression when PICC approaches -1 .

In a typical listening room of reverberation time 0.3 s , the definition at a location 3 m apart from a single source is about 0.9 , where the p.i.c.c. is given by the curve indicated by ASI $=10 \%$, assuming the reverberant sound is diffuse ${ }^{9}$. Thus, one gets but insufficient spatial impression for mono sound reproduction in a listening room. The p.i.c.c. for stereophony using two loudspeakers is

$$
\begin{equation*}
\text { PICC }=D_{L} R_{\text {rep }}+\left(1-D_{\mathrm{L}}\right) R_{E} \tag{4}
\end{equation*}
$$ where $R_{\text {rep }}$ is the i.c.c. of the direct sounds emanating from two loudspeakers, which is a function of $D_{H}, R_{H}, r(f)$ and θ, D_{H} being the definition of a recorded sound, R_{H} the cross-correlation coefficient between sounds recorded from two microphones placed at a distance from one another in a concert hall, and θ an angle at the listener of the configuration shown in Fig. 2. In the case of stereophonic

recording, two microphones (or two sets of microphones) for picking up reverberant sounds in a concert hall are usually placed at a distance so that $\mathrm{R}_{\mathrm{H}}=0$, which is empirically done by recording engineers. The typical value of the definition of a recorded source for symphonic music is 0.5 , given by Yamamoto at NHK^{10}. Using the values $\mathrm{R}_{\mathrm{H}}=0, \mathrm{D}_{\mathrm{H}}=0.5$ and $\theta=60^{\circ}$, and assuming that the distance between a listening position and each loudspeaker is 3 m , one gets the p.i.c.c. curves for stereo sound reproduction from eqn 4 . The results are shown in Fig. 3 in the range $0 \leqslant$ $T_{L} \leqslant 1 \mathrm{~s}, \mathrm{~T}_{\mathrm{L}}$ being the reverberation time of a listening room, where a broken line shows $T_{L}=0.3 \mathrm{~s}$. Figure 3 shows that the ASI in the stereophonic sound field is small at frequencies less than 800 Hz and large at frequencies greater than 800 Hz in comparison with that in the concert hall, where ASI $=60 \%$. The maximum spatial impression given instantaneously by the reverberant sound reproduced in a stereo system is expressed by the p.i.c.c. curve with $\mathbf{R}_{\mathrm{H}}=0, \mathrm{D}_{\mathrm{H}}=0$ and $\theta=60^{\circ}$ in eqn 4 and shown in Fig. 4. In comparison with the curve indicated by ASI $=100 \%$, which is the maximum spatial impression given in the concert hall, the spatial impression for reverberant sounds reproduced by a stereo system is small at frequencies less than 800 Hz . Fig. 4 also suggests that the reproduced reverberant h.f. sound gives an impression such as hearing two different reverberant sounds emanating from each loudspeaker.
Curves for stereo sound reproduction where the definition of a recorded source D_{H} is varied from 0.3 (too reverberant source) to 0.7 (too dry source) are shown in

Fig. 5, a broken line showing $\mathrm{D}_{\mathrm{H}}=0.5$, and the reverberation time of a listening room is fixed at 0.3 s . This indicates that one cannot fully increase the ASI of reproduced sound at low frequencies by simply reducing the definition of the recording source. To create natural spaciousness, one must decrease the p.i.c.c. at frequencies less than 800 Hz and increase it at frequencies more than 800 Hz . The p.i.c.c. decreases when the distance between two loudspeakers increases and vice versa.

One method for getting a natural spaciousness uses additional loudspeakers, some for low frequency and some for high frequency reproduction. But this brings the disadvantage (to a listener, an advantage to the maker) of spending money for the additional amplifier and loudspeaker system. To avoid increasing the number of loudspeakers, one can create natural spaciousness by using a simple circuit for decreasing the p.i.c.c. at low frequencies together with the geometrical method for increasing the p.i.c.c. at high frequencies. The block diagram of the circuit is shown
in Fig. 6. When the delay time T_{D} and/or the magnitude of the delayed signal increases, the spatial impression increases, which is explained by the decreasing of the p.i.c.c. ${ }^{11}$. Incidentally, dropping the ' p ' in p.i.c.c. makes this effect inexplicable, i.e. the i.c.c. remains unchanged for variable T_{D}.
The circuit of Fig. 6 is also available for adding ambience to the mono sound transmitted by a.m. ratio or tv stations. This may bring up the basic question of whether a.m. or tv stereo broadcasting is really necessary.

References

1. P. Damaske, Subjektive Untersuchung von Schallfeldern, Acusticà voi. 19, 1967/68, pp. 199-213.
2. T. Anazawa, H. Yanagawa and T. Itow, On correlation coefficients of both ears and the feeling of wideness, IECE Japan Tech. Rep. EA70-13, 1970.
3. H. Haas, Influence of a single echo on the audibility of speech (translation), J.A.E.S. vol. 20, 1972, pp. 146-59.
4. Y. Hirata, On the perception of acoustic space in reproduced sound fields, IECE Japan Tech. Rep. EA80-71 (1981).
5. R. Thiele, Richtungsverteilung und Zeitfolge der Schallrückwürfe in Räumen, Acustica vol. 3, 1953, pp. 291-302.
6. H. Yanagawa, H. Higashi and S. Mori, Interaural correlation coefficients of the dummy head and the feeling of wideness, A.S.J. Tech. Rep. H-35-1, 1976.
7. A. Suzuki and M. Tohyama, Interaural cross-correlation coefficient of Kemer head and torso simulator, IECE Japan, Tech. Rep. EA80-78, 1981.
8. M. Barron, Subjective effects of first reflections in a concert halls - the need for lateral reflections, \mathcal{F}. Sound and Vib., vol. 15, 1971, pp. 475-94.
9. Y. Hirata, Reverberation time of a listening room and the definition of reproduced sound, Acustica vol. 41, 1978, pp. 222-4.
10. T. Yamamoto and M. Nagata, Acoustical characteristics at microphone positions in music studios, NHK Tech. Rep., vol. 22, 1970, pp. 475-89.
11. A. Miyashita, M. Wakamori, Y. Hirata and T. Itow, Spatial impression for transient sounds, A.S.J. Convention Rep. 1-6-3, 1983.
(VNO

Problems in special relativity

Arguments that have been used to defend the special theory of relativity against criticism contain many inconsistencies. These problems should be thoroughly and objectively examined by scientists and philosophers to attempt to ascertain the truth of the matter.

Ever since Einstein's special theory of relativity became a prominent part of physics, it has been a subject of some controversy. One of the foremost critics of the theory was the late Herbert Dingle (1890-1978), who spent much of his time and energy during the last two decades of his life in trying to persuade the scientific world that the special theory, although mathematically valid, contains an inconsistency in its physical application. Although most scientists seem to be convinced that the controversy stirred up by Professor Dingle's criticisms has been conclusively settled in favour of the theory, a close examination of the relevant literature shows many inconsistencies in the arguments by which the special theory has been defended. The present article does not attempt to settle the matter; in fact it shows that the issue has not yet been satisfactorily settled. It is hoped that scientists and philosophers may be encouraged to continue the search for the truth of the matter, whatever it may be.

Simple example of inconsistency

Readers who are not experts on relativity may feel convinced that the inconsistencies that have been mentioned are beyond their understanding; on the contrary, many of them are perfectly obvious to anyone who takes the trouble to read them. To take a specific example, consider two inconsistent statements that were made in the British journal The Listener in 1971.

Professor J. Taylor claimed ${ }^{1}$ that the results of the well-known experiment of Hafele and Keating, which had then been recently performed, supported Einstein's special theory. Professor Dingle published a letter rebutting Taylor's article, and further correspondence continued to be published, in the course of which another scientist, Professor M. A. Jaswon, published a letter ${ }^{2}$ which disagreed with some of Dingle's points, but which agreed with Dingle that the experiment in question had "no relevance whatever for the special theory". Although that statement was directly contrary to Taylor's claim, Taylor later published another letter ${ }^{3}$ which continued to criticise Dingle but which took no notice whatever of Jaswon's statement.

[^4]Some observers of the controversy may believe that inconsistent statements like these result from attempting to express abstruse technical matters in simple language, and that such inconsistencies may therefore be dismissed as being inconsequential. But the inconsistency between the statements mentioned above cannot be dismissed in that way. A statement that the

by lan McCausland

results of a particular experiment support a certain theory is a perfectly simple factual statement (however abstruse may be the reasoning by which that statement is justified), and the same applies to the contrary statement. The fact that Taylor's and Jaswon's statements are contrary to one another (that is, they cannot both be true, though they could both be false) shows that, unless there is an inconsistency in the special theory itself, one or other of the two scientists (or both) misunderstood either the theory or the experiment (or both).

It will also be clear to any reader, scientist or not, who reads the whole of the correspondence that includes the above items (refs 1-3), that no attempt was made to resolve the inconsistency between Taylor's and Jaswon's statements. If science is the search for truth, wherever the search may lead, the serious inconsistency between the statements of the two scientists ought to be followed up to find out which statement, if either, is true. The fact that both statements have been accepted in spite of their obvious incompatibility is evidence that there is not enough scientific curiosity about the truth of the matter. The remainder of this article presents further evidence in support of the same point of view.

Further examples of inconsistency

Professor Dingle's criticisms of special relativity are presented at length in his book Science at the Crossroads ${ }^{4}$, and it is in the published reviews of that book that many of the inconsistent attempts to defend the theory have been made. To study some of these attempts, consider Dingle's crucial question, which is central to his book, and which is worded as follows:
"According to the special relativity theory, as expounded by Einstein in his original paper, two similar regularly-
running clocks, A and B, in uniform relative motion must work at different rates. In mathematical terms, the intervals dt and dt^{\prime}, which they record between the same two events are related by the Lorentz transformation, according to which $\mathrm{dt} \neq \mathrm{dt} t^{\prime}$. Hence one clock must work steadily at a slower rate than the other. The theory, however, provides no indication of which clock that is, and the question inevitably arises: How is the slower-working clock distinguished?"
In a review' of Dingle's book, Professor J. M . Ziman quoted the above question and then wrote: "This is a perfectly reasonable question to which science should indeed give an answer." Later in his review he gave his own answer, in the following words: "In fact, the answer to Dingle's 'question' is simple: the fastest-working clock between any two events is one that travels between them by free fall." But, as Dingle subsequently pointed out ${ }^{6}$, neither of the events need be at either of the clocks concerned. Also, since the question asked for a distinction between two clocks, not for a choice among all possible clocks, Ziman's answer, whether or not it is a true statement, is simply not an answer to the question that was asked.

Dingle also supplemented his question by referring to a specific example in Einstein's original paper on special relativity, in which Einstein had stated that a balance-clock at the equator would work more slowly than an exactly similar clock at one of the poles. Dingle stipulated that any answer to his question should specify what it was that entitled Einstein to conclude, from the special theory, that the equatorial and not the polar clock worked more slowly. Dingle stressed that the special theory did not take any account of possible effects of acceleration, gravitation, or any difference at all between the two clocks except their state of uniform relative motion. It should be strongly emphasised, however, that he did not assert that acceleration and gravitation were $a b-$ sent from the situation described by Einstein, but that those phenomena are not dealt with by special relativity, and consequently it is not legitimate to invoke those phenomena to explain what entitled Einstein to conclude from the special theory that the equatorial clock worked more slowly.

The attempts to answer this supplemen-
tary question show an interesting diversity. In the first place, it is obvious that Ziman's answer, quoted above, does not apply to this situation; after the two clocks are in their positions at the pole and at the equator, there is no event at which both clocks are present, so there is no way in which Ziman's criterium can distinguish between them unless some pair of events is specified.

Consider now some of the other attempts to answer the question about the polar and equatorial clocks. For example, Professor G. J. Whitrow wrote as follows ${ }^{7}$:
"For a supporter of relativity, the essen-" tial difference between the two clocks is that relative to the centre of the Earth (which for the purpose concerned can be regarded as the origin of an inertial frame) the clock at the equator describes a circle and so cannot be associated with an inertial frame, whereas the polar clock is at rest and can be associated with an inertial frame for a period of time during which the curvature of the Earth's orbit can be neglected. The time difference mentioned by Einstein can be demonstrated by means of the Minkowski diagram, in which the track of the polar clock will be rectilinear whereas that of the equatorial clock will be curved."
Two comments may be made about this. First, if the equatorial clock is not in an inertial frame, then its motion lies outside the scope of the special theory, which applies only to inertial frames ${ }^{8}$; it is therefore invalid to deduce from the special theory any conclusion about the relative rates of the two clocks. Second, the answer raises the equally difficult question of why a clock that moves in a large closed curve is in an inertial frame, while one that moves in a smaller closed curve is not.
Compare Whitrow's answer with the following answer, which is found in an unsigned editorial article in Nature ${ }^{9}$:
"It seems now to be accepted that Einstein's original argument was uncharacteristically loose. The point of the illustration is that a clock at the pole of rotation may be taken to be in an inertial frame which is nearly (but not quite) properly defined by the direction of the Earth's motion around the Sun. The clock at the equator is in another. Einstein's lack of clarity concerns the inertial frame of the observer of the two clocks."
This statement implies that the answer to the question about which clock works more slowly depends on the observer. But Einstein's statement clearly implies that the slowing of the equatorial clock is a real effect and not merely an effect of observation, and this is confirmed by the fact that he added a footnote to say that his statement did not apply to pendulum clocks ${ }^{10}$. The answer ${ }^{9}$ also states that the equatorial clock is in an inertial frame, and this explicitly contradicts Whitrow ${ }^{7}$, who states that it is not.

Another answer to the same question is given by Stadlen ${ }^{11}$, who writes:
"But the relative motion involved in
this case, being circular, is non-uni-
form. I submit, therefore, that Einstein was wrong in saying that his prediction followed from the special theory, which deals only with the effects of uniform motion. This is not to say that the prediction was invalid. For Einstein was, intuitively, anticipating his later general theory, according to which the equatorial clock runs slower because of the centripetal force exerted upon it."
This answer is inconsistent with both the previous answers, since it disagrees with Whitrow ${ }^{7}$ about whether the result follows from the special theory, and it disagrees with the Nature editorial ${ }^{9}$ about whether the slower working is real or dependent on the motion of the observer. Furthermore, the fact that the prediction follows from the general theory does not make Einstein's prediction from the special theory valid, as Stadlen implies it does. As is well known to logicians, the fact that the conclusion of an argument is true does not guarantee that that argument is valid.
Another interesting attempt to identify a false step in one of Dingle's arguments was made by McCrea^{12}, who wrote:
"The false step is that Dingle regards the situation treated by relativity as the symmetric comparison of one single clock with another identical single clock (in relative motion). This is not the situation. Actually many colleagues have pointed this out, or given an equivalent answer."
Unfortunately McCrea does not identify any of the "many colleagues" whom he claims to support his argument, but it is clear from the foregoing that Ziman, for example, does not. Ziman states ${ }^{5}$ that Dingle's question is perfectly reasonable, and the question, as he correctly quoted it, includes a statement that if there are two clocks in uniform relative motion, the special theory requires one to work steadily at a slower rate than the other. McCrea's statement is also inconsistent with Einstein's statement that a (single) clock at the equator would work more slowly than an exactly similar (single) clock at one of the poles.

Other illogical arguments

In addition to the inconsistencies already mentioned, some of the arguments used in defending special relativity are lacking in logical rigour. To illustrate this, consider some examples.

In one of the earliest attempts to refute Dingle's criticisms, Born ${ }^{13}$ wrote as follows:
"The simple fact that all relations between space co-ordinates and time expressed by the Lorentz transformation can be represented geometrically by Minkowski diagrams should suffice to show that there can be no logical contradiction in the theory."
As the Lorentz transformation is contained in the special theory, but is not the whole theory, it is not logically valid to claim that some property of the Lorentz transformation is a sufficient condition for the whole theory to be free of logical contradiction.

In another attempt to refute Dingle, Professor I. Roxburgh ${ }^{14}$ discusses Dingle's argument that if there are two clocks A and B in uniform relative motion, the special theory requires \mathbf{A} to work faster than \mathbf{B} and \mathbf{B} to work faster than A, and this makes the theory internally inconsistent. Roxburgh states that Dingle does not even discuss what he means by "faster", and then goes on to say:
"Secondly, why is it impossible for A to go faster than B and B to go faster than A ? This depends on the definition of faster. To illustrate this, consider the following two statements:
The moon is bigger than the sun.
The sun is bigger than the moon.
Are these statements mutually contradictory? This depends on the meaning of bigger. For terrestrial beings the first statement is true, for Martians the second is true. The relative size depends upon the position of the observer. So it is with time and clocks."
If it is important to define "faster", it is also important to use other words precisely; yet it is clear from the quotation that Roxburgh does not literally mean "is" in the two contrasted statements, but something like "appears to be". Thus, the two contrasted statements are not analogous to the two statements that Dingle claims to be inconsistent. Or, if Roxburgh does mean the pair of contrasted statements to be taken literally, then he, as a terrestrial being, is asserting that the moon is bigger than the sun. Although we are terrestrial beings, we know that the sun is bigger than the moon, and we know it from observations that have been made from the earth.

To put the matter in terms of logical relations, the expression "is bigger than" represents an asymmetrical relation, whereas Roxburgh's pair of contrasted statements asserts that "is bigger than" is not an asymmetrical relation ${ }^{15}$; there is therefore a contradiction inherent in what Roxburgh has written. Of course, a contradiction between any two statements can be avoided if one is free to disregard literal meanings of words and interpret the meanings of the statements in such a way as to avoid the contradiction. This is similar to the technique described by Dingle (ref 4, page 180) for avoiding the inconsistency in special relativity: "When the theory appears to lead to incompatible objective results, they are written off as merely different appearances, but claimed as realities when some actual phenomenon has to be explained."
Whitrow has also published an argument ${ }^{7}$ which purports to refute Dingle's claim that the special theory is inconsistent in requiring each of two relatively moving clocks to work faster than the other. The last sentence of his argument is:
"Dingle's requirement is therefore equivalent to introducing the Newtonian concept of universal time, and this is incompatible with special relativity." Now whether or not Whitrow's statement about Newtonian time is true, the sentence quoted does not prove that Dingle is wrong; all it states is that either Dingle is
wrong or special relativity is wrong. As the point at issue is the validity of special relativity, and as the context obviously implies that the argument that ends with the quoted sentence proves that Dingle is wrong, Whitrow's argument shows an excellent example of the textbook fallacy known as begging the question ${ }^{16}$. Since Whitrow has subsequently published the same argument two more times ${ }^{17,18}$, in obituary notices on Professor Dingle, the pointing out of this logical fallacy is overdue
The foregoing examples of inconsistencies and logical fallacies in the arguments used to defend special relativity do not in themselves prove that Dingle is right, or that special relativity is wrong. However, if two scientists make inconsistent statements about the same theory, one or other of them must have made an error in deduction, or else the theory itself contains an inconsistency. In other words, the inconsistencies in the statements that have been made by the defenders of the special theory actually support Dingle's case that there is an inconsistency in the theory, rather than refuting it.

Although scientists may be convinced that the conclusion they have already reached is true, they should also be concerned with whether the arguments by which that conclusion has been reached can withstand scrutiny without revealing inconsistencies. I suggest that the scientific ideal toward which science should strive in this case is that stated by T. H. Huxley when he wrote ${ }^{19}$ that "the scientific spirit is of more value than its products, and irrationally held truths may be more harmful than reasoned errors." It is time for the truth of this matter to be actively and carefully sought.

References

1. J. Taylor, Views, The Listener, vol.86, 1971 p. 6423.
2. M. A. Jaswon, Travelling clocks. The Listener, vol.86, 1971, p. 724.
3. J. Taylor, Travelling clocks. The Listener, vol. 86,1971 . p. 804.
4 H . Dingle, Science at the Crossroads. Martin Brain \& O'Keeffe, London, 1972.
4. J. Ziman, Science in an eccentric mirror, Nature, vel.241, 1973, p. 1434.
5. H. Dingle, Dingle's question, Nature, vol.242, 1973, p423.
6. G. J. Whitrow, Review of "Science at the Crossroads", British fournal for the Philosophy of Science, vol.26, 1975, pp.358-62.
7. A. Einstein and L. Infeld, Evolution of Physics, Cambridge University Press, 1938.
8. "Dingle's answer" (unsigned editorial) Nature, vol. 239, 1972, p. 242.
9. A. Einstein, On the electrodynamics of moving bodies, in H. A. Lorentz et all, The Principle of Relativity, Methuen, 1923; Dover, 1952.
10. G. Stadlen, "Dingle's challenge", The Listener, vol.88, 1972, pp.411/2.
11. W. H. McCrea, Definitions and realities, The Listerer, vol. 82, 1969, p. 315.
12. M. Born, Special theory of relativity, Nature, vol. 197, 1963, p. 1287.
13. I. Roxburgh, Is special relativity right or wrong?, New Scientist, vol. 55, 1972, p. 602
14. I. M. Copi, Symbolic Logic, fifth edition, Macmillan, New York, 1979.
15. I. M. Copi, Introduction to Logic, fifth edition, Macmillan, New York, 1978.
16. G. J. Whitrow, "Herbert Dingle", Nature, vol.277, : 979 , pp.584/5.
17. G. J. Whitrow, "Herbert Dingle", Quarterly fournal of the Royal Astronomical Society, vol.21, 1980, pp 333-7.
18. T. H. Huxley, The coming of age of 'The origin of species', in Collected essays, vol.2, Mcmillan, 1894.

NaN

Ian McCausland holds the degrees of B.Sc. and M.Sc. in electrical engineering from Queen's University of Belfast, Ph.D. in electrical engineering from the University of Toronto, and Ph.D. in control engineering from Churchill College, Cambridge. He is the author of a book "Introduction to Optimal Control" (Wiley, 1969). He is now at the University of Toronto, where he is a Professor in the Department of Electrical Engineering and a part-time undergraduate in the Facillty of Arts and Science.

Next month

Richard Lambley describes the Wireless World NiCd Battery Charger, capable of recharging cells of all common sizes in about an hour. Up to 15 cells in series can be charged at once and there is an unusual shutdown circuit to prevent overcharging. For maximum efficiency, the charging current is delivered from a switch-mode source.

Ron Slater investigates career possibilities for electronic engineers. Training, qualification requirements, salary to be expected and the areas of the country where jobs are on offer are all considered by Mr Slater, who has a great deal of experience in finding work for engineers.

David Taylor-Lewis presents a versatile toneburst gate, which provides an integral number of on and off cycles, each adjustable from 1 to 9999 . It will
also give a variable duty cycle square wave between 1:9999 and 999:1 and pulse bursts or gaps from one trigger.

Philip Barker describes a method of using a computer, a video disc player and a television receiver to construct an interactive information display system for education, training or archival purposes.

On sale
October 19

Using a micro to process 30 line Baird television recordings

Early television recordings on gramophone records - Phonovision - were crude in the extreme. The author describes a method for improving picture quality by correlation and digital filtering

In the late 1920's, J. L. Baird performed some experiments on the recording of television pictures onto wax discs.* This he called 'Phonovision' and for a time caught the imagination of the prospective viewing public with this and other televi-sion-related inventions. Surprisingly few of these early recordings are still in existence.

It is hoped that this article will allow people to 'look back' to those early television pictures and will show that the old and the new technologies can be brought together by anyone having access to tape copies of the recordings and a personal computer.

The requirements for the computer are not strict. A minimum specification would include sufficient memory for a long sequence of frames, some sort of graphics capability allowing the pictures to be displayed with a few grey levels, an analogue-to-digital converter and a sampling clock for the converter and the computer. In my case, there is enough memory for 32 frames at less than 1 Kbyte per frame and a converter capable of sampling at 15 kHz to 8 bits of accuracy (256 levels of voltage) under control of the computer and the sampling clock. For more detailed pictures either the sampling rate can be increased or the playback speed of the recording decreased.

Although the author had known about mechanical television for some time, it was only comparatively recently that examples were first heard on a BBC documentary record. Out of interest, I decided to display the sounds on this record as images, using a computer, as it was able to store the pictures as a sequence of samples. These pictures could be 'replayed' over and over again to check for movement, features and details. The replay was viewed on a graphics display, but an oscilloscope with control of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ modulation by the computer would have been just as good.
It was clear from the start of these experiments that there were no synchronization

[^5]
by D. F. McLean
 B.Sc. (Hons)

pulses for identification of the start of lines and frames: the frames appeared to roll and drift in position due to playback speed variations. Synchronization of the early disc recordings was obtained by having the record platter rotation directly linked through a gearing arrangement to the scanning apparatus - figs. 4 and 5 show this arrangement clearly. The more common recordings of the mid 1930's were not linked in this way and relied on the record platter inertia to reduce picture 'hunting' or slippage.

If the original synchronous recordings had been available for these experiments a sampling clock for the computer could have been derived from the rotation of the record player, to ensure synchronization independent of playback speed. In their absence, I have evolved a method for realigning the sequences of pictures and inserting new synchronizing pulses, in an attempt to get nearer to re-creating the original scene quality.

30 line Baird standard

In a similar fashion to broadcast television today, the 30 line picture was created by scanning a spot of light of varying brightness in a particular pattern to form the display area. To re-create the scene as recorded, the spot had to follow this raster pattern exactly in synchronism with the video signal. If exact synchronization was not maintained, the picture would roll or slip in a similar fashion to an out-of-adjustment 'vertical hold' control on a modern tv receiver. Modern tv standards include provision for sync. pulses to 'tell' the receiver where the start of line and frame is: hence picture slippage is rarely a problem. A form of sync. on 30 line transmissions was obtained from a mixture of the inertia of the scanning disc and the actual scene content (as the television waveform was used to control the disc's rotational speed).

Synchronizing the transmitter and receiver to mains frequency was only successful within the area served by a particular generator.

The scanning action on Baird 'Televisor' types of receiver was performed by a rapidly spinning disc which had a spiral pattern of holes spaced at equal angles around

(a)

(c)

Fig. 1. Line matching. First two waveforms are reference and line to be matched by shifting. Samples of A multiplied by B samples produce 'score' at (c).

(a)
(b)

(d)

(e)

Fig. 2. Performance of one-dimensional line-matching system.

(d)

Fig. 3. Linear interpolation between adjacent frames instead of single-value shift of Fig. 2 (c). Picture tilt in each frame of (a) and removed at (d).
the disc, to give a small display area with a height-to-width ratio of $7: 3$. The frame or picture repetition rate was $12 \frac{1}{2} \mathrm{~Hz}$, each frame being made up of 30 lines. The spot of light that built up the raster scanned vertically from bottom to top to build up one line, each new line being placed slightly to the left of the previous line until a total of 30 had been scanned. The spot then returned to the position of the first line to start the next frame.

Correction of picture drift

In many applications of signal processing, the correlation or matching technique has grown in use throughout the years to become today a very powerful tool. Its main ability is, given two signals, to calculate a value whose magnitude indicates how similar the signals are. If one of the signals is delayed or shifted with respect to the other, repeated application of this matching technique can indicate how much one signal has to be shifted to match the other.

Variations of this technique were applied to short sampled extracts of recordings of early mechanical television pictures stored in computer. The aim was to find a method of accurately re-aligning a free-running sequence of frames for viewing and further processing.

Figure 2(a) shows a typical sequence of 10 frames digitized and stored in the computer memory: the first frame is on the right and all subsequent frames are to the left. The nature of the drift in frame position is quite evident. In the short space of time represented, the left and right edges of each frames have not drifted detectably, but, the images suffer from severe vertical drift in the position of line start and end (top and bottom), caused by wow and flutter in the recording medium of between 1 and 2%. The extremes of this variation would be equivalent to the difference between an image being perfectly level and one that is tilted by about 60°, corresponding to a change in the line start position from beginning to the end of a frame of about $2 / 3$ line length. Figure 2(b) shows an estimate of the line-by-line positional error.

Also of importance is the frequency spectrum of this playback speed fluctuation. Figure 2(b) shows that fast fluctuations in speed are of much smaller amplitude than the slower frame-to-frame variations. The difficulty lies in obtaining correction methods able to cancel out all of these variations.

Method

Line matching. Figure 1 shows two waveforms, A and B. A is considered to be the reference and B is to be shifted to find the best match. As these waveforms represent two tv lines, the starts and ends of lines define limits. For this method to work, line B is assumed to be periodic, so that when shifted in one direction, the last sample in the line wraps around to become the first sample in the shifted line. Thus, the shifting appears to be a rotation. Waveform B is rotated a sample at a time. For each rotation, a matching score is calcu-

Fig. 4. Mechanical gearing of original apparatus provided steady sync.

Fig. 6. Phase correction by all-pass filter.

Fig. 9. Digital filter also used to reduce effect of low-frequency noise.
lated by multiplying each sample in the rotated line B by the corresponding sample in line A. The sum of these products is the matching score. The process is repeated by rotating line B and calculating another score for this new shift position, s. The equation below describes this sum of products.

$$
\mathrm{CS}(\mathrm{~s})=\sum_{\mathrm{x}=1 .}^{\mathrm{L}} \mathrm{~A}(\mathrm{x}) \cdot \mathrm{B}(\mathrm{x}-\mathrm{s})
$$

where CS is the matching score, x is sample position from start of line, s is the current shift value in samples and L is the number of samples in the line.
The matching scores are stored in a list so that, at the end of one complete rotation of line B back to its starting position, the position in the list of the maximum score can be taken to be the number of samples by which B must be rotated to be 'linedup' with A.

Fig. 5. System of Fig. 4 in use, recording the 'dummy head.'

Fig. 7. Digital filtering was carried out within the computer.

For each line in the current frame, the current line was matched against the corresponding line in the reference frame. The position of maximum score for the above equation was taken to be the value by which the current line had to be shifted to match best the line in the reference image. Initially the reference frame corresponded to the first frame in the sequence. After each line was corrected, the line in the reference frame was averaged with a fraction of the current line to take into account any scene change at the horizontal position of the line. The average was stored back in the reference frame.

The results of one-dimensional matching were somewhat mixed in success. For clear, stable and simple scenes, the results were excellent, leaving an extremely stable sequence of rectified frames with very low jitter in vertical position from one frame to the next. However, for fast-moving complex scenes, the performance was poor with unstable breaking up of the picture structure and consequent severe degradation in image quality.
Line-jitter removal. One of the recordings suffered from severe timebase jitter, causing large changes in the position of the start of the line on subsequent lines within a frame. In this case only it was considered

Fig. 8. Further examples of digital filtering to reduce effect of head-cutter resonance.
worthwhile to use a different form of onedimensional matching.
Instead of matching the current line in the frame being processed with the same line in the reference frame, the current line was matched against the previous line in the same frame. I have used this technique successfully with slow-scan television pictures received on the amateur bands ${ }^{8}$. Line-to-line jitter is removed in a fairly uncontrolled way at the expense of geometrical distortion of the picture. As it was considered important to maintain the picture geometry, this technique was not used on the other recordings.

The one recording which was processed using this technique suffered from static errors in the position of the start of each line in any frame. This was presumably caused by errors in the position of the holes in the scanning disc, causing some lines to start earlier or later than adjacent lines. Figure 11 shows a typical frame before and after correction of this fault.
Frame matching. The problem with the line matching technique was that it could only allow a small amount of lateral movement in the scene before instability degraded the picture quality. Because the matching algorithm was essentially one-dimensional in nature, it could not cope with
any sideways movement. The algorithm had no 'knowledge' of any structure in adjacent lines. To attack this problem, a variation on the original method was devised and tested with excellent results.

This new method was based on the fact that the scene content (not position) varied little from frame to frame. There was no abrupt scene changes. Each frame can be thought of as a two-dimensional brightness distribution where each point (\mathbf{x}, y) has an associated brightness value $B(x, y)$. Using one frame as a reference, the idea was to 'slide' the frame to be corrected horizontally (in \mathbf{x}) and vertically (in y) until a best match was found. The equation for calculating the matching score at any shift value (s, t) was derived from the one-dimensional equation given earlier and is given below

$$
\operatorname{CS}(s, t)=\sum_{x=1}^{L} \sum_{y=1}^{M} A(x, y) \cdot B(x-s, y-t)
$$

where $\mathrm{A}(\mathrm{x}, \mathrm{y})$ is the brightness in the reference frame at point $(x, y), B()$ is the brightness in the current frame being processed at the shifted (x, y), L, M are the max. no. of samples and lines in x and y respectively, and CS (s, t) is the score for a possible match at shift value (s, t).

The 'sliding' of the frames is similar to the cyclic shift used when matching lines (Fig. 1) but is extended to two dimensions. A cyclic shift of the current frame was performed for each shifted position (\mathbf{s}, t), and all possible shifted positions of one frame with respect to the other was used to create a list of scores for matching.

Using the position of maximum score, the current frame was cyclically shifted from its original position in both x and y directions to match it with the reference frame. Each point of the current and reference frames was then averaged with a userselected weighted value. The averaged result was stored to become a new reference frame for the next frame in the sequence, which served to accommodate increasing

Fig. 10. Good example of removal of hum by digital filter.

Fig. 11. Correction of variation of position of line starts within a frame.
differences between the successive and reference frames.

The positional errors that had to be corrected were only in the vertical direction, however. During the time taken for a short sequence, the horizontal drift could be ignored as it was $1 / 30$ th of the amplitude of the vertical drift in this case. Correction only in the vertical direction was achieved simply by removing the calculated lateral (x) shift after the full two-dimensional matching and shifting had been applied and the reference frame updated with the weighted average. The averaging of the reference frame with a fraction of the current frame had to be done by using the current frame shifted in both horizontal and vertical directions to track lateral movement in the scene.

The effect of using two-dimensional processing but only correcting vertically was to allow horizontal motion without any loss of stability in the processed sequence of frames. It is indeed most fortunate that the line scanning direction of the early mechanical television experiments was vertical as most scene motion in natural objects is typically only from side to side.

Figures 2(a) to 2(e) show the performance of the basic two-dimensional correction method described in the previous subsection. Figure 2(a) is the original digitized sequence showing significant vertical rolling of the frames in the sequence. Figure 2(b) shows an estimate of the actual positional error in the vertical direction on a line by line basis. Figure 2(c) displays the actual calculated result of how much each line in each frame had to be shifted. Each line in a particular frame was shifted by the
same amount so that the correction function (Fig. 2(c)) shows only a stepped approximation to the actual positional error. Figure 2(d) is the residual error after applying the offset of Fig. 2(c) and Fig. 2(e) is the corresponding corrected sequence of frames.
By comparing Figures 2(b) and 2(c), a closer approximation to the actual positional drift could be made by performing a linear interpolation between the vertical shift values of adjacent frames. The method was quite simple to implement and provided considerable improvement to frames distorted by sampling at a slightly incorrect sampling rate.
Figures 3(a) to 3(d) show the result of processing a sequence digitized at slightly too high a sampling rate. The result here is equivalent to a 0.7% increase in the desired sampling rate. Figure 3 (b) shows the linearly-interpolated error derived from the vertical shift calculated using the matching equation: the error wraps around as the shift value has cyclic symmetry. Applying this interpolated set of values (Fig. 3(b)) to the original sequence gave rise to the processed sequence as shown in Fig. 3(d). Figure 3(c) shows the residual error. The most significant result from this example is the removal of the overall tilt from each frame.

A natural extension of the original line matching idea resulted in a stable and robust method of accurately re-aligning a sequence of tv frames with no further information than the scene being transmitted. The restriction of only applying vertical correction resulted in the

Fig. 12. Set of pictures produced by system from noisy and distorted taped recordings. Pictures are still crude, but are enormous improvement on untreated versions.
preservation of horizontal motion with no loss in stability. Further correction for speed variations proved to be a powerful method for removing the 'tilted' effect on certain frames. This required little computational overhead.

Although not able to remove fluctuations faster than the frame rate, the frame matching technique has proved to be a useful tool in assisting the analysis of these early mechanical recordings.

Image quality

The quality of recording on wax discs in the 1920's was adequate for voice or music reproduction although it was far from hifidelity. When used for recording Baird's 30 line television signal, wax discs proved themselves to be quite a poor recording medium. The recording apparatus was not capable of recording the very high or the very low frequencies in the signal, and yet the shape of the recorded waveform much less important for voice or music recording - had to be free of distortion for accurate reproduction of the scene being televised.

The limitations of base-band (unmodulated) recording on wax discs resulted in various types of distortion of the television waveform. The most common types observed on the discs of the period are: phase distortion - poor low frequency response, giving rise to phase shifts; low-frequency noise - eg, main hum aggravated by reduced signal level at low frequencies; highfrequency instability generated by head cutter resonance; noise caused by disc surface granularity; and residual timebase errors, giving rise to ragged edges to each frame.

Image filtering

One-dimensional filtering. Most types of distortion present on these recordings can be reduced by one-dimensional digital filtering techniques. This means that the television signal is treated as if it were an audio signal: the relationship between lines and frames is not used in the processing.

Phase distortion can be reduced by processing the signal through an all-pass phase shifter. It is the author's experience that using a simple electronic circuit to perform this function relieves the computer from time-consuming processing and gives instant feedback on the correction being applied to the signal. Figure 6 shows the result of phase correction.

Head-cutter resonance is predominant on one particular recording. Although external pre-filtering can reduce the effect of the resonance, digital filtering within the computer was found to be much more flexible and was able to reduce the resonance without adversely affecting the resolution of the picture. Figures 7 and 8 show the reduction possible by digital filtering.

Low-frequency noise was more effectively reduced again by using digital filtering. In one of the recordings, mains hum was present at a high level after attempting to recover low frequency information in the signal. The reduction of interfering signals on early Baird recordings is

The author

After graduating from Giasgow University, the author spent several Years with EMI Central Research Laboratories betore joining Logica as an inage-processing consultant. With a strong grounding in television, he has worked on digital video and audio systems, automatic inspection methods and, more recently, on the imageprocessing system for a fingerprint idensification system. In his spare time, he explores aspects of television techniques.
demonstrated well on Figs 9 and 10 .
Although the waveform is by nature one-dimensional, the correlation between lines and frames can be used to suppress some types of irregularities in the signal. One particularly powerful technique involves processing the points in the scene exactly one frame apart, a process called temporal filtering.
Temporal filtering. One of the most effective processes on the frame- or linematched sequence of frames was the temporal filter. Both surface noise and residual errors in the position of the lines were considerably reduced without affecting detail in the individual frames significantly.

The idea is that points having the same position along the same line on adjacent frames should be very close in their value of brightness. The filter creates a new point from the brightness values of the same point on three successive frames, chosen to be the middle value in brightness amongst the three. Using this median value allowed isolated errors to be corrected completely: line jitter, noise and to a lesser extent movement were suppressed without the blurring action of a spatial filter (i.e. one acting along or across lines). Reference 9 describes this technique applied to high resolution television.

Temporal filtering is both difficult and expensive to implement in high-resolution television because of the large amount of high speed memory required to store two (or more) frames. The memory and speed requirements for 30 line television however makes it very much simpler to demonstrate powerful image processing techniques such as this.

Software

A program for acquiring data, displaying the result, re-aligning and processing a digitized sequence of 30 line television was written in machine code for acquisition and re-transmission: the processing routines could have been written in any language. A decisive factor in using machine code for the matching algorithms was the vast number of calculations required to match-up and re-align the frames. For line matching, this included about one million multiply operations for a sequence of 32 frames. Matching up 32 frames took 150 seconds in Z80 machine code with the processor running at 4 MHz . Performing the multiply operation in hardware reduced the execution time to 65 seconds for a 32 frame sequence.

The implementation of the two-dimensional frame matching took considerably longer to execute than that of the one-dimensional line matching, since frame matching needed a greater number of multiply and accumulate operations (30 times) plus higher precision in the score value for matching. Considering that an image or frame in this case had 960 samples, point-by-point multiplication and score accumulation gave the staggering figure of just under one million of these operations per frame. The software implementation took 3 minutes per frame - 96 minutes in total for a complete 32 frame sequence. Performing just the multiply operation in hardware reduced this execution time to 80 seconds per frame - 40 minutes per sequence. A similar routine in Basic was estimated to take about 75 hours per sequence, while a compiled PASCAL routine on the same machine took 17 hours per sequence.
The one-dimensional and temporal filtering all required between 2 and 10 seconds to process a 32 frame sequence of 960 bytes per frame. For high-resolution processing with 1920 bytes per frame, fewer frames could be held in memory. Because the amount of data was similar in both the low and high-resolution sequences, the processing time for each was similar. Fourier analysis of the signals to determine which filter to use took a few minutes for each frame.

Acknowledgements

Thanks go to Doug Pitt of the Narrow Band TV Association, Ronald Gibb of Strathclyde University AV unit, Ray Herbert, Ben Clapp, H. Spencer, Len Firmin MBS, John Ive and Mike Hallett of the IBA and Tim Voore for assistance in researches into mechanical television.

References

'Phonovision'

1. Dinsdale, A. 'Television' 2nd edn. Television Press Lid. 1928, pp 142-145.
2. Moseley \& Barton Chapple 'Television -

Today and Tomorrow' 2nd edn.
Pitman \& Sons 1931, pp 127-130.
3. Newnes 'Television and Short-Wave

Handbook' lst edn., 1934, pp 47-50.
4. Television and Short-Wave World June 1935, p308 and p363.
5. Patent no. 289104, 16-APR-29, J. L. Baird.
6. Matthewson, D.K. Television, May 1983, pp 361-2.
For details of crrelation techniques
7. Gonzalez \& Wintz 'Digital Image Processing' Addison-Wesley, 1977, pp 67-69 and pp 383386.

Further application of correlation:
8. Rad-Com. Letter on computer-controlled slow-scan TV. October 1982, pp872. Details of temporal filtering: 9. Huang, T.S. 'Image Sequence Analysis' Springer-Verlag, 1981, Chapter 4. Short extracts from one of the recordings can be heard along with interesting conmmentary on the following:
10. 'We seem to have lost the Picture,' BBC documentary l.p. REB 239 from the series ' 40 Years of TV,' 1977.

Assembly language programming

Parts of these lists were illegible when originally printed in Bob Coates' sixth tutorial in the September issue. We apologize for any inconvenience caused by the poor printing.

List 1. Assembly language for summing numbers on the Picotutor.

List 3. Summing numbers using the 6809.
List 2. Summing numbers using the 6800

1000	4 F		CLFA	
1001	CE1052		LD)	\# UALUE1
1004	ABOO	LOOF	ADI'A	$0 . x$
1006	O8		INK	
1007	7A1051		DEC	UALUES
100 A	$26 F 8$		BNE	LODP
100 C	E. 71050		STA	RESULT
100 F	7E7D97		JM ${ }^{\text {a }}$	START

1000	$4 F$		CLRA
1001	$8 E 1052$		LDK
1004	AROO	LOJP	ADDA
1006	3001		LEAK
1008	$7 A 1051$		DEC
1008	$2 G F 7$	UALUES	
$100 D$	E71050	ENE	LDOP
1010	$7 E 7 D 97$	STA	RESULT
		JMP	START

List 5. Multiplication program for the 6805.

024	3F62	MUL	CLR	PROD
026	3FG3		CLR	PROD +1
028	AE08		LDX	\#8
02 A	38G3	ruli	LSL	PROD +1
02C	39G2		ROL	PROD
O2E	38G:		LSL	MPLIER
030	240 B		BCC	MUL 2
032	BGGO		LDA	MCAND
034	88.63		ADD	PROD +1
036	87G3		STA	PROD +1
038	4 F		CLRA	
039	B962		ADC	PROD
03B	E762		STA	PROD
03D	5 A	MUL2	DECX	
O3E	2GEA		BNE	MUL 1
040	BC80		JMP	START

List 6. 15-by-7-bit division using the 6805.

024	AEOB	DIU	LDX	* 8	SET CDUNTER
026	38G 1	D [W1	LSL	DDEND+1	SHIFT L QUOT./LS B BITS OF D/DEND
023	3960		ROL	DDEND	SHIFT L MS 8 BITS DF D/DEND
O2A	3660		LDA	DDEND	
02C	3162		こMP	DISOR	DO TRIAL SUBTRACTION
O2E	2506		3CS	DIU2	BRANCH IF NOT SUCCESSFUL
030	8062		sue	DISOR	SUBTRACT D/SOR FRIY B MS BITS D/DEND
0 ± 2	B7E0		STA	DDEND	STIRE RESULT AS D/DEND
034	3CG 1		INC	DDEND + 1	AND INC. GUDTIENT
036	5 A	DIUZ	DECY		DEC. LQOP COUNTER
037	2GED		BNE	DIU1	BRANCH IF NOT FINISHED
035	BC80		JMP	START	FINISH

List 7. Simulation of the 6800 DAA instruction included in the Picotutor

List 7. (continued).

3 A 3	gF	DAADNE	TKA		CORRECTION GOES INTO A						
$3{ }^{\text {A } 4}$	BB1E		ADD	TEMPA	AND : 5	ADDED		RIG	INAL	VA	alue
3AG	BEIF		LDK	TEMPX							
3A8	2504		BCS	DAAZ	BRANCH	Qut 1F	CAR	RY	ALRE	ADY	SET
3AA	D11001		BRCLP	O,BITSTR,D	DAAZ OR	IF IT	WAS		EAR	ON	ENTRY
3AD	99		SEC		BUT SET	CARRY	IF	I T	WAS	ON	ENTRY
3AE	81	DAAZ	RTS								

List 8. Adding two numbers using the simulator of List 7.

024	A699	LDA	$\# \$ 99$
$02 G$	A849	ADD	$\# \$ 49$
028	83	$5 W I$	
029	BDE3	JSR	DAA
$02 B$	83	$S W I$	

List 9. Converting decimal 2748 to binary form using Picotutor.

024	AE27	LDA	\#\$27
02.6	B71A	STA	POINT
028	AG48	LDA	\# 463
O2A	B71E	STA	PO:NT+1
O2C	AEGO	LD\%	\#\$60
O2E	EDES	JSR	ECDBIN
030	ec80	JMP	START

List 10. Assembly language for Picotutor subroutine BCDBIN.

Forth language

Complementing his description of a 6809-based microcomputer, Brian Woodroffe details the language used - Forth - and why he chose it, in this second series.

Forth is a language well suited to modern microprocessors and is widely used in such diverse applications as word processing, data-base management, instrument and process control, video games and data acquisition. In a kernel of less than 10 K byte the following features are provided

- An interactive system.
- A high-level compiler with all standard control features.
- Fast execution, comparable with machine code because of the compiler.
- The language system is largely processor independent; only around 20% of the code written in assembly language need be changed to suit the computer.
- Virtual memory and applicationoriented program modules.

Further, the system may be readily extended to suit new applications because the compiler can be modified by the user and new data structures introduced. These features are achieved by defining a virtual machine which is easily simulated by any target machine. Using 'threaded code', transferring control in the host from one virtual machine instruction to the next is quick and easy. Instructions of the virtual machine are used to build the monitor and compiler. Using the monitor the user may examine the effect of a series of Forth instructions and using the compiler this series may be added to the instruction set for future use.

Background

Forth is a computer language for fourth generation computers ${ }^{1}$. The language would have been called Fourth but six letters would not fit in the IBM1130 jobcontrol language that its inventor, $\mathrm{C} . \mathrm{H}$. Moore, was then working with. Today Moore's company Forth Inc. is foremost in marketing FORTH for many different applications, besides the field of astronomy where it first found favour ${ }^{2}$. Other companies such as Miller Microcomputer Services and Laboratory Microsystems sell their own versions of Forth but the prime mover of Forth in the home-computer/ hobby field is the Forth Interest Group* (FIG). They have made versions of Forth available for many computers including the PDP-11 and for $8080 / \mathrm{Z} 80,6800$, $8086 / 8088$ and 6502 processors. There are many versions of Forth and while all are similar no two are necessarily identical. For example, Poly Forth, FIG Forth and Forth 79 are all Forth but they are not the same. They differ primarily because of differences in the processor on which they run (16 or 8 bit memory, port or memory mapped i/o, etc.). FIG Forth will be used in all following examples.

[^6]
by B. Woodroffe

Forth is a collation of different sofware concepts forming a coherent whole. As an operating system, it is not as powerful as most but it takes care of all terminal and disc input and output. Small assembly-language routines must be supplied by the user to interface his hardware to the relevant system calls. It is also possible that memory-allocation changes may also have to be made. Most of Forth is written in Forth. It may seem strange that a language may be defined in terms of itself but one would use English words to explain the English language. Defining the language in this way means that programs may be transferred between different computers and implementations. There is a base instruction set which must be written in the machine code of the host computer. This is the only machine code required and the process is known as simulating a virtual Forth machine.

Most computer languages are programs which. recognizing statements in a source language, convert them into a target language. Usually the source language is text readable by humans in ASCII form and output is machine code of the computer. This is not always the case: cross compiling results in the target code being different from the host computer machine code. More exceptionally there are cases where the machine code can only be executed by a hypothetical computer, an example being O -code for the language BCPL^{3} and P-Code for certain implementations of Pascal ${ }^{4}$. This is also the case for Forth and the virtual-machine execution mechanism will be explained first.

Threaded code

Explanation is simplified by visualizing a machine-code program for the processor concerned as a succession of subroutine calls. These calls transfer program control to each subroutine in turn. A stack, i.e., last-in-first-out list, would be the mechanism by which each subroutine returns control to the correct point in the main program. Knowing that the main program is solely a succession of calls it is now

possible to reduce the main program to a list of subroutine addresses by removing the subroutine op-code, and to have a special program known as an address interpreter to transfer control down the main program address list. This is called threaded code, for the main program is the thread into and out of which the address interpreter threads control ${ }^{5}$, List 1 .

In List 1 , letters A, B and C denote machine-code subroutines, ip is the threaded-code instruction pointer and parentheses indicate one level of indirection. Threaded code trades the cost of the code for each call saved for address interpreter speed. In a long program the code cost of the address interpreter will be negligible. Further savings can be made by replacing the subroutine return statement by a jump to the address interpreter and changing the address interpreter as shown below. This releases the stack pointer used for subroutine calls and returns. It is important that the instruction pointer can be speedily accessed, for example by keeping it in a processor register, so as not to slow down the address interpreter by causing unnecessary memory activity.

If the lists are considered to be the actions of a virtual machine then a software routine NEXT represents the hardware execution fetch of the virtual machine. In a threaded-code computer the time of interpreting these lists is dominated by the time of the NEXT operation so it is best to run threaded code on a computer that handles NEXT efficiently or to use microcode.

Code routine including return

A: xxx
jmp NEXT
New address interpreter

NEXT: $\mathrm{ip}+1->\mathrm{ip}$

imp [ip]

Indirect threaded code

The next improvement is to allow called routines to be not just pure machine code but also address lists. This is done by having a special routine that knows that the following data in the list are not code but addresses that must again be interpreted. Further, the routine must suspend interpretation of the main program while interpreting this new list of addresses. Return of control to the suspended list is done using a stack to save and restore the instruction pointer which is similar to the machine-code subroutine call/return operation. There must be an equivalent code routine to return control to the main list.

Normal code routine
A: machine code
jmp NEXT

Threaded routine

```
P: sp-1 -> sp
    ip -> [sp] (push current ip)
    #L-1 -> ip (start interpreting new list) imp NEXT
L: A B C
```

Return routine
[sp]-> ip
$\mathrm{sp}+1->\mathrm{sp}$
imp NEXT

As most routines are likely to be lists and not machine code this stacking method, similar to subroutine calling, will take a lot of code area. Considerable space would be saved if there was just one copy of this routine. The address interpreter would normally jump to this routine but it would also have to execute code routines. This is done by making the first element of each list a pointer to code rather than the code itself. In the case of lists the pointer points to the stacking operator but with code routines it points to the next code address.

New address interpreter

$$
\begin{gathered}
\text { NEXT: } \mathrm{ip}+1->\text { ip } \\
{[\mathrm{ip}]->\mathrm{w}} \\
\\
\\
\end{gathered} \mathrm{mp}[\mathrm{w}] \mathrm{l}
$$

Stacking operation

$$
\begin{aligned}
& \text { DOCOL: sp-1 -> sp } \\
& \text { ip }-->\text { [sp] } \\
& \mathrm{w}+1->\mathrm{ip} \\
& \text { jmp NEXT }
\end{aligned}
$$

Destacking operation
SEMIS: [sp] $->$ ip
$\mathrm{sp}+1 \rightarrow \mathrm{sp}$ jmp NEXT

Code routine

A: $\$+1$ (point to next location)
xxx
jmp NEXT

List routine

DOCOL
P
Q
SEMIS
This is the equivalent of machine-code subroutine call and return instructions. In Forth, the stacking and destacking operations are called DOCOL and SEMIS respectively. At the beginning of each address list, the extra address introduces a level of indirection - this is indirect threaded code ${ }^{6}$. In Forth the lists are divided into two parts, one being the code field which points to the address and the other known as the parameter field where the code is. These two parts and dictionary data, to be described, form a WORD. Code pointed to by the code field determines how the parameter field is interpreted. In the case of code words, the code field points to the parameter field. When the code field points to DOCOL, the parameter field is to be interpreted in a similar way to a subroutine. It is possible for the code field to point to some other routine which may make different use of the parameter field. Two examples of this in Forth are DOCON and DOVAR. The former treats the
value in the parameter field as a constant and pushes it onto the data stack, to be described, whereas DOVAR pushes the address of the parameter field which is used as the storage location for that variable. To enable these routines to access the parameter field a third register, known as ' w ', is required.
The address interpreter for indirect threaded code is more complicated than that for direct threaded code and so it is even more important to choose a processor with a suitable instruction set. Surprisingly for direct threaded code, NEXT can normally be coded using the processor subroutine-return op-code provided that the processor uses a stack that may be placed anywhere in memory. As the stack pointer is pointing to the thread, the processor must not receive interrupts for the status cannot be saved without destroying the thread. NEXT for indirect code is more complicated as it involves an
extra level of indirection
Choosing a processor, stacks and languagecontrol structures are subjects of the next Forth language article.
An i.c. in the Forth computer switchmode power supply on page 61 of the July issue was incorrectly designated the MC3045. The correct designation is MC3405.

References

1. C. Moore, Forth dimensions, vol. 1, no. 6, FIG
2. C. Moore, Astronomical Astrophysics

Supplement, 1974, vol. 15, pp.497-511
3. M. Richards, The portability of the BCPL compiler, Software Experience and Practice, 1976, vol. 1, pp.135-146
4. D. Barron, Pascal, the language and its implications, Wiley, 1981
5. J. Bell, Communications of the $A C M$, vol. 16, no. 6, pp.370-372
6. B. Dewar, Communications of the ACM, vol. 18, no. 6, pp. 330-331

Glossary

Whohlo code. The representation, uevilly in hexadedmat, of the instruction Zna dote encoding that is understood by The computar.
A Aembly redo. A humen readeble form of methine ecde. Thure is a one-to-ore cerrespondence between assembly cado and machina code.
Initweeton fotch. A eamputer warks by sliccessitioly fotcting and expeuting itEtructions. The instruction fetch is made Hem the locuthon painted to by the pregram counter. The program counter is Inermenented cinc Instriction to a time unless a lump (branch etc) occurs.
Virtall moothane. At any leval of analysis the eomputer will hove a repertoir of finstrumions that it em execute. This is Normatly the mashine/tessembly level instructions, Hewever by running e program on this machine it can be made to look as though it has a different intruction set, It E pessible to time share the computer batwien two or more users so that they both think they have a separate computer. These techniques are known as crenting a virtual machine.
Op-adiw. Each different instruction is encodud into a unique symbol lusually binary, known as an op-code.
Host eomputer. The computer on which the program is currently executing.
Targut computer. The computer on which the program being developer will execute.
Crees compiltation. A cross compiler runs on ane machine and produces output for another. Host and target machines have either different op-code encodings or instruetion ssts, or both.
Complltor. A program recognizes that the input lampage agrees with a defined grammar. If it ugrees it will usually produce an output in some other defined engutege, or error mesaages as to why the ingut ie aot in the source fanguage. Normally, input is English-like (e.g. Form/Pascalitha output is machine code.
Nhroetede, Microobo is a mechanism used to build computers to understand machine-code instructions. Within a micrecoded computer there is another computer with its own microcode instructlen set. By writing new microcode, the assembly-leval machine can be made to Heve new inctuctions.

Kernal. A central program on whose resources all application program rely and interface 10.
Opertiting system. A computer program which manages the computer's resources. It will take care of all input-output etc, so that the application programmer need not worry about how to get characters to and from a terminal, etc)
Software driver. A small program specific to each input/output device that is included in the operating system.
Torminal. Visual-display unit and keyboard, teletype.
Indirection. An addressing mechanism. An instruction requires data to act upon - the instruction gives details of how to find that data, Normally it will give the address of the data, but in the cases of indirect addressing it will give the address at which the address of the data may be found, That is one level ofindirection. Up to three levels, ie the address which contains the address which contains the address which contains the address which contains the data, are common.
Call. A subroutine call is a mechanism whereby machine-code execution is temporarily suspended while the subroutine is executed. Execution will restart at the instruction after the call when the subroutine finishes. The restart address freturn address) is often kept on a stack.
Code field. A part of a Forth Word definition. The contents of the code field always point to machine code of the target machine.
Machine. Computer, (state machine).
Monitor. A program that monitors user requests as typed in at the terminal. Usually gives message (<OK>) when the command has successfully executed. Monitor is also the name given to a tech. nique used in real-time programming, developed by C.A.R: Hoare et al.
Virtual Forth machine. The assembly-language programmer creates a virtual machine that executes lowest-level Forth instructions.
Virtual-machine execution mechanism. The means by which the assembly-lan. guage programmer makes the virtual Forth machine transfer control from one Forth instruction to the next.

Nanocomp to teletypewriter interface

Hard copy of Nanocomp programs can be obtained cheaply using a teletypewriter and this simple interface with its machine-code driving program. Software presented is for the 6502 Nanocomp.

A surplus teletyprewriter provides a very economical means of obtaining good quality hard copy of Nanocomp programs, the only drawbacks being the unit's size and its relatively low speed and somewhat noisy operation. Two points on the Nanocomp connector, p.i.a. line PB_{7} and 0 V , feed the input of this simple interface and its output consists of two connections which drive the teletypewriter selector magnet. Hard and software described was designed around the Creed 7E teletypewriter which has a 230 V a.c. motor and is probably the most common on the secondhand market.

Hardware

The complete circuit consists of the telety-pewriter-drive interface, Fig. 1, the power supply. Construction is straightforward. Two rails are provided by the p.s.u., between 80 and 100 V to drive the teletypewriter selector magnet and 5 V supplying the 7400 i.c. An alternative 5V source might be the Nanocomp's own p.s.u. In the original power supply I used a 20VA transformer built from a kit (RS207-728) with secondary windings consisting of 845 turns of 36 s s.w.g. wire, centre-tapped, to provide $65-0-65 \mathrm{~V}$ and 46 turns of 34 s. w.g. wire for the 5 V secondary winding.

Software

Designed for the 6502 Nanocomp, the 397-byte program shown in List 1 resides in the top ram area starting at address 1264_{16}. When run the program displays an S to prompt entry of the printing start address and when that is entered an F prompt appears to indicate that the finishing address is to be entered. When the finishing address is entered the teletypewriter prints all memory contents between the specified addresses. Prompt functions make use of the Nanocomp monitor BADDR subroutine at 7 C 5 B .

Fig 1. Nanocomp-to-teletypewriter interface in which high-voltage output transistors are driven by a phase-splitting circuit consisting of a 7400 i.c. and buffers.

One inconvenience with using teletypewriters is that when letters have been printed a figures code has to be sent before figures can be printed and likewise a letters signal has to be sent before letters can be printed. Unfortunately, hexadecimal notation consists of approximately $2 / 3$ numbers

Address	Function
0001	position counter
0002	data store (one hex. digit)
0003	figures/letters flag
$\left.\begin{array}{l} 0004 \\ 0005 \end{array}\right\}$	start address
0005 0006	
0007 \}	finish address
0008	drop memory
0009	temporary store (4 m.s.b. data byte)
000A	temporary store (4 l.s.b. data byte)
000B	byte flag
000C	byte count (CR, LF, spaces)
$\left.\begin{array}{l} 000 \mathrm{D} \\ 000 \mathrm{E} \end{array}\right\}$	look-up table temporary store
13C9	start of look-up table
Address	Subroutine
1353	letters/figures
1382	byte separation \& storage
13AA	transmit

List 2. Memory locations used by the 397-byte interface program starting at location 1264, and subroutines.

1260	0000000086 3D 97 7F BD7C B5 DF 04866997	1330	1382 BD 135396029708 BD 13 C9 BD 13 AA96	List 1. Machine
1270	7F BD7C B5 DF 06 4F 97 0C 970397 OB 86 FF 97	1340	01 4C 9701 DE 0408 DF 04 9C 0627037 CL 1281	code for driving
1280	01 D6 01 C1 222225 C 1042202203086 OC 4C	1350	3F 010196028109220886009103271520	a teletypewriter
1290	97 OC 01010181022202202286139708 BD	1360	1E 860091032718867 F 9708 BD 13 AA86 00	using the 6502
12A0	13 AA4F 97 OC 4C 9B 019701201186089708	1370	970320 OB 866 F 9708 BD 13 AA86 01970301	Nanocomp see
12 BO	BD13 AA86 239708 BD 13 AA4F 9701019601	1380	3901 DE 04 A6 0084 OF 97 OA A6 0044444444	List 2 for
12C0	810522 5A 9604444444449702 BD 135396	1390	$9709 \mathrm{D6} 0 \mathrm{BC1} 0026$ OA 96099702860197 OB	details.
12D0	029708 BD 13 C9 BD 13 AA96 0484 OF 9702 BD	1340	200796 OA 9702 5F D7 OB 399608 7F $4003 \mathrm{C6}$	
12E0	135396029708 BD 13 C9 BD 13 AA96 054444	13B0	80 F7 4001 C6 04 F7 4003 C6 07874001 CE 07	
12F0	44449702 BD13 5396029708 BD 13 C9 BD 13	13C0	FF 0926 FD 49 5A 26 F3 $398613 \mathrm{B7} 13$ DE 7F 13	
1300	AA9605 84 OF 9702 BD 135396029708 BD 13	13D0	DF 9608 B7 13 DF FE 13 DE A6E0 9708391300	
1310	C9 BD 13 AA86 139708 BD 13 AA86 059701 BD	13E0	377767432 Cl 07577333 OF 63 4F 3B 4B 43 5B	
1320	1382 BD 135396029708 BD 13 C9 BD 13 AABD	13F0	3F 000000000000000000000000000000	

and $1 / 3$ alphabetical figures and the extra code characters required to change between the two slows down printing.
Carriage returns, $C R$, and line feeds, LF, are sent as needed and if the position counter is below six the address is also printed, see flow diagram. If the next data byte is a letter and the teletypewriter is set for figures, the appropriate code is sent to convert to letters, and vice versa. Using a look-up table, data are converted to teletypewriter code and sent through 'drop' memory at address location 0008 to the teletypewriter interface using the transmit subroutine at 13AA. When the required section of memory has been printed, the program is terminated by a software interrupt instruction, SWI, which returns control to the monitor. List 2 is a memory map for those of you who want to make further use of the subroutines. If the teletypewriter races or prints rubbish try interchanging the selector magnet connections.
Bob Coates described the 6502 Nanocomp microprocessor trainer in the January 1981 issue, $\mathrm{pp} .32-36$, and the 6809 version in July 1981, pp.33-37. An eprom programmer for both versions was described in the January 1982 issue, pp. 30-33, and interfaces for expansion in November of the same year, pp. 32-34. A set of photocopies of these articles can be obtained by sending $£ 2.55$ and a large s.a.e. to Wireless World Trainer, Room L303, Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS.

MNO

Interface details

The teletypewriter selector magnet can be in one of two states corresponding to logical one or zero. This magnet converts electrical impulses provided by two high-voltage output transistors, see Fig. 1, into mechanical movement which prints the appropriate character. Sections A and B of the i.c form a phase splitter which drives the output transistors in opposition, causing the magnet to shift from one state to another.

Teletypewriters use the CCITT No. 2 International 5 Unit Teleprinter Code in which five units, or bits, form the character to be printed. In addition, one start bit and one and a half stop bits are used, giving seven and a half bits in all. Each bit is 20 ms long so each character including start and stop bits is 150 ms long, fig. 2. The complete code is shown in Fig. 3.

Fig. 2. In teletypewriter code, five bits specify the character to be printed, one bit is the start bit and one and a half bits form the stop code.
Fig. 3. International 5-unit teleprinter code. A letter code changes from figures to letters and vice versa for a figure code. Channel numbers are the equivalent of bit numbers and a punched hole represents a
 logical one.

RECHARGEABLE H.T. BATTERY

May I comment on Mr Pash's letter concerning the Milnes rechargeable h.t. battery.

This was first produced in the late 1920s by the Milnes Radio Company of Yorkshire. The cells were nickel-cadmium type with alkaline potassium hydroxide electrolyte, producing a potential when charged of about $11 / 4 \mathrm{~V}$. All the cells were connected in series to give 120 V for normal operation; but could be connected in a series-parallel arrangement with a built-in switch, so that the unit could be recharged from a normal 6 V battery charger.

Unlike lead-acid accumulators, nickelcadmium cells can survive to a ripe old age and it is very interesting to learn that the unit Mr Pash has found bears this out. The makers at the time claimed that they were 'virtually indestructible'.

D. P. Leggatt
 Engineering

Information Department
BBC

'CURRENT DUMPERS'

To quote Michael McLoughlan (September, p.39), "it is therefore appropriate to call the output transistors in Fig. 1 the 'current dumpers'."

The Concise Oxford Dictionary, for example, explains that "to dump" means to deposit (rubbish, etc.), to abandon, to export at a low price goods unsaleable in the country of origin. I am unable to see the claimed appropriateness of the term in the context of the article.

Could this be one of the causes of the confusion which, as Mr McLoughlan mentions, has surrounded this subject?
M. G. Scroggie

Bexhill
Sussex

DESIGN COMPETITION

I was interested to read Mr Wattson's plea (September Letters) for a 'discriminating' hearing aid, as I did some research relevant to the problem some years ago.

I wanted to find out why two ears give a good idea of the direction of sounds, and therefore the ability to discriminate, when two microphones do not. The answer is simply that the ear lobes (and to some extent the sound 'shadow' cast by the head) modify the sound in a way that the brain can interpret as direction. If one 'blanks off' the cars with one's hands, then the ability to judge direction deteriorates and, for instance, conversation in a room sounds cavernous.

I experimented with ears modelled out of Plasticene and later papier maché, with small microphone inserts set in them. This gave quite spectacular results when listen-
ing over headphones - sounds being locatable through 360 degrees and also above the 'head'. I understand that this was first discovered by Bell Labs. in the 1930s, and is currently being re-discovered under the name of 'Holophony'.
A hearing aid shaped like a head would take a little social adjustment (which is why I did not pursue my recording idea!), but if a microphone could be placed inside the ear 'on top' of the earpiece, thus using the effect of the ear lobes, this would work. However, the problem of avoiding feedback would be formidable. Another possibility would be to put the microphone in one ear and the earpiece in the other. Information would be 'back to front' but if the aid was always worn I expect one would scon get used to it. The other possibility is that enough directional information could be generated electronically from a small array of microphones.
Developing the idea may be a good candidate for an undergraduate project? Richard Buswell
Buswell Machine Electronics
Skelmersdale
Lancashire

Being deaf myself, I applaud Mr Wattson's plea for help with hearing, but I am not clear that he has properly stated the problem.

Inability to cut out or subdue unwanted sounds is a common complaint, not necessarily linked to deafness. ITV, when recently asked to cut down the background music and effects to their productions, replied that the output was in fact wellbalanced, it was the listener who was at fault.

But the inability to hear clearly when wearing a hearing aid in conditions of high ambient noise is another problem.

Cosmetically tucked behind an ear it has the inherent disadvantage of responding mainly to sounds behind the wearer, both volume and frequency in front being much reduced.

Truly did Dunlop, in the Textbook of Medical Treatment, say "in older people, the old-fashioned ear trumpet may well be found more effective".

The problem is really serious. For instance, a conversation in a bar at opening time becomes more and more difficult as the arrival of more people increases the ambient noise, and after a time can become quite impossible. This also goes for cafés, wedding receptions; in fact, anything which generates ambient noise.

I think a solution could lie in the use of the ' T ' switch, which enables direct pickup by induction without the mike, from a telephone coil, or a radiating cable in suitably equipped theatres.

If your young men could devise a modern equivalent of the ear trumpet - something that picks up sound from a forward
direction, amplifies it and feeds it to a loop which could be 'heard' on the ' T ' setting it would be a boon to everyone with a be-hind-the-ear aid.
G. Barnes

Market Harborough
Leicestershire

HERETICS GUIDE

One year and some twenty five printed pages have finally brought Dr Scott-Murray's 'Heretic's Guide to Modern Physics' to a close. Considering that he holds a Ph.D in a physics subject it is hard to believe that he could have expected to get away with some of the things asserted there. Thus almost everyone working with oscillating systems is aware that in them energy is continually changing to and fro between kinetic and potential forms, while the total energy remains nearly constant. According to quantum mechanics the total energy of an electron bound in a hydrogen atom is quantised and therefore constant, but its kinetic energy is not. In attempting to score a point against quantum theory Dr Murray in his very first article (Wireless World) June 1982, p81, col 1, question and answer session) glossed over, not only the distinction between the kinetic and the total energy of the electron, but also the distinction between its angular momentum, which is quantised, and its linear momentum, which for a hydrogen atom may take a range of values that according to the uncertainty principle is inversely proportional to the mean distance of the electron from the proton, a spread thoroughly checked experimentally. Anyone indulging in such antics can hardly complain if at this point the discussion takes on 'a testiness of tone'.
Dr Murray asserted time and time again that no experiments bearing on his 'heresies' have been performed, but when faced with the results of experiments made with gamma rays from radioactive sources adopted Nelson's tactics for dealing with information he didn't wish to know about. As an aerial designer he might at least be expected to take an interest in the polar diagrams for atomic and nuclear phenomena, but when discussing the Compton effect (December 1982) he ignored this aspect of the topic completely. Nowhere does he give even a hint that the quantized angular momentum of, say, a hydrogen atom, is closely associated with the complexity of the polar diagram of any photon emission from the atom about the direction of its axis of spin. This type of association has been confirmed by many measurements on radioactive nuclei aligned at low temperatures, and by angular correlation measurements, but on the evidence of his articles the nature, interpretation, and significance of such experiments appears to be a closed book to him.

In attempting to justify the notion that microphysics is determinate in retrospect (March 1983, p 45) Dr Murray selected his example with some care. If he had considered instead the two-slit interference experiment with electrons, then there are arguments which show that an experimental arrangement which defines the slit through which any particular electron passes destroys the interference pattern on the far side of the slits. Thus coupled observations of an electron as it leaves the source and as it subsequently passes some point in the shadow zone between the geometrical images of the two slits do not make it possible to say through which slit the electron passed. The Copenhagen doctrine to which he is so bitterly opposed asserts that if you can't tell which way the electron went with the baffle and slits present you are not logically entitled to conclude that it must have travelled by the direct path if similar observations are made with the baffle removed.

In the April 1983 issue Dr Murray questioned the existence of the neutrino and of discrete energy levels in nuclei. The existence of the latter is demonstrated by the spectra of the alpha particles emitted by many of the natural radioactive elements. The fact that some of them emit groups of alpha particles with several well-defined and distinct energies was known long before he took his degrees. As for the neutrino, measurements on nuclei recoiling after beta decay show that in general the nucleus does not recoil in the opposite direction to that in which the beta particle is ejected, so that from the conservation of linear momentum some other particle must be present. The energy of decay can then split between the electron and the neutrino in any way consistent with the conservation of total energy of linear momentum, since the linear momentum of a free particle is not quantized. Dr Murray's statement (p.61, col. 1) that 'according to the new ideas the mechanics of everything small is also quantized' is far too sweeping. There is no space here to go into the dramatic experimental consequences of the fact that the angular momenta of all the particles concerned in beta decay are quantized, and that in beta decay parity is not conserved. Incidentally parity was not invented by the nuclear theorists (p.62, col. 3), and in fact has well defined values for the electric and magnetic field distributions generated by dipole and by loop aerials, to come back to Dr Murray's own field.

On the same page he quoted a text book account of the use of virtual processes in calculations. These processes are used according to well defined rules, and always occur in cascaded pairs the overall effect of which is to satisfy the conservation laws. If permissible virtual processes are arbitrarily omitted from a calculation the results will not in general be in agreement with experiment, demonstrating in another way that the indeterminacies of quantum theory ref-
lect the properties of the natural world, and do not simply arise from the limitations of experimental techniques.
Finally we come to Dr Murray's account of the experiments carried out by Dr Aspect and his colleagues in Paris in an attempt to resolve a clash between certain predictions of quantum mechanics and of Special Relativity. In the May letters I included a reference to their own account of their work given in Physical Review Letters ${ }^{(1)}$, which includes a summary of the theoretical results, such as the Bell inequality, which their experiments were designed to test, and a very clear description of the experimental arrangements, which might almost be described as classical, give or take a couple of lasers and the use of photon counters. If Dr Scott-Murray had bothered to look up that reference instead of relying on second hand accounts he would have spared himself and Wireless World the dubious honour of having produced the most garbled discussion of a key scientific experiment that has been seen for many years. There are indeed none so blind as those who will not see.
References
(1) A. Aspect, P. Grangier, and C. Roger, Phys. Rev. Lett. 47(1981) 460.
C. F. Coleman,

Grove, Nr Wantage,
Oxfordshire.

The author replies:

Mr R. J. Lamb (WW letters, August) says that any attempt to prove the Causality law on the lines proposed in my March ' 83 article must involve a circular argument. He is right, of course; that is why I followed immediately with the reminder that one cannot prove that law, nor indeed any law in physics. What I sought to do was to transfer the burden of proof, so that I would no longer be required to prove that Causality held, but instead could challenge my opponents to prove - experimentally - that it did not hold. Was I successful?

I go along also with James A. MacHarg (Letters, July) when he says that my arguments are "so shallow and superficial that they merely invite argument from the specialists of this world". (However, I wouldn't agree that they are subjective arguments; I think they are as firmly based on experimental evidence as anything else in physics, and much more firmly based than, say, ψ-waves or quarks). The problem has been to state the case and précis enough material to support it within a limit of about 30,000 words. For every paragraph that reached print in Wireless World there is to hand about ten times as mcuh backing material, and if anyone wants to go deeper into specifics in a constructive spirit he will certainly be welcome.
On the other hand, Mr M. J. Niman (July) is annoyed with me for attempting to mislead your "gullible readers" by misquoting Dirac on the antimatter concept. Dirac went in for positive charge,
he says, not negative matter. But did I misquote him? What Professor P. A. M. Dirac, F.R.S., actually wrote (in the second paragraph of Proc. Roy. Soc. 167, p. 148, 1938) was:
"Secondly, we have the [Dirac] theory of the positron - a theory in agreement with experiment so far as is known in which positive and negative values for the mass of an electron play symmetrical roles. This cannot be fitted in with the electromagnetic idea of mass, which insists on all mass being positive, even in abstract theory."
Not much doubt about that; also the term "abstract theory" is interesting. The whole paper is greatest fun and should be prescribed reading for heretics. Mr Niman seems to have been unaware of the fanciful nature of his high priest's real views.

The purpose of my articles was not to review the sequence of argument and counter-argument that led to the establishment of the Copenhagen paradigm. That sequence is accessible in every textbook, where the student will find all the successes of current theory fulsomely recounted but only rarely, between the lines, any hint of the truth that all may not be well. He will find there no consideration of how big a photon might be, or of the structure of an electron, or of the nature of electric charge or electron spin, or of the mechanism of polarization. Adherents of the theory simply decline to discuss such matters, and seek to patronize or ridicule anyone who does. Very soon one comes to realise just how restricted the coverage of this theory is, and how little it has to say even within the field it claims to cover.

Thus Mr C. F. Coleman, who would seem to have assumed the mantle of De fender of the Faith in these columns (May, July, and now), has raised many points which show the superiority of quantum theory over the earlier, "classical" physics. Several of his points I have already dealt with, superficially I admit, in letters and in the text of the articles themselves. But I question the relevance of any of them to my heresy, since I am not advocating a return to Victorian ideas. I am merely suggesting that we should look now for a credible alternative to the quantum/wave theory, with the accent on the "credible". However, since Mr Coleman has twice provided literary reference to Dr Alain Aspect's 1981 paper (and has suggested that I did not even read it before misleading Wireless World readers), perhaps I had better analyse that most recent E-P-R experiment at the next level of detail as shortly as possible, from the heretical viewpoint. The following amplifies my June article.
Rather than use "annihilation" photons, which are high-energy gamma rays whose polarizations cannot be measured (why not, I wonder?), Aspect et al generated pairs of associated photons of visible light by means of a cascade process in the spec-
trum of calcium atoms. These photons travelled in opposite directions away from the point of generation, and their planes of polarization where measured (i.e., inferred statistically) by passing them through polarizers. The performance of each polarizer, filter and detector was measured separately, together with the losses inherent in the light-collection system; from these calibrations the statistical correlation to be expected between the photons' polariza tions as measured could be calculated, on the assumption that the photons were polarized identically when radiated. This "prediction" is the sinusoidal curve in the second figure.

The experimental measurements fitted this "prediction" perfectly. The apparatus as a whole performed during the experiments exactly in accord with the calibrations of the two photons of any given cascade pair were closely correlated. That is what this experimental result says, and that is all it says. It doesn't seem to conflict with Special Relativity, or to depend upon ψ-waves, or to have to do with wave-mechanics at all. As Mr Coleman remarked, "the experimental arrangements might almost be described as classical"
Then why the fuss? I will tell you. It has got firmly into the heads of all these people that Bohr and Heisenberg were right, in that the result of a measurement performed on one photon of a pair must affect the physical polarization of its distant sibling. (A metaphysical quantity is misidentified with a physical quantity). Some weird "action", it is claimed, must pass from one detector to the other faster than the speed of light. In an attempt to rationalize this claim a number of "locally realistic theories" have been proposed, involving the assumed properties of a mythical sub-stratum of sub-physical "hidden variables". (I tell no lies: this is what our modern physics has come to). An extra-ordinarily complicated mathematical argument known as Bell's theorem, which I confess I have not bothered to understand, says that if these "hidden variables" or their equivalents existed, the result of Aspect's experiment would not be the result he actually obtained.
What Dr Aspect has reported in the paper referred to by Mr Coleman is the failure of Bell's theorem. Some people say this proves that the postulated "action" travelled through the apparatus faster than light. Dr Aspect himself did not say this, and neither do I. Perhaps Mr Coleman does?
Aspect's experimental result can be explained simply and naturally on classical or on slightly neo-classical reasoning. But now, just watch how fast a house of cards collapses! The experiment has disproved Bell's theorem, which was concerned with "locally realistic theories", which were based on "hidden variables", which were invented to support the argument of the "reduction of the wave-packet", which a specious take-it-or-leave-it consequence of
the supposed existence of " ψ-waves", which in their turn were an elaboration into pseudo-scientific fantasy of an innocent speculation by a post-graduate student in 1925.

Everybody nowadays should keep his Occam's razor handy. Using it, if one is not blinded by the conventional prejudice, one sees that Dr Aspect's experiment is just another nail in the coffin of the Copenhagen theory. It seemed to me that his contribution to the common weal was important enough to rate a mention, superficial though perforce it had to be, in the final article of the Heretic's Guide series. I am grateful to Mr Coleman for giving me this opportunity to explain why.
Scott Murray
Kippford
Galloway

ELECTRIC CHARGE FROM A RADIO WAVE

I am at a loss to know whether Professor Jennison was really serious in writing this article, for the conclusions he draws from his experiment seem somewhat extended.
The experimental apparatus he describes is an electronic polyphase generator, being 8 -ph or $32-\mathrm{ph}$, according to how you count the nodes. As is well known in the art, polyphase machines are associated with rotating fields, and if what is normally the stator is driven backwards at synchronous speed, its field pattern will be stationary with respect to the laboratory floor. However, apart from that being an example of relative motion, what can be deduced from it? The complexity of Professor Jennison's apparatus goes some way to mask a well-known principle, the multistage phase-shift oscillator. With two stages we have the multivibrator, but with three or more a near sine-wave generator may result. The diagram shows a 3 -stage RC oscillator, or should it be more properly a 3 -ph generator? That depends on the purpose to which it is put. Clearly, if it is used in its 3-ph capacity, it will have when mechanically stationary, an associated rotating field. That field can be stopped by suitable mechanical rotation but can we draw any conclusions about field and charge from that?
If indeed we wish to freeze a travelling wave on a transmission line, then it is in

principle easier to adopt the proposal in the letter from R. J. Hodges, also in the August issue. Admittedly that pattern came from a pulse generator at the left hand end of the line, but it could just as easily have come from energy received by an aerial.
As for all that 3 K stuff, that is just confusion worse confounded.
Chris Parton
Dept. of Electrical and Electronic
Engineering
Bell College of Technology
Hamilton

TECHNOLOGY AND PEOPLE

Those who have read Prof. H. J. Campbell's most excellent book The Pleasure Areas (Eyre Methuen) will be fully aware that the analogy between electronics and the brain is very much stronger than a mere apparency: Campbell, a neurophysiologist of no mean standing, makes it clear that everything we do is done ultimately for stimulation of the pleasure areas which have evolved out of the "smell brain" of the fish.
Apparently there is stimulation from the peripheral receptors (broadly the senses): there is stimulation from the movement of muscles: and above all, there is stimulation from the thought processes at work in the vast neo-cortex that makes us different to the lesser beasts.
This latter point is where the importance comes in of the pyramid programme which I mentioned in my letter of February this year - it provides a very wide base of information wherefrom an entry into genuine abstraction becomes possible, whereas that entry is impossible from a narrow specialistic base simply because the subject does not have enough information to think about, i.e. to compare: indeed the "research" of a genuine specialist tends to be little more than a good old grope in the dark!
Obviously, the more information one has to think about the more interested one becomes in systems outside one's animalistic self: Adam was more like a wasp that will not be taught to keep out of the marmalade: Cain killed Abel to appease his own introvert jealousy: Lamech's ego caused him to think that he could dispose of whom he wished. On the other hand, Noah may be thought of as the first extrovert creative, not only saving the animals two by two, but planting the first vineyard and then, sadly, imitating a newt! Obviously he still had some interest in his own material pleasures.
To put it plainly, Noah was the first to get some way into the abstract with due stimulation of his frontal lobes. Campbell makes it clear that this stimulation is electrical, and electrical activity in the brain is the one sure sign of remaining life.
Action, the verb of the sentence, has
three dimensions: speed, priority, and direction. These three dimensions will qualify fully any action at all. What is interesting here is that any emergency (or any threat, real or imagined) brings about an increased sense of priority, and that priority is to the self in the sense of survival; I have long believed that the autist is in a mental state of high priority, a sort of absolute "converger".

As I see it, this priority may stem from two possible causes, the one being genetic, and the other perhaps from (shock) interaction with the environment, as it appears that it must be with all matters of intelligence. I remember seeing one autist on television many years ago who could do virtually nothing but play the flute: in this respect he could be considered not unlike what one imagines an absolute specialist would be like, and as far as communication goes, appeared to display the sort of symptoms which one might expect.

Your words about the blocking effect of too much information, and the removal of stress for communication, do suggest to me that the subject needs to be taught to use the function of "comparison" in a state of relaxation, because "comparison" is the thought process at work: it is also an electrical stimulation to the pleasure areas which might help to break down the unscalable vertices bounding the existing preferred pathways for electrical signals in the brain, and so assist the subject to "break the shell", and arouse natural curiosity over a wider spectrum.

The three basic functions of any computer (at abstract level) are perception (i.e. the intake of information), memory (the storage of the information) and comparison by which it is processed. If one thinks of a simple diode gate, the one that gets there first biases off the others: the action is one of comparison through time. Thinking inspection demonstrates that these three dimensions must have evolved in that order: it appears perhaps that the autist may have failed to evolve his function of comparison, or else have some kind of block against using it.

However, as Campbell mentions, the new-born babe is born with hardly any neo-cortex having developed - it is virtually an animal - and the cortex develops with the input of sensory information of one kind or another: might not the function of comparison be assisted to evolve with patience?

It is important to realise that an efficient function of comparison will actually call for information to process so that pleasure may be obtained from the electrical stimulation which ensues: it is my own belief that it is the frustration of this informa-tion-seeking in a society which pressurises "what" but seldom teaches "how" and "why" that causes creativity to twist into animal introversion such as hooliganism and crime, away from that understanding that brings care and responsibility in its wake from an interest in systems outside
the self.
As to your use of the word 'mind', may I suggest that "mind" is brain plus information taken in and processed? Thus "mind" would tend to be the overall integration of electrical activity within the brain, and demonstrable by the effects of that electrical activity in that it ultimately controls all our behaviour patterns.
For those interested in the subject of intelligence and creativity generally I unhesitatingly recommend Arthur Koestler's "Act of Creation" and "The Dragons of Eden" by Carl Sagan: but Campbell's "Pleasure Areas" is some kind of vital starting point.

Finally, I would like to congratulate Mr Young over his efforts within a specialistic society which itself seems to me to demonstrate at least mild symptoms of autism!
J. A. MacHarg

Wooler
Northumberland

THE NEW BUREAUCRACY

I note that I am not the only one to dispute Ivor Catt's various assertions. The small comfort afforded by such sentiment is, however, offset by the impertinence of the man in presuming to judge a stranger's qualifications and experience. His assumption that there is some link between von Neumann and large-scale integration is of some slight interest to the psychologists, but of no relevance to the rest of us.
His loyalty test - which I am quite prepared to do - confuses small-minded bureaucratic bungling with the job at hand, which is to rid us of the pernicious von Neumann arctitecture which he so despises. He - and MAPCON - still have not realised that machine architecture need have little to do with its technological implementation. To object to their insistence in the first place. Does this insistence block the development of parallel-array machines? Of his own waferscale integration techniques? (I do, incidentally, deny that any programmer was responsible for the statement he quotes - programmers think in terms of structure, not composition).

The von Neumann hand that feeds me is a difficult slave and worse master, the result of an unholy marriage of mathematical theorem-proving and "if it works, it's perfect" business approaches. I do not mind biting the hand of that bastard child, for I am not fed by it, but by those who ask me to tame it. I should regard its passing with equanimity if its successor is the sort of beast which allows dealing with sets of data, rather than bytes.

Let us sort out technology from architecture. Then we can start discussing the alleged antipathy between
programmers and engineers - which starts with the architecture. Until then, the battle lies between him and his simpleminded bureaucrats.
D. W. Scott

Challeston Ltd
Nettlestead Green
Kent

MIXED LOGIC

M. Butler's article on the use of mixed logic (WW, July 1983, pp. 28 ff .) should be mandatory reading to anyone studying, or even teaching, digital techniques. He clearly emphasizes the often overlooked distinction between the actual working of circuit and its logical function(s).
M. Butler should, however, have made a passing reference to the IEC system of symbols for logical gates, that was started around 1970 , and is now of standard use at such giants as the Philips and Texas Instruments. It became official norm in Germany in 1976, and also in The Netherlands. May I infer that BS followed suit? And when is $W W$ to switch?
As to Mr Rudge's Letter (p.51), may I suggest the following alternatives. They are self-explanatory, I suppose.

J. Eyckmans

Sint-Truiden
Belgium

CALL SIGN

I was interested to read of the call sign 2MT on the Amateur Radio page of the August issue of Wireless World.

I have a copy of Harmsworth's Wireless Encyclopedia and, although it is undated, Sir Oliver Lodge writes in the introduction, ". . . to what is now in 1923 . .".
The call sign 2MT is listed as belonging to 'Marconi Scientific Instrument Co., near Chelmsford Station, for specially authorised transmissions to amateurs.'

Another item is a 'Hanging Set': how to make a receiving set with simple controls suspended from the ceiling and giving light for the table as well as entertainment. The valves are the ordinary bright emitter type (Marconi-Osram R valves). Six valves are used - two stages of r.f. amplification, one detector valve and three stages of low frequency amplification.
Keith Ellis
Spondon
Derby

HOSPITAL RADIO TRANSMITTER

With 'WW' emblazoned on the front of it, Wireless Workshop produce a medium wave transmitter for use in hospitals, universities and other private services. Using loop transmitting aerials throughout the buildings covered, the transmissions can be picked up on ordinary receivers. The four modules, all fitting together into a standard rack, are an audio processor, an m.f. exciter, a low-distortion v-mos linear amplifier in the cable distribution circuit, and a d.c. power unit. Each transmitting loop has its own, independently controllable, loop driver allowing the system to be accurately tailored to suit the reception area. The units may be purchased separately, so the audio unit could be used with other transmitters, while the wide bandwidth and low distortion (according to 'WW') of the m.f. exciter makes it useful for testing a.m. receivers. Wireless Workshop, 25 Ditchling Rise, Brighton, E. Sussex BN 1 4QL WW 301

MACHINE-CODE MONITORS

Basic in personal computers has its limitations and much more computer commands at a higher speed are obtainable if the user is prepared to the computers own operating language or 'machinecode'. To make this easier software programs allow the display of a computer's memory and allow programs to be entered and displayed in their machine code format and sometimes in the mnemonics used to make this numerical language more intelligible. One such program is the N-Bug, written by Kuma for the Newbrain computer. With it, a single display shows a complete memory dump which may be scrolled through, the display also shows the state of each register, and a screen editor allows programs to be entered easily, altered and corrected. Other features include hexadecimal/decimal interconversion, relative jump calculations and the setting of breakpoints. Another display screenful offers menu selection of printer and tape input/output and allows the saving, verifying and loading of machine-code programs. N-Bug is complemented by Zen an assembly language
editor/assembler; both are available from Kuma Computers Ltd, 11

York Road, Maidenhead, Berks SL6 1 SQ .

A very similar program, written this time for the Oric- 1 computer, is the Extension Monitor by Kenema Associates. There are some useful additional facilities; the ability to step through a program, to search for byte or character strings, to set or eliminate breakpoints. Other commands may be defined by the user.
Hexadecimal display also
'translates' any character codes embedded in it and displays these in a separate column. A disassembled mnemonic display is included. Kenema Associates Ltd, 1 Marlborough Drive, Worle, Avon BS22 0DQ.
Kuma WW 302
Kenema WW 303

REAL-TIME CLOCK FOR SINCLAIRS

A time controller for the ZX81 and Spectrum computers has been developed in Ireland. The batterybacked circuit can control eight inputs and eight outputs and also provides the computer with date and time, including seconds. The controller has its own rom program and only a single instruction is needed from the computer to give the date and time. The circuit plugs
directly into the computer's expansion port and provides another port for the addition of a ram pack, printer or other peripheral. It may be used as an electronic diary, with an alarm for important appointments; as a controller for household appliances or intruder alarms; to time sound effects or games and in process control, laboratory experiments etc. The version for the ZX81 costs $£ 34.50$ and for the Spectrum, £38.50. Glanmire Electronics Ltd, Westley House, Trinity Avenue, Bush Hill Park, Enfield, Middlesex EN1 1PH.
WW 304

MASS MEMORY IN SOLID STATE

Plugging into the disc drive port of many popular computers, the MegaRAM storage unit offers memory capacity of between 1 and 32 M -bytes. The advantages of using solid state memory, according to the distributors, is that it operates much faster than magnetic discs; and this is particularly noticeable when running programs with a lot of input/output activity, such as data base management, file sorting and merging and similar tasks. Another advantage is the lack of any moving parts, hence better reliability and

no noise. At the end of a computing session, the memory can be copied onto a disc for long-term storage.

The MegaRAM circuitry includes automatic error checking and correction for any single-bit errors. An optional power supply includes battery back-up giving time to transfer the contents to back-up storage in the event of a mains failure. Compass Peripheral Systems, 67 Milford Road Reading, Berks RG1 8NA. WW 305

D-TO-A CONVERTER RUNS COOL

Monolithic construction and low power dissipation make the DAC80 run a lower operating temperatures and allow the use of low-cost plastic packaging, claim Analog Devices.

The 12-bit converter with selectable voltage output has also claimed for it a higher reliability, a wider temperature range, and more accuracy than those of competing models. Analog Devices Ltd, Central Avenue, East Molesley, Surrey KT8 0SN.
WW 306

FSK MODEM ON A CHIP

To construct a low speed modem (300 or $600 \mathrm{bit} / \mathrm{s}$) all that is needed is the XR-14412 integrated circuit and a few external components. The crystal-controlled circuit can operate simplex, half or full-duplex modes with self-test and echo facilities. It needs a single supply rail and inputs and outputs are t.t.l. or c-mos compatible. Using a suitable transformer, the modem can connect directly to a telephone line or may be used with an acoustic coupler. For phase-shift key (p.s.k.) modems a self-contained bandpass filter is available, the XR 2120. Full details of both from Rastra Electronics Ltd, 275 King Street, London W6 9NF WW 307

TOROIDAL TRANSFORMERS

Fully encased in an ABS plastic shell, the ILP range of lower power toroidal transformers have been produced in answer to public demand. Starting at 15 VA , available now, the range is to be extended to provide transformers up to 120 VA . ILP Electronics Lid. Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP. WW 308

BENCH POWER

A series regulated power pack can give a constantly variable output between 0 and $18 \mathrm{~V}^{\circ}$, and 0 to 5 A . Coarse and fine manual controls are provided or the output may be controlled by an external potentiometer. The Trio PR 655 is provided with two large meters to indicate current and voltage. A fixed current protection circuit may be switched in; as can regulated current or voltage operation. Remore sensing is possible and the supply may be configured in a series or parallel, master or slave mode. House of Instruments, Clifton Chambers, 62 High Street, Saffron Walden, Essex CB10 1EE WW 309

LOW POWER SOLIDSTATE LASER

A series of monolithic
GaAs GaAlAs pulsed lasers has been extended to include the LA5. 02, with an output of $6 W$ peak at a wavelength of 905 nm . The emitted beam width of 150 um makes it suitable for proximity detection. ranging and security systems. STC Components, Laser U'mit, Brixham Road. Paignton, Devon TQ47BE WW 310

COMPUTER CONNECTOR KIT

Suitable for RS232 and V2t computer interfaces, a kit of housings, contacts, cable clamps and extraction and crimping tools can be used tor rapid repair or replacement and in experimental use. It will help to overcome those frustratung moments when the plug on a cable doesn't fit the socket on the peripheral. Ampliversal. Terminal House, Stannmore. Middlesex HA7 + RS
WW 311
If you would like more information on any of the items featured here, enter the appropriate WW reference number(s) on the mauve replys. psid card bound in this issua. Overseas cards require a stamp

SIDEWAYS PRINT ON EPSON MICRO

WW 312

NON-VOLATILE RAM

A 16 K static ram that has a miniature lithium back-up battery is claimed to last for more than five years. The battery is contained within the ram package and the device fits a standard 24 pin socket and can replace any existing 16 K ram or 2716-type eproms, at a similar price. The MK 48 ZO 02 comes from Mostek UK Ltd, 1 Valley
Drive, Kingsbury Road, London NW9.
WW 313

CHUM ONE

Industrial Computer

* Basic and Z80 Assembly Language
\star Detachable Hand-Held Keyboard
* 8 K Bytes of Non-Volatile Memory
$\star 8$ Analogue Inputs
* 1 Analogue Output
* Up to 512 Optical Coupled Inputs/Outputs
$\star 4$ Programmable Frequency/Timers
\star Serial Input/Output Port
\star Real Time Clock
* 32-Character by 2 -line Display
* Software:

> Machine Control Data Log Thermocouple
Weighing machine
WARWICK DESIGN GROUP, 12 ST. GEORGE'S ROAD LEAMINGTON SPA CV31 3AY (0926) 34311

WW - 037 FOR FURTHER DETAILS

The vast range of available options allows you to customise the FM/AM 500 MicroMonitor to suit your specific needs, and weighing in at just 16 lbs your 'field-tests' can now be precisely that!
For a practical demonstration to prove our point contact:-

Mike Dawson on 01-897 6446.

Hunting
Fieldtech Heathrow

Fieldtech Heathrow Limited Huntavia House 420 Bath Road Longford Middlesex UB7 (0LL Telex: 23734 FLDTEC G

WW - 029 FOR FURTHER DETAILS
 Hitachi Oscilloscopes performance, reliability, value
 New Models! immediate delivery!

New from Hitachi are three low-cost bench scopes with bigger sereens and extra features in a new slimline ultra-lightweight format. The range now extends to 13 models:-

4 dual trace single timebase models 20 MHz to 40 NiIz 2 dual trace sweep delay models 20 MHz and 35 MHz 2 dual timebase multi-trace models 60 MHz and $I(0) \mathrm{MHz}$ 2 miniature field portable models, 20 MHz and 50 MHz 3 storage models, one tube storage, two digital storage
Prices stant at $£ 295$ plus vat (model illustrated) including 2 probers and a 2-year warranty. We hold the range in stoch for immediate delisery. For colour hrochure giving specifications and prices ring (0.480) 6.3570 . Reltech Instruments. 46 High Street, Solihull, W. Midlands, H91 3TB
WW - 046 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS

FOR XENON ARC AND MERCURY ARC LAMPS
UNTTS AVAILABLE FOR LAMPS RANGING FROM 75 TO 8500 WATTS. Lamp housings and lens systems manufactured as standard off the sheif models or to specific design

Bird Electronic

THRULINE® Wattmeters TERMALINE ${ }^{B}$ loads

and accessories from stock

Aspen Electronics Limited
The exclusive
UK representative for Bird Electronic 2/3 Kildare Close Eastcote Ruislip, Middlesex HA4 9UR Telephone 01-868 1188 Telex: 8812727
P.O. Box 436. London. W4 4NW Telephone: 01-994 7155. Telex: 28604 WW - 048 FOR FURTHER DETAILS

Discover the Microcomputer Age

Come along to The Northern Computer Fair and discover for yourself the excitement of the microcomputer age. All you need to know about personal computers, home computers and microcomputer systems for business will be on display at Belle Vue, Manchester from November 24-26. All your questions will be answered at the North's premier personal computer exhibition.

Enthusiasts can see the latest software and hardware technology in action, and for those new to the world of computers this show is a great introduction. Being sponsored by Practical Computing and Your Computer, the leading microcomputing magazines, you can be sure of value for money at $£ 3$ a ticket for Adults and $£ 2$ for Children under 16.

Travelling to the show is also easy as the organisers have arranged special reduced -price tickets with British Rail which include the cost of admission. For further information ring British Rail Enquiry Bureau on 061-832-8353 before November 11.

The Northern Computer Fair is open between 10.00 am and 6.00 pm every day so come along and bring the microcomputer age alive for you.

For special party rates and further information contact:
The Exhibition Manager,
The Northern Computer Fair,
Reed Exhibitions, Surrey House,
1 Throwley Way, Sutton,
Surrey SM1 400

Sponsored by:
draction anc
cominting and
YOUR
COMPUTER

WW - 043 FOR FURTHER DETAILS

RADIOCODE CLOCKS

 SOLVE

 SOLVE PROBLEMS

ATOMIC TIME, FREQUENCY AND SYNCHRONISATION EOUIPMENT

NEW PHASE-MODULATION SYSTEMS

Until recently, atomic time and date information was only available on v.l.f transmissions using amplitude modulation. The RCC 8000AM series of equipment uses these transmissions to offer high noise immunity and high accuracy, particularly at very long range
The new RCC 8000 PM series of equipment uses, for the first time, phase modulated tranmissions with massive radiated powers of up to 2 MegaWatts to offer long range, excellent noise immunity and no scheduled maintenance periods.

NEW PRODUCTS

The AM and PM series of Radiocode Clock equipment has been further expanded to include seven new models (from top) 8000S - combined clock, frequency standard and optional stopclock. Internal standby power supply - with dual rate constant current charger. Time-event log - prints hours, minutes, seconds, milliseconds and day of year, on receipt of a log pulse. Speaking clock - time announcement or audio recording. Slave controller - total control of single-standard master/slave systems ie one pulse/sec. Dual standard slave controller - total control of two different and independent slave systems, ie. one pulse/sec and one pulse/half min. Slave distribution amplifier - maximum flexibility for the largest master/slave installations requiring dual standard operation, multiple circuits and complete master/slave backup

NEW OPTIONS

A continuously expanding range of fully integrated software and hardware is available for both series of Radiocode Clock equipment. Standard options now include:

- IRIG B precision serial o/p RS232/V24 1 mS resolution General purpose parallel o/p FSK record/replay system Keypad entry of alarm times
Keypad entry of time/date
- Time code generators
- Intelligent slave systems - Standard frequency outputs - Stopclock operation - Calibrated systems fo Cainbrated systems fo

Radiocode Clocks Ltd*
Unit 19, Parkengue, Kernick Road Industrial Estate Penryn, Falmouth, Cornwall. Tel: Falmouth (0326; 76007 (*A Circuit Services Associate Co.)

(4) 2.2 Your partner in electronic enterprise

Share in the Success Story of Industrial Microcomputing. The spectacular growth in the use of microcomputers in the home, in education and in the office is merely the overture to the real revolution the micro-computerisation of industry.
Your role as an OEM
If you are planning a product which includes microprocessor control, then CUBE modules can both perform the development task and be economically configured as part of the end product. Development time and costs will be radically reduced because of the high level of performance that already exists in CUBE. Delivery time of a finished product to your customers can be reduced from months to weeks. Technical support? Your engineers will have direct access to our Cambridge design team responsible for the entire CUBE range.
Your role as a Distributor
The CUBE concept is now becoming widely known as a result of press coverage, advertising and for its success stories in industrial implementations. CUBE modules are such good value and so flexible that they can be profitably incorporated into nearly every electronic control application. Your task as a distributor is to present the latest developments to potential
users and advise on product customisation using CUBE
products.
Control Universal Limited is a company with a solid reputation for designing and manufacturing computers in Cambridge. An impressive record of growth both in sales and in the range of products offered allows us to offer a solution to nearly every machine and process control application. Full details of the CUBE range, and how they are now fully supported by software tools (such as BBC BASIC and FLEX cross-compilers) are in our catalogue, free on request.
Let's work logether and aim for electronic industrial control for a more prosperous world!
Please write to me directly: Jon Dane, Managing Director
Control Universal Ltd., Unit 2, Andersons Court
Newnham Road, Cambridge CB3 9EZ telephone: 0223-358757 telex: $995801-G, G L O T X$

Control Universallid
The Hardware House

Looking for a Distortion Measurement System?

The Amber model 3501 is quite simply the highest performance. most featured. yet lowest cost audio distortion and noise measurement system available.

It offers state-of-the-art performance with THD measurements to below $0.0008 \%(-102 \mathrm{~dB})$. maximum output level to +30 dBm and noise measurements to below 120 dBm .

It has features like automatic operation. optional balanced input/output and powerful IMD measurement capability. It includes comprehensive noise weighting with four user changeable filters. Unique features like manual spectrum analysis and selectable bandwidth signal-to-noise measurements.

The 3501 is fast, easy to use and its light weight and small size make it very portable. It can even be battery powered.

4 - Amber Electro Design Inc 4810 Jean Talon West. Montreal. Canada H4P 2N5. Telephone (151417354105
Ring lo-day for a demonstration

Scenic Sounds Equipment Limited
97-99 Dean Street, London WIV 5RA Telephone: 01-734 2812/3/4/5 Telex: 27939 SCENIC G
Worldwide Export: Gotham Export Corporation, 741 Washington Street New York NY10014
WW - 033 FOR FURTHER DETAILS

The Wings Appeal Fund helips to maintain the RAF Association Home forDisabled and Chronic Sick. Care is essential for those who have served their country and who are in need. So please helpby giving all you can for an emblem in WINGS WEEK in September or send a donation to show that you care.

To : Royal Air Forces Association, Appeals Dept. (DS) PortlandRd., Malvern. Worcs. WR14 2TA.
I enclose a donation of for the Wings Appeal Fund.
Name.
Address

Please tick if receipt required \square or information on RAFA Membership \square

Give as

 they Gave

Space donated by Wireless World

MANUFACTURERS \& DISTRIBUTORS

"LESLIE" TREMELO SPEAKER SYSTEM
A two-speed rotating baffle system which when used as part of an Organ, Hi -Fi or Disco System produces the famous LESLIE effect. The unit comes Hemplete with a 50 watt 8 ohms speaker at peak output, two $220 / 240 \mathrm{v} 50$ Hz motors with central drive to rotating Horn/Baffle, this gives a threeway sound effect ie normal tremelo sound when stationary, wraparound way sound effectiving at 1 rev per sec and supersound at 7 revs per sec sound when Baffe size 4850 x central boss of rotating horn $50, £ 2,700$ for 100 . Sample sent for $£ 45+£ 5$ P\&P (£57.50 inc. VAT).

ORGAN KEYBOARDS
High Quality 54 -note keyboard manufactured by FATAR in Italy. Keys are mounted on a pressed steel frame with steel springs on each key. Note Range "C" to "C" $£ 100$ for $5, £ 180$ for $10, £ 410$ for $25, £ 775$ for 50 . Sample keyboard sent for $£ 25+£ 3$ P\&P ($£ 32.20$ inc. VAT).

TWIN KEYBOARD AND FRAME
Two 37-note "C" to "C'
Keyboards mounted on a plastic frame Keyboards are offset by one octave and are hinged for easy adjustment. Manufactured by FATAR $£ 175$ for $5, £ 315$ for $10, £ 710$ for $25, £ 1,275$ for 50 . Sample sent for $£ 40+$ £ 4 P\&P (£50.60 inc. VAT).

STEREO CASSETTE FRONT LOADING REPLAY MECHANISM for in-car entertainment complete with motor and preamplifier. Manufactured in UK under Licence of Staar S A. $£ 45$ for 10 + VAT, $£ 205$ for $50+$ VAT, $£ 375$ for $100+$ VAT. Sample for $£ 5+£ 1.50$ P\&P ($£ 7.48$ inc. VAT).

MONO DYNAMIC MICROPHONE AND STAND, $3.5 \mathrm{~mm} J$ plug fitted to approx. 1 m lead $\mathrm{£7}$ for $10+$ VAT, $£ 32$ for $50+$ VAT, $£ 60$ for $100+$ VAT $£ 270$ for $500+$ VAT, £ 500 for $1,000+$ VAT. Sample sent for $£ 1+50$ p P\&P ($£ 1.38$ inc. VAT)

REVERSIBLE GEARED MOTOR, manf. by CROUZET, 8 rpm 240 volt 50 Hz with universal T drive. $£ 35$ for $10+$ VAT, $£ 162$ for $50+$ VAT, $£ 300$ for 100 with universal for $500+V A T$. Sample sent for $£ 3.75+75$ P \& P ($£ 5.17$ inc VAT)

SPRINGFIELD HOUSE
TYSEN STREET, LONDON E8
TEL: 01-2495217
TELEX: 8953906 EECO.

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

 MINI-MULTI TESTER NEW De luxe pocket size precision moving -4000 o.p.v. Battery included. 11 instant ranges measure: AC volts $10,50,500,100$

High power'full range quality oudspeakers. British made deal for Hi-Fi, music P.A. or discotheques. These loud speakers are recommended for high power quality.

MODEL	INCHES	OHMS	Watts	TYPE	Price	POST
MANOR	12	4-8.16	30	HI-FI	f16	f2
SUPERB	12	$8-16$	30	H1-H	± 26	12
AUDITORIMM	12	$8-16$	45	HI-F	E24	12
AUDITORHIM	15	8-16	60	HI-P	E37	62
GROUP 45	12	4-8-16	45	PA	f16	12
DG 75	12	4-8-16	75	PA	± 20	12
GROUP 100	12	$8-16$	100	PA	$\underline{\mathrm{E}} 5$	L2
DISCO 100	12	8-16	100	Disco	$\underline{26}$	$\underline{5}$
GROUP 100	15	$8-16$	100	PA	f35	12
DISCO 100	15	8-16	100	Disco	f35	E2

BÄKER AMPLIFIERS BRITISH MADE 3 channel, 1000 watt each. For home or disco
OR KIT OF PARTS $f 19.50$. 27 OR KIT OF PARTS $£ 19.50$
LIGHT BOXES, $20 \times 9 \times 9$ in, red, yellow, blue, green, $£ 16$. DISCO BULBS 100 watt, blue, green, yellow, red "FUZZ", screw or bayonet $£ 2$ each. Post fed, blue, green, amber, 240 V . $£ 28$. Post $£ 1$. 200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw, 6 for $\mathbf{~} 4$, or 12 for $£ 7.50$ Disco Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$.
Post $£ 1.50$. Suitable panel mounting holders $85 p$.
RCS "MINOR" 10 watt AMPLIFIER KIT £14
RCS "MINOR" 10 watt AMPLIFIERKIT E14 playback, electronic instruments or small PA systems. Two versions available: Mono, £14; Stereo, £20. Post $£ 1$ Full instructions supplied. 240 V AC mains.
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. inp sts for high, medium or low imp
per channel, with volume control and PC Board $\mathbf{£ 3 . 5 0}$ per channel, with volume control and PC Board $\mathbf{E 3 . 5 0}$
Can be ganged to make multi-way stereo mixers Post 65 p
MAINS TRANSFORMERS $250-0-350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 6 \mathrm{~A} \mathrm{C}$
220 V 25 ma 6 V

220 V 45 ma 6 V 2 A E6. 00 f 1
f 12.00
f 2
$250 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 2 \mathrm{~A} \quad \mathrm{E} .75 \mathrm{f1}$
Step-Down 115 V to 240 V 150 W e9. 250 W £10. 500 W ع 12.00 € GENERAL PURPOSE LOW VOLTAGE

$6-12$ volt $3 a$
$6-12$
volt $4 a$

25 and 30 V	E8.00 f2
. $36,40.48 .60$	¢8.00 £2
. $36,40,48,60$	¢10.50 £2
, 36, 40, 48,60	¢12.50 ¢2
, 36, 40, 48, 60	¢16.00 f2
15-0.15V. 1 amp	f4.00 हो
15-0.15V. 2 amps	E4.50 E1
20 V 1 amp	¢4.00 E1
20-0-20V \dagger amp	E4.50 E1
20-40-60V 1 amp	¢4.50 £2
25-0-25V 2 amps	¢5.50 £2
28 V 1 gmp Twice	¢6.00 ¢2
$30 \mathrm{~V} 11 / 2 \mathrm{mmp}$	¢4.50 ¢1
$30 \vee 5 \mathrm{amp}$ and	
17.0-17 2a	E5.50 E2
35 V 2 amps	E4.50 E1
TOROIDAL 30-0-30V 4 a	
and 20-0 $20 \mathrm{~V}^{1 / 2 \mathrm{a}}$	¢8.50 ¢2
hectifiers	
6-12 volt 2 a	f1.10+80p
6-12 volt as	E2.00+80p

OPUS COMPACT
SPEAKERS $£ 18$ pair Post $£ 2$ TEAK VENEERED CABINET
$11 \times 81 / 2 \times 7$ in, 15 watts, 4,8 or 16 ohm
OPUS TWO $15 \times 10^{1 / 2 \times 73 / 4 i n ~} 25$ watt
2-way system $£ 39$ pair. Post $£ 3$
GOODMANS 0708 ohms 70 wat
Mid \& Treble controls, $70 . \mathrm{PP}$ f4
4 way wit

$1 \mathrm{mf}, 2 \mathrm{mf} 4 \mathrm{mE}$ ELET TROLYMCS WIre ends All 10p ea mf , 250 mf . Ali 15 volts. $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{vf} ; 25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{~m} ; 47$ $\mathrm{mf} / 10 \mathrm{v} ; 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} / 25 \mathrm{v} ; 100 \mathrm{mf} / 10 \mathrm{v} ; 150$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v}$; $220 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v}$; 330 $1500 \mathrm{mf} / 10 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v}$. 500 mF 12 V 15p; $25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V}$; 30 p .1200 mF 76 V 80 p . $1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V}$ £1.20p. $2000 \mathrm{mF} 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 100 \mathrm{~V} £ 1.40 ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{£} 1.20$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$;
$4700 \mathrm{mF} 30 \mathrm{v} 75 \mathrm{p} ; 40 \mathrm{v} £ 1 ; 63 \mathrm{v} 180$. $4700 \mathrm{mF} 30 \mathrm{v} 75 \mathrm{p} ; 40 \mathrm{v} £ 1 ; 63 \mathrm{v} \mathrm{£1.80}$
NON POLARISED CAPACITORS - REVERSIBLE
$1 \mathrm{mF} 250 \mathrm{~V} 25 \mathrm{p} ; 1.5 \mathrm{mF} 100 \mathrm{~V} 25 \mathrm{p} ; 2.2 \mathrm{mF} 250 \mathrm{~V} 30 \mathrm{p} ; 3.3 \mathrm{mF}$
$100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF} 63 \mathrm{~V} 40 \mathrm{p} ; 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{l}$ $100 \mathrm{~V} 40 \mathrm{p} ; 4.7 \mathrm{mF} 100 \mathrm{~V} 40 \mathrm{p} ; 10 \mathrm{mF}$ ' $63 \mathrm{~V} 40 \mathrm{p} ; 32 \mathrm{mF} 50 \mathrm{~V} 25 \mathrm{p}$. HIGH VOLTAGE ELECTROLYTICS
$\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} & 90 \mathrm{p} & 8+16 / 450 \mathrm{~V}\end{array}$ $\begin{array}{lllll}8 / 450 \mathrm{~V} & \mathbf{4 5 p} & 100+100 / 275 \mathrm{~V} & 50 \mathrm{p} & 8+16 / 450 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & \mathbf{4 5} \mathrm{p} & 150+200 / 350 \mathrm{~V}\end{array}$ $\begin{array}{llll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 50 \mathrm{p} \\ 32 / 500 \mathrm{~V} & 32+32 / 350 \mathrm{~V} & 32+32+32 / 325 \mathrm{~V} & 50 \mathrm{p} \\ 32+32 / 500 \mathrm{~V}\end{array}$ $\begin{array}{llll}32 / 500 \mathrm{~V} & 95 \mathrm{p} & 32+32+32 / 325 \mathrm{~V} & 50 \mathrm{p} \\ 32 / 350 \mathrm{~V} & 32+32 / 500 \mathrm{~V} \\ 50 & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p} & 50+50 / 300 \mathrm{~V}\end{array}$ $50 / 450 \mathrm{~V} 95 \mathrm{p} \quad 8+8 / 500 \mathrm{~V} \quad \mathrm{f} 1 \quad 50+50 / 350 \mathrm{~V}$ $001, .002 .003,005,01, .02,03, .05 \mathrm{mfd} 400 \mathrm{~V} 10 \mathrm{p}$. 1 MF 400 V 14 p .600 V 15 p .1000 V 25 p. 22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 60 p. 47 MF 150 V 10 p .400 V 25 p .630 V 30 p .1000 V 60 p . TRIMMERS 30pF, 50pF, 10p. 100 pF , 150 pF 20 p .500 pF 30 p . GEARED TWIN GANGS $365+365+25+25$ E 4 ? GEARED TWIN GANGS $365+365+25+25 \mathrm{pF}$ £2. RERNS SPINDLE EXTENDERS 85p. Couplers 650 LOW MOTIONDRIVE, $6: 1$ £1 50 . Ro, 50 mm 2

HEATING ELEMENTS, WAFER THIN (Semi Flexiblo) Size $11 \times 9 \times 1 / 8 i n$. Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx.
Suitable for Heating Pads, Food Warmers, Convector Heaters, Propagation, etc. Must be clamped between two sheets of metal or ceramic etc. ONLY 80p EACH (FOUR FOR E2) POST 50p.

RADIO COMPONENT SPECIALISTS

MARK 1983 WITH GAPS IN CIRCUIT FILES WELL-PLUGGED

WIRELESS WORLD CIRCARDS last year benefited many 'new generation' readers who bought at 1976 bargain prlces + 10\% discount for 10 sets! Most sets are still avallable although companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print (CIRCARDS sets 1 to 30).

> The Offer stands, so order now your sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets. These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit special needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled)
6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing amplifiers - measurement and detection 19 Monostable circuits 20 Transistor pairs 21 Voltage-to-frequency converters 22 Amplitude modulation and detection 23 Reference circuits 24 Voltage regulators 25 RC oscillators $-1 \quad 26$ RC oscillators - 227 Linear cmos-1 28 Linear cmos - 229 Analogue multiptiers 30 Rms/log/power laws 31 Digital multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications-1 35 Analogue gate applications-2.
*Photocopies only: 3 Waveform generators 4A.C. measurement 5 Audio circuits @ $£ 3.20$ each set.

To Electrical-Electronic Press
General Sales Department
Room 108
Quadrant House
Sutton
Surrey SM2 5AS

Company Registered Number: 151537 (ENGLAND).
Registered Office: Quadrant House, The Quadrant
Sutton, Surrey SM2 5AS

Please send me the following sets of
Circards... 2 each,
£18 for 10 post free.
Remittance enclosed payable to BUSINESS PRESS INTERNATIONAL LIMITED

Name (Please print)
Address (Please print)..

				Minimum Order $£ 1$				VALVES VAT IS INCLUDED			
A1065	1.40	EF	1.25	MH4	2.5	PY83		2749	0.7	6AX	1.30
A2293	8.80	EF80	0.65	ML6	2.50	PY88	0.60	28000	3.45	6AX5G	1.30
A2900	13.75	EF83	1.75	N78	9.90	PY500A	2.10	28010	3.75	6BA6	0.55
AP8	0.75	EF85	0.60	OA2	0.70	PY809	8.45	28034	6.00	6BE6	0.60
ARP3	0.70	EF86	0.75	OB2	0.80	PY801	0.80	2900 T	2.45	6BG6	1.60
ATP4	0.60	EF89	1.05	PABC80	0.80	QQV03	03.20	143	0.85	6BJ6	1.30
$\mathrm{Br}^{2 \mathrm{H}}$	3.90	EF91	1.50	PC85	0.75		7.50	1 L 4	0.50	6807	0.85
CY31	1.40	EF92	2.90	PC86	0.85	QQV03-20		1 R5	0.60	6BR7	4.80
DAFS6	0.70	EF95	0.85	PC88	0.90		21.5	154	0.45	6BW6	6.20
DET22	28.50	EF96	0.80	PC97	1.25	Qavo3-		155	0.45	6BW7	1.80
Of96	0.70	EF183	0.80	PC900	0.90		36.5	$1{ }^{1} 4$	0.45	6C4	0.50
DH76	0.75	EF184	0.80	PCC84	0.50	Qovo6/		1 l 4	0.80	6C6	0.55
DL92	0.80	EF812	0.75	PCC89	0.85		16.10	$1 \times 2 \mathrm{~B}$	1.40	6CH6	8.20
DY86/87	0.85	EFL200	1.85	PCC189	0.85	QV03.12	4.20	$2 \times 2 \mathrm{~A}$	2.50	6CL6	2.75
DY802	0.70	EH90	0.85	PCF80	0.80	SP61	1.80	3 A 4	0.70	6 CW 4	8.50
E92CC	2.80	EL32	1.10	PCF82	0.70	T129	23.00	3AT2	2.40	$6 \mathrm{Cx8}$	3.80
El80F	7.70	EL34	1.80	PCF84	0.75	T22	23.00	3B28	12.00	${ }_{6} \mathrm{CY}_{5}$	1.15
E182CC	6.25		$2.90 *$	PCF86	1.50	U25	1.15		19 50**	6D6	0.70
EA76	2.25	EL37	5.20	PCF87	0.50	U26	1.15	3D6	0.50	6 F 6	\$. 60
EABC8	0.80	El 82	0.70	PCF200	1.45	U27	1.15	3D22	23.00	6 F 6 GB	1.10
EB91	0.80	EL84	0.80	PCF201	1.65	U191	0.85	3 E 29	13.00	6F7	2.80
EBC33	1.15	ELP6	0.95	PCF800	0.50	U281	0.70	3S4	0.60	6F8G	0.85
EBC90	0.90	EL90	1.00	PCF801	1.75	U301	0.85	4832	18.25	$6 F 12$	1.50
EBFPO	0.60	EL91	4.20	PCF802	0.70	U600	11.50	5R4GY	1.80	6F14	1.15
EBF83	0.80	EL95	0.80	PCF806	1.20	4801	0.90	5 U 4 G	0.75	$6 F 15$	1.30
EBF89	0.80	EL504	1.70	PCF808	1.45	UBC41	1.20	5 V 4 G	0.75	6F17	3.20
EC52	0.65	EL803	5.90	PCH200	1.35	UABC80	0.75	5Y3GT	0.95	6F23	0.75
EC91	4.40	EL509	3.95	PC181	0.75	UAF42	1.20	523	1.50	6F24	1.75
EC92	0.85	EL821	8.20	PCL82	0.95	UBF80	0.70	524G	0.75	6 F33	10.50
ECC81	0.85	EL822	9.95	PCL84	0.90	UBF89	0.70	524GT	1.05	6FH8	12.50
ECC82	0.80	ELL8O(SE)	2.60	PCL86	0.75	UCC84	0.85	6/30L2	0.90	6 GAg	1.95
ECC83	0.65	EM80	0.85	PCL805/85	0.95	JCC85	0.70	6AB7	0.70	6GH8A	1.55
ECC84	0.80	EM87	1.30	PD500/510	4.30	UCF80	1.30	6AC7	7.15	6H6	1.60
ECC85	0.80	EY51	0.95	PFL200	1.10	UCH42	1.65	6AG5	0.60	6JU6	5.85
ECC88	0.80	EY81	0.65		$2.80 *$	UCH81	0.75	6AH6	\%. 15	6.54	1.35
ECC189	0.95	EY86/87	0.60	PL36	1.10	UCL82	0.95	6AK5	6. 65	6 J 4 W	2.00
ECC804	0.90	EY88	0.65	PL81	0.85	UF41	1.35	6AK8	0.60	6.5	2.30
ECF80	0.85	E280	0.70	PL82	0.70	UF80	0.95	6Al5	0.60	6.5 GT	0.90
ECF82	0.85	E281	0.70	PL83	0.60	UF85	0.95	6AL5W	0.85	6.56	0.65
ECF801	1.05	GM4	5.90	PL84	0.95	UL84	0.95	6AM5	4.20	${ }^{6} \mathrm{~J} 6 \mathrm{~W}$	0.90
ECH34	2.25	GY501	1.30	PL504	1.00	UM80	0.90	6AM6	1.50		0.80
ECH42	1.20	Gz32	1.05	PL508	2.40	UM84	0.70	6AN8A	250	6KD6	4.50
ECH81	0.70	G233	4.20	PL509	5.65	UY82	0.70	6AO4	340		2.80
ECH84	0.80	G234	2.75	PL519	5.80	UY85	0.85	6AO5	1.00	6L6GC	2.85
ECL80	0.70	G237	3.95	PL802(SE)	2.95	VR105/30	1.25	6a05	1.80	6L6GT	1.25
ECL82	0.75	KT66	7.80	PY33	0.70	VR150/30	1.35	6AS6	1.15	6L18	0.70
ECLA5	0.80		$11.20{ }^{\circ}$	PY80	0.70	$\times 66$	0.95	6at6	0.90	6LD20	0.70
ECL86	0.90	KT88	10.50	PY81/800	0.85	$\times 61 \mathrm{M}$	1.70	6aU6	0.60	607 G	1.30
EF37A	2.15		13.60*	PY82	0.65	2759	19.00	6av6	085	6SA7	1.00
VALVES AND TRANSISTORS Telephone enquiries for valves, transistors, etc: retzil 749 3934, trade and export 7430899. FELLD TELEPHONE, CABLE TYPE D10 HARNESS "A" e "B"* CONTROL UNTTS "A" "R" "ل1"" "J2." Microphones No 5, 6, 7 connectors, frames, carrier sets, etc. DFUM CABLE continuous connection YC 00433. FIELD TELEPHONES TYPE "J". Tropical, in metal cases. 10-line MAGNETO SWITCH- BOARD. Can work with every type of magneto telephones. PRICES MAY VARY POSTAGE: $£ 1-£ 345 p$; $£ 3-£ 555 p$; £5-£10 60p; £10-£15 80p; £15- £20100p.											
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Road, London W. 12						Tel. 01-743 0899 or 01-749 3934 Open Monday to Friday 9 a.m.-5.30 p.m. WW-20					

hit performance hi? comperitive hi:

inc $P+D$. VAT extra with FREE * test leads * battery * operating manual * SPARE FUSE PLUS a FREE * CARRYING CASE and

* fully guaranteed FOR 12 MONTHS ONE large 'easy to use' rotary switch 30 protected ranges to 1000 V 10 Amps and 20 Meg Ohms Other features inc. small compact hand held size-basic 0.5% accuracy - high reliability using CMOS circuitry - large clear LCD display - auto zero, polarity, overange and LO Batt. indication - diode test - tilt stand with non skid feet - high surge voltage protection etc. etc. AVAILABLE from HOUSE OF INSTRUMENTS and LOCAL DISTRIBUTORS Just ask for METEX 3000 FREE DATA
Easy to Order: Fill in and post the coupon enclosing cheque/P.O./Credit Card details or Official Order.

VISA \quad| In a hurry? Then |
| :--- |
| ring (0799) 24922 |

Name
Address

Tel. No
Please send:
Metex Type 3000
at $£ 33.93$
(nc. $V A T+P+D$).
Luxury Test Leads at $£ 6.60$ (inc VAT + P + D) . Luxury Test Lead Set at $£ 10.60$ (inc VAT + P + D) Please tick and filt in number of card

Barclaycard Access American Express
Credit Card No
Please allow 14 days for delivery

House of instruments.
Clifton Chambers. 62 High Street
Sattron Waiden. Essex CB10 1 EE
Telephone (0799) 24922 Telex 818750
hi: romplelilive hi: House of Instruments Led WW - 020 FOR FURTHER DETAILS

01-452 1500 Technomatic Ltid 01-450 6597

BBC Micro Computer System OFFICIAL DEALER
 Please phone for availability

 BBC Model B $£ 399$
 (incl. VAT)
 Carr £8/unit Model A to Model B upgrade kit $\mathbf{£ 5 0}$ Fitting charge $£ 15$ Individual upgrades also available
 TELETEXT ADAPTOR $£ 195$ WORDWISE SK ROM £ $£ 9$ TORCH Z80 DISC PACK $£ 825$
 WORD PROCESSOR'VIEW' 16 K ROM $£ 52$
 BUSINESS, EDUCATION AND FUN SOFTWARE IN STOCK

FLOPPY DISC INTERFACE incl. 1.2 Operating System £95 \& £20 installation

BBC FLOPPY DISC DRIVES

Single Drive $514^{\prime \prime} 100 \mathrm{~K} £ 230+£ 6$ carr Double Drive $51 / 4^{\prime \prime}{ }^{\prime \prime} 800 \mathrm{~K} £ 699+£ 8$ carr. BBC COMPATIBLE 5 $1 / 4^{\prime \prime}$ DISC DRIVES
These drives are supplied in BBC matching colour cases and with necessary cables. SINGLE DRIVES: $100 \mathrm{~K} £ 150 ; 200 \mathrm{~K} £ 215400 \mathrm{~K} £ 265$ SINGLE DRIVES: with PSU $100 \mathrm{~K} £ 185$; $200 \mathrm{~K} £ 260^{*}$; 400 K £330
DUAL DRIVES: with PSU $2 \times 100 \mathrm{~K} £ 355$; $2 \times 200 \mathrm{~K}$ £ 475*; $2 \times 400 \mathrm{~K}$ £595
*These drives are provided with a switch to change between 40 and 80 tracks.
DRIVE CABLES: SINGLE £8, DUAL $£ 12$.
DISC MANUAL \& FORMATTING DISKETTE $£ 12.50$
Thone or send for our Bic leated

CASSETTE RECORDER

SANYO Data Recorder DR101
A superior quality data recorder with dedicated computer output and monitoring facility on both record and play
SLIMLINE Cassette Recorder complete with counter and remote control
$£ 24.50+£ 1.50$ carr.
Compute

Cassette lead $\mathbf{£ 3 . 5 0}$.

NEC PC 8023 BE - N
$120 \mathrm{CPS}, 80 \mathrm{cols}$
Logic Seeking, Bi directional
Forward and Reverse Line Feed.
Proportional Spacing Auto Underline, Hi-Res and Block Graphics, Greek Char Get. Set. Only $£ \mathbf{3 2 0}+£ 8$ carr

MONITORS

MICROVITEC 1431 14in Colour Monitor $£ 230+£ 8$ carr MICROVITEC 203120 in Colour Monitor $\mathbf{£ 3 1 9 + \mathbf { £ 8 } \text { carr }}$ KAGA 12in RGB Monitor $\mathbf{£ 2 5 5 + \mathbf { £ 8 } \text { carr }}$ Lead for KAGA/SANYO RGB $£ 10$ SANYO HI RES GREEN MONITOR $\mathbf{£ 9 9 + £ 6} \mathbf{c a r r}$ SANYO HI RES RGB MONITOR $£ 445+£ 8$ carr

BBC BOOKS (no Vat; p\&\& fi)
Basic on BBC $£ 5.95$
30 House Basic $\mathbf{5 5} .95$
Programming the BBC Micro $\mathbf{£ 6 . 5 0}$
BBC Micro An Expert Guide $£ 6.95$
Assy Lang Prog. for BBC $£ 8.95$
6502 Machine Codes for Beginners $£ 6.95$

SIDEWAYS ROM EXPANSION BOARD
 This board provides 8 high quality 28 pin sockets for expanding the computer's sideways $\mathcal{R O M}$ capacily by a further 128K. (As 8K Eproms consume about 40 mA on standby and 16 K much higher, in our anion addition of 8 extra ROMS will not our opinion addition of 8 extra ROMS will not overioad the computer psu nor cause internal overload the computer psu nor cause internal overneating). All ROM sockets are of turned pin overneating.. All ROM sockets are of turned pin type gold contacts to ensure that numerous inser Ype gola contacts on ensure that numerous inser- lions and extractions wiil not wear out or deform them. The board is fully buffered and also dimensioned to ensure non interference with other on board components. Full fiting instructions board components.

TORCH Z-80 PACK

or little more than the cost of an 800 K disc drive you can now considerably extend your BBCs capa bilities. The twin drives, together with the $Z 80$ card gives you 64 K of memory and includes a database word processor erc. Corm Demonstration and Utility programs etc. The system is fully com oatible with $C P / M^{*}$ thus allowing the use of profes sional business software $£ 825+\mathbf{£ 8}$ p\&p. Special offer from Torch: free software worth E1,000, for a limited period only and subject to avallability

DISC DRIVES FOR THE FORTH COMPUTER

51/4"' Teac FD55 Slim Line Mechanisms
FD55A 40 track SSDD 250kbytes unformatted
Bare: £135; Cased: £155
$2 \times$ FD55A 40 track SSDD 500kbytes unformatted
Cased \times psu $£ 350$
FD55E 80 track SSDD 500kbytes unformatted
Bare: $\mathbf{£ 1 8 0 ; ~ C a s e d : ~} \mathbf{£ 2 0 5}$
$2 \times$ FD55E 80 track SSDD 1 Mbyte unformatted
Cased + psu $£ 475$
51/4" Mitsubishi M4853 Slim Line mechanism 80 track DSDD 1 Mbyte unformatted Bare: $\mathbf{£ 2 2 5 ;}$ Cased: $£ \mathbf{2 4 5}$ $2 \times$ M4853 2 Mbytes Cased + psu £590 Single drive cable $\mathbf{f 8}$; Dual Drive cable $\mathbf{£ 1 2}$ Other parts for FORTH COMPUTER available send SAE for details.

MALE
Solder

$\begin{array}{lrlll}\text { Solder } & 80 p & 105 p & 160 p & 250 p \\ \text { Angled } & 150 \mathrm{p} & 210 \mathrm{p} & 250 \mathrm{p} & 365 \mathrm{p}\end{array}$
Folder $105 p$ MEOLE 200p $335 p$
And $\begin{array}{lllll} \\ \text { Solder } & \text { 105p } & \text { 160p } & 200 \mathrm{p} & 335 \mathrm{p} \\ \text { Angled } & 165 \mathrm{p} & 215 \mathrm{p} & 290 \mathrm{p} & 440 \mathrm{p} \\ \text { Hoods } & 90 \mathrm{p} & 85 \mathrm{c} & \mathbf{9 9 p} & 100 \mathrm{p}\end{array}$ Hoods 90 p 85p 90 p 100 p

10 C 25 -way plug 305p. Socket 450 p TEXTOOL ZIF | SOCKETS | |
| :--- | :--- |
| 28 -pin EB .00 | 24 -pin $\mathrm{E5} .75$ |
| 40 -pin f 75 | | ${ }^{28-\mathrm{pin} £ 8.00}$ DIL SWITCHES $\begin{array}{lr}\text { 4.way 70p } & 8 \text { way } 90 \text { p } \\ 6 \text {-way } 85 \mathrm{p} & 10 \text {-way } 140 \mathrm{p}\end{array}$

NEW COMPREHENSIVE CATALOGUE AVAILABLE PLEASE SEND FOR PRICE LIST

PRINTERS

 SEIKOSHA GP 100A £175.00 GP 250X £235.00 GP 700A £425.00 Silver Reed EX44 Daisy Wheel with Serial Interface $\mathbf{£} 365$, with Parallel Interface $£ 385$ Carriage/Printer £8.00Parallel Printer lead for BBC/Atom to Parallel Priety of interfaces, ribbons in stock. 2.000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} £ 13.50+£ 3$ p \&p

EPSON RX80 and FX80

RX80100CPS 80 col Tractor Feed $£ 270$ FX80 160CPS 80 col F \& T Feed $£ \mathbf{~} \mathbf{3 8 0}$ MX100 F/T3 $£ 425$ (Carr./printer £8 NEW RX 80 FT $£ 319$ Carriage/Printer $\mathbf{£ 8}$

CONNECTOR SYSTEMS

AMPHENOL CONNECTORS

36-way plug Centronics Paralle Solder $\mathbf{E 5 . 2 5}$ IDC $£ 4.95$ 36-way socket Centronics Paralle
Solder $£ 5.50 \quad$ IDC $£ 5.20$ 24 -way plug IEEE Solder $£ 5$
IDC $£ 4.75$ 24 way socket IEEE Solder $£ 5$

RIBBON CABLE

10 way	40 p
16-way	60 p
20-way	850
26-way	120p
34 -way	160p
40 -way	180p
50-way	${ }^{200 p}$
64 -way	280p

EURO

PRODUCTION EPROM PROGRAMMER Type P8000 It will blank check, copy and verify up to 8 Eproms at a time. Eprom types 2716 to 27128 can be selected by a single rotary switch
$\mathbf{f 6 9 5}+\mathbf{f 6}$ carriage.

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer $£ 60$ UV140 up to 14 Eproms £61.50 UV 141 with Timer $£ 78$ (Carr £2/eraser) mains switches and fitted with terlocks.

'WIRELESS WORLD' PROJECTS

Cs. Transistors. Displays, Connectors and Sockets for most projects are stocked by us

SPECIAL OFFER	
2532	$350 p$
2732	$350 p$
$2764-25$	$450 p$
$27128-25$	f25
$4164-2$	$450 p$
$6116 P-150 N S$	$\mathbf{3 5 0 p}$

BOOKS

CRT Controller H/Book.

 Programming Z80 Microcomp Handbook $\quad \mathbf{£ 1 1 . 5 0}$ Programming the $6502 \ldots \ldots 6$. 6502 Assy Lang................................12.10 6502 Applications 6502 Games $\quad \mathbf{1 0 . 2 5}$ Large selection of databooks, interfacing books, books on BBC, etc in stockAsk for our list.

28 RANGES, EACH WITH FULL OVERLOAD PROTECTION Accurate Digital Multimeters at Exceptional Prices

\qquad
6010 \& 7030 MODELS SPECIFICATION $10 \mathrm{amp} A C J C$ Battery: single 9V drycell. Life: 200
hrs
Dimensions: $170 \times 89 \times 38 \mathrm{~mm}$ Weight: 400 g inc. battery AC DC Current: $200 \mu \mathrm{~A}$ to 10 A AC Voltage: 200 mV to 750 V Resistance: 200Ω to $20 \mathrm{M} \Omega$ Input Impedance: $10 \mathrm{M} \mathrm{\Omega}$ LCD Display: $3 / 2$ Digit 1 mm

$0-25,1,2.5,10,25,100$, 250,1000 volts 20,000

 ohms/volt $0-10,25,100,250,1000$ volts 10,000 ohmsivolt. -20 to +22 dB$0-50, \quad 500,1 \mathrm{~A}$ $\begin{array}{lll}-50,500 \mu \mathrm{~A}, ~ 0-5, & 50, \\ 500 \mathrm{~mA}\end{array}$ ${ }_{0-6}$ Megohms in 4 ranges.
30 ohms Centre Scale. - Power Supply: One 1.5 V size 'A - Size \& Weight: battery lincl) $135 \times 1 \times$ 135×9
280 gr.

RONICS LTD
Wembley Middlesex HA9 8BH, England
Telephone: 01-902 4321 (3 lines). TELEX No. 923985
WW - 023 FOR FURTHER DETAILS

WW - 056 FOR FURTHER DETAILS

WW - 069 FOR FURTHER DETAILS

LOGIC ANAIYSERS

Thandar's comprehensive range of professional specification instruments now includes 8 and 16 channel logic analysers to expand your test capabilities. Both analysers feature DC to 20 MHz sampling rases synchronous or asynchronous clocking and 15 ns glitch capture ir latch rode. There is also a powerful compound trigger delay by event andor clock (two level triggering on TA2160), selectable
tr gger pcsition, variable trigger filter and clock qualifier and arm lacilities. All inputs are high impedance with TTL or variable
tt reshold. Both have a composite video o itput to drive an external cisplay or video printer and offer disassembler
a tions for common microprocessors. Accessories are available for serial data capture and hard copy record printout.
R2000 13 CHANNEL) Full system information always shown in display; 8 bit data and reference memories,
bith 252 כytes deep; 23 bit triggering (8 data bits, 15 trigger bits); Timing display shows all 252 bytes of the
8 data channels in timing diagram format with $\times 2, \times 4, \times 8$ expansicns available; State display shows 24 saquentiel byes in either binary plus ASCII or hex plus octal plus ASCII; Automatic or manual compare batween recording and reference memories for equality or inequelity.
P2160 M6 CHANNEL) 16 bit data and reference memories, 25 e samples deep; Both data and reference memories configurable as 16 bit $\times 252$ samples, 8 bit $\times 504$ samples; or 2×8 bit $\times 252$ somples; 34 bit triggering (16 data, 12 trigger and 6 qualifiers); Independent clocks and clock q Jalifiers in 2×8 bit modes; Sample or latch assignable on a per pod basis; Timing display shows 252 byes of any 8 channels in timing diagram format with $\times 2$, x, , $x 8$ expansions available; State display shows 16 sequentiel store locations of any 4 memories in 4 columns; each remory can be displayed in either binary, hex, octal, decimal,
ASCII, or EBCDIC; Automatic or manual compare between any ASCII, or EBCDIC; Automatic or manual compare between any part of any two memories for equality or inequality; TTL or
variable threshold assignable on a per pod basis; RS232 interface parmits dumping and loading of reference memories and all parmits dumping an
sritem parameters.

Thandar Huntingdon, Cambridgeshire, PE 174 HJ J.

ELECTRONICS LIMITED IHELOGICALCHOICE

WW - 055 FOR FURTHER DETAILS

LINSLEY-HOOD 300 SERIES AMPLIFIERS
 two power amplifiers with large hatsink aroas huge pow or
suply and speaker protection circuit. Total cost of gill pars is is

THIS MONTH'S SPECIAL OFFERS

DOLBY 'B' NOISE REDUCTION IC LM1011 Marvellous opportunity for home experimenters, build your own noise reduction system. Supplied Absolute knockout price only $£ 3.50$ for two inc VAT and post.
COMPLETE STEREO CASSETTE DECK Brand new high quality top-loading Cassette Deck complete with Record/Play electronics. Supplied with connection data and circuit diagram. Automatic chrome/ferric switching. Only needs 9v DC
supply. Total price only $£ 18.34$ inc V I

COMPLETE STEREO TUNER MODULE Three band LW/MW/FM Sterso Tuner fully assembled on PCB $165 \times 85 \mathrm{~mm}$. Supplied with Ferrite rod aerial and band switch fully wired. Facility provided
to drive tuning meter and stereo LED. Only needs 12 V DC supply. FM sensitivity. 2.5 uV . Price only Beautiful, precision made High Quality variable caTacitor tuned FM Front End with Dual-gate MosFet built-in 3:1 reduction gear. Covers full FM range of 87 to 109 MHz . Supply needed is 12 V at only 30 mA Max. Inputs are pro
vided for AGC and AFC signais. These have recently been on special offer from another supplie at $£ 4$ plus VAT. OUR PRICE IS ONLY £3.99 INCLU
ING VAT AND POSTAGE! Circuit if required 35 p .
$£ 7.99$ ine. VAT and post.

ALPS FF317U FM FRONT END

Frore loading deck with full solenoid control of all functions nect ding opti snal read in fast wind modes. 12 volt operation.
$=$ ittel 3 -digit nemory counter and Hall IC Motion Sen ior Stan. darce erase and stereo R/P Heads. Cheapest price ever for all
thess features Only E38.90 plus VAT. Full technicel specification

Tuner Complete Kit Aunor Compliforer. Compler
Amplifier Reprint... ${ }_{809}^{103}$

SOLENOID CONTROLLED HI FI/DIGITAL

 CASSETTE MECHANISM

Please Note: New Phone Number: (0691) 652894
Personal callers are always very welcome but please note that we are closed all day Saturday

HIGH QUALITY REPLACEMENT CASSETTE HEADS

Do your tapes lack treble? A worn head could be the problem. pitting one of our replacement heads could restore performance
to better than newi Standard mountings make fitting easy and our TC1 Test Cassette helps you set the azimith spot-on. We are
the actua importers which means you get tie benefit of lower Thes for prime parts. Compare us with other suppliers and seel The following is a list of our most popular heads, all are suitable for use or Doiby machines and are ex-stock original ejuipment on most decks HMiso High Bota Permalloy Head. A hard-wgaring, higher performance head with metal capability,
HS1E Sendust Alloy Super Head. The best head we can find 20 Longer lite than Permalloy, higher output then Ferrite, fantastic frequency rasponse
HO551 4-Trect Hend HO551 4-Track Head for auto-reverse or quadrophonic use. Full
specification record and playback head spacitication record and playback head
Please cc nsult our list for technical data on these and other
Special Pupose

HART TRIPLE-PURPOSE TEST

CASSETTE TC1

One inexpensive test cassette enables you to set up VU level, heads. Orily $£ 3.80$ plus VAT and 50 p postage.
Tepe Head Oe-magnetiser. Handy size mains operated unit

Full details of the entire range of MART products is contained in Our illustrated lists
Enauiries for lists copy NOW us have three IRCs to cover the cost of surfac:3 post or 5 IRCs for In a hurry? A telephone order with credit card number placed before $3 \mathrm{D} . \mathrm{m}$. will be despatched THAT DAYI
Please add part cost of post, pecking and insurance as follows:
inland
$\begin{array}{ll}\text { Orders up to } £ 10-50 \mathrm{p} & \begin{array}{l}\text { OVERSEAS } \\ \text { Postage at cost pius } £ 2\end{array} \\ \text { Orders } £ 10 \text { to } £ 49-£ 1 & \text { documentation }\end{array}$
Orders $£ 10$ to $£ 49-£ 1$
Orders over $£ 50-£ 1.50$
PLEASE ADD VAT to all prices

VIDED DISTRIEUTION

Dwight Cavendish now have available a 7 channel Video Distribution Amplifier plus twin channel sound (stereo) for £189.

This rugged. high pertormance device comes complete in a 1 U high $19^{\prime \prime}$ rack mount unit. Many of the latest design teatures are incorporated including vertical intervalswitching, switchable bal-balun input options on audio, on-board switchable equalisation etc.

For further information contact Dwight Cavendish Sales

Dwight Cavendish
Paxton Hall, GI. North Road. Litle Paxton. Huntingdon, Cambridgeshire. PE19 4EL Telephone: $0480215778 \quad 215753$

WW - 064 FOR FURTHER DETAILS

MASTERING MICROPROCESSOR BEGIN WITH LS6802

LS6802 is a complete learning system to master microprocesso hardware and software. It is based on the 6802 CPU , an improved version of the renowned 6800 and is a good starting point to master the varieties of 6800 family microprocessors so widely used in industry.

Its features include:
2K monitor program with 20 editing, debugging functions; 2K RAM: spare socket for 2 K RAM or 4 K EPROM; built-in breadboarding system for hardware experiments; speaker; cassette tape interface; 16 programma ble 1/O lines (6821 PIA); 3 user keys; the full capabilities of 6802 CPU and an AC/DC adaptor to power the LS. An ideal tool for learning, teaching, experimenting and prototyping at only $£ 109.00$

Distributors Invited

Binary System, Maxwell Road, P.O. Box 1583
Singapore 9031, Republic of Singapore
Send me unit(s) of LS6802 at $£ 109$ each. Which will be paid for on receipt of invoice by International Money Order/ Bankdraft/Visa/Master Card/American Express.
There will be a delivery period of six weeks.

Name

Signature
Address

INTEGRATED CIRCUITS

AN124

AN12
AN2
AN 40
AN712
AN715
BA521
CA312
ETA
ETT60
HA 15
$H A_{1} 15$
$H A 13$
HA1 156
HA 1366 V
LA
LA1230
LA4031F
LA4102
L44102
LA4400
LA4422
C7120
C7130
C 7131

LM324N
LM380N
LM383T
LM 390 N
LM390N
$M 5151$
$M 51515$
M

MC1307
MC1310
MC1327
$\begin{array}{ll}\text { MC1327 } & 1.95 \\ \text { MC13270 } & 0.95 \\ \text { MC130P } & 0.95\end{array}$ MC1330P
MC1349P
MC1350
MC1351P

MC135

SEMICONDUCTORS

DES

 -000000000000-1000 	

BY206
BY206
BY208-800
0
$B Y 223$
$B Y 298.400$
$B Y 299$.
BY299.800
BY 10
$3 Y \times 36.150$
$\mathrm{BY} \times 55-600$
$\mathrm{BY} \times 71.600$

0

路
eza

흠

.05	

A selection av
3BPI £13.50 D $10-210 \mathrm{GH} \mathbf{f 4 5}$ DG7-32 f42 DH7 645
659 DP7.6 £35 DP7 $\underbrace{\text { £ } 135}$

DATA \& EQUIV. BOOKS
 966371

WIREWOUND RESISTORS

4 Watt
7 Watt
11 Watt
17 Watt

BASES ETC.
$\frac{0.15}{0.15}$
${ }^{\text {B7G }}$ BKirted 0.30
0.70
0.20 Bå skitod ${ }_{\substack{81098 \\ 8,138}}^{8}$

 ${ }^{16}$ Bin onil 0.30

R47-4K7
$5 K 6-12 K$ 15 K -22K 15K-22K 0.24

ZEMER DIODES

Themulitar	umenes
$1,10 a 0^{02}$	7V Power batteries

CALLERS WELCOME

\author{

- ENTRANCE ON A227
} 50 YDS SOUTH OF MEOPHAM GREEN CAR PARKING AVAILABLE OPEN MONDAY TO FRIDAY 9a.m.-5.30p.m (24 HOUR ANSWERPHONE SERVICE S AND BARCLAYCARD ORDERS WELCOM

UK ORDERS P\&P 50p PLEASE ADD V.A.T. AT 15\%

EXPORT ORDERS WELCOME. CARRIAGE/POST AT COST

AF \& RF MICROVOLTMETERS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of our comprehensive range of test and measuring instruments. They are housed in robust steel cases and are powered by long life batteries. These voltmeters give accurate readlngs over a wide range of frequencles. Mains power units and leather carrying cases are optional extras.

A.C. MICROVOLTMETERS

VOLTAGE \&	$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V}, 500 \mathrm{~V}$ fs.	
dBRANGES	Acc. $\pm 1 \% \pm 1 \% \mathrm{fsd} \pm 1 \mu \mathrm{~V}$ at 1 kHz	type
	$-100-90+50 \mathrm{~dB}$.	TM3A
	Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 600 \Omega$.	m 140

RESPONSE
$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz
$\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500 \mu \mathrm{~V}$
type
TM 3 B filter switch; LF cut 10 Hz . TM3B HF cut $100 \mathrm{kHz}, 10 \mathrm{kHz}$, or 350 Hz

INPUT IMPEDANCE Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<20 \mathrm{pF}$ On $50 \mu \mathrm{~V}$ to 50 mV : $>5 \mathrm{M} \Omega<50 \mathrm{pF}$

BROADBAND VOLTMETERS

L.F. RANGES	As A.C. Microvoltmeters.	type TM6A
E 8	$1 \mathrm{mV}, 3 \mathrm{mV}, 10 \mathrm{mV}$. . 3 V fsd.	£220
dBRANGES	$\begin{aligned} & \text { Acc. } \pm 4 \% \pm 1 \% \text { fsd at } 30 \mathrm{MHz} \\ & -50,-40+20 \mathrm{~dB} \end{aligned}$	
	Scale $-10 \mathrm{~dB} /+3 \mathrm{dBref} .1 \mathrm{~mW} / 50 \Omega$.	e
		£240
H.F. RESPONSE	$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz	1240

Send for data covering our range of instruments. Prices are plus carriage, packing and VAT

To obtain further details of any of the coded items mentioned in the editorial or advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These service cards are valid for six months from the date of publication.

Please use capital letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you: their address is shown below.

OVERSEAS SUBSCRIPTION

 AGENTS| Australia: Gordon $\&$ Gotch (Australasia) Lid, 380 Lonsdale Street, Melbourne 3000, Victo ria | Japan: Western Publications Distribution Agency. 170 Nishi-Okubo 4 -chome, Shinjuku-Ku. Tokyo 160 |
| :---: | :---: |
| Belgium: Agence et Messageries de la Presse, 1 Rue de la Petite-ILE Brussels 7 | Lebanon : Levant Distri butors Co., P.O. Box 1181 Makdesı Street, Halim Hanna Bldg, Beirut |
| Canada: Davis Circulation' Agency, 153 St. Clair Avenue West, Toronio 195, Ontario | Malavsia : Times Distributors Sdn. Bhd. Times House. 390 Kim Seng Road, |
| Cyprus: General Press Agency Lid, 131 Prodromou Street, P.O. Box 4528. Nicosia | Singapore 9, Malaysia.
 Malte: W. H. Smith Continental Lid, 18a Scots Street, Valleta |
| Denmark: Dansk Bladdistribution, Hovedvagtsgade 8 , Dk. 1103 Kobenhavn. | New Zealand: Gordon 8 Gotch (New Zealand) Lid, 102 Adelaide Road. Wellington 2 |
| Finiand: Rautakiria OY, Koivuvbarankaje 2, 01640 Vantas 64, Fintand. | Nigerla: Daily Times of Nigeria Ltd, 3 Kakawa Street, P.O. Box 139, Lagos |
| France: Dawson-France S.A., B.P.40, F-91121, Palaiseau | Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Osto 6 |
| Germany: W. E. Saarbach GmbH, 5 Koln 1 , Follerstrasse 2 | Portugal: Livaria
 Bertrand s.a.r. 1
 Apartado 37, Amadora |
| Greece: Hellenic Distribution Agency. P.O. Box 315, 246 Syngrou Averue. Nea Smy mi, Greece. | South Aprica: Contral Nows Agency Ltd, P.O. Box 1033, Johannesburg |
| Holland ; Van Ditmar N.V., Oostelijke Handelakeda 11 , Amsterdam 1004 | Spaln:Comercial Atheneum s.a. Consejo de Ciento, 130-136 Earcelona 16 |
| India: International Book House, Indian Mercantile Mansion Ext, Madame Cama Road, Bombay 1 | 8weden: Wennegren Williame A B. Fack S-104, 25 Stockholm 30 |
| Iran: A.D.A., 1 161 Khiaban Soraya, Tehran | Cle SA, Rue Levrier 5-7, CH-1211 Geneve 1
 Schmidt Agence AG, |
| Israel: Stelmatzky's Agency Ltd, Citrus House, P.O. Box 628, Tel Aviv | Savogetstrasse 34, 4002 Basle |
| Italy: Intercontinental s.a.s. Via Veracini 9 , 20124 Milano | U.S.A.: John Barios, Business Press International, 205 East 42nd Street, New York, N.Y. 10017 |

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
Licence No CY258

WIRELESS WORLD

Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH

Enquiry Service for Professional Readers

WW	WW	WW
WW	WW	WW
Ww.	Ww	Ww
WW.	WW	WW
ww.	Ww	ww
WW	WW	WW
WW.	WW	WW
Ww	WW	WW
WW	WW	WW
ww.	ww	Ww
WW	WW	WW
WW.	WW	WW

WIRE LESS WORLD Wireless World, October 1983 WW 8370
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name

Narne of Company .

Address

Telephone Number

PUBLISHERS USE ONLY			A/E		

Position in Company
Nature of Company/Business
No. of eminloyees at this establishment.
I wish to subscribe to Wireless World
VALIO FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, Business Press International Ltd, Oakfield House, Perrymouth Road Haywards Heath, Sussex RH16 3DH United Kingdom

Wireless World Subscription Order Form Wireless World, October 1983 ww 8370

UK subscription rates	USA \& Canada subscription rates
1 year: $£ 14.00$	1 year: $\$ 44.00$

Overseas 1 year: $£ 17.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. made payable to BUSINESS PRESS INTERNATIONAL Ltd.

Name.

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Ms. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 -
Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a-
Servizio Estero, Via Mantegna 6,
20154 Milan - Telephone 347051 -
Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106-
Telephone : (03) 585-0581

United States of America Ray Barnes,
*Business Press International
205 East 42 nd Street,
New York, NY 10017 - Telephone:
(212) 6895961 - Telex: 421710

Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone
(312) 63074

Victor A Jauch.
Elmatex International,
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone: (213) 8218581
Telex: 18-1059.
Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415
Telephone: (216) 6211919
Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 - Telephone : (305) 5327301
Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia
30305. Telephone : (404) 2377432

Mike Loughlin, Business Press International,
15055 Memorials, Ste 119 , Houston, Texas
77079 - Telephone: (713) 7838673

Canada Colin H. MacCulloch,
International Advertising Consultants Lid., 915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269

[^7]WW - 061 FOR FURTHER DETAILS

Largest range? Superror paint finish? Bestex-stock delivery?

Familiar claims? Study the Sarel range and decide for yourself. You'll find answers to all your own questions on enclosures - small, large, metal, plastic, glass-fibre reinforced polyester, monobloc, modular, with every imaginable accessory from gaskets to swing racks, chassis to brackets, locks, handles, glands and ventilators.

Sarel's range answers all your questions. No fuss, no bother, no compromise Contact us for a quotation.

Think big - think Sarel
Sarel Electric Limited
Cosgrove Way. Luton. Beds. Tel: Luton 20121
Telex: 826555 Sarel G

Send me my free copy of the new Sarel Electric catalogue, fast! Name
Position Company Address

Telephone

WW-070 FOR FURTHER DETAILS

2 WAYS TO RECOVERY

Display the ELECTRICAL REVIEW shock first aid chart ($356 \times 508 \mathrm{~mm}$) supplied in thousands to destinations world-wide. Recent deliveries include consignments to Bermuda, Egypt, Kenya, Oman, Pakistan, W. Germany, apart from UK commercial and industrial, educational, central government, local authorities' orders.

Carry the ELECTRICAL REVIEW pocket-size shock card $(92 \times 126 \mathrm{~mm})$ designed to help safety and training officers, medical and welfare personnel. Supplied to the Royal Navy, other Defence establishments, lighthouses, North Sea gas terminals, nuclear and hydroelectric power stations, docks, breweries, road and water authorities; enterprises in Ghana, Ireland, Kenya, Kuwait and South Africa as well as UK commercial, educational and industrial organisations.

THE 'AMADDINS' CAVE OF COMPUTER AND JIWCTRONIC FQUPMENT

HARD DISK DRIVES

Fully refurbished Diablo/DRE Series 30
disk drive for DEC RKO5, NOVA. TEXAS et
Front load $£ 550.00-$ Top load $£ 295.00$
PSU type ME3029 for 2 drives $£ 125.00$
DRE $44 \mathrm{~A} / 4000 \mathrm{~A} / \mathrm{B} 10 \mathrm{mb} 5+5$ all configurations from
$£ 995.00$. Call sales office for details
5 AMP MAINS FLLERS

DISTEL ${ }^{\circ}$

The UKs FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock i-ems and order via your computer and credit card. On line now, 300 baud. CCITT tones, full duplex, fully interactive. DON'T MISS THOSE BARGAINS CALL NOW, IT'S FREET $01-88311.33$ weak MA hat

COMPUTER 'CAB'

cabinet with integral switched

 Originally made for the famous DEC PDP8 computer ystem cost ing thousands of pounds. Made to run 2 hours per day the PSU is fully screened and will deliver massive $+5 v$ DC at $17 \mathrm{amps}, 15 v \mathrm{DC}$ at 1 amp and DC at 5 amps. The complete unit is fully enclosed with Cemovable top lid, fiitering, trip switch, 'Power' and 'Run EDs mounted on Ali front panel, rear cable entries, ettc. Units are in good but used condition-supplied for etc. Units are in good but used condition-supplied for
240 v operation complete with full circuit and tech. man Give your system that professional finish for only G49.95 + Carr Dim $19^{\prime \prime}$ wide $16^{\prime \prime}$ deep 10.5"
Useable area 1
Also available LESS PSU. With FANS etc. Internal din
$19^{\prime \prime} w .16^{\prime \prime} \mathrm{d} .10 .5 " \mathrm{~h}$. $\mathbf{E 1 9 . 9 5}$. Carriage \& insurance $£ 9.50$

COOLING FANS

Keep your hot part COOL and RELLABLE
with your

 Mniature 240 equipment tan complete with GOULBJJ:-3AR Dim
 BUHLER 69.1.1.22.8. 8.16 VDC micro servo motor for extremely high air flow
almost silent running and guaranteed almost silent running and guaranteed
hr life Measures only $62 \times 62 \times 22 \mathrm{~mm}$
Current cost 32.00 OUR PRICE ONLY E12.95 complete with data.
MUFFIN-CENTAUR Standaro $4^{\prime \prime} \times 4^{\prime \prime} \times 1.25^{\prime \prime}$
fan Supplied tested EX EQUIPMENT $24^{\prime 2}$ fan supplied tested EX EQUIPMENT 240 v at

SUPER DEAL? NO - SUPER STEAL!!

The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRAND $N E W$ AT ONLY $£ 499+$ VAT $=$ Made to the very highest
Speecthe TEC Starwiter
FP1500-25 featuriter FP1 $500-25$ features a
heavy duty die cast chassis and DIABLO type
print mechanism giving print mechanism giving
superb registration and
print quality Microprocessor electronics
offer fuIl DIABLO/QUME and full control via CPM Wordstar e Many other teatures include bi directional
printing, switchable 10 or 12 pitch. fulf width 381 mm paper handling with upto
163 characters per line, friction feed rollers for sirgle sheet or continus internal butters per line, friction eed rollers for sirgle sheet or continuous pape Supplied absolutly BRAND NEW with 90 day guarantee and FREE daisy wheel
and dust cover. Order NOW or contact sales office for more information Optional extras: RS232 data cable $£ 10.00$. Tech manual $£ 7.50$. Tractor $f=e d$

8" FLOPPY DISK DRIVES

Unbelievable value the DRE $71008^{\prime \prime}$ floppy disk drives utlise the finest technology to give you 100% bus compatibility with most drives available today. The only difference being our PRy 7100 single sided drive Pmats giving a massive 0.8 MB of storage. Absolutely SHUGART, BASF, day warranty. 7100 Single sided $£ 225.00+$ Carriage and insurance $£ 10.00$. Octional accessories: Full technical manual $£ 20.00$ alone $£ 10.50$ with drive. Refund difference on drive purc 7 ase. DC and
way IDC connector $£ 5.50$. 50 way ribbon

TETETYPE ASB33
I/ RROMEIS
ully fledged industh erminal. Many features including ASCII keyboard and printer for data I/O auto data detect circuitry. RS232 serial interface 110
baud. 8 bit paper tape punch and reader for baud. 8 bit paper tape punch and reader to heap and reliable data storage Supplied in ood condition and in working order Options: Floor stand $\mathbf{\$ / 2 . 5 0}+$ VAT KSR33 with 20 ma loop interface $\boldsymbol{E 1 2 5 . 0 0}+$ Sound proof enclosure $\mathbf{£ 2 5 . 0 0}+$ VAT
Sol

SOFTY 2

The amazing SOFTY 2. The complete "toolkit"

 for the open heart sottware surgeon Copies, Displays, Emulates ROM, RAM and EPROMSof the 2516,2532 variety. Manyotherfeatures of the 2516,2532 variety. Manyother features interfaceetc. Functions exceedcapabilitieso Units costing 7 times the pricel Only

DATA MODEMS

Join the communications revolution with our
range of EX TELECOM data modems. Made t most stringent spec and designed to operate tor 24 hrs per day. Units are made to the
CCITT tone spec. With RS232 $/ 10$ levels via a 25 way 0 skt. Units are sold in a tested
and working condition with data Permission and working condition with data Permission
may be required for connection to Po lines. MODEM 13 A compact, a sync, same size as telephone base Up to 300 baud full duplex
over 2 wires, but call mode only $£ 75.00$ MODEM 2B/C Fully fledged up to 300 baud auto switching ideal networks etc Just 2 wir connection to comms line E85.00
MODEM 20.1 Compact unit for use with transmit - 1200 baud receive. Auto answer
ع130.00
MODEM $20-2$ same as $20-1$ but 75 baud
receive 1200 baud transmit $£ 130.00$ MODEM 20-3 Made for data rates up to 1200 baud in full duplex mode over 4 wire circu
half duplex mode over 2 wires, $£ 130.00$ half duplex mode over 2 wires. $£ 130.00$
Carriage. $13 A \subseteq 4.50$. $2 B / \mathrm{C} \& 20 ~ £ 9.50$. DATA PUMP MODEM
duplex over 2 wires. BELL specification with
data vo va AS232 25 way D socket, remote
test etc. 240 voperation Supplied complete

SPECIAL MODEM OFFER

EX TELECOM. Direct connect. 2 wire, European standard, 75/1200 baud data modems. Normally priced at $£ 140.00$, we have a limited quantity of guaranteed at a super low price of onl/ E49.9s. Modems are riade to the highest standard
and conform to the CCIIT tone spec. Ideal for MICRONET, PRESTEL or and conform to the CCITT tone spec. Ideal for MICRONET, PRESTEL of DISTEL's forthcoming high speed ports. Standard RS232 data i/o via 25 way
Dkt. With data. D skt. With data
MODEM 2 A Early

$$
\begin{aligned}
& \text { ly version of modem } 2 \mathrm{~B} / \mathrm{C} 300 \text { baud full duplex, send-receive, } \\
& 232 \text { i/o. With data but untested. End of line clearance. }
\end{aligned}
$$ arly version of modem $2 \mathrm{~B} / \mathrm{C} 300$ baud full duplex, send-r

S 232 i/o. With data but untested. End of line clearance.

8" WINCHESTER price ShASH4

S100 Bus 19 Mb . Subsystem. A cancelled order and change of policy by a major British disk drive manufacturer enables us to offer you 'last year's model' at a plug in and ready to go SUPER LOW PRICE. Our own custom controller pugs direct into the S100 bus and wi I control 2 disk drives, offering a total storage of OVER 36 Vbs! and at data transfer rates in excess of $7 \mathrm{Mb} / \mathrm{sec}$ seeing is believing!! Supplied complete with user configurable BIOS etc. Save a fortune, Limited quantity only. 310019 Mb . Disk drive $£ 499.00$ PSU unit $\quad £ 165.00$

RECHARCEABLE NICADS

SAFT VR2C

cells in ex 1.2v C size condition - easily split to single Gools $\mathbf{6 9 . 5 0}+\S 1.90$ post and packing.

VIDEO MONITORS

12" CASED. Made by the British KGM Designed for continusus use as a data display station, unit is totally housed in an OFF, BRIGHTNESS and CONTRAST contention was given to construction and reliability of this unit with features such a
internal transformer isolated regulated D internal transiormer isolated regulated D.
supply, all components mounted on iwo fibre glass PCB boards - which hinge out ease of service, many internal controls for
linearity etc. The monitor accepts standar linearity etc. The monitor accepts standard
75 ohm composite video signal via SO239 socket on rear panel. Bandwidth of the unit is estimated around 20 Mhz and will display Units are secondhanc and may have scree burns. However whe Althoughent when monitor is switched off tested pronguaranteed all monitors are approx. $14^{\prime \prime}$ high 14°. Dimensions Supplied complete with circuit. 240 volt 24" Operation ONLYEA5.00 RLUSE9.5O GARR. with a similar spec as the 12 monitor Originally used for targe screen data
display. Very compact unit in lightweigh display. Very compact unit in lightweigh
alloy case dim $19^{\circ} H_{x} 17^{\prime \prime} \mathrm{D} \times 22^{\prime \prime} \mathrm{W}$ A silicon electronics and composite video
input make an ideal unit for schools. clubs.
shops elc Supplied in a ONIYESS.00 RLUSEP.SO GARR. \& INS.
14" COLOUR superb chassis monitor made
by a subsidiary of the HITACHICO. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc.
Exceptional bandwidth with good 80 col definition. Brand new and guaranteed working. Dim. $144^{\prime \prime} 15 \times 13^{\prime \prime}$
OWCYEIS9.00 PUSE9.50 CARR.

SEMICONDUCTOR 'GRAB BAGS'

```
Mixed Semis amazing value conten
```

include transistors, digitat, linear. IC.'s tri
diodes, bridge recs. elc. etc. All devices
guaranteed brand new full spec. with
\qquad

CALLING DEC USERS

Brand new and boxed
\qquad feet of your bookshelf! Under half price DEC MSV11-DD $32 \mathrm{~K} \times 16$ bi RAM 193 DEC MSV11-DD 32k $\times 16$ bit RAM E 195.00

ALL PRICHS PLUS VAT

DEFLAY -ELECTROAILS

B. BAMBER ELECTRONICS

Rank Pullin Airport Weapon Detector Type 3 Walkthrough Cabinet. Complete and good working order. £150 plus VAT.
Marconi HF Spectrum Analyser Type OA1094A/S complete with Frequency Convertor Type TM6448 and mounted on trolley, $0-30 \mathrm{MHz} £ 90$ plus VAT.
Systron Donner Spectrum Analyser Model 805200 Hz 1.6 MHz . POA.

Marconi AM Signal Generator Type TF 801D/8S 10 485 MHz , $\mathbf{E} 95$ plus VAT.
Tektronix Oscilloscope Type RM45A Rack Mount mainframes, $£ 50$ plus VAT.
Tektronix Oscilloscope Type 551 Mainframes with Tektronix Oscilloscope Type 555 Mainframes with Power Unit, £85 plus VAT
Tektronix Sampling Oscilloscope Type 661, fitted with 4 S1 plug-in, E120 plus VAT.
Tektronix Plug-In Units Type B, G, H, K, L. $£ 25$ each plus
VAT. VAT.
Avo Transistor Tester Type 2 with Battery and Mains Power Units, $£ 30$ plus VAT.
Solartron Oscilloscope Type CD 1642.
Solatron Oscilloscope Type CD 1014.3
Telequipment Oscilloscope Type D 61.
Solartron RC Oscillator Type CD $100410 \mathrm{~Hz}-1 \mathrm{MHz}$. f25 plus VAT.
Advance Oscilloscope Type OS $2100 \mathrm{DC}-30 \mathrm{MHz}$. E185 plus VAT
Radiosonde RS 21 Meteorological Balloon Transmitter with Water Activated Battery. 55 ach plus VAT
Pye Industrial pH Monitor Model 539 complete with Technical Manual, $\mathbf{E 3 0}$ plus VAT.
Marconi AM/FM Signal Generator Type TF 995A/5, $\mathbf{E 2 5 0}$ plus VAT.
Corles Austin Two-Stage Air Pump Type F65 DER, complete with pressure regulator, 240 vac., chassis plus $£ 5$ p.p. plus VAT. etc., brand new and boxed, $£ 45$ Tektronix. Square Wave Generator Type $107 £ 25$ plus $\mathbf{£ 5}$
p.p. plus VAT.
Rohde \& Schwarz A.F. Wave Analyzer Type BN 48302 £45 plus $£ 15$ p.p. plus VAT
Rohde \& Schwarz Enograph - G Type BN1198/25 £60
plus $£ 15$ p.p. plus VAT.

Pye Europa MF5FM High Band Sets, ideal for 2 M .5 watt output 6 Ch , complete but less mike and cradle with circuit diagrams, E60 ench plus VAT
Pye Reput less speaker with circuit sets, single Ch , com plete
Pye Motafone MF5AM Mid band 6 Ch , good condition with circuit diagram, £15 plus VATs
Pye Westminster W15AMD Mid Band Single Ch, complete but less speaker, mike and cradle, f45 plus VAT. Pye Westminster W15AMD Low and High Band Sets, complete but less speaker, mike and cradle, $\mathbf{E 5 0}$ plus VAT.
Pye Westminster W30AM Low Band Sets, boot mounted, 30 W output, complete but less speaker, mike and leads, $\mathbf{£ 2 5}$ plus VAT.
Pye Olympic M201 AM High Band, complete but less mike, speaker and cradle. With circuit diagrams $£ 40$ plus VAT.
Pye Cambridge AM10D Low Band, few only $\mathbf{£ 1 5}$ plus VAT. Pye Cambridge AM10B High Band, few only, $\mathbf{£ 1 0}$ plus
Pye Base Station F27 Low Band, $£ \mathbf{4 0}$ plus VAT.
Pye Base Station F30 High Band, £180 plus VAT.
Pye Base Station F401 High Band, $£ 220$ plus VAT.
Pye Base Station F9U UHF. Remote. $£ 90$ plus VAT
Pye RTC Controller units for remotely controlling VHF and UHF fixed station radio telephones over land lines £10 plus VAT.
Pye PC1 Radiotelephone controller, good condition, $\mathbf{E 5 0}$ plus VAT.
Pye Base Station Tx Type T406 100 W Low Band FM
f150 plus VAT f150 plus VAT.
Pye Base Station Tx Type T 100 100W FM 'G' Band $38.6-$ 50 MHz , ideal for 6 M . New condition. $£ 100$ plus VAT. Pye Pocketfone Type PF5, UHF 'T' Band, complete with battery, good condition, £45 plus VAT
Pye Pocketfone PF5 Battery Charger Type BC16A, $\mathbf{£ 2 5}$ Pye Pocketfone PF1 UHF Receiver, $440-470 \mathrm{MHz}$, single channel, int. speaker and aerial. Supplied complete with rechargeable battery and service manual. $£ 6$ each plus $£ 1$ p.p. plus VAT.
Ni-Cad Batteries for Pye PF1 rx, used but good condition, $£ 2$ each, PF1 tx Batteries, $£ 3$ each plus VAT.

PLEASE NOTE: All sets are sold less crystals unless otherwise stated. Carriage on RT equipment - Mobilos E2 each. Base stations E 15 each. Red Star available at cos.

SEMICONDUCTORS \& VALVES p.p. 50 p per order. PLEASE ADD VAT. 1 N4 14810 for $25 \mathrm{p}, 7414$ for $£ 1,555$ 4 for $£ 1,280-\mathrm{P} 10 \mathrm{£} 1.85,280$-CTC $£ 1.85$, BC108 4 for $50 p$
BC109 4 for 50 p. BC113 4 for 50 , BC148 4 for $50 p$ BC109 4 for 50p, BC113 4 for 50p, BC148 4 for 50p QQV03 - 10 ex-equip. $£ 1.20$, QQZ03 - 10 new $£ 2.50$. QQV03 - 20a ex-equip £5, QQV06-40a £15, QQZ06 40a ex-equip, £10.
VIDICON SCAN SOILS 1"' Transistor type but no details, complete with vidicon base, $£ 3.50$ each plus 50 p p.p. plus VAT.
Mains isolating transformer, 500 VA 240 V input, 240 V C.T. output, noused in metal box. $£ 15$ each plus $£ 6$ p.p. plus VAT.
Mains isol
Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus
plus VAT.
Garrard Car Cassette Player Mechanisms, 12 V motor stereo head, brand new, $£ 2.50$ each plus $\mathbf{5 0 p}$ p.p. plus VAT.
Cigar Lighter Plug with lead, $\mathbf{£ 1}$ each p.p. plus VAT.
IC Test Clips, 28 way and 40 way, gold plated, $£ 2$ each plus 30 p p.p. plus VAT.
60 amp Alternator and Generator Noise Filters for use in vehicles, $\mathbf{E 1}$ each plus 50 p p.p. plus VAT.
Computer Grade Electrolytic Capacitors, screw terminals, 25000 mfd ., 33 volt, brand new, $£ 1$ each plus 50 p. p.p. plus VAT.
each plus 50p P Pers 220 V
esch plus 50p p.p. plus VAT.
Philips N1500/1700 Video Cassette Tape for use with £5 each plus 50p. p.p. plus VAT
Mullard Vari-Cap Tuners Type ElC2003, UHF moved from brand new TV
VAT.
2N3055 Transistors, Brand New, 4 for $£ 1$ plus 20p, p.p. plus VAT. Beryllium Block Mounts for CCS1 valves. Brand new and Boxed, $\mathbf{£ 1 0}$ each plus 50p. p.p. plus VAT.

Good secondhand equipment atways wanted for cash
All prices quoted exclude p/p and VAT unless otherwise stated

FREQUENCY COUNTERS
 micr performance HIGH RELIABILITY LOW COST

The brand new Meteor series of 8 -digit Frequency Counters offer the lowest cost professional performance available anywhere.

* Measuring typically $2 \mathrm{~Hz}-1.2 \mathrm{GHz}$ * Low Pass Filter
\star Sensitivity $<50 \mathrm{mV}$ at $1 \mathrm{GHz} \quad \star$ Battery or Manlos
* Setability 0.5 ppm
* High Accuracy
* Factory Calibrated
* 3 Gate Times
* 1-Year Guarantee

PRICES (Inc. adaptor/charger, P \& P and VAT)
METEOR $100 \quad(100 \mathrm{MHz}) \quad £ 104.07$
Illustrated colour brochure
METEOR $600 \quad(600 \mathrm{MHz}) \quad £ 133.97$ with technical specification METEOR 1000
$(1 \mathrm{GHz}) \quad £ 184.57$ and prices available on request

METAL FILM RESISTORS

				1/4 Watt, 1% tolerance, 3p each. 89
100R	1 k	10k	1004	Values, E24, see
110 O	${ }^{1 / 1} 1$	${ }^{112}$	110 k	order £20. Minimum 10 pcs per
+1208	1×2 1×3 1	$\underset{13 \mathrm{c}}{12 \mathrm{k}}$	$\underset{\substack{120 k \\ i 30 \mathrm{k}}}{ }$	value. VAT, P\&P incl.
1508	1 k 5	15k	150k	
1608 1800		${ }_{\substack{16 \mathrm{c} \\ 18 \mathrm{k}}}$	$\underset{\substack{160 \% \\ 180 k}}{ }$	CDEA TFE
${ }^{2008}$	${ }_{2}$	20 k	200k	ULLUAL
${ }_{2}^{22008}$	$\stackrel{\text { 2k }}{2 \mathrm{k} 2}$	${ }_{24 \mathrm{k}}^{22 \times}$	${ }_{\text {240k }}$	10 pcs of each value,
2700	2 k 7	27k	270k	$8 \cdot$
3308	3 k 3	33 k	330k	2-4.0
		364		
33908	3 c 4×3	393k		مคEPII "POP' PACK
		${ }_{5}^{47 \%}$	470k	
${ }_{560 \mathrm{~A}}^{510}$	5<6\%	${ }_{56 \%}$	560 k	100 pCs: $100 \mathrm{R}, 1 \mathrm{C}, 330 \mathrm{R}, 470 \mathrm{R}, 1 \mathrm{~K} 5$.
${ }_{6000}^{608}$	${ }_{6}^{6 \times 2}$			$100 \mathrm{~K}, 1 \mathrm{M}, 50$ pcs. ${ }^{\text {che }} 1000$ pcs. $£ 28.50$
${ }^{680}$		${ }_{750} 68$	${ }^{680 \mathrm{k}}$	$2 \mathrm{~K} 2,3 \mathrm{~K} 3,22 \mathrm{~K}$. Total loor
${ }_{8} 7500 \mathrm{C}$	\% 8×2	82k	820k	One of each
910R	9k1	91k	1 M	pack $£ 50$ only
ORION SCIENTIFIC LTD - 16 Orange Street - London WC2H 7ED				

WW - 063 FOR FURTHER DETAILS

Appointments

Advertisements accepted up to 12 noon Thursday, October 4th, for November issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: $£ 17$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 3.50$ per line, minimum $£ 25$ (prepayable). BOX NUMBERS: $£ 5$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS). PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to BUSINESS PRESS INTERNATIONAL LTD. and crossed.

THE UNIVERSITY OF SHEFFIELD Audio Visual \& Television Centre
 SENIOR TELEVISION ENGINEER

Applications are invited for the above post. The successful applicant will take charge of all engineering aspects of the Centre's work, including planning and development, studio and mobile operations and supervision of the technical staff. Applicants should preferably be graduates or have comparable qualifications in electronic engineering and wide experience in broadcasting, industrial or educational television. Initial salary on Grade II for Other Related Staff $£ 11160$ $\mathbf{£ 1 4 , 1 2 5}$ a year according to qualifications and experience. Tenable for two tions and experience. Tenable for two
years in the first instance. Particulars years in the first instance. Particulars
from the Registrar and Secretary (Staffingl, the University, Sheffield S 10 2TN to whom applications (5 copies), including the names of three referees, should be sent by 30 September 1983. Quote ref R898/BH.

> ELECTRONICS TECHNICIAN
> required for workshop and field servicing of hospital and medical laboratory equipment Qualifications to tec (HC) or equivalent. Some experience in a related area preferred. S
> lary $£ 6,000$ + n egotiable) Car prowd Write with details of expertence and qualifica tions to
Mr Ray Morr
> Mr Ray Morrisey
> 13 Woodlands Park
> Gerton
> Cambridge CB3 00B
> (2269)

	CAPITAL APPOINTMENTS LTD
	THE UK's No. 1 ELECTRONICS AGENCY
	If you have HNC/TEC or higher qualifications and are looking for a job in design, test, customer service, tech
	Telephone now for our free jobs list
	We have vacancles in all areas of the UK Salaries to $£ 15,000$ pa
1	01-6375551 or 01-6369659
-	Or if you prefer send a FULL CV to:
I	CAPITAL APPOINTMENTS LTD
d	29-30 WINDMILL STREET, LONDON W1P 1HG

SURREY COUNTY COUNCIL

Guildford County College of Technology invite applications for the following vacancy: Department of Science and Electrotechnology

SENIOR TECHNICIAN in COMPUTER TECHNOLOGY

£6,264-£7,005/£7,191-£7,896

plus $£ 270$ Surrey Allowance
Suitably qualified person required to service computer equipment, with an emphasis on microprocessor development. Application forms and further details from the Committee Clerk, Guildford County College of Technology, Stoke Park, Guildford, Surrey GU1 1E2, on receipt of SAE. (Tel: Guildford 31251) Closing date: Friday 14th October 1983
(Re-advertisement)

SENIOR DEVELOPMENT ENGINEER

Location: West London An appointment exists within a long established electronic data capture company for a senior development engineer
The main duties associated with this appointment are

* Development of microproces sor based data capture equipment.
- Development of customised interfaces.
* Customer liaison.

The successful applicant would probably be qualified to HNC level, and have at least three years' exand have at east three years ex
perience in the electronic industry, perience in the electronic industry, preferably in data processor type equipment, and have experience
of microprocessors and data comof microprocessors and data com munications interfaces.
Normal large company benefits + company car.
Salary commensurate with exper ience.

Apply to Box No. 2282

PHOTOSTAFF

The Photography, AN, Film and Video Agency has vacancies for:
VIDEO ENGINEERS To service, repair and maintain domestic, industrial and broadcast equipment. Salaries from 66,000 to $918,000+$ UK. and overseas.
RESEARCH \& DEVELOPMENT. Experienced Degree or HND level Engineers. Opportunities gree or HND evel Engineers. etc., in electronics, electromechanics and computing.
PHOTOSTAFF, 133 0xiord Street, London W1 Tel. $01-4391821$

@ PIONEER

require

A SAFETY/TECHNICAL CO-ORDINATOR

Pioneer High Fidelity (GB) Limited is a very successful and expanding company in the electronic consumer industry. We market a wide range of Hi Fi , Car Audio and Video products.
A vacancy now exists in our Technical Department for a Safety/ Technical Co-ordinator at our new premises in Greenford, Middlesex.
The job entails the submission of new products to B.E.A.B. for approval, liasing with our factories in Japan and with the United Kingdom Safety Authorities and the writing of technical service bulletins for gur dealers and authorised service centres.
The successful applicant should be fully conversant with BS-415 safety standards, applicable to domestic electrical equipment, and should have had at least two years' experience in this field.
$\mathrm{He} /$ she should be qualified to H.N.C. or equivalent standard in electronics and preferably with at least three years' experience in domestic HiFi and/or Video equipment. Some experience in technical writing is also essential.
Benefits include competitive salary, four weeks' holiday, subsidised restaurant, contributory pension scheme and private health cover.

For further information or an application form, please contact:
Mrs C. A. Burridge, Pioneer High Fidelity (GB) Limited
Field Way, Greenford, Middx. UB6 8UZ. Tel: 01-575 5757
(2196)

LABORATORY TECHNICIANS

We have vacancies for Laboratory Technicians at senior and junior level at our Equipment Department, based at Chiswick. Duties include the testing of newly manufactured broadcast equipment and involve work on sound, television, radio-frequency and digital equipment.
Technicians should possess, or be studying for a TEC or HTEC certificate in electronics, and have at least one year's relevant experience. Salary is in the range £6346 to £7615.
Applicants with less experience may be considered for junior posts at a lower salary.
Requests for application forms to Engineering Recruitment, BBC, P.O. Box No. 2BL, London W1A 2BL. Quote reference 83.E.4099/WW.

We are an equal opportunities employer

PLYMOUTH HEALTH AUTHORITY

Department of Medical Physics and Biomedical Engineering

ELECTRONICS TECHIICLIAN

required for interesting post in medical electronics. The person appointed will be a member of a team of nine in a well-equipped and expanding Department. He/she will be responsible to a graduate electronics engineer for maintenance and development of a wide range of patient-orientated equipment situated in Hospitals and Health Centres throughout the Plymouth Health District.

Hospital experience is not essential, as further training will be given. HNC, ONC, City and Guilds Final Certificate or equivalent qualification is required. The work involves occasional travel and necessitates a current driving licence. There is a requirement to participate in a scheme to provide out of hours emergency cover. The current salary scale is $£ 5,171$ rising to £6,798.

Further information is available from Mr A. C. Dawson, Chief Technician, telephone Plymouth (0752) 834276.

Application forms are available from the Personnel Officer, Unit Personnel Dept. PGH No. 1, Belvedere, Greenbank Road, Plymouth PL4 7JN. Please enclose a stanped addressed envelope.

Closing date for return of application forms: 21st October, 1983.

Proposal Support Manager
 £10,000 + generous bonus Surrey

Granger Associates are a leading company in the design, manufacture and marketing of communications equipment for overseas markets. Our products are marketed extensively to both major industrial nations and to developing countries and we are now looking to strengthen further our commercial expertise by appointing a Proposal Support Manager.

Based at our Sales Headquarters in Weybridge, Surrey, you'll provide vital support to the international sales team in the preparation of systems and proposal documentation for all our communications products marketed to Europe, Africa and the Middle East, with particular emphasis being placed upon HF systems.

In addition to sound relevant experience gained within an electronics engineering environment, you will need to be a good communicator at all levels with the ability to interpret Govermment, Military and commercial specifications, and work effectively under pressure. Knowledge of a foreign language would be a distinct advantage.

Please write in the first instance with full c.v. to Mrs L. Tabb, Granger Associates Ltd. 1 Brooklands Road. Weybridge, Surrey KT13 0SD.

Appointments

GRADUATE STATUS ENGINEERS AND SCIENTISTS

COME TO HIGH-TECH COUNTRY

IN COMMUNICATIONS R \& D

Hanslope in Buckinghamshire is, we admit, an unlikely backdrop for high technology research and development.

Yet a mere stone's throw away from this delightful rural village the men and women at HM Government Communications Centre are applying the very latest ideas in electronics to the development of sophisticated communications systems and installations, designed to meet special Government needs both at home and overseas.

For graduates and near graduates with real ability and a genuine passion for creative electronics design (the kind of enthusiasm that may already have prompted you to design and build your own communications equipment), this is a superb career environment.

Technically challenging projects cover a wide range of interests including radio (HF to microwave, advanced modulation, propagation studies and micro-circuitry applications); acoustics; magnetics; signal analysis; systems engineering.

The majority of these projects are directed towards specific ends, and we have our own production facility. So, unlike many
other R\& D establishments, HMGCC offers you the satisfaction of seeing your work right through from conception to manufacture.

With such a broad spectrum of work and training facilities at your disposal, HMGCC is an ideal environment in which to develop the potential you've gained by studying an electronics-biased course. What's more, we think you'll find the working conditions and location very much to your liking.

Please write to us for further details on the work and the remunerations offered at the Centre As our careful selection process takes some time, it would be particularly helpful if you could detail your qualifications, your personal fields of interest and practical experience, and describe the type of working environment most suited to your career plans.

Dr. D. Orr, Recruitment Officer, HMGCC, Hanslope Park. Hanslope, Buckinghamshire MK197BH.

Her Majestr's Government Communications Centre - HANSLOPE PARK.

WIRELESS WORLD OCTOBER 1983

Test \& Calibration Engineers

 aving introduced an extended new product range, many of which are microprocessor based, Marconi Instruments has once again confirmed itself as Europe's leading manufacturer of sophisticated test and measurement systems. Our products are selling throughout the world and we are naturally developing further new and innovative designs.

Akey role in our organisation is that of our Luton based Service Division, where a group of Technicians satisfy a very wide range of customer needs in the repair and calibration of test equipment.

When you join our team you will quickly become individually responsible for work assignments involving many different kinds of propriety products.

prospects are excellent. The Division is part of a large company with its main Instrument Design/Manufacturing Base at St. Albans, a Microwave Plant at Stevenage and a further substantial Design Manufacturing Croup at Donibristle in Scotland. The Company is proud of its policy of promoting men and women from within, as future Salesmen, Managers and Engineers.

\squarealaries, which are dependent upon experience and ability are excellent and regular overtime is normally available. Progress for competent engineers aurd technicians can be rapid. Relocation assistance is available in approved cases. Special consideration is given to 'ex-forces' personnel.

Whatever your level of experience we would like to hear from you. Cut out the coupon and send it to John Prodger, Recruitment Manager, Marconi Instruments Limited, FREEPOST, St. Albans AL4 0BR. Tel: (0727) 59292.

SGSCIONC MANT SNANCS molnar:

Yorkshire Television, one of the five major Independent Television Companies, has established a worldwide reputation for producing quality award-winning programmes. Each week, over 100 hours of programmes are transmitted to 6 million viewers in Yorkshire, Lincolnshire and Derbyshire.
The Industry Code of Practice sets exacting quality standards for broadcast television. To meet these stringent performance parameters, the Electronic Maintenance team follows
a comprehensive policy of routine maintenance, inspection, examination and measurement of the complex electronic systems in the Leeds studio facility.
Through internal promotion, an opportunity has arisen to join the Electronic Maintenance team. Applicants should be qualified to a minimum of HNC level or equivalent in Electronic Engineering.

Experience of working, using advanced test equipment. on broadcast electronic systems, either with a television company or an equipment manufacturer is essential.
Starting salary will be in a range up to $£ 12.500$ depending on qualifications and experience, plus overtime payments.

Applications in writing to:
The Personnel Officer (Recruitment)
Yorkshire Television Limited
The Television Centre, Leeds LS3 1JS

YORKSHIRE TELEVISION

ELECTRONIC INSTRUMENT SYSTEMS TECHNICIANS

Sartorius Instruments is a world leader in electronic weighing in the analytical, research, quality assurance and allied industries. The product range is expanding further into the industrial system's market and personnel are required to supplement our already established Field Service team.
Successful applications will service and install our computerised systems nationwide. Primary responsibilities will be problem solving of Sartorius equipment and liaison production and the customer.
Education to a suitable allied qualification i.e. C\&G/TEC - Electronics is preferred. A successful trouble shooting ability in electronics is essential with a knowledge of basic computer programming.
On appointment you will spend three weeks training in our workshop in Belmont followed by suitable training at our parent company factory in West Germany, when available. Initially the job will require a large proportion of time to be spent at our in-house service centre at Belmont, Surrey.
Candidates must be in possession of a current driving licence and be prepared for nationwide travel. A company car is provided.
In addition to the above vacancies technicians are required for certain areas on general electronic and mechanical balance maintenance.
If you would like to receive more information or apply for a position, please write giving brief career details to the Service Co-ordinator, Sartorius Instruments Limited, 18 Avenue Road, Belmont, Surrey.

Appointment

Television Recording requires Electronics Engineers to train in Broadcast Engineering, to support an expanding Video Tape and Telecine Operation, which includes complex digital and analogue equipment.

Applicants need not initially possess an in-depth knowledge of Television Engineering, as full training will be given, but previous academic training must be supported by enthusiasm for practical engineering.

After training, applicants will progress to work involving all aspects of Television Recording, including in-depth servicing, acceptance of equipment, design of modifications, and technical investigations.

These challenging posts offer excellent promotional prospects for the self-motivated and committed engineer capable of working at the forefront of today's technology.

Salaries range from $£ 8,129$ to $£ 9,200$-this includes an allowance for shift working. A higher salary will be considered in exceptional circumstances.

Qualifications required are, a Degree in Engineering, HND, HNC, Full C \& G.

For further information please write, with details of your academic and work experience, to Bob Neal, BBC, P.O.BOX 2 BL, London W1A 2BL.
Please quote ref: 83.E. 4055 we are an equal opportunities emplover.

Appointments

Head of Antennae Design Group

In "Survivability" technology MEL, the Electronic Systems Development Division of the Philips U.K. Group of Companies, have been pioneers for over 30 years. Since the earliest days of Electronic Warffare, we have been applying our technical expertise and in-depth understanding of military and naval needs to the development of systems which detect, analyse and counter enemy threats. Systems which include ESM, ECM and ECCM that are more than a match for the growing sophistication of land-based, airborne or shipborne radar and air or surface launched homing missiles
A key in-house consultancy and design service is that of the Antennae Design Group who ensure the application of the most advanced technology in the design, production and utilisation of antennae systems for many of our projects.
Applicants for the position of Head of this key activity must offer an appropriate professional engineering background and proven ability in technical leadership at least to the level of $2 \mathrm{i} / \mathrm{c}$ within a similar activity. The successful candidate will report directly to the Technical Manager and will carry "bottom line" responsibility for the performance of the Group.
Salary and other conditions will be attractive. Assistance with relocation is available, if required. Please write, in full confidence, quoting reference WW9 to:
Mr. L. B. Staunton, Personnel Manager, MEL, Manor Royal, Crawley, Sussex.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 5000-£ 15000$.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES
12 Mount Ephraim.
Tunbridge Wells,
Kent. TN4 8AS
Tel: 089239388

CLIVEDEN

LOGEX ELECTRONICS RECRUITMENT

 ments, all locations and disciplinesLogex House, Burleigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267

CUSTOMIER ENEINEER

 North London-based to $\mathbf{5 9 , 1 0 0}+\mathbf{c a r}+$ extensive benefitsDo you have at least a couple of years' electronics field service experience backed by a relevant HNC (or equivalent)? If so, you could be just the person we seek to service our sophisticated range of medical electronic equipment in the North London area.

As the dominant leader in the UK instrumentation market, we can offer you a comprehensive programme of induction and on-going training. There are outstanding career development prospects in this very successful high-technology company. An attractive salary is backed by profit-sharing and a share-purchase scheme among the wide range of company benefits.

Aged at least in your mid-20s, and preferably living on or within reach of the territory, you must have the strong personal presence to succeed in a demanding customercontact environment in addition to a high level of
technical capability. Previous experience of hospital markets and equipment, whilst an advantage, is not essential.

Move up to a more satisfying - and more rewarding field service challenge with the top name in electronic measurement systems. Call Andrew Webb for more information and an application form on 0344773100 . Or write to him enclosing your full personal and career details at Hewlett-Packard Limited, Nine Mile Ride, Easthampstead, Wokingham, Berkshire RG11 3LL.

(hp)
 HEWLETT PACKARD

World Leading Telecoms Products

 RF ENGINEERING
£12,000 to £15,000

Home Counties

Our client has precipitated many firsts in the history of communications technology and currently offers the most advanced business communications systems available in the market. The need to stay ahead in a fast moving technological world demands the highest calibre of engineers available, coupled with extensive use of the latest design aids. The current design of the next generation system has created the opportunity for a Project Engineer and a Senior Engineer to control the complete engineering aspect of this project.

The ideal candidates will be:-

- qualified to degree or equivalent in electronics or telecommunications
- experienced in analog design up to and including VHF
- currently employed within radio or communications related industries

The responsibilities range from involvement in the initial design of specifications, through all the trouble-shooting and problem solving aspects of the concept to prototype building and successful quantity production.

These opportunities offer a dedicated professional environment with an unrivalled range of support resources throughout the group. Career development is excellent within one of the Company's most successful and fastest expanding departments. The complete package, which will include relocation expenses where appropriate, is highly attractive to the successful candidate.

For an initial and confidential discussion please call Bob Archibold on Newbury (0635) 33445 quoting reference D/111 or write in strict confidence to: -

ARCHIBOLD RAE CONSULTANTS LIMITED,
(High Technology Search \& Selection),
7, London Road, Newbury, Berkshire RG13 LIL.
Tel: Newbury (0635) 33445.

THE HUNT IS ON-FOR ELECTRONICS ENGINEERS WHO HAVE SET THEIR SIGHTS HIGH

The current Jaguar cars represent the epitome of mechanical engineering excellence, but to maintain this lead through the remainder of this century will require a complementary standard in vehicle electronics. We are therefore seeking to recruit a specialist electronics team whose brief will be to identify and solve problems in the application of microprocessors and computers to cars from system design through to manufacture and service. The formal qualifications sought will be a degree in electronics or related subject, with both hardware and software experience, Applications from multi-disciplinary engineers who have experience in other relevant areas such as engines, instrumentation, transducers, CAD, reliability engineering or computer modelling will be viewed with particular favour.

The salary and benefits package including relocation where appropriate, reflects the key nature of these positions.
To put your career on target write in confidence giving full career details and current salary to:
A. R. Chapman

Manager, Organisation \& Personnel Planning
Jaguar Cars Limited
Browns Lane, Allesley, Coventry CV5 9DT
We are an equal opportunity employer

INSTALLATION CONMISSIONINE
Oue to rigid expansion, we require an installation and commis sioning engineer to work principally on overseas projects. Experience in two or more of the following is essential:
Studios/HF/MFNHFITV. Knowledge of a foreign language would be an advantage. An attractive salary and benefits package will be offered to the successiful applican
Please send c.v. Or aivme to INCOMTEL LTD. 225 Goldhawk Road London W12 8SB. Tel: 01-7435511

UNIVERSITY OF LONOON
 Institute of Education

TECHNICIAN

equired to organise and run new Advisory and Service Unit contaning BBC, 380Z, 480Z, Spectrum and Apple microcomputers. Duties include hardware maintenance, assisting users and designing interfaces between microcomputers and other equipment. Experience in practical applications of digital and analogue electronics to microcomputers and peripheral equipment; knowledge of BASIC, 6502 and 280 quired
Salary within range $£ 8,422-£ 9,822$ pointment for three years intially
Please contact Mary Griffin, on 6361500 Extension 254 or at University of London Institute of Education, 20 Bedford Way, London WC1H DAL for further details and an application form. Closing date 5 October.
2262)

TOWHLEY EMPORIUM
 Bargains for callers or send for cataloque

ELECTRICAL, ELECTRONIC \&
MECHANICAL COMPONENTS

Vast range of surplus test equipment

 Diodes; Thyristors: Resistors:Terminals: Switches: Relays: Screws: ICs; Tools. Harehill

Todmorden Llancs OL145JY
Todmorden, Llancs OL14 5JY

The Polytechnic of NorthLondon

Department of Electronic

and Communications Engineering

LABORATORY TECHNICIAN

Grade III (Electronics)

Applications are invited for the above post, to assist senior staff in the day-to-day running of the Department's busy laboratories
The duties involve the construction, modification and repair of experimental chassis working from precise instructions, together with the preparation and setting-up of equipment for class practicals. Some experience with the use and maintenance of oscilloscopes, signal generators and power supplies would also be an advantage Qualifications:

OND, ONC, two A levels or Ordinary City and Guilds or equivalent, with three to five years' relevant experience (including training period).
Salary scale:
£5,151-£6,036 plus £1,220 London Weighting
Application forms and further details from Mr. E. W. Bowman,
Departmental Superintendent, Department of Electronic and Communications Engineering, The Polytechnic of North London, Holloway Road N7 8DB
Closing date for receipt of applications: October 7, 1983.

IISTALLLATION ENGINEER

Electronics engineer required to preassemble and install complex sound and lighting systems worldwide. Good electronics knowledge and common sense vital. Applicants should be single, in twenties, and be prepared to travel extensively. Salary up to $£ 10,000$ depending on experience.

Ring or write:

Linda Johns 01-741 7241
Bacchus International Discotheque Services
64/66 Glentham Road
London SW13 9JJ

GRAND OPPORTUNITY FOR LIGHTING BOFFIN

A neat, company-minded, self-motivated individual interested in working with a team of people shaping the future.

Duties will include Q.A. of Lighting and Audio Musical Products for the music, theatre and rock ' n ' roll industry, with some opportunities for design and update work.
A good working knowledge of both analogue and digital techniques is essential, particu larly in lighting control application.

PRIMA DONNAS NEED NOT APPLY
Apply in writing with c.v. and current saiary directly to:

THE MANAGING OIRECTOR ROLAND (U.K.) LIMITED 979 GREAT WEST ROAD BRENTFORD MiDDLESEX
(2251)

ELECTRONICS TECHNICIAN (Grade V)

required for Department of Biochemistry to be responsible for a wide range of equipment used in teaching and research. Good knowledge of fault finding, to gether with the ability to design construct and service apparatus essential. Salary in range $£ 6,279$ £7,332 plus £1,220 per annum London Weighting

Application form from Personnel Officer (Technical Staff FC7), University College London, Gower Street, London WC1É 6BT.
(2259)

INDUSTRIAL VIDEO ENGINEER

With experience in high quality black and white video needed.

Telephone 01-900 0497
(2246)

WIRELESS WORLD OCTOBER 1983

Satellite

 communications- Spacecraft Systems • Communications Systems
- Antenna Design • Radar and Signal Processing - Electronic Circuit Design • Ground Support
- RF and Microware Equipments • Power Supplies
- Mechanical, Thermal and Dynamics Design
- Assembly, Integration and Test • E.M.C.
- Quality Assurance and Reliability

Recently awarded contracts have created a need for immediate expansion of on-site facilities and the design team Some senior appointments have been filled from within but there are still opportunities for Engineering Managers and Group Leaders to head up additional leams now being tormed At Senior Engineer/Engineer
levels there are several vacancies in each of the above work areas.
Qualifications required are Degree/HND/HNC in a relevant discipline, plus experience Excellent salaries and comprehensive range of benefits are ottered, together with relocation assistance if required
Please complete the coupon below, and send it to
Jack Burnie, Marconl Space and Defence Systems, Browns

DesignThe Arport, Porismouth cants. Tel. Portimouth 67402 (All posts are open to both
male and female applicants $\square \square \square$ -
E ,
 Marconi
Space \& Defence Systems

Radio \& TV Electronic Servicing Instructor

Have you thought of teaching your skill? We have a vacancy in a ford Skillcentre
To apply you should have a full trade training, be at least 25 years of age, and have five years' practical experience behind you
The promotion opportunities, pensionable security and self-respect are what only a leading
ours can offer
There is a starting salary of $£ 7,062$ rising by two annual increments
E500 Outer London Weighting.
If you think you've got what it takes telephone Thirza Mathieson on 01-836 1213 oxt. 443. Manpower Services Commis sion, Selkirk Ho
London WC1V 6PF

ELECTRONICS ENGINEER

committed to Third World Development to develop simple solar voltaic products and assist in establishing small scale manufac uring units in Botswama Practical experience of design and 2 year contracts including modest living allowance and flights. Regret no funding for de pendants.

Write for details includ ing short c.v. and s.a.e untary Service, EW2, 53 Regent Road, Leicester LE1 6YL
(2290)

BRIGHTON POLYTECHNIC LEARNING RESOURCES
 TECHNICIAN PROJECTIONIST

£2,976-£6,135

Technician required to assist in the audio-visual equipment loan service to support teaching at the Moulsecoomb site. Equip ment includes colour cameras video recorders and high-quality sound and film equipment Applicants should be familiar with audio-visual equipment of this kind, and able to work with wide range of academic, produc tion and engineering staff. Work will include some first line maintenance.
Further details and application forms are available from the Per sonnel Officer, Brighton Polt Moulsecoomb 693655, Ext. 2536. Closing date September 30, $1983 . \quad 12290$ (2290)

ARTICLES FOR SALE
 24
COLUMN
PRINTER
ONLY
£69 EACH
(inclusive) Standard 4-inch 30 mounting; 9 V AC or 5 V DC power supply; standard centronics interface or serial data; extends only 40 mm behind panel.

> For further details contact Benwick Electronics 9 Doddington Road, Benwick
nr March, Cambs, PE15 0UX Telephone: Benwick (035477) 47

LINSLEY HOOD DESIGNS

75 W att and 100 W amps
Audio Signal Generators
75Watt amp p.c.b. £2.30
100Watt Mosfet p.c.b. \&p 50p
S.A.E, for leaflets

TELERADIO ELECTRONICS TELERADIO ELECIRONNCS
325 Fore Street, London N9 OPE

BOX NOs.

Box number replies should be addressed to: Box No.
c/o Wireless World Quadrant House The Quadrant Sutton, Surrey, SM2 5AS

BBC MICROCOMPUTER

 "GENLOCK" BOARDThis card enables the video outputs of the computer to be synchronised to an external video or sync. signal. The board is supplied ready to fit inside the computer. Send s a.e to

ABBEY AUDIO, PO BOX 2
STAINES, MIDDX. TW18 2NH

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epoxy. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost used and new. Also for CRT regunning metallising. Research \& Development Barratts, May Road. Croy AND CABLE large amount of lamps LAMPS AND CABLE. Large amount of lamps and cable for sale - ail types and sizes, domestic on HITCHIN (0462) 733388 between 10am-7pm.

THE SCIENTIFIC WIRE COMPANY
ell Forest Pd, London, E. 17 Tel .01. 531057

Supervisor Professional Audio Service

We are a world leader in the professional broadcast industry with our international headquarters for Europe, the Middle East and Africa located in North Hampshire. Our range of audio equipment includes analogue and digital studio tape recorders, mixing consoles, wireless microphones and digital products.

A person is now required to head a small team involved with the servicing of the full range of our professional audio products

The ideal candidate will have experience of supervising engineering personnel engaged in the installation, testing and commissioning of sound studio equipment. Knowledge of current digital and analogue techniques as applicable to the audio industry is essential. The person we are seeking will be a 'hands on member of the audio service team and as such some travel away from home is envisaged

We offer an excellent benefits package, including attractive salary, Company Car, Pension/Life Assurance Scheme, and free private medical cover. If youare interested please write with details of career to date to Mike Jones, Senior Personnel Officer, Sony Broadcast Limited, City Wall House, Basing View, Basingstoke, Hampshire RG21 2LA.

Sony Broadcest Ltd.

City Wall House Basing View, Basingstoke Hampshire RG21 2LA
United Kingdom

UNIVERSITY OF CAMBRIDGE School of Clinical Medicine SENIOR ELECTRONICS ENGIMEER

The successful candidate will be in charge of a small Electronics Workshop providing design, maintenance and repair of equipment for all departments of the Clini cal School.
Applicants should have HNC/HTEC or a Degree in Electronics with several years of experience in both analogue and digital electronics.
Salary on scale $£ 7,232-£ 8,722$. For further information contact Dr R. Hanka at 0223-358217.
Applications naming two referees should be sent by 30 September, 1983, to the Secretary of the Clinical School, Addenbrooke's Hospital. Hills Road Cambridge CB2 200.

ARTICLES FOR SALE

OUAARTZ CRYSTALS IN 24 HOURS ÁŇY FREQUENCY $2-50 \mathrm{MHz}$ FOR $£ 5$ inc

New fast service for C.W. O. only (state holder style). Clock oscillators for microprujessors in stock from $£ 9.30$

McKnight Crystal Co Ltd, Mardley Industrial Estate Lythe, Southampton SO4 6ZY Tel. 0703848961

[^8] 4AR

IBM SELECTRIC (GOLFBALL) I O Termina with driver electronics. Recentls overhaulcd,
Golftall 8 and ribion, ready 10 go a twpewrito Golfball 8 and ribton, ready to go a twpewrite
Circuits and some useful bits to enable computer interface
evenings

VALVES, PROJECTOR Lamps, 6000 types, lis 5p, world wide export. Cox Radio (Sussex) Ltd. The Parade, East Wittering, Sussex. Phone (024 02

RADIO AND TV SERVICING 1982-83 MODELS

by R. N. Wainwright Price $£ 23.50$ THE ART OF ELECTRONICS by Horowitz Hill Price $£ 16.00$ INTEGRATED ELECTRONICS by Millman-Halkias Price $£ 11.25$ PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS by William M. Newman Price $£ 12.50$
BASIC PRINCIPLES AND PRACTICE OF MICROPROCESSORS by D. E. Heffer Price £6.50 VHF UHF MANUAL 4th Ed. by G. R. Jessop Price $£ 10.00$ INTERNATIONAL VIDEO YEARBOOK 1983/84 Price $£ 26.00$ DOMESTICE VIDEOCASSETTE RECORDERS by Steve Beeching Price $£ 15.00$
1983 THE RADIO AMATEUR'S HANDBOOK Price $£ 10.00$
TOWERS' INTERNATIONAL MOSPOWER AND OTHER FET SELECTOR by T. D. Towers Price $£ 10.50$
\star ALL PRICES INClUdE POSTAGE *

THE MODERN BOOK CO.

britain's Largest stockist Technical Books
19-21 PRAED STREET LONDON W2 1NP

Closed Saturday 1 p.m
Please allow 14 days for
reply or delivery

INVERTERS

A nev

- More efficient giving a longer supply tıme from the battery
* Static switch faster and more reliable
* Long term power drain from mains $1 / 10$ oth
- Frequency
- Frequency and sine wave better controiled - Mains filtered and delivered even if inven fails
- Smatler and lighter overal
* 500 VA to 10 KVA
dern cabin
Interport Mains-Siore Lid
POB 51, London W11 3BZ
Tel 01-727 7042 or 0225310916

EURO CONNECTORS, din $+1012,2 \times 32$

BULK BUYERS ETC LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICDNDUCTORS all types INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS, etc
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CAbLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR-

ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN’S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

Abstract

Phillps FM/AM/Mark Generator E89, accessory extension generator $£ 59$ Marconi $9100-9600$ Test Set, E75. FM/AM Modulation meter $£ 85$ f25. Transtormers for up to 14 KVA single to 3 phase converers $f 65$ each, range of accesso ries avalable, capacitors, auto-start contactors, switches etc., clrcult diagram for transtor mei purchasers. Line Outpul Transformer test equipment with digital and analogue meters equipment with digilal and analogue meters $£ 75$. Centrifuge $£ 49$. PaIr Sonatest probes $£ 25$. Pfessure vessels for surface coating $£ 55$, spray heads $£ 35$. Marconi ' α ' meter $£ 45$. Sweep generators. Industrial microscope £98. Binel Hardness Tester with microscope $£ 175$. Wow and Flutter meter $£ 75$. Marcont double pulse generator $£ 59$. Fluoride test probe $£ 20$ Electronic Water temperature probe for ther- mostat control pH measurement correction mostat control, pH measurement correction etc. f7.50. Thermocouple probes f5. Electronic Thermocouple Temperature meter, Cr/A), Fe/ Con.., Cu/Con, mV, £35. Large HI-Vac pump with motor on base and drive guard $£ 129$, (free with pump: Pyran! Gauge unit, two valves, ditfusion pumpl), Lightweight hydraulic crane, steerable wheels, dismantles for transil (e.g. in carr E89 $040-37626$ 040-376236 (2016)

SURPLUS ELECTRONIC COMPONENTS Transistors, plewer transistors, triass, thynistors meters, Integrated circuits, presets. All unuse
and in new condition. Send s.a.e. for lists or Thone Clarian Contruls. 2932 Cumberlan 0509 23() 488.
RACAL RA1792 Receiver, 30 MHz , synthesized, current production $£ 3,000$, £6,000 and new. Approx. 18 months old. SMALL BATCH PCB panel assembly to drawing or sample. Competitive rates, quick turnaround. Delta Engineering, 85 Sewell High--
way, Coventry $(0203) 44391443895$.
(2227)
WANTED: Spectrum Analyser, $£ 1,000$.
WIRELESS WORLD OCTOBER 1983

New Course in Telecommunications

A new three year BSc(Eng) Degree course is being launched in September 1984 by the Department of Electrical and Electronic Engineering at Queen Mary College.
This course covers all important aspects of commmunications from microwave and optical systems to the design and use of large scale communication networks. It provides a firm foundation for a student wishing to enter any part of the telecommunications industrty.
Further information from: Dr E. M. Scharf
Department of Electrical and Electronic Engineering
Queen Mary College, University of London
Mile End Road, London E1 4NS
CAPACITY AVAILABLE
P.C.B's

Printed Circuit Boards o your specification from art work through to inished board.

$\sqrt{12080}$

QUICK DELIVERY -

 COMPETITIVE PRICES
CROFTON: 200°

 ELECTRONT:35 Grosvenor Road
Twickenham, Middlesex TEL 01.891 1923/1513 Telex 295093

BATCH PRODUCTION winng and assembly to sample or drawings. McDeane Electricals Lid, 19b Station Parade, Ealing Common, London W'5. Tel:01-992 8976 (169 FREE PROTOTYPE of the finest quality with EVERY P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstrad Designs Limited. Tel: Halstead
477403 (2126 .

FOR SALE. Well mablished radio conne tions business serving Devon and Cornwall tions business serving Devon and Connwail
Renta.s, sales, servicing. Excelient connections and growth potential. Please contact Page, Homedeigh House, East Taphouse, Liskeard, Cornvall. Phone: 057920187

Box number replies should be addressed to:
Box No
c/o Wireless World
Quadrant House The Quadrant
Sutton, Surrey, SM2 5AS
ARTICLES FOR SALE

THERMIONIC VALVES

Various types available. Details from G. E. Moss. Telephone 01-248 1202, ext. 2802. Clasing date for receipt of enquiries: October 1, 1983.

Trade enquiries only

EX W
Over 00 Radio equipment and test equipment. Over 00 sets in stock from 58 . Send 50 p for illustraed catalogue (including £1 voucher). Herts. Tel: Wafford (0923)49456. (1974) BRIDGES, waveform/transistor analysers. Calibrators, Standards. Millivoltmeters. Dynamometers. K'W meters. Oscilloscopes. Recorders. Signal generators - swecp, low distortion,
RMS, WIRELESS WORLD OCTOBER 1983

TW ELECTRONICS LTD

 THE PCB ASSEMBLERSMore and more companies are investigating the advantages of using a profes ing requires certain assurances.
TW are able to satisfy all of them TW are able to satisty all of them quality, competitive pricing, firm delivey tomer.
Assembled boards at 100% inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is is sued with a signed certificate of confor mity and quality - our final assurance. For further details, contact us at our new works:

Blenhelm Indurtifal Park Bury 8t. Edimunds
Suffolk IP33 3UT
Telephone: 02343931 (1466)

PCB/ELECTRONIC ASSEMBLY

* Circuit Design \& Development
- Prototyping
- Pre-production Consultancy
* Full Production Capability
* Component Sourcing \& Stocking
* Complete Test Facilities

STAGECRAFT (ELECTRONICS) LTD 3 Churchfield Road Acton Central, W3 8BH

(2203)

-

PHONE

 YOUR CLASSIFIEDS TO IAN FAUX ON $01-6613033$
CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE

Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A Consultancy, Prototypes, Final Assembly. Full PCB Flow Soldering Service.
Quality workmanship by professionals at economic prices
Please telephone 01-6465686 for advice or further details.
TAMWORTH MANOR
302-310 COMMONSIDE EAST; MITCHAM
(1391)

```
FOR THE BEST PCB SERVICE
        AVAILABLE
# Cliculu Doign & Dovetopment
Digital and Analogue
# Artwork Leyout ,
Wroughtsmen. No minimum charge.
# Board Manufactura
$, ($)
A Wiring A Ascombly
FCB assombly, Wiring and cable forming by
# Tert
ull test faci lities avail斻e.
One or all servicas avail
M,
to HCR Electronics Or writo
dustris Unit, Parker Road,
Cheimsford.
```

illiaாT5
P.C.B. Artworks
FAST TURNROUND
Cost effective specialist layout
and master artwork
GRAYS LANE, MORFTON-IN-MARSH. GLOS
Telephone 0386832152 - to 9 p.m

EPROM

 PROGRAMMINGFrom list and/or existing EPROM for most $5 v$
N.MOS rypes. Charge $f 250+12$ pence per 32 N.MOS types. Charge $£ 2.50+12$ pence per 32
words manually ontered. Erasing and EPROMS also available.
Bandiay Chipware
2A Boroughgate
Applaby
Cumbria CA16 6AG
Tal: 093051027

Tariacal6 gac
Tal: 093051027

UESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUITT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, 27 Longshot Estate, Bracknel1, Berks. Tel:
Bracknell (0344) 52023 . TURN YOUR SURPLUS Capacitors, tranTURN YOUR SURPLUS Capacitors, tran-0945-4188. Immediate settlement. W'e also welcome the opportunity to quore for complete factory clearance. (9509)
SMALL BATCH PCBS, produced from your art work aso DIALS, PAN TUR
work undertaken. FAST TURAROUND. De tails: Winston Promotions, 9 Hatton Place, Londo ECIN 8RU. Tel. 01-405 4127/0960.
Analogue integrated circuit design on a single chip. Phone Four-D Limited on 0279-29246.

ARTICLES WANTED

SURPLUS

Top prices paid for surplus, redundant and obsolete test equipment, factories cleared.
Also quantities of components. Immediate settlement. We wil
where in the United Kingdom.

TIMEBASE
ing, Southampton S02 EH
Telephone: (0703) 431323

```
\((1852)\)
```


ANTIQUE RECEIVING VALVES
Unused and boxed In large quantity

Tsutom Yoshihara
C1-105, Deguchi-cho 34
Suita-shi, Osaka 564 JAPAN

REPAIRS \& SERVICE

\star COMPUTERS (BUSINESS AND PERSONAL)
\star DISC DRIVES ($51^{\left.1 / 4^{\prime \prime} \times 8^{\prime \prime}\right)}$ \star VDUs \star PRINTERS \star S100 BOARDS
\star EPROM PROGRAMMING - MAINTENANCE CONTRACTS

48 hour service for alignment and test of disc drives.

A. N. ELECTRONIC \&

 COMPUTER SERVICES LTD130B North Lane, Aldershot, Hants
Tel: Aldershot (0252) 25608
(2247)

MENDASCOPE LTD

Repair and recalibrate oscilloscopes
All makes - all models MENDASCOPE LTD
Otter House, Weston Underwood OIney MK46 5JS
Tel: Bedford (0234) 712445

PCBS \& PANEL LABELS to your requirements. Design - Prototypes - Production. G.
N . Siee Custom Products 78 N. Siee Custom Products, 78 Derry Grove, Thurnscoe, Rotherham, Yorks SG3 0TP. Telephone (07, DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmit.
ters and receivers, telemetery and con:rol ters and receivers, telemetery and con:rol
systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Wolsey Road, Ashford, Middlesex. Phone Mr
Falkner 5366).

WANTED

Test equipment, receivers valves, transmitters, compo nents, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

M\&BRADIO
86 Bishopsgate Street Leeds LS 14 BB 053235649

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA - Tel: Godstone (0883) 483221

DATA GENERAL Micro Nova System comprising MP/200 processor with 64 KB memory, Model 6096 1.26MB diskette, Model 6101, 12.5MB Winchester disc drive, 4 -line synchro nous/asynchronous multiplexor, Model RDOS Operating system including business basic. Manufactured $1982 \ldots \ldots$ RAIR Model 320 BLACK BOX Microcomputer System with twin $51 / 4 i n$. floppy disc drives, 128 KB memory, 10 MB 8 in . Winchester disc drive, 8 -line terminal multiplexor $\mathbf{£ 2 2 5 0}$ PDP $11 / 03$ SYSTEM comprising LSI $11 / 2$ processor with EIS/FIS, 64KB memory, PERTEC 20 MB front-loading disc drive (RK-05 compatible), DILOG Model DQ100 disc drive controller, DLV11, LPV11, LEAR SIEGLER Model 200180 cps bidirectional printer, HAZELTINE Model 1552 VDU with PROMS for VT52 compatibility. With RT-11 operating system $£ 2900$ TEXAS INSTRUMENTS Model 771 Microcomputer System with VDU screen and keyboard with integral thermal printer (Silent 700 type) and Model FD800 dual 8in. floppy disc
drives. Based on TMS9900 16-bit processor and with 64 KB memory............. INTEGRATED COMPUTER SYSTEMS 8080 TRAINER. Suitcase-mounted training system with HEX keyboard and a variety of $1 / O$ (incl. motor, speaker, thermistor). Currently around f 1,000 new.
ADDS Model Regent 60 intelligent VDU, $24 \times 80,9600$ Baud NEWBURY DATA Model 24×80 VDU, RS232 up to 96008 . Upper case characters only $£ 95$ DATAMEDIA VDU, 24×80, with upper/lower case, RS232 up to 9600 B , detached keyboard With numeric keypad and cursor control keys, graphics character set. HONETWELL Model L 1000 printing terminal, 3008 with self-test, etc., new............................. $£ 150$ DATA DYNAMICS Model ASR 390 TELETYPE, 1108 printing terminal with paper-tape der and punch
Please Note:

FACIT Model 4020 Paper-Tape Reader, 300 cps , TTL parallel interface, companion to mode 4070 punch
DEC Paper Tape Reader...

EXTEL Baudot Coded Matrix printer
EXIEL Terminal as above, 50 and 758 with keyboard. Adaptable for TELEX use
f125
$\mathbf{f 1 5 0}$
MANNESMAN/TALIY Model M80MC/77 Matrix Prin control, 200 cps bidirectional printing, u/l case, self-test, all electronics on single board heavy-duty mechanism for serious commercial use. We have $20+$ of these machines in stock for 110 V operation, all of which are BRAND NEW and boxedP.O.A. MANNESMAN Model M78 Matrix Printer . $£ 100$
General Electric Model 300 Terminet Printing Terminal. With keyboard and correspondence quality printer. f150
HEWIETT PACKARD Model 7905A front-loading 15MB disc drive for 3000 Series compu ters. Trollev mounted. f650
CDC Model 9414 FALCON 10MB Disc Drive. With the same interface as the CDC Hawk $£ 50$ DEI Model 3637 Magnetic Tape Cartridge Drive (streamer type). 1600bpi, capacity up to 10MB per cartridge. Interfaceable to most micros
CDC Model 9400 single-sided, single or double density $8 i n$. Floppy Disc Drives in rack mounting box with 24 V power supply. PER PAIR...
CDC Model 9400 double sided, double density 8 in. Floppy Disc Drive, as new.
DEC NCV11 GAMMA CAMERA CONTROL
DEC NCV11 GAMMA CAMERA CONTROL for PDP 11 O-Bus. On two quad boards DEC BA11MF 8-slot box, backplane and power supply for Q -bus \star We are keen to buy all good secondhand and surplus equipment

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 101-111

PAGE

PAGE
PAGE

Aero Electronics (AEL) Ltd	50
Ambit International	
Anders Electronics Ltd	
Antex (Electronics) Ltd.	Cover iii
Armon Electronics Ltd	92
Aspen Electronics Ltd	83
Audio Electronics......	19.
Bamber, B. Electronics	00
Binary Systems	94
Black Star Ltd	100
Bread Board '83	6
Broadfields \& Mavco Disposals	0
Carston Electronics	Loose Insert
Clark Masts Ltd	
Clef Products (Electronics) Ltd	92
Colomor (Electronics) Ltd	89
Computer Appreciation.	112
Control Universal Ltd.	85
Cricklewood Electronics Ltd	
Display Electronics	99
Dwight Cavendish	
Easibind	100
Electrical Review Shock Cards	100
Electronic Brokers Ltd	3, 5, 7
Electronic Equipment Co.	
Electroustic Ltd.	
Electrovalue Ltd	
Essex Electronics Centre	12
Farnell Instruments Ltd	
Ferranti Electronics	Cover iv
Fieldtech Heathrow Ltd	49,83
Flight Electronics Ltd	
Future Film Development	

Aero Electronics (AEL) Ltd 50
Internationa
49
Eld
over iii
Armon Electronics Ltd 92
Aspen Electronics Ltd 83

Bamber, B. Electronics 100
Binary Systems
94
Bread Board '83 96
Broadfields \& Mavco Disposals 50
Carston Electronics sert
........... 17
Colomor (Electronics) Ltd 89
Computer Appreciation 112
Control Universal Ltd................................... 85
Cricklewood Elect
Dwight Cavendish 94
Easibind .. 100
Electrical Review Shock Cards 100
Electronic Equipment Co. 86
Electroustic Ltd 86

Electrovalue Ltd

Farnell Instruments Ltd
Fieldtech Heathrow Ltd49, 83
Future Film Development .. 17

OVERSEAS ADVERTISEMENT AGENTS
France \& Belgium: Norbert Hellin, 50 Rue de Chemin Veat,
F-9100, Boulogne, Paris.
Hungary: Ms Edit, Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget.
Telephone: 225008 - Telex: Budapest 22-4525

Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero,
Via Mantegna 6,20154 Milan.
Telephone: 347051 - Telex: 37342 Kompass.
Global Specialities Corporation (UK) Ltd13
92

Greatech Electronics Led. | . .92 |
| :---: |
| . .9 |GP Industrial Electronics Ltd..................14, 15

Hameg8
Happy Memories. 89
Harris Electronics (London) 9 9
Harrison Bros 93
Hart Electron 93
House of Instruments
House of Instruments8989
HW International Cover ii
ILP Electronics Ltd 20, 21
Integrex Ltd 8
Irvine Business Systems 18
Klippon Electronics 92
Langrex Supplies Ltd 6
Levell Electronics Lid 96
Manners, K. T. Design Ltd 83
Marconi Communications Systems 50
Midwich Computer Co. Ltd.
Monolith Electronics Co. Ltd 13
Northern Computer Fair 84
Olson Electronics Ltd2
Orion Scientific Ltd 100
Pantechnic. 3
PM Components 94, 95
P \& R Computer Shop 4
Radford Audio Ltd 4
Radio Component Specialists 85
Radiocode Clocks Ltd. 10
Ralfe, P. F. Electronics
86
86
RST Valves 6
97
Sarel Electric Ltd
86
86
Scenic Sounds Equipment Ltd 87
Scopex Instruments Ltd
Scopex Instruments Ltd 9
South Midlands Communications Ltd 50
Sowter, E. A. Ltd. 10
Special Products (Distributors) Ltd 7
Stewart of Reading. 92
Technomatic Ltd 90, 91
Thandar Electronics Ltd 93
Thanet Electronics Ltd 10
Thurlby Electronics Ltd 83
Timebase Ltd.
5
T.O. Supplies (Export) Ltd4
Warwick Design Group. 83
Wireless World Circards. 88

Printed in Great Britain by QB Ltd, Sheepen Place, Colchester, for the proprietors, Business Press International Lid, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. © Business Press International Lud 1983. Wireless W'orid can be obbained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Lrd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Services Lid; Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid; William Dawson \& Son (SA) Lid. UNITED STATES: Eastern News Distribution Inc., 14th Floor, 111 Eighth Avenue, New York, NY 10011

TH: Nisw Antrex thsiot At last-a digital soldering unit for ¢57.50
 THE NEW ANTEX TCSU-D gives you total control over production soldering temperatures

Again Antex research and development pays off - with this new high-value highperformance unit. It's simple design incorporates an LED display and a unique ULA integrated circuit, specially desinned and produced for Antex by Ferranti. Tight temperature control can be maintained by setting the station - then removing tie knob; preventing any further alteration.

For laboratory, for workshop, for production-line - TCSU-D is the station.
Let it figure in your soldering specifications.

- Temperature range - ambient to $495^{\circ} \mathrm{C}$.
- Working temperature reached in under 1 minute.
- Detachable sponge-tray - no drips or spillage.
- Includes the world-famous Antex iron.
- Bit temperature maintained to $\pm 5^{\circ} \mathrm{C}$. - Conforms to BS 3456 and CEE 11.
- Zero crossing switching.

Look into the future of soldering technology - send for the TCSU-D fact-pack now.

FERRANTI EVALUATION KI'

If you're the sensitive type, check out the new ZN45i DVM.

Measuring microvolt signal levels is easy with the new ZN 451 DVM IC. It's the first DVM that auto-zeroes external signal conditioning circuits to give full-scale readings as low as $\pm 1.999 \mathrm{mV}$ with no zero adjustment.

Two logic outputs are provided to control external analogue switches, allowing op-amps and other circuits to be put inside the auto-zero loop and have their offsets cancelled by the ZN451's digital auto-zero system.

Use the ZN451 with pressure transducers, thermocouples, strain gauges or any low output transducer.

To make it even easier there's the ZN451 Evaluation Kit, which contains everything * you need to make a 2 mVDVM , available from your Ferranti distributor price $£ 29.50 \mathrm{inc}$. VAT.

Distributors:

Celdis, Reading, Tel: 0734585171 Farnell Electronic Comps., Leeds, Tel: 0532-636311
Intel Electronics, Henlow,
Tel: 0462812505
STC Electronic Services, Harlow, Tel: 027926777
Midwich Computer Co., Bickinghall, Tel: 0379898751
Semicomps, Keighley, Tel: 053565191
Semicomps, Kelso, Tel: 057324366
Swift-Sasco, Crawley, Tel: 029328700

Ferranti Electronics Limited,
Fields New Road, Chadderton,
Oldham OL9 8NP. England.
Tel: 061-6240515 and 061-624 6661
Telex: 668038

[^0]: Send for details now from：FARNELL INSTRUMENTS LIMITED WETHERBY WEST YORKSHIRE LS22 4DH TELEPHONE（0937） 61961 －TELEX 557294 FARIST G｜REGIONAL OFFICE TELEPHONE（05827）66123／4 • TELEX 826307

[^1]: X for 110 V " 1 " in place of X for 220 V , and " 2 " in place of X for 240 V

[^2]: Feedforward error correction in power amplifiers, by Vanderkoöy and Lipshitz. Joumal of the Audio Engineering Society, January/February 1980.

[^3]: The authors are in the department of electrical and electronic engineering, University College of Swansea

[^4]: Professor McCausland is in the department of electrical engineering, University of Toronto, Ontario, Canada.

[^5]: *See references 1-6 for details of 'Phonovision'.

[^6]: *Forth Interest Group, PO Box 1105, San Carlos, CA94070, USA.

[^7]: *Also subscription agents

[^8]: AUTOMATIC COIL WINDER. Blume and Redecker, $£ 450$ also equipment and stock for loudspeaker manufacturing. Cheap for clearance. Details Batley (0924) Waveguide, Flanges and Dishes. All standard sizes and alloys (new material only) from stock. Special sizes to order. Call Earth Stations,

