ELECTRONICS COMPUTING COMMUNICATIONS BROADCASTING AUDIO VIDE

ORIC is no toy! Its professional keyboard, Basic language and extensive specification, will do all you expected of your home computer, plus a whole lot more. For home, educational, business and games use.

If you're buying for the first time beware! Only ORIC computers offer full colour capability for under $£ 100$ and the most powerful and comprehensive micros in their price brackets.

So whether you're just starting out, or upgrading existing equipment, make the professional decision and choose ORIC. Send for our comprehensive brochure NOW, or better still, order your ORIC today. Delivery is around 28 days with a money back guarantee if you're not delighted.

Clip the coupon below, or call our telesales number ASCOT (0990) 27641
The Real Computer System

Computer-generated image by Sogitec of Boulogne.

NEXT MONTH

Constructional article on a Viewdata display module, which is used with a home computer and modern to show Prestel and teletext on a colour tv. Printed board layout is presented.
Digital tape timer shows length of tape, in hours, minutes and seconds, remaining on an open-reel machine to within 1 part in 1000. Uses tapedriven optical sensors.
Amateur satellite tracker
continuously adjusts aerial to track one of four amateur and weather satellites under the control of a PE1 microcomputer.
Single-chip microcontrollers using eprom for program storage allow development on an eprom
emulator. The circuit shown enables this to be done.

Current issue price 80p, back issues (if available) f1, at Retail and Trade Coun ter, Units 1 \& 2, Bankside Industrial Centre, Hopton Street, London SE1 Available on microfilm; please contact editor
By post, current issue $£ 1.23$, back issues (if available) $\mathbf{£ 1 . 8 0}$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Tel: 01-661 8668
Editorial \& Advertising offices: Quadrant House, The Quadrant, Sutton Surrey SM2 5AS.
Tolephones: Editorial 01-661 3614 Ad vertising $01-6613130$. See leader page.
Telex: 892084 BISPRS G
Telex: 892084 BISPRS G. 14 UK and
Subscription rates: 1 year £14 UK and
f17 outside UK. f17 outside UK
Student ratos: 1 year $\mathrm{f9.35}$ UK and f11.70 outside UK
Distribution: Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS Telephone 01-661 3248
Subscriptions: Oakfield House, Perry mount Road, Haywards Heath, Sussex RH16 3DH. Telephone: 044459188 Please notify a change of address
USA: $\$ 44$ surface mail, $\$ 98.30$ airmail US subscriptions from IPC B.P., Sub scriptions Office, 205 E.42nd Street, NY 10017.

USA mailing agonts: Expediters of the Printed Word Lid 527 Madison Avenue Suite 1217 New York NY 10022 2nd class postage paid at New York. class postage paid at New York. $\stackrel{C}{C}$ IPC Busi

BROADCASTING

27 DESIGN FOR LIVING

28 DOMESTIC ALARM SYSTEM
 by P. E. Bruin

31 HIGH-IMPEDANCE ELECTRONICS

by R.D. Purves

33 ASSEMBLY LANGUAGE PROGRAMMING
 by R. Coates

36 AUTORANGING FREQUENCY METER
 by F. P. Caracausi

39 TWO-METRE TRANSCEIVER
 by T. D. Forrester

43 WAVES IN SPACE
 by I. Catt

44 LIMITATIONS OF INDETERMINACY
by W. A. Scott Murray
47 ULTRA-HIGH DENSITY DATA RECORDING by J. R. Watkinson

51 LETTERS TO THE EDITOR

Amateurs and cable Stereo width control
57 NEWS OF THE MONTH
57 Neable w Recordable laser disc Filire research funds

61 CIRCUIT IDEAS | Joystick control Mini-lloppy tester Discrete op- |
| :--- |
| amp audio |

64 SOME PRACTICAL PROBLEMS OF AERIALS AT SEA
by J.J. Wiseman

67 COMMUNICATIONS

69 HIGH-POWER AMPLIFIER USING MOSFETS
 by E. Borbely

76 SPREAD-SPECTRUM COMMUNICATION SYSTEM
by N. Mahmood

図

Ameron industrial

POWER RESPONSE DC $-45 \mathrm{KHz} \pm 1 \mathrm{~dB}$
OUTPUT POWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CON.TINUOUS R.M.S.)
D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA

* HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1 kW INTO 6 OHMS
PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS
- UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS AND MANY OTTHERS
- OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
- TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW
- INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS

3-YEAR PARTS AND LABOUR WARRANTY.
\star UNITS AVAILABLE FROM 100VA-12KVA.

For full details on all Amcron Products write or phone Chris Flack

TEONEX ELECTRONIC VALVES AND SEMICONDUCTORS

SERVING THE WORLD FOR 30 YEARS

We specialise in the supply of Industrial Valves of British, European and USA manufacture, and semiconductors from the Philips Group.
Many types, including obsolete and obsolescent types, always available from stock.

For further details, contact Mrs. Janet Lowy.
T.O. SUPPLIES (EXPORT) LTD., 2A Westbourne Grove Mews, London WII 2RY. Telephone: (01) 7273421 Telex: 262256 Answerback TOSPLY G

Electronic Brokers are Europe's leading Second User Equipment Company. We carry large stocks of the very latest test equipment which is refurbished in our own service laboratories and calibrated to meet the manufacturer's sales specifications. When you buy used equipment from Electronic Brokers, it can be yours in just days. No waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

ANALYSERS

DVM's AND DMM's

Datron
1059 Bench DMM5 $1 / 2$ digit DC and True
£700.00 Sołartron. 7055 Microprocessor DMM. Scale Length ww WIRELESS WORLDMARCH

OSCILLOSCOPES

Hewlett Packard 1809A 100MHz 4 Channei Plug in $\mathbf{£ 2 0 0 0 . 0 0}$ Philips
PM3232 Dual Bearn $10 \mathrm{MHz} \quad \mathbf{£ 4 9 5 . 0 0}$ Oscilloscope 10MHz New CRT E1500.00 Tektronix.
213 Miniscope/DMM Battery 1 MHz
C975.00 305 P
5 MHz
6975.00 5 MHz.
475 Du
5 Dual Trace 200 MHz Portable $\mathbf{£ 2 2 0 0 . 0 0}$ T922-01 15 MHz DT Scope Diff input 200 C Trolley for 400 Series £120.00 2336 Dual Trace 100 MHz Portable \quad © 1450.00 7313100 MHz Storage Mainframe 25.00 7603100 MHz Mainframe $\quad \mathbf{~} 1450.00$ $\begin{array}{lr}5223 \text { Digital Storage 10MHz } & \text { £2000.00 } \\ 544050 \mathrm{MHz} \text { Mainframe } & \mathbf{£ 1 0 0 0 . 0 0}\end{array}$ 544150 MHz Variable Persistance Storage
Mainframe $\quad \mathbf{£ 1 6 0 0 . 0 0}$ 104 1GHz Scope Mainframe £11,500.00 7704 A Scope DC-200MHz Manframe \quad £1950.00 7613 Storage Scope Mainframe
DC-100MHz
2600.00 7633 Multrmode Storage Scope Maintrame
£4500.00 7834 Storage Scope Mainframe
DC 400 MHz
$\mathbf{y 7 0 0 0 . 0 0}$ 7 744 Dual Beam 400 MHz Mainframe
$\mathbf{E 7 7 5 0 . 0 0}$ 7854 Waveform Processing Scope 8250.00 7904 opt $02,03500 \mathrm{MHz} \quad \mathbf{E 5 3 0 . 0 0}$ S1 Samping Head As New $\begin{aligned} & \text { £250.00 } \\ & \text { P6015 HV Probe . . }\end{aligned} \mathbf{} \mathbf{£ 2 9 5 . 0 0}$ Telequipment DME 3 Storage Oscalloscope Fitted with £1350.00

D1016A Dual Trace 20MHz As New $\mathbf{£ 3 5 0 . 0 0}$

TEKTRONIX PLUG INS

$£ 675.00$ 5A18N Dual Trace OC - 2MHz £375.00 5448 Dual Trace Amp DC-50MFz $\mathbf{£ 4 0 0 . 0 0}$ $5 \mathrm{B12N}$ Dual Sweep Time Bese ... $\mathbf{£ 5 0 0 . 0 0}$ $5825 N$ Digital Turne Base $£ 500.00$ 5842 Delay Timebase. E600.00 7 A13 Diff Comparator Amp DC 1050.0 A16A Single Trace Amp. ©C $\quad \mathbf{1 5 0 0 . 0 0}$ A18 Dual Trace Amp. DC-75A £4z5.00 419 pot DC - 040 MHz £450.00 delay $\boldsymbol{£ 1 4 5 0 . 0 0}$ £525.00 £1250.00 7810 Delayed Time Base for 7104 (1250.00 7 B15 Delaying Time Base for 710 £ 1400.00 series

Line Conditioners from
 ع150 and Voltifit from $£ 1$ £114

For more information, cut the coupon
Galatrek International, FREEPOST, Scotland Street Llanrwst, nr. Llandudno, Gwynedd LL26 OAL, BRITAIN, Tel No: 0492-640311/641298, Telex: 617114 A/B Galahu Made and Designed in Britain by Galatrek.

ADABEEA F

Please send me full details of your range of voltage stabilisers, filters, cut outs, generators and CVT's
Please send mefull details of UPS
Please sendme a requirement check sheet
Consultation with Galatrek Engineer
Name
Position
Company
Address
TelNo
Telex
Trade \square OEM \square (please tick where appropriate)

15 =130

6FT. PARABOLIC DISHES

6 ft . dia. dishes, feed horns and electronics for use in 4 GHz satellite reception. GaAs Fet transistors, SMA connectors, P.T.F.E., etc. available. Please send s.a.e. for full details and data sheets.

Harrison Bros.

WW - 027 FOR FURTHER DETAILS

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

[^0]
PURGHASE OF GRAPHICSEOUNX

 HUGESAVINGS FROM NEW PRIGES ONLY SLIGHTLY USED - GOVERED BY FULL WARRANTY
GRAPHICS TERMINALS • COLOUR GRAPHICS

 DESKTOP COMPUTERS • PLOTTERS • MONITORS4006-1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode: 35×74 characters
(63 ASCII character set)
Graphics Matrix: 1024X $\times 1024$ Y
Baud Rate: 75 thru 4800 interface: Standard RS232
$£ 1525$
4010-1 HIGH RESOLUTION GRAPHICS DISPLAY TERMINAL
Alphanumeric Mode: 35×74 characters
(63 ASCll character set]
Graphics Matrix: 1024X $\times 1024$ Y
Baud Rate: 110 thru 9600 Interface: Standard RS232. Thumbwheel crosshair cursor Intergral Stand £2750

4014-1 and 4015-1 HIGH RESOLUTION BIG [19"] SCREEN GRAPHICS DISPLAY TERMINALS
Alphanumeric Mode: up to 133×64 characters (94 ASCII character set or 188 ASCII + APL on model 4015
Graphics Mode: 4096X $\times 4096$ Y
[includes enhanced graphics option]
Interface Standard RS232

4014-1 £6950 4015-1 £7250 4016-1 25" Screen mod쾨 $£ 8950$
4027 COLOUR GRAPHICS TERMINAL
Providing 8 displayable colours from a palette of
64 colours, and 120 user defined patterns
interface Standard RS232 Baud rates: up to 9600
$\mathbf{5} 5250$
4051 DESKTOP COMPUTER
PROVIDING
High resolution Graphics and Alphanumerics
£2250
4952 OPT. 2 JOYSTICK
for 4050 series] sensitive cursor-contral with . 1% accuracy and $X Y$ zero feature
$£ 275$

DEC SYSTEMS
PDP11/23 SYSTEM
$11 / 23$ CPU, 128 KB MOS, Dual RLOE \& Contral, DLV11J4-line interface Cabinet, VT100 Console, NEW £10,975

PDP11/24 SYSTEM
11/24 CPU, 256KBMOS, Dual RLO2 NEW
$£ 15,750$
PDP11/34 SYSTEM
11/34 CPU, 256KB MOS, Dua RK07 \& Control, Cabinet, LA36 Console
£13,725
PDP11/70 SYSTEM
11/70CPU 1 MB CORE Dual Data System Cabinet RMO3 \& Control 538500

W578 WORD

PROCESSOR
WT78 Word Terminal and Processor RX01 Dual Floppy Disk Drive Diablo Letter Quality Printer. Complete with cabinets and full documentation £2950

DEC CONTROLLERS

 RH11 [NEW] …....E3,000RK11D [NEW]
RK711 3,000 RKV11 E1,750 RX211 …… $E 525$ £195 TMB11 [NEW] £1,250

DEC 11/70 MEMORY MJ11BY Memory box inclu ting Controller and 64 KW Core excluding cables) £2250
MJ11 BM З2kW Core Stack £600

DEC PRINTERS AND TERMINALS LA36 OECwriter II 20 mA LA36 DECwriter IIRS232. LA180-PD DECprinter [NEW].
VT50 DECscope 20mA VT50 DECscope RS232

NEW HAZELTINE VDUS Hazeltine 1420 Hazeltine 1510 Hazeltine 1520
$\varepsilon 199$ £225

4662 INTELLIGENT DIGITAL PLOTTER
Microprocessor Controlled high speed plotting up to 10×15 with built-in joystick control EE genera purpose interface $£ 1800$

4663 INTELLIGENT DIGITAL

PLOTTER

Microprocessor Controlled high speed plotting up to 17" \times 22" with built-in joystick control. Standard RSE32 Interface.
Baud rates 110-9600
$£ 4000$

high resolution display

 MONITORS
606 DISPLAY MONITOR

$5^{\prime \prime}$ CRT. 5 ml Spot size, XY amplitier DC to 3 MHz 6650
606A DISPLAY MONITOR as above £875
6068 DISPLAY MONITOR
2 -axis amplifier $D C$ to 5 MHz

£950

607A VARIABLE
PERSISTENCE DISPLAY
MONITOR
5 "CRT, Storage view time 3 mins plus XY amplifier DC to 3 MHz , 2 -axis DC to 5 MHz £875

611 STORAGE DISPLAY MONITOR
$11^{\prime \prime}$ CRT, Storage view time 15 mins plus, $X Y$ amplifier. Programnable Erase, write-thru, non-store and view functions
$E 1450$

GET 80
 POWEB

Module Number	Output Power Watts rms	Impodinnes Ω		$\begin{aligned} & \text { DIST } \\ & \text { T.H.D. } \\ & \text { TYP At } \\ & \text { IKHz } \end{aligned}$		Supply Voltaga Typ	$\begin{aligned} & \text { Size } \\ & \mathrm{mm} \end{aligned}$		$\begin{aligned} & \text { WT } \\ & \text { qms } \end{aligned}$				
Herse	15	4.8		0.015\%	<0.006\%	± 18	$\begin{aligned} & 76 \times 68 \times 40 \\ & 76 \times 68 \times 40 \end{aligned}$		240				
1+Y(\%)	30	4.8		0.015\%	<0.006\%	± 25			240				
h+rpues	$30+30$	${ }_{4}^{4.8}$		0.015\%	< 0.006%	± 25	120×78	+40	420				
+hr 124	60			0.01\%	<0.006\%	426	120×78	$\times 40$	410				
Hr128	60	4		001\%	<0.006\%	135	120×78	+ 40	410				
1+2\%34	120	4		001\%	<0.006\%	± 35	120×78	× 50	520				
har 248	120	8		001\%	<0,006\%	± 50	120×78	+ 50	520				
HY364	180	4		0.01\%	<0006\%	± 45	120×78	$\times 100$	1030				
HV16 ${ }^{\text {H }}$	180	8		0.01\%	<0.006\%	± 60	120×78	$\times 100$	1030				
Protection Full hadine Slew Rate $15 \mathrm{v} / \mathrm{Hs}$. Riserime: $5 \mathrm{ws} . \$ / \mathrm{N}$ ratie. 100 db . Frequency response (-3 dB) $15 \mathrm{~Hz}-50 \mathrm{KHz}$. Input sensitivity 500 mV rms Input Impedance $100 \mathrm{~K} \Omega$. Damping factor $100 \mathrm{~Hz}>400$.													
Prememp systems													
Modul* Number	Modula		Functions				Current Required	Price inc. VAT					
HY6	Mono pre amp		$\begin{aligned} & \text { Mic/Mag. Cartridge/Tune/ Tape/ } \\ & \text { Aux + Vol/Bass/Treb' } \end{aligned}$				10 mA	£7.60					
HY60	Siereu pre amo						Mic/Meg. Cartroge/Tuner/Tape/				20 mA	¢ 14.32	
HY73	Guitar pre amp		Two Guilar (Bass Lead) and MMC + separate Volume Bass Treble $+M_{1 x}$				20 ma	${ }^{5} 15.36$					
hy\% 78			20 mA	(14.20									

Most pre-amp modules can be driven by the PSU driving the matn powe amp
A separate PSU 30 is available purely for pre amp modules it required for
E5.47 linc. VAT.
Please send for detals.
Mount ing Board
For ease of consticction we recommend the B6 for modules $\mathrm{HY6}-\mathrm{HY} 13 £ 1.05$
C.

Model Number	For Use With	Price inc VAT
PSU 21 x	1 or 2 HY30	E11.93
PSU41x	1 or $2 \mathrm{HY60} ,1 \times \mathrm{HY}^{6060.1 \times \mathrm{HY} 124}$	¢13.83
PSU 42 x	1 ¢hYi28	¢15.90
PSU 43x	$1 \times \mathrm{MOS128}$	£16.70
PSU 51x	$2 \times$ HY128, $1 \times$ HY244	£ 17.07

Model Number	For Use With	Price inc VAT
PSU 52 L	$2 \times \mathrm{HY} 12^{4}$	${ }^{[17.07}$
PSU 53x	$2 \times \operatorname{MOS} 128$	¢17.86
PSU 54 x	$1 \times \mathrm{HY} 248$	£17.86
PSU 55 x	$1 \times \mathrm{MOS} 248$	¢ 19.52
PSU $71 \times$	$2 \times \mathrm{HY} 244$	¢21.75

Model Number	For Use With	Price inc. VAT
PSU 72 x	$2 \times+\mathrm{Y} 248$	(22.54
PSU 73x	1. HY364	± 22.54
PSU $74 x$	$1 \times \mathrm{HY} 368$	+24.20
PSU 75x	$2 \times \operatorname{MOS} 248$ i , MOS368	t24.20

[^1]
WTHALOT OF MELP riom OPre

PROFISSIONAL II.FIT THAT TVERY ENTHUSIAST

 CAN HANDIL...
Unicase

Over the years ILP has been aware of the need for a complete packaging system for it's products, it has now developed a unique system which meets all the requirements for ease of assembly, adaptability, ruggedness, modern styling and above all price.
Each Unicase kit contains all the hardware required down to the last nut and bolt to build a complete unit without the need for any special tools.
Because of ILP's modular approach, "open plan" construction is used and final assembly of the unit parts forms a compact aesthetic unit. By this method construction can be achieved in under two hours with little experience of electronic wiring and mechanical assembly

Hi Fi Separates

UC1 PRE AMP UNIT: Incorporates the HY78 to provide a "no frills", low distortion, $(<0.01 \%)$, stereo control unit, providing inputs for magnetic cartridge, tuner, and tape/ monitor facilities. This unit provides the heart of the hi fi system and can be used in conjunction with any of the UP Unicase series of power amps. For ultimate hum rejection the UC1 draws its power from the power amp unit.
POWER AMPS: The UP series feature a clean line front panel incorporating on/off switch and concealed indicator. They are designed to compliment the style of the UC1 pre-amp. Performance for each unit which includes the appropriate power supply, is as specified on the facing page.

Power Slaves

Our power slaves, which have numerous uses i.e. instrument, discotheque, sound reinforcement, feature in addition to the hi fi series, front panel input jack, level control, and a carrying handle. Providing the smallest, lowest cost, slave on the market in this format.

UNICASES					
HIFI Separates					Price inc. VAT
UC:	Preamp				£29.95
LPIX	$30+30 W / 4-8 \Omega$	Bipolar	Stereo	HiF	£54.95
UP2X	$60 W / 4 \Omega$	Bipolar	Mono	HiFi	£54.95
UP3X	$60 W / 8 \Omega$	Bipolar	Mono	HiF,	E54.95
UP4X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Mono	HiFi	£74.95
UP5 \times	$120 \mathrm{~W} / 8 \Omega$	Bipolar	Mono	Hifi	£74.95
UP6X	60W/4-8	MOS	Mono	HiF	£64.95
UP7X	120W/4-8 Ω	MOS	Mono	$\mathrm{HIFi}^{\text {a }}$	£84.95
Power Slaves					
US1X	$60 \mathrm{~W} / 4 \Omega$	Bipoiar	Power	Slave	£59.95
US2 X	$120 \mathrm{~W} / 4 \Omega$	Bipolar	Power	Stave	£79.95
US3X	$60 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	¢69.96
US4 X	$120 \mathrm{~W} / 4-8 \Omega$	MOS	Power	Slave	$£ 89.95$

[^2]
Middle East Wire \& Wireless Ltd.

TILEMAN HOUSE، 131 UPPER RICHMOND ROAD, PUTNEY, LONDON SW15. TEL: 785 6422, TELEX: 261768 MEWIRE G.
FULL RANGE OF VHF/UHF RADIOTELEPHONES BASE/MOBILE/HAND-HELD AND MARINE RADIOTELEPHONES

RSqß
National $A_{\text {materezz }}$ Radio lonvention National Exhibition Centre, Birmingham Saturday 5th March 10am to 6pm, Sunday 6th March 10am to 5pm FEATURING

Introduction to Amateur Radio for Beginners.

Annual RSGB HF Convention.

Major Exhibition of
Amateur Equipment \& Components.

Lectures on Propagation, VHF and Microwaves.

Forum for VHF and Repeater Enthusiasts.

Organised by RSGB Exhibition Rally Committee

Entrance Fee $£ 2$
Car Parking Free

Do you know anybody who can build a Digital Pulser for only £18.00?

The answer is yes - its YOU!

With GSC's new DPK-1 kit, you can build a sophisticated portable test instrument for stimulus/response testing. It automatically delivers just the right signal for whichever logic family you're using - and it's equally suited to single pulses or pulse trains at a frequency of 100 per second.
The fully featured DPK-1 kit includes all components, leads, circuit board and case - and is supplied complete with detailed assembly instructions and an operating manual.
Get rid of your digital hang-ups; send off for a DPK-1 straight away.
gLobal SPECIALTIES CORPORATION

G.S.C. (UK) LIMITED

UNIT 1, SHIRE HILL INDUSTRIAL ESTATE SAFFRON WALDEN, ESSEXCB113AO Telephone: Saffron Walden (0799) 21682 Telex: 817477
global specialties corporation (uk) limited, dept. 7x Unit 1, Shire Hill Inḑustrial Estate, Saffron Walden, Essex CB11 3AO

DIGITAL PULSER KIT DPK-1	-£22.42	Quantity Reqd	
For FREE catalogue tick box			

Name \qquad Address

[^3]\qquad or debit my
Barclaycard/Access/American Express. No \qquad \exp date

TAC

The best route for

 data communicationsNew, low-cost Terminal Access Controller (TAC) can solve both immediate and future data communications needs Versatile, software-controlled data switchboard caters for multiple service requirements and growing user needs without disrupting or replacing existing services and equipment

TAC SERIES 3 for micro-networking TAC SERIES 4 for the higher volume user
Whether you need 16 or 256 communications channels Xtec can provide full data communications capability, with intelligent switching. protocol conversion, multiplexing and coupling as required

For furtherinformation contact
Xtec Limited. High Street, Hartley Wintney Basingstoke. Hampshire RG278PB
Tel Hartley Wintney $4222 / 4233 / 4344$ Telex 849286 CAVAC

THE UNIQUE:-

‘ATLAS’ ROBOTIC SYSTEM

- INTELLIGENT/BUILT-IN MICROCOMPUTER
- SIX OPERATING FUNCTIONS. STEPPER MOTOR DRIVEN
- high precision repeatability of operation sequence

LIGHT INDUSTRIAL QUALITY
EASY GENERATION OF OPERATION SEQUENCES FROM THE REMOTE CONTROL PAD SUPPLIED, OR FROM ANY EXTERNAL COMPUTER

THE SUPERB ‘ATLAS ROBOT REPRESENTS JUST ONE ITEM FROM OUR EVER-EXPANDING RANGE OF MICROPROCESSOR TEACHING SYSTEMS.

SEND FOR DETAILS
TODAY, FROM THE FASTEST GROWING SUPPLIER OF MODERN EDUCATIONAL MICROELECTRONICS

L.J. ELECTRONICS LTD.

FRANCIS WAY, BOWTHORPE IND ESTATE. NORWICH, NR5 9JA TEL: 0603-748001/2 TELEX: 975504

RADIOCODE CLDCKS

are powerful and comprehensive instruments which receive, decode and analyse time-coded standard frequency transmissions to provide accurate, secure and completely automatic time/calendar or synchronisation systems.

Applications

- Automatic master clock and slave controller.

Synchronisation of separate equipment and events.
Programmable energy management system.
Computer clock/calendar with battery backup.
Data logging and time recording.
Process and equipment control.
Broadcasting, Astronomy, Navigation
Satellite tracking.
If you have a time or synchronisation problem, write or phone for further details of our portable and new microcomputer-controlled Radiocode Clocks.

Circuit Services, 6 Elmbridge Drive Ruislip, Middlesex. Ruislip 76962

WW - 031 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10 14 days' delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAY'S INN ROAD, W.C. $1 \quad$ Phone: 01-837 7937
 Telex: 892301 HARTO G

The answer is almost certainly no, unless you've got your hands on a brand new Keithley 132C.

The latest addition to a trend-setting range of handheld units from Keithley Instruments, the 132 C is a $31 / 2$ digit meter with TRMS, TEMP and 0.25% DCV accuracy.
Key features include

- AC and DC amps from $1 \mu \mathrm{~A}$ resolution to 2 amps full scale
Qhms from $100 \mathrm{~m} \Omega$ resolution to $20 \mathrm{M} \Omega$
DC Volts ($\pm 0.25 \%$ reading +1 digit)
TRMS AC Volts from $45-500 \mathrm{~Hz}$ range
($\pm 1 \%$ reading +9 digits)
- Temperature Range: $-20^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
($\pm 3 \%+1$ digit), $150^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}(\pm 3 \%$ of
reading), Type K non-linearized, $1^{\circ} \mathrm{C}$ resolution For more information get in touch now. You'll find it pretty hot stuff!
- Model 132F available for those requiring fahrenheit scales

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL Telex 847047

HF COMMUNICATIONS RECEIVERS

 FOR
POIIT TO POINT/TRAMSPORTABLE

 AND MaRIIIE SSSTEMS
DESIOHED AND MANUFACTURED TO HIGHEST IHTERMATIONAL SPECS

Fully Synthesised
10 Hz or 100 Hz steps
Continuously Tuned 50 KHz to 30 MHz Modes LSB/USB/CW/AM/FSK
Stability
± 1 part in $10^{7 / 0} \mathrm{C}$
Tuning Keypad/Spin/Decade
Power Supplies
$110 \mathrm{~V} / 240 \mathrm{~V}$ AC and 24 V DC

WE ANNOUNCE NEW MODELS

(a) SR 520 To meet new C.E.P.T. Spec for Ships Main Receiver.
(b) SR 522 with Preselector for Point to Point/Transportable.
(c) SR 530 As (a) above but MICROPROCESSOR/KEYPAD controlled, 200 channel memory, Scanning.
(d) SR 532 As (c) above but for Point to Point/Transportable.

OPTIONS. Full Remote Control by VHF Radio or Telephone Line, Dual Diversity, FSK Demodulator and 600 ohm Line Amplifiers.

SEND FOR TECHNICAL BROCHURES TO:
VIGILANT COMMUNICATIONS LTD, UNIT 5, PONTIAC WORKS, FERNBANK ROAD, ASCOT, BERKS, ENGLAND TELEPHONE: (0344) 885656 TELEX: 849769 VIGCOM G

WW - 036 FOR FURTHER DETAILS

Stocks of standard items exceed a quarter of a million. Individual units to the tightest specification made to order.

This technology is avaitable now from
Interface
Quartz
Devices
Limited

29 Market Street Crewkerne Somerset ta: 870

Crewkernc (0460) 74433 Telex 46283 inface 5

WW - 048 FOR FURTHER DETAILIS

RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME
Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue. \star New sealed lead range now available \star Write or call at:
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764
After Hours 0977616913

EP4.000
 EPROM EMLLATOR PROGRAMMER

The microprocessor controlled EP4000 will emulate and program all the popular EPROMs including the 2704, 2708, 2716(3), 2508, 2758, 2516, 2716, 2532 and 2732 devices. Personality cards and hardware changes are not required as the machine configures itself for the different devices. Other devices such as bipolar PROMs and 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities, video output and serial/parallel input/output provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

Items pictured are: EP4000 Emulator Programmer - £545 + £12 delivery; BSC buffered simulator cable - £39; MESA 4 multi EPROM simulator cable £98; 2732A Programming adaptor £39; 2764 Programming adaptor - £64; 2564 Programming adaptor - £64;

- As a slave programmer used in conjunction with a software development system or microcomputer.
- As a real time EPROM emulator for program debugging and development (standard access time of the emulator is 300 ns).

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for data entry, shift, move, delete, store, match and scroll, and a $1 \mathrm{k} \times 8$ RAM allows temporary block storage. A video output for memory map display, as well as the built-in 8 digit hex display allows full use of the editing facilities to be made.

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - £78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65.

VAT should be added to all prices

Write or phone for more details

DISTRIBUTURS REQUIRED

GP Industrial Electronics Ltd.

VERTICAL RANGE FROM 3-10 SOCKETS ALL EX-STOCK!
SPECIALS TO ORDER

WHEN IT COMES TO POWER FOR RACKS IT MUST BE OLSON

NEW receivers from Eddystone

PLEASE ASK FOR DETAILS

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone : 021-475 2231 Telex : 337081
A GEC. Marconi Electronics Company

umbit
 INTERNATIONAL

THE MOST COMPREHENSIVE RANGE OF COMPONENTS, KITS AND MODULES IN THE WORLD \& THERE'S ONLY ROOM FOR A fRACTION HERE, GET THE CATALOGUE AND FIND THE REST.

visa

Ryral shop orzining hours

 Monday to Thursday 9.00-6.00ALL PRICES SHOWN EXCLUDE VAT. P\&P 60p per order.
hi: performance hi: comperitive hi:

Thi 26 FULLY PROTECTED RANGES
Hif LARGE $31 / 2$ DIGIT DISPLAY
hil DC VOLTS to 1000 V AC to 750 V
hif AUDIO TONE and OHMS to 20M
hifi AC and DC CURRENT to 10 AMPS
hif hFE TRANSISTOR and DIODE TESTER MIC 3300A has 19 ranges, no ACl but includes NPN and PNP hFE Transistor Test. Ask for FREE DATA

Easy to Order: Fill in and post the coupon enclosing cheque/P.O./Credit Card details or Official Order.

Name
Address

Tel. No
Please send
MIC 6000 Z at $£ 54.00$ (inc. VAT $+P+D$)
MIC 3300 A at $£ 49.50$ (inc. VAT $+P+D$)
Luxury Carry Case (inc. VAT $+P+D$) at $£ 5.00$

Total f
Please tick and fill in number of card
Barclaycard Access American Express Diners Club
Credit Card No
Please allow 14 days for delivery

House of instruments.
Clifton Chambers. 62 High Street.
Saffron Walden. Essex CB10 1EE
Telephone (0799) 24922 Telex 818750
(odillpelilive hi: House of instruments Ltd WW - 007 FOR FURTHER DETAILS

	MaRCONI SIGNAL GEMERATORS TF2002A/S (illustrated) $10 \mathrm{KHz}-72 \mathrm{MHz}$. AM/FM $\not \subset 750$ TF2002. As above but AM only. £450 MARCONI TF1066B/1. AM/FM Generator $10-470 \mathrm{MHz} .0 .2 \mathrm{uV}-200 \mathrm{mV}$ output. FM De viation up to $\pm 100 \mathrm{kHz}$. $\mathbf{£ 5 5 0}$ MARCONI TF995A5. AM/FM Generator. Narrow deviation model 995 covering 1.5 220 MHz . $£ 450$ MARCONI TF1064B/5. AM/FM Signal genarator covering in three ranges $68-108$, $118-185$ and $450-470 \mathrm{MHz}$. FM fixed deviations of 3.5 \& 10 kHz . AM fixed 30%. $£ 225$
	'DOLBY' MOISE WEIEHTING FLITERS No. Э8A. Noise weighting filters for CClA/ARM gnal-to-noise ratio measurements. As new units. 40 gach (+f 1 p 8 p)
	BECKIMN TURNS COUNTE DIALS niature type (22 mm diam.). Counting up 15 turn "Helipots". Brand new with unting instructions. Only $£ 2.50$ each.
	\downarrow VARIACS - SPECIAL PURCHASE We now have a stock of used but excellent condion, fully tested, variable $(0-260 \mathrm{~V})$ transformers at he following ratings. ERCO (enclosed) $2 A$ ERCO (non-enclosed) 8 A. $\mathrm{E} 12.50+£ 1.50 \mathrm{pp}$ $\mathrm{F} 25.00+£ 2$ ERCO (non-enclosed) 10A ENITH (enclosed) 8A $\mathrm{fz8} .00+£ 2.50 \mathrm{pp}$ $\mathrm{fz2800+£2.50pp}$ Iso available, small quantity of Heaw Duty and 3 hase Variacs. P.O.A.
	witchable 1 W \& 10 W FSD. Internal 3.5 \& 8 Ohm ad impedances. Housed in grey enamelled case $\times 6 \times 3^{\prime \prime}$. Large easy to read $3^{\prime \prime}$ sq. meter. Scope EATut provision. $£ 10(+£ 1)$. EATHKIT Model AW-IU. internal load switchable 8, 15 \& 600 Ohm. Meter scaled 0-50W (+dB cale). 5 Ranges from 5 mW - 50 W FSD. Mains owered $\mathbf{f 2 5}(+f 1)$. ARCONI TF893A. 1 mW -10W Full scale in 5 anges. Impedances $2.5-20 \mathrm{~K} \mathrm{Om}$ in 48 steps. irect calibration in Watts and dBm. $\mathbf{6 8 5}(+£ 2)$.
	PO JACK SOCKET STRIPS. 20-WAY Type 320 (3 01e) $£ 2.50$ вa. Type 520 (3-pole with switching ontacts) $£ 4$ ea. Please include 35 p each for ostage on these. GPO type 316 jack plugs for oove 20p ea. ($10+$ post free). Plus VAT please. each.
	PHILIPS RF SIGNAL GENERATOR As now condition Philips PM 5326. AM/FM RF Sig al generator covering 0.1-125MHz. Integral 5 digit requency display. Mod AM \& FM + Sweep facili es. 1 only available.

An Approved Professional Source.

 Semiconductors and Indicators for use in Electronc Warfare, Radio and Sat⿻l丨ilite Commuricatio 7, Fadar and Inustrial Heating Systers.

Is an MOD Contractor with an ir-house microfiche based sourcing service covering current and "ou: of productions NATO, CV and Commercial Part Wum Jered devices we could be Your Approved Proess onal Source.

Hall Electric Lid., Electran House, Cray Avenue, St Mary Cray, Opington, Kent BR5 3PM, England. Telephone: O-pington (0689) 27099, Telex: 396141.

THEALL-ELEGTRONCSSS OTHEBEXHIIIIO

Three events. For free!
First the Show of shows
You may visit 450All-Electronics/ECIF stands at the Barbican in air-conditioned, carpeted comfort free of charge - if you use the coupon on the right.

You may also have the 120 -page 'MorganGrampian' guide to both the industry and the event absolutely free as well (ifyou kindly allow us $26 p$ for postage and packing).

Now the ticket will also gain you free entry to our two sister events

'Circuit Technology' at the Kensington Exhibition Centre; and 'Fibre Optics' in the adjacent.to the-Barbican Porter Tun Room.
There has never, ever, been such an opportunity to glean the facts and figures from Component and Instrument manufacturers and, as an innovation in ' 83 , the
PCB and Fibre Optics industries,

A refreshing scope of options that can be yours as fast as you can spell He ineken!

And for a fiver..?

In conjunction with 'Electronics Times' we proudly present 'The Business of High Technology'

Four of the world's most honoured specialists revealing industry trends in an action-packed, threehour session.
(Come in the morning, or the afternoon; our programme is duplicated.)

We're catering for no fewer than 2,500 people at each session; and, of course, you can see the exhibition as well - either before or after.

The setting is the most prestigious in Britain: The Barbican's Concert Hall, of which Her Majesty the Queen said: "It must have claim to be one of the modern wonders of the world"
Sit in Iuxury - and hear from Wiff Corrigan, Founder and President,LSII Logic: "Semi-Custom Circuits" Pasquale Pistorio, Chief Executive Officer, SGS: "The European Semiconductor Industry." John Alvey, Senior Technical Director, British Telecom: "Fisth Generation British Computers". Derek Roberts, Director of Research, GEC "Key Technology, the User's View"' The overall title: The future of electronics and the business of high technology.

All for only a five pound note! (Order form alongside.)

Go and see

Top: Fibre Optics (so far); Middle C.T.; Bottom A.E.S. It's a 50 -yard walk from the Barbican's Hall to the Porter Tun Room. And we've there-and-back buses on the hour, every hour, betwixt Kensington and the Barbican for those interested in Circuit Technology and the A.E.S
Amphenol; Amplicon; Belling \& Lee; BICC General Cables; Cossor Electronics;Dynacast International; Ealing Beck;Eurotec OpticalFibres: Fibre Optiques Industries; GEC Optical Fibres; Heilerman Deutsch;
Honeywell Control Systems; Π Cannor STC Components: Honeywell Control Systems; IT Cannon; STC Components;Lambda Photo-
metrics; Laser Lines; London Universities;MCMichael; MPC Electronics; metrics; Laser Lines; London Universities; McMichael; MPCElectronics;
Melles Griot; Norban Electo Optics; Optical Fibres; Oriel Scientific; Pilkington PE; Pirelli General; Plessey Optoelectronics; Production Techniques; Rofin; Sira; Standard Telephones \& Cables; Suhner Electronics; Systems Production; TBL Fibres; Thomson-CSF Components \&
Material; Vickers Instruments; Walmore Electronics: York Technology:
Alpha Metals. Arnold Electronics, Argos Electroncs. AEGG-Telefunken (UK),
Anda Circuts. BPA TTechnology \& Managenent). G. Bopp \& Co. Boby Anda Circutt. BPA Technology \& Management, G Bopp \& Co. Boby
Tempest \& Associates Bush Beach Engineering Coates $\$$ pecial Products;
Chemlec Solutions. Circut Foto Products. Cirquip R \& Cochrane \& Johnson. Ciba Gegy Plastics \& Additives Co, Computamation; Digtal Data
Electronics. DPC Electronics, Dek Printing Machines, Degussa, Dormiver, Du
Pont De Nemours International SA, Du Font UK, Dymet Ailoys, EGM Solders,
 GB). Fry's Metais. G\&H Electrographics: GIS Flexible Materials. GSPK
(Cicuits Gemini Electronic Developments, Huter Equipment Sales,
Instagraphic Products. International Tin Research Inst, Imasa, IT//Cannon
Electric (GB): Kam Circuits Lamco Liton Precision Producs int ins Electric (GB): Kam Circuts, Lamco, Litton Precision Promucts Int Inc, Lea,
Ronal (UK). M\&T Chemicals, MEPD, MacDemid GB; Multicore Solders,
Manchester Circuits; McGregor Industries; Muirtead Vactric Components, Manchester Circuits; McGregor Industries; Muirhead Vactric Components,
Marconi, Norplex UK Div UOP. Nevin Electric (Holdings), New England Prestwick Circuits: Photopolymer Systems; Photoprinting Products; Planer Chernicals, Systems Efticiency. Sertico UK. Scientific \& Electronic Enterprises, S.BE.E.L., Sarat Process Photography Thiokol Chemicals. Vero W Canning Materals. Welwyn Printed Circuit Services AB Electronic Products Group; AEG Telefunken (UK); AMF Potter and
Brumfield; AMI Microsystems; AVX; Able Systems; Adcola Products; Allen Bradley Electronics, Alma Components (ESY); Alusett UK. Ambar Components; Amplicon Electronics; Analog Devices; Anders Electrical; Anglaa Components; Aerial Pressings; Aries Electronics (Europe); Armon Electronics: Arrow Hart (Europe), Asnburton Resistance Co.; Asncrot BICC General Cables; BICC Vero Electronics; Bach Simpson (UK); B and R Electrical Products; Bahco Record Tools; FWO Bauch; Belclere; Belf \& Howell: Biack Star; Boxer Marketing; Brandenburg; Briticent international; Britimpex; British Standards Institution; Broyce Marvid; AFBulgin \& Co. CGSS Resistance

Cambridge Electronic Ind.; Campbell Collins; Capital Electronic Plastics Divis: Celab; Centronic. Cherry Electrical Products; Ciba-Gelgy Terminals: Compstock Electronics; Conductive Products: Clale Colt Industrial Products. Cooper Tools. Corintech; Corning (Electrosil Division): Coutant Electronics; Cox; Critchely Brothers; Custom Cases DAT Eng ineenng Datacapture (UK); Dage Eurosem: Danavox (Great Britain), Danbridge UK; Dean Electronics: Diamond Incorporated; Datac; Daturr; S Davall \& Sons, Dubiler Components. Duracell UK: Duralith Corporation; ERG Components; ETRi Fans. East Grinstead Elec: Electronic Components ind. Fed.; Electronics
Weekly; Electrautom; Flectronic Weekly; Electrautom; Electronic Components; Electroplan; Electrothermal
Engineering; Enclosure Technology; English Electric Valve Co:G English Electronics; Exacta Circuits; FR Electronics; Farnell Electronic Components; Farnell Instruments: Farnell international Instruments Felco; Ferranti
Electronics; Fieidtech Heathrow: Flair Electronic Systems: GE Electroncs Electronics; Fieidtech Heathrow: Flair Electronic Systems; GE Electronics
(London); General Instrument Microelectronics, Genrad: Gentech International Giltect; Gould Power Supplies UK; Graphic Electronics; Greendale Electronics; Greenpar Connectors: Gresham Lion; Groatmoor, Hakuto International UK: Hamlin Electronics Europe, H and T Components. H B Electronics; Harris Systems; Harrow Scientific; Harting Elektronik, Harwin Engineers SA, Hawke Electronics: Hayden Labaratories; Healey Meters: Hesto (Henkels Stocko),
Highland Electronics; Hinchley Engineering Co. Hitachi Denshi (UK); Hitach Highland Electronics; Hinchley Engineering Co.; Hitachi Denshi (UK); Hitachi
Electronic Components (UK): Hivolt Capacitors; Holden and Fisher Electronic Components (UK); Hivolt Capacitors; Holden and Fisher,
Holsworthy Electronic (Sales); Honeywell Controi Systems; House of Instruments. Howells Radio; Hunting Hivolt; Hybrid Systems: Hypertac; I and J Products; IC Master: ICC Information Group; IQD Crystai Electronics: ITT
Cannon; STC Components Group; ITT Semiconductors; ITT Switches IKI Cannon; STC Components Group, ITT Semiconductors; ITT Switches (UK)
Imhof Bedco Stand Products; industraa Science: Imo; Instelec; The Institution of Elec. Engs. Intel Electronics Group; Internationat Rectifier Co. (GB); Inters: Oatel (UK) : intime Electronics, Iriandus Circuits; Iskra; Ivo Counters, Jackson Brothers: Kelvin Impex: Kemo; Klippon Electricais, Lambda Electronics; FC Lane Electronics: Lawtronics: Leonische Drahtwerke AC Nurnberg: Lee Green Precision inds.; Lemo UK; Light Soldering Developments; Littex; Littefuse
(GB); Londex; Longs; Lyons Instruments; 3 UM United Kingdom; Microtesting The McMurdo Instrument Co: Marconi Instruments; Metway Electrica; industries; Micro Circuit Engmeering; John Minister Instruments: Mitsubishi Electric (UK), Molex Electronics, Mostek (UK): Moulded Electronic Components int.: Mullard; Murata Erie Electronics; NFI Electronics: NSF;
National Panasonic (UK); Neohm (UK); Newport Components; Nietronis National Panasonic (UK); Neohm (UK); Newport Components; Nietronix:
OK Machine \& Tool (UK); Optima Enclosures; Oxley Oevelopments; PSP Electronics; Papst Motors; Parmeko; Peico (Electronics); Pickerng Electronics: Plessey Circuits; Plessey Connectors; Plessey Hybrids; Plessey Semiconductors; Portescap (UK); Power line Electronics; Powertron; Precicontact; Precision Metal Depositors; Precision Circuits; Precision Components \& Equipment; Precission Instruments: Preformations (Magnets): Pressac; Print Sevice BV:
Protech BPL; Protronic 24; Pulsetek; Pye Unicam: Quadrant Meter Company Protech BPL; Protronic 24; Pulsetek; Pye Unicam; Quadrant Meter Company;
Quiller Components; RF Components; RS Components. Racal Dana Instruments: Radatron: Radatron Components. The Radio Resistor Company; Radio \& Electronics World (AMBIT); Radiotronic (UK), Rainford Metals; Raytheon Semi. Conductor, REMO Components Group, Redpoint; EG
$\&$ G Reticon; RIFA AB. Richo International; Rittal; Roadrunner Electronic Products; Rockwell, Salford Electrical Instruments, Sealectro, Seltek instruments, Sternice; Siemens; Sifam; Siliconix; Souriau (UK); Spectrot
Semtech; Ster Reliance: Sprague Electric (UK); Star Systems (RHB); Steatite Insulations;
Stocko (Metal Works): Stotron Sylex. Superfiexit Swissinco: Syme Electronics' Synch, Suflex; Superflexit-|core: Suvicon, Swissinco; Symec Electronics; Synchro Services; TRW Carr: Tam Systems:
Techmation, Techn! Measure; Tekelec Components; Teknis: Teledyne

WCisfrest CAMNOTR BaCH.

SPECIFICALLY DESIGNED FOR THE $280=$ This MACHINE CYCLE LOGIC STATE
ANALYSER gives a logic state map of 37 (or 4096*) machine cycles leading up to a preset conditional break. Passive, timed by the target system clock, the analyser samples the address, data and control buses simultaneously with the CPU and stores them with an elapsed M cycle and clock count. Specific machine cycles may be excluded to increase the apparent memory depth. Up to FFF delay on start/ end acquisition condition true.
*Available with 2 K or 4 K memory depth and 4,6 or 8 MHz speeds. FULL SPECIFICATION AND DETAILS

SEYKER

LIMITED
First Floor, 18A Bridge Street, Godalming, GU7 1HY. Telephone 0486820924

HitachiOscilloscopes performance, reliability, exceptional value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a newly-extended range that represents the best value for money available anywhere.

V-152F 15 MHz Dual Trace V-202F 20MHz Dual Trace (illustrated)
V-203F 20 MHz Sweep Delay
V-302F 30 MHz Dual Trace
V-352F 35MHz Dual Trace

V-353F 35 MHz Sweep Delay
V-650F $\quad 60 \mathrm{MHz}$ Dual Timebase, Trigger View V-1050F 100 MHz Quad Trace, Dual Timebase V-209 20 MHz Dual Trace, Mini-Portable V-509 50 MHz Dual Timebase. Mini-Portable V- $134 \quad 10 \mathrm{MHz}$ Tube Storage Oscilloscope

Prices start from under $£ 250$ (ex. V.A.T.) including 2 high-quality probes and a 2 -year warranty. We hold the range in stock for immediate delivery
For colour brochure giving detailed specifications and prices ring (0480) 63570 Reltech Instruments, 46 High Street, Solihull, W. Midlands, B91 3TB

WW - 057 FOR FURTHER DETALLS

INSTANT PRINTED CIRCUITS!!

Make your own - to professional standards - within minutes using
either "Fotolak"Light-sensitive Aerosol Lacquer or Pre-coated board. No Darkroom or Ultra-violet source needed!

Fotolak aerosol
$£ 2.50$ (30 p)
Developer \qquad .f0. 30 (15p) Ferric Chloride. £0.60 (45p)
Copper-clad Fibre glass Boards:
Pre-coated Fibre-glass Board: $8^{\prime \prime} \times 4^{1 / 2^{\prime \prime} £ 1.75(25 p)} 16^{\prime \prime} \times 9^{\prime \prime} \ldots € 7(60 p) \quad 24^{\prime \prime} \times 18^{\prime \prime} \ldots \mathrm{f} 18(£ 1.70)$ $8^{\prime \prime} \times 9^{\prime \prime} \ldots \mathrm{£} 3.50(45 \mathrm{p}) \quad 24^{\prime \prime} \times 12^{\prime \prime} \ldots \mathrm{£} 13$ (£ 1.20) Eurocard £ 1.25 (25p) Double-sided Board (all sizes) add 20\%
Postage individual items in brackets. Maximum charge $£ 2$ per order
12V FLUORESCENT LAHTAR FANTASTIC BARGAN!
21" 13 -watt Batten Type (complete with tube).
£6 (f1.20)
Kit Form: $£ 5$ ($£ 1.20$). Inverter Transformers only:£1 (30p)
MHTE HOUSE ELECTRONGS PRA SAMDS, PENZNCE TR2 ITF Tolophone: Germoe (73 -676) 2329

RF LINEAR POWER AMPLIFIERS

TYPE 9045
MOS WIDEBAND LiNEAR
POWER AMPLIFIERS
4 watts and 20 watts max. RF output. Without tuning. Power gain 10 dB

TYPE $904510 \mathrm{KHz} .-100 \mathrm{MHz} .4$ watts

$\mathrm{f} 49.50+£ 2$ p\&
TYPE 905020 MHz .200 MHz .4 watts $£ 49.50+£ 2 p \& p$
TYPE $906610 \mathrm{KHz} .-100 \mathrm{MHz}$. 20 watts $120.00+£ 4 \mathrm{p} \& \mathrm{p}$
$\mathrm{f} 180+f 8 \mathrm{p} \& \mathrm{p}$
TYPE 9064 As above with integral mai
s power supply unit
nit........ f180+£8p\&p
$\mathrm{f} 120+£ 4 \mathrm{p} \& \mathrm{p}$ TYPE 9065 As above with integral main

TYPE 90s8

TELEVISION LINEAR POWER

 ApPLIERSBands IV or V.
Channel group 'A' 21-34, 'B' 39 -
51, or 'CD' $48-68$

TYPE 905210 mW . input, 500 mW . output. Adjustable gain.

$\mathrm{f} 120+\mathrm{f} 4 \mathrm{p} \& \mathrm{p}$ TYPE 905850 mW . input, 2 watts output . TYPE 9059500 mW . input, 5 watts output

TYPE 9054

VIOL LIAR POWER

AMPLiFIERS

Tuned to your specified
frequency in the range 1-250 MHz .
TYPE 9054200 mW .2 watts til put, 20 watts output. Gain adjustable $10-20 \mathrm{~dB}$

LOW NOISE GASFET PREAMPLIFIER

TYPE 9008 in 9010
TWO STAGE GASFET STRIPLNE PREAMPLIFIER
Television bands IV or V.
Channel group ' A ' 21-34, ' B ' 39-
51 , or 'CD' 48-68
TYPE 9008 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain $25 \mathrm{~dB} £ 65+£ 1.50 \mathrm{p} \& \mathrm{p}$ TYPE 9002 Two stage Gasfet preamplifier. N.F. 0.7 dB . Gain 10.35 dB . variable. High Q
 TYPE 9004 specified frequency in the range $250-500 \mathrm{MHz} \ldots \ldots \ldots .65+£ 1.50$ p $\& \mathrm{p}$ TYPE 9004 UHF TWO STAGE Gasfet preamplifier. N.F. 0.6 dB . Gain AJ . High O filter Aligned to your specified frequency in the range $250-500 \mathrm{MHz}$. High f (f1.50 $\mathrm{p} \& \mathrm{p}$

$$
\text { TYPE } 9011 \text { Gasfot preamplifier mains power supply unit............................. } 15+f 1.50 \text { p\&p }
$$ TYPE 9010 Masthead Weatherproof unit

TYPE 9031 N.F. 3.0 dB Gain 40 dB
£ $39.50+\mathrm{f} 1.50 \mathrm{p} \& \mathrm{p}$
TYPE 9056 1500. 3.0 dB Gain 40 dB ... £59.50+£1.50 p\&p TYPE 8033 PHASE LOCKED SIGNAL SOURCE using low frequency reference crystal TYPE 8033 PHASE LOCKED SIGNAL SOURCE using low frequ
Specify output in the range 1.600 MHz . Output $10 \mathrm{~mW} .+10 \mathrm{dBm}$.

TYPE 9026

GASFET/MOSFET RF PREAMPLIFIER

Aligned to your specified frequency in the range 1-250 MHz
Masthead/local use
TYPE 9026 N.F. 1.0 dB . Gain $10-40 \mathrm{~dB}$. variable.
TYPE 9026 FM . As above. Band $1188-108 \mathrm{MHz}$
f $£ 39.50+£ 1.50$ p\&p
variable. $.59 .50+£ 1.50$ p\&p TYPE 9035 Mains power supply unit for above f195.00+£1.50 p\&p
$\mathrm{f} 19.50+£ 2.50$ p\&p

CX80 colour MATRIX PRINTER

New low price $£ 795$ + V.A.T

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presenration of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE 488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages side by side in full colour. See Prestel 200650.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

TV \& FM Test

- Colour Bar Pattern Generators
- Sweep and Marker Generator
- CRT Tester
- Field Level Checker
- Signal Level Meter
- High Voltage Metered Probe
- Signal Generators

Audio Test

- Generators
- Attenuators
- Systern Analyser
- Audio Tester
- Distortion Meter
- Equaliser Amp
- Wow and Flutter Meter
- Frequency Response Recorders
- Millivaltmeters
- Log Amplifier
- Speaker Analyser

WW - OGA FOR FURTHER detalls

When you select a 1 instrument from the Leader range, you get more than just sound engineering. That's guaranteed - by rigorous quality assurance at manufacture, and a one year wa-ranty.
A broad range tha: covers most areas of test, measurement and calibration, with advanced features and high specification as standard. Prices th at are lower than you'd expect are the bonus. Probes, covers, hcods and pouches are all available to enhance the application potential and ensure that Leade-instruments set the pace for others to follow.

ELECT ONICS LHNTED

wireless world

Editor:

PHILIP DARRINGTON
01-661 3128
Deputy Editor:
GEOFFREY SHORTER, B.Sc.
01-661 8639
Technical Editor:
MARTIN ECCLES
01-661 8638

News Editor:
DAVID SCOBIE
01-661 8632
Drawing Office Manager:
ROGER GOODMAN
01-661 8690
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130

BARBARA MILLER
01-661 8640

Northern Sales:
HARRY AIKEN
061-872 8861
Midland Sales:
BASIL McGOWAN
021-356 4838

Classified Manager:
BRIAN DURRANT
01-661 3106

IAN FAUX
01-661 3033

Production:

BRIAN BANNISTER
(Make-up and copy)
01-661 8648
Publishing Director DAVID MONTGOMERY 01-661 3241

Design for living

Military needs are a powerful stimulus to invention. Large companies fall over themselves to tender for the latest 'defence' requirement for a communications system or missile guidance, and many rely on military procurement for their existence. No expense is too high and the concept of deterrence, which implies that none of the equipment will ever be used for its designed purpose is, apparently, irrelevant.

Domestic equipment is the other major sink for materials and inventive talent. The pace of development in passive home entertainment shows no sign of slackening, even though the performance of, for example, audio systems is at the stage where it takes a collection of instruments to measure the difference between the original and the reproduction. Video recorders are a latter-day "opium of the people".

All this is not to say that the design effort expended on offensive or brainparalysing electronics is wasted: very little ingenuity is ever a total loss, since engineering is engineering, in whatever walk of life it is applied, and 'spin-off' is always a benefit.

It seems to us that the truly gigantic body of knowledge in electronics should be applied in an immediately useful, peaceful and thrifty manner to enrich human life. Since most of us in the developed countries already enjoy an existence which is far above the tolerable, it makes sense to assist those whose lives are made more difficult than they need be through physical handicap.

With this in mind, our publishers announce this month a design competition, very open in its aims, to stimulate invention of aids to the handicapped. Anyone can enter individuals or organizations - but perhaps the most rewarding form of entry would be by a small group, with the implied teamwork behind it. Such a
competition offers two challenges: firstly, to decide what is needed, to stick to the decision when the going becomes difficult and not to change horses; and secondly, to carry out the design work itself - perhaps the easier of the two.

The constraints to be applied, both in selection of goal and its realisation, are few, and are practical. For example, it serves no purpose to design a brilliant device to enable the deaf to hear if no-one can afford to buy it: similarly, a blind pedestrian will not thank the designer of his 'hazard detector' if it breaks down every time he goes out, leaving him exposed in the middle of the High Street race-track.

It must be feasible to manufacture the equipment, and it must be usable by the type of person for whom it is intended: aids have been produced in the past for which a commercial pilot's licence would have been a distinct advantage.
Maintenance - replacement of batteries, mechanical attention and the renewal of components such as tungsten bulbs should be kept to a minimum and, above all, the device must be safe: to be savaged by a deranged robot would not contribute greatly to one's peace of mind.

The rules stipulate that designs should be electronics-based, for the obvious reason that our readers are electronic engineers: this does not mean that designs for equipment which would be better without electronics will be welcomed -a sense of proportion is necessary. And solutions which are simply software written for existing hardware are not acceptable: this is an engineering competition, for which engineering design skills are needed.

Schools, university departments, company design teams and individuals are all eligible to enter: the prizes are worthwhile and the highest reward of all is that of having assisted someone to live a more active life.

Domestic alarm system

A low-cost unit which possesses a number of features designed to cause the maximum confusion and frustration for a house-breaker

Of the many low-cost domestic alarm systems on the market today, most combine their arm, disarm and other circuitry in a single box, sometimes including a built-in intruder sensor and a noisemaker. Although convenient to use and install, such devices can be selfdefeating: if spotted by an intruder, they may be quickly disabled or destroyed. This relatively economical project is designed to be less vulnerable. A remote arm/disarm facility and remote sensors allow its main unit to be safely hidden and locked away. Once the system fires, clocked logic sequentially sets off three individually placed noisemakers to distract and confuse the intruder. These later shut down to save neighbours' nerves, but an outdoor lamp flashes for an additional 20 minutes to persuade them that a true break-in has occurred. The lamp also helps police localize the endangered premises. Finally, the system rests and awaits a new trigger. An external storage battery provides the relatively high current consumed by the noisemakers and the lamp, and

By Paul E. Bruin

supplies over-all circuit power in case mains power fails.

Main unit

Figure 1 shows the system's main circuit, controlled via input terminals DISARM and FIRE. The FIRE input goes low only when a normally closed alarm loop, routed through perimeter sensor switches to V^{+}, is broken. If DISARM is made high, the output of IC_{2} goes low, forcing the $\overline{\mathrm{Q}}$ output of master latch $\mathrm{IC}_{3 \mathrm{~b}}$ and $\mathrm{IC}_{3 \mathrm{c}}$ high. This clears or resets all subsequent circuitry and prevents further circuit operation. The DISARM high level is 9 V . Should external tampering short-circuit DISARM to $\mathrm{V}^{+}(13.8 \mathrm{~V}), \mathrm{Tr}_{8}$, acting as a

Fig. 3. Remote-control unit.

Fig. 2. Counter $I C_{4}$ timing diagram, showing 20s delay after FIRE input.

Fig. 4. Power supply, which also charges external battery.
level detector, inhibits false disarming by clamping the IC_{1} input to ground.

If DISARM goes low, all remains passive until the alarm loop is broken. Then, IC_{1} output goes high, producing a fast, negative-going voltage at pin 4 of Schmitt trigger $\mathrm{IC}_{3 \mathrm{a}}$ as it inverts the change. This edge triggers the master latch, bringing its \bar{Q} output low and further enabling the system. Safety relay RL_{1}, is activated by driver transistor Tr_{1}, providing current for the other relay contacts while switching on a red led to indicate the FIRE condition. The system can be placed in the FIRE or DISARM states manually by depressing S_{1} or S_{2} respectively.

Ripple counter IC_{4} is the system clock. It divides its internal oscillator frequency (set at 12 Hz by R_{1} and C_{1}) by 2^{n}, where n can be one of several integer values depending on the output pin selected. Thus, the 2^{8} output pin of IC_{4} completes a timing cycle $\tau=\left(2^{8} \times 1 / 12\right)$ about 20 seconds after the clock is enabled by a FIRE input. For the first half of this period, the 2^{8} output stays low; it then sets latch $\mathrm{IC}_{5 \mathrm{a}}$ at its 10 -second positive-going transition. This enables IC_{6}, a paralleloutput shift register, which serially loads a 'one' every time a 10 -second signal clocks it from the 2^{7} output of IC_{4}. In this way, the IC_{6} outputs, which drive transistors $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ and Tr_{4} to close noisemaker relays $\mathrm{RL}_{2}, \mathrm{RL}_{3}$ and RL_{4} go high

Fig. 5. Main unit construction, on Veroboard, $I C_{1}$ and $I C_{2}$ are opto-isolators.
sequentially from 25 seconds after FIRE occurs, at 10 -second intervals (as in Fig. 2). They stay high until the shift register is later cleared. As IC_{6} pin 14 clocks high, latch $\mathrm{IC}_{5 \mathrm{~b}}$ is set, removing drive from Tr_{6}. This allows Tr_{5} to be turned on and off with a 0.5 Hz signal, derived from the clock, and can flash an exterior warning lamp through relay RLs. Approximately three minutes after the FIRE input goes low, IC_{4} pin 1 goes high, shutting off the noisemakers. Transistor Tr_{7} prevents IC_{5} from re-starting them during repetitive clock progressions before final system reset. Some 20 minutes later, $\mathrm{IC}_{3 \mathrm{~d}}$ triggers on the falling edge of the clock's slowest output count, resetting the master latch and $\mathrm{IC}_{5 \mathrm{~b}}$. The external lamp stops flashing, and the system's timing cycle is complete.

Control unit

The heart of the remote control unit in Fig. 3 is latch $\mathrm{IC}_{7 \mathrm{~b}}$, whose $\overline{\mathrm{Q}}$ output determines the state of the DISARM line routed to the main control unit. When the latch's \bar{Q} output is high, analogue switch $\mathrm{IC}_{8 \mathrm{a}}$ is closed, illuminating green led D_{1} to indicate the system is disarmed. The 100Ω and 820Ω resistors form a voltage divider which sources the 9 V DISARM signal when the green led is on.
Pushing S_{3} brings monostable $\mathrm{IC}_{7_{a}} \mathrm{Q}$ jutput high, lighting yellow led D_{2} - an intermediate condition. About 20 seconds later, the monostable times out, positiveedge setting the latch and lighting red led D_{3}. Now the system is armed, for with $\mathrm{IC}_{7 \mathrm{~b}} \overline{\mathrm{Q}}$ low, the DISARM signal is also low and the main control unit is free to respond to a break in its perimeter d.c. alarm loop. Optoisolator IC9 monitors that loop. If there is a break, its output goes high, enabling IC_{10} to flash led D_{4}. This warns the user against activated sensors (e.g., forgotten open doors, windows, etc.) before he sets the alarm. To disarm the system, S_{4} must be briefly opened. This is a normally ciosed reed switch, hidden either inside the control unit itself or elsewhere, and is activated by brushing a magnet nearby.

Power supply

The power supply combines a full-wave rectifier bridge, a smoothing capacitor and an LM317K adjustable regulator to provide a d.c. source from its a.c. linepower transformer. The power supply output voltage, which is also used to

Mr Bruin was born in Amsterdam, Holland, was raised in Lebanon and attended British and American schools there. After graduating from the American University of Beirut with a B.Sc. in 1976, he found work with CBS News as a television sound recordist covering the Lebanese civil war. The job later took him to Africa for 18 months, travelling around the continent with a cameraman and correspondent. By 1978, photographic film had given way to fully electronic video news coverage, and he was moved to Europe to give technical support to news operations and set up a video maintenance facility in London. As a field engineer, Mr Bruin now travels abroad to install and operate television systems at remote news events, and supervise electronic maintenance.

Fig. 6. Remote unit in its metal box.
charge the external battery, is set by the 1 k potentiometer.

Construction

The prototype's main circuit board (that is, Fig. 1) was built on $10 \times 15 \mathrm{~cm}$ Veroboard in a metal case. The power supply regulator, IC_{11}, should be mounted separately on a heat sink that will dissipate 15 W comfortably.

Normal c.m.o.s. handling precautions should be observed, and i.c. sockets should be used so that the integrated circuits can be inserted after soldering is complete.
Wiring is not critical, but the lead to C_{2} should be kept as short as possible, and the wires carrying high current via the relays to the noisemaker and lamp outputs should be as thick and short as practical to reduce IR losses.

On the rear of the main unit, insulated binding posts or 'speaker type' springaction terminals can be used to connect the output loads and the external battery. A four-terminal barrier strip allows conzinued on page 35

High-impedance electronics

A discussion of voltage-follower circuitry for measurements from high-impedance sources. A subsequent article will describe the precise generation and measurement of currents in the nanoamperè range

A common experimental procedure in neurophysiology and biophysics is the recording of voltage signals from single nerve or mucle cells ${ }^{1}$. The most accurate measurements are usually made via a finetipped hollow glass tube (micropipette) filled with concentrated salt solution and inserted into the interior of the cell (Fig. 1). To minimize damage to the cell's membrane, the diameter of the micropipette at its tip is only $0.05-0.5 \mu \mathrm{~m}$ and the resistance of the tapered column of salt solution is therefore high, typically 5 - 50 $\mathrm{M} \Omega$ or more. The biological signals of interest are $0.1-100 \mathrm{mV}$ in amplitude, occupying a bandwidth extending from zero to perhaps 5 or 10 kHz .

The principal tasks of the electronics are to offer an input resistance at least two orders of magnitude greater than the equivalent source resistance, and to generate a bias current sufficiently small not to disturb the impaled cell or produce a significant offset potential. Some nerve cells may be excited by currents less than 1 nA and so the bias current needs to be below 10 pA . Other aspects of performance that may be important in certain applications include bandwidth, noise, drift, gain accuracy and dynamic range. Voltage gain per se is not usually a consideration since it can be provided without difficulty once the signal is made available at low impedance.

These design constraints were formerly met, not very conveniently, by the use of electrometer valves such as the Mullard ME1400 (actually a "domestic" pentode with top grid-cap, selected for small grid current) connected in pairs as differential cathode followers, and run with reduced anode voltage and heater current. When fets were introduced, attempts were made to use them because of their small size and easily met power-supply needs. However, the rather large temperature coefficient of V_{GS} (about $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$) posed problems, subsequently solved by the appearance of monolithic dual fets. In the circuit of Fig. 2 both fets operate at the same drain current ($I_{\text {DSS }}$ of Tr_{2}). Since the fets are

[^4]matched and at the same temperature, $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}=0$. The output buffer prevents loading and disturbance of the match of drain currents.
by R. D. Purves, Ph.D.

In recent years, fet operational amplifiers with extremely good specifications have become widely available. The RCA CA3130 and its internally compensated version the CA3160 are priced at less than $£ 1$ and offer an input resistance of more than $1 T \Omega$ with a typical bias current of 5 pA at room temperature. The CA3140 has only slightly worse specifications and allows operation from $\pm 15 \mathrm{~V}$ supplies, whereas the CA3160 is restricted by its c.m.o.s. output stage to a total supply of 16 V and gets very hot indeed if inadvertently connected to $\pm 15 \mathrm{~V}$. The LF356 is another low-cost device with good noise performance. More expensive devices include the Teledyne-Philbrick 1425 and 1439 , and the Burr-Brown 3523, the lastnamed giving - at a price - spectacularly low noise.

Bootstrapping

Bootstrapping (Fig. 3) provides a simple means of increasing apparent impedances (or equivalently of reducing apparent admittances). The principle is that when a signal voltage is applied simultaneously to the two ends of a resistor or capacitor, no signal current flows. In Fig. 3(b), if the gain of the feedback amplifier is A, the apparent value of the admittance element is $\mathrm{Y}(1-\mathrm{A})$. Since for a voltage follower A ≈ 1.0, the unwanted admittance can be reduced to virtual non-existence.

The input admittance of an operational voltage follower, whatever its internal construction may be, is chiefly an admittance to the power supply terminals, because the other relevant terminals (output and
inverting input) already have the unitygain signal impressed on them. Bootstrapping the supply lines is readily accomplished by circuits like that of Fig 4. Readers unacquainted with the concept may feel uneasy about bootstrapping an entire

Fig. 1. Intracellular recording of potentials from a nerve or muscle cell. The tip of the micropipette is inserted through the cell's membrane. A reference potential is established by an earthed electrode contacting the extracellular electrolyte.

Fig. 2. Voltage follower using matched junction fets as input stage.

Fig. 3. The bootstrap. (a) An unwanted admittance Y shunts the signal lead. (b) The earthy end of Y is driven by the signal at unity gain. Y is still physically present, but no signal current flows through it.

amplifier (surely one only bootstraps passive components?), but the circuit does work as advertised. Indeed, some operational amplifiers have internal bootstrapping of the input stage. If the signal gain from input to supply leads in Fig. 4 is adjusted to be very close to unity, improvements of several orders of magnitude in the input impedance can be obtained. Even ordinary bipolar amplifiers such as the 741 can be given an effective input resistance of many $\mathrm{G} \Omega$.

The bootstrapped configuration, unfortunately, does not lead to similar improvements in the bias current. The 741 with its 80 nA bias remains grossly unsuitable for signal sources of high resistance. Some fet devices have bias currents in the sub-picoamp range (Analog Devices AD41, AD42 and AD515, and Teledyne-Philbrick 1035), but for the ultimate in low bias current, parametric (varactor bridge) amplifiers can be used. The TeledynePhilbrick 1702 and Analog Devices AD322 feature bias currents of 2 fA and 10 fA respectively. Parametric operational amplifiers have extremely limited bandwidths, but signals from ultra-high-resistance sources rarely have rise times of less than a few tens or hundreds of milliseconds.

The physical design of the input circuit needs careful treatment if source resistances in excess of $100 \mathrm{M} \Omega$ are contemplated. To mount one of these high quality amplifiers on an ordinary printed circuit board is to destroy its performance utterly. The pin connexions of the T05 and 8 -pin d.i.l. packages are not ideal, since V^{-}is adjacent to the non-inverting input. A fingerprint or other contaminant at this position can easily increase the leakage current to the nanoamp range. The more exotic amplifiers are sometimes packaged in a physically large form giving better isolation to the input. The most reliable insulator for high-impedance work is air; the input lead should pass directly to the amplifier's input terminal, any intervening mechanical connexions being made on p.t.f.e. stand-off insulators. After construction, the input stage should be degreased with fluorocarbon solvent and rinsed several times in deionised distilled water before careful drying.

Response speed

The principal enemy of response speed is the total shunt capacitance at the input which, together with the source resistance, forms a low-pass filter. The input capacitance of the amplifier by itself is typically 4 pF ; when combined with a source resistance of $50 \mathrm{M} \Omega$ this contribution alone gives a rise time of $2.2 \mathrm{RC}=440 \mu \mathrm{~s}$, considerably too slow for some neurophysiological applications. Fortunately the bootstrap technique of Fig. 4 reduces the amplifier's input capacitance to an effective low frequency value of a fraction of a picofarad ${ }^{2}$.

The stray capacitance of the connecting lead depends on physical layout and is minimized by construction of the input circuitry as a small probe placed as close to the source as possible. Alternatively, the input lead can be screened and the core-toscreen capacitance bootstrapped from the voltage follower's output. This approach tends to degrade noise performance since the necessarily large capacitance from core to screen couples noise at the output back into the input.

The remaining capacitance is that of the signal source itself. The neutralizing or "negative capacitance" arrangement of Fig. 5 is commonly used to overcome this last limitation on response speed. A textbook account of this circuit would describe it as a negative immittance converter, in which the shunt value of C_{f} as seen from the input is $C_{f}(1-A)$, where A is the signal gain at point Y. If $A>1$, the effective value of C_{f} is negative. More concretely, we can analyse the circuit by recognising that whenever the input signal (and hence the potential at point X) is changing, some current is shunted to earth via C. In the absence of the feedback circuit this current must be drawn from the input and causes an ohmic potential drop across R. Under these conditions the potential at X cannot be a faithful replica of the input. The purpose of the feedback components is to supply most of the "error" current through C_{f}, so that it does not have to be drawn from the input.

Ideally A would be adjusted to the value $\left(1+\mathrm{C} / \mathrm{C}_{f}\right)$ so that the negative effective value of C_{f} exactly cancels the positive value of C. In practice, perfect neutralization is prevented by phase shift in the
amplifiers. The rise time with optimum neutralization is roughly the geometric mean of the amplifier's rise time and the original (unneutralized) input circuit's rise time (see appendix). The feedback amplifier should be compensated for fastest response at the gain used, not for stability at unity gain. A 357 operational amplifier is shown in Fig. 5; this is a version of the 356 internally compensated for a gain of 5 .
There is an advantage both for low noise and short rise time if the total capacitance seen by the input lead is made as small as possible. In an ingenious design by Thomas ${ }^{3}$ the feedback capacitor is not present at all, negative capacitance beirtg applied via the amplifier's own input capacitance. The supply lines to the follower are driven by the signal, as in Fig. 4, but with a gain adjustable from 1 to 3.2. Thomas illustrates step responses with rise times less than $10 \mu \mathrm{~s}$ from a $10 \mathrm{M} \Omega$ source.

Appendix

Rise time of capacitance neutralized input stage
In Fig. 5 the high-frequency behaviour of the vcltage follower may be represented by a single pole with time constant τ (typically $0.04-0.15 \mu \mathrm{~s}$); its transfer function $\mathrm{E}_{\text {out }} / \mathrm{E}_{\mathbf{x}}$ is therefore $1 /(1+s \tau)$. For simplicity the feedback amplifier will be assumed infinitely fast. Kirchoff's current law applied to the input (point x) gives:

$$
C \frac{d E_{x}}{d t}=\frac{E_{\text {in }}-E_{x}}{R}+C_{f}^{d\left(A E_{\text {out }}-E_{x}\right)}
$$

In the Laplace transform domain the output signal following an input step of magnitude E is found, after some rearrangement, to be
$\bar{E}_{\text {out }}=$
$\frac{E}{s\left\{s^{2} \tau R\left(C+C_{f}\right)+s\left(R C+\tau+R C_{f}[1-A]\right)+1\right.}$
where s is the transform variable and $\overline{\mathrm{E}}_{\mathrm{x}}$ has been eliminated by the relation $\vec{E}_{\mathbf{x}}$
continued on page 66

Fig. 5. Capacitance-neutralised voltage follower. R and C are the series resistance and shunt capacitance of the signal source. Signal gain at point Y is adjustable from 1 to 5 . The follower stage, here shown as a 356 operational amplifier, is often constructed with bootstrapped supplies as in Fig. 4.

Assembly language programming

Abstract

The main hurdle to overcome with assembly language programming is getting started, and the object of this series is to guide beginners to the subject through the fundamentals to a stage where you are able to continue with the processor of your own choice.

Many people are becoming acquainted today with programming microcomputers, usually in a high-level language such as Basic. High-level languages provide an easy means of programming and take all the hard work out of data processing and "number crunching" tasks. However, not all programming of microprocessors is done at a high level.
In many applications, programming at a low level, or assembly language, is preferred for several reasons. High-level languages have the disadvantages that they use a great deal of memory for program storage compared with programming in the processor's native code, are slow in operation and are usually not well suited to control applications.
For high-volume production applications, the higher initial costs of program development in assembler will be more than offset by the lower memory costs per unit. For smaller applications there is a simple rule-of-thumb guide for the best approach; if the task is mainly maths or data processing, use a high-level language; if it is mainly process control, use assembler.

Architecture

When programming a computer in a highlevel language, the architecture of the particular central processing unit, or microprocessor, in use is not a matter of great interest to the programmer, but when programming in Assembler it is essential to fully understand the workings of the processor in use.

Figure 1 shows the programming models of the various microprocessors which will be referred to in this series. These models consist of a list of the registers in the central processing element available. The various registers have different and specialized functions, but generally speaking, registers are stores of bits of information which the c.p.u. can use or manipulate.

Data can be passed in both directions between the registers and memory or peripheral devices along the data bus in groups of eight bits (the processors discussed are eight-bit devices). In the registers the data can be manipulated by arithmetic and logic functions, the functions performed de-
pending on the instructions given to the c.p.u. by the program.

Five registers

Accumulator. Let's have a look first at the five registers available on the 6805. The first is the accumulator, an eight-bit register with the individual bits numbered 0 to 7. This is designed to hold the data for manipulation. All the processors have at least one accumulator.
Operations that can be performed on the data in the accumulator include adding a binary number to the contents of the accumulator, the result replacing the first number in the accumulator; subtracting a

by R. F. Coates

number from it; shifting the bits by one, either left or right. Shifting is useful when multiplying. Only the 6809 has a specific instruction for multiplying two numbers together, and so with the others it's down to basics if you wish to multiply, by shifting and adding. How this is done is described later in the series.
Index register. The index register (X) is generally used as an index or pointer to data. For instance, there is an instruction to enable the accumulator to be loaded with data from a specified location in memory. It is also possible to do this without specifying the address of the memory, but specifying that the address is contained in the index register, or 'pointed' to it by the index, having been previously loaded with the address.
Program counter. The program counter is also used as a pointer, not to data, but to the program in memory.

Microprocessors operate by fetching and executing instructions stored in memory as sequential binary codes. The program counter itself contains an llbit binary number which gives the address of the next instruction to be executed. The c.p.u. places this llbit binary number onto the address bus, which selects the memory location containing the next instruction. The memory then places the eight-bit bi-
nary instruction code it contains on the data bus, to be read by the c.p.u. and acted on. The program counter is then automatically incremented to point at the next instruction, which is fetched from the memory when the current instruction has been completed.

The 11 bit program counter means that there are 2^{11} possible binary combinations it can provide, so that it can address 2048 different memory locations. In fact, there are 1796 locations in the program memory (eprom) of the 68705 used in the Picotutor; the rest contain ram and i/o ports and a few are unused. The other processors have a 16bit program counter.
Stack pointer. This is also an 11 bit register, but bits 5 to 10 are permanently fixed at a certain binary value and only bits 0 to 4 can be altered. Only one instruction allows the user to alter this register, and that sets bits 0 to 4 to a logical 1 . The stack pointer then just happens to contain an llbit address which corresponds to the address of the last location of ram in the 6805.

But what is the stack pointer for? Though the c.p.u. fetches instructions in numerical sequence from the program memory, life isn't always that simple. Sometimes it is necessary to jump to somewhere else in memory to execute a collection of instructions there. It is common to have a particular sequence of instructions which may occur several times in a program, and rather than repeat them, it saves memory space if it is inserted once, and when required, the numerical sequence of instructions is broken and control jumps to this separate section, or subroutine, and returns back to the main program when finished.

This is exactly the same as the GOSUB function in Basic. When a program encounters a 'jump to subroutine' instruction it has to provide some means of recording where it has to return to after executing it. A device called stack, an area of ram is used for this and the 'jump to subroutine' instruction causes the address of the next instruction in the sequence (obtained by advancing the program counter) to be placed in that ram.

The stack pointer indicates the next free space available on the stack. The return

Picotutor calibration

Resistor \mathbf{R}_{1} on the analogue interface board should be reduced to 8.2 k if calibration cannot be achieved. Some of the first kits from Magenta have a $12 \mathrm{k} \Omega$ resistor in this position so a replacement will almost certainly be needed. Display type numbers omitted from the main Picotutor parts list are either NSA 1588 A (8 -digit, 0.14 in) or NSA1198 (9-digit, 0.1 in); both are National Semiconductor devices.
address is pushed onto the stack, and the pointer automatically moves down one.
Each ram location though is only eight bits wide and the program counter contains 1 bits, so two ram locations are required. Bits 0 to 7 are pushed to the stack first, and SP decremented. The remaining three bits, 8 to 10 , are now pushed on leaving five bits in that ram location unused. SP is decremented again, and now points to the next free stack location, in case our subroutine happens to call another subroutine itself. This is nesting.

At the end of the subroutine, a 'return from subroutine' instruction is executed which causes the return address to be pulled from the stack, incrementing the SP as it does so. The return-address is now forced into the program counter, and execution continues from that point.

With all the other processors, the stack pointer is a 16 bit register and can be pointed anywhere in memory for greater flexibility. Also, other registers may be pushed onto the stack to temporarily save them.
Condition code register. The condition code register (flag register on the Z80) is a collection of indjividual bits or flags which are used to indicate certain conditions that prevail following execution of the last instruction. There are five flags in the 6805 condition code register. The H and I flags are discussed later.

The N bit indicates if the result of the last operation was negative, the Z bit if the result was zero, and the C bit if a carry was generated, say from adding two eight-bit numbers which save a nine-bit result. These flags can then be used by instructions following the one that set them to
make decisions as to how to proceed. Their use will be clearer when we come to the programming examples.
Other registers. Finally a word on some of the other registers available on the other processors. The 6809 has two index registers X and Y and a second stack pointer, U , can also function as another index register if required. A "direct page" register on the 6809 will be explained when we come to addressing modes.
Besides the registers already mentioned the Z 80 has a number of general-purpose registers not available on the Motorola processors. These can be used for manipulating data within the c.p.u. Transfering data from memory to c.p.u. takes a considerable amount of time and having a number of general-purpose registers within the c.p.u. can speed up the operation, particularly in 'number-crunching' applications. However, there are situations in real-time applications where multiple c.p.u. registers can actually slow things down. This has led to processors such as the Texas 9900 which implements all required registers in ram rather than in the processor. Consequently there are argu-
ments for and against multiple generalpurpose registers and Motorola chose a compromise of essential registers on the c.p.u. and the ability to implement registers in ram, which offers greater flexibility and is not possible with the Z80.
Probably the most important factor for the beginner is the fact that the fewer the registers the easier it is to learn to program, and this was a major factor in using the 6805 as our basis.
The numbering system almost universally used in microprocessor programming is hexadecimal notation, and in counting to the base 16 , the characters A to F represent the decimal values from 10 to 15 in hexadecimal.
A group of four binary digits gives a possible 2^{4} or 16 combinations, and these could be represented by one of the 16 hexadecimal characters shown in the following table

Binary value	Hex character
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	B
1110	C
1111	D
1110	E
1111	

If we take a binary number and divide it up into groups of four digits each group can be assigned its hexadecimal equivalent, which reduces the number of characters required by four. The 16 bit value 1011010000001111 becomes B40F, which is much easier to write and remember.

To avoid confusion when working with hex numbers a suffix or prefix is normally added to a hex number to distinguish it from decimal. Motorola use the prefix ' $\$$ ' whilst Zilog use the suffix ' H ' for this purpose. In these articles the ' $\$$ ' prefix will denote a hex number where necessary.

So much for the boring fundamentals of assembly language programming; next we shall be looking at some of the instructions of the 6805 and trying out some simple programs and the equivalents for the other processors.

NON

To be continued

switches to the output contacts of a motion detector or light beam device. All switches must be wired in series.

Any 12 volt d.c. bells, horns or sirens with a current drain of less than 2A can be used with this project, and a wide selection are readily available. An accessory red, 12V rear light for a caravan or trailer makes a good external lamp for the alarm, and can be bolted to an outside pipe, railing or wall. Wires running to these loads should be at least 16 A.w.g., or 1 mm in copper core diameter, and each run must be fused at the control unit end with a 2 A fuse. Automotive in-line fuse holders are convenient and cheap for this purpose.

For the external battery, an ordinary lead/acid car or motorcycle type is recommended. It should be placed in a reasonably ventilated location, to prevent small amounts of gas released during charging from collecting to become a possible explosion hazard.

VNO

Fig. 7. Connexion of units to form complete system.
connection of the DISARM, FIRE, +12 V and ground lines to the remote control unit.

The remote circuit can also be wired on veroboard. Leads to C_{x} should be kept short. The board can be fitted inside a small plastic box. Holes drilled in the back (or a strip of Velcro stuck to it) will allow wall mounting.

Peripherals

All perimeter alarm loop switches must be of the 'normally closed' variety (these open when triggered). They can be anything from simple magnetic reed or pressure mat

Autoranging frequency meter

This meter measures frequencies in four ranges up to $10 \mathrm{MHz}(9,999 \mathrm{kHz})$ with automatic switching between the ranges. It displays the four most significant digits.

The meter consists of four principal parts: input, timing, scaling and counter/display sections. Each is described separately but it must be noted that they are not necessarily separate modules, for example IC_{10} and IC_{11} are shared between the timing and scaling sections.

Counting and display

The main counter, Fig. 1, is built around a 74C926 i.c. which has four binary-coded decimal counters with multiplexed outputs to common-cathode led seven-segment displays. The counter module receives the

by F. P. Caracausi

signal to be counted through MCP. A positive signal (see note) on the MCP line, labelled 'store', will latch the counter value into the internal output latches and this value is displayed permanently as the display select input to the 74C926 is held low. The counter is cleared by a positive pulse on the MCL line and the 'carry out'
signal is used to indicate an overflow, occurring whenever the count advances from 9999 to 0000 . This negative-going transition is switched back to positive between 5999 and 6000 . The underflow signal at MUF is a 1 kHz (multiplexer frequency) pulse train which occurs as long as the most significant digit is zero; when the $\mathrm{m} . \mathrm{s} . \mathrm{d}$. is not zero, there is no output.

Scaling

The signal to be measured is fed to three cascaded decimal dividers, $\mathrm{IC}_{6,7,8}$ (Figure

Fig. 1. The counter and display module built around a $74 C 926$ i.c.

Fig 2. The scaling circuit automatically selects the range to be displayed.

2). Depending on the value of the scale counter IC 9 , the input frequency is divided by $1,10,100$ or 1000 . Provided that the MCE line is 'high', the signal is fed to the counter section through MCP, while the appropriate decimal point signal is sent through DP 0,1 or 2 . The displayed number is read as kHz .

Counter IC_{9} is advanced by a positive clock pulse, SCP, and is cleared whenever it reaches a count of four of when the SCL signal is high. SCL and SCP both come from the counter module where SCP is generated when there is a overflow signal from the counter and SCL is derived from the underflow signal.
The counters $\mathrm{IC}_{6,7,8}$ are enabled by a low signal on ICE and cleared by ICL going high. ICE and ICL are generated in the timing circuit when overflow or underflow signals occur.

Timing

The decimal counters IC_{1} and IC_{2} (figure 3), fed with a 50 Hz pulse train, give a positive signal once a second. On the signal, MCE goes high which enables counter IC_{3}, disables $\mathrm{IC}_{2,6,7,8}$, and stops the clock going to the main counter (signals MCE and MCP on the scaling circuit). MCE goes low if an overflow occurs on the main counter (MOV is low) and this makes Q on

Fig 3. The timing module generates control signals for the scaling and counting circuits.

Fig. 4. Input module.

Fig. 5. Power supply. Two versions of a 50 Hz clock generator are given, one derived from the mains frequency, the other gives quartz crystal precision.

Fig. 6. Interconnections between the sections.
FF_{1} go high and advances counter IC 9 by one to change the range. As IC_{3} is enabled, it can generate the store signal, MST, and the clear signal, MCL. At the same time, through ICL, $\mathrm{IC}_{6,7,8}$, both flip-flops and $\mathrm{IC}_{1,2}$ are all reset and the next count period starts.

In an underflow condition FF_{2} is set at the end of the count period as J on FF_{2} is connected to output 5 of IC_{2} which only goes high on a count of 50 . When FF_{2} is set, IC_{9} is cleared through SCL and the next count starts at the lowest range (X.XXXkHz). An overflow condition may be simulated by pushing S_{1}. This may be necessary if the main counter locks, which can happen because the 74 C 926 can operate at frequencies up to 3 or 4 MHz .

Input circuit

Figure 4 represents a classical circuit which requires no comment. R_{x} is set to give the best results.

Power supply and $\mathbf{5 0 H z}$ generator

The power supply is a standard circuit to give $\mathrm{V}_{\mathrm{dd}}\left(12 \mathrm{~V}\right.$) and $\mathrm{V}_{\mathrm{cc}}(5 \mathrm{~V})$. In Figure 5 there are two circuits for clock generators for the timing circuit. The first derives a signal from clipping the a.c. input, theoretically 50 Hz . The second is built around an HBF4700 to give 50 Hz with quartz precision.
Note. According to the 74C926 data sheet: "A low signal on the latch enable input will latch the number in the counters into the internal output latch". I found that it needed a high signal but if some versions of the i.c. work as described, it would be necessary to invert the signal by disconnecting the link between pin 11 of IC_{10} and pin 11 of IC_{11} and then connecting pin 11 of IC_{10} to pin 10 of IC_{11} (Figures 2 and 3).

Bibliography

A. Fantini, Note sui frequenzimetri digitali. CQ Eletronica, July, 1974.
F. P. Caracausi, Frequenzimetro digitale automatico. CQ Eletronica, Sept. 1976
F. Bonadio, 50 Hz con 10 HBF4700A, $C Q$ Elettronica, April, 1980.

N N

Two-metre transceiver

> Coordination and frequency indication are functions carried out by these two modules of Forrester's multi-mode transceiver. At the heart of module 8 - the processor/interface board - is a 6805 microprocessor with built-in p.i.a. This section interprets front-panel settings and controls mode, frequency, and memory operations while module 9 converts port signals into an l.e.d. readout.

Module eight uses a c.m.o.s. MC146805 microprocessor (Motorola) which was chosen from the many now available for several reasons. Most modern processors have built-in ram and clock-generator circuits but the 6805 also has its own peripheralinterface adapter, or p.i.a., which provides a means of getting data in and out of the processor. This factor, combined with the device's low power consumption of 20 mW and its potential for single-stepping through a program to aid debugging make it ideal for this application. Memory in the form of a 2716 eprom and five other i.cs

Transceiver software breaks down into these main routines. Mnenonics shown are used in the assembly-language program.

are all that is required to interface the microprocessor to the transceiver, as the circuit diagram shows.

First described is the operation of the microprocessor as this will lead to a better understanding of the hardware around it and how the software functions. In the software, a master-control program calls various subroutines depending on control settings and these subroutines may call further subroutines; at times there may be eight levels of subroutine in use.
Before the microprocessor can act, it has to contain data relating to the front-panel control settings and it acquires this information by setting one of its p.i.a. B-port lines high. Pin 36 of the processor is one line used for this purpose. This line, called controls enable, is connected to the common of switches for mode, scan, memory, memory write and skip control. These switches are sensed by p.i.a. A-port lines through diodes when pin 36 is high; any switch closed while the controls enable line is high shows a logic 1 on its A-port line. This port is examined by the software and a decision made as to which subroutine is to be called for the mode concerned.

Port A of the 6805 p.i.a. is also used for
sensing the channel-switch condition. When memory mode is entered the chan-nel-enable line at pin 35 of the 6805 goes high and the channel switch is represented on the A port through diodes. Interaction between channels is prevented by these diodes.

In this situation, port A is bidirectional and each device driven by the processor through it is selected independently by control lines from port B. For example, when frequency is to be displayed, display latches are enabled by taking the enabledisplay line low. The five l.e.d. drivers are selected sequentially by lines PA_{46} and presented with four-bit words representing their digit value on lines $\mathbf{P A}_{0-4}$. Likewise for transmitting data to the synthesizer the 4034 shift registers are enabled and the appropriate data loaded then clocked out sequentially.

Appropriate control bits for the synthesizer are set on $\mathrm{IC}_{800,801}$ as shown in the diagram. As mentioned in the description of the synthesizer control logic in module 5 (see January 1983 issue), only the nine least significant bits are required to change to cover 135 to 137 MHz , so the other six bits of frequency-data word are hard wired

Module 8 block diagram showing the microprocessor and its interfaces. The 6805 has multiplexed address/data buses and two 8-bit peripheral-interface adapter ports. Port A is used as a bidirectional bus while port B is used to select individual peripheral input/output elements. NiCd batteries hold the processor's ram contents when the transceiver is switched off.
to the appropriate level. A problem arises in that nine bits are required to cover the range and the processor only has eight bits.

This problem is overcome by using a four-bit full adder, IC_{802}, to add the offset needed by the three most significant bits on the microprocessor A-port to produce 135 MHz . These three m.s.bs are normally weighted 32,64 and 128 and for 135 MHz their bit pattern is 101 . But this pattern after being subjected to the adder appears as 5 , enabling the processor to start at zero and count up to 255 in 10 kHz steps. When the processor counts to 32 and above, its output is summed by IC_{802} and sent to a shift register, IC_{801}. Software converts binary data resulting from the hard-wired offset to b.c.d. for driving the displays.

Data feed into $\mathrm{IC}_{800,801}$ is controlled by the processor through clock and serial/parallel inputs of these i.cs. The data-length line to the synthesizer, also controlled by the processor, only goes high when data for the synthesizer is valid. Besides driving the synthesizer in 10 kHz steps, the processor also has to pull the synthesizer reference by up to 9.9 kHz to give continuous coverage and it does this through eight-bit latch, IC_{804}, which accepts its data word on receipt of a signal called vxo from pin 32 of the processor, IC_{809}. Data for controlling the reference are in the form of two b.c.d. words which give a maximum count of 99 , representing 9.9 kHz .
Nine resistors on the output of IC_{804} ($\mathrm{R}_{810-818}$) form a digital-to-analogue

Components			
Resistors		Transistors	
800,819,825-		800,801	8C107
-828,935-940	1k	802	BCY71
801	10k	803,806	2N3819
802,803	56k	804,805	BC109
804	22	807	2N3707
805	390k		
806	200k s.o.t.	Diodes	
807,829,830	100k	Diodes	
808,833	not used	800-815,8	
809	33k	820-824	1N914
810	470k, 1\%	816,817	1N4001
811,815	100k, 1\%	819	5.6 V zener, 400 mW
812,816	200k, 1\%	900-906	GL9R03
813,817	400k, 1\%		
814,818	800k, 1\%		
820	15k	Integrat	
821	2.2 k	800,801	4034
822	1.5k	802	4008
823,824	100	803	74LS244
831	22k	804	74LS374
832	10M	805	TL081
834	22k sub-min preset	806	74LS10
835-842	3.9k	807	2716 (eprom)
900-934	390	808	4508
all $1 / 4 \mathrm{~W}$, unspecified resistors are 10%		809	MC146805E2
		810	78 L 15
Capacitors		811.812	78 L 05
800	10 n disc	900	4028
801	470μ electrolytic, 16 V	901-905	4056
802,804,805	47μ electrolytic, 35 V	906	7805
803	47 n disc		
806,807	100 n disc		
808,809	22p disc	Crystals	
900,901	2.2μ tantalum, 16 V	800	$4 \mathrm{MHz} \mathrm{HC18U}$

converter and the d.c. level at C_{806} is buffered and modified by Tr_{803} and IC_{805} respectively. A starting frequency of 135.0000 MHz is set using R_{834} and the synthesizer-reference pulling range is set by R_{806}, which is nominally 200 kilohm. To ensure a stable supply voltage, IC_{804} has its own 5V supply. Transistors 800-802 and IC_{810} form a d.c.-to-d.c. converter supplying a stabilized 15 V rail for IC_{805}; this rail is also used to power IC_{503} of module 5.

Five status signals are switched onto the A port through IC_{803} by the enable line from pin 33 of IC_{809}. These active-high status signals are

- up button pressed
- down button pressed
- squelch open
- receive/transmit
- power on.

The first four indications act straightforwardly on the microprocessor but the fifth, power on, it a little more involved. When the transeiver is turned off, Tr_{807} conducts momentarily using charge stored in the set's capacitors and pulls pin 2 of IC_{803} low, forcing the processor to revert to its low-power standby mode. Resistor 820 is wired to the off contact of the mode switch, the common of which normally distributes a 12 V supply to the appropriate modules.

In standby mode, the processor ram contents are held intact by an NiCd battery through D_{818}. A 2 N 3819 fet, Tr_{808}, forms a constant-current charger for the back up battery while Tr_{805} and D_{819} regulate the voltage. Under normal conditions, IC_{809} is powered from IC_{811} through $\mathrm{D}_{820,818}$ to allow charging of the battery. Diode 820
isolates the battery supply from logic power lines when the transceiver is turned off. When the transeiver is switched on, Tr_{804} is momentarily turned on through C_{807}, causing the microprocessor to reset.
As the processor's data and address buses are multiplexed, a latch, IC_{808}, is required to separate the two. This latch is controlled by the address strobe line, pin 6 of IC_{809}. Demultiplexed addresses are then fed to IC_{807}, a 2716 eprom; this memory is enabled when its chip-select input is low, and this only occurs when address lines A11 and A12 combined with the data strobe line in NAND gate IC_{806} go high. Prospective builders of this transceiver should not be deterred by the need for eprom-based software as these devices are available ready programmed from me.

Channel switch, skip, memory-write, memory, scan, 100 Hz -step, repeater and reverse repeater controls are all connected to the p.i.a. A port through 1N914 diodes forming OR gates. Sixteen diodes are used
in all, including a spare one for future expansion. Eight $3.9 \mathrm{k} \Omega$ pull-down resistors, $\mathrm{R}_{835-842}$, are connected to A-port lines PA_{0-7}. IC_{812} should be mounted on the metal enclosure to keep it cool.
The only adjustments needed on this board are to R_{806} and R_{834}. Initially, R_{806} should be set at around $200 \mathrm{k} \Omega$ with the transceiver set to 144 MHz and R_{834} adjusted so that the synthesizer produces exactly 135 MHz . Now the frequency is changed to 144.0099 MHz , i.e. 9.9 kHz higher, and R_{806} adjusted so that the synthesizer frequency increases by 9.9 kHz . This process should be repeated.

This module is mounted directly to the chassis of the transceiver without screening. R.f. radiation is emitted by devices in this circuit but screening and filtering on the other modules is sufficient to prevent interference. On the current transceiver, the interrupt-request input (IRQ) is not used but I plan to incorporate an infra-red remote control unit using this line.

Frequency display - module 9

Microprocessor control makes driving of the frequency display relatively easy. Seven-segment l.e.ds were used for the display in preference to l.c.ds because they were cheaper, but by now the situation may have changed. Display latching is used to ensure that the maximum brightness is obtained for viewing in sunlight; many transceivers using strobed displays suffer from lack of brightness.

Display-drive data are taken from the processor p.i.a. A port, the digit being represented by PA_{0-3} and the digit address represented on lines PA_{46}. Digit-address
decoding is performed by IC_{900} which enables the appropriate latch. The display latches can only be enabled if the D input of IC_{900} is taken low by the processor. Resistors 900-934 limit the display current for the active digits and $\mathrm{R}_{934-940}$ hold the two most significant digits permanently at 14. Here, the five-volt regulator, IC_{906} is mounted to the chassis to keep it cool.

Programmed eproms at 18 and software listing at $£ 1.50$ including UK postage and vat are available from T. Forrester, 125 Seven Way, Bletchley, Bucks.

In an open circuit, only an electric field is detectable. Is this because there is no magnetic field present?

Prior to Maxwell, a great deal of theory had been developed around electric and magnetic fields. This theory included Kirchhoff's Laws, the Biot-Savart Law and Ampère's Rule. Electrical circuits were generally steady state, or at worst slowly varying, and the problem of whether electrical and magnetic effects traversed distance instantaneously or took time to propagate did not arise.
Because fields were steady or slowly varying, experiments were generally limited to the study of closed circuits of conductors (and resistors). However, capacitors (electrolytics) were also used, and these created an anomaly in a theoretical structure which included Ampère's circuital law $(\$ \mathrm{Hdl}=\mathrm{i})$ and Kirchhoff's second law ($\Sigma \mathrm{i}=0$). When the switches were closed, electric current flowed in the loop and (following Ampère's circuital law, also called Ampère's Rule,) magnetic flux appeared in the space around the wires.
Ampère's Rule says that if we describe a closed loop, the line integral of the magnetic field strength along the edge of the loop is related to the electric current through any surface bounded by the loop.
The capacitor created an anomaly, because a closed loop could be described where i had more than one value, depending on whether the surface (S_{1}) cut the conductor or S_{2} passed between the plates of the capacitor. Consequently the absurd situation arose that $\oint \mathrm{Hdl}$ had to have two values at the same time.
Maxwell 'cut the Gordian Knot' by asserting that the rate of change of electric field between the capacitor plates behaved just like a real current i. So Ampère's rule became

$$
\oint \mathrm{Hdl}=\mathrm{i}+\int_{\mathrm{s}} \frac{\mathrm{dD}}{\mathrm{dt}} \mathrm{ds}
$$

It is important to remember that the premise which preceded the problem of the capacitor was that electric currents and fields were steady or slowly varying. It was accepted that, at the moment the switches closed, the current i appeared at all points in the circuit. The time for the effect of the switch closure to travel across the distance from switches to capacitor was zero.
The current-like field $\mathrm{dD} / \mathrm{dt}$ between the capacitor plates led Maxwell to conjecture that there could be electromagnetic 'waves in space'. It was already known that a changing magnetic field produced electric current (Faraday's Law $\mathrm{v}=\mathrm{d} \phi / \mathrm{dt}$) and that electric current produced a magnetic field (Biot-Savart Law $H=i d l \sin \theta / 4 \pi r^{2}$.) The changing electric field $\mathrm{dD} / \mathrm{dt}$ seemed to be an electric current in space. With both changing magnetic fields and changing electric

by Ivor Catt

currents in space, we seemed to have the possibility of wire-less propagation of electromagnetic signals using a crabwise progression of cause and effect; electric current \rightarrow magnetic field \rightarrow electric current

The error in this whole business occurred right at the start. Let us assume that the conductors linking battery to capacitor are one light year long. When the switches are closed, it is obvious that current will not immediately flow in the capacitor. A wave front must travel from switches to capacitor, and behind that front will be electric field and magnetic field - we have a transmission line. Also, should the distance between the two conductors or their shape change, some of the wave front will continue to the right and some will reflect to the left, carrying back the message about the change.

The front end of the capacitor is merely one such change in the cross section of the transmission line. The far (open circuit) end of the capacitor is another such change.

Fig 1. The elemental closed loop (a), in which the capacitor creates the difficulty that the current must have two values, depending on whether the surface (b) cuts the conductor or bisects the capacitor.

The problem Maxwell should have been concerned about was how the electromagnetic field developed between the wires when the switches were closed, not what happened in a capacitor. The transmission line problem (AB) precedes the capacitor problem (CD), and the capacitor problem would be solved automatically with the solution of the transmission line problem.

Fig 2. A changing separation between conductors reflects energy. The capacitor is simply another change.

Before the switches are closed, we can measure a voltage and electric field but find no trace of a magnetic field. When the switches are closed, an electric current starts off down the wires and a magnetic field begins to appear between the wires. The conclusion that the voltage (or pressure) causes the electric current which in turn causes the magnetic field is compelling, and it is not surprising that this mistaken view has lasted for a century. It is then a short step to say that the changing magnetic field in its turn (by Faraday's Law) generates an electric field and thence a (displacement) current, and the sequence can start again.

But was there really no magnetic field before the switches were closed?
Let us consider a steady charged capacitor. Does it have no magnetic field, only an electric field? In order to understand the situation in the battery and wires up to the switches before they are closed, it is useful to study the reed-relay pulse generator.

The reed relay pulse generator was a means of generating a fast pulse using rather primitive methods. A one metre section of 50 ohm coax. AB was charged up to a steady 10 volts (say) via a one megohm resistor, and then suddenly discharged into a long piece of coax. BC by the closure of two switches.

A five volt pulse two metres wide was found to travel off to the right at the speed of light for the dielectric on closure of the switches, leaving the section AB completely discharged.
(The practical device lacked the second, lower switch at B, which is added in the diagram below to simplify the argument.)

The curious point is that the width of the pulse travelling off down $B C$ is twice as much as the time delay for a signal between A and B. Also, the voltage is half of
continued on page 66

Knowing the difference between physics and metaphysics, likewise between "matterwaves" and probability theory, one can begin to understand where modern physics went wrong. Two well-known Copenhagen doctrines can then be taken apart: in consequence the law of causation can be restored to its rightful, paramount place in natural philosophy.

I have drawn attention to the two principal confusions of thought which were allowed, or perhaps even encouraged, to enter physical science during the decade 1925 to 1935 and which have caused untold philosophical chaos ever since. These were: the indiscriminate juxtaposition or equation of physical entities, such as electrons and mechanical momentum, together with metaphysical entities such as probability and knowledge; and the failure to reject the wave theory of matter when it had been disproved (on both experimental and logical grounds), and to distinguish between its concepts and those of the legitimate statistical quantum mechanics. Even the popular name for the last-mentioned, "wave-mechanics", which derives from its conceptual origin under Schrödinger but is no longer relavant, contributes to the perpetuation of the muddle; a first-rate example of confusion is to be found in the frequently-used expression "probability waves".
Lest it should be thought that these confusions have been innocuous in their effects I will instance a famous statement by a member of the Copenhagen School which provides a vignette of both of them. The date of presentation was 1933, the place Chicago, the reporter Alfred Landé, and the speaker on this occasion Werner Heisenberg. He was referring to the partial reflection of light by a half-silvered mirror, in a thought-experiment that we have already considered in the contexts of quantisation and determinacy. His words were as follows:
"There is, then, a definite probability of. finding the photon either in the one or the other part of the divided ψ-wave packet. Now, if an experiment finds the photon in the reflected part, say, then the probability of finding it in the other part immediately becomes zero. The
experiment at the position of the reflected part thus exerts a kind of action, a 'reduction of the wave packet', at the distant point occupied by the transmitted part. And one sees that this action is propagated with a velocity greater than that of light".
Feeling the draught, perhaps, he then went on to say,
". . . This 'action' can never be used for the transmission of signals".
by W. A. Scott Murray,
B.Sc., Ph.D.

By all accounts Heisenberg made this statement with a completely straight face and believed in what he was saying. It is manifestly nonsense, but for that very reason it may be difficult to make a rational reply to it. The argument that light waves are electromagnetic waves which carry energy and therefore cannot collapse faster than the velocity of light is not quite sufficient because Heisenberg has dodged it by referring to " ψ-waves". He is, however, proposing that something associated with the photon must collapse in this way; as Professor Frisch said in a passage that I quoted earlier,
". . . It would seem that something does travel along both paths in the interferometer even when only one photon is admitted; but what is it?"
Clearly we are right at the centre of the duality paradox.

The understanding that we have been able to build up of the dualistic machinations of Copenhagen will now stand us in very good stead for dealing with Professor Heisenberg's curious proposal. The ψ -
waves that he is playing with are not real waves but metaphysical waves. They do not have to comply with the laws of physics. Like Castles in Spain, he can give them any properties he wishes. If those properties should make his equally metaphysical ψ-function provide a reasonably accurate statistical analogue of how real photons behave, that is all to the good, but his ψ-waves need not otherwise relate to the physical world and indeed for reasons that we have discussed it is clear that they must remain always "unobservable". They are subjective, mathematical abstractions. The photon, on the other hand, is a physical entity which is indivisible and which travels strictly at the speed of light. It goes one way or the other at the mirror surface, but not both; there is no question of a transmitted part of the photon collapsing when a reflected part is detected. The photon's existence is objectively real. So where is the paradox?

The rationale for Heisenberg's statement is that the intensity of his ψ-waves represents the precision of his knowledge of the past, present, and future location of this particular photon. (You will note that both "precision" and "knowledge" are metaphysical quantities, appropriately described by ψ-waves). When his knowledge becomes sure - 100\% certain because he has detected the photon - the probability that it may be elsewhere instantly becomes zero, as he says. This has nothing to do with the photon, but only with his knowledge; it would be quite wrong to assume, as the Copenhagen School assumed and declared as doctrine on the basis of extensions of this argument and others, that the observer's knowledge or even the observer himself had any influence on the physical, mechanical
process of detecting the photon. Indeed, neither the photon nor the rest of the apparatus cares two pence whether an observer is present or not. We now see that the metaphysical doctrine of the relevance of the observer was just another Copenhagen fallacy.

Before leaving this topic let me mention a point which was first picked up by Sir Karl Popper, who has tended to specialise in this sort of thing. Even his ψ-wave packet does not in fact collapse as Heisenberg says it does. The distribution of ψ wave intensity as a probability density the probability of finding a photon here or there - does not change when any one photon is detected. It is to be identified as a prediction, the probability of detecting "any" photon as estimated before the event; for after the event the probability of a contrary result is a meaningless concept. And however many times you may have tossed a coin, the probability of obtaining heads or tails on the next toss remains always the same, 50/50.

Thus Heisenberg's celebrated puzzle of the "reduction of a wave-packet" turns out not to have been a puzzle after all. It was a man-made nonsense consisting of one false concept and two logical errors held together by two major confusions concerning, respectively, the mixing of matterwaves with probability theory and the mixing of metaphysics with physics. It was also unnecessary. We can see how it came about, but as physicists we have no cause to be proud of it.

I am going to conclude my exposition by analysing one more example of twentiethcentury mysticism in the same way. The great Principle of Indeterminacy was enunciated by Heisenberg in 1927, and its profound philosophical message has dominated human thinking ever since. Like so many concepts of modern physics it is partly true. My purpose now is to examine the limits of its applicability and truth.

In its legitimate form the Principle of Indeterminacy (or Uncertainty) has to do with making measurements. For a host of reasons, all of which in the end boil down to the desire to make predictions in order to better manage our surroundings, we are interested in the positions and motions of things. We measure the position and motion of an oncoming motor-car by eye when we are deciding whether or not to cross the road; for more precise measurements we make use of various instruments such as rulers, gauges and graticules. In the ultimate of fineness of measurement our measuring instrument may consist of one photon or one electron which we aim carefully toward the target object whose location we wish to know; the electron or photon will be reflected (or bounce) on contact, and its reflection will tell us where the object was. Microphysical Nature being granular or "quantized", this represents the most delicate measurement that we can ever hope to make.

It was Heisenberg who pointed out, correctly, that this process doesn't provide a measurement of where the object is, but of where it was at the instant of making the
measurement. The measuring process it self must disturb the object being measured, to an extent that depends on how massive the object is. Projecting one photon of visible light at an elephant, for example, wouldn't shift the elephant very far, but if that same photon were to hit an isolated electron it would set it in motion at a speed of several hundred miles per second. (This is the Compton effect discussed earlier). If you were to use a less massive photon - that is to say, conventionally, a quantum of light of lower "frequency" or longer "wavelength" - you wouldn't disturb the target electron so much but you wouldn't get such a pre-cisely-defined reflection from it either. You can't have it both ways.
Heisenberg condensed these ideas into what was to become one of the most famous Principles of physics. (For those who don't mind equations, I am referring now to $\Delta \mathrm{p} . \Delta \mathrm{x}=\mathrm{h}$). Stated in words, it says that there is a natural limit to the accuracy (Δ) with which physical quantities can be measured. The position and momentum of any particle as measured are in a sense complementary. We can in principle devise an experiment to measure either position (\mathbf{x}) or momentum (\mathbf{p}) as accurately as we wish, but if we try to measure both simultaneously we come up against this natural limit. We cannot measure, and therefore cannot know, both the location and the subsequent velocity of an individual electron with greater accuracy than is indicated by Heisenberg's formula. No evidence has yet been found to suggest that his formula when interpreted in this way is not always and exactly true.

Now it must follow as the night the day that if we cannot measure the position and velocity of an electron precisely at the beginning of an experiment or during it, then we cannot predict with precision where that electron will be at the end of the experiment. The Principle of the indeterminacy of measurement must therefore lead directly to a corollary Principle of the limitation of prediction. This realisation came as an unwelcome shock to the physics of the 1930s and also, when news of it leaked out, to philosophy in general; for physical science had come to extol its ability to make precise predictions above all other virtues, while human vanity was unwilling to accept that there was anything that human technology ultimately could not do. Faced with this crisis of confidence it was perhaps inevitable that certain spirits should cast about in the hope of finding an escape clause.

We shall examine the defensive antics and flights of fancy of those folk in the next article, but before doing so it will be well to establish how far the experimentallyverified aspects of the indeterminacy principle can carry us. Suppose that a fundamental particle (an electron, say) is initially at point A at time zero and travelling at velocity v. According to our best possible measurements we know only that it is within, say, one micrometre of A at that instant and travelling subsequently at a velocity within, say, 100 metres per second of \mathbf{v}. From this knowledge we can predict that the electron will in due course pass
within one centimetre of a second point, B. The quantum mechanics as a mathematical tool will perform that prediction for us beautifully - there is nothing mystical about it or its calculations, which rely on the conservation laws. But we should note that it is not the position of the electron which is uncertain; it is we who are uncertain about its position. The electron itself travels fromı point A (exactly) to point B (exactly) along a track $A B$ which is precisely determined. It is our knowledge of that track, not the track itself, that is imprecise; and it is the imprecision of our knowledge, not the physical body itself, that is transferred from the vicinity of point A to the vicinity of point B by the so-called "operators" - metaphysical operators - of the statistical quantum mechanics.

Now what I have just said constitutes a new interpretation of the function of the quantum mechanics or "wave mechanics", and it is controversial. It is also very dangerously heretical, because anyone who accepts it must eventually refute the Copenhagen dogma. I should therefore amplify it a little. Even Heisenberg, under pressure, admitted that his indeterminacy principle did not apply to retrospective measurements. By observing the same electron on two occasions very far apart in time and space, we can determine where that electron was at the time of the first measurement and how fast it was then moving, and we can in principle determine both those quantities after the event to any accuracy we please. I believe that to be the most important single point I have to make in all these discourses; for Heisenberg, hedging hard, claimed vehemently that such retrospective determinations, although valid, were irrelevant to science

Catastrophic misconceptions

A fine example of the effect on physics of man-made confusions is afforded by Heisenberg's famous proposal of the "reduction of a wave-packet". On the basis of physical arguments already generated it is possible to refute this proposal on three counts and to resolve it as a paradox. Similar treatment may be extended to the great Principle of Indeterminacy. It is readily argued that as applied to current measurements and forward predictions the Principle is almost certainly true. However, it is not true in the case of retrospective determinations, and it follows that, contrary to the generally-accepted Copenhagen doctrine, the behaviour of every microphysical entity is determinate and complies with the conservation laws. This is equivalent to the statement that the law of causality is obeyed universally in inanimate Nature, not only statistically but by individual micro-objects. Such a view is philosophically consistent with the laws of conservation. It is likely that the opposing (Copenhagen) doctrine, now widely held, arose from the 1930s confusion of inanimate physics, always determinate, with animate metaphysics, not necessarily determinate or rational.
(which he declared should be concerned only with prediction), whereas you and I will discern instead that they are highly relevant. We will recognise that our ability to calculate precisely the earlier position and momentum of an electron on the basis of later knowledge constitutes philosophical proof that the electron's behaviour during the interval was determinate. During that particular but arbitrary interval it must have obeyed the law of causality: and if then, always. The reason why this new argument is especially important, although one might have thought it obvious, is that the most celebrated doctrine of Copenhagen physics categorically asserts the opposite - that microphysical particles do not obey the causality law as individuals, but only "on average", in a statistical manner.

Thus the vital limitation or restriction which I now suggest must attach to the great Principle of Indeterminacy is that it may deal legitimately with the indeterminacy of measurement and prediction but may not, repeat not, express or imply any mystical indeterminacy of Nature. Despite general b:lief and conventional doctrine there is not, and never has been, any experimental evidence in support of the established idea that its operations are not bearings" and that its operations are not precisely determined. How that gross error came to be made will be reviewed in the next article, together with some examples of its catastrophic effects; in the meantime

I shall ask the printer to set this statement out by itself, so that there can be no mistake about what I am saying: -

The law of causality is obeyed throughout inanimate nature

I cannot prove that statement. No scientific law can be proved, but its strength lies in the fact that no record exists of its ever having been broken. Specious Copenhagen "quantum" arguments notwithstanding, I can only re-assert that there is no experimental evidence against causality. Evidence in its favour surrounds us at every turn, because the law is itself a paraphrase of the great conservation laws of energy and momentum whose universal applicability is generally accepted. Therefore one cannot in logic acknowlege conservation while at the same time denying causality; that is what was so very odd about the 1930s doctrine that nature is indeterminate.
Almost certainly the confusion arose out of the failure to distinguish between physics and metaphysics, the science of the mind. There is plenty of evidence that decisions (made by living creatures) ${ }^{\star}$ are not always necessarily rational. That fact alone is sufficient to prevent a "Laplacian being" - or anyone else - from making an ultimately precise prediction of the future of the universe. Free will does, indirectly, modify the course of events, as human beings are fully aware; determinism applies only to inanimate, physical
interactions. There is room in God's world for both vitalists and mechanists! But here for our sins we must stick with inanimate nature.

I said earlier, in connection with the reflection of photons by the half-silvered mirror, that the word determinate is not synonymous with "predictable by mankind", and went on to say that the arrogant assumption that it was had led to much philosophical trouble in physics. It has also been exported, and caused much trouble elsewhere. It was the basis of the twen-tieth-century denial of causality, in which the whole of philosophy followed the physicists' misguided lead.
If I were to give you three guesses as to where that assumption came from I'm sure you would be right first time - and not by guessing. It came from the alreadydisproved but still unrejected wave theory of matter. Let us next explore how. $\mathrm{N} \sim \mathrm{N}$

* Automatic electronic computers do not make decisions. They are inanimate machines, physical structures driven by energy, which obey a set of instructions or program in a strictly causal, pre-determined way. A program, however, is a metaphysical structure - an expression of a human programmer's will. It is not a tape or a disc, but the information which is stored on tape or disc (it is equally valid in typescript or in the form of a flow diagram). It consumes no energy itself, and it can influence physical events only when it is able to control the operation of a physical computer as intermediary. The analogy with mind and brain is self-evident.

PCB assembly can be made easier using a Royonic semi-automatic assembly table, according to a brochure describing the system. Components are presented to the assembler in order from a dispenser and their position is indicated by a light spot projected on to the p.c.b. which can draw an outline round the position of an integrated circuit or flash to indicate that polarity needs to be checked for a diode or an electrolytic capacitor. The machine may be programmed by using a joystick or a touch-sensitive pad and the program stored on a floppy disc. Fast assembly of boards with fewer faults is claimed for the system. The brochure is available from W. J. Stickland (Electronics) Ltd, 60 Tower Hill, Chipperfield, Kings Langley, Herts WD4 9LH.

WW 400
Recent additions to the Online Conferences 1983 catalogue of conference proceedings. Viewdata 82, Videotex, Local Area Networks and distributed office systems and the Computer Graphics 1982 conferences. Online act as distributors for other publishers including QED Information Sciences and list their publications on data processing and information
management. Online Publications Ltd, Argyle House, Northwood Hills, Middlesex HA6 ITS.

WW 401
Tools, cases, breadboards, circuit boards and p.c.b. etching patterns are included in the Hobby Herald, a catalogue for the "hobby engineer", presented in a newspaper format by BICC-Vero Electronics, Parr, St Helens, Merseyside. WW 402
Specifications, standards and technical documents from the world over are available through a service described in a brochure from London Information (Rowse Muir) Ltd, Index House, Ascot, Berks SLS 7EU.

WW 403
Line conditioners to protect computers and other digital systems against noise and voltage variations on a.c. power lines are featured in a leaflet. It includes a selection guide to range of units in the GT series, with detailed information on the electrical parameters which affect the choice of unit. Gould Electronic power conversion Division, Rhosymedre, Wrexham, Clwyd, LL14 4YR.

WW 404
Two volumes and over 1,500 pages describe data aquisition products of Analog Devices. The Data Acquisition Databook includes 500 standard products and includes both data sheets and tutorial sections, Products include converters, op amps, conditioners, computing circuits, power supplies, panel instruments,
systems and subsystems for measurement and control, and component test systems. Key specifications and applications are given for all the products and a price list is included. Analog Devices Ltd, Central Avenue, East Molesey, Surrey KT8 OSN.

WW 405

A glossary of filter terminology and design examples with infornation on the use of filters in diplexers and multiplexers are included in the Lark Engineering catalogue. Product information includes performance characteristics of bandpass, band reject, tuneable, high and lowpass filters and switchable filter banks. The company uses c.a.d. to produce filters to specified requirements in the frequency range from 12 Hz to 18 GHz . March Microwave Ltd, 112 South Street, Braintree, Essex.

WW 406

Measurement of the suppression characteristics of passive radio interference filters and suppression components is subject to a new Standard, BS6299. The standard specifies methods for measuring insertion loss of passive r.f. filters which may consist of single elements, singly or in combination and either lumped or distributed types. Methods include those for laboratory testing or on a production line tests using fixed impedance terminations. The standard costs $£ 19.50$ from BSI sales department, 101 Pentonville Road, London N1 9ND.

WW 407

Ultra high density data recording

Since the disc-drive series was written a great deal of significance has happened in the field - the next few years will see progress that will make 10^{7} bit per square inch seem pedestrian.

The first disc drives appeared around 1956, when computers were exotic vacuum tube monsters, and these early drives offered densities of about $2000 \mathrm{bit} / \mathrm{in}^{2}$. Currently available machines offer around $10^{7} \mathrm{bit} / \mathrm{in}^{2}-$ a staggering increase in such a short time, but the next few years will see progress that will make these figures seem very pedestrian. Current research is concentrated in three areas, the medium, thin-film heads and vertical recording.

The great majority of today's discs are coated with the gamma form of ferric oxide, the familiar brown material. If tracks are to be made narrower to pack more of them on to a surface, there will be a pro-rata reduction in signal output, and

by J. R. Watkinson, M.Sc.

Abstract

it is necessary to adopt a medium which has greater magnetization to maintain s / n ratio at a level which gives acceptable data error rates. Cobalt has been found to have this desirable property. Given the greater magnetization of cobalt, the coating can be made thinner as well as the tracks narrower. With conventional longitudinal recording, the smaller the cross-section of the recorded magnets (track width \times coating thickness) the shorter they can be

John Watkinson is now with Sony Broadcast Lid

Fig. 1. Thin-film head made using microcircuit technology on a silicon substrate which becomes the slider.

Fig. 2.Comparison of fields of ferrite (left) and thin-film heads (right). Curves show longitudinal field strength at typical working distance from poles. Sharper curve of thin-film head allows shorter wavelength recording.
before self-demagnetization makes them unreadable.
Although thin cobalt coatings are more sensitive to substrate irregularities, this has not been the main reason for the slowness of the industry to adopt the medium. The main cause is that the process required to make cobalt-coated discs is totally different from that required for conventional oxide coating. Oxide is applied in the form of a slurry, which then dries out; cobalt cannot be applied by this old technique and requires either ion bombardment or spluttering. As the industry cannot tolerate instantaneous obsolescence of current media plant, the move to the metal-coated discs will be gradual.

Conventional heads are made of ferrite with a glass gap. The performance limits set by this form of construction have now been reached; losses in ferrite mean that it cannot follow more than about 10^{7} transitions per second. Width of the recorded track is determined by the thickness of the magnetic circuit in the head and the brittle nature of ferrite sets a limit of about 1000 tracks per inch, beyond which the head would lack durability.

A solution to the problem is the thinfilm head. Unlike a conventional head, which is assembled from a variety of components, the new thin-film head is fabricated by plating in the same way as thin-film microcircuits. The magnetic circuit is a nickel-iron alloy, permalloy, plated onto a silicon substrate along with a single-plane copper coil in the form of a spiral. The permalloy can be plated to write a track of any desirable width, because it is evenly supported by the silicon substrate which then subsequently becomes the aerodynamic head slider, as shown in Fig. 1.
This arrangement has a number of advantages. Firstly, permalloy has a frequency response an order of magnitude better than ferrite. Secondly, the thin-film construction and the characteristics of permalloy cause a very sharp fall in flux density away from the gap along the longitudinal axis. The final magnetization of the medium is determined by the trailing edge of the head field. This effect restricts ferrite heads to about 10,000 transitions per inch, whereas the thin film head can give a 50% improvement on
oxide media, and may give as much as 25,000 transitions per inch with metal media, Fig. 2.

Very short magnetic domains tend to demagnetize themselves. The effect is governed by the ratio of the length to the width; the longer and thinner a magnet, the less likely it is for the opposing poles to neutralize each other. As Fig. 3 shows, it is an unfortunate fact of life in longitudinal recording that the higher the density, the shorter the domains.

Now vertical recording organises the domains at right angles to the substrate such that the higher the density, the narrower the domains. Domain length is now controlled by the coating thickness. Claims have been made that 10^{5} bits per inch will soon be available in production equipment, with ultimate density perhaps an order of magnitude greater. The problem is one of designing a compatible head and medium; chromium cobalt is sputtered onto a substrate.

The head must consist of a pole at right angles to the disc which throws the field into, rather than along, the medium. As the trailing edge of the field determines the final state of the medium, the pole used for writing only could have a relatively large dimension along the track, but a head used for reading would need a very small pole indeed. The minute signals induced at such high densities might require an amplifier to be integrated into the slider. Thin film technology might enable the magnetic circuit and the amplifier to be fabricated in one process.

Optical recording

Optical recording is as old as talking pictures, when recording was by modulating the width or density of a track alongside the picture frames, which could be read with a lamp and a photocell. Such techniques were studied in the 1940s when the first digital computer emerged. These optical storage projects were quietly forgotten when the first magnetic drums and subsequently discs started to show their paces. Film needed to be processed before it could be read back, whereas magnetic storage offered immediate read back. But optical recording never died, and the invention of the laser with the consequent study of its applications gave it new potential.

The essence of modern optical storage is that laser light is used to melt or otherwise affect the medium in such a way that the changing reflecting power of the surface can be used in the read process. There are a number of different approaches to the basic principle, but the optical assembly required is similar in construction in all of them, Fig. 4. There are two lasers, the write laser being the more powerful; a halfsilvered mirror allows light from either into the system. For reading, the low power read laser is activated. Unlike magnetic reading, where the read head acts as a generator, optical reading requires an external source of energy that is modulated by the medium, permiting large signals to be generated.

The most interesting aspect of the read

(a) Longitudinal recording
(b) Vertical recording

Fig. 3. With conventional longitudinal recording, an increase in density reduces the aspect ratio of the media domains (a) aggravating self-demagnetization. With vertical recording increased density actually improves the situation (b).
process is the separation of incident and reflected light. The polarizing beam splitter acts as a plain block for light polarized in one direction, but as a prism for light polarized at right angles. The quarter-wave plate rotates the plane of polarization by 45°.

It consists of a crystal whose refractive index is anisotropic; the principle is similar to that used in structural analysis, where models of engineering components made in clear acrylic are placed under stress and studied with polarized light. Rotation of the plane of polarization is a function of the wavelength, so the monochromatic output of the laser is essential. Light from the laser travels once through the quarterwave plate on its way to the medium, and once again following reflection from it. Reflected light entering the beam splitter is thus polarized at right angles to the incident light, and the splitter acts as a prism, reflecting the light onto the read sensor assembly.
For writing, the output of the write laser passes straight through the system, and is focused on the medium. What takes place on the medium can be one of several mechanisms shown in Fig. 5. In the ablative process, the laser beam is focused on a thin metal film supported on a substrate. This melts right through the film, and surface tension causes a hole to appear before the metal re-freezes. The most common material proposed for this is tellurium because it offers high density, but if suffers from a number of drawbacks. It is difficult to deposit permanently onto a substrate, and is subject to deterioration caused by oxidation and humidity.
In a different technique the laser beam passes through a very thin film into a plastics substrate where the intense heat causes decomposition to gas, forming a blister in the metal film. Although these

Fig. 5. Three optical writing techniques. In the ablative technique (a) the laser melts holes in a tellurium film. At (b) laser beam decomposes plastics substrate, causing gas pressure which raises thin coating film in a blister. In (c), a possible eraseable recording, surface ripples are left where the medium has been partly melted. In the erase process a steady beam melts the track continuously; surface tension smooths out the tracks.

Fig. 4. Components of an optical read/write head, see text for details.

(d)
two new techniques permit reading and writing, the last-mentioned process is once and for all. There is no parallel with the ability of the magnetic head to erase and re-write.
Eraseable optical storage exists at the laboratory stage, but it remains to be seen whether it will be marketed. The essentials of the process are to melt part way through the medium only, to prevent evaporation and the formation of holes. A steady erase beam could melt the entire surface of a track, allowing surface tension to smooth out the surface, but it is not inconcievable that a beam switching between two levels might erase and write at the same time. Inherent in the process is a very small displacement of the medium, so that erasure is possible. This will inevitably cause the read-back signals to be small another problem to be overcome.

An optical disc drive requires many of the same components as a magnetic drive; spindle drive, read/write encoding logic, and some form of positioner are common to both. However, magnetic heads need to fly close to the medium to read shortwavelength signals, and they are designed to follow disc warps. As light can be focused, the optical head can be a short distance from the medium. This eliminates the possibility of head crashes caused by contamination, but it also prevents the head following warps and an active focus system is necessary.

This is commonly provided by using the principle of astigmatism. If a cylindrical lens is interposed between the prism and the sensor, the image of the round readlaser spot on the sensor will only be circular at the point of correct focus. Fig. 6 shows that the shape of the image becomes an ellipse on leaving the focal plane, with the angle of the major axis being determined by the direction of movement. If the image falls on a four-quadrant sensor, the four outputs can be summed and differenced to produce a focus error signal, used to drive an actuator on the focus lens.

For high-density magnetic recording, the track-following signals come from the disć itself (part 5) and this remains true for optical discs. Whereas in a magnetic drive the positioner and head have to move precisely to follow the track, the laser head performs fine tracking by steering the beam and the positioner is only used for coarse positioning. Fig. 7 shows the two major approaches to fine tracking. Where only a single platter is used fine tracking can be done by shifting the lens laterally, Fig. 7(a), which must be fast enough to follow disc run out; a moving coil actuator is one solution. At Fig. 7(b), fine tracking is done by rotating a mirror to reduce the height of the assembly. (The assembly can scan two surfaces by turning the mirror 90°.) In both cases focus is by moving a lens along the axis of the beam. In case (a) it can be the same lens as the tracking lens, in which case it will need to be driven in two axes. Control signals for fine tracking are derived from disc patterns and are, in the broadest sense, optical analogues of magnetic servo-head techniques.

Fig. 6. Use of a cylindrical lens prevents a point focus and results in an elliptical image, circular at one point only. Horizontal ellipse causes more light to fall on left and right sensor quadrants, vertical ellipse favours upper and lower quadrants, and a differential amplifier provides focus error signal. Four quadrants are summed for read signal output.

Fig. 7. Where space is no problem, fine track-following can be done by lateral lens shift (a). More compact arrangement uses a rocking mirror as shown at (b).

A simple arrangement is shown in Fig. 8 - here a diffraction grating creates two side beams which follow different paths through the system to fall on different sensors. Modulation of the side beams changes differentially with tracking error, allowing the generation of a feedback signal. A disadvantage of this method is that a space has to be left between tracks that is slightly greater than the track width, which wastes space on the medium. A more complex approach is shown in Fig. 9.

A great drawback of magnetic recording from the point of view of duplication is that every copy has to be individually recorded. One of the reasons why vinyl discs have survived the coming of the compact cassette is that they can be duplicated by stamping. Both video and audio optical discs are now available where the read mechanism is by laser, as
described. In the case of video discs, the length of the holes or pits in the disc is modulated directly by the programme waveform, whereas in audio discs, the sound waveform is digitized and encoded using similar techniques to those on the latest magnetic discs. None of these laser players can record - they are intended solely for playing recorded discs.

The optical discs are duplicated by electroplating a master to form a die. The master can be made by writing on photoresist with a low-power laser and developing to leave areas of hardened resist in relief, or by direct writing with a highpower laser. The resulting dies are used to stamp plastic discs which then receive a thick electroplated metal coat and a transparent protective layer. The medium is thus sandwiched between plastics and is very resistant to damage.

Magnetic and optical recording compared
 It is too early to be able to write

 definitively on this subject as so much research remains to be done. Proponents of optical recording claim that magnetic .discs are further along their learning curve than optical ones, and that future research in the field will follow the law of diminishing returns. The fact that the magnetic head has to be very close to the medium is also held to be a drawback, as great cleanliness is required.Proponents of magnetic recording claim that combinations of metal media, thinfilm heads and vertical recording will enable them to match the densities claimed for optical recording. It has been suggested that diffraction may set a limit to the density of optical discs from which magnetic discs will not suffer. Criticism can also be directed at the high raw error rates of current optical devices, and the inability to erase in most of them.

Fig. 8. Simple tracking system uses two auxiliary beams each side of the reading beam. Track misalignment causes the two side beam signals to change in amplitude differentially.

Fig. 9. A possible embedded servo technique for optical discs uses one beam for track following. Two beams spaced at $1 / 2$ track apart could generate twophase signal to count track crossings. In the three examples shown, notice the effect of position error on the second part of the pulse waveform. (Compare with article on servo surface drives, August 1982 issue.)

The truth lies somewhere between the extremes of this clamour. In my view, the optical and magnetic data discs are complementary rather than competitive. In large-scale data processing, there will be no significant departure from the wellproven combination of multiprogramming processor and swapping disc, as the emerging magnetic technologies will produce hard-disc drives offering low cost per bit and retaining the ability to erase. For backup and archival purposes, the write-once characteristic of optical discs is not a problem, and their resistance to contamination makes them ideal where the medium is to be removed from the drive. This may well have an impact on magnetic tape storage.

Possibly the greatest potential for optical discs lies not in the existing data processing fields, but in new applications for which their characteristics are better suited. These include electronic filing cabinets, where images of documents are stored as disc data. In these applications, non-eraseability is an asset rather than a drawback.

One far reaching consequence of the latest generation of computer equipment is its impact on maintenance philosophy. Most of the current units incorporate microdiagnostic hardware and firmware in such a way that in the event of a hardware malfunction a code is displayed that
specifies the faulty assembly to be replaced. It is no longer necessary to know how these units work in order to repair them. In normal disc drive operation, microprocessors eliminate the need to make manual adjustments. In some current disc drives, the critical access time adjustment is performed automatically every "power-up". Hard-disc technology eliminated head alignment problems for non-exchangeable drives, but now a combination of embedded servo drives and intelligent controller eliminates head alignment in exchangeable pack drives, and in fact enhances compatibility between drives.

This is, of course, good news for the computer user, as reliability will be increased and repair costs will be reduced in line with falling hardware cost. What is also implied is that the requirement for engineers who have both the mechanical and electronic skills necessary to repair hardware of the last generation has simply gone away, along with the requirement to provide in-depth training. A process of deskilling is well under way in computer maintenance. The next generation of computer technicians is already being recruited from television and domestic appliance repairers - a sobering thought when it is remembered that the first stored-program computer ran as recently as 1949 .

Next month

Viewdata display module, linked to a home computer, allows a colour tv to receive and display Prestel and teletext. Full design and construction information, including a printed-board design, is presented.

Digital tape timer is a replacement for the mechanical counter used in tape recorders. Accuracy is around one part per thousand on a $101 / 2$ in. reel. The tape itself drives optical sensors, which also ensure that the reading is maintained in both forward and reverse directions.

Amateur satellite tracking system, controlled by a Pet micro, will continuously adjust aerial altitude and azimuth to track Oscar 7, Oscar 8, Tiros-N or NOAA-6 by means of rotators.

Single-chip microcontrollers with program in eprom are now available cheaply. Program development can therefore be carried out using an eprom emulator; this article describes a circuit to enable this to be done.

On sale March 16

AMATEURS AND CABLE

is Pat Hawker (G3VA) has mentioned on more than one occasion the question of cable tv being installed for tv links and its possible interference to the amateur bands between 5 MHz and above is looming.

With the ratification of the R.F.I. Bill S. 929 last September it would appear that 'we' as the amateur population are dragging our feet somewhat.
Hopefully, as I ask you to publish these few words, someone somewhere, both in industry and the amateur world, here in the UK at least, will take note and realise that if cable tv is to progress without (?) problems then parties must get together quickly. It not only affects the amateur and industry at large but in some cases the short-wave and domestic listener/viewer.

Bearing in mind the radio amateurs throughout the world form a substantial part of this balance of payments of varying countries and after all not every firm depends on MoD contracts.

The naive idea that amateurs do not count according to some professional engineers must be looked at in the light of future and past developments in both radio and tv. In short, what works in theory doesn't always work in practice so consequently the need for liaison between interested parties, notably the RSGB on the one hand and industry and the Home office on the other. The RSGB and others are aware of this problem regarding cable tv and it should not be allowed to drift. I thank you in anticipation of publication as the subject does affect all radio amateurs and listeners alike.

J.A. Holmes

London E4

CONSTRUCTING AN ELLIPSE

I required a simple method that would give a visual picture of the specified ellipse; the distance between its foci, F_{1} and F_{2}; and the area of the ellipse.
Imagine the ellipse's auxiliary circle, shown dotted, (see diagram), to rotate about diameter $\times-\times$. It would project an infinity of ellipses each having a common major axis, with corresponding minor axes diminishing to 0 , as it resolves into a straight line on $x-x$. The relative foci, $\mathrm{F}_{1}, \mathrm{~F}_{2}$; diverge from the centre, finally reaching the extremities of the major axis $x-x$. The sine of the angle of inclination a to project a specified ellipse $=$ minor axis/major axis = angle a, and, if this angle is projected on to the auxiliary circle, passing through its centre, similar to a side projection to itself, $A-B$, then

perpendiculars are erected from A and B to meet $z-z$, these points will meet it at F_{1} and F_{2}, their accurate distance apart $=$ major axis $\times \cos$ " a ". To find the area of the ellipse I multiply the area of the auxiliary circle by $\sin a$.
L.G. Miller

Lydney
Glos.

THE NEW BUREAUCRACY

When Dr Catt produced the first of his series of articles attacking me and my colleagues, I tended to dismiss them as the ravings of a confused mind, even when they were printed as leading articles in a journal which I respect. Could this outpouring be from the same office which produced "Microchips and megadeaths," I wondered? Now, after the third attack, it is time to speak.

Like Dr Catt, I have worked for computer manufacturers and computer users for the past twenty years, but in software. Like him, I have been confounded by bureaucratic interference and bloody-mindedness, but the strength of his feeling is truly amazing. What a pity he turns his feeling against his colleagues.

In short, it is facile in the extreme to argue that programmers, whose job it is to convert a statement of requirements to a working system on a given set of hardware, can be blamed for the adoption, retention or, indeed for any influential action at all when it comes to computer hardware. We use what is available, that is all.

To those of us in the real world - implementing working systems - the idea of us "infiltrating and subverting" the process of hardware design, while attractive, is unreal. None of us likes the von Neumann architecture - we spend our lives trying to circumvent it. Indeed, when I showed his article on WaferScale Integration to some of my colleagues, there was universal interest. As an aside, our Systems Manager would like to find these systems programmers who are politically adept, for they would be rare beasts indeed.

It seems that we have given offence because we have neither science nor technology. I must confess that is some months since I integrated my last expression (compound interest calculation, as it happens), and I agreed that university courses are of little relevance to the practising programmer. But my craft is not to blame for that, and the universal requirement for experience is a good illustration that the industry is being condemned by the action of a few. My Oxford dictionary, incidentally, relates the word "technology" to grammar and a study of the techniques of art, or the arts. Our use of the expression "Software Engineering" was devised as a tribute to our hardware colleagues, and a good pointer to the way we had to go. It is churlish to refute such a tribute because, we have not yet completed the journey.

Finally, if Dr Catt has difficulty in finding software people to design and develop his software (should he concede that he needs it), then he need look no further. I am a consultant with a background similar to his, with experience in the fields he requires. My only qualms in volunteering to work with him is that, although I understand him, will he understand me?
D. W. Scott

Nettlestead Green
Kent

NO SUCH THING AS A MAGNETIC FIELD

I have always been pleased and surprised by Wireless World's editorial policy which seems to take a far wider view of the world than the purely technical, electronic one.
Over the years we have frequently seen letters, articles and editorials which enrich the subject matter of Wirless World on such topics as relativity, fundamental electronic philosophy and the morality of contributing to warfare. A very healthy and refreshing state of affairs.

May I be permitted to make a small contribution. When learning about electricity at school, it suddenly struck me rather forcibly that there can be no such thing as a magnetic field. Some readers will no doubt find this assertion very curious as we measure, use and describe magnetic fields mathematically. We can even feel them if we take hold of a couple of magnets, and by using rather specialised techniques we can make them visible.

The simple fact about the magnetic field however, is that it has no separate existence; all the techniques for measurement or detection of the magnetic field have common features and none can demonstrate or identify the separate existence of the thing we call a magnetic field.

When, for example, we "detect" a "magnetic field" between wires in which a current flows, the only factor we can be reasonably certain of is that we are bringing into proximity moving electric charges. There is no proof of a "field" and nothing to be dignified by a special name "magnetic". We simply have a force between moving electrons.

When we bring two magnets together, the force between them is not due to any invisible etherial field, but is due to the proximity of moving electric charges, the electrons confined to orbits (or orbitals of the Schrödinger wave equation). All the force effects between magnetic (ferro, para or diamagnetic) materials can be explained in terms of moving electrons.

What other "proofs" or "measurements" of "magnetic fields" exist? The Hall effect springs to mind. Here again, we are simply looking at a force between moving electrons, which is either allowed to set up a transverse potential gradient, or a small transverse current in a conducting medium when another medium containing moving electrons is brought nearby. Once again, all we have is a force between moving sets of electrons.
These common features are found in any test or experiment concerning the "magnetic field", whether we consider electron beam deflection in a c.r.t., electro-magnetic induction, compass needles or whatever.

The history of science is littered with examples of concepts which at best summarize the truth, and at worst hinder the understanding of the true state of affairs, and as Bertrand Russell said, once people believe a thing really must be so, it takes a tremendous weight of evidence to change their minds. Examples are "phlogiston", a gas once supposed by chemists to be given our during any combustion, "caloric", the fluid responsible for heat, and the ether, once supposed essential to the transmission of electromagnetic waves. The trouble with the foregoing concepts is a natural tendency to believe that if a special name exists for a concept we know all about it. In fact we know next to nothing about this force between moving electrons, just its size and existence are known.

How it arises and why are a mystery which the mere name "magnetism" does nothing to explain.

It would be rather perverse to attempt to tear down a cornerstone of electromagnetic beliefs without attempting to make some progress. Perhaps it would be useful to clarify the situation by discarding all the terms containing the "magnetic" root and use the following.

Electrokinetic force - the force between moving electrons (formerly known as magnetism).

Electrostatic force - as before, the force between stationary charges.

We could manage very nicely with just these two. It would be useful to dispense with the antiquated term "field" (does it originate somewhere in our agrarian past?) and write all the equations in terms of forces instead of invoking this roundabout complication.

It is to be hoped that by clarifying the situation in these ways, more would call into question the fundamental nature of the forces between electrons at rest and in movement and some real progress could be made.

I hope there may be something of originality and controversy in this, I have not seen such ideas expressed in your columns before (equally, I have not read every issue of Wireless World). If you would like to publish any of this letter I would be very pleased and grateful. In the meantime, I shall continue to look forward to the "questioning" letters and articles I have come to expect as a part of your excellent publication.
A. R. Churchley

SARA Krd
Warrington

ELECTROMAGNETIC DOPPLER

I have been unable to find the answer to what is superficially a straightforward question. What is the mechanism by which Doppler shift is produced in the case of electromagnetic waves?
In acoustics, when two observers in relative motion observe the same sound wave they measure different frequencies due to the simple fact that the wave is passing each at a different relative velocity. If $\mathrm{V}_{\mathrm{R} 1}$ and $\mathrm{V}_{\mathrm{R} 2}$ represent the velocities of observers 1 and 2 relative to the wave then

$$
\begin{equation*}
\frac{\mathrm{f}_{1} \lambda}{\mathrm{~V}_{\mathrm{R} 1}}=\frac{\mathrm{f}_{2} \lambda}{\mathrm{~V}_{\mathrm{R} 2}} \tag{1}
\end{equation*}
$$

or $\quad \mathrm{f}_{1} / \mathrm{f}_{2}=\mathrm{V}_{\mathrm{R} 1} / \mathrm{V}_{\mathrm{R} 2}=\left(\mathrm{V}-\mathrm{V}_{1}\right) /\left(\mathrm{V}-\mathrm{V}_{2}\right)$

Equation (2) is the derivation of the more familiar form of the equation where the relative velocity of wave and observer is expressed in terms of the velocity of propagation in the medium V , and the velocity of the observers relative to the medium v_{1} and v_{2}.

The e.m. Doppler shift equation (3) can be verified experimentally to a high degree of accuracy.

$$
\begin{equation*}
\frac{f_{0}}{f_{s}}=\frac{C-V}{C} \tag{3}
\end{equation*}
$$

Now if, as I have seen stated, "similar principles apply" one can deduce two things: that
the velocity of light relative to the observer is $\mathrm{c}-\mathrm{v}$ which is in direct opposition to the postulate of relativity which insists that the velocity of light is always c independent of relative motion between source and observer; that the velocity of light is constant relative to the source which would provide an adequate explanation of the null result of the Michelson Morley experiment and would support the corpuscular/photon model of light, photons being "shot" out of matter at constant "muzzle" velocity.
A further piece of evidence supporting (2) is that of star aberration. In 1729 Bradley showed that the apparent direction of a star is actually the vector sum of the velocity of the light from the star and that of the earth.

It would seem that there is at least some evidence to support the view that the velocity of light is constant with respect to the source and that this would resolve the dilemma presented to physics by the Michelson Morley experiment. As physics has not accepted this path one can logically assume that there must be overwhelming evidence to the contrary which supports the postulate that the velocity of light is always constant independent of the velocity of the source. I have looked in vain for such evidence, most books seem to manage without any: the only evidence which I have found is de Sitters observation of double stars. If the whole of modern physics is based only on that I think we should all be worried.
The standard technique seems to be to ignore Doppler and aberration, to fudge the evidence in respect of the postulate and dive straight into the mathematics of relativity. From this appear the relativistic Doppler shift equation and aberration equation. Thus having shown that both are embraced by relativity one never has to ask the questions I have raised. Now the relativistic Doppler equation may be written.

$$
\frac{f_{\mathrm{o}}}{\mathrm{f}_{\mathrm{s}}}=\left(\frac{\mathrm{C}-\mathrm{V}}{\mathrm{C}}\right)\left(\frac{1}{\sqrt{ } 1-V^{2} / C^{2}}\right)
$$

The second term is time dilation which for modest values of v is equal to unity. My question is what is the physical mechanism which produces the first term which appears to be the ratio of two velocities. If the velocity of the wave is the same to both observers there is effectively only one other possible variable and that is time (note distance can be defined as the distance travelled by a light beam in unit time) so that if the first term is not due to a difference in velocity of the wave it must be due to a time difference or time dilation. Both observers observe the same wave. They both observe that it is travelling at the same velocity yet they disagree as to its frequency because their clocks are ticking at a different rate. But whose clock is ticking faster than whose. It depends on which observer is sourcing the beam of light. If both send a beam to the other simultaneously then we get the mathematical absurdity

$$
\mathrm{T}_{\mathrm{A}}>\mathrm{T}_{\mathrm{B}} \text { and } \mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}
$$

This type of "paradox" has been mentioned in WW before, but surely either the result must be rejected because it doesn't conform to the laws of mathematics, or the laws of mathematics are wrong, in which case the derivation of the result must be rejected as being based on faulty

mathematical laws.

I would welcome any suggestions as to where I am going wrong.

I have followed Dr Murray's articles with interest but he has lost me on one point. If, as he suggests, light waves are periodic variations in photon density then presumably destructive interference occurs when the peaks in density of one wave 'fill in' the troughs of the other so that the variation in density is zero but the actual density is the combined averate density of the two waves. Surely this could be easily checked experimentally as the photo-electric current produced by a dark fringe of an interference pattern should be the same as that of a light fringe. I cannot see either how his model can explain polarization.

Appendix

Double stars
For those unfamiliar with this piece of evidence the idea is that if the velocity of light were constant with respect to the source, then the light from a star in a binary system which is travelling towards us would tend to overtake that from the star going away from us with the result that their observed orbits would seem irregular. De Sitter observed double stars and no orbital irregularity. I have yet to find out when or where these observations took place, the magnitude of the expected irregularity, de Sitter's measurement accuracy, and why he didn't get a Nobel prize for this obviously vital work.
J Kennaugh
Callington
Cornwall

STEREO WIDTH CONTROL

In the article Modular preamplifier' Mr J. L. Linsley Hood describes a circuit to blend or separate 2 stereo channels (WW Jan, 83 page 47/48, Figs. 20, 21). Although there can be no doubt that these circuits can work satisfactorily, with some minor modifications a combined separate blend circuit is possible - see Fig. 1. As you can see, by adding four extra resistors, just a one-section potentiometer is required, and width control can be turned completely back to mono.
I like to use this opportunity to warn experimenters, who for some reason use bipolar opamps of the 741 type for audio purposes, that a negative d.c. bias at the output of such op-amps (e.g. a 3 k 9 resistor from output to minus supply) can reduce crossover distortion at higher frequencies remarkably.

P. C. W. Demmer

Amsterdam-O.dorp
Netherlands

ELECTRONIC IGNITION

Users of the electronic ignition published in the March 1982 edition may be interested in an important secondary use for the change-over switch recommended in the article for all electronic systems, in the event of failure.
It is a well-known effect that the contact breaker tends to get dirtier soon with electronic ignition, an effect which is made worse if the distributor capacitor is removed. This results in misfiring and eventual stoppage. However a few minutes running with the change-over switch in the conventional mode every now and then will prevent an accumulation of dirt, which is presumably burnt off by the arcing and sparking that is a normal feature of conventional ignition.

Contamination of the contact breaker can be surprisingly difficult to diagnose unless you know of its effects, and can lead to time wasted in a search for component failure in the electronic ignition.
Rod Cooper
Lichfield
Staffs

FAILURE OF DISTRESS SIGNALS AT SEA

I would like to make a few comments on the letters from Mr Hans P. Faye-Thilesen (WW February, 1983).
Whatever the losses in the insulators and wires of an aerial caused by dielectric and induction heating, these are (for a particular frequency) constant and predictable losses, which, as for any electrical machine, are taken into account in any calculation of efficiency, and which ought to very much increase with frequency. Losses due to inductive heating of parts of a ship's superstructure, caused by poor siting of aerials, are probably worse, but not readily measurable.
Some of the "top loaded unipole" aerials mentioned by Mr Faye-Thilesen are only 10 per cent efficient at 500 kHz , according to their manufacturers' data. Even this we are grateful for (and it isn't very good), when it is available, but it is not the theoretical aerial efficiency under ideal theoritical conditions that people at sea have been criticizing; it is the total collapse of any efficiency at all in bad weather conditions, and there is no denying that it is related to two main factors, namely aerial capacity and insulator leakage. This is experimentally demonstrable by the instant improvement in performance obtainable by parallel connecting several aerials and washing, shielding and/or reducing numbers of insulators. I could speculate that dielectric heating of water droplets in moist air contributes to the problem, but then it ought to be evident at h.f. as well as 500 kHz , and it is not. We have no problems with these aerials at h.f.

For information about the performance of low-powered 500 kHz life-boat transmitters, I would refer readers to my letter in WW June, 1981, in which I quoted from actual experience. I have, as a matter of routine, regularly tested life-boat radio equipment on board ship. With a 5 W transmitter on 500 kHz , and 30 feet of wire, six feet above the deck, 40 feet above the water, it is not very difficult to obtain a good signal report from a coast station 25 miles away in daylight hours. I would not agree that this equipment is "useless". I don't know how to keep 60 feet of wire supported from a kite or
balloon in a storm either, but I still wish to have the kite or balloon available for possible use in the calm that follows the storm.
I certainly support Mr Faye-Thilesen's contention that only 500 kHz is reliable for DF purposes and that 2182 khz is absolutely useless. This was borne out a few years ago in the loss of the German ship Munchen. DF bearings taken on a 2182 kHz EPIRB beacon later proved to be wildly inaccurate. No trace of either ship or crew was ever found.
Finally, SOLAS means Safety Of Life At Sea. John Wiseman
London, E3

THE RIGHT FORMULA

Referring to R. G. Young's letter in the November issue, when Max Bohr was discussing the existence and reality of purely theoretical (abstract) entities, the conclusion reached was that their existence and reality were both unnecessary attributes. From this conclusion one may safely say that materiality diminished to its ultimate stops at Newtonian physics and the molecule. Anything smaller such as concepts of atoms, electrons and nuclear particles reside only in the mind and are devolutions of the physicists' credo and not science. The theories evolved from such conceptual devolutions comprise metaphysics. It is for this reason that 1.1 $\times 10^{-14}$ grams increased mass (1.1×10^{14} was a slip of the pen as was the use of 'velocity' rather than 'motion' in the definition of mass) does not exist.

If there ever was a 'big bang' start to the universe then there must be an absolute still from which the increases in mass may be measured. Einstein denies this absolute still point, hence some absurdities result from his theory, which only partially accounts for phenomena. Hence perhaps one may say that 1.1×10^{-14} grams is a mathematical figment of the imagination and also that it is neither real nor existent.

The mathematics used in science must follow the same laws as the physical phenomena being investigated so that it may be regarded as valid. It is, for example, mathematics which rules that light must be a wave or a particulate phenomenon but not both. It is the physical phenomenon of light which rules that it is both a wave and a particle and therefore scientists ought to get used to thinking this way and cast out some of the imprinted ideas of their earlier days of what exists, what is real, and what can or cannot happen, if they wish to advance in knowledge rather than speculation.
O. Balean

Chatham
Kent

SEEING RED

I have had recently to up-date my rented colour television receiver because of problems as regards replacement spares for the old one which was still performing satisfactorily.
I was immensely impressed with the technological progress which has been made not only as regards the facilities provided but the way in which they can be controlled. No longer does it feel as if I am operating an oil circuit-breaker when I change channels and I am given access to a vast amount of information by courtesy of Teletert. I am moreover given remote control of
all this by the choice of something like 30 different commands over an infra-red link.

Being so impressed, I was perhaps somewhat slow in giving a critical eye to the receiver's main purpose, namely to produce a picture of at least as good quality as that available from the old receiver.

What I found was, that while the pictures were sharp and bright, the colour rendering was not what I might have expected.

It is in the red part of the colour range where I feel most dissatisfaction because what I am shown is a red which is more of an orange hue though some might refer to it as flame colour.
Some well-known objects have a particular colour association and errors in colour rendition in such instances, can be quite disturbing. Grass can be more or less green and sky can vary in its blueness but the colour of a London omnibus and that of a guardsman's uniform is well-remembered in the mind's eye and it is here that errors will be immediately apparent.
Switching to Teletext on the new receiver showed that red was the same hue as obtained in the tv picture and this would seem to show that the modern "red" phosphor has a characteristic rather different from the primary red phosphors of a few years ago. Manufacturers may have seen fit to do this in order to give increased brightness when viewing under conditions of high ambient lighting but if this is the case, a regrettable error is being built in to the modern receiver.

For instance, where a floral display is involved, the inability to portray a pure or primary red could result in flowers being seen with hues quite inappropriate to their species.

Finally, I can admire my receiver as a product of high technology and it produces some very pretty pictures but in the cirumstances I have described, I find them unsatisfactory if only because I am no longer allowed to see red.
Gwilym Dann
Chipstead
Surrey

DESIGNING WITH MICROPROCESSORS

It is unfortunate that several errors appear in the 8080 PRINT program in the article by Zissos and Valan (December 1980 issue).
The MVI instruction at location 1003 does not set the zero flag, so a zero length block will not be trapped.

The JNZ instruction at location 1005 should be a JZ.

The JMP instruction at location 1013 jumps to the wrong place, causing an endless loop.
A possible revised program, in Assembler format, appears below:

ORG 1000 H
LXI H,2040H
MVI A,n
MOV C,A
ORA A
L3: JZ LI
L2: IN 60 H
RLC
JC L2
MOV A,M
program start address
address of first byte
to be printed
; $\mathrm{A}=\mathrm{ngth}$ of block
$\mathrm{C}=$ length of block ; set flags
; ump to Llif count $=0$
; loop if printer not ready ; next byte to be printed

OUT 61 H INX H

; print

; point to next byte to be printed
DCR C ; decrement count

L1: HLT
Neil Roberts
Leasco Software Limited
Maidenhead
Berkshire

NON-BINARY LOGIC CIRCUITS

I was saddened to see the article by C. W. Ross in the December 1982 issue, page 68. The idea of something other than straight binary surfaces every few years, and then sinks out of sight. The reality is that in around 1960 there was an historic shift from the supremacy of analogue to the supremacy of digital. The full power of binary has been missed during the last 20 years due to the worldwide fixation on the expensive, 'fully parallel binary. This is very limiting, and makes more plausible the partial resurgence of analogue in the form of Ross's ideas, ternary logic, majority logic, etc., etc.
In 1964 at Motorola (see " A high-speed integrated circuit scratchpad memory," Fall Joint Computer Conference, November 1966), my team delivered a system in which logic pulses 4ns wide (2 ns rise time, 2 ns flat, 2 ns fall time) were used as a matter of course. At that time, an eight-bit byte could be delivered as a routine matter in serial form down one single wire (plus 0 V return) in 32 ns , a 16 -bit word in 64 ns . Today, 20 years later, we could probably go 10 times faster if we tried, delivering a 16 -bit word in serial form down one wire (plus 0 V return) in 6.4 ns . (In fact, for all the ballyhoo about increasing speed, we have not tried at all to increase speed during the last 20 years!)
Serial working would reduce the cost and increase the reliability of present-day microprocessors and rams, drastically reducing the number of legs on on the chip, the number of interconnecting leads, and the chip d.i.p. size. It would also drastically reduce the cost of standard buses. [In 1964, signals starting on one board, transferring to a mother board, and then transferring back to another daughter board, retained their fast (2ns) rise and fall times.]

Fixation on fully parallel working shows how this crazy industry can ignore the strongest financial imperatives. This is because of the extreme youth of the people in the industry They learn about what should be temporary phases in the industry and assume that it was always thus and will always be thus. In fact, serial working was the norm until around 1960. Today, you are not allowed to design serial working into a digital system. (This includes a ban on serial memory.) How this fixation can hold out against the present alleged trend of computer linking up with a fully serial industry, telecom, I do not understand. It proves the strength of a fixation, how it can stand firm against all odds, including strong financial pressures.

Fully parallel working, with its concomitant complex failure (breakdown) modes, has spawned the growth of the very complex, expensive logic analyser industry, and massively forced up the complexity and rate per hour of system repair. By contrast, a serial system can be analysed using a normal oscilloscope. The bits lay themselves out along the trace, and failures are easy to find because they are catastrophic - the whole word disappears.

Ivor Catt
St Alans Herts

MODERN PHYSICS

Congratulations to Wireless World for providing publication for Dr Murray's series. To find such an open-minded and intelligent discussion in a respected journal is today exceedingly rare.
Modern thinkers have become so entrapped in preconceived notions that their power of detached observation has almost entirely disappeared. To illustrate, it has never been explained why an electron should orbit the nucleus of an atom. Surely, if an electron and a proton experience a mutual attraction they should simply move together and unite; there is nothing to suggest that any sort of rotational motion is either necessary or possible. The fact of the matter, and one that is becoming increasingly obvious to many thoughtful persons, is that Nature does not consist of the attraction or repulsion of two opposing principles, but is formed by the interplay of three mutually interdependent principles.
Neither the electric, nor the magnetic, nor the gravitional forces exist in reality; they are merely concepts used to explain observed phenomena. An electron possesses the single property of ever-increasing motion; a proton possesses the tendency to absolute stillness; the third principle that seeks to unite the other two is as yet un-named, but determines the phenomena which our theories clumsily attempt to explain. And this view is not without historic precedent.
Although it is reassuring to assume that men of antiquity were less intelligent than we are today, this assumption is not supported by investigation. The Bhagavad Gita, an ancient text, states that Nature is formed from three 'Gunas' or principles, referred to as inertia, motion, and harmony; even Christianity insists that God is a trinity. When scientists learn to interpret their observations as being the interplay of three principles and not two, they will not only have re-established a teaching that is thousands of years old, but will be well on the way to a truly scientific understanding of the Universe, instead of a merely mechanistic one. Einstein's famous equation, $\mathrm{E}=\mathrm{mc}^{2}$, is a relationship between three concepts; mass, space, and time, and simply states that the tendency to infinite motion reaches an upper limit established by the balance between the principles. It does not state, as so many suppose, that "Nothing can travel faster than light". If it be re-written in the form $c^{2}=\mathrm{E} / \mathrm{m}$, then it is obvious that the limiting vela relationship between three concepts; mass, space, and time, and simply states that the tendancy to infinite motion reaches an upper limit established by the balance between the principles. It does not state, as so many suppose, that "Nothing can travel faster than light". If it be re-written in the form $c^{2}=\mathrm{E} / \mathrm{m}$, then it is obvious that the limiting velocity is determined by the ratio between 'energy' and 'matter', and that where this ratio is low, as in a piece of glass, the limiting velocity is lower than the 'speed of light', and where the ratio is high, as in interstellar space, the limiting velocity is higher.

I hope that this letter, the first I have been encouraged to write to any journal, serves to stimulate vital discussion on ideas that are very much in need of a thorough research and restatement.
P. Craig

Wellington
New Zealand

DC volts	$100 \mathrm{mV}-1000 \mathrm{~V}$
AC volts	$1.5 \mathrm{~V}-\mathrm{A}-5 \mathrm{~A}$

DCamps	$50 \mu A-5 A$
$A C$ amps	$250 \mu A-5 M \Omega$
Ohms	$1 \Omega-5-+62 d B$
$d B$	$+6 F-25,00 \mu$

Supertester 680 R -
80 ranges (Aditional functions to previous
product
pCult 102000 V . $D C$ cursent to DC volist 10 ourrent to $5 \mathrm{~A} . \mathrm{dB}$ $10 \mathrm{~A}-2410+70 \mathrm{~dB}$. fom- 10 D 1% fsd AC 2% fsd £ 32.00 full Support
accessories available

Our distribution division now supplies Electronic Test and Measuring Instruments from Philips, Fluke, Hameg and ICE. Electronic Brokers Ltd, a company with many years excellent service to the industry, offer full technical support and demonstration facilities on the premises. All orders are despatched promptly from stock. Contact us for further information.
(24 hour telephone answering service).

Test \& Measuring

 Equipment MThis exhibition is the ideal showcase for companies who need to demonstrate their products to the fast expanding market for home and personal computers, small business systems and associated software. When you consider that the markets for personal computers are regional and that Birmingham has a developing computer awareness with a great deal of computer expertise in the area, you'll appreciate the need for The Midland Computer Fair. The public has already demonstrated its appreciation of The Computer Fair in London by sheer volume of numbers. We know the success will continue in Birmingham. Personal computers are part of everyday life.

Make Sure Your Computer Products And Services Are Seen At The Midland Computer Fair.

For the full story contact the Exhibitions Manager, The Midland Computer Fair, IPC Exhibitions Ltd, Surrey House, 1 Throwley Way, Sutton, Surrey SM1 4OO.

Seeing the light?

Around 30000 homes in a San Francisco suburb are to be wired with a $50: 50$ coaxial/optical cable tv network costing only 3% more than an entirely coaxial system by Commco Cable TV of Texas who have recently formed an Anglo-American partnership. Using both aerial and underground cable routes, this $\$ 10 \mathrm{~m}$ switched star system has optical fibre trunk-to-house links carrying only one signal at a time so tv-converter costs are possibly 10 times lower than they would be with a tree and branch network and switching circuits, being outside the home are said to be cheaper to maintain. Labourintensive hole digging is avoided as the optical-fibre cables are thin enough to pass through existing ducts.

Commco's partnership with Cable and Wireless and Charterhouse Group plc, called Cable TV Construction, will start its life in the Birmingham area involved with planning and consultancy contracts. As the name implies, the company also plans to install networks in the future.

A second recent Anglo-American partnership, Cabletime, plans to offer a cheap cable tv system in the UK by the end of the year. Their system, a star network combining typically 85% optical-fibre cable with 15% coaxial, is based on one designed in America mainly for use with blocks of flats, each with their own distribution unit. But David Mann, managing director of Cabletime, emphasises "the system that we plan to offer in the UK is not the same as its US counterpart. Modifications make the switching units and cable more suitable for outdoor use and we are uprating the system to comply with PAL requirements, probable UK standards on the number of channels for each home, and satellite broadcast interfaces. The network's final form will depend on the requirements yet to be decided upon. All our equipment is to be made in the UK." One arm of the company, Cabletime Installations, will manufacture robots for laying cables in sewers. Times Fiber Communications of America who formed Cabletime together Britain's UEI group provided the system for Commco's San Francisco installation.
"If cable tv is to start soon, a system such as ours is the answer - if a wholly wideband optical-fibre system has to be used, Britain will have to wait another 10 years," adds Mr Mann. Many networkcost estimates for the UK are high, since they are based on prices for communications systems using high-grade opticalfibre cables carrying fast signals over long distances. A star-switched system such as the one proposed by Cabletime would be far cheaper than one using only optical
fibres and meet requirements so far outlined by the government for an initial 20 -year licence (tree and branch systems will probably receive 12 -year licences). The government is likely to insist that cables be laid in ducts, paving the way for future improvements.

In January, an agreement providing for the formation of a joint venture company in the UK - Plessey Scientific-Atlanta Ltd - was announced by Plessey's chief executive, Sir John Clark. The new company is to "exploit developing business opportunities for satellite and cable communications in Western Europe". In Sir John's words, "With the joint resources of our two companies, we shall be addressing the European satellite communications market which is set to take off with the launch of the ECS1 satellite during 1983. Furthermore, it is clear that many govern-
ments in Europe, including in particular our own, are seeking to provide as rapidly as possible a national wide-band network financed from the public's appetite for tv entertainment." A second agreement between the two companies gives Scientific Atlanta Inc. access to Plessey's v.l.s.i., microwave device and optical-fibre technologies.
Scientific Atlanta of Georgia in the US opened up a catalogue service called Cablemart in November of 1982 that illustrates the type of business that cable tv has become in America. "Cablemart promises 24-hour order processing of hundreds of cable tv products listed in its catalogue customers can call in orders using a tollfree telephone number . . . to hasten delivery, in-stock items will be shipped within 24 hours," reads the description.
Among other companies involved with cable tv are GEC, who are to manufacture hardware; Racal, who have combined with Oak Industries of America to make both equipment and programmes (see News, October 1982), and Thorn, who have set

Wideband cable systems

Terms of reference used by the Dol technical working group chaired by Dr E. N. Eden to provide draft British Standards for wideband cable systems read as follows:
"To consider the specifications necessary for the design and operation of wideband cable systems, in particular as respects the needs for cable systems

- to be compatible with appropriate technical and service features of the networks operated by BT and Mercury
- to have the capacity to provide interactive services
- to comply with the requirements for the prevention of electro-magnetic interference laid down by the UK, the EC and the international specifications of the International Special Committee on Radio Interference (CIS PR)
- to have some reserve capacity for which standards will be specified in the future (the level of spurious signals for other services that may appear should be specified)
and for existing tv receivers used for uhf reception to be capable of being linked to the system (the properties of receivers with other interface ports and of receivers equipped to take adaptors for the reception of transmissions from satellitas of direct broadcasting will also need to be taken into account)
In considering these specifications the working group should take into account all the various types of services, including switched interactive services, that it can envisage as being provided in due course by wideband cable systems, with the exception of voice telephony, and where appropriate British Standards do not exist it is asked to draft
them. These standards should encompass the principal alternative configurations and technologies and the working group may therefore find it necessary to produce alternative standards for particular services.

The principal services that the Department can anticipate as being among the potential capability of wideband cable systems are

- downstream video channels, where the Department wishes the working group to look towards 30 channels each with its associated sound and teletext data signals la proportion of these should be capable of handling the features included in the standards for direct broadcasting by satellite, where appropriate with any necessary transcoding)
- audio channels
- at least one return video channel, with an associated sound capability, which may be used for a range of services
- two-way data channels, some of which should have a signalling rate of $80 \mathrm{kbit} / \mathrm{s}$.
in the case of the latter two services the Department would wish the working group to produce standards that allow or a number of subscribers to have simultaneous access to those two-way services including viewphone.

The working group is asked to produce drafts of the appropriate standards on or about 1 March 1983 in such a form, using the guidance of BSO:1981 wherever possible, that the British Standards Institution may issue them for public consultation. An interim progress report should be submitted by 1 October, 1982"
up a new company called Thorn EMI Cable Television Services to coordinate their various interests in c.tv. These interests include receiver and decoder design, the preparation of programme material and studio equipment. Operating experience from Radio Rentals Cable Television, who are currently managing services in Swindon and Medway, will also be used by CTS.

BT and its unions are opposed to the fast turnover, low-bandwidth approach and would rather that the UK embarked on a long-term project to provide a high-bandwidth national network with the potential to supply demands well into the future. There is a chance that independent and incompatible services could be dotted about the country if a free-for-all is allowed. BT has the experience and resources to lay such a network but their role in cable tv is not yet clear.

Whether cheap hybrid systems may be applied in the UK hangs on requirements yet to be decided. A pending government White Paper discussing legislation to ena-
ble cable tv authorities to be set up, franchises, etc., in response to the Hunt report and results of the Eden inquiry due early in March are important factors. The Eden inquiry, which will be presented to BSI, will include draft technical specifications for the type of service to be provided (see Wideband cable systems).

An attractive system is only the first hurdle - given the organ, providers must offer a viable service. UK trials have shown that American material can be very expensive and feature-film channels could run into difficulties as under 150 Englishlanguage films are produced each year (excluding Indian films). Rediffusion's Starview film-channel service (see News, November 1981) covers a potential 56000 viewers in five towns but according to recent figures only 9000 of these have subscribed. In Hull, 22% of the potential audience use Starview whereas in Reading, only 6% have taken the service (these figures represent the highest and lowest percentages for the five towns).

UK robot plant expands

A UK company is to develop a new robot and supply western Europe with its parent company's existing range as a result of a jointly funded $£ 10 \mathrm{~m}$ investment plan. Creating more than 250 jobs, Kenneth Baker, Minister for Information Technology, said that the project "clearly gives the lie to any belief that robots simply take away jobs". The company concerned, Unimation Ltd, and its US parent are to provide $£ 6.5 \mathrm{~m}$ towards the investment and financial support from the British Technology Group and the DoI yet to be finalised is expected to provide the remainder.
Announcing the plans, Mr Baker said: "The Unimation project is a major step forward in the government's policy of encouraging the establishment of Britain as a major robot supplier . . . the adoption of robots and other advanced manufacturing
technology is not only vital to maintain our competitiveness in world markets and hence safeguard existing jobs, it can create new ones as well." Unimation's European base in Telford currently employs around 120 people.

Part of the investment will be used to set up a systems engineering division to tailor robots for use in applications other than assembly tasks in the automotive industry which are currently their mainstay.

- Thorn EMI are to manufacture a range of large-screen colour tv sets for JVC at their Enfield and Gosport plants but as the sets are constructed by robots, new jobs are not likely to be created by the planned deal in the near future. Five Thorn sets from 20 to 26 in will extend JVC's colour tv range to ten sizes, starting at 6 in. Production is expected to start in mid-1983.

A Puma robot manipulating transmitting and receiving probes for ultrasonic inspection of carbon-fibre aircraft components.

Charity buys school micros

A comprehensive school with 1500 pupils has been given a $£ 16000$ microcomputer grant as a result of a report submitted to a local charity. The report, written by the school's computer development advisory committee, recommended a computer classroom with at least one computer between two pupils. Parents and teachers of the school formed the committee which includes members from Lanchester Polytechnic and Warwick University.
As a result of the committee's concerted efforts and the Edwards Kenilworth School Charity's awareness of the problems facing pupils and teachers, the school now has 27 computers. This is the first donation of its kind made by the charity, which covers all schools in the area.
The grant has funded a 14 -unit Nascom computer network, but the school also has 380Z, BBC and ZX80 computers. When asked why such a variety of machines were bought, computer studies teacher Bill Nash replied, "To give the pupils a truer picture of the world of microcomputers." Between one and three pupils in each class have their own microcomputer.

Mr Nash said that during the school's evaluation of computers for use in the network, Acorn Computers were not very helpful. He added that contrary to claims made for them, some of the computers looked at didn't have a true networking facility. Lucas Logic, manufacturers of the Nascom, are based in the area.
"To be fully equipped," concludes Mr Nash, "we need another 15 computers to construct a computer-aided learning laboratory" - and they have been lucky.

More money for fibre development

Under a joint opto-electronic research scheme set up by the DoI and Science and Engineering Research Council, $£ 15 \mathrm{~m}$ will be available to support collaborative research projects between industry and universities. Project work will be shared equally between the partners, companies receiving up to 50% grants from the DoI and universities receiving up to 100% SERC awards. The joint opto-electronics research scheme is expected to run for five years.
The DoI also announce a $£ 15 \mathrm{~m}$ boost to the $£ 25 \mathrm{~m}$ set aside in 1981 under the fibreoptic scheme, $£ 20 \mathrm{~m}$ of which has already been used for grants covering up to a third of the costs involved in designing, developing and launching new fibre-optic products, including equipment and new building expenses.

Satellite to observe Halley

European Space Agency and British Aerospace have designed a $£ 34 \mathrm{~m}$ contract for the Giotto spacecraft, Europe's first deep space probe, which is to intercept Halley's comet eight months after its launch scheduled for July 1985. Russian and Japanese satellites will also observe Halley but

Giotto will carry the most advanced instrumentation and pass closest to the comet. Instruments will investigate the chemical composition of the comet's coma region, take colour photographs of the nucleus and measure magnetic fields.

Mac overseas

On January 24-25, tv pictures with multichannel sound were sent via OTS to Stockholm in the first demonstration outside the UK of the IBA's Mac system for satellite-tv broadcasting. C-Mac's ability to provide eight sound channels will be of particular interest in Scandinavia due to the number of different languages spoken in countries likely to be covered by a Nordic direct-broadcast satellite service.
Apart from its acceptance by the BBC, Mac has had another recent boost in that it is to be used by a third US company. This latest patent-licensing agreement with the United States Satellite Broadcasting Corporation is the first to be concluded since the Part report.

Optical fibres sink

Britain's first undersea optical-fibre cable carrying telephone calls 25 km across the Solent linking Portsmouth and Ryde is to be installed by 1985. BT say that the $140 \mathrm{Mbit} / \mathrm{s}$ cable, supplied by STC, costs $£ 600000$ and will carry "a variety of information technology services" as well as speech.

Negotiations between telecommuni cations authorities in the UK, Holland, Germany and Belgium for a European op-tical-fibre link are underway. An agreement is expected this year.

15Gbit recordable laser disc

Laser discs that can be used to record both analogue and digital signals at high densities have been developed by Sony. Densities of 15×10^{9} bits per side on a 300 mm -
diameter disc are claimed for the prototype system and although this achievement represents a significant step towards the optical equivalent of magnetic media, the

last hurdle - that of disc erasure - is ye to be crossed. But because of its high recording density Sony's disc is likely to be attractive, especially in archiving applications.

Each disc surface has two layers evaporated onto it. When recording, a modulated laser beam of less than 7 mW changes 'bits' of the upper recording surface from an amorphous to a crystalline state. Areas heated to 170° by the beam have three times the reflectivity of the untouched amorphous areas, and information on the disc represented by the reflectivity of crystalline and amorphous areas is read in the same way as a conventional optical video disc. The recording layer is a film of antimony-selenide.

A second layer of bismuth-telluride underneath the recording layer provides a reflective surface behind crystalline areas to increase the difference between reflective and non-reflective areas, but more important it absorbs heat from the lăser during recording to increase the definition of transitions between amorphous and crystalline areas. This means that the lengths of reflective and non-reflective areas can be accurately defined, facilitating analogue recording.

Mastering metals for mothers

A licensing agreement to manufacture records using a metal mastering process has been signed by EMI Music, holding company for EMIs international record interests. The new process eliminates several steps in the record-making chain, allowing a record master to be cut directly into copper thus producing a positiveimage "mother". Direct metal-mastered records, which will carry a DMM logo, cost no more than normal pressings but can be made in about two hours as opposed to about a day with conventional discs. Audibly, the new discs claim to virtually eliminate surface clicks and pops, increase signal-to-noise ratio by up to 10 dB , allow up to 15% more playing time per side, and eliminate the pre and post-echo associated with lacquer springback.

There are well-known difficulties with traditional nitro-cellulose lacquer blanks. Though it is ideal for cutting it is an unstable material in that it changes with both climatic conditions and time. It is also adversly affected by stylus heat and by burnishing facets, both of which are important for good groove-wall structure. There are problems of groove tearing, horn formation and of plastic deformation in the lacquer material, which results in the well-known phenomenon of springback of the engraved groove (both time and temperature dependant). Then there are severe demands placed on the next step - nickel pre-plating onto a silver conductive coating. It must be extremely thin, its metallurgical structure fine-grained, and it must not contain impurities. The cleaning process should not attack the lacquer surface and the activation or sensitizing process must produce even deposition of silver atoms.
According to its developers, Teldec in Berlin, the new process eliminates all three problems by circumventing those steps.

Teldec curves show that new direct metal mastering audibly reduces background noise (measured by third-octave filter). Reference level measurement corresponded to a recorded velocity of $10 \mathrm{~cm} / \mathrm{s}$ for one groove wall. Curve A shows the background noise of rumble test record DIN 45544, and B shows the same measurement with the DMM record TP467.

In contrast to lacquer masters, numerous matrices can be produced from a direct metal master, permitting easy correction of defects which may appear in the plating steps en route vo the stamper. Process gives a significant time economy in the plating process, especially when making a stamper directly.

First proposed over 90 years ago and recently revived by RCA for capacitance video discs (see page 39, September 1981), the direct cutting into metal means that the cutting lathe produces the mother (metal positive) for the plating process. But the demands on the video disc manufacturing process were small by comparison, as indeed are the groove dimensions: depth is $1 \mu \mathrm{~m}$ and width $2 \mu \mathrm{~m}$ (not 2 mm as misprinted in that article), with a modulation depth of only tens of nanometres.

But the electrolytically-produced copper coating is not readily applicable to conventional records. As the cross-section of the groove is 100 times larger than that cut from videodiscs its ductility and elasticity must be right; the copper coating needs an amorphous rather than the crystalline structure of pure electrolytic copper. Equipment for producing the copper blank developed in conjuction with Europafilm of Sweden deposits the copper onto the 0.8 mm -thick stainless steel substrate, and may be immediately used when cut as the mother in the plating process.

This metal cutting blank provides a higher resistance to the cutting stylus than does the traditional lacquer blank. To reduce cutting resistance three measures
have been applied. Unusually, the diamond cutting stylus has no burnishing facets. This means that the innermost turns of the groove show no amplitude losses, even when cutting at the highest frequencies. Secondly, the face angle of the diamond stylus is greater than 90°. The sum of the face and stylus angles is chosen so that for the maximum groove excursion there still remains sufficient space between the groove walls and the back of the stylus. And thirdly, the cutting stylus is excited at an ultrasonic frequency whose amplitude increases with increasing groove depth, where cutting resistance is greater. This results in an extremely smooth groove wall and keeps the mechanical loading of the cutterhead - a Neumann SX80CM - and the resulting electrical power demand within reason.
Experience up till now has shown that the stampers from the new masters are "entirely free" of ticks and pops and the surface noise is diminished more than 10 dB , against a mother made from lacquer blank. For carefully pressed records, this can extend all the way to the final product. Background noise of the final disc shows fewer impulse-type disturbances compared to traditionally produced 1.ps, and Teldec say unwanted high frequency components are significantly reduced.

The elimination of lacquer springback eliminates pre and post-groove echo. It is therefore possible to reduce the groove-togroove spacing and to fully utilize pitch control methods. With the Neumann VMS80 tape-to-disc transfer system the result is 10 to 15% more playing time per record side. Elimination of groove deformation during or after the cutting process has provided A/B comparisons between discs cut in lacquer and the new masters which show improved transient behaviour, and Teldec say that instruments rich in upper harmonics and sibilant voices are particularly free of coloration.

Initial manufacturing experience has confirmed Teldec's original assumption that manufacturing reliability will be much higher than through the use of traditional technology. After conversion to the new process the number of recuts necessitated either in the cutting or plating process were reduced "drastically."
But despite this, and significant savings in the plating process particularly for short-run classical recordings, the price of DMM records will not be lower, though an EMI spokesman did concede that some increases may be circumvented. According to the BPI, manufacturing costs are but a small fraction of the selling price of records, typically 38 pence in $£ 4.39$, and the new process will only bring about small savings in that fraction. EMI say they will introduce the process in its Köln pressing plant in about six months time, and in its other main plants by early 1984. Until then EMI's initial releases will be pressed by Teldec in Germany.

Floppy-disc drive tester

All major functions on a standard $51 / 4$ in mini-floppy disc drive are tested by this circuit without the aid of a computer. Using the box with an alignment disc allows the read/write head to be accurately aligned with the disc. As the connections on the drives shown are standard, logic signals and power come out on two plugs. There are four inputs to the box from the drive,

- write protect (WP)
- track 0 (TR00)
- index, signal showing each revolution of drive
- read data, data output from disc.

Inputs simply light leds through cmos buffers to show conditions of the various signals. Outputs from the test unit to the drive are almost all switch closures,

- drive selects, $\mathrm{DS}_{1}, \mathrm{DS}_{2}$ and DS_{3}, set up code to select drive unit
- motor, switches on drive motor
- direction, selects step in or step out of read/write head
- step, pulse that steps head in our out
(depending upon condition of direction signal)
- write gate, low for write enable, high for read enable
- write data, does not write any useful data to the drive but produces a digital pulse train used for tracing through disc circuitry.
S. J. Evans

Cradley Heath
West Midlands

Low-cost 3-digit common-cathode d.v.m.

The three-digit common-anode d.v.m. based on CA3162E \& CA3161E integrated circuits from RCA is well known; the CA3162E is a multiplexed a-d converter, and the CA3161E is a simple b.c.d.to-seven-segment common-anode display decoder/driver, with integral segment-current limiters. For a d.v.m. with commoncathode display (like most of pocket cal-
culator led displays), you can't use the CA3161E; it must be substituted by another display decoder/driver i.c. The MC14511B is a cmos b.c.d.-to-seven-segment common-cathode display decoder/driver, but without segment-current limiters that must be added externally. A $10 \mathrm{k} \Omega$ pull-up resistor must be added to each 14511 b.c.d. input to operate correctly with the CA3162E.

The switch selects the sample rate. In the 4 Hz position (pin 6 to ground) a sample is taken every 0.25 second; in the 96 Hz position (pin 6 to +5 V) a sample is taken every 0.01 second (approximately); and in the hold position (pin 6 to +2.5 V) the display is frozen.

Calibration should be as follows. Firstly, connect the input to ground. The $47 \mathrm{k} \Omega$ preset potentiometer is then adjusted so that the display reads 000 . Now, an accurate known voltage of, for example, 800 mV is connected to the input, after which the $10 \mathrm{k} \Omega$ preset potentiometer is adjusted to give the correct display of 800 . The range is -99 to +999 mV . However, the

MC14511B is not able to display the "_" (minus) and the " E " (overload) characters. With negative input signals the most significant digit will be blanked, and with overrange input signals all digits will be blanked.

Francisco J. Herrero

Soria
Spain

Improving the 7134 d-to-a for audio use

The Intersil 7134 14-bit d-to-a converter is designed for a unipolar, +10 V , or bipolar, $\pm 10 \mathrm{~V}$, output range depending on whether the m.s.b. of its R-2R ladder is fed from $V_{\text {ref }}$ directly or through an inverter. It provides two resistors for use with an external inverter and the 7134 B is programmed to correct for any error in the resistor ratio. Unfortunately an offset
voltage at either of the op-amps causes an abrupt step at zero crossover, just where it matters most for many digital audio applications, and maintaining 14 -bit linearity requires offsets below $100 \mu \mathrm{~V}$. A more satisfactory way of obtaining bipolar operation is to use the 7134 U and offset the output by $-1 / 2 \mathrm{~V}_{\text {ref }}$. Normally this would require a second op-amp in the signal path, but the internal resistor values turn out to be exactly $2 R$. Used with an op-amp as shown they provide an offset current which accurately matches the internal feedback resistor in value and temperature coefficient. Offset voltages on either opamp now result in only d.c. shift, with no effect on linearity.
P. J. Skirrow

Lindos Electronics
Woodbridge
Suffolk

Darlington difficulty

The Darlington transistor configuration has proved its worth in many designs but budding engineers can be caught out by overlooking one of its basic parameters no matter how hard the first transistor of the pair is driven, $\mathrm{V}_{\text {CEsat }}$ will never be less than 0.7 volt $\left(\mathrm{V}_{\mathrm{CEsat1}}+\mathrm{V}_{\text {BE2 }}\right)$, important when the Darlington is used to turn off transistors in logic circuits or as a power switch.
Extra power consumed by the device because of the voltage drop is also often overlooked. For example, a 600 mW device would be working close to its maximum dissipation rating with a collector current of only 800 mA . Both problems are overcome by using separate transistors.
D. Gray

Todley
Hants

Joystick interface

Conventional joysticks use either two expensive a-to-d converters with three-state outputs and good resolution in microseconds or include cheaper, slower converters with limited resolution. This interface offers the best of both designs with $500 \mu \mathrm{~s}$ conversion time: if speed is important, a ZN427E a-to-d converter may be used. The circuit shown uses port B of a 6522 v.i.a. with CB_{1} and CB_{2} acting as input and output lines respectively. But any p.i.a. or v.i.a. with more than nine inputs and one output may be used.

On power up the clear input of IC_{5} is held low for around 100 ms to give $Q=0$ and $\overline{\mathrm{Q}}=1$ so there is no potential drop across the horizontal-axis potentiometer and the non-inverting input of IC_{4} represents the vertical potentiometer position. Diodes connected in series with the potentiometer wipers block the ground path.
To start conversion, CB_{2} is pulsed to 0 V . The falling edge of this pulse sets the counter of IC_{3} to zero and sets the status line (CB_{1}) and the output of IC_{2} high while the rising edge starts the clock, $\mathrm{IC}_{\mathrm{lc}}$, which runs at around 200 kHz . When the output of IC_{3} exceeds the output of 1.3gain buffer, IC_{4}, the output of IC_{2} returns to zero and through gating by $\mathrm{IC}_{\text {la,b,d }}$, clock pulses to IC_{3} are inhibited and the status line returns to zero. The digital output of IC_{3} now represents the vertical-potentiometer position.

When the clock input of IC_{5} receives a falling edge from the status line, the i.c. outputs change to $\mathrm{Q}=1$ and $\overline{\mathrm{Q}}=0$. Now,
triggering the a-to-d will result in conversion of the horizontal potentiometer representation at the output of IC_{4} to digital form and IC_{5} reverting to its original state. Thus the same routine used twice gives x and y coordinates of the joystick.

The Atom-Basic list shown reads and displays the control settings but machine code will probably be required in practice. For other computers, vii.a. base address B800 will need changing. Query operator, ?, achieves peek or poke depending on its context. Program actions are

Action

set B port as 8 input lines control loop set and reset converter (B 80 C is PCR controlling CB_{2} through bit 5 ; set $=224$, reset $=192$)
160 loop until CB_{1} is low (B80D is interrupt flag register; bit 4 indicates negative transition on CB_{1}; other bits are zero and bit 4 set to zero when B port is read.
170 return to control loop
If the microcomputer only has a positive supply, the 7660 circuit may be added to provide -5 V for $\mathrm{IC}_{2,4}$.
D. C. Grindrod

Sutton Coldfield
West Midlands

5 ?\#B802=0

10 DO
20 GOS.150;X=? \#B800; GOS.150;X=?\#B800
30 PRINT X,Y

40 UNTIL 0
150 ? \#B80C=192; ? \#B80C=224
160 DO; UNTIL? \#B80D>0
170 RETURN

Simple clock doubler

I have used this frequency doubler on numerous occasions to generate high rate clock pulses around spare gates/inverters left on circuits.
D. J. Greenland

Bar Hill
Cambridge

Some problems of aerials at sea

Many marine radio installations are far from competently carried out. More photographic evidence is presented

In the September 1982 issue of WW I discussed the merits of a variety of merchant ship transmitting aerials from a theoretical point of view. In this article, I propose to show some of the problems which have been experienced with a fairly typical aerial installation and the transmitters which it serves, adding a word, wherever possible, on what might be done to bring about improvement. Most of the equipment depicted dates from the late 1960 s -

Fig. 1. Popular mast or cage aerial.

Fig. 2. The base of the fibre-glass supporting pole of the mast aerial is also the feed-through insulator. The ring at the bottom is a rain-cone.

by J. J. Wiseman

early 1970s, but this is what hundreds of ships at sea still depend on. There is no reason to believe that more recently manufactured installations, with all their ics and digital readouts, work any better.
The two aerials in question are shown in Fig 1. The 'main' aerial is a popular mast or cage type, widely used on ships of many nationalities. Height from base to tip of the whip is 16.2 metres; height from base to top of the cage is 10.5 metres; and nominal capacity is 400 pF . The central support is a hollow, tapered, tube of glass fibre, which deteriorates with age, especially out-ofdoors, the surface becoming crazed as water seeps in. The other aerial (reserve) is a rather short piece wire of the "It'll be all right if it ends in a whip" school. Its capacity I estimate as less than 100 pF , and its usefulness as 'emergency' aerial as doubtful - it is far too short and the two aerials

Fig. 3. Feed through insulator of emergency aerial.
are so close together that any catastrophe befalling one of them is likely to damage the other as well. Note how both these aerials are raked, indicative of shipbuilders' obsession with style over function. Figures 2 and 3 show the feedthrough arrangements for mast and wire aerials respectively.
First problem:
The main transmitter, (Fig 4), delivers 400 watts on 500 kHz and 6 other frequencies in the band $410 / 512 \mathrm{kHz}$. It has ample tank-circuit loading/tuning adjustment and can put 10 A up the mast aerial, still delivering 2 to 5 A in wet and humid weather. Radiated power under these conditions may be down to 50 watts, still quite useful and not unusual. However, in hot dry climates, less than half maximum power can be realised due to severe arcing to ground in the aerial switching unit, in Fig 5. This indicates insufficient aerial capacity: if that cannot be increased, then it is still possible to distribute tank-circuit inductance between transmitter and aerial by means of loading coils in the aerial,

Fig. 4. The main transmitter.

Fig. 5. Arcing from frame to switch interconnecting wire, top centre. The round objects, left and right hand sides, are neon bulbs.

Fig. 6. German mast aerial with loading coil.

Fig. 7. 70 Watt emergency transmitter.
shown in Fig 6. (Some old ships actually had large loading coils built into the rack - never seen these days.) The same transmitter delivers up to 1400 watts h.f., but no arcing problems occur; aerial capacity is always very large by the requirements of h.f. tuned circuits, or the aerial is operating in other modes, near 0.25 wavelength or multiples thereof. This is exclusively a 500 kHz problem - power radiated is critically dependent on the weather. Is it an aerial or a barometer?

Second problem

The reserve or 'emergency' transmitter in Fig. 7 delivers a nominal 70 watts, at 500 kHz and six other frequencies in the band $410 / 512 \mathrm{kHz}$ only. It is powered, via a

Fig. 8. The emergency radio batteries.

Fig. 9. (1) P.a. valve (2) Coupling adjustment (3) Neon tuning indicator.

Fig. 10. Emergency transmitter with much better facilities.

Fig. 11. British Flag, 6925 g.r.t, Built 1974. Photographed in Gulf of Aqaba, October 1982. Mast aerial struck by lightning.
rotary converter, from the bank of batteries giving 24V, 180A seen in Fig. 8, and is all one has to depend on if the main transmitter or the power mains fail. It lacks: external coupling adjustment; overload trip; power reduction switch; metering of any kind; external h.t. fuse. The panel has a meter-shaped hole cut in it (arrowed), but this is occupied by a neon bulb capacitively coupled to the tank coil by means of a piece of stiff wire close to the coil. This is the only tuning indicator provided. Internal adjustment of coupling is available (Fig. 9). The 70 watts is squeezed out of a very small valve seen at the bottom 1.h. corner of the photograph. If the weather is even slightly humid, the neon bulb fails to light. Then the only means of

Fig. 12. British Flag. B. 1974. Short receiving whip, long co-ax., no impedance matching transformer.

Fig. 13. Matching transformer on receiving whip greatly improves 500 khz reception.
tuning available is to listen for an increase of signal strength in the receiver. Since only a vague and shallow dip is obtained, and there is no overload trip or power reduction, the anode of the very small valve glows red-hot, threatening self destruction. When the ship is pitching, listing, sinking, or on fire, that is not a good time to be pulling the transmitter out of the rack, screw-driver in hand, fiddling with the internal coupling, which in any case proves quite inadequate when the Q of the tank circuit is at the mercy of the vagaries of the weather.

This equipment has been Post Office approved in its country of origin, and surveyed and passed, year after year. This being 'Holy Writ', it is useless to com-
plain, because, "It passed survey". To those who claim that you can 'burn off moisture on aerial insulators by holding the key down, I would point out that: there has to be enough energy available to vaporise a lot of water, and there isn't; if the key is held down, the p.a. valve will melt! (just as well the p.a. isn't transistorized!); the dielectric properties of humid air seem to play a part. No output or dip whatsoever can be obtained with the "reserve" aerial connected during wet or humid weather.

A far better emergency transmitter is shown in Fig 10. It has: ample tank tuning/coupling adjustment; metering of five functions, including aerial current and p.a. cathode current; overload trip; four very robust valves in parallel in the p.a. stage, the drive and power supply being all transistorized; power reduction switch; numbered controls, which, in conjunction with the instruction card enable the transmitter to be put into operation by
unskilled personnel in an emergency, and automatically to key an alarm signal and distress call. But still, a too-short, lowcapacity, high-leakage aerial and severe weather, even this has been known to fail. The aerial is all important. An h.f. capability for emergency transmitters would be very useful.

Third problem

This is the ultimate problem. The mast aerial of this British ship has been struck by lightning, and it is laying on deck with its whip tip burned right off. A traditional long wire aerial has had to be rigged. The aerial switching unit was also destroyed. Benjamin Franklin would not have been surprised.

Fourth problem

This concerns receiving aerials. The whip aerial (Fig. 12) is quite short and is
mounted next to the radar scanner, where it is likely to pick up noise from the modulator pulses and scanner motor commutator. It has a very long run of coax. and no impedance matching is attempted, so that signals at 500 kHz are very much attenuated. (There is a naive belief in shipyards that coax. is a magical electrical 'water pipe'.) If the aerial is mounted near the bow to isolate it from the transmitting aerials, then a short receiving whip may have an unmatched coax. run exceeding 100 metres. Inefficient transmitting aerials plus inefficient receiving aerials makes for poor communication at 500 kHz . Figure 3 shows a simple matching transformer on a 500 kHz Auto-Alarm receiving whip. Broad-band transformers are available, but seldom seen.
A more professional approach to design of ships' radio installations will be needed if the unique properties of 500 kHz as a marine distress frequency are to be realised fully.

MaN
continued from page 32
$=(1+s t) \bar{E}_{\text {out }}$. In use, the gain A is adjusted to give the fastest response without overshoot, i.e. the circuit is critically damped. Hence the denominator of the above expression can be factored to give a squared term:

$$
\bar{E}_{\mathrm{out}}=\frac{E}{s(\alpha s+1)^{2}}
$$

where $\quad \propto=\tau R\left(C+C_{f}\right)$. The inverse
transform from standard tables is

$$
E_{\text {out }}=E\{1-(1+t / \alpha) \exp (-t / \alpha)\}
$$

The rise time of this function is governed by the value of \propto (it can be found graphic ally to be approximately $3.4 \propto$). The rise time of the original input circuit is 2.2 RC. Comparison of the two values shows that for the greatest improvement by neutralization C_{f} should not be unduly large, and the amplifier time constant τ should be as small as possible.

MNO

References

1. Purves, R. D. Microelectrode Methods for Intracellular Recording and Ionophoresis. Academic Press, London, 1981.
2. Kootsey, J. M. and Johnson, E. A. Buffer amplifier with femtofarad input capacity using operational amplifiers. IEEE Trans. Bio-Med. Eng., vol. BME-20, pp. 387-389, 1973.
3. Thomas, M. V. Microelectrode amplifier with improved method of input-capitance neutralisation. Med. EO Biol. Eng. © Comput., vol. 15, pp. 450-454, 1977.
continued from page 43
what one would expect.
It appears that after the switch was closed, some electromagnetic energy must have started off to the left, away from the now closed switch; bounced off the open circuit at A, and then returned all the way back to the switch \mathbf{B} and beyond.

This paradox, that when the switches ars closed, electromagnetic energy promptly rushes away from the path suddenly made available, is understandable if one postulates that a steady charged capacitor AB is not steady at all; it contains electromagnetic energy, half of it travelling to the right at the speed of light, and the other half travelling to the left at the speed of light.
Now it becomes obvious that when the switches are closed, the rightwards travelling electromagnetic energy will exit down BC first, immediately followed by the leftwards travelling electromagnetic energy after it has bounced off the open circuit at A. Even before the switches were closed, every segment of electric field had coexisting with it a segment of magnetic field at right angles, and both were travelling together at the speed of light.

Fig 3. Pulse generator (a). Changing $A B$ to 10 V and closing switches produces 5 V pulse twice as long as $A B$ (c) and (d), caused by left and right travelling pulses following down line $B C$.

What is true of a 'steady' charged capacitor or coax. cable is also true of a pair of wires connected to the battery. Before closure of the switches, electromagnetic (not electric) energy was oscillating to and fro between battery and switches. Since the same amount travelled in both directions, the magnetic fields being equal and oppo-
site cancelled, and only an electric field could be detected. 'Waves in space' existed between these two wires long before the switches were closed and before the capacitor came into the picture.
peav

The author

In 1953, at the age of 17 , Nor Catt won a State Scholarship in mathematics, in 1959 he gained a B.A. in enginearing at Trinity College, Cambridge. He is merried with four children ranging in ago from 22 down to 1.
for Catt's 25 year career has baen mostly in R\&D in industry but partly in teaching. His fleld of experience is centred on computer hardware design. for instance at Ferranti now I.C.L.) Manchester, and on microelectronics, for instance at Motorola, Phoenix, Arizons.
Catt's second field of research, which resulted from his experience spanning both microelectronics and computer herdware, led to his patented inventions in Wafer Scate integration and computer architecture, described in the July 1981 Wireless World.

A.m. stereo standards

The difficulties of obtaining international or European agreement on broadcast transmission standards are well-known, but they begin to pale into insignificance beside the dog-fight in the USA over which system to use for a.m. stereo broadcasting on the medium-wave band. Following several years of technical investigations and field trials, the FCC decided early in 1982 that the choice between six competing systems - Motorola "CQUAM"; Magnavox AM-PM; Harris VCPM; the Kahn/Hazeltine independentsideband system; the Belar a.m.-f.m. system; and the Fisher DPC system would have to be left to "the market place." This process is made infinitely more difficult by American anti-trust legislation which makes it impossible for any organization, or group of broadcasters or manufacturers to take responsibility for agreeing with others to adopt a particular system. Even in a city having half-a-dozen a.m. broadcast stations, each is expected to make up its own mind regardless of what the others intend to do. Since the systems are, at least to a considerable degree, noncompatible, this would create a situation where a listener might receive stereo from only one station.

The FCC technical assessment of the four systems, issued on March 18, 1982, generally appeared to favour the Harris system, particularly in view of the future use of synchronous-detector technology, stating: "Of the five proposed systems, the Harris is the only one which can make full use of this technology . . and has the potential to evolve into an even better system."

Nevertheless in the FCC evaluation, the Magnavox system scored 76 points; Harris 72; Motorola 71; Kahn 65; and Belar 58, taking into account monophonic compatibility, interference characteristics, coverage, transmitter stereo performance and receiver stereo performance.

Since March 1982 there has been virtually a stalemate, with most broadcasters waiting for others to see which way the wind will blow. However, in December 1982 the Delco Electronics division of General Motors announced that it was recommending for GM cars the Motorola system. This system amplitude modulates two r.f. carriers that are separated in phase by 90°, but uses non-linear hard limiting to achieve a better degree of compatibility.

The Delco recommendation, because of the firm's prominence in the car radio industry, is seen as a major boost for the Motorola system. It followed bench and field tests carried at station WIRE, India-
napolis, on three of the four still contending systems: Motorola, Harris and Magnavox. Leonard Kahn, originator of the i.s.b. system, declined to participate. At NAB1982 he made it clear that he would be prepared to challenge in the courts any possible breach of the anti-trust legislation. It remains to be seen whether other radio manufacturers and broadcasters will jump on the Motorola bandwagon or whether the struggle between linear and non-linear systems will continue.

A "market place" choice may seem a good idea in theory. The buyer pays his money and takes his choice. But in a matter as complex as a stereo transmission system, where consumers are not even interested in such questions as coverage and interference, provided that they can hear the stations they want to hear with some sort of stereo effect, this is surely a curious way of choosing a system that may have to last the American public for many years to come.

Places at risk

Communications and broadcasting installations have always been regarded as places at risk in the event of civil disobedience, revolutionary coups and the like. The first news of such happenings often emerges when a takeover brings strange new voices to the microphones. World War I was started by an assassination in Sarajevo but the first shots in World War 2 were fired when the Germans, using concentration camp prisoners dressed in Polish uniforms, staged a mock coup on one of their own radio stations close to the Polish frontier.
A story which is virtually unknown in the UK comes from a book published some years ago to mark 50 years of Japanese broadcasting, produced by the "History Compilation Room" of NHK's Radio and TV Culture Research Institute. In the period immediately following the Japanese surrender in August 1945 there were several attacks on broadcasting stations. For instance, on the morning of August 24, a group of former Japanese soldiers, under the cover of a severe rainstorm, attacked the Kawaguchi site of the main Tokyo transmitting station "trying to force the station officials to broadcast a message urging continuation of the war" (which had cost over three million Japanese lives). They interrupted the regular programmes for nine hours.

Two days later, a group of 40 former soldiers and what the book calls "rightists" attacked the Matsue station in western Japan but "they also failed in trying to rouse
support for a continuation of the war." It could thus be argued, I suppose, that World War 2 both started and ended with attacks on radio stations!
Centralized broadcast and telecommunications facilities are still clearly recognized as being at risk - as witness the closing for so many years of what was planned as a major London tourist attraction: the public observation galleries of the Post Office Tower.

Radiation hazards

The possible effects of a different type of hazard occurred to me last year when I made the ritual trip to the very top of the Empire State Building in New York. Looking out of the glass windows one seemed very close to some of the many broadcasting aerials that adorn the building. I began to wonder just what levels a field strength meter might have revealed, particularly when compared to the guidelines in the new American "ANSI C95.1-1982 American National Standard Safety Levels with respect to human exposure to radio frequency electromagnetic fields." This recognises that it is prudent to restrict exposure, on frequencies between 30 and 300 MHz , to power densities of less than $1 \mathrm{~mW} / \mathrm{cm}^{2}$ rather than the older limit of $10 \mathrm{~mW} / \mathrm{cm}^{2}$ (the current British figure). ANSI now recognises that non-ionizing radiation at some frequencies is potentially more hazardous than at others. Below 3 MHz the guide limit increases to $100 \mathrm{~mW} / \mathrm{cm}^{2}$ and above 1500 MHz to $5 \mathrm{~mW} / \mathrm{cm}^{2}$; between 300 and 1500 MHz it is $\mathrm{f} / 300$ and between 300 and 1500 MHz f/300 where f is in MHz . The ANSI standard, however, admits some important exclusions to these figures: for example for hand-held, mobile and marine transmitters which can produce strong localized fields but tend to result in lower overall body absorption the guide figures do not apply below 1 GHz for transmitters with less than 7 watts r.f. output. The ANSI standard is quite a complex document but clearly deserves careful study in the U.K.

Consumers and EMC

A few years ago the susceptibility of so much consumer electronics equipment in homes and cars to strong out-of-band r.f. fields was of concern mainly to the 30,000 or so UK radio amateurs. Today there are not only the 350,000 -plus CB transmitters to take into account but also the many consumer digital-type systems and electronic devices such as semiconductor
lamp dimmers that can affect television, radio and audio. In addition many highgain audio systems, including tape recorders and record reproducers, are vulnerable to the sync pulses of strong television signals. Home Office statistics normally cover only complaints of interference to the off-air reception of local television and radio broadcasts, today only part of the problem.

In North America leakage into and out of wideband cable tv systems is proving a difficult problem and represents an argument in favour of fibre-optics systems which should be far less susceptible to r.f.i. and not give rise to outward leakage problems.

In the UK a more immediate problem is the added susceptibility of domestic tv where a video cassette tape recorder is in use. This vulnerability extends to off-air reception where the signals pass through the wideband v.h.f./u.h.f. amplifiers in the recorders. These amplifiers often exhibit gain from about 12 MHz up to 900 MHz and can be overloaded by a strong signal anywhere in this range. For the UK market, the v.h.f. capability of the recorder amplifiers is unnecessary, and it would reduce susceptibility to local transmitter interference if u.h.f.-only recorders were marketed in the UK.
A further problem, affecting primarily amateurs using the 3.5 MHz band, is the high-gain head amplifier with a frequency range extending up to about 5 MHz . In some recorders this is comparatively well screened, but this is not always the case; the general use of plastics enclosures for recorders does not help.
A problem common in the USA that has not yet arisen in the UK is that of interference to the receivers used for opening garage doors by radio control. Apparently it is by no means unusual to see a succession of garage doors swing open when a mobile transmitter passes by. Yet in many cases the manufacturers of the radio control equipment are well aware that the problem can often be solved by fitting just one or two r.f. bypass capacitors at suitable points.
It can be argued that the Home Office accepts that susceptibility of consumer equipment to out-of-band signals cannot be blamed on the transmitter. Nevertheless, it was precisely this susceptibility that led the Home Office to restrict legal c.b. to the f.m. mode. For both radio amateurs and c.b. operators there are the difficult social problems that arise with neighbours. It is near impossible to convince somebody who has just spent $£ 450$ on a video recorder that the interference is due to its
deficiencies! The owner always blames the transmitter.
Two California cable tv operators were recently ordered to stop using their 151.25 MHz channels in wideband cable systems because leaking signals interfered with Department of Forestry firefighting communications. The FCC Field Office told cable operators to ensure their systems comply with FCC rules, and added that even if a system complies fully with the rules but still causes harmful interference, it is up to cable operator to remedy the problem.

Natural energy

For portable and transportable two-way radio, the power source remains the key factor. Even for the popular 144 MHz hand-held transceivers the most frequent complaint is that power consumption is such that it gives rise to too-short battery life, even though this may be rechargeable. Many units incorporate a "high/low" power-output switch and, particuarly when used with repeaters, the low-power mode often provides adequate range. Power consumption, however, is not helped by some of the recent digital techniques that provide additional operator convenience but shorten battery life.
The use of solar generators is thus of increasing interest although currently not economically viable in many cases. However a relatively powerful solar generator using 20 solar modules each with an array of photovoltaic silicon solar cells and used in conjunction with a 500 Ah lead-acid battery has been used at the Jet Propulsion Laboratory in California to power a combined h.f. and v.h.f. "emergency" station based on standard amateur-radio transceivers. In sunlight the solar generator provides about 200 watts of electrical power to charge the battery. This is capable of keeping the equipment running with a low transmit/receive duty cycle for -several days. However such installations are costly and not readily transportable so that their application to amateur radio is
likely to be limited: possibly in future the development of large area amorphous silicon solar cells may widen the scope.

Pedal-to-talk

A man-wife team of British amateurs - J. R. G. Corbett, G3TWS and Mrs M. G. Corbett, G8TWS - have recently assembled a pedal-powered generator for use in Zaire to power an h.f. network linking Mission hospitals - bicycle minus a front wheel and with a generator driven by the back wheel held in a cradle. Pedal generaters of a similar type have been widely used in the past and can deliver well over 100 watts of power when an energetic cyclist is available - considerably more than can be readily obtained with a hand generator.
An energetic American college professor, Elliot Kleinman, WA4YDK, in a variation on this theme, has recently accomplished the feat of working all 50 American states while operating "bicycle mobile" and is reported to be well on his way to making it 100 different countries. In his case, however, the power source is a 9Ah motorcycle battery which powers a compact h.f. Atlas transceiver for rather over an hour per charge, although liable to die suddenly as it finally discharges. His aerial is a $66-\mathrm{in}$ whip. He uses the 21 MHz band.
Not surprisingly, in view of the unstable nature of his loaded vehicle, he reports that the reaction of the people on the streets varies from interested to dumbfounded.

In brief

The Norwegian N.R.R.L. society has awarded its 1982 Golden Key Award to Noel B. Eaton, VE3CJ, former president of IARU. He becomes only the third nonNorwegian amateur to receive this award ... Father Maksymilian Kolbe, SP3RN, who gave his life to save that of a fellow concentration-camp prisoner in World War 2, has been canonized. In 1938 he set up an amateur station to communicate with missionary stations worldwide . . . A new Russian amateur radio satellite, ISKRA- 3 was launched by hand from the Salyut spacecraft during November . . . The RSGB national amateur radio convention at the National Exhibition Centre on March 5 and 6 is to include both lectures and convention features as well as a large trade exhibition ... The Society's VHF Convention is at Sandown Park Racecourse, Esher, Surrey, on March 26.
-PAT HAWKER, G3VA

High power high quality amplifier using mosfets

Though power mosfets are superior to bipolars because of wide frequency response, high switching speed and absence of secondary breakdown, input capacitance can cause nonlinearity problems at high frequencies if you don't have enough drive current. This is especially important when paralleling mosfets for higher output power.

The amplification of very low level signals delivered by a pickup to the high power level needed to drive inefficient loudspeakers presents unique problems which have attracted the attention of many engineers, as witnessed by the many articles in WW. Some of these are closely related to the devices used: bipolar transistors. The relatively new power devices in m.o.s. technology, power mosfets, are capable of solving most of these problems.

Audio power amplifiers using bipolar devices tend to be overload protection. The first one is needed because of the positive temperature coefficient of the collector current versus base-emitter voltage. With increasing power dissipation we get an increasing junction temperature, which increases with the collector current and therefore power dissipation. Eventually, this will lead to thermal runaway, causing destruction of the device. To avoid it a sophisticated circuit is needed to sense the temperature on the output devices and regulate the quiescent current through them accordingly.
Bipolar power transistors are also well known for current concentration under high current conditions. This causes local

Fig. 1. Negative temperature coefficient of the drain current above 100 mA prevents thermal runaway with Hitachi
2SK134/2SJ48 type mosfets and avoids use of temperature-tracking circuits.

by Erno Borbely
Dipl. Eng., M.I.E.E.E.

hot-spots which can eventually lead to secondary breakdown. This is especially dangerous at combinations of high voltage and high current. Consequently bipolar power amplifiers use sophisticated voltamp limiting to get the maximum from the devices without damaging them.

The Hitachi 2SK134/2SJ49 power mosfets used in this design do not have such problems. Their most important advantage is the negative temperature coefficient of the drain current versus gate-source voltage. As Fig. 1 shows, the drain current is decreasing with increasing temperature above approximately 100 mA . This means that thermal runaway cannot occur and complicated temperature-tracking circuits are therefore not required.
Another advantage is the uniform current distribution across the whole silicon
die, which does not deteriorate in the high current, high voltage area. The result is that there are no hot spots and no second breakdown. Sophisticated V-A limiters are

Fig. 3. Typical ID-V curves for 2SK134 show that maximum drain current is limited to seven amps.

Fig. 2. This n-channel mos source follower has ten times the bandwidth of an emitter follower.

Fig. 4. Compared to a giant bipolar transistor, the mosfet has limited current capability at low voltages, but outperforms the bipolar at combinations of high current and high voltage.

Fig. 5. Many topquality amplifiers have used a fully balanced, complementary, dual-differential topology, known for very low static distortion at low levels and for good power supply ripple rejection, but it's difficult to get good linearity at high levels, because the second-stage transistors are working with extreme $V_{C E^{-}}$ excursions, causing large gain variations.
therefore not required for protection. In fact most amplifiers do not need any protection at all.

There are several more advantages with mosfets that are important in audio applications. One is that they are majority carrier devices. Because the charge carriers are controlled by electric fields and not by injection of minority carriers in the active region, there is no stored charge in the gate region. The result is wide frequency response and fast switching, even when coming out of clipping.

Like bipolar transistors, mosfets are usually used in the follower configuration in audio amplifiers. Fig. 2 shows the frequency response of an n-channel mosfet in source-follower configuration. For comparision, the response of an emitter follower is also shown: bandwidth of the source follower is ten times wider than that of a bipolar device.
Another important advantage is their high input impedance. Together with the uniform current distribution, this allows paralleling of mosfets without undue problems. However the spread in the gatesource turn-on voltage has to be considered when doing this, as we will see later. Although the statement "high impedance" is correct at very low frequencies, it is by no means applicable for the whole audio frequency range. The input looks like a pure capacitor with a value of about 1 nF . This can cause non-linearities at high frequencies if you don't have enough drive current available. The input capacitance therefore becomes the most important factor in selecting the driver circuit.

Disadvantages of power mosfets

Although having a number of advantages compared to bipolars, mosfets are by no means ideal. The most important disadvantage with the 2 SK $134 / 2 S J 49$ s is the high on-resistance. Worst-case calculations show that it can go up to 1.7 ohm ; a current of 5 amps through the device gives a voltage drop of 8.5 volt across it. Clearly this would increase power dissipation and decrease efficiency. Power supply design
has to be based on this worst-case on-resistance. Typical on-resistance is around one ohm, so there is some margin built-in if we calculate with the worst-case value. Other manufacturers are offering devices with much lower on-resistance but they are limited in other parameters such as breakdown voltage and/or in offering complementary devices. A wider selection of mosfets is expected to be available on the market in the next few years.

When looking at the $\mathrm{I}_{\mathrm{d}}-\mathrm{V}_{\mathrm{ds}}$ characteristics of the Hitachi mosfets, Fig. 3, notice that the curve is not shown at higher drain currents than about 7A - the maximum rated drain current. Compared to some of the bipolar transistors rated at $20-30 \mathrm{~A}$ this might look meagre. But taking into consideration the device's complete freedom from secondary breakdown, one can usually use more of the available current capability of the mosfets than of the bipolars. Fig. 4 shows the safe operating areas for the Hitachi 2SK 134 and, for comparison, of a representative bipolar power device, the MJ15003, being a 20A device and superior at low voltages. At high voltages the mosfet is equal to, or in one area it is even better than, the bipolar device.

Fig. 6. This offers very good linearity and easy control of the second stage current, I_{2}.

Fig. 7. The cascode configuration is one of the best for large signal handling capability.

The maximum output power one can get with power mosfets is limited only by the thermal capability of the die/package combination. A 2 SK 134/2SJ49 pair can easily deliver 60 W into 8Ω and more than 75 W into 4Ω. Two pairs in parallel make a $120 \mathrm{~W} / 8 \Omega$ or a $150 \mathrm{~W} / 4 \Omega$ amplifier, as in this design.

Driver design

The most important considerations when selecting the topology for the driver circuit are

$$
\begin{aligned}
& \text { - linearity } \\
& \text { - open-loop bandwidth } \\
& \text { - drive capability. }
\end{aligned}
$$

Although there are some three-stage driver circuits in commercial amplifiers of Japanese origin, most European and American designers prefer the two-stage design which can achieve both good linearity and wide bandwidth.

The differential input is universally accepted as the input stage. The second stage, which has to supply all of the drive to the output stage, is either a commonemitter stage with a current source as a load, or a differential amplifier using a current mirror for differential to singleended conversion.
Many top-quality amplifiers have been using a fully-balanced complementary dual-differential topology in recent years, known for very low static distortion at low levels and for good power supply ripple rejection, Fig. 5.

(a)

(b)

Fig. 8(a) shows the $I_{C}-V_{C E}$ characteristics of a typical high-voltage transistor, the MJE340. Allthough limited in terms of voltage and current, the curves clearly indicate gain variations with changing collector-emitter voltage. (b) shows the characteristics of cascode circuit where Tr_{2} is a MJE340, and Tr is MPSA55. The composite characteristics of this circuit are extremely linear, approaching that of an ideal transistor. Voltage variations across the transistors do not cause significant gain variations, consequently these can handle large voltage swings with very little distortion.

It is more difficult to get good linearity at high levels because the second-stage transistors are working with extreme V_{ce} excursions, causing large gain variations. There are a number of ways to improve large-signal handling capability; I have found the circuit shown in Fig. 6 excellent in this respect. This fully symmetrical circuit also allows easy control of the current in the second stage; it is fixed by the ratio of the two collector resistors in the input stages:

$$
\mathbf{R}_{1} / \mathbf{R}_{2}=\left(\mathbf{I}_{2}+\mathbf{I}_{1}\right) / / \mathbf{I}_{1}
$$

I have found that this current transformation from first stage to second stage works well up to a ratio of about 30 and, with the particular transistors used, up to a second stage current of 30 mA . This current was used to drive a pair of 2 SK $134 / 2$ SJ49s in a 60 W amplifier with good linearity and slew rate. However, if we want to drive two pairs of devices to increase the output power to over 100 W , this current is not sufficient any more (see calculations below). To be able to use higher current in the second stage with
good linearity, I redesigned it using a cascode configuration.

Fig. 7 shows the basic cascode connection of two transistors. Used alone, a highvoltage transistor such as the MJE340 clearly suffers from gain variations with changing collector-emitter voltage; see the $\mathrm{I}_{\mathrm{c}}-\mathrm{V}_{\mathrm{ce}}$ characteristics in Fig. 8(a). The composite characteristics of a cascode circuit (MPSA55, MJE340) are extremely linear, approaching that of an ideal transistor, Fig. 8(b). Voltage variations across the transistors do not cause significant gain variations, consequently these can handle large voltage swings with very little distortion.

An additional advantage of the cascode circuit is its wide bandwidth. It was established many years ago ${ }^{1}$ that we need an open-loop frequency response up to 20 kHz to avoid transient overload inside the feed-

Fig. 9. Faralleling mosfets is easy, thanks to the high-input impedance and the uniform current distribution across the die.
back loop. Using the cascode configuration in the second stage, we can easily satisfy this requirement.

As the collector-base voltage of Tr_{1} is held constant in this circuit there is minimum charging of its collector-base capacitance, effectively eliminating the influence of this capacitor on the frequency response. Transistor Tr_{2} is operating in common-base mode, which is inherently a wideband configuration. Together, they offer a very linear operation over a wide frequency range. A slight disadvantage is the increased voltage loss across the two devices. This is not a problem in our application because the voltage loss across the output devices due to the on-resistance will dominate. Alternatively the driver circuit could be supplied from a higher voltage.

Finally, look at the drive requirements. Fig. 9 shows the output stage, consisting of two pairs of n and p-channel devices operating in source-follower mode. The input capacitance of the p-channel fets is around 900 pF , the n-channel around 500 pF . Used in the source-follower mode, the input capacitance is reduced by the local feedback. As the transconductance of the devices is fairly low ($\mathrm{g}_{\mathrm{m}}=0.7$ to 1.4 S), this reduction is moderate. Calculations based on the published figures in the Hitachi data sheets show that we will end up with 100 to 200 pF input capacitance for each of the devices using an 8Ω load.

The input of the output stage is normally used as the main roll-off point for the amplifier. Because input capacitance varies with operating conditions, it is necessary to add a real capacitor here ($\mathrm{C}_{\text {comp }}$ in Fig. 9), to come up with the total value needed to stabilize the amplifier. Assuming $\mathrm{C}_{\text {comp }} 400 \mathrm{pF}$, and 150 pF each

Fig. 10. Driver circuit chosen is as it was for open-loop measurements: gain without the load was too high: the $2 k \Omega$ load reduced it to about $66 d B$. In parallel with 1nF the distortion was 0.1%, both at 1 and 10 kHz . Response was down 1 dB at $20 \mathrm{kHz}, 2 \mathrm{~dB}$ at 30 kHz .
for the mosfets, the total load capacitance seen by the driver circuit is around $\ln \mathrm{F}$.
To avoid non-linearities caused by this input capacitance, we have to have enough current available in the driver stage to charge and discharge it under all conditions. I was especially interested in very low distortion across the whole audio band with a reasonably high internal slew rate as a secondary requirement. This was to be higher than the slew rate of any signal capable of entering the amplifier, through the low-pass filter used at the input. Using the well-known formula for the slew rate

$$
\mathrm{dV} / \mathrm{dt}=\mathrm{i} / \mathrm{C}
$$

calculate the necessary current to charge and discharge the input capacitance at the rate required. For a slew rate of $100 \mathrm{~V} / \mu \mathrm{s}$, and assuming an input capacitance of n F , 100 mA is needed in the driver stage.
The final driver circuit selected consists of a balanced complementary differential input stage and complementary cascode second stage, Fig. 10. The differential input stages are working with 2 mA each (1 mA per transistor) while the second stage, for reasons of linearity and power dissipation, ended up with approximately 50 mA .

Open-loop distortion for the whole amplifier is approximately 0.5% measured at 1 kHz and 100 W into 8Ω. If all of the feedback (40 dB in this case) reduced the distortion effectively, we would end up having 0.005% in the final amplifier. This is more than adequate for any high quality amplifier. However, the $2 \mathrm{k} \Omega$ resistor is shunting too much of the available current away from the load capacitor (corresponding to the input capacitor of the output stage), resulting in a little higher distortion at high frequencies than I was looking for. To avoid this, I removed the $2 \mathrm{k} \Omega$ load and replaced it with $10 \mathrm{k} \Omega$ (actually $2 \times 22 \mathrm{k}$, see final circuit). This increased the open-loop gain and the feedback, and the final amplifier shows very low distortion across the whole audio range.

It has been said that due to the low g_{m} of the mosfets, special circuit configurations like the composite source-follower or extrememly high open-loop gain in the driver stage are necessary to get an acceptable linearity ${ }^{2}$. It is my experience that the only precaution necessary is to have enough current available to charge and discharge the mosfet input capacitances. The design described shows that very good linearity can be achieved with a moderate amount of feedback (30 and 40 dB , respectively) and normal source-follower configuration.

Circuit discussion

In the complete circuit diagram, p.73, the blocking capacitor C_{1} together with $\mathrm{R}_{1}-\mathrm{R}_{2}$ and the output impedance of the preamplifier determines one of the low-frequency roll-offs of the amplifier. Assuming that the impedance feeding the amplifier is low, the -3 dB point will be about 1 Hz . The non-polar capacitor C_{1}, should be polypropylene, polycarbonate or, if these are not available, a polyester capacitor. Worst case, a non-polar electrolytic or two nor-

Fig. 11. A suitable output coil can be made on a plastics spacer with parallel resistor to dampen ringing caused by capacitative load.
mal electrolytics connected to form a nonpolar capacitor can also be used. The layout gives a number of possibilities as far as type and size of the capacitor(s) are concerned.

Components R_{1} and C_{2} form a low-pass network to prevent high frequency signals with slew rates higher than the internal slew rate of the amplifier from reaching the input. As the output impedance of the preamplifier forms part of this filter, the value of C_{2} should be adjusted for the particular system it is used in. Assuming that the output impedance is very low, the values shown give a -3 dB point of over 200 kHz , so C_{1} should be changed to 1 to 1.2 nF , bringing the -3 dB point down to about 60 kHz . The value shown can be used with preamplifiers with output impedance up to about $10 \mathrm{k} \Omega$. C_{2} should be a polystyrene or polypropylene capacitor. The d.c. path for the input transistors goes through \mathbf{R}_{2} which for minimum d.c. offset at the output of the amplifier should be equal to R_{22}.

For minimum d.c. offset we also need high-gain transistors in the input stages but it is difficult to find them with high breakdown voltage. The best compromise I have found is the BC546B and BC556B complementary pair; h_{FE} is specified as $180-450$ at 2 mA collector current and breakdown voltage 65 V . A better choice as far as breakdown voltage is concerned is the MPS8099 and MPS8599 pair (80V) which gives the possibility of higher supply voltages; h_{FE} is $100-300$ at lmA, but does not create any problems with the relatively low-impedance d.c. path used.

The current sources, which supply 2 mA to the differential stages, require a stable voltage reference. This is normally obtained from low-voltage zener diodes or a string of small-signal silicon diodes. 1N4148 can be used in this circuit: they show a good repeatability and are very inexpensive. Operating the 1N4148s at around 1 mA , the voltage drop is very close to 0.6 V : two in series with 2 mA through them give an acceptable performance (R_{11}, $\mathrm{R}_{13}=22 \mathrm{k}, \mathrm{R}_{10}, \mathrm{R}_{12}=300 \Omega$).
A zener diode solution, shown on p73, needs zener diodes operated at a higher current than the 1N4148s, hence the change of $\mathbf{R}_{11}, \mathbf{R}_{13}$ to $10 \mathrm{k} \Omega$. Although not shown in the schematic, a good temperature compensation can be achieved by connecting a silicon diode in series with the 4.7 V zener, which follows the V_{BE} variations of the current-source transistor. This is recommended when operating the amplifier at very high ambient temperatures.
The proposed layout accepts all three solutions: two silicon diodes in series, a
single zener diode or a zener diode and a silicon diode in series.

The 3V reference for the cascode circuit (formed from $\mathrm{Tr}_{7}, \mathrm{Tr}_{8} \& \mathrm{Tr}_{9}$ as the p-n-p part, and $\mathrm{Tr}_{11}, \mathrm{Tr}_{12}$ and Tr_{13} as the n -p-n part) is derived from a string of 1 N 4148 s . This might seem extravagant, but the only alternative, a 3 V zener diode, required a much higher operating current. Operating at 5 mA , the average forward drop is 0.64 V , five of them in series supply 3.2 V for the cascode circuit.

Transistor 10 and associated circuitry is for bias adjustment. Hitachi recommend a regular potentiometer for this but as the relatively high current in the second stage is 50 mA I didn't find it satisfactory to pass all of this through the wiper of a small trimpot. Instead, I use a normal bias adjustment circuit (V_{BE}-multiplier) found in practically all bipolar amplifiers. The difference is that this circuit is not supposed to have any temperature compensation: Tr_{10} should therefore not be mounted on or near the output heatsink.

When switching the amplifier on the first time, the potentiometer should be set to its anti-clockwise position. While monitoring the current through the whole amplifier (for example by removing one of the fuses and connecting an ammeter across its terminals), the quiescent current should be adjusted to $260 \mathrm{~mA}(100 \mathrm{~mA}$ in each of the output devices, plus driver). This ensures an optimum operation from the point of view of temperature stability, and lowlevel distortion.
The mosfets are guaranteed for a minimum gate-source breakdown of $\pm 14 \mathrm{~V}$. The devices have built-in protection diodes, so it should not be necessary to use external protection unless the amplifier is overioaded at very high frequencies. For testing I usually drive the amplifier to maximum output in the frequency range 30 to 50 kHz with an 8Ω load and then connect a large capacitor (around $4 \mu \mathrm{~F}$) across the output. The amplifier should work either normally if current handling capability permits or should automatically limit the output.
I have seen the Hitachi devices act a number of ways, depending on the circuit configuration. They might latch, conducting a very high current; they might break up, delivering a very distorted wave form; or they might go into oscillation. Although none of these conditions ever produced a destruction, the devices should not operate under such conditions for an extended period of time. Diodes $D_{13}-D_{16}$ serve that purpose; no matter what current is demanded from the output stage, the diodes prevent the driver stage from delivering more than $\pm 10.6 \mathrm{~V}$ peak gate-to-source voltage. This protects the output from out-of-audioband overstress and just about any sort of abuse is tolerated, until we reach the thermal limitation of the die/package combination.

There are three more blocks of components on the p.c.-board. One is the feedback network, in which d.c.-feedback is applied through R_{22}; for minimum offset this is equal to R_{2} and a.c.-feedback, given by R_{23} and R_{21}, isolated from the d.c.

feedback by C_{5} and C_{6}. The d.c. gain is unity, and a.c. gain is approximately

$$
\left(\mathbf{R}_{23} \| \mathbf{R}_{22}+\mathbf{R}_{21}\right) / \mathbf{R}_{21}
$$

which is close to 20 times or 26 dB . Capacitor 5 is a non-polar electrolytic and since electrolytics have an increasing impedance at higher frequencies, I connected a $0.1 \mu \mathrm{~F}$ capacitor in parallel with it.

Components C_{7} and R_{24} provide lead compensation and optimize square-wave response; C_{7} should be polystyrene, polypropylene or a dipped-mica type.

The next block is the output network, consisting of L in parallel with R_{36}, and the RC network $\mathrm{R}_{37}-\mathrm{C}_{13}$. To prevent short circuit of the output with capacitative load and high frequencies, an inductance is in series with the output. This has an increasing impedance with frequency, thus preventing the short circuit. This can cause sustained ringing with a capacitive load, so we dampen the inductance with R_{36}. A suitable coil is shown in Fig. 11 (I used a plastics spacer as a coil former).

Components $\mathrm{R}_{37}-\mathrm{C}_{13}$ terminate the amplifier resistively at very high frequencies, necessary because loudspeakers represent a very high or uncontrolled impedance at h.f., causing oscillation that can destroy tweeters.
Finally, there are RC networks in each of the supply connections. Although the amplifier has a good inherent ripple rejection, additional filtering is an advantage from the point of view of isolating the two channels. This is especially important at high frequencies, hence the paralleling of the electrolytic with a $0.1 \mu \mathrm{~F}$ polyester capacitor.

Heatsink assembly

The rest of the components are mounted directly with the output devices on the heatsink assembly.

The power mosfets are high speed devices, and require special mounting and
wiring precautions. The first one is a proper decoupling of the power supply connections directly at the device packages. Again, a combination of electrolytic and polyester capacitors is used for this. The second one is the usual source follower problem of parasitic oscillation with capacitative load: a resistor in series with the gates to prevent this. Resistors R_{39}, $\mathbf{R}_{40}, \mathrm{R}_{45}$ and \mathbf{R}_{46} shquid be wired directly to the gate pins of the devices.
The uniform current distribution across the die means hot-spots cannot occur and together with the fact that they have a high input impedance enables operation in parallel mode without too much trouble. However, some precautions have to be taken because of the V_{GS} spread. We want to operate them at a quiescent current of 100 mA . Unfortunately, the V_{GS} voltage necessary to turn on the mosfet to this drain current varies from device to device.

Ideally, the devices should be matched to within $\pm 10 \mathrm{~mA}$ at 100 mA drain current. But unfortunately, this requires a large number of devices to select from and can only be done in large-scale production. Happily, devices coming from the same production batch (bought at the same time from a distributor and marked with the same date code), seem to be close enough to work satisfactorily in the amplifier. Resistors R_{41}, R_{42}, R_{43} and R_{44} are also helping in equalizing the current at the same time, as they help linearize the characteristics of the mosfets. These resistors should be non-inductive types.

Although the n and p -channel devices are said to be complementary, some parameters are different. One is input capacitance, specified as 900 pF for the p channel and 500 pF for the n -channel ones. This difference can influence rise and fall times in the amplifier, make square-wave response a symmetrical, and made stabilizing more difficult.

As we usually do not know the exact value of the input capacitances, we can

Measurements on practical amplifier
Gain 26dB

Input impedance $24 \mathrm{k} \Omega$
Output power 120 W into 8Ω 150 W into 4Ω
Harmonic $1 \mathrm{kHz} \quad 0.002 \%$ at 120 W into 8Ω distortion $10 \mathrm{kHz} 0.0065 \%$ at 120 W into 8Ω

Slew rate	$60 \mathrm{~V} / \mu \mathrm{s}$ without input
Rise time	filter $\mathrm{l} 2 \mu \mathrm{~s}$ without input filter

only make an approximate balancing of these by adding extra capacitance to the n channel devices, the optimum value found by experiment. Capacitors C_{16} and C_{17}, should be polystyrene or dipped mica, and soldered directly to the gate-source pins of the n-channel fets.

Capacitor C_{15}, together with C_{14} on the p.c. board, make up the compensation shown in Fig. 9. The reason for dividing it into two is to accommodate a wide variety of wiring schemes. A minimum value of around 100 pF is needed on the board, the rest does a better job when connected directly at the input of the mosfets. Make them polystyrene types, polypropylene or dipped-mica.
Although not intended primarily for plug-in systems, the p.c. board is made in a standard-size Eurocard format ($100 \times 160 \mathrm{~mm}$), including a 31 pin connector. For simplicity, the input is available at the other end of the board. This makes the layout very straightforward; except for the ground path, the layout follows the circuit diagram very closely. There are two jumpers on the board, both indicated on the component layout.
Thermal resistance should be around $0.5 \mathrm{deg} \mathrm{C} / \mathrm{W}$ per channel, which allows the amplifier to operate at a very high average output power continuously. A 150 mm piece of a standard SK47 extrusion, with a T or L-bracket to mount the mosfets on, works fine. If the possibility for continuous operation with very low impedance loads exists (less than four ohms), it is a

Transistors 9 \& 11 need
heat dissipators - either a
standard extrusion (SK09)
or an L-bracket can be used.

The grounding scheme is flexible in that output ground and input ground are not connected together on the board. This makes it very simple to adopt a number of wiring schemes: a proposed wiring diagram for a stereo amplifier using a common power supply is shown. Using the boards with separate supplies, output and input ground can be connected together, which gives the best signal/hum ratio in a system.

The author

In 1973, Erno Borbely joined Motorola in Geneva as a senior applications engineer, responsible for audio and radio. He worked mostly on low-noise circuit design and on power amplifier circuits, and some of the ideas formulated there later found their way into the products of the David Hafler Co., which he joined in 1978 and where he designed the DH-200 mosfet power amplifier.
He'd previously got a degree in electronic engineering from the Technical University of Norway in 1961 and for seven years worked for the Norwegian Broadcasting Corporation designing professional audio equipment. In 1969 he moved to the U.S. to work for David Hafler at Dynaco.

He now works in Furstenfeldbruck as National Semiconductors european training manager.
good idea to put thermal breakers on the heatsinks with a cut-out temperature of about $75^{\circ} \mathrm{C}$.

Plus and minus 57 V supplies are needed for 120 W into an eight ohm load. Assuming a 10% transformer regulation, the noload voltage should be $\pm 63 \mathrm{~V}$. This translates into a transformer with a $2 \times 45 \mathrm{~V}$ secondary, and rated at 500 VA , toroidal for minimum hum. The filter capacitors must be at least 10 mF each, rated at 80 V . The bridge has a rating of 30 A with a surge rating of 300 A .

References

1. D. G. Daugherty \& R. A. Greiner. Some design objectives for audio power amplifiers. IEEE Trans. vol.AU-14, no.1, March 1966. 2. J. Linsley Hood. 80-100 watt mosfet audio amplifier. Wireless World, June 1982. ~

Spread spectrum communication system for civil use

Abstract

Considering the present congestion in civilian communication bands more efficient use by exploiting the multiplexing capabilities of spread spectrum systems should be welcomed. High complexity - not a problem for space and military systems - can be avoided by reducing the number of electrodes in the surface wave devices.

The h.f. band is one of the most congested parts of the spectrum, and also suffers from multipath and flat fading. Spread spectrum systems would be particularly useful in this field. The spread-spectrum technique is a modulation method in which the bandwidth used is much greater than that required by the message. To be classified as spread spectrum, the modulated signal bandwidth is at least 10 to 100 times the information rate, and the information itself should not be a factor in setting the modulated signal bandwidth. The result is very low signal-to-noise ratio which makes reception of the signal complicated. This is the major problem to be encountered. Various methods of synchronization and demodulation have been suggested and tested without really solving the problems of high synchronization delay and the difficulties of maintaining synchronization.

Considering its potential advantages and the wide coverage of $h . f$. the research being carried out in this field is very limited, and deserves more investigation. Though spread-spectrum has its own characteristic problems, it offers the kind of promise which could revolutionize communication technology, by offering channel multiplexing for more efficient use of the spectrum; antijam capability; low detectability by an unwanted receiver; accurate ranging; and inherent multipath rejection.
Antijam capability can be proved directly from Shannon's equation of channel capacity $\mathrm{C}=\mathrm{W} \log _{2}(1+\mathrm{S} / \mathrm{N})$, where W is bandwidth and S / N is signal-to-noise ratio

$$
C=W \log _{c}(1+S / N) \log _{2} \mathrm{e} .
$$

When $\mathrm{s} / \mathrm{n} \ll 1$, that is for low signal-tonoise ratio as is always the case with spread-spectrum,
$\log _{e}(1+\mathrm{S} / \mathrm{N})=\mathrm{S} / \mathrm{N}-(\mathrm{S} / \mathrm{N})^{2} 1 / 2+(\mathrm{S} / \mathrm{N})^{3} 1 / 3$

As the bandwidth is increased more jamming power N will be required to effectively jam the signal.
Multiplexing capability. Each channel user has a unique pseudo-random sequence code assigned which has very low cross-correlation with pseudo-random sequence codes assigned to others using the same channel. Receivers are designed to use a local code generated to produce an

by Noman Mahmood M.Sc.

identical psuedo-random binary code as transmitted by a particular user to correlate the received sequence. When properly synchronized the result is an autocorrelation of the particular code as the output of the correlator. Interference produced by other user's codes is spread out by the action of the multiplier in the correlator.

The problem of the multiplexing is to

Fig. 1. Data generator produces a pulse train to which are added redundant pulses that facilitate correction or error detection. These data bits are used to sequence-invert a string of 2047 bits so 1 is represented by the psuedo-random sequence and 0 is the inverted sequence.

Properties of pseudo-random sequence

In any spread-spectrum system, the baseband signal is spread over the channel with the help of a pseudo-random sequence, even though the actual system may differ according to what method is used. A pseudo-random (pn) sequence is chosen because of its excellent two-valued autocorrelation function which aids in correlation detection, its noise-like properties, as well as certain other characteristics.
O Any cyclic shift of a pseudo-random sequence is also a psuedo-random sequence.
O Any sequence may be generated by a maximal sequence (m-sequence) generator polynomial, provided the polynomial is irreducible and prime. The polynomial can be represented by

$$
C(x)=\sum_{i=0}^{n} b x^{i}, \text { where } b_{i}=0,1
$$

O If a sequence is generated by a polynomial of degree n and a window of width n is slid along a sequence, each of the $2^{\mathrm{D}} 1$ non-zero binary n -tuples is seen exactly once.
O Any sequence contains 2^{m-1} ones and $2^{\mathrm{m}-1}$ zeros, that is the number of ones and zeros differ by one in a sequence.
O The modulo-2 sum of two sequences is another sequence.
OThe modulo-2 sum of a sequence and a cyclic shift of itself is another sequence.
O The autocorrelation function of a sequence of length $2^{n}-1$ is given by $P(0)=1$, $P(1)=-1 / n$ for $1 \leqslant i \leqslant 2^{m}-2$, where n is an integer and $P(1)$ is normalized autocorrelation. The normalized cross-correlation of two such sequences is measured by $(A-D)(A+D)$, where A is the number of agreements between bits, and D is the number of disagreements between bits. If we modulo- 2 add two sequences the number of zeros would be the bits that agree and the number of ones are the bits that disagree. The distance between two codes is defined by the total number of bits that disagree. If p is the number of bits that agrees and d is the distance between two sequences, then it is possible to find an expression for the normalized correlation in terms of distance between the codes as follows. From the last expression, normalized correlation is thus $(p-d) /(p+d)$. If the total number of bits in a sequence is N then the normalized correlation is

$$
((N-d)-d)) / N=(N-2 d) / N=1-2 d / N
$$

where d the distance between codes. The distance between two codes always remains the same and constant even after cyclic shift.
$s_{1}(t) f_{1}(t)+s_{2}(t) f_{2}(t)+\ldots s_{n}(t) f_{n}(t)$. If a receiver is to retrieve $s_{1}(t)$ the signal would be multiplied by $f_{1}(t)$ giving an output

$$
s_{1}(t) f_{1}^{2}(t)+s_{2}(t) f_{2}(t) f_{1}(t) \ldots s_{n}(t) f_{n}(t) f_{1}(t)
$$

If $f_{i}(t)$ are chosen so that they are orthogonal, then

$$
f_{i}^{2}(t)=1 \text { for } i=j, f_{l}(t) f_{i}(t) f_{i}(t)=0 \text { for } i=j
$$

so that $s(t)$ will be the output of the coherent detector. Hence each receiver can retrieve its particular signal with the knowledge of the particular transmitter signature or pn sequence.
Low detectability. The processing gain in a spread spectrum is defined as the ratio of the r.f. spread bandwidth $W_{r f}$ to the mes-

sage bandwidth W_{b} or $\mathrm{PG}=\mathrm{W}_{\mathrm{rf}} / \mathrm{W}_{\mathrm{b}}$. Expressed as a time bandwidth product substituting $T_{b}=1 / W_{b}$ gives $P G=T_{b} W_{r f}$. If $(\mathrm{S} / \mathrm{N})_{\mathrm{b}}$ is the bandwidth needed by a conventional receiver then the signal-tonoise ratio that a spread-spectrum system can operate on is $(\mathrm{S} / \mathrm{N})_{\mathrm{rf}}=1 / \mathrm{PG}{ }^{\star}(\mathrm{S} / \mathrm{N})_{\mathrm{b}}$ on account of the processing gain. So the detectability is reduced by $1 / \mathrm{PG}$, which is enormous.
Multipath rejection comes about due to the method of detection used and the autocorrelation property of the sequence. The pn sequence has only two values for its autocorrelation in different phase shifts of the sequence. Now a delayed version of the pn sequence reaching the correlator would be out of phase with the locally generated pn sequences used in the correlator. This would not be detected as the output would remain low due to the low autocorrelation.

Engineering details

The h.f. band is one of the most congested of all; it also suffers from the multipath effect and flat fading. Spread spectrum systems would be particularly useful here.

An h.f. radio link is a time-varying channel in which the attenuation and delay characteristic vary with time. This is called frequency-selective fading, and can be a serious source of error. The main cause of additive noise is atmospheric noise caused by lightning discharges, occupying a frequency from v.l.f. to around 30 MHz at the input to the radio receiver.

Fading rates for both flat and frequency selective fading are normally in the range of 4 to 15 fades per minute. The flat fading may vary from 0 to 70 dB , so a.m. is not suitable. Suppressed-carrier a.m. when binary coded is equivalent to p.m. Both f.m. and p.m. may be used at h.f. satisfactorically, with p.m. requiring less bandwidth than f.m. To overcome the phase ambiguity inherent in a p.m. system, data is differentially encoded before phase shift keying is used, which is actually binary p.m. A phase ambiguity occurs in the receiver as absolute phase reference is not available.

This is called differential phase shift keying and uses 180° phase shift of the carrier to represent a 1 and zero phase shift for 0 .

A problem that is faced in any kind of modulation scheme is pattern noise. This is due to the fluctuating sidebands caused by the data modulation and becomes especially important when extracting the carrier from the signal. The fluctuating amplitude of the sidebands is attenuated by the carrier filter but the remaining phase fluctuations are irremovable. It exists even if the incoming signal is perfectly free of noise.

A major drawback with multi-user spread spectrum systems is their proneness to self-jamming. If all the received signal amplitudes are approximately the same at all user locations, then the correlation processing gain of the receiver is sufficient to clearly detect each signal separately. In practice however the distances between various users in a multi-user system vary widely and correspondingly the signal strengths vary widely, resulting in jamming of the weaker ones. This situation is commonly referred to as the "near and far problem".

The problem can be reduced by the use of a modulation format that includes a modest amount of signal spreading with signal encoding, while the remainder of the spectrum spreading is accomplished by rapid frequency hopping of the signal in a predetermined sequence over the total band of interest.

Transmitters

The most popular type of spread spectrum system is the direct sequence system where a pseudo-random sequence is used to spread data. Other methods are frequency hopping, time hopping, or a hybrid between these two. In frequency hopping a sequence switches a frequency synthesizer to hop to different frequencies it switches onto.

The method studied here is the use of direct sequence spreading using sequence inversion-keying modulation at baseband,
with differential phase-shift keying for transmission. The sequence inversion keying of the pseudo-random sequence by the data is achieved by modulo-2 addition of the data with the sequence at a rate $1 / \mathrm{T}$, where T is the stretch of one sequence. Sequence inversion keying gives optimum protection against inter-symbol interference and bit error because the detection of half of the sequence provides the decision on the data received. The d.p.s.k.-modulated signal is then passed through a band-pass filter to conserve power, and amplified before radiation in the electromagnetic field.

A "data generator" produces a train of pulses carrying the information, to which are added a fixed number of redundant pulses to facilitate the correlation or detection of errors by the receiver. These data bits are used to sequence-invert a string of 2047 bits, so the 1 is represented by the pseudo-random sequence and 0 is the inverted sequence.

The m -sequence generator is a wellknown technique. For a feedback shift register of N bits the sequence produced is of length $2^{\mathrm{N}}-1$. The taps of an eleven-bit feedback shift register was modulo-2 added in a feedback loop to produce the 2047 pseudo-random sequence. The polynomials that would generate the sequence of this length are

$$
\begin{aligned}
& 1+x^{4}+x^{11} . \\
& 1+x^{2}+x^{5}+x^{8}+x^{11} \\
& 1+x^{2}+x^{3}+x^{7}+x^{11} \\
& 1+x+x^{4}+x^{9}+x^{11} \\
& 1+x^{9}+x^{11}
\end{aligned}
$$

The last polynomial offers least complexity in hardware terms.

The sync recognizer in Fig. 2 is a logic gate which gives a pulse each time the intitial state of the feedback shift register is reached. The data are synchronized with the pseudo-random sequence with the help of these pulses. The output of the sik modulator is then used to modulate a carrier by differential phase-shift keying. The clock pulses for all these sequential logic circuits are derived from a stable crystal clock by passing the output through a Schmitt trigger and then dividing down to the required frequencies. The output of the d.p.s.k. modulator is applied to a band-pass filter to restrict power requirements for transmission as well as spill-over into adjacent channels.

Other methods of encoding using pseudo-random sequences include modulating a long sequence with a shorter one to enable use of a short surface-wave matched filter, use of a recirculation loop or charge-coupled devices to reduce synchronization time at the receiver, and the use of a shorter section of the sequence that is a multiple of the number of bits in the f.s.r. used to generate the sequence along with a recirculation loop to enhance the output.

Receivers

The most complicated part of a spread spectrum communication system is the re-

Fig. 3. Design of carrier extraction, clock recovery and demodulation must allow operation of very low s/n route. See text for box descriptions.
ceiver. It has to perform under the difficult conditions of

- very low signal-to-noise ratio, as low as 30 dB
- time uncertainty of receiver sequencecomplicated synchronization circuits required
- maintaining synchronization after it is achieved is difficult so code-tracking circuits are required.
So the design of carrier extraction, clock recovery and demodulation must be such that it can operate at the very low signal-tonoise ratio that is available. The block diagram in Fig. 3 gives a simplified version of the receiver. The operation of each box on the signal input is described below, headed by the labels in the diagram.

Band-pass filter following the downconverter has a bandwidth centred at $\mathbf{W}_{\text {if }}$ and just wide enough to let the data components pass through. This slices off the unnecessary interference and allows the i.f. amplifier to operate effeciently.

Demodulator. In search of a d.p.s.k. demodulator which can operate under low signal-to-noise ratio, two sorts of demodulators are favourable - Costa's loop and the squaring loop. They have similar performance, but Costa's loop has some implementation advantage even though tuning is a little more difficult as the two arms (Fig. 4) have to be accurately balanced for satisfactory performance. Once acquired a signal should be introduced to hold the input to the voltage-controlled oscillator steady.
Surface wave filter and recirculation loop. The main purpose of using a surface matched filter and recirculation loop is to

achieve code synchronization so that the local code generator can be synchronized with the received code. As soon as code synchronization is obtained, the tracking loop is switched on and decoding by correlation begins. Further description of acoustic surface-wave matched filters is given later.
A tracking loop is needed to stay in lock with the signal. There are two main methods: a tau-dithering loop, and a delay lock loop; the first time-shares a signal correlator, whereas the other uses two separate correlators. They have been found to have almost similar performances: assuming ideal bandpass arm filter the tau-dither loop requires approximately 1 dB more S / N than the delay-locked loop, for equal r.m.s. tracking jitters. In a delaylock loop two local reference signals are generated differing only by a time delay and may be extracted by tapping two adjacent bits in the feedback shift register generating the local sequence. This is used to correlate with the incoming signal. The correlation between output of each correlator is a triangular function two bits wide. Once the system is synchronized and tracked the rest of the operation uses more-or-less conventional circuits.
The received signal is digitally correlated with a locally generated signal and the output filtered. If more than half of the received bits are in error then it is considered to represent the inverted sequence and if they are correct it is a true sequence. The composite correlation function for a delay-lock loop has a double-peaked triangular shape before summing in which one half of the double triangle is inverted so that the composite correlation has a linear region centred around the point half way between the two correlation maxima. When the summed output is filtered and used to control the receiver's voltage controlled oscillator, the receiver's code will track the incoming code at a point half way between the maximum and minimum of the composite correlator output (Fig. 5). A serious consequence of spectrum spreading is the complexity of the signal processing required to extract the useful information.

With a direct sequence method, the longer the sequence used to spread the data energy, the greater is the security of the system as it resembles noise more closely. But this increases the synchronization problem enormously; with a conventional digital correlator it would take from seconds to half an hour before synchronization is achieved.

Other methods, such as the use of a combination of shorter sequences to form a long one called Gold's code, can be used. The system would then have to look for one of these short codes which would shorten the sync time to some extent; it would also be easy for intruders to synchronize their systems too.

One possible way out is to use a long code, then a matched filter to match a section of the long code. A matched filter requires an accurately synchronized clock to clock the bits in. A small Doppler shift may result in part of the signal being

Fig. 4. A d.p.s.k. demodulator that can operate under low s/n ratio is the Costas loop, which requires accurate balancing of the two arms. Loop filter is similar to that used in phaselocked loops.

Fig. 5. Received signal is digitally correlated with local signal and filtered. If more than half of the bits are in error it is taken to represent the inverted sequence, and if correct it is a true sequence. The composite correlation function for a delay-lock loop has a double-peaked triangular shape before summing in which one half of the double triangle is inverted so that the composite correlation has a linear region centred around the point half way between the two correlation maxima. When the summed output is filtered and used to control the receivers voltage controlled oscillator, the receivers code will track the incoming code at a point half way between the maximum and minimum of the composite correlator output.
matched at one shift and the remainder at the next shift, so that instead of one high peak one obtains two smaller peaks. To avoid this difficulty the shift register may have 2 N stages and be clocked at a rate of twice the frequency of the encoder. The match in this case will not be spoiled for fractional Doppler shift in frequency as large as $D= \pm 1 / 4 \mathrm{~N}$, where $\mathrm{D}=2 \mathrm{v} / \mathrm{C}$.

Acoustic surface wave matched filters have the potential to revolutionise spread spectrum systems. They can be used for analogue matched filters which require no clocking. But the problem is that the longer the code to be matched the greater the cost of fabrication.

Comparision between surface wave and charge transfer filters.

	Surface wave	
Centre frequency Insertion loss Stransfer		
Storage time	Charge ted to IGHz depends on length	20 MHz max nil
Length	1 s	
limited by Signal bandwidth	losses	c.t.eff.(<2)
	50 kHz to 0.4 f.	$<1 / 2$ clock

Another sort of long-transversal-type matched filtering may be possible with the help of charge-transfer devices. The principle advantages of c.t.d. transversal filters are tunability and flexibility in spectral characteristic. Filter length is limited by tap-weight inaccuracy and weighting-coefficient error poses a severe limitation on many applications.
If the sequence is of length 2047 bits then the surface-ware matched filter must have pre-programmed or programmable 2047 electrodes plus the launcher electrodes. This increases the fabrication problems, though when used this would give execellent two-valued autocorrelation. So a study was made to reduce the number of electrodes in the matched filter.
In a sequence of length $2^{m}-1$ bits any section of m bits will appear only once. Called the "window effect", this property is true because the polynomial is primitive, which also implies that if n is an integral number then any consecutive length of mn bits would occur only once. With the help of a computer program, a sequence of length 2047 was generated. Out of these 2047 bits generated by an 11 bit shift register for the length $\mathrm{N}=2^{\mathrm{m}}-1$, a set of 11 bits were picked up at random. This set was then slid along the sequence of 2047 bits
and the normalized correlation function at all positions calculated. This was tabulated along with the number of times certain values occurred
agreements-disagreements
total number of bits
Sliding correlation for $m=11$ bits with $2^{11}-1=2047$ in sequence.

Normalized correlation of random 11 bit window	Number of times value occurs
1.00	1
0.81	10
0.63	55
0.45	165
0.27	330
0.09	461
-1.00	1
0.81	10
-0.63	54
-0.45	160
-0.27	329
-0.09	460

The correlation values are pretty well balanced due to the random characteristic of the occurrence of 0 s and 1 s . If an elevenbit matched filter correlates the 2047 bit sequence, the outputs would appear proportional to the correlation values. As the maximum value of 1.00 occurs only once (the autocorrelation function of the 11 bits) and if this can be detected in the output it would drastically reduce the synchronization delay, at much reduced hardware complexity. Unfortunately the next lower value is 0.81 , and this occurs ten times in the sequence and would give high sidelobes. In the case of high Gaussian noise it would result in many false alarms.

A second study was made with a randomly picked window of length nm where $\mathrm{n}=2$ i.e. of length 22 bits. The table shows the highest correlation achieved:

Normalized correlation of random 22 bit window	Number of times value occurs
1.00	1
0.72	1
0.63	2
0.54	31
0.45	

So this tends to give slightly improved sidelobe-to-signal characteristic, as expected.

A third program attempted to reduce the sidelobes. This picks up two 11 bits adjacent to each other. If R1 is the value of the correlation of the first 11 bits with the section of the main sequence and R2 for the next 11 bits, then $R=R 1 \star R 2$ is the output of the simulated correlator. This gave some interesting results. The sidelobes were drastically reduced. Also the number of occurrences of the sidelobes or high correlation is much reduced. So most of the time the output remains pretty low, as tabulated below:

Normalized correlation of random 11 bit window	Number of times value occurs
1.00	1
0.52	2
0.40	2
0.37	2
Remainder $\leqslant 0.28$.	

Fig. 6. Recirculation loop enhances otherwise noisy output. As data rate is fixed, section of the sequence appears after a fixed time T. The first output is delayed by T so that it reaches the input of the summer at the same time as the next output of the filter arrives. The output of the summer would go on increasing until a threshold is reached, when the gate would open and sync achieved. A t.t.l. version of the recirculation loop is shown at bottom.

After obtaining an M.Sc. in electronics from the University of Kent at Canterbury, Noman Mahmood worked at the same place as an Experimental Officer for three years. He is presently working as Development Engineer with Chalwest Ltd, subsidiary of the Ladbroke Group, dealing with microprocessor control systems.

It may therefore be possible to reduce the number of electrodes required in a surface ware device by using two 11 -bit matched filters and multiplying the outputs, thus drastically cutting down on the cost of having a long matched filter. In practice the effect of noise would reduce performance of such a device. The output may be amplified using a conventional amplifier, but this would also amplify the noise and sidelobes.
A method using a recirculation loop as in Fig. 6 may be used to enhance the output. As the data rate is fixed our section of the sequence appears after a fixed time T . The first output is delayed by T so that it reaches the input of the summer at the same time as the next output of the filter arrives. The output of the summer would go on increasing until a threshold is reached, when the gate would open and sync would be achieved. False sync cannot occur as it will have to be caused by random errors which do not always occur at the same time. A t.t.1. version of the recirculation loop also shown.

MNO

MEASURING WOW AND FLUTTER

For use in the servicing and testing of recording and sound studio equipment, the Bang \& Olufsen wow-and-flutter meter has been improved by the inclusion of a high-stability, crystal-controlled 3. 15 kHz oscillator for very accurate measurements. Wow from 0.2 to 10 Hz , flutter from 10 to 300 Hz or wow and flutter combined can be measured linearly or weighted to an accuracy of 0.003%. Drift in speed may be measured from 0.03% to 20% relative to the oscillator frequency.

The WM IA meter includes a frequency spectrum analyser which can determine which wow or flutter frequencies are dominant and thus help to point to any faulty rotating component, be it idler, belt drive, motor or bearings, etc. The meter costs $£ 682$ from David Bisset Ltd, 52 Luton Lane, Redbourn, Herts AL3 7PY.
WW301

SOLID-STATE RELAYS

The Sigma range of relays are capable of switching 10A a.c. loads and remaind unharmed by surges of up to 60 A . The design guarantees leakage to be less than 1 mA and meets standard requirements for isolation when used in 120 or 240 V line applications. The relay is mounted on a heat-sink base which is isolated and has TO-3 spacing for mounting on external heat sink or chassis. Input control voltages range from 3 to 24 V with a drive current of 6 mA . This, combined with zero-crossing switching eliminates interference and enables the relays to be operated by microprocessor or t.t.I. logic circuits. Zero-crossing switching makes the relays useful in filament lighting applications, providing them with high-speed starting. Unimatic Engineers Ltd, 122 Granville Road, London NW2 2LN.

WW302

MINI LASER TUBES

Intended for use in compact alignment and aiming systems the CWR LTIRG is a miniature HeNe laser tube with an output power of greater than 1 mW t.e.m. It gives a 0.64 mm diameter output beam with divergence of 1.27 mrads . It requires 1150 V at 3.5 mA to operate and a suitable battery power supply is available. Because of its sturdy construction, the rube may be used in conditions where it may be subject to extreme shock. Laser Lines Ltd, 19 West Bar, Banbury, Oxon OX16 9SA.
WW304

UNISEX CONNECTORS

It is no longer necessary to specify male or female when the Jaguar power connectors are used. The manufacturers describe them as hermaphrodite and the contacts are the same for both halves of a connected pair. Wires do not need to be stripped of insulation, as the

contacts pierce the insulation when the wires are installed. Various wire gauges may be used in the same connector which is rated at 12 A . Various colours are available to indicate which pairs are connected. Different connectors can accommodate one to six wires and various colours are available to identify which pairs are connected. The nylon connectors slide together and are provided with a keyway to hold them. Methode International Inc, PO Box 98, Berkhamsted,
Herts HP4 2AT.
WW303

COMPUTING METER

Based around a 6502
microprocessor, the Thurlby DM 1905 a is a $51 / 2$-digit bench multimeter with extensive calculating and data-storage facilities. There is 8 K of rom which is used to control the a-to-d converter, the display and keyboard, and all the calculating functions.
A full range of measuring functions is available: direct voltage from $1 \mu \mathrm{~V}$ to $1,100 \mathrm{~V}$; alternating voltage from $10 \mu \mathrm{~V}$ to 750 V ; resistance from $\operatorname{lm} \Omega$ to $21 M \Omega$; d.c. from $\ln A$ to $5 A$ and a.c. from $10 n A$ to 5 A . Accuracy over a year is 0.015%.
Twenty keys are built in to give
access to the computing functions, which include linear scaling with offset, percentage deviation, limits comparison, offset zero, dB and general logarithmic calculations. Automatic data logging is available and up to 100 readings can be stored in memory at programmed intervals. The meter can keep a running average and the highest and lowest of a set of readings. Priced at $£ 298$ (+ v.a.t.), Thurlby claim that the meter is in the same bracket as many general purpose d.m.ms that don't have the computing facility. Thurlby Electronics Ltd, Coach Mews, St Ives, Huntingdon, Cambs PE17 4BN.
WW305

EEPROM CHANGES A WORD AT A TIME

Designed as a replacement for circuit board d.i.p. switches, as may be used in computer terminals, present calibration references in instruments, and intelligent control applications, the ER 5901 is a 1 k -bit word-alterable electronically erasable prom. It operates at 5 V in all modes and has an automatic erase/write cycle, data and address latches are on the chip. Access time is less than 250 ns and the minimum data retention capability (how long it remembers) is 10 years. General Instruments Microelectronics Ltd, Times House, Ruislip, Middlesex HA4 8LE.
WW306

AREA METER

A standard c.c.t.v. camera can be used to measure the area of an object or any image that can be seen in high contrast. The Delta-T area meter displays the area in view, a cumulative total of the areas measured and the number of measurements. Objects moving past the camera can be automatically measured and counted. The readings can be transferred by a digital interface to

an alarm system for use with process control.

Applications for the meter include industrial control, the measurement of photographs, for example X-rays, the counting and sizing of many things including fish (!), the lengths of roots, studies of diseased leaves, etc.

For those with ty equipment the meter costs $£ 440$. It is available as a complete system including tv camera and monitor, camera stand

ER5901 BLOCK DIAGRAM

and light box for $£ 990$. Prices exclude v.a.t. and freight. The company that manufactures the meter is a workers' co-operative wholly owned and controlled by its nine members. It has expanded in 12 years from its one founder member. Delta-T Devices Ltd, 128 Low Road, Burwell, Cambridge CB5 OEJ.
WW307

TV SOUND RECEIVER

Assuming that a large number of viewers also have hi-fi equipment, Kingsbrook Marketing have designed and developed a tv sound tuner to take full advantage of the transmitted sound by feeding sound to the hi-fi amplifier with a re-modulated r.f. signal to the tv. They claim to use a very high quality tuner which includes a surface acoustic-wave filter. There are six preset channels, of which one may be used for a video recorder. The audio frequency response is 30 Hz to $12 \mathrm{kHz} \pm 1 \mathrm{~dB}$ with a total harmonic distortion less than 1%. The tuner incorporates the National Semiconductor dynamic noise reduction (DNR) integrated circuit, and also Viosound, a method of spreading the output between two speakers to give a spacious sound quality.

The r.f. output to the tv set is at a fixed frequency (channel 36) so channel switching is transferred to the new tuner. This eliminates the sound distortion of the picture in high signal areas. Its full title is the VT1000 Tele Video Tuner and is available from a number of audio dealers at $£ 99.50$. Kingsbrook Marketing Co Ltd, 29 Heathfield, Stacey Bushes, Milton Keynes MK126HR
WW308

VIDEO COLOUR BALANCE METER

In our item on the Invotron Meter (January) it was stated that the meter is used with an oscilloscope. In fact it is designed to be used instead of a 'scope and, being handheld, is useful where it is not convenient to use an oscilloscope to check the illumination level for tv studios or outside locations.
Invotron, of Dublin, have informed us that the meter is now available in the UK through Shipping Services Ltd, 9/15 Grundy Street, Liverpool L5 9YH.
WW309

MAINS FILTER FOR MICROCOMPUTERS

Spikes and holes in the power supply can cause havoc in a microcomputer. Programs or data can be lost or corrupted. A solution is provided in a mains filter from Power International; fitting into an enlarged 13A plug it is called 'The Plug'. It provides mains voltage, up

to 4 A current and as well as transient supression it also protects against radio-frequency
interference. The Plug may be used on any portable electronic equipment which may need such protection. It costs $£ 15.50$ inclusive from Power International Ltd, 2A Isambard Brunel Road,
Portsmouth, Hants POI 2DU.

WW310

HYBRID ASSEMBLIES

A prototypying service of hybrid circuits using leadless passive components and semiconductors directly mounted on to printed wiring boards, is offered by $A B$ Microelectronics. The process has been developed to provide low power circuitry where miniaturization is essential at low cost. This is possible because of the mechanized assembly methods used.
The degree of miniaturization is comparable to that of thick-film circuits, though the temperature range is restricted to 0 to $85^{\circ} \mathrm{C}$ for the FR4 circuits. Polyimide circuits have a greater range. The packages have leads at 0.1 in. pitch for both single and dual in-line styles. AB Microelectronics, Dinas, Rhondda, Mid Glamorgan.
WW311

C.R.T. POWER

A power supply specifically for use with high-definition cathode-ray tubes has been developed by Wallis Electronics. The three outputs are for the main anode (10 to 12 kV at $25 \mu \mathrm{~A}$ beam current), the focus anode (2.4 to 4 kV at $250 \mu \mathrm{~A}$) and the third anode (300 to 600 V). The focus voltage can be switched to 200 V in $100 \mu \mathrm{~s}$ to correct for defocusing at the edge of the c.r.t. The unit is intended for c.r.ts with fibre-optic face plates which are used in phototypesetting, computer microfilm storage and other precision applications. It has high stability against changes in supply voltage and is guaranteed a drift of better than 500 p.p.m. over eight hours. Wallis Electronics Ltd, Decoy Road, Worthing, Sussex BN14 8ND.
WW312

> If you would like more information on any of the
> items featured here, enter the appropriate WW reference number(s) on the mauve reply-paid card.

DPUS SUPPLIES

DISE DRTIE DSEOUNIS

FD200 $51 / 4^{\prime \prime}$ S/S D/D only $£ 99.95$ formatted 175 K Byte.
FD514 8" S/S D/D only $£ 149$ formatted 600K Byte.
FD650 8" D/S D/D only $£ 199$ Formatted 1.2 Megabyte.

Manufactured by Pertec Corporation. Factory fresh - 90-day warranty. Shugart compatible.

TEACDISC DRIUES

TEAC 55E Mini S/S 80-track formatted single density 200 K , double density 400 K Only £179
TEAC 55F Mini D/S 80-track formatted single density 400 K , double density 800 K

Only £229
\star Ideal for use with BBC Micro

* Full warranty
t Low power consumption
Ł Slimline - latest technology
To order: Add carriage at the following rates: Monitor $£ 10$, other goods $£ 7$ and 15% VAT to total, and send your order to:

22 INCHREB GOLOURMONITOK 0vily

We have available a limited quantity of VMC 22 Colour Monitors with free isolating transformers. The Monitor has a $22^{\prime \prime}$ Mullard $110^{\circ} \mathrm{C}$ CRT and for shipping purposes the CRT and scan coil assembly are separate from the chassis. The lugs of the CRT allow it to be mounted in a standard $22^{\prime \prime}$ colour TV cabinet or a unit of your own design. The unit is assembled by plugging the wires from the chassis to the tube and soldering the power connector, input connector and isolating transformers.
A comprehensive instruction sheet and circuit diagrams are included

NEN BDMPNERFDTMDRE
 For home use - houses your micro/monitor/cassette player/drives, etc. Send for details. Computer furniture - for the office. 10 Models available.

LOOK A LAST WHEE RBMNEB OUL Y Cugs

TEC Starwriter FP - 1500-25. 25 CPS, Friction Feed Serial Interface.

OPUS SUPPLIES, 10 BECKENHAM GROVE, SHORTLANDS, KENT Tel: 01-464 5040 or 01-464 1598

WW - 067 FOR FURTHER DETAILS

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKEIT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars, Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk PCB mounting, Experimental transformers, Uitra low frequency transformers, Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible.
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECOROING STUDIOS, HI-FI ENTHUSIASTS, BAND GROUPS, AND PUBLIC ADDRESS FIRMS. Export is a speciality and we have overseas clients in the COMMONWEALTH, E.E.C., USA, MIDDLE EAST, etc. Send for our questionnaire which, when completed, enables us to post quota ons by return.

E. A. Sowter Ltd.

Manufacturers and Designers
E. A. SOWTER LTD. (Established 1941) : Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP 1 2EG, Suffolk Pho. Box 36, Ipswich, ind 0473219390 Telex 987703G Sowter

	TELEQUIPMENT OSCILIDSCOPE type	
	TEKTRONIX OSCILIOSCOPE TYPe T935A. Dual Trace	
	teleaulpment oscillos	
	Trace 25MHZ Delay Sw	
	TELECUIPMENT OSCILIOS	
	TELEQUIPMENT OSCILIOS	
	Trace 10MHz	
	IEKTRONIX 0	
	BRUEL \& XJOER Audio Frequency Spactrometer	
	E 2112 with 6ak 2305 L	
	8	
	B \& KLEVEL RECDRDER ype 2305 with 50 8 B Potentiometer. \square	
	B \& K RANDOM NOISE GENERATOR Type $1402 \ldots \ldots 75$	
	\% \& K ELECTRONIC VOLTMETE	
	K AU	
	B \& K Automatic vibration exciter Control	
	MARCONI IA\% UNIVERSAL BAIDGE TF1313	
	RCONI UNIVERSAL	
	MARCONI VACUUM TUBE VOLTMETER type	
	MAACONI VHF ALIGNMENT OSCILIOSCOPE type	
	DECCA PAL CDLDUR BAR GENERATOR Type EP665A GB. \qquad	
	decca koating colour iv service generator rpe 82515	
	FEAROGRAPH RECORDER TEST SE1 type RTS2	
	Labgear pal colour bah genetatar type	
	labgear colourmaitil 625 Pattern gen	
	TOR type CMEOOA-PG	
	RANK U.H.F. SIGNAL STRENGTH METER	
	RANK E.H. T. MEIER O-30KV	
	ME	
	ADVANCE RF SIGNAL GENERATOR type 62 ISOKHZ-	
STOCKISTS of NEW SCOPEX \& SAFGAN OSCHLOSCOPES. Also MANY OTHER TTEMS of TEST EQUIPMENT \& COMPONENTS in Stock For FURTHER DETAILS CONTACT DWAYNE STEWART.		

STEWART OF READING 110 WYKEHAM ROND, READIMG, BERKS REG 1PL Tel: 073468041

Callers welcome 9 am- 5.30 pm Monday to Saturday inclusive

[^5]In some cases prices of Mullard and USA valves will be higher than those advertised. Prices correct when going to press
Telephone 01-677 2424/7
Telex 946708
morder charge $£ 10$. Carriage packing $£ 1.50$ on credit order

Backplane bus standards

a special issue of

Microprocessors and Microsystems

Guest Editor: Paul Borrill (University College, London)
This special issue contains six full-length articles on the major backplane buses, detailing their specifications, modifications, special features and the technical and political problems of agreeing their standard format

STD bus by the proposer of STD on Eurocard, Tim Elsmore
S100 bus by the 5100 MSC chairman, Mark Garetz

Multibus by the Multibus MSC chairman, Rich Boberg
VERSAbus and VMEbus by Motorola bus development manager, Rich deBock

Eurobus by UK Ministry of Defence executive, John Hill

Futurebus (P896) by the P896
MSC secretary, Paul Borrill

For further details contact
Danny Green, Butterworth Scientific Limited - Journals Division, Westbury
House, Bury Street, Guildford, Surrey CU2 5BH, UK
Telephone: 048331261 Telex: 859556 SCITEC G

Quick, neat and easy!
It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold six issues and is attractively bound and blocked with the WIRELESS WORLD logo.
Price U.K. £4.30 including postage, packing and V.A.T.
Overseas orders add 25 p per binder
Nat. Giro No. 5157552
Please allow $3 / 4$ weeks for fulfilment of order.
Payment by ACCESS/BARCLAYCARD/ VISA. Send coupon below detailing credit card no. and signature.
Why not place your order now? Send the completed coupon below with remittance payable to:

Easibind Ltd., 42 Hoxton Square London N1 6NS

- I enclose P.O/cheque value

Years required
BLOCK LETTERS PLEASE
Name ..
Address. microphones to balanced lines

- Variety of low frequency characteristics for improving the clarity of recordings
- Inputs filtered against radio interference
- Complete boxed unit or double mumetal screened amplifier module alone

Surrey Eectronics Ltd., The Forge, Lucks Green, Crankeigh, Surrey
GU6 7BG Engand. Te: 0483275997

ScheTronics Limited

We offer the following services

* Repair and calibration of precision electronic test equipment
\star Prototype wiring of P.C.Bs
\star Technical drawing facilities
\star Second user test equipment for sale

Unit 10, Dunstall Estate
Crabtree Manorway
Belvedere, Kent DA17 6AW
Telephone: 01-311 9657

CD ICOM HOME OFFICE APPROVED RADIO

The ICM－12，synthesized，marine hand－portable radio

FEATURES：
12 channels－ 6 and 16 fitted as standard． －No waiting for crystals，can be diode pro grammed between $156-164 \mathrm{MHz}$ ．
－Automatic semi－duplex for private and link calls
＊Slide－on nicad pack recharges from mains or 12 V ．
－Lots of options，speaker mics，alternative battery packs， 12 V leads，and desk charg ers．
－Complete with nicad battery pack，mains charger，belt clip，earphone，rubber antenna．
＊PRICE E219＋VAT．Free carriage．
Trade enquiries very welcome－Ask for Phil Hadler

LAND MOBILE BUSINESS BAND RADIO
VHF and UHF base mobiles and hand portables．Built in Sel－ call and CTCSS；very compact indeed Synthesized－Diode Programmed．
Dealers！Forget your crystal problems！Very competitive prices．
Dealer outlets required．Ask for Chris Lambert．
Thanet Electronics ©DICOM
143 Reculver Road，Herne Bay，Kent
Tel： 02273 63859．Telex 965179
WW－ 030 FOR FURTHER DETAILS

WW－069 FOR FURTHER DETAILS

TORODALS

The toroidal transformer is now accepted as the standard in industry，overtaking the obsolete laminated type．Industry has been obsolete laminated type．Industry has been
quick to recognise the advantages toroidals quick to recognise the advantages toroidals
offer in size，weight，lower radiated field and， offer in size，weight，low
thanks to I．L．P．，PRICE．

Our large standard range is complemented by our SPECIAL
DESIGN section which can offer a prototype service within
7 DAYS together with a short lead time on quantity orders which can be programmed to your requirements with no price penalty．

TYPE	${ }_{\text {Stilis }}^{\text {St }}$	Seconoar Vols	${ }_{\text {anctant }}^{\text {ans }}$	PRCE
${ }_{\substack{30 v a}}^{3003}$	${ }^{1 \times 070}$	$\underset{\substack{6+6 \\ 9+9}}{\text { ¢ }}$	¢ 2.50	
		coin	${ }_{\text {d }}^{1}$	$£ 5.12$
	coix		${ }_{\substack{1038 \\ 088}}$	退
				мep
	22010	$6+6$	416	
	2001，			
				$£ 5.70$
		边	${ }^{1.15}$	
			（100	come
		$\underbrace{\substack{10}}_{\substack{120 \\ 220 \\ 220}}$	045 0.22 020	
	22030			
$\xrightarrow{80 \mathrm{VAm}}$	${ }_{\substack{30 \\ 30010}}^{\text {30，}}$	$\xrightarrow[\substack{6+6 \\ 9+9}]{\substack{\text { a }}}$	${ }_{\substack{8 \\ 8 \\ 4 \\ 4 \\ 4}}$	
Reefution		$\underset{\substack{12+12 \\ 15+15}}{\text { che }}$	${ }_{\substack{3,38 \\ 266}}^{\substack{\text { a }}}$	£6．08
		－	${ }_{2}^{2.22}$	
			${ }_{\substack{181 \\ 1.63 \\ 1.3 \\ \hline}}$	，watit
		${ }_{\substack{30+30 \\ 120}}^{120}$	（1．33	
		${ }_{200}^{220}$	${ }^{0.36}$	
	${ }_{\text {4x }}^{4 \times 10}$	$\underset{\substack{6+6 \\ 9+9}}{\substack{\text { d }}}$		
	${ }_{\substack{4 \times 0 \\ 4 \times 0,12}}^{4}$	－	${ }_{\substack{500 \\ 4.00}}$	
	，		${ }^{3} 823$	
	，		边200	vatizs
			$\xrightarrow{171}$	
		200		
			${ }^{\text {5，34 }}$	
		$\xrightarrow{22+22}$		
		${ }_{\substack{30 \\ 35+30}}$	$\substack{\text { a }}_{\substack{2.66 \\ 2.28}}^{\substack{\text { a }}}$	
		${ }_{\text {a }}^{60+10}$	${ }_{\text {200 }}^{200}$	
	（tar	坔20	（0， $\begin{aligned} & 0.68 \\ & 0.68\end{aligned}$	

ImPORTANT：Aegulation－All voltages quoted are FULL LOAD．Please add regulation figure to secondary voltage to obtain olf load voltage．
The benefits of ILP toroidal transformers
ILP toroidal transformers are only half the weight and height of their laminated equivalents，and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows：
For 110 V primary insert＂ 0 ＂in piace of＂X＂in type number
For 220 V primary（Europe）insert＂ 1 ＂in place of＂x＂in type number
For 240 V primary（UK）insert＂ 2 ＂in place of＂X＂in type number．
How to order Freepost：
Use this coupon，or a separate sheet of paper，to order these products，or any products srom other ILP Electronics advertisements No stamp is needed if you address to Freepost．Cheques and postal orders must be crossed and payable to ILP Electronics LTd Access and Barclaycard welcome．All UK orders sent within 7 days of receipt of order for Access and Barclaycard welcome
single and small quantity orders
Also availabie at Eiectrovalue．Maplin and Technomatic

Piease send
Total purchase price
enclose Cheque \square
Postal Orders
\square
int．Moniey Order \square
Debit my Access／Barclaycard No．

Name
Address
\qquad
Post to：ILP Electronics Ltd．，Freepost 5，Graham Bell House，Roper Close Canterbury CT2 7EP．Kent，England
Telephone Sales（0227）54778：Technical（0227）64723．Telex 965780.
（a division of
ILP Electronics Lto）
TRANSFORMERS
WW－ 063 FOR FURTHER DETAILS

Superior Quality Precision Wade NEW POWER RHEOSTATS

Now ceramic construction，h
assembly，continuously rated．
25 WATf 10／25／50／100／150／250／500／1K $\Omega 1.5 \mathrm{k} \Omega$
E3．10．＋
50 WATT $250 \Omega 85.50+50 p$ P\＆P（ $\mathbf{E 8} .90$ inc．VAT）
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{k} \Omega / 1.5 \mathrm{k} \Omega / 2.5 \mathrm{k} \Omega / 3.5 \mathrm{k} \Omega$
$87.28+75 \mathrm{P}$ P 2 P （ $\mathrm{E9} .20$ inc．VAT）
Bleck Silver Stirted Knob calibrated
deal for above Rheostats $30 p$ en．＋VAT．
SOLID STATE E．H．T．UNIT
Input 230 V A．C．Fully isolated．Aprox．15KV．Built－in 10 sec ．Timer．Easil modified for 20 soc． 30 sec．to contin uous oper
$155 \times 85 \times 50 \mathrm{~mm}$ ．Price Es +75 p P\＆．（Total inc．VAT E6．61）．
240 V A．C．SOLENOID VALVE

METERS（Now）－ 90 mm DIAMETER
${ }^{\text {AC Amp．Type }}$ 62T2： $0,1 \mathrm{~A}, 0-5 \mathrm{~A}, 0-10 \mathrm{~A}$
AC Voh．O－150V．0－300V．
DC Amp．Type 85C5 0－5A，0－10A，0－50A 0－100A．DC Von 30V Al

ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
2h 40 watt 58.70 inc．VAT $£ 10.00$（celiers only）．
（For use in standerd bi pin frteings）．

BLACK LIGHT BULBS
Soff－ballasted Mercury U．V． 175 W Butbs．Availeble for either B．C．or E．S．
fitting Prics incl．p\＆p \＆VAT $£ 11.50$ ．
fitting ．Prico incl．PEp Z VAT E11．50．
$400 W$ UV LAMP AND BALLAST com
 SOLENOIDS
230 V A．C．approx 201 b pull，heavy duty $\mathbf{\varepsilon 7 . 5 0}+£ 1.50$ p\＆p（ $\mathbf{E} 10.35 \mathrm{inc}$ ．

CONTACTOR
AMF 230 V AC 2 clo 25A． $55.50+75 \mathrm{p}$ p\＆p（ $£ 7.18$ inc．VA
Stockists for
Stockists for
Finnigans Hammerite paint and Waxoyl products

VARIABLE VOLTAGE TRANSFORMERS

INPUY 230／240V a．c．50／60 OUTPUT 0－260V
200 W 1 amp inc．．．c．voltsge
$0.5 \mathrm{KVA}(21 / 2 \mathrm{amp} \mathrm{MAX})$
1 KVA 5 amp MAX ）
2KVA 10 emp MAX）
$3 \mathrm{KVA}(155 \mathrm{mp}$ MAX）
KVA（15 8mp MAX）
5 KVA（ 25 日mp MAX）
$0 \mathrm{KVA}(50 \mathrm{mp} \mathrm{mAX} \mathrm{MAX})$
$£ 15.00$
$£ 19.00$
$\mathbf{£ 5 . 0 0}$
$\mathbf{£ 4 1 . 0 0}$
$\mathbf{£ 4 9 . 0 0}$
$\mathbf{£ 7 9 . 0 0}$
$\mathbf{£ 7 4 . 0 0}$
$\mathbf{£ 2 7 0 . 0 0}$

3－PHASE VARIABLE VOLTAGE TRANSFORMERS
Dual input $200-240 \mathrm{~V}$ or $380-415 \mathrm{~V}$ ．Star connected
3 KVA 5 amo per phase max

Comprehensive range of L．T．，AUTO（110－240V）， ISOLATION TRANSFORMERS available for im mediate delivery．Leaflet on request．

EPROM ERASURE KIT

Why waste monoy？Build your own EPROM ERASURE for a frac－ tion of the price of a made－up unit．Complete kit of parts less case．
to include $12^{\prime \prime} 8$ watt 2537 Angst Tube Ballast unit to include 12＂8 watt 2537 Angst Tube．Ballast unit，pair of bi－pin
leads．Neon indicator，safery microswitch，on／off switch and cir－
 Warning：Tube used in this circuit is highly dangerous to the eyes

FROM STOCK AT PRICES THAT DEFY COMPETITION！

AC GEARED MOTORS

 DC MOTORS MICROSWITCHES RELAYSREED SWITCHES
SOLENOIDS
PROGRAMME TIMERS
C．F．BLOWERS AC CAPACITORS STROBE KITS FLASHTUBES CONTACTORS

Pho mOTORS
Phone in your enquiries

GEARED MOTORS
5 pm 240 V A．C．Mf．by Carter． 28.05 £1 pap（28． 11 71 inpme Motor approx 301 b in． 110 V A．C．complere With Transformer for $240 \mathrm{VA.C}$. ． $10.20+£ 1.50 \mathrm{p} \mathrm{\&} \mathrm{\&}$
（total inc．VAT $£ 13.45$ ） total inc．VAT £13．45）

71 rPm WYNSCALE motor approx． 101 binc
A．C．supplied with suto transformer 240 V ．
A．C．operation． $\mathbf{~} 9.75$ p\＆$£ 1.50$（ $\mathbf{E 1 2 . 9 4}$ inc．VAT）．
NM．S．
42 rpm． 110 A．C． 50 hz .100 lb inc．reversible，will operate on 230 A．C． Speed remains at 42 rpm but torque reduces by 50% ．Price 118.15 p p £2．50（E23．75 inc．VAT）．N．M．S．
TRANSFORMER $240 V$ A．C．Oporations $£ 15.07$
38.3 rpm GEARED MOTO
38.3 rpm GEARED MOTOR．Torque 351 b ．in．reversible 115 V AC inc．start
capacitor Price： 11.55 ． capacitor．Price：E11．55＋£2 P\＆P（total incl．VAT £15．38）．
Suitable Transformer 230 V A．C operation．Price：$£ 7.15+50 \mathrm{p}$ P\＆P（tota incl．VAT 88.80 ）

N．E．C．GEARED MOTOR． 152 rpm．2001b．in． 230 V A．C． 50 Hz ． Ratio 9.2 to 1 Non reverse．Incl Capaci
maker＇s price． $41.25+$ Cerr＋VAT．N．M．S．

INDUSTRIAL STROBE KIT

Ideal for Industrial and Educational purposes．Produces high intensity
flash variable from approx． 1 to 70 ．f ．Price lesces flash varieble from approx． 1 to 70 f．p．s．Price less case：$£ 27+£ 2$ P\＆p
（total incl．VAT $£ 33.36$ ）．Suitable Case ond Reflector $£ 12.50+£ 2$ P\＆P （total incl VAT E16．68）．
HY－LYGHT MK V Designed for Disco，Thenatrical uses，etc Approx． 4 joules．Adjustable speed．Price $827+£ 2$ P\＆P．（Total inc．VAT E33．36）．Cose and reflector price $£ 12.50+£ 2$ P8，（totel incl．VA
E16． 68 ．Foolscap SAE for further details inctuding Super Hy－lyght． COMPRESSOR
 BLOWERNACUUM PUMP
3 phase A．C．motor $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V}$ ． $1,425 \mathrm{rpm}$ ，1／8 h．p．cont．Direct 3phase A．c．motor $220 / 250 \mathrm{~V}$ or $380 / 440 \mathrm{~V}$ ． $1,425 \mathrm{rpm}$ ， $1 / 8 \mathrm{~h} . \mathrm{p}$ ．cont．Direct
coupled to William Allday Alcosa carbon vane blower／vacuum pump． 0.9 cfm 8 hg ．EZ2＋E4 P\＆P（total incl．VAT Ezes．90）．

INSULATION TESTERS NEW
（E58． 65 inc．VAT \＆P） 1000 VOLTS 10000 E55．00
P\＆$£ 2.00$（E85．55 inc．
SANGAMO WESTON TIME SWITCH
Trpe $5251200 / 250 \mathrm{AC} 2$ on／2 off every 24 hours． 20 amps contacts
with override switch．Diameter $4^{\circ} \times 3$ ，price 99.50 P\＆P $£ 1.00$ £ 12.08 inc．VAT \＆P）．Also available with solar dia．R\＆T
Also available Sengamo Weston 60 amp and AEG 80 amp．Phone for dotails．
Trpe Szas 1 on，or 1 timed c／o every 24 hours，day omitting device ype s38s．As

N．M．S．－Now Manufectur ers＇Surplus．
R⿷匚 - Reconditioned and Teated．
Personal callers only．Open Saturdays

Ample parking space
Showroom open
Monday－Friday

57 BRIDGMAN ROAD，CHISWICK，LONDON W4 5BB，01－995 1560 ACCOUNT CUSTOMERS MIN．ORDER £ 10

WW－005 FOR FURTHER DETAILS

WW－ 047 FOR FURTHER DETAILS

WE PURCHASE

Surplus component stocks，redundant materials，obso－ lete computers，for cash．
We also collect－distance no object．Just call

C．T．Electronics（Acton） Ltd．
 267 \＆ 270 Acton Lane，London W4 5DG

Telephone：01－747 1555；01－994 6275．Telex： 291429

WRONG TIME？

MSF CLOCK is ALWAYS CORRECT－never gains or loses，SELF SETTING at switch－on， 8 digits show Date，Hours，Minutes and Seconds， 24 hour format，larger digit Hours and Minutes for easy QUICK－GLANCE time，auto GMT／BST and leap year，can expand to Years，Months and Milliseconds and work as STOPCLOCK，parallel BCD（including Weekday）output for alarm etc and audio to record and show time on playback， receives Rugby 60 KHz atomic time signals，built－in antenna， 1000 Km range，GET the RIGHT TIME，£69．60．
60KHZ RUGBY RECEIVER，as in MSF Clock，serial data output for
computer etc，decoding details and Basic listings，$£ 22.20$ ．
Each fun－to－build kit（ready made to order）includes all parts， printed circuit，case，instructions，by－return postage etc，money back assurance so GET yours NOW．

CAMBRIDGE KITS

45 （WQ）Old School Lane，Milton，Cambridge
Telephone： 860150

Marconi Type R1020 Hinged Antenna Column. Easy to raise Easy to lower
 * Immensely strong, corrosion resistant MATHWEB* g.r.p. column in a rugged steel tabernacle
 * Lightweight, easy to install, and can be safely lowered by one man
 * Can support a number of VHF/UHF antennas
 * Column supplied in range of colours including ICAO orange/white, and requires no painting or maintenance
 * Available in heights from 11 to
 19.5 metres

OTHER MARCONI SUPPORT STRUCTURES
Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower Type R1060.

For more information talk to Chris Pettitt, Marketing Manager, Antenna Systems Division.

* MATHWEB Is a registered trademark of the BP Group

Marconi

Communication Systems

[^6]
CHILTERN ELECTRONICS

INCREDIBLE SCOOP PURCHASE OF SUPERB HIGH RESOLUTION

9' VIDEO MONITORS

Look at these features:
18Mhz Bandwidth

* Over 85 Chars/line resolution
* P31 Green Screen
* Composite Video i/p
* Mains 230v
* Antireflective Faceplate
* Attractively styled case

Why pay $£ 120$ or more?

BRAND NEW IN MAKER'S CARTONS AT THE AMAZING BARGAIN PRICE OF $£ 78$ vat extra, carriage $£ 5$

Quantity discounts/dealer enquiries welcome
THE IDEAL MATCH FOR YOUR MICRO
High Street, Chalfont St Giles, Bucks HP8 4QH
Telephone 02407 71234. Telex 262284
WW - 068 FOR FURTHER DETAILS

Well worth a closer look

The only magazine in Britain that gives the amateur enthusiast and professional engineer alike a comprehensive up-to-date coverage of TV technology.

In the March issue
SERVICING THE SONY KV1810UB
Restoring these now ageing sets is more simple than it looks. David Botto describes how to go about it JUNKING FOR JOY
Stripping down old sets can be a great source of spares.
VINTAGE TV
The unusual circuitry and various servicing problems of the Pye Model V4.

PLUS!
Test Report: The Unaohm colour bar generator
Our regular servicing features GET A COPY TODAY 90p

QUALITY, PERFORMANCE, VALUE ...the extra is DURABILITY

HH 103 . . . £158
Single trace $2 \mathrm{mV} / \mathrm{cm}$ 10 MHz , Component Tester.

HM203-4 . . . £264
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 20 MHz , Alg Add, Invert X-Y, Component Tester

HM204... £365
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 20 MHz , Alg Add, Invert Delay T/B, Var hold-off Peak Auto Trig to 50 MHz , X-Y, Single Shot, Z Mod, Component Tester.

HM705 . . . £588
Dual trace $2 \mathrm{mV} / \mathrm{cm}$ 70 MHz , Alg Add, Invert, Signal Delay, Delay T/B, Single Shot, Var hold-off, 14KV P.D.A. C.R.T.

For free data sheets of the full range contact:

France
HAMEG S.A.R.L.
5-9 Avenue de la Republique
94800 Villejuif,
Tel:678.09.98/Telex:270705
United States
HAMEG, INC
88-90 Harbor Rd.
Port Washington, N. Y. 11050
Phone: 516.883.3837/516.883.6428

Prices U.K. list ex. VAT

Spain
HAMEG IBERICA S.A. Villaroel 172-174, Barcelona-36
Tel:230.15.97

West Germany
HAMEG Gmbh
6 Frankfurt am Main 71,
Kelsterbacher Str. 15-19
Tel: 0611/676017 Telex:0413866

WW - 051 FOR FURTHER DETALLS

01-452 1500 . Technomatic Ltid 01-450 6597

BGO Micro Computer

Please phone for availability
WORD PROCESSOR 'VIEW' 16K ROM £52

BBC Model A £299 BBC Model B £399 (incl. VAT)
Carr £8/unit
Model A to Model B upgrade kit $\mathbf{£ 5 0}$ Fitting charge $£ 15$ Individual upgrades also available
TELETEXT ADAPTOR £195 PRESTEL ADAPTOR £90 2nd PROCESSOR 6502/Z80 £170

FLOPPY DISC INTERFACE incl. 1.00 .5 $\mathbf{£ 9 5}$ \& £20 installation

Phone or send for our Biclealiat

BBC FLOPPY DISC DRIVES

Single Drive $51 / 4^{\prime \prime} 100 \mathrm{~K} £ 235+£ 6$ carr.
Double Drive 51/4" $800 \mathrm{~K} £ 799+£ 8$ carr.

BBC COMPATIBLE DRIVES

These are drives with TEAC FD50 mechanism and are complete with power supply SINGLE: 100K £190; 200K £260; 400K £340 DUAL: 200K £ $£ 60$; $400 \mathrm{~K} £ 490$; 800K $£ 610$

CASSETTE RECORDER

Ferguson 3TO7

Cassette Leads $£ 3.50$
Computer Grade Cassettes $\mathbf{£ 0 . 5 0}$ each $£ 4.50$ for $10+£ 1$ carr

BMC BM1401 14' Colour Monitor RGB input £265 \& $£ 8$ carr KAGA RGBI 12" Colour Monitor RGB input $£ 235$ \& $£ 8$ carr KAGA 12" High Res Green Monitor f 170 \& $£ 6$ carr

MONITORS

MICROVITEC 1431 M/S 14 Colour Monitor $£ 269$ \& $£ 8$ carr Hi Res Green Monitor f99 \& f 6 carr RGB Lead for BMC/KAGA £10
Composite Video Lead f 3.50

ACORN ATOM

Basic Built $£ 135$. Expanded $£ 175$ (Carr $£ 3$ per unit)
Atom Disc Pack $£ 299+\mathrm{f} 6$ Carr 3 A $5 v$ Regulated PSU $£ 26+£ 2$ Carr Phone or send for our BBC Atom list

NEC PC 8023 BE - C $100 \mathrm{CPS}, 80$ cols Logic Seeking, Bidirectional, Forward and Reverse Line Feed, Proportional Spacing, Auto Underline, Hi-Res and Block Graphics, Greek Char.
Set. Only $£ 320+£ 8$ carr.

PRINTERS

SEIKOSHA GP 100A 80 cols 30 CPS Full ASCII \& Graphics $10^{\prime \prime}$ wide paper Now only $\mathrm{f} 175+\mathrm{f} 6$ carr. Ask for details on GP 250A

EPSOM MX 80 and 100F/T3 MX80 80CPS 80 cols MX 100100 CPS
 MX 136 cols Logic Seeking, Bidirectional, Bit Image Printing, 9 $\times 9$ Matrix
Parallel Printer lead for $\mathrm{BBC/Atom}$ to most printers $£ 13.50$
Aation Onderline 2,000 fan fold sheets $91 / 2^{\prime \prime} \times 11^{\prime \prime} \mathbf{~} 13.50 \times £ 3 \mathrm{p} \& \mathrm{p}$

MX $100 \mathrm{~F} / \mathrm{T} 3 £ 430$
($\mathbf{6} 8$ Car//Printer)

RUGBY ATOMIC CLOCK

This 280 micro controlled clock/calendar receives coded time data from NPL Rugby. The clock never needs to be reset. The facilities include 8 indepen-
dent alarms and for each alarm there is a choice of dent alarms and for each alarm there is a choice of
melody or alternatively these can be used for melody or atternatively these can be used switching. A separate timer allows electrical switching. A separding of up to 240 lap times without interrupting the count. Expansion facilities provided.

See July/August ETI for details Complete Kit $£ \mathbf{1 2 0}+£ 2 p \& p$

MICROTIMER

6502 Based Programmable clock timer with * 224 switching times/week cycle * 24 -hour 7 -day timer

* 4 independent switch outputs directly interfacing to thyristor/triacs * 6 digit 7 seg . display to indicate real time, ON/OFF and Reset times
* Output to drive day of week switch and status LEDs.
Full details on request. Price for kit $\mathbf{5 5 7}$

CONNECTOR SYSTEMS

MICRODOCTOR

This is not a logic analyser or an oscilloscope. It tests a microsystem and gives a printed reprint on RAM, ROM and $1 / O_{\text {- it will print }}$ memory map, search for code, check dataline shorts and operates peripherals. Microdoctor complete with psu, printer probe cable and two configuration board.

£295

JUMPER LEADS

24" Ribbon Cable with Headers

24" Ribbon Cable with Headers				
1 end 2 ends	$\begin{aligned} & 14 \mathrm{pin} \\ & 145 \mathrm{p} \\ & 210 \mathrm{p} \end{aligned}$	16pin 185 p 230p	$\begin{aligned} & 24 \mathrm{pin} \\ & 240 \mathrm{p} \\ & 345 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { 40pin } \\ & 380 \mathrm{p} \\ & 540 \mathrm{p} \end{aligned}$
24" Ribbon Cable with Sockets				
1 end 2 ends		26 pin $385 p$ le with	34 pin 490p D. Con	$\begin{aligned} & 40 \mathrm{pin} \\ & 300 \mathrm{p} \\ & 540 \mathrm{p} \end{aligned}$

 36 way Solder Type Plug 36 way Solder Sock typ (centronix type) 36 way IDC Plug (centronix ty pe) 24 way Solder Plug 24 way Solder Socket 24 way IDC Plug

EURO
CONNECTOR

CONNECTORS

OIN STD (Indirect Edge Conn.)

RIBBON CABLE
550p
550p
550p
500p
(Grey)

10 way	60
14 way	800
16 way	90
20 way	105
26 way	140
34 way	220
40 way	285
50 way	330
64 way	370

EDGE CONNECTORS

	$0.1^{\prime \prime}$	$0.156^{\prime \prime}$
2×18 way	-	140 p
2×22 way	200 p	170 p
2×23 way	210 p	-
2×25 way	225 p	220 p
1×43 way	260 p	-
2×43 way	395 p	-
2×50 way	-	-
1×77 way	700 p	-
S100 Conn.	-	600 p

SOFTY II INTELLIGENT PROGRAMMER

The complete microprocessor devalopment system for Engineers and Hobbyists. You can develop programs, debug, verify and commit to EPROMS or use in host computer by using softy as a romulator. Powerful editing facilities permit bytes, blocks of bytes changed, deleted or inserted and memory contents can be observed on ordinary TV. Accepts most $+5 v$ Eproms
Softy II complete with PSU, TV Lead and Romulator lead £169

	SPECIAL OFFER
2114 i	80 p
$2716(+5 \mathrm{v})$	$\mathbf{2 5 0 p}$
2532	350 p
$4116-2$	80 p
$4164-2$	$\mathbf{4 5 0 \mathrm { p }}$
6116 P	$\mathbf{3 5 0 p}$

BOOKS

UV ERASERS

UV1B up to 6 Eproms $£ 47.50$ UV1T with Timer £60 UV140 up to 14 Eproms £61.50 UV141 with Timer $£ 78$ (Carr E2/eraser) All erasers are fitted with mains switches and safety interlocks.

TRAINER KITS

6502 Junior Computer.......... $\mathbf{f 8 5}$ 6802 Nancomp IE8O 6802 Nancomp I......................... 880 6809 Nancomp II..................E80
 ZBO Menta....... documented) Full details on request

BOOKS (No VAT p\&p £1)	
CMOS Cook Book	£7.75
CRT Controller H/Book	£5.95
Programming the $\mathbf{Z 8 0}$	£11.50
Z80 Microcomp Handbook	£6.95
Programming the 6502	£10.25
6502 Assy. Lang.	£12.10
6502 Applications	£10.20
6502 Sofiware Design	£9.05
6502 Games	¢10.25
Large selection	terfac-
ing books, books on BBC	stock
Ask for our list.	WW. 12

WW - 054 FOR FURTHER DETAILS

LASTCHANCE AT THISPRICE.
METALFILM RESISTORS 1\% Tolerance. $1 / 4$ Watt

100R	ik	10k	100k
110 P	1 k 1	11k	110*
1208	1 k 2	12k	120k
1308	1 k 3	13k	${ }^{130}$
150 F	1 k 5	15k	150*
160R	1 k 6	16k	160k
180R	1k8	18k	180k
200R	2k	20k	200k
220R	2k2	22k	220k
240R	2 k 4	24k	240k
270 R	2k7	27k	270*
300 R	3k	30k	
330R	3 k 3	33k	330k
360 R	3k6	36k	
3908	3 kg	39k	
430 R	4 k 3	43k	
470 R	4 k 7	47k	470k
510 R	5ki	51k	
560 R	5k6	56k	560k
620R	6k2	62k	
680R	$6 \mathrm{k8}$	68k	680k
750R	7 k 5	75k	
820R	8*2	82k	820k
910 R	9k1	91k	1 M

High Quality High Stability. Huge Strength. Minimum order $£ 20$ Minimum 5 pcs per value 89 Values (E24) VAT, p\&p inclusive. SPECIAL OFFER £23.00

WW - 016 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBN GOLFBALL PRINTERS from 970 EACH + Y.A.T.
*BRAND-NEW LA 36 DEC WRITERS-SALE £200 EACH
*BRAND-NEW LA 180 DEC WRITER-SALE $£ 300$ EACH
CENTRONIC 779 PRINTERS $-£ 325+$ V.A.T.
CENTRONIC 781 PRINTER- $£ 350+$ V.A.T.
POWER UNITS, 5-VOLT 6-AMP-E20EACH
FANS, PCBS, KEYBOARDS AND LOTS MORE
COME AND LOOK AROUND
SALCOTT MILL. GOLDHANGER ROAD
HEYBRIDGE, MALDON, ESSEX
PHONE MALDON (0621) 57440

U．K．RETURN OF POST MAIL ORDER SERVICE，ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER £18

HEAVY METAL PLINTHS
Cut out for most BSR or Garrard decks．
Silver grey finish，black trim．Size $16 \times 13^{3 / 4 i n}$
ost $£ 2$

DECCA TEAK VENEERED PUNTH．Post $£ 1.50$
small amplifier．Board is cut for B．S．R
£5
$183 / \mathrm{in} . \times 141 / 4 \mathrm{in} \times 4 \mathrm{in}$ ．Black／chrome facia trim．Also with TINTED PLASTIC COVERS $177 / 8 \times 131 / 8 \times 31 / 4 \mathrm{in}$ ． $171 / \times 93 / \mathrm{x} \times 31 / \mathrm{in}$.
$161 / \times 15 \times 41 / 2 \mathrm{in}$.
$17 \times 127 / 2 \times 31 / 2 \mathrm{in}$. $22^{25} \times 131 / 8 \times 3 \mathrm{in}$.
$21 / 2 \times 14^{1 / 4 \times 21 / 2}$

BSR SINGLE

 PLAYER DECKS BSR P170 RIM DRIVE QUALITY DECK
> $81 / 4 \times 121 / 2 \times 3 \mathrm{in}$ ．Post $f 2$
> $43 / 8 \times 12^{1 / 2} \times 2^{7} / \mathrm{sin}$ ．
> $65 / 8 \times 13 \times 4 \mathrm{in}$ ．
$41 / 2 \times 131 / 8 \times 2^{3 / 4 i n}$.
> $171 / 4 \times 13^{3 / 4} \times 41 / 8 \mathrm{in}$ ．
> $21 \times 13^{7 / 8} \times 41 / \mathrm{sin}$.
$303 / 4 \times 133 / 6 \times 3^{1 / 4 i n}$.
> $\mathbf{5 5}$
$\mathbf{5 5}$
$\mathbf{5 5}$
$\mathbf{6 5}$
$\mathbf{~} 55$
$\mathbf{6 5}$
$\mathbf{5 5}$

Manual or automatic play．
Precision ultra slim arm

with siver trim，stereo ceramic cartridge
BSR P204 SINGLE PLAYERS SPECIAL OFFERS Two speed $33 / 45$ r．p．m．hi－fi decks with stereo Ceramic－ 240 V AC $£ 15$ or 9V DC $£ 18$ Magnetic－240V AC £20 or 12V DC £24 Post fz THE＂INSTANT＂BULK TAPE ERASER £9．50 Post $95 \boldsymbol{p}$ Suitable for cassettes and all sizes of tape reels．AC mains $200 / 250 \mathrm{~V}$ ．Hand held sol
with switch and lead（ 120 volt to order）： Will also dema
Head Demagnetiser only $£ 5$
BATTERY ELIMINATOR MANS to 9 VOLT O．C Stabilised output， 9 volt 400 m．a．U．K．made in plastic
case with screw terminals．Safety overload cut $5 \times 3^{1 / 4 \times 2^{1} / 2 i n \text { ．Transformer Rectifier Unit．Suitable }}$ Radios．Cassettes，models，f4．50．Post 50p． DE LUXE SWITCHED MODEL STABILISED．E7．50．トP £1 and lead．Pilot light，mains switch，polarity switch． DRILL SPEED CONTROLLER／IIGHT DIMMER KIT．EASY DE LUXE MODEL READY－BUILT 800 watts．Front plate DE LUXE MODEL READY－BUILT
Eu 131／2xiln LDABPEANERS Model 450 ， 10 watts R．M．S．With
moving coil tweeter and two－way crossover： 3 ohm or 8 ohm． SUITABLE BOOKSHELF CABINET 88
£6．50．Size $18 \times 11 \times 6$ in Post f150 Post $£ 1.50$
RELAYS． $6 \mathrm{~V} D C$ 95p． $12 \mathrm{VDC} £ 1.25 .18 \mathrm{~V} £ 1.25 .24 \mathrm{~V} £ 1.30$ $\begin{array}{llll}10 \times 7-£ 2.75 ; & 12 \times 8-£ 3.20 ; & 14 \times 9-£ 3.60 ; & 16 \times 6-£ 2.50 ;\end{array}$ $16 \times 10-£ 3.80$
ALUMINIUM PANELS． $6 \times 4-55 p ; 8 \times 6-90 p ; 14 \times 3-90 p$ ； $10 \times 7-£ 1.15 ; \quad 12 \times 8-£ 1.30 ; \quad 12 \times 5-90 \mathrm{p} ; \quad 16 \times 6-£ 1.30 ;$ ALUMINIUM BOXES． $4 \times 4 \times 11 / 2 \quad £ 1.20$ ． $4 \times 21 / 2 \times 2 \quad £ 1.20$ $3 \times 2 \times 1 \quad £ 1.20 .6 \times 4 \times 2 \quad £ 1.90$ ． $7 \times 5 \times 3 \quad £ 2.90$ ． BRIDGE RECTIFIER 2OOV PIV 2a £1．4a £1．50． $6 \mathrm{a} £ 2.50$ TOGGLE SWITCHES SP 40 p ．DPST 50 p ．DPDT 60 p ． MINIATURE TOGGLES SP 40p．DPDT 60p． RESISTORS． 10Ω to $10 \mathrm{M}, 1 / 4 \mathrm{~W}$ ， $1 / 2 \mathrm{~W}$ ， 1 W ， 2 p ： 2 W 10 p ．
HIGH STABILITY． $1 / 2 \mathrm{w} 2 \% 10 \mathrm{hms}$ to 1 meg 10 l HIGH STABILITY． $1 / 2 \mathrm{w} 2 \% 10 \mathrm{hms}$ to 1 meg ． 10 p ．
WIRE－WOUND RESISTORS 5 wat 10 wat 15 wit PICK－UP CARTRIDGES SONOTONE 9TAHC $£ 3.80$ ． BSR Stereo Ceramic SC7 Medium Output EP_{2} SC12 S_{3} PHILIPS PLUG－IN HEAD．Stereo Ceramic．AU1020（G306 GP310－GP233－AG3306，£2．A．D．C．，OLM $30 / 3$ Magnetic £5 GOLDRING G850 £6．50，G800 £8．50．STYLUS most Ceramic Acos，Sonatone，BSR，Garrard Philips Diamond $£ 1.20$ e MAGNETIC STYLUS，SonY，JVC，Sanyo，Goldring E4． LOCKTITE SEALING KIT DECCA 118 ．Complete E1． VALVE OUTPUT Transformers（small）90p．Medium $£ 1.50$ ． SUB－MIN MICROSWITCH，50p，Single pole changeover． JACK PLUGS Mono Plastic 25p；Metal 30p． JACK PLUGS Stereo Plastic 30p；Metal 35p． JACK SOCKETS Mono 25 p ．Stereo 30p． FREE SOCKETS－Cable end 30 p．Metal 45p． 2．5mm and 3.5 mm JACK SOCKETS 25p．Plugs 25p． DIN TYPE CONNECTORS
Sockets 3－pin，5－pin 15p．Free Sockets 3－pin，5－pin 25p． Plugs 3－pin 20p；5－pin 25p；Speaker plugs 25p；Sockets 15p．
PHONO PLUGS and SOCKETS ea 20p PHONO PLUGS and SOCKETS ea．20p．
Free Socket for cable end 20p．Screened Phono Plugs 25p． UHF PLUGS 50p．Sockets 50p．Reducers 20p． 300 ohm TWIN RIBBON FEEDER 10 p yd．
300 ohm to 75 ohm AERLAL MATCHING TRANSFORMER £1 U．H．F．COAXIAL CABLE SUPER LOW LOSS，25p yd． COAX PLUGS 30p．COAX SOCKETS 20p．Lead Sockets 65p．

POTENTIOMETERS Carbon Track

 $5 \mathrm{E1}$ ．to $2 \mathrm{M} \Omega$ ．LOG or LIN．L／S 50p．DP 90p．Stereo L／S

coil instrument．Impedance＋Capacity

-4000 o．p．v．Battery included
DC volts $5.25,250,500$ ．
$£ 6.50$
AC volts $10,50,50$
Resistance 0 to 600 K ohms．
De Luxe Range Doubler Model

NEW PANEL METERS $£ 4.50$

$50 \mu a, 100 \mu a, 500 \mu a$
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$ ，
500 ma ， 1 amp， 2 amp
25 volt，VU Meter
$21 / 4 \times 2 \times 11 / 4$ Stereo VU meter $31 / 4 \times 15 / 8 \times 1$ in．E3 RCS SOUND TO LIGHT CONTROL BOX
Complete ready to use with cabinet size $9 \times 3 \times 5$ in． 27
3 channel， 1000 watt each．For home or disco Input 200 mV to 100 watt．AC $200 / 250 \mathrm{~V}$ post OR KIT OF PARTS £19．50，LESS CABINET £15 Disco bulbs 100 watt，blue，green，yellow，r Rope lights， 4 channal， 11 ft with controller $£ 33$ ．PP $£ 1$
＂FUZ7＂lignts，red，blue，green，amber， 240 V AC $£ 23$. 200 Watt Fear Reflecting White Light Bulbs．Ideal Disco Lights，Edison Screw． 6 for £4，or 12 for $£ 7.50$ ．Post £1．50．Suitable panel mounting holders 85p．
RCS＂MINOR＂ 10 watt AMPLIFIER KIT £14 This kit is suitable for record players，guitars，tape playback，electronic instruments or Small PA systems fication $10 W$ per channel；size， $91 / 2 \times 3 \times 2 \mathrm{in}$ ．SAE details． Full instructions supplied． 240 V AC mains．Post $£ 1$ ． RCS STERED PRE－AMP KIT．All parts to build this pre－amp．Inputs for high，medium or low imp
per channel，with volume control and PC Board
Can be ganeed to make multi－way stereo mixers Can be ganged to make multi－way stereo mixers Posi 65 p

MAINS TRANSFORMERS

$250-0-250 \mathrm{~V} 80 \mathrm{~mA}, 6.3 \mathrm{~V} 3$. $350-0.350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 6$ 220 V 25 ma 6 V 1 mp EP .50

$250 \mathrm{~V} 60 \mathrm{~mA}, 6 \mathrm{~V} 2 \mathrm{~A}$
$\begin{array}{r}\text { £6．00 } \\ \mathbf{E 1 2 . 0 0} \\ \hline\end{array}$
AUTO 115 V to 240 V 150 W £9． 250 W £ 10.400 W £ 11 ． 500 W £ 12.00 E E GENERAL PURPOSE LOW VOLTAGE

LOW VOLTAGE ELECTROLYTICS Wire ends
$1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30$ $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf}, 250 \mathrm{mf}$ ．All 15 volts． $22 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v}$ ； $25 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 4$ $100 \mathrm{mf} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf/10v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 330 \mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} ; 500 \mathrm{mf} / 6 \mathrm{v} ; 680$
$10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v} ; 4700 \mathrm{mf} / 4 \mathrm{v}$.
500 mF 12 V 佔p；25V 20p； 50 V 30 p .1200 mF 76 V 80 p
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$
$2000 \mathrm{mF} 6 \mathrm{~V} 2 \mathrm{Lp} ; 30 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1500 \mathrm{mF} 100 \mathrm{~V} \mathrm{E1.20}$. $2200 \mathrm{mF} 63 \mathrm{~V} 90 \mathrm{p} .2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p}$ ； 4500 mF GIG H／GHVOLTAG ELECTROL

$\begin{array}{lllll}2 / 500 \mathrm{~V} & 45 \mathrm{p} & 32+32+16 / 350 \mathrm{~V} 90 \mathrm{p} & 8+8 / 500 \mathrm{~V}\end{array}$ $\begin{array}{llllll}\mathbf{8 / 4 5 0 V} & 45 \mathrm{p} & 100+100 / 275 \mathrm{~V} & \mathbf{6 5 p} & 8+16 / 450 \mathrm{~V} & \text { f1 } \\ 16 / 350 \mathrm{~V} & 45 \mathrm{p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 16+16 / 350 \mathrm{~V} & 80 \mathrm{p}\end{array}$ $\begin{array}{lllll}16 / 350 \mathrm{~V} & \mathbf{4 5 p} & 150+200 / 275 \mathrm{~V} & 70 \mathrm{p} & 16+16 / 350 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 95 \mathrm{p} & 220 / 450 \mathrm{~V} & \mathbf{9 5 p} & 32+32 / 350 \mathrm{~V}\end{array}$ | $32 / 350 \mathrm{~V}$ | 50 p | $32+32+32 / 325 \mathrm{~V}$ | 75 p |
| :--- | :--- | :--- | :--- |
| $22+32 / 3500 \mathrm{~V}$ | | | |
| $50 / 450 \mathrm{~V}$ | 95 p | $50+50+50 / 350 \mathrm{~V}$ | 95 p |
| $50+50 / 300 \mathrm{~V}$ | | | | CAPACITORS WIRE END High Voltag．

$.001, .002, .0013, .005, .01, .02, .03, .05 \mathrm{mfd} 400 \mathrm{~V} 5 p$ ．
1 MF 200 V 5 p .400 V 10 p .600 V 15 p .1000 V 25 p ．
.22 MF 350 V 12 p .600 V 20 p .1000 V 30 p .1750 V 50 p
.47 MF 150 V 70 p .400 V 20 p .630 V 30 p .1000 V 60 p. 47MF 150 V 10 p .400 V 20 p .630 V 30 p .1000 V 60 p
TRIMMERS $30 \mathrm{pF}, 50 \mathrm{pF} .10 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF} 20 \mathrm{p} .5$ TRIMMERS $30 \mathrm{pF}, 50 \mathrm{pF}, 10 \mathrm{p}$ ． 100 pF ， 150 pF 20 p .500 pF 30p
MICROSWITCH SINGLE POLE CHANGEOVER 40p TWIN GANG， $120 \mathrm{pF} £ 1.500+200 \mathrm{pF}$ E1．GEARED TWIN GANGS 25 pF ＇ 95 p ． $365+365+25+25 \mathrm{pF}$ £1．GEARED TWIN
BRASS SPINDLE EXTENDERS 85p．Couplers 65p．Vernier drive dials， $36 \mathrm{~mm} \mathbf{E} 2.25,50 \mathrm{~mm} \mathbf{£ 2 . 7 5}$ ．
TRANSISTIOR IWIN GANG．Japanese Replacement $£ 1$ SOLID DIELECTIRIC 100pf $£ 1.50,500$ p $£ 1.50$
HEATING ELEMENTS，WAFER THIN（Semi Flexible） Size $11 \times 9 \times 1$ sin．Operating voltage $240 \mathrm{~V}, 250 \mathrm{~W}$ approx Heaters，Propagation，etc．Must be clamped between
two sheets of metal or ceramic，etc．
ONLY 60 p EACH（FOUR FOR f2）ALL POST PAID．

NEW baker Star sound
high power full range quality loudspeakers British made exceptional reproduction．Ideal for Hi－Fi，music P．A．or discotheques．These loudspeakers are recommended where high power handling is required with quality
results．The high flux

MOOEL	INCHES	OHMS	Watrs	TYPE	PRICE	POST
MANOR	12	4－8．16	30	HI－FI	f16	
OELUXE MK II	12	8	15	HI－FI	f16	f2
SUPERB	12	8 816	30	HI－FI	E26	¢
AUOITORIUM	12	8－16	45	HI－FI	¢74	代
AUOTORIUM	15	8 8－16	60	HI－FI	597	$\underline{\square}$
GROUP 45	12	4－8－16	45	PA	\＄16	f2
GROUP 75	12	4－8－16	75	PA	f20	f2
GROUP 100	12	8.16	100	Guitar	f26	f2
OISCO 100	12	8 8－16	100	Oisco	$\underline{565}$	f2
GROUP 100	15	8 －15	100	Guitar	635	$\underline{\square}$
OISCO 100	15	8－16	100	Oisco	635	f2

BAKER AMPLIFIERS BRITISH MADE

NEW PA150 MICROPHONE PA AMPURER £129 chang s inputs，dual impedance， 50 K －b00 ohm 4 channel control，echo／send／return socket．Slave sockets．Post $£ 3$ ． BAKER 150 Watt AMPLIFIER 4 Inputs E99 For Discotheque，Vocal，Public Address．Three speaker outlets
for 4,8 or 16 ohms．Four high gain inputs， $20 \mathrm{mv}, 50 \mathrm{~K}$ ohm Individual volume controls＂Four channel＂mixing． 150 watts 8 ohms R．M．S．Music Power．Slave output 500 M．V．25K．ohm． Response $25 \mathrm{~Hz}-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$ ．Integral Hi－Fi preamp separate
Bass \＆Treble．Size $-16^{\prime \prime} \times 8^{\prime \prime} \times 5 / 2^{\prime \prime}$ Wt $-14 / \mathrm{b}$ ．Master volume control．British made． 12 months＇guarantee． 240 v A．C mains or 129 V to order．All transistor and solid state．Post $£ 2$ ． MONO SLAVE VERSION $\mathbf{8 8 0} 100$ Volt Line Model $\mathrm{f10}$ ．Post f 2 Naw Stereo Stave Model $150+150$ watt $£ 125$ ．Post f4．

BAKER $£ 69$ Post E 2

50 WATT
AMPLIFIER

deal for PA systems，Discos and Groups．Two inputs RCS offers MOBILE PA AMPLIFIERS．Outputs 4－8－15 ohms 20－watt RMS 12v DC，AC $240 \mathrm{v}, 3$ inputs． 50 K $\mathrm{f} 46 \mathrm{PP} £ 2$. Mo－watt RMS 12v DC，AC 240v， 4 inputs． 50 K 15 f75 PP \mathcal{L} 60 －watt RMS，Mobile 24 voh DC $\& 240$－volt AC mains inputs 50 K 3 mics +1 music．Outputs $4-8-16$ ohm +100 volts line f9s PP $£ 2$
Battery only Portable PA Amplifier 10w max．Includes mike and
peaker，OK for meatings，crowd control，stails，fetes，traders，

CALVE AMPLIFIER
ALVE AMPLIFIER
4 Channel mixing．Master
controls． 5 Speaker outlets
suits $4,8,16$ ohm．Disco
group．f125．Carr．\＆ins． $\mathbf{f 1 5}$

FAMOUS LOUDSPEAKERS

＂SPECIAL PRICES

MAKE	m00EL	SIZE	Watts	OHMS	PRICE	POST
SEAS	TWEETER	4 in	50	\％	f9．50	£1
G000mANS	TWEETER	31／2in	25	8	f4	¢1
audax	TWEETER	4 in	30	8	${ }^{56.50}$	f1
SEAS	mio－Range	4in	50	8	$\underline{67.50}$	f1
SEAS	mio－range	41／2in	100	8	f12．50	f1
AUOAX	WOOFER	51／2	25	8	f10	f1
G000MANS	HIFAX 7	$71 / 2 \times 41 / 4$	100	4／8／16	$\underline{17}$	$f 2$
GOODMANS	WOOFER	8 in	25	4／8	E6．50	£1
GOOOMANS	HB	Bin	60	8	¢12．50	¢1
WHARFEOALE	WOOFER	Bin	30	8	f9．50	$\square 7$
AUOAX	WOOFER	10in	50	8	516	f2
G000mANS	HPG	12in	120	815	129.50	$\underline{7}$
G000mANS	GR12	12 in	90	815	¢27．50	¢
GOOOMANS	HPD	12in	120	115	$\underline{729} 50$	$\underline{\square}$
G000MANS	HPO	18 in	230	－	$\underline{580}$	f4

SPEAKER COVERING MATERIALS．Samples Large S．A．E
B．A．F LOUOSPEAKER CABINET WAOOING 18 in wide 35 p
MOTOROLA PIEZO ELECTRIC HORN TWEETER， 3 3／3in，square $\mathrm{f5}$ CROSSOVERS．TWO－WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt 8 fl .100 W f4． CROSSOVERS．TWO－WAY $3000 \mathrm{c} / \mathrm{s} 30$ watt $8 \mathrm{f3} 3.100 \mathrm{~W} 44$. 3－way $950 \mathrm{cps} / 3000 \mathrm{cps}$ ． 40 watt rating．f4． 3 way 60 watt $\mathrm{f6}$ ． 100 W es．
LOUDSPEAKER BARGAINS．Please enquir

 £3；Bin， EA .50 ； $10 \mathrm{in}, \mathrm{E5}$ ； $12 \mathrm{in}, \mathrm{E6}$ ．
$15 \mathrm{ohm}, 2^{1 / 4 i n}, 3^{1 / 2 i n}, 5 \times 3 \mathrm{in}, 6 \times 4 \mathrm{in}, \underline{E} .50 .61 / 2 \mathrm{in} 10 \mathrm{~W}$ £5， $8 \mathrm{in} \mathrm{f4}$ ．
 R．C．S．LOW VOLTAGE STABILISED POWER PACKKITS
€3．95．Post 65p mains transformer 240 V a．c．Output 6 or $71 / 2$ printed circuit，
\because EMMMNESESECRONICSAND
16 BRAND ST
HITCHIN
HERTS
Tel: (0462) 33031 Shop open Mon. Sot 9 a.m - 5.30 pm x

Professional quality electronic components, brand new and fully guaranteed. Mail order by return of post. Cash/Cheque/POs or Banker's Draft with order, payable to Hemmings Electronics Ltd. Official orders from schools, colleges and universities welcome. Trade and export enquiry welcome. P.\&P. add $45 p$ to all orders under $£ 10$. for full price lis
VAT - All prices exclusive of VAT - Please add 15% to total cost including P.\&P. No VAT on export orders or books.

LQUID CRYST DISPLAY MODULES PCIM M 177 Frequency Counter
SDigits, $0.35^{\prime \prime}$ FM. SW. MW $\mathrm{MHz}_{2} \mathrm{KHz}$ Annunciators Sample and Hol
Reset Capabilit Rese Capability
25 Selectable If Ofsets Prescaler Available Supply Volta $\mathrm{ga}_{\mathrm{a}} 5 \mathrm{~V}$ E17.15
${ }_{3}{ }^{2} / 1 / 2$ digits, 1765^{\prime}

+ - and Docimal Point
200 mV Full Scole Input
200mV Full Scale Inpu
Guaranteed ' O ' Resding
Single gr Operation
Power Consumption 20 mW Accurscy $0.15 \%,+/-1$ Count
Temperature drit 80 pom/ Low Battery Indicator incandescent backig E22.5 All modules
Deta Sheet.

MANMS CONHECTORS
 Cassette Mains Lead 2m
Reversible Connector Cassette Mains Plug Non-reversible
IEC Chassis Plug 6A IEC Cabse Socker 6A 250V Integral Lead Terminal Housing
$22-01-2025$
2 Fole $22-01-2$
220
2201
220

DIN SERIES			
	$\begin{aligned} & \text { Linn } \\ & \text { Plug } \end{aligned}$	$\begin{gathered} \text { Ling } \\ \text { Sockit } \end{gathered}$	Chassis Socket
2 pin	10p	10p	9
3 pin	15p	21p	21p
4 pin	18 p	21p	$21 p$
5 pin 180	${ }^{20}$	21p	21p
5 pin 240	20 p	21p	21p
5 pin 360	20 p		
6 pin	${ }^{20 p}$	22p	22p
7 pin	22p	22p	$24 p$

Enquiry Service for Professional Readers ONLY.

WIRELESS WORLD Wireless World, March 1983 WW 8363

Please arrange for me to receive further details of the products listed. the appropriate reference numbers of which have been entered in the space provided.

Name.

Name of Company

Address.

Telephone Number

Nature of Company/Business .
No. of emplovees at this establishment

VALID FOR SIX MONTHS ONLY

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE Licence No 12045

WIRELESS WORLD

Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Wireless World Subscription Order Form \quad Wireless World, March 1983 WW 8363

UK subscription rates
1 year: £14.00
Overseas 1 year: $£ 17.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value. made payable to
IPC BUSINESS PRESS Ltd.

Name

Address

USA \& Canada subscription rates 1 year: $\$ 44.00$

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. -
Servizio Estero, Via Mantegna 6. 20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*IPC Business Press 205 East 42nd Street New York, NY 10017 - Telephone
(212) 6895961 -Telex : 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone
(312) 63074

Mr. Victor A Jauch.
Elmatex International,
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A.
Telephone : (213) 8218581
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605,
Ranna Building. Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co..
P.O. Box 2008. Miami Beach, Florida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co.,
3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432

Mike Loughlin, IPC Búsiness Press, 15055 Memorials, Ste 119 , Houston, Texas 77079 - Telephone: (713) 7838673

Canada Mr. Colin H. MacCulioch, International Advertising Consultants Lid. 915 Carlton Tower, 2 Carlton Street.
Toronto 2 - Telephone (416) 3642269

[^7]To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION
AGENTS
 380 Lonsdale Street. Melbourne 3000. Victoria Beiglum: Agence et Messageries de la Presse
i Ruede la Petite-ILE Rue de la
Brussels 7

Canada: Davis Cículatior Agency, 153 St. Clair Avenue West, Toronto 195 Ontario
 dromou Street, P.O. Box 4528. Nicosia
 Bladdistribution, Ok. 1103 Kobenhavn

```
FInland: Rautakirja
``` Koivuvaarankuja 2,
01640 Vantaa 64, fintand.

France: Dawson-France S.A., B.P.40, F-91121, Palaiseau
Germanv: W. E. Saarbach GmbH, 5 Koin 1.

Greece: Hellenic Greece: Helienic
Distribution Agency. P.O. Box \(315,246^{\circ}\) Syngrou Avenue, Nea Smyini, Greace.
 Oostelijke Handelskade 11 Amsterdam 1004
Indis: International Book House, Indian Mercantile Cama Road. Bombay 1
tions Distribution Publica170 Nishi-Okution Agency. 170 Nishi-Okubo 4-chome, Shinjuku-Ku, Tokyo 160
Lebanon: Levant DistifLebanon:Levant Disti-
butors Co., P.O. Box 1181 Makdesl Stieet, Halim Hanna Bldg. Beirut
Malaysia; Times Dlstributors San. Bhd Times House. 390 Kim Seng Road, Singapore 9, Malaysla
Malta: W.H.Smith Continental Lid. 18a Scots Street, Valleta
Now Zealand: Gordon 8 Gotch (New Zealand) Ltd, 102 Adelaide Road, Wellington 2
Nigeria: Daily Times of Nlgeria Lid, 3 Kakawa
Street, P.O. Box 139 Street, P.O. Box 139. Legos
Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vei 2, Osio 6
Portugal: Livaria Bertrand s.a.r.! Apartado 37, Amadora
South Africa: Ceniral News Agency Ltd, P.O Box 1033, Johannesburg
8pain: Comercial Apheneum as. Conselo de Clento, 130-136 Barcelona \({ }_{15}\)
8weden: Wennegren Williams A B. Fack S-104 25 Stockholm 30
8 witzerland: Naville \(\mathbf{q}_{4}\) Cie SA, Rue Levrier 8-7.
CH-1211 Geneve 1 Schmidt Agence AG, Savogelstrasse 34. 4002 Basla
U.S.A.: John Barios,
IPC Business Press, 205 East 42 nd Stree New York, N.Y. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the isle of Man

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
Reader Enquiry Service
Oakfield House
Perrymount Road
Haywards Heath
Sussex RH16 3DH
England

Enquiry Service for Professional Readers
\begin{tabular}{|c|c|c|}
\hline WW... & WW.... & WW. \\
\hline WW & WW. & WW \\
\hline WW.... & WW.... & WW. \\
\hline ww. . & WW... & ww \\
\hline ww.... & WW.... & ww \\
\hline WW. . . . & WW. & WW. \\
\hline ww. & WW... & WW. \\
\hline Ww & Ww & Ww \\
\hline ww & WW & wW. \\
\hline ww & ww & ww \\
\hline ww & WW & ww. \\
\hline Ww. . & WW. & ww. \\
\hline WW... & WW. & ww. \\
\hline ww. . & WW. & ww. \\
\hline WW. . . . & WW. & WW. \\
\hline WW.... & WW... & WW. \\
\hline
\end{tabular}

WIRELESS WORLD Wireless World, March 1983 WW 8363
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name

Name of Company

Address

Telephone Number
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
PUBLISHERS \\
USE ONLY
\end{tabular} & & & A/E & & & \\
\hline
\end{tabular}

Position in Company
Nature of Companv/Business
No. gf eminloyees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

\title{
Wireless World: Subscription Order Form
}

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

\author{
Subscription Manager, IPC Business Press, Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England
}

\section*{The JCOPEX SG315}

A new range of test capabilities Combined Oscilloscope and Function Generator in one Precision Instrument

SCOPEX Instruments Limited
Pixmore House, Pixmore Avenue, Letchworth, Herts. SG6 1HZ Tel: (04626) 72771 Telex: 825644

The Scope
15 MHz bandwidth 5 mV sensitivity
Timebase range \(1 \mu \mathrm{~s}-100 \mathrm{~ms} / \mathrm{cm}\) \(8 \times 10 \mathrm{~cm}\) screen vertical display \(A+B\). B invert \(X-Y\) display, \(X\) deflection through A channel for max. sensitivity
Normal, TV and ext trigger

\section*{The Function}
cenerator \(0.2 \mathrm{~Hz}-250 \mathrm{KHz}\)
Sine
Square
Triangular
DC offset variable
Duty cycle variable
output 20v,
600 ohms
20 dB attenuator
plus variable VCF input
TTL sync output
Function cenerator can be supplied separately for you to fit to any Scopex Dual Trace scope, just state type when ordering,FG4, FG14/25.
Function Cenerator also available in an instrument case, FC 1.

Prices:
SC315-£270+VAT. Price includes Probes and Mains Plug and carriage UK mainland.
Function Cenerator for mounting on Scopex Dual Trace Scopes: FGA, FG14/25-£59+VAT
Function Generator: FG1 -
£69+VAT

\section*{pantechnic}
THE POWERFET SPECIALISTS

\section*{POWERFET AMPLIFIER MODULES}
\begin{tabular}{|c|c|c|c|}
\hline MODEL & \begin{tabular}{l}
POWER RANGE \\
(Continuous RMS)
\end{tabular} & TYPICAL LOADS & PRICES (one off) \\
\hline PFA 100 & 50W-150W & \(4 \Omega, 8 \Omega\) & £17.35 \\
\hline PFA 200 & 100W-300W & \(4 \Omega, 8 \Omega\) & \(£ 23.87\) \\
\hline PFA 500 & 250W-600W & \(2 \Omega, 4 \Omega, 8 \Omega\) & 842.00 \\
\hline PFA HV & 200W-300W & \(4 \Omega, 8 \Omega, 16 \Omega\) & 134.30 \\
\hline \multicolumn{4}{|l|}{Key features:} \\
\hline & \multicolumn{3}{|l|}{- Powerfet freedom from thermal runaway and} \\
\hline \multicolumn{4}{|c|}{secondary breakdown} \\
\hline down to \(0.0015 \%\)) & \multicolumn{3}{|l|}{- TID zero, IM/THD < 0.01\% full power (mid-band THD} \\
\hline F & \multicolumn{3}{|l|}{- Slew rate \(>30 \mathrm{~V} / \mu \mathrm{S}(45 \mathrm{~V} / \mu \mathrm{S}\) typical)} \\
\hline 0 & \multicolumn{3}{|l|}{- Signal to noise ratio 120dB} \\
\hline B & \multicolumn{3}{|l|}{LE - Without extra circuitry} \\
\hline S & \multicolumn{3}{|l|}{- Unconditionally} \\
\hline \multicolumn{4}{|r|}{- 10 watts to 20 watts per \(\mathbf{E}\), depending on model and quantity} \\
\hline
\end{tabular}
As they stand these modules suit most P.A. and industrial applications and satisfy all foresoeable audiophile requirements. (The HV is aimed at digtal audio.) Where aspects of performance fail to meet specific requirements (e.g. in speed or power) low-cost customising is often a possibility. Alternatively entirely new boards can be produced

\section*{ALSO-}
PAN 20-Ultra-low-noise/distortion, mono preamp board, \(\mathbf{£ 6 . 7 6}\)
PAX 2/24-2-way active crossover board (24dB/octave) plus regulators, \(\mathbf{£ 9 . 7 0}\)
THE HEAT EXCHANGER-New, super-efficient heatsink; handles 300 W or 1.2 kW when blown; \(7 \mathrm{in} . \times 4 \mathrm{in} . \times 21 / 4 \mathrm{in}\)., \(£ 7.50\)
This is just a fraction of the new products available from Pantochnic check us out!
Prices exclude V.A.T
Carriage 75p

\section*{
}

Registered in England 1179820
267 \& 270 ACTON LANE, LONDON W4 5DG Tel: 01-747 1555/01-994 6275 - Telex: 291429 9.30 a.m. \(-6 \mathrm{p} . \mathrm{m}\). MONDAY to SATURDAY CONTINUOUS

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P). Minimum Mail Order E5+P\&P+VAT. Government departments, schools, colleges, trade and export welcome.

\section*{Accurate Digital Multimeters at}

\section*{Exceptional}

28 RANGES, EACH WITH FULL OVERLOAD

SPECIFICATION MIODELS 6010 \& 7030
- 10 amp ACIDC
- Battery: Single 9V drycell. Life: 200 hrs
- Dimensions: \(170 \times 89 \times 38 \mathrm{~mm}\). *Weight: 400 g inc. battery. - Mode Select: Push Button. - AC DC Current: \(200 \mu \mathrm{~A}\) to 10A - AC Voltage: 200 mV to 750 V - DC Voltage: 200 mV to 1000 V - Resistance: \(200 \Omega\) to \(2 \mathrm{M} \Omega\) - Input Impedance: \(10 \mathrm{M} \Omega\) - Display: \(31 / 2\) Digit 13 mm LCD - O/load Protection: All ranges

OTHER FEATURES: Auto polarity auto zero, battery low indicator, ABS plastic case with tilt stand, battery and test leads included, optional carrying case.

PROTECTION

NWN \(\sum \mathrm{NEW}\) HM 102
f 13.00

NEW HM 102 BZ SPECIFICATION
 O2ts 20.000 onms .10. \(20.000 \mathrm{ohms} / \mathrm{volt}\). , \(0,25,100,250,1000\) volis 10,000 ohms/volt.
- Decibels:
\(0.50,500 \mu \mathrm{~A}, 0.5,50,500 \mathrm{~mA}\) \(0-6\) Megohms in 4 ranges. 30 ohms Centre Scale
- Power Supply: One 1.5 V size ' \(A\) ' battery (incl) - Size \& Weight: \(135 \times 91 \times 39 \mathrm{~mm}, 280 \mathrm{gr}\)

HM 101 POCKET SIZE NIULTIMETER SPECIFICATION
- DC \& AC Volrage: \(0.10,50,250,1000\) volts

\section*{- Decibels: \\ 2000 ohms/volt}
- DC Curren
- Onmmeter:
- Power Supply:
- Size \& Weight:
- Price
-10 to +22 dB
0.100 mA
a. 1 Megohm in 2 ranges,

60 ohms Centre Scale
One 1.5 V size ' \(A\) ' battery (incl) \(90 \times 60 \times 29 \mathrm{~mm}, 92 \mathrm{gr}\). incl. battery battery

Add \(15 \%\) to your order for VAT. P\&P is free of charge. Quantity discount for trade on application.
ARMON ELECTRONICS LTD.
Cottrell House, 53-63 Wembley Hill Road. Wembley, Middlesex HA9 8BH. England
Telephone 01-9024321 (3 3 ines)
TELEX No 923985
WW - 075 FOR FURTHER DETAILS

The new 1983 edition of the Texas Instruments Power Semiconductor Data Book contains full data on the complete range of TI Power Transistors, Darlingtons, Triacs and Thyristors. Complete the coupon to receive a copy of this 900 page, bestseller ex-stock. Price \(£ 9.00\) plus p \& p.

Please send me_-cony/copics of the 1983 TI Power Datra Book I enclose a cheque for \(£\) ———— (including 81.50 p\& P per order) Name-
```

Company

```
Address.
\(\qquad\) Address.

\section*{CIRCUIT ANALYSIS ON PET/CBM}

An all-machine code program for the rapid analysis of linear electronic circuits.
This package can find voltage gain, current gain, input impedance and output impedance in magnitude phase angle form.
32 K RAM required but some 14 K available for program development.

Some program features:
Capacity 20 Nodes, 40 passive components, 10 active sources.

Handles transistors, F.E.T., OP-AMP, transformer, transmission line, etc.
Handles hybrid-pi, h, y, s, parameters, etc.
Hardcopy of all results, including graphs.
Graph axes may be LIN/LOG/dB as appropriate with automatic scaling.
Simple, rapid component or parameter changes.
Comprehensive instructions with many examples.
State model number and disc or cassette.
S. J. BRANSON
111 PaRK ROAD PETERBOROUGH PE1 2TR Tel: (0733) 67604
\(£ 80\)
inclusive
No V.A.T
or send
for details

\section*{}

267 \& 270 ACTON LANE, LONDON W4 5DG
Tel. 01-747 1555/01-994 6275. Telex: 291429
Stabilised Power Supplies
Switched-mode and Linear.
Brand New, Unbeatable Prices
Hundreds in stock.
Coutant, Gould, Lambda, Farnell, ITT, Gresham etc.
S.A.E. for latest list.

\section*{D TO A CONVERTERS \(15 \mathrm{Mhz}, 8 \mathrm{Bit}\)}

By Micro Consultants Ltd, \(50 \Omega\) cable drive op. Linearity \(0.25 \%\), max. \(0.125 \%\) typ. Settling time; \(2 V\) step \(70 n S\) typ. \(2 M V\) step \(50 n S\) colour television transmission standard. Diff. gain \(0.5 \%\) diff phase shift \(0.5 \%\) types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE \(£ \mathbf{1 0 . 0 0}\)

TRANSFORMERS
\(3-0-3 V 100 \mathrm{~mA}\) \(5-0-5 \mathrm{~V} 400 \mathrm{~mA}\) \(6-0-6 \mathrm{~V} 100 \mathrm{~mA}\) \(6-0-6 \mathrm{~V} 250 \mathrm{~mA}\) \(0 / 6-0 / 6280 \mathrm{~mA}\)
\(8-0-8 \vee 400 \mathrm{~mA}\)
\(9-0-9 \mathrm{~V} 75 \mathrm{~mA}\)
9-0-9V 3A
\(11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}\)
\(12-0-1250 \mathrm{~mA}\)
12 V 130 mA
\(12-0-12 \vee 250 \mathrm{~mA}\)
12 V 1 A 5
\(13 V+6.5 V\) Sec 2 Amp
0-12-0-12 96VA
\(0-12-0-1296\)
15 V 100 mA
15 V 100mA
\(0 / 12-0 / 12500+500 \mathrm{~mA}\)
9-0-9V 1 Amp
12-0-12V 1 Amp
15-0-15V 1 Amp
15 V 100 mA
17 V 300 mA
30,24,20,15,12,2 Amp
6.3 V 1.5 Amp
\(6-0-6 \mathrm{~V} 1.5 \mathrm{Amp}\)
20-0-20 400 mA
22-0-22 50mA
24 V 100 mA
24 V 250 mA
\(25 \mathrm{~V}+6.2 \mathrm{~V}\) Sec 1.6 Amp
\(30,24,20,15,12,2 \mathrm{Amp}\)
9-0-9 2 Amp
12 V 2 Amp
20-0-20V 2 Amp
30-0-30V 2 Amp
30 V 250 mA
30-25-0-25-30 1A6
0-2-4-6-8-10 5A
\(£ 1.06\)
\(£ 1.25\)
\(£ 1.14\)
\(£ 1.16\)
\(£ 2.00\)
\(£ 1.25\)
\(£ 1.14\)
\(£ 3.00\)
\(£ 2.00\)
\(£ 1.18\)
\(£ 1.48\)
\(£ 0.80\)
\(£ 1.94\)
\(£ 1.25\)
\(£ 2.00\)
\(£ 8.00\)
\(£ 1.00\)
\(£ 2.96\)
\(£ 2.64\)
\(£ 3.36\)
\(£ 3.62\)
\(£ 1.00\)
\(£ 1.50\)
\(£ 4.84\)
\(£ 2.64\)
\(£ 3.20\)
\(£ 1.80\)
\(£ 1.00\)
\(£ 1.00\)
\(£ 1.50\)
\(£ 1.00\)
\(£ 7.96\)
\(£ 4.70\)
\(£ 4.84\)
\(£ 6.98\)
\(£ 7.96\)

\section*{VIDEO GAME BOARD \\ FIELD GOAL VIDEO GAME}
by Taito a top quality board, complete with 6800 CPU system system with 2715 EPROMS with circuit diagram plus all connections for either colour or Black \& White monitors (TV Sets). Price \(£ 20.00+\) VAT \(£ 3\),
P\&P \(£ 2.55\)
POWER SUPPLY KIT
to suit + circuit diagram.
Price: \(£ \mathbf{1 5 . 0 0}\)
+ VAT £2.25, P\&P \(£ 3.45\)
\(2 \times 22\) Way Gold Plated Double Sided D. 156" edge Connectors to suit Video Boards.
Price: \(\mathbf{£ 1 . 6 0}\) per pair.
+ VAT 24p P\&P included
The Complete Kit \(£ 46.00\) inc.
Full Details on Application.

Switchcraft Cannon Connec tors 3 -pin plug. Free hanging £1.20
Free A3F 3-pin socket. Free hanging with lock. \(£ 1.32\) D3F 3-pin Socket. Female chassis mounting with lock £1.60
D3M 3-pin Socket. Male chassis mounting £1.10
Switchcraft XLR Connectors always in stock. Discounts on quantity.
\begin{tabular}{ll}
BLACK PLASTIC BOXES & \\
\(75 \times 50 \times 25 \mathrm{~mm}\) & \(\mathbf{\mathbf { C 0 . 6 5 }}\) \\
\(80 \times 60 \times 40 \mathrm{~mm}\) & \(\mathbf{£ 0 . 9 2}\) \\
\(90 \times 70 \times 40 \mathrm{~mm}\) & \(\mathbf{£ 0 . 9 9}\) \\
\(115 \times 75 \times 30 \mathrm{~mm}\) & \(\mathbf{£ 0 . 9 0}\) \\
\(110 \times 90 \times 45 \mathrm{~mm}\) & \(\mathbf{£ 1 . 1 8}\) \\
\(170 \times 100 \times 50 \mathrm{~mm}\) & \(\mathbf{E 3 . 5 5}\) \\
\(200 \times 120 \times 80 \mathrm{~mm}\) &
\end{tabular}

\section*{FILTERS}

3 Phase 20 AM Filters 433V \(50 / 60 \mathrm{~Hz}\) Phase to Phase 250 V AC \(50 / 60 \mathrm{~Hz}\) Phase to Neutral mfr. by Corcom Chicago II., USA. £15 each.
Single Phase Filter 30 Amps 125 V 60 Hz by Potter \(\mathbf{£ 5 . 0 0}\)
60 Hz by Potter \(\pm 5.00 \mathrm{Amp} 250 \mathrm{~V}\) Sprague Filter 2
\(\mathrm{AC} 60 \mathrm{~Hz} \mathbf{f} 10.00\)
Erie Mains Filters 3 and 5 Amp
\(250 V \mathrm{AC} 50 \mathrm{~Hz} £ 4.00\)
All the above mentioned Filters are
brand new. Carriage extra.
SPECIAL OFFERI \(0.1 \%\) TOL
resistors. The following values available. 2K, 3K, 10K, 30K, 1 Mega ohms. Welwyn or Filmet. Price 30p each.
CERMET PRESETS 15p each
10A 250V AC ILLUMINATED ROCKER SWITCH
Red, DP ST \(26 \times 30 \mathrm{~mm}\) rectangular snap-in type. £0.75
16A 250V AC ILLUMINATED
ROCKER SWITCH
(Amber). \(14 \times 30 \mathrm{~mm}\) rectangular snap-in type. SPST E0. 30 LICON ILLUMINATED SWITCHES 01-800 Rectangular snap-in series 2PCO Latching 2PCO Momentar Indicator only E .50
E 1.50
Indicator only \(\mathbf{£ 0 . 5 0}\) only.

MAIL ORDER: Gds \(+15 \%\) VAT,
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MAIL ORDER: Gds + \(15 \%\) VAT, plus VAT-inclusive Ad M/pkg/post} \\
\hline \(1 / 4 \mathrm{~K}_{6}\) & 1.30 & 4 Kg & 3.90 \\
\hline \(1 / 2 \mathrm{Kg}\) & 1.70 & 5Kg & 4.20 \\
\hline \(3 / 4 \mathrm{Kg}\) & 2.20 & \({ }^{6} \mathrm{~K}\) & 4.40 \\
\hline 1 Kg & 2.55 & 6-10Kg & 5.00 \\
\hline 2 Kg & 3.00 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Over 10Kg:}} \\
\hline 3 Kg & 3.45 & & \\
\hline
\end{tabular}

\section*{ALUMINIUM BOXES}

AB7 \(5.25 \times 2.50 \times 1.50 \mathrm{in} .(133.4 \times 63.5 \times 38.1 \mathrm{~mm})\)
AB8 \(4 \times 4 \times 1.5 \mathrm{in}\). \((101.6 \times 101.6 \times 38.1 \mathrm{~mm})\)
AB9 \(4 \times 2.25 \times 1.5 \mathrm{in}\). \((101.6 \times 57.2 \times 38.1 \mathrm{~mm})\)
AB \(104 \times 5.25 \times 1.5 \mathrm{in}\). \((101.6 \times 133.4 \times 38.1 \mathrm{~mm})\)
\(A B 114 \times 2.50 \times 2 \mathrm{in} .(101.6 \times 63.5 \times 50.8 \mathrm{~mm})\)
AB12 \(3 \times 2 \times 1 \mathrm{in}\). \((76.2 \times 50.8 \times 25.4 \mathrm{~mm})\)
AB13 \(5 \times 4 \times 2 \mathrm{in}\). \((152.4 \times 101.6 \times 50.8 \mathrm{~mm}\)
\(A B 147 \times 5 \times 2 \mathrm{in} .(177.8 \times 127.0 \times 50.8 \mathrm{~mm}\)
AB15 \(8 \times 6 \times 3 \mathrm{in} .(203.2 \times 152.4 \times 76.2 \mathrm{~mm})\)
AB16 \(10 \times 7 \times 3\) in. \((254.0 \times 177.8 \times 76.2 \mathrm{~mm})\)
AB17 \(10 \times 4.50 \times 3\) in. \((254.0 \times 114.3 \times 76.2 \mathrm{~mm})\) AB18 \(12 \times 5 \times 3 \mathrm{in}\). \((304.8 \times 127.0 \times 76.2 \mathrm{~mm})\)
AB19 \(12 \times 8 \times 3 \mathrm{in}\). \((304.8 \times 203.2 \times 76.2 \mathrm{~mm})\)
BLUE REXINE. COVERED ALUMINIUM BOXES
RB1 \(6 \times 4.50 \times 2.5 \mathrm{in}\). \((152.4 \times 114.3 \times 63.50 \mathrm{~mm})\)
RB2 \(8 \times 5 \times 3 \mathrm{in} .(703.2 \times 127.0 \times 76.2 \mathrm{~mm})\)
RB3 \(9 \times 5 \times 3.50\) in. \((228.6 \times 127.0 \times 88.9 \mathrm{~mm}\)
RB4 \(11 \times 6 \times 4 \mathrm{in}\). \((279.4 \times 152.4 \times 101.5 \mathrm{~mm})\)
RB5 \(11 \times 7.50 \times 4.50 \mathrm{in}\). \((279.4 \times 190.5 \times 114.3 \mathrm{~mm})\)

This advertisement is mainly of our excess stockbolding. We also have excellent stocks of semiconductors, hardware, cables etc. etc. Four further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P) Minimum Mail Order \(£ 5.00+\) P\&P + VAT. Government departments, schools, colleges, trade and export welcome

Pye Europa MF5FM high-band sets, complete but les mike and cradle. E90 ench plus \(£ 2\) p.p. plus VAT. Pye M294 high-bend FM sets, complete but less mik speaker and cradle. £ 150 each plus \(\& 2\) p.p. plus VAT.
Pye Reporter MF6 AM high-band sets. less speaker and aladle 120 each plut complete but VAT Pye Olympic M201 AM high-band sets, complete but less mike, speaker and crade. \(\mathbf{6} 90\) eech plus \(£ 2\) p.p. pus VAT. Westminster W15 FM G band \(42-54 \mathrm{MHz}\) sets unused and like new, but less mike, speaker and cradle. fe6 each plus \(E 2\) p.p. phus VAT.
Pye Westminster Wis AMD mid-band multi-channe sets, no mikes, speakers or cradles. \(\mathbf{£} 45\) each plus \(£ \mathbb{Z}\) p.p. plus VAT.
ye Westminster W15 AMD mid-band crystalled and converted to \(129.9 \mathrm{MHz}, 130.1 \mathrm{MHz}, 130.4 \mathrm{MHz}\). Ver good condition. £120 each plus \(\mathbf{E 2}\) p.p. plus VAT sets available. Sets complete but less mikes, speaker and cradles. \(£ 70\) eech plus \(£ 2\) p.p. plus VAT
Pye Westminster W30 AM low-band sets only, no control gear. Sets complete and in good condition. £45 each plus \(£ \mathbb{Z}\) p.p. plus VAT
Pye base station F30 AM, low band and high band available, remote and local control. Prices from \(£ 220\) plus VAT.
Pye base station F401 high-band AM, local control, fully solid state, complete but less mike. \(£ 275\) each plus \(£ 15\) p.p. plus VAT.
fye base station receiver R402 high-band FM 148
 sach pius e.s p.p. prus VAT
Pye base station F9U, remotely controlled, 5 Watt out put, UHF (\(440-470 \mathrm{MHz}\)), single channel. \(£ 90\) each plus E5 p.p. plus YAT.
Pye base station F412 UHF (\(440-470 \mathrm{MHz}\)), 25 KHz chan nel spacing, single channel, local control. \(£ 250\) each plus eis p.p. plus Vat
Good second-hand Pye radiotelephones WANTED for cash.
Pye base station receiver F27 AM, crystalied on 116.46 E15 can be recrystalied on air band. Unused condition £ 15 each plus E 5 p.p. plus VAT.

Pye AC200 mains power unit for Olympic or Reporter automatic standby power facility with trickle charging and built-in quartz digital clock. \(£ 95\) each plus \(\mathbf{e 5}\) p.p.

\section*{plus VAT.}
for use wower supply unit AC25PU, specially designed 13.2 volt 5 amp. New condition. © 45 each plus \(\mathrm{E5}\) p.p. plus VAT.
Pre PC1 radiotelephone centroller, good condition, two only at \(£ 50\) each plus \(\mathbf{£ 2} \mathbf{p} . \mathrm{p}\). plus VAT.
Pye Tulip microphone as used on most base stations and PC1, 2400 ohm with ptt switch. \(£ 15\) plus \(£ 1\) p.p. plus VAT.
Pye PFI UHF FM Pocketione receiver, \(440-470 \mathrm{MHz}\) single channel, int. speaker and aerial. Requires 9 -volt battery. With service manual. \(£ 6\) each plus \(£ 1\) p.p. plus

Pye PF2 Pocketfone 70, all types available, AM, FM UHF, completed with battery, mike and aerial. \(\mathbf{f} 65\) each plus \(£ 2\) p.p. plus VAT.
Pye PFI Pocketfone battery-charger type BC14, 12 way with meter. \(£ 10\) eech plus \(£ 1\) p.p. plus VAT.
Pye PF5012 UHF handhelds, crystalled on 466 MHz complete with ni-cads. \(£ 140\) eech plus \(£ 2\) p.p. plus VAT plugs and sockets, unused. \(\mathrm{E}_{4}\) esch plus \(£ 1\) p.p. plus plugs and sockets, unused. \(\mathbf{\text { GAI each plus }} \mathrm{E} 1\) p.p. plus

\section*{MAINS TRANSFORMERS}
\(0-240 \mathrm{~V}\) input tapped 5000 V 0.125 amp . \(£ 20\) plus \(£ 8 \mathrm{p} . \mathrm{p}\) plus VAT
0.240 V input 50 V 20 amp . \(\mathbf{£ 2 5}\) plus \(\mathbf{E 8}\) p.p. phus VAT VAT input tapped 14 KV 2 mA . \(\mathbf{2} 20\) plus \(£ 8\) p.p. plus \(0-240 \mathrm{~V}\) input tapped 700 V 1.2 amp . \(\mathbf{£ 2 0}\) plus \(\mathbf{£ 8} \mathbf{p . p}\). plus VAT. Mains isolating transformer, 500 VA 240 V input, 240 V C.T. output, housed in meara' box. £15 each plus \(£ 8\) p.p plus VAT.
Mains isolating transformer, 240 V tapped input, 240 V 3 amp, plus 12 V 0.5 amp output. \(£ 20\) each plus \(£ 6 \mathrm{p} . \mathrm{p}\). Advance Volstat transformers, type CVN200/5 input 24 or 28 V DC via inverter, output 220 or 240 V RMS 150 watt, 50 Hz . \(£ 10\) each plus \(£ 4\) p.p. plus VAT. Variacs 2 amp, 5 amp, \(8 \mathrm{amp}, 15 \mathrm{amp}, 25 \mathrm{amp}\), used but

Marconi AM/FM signal generator, type TF995A/3/S (CT402), 1.5-220 MHz, good condition with copy of ser vice manual. £95 oach plus \(£ 15 \mathrm{p}\).p. plua VAT

群 with copy of manual. £20 each plus \(\mathbf{E 8}\) p.p. plus VAT
Scopex osciloscope,
 Rhode \& Schwarz UHF test receiver BN1525, 280-940 MHz . 550 each plus \(\mathrm{E} 15 \mathrm{p} . \mathrm{p}\). plus VAT. Marconi universal bridge, type FT868, \(10 \mathrm{pf}-100 \mathrm{mfd}\). 550 plus \(£ 10\) p.p. plus VAT.
Servomex AC voltage stabiliser, type AC2, 240V@9 amp. \(£ 45\) each plus \(£ 15\) p.p. phus VAT
Servomex AC voltage stabiliser, type AC7, 240V@20 amp. 775 bach plus 15 P.p. plus VAT.
MHz E35 ench plus 115 . Wobbulator, type \(78 \mathrm{M}, 16-230\) Marconi RF power meter, type TF1152/1, 25 watt, 50 ohm. £30 pluse 5 p.p. plus VAT.
Meguro signal generator, type MSG-230E, \(16 \mathrm{KHz}-50\) MHz . £ 130 plus \(\mathrm{f} 10 \mathrm{p} . \mathrm{p}\). plus VAT.
Solartron oscilloscope, type CD1740,50 MHz, fitted with camera mount, good condition. \(£ 285\) plus \(£ 10\) p.p. plus VAT.
Computer-grade electrolytic capacitors, screw termi nals, \(25,000 \mathrm{mfd}\)., 33 volts, brand new. \(\mathbf{f 1}\) each plus 50 p p.p. plus VAT.

60 amp alternator and general noise fit
vehicles. ET each plus \(500 \mathrm{p}, \mathrm{p}\). plus VAT:
Modern telephones, type 746, with dials, colour grey Cigar lig good condition. \(£ 8\) plus \(£ 1\) p.p. prus VAT. plus VAt.
IC test clips, 28 -way and 40 -way, gold plated. \(£ 2\) each plus 30 p p.p. plus VAT
Equipment wire, size \(7 / 0.2 \mathrm{~mm}\), colour yellow, 500 metre reels. £4 plus \(£ 1\) p.p. plus VAT
Z \(80-\mathrm{CPU}\) Z \(80-\mathrm{P} 10\) Z
Z80-CPU, \(280-\mathrm{P} 10\), Z80-CTC. E 1.85 onch plus 30 p p.p Scotch
Scotch video tape, \(1^{\prime \prime} \times 10^{\prime \prime}(25.40 \mathrm{~mm} \times 910 \mathrm{~mm})\) Power units, 70 volt @ 8 amp, 20 volt @ 3 amp . Brand new but no details. \(\mathbf{f 2 0}\) each plus \(\mathbf{E 8}\) p.p. plus VAT. Beryllium block mounts for CCS1 valves, etc. \(\mathbf{£ 1 0}\) each plus E1 p.p. plus VAT.

\section*{B. BAMBER ELECTRONICS GOVERNMENT AND MANUFACTURERS' SURPLUS}

\section*{WW - 073 FOR FURTHER DETALLS}

\section*{MANUFACTURERS \& DISTRIBUTORS}

MATCHED PAIR DYNAMICISTEREO MICROPHONES AND STANDS wired into one 3 pin \(180^{\circ}\) Din plug, ap-
prox. 2 m separation, 200 ohm . 220 for \(10+\) VAT, E90 for \(5+\) VAT, £162 for \(100+\) VAT, \(£ 730\) for \(500+\) VAT \(\mathrm{E} 1,400\) for \(1,000+\mathrm{V}\)
\(\mathrm{P} \& \mathrm{P}(\) EЗ 3.45 inc. VAT).

MONO DYNAMIC MICROPHONE AND STAND. 3.5 mm J plug fitted to approx. 1 m lead. \(£ 7\) for 10 + VAT, \(£ 32\) for 50 +VAT, f 60 for 100 +VAT, \(£ 270\) for 500 +VAT, \(£ 500\) for \(1,000+\) VAT. Sample sent for \(£ 1+50\) p P\&P (\(£ 1.28\) inc. VAT).
CAR STEREO SHELF-MOUNTNG SPEAKERS. Moulded black plastic cabinet for verti cal or horizontal mounting. Imp 8ohm power handling, 5watt (nom.) 8watt (max.) pr. + VAT, f 390 for 200 pr. + VAT, £900 for 500 pr. + VAT. Sample pair sent for \(\mathrm{f} 3-\)
75 p P\&P (£ 4.32 inc. VAT).
MINIATURE ROUND SPEAKER. \(21 / 4^{\prime \prime}\) Bohm \(1 / 4\) watt. £ 35 for \(100+\) VAT, £ 165 for \(500+\) VAT, £ 315 for \(1,000+V A T, £ 600\) for \(2,000+\) VAT. Sample 10 sent for \(£ 4+£ 1\) P\& +P
(\(£ 5.75\) inc. VAT). (\(\mathbf{E} 5.75\) inc. VAT).

150WATT HINCHLEY TRANSFORMERS. 220/240V.A.C. input, 30-0.30V output +14 V Tap size \(96 \mathrm{~mm} \times 90 \mathrm{~mm}\), weight approx. 2.7 kg . 775 for \(10+\) VAT, \(\mathbf{E} 350\) for \(50+\) VAT £620 for \(100+\) VAT, \(£ 2,800\) for \(500+\) VAT. Sample sent for \(£ 9+£ 2\) P\&P (\(£ 12.65\) inc VAT).
6V.A. MINIATURE TRANSFORMER. 240V.A.C. input, 12-0-12V output. P.C. mounting + internal thermal overload protection. \(\mathbf{f} 2.50\) for \(10+\) VAT, f 115 for \(50+\) VAT, £ 21 for 100 +VAT, \(£ 950\) for \(500+\) VAT. Sample sent for \(£ 3+75 p\) P\&P (\(\mathbf{~} 4.31\) inc. VAT).
JUST IN. P.C.B. Mounting Transformer - split bobbin - 6VA, 240V.A.C. input, 12-0 12 V output. Size \(43 \mathrm{~mm} \times 36 \mathrm{~mm} \times 32 \mathrm{~mm}\) approx. £ 12.50 for \(10+\) VAT, £58 for \(50+\)
VAT, £ 105 for \(100+\) VAT, \(£ 480\) for \(500+\) VAt \(£ 920\) for \(1000+\) VAT \(£ 4150\) for 5000 VAT, £105 for \(100+\) VAT, £ 480 for \(500+\) VAT, \(£ 920\) for \(1,000+\) VAT, \(£ 4,150\) for 5,000
+VAT, \(£ 7,500\) for \(10,000+\) VAT. Sample sent for \(£ 1,50+50 \mathrm{p} \& \mathrm{P}\) (\(£ 2.30\) inc. VAT).

FAIEDLAND UNDERDOME BELL. \(10^{\prime \prime}\) dia., 200/250V.A.C., 0.04 amp. E 45 for \(5+\) VAT £85 for 10 + VAT. \(£ 155\) for 20 +VAT, \(£ 280\) for 40 +VAT. Sample sent for \(£ 10+£ 2\) P\& F (\(£ 13.80\) inc. VAT).

Terms C.W.O. Please add 5\% to all orders for carriage plus 15\% VAT. Export enquiries weicome. We find it impossible to advertise all we stock. Please telephone or write for further details. Personal callers always welcome

\section*{Electronic Eaupment Co. \\ Srquaficio house TE1E1-240 5217}

\title{
DANAVOX \\ ARE ALWAYS COMING UP WITH SOUNDIDEAS.
}

STETOCLIP JUNIOR 60 HEADSET

STANDARD \& SUB-MINOR EARPHONES

PLASTIC EARHANGERS

SENIOR STETOCLIP HEADSET

DANAMIC FIDELITY EARSET

INDUCTIVE LOOP AMPLIFIER TYPE 36A

FIELD STRENGTH TESTER FSI

STETOTUBE HEADSET \& SOUND PLUG

SUBMINIATURE SWITCHES

STETOMIKE HMT 808

\(2,5 \mathrm{~mm} 3,5 \mathrm{~mm}\) JACK PLUGS \& SOCKETS

The Danavox policy has always been one of constant improvement.

Our refinement, development and research has enabled us to offer an advanced range of components and accessories for dictation machines, tape recorders, tele-communications, hearing aids and electro-acoustic equipment.

All our products are built with care and precision.

And all carry the Danavox guarantee.

For more information about any Danavox product, contact John Carter.

DANAVOX (Gt. Britain) Ltd.,
1 Cheyne Walk, Northampton. NN1 5PT
Tel: (0604) 36351 Telex 312395
WW - 070 FOR FURTHER DETAILS

\section*{PHONE 0474813225 SELECTRON HOUSE, WROTHAMROAD
3 LINES MEOPHAM GREEN, MEOPHAM, KENT DABOQY \\ P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAM ROAD}

A SELECTION FROM OUR
STOCK OF BRANDED VALVES

\section*{}

\title{
A COMPETITION OPEN TOALL WIRELESS WORLD READERS WITH \(£ 8000\) IN CASH PRIZES
}

\section*{Design an Electronic Device to help the Disabled}

Could you design a piece of equipment to help a disabled person? If so, you would - in addition to undertaking this worthy task - be eligible to win a substantial cash prize.
Our competition is open to individuals or groups resident in the UK. You register your entry using the form below, sending it to the Editor to arrive at his office not later than June 30th 1983. The designs themselves must be submitted to his office by
1st October 1983 .

Entries, which will be judged by a group of eminent engineers and doctors, must consist of the following:- a statement of the design objectives; an overall description of the device; detailed circuit descriptions and diagrams; a model of the device or a model of a unique aspect of the design sufficient to demonstrate its feasibility.
The finalists will be invited to London to talk over their entries with the judges and be awarded their prizes. The prizes are

\section*{1st prize £2,500 2nd prize \(£ 1,500\)}
and the 4 runners up will be awarded prizes each of £1,000
To make sure you have the maximum time to undertake your design, return
your entry form now!

"DESIGN AN ELECTRONIC DEVICETO HELPTHE
 DISABLED
 LIST OF RULES

\section*{The competition is open to \(1 . k\) residents onlv \\ 2. Entrants can be individuals or groups}

All participants inust reqister their interest in entering the competation on the form provided which must he returned to the Wireless World Editurial I)epartment hy the 30th lune 198:3.
All entrants agree tugive Wireless World lirst serial puhlication rights toan article descrihing the entry.
All entrants indemnify Wireless World from any tiability in respect of injury to people or damake toproperty arising from the use of the design
6. All submitted designs must be the original work of the entrant or ent rants and must not infringe the rights of third parties in anyway All suhmissions should consist of
b) Anoverall description of the device
Detailed circuit descriptions and diagrams
d) A model of the device or the unique aspect of the design sufficient to demonstrateits feasibility.
8. The destgn will be judged on

Originality and benefit to the handicapped
Flegance of engineering design
Electronies content
Design reliability
Simplicity of operation
Freedom fromexcessive maintenance
Safety.
ontware onls sulutions are nor
1). The judges" decision is final.
1. All designs must be summitted to the Wireless World Fiditorby the ist Octuber 1983 .
Shortlisted entrants must he prepar
12. Shortlisted entrants must be prepared to travel to a venue in Londer and December 198.3 to demonstrate their design. Allcosts will he paid by the journal
13. Employsers of Business Press International are not allowed to enter
this competition.

\section*{wireless world \\ COMPETITION ENTRY FORM}

\section*{- "Design an electronic device to help the disabled"}

Name of competitor
Address

\section*{GOMPUसH WIRH:OUST \\ THE 'ALADDIN'S' CAVE OF COMPUTER AND ELECTHONIC EQUPMENT}

\section*{HARD DISK DRIVES \\ Fully refurbished Diablo/DRE Series 30
disk drive for DEC RKO5, NOVA, TEXAS etc \\ DISTEL®} Front load \(£ 550.00\) - Top load \(£ 295.00\)
PSU type ME3029 for 2 drives \(£ 125.00\)
DRE \(44 \mathrm{~A} 4000 \mathrm{~A} / \mathrm{B} 10 \mathrm{mb} 5+5\) all
£ 995.00 . Call sales office for details.

\section*{5 AMP MANNS FLTERS}

Cure those unnerving hang ups a nd data glitches
caused by mains interference. Matchbox size-Up to 5 amp \(240 \vee\) load As recommended by th
letter. Suppression Devices SD5A \(£ 5.95\).

The UKS FIRST free of charge, 24 hr . public access data base. Get information on 1000's of stock items and order via your computer and credit card. On line now, 300 baud CCITT tones, full duplex, fully interactive DON'T MISS THOSE BARGAINS CALL NOW, IT'S FREE

7 days per 01-683 1133 waik harm

COMPUTER 'CAB'
 Originally made for the famous DEC PDP8 computer hystem costing thousands of pounds. Made to run 24 hours per day the PSU is fully screened and will deliver a
massive \(+5 v D C\) at 17 amps, \(+15 v D C\) at 1 amp and \(-15 v\) DC at 5 amps. The complete unit is fully enclosed with removable top lid, filtering, trip switch. 'Power' and 'Run' EDs mounted on Ali front panel, rear cable entries, etc 40 v operation complete with full circuit and tech. ma Give your system that professional finish for onl 49.95 + Carr. Dim. 19 "wide \(16^{\prime \prime}\) deep 10.5" high.

\section*{COOLNTG FANS}

\section*{Keep you hot parts COO Land RELABLE}

CTMR Miniature \(240 \vee\) equipment tan complete with GOULGUard J-a9R 9. very quiet running 240 v voperation. NEW 66 BUHT.ER 69.11.22. 8-16 \(\vee\) DC micro miniature reversible fan. Uses a brush
servo motor for extremely high air tlow. almost silent running and guaranteed 10,000
hr life. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\) hr life. Measures only \(62 \times 62 \times 22 \mathrm{~mm}\).
Curtent cost \(£ 32.00\). OUR PRICE ONLY £12.95 complote with data. MUFFIN-CENTAUR standard fan supplied tested EX EQUIPMENT 240 v at
K6 25 at 25 or 110 v at \(£ 4.95\) or BRAND NEW 240 V
at 10.50 . 100 's of other fans Ex Stock

SUPER DEAL? NO - SUPER STEAL!!
The FABULOUS 25CPS TEC Starwriter
Daisy wheel printer at a fraction of its original cost. BRAND NEW AT ONLYE499+

Made to the very highest Spec, the TEC Starwriter
FP1500-25 features a FP1 \(500-25\) features a
heavy duty die cast heavy duly die cast print mechanism giving
superb registration and superb registration a
print quality. Microprocessor electronics compatiblity plus Bi
directional printing, 10 or 12 pitch, 136
or 163 chars per line, full width 381 mm friction or single sheet paper, - order now or call sales office for more information and print sample. Please specify RS232 or CENTRONICS interface Supplied complete with FREE dust cover and daisy wheel Optional extras: RS232 data cable \(£ 10\)
\(\mathbf{\Sigma 1 2 . 5 0}\) - Tractor feed option \(\mathbf{£ 1 2 0 . 0 0}\)

8" FLOPPY DISK DRIVES

nbelievable value the DRE \(71008^{\prime \prime}\) floppy disk drives tilise the finest technology to give you \(100 \%\) bus difference being our PRICE and the superb manufactur ing quality!! The 7100 single sided and 7200 double sided formats giving a massive \(0.8 \mathrm{MB}(7100) 1.6 \mathrm{MB}(7200)\) of storage Absalutely
SHUGART, BASF, SIEMANS etc. compatible. Supplied BRAND NEW with user manual and full 90 day warranty. Carriage and in surance \(£ 9.9\).
7100 Single sided \(£ 225.00\) + Carr. 7200 Double sided \(£ 295.00\) + Carr. Optional accessories: Full technical manual \(£ 20.00\) alone. \(£ 10.50\) with drive. Refund of difference on drive purchase. DC and AC power connector and cable kit £8.45. 50 way IDC connector \(£ 5.50\). 50 way ribbon cable \(£ 3.20\) per metre

\section*{VIDFO MONITORS}

MOTOROLA \(9^{\prime \prime}\) open chassis monitor Standard \(240 \vee \mathrm{AC}\) with composite 75 ohm
video int Monitors are ex equipment and although unguaranteed they are all tested prior to
despatch and have no visible burns on the despatch, and have no visible burns on the
screens. Dim approx. \(9^{n} \times 9^{\prime \prime} \times 9^{\prime \prime}\). Supplied complete with mains and input lead. Ideal ZX81 etc. or giving the tele back to the family! Black and white phosphor. \(£ 35.00\)
\(+\varepsilon 9.00\) Carr. 12" CASED. Made by the British KGM display station, unit is totally housed in a display station, unit is totally housed in an
attractive brushed aluminium case with OFF, BRIGHTNESS and CONTRAST controls mounted to one side. Much attention was given to construction and reliability of this unit with features such as
internal transformer isolated regulated DC internal transformer isolated regulated DC supply, ali components mounted on iwo
fibre glass PCB boards - which hinge out fibre glass PCB boards - which coninge many internal controls for linearity etc. The monitor accepts standard 75 ohm composite video signal via SO239 is estimated panel. Bandwidn of most high del graphics and \(132 \times 24\) lines. burns. However where burns exist they ar only apparent when monitor is switched of Although unguaranteed all monitors are afprox. \(14^{\prime \prime}\) high \(\times 14^{\prime \prime}\) wide by 11 " deep approx. 14 " high \(\times 14^{"}\) wide by \(11{ }^{11}\) deep
Supplied complete with circuit. 240 volt Operation. OMLY \& \(\$ 5.00\) PUS EQ. 50 CARR 14 " COLOUR superb chassis monitor ma by a subsidiary of the RITACHICO. Inputs
are TTL RGB with separate sync. and will plug direct into the BBC micro etc. Exceptional band width with good 80 co definition. Brand new and guaranteed working. Dim. \(14^{\prime \prime} \times 13^{\prime \prime} \times 13\)
ONLYE 199.00 MLUSE9.SO CARR
SEMICONDUCTOR 'GRAB BAGS'
include transistors digital, linear, I.C.'s triacs diodes, bridge recs. etc. etc. All devices
guaranteed brand new full spec. with ma guaranteed brand new full spec. with facturer's markings, full
\(50+87.95100+85.15\).
TTL 74 Serles A gigantic purchase of a across the board" range of 74 TL s "mostly TL" grab bags at a price whic or three chips in the bag would nnormally spec. \(100+£ 6.90200+£ 12.30200+\$ 19.50\)

\section*{OLIVEIHI THEOO} REDUCED TO CLEAR Compiete input output terminal with integral 8 operates at 150 baud in standard ASCII Ideal as a cheap printer for a MICRO etc. 120

Experimentors PSUEx-GPO unit all silicon electronics. Outputs give +5 v @ 2 amps \(+12 v @ 800\) ma. \(12 v @ 800\) ma. \(+24 \mathrm{v} @ 350 \mathrm{ma} .5 \mathrm{v} @ 50\) ma. floating. Dim \(160 \times 120 \mathrm{x}\) 350 mm . All outputs fully regulated and short circuit proof. Removed from working E14.50 + CUSTOMPOWERCO55 \(5 \mathrm{v} @ 3\) amp. Very compact unit dim. approx \(60 \times 90 \times 190 \mathrm{~mm}\) Semi open chassis,
E11.95 +
MINI SYSTEM PSU Ex equipment unit ideal for the small micro. Outputs give 5 v @ 3 amps. \(+12 \mathrm{v} @ 1\) amp and \(12 \mathrm{v} @ 300\) ma. Crowbar overvoltage protection and
current limit. Fully tested. Dim \(70 \times 165 \times 320 \mathrm{~mm}\). Complete with Circuit only\& 12.95 \(+\varepsilon 2.00 \mathrm{pp}\)
PERIPHERAL SYSTEM SUPPLY. Fully cased unit supplied in a Brand new or little used condition. Outputs give 5 V @ 11 amps " + " 15-17v@ 8 amps. """ 15-17v@ 8 amps regulated. Fan cooled Supplied tested, with circuit \(\mathbf{E} 55.00+£ 8.50\) carr.
MAIN FRAME SUPPLY. A real beety unit designed for MINI or MAINFRAME use outputs give 5 volts @ 50 amps \(+12 \mathrm{v} @ 5\) amps \(-12 v @ 10\) amps. All output are fully
regulated with crowbar overvoltage protection on the 5 v output. Supplied with circuit

66\% DISCOUTT \({ }^{\text {Eeferbonc }}\) COMPONENTS \& EQUIPMENT
Due to our massive bulk purchasing programme which enables us to bring you the
best possible bargains, we have thousands of I.C's. Transistors, Relays. Cap's. P.C. B:s, best possible bargains, we have thousands of I.C.'s. Transistors, Relays, Cap's, P.C.B:s
Sub-assemblies Switches, etc, etc surtpus to our requirements Because we don't Sub-assemblies. Switches etc etc surflus to our requirements Because we d
have sufficient stocks of any one item to include in our ads, we are packing all the se items into the 'BARGAIN PARCEL OF A LIFETME Thous prices' Guands of components at rads. for unbeatable val
\(2.5 \mathrm{kls} \mathrm{EA} 25+\mathrm{pp} £ 1.25\)
5 kls E5. \(90+\) pp £1. 80

\section*{} \(1 /\) gembingicals Fully fledged industry standard ASA33 data keyboard and printer for datal/O auto data detect circuitry. RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously heap and reliable data storage. Supplied in Options: Floor stand \(\in 1250+\) VAT KSR33 with 20 ma loop interface E125.00 +

\section*{SOFTIY 2}

\section*{for the open heart sottware surgeon. Copies,} Displays, Emulates ROM, RAM and EPROMS of the 2516,2532 variety. Many otherfeatures
include keyboard, UHF modulator. Cassette interfaceetc. Functions exceed capabilities of interfaceetc, Functions exceed capabilities o
units costing 7 times the price! Only units costing 7 times the price! Only
\(£ 169.00\) pp 1.95 Data sheet on 169.00 pD 1.95

BFCRARGRABLT BAIMBRIE8
CYCLON type D001 sealed lead acid maintenance free \(2 v 2.5\) ah. will deliver ove
300 amps on short circuit!! Brand new a

\section*{DATA MODFMS}
range of EX TELECOM data modems. Made to most stringent spec and designed to operate CCITT tone spec. With RS232 vo levels via and working condition with data. Permission may be required for connection to PO lines telephone base. Up to 300 baud, full duplex MODEM MODE 2 2B/C Fully fledged, up to 300 baud
async, ANSWER \& CALL modes, auto answer auto switching, ideal networks etc. Just 2 wire connection to comms line. \(\mathbf{\varepsilon 8 5 . 0 0}\) MODEM 20-1 Compact unit for use with
PRESTEL or full duplex 2 wire link 75 bau ransmit - 1200 baud receive Auto answer £ 130.00
MODEM 20-2 same as \(20-1\) but 75 baud MODEM \(20-3\) M baud in full duplex mode over 4 wire circuit half duplex mode over 2 wires. \(£ 130.00\)
Carriage. 13A \(£ 4.50\). \(2 \mathrm{~B} / \mathrm{C} \& 20 ~ £ 9.50\).
columns, Serial data i/o. Supplied complete

\section*{ALL PRICHS PLUS VAT}
\(2.5 \mathrm{kls} \mathrm{E} 25+\) pp£1.25
10kls£i0.25 + pp \(£ 2.25\)

All prices quoted are for U.K. Mainland paid cash with order in Pounds Stirling PLUSVAT. Minimum order value \(\mathbf{E 1 . 0 0}\). Minimum Credit \(\mathbf{£ 1 0 . 0 0}\) Where post and pack BONA FIDE account orders from Government depts, Schools, Universities and established companie We eserve the rightio change prices and specifications without notice. Trade, Bulk and Export enquiries welcome.

\section*{UNIVERSITY COLLEGE, CARDIFF MARCH 22-24, 1983}

For the first time in March 1983 professionals residing in Wales and the West of England have an unequalled opportunity to see and compare the whole range of equipment and services available for today's specifiers and purchasers.

With many stands showing a comprehensive range of mini- and micro-computers, small business systems, printers, software, terminals and other peripherals, telecom equipment, word processors - as well as the many
ancillary services and equipment available COMPEC WALES offers you the most effective way of bringing yourself up-to-date with everything the computer industry can offer.

Computer users, suppliers, systems and software houses, the OEM industry, consultants - and particularly those considering the use of a computer system for the first time, are all assured of seeing equipment relevant to their varied applications demonstrated by professionals familiar with your business in your area.

\section*{Apply for as many FREE advance registration tickets as you will need. Clip the coupon NOW!}

Applications not accepted after March 7
COMPE WALES is a CompriterWeeky Exhibition.

Please send........FREE advance registration tickets
for COMPEC WALES to:
Return to:
COMPECWALES'83
Tickets,
IPCExhibitions Ltd.,
Surrey House,
1ThrowleyWay.
Sutton, Surrey.
SM1 \(4 Q Q\)

\section*{IEEE PROGRAMMABLES from TIME}

\section*{9814 IEEE PROGRAMMABLE VOLTAGE STANDARD}

A higher performance voltage standard with 4 ranges from 0.1 volt to 10 volt output. Accuracy is \(0.01 \%\) and the resolution of setting is 1 in 200,000 . Output resistance is less than 0.01 ohms, and output current adjustable \(20 \mathrm{~mA}-200 \mathrm{~mA}\). Temperature coeff is less than \(20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) and long term stability better than 50 ppm per year. Full manual control is available via front panel controls. Available for benchtop use or 19" rack mounting.

\section*{9816 IEEE PROGRAMMABLE VOICE}

A high quality speech synthesizer which has a 280 word vocabulary. By suitable programming via the IEEE bus
it is possible to output single words, phrases and sentences. The vocabulary has been chosen to be applicable to many ATE applications.
- 9815 IEEE PROGRAMMABLE SCREWDRIVER

The unit has been designed to overcome the problems of adjusting large numbers of multi-turn trimmers in ATE systems. The screwdriver is fully programmable via the IEEE bus with 3 speeds of rotation and 2 selectable torque values available. The unit is supplied complete with a flexible drive shaft and drill chuck into which - various adjusting tools can be located.

9810 IEEE/PROGRAMMABLE POWER SUPPLY
\(0-33 \mathrm{~V}\) in 0.1 V steps. Local or remote (IEEE) operation. Fully programmable on the IEEE bus with 3 settable current limits \(1 \mathrm{~mA}, 10 \mathrm{~mA}\) and 1.1 A . A dual version of the 9810 is also available. The unit is 3 Euro units high and standard 19 " rack mounting width.

\section*{9812 IEEE PROGRAMMABLE SWITCH}

24 double pole changeover switches are available with full IEEE control. Each switch is rated at 1 Amp, 30 V dc or
- ' 100 V ac. Thermal emfs have been minimised to less than \(1 \mu \mathrm{~V}\) per switch. All outputs are on the rear panel along with the IEEE address selector switch and bus connector. Manual control of the switches is also provided viag set of front panel switches which also incorporate LED indicators.

\section*{9811 IEEE PROGRAMMABLE RESISTANCE}

0-1 Megohm in 1 Ohm steps, fully programmable via the IEEE bus. Accuracy is \(0.1 \%\) over most of the resistance range. Resistors are rated at 1 watt each. An attractive feature is the option to switch to local operation when the output resistance can be set up manually via front panel switches.

TIME ELECTRONICS LTD, Botany Industrial Est., Tonbridge, Kent, England TN9 1RS. Tel: (0732) 355993. Telex: 95481

ELECTRICAL REVIEW Shock First Aids
To General Sales Dept., Room 108
Quadrant House, Sutton, Surrey SM2 5AS.
Please send me:
pocket cards at 70p each paper charts at \(£ 1.00\) each card charts at \(£ 2.00\) each
plastic charts at \(£ 3.00\) each
I enclose cheque/money order for \(£\).........payable to IPC Business Press Ltd.

Post free in UK; overseas rates
apply Tel. 01-661 8668; Telex 892084 BISPRS G.

Name
Address
WALL CHART:
\(356 \times 508 \mathrm{~mm}\).
POCKET CARD: \(92 \times 126 \mathrm{~mm}\).

Snazzy matching slimline tuner and amplifer in Deautiful wooden cabinets. These Ted Rule designs are for the enthusiast.
Tuner covers LW. MW. SW FM and T/ sound Cigital frequency Tuner covers LW, MW, SW, FM and TV sound Cigital frequency
readout with clock and timer features. FM pas \(\%\) section fron end and swicchable bandwidth for exceptiontl fringe area performance. Amplifier has Toroidal transtormer. Mosfet output
stapes, 50 watts per channel and got a cracki geview in Practi-
cel Wireless.

 LINSLEY-HOOD CASSETTE RECORDERS
 Please Note: New Phone Number after Fob. 26th (0691) 652894 Personal callers are always very welcome but please note that we are closed all day Saturday

\footnotetext{
Northern Amateur Radio Societies Association
The Society is holding its 21st Exhibition at Pontins Holiday Village, Sauthport, on Saturday, 19th March and Sunday, 20th March, 1983. This was formerly tre Belle Vue exhibition. The Exhibition will open at 11 a.m. gach day.
It will include an inter club quiz, construction contest, grand raffle, R.S.G.B. bookstall, amateur computers, N.A.R.S.A. stands and trophy. Trade stands, featuring all types of Radio/Electronic equipment; Demonstration station The foltowing traders will be present J. Birkett; Radiotronics; Amateur Radio Exchange; John's Radio; New Cross Radio; Wilson Valves; C.B. Electronics; S.O.T.A. The Computer Junk Shop; W. H. Westlake; D. S. Electronics; Arrow Elecaronics Ltd Green's Telecorr ; Royd Electronics; Newto 7 Engravers; Leeds Amateur Radio; Macro
Trading: R.A.I.B.C.: Micro Print Ltd; 2 J Sound; Gemini Communications; Radio Surplus; B.N.O.S. Electronics; D. Currie (Printer); G. Jackson; W. E. Griffiths; Waters \& Stanton; Harr Radio Today; Garex Electronics; P.L.M. Communication Supplies Tricon Supply Co.; Electro-Supplies.
Admission to the Exhibition will be 60 p per dav or \(£ 1\) for two davs.
Lots of 20 tickets or more booked in advance from Mike Bainbridge GAGS7 7 Rothburg Closョ, Bury BL8 2 TH, Lancs can be obtained at a \(20 \%\) discount by sending the appropriate cash and s.a.e.
Chalets are available if booked direct from Pontins. Tel: 070477165 and can be equipped for self catering if you so wish. Cha ges vary from \(£ 10+\) VAT (Ior 2 perso chalet) to \(£ 26\) + VAT (for a six person chalet). Larger family chalets are available. Family entertainment will be available during the day while 'Residents' will be able to enjoy evening entertainment.
Cor parking is free
Car parking is free but please follow thy farking attendants instructions and the Enjoy yourself at this family Week End Exchitition.
}
in view of the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner
Telephone 445 2713/0749
(9461)

WW - 062 FOR FURTHER DETAILS

\section*{Appointments}

Advertisements accepted up to 12 noon Thursday, March 1st, for April issue, subject to space available.

DISPLAYED APPOINTMENTS VACANT: \(£ 15.50\) per single col. centimetre (min. 3 cm). LINE advertisements (run on): \(£ 3\) per line, minimum \(£ 20\) (prepayable).
BOX NUMBERS: \(£ 3\) extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS).
PHONE: IAN FAUX, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Lid.

\section*{POTENTIAL LEADER Ior SUNNY CALIFORNIA}

An organisation in the San Francisco area is seeking a person fully competent in all aspects of software design and production, capable of leading others in this field and integrating with the hardware development and production groups.
The organisation and its environment offers advantages for advancement and living and disposes of adequate funds to ensure that any of its projects can be implemented and profitable.
The self-motivating person we seek needs to be capable of inspiring others and to possess the determination to bring projects to the market place.
Experience in communications and in navigation will be an advantage.
The organisation will ensure that the successful candidate is satisfactorily relocated and rewarded.

Replies to Box No. 1989

\section*{CAPTAL \\ APPOINTMENTS LTD \\ CAPITAL HOUSE 29-30 WINDMILL STREET \\ LONDON W1P 1HG \\ TEL: 01-637 5551 \\ THE UK's No. 1 ELECTRONICS AGENCY}

Design, Development and Test to \(£ 14,000\) Ask for Brian Cornwell

SALES to \(£ 15,000\) plus car Ask for Maurice Wayne
FIELD SERVICE to \(£ 12,000\) plus car Ask for Paul Wallis
We have vacancies in ALL AREAS of the U.K.

Telephone: 01-6375551 (3 lines)

\section*{Electro-Acoustic}

\section*{Product Development Engineer}

\section*{C. £11,000}

The advent of digital switching systems allied to the rapid development in microprocessor technology means that tomorrow's telephone will provide a highly versatile communications medium. "New Generation" telephones will incorporate such aspects as large scale data memory, automatic call and recall options, visual displays, loud speaking facilities etc.
Our client, an international market leader in the field of telephone design and manufacture, is committed to an exciting product development programme and now needs to strengthen its engineering team through the appointment of an experienced Electro-Acoustic Engineer.
This position will be of interest to qualified engineers, degree level or equivalent, with several years' revelant experience in the design and development of electro-acoustic products Successful applicants will be expected to demonstrate a high degree of design innovation to meet the critical low cost requirement associated with the high volume production of moulded components and small electro-mechanical assemblies while ensuring optimum acoustic performance.

This represents an exceptional
opportunity to join a small, multi-disciplined team of professional engineers working within the framework of a large organisation situated in the North London area. In addition to an attractive salary, the company offers relocation expenses where appropriate.

\section*{RF Development Engineers}

Our client would also like to meet RF Development Engineers to work on a future range of Personal Communications products incorporating state-of-theart technology up to 1 GHz .
Whatever your level of experience, if you are qualified to degree level or equivalent and have a sound knowledge of analogue r.f. circuit design, our client would be interested in hearing from you.

In the first instance please telephone for an application form or write with full c.v. stating in a covering letter any companies to whom you do not wish your application forwarded, to: B. Kelly,

\section*{NorthLondon}

\section*{SENIOR SERVICE ENGINEERS (Consumer Electronics)}

Mitsubishi Electric (UK) Limited is a rapidly expanding and very successful division of the multi-national Mitsubishi Corporation.
In order to maintain and increase our present rate of growth we need to appoint additional Service Engineers to work on our wide range of consumer goods, including audio, T.V. and VHS video products. The appointments will be based at our modern Service Depot in Watford and offer excellent career opportunities.
The positions require at least five years experience of servicing the relevant equipment but offer opportunities for the successful applicant to expand his/her experience as the Company grows. Applicants should have a good technical qualification, ideally HND/HNC or HTEC Diploma (Electronics) and preferably some previous supervisory experience as well as a high level of self motivation.
A first class salary package is available including free BUPA cover and a twice yearly bonus scheme. Please telephone for an application form or send c.v. to:

\section*{Alan Freemantle,}

Personnel and Administration Manager,
Mitsubishi Electric (UK) Limited,
Otterspool Way, Watford, Herts, WD2 8LD. Tel: Watford 34618.
MITSUBISHI ELECTRIC
"HI-FLIERS" WANTED READY FOR "TAKE-OFF" Senior Development Engineer to take design of real time microprocessor systems for video picture processing all the way from specification through to de-bugged delivery to client covering hardware (P.C.B. layout and prototype construction included) and software (high level and Assembler). Must be highly qualified with experience of casting video and display techniques would be useful

\section*{Surrey}

To \(\mathbb{E 1 2 , 0 0 0}\)
Comput
Computer Hardware Engineers to design digital and analogue interfaces for peri pherals to mini and micro computers. Must be graduates with at least four years or trainer knowledge much appreciated
Central Berks
Salary up to \(£ 12,000\) p.a.
Commissioning and Test Engineers for a wide range of signal processing and digital video standards converters. Must have video and digital test experience and at least O.N.C.

Senior Design Engineers to work on industrial date acquisitio control systems with associated test equipment with an emphasis on hardware with at least two years' experience of real time microprocessors and knowledge of assembler and high level structured languages. Must have H.N.C. at least and R.C.A. 1802 background would help. Northants

And the salary? GOOD

\section*{Charles Airey Associates \\ Tempo House, 15 Falcon Road, Battersea, London SW11 2PJ Telephone: 01-223 7662 or 2286294}

\section*{Appointments}

\section*{ENGINEERING MANAGERS TV Broadcasting}

We are looking for two Engineering Managers, for senior positions at our Birmingham and Nottingham studio centres. They will be responsible to the Chief Engineer for the work of electronic and mechanical engineers involved in the evaluation, design, installation, commissioning and maintenance of technical equipment.

Applicants must have extensive experience of modern electronic engineering, including the application of digital and computer techniques: a TV studio engineering background would be preferred, but relevant industrial experience could be of value Suitable candidates are likely to have had a formal education leading to a professional qualification, but the primary requirement is practical technical knowledge and ability.

A high level of managerial skill and judgement is required, together with the potential to make a significant contribution to the future development of the company. Likely age range \(35-40\).

These are senior appointments, and the high salaries will reflect the responsibilities involved and the qualities expected of the successful candidates

Application forms from:-
The Recruitment Officer
Central Independent Television Plc,
Central House, Broad Street, BIRMINGHAM B1 2JP
(Please quote Vacancy No: 115(WW) and state preference for Birmingham/Nottingham).

\title{
HAVE YOU CONSIDERED FURTHERING YOUR TRAINING IN ELECTRONICS ?
}

\section*{We offer:}

\section*{CNAA BSc in Electronic Engineering}

A four-year part-time degree for mature students, includes study of Digital, Telecommunications and Control Systems.
Entry qualifications: HNC or equivalent in Electrical and Electronic Engineering or Applied Physics. This degree is considered by the Council of Engineering Institutions as meeting their C .Eng academic requirements.

\section*{HND in Electrical and Electronic Engineering}

A \(21 / 2\)-year sandwich course, including study of Electrical, Electronic and Communication Engineering, combined with control Engineering and Digital Techniques. Entry qualifications: 1 A Level in Mathematics or Physics.
For further details and application forms, contact The Department of Engineering, Cambridgeshire College of Arts and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271.

\section*{Appointments}

\section*{BORED ?}

\section*{Then change your job!}

\section*{1) Test Equipment Controller}

Plan and procure test equipment and control a team of test equipmant engine ers. To \(£ 12,670\) Hants.
2) Maintenance Engineer

Start an in-house test of communications equipment - then move to field senvice when fulk convorsamt To \(58,000+\) car - London.
3) Service Engineer

Analogue and digital detection and alarm systems. Mid \(x\)-Essex - to f8,000.
4) Test Engineer

In-house work on modems and data communications systems. To 77,500 - Bucks.
51 Service Personnel

\section*{(IMF. RN, Armel)}

We have many clients interested in employing ex-sevice fiters and technicians at sites throughout the UK. Phone for details.
6) 8500 per week

We are paying very high rates for contract design and test engineers who have a background in RF, MICROWAVE, DIGITAL, ANAL UK.

Hundreds of other Electronic and Computer Vectancios to \(£ 12,500\) Phone or write:
Roger Howard, C.Eng.M.I.E.E., M.I.E.R.E CLINEDEN CONSULTANTS
87 St Loonard's Road, Whdsor, Berks. Windsor (07535) 58022 (5 IInes)

\section*{CLIVEDEN}

UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG Applications are invited from suitably qualified persons regardless of sex qualified persons regardiess or national origin for ap pointment to the following immediately available post:

\section*{TELEVISION ENGINEER}

R12 252-R17880 p.a.
(f1 = R173 approx.)
A vacancy exists in the Central Televi sion Service for a suitably qualified Studio Engineer. The University operates two full-colour television studios and a campus distribution system. The main activities are making educa tional training programmes for the Uni versity and commerce and industry. Du ties include the maintenance o distribution system and associated equipment. Also studio operation duties as and when required.
Applicants should have a number of years' relevant experience in Television Engineering.
The University offers salary commensurate with qualifications and experience and housing subsid for eligible applicants, congenial and dynamic environ ment, continuous opportunitios for education and training, generous leave There is a possibility of a salary supplementation.
Applicants should write to the Deputy Registrar (Non-Academic Staffing) University of the Witwatersrand, 1 Jan ing full personal and career details, as well as the names and addresses of at least two referees.
Applications should be lodged by 15 March, 1983.
(1984)

\section*{LOGEX \\ ELECTRONICS \\ RECRUITMENT}

\section*{Specialists in Field \& Custorner En}

Logex Housa, Burloigh, Stroud Gloucestershire GL5 2PW 0453883264 \& 01-290 0267 (24 hours)

\section*{EXPERIENCED SERVICE ENGINEER}
wonted to ropai and service Amateur Private, Mobile and Marine equipment. Previous experience is necessary. Salary approximately \(£ 7,500 /\) negotiable per year, plus car for personal use. Apply to:
Communique, Communications House
Purley Avenue, London NW2
Tel: 01-450 9755

CHANCE FOR YOUNG ENTHUSIAST WITH TOP BRITISH MICRO MAKER

\title{
TECHNCAL SUPPORT (SALES)
}

\section*{UP TO £5-7.6K, OXFORD-BASED}

Research Machines is one of the leading British manufacturers of microcomputers. Thousands of users of our 380Z, ranging from school teachers and scientists to technicians and DP
professionals, regard it as an essential tool of their trade. Satisfying their hardware and software information needs and solving their problems by telephone and letter - is the first job of Technical Support.
But there's a lot more to this interesting and challenging vacancy than that. In addition to sales and technical support to customers, you will also give technical support to the sales team; support the Sales team at exhibitions and demonstrations; provide feedback to relevant departments on technical matters and sales trends; and liaise between customers and maintenance engineers. In the process you will get plenty of opportunity for hands-on experience of our range of hardware and software.

We are looking for a computer enthusiast to join this young, small team in our Sales Department. The successful candidate will probably:
\(\square\) be capable of programming in a high-level language - preferably BASIC;
\(\square\) have a real interest in microcomputing and some knowledge of electronics;
\(\square\) be educated to at least ' \(A\) ' level;
\(\square\) have some admin or sales office experience.
Starting salary is between \(£ 5,000\) and \(£ 7,600\) depending on age and experience, and we also offer a number of valuable benefits such as free BUPA, life and disability insurance, and a pension scheme
If you are interested in this vacancy please contact Polly Keane, by phone or letter, for an application form, quoting TS/WW

\section*{RESEARCH MACHINES \\ MICROCOMPUTER SYSTEMS}

\section*{SENIOR RF ENGINEER}

\section*{Western Home Countles}

Our client is a remarkable company with an enviable record of success and development.

Although they recruit infrequently they have identified a need for one Senior RF Engineer.

Ideally you will have attained Project Leader status and be able to work within a highly innovative environment.

You will have exacting, technical and commercial deadlines to meet and will therefore frequently work under pressure within a small department of very highly skilled and qualified people.

The prospects for promotion and career development are excellent as the company is commercially aggressive and has a number of unique qualities.

They are part of a successful multinational group covering a range of communications equipment.

To discuss this position contact PAUL HECQUET on Lewes (07916) 71271 or write with brief \(\mathrm{C} . \mathrm{V}\). to the address given below.

Temple House
2526 High Street, Lewes
East Sussex BN7 2LU
Tel: Lewes (07916) 71271

\section*{Appointments}

Premier international electronics companies - very secure and expanding in North, South, East and West of London and Home Counties - require professional senior staff (including departmental heads). Re-location allowance up to \(£ 3,000\).

\section*{ELECTRONIC ENGINEERS}

Electronic engineers required with degree - H.N.C. - tech. cert. - O.N.C. Almost any background required but software and hardware experience will bring salary of absolute minimum of \(£ 6,500\) p.a. and could be up to \(£ 11,000\) p.a.

\section*{ELECTRONIC DESIGN/DEVELOPMENT}

Engineers required with experience of circuit or component design or development for microwave equipment or digital logic or computer peripherals or electronic packaging or tilm technology or telecommunications. Also above for up-dating in modern techniques. Salaries up to \(£ 11,000\)

\section*{SOFTWARE PROGRAMMERS \& ENGINEERS}

Engineers or mathematicians required for development of commissioning and design proving programmes from assistant to team leader level. Salaries per to \(£ 12,000\) p.a. any time.

\section*{GORE MANAGEMENT SERVICES LTD}

SELECTION \& TRAINING CONSULTANTS 111 High Street, Rickmansworth, Herts Rickmansworth 770431

Applications are invited from suitably qualified persons regardless of sex, race, colour or national origin for appointment to the following immediately available post

\section*{TELEVISION ENGINEER \\ R12 252 - R17 880 p.a.}

A vacancy exists in the Central Television Service for a suitably qualified Studio Engineer. The University operates two full-colour television studios and a campus distribution system.
The main activities are making educational training programmes for the University and commerce and industry. Duties include the maintenance of television studio equipment, campus distribution system and associated equipment. Also studio operation duties as and when required.
Applicants should have a number of years' relevant experience in Television Engineering.
The University offers salary commensurate with qualifications and experience plus I3th cheque, pension, medical aid and housing subsidy for eligible applicants, congenial and dynamic environment, continuous opportunities for education and training, generous leave.
There is a possibility of a salary supplementation.
Applicants should write to the Deputy Registrar (Non-Academic Staffing), University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2001, South Africa, giving fuil personal and career details as well as the names and addresses of at least two referees. Applications should be lodged by 15th April, 1983.

\section*{UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG}
(1987)

\section*{ELECTRONIC DESIGN ENGINEERS}

We are a small highly successful manufacturing company specialising in RF communications, digital and low frequency analogue equipment.
We require young highly motivated engineers wishing to develop their experience. The ideal candidate must have complete confidence in his ability.
- Starting salary \(£ 10 \mathrm{~K}+\) (neg).
- \(371 / 2\)-hour week. Overtime available.
- Pay reviews every 6 months.
- Pleasant working environment.
- Location near City of London.

Contact Keith Penny on (01) 2500894

\section*{TECHNICAL VIDEO SALES}

Rapidly growing video division need sales person to sell sophisticated military airborne video and image processors to U.K. Aerospace and Government research laboratories and with our agents in Europe.

Applicants should be qualified to HNC and should have experience in Aerospace or video background. Preference will be given to applicants in their early or mid twenties. Salary \(£ 9,000\) plus car and other benefits.

Write for full description and application form to:

Mrs M. Berrow
Personnel \& Training Manager
John Hadiand (PI) Ltd.
Newhouse Road
Bovingdon
Hemel Hempstead
Herts HP3 0EL

We require a first class sales engineer with experience in test and measuring instruments or microwave components to cover the South East and South of England - that is Essex to Hampshire, south of the Thames. If you know you would meet our needs - or think you would - we would like to hear from you.
We offer an interesting range of products - life will never be dull - a small ermpany atmosphere, a basic salary of \(£ 8,500\) per annum plus small company bonus and more if you are worth it, together with company car and free BUPA membership for you and your family.

Applications to: Philip Westwood, Managing Director WESSEX ELECTRONICS LIMITED 114-116 NORTH STREET, DOWNEND, BRISTOL BS 16 5SE Telephone: (0272) 571404
(2014)

\section*{PHONE YOUR CLASSIFIEDS TO IAN FAUX ON 01-661 3033}

\section*{Appointments}

\section*{DEVELOPMENT ENGINEER - ACOUSTICS}

\author{
c \(£ 9500\) + BONUS
}

Senior Engineer required by leading manufacturers situated in pleasant South Coast area. To be responsible for design and development of electroacoustic devices/products for volume production in telecommunications or related industry.
Ideally, applicants (M/F) should be of degree standard (with acoustics endorsement) with experience of design of transducers for electroacoustic applications. However, good experience may offset lower academic qualifications. Age range 25-40 years.
Write in first instance to:

21 CHURCH ROAD HOVE
SUSSEX BN3 2FA
BRIGHTON 779574

\section*{Brompton Hospital Trainee Medical Electronics/ Physics Technician}

We require a Trainee Technician with an interest in medical electronics. Training and day release to study for \(O\) and H TEC will be provided. During the first year the technician appointed will be expected to spend at least half his/her time working in the Intensive Care Units where they will gain experience of the clinical environment. The work will be of a varied but routine nature. The remaining time will be spent in the Department of Medical Electronics.
The post is likely to suit those with science ' \(A\) ' levels who have a desire to make a career in medical elec:ronics/ physics.
The post is for one year in the first instance. Salar' will be according to age and qualifications.
Further information and application form available from Miss J. A. Jenks, Personnel Manager, Brompton Hospital Fulham Road, London SW3 6HP. Telephone: 01-352 8121 Ext. 4357. Completed application forms to be returned as soon as possible.
(1985)

\section*{WI}

APPLICATIONS ARE INVITED FOR THE POST OF

\section*{SERVICE TECHNICIAN}

\author{
AT OUR HEAD OFFICE IN LONDON
}

The principal responsibility will be for maintenance of multi-standard television receivers and video cassette recorders.
The successful applicant will have considerable experience of colour television receiver and video cassette recorder servicing probably with a major television rental company in the industrial or domestic sectors. Knowledge of the V.H.S. format would be an advantage.
Candidates should be prepared to work with the minimum of supervision and be capable of using their own initiative.
Qualifications are less important than practical ability but we would expect City and Guilds Full Technological Certificate to have been gained. The salary will depend upon qualifications and experience. Conditions of employment include a 35 -hour week, 20 days' holiday per annum, and a contributory pension scheme.
Application forms may be obtained from: Mr. G. J. Atkins, Technical Services Manager, Walport Telmar International Ltd., Walpot House, 62/66 Whitfield Street, London, W1P 6JH. Telephone: 01-631 4373. (2010)

\section*{FIELD SERVICE ENGINEERS}

\author{
(Based in Italy)
}

Exciting opportunities for qualified Electronics Engineers to work on the installation and maintenance of Television Studio Equipment at customer sites throughout Italy and Africa.
Key requirements are:
* A sound knowledge of Electronic Engineering Degree/HNC or equivalent
* At least 3 years' experience in a Television Studio/Production environment, with specific experience of both Quad and Helical Scan, VTR, TV Camera and Switcher Engineering
* Availability to travel extensively throughout Italy and Africa and ability to work on own initiative while away from base
Attractive salary package and other benefits to include overseas allowances and relocation expenses.

Please write or 'phone Maureen Brake at:
Ampex Great Britain Limited Acre Road, Reading RG2 00R Berkshire, England Tel: Reading (0734) 875200

\section*{Satellite Operations Coordinator}

The International Telecommunications Satellite Organization is a rapidly growing organization offering challenging career opportunities and comprehensive salary and benefits packages which include five weeks' paid vacation and free medical and dental coverage.
Position available as Operations Centre Coordinator to assist in providing real time guidance to earth stations operating in an international satellite communications system. Duties include network control, system performance monitoring and implementation of telecommunications services through coordination with domestic and international earth stations and telecommunications entities.

Applicants should have 3-5 years of experience in satellite earth station operations or international communications network control facilities at a supervisory or senior technician level. A strong background in satellite system operations with recent maintenance experience and technical training are required. The ability to engage in effective liaison with international telecommunications entities and acceptance of shift work assignments are required.
Position is based in Washington D.C. For more information about this exciting opportunity please forward your resume including salary history to

\section*{INTERNATIONAL \\ TELECOMMUNICATIONS SATELLITE ORGANIZATION \\ ATT: Personnel Department Box C \\ 490 L'Enfant Plaza S.W. Washington D.C. 20024}

\section*{Medical Physics Technical Officers \\ Saudi Arabia}

\section*{c. \(£ 13,500-£ 18,000\) p.a. inc. tax free}

Allied Medical Group are the British consultants to the prestigious Riyadh AlKharj Hospital Programme in Saudi Arabia which provides the best of health care to the armed forces of Saudi Arabia and their families. The two hospitals which comprise the Programme - totalling approximately 660 beds - are new, superbly equipped, mainly U.K. staffed and enjoy a full range of paramedical and other support services. Within the next three years the Programme will expand to 1,000 beds and will become a principal referral centre in the Kingdom.

The Bio-Engineering Division, within the Medical Physics Department, is responsible for servicing a wide range of bio-medical equipment. We are now seeking Medical Physics Technical Officers to specialise in the maintenance of an extensive range of laboratory equipment covering clinical chemistry, haematology, microbiology and histo-pathology. Most of the equipment is maintained within the well-equipped workshop with sophisticated items being handled in conjunction with service agents.

Applicants should possess an HNC or equivalent qualification in electronics or another appropriate subject with at least 2-3 years' experience of maintaining hospital laboratory equipment. Three years' post-qualification experience would be an advantage.

Quote Ref: RKH 462
- -
mechanical workshop and more general applications are invited.
L_ _ Quote Ref: RKH463
Posts are offered on a two year renewable contract basis and attract one of the best benefits packages in the Middle East.

For further details please write, quoting the appropriate reference number to: Theresa Sutherland, Senior Personnel Officer, Allied Medical Group, 18 Grosvenor Gardens, London, SW1W 0DZ. Alternatively, call our 24-hour answering service on 01-730 5339, quoting appropriate reference number.

All applications will be dealt with in the strictest confidence.
INFORMAL OPEN DAYS - SCOTLAND
Please come along and see us. We'll be able to answer all your
| questions about living and working in Saudi Arabia.
| Date
Wednesday, 16th March
| Thursday, 17th March

\section*{Location \\ North British Hotel \\ George Square, Glasgow \\ North British Hotel}

Princess Street, Edinburgh

Time
2-8pm
2-8pm

\section*{Allied Merlicell Groun}

\section*{The best of British Health Care in the Middle East}

\section*{ARTICLES FOR SALE}

ENCAPSULATING EQUIPMENT FOR coils, transformers, components, degassing silicone rubber, resin, epory. Lost wax casting for brass, bronze, silver, etc. Impregnating coils, transformers, components. Vacuum equipment, low cost, used and new. Also for CRT regunning metailis-
ing. Research \& Development. Barratts, Mayo ing. Research \& Developruent. Barratts, (9678)
Road, Croydon CR0 2QP. 01-684 9917 .

VALVES, PROIECTOR Lamps, 6000 types, list [755, world wide export. Cox Radio (Sussez) Ltd., The Parade, East Wittering, Sussex. Phone (024 366) 2023.

LAMPS AND CABLE. Large amount of lamps and cable for sale - all types and sizes, domestic and industrial. Telephone Mirage Liolim on HITCHIN (0462) 733388 between 10am-

BRIDGES, waveformitransistor analysers. Calibrators, Srandards. Millivoltmeters. Dynamometers. KW meters. Oscilloscopes. Recorders. Sig. RMS, audio, FM, deviation. Tel. 040376236 (162

TV TUBE Rebuilding Plant. Due to frustrated export order many items of latest plant and equipment available at half price. Western-Whybrow Engineering, The Square, Marazion, Cornwall. Telephone (0736) 710456.

WIRELESS WORLD 1968-81. (Few missing) Excellent condition. \(£ 40+\) carriage. 15 copies 1930 's, 40 's including 2 RF straight set, Wiliamson Amplifier, Golden Jubilee issue
Phone Bristol (0272) 733837 .
(1982)

\section*{Guys Hospital \\ DEPARTMENT OF CLNICAL \\ PHYSICS MU BIOENBINEERIMO}

\section*{This active, well established and well-equipped} Department provides a physical sciences service for a number of clinical departments in the electronics servicing group. This work includes the maintenance and servicing of a varied range of madical electronic equipment and covers at aspects of patient oriantated equipment from fixed installations to small portable instruments.
Experience in this type of work would be an advantage but candidates with HM Forces experience or having a good background of TV servicing are encouraged to apply.
An ONC/HNC or equivalent qualification, followed by at least three years' technical experience, are required. The appointment will be on the Medical Physics Tachnician Grade 3 Scale.
Salary: \(\mathbf{E 6 , 4 6 8}\) p.a.- \(\mathrm{E8}, 087\) p.a. inclusive.
Application forms may be obtained from the Porsonnel Departaent, Mary Sheridan House. Gur s Hospital, St Thomems Street, London SE Ref. PR.
Closing date for completed applications Closing dote for
4th March, 1983.

PRESTON POLYTECHNIC SCHOOL OF ELECTRICAL AND EIECTRONIC ENGINEERING. Applications are invited for the post of Senior Laboratory/Workshop Technician. Salary Scale: T3/4 (DLW) \(£ 5973\) to \(£ 7545\) plus up to \(£ 114\) per annum for possession of appropriate qualifications. Applicants must possess a recogand have experience in electronic design and conand have experience in electronic design and coo-
struction. Application forms and further derails obta inable from the Personnel Officer, Preston Polytechnic, Corporation Sureer, Preston PR1 2TQ. Tel: Preston 262027. Reference No: NT/82/83/19. Closing date: 3rd March 1983.

R\&D OPPORTUNITIES. Senior level vacan \({ }^{2}\) cies for Communications Hardware and Software Engineers, based in West Sussex. Competitive fusion Radio Systems on 01-874 7281 . 1162

\section*{ARTICLES FOR SALE}

HYDROKIT
Hydraulic Flypress Conversion
 Complete Hydraulic Kits
comprising: Power Pack comprising: Power Pack,
Control
Helve, Ram, Hoses and Fittings. Sutt able for many applica.
tions including Flypress Conversions. Working pressure 2.000 p.s.i. 2.18
tons. Stroke 4 . Ad. Adustatons. Stroke 4 in . Adjuste-
ble relief valve. Power pressure and return.

PRICE FROM E428
"HYDROKTTS" ARE COMPLETE
Just remove arm of press and operate screw shatt, fit hydraulic ram assembly with mannal
valve (ail supplied. fill with hydralic oil and valve (all supplied), fill with hydraulic oil and
connect to power source, 13 amp or 3 -phase. Send details of press or ask for questionnaire.

TAVISHEL HYDRAULICS INTEAMATIONAL LMMTED Hypress House, Station Close. Potters Bar, Herts. EN6 1TL. Tel. Potters Bar (0707) 43434

> SULLIVAN Thermistor Bridge \(£ 59\). Heterodyne Bridge Detector £39. EM1 Disc Recording blanks 100 £150. Laboratory oven £49. Labgear TV Pattern Generator £45. Small compressor pump \(£ 20\). \(500 \mathrm{lbs} / \mathrm{sq}\).in. receiver \(£ 25\). Watson lab microscope £89. Centrifuge E49. Brinell Hardness Tester 598. Ultrasonic Leak Detector \(£ 59\). 4KW Diesel Generator \(£ 195\). Water pumps \(£ 12-£ 98\). Sullivan Mirror Galvanomoter f39. Audio Analyser £65. 220MHz Sweep Generator £79. EMI Audio Sweep Generator £65. Record Clip-on Ammeter/voltmeter/Recorder \(£ 79\) Marconi TF I225A Noise Receiver f59. Plug-ins Cossor 1078 f15 ea E59. Plug-ins Cossor 1078 L15 ea. Pye 200,000 M/ohm meter, Ell twenty-million M/ohm meter \(£ 35\)
ea. A few oscilloscopes and other

> A few oscilloscopes and ot
RF, AF, sweep generators
> 040-376236

ARTICLES FOR SALE
RACAL COMMUNICATIONS RECEIVERS
\(500 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s} 1 \mathrm{Mhz}\) wide RA17L - \(\mathbf{£} 175\) RA117E - E225. A few sets available as new at f 75 oxtra. All receivers ars air tested and calibrated in our workshop, supplied with full manual, dust cover, in fair used condition. New
black metal touvred cases for above sets \(f 25\) bach. RASOD - ISB - SSB - 775 RAO18 each. RASAD - ISB - SSB - £75. RA218-
SSB - ISB and fine tune for RA117- \(£ 50\). SSB - ISB and fine tune for RAll7- \(£ 50\)
TRANSMITER DRNE UNIT RATS. \(1.5 \mathrm{mc} / \mathrm{s}\) \(30 \mathrm{mc} / \mathrm{s}\) - SSB - ISB - DSB - FSM - CW f150. AERIAL TUNING UNIT and protection unit MA197B - \(£ 25\) to E50. DECADE FREQUENCY GENERATOR MABSOB Solid state synthesiser for MA79 or RA117 - RN217 - RA1217 - f150 to \(£ 200\) MAZ50-1.6mc/s to \(31.6 \mathrm{me} / \mathrm{s}-\mathrm{f} 150\) (Newl. MAZSAG - precision frequency stanRACAL M152 - Standing wave ratio indicz tor. \(F \times 2 \mathrm{mc} / \mathrm{s}-25 \mathrm{mc} / \mathrm{s}\) Power up to 1000 watts - 50 ohms - Auto trip switch - Transistor mains \(100-250 \mathrm{AC}\), new and boxed - 440 . RACAL COUNTER 836 (9036) \(32 \mathrm{mc} / \mathrm{s}\) TL circuit design - tested with manual - \(£ 50\) to \(£ 75\). OSCILIOSCOPES COSSOR CDU150 - \(35 \mathrm{mc} / \mathrm{s}\) Twin Beam - Solid State - \(£ 175\) with manual. TEXTRONIC DSCILOSCOPE 647 and 647A Solid State - \(50 \mathrm{mc} / \mathrm{s}\) and \(100 \mathrm{mc} / \mathrm{s}\) bandwidth - \(£ 250\) RACAL COUNTER \(801 \mathrm{M}-125 \mathrm{Mc}\)-S 550 . RACAL COUNTER 801 M - 125 Mc -S IMAGE INTENSIFIERS - Mullard - G.E.C. or E.E. Type XX 1060 very high gain self-focusing
image intensifiep assembly for night vision image intensifier assembly for night vision
systems. Minimum luminance gain 35,000 systems. Minumum luminance gain 35,000 .
Supplied as received from Governmant supplies in original box (used) with data sheets \(-£ 12\) ea. (P\&P + VAT \(=£ 5.25\)).
All toms are bought direct from H.M. Government, being surplus oquipment. Price is exworks. SAE for all enquiries. Phone for appointment for demonstration of any item. John's Radio. Whitehall Works, 84 Whitehall Road East, Birkenshaw, Bradford BDII 2ER. Tel
(148)

Perforated Metals Screens, Plastics, Wire Meshes, Sifting Media, Cable Tray, Gratings, direct from Manufacturer's Stock. We can cut to size.
We specialise in one-offs or large quantities.

\section*{GRAEPEL PERFORATORS} LTD
Unit 1-B, CHARLES STREET Dept WS, WALSALL, STAFFS WS2 9LZ Tel. \(0922611644 / 611414\). Telex 335291

\section*{POWER V MOS-FET TECHNOLOGY}

We specialise in all aspects of this important subject. A comprehensive service is offered to individual or OEM users, including
- Hitachi Supertex and RCA V MOS-FET from stock
V MOS-FET power modules from stock. Competitive prices (120 watt modules - Printed circuit
- Primed circuits and kits.
- Desionk and application notes. Catalign, evaluation and advice service. Catalogue/sample data sent free 150 p stamp approciated towards post and packing) Phone 02514 22303 and ask Richard Walsh
about your application requirement or write: about your application requirement or write: AUDIO TECHNOLOGY Freopost, Church Crookham
Aldershot, Hants. GU13 08R

DC-DC CONVERTER, 5 V input to 25 V output, output current 50 mA maximum, ripple level 80 mV pk-pk, measuring \(35 \mathrm{x} 40 \times 19 \mathrm{~mm}\). \(£ 10\) each plus 60 p P\&P. K.H. P'ng, 30 Queensbury Road, Alperton, Middlesex HA0 1LU. Tel: Egham 34300 , ext. 208 or \(01-9979708\) eves. (2013)

\section*{SITUATIONS VACANT}

\section*{Wed like to read your autobiography}

And this is your chance to write it. Just register your career data with us and our sophisticated computer bank does the rest. Using complex matching techniques, we scan the register every day to see which of the many vacancies suit you exactly Once the right one - or more - has been identified, our clients contact you direct. It's the fastest most effective way of putting two decision makers together and it's free!

\section*{Hedusorovning Appointments Register}

Park House, 201 The Vale, 6321 London W3 7QB. Tel: 01-74 (24 hr answering service)

Name
Job Title
WW 152
Address

\section*{Enough said.}

As an ambitious Electronics Engineer you can't devote as much time to furthering your career as you'd like to - so why not let someone else do it on your behalf? Simply complete the coupon and you're on your way to a new, more rewarding future. A selection of some of the current vacancies we have for qualified people are: Senior Design Engineers Chief Engineers Project Leaders/Planners - Engineers: ATE/Applications/Packaging/Test/Design \& Development (Satellite Comms)/Quality/Systems/Software/Hardware/Microwave/ Semi-Conductor/Sales/Customer Service/Audio Communications Salaries range from \(£ 6000-£ 16000\), with ages from 20-40, at various locations in the UK As an example, Digital, the worlds leading minicomputer manufacturer, has asked us to look for a Principal Hardware Engineer A degree and 10 years expenence, 6 in computer related design, are required.
To be considered for this and other important career positions all you need to do is post the coupon today to Stuart Tait, The Lansdowne Appointments Register, Park House, 201 The Vale, London W3 7QB. Tel: 01-743 6321 (24 hr answening service). All posts are open to men and women and our service is completely confidential for companies and jobseekers.

ARTICLES FOR SALE

Obsolete stock of three MFE 6-channel Heat-type Strip Chart Recorders plus 30 12v DC Solenoid Valves. - Ring 078861638

EK WD Radio equipment and test equipment Over 500 sets in stock from \(£ 8\). Send 50 p for illustrated caralogue (including \(£ 1\) voucher) Weirmead Ltd. 129 St. Albans Rcad, Watford, Herts. Tel: Watford (0923) 49456.
(1974)

\section*{OUARRTZ CRYSTALS IN 24 HOURS \\ ANY FREQUENCY 2-50 MHz FOR f4 inc}

New fast service for C.W.O. only (state holder style). Clock oscillators for microprcsessors in stock from \(£ 9.30\).

McKnight Crystal Co Ltd, Hardley Industrial Estate
Myehe, Southampton SG4 6ZY Tel. 0703848961
(2008)

\section*{TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC. LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL}

SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS, DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc. CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERAMICS, PLATE CERAMICS, etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES, TRANSFOR. MERS, etc.
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713 BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12 (5 minutes trom Tally Ho Corner)

A long-established major oil company operating in the United Arab Emirates is seeking to augment its employees to meet its expanding needs by the recruitment of a number of Telecommunications Engineers and Technicians to work in a wide range of disciplines.

ENGINEERS should have a Degree or qualification in Telecommunications, with at least five years' experience in a large communications organisation in the installation and repair of some of the following:
Tropospheric Scatter equipment; Microwave Radio Relay; FDM/TDM Multiplex; MF, HF, VHF , and UHF Radio; Telephone Exchanges using stored programme control.
TECHNICIANS should have Part II City and Guilds Telecommunications Certificate or equivalent with at least three years' relevant experience.
SALARY will depend on relevant experience, but in the following ranges:
ENGINEERS: Dh. 94,100/- to Dh. 116,300/-per annum.
TECHNICIANS: Dh. 81,800/- to Dh. 101,300/-per annum.
£ is approximately 6.2 Dh .
OFFSHORE POSTING (Das Island and Platforms) will be on bachelor status with free messing and accommodation with generous leave scheme.
ONSHORE POSTINGS (Abu Dhabi town) will be on bachelor or married status with free furnished accommodation.
The United Arab Emirates is a rapidly developing country. The capital, Abu Dhabi, is a modern city offering a full range of sports and social facilities. Primary and secondary schools are available.
APPLICATIONS with CVs and copies of educational and experience certificates should be sent to both:
Senior Personnel Officer (CPA)

\section*{Department of Petroleum}

ADMA-OPCO
P.O. Box 9

Abu Dhabi
United Arab Emirates
United Arab Emirates
More information can be obtained from Snr. Personnel Officer (CPA) on request.
Priority in employment will be given to UAE Nationals.
(1997)

\section*{RIBBON CABLE, PLUGS AND CONNECTORS}

The very best quality. Proven manufacturer. Plugs and connectors sold singly or in quantities. Cable sold by the metre
or by the roll or by the roll TAD. SUPPLIES 5-10 Eastman Road London W3 Tel: 7400058 (1840)

\section*{LINSLEY HOOD DESIGNS \\ 75-100w AMPLIFIERS}

AUDIO SIG. GENERATORS
DISTORTION ANALYSERS SAE for leaflets

TEL: 8073719 (1762)

\section*{ARTICLES WANTED}

\section*{WANTED}

Test equipment, receivers, valves, transmitters, components, cable and electronic scrap, and quantity. Prompt service and cash. Member of A.R.R.A.

\section*{M \& B RADIO}

86 Bishopsgate Street Leeds LS1 48B
053235649

\section*{WANTED}

Scrap and re-usable mainframe computer and industrial electronic equipment.
E.M.A. Telecommunications Engineers, Orford, Woodbridge, Suffolk. Tel. 039-45 328.
(1720)

\section*{SURPLUS}

Top prices paid for surplus, redundent and obsolete test equipment, factories cleared.
Also quantities of components. Immediate settlement. We will call anywhere in the United Kingdom.

TIMEBASE
\({ }^{94}\) Alfriston Gardens
Sholling. Southampton SO28FU
Telephone: (0703) 431323
WIRELESS COMPANY

\section*{WANTED}

Redundant/surplus electronic components and equipment. Telephone and computer spares.
Prompt service and payment
J. B. PATTRICK

191/193 London Road
Romford, Essex
Romford 44473

\section*{CIRCOLEC}

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB Assembly, Test \& Repair Service, Q.A. Consultancy, Prototypes, Final Assembly
Quality workmanship by professionals at economic prices.
Please telephone 01-767 1233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW17

\section*{BOARDRAVEN LTD. \\ PRINTED CIRCUT BOARDS \\ Manufactured to your specifications. Single/double sided. Very speady deliveries on prototypes
and quantity. Master layouts if required. Contact: \\ K. Harrieon, Carnaby Induatrial Eatate; Brid-
Mington. North Humberaide YO1S 30 Y . Tale phone: (0282) 787 Hes.}

DESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/smal batch production. - Adenmore Limited, 27 Longshot Estate, Bracknell, Berks. Tel: Bracknell (0344) 52023. (656)

SMALL BATCH PCBs produced from your artwork. Also DIALS, PANELS, LABELS. Camra work undertaken. FAST TURNAROUND Details: Winston Promotions, 9 Hatton Place, London ECIN 8RU. Tel. 01-405 4123/0960.
(9794)

TURN YOUR SURPLUS Capacitors, transistors, etc, into cash. Contact COLES-HAR DING \& CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement. We also welcome the opportunity to quote for complete factory clearance.

DESIGN SERVICES. Electronic design development and production service available for digital and analogue instruments. RF Transmit ters and receivers, telemetery and contro systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middleser. Pbone Mr
Falkner 53661 (8341

FOR THE BEST PCB SERVICE AVAILABLE
Digital and Anelogue
Wartwork Leyout
Work of the highest stendard by experienced
draughtsmen. No minimum charge draughtsmen. No minimum charge Prototype Mametecture Prototype to sami-production, excellent ratee + Whtra Aceer © Whing A Ascembly PCB issombly, wiring and cable forming by
qualifiod staff. Full test facilities available. One or all services suail-
able, no order too small. Ploase telephone Chelme-
ford (0245) 357935 or write ford (0245) 357935, or write
to HCR Electronics dustrial Unit, Parker Roed, Chelmsiord.

SCIENTIFIC SOFTWARE FOR ELECTRI CAL/ELECTRONIC ENGINEERS/TECHNICAL SCHOOLS. For 16 K ZX81. Given any waveform, calculate the average RMS, Fourier coefficients, plot the waveform, plot the frequency spectrum. Listing £3.50. From D. Ibrahim, 42 Ridd Place, London SE7.
(1944)

\section*{ARTICLES FOR SALE}

INVERTERS
HIIM-mullty DC-AC; also "ue brak" (2 ms) static switch, 19in. rack. Anto Charger.

COMPUTEA POWER SYSTEMS
Interport Malns-Stere Ltd.
P0B 51, Lenilon, W11 3BZ
Tel: 01-727 7042 of 0225310915

TW ELECTRONICS LTD

\section*{THE PCB ASSEMBLERS}

More and more companies are investigating the advantages of using a professiona subcontractor. Such an undertak-

TW are able to satisfy all of them quality, competitive pricing, firm delivey and close co-operation with the customer.
Assembled boards at \(100 \%\) inspected before flow soldering and reinspected after automatic cropping and cleaning. Every batch of completed boards is issued with a signed certificate of confo mity and quaity - our inal assurance. For further details, contact us at our new works: addressed to
Box No
c'o Wireless Wor!d
Quadrant House
The Quadratit Sution
Surrey SM2 5AS

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit desigt. and development work, PC artwork, etc. Srrall batch
and protorype production welcome. - E.P.D.S Ldd., IA Eva Road, Gillingham, Kent. Tel: Medway (0634) 577854 .
BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricals L.di, 196. Station Parade, Ealing Common, London
WS. Tel: 01 -992 8976 . BATCH PRODUCTION PC assembly to sample or drawings, any quantity. Stagecraft (Electronics) Lid, Unit 7, Carew Street Industrial Estate,
Camberwell SES 9 DF . Tel: 01-7371422. (1942)

\section*{BOX NOs. \\ s.}

Box number rephes should be

\author{
> Bienholm industrial Park Bury St. Edmunds Suffolk IP33 3UT
> Telephone: 02843931 (1466)
}
components, test equipment, PCB's, Computers and similar items. Please contact Mr Monro, Rimdeck Lid. 01 -41 1667.

DORAM ELECTRIC Multimetre assembly in structions and circuit diagram. Wanted by Safeguard Fuse Co., to assist a rehabilitation centre to build up kits of multitest no. DVM 60/634/1/B Safeguard Fuse Co., 63 Woodham Lane, New
Hall. Weybridge, Surrey Tel: Weybrioet 45300 . Weybridge, Surrey. Tel: Weybridge)

\section*{CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
- Rate \(£ 3\) PER LINE. Average six words per line. Minimum f20 (prepayable)
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus \(£ 3\)
* Cheques, etc., payable to ""IPC Business Press Ltd." and cross " \(\&\) Co."

NAME

ADDRESS
\begin{tabular}{|l|l|l|l|l|l|}
\hline & & & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{The world's most advanced low-cost bench multimeter}
 Thurlby 1905a

\title{
A complete high performance bench DMM
}
- \(51 / 2\) digits; \(0.015 \% ; 1 \mu \mathrm{~V}, 1 \mathrm{~m} \Omega, 1 \mathrm{nA}\).
- Full ac and current functions as standard

A sophisticated computing and logging DMM
- Linear scaling with offiset; null/relative
- Percentage deviation; running average
- dBV. dBm, general logarithmic calculations
- Limits comparison; min and max storage
- 100 reading timed data logging Thurlby Electronics Ltd Coach Mews, St. Ives, Cambs. PE17 4BN

Thurlby
N
Tel: (0480) 63570
designed and built in Britain
WW - 044 FOR FURTHER DETAILS

\section*{INDEX TO ADVERTISERS}

\section*{Appointments Vacant Advertisements appear on pages 110-119}
\begin{tabular}{|c|c|}
\hline PAGE & PAGE \\
\hline AFDEC Electronics .. 105 & Galatrek International Ltd.................................. 4 \\
\hline All Electronics Show.................................... 22,23 & Global Specialities Corp. (UK) Ltd. 9 \\
\hline Ambit International ... 19 & GP Industrial Electronics Ltd..........................16, 17 \\
\hline Analogue Associates... 2 & \\
\hline Armon Electronics Ltd. 98 & \\
\hline Audio Electronics.. 15 & Hall Electric Ltd. .. 21 \\
\hline Avel Lindberg (Cotswold Electronics) 96 & Hameg Ltd... 91 \\
\hline & Happy Memories .. 88 \\
\hline & Harris Electronics (London) 13 \\
\hline & Harrison Bros.. 4 \\
\hline Bamber, B. Electronics................................... 100 & Hart Electronic Kits Ltd.................................. 109 \\
\hline Barrie Electronics Ltd. 105 & Hemmings Electronics and Microcomputers 96 \\
\hline Black Star Ltd. .. 89.8 & Henry's Radio .. 24, 100 \\
\hline Branson, S. J .. 98 & House of Instruments Ltd. 19 \\
\hline \multicolumn{2}{|l|}{Broadfield \& Mayco Disposals 109} \\
\hline & ILP Electronics Ltd.6, 7, 87 \\
\hline & Integrex Ltd. \(\qquad\) \\
\hline Cambridge Kits .. 89 & Interface Quartz Devices Ltd. 14 \\
\hline Chiltern Electronics .. 90 & \\
\hline Circuit Services... 13 & Keithley Instruments 13 \\
\hline Clef Products (Electronics) Ltd............................ 14. & Keithey Instruments \\
\hline \multicolumn{2}{|l|}{Compec Wales... 107} \\
\hline Crimson Elektrik ... 91 & Langrex Supplies Ltd....................................... 85 \\
\hline C.T. Electronics (Acton) 89, 97, 99 & L.J. Electronics Ltd. ... 12 \\
\hline \multicolumn{2}{|l|}{} \\
\hline Danavox (Gt. Britain) Ltd. 101 & Magenta Electronics 20 \\
\hline \multirow[t]{2}{*}{Display Electronics.. 10.106} & Maplin Electronic Supplies Cover iv \\
\hline & Marconi Communication Systems 80 \\
\hline Easibind Ltd. ... 86 & Middle East Wire \& Wireless 8 \\
\hline Eddystone Radio Ltd. .. 18 & Midland Computer Fair 56 \\
\hline Edectrical Review Shock Cards............................. 108 & Midwich Computer Co. Ltd................................ 15 \\
\hline \multicolumn{2}{|l|}{Electronic Brokers Ltd. 3, 5, 54, 55} \\
\hline Electronic Equipment Co. 100 & Northern Amateur Radio 109 \\
\hline \multicolumn{2}{|l|}{EMAP (Electronics \& Computing Monthly) 83} \\
\hline \multirow[t]{2}{*}{Essex Electronics Centre 88} & Olson Electronics Ltd. 18 \\
\hline & Opus Supplies ... 84 \\
\hline Farnell Instruments Cover iii & Oric Products International Ltd.....................Cover ii \\
\hline Fylde Electronic Laboratories Ltd........................ 94 & Orion Scientific Products Ltd.............................. 94 \\
\hline
\end{tabular}

\footnotetext{
OVERSEAS ADVERTISEMENT
AGENTS
France \& Beigium: Norbert Hellin, 50 Rue de Chemin Veat, F-9100, Boulogne, Paris

Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Hungary: Mrs Edit, Bajusz,
Agency, Budapest XIV, Varosliget
Telephone: 225008 - Telex: Budapest 22-4525
INTFOIRE
Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero Via Mantegna 6, 20154 Milan
Telephone: 347051 - Telex: 37342 Kompass.
}

Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B. 212 Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106 Telephone: (03) 5850581

United States of America: Ray Barnes, IPC Business Press, 205 East 42nd Street, New York. NY 10017 - Telephone: (212) 867-2080. Telex: 238327
Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, Htinois 60601 Telephone: (312) 63074.

Mr Victor A. Jauch, Elmatex International, P.O. Box 34607 Los Angeles, Calif. 90034, USA - Telephone (213) 821
Pantechnic
PAGE
Pantechnic
PM Compon 102
P. \& R. Computer Shop94
Radford Laboratory Instruments Lid 20 95
9

Radio Component Specialists
Radio Society of G.B............

Radio Component Specialists
Radio Society of G.B............
Radio Society of G.B. .
Ralfe, P. F. Electronics 20 102
Reprints.
Reprints.
Research Communications Ltd 25
Robot (UK) Ltd 85
Sagin, M. R4
Sandwell Plant Ltd 14
86
Sche Tronics Lid. 86
.97
Scopex Instruments Lt
94
94
Seasim Controls Ltd89
. .824
. .96
Seyker Ltd.
South Midiands Communications Ltd. 96
Sowter, E. A. Ltd 20
Stewart of Reading
Stewart of Reading
86
86
Surrey Electronics Ltd
92,93
92,93
Technomatic Ltd 90
Texas Books 98
Thander Electronics26
... .87
Thanet Electronics 24, 120
Timebase Ltd. 87
Time Electronics Lid 108
T.O. Supplies (Export).
102
102
Valradio Ltd 102
Watford Electronics. 10,11
White House Electronics 24
.104
Wireless World Competitions
Xtec Lid 12

\footnotetext{
Printed in Great Britain by QB Ltd., Sheepen Place, Colchester, and Published by the Proprietors IPC ELECCRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey SM2 SAS, telephone 01. 6613500 . Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gorch LId. INDIA: A. H. Wheeler \& Co, CANADA: The Wm. Dawson Subscription Service Lrd, Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Lid: William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N. Y. 10011.
}

\section*{Directional power meter TM10}

\section*{leads by a head}
cor colour brcchure cortect:
FARNE_L INSTRUMENTS LIMITED 'NET-1ERBY _S22 4DH TE_EP-IONE (0937) 61961 TELEX 557294 FARIST G
- Single detector head covers wide frequency and power band
- 25 MHz to 1 GHz - 2 mmW to 100 W and VSWR from 1 to 3
- Head can be used 1.5 m from meter (e.g. insice closed car boot)
- Fully porable - works from internal battery \(\approx\) vehicle battery
■ Mains acaptor/charger and rechargeable battery available
- Manufactured, tested and inspected to Min. Def. Std. 0524.

\title{
TRADE PRICES
}
from

Look at these examples from our huge range.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Code & Description & \begin{tabular}{l}
Cat. \\
Page
\end{tabular} & Retail Price Incl. VAT & Min. Trade Qnty. & \begin{tabular}{l}
Price \\
Each for Min. Tr. Quantity excl. VAT
\end{tabular} \\
\hline XB54J & Aerial Rotator & 25 & £39.95 & 5 & ¢29.00 \\
\hline YG00A & Ni-Cad AA 500 mAh & 26 & £1.25 & 50 & 75p \\
\hline FB15R & Electrolytic 2.2uF 63 V & 90 & 10p & 500 & 4.5p \\
\hline FB22Y & Electrolytic 10uF 25 V & 90 & 9 p & - 1000 & -3.5p \\
\hline FB49D & Electrolytic 100uF 25 V & 90 & 14p & 500 & \(6.5 p\) \\
\hline FB73Q & Electrolytic 470uF 25 V & 90 & 30p & 250 & 12p \\
\hline FB83E & Electrolytic 1000uF 25 V & 90 & 40p & 250 & 17p \\
\hline FB96E & Electrolytic 4700uF 25 V & 90 & £1. 25 & 50 & 58p \\
\hline YG41U & 27 MHz Rubber Duck & 99 & £4.75 & 25 & \(£ 2.95\) \\
\hline XG13P & 1.5 m CB Aerial & 99 & £13.95 & 5 & £8.45 \\
\hline LB72P & 2-Station Intercom & 102 & \(£ 8.75\) & 10 & £4.95 \\
\hline HF85G & 1/4in. Jack Plug plastic barrel & 142 & 19p & 500 & 9 p \\
\hline \[
\mathrm{HF88V}
\] & 1/4in. Jack Plug stereo plastic barrel & 142 & 28p & 250 & 15p \\
\hline HF87U & \(1 / 4 \mathrm{in}\). Jack Plug metal barrei & 142 & 39p & 250 & 18p \\
\hline HF89W & 1/4in. Jack Plug stereo metal barrel & 142 & 45p & 250 & 22p \\
\hline RW67X & 13A nylon Mains Plug British & 157 & 79p & 100 & 45p \\
\hline WL27E & LED 0.2 in . Red & 182 & 12p & 500 & 6 p \\
\hline WL28F & LED 0.2in. Green & 182 & 19p & 500 & 10p \\
\hline WL29G & LED 0.2 in . Orange & 182 & 33p & 250 & 19p \\
\hline WL30H & LED 0.2in. Yellow & 182 & 17p & 500 & 9p \\
\hline RK07H & Panel Meter 100uA & 197 & £2.95 & 25 & £1.95 \\
\hline RK09K & Panel Meter 1 mA & 197 & £2.95 & 25 & £1.95 \\
\hline RK19V & Panel Meter VU & 197 & £2.95 & 25. & £1.95 \\
\hline YQ47B & Dual VU Meter & 197 & £3.90 & 25 & £2.30 \\
\hline YR84F & Professional Plugblock & 201 & £6.95 & 10 & £4.95 \\
\hline RX96E & 20 mm Fuse Holder & 250 & 45p & 250 & 24p \\
\hline M10R-M1M & Metal Film 0.4W 1\% Resistor & 262 & 2 p & 1000 & 1 p \\
\hline FW00A-FWO9K & Rotary Potentiometers linear & 265 & 45p & 250 & 32p \\
\hline FW21X-FW29G & Rotary Potentiometers log & 265 & 45p & 250 & 32p \\
\hline QL80B & 1N4148 & 270 & 4 p & 1000 & 2p \\
\hline QL22Y & 741 C 8 -pin DIL & 270 & 23p & 500 & 12p \\
\hline QH66W & NE555 & 270 & 21p & 500 & 12p \\
\hline QQ06G & 4164 64k dynamic RAM & 271 & ¢5.99 & 100 & £3.84 \\
\hline BL18U & DIL Socket 14-pin & 336 & 11p & 500 & 7.5p \\
\hline BLI7T & DIL Socket 8 -pin & 336 & 9 p & 1000 & 4.5p \\
\hline WF14Q & Stereo Headphone with slide volume controls & 342 & £7.99 & 10 & £4.95 \\
\hline FH00A & Sub-min Toggle Switch SPDT & 347 & 70p & 100 & 45p \\
\hline FH04E & Sub-min Toggle Switch DPDT & 347 & 99p & 100 & 59p \\
\hline FF73Q-FF76H & Rotary Switch break before make & 348 & 74p & 100 & 46p \\
\hline FH42V.FH45Y & Rotary Switch make before break & 348 & 70p & 100 & 42p \\
\hline YW93B & 1000 ohm per volt Multimeter & 362 & ¢4.85 & 25 & £2.95 \\
\hline YW68Y & 20,000 ohm per volt Multimeter with Transistor Tester & 363 & £16.25 & 5 & £10.45 \\
\hline BR75S & Box-joint Insulated 41/2in. Cutters & 370 & ¢6.93 & 10 & \(£ 4.45\) \\
\hline BR78K & Box-joint Insulated 41/2in. Pliers & 371 & £5.72 & 10 & £3.95 \\
\hline
\end{tabular}

\footnotetext{
Most items in our catalogue are available at competitive trade prices; the bigger the quantity the better the price. If you find the example prices attractive, then contact us now with your requirements for a quotation. Phone Southend (0702) 552911 or write to
} us at P.O. Box 3, Rayleigh, Essex, SS6 8LR. Please ask for trade sales desk.

Copies of cur catalogue are available in alf branches of W.H. Smith price \(£ 1.25\). In case of difficulty, send \(£ 1.50\) to our mail-order address. Overseas price \(£ 1.90\).

\section*{Maplin Electronic Supplies Ltd.}

All mail to P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel. (0702) 552911 Shops at 159 King St., Hammersmith, W6. Tel. 01-748 0926. Lynton Square, Perry Barr, Birmingham. Tel: 021-356 7292. 284 London Road, Westcliff-on-Sea, Essex. Tel. (0702) 554000. Shops closed all day Monday.```

[^0]: Audio compressor/limiter-Dec. 1975-1 s s (stereo)
 £4.25

 Cassette recorder-May $1976-1 \mathrm{~s}$.s
 Audio compander-July 1976-1 s.s
 Audio preamplifier-November 1976-2 s.s
 Additional circuits-October 1977-1 s.s
 Low distortion disc amplifier (stereo)-September 1977-1 s s
 Low distortion audio oscillator-September 1977-1 s s
 Synthesized f.m. Iransceiver-November $1977-2 \mathrm{~d} . \mathrm{s} .1 \mathrm{~s} . \mathrm{s}$
 Morsemaker-June 1978-1 d.s
 Morsemaker-June 1978-1 d.s
 Oscilloscope waveform store-October 1978-4 d s Regulator for car alternator-August $1978-1 \mathrm{~s} \mathrm{~s}$ Wideband nouse reducer-November 1978-1 d s Versatile noise generator-January 1979-1 s s 200 MHz frequency meter-January 1979 - 1 ds High performance preamplifier--February 1979-1 s.s Distortion meter and oscillator-July 1979-2 s.s Moving coll preamplifier-August 1979-1 s.s
 Multi-mode transceiver-October 1979-10 d.s Multi-mode transceiver-October 1979-10 d.s Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 ss Colour graphics system-April 1980-1 d.s Audio spectrum analyser-May $1980-3 \mathrm{~s} . \mathrm{s}$
 Multi-section equalizer-June $1980-2$ s.s. Floating-bridge power amp-Oct $1980-1$ s.s. (12V or 40 V) Nanocomp 6802 or 6809 - Jan., July, 1981 - 1 d.s. 1 s.s
 Cassette interface - July, 1981-1 s.s.
 Cassette interface - July, 1981 - 1 s.s. ...
 Eprom programmer - Jan., 1982 - 1 d.s
 Eprom programmer - Jan., 1982
 Logic probe - Feb., $1981-2$ d.s.
 Logic probe - Feb., 1981 - 2 d.s...
 Modular frequency counters - March, 1981 - 8 s.s.
 Opto electronic contact breaker (Delco) - April, 1981 - 2 s
 CB synthesiser - Sept. - 1 d.s.
 Electronic ignition - March, 1982-1 s.s.
 £5.00
 $£ 4.25$
 $£ 8.50$
 $£ 4.00$
 $£ 8.50$
 $£ 8.50$
 $£ 2.00$
 £3.50
 £3.50
 $£ 12.00$
 $£ 4.50$
 $£ 4.50$
 $£ 3.75$
 $£ 3.75$
 $£ 18.00$
 18.00
 $£ 2.00$
 £ 2.00
 $£ 5.00$
 $£ 5.00$
 $£ 7.00$
 $£ 7.00$
 $£ 5.50$
 $£ 5.50$
 $£ 5.50$
 $£ 3.50$
 £35.00
 £4.20 each
 $£ 7.50$ and drilled. Prices include surance 10%. Remittance with order to:
 M. R. SAGIN, NANCARRAS MILL, THE LEVEL CONSTANTINE, FALMOUTH, CORNWALL

[^1]: Please note: X in part no. indicates primary vol cage. Please insert " O " in place

[^2]: Please note X in part number denotes mains voltage. Please insert ' O ' in place of X for 110 V ' 1 ' in place of X for 220 V (Europe), and ' 2 ' in place of X for 240 V (U.K.) All units except UCI incorporate our own toroldal transformers.

[^3]: 1 enciose PO/Cheque for ε

[^4]: Department of Pharmacology, University of Dtago, Dunedin, New Zealand.

[^5]: Terms of business: CWO. Postage and packing valves and semiconductors 50p per order. CRTs $\mathbf{E 1 . 5 0}$. Prices excluding VAT, add $\mathbf{1 5 \%}$.

[^6]: Antenna Systems Division
 Marconi Communication Systems Limited,
 Lane Works, Waterhouse Lane, Chelmsford CM1 2QX, England
 Tel: 0245353221 Telex: 99108

[^7]: *Also subscription agents

