ELECTRONCS COMPUTING COMMUNICATIONS BROADEASTITG
 DIOAT I VID 51

Specially formulated for fast precision solder work，it it is 60% tin， 40% lead alloy with quality flux construction and melts at $183^{\circ} \mathrm{C}$ cially formulated for fast precision solder work，it is 60% tin， 40% lead alloy with quality flux construction and melts at 183
Two gauges are available $-18 \mathrm{SWG}(1.2 \mathrm{~mm})$ and $22 \mathrm{SWG}(0.71 \mathrm{~mm})$ in $2.5 \mathrm{Kg}, 500 \mathrm{~g}, 250 \mathrm{~g}$ and 100 g reels．Pocket size available dispenser with 10 feeto of Ory 1 mm solder is also available at only 68 p （ + VAT）．
Oryx is competitively priced - write now for details and technical information．
Greenwood Electronics
Greenwood Electronics Limited，Portman Road，Reading，Berkshire RG3 INE．Telephoine：（0734） 595844 ．Telex： 848659

The TC82－a significant development in

 temperature controlled solderingThe new Oryx TC 82 has features unique to any The new Ory temperture controlled precision soldering iry． Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models，
mol the TC 82 has a facility allowing the user to accurate dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$
by setting a dial in the handle without changing tips This eliminates the need for temperature
measuring equipment．You get faster and better soldering．
For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535，a The OryiTC 82 is also extra－safe stand，tip clean facility and illuminated mains socket switch． Ory TC 82 is also extra－safe．Removing the handle automatically disconnects the iron from power source．
Other TC 82 features include：Power－on Neon indicator in handle；bum proof cable；choice of 13 tip sylles． The Oryx TC 82 iron costs only $£ 13.00$（＋VAT）and the power unit for 24 Voperation $£ 23.00$（＋VAT）
The Oryx TC 82 iron costs only $£ 13.00$（＋VAT）and the power unit for 24 Voperation $£ 23.00$（＋VA）
The XC 82240 volt is also available as a 30 watt general purpose iron ot only $£ 3.95$（＋VAT）．
Greenwood Electronics

Wireses

GOULDOSCILOSCOPESSETA HICHER STANDARD

A tough, professional instrument with competitors; \star Continuously Comprehensive data is yours for the
you can trust - at a price you can variable amplifier sensitivity with no asking. On this tough little scope. afford! Built to do more - safely,
eliably and longer.
Complete with a 2-year guarantee. oscilloscope has obvious applications in test, production, service and R \& D areas.
As some of the specification highlights make clear: \star True 20 MHz operation - compar full bandwidt 10614
variable amplifier sensitivity with no asking. On this tough little 'scope loss of bandwidth from $2 \mathrm{mV} / \mathrm{cm}$ to
$25 \mathrm{~V} / \mathrm{cm}$: $\begin{aligned} & \text { Differential measure- Gould Instruments Division, }\end{aligned}$ ments can be made using the Roebuck Road, Hainault, Ilford, channel ${ }^{\star}$ add and invert controls; Essex IG6 3UE.
phase shift measurements; \star New Telephone: 01-500 1000. phase shift measurements; \star New type CRT with quick-heat cathode to reduce operational delays and P43 phosphor for a brighter display. 10014

An impression of crisis control,
created by Geoff
warrold , linked created by Geoof Barrold, inked
withe. E. Young's article on the
subject in this sissue.

NEXT MONTH

Line printer - an interface for driving a 40-column, dot-matrix, mechanis computer.
GPIB/serial interface Chris Jay demonstrates an 'economical and practical' solution with talker/listener capability.

Light pen - reads screen
characters, in memory mapped display
microcomputer systems,
and returns address. Design uses fibre-optic cable.

Current issue price 70p, back issues sif
available) 1 In
at Retail and Trade
 Centreb, Hopton, Street, London SE .
Availabe on microfil m please contact
editor.

 He EEP General Sales Deption, Surrey
HM
SM 5 ,
The Quadraht, Sutton,

 Subscription Hates: 1 year $£ 12$ UK and
£15 outside UK:
Student rates: 1 year $£ 8$ UK and $£ 10$
 outside UK, Quadrant House, The Quad
Distribution: Qun Surry SM2 5 SAS. Teie-
rant, Sutton,

 USA mailing agents: Expediters of the
Printed Word
Sida, 57 Madison Avenue Printed Word, New York, NY 10022 . 2nd-
Slite 121 .
clas postage paid at New York. © IPC Business Press Ltd, 1982 ISSN
00436062 . WIRELESS WORLD JUNE 1982

wireless

JUNE 1982 Vol 88 No 1557

35 GRaven Images, new strle

36 CRISIS CONTROL
by R. E. Young
40 80-100 WATT MOSFET AUDIO AMPLIFER by John Linsley Hood
42 UTERATURE RECEIVED
43 DIGITAL FILTER DESIGN - 2
43 by B. M. G. Cheetham and P. Hughes
47
LETTERS TO THE EDITOR
51 MICRO-CONTROLLED RADIO-CODE CLOCK by N. E. Sand
55 DIGITAL AUDIO SIGNAL PROCESSING BY microcomputer by J. B. Watson CIRCUITIDEAS

62 DIGITAL FREQUENCY SYNTHESIZER by J.M. Bryant

67 NEWS OF THE MONTH
70 LEAKY FEEDER COMMUNICATION
by D. J. R. Martin
76 MICROPROCESSOR CONTROLLED LIGHTING SYSTEM by John D. H. White and Nigel M. Allinson

80 HERETICS GUIDE TO MODERN PHYSICS

 by W. A. Scott Murray82 ERROR-CORRECTING SOFTWARE by N . Darwood
84 COMMUNICATIONS
86 NRZ RECORDING by L. Hayward
88 PARIS COMPONENTS SHOW by M. E. Eccles
90 NEW PRODUCTS
114 APPOINTMENTS

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

> Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presen- tation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options. Apple II interface gives dot for dot colour dump. New viewdata interface prints out two pages
side by side in full colour. See Prestel 200650 .
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM

Cotswold Electronics Ltd.
Unit T1, Kingsville Road, Kingssitch Trading Estate, Chellenham GL51 9NX

$$
1: 0442.41313 \quad \text { Telex: } 897106
$$

Hectronic Brokers Second User Test Equipment. Wakes enginears swile without making accountants cry.

Electronic Brokers are Europe's leading Second User Equipment Company. We carry

large stocks of the very latest test equipment large stocks of the very latest test equipmen which is refurbished in our own service andabogue voltmeters | | |
| :--- | :--- |
| Portwood Industrial Estate, Church Gresley | | Es15.00

 ANALYSERS

 BRIDGES

fluke ${ }^{\text {DV }}$ AND DMN

 WIRELESS WORLD JUNE 1982

manufacturer's sales specifications. When you buy used equipment from Electronic waiting for manufacturers lengthy production schedules. All equipment is fully guaranteed.

 MISCELLANEOUS | Bruel sujaer |
| :--- |
| 2029 sonnalelmeter |

 TMB339 ACDC mixe for use with Treze20.00

 OMMH2 5 MV-5.5V
 SMb.and esten cenerar lude VAT or carriage.
$1 \equiv 1=1 \equiv 1=1=1=1=1=1=1$ Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G

Caracal offer you the U.K.'s widest range of high-quality static inverters. Our inverters are used in many countries
throughout the world wherever a reliable and stable source throughou the worla is needed for computers, communications,
of
intren of A.c. power is needed are also frequently used for
instion, etc. They are
mobile or marine applications where only a D.C. source is mobile or
available.
Caracal inverter's employ modern pulse width modulation technology which is replacing obsolescent tuned-type (ferro
resonant) inverters the load range, very low standby current, and lower weight. We have a large range of models and options, at competitive your exact requirements.

19-INCH RACK MOUNTING Now all inverters are also available in 19-inch chassis form CTM
 CARACALPOWER PRODUCTSLIMITED
42-44 SHORTMEAD STREET, BIGGLESWADE, BEDFORDSHIRE 42-44 SHORTMEAD Selephone: 076781361

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14
days delivery. Other Ranges and days delivery. special scales can be inade to order.

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 Telex: 892301 HARTRO G. WW - 079 FOR FURTHER DETAILS

Croydon Micros

$\star \star \star$ IN STOCK $\star \star \star$

Over $£ 50$ worth of FREE progs. including BASIC tutorial, 10 games, home finance, and GEMINI tape database.

01-689 4349

$\star+$ Now in our new premises $t \rightarrow$ 20-28 Whitehorse Rd., Croydon CR9 2NA

ALSO - PC1500 Pocket Computer - £145
Prices include VAT FRONTREALM LTD. (T/A)

We supply

 PMTHE for Industry

HM 307
OSCILLOSCOPE
 LPs technique providés strable and

$$
5
$$

HM412-5
Dual Trace. DC to $20 \mathrm{MHz} 8 \times 10 \mathrm{~cm}$
display with internal graticule. Rise time
17.5ns. Variable input 2 mv -20V/cm.
.

The above prices
or VAT (15\%).
Simple Phone or Telex your order for immediate dispatch.
Electronic Brokers Ltd 61/65 Kings Cross Road London WClX 9LN Telephone: 01-278 3461 Telex: 298694 Elebro G ww - 202 FOR FURTHER DETALLS

moulded nylonTRANSIPILLARS'

WW - 052 For further details

MINI-DISK DRIVE TEST BOX

A simple aid to test and alignment of drives without tying up valuable system time.
Neatly presented in handy case with leads and connectors for 2 drives. Needs +12 V and +5 V through standard drive connectors (provided). Circle number for further details.

Price $£ 135$ + carriage and VAT
MELKUIST LTD.
35A Guildford Street, Luton LU1 2NO
Tel: 0582/416028
Telex: 825828 MELKST G

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Hilomast Lto

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 TNB ENGLAND TELEX NO. 995855 ww - 054 For further detallss meless worid june 1982

EGCtronlc irolers DECSALE
a selection from our selection stocks
huge

HAZELTINE 1510-SAVE £330

* 24×80 Upper/Lower case ASCll
\star
\star
\star
8
Switch-Selectable baud rates $110 / 9600$ baud * 8 Switch-Selectable baud rates 1
\star Full/Half duplex plus format mod
* Remote XY Cursor addressing $* 12^{\prime \prime}$ non-glare screen \star EAA
Manufacturer's list price $£ 880$
Manufacturer's list pric
OUR PRICE $£ 550$
HAZELTINE 1520 - SAVE £425
All the features of the 1510 plus buffered
serial/parallel printer interface. Manufacturer's list price £1050

OUR PRICE £625

Also available - Reconditioned Hazeltine H2000 VDUs @ £299 while stocks last
Electronic Brokers Ltd., 61/65 Kings Cross Road, LondonWC1X 9LN. Tel:01-2783461. Telex 298694

Hitachi Oscilloscopes performance, reliability, exceptional value and immediate delivery!

Hitachi Oscilloscopes provide the quality and performance that you'd expect from such a famous name, in a range it represents the best value for money available anywhere. newily released
$\mathrm{V}-152 \quad 15 \mathrm{MHz}$ Dual Trace $\quad \mathrm{V}-650 \quad 60 \mathrm{MHz}$ Dual Trace, Dual Timebase V-202 20 MHz Dual Trace (illustrated) \quad V-1050 100 MHz Quad Trace, Dual Timebase V-302 30 MHz Dual Trace V -209 20 MHz Dual Trace, Battery Portable V-352 35 MHz Dual Trace V-509 50 MHz Dual Timebase, Portable Prices start from around $£ 230$ and we hold the range in stock for immediate
delivery. delivery.
For colour brochures giving detailed specifications and prices, ring 0480 Reltech Instruments 46 High St., Solihull, W. Midlands. B91 3TB 63570. wW - 058 FOR FURTHER DETAILS

EPROM PROGRAMMER

2716 •HEXKEYPAD

- POWERFULEDTOR

2732 : TVMMONTORIDISPLAY 2532 CASSETTE BACK-UP - ROMULATOR

SOFTY STANDS ALONE
E769+VAT, EX-STOCK, BY RETURN
DATAMAN DESIGNS LOMBARD HOUSE DORCHESTER, DORSET, DTI IRX. (0305) 68066 wW - 039 FOR FURTHER DETAILS

The MICRO PROFESSOR solvesthe'mystery' ofmicro-processors.

FLANN $16 / 11$ Rotary Vane Attenuator WG HEWIETT PACKARD	Hewerpacano
witac	
込	
	込
thonc	
Nimmomanal	
	＝
（tan	Emis
2m	Nomeme
边	
Occlusisoins	
	mam
zin	coin
\％emm	
	2mmmemmememe
	USSEENEATOSS
2	
边	\qquad SPECCFIC NEED Hours Monday to Friday， 9.30 a．m ww－ 012 FOR further details

$\begin{array}{cc}\text { COLOMOR } & \text { Tel. } 01-7730899 \text { or } 01-7493934 \\ \text { Open Monday to Friday }\end{array}$
170 Goldhawk Rd., London W. 12
ppen Monday to Friday
9 a.m.
an.

QUALITY REEL TO REEL \& CASSETTE TAPE HEADS
 POPULAR UNIVERSAL CASSETTE HEADS TO EIAJ STANDARDS

 Mivew MONOLITH

Siliconix invented the MOSPOWER FET game. So, not surprisingly we have a tradition of firsts. First with a medium OOWer MOSPOWER FET in TO-202 packages; first with low cost plastic devices in TO-237 packages; first with n and
p-channel quads in 14-pin DIPS. p-channe quads in for versatility as well. The range includes silicon-sate metal gate, and high voltage DMOS capability in our double diffused MOS technology offered in nine different package configurations. So you can have the winning combination fo your application - whether it's a
processing or process control.

Siliconix
The Discovery Company

IN VIEW OF the extremely rapid change taking PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12.5 mins. from Tally Ho corner	
Telephone 445 2713/0749	(94611

WW - 095 FOR FURTHER DETAILS

ELECTRON GUNS TV TUBE COMPONENTS

 Please request our current catalogues and Data Information.

A Griftronic M EMISSION LTD $\begin{gathered}\text { WARSICKSH } \\ \text { ENGLAND }\end{gathered}$

Tolophone: 10799176452764100. Telex: 312354 Grriom G
WW - 041 FOR FURTHER DETAILS

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of Hifi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits.

1000 items for the constructor CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINEIS - PLUS MICROPHONES SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Lowest prices - Largest stocks *
\star Choose your DIY Hifi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities)
\star Access . Visa Ample parking American Express accepted \star

WW - 089 FOR FURTHER DETAILS

A MJasurion ACHIV:

Specification ... Versatility ... Accuracy . . Price. In almost every major area the new 179A - a $41 / 2$ digit bench/portable DMM -
from Keithley Instruments sets some pretty from Keithiey instrume
impressive standards:

- 20 amp capability - Full function: 27 ranges including true RMS AC Measurement accuracy IIEEE option Large display and $10 \mu \mathrm{Vdc}$ resolution.
For those requiring 10 times more sensitivity and an analogue output there's the 177, Both models are part of a vast range of test equipment from one of the world's leading equipment from
manufacturers
For more information fill in the coupon at the bottom of the page
Alternatively, phone our Inṡtant Service on Service on
0734864784 now

KEITHLEY

Keithley Instruments Lid
1 Boulton Road Reading Berkstme RG2 ONL 18oulton Road Reading
Telephone (0734) 861287
Telex 847047

WW - 045 FOR FURTHER DETAILS
WW - 005 FOR FURTHER DETALIS

The Professionals

VALVES,SEMICONDUCTORS

 \& COMPONENTS for:-Communications, Displays, Radar, Computer,
Audio etc.

Hall Eleetric Cimited Electron
 Electron Hiouse

 Orpington, Kent Bras 3a,
Telepione:
Orpington
2709s Telppione: Orpi
MIN DEF APPROVAL 0529/0531

The Professional Choice

technomatig teehnomatie teghnomatie

3A 5V Regulated Power Supply $£ 22$ ($£ 1.80$ P\&P) ATOM PSU $£ 7+$
 New Colour Encoder Card
ATOM Sound Board Kit $£ 34.95+£ 1$ P\& ATOM DISK PAAC complete with Controller Card, PSU to run
disc pack $+12 K+12 K$ ATOM, Conector cable and socket instruction book and manual $£ 299+$ E6 carriage ULL RANGE OF ATOM ACCESSORIES \& SOFTWARE IN STOCK
BBC Microcomputer Memories, Expansion Sockets and Connectors now available
Send for our detailed lists
PRINTERS EPSON Mx 80 FT
9×9 matrix with true descenders 80 CPS Bi-directional with
logic seeking 80 columns with condensed, emphasised en-
 $1 € 30 \oplus M \times 0$ MT 223660
Carriage $10 /$ printer
BBC recommend MX $80 \mathrm{~F} / \mathrm{T} 2$ for their compu
MICRO TRAINER
Based on the suctersin
this development kit offers the most comprehensive facilities at the lowest cost; the ideal teaching aid, or a powerful
at tide tive - software development tool for 1802 control systems. set or blocks of stored data. 4K virtual machine monitor provides single step simulator for
program tracing and debugging, with single line disprossembler.
assem $11 / 2$ of RAM for user programs.
Many other features plus professional PTH board for simpli-

SOFTY II
An ideal software development tool. A program can be developed, debugged
and verified and then can either be com and verified and then can either be com-
mitted to an EPROM or the program can
be mised be used in any host computer by plug-
ging the SOFTY into its EPROM socket. ging the SOFTY into its EPROM socket. various facilities provided on SOFTY
SOFTY complete with PSU, ROMULATOR $£ 169$
MENTA
New 280 Development System. Plugs into TV and cassette study, microcontrol and robotics. Power supply and TV lead incl. £115
 UV ERASERS
 GEFROMS 14 ERROMS with timer

TEGHNOMATIC TEGHNOMATIC TECHNOMATIC

WIRELESS WORLD JUNE 1982

WW - OII FOR FURTHER DETAILS

cyous

 THisova
The pocket Digital Multimeter by which others are judged.

New From Barmeco

Introducing a new 3 element H.F. Tribanda with proven
performance and reliability.

THE WORLD RANGER TRIBANDER

Designed, engineered and manufactured in the U.K. Use
of high-quality materials ensures high electrical stability of high-quality materials ensures high electrical stability under all weather conditions with exceptional mechani-
cal rigidity and strength. All traps are high grade P.T.F.E formers with insulated windings.
Specification:

Frequency
Impedance
Impedance
R.F. Power (max.)
VSWR (at resonance) Forward gain Front-to-Back Ratio Mast Diameter
Wind Survival Wind Survival
Turning Radius Longest elemen Boom length
Net Weight

10,15 \& 20 metr
52, hhms
$10,15 \& 20$
52 hms
1 kW (AM)
52 kW (AM)
2 kW (PEP)
2 kW (PEP)
Less than 2.0:1
up to
.
Less than
upto 8.0 db
25 db
25 db
31.75 mm to 41.30 mm
80 mph
$14^{\prime}-10^{\prime \prime}$
12^{\prime}
211 bs
$£ 120$ complete with Balun including carriage and VAT Balun available at $£ 15$ each

BARNET METAL CAR AND CO. LIMITED Tewin Road, Welwyn Garden City, Hertfordshire Telephone: Welwyn Garden City 24327
Telex: 28125. Cable: BARMECO

$2:: \frac{14}{4 a}$

And generous discounts start at 10 units; 5\%

Everything about the 130 is right Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price:
Only one calibration adjustment.
One year guarantee on spec.
25 ranges and five functions
ohms, DC and AC volts and amps
10 amp range.
$100 \mathrm{~V}, 1 \mathrm{~A}, 0.1 \Omega$ sensitivity.
20,000 hour M.T.B.F
All this is backed by the immense know * how of a specialist company with an enviable reputation for test equipment
spanning almost all requirements from
$31 / 2$ to $51 / 2$ digits.
one?
Simple. Just send off the coupon enclosing cheque or postal order. And

The Keithiey 130 - the D.M.M. that won't stretch your pocket!

Testing..
 Testing. Testing... $\square: \square: \square$ anwherel

FM/AM 1000s with Spectrum Analyser - we call it the SUPER-S A porable communications service monitor from IFR,
light enough to carriv anywhere and good enough for Tost two Way radio system tests.
The Fork of a spectrum
anal

A PRACTICAL TOP UP!
MM-100 MULTI-METER
 unit with indoenendent volume contror for tadiblber response
to signal measurement: This practical top up will pertorm to signal measurement
the following gunctions.
Sinad: Measurements for 1 kHz
Distortion: To 30%
DC Volts: Up to 300 volts and up to
800 volts when the $x 10$ probe is used
AC Volts: 600 VRMS maximum for frequencies between
25 Hz and 25 kHz
Onms Using the modified probe, part number PB-114.
Ohms can be measurect on scales x 1 to x 10 K Ohms can be measured on scales $\times 1$ to 10 K
\%AMMeasured on the RF signal appied to the FM/AM-1000 unit
OPTIONAL ACCESSORIES
A choice of R.F.F. power attenuators and protective
carrying cases.
For further information contact Mike Taylor

MICROCOMPUTER COMPONENTS

NICADS:UK'S LOWEST PRICES

WW - 009 FOR FURTHER DETALS

The only full-featured ECL Logic Probe...available now!

G.S.C. (UK) Limited, Dept. $7 \mathbf{Y}$ Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AQ
Telephone: Saffron Walden (0799) 21682 Telex: 817477

「G.S.C. (UK)LLimited, Dept. 77 , Unit 1 , Shire Hill Industrial Estate, Saffron Walden, EssexCB1 3 AQ. 1
 Nam
Tenciose checuue/P. O. for ε..

 WW - 026 FOR FURTHER details

Marconi Type R1020 Hinged antenna column.

Easy to raise
Easy to lower

OTHER MARCONI SUPPORT STRUCTURES
Include the MATHWEB* Lattice Antenna Mast Type R1010, and the Triangular Section Tubular Steel Self Supporting Tower lype R1060.
For details of these and other Marconi Antennas products please contact Chris Pettitt, Marketing Manager, Antenna Systems Division.
*MATHWEB is a registered trademark of the BP Group

Marconi

Antennas
Marconi Communications Systems Limited
ane Works, Waterhouse Lane, Chelmsford CM1 2 QX, Englan
Tel: 024567111 Telex: 99108
ww - 025 FOR FURTHER DETALL
SEND ṄOW FOR PRICE LISTS SHOWING QUANTITY DISCOUNTS WW - 072 FOR FURTHER DETAIL

WIRELESS WORLD JUNE 1982

POWER BANDWIDTH DC to $100 \mathrm{KHZ}+1 \mathrm{db}$ OUTPUT POWER IN EXCESS OF 500 WATTS PE CHANNEL INTO 2 OHMS
OR IN EXCESS OF 1 KW SINGLE CHANNEL IN BRIDGE MODE INTO 6 OHMS
HARMONIC DISTORTION LESS THAN 0.01% DC TO 100 KHZ AT 1 KW INTO 6 OHMS
INTERFACE BOARDS CAN BE CUSTOM DESIGNED AND BUILT TO CATER FOR A WIDE RANGE OF SPECIALISED USES
oUtput matching transformers available TO MATCH VIRTUALLY ANY LOAD
unconditionally stable into any load BASIC PRICE INCLUDING BRIDGE MODE
SWITCHING AND HANDLES $£ 455$
S \& R AMPLIFICATION
6 Tanners Hill, London S.E. Telephone: 01-692 2009

WW - 084 FOR FURTHER DETALLS

Memotech's New Memory System for the Zx 81
Itgrows as youprogress
Memotech's New Memory System for the ZXxs1
It grows as youprogress

Memopak 16K Memory Extension - £39.95 indVIVAT

It is a fact that the Z 811 has revolutionised home computing. and coupled with the new Memopak 16 K it gives you a
massive 16 K of Directly Addressable RAM. which is ne:ther switched nor paged. With the addition of the Memopak 16 K your $\mathrm{ZX8} 1$'s enlarged memory capacity will enable it to execute longer and more sophisticated programs. and to hold an extended database. The 16 K and 64 K Memopaks come in attractive. custom-
designed and engineered cases which fit snugly on to the back of the ZX81. giving firm, wobble-free connections. See below for ordering information

Coming Soon...

All these products are designed to fit 'piggy-back' fashion on to each other. and use the Sinclar power supply. WATCH THIS SPACE for further details. We regret we are as yet unable to accept orders or enquiries concerning these product

- but well let you know as soon as they become available.

Memopak 64K Memory Extension
 £59.00 incl:VAT

The 64 K Memopak is a pack which extends the memory of
the ZX 81 by a turther 56 K . and together with the $\mathrm{ZX81}$ gives a full $64 K$. which is neither switched nor paged. and is directly addressable. The unit is user transparent and accepts basic commands such as 10 DIM A(9000).
BREAKDOWN OF MEMORY AREAS
$0-8 K$... Sinclair ROM
$8-16 K$. Thia section of memory switches in or out in $4 K$ blocks to leave space for memory mapping holds its 4 contents during cassette loads. allows communication language routines.
16-32K...This area can be used for basic programmes and
assembly language routines.
$32-64 \mathrm{~K} \ldots 32 \mathrm{~K}$ of RAM memory for basic variables and large
arrays.
With the
With the Memopak 64K extension the ZX81 is transformed into a ducational use at a traction of the cost of comparable
Unique 3 monthtrade-in offer!
When your programmning needs have outgrown the capacity
provided by 16 K RAM. and you find it necessary to further proviced by 1 KX RAM. and you find it necessary to further Mermopak and allow a discount of $£ 15.00$ against your purchase of our 64 K model.*

Please nake cheques payable to Memotech Limited

SIGNATURE \qquad DATE

	Quantity	Price	Total
16 K RAM, Assembled		£39.95	
64 K RAM, Assembled		£79:00	
		Postage	$\underline{2.00}$

NAM
ADORESS We want to be sure you are satisfied with your Memopak - so we offer a 14 -day money back Guarantee on all our products.
Memotech Limited, 3 Collins Street, Oxford OX4 1XL. England Telephone: Oxford (0865) $722102 / 3 / 4 / 5$
 WIRELESS WORLD JUNE 1982

LOW COST VOLTMETERS

LEVELL
PORTABLE INSTRUMENTS

LEVELL A.C. MICROVOLTMETERS AND BROADBAND VOLTMETERS are part of our comprehensive range of test and measuring instruments.
These voltmeters give accurate readings over a wide range of frequencies, These voltmeters give accurate readings over a wide range of frequencies
They are housed in oroust steel cases and are powered by ong fife batteries
Mains power units and leather carrying cases are available as optional extras.

A.C. MICROVOLTMETERS

LEVELL ELECTRONICS LTD.
Moxon Street, Barnet, Herts. Tel. 01-449 5028/440 8686 the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Cyprus: Genoital Presss

 Solive, Totinian

 B.a.s. VViveranain!
20124 Milano

Postage

BUSINESS REPLY SERVICE

BUSINESS REPLY
WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry Service for Professional WIRELESS WORLD Wireless World, Junc 1982 WW 266 Readers
 WW.... WW.... WW
 Please arrange for me to receive further details of the products listed the appropriate ref space provided.
 Name.
 Narie of Company
 Address.

 Position in company.
 Nature of Company/Business
 \qquad
 I wish to subscribe to Wireless World \square
 Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

Shure brings
intelligibility \& reliability to professional communications microphones
Experienced operators recognize that the audio quality of Experienced is limited by the quality of the input from the
the transmitter One
microphone. On the air, there's no mistaking the crisp, intelligible microphone. On the air, there's no
messages microphones have been the overwhelming choice of professional communications users all over the world for over 30
years. Many milestone improvements developed for demanding years. Many milestone improvements developed
professionals are found on Shure microphones: ARMO-DUR ${ }^{\circledR}$ Case: Lightweight, immune to oil, grease, fumes salt spray, sun, rust, and corrosion. Prevents RF burn! "Million Cycle" leaf switch: Just one of the crucial wear points TRIPLE-FLEX® Cable: Provides three or four times Ionger flex life CONTROLLED MAGNETIC® or Dynamic Transducer: The exclusive Shure-designed super-rugged transducers that
give excellent voice intelligibility and super reliability give excellent voice intelligibilility and super reliability. To improve your on-air intelligibility we suggest
the following Shure Microphones:

Fixed Station

	Mobile Application	Fixed Station Application
SSB	$414 A^{*}$ $40 A^{*}$ $577 A^{* *}$	444 D $526 T$ Series H
FM	4148^{*} 5078^{*} $577 B^{* *}$	450

General recommendation Consul equipme
manuar for corect microphone inpedance.
$*$ Noise-cancelling.
SHURE Hand-Held Mobile Mics

Communications Microphones by...

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstöne (0622) 59881
ww - 032 FOR PURTHER DEtails
 HARRY AIKEN
$061-8728861$

Midland Salos:
BASIL McGOWAN BASIL McGOWAN
$021-3564838$

Group Classified Manager: BRIAN DURRANT
$01-6613106$

IAN FAUX
IAN FAUX
$01-6613033$
Production:
BRIAN BANNISTER
(Make-up and copy)
01-661 8648

Editor: PHILIP DARRINGTON
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 8639
Communications Editor: MARTIN ECCLES 01-6618638
Nows Editor: DAVID SCOBIE 01-661 8632
Drawing Office Manager: ROGER GOODMAN
Technical Illustrator: BETTY PALMER
Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130
$\begin{aligned} & \text { DAVID DISLEY } \\ & 01-6618641 \end{aligned}$
$\begin{aligned} & \text { BARBARA MILLER } \\ & 01-6618640 \end{aligned}$
Northern Sales: HARRY AIKEN 061-872 8861
Midland Sales: BASIL McGOWAN 021-356 4838
Group Classified Manager: BRIAN DURRANT 01-661 3106
IAN FAUX 01-661 3033
Production: BRIAN BANNISTER (Make-up and copy) 01-661 8648

wireless world

Graven images, new style

When Lech Walesa, the Polish union leader, was asked by the military regime to appear on television and speak for them,
he replied, according to a report, "You, will have to cut my body into a thousand pieces first". This volently negative pieces first". This violently negative
response speaks louder of the power response speaks louder of the power of
televison than all the strivings of young hopefuls in the entertainment business desperate to claw their way in front of the cameras. It also speaks loudly of the exclusive control of a whole broadcasting
system by one authority only exemplifies, in a brutal way, the fact that television is a highly selective, and therefore exclusive, medium in the hands of anyone who uses it.
the physical details of the television sed by operating in the home. The images on the screen are produced by means of transmitted light from glowing phosphor sources, whereas we normally see mos things in the world by reflected light. real world often has to be interpreted in silence. The pictures are viewed in the banal surroundings of household objects and events: furious drama may work itself
out on the screen immediately next toa plate of sandwiches and a sleeping cat. On this screen the people and objects are miniatures, and the convergence feedback of our binocular vision tells us that the images are not the same as the originals
seen at a distance. Overall the effect is the of a brightly-lit toy theatre. Within these physical limitations the deliberately selective processes of the broadcaster are operating. There is an old
adage that newspapers can't tell you what adage that newspapers can't tell you what
to think but they can tell you what to think about. Selection and exclusion begin on television with the overall policy of the broadcaster and are implemented first in programme planning and then in the political discussions, for example, the agenda is set in advance: any controversy is held within previously determined limits which can be enforced by editing the recording.
of the visual presenage" and conventions of the visual presentation, though, that
selection and exclusion are seen most immediately. First the sequence of shots is
elected. Then each shot is structured by a variety of artifices: by choice of duration, rom which it is token and and distance precise meaning or mood which the viewer expected to attach to the resulting images is fixed by the use of sound. Speech music are very specific. One result of this concentration'o alienation of the viewer from normal experience. Jonathan Miller, the television producer and man of many other parts, describes it well in his book on Marshal McLuhan. The images which televis dissociated from all other senses. The viewer sits watching them all in the drab comfort of his own home, cut off from the pain, heat and smell of what is actually going on. Even the sound is artificial
All these effects serve to distance the viewer from the scenes which he is watching, and eventually he falls into the unconscious belief that the events which happen on tv are going on in some activity. The alienating effect is magnified by the fact that the tv screen reduces all images to the same visual quality. Atrocity and entertainment alternate with one another on the same rectangle of bulging
glass. Comedy and politics merge into one continuous ribbon of transmission."
Perhaps what Miller describes is the Perhaps what Miller describes is the
result of the most powerful selective process of all - in the mind of the viewer. If we seem to go into an hypnotic trance when watching television it is because we have involuntarily agreed to suspen
judgement on the reality of what is appearing on the screen. We have colluded with the modern graver of images in allowing ourselves to be transported by his art, shuting out our normal, hard-headed sceptical selves. In this irrational state of
suspended belief the contrived images and sounds become more 'real' to us than the real world. Temporarily we can be persuaded of anything. This mental state, and how to produce it, is well understood by television playwrights, propagandis
and makers of commercials. The unperceived surrender of the mind is where the real power of the medium lies.

There have been occasions in large control complexes when the amount of information presented to controllers has been so vast and, possibly, suspect, that operators have reund of malfunctions and the level of stress on operators.

The Senior Shift Engineer was more bewil dered than horrified when he answered the
"panic" call to the control room and saw "panic" call to the control room and saw along the almost infinite assembly o panels, obviously not knowing in the least what was going on, and deafened by the ceaseless and ever-growing noise of the
alarms. Full horror was to come almost immediately when he realised that hordes of men were surging into the room from all over the huge plant, summoned in a last
desperate attempt to find out which, if any, of the meters and indicators were "telling the truth".
Fictitious? - yes. Exaggerated? perhaps. Irrelevant? - no, for here is an extract from an account of such a catastrophic 'Incident': ". . the operator and by signs of an apparent excess of er ... All the events were accompanied by an unhelpful cacophony of about 100 larms sounding off, distracting the perators as they faced panel upon panel o ed, green and amber lights and dials indi conditions, and as they tried to grasp th ignificance of the mystifying changes tha were happening
This description of a 'developed' crisis ituation is taken from the masterly sum ary by Sir Alan Cotterell ${ }^{1}$, of what tend arge-scale industrial disaster - the Three Mile Island accident. In actual fact, this near-catastrophic type of accident, with its ar-reaching consequences, has been e erienced in many industrialized countries
byr. . Young
B.Sc. (Eng.), M.R.Ae.S., F.I.E.E.
in the world, but it was not until "Three Mile Island" had occurred that public awareness of the dangers involved became much more apparent. At the same time steps to introduce improved safety precau ions were being taken at both national and produced a Directive in 1980 aimed a avoiding major industrial disasters, and the Atomic Energy Agency called an inter national conference in the same year harmonize nuclear reactor safety standard orldwide.
Both rechnical and political interest ow realize the need to provide additional ntirely new, safeguards in the operation design of large industrial complexes. Th pe 'total' approach to high-risk installa ons in particular becomes clear, and ha been brought out in what amounts to pub ic debate, largely critical in nature.
This critical element has been especially marked in relation to "Three Mile Island", blamed for the accident; and with strong attacks being made, in effect, not only on he operators themselves but on their selection and training. It is only when one in the light of 'crisis control' and allied considerations ${ }^{2}$ that an entirely different picture emerges, which can be largely summarized by the statement that within
the circumstances in which they were operat-
ing, the control engineers at Three Mil Ingland could not have achieved more than they did.
Before going into the way in which mea surement and other information was pre ted to them - quite inadequately ess' (integrity) question of the goo ess (integrity) of this information, it位essary to look at the state in which engineers found themselves. It was, in a sense utterly fluid and had feature which completely defied explanation. I . . . (they were) faced suddenly with a rotally strange combination of events . receded by " ... (being) misled . . . be apparent excess of water n apparent excess of water. . . fill emergency - stage of an inciden carrying high potential risk, where th ontrol staff come to the chillin arsation that they are being given wrong o possible means of finding out where Furthermore, as far as their control of the lant is concerned, they are completely out of contact with it; and, added to this, all o be treated as totally suspect.
Thus it has to be recognized that in such circumstances the stress to which the eng eers are subjected can only be described as extreme in the full sense of the word producing the emergency are entirely unoreseen, it becomes clear that it is vir tually impossible to predict how any indi"there is nothing to get hold of".

WIRELESS WORLD JUNE 198

Nevertheless, there are two related areas where experience can be quoted whic tion of behaviour under stress
The first of under stress. 'control under wartime aerial bombing attacks. Secondly, it is not usually realized that in World War II, 'ultimate crisis control' was carried out under these hostule conditions. This was with extensive integrated broad casting networks under central master
control and with large radar command systems, which became, in effect, the equivalent of modern high-risk installations. As will be treated in more detail in Part 2 of this article, observation has led to a number of conclusions on unexpected ing people for it.
The most significant of these conclusions was that under such stress, one or other of two conditions $-\mathbf{A}$ or $\mathbf{B}-$ was reached, assuming, of course, that a panic
state was not developed, where 'panic' is differentiated from conditions A and B by being "unreasoning" and "sudden" in nature.
Briefly, condition A is one in which despite the severe stress - the person
thinks and takes action exactly (as far as the outside world is concerned) as before he incident occurred. As will be indicated in Part 2, it is suggested that methods of training and preparation for this condition
should be largely 'subliminal' in nature,
e. without the training mechanism being really obvious.
the main differences betwee conditions A and B is the virtual disap pearance in B of the ability to take action cases "leadership by exs to be lost. In most cases "leadership by example" can restor surface" from this point of view. In practical terms, they appear not to be in a state of shock, as it is generally understood. However, it is in the almost invariable change in facial expression to the blank working in that field, which is most characteristic in Condition B. The 'mentally handicapped look' and other relevant as pects of that complaint will be discussed which has been in progress for a number of years. This programme, conducted essentially on a voluntary basis, has nevertheless attracted an increasing amount of interest, particularly during the last two years; and lished between observations made in one field and 'practice' in the other. Examples of such correlation include 'thinking fatigue' which is relevant to the design of ata present and other equipment for

Fig. 1. 'Data-marshalling' type of controlsituation on wred for aircraft testing. Overall situation on wall diagram
on operator's screens.
crisis control, and which appears as major problem with the mentally handi capped.
fatigue produce may be defined as mental activity, i.e. where several idea (lines of thought) have to be carried simul taneously and coordinated. Instances are a complex, interacting, plot, or by a pilo landing an aircraft under adverse conditions with all the controls having to be operated simultaneously and in relation to a number of rapidly changing events of Wireless World last year (1981) as "A engineer preparing for or taking part in highly technical and diversified international conference".
It may be noted that the direction of from mental handicap to operational design in that the effects of 'thinking fatigue' can actually be seen with the former, whereas it tends to be regarded as almost hypothetical in the ordinary world. In
contrast, in the other example to be quoted at this point, viz. data marshalling (io be described in the next section), the flow has been mainly from the technical side towards mental handicap. This flow tends to become two-way as time goes on; it de-
velops to benefit both sides, and then - in many cases - extends as an interchange of information to other areas, such as geriatinformation
ric care.

Data marshalling

This concept, first introduced by the writer in 1960^{3} mainly in connexion with the testing of complex aerospace vehicles the separation, streaming and Figure 1 shows the control room installation as originally envisaged for aircraft testing. The main display consisted of a wall diagram of the complete aircraft, with tional basis and broken down to the next order of detail displayed on corresponding panels placed on the operator's console itself.

Fig. 2. Transducer instrumentation chain in otally hostile environment.
The design of the system was aimed at ensuring that faults at once strike the
attention of the operator, and their location and magnitude are clearly apparent to him". Also as a statement of an ideal which is still aimed at ". . . the action to be taken (in the event of a fault) arises naturally in correlation and interpretation of a mass of data".
Even at that time it was suggested that all the displays, and particularly the wall diagram, might be by large-screen (cinema
size) television. It is not generally known that large-screen television was in operaWorld War II, and in a more advanced form, using high-valtage projection tubes, was demonstrated to the Press in 1948 . In non-aerospace, such as process-plant, applications, the wall diagram becomes an 'alarm and situation' mimic-type diagram,
designed to give an overall instantaneous designed to give an overall instantaneou
picture of the system at any time, and particularly under alarm conditions. Thus, for example, with a large offshore oilfield, the A . and S . diagram would show a group of well head winh and

Fig. 3. Balanced-oscillator transducer system showing
safety features.

T)

INHERENT LOW IMPEDANCE OF SENSING COILS
ANO CONNECTING CABLE
block of plant at the central platform based (centhin a conven) type of contro system with visual display unit presentation, alarms shown at critical points on the A. and S. diagram give a combined 'alert
ing' and 'location' signal to the contro engineer should a fault develop.
The resultant system is in sharp contras with the 'spread-panel' type as shown in the heading illustration, and as described for Three Mile Island. Thus, even if the their information during that incident, the presentation of this information was such as to make their task of investigating the fault quite impossible. With this in mind it would seem pertinent to add that they
would appear to have remained in operational Condition A throughout, something which should not be overlooked.

'Telling the truth

As has been stressed already, the most disturbing influence that a control engi-break-down is the realization that instruments are not 'telling the truth'. It is manifestly impossible to ensure that informa tion wever be false (equivalent to infinite reliability), as, for example, when 'drive' side of a break in an actuator shaft. Nevertheless, design for full 'crisis management' demands that every effort must be made to give the maximum integrity to every element in the control system. The determining their ultimate form must be carried out jointly between user and control-system designer ${ }^{2}$ if the maximum
protection is to be given to the whol installation
The provision of crisis-level protectio is obviously a big subject; as on illustratio of the principles involved, consider of transducers as key elements in the overal combined) main plant and control-system position in the instrumentation chain sinc they are vulnerable both to sever mechanical and electrical disturbance. Apart from various forms of mechanica engineering techniques, reducing vulnerability is fundamentally a matter of the de sign and construction of the transduce itself and (in the mechanical context) of its physical environment. Instrumentation
transducer design is far more involved than is generally thought: this is particu larly true at the 'hyper-interface' where the parameter/electrical signal transfer take place; and it is at this interface that the actual measuring process may be said to take place.
Consequently, it is vital that, under all tain the integrity of this transfer (i.e. that the transducer itself should 'tell the truth'). The system diagram of Fig. shows how protection against totally hos-
tile physical conditions can be 'designedin' to the instrumentation chain system; and brings out the extra vulnerability of the transducer in meeting the 'real' hostile conditions such as blast pressures at the hyper-interface. The balanced-oscillato
(dual-chain) transducer system of Fig . has been designed from the beginning to exhibit minimum error under abnormal and 'catastrophic' conditions.

This family of transducers have a derived as a difference (beat) frequency between two matched oscillators, them selves tuned by high (electrical) resistanc moving probes. These probes move dif ferentially within their sensing coils at th input to the dual-chain system, which is basic symmetry of the mechanical-electrical combination and its inherent balance provide a high degree of compensation fo ambient changes.
The greatest attraction of this configura ronments, where the series-resonance operation of the Clapp oscillators which are used, makes it possible to instal th sensing coil and probe remotely from the
less 'hard' electronic unit. This is by virtue of the low-impedance (coaxial cable) connexion, which can be used between the two with the series-resonant oscillators. From the diagram it will be seen how this precautions built-in to the system, is an advantage. Thus, with the 'barrier' protec tion shown, the coil can be situated in the hazardous area and can be made effectively neutra, with little risk of energy at thi point to initiating a spark.

References

1. Cotrell, A.H.: How Safe is Nuclear Energy?
Heinmann Educational Books, 2. Young, R.E.: Control in Hazardous ${ }_{1982}$ 1982.
2.
3. Young, R.E.: Data marshalling. Private Tommunication.

Action on private mobile radio - urgent!

Unless the Goverrment takes action quickly to
introduce repeaters, trunkking and cellular ystems, along with other measures mercial enterprises, emergency services and public bodies will become muct less efficient radio industry will suffer.
This is the burden of a report, prepared by
PACTEL (PA Computers and TelecommuniPACTEL (PA Computers and Telecommunications) on behalf of the Electronic Engineering Association, which is entitled 'Mobile radio -
the case for urgent action". It is the latest in a
series of attempts to persuade the Government, series of attempts to persuade the Government,
who control the use of the spectrum, to allow who control the use of the spectrum, to allow
nobile radio users access to a share of the
$30 \mathrm{MHz}-1 \mathrm{GHz}$ spectrum more in keeping with $30 \mathrm{MHz}-1 \mathrm{GHz}$ spectrum more in keeping with
potential usage than the nominal 8% they now potential usage than the nominal 8% they now
have (PACTL say this is really 6.5% because of interference, terrain limitations and official
restrictioss.). Among the secure a more equitable share are high costs, ers of the hution and a poor service to customsafery and seccurity.
The depressed use of m.r. in the U.K.
(around 0.5% against 2.7% in the US) is, around 0.5% against 2.7% in the US) is, says
PACTEL, no help at all to the UK radio industry, in contrast to the state of affairs in Japan and the USA, where a healthy home demand
acts as a spur to development and production ants as a spur to developments and profficient systems and lower costs.

WIRELESS WORLD JUNE 1982
taken now. Another $30-35 \mathrm{MHz}$ of spectrum
must be released for m.r. use - little enough,
since this would bring the total since this would bring the total to a mere 10% of the usable 30 MHz -1 1 GHz band. Secondly, the
Government should take a close look at the Government should take a close look at the
amoun of spectrum inhabited by the military
and by broadcasters. PACTI and by broadcasters. PACTE bsays " "herer is
little doubt" that little doub" that the MDD keeps some of its
allocaions on ice, unused in peacetime, simply because they might be needed seame daye, in spite of claims by m.r. lobbyists that, if they were eleased, they could be taken back in emergency of braadcasting, the report is critical of the case
ciency with which the spectrum is used and syss ciency with which the spectrum is used and says
that it could be improved upon without any deterioration in service. Thirdly, three types of system should, says PACTEL, be promoted to give wide-ranging,
low-cost, flexible and spectrum-efficient services: community repeaters, trunked systems nd cellular systems.

In a repeater, a common base station, rage, many rented mobiles sharing one channel: a 'channel buss' indicator helps to avoid Ther current position is that not enough hannels are available for this type of
Trunke
Trunked systems provide a number of
channels to each user and are therefore fre-hency-efficient: the operator uses a multi-
channel radio which is tuned automatically
to a free channel. For this purpose, blocks of channels are needed - too few are currently available for widespread adoption of this
kind of system. More channels are needed. kind of system. More channels are needed.
The third type, the cellular system, relies on dividing the area into cells, each of which is treated as a trunked system. By geograph-
ically separating cells which use the same
block of frequencies, interference is avoided and the usaguencoices, interference is is avoided ip to 1200%. Blocks of channels are needed
for trunking. Once again, not enough are arailable (56. Onstead of a a required enough.
and
The fourth recommendation is The fourth recommendation is that the Government actively promote the use of private
mobile radio instead of restricting it. Finally, says the report, the delay of berween
bree and six months in the issue of licences three and six months in the issuau of berween
should be reduced. Otherwise, illegal installations will multiply and make spectrum management virtually impossible.
As John Carlson, chairman of the EEA's Mo-
bile Radio Committee, points out "cif bile Radio Committee, points out, "if even the nanuracturers of private mobile radio equip-
nent put forward the difficulties to their cus-
omers, the situation must be tad" And Nemers, the situation must be bad". And Ray
Northcort of PACTEL sums up the current p.m.r. scene by saying "Other countries have taken a conscious decision to encourage p.m.r.

- the UK hasn't. Available at $£ 3.00$ from The Director, The Electronic Engineering Association, Leicester
House, 8 Leiceser Smeat House, 8 Leicester Streee, London WC2H 7BL.

80-100 WATT MOSFET AUDIO AMPLIFIER

A three-part article on the design and construction of a modern, high-power amplifier begins with a description of the problems of amplifier design in relation to the characteristics of 'vertical' power mosfets. A matching, modular preamplifier design will follow.
he problem with designing audio amplifiers is that there are a number of to satisfy completely: such things as reedom from harmonic and intermodulation distortion; independence, in terms of distortion or transient
response, on the nature of the load response, on the nature of the load
reactance; freedom from spurious (amplifier-generated) signals over the whole range of signal inputs and likely load haracteristics; rapid settling time and freedom from 'hang-up' on step-input or onditions; and complete absence of inputignal or load-induced instability.
Not only are these requirements mpossible to achieve absolutely, but the work needed to improve one of these may other respects, so part of the task of the esigner is to choose, within the appropriate limits of cost and complexity, between conflicting possibilities and
requirements. No two designers (or their equirements. No two designers (ors) are likely to come to the same balance of compromises in these respects, and this leads to subtle differences in the tonal characteristics of the designs.
A characteristic of commercial trends in
he last twenty years, which I view with regret, is an overwhelming concentration on the attainment of very low harmonicdistortion figures over the whole of the udible spectrum, to the extent that many state t.h.d. figures fifty or more times better than possible, under any conditions, from the signal sources which feed the amplifiers. A similar amount of effort is high signal-to-noise ratios - which would be valuable if it were matched in the handling of programme material by the programme producers.
The reason for this commercial interest is a simple one. the major emphasis in
most equipment reviews is placed on t.h.d. and s / n ratio, coupled with, in the case of power amplifiers, power output in watts/pound (sterling) or, occasionally, watts/pound (avoirdupois). This trend be achieved without impairment in other desirable characteristics of the equipment: unfortunately, it cannot. If one wants some quality very good, one must accept some others relatively bad! If only one
knew which ones were important to the listener, this choice would be easy, but one

by John L. Linsley Hood

doesn't. Quite a lot of work has been done in the field of psycho-acoustics to try to characterize the effects on the listener of far from complete and impaired, from the point of view of the designer, by the mission of most of the minor performance defects practical amplifier designs are heir
Nevertheless, a predictable result of the accumulation of experimental findings on acoustic effects, coupled with a greater awareness on the part of designers of the existence of residual performance interest in new developments in components and circuit techniques, as a possible route to improved performance. Of these new component developments, crive devices, has been the growing availability of rugged, reliable and reasonably priced power mosfets (metal-oxide-silicon field-effect transistors). These devices have a very much better h.f. response - almost embarrassingly so -
than the normal audio power transistor, and allow a considerable extra freedom in solving h.f. loop-stability problems, where some compromise must always be reached in a feedback amplifier design between the
conflicting requirements of gain (or phase) margins and the need to retain a high loop gain at the upper end of the audio spectrum to achieve a high degree of steady-state linearity. In addition, these devices are almost completely free of the transistors, which tend to impair complexsignals transfer.
Unfortunately, power mosfets have electrical characteristics and circuit requirements which are very different
from those of the junction power transistor, so that they cannot be used as a direct replacement for junction transistors in existing designs. One must reappraise the circuitry.

Power mosfet

Insulated-gate field-effect transistors, of the type shown in outline in Fig. 1(a), and
which operate by means of a mobile layer of charge induced in an otherwise nonconducting region of a semicondutctor,
have been known and used in small-signal have been known and used in small-signal
applications for many years - particularly in v.h.f. circuitry, where their very fast
esponse times are of great value. However, the conducting path in these devices is, by the nature of their method of construction, parallel to the surface of the semiconductor element. It is difficult, manufacturers have achieved this in an endeavour to avoid restricting patents, to make this conducting path sufficiently short to achieve a for larger signal use
The technical breakthrough in this type of device came about when it was
appreciated that a ' V ' or ' U ' groove etched appreciated that a ' ' or ' ' groove ecthed
through the junctions in a fairly conventional transistor gave the possibility of an insulated-gate, induced-charge f.e.t., 'vertical. (as in the conventional junction transistor) rather than 'lateral. (in relation to the surface of the chip) as in the normal insulated-gate component. This gave a

(b)

Fig. 1. Small-signal, n-channel, insulatedgate f.e.t. of 'lateral' construction is show
at (a), while at (b) is the vertical po at (a), while at (b) is the vertical power
mosfot, in which the conducting path is a mostat, in which the
great deal shorter.

GATE VOLTAGE (V)
Fig. 2. D.c. operating conditions of typical power mosfot compared
junction power transistor
these devices are now almost universally known, which was open to any manufacturer of epitaxial planar junction mask manufacture to fabricate the large number of parallel-connected igfet gates on a single chip, which are needed to lowe he conducting resistance and increase the ypical construction for such a vertical or power - mosfet is shown in Fig. l(b) though the proliferation of such design within the past few years makes the rogressively less tenable. However, they do all have in common the paralle connexion of a large number of elements, which makes the mask design more reiect rate and cost relatively high in comparison with the larger power junction ransistors.
The electrical performance, under d.c. Fig. 2, with a superimposed, Fig. 2, with a superimposed curve from graph to draw attention to the differences n performance. Two features are immediately obvious from this graph hat a significantly higher forward voltage applied to the gate of the mosfet is adequately linear, operating current, and hat the mutal conductance of the power mosfet (about 2A/V in its linear region) is very much lower than that of the bipolar unction transistor (which can be in excess
of 15 A , or many hundreds of amps $/ \mathrm{vol}$ in the case of Darlington-connected pairs). In conventional audio-amplifier design, as it has become established over the pas years, the 'architecture normall voltage amplifier, usually operated in clas A, with as high an a.c. gain as is racticable without the use of an inconvenient number of gain stages, ollowed by an impedance-converter stag mitter followers, forward biassed into AB peration, with an operating point chose o that the mutual conductance of the pair of emitter followers is close to that which perating in its 'inear region. Negative eedback is then applied from output to input to improve the overall linearity and ther operating characteristics of the mplifier
WIRELEESS WORLD JUNE 1982

This configuration gives satisfactory power outputs with low quiescent thermal dissipation. The main drawback in this system is that there are invariably some low-level residues of crossover distortione which increase in magnitude at higher frequencies, as the open-loop gain of the
class A amplifier decreases - mainly as a result of the added h.f. loop-stabilizing components. This problem is worsened by the loss in loop gain through the output mitter-following stage, in which the gain To a first approxim
mpedance of an emitter follower is $1 / g_{m}$, which would give a gain in the output stage of $\mathrm{Z}_{\mathrm{L}} /\left(1 / g_{\mathrm{m}}+\bar{Z}_{\mathrm{L}}\right)$ at low frequencies. However, there is a further loss of gain at urn-on and turn-off times of the transistors, so it is customary to use two or more transistors in a compound configuration in each haf of the emitter ollower, partly to sustain a low output
impedance, and partly to allow the 100% negative feedback within the emitterollower group to force improvements in he internal h.f. characteristics.
Inevitably, therefore, a complementary
pair of output source followers using pair of output source followers using
power mosfets, having a maximum g_{m} of some 2 AV , will perform less well in terms

of linearity with a comparable class A amplifier stage than a pair of compound g_{m} of, at least, some $100 \mathrm{~A} / \mathrm{V}$. Two solutions are available to this problem, of which the first is simply to incorporate the power mosfets in a
compound source-follower circtit, with compound source-follower circuit, with
one or two small-signal bipolar transistors to increase the internal loop gain and reduce the dynamic output resistance and non-linearity of this stage. This provides a
very simple answer to the difficulties very simple answer to the difficulties
introduced by the low g_{m} of the power introduced by the low g_{m} of the power
mosfet, while allowing full advantage to be taken of the advantages of these devices (freedom from 'secondary breakdown', simpler output stage overload protection, and much better h.f. characteristics eading to lower overall t.h.d. and better practical audio amplifier circuit using mosfets in the output stage configuration of Fig. 3(a), in another place
For relatively low-power use, up to say 50 watts, this type of output stage is performance without calling for unconventional circuit design. However, there is a practical limitation in higher power use in that the forward voltage drop
in each compound half cannot be less than the forward gate voltage (ref. Fig. 2) added

(c)

Fig. 3. To increase the internal loop gain, the mosfet can be used with a small-signal transistor in compound source-follower,
which enables low mutual-conductance mosfots to be used, while retaining the
d mosantages, as in (a). At higher powers,
advanter supply voltages must be used, but
large larger supply voitages must be used, but
circiut tht bl hhows that only low-current
drivers need be so supplied. Circuit at (c) is drivers need be so supplied. Circuit
xtension of approach shown in (b).

iive Zener diode can cause inadvertent thyristor action, in which gate Fig. 6. Intern
loses contro
the saturation voltage ($V_{c e}$) of the drive ransistor, even though the necessary drain-source voltage of the mosfet for this apput current may be less man tupply-lin oltages, with a consequent increase in the cost of mains transformer and smoothing apacitors.
In the very simple complementarymosfet output stage of Fig. 3(b), the drive
tages can be supplied from a highe voltage line without so much of a cos penalty, since the supply currents required by the driver stages are comparative mall.
This advantage can be retained by the while still allowing a very high effective g_{m} of the compound emitter follower, and high level of internal negative feedback The problem with this circuit is that it is internal feedback loop, and h.f. stabilizing components such as C_{s} and R_{s} need to be added to achieve the desired overall gain and phase margins - an elaboration which
is unnecessary in the simpler arrangenent
of Fig. 3(a).
The other solution to the difficulty of the lower effective transfer ratio of the simple mosfet source follower of Fig. 2 bil to increase the gain of the class A amplifier
stage, and this approach is explored below. stage, and this approach is explored otenwhile, there are some other potential piffalls in the use of power mosfets which need consideration if a workable and reliable design is to be put togethe
Specific problems with mosfets Although the power mosfet is, in its normal method of construction, equivalent
o a bipolar junction transistor with its base and emitter joined together, and is therefore immune from the problem of emitter current through diminishing areas of the base-emitter junction and consequent localized overheating and damage) it does suffer from other problems which are unique to itself. Of
these, the first and most immediate is that the gate insulation layer, an oxide film formed on the surface of the silica, is less than 0.0001 lin (2.5 microns) thick, and will break down if the voltage between the gate
and the source exceeds some $10-20$ volts -
depending on the device manufacture. ince the time delay involved in this breakdown, which will destroy che device, designed to protect the gate against even very brief voltage excursions beyond his limit.
This difficulty can be lessened, in the construction of the device, by incorporating a Zener diode between
source and gate, as shown in Fig. 4. However, this technique in its turn leads to the problem that the device must then be protected against a reverse bias - of the order of 0.6 volts - which would cause
this internal Zener to conduct, since this can sometimes lead to the triggering of a thyristor-type action within the mosfet, in which the gate is irrelevant. This may not destroy the device, but may damage associated circuit elements. The simplest germanium diode, connected in parallel with the gate/source Zener, and arranged to conduct before the internal diode. This is not a preferred solution, however, since the reverse insulaton resistance of che input resistance of the mosfet, and is nonlinear with voltage. The circuit of Fig. 3(a) is immune from this problem. The second difficulty in the use power mosfets arises from the very high operating frequencies possible with these components. This leads to an effective
clement of the form shown in Fig.

(b)

Fig. 5. At high frequencies, stray capacitances and inductances, sh

 capacitances and inductances, shown at(a), turn mosfet into an oscillator, with (a), turn mosfet into
damaging effect.
(a), when the user expects the device to behave as in Fig. 5(b)! This causes immediate high-frequency oscillation, with frequently destructive effects, when uch mosfets are incorporated int and since the resultant burst of oscillation probably occurs in the $200-1000 \mathrm{MHz}$ range - and is brief anyway - it is unlikely that it will be seen on any experimenter is then left contemplating a defunct device, thinking that its sensitivity to static electrification is so great as to ender it unusable.
Happily, the internal gate-source capacitance is sufficiently high, typically in
the range $600-1500 \mathrm{pF}$, that stray static charge is unlikely to induce an electrical breakdown of the gate insulation. This internal capacitance, which must not be overlooked in circuit design
considerations, also provides a convenient means for taming the h.f. behaviour of the transistor, sicne an external 'gate-stopper' resistor can then cause a predictable rolloff in h.f. response, to bring the unity gain transition frequency down to a more the range $470 \mathrm{R}-4 \mathrm{k} 7$ is normally adequate. Given these precautions, my experience is that power mosfets are at least as durable as normal bipolar power transistors, and performance for a relatively small extra performance for a relatively small extra
cost.

References

References

1. Linsley Hood., J. L., Hi-Fi News and Record
Review, Vol. 25, No. 12 (Dec. 1980) pp. 83-85.
To be continued

HTHERATMRTE REC테붕

Power semiconductors and d.c. power
supplies are detailed in the 1982 edition of the Lambda catalogue. It includes some application
notes and dimensional drawings which makes it notes and dimensional drawings which makes it
useful as a handbook. Lambda Electronics Co , Abbey Barn Road, High Wycombe, Bucks. 400 Sôme literature that you would like to receive
may beout of prit. A service to help you find that elusive book is provided by The Out of
Print Book Service, 17 Fairwater Grove East, Print Book Service, 17 Fairwater Grove East,
Cardiff, CFS 2JS. They do not charge a fee bu ardift, CFSNS. They do not charge a fee but accompanied with a postage stamp at the cur-
rent first class letter rate and full details of the
book required.
WW 401 Ceramic chip capacitors for high frequency
applications are described in a bulletin from
Hy-Comp Ltd , 7 Shield Road, Ashford Industapplications are described in a
Hy-Comp Ltd, 7 Sileld Road, Ashford Indust-
tial Estate, Middlesex TW 15 1A. The bulletin rial Estate, Middlesex TW 151 AAV. The bullecin
lists their stability, specifications and termina-

DIGITAL FILTER DESIGN

Will digital filters take over from their analogue counterparts? Accuracy, versatility and falling cost suggest they will. This second article on microprocessor implementation details a procedure for recursive filter design of Butterworth and Tchebvchev response with examples and Basic programs for pole, zero calculation.
thas long been recognized that because of the high sensitivity of the roots of high order polynomials to coefficient values, recursive digital filters are best imple of second-order filter sections. Cascading several second-order filter sections as illus ated in Fig. $\mathrm{l}(\mathrm{a})$ is equivalent to re-e ressing $H(z)$ as the product of second der transfer functions, i.e.

$$
H(z)=H_{1}(z) \cdot H_{2}(z) \ldots H_{\mathrm{m}}(z)
$$

where each $H_{j}(z)$ is of the form

$$
\begin{equation*}
H_{;}(z)=\frac{1+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}} \tag{1}
\end{equation*}
$$

This is often referred to as a biquadratic ransfer function and the circuit by whic The signal flow diagram of a commonl used biquadratic section is shown in Fig.

1. The filter design problem is now that of deciding how many biquadratic sections
are required, and calculating the coefficients for each of them. There are a variety of solutions to this problem, and the proce dures are divided ito two broad groups direct methods in which the poles and directly in the z-plane, and indirec methods which involve the design of an nalogue prototype fiter which is trans ormed to give a suitable digital equiva ect design methods can be found in the

WIRELESS WORLD JUNE 1982

by B. M. G. Cheetham and P. M. Hughes

tandard texts ${ }^{1}$. The direct method d ailed here for the design of Butterwort and Tchebychev-type digital filters probably the simplest approach; it is no terative and does not require the use of a large computer. Further details and direct design methods are to be found in the standard texts.'

Butterworth and

 fering applications require an am quency bands to pass through the filter unaltered and eliminates as nearly as pos sible frequency components outside these bands. In many applications, particularly where a degree of phase distortion is acceptable in the passbands, Butterwortand Tchebychev-type filters are ofte used, whose responses approximate th magnitude-frequency response of an idea filter. The difference between the two classes lies in the nature of the approximation. In the case of Butterworth-type filt
ers, the magnitude of the frequency res ponse is maximally flat over the passband falling by 3 dB at the cut-off frequencies and decreasing monotonically in the stopbands. The rate of fall-off of gain in the stopbands is fixed and determined chev-type filters display an equi-ripple passband response with specificable ripple amplitude δ. The filter gain falls monoto nically in the stopband at a rate dependin larger the ripple amplitude, the sharper is the transition from passband to stopband Tchebychev-type filters generally show an increased rate of fall-off of gain over th equivalent Butterworth-type filter of th number of alternative methods exist for the design of Butterworth and Tchebyche digital filters. For a given set of design parameters, there will be a number of digital filter transfer functions which may be classed as Butterworth or Tchebychev
type. The method presented here, referred to as the squared magnitude approach, described in detail by Rader and Gold ${ }^{2}$ and used by Ackroyd ${ }^{3}$. The poles an zeros of the digital filter are deducted
directly from the squared magnitude of the required response with no constraints placed on the phase response, which ma therefore be non-linear. Once the pole and
ero positions have been determined, it imple matter to calculate the a_{i}, and b second-order sections. As the design procedure simply consists of the evaluation of a number of given formulae, it is particularly suitable for a programmable calcuprocedure given is that for a lowpass digital filter, which also forms the basis of the design methods for highpass, bandpass and bandstop filters.

owpass Butterworth filters

An analogue lowpass filter is an n th-order utterworth type if its response $G(j 2)$ satisfies

$$
|G(j \Omega)|^{2}=\frac{1}{1+\left(\frac{\Omega}{\Omega_{c}}\right)^{2 n}}
$$

here Ω signifies angular frequency. Th ormula gives a passband which maximally flat, with a gain of 0 dB at d .c. lling to -3 dB at the cut-off frequen

Fig. 1. Recursive digital filter is realised as cascade of second-order sections with
transfer functions $H_{1}(z)$, $H_{2}(z)$, etc. $X(z)$ and $Y(z)$ are the z-transformed input and outpu sequences respectively (a). Biquadratic
section (b) has input sequence $\left\{x_{r}\right\}$ and output $\left\{y_{n}\right\}$ with input sequence $\left\{w_{n}=x_{n}\right\}$ and so $\left(1+b_{1} z^{-1}+b_{1} z^{-2}\right) W(z)=X(z)$ Also $y_{n}=w_{n}+a_{1} w_{n-1} a_{2} w_{n-2}$ so $Y(z)=\left(1+a_{12} z^{-1}+a_{2 z} z^{-2}\right) W(z)$ $=\left(\frac{1+a_{1} z^{-1}+a_{2} z^{-2}}{1+b_{1} z^{-1}+b_{2} z^{-2}}\right) X(z)$, as required.
 Fig. 2. Amplitude response of three
Butterworth-type lowpass digital filter with cut-off equuil to 0.125 effect of increasing the filter order
$\Omega_{\text {c. }}$ A corresponding forumla for digital ilters which produces a frequency response with similar properties to that of an
analogue Butterworth filter is

$$
\left|H\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|^{2}=\frac{1}{1+\left(\frac{\tan \omega / 2}{\tan \omega_{\mathrm{c}} / 2}\right)^{2 n}}
$$

(2)
where ω_{c} is equal to the radian cut-off frequency. In place of radian frequency ω it is often convenient to refer to relative frequency f, obtained by dividing ω by 2π. Hence f is the relative frequency of a sinu-
soid of frequency $F=f \times(1 / T)$. Because F soid of frequency $F=f \times(1 /)$. Because F -
must be less than $1 / 2 T$ to satisfy the sampling theorem, values of f need only be considered in the range 0 to 0.5 . Fig. 2 shows the magnitude responses of three These filters all have a cut-off frequency $f_{c}=\omega_{c} / 2 \pi$ equal to one-eighth of the sampling frequency. As the order of the filter, n, is increased the more closely its magnirude response approximates the ideal But
The design of a Butterworth lowpass digital filter requires the invention of a
suitable function $H(z)$ for which the substitution $z=\mathrm{e}^{\text {io }}$ gives equation 2 . A number of such functions of z may be found, their derivation being a fairly comable transfer function derived by Rader and Gold ${ }^{2}$ is found to have poles located at $U_{m}+j V_{m}$ in the complex z-plane, where

$$
U_{\mathrm{m}}=\left(1-\tan ^{2} \pi f_{\mathrm{c}}\right) / D_{\mathrm{m}}
$$

$V_{\mathrm{m}}=\left(2 \tan \pi f_{\mathrm{c}} \sin \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}$
with $D_{\mathrm{m}}=1-2 \tan \pi f_{\mathrm{c}} \cos \theta_{\mathrm{m}}+\tan ^{2} \pi f_{\mathrm{c}}$
and $\theta_{\mathrm{m}}=\frac{(2 m+n+1) \pi}{2 n}$
where $m=01, \ldots(n-1)$ for a filter of ers may also be specified. Each of the n transfer function zeros is located at $z=-1$. Once the poles and zeros of a recursive stop in the design process is to determine the coefficients a_{1}, a_{2}, b_{1} and b_{2} of equa-
ion 1 for each cascaded second-order secion. For even-order filters, the transfer
function poles can always be grouped as complex conjugate pairs.
Hence the overall filter transfer function
$H(z)$ expressed as a product of $n / 2$ second$H(z)$ expressed as a product of $n / 2$ seco
order (biquadratic) transfer functions is

$$
H(z)=A_{0} \int_{m=0}^{n / 2} \int_{1}^{1} \times
$$

$\left(1+z^{-1}\right)\left(1+z^{-1}\right)$
$\left[1+z^{-1}\left(U_{\mathrm{m}}+j V_{\mathrm{m}}\right)\right]\left[1+z^{-1}\left(U_{\mathrm{m}}-j V_{\mathrm{m}}\right)\right]$
Expanding the above equation yields the equired form

$$
\begin{gather*}
H(z)=A_{0} \int_{m=0}^{n / 2} \bar{u}_{1}^{1} \times \\
\frac{1+2 z^{-1}+z^{-2}}{1-2 U_{\mathrm{m}} z^{-1}+\left(U_{\mathrm{m}}^{2}+V_{\mathrm{m}}^{2}\right) z^{-2}} \\
\frac{1}{A_{0}}=H(z)_{z=1}=\left.H\left(\mathrm{e}^{\omega}\right)\right|_{\omega=0} . \tag{4}
\end{gather*}
$$

Tchebychev filters
The squared magnitude of the frequency esponse of a Tchebychev low-pass digital filter with cut-off ω_{c} is
amplitude. Fig. 3 shows the frequency response of a typical fourth-order Tchebyband ripple δ is magnitude of the pass band
by

$$
\begin{equation*}
\epsilon=\left(\frac{1}{(1-\delta)^{2}}-1\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Increasing δ has the effect of sharpening the cut-off region of the filter and increases the stop band attenuation, but only at the expense of increasing the pass band ripple.
The transfer function poles of an $n \mathrm{th}$ order digital filter whose frequency res${ }^{\text {ponse satisfies equation } 6 \text { are located at }}$ $U_{\mathrm{m}}+j V_{\mathrm{m}}$ in the complex z-plane where

$$
U_{\mathrm{m}}=\left\{2\left(1-a \tan \pi f_{\mathrm{c}} \cos \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}\right\}-1
$$

$V_{\mathrm{m}}=\left(2 b \tan \pi f_{\mathrm{c}} \sin \theta_{\mathrm{m}}\right) / D_{\mathrm{m}}$
with $D_{\mathrm{m}}=\left(1-a \tan \pi f_{\mathrm{c}} \cos \theta_{\mathrm{m}}\right)^{2}$
$+b^{2} \tan ^{2} \pi f_{c} \sin ^{2} \theta_{m}$
for $m=0,1,2, \ldots n-1$
and $2 a=\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{1 / n}$ $-\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{-1 / n}$

$$
2 b=\left(\sqrt{\epsilon^{-2}+1+\epsilon^{-1}}\right)^{1 / n}
$$

$$
+\left(\sqrt{ } \epsilon^{-2}+1+\epsilon^{-1}\right)^{-1 / n} .
$$

θ_{m} is calculated as for Butterworth filters θ_{m} is calculated as for Butterworth filters
from equation 3 and each of the n transfer function zeros is again located at $z=-1$. Once the poles and zeros of the transfer function have been calculated, substituting
for U_{m} and V_{m} in equation 4 gives the $n / 2$ for U_{m} and V_{m} in equation 4 gives the $n / 2$
biquadratic transfer functions used in the realization of the filter.
where $V_{\mathrm{n}}(x)$ denotes the n th-order Tchebychev polynomial function of x and ϵ is'a parameter used to set the pass band ripple

Fig. 3. Amplitude response of a typical fourth-order Tchebychev low pass filter
with cut-off equal to 0.25 and specified ripple, δ.

Frequenct
Fig. 4. Amplitude and phase ype highpass digital filter Tchebigned usowpass to highpass transformation.

Example 2

Design a second-order Tchebychev lowpass digital filter with $f_{c}=1 / 3$ and a pass-
band ripple of $0.1(0.915 \mathrm{~dB})$. By equation $7, \epsilon=0.4843$ and α and b
and thus calculated to be 0.844 and 12834 and thus calculated to be 0.844 and 1.2834
respectively. respectively. Substitu ung these values into
equations 8 with θ_{m} obained from equa-
tion 3 for $m=0$ and 1 shows that the poles inter lie at
$z=-0.38075 \pm 0.49030$ Calculating now the biquadratic transfer
function for the single section required gives
$H(z)=A_{0} \frac{1-2 z^{-1}+z^{-2}}{1+0.7615 z^{-1}+0.3854 z^{-2}}$
Substiutuing $z=1$ into the above shows that A_{o} must be set to 0.5367 for unity gain at
d. c .

Example 3
Design a fourth-order bandpass But
eerworth
type filter with a sampling fre querworty type filter with a sampling fre- 16 kHz and cut-off frequencies
quen of 2 and 4 kHz . As the bandpass transformation doubles the order of the prototype filter, a second-
ordder Butterworth lowpass protorype is
required with a relative cut-off frequency required with a relative cut-off frequency
$\left.f_{\mathrm{c}}=(4-2)\right) 11=0=0.125$. The t woo poles of the $f_{c}=(4-2) / 16=0.12$. The two poles of the
prototype filter, calculated from the ex-
pressions for U and $V_{\text {(}}$ (eqns 3 , lie at pressions for U_{m} and V_{m} (eqns 3), lie at
$z=0.4714 \pm j 0.3333$. The two zeros are at $x=-1$. Substituting for $f_{h}=41 / 16$ and
$f l=2 / 16$ in equation 9 gives $\alpha=0.4142$. By equation 10 the poles of the bandpass filter are calculated to be $z=0.5262 \pm j 0.5885$
$z=0.0833 \pm j 0.7266$.
The zeros of the protorype filter transform
two zeros at $z=-1$ and two at $z=+1$ Pairing the zeros at $z=-1$ with the poles
at $z=0.0883 \pm j 0.7266$, gives $H(z)$

$$
=\left(\frac{1-2 z^{-1}+z^{-2}}{1-1.0524 z^{-1}+0.6232 z^{-2}}\right)
$$

$$
\left(\frac{1+2 z^{-1}+z^{-2}}{1-0.1665 z^{-1}+0.5348 z^{-2}}\right)
$$

The passband gain is set to 0 dB by scaling
$H(z)$ by a factor of 0.0977 . Graph shows
. ${ }^{\text {an }}$. magnitude and phase responses of the the magnitude and phase responses of the designed filter

Highpass, bandpass and bandstop filter design
 bandstop filter design

The design of Butterworth and Tchebychev filters may be carried out by transformatoobsappsied to lowpass prototype filtearlier 4. The simplest of the transformations is that of low to highpass. A lowpass filter with relative cut-off frequency f_{c}, is transformed to a high-pass filter with placing z^{-1} with $-z^{-1}$ in the filter transfer function $H(z)$.
Applying this transformation to the lowpass Tchebychev filter in the previous example, we obtain a high-pass Tcheby-
chev filter with a relative cut-off frequency of $1 / 6$. The resulting transfer function $H(z)$ is

$$
0.5367\left(\frac{1-2 z^{-1}+z^{-2}}{1+0.7615 z^{-1}+0.3854 z^{-2}}\right)
$$

The magnitude and phase responses of this
ter are shown in Fig. 4

Low to band pass

low pass prototype filter with relative cut-off frequency f_{c} is transformed to a off frequencies of f_{1} and $f_{i}+f_{c}\left(=f_{6}\right)$ respec tively, by the replacement of z by

$$
\frac{z(z-\alpha)}{(\alpha z-1)}
$$

in the prototype transfer function, where

$$
\begin{equation*}
\alpha=\frac{\cos \pi\left(f_{\mathrm{h}}+f_{1}\right)}{\cos \pi\left(f_{\mathrm{h}}-f_{1}\right)} \tag{9}
\end{equation*}
$$

$z=1$, the other n at $z=-1$. When the order of the prototype filter is even, as is nor-
mally arranged, the zeros of the bandpass filter may be grouped in pairs such that of the n second-order sections which comprise the filter, half will have transfer func numerators equal to
ist the remaining half have numerators
of
$z^{-1}+1$ ((wo zeros at $z=+1$)

Example 4
Design a
chev filter with arder bandstop Tcheby of 20 kHz , lower and upper cut-off frea passband ripple of 0.1 .
atotype is required with a relative lowpas frequency of 0.49 and a passband ripple
amplitude of 0.1 . The two poles of this ampatude ofe found to lie at
filter are
$z=-0.9681 \pm j 0.0482$, with the two $z=-0.9681 \pm j 0.0482$, with the two zero
at $z=-1$. Using the transformation equation 11 ite poles and zeros of the
tand-stop filter are $\begin{array}{ll}\text { poles } & \text { zeros } \\ 0.9356 \pm 0.3099 & 0.944 \pm \pm 0.3374 \\ 0.9171 \pm i 0.3553 & 0.8414 \pm j 0.3374\end{array}$ The filter transfer function $H(z)$ is thus calculated to be

$$
\begin{aligned}
& \left(\frac{1-1.8827 z^{-1}+z^{-2}}{1-1.8712 z^{-1}+0.9714 z^{-2}}\right) \\
& \left(\frac{1-1.8827 z^{-1}+z^{-2}}{1-1.8341 z^{-1}+0.9672 z^{-2}}\right)
\end{aligned}
$$

which must be scaled by 0.969 to set the
d.c. gain to unity. The magnitude and phase res
alongside

The n biquadratic transfer functions may now be completed by pairing each of the
calculated numerators with a suitable denominator. As a general rule, the denominators of the second-order sections should be parried with the numerators in such a way that the poles of each section are those filter transfer function $H(z)$ is simply the product of the n calculated biquadratic transfer functions. The passband gain may

$\begin{array}{cccc}0 & 0.1 & 0.2 & 0.3 \\ \text { Amplitude and phase response of }\end{array}$ Tchebychev-trpe bandstop or notch filter
designed using lowpass to bandstop transformation in Example 4.
ing factor A_{0} equal to the reciprocal of
H (eiw) evaluated at the central frequency of the passband.

Lowpass to bandstop

transformation
A lowpass filter with relative cut-off frequency f_{c} is transformed to a bandstop
filter with lower and upper cut-off frequencies of f and f respectively, where

$$
f_{c}=0.5+f_{1}-f_{\mathrm{h}}
$$

by replacing z in the prototype transfer
function with function with

$\frac{z(z-\alpha)}{1-\alpha z}$

where α is defined as for the bandpas where α is defined as for the bandpass
transformation. Apply the transformatio to poles and zeros it is readily shown that a pole or zero of the prototype located at $z=p$ transforms to two poles or zeros of the
nastop firter located at
$z=1 / 2(1-p) \alpha \pm\left\{\frac{1}{4}(1-p)^{2} \alpha^{2}+p\right\}^{1 / 2}(11)$
The procedure for calculating the second order sections of a bandstop filter is simila to that for a bandpass filter. In this case,
however, the zeros are no longer located at $z= \pm 1$ but form complex conjugate pair which must be expanded in the normal way to give the numerators of the secondorder sections. The numerators of all the
second-order sections will be identical.

Continued on page 79

WIRELESS WORLD JUNE 198

LETTIERS

WIRELESS?

I have just bought a copy of your magazine, for
the first time in some years, and after reading with some amusement I have the following comments to make.
Firstly I sur
Firstly, I suggest you rename the magazine
Computer World (Wireless Comenter? Computer World (Wireless Computure?, Computuer
Wireless??) - I bought the magazine because want to buy a communications receiver work with computers and I find it amusing that your magazine is now full of computer project
rather than the radio projects it used to be. Secondly, with respect to Mr B. Reay's letter (April 1982) - I have heard of the RSGB's opposition to c.b., but not experienced it it
directy -1 am a c.b. user, but find the RSGB has nothing to worry about. Most c.b. users would not join the RSGB. (they can barely
operate a 'rig' much less pass the RAE) Those operate a 'rig' much less pass the RAE). Those
who are interested in radio (myself included), who are interested in radio (myself included),
find c.b. very frustrating (2 watts e.r.p. and 200 users per channel - at least in London) and this exposure to radio usually causes strong motiva-
tion to take (and pass) the RAE, thus escaping trom the school-children and 'wallys" (although Year 2 metres is nor much better); and thus the
serious user ends up as an amateur anyway serious user ends up às an amateur anyway. I
have heard that the RSGB has been swamped with enquiries since c.b. legalization!
On "Microchips and Megadeaths", if all of work on weapons systems (as I have done), there would be no such systems.
Finally, what has happened to the glossy Finally, what has happened to the glossy
paper WW wsed to be printed on? and where can
I buy a second-hand communications receiver? Hugh J. Davies
Eagat Barn
Herts

DISC DRIVES

refer to Mr Watkinson's article on disc drives bit computer can only address 32 K memory ocations. It is well known that 16 mets can
dors ddress 64 K locations $\left(2^{16}=65,536\right)$, a feature
ommon to most microprocessors. Could Mr common to most microprocessors. Could Mr
Watkinson please explain his apparently erroneous mathematics?
P. C. Maior
P.C. Major
Winchester

Hants.

The author replies:
am grateful to Mr Major for giving me the been encountered by many familiar with microprocessors when faced with more power-
ful hardware. I am sure, however, that Mr Mal hardware. I am sure, however, that Mr
Maior would agree that such treatment would be out of place in a series which is primarily devoted to disk drives.
The definition of a 16 bit machine which I
ind most satisfactory is that it possesses a dara find most satisfactory is that it possesses a data
path of 16 bits in the c.p.u. Neglecting more
coser complex machines which employ block fetching
in conjunction with a cache memory, a 16 bit machine will have 16 bit wide memory locaions. This allows an entire parameter to be fetched with one memory cycle. In such
machines, the smallest entity of interest is still the 8 bit byte, of which there are rwo in each location. As one address bit is necessary to
specify whether the high byte or the low byte is WiRELESS WORLD JUNE 1982
of interest 1 only 15 bits are left to specify the location. 2 locations equals 32 K as stated. mined by circuitry quite distinct from the dat paths in both microprocessors and minicomputers. For example, the 8085 has an 8 bit data
path, but has the ability to generate 16 bit path, but has the ability to generate 16 bit
addresses by the time consuming expedient of a two-byte program counter which has to be loaded a byte at a time. This is simply the result
of designing for a different price performance of designing for a different price performance
target. Thus on the one hand we might have a minicomputer which obtains two bytes at a time from 32 K locations, and on the other hand a from 64 K locations. The number of available bytes is the same in each case, but all other thoout twice as fast. For further reading on the subject I would recommend the Intel 8085 Manual and the PDP
$11 / 04$ Processor Handbook.

BLUMLEIN BIOGRAPHY

 The September 1973 issue of Wireless Worldcarried a letter from Rex Baldock which contained the following paragraph:
"The full story of Alan Blumlein's contribution to technical history will appear in the forthcoming biography by Mr F. P. Thomson, written in
coniunction with Simon Blumplein, and anyone coniunction with Simon Blumlein, and anyone
with information likely to be of value should write to Mr Thomson at 39 Church Road, Watford WDI 3PY Herts, England."
On the 1st June 1977, a GLC plaque to Blum-
lein was unveiled and Mr F. P. Thomson gave a lein was unveiled and Mr F. P. Thomson gave a spech in which he said he had been "persuaded
to write a biography" on Blumbein. I, for one, reported the prospect of a Blumlein biograophy
in print (e.g. Hi Fi News, Aumust, 1977) and in in print (e.g. Hi Fi News, August, 1977) and in
February 1982 wrote to Mr Thomson querying progress on his biography. In reply I have received letters which tell me that I am "imperrinent" and my own articles on Blumlein are
"inaccurate", but offer no information on a publication date of the mooted biography. I would be interested to hear from anyone
who who answered the call for biographical informa-
tion nearaly ten years ago, and is now concerned.
My address is Garden Flat, 5 Denning Road, London NWW 3 IST. Barry Fox
Hampstead Hampstead
London NW3

MICROCHIPS AND MEGADEATHS

Steve Coleman (April letters), has taken too
literally my plea for refusal to fight. This was intended to apply to opposition in. its widest in the future.
Electronic. engineers in the UK, the USA and
USR are in ideal race. Also well placed are their supporting teams, without whose help they cannot operate. This applies to thosese who type, drive lorries and
serve in canteens. When the Americans say "tell serve in cantecns. When the Americans say "tell
that to the Russians", I have little doubt that the Russians say "tell that to the Americans". The
decisions of Nuremberg tell us that obedience to

Orders from higher authonity
against charges of immoral acts.
The records of both
The fores ammoral acts. ling, and give us no iustification for an allianc with either power. Balance the massacre of Ka tyn against that of Mi Lai. Balance Afghanistan
against Vietnam. Balance the rapes of the Baticic against Vietnam. Balance the rapes of the Baltic
states and Central Europe against the man American invasions of South America, the destabilization of its emerging democracies and the
military support of regimes as foul as that military support of regimes as foul as that of
Hitter. It was the US which dropped two atomic bombs on Japan when the latter was on th verge of surrender. The US has come close to using atomic weapons several times since then.
How can we depend upon British politica How can we depend upon British political
parties? The government of Anthony Eden
handed Russian prisoners handed Russian prisoners over to Staliin and almost certain death, and later ordered the inva-
sion of Suez. The agreed to the use of atomic bombs on Japan The Wiison government supported the US over
Vietnam. The answer is that individuals must act according to their own consciences, or like act according to their own consciences, or like
lemmings we will follow each other into oblivion.
By the
By the laws of chance, if weaponry be re-
tained at its present level, sooner or later tained at its present level, sooner or later, by
virtue of a technical fault or the action of person of deranged mind, disaster must follow. Yes, Steve Coleman, let us extend our scien-
dific interest in technology into a scientific analysis of society.
R. Whitehead
R. Whitehead

Sutton
Surrey

POOR DEAL FOR

AMATEUR RADIO

in your April issue. My copy was from B. Reay fore the Ist of the month, otherwise I might have thought that this was a special "All Fools" May I first of aill make it quite clear that, as
and many of your readers will know from my call--
sign, although I am employed by the RSGB I sign, although I am employed by the RSGB I
am not privy to any matters of policy and I do not even work at the Society's premises. These comments are therefore made purely from the standpoint of an ordinary member of forty years
standing and a reasonably active transmitting amateur since 1948 .
Everyone will regret that your correspondent receives no replies to his letters, and it is up to
him to take this matter up with the appropriate him to take this matter up with the appropriate
representatives and committee members. On the other hand however, nobody is obliged to reply to unsolicited communications which con-
tain nothing but unconstructive criticisms and tain nothing but unconstructive criticisms and/
or impossible demands, particularly from indi-
viduls or mpossible demands, particularly from
viduals claming to speak for many others.
Dealing Dealing with Mr Reay's points in roughly the
same order as in his letter, first of all I do not same order as in his letter, first of all I I do not
agree that the RSGB have been anti-c.b. I have no felings either way in this matter, but it seems to me that the Sociery dealt with the
matter very fairly, even issuing a list so that the matter very fairly, even issuing a list so that the
uninitiated could be told the essential differences between the two Services.
With regard to the 70 MHz band, this is of With regard to the 70 MHz band, this is of
course not an international allocation but is
made available on a "erace and favour" basis made available on a "grace and favour" basis subject to the requirements of the priority users
of the band. Incidentally, Mr Reay, either by
accident or design, makes no mention of the accident or design, makes no mention of the new uh.f. allocations made avalable, together
with the three new h.f. bands, at the 1979 WARC as a result of much hard work done by national societies, including the RSGB. So far
one h.f. band has been allocated to UK amaone h.f. band has been allocated to UK ama-
teurs, with the remainder to follow. It is also worth remembering that, despite the weight of
ARRL, amateurs in the USA do not yet have ARRL, amateurs in
any of these facilities.
With regar to the abuse of the London repeaters, this is often referred to in "Radio Communication", and to close the repeaters down
would be about as logical as terminating the telephone system because some people "fiddle" coin-boses or make obscene calls. As for
persuading the Home office to catch the offendpersuading the Home Office to catch the offend
ers, this suggestion fails to appreciate the ers, tinance and manpower position in which the finance and manpower posiuon in which the mention the limitations of phy Act in its present form.
Concerring the RAE, I agree that this to
many people seems to be more a lotery than an many people seems to be more a lottery than an examination, this being all part of the general
lowering of standards. However, Mr Reay has presumably joined in the joke and obtained his callsign. If the " " B " licence (introduced at the
tins
insistence of RSB insistence of RSGB, by the way) does not give Morse test to obtain extended facilities and, by his operating, help to
cline in amateur radio. With regard to amateur radio being a techni-
cal hobby, not many people build or repair their equipment these days, and why on earth should they, unless they are so inclined? None of my
licences, not even the old "Experimental" one, has made any reference as to who makes my equipment; why is it, therefore, that from time
to time those who are presumably still living in to time those who are presumably suil living in
the times when it was not possible to buy readymade gear, raise this old red herring. The acid test always used to be the quality of one's signals
and the manner in which the station was and the manner in which the station was operated. No-one expects Keegan to tan a piece
of leather for his boots or Boycott to turn his bat on the lathe!
Finally, therefore, I would submit that as a
result of having a result of having a strong and vigilant society the
British amateur, far from being given a raw deal, can look to the future with confidence. An example of this is the prompt action taken after
the recent Home Office gaffe over the licence schedule. schedule.
If Mr Reay, and any who think like him,
would only stop and reflect, they may yet see the wood through the trees.
E. G. Allen, G3DRN E. G. Allen, G3D
London $S W 20$

As an RSGB member, the letter from B. Reay in the April edition was very interesting to me, and I agree with many of the points raised. It is sad
that the growing numbers of concerned and disenchanted members have to air their views in
a companion journal, as the Society claiming to a companion journal, as the Society claiming to
represent all radio amateurs is totally out of touch with, and does not appear to want to The current licensing fiasco show the
Society is not in touch with the Home Office Sociery is not in touch with the Home Office
either, admiting in March Radio Communica-
tion "The first the tion "The first the Socierv knew about the publi 48
cation of the Gazette notice was when a Member telephoned. ...". At $£ 229$, I don't subscribe to the Gazette, but surely with an income of
around $£ 700,000$ the Society should. It seems the member who kindly telephoned was luck to get an answer - it's difficult to hear the
'phone with your head in the sand! When tuning across the bands you often hear someone complaining about the RSGB - not another band plan - yet more repeaters to obe
introduced - the list is endless, so I wont compile yet another one here. Ill simply say to compile yer another one here. TII simply say to
the "Old Boys" at the RSGB, listen to the disenchanted membership, and get a much-needed
decent deal for the radio amateurs you claim to represent.
Peter Thurlow, G8SUH Dagenham

DATA STORAGE

In reply to the letter by B. Savage on the subject of "An economical Z-80 development system"
(Wireless World, April 1982), I must say, f find (Wireless World, Apris 1982), 1 must say, , find agree with him on the availability and advan--
tages of fast, reliable serial data transfer facilitages of fast, reliable serial data transfer facili-
ties, for bulk storage on cassette or for ties, for bulk storage on cassette or for long
distance communication, the article describes a distance communication, the article describes a
technique which allows the two otherwise secparate microcomputers to become integral components in a mach seropent system. Using this philosophy the interconnecting wires which Mr Savage refers to present absolutely n o hardship.
Parallel data transfer generally requires no error checking, communication medium bandwidth presents no problem, transfer speed is
optimized more flexibily is optimized, more flexibility is possible in the
software 'management' package and as an added bonus, the tape interface remains available on both systems for bulk storage.
On the subject of efficiency,
On the subject of efficiency, it may be noted that two-way handshaking is involved. This was
a deliberate policy to ensure universal compatia diliberate policy to ensure universal compati-
bility with 'host computers' of widely varying operating speeds and with their own special data
transfer facilities. Transfer speed may be improved by utilising the interrupt facilities of both computers but for absolute maximum efficiency, DMA must be use
G. Winstanley Bio-medical Eng. Unit
N. Staffordhire Polyte

AMATEURS

AND C.B

I see from recent reports that the number of applicants for amateur radio licences is continu-
ing at a hiob level. I listen to the ing at a high level. I listen to the anarchy that
prevails on the h.f. bands at present I wonder why anyone bothers to go to all the expense and
effort of passing the requite ere effort of passing the requisite examinations.
Quite offen there seems to be more DX activity going on around 11 metres by illegal c.b. operators than in the 10 metre Amateur c.ind.
One can often hear these One can often hear these opereators describing
heir 250 watt rigs over the air and exchanging their 250 watt rigs over the air and exchanging
names and addresses for QSL cards, indicating that they consider the
cuted to be negligible.

It is when you start talking to the engineers of British Telecom who operate the detection service for illegal transmissions on behalf of the
Home Office that the magnitude of the problem becomes apparent. Until a few years ago com-
plaints came in from the public about interferplaints came in from the public about interference on radio or television at such a rate that in
typical telephone area about 100 were waiting to be investigated at any time. During the pas couple of years so many complaints have been
recived that the backlog in received that the backlog in many areas has
risen into the thousands, completely overWheiming the small detection teams shat the
Home Office is prepared to pay for. In fact, on Home Office is prepared to pay for. In fact, on engineer told me sadly that if you confined your
illegal transmissions to the bands between 1.6 ilegal transmissions to the bands between 1.6
and 30 MHz and minimized the interference you caused to otv or the broadcast bands you chances of being caught were practicaly has little
By all accounts, the Home Office has interest in the problem and hopes that it will
just go away. An example of tits atimde to just go away. An example of is atriude to radio
matters can be seen in the recent modification to Amateur licensing conditions announced in the London Gazette. Here we had a government ministry modifying the law of the land by
decree which was so incompetently drafted and carelessly checked that even to the most casual reader several mistakes were immediately
apparent. Obviousty these matres are apparent. Obviously, these matters are of so
lirtle concern to the Home Office that they can be dealt with by the office junior. I suppose the policing of the radio waves must
be a very dull job. But unless the Home Office gets a grip on the problem in the next few gets a grip on the problem in the next few
months it might just as well give up, abandon
the licensing of radio transmitters altogether the licensing of radio transmitters altogether
and open the whole radio spectrum to all and open the whole radio spectrum to all
comers. Personally, I am not sure that it hasn't comers. Personally, 1 am not
started along that path already.
In the event of your using this letter, I would be grateful if you would not publish my addres
as many of us have found to our costs that critiscism of any aspect of c.b. activity usually leads to harassment.
C. G. Howard
C. G. Howard

ALIEN INTELLIGENCE
In your March, 1982 editorial you speak of the lack of response to the Japanese challenge. If
your thinking is prevalent explain why. After all, if Britain were to make a large effort to develop 5 th generation computers as the Japanese have announced they will, then
it would be "evidently out to destroy all of Western industry". and so, being a decent
it wity nation, it it doesntrt!
Please, no more racist remarks in Wireless
World! ${ }_{\text {Worlad }}$ Erich Unteregelsbacher Kingston
Ontario
Ontario
Canada

SELF-HELP TELEVISION
V. Lewis reported in your February issue that a
licence had not yet been issued for the Redbrook active-deflector system (Self-Help Televi-
sion, p.71). In fact, the licence was issued on September 14, 1981,
M. S. D. Granatt,
M. S. D. Granatt
Home Office.

HIGH-LOSS POWER

SUPPLY?
 essential that the volage rating of R_{1} is not exceoded. asa failure could put mains voltage
on the $+12 V$ terminal, having blown un the on the $+12 V$ terminal, having blown up the
470 capacior. This usually means that R_{1} should be at least two resistors in series. Experence shows that carbon-composition resisiors aiil to any yalue - high or low. Carbon, metal. to a higher value, so should be used in this circuit.
Any
m
Any mains-supplied circuit should have an appropriat fuse in the live line. A Rener clamp
(say $22 V 0$) across the $0.12 V$ ourpur would be an
 enouyd to carry sufficient current to blow the
fuse in the case of ofher components faliing 1.7 imes rated current of the fuse).
Direct connextion of low-volage equipment tenially dangerous and
is best avided
R. Jenkins

COST-EFFECTIVE
 IGNITION

is unfortunate that you have published another constructional article - Cooperers arti.
cle on an electronic ignition system, March ie on an electionic isnition system, March
982, p p - which falls intito the common trap o sing device characterisicics that are no pecified by the manuracturer.
The devices in quession eries. dhesese are iow lowestion equency rectifiers, and he JEDEC speciicaction to which theirirs, uner ous manufacuurers conform contains no in-
formation abour their use a at at high frequencies. While the devices used by Mr Cooper wer evidently adequate, devices from another batch
or from another manufacurer could be comor from another manufacurrer could be com-
pletely unusble at 15 kHz . There is no shortage of devices designed and characterized for use a Tv line frequency; for example, the IN4933
would replace the 1 N4001. If 600 V raing is Yould replace tife 1 N401. If $\mathbf{a} 600 \mathrm{rating}$ is cull be che BY299, an $800 V$, $2 A$ A fast device. TT Semiconductors Foots Cray
Kent.

The auhhor repleses:
Mr Pickervonce iss quite wrong to say the article ""alls into a rup", because I went to some lenghs in she article to show why 1 used the
INPooo series diodes and also included a a raph to show their limitation, with the advice to use hish.frequiveny didodes, beynand 15 shkz. Perhaps Most of the reputable manufacturers (Motorola for instance) actually provide information on the frequency characterisitics of speaking part of the JEDEC specification One firm devotes a whole page of is data sheet to this aspect (see enclosed photostat), so they higher frequencies.
The main reason why I chose this diode is because it is readily avaiable to he constructor. WIRELESS WORLD JUNE 1982

Although high-frequency diodes appear in manufacturens' catalognes, they are not available Marshall's, or Semiconductor Supplies. Nowhere in these firms' catalogues are the 1 N4933 point, I rang ITT's own main stockists, VSI (tel 0279-29666) and Nobel (tel 01-309-5000) and asked them to quote for the 1N4933 and BY299. Neither firm had any stocks of the 1N4933 or intended to stock i, and would not even quote a BY299, but Nobel did at least quote a delivery (6 to 8 weeks!) and a price of 17 p. This latter Girm, when they found out the application of the diode, went so far as t
series as a substitute! However, all the suppliers mentioned sell the 1N4000 series, and at a moderate cost, too circuit; and this brings me to my third point. If the circuit were designed around pose components, the price would go through
pose pose components, the price would go through electronic ignition was that it could be paid for out of the savings on one year's motoring. If I
uprated the diodes it would make even better sense to substitute the TIP3055 switching transistor, improve the transformer windings, select a militiary-grade capacitor for C_{1} and specify a but there would be very little economic sense in it; it would no longer be cost-effective. Finally, I suggest that Mr Pickvance reads
Wireless World Letters to the Editor for Oct 1975 p. 465 , and June 1975 p. 265 - and indeed nyone intent on criticism, before they put pen o company notepaper, would do well to read

HEATING-FUEL SAVER

rr Ryder's central hearing fuel saver is prettry seem to be amenable a further cost-effective odification. This is to add a further thermisto oo measure the indoor temperature and henc hut which will better reflect the time needed to As it stands there is a distinct and obvio As in stands here is a discunct and obvious ime clocks providing a gap during the day, lon or those at work and shorter for those staying most always reached at night and the house has far longer to cool down, whilst during the day it is possible to have quite large solar gains to
further diminish indoor temperature reduction Therefore it obviously makes sense to respond O both temperatures. What may be less obvious is that a linear type
esponse is not really needed In cold weather the eating system loses more heat to the outsic and thus take longer to warm inside, (in the mperature). If, as seems reasonable no nearity can be a virtue it does seem feasible to replace R_{s}, the fixed resistor, with a combin ion of a thermistor and resistance. the actual
hoice of values may be made empirically if one has a fairly good idea of the characteristics of An sowlied devinge would be armance. "time when switching off. The "off" time would b chosen to suit a warm day and the actual close
ure outside. One can usually tolerate a few
degrees drop but this is a matter very much of
personal feelings, and keenness to save fuel. personal feelings, and kennness to save fuel.
With cast iron boilers and systems saving arge water content there is also hot water left after the boiler stops which can be wsed if the pump is allowed to run longer. Thus two "time extenders" can be of value - one to let the
boiler run longer in cold weather and the other a simple fixed "extender" to give about half an hour extra for the pump.
Having suggested that
Having suggested that two thermistors are
needed to measure the temperature difference it might be worth experimenting, when the time clock has no OFF period during the day, with a
thermistor mounted indoors but near to window so that it is exposed both to the outside and room temepratures. Quite obviously such a hermistor must not be exposed to the sun but unduly restrictive.
As probably 99% of domestic heating systems are just thrown together rather than designed to
suit the actual house and the needs of its occupants, it is fairly safe to say that great precision in timing the heating will be uncalled for. The or placed radiators and many other problems, so errors in timing of ± 15 minutes are unlikely to be noticed in terms of comfort.

P. Streat

The author replies.
Ine author repplies: Mr Streatfield for his connot required, then certainly an indoor thermis or cuuld partly replace resistor R_{S}; or it migh ee used to modulate the 555 period, via pin 5
With a divide-by-two circuit (such as that of \mathbf{p} 66 W. W. W. Nov. 79) the a.m. and p.m. signal
from the time-clock could be distinguished and from the time-clock could be distinguiuhhed, and the operation modified to suit, for example by
witching the 555 timing resistor. The difficulties lie not so much in meeting a particular set of requirements, as in defining the requirements, in the first place.

CARTRIDGE

ALIGNMENT
hen dealing with tone-arm geometry the tendency is to picture things as they are seen on the
turnable and to always include the arc des
cribed by the stys. cribed by the stylus. If instead the stylus/car-
tridge assembly is imagined to be fixed and the tridge assembly is imagined to be fixed and the
turntable spindle itself moving about the arm pivot, the relative positions of stylus, spindle
and pivot are as before but the facts are more nd pivot are as before but the facts are more learly illustrated. More importantly, new fac Starting from a point representing the stylus,
a perpendicular line - a datum line - from a perpendicular line - a datum line - fron
which tracking errors may be determined hich tracking errors may be determined
drawn. Along this line the two zero tracking diii are marked. Through these points an ar with radius equal to the spindle-to-pivo ourse, represents the pivor. Any importan clarter radius may now be marked on the ar directly from the stylus point
The diagram here is drawn considerably out scale to avoid crowding. For the same reaso hes have been omitted: in an endeavour

ETMERS

avoid confusion, points are symbolized by som letters not customarily employed.
Position of spindle when stylus is on outermost groov
innernost, intermediate radius of high error, any radius $(A B$ etc) included
inner zero tracking radius inner zero tracking radius
outer zero tracking radius
D, spindle to pivot dist. (arc radius) L, stylus to pivot
L, $D=$ overrange $g=\sqrt{D^{2}+p q}-D$
L
$L-D=$ overhang
x, angle at R.

$$
\sin \frac{R^{2}+L^{2}-D^{2}}{2 L R}=\frac{R^{2}+p q}{2 L R}
$$

When this is applied to p,

$$
\sin =\frac{p^{2}+p q}{2 L p}=\frac{p+q}{2 L}=\sin O
$$

Similarly with q. $((p+q) / 2 L=\sin O$ is clear

$$
\sin =\frac{C^{2}+p q}{2 L C} .
$$

Now $\sqrt{p q}=C$ therefore $p q=C^{2}$ and
$\frac{C^{2}+p q}{2 L C}=\frac{2 C^{2}}{2 L C}=\frac{C}{L}=\sin x$ at C.
To clarify this, it can be seen from the diaram that $C^{2}=L^{2}-D^{2}$. Now if we ioin point q to he pivot point, a triangle is completed one side hypotenuse is L, because of this

$$
D^{2}-\left(\frac{q-p}{2}\right)^{2}=L^{2}-\left(\frac{p+q}{2}\right)^{2},
$$

therefore

$$
L^{2}-D^{2}=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{q-p}{2}\right)^{2}=p q .
$$

Quickly proved by substituting figures for p
and q.)
It useful to note that while the magnitude of depends on the values of D and L, their propor-

${ }^{6} 0$
ions depend on the zero tracking radii. When A and B are 1.7 and 0.7 of that found at C When p and q are 49 and 110 , at A the error is
double that found at C, while at B it is rwo double that found at C, while at B it is tw
thirds. If a diagram is drawn to scale showin only the arc, datum line and points A, B a and C ioined by straight lines to the stylus poin
tracking errors might be measured directly wit a protractor. R. J. Gilson's factors would place a protractor. . . J. Gison's factors w
B on the other side of the datum line. It follows from the foregoing that $p+q=$
sino $2 L$. This facilitates the process of calsin 022 . This faciiltates the process of suat
culaing the zero tracking radii in a case such that dealt with in Gilson's final paragraphs page 4, Wireless World Oct. 1981. After finding O with his formula 4 (b), find $p+q$ from this equa-
ion. Then p and q can be found from $p q / p=(p+q)-p$. There seems to be quite a bit of
latitude for rounding off the results while ensuratitude for rounding off the results while ensur-
ng negligible changes in the values of L, the ing neguigiele changes ind
P. E. Cryer,
Thornlie,

Whornie, Australia.

THE NEW

ELECTRONICS
have every sympathy with Hugh Jacques article in your January issue - and I certainly do
not find low standards in Germany an excuse for our own low standards, as C . Wehner's letter in the April issue seems to imply (in part at least).
I am now a secondary school teacher of physics and now a secondary scenchoot teacherer of phybuilt into education; standards here are deffini-
tely falling - buta a whole reshuffe of aims and ely falling - but a whole re-shuffle of aims and
bjiectives and a change in examination syllabuses and in the exams themselves all combine to camouflage the drop in standard. I have often wondered when this fall in standard was going Jacques arricle confirms my fears.
What with a philosophy that views the child in terms of its needs instead of in terms of its
responsibility and society's expectations from it responsibility and societry's expectations from it

- there has developed the sort of approach which has the following characteristics: 1) educationally - the child considered in terms of its needs must be given automatic promotions
o prevent any sense of inferiority, frustration or maladjustment; socially - the

2) socially - the same child must be guaranteed
cradle-to-grave security lest a trauma be procraced;
3) the
4) the cure for failure to learn is to devaluate learning and cese
devaluate sucess.
I tuatest success.
Ihis will five food for thought for oncerned parents and then, perhaps, lead them to action.
S. Georgeoura
Ardgay
Ross-shire

WOODPECKER

M+ Martinez' lettrer, (Aprill), gives an interestints and quite possibly correct explanation of the are one or two points arisisig from his letter. The sulgestion that the code auto-cortela-
tion, *i.e. $^{\text {the }}$ "compressed" radar signals, uon, i.... the compressed radar sizgals,
would have virtually no sidelobes may be ilitle optimistic. One might expect, in a practical
system, that the peak signtal sldelobes would not
more than about 25 dB at best below th main lobe. One would also have to examine th ambiguiry functions of these signals to deter
mine their properties in the range-Doppler domine their properties in the range-Doppler do
main where their sidelobe performance migh me rather different if the radar were used to etect high-velocity incoming targets. Another point arises from the statement that the compressed signal would have " 31 times the
amplitude. ." etc. The equalizer, (i.e. the matched filter), would theoretically conserve signal energy and its peak output would have
times the peak pover of the uncompressed si nal, not 31 times its amplitude.
Finally the statement about the radar having me power, should be interpreted with car same. Two radars of differing pulse duratio bro of the same mean power, and havin properly matched filters in the receivers, woul
have the same "sensitivity". Their difference in the present context would, as Mr Martinez states, lie in their resolution capability. Pulse compression, as such, does not introduce some with matched filter receivers, whatever the transmitted pulse duration, the "sensitivity"
remains a function of the ratio of the received emains a function of the ratio or the recciv. (strictly the cross-correlation function of the ransmitted signal with that received, takin used to improve signal sidelobe levels, albeit a some expense to resolution.)
M. G. T. Hew

West Sussex

THE FUNCTION OF

FUNCTIONS

was interested to read Thomas Roddam's remarks (Wireless oria, December, 1981. p. 37)
concerning the notion that used to be fairly revalent, that denies the existence of sidebands in ampitude modulation. After all, with "pure" second of the wave remains constant whether it be modulated or not, doesn't it? Be it said that the idea is not entirely dead even yet; there are
still people to be found who hanker after it. And it may be said that they are in tolerably good company, too, as anybody may see for them-
selves by consulting the files of Nature for 1930 (pp.92-3, 198 -9, 271-3, $306-7,726-7$) in which Sir Ambrose Fleming, no less, categorically deSir Ambrose Fleming, no less, categorically decontrary that they are but a mathematical fic--
ion, and stubbornly refusing to accept correcion, and stubborrly refu.
ion from his colleagues.
The curious thing about it all is that the side-
band-deniers have neter band-deniers have never had any difficulty in
accepting that a baseband signal occupies finite accepting that a baseband signal occupies finite
spectrum space, not realising, of course, that a
baseband signal is but two sulperimposed sidebaseband signal is but two (superimposed) side-
bands, "centred" on zero frequency. A simple bands, "centred" on zero frequency. A simple
thought-experiment:
displace the carrier frequency progressively upscale from zero and observe the two sidebands separating out.
And consider, furthermore, that proper re--
onstruction of a baseband signal to (say) audi-
 quency cartier, e.g. int the polarizing firld of a
D.C. Sutherland

Wanganui
New Zealand

MICRO-CONTROLLED RADIO-CODE CLOCK

Several standard-frequency transmissions throughout the world provide time and date information controlled by caesium atomic clocks, with potential for automatic time and date information at reasonable cost. This design offers a compromise between economy and complexity suitable for both non-critical professional applications and domestic use.

The 60 kHz standard-frequency transmission from Rugby MSF now includes fast
and slow time codes, both of which provide full time and date information once every second. The signal is transmitted 24 hours every day except for a maintenance period on the first Tuesday of each month.
The transmitter power is 50 kW e.r.p. which, with the long wavelength, provides propagation over a range of several hundred miles. With careful circuit design, useable reception can be achieved throwave and groundwave component, certain areas can experience cancellation or addition where mixing takes place. This problem is complicated because the areas of mixing change from daytime to

1. Sow-code formet from Rughy MSF

Fig. 1. Slow-code format from Rugby MSF.

recognize the start of each minute, so an identifier sequence from second 52 to 59 i provided.
The most important part of the design, as shown in Fig. 2, is the receiver which
must be can must be capable of producing a consisten ately there are several common sources of interference at 60 kHz , for example the interference at 60 kHz , for example the
harmonics from the line output transfor mer of colour television receivers ar powerful sources of interference for v.l.f. transmissions, as well as fluorescent tube fittings and even hand-held calculators. Carefully designed t.r.f. and phase-locked
loop receivers can work satisfactorily at moderate gains, but commonly suffer from self pick up which limits their sensitivity. In the case of the p.1.1., radiation from the v.c.o. will generally weaken the signals.
For best results a low-current superheterodyne receiver should be used, but it is costly and difficult to adjust for optimum noise performance at v.l.f.
An alternative receiver which is much simpler and with careful design can produce acceptable results is shown in Fig. which enables the antenna coil to be directly connected without a transformer winding and gives good stability at high
gain by minimizing Miller feedback. A multiplier* is used for low-level detection of the 60 kHz carrier, a technique which avoids high levels of 60 kHz and therefore enhances receiver stability. The multiplier generates a double frequency component
and a differential voltage proportional to the carrier level at the two load resistors. The double frequency output is ignored by the following amplifier stage which produces the demodulation carrier. To minimize power requirement, operating
current in each arm of the multiplier is set to $50 \mu \mathrm{~A}$. To avoid drift at the multiplier output the potentiometer should be a ten-turn cermet type and the two load resistors metal film.
To optimize rec signal levels at the antennormance for all signal levels at the antenna a normal gain-
control loop to the cascode stage would provide satisfactory results. However, a better method is to gate the a.g.c. loop
because the 60 kHz carrier is 100% mod. ulated and will cause errors in a conventional loop. In this design an undelayed signal from the output of IC_{2} switches the

* Self-setting time code clock, by N. C. Helsby,
Wireless Wortd, August 1976, pp?

4 Fig. 4. Microprocessor decoder
gating control for the a.g.c. amplifier IC6. Transistor Tr_{3} is a.c. coupled to the undeayed signal and provides a simple ime-out arrangement if no modulation is dermanently and enables the a.g.c. loop. During niormal operation, when the carrier is pulsed off for up to 500 ms , Tr_{3} remains on, the transmission gate opens and switches the a.g.c. integrator to the hold
state. This action prevents the gain rising state. This action prevents the gain rising
during the normal off periods which would otherwise cause noise to be amplified and excessive overshoot in the received carrier level, which in turn causes timing errors in he demodulated signal. simple active low-pass filter and a Schmitttrigger level sensing stage which provides a logic level output, high corresponding to no carrier. This output is inverted and buffered for t.t.l. compatibiilty. Comple-
mentary m.o.s. apmplifiers are used throughout to reduce the current requirements and dispense with dual supply rails.

Micro decoder

The complete decoding system is based on a 6502 microprocessor. Although this number crunching, its memory-mapped architecture and addressing modes make it an ideal choice for industrial control appli

Continued on page 59

DIGITAL AUDIO SIGNAL PROCESSING BY MICROCOMPUTER

The author suggests that audio-frequency signal processing is the most recent area in broadcasting to benefit from digital technology. He lists the currently ccepted digital sampling characteristics which limit the reduction of programme odulation noise, idle-channel noise, distortion and wow and flutter. The article
cludes a brief review of the development of microcomputers, compares analogue and digital companding and describes how companding is affected by use of a microprocessor.

From the point of view of the broadcasting industry, there can be no doubt that digital lechnology carries with it numerous benecompensaring for the viewer, more than ity and expense of the signal origination and transmission plant involved.
Those who possess or have heard demonstrated audio discs cut from a digitally recorded master tape can confirm the significant improvements in clarity and
fidelity now obtainable. This is in spite of the fact that the digital processing component here represents only a small part of the total recording/reproduction system. Further developments in laser optical recording may, in the future, finally retruly constitutes 'high fidelity' audio by providing, for all practical purposes, absolute fidelity between recording studio and stening auditorium.

Digital audio characteristics

Reasons for the subjective superiority of igital audio over the traditional analogue quipment are its much reduced pro ramme-modulation noise, idle-channel magnitudes of these improvements are defermined by the digital sampling characteristics, minimum standards for which are enerally accepted to be, for broadcasting: Sampling rate: 32000 samples/sec
digital resolution: 14 -hits/sample
Pre/de-emphasis: CCITT character
ic.
Pre-emphasis and de-emphasis are not essential with digital audio, but give quency noise performance for signals pos sessing limited energy at the upper end of he audio spectrum
These standards provide for an audiochannel bandwidth to 15 kHz (provided o the anti-aliasing filter), and a signal oise ratio of better than 85 dB . The needs of the recording studios, where the final utput is derived from a large number of independent sources, are more stringent, between 48000 and 64000 per second in
WIRELESŠ WORLD JUNE 1982

by J. B. Watson*

 B.Eng., M.I.E.E.order to minimize signal degradation through the mixing processes.

ADC considerations

The following specification figures underline the reasons for the relative delay video and digital audio technology For video and digital audio techno,ogy, For
example, the 'aperture time' required of an 8 -bit, 5 MHz video sampling circuit, is only 20% shorter than that for a 16 -bit 15 kHz audio sampler; but the precision of the audio circuit needs to be better by a video analogue-to-digital converters (a.d.cs) have been obtainable for the past three or four years, audio a.d.cs with adequate performance have only recently become available. Table 1 shows the specisufficiently accurate and sufficiently fast for broadcast-quality audio, this a.d.c. (in common with many other proprietary units) has the disadvantage of "offset-binary' digitally-coded outputs (see Table 2). its transfer characteristic occurs at the mid-point, where the digital output changes from 011 . . 111 to 100 . . 000 . Since this is normally the quiescent operating region, carefut circuit layou and analogue crosstalk. A more suitable coding echnique for digital audio is the sign-plusmagnitude arrangement, shown in Table 2 , which has the effect of moving the most critical region a
Digital-to-analogue converters (d.a.c.s) are usually less costly than the corresponding a.d.cs, but can introduce non-linearity into the audio channel if their output circuits are 'slew-rate limited.' This problem
disappears if the d.a.c. output is redisappears if the d.a.c. output is re-
sampled by a sample-and-hold device deigned specifically for audio applications.
*Independent Broadcasting Authority

Table 1. Specification for a proprietary a.d.c. device suitable for broadcast-quality Analogue-to-digital converter Type MP8016, Analogic:
input voltage range: -10 V to +10 V bipo input impedance
input impedance:
digital resolution: digital resolution: relative accuracy: \pm
absolute accuracy: scale quantizing error: monotonicity: recommended cal Wration interval: arm-up time to
specified accuracy conversion time:
digital output code:

| power supplies: | $\left.\begin{array}{ll}\text { complement } \\ & \pm 15 \mathrm{~V}, 65 \mathrm{~mA} \text { and }+5 \\ \text { dimensions: } & \mathrm{V}, 300 \mathrm{~mA} \\ & 102 \times 77 \times 13 \mathrm{~mm}\end{array}\right)$ |
| :--- | :--- | $\pm 0.003 \%$ of fuil

$\pm 1 / 2$ least sig. guaranteed 6 months 6 months
10 minutes 0.6 to 2.0 us per bit $0.6 \mathrm{co} 2.0 \mu \mathrm{~s}$
(adjustable)

Table 2. Comparison of offset-binary and sign-plus-magnitude a.d.c. output codes

The offset binary code is easier to Most commonilu used in proprietary a.d.cs.
The sign-plus-magnitude cord may be The sign-plus-magnitude code may be
more suitable for an audio a.d.c, butsuffers the disadvantage of two equally-valid
codes for zero input the disa dvantage of
codes for zero input.

	1111	111				
1111	1111	1111	1111=	+9.9997	vols in	
1000	0000	0000	0001=	+0.0003		
1000	0000	0000		0.0000	"	"
0111	1111	1111	1111=	-0.0003	",	",
0000	.0000	0000	0000=	+10.0000	"	"
sign + magnitude code:						
	1111		1111=	+9.9997	volts in	
	0000	0000	0001=	+0.0003		
${ }_{0000}^{0000}$	0000	0000	0000=	$0 \cdot 0000$	"	"
$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \end{aligned}$	0000	0000	0000=		"	
	0000	0000	$0001=$	-0.0003	"	
$\begin{aligned} & 1000 \\ & 1111 \end{aligned}$	1111	1111	1111=	-9.9997	"	"

	'First generation'(p -mos technology)			'Second generation' (n-mos technology)		'Third generation' (h-mos technology)		Future
microprocessor type	4004	8008	4040	8080	8085 1976	8086 1978	${ }_{1979}^{8088}$	${ }_{\text {iAPX }} 4382$
date introduced	1971	1972	${ }_{\text {cher }} 1974$	${ }_{8}^{1974}$	${ }_{8}^{1976}$		16-bits	32-bits
accumulator capacity	${ }_{46}^{4-\text { bits }}$	${ }^{8} 8$-bits	${ }_{60}^{4-\text { bits }}$	${ }_{\text {111 }}{ }^{8}$	${ }_{113}^{8-\text {-bis }}$	${ }^{\text {l }}$	$300+$	very many
min. instruction	10.8 us	20 ¢	10.8 M	$2 \mu \mathrm{~s}$	$1.3 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	0.1 s
memory addressing	K×8	$16 \mathrm{~K} \times 8$	$8 \mathrm{~K} \times 8$	$64 \mathrm{~K} \times 8$	$64 \mathrm{~K} \times 8$	$1 \mathrm{M} \times 8$	$1 M^{1} \times 8$	$4000 \mathrm{M} \times 8$
no of general purpose registers r supplies	$\begin{gathered} 16 \times 4 \text {-bit } \\ +5 \mathrm{~V},-10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 7 \times 8 \text {-bit } \\ +5 \mathrm{~V},-9 \mathrm{~V} \end{gathered}$	$\begin{gathered} 24 \times 4-\text { bit } \\ +5 \mathrm{~V},-10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 7 \times 8 \text {-bit } \\ \pm 5 \mathrm{~V},+12 \mathrm{~V} \end{gathered}$	$\begin{gathered} 7 \times 8 \text {-bit } \\ +5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 12 \times 16 \text {-bit } \\ +5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \begin{array}{c} 12 \times 16 \text {-bit } \\ +5 \mathrm{~V} \end{array} \end{gathered}$	+ $+{ }^{\text {V }}$
sub-routine nesting levels no of interrupt types	- $\begin{aligned} & 3 \\ & 0\end{aligned}$	7 1	7 1	$\underset{8}{\text { unlimited }}$	$\frac{\text { unlimited }}{12}$	$\underset{256}{\text { unlimited }}$	$\underset{256}{\text { unlimited }}$	unlimited
interrupt latency (approx.) address, data bus width	$\begin{gathered} 12 \text { addr. } \\ 4 \text { data. } \\ 4 \text { r.a.m. sel } \end{gathered}$	$40 \mu \mathrm{~s}$ 14 addr. 8 data		$\begin{gathered} 6 \mu \mathrm{~s} \\ 16 \text { addr. } \\ 8 \text { data } \end{gathered}$	$\begin{gathered} 4 \mathrm{\mu s} \\ 16 \text { addr. } \\ 8 \text { data } \end{gathered}$	$12 \mu \mathrm{~s}$ 20 addr. 16 data	$\begin{gathered} 12 \mu \mathrm{~s} \\ 20 \text { addr. } \\ 8 \text { data } \end{gathered}$	32 addr. 32 data

Signal processing by

Before considering in detail the type of udio signal processing appropriate microcomputers, it may be instructive hese devices since their introductio bout eight or nine years ago. Table 3 summarizes the characteristics of three enerations' of microprocessor originating from a single manufacturer, the demarcarication of the silicon chip by p-channel, n channel and h -mos technology. Details of a prospective 32 -bit device are also included Of particular relevance to audio processing are the accumulator capacity (le tim nd interrupt response time (latency) First generation devices ($4004,4040,8008$ were relatively slow in operation, offering instruction times of several microseconds, nd possessing extremely limited - or, in terrupt handling capability. Real-time processing of broadcast quality digital auio signals was not feasible with the processors, although the 8008 did find apfield as a speech processo
Second generation processors, such as the still-current 8085 , exhibit speed improvements of an order of magnitude over heir predecessors. With'an instruction cy and 24 simple processing steps can be un dertaken in the interval separating adjacent audio samples (this varies from 30 to 15 microseconds, for sampling rates of beterrupt latency is of a low order, allowing rapid re-programming of peripheral devices after the treatment of blocks of data. Self-contained hardware multiply and divide features, however, are not typical of second generation microprocessors. Complex digital filtering operations requiring
weighting factors related by integral powers of two. On the other hand, digital udio companding can be implemented
with this type of processor, since the essen tial feature of a companding algorithm is multiple-bit shifting operation
Extremely powerful processing possib lities are now available, following th devices such as the Z 8000 and M 68000 These computers operate directly on 16-b sampled data values, have fast and com prehensive instruction repertoires inclu ing hardware multiply and divide, and ca millin bytes. The very comple nature of these machines, however, neces states some compromise in performanc in the real-time environment, the mos serious being an interrupt latency ap high-quality audio.
This arises from the extended memory ddressing and interrupt type handin apabilities. The 8086 computer, fo xample, responds to an interrupt by sto memory segment register (16 -bits each) calculating the location of the appropriat interrupt vector, and reloading new program count and segment values fro is vector location. The expense of speed the complete process occupying approx mately $12 \mu \mathrm{~s}$. This trend is likely to con tinue with the emergence of new device ypes (e.g., iAP 2 ddressing capaber mes memory. Future microprocessors designed for 'mainframe' applications might dispense entirely with interrupt facilities, ince these prejudice the ing' performance.
The solution to this problem, in the
critical real-time signal processing area, is critical real-time signal processing area, is
in the use of dedicated input/output processors. These are intended specifically for rapid peripheral device servicing duties, and communicate with the main
processor system via block transfers on direct-memory-access channels. Operating speed improvements anticipated with the h-mos process are also likely to simplify the task of the digital audio engineer

Digital companding

An example of the type of digital audio processing now possible with microcom and expansion (companding). Analogue companding is used extensively in the magnetic tape recording of music, wher provides an improved signa/ noise raid pread acceptance of the Philips audio cas sette as a satisfactory medium for domestic sound recording is, in fact, largely due t e adoption of D
Analogue systems of this type separat he incoming audio signals into several frequency bands, each channel during recording being compressed by amount depending upon the peak levels presencur acy of the reciprocal expansion proces during playback is seldom perfect, since reat reliance is placed on carefully match ing the filters, ime constants and depende chains.
The processes involved with digital companding are, on the other hand, accurately reversible. The degree of comprestogether with the audio sample values ogether with the audioltiomple channel to the decoder. No gain errors or time constant mismatching errors occur, but a degree of programme-modulation noise is introduced, the magnitude of which is govused. It might seem paradoxical that digital companding apparently worsens the audio signal/noise ratio, whereas analogue companding improves it. This arises from the different areas of application in which the two techniques find justification, digl-
tal companding being used in bandwidth reduction rather than noise reduction. Alternatively, the companding process can be regarded as a 'trade-off' between idlechannel (background) noise and modulaor bandwidth. This 'trade-off' takes place

WIRELESS WORLD JUNE 1982

able 4. 14: 10 A-law companding

14-bit audio samples are compressed before transmission to a 6 --bit representation (('s in
he Table), the less significant bits being truncated shown as T 's in the table). A 3 -bit - scale factor indicating the audio level within a range of 2:1 is is appended. Finally, the 'sign' bit (13) is addod, making 10 bits altogether. A refinement of the pr
levels by one half least significant bit to improve accuracy.

in both analogue and digital companding, as sensitive ears can easily rec
there is, therefore, no paradox. Many different types of digital companding have been proposed, these being within two main categories of 'instantaneous' and 'near-instantaneous' (or 'quasiinstantaneous') form. Table 4 depicts the operation of a simple 'A-Law' instanta-
neous compander, used for reducing to $10-$ bits per sample a 14 -bits per sample audio signal. The companding algorithm is simply expressed as follows: The position of the most significant ''l' digit in the 14 -bit data word is a measure of the signal magni-
tude within a $2: 1$ range. A 3 -bit digital tude within a $2: 1$ range. A 3 bit digital (more significant) ' 0 ' bits in each word is transmitted with the word, the leading zeros and the most significant ' T ' being
suppressed. The remainder of the digital word is transmitted with a precision of seven bits, with the less significant bits truncated.
truncated. The resulting signal comprises ten bits per sample, three bits of which define the approximate value, within a $2: 1$ range
and seven the more precise magnitude within that range. One of the seven bits indicates the signal polarity. Digita sample values with more than five leading zeros experience no compression and are tion. For signals of larger magnitude, th compression takes the form of a truncation of the less significant bits, giving rise to coarser quantizing steps and associated programme modulation noise. Listener
accustomed to the very high sound quality reproduced by digital systems have ob served that, with experience, their thres hold of tolerance to modulation noise tend to decline. Acceptable standards of per formance based on subjective tests may, use of digital audio equipment increases. 'Near-instantaneous' companding makes more efficient use of the available channel capacity, and thus achieves a ing scale factors related to the peak ampli tudes of groups of audio samples, rather WIRELESS WORLD JUNE 1982
han to individual sample values, more capacity is available accurately resolving the signal levels. In two systems re-
cently proprosed
2,3 , groups of samples representing a duration of approximately 1 ms are examined before defining the degree of companding appropriate to the group as a whole. Subjective comparison the conclusion that the 'near-instantaneous' principle provides a standard of performance equivalent to that of an 'instantaneous' system employing at least one more bit per sample. Many of the dif schemes proposed for international programme exchange arise from attempts by their proponents to make maximum use of the different hierarchical levels available on Posts, Telegraphs and Telephones (PTT) networks. Until detailed plans for
digital sound channels are published by the PTT authorities, however, an optimum transmission system is unlikely to be realised. Tariff structures are likely to play a more important role than technical
reasons in deciding which form of the companding, if any, should be universally panding,
adopted.
Companding by microprocessors
Companding by microprocessors stantaneous' companders employ the sam basic principle in deriving their respectiv scale factors, i.e., the determination of the position of the most significant bit in digital code, it is posible to devis ing in either mode.
Figure 1 illustrates a digital audio com pression system used in the laboratories of the IBA to evaluate the performance of riety of companding algorithms
The system is designed as a periphera interface to an 8 -bit 8085 microcomputer
the 14 -bit audio samples requiring tw operations per processing step because of the 8 -bit accumulator limitation. A prior
ity encoder device (see Table 5) with comity encoder device (see Table 5) with com-
plemented data inputs locates the position of the more significant ' 1 ' bits in the sampled data, and generates a 3-bit cod
related to the compression scale factor. set binary' output, positive values requir to be complemented before reaching the priority encoder. This is effected by applying the most significant bit to a set of
exclusive 'Or' gates. Samples from a 'signexclusive 'Or' gates. Samples from a signquire correction in this manner.
The audio samples are 'left-justified' to remove leading zeros by means of a multiplying technique. By decoding the
scale factor in the 3: 8 -line decoder shown in Fig. 1, a digital number of the form $2^{\prime \prime}$ is produced. This number is applied to the B inputs of a pair of 8×8 parallel multiplier chips, causing a left shift (by n places) of the data samples entering the
multiplier A inputs. Finally, the two parmultiplier A inputs. Finally, the two par-
tial products resulting from the 8×88 multiplying operation are combined, and the appropriate number of less significant bits truncated. Strictly, the multiply combiner should take the form of a digital adder circuit, but a simple Or gating
arrangement suffices since one of the operands is of the type 2^{n}. The circuit described can perform either on a sample by-sample basis, thus providing an instantaneously companded A-law output,
or it can generate scale factors derived by the computer from peak measurements of groups of samples, resulting in near-in stantaneous companding.
Figure 2 shows the
Figure 2 shows the microprocessor configuration, based on the 8085 computer
and standard memory and input/output and standard memory and inputoutpu samples is $31.25 \mu \mathrm{~s}$ (32 kHz sampling) permitting a reasonable amount of signal processing on a per-sample basis, bearing
in mind the 1.3 us instruction cycle time of in 8085 . For example, the cyak value of group of audio samples can be calculated by complementing negative values, Or -in each word with previous samples, and scanning the resultant value at the end of
cycle to determine the scale factor for the group. Insufficient processing power is available from the 8085 system to perform A-law companding by software, hence th derivation of 'instantaneous' scale factors

Table 5. Transfer function, 74148 Priority
The device generates a 3 -bit output code indicating the position of the mostsignificant 0 bit in an 8 -bit word. It can be
used as the basis of a digital compander if used as the basis of a digital compander
its input signals are complemented.

Inputs									utput	
76	6	4	-		1				A1	
	X		*	X	$\times \times$				0	
	0		+	\times	$\times \times$		x		0	
	1		x	\times					1	
	1		0	-	$\times \times$				1	
	1		1	-	x				\bigcirc	
	1		1		-		\times		0	
	1		1				x		1	
1			1	1	1	1			1	

Fig. 2. Microprocessor system for digital
audio companding. Digital companding experiments can be bigrdertaken wath a
retatively simple microprocessor The hardware configuration shown syster employs $1 \mathrm{~K} \times 8$ r.a.m. and $2 \mathrm{~K} \times 8$ e.p.r.o.m.
14 -bit audio samples are processed as 8 -bit word pairs.
by the 74148 priority encoder in Fig. 1 However, the usual benefits of softwar control, including versatility, cheapnes and reliability, apply to the remainder of the data processing hardware. An interesthardware is required for 'near-instanta neous' campanding than for the A-law algorithm; i.e., a reversal of the usual situa
tion. ${ }_{\text {The system software operates on three }}$ distinct blocks of data, audio sample word awaiting analysis, and output data for the expander logic arrangement (not shown, but similar in concept to the compression circuit of Fig. 1). Both input and output data streams communicate directly with
memory via direct-memory-access (d.m.a.) channels. D.m.a. management is performed by the 8257 chip, which receives 'data requests' from the currently active peripheral and responds with 'data
acknowledge' when the computer has disabled its bus signals. Data transfer then takes place, and the memory pointer for the channel in use is incremented. A time penalty of about one microsesond is incurred while the computer data and
control busses 'freeze' during the transfer, in comparison with the several microse

conds necessary for conventional inpud outpur procedurd formed by the d.m.a. controller, new address pointers have to be entered before the selected location exceeds the available memory space. It is convenient to manipulate the audio samples in blocks, and to reinitialise the d.m.a. controller at the end of
each block. The execution time of the software routine controlling this function must, of necessity, be shorter than the audio sampling interva, otherwise samples could be lost. This segment of code is pulation instructions which are much faster than memory accessing operations. Software for the complete system, capable of rapidly switching between 14-bit linear (uncompanded), 14: 10 A -law and 14: 10 rithms, occupies less than 1000 words. Subjective tests of the system described have confirmed that the effect of 14: 10 digital companding, whatever the algorithm, is inaudible with normal propure tones are transmitted. Results from other workers in the field ${ }^{4}$ show that 14: 10 near-instantaneous companding provides a standard of performance virtually identica with uncompanded sound. This is likely to
be of great importance for satelliste transtal plant where significant savings in capital plan whated within a can be accommodated within a given band-

Future techniques

Voice synthesis by microcomputer is a rapidy developing lechnique, especialy de
electronic toys and games. Most such de vices currently available appear to posses American or Japanese accents, so revealing their places of origin. Economy of storage
and audio bandwidth is afforded by mas culine voices, but this is likely to become minor consideration as the cost of memory chips continues to decline. Solid-state recording of high-quality musical perform ances is a more difficult matter, unlikely to be solved by the silicon chip for many
years hence. For example, any recording years hence. For example, any recording quire a digital storage array of approximately 2000 megabits. Current prices of memory chips would need to fall by factor of 100000 to render viable any such vices such as magnetic tape, hard disc stor age and the newer 'Winchester disc' con tinue to improve in performance, possibly rivalling the storage density achieved by

In the digital processing area, one of the ore interesting new devices to emerge an analogue-to-digital converter, a signalprocessing computer and a digital-to-ana processing computer and a dined on a single silicon slice. Current technology limitations restrict its operating frequency to
about 14 kHz . However, speed improvements to at least five times that figure whereby it would admirably suit the needs of the digital audio engineer, can now b expected.

References

1. Sanchey, A A, 'A new ultra-linear 16-bit digital-to-analogue conversion system for pro fessional audio'. 66 th AES Convention, Los An
geles, $6-9 \mathrm{th}$ May geles, 6 -9th May
2. Jones, A H, Digitial Coding of Audio Signals for Point-to-Point Transmission'. Publication 166, IBC London 1978 .
3. de Lamare E , 'Le Codage numerique des
signaux sonores de haute qualire. , Reerue de signaux sonores de haute qualite. ..' Recue de pp 12-33. 4 Gilchrist, N H C, 'Digital Sound Signals: Tests to compare the performance of five companding systems for high quality siggals'. BBC
Research Department Report, RD 1978 . Research Department Report, RD 1978/26.
Based on an article first published in IBA
Techincal Reviev, No 15 .

Continued from page 54
cations. And because the 6502 has been chosen by many of the microcomputer manufacturers, continued production seems assured for the forseeable future. The hardware shown in Fig. 4 has been kept as standard as possible to reduce thi
overall cost, and the memory map for this arrangement is shown in Fig. 5. Circuits IC_{2} and $I \mathrm{I}_{5}$ provide $I \mathbb{K}$ of ra.m. for essential variables, the stack in pages 0 and 1 , plus spare areas in pages 2 and 3 . The r.a.m. is noughout the bottom half of the 64 K address space. An e.p.r.o.m. containing the firmware is assigned to the top 2 or 4 K of memory with address decoding provided by IC_{14} for an expanded system puts provides addressing options. Circuit 15 is enabled at C000 (hex.) to provid sub-divided outputs for display drivers and a versatile interface adapter.
The system clock is provided by a 1 MHz crystal oscillator using unbuffered c.m.o.s. gates. This also provides the uming for a back-up system and Power-on reset is provided in this mode. inverters which allow the power supply to inverters which allow the power supply to A potentially troublesome source of in terference for v.l.f receivers is the conventional multiplexed display, and for this reason a low-current liquid crystal type is
recommended. A suitable display and driver circuit which will plug directly into WIRELESS WORLD JUNE 1982

g. 7. RS232C generator and level translator
the display port is shown in Fig. 6. The eight-digit panel allows six 0.5 in digits to be displayed with spaces to improve legibility. The control port of IC_{11} allows different displays to be selected. It is impor-
tant to use only the AM version of the 7211 display drivers as these include display blanking and a microprocessor interface Because the display port has been designed of drive remote displays via a short length the 6502 data bus.
As well as displaying time and date in
formation, the evaluation system can be
 ion. The necessary hardware additions are shown in Fig^{2}. IC_{7} divides the 1 MHz clock to provide a 2,400 baud generator, and IC_{19} converts the serial data from the v.i.a. to an RS232 level.

Part two of this aricle describes firmware, components for this design will be available from Circuit Services, 6 Elmbridge Drive Ruislip, Middx (telephone Ruislip 76962).

CIRCUIT DEAS

Clock-triggered
triangular pulse triangular
generator A double pulse is applied to the inverting
input of a TL081 operational amplifier connected as an integrator and a triangular pulse is obtained at the output. The required double pulse is formed by two direct voltages $-5 \mathrm{~V},+5 \mathrm{~V}$, applied to the integrator input via a pair of analogue
switches. Two D-type flip-flops control these switches. The two flip-flops are triggered by the rising edge of the clock pulse applied to their clock inputs. When the clock-pulse triggers the two flip-flops, the First
1 and the
thep
Q 0 . Consequently, one switch is enabled and the other disabled. Thus an input voltage equal to -5 V is applied to the integrator. When no input voltage is applied to the
integrator, $V_{\text {out }}=0$. Then, $V_{\text {in }}=-5 \mathrm{~V}$ and integrator, $V_{\text {out }}=0$. Then, $V_{\text {in }}=-5 \mathrm{~V}$ and
$V_{\text {out }}$ increases; when it equals the reference voltage $\mathrm{V}_{\text {ref. } 1}$ the output of the comparator goes high, and the first flip-flop's Q-output is reset to 0 , while the second's Q output is set 0 , change state, so that $V_{\text {in }}=+5 \mathrm{~V}$ and $V_{\text {oun }}$

Auto-zero for

digital meter

Digital panel meters using i.cs such as the ICL7106/7 already have internal auto-zero circuitry, but this is of no use when a particular in signal conditioners prior to the d.p.m. Offset in op-amps drifts with temperature so an automatic system for correcting it is desirable. In the circuit given, box A represents circuits to switch the instrumentation amplifers B between ence level. At the same time, the output of the amplifiers is switched between the sampling capacitors so that one holds the amplified input plus offset, and the other
holds the offset only. The differencing acholds the offset only. The differencing ac
tion of the d.p.m. cancels the offset voltage. Clock frequency should be higher than the sampling frequency of the d.p.m.
K. Wood

Ipswich
 put of the second comparator goes high
resetting the O -output of flip-flop 2 to 0 resetting the Q -output of flip-flop 2 to 0 . put voltage is applied to the integrator Consequently $V_{\text {out }}=0$ until the next rising

Preamp with no t.i.m.

Circuit shows a stable small-signal pre amplifier with passive magnetic pick-up feedback.
At 1 kHz , the circuit has an overall gain of 50 and its input and output impedances a 47 k and $1.7 \mathrm{k} \Omega$, respectively. Peak-to-peak maximum input and output voltages are
Shausin Yang
Shausin Yang
National Chiao Tung University

flops. The duration of the triangular puls is $T=2 t_{i}$ where $t_{i}=1 / R C$ is the time con
G. Tombras

Athens

Minimum component

 count microprocessorThis microprocessor circuit brings the number of components required for cerends itself particularly to machine-control design. Address bus decoding is divided up into two 32 K -byte pages and the .p.r.o.m. is situated at 800 ar a 2 K -byte interrupt vector bytes should begin at 87 F 8 or its respective images. Two sets of eight $i / 0$ lines, A and B , are provided by the M6821 peripheral interface adapter; A addresses are decoded as 7000 and 7001
and B addresses as 7002 and 7003 . Locaand B addresses as 7002 and 7003 . LocaM6802's 128-byte ra.m.
Other e.p.r.o.ms, such as the 2758 or 2532, may be used in place of the 2716 with only minor alterations. The two spare NAND gates can be used to provide a bitate generator if necessary.
Y.C. Cheah

New Zealand

24-to-12-hour clock

 decoderA digital clock may have a 24 -hour display, which many people would find less preferable to the more normal 12 -hour display. For example, the time-coded
radio signals from Rugby work on the 24 hour clock.
The circuit shown is an economical decoder of b.c.d. 24-hour information (0 0

$\mathrm{T}_{0}: \mathrm{U}_{3} \mathrm{U}_{2} \mathrm{U}_{1} \mathrm{U}_{0}$) to b.c.d. 12-hour (000
$\left.\mathrm{T}_{1} \mathrm{~T}_{0} ; \mathrm{U}_{3} \mathrm{U}_{2} \mathrm{U}_{1} \mathrm{U}_{0}\right)$ to b.c.d. 12 -hour (000
$\mathrm{~T}_{0} ; \mathrm{U}_{3}{ }^{\prime} \mathrm{U}_{2}{ }^{\prime} \mathrm{U}_{1}^{\prime} \mathrm{U}^{\prime}{ }^{\prime}$. If c.m.o.s. i. 0 are are $\left.T_{0} ; U^{\prime}{ }^{\prime} U^{\prime} U_{1} U^{\prime} U_{0}{ }^{\prime}\right)$. If c.m.o.s. i.cs are
used,
(quad 2 -input 4025 (triple 3-input NOR), 4030 (quad exclusive OR), 4069 (hex inverter), 4071 (quad 2-input OR) and 4073 (triple 3 -input
AND) are required. AND) are required.
$\underset{\text { Whitchurch }}{\text { W. Gough }}$
Whitchurch
Cardiff

Accurate motor speed

control with braking

Mr Malvar's 'Accurate motor speed control' (WW Circuit Ideas, August 1980) described a circuit in which the effect of
motor armature resistance was cancelled by using the armature current to provide positive feedback to the drive amplifier. The amplifier used a booster transistor which entailed the motor stopping under open circuit conditions.
equired with a fast stop/stant be achieved by the addition of a transistor complementary to the booster transistor.
The circuit shows this addition, with a somewhat modified bridge circuit. When to $V_{\text {REF }}$, which can be gated or switched to provide a fast stop/start (R_{1} being the variable resistor). A single supply may be used.
K. G. Barr
University of the West Indies University
Barbados

DIGITAL FREQUENCY SYNTHESIZER DESIGN

Digital frequency synthesis is now commonplace in commercial transceivers. James Bryant discusses the design of programmable counters and prescalers for v.h.f. and u.h.f. synthesizers using a family of frequency synthesizer i.cs. He includes a description of a basic computer program which will design dividers for v.h.f. and u.h.f.

A basic frequency synthesizer, shown in Fig. 1, consists of a voltage-controlled os tector, low-pass filter and a stable reference frequency source. The v.c.o. and 1.p.f. are the most critical parts of the design, and the v.c.o. must be isolated from the output and the input to the di-
vider. Operation of the synthesizer is straightforward: the v.c.o. output is fed to the programmable divider and then compared with the reference signal in the phase comparator, whose output controls the v.c.o. The system is therefore a phaseoutput in phase with the reference input. The v.c.o. frequency is stabilized at n times the reference frequency, i.e.
by J. M. Bryant B.Sc.
$F_{\text {out }}=n f_{\text {ref }}$ where n is the division ratio of the programmable divider. If n is altered by unity, the v.c.o. output will change by $f_{\text {ref }}$ so a synthesizer can generate several channel frequencies which are multiples of the reference frequency. In v.h.f. and
u.h.f. synthesizers channel spacings of 5 to 50 kHz are normally required, although synthesizers with channel spacings down to 1 Hz or less can be built but these would normally use multi-loop techniques. Although the v.c.o., phase comparator
and l.p.f. can be built using discrete components, for a complex circuit such as the programmable divider the use of i.cs is
essential. Unfortunately, current inte-grated-circuit programmable dividers us c.m.o.s., n.m.o.s. or t.t.l., technology and 25 MHz (a little higher in the case of Schottky t.t.l.) which is not nearly high enoug for v.h.f. or u.h.f. synthesizers.
One solution to this problem is shown in Fig. 2 where a fixed v.h.f. or u.h.f. pre between the v.c.o. and the divider. This reduces the output to a frequency which the programmable divider can accept, bu it also introduces several other problems. However because fixed dividers using e.c.l. encies up to 1.8 GHz , this system is often used in commercial equipment. Two

Fig. 1. V.c.o. frequency is stabilized at n times the reference generated by altering n.

Fig. 2. Including fixed prescaler in divider loop allows v.c.o. to operate at frequencies higher than c.m.o.s. or t-t logic allows.

Fig. 4. Multi-modulu's prescaling avoids the noise problem of Fig. 3. Full counter cycle delivers one pulse for each

ig. 5. Four-modulus prescaling overcomes the limitation on lowest frequency of Fig. 4

Fig. 6. Synthesizer type NJ8811 is made from n-m.o.s. to redu
also reduces chip size and the number of diffusions required.
system performance (noise in the reference oscillator is less important because $f_{\text {ref }}$ is, or) and the system is more complex Nevertheless, many synthesized transceivers use this technique.
A better system, known as a multi-mod ulus prescaling, is shown in Fig. 4. The simplest form uses a two-modulus presaler (sometimes called a swallow counter) two programmable counters are reset to zero. The prescaler divides the v.c.o. out put by $m+1$ and its output pulses increene both programmable counters. When the count reaches a, the prescaler modulus this point $a \times(m+1)$ cycles of the input frequency have been counted). The n counter continues to count the prescaler utput until it reaches n and passes a pulse to the phase comparator. Both counters are then reset, the prescaler reverts to $(m+1)$
ratio and the cycle restarts. In the second half of the cycle, the system counts $(n-a) \times m$ cycles of the input frequency. Therefore, a full cycle of the counter de ivers onè output pulse for each $a \times(m$ 1) $+m \times(n-a)$ input cycles, so the diviThato is nm $+a .1$.
The complete system forms a v.h.f. or a.h.f. programmable counter, but the programmable counter only operates at a w MHz which enables c.m.o.s., n.m.o. or t.t.1. devices to be used. Also, althou hey are simpler than the type in Fig. 2 and he overall complexity is only slightly reater. There are, of course, drawback he division ratios of a two modulus pres caler will normally be between 10/11:1 and
100/101:1, but ratios of over 20/21:1 are equired at v.h.f. if the programmable counter input frequency is to be low nough for c.m.o.s. or n.m.o.s. devices.
For an $m / m+1: 1$ prescaler the a counter
minor problems with this approach are the high power consumption of e.c.1., and inis the effect on $f_{\text {ref }}$ because the introductio of fixed prescaling changes the synthesizer aw to $f_{\text {oun }}=m \times n \times f_{\text {ref. }}$.I the same chann spacing is needed, the reference frequenc will generally lie between 10 and 256 . This complicates the design of the 1.p.f., inreases by a factor of m the time required or the synthesizer to lock and, unless ex worsens the noise and reference sideband evels in the synthesizer output.
In applications where this degradation unacceptable, the use of a mixer synthe ered. The v.c.o. is mixed with a signal frequency f_{m} and the difference frequenc out $-f_{m \text { m }}$ is applied to the programmable divider via a 1.p.f. This system has number of advantages, f_{m} can be switche o give i.f. and repeater shiftst, power cor understood. However, the overall system stability depends on two oscillatorors (fref and f_{m}), low noise levels in the second
iig. 7. Although $N J 8811$ and N N8812, above, will generally be programmed by à r.o.m، and
charinel switch they are compatible with microprocessor-based systems as well

DP-824-24 PRINTER KIT SPECIAL OFFER SAVE £33.89 (UK ONLY)

 A A

"ision


```
*)
```


期

ise
Kity

must be programmable over a range of m and the n counter must always divide by a
larger number than the a counter. Therefore, to be fully programmable, the total system division ratio must be equal to, or greater than m^{2}. This sets a lower frequency limit for such synthesizers, for
example, with 25 kHz channel spacing and a $40 / 41$ prescaler the minimum division ratio is 40^{2} so the minimum frequency is 40 MHz 64

Generally, the programmable counter sets a limit which is higher than the theo quired, four-modulus prescaling can be used. A typical system is shown in Fig. 5 with four moduli, $m / m+1 / m+k / m+k+1$,
which are ser by +1 and $+k$ control lines. which are set by +1 and $+k$ control lines. and the conditions which limit the ratios are, a must count over a range of k, x must count over a range of $(m+k+1) / k$, and n
must count at least the minimum value of a or k. For a $55 / 56 / 63 / 64$ prescaler, the divi-
sion ratio limit is 512 , which allows 25 kHz channel synthesis above 12.8 MHz . Again, in a practical system, the programmable counter will generally set a higher minimum. The overall division ratio of
this system is $m \times n+k \times x+a$ where n, x and a are the counts in their respective counters.

Continued on page 8 WIRELESS WORLD JUNE 1982

To compliment the excellent article in this issue of Wireless World, Roxburgh Printers Ltd are making an offer of
1pc DP-824F-24 Printer Mechanism 1pc DPC-4A Controller Chip pc 82910180 Paper Tear Ba 1 pc 114080 -RO-000-SP-P Paper Roll Normal price with carriage and VAT would be
f119.38 Offer price inclusive of carriage and VAT is $£ 85.49$

Cheques should be made payable to Roxburgh Printers Ltd.

If you would like further data on this or the complete range of Printers and Interfaces, please contact us.

WW053 - FOR FURTHER DETAILS

EP4000 bprom maliator
 PROCRAMMER

The microprocessor controlled EP4000 wil emulate and program all the popula 508 758 , 2516 , 716 253, 2708, 2732 (3) 2508, 2788, 251, 2716,2532 and 2732 de change are not caris and hardware Configures itself for the different machice Ohigues 2764 and 2564 EPROMs are programmed with external modules.

The editing and emulation facilities video output and serial/parallel input/out put provided as standard make the EP4000 very flexible to allow its use in three main modes:

- As a stand alone unit for editing and duplicating EPROMs.

As a slave programmer used in conjunction with a software development system or microcomputer

- As a real time EPROM emulator for program debugging and development standard access time of the emulator 300 ns

Data can be loaded into the $4 \mathrm{k} \times 8$ static RAM from a pre-programmed EPROM, the keypad, the serial or parallel ports and an audio cassette. Keypad editing allows for match and scroll, temporary block storage A video output for mory block stoge. A video output built in 8 digit hex display allows full use of the editing facilities to be made.

Items pictured are: EP4000 Emulator Programmer - $£ 545+£ 12$ delivery; BSC buffered simulator cable - E39; MESA 4 multi EPROM simulator cable £98, 2732 A Programming adaptor 2564 Programming adaptor f64; 2564 Programming adaptor - £64;

BP4 (TEXAS) Bipolar PROM Programming module - £190
Also available (not shown): VM10 Video monitor - £99; UV141 EPROM Eraser with timer - f78; GP100A 80 column Printer - £225; Pl100 interface for EP4000 to GP100A - £65

VAT should be added to all price

DISTRIBUTORS REQUIRED

Sinclair versus

 BBCWhen the BBC announced that they had selected Acorn to produce their microcomputer,
Clive Sinclair was furious He cid Clive Sinclair was furious. He said that he could
offer "any facilities that the Corporation might require at a lower price than any compecitor".
The Sinclair ZX Spectrum is his prove it and he recently launched it as "not the BBC Computer". In his promotional literature he lists features included on the Spectrum and compares them with rival colour-display computers in an attempt to prove that the Sinclair
can out-perform the others, especially the BBC model ' A ', at less than half the price.
As he has invited the comparison, it is worth
taking a closer look at both the BBC model A taking a closer look at both the BBC model A
and the ZX Spectrum. The first obvious dif and the EX Spectrum. The first obvious dif-
ference is the keyboard. The BBC has a conven-
tional typewriter layout with ference is the keyboard. The BBC has a conven-
tional typewriter layout with 73 keys including
ten user-definable function keys. The Specten user-definable function keys. The Spec-
trum has 40 keys and some have six functions which involves extra shift-keys to get the rekeystroke entry of all the Basict keywords available. Unike the miniature membrane of the writer pitch, but instead of concave full-sized keys they are in the flat calculator style.
The Spectrum offers eight-colour graphics modes are user definable. The BBC ' A ' has a choice of modes with four-colour graphics, 160
$\times 256$ pixels and 20×32 characters. Higher definition is possible on the BBC ' A ' at the expense of using fewer colours. The Sinclair has overcome one of the major
bugbears of the ZX81, that of loading saving programs and data onto a cassette recorder. The Spectrum has a cassette interface
that records a tone onto the tape: when loading hat records a tone onto the tape: when loading,
the computer automatically adjusts to the tone so that the correct input levelt is set. This overcomes the automatic recording level fluc-
tuations on some recorders. The BBC 'A' uses a test tape to tell the operator when the recording test tape to tell the operator when the recording
level is correct after it has been adiusted manually. Spectrum can load a program faster
at 1500 baud compared with 1200 baud. 1500 baud compared with 1200 baud.
Using a BEEP command, the Spectr generate sound which may be controlled in pitch and duration, but the model A has threevoice music synthesis with full envelope control.
The ZX printer plugs directly into the Specrum and offers the same high resolution and graphics capabilitites, without the colours, as the
screen, and can reproduce anything displayed. screen, and can reproduce anything displayed.
Model A has no printer interface - it is only available on the enhanced model B. An input output port is
not for model A.
The BBC computer uses a version of Basic with a very large number of keywords. The ZX Basic is an extended version of the ZX81 but has
fewer keywords than the BBC. Some of the more useful keywords available to the BBC computer are AUTO for automatic program line numbering and RENUMBER. OLD restores a program that has been released froh memory by
NEW. There are about 30 other keywords which are not available on the . Spectrum.
However, there are some on the Spectrum However, there are some on the Spectrum
which do not occur in model A, especially VERIFY which can compare a program which
has been saved with the original; and MERGE WIRELESS WORLD JUNE 198

Clive Sinclair with his new colour graphics computer the ZX Spectrum
which can combine a program being loaded with more powerful file-handling facilities. In practice, both computers will be able to perform similar functions but the sinclair may need programs.
The memory (r.a.m.) capacity of both
machines is the same at 16 K and, while the BBC machines is the same at 16 K and, while the BBC 48 K . The Sinclair claims to have more efficient memory 'packing' so that more r.a.m. is left avaiable when using high resolution graphics.
BBC model A may be BBC model A may be chaice of to model B iess; analogue inputs, serial and parallel ports. An 8 -bit Centronics printer port, viewdata and Blue, and sync outriuts and a disc memory filing system. So far the Spectrum will operate he ZX printer. An RS232 serial interface board Microdrives - miniature microfloppy disc Erives which will hold up to 100 K bytes of data. Eight of them may be linked together. Each Microdrive will cost about $£ 50$. The prototyp was only about 70 mm wide, so the discs are very small.
When w
Sinclair has come to distinct advantage. The the the model costs $£ 125$ and the 48 K memory model,

Flat-screen scope

It is often forgoten that liquid crystals are a the Royal Signals and Radar Establishment The earlier ' royalties from all over the world al warlier 'twisted nematic' 1. .c.d used in digio make them visible, but the newer 'dye-phase dissolved in use the optical properties of dyes, dissolved in the liquid crystal, which make them
brighter and not subject to the restricted
£175. BBC model A cost just under $£ 300$ and wide variety of peripherals from other manufacwide variety of peripherals from other manufac-
turers: at a recent computer fair there were demonstrations of high resolution graphics, inerface for all kinds of equipment including fullsize parallel printers, music synthesizers and
even colour graphics. If the ZX Spectrum atracts similar support from these manufacturers, or orhers, it seems there could be few limi-
tations to its abilities while remaining within the ations to its abilities while
price ceiling set by its rival.
Meanwhile, Sinclair Research will continue to produce and sell the ZX881. 400,000 have been sold in a year and M_{r} Sinclair believes that it is
still the best introduction to computing for shose unwilling to undertake a higher financial commitment. The price of the add-on 16 K
r.a.m. has been reduced to $£ 30$ dut the ZX a.m. has been reduced to $£ 30$ but the ZX printer increased to £60. Despite the high
profits of Sinclair Research over the last year, sinclair is looking for more capital to finance some of their other activities including Clive
Sinclair's pet inclair's set project, an electric car. For this he
is investigating the possibility of selling some in invesugaing the
Sinclain the company not
Sinclair might not lead the low-cost colour
computer Acomputer market for long. It is rumoured that produce their own colour device, the Eleccron, for about the same price as the Spectrum. viewing angle of the earlier type. The de-
velopment of these displays has enabled them to be made much larger. This, however has led to problems of addressing and driving the display elements. Time division multiplexing may be
used but the limit has been achieved in a message display wirh four lines of text. Oscilloscope displays are fractionally easier to
produce as the information displayed is simpler produce as the information displayed is simple
form than that nisplays. It is usually necessarty to distinguish
only one element in each colun for only one element in each collumn for a waveform
ob be displayed. The method invented by Dr lan o be displayed. The method invented by Dr fan
Shanks of the RSRE uses row and column drive waveformis which are divided into discrete time
periods. In each period the drive waveform is ither on or off associated wirh the logefic states
11^{\prime} or 0 ' respectively. The drive wavefor herefore binary and the sequence of logic states nay be repeated every somus. The waveforms can be supplied by standard c..m.o.s. logic cir-
cuits cuits, unlike message displays which need
special decoder/drivers. Unfortunately direct special decoderddrivers. und
voltages cannot be used to drive liquid crystals. They would cause chemical decomposition. This problem is overcome in the 'scope display
by generating pseudorandom binary sequences by generating pseudorandom binary sequences
in the drive waveforms. A different waveform may be applied to each row of the display. Any of these or a different set of waveforms are also
applied to the columns. Only when the same applied to the columns. Only when the same
waveform is applied to both row and column in the matrix will there be no voltage difference
and so that element will be offf. As there will be and so that element will be 'off?. As there will be
voltage difference on all the other elements in voltage difference on all the other elements in he column, they will be on and therefore clement is deternined by the choice of wavenined by the value of the sample taken from the input signal waveform. As the 'off? clement depends on zero voltage difference, the device is
not sensitive to voltage changes caused by temperature and full performance is maintained nder a variety of conditions.
A display using this system was incorporated
into a prototype oscilloscope at the RSRE, Malvern, with a 100×100 element matrix. In 1977 , vern NRDC invited Scopex to see the work at Malvern and this has eventually led to the de-
valopment and production of the first commervelopment and production of the first commer-
cially available flat screen oscilloscope. The Scopex Voyager has a 128×256 element display
with a graticule of $60 \times 100 \mathrm{~mm}$. The bandwidth with a graticule of $60 \times 100 \mathrm{~mm}$. The bandwidth
is d.c. to 150 kHz sampled eight times for each is d.c. Analogue signe's are converted to digigital using a successive approximation method. The bit digital words so produced are written into
a ra.m. in a location which corresponds to its posizon in relation to the timebase or X -axis of
the instrument. The contents of the ra.m. at a the instrument. The contents of the r.a.m. .at a
particular address are used to define the pseudo-

The Scopex Voyager oscilloscope is the first commercially available to include a flat l.c. . The Scopex Vovager oscilloscope is the first commercially avainabie to include a fint.c.
random binary sequence waveform for the co-
lumn corresponding to that address and thus the lumn corresponding to that address and thus the
vertical level of the display element. Waveforms can be up-dated or held in the r.a.m. This gives a stable image to the display. which does no
flicker or fade. A 'save memory' function allows flicker or fade. A 'save memory' function allows
a waveform to be stored after the instrument is switched off. Waveforms from different sources may be compared using the dual-trace function.
There is also a pre-triger function. The use of There is also a pre-trigger function. The use of
an external timebase or X input converts the oscilloscope to an XY plotter. At the analogue input end of the 'scope, Sco-
using as few external controls as possible. To
tis end, the vertical amplifier, trigger and this end, the vertical amplifier, triger and
timease controls are i milar to those on copex analogue oscilloscopes. There are two Y inputs to provide a dual-trace and in order to cope with
the 7 -bit resolution and the 1.25 MHz conversion rate, a switching speed of 60 ns is achieved using a Schottky diode ring gate. The 'scope is
powered by rechargeable internal batteries powered by rechargeable internal batterie
through a switch-mode supply. All this is through a switch-mode supply. All this Along with probes and a battery charger
presented in a leather briefcase for $£ 2,500$.

Memory key

Plastic credit cards can be damaged or stolen,
the magnetic strip information can be copied the magnetic strip information can be copied and is limited in the amount of information that by a manufacturer of plastic cards, Data Card International, which is a plastic key incorporat(e.a..ro.m.). The memory has a capacity for 300 characters and the key is used in conjunction with a keyhole or 'Keyceptacle', (sic), with th $-\quad$ appropriate electrical contacts and a Keytrolier allows the contents of the key to be commu-
nicated to a host computer. The Keytroller also nicated to a host computer. The Keytroller als is made of the memory.
The system is inherently secure as the details are entered at random. Sections of the data ma
be protected by access codes and the memory is be protected by access codes and of etails or per-
sufficient to contain a avariety of det sonal data known only to the keyholder. If any one were able to copy the key, it would be no
good without the knowledge of the appropriate codes.
codes. Datakey, as it is called, can be used fo
The Dat
access to areas or machines that are secur WIRELESS WORLD JUNE 198
against unauthorised users in much the sam
way as a plastic card. It has many additiona uses as it can contain a programme for almo any computer or controller. Thus it may be used
for work and time logging, for monitoring A particular advan, for ve the systerm is et ability to alter the contents of the memory. It
can hold details of an account can hold details of an account, and money other token units may be added to or subtracte
from a total held in the memory. This enables it to be used as a credit card to be used with a variety of vending or dispensing machines. An
example is the dispensing of petrol controlled by the key
A further example of the use of the key is the
storage of instructions for storage of instructions for a machine tool.
change of key instantly changes the instruction set without the need for re-programming o loading punched tape. Keys may be used in
combination with one key combination with one key specifying a produc
type while another may hold details which may vary within the e eype.
A Datakey development system, including a A Datakey development system, including a
number of the keys and a keyboard/display programming unit, is available to OEM customers.

Sir Kenneth Corfield (right) receives the Toyal Charter of the Engineering Counci
from John Wakeham, Under-Secretary of State for Industry. The Council wàs set up an engine for change in shifting national attitudes and priorities'. The new Council will take over most if not all of the executive functions of the Council of upervision of the training and ualifications of engineers. The CEI has agreed that 'when the time is right 't will he Engineers Registration Board. The righ time depends on the Engineering Council new Council assumes all the functions of he CEI, then the CEI will 'undoubtedly wind itself up', according to Bryan Hildrew he retiring Chairman of the CEI in his
foreword to the CEI Annual Report.

WRELESS WORLD JUNE 198

These miniscule plastics bobbins are used in cassette tape recording heads. The sort o
thing that one associates with far Eastern manufacturers these are Warwickshire and exported to the Far East by Dyncast International made in Alcester, contract for eight million of them.

Intelsat VI -

a new series

Five new Intelsat telecommunications satellites series V , and will be in operation by 1987 . The satellites are to be beraitio by by 1987 Hughes Aircraft Company who will be joined by an
international tram of international team of subcontractors. British lion worth of orders over a seven-year period. After the initial five there is an option for eleven
additional spacecraft. Each sateelite will be nearly 12 m tall and 4 m Indiameter with a weight of $1,800 \mathrm{~kg}$. The solar panels will generate $2,200 \mathrm{w}$ to power up to
3,000 two-way telephone channels and four ty hannels.

The spacecraft has been designed for
launching by both the ESA Ariane and the NASA space shuttle. As the shutule does not reach the reequired altitude for for goosynchron not
orbit, there needs to be an additional booster orbit, there needs to be an a dditionnal booster
stage and a system for launching the satllite stage and a system for launching the satellite
from the shutre. BAe will design and build the cradle for carrying the spacecraft in the shuttle bay. This will include electronics units and the power and signal interface which connects the build the \mathbf{C} and K band dish reflectors, other structures and wiring hasrnesses.
British Telecom has the second largest share in the International Telecommunications Satellite Organisations of which there are 106 members. The new satellites will help BT meet the
demand for international telephone grows at a rate of more than 20% ealls
contacted by telephone at $01-6483077$.
Thomson-CSF claim the world's fastest inteinated circuit operating at room temperature, only 22 picoseconds. Structured from gallium luminium arsenide/gallium arsenide junctions, he molecular-beam expitaxial process used is capable of controlling the crystal growth of the
various layers down to the thickness of a single atomic layer. On 5th April, a 'magazine' called Electronic intended to provide news, comment, produc formation and advertizing concerning isers. The potential exists to update news by he minute - 24 hours a day - and readers can pass from product news to product feature to
comparison chart to stockists and reter omparison chart to stockists and retailer tary "maintains a fully independent view", say
the publishers.

LEAKY FEEDER COMMUNICATION IN TUNNELS

Since the earliest days of radio - and certainly before the advent of broadcasting attempts have been made to apply it in mines and tunnels using conventional apparatus of the day and relying on natural propagation of the waves. All these efforts were doomed to failure, and the reasons are now well understood: radio waves cannot propagate usefully in such conditions by any natural means.

Radio waves cannot propagate naturally to ny useful extent in mines and tunnels. Since about 1920, many attempts to use
radio in such conditions have been made, without success.
There are two important exceptions to this generalization. At very low frequencies, certainly below any used for broadcasung, nerr it ack or other strata This property has recently been thoroughly investigated in the USA and exploited in the development of equipment intended for possible communication with Trapped miners from the surface above. have been demonstrated, but speech modulation is not practicable at the very low frequencies necessary and so the ystem uses baseband audio-frequency c.w. carrier (for the 'up-link'). The possibilities have been studied but discounted for British mines, where average depths are greater and mining techniques less suitable, though equipment operating at slightly higher has been successfully used by cave explorers. Useful ranges with speech modulation have also been achieved in South African mines, where geological propagation, and special equipment developed ${ }^{1}$.
At the other end of the practical radio spectrum, waves in the u.h.f. range and above can often propagate usefully
through a tunnel in what amounts to a waveguide mode, as first demonstrated by such investigators at Foot ${ }^{2}$. This form of communication is now being considered seriously by British Rail, whose operational train communications are u.h.f. band following agreed European practice, and is also being investigated for the National Coal board by the University of Surrey. Negotiation of obstacles is the obvious difficulty, and in mining
applications some practical means would need to be devised for re-directing the waves round a corner.
In 1955 Wyke and Gill ${ }^{3}$ reviewed the situation as they then saw it with regard to 70.

Fig. 1. Diagram of the basic leaky-feeder crinciple, depicting how the base station mobile station M through the loakage fields of two components, the line loss and the coupling loss.
by D. J. R. Martin,
B.Sc., Ph.D., F.Inst.P., F.I.E.R.E.
gives many interesting references to the futile earlier experiments. One such investigator, in sheer negation of the infamous remark 'as successful means of wireless communication have not been discovered, details of the apparatus used and experiments carried out have not been Wyke and Gill thed attention to the possibilities of in drew ype communication in coal mines, using frequencies in the range 15 to 150 kHz and elying on 'guidance' by any conductors present, such as power cables and
telephone lines. Suitable equipment was, in fact, developed over the next decade or so and became a standard attachment to underground locomotives and cablehauled man-riding trains. Generally, it was
found worth while to install special wellfound worth while to install special well-
positioned conductors or 'guide wires' for positioned conductors or guide wirrs for
he purpose. By this means, reliable communication over distances of a kilometre or so could be obtained, especially if the conductor wire were galvanically connected to the base station
instead of relying on inductive coupling
there.
While fulfilling an important need in mine vehicular communications, the inductive equipment never achieved any success as a two-way personal system. The
reasons for this were the fairly high transmitter powers required (about 5 W) and the resulting heavy batteries, the cumbersome loop or frame aerials nvolved, and the need for fairly close applications, trouble was experienced with 'blind spots' or standing waves on the line, due to a lack of appreciation of the need for correct impedance termination or periodic phasing, and this often was the limiting
factor on range. Such inductive systems have now been completely superseded in UK coalmines by the later developments to be described, though they are still used widely in some overseas countries, notably the USA and West Germany.

The key to the revolution in 1956 with the publication by came in 1956 with the publication by Monk and
Winbigler of a paper describing how v.h.f. radio communication had been successfully maintained with a moving train in a long railway tunnel. Following a logical idea, they first installed a standard
coaxial cable (RG-8/U) through a section of the tunnel, connected to a normal base station at one end and having dipole aerials bridged across it at frequent intervals. This worked extremely well, and so the spacing between the aerials was then
progressively increased until they had all progressively increased until they had all
been removed; good communication was still maintained throughout the length of the section, although it had not been possible before the installation of the

communication was through the stray what is now known as the 'leaky feeder' or 'leaky cable' principle.
With the realization that the cable itself obvious next step was to substirute one known to have a higher leakage, and so a change was made from the coaxial to an unscreened two-wire line, a rather heavier then in common use for television downleads. This was also a more economical type of cable to use in terms of
longitudinal attenuation for weight of copper. nd Winbigler pioneering work of Moin was applied for communication in several American underground railway systems, otably the New York Subway, was ignored by mining interests worldwide, and also in the UK generally, until the present author ${ }^{6}$ commenced an insugation into its possiblitites for mining use in 1966 at the same ime that similar interest was being shown in well served with expert theoretical and practical investigation in several countries, eading to a deeper understanding of the designs of fres and mproved described in this part of the article. At the same time, it has been appropriate to develop new and dedicated systems echniques to complement the new basic principle, and these will be described in

Leaky-feeder principle
The basic leaky-feeder principle is illustrated in Fig. I: B is a conventional two way radio base station; LF is the leaky
feeder, installed throughout the tunnel or environment where communication is required and connected to the base station in lieu of a normal aerial; M is a conventional two-way mobile or personal radio set, communicating with the base station throug The total path loss between the bas station and the mobile is made up of two components: (a) the transmission loss
within the feeder itself, between the base WIRELESS WORLD JUNE 1982
station and the region of the feeder in the vicinity of the mobile; and (b) the 'coup-
ling loss', which is measured berween the same region of the feeder and the aerial terminal of the mobile set.
Note that no assumptions are made here about the direction of transmission; the overall path is truly reciprocal, and so the
principle is valid equally for mobile-tobase as for base-to-mobile communication. However, the processes involved are perhaps easier to visualize as operating in he base-to-mobile direction, and so conusually from that point of view. Much of the theoretical work on the subject is similarly oriented; experimental observations, on the other hand, are often more with a mobile source inducing signals into the feeder. Reciprocity, of course, applies to the signal transmission only, and excludes the effects of any external interference or internal noise sources in the path; pects are considered, and will be covered in Part 2.
It may also be noted in passing that a leaky feeder may be used to allow direct the intermediary of a base station. In this case the feeder operates in a purely passive or 'parasitic' mode, and two coupling losses are involved in the path. This form of operation was the basis of the pioneering Eelgian work ${ }^{5}$.
Consider now the separate loss compo cally a transmission line, in spite of 1 y decay exponentially along its length it will decay exponencially along irs lengu - Hat is, the loss in dB will be directly proportionwill still be largely determined by the normal copper and dielectric losses, the eakage contributing little, and so a heavier and thus more expensive cable will give respect. It also follows that the arrenuation rate is a stable characteristic which can be
closely predicted or specified in the design The coupling loss, on the other hand, is The coupling loss, on the other hand, is a vague and variable quantity, being a
function not simply of cable leakage (however that may be assessed) but alago of the cable mounting, the environment, the characteristics and polarization of the moIn a tunnel or any enclosed the cable. pronounced multipath effects will inevitably occur, causing the 'instantaneous' value of the coupling loss to vary by 20 dB or more over short distances. Figures to their cables, usually in unrealistic condiuons, should be taken only as a very rough guide; an experienced system designer will prefer to work with more measurable fungether with a knowledge of its construction and a consideration of the environment and application concerned; in this particular respect the subject is best regarded as an art rather than a science.
feeder, again, is a well-established in creasing function of frequency, which on this account should be set as low as possible. The leakage fields are generally con-
sidered to be substantially inderandent of sidered to be substantially independent of
frequency; however, other factors such the size and efficiency of mobile aerials, the availability of suitable equipment or the need for compatibility with surface quencies below 30 MHz the use of fre quencies below 30 MHz . One therefor principle operating in the standard v.h.f mobile radio bands, with a minority in the h.f. and u.h.f. ranges.

Bifilar lines

For a decade or so following the origina screened bifilar or tigler publication, unscreened bifiar or 'balanced' types of line
were used exclusively as leaky feeders, and were shown capable of giving very satis fact, that the high field strengths bein

Fig. 2. Typical long standing wave as predicted to occur on a leaky feeder near the base attenuation rates (based on a computer analysis by A. M. Schmidt, Technische Hogescho
and attenuation rates (bat conclusion that an imperfection or imba lance was the key factor in the success of the schemes. Such imbalance would result from inevitable assymmetries and irregularites in the mounting arrangements and in tion of a continuous or continual in terchange of energy between the low-field balanced mode and the high-field unba lanced or 'monofilar' mode; the balanced or 'bifilar' mode provided the longitudinal provided the coupling to the mobile set. It was shown experimentally that improving the balance by twisting the feeder, as might be expected, improved the longituleakage field, while 'careless' installation o an untwisted line close to metal structure or other cables would enhance the fiel locally to the detriment of the longitudina transmission.
Deryck ${ }^{7}$ has extensively studied the use
of bifilar lines as leaky feeders, and has of biniar lines as leaky feeders, and ha
devised discrete 'mode converters' for in troducing a controlled interchange of energy at specific points in a feeder ${ }^{11}$. Bifilar lines were intially considered for the first UK coal-mine system, commis
sioned at Longannet in 1970; the requirement there was for a radio system to serve a single 9 km tunnel linking four mines underground. But conditions there are ex tremely wet, and precautionary test
showed that in such an environment the longitudinal attenuation of the simple 'ribbon feeder' proposed for use rose dras tically and became extremely unstable. In the following years, evidence also came to early railway stems were suffering from the effects of build-up of grime on their surfaces, and some were having to be cleaned regularly.

Coaxial feeders

For the Longannet system, further tests For the Longannet system, further test were made using a standard low-loss coax-
ial television downlead in which the outer conductor braid was applied in a 'loose weave' for cheapness and which could thu be presumed to have a high leakage. It wa
confirmed that this cable had broadly suit
 Ypical leaky cable of the open-braided
ype. The dielectric is of semi-airspace hread-and-tube construction, for
maximum velocity ratio (about 0.87). The maximum velocity ratio (about 0.87). The
iner sheath is of polythene, the outer of inner
puc.
able characteristics for a leaky feeder: th longitudinal and coupling losses were both type in clean and dry conditions, but the were completely stable against surface moisture and grime, and the cable could even be installed close to a wall or along-
side other cables without detriment to the side other cables without detriment to the
attenuation. This experience established the open-braided coaxial type of feeder a the standard for use in UK mines, though the actual cables used are specially de signed heavier versions than television
downlead in the interests of robustness and a lower attenuation. This move back to wards coaxial feeders has also been fol lowed generally in railway and other trans portation systems.
With the general adoption of coaxial types of leaky feeder, the need arose for
better understanding of their mode operation, rather than the vague notion of leakage of energy through the interstices of the braid. At that time, screening effi ciency of coaxial cables was assessed in measurable characteristic of the braic alone ${ }^{8}$. From this starting point, the pre sent author developed a theory of contin uous 'mode conversion', analogous to tha of Deryck for bifilar lines, with the surfac assymmetries of the bifiliar line ${ }^{\text {s }}$. This led directly to some useful practical improve ments and also predicted effects which have since been confirmed in experience, more rigorously and elegantly by such writers as Wair ${ }^{12}$ and Delogne ${ }^{13}$.
The first important conclusion from the heoretical work - and in truth a prio hunch which had prompted it - was that in its normal coaxial mode was a key factor in determining the leakage fields, along wit the more obvious surface transfer im pedance of the braid. In fact, changing th dielectric from solid polythene to a semi prove the external coupling in typical con ditions by 20 dB - a change that would otherwise correspond to a reduction i braid cover, for example, from 93% t not a simple one, involving also such in tangibles as the attenuation rate and the characteristic impedance of the line in it monofilar mode, parameters which must depend heavily on the environmental con tilate a 'figure of merit' for a particula cable for direct comparison purposes; the individual parameters and a knowledge he environment have to be considere ogether.
A further prediction from the theory was the existence of standing-wave effect on the line, quite separate from an multipath effects in the environment and any reflections which may occur from a nost sermination of the line. Potentially the owards the beginning of the line where the base station is connected, and arises from the inadvertent launching of a faster wave, travelling at near free-space velocity,
in monofilar mode on the outside of the feeder. Of near-identical initial amplitud to that of the 'true' leakage field, and in initial phase opposition, it results in a mo dal-interference standing wave being set
up on the line - and thus in the near field - with a wavelength several times the free-space wavelength. Fortunately, it decays at the rate of the monofilar mode
attenuation, which is generally quite high further, its effects near the base station ar mitigated by the lower system loss there reducing the seriousness of any "dropouts
which might result. In theory, it would be possible to suppress the launching of the interfering wave, or to launch another in phase opposition; however, the wave can be regenerated subsequently by any
discontinuity, such as in mounting ardiscontinuity, such as in mounting arrangements, which effects have not proved serious or even noticeable in the opera-
tional systems now being installed by Lonon Transport.
A typical long standing wave effect at 2, which also shows the advantage in coupling obtainable through using a cable with a semi-airspaced dielectric ($\rho=0.87$) rather than foam ($\rho=0.82$). Both curves. are for a frequency of 72 MHz , and assum tion rates of $36 \mathrm{~dB} / \mathrm{km}$ and $0.3 \mathrm{~dB} / \mathrm{m}$ respectively. The monofilar-mode velocity ratio is taken as 0.95 .
The theory has also served to discount early fears expressed that any attempt to
introduce in-line amplification into a leak feeder would risk instability through feed ack between the outgoing and incomin ections of feeder unless non-leaky 'tails ere introduced. In fact, it can be conf dently shown that with a typical feeder
such as the standard NCB open-braided ype, repeater gains of well over 100 dB would be necessary to incur such risk.

Field characteristics

 Confusion has occasionally arisen over theuse of the terms 'monofilar mode' and 'mode conversion' in the operation of coaxial leaky feeders. In his early coupled-lines treatment the present author looked upon the monofilar mode as being the whole of mode conversion as a continuous process which maintained it. In this simple view, he standing wave at the source as seen as natural process, of establishment and synchronization' of the mode. Later further and resolved the external field into two major components. One of these is identified as the true leakage or 'spilling out' of the inner coaxial mode, travelling at
coaxial-mode velocity and reaching its full amplitude immediately at the source. The other is the 'inadvertent' wave, launched at the source and at every discontinuity, and now accounting by interference for the ong standing waves; this wave alone maa, be trully designated the monorinal mode' also decaying at the higher monofilar rate Mode conversion becomes a discre process, occuring only at the launching

WIRELESS WORLD JUNE 198
points of the monofilar mode. Resolving the wave on the line into two
major components in this way simplifion major components in this way simplifies a
prediction of the nature of the resulting fields away from the line. It has been pointed out that the true monofilar mode will have a larger effective radius from the line than the continuous leakage mode, by virtue of its higher phase velocity. Th relevant relationship approximates to

$$
r_{e}=\frac{\rho \lambda}{2 \pi(1-\rho)}
$$

where r_{e} is the effective radius, λ the freespace wavelength and ρ the velocity ratio e space).
dielectric cable $(\rho=0.67)$ at 85 MHz would have a radius of 1.14 m . Use of foam dielectric cable (e.g. 'Radiax', $\rho=$ 0.82) would increase the radius to 2.6 m Changing to a semi-airspaced type (e.g. to 3.8 m . Against these fizures, the velocity ratio of the monofilar mode is very close to unity and its effective radius will be several times greater again
In fact, experiments in the Mersey (No 1) tunnel have shown the field at 170 MH
to be reliably maintained across the full width of the 12 m carriageway from feeder of semi-airspaced construction installed along one side. This suggests that in such practical situations of larger tunmode resulting from 'inadvertent' mode conversions must contribute substantially and usefully to the observed fields, though in smaller tuncls the effect are probably detrimental.
Whichever mode is considered, the physical picture of the external field is of a
TEM wave with the outer conductor of the cable forming the inner conductor of a larger coaxial structure having the tunnel wall as its outer conductor. At low propa-
gation velocities or higher frequencies, or in larger tunnels, the electric field lines will tend to curve and eventually will break away from the tunnel walls and return to he cable, in the manner of a Goubau wave supported entirely on the cable
entirely through induction fields, and so the use of the term 'radiating cables' in respect of leaky feeders in general is incorrect. It is true that any discontinuity which
causes mode conversion may in the same causes mode conversion may in the same this may be useful or even necessary in larger tunnels or at higher frequencies by extending the field in the same manner as the monofilar mode, but otherwise the setting up long standing waves.
The simple picture becomes complicated by severe distortions in the fields, caused by irregularities and obstacles in the tunnel and by the induction-field equilarization away from the feeder in such conditions is generally found to be random, while signal amplitudes can vary locally by the 20 dB or so that is typical for convenWIRELESS WORLD JUNE 1982
built-up areas, But, as will be seen later in discussions on systems techniques, there need be no difficuity in accommodating need be no

Practical feeders and

their installation
Bifilar feeders have the advantage of being comparatively cheap and lightweight, but their use should be considered only in clean and dry conditions where they can
also be installed at least 20 cm clear of walls, structures and other conductors;
even then, their variability makes them unsuitable for use in long repeatered systems. The one-time favourite type, RG-
$86 / \mathrm{U}$, has in fact not been manufactured for several years.
A bifilar type could, however, meet need for an extemporized system in a dry and clean underground environment such as the worked-out stone quarries that have bor a temporary system in Wiltshire, or maintenance of a dry tunnel. A good choice in such a situation would be 300Ω

Fig. 3. Types of feeder used in underground communications. At (a) is a foam-dielectnc conditions. A solid-dielectric cable with an open braid is seen at (d). The opan-braid coax. conditions. A solid--dielectric cable with an open braid is seen at (d). The opan-braid coax
at (e) has a thread and tube' semi-airspaced construction and (f) shows an early iussign with a continuous slot in the outer. Two kinds of cable witt discrete holes are (g) with
punched apertures and thread-and-tube and (h) Radiax, which has milled tholes in the punched apertures and thre
screen and foam dielectric.

ting up 'inadvertent' mode conversions or even radiation. Mounting arrangements except at the higher frequencies (e.g. in the u.h.f. range) or with excessively open braids. Surface contamination
neither coupling nor attenuation.
And neither coupling nor attenuation.
Another early type of leaky coaxial cable
had a solid outer conductor with a continhad a solid outer conductor with a contin-
uous longitudinal slot, giving an aperture uous longitudinal slot, giving an aperture
of typically 25% of the circumference, and of typically 25% of the circumference, and
having a solid or foam dielectric. Such a
cable has sometimes been considered incable has sometimes been considered in-
termediate in its mode of operation betweed a bifilar and a coaxial type. Indeed, it has proved to be very dependent on mounting position, in the manner of a
bifilar line, yet with no compensating advantage of cheapness.
A type popular in the USA and Canada
has discrete holes milled in an onderwise has discrete holes milled in an otherwise
solid corrugated outer conductor sold corrugated ourer conder
('Radiax'). In mode of operation it is
closely similar to the open-braided type. closely similar to the open-braided type. However, there is some evidence, with
theoretical support, that 'hole size' is the key factor in determining the susceptibility of the longitudinal attenuation of a cable ot the mounting arrangements and surface contamination. For a given surface transfer impedance - and thus coupling efficiency - immunity to such external
effects will be better with a larger number of small holes than the converse, and in this respect the braided type must be supreme (it should be noted that total optical cover is not a reliable indicator of
coupling efficiency, and is not in question here).
The milled-hole type has a foam dielectric, which is slightly less favourable than the thread-and-tube construction in res
run counter to the main purpose in
such circumstances, that of spectrum such circumstances, that of spectrum
conservation. The term is clearly best voided.
or On the other hand, the epithet
Oakky' has outraged some manufaceaky' has outraged some manufac-
turers who seem more concerned about the image of their product than with scientifice accuracy, and 'leaky
feeder' has come in for ribald comoeder' has come in for ribald com-
ment. There have even been some qualms expressed in academic circles about the strict meanning of 'leaky' as
applied in transmision-line theory. applied it transmission-line theory.
As for "foeder' or "cable', the only reason for preforing the former is that conceivably an open-wire line
could be used land in fact was considcould be used (and in fact was consid-
ered at one time for NCB use) and this could hardly be described as a ' cable'. The present writer stands sy 'leaky
foeder' in alluding to the techniques foeder in alluding to the techniques proferred by most serious investigaors of the subject, and in particular is now general in the USA and mainland variant in reference to the product it-
seff. hational working goting that the idvising the XVth Plonary Assembly of the CcIR in such matters recently came down in
avour of 'leaky cable, 'avour of 'leaky cable', and this
recommendation is likely to prevail.
pect of the all-important phase velocity. A somewhat similar type manufactured struction, with an outer conductor made o copper foil in which discrete holes have been previously punched. The holes her are even larger than those of the milled hole type, and so such cables should be
used with discretion where close-mounting is inevitable. The dielectreic construction is the favoured thread-and-tube
Leaky coaxial cables are available in pedances, and it may well be asked whic is the better choice. So far as the leakage is concerned, the considerations are more complex than might appear, but whateve
difference may exist in practice is no likely to be significant. When it comes to longitudinal transmission efficiency, standard textbook treatment applies as for conventional coaxial cables, and shows that
75Ω is close to the theoretical optimum 75Ω is close to the theoretical optimum.
For a fuller treatment of the various types of practical leaky feeder, and an assessment of their relative performance reference is recommended to the paper by

INIEX systems

It has been shown earlier that in order to account for the strong fields that are consistently maintained at distances of many wavelengths from a leaky feeder it is necesvertent' mode conversions at irregularities in the feeder or tunnel. The resulting monofilar modes generally have a large effective radius than the 'rrue' leakage field, hoigh rapidly along the line and so require continual regeneration. Delogne ${ }^{15}$ has developed a system in which inadvertent mode conversions are
replaced by deliberate conversions, replaced by deliberate conversions, which may be inserted into the cabverters carefully determined points. Furthermore, the cable itself is a conventional non-leaky type; the true leakage field is thus abandoned and eliminated, and communication is entirely through the closely regulated
monfilar mode. The system has been spon sored and promoted by INIEX, the Bel-
gian 'Institut National des Industries sored and pe
gian 'Institat
Extractives'

Extractives

The main advantage of this 'INIEX-Delogne' system is that the interchange of
energy between coaxial and monofilar energy between coaxial and monofilar
modes is entirely under the control of the system designer and thus can be optimized for best use of the energy available by careful design and spacing of the mode
converters. At their simplest, these devices could comprise a single large hole in the outer conductor; in practice, both conductors are usually interrupted and the gaps bridged by reactive elements. The spacing is typically 100 m , but the system may be to the residual energy in the line and so maintaining a consistent performance regardless of distance form the base station. The devices are normally installed in pairs, spaced a quarter-wavelength apart, to give
a forward directivity to the launch of the
monfilar mode.
Since only one mode is present, there no risk of potentially troublesome lon standing waves. The system can be used over a wide range of frequencies, typically
down to 2 MHz , by designing the mode converters to suit rather than by changin the design of a leaky cable. Against this, it could well be disadvantageous to have to interrupt the cable run at such short in tervals. More important, perhaps, is the walls or metal structures for the whole of the run, for if the monofilar mode become dissipated inadvertently by such a proxim ity effect it cannot be regenerated until th next converter,
spot' could result
At frequencies above the tunnel cut-of frequency - say, in the u.h.f. band for road or twin-track rail tunnel - the INIEX-Delogne system operates dif
ferently. Here, the monofilar mode is ferenty. Here, the monofilar mode is useful. Instead, the radiation which the mode-converter also provokes now launches a wave in the tunnel itself. In this
case, the cable mounting case, the cable mounting arrangement be-
tween mode converters is immaterial since tween mode converters is immaterial since
the cable is not called upon to support a monofilar mode. At even higher frequencies, of course, the tunnel propagation im proves beyond that of the coaxial mode of the cable itself, and so the system then the negotiation of corners and obstacles. In a later development ${ }^{16}$ the discrete mode-conversion devices are replaced by
lengths of leaky lengths of leaky feeder inserted into the otherwise non-leaky cable run. This 'leaky
sections' technique operates broadly on the same principles as before, but offers the advantage that the alternating leaky and non-leaky sections could be arranged in the manufacture of a continuous cable, so tions and connections of the cable in instal lation.
The length of a leaky section in such a system is fairly critical, and the optimum
can be shown to be equal to

$\frac{\rho \lambda}{2(1-\rho)}$

where λ is the free-space wavelength and ρ is the velocity ratio of the leaky cable sec tion. Not surprisingly, this is one-half the length of the long standing wave which the
original coupled-line theory shows would be set up at the beginning of a continuous leaky feeder of the same type.
It also follows simply that the monofilar mode set up by such a leaky section will have an initial amplitude 6 dB greater than continuous feeder. Furthermore, of course, it will have the advantage of the increased effective radius over the leakage field. Against this, the amplitude will decay at the rapid monofilar rate, and so the
6 dB advantage will usually be lost before the next leaky section. Again, the leaky
more as a radiator than as a operate converter at frequencies above tunnel cutconve
off.

A prime objective in the development of hese INIEX systems has been to achiev he maximum possible longitudinal rang repeaters or other active techniques. Onc normally do in any case beyond a few kilometres, the use of these systems become less attractive. However, there is no funda mental reason why they should not b leaky feeders, with the active conventiona niques to be described active systems te To be concluded

References

1.B. A. Austin: Single-sideband transceiver design. Underground application uses simple
ceramic wideband filter Wireless World, Vol 84, pp: 75-6, Feb. 1978 . 2. .B. L. Foot: Transmission through tunnels, Wirieless World, Vol. 56 , , pp. 456-8, Dec. 195
3. . N. Wyke and R. Giill: Applications of 3. P. N. Wyke and R. Gill: Applications of
radio type mining equipment at collieries, radio ype mining equipment at colieries,
Procedins of t tIs Istitutio of Mining lectrical
and Mechanical Engineers, Vol. 36, Nov. 1955, and Mechanical Engineers, Vol. 36,
pp. 128-37 pp. $128-37$. N . monk and H . S . Winbigler Communication with moving trains in tunnels,
IRE Trans. Vehic. Comm., Vol. PGVC-7, Dec. 1956, pp. 21-8
5. R, Liegoois:
souterraines et teléccommande par radio dans la mine, Bulletin Techniquu INIEX 'Mines et Carìres', No. 117, Oct. 1968, 51 p. (Belgium; in Frenc mines and tunnels, Electronics Letters, Vol. 6 No. 18, pp. $563-4$, , Ild Secponts Leeters, Vol. 1970 ,
7. L. Deryck: Emude des modes d'ondes icc: Etude des modes de propaga d'ondes electromagnétiques susceptibles souterrain, An.
No. 78, pp. 939-49, July/Aug. 1970 No. 7. 78, pp. 939-49, July/Aug. 1970
8. G. W. A. Dummer and W. T. Blackband Wires and RF cables, (Pitman, London, 1961)
9. D. J. R. Martin: Transferred surface currents 9. D. J. R. Martin: Transferred surface current Vol. 8, No. 18, pp. 465-6, 7th Sect. 1972 O. D. Jo. . Martin: A enaral stud. of the
leaky-feeder principle, Radio and Electronic leaky-feeder principle, Radio and Electronic
Ensineer, Vol. 45 , No. 5 , pp. 205-14, May 1975

1. L. Deryck: Control of mode conversions on
 12. J. R. Wait: Theory of transmission of lines in the proximity of walls of mine tunnels, ibid., pp. 229-32
2. P. P. Delogne and M. Safak: Ele. P. P. Delogne and M. Safak:
Electromagnetict theory of teaky coaxial
cable, ibid., pp. 233-40 cable, ibid., pp. $233-40$
3. D. J. Cree and L. J. Giles: Practical 14. D. J. Cree and L. J. Giles: Practical
performance of radiating cables, ${ }^{23}$ 15. P. P. Delogne: Système INIEX/Delogne de Annales des Mines de Belgique, 1972, No. 11, pp 1069-811, Nov. 1972
4. P. P. Delogne and L. Deryck: Underground 16. P. P. Delogne and L. Deryck: Underground
use of a coaxial cable with leaky sections, $I E E E$. Trans. Ant. Prop,
83, Nov. 1980

Further reading

nificant authors who have contributed significantly to a basic understanding of leaky ieeders include J. C. Beal, Q. V. Davis, P.
Degauque, B. Demoulin, A. S. C. Ferhandes, J, Fontaine, , R. Gabibilard, D. A. Fill, R. Johann
Schmidt.

MICROPROCESSORCONTROLLED LIGHTING SYSTEM

This final article describes the overall operation and performance of the prototype lighting system. Details are given of the operating system, equalization table, and the hardware required to set-up the control desk's processing and recording modes.

Before discussing the operating software used in the lighting system, its relevance is best understood by considering the layout
of a typical control desk, as shown in Fig. 1 , and how such a desk is operated. The desired lighting pattern is set on the channel faders (presets), and this pattern is
stored in the processor-system memory by pressing the 'record' button associated with a particular master fader, or 'master preser'. This pattern will be recalled and sent to the dimmer modules whenever its associated master preset is not at zero.
Assuming for the moment that only one master preset is at a non-zero setting at any one time, any other master preset may now be used and another lighting pattern set in the same manner. Hence, a complete
lighting pattern may be stored for each lighting patter
master preset.
There are two ways in which these stored patterns may be controlled using the master presets.

- Scaling - the equivalent of analogue preset level is multiplied by the master preset level and the resulting signals sent to the dimmer channels. Relative levels of the channels are maintained at all times. - And stepping, where the master preset levels and the lesser of the two levels used for output. This type of processing is used to build up a lighting pattern, i.e., al dimmer outputs rise according to the level of the master preset and then stop at they
predetermined levels. In an analogue control desk, this type of processing would require very complex circuits.
By using more than one master preset at a time, lighting patterns can be gradually
changed from one stored pattern to another. As the operating program endlessly polls all the faders and record buttons, any lighting pattern produced by a combination of master and channel preset may be recorded by simply pressing th

Operating Software

The operating program and the 'look-up' or equalization table, are contained in jus over $1 / 2 \mathrm{~K}$ byte of p.r.o.m. The require ments for r.a.m. depend required for the operating program and

* University of Keele
by John D. H. White and Nigel M. Allinson*
$N(M+1)$ bytes for lighting pattern storage, where N is the number of channel presest and M the number of master presets. Except for the largest of systems, 2 Kbytes of r.a.m. will suffice. Organization of the data structures is shown in Fig. 2. The present memory stores the lighting-pattern preset. The output-buffer memory is used
to store the required lighting pattern temporarily, before the levels are converted to output signals for the dimmer modules, using the equalization table.
The equalization table performs two important functions. Firstly, the scail of
process entails the multiplication of numerous channel and master preset levels. Without an external multiplier unit, most microprocessors carry out multiplication relatively slowly (some recen
microprocessors, such as the 6809 and 9995 have such a multiplier internally). The multiplication problem could have

Fig. 2. Data structures used in the control-desk software. M is the number of master presets, Fig. 2. Data structures used in the contro
and N is the number of channel presests.

Fig. 1. Layout of a 30 -channel/10-master control desk.
been solved by using a logarithmic a-to-d converter, but in this case, logarithmic-law faders were used together with a look-up the 256 possible levels - hence, multiplications become simple additions.
Secondly, the table provides compensation for the non-linear relationship beween the fader position and the subjective brightness of the lamps, mentioned in the first article. This code transformation is airly difficult to formulate, and will be of formation used in the prototype system which combines both this subjective brightness compensation and the antilogathm converion, so this 1 . Table 1.
The operating program is not listed be-
cause it is specific to the processor used and consists of only eight short sub-routines and three core-routines for lighting pattern recording and processing. However, using the flow-chart of Fig. 3, it microcomputer systems to provide the facilities described. The program tests data present on the data bus to decide whether caling/stepping processing, or recording for this is described in the next section. Note that, to reduce processing time to minimum, there are a number of conditional branches dependant on channel or master levels being zero.

Process/record select circuits

The operating program must test whether stepping/scaling processing, or pattern recording is required. This could be achieved by connecting the control desk's form of keyboard encoding, to a programmable i/o device (such as the $8155 / 6$). However, since mapped-memory techniques are used for all other data input and output, a single i/o port can be connected when the $10 / \mathrm{M}$ status line goes high. Figure. 4 shows the process/record-select circuit. When the 'record enable' key is pressed, the octal encoder (74148) is enabled and its output will stay high until a three RS flip-flops connected to the octal encoder are reset, and hence the 4 -bit binary counter (74163) is enabled. The couner outputs are connected, through a $4-10$ 16-line demultiplexer (74154), to sixteen,
cross-lines in the master-preset 'record' key-matrix. When a key is pressed, at least one of the encoder's outputs goes low and disables the counter. The three--state buffer is enabled when either E, W/R or M/IO is low, and the input data is transesered data bus. Also, the four inputs to the NAND gate ($1 / 27420$) are high, and on the next rising edge of the system enable, \bar{E}, a ' 0 ' is clocked out of the D-type flip-flop and the four RS flip-flops
are reser. The next $\overline{\mathrm{E}}$ pulse will enable the system again. The 0 input of the octal encoder is not used, as a low level on this input will cause all three outputs to be high

1 Theories and Miracles
2 Electromagnetic Analogy
3 Impact of the Photon
3 Ampact of the Photon
4
5 Quantization and Quantization
6 Waves of Improbability
7 Limitation of Indeterminacy
8 Haziness and its applications
9 The State of Physics Today

THEORIES AND MIRACLES

Enormous gaps exist in our understanding of Nature, and many of our fundamental theories are not very credible. In a controversial review of current doctrine in nine instalments, Dr Murray investigates the electromagnetic theory, photons, duality, quantization, matter-waves, indeterminacy and haziness, and reviews the state of physics today.

Many thousands of professioanl radio engihaers can design television transmitters, and almost anyone can build a radio receiver, but there is nobody who can ex-
plain in a plausible and watertight way plain in a plausible and watertight way from the Crystal Palace transmitting tower
to the H -aerial on the roof of my house. to the H -aerial on the roof of my house. This transfer of energy - the radiation
process - is miraculous, if we define a process - is miraculous, if we define a which we can offer no physical explanation. (r'll just say that again: a miracle is a physical occurrence for which we can offer no physical explanation). It is just over 100
years since James Clerk Maxwell gave us a years since James Clerk Maxwell gave us a
good working description of what happens - the equivalent of saying that if you lie in hot sunshine you will get sunburned but he did not explain the radiation phenomenon; and nobody has explained it since.
Here, then, is a fine example of modern technology in action. We know how to build a radio transmitter and we can calculate very accurately what will happen when we switch it on. Something will travel from transmitter to receiver at the speed of
light, and we shall be able to detect its arrival and make whatever use of it we please for our convenience and entertain-
ment. But except that it may consist of ment. But except that it may consist of physical energy, or at least that it may
carry physical energy with it, we have no idea what it is that does the travelling. Confronted with this true statement of our human ignorance, ninety-nine people
out of every hundred will probably say out of every hundred will probably say they do not care. The radio is for listening such things is a job for scientists. But now we come to the crunch, for I have to make a similar report to you about the attitudes of the scientists themselves. Nine out of
every ten physicists today would also say every ten physicists today would also say
they didn't care - they are far too busy to they didnered with such abstract, impractical matters. On the other hand, the one physicist in ten who does care about such things is likely to be seriously worried. minority, their concensus view would al-

by W. A. Scott Murray

B.Sc., Ph.D
most certainly be that vast gaps exist in our knowledge of physical phenomena that take place not only in complex laboratories and remote galaxies, but also "right on ou radiation and sunlight are commonplace examples. From a purist point of view it is a pity that our progress in understanding such things should have come to a grinding
halt in about 1920. (The fundamental basis halt in about 1920. (The fundamental basis for atomic energy was laid by Einstein in
1907 , and that for the laser in 1917.) Of the new concepts which have arisen in physic since that time very few, if any, have deal credibly with fundamental matters. I in
clude in this category the major speculative clude in this category the major speculative
adventure of the 1930 s , which failed amid general confusion and is one of the main topics to be examined here.
There would seem to be little doubt that progress in fundamental physics, as op-
posed to technology, has not with contemporary progress in othe with contemporary progress in othe braaches of science during the past fifty
years or so. It should have done, in view of the number of physicists at work all over the world, but it hasn't. Every now and locally promising and is hailed as triumph; but when one seeks to apply it elsewhere it does not fit, and it leads one sooner or later to a logical impasse. Nowa days, for reasons that we will explore in
due course, we no longer reject a failed hypothesis as we should, but instead we tend to retain it on the pragmatic basis that it may prove more useful to have wrong concep than no concepts at all. From tha point it is very easy to forget that they are
wrong concepts - scientifically disproved - and instead to go on building upo them as if they were true and valid: an elementary mistake, suriely, but one which we go on making.
trouble in modern physics, so that it is the
rule rather than the exception. The cumulative effect of such errors has been confusion on a majestic scale. We are left with a
tangle of separate, uncoordinated, and very often mutually-exclusive concepts. "Sometimes light behaves as waves, sometimes as particles", it is said, yet the concepts of electromagnetic light-waves
and particles (photons) are murually exclu and particles (photons) are mutually exclu-
sive. Our picture of the physical world has sive. Our picture of the physical world has
become less clear, rather than more clear with the passing years. This, I submit, is evidence of a lack of progress. In the 1980 we have to admit that we have not yet found answers to some simple but impor-
tant questions which were asked as long ago as 1920 , and even earlier.
Now when you have been searching diligently for something for fifty or sixty years and failed to find it, it may be sensible to
pause and consider whether there might pause and consider whether there might
not be some reason for the failure. In our present case two possibilities are more likely than others: either the thing we are looking for doesn't exist, so that we are
mistaken in loking for it, or we are mistaken in looking for it, or we are tacles. Let us examine these two possibilities in turn.
There is a doctrine of modern physics whose origins we will identify later and criticise, which says that scientific theories
are limited in their application to providare limited in their appicationts and are
ing descriptions of physical events, intrinsically incapable (in an absolute sense) of explaining them. According to this doctrine, questions of the nature tive answers - in numerical detail, of course - and are legitimate questions, whereas questions of the type "how?" or "why?" cannot be answered by science and are therefore improp
which should not be asked.
To take an example, experiments show convincingly that all negative electruns are identical in their behaviour - "indisting uishable" in the approved jargon - and that short of its complete annihilation the
physical properties of an electron never physical properties of an electron never
vary in any way; one never comes across
bigger or smaller electrons, or parts of an
electron. Now: to the question "Why is
the structure of an electron so the structure, of an electron so phenome-
nally stable?", current doctrine returns the answer that the mass of the electron is so small that its structure must be quantumindeterminate, which means that the question of its mechanical stability does not
arise. That question is a non-question, an arise. That question is a non-question, an
irrelevance that does not require an answer. For convenience of reference I propose to call this the Doctrine of Haziness: to call this the Doctrine of Haziness: should not ask oldd-fashioned questions about them". Personally I am very suspi-
cious indeed of this doctrine. It seems to cious indeed of this doctrine. It seems to to be intellectually honest. For instance, in another example,
Question: Why are the wavelengths of the spectrum lines from a gas in a discharge tube so precisely defined?
Answer: Answer: Because the permitted energies
that electrons can assume within the atoms are precisely quantized.
Question: Oh - I thought it was the electron's angular momentum that was quantized?
and angular momentum are precisely quantized.
Question: If that is so, then the position of an atomic electron must be precisely cleus?
Answer: We cannot tell you that, because of the Uncertainty Principle of Professor Heisenberg. We can only tell you where you are most likely to find it. are in fact not precisely determined? Answer: That is so; they may take on any values within Heisenberg's limits. Question: Then why are the spectral wavelengths, which you now say are
dependent on indeterminate energy and momentum, themselves precisely defined?
Answer: Your questions pre-suppose hat the atom has a mechanical structure. Our modern theory is a ma-
thematical theory not a mechanical theory. Hence the questions you ask are meaningless.
Question: But I thought you said the mathematical theory dealt with energy and angular momentum. Are these Answer: You are wasting my time. It is a matter of statistics. Look up the theory in any textbook.
You will have noticed the testiness of one which arises characteristically at that
point in the discussion. We shall look into poin in the discussion. We shall look into conclusions about it which are not entirely conventional. As I said earlier, the doc-
trine of haziness seems a shade too convetrine of haziness seems a shade too conve-
nient to be true. It enables its adherents to wriggle out of logical impasses by sheltering in mysticism, a particular mysticism which as we shall see is linked directly to an unexpected and, as I shall assert, erroneous and quite unjustified denial of the
Law of Causation. These are deep waters which can bear being looked into. The
doctrine of haziness also offers comfort to the lazy physicist (or shall we say, the too busy physicist?). Current theories suggest
that Nature may be stranger than our that Nature may be stranger than our
forbears thought, for human underforbears thought, for human under-
standing. If so, we should not be surstanding. If so, we should not be sur
prised that we have made so little progress recently. (I need hardly emphasize that if this defeatist attitude seems to be gaining ground - it must spell the end of the philosphical road for physical science.)
The other possible explanation for our failure to achieve that steadily-improving cal world which humang of the physiprevious experience in physics, and current experience in other disciplines) suggests we ought to be achieving, is that there is something there to see but that we
have been looking for it with the have been looking for it with the wrong
spectacles. We cannot see radio waves or spectacles. We cannot see radio waves or
electrons with the naked eye, of course, but we infer their existence from the readings of our instruments. Our "electron spectacles" are not the instruments we use, but the scientific theories with and against
which we interpret our observations. At current theory is an expression of a contemporary attitude of mind.
We can be, and historically often have been badly misled by our theories. To take a classically familiar example, in times past sky could be described to any desired degree of accuracy on the basis of the Earth being the dynamic centre of the universe. It could be explained - that is, accounted for rationally with a minimum of underlying assumption - much more readily by perience we have come to believe that the more closely a scientific theory reflects the mechanism of the physical world, the simpler will its concepts appear and the
wider will be its field of application. In this example, planetary astronomy had been bogged down for a thousand years under he geocentric theory, and progress had pended on the reection or overthrow of pended on the rejection or overthrow of
the geocentric theory and its replacement by the alternative which is still in use today. And what an advance that proved to be! One of its earliest consequences w
Newton's law of universal gravitation. Newton's law of universal gravitation.
We may perhaps read that experien We may perhaps read that experience
across into the area of fundamental physics where our recent progress seems to have been surprisingly, and disappointingly, low. Slow progress does not prove that anything is wrong with our current theo-
ries and doctrines, but it raises that possibility. It is possible that some of our fundamental thinking may have been on the wrong lines (and by wrong lines I mean ines which do not accord with those of
physical Nature). If so, then much of the elaborate, self-generating and untested structure of mathematico-physical theory that has been built up during the past fifty years may turn out in the end to have been irrelevant, if not actually misieading. I am
suggesting that the time is now ripe for a critical review of modern physical theory,
much of which has not been of a type to inspire confidence.
There was for many years a powerfu body of opinion which in the teech of al
the evidence for the heliocentric theory maintained that the Earth, as the abode of Man, must be the centre of the physica
universe. To such opinion no factual proo universe. To such opinion no factual proo
was convincing: was convincing: one can neither prove no
disprove an Article of Faith. Thus the disprove an Article of Faith. Thus the ancient polarisation between churchman feature of modern physics, unexpected bu explainable, that in its philosophy it is more akin to a religion than to a classica science. Mysticism has returned in a big
way. It seems that in the fundamentals area we are dealing with matters of faith and doctrine, dogma and heresy, so that formal experimental proofs are no more to be expected in fundamental physics nowadays than in a theology. There may even
be resentment against anyone who presumes to question the One True Faith; but this time the conservative Establishment is likely to be found within the ranks of science itself.
The significance of that remark will bewhich is that physical science main thesis, ence of errors during the 1930s from which it has never recovered. I am in good company in this, since that view was to a
greater or lesser extent shared from the early days of Quantum Theory by Einstein, Planck, von Laue, and Schrodinger, all of whom were central in the original arguments. Theirs was a "realis-
ric" view, which in the did not prevail against the novel, mystical doctrines of Bohr, Heisenberg, Dirac, and thers. The last-mentioned became estabished and remain formally accepted today. But attitudes may now be changing after fifty years: at any rate I hope so. I propose
to identify some of the errors in the 1930's doctrines, show that they were indeed errors, and show how they came about. To my physicist colleagues I say, If your faith is not strong enough to withstand such
criticism you should read no further, for I criticism you should read no further, for I
have no wish to cause you offence. To the ayman I say, Here for you entertainment is a real-life, up-to-date version of Hans Andersen's famous story of the King's ew Clothe
To sum this up: every scientific theory is somebody's particular pet. Rather than
attack the established theories of physics - which would force their doting owners to rush to their defence, and lead to quite unnecessary altercations - I propose to
examine a selection of miracles. A miracle, you will remember, is a physical occurrence for which we can offer no physical explanation. There are plenty of miracles to choose from, so we can afford to be
selective. We shall find that our miracles selective. We shall find that our miracles
have a certain hallmark about them, from which we can deduce not understanding, perhaps, but clues towards understanding. The nature of current theories will become cearer, so that we shall discover when it is
safe - philosophically safe - to use these safe - philosophically safe - to use these developed this technique should enable us

Continued on page 87

ERROR CORRECTING SOFIWARE

Software solution avoids complexity of convolutional coding; program computes error signal which would have been the output of a convolution decoder.

In digital equipment a single parity bit is often added to a word to increase reliability by detecting an erroneous read. For words tape, floppy discs, cassette or magnetic tape we can time-share the single parity bit over a number of words. Fig. 1 shows the
idea. Here the parity bit is formed from the data bits of the current word and one data bit per channel staggered to produce a

Fig. 1
Using a technique described in Wireless World, "Improved parity checker" Jan 1981, p. 81/2, multiple errors can be detected, although only a single parity bit is errors would be detected.
\qquad

$\xrightarrow{\text { Do }) ~} \stackrel{\text { Data error detected }}{\longrightarrow}$

(b) No error detected

Fig. 2

If the parity bit at the transmitter was coded for say even parity then on reception
any single error in the checking area will result in an odd parity for this area of bits. This fact signals an error has occurred. ingle error correction with regard to the error signatures produced will be as shown in Fig. 3. which although detected gives an error
by N. Darwood

signature which corresponds to the single error signature of channel 0 in Fig. 3.

Fig. 4

If error correction is required then this problem can be overcome still employing by applying more complexity to the tim sharing of the data bits. An example of nore complex template is given in Fig. (a) together with the single error signa tures. This template was formed almost a and it appears single errors give uniqu ignatures. Armed with this fact we can detect multiple errors and correct singla rrors.

The error detecting software described is useful to

- assess the merits of a particular template
as a program in its own right used in place of hardware
to test (2) or for the following reason.
The procedure described here is a form of convolution code. This can be seen by converting the parallel characters to a seThis is given in Fig. 6 for the template of Fig. 1.
nore complicated than the technique des
cribed here, but the theory of convolution coding does show that the defining polynomial of Fig. 1 is

$\mathrm{X}^{1}+\mathrm{X}^{7}+\mathrm{X}^{13}+\mathrm{X}^{19}+\mathrm{X}^{25}+$ $\mathrm{X}^{26}+\mathrm{X}^{27}+\mathrm{X}^{28}+\mathrm{X}^{29}+\mathrm{X}^{30}$

Hence the software approach described an be useful in investigating convoluting codes where here the template, i.e. the polynomial, can easily be changed.
The prompts given by the program and he inputs required in response are shown used for the template data.

ig. 7. Prompts give by the program and inputs required in response.

A column is indicated by the decimal equivalent of the binary code where a 1 ind cates that the bit is part of the template, hardware
Having completed entering the template data a continuous series of decimal values re entered as shown in Fig. 9. This serie
in response to the prompt N where N i

WIRELESS WORLD JUNE 1982

Fig. 6. Software approach described is much simpler than convolutional approach to Fig.

Errors
Fig. 9

Error pottern
$\begin{array}{ccccccccc}8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 17 & 8 & 0 & 1 & 33 & 0 & 3 & 2\end{array}$
Value
the Nth error paten in error pattern is simply a character with or without errors, Fig. 9 . attern input the For each error pattern input the
program computes the error signal which program computes the error signal whit
would have been the hardware output of the convolution decoder, that is it comthe template area. The output is a one if an error is detected and a zero if no error is detected.
The program assumes that even-parity was transmitted and thereafter an error from an odd parity in the template.

108 LET N=N+1 110 IF $\mathrm{P}(\mathrm{W}+1)<0$ THEN 990
$120 \mathrm{FORI}=1$ TOW
130 LET P(I)=P(I+1)
140 NEXT I
150 LETE=0
160 FOR I $=1$ TO W
170 LET A=T(I) (AND) P(I)
175 LET E=A (EOR) E
180 NEXT I
187 LET A=0
190 FOR I=1 TO 15
194 LETE $=\mathrm{E}(\mathrm{SHFT},-1)$
200 NEXT I
210 PRINT A (AND)\#1
Error detecting program
10 DIM T(15), P(15)
30 FOR I=1 TO
33 LET P(I) 1 =0
35 NEXTI
38 PRINT "TEMPLATE WIDTH IS";
40 INPUT W
40 NPUT
50 PRINT "INPUT TEMPLATE COLUMN VALUES 1 TO" W
$60 \mathrm{FORI}=1$ TO W
80 INPUT
90 NEXTI
92 PRINT "ENTER CHARACTERS"
100 LET N=
107 INPUT P(W+1)

220 GOTO 104
990 END

A block diagram of the program would show that for each error pattern input value, Fig. 9 , the previous W values, Fig. 8 , are right-shifted one place and the last
one drops off the end to retain W values. one drops off the end to retain W values. Figs $8 \& 9$ are first ANDed with the template. This results in one word. The bit pattern of this one word is parity checked,
i.e. the bits counted modulo 2 , down to i.e. the bits counted modulo 2, down to
one bit by the exclusive-OR instructions. one bit by the exclusive-OR instructions.
This bit indicates an even number of bits in the checking area if zero, and an odd number of bits in the checking area (the template) if one, which indicates an error. To change the template the program is reteger is entered as data.

Digital frequency synthesiser design
 Continued from page 64

Integrated circuit two-modulus and four-modulus v.h.f. and u.h.f. counters general purpose c.m.o.s. and t.t.1. programmable counters. However, dedicated 1.s.i. circuits which can interface directly with two and four-modulus preThe diagram in Fig. 4 shows a two-modulus prescaler with j / p ports and a control line which is used to alter the division ratio. The input may be balanced or unbalanced, but the output and control normally operate at c.m.o.s. or t.t.1. levels.
similar four-modulus prescaler which uses two control lines instead of one is shown in Fig. 5.
At frequencies over 1 GHz , separate prescalers or mixing techniques must be will operate up to 1.8 GHz and can drive an SP8906 four-modulus divider. Therefore, synthesizers using this combination will have a channel spacing of four WIRELESS WORLD JUNE 1982
times the reference frequency. The highest output frequency available from an SP8906 or SP8901 is $512 / 239 \mathrm{MHz}$, i.e. 2.142 MHz . An n.m.o.s. synthesizer circuit, the NJ8811, which has been designed for use with the 8906 and 8901 is shown in
Fig. 6. This device contains the programFig. 6. This device contains the program-
mable dividers, reference divider, phase comparator and a data buffer which enables it to be used with a 4 -bit data bus for programming by a r,o.m. and channel switch or a microprocessor system.
Using the NJ8811 and SP8906, in the synthesizer which operates from 40 to 512 MHz . The programmable reference divider allows the choice of sixteen channel spacings, via two program control lines, from a single standard 4.8 MHz reference
input. If the NJ8811 is used with a SP8901, channel spacings and frequency ranges are doubled. The NJ8812 shown in Fig. 7 is almost identical to the 8811 , but is designed for use with the SP8793 prescaler in low-power synthesizers at frequencies average power consumption of around 55 mW and is therefore suitable for portable equipment.

Page 64 is a Basic program for designing v.h.f. and u.h.f. synthesizers using the i.cs
described earlier. The first part of the program requests frequency limits, channel spacing, injection mode and other de tails of the required synthesizer. The circuits to be used and interconnections are
then determined together with the reference frequency and reference division ratio for minimum reference harmonics in the working band. The second half of the program requests details of the individual channels required and provides r.o.m.
programming information for them. The program was written for a PET 2001 computer, although it will run with other Basic computers with minor dialect modifications. The compact form of program and limk of REM statements is due to memory in its present form it works well and is a useful aid for designing frequency synthesizers in the v.h.f. and u.h.f. range.

COMMIUNICATONS

Radio-frequency or data processing?
Modern radio communications, it is often stressed, represent the marriage of data processing with traditional radio-fre problem is to determine which is the dominant partner. The r.f. engineers often feel that they are in danger of being smothered
by the embrace of the systems-approach of by the embrace of the systems-approach of
the computer people. In an analogu the computer people. In an analogue
world, careful alignment and circuit optimization tend to be admired more than the "go/no-go" attitude of the digital de-
signers. Digital technology has advanced signers. Digital technology has advanced
spectacularly, tending to obscure the steady improvements in crystal filters mixers of great dynamic range and the mixening up of a whole new world by lownoise microwave amplifiers.
Glancing through the technical-papers
programme for Communications programme for Communications 198 though already over when these note appear) one notes - a little regretfully that relatively few of the 80 or so papers cover the more traditional r.f. subjects of
receivers, transmitters, aerials and r.f. propagation. The themes are mostly allied to what was once called "telecommunications" with networks, switching, multiplexing, electronic (telephone) ex prominent among them.
Nevertheless, work continues in the r.f. field. New techniques for land-mobile (ad mittedly including digitized speech), radi pagers with monolithic v.h.f. receivers
(STL work on direct-conversion f. niques combined with Plessey work on th chips); more progress on the s.s.b. polar loop transmitters developed at the Univer sity of Bath and showing one effective way good linearity at v.h.f.); a University of Leeds paper on envelope-detectable s.s.b (also with the land-mobile service in view) the intensive work on developing galliumarsenide integrated circuits for microwave
receivers in this case by Plessey, Research though intensive work is also going on elsewhere).
The Communications 82 programme may not promise many entirely new de velopments, but does reflect continued puter/communications marriage is clearly well past the honeymoon period and seems to have settled down to quiet domesticity. But r.f. must be careful not to be domi

F.e.t. or bipolar

r.f. power?

Recent years have seen the appearance of practical r.f. mostet power devices "hex" or " T " vertical channel structures where the rather difficult V -groove is replaced by ${ }^{24}$
a gate within a straight service. This has given the designer of m.f., h.f. and v.h.f.
transmitters new scope, and much ha transmitters new scope, and much his
been made of the freedom of such device from secondary breakdown and therma runaway, although there is still a vital nee to avoid even momentary over-voltages
that could cause gate punchthrough. The older bipolar devices can often (but no always) provide greater linearity at v.h. (this can be overcome by such techniques as the polar-loop arrangement and fo
some stringent applications including am plitude-compandored s.s.b. the powerfe plituade-compandored. Is.s. bipolar device for Class B operation. Inpu mpedance of the mosfet is more constan with varying drive levels, and intermodulation distortion can be lower. A larger di mosfet. Each form of device has advan tages and disadvantages and there is seldom a clear-cut, no-choice situation Motorola however has recently shown an
interesting form of Class D (switching amplifier based on power mosfets that can provide 1 kW output at up to 10 MHz with an efficiency of 85 per cent and a power

Thought-provoking

antennas

Most of the books published by the ama reur radio organizations are stronger on reying accepted theory than on taking a leas that have been accepted by amateur and professionals) over a number of years. Once an idea has been widely accepted ends to survive without further critical examination. But a new book (which de serves to be read by all concerned with h.f ception) is a notable exception to this rule. " HF antennas for all locations" is by L . A. Moxon, G6XN - a name familiar to readers of Wireless World - who has a highly professional communications back o a rare degree, with specialist knowled of aerial theory and h.f. radio propagation (one of the first persons in the U.K. to recognise the important implications of Albrecht's work on chordal hop). But h ompromising ability to spot and explai why "sure-fire" designs so frequently fail to live up to the designer's expectation while at the same time often prepared him If to introduce novel ideas. The current scene - professional as "serious errors by some of the experts" leading to "consequent waste of much ime, money and effort in the pursuit o better results by methods which eithe irable compromises of one sort o another; in addition it has ensured that
irtually all such designs have been some degree, or in some respect, sub-optihould always be subject to the test "doe it make sense?". His advice is, however ositive as well as negative, with recom practice. Equally remarkable is to find in a 982 publication 260 well-illustrated pages
The III-V

semiconductors

The development of 12 GHz receivers for domestic reception of satellite broad casting is clearly going to emphasise th mportance of current work on IIIsemiconductor technology, now being eve
more intensively pursued to overcome the more intensively pursued to overcome the
imitations of silicon technology, particularly at microwave frequencies. Relativel unfamiliar terms such as "mesfet" (metal emiconductor field effect transistor) and "digfet" (diamond gate structure field ffect transistor) are emerging from th vailable for u.h.f. television receiver 3 SK97 etc).
The "Annual Review 1981" of Plessey' Allen Clark Research Centre at Caswe hows clearly the many application oth discrete and integrated circuit devices ased on semi-conductors using materials nade from combinations of Group III ele ments of the periodic table (boron, aluV elements (nitrogen, phosphorus, arsenic nd antimony). Indium phosphide InP, fo xample, is increasingly yielding millimeric active devices including advanced field-effect transistors. Gallium arsenide is microwave integrated circuits. Apart from Plessey, Texas Instruments, HewlettPackard and Hughe

ARATEUTB RADDO

dBW carrier power

Although many of the technical anomalie and actual errors of the now notorious February 12 licence schedule have been corrected - and the whole question of power" limitations above 1 GHz has been deferred pending further consideration the revised schedule still retains the controversial "dBW carrier powe
supplied to the antenna" definition. It replaces the traditional "d.c. input power" places the tracitional i.e. total direct current power inputy to (i) WIRELESS WORLD JUNE 1982
the anode circuit of the valve (s) or (ii) an other device energizing the antenna, a used for some 60 years as the basis of the licence for modes other than s.s.b. Admittedly, 20 dBW output power is roughly equivalent to 150 W d.c. input. S
it may seem only a quibble to worry about this change of definition. Presumably it has been made as part of a general move o the part of the licensing authority to standardize all licences issued under the Wire less Telegraphy Acts. But there are surel
valid objections to the change and it seem a pity that the R.S.G.B. seems to have conceded the point.
the first place the syllabus for the Radio Amateur's Examination has neve included any requirement for candidates to even more to the point is that relatively few amateurs have test equipment capable of measuring acurately the carrier power
supplied to the aerial (and is upplied to the aerial (and is this che powe supplied to the feeder or to the actual
radiating element - often two very difradiauing element - often two very dif-
ferent things?). Nor is there any real reason why amateurs should be forced into acquiring such a measurement capability. A d.c. input limitation encourages high easily measured, limit to the power.
The delays and problems in respect of the new "schedule". Were reflected in the me it took to issue new licences to thos who passed the R.A.E. last year. The situ-
ation in the U.K. compares unfavourably to those in many other countries. In Swe den, for example, where the multiple choice technique is also used, it is possibl to take the examination on any workin day throughout the year and to be told
wherher you have passed or failed at the time. The Swedish Morse examination (no test for Technician licence for v.h.f.; w.p.m. for 10 -watt Class C novice c.w. licence; $12 \mathrm{w} . \mathrm{p} . \mathrm{m}$. for 75 -watt Class B
licence; $16 \mathrm{w} . \mathrm{p} . \mathrm{m}$ for 500 W Class A licence; 16 w.p.m. for 500 W Class A
licence) are machine generated and the licence) are machine generated and the
candidates sending is recorded. Sweden is even prepared to issue "guest" licences to foreign amateurs on merit without insisting on an official reciprocal licenc some 8500 licences in a population of some 8500 -millionces, and Swedish amateurs are a pleasure to contact, reflecting the nsible regulations.

Cable tv problems
In North America leakage of amateur sig sion systems is becoming a major problem to radio amateurs. It has even been termed a new strain of the radio-frequency-in QST editorial by Richard Palm, KICE He points out that while, on paper, cable WIRELESS WORLD JUNE 1982
tems are non-broadcast facilities clo to the outside environment this is often far mean that the frequencies used for distributing television signals along relatively leaky co-axial cables are chosen by the
industry itself on economic grounds alone The result is that the distribution frequen cies are more and more often within th v.h.f. bands allocated internationally and
by the F.C.C, to amareur radio. Instead by the F.C.C. to amateur radio. Instead of being sigue "closed-circuit" the systems leak signals out into highly-used bands,
including 144 MHz , in violation of F.C.C standards and so ruin weak-signal re ception by amateurs, but are also them local transmissions from amateur station operating fully in accordance with their licences. When viewers complain to the cable companies, A.R.R.L. suggest "many companies promulgate the myth that the amateur is at fault." Poorly maintenance of the cable systems, the choice of frequencies with amateur bands are all adding to the problem, while the current cut-backs in the American govern
ment-funding of F.C.C. mean that the ment-funding of F.C.C. mean that the re-
gulatory organization is now in the throes of a financial crisis and "willing but unable to enforce its rules" on the cable com-

An h.f. convention
V.h.f. conventions in the UK have a long and extremely successful record stretching back over many years, attracting at-
tendences of over 1000 enthusiasts. But attempts of over 1000 enthusiasts. But attempts to organise equivalent conven tions for h.f. enthusiasts have a more cancelled for lack of support. However this has not deterred the R.S.G.B.'s h.f. com mittee from organising an ambitious one day event at the Belfry Hotel and Confer
ence Centre, Milton Common, some miles along the M40 (Exit 7) from Oxford, on Saturday, June 19. The programme includes a trade exhibition, lectures forum, films, a special display and demonwith the co-operation of the G-ORP-Club using the call-sign GB2HF. A talk on h.f aerials, including those for 10,18 and 24 MHz , is to be given by Louis Varney,
G5RV while the writer of these notes is G5RV while the writer of these notes is
trying to work out what to say about h.f trying to work out what

Hazard of PCBs

The recent disclosure that there was a large spillage of polychlorinated biphenyls (PCBs) in 1981 due to bomb damage in Northern Ireland to a large power transfor-
mer shows once again that there is still a lot of this highly-dangerous substance
round. For many years PCBs were widel used as a coolant in oil-filled transformer and capacitors, including some used with fluorescent lamps. Manufacture did not
stop in the U.K. until 1977, following the
discovery of its dangerouseffects. Any oil-filled component th. signs of leakage should be treated with signs of leakage should be treated with
care. A useful test recently suggested by Brian Castle, G4DYF is to take a piece of copper wire. Put it in a gas flame and burn off the dirt until the flame is clear. Allow the wire to cool, then dip it in the suspect
oil and return it to the flame. If it now burns yellow, it is ordinary oil. If it burns bright green, PCBs are probably present Note that this is not a positive test but i
does provide a useful guide as to whethe does provide a use

Here and there

A new 28 MHz beacon is expected in operation shortly on Gough Island in th South Atlantic, With callsign ZD9GI it A perate on 28.2125 MHz A balloon carrying a $146 / 432 \mathrm{MH}$ pected to reach heights of 15 to 20 km is due to be flown several times this year in South Africa. After reaching its maximum height the balloon is expected to burst and distances up to about 250 km from th launching point. As it comes down 144 MHz transmitter will be activated to allow the package to be tracked by d / f and ecovered
Membership of the British Amateu Television Club is expected to reach 1400 microcomputer is well suited to the display of slow-scan television pietures the displa tic ty sets. The club has recently publishes tic tv sets. The club has recently published a special issue of $C Q-T V$ (no 117) largel
devoted to amateur television equipmen for the 24 cm band. It also proposes a plan for this amateur band including a main tv repeater channel (output 1242.25 MH ternative repeater channel (outpu 1250.25 MHz , input 1282.25 MHz) and a simplex amateur television channel
$(1258.25 \mathrm{MHz})$. In each case the sound (1258.25 MHz). In each case the sound channel would be 6 MHz higher.
Forthcoming mobile rallies: June 20
Denby Dale at Shelley High Denby Dale at Shelley High School, Skel-
manthorpe, near Huddersfield. June Longleat mobile rally organized as the Bristol RSGB group's 25 th event; Rolls (6 miles south of Skipton). July 11 Wor (6 miles south of Skipton). July 11 Wor cester rally at High School, Ombersley
Road, Droiswich. July 18 Pembroke's "Bucket and Spade Party", The Regency Hall, Saundersfoot; Sussex rally a
Brighton Racecourse; and Cornish rally at Brighton Racecourse; and Cornish rally a

PAT HAWKER, G3VA

NRZ RECORDING FOR SMALL COMPUTERS

The majority of small computer recording systems use the Kansas City cassette recording format, with a data rate limited to a few hundred baud. L. Hayward proposes a non-return to zero recording system for the Nascom 1 and 2 - the circuit should be adaptable to others - and compares performance with that of the Kansas City interface.

Most small computer systems, in particular those machines offered to the amateur
user, have adopted the audio casserte as a user, have adopted the audio cassette as a
convenient method of data storage. Cassette players are readily available at a low price, the only reasonable alternatives being open-reel recording or expensive disc drives. The Kansas City recording stan-
dard; developed to use the audio cassette, dard, developed to use the audio cassette,
works well and has become popular due to its tolerance of tape-speed variation, typically 30%. This allows users to ex-change recordings between machines of most any type. But this speed tolerance is he only significant advantage of the ity to tape dropout and slow data speed. Some systems optimistically offer a data rate of 1200 baud, but using cheap cassette decks the best that can normally be at-
tained is 300 baud. The encoding and decoding circuitry involved is fairly complex, using as many as seven or eight large-scale integrated circuits, and enables the user to adapt either the existing audio cassette recorder, or use a "bare-bones" deck, with only.
Using one of the worst cassette decks I
have encountered reliable recording was have encountered reliable recording was
achieved to a rate of 1200 baud, with fair operation to 2400 baud $17 / 8$ in/s. The only
disadvantage of this is its in tolerance of speed variation: 5% instead of the 30% offered by Kansas City, assuming that the usual uart (universal asychronous receiver-

By L. Hayward
transmitter) is used in the computer. This speed restricition will normally only be a decorder to if tape transfers from one recorder to another are to be made. Any recorder having a cyclic speed variation of for musical reproduction, and most cassette recorder mechanisms can achieve better speed regulation.
The n.r.z. system is well known, and has been used in computing systems for
years. No h.f. head bias is used and the tape is magnetically saturated in a negative
or positive sense, depending on whether a zero or a one is written. There is no condi-
tion of zero flux, hence the name: nonion of zero flux, hence the name: non-
return to zero. As the tape is saturated no erase head is required, and the system is less sensitive to tape drop-out or variation between various types of tape. Ideally, the system should use heads and tape designed
specifically for this type of operation; practical results have shown however, that ordinary heads and tape are quite suitable. The use of certified digital cassettes such as the Scotch type 834A is recommended shown was specifically designed for use with Nascom 1 and 2 computers, but

should be suitable for most other computer systems with little change.
Record mode. The dion u.a.r.t. is applied to a 4049 buffer. Sections of this buffer are connected so that the current through the head and currentthe input changes from logic high or low. The choice of resistor shown is suitable for a typical cassette recorder audio head. It quired up 100 morrent is required, up to Replay mode. A $3130 \mathrm{op}-\mathrm{mpp}$ is used as a differential amplifier. This mode of operation permits considerable hum to be without interference. The gain of 1000 was
found to be sufficient to cause the output to clip when replaying data. The input larger than necessary, considering the frequencies involved, to permit the head to short-out the amplifier input at low frequencies and prevent hum pick-up by quency response of the amplifier is rolled off to avoid possible pick-up from the nearby clock generator and dividers in the computer.
As the voltage output from the head is proportional to the rate of change of flux
the amplifier output will consist of narrow pulses coincident with the timing and direction of the data. In between these pulses, the amplifier output alls to 2.5 V .

4049 is used to hold the state of th previous positive or negative excursion and thus output restored data to the u.a.r.t. Hysteresis is used to make th
output insensitive to output insensitive to spurious small out
puts from IC2: The u.a.r.t. requires that the receiver input terminal remains high until the data transmission begins. An inhibit input is provided, which when high prevents IC2 from changing the Schmit trigger output. This point is conveniently
connected to the drive 1.e.d. transistor collector in the Nascom, thus making the computer ignore all data until the ' c Load' or ' R ' command is executed. The suggested divider circuit is useful if the standard data rates of 300 and 1200 baud are
required from the Nascom 1. Power supply required is a single $+5 \dot{V}$ supply; current drain is so small that an existing computer supply should easily accommodate it.
I suggest that circuits such as this be
included in alternativin small computer systems as an shouldn't or addition to Kansas City. It shouldn't be too difficult for manufacturers of ready-built systems to offer a completed cassette system as part of the pack-
age. If such devices are made available with accurate speed control, thus giving interchangeability, it is likely that the more logical n.r.z. will be adopted uni versally.
It should be fairly easy to produce a machine with a speed correct to within 5% for reasonable cost. A normal diesel engine
with a crude mechanical governor can meet 5% regulation of speed, so why not a simple cassette drive?

Heretics guide to
 modern physics

Continued from page 81
to judge the physical credibility of any new hypothesis, providing us with a critical faculty which
The first miracle we shall examine will be the one I mentioned al examine will namely the mechanism of the rransmission of light energy through empty space. Our first philosophical milestone will be consequential and closely related to it: an understanding of the true function of "waves" in modern physics. We shall have to go back
some 200 years in scientific history to find a suitable starting point. Our route will take us from Newton to Heisenberg: via electromagnetic theory and the acute distress it suffered when denied an aether; via practicable photons, quantization, nonciple of Indeterminacy; and ultimately to an affirmation that the Law of Causation is obeyed in physics not only statistically but in all circumstances. In each of these areas which although far removed from convenWIRELESS WORLD JUNE 1982

ional scientific doctrine are yet strictly in These ideas will add up of experiment. self-consistent whole, but not yet, I regret, to a fully-developed Theory All that I have to say is very simple, and indeed I hope to show how simple Nature really is when the dust of man-made confusion has been swept away. William of Occam said that fundamental assumptions and I am a follower of William of Occam.
C.b. frequency synthesis

In Fig. 4 of the article on 40 channel c.b. frequency synthesis, which appeared in the November 1981 issue of Wireless World, there should be a 1 nF capacitor in the line between the bottom end of L_{1} and the MV2110 variable-capacitance diode.
Without this capacitor the a.f.c. is inoperative.

Paris
 components show
 from Martin Eccles in Paris

France's foremost electronics exhibition Electroniques - this year attracted over 1700 exhibitors representing 31 different countries. Held for the last time at
Paris's Parc des Expositions, the 25 th Paris's Parc des Expositions, the 25th
annual Paris Components Show, despite anighal increases in the number of visitors from outside France and the total number of exhibitors, saw a fall in attendance. According to the French
Trade Exhibitions office in London, Trade Exhibitions office in London,
there were just over 85700 visitors, as opposed to last year, when 95124 permaopposed to last year, when 95124 perma-
nent passes were issued. But considering current economic restraints, the figures are still quite impressive.
In 1983, the show is to be held in No-
vember, instead of early April as has been the tradition, at the North Paris Exhibition Grounds, and after that become biennial to alternate with the
Munich exhibitions. A more specialized exhibition will be held at the North Paris site each even year.

Surprisingly, perhaps, the current 'world's been developed in France and is, initially at least, to be manufactured there. Access
 By far the majority of contemporary exhibition stands consist for the ma arectad diagonally
often formed by zig-zagged partitions, the most effective of which are
across the podium. Often, traders without visitors will step away from their stand waiting across the podium. Often, traders without visitors will step away from hheir stand waithg
for an unsuspecting fly to be attracted into one of these embryonic niches and when fairly for an unsuspecting fly to be attracted into one on these embryonic weave their web. This how is no exception, but ás it is so large, one can still find many of the more modes exhibitors with stands where one can browse without being pounced upon.
is 55 ns (maximum) and its power consumption is $500 \mu \mathrm{~W}$ in standby mode or 30 mW while enabled. This device is the outcome of joint efforts by Harris and the
exhibitors, Matra Harris, who were also exhibitors, Matra Harris, who were also
showing the HD6409, a c.m.o.s. Manchester II encoder/decoder for full duplex operation up to $1 \mathrm{Mbit/s}$, the MA1200 30 MHz gate array with 1200 gates each with a propagation-delay time of between 2 and
4ns, and the HM8048 microcontroller together with its c.m.o.s. counterpart. WW 301

Oriental Motors are contemplating distributing their products in the UK, possibly by the end of the year. When asked why their motors might be bought in the UK in manufacturers, the representative replied predictably that they would be conpetimotors, part of a large range of induction, reversible, synchronous, geared and fan motors, have a step angle of 1.8° and are
designed for a -10 to $+50^{\circ}$ operating. designed for a -10 to $+50^{\circ} \mathrm{C}$ operating-
temperature range. Direct-voltage ratings of the 19 motors range from 1.8 to 24 V and current-per-phase ratings range from 0.2 to 4.SA. Maximum and minimum volta-

A computer-aided design system shown by EIE, a Swiss company specializing in the manufacture and distribution - of printed-circuit board design equipmen boards greater than $232 \mathrm{dm}^{2}$ and con taining more than 360 i.cs cannot be designed on it. Further, only 15 colours from a choice of 4096 may be used, restricting the system's use to designing boards with
no more than 15 layers. But as $25 \mathrm{ft}^{2}$ boards no more than circuits with more than 15 layers are hard to find, further comment is justified. The computer can resolve layout tolerances down to 0.0025 mm and, when combined with the company's drum photo-plotter, be used to produce art wor may be displayed on the screen in two ways, either from the board's pole to the cursor or between two points on the drawing, and commonly used componen memory. To the operator, System 81 looks like a large desk with a keyboard, swivel ling v.d.u. and joystick. A 32 -bit, bit-slice processor coordinates the graphics
supplemented by 1.5 M byte of semicon supplemented by $1.5 M$ byte of semicon-
ductor memory, an LSIIl for handling $i / 0$ and arranging data files and two 8in disc drives. Options other than the drum photo-plotter already mentioned include 20M byte hard-disc drives, a printer and
GPIB pen plotter interface - so one can imagine the further limitations. WW 303

Still on the same subject, but at the othe end of the price scale, Colvern had a microcomputer with colour graphics
adapted for computer-aided design on adapted for computer-aided design on
their stand. The company isn't moving into this area though - they only manufacture the 3 -axis controller used. BitstikApple graphics, as the system is called, is product of Robocom and can be supplied as a basic conversion kit for exising
Apples, with or without colour facilities, or alternatively as a complete system with various options for hard-copy, etc. The kit, priced at around £187, comprises the previously mentioned controller (which
actually a joystick, but not to be confused with a games paddle) design-aid software on disc and a manual. As this is a generalpurpose design aid intended for compiling
anything from artistic to architectural anything from artistic to architectural
drawings, component 'library' software for drawings, componart design is to be available as an option. One feature of this WIRELESS WORLD JUNE 1982

system is that a single picture element may be zoomed in on to fill the whole screen, i.e., a single master page may be broken
down into 16000 pages. This means that information, such as an op-amp's parameters, may be stored in a small area which is invisible on the overall view.

Numerous photographs of disc-drise heads initially attracted us to this company's stand. On glancing at the brochures there, we found that Paris's Samson Data, and their Belgian counterpart, Samson
Computer Supplies, represent Information Magnetics Corporation, an Américan company offering a hard-disc head refurbishing service. They also supply numerous professional computer and computer-related appliances, such as disc packs,
read/write heads, magnetic tapes, alignment discs and anti-glare filters for v.d.us. Occasionally at such exhibitions we meet people who hear the name Wireless World for the first time and respond cau-
tiously, and probably in their eyes tacttiously, and probably in their eyes tact-
fully, with "I don't think we have anything that will be of interest to your readers." To explain the evolution and current scope of the magazine is time consuming so we usually take one or two issues along to
keep initiation discussions brief. A genial M. Samson hadn't heard of us and on seeing our only two issues decided to keep them, despite our insisting that we wanted them back. We thought at first that he had simply become accustomed to people
handing out free magazines but after a brief rapport realized that he was serious. Finally, M. Samsoh won, after fruitlessly offering a cheque or cash and the promise of a subscription in exchange for the two magazines, by tendering a slightly imper-
fect disc-drive carriage fitted with 13 heads - an offer we couldn't refuse.

WW 305

Caesium frequency standards are not uncommon nowadays. Besides their more ob* vious uses in national time services, metrological applications and power stations,
they are also used for a number of scien ${ }^{4}$ they are also used for a number of scien ${ }^{2}$
tific and industrial purposes and in dataWIRELESS WORLD JUNE 1982
ransmission systems, satellite ground staions and observatories. In outline, the Consultative Committee (CCITT) recom mends that international digital links should be synchronized with a frequency error of less than 1×10^{-11} : the only practical way of achieving this accuracy is
by using a caesium frequency standard. Oscilloquartz was showing part of its range of caesium standards and systems alongside its more conventional quartz crystals, The 3000 is an uncased frency references. The 3000 is an uncased caesium oscillator with frequency and long-term stability er-
rors of $\pm 7 \times 10^{-12}$ and $\pm 3 \times 10^{-12}$ respectively, intended as a module for use by

equipment manufacturers. It gives a $1 V$ r.m.s. sine-wave output at 5 MHz . Model 3120 incorporates the 300 oscillator and
gives sine-waves of 1,5 and 10 MHz with gives sine-waves of 1,5 and 10 MHz with
the same accuracy. This cased instrument the same accuracy. This cased instrument
is fitted with a 6 -digit clock, control and monitoring facilities, output buffers, batteries and p.s.u. It measures 131 by 428 by 546 mm and is suitable for rack mounting. The company can also provide complete
systems for all the applications mentioned systems for all the applications mentioned available for the standards mentioned.
WW 306
Of course, the more familiar faces were also at the exhibition. Philips wére exhibiting quite a number of recent and new
products, attiong them a dual clock analyser/35MHz oscilloscope. The PM 3543 , 10 MHz logic-state analyser has disassembly facliuiter for 16 -bit mitroprocene:
sors, including the $Z 8001 / 2$ and 8086 , and orbs, including the $28001 / 2$ and 8086 , and
for 8 -bit devices from a number of manufacturers. Because of the dual clock; muiltiplexed-bus data and addqees Hines
may be separated so up to 16 dita bits and

21 address bits may be displayed, together puts. The analyser section has a 255 -word memory, and threshold levels may be set
for t.t.l. or varied between -3 and +12 V . for t.t.l. or varied between -3 and +12 V .
Once logic has been analysed, the instru-

ment can be used as 35 MHz oscilloscope ment can be used as a 35MHz oscilloscope
to aid fault location. An IEEE-bus interface is available as an option. Among terface ne products shown by Philips were
other new pre
two 75 MHz lightweight service oscillotwo 75 MHz lightweight service oscillo-
scopes, one with a single timebase and the other dual, and an audio-distortion
for measurements to DIN standards. WW 307
Two types of liquid-crystal display with 129 mm-high characters, one with seven
segments and the other with a 6 -by- 7 dot matrix, have been produced by Fairchild's optoelectronics division. Measuring 165 by 110 mm , these displays require typically r.m.s. at $5 \mu \mathrm{~A}$ with all segments on and to turn on and off respectively, depending on the type-number suffix. Seven-segment
types are disignated LTR1341 and dottypes are disignated LTR1341 and dot-
matrix types LTR1401. matrix types LTR1401
addition ductors, RCA were illustrating the advantages of their colour-enhanced de-
velopment system for 1802 c.m.o.s. velopment system for
microprocessor products. "Colour", say
s.m.0.s. microprocessor products. Colources the
the company, "not only enhar display, but also simplifies and speeds up screen editing." Fairly obvious, we thought, but that doess't detract from the
usefulness of the system. Floating-point usefulness of the system. Floac.g., as is
Basic is held in part of a 30 K r.om. assembling, editing and monitoring soft-
are eaving 29 K free memory area for expansion, and permanent storage is possible using one of two cassettes. Any
CDP18S600 series Microboard may be ised with the system. The semiconductors mentioned earlier are firstly; two 4 MHz microprocessors, similar in architecture to
the 1802 but with 113 instructions as ophe 1802 but with 113 instructions as op-
posed to the 02 's 91 , one with 64 bytes of ra.m., the 1805, and one without, the 1806. Secondly, an 8 -bit flash a-to-d onverter for sampling speeds up to
15 MHz with 150 mW power consumption, and a range of N-channel power ent ratings from 1 to 18 A and voltage atings from 80 to 450 V were mentioned. The converter i.c. is the CA3308, and the power f.e.ts are RCA91XX and 92XX deWW $\mathbf{\text { vices. }} 309$

DIGITAL STORAGE OSCLLLOSCOPE
 channel, are used in Gould's 4500 storage oscilloscope. Shown for the
first time in the UK at the All
Erectrocs Show, Electronics Show, this instrument
can be used to store and display
'singespo can be-ssed
single-shot or repetitive
waveforms and is suitable for bench waveforms and is suitable for bench
use, when it will be operated by
means of its front panel controls, or as part of a test system under GPIB control. It can resolve 5.1 bits at
35 MHz , introduces a maximum 35 MHz , introduces a maximum
absolute voltage error of $\pm 6.6 \% \mathrm{f} . \mathrm{s}$. absolute verage error ange and, after
over the recorded rans, responds to transients with a
40nt 40ns, responds to transients with a
relative error of $\pm 0.4 \%$ Setting up relative error of $\pm 0.4 \%$ Setting up
of the front panel is aided by
sof soffware-generated displayed on the screen; once a
setting has been made, it may be
stored fo later use or comparison stored for later use or comparison. With these menus, the operator can
select control functions for select control cursor positioning, triger source and filtering options
and ploter
digital
interface and plotter digital interface
Mathematical
operation. operation.
comparisons of reference and acquired waveforms are possible.
For waveform comparisons, the memory and for acquired waveforms, a 1 K byte per channel
(or 2 Kbyte in single-channel mode) memory. A floppy disc will be
available for storing up to 30 waveforms for later use either with
the oscilloscope or with the oscilloscope or with an external
computer/controller. The 4500^{\prime} 's price is around $£ 11,500$, and it can be obtained from Gould Instruments Ltd, Roebuck Rd,
Hainault, IIford, Essex IG6 3UE. WW310
GPIB COMPONENTS SERVICE
Accessories and components
specifically for general-purpose inspecfica culyser are aneralabpurpof from in- one
terace buse source. Win prior knowledge of
the problems involved in designing GPIB's, Wasec have formed a service offering a range of bus

ww310

tors, studs, cables, adapters, specifications and other data pertaining to these buses for enthusiasts,
manufacturers and designers alike. manuafturers and designers alike. available on request. Wasec, 45
Hurstcourt Rd, Sutton, Surrey, Hurstcourt Rd, Sutton, Surrey,
SM1 3JF. ww311

SMALL FIBREOPTIC LINK
This 0 to 5 Mbaud fibre-optic link
with very small emitter with very small emitter and detec-
tor elements can be used to tor elements can be used to
transmit data over distances of up
to 1200 m transmit data over distances of up
to 1200 m . Transmitter and receiver

units of Hewletr-Packard's HFBR0200 measure 7.8 mm high, includ-
ing shielding and connectors, and function at temperatures within the range -20 to $+85^{\circ} \mathrm{C}$. The receiver fun
i.c. has an optically transparent, yet
clectrically conductive, shield to improve its immunity to electromagnetic interference and electro-
static discharge; the receiver also static discharge; the receiver als
has a logic-compatible output. Sus pended sapphire-ball lenses opti-
cally connect emitter and detector cally connect emitter and detector
cs with the cable, withou i.cs with the cable, without
mechanical contact. These lenses also make connector alignmen
also
problems less critical A Aig includ problems less critical. Akit, includ hardware and 10 metres of cable costs $£ 104.60$ if less than ten are
bought. Hewlett-Packard L td King Street Lane, Winnersh, Wo kingham, Berks RG11 SAR. wW312
MICROCOMPUTER FOR EDUCATION AND CONTROL Some 12Kbytes of Basic tailored for
control applications is a fearure that control appucations is a feature that
Midwich Computer Co. hope will Midwwich Computer Co. hope will
bring their MC system into
educational establishent educational establishments and
laboratories. If a separate board called an experimental unit, is
connected to the z80-based connected to the Z80-based computer, combinations of an
nnalogue-input board, analogue-analogue-input board, analogie-
output baard and digital-
inputoutput board may be used
with te system to input/output board may be used
with the system to perform many with the system to perform many
complex control applications
simply. The computer has simply. The computer has
16Kbytes of r.a,m., a 300 or 1200 16Kbytes of r.a.m., a 300 or 1200
baud RS232 interface and a 300 or $\begin{array}{lll}1200 \\ \text { interface } & \text { baud } & \text { cassette-recorder } \\ \text { motor } & \text { switch. }\end{array}$
 Binary, octal, decimal and
hexadecimal numbers can be
handled by the interpreter, which handled by the interpreter, which
also has facilities for simplifying also has facilicies for simplifying
altimunicaions between Basic and communications between Basic and
machine-code routines, and real-
time interupt handing and nested machine-code routines, and real-
time interupt handing and nested
scheduling facilititis. A machine-
code monitor is included. Prices
are, $£ 375$ for the Microcontroller are, $£ 375$ for the Microcontroller
computer,
E145
for computer, $£ 145$ for the
experimental unit, $£ 55$ and $£ 35$
respectively for analegue input experimental unit,
respectively for analogue ind ind and
output boards and $£ 55$ for a digital output boards and $£ 55$ for a digital
i/o board. Discounts on the computer. $\begin{aligned} & \text { Discounts on the avaiable for } \\ & \text { educational } \\ & \text { establishments. }\end{aligned}$
ent educational $\begin{array}{r}\text { establishments. } \\ \text { edider } \\ \text { Midwich } \\ \text { Computer }\end{array}$ Midwich Computer Company
Limited, Hewitt House, Northgate Limited, Hewitt House, Northgate
Street, Bury It Edmunds, Suffolk ${ }_{W}{ }^{\text {P3 }} 3313$ 1HQ

ww313
FLAT-CABLE
CLAMP
A two-part plastic assembly for
clamping flat cables is available clamping flat cables is availab
from Winslow. The Ribbon Wrap can hold up to eight, 0.89 mm -thick flat cables and is obtainable in thre
widths, for 26,40 or 64 -core rib widths, for 26,40 or 64 -core rib-
bons. Rivets, bolts, screws or sel adhesive pads may be used to se cure the base-plate section. Two
ratchet-type lugs on the base plate ratchet-type lugs on the base plate
hold the clamping section in place Winslow International, 71 Tunne Road, Tunbridge Wells, Kent TN ww314

Professional raders are invited to request further de-
tails on itams featured hare tains on items featured here
by entering the appropriate
WW reference iy WW referencee number(s) on
the mauve repty-paid card the mauve reply-paid card.
WIRELESS WORLD JUNE 198

WIRELESS WORLD JUNE 1982

ELECTROVALUE
FASPECME $\left\{\begin{array}{c}\text { SUMMER } \\ \text { SUM }\end{array}\right.$ 3 PROMOTOMS
ELEMTOMLIT:

FREE UOUCHERS TOSRUEYOUUPTO SOCKIS

- 24, 28 and 40 Way ZeroInsertion Force Sockets
- Beryllium-copper "side wipe" contacts actuated by end lever
- High temperature ($+150^{\circ} \mathrm{C}$), solvent resistant mouldings
- Can be used for programming, test, or burn-in
- Made in the U.K. by:

HARWVIN

Harwin Engineers SA,
Fitzherbert Road, Farlington,
Portsmouth, PO6 1RT, Hants
Tel: (0705) 370451 Telex 86125

TEST

COMPONENTS

 ON THIS NEW OSCILLOSCOPE!- Test solid state devices in, or out of, circui
- Fast location of shorted, open and leaky components
- Test diodes, transistors, LEDs, electrolytics, FETs, MOS and CMOS etc.
PLUS..
Full function, dual trace, 12MHz oscilloscope
- Fine sweep and gain controls

Differential measurement mode-essential for effective servicing of disc drives and tape recorders

A really versatile 'scope for the test, service or development engineer.

Details from

FARNELL INSTRUMENTS LIMITED WETHERBY LS22 4DH•TEL. (0937)6196 or TEL. (05827) 66123 (Southern Office)

RF Communications Spares

Transistors - Antenna - Batteries - Tubes
Lowest Cost - Highest Quality Spares for Motorola: Repco: G.E.: Johnson: Hallicafters
Also Military Radio Types
PRC 25 : PRC77: VRC12 : VRC240
Look at these examples:
RF Power Transistors

All prices f.o.b. London packed for export. PLEASE APPLY FOR QUANTITY DISCOUNTS Call, Telex or write for more details or with your quotation request

WW - 059 FOR FURTHER DETALLS

POWER SUPPLIES
 Model No.
A.
AVBPD
NAB

Price
$\substack{\text { P. } \\ \hline \text { f28 } \\ \hline \\ \hline}$

AV83 TeacFD 50 SV 1 erie Dis
 Please add $£ 1.20$ p. Rp . to order. All units are supplied on a satis-

Send cheque/P.O. to
AVALON ELECTRONICS
72 Ship Lane, Farncorough, Hants
WW - 094 FÖR FURTHER DETAILS
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

 Post f2 Cut Board E1 extra,

 BSR SINGLE BSR SINGLE
PLAYERDECKK
BSR P232 BELT DRIVE

 DE LUSE SWWTTHEDEMODELSTABLLISED. 17.50 . Post

EMI $131 / 2 \times 8 \mathrm{~m}$. LOUDSPEAKERS

CTRIC 100pl, 500 p f f 1.50 .
POTENTIOMETERS Carbon Track
5kR to 2Mn. LoG or LN. L/S 500. DP 900.510
RADIO COMPONENT SPECIALISTS

NEW PANEL METERS $£ 4.50$
 $500 \mathrm{ma}, 1 \mathrm{amp}, 2 \mathrm{amp}$ \qquad 25 volt, 50 volt
$21 / 4 \times 2 \times 1 / 4 \mathrm{in}$. Post 65p

 Full instructions supplied. 240 V AC mains. Post $\mathrm{Ef1}$.
 MAINS TRANSFORMERS

GENERAL PURPOSE LOW VOLTAGE

HEATNGELEMENTS, WAFERTHIN ROV 250

NUALTY DSCllLoscopes THE RANGE FOR EURQPE!

HM307.4 £138
Y: Bandwidth DC-10M(Hz $(-3 \mathrm{~dB})$ - Sensitiviry 5 mV 2oV . $\mathrm{cm}(\pm 5 \%)$
X: Timebase $0.2 \mathrm{~s}-0.5 \mathrm{us} / \mathrm{cm}(\pm 5 \%)-$ Triggering $2 \mathrm{~Hz}-30 \mathrm{MHz}$ (3 mm) - Built in component tester - Calibrator - Screen $6 \times 7-1 \mathrm{kv}$.

HM203 £220
V: Bandwidth $D C \cdot 20 \mathrm{MHz}$ (3dB) - Sensitivity 5 mV -20VI $\mathrm{cm}(\pm 3 \%)$ - Dual trace
$30 \mathrm{MHz}(4 \mathrm{~mm})-X-Y$ operation - Callibator - Screen $8 \times$ $10 \mathrm{~cm}-2 \mathrm{kV}$.
For free data sheets of the full range contact:

Bandwidth DC-20MHz (3dB) Sensitivity 2 mW m / cm £350 $20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ Tinebase $40 \mathrm{~ns} / \mathrm{cm}$ Triggefing $\mathrm{DC}-40 \mathrm{MHz}$ $(5 \mathrm{~mm})$ Algatralc Adre, Sweep Delay, x5 Mag. Overscan ind., Yar. Holdoff, Sinate Sweetp.

HM705 £580 Bandwidth DC. 70 MHz (-3dB) Sensitivity 2 zm //cm
20V/cm($\pm 3 \%$) Timebase $5 \mathrm{~ms} / \mathrm{mm}+2.5 \mathrm{~s} / \mathrm{cm}$ - Triggaring DC 100 MHz (5̄mm), Algebralcic Add weetp Delav, x10 Mag \backslash Alt. Trio Trig. After Delay, CRT 14 kV .

MICROPROCESSOR APPLICATIONS HANDBOOK

 Practical Techniques of Electronic Circuit Design by Bonebreak Digita Integrated Electronics by H. Taub ectronic Dis $\quad 8$. Tectronic Devices and Circuit Theory by R.L. Boylestad
fio Soul of a New Machine by T. Kidder
£8.50
\star PRICES INCLUDE POSTAGE \& PACKING THE MODERN BOOK CO

LOW PROFILE

 KEYBOARDS16 switch (4×4). Phos./Bronze gold-plated contacts. Keytop legends 0-9 plus 6 plain.
G.F.P.C. Board with edge connections.
verall switch height from board 12.5 mm . Switch pad area 65 mm . sq. approx.
PRICE $£ 7$ plus postage and VAT
Cheques for $£ 9.20$ payable to:
AVONSWITCH PRODUCTS LTD.
River Street, Pewsey, Wiltshire SN9 5DH
\qquad
ww - 060 FOR FURTHER DETAILS

* 500VA OR 250VA
* SOLID STATE
* HIGH STABILITY
* ROBUST
* VERSATILITY
* RELIABILITY * SINUSOIDAL

Reliable Frequency \& Volrage Stabilization The efficient operation of sophis ticated electrical and electronic equipment is, in many cases, dependent upon an electrical suppl which is stan in both frequency an

In many countries and even in the United Kingdom during periods o frequency and voltage is sufficient to introduce errors and the malfunction of such items as Recording equip ment etc. Likewise, in certain areas the only source of supply is from a vary considerably when different loads are imposed. This has precluded the use of a wide range of equipment in many countries able, but these do not stabilize the frequency of the supply which, in many instances, is essential.
WIRELESS WORLD JUNE 1982

APPLCATIONS *SOUVDRICORDIMG * UDEORICORDHG WHICAL maRINE
COMPUTERS HAVIGAIIOLAL SYSTEMS

Applications for the use of CINTEC
FREQUENCY \& VOLTAGE STABILIZER ar more numerous than can be listed. .hherefore,
you have a supply problem, contact CINEC LIMITED whose engineers will be only too
pleased to assist.
SPECIFICATION

The CINTEC FREQUENCY \& VOLTAGE STABILIZER provides
the answer to both these problem When the supply frequency is fluctuating
wildy, between 45 Hz and 65 Hz and the voltage by moee than 10% the output from the 50 Hz or 1% in voltage, even when different loads are imposed. Used by Government establishments, oil
rigs. hospitas, police, video and electronic industry. shipsuilders ettc, for a wide range of appulcations including video systems. medical
frequency conversion, navigational aids and trequency conversion, navigational aids and
sound recording systems.
The cintec frequency \& voltage STABILIZER is also available for supplies of
$100-125$ vols $100-125$ volis, $45-65 \mathrm{~Hz}$ with an alternative
output of 50 Hz or 60 Hz at 1115 volts or 230 volis and as a dual frequency model with a of 50 Hz or 60 H
The Stabilizer may also be used as a frequency
converter For example, the supply to it can be
any frea any frequency example, the supply to it can be
operates from a heavy duty 24 volt battery and
has output artings ismiar to the A.C. models
This type of Stabilizer is particularly suitable for intec Ltd., Wandle Way, Mitcham, Surrey CR4 $\begin{gathered}\text { mobile } \\ 46177\end{gathered}$

CINTEC Details Specification and Brochure-Available Post Coupon or Telephone/Telex

 Position
 Address

 STABILTYY Frequencray FREQUENCr WAVEFORM DISTORTION
AMB TEMP AMB TEMP
cooling
Duty
DUTY
DIMENSIONS
weight constriuction
TERMINATION
nato codified

nato colifiled

In addition to the A.C. operated models. a 24
D.C. INVER IER Stabilizer is aval which

 SINUSOIDAL

Fon cooled $40^{\circ} \mathrm{C}$
Fan coll

45 or 30 Kg unpacked
Cabinet or rack mounting
Cannon Connections at rear of
Cannon Connections at rear of
ase

CINTEC LTD
Wändle Way, Mitcham. Surrey CR4 4NB. England. Telephone: 01.6402241 Velex. s4c WW - O56 FOR FURTHER DETALLS

PORTABLE MAINS FILTER

This portable mains interference filter has been developed to provide good attenuation against both incoming and outgoing interference. The filter unit is rated conservatively at 13 amps and incorporates an earth line choke and ZNR for full The capacitors to earth meet the BS 613 limits for portable equipment. A discharge resistor is provided to prevent shocks when handling the 13 amp plug. The filter is suitable for a wide variety of uses including the protection of VDU, desk top computers, EPROM programmers and microprocessor development systems, as well as the usual range of digital and analogue instruments.
Roxburgh Suppressors also manufacture a standard range of mains filters for general purpose applications and offer RFI laboratory facilities for custom built suppression
$£ 42.49$ inclusive of VAT and carriage.

ROXBURGH

The Infinite Choice.

Enclosures, desks, cabinets, boxes and accessories whatever your needs, the choice is enormous - available ex stock from Luton and through our 52 national distributors. In all shapes - from the big ' H ' Range of adaptable enclosures to front and top opening control desks.
In all sizes - from the smallest electronic assembly box to the giant monobloc 18000 Series ($2100 \times 1200 \times 400 \mathrm{~mm}$). In all finishes - watertight steel, corrosion resistant plastic and tough glass fibre reinforced polyester
Whatever your choice, our highly trained sales staff can ffer a total service.
delivery, at the right price - to the it place - and right on time.
et price quotations on lase Sarel, we have some great special 20122 or clip the coupon for our - phone now on Luton catalogue and price list.
il 2 Sarel - the infinite choice for enclosures.
Think big - think Sarel
SarelElectric Limited

TEST COMPONENTS
ON THIS NEW OSCILLOSCOP!

...from (C) Fumell
USE READER CARD FOR DETAILS

B.C.M., Box 8085, London WC1N 3XX. Tel. 0494714483 mall order bargains All prices include VAT and Postage - Same-day despatch CYCLON POWER PACKS. Chloride CYCLON power batteries deliver the same power as a car battery, at a fraction of the sizz/weight, but are completely sealed and can be used in any position. Charge at any rate on an ordinary car charger Extremely rugge and virualy everlasting, these batteries are usualiy used on expensive aircratt systems. Two in series make ideal heavy duty supply for mobile 12-volt systems. Rated 6v quarter of list price, ... GOULD SWITCH-MODE POWER SUPPLIES, 5 V 20 amps. (BRAND NEW). higher voltages. 0.1% Regulation and full over V/I protection Listis price PPOTTITPE PC CARDS Over 200 Com ics (most 7400 series) in wire wrap sockets on useful wire-wrap cards. ICs/Sockets easily removed no unsoldering .. Only E11.50 VIDEO MONITORS 9 -INCH. Standard Composite Video in. 240v PSU. ASCII KEYBOARDS. Top quality 84 -key ASCII with all U/L Case and POWER SUPPLIES 5 v 3 amp . Standard Mains Input - out 5 v 3a fully regulated and protected ... $\mathbf{E 1 1 . 5 0}$ EPROMS-TMS 2518. Brand new - these usually cost around $£ 3$ to $\frac{\text { £5 }}{}$ MODEM PROTECTION BOXES RS232. Completely isolate your valuable system from over voltage - consists of of 2 2S232 Cannon Connectors, one os you are using external lines, connect this between your system and it could save you thousands of pounds.

B. BAMBER ELECTRONICS

 tilinivn Michospoo cartoop Ray Tube Tpee

QUOTED EXCLUDE PIP ES QUOTED EXCLUDE P/P
GOOD SECONDHAND EQUIPMEN AND VAT UNLESS OTHERWISE STATED

5 STATION ROAD, ITILEPORI, CAMBS CB6 10E PHON: EL Y (0353) 860185
ww - 071 FOR FURTHER DETAILS

Electricity Supply

Handbook -vour Guidet o the Industry:
An up-to-date copy of the Electricity Supply Handbook is the best reference for knowing who's who and what's what in the electricity industry
The 1982 edition contains:

* Over 2,000 names and locations of executive personnel in the Electricity Council, C.E.G.B., Area Boards and other organisations.
* Major authorities, government departments associated with the electrical industry.
* U.K. power stations, Area Board statistics, electricity tarifís, electrical associations
* Pull out map of C.E.G.B. regions power stations and transmission lines.
* Bound in maps of Area Boards.

Famous for its total coverage, detail and accuracy, it always sells out fast
so make sure of vour conv

1. Please semul me

Address.

INSTANT PRINTED CIRCUITS!!

 Copper-clad Fibre-glass Boards: $\begin{gathered}\text { Single-sided..............f2ft. sq. } \\ \text { Double-sided }\end{gathered}$ (45

\qquad
WHITE HOUSE ELECTRONICS
WHITE HOUSE ELECTRONICS
P.o. Box 19, Praa Sands, Penzance TR20 9 .
Telephone: Germoe (073-676) 2329

TV TUBE REBUILDING

Faircrest Enginnering Ltd. manufacture a comprehensive
range of equipment for processing all types of picture tubes colour and mono Standard or custom- built nuits for estab lished or new businesses. We export world-wide and have a
.excellent spares service backed by a strong techical team. Full training co
requirements.
Hor full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2 XX WW - 040 FOR FURTHER DETALLS

Happy Memories

ERASERS ${ }^{\text {FiR }}$ DEVELOPMENT LAB UV1B Powerful, compac EPROMS quickly and safely (illus
trated) ${ }_{\text {trated }}{ }^{\text {E46.95 }}$ + VAT UV1T
 CARRIAGE PAID (U.K.) LN USE IN DESIGN ESTABLISHMENTS
AROUND THE WORLD $\xrightarrow{\text { Ascoavialale in London from }}$ Tectnomadicid

51 Arundel Street, Mossley, Lancashire Tel. Mossley (Pa475)
WWOS5
FOR FURTHER DETALS
 WW - 096 FOR FURTHER DETALLS

thandar's
 COMPLETE PORTABLE TEST BENCH

LCD HAND HELD MULTIMETERS
TM354 3½ Digit

TM 352 3 $1 / 2$ Digit

LCD BENCH MULTIMETERS
TM351 3½ Digit TM353 31⁄2 Digit

 WIRELESS WORLD JUNE 1982

LED MULTIMETERS

DM350 31/2

FREQUENCY METERS
TFO40 8-Digit LCD
 Battery
lifit: : Typically 80 hours
linats)

TP600 600MHz Prescaler

TG105 5MHz Pulse Generator

PULSE \& FUNCTION GENERATORS TG 100100 kHz
TG 1022 MHz Function Gene

Thandar Electronics Ltad. reserve the right to a ater prices and specifications on their equipment without prior notice. ALL THANDAR PROOUCTS CARAY A FULL 1 YEAR WARRANT

			BERCO VARIABLE TRANSFORMERS output $0-270 \mathrm{~V} 2 \mathrm{~A}$ with control knob. EXequipment, but in perfe P\& E2.50, V.A.T. £1.88.
		HEAVY DUTY LTTTRANSFORMERS BY	
24030 A			
${ }^{\text {mand }}$			
AUTO STEPDOWN TRANSFORMERS			APST PuRCHASE COMP
indicator, three core mains lead and carrying handle. Send SAE for price list and further details. American sockets, plugs, adaptors also available.			riage $£ 1.50$. No. 2 sec. tapped $26-31-36 \mathrm{~V}, 11.2 \mathrm{~A} £ 12$.

WIRELESS WORLD JUNE 1982

Barrie Electronics Ltd.
3,THE MINORIES,LONDON ECSN 1BJ TELEPHONE: 01-488 $3316 / 8$

FIRST IN THE WORLD
The ICM-12, synthesized, marine
hand-portable radio
FEATURES:
12 channels -6 and 16 fitted as standard. No waiting for crystals, can be diode pro-
grammed between $156-164 \mathrm{MH}$. grammed between $156-164 \mathrm{MH2}$.
Automatic semi-duplex for private and link calls.
Slideor
Slide-on nicad pack recharges from mains

- Lots of options, speaker mics, alternative
battery packs, 12 V leads, and desk charg
- ers. Complete with nicad battery pack, mains antenna. - Home Office type approved. RTD HP 105 . ${ }^{\text {HRICE } £ 199.13+\text { VAT. Free carriage. }}$ Also IC-M25D 25W. synthesized 25 channel
VFF marine transceiver $£ 207.83+$ VAT. Trade enquiries very welcome - Ask for Phi
 We can also supply
the ICOM IC100 Highband PMR Base
and Mobile transceiv and Mobile transceiv-
ers. Fully approved,
very compact, built-in very compact, built-in
CTCsS atide at
compery
prices. competitive prices
Doalier outle er
quired, ask for Dave quired,
Thanet Electronics ©D ICOM 143 Reculver Road, Herne Bay, Kent
Tel: 0227363859 . Telex 965179

Who takes care of your EPROMS?

 WF DOI Mchooproc ssor convrrouluoEPROM PROGRAMMER
Qualified by INTEL and new to the UK. home market,
Velleman UK are offering you their K2578 EPROM programmer This compact unit is comp K2578 EPROM prosupply and available assembled or in kit form. following EPROMS with No need for programme the sonality module-2716 (Intel or equivalent) - 2732 (Intel or equivalent - 2732A (HMOS version of Intel) and TMS2516 (Texas Instruments). Ideal for industry, repair shops; schools or the home enthusiast, the K2578 works independently and has no development system.

CONTROLS
-24 key pad includes hexadecima
keyboard and function keys.
12 address LED's.
4.function LED's. (error, prog, ok
and

- 2 hexexadecimal displays.

SPECIAL OFFER
Assembled $£ 270.00$
Kit Form $£ 180.00$
Prices exclude
and carriage.

VELLEMAN UK. LTD

P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Telephone: Hastings (0424) 753246 .

FUNCTIONS

- blank test
-program with automatic blank and
-input or modify data in user RAM at - load RAM function to fill the RAM area with data from a preprogrammed
PROM to perform a copy -Parallel load capability from a DMA controlled RAM field size selection $(16 / 32 \mathrm{~K})$ with single
push-button OK indication for successful executed
functions - ERROR indication with error codes on display - barif error
-illegal address access error input data via hex. keyboard and $j u m p s$
to the next address in input data via hex. keyboard and
to the next address in user RAM

EV88 - A low-cost evaluation system for the 8088 microprocessor

EV88 is a single board microcomputer that is ideal for
evaluating the 80888 -bit/16-bit microprocessor. EV88 can evaluating the 80888 -bit $/ 16$-bit microprocessor. EV88 can
also be used as a powerful controller, and, with a suitable cross-assembler running on a standard microcomputer, and
an EPROM programmer, for low-cost development of 8088 an EPROM prog
based systems.
EV88 is supplied fully assembled and tested, with compre-
hensive documentation, and a cony of The 8086 Book, by hensive documentation, and a copy of The 8086 Book, by
Rector and Alexy. All you need is a 5 V 1 A power supply and a terminal or a suitable microcomputer
$\star 8088$ microprocessor in minimum mode
Comprehensive monitor in 2K EPROM.
\star Comprenensive.
$\star 2$ Cascos RAM.
Cassette interface
\star Cassette interface.
\star Eight levels of interrupt.

* Three-channel counter/timer
\star Buffered data, arddress and control lines.
\star Double Eurocard.
\star vided).
丸 Breadboarding area.
${ }_{\star}^{\star}$ Single $5 V$ supply.
Price $£ 300$ plus VAT. Includes delivery.
$8088 / 8086$ design service available (software and hardware).
LFH Associates Ltd
40A High Street
Stany
4A A High Street
Ston Stratiord
Milton Keynes

908) 566660
WW - 092 FOR FURTHER DETAIL

SUPERSEM
 PLYMOUTH 075221256

 MEMORIES AT UNFORGETTABLE PRICESWW - 085 FOR FURTHER DETALLS
WIRELESS WORLD JUNE 1982

BRITAIN'S BETTER BARGAIN STILL IN WORLD-WIDE DEMAND

WIRELESS WORLD CIRCARDS at 1976 prices 10% discount for 10 sets! Most sets are still available even though the companion volumes CIRCUIT DESIGNS 1, 2 and 3 are out of print. (CIRCARDS SETS 1 to 30).

Fill gaps in your circuit files with these sets of $127 \times 204 \mathrm{~mm}$ cards in plastic wallets These unique circuit cards normally contain descriptions and performance data of 10 tested circuits, together with ideas for modifying them to suit specia needs.

1 Basic Active filters 2 Switching Circuits, comparators and Schmitts (But these gaps cannot be filled) 6 Constant current circuits 7 Power amplifiers 8 Astable circuits 9 Optoelectronics 10 Micro power circuits 11 Basic logic gates 12 Wideband amplifiers 13 Alarm circuits 14 Digital Counters 15 Pulse modulators 16 Current differencing amplifiers - signal processing 17 Current differencing amplifiers - signal generation 18 Current differencing $\begin{array}{llll}22 \text { Amplifiers - measurement and detection } & 19 \text { Monostable circuits } & 20 \text { Transistor pairs } & 21 \text { Voltage-to-frequency converters } \\ 23\end{array}$ $\begin{array}{llll}\text { oscillators }-2 & 27 \text { Linear cmos }-1 & 28 \text { Linear cmos }-2 & 29 \text { Analogue multipliers } 30 \text { Rms/llog/power laws } \\ 31 & 26 \text { Digital }\end{array}$ multipliers 32 Transistor arrays 33 Differential and bridge amplifiers 34 Analogue gate applications - 135 Analogue gate applications - 2

To IPC Electrical - Electronics Press Ltd
To IPC Electrical - Electro
General Sales Department
Room 205,
Quadrant House
Sutton,
Surrey
Surrey'SM2 5AS

Company registration in England
Quadrant House, The Quadrant, Quadrant House, The Qua
Sulton, Surrey SM2 5 AS
Reg. No 677128

Please send me the following sets of Circards
\&2 each
$£ 18$ for 10 post free
Remittance enclosed
.... payable
Name (Please print)
Address (Please print)

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70
EPSON MX-80 80. GPs 3982 IBM I/O PRINTERS DOX MATRIX PRINTER WTHS, ASR, KSR, TELETYPES PAPERTAPE READERS, PAPERTAPE PUNCHES, SCOPES, TYPEWRITERS, FANS 4'" $5^{\prime \prime \prime} 6^{\prime \prime}$. POWER
SUPPLIES, STORE CORS, TESTEQUIPMENT AND SUPPLIES, STORE CORES, TEST EQUIPMENT AND OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m. SATURDAY TILL 1 p.m

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE ESSEX
PHONE MALDON (0621) 57440 WW - 044 FOR FURTHER DETALLS

Appointments

```
Advertisements accepted up 12 noon
Monday, May 31 , for July issue, subject to space being available.
```

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min .3 cm). BOX NUMBERS: \&1.50 extra. (Replies should be addressed to the Box Number in the
advertisement. advertisement, clo Quadrant House, The Quadrant,
PHONE: IAN FAU X, $01-661$ 3033(DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press L

RF DESIGNER

WITH INVENTIVE FLAIR AND

A TASTE FOR RURAL LIFE
Our clients are a small cheerful and highly motivated company who are sole manufactur-
ers of a socially essential paramedica a
They are in the throse of moving to a
rural England (with low housing costs). The need is for an engineer, probably between 25 and 45 , with a genuinely radical and inventive approach to
(ideally, Iow power) field.
The successful candidate will work in a small specialist team. The potential and prospects
attached to the position are second to none. attached to the position are secondo non
Apart from a competitive, negotiable salary, the company offer excellent relocation ex
penses to this attractive low cost housing area. To discuss this position or any other specialist Communications vacancies we may have,
telephone Paul Hecquet on $0444647301 / 2 / 3 / 4$ or write with a brief C.V. telephone Pau

The Electronics Recruitment Company
18 Station Road, Burgess Hill, West Sussex RH15 9DE
Communications
04446 47301/2/3/4

Electronics, Medicine and $£ 12,000$ p.a. Tax Free Where's the Connection?

Allied Medical group are the British consultants to the Riyadh Al-Kharj health care programme in Saudi Arabia. The two hospital
Sophisticated electronic systems and equipment feature prominently in the hospitals. The electronics laboratory and mechanical workshop look after all aspects of maintenance,
repair, test and calibration. There is a wide variety of equipment and the facilities are
you will need an HNC (or equivalent) or should be taking the examinations this year, and
As well as the tax-free salary we have already quoted, these single-status If you're interested, quote Ref. RKH 426, to: Malcolm Craig, Senior Personnel Alternatively, call our 24 -hour answering service on $01-7305339$, quoting the Alternatively, cail
reference number.

Allied Merlicel Groun

ALLIED MEDICAL GROUP - The Best of British Health Care in the Middle Eas

WIRELESS WORLD JUNE 1982

Appointments

TV STUDIO

PROJECT ENGINEERS

Due to the continuing expansion of the Projects Department we are looking for Project Engineers. If you have had experience in television broadcasting either as a project engineer or in the operationa
side of broadcasting we would like to We design and build outside broadcast vehicles and studios for television broadcasters throughout the world.

SALES SUPPORT ENGINEER

 (TV COLOUR CAMERAS)Our Sales Support engineering activities include customer demonstrations, both here in Andover and away from base, supervising acceptance, test and after-sales activities. If you have worked in knowledge of modern colour television cameras we would like to hear from you
Both positions involve occasional overseas travel. For further information please contact our Perhone on Andover (0264) 61345 .

ELECTRONICS

EDITOR WANTED

REOUIRED: A RADIO AMATEUR WHO CAN COMMUNICATE

We are looking to expand our current team of editors with someone who can communicate ideally be a licensed amateur and have some Journalistic experience. ASP is a rapidly expanding specialist publishing company and this vacancy offers the opportu-
nity to join us in a senior position. A keen innity to is required as is the ability to write clearly
terest and authoritatively.
Salary is negotiable, but will reflect the seniority of the position. Applicants should write, enclosing full c.v., to: R. Harris

ARGUS SPECIALIST PUBLICATIONS LTD 145 Charing Cross Road

Argus Specialist Publications Ltd.

 145 Charing Cross Road. London WC2H OEE. Tel. (01) 477-1002. Telex 881189
Electriasonic

We are a leading company in audio-visual, lighting maintain its technologication systems. In order to maintain its technological lead the company now
seeks to strengthen its team of engineering professionals through the appointment of a

SENIOR ELECTROHIC DESIGN EMGIIIEER
 to $£ 9,500$ per annum

To become a member of a small team responsible for innovation and development of new microprocessor based products; the ideal candidate will be qualified to degree level and have at least 2 years knowledge of digital/microprocessor hardware and software design is necessary, a broad-based background in analogue design would be considered a distinct advantage

The position carries excellent employment condi-
tions.

Please write or telephone for an application form: Peter Smith - Design Manager
815 Woolwich Limited
London, SE7 8 Road
Telephone: 01-855 1101

THE OPEN UNVERSITY
FACULTIES OF TECHI
FACULTIES OF TECHNOLOGY
AED SCIENCE COMMON FACILITY

ASSISTANT

ELECTRONICS DESIGNER
signer, to work under the Senior Desistant Electronics De-
wide
widgineer on signer, to work under the Senior Design Engineer on
wide variety of work in the interfaculty Electronics Com The desity work will involve bo The design work will involve both digital and analogue
circuitr a ad will include a growing involvement in
micropt microprocessors and their associated software. The work will appeal to someone with a keen interest in
electronics. who is eager to learn new techniques and who should already hager some experience in working, at
least on a small scale, to his/her own designs or modificaleast on a small scale, to his/her own designs or modifica
tions of other designs. Qualifications: Minimum equivalent to $\mathrm{TEC}, \mathrm{C} \mathrm{\& G}$ or ONC
backed up by proven experience. Experience will be backed up by proven experience. Experience will be the
most important factor in determining the successful applicant.
The salary for this post will be on the $T 5$ scale $£ 5695$.
66650 per annum. Application forms and further particulars are available
from: Mrs. S. Mcerrearty (498/1), Faculty of Technology, The Open University. Walton Hell, Mitton Keynnos MKy
6AA, or telephone Milton Keynes, (0908) 653941 - there isa 24 -hour answering service on 653868 .
Closing date for appliter

Appointments

SIEMENS

Make better use of your electronics experience

As a medical service engineer
Siemens has always been in the forefront of medical engineering and our
products are helping doctors in hospitals all over the worid to save lives. But the equipment on its own is not sufficient.
We also need men and women with sound electronics experience to strengthen our service team based at Sunburi. You will visit hospitals
throughout Londo and the South East installing and servicing vital throughout London and the South East installing and servicing
equipment to ensure optimum perfo: mance for our customers. Currently we require an engineer to work with electro-medical products. You should be able to bring ONC/HNC level qualifications and at least 3 years' experience, working in the ho spital environment and live or be years' experience, working in the hcspitar envirenmer and
prepared to live within an.approximate 30 mile radius of Sunbury. A car or car allowance will be provicied, and a full range of excellent benefits including non-contribut ryy pension scheme, first-class sick pay, generous
daily allowances for time spent away from your base and a competitive salar daily allowances for time spent away from your base ats Tel. Sunbury 85691 or write to her for a corrprehensive information package at Siemen Limited, Sie
Middlesex.

Maritime

 New frontiers.SYSTEMS ENGINEER
 BF DESIEN
 DESIGN ENGINEER
 - SEURY.

 DESIGN ENGINEER
 SENENEER
 CLIVEDEN CONSULTANTS
 CLIVEDEN

ELECTRONIG

 Cocialists in MF communications Specialsisin lif communicaions,digital and low frequency anil
ogue equipment, urgently require ogue desup and development Eng
a deer. Remuneration according
no $\underbrace{}_{\text {Ring } 01-250}$

Inmarsat - providing a revolutionary global satellite communications service - is now live.
loday over 1,000 ships and offshore oil and gas platforms are terminals giving them direct access to our communication satellites.

Today all the world's oceans are covered whatever the weather, 24 hours a day, 7 days a week. Maritime'
communications has

With an investment of US $\$ 300 \mathrm{~m}$ and the participation of 37 countries, Inmarsat has one of the most innovative systems yet devised. are we dealing with today's system but we are looking to tomorrow. In particular to the design, development and implementation of the second generation Inmarsat system. This is where you come in.

As an experienced Electronics Engineer, it will be up to you to provide support to the system as well as to develop rrew capabilities and take us even further into the future. We now have a need for experienced technical staff to be London, England.

We need specialists experienced in spacecraft and launch vehicles, satellite payload design, digital communications technology, earth station equipment or the design of sophisticated shipboard electronic quipment.
Depending upon your speciality in a full range of satellite communications engineering particularly development of new and innovative communications services and new generations of satellites You will be a graduate with substantial experience in your chosen field. You will be active, creative, and willing and able to develop your own role and initiate your own responsibilities to meet demands You will be fluent in English. Other languages would be an asset. The Inmarsat salary and benefit package is highly attractive. As a
member of our international staff, your salary-starting in the range your salary - starting in the range
$£ 12,900-£ 21,000$-will be net oftax. Relocation expenses will also be provided.

These appointments are immediate. So for a personal history form apply to the Personnel Manager, Inmarsat, Market Towers, 1 Nine Elms Lane, London, SW8 5NQ, England.
\qquad

communications.
time
ations.

Appointments

ENGINEERS

c $£ 8000$ pia.

Coventry
The present level of world demand for advanced telecommunications technology holds
great potential for the future in terms of security, job satisfaction, financial reward and Aspartofateam of C As part of a team of Contract Engineers you will be specifying formanufacture, a variety of
transmission equipments, such as: telegraph and channel equipment, translating and generating equipment, coaxial and optical fibre line systems, baseband, switching, superviso
19 GHz .
Also, you willdesign interface wiring diagrams forequipment racks and repeaterstations. Also,yare station and system schematics. Supervise design interfaces of civil works, including prime power equipment, buildings and microwave towers
In addition to interesting and varied work you'll be receiving a competitive salary plus big company benefits which include a generous relocation package where appropriate
You'll find all the big-city amenities in Coventry, including some outstanding sports You'll find all the big-city amenities in Coventry, including some outstanding s.
facilities -and you'll be surprised by the wide range and low cost of housing.

SCOTTISH OFFICE
DIRECTORATE OF TELECOMMUNICATIONS WIRELESS TECHNICIANS ($£ 5,300 \cdot \mathbf{E} 7,060$)

WIRELESS WORLD JUNE 1982

NO
 CONCESSION TO RECESSION!

In communications, the industry of the 21st Century, the BBC is forging ahead with its programme of expansion. This year we are seeking 150 young, enthusiastic Engineers both in London and throughout the United Kingdom to work in the expanding field of Television.
The ability to handle new technology long before it appears in other industries, a thorough understanding of traditional electronics and the motivation to have found out about Broadcasting technology, together with the right personality are just some of the qualities we are seeking. Many have already accepted already accepted the challenge and joinedus,butthere are vacancies in the Television Service, London for those men and women with the right qualities. If you are qualified,
qualified, with a Degree in Electrical and Electronic Engineering, Applied Physics or equivalent and have both normal hearing and colour vision why not fill in the coupon for further details, quoting reference number 82.E.4029/W.W. Starting salary in the Television Service, London is in the range $£, 7314$ to $£ 7892$ plus shift working allowance
We are and suap
We are an equal opportunitie
\section*{TELEVISION ENGINEERS}

Appointments

OTC (2) TECHNICAL STAFF

Would you like an opportunity to live in Australia and pursue a career in Telecommunications?

The Overseas Telecommunications Commission (Austraial) which inks Austraha with he est of he worid \mathbf{C} Co
The Overseas Teecommicas and radio vacancies for Technicians and Technical Officers.
he successful applicants will be involved in one of the following areas in the operation and maintenance of the Commission's:
processorccontolled switch ing and transmission etuioment in the sydney Merropolitan area

REMUNERATION: $\$$ SA14805-16080 p.a.
Technical Officer Grade 1
Technical Officer Grade 2 Senior Technical Officer Grade 1 \$A18180-19086 p.a.
Technical Officer Grade 2
Senior Technical Officer Grade 1
$\$ A 19597-20517$ p.a.
QUALIFICATIONS
Successtu complan of Part 3 - full Technological Centicale of he Telecom munications Technician's Course condeced by the City \& Guilds of London
Instiute. Institute e Nat National Certificate in electrical or Electronic Engineering and registration as a Technician Engineer with the U.K. Engineer Registration Board.
The tigher
Or raceognised equivalent of the above. For rechninicans: 4.evaran of experience including time in training.
For Technical Oficer: 6 years of experience induding time in training.

Applicants will be supplied withan information leaflet giving full details of
OTC Representatives will be conducting interviews in the United Kinglom.

Electronic Engineers-
 What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim Tunbridge Wells,
Kent. TN4 8AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form:
Name.
Address . We are an expanding Television
Rental and Retain company with Rental and Retail company with
vacancy or an addititonal Televi-
sion Service Engin vion Service Engineer. Suitable applicant will pre-
ferably hold an R.T.E.B. certificate or be training towards this qualifit
cation. The post is directly responsible
to the Service Manager. A clean driving licence is essen-
tial A spacio quired.
Hydes of Chertsey Ltd., $56 / 60$

$$
\square
$$

digital EXPERIENCE FIELD SUPPORT VACANCIES IN COMPDTER
NG, COMMS., MEDICAL
For free registration
04559838264
$01-2900267$
LOEX

RELESS WORLD JUNE 19

Appointments

Hardware and Software Development Engineers

Powerful and advanced computer based work stations Manchester Salaries negotiable

At HM Government Communications Centre,
Engineers \& Scientists £8,589

Communications R\&D... ...the leading edge
we're applying the very latest ideas on electronics and other technologies to the problems of sophisticated communications systems, design
the flow of essential information.

The work is of the highest technical challenge, offering full and worthwhile careers to men and women of high ability, on projects covering the following areas of interest:-

RADIO - from HF to microwave, including advanced modulation systems, propagati
studies, applications of Microcircuitry
acoustics signal analysis MAGNETICS SYSTEMS ENGINEERING Applicants, under 30 years of age, should have a good honours degree or equivalent qualification it a also apply.
Appointments are as Higher Scientific Officer
$(\{6,530-£ 8,589)$ or Scientific Officer ($£ 5,176$ Of $(£ 6,330-£ 8,589)$ or Scientific Officer $(£ 5,176-$ Le,964)
according to according. For an application form, please write to the
Recruitment Officer (Depr. WW 6), HM Government Communications Centre, Hanslope Par
Milton Keynes, MK19 7BH.

Systems Assembly/ Test Engineer

Granger Associates is a leader in the Communications Equipment Industry manufacturing and marketing a
wide range of sophisticated UHF Radio, Multiplex and SCADA products. Continuing expansion has created a vacancy for a Systems Assembly/ and system test of Radio/Multiplex terminals and therefore demands a high degree of responsibility. The successful candidate must be self-motivated
and have at least two years' experience in the UHF
and F.D.M. field.
Salary will be in the region of $£ 8,000+$ per annum with excellent prospects for advancement within the Company.
Please write in the first instance with full particulars preferably CV) to the following address:
Mrs. L. M. Tabb Granger Associates Limited 1 Brooklands Road Weybridge

Gragsotrates Lita
 lutions for Telecommunication

DESIGN \& MANUFACTURING ENGINEERS
 NORWAY

SALARY RISES DISAPPOINTING?
 To 15 15.000. Suut Coast CONLTANT PROGRAMMERS

YOUNG DESIGN/DEEVILOPMENT ENGINEERS

Charles Airey Associates
empo House, 15 fy con Road, Batterses Tel: $01-2237662$ or 2286294

Electronic Engineering

Dolby Laboratories, the world famous audio noise reduction company, was founded by an engineer. We are a company that believes in engineers and engineering.
Small enough for you to make a contribution, we have t minimum bureaucracy, are well established, and have a minack record of innovation and quality.
Assistant Production Manager (Male or femate)
A newler based prition to support the implementation of
Electronics Engineer
Electronics Engineer
For the extension of ATE (Racal) testing.
Production Engineers \& Technicians Expansion of a well established department to support new products.
rited test group and fault find, when all else fails!
al
Q A Engineer \& Technician
Opportunities to join our newly established QA group. Applicants for the senior positions need to be experienced graduates.
Excellent salary and benefits package
Contact Steve Matta, by phone or in writing, at: Dolby Laboratories Inc.
346 Clapham Road
London SW9.
$01-7201111$

ELECTRONICS ENGINEER
 -CALIBRATION

An opportunity exists in a small but thriving Not tingham-based company for a senior engineer to upgrade the company's calibration laboratory to BCS standards. Suitable applicants will therefore have knowledge of, and experience, with BCS

Prospects are excellent as the company is expanding rapidly and this position would suit a person ing rapidly and this position would suit
wishing to develop his or her potential.

Apply for full details, enclosing your CV, to:
DMR LTD.
Unit 19, Salisbury Square
Nottingham NG7 2AB

Appointments

Classified

ENJOY BEING SUCCESSFUL WITH QUANTEL

Quantel Limited has achieved a worldwide reputation as the foremost Company in Digital Video products fo require further engineers to join our team in Newbury, Berkshire.

TEST ENGINEERS

We are looking for Test Engineers to be responsible for checking through and commissioning a wide to develop test procedures and additional test rigs is an advantage. Candidates should be qualified to at least HNC standard but candidates studying for a TEC

JUNIOR SERVICE ENGINEER

We require a young person with previous test or ser-
vice experience to assist in servicing complex video vice experience to assist in serviting component level. A qualification at TEC level is useful but not essential as one or wo years rela portant.

If you are interested in joining our team, please tel phone or write for an application form to:
The Group Personnel Officer, Quantel Limited, 17-20 West Mills, New
48222 , Ext. 308.

EASIAL SERVICES DEPARTMENT
 TEBMMBA PRDDUBI AI ASSSIMI BRIGHTON £8,190-£9,528

A newly created post in the Training/Develop ment Section Part of the Section's work includes the produc subjects as diverse as child care practice, under standing mental illness, health and safety at work, the care of the mentally and physically handicapped, management techniques, etc. Al
these productions are designed specifically to complement ongoing training programmes for Social Services staff.
The Engineer will be part of a small team - and a high degree of commitment and energy is a essential as technical competence. broadcast quality ENG video camera and recorder, editing suite and portapaks, as well as a pool of audio-visual equipment; ii) the operation of video and audio equipment as part of a smal production team producing h Qualifications: Degree in engineering subject Experience in broadcasting and education, bot in an engineering and production capacity;Ope rational experie be an advantage
606622 ext. 253. Ple Application forms ime quote post No. 7060D. Section, Sociars immediately from Personne East Sussex County Council
County Hall, St. Anne's Crescen
Lewes, Sussex BN7 1SG
Closing date for applications June 11, 1982.
civl ayation college
(GULF STATES)
requires
INSTRUCTORS - AVIATION ELEGTRONICS
Qualified and experienced in installation and maintenance of modern aviation radio ystems, extensive instructional experence at Technician Level Courses
Salary and allowances up Dollars 3,400 per month
Please enquire for details
Civil Aviation College (Gulf States) PO Box 4050

Attention: Principal - Mr. Jassim Al Nusf

NATO HEADQUARTERS ALLIED FORCES CENTRAL EUROPE
 6440 AG Brunssum Post Box $270 \quad$ The Netherlands 6440 AG Brunssum Applications. are invited from qualified candidates for the
 One FIELD SERVICE TECHNICIAN
 in a travelling team maintaining an international microwave telecommunications system. Home base near Aachen, Ger- many.
 One PRINCIPAL TECHNICIAN

Computer-aided Message Processing Systems
duty station Birkenfeld. duty sta
Competitit
scheme. than 14 days anter apply with short curriculum vitae, not late than 14 days after the publication of this advertisement, to
Civilian Personnel Officer, HQ AFENT

Technicians in

 Communications\square
Headquarters, based at Cheltenhammunications
Headquarters, based at Cheltenham. Our interest
communications - HF to satellite - and their
security.
THE JOB All aspects of technician support to an

- unparalieled range of communications
equipment, much of it at the forefront of current
technology.
LOCATION Sites at Cheltenham in the very
attractive Cotswolds and elsewh
opportunities for service abroad.
- PAY Competitive rates, reviewed regularly.

Relevant experience may count towards
TRAINING We encourage you to skills and experience.

- QUALIFICATIONS You should have a TEC
- Certificate in Telecommunications, or
acceptable equivalent, plus practical experience.
HOW TO APPLY For full details on this and
information on our special scheme for those
- information on our special scheme for those
- $\begin{aligned} & \text { Recruitment Office } \\ & \text { GCHO, Oakley, Priors Road, Cheltenham }\end{aligned}$
- Glos. GL52 5A,
- or ring ${ }^{02421491}$

TRINITY HOUSE LIGHTHOUSE SERVICE, LONDON ELECTRICAL ENGINEER
Applicants must have had a sound training in radio and light current work
associated with
and
and control symF and MF communications, remote monito and control s.sytems. Experience in detailed planning, preparation of
procerurement specifications and drawings, manuacturers acceptance
 programming and micro-technologry would be an advatantage. computer
Possession of a degree in electronics/radio engineering or equivalent is required.
Generous leave allowance, pension scheme and flexible working hours.

almost unbelievable rate of growth. Having quadrupled our thrnever new. A member of the worldwide Mars
placed to double i again over the next few. Group, we are, in fact, one of Europe's fastest growing electronics companies
with a range of highly sophisticated products which are both advanced in design and innovative in application. With the recent setting up of a brand new company to develop, manufacture and With the recent setting up of a brand new company to develop, manưact
market specialist marine equipment, we have an immediate need for an
additional additional man or woman to ioin us. For this position we're looking for someone in their early 20 s, with a good
design background in an electro-mechanical environment and preferably a design background in an electro-mechanical environment, and preferably a
qualification or a ken interest in electronics as a hobbv, perhaps in amateu
隹 radio. City and Guilds or HNC qualifications combined with two years'
mechanical design experience is called for and a knowledge of fully automated production methods would be an advantage. It's an exciting and challenging time and if you have it in you to develop your
experience and make a really positive contribution to our growth, the future is experience rou, and for us.
bright for
We are We are offering an attractive range of benefits including non-contributory
 If you're looking for career
growth,
Pontact Nigel Purse, Personnel Officer, MMS 226 Bath
Road, Slough, Berks. SL1 4DE. Tel.
Slough 70921.

FIELD SERVICE © $\mathrm{f}, 000$ plus car, expanding dynamic group, computer
peripherals. Various UK opperipheras. various (or ex-ser-
portunities HNC (or
vice) standard product vice) standard product
training given.
For further information please phone:
$03843-436$
O3843-4436
Jonathon Lee Technical
hecruitment
Recruitment
62 Hagley Road
Stourbridge

BOX NOs.
Box number replies should be
addressed to:
Box No.
c'o Wireless World
Ouadrant House
Quadrant Hous
Sutton
Surrey SM2
5AS

WIRELESS WORLD JUNE 198

 ELECTRONIC DEVELOPMENT ENGINEER

Audix Limited manufacture a wide range of professtudios and public address systems, worldwide. We studios to expand our design and development section by recruiting a young engineer, preferably with two or three years practical experio engineering knowledge, graduate experience in analogue and digital circuit design and some familiarity with micro-processor appli-
or further information please write or telephone: Mr.
S. Miller at Audix Limited, Station Road, Wenden J. S. Miller at Audix Limited, Station

ARTICLES FOR SALE
TO MANUFACTURERS, WHOLESALERS BULK BUYERS, ETC. LARGE QUANTITES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
 , MICS, PLATE CERAMIICS, etc. ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECING WIIEE
CABLES, SCRENED WIRE, SCEWS. NUSS, CHOKES, TRANSFOR ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE TELEPHONE: 445 0749/445 2713 BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

MARTIN ASSOCIATES

$$
\begin{aligned}
& \text { RACAL COMMUNICAT }
\end{aligned}
$$

$80 \times 24 \mathrm{VDU}$

BARGAINS FOR CALLERS ELECTRICAL ELECTRONIC
 A. C. TOWNLEY LTD.

	carac
WANTED!	TW ELECTRONICS LTD. THE PCB ASSEMBLERS
and	
	\%man
	\%
Asistions	
(eate	
THEsimumbial	(\%ystait

SERVICES
BOARDRAVEN LTD.

CIRCOLEC
THE COMPLETE ELECTRONIC SERVICE Armork. C.ircuir Design, PCB Assembly, Test \& Repair Sevice, O.A. Consultancy,
Prootryes,
 1 FRANCISCANROAD
TOOTNG,, ONOON SW17
MiCNO Procescor Desigh

Lim
A completef P.C.E. service offerard. We Will work trom vour circuit diagram and will work trom Your circuir productet Any ypo of board mantucturad includ iny doublesided and ments and we will be happy to obige. 40 Military Road, Colchestar CO1 2AN.

FACILITIES AVAILABLE \& Artwork Layout Free prototype bd. (non PTH) Supplied with orders over £ 100 . Prototype to semi-produ + Wiring \& Assembly * Test Full test facilities available D/S fibreglass 1000 Sq inc useful sizes. 6.00 inc. pos

CLASSIFIED ADVERTISEMENTS

Use this rorm for Your Sales and Wants

please insert the advertisement indicated on form below

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

为

INDEX TO ADVERTISERS JUNE

Appointments Vacant Advertisements appear on pages 114-127

vereseas adefrisemen

Hungary. Mis de dit Bailisz: Hungexpo Avverising

page
\qquad Olson Electronics Lid. .ic) O.....................ion

S. . Refinmpiticaio
surse Ilictronics.
Technomadic. Lde.

 Varadio Ld. .
 Windeow wido arich. $\begin{array}{r}+17 \\ +\quad .111 \\ -\quad . \quad .8 \\ \hline\end{array}$

The TC82-a significant development in temperature controlled soldering

The new Oryx TC 82 has features unique to any temperature controlled precision soldering iron. Available in $24 \mathrm{~V}, 50 \mathrm{~V}, 115 \mathrm{~V}$ and $210 / 240 \mathrm{~V}$ models, the TC 82 has a facility allowing the user to accurately dial any tip temperature between $260^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ by setting a dial in the handle without changing tips.

This eliminates the need for temperature
measuring equipment. You get faster and better soldering.
For 24 V models a special Oryx power unit connects directly to the iron and contains fully isolated transformer to BS3535, a safety stand, tip clean facility and illuminated mains socket switch.
The Oryx TC 82 is also extra-safe. Removing the handle automatically disconnects the iron from power source. Other TC 82 features include: Power-on Neon indicator in handle; burn proof cable; choice of 13 tip styles.

And more good news

The Oryx TC 82 iron costs only $£ 13.00$ (+VAT) and the power unit for 24 V operation $£ 23.00$ (+VAT).
The TC82 240 volt is also available as a 30 watt general purpose iron at only $£ 3.95$ (+VAT).

Greenwood Electronics Limited, Portman Road, Reading, Berkshire RG3 INE. Telephone: (0734) 595844. Telex: 848659

