1000 SERES

Telequipment 1000 Series The choice is yours

Tried, Tested and now even better! Since their introduction a few years ago, Telequipment's D1000 series of high performance low-cost oscilloscopes have established themselves at the forefront of the market. High performance because they are the result of intensive research and design efforts by one of the world's leading electronic instrument manufacturers, and low cost because of volume production in a modern automatic production plant.
Performance to spare.
With the D1000 series, Telequipment regard specifications as lower
limits, not maxima. For example, the D1016A bandwidth is specified as 20 MHz . The typical figure is actually in the region of 23 to 25 MHz and the usable bandwidth nearer 35 MHz . Input attenuator tolerances are now specified at $\pm 3 \%$ for all D1000 series oscilloscopes, a considerable improvement over the previous $\pm 5 \%$. But again, the user may well find the true figure closer to $\pm 2 \%$. More Accurate Time Bases
The time bases, too, have been upgraded. All new D1000 instruments have been equipped with thermal compensation which

Also available from Electroplan.
tightens time measurement accuracy to $\pm 3 \%$, with improved stability as a bonus.
To match these improved time base specifications, trigger bandwidths and performance characteristics have been substantially enhanced.

Better Display

The D1016A also has a new CRT.
The size is just the same easy-toview $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a quick. heat cathode. It has a "GY" phosphor which is a near equivalent to the P31 but is more efficient actinically at low beam currents and high writing speeds.

A Choice of Bandwidth

 10 MHz or 20 MHz with 5 mV division sensitivity at full bandwidth and 1 mV division at 5 MHz in the D1016A, 4 MHz in the D1011, and a choice of display modes; Algebraic Add, True X-Y, Channel 1 and 2 Chopped or Alternated, Channel 2 only, and Channel 2 Inverted.For further details send reply coupon today.

TelequipmenT < 再 >

Front cover picture, painted by Geoff Harrold, is discussed in this month's editorial "A million years of programming

IN OUR NEXT ISSUE

Video camera interface allows a microcomputer to accept, store and display a picture generated by a television camera.

Cassette data recording at high speed on a low-cost audio recorder is obtained by circuit used for Open University's Radiotext project.

Active-deflector television improves reception of u.h.f. transmissions in remote areas of poor signal strength.

Current issue price 70p, back issues (if available) $£ 1$, at Retail and Trade Counter, Units 1 \& 2, Bankside Industrial Centre. Hopton Street, London SE1. Available on microfilm; please contact editor.
By post, current issue $£ 1.6 \mathrm{p}$, back issues
By post, current issue $£ 1.6 \mathrm{p}$, back issues
(if available) $£ 1.50$, order and payments (if available) $£ 1.50$, order and payments
to EEP General Sales Dept., Quadrant to EEP General Sales Dept., Quadrant
House, The Quadrant, Sutton, Surrey House, ${ }^{\top}$
SM2 5AS. Adial Advertising offices: Quad rant House, The Quadrant, Sutton, Surrey SM2 5AS
Telephones: Editorial 01-661 3500. Advertising 01-661 3130
Telegrams/Telex: 892084 BISPRS G
Subscription rates: 1 year $£ 12$ UK and
f15 outside UK
Student rates: 1 year f 8 UK and f 10 outside UK.
Distribution: Quadrant House, The Quad rant, Sutton, Surrey SM2 5AS. Telephone 01-661 3500.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex mount Road, Haywards Heath, Sussex
RH16 3DH. Telephone 044459188 . RH16 3DH. Telephone 044459188. Please notify a change of address
USA mailing agents: Expediters of the Printed Word Ltd, 527 Madison Avenue, Suite 1217, New York, NY 10022. 2ndclass postage paid at New York.
(C) IPC Business Press Ltd, 1982 ISSN 00436062

wireless
 ELECTRONICS
 TELEVISIOṄ
 RADIO
 AUDIO

JANUARY 1982 Vol 88 No 1552

A MILLION YEARS OF PROGRAMMING

NANOCOMP EPROM PROGRAMMER
by R. Coales

CLANDESTINE RADIO
 by Pat Hawker

LETTERS TO THE EDITOR Radio Amateurs Examination Leap seconds Invention of stereo recording

WORLD OF AMATEUR RADIO
$44 \begin{aligned} & \text { DIGITAL STORAGE AND ANALYSIS OF SPEECH } \\ & \text { byI.H. WItten }\end{aligned}$

THE NEW ELECTRONICS
by Hugh Jaques

WALSH FUNCTIONS by Thomas Toddan
dISPLAY AID FOR MICROPROCESSORS
by K. Padmanahhan and A. P. Senthilmathan

52 NEWS OF THE MONTH

Very thin films Video centre proposed
AUTOMATED DIRECTION FINDER
by J. Barratt

61 LONG DISTANCE TELEVISION
 by K. Hamer and G. Smith

MULTICHANNEL DIGITAL TAPE RECORDER
by A. J. Ewins

71
 HIGH RESOLUTION WEATHER SATELLITE PICTURES
 by M. L. Christiesan

74 CARDBOARD CLOCK
 by M. McLoughlil

\square

NEW PRODUCTS

SIDEBANDS
by Vector

The Professionals

VALVES.SEMICONDUCTORS

 \& COMPONENTS for:-Comr'unications, Displays,
Radar, Computer,
Audio etc.

Hall Flectric Limited.
Electron House.
Cray Avenue. St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Tilt.

Nothing to do with pinball wizardry, has a great deal to do with programme balance.

The recording or broadcast engineer attempts to capture the ambience of the studio or concert hall but what the listener perceives is the aggregate of this and the reverberation characteristics of his listening room.

If all listening rooms were equal the engineer could make due allowance, but since some listening rooms are more equal than others, the engineer has to assume some arbitrary norm, and the chances are that further correction and compensation will give improved results. Thus a reverberant recording reproduced in a 'live' listening room will sound overbright and a dry
recording reproduced in an overdamped or 'dead' room will,sound dull and bass heavy.

The tilt control on the Quad 44 cannot alter the reverberation characteristics of your room but by gently sloping the frequency response of your system about a centre point, chosen to maintain a constant overall subjective level, it can produce a more natural programme balance, without introducing unwanted colouration.

If you are in any doubt that the listening room characteristics have a fundamental effect upon the final results try listening to the same record played on the same equipment in two different rooms.

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561.

Firlill

 CURRENT USED Everything as new-

Yokagawa
30472 Channel Chart Recorder. $0.5 \mathrm{mV}-100 \mathrm{~V}: 2 \mathrm{~cm} / \mathrm{hr}-60 \mathrm{~cm} / \mathrm{min}$
1435.00

Marconl
IF $995 B 12$ unused condition. AM/FM Signal Ger̉erator $200 \mathrm{KHz}-220 \mathrm{MHz}$. $1 \mu \mathrm{~V}-200 \mathrm{mV} .75 \mathrm{KHz}$ deviation on FM $£ 750.00$

Marconi.
TF2603 R.F. Electronic Millivoltmeter $1 \mathrm{mV}-3 \mathrm{~V}$ r.m. sw in 8 sanges ${ }^{\prime} 50 \mathrm{KHz}$ 1500 MHz Supplied with accessories in
case 525.00

Telequipment
D83 Oscilloscope with S2A - V4 plug ins $D C-50 \mathrm{MHz} 5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{div}$ full delayed sweep

BRIDGES \& COMPONENT

 TESTERSAvo
BR3/500 Megger (Brand NeW) $\$ 464.00$
Boonton.
63 H Inductance Brage. $0: 110 \mathrm{mH}$. $\begin{aligned} & \text { Bndge } \\ & \text { frequency } 5.500 \mathrm{kHz}\end{aligned} \quad \mathrm{E} 1250,00$

CALIBRATION EOUIPMENT

Bracley
192 Oscilloscope Callorator. 8875.00

Fluke.

332 A DC Voltage Cafitrator 010 ceiliratiov. 0.1 ppm resolution. 0.003% Tekronix.
time IOrewave Generator less than ins rise lime 184 Time-mark to IMHzP.O.A 100 ns to 55 sinewave 10,20 and 50 ns 1 volt into 50 R............... P.O.A. 191 Constant Amplitude Generator. $\begin{aligned} & \mathbf{3 5 0 \mathrm { KHz }} \mathrm{Z} \\ & 100 \mathrm{MHz} \text {. } \\ & £ 350.00\end{aligned}$

FREOUENCY COUNTERS

Marconi.

TF 2430 unused condrion. 7 digil $10 \mathrm{~Hz}-80 \mathrm{MHz}$ Z
25MV Sensitivity
$£ 175.00$

Marconl

DVM's AND DMM's
Hewlett Packard.
$34702 A+34740 A 4$ dign DCIAC vols and R

34750 A +34740 A 5 digit DCIAC volts and R Philips
PM2537 $41 / 2$ Q DMM ACIDC PM25 27 41/2 Digit DMM ACIOC volts current and resistance $10 \mu \mathrm{~V}$ resolution. True RMS
$\mathbf{4} \mathbf{4 0 0 . 0 0}$

Solartron

A24351/2 Digh DMM. ACOC volts. ressistance $1 \mu \mathrm{~V}$ resolution, 30 day warranty. $\mathbf{8 3 7 5 . 0 0}$ 7055 Microprocessor DMM. Scale Length
20.000 . ACIDC voits. fesstance $1 \mu \mathrm{~V}$ resolution $\quad £ 600.00$
7055 plus processor control and R5232 $£ 900.00$ intertace
7065 Microprocessor DMM. Scate leng:t
1.400 .000 . ACIDC voits. ressstance. Es95.00 7065 plus processor control and RS232 $£ 995.00$
interiace
$465 B$ Dual Trace Portable DC-100MHz $5 \mathrm{mv}-5$ voltsiDN. Full Delay sweep 1650.00 466 Dual Trace Portable Storage Oscilloscope Spec as per 464 but max writing speed
3000 div/4s...................... 2875.00 475200 MHz portable scope $\quad 282000.00$
 Sweep piug-in,
7603 mainframe complete with 7 A 18 N P.O.A.
5 mV Sensitivity 75 MHz bandwrath. 7B53N Delay
sweep f'base. . 53000.00 Telequipment.
D7S Dual Trace Portable Oscilloscope. NEW
TUBE STIV Sensitivity. DC - $50 \mathrm{MH} / \mathrm{Iz}$ delay
sweep

OSCILLOSCOPE PROBES

MULTIMETERS

Avo.

OSCILLOSCOPES
Hewlett Packard \qquad
Dual
£1250.00
Trace
$1408-C 52+1415 A$ TDR Ser-up in
$\varepsilon 750.00$
Marconl.
Marconl.
TF2213/1 + TK2214 X-Y Display and $\quad 550.00$
memory
SE Labs
SM1216 Ch. nnel Monstor, 12 cr . Internal
sweep
Tektronix.
465 Dual Trace Portable Oscilloscope. DC
100 MHz 25 mV -5 Vidiv. Full detayed sweep
\& 1350.00

5 GOOD REASONS WHY YOU SHOULD DEAL WITH ELECTRONIC BROKERS

FULL

GUARANTEE
At Electronic Brokers we give you a TWELVE MONTHS
WARRANTY on test equipment and 90 DAYS ON MOST COMPUTER
PERIPHERALS. And we'll stand behind it all the way.

2FAST DELIVERY When you buy used equipment from Electronic Brokers, it can be yours in a matter of only बlays. No waiting for manufacturers lengthy production schedules.

LOWEST PRICES

As the leading Second User Equipment company in Europe, we are able to buy in bulk selecting only the very best equipment. This means we can sell to you at the lowest possible prices.

STATE-OF
STATE-OF
THEART.
TECH-
NOLOGY
At Electroni
Brokers, we know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the manufacturer's sales specifications.
carry large stocks of modern test and computer equipmert and our strong buyin power means we are able to purchase the very latest state-of.th art technology.

Brokers TEST EOUIPMENT except the price!

diometer
G1C Stereo Generator. Internal or ernal modulator. 100 MHz tarrieł' at $\mathrm{mv}-100 \mathrm{mV}$
$£ 375.00$

Phillps
PM 3212 Dual Trace Portable
DC-25MH2 2 mv -10V/div $£ 495.00$

Marconi
TF2002B AM/FM Signal Generator. $10 \mathrm{KHz}-88 \mathrm{MH} \mathrm{z} .0 .1 \mu \mathrm{~V}-1 \mathrm{~V}, 20 \mathrm{~Hz}$-20khz mod. frequency

Tektronix
432 Tektronix Oscilloscope 1 mV Sensitivity. (Dual Trace Portable) DC. $-25 \mathrm{MHz}$
§495.00

re 7D Tape Recorder

 E. Labs.

1250 Channel UV Recorder. Servo paper atenabe.
: 6416 Channel Chart Recorder. 1 mV .

GNAL SOURCES

awlett Packart
34A Decade LF Ofcillator. $10 \mathrm{~Hz} \cdot 1 \mathrm{NaHz}$ 5A AM Signal Generator. $50 \mathrm{KHz-65MHz}$ 38 AM Signal Generator. 50 KHz Hz MH Hz
10.950 .00 IF VMF

R 455 MH ela UHF Signal Generator 18 ro $\$ 600.00$ B Test Oscillaror 10 Hz -10MH $\$ 1000.00$ ITOA funcuon Generator =OA Frequency Synthesizer 0.0295 .00 Erange $0-+13 \mathrm{dBm}$ into 502 . Long tem | 4 sear........... 995.00 |
| :--- | 1028 Pnase Locked fitted with options COI. 2 103 Dignal readout , 2 A/86998 RF \bar{z}-anges Max OiP 10 mWV to 2 GHz and

arsoni.
$1-4 \mathrm{H} / 4$
6 =9H5 A M . -v az

TF1370A Wide Range RC Oscillator. 10t-z. 10 MHz . Sine wave. square wave upro 160 KHz
5275.00 TF2000 A F Signal Source. E325.00 TF 2002 AB AM/FM Signal Generakor. IOKF$88 \mathrm{MHz}, 0.1 \mu \mathrm{~V}-1 \mathrm{~V} .20 \mathrm{~Hz}-20 \mathrm{KHz} \mathrm{MO}$
frequency. $£ 1200.00$
TF2005R 2 Tone signal Source. $20 \mathrm{~Hz}-20 \mathrm{~K}-2 \mathrm{z}$
0.111 dB in 0 IdB seps
0.111 dB in 0 . IdB sreps $\quad .1205 .00$
IF2015 AMFM Signal Generator 10.52041 Hz IF 2015 AMFM Signal Generator $10-5204 \mathrm{HHz}$
$0.2 \mu \mathrm{~V}$ ro 200 mV TF 2361 Sweep Generator with TM 9693 Fug in to give $1-300 \mathrm{MHz}$ with internal or excernal markers. TM9695 attenuator 0.5-500m Velts RHO-8retge to measure V.S.W.R...EI5c0.00

Phillips.
PM6456 Stereo Generator Separate L and z
Signals. Carner frequency $100 \mathrm{MHz} \pm 1 \%$. PF
Of 3 mV pk-pk.

Radtomeser
SMG1 Siereo Generator L or R Channet internal or external modulation. 100 MH -iz carrier at

SOUND LEVEL METERS

General Radio
1981 Sound Level Meter, 70-1 20dB. Digita! and anatogue reading. Peak hold. A weigh ang $198350 u n d$ Level Meter. 70120 AB . $\mathrm{A}_{\text {E } 19500}$
T.V. TEST EQUIP

141 APAL
41A PAL Signal Generator High quality te? signals for 625 ine. $\$ 150000$

TRANSMISSION
 MEASURING EQUIPMENT
 Marconi.

TF2332 AF Transmission Test Set. $20 \mathrm{~Hz}-20 \mathrm{hHz}$ TF 2343 Quantization Distortion Tester
checks A.F. to A.F. distontion of P.CM. . 8000,00
sysiems .

Slemens.

D2040 Selective Level Analyser and voltmeier $10 \mathrm{~Hz} .60 \mathrm{KHz}-110 \mathrm{~dB}$ to $+50 \mathrm{~dB}, 3 \mu \mathrm{~V} \cdot 300 \mathrm{~V}$ Lin and log indication. 5 digit frequency
readout
$\mathbf{E 1} 20000$ D2072 + W2072 Level Meter and Oscillator $50 \mathrm{KHz}+100 \mathrm{MHz}$. - $110 \mathrm{~dB}-0 \mathrm{AB}$. Receive bandwidth 3.1 and lOKHz $£ 2200.00$ $W 2008+\mathrm{D} 2006$ Carrier Level Test Set. $10 \mathrm{KHz} z^{\circ}$
$17 \mathrm{MHz}-10020+10 \mathrm{~dB} \quad \$ 1650.00$ 17 MHz . $-10050+10 \mathrm{CB}$ \$1650.00 $\mathrm{W} 2007+$ D2007 Carrier Level Test Set.
$6 \mathrm{KHz}-18.6 \mathrm{MHZ}-120$ to $+20 d 8$. § 800.00

Wandel and Goiterman.
Wandel and Goiterman.
PF. 1 Digital Error Rate Measuring ser. and PFG-1 Pettem Generator $\$ 2490.00$

SPM-6 and PS-6 Level Measuring Set. $6 \mathrm{KHz}=18.6 \mathrm{MHzz}-110 \mathrm{~dB}$ to +20 dB . Mains $/$ battery operation
PCM-I PCM Test Set PDA- 64 PCM signaling Analyser. PSM-4 Level Measuring Set Scanner PDG 1 Digrtal Signal Generator. PDA-I PCM Digral Signal AnalyserP.O.A.

MISCELLANEOUS

Bruel and KJaer.

errograph

Fiutrer. Distortion. Gain
345.00

Fluke
3010 A Logictester Self-contained portable NEW PRICE CA £14.000. Full specfication on request £8500.00

Hewtett Packard

198A Camera E150.00 355E 12dB Programmable Attenuator unused 4329A insulation Resistance Meter. Range $500 \mathrm{~K} \Omega 102 \times 10^{18} \Omega \ldots$. 8745 A SParameter Test Set. Fitred with 11604 A Universal Arms $0.1-2 \mathrm{GHz}$. $\mathbf{\$ 2 7 5 0 . 0 0}$

[^0]£227500

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

[^1]
Electronic Brokers CURTENTUSED DEC Computer equipment and periphals

PDP11/70
Cabinets. VT100 $£ 30,000.00$
A range of Peripheral
RX01
Dual Floppy Disk Drives SPECIAL
PURCHASE - BRAND NEW SURPLUS
ONLY £995.00 (ind. controiler)
Choice of RXI I BD (Unibus control)

LAIBO PD DECPInter ONLY $£ 495.00$
(or $£ 670.00$ with EI A aption)

PDP1 1 C.P.U.S

PDP11 OPTIONS
AAll A.D + Backplane ARI 116 channel AD BAIIFE Expander Box
BAIIES Expander Box DBIIA Unibus Repeate DB118 Unibus Repeater DDIIA Backplane
DDIIB Backolane DDIIB Backplane. DHI IAE Multiplexor
DII IAA Muitplexor EIA DLII Senal interface DRIIC Gen Punpose VIO DRIIW DMA Interface DZ 11 B Multiplexor FPI IE Floating Point (1 1/60 H720 Power Supply. H77588 Battery 8ack-up KEIIA Exanded Arithmetic KE11B Extended Anithmetic KGI IA CRC module KTIIH Bus interface PIID Memory Managemen M1OS Device Selector. M780 TTY Transmittor. M792 ROM Diode Matrix M79288 8ootstrap M873Y B Boostryap.
M873YB Boorstrap. M873Y8 Boorstrap. M70688it map module M7258 Printer interface M7259 Parity Controlle M7290 Timing module M7850 Party Controlier M7859 Panel Control Modu M7930 Printer interface. M9301 Bootstrap

PDP11 MEMORY
KK1 A 11/34A Cache. $\$ 1500.00$
8600.0 MFIU 1 -Slot memory Dackolane MFil IUP IGKW Core and Backplan MMI ICP 8KW Core
MMIID 16 KW Core MMIIDP 16 KW Core
MMIIE 4 KW Core MMIIE KKW Core. MM IIF 4 KWW Core and Backplane MMIIUP 16 KW MMIIUP 16 KW Core MSIILB 128 KB MOS
MSIIL 256 KB MOS

DISK DRIVES	
05J 2.5	£1250.00
5 F 5 meg	E1500.00
11D RK0	E2150.00
K06 14 meg	E2500.00
611 RKO6 an	£4250.00
0728 meg from	¢ $\$ 4750.00$
RK711 RK07 and ct1 from	from $£ 6500.00$
RLO1 15 meg.	\$1250.00
RLI 1 RLOI and C	¢1950.00
RLO2 10 meg	E2500.00
RL211 10 meg an	£3200.00
RM02 67 meg	E8500.00
RJM02 RM02	\$11,500.00
RPO4 80 meg	¢4950.00
RJP04 RP04 and ct	E795000
RPO6-AB 167 meg	18,000.00
RX11-D8 Dua	£995.00
R×211-8D Dual Flop	£1450.00
RXVII-BD Dual Foppy and LSict	CrI . 5995.00
PERIPHERALS	
LAII DEC orimter I and CI	E820
LA35 RODEC wnter II 20 m	£250.00
35 RODEC wnter IIEIA.	E275.00
LA36 KSR DEC writer 1120 m	£450.00
LA36 KSR DEC writer il EIA	E495.00
Al80-PD DECprinter - paraiel	lliet._ $£ 495.00$
LA180-ED DECprinter I and EIA opt	4 option
041250 l . m Printer and ct (NEW]	
[PII-VD 3001 pmprinter and	£2750.00
IA Reader/Punch and	E1250.00
PRIII Reader and cil	£925.00
TE1OW 9 track master. oft cab	E5500.00
TE16 Dual Density Slave. Disystem rab	
	¢5750.00
TM1194rack and cl. 4 the cab	¢4250.00
TUll 7 -track Slave, 4 thab	E2750.00
TU109-track Slave. 4 ft cab	¢2750.00
TU60 Dual Cassette Drive	£500,00
VTSO DECScope 20 ma	£250.00
VT52 DECScope. 20 mA or RS232	$32 . .6525 .00$
VT100 video terminal	¢695.00

PDP8 C.P.U., MEMORYS,

 OPTIONS| PDPBA-205-BR 32KW MOS | $\$ 1750.00$ |
| :---: | :---: |
| PDP84 4KW Core | 6975.00 |
| PDP9E 8KW Core | £1350.00 |
| PDP9E 16KW Core | £2145.00 |
| MM8AA BKW Core | 1500.00 |
| MMBAB 16KW Core | ¢995.00 |
| MM8E 4KW Core | £175.00 |
| MM8EJ8KW Core | ¢795.00 |
| 58-CB 32KW MOS | E750.00 |
| ADBE Analogue/Digit | £695.00 |
| 8 A Omnibus Expander | £395.00 |
| K8EA Real Time Clock | E150.00 |
| 8EB Communications Ada | \$395.00 |
| EA Paraliel | ¢175.00 |
| 11 Memory Sense/lnhibir module | £150.00 |
| G227 Memory XY Driver module | £40.00 |
| 220 Memory Core modu | E125.00 |
| H724A Power Supply | 2275.00 |
| KABE Positive I/O Bus | $\Sigma 95.00$ |
| ront Panel modu | E125.00 |
| KC8M Operators panel | E150.00 |
| L. Programmers Panel module | §125.00 |
| KD8E Datab | 1145.00 |

PAPER TAPE PUNCHES

Digitronics P $135 / 20$ paper tape punch.
Solenoid-actuated unit capable of punching 5 to 8 channel tapes as speeds up to 35 cos. Pulse amplitude 27 VDC compact tabletio
SPECIAL CLEARANCE OFFER-ONLY £45.00 Facit 4070 top quality paper tape punch that has become aninou stry standard. Asynchronous 75 cps operation. Aduustable for punching 5. 6.7 or 8 level tape. Self. contained desk-top unit miorporating supply and take-up spools. chad box. and TTL-
comparible control logic

KEYBOARDS

KB756MF 56 -station keyboard with full
upperllower case ASclil. parallel input.
uppertiowe case Ascil. requirements +5 V . $-12 \mathrm{~V} / \mathrm{NE}$ W)..
$\mathrm{KB}, 7 \mathrm{MMF}$ as per 756 MF but with 11 keystations incorporating numeric pad cursor control keys (NEW) KB77IMFInstled E55.00
EEW £70.00

PRINTERS

Ancerson-Jacooson Aj832 Daisy Wheet printer, keyooard model with integrat stand
and RS232 miterface
. Centronics 101 A Heavy Duty Matrix printer with 64 Ascir upper case character set. 16 ces operation. 132 print positions wath adustable tractor feed. Paraniel input.
SPECIAL OFFER AFEW ONLY REMANING E295.00 $132 \mathrm{col} . . \quad \mathbf{5 5 0 0 . 0 0}$ Diabio Hyterm 1620 Dasy Wheer KSR (keyboard-send-receive) model with standard RS232 interface, 45 cps print speed. $110150 / 300$ Daud, switch-selectable party. rop-of form selectior. graphics capability under Sotware contiol. 1275.00 Diabo 1355 Receive only Daisy Whee printer
with paralte Interface.
E895.00 Digtal LA35 DEC writer 30 cps 132 col Diguat $L A 36$ DEC writer 10, 15. $30 \cos 132 \mathrm{col}$ Dina from $£ 450.00$ Digital LA 180 DECprinter 180 cps 132 col from $£ 495.00$ Seikosha GP8O (NEW) 80 COI 30 cos RO matrix printer Full upperliower case ASC.Hand
graphics mode, parallel ICentronics-typel
interface
I 99.00

ccoon purchase of Anderson-Jacobson

 A 832 Daisy Wheel printers. keyiboard modet with integral stand and RS3? interfac$1.4 E 995.00 \quad 5.9 \quad 9950.00$ $10+£ 895.00$

> Tally 1602160 cps matrix printer with full 96
upperl/ower case ASCll character set 7×7 dot upperllawer case ASCll character set 7×7 dot matrix. 132 col with adjustable tractor feed. bidirectional printing. double-width chalacter
feature, self fess facilty. Centronics-type paralle reature. serf fest facinty. Centronics-type parallel
intertace
E875.00 Teletype low cost printer offer. Teletype 33 pinter mechantsm including case but no keyboard or electronics. 64 upper case ASClI. 10 cps. panfeed platen, ideal for the electronic
hobbyists. only $£ 85.00$

LOW COST VDUs

H2000 Superb spec including full $X Y$ curso addressing and edit facility. 27×74 display
upper case ASC.II. upper case ASC.II
RS232 interface. switch-selectable baud
rates

H2000C NOW ALSO AVAILABLE with 25×80 line format and
$C-M O S$ logic $\mathbf{~} 375.00$

SPECIAL QUANTITY DISCOUNT OFFER 1-2 $£ 299.00$
$\begin{array}{ll}\text { 3-4 } & \text { £275.00 }\end{array}$
$\begin{array}{ll}5-9 & £ 255.00 \\ 10+ & £ 250.00\end{array}$
Hazetine H $1000,12 \times 80$. upper case ASCII. $10 / 300$ or $300 / 1200$ baud. RS 232 fother baud surchargel Also available from time to time Hazeltine 1500 from
$£ 575.00$
$\$ 575.00$
$\$ 650.00$ Hazeltine 1510 from
1.1

GRAPHICS EOUIPMENT

Cakomp Drum plotter model 565 . . £850.00 Houston instruments flat bed plorter type DP3-1/5
Tektronix $4010-1$ Graphics Terminal with high esolution graphics mode. standard alphanumeric mode, printer port. integral
stand. 1750.00 Stand. 1750.00 Tektronix $4014-1$ Graphics termipal with
enhanced graphics
K6950.00 Tektronix 611 XY Storage display graphics
monitor addition some with sight Durns from $£ 750$

MISCELLANEOUS

Data General Nova 1210 CPU rype $8133-2$ Hewlett Packard desk top computer type $\mathbf{E 3 9 5 . 0 0}$ 9830 A with 8 K memory extended 1 IO ROM tring variables ROM. I serial and 3 parallel Racal Modem type LSi26, 1200 £ 1150.00 2/4 wire.

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461
 Telex: 298694 Elebro C

Hours of Business: 9a.m. . 50.m. Mon-Fri. Closed lunch 1-2p.m.

A copy of our Trading Condifions is avallable on request.

The
 Professional Choice

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.

For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS
 16, ST. ALFEGE PASSAGE, LONDON SE10 TELEPHONE: 01-853 5295 TELEX: 923393 LASER G

with
 Electronic Temperature Control Circuit

 contained within

ADCOLA PRODUCTS LIMITED
ADCOLA HOUSE, GAUDEN ROAD, LONDON SW4 6LH Telephone: 01-622 0291/4 Telex 21851 ADCOLA G

MICROCOMPUTER COMPONENTS

OFFICIAL
CREDIT CARD ORDERS
QUANTITY
ORDERS WELCOME WELCOME DISCOUNTSAVAILABLE All prices exclude posi and packing on orders under 210 (50p) and VAT (15\%). ALL ORDERS DESPATCHED ON DAY F REQUESTED.

FULL REFUND FOR OUT OF STOCK ITEMS IF REQ
24 -hour Telephone Credit Card Orders

MIDWICH COMPUTER CO. LTD.

(Dept WW/2)
HEWITT HOUSE, NORTHGATE STREET,
BURY ST. EDMUNDS, SUFFOLK IP331 HO TELEPHONE: (0284) 701321 TELEX: 817670

WW - 031 FOR FURTHER DETAILS

CM80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated,

 makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC

 UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NROC backed surround sound system which is the result of 7 years' research by the Ambisonic team W. W. July. Aug. . 77.
The unit is designed to decode not only UHJ but virtually all other auich The decoder is linear throughout and does not rely on listener tar quadrophonic' systems (Not CO4), including the new 88C HJ 10 input selections
Complete with mains power supply, wooden cabinet, panel, knotgsing logic enhancement techniques. Both 2 or 2 input signals and 4 or 6 output sigidids are provided in this most versatile unit
Complete kit. including licence tee $\mathbf{£ 5 7 . 7 0}$ + VAT or ready built and tested $\mathbf{£ 7 6 . 9 5}$ + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features. along with improved or 12 V battery operated. Disguised etc.
Complete kit $£ \mathbf{5 2 . 5 0}$ plus VAT. or ready built and tested $£ \mathbf{6 8 . 5 0}$ plus VAT.

Wireless World Dolby

Complete kit PRICE: $\mathbf{£ 4 9 . 9 5}$ + VAT (3 nead madel avallable)
Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which) Price $\mathbf{E 2} .75+$ VAT

All kits are carriage free
IITECREK LIMITED Burton-on-Trent, Staffs DE 11 9PT Burton-on-Trent (0283) 215432 Telex 377106

Second User Test Equipment, Galibrated to Manufacturer's original specification.

ACOUSTIC \& VIBRATION

BRUEL \& KJAER
2113 Audio Frequency Spectrometer
2203 Sound Level Meter
2305 Level Recorde
4230 Sound Level Calibrato
BRIDGES \& V and I STANDARDS
GENERAL RESISTANCE
DAS56 DC V and I Calib $1 \mu \mathrm{~V} \cdot 10 \mathrm{~V} 30 \mathrm{ma}$
HEWLETT PACKARD
4261 A Digital Automatic LCR Bridge
4342 OLC Meter 22 KHz .70 MHz
MARCONI
TFB6BA Universal LCR Bridge
WAYNE KERR
B521 LCR Bridge
COMMS \& CABLE TEST
EQUIPMENT
CHASE
35A Field Strength Meter $20-850 \mathrm{MHz}$
HEWLETT PACKARD
3556 A psophometer $20 \mathrm{~Hz}-20 \mathrm{KHz}$
TEKTRONIX
1502 TDR Cable Tester CRT + Recorde
COMPUTER EQUIPMENT
CENTRONICS
TEKTRONIX
$4610-1$ Hard copy printer for 4010 series
computer display terminals
COUNTERS \& TIMERS
FLUKE
1910A.-1 125 MHz 7 digit Cntr. AC/Batt
1912520 MHz 7 Digit Counter
1912A01 As 1912A but inc. re-charging
19204520 MHz 9 Digit Counter inc. Brs
mode
1920A14 1250 MHz otherwise as 1920 A
HEWLETT PACKARD
5300 A 6 Digit Display Unit - \mathbf{P} /in read $5305 \mathrm{~B} 1300 \mathrm{MHz}^{2}$ Counter for 5300
RACAL
$9024600 \mathrm{MHz}_{2} 7 / 2$ digit Counter
90251 GHz 8 digit Counter
9905200 MHz 8 digit Counter Timer
SYSTRON DONNER
60533 GHz 9 digit Counter BCD O/P
16018 LS Thermom $10 \mathrm{Ch} 87+1000^{\circ} \mathrm{C}$ type K
N.B. Thermocouples not included

DATALAB

DL90! Digital Transient Recorder
HEWLETT PACKARD
X382A Rotary Vane Attenuator WG16
MULTIMETRICS
AF120 Dual H/Pass L/Pass active
RESEARCH INSTRUMENTS
Micro manipulator - 4 Probes moveable all planes. Adjustable test table - Watson Burnet optics. Complete system mounted in perspex enclosure
TEKTRONIX
521PAL Vectorscope
528 TV Waveform Monitor
1485C TV Wavelorm Monitor PAL/NTSC $\quad 2300$

NETWORK ANALYSERS

PHASEMETERS

DRANETZ

$3058 / 3001$ Phasemeter $2 \mathrm{~Hz}-700 \mathrm{KHz}$
HEWLETT PACKARD
8405A Vector Voltmeter $1-1000 \mathrm{MHz}$ 8414A Polar Dísplay for 8410 N.W.A

OSCILLOSCOPES 8

ACCESSORIES
GOULD ADVANCE
OS 3300 B 50 MHz 1mV 2 Trace 2 T base
HEWLETT PACKARD
1804 A 50 MHz 20 mV 4 Trace Plug-in
$1825 A$
$1805 A$
100
MHz
SmV 2 2 Tiace Plug-in
PHILIPS
PM3211 15 M Hz 2 mV 2 Trace TV rig, PM 321225 MHz 2 mV 2 Trace TV tris PM 324450 MHz 5 mV 4 Trace 2T base PM 3262100 MHz 5 mV 2 Trace $2 T$ base TM Vien
TEKTRONIX
465100 MHz 5 mV 2 Trace $2 T$ base 465 B 100 MHz 5 mV 2 Trace 2TB, inc Pre 1250 475200 MHz 2 mV 2 Trace 2 T base $\quad 1250$ 485350 MHz 5 mV 2 T race 2 T base $661 / 4$ S3/5T1A 1 GHz Sampling scope 7 A 12105 MHz 5 mV 2 Trace Plug-in 7 A 1875 MHz 5 mV 2 Trace Plug-in $7 A 19500 \mathrm{MHz} 10 \mathrm{mV} 1$ Trace Plug-in $7 A 221 \mathrm{MHz}_{2} \mathrm{O}_{\mathrm{L}} \mathrm{V}$ Differential Plug-in 7 A 24350 MHz 5 mV 2 Trace Plug-in
7 A26 200 MHz 5mV 2 Trace Plug-in
7853 A 2 Timebase Plug- in 100 MHz Trig 7880 Single Timebase 400 MHz Trig 7885 Timebase with delay 400 MHz Trig 7603100 M Hz CRT r / out 3 slot M/Frame 7704 A 200 MHz CRT I/Out 4 slot M/Frame P6013A X 100012 KV Probe TELEQUIPMENT D63/V1/V1 15 MHz 2 Trace $1 \mathrm{mV} \quad 499$ D83/V4/S2A 50 MHz 1 mV 2 Trace $2 T$ Big CRT
D1015 15 MHz 5 mV 2 Trace TV trig

VUDATA

PS935/975 35 MHz 5 mV 2 Trace - unit has built in $31 / 2$ digit DMM $+31 / 2$ dig. cnter 675

OSCILLOSCOPES (STORAGE)

HEWLETT PACKARD
1703 A 35 MHz 10 mV 2 Tr 2 TB 1000 Divims 1400 TEKTRONIX

Prices 110

PULSE GENERATORS
ADVANCE
G57 $10 \mathrm{~Hz}-50 \mathrm{MHz} 10 \mathrm{~V} 50 \Omega$ Vari RT 6 ns
EH RESEARCH
$3210 \mathrm{~Hz}-3.5 \mathrm{MHz} 50 \mathrm{~V} 50 \Omega$ RT 10 ns 2 pulse 120 MARCONI
TF20250.2 Hz-25 MHz 10V 50S RT 7ns 2 pulse
603 Bistable Storage Monitor XYZ amos T912 $10 \mathrm{MHz} 2 \mathrm{mV} 2 \mathrm{Tr} 1 \mathrm{~TB} 250 \mathrm{~cm} / \mathrm{ms}$ T912 $10 \mathrm{MHz} 2 \mathrm{mV} 2 \mathrm{Tr} 1 \mathrm{~TB} 250 \mathrm{~cm} / \mathrm{ms}$
7834400 MHz 4 Slot M$/$ Frame 2500 cm

POWER MEASUREMENT

HEWLETT PACKARD

MA81A Type N
MARCON
TF893A $10 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ Powermele

POWER SUPPLIES etc

ADVANCE
iV5S Inverter 24V DC to 240 V AC 500 W FARNELL
FSLL5V-20A PSU module
FLUKE
I58 0.3.1 KV variable 30 mA Metered
HEWLETT PACKARD
G966A 0.36 V variable 10 A metered
PHILIPS

RECORDERS \& ACCESSORIES

BRUNO WOELKE
ME102B Wow and Flutter meter
BRYANS SOUTHERN
${ }^{3} 5316$ Chart $10^{\circ} 6$ Pen 16 speed
HEWLETT PACKARD
7015A XY 1 pen A4 size
7046A XY 2 pen A3 size
PHILIPS
PM8041 XY 1 jen A4 size
PM8251 Chart $10^{\prime \prime} 1$ per 12 speed
SELABS
9946 ch galvo preamp + DC bridge supply
6008 UV charl 8 " 25 ch 16 speed
6150/51 UV recorder 12 ch-inc 6 ch amps
SMITHS
RE541 Chart 8 " 1 pen 8 speed
RE501/4701 Cht $4^{\prime \prime}+\mathrm{XY} 1 \mathrm{ch} 10 \mathrm{spd}$
SOLARTRON

3240 Madular Data Logger system

SIGNAL ANALYSIS

EQUIPMENT

MARCONI

TF2300A Mod Meter 1 MHz-1 GHz AM/FM 450 F2330 Wave Analyser $20 \mathrm{~Hz}-50 \mathrm{KHz} \quad 900$
ote: see also "Spectrum Analysers

SIGNAUFUNCTION/ + SWEEP

GENERATORS

ADVANCE
SG63D Generator 4-230 MHz AM/FM
GENERAL RADIO
1362 Generator 220.920 MHz
HEWLETT PACKARD
3640B Generator $500 \mathrm{KHz}-512 \mathrm{MHz}$
AM/FM Phase Lock
618 B Generator $3.8-7.5 \mathrm{GHz}$
612 Generator $450 \cdot 1230 \mathrm{MH}$
614 Generator $0.8-2.1 \mathrm{GHz}$
MARCONI
TF144H/4S Generator $10 \mathrm{KHz}-72 \mathrm{MHz}$ AM TF801D Generator $10 \mathrm{MHz} \cdot 470 \mathrm{MHz}$ AM TF955/2 Generator $0.2 \cdot 220 \mathrm{MHz}$ AM/FM TF1066B/1 Generator $10-470 \mathrm{MHz}$ AM/FM TF2012 Generator 400.520 MHz FM TF2015 Generator 10.520 MHz AM/FA PHILIPS
M5127 Function $0.1 \mathrm{~Hz}-1 \mathrm{MHz} \mathrm{Sin}$
Sq Tri Rmp
PM5129 Function $1 \mathrm{mHz}-1 \mathrm{MHz} \mathrm{Sin} / \mathrm{Sq} /$
ri/Ramp/Pulse + Sweep + Bursi
TEXSCAN
9900 Sweeper $10-300 \mathrm{MHz} 6 /$ in CRT disp

Prices
from
SPECTRUM ANALYSERS
HEWLETT PACKARD
141T/8552B/8555A Complete .01-18GH 3580 A 5 Hz .50 KHz with digi store disp 8445A Pre-selector 0.01-18 GHz $8558 \mathrm{~B} 0.1-1500 \mathrm{MHz}$ Plug- in for 180 series MARCONI
TF2370 $30 \mathrm{~Hz} \cdot 110 \mathrm{MHz}$ Digi-store display uilt-in counter and tracking gen

VOLT/MULTHMETER

(ANALOGUE)

AVO

$8 \mathrm{Mk4} \mathrm{AC/DC/} /-\mathrm{VI}+\Omega$
BOONTON
92C AC/RF $10 \mathrm{KHz}_{2-1.2 \mathrm{GHZ} 1 / 2 m V-3 V}$
HEWLETT PACKARD
$400 \mathrm{E} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$ DC O / P
$400 \mathrm{H} 10 \mathrm{~Hz}-4 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
$411 \mathrm{~A} 0.5-500 \mathrm{MHz} 10 \mathrm{mV}-10 \mathrm{~V}$ DC O/P $427 \mathrm{AC} / \mathrm{DC} / \mathrm{V} / \Omega$
3400 TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$
135 DC.O/P
MARCONI
TF2603 $50 \mathrm{KHz}-1.5 \mathrm{GHz} 300 \mu \mathrm{~V}-3 \mathrm{~V}$
TF2604 $20 \mathrm{~Hz}-1.5 \mathrm{GHz} 300 \mathrm{mV} \cdot 300 \mathrm{~V}$
PHILIPS
PM2454B $10 \mathrm{~Hz}-12 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$ DC O/P
100
9301 RMS $10 \mathrm{KHz}_{2}-1.5 \mathrm{GHz} 100 \mu \mathrm{~V}$-300V
VIBRON/E.I.L.
33B-2 1 mV -1V Electrometer
BOONTON
92AD 1999FSD $10 \mathrm{KHz}-1.2 \mathrm{GHz} 10 \mu \mathrm{~V}$ res
525
FLUKE
3010 A 2000 FSD TRMS AC/DC/VIת
8010A01 As $80104+$ re-charging batteries
80204 2000 FSD Handheld
AC/DC/VII + cond.
3022 A 2000 FSD Handheld AC/DC/VI Ω
8030A-1 2000 FSD AC/DC/VIS Batt + A
80504 20000 FSD AC/DC/VII dB TRMS
8800 A 200000 FSD AC/DC/V Ω
GOULD
DMM7 1999 FSD AC/DC/V/1/』
HEWLETT PACKARD
3490A 100000FSD AC/DC/V/ Ω
2500 SOLARTRON
A200 19999FSD DC only $1 \mu \mathrm{~V}-1 \mathrm{KV}$
A203 19999FSD AC/DC/V/』
A205 19999FSD TRMS AC/DC/V/ת

NEWS *

WE ARE NOW OISTRIBUTORS FOR THE Crotech RANGE OF LOW COST MIGH
PERFORMANCE
OSCILLOSCOPES.
The range of sir different models includes single and dual trace models with bandwidths of 10,15 and 30 MHz . There are two battery powered scopes in the range, with optional mains powered battery eliminatoflcharger. Three models have built-in component testers which give on-screen indication of correct component function

- WRITE OR PHONE FOR OUR CROTECH BROCHURE WHICH PRICES OF THE COMPLETE RAMGE

EXAMPIES
ensitivity with buill in Modal $3337 \begin{aligned} & \text { Dunl tuace } 30 \mathrm{MH}_{2} 5 \mathrm{~m} \\ & \text { sensiturity with signal }\end{aligned}$ sensititrity with signal
delay IN-GETWEEN PRICES
THESE INSTRUMENTS ARE BRAWO NEW ANO ARE AVAILABLE FROM STOCK

Carston
 Electronics Ltd 01-2675311

Shirley House, 27 Comden Rood, London NW I 9NR. Telex: 23920.

Fuil details and specification of equipment listed, avallable. Because of long copy dates this list is not comprehensive - ring for Inventory update or tell us your SPECIFIC NEEDS. Hours Monday to Friday 9.00 am- 5.30 pm (4.30 pm Fridays). Prices exclude delivery ond Var.

FAST ERECTING CuTK Whisis
 Here is the expertise years in this specialist field

When you choose a mast from the comprehensive Clark range you are assured of a high standard of Engineering and operational reliability.

Why compromise?

Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg 200 kgs . Sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

Clark Q.T.4M/HP mast shown on tripod, extended to 4 metres and tripod folded for transit. Available in heights up to 12 metres.
This mast is ideal for raising lightweight antennas for field or vehicle mounting

CLARK MASTS LTD.
Binstead,
Isle of Wight.
PO33 3PA. England
Telephone : Ryde (0983) 63691, Telex: 86686.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full information from:

HARRIS ELECTRONICS (London)
 . 138 GRAY'S INN ROAD, W.C. 1
 Phone: 01-837/7937 Telex: 892301

WW - 041 FOR FURTHER DETAILS
METALFILM RESISTORS 1\% Tolerance, $1 / 4$ Watt

ONLY 3p EACH
Minimum order $£ 10$
Minimum 5 pcs
Minimum 5 pcs per value
89 Values $(E 24)$ 89 Values (E 24) 24 ORION SCIENTIFIC PRODUCTS LTD. 4 Golden Square, London, W. 1

WW - 053 FOR FURTHER DETAILS

IMO Photoelectric Switches.

Spot the Difference.

Although at LMO we supply hundreds of companies with photoelectric switches, many don't realise the full extent of our range. Apart from conventional photoelectric switches we have many that reflect the latest in technology.

One example is the E3S-LS series. This incorporates unique adjustable focusing which will pin-point the exact spot with a visible red dot - so you see exactly what the switch is seeing. It will pick out only the item you want and reject other objects, and a red/green display that tells you it's operating correctly.

There are thousands of applications for photoelectric switches and we have products that will handle them all. From the simplest operation to the most complex.

One thing they have in common is quality, comperitive prices and an excellent back-up service.

Which makes it easy to spot the difference between IMO and the rest.

Making even ordinary products extraordinary.
IMO Precision Controls Ltd.,
1000 North Circular Road, Staples Corner, London NW2 7JP.
Telephone: 01-452 6444. Telex: 28514.

Sinclair IX81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under £100. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair ZX 81 is the heart of a computer system. You can add 16 -times more memory with the ZXRAM pack. The ZXPrinter offers an unbeatable combination of performance and price. And the ZX Software library is growing every day Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX 80 .

It uses the same micro-processor, but incorporates a new, more powerful 8K BASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer.

Every $\mathbf{Z \times 8 1}$ comes with a comprehensive, specially written manual - a complete course in BASIC programming, from first principles to complex programs.

Higher specification, lower price -

 how's it done?Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

New, improved specification

- Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT, etc.) have their own single-key entry
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. - Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69.95

Kit or built -it's up to you!

You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a personal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated ZX Software - the Business \& Household management systems tor example.

Available nowthe IX Printer for only \&49. $^{\mathbf{s} 5}$

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your $\mathbf{2 X 8 1}$

BY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $x 4$ in wide) is supplied, along with full instructions
by cheque, postal order, Access, Barclaycard or Trustcard.
EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:

1 1PG TELEPHONE ISTO 0277) 230909 TELEX 995194 AMBIT G POSTCODE CM14 4SG 200 Morth Service: Rond, Brentwand, Essen

WW - 021 FOR FURTHER DETAILS

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits

1000 items for the constructor.

CROSSOVER NETWORKS AND COMPONENTS. GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.
\star Lowest prices - Largest stocks *

* Expert staff - Sound advice *
\star Choose your DIY Hifi Speakers in the comfort * of our listening lounge.
(Customer operated demonstration facilities) * Ample parking *
\star Access Visa American Express accepted *

35/39 Church Street, Wilmisow, Cheshire SK9 1AS
Lightning service on telephoned credit card orders

WW - 062 FOR FURTHER DETAILS

WW - 048 FOR FURTHER DETAILS

- Two-Part Design:-

Precision Turned Shell Beryllium Copper Spring Contact
High Reliability/Long Life - Intermatable with Harwin

1 mm Plugs:-
Straight Pins 90° Pins Shorting Plugs Insulated Shorting Plugs (coloured)
Choice of Plating Finishes

- Press Fit into PC Board

HARWIN

Harwin Engineers SA
Fitzherbert Road, Farlington
Portsmouth, PO6 1 RT, Hants
Tel: 0705 370451, Telex 86125

INSIST ON VERSATOWER BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to $120 \mathrm{ft}(7.5 \mathrm{M}$ to 36M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

PORTLAND HOUSE, COPPICE SIDE EROWNHILLS, WEST MIDLANDS TEL: (05433) 4321 TELEX: 335243 SEL

TRANSDUEER and RECORDER

AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2×0

Fylde
Electronic Laboratories Limited.

WW - 042 FOR FURTHER DETAILS

Test our low priced test equipment. It measures up to the best. Compare our specs and our prices - no-one can beat our price/performance ratio.
Full colour illustrated
brochure and price list from:
BLACK STAR LTD.,
9a Crown Street,St. Ives,
Cambs. PE17 4EB
Tel: (0480) 62440. Telex 32339

WW - 022 FOR FURTHER DETAILS

IffFCTIVE COMMUNICATIONS ARE VIIAL...

Effective communications are vital to the efficiency of every organisation. The easiest way to see and compare the whole range of electronic communications systems is to visit Communications 82, the world's leading international exposition of communications equipment and systems. It will be the sixth in a biennial series and will comprise a major international exhibition and conference, plus a programme of social events with guest speakers of international stature

Communications 82 will be of direct interest to all communications users as it crosses the boundaries between civil and military, public and private, industry and commerce, fixed and mobile, in the same way as do the technologies involved.

So whatever you need - however specialised - you'll find the latest equipment at Communications 82 , ranging from the simplest mobile radio equipment to tropospheric scatter; from public or private digital telephone exchanges to telephone handsets; and from data communications and information technology systems generally to fibre optics and power supplies.

Communications 82 enjoys unique and continuing
support from national and international
authorities, including

- International Telecommunication Union
- British Government - through the Home Oftice and the Department of Industry
- British Telecam
and the iwo leading UK trade associations
- Electronic Engineering Association
- Telecommunication Engineering and Manufacturing Association

The Communications 82 Conference is again organised by the Institution of Electrical Engineers, in association with the IEEE Communications Society. IEEE UK/RI Section, institution of Electronic and Radio Engineers, British Computer Society, Instıtute of Mathematics and its Applications, and Institue of Physics

Communications

82
Communications Equipment and Systems National Exhibition Centre, Birmingham, England 20-23 April 1982

Communications 82 is organised by Industrial and Trade Fairs Limited Radcliffe House, Blenheim Court, Solihull, West Midlands, England Tel: 021-705 6707 Telex: 337073 for Tony Davies Communications.

To: Print Services Dept, Communications 82
Industrial and Trade Fairs Limited, Radcliffe House Blenheim Court, Solihull, West Midlands B91 2BG, England
Please send me
details of Communications 82*
Exhibition
Conference

Name
Position
Company
Address \qquad

Number of admission tickets requred \qquad $-$ Please indicate as appropriate

HAMEG OSCILLOSCOPES

Range of top quality scopes for Amateur and
Professional (UK c/0. $30 \overline{\mathrm{f}} £ 3.00$. other $£ 4.00$) 307 Single trace $10 \mathrm{MHZ}: 5 \mathrm{mV}: 0.5$ micro sec. Plus built in component tester. $6 \times 7 \mathrm{~cm}$ display. $£ 158.70$
(Optional carry case £18.40) -
203 Dual 20 MHZ : Trig to 30 MHZ : 5 secs.
$£ 253.00$
412.5 Dual 20 MHZ delayed sweep: trig to $40 \mathrm{MHZ}: 5 \mathrm{mV}$.
0.1 micio sec. $8 \times 10 \mathrm{~cm}$ display. $£ 402.50$ 705 Dual 70 MHZ Dellayed sweep. Single sweep. Delay line. Trig to 100 MHZ .5 mV 0.1 micro sec $8 \times$ 10 cm display
Ontions 203/412/512 Viewing hood
Component tester 203.412. 512
£667.00
④6.00
Optional Probes (All models) X| $£ 850 \times 10$ £9 45
XI-10 £10.50. X $100 £ 16.95$

KEITHLEY PROFESSIONAL DIGITAL MULTIMETER

Model 130.25 range. Easy to hold and use LCD
OMM Size $7 \times 3.1 \times 1.5$
Ranges
DC Volts 200 mV - $1000 \mathrm{~V} 0.5 \% 100 \mathrm{micro}$ volt
AC Volts 200 mV - $750 \mathrm{~V} 1 \% 100$ micro voll
OC current 2mA-10AMP 1-2\% 1 micro amp
AC current 2mA-10AMP 2\% 1 micro amp
Resistance $200 \mathrm{ohm}-20 \mathrm{Meg} 0.5 \% 0.1 \mathrm{hm} \mathrm{K} \quad 102.35$ PROFESSIONAL TRANSISTOR CHECKERS UK C/P £1.50 All feature auto test and matching. TC 906A plus DC Parameter
£111.55
VT plus F.E.T. Multimete
LTC 907 plus multi band signal injector
£147.20
£173.60
f95.45

SAFGAN PORTABLE OSCILLOSCOPES
 Range of low cost Dual Trace Scopes mains operated. Made in UK 10 exacting standards. Available as 10 MHZ 15 MHZ or 20 MHZ . All 5 mV senstivity 0.5 micro sec: $6.4 \times 8 \mathrm{~cm}$ display (UK $\mathrm{c} / \mathrm{p} £ 2.50$)
 | $0 T 410$ | Dual 10 MHZ |
| :--- | :--- |
| $0 T 415$ | Dual 15 MHZ |
 $£ 194.35$
 Dual 15 MHZ
 £216.20

Optional probes avaılable (see Hameg above)

LASCAR BENCH MULTIMETER
accuracy $2 A$ AC/DC with 0.1 . Microamp resolution.
LM100 £89.00 (UK c/p £I OO)
Also model LM2001 hand held model 2Meg ohm
2A AC/DC ETC $£ 57.70$ (UK c/D 65)

TV COLOUR BAR PATTERN GENERATORS PAL UHF and VHF Models All $220 / 240 \mathrm{~V}$ LGC393 VHF 6 pattern $£ 143.75$ LCG392u UHF 15 pattern $£ 228.85$ LCG399 VHF / UHF 13 paitern $\mathbf{£} 572.70$ MC101 UHF pockei colour $£ 162.50$

LEADER AUDIO RF FM TV GENERATORS

3105 amp
301 EDGWARE ROAD, LONDON, W2 1BN, ENGLAND. TELEPHONE $01-7243564$ ALSO AT HENRYS RADIO. $404 / 406$ EDGWARE ROAD, LONDON W2
OPEN SIX DAYS A WEEK • CALL IN AND SEE FOR YOURSELF
Send large SAE
(20p UK)
Order by Post with CHEQUES/ACCESS/VISA or Telephone your order

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

FOR INSTANT MAINS DISTRIBUTION IN OFFICES, LABORATORIES, WORKSHOPS aND FOR MAXIMUM SAFETY

T13A/5

13A/5/R

PEL 3

TR9

N13A/3 DELIVERY EX-STOCK

OLSON Electronics Ltd.

FACTORY NO. 8, 5-7 LONG STREET LONDON E2 8HJ Tel: 01-739 2343
WW - 071 FOR FURTHER DETAILS

HANDSOM =

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match.
Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.

And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout.

The result is an unrivalled selection of handheld measuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!

Model 870 - 0.025\% accuracy - Centigrade and fahrenheit readout O Measures up to $1370^{\circ} \mathrm{C}$ 0.1° resolution up to $200^{\circ} \mathrm{C}$

Model 128 Audio-tone with adjustable threshold -25 ranges: 5 functions 10 amp span
Model 135 - 0.05\% accuracy Full overload protection ACU bandwidth to 20 KHz
Model 131 - 0.25\% accuracy 25 ranges: 5 functions 10 amp span
Model 130 - 25 ranges: 5 functions - 10 amp span © 0.5\% accuracy
All models are guaranteed accurate for one year. And built to the high standards of quality expected of the Keithley name.
For more information simply fill in the coupon.
And learn about a range which will serve you . . . handsomely!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287
Telex 847047
Also available from
I.T.T. Instrument Services, Tel. Harlow 29522

Performance and style plus use of ICS provide a scope with performance and value. 10 MHZ

Crotech 3035 Oscilloscope

- $5^{\prime \prime}-130 \mathrm{~mm}$ Flat Faced Tube - DC - 10 MHZ - $5 \mathrm{mV} / \mathrm{DIV}$ - Built-in component tester
single trace with 5 mV sensitivity and triggering to 20 MHZ . Plus extra feature of built-in
component tester. Display size is $5^{\prime \prime}$ with
8×10 graticule. FEATURES INCUUDE: Sweep speeds $200 \mathrm{~ns} / D V-0.2 \mathrm{~s} / \mathrm{DIV}$. External horizontal input $400 \mathrm{mV} / \mathrm{DIV}$ with 1 MHZ band width. Auto or

As advertised
by us at 189.75
inc. V.A.T.
now

£7.95 probes $\times 10$
$£ 9.45$
£10.50
U.K. Carriage etc.
£3.50
PROFESSIONAL MULTIMETER 100,000 ohms/volt

- Exclusive offer for limited period of this versatile. professional. top quality multimeter.
- 30 Ranges - 15 AMP AC/DC
- Size $7^{\prime \prime} \times 5^{\prime \prime} \times 21 / 2$

This special offer includes leather carry case (normally $£ 16.50$ extra)

Model M1200

As advertised by us at $£ 67.50$ + case Total £84.00 including VAT MODEL MI 200 SPECIFIGATIONS oc volage:0 15-0 5-1 5.5-15-50-1 150-500 - i.e. £84.00 Case | 1500 V 100 k onms per volt |
| :--- |
| AC Voltage: |

 -1 5-15A AC Current: $0-15 \mathrm{~A}$ Resistance: 20k ohms-200k ohms-2-20-
200Monms (100 ohms $-1-10-100 \mathrm{k} \mathrm{ohm}$
1Monms midscale)
Accuracy: DC Volts 20 ol thill scale
Amps AC Volts $\pm 3^{\circ}{ }^{\circ}$ of full scale Approximate Weight: 650 g
Plus many other features including mirror scale. polarity reverse switch, electronic overload protection and taut band suspension.

ORDER BY POST (OR PHONE) OR CALL IN

Also at Henrye Radio 404 Edgeware Pd. W2

Diodes-figh Speed Diodes-Zener Diodes Rectiter Baidges-U1 I

EA Electronics is looking for distributors for power supplies and other electronic equipment.

We are suppliers of the most complete range of power supplies for industrial and consumer purposes.
Other equipment we stock are transformers, antennas, measuring instruments, mikes, etc.

To sell our equipment we are looking for local shops for our consumer range and for industrial distributors for a.o. the medical field, laboratories and most other industries.

We offer high quality equipment, exclusive to your territory or field and most of all interesting profits.

If your market is power supplies and/or other electronic equipment don't miss this opportunity to extend your delivery range with the EA-products.
Please reply to Mr. Fry. Leeds (0532) 482829.

ELECTRONICS
 579 Harehills Lane Leeds LS96 NQ Leeds (0532) 482829* WW - 037 FOR FURTHER DETAILS

THECNUEC
 SIIUSODDAL FREQUEXCY aVD VOLTAGESTABLITER

APPLCATIOMS

* complitias

 * HATIGAHONAL SYSTEMSApplications for the use of CINTEC FREQUENCY \& VOLTAGE STABILIZER are more numerous than can be listed. Therefore, if you have a supply problem, contact CINTEC LIMITED whose engineers will be only too pleased to assist.

SPECIFICATION

In many countries and even in the United Kingdom during periods of heavy demand, the variation in the frequency and voltage is sufficient to introduce errors and the malfunction of such items as Recording equipment etc. Likewise, in certain areas, the only source of supply is from a Generator, the output of which can vary considerably when different loads are imposed. This has precluded the use of a wide range of equipment in many countries. Voltage Stabilizers are readily available, but these do not stabilize the frequency of the supply which, in many instances, is essential.

INPUT
OUTPUT
RATING
STABILITY Voltage
Frequency
FREQUENCY
WAVEFORM
DISTORTION
AMB TEMP
COOLING
DUTY
DIMENSIONS

WEIGHT
CONSTRUCTION
TERMINATION
NATO CODIFIED
$24 V$ DC Inverter
In addition to the A.C. operated models, a $24 v$ DC INVERIER Stabllizer is avalable which operates from a heavy duiy 24 voli battery and has output ratings simılar to the A C models. This type of Stabilizer is particularly suitable for mobile operation converter. For example, the supply to it can be any frequency between $45-65 \mathrm{~Hz}$ and the outpur can be switched to either 50 Hz or 60 Hz Cintec Ltd., Wandle Way, Mitcham, Surrey CR4 4NB, England. Tel: 01-640 2241, Telex: 946177
The CINTEC FREQUENCY \& VOLTAGE STABILIZER provides the answer to both these problems

When the supply frequency is fluctuating wildly between 45 Hz and 65 Hz and the voltage by more than 10% the output from the Stabilizer will not vary more than . 01% from 50 Hz or 1% in voltage, even when different loads are imposed

Used by Government establïshments oil rigs hospitals police video and electronic industry. shipbuilders etc for a wide range of applications including video systems, medical. frequency conversion, navigational aids and sound recording systems.

The CINTEC FREQUENCY \& VOLTAGE STABILIZER is also available for supplies of $100-125$ volts, $45-65 \mathrm{~Hz}$ with an alternative output of 50 Hz or 60 Hz at 115 volts or 230 volts and as a dual frequency moriel with a switchable output of 50 Hz or 60 Hz
The Stabilizer may also be used as a frequency Details Specification and Brochure - Available Post Coupon or Telephone/Telex CINTEC $\begin{array}{r}\text { Details } \mathrm{Name}\end{array}$

OUR
OFF THE SHELF RANGE OFFERS
....any combination and sequence of $\operatorname{Red}(\mathrm{GaP})$, Green(GaP) or Yellow ($\mathrm{GaAsP} / \mathrm{GaP}$) colours incorporated in one array.
....fully end-stackable, 2, 3, 4 or 5 segment options thereby enabling displays encompassing any number of segments to be created,
....black bezels as standard with white bezels to special order,
....push-fit mounting into correctly dimensioned panel cut-out,
.....wide operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.

So if you are into TREND INDICATORS

BAR GRAPHS
or
EVENT DISPLAYS
Look at our

MULTI-LED ARRAYS

Our prices won't make your eyes water Zaerix Electronics Limited 46 Westbourne Grove, London W2 5SF. England Tel: 01-221 3642 Telex: 261306

New KONTAKT Sprays

for the Electronics \& Electrical Industries

KALTRON 601

A new cleaner for Magnetic Recording Units. Kaltron 601 has an extremely low surface tension thereby enabling the cleaning of magnetic sound heads leaving no deposit or other traces.
It is chemically pure (99.8%) - non conductive -non-flammable.
It can be used on energised electrical installations and electronic equipment, e.g. video units, tape recorders, data processing systems etc

Also NEW

PRINTER 66

Spray cleaner for type wheel printers, matrix printers and chain printers. Can also be used for cleaning normal typewriters.

SCREEN 99

Specially for the cleaning of all types of screens, including data terminals and T. V. Screens

VASELINE SPRAY 701

For use in communications engineering and construction of antennae Proved successful as corrosion inhibitor for cable clamps, connecting screw joints etc. Application from spray can with capillary tube is clean and simple. Distributed by

Special Products Distributors Ltd.
 81 Piccadilly, London, W1V OHL

Tel: 01-6299556 : Cables: Speciprod, London, W. 1 Telex: 265200 (answerback RACEN)

WW - 078 FOR FURTHER DETAILS

You cant beat The System

The Experimentor System ${ }^{\text {™ }}$-a quicker transition from imagination through experimentation to realization.

When you have a circuit idea that you want to make happen, we have a system to make it happen quicker and easier than ever before: The Experimentor System.

You already know how big a help our Experimentor solderless breadboards can be. Now we've taken our good idea two steps further.

We've added Experimentor Scratchboard workpads, with our breadboard hole-and-connection pattern printed in light blue ink. To let you sketch up a layout you already have working so you can reproduce it later.

With Experimentor Matchboard you can go from breadboard to the finished product nonstop! We've matched our breadboard pattern again, this time on a printed circuit board, finished and ready to build on. All for about $£ 1.20$
There's even a letter-and-number index for each hole, so you can move from breadboard (where they're moulded) to Scratchboardtm (where they're printed) to Matchboardim (where they're silkscreened onto the component side) and always know where you are.
When you want to save time and energy, you can't beat The Experimentor System.

1. EXP-300PC, which includes one item. - A Matchboard pre-drilled PCB
2. EXP-302, which includes three items:
Thre 50 -sheet Scratchboard
workpads $\mathbf{£ 1 . 5 0}$
3. EXP-302, which includes three items. Three 50 -sheet Scratchboard workpads

GLOBAL SPECIALTIES CORPORATION $\longrightarrow \longrightarrow$
G.S.C. (UK) Limited, Dept. 7W Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex. CB11 3AQ. Telephone: Saffron Walden (0799) 21682
Telex: 817477

The Sound of the Professionals

Shure Elecironics Limited Eccleston Road Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881
naenv 5 SV 85

brings a new dimension to a hand-held condenser microphone

This new high technology Shure microphone will change the way people think of condenser microphones. The SM85 is designed especially for on-stage, hand-held use. Its sound is unique-far more tailored to the special needs of the vocalist: sizzling highs and a shaped mid-range for superb vocal reproduction. and a gentle bass rolloff that minimizes handling noise and "boominess" associated with close-up use. Ulitra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dualdensity foam windscreen provides built-in pop protection.

What's more, the SM85 Condenser Microphone must pass the same ruggedness and dependability tests required of Shure dynamic microphones. As a result, the SM85 sets a new standard of reliability for hand-held condenser microphones.

The SM85 is extremely lightweight, beautifully balanced -it feels good, looks good on-stage, on-camera, on-tour. Ask your dealer for a demonstration of the new SM85 PRO TECH Sound, or write to us (ask for AL664) for full details.

SM85
Cardioid Condenser Hand-Held Professional Microphone

wireless world

Editor:

TOM IVALL, M.I.E.R.E
Deputy Editor: PHILIP DARRINGTON 01-661 3039
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 3500×3590

Projects Editor:
MIKE SAGIN
01-661 3500×3588
Communications Editor: MARTIN ECCLES 01-661 3500×3589

News Editor:
DAVID SCOBIE
01-661 3500×3587
Design Editor:
RICHARD NEWPORT
Drawing Office Manager:
ROGER GOODMAN
Technical Illustrator: BETTY PALMER

Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
DAVID DISLEY
01-661 3500×3593
BARBARA MILLER
01-661 3500×3592
Northern Sales
HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838

Classified Manager:

BRIAN DURRANT
01-661 3106
CPHELIA SMITH
01-6613033

Production:

BRIA N BANNISTER
(Make-up and copy)
01-661 3500×3561

A million years of programming

This month's front cover is our contribution to the UK's Information Technology Year, just starting. A somewhat bizarre one, you may think. It is, in fact, an idea borrowed by artist Geoff Harrold from the imaginative film 2001: A Space Odyssey (for which, incidentally, the screenplay was written by our one-time contributor Arthur C. Clarke). The mysterious crystalline monolith seems to be the instrument by which the man-apes at the beginning of the film are touched by conscious thought, rationality and an awareness of history and their own mortality - by which they became Homo sapiens. In our picture the monolith becomes that public symbol of modern technology "the microchip", better known to electronics engineers as the microprocessor.

If "information technology" is anything more than a convenient phrase to describe a range of already existing techniques (computers, telecommunications and microelectronics, according to the DOI) it certainly owes its existence to, more than anything, the availability of the microprocessor as an off-the-shelf electronic component. We have had the ability to measure and transmit information in binary digital form for a good many decades, but we were only able to process it conveniently, in the huge variety of ways we do, when programming became generally available in the last decade, using the principles of the storedprogram digital computer. This mechanization of certain logical mental processes, in cheap and flexible electronic equipment, is the real innovation at the heart of what we are now calling information technology.

The mechanization of logic is the product of a living organ, the human brain, which itself was already capable of logical thinking and thus had generated the conceptual models for the hardware and its functioning. With this as a parallel, it is tempting to speculate on how much the invention of programming - first seen in early clocks and barrel organs - owes to the biological programming given by the genetic code in living creatures. Although in machines the instructions may be carried out in a time sequence, the program as an entity usually exists as a spatial pattern, first on paper then in the

Memory of a computer or microsystem. There seems to be some justification for an analogy between the pattern of binary digits in, say, an e.p.r.o.m. and the pattern of nucleotides in the DNA molecule of the living cell.

Beyond this point, however, the analogy breaks down. Whereas the program in the computer memory can be readily changed, the genetic code in DNA is highly conservative. We are almost always born with the same number of limbs and other organs, although mutations such as a hand with six fingers can sometimes occur.
Nevertheless in Homo sapiens the genetic code preserves an organism which is capable of extraordinary flexibility in its behaviour. Its power to communicate and act socially, passing on knowledge from person to person and from generation to generation, has resulted in, among other things, the technology of electronics and devices such as the microprocessor. The significant programming now is the way our behaviour is ordered by social activity, and this has been going on for perhaps only a million years. For example, some anthropologists maintain that we are neither inherentiy aggressive nor inherently peaceful but so flexible that we can be socially programmed to become aggressive or peaceful. The outcome for Homo sapiens is a world in which his now highly complex technology is a major factor in his own environment. It interacts with his material life and hence with his social being and indirectly with his personal awareness of himself as a social creature. By modifying his environment in this way he is therefore moulding his own psychology, yet most of the members of the species probably do not realize this is happening.

The situation is both exciting and dangerous. What is encouraging is that this process really can be under our own control. For example, we have realized that we no longer have to propitiate the gods to save us from natural disasters. But much of the programming is being done by powerful individuals who are both heedless of the process and strongly influenced, intellectually and emotionally, by historical events which are no longer relevant to present problems. Somehow we must learn to understand what we are actually doing and get control of it.

Nanocomp e.p.r.o.m. programmer

Low cost programming of 2516 and 2532 type memories

by R. Coates

Nanocomp was originally designed as a microprocessor trainer using the 6802 device (January 1981) and was later uprated (July 1981) to provide an evaluation system for the 6809. This e.p.r.o.m. programmer will operate with either unit and uses software to do much of the work, which reduces the hardware cost. The programmer software can be loaded into the Nanocomp r.a.m. or permanently stored in the e.p.r.o.m. if a 2 or 4 K device is used.
To enable the Nanocomp to be used as a dedicated controller or as the basis of a development system, spare e.p.r.o.m. space can be made available if a 2 K or 4 K memory is used. This allows user software to be placed in the e.p.r.o.m. and obviates the need to constantly reload a program. Also, the space allows larger programs to be stored in the 1 K r.a.m. The only problem with e.p.r.o.ms is their programming, but this is not as difficult as the price of
Pi.a. connector
commercial programmers may suggest, particularly if the types of memory is restricted to two, i.e. the single rail 2516 and 2532.

Erasing and programming

Before an e.p.r.o.m. can be programmed, the previous data must be erased by expo-

Fig. 1. Wiring diagram for an e.p.r.o.m. eraser.
sure to u.v. light. Commercially available erasure units are the best solution, but prices start at around $£ 40$. Sunlight is not very practical as it would take around four weeks for erasure in Britain. However, an erasure unit can be constructed for about $£ 15$ using a commercial tube. Fig. 1 shows a simple circuit which can erase up to four e.p.r.o.ms simultaneously in about 20 minutes.

The i.cs should be placed about $2-3 \mathrm{~cm}$ from the tube, which is started by pressing the switch for a couple of seconds, repeating if the tube does not strike. It should be noted that u.v. light emitted from the tube will damage the eyes so the unit must be constructed in a light-tight case and switched off before inserting or removing the devices. Erasure can be impeded if there is dirt or grease on the e.p.r.o.m. window so ensure that the glass surface is clean. When an e.p.r.o.m. is erased, all the data bits are set to 1 . Bits which must be set to 0 are programmed electrically by 25 V applied to the V_{pp} pin of the device. This sets the e.p.r.o.m. to the programming mode and converts the data output pins to high impedance data inputs.
The address of the byte to be programmed is set on the address pins, and
the data byte to be programmed is presented to the data input pins.
A 50 ms pulse is then applied to program the byte, and this procedure is repeated at each address of the e.p.r.o.m. Both types of device are programmed in this way, but there are small differences which will be

described later. To avoid confusion, note that the two types of e.p.r.o.m. which can be used with the Nanocomp and programmer are the Texas TMS 2516 and TMS 2532 or their equivalents. For the 2516, most other manufacturers use 2716, but this is not equivalent to the Texas TMS 2716 which is a three supply-rail device. For the 4 K device there are now two types. Intel continue to use two pins for device enable whereas Texas have reduced this to one, which means that the two types are not compatible. If purchasing from another manufacturer, check

Fig. 3. Software flowchart.
carefully that their device is TMS 2532 compatible.

Hardware

The complete circuit shown in Fig. 2 has been kept simple by using software to do most of the work. The basic programming operations can be performed using a peripheral interface adaptor (p.i.a.) with the microprocessor. The $6802 / 9$ then writes the address and data information to the p.i.a. which in turn drives the e.p.r.o.m. Unfortunately, this requires 23 p.i.a. output lines, and only 18 are available. Two devices could be used, but the Nanocomp only has one available. This problem can be overcome by multiplexing the data lines and the eight least-significant address lines

Table 1．E．p．r．o．m．sectors．

Sector no．	e．p．r．o．m．address		
1	0000	-	01 FF
2		0200	$-03 F F$
3		0400	-
4		0600	-

Table 2．Programmer operating
instructions．

Erasure check

Press E
Connect programmer
Switch on Vpp supply
Press AB
Wait for ok or error l．e．d．
Switch off Vpp supply
Unplug programmer
Press RST

Programming and program check

Press P to program or C to check
Enter start address（SA）of data
Enter sector number（ $\mathrm{SEC}=$ ）of e．p．r．o．m． （1－4 or 1－8）
Connect programmer
Switch on Vpp supply
Press AB
Wait for ok or error l．e．d．
Switch off Vpp supply
Unplug programmer
Press RST
to the outputs of the p．i．a．Therefore，the data and addresses appear on the same lines at different times．Software first sends the address information via the p．i．a． B lines while deselecting the e．p．r．o．m． using its chip select input．This ensures that the e．p．r．o．m．data pins，which are connected to these p．i．a．pins，are in the high impedance state and have no effect．
The p．i．a．B pins are also connected to the inputs of a 74LS373 8－bit latch which can store the data and present it at its output pins after a positive pulse is received by the latch enable input，even if the input data has been removed．Therefore，when CA2 sends a positive pulse，after the address has been set by the p．i．a．，the address is latched at the outputs of IC 1 ，which are connected to the address pins of the e．p．r．o．m．The p．i．a．outputs then change to the data which is held while the pro－ gramming operation takes place．The three other address lines required by both types of e．p．r．o．m．（A8，9，10）are driven from p．i．a．lines PA0， 1 and 2.

Pins 18 and 20 of the two e．p．r．o．m． types differ in the following ways．For the 2516，pin 18 is the power－down pin in the Read mode which deselects the device and reduces the power consumed if set to 1 ． When programming，pin 18 is normally 0 and set to 1 for 50 ms to produce the program pulse．Pin 20 is the chip select input．For the 2532 ，pin 18 is the extra address line required（A11）and 20 is the power down／program pulse pin．A separate chip－select pin is not provided， and the program pulse is negative going． Switching is provided to facilitate these differences by using three poles of a four－ pole two－way d．i．l．switch．PA3 drives chip select／A11 and CB2 provides the

Table 3．Hex listing for the（a） 6809 and（b） 6802 Nanocomp．

（a）	$1200-13 A G$			RELDCATAPLE											
P 1200－13AG															
1200	10 CE	13	Do	86	40	1 F	8B	8E	69	11	BF	13	FA	8 E	00
1210	00 EF	13	FC	BF	13	FE	BD	7C	EO	81	15	10	27	01	35
1220	8123	10	27	01	08	E1	21	26	ED	8D	7F	8 E	FF	FF	F
1230	13 EO	BE	13	EO	30	01	BF	13	E）	E．G	13	E 1	97	01	86
1240	3C 97	02	86	34	97	02	B6	13	EO	8A	80	80	58	26	02
1250	8A 08	97	00	8D	18	81	FF	26	OD	8D	4 A	2 E	OE	EC	07
1260	FF 26	CF	86	Co	20	02	86	AO	97	00	13	8こ	OF	FF	20
1270	FO 34	04	86	38	97	03	4F	97	01	86	34	97	03	6D	2 G
1280	2 G OG	96	00	84	F7	97	00	17	00	54	96	01	6D	17	26
1290	OG DE	010	CA	08	D7	00	cg	38	D7	03	CG	FF	D7	01	CG
12 AO	3 C D7	03	35	04	39	DG	00	C5	10	39	8E	00	00	9F	02
12 EO	$301 F$	95	00	8E	34	3C	5F	02	8E	88	00	SF	00	8E	D
12 Co	DE EF	43	F2	13	35	8E	3D	GF	BF	13	FE	9 D	7 C	E．5	BF
1200	13 DE	BF	13	E2	8E	30	79	BF	13	FA	8E	78	11	gF	3
12 E	FS BE	00	00	EF	13	FE	E．${ }^{\text {d }}$	7 C	E4	4D	27	E8	8	98	2
－2FO	E4 4A	48	8D	Be	8D	AF	26	02	8A	08	BA	80	57	00	39
1300	RE 13	EO	30	01	B．F	13	EO	E．G	13	E1	97	01	56	3C	97
1310	0285	34	97	02	96	00	84	FE	BA	13	EO	97	00	39	4 F
1320	4.426	FD	39	4F	CG	20	4 A	26	FD	5 A	20	FA	39	8D	9 G
1330	日E FF	FF	BF	13	EO	BE	： 3	E2	EG	84	36	01	eF	13	E2
1340	8D BE	17	FF	2 C	34	04	A1	EO	10	26	FF	1 A	8 C	01	F
1350	26 $=4$	IE	FF	OE	17	FF	GE	17	FF	4E	26	04	86	34	97
1360	03 8E	FF	F－	8．	13	EO	BE	13	DE	E 6	84	30	01	E．F	13
1370	DE 8D	8D	C1	FF	27	29	D7	01	8D	A 4	56	00	84	7F	97
1380	0017	FF	22	26	OA	86	3 C	97	03	8D	98	86	34	20	08
1350	8634	97	03	9D		86	3 C	97	03	96	00	8 A	80	97	00
C	8 C 0														

13 AO 8 C O1 FF $2 G \mathrm{E} 22089$
（b） $1200-1388$ RELDCATABLE

$$
\begin{aligned}
& \text { P1200-1328 } \\
& 1200 \text { BE } 0040 \text { CE } 59 \text { 11 DF } 7 A \text { CE } 0000 \text { DF } 7 \mathrm{C} \text { DF } 7 \mathrm{DE} \mathrm{BD}
\end{aligned}
$$

$$
\begin{aligned}
& 1220 \text { CE FF FF DF } 52 \mathrm{DE} 52 \text { O8 DF } 52 \text { 9G } 53 \text { B7 } 40 \text { O1 } 86
\end{aligned}
$$

$$
\begin{aligned}
& 1240 \quad 028 A \quad 08 \quad B 7 \quad 40 \quad 00 \quad 8 D \quad 22 \quad 81 \quad F F \quad 2 G \quad 0 D \quad 8 D \quad 59 \quad 2 G \quad O F
\end{aligned}
$$

$$
\begin{aligned}
& 12 G 0 \text { OF FF } 20 \text { EF } 20 \text { GB } 20 \text { GA } 2043 \quad 37 \quad 8638 \text { 87 } 4003
\end{aligned}
$$

$$
\begin{aligned}
& 129000 \text { CA OB F7 } 40 \text { OO CG } 38 \text { F7 } 40 \text { O3 CG FF F7 } 40 \text { 01 }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \mathrm{BO} \text { FF } 40 \text { O2 0曰 FF } 40 \text { DO CE } 34 \text { コこ FF } 40 \text { O2 CE } 88 \text { OO }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \mathrm{DO} 20 \quad 64207120 \quad 94 \mathrm{CE} \text { 3D GF DF } 7 \mathrm{DE} \text { BD } 7 \mathrm{C} \text { B5 DF } 50 \\
& 12 E 0 \text { DF } 54 \text { CE 3D } 79 \mathrm{DF} 7 \mathrm{~A} \text { CE } 78 \text { I } 1 \mathrm{DF} 7 \mathrm{C} \text { CE } 00 \text { OO DF } \\
& 12 F 0 \text { TE ED TC E4 } 4 \mathrm{D} \quad 27 \text { ED } 81 \text { OB } 22 \text { E7 } 4 \mathrm{~A} \quad 48 \text { 8D AE 8D }
\end{aligned}
$$

$$
\begin{aligned}
& 1340=D \quad 5 A 2 G F A 358 D \quad 8 F \text { CE FF FF DF } 52 \text { DE } 54 \text { EG } 00 \\
& 135008 \mathrm{DF} 54 \mathrm{BD} \text { C2 BD } 2 \mathrm{EE} 1126 \mathrm{~B} 7 \mathrm{BC} 01 \mathrm{FF} 2 G \mathrm{ED} 20
\end{aligned}
$$

$$
\begin{aligned}
& 1370 \text { CE }=F F F F \text { DF } 52 \text { DE } 50 \text { EG } 0008 \text { DF } 50 \text { 6D } 99 \mathrm{Ci} \text { FF }
\end{aligned}
$$

$$
\begin{aligned}
& 13 \mathrm{DO} 40808 \mathrm{C} \text { O1 FF } 25 \mathrm{EE} 20 \mathrm{BE}
\end{aligned}
$$

program pulse．The third pole of the switch connects an input，PA4，to 1 for the 2532 and 0 for the 2516 ．This is used to inform the software which type is being programmed．

Pin 21 of the e．p．r．o．m．，$V_{p p}$ ，is the input or programming－enable voltage and is at +25 V to program or +5 V to read． This input must be ${ }^{\text {s }}$ witchable because，as well as programming，it is necessary to read the data in the e．p．r．o．m．before pro－
gramming to check that it is fully erased， and after to check that it has been pro－ grammed correctly．These voltages are provided by an external $28-35 \mathrm{~V}$ supply rated at 30 mA ．When the p．i．a．PA7 out－ put is at $1, \mathrm{Tr}_{1}$ is turned on which connects IC_{2} to 0 V and supplies +5 V to pin 21 of the i．c．socket．If PA7 is at $0, \mathrm{Tr}_{1}$ is turned off and IC_{2} is connected to OV through resistors R_{3} and R_{4} which develop 20 V at the common terminal，and provide a 25 V
regulated output. Therefore, the software switches two voltage levels to V_{pp}.

Outputs PA5 and PA6 drive two 1.e.ds via Tr_{2} and Tr_{3} to indicate that an operation has been completed without error or that an error has occurred. Although the obvious way of indicating an error is by the Nanocomp display, while the p.i.a. is driving the programmer, the display will not function normally.

The e.p.r.o.m. programmer can be used with any microcomputer system which has a peripheral port, and all that is required is a change of software to follow the flow chart in Fig. 3.

Software

When programming a 2 K or 4 K e.p.r.o.m. with a microcomputer containing only 1 K of r.a.m., the normial method of placing data into r.a.m. and then copying it into the e.p.r.o.m. cannot be used. Instead, the e.p.r.o.m. must be programmed in several smaller sections. With 1 K of r.a.m. the e.p.r.o.m memory map can be divided into 512 -byte sections, which enables 512 bytes to be loaded and 512 bytes of the r.a.m. to be used for the operating software. The 512 -byte sector to be programmed is specified, and the process is repeated four times (8 for a 2532) to completely program a 2 K device, see Table 1 .

If the e.p.r.o.m. is to be used in the Nanocomp, it is probable that the monitor will also need to be copied in. To facilitate this the address of the data to be programmed is also specified, which allows the operating e.p.r.o.m. to be directly copied in 512-byte blocks. The operating software has been designed to run at address 1200 inwards in r.a.m. and occupies about 450 bytes which are relocatable and can be placed in e.p.r.o.m. if desired. Three commands are available (1) to check for erasure of the entire e.p.r.o.m. (essential before programming) which switches on an ok or error l.e.d. when completed; (2) to program an e.p.r.o.m. sector, read it and check that it has been programmed correctly, which also provides an ok or error indication when complete; finally, a command to perform the read and check function.

Although the 25 V is only required when programming, the external supply must be connected when using the other two commands because 5 V is required to read the e.p.r.o.m.

Construction and operation

A double-sided printed circuit board is used as shown in Fig. 4. The 24 -pin d.i.I. socket should be a low insertion-force type, and if only one type of e.p.r.o.m. is to be programmed, the 4 -pole 2 -way switch can be replaced by wire links. To simplify assembly, a p.c.b. transition connector is used for the ribbon cable, but the conductors can be soldered directly to the board. When construction is complete, apply the programming voltage and adjust R_{4} until 25 V appears at pin 21 of the e.p.r.o.m. socket. Note that the 7805 regulator is mounted on the underside of the

p.c.b. so that the unit can be mounted close to the lid of a box, with cut-outs for the slide switch and e.p.r.o.m. socket.
To run the programmer, load the software into $\mathrm{r} . \mathrm{a} . \mathrm{m}$. from address 1200 unless it is in the Nanocomp e.p.r.o.m. Next, load the 512 -byte block of data to be programmed at $1000-11 \mathrm{FF}$ unless a section of the monitor e.p.r.o.m. is to be copied. Ensure that the e.p.r.o.m.-select switch is correctly set, then, with the monitor prompt indicating, enter "G 1200" or the appropriate start address. The software then replies with " F ", requesting a function (erase check, program or check) to be entered. Table 2 lists the procedures for each of the functions. The end of an operation is indicated by one of the programmer 1.e.ds.

If an erasure check has been performed and the error l.e.d. switches on, one or more bits are not at 1 so further erasing is
required. The program-check operation reads each location in a block of the e.p.r.o.m. and compares it with the data block. If a location does not agree, an error is indicated. Unfortunately the whole e.p.r.o.m. must then be erased and programmed again. However, with full-spec. devices this problem is very rarely encountered.

The program-check operation is performed automatically after a programming operation. The ok l.e.d. indicates that programming of the last block was performed correctly and the next block can be programmed after entering new data into r.a.m. Note that during the operation of all functions, random illumination of the display will occur because it is being driven in parallel with the programmer.

Table 3 gives an e.p.r.o.m. programmer hex listing for the 6802 and 6809 Nanocomp.

34
 Clandestine radio the early years

The beginnings of portable, low-power h.f. communications equipment

by Pat Hawker, G3VA

High-risk covert radio links during 1935-45 played an important, yet seldom recognized, part in the development of fully portable, lowpower, h.f. communications equipment. Pat Hawker describes the equipment, the organizations involved, and some of the people.

Late in 1980, a farmer found unexpected buried treasure in a field near Wrexham, North Wales - a compact h.f. transmitter, later officially identified as of "East European" manufacture. It served as a reminder that clandestine or covert radio communication still has a role (if only that of a "set in place") in the tangled web of international espionage.

Such finds are rare: for a previously disclosed find in the UK one has to go back 20 years to the "Gordon Lonsdale" Naval secrets case. Then a basically similar transmitter, wrapped in plastics, was uncovered beneath the kitchen floor of the Ruislip home of "Peter Kroger" (Morris Cohen) and his wife. The crystalcontrolled transmitter could provide 150W output and (like the Wrexham unit) had an automatic keying device that enabled previously-prepared Morse tapes to be sent for up to ten minutes at an average speed of some 240 words per minute. A transmitter of this type, attached to perhaps 50 feet of aerial wire and under the control of an experienced operator, would have little difficulty in passing traffic to East Europe.

No evidence was given at the Old Bailey trial in March 1961 that the Krogers had used the transmitter; though it was disclosed that they regularly received "broadcast" instructions from a highpower transmitter located near Moscow. For this they used a conventional h.f. broadcast receiver, recording messages on magnetic tape which could be transcribed by replaying at lower speed or by dusting the tape with iron-oxide powder and so rendering visible the Morse symbols. Outgoing messages, it would seem, were normally sent in the form of microdot photographs through the post, the h.f. transmitter being reserved for emergencies.

These disclosures showed, at least to some of us, that the basic principles and practices of clandestine radio, as developed in World War II, were universally understood and still practised by the major powers. But, though much has been
written of the personal exploits of radio spies and resistance workers during the war years, little attempt has been made to assess the contribution they made - all too often at the cost of their lives - to the development of low-power, portable radiocommunication equipment, or to understand the human and technical problems that had to be overcome. Kipling's "Great Game" was played with high stakes by the several hundreds of radio operators who went from Allied bases into European and Far Eastern occupied territory, some more than once, and many never returned.

Paradoxically, many of those working on behalf of the Allies were drawing on the work of the German Abwehr and RSHA* (which included the SD and Gestapo) intelligence services which pioneered many ideas in covert radio that were subsequently successfully employed against them. Russian military intelligence was also an early user of secret radio, for example by the Sorge ring in Japan (where Max Klausen proved an experienced and effective radioman); indeed their agent/ operators were sometimes expected to build their own transmitting equipment, or have it built locally, in order to avoid the problem of smuggling the bulky radio transmitters across peacetime frontiers, a practice subsequently used also by the Germans in North and South America.
Components were then large and heavy, and transmitting valves bulky and fragile. But by the mid-1930s it became possible to think in terms of "portable" stations. For example, a former British amateur, Ted Cook (then ZT6AQ, now ZS6BT), travelled (legally!) around South Africa with a 30 -watt iransmitter (double-triode 6A6 driving an 812 power amplifier) built into a Burndept portable-radio case about 18 by 18 by 8 inches; an 0-V-2 receiver in a second similar case. He contacted fellow amateurs over long distances from locations that included a seventh-floor flat in the centre of Johannesberg. One of his most difficult problems was to avoid causing "key-clicks" on an estimated 400 broadcast receivers within a radius of 1000 ft of his makeshift aerial.

In the early days (ignoring the efforts to use spy radios in World War I that proved

[^2]

German Agentenfunk (Afu) transmitter in two cases, one for the batteries.
less effective than homing pigeons) clandestine operation must have seemed equally easy: no monitoring/intercept organizations of the 1930s could contemplate watching continuously all the newly-important h.f. band, with the added problem of skip zones and the considerable limitations of h.f. direction-finding in the days before "huff-duff" (h.f. d/f) c.r.t. displays and the German wide-aperture Wullenweber ring aerials.
F. R. Hornby of Military Intelligence built a small transmitter in his garage and concealed it in a standard car radio; then he visited a number of sensitive defence establishments, including the Royal Aircraft Establishment at Farnborough and Boscombe Down, and naval establishments in the Portsmouth area. He would copy out an innocuous document and radio the contents from the establishment's car park to his father's house in

Bournemouth. The official Y intercept services, operated by the Navy, Army, Air Force and civilian agencies, were warned in advance of his intentions and given an idea of the frequencies he would use. Yet very few indeed of his transmissions were reported by Y , underlining the urgent need for a special intercept organization devoted to seeking out clandestine traffic - and possibly accounting for the official ban on all car radios in the UK from 1940 to 1944.

There already existed within MI5 the Radio Security Service but this was little more than a nucleus, staffed largely by Post Office interference-investigation teams and having as a prime objective the tracing of any medium-wave navigational beams that German agents might try in wartime to establish in the UK (they never tried!). Soon after the outbreak of wadr in 1939, RSS was greatly expanded, including the secret recruitment by Lord Sandhurst of more than 1000 former radio amateurs (who had been officially closed down on September 1, 1939) as voluntary interceptors (VIs) aided by a number of full-time police and Post Office radio operators. The VIs listened enthusiastically but located very few enemy radio spies; for the very good reason that from September 1939 until May 1945 virtually all enemy agent radio activities in the UK were conducted by 'turned' agents with the assistance of RSS and the Doublecross (XX) Committee.

This web of deception followed on from the arrival in the summer of 1939 of an Abwehr Afu (Agentenfunk) radio at Victoria Station, intended for use by a Welsh engineer, Johnny Owens. But Owens was already a double agent and ensured that the Afu (with cipher and signal plan) was promptly turned over to the British. A later arrival, Hans Hansen (Tate) sent over 1000 messages to the Germans, via Hamburg or Abwehr stations in the Iberian peninsular. There were a couple of dozen others at various times.

But the VIs search of the h.f. bands soon brought to light something that was to prove even more rewarding: by mid- 1940 they had teased out an elaborate complex of German Intelligence radio-communications networks. These were not only for working to agents (mainly from the Hamburg and Wiesbaden control stations) but also for handling the very busy communications links between intelligence offices (KOs in neutral countries, Asts in occupied countries) and the main intelligence centres in Berlin, Vienna etc, using hand ciphers and the Enigma machine. Later Abwehr Enigma keys were cracked; though a Gestapo Enigma remained unbroken.

Ewen Montagu ("Beyond Top Secret U ") has written: "A number of Abwehr and other stations in the Aegean and Greek Islands were sending out informative reports . . . for a very long time they constituted virtually our only information from these areas".

The effectiveness of German special communications (Signal Regiment 506) and agent-radio equipment was demons-

German battery-powered Afu transmitter, designed to be carried in a leather case slung over the shoulder, with the batteries in another. Aerial coupling coil taps allowed for different aerial lengths, the indicator lamp showing tune. Frequency range was 4 to 8.5 MHz .
trated during the German invasion of Norway in April 1940 - an operation which simultaneously made clear to the British the ineffectiveness of their own Service radio communications from unprepared sites over distances of some hundreds of miles; later this was rubbed in by the unreliability of hastily built British military radios in hostile environments (I am told that less than 30 per cent of the British WS No 19 sets worked without failure in North Africa!).

After Dunkirk in May 1940, the need for a British equivalent to the Abwehr/RSHA networks became urgent, although the UK was by no means "cut off from the Continent" as is often supposed. In the 'phoney war' period from September 1939 to May 1940, there had seemed little requirement for truly portable 'agent' radios. But there were Intelligence out-stations, mostly under diplomatic cover, in neutral countries, and
radio links were established from about 1936 onwards.

The successful breaking of the German Air Force Enigma machine cipher early in 1940 created an entirely new requirement; it led directly to the creation of what was to become a reliable semi-covert (or "low profile"), secure communications network dedicated to the distribution of this vital intelligence material (ULTRA). The Army and the RAF agreed to the setting up of an MI6 system under F. Winterbotham (the Navy insisted on its own system) whereby ULTRA information was passed through Special Communications Unit operators to Special Liaison Units attached to Overseas Commands from a multi-operator station at Windy Ridge, Whaddon, near Bletchley.

For this network the outstations comprised HRO or AR88 receivers and Special Communications Mark III transmitters. By 1944 there were almost 40 SLU/SCU outstations.

The Mark III, of which many hundreds were built at the Special Communications factory near Whaddon, was a simple, straightforward, but effective two-stage transmitter (6V6 crystal oscillator, 807 power amplifier) with plug-in coils. Most were in small wooden cabinets with the power supply unit accounting for much of the weight. Later, a "coffin" assembly was devised in which a Mark III or XV transmitter, HR0 receiver and its set of plug-in coil assemblies, together with power supplies, formed a large and awkward but reliable station which could be powered from a 350 -watt Onan petrolelectric generator or local supply mains. Perhaps the worst fault of the Mark III was the ease with which it could be tuned to a harmonic frequency without this being obvious to an unwary operator. The Mark V had a t.r.f. (I-V-1) receiver in a separate wooden box.

During 1940 to 1945, the MI6 radio section, based at Whaddon, gradually expanded into a series of about a dozen Special Communications Units under Brigadier (later Sir) Richard Gambier-

MK III/HRO transmitter/receiver assembly in its 'coffin', with coil assemblies and power supplies in one unit

One of Special Communications conirol stations for links with Western Europe.

Parry, with Colonel E. Maltby as his deputy.
"G-P", a World War I officer who had been thrice wounded, was a former radio amateur (G2DV), and an ex-Information Executive (1926-31) at the BBC where he had battled with the Baird Company over the BBC's reluctance to use the 30 -line mechanical television system and dealt with technical correspondence; he was, as they say, "attached to the Foreign Office" in 1938. Colonel Maltby had come from the management side of the highly-competitive radio receiver industry. When, after some intense skirmishing and the personal intervention of Sir Winston Churchill,

Special Communications briefcase receiver, using 1.5 V valves and layer batteries, about 1943-4.

MI6 won control of RSS operators from MI5, he was given responsibility for building the Special Intelligence intercept station at Hanslope Park. One suspects he was a little nonplussed when he discovered that the RSS operators were mostly a bunch of independently-minded radio amateurs, happiest when searching for weak and fading signals but with no wish "to play soldiers". From January 1942, Lord Sandhurst was responsible for the links with agents (Plans section).

G-P also gathered around him people, with considerable professional or amateurradio experience of h.f. communications, but who were not unwilling to pick up tips from their Abwehr counterparts or to lift ideas from the Radio Amateur's Handbook. G-P could also draw on the mathematical genius Alan Turing, who, after expounding in the 1930s the principles on which all modern computers are based, joined GCCS/MI6 at Broadway Buildings and Bletchley, where with T. Flowers of Post Office Research he was to develop Colossus, the first cryptographic electronic computer. There were also specialists seconded on occasions from industry, including the aerial engineer F. J. Charman, G6CJ, of EMI.

And if the more senior MI6 officers had an eye for good-looking horses and goodlooking women, they also showed good judgement in buying from the United States high-performance equipment that had been developed in the late 1930s for the American amateur radio market. Throughout the war, Special Communications largely depended on the National HRO and (later) the RCA AR88 receivers, two of the finest general-purpose receivers ever manufactured in large numbers, backed up by simple regenerative $0-\mathrm{V}-1$ and I-V-I agent receivers. They were also much taken with the 6.3 V metal-octal valves, the reliable 807 beam-tetrode and later the new miniature 1.5 V -filament battery valves and layer batteries. Their most expensive (and longest-lasting) purchase was the 600 kW "Aspidistra" m.f. broadcasting transmitter, which was bought in 1941 for $£ 111,8014 \mathrm{~s} 10 \mathrm{~d}$ and installed at Crowborough, Sussex. Since the war, it

has carried the BBC external services programmes, though due to go into honourable retirement shortly. Special Communications, almost by accident, was the transmission agency for Rex Leeper's "black" outfit at Woburn Abbey, whose secret existence was instrumental in enabling the BBC to concentrate on the more "truthful" propaganda.
The fall of France and the potential requirement for "stay behind" agents within the UK had changed the situation profoundly. A new sabotage and operations organization (Special Operations Executive or SOE) was established in the UK in July 1940. Intelligence and secret operations groups began to assemble around the governments-in-exile and the Free French who set up in London the Bureau Centrale de Renseignements et Action (BCRA) under "Colonel Passy" (Andre Dewarin). Military intelligence department MI9 was charged with recovering shot-down Allied aircrew and other evaders from the occupied territories. MI6, recovering from the blows inflicted on its intelligence networks early in the war, began rebuilding its links with the occupied countries, seeking co-operation with all who might be induced to cppose the Germans, even among the Vichy security organizations.

In the absence of anything more suitable, the wooden-boxed Mark III (and later Mark XV) equipments were pressed into service in "unoccupied" France and elsewhere. Considerable success was achieved with these early clandestine links but, in September 1942, German intelligence negotiated a deal with the Vichycontrolled Deuxième Bureau that enabled them to put some 300 Abwehr, Gestapo (RSHA) and ORPO (Ordnung Polizei) men and women, furnished with false French identity papers, into the unoccupied zone to stamp out the growing amount of undercover radio activity. (ORPO was the branch of the regular German police force responsible for the mobile direction-finding units in occupied countries. Based on Lyons, Marseilles and Montpellier, these pseudo-French teams soon located and closed most of the early clandestine transmitters.)
But by that time, new compact transmit-ter-receivers which could be carried in small attache cases were becoming available, including the Special Communications Mark VII that was to prove one of the most effective of all sets for medium distance working. The Mark VII had an 0 -V-1 receiver, using two 6SK7 valves, and a 6V6 crystal oscillator, with miniature Morse key, in a compact metal-box container. There were no meters, but two pilot lamps gave assurance to the user that the oscillator was working and feeding a few watts of r.f. to a long-wire aerial Separate power units were provided for mains and 6 V battery (vibrator-type unit) The entire equipment, with aerial wire, earphone, mains adaptors, etc., fitted into a small attache case. When not in use, the valves were removed from their sockets and clipped into the lid, reducing overall size when the box was shut. Most of the

Special Communications MK VII transmitter/receiver
early Special Communications equipments used "straight" receivers, whereas virtually all other Allied clandestine radios used superhet circuitry, though often these receivers had such excessive "image" response that they became virtually unusable after dark.

Later the Whaddon factory produced a number of battery-operated equipments, such as the Mark XXI, using miniature valves and powered by layer batteries. With r.f. output in milliwatts, however, these equipments, when used with poor aerials and by inexperienced operators, tended to be far less effective than transmitters having rather greater output. There were also many "specials", including disguised sets and very simple transmitters that required no tuning.

Until mid-1942, SOE depended upon Whaddon for its secret radio links but, following considerable friction, was authorized to set up its own Signals Directorate for ' F ' Section only. It should be appreciated that Special Operations and Special Intelligence can never make good bed-fellows. Intelligence and escape organizations have no wish to have people blowing up bridges, factories or railways or attempting assassinations exept when these are in direct support of imminent military operations. For them, an apparently dormant population is more to be desired than an atmosphere of police raids, hostage taking and road and rail

searches. Relations between SIS and SOE/BCRA etc were at times extremely strained: later, SOE combined with the covert operations element in the American OSS to form "Special Forces". The Secret Service endeavoured to retain control over as much of SOE's communications as possible, as well as the links with its own agents and those of the Governments-inExile. Only the Poles and Czechs achieved a real degree of independence to handle their own traffic at the UK end, though the Danes and the Durch designed and built in occupied territory a considerable amount of their own equipment.

The SOE Signals Directorate established an equipment design team at St Albans (Inter-Services Research Bureau) and developed the much more widely known B2 and B2 Minor sets, the MCR1 miniature communications receiver, the 450 MHz "S-phone" for example though manufacture of these sets was in the hands of industry (Marconi, Philco (GB), etc.). The Poles were responsible for a series of compact "Polonaise" transmitter-receivers. Towards the end of the war, a number of American suitcase sets designed for the OSS (Office of Strategic Services, the forerunners to the post-war CIA) were also used in Europe, though many were intended for the longer distances of the Pacific and were rather too bulky for convenient use in the extremely dangerous urban conditions in occupied Western Europe (as indeed was the all-too-conspic-- uous B2 equipment).

B2 transmitter, developed for the Special Operations Executive by the Inter-Services Research Bureau at St Albans. It covered 3 to 15.5 MHz .

The SOE equipments were probably the most technically advanced of any. The transmitter section of the B2 series (eg Type 3 Mark 11) was an effective design with a crystal oscillator that could work on fundamental or harmonic (tritet) frequencies with a neutralized 6L6 power amplifier (with plug-in coils) and a pi-network impedance-matching network to feed the random-length aerial. It covered 3 to 15.5 MHz . The four-valve superhet receiver (two 7Q7, two 7R7 valve) had a 470 kHz i.f. With no r.f. stage the receiver suffered badly from "image" response. It all fitted into a large (and distinctive) suitcase and at about 15 kg was not something to be carried for long. A more valid criticism, however, is that the design was better suited to a fully trained or experienced radio operator than to many of the hastily-trained SOE F-section agents.

SOE also produced the more compact B2 Minor (for example, the Type A, Mark 111) that in size was roughly comparable to the Special Communications Mark VII. It similarly used a single-valve keyed crystal oscillator. The receiver was a superhet with regenerative i.f. at 1215 kHz . The complete transmitter/receiver, with mains/battery power unit, box of spare valves, aerial, headphone, neon tube for
testing, fitted in a $13 \times 4 \times 8$ inch fibre attache case and weighed about 8 kg . Both were significantly more rugged and operationally reliable than much of the standard wartime military communications equipment. Of the A Mk III, Sir Robert Telford, managing director of GEC-Marconi Electronics Ltd, has recently written: "It was used by SOE, SAS and others and was a miracle of miniaturization in relation to the component technology of the day. Furthermore, it was produced in no time at all!" It remains a moot point, however, whether it was operationally superior to either the simple Special Communications Mk VII or the Polish sets with miniature superhet and keyed 6L6 crystal oscillator as a "spy set" in Western Europe.
Over $25,000 \mathrm{MCR}$ "miniature communications receivers" were manufactured for SOE/Special Forces by Philco (GB), many being dropped "blind" into Europe. Apart from Special Communications equipment such as the battery-operated Mark XXI transmitter-receiver, the MCR was among the first British equipment to use miniature 1.4 V battery valves and layer-type h.t. batteries developed in the USA. Although a communications-type receiver, the MCR was intended primarily for listening to broadcast transmissions, including the so-called personal messages. In many areas large numbers of domestic receivers were removed by the occupation forces.

To be concluded.

Leap seconds

Dr Essen's article "Leap seconds" in your July 1981 issue left unanswered what has been puzzling me ever since I built my "Rugby controlled" clock a few years ago. From my observations it appears the "atomic time" has to be corrected by adding the leap second at fairly regular intervals of just over a year. Fixed intervals mean a calibration error, i.e. the definition of the "atomic time" could be improved upon. At a rough estimate $9,192,632,000$ cycles, instead of $9,192,631,770$, would result in a better agreement, i.e. the leap second would have to be added less frequently.

If the sidereal clock deviated randomly from an imaginary "ideal clock" the best definition of the "atomic time" would be such that would result in the leap second having to be added with random sign at random intervals. I realize the sidereal clock, apart from random variations, also slows down as the Earth's rotation slows down. But this makes things worse: the atomic clock is already too fast.

Why has the apparently not-quite-correct definition been adopted? Perhaps sufficiently accurate data were not available at the time. But Dr Essen quotes an uncertainty of ± 20 cycles, while one second in a year corresponds to approximately 290 cycles in $9.192 \ldots \times 10^{9}$. Andrew Romer
Bognor Regis
Sussex

The author replies:

Mr Romer's comments on my article indicate that several points were not fully appreciated and deserve to be emphasised. The first is that leap seconds are not corrections to atomic time The atomic second is the legal unit of time and is therefore constant by definition, as are the other fundamental units of measurement. Before it was adopted it was made equal to the existing astronomical unit in order to preserve the continuity of measurement, but is now used with its full accuracy and without any further reference to, or dependence on, astronomical measurements.

A scale of time could most logically be constructed by counting the number of seconds on a decade scale, a time interval being the number of seconds between two events; but it is a great convenience to use the atomic time scale, which is continuously transmitted, to give the time of day as well. The seconds are therefore counted using the traditional scales of 60×60 $\times 24$ giving units of minutes, hours and days and designating these intervals by distinguishing marks. The scale was set so that it gave correct astronomical time on January 1, 1958. The time of day, determined of course from astronomical measurements, gradually diverges from atomic time as the rate of rotation of the Earth varies. When the divergence exceeds 0.5 s the marker is moved along by 1 s so that the signals give the time of day directly with an error not exceeding about 0.7 s . These leap seconds must be removed for the measurement of true time interval.

Mr Romer also notes that leap seconds have, so far, all been in one direction. The explanation of this is that the atomic second was made as nearly as possible equal to the second of ephemeris time which was believed to represent
the average value of the sidereal second over more than 200 years. If the rate of rotation of the Earth varies in the future as it has done in the past, then, in the long run, leap seconds should be required equally in the two directions although they would be expected to be in the same direction for a number of years.

In retrospect it might have been more convenient if a different value had been chosen for the unit; but some leap seconds would have been required in any case. The value chosen is not of much importance. The important thing is that we now have an extremely convenient, precise and constant unit in which to measure frequencies and intervals of time including the periodicities of the bodies of the solar system. L. Essen

Radio Amateurs' Examination

Criticisms of the Radio Amateurs Examination which have appeared in recent issues of your journal may have caused concern to the many thousands of individuals who annually seek this qualification, and I shall be grateful if I might be allowed space to answer, in some detail, the points which your correspondents have raised.

The examination, according to Mr Pat Hawker in your May 1981 issue (page 54) is "a lottery conducted in secret". Nothing could be further from the truth. The papers are compiled, by a group of subject experts with extensive knowledge of the theory and practice of the subject and similar extensive experience in teaching courses leading to the examination, from banked items which have been written by highly competent subject experts.

The papers are compiled in accordance with the examination specification published by the Institute in the syllabus pamphlet, 765 - Radio Amateurs Examination, and with the set of sample items from the question bank. Both of these may be purchased from the Institute's Sales Section by anyone wishing to establish the facts. Furthermore, permission to include the specification and sample items in textbooks is freely granted to authors and publishers, as well as to the correspondence colleges who prepare so many of the students for examination.

All the items appearing in the RAE question papers have previously appeared in public because they are pretested on a sample of at least 300 candidates as part of the item validation process. These pretests take place shortly before the date of the May examination, and when pretest papers are despatched to centres the course tutors are specifically asked for comments: a special form for these is enclosed in order to encourage a response.

Mr Hawker also suggested that the marking may be 'suspect' - a most serious charge which I refute absolutely. The candidates' answer sheets are optically scanned and, before the scores are output to the results determination part of the computer system, a preliminary item analysis is produced. This allows the statistics for each item to be checked. Any items which have been commented upon by examination centres ure given special scrutiny and if a suspect item is discovered it is possible to instruct the computer to ignore it, thus effectively deleting it from the question paper.

This procedure was in fact activated in respect of two items in the December 1980 second paper, which had been made nonsensical as a result of printing errors. Whilst I accept that it is inexcusable for an examining body to have allowed such errors to slip through the checking procedures, nonetheless the question invalidation facility that I have described above, which was written into the multiple choice marking system for just such an eventuality, prevented any distortion of the results.

The other specific criticism of a question related to the following: "A standing wave meter is used to check the (a) stability of the oscillator (b) efficiency of the transmitter (c) resonant frequency of the aerial (d) operation of the aerat feeder." A subsequent check with members of the examination team indicated that recent technical developments might have made this item suspect.

In general, if an item is technically incorrect it becomes totally unacceptable. However, it is occasionally permissible, when framing items at a fairly low technical level, to make simplifications which, to the expert, would be unjustifiable. The statistics for this item gave no indication that the question was confusing to candidates:

	Facility Value $=48.7$		Discrimination Index $=.470$	
	No.	$(\%)$	LG $\%$	UG $\%$
A	99	(4)	8.7	0
B	327	(12)	18.3	4.9
C	986	(36)	52.6	16.3
D	1350	(49)	19.2	78.6

(The correct answer is D).

Note: UG and LG stand for upper group and lower group, corresponding to the top and bottom 27% of the candidates on the paper as a whole. The analysis indicates the response preferences of each of these groups in percentage terms.

This analysis clearly shows that the students who got this question right belonged mainly to the upper group, i.e. those who tended to get a high score on the paper, which would indicate a better knowledge of the Radio Amateurs syllabus.

The other major criticism which I should like to refute for the benefit of your readers is the suggestion by Mr Osborne in your August 1981 issue (page 34) that "there are doubts about the validity of the examination". Doubts there may be in Mr Osborne's mind but they are unjustified. The Radio Amateurs Examination is a high quality examination of proven reliability which is designed, constructed and validated in accordance with the principles of modern achievement testing. The two basic criteria used to judge the quality of any system of educational measurement are accuracy and validity.

The RAE is valid if it measures an appropriately balanced selection of the objectives of the scheme. This balance is determined by a panel of subject experts devising a precise test plan which determines the proportion of the rest related to each objective. Having an explicit plan means that the content balance of the tests can be kept constant from one examination series to another.

The accuracy of the RAE is checked by estimating the reliability coefficient for the test, i.e. an index of the proportion of the variation in
est scores which is due to true measurements as opposed to errors of measurement. A set of test scores with a reliability of 1 would be completely free of error; a set of test scores with a reliability of 0 would consist entirely of error variation. The reliabilities of the last five Radio Amateur Examinations are given below:

May 1981
December 1980
May 1980
December 1979

Licensing	
Conditions	Operating Practices
.81	.90
.76	.90
.79	.89
.77	.89
.82	.89

Note: the Operating Practices reliabilities are higher than those for Licensing Conditions because of the greater length of the paper

These values are at the upper end of the range of reliabilities achieved by British public examinations, and they indicate that the examination is capable of distinguishing between candidates according to their knowledge of the Radio Amateurs syllabus with a high degree of consistency and a minimum of error.
With regard to random guessing, application of the binomial theorem will inform anybody with access to a pocket calculator that the chance of achieving a high score by this means is very small indeed. For example, the probability of obtaining a score of 35 on a 60 item test is 3.30924×10^{-8}. (To calculate the probability of achieving a score of 35 or above it is necessary to sum the probabilities of achieving all the individual scores above 35.) What evidence there is suggests that random guessing is not a frequent or significant strategy used by candidates in the Radio Amateurs
Examinations. Many well constructed but difficult multiple choice items have facility values (i.e. percentage of correct responses) of less than 25%. If random guessing were a significant factor, facility values would be unlikely to fall below 25%.
I apologise for having written at such length but I felt it to be necessary to reassure your readers about the high quality of the Radio Amateurs Examinations conducted by City and Guilds. Prospective candidates should know that all the items are pre-tested, that they are checked before responses are finally marked, and that comments from examination centres are considered very carefully and acted upon if appropriate.
B. H. Henson

Controller, Education and Training
Services
City and Guilds of London Institute London WC1

C.b. frequency synthesis

The article on c.b: frequency synthesis in your November 1981 issue, in common with many advertisements for quartz crystals, fails to give full specifications of the quartz crystals mentioned; also the published circuit for the mixing synthesiser makes no provision for adjustment of the frequency of the crystal oscillator, f_{c}. As one input to the phase-locked loop is the frequency difference between the v.c.o. output and f_{c}, the performance of the synthesiser is directly affected by the accuracy and stability of f_{c}

The article does quote a frequency tolerance of 1.5 kHz for the British c.b system, but no further mention of tolerance or stability is made; there is no analysis of the factors affecting tolerance and stability, and,
astly, the frequency spectrum plot (Fig. 5) gives no scale information (amplitude change per Y -axis step, frequency change per X -axis step).
$\pm 1.5 \mathrm{kHz}$ in 27 MHz is $\pm 0.005 \%$ or 50 p.p.m. To achieve this stability over a temperature range of, say, $-5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ in the published circuit is no mean feat.

The above omissions suggest your vetting process for articles to be somewhat lacking; an early remedy in this case seems necessary in order to remove some tarnish from your reputation, the more so because the footnote to the news item "S.s.b mobile radio still promising" (p .67) indicates that someone on your staff is aware of the problem
P. W. Tomlinson

Data-Type Terminals Ltd
Cwmbran
Gwent

Linear power amplifier

As can happen even to Mr Linsley Hood (Letters, September 1981), your correspondent Mr Rice (Circuit Ideas, October 1981) has submitted circuits which are not new. The earliest reference which I know of is in a text book from 1964 and the next is from an article by Motorola in 1976^{2}. The text does not claim originality, perhaps because of some valve equivalent known to the authors, but Motorola did. Motorola actually announced a set of power transistors adapted to the arrangement of Mr Rice's Fig. 1 (BD364 to BD369, $25 \mathrm{amps}, 50$ to 80 volts V_{CE}) and considered using six of them per amplifier!

However, the main reason for my writing is to emphasise the virtues of the arrangement shown in Mr Rice's Fig. 2. Some years ago I used such an output stage in a circuit as indicated here (Fig. 1) and, subject to my poor experimental technique and equipment, found it to be flat to about 1 MHz at 20 volts r.m.s. into 6.8 ohms

Fig. 1

Fig. 2

The Darlington is in common-base mode, so it is free of thermal runaway problems, is limited in voltage by its $V_{C B}$ rather than its $V_{C E}$ giving an advantage with some types and is limited in frequency by its f_{α} rather than its f_{β}. I suspect that it could be operated beyond its f_{α} (possibly with due regard to safe operating area) because the phases of the currents and voltages related to the Darlington do not much matter to the current amplifier.
The current amplifier is operated at an almost low voltage, so is free of Miller effect problems and dissipates very little power. High frequency switches, such as BUY82/92 ($8-10 \mathrm{amps}, 20$ watts, 50 MHz) can be used, with cheap plastic drivers (ZTX650/750, $2 \mathrm{amps}, 1$ watt, 75 MHz), in a triplet as in Fig. 2, giving input impedance and current gain approaching f.e.t. values but without the enormous voltage drop of a power f.e.t. Such a current amplifier can operate at about 2 volts and dissipates about 7 watts delivering 100 watts into 8 ohms.
D. Rawson-Harris

Ferranti Ltd
Stockport
Cheshire
References

1. "Transistors, Theory and Circuitry", K. J. Dean, McGraw-Hill, 1964
2. Electron, 6th May, 1976

Cartridge alignment

In his article about the cartridge alignment problems in the October issue, Mr Gilson gives the impression that the offset angle must always be a compromise. This is true if the cartridge is fixed rigidly to the arm, but why must it be fixed rigidly to the arm? Why can't it be pivoted to make it self-adjusting like the bogies of a railway carriage? If this was done the offset angle would always be at the optimum at every point of the arc.

If the pivot was directly above the needle the cartridge might have a tendency to spin, and if this was so it could be contained by vertical fins hanging down from either side of the arm. If however the needle was forward of the pivot no fins would be necessary, although there would then be uneven friction at the pivot

Has anyone ever tried this?
S. Frost

Edinburgh 2

James Clerk Maxwell

To begin with I would like to congratulate you on Wireless World's presentation of theoretical and practical material. But what is more practical than a good or a lucky theory! In this respect I am in agreement with Mr Wellard's implicit or explicit opinion (March and May issues) that Maxwell's view of the world was and remains still one of the greatest human achievements. The e-m means of communication maintained between Earth and the Voyager spaceship, billions of miles away, was another vindication (if one more was needed) of Maxwell's theory. His theory of the Saturn rings does not prove equally successful, and to add insult to injury his statistics and the quantized statistics may be abandoned soon

I wish to bring to your readers' attention some unexpected results we obtained three years ago at the Electrical Test and Research Laboratories of the SA Railways. The problem concerned flashovers and burn-ups of (3 kV d.c.
operated) electric locomotives. Tests and investigations went on for more than a decade. At last in 1978, and during the course of what may be called data processing and data reliability testing, I struck upon the idea of manipulating the recorded surges as e-m occurrences, using the Maxwell equations. One thing leading to another, we found that the data could be modelled as a stochastic queue and subsequently that the cause of locomotive failure was the frequency, not the expected amplitude, of surges.
It appears that Maxwell's point of view will always present the same sort of questions to successful explanations. People asked then "but what is vibrating to produce the e-m waves?" and they ask now "but what is queueing?". The mathematical method is very difficult now, as it was then.
G. Xenoulis

Montreal
Quebec, Canada

Invention of stereo recording

I am afraid that both Bell Telephone Labs and
Blumlein were pre-empted by about a decade! (June, August, September Letters). US Patent No. 1520378, application date 3rd July 1920, granted 23rd December 1924 to Samuel S.
Waters of Washington DC, describes a mechanico/acoustic transducer for independent operation from each groove wall. Extract from Patent, lines 16 to 25:
"the synchronous and independent transmission of the various component parts of compound sound reproductions for natural blending in the ears of the hearer to more nearly approach the native and direct sounds, such as: transmission of the voice in song with an instrumental accompaniment, two voices, and various other combinations of sounds which it is desired to reproduce."

Claim 5 antedated by 30 years the couplers
between stylus and crystal used in stereo crystal

1,520,378 S. S. WATERS

APPARATUS FOR RECORDING AND REPRODUCINO SOUND
Original filed July 3. $1920 \quad 2$ Sheets-Sheet 2

pickups. Extract from Patent, lines 45 to 60: " 5 . In a graphophone, a pair of sound boxes arranged at right angles to each other, a stylus holder, means for supporting the stylus holder for universal pivotal movement, and one way flexible and opposite way rigid connecting members between the stylus holder and the sound boxes, said connecting members being arranged to operate at right angles to each other for operating the selected sound box when the stylus is vibrated in the other direction, said flexible connecting members being adapted to absorb the vibrations between the stylus holder and the unselected sound boxes to prevent operation thereof."
Alii sementem faciunt, alii metentem.
Stanley Kelly
Westgate-on-Sea
Kent

Dangers of low a.f. sound?

Mr Holliman must be carefui. He tells us in October letters that he has developed a loudspeaker which is flat to 4 Hz . He would be well advised to remember that the infrasound which his speaker is generating can cause sideeffects in some people in some conditions. The details can be found in chapter 3 of
"Supernature" by Dr Lyall Watson (p. 92 in the 1974 paperback). The side-effects include recklessness, euphoria, lower efficiéncy, dizziness, and nausea.

S. Frost

Edinburgh 2

Performance of dry batteries

My medium-wave dx receiver is powered by dry batteries to ensure portability and isolation from mains-borne interference. Frequent replacement of the six R20 (U2) cells is a result of 2 to 12 hours daily listening at 50 mA average consumption.

Battery life comparisons were made of Standard Leakproof (SP), High Power (HP), Power Plus (PP) and Alkaline (Alk) cells to establish which would be the most economical. Different characteristics for each type became apparent though there was little to choose between similar cells from various manufacturers, where available.

The PP batteries are a recent product, useful for situations requiring high cell voltage. My measurements indicated that they gave up about 95% of their energy before terminal voltage dropped below 1.1 V under load. Similar discharge voltages for the others were SP 0.7 V , HP 0.9 V and Alk 0.7 V . An observation of the PP cell not noted in other types is the sudden drop in output once voltage falls below 1.1 V , and when almost fully discharged they become unusually noisy.

All four types produced a total energy output closely proportional to normal retail price but only when conditions of use allowed the cell to become fully discharged.

Also of note is the fact that, independent of type, one cell will fail before others in a series chain. However, rather than replace the entire set it is prudent to check each with a voltmeter and exchange the weakest only, so that all cells can be fully discharged in rotation.

Taking my own case of six R20 cells $(9 \mathrm{~V}$ nominal) at 50 mA average drain and domestic usage, when compared to full set replacement at 6 V , single cell rotation extended useful lifetime by the following amounts: SP 50%, HP 20%, PP 5\%, and Alk 45% at average supply potentials of $6.6 \mathrm{~V}, 7.4 \mathrm{~V}, 7.8 \mathrm{~V}$ and 6.9 V respectively. All voltages were measured under load.

A study of manufacturers' discharge
characteristics should verify the possibility of these findings.

I have concluded: Individual replacement always saves money and produces a more consistent voltage supply. PP types offer sustained voltage to end of life but fail suddenly. Alk types give a long reliable life but at lower average voltage. HP types are excellent all rounders for most applications but SP types, having low average voltage and a requirement for long periods of rest, seem outdated.
On balance one gets exactly what one pays for!
G. S. Maynard

Newtownabbey
Northern Ireland

Gray to binary converter

I fear that J. J. Mouton (Circuit Ideas, October) has rather 'over-killed' the design of a Gray code to binary converter. The circuit given will work, but is based on the rather simplistic description of the code structure in his accompanying text, without any simplification of the combinational logic having been effected.
Four bit binary and Gray codes are shown in full below, and careful examination of them will demonstrate that only three Exclusive-Or gates are needed for conversion, as in the circuit shown. Expansion of this principle is possible to any number of ways; in each case the m.s.b. is common between the codes, and all other digits are connected in the manner shown. This conversion requires only four gates for a five bit code, as opposed to J. J. Mouton's ten.
Tom Gaskell
Haverhill
Suffolk

DECIMAL	GRAY	BINARY
No.	$D C B A$	D C B A
0	0 O 00	0000
1	00001	0001
2	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0010
3	0 0 0110	00011
4	0110	0100
5	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	0101
6	01001	0110
7	0100	0111
8	1100	1000
9	1101	1001
10	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	1010
11	1110	1011
12	1010	1100
13	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1101
14	1001	1110
15	1000	1111

Three other readers have written to make the same point: Dr P. J. Best of University of Aston Computer Centre, John R. C. Crabtree of Cambridge University Engineering Department, and Geraint Jones of Oxford University Computing Laboratory. We thank them for their letters. Mr Crabtree says that the simpler version is also easier to expand for more bits and Mr Jones that it suffers only slightly reduced fanout. - Ed.

Radio amateurs' licence

While I am in sympathy with at least some of the amendments to the amateur radio licence proposed by G8EOP et. al. (October letters), I would suggest that to use the introduction of a citizens' band service as reason for such changes is to be in danger of falling into the trap of confusing c.b. with amateur radio. Taxi drivers use v.h.f. f.m., and Merchant Navy personnel make dx "contacts" (telephone calls) using s.s.b. on h.f. Neither of these groups need to pass examinations, either technical or Morse code, but few amateurs would seriously suggest that this is a reason to change the amateur radio licence.

Surely the (legal) citizens' band service should be regarded in a similar way; with its type approved equipment and strictly limited power providing a personal communication service, rather than being a communications hobby. The present a.m. operation is rather different, but whatever the prosecution rate, let us not forget that it is illegal. Of course there will be nothing to prevent any licensed amateur from taking out a citizens' band licence as well - if nothing else it should prove useful for inter-tent communication during multi-station contests!
John Morris, G4ANB
Wantage
Oxon

Microchips and megadeaths

Tim Bierman writes in October Letters that he will not fight any wars, and asks "who will stand beside me?" I suggest that Wireless World publishes a monthly Bierman list, and although I am past fighting age I would like my name to appear on it.
History shows that as long as people are prepared to manufacture armaments and to enlist in armed forces, so long will incompetent and corrupt combinations of governments, arms manufacturers and militarists generate wars for the populace to fight

What is the process by which people have been so hood-winked? It is subtle brain-washing from the cradle upwards. The populace is fed with a stream of stories and military "glamour", roval weddings with street parties for the children; funerals, the Red Arrows displays, military tattoos, changing the guard, all intended to pull the wool over the eyes of the public regarding the real significance of these death-dealing organisations and to seduce the population to sacrifice their own and other people's lives.

The excuses given for these wars hăve been dynastic, religious, territorial and ideological. Ask the Russians and the Germans who "won" the last war. Who is "winning" in Lebanon, Israel, Iraq and Iran?

Our recent governments, of both left and right wings, have tied to us the USA against the Sovicts in a "fight to preserve democracy", but the post-war records of both super-powers are appalling. Our.first step should be to terminate the occupation of our country by forcign troops, then to examine our own "democracy" where nearly all power is inherited. We cannot have a law to enforce the compulsory wearing of seatbelts because it would be a "restriction of personal freedom", but what choice have we over whether our social services are cut to the bone in order to feed a machine which is most likely to render all social services redundant from some time in the near future.

What is the British government's real intention and confidence regarding multi-lateral disarmament? The defence (?) minister, Mr John Nott, has stated (BBC News, 1 p.m. 4th October 1981) that his plans for nuclear ballistic missiles cover the period up to year 2020!, so that he proposes to burden not only a generation yet unborn, but their children also.

The "experts" will retort that they know better, and that views such as these are hollow, but let us remember the pronouncements and results of previous experts. Remember the fiascos of the Boer War, the Battle of the Somme, the unsinkable Titanic, and in our own profession many expert opinions, acted upon by experts which have turned out to be wrong, but unfortu nately not fatal. Following our
"defence" experts may not be so innocuous.
Roy C. Whitehead
Sutton
Surrey

Frequency hopping

The recent news item and letter on frequency hopping (November Letters) have intrigued me. Yet how can we know when these concepts were being used, behind closed doors? My group at Packard Bell, Culver City, Los Angeles, in 1963 was heavily involved with frequency hopping, especially relative to tiny parametric amplifiers. In fact I still have one or two of the advanced company reports. But I'm sure the subject was being studied for years before I arrived on the scene.
At that time many other very "modern" concepts were being studied - 1. s.i., nuclear particle communications, optical computers, etc.
Patrick F. Howden
Truro, Cornwall

On tow

Is it coincidence that, in the issue of Wireless World containing a reprint of Arthur C. Clarke's 1945 article on satellite broadcasting (October 1981), you include an item about a low orbit satellite being towed on a very, very long length of cord by the NASA space-shuttle?

Could this perhaps be the first small step towards a geosynchronous satellite being connected by cables to the surface of the earth? (See Arthur C. Clarke's Fountains of Paradise). Impossible?
A. L. S. Harris, E17APB/G8ZNB

Ballynerrin
Co. Wicklow
Republic of Ireland

Back garden Earth station

The article "Development of a satellite terminal" by Mr S. J. Birkhill in your September 1980 issue prompted me to search for constructional articles on this subject. I have found a series which may interest other readers. The series describes an aerial and receiver for the 4 GHz band and includes details of a 4 GHz low noise amplifier developed by Mr Birkill.

The title is "Low cost backyard satellite iv. earth station" by Robert B. Cooper Jnr and the series was published in the USA in Radio Electronics magazine January to April 1980 inclusive. A booklet of reprints is available from Radio Electronics, Room 1101, 200 Park Ave South, New York, NY 10003, USA. The price is 10 US dollars including postage overseas. D. M. Lauder

Barnet, Herts

${ }_{\text {woid }}$ Amateur Radio

RFI

With a tally of 5800 complaints of 27 MHz a.m. interference from "premature" c.b. operation in September, it seems likely that the whole subject of radio frequency interference (r.f.i.) and electromagnetic compatibility (e.m.c.) will receive more attention in the UK as it has in the USA, though with some disturbing overtones for radio amateurs.
For many years, with transmitter interference cases far less widespread, it has become standard practice in many countries to put the blame squarely on the transmitter where the interference is due to harmonics or other spurious out-ofband radiation, but to consider the receiver (or audio equipment) at fault where the trouble is due to breakthrough, overloading, intermodulation in the receiver, etc.

But the FCC, in looking at possible new "standards", appears to be ready to depart from this pragmatic but logical system. David Sumner, K1ZZ, of ARRL has warned: "The FCC's three-year-old inquiry into r.f.i. is heading in what could be a very dangerous direction for Amateur Radio and other long-time users of radio spectrum some of the options apparently under consideration would place burdens on the operators of radio transmitters that are simply indefensible on technical grounds, and the choice of options apparently is to be based on economic, not engineering considerations". In brief, ARRL are worried that responsibility for resolving interference problems in the USA, regardless of technical fault, would be shifted to the transmitter operators. There have already been several FCC decisions (not relating to amateur radio) where authorizations to use specific frequencies are being withheld solely because of possible interference to domestic equipment of which the design is thought to be inadequate from an e.m.c. viewpoint.

Microwaves

WoAR (May 1981) described the pioneer experiments of Clive Elliott, G8ADP (now G4MBS) in using rain scatter to receive 10 GHz amateur signals over non-optical paths. The very heavy rainstorms in September encouraged a number of enthusiasts to listen from home locations, with interesting results. For example 1 mW transmissions from G4KNZ in Slough were heard by G3YGF, Oxford. G4KNZ received the higher power tranmissions from G3JVL near Southampton. G3FYX, near Bristol, heard G4MBS near Alton, Hampshire. Such results seem bound to encourage further rain scatter trials on

10 GHz , though these were unusually heavy rainstorms, from sites far less favourable than the more usual portable hill-top operations.

The Home Office has authorised the RSGB, on behalf of local groups, to establish $10 \mathrm{f} . \mathrm{m}$. repeaters in the 1.3 GHz band. These will have a 6 MHz separation between incoming and outgoing transmissions with a 1750 Hz access tone and horizontal polarization. Unlike existing 144 and 432 MHz UK repeaters, they will radiate continuous carrier when not being used, providing a beacon to show mobile operators when they are within range. Initially, channel spacing will be 75 kHz (with a.f.c. in the repeater receiver) but this will be reduced later to 25 kHz (RMO 1297.00 MHz out, 1291.00 MHz in; RM3 1297.075 MHz out, etc). Repeaters will be located at: GB3AA Alveston, Avon; GB3BH Watford, Herts; GB3BW Brentwood, Essex; GB3CP Crawley, West Sussex; GB3LN Greenwich, London; GB3MC Horwich, Lancs; GB3PS Barkway, Herts; GB3RU Reading, Berks; GB3MM Bloxwich, West Midlands; and GB3WX Brighton, Sussex.

A 10.4 GHz beacon transmitter, GB3MLE, has been installed at the 900 ft level of the IBA's concrete television tower at Emley Moor, near Huddersfield, West Yorkshire, using a 40 mW Gunn oscillator.

Future outlook?

The American FCC has released a 69-page document described as a "working paper" reflecting its author's opinions only but including radical suggestions for "Deregulating personal and amateur radio". Proposals include: (1) code-free v.h.f. licences for technically qualified people (i.e. comparable with British Class B licence); (2) amateur operation to be permitted on some c.b. frequencies (including 27 MHz and proposed 900 MHz band); (3) expansion of h.f. operating privileges for "technician" class licences; (4) systematic study to encourage a more technically-innovative amateur radio service; (5) elimination of some repeater and third-party restrictions.

If one had to draw up a New Year list of problems that need to be tackled in the UK, the following might well be included: (1) The need to come to terms with a c.b. movement that may vastly outnumber licensed amateurs; (2) The urgent need for a fresh look at the Radio Amateurs' Examination - its scope, its aims, its conduct - and whether these are in practice meeting modern requirements; (3) Encouragement of British manufacture to reduce the virtual dependence of the hobby on Japanese industry - and to encourage more home-construction; (4) To look afresh at
frequencies available to Class B licensees and to introduce a "novice" licence to revitalise interest in h.f. c.w.; and (5) to make further concerted efforts to overcome the "repeater abuse" that has done so much to lower the reputation of amateur radio.

Jack' Anthony, G3KQF, who is chairman of the RSGB's education committee, is to be installed as the Society's 1982 president at Derby on January 9, so it seems likely that rather more priority will be given by RSGB to questions relating to the RAE - several people have commented that the Society's journal was one of the very few British publications (concerned with amateur radio that carried no adverse comment on the December 1980 examination.
In the USA, the ARRL appear to be encouraging amateurs to experiment with "advanced" modes such as spread spectrum and data packet switching. Contacts have already been made using these modes, though it remains to be seen whether such techniques are really suitable for amateur operation. An attempt a few years ago by ARRL to promote a complex narrow-band-voice-modulation technique was not a success.

In Brief

The new booklet "A newcomer's guide to f.m. simplex and repeater operation on two metres" (WoAR November 1981) is available from Mrs P. A. Spenceley, G8LZA, 67 Downswood, Tattenham Cor ner, Epsom Downs, Surrey, KT18 5UJ, price 75 p including postage; cheques etc. payable to UK FM Group (London). It is a non-profit making venture in support of club funds . . Signs of a relaxation of attitudes towards amateur radio in China include recent limited permission for the American Boeing Employees society to operate a demonstration station in Beijing (Peking) including contacts with former Chinese amateurs in Shanghai ...Although French repeaters are subject to considerable abuse REF has warned its members not to attempt themselves to track down the offending stations
Band Plan recommended by IARU Region 1 Division for the new 10,18 and 24 MHz bands: 10,100 to $10,140 \mathrm{kHz}$ c.w. only; 10,140 to $10,150 \mathrm{kHz}$ c.w./r.t.t.y. (s.s.b. on 10 MHz only for emergency traffic); 18,068 to $18,100 \mathrm{kHz}$ c.w. only; $18,100-$ $18,110 \mathrm{kHzc}$ c.w./r.t.t.y.; 18,110 to 18,168 kHz phone/c.w.; 24,890 to $24,920 \mathrm{kHz}$ c.w. only; 24,920 to $24,930 \mathrm{kHz}$ c.w./r.t.t.y.; 24,930 to $24,990 \mathrm{kHz}$ phone/c.w. .. From about 15 to 20 firms manufacturing c.b. equipment in Australia in the mid-1970s there are now only five.

PAT HAWKER, G3VA

Digital storage and analysis of speech

"Pitch extraction is undoubtedly one of the messiest areas of speech analysis"

by lan H. Witten, M.Sc., Ph.D., M.I.E.E., University of Calgary, Canada

Abstract

This final article discusses two ways of avoiding the substantial computation involved in the cepstral method of pitch extraction. Autocorrelation analysis - the standard way of finding fundamental frequency in non-speechlike soundscauses difficulty with speech because of the proximity of the lower formants to the pitch region. Though also computation-intensive, its calculations are more amenable to simple special-purpose hardware than the cepstral ones and can be speeded up. Time-domain featureextraction methods are the most economical way of detecting pitch periods; they can be tuned to give good results though the process can be difficult and unreliable.

In many ways pitch extraction is more inportant from a practical point of view than formant estimation. In a voice-output system formant estimation is only necessary if speech is to be stored in formantcoded form. For speech synthesis from phonetics or text formant extraction is unnecessary, although general information about formant frequencies and formant tracks in natural speech is needed before a synthesis-from-phonetics system can be built. But knowledge of the pitch contour is needed for many different purposes. For example certain methods of compact speech coding rely on the pitch being estimated and stored as a parameter separate from the articulation. Significant improvements in frequency analysis can be made by performing pitch-synchronous Fourier transformations because the need to window is eliminated. Many synthesis-from-phonetics systems require the pitch contour for utterances to be stored rather than computed from markers in the phonetic text.
Another issue closely bound up with pitch extraction is the voiced/unvoiced distinction. A good pitch estimator ought to fail when presented with aperiodic input such as an unvoiced sound and so give a reliable indication of whether the frame of speech is voiced or not.

The method of pitch estimation using the cepstrum (part 4) involves a substantial computation and has a high degree of complexity, though implemented properly it gives excellent results because the sourcefilter structure of the speech is fully utilized.
pitch of a periodic signal corrupted by noise is to examine its short-time autocorrelation function. The autocorrelation of a $\operatorname{signal} x(n)$ with lag k is defined as

$$
\phi(k)=\sum_{n=-\infty}^{x} x(n) x(n+k) .
$$

If the signal is quasi-periodic with slowly varying period, a finite stretch of it can be isolated with a window $w(i)$, which is zero when i is outside the range ($0, n$). Beginning this window at sample m gives the windowed signal $x(n) w(n-m)$, whose autocorrelation, the short-time autocorrelation of the signal x at point m, is

$$
\phi_{\mathrm{m}}(k)=\sum_{n} x(n) w(n-m) x(n+k) w(n-m+k) .
$$

The function exhibits peaks at lags which correspond to the pitch periods and multiples of it. At such lags the signal is in phase with a delayed version of itself, giving high correlation. The pitch of natural speech ranges about three octaves, from 50 Hz in low-pitched men to around 400 Hz in children. To ensure that at least two pitch cycles are seen, even at the low end, the window needs to be at least 40 ms long, and the autocorrelation function calculated for lags up to 20 ms . The peaks which occur at lags corresponding to multiples of the pitch become smaller as the multiple increases because the speech waveform will change slightly and the pitch period is not perfectly constant. If signals at the high end of the pitch range, 400 Hz , are viewed through a 40 ms autocorrelation window, considerable smearing of pitch resolution in the time domain is to be expected. Finally, for unvoiced speech, no substantial peaks of autocorrelation will occur.

If all deviations from perfect periodicity can be attributed to additive white Gaussian noise then it can be shown from standard detection theory that autocorrelation methods are appropriate for pitch identification. Unfortunately this is certainly not the case for speech signals. Although the short-time autocorrelation of voiced speech exhibits peaks at multiples of the pitch period, it is not clear that it is any easier to detect these peaks in the autocorrelation function than it is in the original time waveform! To take a simple example, if a signal contains a fundamental and inphase first and second harmonics,

$$
x(n)=a \sin 2 \pi f n T+b \sin 4 \pi f n T+c \sin 6 \pi f n T,
$$

then its autocorrelation function is

Autocorrelation methods

The most reliable way of estimating the

There is no reason to believe that detection of the fundamental period of this signal will be any easier in the autocorrelation domain than in the time domain.

The most common error of pitch detection by autocorrelation analysis is that the periodicities of the formants are confused with the pitch. This typically leads to the repetition time being identified as $T_{\text {pitch }} \pm T_{\text {format 1 }}$. Fortunately there are simple ways of processing the signal nonlinearly to reduce the effect of formants on pitch estimation using autocorrelation.

One way is to low-pass filter the signal with a cut-off above the maximum pitch period, say 600 Hz . However formant 1 is often below this value. A different technique which may be used in conjunction with filtering is to "centre-clip" the signal, as shown in Fig. 22. This removes many of the ripples associated with formants, but it entails the use of an adjustable clipping threshold to cater for speech of varying amplitudes. An alternative which achieves much the same effect without the need to fiddle with thresholds, is to cube the signal or raise it to some other high (odd!) power before taking the autocorrelation. This highlights the peaks and suppresses the effect of low-amplitude parts.

Speeding up autocorrelation

Calculating the autocorrelation function is an arithmetic-intensive procedure. For large lags it can best be done using fast Fourier transform methods, although there are simpler arithmetic tricks which speed it up without going to such complexity. And with the availability of analogue delay lines using charge-coupled devices autocorrelation can now be done effectively and cheaply by analogue sampled-data hardware.
Nevertheless some techniques to speed digital calculation of short-time autocorrelations are in wide use. It is tempting to hard-limit the signal so that it becomes binary, Fig. 23(a), thus eliminating multiplication. This can be disastrous because hard-limited speech is known to retain considerable intelligibility and therefore the formant structure is still there. A better plan is to take centreclipped speech and hard-limit that to a ternary signal, Fig. 23(b), to simplify computation.
A different approach to reducing the amount of calculation is to perform a kind of autocorrelation which does not use multiplications. The "average magnitude difference function", defined by

$$
\phi(k)=\sum_{n=-x}^{x}|x(n)-x(n+k)|,
$$

has been used for this purpose. It exhibits. dips at pitch periods instead of the peaks of the autocorrelation function.

Feature-extraction methods

Another possible way of extracting pitch in the time domain is to try to integrate information from different sources to give reliable pitch estimates. Several features of the time waveform can be defined, each of which provides an estimate of the pitch period and an overall estimate can be obtained by majority vote. For example, suppose that the only feature of the speech waveform which is retained is the height and position of the peaks, where a "peak" is defined by the simplistic criterion -

$$
x(n-1)<x(n) \text { and } x(n)>x(n+1)
$$

Having found a peak which is thought to represent a pitch pulse, one could define a "blanking period" based on the current pitch estimate within which the next pitch pulse could not occur. When this period has expired the next pitch pulse is sought. A stringent criterion should be used at first for identifying the next peak as a pitch pulse, but it can be gradually relaxed if time goes on without a suitable pulse being located. Figure 24 shows a convenient way of doing this: a decaying exponential is begun at the end of the blanking period and when a peak shows above, it is identified as a pitch pulse. One big advantage of this type of algorithm is that data are greatly reduced by considering peaks only - easily detected by simple hardware. Thus it can permit real-time operation on a small processor with minimal special-purpose hardware.

Such a pitch pulse is exceed. ingly simplistic and will often identify the pitch incorrectly. However it can be used in conjunction with other features to produce good pitch estimates. Examples of such features are

- peak height
- valley depth
- valley-to-peak height
- peak-to-valley depth
- peak-to-peak height if greater than zero
- valley-to-valley depth if greater than zero.
The features are symmetric with regard to peaks and valleys. The first feature is the one described above and the second works in exactly the same way. The third feature

Fig 24

Fig 25

Fig 26

records the height between each valley and the succeeding peak while the fourth uses the depth between each peak and the succeeding valley. The purpose of the final two detectors is to eliminate secondary though large peaks from consideration. Figure 25 shows the kind of waveform on which the other features might incorrectly double the pitch but that the last two features would identify correctly.
In one implementation of this scheme the last two pitch estimates from each feature detector were included as well. For each feature the present estimate was added to the previous one to make a fourth and the previous one to the one before that to makee a fifth. All three were added together to make a sixth, so that for each feature there were six separate estimates of pitch. The reason for this is that if three consecutive estimates of the fundamental period are T_{0}, T_{1} and T_{2}, and if some peaks are being falsely identified, the actual period could be any of

$T_{0}+T_{1} \quad T_{1}+T_{2} \quad T_{0}+T_{1}+T_{2}$

It is essential to do this because a certain feature can occur more than once in a pitch period - secondary peaks usually exist.

Six features each contributing six separate estimates make 36 estimates of pitch in all. An overall figure can be obtained from this set by selecting the most popular estimate within some specified tolerance. The complete scheme has been evaluated extensively and compares favourably with other methods. But the procedure seems to be ad hoc, as are many other successful speech parameter estimation algorithms! It is not easy to predict what kinds of waveforms it will fail on and evaluation of it can only be pragmatic.

When used to estimate the pitch of musical instruments and singers over a sixoctave range (40 Hz to 2.5 kHz), instances were found where it failed dramatically. This is of course a much more difficult

Continued on page 49

For many years I have rearned a modest income designing electronic equipment. Recently it has become apparent that the fundamental basis of the theory of electronic circuitry has changed during the last decade, and that my techniques are not only out of date but in some respects totally wrong.
This shattering discovery is the result of interviewing numerous applicants for jobs in the fields of design, development and testing on behalf of an organisation whose interests lie in the application of analogue and digital electronics to a wide range of physical problems. The applicants have all btained 1st, 2nd or 3rd class Honours uegrees in electronic engineering during the last six years, and the majority have been employed in industry for at least one year. The jobs offered demand a reasonably sound knowledge of electronic circuitry at various levels.

During the interviews certain standard questions were asked, and it was the consistency of the answers to these which first made me realise that a New Electronics has arisen, and has obviously been taught for some years at many seats of learning. As yet no text books have appeared; I am striving to remedy this deficiency, but the problems are formidable and in view of the long time it takes to get a book into publication I thought that Wireless World in its 70th year of publication should have the honour of being the first to publish a few of the laws of the New Electronics.

First Law: The V_{BE} of a conducting silicon transistor is always either 0.6 or 0.7 volts. It does not vary with temperature or' collector current.
Second Law: The $V_{\text {BE }}$ of a conducting germanium transistor is 10 volts, or is unknown.
Third Law: In the circuit of Fig. 1, the ripple voltage is either about 10 mV or can-

not be calculated, even approximately. The ripple frequency may be 25 , 50 or 100 Hz .
Fourth Law: The impedance looking into the emitter of a transistor connected in grounded-base and passing 1 mA of collector current is either 'very low' or 'very high' or somewhere in between, depending on the current gain.
Fifth Law: Transistors do not possess a mutual conductance; in fact the term is unknown in the New Electronics.
Sixth Law: R-S and D type flip-flops are the only ones known in the New Electronics, the J-K variety is apparently of no importance.

Seventh Law: This, the most important of the laws, is best described as the ultimate dèvelopment of Heisenberg's Uncertainty Principle.
Eighth Law: All electronic circuit problems can be solved by a phase-locked loop and a sprinkling of monostables.
It will be seen that the New Electronics has made life much easier for the designer. For example, the First Law implies that the design of drift-free amplifiers is now a trivial matter, since $V_{\text {BE }}$ does not vary with temperature. Thanks to the Third Law we may reduce the size of our reservoir capacitors by a considerable factor. If the resulting circuits do not work, we can always blame the Seventh Law.
The following electronic pantomime sketch has been repeated five times in the last twelve interviews with only minor variations (refer to Fig. 2):

Fig. 2
H.J.: "Given that the op-amp has a very high gain and that its input impedance is infinite, what is the voltage gain between X and Z ?
Interviewee: " R_{1} / R_{2} "
$H . \mathcal{J}$:: "So if R_{1} goes o/c the gain becomes infinite?"
Int. (after a pause): " R_{2} / R_{1} "
H.f.: "Nearly, but not quite right."

Int.: "I think it's all right."
H.f.: "If the input is made more positive, what happens to the output?"
Int.: "It goes negative."
H.f.: "So?"

Int.: " $-R_{2} / R_{1}$. I always forget the minus sign!"
H.J.:" "What is the input impedance at X?"
Int.: " R_{1} "
H.f.: "Why?"

Int.: "Because Y is a VIRTUAL EARTH."
H.J.: "What is the input impedance at Y?"
Int.: "Very high."
$H .7$.: "But you just said it was a virtual earth."
Int.: "Oh, very low."
H.f.: "How low?"

Int.: "About 0.1 ohm."
H.7.: "Why 0.1 ohm? Are all op-amps identical?"
Int.: "I think that's what the book said."
H.f.: "Come now, what governs the impedance at Y?"
Int.(after a long pause): "The gain and R_{2} ".
H.7.: "Right; now, how do you calculate the impedance at Y ?"

Int. (after a very long pause): "I can't remember the formula."
H.f.: "How about Ohm's Law?"

Int.: ???????
$H . f$.: "Apply a small voltage V to the point Y and see what current it produces." Int.: No reply.
H.f.: "Well, where does the current flow?"
Int.: "Into the op-amp and out at the positive input."
$H \cdot \mathcal{J}$:: "Suppose that the op-amp has an infinite input impedance?"
Int., (after a titanic struggle): "Through R_{2}."
H.f.: "Right; what is the voltage at Z?"

Int.: "AV."
H.f.: "Don't forget the minus sign! Now, what is the voltage across R_{2} ?"
Int.: "V + AV."
$H .7$.: "So the current produced by V is . . ?"
Int.: " $(V+A V) / R_{2}$ "
H.f.: "And the input impedance is . . . ?"

Int. (triumphantly, having at last seen the light): " $R_{2} /(1+A)$ "

H.⿹.: "Yes."

The writer sometimes feels like one of the original members of the cast of a longrunning farce; he himself is word-perfect and can almost, but not quite, predict what the newcomers are about to say.

The answers to another question follow a fairly standard pattern:
H.7.: "What practical project did you do for your Final year?"
Int. (with much flapping of hands): "Rhubarb rhubarb . . . PHASE-LOCKED LOOP rhubarb rhubarb D/A CONVERTER rhubarb rhubarb ... ACTIVE FILTER . . . r rhubarb rhubarb . . . RAM . . . rhubarb rhubarb PHASE-LOCKED LOOP . . . A/D CONVERTER . . . r rhubarb rhubarb . . . ROM SHIFT REGIS. TER rhubarb rhubarb rhubarb . . ." H.f. (feeling slightly dizzy and proffering a sheet of foolscap): "Can you draw a block diagram?"
This usually results in a spidery postagestamp sized drawing in the middle of the paper.
H.f.: "What was the purpose of the device?"
Int. (after a long pause): "I'm not quite sure."
H.f.: "Did it work?"

Int.: "No, I never managed to finish it/No not very well/It worked all right on paper."

From these and other answers to questions one suspects that much of the teaching of the New Electronics is done by the Victorian method of the standard question and the standard word-for-word answer, which occasionally gave rise to such delights as:
Q. What organs are contained in the abdomen?
A. The abdomen contains the stomach and

Walsh functions

Generation and application

the bowels, which are a, e, i, o, and u.
E finita la commedia. What in the Name of Blumlein are the universities and colleges doing awarding degrees to people like this? They have no understanding of electronics, or, for that matter, elementary electrical theory. Kirchhoff, Thévenin and Norton are merely names which, if remembered at all, were 'done in the First Year'! Not one of the last twelve interviewees recognised the simple symmetrical voltage doubler of Fig. 3, or could even

hazard a guess as to its mode of operation. In Fig. 1 more than half gave the ripple frequency as 50 Hz , and the capacitor voltage as 10 V when the load current was zero. When asked to draw the general shape of the frequency response of the

network of Fig. 4, none succeeded without a considerable amount of coaxing or goading, or recognised it as a Wien bridge network. Does this suggest a lack of interest in technical magazines?

Lest it should be thought that the interviewees were overawed by the company's products, or the interviewer, or were suffering from 'interview nerves', or were uniformly unintelligent, it must be stated that (a) hardly any had taken the trouble to find out the nature of the company's products, (b) the interviewer is a kindly soul who bends over backwards to find just one topic with which the interviewee is familiar, (c) all, without exception, were extremely self confident, although they ranged in appearance and manner from the bright-eyed and bushy-tailed to the near-moronic and bushy-faced, with almost all possible gradations and variations. Few of them took the trouble to fill in the application form completely or legibly, and more than half came to the interview without pen or pencil. Yet many of these people are supposed to be anxiously seeking jobs, having been made redundant, or are looking for their first job.

The last member of this pathetic group, when asked what his ambitions were, said "Oh, to do a couple of years' design work and then move on into Management".

Not in this company, laddie!

by Thomas Roddam

The first part of this article, under the title "The function of functions" was an introduction to the nature of Walsh functions through
telecommunications history (December issue). In this concluding part the author shows how Walsh functions may be produced electronically and discusses some of their uses.

Before we consider how we can use the Walsh functions we need to be able to produce them. Sine waves were easy, though not as easy as they looked, because a spring and a weight, an inductance and a capacitance (-ance, because the inductance could be a gyrator and a capacitor, for example), with some energy top-up, were all that we needed. We will be making Walsh functions with logic circuits, so we first need to agree to use the values 1,0 instead of $1,-1$. If you like, we always add wal $(0, \theta)$, and divide by 2 in amplitude.
A general way of making Walsh functions is to begin with the Rademacher functions. These are the 2^{n} harmonics of a sine wave, squared right off, and are shown in Fig. 4. Combining these together by means of Exclusive-Or circuits, in the way shown in Fig. 5, we shall get a family of Walsh functions. Obviously, once the need is there, we shall be able to buy a chip to do the whole job. An alternative method, if you want one Walsh function at a time, a kind of Walsh tone generator, is to use a 7415016 -line to 1 -line multiplexer with a 7493 four-bit binary counter and a clock drive, Fig. 6. The 16 lines can be taken to switches, and the counter steps the system round the inputs and gives an output to line which is just the inverted
input. Any pattern can be set up on the switches, any sequency can be chosen by choosing the clock frequency. This type of generator seems to be more attractive for getting a feel of the Walsh functions, because you do set the thing up yourself.

Having now particularly described and ascertained the nature of the Walsh functions and the manner in which they are to be produced, what we want to know is, what good are they? "What is the use of a new-born baby, Sir?" The Walshites react to the sight of a sine wave by singing Anything you can do, we can do better! But what do we use sine waves for?

The first use is analysis and classification. An obvious application for Fourier analysis is determining what makes the note of a flute sound different from the same pitch on a clarinet. From this we go

Fig. 4. Rademacher functions $r_{n}(\theta)$.

Fig. 5. A Walsh function
generator based
Rademacher functions.
on to synthesize these sounds using a bank of oscillators. The use of Fourier analysis in directional aerial design may be less familiar to many readers, though it can play an important part in side-lobe control. Even less familiar will be the application to crystallography. The reflection patterns produced by a beam of x-rays echoing off the surface of a crystal were first analysed by long and tedious calculations of Fourier transforms, with hours, days of arithmetic to each photograph.
Walsh funtions are orthogonal. We can produce the Walsh-Fourier transform of some functions $f(\theta)$, in the form $f(\theta)-a_{0}$ wal $(0, \forall)+a_{1}$ wal $(1, \theta)+a_{2}$ wal $(2, \theta)$ by using the fact that

$\int_{-1 / 2}^{1 / 2}(\theta) \mathrm{wal}(i, \theta) \mathrm{d} \theta$

$=a_{0} \iint_{-1 / 2}^{1 / 2}(0, \theta)$ wal $(i, \theta) \mathrm{d} \theta+$

Fig. 6. Circuit and truth table of the 74150 integrated circuit, a one-of-sixteen data selector performing parallel-to-serial data conversion. As shown at the top, the 16 lines can be taken externally to switches, on which any pattern may be set up.

Truth table

\times	
$\cdots \rightarrow-\sim 0000 \rightarrow-\sim-0000 \sim-\sim-10000 \sim \sim-\sim 0000 \times 0$	
$000 \times 0000000000000000000000000000$ -	
$\times \times \times-0 \times m$	
$\times \times \times-0 \times \times \times \mathrm{m}$	
$\times \times \times-0 \times \times \times \times \times \mathrm{m}$	
$\times \times \rightarrow 0 \times \times \times \times \times \times \times \times \mathrm{m}$	
$\times \times \times-0 \times \mathrm{m}$	
$\times \times \times-0 \times \mathrm{m}$	
$\times \times \times-0 \times \times{ }^{m}$	
$\times \times \times-0 \times \mathrm{m}$	
$\times \times \times-0 \times \infty$	
$\times \times \times-0 \times \times{ }_{0}$	
$\times \times \times \times \times \times \times \times \times \times-0 \times \times{ }_{0}^{m}$	
$\times \times \times \times \times \times \times \times-0 \times \text { ! }$	
$\times \times \times \times-0 \times \times$	
$\times \times-0 \times \times{ }_{\infty}^{m}$	
$-0 \times \times{ }_{q}^{m}$	

(b)

Fig. 8. Treating the Walsh function as a carrier. At (a) are two orthogonal binary carriers; at (b) a basic multiplexing system using binary carriers.
$a_{i} \int_{-1 / 2}^{1 / 2}$ wal $(1, \theta)$ wal $\left(i_{n}, \theta\right) \mathrm{d} \theta \ldots$
$a_{i} \int_{-1 / 2}^{1 / 2}$ wal (i, θ) wal $(i, \theta) \mathrm{d} \theta \ldots$
and, as the Walsh function
is orthogonal, all the terms vanish except

$$
\begin{aligned}
& \int_{-1 / 2}^{1 / 2} \mathrm{wal}(i, \theta) \mathrm{wal}(i, \theta) \mathrm{d} \theta=1 \\
& \text { so } \\
& a_{i}=\int_{-1 / 2}^{1 / 2}(\theta) \mathrm{wal}(i, \theta) \mathrm{d} \theta
\end{aligned}
$$

At any instant wal (i, θ) is either 1 or - 1 . If we integrate using either $f(\theta)$ or $-f(\theta)$ at any instant, the integral is a_{i}, and we have a great supply of circuits - single-ended to push-pull conversion - to produce $-f(\theta)$. So it becomes switch and integrate.

Now multiply a_{i} and wal (i, θ). This sequency filtering has filtered out one component of the waveform $f(\theta)$. In many communication systems we work with sampled waveforms. The clock frequency used in sampling forms an upper limit to the Walsh functions needed. A sequency

Fig. 7. This display shows a diffraction pattern (taken from Fig. 4, page 43, of Wireless World Jurie 1981), but looks just like the display of a frequency analyser.
violin; we know roughly what sound the spectrum represents. The Walsh spectrum of an image waveform has some subjective characteristics. The wal $(0, \theta)$ term is the average level, the greyness; the wal $(1, \theta)$ is an indicator of symmetry about the centre line, or lack of it, and, some large positive values of $\operatorname{wal}(2, \theta)$ and $w a l(6, \theta)$, with a negative value for wal $(4, \theta)$, would indicate a strong central element, black or white according to the coding.
In the kingdom of the blind, the oneeyed man is king. This short summary of Walsh functions has offered you one bleary eye. But remember that Erewhon was a kingdom of the blind, and vision, however poor, is not necessarily popular.
The material on Walsh functions relies very heavily on two volumes of transactions produced by Hatfield Polytechnic which have told me far more than I want to know about the theory and applications of Walsh functions.

Digital storage and analysis of speech

 continued from p45problem than pitch estimation for speech where the range is typically three octaves. In fact for speech the feature detectors are usually preceded by a low-pass filter to attenuate the myriad of peaks caused by higher formants, and this is inappropriate for musical applications.
Additional features can assist with pitch identification. The above features are all based on signal amplitude and could be described as secondary features derived from a single primary feature. Other primary features can easily be defined, for example one can use a centre-clipped waveform and consider only the peaks rising above the central region. Further primary fearures that have been used are the time width of a peak - the period for which it is outside the clipping level - and its energy outside the clipping level. The primary features are shown in Fig. 26. Secondary features can be defined based on these three primary ones and pitch estimates made for each one.

Eight line operation with a 2716 character generator

by K. Padmanabhan, Ph.d.,M.I.E.E., and A.P. Senthilnathan

Part one described a display aid which enabled 4 lines of sixteen characters to be shown on a conventional 5 MHz oscilloscope. The design uses a 68101 K display memory which can store 128 words, i.e. 8 lines of 16 characters. The modifications necessary to display eight lines are shown in Fig. 1 and listed in Table 1.

Further expansion is possible if the display memory is increased and a faster character generator is used to avoid flickering on the c.r.t. The original design used a surplus MK2002 character generator to

Table 1

1. Connect pin 10 (B3) 74157 to A6 instead of pin 15/7475.
2. Disconnect pin 11 (A3) from pin 10 (B3) and connect to pin 13/4518.
3. Disconnect pin 15 (Reset) from pin 13/4518 and connect to pin 14 (04).
4. Add 75 k summing resistor and connect pin 13/4518.
5. Reduce 47 k summing resistor to 22 k .
6. Reduce 10 k feedback resistor on CA3130 to 5 k .
7. Change three series capacitors pin 2 or 555 to two 3 nF and one 10 nF in series.
8. Disconnect 1 nF capacitor pin $2 / 555$ and connect to pin 5.
9 Reduce capacitor across pins 2 and 3/4011 to 5nF.
9. Adjust potentiometer pin 10/4011 so that 16 characters fit across the c.r.t.
reduce the cost, however, a single rail 2716 e.p.r.o.m. can be used instead and the interfacing components omitted, see Fig.
10. Table 2 gives a hex list for programming the first 512 bytes of the 2716 to provide upper case characters.

Table 2

0	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	7 C	7E	FE	7C	FE	FE	FE	7 C	FE	00	OC	FE	FE	FE	FE	7 C
1	FE	7 C	FE	62	80	FC	E0	FE	C6	E0	86	FE	C0	00	40	02
2	00	00	00	28	24	C6	OC	20	00	00	28	10	02	1.0	02	60
3	7C	22	46	82	18	E4	3C	80	6C	62	00	02	10	28	82	40
4	82	90	92	82	82	92	90	82	10	82	02	10	02	40	60	82
5	90	82	90	92	80	02	18	04	28	10	84	82	20	00	80	02
6	00	00	E0	FE	54	C8	72	40	38	82	10	10	2 C	10	00	08
7	8A	42	8A	82	28	A2	52	8E	92	92	00	2 C	28	28	82	80
8	3A	90	92	82	82	92	90	82	10	FE	82	28	02	30	10	82
9	90	8A	98	92	FE	02	06	18	10	1 E	92	82	10	82	80	02
A	00	F2	00	28	FE	10	9A	40	44	44	7C	7 C	00	10	00	10
B	92	FE	8A	92	48	A2	92	90	92	92	22	00	44	28	44	86
C	AA	90	92	82	44	92	90	92	10	82	FC	44	02	40	0 C	82
D	90	84	94	92	10	02	18	04	28	10	A2	00	08	82	80	02
E	00	00	E0	FE	54	26	64	00	82	38	10	10	00	10	00	20
F	A2	02	92	AA	FE	A2	92	A0	92	94	00	00	82	28	28	90
1																
0	78	75	6C	44	38	92	80	5 E	FE	00	80	82	02	FE	FE	7C
1	60	72	62	8E	10	FC	E0	FE	C6	E0	C2	00	06	FE	40	02
2	00	00	00	28	48	C6	OA	00	00	00	28	10	00	10	00	C0
3	7 C	02	62	44	08	9 C	8C	C0	6C	78	00	00	82	28	10	60
4	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
5	00	00	00	00	00	00	. 00	00	00	00	00	00	00	00	00	00
6	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
7	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
8	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
9	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
A	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
B	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
C	00	00	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00
D	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
E	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
F	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Literature Received

A detailed description of the techniques empioyed in the manufacture of thick-tilm hybrid circuits is prowided by a handbook, now available at 11.25 from Neohm (UK) L.d, Italia House, 99 Windsor Road, Oldham, Greater Manchester.

Two brochures from GenRad deal with the $1795-$ B logic test system and the 1746 and 1799 digital analogue test systems, and the 2270 incircuit test cyupment. Copics can be had from GenRad Lid, Norreys Drive, Maidenhead. Berkshire.

WW 401
Components for optical communications sl.e.ds, p-i-n diodes, laser diodes and complete transmitter'receivers are descibed in a new bilingual catalogue from Thomson-CSF. Division Micruende, 101 Bevelevard Murat, 75781 l'aris. Cedex 16 France.

WWi+02

Power supplies producing up 10 lkW , including IEEE 488 types, are characterized in the new Kepo catalogue, which deals with o.em. models using switching and ferroresonant stabilizers. There is also a handbook section which presents 40 pages of the theory of design and application of this equipment. The book is ottainable from Techmation Lotd, 58 Edgware Way, Edgware, Middx. HA8 8JP. WW 403

Leaflet from Pascall Electronics Systems Lid details the company's activities in the production of i.f. amplifiers, tilters, phase-sensitive detectors and data acquisition for communications and navigation. It can be had from Pascall at Hawke House, Green Street, Sunbury-onThames, Midds. Tw' 16 6RA.

W W'40 +

Dial Search is a list of broadcasting stations in Europe. in the long, medium and short (b.h.f.f.m.) bands. It assumes the use of an ordinary domestic radio with a built-in aetial. and provides lists of frequency, wavelength and direction from a spor near Easthourne for each station (there is a map of the stations listed. which carries bearings and explains a method of adapting it to a different lwation). The book
custs $£ 1.00$ by pons from Genge Wilcox, 9 Thurrock Close. Eastbourne. East Sussex BN20 9NF.

WW 405

The instrument division of the American Gould company (used to be Advance has a catalogue of test and measuring gear, intluting oscilloscopes (real-time and storages, logic analysers signal sources, counters, meters, ele. The address of the company is Gould Instruments Division. Koebuct Road. Hainaut, Essex, 1G6 3UE

WW 106

Semiconductors. microprocessors and computer boards, connectors and a range of measuring instruments are among the 3000 or so products listed in the new catalogue from Abacus Electronics PLC., Kennet House, Pembroke Koad, Newhury. Berks RG13 1BX.

WW407

Operational and cectrometer amplifiers instrumentation modules. power supplise, panel mounting instruments and other products for temperature measurement and control are the province of Ancom, who can supply a catalngue from Devonshire Sireet, Cheltenham, Gl 50 3LT

Very thin films

You may remember having seen 'marbled' paper. Colours are floated on the surface of water and when a sheet of paper is passed through the surface, the colours cling to the paper to make patterns rather like the veins in marble, hence their title. Between the world wars, Langmuir and Blodgett used a similar technique to deposit thin films, one molecule thick, onto solids. The films so produced are now called Langmuir Blodgett films and a group of academics and industrialists, under the auspices of the Science and Engineering Research Council, led by Professor Gareth Roberts of Durham University, are investigating the electrical properties of such films.

In order to get uniform films one molecule thick it is necessary to use special techniques: The material used to form the film needs to be 'amphipathic' - each molecule has one end attracted to water and the other end is 'fatty' and is repelled by water. When they are floated, such molecules 'stand' on the water surface and a solid dipped into the water can be coated with a monomolecular, oriented layer of the film. It is necessary to achieve a perfect film, unlike the marbled paper, without any holes or gaps, and this may be done by replenishing the supply of the molecules as they are used with a 'feedback' mechanism. Multi-layers can be built up, and the materials for the layers can be varied.

Applications for the films are many. For example, the success of silicon-based microcircuits is due largely to the fact that the silicon oxidizes rapidly and forms an insulating coat. Such a coat may be applied to other semiconductors by the film technique and Langmuir Blodgett films may also be used to insulate between layers in microcircuits. As the films are composed of organic molecules they are likely to respond more positively to external stimuli than inorganic materials and may be incorporated into transducers to measure changes in temperature, pressure or to sense the presence of gases. Organized layers may be built up using the Langmuir Blodgett technique which would be
difficult or impossible by any other means. This ability is likely to be exploited in future investigations of high temperature superconductors, organic semiconductors, conducting polymers and magnetic storage devices. Other potential applications are in the areas of integrated optics, where the ability to define accurately the thickness and refractive index of a material is important, and in electron beam lithography. Lipid molecules with their fatty and polar regions are suited to the technique and it is possible to build bilayer structures of lipids similar to those found in life. This incorporation of proteins and other constituents of living cells into the lipid layers allows accurate modelling of biological systems. There are further implications in the transducer field. If biological molecules such as antibodies and enzymes are incorporated within insulating films, it is then possible, for example, to propose field-effect devices for monitoring immunological response.

A large number of meetings and symposia are being organized for the researchers and interested bodies in this field and a large international conference on Langmuir Blodgett films is to be held at the University of Durham in September 1982.

Digital audio cassette player

JVC has announced the successful development of a p.c.m. cassette deck, which they claim is the world's first. The deck is designed for audio recording and playback and for the playing of pre-recorded cassettes. The deck offers the advantages of a cassette deck, such as convenient operation, portability and low cost with low distortion and high dynamic range. JVC have achieved a linear recording density of 46.3 K b.p.i. with a two-way, four tracks per channel recording system with service tracks for random access, programme indication and other functions. The p.c.m. deck uses metal tape with a high coercive force. The tape transport has a direct drive capstan motor combined with a newly developed tape-tension servo system; it operates at a tape speed of $7.1 \mathrm{~cm} / \mathrm{s}$ with a playing time of 60 minutes. Despite the high recording density and the sampling rate of 33.6 kHz , the 14 -bit system uses a bi-parity error correction to ensure high stability.

A JVC spokesman told us that they have no immediate plans to launch the deck as they are hoping to establish standards and avoid some of the multiplicity of methods used for some other equipment, for example video discs.

Prospero continues to prosper

Engineers and scientists of the Royal Aircraft Establishment, Farnborough, met late last October at the Lasham, Hants, tracking station, to celebrate the 10th year in orbit of the only experimental/communications satellite to have been built and launched entirely by British technologists. Prospero was launched by a Black Arrow rocket from the Woomera range in South Australia

on October 28, 1971, and although intended to last for a year it is now expected to remain in orbit for a nother 140 years. This is due to its high elliptical orbit, which varies between 983 miles (1582 km) and 340 miles (547 km) above the earth.
The satellite's purpose was to carry out experimental work needed for the development of common services such as telemetry, data handling, telecommand and power switching, as well as the testing of ultra-lightweight solar cell arrays, optical and thermal surface finishes and hybrid circuit techniques. An additional role was that of micrometeoroid detector - this was sponsored by the University of Birmingham.

Modules designed for Prospero have been used in the technological satellite Miranda (X4), the X-ray astronomy satellite Ariel 5 (UKS) and the gamma and X-ray astronomy satellite Ariel 6 (UK6).
Several British companies contributed to the Prospero project, with British Aerospace (then British Aircraft Corporation) being responsible for the main structure and Marconi Space and Defence Systems for electronic aspects. The Solartron Electronic Group designed and assembled the automatic checking and control centre equipment, while Spembly Lid provided operational support for the control and ground station, which, although of "dated" appearance, continues to receive meteorological data from the Tiros " N " series and two weather satellites in geostationary orbit - Meteosat 2 and Goes East. This data is transmitted to the BBC television weather service by way of telephone line and the Meteorological Office at Bracknell, Berks.

Black Arrow rocket launching the Prospero satellite in Australia.

Towards a cashless society - part 2

We used the above heading in October 1981 when we reported the use of a telephone pay card. We have heard now of two further examples of 'plastic money'. STC is to supply 400 electronic card authorisation terminals for use with American Express cards. When presented with a card the terminal can check instantly whether the card is on the lost or stolen list; it can read the customer's account number from the magnetically encoded stripe on the back of the card and can transmit the details of the transaction direct to the American Express computer via the public telephone network, which is connected automatically. The whole process takes seconds. The success of a similar system in the United States where over 5,000 terminals have been installed, has led to the introduction of the system into Europe.

A very ambitious scheme comes from France where the Laboratoires d'Electronique et de Physique appliquée (LEP), with Philips Research, Radiotechnique-Compélec and Philips Data systems, is designing an electronic payment card for making purchases. Within the confines of the international credit card dimensions, including a thickness of only 0.76 mm , they have fitted a microprocessor and an e.p.r.o.m. It also has magnetic strips for identification and registration so that it can be used for drawing cash automatically from a bank. The card may also carry information about the user and incorporate a passport photograph if required.

The payment card serves as a chequebook and has been designed for an experimental project in which the French banks and postal and telecommunications authorities are cooperating. The user can periodically arrange for his bank to enter an amount into the card's memory; this money is then available for making payments. A shop would have a terminal which could show the customer how much money is left on his card, the shop assistant could key in the amount of the transaction which is deducted from the card. The memory on the card can supply the details of the account number and bank so that the money can be paid directly to the shop.

In order to get the microcircuits into the

The electronic chequebook, the same size as a credit card contains a microprocessor and an e.p.r.o.m. The customer inserts it into a terminal while the assistant enters the transaction. The price is deducted automatically from the card land from'the customer's bank account!l.

thickness of a credit card that is also pliable, it was necessary to mount them on polyimide film by a method developed at LEP. The film contains all the interconnexions, and the microcircuits on the film are sandwiched between the top and bottom p.v.c. layers of the card. Cut-
outs in the upper surface of the card permit connection to the contact areas on the polyimide film to permit write-in and read-out. This work refers only to laboratory experiments at the moment and does not imply production or marketing of the system in the near future.

Bus pact

Four major electronics companies; Philips/Signetics, Mostek, Motorola and Thomson EFCIS, have announced their support of a microcomputer interconnect structure, the VME bus. The companies have agreed on a detailed specification for the bus, which is to be implemented on p.c.bs and backplanes meeting the DIN41612 and 41494 mechanical standards. This board form, popularly known as Eurocard, is an accepted standard in Europe and features industrial quality pin and plug style connectors as well as a highly modular format.

The VME system is based on Motorola's Versabus structure that has been employed in MC68000-based microcomputer system products. The other firms are all alternative sources for the 16 -bit 68000 microprocessor unit. The VME bus is not limited in application to the

68000 -based systems but has been designed with this microprocessor in mind.

The features of the VME bus include the ability to support both single and multiprocessor systems; supports 32 -bit architecture; allows data transfers up to $20 \mathrm{Mbytes} / \mathrm{s}$; incorporates non-multiplexed asynchronous data transfer protocol; permits bus transfer requests via four lines with different priority levels; supports centralized or distributed system interrupt handling with seven interrupt priority levels; supports block mode transfers; supports read-modify-write cycle, as required for safe semaphore usage; provides reliability features including bus error, system fail and a.c. fail indicators.
The VME bus is deemed to be particularly suitable for industrial process control, intelligent terminals and digital network communications.

Video centre proposed

If the architects, Avery Associates, have their own way, they could be building a temple to the great god 'Video', in the heart of London, on the vacant site next to the National Gallery, Trafalgar Square. The building would have the title of National Video Archive and Visual Communication Centre - Video Viscom for short. It is planned to use the electronic technologies to bring together the electronics industry and the public in "a unique synthesis of scientific, cultural and entertainment facilities"

To give Avery their due, they have paid particular attention to the design of the building so that it will complement the surrounding buildings. It would be set back to create a new public plaza, dominated by a monument to the British
source would be displayed and it is thought that foreign governments or tourist boards would finance such a service to promote their countries.
The rooftop restaurant (7) and terrace (8) overlooking the square, offer rest and relaxation from all that viewing.

A cut-away view of the proposed Video Viscom; a video archive and video trade centre with many other uses. The inset shows its position in Trafalgar Square, London, next to the National Gallery (B) with views of St Martins-in-the-Fields (C) and Nelson's Column (E).

Trans-Pacific cable

An undersea telecommunications cable, eight thousand nautical miles long, will link Australia and New Zealand to Canada, by way of Norfolk Island, Fiji and Hawaii. It will provide 1380 simultaneous telephone circuits. Called Anzcan the system is scheduled to be designed, manufactured and installed by August 1984.
The whole Anzcan project will cost $£ 160$ million and the major part of the order has been won by Standard Telephones and Cables (STC) London, against international competition. It is thought to be the largest single export order ever received by the British telecommunications industry. STC Sydney are to manufacture almost half the 1,000 electronic repeaters which will be spaced at regular intervals along the cable, and with this project and a new factory at Liverpool, New South Wales, Australia joins the league of those few nations able to manufacture these complex devices.
The Nippon Electric Company will be responsible for the link from New 7ealand to Norfolk Island.

Emmy for Marconi

At their annual awards ceremony, the National Academy of Television Arts and Sciences, in the USA, recognised the pioneering work done by Marconi in tv cameras. The award was given for "Engineering innovation in the design and development of a system for the automatic alignment of colour television studio cameras". This refers to the development of the Marconi Mark VIII colour tv camera, introduced in 1970, which was the first to include the automatic registration of the three camera images, which need to coincide to an accuracy of less than one part in a thousand. The adjustment of colour balance is very easy; the camera is exposed to a reference white in the scene immediately prior to the actual transmission since this setting is a function of the lighting and may vary with the time of day on outside broadcasts.
television pioneer J. Logie Baird. It is planned that there would be monitor screens high up on the front of the building to attract the public.
Inside the entrance foyer (No. 3 in the picture) a visitor is loaned a pair of headphones with a miniature remote control and receiver unit. With this he can select the sound track of the programme showing on any of the large video screens around the hall (4). Some of the screens can provide information such as catalogues of the contents of the centre and it would be possible for the visitor to select programmes. A two-way transmitter in the hand-held control unit would allow him to contact a control centre or advice bureau. It is also planned that there would be a wide variety of video games to play.
The centre would be a meeting place for the video industry; conference halls and meeting rooms would be available. It would also be their showroom, and they woud be able to display and demonstrate their wares. The building is designed to be flexible so that the displays may be changed or new techniques demonstrated without disrupting the running of the centre.
At the far end of the hall (5) there would be galleries of study carrels, provided for users of the National Video Archives. They would have access to a very large data base of films or video programmes. It is envisaged that the material would all be stored on video discs in some remote warehouse linked to the Viscom Centre by a fibre optic land line with an automatic storage and retrieval system.
Meanwhile, in the main hall, there would be a large number of small screens which could display programmes received direct by satellite from around the world. Information as to the

Radio London gets slanted

A new antenna has been supplied to the BBC by CSA (C\&S Antennas Ltd) as part of the equipment to be installed at Crystal Palace when the Radio London transmitter moves there from Wrotham. Each of the 16 elements has a slot radiator at a fixed angle 45° to the reflector screen. This gives a slant polarised transmission, adding a vertical component to the usual horizontal transmission. The vertical component will make it easier for car and portable radios to receive the station and the Crystal Palace transmitter is the first to offer slant polarisation from the BBC who intend to extend the system to all their v.h.f./f.m. transmitters, as
part of their modernisation plans. There has been some criticism of slant polarisation as the vertically polarised part of the signal may be more prone to multipath distortion (see Pat Hawker, Wireless World April 1981, pp. 83-85 and the letter from D. P. Leggatt in June 1981, p. 45).

Derek East, head of transmitter capital

 projects department at the BBC discussing the aerials to be installed at the Radio London transmitter at Crystal Palace with Cyril Whitebread, managing director of CSA, who supplied them.

Sharp bring you the MZ8OB. A machine that offers you functions previously only associated with more powerful,more expensive computers; that gives you versatility to handle a huge range of software and hardware applications in scientific, business and personal use.

The MZ80B opens up a new world of graphic display potential, more flexible data storage and retrieval, and ease of operation.

Here is the computer from the future. Available today.

Stunning Graphic Display.

Seeing is believing. The large-screen, high-focus, green-face display incorporated in the MZ8OB gives you highresolution graphics of 320×200 dots.

An additional graphic RAM can be added which allows another 320×200 dot resolution pattern to be displayed.

This dual high-resolution graphic ability is especially useful for simulating and displaying a dynamic picture. It can display 40 characters $\times 25$ linesor 80 characters $\times 25$ lines via software switching.

In addition there are facilities for full, on-screen editing, reverse video, partial scrolling and a full range of graphic symbols.

Character and Graphic Printer:

This fast, quiet printer will reproduce your graphic displays and, of course, printout upper and lower case letters and symbols. A tractor/friction feed version is also available.

Data Starage/retrieual.

The MZ80B has a remarkable memory 64 K of RAM. And that constitutes all the memory area, giving flexible storage of any computer language and its saftware. The cassette deck is electromagneticallycontrolled, with a data transfer speed of $1800 \mathrm{bits} / \mathrm{sec}$ combined with a unique
facility to makegramme search and retrieval super-fast.

A typewriter-style keyboard incorporates characters and symbols plus a numeric key-pad and ten user-definable keys for fast and simple operation.

BASIC is, of course, provided with Z-80 Assembler Packages, PASCAL and a BASIC compiler.

Floppy Disk Drive.

A twin Floppy Disk Drive unit can be added which will give you 560 bytes of storage on double-sided, double-density disks.

Comprehensive Dacumentation.

Each MZ8OB comes complete with a full set of documentation including an owners' manual giving full circuit diagrams, a monitor reference manual and programming manuals.

WW - 029 FOR FURTHER DETAILS

Interfaces

RS-232C and IEEE Interfaces are available from January 1982 allowing the MZ80B to communicate with scientific instruments and other peripherals.

[P/ $\mathrm{II}^{\circ} 2.2$

$C P / M^{*}$ is also available making a wide range of packages immediately available including wordprocessing, financial modelling, data base management to mention but a few. $C P / M$ * also increases the disk capacity to 680 K .
(CP/M- is a Trade Mark of Digital Research Ltd).

Sist, and foremost
 SHARP ELECTRONICS (UK) LTD., COMPUTER DIVISION.

SHARP HOUSE, THORP RD, NEWTON HEATH, MANCHESTER M1O9BE. TELEPHONE: 061-2052333
 outmore?

the Sharp MZ80B computer.
Name
Address

Tel
| To: Sharp Electronics (UK) Ltd.. Computer Division, \mid Sharp House, Thorp Road, Newton Heath,

TELETYPEASR33 I/O TERMINALS

Fromf195

Fully fledged industry standard ASR33 data terminal. Many features including: ASCII keyboard
and printer for data $1 / O$, auto data detect circuiry. and printer for data $1 / 0$. auto data detect circuitry.
RS232 serial interface. 110 baud, 8 bit paper tape punch and reader for off line data preparation and ridiculously cheap and reliable data storage. Sup.
plied in good condition and in working order. plied in good condition and in working order
Options: Floor stand $\mathrm{E} 12.50+$ VAT

DIABLO S30 DISK DRIVES

 Another shipment allows us to offer youeven greater savings on this superb 2.5 MB (formatted) hard disk drive. Two types are available both fully refurbished and electronically identical, the only difference is packs.
S30 front loador, pack change vis front door $£ 550$ + vat
S30 fixed, pack change via removal of top cover $£ 295$ + va
$+\&-15$ PSU for 2 drives $£ 125+$ va $£ 20+$ vat carriage $\&$ insurance on drives £15.00 + vat fully DEC RK05, NOVA, TEXAS compatable further info on

NATIONALMA1012LED

CLOCK MODULE

* 12 HOUR
- ALARM
$+50 / 60 \mathrm{HZ}$
The same module as used in most ALARM/CLOCK radios today, the only difference is our price! All $3^{\prime \prime} \times 1^{\prime \prime}$ and by addition of a few switches and $5 / 16$ volts AC you have a multi function alarm clock at a fraction of cost. Other features include snooze timer, am pm, alarm set, power fail indicator, flashing seconds cursor, modulated alarm output etc. Supplied brand new with full data only
$£ 5.25$

MAINS FILTERS

Manutacturers ideal for curing those unnerving hang ups and data glitches, fit one now and cure your pros. Suppression Devices SD5 A1 5 amp 6.95

MUFFIN FANS

 two vatuges. 110 V.AC. 5505 tpp 90 OR 240 VA .C $\mathrm{f} 6.50+\mathrm{pp} 90 \mathrm{p}$. DIMEMSIONS 4%
I I \& CTRONIC
COMPONE NTS

Dich our massive bulk purchasing programme which enables us to bring you the best possible bargains, we have thousands of I.C.'s. Transistors.
Relays Cap's P C B is Sub assemblies, Switches etc. etc. surplus 10 our requirements. Because we don't have sufficient stocks of any one item to include in out ads, we are packing all these items
into the "BARGA IN PARCEL OF A LIFETIME" into the "BARGAIN PARCEL OF A LIFETIM!
Thousands of components at giveaway prices! Thousands of components at giveaway prices!
Guaranteed to be worth at least 3 times what you pay plus we always include something from our ads for unbeatable value!! Sold by weight
 10ids $£ 11.75+p p £ 2.25 \quad$ 20ids $£ 19.99+p p £ 4.75$

ICL TERMIPRINTER

 300 BAUD TERMINALS

REDUCED TO CLEAR

NOW
ONLY £80
+CAR
+VAT
Made under icence from.the world famous GE Co
The ich Termipionter is a small atractive unit with so many teatures it is impossibibe to list them in the space avaiable! Brief spec. as follows: RS232
serial inveltace 152 serial intertace. swichabie baud rates 110,150 .
300,130 coss. unoer and lower case corespond. 300,130 cpss). upper and lower case cor respond
ence type face. standard paper, almost siient run ening, torm feed electronic tat settings, suied tor
niter
word worures prossor appications plus many more

condition. no guaranteo.

THE PRINTER SCOOP OF THE YEAR

 THE LOGABAX ZBO MICROPROCESSOR CONTROLLED LX180L MATRIX PRINTERAmassiviv bull purchase enabbes us to offer rou this cost of over $£ 2000$. Utilising the very latest in microprocessor technology, it features a host of facilities wth all electronics on one plug in P.C.B. Ju study the specification and you will instantly realise meats all the requirements of the mosi exacting fes sional or hobtyist user.

MPY
 EXPERIMENTORS +5y+12v-t2v+24v Powne suppir

HIGH SPEED DATA MODEMS

Once agpin we are very phassed to diter bis supert Power

 Supply Unit and hope to sectasfy mose of our provious customers who wive derapointed when we sedol art due to domend last time they were advatised!!! These unite mepriver have well been mase for your lab., they consist of a semianchord chaseis measuing $180 \mathrm{~mm} \times 120 \mathrm{~mm} \times 350 \mathrm{~mm}$ contimin als scon ectrorics to oine the tolowing fly regustand and short circuit prool outputs of$+5 v @ 2$ amps $D C \quad+12 v @ 800 \mathrm{ma} \mathrm{DC}$ $-12 \mathrm{v} @ 800 \mathrm{maDC} \quad+24 \mathrm{v}$ @ $350 \mathrm{ma} D \mathrm{CC}$
 which mey be sminsesd to give a host of other valarges. AI auputs ars brough oun to the front panal via miniatra jack soctaks and ame also duplicwad at the rase on short fiving leads. Units accapt standerd 240v mains input They are a GPO and may have miner scratctios on the fromit pariek. they are sold untested but in good intemal condition. $£ 16.50$ each $+£ 2.50 \mathrm{p}+\mathrm{p}$ complote with circuit and componant lest Iransformer guarantued. HURRY WHILE STOCKS LAST!!
 no cose pean sac lor to GPO, tha Madom 12 is smactronous Madem for use an CATEL 2412 swese a
 modivion 2400 bud hil duptex 800/1200 stendy,
 stous indication CMOS Bchndogy, moduler conativction angine coes own
$£ 185.00+£ 9.50$ cariege + VAT
"Purnition may be maind tor connaction of PO lines

PERTEO

PERTEC TAPE DRIVES track $6840-75-25 £ 175.00$ VAT
9 track
VAT

Phone for more details

STANDABD FUNCTIONS \star Full ASCII character set \star Sta
RS232 $N 24$ serial interface -7 xtal controlled baud rates up
to 9600 \& 194 characters per line \& Parallel interface \# Handshakes on serial and perailel ports $\begin{gathered} \\ 4 \\ \text { Type fonts, italic script, double width. italic large, standard } \# \text { Internal bufter }\end{gathered}$ construction \star All software in 2708 eproms easily reconfigured for custom tonts atc. All this and more, not refurbishad but BRAND NEW At Dnly $\mathbf{£ 5} 55$ +vat Also available identical to above LESS Electronics Card $\mathbf{£ 5 0}+\mathrm{VAT}$ + carriage and ins. $\mathrm{El} .00+\mathrm{VAT}$ OPTIONAL EXTRAS . Lower case $\mathrm{f} 25.00 \leqslant 16 \mathrm{~K}$ butfer $\mathrm{f} 30.00 \star$ Second tractor for simultaneous dual forms $£ 85.00 \star$ Logabax maintenance. P.O.A

$8^{\prime \prime}$ FLOPPY DISK DRIVES

Yet agnin we've rnanaged to secure a

 of prices es yet unheerd ofll And as with mon of our purcheese can past these 7200 gin direct to youll The DR 7100 a 7200 a" floppy disk drives have many BUS configuretion with full deisy che in vis internol jumpers 77 trecks on the wingle sided 7100 give upto 0.8 MB of
deta and 154 tracks on the 7200 double sided drive give a masiva 1.6 M8 of deta. Many other features wuch as soft or hard wetoring. IBan or ANSI standerds, only $240 \mathrm{VAC},+24$ \& +5 v dc power requirements end our unbolievable prices make these drives esnip.
Suppliad BRAND NEW and boxed completo with user manual:

Full technical menual evailable $\mathbf{\Sigma} 7.50$ write or phone for more devails.

LAMBDA
 8 —

DEC TU60 TWTN CASSETTE DRIVE

LMC C5V
5 V 10 AMP
PSU, 240 V
NEW $£ 45+$ VAT
$+£ 2.50 \mathrm{P} \mathrm{\& P}$ PDPI 105 MINII/O MEMORY, CPU ETC. $£ 450$ + VAT LSIII 32 K BYTE CMOS MEMORY CARDS $£ 295$ +VAT RKO5 MEMOREX DISK PACKS
(12 soctor) $\mathrm{E} 20.00+$ Var
LSIIIO2 PROCESSOR CARD $£ 275.00$ + VAT

- All types of. DEC equipment purchased for cash " .

Dept. W.W. 6466 Malfort Rd., Thornton Hesth,
MAIL ORDER Croydon, Surrey. Tel: 01-609 7702 or'01-689 6800 NFORMATION
Uniess othermise stated all prices inciusne of V.a.T. Cash with order. Minimu
order value $£ 2.00$-Prices and Postage quoted for UK only. Where post and packing nor indicated plasse add 80 p per order. Bona Fida account orders same day where possible. 3% surcharge on Accoss and Barclaycard orders

SOFTY 1 \& 2
Software development system invaluable tool for designers, hobbysts. etc. Enables open heart surgery on 2716.2708 atc. situ whilst displaving contents on domestic TV receiver. Many er features. $\mathrm{E1} 15$ + carr. + VAT. Optional 2716, 2716 Softy 2 for 2716/2732 E169+VAT 9'VIDEO MONHTOE

	SOFTY 1 \& 2 Software development system invaluable tool for designers, hoobysts, etc. Enables open heart surgery on 2716.2708 etc. Blows, copies, reads EPROMS or emulates EPROM/ROM/RAM in situ whilst displaying contents on domestic \mathbb{N} receiver. Many pther features. E115 + cart. + VAT. Optional 2716, 2716 Function Card £40 + VAT. PSU £ $20+£ 1.50$ carr. + VAT. Softy 2 for 2718/2732 E169+VAT Write of phone for more detals.
	g'MyDEO
	Ex-squipment $9^{\prime \prime}$ Motor of Videg Monitors 75Ω composite input, lested but
	SEMICONDUCTOR GRAB BAGS'
	Mixed Semis amazing value contants include transistors, digital. linear, 1.C. ss. triacs, diodes, bridge racs., atc. atc. All devices guarantaed brand new full spec with manufacturer's markings, fully gutranteed. 50+ bay EZ.95 100+bad $£ 5.15$ TLL 74 Serios A gigentic purchase of m "ecross the board" range of 74 TTL saries I.C. 's anables us to otfer $100+$ miked "mostly TTL" grab begs at a price which two of three chips in the bag would normally cost to buy. Fully güranteed at I.C.'s full spac. $100+\mathrm{E} .90200+£ 12.30300+£ 19.50$

K H , KEYBOARDS

Straight from the U.S.A made by the world famous R.C. A Co, the VPG00 Series of cased freestanding keyboards meet all require ments of the most exacting user, right down to the price Utilising the latest in switch technology. Guaranteed in excess of 5 milhon operations. The keyboard has a host of other features including full asch impervious to liquids and dust ITL or CMOS outputs, even an on-board tone cenerator tor keyprass feedback and a 1 year full R.C.A backed guarantes.
vpern 1 bit fully coded output with deloyed
strobe, etc.
VPill Same as VPEON with numeric ped
VPsor Seriel, RS232, 20MA and TTL output, with
6 selactable Baud Rates.
VPsis Same as VPGOS, with numeric pad,
Plug snd cable for VPGOn, VPGII $\mathbf{E 2 . 2 5}$
Plug for VP606, VP676 $\quad \mathbb{E} .10$
Post, Packing and Insurance.
ORDER NOW OR SEND FOR DETAILS
$E 1.95$
5V D.C. POWERSUPPLIES
Following the recent "SELL OUT"' demand for our 5 v 3 amp P.S.U. we have managed to secure a large quan tity of ex-computer systems P.S.U.'s with the following
spec.; 240 or 110 v A.C. imput. Outputs of 5 v @ 3.4 amps, $7.2 \mathrm{v} @ 3 \mathrm{amps}$ and $6.5 \mathrm{v} @ 1$ amp. The 5 v and 7.2 v outputs are fully regulated and adjustable
variable current limiting on the 5 v supply. Unit is variable current limiting on the 5 v supply. Unit is
contained on a P.C.B. measuring only $12^{*} \times 5^{\circ} \times$ The $7.2 v$ output is ideal for feeding "on board" regu lators or a further 3 amp LM 323 K regulator to give an effective $5 v$ @ 7 amp supply.
Supplied complete with circuit at only $£ 10.95+£ 1.75$ pp
Believed working but untested, unguaranteed

by John Barratt, Sysmaster Ltd

Over the last 25 years a multitude of r.d.f. sets have been introduced as the number of marine beacons expanded, ranging in price from $£ 50$ to nearly $£ 2000$. At the lower end of the market, manual sets predominate with aerial, compass and radio in a single hand-held pack. More recent designs use digitally synthesized tuning, giving a much simplified keyboard entry of frequency. But the problem remains that on a heavily pitching boat keeping the unit stable and homed to a beacon was extremely difficult. At best, under reasonably stable conditions, accuracies of $\pm 5^{\circ}$ could be attained; in bad weather it is more likely to be $\pm 20^{\circ}$ or worse. At the upper end of the market are the so-called automatic d.f. sets that use two matched orthogonal loops and display a ship's head relative bearing on a circular dial. Whilst they perform well in a calm environment, in heavy seas where the heading of the vessel can vary dramatically the operator has to monitor simultaneously the r.d.f. bearing and the current heading of the vessel. Plainly a difficult task prone to error.

What was needed was a truly automatic radio direction finder which would provide a magnetic bearing to the beacon automatically and unambiguously. Assigning the difficult task of determining the null position of the signal to a machine, the navigator was freed to concentrate on the specific skills of navigation. The machine should operate consistently regardless of sea state or weather conditions and providing a much higher level of navigational accuracy. Fortunately technology has enabled sufficient "intelligence" to be incorporated in the form of a microprocessor to produce a significantly improved d.f. system at a price comparable to existing a.d.f. receivers.

The dominating factor in considering implementation options was the microprocessor. With flexibility limited simply to program store size and machine run time, the possible levels of integration of radio functions to computer functions was enormous. In addition, sensor design could be re-assessed as the processor would be used to enhance data from a low grade (cheaper) source. The criteria for deciding on an implementation path were low cost of material, minimum assembly and test time, maximum interchangeability of assemblies, and performance equal to or better than conventional d.f. receivers. Some of these decisions had to be made at an early
stage and looking at the design in retrospect we can see that some of our assumptions were wrong. In particular, our concern about cost of electronic components was probably over-emphasized - prices have dropped dramatically. One particular microprocessor component for which we originally paid $£ 40$ and budgeted at $£ 15$ is now costing $£ 4$.

To simplify interchangeability and testing we decided on a conservative approach to integrating the receiver with the processor keeping the interface simple (seven wires plus power). This reduced the number of microprocessor interface components and made the design of the receiver relatively independent of the microprocessor.

The two primary sensors are the compass and the aerial. For the aerial, a rotating ferrite rod offered the processor a potentially large amount of data. Current aerial position could be simply a single index pulse to indicate the aerial passing through 000°, as the processor could calculate aerial speed and therefore instantaneous position. Alternative approaches for the compass included low sensitivity flux gates for indirectly sensing the earth's field using an existing compass; high sensitivity gimbled flux gate for direct sensing and a strapped-down three-axis flux gate with axis transformation. The later system is an extremely elegant approach; but to maintain longterm stability some kind of attitude sensor would be required whose cost would largely offset any savings in static sensor array. The solution chosen uses a directsensing gimbled system with excitation circuits which produce two outputs proportional to the sine and the cosine of the impinging horizontal field.

On the digital side the design was dictated essentially by the requirements of the other sections of the system, e.g. number of input/output lines, analogue input/output requirements, processor speed and capacity. These factors were matched against the available microprocessor systems and a short list produced.
Principal units are the navigation unit which houses the microprocessor system radio receiver and displays and controls, an aerial unit which comprises two aerials and associated amplifiers and a compass sensor unit. The primary sensor elements of the direction finder comprise a rotating ferrite rod antenna and a short whip aerial to provide omnidirectional reception for station identification. In combination the aerials are used to resolve the 180° ambiguity inherent in the ferrite
rod aerial. The microprocessor samples the output from the radio and calulates the azimuth of the transmitter. An input from a remote flux-gate compass is used to convert the azimuth to a magnetic bearing which is then displayed on the front panel of the navigation unit. Successive samples are averaged to give a best estimate of angle.
In addition to digital operation at the man-machine interface there were fairly complex signal processing functions to be performed together with a diversity of other tasks such as time keeping, mode and data memory functions, frequency division, display refresh and system control. Taken together these tasks added up to a potentially complex piece of equipment. While each of these functions could have been implemented with discrete special-purpose circuits, the amount of hardware required to provide all the facilities would have been prohibitive both in terms of price and of the size of the equipment. In addition, further changes to functions beyond the original specification would involve modifications to the hardware and hence component and p.c.b. changes with the inevitable impact on production.
The essential difference when adopting a microprocessor solution is the inherent flexibility of the hardware and its ability to perform a multitude of different tasks defined simply by the contents of the operational program. The limitations to this flexibility are principally confined to the speed of the processor, the size of the program and data store and the number of interfaces provisioned.

A further and important feature of a microprocessor system, particularly when applied to a commercial/consumer system, is the potential for value-added features which can be provided by additional programs. This can both extend the life of the product and broaden the product range whilst maintaining the same production line for product variants. It is not unreasonable to envisage two or three products identical in production terms offering quite different facilities and covering perhaps two-toone selling price range.

Method of operation

A chain-dot line broadly depicts the interface between hardware and software functions in the large diagram, but software is an integral part of the engineering of the unit. System performance depends initially on the quality of the data available which relates to the performance of
the primary sensors: aerial-radio combination and the compass. The way information is used by the processor also contributes to the final performance of the system, particularly under noisy and/ or high dynamic conditions.
Output from each aerial enters a broadly tuned circuit followed by a single stage of amplification on each channel. Tuning is achieved by variable-capacitance diodes with a control from the phase-locked loop local oscillator. The gain of the whip aerial amplifier is variable to enable the gains of the rod and whip aerials to be balanced when summing. The output from either or both channels is switched into the r.f. feeder under control from the microprocessor. Mechanical rotation is effected by a small d.c. motor and gearbox. Coupled to the output drive shaft is a magnet which triggers a Hall-effect device every revolution of the shaft.
The front end of the receiver is tuned by a three-stage passive filter giving a bandwidth of approximately 10 kHz and after impedance conversion matched into a 455 kHz notch filter and f.e.t. mixer. Ceramic filters are used before the first i.f. gain stage and before the final gain stage giving a narrow bandpass of 3 kHz . Output from is produced to both an a.m. dector for a.g.c. and audio output and to a product detector driven from a b.f.o. This output is filtered by an LC filter to give an effective bandwidth of 300 Hz for the signal strength output.

Oscillator frequency is synthesized by a phase-locked loop whose reference frequency is 100 Hz . The microprocessor divides the local oscillator output by the desired frequency ratio (455 kHz above required signal frequency). The 100 Hz is also used by the microprocessor for its primary timing functions.
Basic directional information is presented to the processor as a continuously varying signal proportional to signal strength over 360° of aerial rotation. A single pulse is also generated each time the aerial passes through the vessel's head. Fig. l shows a typical waveform of the rod alone and the combined whip aerial. With marine beacons the microprocessor has 25 seconds to establish a solid bearing after which the beacon returns to its ident code before switching off (see Fig. 2) - about 60 revolutions of the aerial. To obtain a statistically useful number of measurements the acquisition time of the bearing calculation must be limited. This requirement and the limited data store available, meant a fresh look at the method of data extraction; most data correlation techniques require many input cycles and long data strings. What is needed is a quick initial result, with minimum data store and a manageable processor time load. The method chosen can establish a bearing in about eight cycles of the aerial including establishing the polarity of the bearing.

Under good listening conditions the d.f. waveform (rod only) looks like a rectified sine wave, Fig. 1. In practice

Fig. 1. Directional information is presented to the processor as a varying signal proportional to signal strength over 360° of aerial rotation. A single pulse is also generated each time the aerial passes through the vessel's head.

Fig. 2. Marine d.f. beacons, normally synchronized to g.m.t., give 25 seconds in which to establish a bearing - about 60 revolutions of the aerial.

Fig. 3. Algorithm samples points at which waveform crosses mean value, calculated from previous cycle, to give four node values. Bearing relative to vessel's head is then converted to a magnetic bearing.
however the instantaneous position of the peak tends to move due to noise on the waveform. Similarly, with weak signals the null becomes very rounded as it approaches the noise floor. An algorithm samples the point at which the waveform crosses the mean value of the waveform calculated from the previous cycle. This significantly reduces the amount of data required to be stored and processed, whilst sampling the waveform at the point least susceptible to noise. By taking the centre between these crossover points the four-node points of the waveform can be established. And by summing the nodes it is possible to extract an average
position X to the first node, Fig. 3. This calculated position is then compared against the approximate positions of the measured maximum and minimum to establish whether it measures a peak or a null. If it coincides with a null the angle is offset by 90° to bring it in line with one of these peaks. At this stage the routine has calculated the bearing relative to the vessel's head (azimuth) in a range 0 to 180°. It is now necessary to correct it for ambiguity and convert it to a magnetic bearing.

At the beginning of a d.f. cycle during acquisition, the sense of the bearing is eatablished by summing the d.f. and

whip aerial signals. The phasing of the two aerials is such that when the rod aerial is facing the transmitter the signals are in phase and add. Conversely, when the rod is facing away from the transmitter the signal phases are in opposition and therefore subtract ${ }_{\text {; }}$. The approximate position of the maxin ium of the signal under these conditions is measured by the processor, corrected for vessel's heading and stored. T'o correct the current azimuth, the sto red sense value is converted back to the azimuth by subtracting the current heading. This value is then compare d with the current azimuth and if it coincides within a predefined window th te angle is accepted as correct. If it does n ot, 180° is added to the value and the test repeated. The vessel's compass headin g is then added to the corrected azimuth to obtain the bearing to the statio n.

To maintain a sta ble display and to improve accuracy successive bearing samples are accumul ated in a filter and averaged over the m easurement period. In addition, the vari ance of the bearing from the mean is mos aitored and a quality factor of 0 to 7 calci llated. This value is displayed together x ith the bearing after the measurement an d assists the operator in selecting the bes it set of bearings to plot his position. The algorithm described has assumed a clear noise-free input signal. Inevitabl ly, this is not the case when working in th ie 200 to 500 kHz frequency band and it is necessary to overlay the process with a series of data checks to ensure th tat valid data is being processed. At each s stage of the processing checks are ma de to ensure that data corrupted by noi se are rejected if it affects the values being calculated

- Checks on the crossover data cover number of cros ssovers per revolution and consistenc! y in their spacing
- Checks on tl ie node calculations establish that th re nodes add up to 360° and there is : ipproximately 90° between nodes.
- Checks on cr rrelation against the sense measurei nents are made and the entire cycle re jected if correlation is not present.
The algorithm h: as been organized to run on the processor in a sequential manner, each revolution of the aerial incrementing the sequen se by one step, an approach that et isured predictable and controllable seqt lencing. Fig. 4 shows the order of sequer leing from initiating d.f. mode through to continuous d.f. measurement revol utions. The sequence is the minimum sequence and could take longer if any c of the data checks failed.

Between eac ${ }^{\prime} h$ aerial mode change (i.e. whip only, to v whip summed with rod, to rod only) a sett tling revolution is initiated to allow the a. ℓ g.c. of the receiver to stabilize after the transients generated by switching the aerials.

The d.f. cycle commences with a settling revi slution with the aerials switched in the sense mode (i.e. with both whip a nd rod aerials active). The sequence 'thi en increments to sense mea-

Fig. 4. Algo rithm sequences once per aerial revolution. Correlation between three sense-mode measurements is needed before d.f. melasurements are made.

Fig. 5. Ligiht loading of surfaces in Vinkorstyle rotary transformer makes lubrication unnecessary.
surement where the approximate position of the signal peak is established for later use: in ambiguity correction. A minimum of three revolutions are required for this and the position of the peak muist correlate over three successive revolutions before the next phase can be entered.

When correlation has been satisfactorily achieved, the whip aerial is switched off and a settling revolution initiated. The ne:xt revolution is used by the processor to calculate the first mean value of the d.f. waveform. Subsequent revolutions of this aerial are used for d.f. measurements provided that correlation is achieved with the sense measurements. If correlation cannot be achieved, the
system returns to the beginning of the sense sequence and the sequence is repeated.

For coupling the aerial signal to the head amplifier a brush and slip-ring arrangement with such low signal levels would be intolerably noisy. As it was not practical to rotate the electronics with the aerial we chose a rotary transformer formed from the two halves of a ferrite Vinkor-type transformer, as shown in Fig. 5. The upper half of the core together with the primary bobbin, is attached to the rotating rod aerial and the lower sections with secondary bobbin to the static base of the unit. To maintain sufficient coupling the mating surfaces of the two cores had to be held in intimate contact by light pressure from a spring. Provided that the surfaces were spotlessly clean during assembly the coupling generated virtually no noise.

A number of factors had to be considered when choosing the microprocessor. The first criterion was that it had to be a single power rail device running on less than 12 V as the unit was to operate from a 12 V battery supply. This ruled out some of the early microprocessors such as the Intel 8080 which required three voltage rails. The processor would have to be an eight-bit machine (only one 16 -bit processor was available at the time and was too expensive) and would have to have at least minimal arithmetic functions since the task was not simply for a logic sequencer. Suitable processors were Zilog Z80, Motorola 6800 and the Intel 8085.

Relatively high-priced 1.s.i. programmable components were chosen for interfacing; we thought these would be likely to reduce in cost more rapidly than the established m.s.i. products, an assumption which proved correct. Reviewing the chip sets available from each manufacturer, they were found to be nominally equivalent. However, Intel had a set of interface super-chips specifically designed for their 8085 processor, one of which included memory, timing functions and input/output ports. Looking more closely at the timer function, we discovered that one of the timer's counting modes would make it suitable as the $+N$ counter for the frequency synthesizer. This would simplify the interface to the synthesizer to two lines.

A further factor encouraged the use of the 8085 microprocessor: our previous products were based on the 8080 microprocessor and we consequently had development equipment for it. The investment of approaching $£ 15 \mathrm{k}$ on a different set of development equipment was not attractive particularly when a suitable software-compatible microprocessor was available. The final configuration was an Intel 8085 processor alongside an 8155 combined r.a.m., i/o and timer chip and an 8255 i/o chip. Program memory was three 2716 e.p.r.o.m.s and an additional 256 bytes of c.m.o.s. r.a.m. were added for data retention in a power-down standby mode.

World television standards

Long-distance television reception; system descriptions and v.h.f. channel allocations

by Keith Hamer and Garry Smith

Continuing the discussion on longdistance television reception, this third article covers international television standards, various v.h.f. tvchannel allocations and colour systems. A review of the 1981 'sporadic-E season', transmitter news and reports from overseas enthusiasts are included.

The surge in the number of television services appearing throughout the world after 1945 brought with it various different standards for sending tv picture and sound information. In the UK, transmissions using the 405 -line system adopted in 1936 were resumed. This 405 -line standard, system A, used positive-going vision modulation and had a video bandwidth of 3 MHz . The sound channel was a.m. and the sound carrier frequency 3.5 MHz below the vision carrier.
Most Western European countries chose a 625 -line system with negative-going vision modulation and f.m. inter-carrier sound. This is generally referred to as the CCIR system (system B, v.h.f. or system G or $\mathrm{H}, \mathrm{u} . \mathrm{h.f}$. .), in which the video bandwidth is 5 MHz and the sound is 5.5 MHz above the vision carrier. Many African and Middle East countries and parts of Asia and Australasia have also adopted the CCIR system.
Eastern-bloc countries, including the USSR, chose a similar standard but with 6.5 MHz sound and vision separation,
known as OIRT (system D, v.h.f. and K, u.h.f.). China also uses the OIRT standard. Systems D and K are used in parts of Africa, and several French Territorial countries use system Kl , which is very similar to K, for their v.h.f. transmissions.
During the early sixties, the UK finally chose a 625 -line standard for their intended u.h.f. transmissions. This standard, system I, was very similar to those of the CCIR and OIRT but with a vision bandwidth of 5.5 MHz and an inter-carrier sound channel separation of 6.0 MHz . This system was also adopted by the Irish for their 625 -line v.h.f. transmissions. More recently, Hong Kong, South Africa and a few Central African countries have selected system I for their television services.
The French were experimenting with two different standards, one a 441 -line system and the other using 819 lines (system E). The latter is still in use for v.h.f. transmissions. Both systems employed positive-going vision modulation and, as in the UK 405 -line system, a.m. sound. The 819 -line system had a vision bandwidth of 10 MHz while the experimental 441-line system, which ceased operation in the fifties, had a much narrower bandwidth. The overall channel bandwidth of the 819 -line systen was almost three times that of the 405 -line

[^3](a) The FuBK electronically generated test card received from Portugal on 3 July at 1854 CET on ch. E3. Note that RTP-1 sometimes inserts a digital clock with the test card.
(b) The Philips Chequerboard or Chessboard pattern received from ZTVZimbabwe on 5 October during the early afternoon on ch. E2 from the Gwelo transmitter. Signals propagated via F2 and Trans-Equatorial (TE) modes usually display some form of video distortion. (c) The Icelandic television network (Rikisútvarpid-Sjónvarp) often transmits the Philips PM5544 electronic test card for long periods, occasionally at 0300 CET. This particular reception via sp.E was logged on June 11th on ch. E4 in good colour. The identification used with the PM5544 is "RUV ISLAND".
(d) One of the very few remaining individual monoscopic test cards as used by Radiodifuziunea Televiziunea Românâ (TVR-Rumania). This was received on ch. $R 2$ at 0835 CET on 12 August. (e) The "EBU Bar" which is still used in Rumania. This monochrome signal incorporates the date to the left of the "TVR" identification. (f) An electronically-generated test pattern recently introduced by Radiotelevision Española (RTVE-Spain). The photograph shows reception logged on July 15 of a transmission from the Navacerrada outlet near Madrid on channel E2. A slightly modified version of this pattern (which includes a white central bar beneath the "rtve" identification) is used by several other Spanish transmitters with appropriate identification.
system, i.e. 14 MHz as opposed to 5 MHz . Consequently, the number of channels possible in a given band of frequencies was greatly reduced. To overcome this problem the French devised a method of channel interleaving in which the sound channel would be 11.15 MHz above the vision carrier on certain channels and 11.15 MHz below on others. This method eventually allowed a total of nine channels on Band III, although only two Band I channels were used.

Several French territories adopted the 819-line system under the influence of the French. Luxembourg also used the system on v.h.f., but with a reduced video bandwidth of 5 MHz (system F), until the late sixties when the number of scanning lines was reduced to 625 . The 5 MHz video bandwidth, positive video modulation and a.m. sound characteristics were retained and the resulting system became standard C. Belgium had system C on v.h.f. up until 1977 when it switched to CCIR. Monaco still uses system E on v.h.f. but with 625line scanning.

For u.h.f. transmissions in Bands IV and V, the French introduced a 625-line standard, system L. This has a vision bandwidth of 6 MHz , an a.m. sound channel 6.5 MHz above the vision frequency and uses positive-going video modulation. Luxembourg uses system L for its channel 21 transmissions but within the next year or so a variant system L1, will replace the present 819 -line transmission in Bands I and III.

In the USA, the position was much simpler. The Americans agreed on a 525 line standard, system M, using negativegoing vision modulation, 4.2 MHz video bandwidth and an f.m. inter-carrier sound channel at 4.5 MHz above the vision frequency. This system was also chosen by Canada and eventually spread throughout Central and Southern America, Alaska, parts of the Caribbean, Japan, Korea and parts of Asia. At American Forces bases throughout the world system M is usually the norm. Until recently, the ARAMCO transmitter at Dhahran in Saudi Arabia employed the 525 -line system M standard, but the station now uses the CCIR system B.

In certain South American countries and parts of the Caribbean where a 50 Hz mains supply is available another standard, system N , is used. This is a 625 -line standard with vision bandwidth and sound separation the same as in system M, but the field frequency is 60 Hz whereas system M has a field frequency of 50 Hz . Countries using systém N include Argentina, Uruguay, Bolivia and Barbados. Venezuela has a mixture of 50 and 60 Hz domestic mains supplies and consequently television transmissions may use either system M or N depending on the location of the transmitter. In areas where a choice of standards is available, controls for adjusting frame hold and frame amplitude are necessary. Little, if any, adjustment is required to the line control as the line-oscillator frequency on both systems is similar i.e. 15.750 kHz for 525 -line and 15.625 kHz for 625 -lines.

So far, colour television systems have
not been mentioned. This is because the choice of colour system is not directly dependent on the characteristics of the television standard adopted. There are three colour systems in use at present, namely NTSC, PAL and SECAM.

During the fifties, colour television was introduced in the USA using the NTSC colour encoding system. NTSC was then adopted by most countries already using the 525 -line system M. This colour system was field tested in Europe but was found to be unsuitable. PAL and SECAM were developed in Europe and towards the end of the sixties several Western European countries (excluding France) introduced a regular colour-tv service using PAL. East-ern-bloc countries and France were considering SECAM for their colour transmissions.

The last decade has witnessed the introduction of colour television to virtually every European country. The PAL system has been adopted by most countries using the CCIR norm (systems B, G, H and I) except for East Germany which, for political reasons, chose SECAM. Although CCIR is used extensively in North Africa and countries in the Middle East we find a mixture of PAL and SECAM transmissions due mainly to previous political decisions. Most West and South African countries with CCIR are adopting the PAL system. Regular PAL transmissions commenced in Australia and New Zealand during the last decade. More recently, China has decided to use PAL although standards D and K are in use there.

PAL has unexpectedly been favoured by at least two South American countries, namely Brazil with system M and Argentina with system N. Normally the PAL (and SECAM) subcarrier frequency is 4.43 MHz but for compatibility with systems M and N , where the video bandwidth is only 4.2 MHz , a lower subcarrier frequency is used.

SECAM is used by the French for their 625-line system-L transmissions on u.h.f. Colour is not used on the 819 -line v.h.f. transmissions. In Luxembourg, the situation is complicated as three standards, namely C, L and G, are used. The channel 21 transmitter radiates a system L SECAM signal to serve the French-speaking population and parts of France while the E7 channel outlet provides a system-C PAL signal. Colour-standard conversion takes place at the transmitter. Channel-27 system G transmissions are also PAL and serve viewers in the Low Countries and West Germany.

Tele-Monte-Carlo in Monaco transmits both SECAM and PAL colour on u.h.f. System-L SECAM transmissions are intended for neighbouring France while the system-G PAL service on channel 35 is intended for viewers on the western coast of Italy and across the Lombardy Plains as far as Venice in the North. In general, French overseas territories and countries influenced by the French use SECAM.

Channel allocations

V.h.f. channel allocations are shown in Table 1. U h.f. channels are not included
in the table because channel numbering and corresponding vision frequencies are identical for all u.h.f. systems except M and N. The $625-$ line u.h.f. channels are numbered from 21 to 69 . Owing to the narrower channel bandwidth of systems M and N , the u.h.f. spectrum can accommodate a greater number of channels; these are numbered 14 to 83 . Japan uses system M but has a restricted number of u.h.f. channels.

Newcomers to DX-tv may find it easier to consider the chart layout of Table 1 as a tuning scale on a radio receiver. If several UK 405 -line channels can be received (hopefully weakly), they may be used as markers to enable a Continental channel to be identified.

UK 405-line channels are referred to as ' B ' channels and subdivisions are made by adding a numerical suffix, i.e. B1, B2, etc. Generally, CCIR channels in Bands I and III have a letter prefix, E, also followed by a number. Prefix M is used for Moroccan channels and for French channels carrying 819-line system E transmissions, prefix F is used; again, both are subdivided using a numerical suffix. Italy, one of the few exceptions, uses a letter suffix after its designation, I, to give channels IA, IB, etc. Similar letter suffixes are used by the Irish Republic and confusion can result, especially in reception logs, as their prefix is also I. To add to the confusion, the Irish Republic's channel-IB vision frequency is identical to the Italian IA vision frequency.

In the Americas where systems M and N are used, channels carry the prefix A followed by a number.

1981 sp. E review

The first signs of the 1981 sporadic E season occurred on 29 April with strong southerly signals from the Spanish television service RTVE on channel E3 in the late-afternoon/early-evening period. A new test pattern carrying the transmitter location was seen followed by the electronically generated test card (see the October issue of Wireless World, p69) prior to the normal programmes.

There were several weak and short-duration 'openings' during May with signals from the south-east predominating. Good quality colour signals were obtained from RTVE on channels E2 and E3 during the evening of the 19 th . Other countries received on Band I during May include Italy (RAI), West Germany (ARD), Portugal (RTP), Yugoslavia (JRT), Sweden (SR), Norway (NRK), East Germany (DDR: F/DFF), Czechoslovakia (CST) and Switzerland (and PTT, SRG, SSR, TSI, DRS).

Signals from most European countries were seen during June with sporadic E signals around on most days. On the 7th, towards late afternoon, several enthusiasts reported exceptional reception conditions with television signals well into the Band II spectrum. Long range f.m. radio was also very much in evidence and a few lucky television DX enthusiasts who tried the lower Band-III channels were rewarded with signals from the USSR (TSS). A DX enthusiast in the Netherlands received Russian programmes on all Band III chan-

nels due to the exceptionally high maxi-mum-usable frequency m.u.f. enhanced by sp . E conditions.

Another notable day in June was the 11th with signals from all points of the compass received within the space of an hour. Fortunately most were transmitting the test card so identification was relatively easy.
Several times during June a colour-bar or grey-scale pattern was seen between channels IA and E3, sometimes as late as 2030 CET. This was finally identified as an Italian "pirate" transmission from Nord Center Television (NCT) which operates from Udine. On the 29th at 1836 CET, signals from the Albanian (RTS) channel IC transmitter (82.25 MHz vision) were received. Practically every European country was received during June.

July will be remembered for multiolehop sporadic E signals and the appearance of a new Band I country. On 10 July there was an intense sporadic-E opening for most of the day with signals from the south-east. A tv-DX enthusiast in the north of England received signals from the Canary Islands (RTVE) on channel E3. Sporadic-E signals on the 2 -metre band prompted him to check Band III and during the late afternoon he saw RTVE (Spain) on E6 and E7 and some amazing reception of Morocco (RTM) on channel M5. Later that evening after Portugal (RTP) and Spain had closed down around 2300 CET, many enthusiasts saw a systemB signal remaining on E3 from the south. The signal (a feature film) was slow-fading and later identified as coming from the Canary Islands.

A mystery signal appeared on E4 from the south at 2326 CET which consisted of an announcer or newsreader speaking in a language thought to have been Arabic. This was later identified as a new Moroccan transmitter operating in Band I. This transmitter was received on an almost daily basis in France during the summer.

Towards the end of July reception of trans-Atlantic System M signals on channels A2, A3 and A4 was experienced in the south of England. Trans-equatorial (te) signals were resolved from the Zimbabwe E2 transmitter at Gwelo several times during the month. Reception usually occurred between 1700 and 1830 CET. Signals tended to take on a sporadic E appearance and it is generally felt that the signals arrived in the Mediterranean area via F2 or te mode, and sporadic E assisted the signals for the distance. Italian (RAI) channel IA signals were often present during reception from Gwelo. If sp.E conditions prevail during the late evening it is always wise to monitor the conditions until as late as possible in case rare signals are present which may normally be masked by stronger, more commonly received, stations.

A strange signal was detected at 4030 CET on 13 July which consisted of fairly weak horizontal bands, not unlike those caused by a signal generator, on the vision frequencies of R2 and E4. The R2 signal finally disappeared but the E4 signal faded in and out slowly over a period of time in a
similar manner to tropospheric signals. Both signals came from an easterly direction. All in all, July was an interesting and busy month for DX television.

During the first few days of August, OIRT signals prevailed with test patterns from the USSR, Czechoslovakia (CST) and Hungary on the 6th. The 9 th was hectic with signals from no fewer than 12 countries being received during a continuous opening lasting all day. 819 -line pictures from France (TF1) on channels F2 and F4 and 625 -line signals below the E2 vision frequency (a signal thought to be the new French System Ll on test) were resolved during the morning. At 1242 CET the Hungarian television service (MTV) was radiating a frequency-grating pattern on R1 and R2 prior to the PM5544 test pattern. At 1331 the Yugoslavian FuBK test pattern appeared with good quality colour signals accompanied by music. The Russian test card appeared on the 12 th at 0830 CET on channel R2 from the Bucuresti transmitter. At 1742 a feature film with Arabic subtitles was noted on channel E3 from the Suwaileh transmitter in Jordan. Mainly OIRT signals were logged on the 13 th with test patterns from Poland (TVP) and Czechoslovakia as well as the USSR news program "BPEMЯ" on R3 at 1800 CET. Signals from Eastern European stations prevailed on the 16th with programmes on channel R1, R2, R3, and at times on R4. Again, most countries were received during August with exceptionally strong signals from Gwelo (ZTV) on the 14th and 15th.

Sp.E activity diminished during early September with mainly weak, short duration, signals being present. However, a late afternoon opening on the 23 rd from the south revealed at least two exotic signals. In East Anglia a PM5544 test card was seen with what appeared to be Arabic identification in the lower black rectangle. This was on channel E4 and may have been the new Moroccan Band I transmitter. Later, a strong F2/te signal on channel E2 was noted consisting of a grey-scale pattern but the line hold of the receiver had to be adjusted to lock the picture. This was obviously not a standard 625 -line CCIR signal. The pattern probably originated in Ghana or Nigeria.

October is usually a very quiet month with long-range reception normally due only to meteor showers and, perhaps, troposipheric ducting. However, on 5 October during the early afternoon very strong signals were logged on channel E2 from Zimbabwe. Reception lasted for some time and consisted of the Philips 'chequerboard' pattern. The PM5544 is also used by ZTV.

Transmission information

In this section, recent news concerning tv transmissions from various countries is given.
Argentina. Despite raging inflation, most of the television networks have now commenced PAL-N colour transmissions. The latest service operates from Buenos Aires on channel 11
France. Test transmissions are being carried out on the first network, TF1, using
the recently developed 625 -line system L^{\prime} on v.h.f. Channel C' shown in Table 1 is used only by the Besancon-Lomont transmitter.

Luxembourg. Some DX-tv enthusiasts may be wondering why they experienced difficulties in receiving transmissions on E7 or E21 from the Dudelange transmitter from the end of July. An aircraft of the Belgian Air Force collided with the 300 metre high mast causing severe damage. Until a temporary antenna can be installed at Dudelange, programmes from Radio-Télé-Luxembourg (RTL) will be distributed only to viewers subscribing to cabletelevision networks. RTL will be the only national broadcasting authority in Europe to distribute programmes in this manner. Further information is given in the $E B U$ Review 188, published last August.

Spain. Strong signals from RTVE have always been a regular feature of 'sporadic E seasons' so many DX-tv enthusiasts should know that several new test cards have been introduced similar to the one shown in the photo. Transmitter identification is included on most test transmissions.

There are plans to introduce private television stations but details are not yet available. We understand that there have been several applications for permission to transmit. Many non-technical magazines are giving extensive coverage to the idea of private television in a similar manner as c.b. radio has been covered here in the UK.

Uruguay. Colour television commenced last August using PAL-N.

West Germany. Hessicher Rundfunk's third network, HR3, has a new transmitter located at Rhön on channel E37. The transmitter's e.r.p. is 364 kW .

There are also two new transmitters at Opherten for the Belgian Army stationed there. One is BRT/D (Flemish language) operating on channel E12 with an e.r.p. of 32W and the other RTBF/D (French language) on channel E39 with 625 W e.r.p.

Test transmissions have commenced using stereo sound channels for $t v$.

Reports

The following reports received from overseas DX-tv enthusiasts provide background information for the newcomer to the hobby. No doubt experienced enthusiasts will also find them interesting.

Ernesto Villeyra and Salvador Espín have written from the Balearic Islands with details of their reception. They both have regular u.h.f. reception during the summer from Italy, Sardinia and France. They are using a wideband aerial, which gives gain of 13 dB , feeding a low-noise pre-amplifier which in turn feeds a mediumpower amplifier at about 1 metre away from the pre-amp. They have identified about 25 stations so far, many of which
continued on page 68

Circuitry of input stages and speed-control frequency generator

by A. J. Ewins, B.Tech., Research department, London Transport

This third part of a series describing the design and construction of a very low cost, professional instrumentation recorder presents the circuitry of the input stages, including the multiplexer and analogue-to-digital converter, and discusses the reference-frequency generator used for motor speed control.

The input stages, shown in block form in Fig. 4 of part 1 of the article, are illustrated in detail in Figs 19 to 22.
Analogue multiplexer. Firstly, Fig. 19 shows the circuit diagram of the analogue multiplexer and differential, times-five amplifier, which was needed because the a-to-d converter has a full-scale input range of $\pm 5 \mathrm{~V}$ and the normal range of the input signals is $\pm 1 \mathrm{~V}$. A differential input stage was required to give greater flexibility to the input signals.

The i.cs used in the analogue multiplexer are 8 -way analogue switches, type DG508, addressed by a divide-by- 2^{7} counter, i.c. type 4024. The analogue switches are powered by plus and minus

[^4]15 V supplies and also have connexions to the 0 V line, accepting logic inputs between 0 and 15 V and handling analogue signals within the range $\pm 15 \mathrm{~V}$. The six analogue input channels are connected to seven of the eight switch inputs as shown in Fig. 19 (the reason for the order in which the channels are connected to the switch inputs was explained in Part 1). Channel 2 is connected to both S1 and S7 inputs, because a sixth clock pulse is received by the 4024 counter ahead of the reset pulse, as shown in Fig. 5 of Part 1. Resistors, of any value up to around $1 M \Omega$, are connected between ground and the six switch inputs of the DG 508 i.cs to prevent them from 'floating' in the absence of an analogue signal input. They may not be strictly necessary but are, in the author's opinion, thought advisable. The differential amplifier with a gain of five to differential signals and unity gain to common mode signals is of standard op amp design.

Sample/hold. Figure 20 is a detailed circuit diagram of the sample/hold circuit and analogue-to-digital converter. The sample/hold circuit is an i.c. type LF 398 and, like the analogue switches, is powered by the $\pm 15 \mathrm{~V}$ lines, accepting logic control
pulses between 0 and 15 V and analogue signals between $\pm 15 \mathrm{~V}$. The 4700 p sample/hold capacitor was chosen for optimum sample speed and hold retention when operating at a speed of 284.4 samples/s. As connected, the sample/hold circuit is in its 'sample' mode with a logic 0 signal on pin 7 and in its 'hold' mode with a logic 1 signal on pin 7. The two diodes, D_{1} and D_{2}, and the $100 \mathrm{k} \Omega$ resistor form a 2 -input OR gate to the two sample/hold control pulses, B4 and DR.

A-to-d converter. The i.c. used for the analogue-to-digital converter is an Analogic device, the AD571K. It will convert unipolar signals in the range 0 to 10 V , or bipolar signals in the $\pm 5 \mathrm{~V}$ range, to a 10 -bit digital word. It has a typical conversion time of $25 \mu \mathrm{~s}$, and is therefore operated well within its capabilities in this particular application. The type used is designed to operate from $\pm 15 \mathrm{~V}$ supplies, indicated by K in the device number, and accepts control pulses in the range of 0 to 15 V . The voltage input on pin 15 of the device defines its operation in the unipolar or bipolar modes. For unipolar operation, pin 15 is shorted to ground via pin 16, but for bipolar working is left unconnected and is therefore not shown in Fig. 20. Upon

Fig. 19. Six-channel analogue multiplexer and differential amplifier. Resistors on inputs can be chosen to suit source requirements.
receipt of a logic 1 pulse at pin 11 of the a-to-d converter (when B4 goes high) the 10 digital outputs are blanked (i.e. the ten digital outputs go into an open-circuit condition). Simultaneously, the sample/hold circuit is put into its hold mode via the 2 -input OR gate. As the outputs are blanked, the a-to-d converter generates a logic 1 pulse at its data ready, DR, output on pin 17 , which is used to maintain the sample/hold circuit in its hold mode (via the 2 -input OR gate) until the conversion process is completed; i.e., until the data is ready and DR goes low. The a-to-d converter begins its actual conversion of the analogue data when the control pulse B4 goes low. When the conversion is complete the 10 -bit digital word is presented to the ten digital outpurs, the DR output goes low, and sample/hold circuit returns to its sample mode: the negative transition of DR is used to clock the multiplexer to sample the next analogue input channel in sequence.

Parity generators. The circuit of the two odd-bit parity generators are shown in Fig. 21. Outputs P1 and P2 will be at logic 0 if, and only if, an odd number of their four respective input bits are at the logic 1 level. When P1 and P2 are added to their respective input bits to make five-bit words there will always be an odd number of bits at the logic 1 level in each of the two 5 -bit words. Only eight of the ten bits from the 10 -bit digital word are used to generate the two parity bits, the two least significant
bits, $\mathrm{B9}$ and B 10 , being ignored.
Obviously, there are many ways in which parity bits may be generated and the author thought long and hard about the most appropriate method to use. In the end, the technique selected was chosen mainly because of its simplicity and economic use of i.cs. Although, at the time of its inception, its success in operation could not be accurately foreseen, it has subsequently performed satisfactorily. The author can therefore see no reason to use an alternative design.

12-bit shift register. Figure 22 is the detailed circuit of the 12-bit parallel-in/serial-out shift register used to insert the
Fig. 20. Sample/hold and a-to-d converter. Only AD571K should be used, since other variants need different supply voltages.

12-bit data words into the serial data stream. One and a half 8 -stage shift registers, i.c. type 4014, are used, the four unused parallel inputs of one i.c. being connected to ground. The twelve parallel inputs are numbered in the order in which the bits are serially shifted out. There may be some virtue in 'randomizing' the sequence of the bits of the 12 -bit data words, rather than entering them in a logical order. Having used two different sequences for each of the two halves of the electronics (one per track of the taperecorder), the author found no significant difference between them in the generation or concealment of errors. One sequence used was $\mathrm{B} 1, \mathrm{~B} 4, \mathrm{~B} 7, \mathrm{~B} 10, \mathrm{~B} 2, \mathrm{~B} 5, \mathrm{~B} 8, \mathrm{P} 1$, $B 3, B 6, B 9$ and P2. All the circuits of the input stages are constructed on one board, together with the sync. register which was

 5 and input 3 with input 6 . For two channels inputs 1,3 and 5 are paralleled together and inputs 2, 4 and 6 . For one channel all six inputs are connected together. It is also possible to have a number of channels of different bandwidths by combining the inputs in a number of other ways. For example, if inputs 1,3 and 5 are connected together a channel with a bandwidth of 210 Hz is created. The other three channels may be used individually with bandwidths of 70 Hz each. Other combinations are possible and what may, or may not, be achieved can be determined according to requirements.

Speed control

To complete the detailed description of the circuitry constructed on the first three circuit boards,* the final circuit to be discussed is that of the reference frequency
generator for the tape-deck motor-speed control. Speed control for the tape drive motor is achieved by comparing the frequency produced by the tachogenerator (which is built into the drive motor) with a reference frequency in a phase-locked loop. The principle of operation of the speed-control system was described in part 1 and details of the circuit will be given later. The reference frequency generator is constructed, together with the Miller encoder, on board 3 and it is this circuitry that will now be described.

During the recording process, the reference frequency is derived from the tape-clock frequency by dividing it by 50 to produce a crystal-stable frequency of 455 Hz . During playback, the reference frequency is derived by comparing this 455 Hz with that of the recovered tape-clock divided by 50 , in a phase-locked loop, the

Fig. 22. 12-bit p.is.o. shift register.
resulting frequency output of the v.c.o. of the p.1.1. providing the reference frequency. The reason for using this particular technique for producing longterm tape-speed stability was given in Part 1.

Reference frequency generator. Figure 23 shows the circuit diagram. The production of the reference frequency for the recording process is straightforward and consists simply of two counters which divide the tape-clock by 50 . One counter is an i.c. type 4018 which, together with half a quad 2 -input NAND, divides by 5 . The other is a divide-by- 10 counter using an

Fig. 23. Reference-frequency generator for speed control.

i.c. type 4017 . On playback, the recovered tape-clock is similarly divided by 50 using identical counter i.cs. The two resulting frequencies are compared using the EXOR phase-sensitive detector of a p.1.1. i.c., type 4046, the output of which is filtered and used to control the frequency output of the v.c.o. contained within the 4046 . Frequency selective components of the v.c.o. were chosen so that the desired output frequency of 455 Hz is obtained when the input voltage to the v.c.o. on pin 9 is half the supply voltage, i.e., 7.5 V . The $5 \mathrm{k} \Omega$ variable resistor in series with the $8.2 \mathrm{k} \Omega$ resistor is adjusted to produce this desired result. A $\pm 5 \%$ variation in frequency is obtained as the input voltage on pin 9 varies from 0 to $+15 v$. Filter components between the output of the p.s.d. and the input to the v.c.o. were selected by trial and error to produce a stable phase-locked loop when operating with the chosen cassette tape-recorder.

It is important to know when the p.1.1. of the playback reference-frequency generator is in lock; or more importantly, when it is out of lock: for this purpose an in-lock indication is provided. When the recovered tape-clock frequency divided by 50 is in lock with the tape-clock frequency
divided by 50 , it lags it in phase by $90^{\circ}(\pm$ any wow and flutter content). As a result of this, the D input to the D-type flip-flop goes high ahead of a positive transition on the clock input. Thus, so long as the two frequencies remain in lock, a logical I will be continually clocked to the Q output of the D-type flip-flop.
Via an emitter follower circuit, the logical 1 on the Q output illuminates an 1.e.d., giving the required lock indication. Should the two frequencies slip out of lock, alternate ĺogic zeros and ones will be clocked across to the Q output of the D type flip-flop and the I.e.d. will flash on and off. As it is important to know of a loss of lock, an audible indication is also provided. The audible device referred to in Fig. 23 is a piezo-electric type sold by RS Components and will operate from voltages of $3-16 \mathrm{~V}$, with a current consumption of about 8 mA at 12 volts. It is thus easily powered by outputs of B type. c.m.o.s logic circuits. When in lock the \bar{Q} output of the D-type flip-flop is low and the audible device is thus silent. When out of lock the $\overline{\mathrm{Q}}$ output will go alternately high and low, powering the device to give an audible indication of the loss of lock. When the record reference frequency is
selected by the d.p.d.t. switch, the audible device is automatically silenced by holding the \bar{Q} output of the D-type flip-flop reset high and by connecting its other terminal to +V .
When, on playback, the recovered tapeclock is not synchronized to the tapeclock, it is desirable to inhibit the flow of data out of the data storage buffers of the playback digital circuitry. This is achieved by the monostable circuit, i.c. type 4047, which is triggered by the $\overline{\mathrm{Q}}$ output of the D-type flip-flop. Connected in its retriggerable mode, the monostable is continually triggered by the pulsing output of \bar{Q} when the p.1.1. is out of lock. The 'set' output from the monostable is thus maintained high. This high 'set' output is fed to the playback circuitry (to be discussed in a later article) where it is used to inhibit the flow of data. The time-period of the monostable is set large enough to maintain the 'set' output high whilst the \bar{Q} output slowly pulses. Once the p.l.I. is in lock, $\overline{\mathrm{Q}}$ goes low and so, eventually, does the 'set' output, releasing the flow of output data.
To be continued
*A set of Veroboard layouts will be made available when this series is finished.

New Systems and Services in Telecommunications
Ed: G. Cantraine and J. Destine. 375 pp., hardback. North Holland Publishing Company, 56 US dollars, Dfl.115.00.

Papers presented at the 1980 international Liege conference on videotex, data broadcasting and satellite broadcasting are collected here in book form. The intention of the conference was to look at these new types of communication from the engineering standpoint, so that anyone reading the papers will find opinion, description and suggestion from the world's leaders in the field, free of the unhelpful crystal-gazing that so many 'experts' in communications are apt to indulge in. Papers are printed in the original language - either French or English. Copies of the book can be obtained either from bookshops or from Elsevier Science Publishers, PO Box 211, 1000AE Amsterdam. The Netherlands.

Practical Handbook of Solid-state Troubleshooting

by R, C. Genn, Jr. 239 pp., hardback. Prentice-Hall International, £10.45.

The servicing of most kinds of radio, audio and general electronic devices, in varying depth and quality of detail (at one point one is informed that a voltage can vary from "a few millivolts to quite a few millivolts"). Both analogue and digital equipment is described from the faultfinding point of view and there is some information on test instruments. The book is implicitly written for technicians in radio and television repair shops and, although there are misleading statements and some drawing errors, it may be useful as a guide to methods of fault-finding.

Books

Introducing Microprocessors

by 1. R. Sinclair. 121 pp., paperback. Keith Dickson Publishing Ltd, $£ 4.50$.

Among the welter of pretentious little books which claim to explain the mysteries of
microprocessors and their uses, this is one that stands out, in that it does go some way towards fulfilling the promise of its title. By way of a little gentle instruction in logical processes and a short description of digital circuits, the author goes on to explain how microprocessors use these devices on a large scale. Various types of memory and register and types of instruction are considered before attention is paid to loading the memory and some simple program operations. A final chapter is on the approach to programming. This book is, as is explicit in its title, an introduction: as such, it is to be recommended. Keith Dickson are at 17 Hendon Lane, London N3 1RT.

World television standards

continued from page 64

were Italian pirate/private networks. Most of the signals suffered from severe fading and co-channel interference. Ernesto and Salvador are now attempting to improve reception quality. They have had the attenuation of the sea path evaluated at about 240 dB .

Anselmo Roccaforte (Buenos Aires) is having some success with DX-tv using a . 14 -inch Sony KV-1400 AN receiver and a JVC v.h.f./u.h.f. CX-610 ME colour monitor. The latter is multi-sindard in that it is PAL/SECAM with sow facilities for $5.5 \mathrm{MHz}, 6.0 \mathrm{MHz}$ and 6.5 MHz but Anselmo's receiver is modified to accept PAL-N transmissions with 4.5 MHz sound/vision spacing. We will be reviewing the JVC CX-610 GB version in the near future.

Hugh Lloyd-Bennett (Dhahran, Saudi Arabia) appears to have an ideal DX location being only a mile from the coast with a surrounding terrain of desert, hence few obstructions. Weather conditions in the Gulf greatly enhance tropospheric propa-
gation and he reports daily television reception from Doha (Qatar, chs. 9 and 11), Abu Dhabi (United Arab Emirates, ch. 5) Dubai (also U.A.E., chs 2, 10, 33 and 41), Muscat (Sultanate of Oman, ch. 8 in Buraimi), Manama (Bahrain, chs. 4 and 55) and Kuwait (chs. 8 and 10). Reasonable reception has also been achieved from West Germany (NDR, ch. E4), Italy (RAI), Spain (RTVE), Hungary (MTV), Czechoslovakia (CST), Poland (TVP), Jordon (JTV) and even South Africa (SABC/SAUK). Reception from the USSR (TSS) is logged on most days.
Finally, John Combs (Florida, USA) comments that on the morning of the Royal Wedding last July he managed to obtain clear off-screen photographs of the BBC-1 clock caption. This was due to a switching error by the Cable News Network in America which distributes news material to cable television systems via satellite. This is definitely a case of transAtlantic DX-tv the easy way.

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it.

The solution: the new Racal Recorders Autostore. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another Autostore can-quite literally - be operated by whoever happens to be around.

And it provides over 24 hours of unattended continuous recording on eight channels. VERSATILITY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system - or fit just as easily into an existing one.

And its uses vary from ambulance, fire, police and security applications to the recording of financial transactions, conferences, oil installation communications and taxi services.

Racal Recorders

Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England. Tel: (0703) 843265 Telex: 47600
BACAL

RELIABILITY

Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic Timesearch capability to enable rapid message retrieva, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recording techniques.
FULL DETAILS
For full cletails of Autostore send off the coupon today.
arrange for a demonstration at my own premises

Name

Fosition
Company
Address

EP4000 EPROM EMULATOR PROGRAMMER

\star Programs 2704/2708/2716(3)/2508/2758 2516/2716/2532/2732
\star Emulates same devices with a single keypress
$\star 300 n s$ access time in emulation mode

* Editing facilities - data entry, match, display, shift, move, clear, define, block program, etc.
\star Input/output as standard - RS232 (ASC11-hex), 20 mA , printer, cassette \& DMA
\star Video output for memory map display
\star Expandable with 2764 adaptor \& Bipolar Prom modules
* Fully buffered cold ZIF socket
\star Price $£ 545+$ VAT $+£ 12$ delivery

P4000 PRODUCTION PROGRAMMER

\$ Program 1-8 devices simultaneously

* Programs same devices as EP4000
\star No personality cards needed
\star Simple operation
\star Blank check \& verify functions
\star Powered down master \& copy sockets
* Individual socket LED indicators
\star Mode indicators for blank check, program verify, and socket power down
\star Price $£ 545+$ VAT $+£ 12$ delivery

MODEL 14
 EPROM ERASERS

$\star 14$ EPROM capacity
\star Safety interlocked
\star Convenient tray loading of devices
\star UV141 (with timer) £78 + VAT
\star UV $140 £ 61.50$ + VAT

To cope with increased demand WE HAVE MOVED

GP Industrial Electronics Ltd.

Unit E, Huxley Close
Newnham Industrial Estate
Plymouth PL7 4JN
Tel: Plymouth (0752) 332961

Image display, testing and alignment

by M. L. Christieson

Abstract

Concluding these articles describing the design philosophy for a station receiving high-resolution weather pictures from a satellite, the author discusses methods of displaying image information received using the circuits described in previous articles. The remainder of the article is devoted to system testing and alignment and includes designs for a test transmitter and digital-data simulator. The author's system was designed using high-resolution weather picture transmissions from NOAA-6.

Whatever method of processing and display is used, it must be capable of dealing, at least initially, with the incoming data in real time. Usually this means that some form of magnetic storage medium will be required, such as tape or disk. The following combinations are possible:

- A digital tape recorder storing raw data for later handling by a dedicated logic system.
- A computer programmed to store raw data on magnetic tape or disk for later decoding by the same computer.
- A computer operating a real-time data stripping program and recording only part of the data on tape or disk in order to minimize storage requirements.
There are three main display methods which may be fed from any of the previous handling options.
- A high-quality photographic facsimile recorder.
- A c.r.t. based visual-display unit.
- Direct numerical analysis.

Data processing

The first problem in data processing is the data rate and the real-time constraints that it places on the system. There are many ways of solving this problem, but the easiest is to use a computer. The time available to deal with each word is $15 \mu \mathrm{~s}$ so a mini-computer or mainframe will probably be required as the average microcomputer is too slow. The tape or disk drive should be capable of transferring the data in the available time which might be, for example, 2048,10 -bit words in 166.6 ms for a single image channel.

This system uses a PDP-9 mainframe which was available, and fast enough to do the job. The magnetic-tape facility (a 'DECtape' drive) is however, not so satisfactory as the maximum data rate is not obtainable because the transport must be

started and stopped depending on the state of the data buffer in the main memory.

As an initial experiment only the centre 1024 pixels of one channel are stored and using four bits from the ten-bit word. These are packed, four at a time, into 16 bits for transfer via the 18 -bit input-output bus to the computer.

The two spare bits are used to carry the data valid and line-sync. signals. A routine written in assembly language separates one image channel, selects the required pixels and repacks them into a $6 \mathrm{~K}(\times 18)$ buffer in core. This buffer is read out into a DECtape drive using an interrupt service routine. The PDP-9 data-channel transfer facility connected to the tape drives is convenient because it means the transfer, once initiated in the main program, continues without program intervention. This is vital where time is at a premium.

One DECtape, which stores 576 blocks each of 256 words, i.e. 1.4 M -bytes, fills up in 96 seconds so some decision about the approximate image area must be made prior to reception. These sacrifices are unsatisfactory and if a better tape or disk drive were available would not have to be made.

It has been found that for simple pictures it is better to ignore the two most significant bits and take the next four. This means that all the available dynamicstorage range is used.

In any system of this type the constraints on the software are severe and some outline of the program may be of interest. When first loaded by means of the linking loader, the program requests which channel is required. On receiving this information via a v.d.u., it calculates

A scan of the Isle of Wight and surrounding area received from NOAA 6 using the system described.
the number of words between the end of the sync. word (coincident with the linesync. bit being high for one input cycle) and the word containing the first required image-data pixel (sample 512 in this case). This number is stored. The appropriate interrupt skip chain for the tape is set up and the tape rewound to the beginning.

The availability of a new data word is indicated by the word clock setting a device flag high. This is sensed by the computer by means of a flag check loop and the word is read into the accumulator, resetting the device flag. The word is examined for the state of the valid bit, and if it is not set, returns to the flag-check loop. If the valid bit is set, the program checks for the line-sync. bit, and again if not set returns to the flag-check loop. When line sync. is found the program counts the words that follow, rejecting them until the line delay runs out. 1024 words are then read (packed as 256×18-bit words) and one image separated by counting each block of five words.

Each time a new 18 -bit word is assembled it is stored in a 6 K buffer in core using auto-indexing. The two spare bits are unused. A constant check is kept on the state of the buffer input pointer and when it reaches 3 K the tape drive searches for the first available block and starts to empty the buffer by means of the data channel. When 3 K words have been transferred out, an interrupt stops the tape and
winds it back to clear the overshoot. Because tape transfers data out faster than it comes in, by this time the input pointer has only just reached 6 K .

The input pointer is reset to commence refilling the lower 3 K of the buffer while the tape restarts and reads out the upper 3 K . This cycle, where the tape-output pointer is in constant pursuit of the datainput pointer but never catching it, will continue until the tape is full, causing another interrupt. This stops further data input. At the end of 1024 pixels read from each line, the program returns to search for the sync. in the next line.

A particular problem involved the length of the interrupt service routine which effectively blocks input data transfers during its execution. This was solved by including an input flag and data check within the interrupt routine, depositing any input word in a temporary buffer to be dealt with on return to the program. It was not possible to use the tape handler within the PDP-9 operating system because of its complexity, incurring a heavy penalty in both memory space and time. A special handler was written and included as part of the program.

Display system

The display consists of a colour v.d.u. connected to a small frame store operating as a peripheral to the computer. The store uses static ram and is arranged as 12 K by 4. This gives a basic picture of 96 lines, each of 128 pixels. This was chosen to fit in with the aspect ratio of the display. Data is loaded into the store by another program during which the display is not available. For display, the store is read out as 630 lines by repeating data, and converted to three analogue signals which operate the three colour guns of a standard colour sha-dow-mask c.r.t. Because the number of levels is restricted it is possible to have presets for each level on each gun, the adjustment of which sets the false colour enhancement. 630 lines are used to remove the interlace on the 25 frames-per-second picture which causes a vertical jitter as frames are repeated. The frame store can also be read slowly at four lines per-second and the result printed in monochrome on a wet-paper facsimile machine.

One problem surrounds the rather restricted display area which could be increased at reasonable cost using dymamic r.a.m. But with the present memory size it is possible to fit into the computer core a keyboard monitor, a v.d.u. handler, the operating program and two complete frames.

One tape of recorded data consists of 576 lines each of 1024 pixels, so only selected pixels can be displayed at one time. The present software requests the coordinates of the top left-hand corner of the required image and the required resolution; for example, giving the corner as $1: 1$ and skipping 5 lines and 7 pixels each time, a low-resolution overview is produced. This permits the identification of surface features. After a particular area of interest is identified, it can be enlarged to full resolution. This also means that adjacent squares in full resolution may be printed out and joined together as a mosaic.

Software image processing

Several improvements may be made to the quality of each frame using software enhancement. It is probable that there will be a certain number of noise pixels; these may be cleared by taking each pixel and comparing it with the average value of the four that surround it. If the difference is great, the pixel can be replaced by the average. With the correct limits, the improvement in quality is considerable.
As the digital-to-analogue converter is preset, the pseudo colour can be wrong, depending on the illumination, so some method of adjusting the 'black level' by adding or subtracting a constant is useful.
A third facility is only required if a facsimile print out is wanted. To make maximum use of the very poor dynamic range on the paper, an image stretching routine should be used. This expands the lower light values and avoids dull pictures.

Fig. 16. Circuit diagram of a low-power transmitter that can be used for antenna and receiver alignment and testing if a microwave signal generator is not available.

Testing and adjustment

Adjustment and troubleshooting in a system of this complexity are a considerable problem, compounded by the fact that the satellite only passes over occasionally. The best way to tackle the problem is to set each section up independently. This may be done before all the sections are built.

The easiest way to start is to adjust the antenna and receiver using an unmodulated S-band signal source. This source can be a microwave-signal generator connected to a small antenna, but if this equipment is not available a very low-power transmitter is easy to make. It can be battery operated and should produce r.h.c. polarization. By placing this transmitter some distance from the antenna and using the signal-level meter, the whole receiver may be checked out. Figure 16 shows the circuit diagram of such a transmitter. The antenna is a $10-$ turn helix wound with 16 s.w.g. wire on a 350 mm length of 53 mm diameter plastic drainpipe. This is mounted together with a plane reflector on the front of the transmitter's diecast box. The prototype was powered by 8AA NiCd cells.
To confirm that the correct harmonics have been selected in both receiver and transmitter, a narrow-band communications receiver should be loosely coupled to the 10.7 MHz output. Only the correct combination of harmonics will result in a signal at 10.7 MHz . When the whole receiver chain has been adjusted, the i.f. should be examined with a 50 MHz oscilloscope to check for parasitics. A further check should be made by loosely coupling a v.h.f. signal generator to the 137 MHz input and measuring the bandwidth. The 3 dB bandwidth should be about 3 MHz .
A general sensitivity test may be made by pointing the receiver antenna at the sun, when at least 1 dB of sun noise should be observed». It is difficult to specify an exact level value here because of variations in solar flux.
Direct observation of the satellite may now be made. A communications receiver should again be used to listen for the

[^5]

residual carrier, which is recognizable by a large doppler shift. A peak signal-to-noise ratio of about 8.5 dB should be attained as measured on the signal-level meter.
The next step is adjustment of the p.1.1. in the demodulator. This should be done with a v.h.f. signal generator at 137 MHz , coupled so that only a very weak signal is observed together with a large amount of noise. The v.c.o. should be tuned to lock onto the signal for about 100 kHz around 10.7 MHz as observed on the communications receiver. An oscilloscope attached to the v.c.o. control line will show whether or not the loop is locked. It should be possible to lock the loop over a small range with almost inaudible signal levels. A test with the satellite should now reveal recognisable data at the output of the postdetection filter.

Adjustment of the remaining circuits requires a continuous source of phasemodulated s.p.1. data. As the satellite does not provide this, a satellite simulator must be used. The signal is most easily injected at 10.7 MHz and should consist of random data with the sync. sequence inserted at the correct rate. The most straightforward means of generating the sync. sequence makes use of the fact that the sync. pattern

Fig. 17. This circuit is used to simulate the data content of the satellite transmission to aid testing and setting up of the system.
is part of a maximum length pseudorandom sequence generated by a shift register with some of its outputs fed back. It is, in fact, the first 60 bits of a 63 -bit generator started in 'all-ones' state. The polynomial for the sequence is

$$
x^{6}+x^{5}+x^{2}+x+1
$$

Analysis of these sequences is rather involved but nethertheless well documented ${ }^{14}$. The correct sequence is generated by a six-bit shift register with outputs $0,3,4$ and 5 fed back. Figure 17 shows the complete circuit of the simulator.

Two crystal oscillators are used to produce the bit rate and carrier signals. A six-bit presettable shift register, clocked at the bit rate, generates the data stream. If the cycle starts with the sync. enable high, the register generates the sync.-sequence because all the required outputs are fed back. As the last bit of the sequence is sent, the 8 -input NAND gate resets a flipflop and counter. This makes the sync.enable line go low, disabling two of the feedback outputs.

A different repetitive sequence representing picture data is now generated by the register. The counter counts the number of bits between the end of one sync. sequence and the beginning of the next. When the count runs out, the flipflop is set and the shift-register is loaded with the pattern to start the sync. sequence. Now the sync.-enable line is high again, the sync. sequence is restarted and the cycle repeats.

If the mode switch is in position 1, the sync. sequence is sent continuously. This is used for examining the performance of the bit conditioner with an oscilloscope, when a recognizable short sequence is useful. The sync.-trigger o.p. gives a short pulse at the end of each sync. sequence to trigger the oscilloscope.

Position 3 of the switch sends sync. and all ones for error checking. The n.r.z. data, which can be monitored for correlation with the recovered output, is also available. After conversion to s.p.1., the n.r.z. signal phase modulates the 10.7 MHz carrier. The phase modulator is rather crude but appears to suffice.

Use of this simulator enables the entire data recovery chain including clock

Continued on page 78

Abstract

This clock keeps time to a few seconds a day and can be readily constructed with home tools. It can be made by one individual, or will serve as a holiday project for a small group. It illustrates much of electricity and mechanics, and has been found of interest at a variety of educational levels. The clock runs for about a year on an HP2 battery and has all the fascination of a little engine. The larger moving parts are cut from cardboard and this gives the device a slightly outrageous character, guaranteeing interest from anyone who sees it working.

To maximize fascination the working of the clock should be very visible, and this suggests the use of a pendulum. The latter carries a magnet, which receives drive from a stationary coil. Thus the gear train transmits no power, and the wheels only need to turn each other to record the time. This is such a light duty that the wheels can be cut from cardboard. To help overcome errors in construction these wheels are large, and many adjustments can be made to the clock after assembly. Fig. 1 is a drawing of the general arrangement.
Magnetic drive to the pendulum is quite an old idea, with the pendulum operating a mechanical switch to control the coil. When transistors became available a simpler system was devised, whereby the pulse induced by the magnet as it passes the coil is itself used to switch a short power pulse. An early system had two magnets on a balance wheel, with a stationary coil for each. One coil picked up a signal pulse, which was amplified and then fed to the other coil as a power pulse, and each winding had perhaps a thousand turns. More recently the two coils have been placed together and operated by a single magnet assembly, as in the widely used German movement shown in Fig. 2. By comparing coil resistance with coil volume in that movement, it may be estimated that the two coils contain together some 4,500 turns.
Such a figure completely excludes amateur construction. The difficulty was tackled head on by combining the two coils into a single coil of 100 turns, although this only yields some 20 mV as the magnet passes over it. So the sensitive trigger circuit of Fig. 3 was developed to fire on this small pulse. The increased sensitivity found in that circuit is largely due to the relatively low value of the $10 \mathrm{k} \Omega$ resistor. This ensures that the first transistor is not saturated in the stable state of the circuit, and thus it is able to amplify even small input signals.

We leave further explanation of this circuit to the reader, and offer now some constructional suggestions. The reader who wishes primarily to evaluate the ideas involved is invited to proceed at once to the heading "Practical Points".

The construction will be described in its simplest form, leaving the reader to make such adaptations as he wishes. Caution is advised, however, in making changes on the mechanical side, as these tend to have knock-on effects.

The baseboard

The materials listed in Table 1 should first be assembled. To make the baseboard, cut out a rectangle of centimetric graph paper $23 \times 13 \mathrm{~cm}$, and copy on to it the points on Fig. 4. (Alternatively, use a tracing of Fig. 4 itself.) Stick the graph paper on to the chipboard base. The 10 mm cube blocks are feet for the baseboard: stick one under the front edge at the centre and one at each end under the rear edge. Then make, drill and bend the aluminium brackets shown in Fig. 4. Finally, drill the board as there suggested.

To mount components use 6 BA screws of about 13 mm thread length, inserting them from under the board. But do not wrap component leads round the screws. Instead, fix as suggested in the next paragraph.

To fix a lead, first load the relevant screw with a 4 BA washer. Then pass the lead close to the screw and tighten, so that the lead is trapped between washer and baseboard.
Two components can readily be trapped in this manner under a single washer, provided that their leads pass on opposite sides of the screw. On the two occasions where a second nut is recommended, the lead may be fixed by bending it. Where two washers are suggested, this is to deal with several connections, or to protect the thin coil winding wire.
Two BC108 transistors (or similar) are fitted into the 5 mm diameter holes from beneath. But first bend the leads on each transistor radially outwards from the centre of its underside, taking care not to short to the can. Trap both emitter leads at $e_{1} ; e_{2}$, and the remaining leads will point to their correct fixtures. Before fixing the 1 $\mathrm{k} \Omega$ potentiometer, bend outwards at right angles the thin extremities of its three legs.
Acquire if possible two of the small Tstyle caps that close containers of detergent or washing-up liquid, as shown in Fig. 1. If the vertical height is excessive, shave small pieces off the base very carefully, to arrive at the dimensions shown. The 4 mm dimension is the critical one, as it affects pendulum length. These T pieces are the

coil formers, and after drilling should be fitted (T upright) as shown under washers. The 100 turn coil can now be wound tightly anticlockwise as shown, using wire of diameter about $1 / 4 \mathrm{~mm}$ (33 s. w.g.).

Pendulum post

This is prepared from softwood as in Fig. 1. The sawcut which defines the bottom of this post must be made with maximum care. The bottom face must be at right angles to the length of the post, and must tilt neither front-to-back nor left-to-right. Now cut from one of the lengths of studding sections of $70 \mathrm{~mm}, 80 \mathrm{~mm}, 90 \mathrm{~mm}$, using pliers or junior hacksaw. Clean the ends so that nuts will run on and off, by filing briskly at right angles to the rod. This task is made easier if a nut is already on each section when it is cut off. Bolt the 80 mm length into the top of the pendulum post to give the pendulum bearing. The pendulum rolls on this rod, abolishing bearing friction.
Then screw two nuts against each other on the free forward end of this rod. Finally, screw the completed post to the baseboard as in Fig. 4. The only critical dimension in Fig. 1 is marked 284 mm , and it affects pendulum length.

The pendulum

Form the bracket No. 2 (Fig. 1) from 16 s.w.g. copper wire or similar. A regular half circle loop may be obtained by bending with the fingers round a 7 mm diameter screwdriver, for example. When a right angle bend is required, grip the wire in pliers so that the desired point of bending lies 2 mm clear. Then push the wire round firmly with the fingers against the side of the pliers. The third loop is formed round pliers to embrace 6 BA rod. The first attempt at this bracket can be treated as a training run and discarded. The second attempt will be almost perfect!
The pendulum can now be assembled from Fig. 1. The largest faces of the ferrites will be the magnetically active surfaces, and the North seeking face can read-

Fig. 1. Essential mechanism of the cardboard clock, showing parts of the three wheels and the axle support system. The pendulum has a period of 1 Hz and so it cranks the seconds wheel directly. The offset spike at the centre of the seconds wheel drives the minutes wheel. Wire brackets are also shown. For the coil formers, if T-style caps from detergent containers are not available, use two pieces of material $3-4 \mathrm{~mm}$ thick as shown.
ily be identified by hanging a ferrite from thread. Fine adjustment of timekeeping is made by varying the position of the small weight indicated. It should be trapped on the rod between nuts and washers, and set initially some 40 mm clear of the coin stack. All the coins can be recovered undamaged at any time by shearing the stack in a vice, to break the bonds of the glue.
Adjust the position of the upper bracket on the rod so that the semicircles made in it roll on the pendulum bearing, while the magnets at the bottom clear the coil by 1 mm . This task is slightly easier if the washer below the bracket is of the non-slip variety. Install the battery, adjust the pot to about mid range, and set the bob swinging with a travel of 50 mm or so. It should continue to swing indefinitely, with the amplitude adjustable on the pot. This success will encourage completion of the count wheel system.

Seconds wheel

Bend the bracket No. 4 as shown in Fig. 1. The V bends as indicated must be tight, and just over a right angle. For these V bearings, the important point is to provide a gap beneath the 6 BA rod. Even the smallest gap is perfectly satisfactory. This feature removes any tendency for a wheel to roll back after being moved. The same care must also be used in constructing the V bearings on the later brackets.
Using an 18 mm No. 6 woodscrew with a washer under the head, clamp the bracker

to the pendulum post at the hole in Fig. 1. The woodscrew should pass through the loop of the bracket, half way along the 25 mm part of it.
To cut the teeth on the wheel it is worth preparing a 6° template. Draw a circle of 60 mm radius on a sheet of paper, using a sharp pencil. Prick accurately through the centre. Draw any one diameter of this circle. Using a protractor draw the other diameters that make angles of $6^{\circ}, 12^{\circ}, 18^{\circ}$ with the first, and so on at 6° intervals. When drawing these diameters it is more accurate not to rely on the centre.

Now the seconds wheel can be made. Take the back of a school exercise book or other similar card, and check that when cut with scissors a clean edge is left, free from granulation. Draw on the card a circle of 48 mm radius. Mark the centre with a cross of arms 10 mm , and prick through. With the same centre draw a circle of 50 mm radius, and carefully cut it out.

Fig. 2. Circuit of Kienzle clock movement. Five times a second a semi-sinusoidal induced voltage of 500 mV peak tends to raise the upper ends of both coils. Then a current pulse of 3 mA lasting 10 ms does work against the induced voltage in the upper coil. Thus each pulse transmits some $15 \mu \mathrm{~J}$ of energy to the movement. Tuning fork oscillators are powered in a rather similar way.

Fig. 3. The "millivolt monostable". The single coil is connected to this very sensitive form of the monostable circuit. When the hot end of the coil produces a 5 mV negative trigger, a 100 ms current pulse of about 3 mA is provided.

Fig. 4. Full size plan of baseboard. But note the broken baseline. total length is 230 mm . Do not drill the baseboard until the upper bracket is fixed. Prepare the lower bracket and position it with the aid of the battery. Then mark hole positions on the baseboard, and drill.

Table 1: parts for the clock

MECHANICAL MATERIALS (dimensions in mm)
2 aluminium pieces 38×19 of $16 \mathrm{~s} . \mathrm{w} . g$.
2 No. 10 screws $38 \mathrm{~mm} ; 4$ No. 6 screws 19 mm
Chipboard $230 \times 130 \times 6$, with centimetric graph paper to cover
Softwood $330 \times 50 \times 25$
3 wood blocks 10 mm cube; 2 wood blocks $20 \times 10 \times 10$
2 off 300 mm length 6 BA studding (threaded rod) from model/tool/hardware shop
15 screws 6 BA of 13 mm thread length or so, with 37 nuts
39 washers 4 BA (not 6 BA), ideally with one non-slip
2 detergent container caps T-style
12 coins $2 p$
Cover from one school exercise book, or similar card

ELECTRICAL PARTS

2 ferrite magnets $25.0 \times 7.7 \times 6$ or so (Magnet Applications Ltd, 323 City Rd EC1V have waived their small order charge in favour of $W W$ readers, and for $24 p$ in stamps will supply both ferrites, if a 26 p s.a.e. is also enclosed.)
1 foot connecting wire, say 24 s.w.g.
$11 / 2$ metre $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. bare/tinned copper wire (or strip 1 metre 13A cable, and use the thicker wire)
$121 / 2$ metres enamelled copper wire about $1 / 4 \mathrm{~mm}$ diameter $=33 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.
1 horizontal p.c.b. preset 1k (larger size: 20 mm diameter)
2 resistors 470Ω, one 2.2 k and one 10 k , all $1 / 2 \mathrm{~W}$
2 capacitors p.c.b. type $100 \mu \mathrm{~F}$ (not to be varied!)
1 HP2 battery
Place this disc centrally over the template, and mark off two points 180° apart. Then make the intermediary marks. Using the inner circle as a guide, make by eye 2 mm radial cuts inwards from the points just marked on the circumference. Choose which side is to be the front of the wheel, and complete the teeth with slanting cuts, as shown in Fig. 1, top diagram. Do not use a mirror image, but follow the slants as shown. Keep the slant angle constant, and this will compensate for errors in the radial cut. The precise length and direction of these cuts is not too critical, but the radial cuts must start at the correct point.

Number the teeth in the direction shown, using a felt-tip pen. Teeth $25-34$ are illustrated. To control warp, cut a second disc of half the radius, and glue it to the back of the first. Form the spike, using the thin connecting wire. Now trap the seconds wheels between washers at the front end of the 70 mm length of studding. Then slip on an extra washer to trap the spike. This must point out ahead of the wheel, parallel to its axle, but 4 mm off centre in the direction of tooth 15 . This spike will then provide the correct drive for the minute wheel.

Place the completed seconds wheel in its bearing. Make the claw No. 1 in Fig. 1, but again using the finer connecting wire. The 40 mm tail is an adjustable counterweight, which varies the pressure exerted by this claw on the seconds wheel. The diameter of the curves of the claw should be 4 mm or more, to ensure that rolling takes place on 2. Hang the claw there, and loosen the screw holding bracket No. 4. This bracket can now be moved horizontally, to allow the claw to hang vertical, touching the wheel at about the level of its axle. The pendulum should now drive the seconds wheel. If at any time this wheel starts to squeak, place a little lard on the front bearing.

Minute and hour wheels

Make the minute wheel bearing 6 in Fig. 1 , constructing the V bends once more as explained above. Clamp the bearing to the pendulum post as shown. Now draw on

Fig. 5. Trace of the potential of the hot end of the coil in Fig. 3 as the magnet passes in either direction. Triggering occurs when the induced volts reach some 5 mV negative. The negative pulse should occur as the magnet is leaving the coil, so that a long pulse has no ill effects.
card a circle of 50 mm radius, and mark the centre with a cross. Prick it through. Draw a concentric circle of 55 mm radius, and cut it out carefully. Mark the periphery from the template as before, and make 5 mm radial cuts as in Fig. 1, middle diagram. Choose which side is to be the front, and complete the teeth and numbering as shown, noting that slanting cuts and numbers now proceed in the other direction. Back the new wheel with a 25 mm radius disc, and mount it at the front end of the 90 mm length of studding. Make the spike shown and trap it behind an extra washer, but this time at the rear of the wheel below tooth 07 . This spike will then drive the hour wheel correctly. Now mount the minute wheel in its bearing, and terminate the axle at the rear with two nuts screwed together, so that the axle has little freedom of movement backwards and forwards. Ultimately both other axles may be so terminated.

Imagine the seconds wheel axle to extend forward indefinitely. Now adjust horizontally the bearing of the minute wheel, so that its teeth would just scrape the extended axle. As the seconds wheel rotates, its spike will now mesh with the minute
wheel teeth, but it should only penetrate some two thirds of the available distance. Also when the seconds spike leaves the minute wheel it should next enter it near the centre of the next tooth. If the spike does not meet these two requirements, its radius can be adjusted.
Make the hour wheel bearing 5 in Fig. 1 without bends, and fix at the hole 2 on the post. Draw on card a 30 mm radius circle, marking the cross at the centre and pricking through. Draw a concentric circle of 45 mm radius, and cut it out. Mark the perimeter from the template, but only every 30°. Make 15 mm radial cuts and choose the front. The slanting cuts are large, and they and the numbering follow the direction of the seconds wheel. Number the teeth I-XII. Mount the wheel at the front end of the 65 mm or so length of studding remaining. Adjust the position of the bearing so that the hour wheel is correctly driven. This will include making two bends to bring the wheel forward somewhat. When the hour wheel is correctly driven each operation by the minute wheel leaves a radial side of an hour tooth vertical.

Finally the bracket 3 is constructed, and fixed at a hole on the post. Before making the bends shown at the top of 3 compare with the actual clock, to ensure that 3 will do its job. On its 40 mm and 50 mm sections it has to carry a card which can slide horizontally. One card indicates which tooth of the minute wheel is to be read, and the other does the same thing for the hour wheel. The time can be read more easily if these cards hang just behind the wheels, and extend just below them.

Practical points

A warning: the pendulum bearing can absorb some energy if the semicircles on No. 2 do not line up with the threads at the point of contact. If the pendulum bob describes a curved path that takes it out of the vertical plane, this is because the semicircles just mentioned differ markedly in radius. If a tooth is ruined while constructing any wheel, another can be stuck behind it. But keep glue off the active surface of the new tooth. If this addition unbalances the wheel, it may be brought back into balance again by glueing a 1 cm square piece of card on the back in an appropriate position. If desired the wheels may be tested for balance by tapping the baseboard, and then corrected as above.

Lowering the adjusting weight by one turn of its fixing nuts slows the clock by about ten seconds a day, and conversely. Thus good timekeeping may rapidly be achieved. The clock malfunctions in strong draughts or vibration, but the time shown can be readily adjusted. Seconds should be read where the claw touches the seconds wheel. Enthusiasts may add a moon wheel, which will keep quite good time if two spikes on the hour wheel address a 59 tooth moon wheel.

Two patents arc held on the clock, but that only stops it being made if some sort of financial gain accrues, and indeed full constructional details have been given here. A kit might be preferred, but no

The completed cardboard clock, which runs for about a year on an HP2 battery.
large manufacturer has been found to produce one. However Webbonware, 398 Hatfield Rd, St Albans, Herts, will supply a complete and engineered kit (less battery) for $£ 17$, which includes postage and packing. The teeth on the wheels are marked for cutting out, and all drilling is done. Baseboard and backboard are elegantly shaped in hard wood, but to look their best they need some finishing. Stripboard is provided to connect the electrical parts, which are then concealed. In this form the clock becomes a permanent piece of furniture.

Energy balance

A pendulum is a device which lends itself to measurement. By observing the decay in oscillation when there is no drive, it is possible to study the energy absorption of the various parts. When the amplitude is at its maximum permissible value the claw is almost drawing forward two teeth at a time on the seconds wheel. At this amplitude some $5 \mu \mathrm{~J}$ of energy are absorbed per cycle in overcoming the air resistance met by the bob, while a further $3 \mu \mathrm{~J}$ is needed to handle friction at the axle of the seconds wheel. But the amplitude also has a minimum permissible value of about half the above, when the claw only just succeeds in moving one tooth of the seconds wheel. Here the friction requirement remains unaltered, but the air resistance element falls as the 2.5 th power of the amplitude, and so reduces to about $1 \mu \mathrm{~J}$.
Thus the air resistance of the bob provides an energetic buffer against amplitude variation, and it must not be reduced. If the pot is adjusted for maximum permissible amplitude when the battery is new and
delivering 1.6 V , it will be found that when the battery is old and delivering only 1.1 V there is still more than sufficient amplitude to drive the clock. With this endpoint voltage the battery specified yields nearly 10 Ah , and so at about lmA consumption the clock should run for over a year.

Electrical measurements complement these mechanical observations. Arrange for the pendulum to swing with amplitude near the maximum permissible, while driving the seconds wheel as usual. Monitor meanwhile the voltage across the coil on an oscilloscope. As shown in Fig. 5 something like a single sine wave cycle is induced as the magnet passes over the coil, with amplitude some 25 mV . Superimposed on this is a clearly distinguishable 16 mV power pulse which switches rapidly and lasts 100 ms . The coil is 4Ω so the power current was 4 mA , flowing for 100 ms against an induced e.m.f. of average value some 12 mV meanwhile. All this happens twice in the pendulum cycle, and multiplication shows that during that time some $10 \mu \mathrm{~J}$ of kinetic energy are transferred to the pendulum. This is very close to the $8 \mu \mathrm{~J}$ suggested above from mechanical studies.
As with the electric motor, energy is transferred when current flows against back e.m.f. But the battery has to overcome not only the 12 mV just mentioned, but also the 1500 mV found at the pot. So the circuit is less than 1% efficient, compared with the 30% that may be deduced from Fig. 2 for the Kienzle movement. This is the price paid for a simple coil and magnetic circuit. Nevertheless, the battery lasts a year, and this might be regarded as sufficient.

Weather-satellite images

Continued from page 73
regenerator, demodulator and sync. detector, to be adjusted. The input level should be progressively reduced and each part 'retweaked'. The whole system should be adjusted by monitoring the noncoincidence pulses at the error monitor point in the bit conditioner. Final adjustment is a significant problem and can only be achieved after much trial and error.

Results and conclusion

A number of images have been recorded using this system and the ground resolution obtained is close to that specified in the spacecraft parameters list of 1.1 km . It is likely that many improvements could be made by other experimenters but it is the intention that this article should be a basis for further work rather than a complete discription of a finished project.
Although the system was designed for h.r.p.t., facilities for Meteosat p.d.u.s. will be added since the Meteosat system is fully operational again: the basic philosophy is similar. Further design information about both systems is readily obtainable ${ }^{16,17}$.
Many people offered advice and help during the development of the equipment. I would particularly like to thank all my colleagues at Feedback Instruments Limited, Miss C. Thoburn (Royal Greenwich Observatory, Herstmonceaux) and Mr W. S. Steer (Imperial College, London) without whose encouragement the project might never have been completed.

References

14. Generation and Properties of Maximum Length Sequences, W. D. F. Davies, 'Control' Vol. 10 numbers 96 and 97 .
15. Antenna and Receiving-System NoiseTemperature Calculation, L. V. Blake, US Naval Research Laboratory, September, 1961.
16. Guide for Designing RF Ground Receiving Stations for TIROS-N, NOAA technical report NESS 75. Obtained from US Department of Commerce, NOAA (National Oceanic Atmospheric Administration), NESS (National Environmental Satellite Service), Washington DC 20233, USA.
17. Meteosat High-Resolution Image Dissemination, European Space Agency.
The NEC semiconductors mentioned in the article can be obtained through California Eastern Laboratories, 2 Clarence Rd, Windsor SL4 5AD Itelephone Windsor 56891) and the address of the p.t.f.e. board manufacturers is $3 M$ (UK) Ltd, PO Box 38 , Yeoman House, 57-63 Croydon Rd, Penge, London SE2O.

The chip capacitors mentioned in the first article have a value of 100 pF and not 1 nF as shown in Fig. 1. The manufacturer's type number given is correct.

The circuit shown in Fig. 15 of last month's article needs a slight modification. A series capacitor of 100 pF is required in the g sync line to the 4017lC reset input. The capacitor is followed by a 10 k -ohm resistor to ground so that the R and C form a high-pass filter. Without these components some resetting problems may occur.

Britain backs L-Sat

The UK government is to provide $£ 77$ million of the $£ 230 \mathrm{~m}$ cost of developing and building a large European Space Agency satellite for telecommunications and broadcasting. This is the L-Sat, which has been under discussion for a good many years (see, for example, November 1980 issue, p.65). The other major partner in the consortium for building it is Italy, and participants include Canada, Netherlands, Switzerland, Austria, Belgium, Spain and Denmark Originally France and Germany were to have been major partners in the project, but in 1979 they withdrew and started a collaboration to build their own satellites (one for each country).

L-Sat, for which British Aerospace is the prime contractor, will be a new design of geostationary satellite platform, suitable for carrying a
wide range of payloads. Two of these will be 12 GHz transponders for pre-operational use in satellite broadcasting, and their aerial beams will be steerable to cover any European country. Other transponders will allow trials on business communication systems, with uplinks in the 14 14.5 GHz band and downlinks in the $12-$ 12.75 GHz band. The first flight, planned for 1986, will provide demonstrations and experiments in advanced digital communications and direct television broadcasting.
The spacecraft will be placed at 19° West in its geostationary orbit and will carry fuel for five years of operations. Designed to be launched either by the Ariane rocket or the US Space Shuttle, it has been matched to the predicted satellite market up to the end of the century.

British Aerospace estimate the total market to include at least 120 large satellites. The L-Sat contract is worth about $£ 150 \mathrm{~m}$ to them
Marconi Space and Defence Systems will provide the business communications payload, which will be the first in the world to use onboard switching between multiple-spot aerial beams - a technique that increases the communications capacity obtainable for a given size of satellite and a given frequency allocation. This technique is expected to be used in most future communications systems
British Aerospace are also prime contractors for the series of European Communications Satellites, ECS (for which the first launch is due in 1982) and for the Maritime Communications Satellites, MARECS (first launch due soon).

More letters

Horn loudspeaker design

In 1974 you published Dinsdale's three-part article ${ }^{1}$ on horn speaker enclosures for domestic use with numerous theoretical aspects outlined. These include the beautiful ideas of Voigt who showed that a tractrix profile for a round horn would allow a wave front always perpendicular to the horn edges to travel up the horn, meeting the condition of travel with constant velocity for every part of the wave. The wave front is spherical with a constant radius equal to the length of the straight line which generates the tractrix. At the mouth the direction of the horn profile is perpendicular to the axis and the wave front stands on it, a perfect hemisphere, before setting off to meet some diffraction problems as its introduction to the big world outside. Whether it has the same intensity all over the hemisphere, I wish I knew.

In later correspondence one reader mentioned the failure of the familiar flattened tweeter horn to spread out the treble as widely as was hoped (in a design independent of Dinsdale).
Dinsdale's Fig. 13 shows clearly how for a treble horn he elongates the horizontal cross-section and compresses the vertical cross-section, using an exponential horn, I think, though there is something worrying about the way his profiles in Fig. 13 both fall initially inside the circularhorn profile they derive from. But a proper consideration for the spherical wave emerging tangential to the end of the horizontal profile would apparently entail enclosing it all round at this stage in its journey, by bringing the top and bottom out in a curve for some 5in extra to a horn 5in long! Small tweeter horns are becoming almost a logo on transistor radios but in so far as they are generally flat-fronted and elongated sideways they presumably all suffer from this fault.

Further, my reference to diffraction problems was triggered by coming across a design for a narrow horn expanding between vertical planes to become elongated vertically - which spread the treble sideways by diffraction. All this tends to show why a pair of tweeters tilted left and right is sometimes used without horn loading, while others find it necessary to subdivide the horn longitudinally so their partitions can curve outwards and take the sound with them to get wide dispersion. Dinsdale's horn works into a baffle (hemisphere loading) but I suspect anyone using a flat-fronted horn without a baffle
is going to get disappointing results as their spherical wave will be in poor condition when its edges reach the lateral limits of the horn. In practice wavefronts are pretty thick compared with horn size if they fall within the passband, but it is useful to compare them to a rather durable soap film being blown towards the mouth, which can be imagined standing neatly at the outline of a laterally elongated tweeter horn with a bowed front.
Bernard Jones
London W1

Reference

1. "Horn loudspeaker design", J. Dinsdale, Wireless World March 1974, p. 19, May 1974, p. 133, June 1974, p. 156.

Concepts in physics

I have mixed feeling about J. L. Linsley Hood's letter in the November 1981 issue discussing the prevalent censorship of any ideas which have tended to cast doubt on the validity of orthodox theories.
The self-appointed guardians of the faith, who have arrogated to themselves the right to stop me from publishing in any learned journal in Britain and the USA by means of the refereeing system, are today an extremely ignorant, arrogant bunch in the fields of relativity and electromagnetic theory. On the other hand, the fact that one is a dissident does not necessarily mean that one is competent, and unfortunately one at least of the suppressed dissidents has failed completely to understand his subject. I only wish the lines were more clearly drawn beteeen the goodies and the baddies.
Ivor Catt
St Albans
Herts

Selective calling on c.b.

I note that condition 6 printed on my Citizens Band licence application form permits the use of selective calling and transmitter identification signals. In view of the enormous benefits which would derive from standardisation now, may I offer the following suggestions.

1. Each station to be identified by a ten-digit number made up of the eight digits of the licence number and two digits selected by the
licensee differently for each transceiver owned 2. The selective calling signal to consist of the called station identity, calling station identity, a channel number and an error detection code. The called station identity would either be input on a calculator type keyboard on the unit or called up from a store of frequently used numbers.
2. The called station to display or change automatically to the channel number in the received signal, thus enabling selective calling signals to be segregated from voice signals on different channels if required.
3. The called station to display the calling station identity and give an audible and/or visual indication to attract the operator's attention 5 . The called station to reply by sending its identity, and positive confirmation that this has been received to be given to the operator of the calling station.

The use of some form of tone coding would be desirable as this would allow add-on selective calling units to be plugged in to the microphone and loudspeaker sockets of existing
transceivers. For example two tones could be used, 2.4 kHz marking and 1.2 kHz spacing, and the data transmitted as a bit stream after a short burst of marking tone. A data rate of about 50 bits per second possibly would be appropriate in this case. The two station identities sent as 34 bit binary numbers, the channel number as six bits and about another six bits of error detection code would give a total of eighty bits and a transmission time of 1.6 seconds with the rates and frequencies given above. It should be noted that these frequencies are intelligent guesses only, chosen for convenience of derivation from a standard 2.4576 MHz microprocessor crystal, as before 2nd November 1981 I could perform no actual tests.
R. Billing

Farnborough
Hants

Direct digital frequency synthesizer

Dr J. H. J. Dawson, author of "Direct digital frequency synthesizer" in the December 1981 issue, asks us to print the following acknowledgement, which was not included in the published article: "Thanks to André Noest, for many helpful discussions during the design of the synthesizer, and to Professor Nibbering, Laboratory for Organic Chemistry at the University of Amsterdam, and the Netherlands Organisation for Pure Research for commissioning and financing the project"

New Products

Hard-disc for HP's

A new company specializing in hardware and software for HewlettPackard systems, Protek, have made available in the UK a 5 M . byte hard-disc drive for Series 80, 9825, 9826, 9845, 250 and 125 desktop computers. The MSC9800, from the Microcomputer Systems Corp., is fully compatible with the aforementioned computers, even down to the paintwork, and incorporates a $51 / 4$ in Seagate Technology Winchester drive. A singleboard controller is used. The controller provides 22 -bit error detection, 11-bit error correction, a 256-bit data buffer, single-command disc initialization and a switch selectable bus address. The unit measures 159 by 254 by 305 mm . Protek Electronics, 115 Alderney Street, London SW1V 4 HE
WW301

Dot-matrix printers

Additions to Centronics' range of matrix printers for microcomputer users have been made. First is the 132-column model 152 with a print speed of $150 \mathrm{chars} / \mathrm{s}$. This is a bidirectional printer with a variablewidth tractor feeder for both fanfold and single-sheet paper and produces from 5 to 16.4 characters per inch in both expanded and compressed modes. Self-test is incorporated. The model 150 is an $80-\mathrm{co}$ lumn version of the 152 but with a removable tractor. Lastly, an improved version of the existing 737 printer, the 739 , has been produced. Among the improvements are increased speed (100 chars/s), full pin-addressable graphics, a 'top-of-the-form' (i.e. printer automatically runs to top of next page) capability and self-test. A cover, claimed to reduce noise to 60 dBA , is standard on this model. Approxi-

mate prices are, under $£ 700$ (starting price) for the 152 , under $£ 500$ for the 150 and around $£ 500$ for the 739. RS232 or Centronicsparallel interfaces are available for all models and the 739 also has a 20 mA -loop option. Centronics Data Computer, Petersham House, Harrington Rd, London SW7.
WW302

Power op-amps

High-voltage power op-amps from Apex Microtechnology are available through Pascall. The PA83A has the highest output-voltage swing of this range of hybrid-TO3 devices at $\pm 145 \mathrm{~V}$ max. Its minimum output current and slew ratings are 75 mA peak and $30 \mathrm{~V} / \mu \mathrm{s}$ respectively. At

present, the device with the highest current output is the PAO7A, rated at 5 A minimum (peak). Maximum output-voltage swing and slew ratings of the 07 A are $\pm 47 \mathrm{~V}$ and $4.5 \mathrm{~V} / \mathrm{us}$ respectively. Both the 83 A and 07A have a typical d.c. input impedance of $10^{11} \Omega$ and the slew rates given here are for maximum load. There are 11 devices in the present range and another four planned, one of which will deliver a minimum peak-output current of 15A. Pascall Electronics Ltd, Hawke House, Green Street, Sunbury-on-Thames, Middx TW16 6RA.
WW303

C.v. transmission controller

A reduction in fuel consumption of between 10 and 15% is claimed for the Tecton Motronics digital con-tinuously-variable transmission controller. The system, designed to operate with any c.v.t./engine combination, is programmed to monitor load speed, load torque, engine speed and load-speed demand and adjust the throttle and transmission accordingly. The best possible overall efficiency under any load conditions and at the demanded load speed is claimed. Tecton Motronics Ltd, 12 St George's Rd, Leamington Spa, Warwickshire CV31 3AY.
WW304

Plastic screws

Nylon screws with metal cores are manufactured by Plastic Screws Ltd. These screws are claimed to combine the advantages of their allplastic equivalents with much increased mechanical strength. The heads, forming part of the metal core, can be round, countersunk,

fillister or round-with-washer types. Plastic Screws Ltd, Uddens Trading Estate, Nr Wimborne, Dorset BH21 7NL.
WW305

Liquid-level sensors

Fluid-level monitoring units operating on the diaphragm/straingauge principle are available from RDP. LL-series 'liquid-level transmitters', as RDP call them, may be obtained with an attached output circuit providing either 0 to 5 V d.c. or 4 to 20 mA . Sensing heads can have a circular mounting flange or they can be delivered for plumbing directly into a tank's outlet. RDP Electronics Ltd, Grove Street, Heath Town, Wolverhampton WV10 OPY.
WW306

Data logger

Up to 128 analogue and 240 16-bit digital inputs can be handled by the mDAS/SP software-programmable data logger from Base Ten Systems. This unit, with built-in c.r.t. display, 'qwerty' keyboard and cartridge recorder has 76 Basic commands and 64 graphics characters. Data acquisition, recording and control instructions, analysing routines and compensation/linearization for sensors can be programmed. Both programmes and acquired data can be stored in the logger's cartridge recorder. Software for the unit includes scan, alarm, linearization, control, graphics and file-handling routines. An option with internal printer is available; remote printers and v.d.us can be driven through a serial link. Other options include RS232 and IEEE488 compatibility and CCIR composite-video output. Base Ten Systems Ltd, 12 Eelmoor Rd, Farnborough, Hants GU14 7 ON. WW307

Speech synthesizer

Integrated-circuit sets for Triangle's Instant Speech system, previously only available as part of an assembled unit, can now be obtained separately for around $£ 39$. The TDS934 set consists of a speech synthesizer, a speech memory and four standard ics for voltage regulation and filtering. Up to eight memories can be used with the system; the one supplied contains data for the words 'oh', point, gram, kilo, ohms, volts, amps and numbers one to nine. Extra memories can be programmed to customers' requirements at 48 hours notice. Microprocessor control is not essential but serial and parallel interfaces can be used. Using a few extra c.m.o.s. i.cs, the vocabulary can be expanded to almost any size, claim Triangle. An assembled system on Eurocard (see photo) costs $£ 97.06$. Triangle Digital Services Ltd, 23 Campus Rd, London E17 8PG.

WW308

Tv monitor oscilloscope

Incorporated in the Gould OS3351 oscilloscope is a BBC-designed time-base for monitoring and measuring broadcast signals. This 30 MHz dual-trace instrument accepts composite-video signals, with or without 'sound-in-sync', which can be examined in one of six triggering modes. Any line, or linepairs in the range $16 / 329$ to $22 / 335$, can be selected and displayed. Triggering can be delayed continuously by up to $90 \mu \mathrm{~s}$ for studying parts of a line. Line selection is by pushbuttons, the displayed line number

WW308

WW309

WW310
being indicated on a 3-digit display. The triggering point of a tv frame may be displayed as a 'bright-up' line on the picture to establish the relationship between waveform and picture. A single switch is used to change between picture and waveform display modes. The OS3351 can also be used as a conventional 30 MHz oscilloscope. At $1 \mathrm{mV} / \mathrm{cm}$ the bandwidth is 0 to 10 MHz . Gould Instruments Division, Roebuck Rd, Hainault, Essex 1G6 3UE.
WW309

Tunable filter

An automatic variable-bandpass filter covering the range 1 Hz to 1 kHz has been introduced to the market by Bang \& Olufsen. Primarily intended for audio equipment assessment, the TF2 has a filter width of around 10% with $40 \mathrm{~dB} /$ octave skirt selectivity and a gain of approximately one (in the pass-band). Manual and automaticsweep modes and sweep range are selectable. Applications include wow-and-flutter and resonance measurements. An output for an X, Y recorder is provided and an option for remote control is available. Danbridge (UK) Ltd, Sherwood House, High Street, Crowthorne, Berks.

WW310

Phase-locked oscillators

A series of phase-locked oscillators from RFD covers the range 0.4 to 5.2 GHz . Stability error of the internal reference is ± 3 parts in 10^{5} over the operating temperature range of 0 to $50^{\circ} \mathrm{C}$. R.f. output levels are +20 dBm for types in the range 0.4 to 2 GHz and +13 dBm for 2 to 5 GHz types; units with higher output levels can be supplied. Harmonics and spurii are -20 dBc and -80 dBc respectively and power re-

quirements are 12 V to 28 V d.c. at around 150 mA . Units can be supplied to operate on either an internal or external reference with automatic switch-over between the two. Other options include locklimit alarm, mountings to customers' specifications and extended temperature range. Dimensions of the units are 32 by 57 by 57 mm excluding terminals. March Microwave Ltd, 112 South Street, Braintree, Essex.
WW311

Lost for words

However ingenious and hardworking electronic engineers are, you'll always find someone ready to sneer at their work. I used to find that sort of thing very depressing myself when I was employed to design things. Come up with any kind of device you like to mention and I guarantee there'll be some character around who will ask, with ready wit, whether it will play 'God Save the Queen', or remark that if only you'd made it a bit heavier it would have performed with credit as a doorstop.

I've even been guilty of that sort of thing myself, but the time, as I now recognize, has come to stop it. I've always prided myself on knowing my limitations, and when something truly stupendous is announced I feel I have to bow to a superior intelligence and simply report the fact. This is that Olympus Optical make a little dictation machine which has recently undergone 'an interesting development'. Pearlcorder X-R1 - I hardly know how to say this - is a dictation machine 'with additional yodelling facility'. It can be connected to a timer which will not only wake you in the morning but send you off to sleep at night to the sound of yodelling. This intelligence, I must point out, comes not from the Olympian heights direct, but from the p.r. organization at the Berlin show, so the Japanese-German-English translation may have introduced an element of whimsy.

There is, as they say, no answer to that. Never again will I look forward to each day's post, hoping to see something to brighten my humdrum existence. When you've reached the peak, what then? From here on, it's downhill all the way.
Just one point, though, before I find a wall to bang my head against: if this is 'an additional yodelling facility' does it mean that all dictation machines already have a built-in, basic yodelling facility? Perhaps I'm not exploiting the full potential of mine.

Small talk

When I was being persuaded to part with my wind-up gramophone in favour of 'hifi' equipment, a few years ago, one of my colleagues who had placed himself in charge of my sonic education used to drag me all over South-East England to listen to loudspeakers. After the first two or three of these lecture tours my hearing began to fail under the assault: it must have been that, I suppose, but anyway I found that I couldn't swear to any audible difference between any of the gigantic boxes he showed me. It seemed to me that so long as the speakers occupied not less than a quarter of the volume of a good-sized sitting room they could be called high-fidelity units.

Maybe it all got to be a bit too much, or perhaps the application of science instead of guesstimation began to tell, but whatever the cause there is now a great number of tiny boxes, all labelled 'high fidelity'. Until quite recently, I'd thought that this description was a bit optimistic, but I've had a pair of microscopic Koss speakers on loan for several weeks and they've brought a new element into our lives - space: we have rediscovered carpet we haven't seen for years. No longer does the cat cringe in terror at the sound of Val Doonican - I do, but the cat's all right because the speakers are up on bookshelves, being only the size of a couple of atlases. And all this has been achieved without any significant loss in sound quality, to my ears at least.

There's a problem, though, because we've lost a talking point. The ones I had before were pyramidal, omnidirectional speakers and people who had never been before couldn't resist asking what in the world they were, which usually started a conversation along the lines of "Vivaldi wrote one concerto 400 times" or "Did you know Mozart was a drunken slob?". Riveting stuff, and it's gone forever. I expect we'll have to talk about Wedgwood Benn, now.

Record - of a sort

I think I can claim a record, or maybe the Post Office can. I've heard before of the sorting-office people dealing with impossibly addressed mail, but this time they've really pulled one off.
It was a letter from Belgium, posted in September and reaching me about a week later, that put them on their mettle. The address was "Mixer, Stamford Street, GB": not only an incomplete address, but the wrong area, because we've been here in Sutton since last November. It didn't stump the PO, though - they got it in one. They delivered to Dorset House, reasoning that only someone employed by IPC would assume a daft name like that, I suppose, and it was collected from there by the forwarding service.
Although I don't expect it will stop me grumbling when I arrive home from holiday before my "Wish you were here" communications, I feel like standing the relevant sorter a drink. I'd send the money off, except that it would most likely get lost in the post.

Plan-view

I don't know whether the motor car will survive the next twenty years, in view of the drying up of oil wells, but if it does perhaps with some other method of propulsion - the inside isn't going to look much like the kind we're used to. The seats will still, I expect, be people-shaped,
but the instrument panel is going to look even more like the cockpit of a Tornado than I had previously supposed. C.r.ts will, as I have mentioned before, probably replace 'clocks' as they are already doing in aircraft, and now Honda has developed a 'moving map' navigational display, too. You know the sort of thing - either a spot of light moves over a map of the area or the map moves relative to fixed point on the display to show you where you are.

Sounds great, but I'm not sure that all this entertaining gadgetry on the dashboard is such a good idea. They're all coming up with it now: Zenith with their computer that plays games, countless variations on the standard instruments many of which don't seem at all easy to read - and now Honda wants us to do map reading. Admittedly, the machine only comes alive when the car stops, but that in itself could very well be a bit tricky. Anyone trying to thread his way through London in the rush hour might find doubts being cast on his ancestry and future prospects if he has to stop every hundred yards or so to see where he is. Too much reliance placed on this sort of thing could be a mistake, too. It will not be an acceptable excuse, when picked up for driving the wrong way down the fast lane of a motorway, to say that the machine made you do it, being ten yards out.

Bits and peace

Scotland Yard's delighted leap on to the computer bandwaggon has caused a slight disturbance of equilibrium, according to a report in the Observer. It seems that if you know "one of three childishly simple methods", you can get into the Police National Computer and find out which terrorist gang your mother-in-law belongs to, should the need arise.

The police say that the computer bureau 'phone number has now been taken out of service and that requests for information must be sent by teleprinter until they come up with a more tight-lipped way of going about it than the telephone. They also imply that they don't know how many Toms, Dicks or even Harrys have been furnished with info. that ought to have been clasped tightly to the collective police bosom, and can only hope that dumping their computer store hasn't begun to rival Space Invaders as a pastime.

There doesn't seem to be any real answer to this kind of thing. However clever the police become at specifying and using electronic aids to investigation and communication, there's always going to be a way for individuals to use them illegally. The rising generation is going to be a lot brighter about computers, too, so anyone placing excessive faith in electronics had better be very careful.

SOFTWARE BACKUP

 for these CASID world beatersWorld's Most Powerful BASIC Pocket Computer

Sonnifis

 LITESOLD ETC-4
SYSTEM variable electronic

RRP £134.95

ONLY

£119.95

Plus FREE MiCROL Professional Programming Pack* (RRP £9.95)

Flattens the Sharp PC1211

Alpha/numeric dot matrix scrolling LCD. Variable input from 1680 steps, 26 memories, to 80 steps, 226 memories, all retained when switched off. Up to 10 programs. Subroutines; 10 levels. FOR: NEXT looping; 8 levels. Debugging and Editing. 55 built-in functions, including Regression and optional FA-2 adaptor programs.
$(€ 19.95)$. Auto Bower Off. $17 \times 165 \times 82 \mathrm{~mm} .176 \mathrm{~g}$.

World's Fastest Programmable?

 FX-602P- LCD alpha/numeric (dot matrix) scrolling display.
- Variable input from 32 program steps with 88 memories, to 512 steps with 22 memories. - Memory and program retention when switched off.
- Up to 10 pairs unconditional jumps (GOTO). - Conditional jumps and count jumps. Indirect addressing. Manual jump.
- Up to 9 subroutines, up to 9 levels.
- 50 scientific functions, all usable in programs.
- PAM (Algebraic) with 33 brackets at 11 levels.
- Program and data storage on cassette tape using optional FA-2 remote control adaptor, using ${ }^{\text {E }} 19$.
- Compatible with the FX-501P and FX-502P. - $9.6 \times 71 \times 141.2 \mathrm{~mm} .100 \mathrm{~g}$.

ONLY £74.95
(RRP £84.95)
Plus FREE MICROL Professional Programming Pack* (RRP $\mathrm{f}^{\text {9.95) }}$

FP. 10 MINI PRINTER For FX-702P, FX-602P, FX-502P, FX-501P, Available soon. Price and delivery on application

CASIO FX-702P SOFTWARE

Produced by MiCROL exclusively for Tempus
10% discount on software, if you purchase your hardware from us.

MiCROL 702 USER SUPPORT

Professional Programming Pack. Get the best from your FX-720P with: PROFESSIONAL PROGRAMMING - practical 702 programming from the ground up plus 702 REFERENCE MANUAL - definitive guide to every 702 program command - INVALUABLE!

MICROSS
MiCROL PROCOS for PROFESSIONAL USERS never programmed a computer before!
MiCROL PROCOS is an advanced integrated operating system that cuts programming time by $80-90 \%$ in most applications areas, saving many hours of valuable time. PROCOS A and PROCOS B are supplied together on a ready-to-run cassette, with a fully detailed User Manual offering featuresions, while PROCOS B PROCOS A is ideal for complex mult-variabe calding, provides many of the features of a Visicalc type modelng sys, wse commands and if' questions and analyses trends. Both systems feature easy-to-use commands and support FP-10 print options. Brochure on request.
Available late November MiCROL PROCOS (A + B) Price $\mathbf{5 2 4 . 9 5}$ MiCROL 702 Basic: Plus. Add the power of up to 20 new commands to your programs! Custom-made to ease advanced programming - features in clude String - number conversions; single-shot, await, timed KEY with user-controlled return values; programmable RAN // generator; DATA-PACK ING - up to 2000 single digit, single name variables; INTEGRATED DISPLAY COMMANDS - display data and text with extra-low memory overheads Modular design uses minimum memory; easy to customise. Full-detail User Manual plus Program List for direct entry.

SHORT FORM CATALOGUE of latest calculators, keyboards

and watches available on request. $14 p$ stamp appreciated

* Only on request, at time of ordering. RRP of $702 \mathrm{P} / 602 \mathrm{P}$ versions, $£ 9.95$.
Price includes VAT, PGP. Delivery normally by return of post.
Orders received by Dec 18th should be delivered in time for
Christmas
Send cheques, PO, or 'phone your Access or B'card number to: y you thow? Dia you are one of the counthing from Jf you have a soldment Litesold are - literally everyachinery. Ind sales deparsend for equipment - wave soldering mach service and sase else! Or send equipmatic wave sold technical ser anywhere else
automem contact our better a
probleu couldn't
- you

S \& R AMPLIFICATION

* 500 WATTS SINE WAVE PER CHANNEL INTO 2 ohms
* 0.005% DISTORTION AT ANY FREQUENCY FROM 20HZ TO 20KHZ
* SIGNAL TO NOISE RATIO 120DB
* POWER BANDWIDTH $10 \mathrm{HZ}-100 \mathrm{KHZ} \pm 1 \mathrm{db}$
* DUAL POWER SUPPLIES USING TOROIDAL TRANSFORMERS
* HIGH TECHNOLOGY MOS-FET OUTPUT STAGE
* FAN COOLED
* WE HAVE JUST DESCRIBED OUR STANDARD NO-FRILLS POWER SLAVE AMPLIFIER
* ANY INPUT SENSITIVITY CAN BE CATERED FOR AS STANDARD
* STUDIO VERSION AVAILABLE WITH meTERS BALANCED LINE ETC
* STANDARD PRICE $£ 385.00$
* STUDIO VERSION £455.00
* ALSO AVAILABLE AS Single 500 WATT £ 195.00

S \& R AMPLIFICATION 21, Deptford Broadway, London SE8 Telephone: 01-692 2009

WW - 094 FOR FURTHER DETALLS

n

8 REDAN ROAD, ALDERSHOT
HAMPSHIRE GU12 4SW
Telephone

A RAPID WAY TO CONVERT SOURCE PROGRAMS TO EPROMS

$\star \star \star \star \star \star 832$ EPROM PROGRAMMER $\star \star \star \star \star \star$
Programs 2708/2716 (TMS and Intel)/2516/2532/2732/2732A
Pre-and post-programming checks
Pre-and post-programming checks
RS232 connection to host computer or terminal
Download.HEX files from processor to 832 to program EPROM Simple command structure to inspect, modify, verify, find particular bytes, program and compare EPROMS $£ 345$
$\star \star \star \star \star \star$ DEVELOPMENT SOFTWARE FOR USE WITH PROGRAMMER $\star \star \star \star \star \star \star$

8048/9 Cross Assembler and Simulator (under CP/M)
£175 M6800 Cross Assembler and Simulator (under CP/M)
£175 EXPAND YOUR PROCESSOR'S CAPABILITY
$\star \star \star \star \star$ MICROBYTE 421 MULTIPLEXER $\star \star \star \star \star$
Link up to 4 peripherals to your processor
Simple protocol
Each peripheral independently configurable
Automatic baud rate detect for keyboard devices
Software options for non-standard requirements
$\mathbf{£ 4 2 5}$ (excluding special software)
All prices exclusive of V.A.T.
One-year guarantee on all products

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

Enables YOU to produce pertect printed circuits in minutes!
Method Spray cleaned board with lacquer. When dry, place positive master of required circuit on now sensitized surface. Expose to daylight, develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work.

FOTOLAK.
Developer...
Ferric Chioride.

Plan Copper-clad Fibre-glass
Approx. 2.00 mm thick ft . sq
Approx. 1.00 mm thick ft. sq
Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$
Pre-coated $1 / 16$ Fibre-glass board

Postage and packing 60p per order. VAT 15\% on total

G. F. MILLWARD ELECTRONIC COMPONENTS LIMITED
 P.O. Box 19, Praa Sands, Penzance, Cornwall Telephone GERMOE (073-676) 2329

IN VIEW OF THE EXTREMELY RAPID CHANGE TAKING PLACE IN THE ELECTRONICS INDUSTRY, LARGE QUANTITIES OF COMPONENTS BECOME REDUNDANT. WE ARE CASH PURCHASERS OF SUCH MATERIALS AND WOULD APPRECIATE A TELEPHONE CALL OR A LIST IF AVAILABLE. WE PAY TOP PRICES AND COLLECT.

BROADFIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N. 12.5 mins. from Tally Ho corner

ARE ALWAYS COMING UP WITH SOUND IDEAS.

INDUCTIVE LOOP AMPLIFIER TYPE 36A

FIELD STRENGTH TESTER FSI

The Danavox policy has always been one of constant improvement.

Our refinement, development and research has enabled us to offer an advanced range of components and accessories for dictation machines, tape recorders, tele-communications, hearing aids and electro-acoustic equipment.

All our products are built with care and precision.

And all carry the Danavox guarantee.

For more information about any Danavox product, contact John Carter.

SUBMINIATURE SWITCHES

DANAVOX (Gt. Britain) Ltd.,
1 Cheyne Walk, Northampton. NN1 5PT
Tel: (0604) 36351 Telex 312395

The MCROPROFESSOR

MICRO-PROFESSOR is a low-cost $Z 80$ based microcomputer which provides you with an interesting and inexpensive way to get into the microprocessor world. MICRO-PROFESSOR is a microprocessor learning tool for students, hobbyists and personnel. It is also an ideal microprocessor educational tool for teaching in schools and universities. Besides, MICRO-PROFESSOR is more than a learning tool. It provides a wide range of applications such that you will be surprised at its amazing power.

The main object of MICROPROFESSOR is for the user to understand the software and hardware of a microcomputer easily and conveniently. Besides
the complete hardware/software system, you have the User's experiment manual available to you. It includes self-learning text with 20 experiments which range from simple software programming to design a complex electronic game.

2 K bytes of monitor source program with documentation is also provided in the manual. It shows how to write system programs including system initialization, keyboard scan, display scan, tape write and tape read.

APPLICATIONS:
Learning and teaching tool Low cost prototyping tool Low cost development tool Tester

Process controller
Electronic game
Electronic music box
Master mind
Timer
Noise generator
Home appliance control
Burglar alarm
System control simulation . and many more.

Low Price, High Capability experimental tool for only

POWER SUPPLY
$+p$ and p.
A $9 \mathrm{~V}, 0.5 \mathrm{~A}$ Adaptor is provided.

solvesthe'mystery' ofmicro-processors.

TECHNICAL SPECIFICATION

CPU
SOFTWARE COMPATIBILITY
RAM
ROM
INPUT/OUTPUT
MONITOR

DISPLAY
AUDIO CASSETTE INTERFACE
EXTENSION CONNECTORS
COUNTER TIMER CIRCUITS
PARALLEL I/O CIRCUITS
SPEAKER AND SPEAKER DRIVER CIRCUITS
USER AREA
POWER REQUIREMENT
USER'S AND EXPERIMENT MANUAL
OPTIONS

Z80 CPU high performance microprocessor with 158 instructions Capable of executing $\mathbf{Z 8 0} / 8080 / 8085$ machine language program. 2 K bytes expandable to 4 K bytes.
2 K bytes of sophisticated monitor expandable to 8 K bytes.
24 system I/O lines.
2 K bytes of sophisticated monitor. It scans the keyboard and executes the command entered immediately after the power is turned on. The monitor includes: system initialization, keyboard scan, display scan tape write and tape read.
6 digit $0.5^{\prime \prime}$ red LED display.
165 bit per second average rate for data transfer between memory and cassette tape.
Provides all buses of CPU, channel signals of CTC and 1/O port bus of PIO for user's expansion.
Circuits are provided.
Circuits are provided.
A 2.25 " - diameter speaker is provided for user's applications.
Provides a $3.5^{\prime \prime} \times 1.36^{\prime \prime}$ wire wrapping area for user's expansion. Single $+5 V D C$.
Complete self-learning text with experiments and applications.

Z80-CTC	EPROM programmer board	Prototyping board
Z80-PIO	Breadboard	Audio Cassette

36 keys including 19 function keys, 16 hex-digit keys and 1 user defined key.

Use the unique MICRO-PROFESSOR to truely understand the inside workings of microprocessors. Open up a whole new spectrum of projects in home electronics, or simply use the MICROPROFESSOR as a practical learning/teaching aid.

Flight Electronics Ltd. Tel: (0703) 31323/34003

To receive your MICRO-PROFESSOR Complete the coupon today! Please send me \qquad MICRO-PROFESSOR(S)
I enclose cheque/P.O. for $£+$ p.and p. $£ 1.95$
Name:
Address: ...

Please allow 21 days for delivery
Flight Electronics Ltd. Flight House, Quayside Road, Bitterne Mancr, Southampton, Hants SO2 4AD.

TEST INSTRUMENTS

SAFGAN DUAL TRACE SCOPES
 DT 410 £169 DT-415 £175 DT-420 £188

Probe (X1-REF-X10) - $\mathbf{£ 1 1 . 5 0}$ P\&P $£ 3.50$ or parcel service $£ 6.50$ (+VAT)
LEADER

BATTERY-OPERATED DUAL TRACE OSCILLOSCOPE LB0-308S £468

WIDE BAND DUAL TRACE OSCILLOSCOPE
LB0-508A £316
SINGLE TRACE TRIGGERED OSCILLOSCOPE
LB0-512A £183

£1 P\&P
Many more instruments available from all these ranges
ADD 15% VAT ON ALL PRICES
All prices correct at 1-8-81 E\&OE
Cash with order or Credit Card
CATALOGUE AVAILABLE (30p)

SIGNAL GENERATOR LSG-16 £55
FUNCTION GENERATOR LFG-1300 £328
LCR BRIDGE
LCR-740 £149
REGULATED DC POWER SUPPLIES LPS-155 £84. LPS-156 £166
AUDIO GENERATOR
LAG-26£64

WW - 047 FOR FURTHER DETAILS

Happy Memories

Part Type	1 off	25-99	100 up
4116 200ns	. 95	85	. 65
4116250 ns	. 90	80	. 60
2114 200ns Low power	1.25	1.15	. 95
2114 450ns Low power	1.20	1.10	. 90
- 4778250 ns	3.45	3.15	2.65
6116150 ns CMOS	6.95	6.45	5.65
2708450 ns	1.95	1.85	1.65
2716 450ns 5 volt	2.25	2.15	1.95
2716 450ns three rail	6.40	6.00	4.95
2732 450ns Intel type	4.25	3.95	3.35
2532 450ns Texas type	4.95	4.70	4.20

Z80A-CPU £4.75 Z80A-PI0 £4.25 Z80A-CTC £4.25

Low profile IC sockets:	Pins	81416182022242840
	Pence	910111415181925.33

Soft-sectored floppy discs per 10 in plastic library case: 5-inch SSSD f17.00 $\quad 5$-inch SSDD $£ 19.25 \quad 5$-inch DSDD $£ 21.00$ 8 -inch SSSD f19.25 8-inch SSDD £23.65 8-inch DSDD £25.50
74LS series TTL, large stocks at low prices with D.I.Y. discounts starting at a mix of just 25 pieces. Write or phone for list.

Rlease add 30p post and packing to onders

> under 15 and V.A.T to tatat Access and Barclaycard welcome 24 -hour service on $(054-422) 618$

Government and Educational orders welcome, £15 mininum
Trade accounts operated : Phone or write for details Prices are still tending to drop - phone for a quote before you buy

> HAPPY MEMORIES (WW) GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY Tel: (054-422) 618 or 628

\section*{NOWAYALLABLE FROM BABRIE ELECTRONICS
 NEWS FLASH
 COTSWOLD TOROIDAL POWERTRANSFORMERS
 We now stock the full range of these budget priced products by Cotswold Electronics; all in top grade grain oriented silicon steel, for high efficiency operation at high flux density with very low iron losses.
 * Reduction up to half weight and volume.
 * Radiated field one tenth lower than conventional laminated equivalents.
 * Fixing kit and technical information sheets supplied.

 Type VA RMS RMS Dia. Height Kg Volts Current Dimensions Weight 160

160
160
160
160
160

160
 $\begin{array}{lllll}60 & 18+18 & 4.44 & 108 \mathrm{~mm} & 42 \mathrm{~mm} \\ 60 & 22+22 & 3.64 & 108 \mathrm{~mm} 42 \mathrm{~mm}\end{array}$ $\begin{array}{llll}25+25 & 3.20 & 108 \mathrm{~mm} & 42 \mathrm{~mm} \\ 30+30 & 2.67 & 108 \mathrm{~mm} & 42 \mathrm{~mm}\end{array}$ \begin{tabular}{ccccc}
$35+35$ \& 2.29 \& 108 mm \& 12 mm

\hline 110 \& 1.46 \& 108 mm

\hline

 $\begin{array}{llll}160 & 110 & 1.46 & 108 \mathrm{~mm} 42 \mathrm{~mm} \\ 160 & 220 & 0.73 & 108 \mathrm{~mm} 42 \mathrm{~mm}\end{array}$ $\begin{array}{lllll}160 & 220 & 0.73 & 108 \mathrm{~mm} 42 \mathrm{~mm} & 1.5 \\ 160 & 240 & 0.67 & 108 \mathrm{~mm} 42 \mathrm{~mm} & 1.5\end{array}$
 $\Sigma 12.26$ $1+£ 1.73$
 p.p.)
 $\begin{array}{lllllll}C 1037 & 160 & 240 & 0.67 & 108 \mathrm{~mm} & 42 \mathrm{~mm} & 1.5\end{array}$

\hline Type \& VA \& $$
\begin{aligned}
& \text { Secon } \\
& \text { volts } \\
& \text { RMS }
\end{aligned}
$$ \& Current RMS \& \[

$$
\begin{aligned}
& \text { Dime } \\
& \text { Dia. }
\end{aligned}
$$
\] \& sions

Height \& $$
\begin{gathered}
\text { Weight } \\
\mathrm{Kg}^{2}
\end{gathered}
$$ \& Price

\hline C1000 \& 30 \& 6+6 \& 2.50 \& 70 mm \& 30 mm \& 0.45 \&

\hline C1001 \& 30 \& 9+9 \& 1.67 \& 70 mm \& 30 mm \& 0.45 \& £¢. 38

\hline C1002 \& 30 \& $12+12$ \& 1.25 \& 70 mm \& 30 mm \& 0.45
0.45 \&

\hline C1003 \& 30 \& $15+15$ \& 1.00 \& 70 mm \& 30 mm \& 0.45 \& $(+£ 1.10$

\hline C1004 \& 30 \& $18+18$ \& 083 \& 70 mm \& 30 mm \& 0.45 \& p.p.)

\hline C1005 \& 30 \& $22+22$ \& 0.68 \& 70 mm \& 30 mm \& 0.45 \&

\hline C1005 \& 30 \& $25+25$ \& 0.60 \& 70 mm \& 30 mm \& 0.45 \&

\hline C1007 \& 30 \& $30+30$ \& 0.50 \& 70 mm \& 30 mm \& 0.45 \&

\hline
\end{tabular}
 $C 1030$

$C 1031$
$C 1032$
$C 1033$
$C 1034$
$C 1035$

$C 1036$
 | C1010 | 60 | $9+9$ | 3.33 | 87 mm 33 mm | 0.75 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C1011 | 60 | $12+12$ | 2.50 | 87 mm 33 mm | 0.75 | £7.31 |
| C1012 | 60 | $15+15$ | 2.00 | 87 mm 33 mm | 0.75 | |
| C1013 | 60 | $18+18$ | 1.67 | 87 mm 33 mm | 0.75 | $(+$ £ 1.43 |
| C1014 | 60 | $22+22$ | 136 | 87 mm 33 mm | 0.75 | D.p.) |
| C1015 | 60 | $25+25$ | 1.20 | 87 mm 33 mm | 0.75 | |
| C1016 | 60 | $30+30$ | 1.00 | 87 mm 33 mm | 0.75 | |
| C1017 | 60 | 110 | 0.55 | 87 mm 33 mm | 0.75 | |
| C1013 | 60 | 220 | 0.27 | 87 mm 33 mm | 0.75 | |
| C1019 | 60 | 240 | 0.25 | 87 mm 33 mm | 0.75 | |
 | C1040 | 230 | $25+25$ | 4.60 | 115 mm 50 mm | 2.2 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C104 ${ }^{1}$ | 230 | $30+30$ | 3.83 | 115 mm 50 mm | 2.2 | £14.87 |
| C1042 | 230 | $35+35$ | 3.29 | 115 mm 50 mm | 2.2 | |
| C1043 | 230 | $40-40$ | 2.88 | 115 mm 50 mm | 2.2 | $(+£ 1.73$ |
| C1044 | 230 | 110 | 2.09 | 115 mm 50 mm | 2.2 | p.p.) |
| C1045 | 230 | 220 | 1.05 | 115 mm 50 mm | 22 | p.p. |
| C1046 | 230 | 240 | 0.96 | 115 mm 50 mm | 22 | |
| C1050 | 330 | $25+25$ | 6.60 | 130 mm 52 mm | 2.8 | |
| C1051 | 330 | $30+30$ | 5.50 | 130 mm 52 mm | 2.8 | £17.36 |
| C1052 | 330 | $35+35$ | 4.71 | 130 mm 52 mm | 2.8 | |
| C1053 | 330 | $40+40$ | 4.13 | 130 mm 52 mm | 2.8 | $(+$ §1.90 |
| C1054 | 330 | $45+45$ | 3.67 | 130 mm 52 mm | 28 | p.p.) |
| C1055 | 330 | 110 | 3.00 | 130 mm 52 mm | 2.8 | |
| C1056 | 330 | 220 | 150 | 130 mm 52 mm | 2.8 | |
| C1057 | 330 | 240 | 1.38 | 130 mm 52 mm | 28 | |
| C1060 | 530 | $30+30$ | 8.83 | 145 mm 60 mm | 3.8 | |
| C1061 | 530 | $35+35$ | 7.57 | .145 mm 60 mm | 3.8 | £22.57 |
| C1062 | 530 | $40+40$ | 653 | 145 mm 60 mm | 3.8 | |
| C1063 | 530 | $45+45$ | 589 | 145 mm 60 mm | 3.8 | $1+$ §2.05 |
| C1064 | 530 | $50+50$ | 5.30 | 145 mm 60 mm | 3.8 | D.D.) |
| C1065 | 530 | 110 | 4.82 | 145 mm 60 mm | 3.8 | |
| C1066 | 530 | 220 | 2.41 | 145 mm 60 mm | 3.8 | |
| C1067 | 530 | 240 | 2.21 | 145 mm 60 mm | 3.8 | |

TRANSFORMERS

12 or 24-VOLT RANGE
Separate 12 V windings Pri $220-240 \mathrm{~V}$ $\begin{array}{cccc}\text { Ref } & 12 \mathrm{v} \text { Amps } & 24 \mathrm{v} & \mathrm{E} \\ 111 & 0.5 \\ 213 & 0.5 & 0.25 & 2.42 \\ 71 & 10 & 0.5 & 2.90 \\ 18 & 2.0 & 1.0 & 3.86 \\ 18 & 4.0 & 2.0 & 4.46 \\ 70 & 50 & 2.5 & \mathbf{6 . 1 6} \\ 70 & 60 & 30 & 6.99 \\ 108 & 80 & 40 & 8.96 \\ 72 & 10.0 & 5.0 & 8.93 \\ 116 & 120 & 60 & 9.89 \\ 17 & 16.0 & 80 & 11.79 \\ 115 & 20.0 & 100 & 15.87 \\ 187 & 30.0 & 150 & 19.72 \\ 226 & 60.0 & 30.0 & 40.41\end{array}$
30 VOLT RANGE (Split Sec)
Pri 220-240V Volt avalable 3. 4. 5. 6. 8.9. 10.12
151820.24 .30 V or 12 V - 0.12 V or 15 V - O .15 V

	30 V	$15 v$		P\&P
112	30.5	1	2.90	100
79	1	2	3.93	100
3	2	4	6.35	120
20	3	6	7.39	1.44
21	4	8	8.79	1.60
51	5	10	10.86	1.60
117	6	12	12.29	172
88	8	16	16.45	196
89	10	20	18.98	1.84
90	12	24	21.09	OA
91	15	30	24.18	OA
92	20	40	32.40	OA

SCREENED MINIATURES Pri 240 V

$\begin{array}{lll}\text { Ref. } & \text { MA } & \begin{array}{lll}338 & 200\end{array} \quad \begin{array}{lll}3.0-3\end{array}\end{array}$

${ }_{212} 121 \mathrm{~A}, 1 \mathrm{~A}$
$235 \quad 330.330$
$\begin{array}{ll}208 & 1 \mathrm{~A}, 1 \mathrm{~A} \\ 236 & 200,200\end{array}$
$\begin{array}{ll}239 & \text { 50MA } \\ 214 & 300,300\end{array}$
221
206
200
$1 \mathrm{~A}, 1 \mathrm{DC})$
203
203 500. 500
${ }_{0}^{3-6.0-6}$
$9-0.9$
0.9
0.9
$0-9.0-9$
$0-8-9.0 .8-9$
$0-8-9.0 \cdot 8-9$
$0-8-9.0-8-9$
0.15.0-15

12-0-12
$0-20,0-20$
$20-12-0-12-20$
$0-15-27.0-15-27$
$0-15-27.0-27$
0

AUTO TRANSFORMERS

Voltages available 105, 115, 190, 200, 210. 220. 230 , Ref. VA (Watts) Ref. VA (Watts) TAPS
113. $150-10-115.210 .240 \mathrm{~V}$ $\begin{array}{lll}113^{\circ} & 15 & 0.10-115-210-240 \mathrm{~V} \\ 64 & 80 & 0.10 .155\end{array}$ $\begin{array}{ll}150 & 0-10-115-200-220-240 \mathrm{~V} \\ 500 & 0-10-115 \cdot 200-220-240 \mathrm{~V}\end{array}$ 5000
1000
$0-10-115 \cdot 200-220-240 \mathrm{~V}$
 $\begin{array}{lll}5 & 2000 & 0.10 .115 \cdot 200-220-240 \mathrm{~V} \\ 3 & 3000 \\ 0.10-15 \cdot 200-220-240 \mathrm{~V}\end{array}$

LAMINATED

MAINS ISOLATORS (screened)

Ref. va	(Warts)	f	P\&P
07*	20	4.84	120
149	60	7.37	120
150	100	$\begin{array}{r}8.38 \\ \hline 1228\end{array}$	144 172
151 152 15	200 250	12.28 14.61	2.04
153	350	18.07	212
154	500	22.52	2.20
155	750	32.03	OA
156	1000	40.92	OA
157	1500	56.52	OA
158	2000 3000	67.99 95.33	${ }_{\text {OA }}{ }_{\text {OA }}$
* 115 or 240 Vsec only State volts requred.			

Pri $0-220.240 \mathrm{~V}$
CONSTANT VOLTAGE TRANSFORMERS $\pm 1 \%$

500 VA	£ 127.00	p\&p	sensing types
1 kVA	£147.00		for low main
2 kVA	$£ 229.00$	VAT	voltage supplies

50 VOLT RANGE
 (Split Sec) Pri $220-240 \mathrm{~V}$ 8. $10.13 .15,17,20,25.30,33,40$

400/440V ISOLATORS

Ref	50 Amps	
102	5	1
103	1	2
104	2	4
105	3	
106	4	
107	6	
118	8	
119	10	
109	12	

60 VOLT RANGE
(Split Sec) Pri 220-240V Voltages avalable 6. 8. 10,12
$16,18,20.24,30,36,40.4860 \mathrm{~V}$ 16. $18.20 .24,30,36.40 \mathrm{~V}$ $\underset{\text { Ref. }}{60 \mathrm{amps}} 30 \mathrm{~V}$ ※ ~

Our new Improved performance model of the Linsley Hood Cassette Recorder incorporates our
VFL 910 vertical front mechanism and circuit modifications VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Board
layouts have been altered and improved but retain the outstandingly successful mother-and-
 meers DIN Hi.FF spec. Deck controfs lath extra festures: Ultra low wow-and-flutter of $.09 \%$ - easily
stop on all modes. Tape cond do not have to be held. Full Autostop on all modes. Tape counter with memory rewind. Dit damped casserte doorr Latching record
button tor level setting. Dual concentric input level controls. Phone output. Miciuphone input buttion tor level setting. Dual concentric input level controls. Phone output. Miciuphone input
facility if required. Record interlock prevents rerecording on valued cassettes. Frequency ing feedback servo drive motor with built-in speed control for thermal stability. All these desirable and useful features added to the excellent design of the Linsley-Hood circuits and the quality of
the components used makes this new kit comparable with bult-up units of much higher cost than the components used makes this new kit comparable with built-up units of much higher cost than
the modest, $\mathbf{E 9 4 . 9 0}+$ V.A.T we ask for the completel kit.

LINSLEY-HOOD CASSETTE RECORDER 1

We are the Designer Approved suppliers of kits for this excellent design. The Author's reputation
tells, all you need to know about the circuitry and Hart expertise and experience guarantees the engineering design of the kit. Advanced features include: High-quality separate gu meters with Proper moulded escutcheon for cassette apenture mounted on PCB to eliminate difficult wirina. Lenco mechanism Switched bet back behind a narrow tinger trapping slot. Easy to use, robust terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB system gives a spacious, easily-built and tested layout. All these features added to the high-quality 16 Sendus Alloy super head, available separately also included at no extra cost is our latest. HS parately at $\mathbf{£ 8 . 2 0}$ but included free with the complete kit Reprints of the 3 original articles describing this design 45p. No VAT.
Reprint of the subsequent postscript article 30p. No VAT

PRACTICAL WIRELESS 'WINTON' TUNER

 with pilot cancelling decoder i.c, fluorescent displav, digital frequency readout along with clock
and timer functions. In addition to f.m covers I w., m. w. s w. and even TV sound. Further details. are in our lists; send for your copy.

Part Cost of Post. Packing and Insurance
Order up to $E 10-50 \mathrm{p}$
Orders 10 to $£ 49$ \&
Oner
P\&P Export Orders - Postage or shipping at cost plus
Please send 9×4 S.A.E or telephone for lists giving fuller details and price breakdowns.

Instant easy ordering, telephone your
requirements and credit card number to us on Oswestry (0691) 2894

COMPUTER COMPONENTS
JUMPERLEADS

14 pin 16 din 24 din 40	
Singla end Doubie enc	145
	$2100{ }^{2300} 3450$
	20 pin 26 pin 34 pin 40 pin
Single end (24.) 160 p 210 p 270 P	
Double er	290\% 385p 490p 540p

IDC CONNECTORS

EUROCONNECTORS

$\frac{\substack{\text { (tor } 2 \times 32 \text { Way please specint } \\ \text { A }+ \text { Ctype) }}}{\text { DIL HEADER PLUGS }}$

Solder type DC type	14pin 16pin 24pin 40pin 50 p 60p 100 p 27 p 130 p 140 p 200 p 285 p

25 Way		
Jer Bucket	20	245
Ider Pio	215p	
Solderer Pin (angled)	265p	
Top entry/ side entry		
Counterpart		

* $\mathbf{Z} \times 80 / 81$ USER PORT *

Port module plugs directly in to ZXBO or ZXol to provide 8 input and 8 output lines. These allow input of data trmps may be uset and solid state buzzers may be directly connected to the port. Variable tone audio output may be produced. Ready buitt G tested $\mathbf{E 1 4 . 9 5}+$ PGP 70p + VAT (For ZX81 own
motherboard).
we provide an extender card to accept the * TELETEXT DECODER

A complete kit as described in "ELEKTOR Nov 81 " including the keyboard kit, containing the PCBs, ICs, switches and all other components as listed in the constructional article plus sock
Reprints of articles (ELEKTOR Oct/Nov 81) $1.00+$ SAE

WW - 054 FOR FURTHER DETAILS

5165010 finger on the Flectronics Industry
 Electrical,
 Electronic.
 Computer \& Data Processing, Measuring, Analysing \& Controlling Instruments, Watches, Clocks and Photographic Equipment and Jewellery.
 Dial Industry is a totally new concept in industrial directories. The latest volume - to be published in June 1982 - will provide in depth coverage of the electronics and associated industries. It will be used and re-used by 40,000 U.K. buyers - and it will sell for you 365 days a year!

 For further details on how to advertise in-or receive--Dial Industry. contact Malcolm Charnock or Clive Foskett. IPC Busmess Press infurmation Services Lld Windsor Court East Grinstead House Easi Grunstead West Sussex RHI 1 1XA Telephone 034226972 Telex 95127
 ELEGTRTALIE
 Popular components from our "CATALOGUE 82," all prime stock; no seconds or fall-outs. Buy in quantity for best value.
 CATALOGUE 82
 - COMPONENT PACKS
 CP1: 100 ceramic capacitors from 1.8 p to .1 u . The selection is determined by the popularity of different values. Price $\mathbf{£ 4 . 2 9 .}$ ± 4.29
 Resistor Decade Packs: $1 / 3 \mathrm{~W}, 5 \%$ tolerance; each pack 100 items, selection determined by relative poplatity value, $£ 1.50$ each pack.
 RD1: 1RO-8R2; RD2: 10R-82R; RD3: 100R-820R; RD4: 1 K 8K2; RD5: 10K-820K; RD6: 100 K -820K; RD7: 1M-10M. E1.50 - SEMICONDUCTORS-PACKS/SINGLES
 LD30A red LEDs (2.9 mm), 25 for $£ 1.58$ L51RD red LEDs $(5 \mathrm{~mm}): 25$ for $£ 1.58$
 1N4148 diodes: 25 for 88 p
 1N4007 (1000V, 1A) diodes: $25 £ 1.30$ 1N5402 (200V 3A) diodes: $25 f 2.80$
 1N5402 (200V, 3A) diodes: BC107/BC109: 25 for $£ 2.98$
 $\mathrm{BC} 182 / 182 \mathrm{~L} 183 / 183 \mathrm{~L} / 184 / 184 \mathrm{~L}: 25$ for $\mathrm{f1} .88$ $\mathrm{BC} 212 / 212 \mathrm{~L} / 213 / 214 / 214 \mathrm{~L}: 25$
 * OTHER POPULAR ITEMS: UNIT PRICES
 BD139: 30p
 BD140: 32p
 - VOLTAGE TIP42A: 45p TPP2955: 55p TIP3055: 55 2N3055: 52p 2N3055: 70p
 - COMPUTING ICs 280A: £6 6402 UART: $£ 4.50$ 4116 (250nS): $£ 1.30$ 4116 (300nS): 90p 4118: $£ 7.90$
 TL074: $£ 1.20$ ZN414: $£ 1.22$ When ordering or writing $\times 4116(300 \mathrm{mS}) £ 20$ only

 Northern Branch (Personal Shoppers Onily): 680 Burnage Lane, Burnage, Manchester, M19 IMA Phone (0611 4 432 4945.

CASH AND CARRY TRADE COUNTER NOW OPEN Everything you'll need to sell in CB RADIO YES EVERYTHING!
SWRs - POWER SUPPLIES - ANTENNAS P.A. HORNS - RECEIVERS - RIGS - SPARES AND MUCH MUCH MORE. WE ALSO STOCK WATCHES - CORDLESS PHONES - WALKIE TALKIES - VIDEO TAPES - ELECTRONIC GAMES AND ACCESSORIES TRADE ONLY
B. BAMBER ELECTRONICS COMMUNICATIONS HOUSE 5 STATION ROAD - LITTLEPORT - CAMBS. TEL: ELY (0353) 860185

WW - 046 FOR FURTHER DETAILS

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team.

Full traınıng courses are individually tailored to customers requirements.

For full details of our service contact Neil Jupd
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CR0 2XX 01-684 1422/01-684 0246

WW - 057 FOR FURTHER DETAILS

New production capacity at Canterbury has increased our range decreased our prices, improved our special customer design service. Choose from toroidal transformers in a range of 98 types.

Trade enquiries are welcome
Suppled with rigid nounting kit with centre bolt steei and neoprene washers GUARANTEED 5 YEARS

IMPORTANT Regulation - All voliages quoted are FULL LOAO. Please add regulation figure to secondary votlage to obtain off load voltage.

The benefits of ILP toroidal transformers
LP toroidal transformers are only half the weight and height of their laminated equivalents, and are available with $110 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V primaries coded as follows.
For 110 V primary insert " O " in place of " X " in type number.
For 220 V primary (Europe) insert " 1 " in place of " X " in type numbe
For 240 V primary (UK) insert " 2 " in place of " X " in type number
How to order Freepost:
Use this coupon. or a separate sheet of paper. to order these products, or any products from other ILP Electronics adventisements. No stamp is needed if you address to Freepost. Cheques and postal orders musi be crossed and payable to LLP Electronics Lid cash must be registered. C.O.D - add $£ 1$ to total order value. Access and Barclaycard welcome All UK orders sent post free within 7 days of receipt of order for single and small quantity orders. Also avalable at Electrovalve, Maplin, Marshalis, Technomatic and Wattord Electronics

```
Please send me the following
```

ILP modules

Total purchase price
Ienclose Cheque $\square \quad$ PostalOrders $\square \quad$ Int. MoneyOrder \square
Please debit my Access / Barclaycard No
Name
Address

Signature

WW1/I
Posi to ILP Electronics Ltd. Freepost. 2 . Graham Bell House. Roper Close. Canterbury CT 2 fEP. Kent. Englana
(0227) 64723 Telex 965780

La division of ILP Electronics LId
TRANSFORMERS

ALWAYS a Changing range of

 OSCILLOSCOPES, COMPUTERS, TERMINALS, etc.
hem No.

TEKTRONIX STORAGE OSCILLOSCOPE TYPe 5648 with 3 B4 and 3 A6 Plug-ins.... £350
TEKTRONX STORAGE DSCILIOSCDPE type S49 with IAI-30MHZ

TELEDUIPMENT OSCILLOSCDPE Evoe D61A. Dual Trace
SCOPEX OSCILLOSCOPE type 4010 Dual Trade 10MHZ
B \& K ACCELEROMETER PREAMPLIFIER TVOA
B \& K DEVIATION BRIOGE tvpe 1503 .
8 \& K MICHOPHONE AMPLIFIER type 280
8 \& K MICRDPHONE AMPLFIER
8 \& \& K BEAT FREOUE AMPLIFIER TYPE 260
B \& K BEAT FREOUENCY OSCILLATOR TYPE 101
B \& K AUDIO FRECUENCY SPECTROMETER TYPQ 2
B \& KREQUENCY RESPONSE TRACER type 470
HEWLET PACKARD LCR BRIDGE type 4261 A
HEWLETT PACKARO OLC METER tyPe 4342A
AUTO TRANSFORMER 1.4 KVA Pri Volts $90 / 240$ Sec 115
POLARAD FIELD STRENGTH METER typa FIM
10.000 MHZ
POOLARAD MICROWAVE RECEIVER MODEL

$$
\begin{aligned}
& \text { POLARAD MICROWAVE RECE IVER MODEL R with RF TUNing unts coveris } \\
& \text { 2050MHZ And } 7400-22000 M H 2 \\
& \text { POLARAD MICROWAE SIGNAL GENERATOR MOdeI MSG-1 } 950-2400 \mathrm{MHZ} \\
& \text { POLARAD MICROWAVE SIGNAL GENERATOR Model MSG-2 } 2150 \text {-4600M }
\end{aligned}
$$

2050 MHZ and $7400-22,000 \mathrm{MHZ}$

KROHN-HITIE BAND PASS FITER Model 330A
KROHN-HITE REJECTION FILTEA MOdel 350A
MARCONL in Situ UNIVERSAL BRIDGE Yype TF2701. Battery Dperated
BRANDENBURGH HIGH VOLTAGE GENERATOR TYy MR50
BRANDENBURGH HIGH VOLTAGE GENERATOR type MR5
PHILIPS FM STEREO GENERATOR type PM6456. Separal
req $100 \mathrm{MHZ} \pm 1 \%$. RF $0 / P$ P 3 mV pk-pk
HEWLENT PACKARO OC CURRENT SOUROR type TF 144 H IOKHZ-72MHZ
SCHLLMBERGER AUTDMATC COUNTER type FB2602 OC-50MH
SIEMENS FREQUENCY METER 450-100MH2
SIEMENS FREQUENCY METER $450-1000 \mathrm{MHZ}$
MARCONI WIOE RANGE OSCLLLATOR TFI370. 10 HZ -10MHZ
RACAL M.F SELECTIVE ANALYSER type 90
RANK ABENA E.H.T. METER O-SOKY
MARCONI (SANOERSI MICROWAVE POWER METER Type 6598 with probe
GRIFFIN SIGNAL GENERATOR \& AMPLIFIER 1 HZ -100KHZ TEKTRDNIX SAMPLING PLUG-IN-type 1 S1... MUIRHEAD WAVE ANALYSER TVDe K-134.A.
\qquad HEWLETT PACKARD OIGITAL VOLTMETER tYOE 34404 MARCONI ISANOERSI LEVELING AMPLIFIER TYPE 6587 KEITHLEY REGULATEO HIGH VOLTAGE SUPPLY TyPe 24

BARCLA YCARD (VISA) and ACCESS taken. Official orders welcom
BARCLAYCARO (VISA) and ACCESS taken. Official orders welcom
CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5pm Monday to Saturday inc

MARCONI AF Output Meter typa TF893
RHODE \& SCHWARZ NDISE GENERATOR SKTU BN4151/260 3 -1000MHZ
RHOOE \& SCHWARZ NDISE GENERATOR SKTU BN
TAYLOR RF SIGNAL GENERATOR type GBAM M 2 ?

ADVANCE PULSE GENERATOR TyPE PG50020
AIRMEC MLLLIVOLTMETER type 301
B \& K LEVEL RECORDER type 2305. 50dB Potentiometer. Brand New with
Ries KLEVEL RECORDER TYPO 2305 ,
MARCON AM SIGNA GENERATOR Type TBI
AVO TRANSISTOR ANALYSER VPR TA
ADVANCE STABILLSED POWER NNIT TYPE PP1 0.600 V ; 300MA
PYE SCALAMP qOKV RMS Max ELECTROSTATHC VOLTMETER
PYE SCALAMP ZOKV RMS MAX FI FCTROSTATIC VOLTMEER
AVO IN CARCUITRANSISTOR TESTER.
VARIACS. Ex-equipment Good condition 8 Amp
OC SERVO MO ORS $110 \mathrm{~V} ~$

OC SERER
Brush MOR 110 V 2.5 Amp continuous. Double Shatt Brand new 4 w

BEWLET PACKARO OC VACUUM TUBE VOLTMETER TyPE 412A
WAYNE KERR COMPONENT BRIDGE TYPE B521..
B \& K LEVEL RECORER TyP 2304 ,
RHODE \& SHWARZ UHF TEST RECIVER BN $1523280-940 \mathrm{MHZ}$
R\& S FREQUENCY METER VHF-UHF 30 - 300 MHZ Type W 10 BN 442
R \& S ATEENUATOR TYPE OPR BN 1804250
HEWLETT PACKARO WIOE RANGE DSCILLATOR IVPE 200CD
HEWLET PACKARD AUDIO OSCILATOR
HERROGRAPH RECORDER TESC SET type RTS2 200.
MARCONI VHF WAVEMETER type TFG33C 20-300MHZ, Portable
HOUSTON INSTRUMENTS LOGVOT TMETE
HOUSTON INSTRUMENTS LOG VOLTMETER-CONVERTOR MODEI HLVC RAOFORD DISTORTION METER type DMS2 2OHZ-2OKHZ
GOULO/ADVANCE AUDIO SIGNAL GENERATOR J4A ine
MOSELEYX-Y RECORDER SyP $2 D-2$ Info available.....
AOVANCE UHF SIGNAL GENERATOR SG69. $370-1040 \mathrm{MH}$

GRUNDIG UNIVERSAL UHF CONVERTOR tVPE VS2
OECAOE CAPACITOR 1413 WIth ANALOG LIMIT COMPARATOR 1782 and
PEDACE
PEDANCE COMPARATOR 1654 WY GENERAL RAOIO.
TEKTRONIX VELTORSCOPE typ 526 .
BELI \& HOWELI TV CAMERA With SHIBAN FUJNON
20.100 mm R RACAL 600 MHZ OECADE DIVIDER IYPe 9010 .

RACAL UHF FREQUENCY METER type $9839.10-560 \mathrm{MHZ}$
HEATHKIT TRANSMITTER ModeI OX-100U 18.297 MHZ
BRANOENBURGH HIGH VOLTAGE P.U. Model 705. Metered 0-15KV
MILES HVOLT LTDP PU. TYP日 TH25 O-25KV IMA.
CLAUOE LYONS AUTOMATIC VOLTAGE SIABILISER. Input 204-252V
SERVOMEX AC VOLTAGE STABILLSER Metered 0-300Volis $0-18$ Amps
I9"RACK CABINET 331/2" HIGH X 221/2" DEEP. Blue. Nice condition
COSSOR PMS VOLTMETER CT454-tyDe 1453
HENGSTLER AODING \& SUBTRACTING PULSE-CNTR Assemb. 5V operation
PLEASE CHECK AVAILABILITY BEFORE OROERING
COMPONENT LIST AVAILABLE A.E. OR PHONE

SOLARTRON CD1400 Dual Bearn 15MHZ Oscilloscope. Size $19^{\prime \prime} \times 7^{\prime \prime} \times 16^{\prime \prime}$ deep. Manual Supplied £60 each. Phone for availability

TEKTRONIX 545A Dual Trace 24MHZ. Dual TB

with delay $£ 120$ each.
GETROFM INSULATIUN AND CUNTINUTY TESTER 500 volts
Portable, Battery Operated. Standard P.P. 7 case. Used but good condition $£ 25$ each. As above but 250 Volts. Used $£ 17.50$ each. P\&P $£ 3$ FULTINETER
AC/DC volis; AC/DC current; ohms, etc. Brand
COSSOR VDU with KEYBOARD
Complete f25 each
Phone for details
DECCA $20^{\prime \prime}$ BLACK \& WHITE MONITORS type MVA 2000 . Video in/out. Audio in/out $f 20$ each.
IKEGAM| $20^{\prime \prime}$ BLACK \& WHITE MONITORS SOLID STATE. Video in - int. \& ext sync. $£ 75$ each. COLOUR MONITORS $22^{\prime \prime}$ bY MAM ELECTRON-
ICS. VERY GOOD CONDITION BRANDENBURG HIGH VOLTAGE GENERATOR type MR50. Metered 0-50kV; 0-1MA. Negative/ positive output. ONLY $£ 75$ each

GENERAL PURPOSE OSCILLOSCOPE

 TECH TYPE TP2Single beam. Size approx. $6 \times 7 \times 93 / 4$ in Weight 7 lbs . Ideal for the beginner or school

STHE \& SQUARE WAVE AUDIO GENERATOR TYPE TE-22. 20HZ-200KHZ. Portable, as new. RADAR AERIALS
Rotary, complete with Waveguide Couplers These are brand new. Ministry boxed Very impressive. Dish diameter 27 inches

All units $£ 6$ carriage. Plus V.A.T. on total

WW - 064 FOR FURTHER DETAILS

DISC DRIVES AT UNBELIEVABLY LOW PRICES

SIEMENS FDD100-8. 250/500 KBytes. 8' Single Sided. Single or double density TANDON THINLINE TM TM848-2 500/1000 KBytes. 8" Double Sided. Single or double density. Half thickness of standard drive, only $2.3^{\prime \prime}$ D.C. Power only required 24VDC + 5 VDC at 1.5 Amp .
.£449.00
TANDON MINI WINCHESTER TM600. 5MBytes
FOR SUPER BRAIN
TM600 + controller + power supply, in case, wired and complete with 3.1DOS. .£1695.00 FOR S100
TM600 + controller + cables + CP/M $2.21 \ldots \ldots \ldots \ldots$.
SOFTWARE

From MicroPro	From Graham Dorian
WORDSTAR................. $\mathbf{£ 2 7 0 . 0 0}$	Software
MAILMERGE $\mathbf{8 8 5 . 0 0}$	Nominal Ledger $£ 495.00$
SPELLSTAR $£ 135.00$	Sales Ledger $£ 495.00$
SUPERSPORT............... $\mathbf{f 1 4 5 . 0 0}$	Purchase Ledger..........£495.00
DATASTAR $\mathbf{1 9 5 . 0 0}$	Stock Control $£ 495.00$
CALCSTAR (new) $£ 175.00$	Order Entry/Inv. $\mathbf{£ 4 9 5 . 0 0}$
From Microsoft	Job Costing 4995.00
	The above include Source
Basic Compiler $£ 185.00$	Code in CBASIC 2

EXTRA DISCOUNT

An extra discount of 5% may be deducted from the above prices if cash/cheque is sent with order All the above prices exclude VAT at 15%

IRVINE BUSINESS SYSTEMS LTD.

POBox 5
10 North Vennel
Bourtreehill, irvine
Ayrshire, KA11.1NE
TEL: 0294-218888

Ayrshire, KA11-1NE

Please add V.A.T. to all orders FAST DELIVERY : TOP QUALITY

Phone 075221256

Export enquiries welcome

SUPERSEM

PLYMOUTH 075221256
MEMORIES AT UNFORGETTABLE PRICES

	1-24	25-99	$100+$	1;000+
4116 P-3 200ns	. 85	. 80	. 75	70
2114 LP 450ns	. 85	78	. 78	75
2708k 450ns.	2.65	2.45	2.25	2.20
2716k 450ns	2.40	2.25	2.05	1.95
2732k 450ns.	3.80	3.60	3.40	3.20
8981 P-45 Cmos	2.20	2.10	2.00	1.80
8725 S 200ns	7.00	6.50	6.00	5.50
K4164 200ns	8.95	8.45	7.95	5.55
80398 -bit	3.00	2.85	2.70	2.40
8080AP CPU	2.10	2.00	1.90	1.70
8085A CPU	2.75	2.60	2.45	2.15
8155 P + Timer	3.05	2.90	2.75	2.45
8156 P + Timer	3.40	3.20	3.00	2.60
8212 P i/o Port.	1.05	1.00	95	80
8216 Bus Driver	1.00	95	90	80
8224P Clock Gen	1.25	1.15	1.10	1.00
8226P Bus + B/Drives	. 87	82	77	70
8228P System Cont.	2.20	2.10	2.00	1.80
8243P i/o Exp.	1.65	1.60	1.55	1.45
8251AP Prog. Int./Face	2.35	2.25	2.15	2.00
8253P Prog. Int/Time	3.55	3.35	3.15	2.80
8255AP Perip./inter.	2.20	2.10	2.00	1.80
8257P DMA Cont.	3.55	3.35	3.15	2.80
8259 Inter Cont	3.55	3.35	3.15	2.80
8279P Kev Disp.	3.70	3.50	3.30	3.00
4044 P-3 300ns....	1.85	1.75	1.65	1.50

 Britannic House Drake Circus Plymouth PL4 8A0

Get maximum power at minimum price yet still with hi-f specifications and a wide choice of outputs. ILP Bipolar powe amps. now with or without heatsinks are unbeatable value tor domestic hi-fi — but for disco. gutar amplifters and PA choose the new range of heavy duty power amps. again with or without heatsinks with protection against permanent short circuit. added satety for the disco or group user. Connection in alt cases is simple - very tem has a 5 year no quibble guarantee and includes full connection data. So send your order FREEPOST today

Load impedance, all models. 40 hm - infinity Input impedance, all models 100 K ohm Input sensitivity, all models. 500 mV . Frequency response, all models $15 \mathrm{~Hz}-50 \mathrm{kHz}-3 \mathrm{db}$. BIPOLAR Standard. with heatsinks

Model No	Outpul power Watts pms	$\begin{aligned} & \text { DIST } \\ & T H D \\ & \text { TyD } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$	$\begin{gathered} \hline \text { ORTION } \\ 1 . \mathrm{MD} \\ 50 \mathrm{~Hz} / 7 \mathrm{kHZ} \\ 4: \end{gathered}$	Supply voltage typ/Mdx	Size mm	$\begin{gathered} W \\ \mathrm{Wms} \end{gathered}$	$\begin{gathered} \text { Price } \\ \text { inc vat } \end{gathered}$	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HY 30	15w/4-882	0015\%	$<0006 \%$	$\pm 18+20$	$76 \times 68 \times 40$	240	¢828	5729
HY 60	30w/4-88	0015%	$<0006 \%$	$\pm 25+30$	$76 \times 68 \times 40$	240	$¢ 958$	¢8 33
HY 120	$60 \mathrm{w} / 4.888$	001\%	<0006\%	$\pm 35-40$	$120 \times 78 \times 40$	410	£20 10	£1748
HY 200	$120 \mathrm{w} / 4-822$	001\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	£24 39	£21 21
HY 400	$240 \mathrm{~W} / 4 \Omega$	001%	$<0006 \%$	$\pm 45 \cdot 50$	$120 \times 78 \times 100$	1025	§3660	£31 83

BIPOLAR Standard withoul heatsinks

HY 120 P	$60 \mathrm{w} / 4.8 \Omega$	001%	$<0006 \%$	$+35 \pm 40$	$120 \times 26 \times 40$	215	$£ 1783$	$£ 1550$
HY 200 P	$+20 \mathrm{w} / 4.8 \Omega$	001%	$<0006 \%$	$\pm 45+50$	$120 \times 26 \times 40$	215	$£ 2123$	$£ 18.46$
HY 400 P	$240 \mathrm{w} / 45!$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 3258$	$£ 2833$

Protection: Load line momentary shorl circull (typically 10 sec) Stew rate $15 \mathrm{~V} / \mu \mathrm{S}$ Rise time us S/N ratio 100db Frequency response (-30B) 15 Hz -50kHz. Input sensitivity 500 mv rms. Input impedance $100 \mathrm{k} \Omega$. Damping factor $(8 \Omega / 100 \mathrm{~Hz})>400$

HEAVY DUTY with heatsinks

Model No	Otipul power Walls rms	$\begin{aligned} & \text { DIST } \\ & \text { THD } \\ & \text { Typ } \\ & \text { al } 1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & \text { ORTION } \\ & \text { IM. } \\ & 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ & 41 \end{aligned}$	Supply voltage Typ/Max	Size mm	$\begin{gathered} \text { WI } \\ \mathrm{gms} \end{gathered}$	$\begin{aligned} & \text { Price } \\ & \text { inc VAT } \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { ex VAT } \end{aligned}$
HD 120	$60 \mathrm{w} / 4.8 \Omega$	001\%	<0006\%	$\pm 35 \pm 40$	$120 \times 78 \times 50$	515	£25 85	£22 48
HO 200	120w/4-88	00\%\%	<0006\%	$\pm 45+50$	$120 \times 78 \times 60$	620	£31 49	£27 38
H0 400	240w/45?	001\%	<0006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	£4442	£38 63

HEAVY DUTY without heatsinks

HD 120 P	$60 \mathrm{w} / 4.8 \Omega$	001%	$<0006 \%$	$\pm 35 \pm 40$	$120 \times 26 \times 50$	265	52282	$£ 1984$

HD 400 P	$240 \mathrm{w} / 4 \Omega$	001%	$<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 70$	375	$£ 3942$	$£ 3428$

Protection: Load ine. PERMANENT SHORT CIRCUIT (ideal for disco/group use should evidence of short circuit not be immediately apparent). The Heavy Duty range can clarm additional output power devices ard complementary protection circuitry with performance specs as for standard types
How to order Freepost: Use this coupon, or a separate sheet of paper to order these products or any products from other LLP Electronics advertisements No stamp is needed if you address 10 Freepost. Cheques and postal orders must be crossed and payable to ILP Electronics Ltd cash must be registered C O.D - add $£ 1$ to total order value Access and Barclaycard welcome. All Uk orders sent positree within 7 days of receipi of order

Please send me the following LP modules

Total purchase price
I encloseCheque \square
Postal Orders \square
int Money Order
Please debit my.Access / Barclaycard No
Nanye
Addiess

Signature
Pos! io ILP Electionics Lid Freepost 2 Giranam Bell House Roper Close Canterbury CT2 7EP Keni England 2 , 2723 Telex 965780 Wumle ELECTRONICS LTD

microtan 65 Contents

High quality. plated thru hole pinted circuit hoard, solder resist and silk screened cumponent dentification 6502 microproce ssor 1 K monitor TANBUG Now with 'V Bug ik RAM tor user progianme., slack and display me mory VOU alphanumperic display of 16 rows by 32 characters MICROTAN 65 system file binder 136 page, bound, use is hardware/ sotware manual with constructional delails and sample programmes Logic and discriele componen:s io tully expand MICROTAN 65
The MICROTAN 65 kut has won wide spread acclain tor its superi presentation We
KIT FORM $\mathbf{£ 6 9 . 0 0}+$ E 1035 VAT, tolal $E 79.35$ MICROTAN 65 assembled and lested
Speciitcation as above. but assembled and tully bench tested by ourselves $\mathbf{£ 7 9 . 0 0}+$ f11 85 V AT. total 99085
tanbug vz.3 kit $£ 21.85$ incl

MICROTAN 65 OPTIONS

Iower CaSE PACK
into locations on MICROTAN Bult $£ 10.00$ - VAT
$\mathbf{£ . 4 8}+£ 142$. total 11090
graphics pack
Five integrated circuils which connect mimo locations on MICROTAN atlowing the display of chunky graphics (64×64 pixe 5) What are chuniky graphics? Well , magime a piece of graph paper with 64 squares te made and 64 squares horizonally, a toral of 4096 Each sipure can
f6. 52
20 WAY KEYpad
Inexpensive means ol getting up and running Uses Schoeller' key. swilches, and connectis to MICROTAN ithrough a 16 pin 011 plug on ribbon cable Black anodised escutcheon, with TANGERINE legends. lunshes oft what must be the best value for meney keypad avalable Avalable assembled and tested
$\mathbf{£ 1 0 . 0 0}$ + VAT 51 150, total $£ 11.50$
space nvaders game for use wilh keypat only)
POWER SUPPLIES
MPS 1 input 120 or 240 V AC Output 5 Votis at 3 Amps Regulated MPS 1 will power both MICROTAN and TANEX fully expanded Bull on
the same shre printed Criccuf board as MICROTAN elc Avalabte as an the same size printed circuit board as MICROTAN eic Availabie as a lestedini
$\mathbf{£ 2 3 . 0 0}=$ VAT 1345 total $\int 2645$
XMPSZ $+5 \mathrm{~V} 6 \mathrm{VA}+12 \mathrm{~V},-5$ and 12 V smich mode system PSU $£ 69.13$ + VA

MINI-SYSTEM RACK

We have produced a mim System rack which accepris MICROTAN 65 TANEX and our munn mother board it has an nntegral power supply. |lust it gives your system the profess onal finish Front panel access for $1 / 0$ cables AVAllABLEAS AN ASSEMBLED UNIT
$£ 56.35$ incl
FULL SYSTEM RACK
system rack which accepts MICROTAN 65. TANEX, TANRAM SEVEN FURTHER EXPANSION BOAROS. TANOOS And THE SYSTEM POWER SUPPIY Available in many tormats, eg individual front panels full width hinged flont panel, back panel with or without connectors £49.00 NEW PROD NEW PRODUCTS (all V.A.T. incl),
 EVTRA EOGE CONNEETORS CONECTORI E72.5S

[^6]MEMOR etc. many services.
rou ammehar

Sin VAT. P\& P

 Me mory mapping contol 71 key ASCil Keyboard. including numeric SOFT BASIC avaitable in the U K All the usual BASIC commands
FULL MANUALS: MICROTAN, TANEX, BASIC, X BUG

All $£ 5$ each

TANRAM

avallabie now tankam. 40k bytes on one boarral Single board of bulk memory.
offering 7 K Satic RAM (2114), and 32 K . atifering 7 K Static RAM (2114). and 32 K
Oynannic RAM (41 16) Onboard refiresh is Oynannc RAM (41 16) Onboard reftresh is
Iotally transparent to CPU operation and is

TANEX £43.00

Minimum
CONTENTS
High quality plated thru hole promted circuit hoard, solder resist and silk streened component identification. I.C. sockets for maximum expanstion 64 Way $0 \mathrm{I} . \mathrm{N}$ edge connector 1 K RAM, cassette interface. 16 parallel I/O lines, a T T.L serial I/O port. wwo 16 bit counter timers, daia bus butlering. memory mappung. fogic and discrete componenis for maximum expansion TANEX users manual 553.00

TANEX EXPANSION

 Expanded. TANEX Ofters 7K RAM.locations for 4K EPROM (2716). locations for 10 K extended MICROSOFT BASIC, 32 paralle ! lines. two TTL serial l/0 ports. a third serial I/O port with RS232/20mA loop. full modem control and 16 programmable baud
rates tour 16 bir counter timers casselte interface, data bus buffering. and memory mapping
 EXPANDED TANEX KIT (Excludes ROM. XBUG and BASIC) $\mathbf{5 8 9 . 7 0}+$ V.AT $£ 1346$, total $[10316$ EXPANDED TANEX aSSEmbled $\mathbf{£ 9 9 . 7 0}+$ V A.T f14.96. total £ 11466 options to fully expanded tanex

1OK Extended MICROSOFT BASIC in EPROM (with manual) expands the avaifable address space of the $\lceil 49.00+V$ AT $£ 7.35$. total $£ 56.35$ 6502 microprocessor MICROTAN. TANEX and TANRAM together
provide 16 K RAM. 48 K RAM. and $1 \mathrm{KI} / 0$ - that A a lot of menory provide 16 K RAM. 48 K RAM. and $1 \mathrm{KI/O}$ that's a lof of
and a lot of $\mathrm{I} / \mathrm{O}^{\prime}$ Butl and tested TANRAM ASSEMBLEO
 SERIAL I/O KIT E17.25 incl.

4OK RAM CARD with 16K DYMAMIC RAM £ $\mathbf{7 6}$ - VAT CONTENTS High qualiry plated thru hole printed circuit board solder es st and sin screened componem. for 64 way $01 N$ edge conseter 1K RAM (2114) Oata bus buffering TANRAM users manual
EXtRA RAM

Discounis 10\% EXpano Your Sy Stem WITh OUR TANGERINE
2102 IK $\times 1$ Static RAM B0p IM 6402 UART $\mathbf{~} 4.50$
$\begin{array}{llll}2708 & \mathbf{5} 350 & 21141 \mathrm{~K} \times 4 \text { SIatic RAM } \mathbf{f 2 9 5}\end{array}$
$\begin{array}{ll}2708 & \mathbf{f 3 . 5 0} \\ 2716 & \mathbf{6} .50\end{array}$
MK 4116 : $6 \mathrm{~K} \times 1$ DYnamic RAM
All including VAT $418 \times 8 \times 8$ Static Ram 5.50
MONITORS (PROFESSIONAL)
CENTRONICS Ideal for Tangerine PRINTERS

NEW MICROTANTEL
POST OFFICE APPROVED
PRESTEL - VIEWOATA

- FULL COLOURGRAPH CAN STORE PRESTEL CAN BE USED AS AN EDITING TERMINAL CAN BE INTERFACED WITH PET, APPLE
doniestic T th the aerial socket of any colour orblack and white
doniestic TV receiver and to your Posi Office insialied ack sacket and you are into the excitiny world of PRESTEL Via simple push button use you are able to view 170,000 pages of up to the mume information on
many services, order goods trom companies all this without le aving

6522 VIA $\mathbf{8 8 . 0 0}+$ VA T $£ 120$, total $£ 920$ XBUG 11735 +VAT 1260 , 10tal f19 95
AS YOU CAN SEE THE PRICES OF OUR EXPANSION COMPONENTS ARE VERY. VERY COMPETITIVE

TANGERINE DISC SYSTEM

28 CONtroller card £150.00 DOUBLE SIOED DOUBLEDENSITY DRIVE
£215.00-VAT
CP/M OISK OPERATING SYSTEM £80.VAT
71 KEY ASCII KEYBOARD 669.95 incl. no extras neeoed
Avalable as fuly ascers includes nume Super metal cabinet in tangerine/bia $\mathbf{£ 2 0 . 0 0}+$ VA.t 1300 . total 12300

PROFESSIONAL ASCII KEYBOARDS

Ideal for Tangerine $£ 29.95$

52 key $/$ bit ASCll coded Positive strobe +5 V - 12 V

ASCII characters - Parallel outpur with strob - Power light on contiol

ADD-ON

KEYPAD
A compact 12 button keypad suitable for use with above keyboard to extend its function plus four extra keys. Supplied brand new with data. A non-
12
DEVELOPMENT AUTOMATICALLY AVAILABLE FROM
All products are available
FULLY GUARANTEED - BUY WITH CONFIDENCE BRITISH DESIGN AND MANUFACTURE AND ON DEMONSTRATION IN OUR COMPUTER DSPT.

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Stripline r.f. power amp-Sept. 1975-1 d.s
Audio compressor/limiter-Dec. 1975-1 s.s (stereo) Audio compressor/limiter-Dec. 1975-1 s.s. (stereo)
F.m tuner (advanced)-April 1976-1s.s. $£ 5.00$ F.m. tuner (advanced)-April 1976-1 s.s
Cassette recorder-May $1976-1$ s s. E 4.25 Cassette recorder-May 1976-1 s.s.
Audio compander-July 1976-1 s s. Audio compander-July 1976-1 s.s.
Time code clock-August 1976 - $2 \mathrm{~s} . \mathrm{s}$ d Date, alarm, b.s.t. switch-June 1977-2 d.s Audio preamplifier-November 1976-2 s.s Additional circuits-October 1977-1 s s Stereo coder-April $1977-1$ d.s. 2 s.s. Morse keyboard and memory-January 1977-2d
(logic board 101/4in. $\times 5 \mathrm{in}$) (keyboard and matrix $13 \mathrm{in} \times 10 \mathrm{in}$.) Low distortion disc amplifier (stereo)-September 1977-1 s.s. Low distortion audio oscillator-September 1977-1 s Synthesized f.m. transceiver-November 1977-2 d.s 1 s.s
Morsemaker-June 1978 -1 d s Morsemaker-June 1978-1 d.s Metal detector-July 1978-1 d.s
Oscilloscope waveform store-October 1978-4 d.s Regulator for car alternator-August 1978-1 s.s. Wideband noise reducer-November 1978-1 d.s Versatile noise generator-January 1979-1 s.s. 200 MHz frequency meter-January 1979-1 d.s High performance preamplifier-February 1979 Distortion meter and oscillator-July 1979-2 s.s. Moving coil preamplifier-August 1979-1 s.s Multi-mode transceiver-October 1979-10 ds Amplification system-Oct. 1979-3 preamp 1 poweramp Digital capacitance meter-April 1980-2 s.s. Colour graphics system-April 1980-1 d s Audio spectrum analyser-May $1980-3 \mathrm{~s} . \mathrm{s}$ Multi-section equalizer-June 1980-2 s.s. Floating-bridge power amp-Oct 1980 Nanocomp - Jan 1981 - 1 d.s. 1 s.s Nanocomp-Jan. 1981 - 1 d.s.
Logic probe - Feb. 1981 - 2 d.s. Modular frequency counters - March $1981-8 \mathrm{~s} . \mathrm{s}$ Opto-electronic contact breaker (Delcol-ADril 1981-2 s.s V.A.T and U.K. postage

Airmail add 20\%, Europe add 10\%, Insurance 10\% Remittance with order to
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

WW - 049 FOR FURTHER DETAILS

STEREO DISC AMPLIFIER 2

THE MOST THOROUGHLY RESEARCHED DISC AMPLIFIER THEREIS
for Broadcasting, Disc Monitoring and Transfer

WTYTIIP asis POW:RANP?

Because ILP MOSFET power amps give you ultra-fi performance without costing big money. Performance you thought you couldn t afford at a'price you know you can.

All ILP modules are compatible with each other - you'll find many more in other ILP ads in this magazine. Choose ILP MOSFET power amps when you need the tastest possible slew ate, low distortion at high frequencies, better thermal stability. MOSFEI power amps work with complex loads without difficulty and whou crossover distortion Connetion - via 5 pins. With other ILP modules you can create almost any audio system. whatever your age or experience.

LP MOSFET power amps are now available with
integral heatsink (no extra heatsink required) or ready for
mounting on to your own heatsink or chassis. Full dissipation detail on data shee available on request. Each carries a 5 year no quibble guarantee and comes with full connection data.

Send your order FREEPOST today on the coupon at the foot of this ad

MOSFET Ultra-FI, with heatsinks

Model No	Oulput power Watts rms	DISTORTION		Supply voltage Typ/Max	Size mm	$\left\|\begin{array}{c} W t \\ g m s \end{array}\right\|$	Price inc VAT	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { ex VAT } \end{array}$
		IHD Typ at $\mathrm{k} H \mathrm{z}$	$\begin{gathered} \text { M. D. } \\ 50 \mathrm{~Hz} / 7 \mathrm{kHz} \\ 41 \end{gathered}$					
MOS 120	60w/4-852	$<0005 \%$	<0006\%	$+4^{r}+50$	$120 \times 78 \times 40$	420	52976	§25 88
MOS 200	120w/4-852	$<0005 \%$	<0006\%	-55-60	$120 \times 78 \times 80$	850	53848	โ33 46
MOS 400	240w/4ת	<0005\%	<0006\%	-55 ± 60	$120 \times 78 \times 100$	1025	¢52 20	โ45 39

MOSFET Ultra-Fi without heatsinks

MOS 120P	$60 \mathrm{w} / 4.82$	$<0005 \%<0006 \%$	$\pm 45 \pm 50$	$120 \times 26 \times 40$	215	$£ 26.82$	$£ 2332$
MOS 200P	$120 \mathrm{w} / 4-822$	$<0005 \%<0.006 \%$	$\pm 55 \pm 60$	$120 \times 26 \times 80$	420	$£ 3281$	52853

 Protection

Able to cope with complex loads. without the need tor very special protection circuitry (tuses will sufice)
Ulitra-fi specifications
Slew rate $20 \mathrm{~V} \mu \mathrm{~S}$. Rise time $3 \mu \mathrm{~s}$. S/N ratio 100 db . Frequency response $(-3 \mathrm{~dB})$ $15 \mathrm{~Hz}-100 \mathrm{kHz}$. Input sensitivity 500 mVims Inpul impedance 100k. Damping lacto $(8 \Omega / 100 \mathrm{~Hz})>400$
How to order Freepost
Use this coupon, or a separate sheet of paper. to order these products or any products trom other ILP Electronics adventisements No stamp is needed if you address to Freepost. Cheques and postal orders must be crossed and payable toll. Electronics Lid cas must be registered C.OD - add $£ 1$ to total order value Access and Barclaycard welcome All UK orders sent post free within 7 days of recerpt of order

```
Please send me the following
```

IL P modules
Total purchase price
I enclose Cheque \square
Postal Orders \square

Int. MoneyOrder Please debit my Access/Barclaycard No
Name
Address

Signature
Postio LP Electronics Lid Freepost ? Graham Bell House. Roper Close Canterbury CT $27 E P$ Kent England
Telephone (0227) 54778 Iechnical (0227) 64723 Telex 965780
ETEP STAYAHEAD.STAY WITHUS

WW - 008 FOR FURTHER DETAILS

Pll makes a world of difference.

PIL offer a total concept to users of instrumentation.

If you have a requirement whether it's electrical or
electronic, test or measuring, new from stock or repair, we have the fast solution, whatever, whenever or wherever your problem.

Our services include:
CALIBRATION - CERTIFICATION CONSULTANCY - DISTRIBUTION EXPORT SALES - HOME SALES MANUFACTURE - MODIFICATION REPAIR - RETAIL - TRADE.

That's why PIL makes a world of difference.

Our full catalogue is available on application.

PIIT IEC
 IEC GROUP COMPANIES

Total Instrumentation -Wordivide

SHOWROOM/SAHES/EXPORT- 01-639 4461 OPEN MONDAY TO FRIDAY
FHCTORY/REPAIRS-01-639 0155
NORTH LONDON SH:OWROOM-01-965 2352
PRECISION INSTRUMENT LABORATORIES,
INSTRUMENT HSE, 727 OHD KENT RD, LONDON SE15. TEL: 01-639 4461 TELEX: 8811854 (INSTEL)
WW - 063 FOR FURTHER DETAILS

PYE OLYMPIC M201 High band AM multi-channel sets complete, but less loudspeakers and mikes. Few only at $£ 100$ each plus VAT.
PYE PF8 UHF hand portable complete but less batteries. 3 only. BARGAIN at only $£ 80$ each plus VAT.
PYE PF5 UHF hand portable complete with leather case but less battery. Only $£ 40$ each plus VAT.
PYE PF2 UB. Ideal for 70 cm . These sets are in new condition. Complete with mike, battery and aerial. Only $£ 80$ each plus VAT.
PYE PC1 Radio telephone controller, good condition. 2 only at $£ 50$ each
plus VAT. PYE UHF PAGE
each plus VAT.
each MF5AM Motofones low band sets complete and in good condition.
PYE Only $£ 45$ each plus VAT. PYE POCKETPHONE base station F50 complete less mike. $£ 45$ each plus VAT.
PYE WESTMINSTER W15 AMD mid band multi-channel sets only. No mike, speaker, cradle, or leads. $£ 45$ plus VAT.
PYE REPORTER MFGAM, high band sets, complete but less cradle. Few only $£ 150$ plus VAT.
PYE RTC Controller units for remotely controlling VHF or UHF fixed stations, radio telephones over land lines. $£ 20$ each plus VAT.
PYE WESTMINSTER W15AM High band and low band available. Sets complete and in good condition but are less speakers, mikes, cradles and LT leads (sets only) $£ 70$ each plus VAT.
PYE WESTMINSTER W15AMB (Boot mount). Low band complete with control gear and accessories and in good condition. $£ 80$ each plus VAT. PYE WESTMINSTER W15AM Mid Band crystalled and converted to $129.9 \mathrm{MHz} .130 .1 \mathrm{MHz} \& 130.4 \mathrm{MHz}$. Very good condition. $£ 140$ each plus 129.91

PYE WESTMINSTER W30AM Low band sets only, no control gear. Sets complete and in good condition. $£ 45$ plus VAT.
PYE BASE STATION F27 Low and high band, few only at $£ 75$ each plus VAT
PYE BASE STATION F3OAM Low and high band with and without T/T. Prices from f220 each plus VAT.
PYE CAMBRIDGE AM10D Dash Mount sets, complete and in good condition but untested. £40 each.
PYE CAMBRIDGE AM10B Boot Mount sets. High Band 12.5 kHz sets only, no control gear, good condition. $£ 25$ each.
Please Note all sets are sold less crystals unless otherwise stated. Sets can be crystalled on your frequency at $£ 20$ per channel extra.
CARRIAGE ON RADIO TELEPHONE EQUIPMENT MOBILES £2 EACH BASE STATIONS £15EACH.

B. : AM: EREBEGRONDOS

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E TEL: ELY (0353) 860185

1F W2

1N4148 Diodes
L.E.D.s. 125 \& . 2

CARBON FILM RESISTORS

 E12 SeriesPrices per 100. Larger and Mixed Quan
tityprices available. tity prices available.

\(\begin{aligned} 100 \& OFF
500 \& ONE
1000 \& TYPE\end{aligned}\)
ONE TYPE

LOW PROFILE I.C. SOCKETS

TEXAS			SCANBE		
$1+$	100+	$500+$	$1+$	100+	$1000+$
8pin .075	. 068	. 06	. 059	. 049	. 044
14 pin .09	. 082	. 073	. 082	. 07	. 064
16pin 10	. 096	. 085	. 091	. 078	. 07
18pin . 125	. 113	10	. 104	. 089	. 081
20 pin 14	. 126	. 113	. 12	. 10	. 092
22pin . 15	. 135	. 12	. 143	. 122	. 111
24 pin .15	. 135	. 12	. 146	. 132	. 116
28 pin .16	. 145	. 125	. 155	. 14	. 12
40 pin .24	215	. 19	. 23	. 195	. 176
MICROS			MEMORIES		
	$1+$	10+		$1+$	$25+$
6800	2.85	2.30	2102	1.00	83
6821	1.53	1.25	2114	1.30	1.04
6850	1.50	1.20	4116	1.25	1.00
8080A	3.75	3.00	2708	3.00	2.45
INS8060	9.50	9.00	2716	3.50	2.80
Z80A CPU	4.85	4.00	2532	5.90	4.75
Z80A P10	3.26	2.80	2732	5.60	4.50
AY 5.1013P	3.25	2.80			

NEW TRADE CATALOGUE AVAILABLE

Add $£ 1.50$ handling charge on orders under $£ 50$ and 15% V.A.T
Harrison Bros.

22 Milton Road, Westcliff-on-Sea, Essex SS0 7JX

Tel: Southend (0702) 32338

MEMORIES AT MICRO PRICES

	1-24	25-99	$\begin{gathered} \text { QUAN } \\ 100-499 \end{gathered}$	$\begin{aligned} & \text { ITITY } \\ & 500-999 \end{aligned}$	$1.000+$				
4116 200NS	65 p	60	55p	500p	1,00+ 45 p				
4116150 NS	75p	70p	65p	60 p	55p				
2114 L 200NS	£1.00	95p	90p	$85 p$	80p				
$\begin{array}{r}611616 \mathrm{~K} \text { CMOS } \\ \text { RAM 150NS } \\ \hline\end{array}$	£6.50	6.00	5.50	5.00	4.50				
4164 G4R Dynamic RAM- No refresh on Pin $1-200 \mathrm{NS}$	£6.50	6.00	5.50	5.00	4.50				
4164S 64K Dynamic RAM with Pin 1 refresh 200NS	$£ 8.00$	7.50	7.00	6.50	6.00				
2716 5V 450NS	£2.00	1.90	1.85	1.80	1.75				
2732 450NS	¢4.50	4.00	3.75	3.25	3.00				
2532 450NS	£4.75	4.50	4.25	4.00	3.50				
FLOPPY DISK CONTROLLERS		BAUD RATE GENERATOR							
FD1771 FD1791 FD1797 FD1691 Set of FD1797 and FD1691	£18	COM 8116 5.06 MHz crystal for above			£9.95				
	£ 32¢13			for above	£3.50				
	£40								
ORDERING INFORMATION: For orders under $£ 50$ add 50 p P\&P Please add 15% VAT to total value of order including postage and packing. All devices are prime, brand new, full spec and fully guaranteed. All items are subject to availability. Prices are subject to change without notice. CALLERS WELCOME.									
VINCELO Suite 2 26 Charing Cross Road London W.C. 2 Telex: 27486 Equity G									
WW098									

WW - 009 FOR FURTHER DETAILS
LANGREX SUPPLIES LTD
Climax House, Fallsbrook Rd., Streatham, London SW16 6ED
RST Tel: 01-677 2424 Telex: 946708

SEMICONDUCTORS

BASES

UNIVERSAL BENCH POWER SUPPIY

Output is fused and mains isolated.

2 ranges:
$0-125 \mathrm{v}$ (3) 4amps $0-250 \mathrm{v}$ @ 2 amps AC or DC Continuously variable.
£198.00
Exc. carriage and VAT.

Electrquersal Lid. 32 Portland Road, LLton, 8edfordshire LU4 8 AX WW - 069 FOR FURTHER DETAILS

		1	1	1				
WHY wait weeks for manufacturers? WHEN you can make professional printed circuit- boards yourself!		Materials from stock you can rely on						
if S so simple with: The path p.c.e FOTOSYSTEM METHOD.		Developer crystals or			${ }_{60} 935$			
		$\underline{12.20}$						
i) Make master pattern of P.C.B layout on clear dratting film.								${ }^{\text {¢ }}$ ¢0. 1.500
		FOTOstripper Concentrai			£3.41			
make yous own using FOTOsprayi. Pla	FOTOspray light sensitive lacque, in aerosol form enough to cover $1101^{1 / 2}$ sa. metres $\quad € 230$							
O	Polypropylene Dishes for etchants and developers							
Expose to UV or daytight								
v) Wash vi) Etch in terric chloride								
viil Remove resist with wire wool or use FOTO					sided Sid			
$100 \mathrm{~mm} \times 160 \mathrm{~mm}$ (Euro Card)					E1.55			
					$\underset{ }{\text { E3, } 60}$			
					¢9.0			
Ptain Coppet Laminate Top-quaity 102. Copper Fibreglass Lamirate								
1 mm SS	1 mm DS	1.6 mm SS	1.6 mm DS	2.4 mm SS	2.4 mmDS			
$152 \mathrm{~mm} \times 152 \mathrm{~mm}(6 \mathrm{~mm} \times$ bin) $)$ forso	${ }^{60.85}$	E0.85	f0.90	$\mathrm{f}^{1.27}$	$f 1$			
$152 \mathrm{~mm} \times 305 \mathrm{~mm} 46 \mathrm{in} \times 12 \mathrm{in}$. . \quad, 1.40	$\mathrm{fl}_{6} 1.50$	¢1.49	¢1.51	${ }_{62.27}$	$\mathrm{f}_{6.43}$			
$305 \mathrm{~mm} \times 305 \mathrm{~mm}(12 \mathrm{in} \times 12 \mathrm{in}$.$) (52.50$	$\underline{1} 2.12$	¢270	¢275	64.27	¢4.58			
POST \& PACKING Please add 80p per order. Plus VAT at 15% to total Prompt despaich assured								
UV Boxes, Tubes and P.C.B. associated products avaiiable. Ask for brochure								
PATH ELECTRONIC SERVICES 369 Alum Rock Road, Bimingham, B8 30R - Tel: $\mathbf{1 2 1 - 3 2 7 2 3 3 9}$								
Whoesale - Retail Suppliers of Electronic Components and Accessories Opên weekdays. 10 till 6.5 Sat .9 .30 till								

MIXERSFADERS VUMFIERDRIVES ATDMORE ALNEWFROMILP

Just some of the 28 new amazingly compact modules from ILP Electronics. Britain's leader in electronics modules - you'll find more new products in the amps and pre-amps adverisements

All $\angle \mathrm{P}$ modules are compatible with each other- you can combine them 10 create almost any audiosystem. Together they form the most exciting and versatile modular assembly system for constructors of ail ages and experience

Every tem from ILP carries a 5 year no quibble guarantee and includes full connection data. So send your order on the Freepost coupon below today!

$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	Modue	What it does	Current required	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { ex VAT } \end{array}$
HY7	Mono mixer	Mixes eight signais into one	10 mA	¢5 92	£5.15
HY 8	Stereo mixer	Two channels. each mixing five signals into one	10 mA	¢7 19	¢6 25
HY 11	Monomixer	Mixes five signais inta one - with base/treble conirds	10 mA	£811	¢750
HY 68	Stereo mixer	Two channels, each mixing ten signals into one	20 mA	¢9.14	£7 95
HY 74	Slerec mixer	Two channels each mixing tive signals into one - with treble and bass controls	20 mA	£1317	£11 45

AND OTHER EXCITING NEW MODULES

$\begin{aligned} & \text { Model } \\ & \text { No. } \end{aligned}$	Module	What if does	Current required	$\begin{array}{\|c\|} \hline \text { Price } \\ \text { Inc VAT } \end{array}$	$\int_{\text {Price }}^{\text {ex VAT }}$
HY 13	Mono VU meter	Programmable gain/LED overload diver	10 mA	¢684	¢5 95
HY $67 *$	Stereo head phone driver	Will dnve stereo headphones in the 4 ohm2 K ohm: range.	80 mA	£1420	¢12 35
HY 72	Vorce operated stereo lader	Provides depth/delay ellects	20 mA	£1507	£13 10
HY73	Gutar pre-amp	Handes two gutars (bass and lead) and mic with separate volume/bass/treble and mix	20 mA	£1409	1225
HY 76	$\begin{gathered} \text { Stereo switch } \\ \text { matrix } \end{gathered}$	Proviles two channels, each swiching one of tour signals into one	20 mA	To be announced	
HY 77	Stereo VU meter driver	Programmabie gan/LED overicaad driver.	20 mA	£10 64	¢9 25

For easy mounling we recormmend
B 6 mounting board for modules HY6 -HY13 $£ 0.90$ inc VAT 1078 ex. VAT.)
66 mounting board lar modules HYa6-HY77 ह1 12 inc. VAT (0.99 ex VAT.)
minimum to $\pm 30 \mathrm{~V}$ maximum neeating dropper resistors for higher voliages HY67 can be used orily with the SSU 30 power supply unit Mocules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$ HY66 to HY77 measure FP 480 BRIDGING UNIT FOR DOUBLING POWER

Designed specially by ILP for use with any two power amplifiers of the same type to case size $45 \times 50 \times 20 \mathrm{~mm}$ with edge connector it th as ms (single channel) into 82 . Contributory distortion less than 0.005%. Price: $£ 5.51 \mathrm{Inc}$. VAT (Ex. VAT £4. 79.
How to order Freepost
Ise this coupon, or a separate sheet of paper, to order these products or any products from other ILP Electronics advertisements. No stamp is needed if you address to reepost Cheques and postal orders must be crossed and payable toll P Electronics Lid cash must be registered. C.O.D. - add $\xi \uparrow$ to total order value Access and Barclaycard welcome. All UK orders sent post free within 7 days of receipt of order

Please send me the following
LP modules
Total purchase price
enclose Cheque $\square \quad$ PostatOrders $\square \quad$ Int Money Order \square Please debitmy Access/BarclaycardN

Name

address

Signature
WW5/1
OSt to Lt.P Elecironics Lid Freepos! 2 Granam Bell House Roper Close Telephone (0227) 54778 Technical (0227) 64723 Telex 965780
Tantiler
= STAYAHEAD.STAY WITHUS

By using the "PET"s own 6502 Microprocessor, we are able to offer an unheard of ratio of performance vs value for money. Price includes operating program in EPROM which greatly simplifies its use.

CALL CIL FOR DETAILS

Coming soon, a suite of applications programs in EPROM to include waveform generation, data acquisition etc..

CIL MICROSYSTEMS LTD DECOY ROAD WORTHING W. SUSSEX (0903) 210474 Telex 87515

THE W.W. DISK OFFER

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE

(Drive $£ 132, P$ and $P \mathbf{£ 2 . 7 8 , ~ V A T ~ £ 2 0 . 2 2) ~}$
Please make cheques and P.O.s payable to W.W. Disk Offer and send to:
W.W. DISK OFFER 49 Milford Hill Batford Herts

Please call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non U.K. orders send SAE for quotation

Also a few double sided $8^{\prime \prime}$ drives of the same manufacture. Check for availability, c.w.o. price: $£ 395+£ 5$ carriage + VAT giving a total of c.w.o. price of $£ 460$ each

SMC COMPACT RANGE

UK TYPE APPROVED

SMC1015L1 Single channel highband 10W mobile $\mathbf{f 2 5 0}$ SMC1015L1/B Single channel highband 10W base $£ 330$ CTCSS Encoder/decoder boards.. $£ 40$ 2 Section 3 dbd base colinear aerials $£ 40$
ALL AVAILABLE EX-STOCK - PRICES + VAT

This highiy compact mobile transceiver comes complete with a mobile mounting cradle and switchable noise cancelling microphone to complete the installation.
The latest addition to our PMR range is the SMC317L6 3 watt, 6 channel handheld transceiver, prices and availability will be announced shortly.

For further details on these products please contact us by letter or telephone.

Osborne Road, Totton, Southampton SO4 4DN, England Tel: TOTTON (0703) 267333 - Telex: 477351 SMCOMM G

Carbon Film Resistors
(Send for lists of values available)

$\begin{array}{lll}1 / \mathrm{w} & \text { per } \\ 5 \% & \mathcal{1 , 0 0 0}\end{array}$

Cable Sleeves and Markers from $£ 1.52$ Crimp Terminals from per 1, 1.44 Audible Wer 100 tone, Bleeptone, Banshee, Bedlam, tc. from £1. 14 each
Self-adhesive pcb guides from $\mathbf{£ 5 . 0 4}$ per 100.

Carriage \& VAT extra

From $£ 3.15$ per $100: 100$ supplied at 1,000 off price

Member Crystalate Group
Hadlow (0732) 851345
WW - 077 FOR FURTHER DETAILS
cavern micro modules
Designed for 280 based systems, these modules are suitable for Microcomputer expansion and the development of Micro systems The modules are based on a 55 -way bus, this being a compromise be tween flexibility and economy. Terminations are wire-wrap pins which can also be soldered or plugged into sockets.
$80-00616 \mathrm{~K} \times 8$ bit dynamic RAM
(supplied without 4116 chips)
$80-01316 \mathrm{~K} \times 8$ bit dynamic RAM
80-020 RAM driver
80-037 RAM driver (with MUX and CAS)
V.A.T. extra
$80-04416 \mathrm{~K} \times 8$ bit EPROM
80-051 Parallel Printer Interface
80-068 RS232 Interface
80-075 Z80 Processor.
£12.00
$£ 20.00$
$\mathbf{£ 9 . 6 0}$ £TBA

Good quantity discounts available

CAVERN ELECTRONICS

94 Stratford Road, Wolverton, Milton Keynes MK12 5LU
Telephone: Milton Keynes (0908) 314925

Principles of Transistor Circuits 6 En Edition

SW Amos

Reared Head of Technical Publications Section, Engineering Training Department, British Broadcasting Corporation

While advancing technology presents complex electronic equipment in highly integrated and miniature form, a thorough understanding of the fundamental principles of transistor circuitry is as necessary today as it was in the days when every item of equipment was formed from discrete components. There is such a multitude of sophisticated transistor devices now available that a clear and comperehensive account of their applications is very much needed by potential circuit designers. This book now fully revised, updated and extended, provides such an account and its value to the student is underlined by its adoption by many technical colleges and universities as a standard course book. Home constructors, too, will find it of immense value.

1981352 pages Hardcover $£ 12.50$ Softcover $£ 6.95$
Order today from your bookseller, or by writing directly to
\square Butterworths Borough Green, Sevenoaks, Kent IN 158 PH

WESSEX MICROCOMPUTERS Phone (0963) 22402/32248

SEMICONDUCTORS

WIREWOUND
 RESISTORS

4 Watt $\begin{gathered}\text { PREFERRED VALUES } \\ 4 R 7-1 K 8 \\ 2 K 2-6 K 8\end{gathered}$

7 Wait R47-4K7
$5 K 6.12 K$
$15 K$

11 Watt $18-10 K$ $15 K$

0.14
0.15
0.18

17 Watt
1R.10K
$15 K-22 K$
认ัN

MRA
MR FF
R2008B

ETC.
${ }_{876} 876{ }^{87 n e d}{ }^{0.15}$

$\begin{array}{ll}\text { BiB } & \mathbf{0 . 5 0} \\ \text { 8 Pin DIL } & \mathbf{0 . 1 0} \\ 14 \text { Pin DIL } & 0.12\end{array}$

ZENER DIODES

BZX610.15
$6 V_{2} 7 V 5 \mathrm{gV2} 9 \mathrm{~V} 10 \mathrm{~V} 11 \mathrm{~V} 12 \mathrm{~V} 13 \mathrm{~V}$
15 V 16 V 18 V 20 V 22 V 24 V 27 V 30 V
33 V 36 V 39 V 47 V BZY88 0.07 $2 V 73 V 3 V 33 V 63 V 94 V 34 V 75 V 1$
$5 V 66626887 V 58 \vee 29 V 1$ 10V 11 V
12 V 13 V 15 V 18 V 24 V 27 V

\section*{THERMISTORS BATTERIES} | VA1040 | 0.23 |
| :--- | :--- |
| VA10565 | 0.23 |
| VA 100 | 0.70 | VA1104

VA8650
batteries
TR 175 f140
TR 175 f 1.40
other prices
request:

PHONE 0474813225 3 LINES

P. M. COMPONENTS LTD SELECTRON HOUSE, WROTHAM ROAD MEOPHAM GREEN, MEOPHAM, KENT

A SELECTION FROM OUR STOCK OF BRANDED VALVES

looks at DNA, the building block which is the basis of all living organisms and shows how its ability to copy itself can be emulated on a computer

Also in this issue:

- Technical appraisal of the BBC microcomputer on which the forthcoming TV series is based - Review of the VIC 20 home computer.
- How a Pet computer is being used to control an audio visual slide display
Together with our regular advice columns for users of Pet, Apple. Tandy and Sinclair $2 \times 80 / 81$ computers and a Buyers Guide covering UK suppliers of microcomputers

With paid sales of well over 60,000 Practical Computing is now in greater demand than ever before. So why not make sure of your copy and place a regular order with your newsagent?

Out December 16. Still only 80p. At all leading newsagents.
Practical Comphting is published by IPC Business Press.
N.

FITTING A NEW TAPE HEAD CAN TRANSFORM THE PERFORMANCE OF YOUF TAPE RECORDER, OUR FULL CATALOGUE (PRICE 50p) ALSO INCLUDES TAPE TRANSPORTS, DISC DRIVES, PRE-AMPLIFIERS AND ACCESSORIES

FOR SALE

POINT OF SALE SYSTEM

Singer Friden Model 902A and 922A Point of Sale Terminals. Complete system of 30 terminals. Data Multiplexes and Data Recorders. All transactions are recorded for off line data processing. Complete system includes spare parts and documentation. Customised installation, programming and training provided if necessary.
Assistance/advice on further stock control and accounting can also be provided.

VESCO ELECTRICAL LTD.
 Tel: 022368990
 Telex: 817672 VESCOL

WW - 095 FOR FURTHER DETAILS

WW - 089 FOR FURTHER DETAILS

With 1,100 instrument cases in Over 750 sizes, and some 250,000 case parts currently in stock, we certainly enable you to box clever.

A practical solution to every electronic packaging requirement, without the problem of high tooling costs, that's our aim at West Hyde. By being able to supply an 'off the shelf' enclosure for just about any electronic or electrical instrument, we can certainly make sure when it comes to enclosing your particular product, we can help you to box clever! For more information send for our catalogue, price £1.00 inc. P\&P

WEST HYロE
 West Hyde Developments Ltd., Unit 9,

 Park Street Industrial Estate, Aylesbury. Bucks. HP20 1ET Telephone: Aylesbury (0296) 20441. Telex: 83570 W HYDE G
RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. £1.45 for booklet, "Nickel Cadmium Power," plus catalogue.
\star New sealed lead range now available *
Write or call at
SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764

WW - 080 FOR FURTHER DETAILS

 WW - 013 FOR FURTHER DETAILS

EPROM PROGRAMMER

NMOS, CMOS 10 COPY SOCKETS

MODELS
S20 for copying
S30 for copying and Editing

- Displays contents of EPROMS, instruction codes and failure details.
- Protects EPROMS.
- Self tests automatically.
- Simple operation for semi skilled personnel.
- Copies from master EPROM or RAM.
- Verifies master/copies. RAM/master, RAM/ copies.
- Serial or parallel interface.

16-20 KELVIN WAY, CRAWLEY, SUSSEX. RH10 2 TS. TEL. CRAWLEY (0293) 510448

WW - 102 FOR FURTHER DETAILS

MARKETING Ltd.

D.S.N. Marketing is a newly established subsidiary company, part of a group of companies centred around one of the U.K. market leaders in electro-

LOUDSPEAKER COMPONENTS
N-4500 FILTER KIT
A 12 dB /octave, 3 component, high pass filter kit especialiy designed for the K-3050 Super Tweeter. 50 Watts, 8 Ohms, -3 dB point at 4,500 Hertz. Comes complete with full connection instructions.

T-8065 TERMINALPANEL
The two recessed, colour coded, terminals will allow easy connection of any loudspeaker cable by simply inserting the stripped cable ends into the spring loaded terminals. acoustic equipment, established for over 50 years. We make use of the extensive research facilities on our premises, which Include a large anechoic chamber and $B \& K$ measuring equipment, to ensure the highest quality of our products.

K-3050 SUPER TWEETER

This is a highly efficient horn loaded mid and high frequency tweeter with a large magnet system, a mylar diaphragm and a cast aluminium horn. Power rating with a 12 dB /octave filter at 5,000 Hertz is 15 Watts (sine wave), 50 Watts (programme), impedance 8 Ohms, frequency response $2,000-20,000 \mathrm{Hentz}$, S.P.L. 100 dB (1W@1m), dimensions $78 \times 78 \mathrm{~mm}$ front, 69 mm depth.

AT-SERIES L-PAD CONTROLS

A range of constant impedance loudspeaker level controls. By employing a twin-track wire wound power potentiometer in an L-circuit contiguration a constant impedance of 8 Ohms with in $\pm 25 \%$, is achieved over the whole attenuation range of 0 to -40 dB . The ' H ' models are standard potentiometers with a 10 mm long M9 threaded shaft. The 'S' models come
complete with a recessed indication panel and control knob.
AT-40H/S - 15 Watts (-dB). 10 Watts (-6 dB). 6 AT-50H/S -30 Watts (-2 dB), 25 Watts (-6 dB), 15 Watts (-12 dB) AT-60H - 50 Watts (-2 dB), 35 Watts (-6 dB), 25 Watts (-12 dB)
Use one AT-40H/S for each K-3050, or one AT-60H for four K-3050. For heavy duty applications, use one AT-50H/S for each K-3050 Super Tweeter.

267 8 270 ACTON LANE, LONDON W4 5DG. Telephone Telex 291429
 01-7471555
 $01-9946275$
 9. 30 a.m. 6 p.m
 MON.SAT.
 continuous

ALUMINIUM BOXES:

AB7 $5.25 \times 2.50 \times 1.50 \mathrm{in}$. $(133 \times 63.5 \times 38.1 \mathrm{~mm})$ AB8 4x4x1.50in ($101.6 \times 101.6 \times 38.1 \mathrm{~mm}$) AB9-4x225x1.50in. (101. $6 \times 57.2 \times 38.1 \mathrm{~mm}$ AB10 $4 \times 5.25 \times 1.50 \mathrm{in}(101.6 \times 133.4 \times 38.1 \mathrm{~mm})$ AB11 4×250 $\times 2 \mathrm{in}(1016 \times 63.5 \times 50.8 \mathrm{~mm}$) AB123 $2 \times 1 \mathrm{in} .176 .2 \times 508 \times 25.4 \mathrm{~mm}$) AB13 $5 \times 4 \times 2 \mathrm{in}$. $1524 \times 1016 \times 508 \mathrm{~mm}$ AB13 $5 \times \times 2 \mathrm{2i}$. $1.52 .4 \times 1.16 \times 50.8 \mathrm{~mm}$ AB15 $8 \times 6 \times 3 \mathrm{3in}$. $123.8 \times 152.4 \times 702 \mathrm{~mm}$ AB15 $8 \times \times 3 \mathrm{~m} .(273 \times 127.4 \times 6.2 \mathrm{~mm}$). AB16 $10 \times 7 \times 3$ in. $(254.0 \times 177.8 \times 76.2 \mathrm{~mm})$ AB17 10x4.50 $\times 3 \mathrm{3in}(1254.0 \times 114.3 \times 76.2 \mathrm{~mm})$ AB18 $12 \times 5 \times 3$ 3in. $1304.8 \times 127.0 \times 76.2 \mathrm{~mm})$. AB19 $12 \times 8 \times 3$ in. $(304.8 \times 203.2 \times 76.2 \mathrm{~mm}) \ldots$

BLACK PLASTIC BOXES

 $75 \times 50 \times 2 \mathrm{BLm}$$80 \times 60 \times 40 \mathrm{~mm}$
$90 \times 70 \times 40 \mathrm{~mm}$
$90 \times 70 \times 40 \mathrm{~mm}$.
$115 \times 75 \times 30 \mathrm{~mm}$.
$170 \times 100 \times 50 \mathrm{~mm}$.
$200 \times 120 \times 80 \mathrm{~mm}$

BLUE REXINE COVERED

ALUMINIUM BOXES RB1 $6 \times 4.50 \times 2.50 \mathrm{in}$. ($152.4 \times 114.3 \times 53.50 \mathrm{~mm}$) RB2 $8 \times 5 \times 3$ in ($203.2 \times 127.0 \times 76.2 \mathrm{~mm}$)
 $f 1.96$
$f 2.52$ RB5 $11 \times 7.50 \times 4.50 \mathrm{in}$. $279.4 \times 190.5 \times 114.3 \mathrm{~mm}$) $£ 3.98$

RELAYS

CONTINENTAL
By Omron, Verley, Siemens etc. 2 PCO \qquad 85p ea. 4PCO 100p. Bases 20p

SUBMIN POWER, 5A contacts, small physical size. 4PCO
100p, bases 25p
POWER RELAYS. Plug in octal and 11-Pin 2 and 3 PCO types with $71 / 2$ Amp contact ratings. By Schrack, B\&R Omron, etc.

Only 2.00p ea.
ZETTER LOW PROFILE (Type AZ5 and 6)
Just in, a large quantity of 'flat pack' relays in standard, heavy duty and latching types. We can offer these at a fraction of list price in many coil voltages and contact arrangements. Full data supplied on request. Send SAE or ring for list.

DIL Relays

Form A.
Only 1.00p ea.

SWITCHES

Special offers include:

ILLUMINATED

Licon 01-800 push fit 2PCO switches. Separate bulb contacts (T $1 / 4$ flange) 5A rated contacts, lenses included. Latching or momentary action.

Only 1.50p

Attention: Licon stocks rapidly diminishing - BUY NOW and SAVE.

ROCKER

Illuminated mains rocker switches, 16A contacts
DPST. Red, push fit, $26 \times 30 \mathrm{~mm}$ standard type ...
SPST. Amber, push fit, $14 \times 30 \mathrm{~mm}$ standard type 30p

ROTARY

1P12W, 2P6W, 3P4W Lortin type... 50p ea.

MICRO

V3 roller, arm or standard .. 40p ea.
V4 roller, arm or standard.. 50p ea.
DIL
4xDPDT; 5xDPDT, gold contacts, by ERG \& CTS, only 80p
Industrial type 2 Pole 12A/600VAC.. $\mathbf{5 1} 5$
2 Pole 12A/600VAC..
10 Pole 12A/600VAC
3.00

CABLE

Our cable stock must be seen to be believed, so it is impossible to list it all. ELECTRICIANS ... buy our $2.5 \mathrm{~mm}^{2}$ for only $£ 6 / 100$ and $1.5 \mathrm{~mm}^{2}$ only $£ 5 / 100$. VIDEO CABLE. UR75 75Ω Coax Mil spec. only $\mathbf{£ 2 0 / 1 0 0}$. BELDEN CABLE. Hook up wite in 24, 20 and 18 AWG. Super prices. MAINS CABLE in $0.5 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2} 1 \mathrm{~mm}^{2}, 1.5 \mathrm{~mm}^{2}$. T.V. DOWNLEAD, excellent rates for 100 m . MULTICO'ES of all types. RIBBON CABLE. We've got it. Why not see for yourself

SEMICONDUCTORS

We of course carry a full range of transistors, diodes, CMOS, TTL, Linears, Triacs, Thyristors and other devices but lack space to print long boring lists. Suffice to say we will beat most of our competitors on price, availability and quality of product.

The following are available in enormous quantity, generous trade discounts are offered:

BC184L - BUY69C - BFR87 - ZTX342(npn) - ZTX542(pnp) BY208. Our price 2.00p - 2N3373. Our price 1.80p

74LS Series TTL
The following numbers are held in quantity. Maximum savings.

. 192 . . 193 . . 221 . . 251 . . . 273 . . 290 . . . 293
 452.

Heatsinks

Redpoint TV4 (for TO-220 package. \qquad 15p ea. discount on qty. TO5 tpe ($50^{\circ} \mathrm{C} / \mathrm{W}$).

CONNECTORS

RF CONNECTORS

BNC Plug (50R or 75 BNC Line socket
BNC Chassis socket
\qquad 50p SHF . 5p

PL259 Plug 45p

Reducer.
\qquad
\qquad
Roducer............................... 14 40p PL258 Double socket.............. 50p PL259 to BNC (male) adaptor
1.20p

PET100 plugs.............................50p
PET100 Chassis socket........ 50p N -Type Plugs (Amphenol) ... 75p N -Type Chassis sockets (SHF Amphenol)
MULTIWAY CONNECTORS
We carry good stocks of new and bargain priced used DSeries rectangular connectors from 9 to 50 way.
Example:
New 015 socket \qquad 60p
New 09 plug 60p

AUDIO CONNECTORS

We stock all types of jack, phone and DIN plugs too numerous to list, phone for details. In professional types we have:
CBC Type ring locking multiway connectors fashioned in heavy duty nickel plated steel with cable clamp. In 2,3,4,5 and 6 way

Switchcraft XLR Series, the professionals choice:
A34M 3 pin free plug .. 1.20p
A3F 3 pin free 1.32p

D3M 3 pin chassis plug ...
D3F 3 pin chassis skt.... 1.60 p

FUSES: 20 mm QB 7p. AS 10p. $11 / 4$ inch OB 7p. A/S 12p. $5 / 8$ inch $6 p$ each.
HOLDERS: 20 mm P/M 35p. Chassis mounting 10p. $11 / 4$ inch Panel mounting 40p. C/M 10p. 5/8 inch P/M 25p.
MANS FILTERS: Computer grade but ideal for HiFi , etc. 8 or 15
Amp.
. 54 ea.
SLOW MOTORS: Mains or 115 V operation, great for timing purposes or discos..£1.50 ea. NEON BULBS: We have very large quantities in stock.
QI BULBS: 50W 12 V projector type, to clear....
50p ea.
LOCTITE: Penetrating adhesive. It really sticks. 50ML for only£3
DIGITAL MULTIMETERS: Superb value, copy of professional model. Full ranges and specs.OUR PRICE £40
TMK500 METERS: Tough dependable Multimeter $20 \mathrm{~K} / \mathrm{V}$ sens. Full ranges in V, A \& R

OUR PRICE £24
CAR SPEAKERS: 3 way 20 watt shelf mounting. 4" Bass driver, 21/2" Midrange, $1^{\prime \prime}$ Tweeter. Internal passive crossover. Great sound £32/pr. PLUS 4' driver BALL SPEAKERS, real 20W output, crisp, clean sound, a genuine bargain at .
at 250 gm £ 3.50 .
IRONS: Antex $\mathbf{X} 25 £ 4.50$. Antex $\mathbf{C} 15 £ 4.50$. 12 V 25 W Irons $\mathbf{£ 6}$.

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For fürther details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P). Minimum Mail Order $£ 5+P \& P+V A T$. Government departments, schools, colleges, trade and export welcome.

 267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: $\begin{array}{r}\text { 01-747 } 1555 \\ \text { Telex } 291429\end{array}$
STABILISED POWER SUPPLIES

FARNELL A15: $210 / 240 \mathrm{~V}$ 1P. Dual Op. $12 \cdot 17 \mathrm{~V}$ per rail at 100 mA . Remote sensing, current "limit protection. ($164 \times 130 \times 38 \mathrm{~mm}$), with manual. £12.
FARNELL 7/3SC: $120 / 240 \mathrm{~V}$ 1P. Adjustable current limit. Remote sensing. ($188 \times 96 \times 93 \mathrm{~mm}$.) Two versions available: 15 V at 2 A or 30 V at $1 \mathrm{~A} . £ 15 \mathrm{ea}$.
COUTANT OA2: Op. amp, psu, 120/240V IP. Dual Op. 12-15v at 100 mA . ($138 \times 80 \times 45 \mathrm{~mm}$.) $£ 12 \mathrm{ea}$. or 2 for $£ 22$.
BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection,
$374300 \mathrm{~V}-1 \mathrm{KV}$ at $5 \mathrm{~mA} \quad 376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA
$375500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}$ at 6 mA . All models $£ 40$.
PIONEER MAGNETICS POWER SUPPLIES . . . 5V 150 amp, output input 115 vac. (Switchmode) Price $£ 120$ each.
Various other makes of power supplies in stock. Please send for lists. S.A.E. please.

DTOAGONVERTERS
 $15 \mathrm{MHz}, 8$ BIT

By Micro Consultants Ltd. 50Ω cable drive op. Linearity 0.25%, max 0.125% typ. Settling time: 2 V step 70 nS typ. 2 MV step 50 nS colour television transmission standard. Diff. gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE: $£ 20$
NEW IN STOCK
A range of high quality transformers SPECIALLY WOUND for us. By buying direct we can offer these superb SPLIT PRIMARY \& SECONDARY transformers at highly competitive prices.

6VA	0-12, 0-12		
	0-15, 0-152.20		$0-15 \mathrm{~V}, 0-15 \mathrm{~V}$
12VA	$0-4 \mathrm{~V} 5,0-4 \mathrm{~V} 5$		$0-20 \mathrm{~V}, 0-20 \mathrm{~V}$
	$0-6 \mathrm{~V}, 0-6 \mathrm{~V}$	50VA	$0-6 \mathrm{~V}, 0-6 \mathrm{~V}$
	0-9V, 0-9V		$0-9 \mathrm{~V}, 0-9 \mathrm{~V}$
	0-12V, 0-12V 2.99		$0-12 \mathrm{~V}, 0-12 \mathrm{~V}$........4.75
	$0-15 \mathrm{~V}, 0.15 \mathrm{~V}$		$0-15 \mathrm{~V}, 0-15 \mathrm{~V}$
	0-20V, 0-20V		$0-20 \mathrm{~V}, 0-20 \mathrm{~V}$
20VA	$0-4 V 5,0-4 V 5$	120VA	$0-30 \mathrm{~V}, 0-30 \mathrm{~V}$
	0-6V, 0-6V		$0-40 \mathrm{~V}, 0-40 \mathrm{~V} \ldots8 .90$

CASED AUTO TRANSFORMERS

Rating............................ Price	750VA.......................... $£ 23.50$
300VA.............................13.00	1000VA......................... £27.00
500VA.......................... £18.00	1500VA £36.00
Other Transformers	12VA
1.2VA. 6-0-6, 9-0-9, 12-0-12	0-12, 0-12 2.96p
…...............................all 1.14	18VA
1.5 VA	9-0-9 2.64p
12V 80p	24VA
15V............................... 1.00p	12-0-12 3.36p
2.4VA	12V............................... 4.84p
12-0-12.......................... 1.48p	30VA
24V(pcb) 1.00p	15-0-15 3.62p
4VA	36VA
5-0-5 1.25	9-0-9 4.70p
6VA	50VA
24V 1.50	0-2-4-6-8-10.................... 6.00p

VERO PRODUCTS

RIP Board $(113 \times 156 \mathrm{~mm}) \ldots 3.26 \mathrm{p}$
RS DIP Board ($100 \times 160 \mathrm{~mm}$)
3.00p

Apple proto boards 4.00p Vero boxes - 2 tone grey/white plastic boxes

$4 \times 2 \times 11 / 2 \ldots \ldots \ldots \ldots \ldots22 p$
$41 / 2 \times 21 / 2 \times 11 / 2 \ldots \ldots \ldots \ldots2 .51 p$
$71 / 2 \times 41 / 4 \times 21 / 2 \ldots \ldots \ldots3 .75 p$
$7 \times 41 / 2 \times 21 / 4$ (alinfront) $\quad 3.51 p$ Vero ABS Black Plastic Boxes $41 / 2 \times 31 / 4 \times 11 / 2 \ldots \ldots78 p$ $7 \times 4^{1 / 2} \times 21 / 4$...................... 1.42p Veropins $45 p / 100$. Stand off 45p/100. Track cutters $£ 1.18$ p.

4 MILLION I.T.T. ELECTROLYTICS NEW AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL
The whole range available at unbeatable prices. Send for list.

> 5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy cased. Send for lists or please phone for details.

MULLARD: Series 106 Computer grade electrolytics $10,000 \mu \mathrm{~F}$ at 16V. Brand new and boxed..39p ea. SPRAGUE: Series 36D Computer grade electrolytics 3,300 at 40 V . Brand new and boxed ...335p ea. SIEMENS: Procond Radial Polyester Film Capacitors. $10 \mu \mathrm{~F}$ at 63 V . Brand new...Only 40p

Quantity available
RESISTORS - PRESETS - POTS
CARBON FILM. $1 / 4 W$ from IRO to 12 M Only $£ 1 / 100$ or $£ 5 / 1000$ METAL OXIDE: TR4, TR5, TR6, TR8 in E24 range, by Electrosil or Philips in $5 \%, 2 \% .1 \%$. Save fffs on manufacturer's prices.
WIREWOUND: We specialise in Welwyn Vitreous Enamelled Wseries types in $21 / 2 W$ to 12 Watt. Also a good selection of HSA type metal clad power resistors and TV dropper replacement sections. HIGH STABILITY: 0.1% Tolerance Resistors for instrumentation purposes. By Filmet or Welwyn. 3K, 10K, 30K, $1 \mathrm{M} O n l y ~ 30 p ~ e a . ~$ PRESETS: Skeleton and enclosed, horizontal or vertical Piher quality presets. Range from 100P to 5M. Popular PT10 size 10p each AND GREAT DISCOUNTS ON QUANTITY.
CERMET PRESETS. Top quality presets, good range stocked
Only 15p ea.
MULTITURN PRESETS: $3 / 4^{\prime \prime}$ and $11 / 4^{\prime \prime}$ Bourns type Only 50p each. SPECIAL! 100 K 15 turn $3 / 4^{\prime \prime}$. Only 20 p each.
SWITCHED POTS. Push switch pots from AB. In 22 K in and 100 K lin. Switch independent of pot action.

30p ea.
RESISTOR NETWORKS. Large range in DIL \& SIL packages by Beckman \& AB. Send SAE or phone for list
WELWYN STRAIN GAUGE. (Precision Micro-Measurements). Romulus Michegan type MA-09-500B4-350. Our price $£ 1.25$ ea. List price $£ 3.85$. Large quantities available.

WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers, for cash.
We also collect - distance no object. Just call:

C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG
Telephone 01-747 1555; 01-994 6275.
Telex 291429

[^7]
TWO NEW MEMORY PRODUCTS FROM SEED

1) 128K BYTE DYNAMIC RAM
 Card for Versabus Systems

Organised as $2 \times 64 \mathrm{~K}$ BYTE Blocks. SWITCHABLE to any 64 K boundary, and any combination of supervisor Prog. or data and USER Prog. or data space. On board parity generator/checker.
£1403

2) 16K BYTE STATIC BYTEWIDE PROM/RAM CARD

Using the latest bytewide technology this card allows any $2 K$ space to contain static RAM or single rail 2716 EPROM. Two methods of paging are allowed, either software register or 6809 extended address for larger systems.
£245

STRUMECH PORTLAND HOUSE, COPPICE SIDE, BROWNHILLS, WEST MIDLANDS.
TELEPHONE: BROWNHILLS 78151

WW - 090 FOR FURTHER DETAILS

LION TELETEXT PRESTEL ADAPTOR
why buy two separate adaptors when one will do \star PRESTEL

TELETEXT

Our adaptor has the plug-in Lion Teletext or Prestel and Teletext board which is used in our Television TXV 56 and our Ferguson Colourstar adaptor. Features include: full infra-red remote control, printer facility, full alphanumeric keyboard or microcomputer input, cassette recording output, autodial of Viewdata numbers, eight-page memory option, local editing facility and many other features.

Realistic Prices:
AXV03 £250 AXV04 £199 (Teletext only)
LION TV, 18 HARCOURT TERRACE LONDON SW10. 01-373 5218

FROM A NEW COMPANY WITH NEW IDEAS

SOMETHING SPECIAL

AIRWAVES ELECTRONICS INVITE YOU TO OPEN YOUR OWN PERSONAL ACCOUNT. THERE COULDN'T BE AN EASIER WAY TO BUY COMPONENTS, ONCE YOU HAVE OPENED YOUR ACCOUNT, JUST PHONE OR WRITE YOUR ORDER THROUGH, STATING YOUR ACCOUNT NUMBER TOGETHER WITH YOUR OWN SECURITY CODE NUMBER AND GOODS WILL BE DESPATCHED SAME DAY AND YOUR ACCOUNT DEBITED WITH THE COSTS.
MAYBE YOU'RE THINKING - YOU'LL HAVE TO PAY OVER THE ODDS FOR THIS, BUT YOU WILL BE WRONG. ACCOUNT CUSTOMERS WILL RECEIVE OUR PRO-DUCT-PACKED CATALOGUE SHOWING V.A.T. INCLUSIVE PRICES, WHICH WE BELIEVE TO BE VERY COMPETITIVE. AFTER ALL YOU'RE THE BEST JUDGE AND WE DO OFFER SOMETHING SPECIAL.
IF YOU WOULD LIKE TO OPEN YOUR ACCOUNT, THEN PLEASE CONTACT US FOR APPLICATION DETAILS ENCLOSING JUST A STAMP TO COVER POSTAGE.

AND, OF COURSE, CALLERS ARE ALWAYS WELCOME AT OUR CAMBERLEY ADDRESS.

AIRWAVES ELECTRONICS

151 LONDON ROAD, CAMBERLEY, SURREY GU15 3JY
TELEPHONE: (0276) 62949

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER $£ 20$
Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records,
Auto or'Manual A hion quality unit backed by BSR Caliability. Stereo Ceramic
Cact $200 / 250 \mathrm{~V}$. Size $131 / 2 \times 111 / 4 \mathrm{in}$. 3 speeds.
Above motor board $33 / 4 \mathrm{in}$. Below motor board $21 / 2 \mathrm{in}$.
Post $£ 2$ Board $£ 1$ extra

HEAVY METAL PLINTHS Post $£ 2$ Cut out for most BSR or Garrard decks.
Silver grey finish. Size $16 \times 133 / 4 \mathrm{in}$. DECCA TEAK VENEERED PLINTH. Post $£ 1.50$ Superior finish with space and panel for
small amplifier. Board is cut for B.S.R.
$183 / 8 \mathrm{in} . \times 141 / 4 \mathrm{in} \times 4 \mathrm{in}$. Black/silver facia trim. Also w
boards cut out for Garrard only $£ 3$. Plastic cover $£ 6$
TINTED PLASTIC COVERS

 $171 / 4 \times 1312 \times 4 \mathrm{in}$.
$21 / 2 \times 141 / 4 \times 21 / 2 \mathrm{in}$.

BSR SINGLE

 PLAYER DECKS BSR P172 RIM DRQUALITY DECK Manual or automatic play Precision ultra slim arm. With stereo ceramic cartice $17^{1 / 4} \times 13^{3} / 4 \times 41 / \mathrm{sin}$. $21 \times 13^{7 / 8 \times 41 / \mathrm{sin} .}$

BSR P207 BUDGET SINGLE PLAYER small two-speed Hi-Fi system with stereo fortidisco or cueing device. $£ 15$ Post £2
BSR ready cut m
GARRARO 6-200 SINGLE PLAYER OECK
Brushed Aluminium Arm with stereo ceramic carridge and Dia-
mond Stylus, 3 -speeds. Manual and Auto Stop/Start. Large Metal Turntable. Cueing Device and Pause Control.
Ready cut mounting board f 1 extra.
£20 ${ }_{\text {Post } f 2}$
BATTERY ELIMINATOR MAINS to 9 VOLT D.C. Stabilised output, 9 volt 400 m.a. U.K, made in plastic $5 \times 31 / 4 \times 21 / 2$ in. Transformer Rectifier Unit. Suitable Radios, Cassettes, models, £4.50. Post 65p.
DELUXE SWITCHED MODEL STABILISED VOLTAGES 3-6-71/2-9 volt 400 ma DC max. Universal output plug and lead. Pilot light, mains switch, polarity switch, £7.50. Post 65 p

DRILL SPEED CONTROLLERALIGHT DIMMER KIT. Easy to build kit.
Controls up to 480 watts $A C$ mains, $£ 3$. Post $65 p$.
Controls UP to 480 Watts AC mains, $£ 3$. Post 65 p .
DE LUXE MODEL READY-BUILT 800 watts.
ECHO CHAMBER £68
Good quality unit with end-
less play tape cartridge.
Stationary play heads ensure
good reproduction and echo
variance is achieved by
changing tape speed. Input
imp: 50 k and 600 ohms.
Power: 240 volts A.C.
RELAYS. 12V DC £1.25. 6 V DC 95p. $18 \mathrm{~V} £ 1.25$
BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.45 ; 8 \times 6-£ 1.80$
 $16 \times 10-£ 3.20$. All $21 / 2 \mathrm{in}$. deep. 18 swg
ANGLE ALI. $6 \times 3 \times 4 / 4 \mathrm{in} .18 \mathrm{swg} .25 \mathrm{p}$.
ALUMINIUM PANELS, 18 swg . $6 \times 4-45 \mathrm{p}$; $8 \times 6-75 \mathrm{p}$ $14 \times 3-75 \mathrm{p} ; \quad 10 \times 7-95 \mathrm{p} ; \quad 12 \times 8-£ 1.10 ; 12 \times 5-75 \mathrm{p}$ $16 \times 6-\mathbf{£ 1} 10 ; 14 \times 9-\mathbf{£ 1 . 4 5 ; ~} 12 \times 12-£ 1.50 ; 16 \times 10-£$
PLASTIC AND ALI BOXES IN STOCK. MANY SIZES ALUMINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1.4 \times 2^{1 / 2} \times 2 £ 1.3 \times 2 \times 1 £ 1$ $6 \times 4 \times 2 £ 1.60 .7 \times 5 \times 3 £ 2.40$. $8 \times 6 \times 3 £ 2.50$. $10 \times 7 \times 3 £ 3$ $12 \times 5 \times 3 £ 2.75$, $12 \times 8 \times 3 £ 3.60$. All with lids.
BRIDGE RECTIFIER 200 V PIV 2 a £1. 4a $£ 1.50$. $8 \mathrm{a} £ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p. HESISTORS. 108 It 10 10M. $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W} .1 \mathrm{p}: 2 \mathrm{~W}$ 10p. HIGH STABILITY. $1 / 2 \mathrm{w} 2 \% 10$ ohms to 1 meg. 8p. Ditto 5%. Preferred values, 10 ohms to 10 meg , 3p.
WIRE-WOUND RESISTORS 5 watt, 10 watt 15 wat PICK-UP CARTRIDGES SONATONE 5 watt, 10 watt, 15 watt 20 p PICK-UP CARTRIDGES SONATONE 9TA £2.50. 9TAC £3.80 PHILIPS PLUG-IN HEAD. Stareo Ceramic. AU1020 GP310-GP233-AG3306-AG3310) £2
OCKTITE SEALING KIT DECCA 118 . Complete f 1
ANTEX SOLDERING IRON 240 V 15 W . 3 mm bit $£ 4.75$
JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p. AACK SOCKETS Mono Open 20p; Closed 25p. ACK SOCKETS Stereo Open 25p; Closed 30p FREE SOCKETS - Cable end 30p. Metal 45p. DIN TYPE CONNECTORS SOCKETS 20p. Plugs 20p. IN TYPE CONNECTORS lugs 3-pin 20p; 5-pin 25p
Free Socket for cable end 20p. Screened Phono Plugs 25p
U.H.F. COAXIAL CABLE SUPER LOW LOSS, 25p yd

COAX PLUGS 20p. COAX SOCKETS 20p
NEON PANEL INDICATORS 250 V 30p

POTENTIOMETERS Carbon Track

50p. DP 90p. Stereo I/S

MINI-MULTI TESTER

coil instrument. Impedance + Capacity - 2000 o.p.v. Battery included. 11 instant ranges measure AC volts $10,50,250,1000$ OC amps $0-100 \mathrm{~mA}$. Continuity and resistance to 1 meg ohms in two ranges.
£6.50 Post 65 p $\begin{gathered}\text { De-Luxe Range Doubler Model, } \\ 50,000 \text { o.p.v. } 18.50 .7 \times 5 \times 2 \text { in }\end{gathered}$
NEW PANEL METERS £6
50μ 100 иa, 500~а
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$ 25 volt, 50 volt, VU Meter 500 ma , 1 amp, 2 amp Post 65p

RCS SOUND TO LIGHT CONTROL KIT

Kit of parts to build a 3 channel sound to light
unit. 1,000 watts per channel. Suitable for home E 15
or disco. Easy to build. Full instructions supplied. Post 95 p Cabinet $£ 4.50$ extra. Will operate from 200 MV to 100
200 Watt Rear Reflecting White Light Bulbs. Ideal for
Disco Lights, Edison Screw. 6 for $\mathbf{£ 4}$, or 12 for $£ 7.50$. Disco Lights, Edison Screw. 6 for $\mathbf{£ 4}$, or 12 for $£ 7.50$.
Post 65 p.

RCS "MINOR" 10 watt AMPLIFIER KIT $£ 14$ lay kit is suitable for record players, Two versions available: Mono, $£ 14$; Stereo, $£ 20$. Post f1. Specification 10 W per channel; input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$. approx. SAE details. Full instructions supplied. AC mains powered.
Input can be modified to suit guitar
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp. Inputs for high, medium or low imp
per channel, with volume control and PC Board
$\mathbf{E 2} .95$ Can be ganged to make multi-way stereo mixers Post 65p

MAINS TRANSFORMERS

250-0-250V 70 mA .5 .5 V	Po
$250-0-250 \mathrm{~V} 80 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V} 1 \mathrm{~A}$	55.00
$350-0-350 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 6 \mathrm{ACT}$	£12.00
$300 \cdot 0.300 \mathrm{~V} 120 \mathrm{~mA}, 2 \times 6.3 \mathrm{~V} 2 \mathrm{~A} \mathrm{C.T.;} 5 \mathrm{~V} 2 \mathrm{~A}$	£10.00 f

 50W 212.
GENERAL PURPOSE LOW VOLTAGE

			£6.00 $¢ 2$
			£6.00 ¢2
1 amp. 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 40. 48, 60$2 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$			¢9.50 ¢2
$3 \mathrm{mmp} .6,8,10,12,16,18,20,24,30,36,40,48,60$			£12.50 ¢2
$5 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$			£16.00 ¢ 2
$5-8-10-16 \mathrm{~V}$. $1 / 2 \mathrm{amp}$.	£2.50 80p	15-0.15V. 2 amps	£3.75 ¢ \dagger
$6 \mathrm{~V} .1 / 2 \mathrm{mp}$.	£2.00 $\mathrm{Cl}^{\text {¢ }}$	17-0-17V. 2 mmps	¢4.50 ¢2
6-0-6V. 1/2 amp.	E3.50 1	18 V 6a Twice	£11.00 £2
9 V .250 ma .	£1.50 80p	20 V 1 amp	¢3.00 ¢1
9 V .3 amp	£3.50 ¢1	20-0-20V 1 amp	£3.50 ¢1
9.0 .9 V . 50 ma	E1.50 80p	$20-40-60 \mathrm{~V} 1 \mathrm{amp}$	¢4.00
10.0 .10 V .2 mmps	£3.00 £1	$25-0.25 \mathrm{~V} 2 \mathrm{amps}$	¢4.50 c1
10-30-40V. 2 amps	£3.50 E1	28 V 1 amp Twice	55.00 ¢2
12 V .100 ma	¢1.50 80p	$30 \mathrm{~V} 11 / 2 \mathrm{amp}$	¢3.50 E_{1}
12 V .750 ma	¢2.00 80p	30 V 5 amp and	
12 V 3 amps	¢3.50 £f	17-0-172a	£4.50 ¢2
12-0.12V. 2 amps	£3.50 £1	35 V 2 amps	£4.00 ¢1
CHARGER TRANS $6-12 \text { volt 3a }$	$\begin{array}{r} \text { Post } \\ \mathrm{E4} .00+£ 2 \end{array}$	AECTIFIERS 6.12 volt 2a	Post P1.10+80p
6-12 voit 4a	£6.50+E2	6 -12 volt 4a	E2.00+800

OPUS COMPACT

SPEAKERS

FLUTED WOOD FRONTS
TEAK VENEERED CABINET
50 to $14,000 \mathrm{cps} .4$ ohm or 8 ohm

£20 pair Post f 2

LOW VOLTAGE ELECTROLYTICS
$1 \mathrm{mf}, 2 \mathrm{mf} 4 \mathrm{mf} 8 \mathrm{mf} 10 \mathrm{mf} 10 \mathrm{mt} 25 \mathrm{mf} 30 \mathrm{mf}$ ALL 10p $1 \mathrm{mf}, 2 \mathrm{mf}, 4 \mathrm{mf}, 8 \mathrm{mf}, 10 \mathrm{mf}, 16 \mathrm{mf}, 25 \mathrm{mf}, 30 \mathrm{mf}, 50 \mathrm{mf}, 100$ $\mathrm{mf} / 10 \mathrm{v}: 50 \mathrm{mf} / 6 \mathrm{v} ; 68 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} /$ $\mathrm{mf} / 4 \mathrm{v} / 10 \mathrm{v} / 10 \mathrm{v} ; 150 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mf} / 10 \mathrm{v} / 16 \mathrm{v} ; 220$ $\mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 1000 \mathrm{mf} / 2.5 \mathrm{v} / 4 \mathrm{v} / 10 \mathrm{v} ; 1500 \mathrm{mf} /$ $6 \mathrm{v} / 10 \mathrm{v} / 16 \mathrm{v} ; 2200 \mathrm{mf} / 6 \mathrm{v} / 10 \mathrm{v} ; 3300 \mathrm{mf} / 6 \mathrm{v}$;
$4700 \mathrm{mf} / 4 \mathrm{v}$. ALL 10p.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p}$; 100 V 70 p $2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 2000 \mathrm{mF}$. $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 2000 \mathrm{mF} 100 \mathrm{~V} £ 1.20$
$4500 \mathrm{mF} 64 \mathrm{~V} £ 2.4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20 .2700 \mathrm{mF} / 76 \mathrm{~V}$. HIGH VOLTAGE ELECTROLYTICS

$8 / 450 \mathrm{~V} 45 \mathrm{p} 8+8 / 450 \mathrm{~V}$ 75p $32+32+16 / 350 \mathrm{~V} 90 \mathrm{p}$ $\begin{array}{lrlll}8 / 800 \mathrm{~V} & £ 1.20 & 8+16 / 450 \mathrm{~V} & 75 \mathrm{p} & 100+100 / 275 \mathrm{~V} \\ 16 / 350 \mathrm{~V} & \mathbf{4 5 p} & 20+20 / 450 \mathrm{~V} & \mathbf{7 5 p} & 150+200 / 275 \mathrm{~V}\end{array}$ | $32 / 500 \mathrm{~V}$ | 75 p | $32+32 / 350 \mathrm{~V}$ | 50 p |
| :--- | :--- | :--- | :--- |
| $3220 / 450 \mathrm{~V}$ | 70 p | | |
| $32 / 350 \mathrm{~V}$ | 50 p | $32+32 / 500 \mathrm{~V}$ | $\mathbf{5 1 . 8 0} 32+32+32 / 325 \mathrm{~V}$ |
| 75 p | | | | $\begin{array}{rrrr}50 / 500 \mathrm{~V} & \mathbf{5 1 . 2 0} & 32+32 / 500 \mathrm{~V} & \mathbf{5 0 + 5 0 / 3 0 0 \mathrm { V }} \\ \mathbf{£ 1 . 8 0} 32+32+32 / 325 \mathrm{~V} 75 \mathrm{p} \\ 50 \mathrm{p} & 50+50+50 / 350 \mathrm{~V} 95 \mathrm{p}\end{array}$

VALVE OUTPUT Transformers (small) 90p.
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}$. 150 pF , 15p.
PAPER $350 \mathrm{~V}-0.17 \mathrm{p} ; 0.5$ 13p; $1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p}$
$500 \mathrm{~V} \cdot 0.001$ to $0.0512 \mathrm{p} ; 0.115 \mathrm{p}$; 0.2525 p ; 0.4735 p .
MICAO SWITCH SINGLE POLE CHANGEOVER 30p.
SUB-MIN MICRO SWITCH, 30p. Single pole changeove
TWIN GANG, 120pF 50p.
GEARED TWIN GANGS 25 pF 95p. 365 pF $£ 1$.
GEARED $365+365+25+25 \mathrm{pF} £ 1$.
TRANSISTOR TWIN GANG. Japan

HEATING ELEMENTS, WAFER THIN

Size $11 \times 9 \times 1$ Bin. Operating voltage 240 V . 250 W approx. Heaters. Propagation, etc. Must be clamp. Convector
two sheets of metal, etc
ONLY 60 p EACH IFOUR

NEW baker Star sound
high power full range quality loudspeakers produced to give exceptional reproduction. Ideal for $\mathrm{Hi}-\mathrm{Fi}$, music P. A. or
discotheques. These discotheques. Th
loudspeakers are recommended where high power handling is required with quality
results. The high flux

ceramic magnet ensures clear response.
MOOEL

MOOEL	INCHES	OHMS	Watts	TYPE	PRICE	POST
MAJOR	12	4-8-16	30	HI-FI	f14	£2
DELUXE MK II	12	8	15	Hi-FI	f14	f2
SUPERB	12	8 8-16	30	HI-FI	£24	¢2
AUOITORIUM	12	$8-16$	45	Hi-Fi	¢22	62
AUDITORIUM	15	8-16	80	$\mathrm{H}-\mathrm{Fl}$	f34	f2
GROUP 45	12	4-8-16	45	PA	f14	f2
GROUP 75	12	4-8-16	75	PA	f2\%	f2
GROUP 100	12	$8-16$	100	PA	¢24	E2
GROUP 100	15	8-16	100	PA	£32	C2
DISCO 100	12	8-16	100	OISCO	f24	E2
DISCO 100	15	8 8-16	100	OISCO	£32	$f 2$

BAKER 150 WATT MIXER/POWER AMPLIFIER $£ 89$ Pos 42 SLAVE VERSION $£ 75$ peaker outlets $\mathrm{mv}, 50 \mathrm{~K}$ ohm. Individual volume 150 watts into 8 ohms R.M.S. Music Power. Distortion less than 1%. Slave output $500 \mathrm{M} . \mathrm{V}$. $25 \mathrm{~K} . \mathrm{hm}$. Frequency Response 25 Hz $-20 \mathrm{kHz} \pm 3 \mathrm{~dB}$. Integral Hi-Fi preamp separate Bass \& Treble Compact $-16^{\prime \prime} \times 8^{\prime \prime} \times 512^{\prime \prime}$. Lightweight - 141b: Master volume
control. Made in England. 12 months guarantee. $200 / 250 \mathrm{v}$ A. mains or 120 V to order. All transistor and solid state devices. 100 Volt Line $£ 15$ extr
BAKERS NEW PA150 MICROPHDNE PA AMPLIFIER $\mathbf{f 1 2 9}$. POSt $\mathbf{£} 3$ 4 channel 8 inputs, dual impedance, $50 \mathrm{~K}-600$ ohm 4 channel control, echo/send/return socket. Slave input/output sockets.
BAKER
50 WATT AMPLIFIER
E69

$$
18+2
$$

deal for Halls/PA systems. Discos and Groups. Two inputs. Mixer, Volume Controls, Master Bass, Treble -
RCS offers MOBILE PA AMPLIFIERS. Outputs 4-18-16 ohms 20-wat RMS 12v DC, AC 240v, 3 inputs. 50 K £ 46 (PP $£ 2$). Mic 1.; Mic 2; Phono; aux. outputs 4 or 8 or 16 and 100 v line
60 -watt RMS, Mobile 24 voit DC $\& 240$-volt $A C$ mains

FAMOUS LOUDSPEAKERS

"SPECIAL PRICES"

MAKE	MODEL	SIZE	WATTS	OHMS	PRICE	OST
SEAS	TWEETER	4 in	50	8	f9.50	f1
GOODMANS	TWEETER	$31 / 2 \mathrm{in}$	25	8	¢4.00	$f 1$
AUDAX	TWEETER	4 in	30	8	¢6.50	$f 1$
G000mANS	HIFAX	71/281/	$1 / 100$	4/8/16	f ${ }^{\text {2 }}$	f2
SEAS	MID-RANGE	4 in	50	8	f7,50	f1
SEAS	MID-RANGE	5 in	80	8	f12.00	£1
SEAS	mid-RANGE	$41 / 2 \mathrm{in}$	100	8	£12.50	£1
AUDAX	WOOFER	8 in	40	8	f14.00	¢2
CELESTIDN	Disco	10in	20	816	¢11.50	f2
CELESTION	DISCO	10 in	60	8/16	£21.50	$f 2$
RIGONDA	GENERAL	10in	15	8	f5.50	f2
AUDAX	WOOFER	10 in	50	8	f16.00	62
G00DMANS	AUOIOM PG	12in	60	8	£20.00	E2
G00DMANS	PP12	12in	75	8/15	¢24.50	¢2
GOODMANS	AUDIOM P	12in	50	$8 / 15$	¢20.00	f2
G00DMANS	GR12	12 in	90	8.15	£27.50	f2
GOODMANS	HPD	12in	120	$8 / 15$	£27.50	¢2
EMI	HI-FI	13x8	10	3/8	$£ 9.50$	£1

SPEAKER COVERING MATERIALS. Samples Large S AE
.A.F.LOUOSPEAKER CABINET WADDING 18 in wide 25 p
CASSETTE MONO REPLAY. C
CASSETE MECHANISM. 6 or 12V STereo Heads $£ 5$
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm $£ 1.90$. 3-way $950 \mathrm{cPs} / 3000 \mathrm{cps} .20$ watt rating $\mathbf{£ 2 . 2 0 . 3}$ way 60 watt $£ 6$.
LOUDSPEAKER BARGAINS LOUDSPEAKER BARGAINS

$15 \mathrm{ohm}, 31 \mathrm{oh}, 5 \times 3 \mathrm{in}, 7 \times 40, \mathrm{fl} 50$

THE "INSTANT" BULK TAPE ERASER
Sutable for cassettes and all sizes of tape reels.
AC mains $200 / 250 \mathrm{~V}$. Hand held suze with switch
and lead (120 volt to order)
Head Demagnetiser only f5

OLYMPIC TRANSFORMERS LTD
224 Hornsey Road, Holloway, London N7. 01-607 2914

	\%	mis		\%ex		
				8		
				(2x)		
边						

STEP DOWN TRANSFORMERS FOR AMERICAN EQUIPMENT

$0-240-110 \mathrm{~V}$ For use with 50 cycles Non-Motorised Appliances
0-240-100V For use with 60 cycles Motorised Appliances
RANGE 1 Fully Shrouded. Complete with 3-Pin American Socket. Fitted 6ft 240V Mains Lead
RANGE 2 Complete with Carrying Case. 240V Mains Lead. First 3 items.
(*) fitted with one 3-Pin American Socket. All other items fitted with two 3-Pin American Sockets.

RANGE 1
Values Prices Carr. 80 WATTS £7.50 £1.20 150 WATTS £9.50 £1.20 300 WATTS £11.50 £1.40 500 WATTS £ 15.00 £ 1.60 1,000 WATTS £19.00 £2.50 1,500 WATTS $£ 24.00$ £3.00 1,750 WATTS £29.00 OA

RANGE 2
Values
Pric
*500 WATTS £1800 f2 50 *1,000 WATTS £26.00 £3.00 * 1,500 WATTS $£ 30.00$ OA 1,750 WATTS $£ 35.00$ OA 2,250 WATTS £44.00 OA 3,000 WATTS £60.00 OA

HOURS OF BUSINES
WEEKDAYS, 9 a.m. to 5 p.m.; SATURDAYS, 11 a.m. to 2 p.m.

NOW A PACKAGE THAT OFFERS YOU A 100uf/10V BEAD TANT FOR UNDER 1Op

 3 OFF $0.1 / 35 ; 4$ OFF $22 / 35 ; 6$ OFF $33 / 35 ; 6$ FF $4.7 / 35 ; 3$ OFF $6.8 / 25 ; 1$ OFF $10 / 25 ; 2$ OFF $22 / 6.3: 2$ 22/10; 2 OFF $22 / 16$; 2 OFF $47 / 10 ; 1$ OfF $46 / 16 ; 1$ OFF $100 / 10$. TANTALUM BEAD GAPACITORS, 1 OFF PRICE (10 OFF) PRICE

OR 1 OF EACH ABOVE SPECIAL OFFER T2 $£ 7$.
RETAIN THIS AD. FOR ALL YOURIMMEDIATE AND FUTURE TANTALUM REOUIREMENTS. RETAIN THISAD. FOR ALL YNTING 250 V CER. DISCS
SUBMINIATURE VER. MOUN
 $220,270,300,330,470560,680,1000.1800,2000,3000,3300,400047003^{1 / 2 p} \mathrm{ea}$.01uf/ 10 V , $02 \mathrm{Lu} / 50 \mathrm{~V}$ 4p ea. 10 OFF 3 P 日a.
AXIAL LEAD CAPACITORS. POLYESTER. $01 \mathrm{uf/} 100 \mathrm{~V}$ 4p, $1 / 1006 \mathrm{p}: 1 / 60012 \mathrm{p}$
POLYCARBONATE. $4.74 f / 160 \mathrm{~V} 45 \mathrm{p}$. VERT. MTG. $2.2 \mathrm{Lf} / 160 \mathrm{~V} 40 \mathrm{p}$.
20 mm GLASS REED SWITCHES (GOLDPLATED) 10 for $50 \mathrm{p}: ~ £ 30$ per 1000
P\&PADD 50P PER ORDER. POST PAD ORDERS OVER E6ADD 15\% VAT
TRADE ENOUIRIES WELCOME SCHOOLSETC. SEND OFFICIAL ORDER,
C.H.J. SUPPLIES

4 STATION AOAD. CUFFLEY, HERTS. TEL: 01-440 8959
WW - 055 FOR FURTHER DETAILS

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70
EPSON MX-80 80.GPs 3982 IBM I/O PRINTERS DOT MATRIX PRINTER WITH SPECIAL INTERFACES. VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPER TAPE READERS, PAPER TAPE PUNCHES, SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER SUPPLIES, STORE CORES, TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT OPEN: MONDAY TO FRIDAY 9 a.m.-5 p.m., SATURDAY TILL 1 p.m.

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

QVERSEAS SUBSCRIPTION AGENTS

Mustralia: Gordon 8 Gotch (Australasla) Lid. 380 Lonsdale Stieet.

Belgium: Agence et Messageries de la Press 1 Rue de ia
Brussels 7

Canada : Davis Circulation Agency. 153 St. Clair Avenue West, Toronto 195 Ontario

Eyprus: General Press Agency: General Pre 131 Prodromou Street, P.O. Box

Denmark: Dansk
Hovedvagtsgade 8 , $\mathrm{Ok} .1 \uparrow 03$ Kobenhavn.

Finland: Rautakitla-OY, RKoivuvaa rankuja 2. 01640 Vantaa 64, Finland.

France: Dawson-Fiance S.A., B.P.40, F-91121 Palaiseau
Germany: W. E. Saarbach GmbH, 5 Koln 1.

Greece: Hellenic Distribution Agencr. F.O. Box 315, 245 Syngrou Avenue, Nea Smyrni, Greece.
 Ainsterdam 1004

India: International Book Hilouse. Indian Mercantile Manslon Ext, Madame Cama Road, Bombay 1

Iran:A.D.A., 151 Khisban Soraya, Tehran
ILrael: Stelmatzky's Agency Lid, Citrus House, F.O. Box 628, Tel Avi

Japan: Western Publica
tions Distribution Agence tions Distribution Agency. 170 Nishi-Okubo 4-chome, Shinjuku-Ku.
Tokyo 160

Lebanon: Levant Distiibutors Co., P.O. Box 1181 Makdesi Street. Halim
Hanna Bldg. Beirut Hanna Blde. Beirut
Malaysia: Times Distributors Sdn. Bnd. Times House. Singapore 9 , Malaysi

Malts: W.H.Smlth Continental Lid. 18a Scots Street, Valleta
Now Zealand: Gordon \& Gotch (New Zealand) Ltd, 102 Adelaide Road. Wellington 2

Nigerla : Dally Times of Nigeria : Daily Times of
Nigeria Lid. 3 Kakawa Street, P.O. Box 139. Lagos
Norway: A/S Narvesens Kioskompani. Bertrand Narvesens vei 2. Oslo 6

Portugai: Livarla
Portugai: Livar Aparlado 37, Amadora

South Africa: Central News Agency Lid, P.O. Box 1033, Johannesburg
Spain: Comercial Atheneums.a. Consejo de Ciento, 130-136 Barcelona 15

Swaden: Wennegren. Swoden: Wennegren.
Williams A B. Fack S-104, 25 Stockholm 30

Switzerland: Naville \& Cie SA. Rue Levrier 5-7, CH-1211 Geneve 1 Schmidt Agence AG. Savogelstiasse 34 4002 Basle
U.S.A. : John Barios. IPC Business Press,
205 East 42 nd Sireet. New Yoik, N. Y. 10017

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

BUSINESS REPLY SERVICE

Licence No 12045

WIRELESS WORLD

Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry Service for Professional Readers

WIRELESS WORLD Wireless World, January 1982 WW 261
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name

Narne of Company

Address

Telephone Number

PUBLISHERS USE ONLY			A/E		

Position in Company
Nature of Company/Business
No. of emntoyees at this establishment
I wish 10 subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager, IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professionial Readers ONLY.

WW...	WW....	WW...
ww	WW.	WW.
ww....	ww....	WW.
Ww	WW....	WW.
ww....	WW....	WW....
Ww	ww....	Ww
WW....	WW.	ww
Ww.	ww....	WW
Ww	ww....	WW.
ww....	WW....	WW.
Ww...	WW....	WW.
WW . . .	wW....	WW.
ww.	ww....	Ww
Ww	WW....	Ww....
Ww....	ww...	ww
ww...	ww...	ww....

WIRELESS WORLD Wireless World, January 1982 WW 261
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.

Name

Position in Company.

Name of Company .

Address

Telephone Number

Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Wireless World Subscription Order Form Wireless World, January 1982 WW 261

Name.

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency. Budapest XIV, Varosliget - Telephone : 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 -
Telex: 37342 Kompass

Japan Mr, Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-Ku, Tokyo 106 -
Telephone : (03) 585-0581

United States of America Ray Barnes,
*IPC Business Press 205 East 42nd Street,
New York, NY 10017 - Telephone
(212) 6895961 - Telex : 421710

Mr. Jack Farley Jnr., The Farley Co.
Suite 1548, 35 East Wacker Drive,
Chicago. Illinois 60601 - Telephone
(312) 63074

Mr. Victor A Jauch,
Elmatex International
P.O. Box 34607.

Los Angeles Calif. 90034 U.S.A:
Telephone : (213) 8218581
Telex: 18-1059
Mr. Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \& Co.
P.O. Box 2008, Miarmi Beach, F'orida

33140 - Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co.. 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Texas 77079 -Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Ltd. 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

There was achy ane $7 P 1 G G E P$ as good as the SCOPE 14D-10 and Roy Pagers had it stuffed

溇 An Independent British Company 溇

A dual trace 10 MHz high sensitivity oscilloscope incorporating all the latest high, technology developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.
- Add and invert facility.
- Probe compensation.
- Push button $X-Y$.
- Trace locate.
- $10 \mathrm{MHZ}(-3 \mathrm{~dB})$ over full display.
- Complete with probes.

At a price of $£ 240.00+$ VAT.
Ensures British leadership in the low cost high performance oscilloscope market.

Appointments

Advertisements accepted up to 12 noon Monday January 4th, for February issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $\{13.50$ per single col. centimetre (min. 3 cm) LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable).
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) PHONE: OPHELIA SMITH, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Lid.

ALWAYS AHEAD WITH THE BEST!
 £5,000-£15,000

Z80: 8085: 2900 BIT SLICE: 68000: TTL: ECL in: RADAR SONAR: SATCOM: Phototypesetters: Wordprocessors: Flight Simulators: ATE: Electro-Medical: Teletext: Data-Comms: Automation: Microwave Systems.

Where does your skill and interest lie -
Design? Test? Service? Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry
* There are opportunities for Managers, Project Managers, Engineers and Technicians
* Most UK locations and some Overseas.
* Make your first call count - Contact MIKE GERNAT or PETER BROWN on 076384 676/7

ELEETRDNIE COMPUTER AMD MANAEEMENT APPDINTMEMTS LIMITED
148-150 High St., Barkway, Royston, Herts SG8 8EG

Cambridge.Health District (TEACHING)

Addenbrooke's Hospital, Cambridge

Medical Physics Technician

I(£6668-£8316 p.a.) or II (£8036-£9387 p.a.)
to take day-to-day responsibility for Medical Electronics Section of the Medical Physics Department providing a full range of electronic support to Hospitals and Units.
Extensive experience of Medical Electronics essential, with a minimum qualification of O.N.C. Preference given to applicants holding H.N.C. or equivalent.
Further details from Mr. P. E. Ward, Principal Physics Technician, Telephone: (0223) 245151, Extension 471.
Application form and job description from the Personnel Department, Addenbrooke's Hospital, Hills Road, Cambridge CB2 200, Ext. 7350.
Closing date for completed applications: January 18, 1982.

need an

ENGINEER

for varied and interesting work in a thriving research and development department.
If you are self-motivated, energetic and have practical experience in Audio/Digital electronics, contact-

Paul Belcher on Luton 570621 STUDIOMASTER LIMITED

Chaul End Lane
Leagrave, Luton, Bedfordshire

TELEVISION BROADCASTING

In spite of the recession LINK ELECTRONICS still continues to grow rapidly, and needs to recruit engineers for the expansion of existing departments and for entirely new fields.
We are one of the larger manufacturers of television studio products in Europe. Our range includes broadcast colour cameras together with the design and construction of Television Studios and Outside Broadcast Vehicles.

T.V. STUDIO PROJECT ENGINEER

An experienced engineer is needed to work on design and project management of O.B. vehicles and T.V. studios. Our custombuilt systems require a high degree of customer contact from initial design concept through manufacturing to delivery, installation and commissioning.
You should have a knowledge of T.V. studio engineering gained from experience in this type of work or from the operational side of television.

T.V. SYSTEMS PROPOSALS ENGINEER

In addition to a good working knowledge of the requirements of T.V. studio engineering, you should have a degree of commercial experience enabling you to deal with the preparation of quotations for home and overseas projects, this will enable you to progress into negotiating contracts with customers after a suitable settling in period.

VIDEO MONITOR AND V.D.U. SALES ENGINEER

This new position is an oportunity for a sales-minded engineer to join our sales team to develop the market for our range of video monitors and computer terminals. Under the guidance of our Sales Director you will be able to formulate your strategy within the expanding data displays market.
A knowledge of computer peripheral users, especially O.E.M.s, is essential. You should be aged between 25 to 35 and be prepared to travel extensively throughout the U.K. for which a company car will be provided.

SALES SUPPORT ENGINEER (Vision mixers)

An electronic engineer with a background in T.V. studio engineering is required to join our sales support team to work on commissioning, demonstration and after-sales activities of the GRASS VALLEY range of studio vision mixers and video switching systems.
You should have a working knowledge of modern analogue and digital circuitry and be prepared to travel as necessary.

TEST ENGINEERS - STUDIO PRODUCTS

Qualified engineers are required for test and quality assurance duties on our exciting range of broadcast T.V. studio products. You will be involved in testing and checking to spec. products ranging from simple amplifiers to complete studio colour cameras and digital test equipment.
You should be qualified to at least H.N.D./H.N.C. Level and be familiar with modern digital and analogue circuitry. At least three years' experience since qualifying is considered essential for the present level of vacancies.

MICROWAVE SYSTEMS ENGINEER

This is a senior appointment. You will be required to head up a new engineering department and create a product range of new microwave communications equipment for sale throughout the world.
You should be qualified to degree level, have experience of microwave engineering, and of running a small engineering department.

Competitive salaries, backed by free life and health insurance plus contributory pension scheme.
Generous financial assistance with relocation where appropriate to help successful candidates move to Andover, located in a pleasant part of rural Hampshire within easy reach of London and the South Coast.

Please write or telephone our Personnel Department on Andover (0264) 61345 for an application form or alternatively let us have full details of your background and experience.

PLEASE NOTÉ OUR OFFICE IS CLOSED FROM THE 24th DECEMBER, 1981, TO THE 3rd JANUARY, 1982, INCLUSIVE.

Appointments

METROPOLITAN POLICE

 Telecommunications Technical Officers
SENIOR PROJECT LEADER

to carry out support work on Electronic Telephone Exchange; to $£ 14,000$ Berks.

QUALITY ENGINEERS

to work on Hardware and Software for military projects; to $£ 10,000$ - Hants.

TELECOMMUNICATIONS CONSULTANT

to provide Consultancy Services to a large user; to $£ 13,500$ - Cheshire.
Vacancies for Telecommunications Technical Officers Grades II and IIf exist in the Operations (Technical) Support Group of the Chief Engineer's Department.
Duties vary according to post but include the planning, installation, modification and maintenance of a wide range of advanced telecommunications equipment. Such equipment includes mobile and hand held radios, transmitter/receiver sites and base stations, C.C.T.V and Video/Audio recorders, computer terminals (V.D.U. and printers), microprocessor control, alarm systems and a central systems complex.
Candidates should possess an ONC in Engineering or an equivalent City \& Guilds/TEC qualification. Candidates for Grade III posts should have a total of 4 years training and experience with a further 3 years experience for Grade II posts.
Posts are in Central London, Hendon and Thornton Heath.
Salary: (National) Grade III Posts £5,712 io £7,702.
Grade II Posts $£ 7,702$ on entry rising to $£ 8,553$
In addition to the above a London Weighting allowance of $£ 1,087$ p.a. is payable in inner London and $£ 454$ p.a. at Hendon and Thornton Heath

Annual Leave: 4 weeks 2 days rising to 6 weeks with an additional $101 / 2$ days public and privilege holidays.
Non-contributory pension scheme
There are good prospects for promotion and assistance is given for further educational studies where appropriate

For further details and an application form apply to:
The Establishment Officer,
Room 213 (TTO),
105, Regency Street,
LONDON SWIP 4AN.
Telephone: 01-230 3122 (24 hour answering service)
Closing date for return of application forms is 15 th January 1982.

TECHNICAL INSTRUCTORS

to teach Hardware and Software aspects to teach Hardware and Software aspects
of office equipment; to $£ 11,300$ - Berks.
FIELD SALES ENGINEER
to sell Microcomputer Systems; to
£16,000-Herts.

RF DEVELOPMENT

ENGINEERS

to work on Radio Paging Svstems; to £14,000 - London
Phone or write: Anthony Giles, M.Sc.Eng., M.I.E.E.

CLIVEDEN CONSULTANTS

87 St. Leonard's Road Windsor, Berks. Windsor (07535) 57818/58022

24 -hour service

CLIVEDEN

R.F. Designers to $£ 14,000$ London

Video Service Engineers to

 £7,250 plus car LondonDatacommunications Designers to $£ 18,000$ Germany Electronic Designers (with software experience); salary negotiable Germany Communications Designers to $£ 13,000$ Herts.
Sales/Trainees: Vacancies throughout the U.K. from £6,000-£14,000
For these and many other positions please write to:

Colin Arnold
 BEECHWOOD
 APPOINTMENTS FREEPOST London W3 9BR

Or phone 01-992 8647
(24-hour service)

ATE
 TEST
 PROGRAMMERS

Testech

POOLE, DORSET
TESTECH is seeking experienced digital and analog engineers to join its team developing and commissioning ATE test programs for its international customer base.
Engineers new to ATE will be trained but must be well grounded in the use of modern LSI components.
Test programs are prepared using the latest ATE functional simulation techniques.
The work is technically challenging and offers an exposure to a wide range of modern technology.
Tel: (0202) 735252, or write to:
TESTECH LIMITED, 129 Commercial Road
Parkstone, Poole, Dorset BH14 0JD.

MANCHESTER POLYTECHNIC Educational Services Unit

Senior Technician (Electronics Egineer)

Reliable, experienced person required with responsibility for maintaining, through a qualified team of technicians, the functions provided by the unit, particularly on the Didsbury site. Briefly, these services include Television, Audio-Visual and Workshop facilities throughout the campus. The person appointed will have special responsibility for the Television Studio engineering, electronics servicing and development and will, therefore, be expected to have appropriate qualifications to deal with the range of television, projection and sound equipment used in the Polytechnic.
A union membership agreement is in operation under which new employees are required to join a recognised union. Salary scale (T5), £7,371-£7,875.
For further particulars and application form (returnable by January 8, 1981) send a self-addressed envelope marked "T/585" to the Secretary, Manchester Polytechnic, All Saints, Manchester, M156BH.

SENIOR MAINTENANCE ENGINEERS
 Salary $£ 12,877$ p.a.

Independent Television News Ltd. has vacancies for Senior Engineers in the following Maintenance sections at ITN House, London W1.

Senior Engineer VTR \& Telecine Maintenance
 (Ret 303030

The successful candidate will join the expanding Facilities Maintenance team responsible for the maintenance of VTR and Telecine equipment including ACR25B, VPR2B, VR1200C, BVU and standard U-Matics, Cintel Mk III and associated control and editing systems.
Previous maintenance experience with at least some of this range of equipment is essential.

Senior Engineer Radio Links Maintenance
 (Ref. 303002)

The successful candidate will be a member of the small team responsible for the maintenance of our Radio Link equipment and extensive R/T network. This is a rapidly expanding field following the successful introduction of Electronic News Gathering to ITN.
Previous maintenance experience with RF systems is essential.

Senior Engineer Vision Equipment Maintenance (Ref. 302004)

ITN is seeking a senior engineer to work in the Central Maintenance section. This section is responsible for maintaining not only all our Studio equipment, including Marconi Mk 9 cameras, CD480 mixers, Quantel DPE5001, Aston Character Generators and the usual ancillaries, but also such equipments as DICE and ACE digital converters, Oracle and Graphics computer systems.
Previous maintenance experience with Broadcast studio equipment is essential. It would be of considerable advantage to have some practical experience with computer or microprocessor systems.
Good prospects exist, in all the above posts, for promotion with experience to Supervisory Engineer.
Generous pension scheme, free life insurance.
Please telephone the Personnel Office on 01-637 3144 for an application form, quoting the relevant reference number.

DIGITAL EXPERIENCE? FIELD SŪPPORT R\&D AND SALES VACANCIES IN COMPUTERS NC, COMMS., MEDICAL VIDEO, ETC.
For free registration ring 0453883264 $04-2900267$

ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE BURLEIGH STROUD GLOUCESTERSHIRE GL5 2PW TEL. 0453 883264, 01-290 0267

ELECTRONICS ENGINEER

Small and progressive company servicing educational audio and AV systems, requires versatile and self-motivated engineer for field maintenance and refurbishment work in S.E. England. Microprocessor or video ance and refurbishment work in S.E. England. Microprocessor or video
experience advantageous, as there is scope for further responsibilities experience advantageous, as there is scope for further responsibilities
contributing to the growth of the operation. Salary negotiable to $£ 8,000$ contributing to the growth of the operation. Salary negotiable to $£ 8$,
with car. Please write with detals of experience and qualifications to:

Bellnorgis Limited 9/11 Kensington High Street

London W8 5NP

FIELD SERVICE ENGINEERS

CE7,000 plus car, expanding dynamic group, computer peripherals. Various UK opportunities HNC (or ex-service) standard product training given.
For further information please

Jonathon Lee Technical Recruitment 62 Hagley Road Stourbridge

Appointments

TELEVISION SERVICE ENGINEER

We are an expanding Television Rental and Retail company with a vacancy for an additional Television Service Engineer.

Suitable applicant will pre ferably hold an R.T.E.B. certificate or be training towards this qualifi cation.
The post is directly responsible to the Service Manager
A clean driving licence is essen tial.
A spacious flat is available if required.
Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey, Surrey. KT16 9BE. Chertsey 63243
(1434)

R \& D OPPORTUNITIES. Senior level vacancies for Communications Hardware and Software Engineers, based in West Sussex. Competitive fusion Radio Systems on 01-874 7281. (1162

POOLE GENERAL HOSPITAL LONGFLEET ROAD, P00LE, DORSET BH15 2JB

SENIOR ELECTRONICS TECHNICIAN

required. The duties will include providing a repair and maintenance service for a wide range of electro-medical equipment with the East Dorset Health District. Applicants should have a broad practical experience in the maintenance of electronic equipment and in fault-finding, and should possess either O.N.C./H.N.C. or C. and G. Full Technicians Certificate in Electronics. Salary on the scale $£ 5536-£ 7155$ p.a. Hours of duty 37 per Monday to Friday working week plus "on-call" commitment when required.

Application form and job description from Sector Personnel Officer by January 8, 1982.

TECHNICAL MANAGER

A rapidly growing international company in an A.V.-related field and having offices in London, Amsterdam, 'Dusseldorf and Paris requires a young dynamic Manager to take sole charge of its technical operations.
The successful candidate will have a proper record of technical management and their duties will require a familiarity with film, optical and electronic techniques and will involve the control of both routine preventive maintenance and "on-site" troubleshooting. The duties will also include the evaluation of equipment for service within the company and the commissioning from time to time of purpose-built equipment. To this end a good knowledge of the state of the art is essential. The ability to work under pressure is also essential, as is the ability to liaise with clients over technical matters.
The salary is negotiable, but will take into account both the importance of the post and the experience of the successful candidate. A company car will be provided and a clean driving licence is required

Write including c.v.
The Managing Director COMPUTEC
20 Rochester Row
London
S.W. 1
(1456)

CAPITAL RADIE194

ELECTRONICS ENGINEER

Capital Radio has a vacancy for a Maintenance Engineer within its Engineering Department. Candidates should be qualified to H.N.C. or degree level in a relevant subject and be experienced in maintaining modern studio and radio broadcasting equipment to the highest engineering standards. The successful applicant may be required to work on a shift rota - which includes weekends - and on operational duties such as outside broadcasts. He/she would normally be working on the instructions of the Maintenance Supervisor but would also be expected to work for periods unsupervised. The opportunity may arise for some development work.

Starting salary will be dependent upon qualifications and experience and will be on an incremental scale rising to $£ 11,169$ per annum, including shift enhancement.

Applications should be in writing and addressed to Peggy Davidson, Head of Administration, Capital Radio Ltd., P.O. Box 194, London, NW1 3DR - to be received no later than December 24, 1981

TECH.

for Radar AR1, 424, R/T, VDF, UHF. Knowledge of Rwy \& Apt circuits will support a Senior appt.

Soton Airport Ltd.
 Soton SO9 1FQ

LINCOLNSHIRE AREA HEALTH AUTHORITY NORTH DISTRICT
 ST. GEORGE'S HOSPITAL DEPARTMENT OF MEDICAL PHYSICS MEDICAL PHYSICS TECHNICIAN (ELECTRONICS)

An opportunity exists for an experienced technician to join our Medical Electronics Section.
The successful candidate will join a team responsible for providing equipment maintenance and development support services across a wide range of medical instrumentation.
A knowledge of modern electronic systems, both analogue and digital is required, together with an appropriate O.N.C., H.N.C
Salary $£ 4668-£ 7155$ (starting point will depend upon experience and qualifications).

For further information contact Mr. D. Morgan, Area Principal Technician on Lincoln 29921 Ext. 7341.
the thomson foundation television college
ENGINEERING LECTURER

and an
 ASSISTANT ENGINEERING LECTURER

are required at the College to join a team of staff training engineers from countries abroad in developing television and radio. The successful candidates will have had a minimum of five years' or three years' experience respectively with broadcasting technology, and will hold an appropriate degree, H.N.D., or equivalent.
SALARIES: LECTURER - $\mathbf{E 9}, 251$ by 5 increments to $\mathbf{£ 1 1 , 5 0 4}$ ASSISTANT LECTURER - £7,284×5 to 99,052
The posts are pensionable, based at Glasgow where the residential training is conducted, but involve also short training periods abroad.
Please write or phone for application form to Principal, Thomson Foundation TV College, Kirkhill House, Newton Mearns, Glasgow G77 5RH \{041 639 1021).

Appointments

Develop your

 potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced communications test equipment and A.T.E.

To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well.

If you would like to develop your potential in the exciting future of Europe's leading test equipment specialist, complete the coupon and send it to us at the address below
Return this coupon to John Prodger, Marconi Instruments Limited, Freepost. St Albans. Hertfordshire. AL4 OBR. Telephone St Albans 59292

A GEC-Marconi Electronics Compar

telecommunications EMGINEERS
 MULTIPLEX/MICROWAVE ENGINEERS
 Saudi Arabia - Nigeria

RADIO SYSTEMS ENGINEERS

Saudi Arabia © Nigeria Malta - Aberdeen - on or offshore

Experienced in either HF/VHF/UHF or Troposcatter/ Telemetry.

TELEPHONE SWITCHING ENGINEERS

Saudi Arabia - Nigeria

Preferably with electronic exchange experience.

TECHNICIAN INSTRUCTORS and PLANNING ENGINEERS

Saudi Arabia

With a minimum of 5 years' experience in any of the above disciplines.
Applicants for all positions should hold a minimum of a final City and Guilds. Salaries are negotiable dependent on qualifications and experience.
For further information and to arrange immediate interview, telephone Windsor (07535) 57926. Chemsult, George V Place, 4 Thames Avenue, Windsor, Berks.

CFEMSLLT

THOMAS MERCER LIMITED

A privately-owned family concern, who have been established since 1858, have developed a sophisticated range of microprocessor-based gauging products which are designed and built to meet individual customer requirements. The company now wishes to engage a

SENIOR ELECTRONIC APPLICATIONS ENGINEER

who will work as a member of a small project-orientated team covering all the stages from initial quotation to equipment commissioning including designing and building any special elements that may be necessary, and preparing, adapting and "de-bugging" associated microprocessor programmes.
This is an interesting and satisfying position and the successful applicant (male or female) will need to have sound experience in the electronics industry, including minimum qualifications of H.N.C., together with a good knowledge of programming, preferably on 8080 systems. Self-motivation and the ability to communicate clearly are also desirable qualities.
The company will offer a competitive salary and conditions of employment that include 25 days' holiday and eight Bank and Statutory days of holiday in a full year.
Applications should be made by the completion of an application form obtainable from:

> W. A. Pluck - Personnel Manager
> THOMAS MERCER LIMITED
> Eywood Road, St. Albans, Herts.
> Tel: St. Albans (56) 55313

BROADCAST ENGINEERS

BROADCAST ENGINEERS REQUIRED FOR INTERESTING AND VARIED OPERATIONS AND MAINTENANCE WORK ON NEW BROADCAST TELEVISION EQUIPMENT AND SYSTEMS, BOTH IN U.K. AND OVERSEAS.

APPLYIN WRITING WITH DETAILS OF QUALIFICATIONS, EXPERIENCE AND SALARY RANGE TO:

N. I. Miskin
IG GROUP OF COMPANIES
Intergen House
65/67 Western Road
Hove, Sussex BN3 2JO

ELECTRONIC RECRUITMENT CONSULTANT

It's taken ten years to describe the perfect person, but we realise nobody's perfect

Age immaterial - a mature young person.

One of nature's acoustic transducers
your art is listening, making people talk. Their gas you condense, convert and crystal lise
One of nature's noise filters/amplifars
your RAM capacity is limited so you use your CPU to reject noise and select signifi cant signals - that you amplify.

One of nature's optical scanning devices

you scan all technical journals and filter out the non-relevant. What's televant is recorded meticulously on paper or disk.

A professional who sells with integrity

your product is a person whose career is in your hands. Foot in the door, slick-talking selling techniques are anathema
IN SHORT-
Are you a highly-motivated sales executive with a good bedside manner and good RAM capacity?
Applications to:

Charles Airey Associates

13/16 Jacob's Well Mews, George Street, London W1
Tel: 01-486 9607
(1357)

CAPITAL HOUSE 29-30 WINDMILL STREET
LONDON W1P 1HG
TEL: 01-6375551

the uk's No. 1 electronics agency

Design, Development and Test to $£ 14,000$
Ask for Brian Cornwell
SALES to $£ 15,000$ plus car Ask for Maurice Wayne
FIELD SERVICE to 112,000 plus car Ask for Paul Wallis

TECHNICIANS

£16,000
Worldwide
Opportunities for world wide
travel for experienced tech.
nicians able to maintain marine survey equipment. 699A. \square
VIDEO ENGINEER
£8,500
C. London

Operation and first line
maintenance of broadcast video equipment (esp. 2 in quad VTR) to join busy, expanding company.
898. \square

FIELD ENGINEERS

£8,000 + car
London. Midlands, N.E. A leader in the field of CAD/CAM needs Field Service and Systems Test engineers with experience on mini computers and computer graphics/plotting equipment.
904. \square

FIELD SERVICE

ENGINEERS

£8,000 + car Midlands A manufacturer of sophisticated analytical instrumentation for scientific and medical
applications seeks design and development engineers from a
compatible industry to move into field service and ultimately progress in a rapidly growing company.
868. \square $£ 7,500+$ car

London, Midlands \& South International business equipment company urgently needs C\&G qualified personnel for servicing upper end of small business systems range. 895
GRADUATE
TRAINEES
$£ 6,000+\quad$ See the world If you have a degree in electronics, physics or geology and would like to travel and gain experience whilst earning a worthwhile salary, here is your chance. We have a number of vacancies to fill on-board our client's survey ships, working with seismic equipment.

699B. \square
The joblam looking for does not appear in this advertisement but please send me full details of the service you offer \square

Complete the coupon, tick the appropriate box(es) and return this ad vertisement to Stuart Tait, The Lansdowne Appointments Register, Park House, 207 The Vale. London W3 7QB. Tel: 01.7436321 (24 hour answering service).

Lã̃sdowne
 Appointments Destster

Name

Addiess
WW/l

SERVICE MANAGER

LKB Instruments Limited, the U.K. subsidiary of a major international medical/scientific instrument company require a manager for their Customer Service Department.

Applicants should have a sound knowledge of digital and analogue electronics, with preferably some field experience in the scientific instruments world.

The successful candidate will report to the Managing Director and in addition to managing a field engineer force, they should be able to demonstrate a sound commercial awareness in operating and controlling a successful service organisation.

Conditions of employment are excellent and in addition to a good basic salary and company car the company have a profit-sharing scheme, B.U.P.A. participation and four weeks' annual holiday.

Contact Mrs. S. Francis for Application Forms
LKB INSTRUMENTS LTD.
232 Addington Road
Selsdon, South Croydon
Surrey, CR2 8YD
Tel: 01-6515315

Appointments
 Chief Designer Designate

[^8]A member of the Rex Stewart Group
LONDON BIRMINGHAM BRISTOL EDINBURGH GLASGOW
lIVERPOOL MANCHESTER NEWCASTLE NOTTINGHAM PERTH

Manufacturers of sophisticated computer memory systems continuing their advance in high technology electronics, have the following positions available offering involvement, responsibility and job satisfaction.

ATE PROJECT ENGINEER £8,000-£9,500

Qualified electronics engineer experienced in hardware and software of ATE systems. Experience on Beaver or A8000 would be an advantage. Able to design jigs and modify systems.

JUNIOR DRAUGHTSPERSON £4,500-£5,250

4 Harrow

Brent and Harrow
Area Health Authority - Harrow District

Northwick Park Hospital \& Clinical Research Centre Watford Road Harrow Middlesex HA1 3UJ Tel: 01-864 5311

ELECTRONICS TECHNICIAN

(MPT Grade III)

Technician is required to service and calibrate a wide range of equipment used for medical, surgical and engineering purposes. The successful applicant will work closely with medical, nursing and other professional staff. The major part of the work involves basic maintenance and repair of the equipment. O.N.C. and H.N.C. in Electronics or H.N.D. or Science Degree and three years' previous experience is the essential qualification for this post.
Salary: £6,093-£7,712 inclusive of London Weighting Allowance

For further details and application form please contact the Personnel Department, Ext. 2001.
(1437)

University of Wales
DEPARTMENT OF PHYSICS ELECTRONICS AND ELECTRICAL ENGINEERING

MSc/DIPLOMA COURSE IN ELECTRONICS

Applications are invited for places in the full-time oneyear MSc/Diploma course in Electronics, commencing 29 September 1982.
Further details and application forms (returnable as soon as possible) may be obtained from the Academic Registrar, UWIST, PO Box 68, Cardiff CF1 3XA.

(1445)

AUDIO ENGINEER

Salary up to $£ 7,000$ p.a Plus Fringe Benefits We need an experienced Electronics/ Audio Engineer or our Service Department in
Barnet, Harts. Equipment to be serviced include Amplifiers, Mixers plus Lighting Controllers. In the first instance titephone our Personnel
Department - Jackie Ward, or write personally to:

Mr. R. H. Squire, Roger Squirelta
arnot Trading Estate, Park Road Barnat, Harta. EN5
$01-441919$

Test Engineers and Technicians -Wembley,Middlesex

Racal-BCC are members of the highly sucecssful Ratal Electronics Group and are world leaders in the design and manufacture of tactical radio communications equipmem We require a number of less technicians and test engineers tofilla variety of grades within the Test Department. The department is responsible fo- the manual and
automatic testing and fault finding of the Companys equipmentsat various sades of manufacture.

Applicamts should be cqualified to HNC HTC level and have experience of radic communications equipment.

We offer excellent condiaionsof service including good hasic pay and at Group Productivity scheme.

Pleare apply in writing to: The Persomel officer. Racal-BCC. South Wily: Wemble Middeser.

DODolby

ELECTRONICS PRODUCTION ENGINEERS

South London

c. $£ 7000$

Dolby Laboratories, the successful and progressive manufacturers of professional audio noise reduction equipment require Production Engineering staff. Those appointed will join a small team who are responsible for the introduction of new products into production, liaison with the R. \& D. team, product improvement and component specification.

Ideal applicants will have several years' experience in electronics manufacturing. However, less-experienced electronics graduates will be considered who would find this an excellent opportunity to learn the details of electronic design from a production viewpoint. The ability to work projects through to successful conclusions without close supervision is essential.

Competitive salaries and excellent employment conditions are offered
For application form, contact Phil Marshall
DOLBY LABORATORIES INC.
346 Clapham Road
London, S.W. 9
01-720 1111

PRODUCTION MANAGER

KilLALOE, COUNTY CLARE
IR. $£ 12,500$
Peak Electronics Limited is a private Irish Company with international subsidiaries which manufactures intruder detector and traffic control equipment using Infra-Red and Microwave technology. About 60 people are employed in total 50 of whom are engaged directly in production. The workforce is predominantly female.
Due to an expanding range of products and increasing sales, the company now wishes to appoint an experienced Production Manager.
Reporting to the Operations Director the Production Manager will be responsible for meeting production output requirements to required quality and cost standards; will be expected to contribute substantially in such areas as production engineering, industrial engineering and quality monitoring procedures, and will be capable of instituting and developing the necessary systems for the effective management of the department.
Candidates will ideally have had a number of years' experience in electronic and light mechanical assembly. This experience having been gained in production line management or through production engineering/quality control.
Salary is likely to be in the region quoted but would not be a limiting factor for the right candidate and normal benefits will apply.
Applications in writing, giving personal and career details, should be sent to the Managing Director, Peak Technologies Limited, Sunley House, 57 High Street, Edgware, Middlesex, HA8 7XA.

Electronic Engineers What you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES, 12 Mount Ephraim. Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388

Please send me a TJB Appointments Registration form:
Name .
Address

LELEETRDTIES PERSDTMEL

 ELECTRONIC ENGINEERS Ref: ww100Good digital knowledge, test, design or program. Dynamic company. QUALTTY CONTTOL Ret wivo Responsible position, MOD knowledge. HNC plus 5 years' experience. ELECTRONIC MANUFACTURING MANAGER Ref: ww102 A sound background, ability to organise introduction of new products. SALES ENGINEERS AND EXECUTIVES ref wwios Large responsibility to develop complex business relationships.

ALSO: Engineers for service, test, calibration
For salaries and details telephone today
30 High Street Eton Windsor SL4 6AR Windsor 59252

ARTICLES FOR SALE

YOUR NEXT ELECTRONIC PROJECT NEED NOT LOOK D.I.Y.

 Choice of over 130 items of metalwork, etc., including 45 different printed front panels, subframes, or a complete mixer console frame.For full details s.a.e. to:
The Mixer People
PARTRIDGE ELECTRONICS

56 Fleet Road
Benfleet
Essex SS7 5JN

WESTMINSTERS WESTMINSTERS WESTMINSTERS Pye W1SAMs, 6 channel
High Band Wesiminster mobiles, first-class conHigh Band Westminster mobiles, first-class con-
dition, complete with installation kit, $£ 80$ each, dition, complete with instalation kit, 280 each,
significant discounts for quantity. Also large stock of controllers, Base stations and mobiles (price list
on request). Contact ESM on $01-6970604$. 1385 on request). Contact ESM on 01-6970604. (1385

DESIGN SERVICES. Electronic design dedigital and analogue instruments. RF Transmitlers and receivers, telemetery and control systems. 20 years' experience. R.C.S. Electronics, Wolsey Road, Ashford, Middlesex. Phone Mr Falkner 53661 ,
(834)

> | EQUIPMENT FOR coils, transformers, compo- |
| :--- |
| nents, degassing silicone rubber, resin, epoxy. |
| Lost wax casting for brass, bronze, silver, etc. |
| Impregnating coils, transformers, components. |
| Vacuum equipment low cost, used and new. Also |
| for CRT regunning metallising. Research \& De. |
| velopment. Barratts, Mayo Road, Croydon CR0 |
| 2QI'. $01-6849917$. |
| 9678 |

METAL CASES

20 SWG Mild Steel Case, painted brown texture, fitted with non-slip, non-scratch feet.

14 SWG anodised aluminium front and rear panels. $H .60 \mathrm{~mm}$, w. ear panels. H. $60 \mathrm{~mm}, w$.
279 mm , d. 186 mm .

Price $£ \mathbf{1 2 . 8 0}$ inc. V.A.T.
Free p. \& p. in U.K.
M. GEAR LTD.

179a Victoria Road New Barnet, Herts 01-449 2695
\qquad

THE MODERN BOOK CO.

Specialist in Scientific \& Technical Books

19-21 PRAED STREET

LONDON W2 1NP

Phone 402-9176
Closed Sat. 1 p.m.
(8974)

TELETEX, TV SPARES \& TEST EQUIPMENT, Teletext adaptors. Latest external unit kit incl. Mullard Decoder 6101 VML and infrared remote control $£ 238$, P\&S P £2.80 (further details on request). Also Mk 1 external unit kit incl.
Texas XMII decoder and cable remote control, Texas XM11 decoder and cable remote control,
special offer price $£ 158$, P\&P $£ 2.80$. Both kits special offer price £158, P\&I' £2.80. Both kits
incl. UHF modulator, and plug into TV set aerial incl. UHF modulator, and plug into TV set aerial
socket. SPECIAL OFFER TEXAS XMII Desocket. SPECIAL OFFER TEXAS XM11 De-
coder, new and tested, limited quantity at $1 / 2$ coder, new and tested, limited quantity at $1 / 2$
price, 660 P\&P £I. 40 . NEW SAW FILTER IF AMP PLUS TUNER (complete \& lested for
sound \& vision), £28.50 P\&P \&1.20. COLOUR sound \& vision, $£ 28.50$ P\&P \&1.20. COLOUR
BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type, eight vertical colour bars. R-Y, B-Y, grey scale, etc. P/B controls $£ 35$. Batt holders $£ 150$ or stab mains power supply kit $£ 4.80$, deluxe case $£ 5.20$ or alum case $£ 2.90, \mathrm{P} \& \mathrm{P} £ 1.40$. built $\&$ tested on deluxe case (battery) $£ 58$, (mains) $£ 70, \mathrm{P} \& \mathrm{P}$ £1.60.
CROSS HATCH KIT UHF aerial input type also gives peak white \& black levels, batt. op \&11, gives peak white \& black levels, batt. op. $£ 11$,
P\&P 45 p. Add-on GREY SCALE KIT $£ 2.90$, P\&P 35p. Deluxe case 55.20 . UHF SIGNAL STRENGTH METER KIT $£ 17.50$. Alum. case £1.80. Deluxe case $£ 5.20$, P\&P £1.40. CRT TEST \& REACTIVATOR KIT for colour \& mono $£ 24.40, P^{\&} \& P^{P} £ 1.80$. COLOUR PANELS, large selection of surplus \& tested panels for popular makes (part-ex in shop). TV SOUND IF TRANSTD. TesIed, $£ 6.80$, P\&P 85p. VARICAP
 $\begin{array}{cccc}\text { ELC1043/06 } & £ 6.80 \text {. ELC1043/05 } £ 5.50 \text {. G.I. } \\ £ 3.50 \text {. Salv. (asstd) } & \text { £ } 1.50, \mathrm{P} \& \mathrm{P} \text { 60p. Varicap }\end{array}$ £3.50. Salv (asstd) £1.50, P\&P 60p. Varicap
UHF/VHF ELC2000S 88.50 . Bush (dual) 57.50 , P\&P 70p. TOUCH TUNE CONTROL UNITS. Bush (6 pos.) $£ 4.50$, P\&P 80p. VARICAP CONTROL UNITS 3 pos. $£ 1.20,4$ pos. $£ 1.50,5$ pos. $£ 1.80,6$ pos. $£ 1.80, \mathrm{P} \& \mathrm{P} 45 \mathrm{p}$. UHF transsd. Tuners, 4 pos. or 6 pos push button $£ 4.20$, P\&P $£ 1.40$. (Special types available on request). Large
selection of LOPTS, Tripiers, Scancoils, Mains selection of LOPTS, Tripicrs, Scancoils, Mains
Droppers, and other spares for popular makes of Droppers, and other spares for popular makes of
colour and mono receivers. MANOR SUPl'LIES, 172 WEST END LANE, WEST HAMP. 172 WEST END LANE, WEST HAMP-
STEAD, LONDON N.W. SHOP PREMISES, Tel: 01-794 8751, 794 7346 . Near W. Hampstead Jubilee Tube \& Brit. Rail N. London (Richmond-Broad St.) and Si. PancrasBedford. Buses 28,159 Callers welcome. Thousands of additional items not normally advertised available at shop premises. Open all week incl. 64 GOLDERS MANOR DRIVE, LONDON NW1I 9HT PLEASE ADD 15\% VAT to all prices. 160

[^9]
QUARTZ CRYSTALS

 RADIO OFFICERS

First-class, secure career opportunities.
A number of vacancies will be available from Autumn 1982 for suitable qualified candidates to be appointed as Trainee Radio Officers.

- If your trade or training involves Radio Operating, you qualify to be considered for a Radio Officer post with the Composite Signals Organisation.

Candidates must have had at least 2 years' radio operating experience or hold a PMG, MPT or MRGC certificate, or expect to obtain this shortly.
On successful completion of between 36 and 42 weeks specialist training, promotion will occur to the Radio Officer grade

Registered disabled people may be considered.

SALARY AND PROSPECTS

TRAINEE RADIO OFFICER $£ 4159$ at 19 to $£ 4897$ at 25 and over. On promotion to RADIO OFFICER, $£ 5698$ at 19 to $£ 7407$ at 25 and over. Then by four annual increments to f 10034 inclusive of shift working and Saturday and Sunday elements. Salaries reviewed annually. on Cheltenham (0242) 21491, Ext. 2269, or write to her at:
Recruitment Officer, Government Communications Headquarters, Oakley, Priors Road, Cheltenham Gloucestershire GL52 5AJ
 ARTICLES FOR SALE

Send S.A.E. for list to:

MARTIN ASSOCIATES

PARTHIA.' BECKHAM PTON
NEAA MARLBDROUGH, WILTS
TEL: AVEBURY (067-231 219

PRINTED CIRCUITS. Make your own simply cheaply and quickly. Golden Fotolak Light Sensitive Laquer - now greatly improved and very much faster. Aerosol cans with full instructions 2.25 . Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14 p . Copper-clad Fibreglass Board approx. 1 mm thick £1. 75 sq . ft. Post
Packing 60 p . Wh. Packing 60p. White House Electronics, Castle OSCILLOSCOPES signal generators DVMs, analysers, etc, for sale. Real savings on new cost. Cost also paid for good test equipment. Tel. Ware
871430 . FOR all your bead tantalum capacitor requirements, from $1 \mu \mathrm{~F}$ to $470 \mu \mathrm{~F}$, see our advertise-
ment on page $110 . \mathrm{CH}$ J Supplies.

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT never gains or loses, SELF SETTING at switch-on, 8 digits show Date, Hours,
Minutes and Seconds, auto GMT/BST and leap year, parallel BCD and audio outputs, receives Rugby 60 KHz atomic time signals, built-in antenna, 1000 Km range, RIGHT TIME, f62.80
ANTENNA FAULT? Check FAST with an Antenna Noise Bridge, MEASURE resonance 1.150 MHz and radiation or if
coil resistance 2.1000 ohms, $£ 15.70$. Each fun-to-build kit includes a!l parts. Eachtun-to-bulld kit includes a! parts, money back assurance so GET yours NOW.
CAMBRIDGE KITS, 45 (WA) Old School Lane, Milton, Cambridge.

MEMORIES - WHY PAY MORE FOR

 BRAND-NEW FULL SPEC, GUARANTEED COMPONENTS? 2716 s (5v) £2.50 erch, $£ 9.25$ four and up. NOTE - VAT inclusive prices. Enquire re other components, eg 1 N 4148 s 50 for $£ 1.25,100$ for $£ 2$. You know you'll need them. P\&P also included except plus 20p order under Crimpstead Lane, Winchester SO239SF. 1433- HIGH STABILITY GOLD ELECTRODES
- COLD WELD UNITS
- GUARANTEED 7-DAY

SERVICE AVAILABLE

- ANY FREQUENCY $1 \mathrm{MHz}-70 \mathrm{MHz}$

HYTHE (0703) 848961

TELEX: 47506 - CRYSTL G

ALSO
$200 \mathrm{KHZ}-70 \mathrm{MHZ}$ CLOCK CRYSTAL OSCILLATORS TTL COMPATIBLE DIP PACKAGE

McKNIGHT CRYSTAL CO. LTD. hardLey industrial estate HYTHE, SOUTHAMPTON SO4 6ZY
(1407)

TO MANUFACTURERS, WHOLESALERS

 BULK BUYERS, ETC.LARGE QUANTITIES OF RADIO. TV AND ELECTRONIC COMPONENTS FOR DISPOSAL
SEMICONDUCTORS, all types, INTEGRATED CIRCUITS, TRANSISTORS DIODES, RECTIFIERS, THYRISTORS, etc. RESISTORS, C/F, M/F, W/W, etc CAPACITORS, SILVER MICA, POLYSTYRENE, C280, C296, DISC CERA MICS, PLATE CERAMICS etc.
ELECTROLYTIC CONDENSERS, SPEAKERS, CONNECTING WIRE, CABLES, SCREENED WIRE, SCREWS, NUTS, CHOKES TRANSFOR
ALI AT KNOCKOUT PRICES MERS, etc
ALL AT KNOCKOUT PRICES - Come and pay us a visit ALADDIN'S CAVE
TELEPHONE: 445 0749/445 2713
BROADFIELDS \& MAYCO DISPOSALS
21 Lodge Lane, North Finchley, London, N. 12

IONISER KIT

(MAINS

 OPERATED)This negative ion generator gives you the power to saturate vour home or office with A pure flow of ions pours out like water from a fountain. filling your room. The result? Your air feels fresh, pure, crisp and wonderfully refreshing. All parts, PCB and full instructions.
£ 12.50
A suitable case including front panel, neon switch, etc.
£10.50
Hours: Mon. to Fri. 9 a.m.-5 p.m. Sat. 9 a.m. 4.30 p.m
Price includes post and VAT. Barclaycard/Access weicome

T. POWELL

ADVANCE WORKS, 44 WALLACE ROAD, LONDON N1. TEL: 01-226 1489

WAYNE KERR COMPONENT METER B424 with LIMITS UNIT LU4 HIGH VOLTAGE
PLESSEY CAPACITORS 0.0027 mfd. 12 KV D.C. +12 KV PEAK 60 to $10,000 \mathrm{C} \mathrm{S} 10 \mathrm{amps}$ R.M.S. at $525-1605 \mathrm{khz} 5 \mathrm{amps}$ K.M.S. at 1050.3210 khz .50 KV D.C. Test. Eddystone and MARCONI MARINERECEIVERS AND OTHERS FOR CALLERS. MANY ONE-OFF BARGAINS AVO MODEL 7 PANCLIMATIC,
£48 INCLUSIVE P\&P COMPLETE C B SER VICE LEGAL SETS AND ACCESSORIES VICE LEGAL SETS AND ACCESSORIES
ONLY. - G.W.M. RADIO LIMITED, 4042 Portland Road, Worthing, Sussex. Tel: 0903 34897.

WIRELESS WORLD 280 COMPUTER complete with Mk III monitor, graphics, ${ }^{4} \mathrm{~K}$ both RAM \& ROM handbooks, etc, £300. R216 VHF | receiver, ex. cond., £10. - Call Ken Anderson, |
| :--- |
| Weymouth 7012\%. |
| 1417 |

NO MORE WAITING! Instant integration rate and frequency meters accurately update a 3 -digit LCD readout at every positive signal transition. Designed for low frequency measurements crystal controlled accuracy. Modules available: 30-600 pulses per min or RPM: 250-5,000 RPM; $0.5-9.9 \mathrm{~Hz} ; 4-80 \mathrm{~Hz} ; 30-600 \mathrm{~Hz}, £ 37.95$ inclusive. SAE details. Phase Engineering, 14 Melville Avenue, Greenford, Middlesex.
(1441

WIRELESS WORLD 280 computer complete with Mk 11 monitor, graphics, 4 K both RAM \& ROM handbooks, etc, $£ 300$. R216 VHF receiver, ex condition, 1110 . Call Ken Anderson, Wey-
mouth 70126 .

THE SCIENTIFIC WIRE COMPANY

O1-531 1568
ENAMELLED COPPER WIRE ${ }^{\text {SW }} 8$ to 29

SWG	11 b	802	402	
8 to 29	2.76	1.50	0.80	0.60
30 to 34	3.20	1.80	0.90	0.70
351039	3.40	2,00	1.10	0.80
40 to 43	4.75	2.60	2.00	1.42
44 to 47	8.37	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER-PLATED COPPER WIRE				
14 to	6.50	3.75	2.20	1.40
TINNED COPPER WIRE				
14 to 30	3.85	2.38	1.34	0.90
Prices include P \& P. VAT and Wire Data Orders under $£ 2$ please add 20 p SAE for List. Dealer enquiries welcome				

SURPLUS STOCK

Omron Relays, Crouzet Timing Motors, Crouzet Micro Switches, Bulgin Lep and Panel Lampholders. Transfor-

mers-

Mr. P. Givens
c/o R. G. Mitchell LTD
HEATH ROAD. SKEGNESS, LINCS TEL: 075467373

HAVE YOU SEEN THE GREEN CAT?

1000 s of components, audio, radio, electronic, C.B., everything electronic for the constructor and the trade, at unbelievably low
prices. Includes many industrial items. Special discounts to the trade and public. SEND 99p for GREEN CAT and receive sample component parcel worth £3 plus
FREE RECORD SPEED INDICATOR. FREE RECORD SPEED INDICATOR. Send $£ 1.75$ for parcel worth $£ 5$. Send $£ 5$ for parcel worth $£ 20$ or send E10 for parcel worth over £50. Money back if not delighted. State whether trade or retail.
NEW RETAIL PREMISES now open at 12 Harper Street. Leeds LS2 4EA. Next to UNION JACK clothing store. Open 9 till 5 weekdays and Sats. Callers welcome.

INSTANT CASH
Top prices paid for most electronic components and equipment, accessories, test equipment valves, receivers, etc. We buy anything electronic. Send samples/ by return

MYERS
Dept. WW, 12 Harper Stree LEEDS LS2 4EA

INVERTERS

High quality DC-AC Also "no break' [2ms] static switch, 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Lid. POB 51. London WII 3BZ Tél: 01-727 7042 or 0225310916

PRINTED CIRCUITS Prototype/Small quan nity service. Fully drilled board from same siz Graphic artwork. Sticker printing. Quotations submit copy masters or roughs. G. N. Slee ' W' X' (895265), South Yorkshire S630T?

ARTICLES WANTED

Second Hand Toroidal Winding and Taping Machines wanted. Must be in Good Condition.
R. P. PRODUCTS
(ELECTRICAL ENGINEERS) LTD.
1.3WAKEFIELD ROAD DRIGHLINGTON BRADFORD TEL: 0532852629

WANTED

Test equipment, receivers, valves, transmit-
eers, components. cable and electronic scrap, any quantity Prom
cast. Member of A. R A A
m\& Bradio
86 Bishopsgate Street Leeds LS 14BB 0532-35649

LaRGE PUACHASE OF RACAL EOUIPMEN

 RACAL COMMUNICATIONS RECEIVERS (RA317) E5P0. All receivers are air tested and calibrated lair used condition lo few sols available as new at $\mathfrak{q} 75$ extral, new black metal louverad cases for above sets,
$Z 35$ each. SIDEBAND CONVETERS, RAG3 ETO. RAOAA C25 each. SIDEBAND CONVERTERS, RAG3 ESO. RASAA
SSB-ISB, new and boxed.
E75. RASSO $£ 75$. RAZIB SSBSB and fine tune for RAIII ESO. TRANSMITER DRIVER UNIT MATA $1.5 \mathrm{mc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$, SSB, ISB, DSB, FSK CW. 1150. AERIAL TUNING UNIT And protection unit MA197B
E50. OECADE FREOUENCY GEMERATORS MA3SOA Isolid slate synthesiser for MA79 or RA117, RA217, RA 1217 ,
 $30 \mathrm{mc} / \mathrm{s}$, synthesiser for RA17, receiver, $£ 175$, MAZSSG
 DIVERSITY UNIT MAISA, new and boxed, contains product detector fot SSB and BFO, E25. LF CONVERTER
RA137 E75. RACAL SPARES, new and boxed, RA17L

 2-30mhm, complete with MAR2 EXCITER Tuning Unit.
f600-1,.000 ISB, SSB, DSB, FSK, CW, GRANGER BALUN ¢600- 11,000 ISB, SSB, DSB, FSK, CW, GRANGER BALUN
TRANSFORMERS, $7.5 \mathrm{kw}-30 \mathrm{kw}, 2 \mathrm{me} / \mathrm{s}-32 \mathrm{mc} / \mathrm{s}, 600$ ohms50 ohms or 75 ohms DSClLUOSCOPES, COSSOR COU150 c175 with manual. HP Oscilloscope 122AR. E5O. AIRMEC Racal display Oscilloscope 383, E100. SOLARTRON
CD1016 E5O. CDIO14.2 E50. TEKTRONIX OUAL BEAM OSCILIOSCOPES, main frames. 502 , 400.536 E50, 543 f60.

 cope Trolleys, f30. All above scopes and plug-ins have
been tested, in fair working order and condition. Tektoo-
 PRINTERS, 5 -level baudot code, accepts speeds up to
300 bauds, supplied set to 50 and 75 bauds switched.

 TF8010 $/ \mathrm{ss}, 10 \mathrm{mc} / \mathrm{s}$ to $485 \mathrm{mc} / \mathrm{s}$, 1100 HP Transfer Oscilla:-
tor 540 E , E 35 . HP Weve Analyser 302A, $\mathrm{fz0}$. Marconi Sig

 UHF Watt Meter, E30. Tracor VLF Tracking Receiver
Model 599, E200. Cossor Cabio Test Set CME 110A. Ems or $333 \mathrm{E159}$. Matconi TF2370 Spectum Analyser E5,250 All items are bought direct trom HM. Government being surplus equipment. Price is ex works. SA.E. for ail on-
guiries. Phone for appointment for demonstration of any quities. Phone for appointment tor demonsiration of any
item. JOHNS RAOIO. Whitehall Works. GO Whiteghall

(8493)

TEST EQUIPMENT. FFI ANALYSER: 30 ms, 512 channel, PDP8 interface, $£ 1,500$. TECTRONIX 5024A Oscilloscope, $£ 900$. OS 100 ADMENT DSt Dual Beam Occilloscone E120 40 MENT DS4 Dual Beam Oscilloscope, $£ 120.40$
AMP HEXLETT PACKARD SY PSU, $£ 80$. AMP HEXLETT PACKARD SS PSU, $£ 80$ MULTIMETER, 40 , COUNTER TIMER (RCS), $32 \mathrm{Mhz}, £ 70$. WAVEFORM GRABBER FULLY FUNCTIONING COMPUTER EQUIPMENT. PDPSA 4K, £400. PDP8E 24K RK8E Disc, dual DECTAPE, LA 30 DECW RITER, EAU, $£ 2,500$. Z 80 computer board with 64 K memory; P10; CTC; PROM programmer,
$£ 400$ S 100 computer boards: COMIPUTALKER, £400. S 100 computer boards: COMPUNALKER X-y plotter, £200. Graphpen, £100. Jacob Ande X-y ploter, $£ 200$. Graphpen, $£ 100$ Jacob Ander-
son Cassette drives, $£ 150$. SYNTHESISERS EMS AKS, £500. Polysvnthi. £450. Large vocoder, $£ 2,500$. Synthi $100, £ 5,000$. Write or telephone: Verney, Meadow House, Swalfham Prior
Cambridge. Tel: 0638742004 . $1+31)$

SERVICES

CIRCOLEC

THE COMPLETE ELECTRONIC SERVICE
Artwork, Circuit Design, PCB
Prototypes, Final Assembly.
Quality workmanship by professionals at economic prices.
Please telephone 01.7671233 for advice or further details.
1 FRANCISCAN ROAD
TOOTING, LONDON SW1

FACILITIES AVAILABLE

Digital and Analogue

* Artwork Layout

Free prototype bd. (non PTH)
Supplied with orders over $£ 100$.

* Board Manutacture

Prototitype et semi-pro

* Wiring \& Assembly
\star Wiring $\&$ Assembly
PCB assembly, wiring and cable forming
Full test facilitios available.
\star Copper Cliad Board
D/S fibreglass 1000 Sq inches of assorted
useful sizes. $\varepsilon 6.00$ inc. post.
One or all services avail
able, no order too small
ond
Ole able, no order too small
Ploase telephone Chelms
ford 357935 or write to

PRINTED CIRCUIT ARTWORK
Designed direct from circuit diagrams, all types of artwork produced, also con
ventional printed circuit boards manu factured.

MAYLAND P.C.B. CO. LTD
4 The Drive, Maylandsea r. Chelmsford, Esse
Tel: 0621-741560

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phen 0674-573 for instant quote or write to AK TRONICS Lid. $+2 / 44$ Ford Street, Moretonhampstead, Devon.

SMALL BATCH PCBs produced from your art work. Also DIALS, PANELS, LABELS. Cam
era work undertaken. FAST TURN era work undertaken. FAST TURN Hatton Place, London ECIN 9R V. Tel: 01-405
TURN YOUR SURPLUS Capacitors, tran sistors, etc, into cash. Contact COLES-HAR DING \& Co., 103 South Brink, Wisbech, Cambs $0945-4188$. Immediate settement. We also wel tory clearance. (9509

DESIGN AND DEVELOPMENT. ANAL OGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND SYSTEM DESIGN. Also PCB design, mechanical design and prototype/small batch production. - Adenmore Limited, Uni
103 Liscombe, Bracknell, Berks. Tel: Bracknell 103 Liscombe, Bracknell, Berks. Tel: Bracknell

DESIGN SERVICE. Electronic Design DeDESIGN SERVICE. Electronic Design De-
velopment and Production Service available in velopment and Production Servise available
Digitand Analogue Instruments, RF Transmit Digital and Receivers for control of any function at any range. Telemetry, Video Transmitters and Monitors, Motorised Pan and Tilt Heads, etc. Suppliers to the Industry for 16 years. - Phone sey Road, Ashford, Middlesex. Phone Ashford

SANGTRONIC LTD
 SUB-CONTRACT ENGINEERS

We specialise in PCB Assy, Unit Assy, Cable harnessing, Testing etc.

ALSO
We supply B.I.C.C. Equipment Cable, Plain or Colour Coded to customers requirement and Passive Components. For further details please ring Mr Avtar on: 02812-2851/2.

Buyers and Disposal Officers

COOKE INTERNATIONAL SERVICES are Wholesalers and Factors of Surplus Test Equipment and Components. Buying or selling contact

COOKE INTERNATIONAL SERVICES

Ancton Lame, Middleton-On-Sea Bognor R Telephone: 024-369 2849

BOARDRAVEN LTD.

Manufactured to your specificatlons. Single/double sided. Very speedy deliveries on prototypes Contact: lington Non, Carnaby Industrial Estate, Brid. (0262) 78788 .

P.C.B. MANUFACTURE AND ASSEMBLY

Wave Soldering and inspection. Hightype Plate through hole PCBs. Silk screen re sist and legend. Fast turn around Endean Communications Services Ltd., Baileys Mill, The Cliff, Matlock, Derbys (0629) 4929. TIx. 378267 ECS G

ELECTRONIC DESIGN and production including R.F. transmitters and receivers, for video, telemetry and control. 18 years of exper-
ience in most fields. Contact Mr Falkner, R.C.S Electronics, Wolsey Road, Ashford, Middlesex Phone Ashford (Mix) 53661 .

SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes, 1 off or
batch work, fast turnround. $01-449$ 2695. M . Gear Lid., 179.A Vistoria Road, New Barne

PHONE YOUR CLASSIFIEDS TO OPHELIA SMITH ON 01-661 3033

 \section*{PHONE
 \section*{PHONE YOUR YOUR CLASSIFIEDS CLASSIFIEDS TO TO OPHELIA OPHELIA SMITH SMITH ON ON 01-661 3033} 01-661 3033} -

TELEVISION SOUND TUNER

for hi-fi reproduction and the hard of hearing Get the best from television programmes by connecting the MINIM TELEVISION SOUND TUNER through your hi-fi system or listening directly on headphones. Suddenly music, wildlife and even the news comes to life.
Particularly useful for the HARD-OF-HEARING enabling them to listen at a high volume without disturbing others.
Please send me further information on Minim Audio Products Ambisonic Decoders/Weekly Programmable/Daily Timers
Name

INDEX TO ADVERTISERS JANUARY

Appointments Vacant Advertisements appear on pages 114-127

[^10]GAS Electronics
Global Specialities Corp (UK) Ltd 708
Hall Electric LtdHarris Electronics (London) LtdHarrison Brothersd
$93,96,101,103$
ILP Electronics Lid. $5,97,99,101,103$MO Precision Controls Lid93
Industrial and Trade Fairs Ltd19
.17
ntergrex Ltd94
Kelsey Instruments Ltd 23
97
Langrex Supplies Ltd 100
Lion TV 110
Micro Times. 84
92
Midwich Computer Co. Lid 84
Minim Audio Lid
128
128
Mono
Nova Products 103
Olympic Transformers 112
Orion Scientific Products Ltd.Japan: Mr Inatsuki Trade Media

Japan: Mr. Inatsuki, Trade Media - IBPA (Japan), B. 212 Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 10 Telephone: (03) 5850581 United States of America: Ray Barnes, IPC Business
Press, 205 East 42 nd Street, New York NY $10017-$ Telephone: (212) 867-2080. Telex: 238327.
Mr Jack Farley Jnr., The Farlev Co., Suite 1584, 35 East Walker Drive, Chicago, Hlinois 60601 - Telephone: (312) 63074.

Mr Victor A. Jauch, Elmatex International, P.O. Box 34607 Los Angeles, Calif 90034, USA - Telephone (213) 8295
td
Vincelord Led99
Path Electronics Services 101
PM Components Lid$\begin{array}{r}105 \\ .99 \\ \hline 98\end{array}$
P\&R Computershop 112
Racal Recorders Lid
69
111
69
111
RST Valve 100
Safgan Electronics Lid 17
Sandwell Plant Led 107
Sharp Electronics (UK) Lid 55South Midlands Communications Le.. 102
Special Products Distributors Led102
. .26Strumech Engineering ... 18, 110
Supersem Plymouth.
Surrey Electronics 95
97
Tektronix UK I 91
Teloman Products Lidover ivThurnall (Electronic) Eng107 104
West Microcomputers
West Microcomputers
West Hyde Development Ltd 16
Zaerix Electronics Ltd 26

Mr Jack Mentel, The Farley Co., Suite 650, Ranna Building, Cleveland, Ohio 4415-Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co, P.O. Box 2028, Miam Beach. Florida 33140 - Telephone (305) 532730 Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E Mike Loughlin 30305 . Telephone: (404) 2377432 119. Houston, Texas 77079 - Telephone (713) 7838673 Ste

Canada: Mr Colin H. MacCulloch, International Advertis ing Consultants Ltd., 915 Cariton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

* Also subscription agents.

[^11]
YOÚRE LOOKING AT 31 Antex SOLDERING IRONS! SOLDERING IRONS!
 The secret is in the range of bits for each

 model, from 19 mm down to 0.5 mm ! No screws to seize up - push-on bits which cover the elements to save time and energy.The new range of Antex irons come with or without safety plugs fitted. They are tougher than ever, and about twice as efficient as conventional designs.

Specify low wattage, low leakage

[^0]: Marconl.
 TF2162M.F. Attenuator, 0.1114B . $£ 135.00$ TF2163S UHF Attenuator 0-1420B 508 impedance DC-IGHz. $\mathbf{2 5 0 . 0 0}$ TK2214 X-Y Memory $£ 250.00$ TF2331 AF Distortion Meter $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz} .0 .1 \% \cdot 100 \%$ 1 mV -30V voltage rance $\quad \mathbf{5 9 5} .00$ TF 2500 AF Power Meter. 7 ranges 100μ watts 1025 watts. impedance 2.5Ω to $20 \mathrm{~K} \Omega 2$ in 40 steps. $£ 275.00$ TF $2950 / 5$ motile Radio Test Set AM/FM Sig
 Generator, modulation meter, in line power Generator, modulation meter, in line pow
 meter to 25 watts AF Oscillator and AF Voltmeter to cover mobile bands $65-470$ MH2. TM8339 ACIDC mixer for TF2702 \quad E295.00

 Milles Hivolt
 IT 30 Insulation Tester ministry version
 C7587/3 (mint)
 $\mathbf{8 8 5 0 . 0 0}$

 Philips
 PM9380 Camera and Accessories (as new)
 $£ 200.00$

 Ronde and Schwarz

[^1]: Hours of Business: 9 a.m. $50 . \mathrm{m}$. Mon-Fri. Closed lunch 1-22.m. ADD 15% VAT TO ALL PRICES

[^2]: *Reichssicherheitshauptampt, into which the Military Intelligence organization or Abwehr was later incorporated. The RSHA was directly linked with the Nazi party and came under the control of Himmler.

[^3]: *OIRT (International Radio and Television Organiza tion) is an association of Eastern European broad casters, similar to the EBU in Western Europe.

[^4]: View of Hart Electronics audio cassette deck, with new speed control circuit at bottom right.

[^5]: *The gain of the receiving antenna used with the proto-

[^6]: 202

[^7]: This advertisement is mamly ut our exiess stocktiolding. We aiso have texcellemt stocks uf semmounductors. hartware cables etc elc. For further detals send lor out lists and retail price cataloque. phone or visit our shop. Ali pric:es are exclusive of VAt (and P\&P). Minimum Mall Order f.5. P\&P - VAT Government deparmemis. schools, colleges, trade and export welcome.

[^8]: ()ur dient is onte of the world's larges manufacturers in the ir fied of instrument mambacture and heir progressive management team is caged
 () matimise opportumtises arising from the current expansion of their particulat thatke. 'This is therelore an excellent time for a creative and praction engineer to join their elesign and development team.
 The prime function will be tolead the team, which has expertise in mechamical. electrical and electonic engineering. You will be required to combibute to the specification of new products and then to co-ordinate the deparmemts atctivites though to liaison with the production departments. There will lee conside athle contact with all sections of the company and with many extemal contats in the U.K. and onerseas
 The produet in question has increasing electronic content and the ideal applicant will have at tirst dass Honours Degree in electronic engineering and a wide understanding of mechanical engincering principles. A background in the mathine tool, motor or atospace industries, where commere experience has also been gained, would be applicable. Above all, you must Ix a pratical enginerer able onaply souncl weoretic knowledge in an imaginative and origimal manner

 This position offers close involvement in a relatively small but flexible and highly protessional ensiomment and provides excellent long-term carcor prosperts. Stating salary will be realistic and generous benefits include an exectlent re-location package to an attractive part of the mural Miellands.

 Please wriwe with brief bus comprehensive (: V. inchuding current salary. listmg amy companios 10 whom vou do not wish your application forwarded and guosing ref: WW/429 (0:- Peler Phillips. Riley Advertising (Southern) Limited, Old Court House, Old Court Place,
 London, W84PD.

[^9]: BRIDGES, Waveform transistor analysers, Calibrators. Standards, Multivoltmeters, Oscillo 376236. Recorders. Signal Generators. 040

[^10]: OVERSEAS ADVERTISEMENT
 AGENTS:
 France \& Belgium: Norbert Hellin, 50 Rue de Chernin Veat, F-9100, Boulogne, Paris.
 Hungary: Mrs Edit, Bajusz, Hungexpo Advertising Agency. Budapest XIV. Varosliget.
 Telephone: 225008 - Telex: Budapest 22.4525
 Italy: Sig C. Epis, Etas-Kompass, S.p.a. - Servizio Estero Via Mantegna 6, 20154 Milan.
 Telephone 347051 - Telex: 37342 Kompass

[^11]: Printed in Great Britain by QB Ltd, Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD, Quatrant House, The Quadrant, Sutton, Surrey SM2 5AS, telephone $01-6613500$. Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND. Gordon \& Gotch LId. INDIA: A, H. Wheeler \& Co, CANADA Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N. Y. 1001 I

