wireless word
october 1981 10p

Interfacing microprocessors

Digital tape recorder

Distinguishing 'amplifier sound"

PROFESSIONAL TOOLCASES

 ior Service Engineers

Interfacing microprocessors
 Digital tape recorder

Distinguishing 'amplifier sound'

wireless world

ELECTRONICS /TELEVISION / RADIO/AUDIO

OCTOBER 1981 Vol 87 No 1549

33 Invention - the orphan	
34 Microprocessor interfacing by J. D. Ferguson	
Amateur satellite	40 News of the month Commercial teletext Microwaves and health
43 Integrated-circuit design by J. L. Linsley Hood	
46 World of amateur radio	
Linear power amplifier	47 Circuit ideas Gray-to-binary converter Ten-beam converter
49 Quantifying amplifier sound by Yoshimutsu Hirata	
53 Letters to the editor 'Truth-table' logic symbols Filter transient response James Clerk Maxwell	
56 Multichannel digital tape recorder by A. J. Ewins	
59 The cartridge alignment problem by R. J. Gilson	
62 Tracking mains filter by K. Radhakrishna Rao and R. S. Moni	
67 Long-distance television reception by Keith Hamer and Garry Smith	
71 Sound for the Royal Wedding by John Flewitt	
74 Digital storage and analysis of speech - 3 by lan H. Witten	
79 A.m. receivers without interference by Lewis Illingworth	
84 New products	
86 Sidebands by Mixer	

CURRENT USED
 SEE USAT TESTMEX'81 STAND J8 WEMBLEY-0CTOBER 27,28,29
 Everything as new.

Analyser
1950.00

Yokagawa
3042 Channel Chart Recorder
0.5 mV - 100 V . $2 \mathrm{~cm} / \mathrm{hr}$ - $60 \mathrm{~cm} / \mathrm{min}$

Brokers
 TEST EOUIPMENT except the price!

SEE US AT TESTMEX 81 STAND $\mathbf{J 8}$ WEMBLEY-OCTOBER 27,28,29

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9L.N England Telephone: 01-278 3461 Telex: 298694 Elebro G
 ADD 15\% VAT TOALL PRICES
C arriage and Packing charge extra on all items unless otherwise stated.
A copy of our Trading Conditions is available on request.

New test
equipment catalogue just
out. Send for out. Send for
your free copy your free copy

Brokers. we
carry large stocs o modern test and computer equipment,
and our strong and our strong buying power to purchase the
able
very latest statevery latest state
art technology.

The EP4000 is not just an EPROM Programmer . . .

Not only does the EP4000 copy, store, program and duplicate the 2704/2708/2716(3) and 2732 EPROMs and 2732 EPROMs
without personality without personality cards or modules, but
also includes a video also includes a video
output for memory map output for memory
display to make the display to make the powerful editing faciitities really useful
(and this is in addition to (and this is in addition to
the in-built LED display the in-built LED display for stand-alone use), but it also comes as standar
with comprehensive with comprehensive
input/output - RS232, 20 mA loop, TTL, parallel handshake, cassette, printer and direct parallel handshake, cassete, printer and direct
memory access. Now the programming power can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator . . .

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program circuit EPROMs during the process of program to look like any EPROM it is capable of programming. The press of a button isolates
the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.
... with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of
program development.
program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380.

Finally, a full range of accessories in now
available - these include Bipolar programming
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors 2764/2564 programming satellite, printer and production programmers. The EP4000 is exstock. Price - $£ 545+$ VAT $(+£ 12$ for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and distributors in Britain required.
G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

Worth

waiting for
system which ensures fair and orderly distribution dealer has full details.

We are increasing production as quickly as possible but to do so without compromising product quality necessarily limits th rate at which this can be done. We have allocated major portion of production to meet production to meet the U.K. market.

Of course we have to export. Quad needs the prestige and Great Britain needs the
currency. currency.

You will have to wait to acquire a pair of Quad ESL-63s, but in these gloomy days it is comforting to be associated with another Quad, hence British, success and your patience will be rewarded by many years of listening pleasure.
ade and public to the Quad ESL-63 has been rapturous. Hardly surprising since the virtues of the ' 63 are so readily apparent to all but the most jaundiced listeners.

Orders are pouring in from all over the world and demand far exceeds initial supply. It is an enviable position for a manufacturer to have a full order book, but frustrating for potential customers.

To alleviate the problem, we have devised an ordering

...or an apology for success.

The Quad ESL-63 is well worth waiting for.

QUAD㘶
 or the closest approach

 to the original sound
Data recording and analysis:

ww - 027 FOR FURTHER details

SIEMENS

Sinclair ZX81 Personal Computer－ the heart of a system

 that grows with you．1980 saw a genuine breakthrough－ the Sinclair ZX80，world＇s first com plete personal computer for under were sold surprisingly，over 50，000 were sold． increased dramatically．For just $£ 69.95$ the Sinclair ZX81 offers eve more advanced facilities at an even lower price．Initially，even we were 50,000 in the first 3 months！ Today，the Sinclair ZX81 is the heart of a computer system．You can add 16 －times more memory with the ZXRAM pack．The ZX Printer offers an unbeatable combination of Software library is growing every da Lower price：higher capability Lower price：higher capability teach yourself computing，but the ZX81 packs even greater working capability than the ZX80

It uses the same micro－processor， but incorporates a new，more pow intelligence＇of the computer．This chip works in decimals，handles logs and trig，allows you to plot graphs， and builds up animated displays．
And the ZX81 incorporates othe operation refinements－the facility
to load and save named programs on cassette，for example，and to drive the new ZX Printer．

New
BASIC manual

Kif： £49．95

Higher specific

how sone？ Quite simply，by design．The ZX80 reduced the chips in a working
computer from 40 or so，to 21．The ZX81 reduces the 21 to 4 ！
The secret lies in a totally new master chip．Designed by Sinclai and custom－built in Britain，this unique chip replaces 18 chips from
the ZX80！
New，improved specification －Z80A micro－processor－new chip，widely recognised as the best ever made．
－Unique＇one－touch＇key word entry：the ZX81 eliminates a great deal of tiresome typing．Key words
（RUN，LIST，PRINT，etc．）have their own single－key entry．
－Unique syntax－check and report codes identify programming errors immediately．
－Full range of mathematical and scientific functions accurate to eigh －Graph－drawing and animated－ display facilities． Multi－dimension －Multi－dimensional string and
Up to 26 FORINEXT loops．
Randomise function－useful for ames as well as serious applicatio －Cassette LOAD and SAVE with named programs． －1K－byte RAM expandable to 16 K bytes with Sinclair RAM pack． Able to drive the new Sinclair printer．
Advanced 4－chip design：micro－ chip－unique，custom－built chip eplacing 18 ZX80 chips．

Kit or built－it＇s up to you！ You＇ll be surprised how easy the ZX81 kit is to build：just four chips to assemble（plus，of course the other
discrete components）－a few hours work with a fine－tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated（supplied with Kit and buit
Kit and built versions come com lete with all leads to connect to your TV（colour or black and white） and cassette recorder．

16K－byte RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the existing expansion port at the rea of the computer to multiply your data／program storage by $16!$ Use it for long and complex programs or as a personal database Yet it costs as little as half the price
of competitive additional memory． With the RAM pack，you can also run some of the more sophisti－ cated ZX Software－the Business \＆ Household management systems for example．

ZX8

Available now

 the ZX Printer
for only £49．95

Designed exclusively for use with the $Z \times 81$（and $Z \times 80$ with 8 K BASIC ROM），the printer offers full alpha－ numerics and highly sophisticated graphics．
A special feature is COPY，which prints out exactly what is on the for further intruction At last you can have a hard copy
of your program listings－particularly How to order your ZX81 BYPHONE－Access，Barclaycard or Trustcard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BY FREEPOST－use the no－stamp needed coupon below．You can pay
useful when writing or editing programs． course you can print out or sending to a friend

Printing speed is 50 characters per second，with 32 characters per line and 9 lines per vertical inch． The ZXPrinter connects to the rear of your computer－using a stackable
connector so you can plug in a RAM pack as well．A roll of paper（ 65 ft long $\times 4$ in wide）is supplied，along with full instructions．
by cheque，postal order，Access， Barclaycard or Trustcard． EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14－day money－back option．We wan you to be satisfied beyond doubt－ ーーーーーーーー，You can pay and we haveno doubt that you will be．「T：Sinclair Resoarch Lid，FREEPOST 7 ，Cambridge， $\mathrm{CB2} 21 \mathrm{Y}$ ．

＊enclose a cheque／postalorder payable Ho Sinclair Research Lid
／Tustcard account no

Name：Mr／Mrs／Miss
Address：LI
FREEPOST－no stamp needed．Offer applies to UK only．
WW－005FOR FURTHER DETAILS

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions. Solderable Stud ${ }^{\text {TW }}$ Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on you Board and wave soldered with other components. Fliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex. Telephone 01-902 5941. Telex: 923455.

Thermalloy International Advanced technology in semiconductor accessories

1000 sshe

Telequipment 1000 Series The choice is yours

tightens time measurement accuracy to $\pm 3 \%$, with improved stability as a bonus. To match these improved tim base specifications, trigger
bandwidths and performan characteristics have been substantially enhanced. Better Display The D1016A also has a new CRT The size is just the same easy-to-
view $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a qui heat cathode. It has a " GY phosphor which is a near equivalent to the P31 but is more efficient entinically at low beam currents A Choice of Bandwidth A Choice of Bandwidth
10 MHz or 20 MHz with 5 m division sensitivity at full. bandwidth and 1 mV division at 5 MHz in the D1016A, 4 MHz
the D1011, and a choice of display modes; Algebraic Add, True X-Y, Channel 1 and 2 Chopped or Alternated, Channel 2 only, and Channel 2 Inverted. For further details send reply coupon today.
\ulcorner Please send details of the -7
| D1016A \square D1010/D1011 \square |
| Name
\mid Position \mid
1 Address

1

Telephone
| Tektronix U.K. Ltd. P.O. Box 69 , Harpenden. Herts AL5 4UP
Telephone: Harpenden 63141 Telephone: Harpenden 63141|
| Telex: 25559

[^0]

SAMDBECK WAY WETHERBY WEST YORKSHIRE LS22 4DH TELEPHONE (0937)61961

W - 009 FOR FURTHER DETAILS

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC
 UHJ

SURROUND SOUND DECODER

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval

 ${ }_{\text {Cotc. }}^{\text {emplete }}$ kit $£ \mathbf{5 2 . 5 0}$ plus VAT. or ready buill and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Complete Kit PRICE: $\mathbf{£ 4 9 . 9 5 \text { + vat (3 head model svaliable) }}$ Also availabie ready built and tested.,

y noise reducer =wamem

 Dyramic range $>90 \mathrm{~dB}$ 30 mv senstivity

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON ESSEX CM9 7NB ENGLAND Tel. MALDON (0621) 56480

wW - 018 FOR FURTHER DETALLS

ww - 006 FOR FURTHER DETAIL

28

SOUND INVESTMENT

 E $5 \sqrt{6}=$ Replacement tape heads from. Monolith could mean a bigimprovement in sound quality from your tape recorder. A full catalogue is available, price 50p, which features a wide range of heads for cassette and reel to reel machines, as well as replacement motors, tape transports, ett.
Universal cassette heads to EIAJ standard, hole centres 17 mm apart, 12 mm from head face

$\varepsilon 4.62$
$\varepsilon 4.62$
ε
ε
7.66

$\begin{array}{ll}\text { B24.02 } & \begin{array}{l}\text { Stereo r/p } \\ \text { Stereo rip for Dolby systems }\end{array} \\ \begin{array}{lll}\text { B24.07 }\end{array} \\ \text { Ster }\end{array}$
$\varepsilon 8.02$
$\varepsilon 7.66$
$\varepsilon 9.05$

C42RPH04 Sterear tapes glass ferrite, the ultimate long life,
high performance head
C42RPS 18 Stereo twin gap I/p long life head for record $\begin{array}{ll}\text { C21ES18 } & \text { Monitoring } \\ \text { Mono/stereo erase head }\end{array}$ $\begin{array}{ll}\text { C44RPHO3 } & \text { Four channelltrack } / / \mathrm{p} \\ \text { C22ESO4 } \\ \text { Twin half track erase }\end{array}$

MONOLITH

electronic products The Monolith Electronics Co. Lto., $5 / 7$ Church Street,
Crewkene. Somerset TA18 7HR. Tel: 0460 74321. Telex:
46306 MONLTH Crewkerne, Somerse
46306 MONLTG.

Dielectric Communications

Tony Chapman Electronics Limited 80a, High Street, Epping, Essex CM16 4AE

Toroida Piswower Itansformers

WW - 064 FOR FURTHER DETALLS

WW - 070 FOR FURTHER DETALLS

$A=A$ OUS ARTA GDD

Use the ARTA GOD third octave audio analyser adaptor and an oscilloscope to display the real-time

 indensity and spectral distribution of sounds. electrical or electro-acoustic frequency response e595 plus VAT

Abacus Electrics 10 Bariey Mow Passage, London W4 4 PH England
Telephone:
London $01-9946477$
Telex 88811418
wW - 067 FOR FURTHER DETAILS

NEW
 OSCILLOSCOPE IS A DIGITAL WONDER

Philips PM 331060 MHz digita storage oscilloscope has capabilities extending way beyond traditional limits - and those of why.
\star Four memories (each 256×256
$\star \quad$ tour mem sampling rate
t 50 MHz sampling rate
$5 \mathrm{~ns} /$ division

* Digital delay of -9 to 9999 divisions.

\star Roll mode up to $60 \mathrm{~mm} /$ division
- Display of stored signal
parameters
\star Plot-out facility as standard
\star IEEEIEC bus compatible
Reader inquiry number 222 for a colour brochure.
NEW COUNTERS ALSO MAKE MORE OF THE MICRO

PM 6670 family of reciproca + $120 \mathrm{MHz}, 550 \mathrm{MHz}$ or 15 GHz high resolution computing counters
Unique "counter on a chip" design and microprocessor control for maximum reliability
Reciprocal counting at low frequencies eliminates ± 1 cycle error. Automatic switchover to conventional counting a 10 MHz

- Continuously variable measuring time with display readout
* Error-free triggering with noise suppression
Choice of timebase crystal oscillators to match applications and budgets
* Facilities for cw, burst, multiple burst, frequency average and arming
* Interface options include IEEE 488/IEC 625 bus, talker/listene
\star May be operated from internal battery option, mains or 11.8 to 28 VDC
Reader inquiry number 223 for a colour leaflet

MUCH MORE TO OFFER

The instruments showr in this advertisement are a small selection from the wide Philips Test and Measuring range.

Circle the inquiry card numbers,

 listed below, to receive information about relevant product groups.Alternatively, 'phone Cambridge (0223) 358866 and speak to our Commercial Office on extensions 145 or 148.

Inquiry No.
PM 2521 digital measurement

entre

Logic analyser
3310 digital storage scilloscope
M 6670 counter family oscilloscopes 00 MHz oscillosc Pulse generato Multimeters
ulimets rang
Counters
Philips Microcompute hips Microcomputer Audio and video service equipmen service equipme Power supplies Pye Unicam Ltd,
Philips Electronic Instruments Dep York Street, Cambridge CB1 2PX Tel (0223) 358866 Telex 817331

PHILIPS

The Sound of the Professionalse

Shure Electronics Limited Eccleston Road
Telephone: Maidstone (0622) 59881
$\begin{array}{ll}\square \\ \square & \square \\ \square & \square \\ \square\end{array}$
brings a new dimension to a hand-held condenser microphone

This new high technology Shure microphone will change the way people think of condenser microphones. The
SM85 is designed especially for on-stage, hand-held use its sound is unique-far more tailored to the special needs of the vocalist: sizzling highs and a shaped mid-range for
superb vocal reproduction, and a gentie bass roiloff that minimizes handling noise and "boominess" associated with close-up use. Ultra-low distortion electronics make the SM85 highly immune to stray hum fields. An integral, dualdensity foam windscreen provides bult-in pop protection. What's more, the SM85 Condenser Microphone must pass the same ruggedness and dependability tests equired of Shure dynamic microphones. As a result. the condenser microphones.
The SM85 is extremely lightweight, beautifully balanced -it feels good. looks good on-stage, on-camera, on-tour. TECH Sound, or write to us (ask for AL664) for full details.

SM85

Cardioid Condenser
Hand-Held
Professional Microphone

wireless world

Invention - the orphan

Editor:
TOM IVALL, M.I.E.R.E
Doputy Editor:
PHILIP DARRI
$01-6613039$
$01-6613039$
Technical Editor:
GEEFF SHORTRR, S .
.
GEOFF SHORTER, B,
$01-6613500 \times 3590$
Proiects Editor:
MIKE SAGIN
MIIKE SAGGIN
$01-6613500 \times 3588$
Communications Editor:
Coimiminications
MARTIN ECCLES
$01-6613500 \times 3589$
Nows Editor:
DAVID Scobie
${ }_{01-661} 3500 \times 3587$
Drawing Office Manager
ROGER GOODMAN
Technical Illustr
BETTY PALMER
Advertisement Managor
Adverisemont M
${ }_{0}^{\text {BOB NIBBS, }}$
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILLER
Northern Sale
HARRY AIKEN
$061-8728861$
Midiand Sales
BASIL MCGOWAN BASIL McGOW
$-021-3564838$
Classifiod Managor:
BRIAN DURRANT
$01-6613106$
JAYNE PALMER
$01-6613033$
BRIAN BANNISTER (Make-up and copy)
-
Publishing Dirrector:
GORDON HENDERSON

In the last century, life for anyone but the intentionally static, self-sufficient and
unaware was restricted, although it is probable that few were seriously worried by the restrictions: a delay of several day in hearing the news that Wellington had. won, or a journey from York to London
that occupied three whole days would that occupied three whole days woul
cause little trouble. Nevertheless, an cause little trouble. Nevertheless, any
improvement in mobility, the spread of improvement in mobility, the spread of the severity of life in general was greatly to be desired. The Industrial Revolution had its origin in these conditions.
Since human nature does not change rapidly, if at all, it is unlikely that many of the engineers and scientists who brought of the western world did so with any sense of altruism. Then, as now, a man had an idea and was unable to rest until he had a piece of hardware that worked; and if it
did, there was a chance of making some money out of it. There is nothing whatever wrong with that - it is a dream cherished by most engineers - and the inventions changed the world for the better, in most cases. The process was apparently logical:
an engineer saw a need and proceeded to an engineer saw a need aee that the idea
satisfy it. It may have been was attractive technically and the inventor would have gone ahead without any other stimulus, but needs were numerous and useful in some field or other.
Long before the middle of the present Long before the middle of the present
century, the majority of man's pressing century, the majority of man's pressing
material and cultural needs had been attended to, in the 'developed' countries, at least. But the drive to be inventive persisted: provision began to precede requirement and eventually to create it not once, but annually. In the field of
technology concerned with domestic, as opposed to industrial engineering, it is opposed to industrial enginerings mesmerized by their own expertise not to perceive a need, but to satisfy a nonroduced in vast numbers before the ublic has shown any indication of
wanting them or even knowing what the
 possible. Not only that, but before the first round of production and the subsequent 'creation' of a market for it is finished, the next version is hurled at us, in slightly with the first. In recent years, this inversion has occurred at least four times. In the early
1970s, perfectly ordinary citizens suddenly 1970s, perfectly ordinary citizens suddenly
discovered an inescapable need to possess discovered an inescapabes need tos were
pocket calculators. These devices pocket calculators. These devices were
made solely because it was possible to make them, but that having been done, the market creation had to begin. Before long we were seeing housewives using calculators to add up their supermarket bills: they do not do that now - the g, evaporated The same process brought into being the digital watch. It was not easy to make the digital output drive hands, so the infe numerical display was adopted as a for the watches - no public outcry had forced their development - and we will no doubt find hands in fashion again quite soon. Passing over the sorry business of quadraphonic sound, in which the their own good and did not manage to persuade the public to think otherwise, w have now reached the video disc, a development which appears to have little to offer over video tape, and which could conceivably prove to be the sticking point
for a baffled and possibly resentful public. In this case, not only does the need not exist; it didn't exist when it was satisfie the first time, with tape machines, in the domestic sphere at any rate.
To pursue technology for its own sake and to pay for it by exploiting the public's total and uncomprehending belief in technology is, at the very least, open to question. A professional soldier may official wars, but an engineer has no need of that - the world is full of ready-made problems to solve without inventing them

Interfacing microprocessors

Design, operation and application of a "universal" interface board
by J. D. Ferguson, B.Sc., M.Sc., M.Inst.P., J. Stewart, and P. Williams, B.Sc., Ph.D., M.Inst.P.
Microelectronics Educational Development Centre; Paisley College of Technology

By using a range of practical circuits,
this series of articles explains this series of articles explains how to
interface microprocessors to other electronic and electromechanical systems. The emphasis throughout is on providing economical solutions for educational and industrial applications, rather than achieving describes a "universal" interface board which is directly compatible with the 6502 , and later articles describe hardware and software processors. A ran funtions which do not need to be connected to the address or data bus will also be described later in the series.

Fig. 1. Basic interface system which uses three main i.cs to provide a range of
functions. Further circuits which do functions. Further circuits which do not
need to be connected to the address or need to be connected to the address or
data bus can be easily added on daughter
boards. boards.

Most people interested in or involved with microprocessors now realise that there is gap between a microprocessor and its ap-
plication. This is an inevitable result of the different aims and skills of the participants. The electronics engineer concenthates on the circuits, the architecture and almost irrelevant. A mechanical enginee may know the functions that the microprocessor should perform, but cannot connect the device to the hardware it must control A strain-gauge speaks in millivolts, but a
microprocessor listens in bytes and sends microprocessor listens in bytes and send
out binary data. For each problem there are solutions, although they are sometimes difficult and costly or involve additional work by the user
When designing an interface the most
important and difficult decisions are which microprocessors $/ \mathrm{mi}$ crocomputers should the interface b directly compatible with, how many others could be adapted, and the bus structure and board format to meet these require-
ments. The board and bus structure closely linked and may constrain the

choice of microprocessor. For example the S100 bus supports the 8080/Z80 family but boards have been designed for the
6800 family. However, the large board size and mixed power supplies make the S100 an unsuitable format. The high cost of Multibus and other industrial standards makes them inappropriate for educational
use. makes
use.
An
urocardomical and standard board e mounted in standard racks. The Acorn bus structure, which was chosen, enables he interface to be directly used with a low cost unit, a rack-mounted system, or the able interconnecting cables, the interface is equally compatible with the Aim 65, Apple and Pet.
The choice of functions is a compromise etween the desirable and compromine mically feasible. The final design includes digital-to-analogue conversion, analogue to-digital conversion with 16 input channels, 16 line i/o ports, 8 output drivers, 2
counter-timers, serial i / o and handshaking counter-timers, serial i / o and handshaking
lines. As many microcomputers and microprocessor boards already offer a few functions, the corresponding i.cs can be omitted on the interface without affecting the remaining functions.
The parallel i/o ports, handshaking,
counter-timer and serial i/o are all achieged counter-timer and serial $1 / 0$ are all achieved
with a 6522 v.i.a. (versatile interface adapter) whose programming can be as complex as the c.p.u. if all possible functions are considered. However, by starting with the parallel ports and gradually in
cluding the other options, programmin can be kept manageable. The d-to-a converter is based on a ZN425 which, with extra gating, can be used as an a-to-d converter. To increase the d-to-a flexibil
ity, the parallel ports can gate the ditoity, the parallel ports can gate the d-to-a
output to a series of sample-and-hold circuits. Although this technique slows down the response, it is satisfactory where, for example, multiple analogue outputs are
required to drive electromechanical loads required to drive electromechanical loads. ADC8017 16-channel successive approximation a-to-d converter. This device con tains internal switching and gating which allows it to be connected directly to the address and data lines of most 8 -bit
microprocessors. Although the 8017 is no particularly fast, the ability to scan 16 analogue channels and load the data into memory with simple hardware and soft-
ware makes it an ideal device for data-

Fig. 3. Address decode circuit. Two binary-encoded switches allow independent selection of block and page
ogging systems. To complete the interface, output drivers are provided for such as transistors and thyristors. C.m.o.s. ogic is used for the output drivers to prevent loading port B which can then be used with external signals. If the l.e.ds on the board are used, and the interface is ystem, no additional connections are required to run and test i / o programs. Also, by linking the d-to-a output and a-to-d nput lines, both functions can be tested at the same time. Although these points may
seem trivial to the experienced user, imple demonstrations have proved to be valuable for beginners. Extensions to this oard could include opto-coupled witches, power control devices, signal conditioning, e.p.r.o.m. programming These options, which will be covered later in the series, are not necessarily connected to the address or data bus and can therefore be added on a daughter board or
via a socket on the original board. In each via a socket on the original board. In each
case a circuit will be described, which can plug into one or more of the popular microprocessors, together with details of how it can be modified to suit other The arrangement of the three main components in the basic interface is shown in Fig. 1. Each device is connected to the control and data bus, and is memory v.i.a. and a-to-d converter each require sixteen memory locations for their internal
registers and input channels respectively, and each location is selected using the four The single channel d-to-a converter requires only one location.
Sets of switches and I.e.ds are linked to the v.i.a. so that external loads can be driven and sensors monitored to allow $i / 0$
simulation while developing programs simulation while developing programs.
The 6522 has several other capabilities which will be covered in a later article.

Memory maps and address

 allocationEach component in a computer system must have one or more memory addresses assigned to it, and the designer allocates memory space accord importance or convenience. With memory space of 64 K bytes it might seem simple, but as a system expands more and more memory space is pre-empted. To ensure that this interface or other new board can be used with different systems,
the memory maps must be compared to identify their unused areas. Fig. 2 shows the memory maps of several standard 6502 systems and a typical 8085 arrangement for comparison. All 6502 systems have r.o.m. at high order memory, although only the for the automatic start-up procedure are essential. It is convenient to use adjacent areas for r.o.m., though some gaps may be left for other functions as in the Apple and (the first 256 bytes) and memory access to
this area requires fewer bytes and less time 6502 It is seo-page addressing mode of the 6502. It is sensible to use this facility for
rapid access to data which is required repeatedly by various programs. Page one (location $256_{10}-511_{10}$) also contains r.a.m. because the 6502 uses this page as the stack for subroutine jumps and interrupts. The Aim 65 and Acorn system $3 / 4$ fol-
low a similar format which allows the user to adapt the computer for a particular application. This flexibility has made them popular in colleges and universities. Alhough the Apple and Pet are also popular in engineering and scientific applications, filled to the brim with memory.
The address decode circuit shown in Fig. 3 is the result of several design changes to give the interface board the
flexibility needed for operation wish several systems. Two binary encoded switches allow independent selection of block and page, i.e. the first two digits of the four digit hex address, via exclusive-OR gates which monitor the top eight bits of the
address bus. The 74 LS 139 decoders provide chip select to the d-to-a, a-to-d and v.i.a., allocating sixteen sequential memory locations to each, and modify the addresses via links by adding 40,80 or CO to the chosen base address. Therefore, the
circuits can be added to any compatible microprocessor system that has an unallocated memory space of at least 64 consecutive bytes. Where memory space is not critical, par
be omitted.

Fig. 5. Board layouts and component location diagram. Assembled boards and Universal, 11 Bush House, Bush Fair Harlow, Essex. CM186NS.

The complete interface is shown in Fig. 4. The decoding circuit on the right is wired to the address bus on the Eurocard
connector. Additional gating is provided for the d-to-a and a-to-d converters and both devices have protective resistors and simple capacitive filtering to reduce noise. The a-to-d converter also has the option of a shunt resistor on each channel for use device can be provided from the reference of the ZN425 or from the separate LM317 regulator. This can be trimmed to give, for 10 mV steps in the a-to-d conversion 10 mV steps in the a-to-d conversion. detail together with simple program examples

Corrections - Satellite tracking by home
 computer

One or two errors in the second part of this be pointed out: At the top of the third column on page 67, DC should read DE. In line 16 of the BURP program, $\mathrm{N}=\mathrm{CS}$ beginning of line 36 should read IF $\mathbf{I F}>0$ beginning of line 36 should read IF W >0 errors.

Atom Busiuess, by John Phipps.
110pp., paperback.
hipps Associates, $£ 6.95$
uclear physicists are not necessarily the prim tience for this little book, since it contains aicrocomputer in business. Peripherals needed a domestic television receiver and a cassett most of these programs
ost of hese programs. Corform running addition to a program for deermining the effects of various parameters on the length of a queue - probably this could be varied for use in other circumstances, such as reasons for each program are set out and operating instructions presented in simple terms prior oo each listing.
The book is completely practical in that there is nothing on programming as an art - simply
he programs, including one which will help to make a decision on whether to lease or buy one for working out expenses. A cassette containing the programs is obtainable from Phipps Associates, 3 D. 50 . plus

Video/computers, by Charles J. Sippl and Fred Dahl.

246 pp., paperback

Messrs Sippl and Dahl base this book on the Mremise that much of the domestic video, viewdata, audio and computing machinery cur-
rently considered as separate entities should, ently considered as separate entities should,
and ineviably will, be brought together to form what they call an integrated video computer.

constantly told, bring about a social revolution in working habits, communication, banking, hopping ... etc, but, although much of the
technology already exists, there are problems still to solve.
Adopting an extremely methodical approach, the authors consider all the ingredients of such
an integrated system, one by one, and try to an integrated system, one by one, and uy to the i.v.c. is to come along. They view the concept from several angles ing, data conversion and communications, ex-
plaining what is now in existence and what will have to be done in each sector to reach the goal of an integrated system. The conclusion is even-
fually drawn that the i.v.c. will be with us towards the end of the decade, given that legalities and vested interests can be surmounted, and that we will then have a,
total communications".
Latest Developments in Sound Broadcasting Edi John Lovell.
${ }^{77}$ ibs, London.
Local radio is the subject of the fourtenth in
the IBA Technical Review series, and contains the IBA Technical Review series, and contains
nine articles by IBA staff and consultants. nine audio design, installation and testing are covered in the first three sections, followed by a
description of the contribution network, which
onables local radio companies to send news items to IRN in London for national use. Techical features of the first i.l.r. transmitters are reviewed and there is a description of the solidwidth modulated (Class D) power amplifiers. A section on the Borehamwood m.f. aerial for the London area describes the design of an ex-
remely complex system, which must not only remely complex system, which must not ons
cover its service area and avoid other areas serviced.by other transmitters, but must do this at wo frequencies simultaneously.
Surround sound is discussed, in theory and
practice, and in the final section the head of Long-range Studies looks at the future of radio
pratione broadcasting. Technical Review 14 is available
from IBA, Brompton Road, London SW 3 IE7. from IBA, Brompton Road,
No charge for single copies.

The XX81 Pocket Book, by Trevor Toms. 136pp., paperback.
Phipps Associates, $£ 4.95$ (Cassette $£ 5.00$). Owners of the sinclair ZX81 microcomputer supplied may feel the need of additional tuition in the techniques of programming. If so, this book should be of assistance.
To illustrate the sections of instruction (on
efficient programming, using machine code effricient programming, using machine code,
using data files, etc.) a number of programs mainly games, are presented and explained. The
book is not simply a book is not simply a rewritten version of seal completely new, since the $\mathbf{Z X 8 1}$ is quite dif
ferent to te $Z \times 8$. Much of the content can be ferent to the ZX 80 . Much of the content cas be
used by ZX 81 owners who do not possess the used by ZX 81 owners who do not possess described in the book, is also available. Phipps Associates are a
Epsom, Surrey KT18 5 HQ

NTEWIS OF TTYTE RTONTMT

Amateurs view the earth

By the time you read this, Britain's first amateur satellite should be in orbit 330 miles up with an
inclination of 97.5° and a 98 minute epriod. Organized by the University of Surrey departo accompany a NASA solar Mesosphere Explorer spacecraft, set for September 12 at the
time of going to press, and is especially interestinge of going to press, and is especialy interest-
ing Vosat's ability to provide earth pictures for display on a domestic tv receiver. The satellite will not be fully operational immediately,
hough the v.h.f. and v.h.f. beacons should be in use for telemetry; picture transmission should start in a few weeks time.
the pictures are taken by a the pictures are taken by a charge-coupled
maging array made by GEC's Hirst Research Centre and provides land and sea image data for digital transmission over the v.h.f. beacon using

Foxhunter takes the air
Marconi's Foxhunter, the multi-mode radar for
the Panavia Tornado 2, made its first flight in the Panavia Tornado 2, made its first flight in
the Tornado air-defence variant at Warton on June 17. Since that date, the radar has operated
in all its maior modes. Trials have been progressing at Bedford in a modified Buccaneer since shortly after the initial MoD production contract was placed in late
1979. First deliveries of the equipment are due 1979. First deliveries of the equipment are du
o start in 1982 for RAF service two years later to start in 1982 2or RaF service two years later:
a run of $200-250$ radars is the likely figure, assuming that defence cuts do not affect the modified radars may be exported later. Foxhunter operates in several ways. It uses
the pulse-Dippler the pulse-Doppler techniquue to avoid static clut-
ter and will search an area, track several aicraft ter and will search an area, track several aircran
simultaneously while continuing to search, simuilaneously while continuing to search, can

reliable satellite-to-ground link for reception by simple amateur stations: an unmodified narrow-
band f.m. receiver together with a fixed pair of crossed dipoles should do for most passes. Besides normal telemetry data, computer outputs, synthesized spech for school demonstrations,
and earth imaging data are also information The computer is based around the RCA CDP1802 microprocessor, enables telemetry surveillance, command and status management, experiment data storage and processing, disse-
mination of orbital data and operating schedules, and closed-loop atutude control. It has direct high-speed data links with the magne-
tometer and radiation experiments, and access ometer and radiation experiments, and access
to the earth-imaging memory area for image processing. Program is memory area for image
r.a.m. a.m. loaded from the ground zva the telecom-
mand link and which can be modified or remand link and which can be modified, or re--
placed during flight, from ground. Commands placed during flight, from ground. Commands
from ground stations take precedence in cases where commands emanate simultaneously from both the microcomputer and ground.

Cascade noise

reduction

Integrated circuits for the new Dolby noise reduction system are being sent tol licensees this month. Made by Hitachi, but designed by Pio-
neer, the i.cs are off the mark much sooner than neer, the i.cs are off the mark much sooner than cs would not be available unill some time next year, but it is undoubtedly market pressure tha has accelerated development. Dolby say that "genuine market desire" for more noise redu ion prompted the new system, which reduce noise by up to 20 dB . But as competing n.r,
ystems abound now and threaten Dolby's growth in this area, Dolby clearly needed to come up with something new, having found that he B circuit couldn't be pushed far enoug
without adverse effects, both errors in fre quency response and overshoot.
So they adopted the approach of cascadin
wwo sliding-band circuits, each working at dif erent levels (rather than different frequencies) But although a a oood amount of noise reductio obtained in this way, as many enthusias
tave discovered, it is not altogether satisfactory by itself - what is described as a mid-frequency "mud" still remains. Dolby found that to re
balance the amounts of high, mid and lowfre quency reduction the turnover frequency
1.5 kHz in the B-system, was best set two oc 1.5 kHz in the B-system, was best set two oc aves lower at 375 Hz for the cascade-circuit. slightly higher compression ratio of 2.2 instead
of 1.9 is used and further circuitry is needed to eep side effects down: h.f. de-emphasis at the ncoder input to reducc mistracking, and a network in the low-level stage to prevent tape satu-
ration at high signal levels. With this additional circuitry the C system, as it is called, is claimed
to be "at least as free of side effects as the B be "at least as free of side effects as the system": Alrogether Dolby say the circuitry
costs $21 / 2$ times as much as the B system but that
falling . falling i.c. prices partly offsets this.

Naval radar
In an effort to help warships survive when at gent' array of nastiness, Plessey has developed a ew S-band radar, the AWS-5. Many constraints are imposed on such a ra
dar. High-flying aircraft must be detected at the same time as sea-skimming missiles; small, fast ittack craft, which carry sufficient weaponry to mbarrass a cruiser, may press cheir attenions missile aims for the funnel. AWS-5 comes in several forms, for differen vatiety offers a dual-beam aerial on a stabilized platorm. The differing sizes and direction of erial design and the use of pulse compression Two aerials are used - a main parabolic reflec or for low-angle detection and a smaller typ eight-finding facility is incorporated, bo eams being narrow horizontally, but some discrimination between high and low objects is obtained by comparing the returns from the two
search patterns. The two are multiplexed and can be viewed separately. Coded-pulse compres sion confers long range, high resolution and ow peak power requirement: the technique is
one variety of the 'chirp' process, in which the radiation is frequency-modulated during the pulse; here, phase changes at each transition of
psudo-random code. Peak power can be kep pseudo-random code. Peak power can be kept
low, which means that the radar is less easy for in, attacker to detect, and resolution can be

High-speed car

 radioRichard Noble will make his attempt on the world land-speed record in Octiober with Thrut ngine and which, Noble hopes, will move a around 700 m.p.h. For the attempt, a numbe
of communication channels are neede to link support crews at the ends of the run, a highspeed fire tender, timekeepers, an observation have planned a multiway u.h.f. link which will allow several conversations to be carried on su multaneously, being overriden by transmissions
from the car, which will be received automatfrom the car, which will be received automat-
cally by all units. The aerial is of the 'blade' type normally used on high-speed aircraft.
Yet another application of electronics at high speed is in the Grand Prix racing car
which uses the 'ground effect'. The effect is chieved by designing cavities in the When air passes under the venturis, the car is physically sucked down onto the track, offering greater stability and consequently higher speeds. unfortunately the gap
between the venturi and the surface of th road is critical to the level of suction obtained, and it is necessary to establish
which type of suspension system will give which type of suspension system will give the best performance to take advantage a
the effect in a car which is subjected to a constantly changing pitch through rapid acceleration and hard braking. The F
Talbot-Ligier Grand Prix team use a Talbot-Ligier Grand Prix team use a Sangamo uDC 100 longstroke board monitoring equipment, to record the is driven at racing speeds.
ding is difficult to analyse and confus To avoid jamming, the transmitter uses a ravelling-wave tube, which can be made fre-
quency-agile, while sea clutter is reduced by the use of a developed version of Plessey's adaptive moving target indication technique. The search rea is considered as a great number of 'cells', which are defined by the transmitted pulse length in the radial distance from transmitter
dimension and bearing gates in the tangential direction, the average signal level in each cell being digitized and stored. Variations in thi
evel on succeeding scans are assumed to mea evel on succeeding scans are assumed to mean
that an obiect has entered or left the cell and the return is displayed. if nothing has changed, it is lanked. The process is complicated by the moforeign navies have ordered the radar, and the oyal Navy is said to "interested.

Although of not such a high speed as the world land-speed record, racing motorcyclists have similar communications problems which have been solved by Pye Telecom whose mobile radios and 'pocketrones' were used at the Formula and
Classic T.T. Races on the sle of Man. The Driver of the winning Suzuki machine, shown her, was Graeme Crosby and he and his team used the radios for a two-way flow of race information and tactical decisions. A further Pye Telecom radio system was used motorcycles. This enables them to react quickly in the event of accidents, summoning motorcycles. This enables them
help and warning the organisers.

Cardphones

Maior London railway and tube stations are to
have Cardphones installed in a trial for what have Cardphones installed in a trial for what
Bricish Telecom call "a step towards the cash-
less society." But before less society." But before you get too excited
cashless does not mean broke - Cardphones eat cashess does not mean broke - Curdphones eat
Phonecards and that means purchasing either orty or two-hundred 5 p units in advance. A Phonecard is a piece of plastic similar to a
credit card with holographically memorized credit card with holographically memorized
call units printed on it. As a unit is used up, so hat unit is erased, but a warning is given twenty seconds before the last unit runs out to give you
ime to fumble for a new card, say goodbye or utter an expletive (Cardphones don't accept coins. Throughout a call, though, a readout
tells the caller how many ells the caller how many units are left without slot - completely free of charge!
Long, consecutive and overseas calls to
countries now on the direct dialling system are ountries now on the direct dialling system ared not coins, but if you make one call directly afte
of another you still lose any remaining parts of

Small wavelength

Over the years there has been much mild
ontroversy in most western countries over the maximum safe level of microwave radiation Recent news that an American body for
workers' compensation defined the cause of death of a radio technician as chronic exposure to microwave radiation will hopefully invoke a closer
rays.
As.
As in most Western countries, the maximum safe level in Britain for continuous exposure to
microwave radiation is defined as $10 \mathrm{WV} / \mathrm{cm}^{2}$ figure 1,000 times higher than that adopted by the Russians at $0.01 \mathrm{~mW} / \mathrm{cm}^{2}$. Taking into account that the conditions associated with thes
figures are not exactly the same, the difference is still enormous.
Our maximum level is based on that determined by the Americans nearly 20 years ago.
According to an International Electrotechnical Commission reportt from 1979, the very large discrepancies between standards are due to difstandards are based on the possibility of any standards are based on the possibility of any
noticeable biological effect, in contrast to thermal injury, and most western countries take the
view that minor reversible effects view that minor reversible effects are no
necessarily hazardous to man. Als, IEC, the Russians have used very much large safery factors than most other countries in defin-
ing their limit. As there is, even now, much

- 4 llim	
Frr	40 units

unit, as is the case with present domestic and pubbic telephones
Each card has Each card has one or two tracks, depending
on its price, on which the call units and other information are printed. The extra information ystem whether or not the card is acceptable, yystem whether or not the card is acceptable,
i., whether British Telecom intended the card
for making public calls and whether the card is indeed issued by them and not by any other authorities with similar systems. Belgium and
Austria already have such systems and the French are making trials.
The call units are read by a configuration of The call units are read by a configuration of
infrared detectors that pick up reflected light from the coded patterns on the card. As a unit ts used up it is erased thermally. A second microprocessor looks after the nor-
mal routine of the dialling system and allows mal routine of the dialling system and allows
normally free calls such as 9999^{\prime} and directory enquiries to be made without the use of a card. The system was developed in Switzerland by
Sodeco, a subsidiary of the Landis and Gyr Group who are now supplying the apparatus to British Telecom.
Initially around 120 Cardphones are being
installed in London and installed in London and another 80 or so will ler. Phonecards will be available from post offices and some retail outlets including railwa
station bookstalls and fare counters.
rawn. According to the article the power sorbed by a human adult standing 20 cm awa from an antenna with a 30 W input at 90 MHz o
140 W at 27 MHz is the same as would be ab 140 W at 27 MHz is the same as would be absorbed from exposure to $10 \mathrm{~mW} / \mathrm{cm}^{2}$ plane-wave 20cm away from a quarter-wave antenna operat ing at 20 MHz will absorb about 8.5% of the ntenna input power, but at 90 MHz , over 50% of the input power will be absorbed as the aver
age height of an adult is about a resonant lengt at this frequency. Electromagnetic coupling is increased considerably when the body is in contact with the ground, as opposed to being
isolated, and the body may act as a directo element when placed close to the antenna.
† IEC reporn unumber 657 'Non-inizizin radiation
havards in the frequency range from
 *iEEE transactions on Microwave Theory and Tech-
niques, Volume MTT-28, Number 11 (part 1) 'Electromagnetic coupling between a thin-wire antenna
and a neighbouring biological body', by K. Karimallah, K.M. Chen and D. P. .Nyquis.

Satellite on a string

Sounding rockets remain in the air for only a
few minutes; low-altirude lites can antest low dalatitude, for an-propulsive satelcostrs satellite tethered by a cost satellite tethered by a long (very long - up
to 60 miles) super-strong cord to the NASA
ser space shuttle.
Engineers from the Marshall Centre have
been carrying out feasibibity sudies been carrying out feasibility studies with havace
scientists from US/Italian com Italy for what could be the first US/Italian cooperative space eproject. The ITrst
lians could build the satellite and the Americans lians sould build the satellite and the American
would supply the equipment necessary to would supply the equipment necessary to
handle it. The saellite, attached to the shutde
by the tether by the tether line, would be trolled through the
Earrh's Earch's upper atmosphere in a very low orbit,
perhaps only 80 miles above the Earth, for an perhaps only 80 miles above the Earth, for an
extended period. It would be used to gather data on the atmosphere, the magnetosphere and
gravity. The system is likely to become opera
tional by themd gravity. The system is
tional by the mid 1980 s.

Integrated circuit design

Understanding the nature of black boxes may make a significant contribution to circuit performance
by J. L. Linsley Hood

Abstract

The starting point for this series of done most to encourage the application of op-amps as a simple cost-effective solution to circuit problems.

Historically, the 741 device was introduced by Fairchild at the end of the 1960 s, along with several other second-generation ternally-compensated improvement upon Bob Widlar's classic 709. In the Fairchild $\mu \mathrm{A} 741$, most of the minor operational problems of the 709 were reduced to an extent that they were no longer incon- venient in use, and the 741 then became a nearly ideal building block for low frequency applications. Understandably, many of the internal circuit facilities such as output short-cir cuit protection were similar to, and cuit protection were similar to, and inspired by the same requirements as those being introduced in the discrete component audio amplifier designs current at the time. However, the standardization on the use of separate + and - supply ing and non-inverting inputs and the use of circuitry which allowed a high degree of supply line isolation, presaged developments which the discrete componen amplifier designs were not to adopt at all widely for many years. I have shown the circuit, in very simplified form, in Fig. 1 , with the necessary apology that a simplification of this type inevitably takes liberties with the actual design, simply because a more accurate representatio

Why look inside?

There are three ways in which a bette
understanding of the internal design of inear and quasi-linear integrated circuits an help the engineer: more satisfactor greater appreciation of their strengths and limitations; possible use of accessible internal circuitry in unusual applications
rich hunting ground in some of the mor advanced units); and as an encyclopaedia of ingenious circuit design techniques, and resourceful design engineers. Choice of the 741 as the starting point or this series stems mainly from a feeling that it was this i.c. more than any other
which was responsible for the reconciliation of linear circuit engineers to the idea
that most of the circuit functions they had
at all. For example, although I have shown the input transistors as a a p-n-p long-tailed
pair, because this is effectively how they pair, because this is effectively how they
operate, they are in reality a rather more operate, they are in reality a rather more
complex arrangement to allow the use of a complex arrangement to allow input stage pair of n-p-n devices in the input stage -
in a modified cascode connection - of a form which is identical to, and perhaps inspired by, a
years earlier*.
years earlier ${ }^{\star}$.
The reason this rearrangement , The reason for this rearrangement
shown in Fig. 2 , is that it is very difficult in shown in Fig. 2 , is that it is very difficult
conventional bipolar technology to fab ricate $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors which have any respectable current gain h_{FE}, except in the case where the collector is electrically connected to the p-type substrate such as in
the output device. Other $p-n-p$ devices must be of the lateral type, as shown in Fig.3. These are robust, but generally have h_{FE} figures only in the range 5 to 25 depending on the skill of the manufacture masking. manufacture of current mirrors of one kind or another. These are circuit arrange ments in which the output limb looks and behaves like a conventional high-iman output current controlled by an input current fed into its other limb from som external source. The output current the mimics or mirrors the input current. hased types in Fig.4†. The popularity of this type of circuit element in i.c. manufac
*Linsley Hood, J. L., Electronic Engineering, March 1967. (Letters).
implemented using discrete components
could be done by integrated circuits, with
improvements in simplicity and cost improvements. in simplicity and cost
effectivenes. effectiveness.
In spite of all its limitations, in gain and phase-shift, slew reate and input tias curin which the 741 gives excellent service. This applies in audio and medium frequency applications so long as the asso-
ciated circuitry is designed with an eye to its strengths and limitations. In addition there are a vast number of other circuit
usages in which the very high d.c. and l.f. gain of this i.c., coupled with its good rejection of supply line voltage fluctuations and its ability to operate with input d.c.
evels almost anywhere between the limits mposed by its supply voltage lines, make he life of the linear circuit engineer
ture arises from the fact that resistors and capacitors are inconvenient to construct in any large values, whereas transistors and diodes are casy. Moreo re, imarement in gain can be won.
This allows, for example, better operation of an input long-tailed pair wherein the loss of gain due to the normal halving of the g_{m} of the input devices is recovere together between the two inputs of the long tailed pair
The operation of this type of circuit taking for example the simplest arrange ment of Fig.4a, hinges on the fact that if transistor is forward biased so that it passes across its base-emitter junction will then be precisely that which is required to cause \dagger Davidse., J., Integration of Analogue
Electronic Circuits. Academic Press.

Fig. 1. Simplified input circuit operates as n-p long-taited n it devices are n.p.n.

Fig.2. Because of difficulty in fabricating gh-gain p-n-p transistors input rrangement uses $n-p-n$ types in modified
cascode circuit.

an identical transistor (such as one diffused at the same time on the same chip and having the same junction area) to pass the same current. This is not strictly true in practice because the input current will be greater by two lots of base current.
However, if this was important, the mask used in the diffusion process could cause Tr_{2} to be slightly larger than Tr_{1}. The circuits of Fig. 4 b and 4 c minimize this error. My own shorthand symbol for the
current mirror configuration is shown beneath, and I have used this in subsequent drawings.
In the full circuit of the input stage, hown in slightly simplified form in Fig.5, ype shown in Fig.4b is used as the load for the input long-tailed pair, and an ingenious combination of two simpler (4a type) current mirrors, transistors 8 and 9 and 10 and 11 , is used to stabilize the operating
currents of the input devices. The way this works is by means of a d.c. negative feedback loop. If the total current of Tr_{1} and Tr_{2}, which should not contain any signal components, tends to increase, then the current output of the mirror Tr T_{8}, Tr9 will
also try to increase. However, this is also try to increase. However, this is
effectively fed from a constant-current source (the output of the current mirror formed by Tr_{10} and Tr_{11}) so the only thing which can happen is for the base voltage on the p-n-p transistors Tr_{3} and Tr_{4} to bethroughput current of the input stage because it effectively reduces the forward bias on the input transistors at the same time.
The interaction of these current mirrors also operates to minimize the magnitude of
any unbalance currents in the input stage, which improves its symmetry, while simultaneously acting to lessen the extent of any breakthrough of signal components from the supply lines.
output stage, as shown inplifier stage and output stage, as shown in Fig. 1, is of con-
ventional form - the traditional high-gain small-signal amplifier followed by unitygain power output stage, as spelled out so many years ago in this journal by Tobey
and Dinsdale. High-frequency loop stabilization is achieved by the simple and effective expedient so common in early "hi-fi" amplifier circuits of a capacitor between collector and base, as shown. This are discussed later.

Fig. 3. Lateral type of p-n-p transistor,
though robust, ,
gas low value of $h_{F E}$, though robust, has low
generally from 5 to 25.

(b)

Fig. 4. Output current mimics input current in these current mirror variations, all much

As shown, the output stage would have no protection against damage due to out-
put short circuits. This is accomplished by the use of a pair of $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors (the preferred type), as shown in the more complete diagram of Fig. 6 , one of which is
connected across the emitter resistor of Tr_{14}, and will take the current from the input to this if the voltage drop across this resistor exceeds its own base turn-on voltage, and the other (Tr_{22}) which acts in pair class A amplifier stage $\mathrm{Tr}_{16}, \mathrm{Tr}_{17}$. The output stage forward bias is provided conventionally by an "amplified diode" Tr_{21} to give a quiescent current in class AB peration of about 1.5 mA .
The final circuit of the complete i.c. is hown in Fig.7. I have actually shown that the commercial 741 s use a closely similar structure. In this, the only item not covinadvertent d.c. error at the output. This is done by putting a pair of resistors in the emitter leads of the current mirror used as the load for the input stage. If one or other of these is reduced relative to that in the ther limb the current in that limb. fo for a change in input potential for that input device to maintain status quo. As this will not happen normally, the result of the adjustment will be to provide an output voltage shift equivalent to the stage gain
multiplied by the required input offset. This provides a convenient means for obtaining a small shift in the output d.c level, with minimal interference in the performance of the i.c. as a whole.

Performance

The d.c. and low-frequency voltage gain given by this circuit is very high - in excess of 50,000 , with typical values of the order of 200,000 . However, the presence
of the h.f. stabilizing capacitor has a of the h.f. stabilizing capacitor has a
massive effect on the a.c. performance at massive effect on the a.c. performance at
frequencies higher than a few hertz, with the gain decreasing with frequency beyond some 5 to 10 Hz at a rate of 6 dB /octave. A typical gain and phase-shift graph is shown in Fig. 8 .

Fig.5. As well as a current mirror for the Fig.5. As well as a current mirror for the
tail, type (b) in Fig.4, two (a)-types stabilize
operating currents of the input transistors operating currents of the input transistors
by d.c. negative feedback onto the base of Tr3, $\mathrm{T}_{\mathrm{r} 4}$. Fig.6. To provide short-circuit protection,
Tris passes current from the input if the
emitter resistor drop exceeeds base turn-on emitter resistor drop exceeds base turn-on
voltage. Tr22 acts in a similar way for the Darlington pair.

An examination of this shows two important features. There is a significant additional phase error beyond 300 kHz ,
which implies the presence of one or more

WIRELESS WORLD OCTOBER 1981
phase-lag inducing components within the is the reason why the unity-gain point for adequate unity-gain stability in a feedback configuration cannot be made much higher
than 1 MHz . And following upon this, the than lable open-loop gain at the upper end of the audio band, say 20 kHz , is only of the order of 50 .
Unless, therefore, the gain requirements of an audio amplifier stage using a 741 are
kept deliberately low, neither the amplikept deliberately low, neither the ampli-
tude response and phase linearity, nor the harmonic distortion characteristics of the amplifier stage, are likely to be satisfactory in the context of contemporary expectations for "hi-fi" equipment. Fortunately amplifiers, such as the Texas Instruments TL071 series, which offer substantial improvements over the performance of the 741 -type i.c. in those regions which are of importance to the audio engineer, and propose
The other features inherent in the design of the 741 which must be borne in mind in its use if results are to be satisfactory are those which concern the input
long-tailed pair of bipolar transistors and long-affect of the h.f. compensation capacitor on the transient performance. Taking the first of these, the design of the input stage leads to a combined chlector curren for the long-tailed pair of areund m 100 for the input devices, the necessary forward bias current for $25^{\circ} \mathrm{C}$ operation of the circuit will be $0.1 \mu \mathrm{~A}$ for each input, and this current must be supplied through any resistive circuit components in the in be minimized by making sure that the total resistance value in each input, circuit through which these bias currents mus flow is the same (those component unimportant in this calculation), it must be remembered that these currents increas significantly with temperature, and tha the internal matching of the input devices may not hold over this range. For this
reason, the total d.c. gain of the circuit and the amount of output d.c. offset which is tolerable must be considered when its cir cuit environment is being formulated along with the temperare range ove which it is to operate.
The second limitation of this i.c., tha pensation, is a rigid upper limit on the voltage slew rate which can be achieved at the output, around $0.5 \mathrm{~V} / \mathrm{\mu s}$. If a composite signal is applied to the input which conof change in putput voltage than this, the total composite signal will be lost while the output moves from one instantaneous d.c. level to another, at the maximum rate pos-
sible. This self-evident fact applies to all sible. This self-evident fact applies to all
amplifiers which are slew-rate limited, inamplifiers which are slew-rate limited, in
cluding some in the "hi-fi" field. It is, I think, a sad commentary on the state of our art that a fact which is so simple to comprehend and can be stated so simply,

Fig.7. Complete circuit shows arrangement for offsetting d.c. error in the output. Fig.7. Complete circuit shows arrangement for offsetting d.c. error in the output.
Reducing value of appropriate emmitter resistor in the input stage produces an output Reducing value of appropriate emmitter resistof
voltage shift equivalent to gain \times input offset.
of technical papers aimed at proving the superiort
product.
To live within this limitation, it is necessary to ensure in all cases where slew-rat and not all applications would be influenced by this - that the maximum rate of change of voltage in any input signal does not approach the output slew-rate
divided by the effective divided by the effective a.c. gain.
There are now a large number of more recently designed and more expensive third generation operational amplifiers, in which both the small-signal bandwidth and slewing rate are much greater (by a factor of ten or more) than is the case for
the 741 . In some of these, such as the Ti the 741 . In some of these, such as the Ti^{2}
TL071 and the RCA CA3140 types, the input bias requirements have been reduced to a level which is so low that the choice of input resistance values can be determined
solely by other circuit requirements.

Fig.8. Frequency response shows phase error beyond 300 kHz which limits unity-
gain point to around 1 MHz . Low open-loop gain point to around 1 MHz . Low open-1
gain at 20 kHz limits usefulness in hi-fi gain at 20 kHz
applications.

FREE WITH THIS ISSUE

Extra-terrestrial relays

1. October 1945 an article by a new author, a man named Arthur C Cladke

 author, a man named Arthur C. Clacke,appeared in Wireless World. At fist glance, appeared in Wirelass World. At first glatice,
the subject of the arcicle semed to belone the subject of the arrack seemed wa tain
mose to a science fiction pariodicel thain of a technical journal tike JViveless Wortid ia deed, Mr Clarke subsequently becime on
of the best-knowna authors of science fir vion: The second and succeeding reedings. boweter, showed that what Mt Clatke ha
to say was sound sense. Here was nothin tess than a \& cheme to use artificial geotra-
tionary earch saxelites as hroadcooting and tionary earch satellites as bro
comonuications platforms.

As everyone knows; space is now thic

 with saclitites of all descriptions - thereare 10 in geosynchronous orbit - but If
1945 it needed a great deal of thought to be

There is currently a enescendo of activi and speculation on the use of satelites fo
televicion and data communications apar readers tughta like zo sei how it all stanno This month, therefore, we bave included
reprint of the original article as an insert in reptint of the original article as an insert it
those issues distributed in the UK. It wai not possible to do this for overiseas readeres, but if anyone abrrad wquuld like a c cops they meed only send a stamped, noddresse
enveloped to Wireless Wortd, Quadrat House, The Quadrant, Sutron, Bum
solely by other circuit reonime-

WOMRLD OFF RMATIEUTR RADIO

D-C goes professiona

The recent IERE Clerk Maxwell Commemorative Conference at Leeds Univer-
sity on "Radio Receivers and Associated sity on "Radio Receivers and Associated
Systems" emphasised the considerable degree of current professional interest in direct-conversion (homodyne/synchrodyne) echniques, including the use of phasing networks to provide flexible demodulation For example MEL have developed a 20 watt "Callpack" manpack h.f. transceiver in which the Weaver "third method" system, combined with digital quadrature phase shifting, is used both for s.s.b. genI.A.W. Vance, G3WMS and a team at STL have further developed their inte-grated-circuit n.b.f.m. d-c receiver to minimize the effects of oscillator phaseoise by means of what they term an "amor" and expect to see widespread use of his class of (mobile) receiver in the near future since it permits almost the complete receiver to be put on a chip. Philips Reing the use of surface acoustic wave (s.a.w.) resonators to provide fixed-tuned d-c v.h.f. paging receivers suitable for the British Telecom National Paging System, he s.a.w. resonators being used to provide or frequency control at a fraction of the cost of using quartz crystals. Although homodyne te
back to the 1920s, it seems fair to claim hat much of the current professional in-
erest stems from the work of J P Costas terest stems from the work of J. P. Costas,
W2CRR of General Electrics (US) in the 1950s followed by J. R. White, W2WBI, K. Spaargaren, PAoKSB and Wes Hayward, W7Z01 plus a whole decade of ctive amater experimention

Vintage c.w.

equipment?

Locher, $W 9 \mathrm{KNI}$ writing in Ham . Raio suggests that amateur h.f. equip ent reached its operating zenith in the mid-1950s in the form of such equipment as the Collins 75A-4 receiver and the same what he regards as a subsequent decline in overall performance as starting with the eneral introduction of h.f. transceivers ollowing the success of the Collins KWM 1 in the late 1950 s , due to the economic possible by combining both transmitte dis receiver into a single compact unit. His main complaint with the curren eneration of factory-built equipment
from the viewpoint of a c.w. operator is the absence of any capability to ensure the accurate zero-beating (netting) of the the result to an incoming c.w. signal. c.w. contacts where the two stations gradually "walk up" the band in tandem, due to each operator retuning at each "over" and difficulties in competitive "pile-ups" because operators cannot accurately place ceiver incremental tuning etc. Even more harmful, in his eyes, is the tendency during normal contacts to occupy two distinct frequency channels, separated by up to
There seem
There seems to be no easy solution to degree even where separate receivers and transmitters are used. The recent high-cost Collins h.f. transceiver type KWM380 minimizing the problem and ensuring that the offset between the transmitted and received frequency is exactly equal to the requency of the audio c.w. monitor. Even better, Bob Locher adds, would be to make variable, with perfect tracking, both offset differential, so that the audio monitor only could be keyed and then adjusted to zero beat precisely the incoming signals. Many c.w. operators would agree that own pet annoyance is the frequent absence of the ability to switch off the a.g.c. system.

Here and there

Very high levels of solar flare activity were recorded around the end of July, resulting in disturbed conditions on the h.f. bands and one of the most pronounced periods of auroral activity ever recorded in Europe,
with stations as far away as Moscow being heard in the UK on 144 MHz . It is, however, now thought unlikely that the reception of southern African signals in Athens on 50 and 144 MHz on February 16 WoAR May) was due to "long-path" direct path.
Roger Appleton, chief engineer of Lonon Weekend Television, has succeeded . C. British AmR (BA) as president BATC is holding an amateur Club exhibition at the Post House Hotel, Leicester on Sunday, October 4 (from lla.m.) including demonstrations of memscan tv and F. n. "Dud") Charman G6CJ's "aerial circus" (on video tape) The FCC is tightening up on its "wair ers" procedure for home computers,
which are providing a severe source of
radio-frequency interference (r.f.i.). Test radio-frequency interference (r.f.i.). Test have been set for both radiated and mainsborne field strengths. These regulations are more severe than those for large professional computers since domestic models
are considered more likely to be located close to television and radio receivers. Until recently a number of "waivers" to the regulations have been authorised to give manufacturers time to modify designs. tellite is now expected to be carried on the same Ariane launch vehicle as the European Communications Satellite (ECS) now scheduled for launch on an unspeciied date between June and October 1982. cases where bogus or "altered" QSL cards have been submitted by amateurs for the DXCC listing. The suspect cards include a number for contacts made (or claimed to have been made) with "expeditions" in the
1960 s and 1970s. One amateur connected with past expeditions is alleged to have admitted that 20,000 bogus cards were printed and issued by his group alone.

In brief

A new 70.12 MHz solid-state beacon transmitter at ZB2VHF, Gibraltar has been well received in the UK and on July 19 several British amateurs made contact on 70 MHz with ZB2BL Gibraltar, one of the very few European countries, apart
from the UK, where 70 MHz operation is permitted . . . RSGB's Senior Rose Bow rophy for the 1981 Commonwealth Contest has gone to the Canadian amateu ohn Sluymer, VE60U with 480 contacts, number of American states it is illegal to drive a car wearing headphones regardless of whether these block out road noises. Three Canadian amateurs have been experimenting with the use of the 10 GHz ban possible to make contacts over distances of up to about a mile despite screening from buildings and other vehicles . . . FCC has "pened an enquiry into issuing permits to "advanced class" licence holders to experihe 50,144 and 220 MHz bands . . . In policy statement, the RSGB has confirmed that it welcomes c.b. provided that it is suitably regulated; will continue to emphasize the differences between c.b. and power f.m. on 27 MHz with officially-ap proved equipment; welcomes the 934 MHz allocation; and "will do whatever is within its power to prevent c.b. operation within any amateur bands."
PAT HAWKER, G3VA

Linear power-amp offers high stability

Although many amplifiers claim good damping factors, speaker resonance often pedance cables. This amplifier uses a nove output stage with control transistors con nected as quasi-emitter-followers for high linearity. Slave devices provide a voltage to the control transistors about halfway behelps to share the dissipation and reduce the possibility of secondary breakdown. The amplifier provides a $25 \mathrm{~V} / \mu$ slew rate and is unconditionally stable into any load
down to 2Ω. Input and output supply rails
hould be connected at the power supply A eliminate the need for local decoupling. recommended for a maximum output of recom.
60W.
Fig.
Fig. 2 shows an alternative output configuration which uses slave transistors to
dump current into a low power output dump current into a low power output
stage such as a class A or v.f.e.t. as shown. In this circuit most of the dissipation is in the slave transistors.
Q. Rice
New Mald

Surrey

Analogue multiplier

A simple high-impedance analogue multiplier can be constructed using two
v.m.o.s. transistors and an op-amp to simulate a resistor which is proportional to $R_{1} V_{\text {ref }}\left(V_{1}-V_{\text {ref }}\right.$. This circuit represents a non-inverting amplifier whose output voltage is
K . Kraus
K. Kraus
Rokycany

Czechoslovakia

Gray to binary converter

 When converting Gray to binary, each time a more significant bit is added, the relationship between the previous bits isinverted but the new bit has the same value in Gray and binary. Therefore, a single exclusive-OR gate will convert a Gray code to binary as shown in Fig. 1. For more bits, the circuit can be expanded as shown in Fig. 2. Converting from binary to Gray Is J. Mouton East London S. Africa

Ten beam converter

By using a pseudo-random oscillator to provide unequal periods, ten oscilloscope waveforms can be displayed which do no lock with the timebase from the chop frequency. The amplifiers are low-gain types
and require 30 V . Open collectors in the 7406 switch the signals and the $10 \mathrm{k} \Omega$ potentiometers position the waveforms on the c.r.t.t.
J. R. V. Hawkins
London
n important problem still unsolved in audio is the correlation between subjective and objective quantities. But it is more important to answer the question of why we can distinguish loudspeaker.

Audible differences of amplifiers are the
Audible differences of amplifiers are the be. The harmonic distortion of a high quality amplifier is usually less than 0.1%, while the distortion of a loudspeaker is more than 1%. In spite of this we can sound of a loudspeaker and point out differences in the quality of amplifiers. This implies that the distortions in amplifiers and loudspeakers differ in properties which cannot be expressed by the tot It has distortion measurement distortion generally does not give goo correlation with subjective assessments of sound quality. To give an improve subjective agreement, several methods of proposed ${ }^{1}$. The gap between the subjec tive quantity and the total harmonic distortion measurement is explained to start with by the difference of signals used for tests, viz. a musical sound and a sine-wave sisnal.
A musical sound involves many tran ient sounds whose waveforms are gener ally very complicated; see Fig. 1. What is non feature in those waveforms? aything is common in those waveforms, having no d.c. component. Many wave forms have such properties: Fig. 2 (top) hows the waveform of a model transie ound, h ($)$, which consics of half-sine and negative waves are different from each other and the area of the waveform above the zero axis is equal to the area below the zero axis. Thus, the asymmetric waveforn (t) has no d.c. component. Fig. 2 als shows a plot of the frequency spectrum of
the waveform where $S_{1}(f)$ and $S_{2}(f)$ are spectra of impulses a and b respectively. At low frequencies the spectrum shows a 6 $\mathrm{dB} /$ octave slope. When an amplifier under test alters such a waveform, the area of the axis will be different, in accordance with non-linearity in gain. This difference gives rise to a d.c. component, coupled with increase of low-frequency components
the waveform. The spectrum function he attered waveform can be obtained ma thematically by expressing the non-linear ity in the form of an appropriate equation ${ }^{2}$ ties on the waveform and spectrum of the model signal are shown in Figs 3-7, where $h_{\mathrm{a}}(t)$ is the altered waveform, $\Delta(t)$ the deviation from the waveform $h(t), D_{\mathrm{a}}(f)$ the spectrum of $\Delta(t), S_{a}(f)$ the spectrum of $h_{a}(t)$, and so on. An s-type non-linearity of
an amplifier gives rise to an increase in low-frequency components of the signal, caught as soft or 'glossy' in listening tests. A soft distortion as represented by an s type non-linearity is sometimes preferred ping is not an operational non-linearity in the proper sense of the word, but the saturation of a system being overloaded. The effect of clipping on the spectrum is the increasing of both low and high-frequency
components, which is audibly irritating
and disliked. In the case of a crossove distortion, the low-frequency component increases with decreasing amplitude of the inut signal. This distortion is remarkable of a dynamic distortion, take the distortion occasioned by a level compressor. For simplification, assume that the gain of a circuit attenuated to reduce the amplitude of a positive pulse as in Fig. 6(a). In this case, change, viz. the increasing and decreasing of low and high-frequency components. Unless the functioning of a level compressor and expander is ideal, a noise reduction system produces a similar distortion in an subjectively as somewhat dull or heavy by a listener.
As discussed, gain non-linearities in amplifiers give rise to a d.c. component omponents of an impulsive signal On th

The photo shows the Shinwa non-linear distortion meter used for the measurements. This instrument meter used for the measurements. This instrum
produces asymmetric waveforms with ho d.c. component. Below is a block diagram of the meter.

Fig. Typical waveforms oftransient sounds are asymmetric with no d. component

WIRELESS WORID OCTOBER 1981
other hand the distortion in a loudspeaker does not, as a matter of course, give a d.c. component. As an expene, consider the s ponse of a vibrating plate. To simplify a analysis, assume a sound pressure is in proportion to the velocity of a plate, viz. sound is assumed to be radiated from an infinite plate. For a finite plate, the sound proportional to the acceleration of the plate. The difference between the displace ment response $H s(t)$ which is altered by the s-type non-linearity and the ideal respons $H(t)$ is expressed by $\Delta_{\mathrm{H}}(t)$. As sound
pressure is proportional to the velocity of an infinite plate, the sound distortion $\Delta(t)$ is given by the derivative of $\Delta_{\mathrm{H}}(t)$ with respect to time. As shown in Fig. 7(c), the spectrum of Δt involves no d.c. component and few low-frequency components
Thus the distortion in a loudspeaker does not change the low-frequency component of an impulsive sound, which is in contrast with the case of the distortion in an amplifier. And this is the reason we can disting uish amplifier sound from the sound of experiments using a novel method for measuring non-linear distortion

Experimental method

The model of a transient sound used for the theoretical study consisted of two halfsine waves of different amplitudes and polarities. The model signal was such that it could distinguish distortion due to noninearities as a change of spectrum, which however not convenient to use the model signal for the measurement of an objective quantity, viz. the rate of distortion.
A new method of making non-linear distortion measurements uses composite rectangular pulses, as shown below. The form above the zero axis is equal to the area below the zero axis, so these asymmetric test signals have no d.c. component.

Asymmetric test signals have equal areas above and below axis and so have no d.c. component. Area of a positive pulse of the
first test signal is $V_{1} T_{1}$ and the area of a negative pulse is $V_{2}\left(T_{2}-T_{1}\right)$.

When an amplifier under test alters the applied test signal the areas of the altered waveform above and below the zero axis gain non-linent in accordance with the gain non-linearity. This difference gives
rise to a d.c. component coupled with increase or decrease of certain low-frequency components of the test signal, either of which can indicate the degree of inearity of the amplifier under test.
The repetition frequency of the test signals is 220 Hz , chosen to lie between the higher harmonics of power-supply fre-
quencies 50 and 60 Hz . At low frequencies the envelope of the test-signal spectrum has a $12 \mathrm{~dB} /$ octave slope and the component at 220 Hz , normalized to that of the eference signal, is 0.002 (-54 dB) which is the theoretical value in the absence of
non-linear distortion. Thus the difference between the normalized component at 220 Hz of an altered test signal and the theoretical value of 0.002 , indicates the value of non-linearity of an amplifier under test.
When the gain non-linearity is static, i.e. when the i/o properry is expressed by a single curve, the non-linear distortion D

esponds to the linearity deviation

 Δ. The relationship is$$
D=\left|\Delta / V^{\prime}{ }_{1}+0.002\right|-0.002
$$

where $V^{\prime}=V_{1}+\Delta$,
which is nearly equal to V_{1} for $\Delta \ll V_{1}$. This gives $D V^{\prime}$ ior $\Delta V^{\prime} \geqslant-0.002$

The figure of D involving V_{1} indicate directly the form of gain non-linearity, i.e an s-type non-linearity, cross-over distor D given by the last equation corresponds with the figure given by $D=\Delta / V^{1}$ which turns up at $D=-0.002$. Thus the lower limit of the $D(\%)$ axis is -0.2%). The is shown under the photograph anparatus page.

Results

One of the advanrages of this method is that calibration of the test signal can be could be correctly measured. Care wa
taken to avoid the effect of non-linearity in the microphone and measuring amplifier Fig. 11 also shows the distortion figures obtained by measuring the voltage across
the voice coil of the loudspeaker. Evithe voice coil of the loudspeaker. Evidently, the non-linear distortion of an am
plifier can be distinguished from the plifier can be distinguished from the really distinguish amplifier sounds from the sound of loudspeakers objectively as well as subjectively.

References

1. H. H. Scott, Audible audio distortion, Electronics, vol. 18, 1945 no. 1, pp. $126-131$.
J. K. Hilliard, Intermodulation testing, Electronics, vol. 19, 1946, no. 2, pp. 123-127. nel communication systems, Electron. Eng. vol.
37,1965 , pp. $714-717$. ne1 communication sys.
2. 1965 . . . 71417 .
S. S. Nikaido and T. Nitadori, Non-linear
distortion measurement of audio systems, $E B U$ Rer., no. 131, 1972. M. Otala and E. Leinonen, Possible methods
for the measurement of transient intermodulafor the measurement of transient intermodula-
tion distortion, 53 rd AES Convention, New tion distortio
R. A. Belcher, Audio non-linearity: an initial appraisal of a double comb-iilter method of
measurement, BBC Res. Dep. Rep. 1977/40. measurement, BBC Res. Dep. Rep. $1977 / 40$.
S. Takahashi and S. Tanaka, Method of measuring transient intermodulation distortion,
63rd AES Convention, Los Angeles, 1979 . 23. Y. Hirata, Pulse resposse and transient non-
linear distortion of audio instruments, linear distortion of audio instruments, \bar{F}.
Acoust, Soc. $\begin{aligned} & \text { fapan, vol. } 34,1978 \text { pp. 444-9. }\end{aligned}$ Acoust, Soc. Yapan, vol. 34, 1978 pp. 444.-9.
3. Y. Hirata, M. Ueki, T. Kasuga and T. Kitamura, Non-linear distortion measurement using composite pulse wavefo
tion, Los Angeles, 1980 .

$69 \times 69 \mathrm{~mm}$ flat-panel

display

The first step towards production of a $69 \times 69 \mathrm{~mm}, 57,600$ pixel flat-panel display has
been made by Standard Telecommunication Laboratories in the form of a $36 \times 36 \mathrm{~mm}, 1,600$ pixel prototype. The end product will be
liquid-crystal display only a few millimetres liquid-crystal display only a few millimetres display, for instance, a full page of Prestel. STL, a subsidiary of STC, disclosed details of
what they call the sub-miniature v.d.u. in New what they call the sub-miniature v.d.u. in New
York recently at the International Symposium of the Society for Information Display

CITIZENS BAND
Mr Frost says in July letters that operators of at the expense of changing to the new system". I can think of a few other groups having "reason - ogrumbebe":
-housebreakers, forced by new lock designs to -radio control tock picks; faced with move to the 35 MHz band;
-car and boat modellers, who have not been given a new band, but are left with one polluted -hospital administrators, forced to buy new paging systems to avoid 27 MHz c.b. interference - see the letter on
Weekhy, May 13th, 1981
After the publication of a letter in a local ments by a c.b. enthusiast, objects were thrown from a passing car at my house. For this reason,
I would be grateful if you did not publish my I would be gratefu
name and address. name a and address.
(Name and address supplied)

science". Their works show the ability to sim-
plify and unify previously complicated and separate areas of scientific endeavour.
It is the duty of those involved in It is the duty of those involved in the educa-
tion of the young in science and engineering subjects to uncouver this fundamental emotion' subiects to uncover this fundamental emotion'
in the students by what is said, more so by what
is is done in the laboratory, but most of all by the
ceacher's love of his subject. Perhaps in this teacher's love of his subject. Perhaps in this
practical way it is quite possible by our scientific activities to, as Plato put it, "create the spirit of philosophy, and raise up that which is unhappily allowed to fall do
$M . f$ Cunningham,
.

WIRELESS WORLD

1911-1981
Congratulations on seventy years great service by Wireless World and The Marronigraph. As far operated by this company for its employees is he only library in Australia with a complete run from issue numb
date.
B.f. Simpson,
B. .7. Simpson,
Chief of Patents,
An

Amalgamated Wireless (Australasia) Ltd

JAMES CLERK
 \section*{MAXWELL}

Mr Wellard, in his article on Maxwell (May 1981) in my opinion spoiled an otherwise in-
teresting article by some outrageously contenteresting article by some outrageously conten-
tious statements which were unsubstantiated in ious statements which were unsubstantiated in present day knowledge of atomic and nuclear
physics. physics.
The m
The mass ratio of electrons to protons is about
$: 1820$; but the charge ratio is exactly $1: 1$, but of 1:1820; but the charge ratio is exactly $1: 1$, , but of
ppposite polarity. The body of experimental evidence for these ratios is extremely strong
ince the design of mass spectrometers, mass separators, synnchro cyclotrons, electron beam systems (including c.r.t.s) and many others deof electrons and protons.
His article implies that hydrogen atoms and molecules are not electrically neutral. The imas I am aware, having had considerable experence of ion sources, electron beams and hydrogen gas handling, there is not a shred of evidence to support the implication of non
Furthermore the statement about the neutron
'this non-existent particle' \ldots, is also work if neutrons are non existent? Why do nuclear physicists refer to thermal neutrons and fast neutrons, and the resulting reactor types,
thermal and fast-breeder reactors when, as Mr Wellard asserts, neutrons do not exist? Again, neutron radiography is an extremely useful alternative to X-raying for non-destructive testing of various engneering pars?
work if there are no neutrons?
It is difficult to follow Mr Wellard's logic in It is difficult to follow Mr Wellard's logic in
the article when such unsupported ourtageous
important experimental data from the world then he should publish it properly in some form where it can be scrutinised and his experiments
repeated, and so be tested for their universality. If, on the other hand, he has no basis for his
remarks, except that he does not like the idea of electrons and protons having an equal magnitude of charge, or does not like the idea of
neutrons, then it is just too bad: they are neutrons, then it is just too bad: they are an
observational fact. Many people did not like the idea of a spherical earth or a helio-centric solar
system, but both are observational facts, cround system, but both are observational facts, around
which valid models can be constructed. We may not know what a neutron is, since we cannot handle it in the way we can handle familiar everyday things, but its properties can be quan-
ified (e.g. mass) and used for prediction pur-
poses.
Referring now to a letter concerning Mr Wellard's article by H. Aspden, he states that in assert a force was reported in Nature. Not many of your readers would have access to the article named in Nature, which reports some interest-
ing experimental results, as yet uncorroborated, which may be evidence for an aether (or something) but is not proof as yet. Mr Aspden is a
very impressionable person if he considers one very impressionable person if he considers one
experiment to be proof. The experimental techrique will have to be very carefully looked at to ensure that no other phenomenon was responsipeated elsewhere with another apparatus to conpeated elsewhere with another apparatus to con-

firm the results. Only then can it be asserted that there is enough evidence to provisionally | confirm the implic, |
| :--- |
| B. 7 . $C . B$ Burows, |

Bencon,
Bxford

The author replies:

The question of the equivalence of electrons protons and the hydrogen atom was answered in The equation does not satisfy Maxwell's test and is therefore absurd. The neutron is one half cycle of an electromagnetic wave; the anti-neu-
yon is the cal myths. The infinite acceleration of an action-t-a-distance particle generates an infinite amount of energy. I assume from the third paragraph of Mr Burrows letter that he
experimental physicist. If he finds his working model of a particle more useful in his work than the working model of a wave, he should carry on sent. The passing of an examination requires the anconditional acceptance of a working model that the working model he was forced to accept was based on the wrong analogy. I am not sug-
gesting that he or any other member of the scientific community is in any way responsible for the constrictions imposed by the mathematical extremism of Lorenz or the entrepreneurial
skill of Einstein. The flaw in any idea or belief is its dogma; identify the dogma and you idenuify the flaw. As far as I know, a physicist is no different from any other human being infused
with an extreme idea. Mr Burrows writes in plain English and must be capable of plain and open thinking.
Mr Burrows
Mr Burrows is unfair and unwise to include
an innocent bystander in his deprecations. He

WIRELESS WORLD OCTOBER 1981
asks whether I am withholding new important
experimental data from the world．The answer experimental data from the worli．The answer
is no．I would have thought that every experi－ ment with an electromagnetic wave proved the
presence of a medium．Does he know the presence of a medium．Does he know the
whereabouts of another Einstein withholding experimental datat that proves otherwise？Two
books by Dr Aspden received a favourable books by Dr Aspden received a favourable
mention in Dr Essen＇s attack on Relativity（Oc－ mention in Dr Essens satack on Relaivity（OC－
tober 1978 issue．）Both gentlemen are Flat
Earthers．Now that the memory of the late Earthers．Now that the memory of the late
Professor Dingle has ioined them，Mr Burrows． Professor Dingle has joined them，Mr Burrows．
is wasting his time seconding me to such an is wasuine club．
To prove iust how exclusive this club is，I
have taken a look at Einstein＇s famous equation have taken a look at Einstein＇s famous equation
of energy，$E=m c^{2}$ ．The dimensions of work or
 energy are $M L^{2}$ ，a，acelerating throgh unit of
forne（MLeasured in its own direction．This is
lengh mes． length measured in its own direction．This is mathematically equivalent to the product of a
mass and the suquare of a velocity（LTT），and
even if the velocity to be squared equalled one even if the velocitiy to be suuared equalled one
metre per year，work would still be performed metre per year，work would still be performed
by an accelerating mass．Einstein＇s famous equation has the dimensions of work or energy，
but implies，in fact insists，that work is only but implies，in fact insists，that work is only
performed by an accelerating mass when the pelocity to be squared is equal to the＇constant＇
velo speed of light．His equation is meaningless， misleading，and very very slick．Einstein be－
lieved the Earth was round．Does this prove that Flat Earthers do not subscribe to the theory of the great philosopher＇Fart＇Waller ，＂＇Tain＇t
what you do，it＇s the way that you do it－that＇s what you do，ir＇s the
what gets results．＂？
what gets results．＂
Mr Burrows asks some awkward questions in
his fourth paragraph．Why not leave the micro－ his fourr十）paragaraph．Why not leave the micro－
scopic dictatorship of nuclear physics and try the scopic dictatorship of nuclear physics and try the
macroscopic democracy of astronomy，looking for analogies that don on t allow energy too disap－ pear？It has been suggested that this universe is
the inside of a huge spherical atom．Taking the the inside of a huge spherical atom．Taking the
analogy further a rarioactive atom would be
filled to bursting point wis fillod to burrsting point with colliding quasars
nd the resulting big bangs and young galaxies． and the resulting big bangs and young galaxies．
Quasars are continuously losing a vast amount Quasars are continuously losing a vast amount
of energy．Are they transformed from electro－
magnetic waves when the waves are absorbed， and transformed back again into waves when they are emitted at a lower energy level？Are
they by analogy massive radioactive atoms hey by analogy massive radioactive atoms
which on devolution are emitted as spent neu－ tron stars or helium atoms？Are there interme－
diate－size groups of atoms between the Earthly diate－size groups of atoms between the Earthly
and the Universely？How many universes are there？As many as there are atoms in our uni－ verse？W Would over 200 ＇particles＇be emitted if a
radioactive universe disintegrated？Wireless World regrets the decline of the philosophical spirit，and so do I．

＂TRUTH TABLE＂LOGIC

 SYMBOLSThere are many disadvantages in the system of itene issue，pp 61－62），the main ones being that once
away from input stimulii no＂true or assertive state＂exists unless the circuit is further compli－ cated by adding some form of flag to indicate an
artificial＂true or assertive state＂at that point． In any case it is doubtful whether doubling the number of different symbols used can make diagnosis simpler，especils have different symble There is a much simpler
lem，that of what I would describe as Truth
Table logic symbols．As far as I Im awre Table logic symbols．As far as I am aware the
dea is original but I have not researched the idea is original but I have not researched the
matter．Fig． 1 shows the derivation of the
symbol from what I have described as the singu－
lar logic state of the simplest form of the truth lar logic state of the simplest form of the truth table．The gate outhe shape is of no great impor－
tance provided its input and output are clearly tance provided its input and output are clearly
distinguishable（this excludes the rectangular box as per BS3939）．Each input has a logic state
associated with it（TT input stat）and ech associated with it（TT input state）and each
output a logic state associated with it（TT out－ output a logic state associated with it（TT out－
put state）．In order to produce the TT output state it is necessary to make all inputs equal to
the TT input state．It does not tax the brain too me TT input state．It does not tax the brain too mut，any state other than all inputs equal to the TT input state will do．If a gate is in an applica－ tion where，for example，a signal is input to a
gate and the other inputs are used to enable that gate and the other inputs are used to enable that
gate then the gate will be enabled for that signal
hen all other inputs are equal to the TT then al
state．
Fig． Fate．
Fig． 2 （a）shows the problem as stated by Mr
Cassera in his Nover Cassera in his November article on intentional
logic symbols．Fig．2（b）shows how it would be ogic symbols．Fig． 2 （b）shows how it would be
drawn using TT logic symbols． In order to enable gate 3 inp
In order to enable gate 2 the output of gate 1 must be 1 ．Both are immediately obvious from
the fact that to enable a gate enabling inputs the fact that to enable a gate enab．
must be equal to the TT input state． must be equal to the $1 \mathrm{Tr}_{\text {input state．}}^{\text {To get } 1 \text { out of gate } 1 \text { any combination of } \mathrm{A}}$
and \mathbf{B} will do other than all 1 s ．This follows and \mathbf{B} will do other than all 1 s ．This forlows from the fact
output state．
output state．
The absence of the inverting symbols may
worry some engineers used to worry some engineers used to conventional
symbols but a NAND gate is only inverting symbols but a NAND gate is only inverting
because of the way the AND is defined．Few engineers would be entirely happy with this explanaze but they can take comfort from the
fact that is is extremely easy to tell conven－ fact that is is extremely easy to tell conven－
tionally inverting from conventionally non－
inverting gates in that for inverting gates the inverting gates in that for inverting gates the TT
input and TT output states are different imply－ input and TT output states are different imply－
ing an inversion．
The EX－OR and EX－NOR gates present a The EX－OR and EX－NOR gates present a
hoice of symbols as shown in Fig．3．If starting choice of symbols as shown in Fig．3．If starting
from scratch one would choose Fig． 3 （a）and
Fig．3（c）．Unfortunately Fig．3（c），the symbol
for an EX－NOR，is too similar to the conven－
tional EX－OR symbol，therefore Fig．3（d） tional EX－OR symbol，therefore Fig．3（d）
should be used for an EX－NOR．This would be interpreted that in order to get 0 out the inputs must be not equal．Either 3（a）or $3(\mathrm{~b})$ could be
used for EX－OR， $3(\mathrm{a})$ being preferred on the
 grounds of simplicity．To summarise，the
system is very simple，is very largely self－expla－ natory，and requires littre mental effort to
change from existing practics．All identical change from existing practices．All identical
gates have identical circuit symbols，the gates have identical circuit symbols，
symbols themselves being uncomplicated．
f．E．Kennaugh

Callington
Cornuall

TELEVISION AND THE

 DEAFI have been interested to read the correspon－ dence about amplifying tv sound for the deaf． with this problem．A great deal of amplification was required but it was obviously going to be an
advantage if normal hearing people could follow advantage if normal hearing people could follow
the programme without being blasted out of the the programme without being blasted out of the
room．Amplified headphones are not sufficient room．Amplified headphones are not sufficient
as the sound loses quality compared with that from a properly made earpiece with a mould
made specifically for that person＇s ear．In addi－ made specilically for that person＇s ear．In addi－
tion many hearing aids have some form of equalization to try to compensote for hearing
response curves changing with frequency． response curves changing with frequency．
It seemed to me that the answer was clear： the amplification，equalization and earpiece al－ ready in thication，eqsession of the e eaf person．M any
hearing aids have some form of telephone pick－ hearing aids have some form of telephone pick－
up coil and maybe some switching to allow
＂mic＂ up coil and maybe some switching to allow
＂mic＂，telephone or both．Fortunately the Sony
television to be used was equipped with both television to be used was equipped with both
＂clisten＂and＂break＂ ＂listen＂and＂break＂miniature jacks；giving the option of＂silent＂or joint listening．Provil－
ing a signal to drive the telephone pick－up was
then very easy：a small then very easy：a small coil fed from the ear－
phone jack gave more than enough level I used phone jack gave more than enough level．I used
$\mathrm{a} 1 \mathrm{k} \Omega$ Post Office 3000 relay coil to prove the

WIRELESS WORLD OCTOBER 1981
system，but as this was，to say the least，some－
what clunky，I replaced it with a small plastic covered coil marketed as a telephone pick－up but，of course，used in the other direction to
that intended！All that needed to be done was to extend the lead．
This method has the advantage of being
cheap，safe，and very good quality．It is easiest cheap，safe，and very good quality．It is easiest
to use with body worn hearing aids but even to use with body worn hearing aids but even
deaf people using ear－level aids often have a
send second，bopy worn aid as a spare．
Incidentally，I have also used pick－up coil to detect the ringing current in the coil of a telephone bell：suitably amplified and
rectified this can be used to contro flashing rectified this can be used to control flashing
light repeaters without interfering with the Post light repeaters without interfering with the Post
Office instalataion．A few resistors，a 741 ，a diode and a BC 108 to drive a relay are all that is
required． $\stackrel{\text { required．}}{\text { Roger Dery }}$
Leytonstone
London E11
RADIO AMATEURS＇
LICENCE
As a citizens＇band service is now proposed we，
the undersigned，would like to suggest sligh the undersigned，would like to suggest slight
modifications to the radio amateur licence，as follows：
1．The us
1．The use of c ．w．by class＂ B ＂radio amateurs
receiving and sending as part of the self－training Yeceiving and sending as part of the self－traia
in communication by c．w．on v．h．f．bands． 2．Limited use of station under supervision，e．g．
iamboree－on－air，radio conventions，radio clubs， short wave league，XYLs，YLs etc． short wave league， MLS ，，y Ls etc．
3．The 27 and 930 MHz c．b．bands to be used by radio amateurs on the existing licence at no
extra fee．Not typ approved rigs extra fee．Not type approved rigs．
4．The 10 and 4 metre amateur extended to class＂B＂radio amateurs；e．g．the 10 metre band to be used by licensed radio
amateurs，not taken over by citizens＇band． M． $\begin{aligned} & \text { acksson（G8EOP）}\end{aligned}$
Deurbsury
West Oorkshire
West Yorkshire
Also GBWWE，G4LED，G3LHQ，G8PSE， G8EAH and 460 others．

MICROCHIPS AND

MEGADEATHS
I have no intention of cancelling my order for
Wireless World as a result of your recent trend in Wireless World as a result of your recent trend in editorials，but when I read some of the criticism
against this，I sometimes wish I could cancel my subscription to the human race：
The electronics engineers referred to by Dr
D．J．Dewhurst in June letrers died， D．J．Dewhurst in June letters died，along with
millions of others，in the hope that humanity millions of others，in the hope that humanity
would never again have to devote its time to finding ways of destroying itself． Instead what is happening？The USA alone is
planning to spend $\$ 1,500,000,000,000$ on using our technology to produce still more weapons of death．That is about 350 dollars for every man，
woman and chidd alive on the woman and child alive on the earth．That money tion，and I haven＇t even mentioned the Sovie Union and dozens of smaller countries yet！ It is up to us，as engineers and as ordinary
people，to stand up against this．We we must all throw down our arms and say that we will not fight their wars for them．And if I，for one，get
shot as a fesult，it will just prove to me that his shot as a fesult，it will just prove to me that this
world was not the one I wated to go on living

Who will stand beside me？
Tim Bierman
London NW 11

BETTER RFI
PROTECTION NEEDED
As a radio amateur，＇I wholeheartedly agree with
Mr McLeod＇s observations（August Letters） Mr MeLeod＇s observations（August Letters）
that better r．f．i．（or e．m．c．）protection is needed for domestic electronic equipmention．The prob－
lem of $r f$ b breakthrough is nothing lem of r．f．breakthrough is nothing new：it has
existed for many years， existed for many years，but has become more
prominent recently due to the number of illegal prominent recently due to the number of illegal
27 MHz a．m．c．b．transceivers now in this coun－
try．Unfortunately，the manufacturers of domes－ tic electronice equipmentare anturikery of to dempond
to Mr McLeod＇s plea for better r．f．i．protection to Mr McLeod＇s splea for better r．f．i．protection． The design effort and extra components re－
quired would not be expensive，but the added cost would，no doubt，reduce their profit mar gin and／or competitive pricing．I can see two possible answers to the problem：（a）legislation
to ensure that all domestic electronic equipment complies with a suitable e．m．c．standard；or（b） commercial presisure，i．e．bad publicity－if you have suffered with r．f．breakchrough，you are unlikely to buy the same make of equipmen
again．You would probably look for equipmen which is better protected against r．f．break If there are any manufacturers whose pro ducts have a good e．m．c．performance，then they should say so．I am sure there are lots of customers in many countries waiting to buy
their products． their Products．
P．. ．Forshaw，
Runcorn，
Cheshire．

FILTER TRANSIENT

RESPONSE
Thank you and Mr Hamill very much for the mank you and Mr Hamill very much for thed article on the＂Transient respons Wordio filters＂in the August issuc of Wireless In December 1977，I wrote an article entitled
＂A transient phase？＂for Hi Fi Answers in which A intronsiuced a new new term t．p．d．（for transien
phase distortion） phase distortion），and followed this up with
more descriptive article in $H i F_{i} A n s w e r s$, more descriptive article in $H i$ Fi Answers，
August 1978，entitled＂Transient phase distor－
tion＂
Although for the sake of ci： ity in these parti－ Although for the sake of ci，oity in these parti－
cular articles I confined the description of effects and equipment to fairly simple things， understandable to the average man in the street，
I had in fact investigated the effects of impulses I had in fact investigated the effects of impulse
and their responses，and their relationship to and their responses，and their relationship to
real music signals using a＂Fast Fourier＂
Transform analyser（as wall Transform analyser（as well as the storage＇scop
and v．l．f．signal generator mentioned in the and v．l．f．signal generator mentioned in the
articles）and I very much agree with Mr Hamill that frequencies are produced which bear abso－ lutely yo relationship to any Fouricr component
present in the original signal－in fact the pitch present in the original signal－in fact the pitch
is completely out of tune when a filter is used to limit the bandwidth，and＂noticeably so if the filter is at all＂dtece cut＂．Unilike Mr Hemaill，
however，I had been interested in the effects of however， H had becn interested in the effects of point．This approach led me to conclude that both high－and low－frequency band limiting filt－
ers are detrimental，but that gentle h．f．filtering is not seriously degrading because air itself can act as a h．f．．．ilter and often does so，hererey
cuusing the ear to be used to the effect of mild causing the ear to be used to the effect of mild
filtering，which just sounds＂natural＂when in－ filtering，which just
troduced artificially．
Again，unlike Mr Hamill，I have found
conclusively that I．f．filtering is very detriment conclusively that II．f．filtering is very have formental
to realism in reproduced sound．It too has its to realism in reproduced sound．It too has its
natural counterpart，which takes the form of
large areas of carpet suspended vertically close
to the listener in the concert hall（to either side and rear I should point outt），or reppacing the
concert hall by aroom 13ft square say Unfor－ concert hall by a room 13 ft square，say．Unfor－
tunately，almost all reproducing equipment cuts off steeply below（at best） 45 SH in an ancerage
domestic living room，so the effects of filtering domestic living room，so the effects of filtering
below this frequency are normally minimal as below this frequency are normally minim
they are swamped by the inherent cut－off． However，my system－demonstrated as
＂The＂loudspeaker at＂Hi－Fi 80 ＂and ＂The＂＇loudspeaker at＂Hi－Fi 80＂and
recorded／photographed in July $1980 \mathrm{Hi}-\mathrm{Fl}$ News，page $52-$ is truly flat down to four hertz in a room $161 / 2 \times 12 \mathrm{ft}$（allthough this is not at all a function of room size），being $+21 / 2 \mathrm{~dB}$ at 6 H
and $-21 / \mathrm{dB}$ at 4 Hz in relation $40 \mathrm{~Hz} / 400 \mathrm{~Hz} / 4 \mathrm{kHz}$ ．For a good signal（which is not all that hard to come by on records！＇it is at 20 Hz or leff to to go down to to 4 Hz flat，and the rate of cut is also critical between these figures． The effect of the filter is to remove spaciousness range allowed to pass through to the tar on can clearly hear the building boundaries，both their position and composition（the difffrence between a stone church or cathedral and a
concert hall is very clear and real）．Often air recordings sound as if they are in the open air not in the listening room．As soon as the 20 Hz ，
filter is inserted all this disappears．The subjec－ filter is inserted all this disappears．The subjec．
tive effect is of an inferior performance，with both precision of tempo and accuracy of tuning or pitch affected a noticeable degree，and a remo val of all that is considered＂good＂in the
concert hall acoustic（as if the Colston Hall＇，for example，had been replaced by a large garden shed and the London Philharmonic Orchestra were replaced by the local youth orchestra）．O
course，many recordings do not have the neces－ sary range anyway，but many do，and it is such a pleasant surprise when this happens and realism comes through！
Graham Holliman，
Watford，
Hers．

Hers．

＇SPREADING＇

The amateur fraternity here in Australia，and I suspect that it is much the same in other parts of
the world， l 位 the world，cling tenaciously to what I regard as a
ridiculous superstition known as＂spreading＂． I should here explain for the general reader that the amateur fraternity these days employs almost exclusively the mode of transmission
known as＂single－sideband，suppressed－car－ rier＂，where the signal，before transmissions，is passed through a band－pass filter restricting the 3 kHz ．
The superstition to which I refer surfaces when a very strong signal is received and the
receiving operator notices that he obtains an＂S． 9 ＂indication on his signal－strength meter over perhaps 8 or 10 kHz on the dial of his receiver． The operator jumps to the conclusion that the over a bandwidth of 8 or 10 kHz ．Vain to tell them that this is an effect occurring in the re－
ceiver itself due ceiver itself due to a combination of the effects
of selectivity and a. ．Invarialy ofe the ting operator is abused，and accused of negli－ gence and incompetence． I am wondering whether other readers of
Wireless World have encountered this supersti－ tion and if so what they make of it．
tion and if so
R． C ．ates，
Charlestown， Charlestown，
N．S．W．，Australia

 I
號

Digital, multi-track tape recorder

Uses modified audio cassette deck for very low-cost, 12 channel recording
by A. J. Ewins, B, Tech., Research Department, London Transport

ecording

 recording of experimental data is speeds and a wide bandwidth are not essential, a conventional f.m. luxury. This design uses a slightly modified Linsley Hood audio cassette recorder as the heart of a multi-track digital tape recorder. It can handle 2, 4,6 or 12 channels with bandwidths flutter.In the field of electronic data collection nid storage, that is the recording of signals from various electrical transducers with bandwidths of from zero to several kilohertz, the f.m. instrumentation tape rerole for many years. Perhaps because the market for such machines is small, they have become very complex, possibly in an attempt to answer every user's needs in just one design. The result of this is that rack machine using one-inch magnetic tape and operating with a range of six tape speeds can cost over $£ 20,000$. Reels of oneinch tape are also very expensive! Lessthat use quarter-inch tape, operate with a hat use quarter-inch tape, operate with a
reduced range of tape speeds and with a reduced number of tracks, but which may still cost several thousands of pounds. One of the main reasons for the f.m. i.t.r.'s expense is the very advanced tape
deck used. In f.m. tape recorder designs it is necessary to reduce the wow and flutter content of the tape deck to a minimum to obtain a reasonable signal-to-noise ratio, since any wow and flutter of the recorded
signals looks like frequency modulation ignals looks like frequency modulation an unwanted signal, or noise. Another reason for the high cost of f.m. recorders is that, to achieve multi-track recording, very expensive multi-track recording
heads must be used. Nevertheless, in spite of these comments, when used to it in fullest extent, the multi-track, multi-speed f.m. i.t.r. has yet to be bettered. There are instances, however, when multi-track (or with reduced bandwidth requirements and without the need for a multi-speed option. To use an f.m. i.t.r. for this purpose, simply because it is the only type of machine vailable to offer multi-channel recording,
attempt to meet this need that the author has designed the multi-channel, digital tape recorder that is the subject of this Essen Essentially, a multi-channel machine cess of 50 Hz wa for each channel in excess of 50 Hz was needed. A single-speed
machine could be tolerated, provided it was possible to obtain wider bandwidths for each channel by reducing the number of channels available: digital techniques
make it simple to do this. Another requirement was that the signal-to-noise ratio for each channel should be as good, or better, than that possible by f.m. recording. Again, digital techniques make it possible noise ratio by simply digitizing the analogue signal to the required number of bits. It is also possible, using digital techniques,

Abstract

recorded data eases the need for a tape deck with superior mechanical qualities, recorder were therefore considered: such recorders are cheap, compared with reel-to-reel machines, and tape cassettes offer the cheapest recording medium possible. To remove wow and fluter from the recorded data, the long-term speed stability of the tape must be accurately controlled. Commercially available cas- sette tape recorders for the hi-fi market are not easy to modify and it was thought that the best solution would be to obtain a recorder in kit form. There appeared to be only one such instrument available-the Hart version of J. Linsley Hood's excellent Hart version of J. Linsley Hood's excellent design. This did indeed prove to be the solution, for it was simple to modify the motor and speed control system of the

Fig. 1. Data is in non-return-to-zero (NRZ) encoding systems are bi-phase and Miller code. Miller has lower frequency content, allowing twice as much recorded data but allowing twice as much recorded data, but needs more extensive decoding circuitry. Higher data capacity considered to outweigh disadvantage of circuit outweigh dis complexity.

completely remove wow and flutter rom the recorded data. This is very easily nene if the digitized data is played back econstructed into analogue form. However, the author's requirement was to remove it completely from the reconsRemoving way data outputs.

VFL 910 deck used in the Hart kit. Since the kit costs around $£ 110$, a relatively cheap instrumentation tape recorder is therefore feasible.
Replacing the front panel of the Hart recorder with one of 19 in wide and 3 U height ($51 / 4 \mathrm{in}$) made it possible to fit the
recorder into a standard 19 in instrument case. In the photograph of the complete instrument, the Hart recorder is mounted in a 19 in case of 6 U height ($101 / 2 \mathrm{in}$) with the digital electronics mounted in a rack-
ing-frame beneath it.

Specification
Before going on to a detailed description, the specification achieved by the prototype design is presented here so that readers
may appreciate its qualities and limi-

WIRELESS WORLD OCTOBER 1981
ations. Twelve channels of analogue dat
may be recorded simultaneously, with bandwidth of 70 Hz (allowing for antialiasing filters); six channels are recorded n each track of the stereo cassette re used, with consequent increased bandwidths of $140 \mathrm{~Hz}, 210 \mathrm{~Hz}$ and 420 Hz , respectively. Recorded data is reconstructed into analogue form on playback, with a shnal-to-noise ratio of the order of 60 dB into 10 -bits. (Data words of 12 bits length re used, 2 bits being allowed for parity hecks.) Wow and flutter content of the replayed analogue signals is zero.

An important parameter of any instruAn important parameter of any instru imperfections in the quality of the tape and also to vibration. Many such i.t.rs are used in the transport industries and ar herefore subject to considerable vibration.

Complete multi-track tape recorder. To half
deck.

The effect of both poor-quality tape and excessive vibration is to produce a momentary signal drop-out, resulting in a 'glitch' in the recorded data, the importance o which depends very much on the type of
analysis that is subsequently carried out on analysis that is subsequently carried out on the data, and which in some cases can be niques are very much more sensitive to both these faults and it was therefore with some trepidation that the author embarked on such a design using a relatively cheap cassette-recorder and cassette tapes. poor-quality tape, provided the imperfections are not extensive, by distributing the serial data stream across several tracks of the tape and by using advanced err

It was not practical to attempt such so hhistication in a relatively cheap recorder ion of attempt at eliminating the gener onsisted of adding thus a simple one and 0 bit data word. In the parity bits to rror being detected in the played-d arit data, the output signal of the particula channel is simply held at the level given by he last correct data word. The author xpectations of this simple error-detectio ystem have been more than satisfactorily such as the Maxell UDXL II, typically les than five glitches have been detected on one channel in 30 minutes of recorded data, with the recorder in its two-channe the beginning and end of a cassette and half a minute's recording time were elim nated from each end of the cassette ould appear that most would be re moved.

In an attempt to assess the recorder's aken by hand - to and fro side to side and back and forth. No glitch in the replayed data was observed. The cassette deck is, however, sensitive to rotation about the capstan's axis. Whilst the autho appreciates that this vibration test meets
no British Standard, the instrument's response (or lack of it) is better than some i.t.rs within his experience.

Design philogophy

To record the outputs from a number of analogue channels, digitally, on to on track of a tape-recorder they must be multiplexed, converted to digital words, data, and suitably encoded. The first decision to be made was the method by which the serial data stream should be encoded. The need for encoding arises from the fact that it is not possible to simply record the

NRZ digital data directly onto tape, be contain a strong low-frequency content. Also, with no changes in the signal level taking place, there is no information being generated from which to recover the clock ventional recording techniques to record signals down to zero frequency (20 Hz is about the best lower limit of a good directrecording tape-recorder) and the need to the recorded data, it is essential that the serial data be encoded in such a way that frequent changes occur in the outpu voltage. However, to maximize the recording density of the tape, these changes
sible. sible.
Two encoding systems were considered ion (also called Miller delay modulashows a serial stream of digital, non-return to zero (NRZ) data and the resulting outputs from the two encoding systems. B transition at the centre of 1 cells and a negative transition at the centre of 0 cells. Miller code is simply bi-phase encoding
divided by 2 and results in a signal transidivided by 2 and results in a signal trans adjacent 0 cells: the direction of a transition in Miller code is unimportant. In bi phase encoding the highest fundamenta frequency present in the encoded data (ig
noring harmonics is that of the clock oscil lator. In Miller code, it is half that of the encoding clock oscillator. The lower fre quency content of the Miller-coded data compared with the bi-phase coded data, is the main advantage of Miller code. It be recorded on tape, within a given band width, using Miller code than by using bihase encoding.
Miller code does, however, have disad vantages. It is relatively simple to extrac he clock frequency from encoded bi-phase required to decode Miller code and to extract the clock frequency is very much more complicated. It is also desirable that the sequence $1,0,1$ be included in th
NRZ serial data stream since, in the ab NRZ serial ata stream since, in the ab-
sence of 1 s or 0 s , a string of encoded 0 s looks exactly the same as a string of en coded 1s. However, there is a phase dif erence between encoded 0 a and Is whic is only detectable when both are present in coded data produces a unique time gap between signal transitions and thus cor rectly sets the Miller decoder for decoding s and 0 s. To determine which encoding decide between circuit complexity and high data capacity or relatively simple cir cuitry with reduced data capacity: the decision in favour of a higher data capacity le clock-recovery circuit and Miller de coder.
One of the advantages of digital recording is that the recording proces ias
.
 1 |-
 1 = 1

$$
41
$$

$$
4
$$

mplify the recording circuitry. However, as the Hart cassette recorder used in the izing circuitry complete with its lineamodify it.
Since the frequency response of the recorder extends to 15 kHz , it was expected that it would cope with encoded data
whose highest fundamental frequency was whose highest fundamental frequency was
of the order of 12 kHz . Using Miller code be handled, using a clock oscillator of 24 kHz . To determine the number of channels that could be multiplexed and recorded on one track of the cassette recorder, a number of requirements needed o be considered, with an ultimate bit rate - the minimum required bandwidth of each channel,

- the desired signal-to-noise ratio,
- the number of parity bits per data word, - the inclusion and length of a synchroniFirst, the
minimum of 50 Hz . To allow for antialiasing filters, this meant a sampling rate f 4 to 5 times the bandwidth, say 250 Hz .
considered desirable, which could be i.t.rs. the digitizing to 10 bits (in f.m. of the peak signal level to r.m.s. noise level. If the ration of r.m.s. signal level to the r.m.s. noise level is taken, 10 bits pro-
duces a signal-to-noise ratio of only 57 dB). With 10 bits for the data an additional 2 bits for parity was thought sufficient, making a total of 12 bits per data word. Eight channels of 12 bit data words, sampled at a
frequency of 250 Hz , produces a bit rate of precisely $24 \mathrm{kbits} / \mathrm{s}$. However, as mentioned earlier, the sequence $1,0,1$ is needed in the data stream so that the Mil-ler-coded data can be decoded: a synchronization word in the data stream at regular
intervals allows for this. It also allows correct synchronization of the data on replay and de-multiplexing. To insert a sync, word into the data stream, without interrupting its steady flow, temporary storage buffers are needed for the data. Two
clocks also become necessary - one to clocks also become necessary - one to
clock the data into the buffers and a second, faster one - to clock the data and sync. Word out. The ratio of these two clocks will be $(x \times 12)$: $(x \times 12)+y$ where x equals the number of channels and y
equals the number of word. With 6 data words of 12 bits and a sync. Word of 8 bits this ratio could be very conveniently made $9: 10$, i.e. $(6 \times 12)=72$: $(6 \times 12)+8=80$. A common crystaldivided down by 16×9 and 16×10, gives divided down by 16×9 and 16×10, gives
frequencies for the two clocks of $22,755.5$ Hz and $20,480 \mathrm{~Hz}$ respectively.
The faster one is referred to as the tape
clock, since it runs at the rate at clock, since it runs at the rate at which the
data, plus sync. word, is encoded on the data, plus sync. word, is encoded on the
tape-recorder. The slower one, running at the rate at which data alone is handled, is the data clock. The tape clock, at $22,755.5$ Hz , is very close to the aimed-for bit rate of 24kbits/s and is the closest that can be
achieved using standard crystals. For this achieved using standard crystals. For this
reason, and because of the convenience of a 9:10 ratio for the data and tape clocks, it was finally decided to record six channels per track of the cassette recorder. With a data clock of $20,480 \mathrm{~Hz}, 12$ bit data words and 6 channels, the sampling rate per
channel works out at 284.4 samples $/$ s, which makes possible a bandwidth per channel of around 60 Hz to 70 Hz .
To be continued.

Literature received

Twenty four application notes from Datalab recorders with a number of computers, calculators, tape punches and graphics terminals. Copies are obtainable from Data Laboratories Ledd ${ }^{28}$ Wates Way, Mitcham, Surrey CR4
WW401

1981 Samtec catalogue contains 44 pages of range of plugs, sockets, jumpers and terminal ange of pluts, sockets, iumpers and terminal
strips. Write to Symec Electronics Ltd, Lexden Lodge, Crowborough Hill, Jarvis Brook, Crow-
WW402
Single, dual and triple-rail power supplies, mounted on Eurocards and covering all liten,
dard voltages from $\pm 5 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$ are made by Vero, who describe them in a new brochure, varaiable from Vero Systems, 362 A Spring
Road, Southampton Sol ww403

Ambit International have changed the name of their components catalogue to 'The World Of
Radio And Electronics' and intend to produce it quarterly. Items stocked will, they say, complement their magazine. Price is 60 p , but the catalogue contains three $£ 1$ vouchers. Ambit are at
200, North Service Road, Brentwood, Essex

CM14 4SG.
Metal-film resistors from Mullard are well
described in a coll described in a colour leaflet, which can be
obtained from Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HC. WW404

Catalogue covering a range of ceramic, chip and mica capacitors is available from RBS Capaci-
tors Ltd, Orchard Works, Vencourt Place, Hammersmith, London W69LZ.

WW405
Publication from ICI discusses the cleaning and drying of metal, glass and plastics components using Arkione W solvent in special plant, using Arkione sol solvent in special plant.
Copies from ICI Solvents Marketing Department, ICI Mond Division, PO Box 19, Runcorn, Cheshire WA7 4LW. WW406

Data conversion equipment is the subject of a short catalogue from Micro Networks. It in-
cludes cludes brief descriptions of digital-analogue-
digital converters, trackhiold amplifiers, instrumentation amplifiers and complete systems. The company is represented in the UK by Pas-
call Electronics Ldt, Hawke House, Green call Electronics Ltd, Hawke House, Green
Street, Sunbury-on-Thames, Middlesex TW16
6RA. 6RA.

Catalogue of software for CP/M-based computers is avaiable from Transam. Programs in-
clude those for general office work business clude those for general office work, business
and accounting and scientific operations. Languages include several varieties of Basic and
Pascal. TCL Software $59(61$ Theobalds Pascal. TCL Software, 59/61 Theobald's Road,
London WC1.
WW408
Catalogue of general electronic components
from Vako contains descriptions of a wide range from diako contains descriptions of a wide range
of discete and integrated semiconductors,
dislays, passive components and hard displays, passive components and hardware, in-
duding a alarge section of loudspeaker drive cluding a large section of loudspeaker drive
nits. Write on company letterheads to Vako units. Write on company letterneads to
Electronics Ltd, Pass Street, Werneth,
Oldham, Greater Manchester OL9 6 HZ .

Short catalogue by Burr Brown on a-d-a converters, amplifiers, analogue circuit funccions, power supplies and fibre-optic data links. House, 11-19
WD1 IEA.
-19 Station Road, Watford, Herts
WW409 Selection of switches from Lorlin is described lever rotary, lock switches, p.c.b. types, sliders Electronic switches. Catalogue from Lorlin Electronic Co. Lttd, Daux Road, Billingshurst,
Sussex RH14 SWW.

The cartridge alignment problem

A new approach
by R. J. Gilson, M. I.Mech.E.
 designed for minimum tracking error and hose not really designed for anything at all rhan
"Pickup arms vary wildly in their geometry
and few are properly designed."
"Current techniques for cartridge
alignment are based on completely false alingment are based on completely false
assumptions and achieve . . . not alignment
but misalignment" but misalignment."
"At present the importance of accurate arm alignment is highly under-estimated. "If the arm geometry is wrong (sic) it can only be due either to cussedness or plain

Strong words indeed! The most common ground of condemnation is that the amount of stylus overhang and head offset is insufficient to achieve the lowest possible tracking error distortion, over the playing area of a 12 record. . he mathesible tracking error distortion has been examined by a number of people prominent amongst whom were Bauer and Baerwald more than three decades ago. These approaches have been well publicised and
it seems to be the essence of the pundits' criticism that manufacturers are too ignorant, obtuse or disinterested to take notice of these well known methods of

RADIUS R (mm)
mum" overhang, in the sense of achieving
mum" overhang, in the sense of achieving dix) gives an h_{0} of 17.9 mm , for $R=146$, $r=60, L=221 \mathrm{~mm}$, where R and r are outer and inner groove radii, which agrees with expectations from the graph of Fig. 1.A
more recent rule (Stevenson, May, June more recent rule (Stevenson, May, June appendix). Another widely publicised rule is to set zero tracking angle error at radii of 121 and 66 mm . The overhang figure necessary to meet the requirement of zero angular error at any two radii can be calcu-
lated from equation 3 , and for $C=203$, $R=121$ and $r=66 \mathrm{~mm}$ gives $h=18.8 \mathrm{~mm}$, which is in close agreement. Randhawa in WW March 1978, proposed overhang and offset figures comparable to those given by
Bauer, although if anything slightly higher. The actual figure proposed for an 216 mm value of L, is 16.5 mm , which is somewhat smaller than the above figures because a smaller value of r has been as sumed, i.e. 54 mm in place of 60 mm . sponding offset angle which will average out the angular errors to best advantage. (This is, of course, provided automatically

Tby adopting the two-point zero error meth
od as instanced by formula 3 , but in the od as instanced by formula 3, but in th
more general case it is necessary to find the optimum offset angle for any selected value of overhang.) Looking at Fig. 2 again, there are three potential points of maximum angle error, i.e. outer radius, which β is a minimum. This last, the radius for minimum β, can be calculated from for minimum, , an be calculated from
$R_{\text {min }}=\sqrt{L^{2}-C^{2}}$. For the curve in Fig. 2
for $h=20 \mathrm{~mm}$, if the ofset angle were to be for $h=20 \mathrm{~mm}$, if the offset angle were to b set at 25°, tracking angle errors would be
$\times 2,-0.4$ and $\times 2.5^{\circ}$ at inner, $R_{\text {min }}$, and $\times 2,-0.4$ and $\times 2.5$ at inner, $R_{\text {min }}$, and
outer grooves respectively. To put this into perspective, notice that distortion due to tracking error is proportional to angular error and inversely to groove radius, so we per unit of radius i.e. $+0.33,-0.06$ and $+0.17^{\circ}$ per cm of radius. Obviously this is not the best that can be done, and the
figure of 25° for offset angle needs infigure of 25° for offset angle needs in creasing a little. The best value could be
found by trial and error, or calculated from formula 4 a , see appendix.

Lateral bias forces

It is an unfortunate fact of life that with a pivoted arm moving in an arc, there mus be a side force acting on the stylus tip
which becomes greater with increasing overhang. The basic conditions are set out
in Fig. 3, where F is the side thrust result in Fig. 3, where F is the side thrust resulting from the angular difference between ing pull P. Taking moments about the arm pivot, force F can be evaluated in terms of drag D by $F=D$ tank. Values of F / D are plotted in Fig. 4, which shows F can reach 50% of the drag D with 18 mm overhang
The normal method of dealing with this The normal method of dealing with this
side thrust is to apply an opposing outwar side thrust is to apply an opposing outward
torque or bias to the arm, but it seems not to be generally appreciated that such compensation is very much of an approxima tion. To understand this, examine the drag factor carefully. Tangential drag
composed of a number of elements. composed of a number of elements.
Frictional drag. With 45° groove walls, Frictional drag. With
stylus loading on each wall is 0.7 of the down force, so that frictional drag will be $1,4 \mu w$, where μ is the coefficient of fric
tion and w the down force or tracking weight. In addition to straight sliding friction, there will be "deformation drag" due to the elastic deformation of the disc material at the stylus contact point, and it seems reasonable to estimate that the
effective coefficient of friction will be somewhere between say 0.1 minimum and 0.3 maximum, depending on stylus shap and finish, and disc surface finish. Thu the total frictional element of drag D could force. In principle, this frictional element is independent of groove velocity Modulation drag. In addition to the frictional element which applied to an unmo dulated groove, there will be further dra due to modulation of the groove. This
modulation element can be sub-divided modulation element can be sub-dial drag compliance drag and transducer drag.
Inertial drag is due to the energy absorbed

in accelerating the stylus/armature system as it responds to the groove modulation. Acceleration can be extremely high, up to 1000 g or more, and inertial effects must be correspondingly great. The energy re-
quired to violently waggle the stylus/cantilever/armature system can only b supplied by the turntable motor, and on the assumption that for a given music content the energy requirement is con imposed on the turntable motor, which means that the drag at the stylus poin varies inversely with groove radius. (In principle, no energy is required to waggle mass, as energy absorbed during accelera tion will be balanced by an equal amoun long way from a perfect mechanism, and is practice the deceleration forces will be dissipated in the form of frictional losses. Compliance drag covers the energy absorbed in overcoming the stiffness and hinge system, and is presumably greates at low frequencies when lateral movemen of the stylus is at a maximum. It tends to have a constant energy characteristic, gi ing a
ity.
Transducer drag covers the energy absorbed in converting mechanical energy input int electrical output from the armature/field system. Presumably small compared to
inertial and compliance drag, it will also have an inverse relationship to groove ve locity.
In the absence of measured figures for stylus drag one can try to make some sen-
sible guesses based on a background of mechanical engineering principles. It roove will impose more drag than lightly modulated one, and bearing in nind the high acceleration figures nolved, it seems reasonable to assum value of say 30% of the down force. (Modulation drag is not in fact directly inluenced by down force, but in practice tracking weight or down force is affected by stylus mass and mechanical impedance elated to minimum tracking weight Adding frictional drag to the assumed nodulation drag, we get a total stylus drag arying from a minimum of perhaps 15% of down force up to a peak maximum of hang giving an F / D ratio of approximately hang giving an $F I D$ ratio of approximately
0.5 , side thrust F could be anything beween say 8 and 30% of tracking weight Part of this thrust varies inversely with centre, and more importantly it can flucuate violently with modulation character stic. It is unrealistic to expect to cancel out he ill-effects of fluctuating side thrust by fixed arm bias, although it may mitigat chieve, assuming drag D could be acc achieve, assuming drag D could be accu
rately assessed, would be to reduce th maximum F by about $2 / 3$, at the cost of ncreasing the minimum F in roughly th same proportion.
As well as force F increasing the stylus
ading on the inner groove wall and re ucing the loading on the outer wall, ther a separate force acting to displace the stylus from its free dead-centre position This is due to the tendency of the tangenial drag D to pull the stylus cantilever int
ine with the arm pivot, and might b termed the reverse toggle effect. The con ditions are set out in Fig. 3, which show hat by taking moments about the arm pivot, effective stylus displacement force
$t=d \tan B$. Angle B will be nearly the sam as the tracking angle β, and d will be almost the same as D, so t is substantially the same as F, Fig. 3. It follows that any arm bias applied to compensate F will also compensate t to almost the same extent. I $2 / 3$ of maximum F, then in lightly modulated grooves the displacement force t will be over-compensated, and there could be a net force t of roughly 15% of the tracking clockwise direction. Conversely, in a peak modulated groove there will be a partially compensated force t acting to rotate the cantilever in an anticlockwise direction The amount by which the cantilever/arm static compliance of the cartridge, and any ill-effects on sound quality will depend on he sensitivity of the transducer system to on-linearity due to displacement from th dead-centre position.
In addition to any audible effects, the wear on stylus and disc. It may not be realised that the effective increase in stylu loading against the inner groove wall is

Wireless world october 1981 requires $w g m$ tracking weight with zero F, straight-line arm movement, then if F becomes say 0.2 gm the tracking weight will nerevent mistracking on the groove outer wall, and the lateral loading on the inner wall will be increased by 0.4 gm . The existence of so many factors in the lateral bias problem, and the difficulty of conflicting requirements, is doubtless the reason for the widely differing approaches adopted. The Hi-Fi press seem to regard an arm bias of about 10% of tracking adopt anything between 5 and 30%. And at least one major record company recommend setting arm bias on a plain ungrooved section of their test record! There are also differences of opinion on the question of whether bias should increase or seem to regard increasing bias from rim to centre as desirable, whilst some manufacurers adopt reducing bias, presumably on the reasonable assumption that the ten-
dency for modulation drag to increase with dency for modulation drag to increase with anced by the tendency for F / D to fall towards the inner grooves when overhang is mall
Optimization
To date, the emphasis in the press seems To date, the emphasis in the press seems minimum possible angular errors, without regard to the possible penalty in increasing he lateral forces F and
Distortion due to angular error is proportional to angular error per unit of mula attributed to Baerwald, $d=4$ a forwhere d is $\%$ tracking error distortion for modulation velocity $10 \mathrm{~cm} / \mathrm{s}, e$ is tracking error in degrees, and r is groove radius in cm . Using this formula in conjunction
with
Fig. 2 for values of F / D and formulae 4 for optimum offset angle, one can plot F / D against distortion, as shown in Fig. 4. The whole conrroversy is summed up in this curve. It shows simply that the
lowest possible tracking angle errors can be achieved only at the cost of increasing the values of F and t; and conversely forces F and t can only be reduced by accepting increased angular errors. In the absence of effects of the opposing factors, the optimum balance is anybody's guess, but it is hard to see justification for the assumption that the lowest possible angular error must distortion is said to be predominanty distortion is said to be predominantly
second harmonic, and the question arises of what level becomes audible. According to one source* 5 to 10% second harmonic distortion is normally undetectable, so it 1% distortion would be audible bearing in mind the overtone content and highly complex waveform of musical modulation. Would the $11 / 2 \%$ imposed by the usual overhang of only 10 mm adopted "Pichur the he brif", y We? (Pi

2% necessary to halve the force F at inner grooves? Without a definite answer, it is
difficult to formulate an optimum balance between the conflicting factors.
There are two essential factors to investigate, the audible effects of angular erro and of lateral force, and it should be a fairly simple matter to undertake this with
the aid of a straight-line arm for a reference. The cartridge could be twisted round in say 1^{1} steps up to a maximum of perhaps 7°, and side loading could be applied perhaps by tilting the deck bodily) in steps of say 5% of tracking weight up to
perhaps 50% maximum. If such tests were assessed by listening panels, using a number of top-grade cartridges of differing characteristics, this would surely provide a firm basis for arriving at a generally acceptable balance. The listening tests
could be supplemented by wear tests on the stylus, and by measurements of stylus drag.
In thinking about these problems, it is
necessary to keep a sense of propertin; necessary to keep a sense of proportion; tracking error is only one source of distor-
tion and possibly a minor one. Probably the worst source is tracing error, which can easily run into double figures percentage at the inner grooves, particularly with tracking angle error, which is difficult to avoid. Another source is that due to any longitudinal compliance in the stylus/armature system; it is usual to mount the cantilever in an elastomeric grommet or much rigidity in the longitudinal direction Bearing all these factors in mind, it seems not unlikely that the manufacturers are doing the right thing in using lower overhang and offset figures than those avoured so strongly by the hi-fi pundits. tion figures across the playing area of the record, for the extreme conditions favoured by one side or the other. Fig. 5 hree different overhang conditions: 19 mm

Appendi
The "two sides and included angle" trig. for
mula $a^{2}=b^{2}+c^{2}-2 b c$ cos A applied to Fig.
$\sin \beta=\frac{L^{2}}{+}+\frac{R^{2}-C^{2}}{2 L R}$
or $R=L \sin \beta \pm \sqrt{(L \sin \beta)^{2}+C^{2}-L^{2}}$
Bauer/Baerwald formula

$$
h_{0}=\frac{r^{2}}{L\left[\frac{r}{R}+\left(\frac{R+r}{2 R}\right)^{2}\right]}
$$

where R and r are outer and inner groove radii.
Stevenson:
$h_{0}=L-\sqrt{L^{2}-7600}$
or $\sqrt{C^{2}+7600}-C$

Overhang for zero angular error at any two
radii:
$h=\sqrt{C^{2}+R r}-C$

Offset angle:

$\beta_{i} R_{\min } \times \beta_{\text {min }} R_{i}^{\prime}$

(4a)
where β_{i} is the angle at inner groove and $R_{\text {min }}$ example, this works out to $\beta_{001}=26.1^{\circ}$, which gives errors of $+0.15,-0.16$ and $+0.09^{\circ}$ per
cm . This is the best we can do when rounding to the nearest 0.1°, the points of maximum error being at inner grooves and $R_{\min }$ of 93 mm . With maller overhang figures, as often used by will usually be at outer grooves and $R_{\min }$, and
the new formula for $\beta_{\text {opt }}$ becomes

$$
\frac{\beta_{0} R_{\min } \times \beta_{\min } R_{0}}{R_{\min } \times R_{\mathrm{o}}}
$$

(4b)
where β_{0} is angle at radius R_{0} (normally
146 mm). If the overhang is small enough to place R_{m} less than the inner groove radius, usually below 10 mm . then the for-
muila for $\beta_{\text {op }}$ becomes
$\frac{\beta_{0} R_{i} \times \beta_{i n} R_{0}}{R_{0} \times R_{i}}$
as required to give lowest possible distortion, 10 mm as favoured by many manufacturers, and my proposal of 13 mm the low
distortion achieved by the 19 mm condition is only maintained if the inner groove radius does not fall below 60 mm , and in practice figures down to 58 or even 56 mm can occur with $33 \mathrm{rev} / \mathrm{min}$ discs, while 4 s can go down to about 50 mm . At
the other extreme, the 10 mm overhang gives $21 / 2$ times greater distortion at the nominal 60 mm inner groove radius, in reurn for 35% reduction in lateral forces F and t. The proposed 13 mm condition
seems to make sense; it holds distortion down to a maximum of about 1%, and provides 25% reduction in lateral forces as

Continued on page 64
(4c)

Tracking mains filter

High-Q active network rejects low frequency interfering signals
by K. Radhakrishna Rao and R. S. Moni, Indian Institute of Technology, Madras

The circuit described is a high- \mathbf{Q}, selftuned band-rejection filter fo
suppressing low-frequency interfering signals, particularly 50 Hz power-line interference. It makes use of four op-amps and a phasecorrection scheme and needs no precision components. Because the
notch frequency of the filter tracks frequency of the interference signal, tolerances and temperature coefficients of the frequency-
determining passive components do determining passive comp not affect the performance.

Active band-elimination filters have be come important in instrumentation used in biomedical and other fields, to eliminate low-frequency interference signals, partiquency and its harmonics. High-Q band stop filters are required, but withou affecting the physiological data, which carries a wide range of frequency component (normally from zer filter requires excellent. perform ance characteristics. The zero-frequency of the filter has to be accurately determined by the passive components, and it mus exactly coincide with the pole-frequency Such stringent requirements need preci-
sion passive components with zero temperature coefficients. But even if the filter satisfies all these conditions there is no guarantee of the frequency stability of the interfering signal. This frequency migh fluctuate from irs nominal value and result of the interference signal at the output of the filter. This problem can be tackled only by using a self-tuned high-Q band elimination filter whose pole-frequency is determined by the same components as th

Many of the known active RC band-sto filters require precision passive compo nents with zero temperature-coefficients to in a few self-tuned notch filters reported earlier ${ }^{4,5}$ the notch response is obtained by subtracting from the input signal the in terference-frequency components, derived
from a switched RC network. The switching frequency is synchronised to the frequency of the actual interference signal through a clock generator, thereby providing a tracking capability. With this scheme the self-tuning range attained is limited
and, furthermore, all the stringent conditions with regard to passive components must be fulfilled. Moreover it is quite com plicated, because additional circuitry has to be incorporated to suppress the
switching-noise generated and to keep switching-noise generated and to kee
both inputs to the subtracting circuit equal in magnitude and phase at all the tracking frequencies. In this article a relatively simple scheme, which does not require passive components, is proposed It uses the four-amplifier circuit shown in Fig. 1 , which is a modified Kerwin Huelsman Newcomb biquad ${ }^{6}$. Self-tuning in such an arrangement involves making the filter
voltage-tunable ${ }^{7}$ by replacing the fre voltage-tunable by replacing the fre
quency determining resistor, R in Fig. by a voltage-dependent resistor, R, shown in Fig. 2, and then locking it to the in terference signal $V_{i 1}$, by applying phase
An analysis of the circuit is given in th Appendix.

Experimental result The filter shown in Figs. 1, 2 and 3 was matched j.f.e.t.s. The phase-correction

system was made up of a LM711C dua voltage-comparator, a CA3028A differen tial amplifier for temperature compensation of the output levels of the comparator, and a low-pass filter for smoothing the output. The control voltage from the phase correction scheme was used to vary the
resistance offered by the f.e.t. The filter was tested for self-tuning and frequency response characteristics. The input signallevels, $V_{i 1}$, and $V_{\mathrm{i} 2}$, shown in Fig. 1 were kept low enough (100 mV) to facilitate linear operation of the f.e.t.
Fig. 4 shows the filter attenuation for
different $Q_{0} s\left(Q_{0}=54.67,100\right)$ as the frequency of the interfering signal, V_{il} (selftuning frequency) is varied. It can be seen that the attenuation decreases slightly as the frequency and Q_{0} are increased (see
equation (6) in Appendix). Fig 5 shows the frequency response characteristic with the filter self-tuned to the 50 Hz mains interference signal, $V_{i 1}$, and the incoming physiological data with interference signa present added as V_{i}.
he self-tuning range of the filter signal and to be more than adequate in many applica tions, as, in practice, the drift in powe line frequency is much less than the self
tuning capability of the filter. The filte tuning capability of the filter. The filter
can be used to suppress any undesired frequency component, in any range, by properly choosing capacitor C in Fig. 1
 Fig. 2. Voltage-dependent resistor using a
f.e.t.t.to be used for R in Fig. . . It value
R. $R=\left(2 R_{r}+R_{h}{ }^{2}, R_{f}\right)=$ effective resistance
between the terminals A and $B . R_{f}=f$ e. between the terminals A and B. $f_{f}=$ f.e.t.t.
resistance, determined by the control voltage, V_{r}. $R_{2}=$ resistors for equalising the
f.e.t. h haracteristics. voltage, $V_{c}, R_{2}=$ resis
f.e.t. characteristics. Fig. 1. Modified biquad circuit, providing
band-pass (Vot), low-pass (Voz), high-pass band-pass ($V_{001} 1$, low-pass $\left(V_{02}\right)$, high-pass
(Vo3), and band-elimination $\left(V_{04}\right)$ functions. $V_{i f}$ is the interference signal to be eliminated and $V_{i 2}$ is the physiological dat signal containing the interference-
component. (to $(=1 /$ RC $)=$ ideal p pole and
frequency: $Q_{0}=$ ideal pole Q; and $G=$ gain

within the limits permitted by the phase correction circuit. This scheme can be extended to suppress the harmonic compoent of the interferince signal also, by but self-tuned to the harmonic component to be eliminated. A single phase correction scheme is sufficient to drive both the filters, using a "follow-the-master" prin-
ciple". In this case, the first filter will have ciple9. In this case, the first filter will have two inputs, $V_{i 1}$ and $V_{i 2}$, as discussed eartaken from the notch output, V_{04} of the first filter. The desired output, devoid of the interference signal and its harmonic component, is obtained from the notch output of the second filter
of jiitter is observed at the notch output at 50 Hz . This is due to the presence of the 0 Hz ripple in V_{c}, used to control the f.e.t. To get rid of this, the phase correction scheme in Fig. 3 has to be slightly modby another comparator circuit, shown in Fig. 6. It makes use of two single comparators and an Exclusive-OR gate. The output of the gate has a frequency twice that of the by the succeeding filter stage in the phase correction scheme. However, the price to be paid is a slight decrease in the attenuation at 50 Hz , due to the increase in error introduced by the phase correction
scheme, if the comparators used are not perfectly matched. With this modification, using a pair of randomly chosen comparators, the attenuation at 50 Hz is found to be about 36.5 dB .

Appendix: circuit analysis

Considering the finite-gain of the op-amps used as $A=1\left(1 / A_{0}+\mathrm{s} / G B\right)$, where A_{0} is the finite d.c. gain and $G B$ is the finite gainbandwidth product of the op-amp, and
assuming all the op-amps to be identical, the transfer-function of the notch filter with $G=1$ can be derived as:
$V_{04}=\frac{\left[\frac{s^{2}}{\omega_{2}{ }^{2}}+\frac{s}{\omega_{z} Q_{z}}+1\right]}{V_{\text {it }}}\left[\frac{\frac{s}{}^{2}}{\omega_{\mathrm{p}}^{2}}+\frac{\mathrm{s}}{\omega_{\mathrm{p}} Q_{\mathrm{p}}}+1\right]$
(1)

Fig. 4. Attenuation of the band-elimination filter with selftuning

filter with self-tuning frequency.
$V_{\text {o4 }}=$ output of fitter:
V
V Vig $=0$
signal

Fig. 5. Attenuation of the filter with
frequency of input signal, $V_{i 2}$, the filter
bing selffltuned to the 50 Hz owewr-lin
interference signal, $V_{i 1}$. $V_{04}=$ output of interference signal, $V_{17} . V_{04}=$ output of
filter; $V_{12}=$ physiological data signal with the interference signal present

Fig. 6. The comparator circuit with
Exclusive $O R$-ed output $Y=A \oplus B$.

$\omega_{2}=\frac{\omega_{0}}{\left[1+\frac{\left(4+\frac{1}{Q_{0}}\right)}{A_{0}}+\frac{2 \omega_{0}}{G B}\right]^{1 / 2}}$
$Q_{D}=\frac{Q_{0}}{\left[1+Q_{0} \frac{\left(2-\frac{2}{Q_{0}}\right)}{A_{0}}-\frac{4 \omega_{0}}{G B}\right]}$

Taking into account the tuning error,
$\in / 2 Q_{p}$, where ϵ is the error due to the $\epsilon / 2 Q_{\mathrm{p}}$, where ϵ is the error due to the
phase-detector used in the phase-correc-phase-detector used in the phase-correc-
tion schemees, the equation (1) can be sim.plified for the self-tuned filter as:
$\frac{V_{04}}{V_{i 1}}=Q_{\mathrm{p}}\left[\frac{\epsilon^{2}}{Q_{\mathrm{p}}^{2}}+\frac{1}{Q_{z}^{2}}\right]^{\prime \prime}$

$$
=\left[\epsilon^{2}+Q_{0}^{2}\left(\frac{2}{A_{0}}-\frac{40_{0}}{G B}\right)^{2}\right]^{\prime \prime}
$$

References
 livilson, G. A parallel-T based acive notch
filter, Proc. IEEE, Vol. 65 , Apriil 1977 , pp. $580-$ 2. Ananda Mohan, P.V.A... Bridged.T. selects cis , Vol. 52 , June $7,1979, \mathrm{p} .128$. 3. Tuladhar, , K. K., Tunable active-phase com-
pensated uniersal biquad, Electron. Leners, pensated univeral. biquad, Electron. Leterers,
Vol. 16, January 3 , 1980 , p. 44 .
 ion tracking filter, Wirieles World, Vol. 80,
October 1974 , 1 , 375 - 9. 5. Scherekotov, A. Yu.

Follow-up reicector fillers for the power-1ine fre-

 Schatungstechnik, Berin, Springer-Verlag, 7. Hatack, E. R., Application of linear integrated circuist, New York, J. Wiiey and Sons,
1976 , pp. 1914. 1976, pp. $191-4$.
8. Mossbers, K . 8. Mosberg, K . and A Akerberg, D., Accurate
timming of active-RC filters for phase mea-
suren

The cartridge

alignment problem
Continued from page 61
against the 19 mm condition: and distor tion drops away nicely in the $50-60 \mathrm{~mm}$ inner groove region. These profiles are
based on a figure for C of 200 mm , which based on a tigure for C of 200 mm , which
seems typical. For other values, overthang seems typical. For orer values, overhang
should vary in inverse proportion, $h=$
In the case of arms having L as the fixed dimension, this can be transposed as $h=1 / 2\left(L-\sqrt{\left.L^{2}-4 k\right)}\right.$. For the high-over hang condition as represented by
Bauer/Baerwald/Stephenson k is 3600 b Bauer Baerwald tephenson k is 30 for as
suming an inner radius of 60 mm ; for the Randhawa proposal (54 mm) k is 3,300 ; for 10 mm overhang k is 2000; and for the 13 mm condition proposed it it is 2600 . It remains to formulate a method of eve radius at which offset angle is the same as tracking angle β. Calculate β for various values of C and h at the three controlling raddii, i.e. inner grooves, outer grooves and $R_{\text {min }}$ as $\sqrt{2}-C^{2}$. Then calculate the Finally, calculate the radii for zero angle error, from formula 1. Plot these radi against h for various values of C, and against C for various values of h. The re-
sulting curves are practicall strish sulting curves are practically straight lines
over the usable range of C and h which over ne usabie range or C and h , which
means that the setting radii have the form of a $y=a+b x$ relationship. The figures obtained are $R_{0}=79+(h C / 84)$ and $r_{0}=12+(h C, 7), w_{1}$ where R_{0} and r_{0} are radii for zero angle error. (Strictly speaking, it is
undesirable, from the point of view of ac. curacy, to use two empirical formulae when the product of the two quantities are precisely related (refere tof ormula 3), and it would be better to evaluate r_{0} from the formula ($L^{2}-C^{2} / R_{0}$. For the proposed rule $h=2600, R_{0}=49 \mathrm{~mm}$, for any value of C within the
$r_{0}=4$ normal range of say 170 to 230 mm . The maximum tracking error distortion can be calculated from the empirical expression $d(\%)=210 / C$. Offset angle can be calcumated by the empirical expression $4380 / \mathrm{C}$. Using high quality equipment I have been unable to detect any audible difference etween the poins of maximum tracking error distortion and zero error
*PPickups, the key yo hifif", by J. Walton (Pitman).

Displacement current
Will Mr Lawrence A. Jones, who submitted two articles on displacement current, please writito to
Martin
Eccles, W Fireless World . House, The Cuadrant, Sutton, Surrey or ring
$01-350$, extension 3589.

IN OUR NEXT ISSUE

C.b. radio
 frequency synthesizers

Direct and mixer-type fre quency synthesizers are quency synthesizers are described by Dr E. F. da
Silva of the Open UniverSilva of the Open Univeragainst each type are mentioned and there is a practical circuit design practical circuit design or cover the 40 cb chan nels.

Display aid

 for micro-processors
This is a device designed by Prof. K. Padmanabhan of Madras University which enables a simple oscilloscope to display the values of digitized signals in alphanumeric form, complete with soft ware-generated annotation.

Cartridge alignment

gauge

R. J. Gilson presents a simple device which plugs into the stylus posi tion of a pickup cartridge to enable the correct position to be set up
more easily than with a protractor.
On Sale October 21

HANDSOT:

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match. Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time
And that same commitment to innovation has resulted in the latest additions to the range. The Keithley The result is an unrivalled selection of handheld measuring centigrade and fahrenheit readout. matched to a given need. With performance that looks pretty good on pach specification carefully Model 135

Andel $87 n$ n up un to $200^{\circ} \mathrm{C}$
todet 13500.05% accuracy Q Fult overioad protection ACU bandwidth to 20 KHz
Model $131 \bigcirc 0.25 \%$ accuracy 25 ranges: 5 functions 10 amp span
All models are guaranteed accurate for one year. And built to the high standards of quality expected of the Keithley name. For more information simply fill in the coupon.
And learn about a range which will serve you. . . handsomely!

KEITHLEY

Keithley Instruments Lta
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287
Also available from
.T.T. Instrument Services, Tel. Harlow 29522
WW - 054 FOR FURTHER DETAILS

Accurate readings fasterwith AVo auto-ranging dmm's

AVO DA117 The AVO DA117 is an auto-ranging instrument that's really fast. On dc and resistance ranges, the response time is less than 1 second to an accuracy of $\pm 0,5 \%$ of reading ± 1 digit! This compact dmm features a $3 \frac{112}{2}$ digit lcd with a range hold (or range up or down) facility. Measurements can be made up to $1000 \mathrm{~V}, 10 \mathrm{~A}$ and $20 \mathrm{M} \Omega$ and there is a special Junction Test range for diodes and transistors.
(10.4
Nember of the THORN ем C Croup
offers five functions with a basic 03\% accuracyal gives a resolution of 10 HV

Long-distance television reception

2 - Why tv signals sometimes cover long distances
by Keith Hamer and Garry Smith

This month the authors discuss the theory behind various conditions under which the range of tv transmissions are extended and what is more important to the prospective DX-tv enthusiast - how
to look for, identify and make the best use of these conditions.

Temporary effects caused by certain weather conditions, meteor showers and
even lightning can affect the distance even lightning can affect the distance over
which tv signals can be received. In this article we will take a closer look at some of the conditions briefly discussed in the last article and some others not previously mentioned. We hope that experienced
DX-tv enthusiasts will bear with usfor the DX-tv enthusiasts will bear with us for the
benefit of newcomers to the hobby as we intend to cover news and development in the field in subsequent articles. For readers who missed the first article, DX-tv is an aboreviation for long distance television

Tropospheric propagation This is probably the easiest propagation riment with as, provided one is not interested in receiving sound channels, a tandard u.h.f. tv set can be used to pick up signals from the Continent if the aerial is pointed in the right direction
The troposphere extends from the surabove and within it atmospheric pressures vary in different areas. From time to time, slow-moving areas of above normal pressure can occur (anticyclones). Clear are often associated with high-pressure areas, but sometimes a high-pressure area ogether with a low-pressure zone can exist hat leads to conditions normally ass Assuming water
purely anticyclonic, a noticeable condition is ment in the strengths of usually weak signals will be experienced. Long-distance signals will be at their best on the u.h.f. morning and late evening. If you pick up an unfamiliar programme during this atmospheric condition, the first sign that it may come from overseas is a picture without sound. Table 1 reveals that other sound channel spacings to the one we use,
ystem 1 . without sound does not

necessarily" mean that the signal you are receiving comes from the Continent but by ooking through programme guides or briefly tuning into the British transmitters you can usually make certain by a process of elimination. Many European stations of identification - for a few minutes after close down, in the early morning and sometimes even all through the night. A cold or occluded front at the boundary of the high-pressure region can increase
the range of tv signals even further. In October of 1975, an exceptionally good

Fig. 1. In October of 1975 the weather conditions shown here produced very and signals from some 850 miles ana and signals from some $U 5$.
were received in the $U K$.
opening' in the UK allowed signals ransmitted some 850 miles away to be received. Figure 1 , kindly supplied by the Meteorological Office, is a weather chart or that period showing the high-pressure ciated front, line AA. propagation conditions, as the Atlantic chart is always shown for a few moments and approaching high-pressure areas can be monitored. More detailed information
can be obtained by taking out a subcan be obtained by taking out a sub-
scription for weather charts from the scription for weather charts fro
Meteorological Office in Bracknell.
During anticyclonic weather conditions, the earth warms up in the daytime
because of lack of clouds and for the same reason the heat built up escapes quickly in the evening. Tropospheric propagation is often greatly enhanced by a frequent result of this heating and cooling process called temperature inversion, where the troposphere forms a waveguide f
signals above around 70 MHz .
Reception under tropospheric-propaga-
tion mode conditions tends to be best in a tion mode conditions tends to be best in a path parallel to the isobars (lines showing where atmospheric pressures between low and high-pressure areas are equal on
weather charts. As a high-pressure area moves away from you reception will be best from transmitters in line with the trailing edge of the area by means of tropospheric ducting.
reception via the troposphere may be en hanced is the presence of widespread fogConditions again tend to be best in the early morning and late evening, but fall off as the sun warms the lower troposphere. long-distance signals can sometimes be received for several days. Tropospheric propagation has the advantage that signals received by it are not subject to rapid fad ing and that little phase-distortion takes
place, so programmes can sometimes be of 'entertainment quality'. The disadvantag is that irregularities in terrain tend to obstruct the signal path: enthusiasts on the east coast of Britain have a better chance of receiving signals from Europe than tho Bands III to V are
advantageous tropospheric conditions bu even Band I can be affected. Programmes most received will come from France, Bel-

(a)
(a) Radiodiffusion-Télévision Bolge's (a) Radiodifusion-Television serve's
(Belgium'strench-language serve)
PM544 electronic test-pattern received in PM5544 electronic test-pattern receive
the UK by tropospheric propagation.
(b) Ionized F2 layer conditions caused ecception of this picture in the UK from the border on channel R1 (49.75MHz vision). The image shown features distorsions typical of pictures received by $F 2$
propagation. propagation.
(c) The origin of the image shown above, the TSS "O249" test-card.
(d) APM5544 test pattern on channel E3 (55.25MHz vision) received by F2
propagation. This picture is thought to
gium, East and West Germany, Luxembourg and the Netherlands but it should be noted that good tropospheric openings are relatively few and far between compropagation.

Meteor shower

Long-distance signals can be received or short periods when meteor showers
cause ionization of the atmosphere's E layer. These meteors, which may be very small indeed, move through the E layer at high velocities and friction causes ionized
trails to be left behind. Meteor-shower (or trails to be left behind. Meteor-shower (or
meteor-scatter) propagation, often abbreviated to ms, can occur at any time of the day or night.
Although
the occu occurrence of mete

WIRELESS WORLD OCTOBER 198

(b)
have come from an Arab Emirate country some 4,500 miles away. e) A Voice of Kenya (VOK) news caption received via trans-equatorial skip in September '80.
fi An official Vo g) Ghosting associated with sporadic E reception is shown in this photo of an image from Sveriges-Radio (SR-Sweden).
Signals received during sporadic E can, signals received during sporadic E can,
however, be very clear and last for several
hours hours.
(h) A further example of reception possible through sporadic E showing TVE (Televi-
sion Española) on channel E2 (48.25MHz vision).
showers in any 24 -hour period is random here are certain times of the year when meteor showers appear more rrequently. found in certain astronomical handbooks. Table 2 gives a rough guide of the best imes of the year to look for long-distance tion is concerned.
It is not possible to predict the direction from which signals enhanced during meteor showers might come from and, as he effects of a shower usually last for only
few seconds identification a few seconds, identification of the
transmitter is difficult. Band I signals are most likely to be improved under this mode of propagation but sometimes inense ionization in the E layer can improve reception on Band III channels.

Table 1: World television transmission standards
Table 1: World television transmission standards
System No. of Channel Vision Sound/vision Vision Sound Regions

		$\begin{aligned} & \text { andwic } \\ & \text { (MHz) } \end{aligned}$	$\begin{aligned} & \text { andwidt } \\ & (\mathrm{MHz}) \end{aligned}$	$\begin{gathered} \text { spacing } \\ (\mathrm{MHz}) \end{gathered}$			
A	405	5	3	-3.5	+	a.m.	UK, Eire (v.h.f., to be phased out within the decade)
B	625	7	5	+5.5		f.m.	Western Europe, Albania, parts of Africa, Middle East, Australasia (v.h.f.)
c	625	7	5	+5.5	+	a.m.	Luxembourg (v.h.f.)
D	625	8	6	+6.5	-	f.m.	Eastern Europe, Albanía, USSR, China (v..h.f.)
E	819	14	10	± 11.15	+	a.m.	France (v.h.f., possibly changing to system L on v.h.f.), Monaco (v.h.f., 625-line scanning)
G/H	625	8	5	+5.5	-	f.m.	Western Europe (u.h.f., system G), Belgium, Cyprus, Greece, Israel, Malta, Yugoslavia (u.h.f., system H with 1.25 MHz vestigal side-band), Monaco (u.h.f., system G)
1	625	8	5.5	+6	-	f.m.	UK (u.h.f.), Eire (v.h.f./u.h.f.), Rep. of S. Africa (v.h.f./u.h.f.), some Central African countries (v.h.f./u.h.f.), Hong Kong (u.h.f.)
K	625	8	6	+6.5	-	f.m	Gabon (v.h.f.), Eastern Europe (u.h.f.), French Territories (system K)
\llcorner	625	8	6	+6.5	+	a.m.	France, Luxembourg. Monaco (u.t.f.)
M	525	6	4.2	+4.5		f.m.	N. and S. America, Caribbean, parts of Pacific, Far East, US Forces (AFRTS), Japan
N	625	6	4.2	+4.5		f.m.	Argentina, Bolivia, Paraguay, Uraguay

WIRELESS WORLD OCTOBER 1981

(c)

(f)

Lightning flash

During severe thunderstorms lightning causes the atmosphere to become highly
charged, thus causing charged, thus causing incident-signal refection. With this form of propagation, both v.h.f. and u.h.f. transmissions may be enhanced. For optimum results the
lightning should occur mid-way between lightring should occur mid-way between
the transmitter and receiving site. Conditions may initially be monitored by listening to the radio, since lightning causes interference, especially in the long-wave
band.

Auroral reflection
From time to time, particularly around the equinoxes, there are periods of intense sovertical r.f. reflecting sheets within the earch's atmosphere due to magnetic disturbance and ionization of the D, E and F layers. Visual evidence of such dis-
turbances is the Aurora Borealis or ""Northern Lights" ("Southern Lights" in the southern hemisphere). In the northern hemisphere, the charged particles emitted by the solar flares spiral towards the earth and are concentrated at the auroral zone.
Hence, television signals are received from a northerly direction irrespective of the location of the transmitter. It follows that aerials should be directed northwards. A rumbling or 'sleigh-bell' effect on
sound and horizontal bars on vision are associated with signals propagated by auroral reflections. It is possible to receive rans-Atlantic transmissions during exceptionally high solar-flare activity. Signals eceived tend to be of poor quality but
nevertheless auroral reflection (ar) is an interesting form of propagation. Due to the rotation of the sun, there is a tendency

(d)

(g)

(e)

(h)

Table 2: Approximate annual meteor-shower periods. Between the dates given here long-distance reception aided by meteor-shower ionization in the
atmosphere is most likely.

Meteor shower name	Beginning	End	Chances of long-
Quadrantids	Jan. 3	Jan. 4	average
Lyrids	Apr. 19	Apr. 22	moderate
Aquarids	May 1	May 13	good
Perseids	July 27	Aug. 17	best
Orionids	Oct. 15	Oct. 25	moderate
Taurids	Oct. 26	Nov. 16	average
Leonids	Nov. 15	Nov. 17	unpredictab
Geminids	Dec. 9	Dec. 13	good

for recurrence of auroral reflection after approximately 27 days. Normally only reception is concerned but Band III chanhels may well suffer from severe noisedistortion of the type mentioned above. Usually auroral reflection manifests itself in the evening. in the evening
F2 propagation
During intense solar activity, the F2 layer transmitrers over 2000 miles an is ty ransmitters over
sible. The F layer divides into two belts in the daytime; the F2 layer forms the outer belt at about 200 miles above the earth's surface. During recent solar activity Austraian television signals have
ceived several times in the UK.
F2 layer reception occurs when solar activity is at a maximum in cycles of approximately eleven years. An observation of the sun's surface will indicate whether F2 (and also auroral reflection) reception is
likely as magnetic storms in the sun's photosphere, visible as sun spots, are responsi-
ble for the ionization in our atmosphere that causes radio waves to be reflected. To
avoid damage to the eyes look at the sun avoid damage to the eyes look at the sun
through a piece of smoked or filter glass, or proiect its image onto a piece of white card: never use a telescope or binocular ${ }_{i}$ Theoretically, F2 reception is best when it is noon at a point mid-way between the
transmitter and receiver. In our experience during the present sun-spot-cycle peak, signals from the Far East are noted soon after sunrise. Reception from Australian stations on channel 0 (vision frequency
46.25 MHz) has also been reported 46.25 MHz) has also been reported at
around this time. Signals from central Russia will be received towards midmorning. During December 1979, transAtlantic signals were received on many days from shortly after mid-day until late afternoon. African signals, thought to have
originated from central countries and Zimbabwe, have also been received, mainly during the equinoxes and after mid-day. Reception from the south was noticeably
weaker than that from east and west An weaker than that from east and west. An
interesting point which several enthusiasts have noted about F2 reception, especially
in the early morning, is that signals tend to increase from zero to maximum
within the space of a few minutes.

Trans-equatorial skip As sunset approaches, the F1 and F2
layers break up and merge to form a single layer at an altitude of approximately 250 miles. As the F2 layer disintegrates another effect can occur known as transequatorial skip (normally abbreviated to
te). Reception usually occurs within a limit te). Reception usually occurs within a limit
of 40° north or south of the equator. Signal quality is similar to that experienced with F2 layer propagation, that is, distorted with multiple images. It is often difficult to decipher signals received by these two
modes but where there is a possibility of 'double-hop' paths, reception of transmitters at vast distances can be achieved. Normally, only Band I is affected.
Sporadic E
Every year between May and September (in the Northern Hemisphere), many part-
time DX-tv enthusiasts come out of winter thime DX-tv enthusiasts come out of winter (sporadic \mathbf{E} is abbreviated to sp.E). As many readers will know, short-wave radio communication is possible due to reflec-
tion in the various layers, including the E layer. This particular layer lies approximately 75 miles above the earth's surface and, although it is capable of reflecting
short-wave signals, television signals nor-short-wave signals, television signals nor-
mally pass straight through it. However, during the summer months the E layer during the summer months the E layer
becomes highly ionized. If the electron density is sufficiently high, Bands I and II signals will be reflected.
Patches of ionized gases within the E layer move about at great speeds,
sometimes approaching 300 mile/h. Several transmissions can be received simultaneously on the same channel, the stronger and more stable signal being accompanied by one or more 'floaters'. But
signal bandwidth can be severely restricted signal bandwid
and sometimes strong video wevely without sound and chroma signals. We have noticed a tendency for the lower Band I channels to suffer more from this peculiarity t
60 MHz .
As the name suggests, sp.E reception is very sporadic and can occur at any time of the year either day or night, although conditions are less favourable outside the main season. Sp.E cannot be relied upon for
entertainment-quality signals and the countries likely to be received cannot be predicted. Reception via sp.E in Band II tends to be more stable and resembles that enhanced by tropospheric propagation.
Signals are normally received within 1,000 Signals are normally received within 1,000
miles of the transmitter although doublehop or even multi-hop sp.E is possible. At times during the sp.E season, signals from Zimbabwe (ZTV) have been received, usually in the later afternoon. These were combination of trans-equatorial skip and sporadic \mathbf{E} as Italian television transmissions were normally present simul-
taneously.

Depending on the state of the E layer, reception can last from a few minutes to mitters can be received via sp.E and it is possible to receive virtually every national television service operating in Europe. Some Middle East countries can also be
received within the UK, notably Jordon received within the UK, notably Jordon
(JTV). A survey conducted by us (published in the EBU Technical Review, October 1979) revealed that the USSR television service, TSS, was the most commonly received station for this location. Signals
from the USSR could easily be received with good picture quality using nothing more than a length of standard wire for an aerial. So for sp.E signals, the minimum of extra equipment will suffice. For serious DX work, however, an external aerial mast is recommended with facilities for rotating the aerial(s).

Under very favourable sp.E conditions transmissions on Band III may also be II is good, make a check on the lowerfrequency channels of Band III. For newcomers to DX-tv who are mystified by
references to Bands and channels, all will references to Bands and channels, all will
be revealed in the next article when we will be covering channel allocations.

Acknowledgements
The authors would like to thank Mr Fish of the Met. Office for supplying the
weather chart and Mr Sturgess for the meteor shower periods shown in Table 2.

A slightly more detailed version of Table 1 will be published in the 1982 WW diary with
up-dates provided by the European Broadcasting Union.

Another engineer persecuted in USSR

Following our report on the detention of
two electronics workers in the USSR two electronics workers in the USSR
(News, July issue) we have been told of a News, July issue) we have been told of a
further case by Dr Yosef Ahs, a hospital anaesthetist who was born in the USSR but now lives in Israel. This is Boris Cher-
nobilsky, aged 37 , a Jewish radio and nobilsky, aged 37, a Jewish radio and
electronics engineer from Moscow. He electronics engineer from Moscow. He possibly on radar. Like Fridman and Brailovsky (July issue) he applied for a visa to emigrate to Israel but was refused on the grounds of "secrecy". That was in 1975.
Since then Chernobilsky, his wife Elena (also a radio engineer) and their two daughters have been constantly harassed by the KGB. In October 1976 he went with a number of other Refuseniks to the
offices of the Praesidium of the Supreme offices of the Praesidium of the Supreme
Soviet where they hoped to find out why they were being refused visas and for how

long they would be refused. Instead of long they would be refused. Instead of
being received, the men were rounded up and taken to a site outside Moscow where they were beaten. Two of them, Dr Ahs and Chernobilsky, were detained while the others were set free. They were held in prison" for 22 days for "malicious hooliga-
nism". Dr Ahs was allowed to leave for Israel in 1978. Chernobilsky has not been able to work in his profession, in spite of efforts to obtain employment in the gen eral field of radio, and so has been working as a plumber in order to support his
family. The Chernobilskys' flat has been searched and they were threatened with arrest more than once.
On 10th May 1981 a number of Jews set out to an area near Moscow called Opa-
likha to have a picnic to celebrate Israel' likha to have a picnic to celebrate Israel's
Independence Day. Towards the end of the picnic, militiamen who had been standing nearby told the Jews to move There was an acrimonious argument involving Chernobilsky. Everyone went
home without incident, but several days later Chernobilsky received in the post a summons to report to the police station. As there was no mention of why he was being summoned, he did not report. In early June he disappeared for two days - he
had been picked up by the police and held overnight. At the end of the first week in June he returned home after having signed an undertaking that he would not leave Moscow.
A criminal file against Chernobilsky has been compiled under which he is alleged to have violated Article 191-1, "resisting the
police". The indictment claims that he wa asked to give his name and produce his internal passport in Opalikha but refused
to do so. The file was due to be completed to do so. The file was due to be completed
by the end of June 1981 and then Chernobilsky was expected to be brought to trial. Boris Chernobilsky

Royal Wedding - a sound spectacular

BBC sound broadcasting and recording at St. Paul's.
by John Flewitt B.Eng., MIEE, BBC Engineering Information Department

An estimated 1000 million people Paul's Cathedral during the Royal Wedding. BBC engineers had not only to arrange a variety of mono and stereo sound feeds for broadcasting
on radio and television, but also to on radio and television, but also to
cope with both stereo and surround sound for BBC recordings. This article explains how it was done.
Engineers from BBC Radio Outside Broadcasts rigged 8 microphones to bring the sound of the wedding service to the
worldwide audience, including listeners to ILR and viewers of ITV. The sound was fed to the BBC sound control room in St. Paul's Crypt, where a 64 -channel mixer produced a 'clean' feed of stereo sound a second 'mixed feed' mixer added the commentaries to produce feed for BBC Radio 4. BBC Television carried out their own sound mixing and other broadcasting organizations either took direct micromixers. The needs for producing various sound
recordings had also to be considered: BBC recordings had also to be considered: BBC
Enterprises needed a clean feed of sound for their commercial disc and cassette redigital recordings were made, one of clean feed sound and the other including the BBC Radio commentary. And, as a con petely separate exercise, a surround und recording was made.
All in all, the whole operation had the largest number of stereo o.b. routeings for ven radio commentary positions along the processional route, roving radio links on the day provided interviews with the pub
lic and sounds of street celebrations create a wide spectrum of sound for BBC Radio.

Microphone installation
Detailed engineering planning began as Much as the werge placing in cathedral was based on past experience but, on this occasion, the use of the Bach Choir and the large orchestra positioned in the north transept was something more Planning the sound in the cathedral was the responsibility of the BBC's Senior
Sound Supervisor, Harold Kutscherauer.

He arranged coverage around twenty stereo capacitor microphones (mostly coincident pairs), eleven of which were mounted on slings and others suspended on
strengthened cables from the 70 ft strengthened cables from the 70 ft high
triforium gallery of the cathedral. The main internal 'sound stages' to be covered were the dais and the altar for the marriage ceremony itself, the Cathedral Choir and Kneller Hall trumpeters in the chancel,
the State Trumpeters in the Whispering the State Trumpeters in the Whispering
Gallery and by the west door, the orchestra and Bach Choir in the north transept, the organ speaking in the north-east quarterdome and above the west door, and the cathedral bells. An external stereo pair was
suspended from the west portico to catch the west door trumpeters immediately below, sounding their fanfare on the arrival

A - Portico microphone; coincident pair Coincident pair mounted in chancel for cathedral choir. C - Interior of BBC's monitoring equipment is on the left and beyond are the two video recorders 16-bit p.c.m. unit underneath. D - Main and spare stereo mics for the ochestra are left and top right suspended in north transept; below on right is a sound field
microphone. E - One of the microphone positions in the cathedral: at the top a
 choir, and lectern positions for the ceremonial.
When it comes to siting microphones in . Paul's, the problems are more physic natured acoustics and the use of 'close-mic' techniques ensure that sound levels rarely rise high enough to excite any troublesome echoes. The three requirements borne in en siting for this particular even were:
, beariy, to provide complete cove age, bearing in mind the sound radio preentation. Radio listeners, lacking any hen any of the action iname confuse when any of the action inadverten to make the microphones unobtrusive a television audience without sacrificing sound quality. An example of this was the iting of the Calhedral Choir microphone neither side of the chancel instead of (the black finish of some of the micro phones helped make them less conspicuous);
to
to provide tighter control of balance by the use of spot microphones. This gave the of favouring the sounds of small groups of orchestral performers, for instance, when they were being shown in close-up by the Virtual
lly all microphones were capacito types, used in cardioid configuration, and ontrol room on 20 -pair cables. Certain ey microphones were individually cabled an extra precaution against a multipair failure

Control and mixing
In the control room, each microphone' signal was fed firstly to a splitter, one out put of which was taken to the clean-feed 64 -channel mixer, a second to a 'ceremo nial' bay* and, in the case of speech the cathedral's public address system. The outputs of the 'ceremonial' bays provided both direct microphone signals, for BBC Television and Thames Television, for example, and a mixed feed to BBC Broad other purposes.
For large ceremonies, it is norma practice in BBC Radio for two mixers to be installed where possible. The mixers are used in adjacent but acoustically isolated
rooms, as they were on this occasion in the crypt. This isolation enabled the mixer at the "clean feed' desk to concentrate more fully on balancing the ceremonial. The 'clean feed' desk output was then fed to the mixed feed position where the operato using cues from talkback.

* 'Ceremonial' bay is BBC parlance for a type of
 handle nine micro
buffered outputs.

Recording the wedding This sonically grand occasion also gave the mpetus to make two extra forms of sound nalogue ones. In the first instance, two experimental igital recordings were made, one of clean feed sound carried out in the BBC's digita recording van parked in the Cathedral ound, undertaken at Broadcasting House The digital van was equipped with twin video recorders with a 16 -bit pulse-cod modulation unit plus the normal sound roblems with tape drop-outs, more oticeable in digital recording, are now largely overcome by ensuring a dust-fre ecording area and using only highest quality, pen-tested recording tape.
Finally, the surround-sound recording as a technical experiment to aid Britis ndustry. Four sound-field microphones an improved design were specially loaned for the event, three being used internally ransept and the nave towards the west door. The fourth was mounted near the cathedral steps in the north-west Lantern The four component outputs from each dividual tracks of a 24 -track without any form of surround-sound cod ing. Special noise-reduction devices were ruled out by interference from nearby thyristor lighting dimmers and, instead, a improve signal/noise ratio A problem then arose with sound linking on tape change overs, since at this high speed each reel o tape ran for only 30 minutes. This was ercome by arranging changeovers to cur during pauses in the wedding service further arranging for a standby two-chan nel recorder to make a linking recording in HJ-coded stereo. These stereo recording ould then suffice in any subsequen the multichannel surround-sound recording.
Setting the sound-field rnicrophones was relatively simple: each unit's four encapsu med microphones, combined with unique versatility enabling an extremely
"Mixed-feed"
mixer in $B B C$ control room in
cathedral crypt. "Clean-feed" "input was faded on the
operator's left; operator's letr
commentator left; commentator's microphones
controlled on mixer's right.

John Flewitt joined the BBC in 1967 after obtaining a degree in electronics initially in television studio waintenance before joining Studio Capital Proects Department. He is now a publicnformation Department with special responsibility for technical photography
wide range of operating modes to be ixing session In the cabsequent ound-field microphone's physical heigh as set by listening to the output of a un in omnidirectional mode and fixing th height when the most satisfactory balance as heard. A height

Royal success
It was a complex exercise and, with 1000 million people listening for the marriag perform?
Well, very successfully - it could ardly have been otherwise; but, bearin mind that much of the ceremony could of relief from the engineers at the successful conclusion can be well unerstood.
The introduction of television and it accompanying lighting into a large, comainly presented numerous hum problems or instance. But after the below-par cable reening was tracked down and some able re-routeing undertaken, the seve噱 uccessfully, each in its own way making ital contribution to Britain's and the world's biggest outside broadcast

Acknowledgement

he author would like to thank the eng ers of Radio O.Bs for their assistance, arem Harold Kutscherauer for his diaBC's Director of Engineering for and sion to publish.

Digital storage and analysis of speech

3-Spectral analysis
by lan H. Witten, M.A., M.SC., Ph.D., M.I.E.E., University of Calgary

Digital recordings of speech provide a jumping-off point for further processing which can alleviate the difficulty of synthesizing natural
sounds by concatenating individuallysounds by concatenating individ significant contextual effect which significant contextual effect when
must be taken into account when forming connected speech out of isolated words is pitch. The intonation of an utterance, which is a continually changing pitch, is holistic, in that the utterance contains m
information than the sum of its components determined by the individual words alone. Happily, and quite coincidentally, communications engineers in their quest for reducedmethods of coding speech that separate the pitch information from that carried by the articulation.

Most speech analysis views speech according to the source-filter model ${ }^{\star}$
which aims to separate the effects of sound source - the vocal cords - from those of the vocal tract filter. The frequency spectrum of the vocal tract filter is of great interest, and the technique of
discrete Fourier transformation will be discussed. For many purposes it is better to extract the formant frequencies from th spectrum and use these alone (or in con junction with their bandwidhs) ocharac terize it. As far as the signal source in the
source-filter model is concerned, its mos interesting features are pitch and amplitude - the latter being easy to estimate. Hence we go on to look at pitch extraction Related to this is the problem of deciding
whether a segment of speech has voiced or unvoiced excitation, or both.

The channel vocoder

A direct representation of the frequenc spectrum of a signal can be obtained by bank of bandpass filters. This is the basis of the channel vocoder, which was the firs device that attempted to take advantage of
the source-filter model for speech codin the source-filter model for speech cooing
(the word "vocoder" is a contraction of voice coder). The energy in each filter band is estimated by rectification and smoothing, and the resulting approxima-
tion to the frequency spectrum is transmitted or stored. The source proper
ties are represented by the type of excita-
tion (voiced or unvoiced), and if voiced the pitch. It is not necessary to include the overall amplitude of the speech explicitly, because this is conveyed by the energy
levels from the separate bandpass filters. Figure 11 shows the encoding part of Figure 11 shows the encoding part of a
channel vocoder which has been used successfully for many years. We will discuss the block labelled "pre-emphasis" shortly. The shape of the spectrum is estimated by 19 bandpass filters, whose spacing and bandwidth decrease sighty with greater resolution that is needed in the lower frequency region, as shown in Table 3. The 3 dB points of adjacent filters are halfway between their centre frequencies,

Fig. 11. Block diagram of the encoding side
of a channel recoder, which determines of a channel recoder, which determines
and encodes the energy in each of nineteen

Table 3: Filter specifications for

channel number	centre frequency (Hz)	analysis bandwidth (Hz)
1	240	120
2	360	120
3	480	120
4	600	120
5	720	120
6	840	120
7	1000	150
8	1150	150
9	1300	150
10	1450	150
11	1600	150
12	1800	200
13	2000	200
14	2200	200
15	2400	200
16	2700	200
17	3000	300
18	3300	300
19	3750	500

IRELESS WORLD OCTOBER 198
bands. The filter characteristics do not need to have very sharp edges, because the energy in neighbouring bands is fairly vantage in making them too sharp, because he phase delays associated with sharp cutoff filters induce "smearing" of the pectrum in the time domain. This partiButterworth bandpass filters.
For regenerating speech stored in this way, an excitation of unit impulses at the or white noise (for unvoiced sounds) produced and passed through a bank of bandpass filters similar to the analysis ones. The excitation has a flat spectrum, multiples of the reperition frequency which are all of the same size, and so the spectrum of the output signal is completely determined by the filter bank. The gain of nitude of the spectrum at that froqued mag-
The frequency spectrum and voicing rates than the time waveform. The changes are due to movements of the articulatory organs (tongue, lips, etc.) in the speake and so are limited in their speed by physical constraints. A typical rate of produc fact the spectrum can change quite a lo within a single phoneme (especially a stop sound). Between 10 and $25 \mathrm{msec}(100 \mathrm{~Hz}$ and 40 Hz) is generally thought to be a satisfactory interval for transmitting o
storing the spectrum, to preserve reasonably faithful representation of the speech. Of course, the entire spectrum, as well as the source characteristics, must be stored at this rate. One channel vocoder uses 48 bits to encode the information
Repeated every 20 msec , this gives a data rate of $2400 \mathrm{bits} / \mathrm{s}$ - very considerably les than any of the time-domain encoding techniques.
It needs some care to encode the output of 19 filters, the excitation type, and the pitch into 48 bits of information. Six bits are needed for pitch, logarithmically en This leaves 41 bits to encode the output of the 19 filters, and a differential technique can be used which transmits just the difference between adjacent channels - for the spectrum does not change abruptly in
the frequency domain. Three bits are the frequency domain. Three bits are
enough for the absolute level in channel 1 , and two bits for each channel-to-channel difference, giving a total of 39 bits for the whole spectrum. The remaining two bits per frame can be reserved for signalling or monitoring purposes.
A $2400 \mathrm{bit} / \mathrm{s}$ channel vocoder degrades perceptibly. It is sufficient for interactive communication, where if you do not understand something you can always ask for it to be repeated. It is probably not good enough for most voice response applicabe used with larger filter banks and much higher bit rates, and still reduce the data
ate substantially below that required by log. p.c.m

Pre-emphasis

It has often been noticed that there is an overall $-6 \mathrm{~dB} /$ octave trend in speech
adiated creases. For vocoders, and indeed for other methods of spectral analysis of peech, it is usually desirable to equalize by a $+6 \mathrm{~dB} /$ octave lift prior to pro upy a similar range of levels. On regen ration, the output speech is passed throug anon, he outpur speech is passed through an in of attenuation.
For a digital system, such pre-emphasis can either be implemented as an analogue ircuit which precedes the presampling filter and digitizer, or as addigital operation the former case, the characteristic is sually flat up to a certain breakpoint which occurs somewhere between 100 Hz nd 1 kHz - the exact position does no sem to be critical - at which point the hasis on output ought to have an exactly inverse characteristic, it is sometimes modified or even eliminated altogether in a tumpt approximately to counteract the ($\pi / /_{\mathrm{s}}$)/($\pi / / \mathrm{f}_{\mathrm{s}}$) distortion introduced by the desampling operation, which was
discussed in an earlier section. Above hal the sampling frequency, the characteristic the pre-emphasis is irrelevant becaus effect will be uppressed by resampling filter.
e achieved digitally, by differencing als input. The operation
$y(n)=x(n)-a x(n-1)$
is surable, where the constant parameter is usually chosen between 0.9 and 1 . Th erencing, and this amounts to creating d.p.c.m. signal as input to the spectra analysis. Figure 12 plots the frequency

Fig. 12. Frequency response of digital pre Fig. 12. Frequency response of digital pre-
emphasis block shown in Fig. 11. Analogue and digital responses shown.
response of this operation, with a sample frequency of 8 kHz , for two values of the parameter, together with that of a $6 \mathrm{~dB} / \mathrm{c}$ c
tave lift above 100 Hz . The vertical tions of the plots have been adjusted to give the same gain, 20 dB , at 1 kHz . The difference at 3.4 kHz , the upper end of the telephone spectrum, is just over 2 dB . A
frequencies below the frequencies below the breakpoint, in this
case 100 Hz , the difference berween analogue and digital pre-emphasis can be very
reat. For a $=0.9$ the attenuation at zero frequency is 18 dB below that at 1 kHz , which happens to be close to that of the
analogue filter for frequencies below the analogue ilter for frequencies below the
breakpoint. However, if the break point breakpoint. However, if the break point
had been at 1 kHz there would have been 20 dB difference between the analogue and $a=0.9$ plots at z.f. And of course, the $a=$ characteristic has infinite attentuation at he pre-emphasis does not seem to be at all critical. The above remarks apply to
speech. For unvoiced speech there appears be no real need for pre-emphasis; indeed, it may do harm by reinforcing th There is a case for altering the parameter a according to the excitation mode of the peech: $a=1$ for voiced excitation and $a=0$ for unvoiced gives pre-emphasis just when
it is needed. This can be achieved by exis needed. This can be achieved by ex
pressing the parameter in terms of the autocorrelation of the incoming signal, as

$$
a=\frac{R(1)}{R(0)},
$$

where $R(1)$ is the correlation of the signa ith itself delayed by one sample, and $R(0)$ is the correlation without delay-tha , the signal variance). This is reasonab ntuitively because high sample-to-sample peech, so that $R(1)$ is very nearly voice speech, so that $R(1)$ is very nearly as grea
as $R(0)$ and the ratio becomes I; wherea ittle or no sample-to-sample correlatio will be present in unvoiced speech, makin he ratio close to 0 . Such a scheme is rem ion. of a.d.p.c.m. with adaptive predi Ho However, this sophisticated pre-emworthwhile in practice. Usually th reakpoint in an analogue pre-emphas 00 Hz to limir the be rather greater tha 100 Hz to limit the amplification of frica has the breakpoint at 1 kHz , limiting th ain to. 12 dB at 4 kHz , two octaves above.
Digital signal analysis
You may be wondering how the frequency response for the digital pre-emphasis
filters, displayed in Fig 12, can be calculated. Suppose a digitized sinusoid is ap plied as input to the filer.

$$
y(n)=x(n)-a x(n-1) .
$$

A sine wave of frequency f has equation $x(t)=\sin 2 \pi f t$, and when sampled at $t=0, T$ 125 ms for an 8 kHz sample rate), this be comes $x(n)=\sin 2 \pi f n t$. It is much more con venient to consider a complex exponentia can then be derived by taking imaginar parts, if necessary. The output for this input is

$$
y(n)=e^{i 2 \pi / f / n T}-a e^{i 2 \pi} f\left(n^{-1) T}\right.
$$

$$
=\left(1-a e^{\mathrm{i} 2 \pi f T}\right) e^{i 2 \pi / n T},
$$

a sinusoid at the same frequency as the
input. The factor $1-a e^{-127 / T}$ is input. The factor $1-a e^{-12.2 \pi T T}$ is complex nents. Thus the output will be compo-

76
shifted and amplified version of the input． The amplitude response at frequency f is therefore
$\left|1-a e^{-\mathrm{j} 2 \pi / T}\right|=\left[1+a^{2}-2 a \cos 2 \pi f T\right]^{1 / 2}$, or
$10 \log _{10}\left(1+a^{2}-2 a \cos 2 \pi f T\right) \mathrm{dB}$ ． Normalizing to 20 dB at 1 kHz ，and assum－ Normalizing to 20 dB at
ing 8 kHz sampling，yields

$$
\begin{aligned}
& 20+10 \log _{10}\left(1+a^{2}-2 a \cos \frac{\pi f}{4000}\right) \\
& -10 \log _{10}\left(1+a^{2}-2 a-2 a \cos \frac{\pi}{4}\right)
\end{aligned}
$$

With $a=0.9$ and 1 this gives the graphs of
Fig．12． Fig． 12. Freçuency responses for analogue filters
are often plotted with a logarithmic fre quency scale，as well as a logarithmic am－ plitude one，to bring out the asymptotes in $\mathrm{dB} / \mathrm{cctave}$ as straight lines．For digital filt－ ers，the response is usually drawn on a sampling frequency．The response is symmetric about this point
Analyses like the above are usually ex－ pressed in terms of the z－transform．De－ note the unit delay operation by z^{-1} ．The of course an arbitrary matter，but the convention has stuck．Then the filter can be characterized by Fig．，13，which signi－

Fig．13．Digital pre－emphasis filter．Block labelled Z^{\prime} is delay operator．
fies that the output is the input minus a delayed and scaled version of itself．The transfer function of the filter is

$$
H(z)=1-a z^{-1},
$$

and we have seen that the effect of the號 quency f is to multiply it by

$$
1-a e^{-\mathrm{i} 2 \pi / T}
$$

To get the frequency response from the transfer function，replace z^{-1} by $e^{-\mathrm{j} 2 \pi \mathrm{~T}^{\prime} T}$ Amplitude and phase responses can then be found by taking the modulus and and

$$
\text { If } z^{-1} \text { is treated as an operator, it is quite }
$$ in order to summarize the action of the filter by

$y(n)=x(n)-a z^{-1} x(n)=\left(1^{1}-a z^{-1}\right) x(n)$
However，it is usual to derive from the
sequence $x(m)$ a transform $X(z)$ phen which sequence $x(m)$ a transform $X(z)$ upon which
z^{-1} acts as a multiplier．If the transform of $x(n)$ is defined as
hen on multiplication by z^{1} we get a new transform，say $V(z)$ ：

$V(z)=z^{-1} X(z)=z^{-1} \sum_{n=-\infty}^{\infty} x(n) z^{-n}$

$=\sum x(n) z^{-n-1}=\sum x(n-1) z^{-n}$.
$V(z)$ can also be expressed as the transform of a new sequence，say $v(n)$ ，by
$V(z)={ }_{n=-\infty}^{\sum_{\infty}^{\infty} v(n) z^{-\mathrm{n}},}$
from which it becomes apparent that

$$
v(n)=x(n-1) .
$$

Thus $v(n)$ is a delayed version of $x(n)$ ，and we have accomplished what we set out to do，namely to show that the delay operato
z^{-1} can be treated as an ordinary multiplier in the z－transform domain，where z transforms are defined as the infinite sums
given above．
In terms
In terms of z－transforms，the filter can be written

$$
Y(z)=\left(1-a z^{-1}\right) X(z),
$$

where z^{-1} is now treated as a multiplier The transfer function of the filter is

$$
H(z)=\frac{Y(z)}{X(z)}=1-a z^{-1},
$$

the ratio of the output to the input
transform． by inventing this rather abstract notion of transform，simply to change an operator to a filter is no simpler in the transform domain than it was in the time domain using z^{-1} a an operator．However，we will need to go on to examine more complex filters．Con sider，for example，the transfer function

$$
H(z)=\frac{1+a z^{-1}+b z^{-2}}{1+c z^{-1}+d z^{-2}} .
$$

If z^{-1} is treated as an operator，it is not immediately obvious how this transfe function can be realized by a time－domain recurrence relation，However，with z^{-1} a an ordinary multiplier in the transform domain，we can make purely mechanical what the tranfer function means as a recur－ rence relation．
It is worth noting the similarity between the z－transform in the discrete domain and the Fourier and Laplace transforms in the
continuous domains．In fact，the z transform plays an analogous role in digital signal processing to the Laplace transform in continuous theory，for the delay operator z^{-1} performs a similar service to
the differentiation operator s．Recall first the continuous Fourier transform，

$$
G(f)=\int_{-\infty}^{\infty} g(t) e^{-i 2 \pi / / d} \mathrm{~d} t ;
$$

where f is real，and the Laplace transform，

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t,
$$ where s is complex．The main difference

between these two transforms is that the Fourier transform and at 0 for the Laplace． Advocates of the Fourier transform，which typieally include people involved with tele－
communications，enjoy the freedom from communications，enioy the freedom from
initial conditions which is bestowed by an initial conditions which is bestowed by an
origin way back in the mists of time．Advo－ origin way back in the mists of time．Advo－
cates of Laplace，including most analogue filter theorists，invariably consider systems where all is quiet before $t=0$－altering the origin of measurement of time to achieve this if necessary－and welcome the op
portunity to include initial conditions plicity without having to worry abou what happens in the mists of time．Al－ though there is a two－sided Laplace transform where the integration begins at
$-\infty$ ，it is not generally used because it causes some convergence complications Ignoring this difference between the transforms（by considering signals which are zero when $t<0$ ，the Fourier spectrum can be found from the Laplace transform
by writing $s=i 2 \pi f$ ；that is，by considering by writing $s=i 2 \pi f ;$ that is，by considering
values of s which lie on the imaginary axis． The z－transform is

$$
\begin{aligned}
& H(z)=\sum_{n=0}^{\infty} h(n) z^{-n}, \text { or } \\
& H(z)={ }_{n=\sum_{-\infty}^{\infty} h(n) z^{-n},}
\end{aligned}
$$

depending on whether a one－sided or two sided transform is used．The advantages and disadvantages of one－and two－sided transforms are the same as in the analogue
case．Z plays the role of $e^{s T}$ ，and so it is not case．Z plays the role of $e^{s T}$ ，and so it is not
surprising that the response to a（sampled） sinusoid input can be found by setting

$$
z=e^{\mathrm{i} 2 \pi / T}
$$

in $H(z)$ ，as we proved explicitly above for the pre－emphasis filter．
The above relation berween z and means that real－valued frequencies corre spond to points where $|z|=1$ ，that is，the unit circle in the complex z－plane．As you travel anticlockwise around this unit cir－ cle，starting from the point $z=1$ ，the corre－ sponding frequency increases from 0 ，to
$1 / 2 T$ half－way round $(z=-1)$ ，to $1 / T$ when you get back to the beginning $(z=1)$ again． Frequencies greater than the sampling fre quency are aliased back into the sampling band，corresponding to further circuits of $|z|=1$ with frequency going from $1 / T$ to
$2 / T, 2 / T$ to $3 / T$ ，and so on．In fact，this is the circle of Fig． 3 which was used earlier to explain how sampling affects the fre－ quency spectrum！
To be continued

Corrections－Frequency synthesizer for c．b．
Figure 1 of the above article in the September we apologize：the anode of the variable－capaci tance diode connected to the frequency up
down rail should have been connected to down rail should have been connected to
ground，the unmarked capacitor of the v．c．o． ground，the unmarked capacior of the v．c．o．
circuit is nF and the liF capacior at the bot
tom of the diagram should be 10 HF ．

WIRELESS WORLD OCTOBER 1981
LAADERTEST ISSTRUNEXIS －more performance and reliabitity than you
cver thought possible a,

A Leader instrument for every need．

ers around the

GENERAL TEST

Ene
LHM BOA

AUDIO TEST

LFR5600A FREQUENCY
RESPONSE RECORDER
RESPONSE RECORDER

OSCILLOSCOPES

LЕAローR

SINCLAIR ELECTRONICS LTD London Road，St．IVes，Huntingdon，Cambs．PE17 4
Telephone：St．Ives（ 0480164646 ．Telex： 32250 Sinclir Eliectronics Ltad reserve the right toa iler prices and
specificatons on Leader equipment withou prorio notice．

PORTABLE MAINS DISTRIBUTION NOW WITH EARTH LEAKAGE

A.m. receivers without interference

A method of interference cancellation for double sideband signals

Two systems which work with d.s.b amplitude modulated carriers are
described. As the signals are those propagated in long, medium and short wave bands throughout the world, there is a universal application. The systems make use of the fact that a.m. signals have symmetrical sidebands spreading out each sid
the carrier frequency so that a the carrier frequency so that a
modulated carrier has a constan phase, that of the carrier. Interference is not symmetrical even when it spreads through the same be used against it.

Double sideband a.m. transmission has especially desirable characteristics. In the IRE Proceedings for December 1956, John
P. Costas wrote an article "Synchronous communications - the optimum a.m. system" which explains that double sideband, supressed carrier a.m. signals, similar to broadcast signals but with the carrier removed, are easier to generate
than single sideband and permit straightforward synchronous reception with superior performance in the presence of jamming and other interference. What was not mentioned was the additional possibility of cancelling out some of the
received interference when synchronous reception is employed. One article which did cover this was an excellent paper in Wireless W orld by P. L. Taylor (July 1977) showing how one overlapping signal can be completely separated from another. interference was given by J. S. Lothian at the International Broadcasting Convention, September 1974.
Our approach to the interference of interfering signal and home in on them, as in P. L. Taylor's system, but to apply a general correction to a received band and accept whatever improvement one piece of circuitry will give. The systems described here completely eliminate interfering the carrier. For the more difficult case of a fully modulated signal with carrier, at a slightly different carrier frequency from he wanted signal, the improvement in As interference becomes progressively complex and finally degenerates to noise, the improvement drops to zero. This
performance could be improved but at th expense of some intermodulation betwee signal and interference.
ideal, it must be remembered less tha figures show improvement over the generally accepted theoretical limit fo reception and represent considerable improvement over the performance of an by conventional circuits and although the quantity of circuitry is not trivial, it is straightforward and works automatically.
Synchronous reception An unexpected and welcome benefit from the addition of these systems is apparent when used with a synchronous receiver.
Such sets, for example the General Electric AN/FRR-48 (XW-1) while operating well on fixed frequencies within the range of carrier phase lock are not at all nice to use when searching for signals. Or frequency ear splitting whistles. For experiments on signals from a receiver, rather than instruments, a synchronous adapter was tied into the 455 kHz i.f. of a conventional receiver, leading to adequate and painful
listening experience. The new circuits however see such off-tune carriers as interference and eliminate them accordingly. A synchronous receiver now becomes quite nice to use with off-tune "wasp in the marchbox" single sideband low background whistle with the mess disappearing as the carrier is tuned within frequency limits.
Development
My work on interference began some four years ago with a system that measured nterference amplitude at carrier zero
crossings. An initial guess at interference phase was taken to be that of the incoming signal, containing both signal and interference components, and the interference amplitude was estimated using that assumption. Signal amplitude
was then deduced and subtracted from the incoming signal-interference composite to provide a better guess. at incoming interference phase. Such a recursive system has to operate within tight, almost
impossible envelope delay restrictions Practical tests suggested however that such a system could be developed for general use and so a patent application (Canadian)
was made. Further development showed fair operation with simpler forms of interference and the system would even reduce nise leds at very low signal-to noise rations. However it was abominably ${ }^{\text {operation nigh on impossible to analyze. }}$ Response to it in official circles was negative - (See my letter to Wireles
World, 15 September, 1977).
The simple system described here is an outcome of a search for a nonrecursive solution. While it is intended as a basis fo forays into the realm of reducing levels of complex interference and even noise stands tool in cleaning up radio reception

Theory
A double sideband modulated carrier with carrier frequency f_{c} and modulation frequency f_{m} can be written down as:
$m \cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{m}}\right)+c \cos 2 \pi f_{\mathrm{c}}+m \cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{m}}\right)$
where m and c are amplitudes. This is for a imple sinusoidal modulation and ignores basic analysis.
Demodulating the signal by multiplying
by the carrier frequency by the carrier frequency cos $2 \pi f_{c}$ gives us:
$\underset{m \cos 2 \pi f_{c} \cos 2 \pi f_{c}\left(f_{c}+f_{m}\right)}{m \cos 2 \pi f_{c} \cos 2 \pi\left(f_{c}+\right.}$
$=\frac{m}{2}\left[\cos 2 \pi f_{\mathrm{m}}+\cos 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)\right]+$
$\frac{c}{2}\left(1+\cos 4 \pi f_{c}\right)+$
$\frac{m}{2}\left[\cos 2 \pi f_{m}+\cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{m}}\right)\right]$
$=m \cos 2 \pi f_{\mathrm{m}}+\frac{m}{2}\left[\cos 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)+\right.$
$\left.\cos 2 \pi\left(2 f_{\mathrm{c}}+f_{\mathrm{m}}\right)\right]$
and when filtered leaves a lower sideband at modulation frequencies: ($c / 2+m \cos 2 \pi f_{m}$). The carrier product $c / 2$ is constant and removed by a.c. coupling to Demodulating the signal by multiplying with the carrier frequency shifted through $90^{\circ}, \sin 2 \pi f_{\mathrm{c}}$, gives us:
$m \sin 2 \pi f_{c} \cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{m}}\right)+c \sin 2 \pi f_{c} \cos 2 \pi f_{\mathrm{c}}+$ $m \sin 2 \pi f_{c} \cos 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{m}\right)$
$=\frac{m}{2}\left[\sin 2 \pi f_{\mathrm{m}}+\sin 2 \pi\left(2 f_{\mathrm{c}}-f_{\mathrm{m}}\right)\right]+$
$\frac{c_{2}}{2} \sin 4 \pi f_{c}+\frac{m}{2}\left[-\sin 2 \pi f_{m}+\sin \pi\left(2 f_{c}+f_{m}\right)\right]$

When this is filtered the $\sin 2 \pi f_{\mathrm{m}}$ terms cancel to leave absolutely nothing. The addition of interference leads to low both \sin and $\cos 2 \pi f_{c}$. Let us add two interfering tones; $U \cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{u}}\right)$ above the carrier and $L \cos 2 \pi\left(f_{c}-f_{1}\right)$ below th arrier. D produces
$U \cos 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{\mathrm{u}}\right)+$
$L \cos 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{i}\right)$
which has low frequency products:

$$
\frac{U}{2} \cos 2 \pi f_{\mathrm{u}}+\frac{L}{2} \cos 2 \pi f_{1}
$$

Demodulating with $\sin 2 \pi f_{\mathrm{c}}$ produces:

$$
\begin{gathered}
U \sin 2 \pi f_{c} \cos 2 \pi\left(f_{c}+f_{\mathrm{u}}\right)+ \\
L \sin 2 \pi f_{c} \cos 2 \pi\left(f_{c}-f_{i}\right)
\end{gathered}
$$

which has low frequency products:

$$
\frac{U}{2} \sin 2 \pi f_{u}-\frac{L}{2} \cos 2 \pi f_{1}
$$

It is convenient to shift the phase of hese by 90° to give the signals:

$$
\frac{U}{2} \cos 2 \pi f_{u}-\frac{L}{2} \cos 2 \pi f_{1}
$$

To summarize this part, demodulation of the modulated carrier and interfering produce the sum of all modulating and interfering signals; demodulation by carrier in quadrature phase produces th difference between the interfering signal bove and below the carrier, each shifted in phase by 90°
Take the case of a single interfering quadrature carrier to $U / 2 \sin 2 \pi f_{u}$ and hifted 90° to $U / 2 \cos 2 \pi f_{u}$. This can be asily doubled and subtracted from the in phase demodulated output to leave only nly be done if you know that the interference is sitting above the carrier. If were below, then the subtraction of $-L \cos 2 \pi f_{1}$ will double the interference vel in the output
determine the polarity of the interference in the signal demodulated by the 'phase' carrier. To do this audio from the 'phase' demodulator is again modulated using the udio, shifted through 90°

For audio derived from a signal wit $m \cos 2 \pi f_{\mathrm{m}}+U \cos 2 \pi f_{\mathrm{u}}$, modulation by cos $2 \pi f_{\mathrm{u}}$ produces:
$m U / 2 \cos 2 \pi\left(f_{m}+f_{u}\right)-\cos 2 \pi\left(f_{m}-f_{u}\right)+$
$U\left(1+\cos 4 \pi f_{u}\right)$
This signal is a mess, and most of fitering ar frequy unusable. However by tering at frequencies below the audi he lower intermodulation product $m U / 2 \cos 2 \pi\left(f_{m}-f_{u}\right)$ may pass the filter but being smaller does affect the polarity of the iter output
This d.c. value U can be used in two ways:
By providing the polarity of the interfernce it is simple to devise a circuit to either add or subtract the quadrature demodulated interference from the phase demodu lated signal-with-interference composite.
2. In real life interference, many frequen cies are present and there is no guarantee that the amplitude of the quadrature demodulated interference reflects the required 'phase' demodulated interference ence at maximum, when interference is in quadrature with the carrier, may well be a minimum when it is in phase. Here the d.c. value filtered from the second modulation can provide a more accurate ampli-
tude reference. It is re-modulated by the tude reference. It is re-modulated by the
quadrature derived interference frequency to form an interference estimate and is hen subtracted from the phase demoduated signal-interference composite.
While it is easy to see how the system the many frequencies present in real interference lead to complex analyses that are out of place here. Difficulties arise in estimating the phase of multitone interference, for example what is the instantaranging between 300 and $3,000 \mathrm{~Hz}$? This difficulty is overcome by artificially raising signal and interference frequencies before processing so that they appear to be sinu-with-interference component can be readily modulated by a signal having the instantaneous frequency and phase of the quadrature interference component. Not only does this make modulation possible, it has the added advantage of removing
many modulation and intermodulation products to a high frequency where they

WIRELESS WORLD OCTOBER 1981 can be eliminated by a low pass filter. The
phase of even a complex difference signal phase of even a complex difference signal
remains a good estimate for the phase of the interference appearing in the 'phase' demodulation and permits excellent operaion with complex signals. Following inlerference cancellation, the correct frequency range has, of course to be Systems employing both approaches are described. The performance of each can be modified by changing the bandwidth of the low pass filter in the interference am response here is increased, the system folows increasingly rapid changes in interference amplitude and frequency, accompanied by increasing intermodulation between signal and interference. The limit
occurs when the low pass filter bandwidth equals that of the signal modulation. At this point interfering white noise is attenuated by some 6 dB , but there is an associated loss in signal level of about 3 dB due to the rapidly changing interference phase
continually passing through the carrier and collecting bits of signal as it goes.

Circuit description

The amount of circuitry involved is quite in endless details, this description is limited to the functions of the various parts and only a couple of circuits are shown for clarification. There are two parts to the that puts received radio signals into a suitable form for processing, and the interference cancelling system itself.

Synchronous receiver

adapter

This system, shown in Figure 1, operates from a 455 kHz signal taken from a conventional receiver i.f. amplifier. It is mod-
ulated by 555 kHz for a 100 kHz second i.f. frequency chosen to be high enough so that signals are well clear of the audio range and yet not too high for c-m.o.s
switches to operate effectively as modulawitches to operate effectively as modulasuch as the LM218 operate without significant delay. The carrier is extracted by a 200 Hz bandwidth bandpass filter, and frequency lock achieved by a frequency discriminator which generates a control oltage for the $555 \mathrm{k} z$ heterodyne oscilla tor.

WIRELESS WORLD OCTOBER 1981

At first sight this system must appear cumbersome in an age of phase locked loops. The reason for it is quite simple: phase locked loops do not operate well under high interference conditions; the enough to permit a lock to be regained after a disturbance, a necessary response hat allows interference to get into the loop and so leads to phase jumps in the oscillator output. Narrowing down the response
to prevent this happening also prevents phase locking. In the early synchronous receivers phase jitter would not cause much of a problem because a 10° phase rror would only reduce the derected amplitude to cos $10^{\circ}, 0.985$, a drop of only
1.5%. With these interference cancelling systems, however, the quadrature value of he signal under the same conditions, sin $10^{\circ}, 0.174$ is considerable, 17.4%, and is seen by the circuitry as interference. A phase perturbations in the detected carTwo carrier phases are required, one in phase with the incoming signal and the dulate the 100 kHz if signal to to demo audio. The 'in phase' demodulation contains the sum of modulation and interfering signals, the 'quadrature' demodulation has the difference between interfering frefier. A final step adjusts the relaw the car of these two outputs by 90° so that signal nd interfering components are either in hase or 180° out of phase. It is convenien refer to the phase corrected phase and uadrature demodulated outputs as 'sum

Fig.2. Carrier filter for synchronous
receiver
and 'difference' signals because they are similar to equivalent signals derived from other radio and non-radio sources
phase shift network. Two RC networks both attenuate and phase shift the 'sum' and 'difference' audio signals in such a way that attenuation is uniform over the fre-
quency range but there is a constant 90° quency range but there is a constant 90°
phase difference produced in signals traversing them.
Figure 2 shows the carrier filter in deaiil. This has phase and quadrature demodulators and modulators together with los pass active filters to produce extremely
stable amplitude and phase characteristics. It is the same type of filter that is used with remarkable success in navigation equipment and is not difficult to make.
The 100 kHz i.f. signal is demodulated
using 100 kHz phase ence carriers to produce audio low frequency outputs. Figure 7 shows a typical divider to generate these carriers from a 00 kHz stable source. A matched pair of 100 Hz cut off low pass active filters elimihigher frequencies. These signals are remodulated, again in phase and quadrature, back to 100 kHz and added together. A simple 100 kHz conventional filter removes higher modulation products to leave a an overall 200 Hz bandwidth with stability qual to that of the reference oscillator. ne point to watch is the complete cancel lation of carrier leaks in the modulators
these will tend to produce jitter in th carrier output.
drives a divide by 4 circuit to oscillator 100 kHz phase and quadrature carrier out puts. A conventional phase locked loop ties
100 kHz filter carriers to to the squared up loop in this position causes no problem because interference has been eliminated from the system.
Figure 3 shows the frequency discriminator used to derive the frequency control
voltage for the 555 kHz heterodyne oscillator. This is driven by low frequency si nals from within the carrier filter. The 'quadrature' demodulated low pass filter output is differentiated to generate a signal that increases with amplitude as the fre100 kHz received carrier and 100 kHz reference. It is in phase with the 'phase' signal when the carrier frequency is higher than the reference and is 180° out of phase when the carrier frequency is lower. The dif-
ferentiated quadrature signal is added to the phase signal and results in a low frequency a.c. voltage whose amplitude increases when the carrier is above the refercomplimentary a.c. shen it is below. A inverting the differentiated 'quadrature' ow pass output before adding to the phase ignal. Here the amplitude decreases when the carrier is above the reference and infied and applied to Both signals are rectio generate a d.c. oscillator control voltage. The frequency lock is to within a couple of hertz under most operating conditions,

WIRELESS WORLD OCTOBER 198
and by virtue of control by the reference tant that the carrier frequency be maintained close to the reference in order to minimize off tune phase errors introduced by the carrier filters.
Interference cancelling
system
The first step in interference cancellatio is to raise the frequency up out of the audio range so that everything appears sinuso al. In the irrst arrangement, Figure 4, the he synchronous receiver are opplied to phase shift networks, and modulated by phase and quadrature 100 kHz carriers to form upper sidebands of 100 kHz . This is a conventional phase-shift method single sideband generation. Each signal is then
filtered to remove higher order components. The 'difference' signal is squared up by a zero crossing detector and the output used as a carrier to demodulate the 'sum' A low pass filter passes only the d.c. com interference polarity is extracted by a zero crossing detector, converted into a logic level and used to control switches to select either the direct or the inverted 'difference signal. This puts the interference subtracted from the 'sum' to produce an improved signal-to-noise ratio. The signal is still at 100 kHz , so a final step is demodulation using the 'phase' 100 kHz carrier to generate an audio output.
starts off in a similar manner in Figure 5 , shifted to 100 kHz , the 'difference' signal is squared up and used to demodulate the 'sum', and the output low pass filtered. In this system the low pass filter output is polarity of the interference. It is remodulated by the same squared up 'difference signal to generate reconstituted interference for subtraction from the 'sum' signal-with-interference composite to be
by demodulation down to audio.

Comments

Many system improvements suggest themselves and the most straightforward are currently being developed and assessed. There is unfortunately a practical limit beyond which processing errors in these

analogue systems outweigh advantage gained by increased complexity. We can look forward though to steadily improved signal-to-noise
tion permit. This art
an optimum or terference cancellation. The intent is to show that the performance we now accept from our radios is not as good as it could be made by straightforward circuitry. The approach has value both in the improvement of radio reception and also as a basis for further experimentation, particularly
into the nature of interference and band The circuits are particularly adaptable to attenuation of interference when some interference, for example, nature of the ming or c.w. interference on frequency shift radio telegraphy. There is an equivalent system under development for f.m. receivers. This takes the constant f.m. signal amplitude as referstant phase. While showing promise, the technique is not yet sufficiently developed to warrant publication.

New UK group supports semiconductor manufacture

One of the first commercial ventures of the new British Technology Group formed by the merger of NRDC and NEB (News, september issue) is in an advanced field of venture with the UK company PlasmaTherm Lrd, a subsidiary of Plasma-Therm Inc of Kresson, New Jersey, USA, who upply plasma process equipment (see below.) The two parners will share the total cost of $£ 170,000$ of a two-year programme for sale to European manufacturers of semiconductor devices. The equipment will be based on radio-frequency plasma
chemistry techniques, which offer advantages over traditional wet chat advanmethods used in the fabrication of semiconductor products.
A microprocessor-based monitoring syrers more brecise ced to give manufacprocedures based on radio-frequency plasmas by using optical emission spectroscopy. Also, a new power unit will be developed to complement Plasma-Therm's tors and so offer the ability to adhesive qualities of plasma deposited passivation layers which protect the i.cs.

The agreement includes an arrangement for the NRDC part of BTG to recover its investment by a sales levy on relevant pro-Radio-frequency plasma chemistry techniques are being used more and more in making semiconductor devices, in place of vantage is the ability to create the finer circuit patterns needed for producing a larger number of circuit elements per unit area. Certain gases, when ionized, form a surfaces to selectively remove with solid material without residual contamination.

Micro-system fault finder
A fault finding routine for r.o.m.,
r.a.m., bus, clock and power supply of a microprocessor-based
system can usually be carried out in under five minutes using the 9010A
Micro-System Troubleshooter, re-
gardless of claim Fluke. Testem complexity,
claim Fluke. Test programs need
'learn' mode in which it examines
and functions of a working system
and stores the information in
memory. When a similar but sus
pect system is connected to the
tester the information from the
working system is compared with
that from the suspect equipment
and any faults indicated on a 32 -
character alphanumeric display.
The tester's programs, whether
'learnt' or presented manually

use. Operators need not have a
knowledge of programming language, and of to use thatretenter, a plug
from an eight or sixteen-bit procesfrom an eight or sixteen-bit proces-
sor module is inserted into the sor module is inserted into the
microprocessor socket of the system to ce tested. If the system
malfunction does not appear when malfunction does not appear when
the tester is connected the fault is narrowed down to the processor
removed. The tester module conremoved. The tester module con-
tains a microprocessor which replaces the one removed from the
board. Using other algorithms, the tester can be used to check peri-
pherals such as character generapherals such as character genera-
tores, keyboards, readouts, print-
heads and relays. Modules can be obtained for testing 8080,8085 , Z80, 6502,6800 or 9900 based
systems. A further seven modules should become available within the next ten months. Fluke Interna-
tional Corporation, Colonial Way, Watford, Herts WD2 4TT.
WW301
learnt or presented manually, can
be loaded onto cassette for future

ww302

Storage oscilloscope The main unit of Nicolet's latest
digital-storage ooscilloscope is the
4094 with 16 K 094 with 16 K -word $\times 16$-bit memory capacity. Two dual-chan-
nel input-amplifier modules, the
4851 with 15-bit a-tod conversion 4851 with 15 -bit a-to-d conversion and 100 kHz sampling rate and the 4562 with 12 -bit conversion and
2 MHz sampling, can be added to the main unit in any combination
for either two or four-channel for either two or four-channel
operation as the main unit's memory can be shared. Permanent waveform storage is possible using
single floppy-disc drive the $\mathrm{F}-43$ single floppy-disc drive, the F-43, the XF-44 dual disc-drive with our-channel versions. Cursor positioning, display expansion (up to
$\times 256$), $\begin{array}{r}\text { r.m.s. calculation and }\end{array}$ waveform addition, subtraction and inversion are standard on the 4094
and further programs for waveform and further programs for waveform
multiplication, integration, etc, are multipiplation, integration, etct, are
available on disc. Both plug-in input amplifiers have pre- and postwo amplifiers are used they can be perated independently thus formwith a common display. An RS232 tal plotter are available for use with rs have also introduced a small 4000 -line FFT spectrum analyzer,
he 100 A , for 0 to 20 kHz . Nicolet nstruments Ltd, Budbr
Road, Warwick CV34 5XH.

W
ofty
Following the success of Softy, a rograming copyis e.p.r.o.m. eroulation, the desing and has re. re-
cently introduced an enhanced version called Softy 2. This unit is
similar to the original version which
displays the contents of 512 contig uous addresses in hex form on a elevision screen via an internal
modulator. Improvements include an expanded monitor and keypad (28-key, two-level) to provide extra
functions such as serial (RS232) unctions such as serial (RS232)
and parallel (Centronics) routines and parailel (Centronics) routines
for connection to orher computer systems or printers. Code can also
be stored on cassette tape using be stored on cassette tape using
new system called Transwift which is claimed to be tolerant of speed r.a.m. has also been incresed to 2 K and the unit will now program of single-rail e.p.r.o.ms. To make f.o.m. emulation easier, the
address and data lines have been buffered and the unit is supplied
with a ribbon cable and 24 -pin plug. Softy is only availabse built
and tested in a black plastic case and is supplied with a separate
power supply for around $£ 169+$ v.a.t. Dataman Designs, Lombard
House, 24 Cornwall Rd, Dorches ter, Dorser DT1 IRS.

Low-noise f.e.
preamplifier of the AH0013 linear wideband preamplifier is quoted as used in this hybrid device giving typical input impedance of HoGG Ω and maximum bias-current require-
and and maximum bias-current require-
ment of 50 pA. Sonar, audio, infra-
red detection and comunicaion red detection and communication
equipment applications are sugequipment applications are sug-
gested for the device. Packaging is 8-pin d.i.l. and the operating tem-
perature range is from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. DI-AN Data Systems
Ltd, Mersey House, Battersea Rd, Heaton Mersey, Stockport, Che
shire SK 4 3EA. Whire 304

WIRELESS WOPLD OCTOBER 198

STDIEBARNDS man

Basic holidays

or as long as I can remember, I've been very much in favour of lots of healthy lercise. I can sit digging gardens and io ing round the park all day long withou eeling any the worse for it, and I'm sure has all helped to shape my easy-going and Therant outlook on life.
Those summer camps for kids in fadmiration for me: a stroke of absolut genius, I've often thought. We British have developed hypocrisy to a pretty ex eptional led, buy thern hose camps has nothing to learn e belting home from school for the summer holiday han they are given a hose down, provided with enough of everything to avoid th need for further communication in the land to be coped with by others, while $M a$ and Pa take off for the sun. And it's all done in such a way that even the kid hemselves, and probably the parents too, Outdoor Life, and all that. That's what I thought, anyway.
But it's all gone wrong. No longer do emergent Americans go on long walks wim, climb grizzly bears and fish warn. Whas and deadly seriousness, they are hooked on computing.
I haven't been'able to find out any more details except that, at the camp I've heard of, the kids are turned loose on the compufew seconds to swallow a pecan pie washed
fred down with a glass of clam chowder (I really must try to discover what all these things are) stick with it till sack-time, as I believe it is called. According to the man who runs
the operation, it is quite difficult, short of resorting to the garrotte, to stop the little people computing away like crazy when it is time for the Sandman to come and put sleep in their eyes. What they compute, I
have no idea. Perhaps it's the answer to have no idea. Perhaps it's the answer to
imaginary questions such as "Why aren't I in Florida with Mom and Pop?

Oasis

I've always been a bit envious of anyone who can eat snails, or mussels, or oysters, or sheep's eyes or any of those things with coercion. There must be a lot I'm missing by being so pernickety, but even just writing about eating oysters is making me feel all peculiar. It isn't just the dishes themselves, either, that make me curl up
you only have to mention sheep's eyes when there is a hard-boiled egg with the alad to put me right off. Association, you see, that's what it is
I hope this flaw in my make-up isn't characteristic of the majority of c.b. enthusiasts, because the fraternity now has its
own restaurant: its name - The Eyeball Bistro. It's in Princes Street, near Oxford Circus. Of course, it doesn't mean they're going to serve eyeballs (it doesn't, does it?) but the damage is done, so far as I am Breaker Bistro' or 'Eighty-eights' and accept the risk of being overwhelmed by demolition workers or bingo players? Further grounds for misgivings arise from the declared intention to print the
menu in c.b. jargon. Now, at that point, I do really think one has to demur. With something as serious as food and drink, there must be no room for misunderstand ing, and this idea is a most dangerous precedent. I realise that menus are
sometimes written in French for reasons of snobbery, but I've learned to get along with that, and it doesn't change every other fortnight. "Superslab with i.cs, in tears" is no way to talk about steak and chips in onion gravy and 1 do most eargrounds, the idea is dropped.

Postillions beware!

Translation by computer of foreign lansuages has always been good for a laugh.
There was a story that a lucrative civil engineering contract was once turned down because the contract, translated by computer from the Russian, insisted that a Since the company didn't have anywhere to keep the animals, and couldn't find out what they were anyway, it decided to forget the whole thing and work for the Arabs, instead. So a German company, the Russian for 'hydraulic ram', got the the R
job.
But
But we're over all that sort of thing now. At least, I hope we are, because the EEC is wanting to use a new system, Eurotra,
which they hope will be able to cope with the 72 language pairs in use in the community when Portugal and Spain get their tickets - that's each of nine languages translated into all the other eight. So it had better be a good system, and it
ought really to be able to handle the odd bit of idiom, slang and dialect. The thought of a British MEP, infuriated by yet another bland explanation of why butter mountains and wine lakes are not bad
onics, rising to his feet and bellowing What a load of old cobblers!" is a sombre one. Unless Eurotra can deal effectively with vituperative outbursts of this kind, there are problems ahead. One can
magine the blind panic which would be magine the blind panic which would be
the natural result of the foregoing innocent the natural result of the foregoing innocent
remark: proceedings would be halted while the premises were searched for the elderly shoemakers and the whole fabric of civilized Community life would be im perilled.

Maybe Esperanto would be a better | Mdea. |
| :---: |
| Mayb |

Man-powered flight

Pilots have a lot to cope with. It isn't all pretty clouds and sending the air hostess for cups of coffee every few minutes: not by any manner of means. It might be like that some of the time, I dare say, but every now and then their reactions are put to the
test when things go wrong. You don't want to be too relaxed when, for example, an engine goes on strike just after take-off, or when the controller tells you that another aircraft is making a head-on approach cosing speed of around 1200 knots. of this kind, airlines make use of flight simulators, which can be programmed with all kinds of 'failure'. Accelerations, visual effects and sounds are provided to
make the simulation as realistic as it can be, the sounds being recorded in a real aircraft and played back under the control
of the simulator.
Clearly, as many sounds as possible are needed, but a chap I know who used to
record the aircraft noises tells me there was one he never could get in the normal way. Birds are unco-operative little beasts, and he found it quite difficult to persuade them ofly into windscreens to order so he could simulated on the ground simulated on the ground
So, I am about to exp scene which someone may have seen and wondered about (though not for long, probably - the world is full of strange people). What they had to do, it seems,
was to buy some frozen, oven-ready chickens from Sainsbury's, thaw them out and give them to several brawny characters with good right arms. On the word of command, the chaps hurled the fowls with
considerable enthusiasm at the aircraft's nose cone, while the tape recorder inside collected the bangs. Played back at a highier speed, it gave just the right effect and everyone (except the chickens) was happy.

World's most powerful
BASIC pocket computer
CASIO FX-702P

 FX-602P
$£ 74.95$
$\star \star \star$ NEW $\star \star \star$ FX-3600P ${ }_{38}$ program steps $£ 22.95$
TEMPUS
World's most versatile

alarm
chronograph watch CASIO AX-210
10 alternative displays
OVer 6 usefulifuntions

ONLY $£ 29.95$

THE LEADING U.K. SPECIALISTS Dept. W.W.
Telephonast Road, Cambridge CB1 1DB

- 072 FOR RUR Detalls

THE W.W. DISK OFFER RE-OPENS AT LAST

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data Total U.K. price including VAT at 15% and carriage, CWO

ONLY $£ 155$ EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$)
Please make cheques and P.O.s payable to W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill
Batford
Herts
Please call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non K. orders send SAE for quotation
ww - 051 FOR FURTHER DETAILS Torriage CWO

${ }^{88}$

मユ尺MEに
 OSCILLOSCOPES

Top Parformance
In Every Range

Hm 307
TRUE AS AN＇ARROW＇HIII \longrightarrow Professional Wire and Cable Fasteners
for all installation requirements． TELEPHONE－ELECTRONICS COMMUNICATIONS－ALARM SYSTEMS，ETC．，

Quite simply the hest way to make music ．．．

Prices to suit every pocket
Complete kits from $£ 33-£ 320$ ！

－COMPREHENSIVE INSTRUCTIONS WITH EVERY KIT © KITS REALLY COMPLETE－EVEN SCREWS AND WIRE！•

－SUPERIOR MATERIALS SUPERIOR FINISH © SUPERIOR SOUND－

muild the transcerndent range from POWERTRAN
－Worloleaders inelectronic kits

－SOLDERING PRACTICE KIT－FREE on request with your first kit，to assist newcomers！
PORTWAY INDUSTRIAL ESTATE，ANDOVER，HANTS．SP10 3MM－ANDOVER（0264） 64455

The November issue of Electronics Today International features no less than 100 circuits designed for ETI by Tim Orr - amplifiers, timers, alarms and filters.
Build the main constructional project - an advanced music processor incorporating auto double tracking, phasing and flanging effects. There are four available scan speeds and the effects can be operafed manually or in one shot mode by button or foot switch or left free running. All electronic switching of DC control signals offers noiseless effects change-over.
Don't miss this bumper edition of Britain's best electronics magazine. ETI NOVEMBER - 100 brand new circuits, a sophisticated music processor design, constructional projects, regular features and news from the world of electronics.

ON SALE-OCTOBER 2nd

 ONLY 65p at your newsagent100 CIRCUITS ISSUE!!

JOIN THE MICRO REVOLUTION WITH YC1000L DATA LOGGER
This new laboratory grade instrument features microproces-
sor control for incrased versatility. Its many functions in
clude - a frequency sor control for increased versatility. Its many functions in-
clude - a frequency counter (0.02, pm accuracy). a preci-
sion A.C./D.C. voltmeter, thermal sensor and a programmable timer. The test' results may be read direc
from the Digital display or recorded on the integral logger. We are currently offering the YC1000L at the UNBELIEVABLE price of $f 680$ plus V.A.T. Should you require further informa-
tion on this or any of our other products please write ToDAY.

SOUTH MIDLANDS COMMUNICATIONS LTD:
Osborne Road, Totton, Southampton SO4 4DN, England
Tel: TOTTON (0703) 867333-Telex: 477351 SMCOMM G
WW - 056 FOR FURTHER DETALLS

WIRELESS WORLD OCTOBER 1981

DANTOFA NWW ERA OLO

PDNER NT TD $\begin{gathered}\text { Which amplifier? } \\ \text { 1.Lp Amplifers now } \\ \text { orwiti }\end{gathered}$
1.L.P. Amplifiers now come in three basic types, each of which is available with
or without heatsink. Having decided the system you want

 amplifiers tor bolting to a metal chassis will suit. With choice such as this and
birliant new rango of t.p. functional modules to choose from you now have
the chance to build the tinest aucio system ever of fered to the constructor

Which modules?

In launching eighteen different units all within amazingly compact cases to help make most versatile moduluar assembly scheme ever for consstructors of all ages and experience. Study the list - see how these modules will combine to almost any audio
proiect you fancy - and remember all. L. P. modules are compatible with each other
 measure $90 \times 20 \times 40 \mathrm{~mm}$. They are

AMPLIFIER
WITH
HEATSINK

BIPOLAR Standard, with heatsinks									Without heatsinks				
$\begin{aligned} & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$	$\begin{gathered} \text { oupur } \\ \text { ouptr } \\ \text { watut } \end{gathered}$			$\begin{aligned} & \text { SUPPLY } \\ & \text { VOLTAGE } \\ & \text { TYPIMAX } \end{aligned}$	$\begin{gathered} \text { silk } \\ \substack{\text { mm }} \end{gathered}$	$\begin{gathered} \text { wr } \\ \text { gms } \end{gathered}$	PRICE	vat	$\begin{array}{\|c\|c\|} \hline \text { monet } \\ \text { nomeser } \end{array}$	$\begin{gathered} \text { sing } \\ i n m m \end{gathered}$	$\begin{array}{\|c} \substack{\mathrm{m} \\ \mathrm{gmam}} \end{array}$	PRICE	vat
нצзo	15 m 488	$0.015{ }^{\circ}$	<0.0064	$\pm 18 \pm 20$	76x88x40	240	67.29	f1.09.					
HY60	30w 4.88	0.015\%	<0.006\%	± 25330	$76 \times 88 \times 40$	240°	18.33	11.25					
HY120	60w 488	0.01\%	<0.0068	$\pm 35 \pm 40$	120x78x40	410	17.48	12.62	Hy1209	$120 \times 26 \times 40$	215	15.50	12.33
H2200	12044.88	0.01\%	$<0.006 \%$	$\pm 45 \pm 50$	120x78,50	515	E21.21	[3.18	Hy200	$120 \times 26 \times 40$	215	${ }_{118946}$	12.77
H4900	200×48	0.01\%	<0.006\%	$\pm 45+50$	$20 \times 78 \times 100$	1025	131.83	[4.77	HY400	$120 \times 26 \times 70$	375	128.33	c4.25

MOSFET Uiltra Fi, with heatsinks

\qquad Without heatsinks

POWER SUPPLY UNITS				FP480
MODEL NO. FOR USE WTH		Price	vat	
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY6/66 series			BRIDGING UNIT FOR
	a maximum of 100 mA o o one HY 67	${ }^{\text {4.50 }}$	${ }^{\text {¢ }}$ 0.68	DOUBLING POWER
	series except HY67 which requires the PSU3O.			Desispet speialy by $1.1 . \mathrm{P}$
${ }^{\text {PSL36 }}$	1 or 2 HY 30	88.10		
PSU60		${ }_{\text {c }}^{\text {c10.94 }}$		
PSU65	$1 \times$ MOS $12011 \times$ M ${ }^{\text {S }} 120 \mathrm{P}$	¢13.32	${ }_{\text {¢ } 2.00}$	\%aseme
PSU70	1 or $2 \mathrm{HY} 120 / \mathrm{HY} 12 \mathrm{1OP/HD12014D120P}$	¢15.92	¢2.39	comecterf:1, thus beceames possible to
PSSU75.		£16.20	${ }^{2} 2.43$	
PsSu90	1×HY200/HY2009/HD200,HD200P	${ }_{\text {¢ } 16.20}$	${ }_{\text {c2. }}$	
${ }_{\text {PSULI80 }}$		£16.32	${ }^{52.45}$	Price: 44.79 P 722 . V.A.T.
PSU185		f21.34	${ }^{\text {¢ }}$ ¢ 20	
		52146		

GOOOS BY MAIL ORDER DESPATTHED WTTHIN 7 DAYS

model No.	module
HY6	MONO PREAMP
HY7	MONOMIXER
HY8	Stereo Mixer
HY9	Stereo pre Amp
HY11	MONO MIXER
*HY12	MONo PRE AMP
*HY13	MONO VUMETER
HY66	Stereo pre Amp
HY67	Stereo headphone
HY68	Stereo mixer
HY69	mono Pre amp
HY71	dúal stereo PRE AMP
*HY72	Voice operated STEREO FADER
*HY73	gUitar pre Amp
+HY74	Stereo mixer
+HY75	Stereo pre amp
+HY76	STEREO SWITCH MATRIX
+HY77	STEREO VU METER DRIVER

- Ready Ausust- -may be ortuerd now

TO ORDER USING OUR FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate
sheet of paper, quoting the name and dare of this ounnal

 Crossed and made payable to i. ipe Electronics Ltd. If

	CURRENT REQUIRED	PRICE	VAT
	10 mA	£6.44	£0.97
	10 mA	£5.15	£0.77
als	10 mA	£6.25	£0.94
	10 mA	£6.70	¢1.01
	10 mA	£7.05	£1.06
	10 mA	¢6.70	$£ 1.01$
river	10 mA	¢5.95	£0.89
K	20 mA	£12.19	£1.83
	80 mA	£12.35	$£ 1.85$
as	20 mA	¢7.95	£1.19
ge/	20 mA	£10.45	¢1.57
	20 mA	£10.75	£1.61
	20 mA	£13.10	E1.97
	20 mA	£12.25	£1. 84
nals	20 mA	£11.45	£1.72
nals	20 mA	£ 10.75	£1.61
of	20 mA	To beannounced	
	20 mA	¢9.25	¢ 1.39

The modules are encapsulateded and includ
latest
latest desing hian latest design
cliph
cip en edge conarinectors.

For easy mounting we
recommend
86 Mounting board for
modulues HY6 - ${ }^{2 / 13}$.
modules 7 HYG - HY H1 3 . 3 .
B66 Mounting board for
866 Mounting board for
HY66-HY7
$99 p+13$ p. V.A.T

All.L.P. modules include
full comnection data.
I.L.P. Products are of British
Design and Design and
Manufacturs.

To: L. LP. ELECTRONICS:TTD. ROPER CLOSE CANTERBURY CT2 2 IEP

$\cdots \quad$ Tenclose Cheque \square Posalal Orders \square Totermational Money OTder \square
Please debir my Access/Barclaycard Accoun No..
NAME:-
${ }^{\text {ADDRESS... }}$
Signature.
$W W 5 / 10$

COMPONENTS • DEMONSTRATIONS • SPECIAL OFFERS • MAGAZINES © BOOKS

Any one of the 17,000 people who thronged the RHS for the Breadboard exhibition last year will need no introduction to this year's premier show for the electronics enithusiast. They already know all about the
demonstrations, bargain sales, bookstalls, games, kits, computers and music machines to be found at BREADBOARD 81. They could name you all the leading companies who were there to see - and to buy from, at fantastic prices.
Even those lucky 17,000 would be surprised to hear that this year we've improved BREADBROAD still further! More stands, more demonstrations and wider gangways to make it all easier to enjoy! BREADBOARD 81 is the place to be from November 11 th to 15 th at the RHS Hall. Why not come and find out for yourself how much you missed last year? We can promise plenty to see and do at BREADBOARD 81. Close to Victoria Station and NCP car parking facilities

Cost of entry will be $£ 2.00$ for adults and £1.00 for children under 14 yrs and O.A.P.s. ORGANISED BY MODMAGS LTD., 145 CHARING CROSS ROAD, LONDON WC2H OEE.
ROYAL HORTICULTURAL SOCIETY'S NEW HALL, GREYCOAT STREET WESTMINSTER, LONDON S.W.1.

Sowter Transformers

AUDIO FREQUENCY

TRANSFORMERS OF EVERY TYPE
YOU NAMEIT! WE MAKE IT! OUR RANGE INCLUDES:

Microphone transformers (all types), Microphone
Splitter/Combiner transformers, Input and Output Splitter/Combiner transformers, Input and Output
transformers, Direct Injection transformers for Gui-
tars, Multi-Secondary output transformers Bridging ransformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transtormers, Gramophone Pickup transfor-
mers, Audio Mixing Desk transiormers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Ultra transfoquency transformers, Ulira linear and other
transtors for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop transformers. Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line
transformers (from a few watts up to 1,000 watts) 100 translormers (from a few watts up to 1,000 watts), 100
volt line transformers to speakers, Speaker matching

E. A. Sowter Ltd.

The Boat Yard, Cullingham Road, loswich, IP1 2EG, Suffolk, P.O. Box 36 Ioswish Phone: 047352794 \& 0473219390 : Telex: 987703 B SOWTER, IP1 2EL, England

LINSLEY-HOOD CASSETTE RECORDER 1

 Please send 9×4 S.A.E. or telephone for lists giving fuller details and
price breakdowns.

Instant easy ordering, telephone your nts and credit card number to us on
Oswestry (0691) 2894

FEED YOUR MICRO BYTES WITH OUR
SOLENOID CONTROLLED CASSETTE DECK

HART TRIPLE-PURPOSE TEST CASSETTE TC1

P.\&R. COMPUTER SHOP

IBM GOLFBALL PRINTER 3982, £70

$$
\begin{aligned}
& \text { EPSON MX-80 } 80 . \mathrm{GPS} 392 \text { IBM I/O PRINTERS DOT } \\
& \text { MATRIX PRINTR WITH SPECIAL INTERFACES }
\end{aligned}
$$ MATRIX PRINTER WITH SPECIAL INTERFACES. VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES,

PAPER TAPE READERS, PAPER TAPE PUNCHES, PAPER TAPE READERS, PAPER TAPE PUNCHES,
SCOPES, TYPEWRITER, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$. POWER SUPPLIES, STORE CORES, TEST EQUIPMENT AND
MISCELLANEOUS COM MUTER ERUIPMENT OPEN: MONDAY TO FRIDAY 9 a.m. 5 P.

COME AND LOOK AROUND
SAL MLL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440
WW - 024 FOR FURTHER DETALIS

Wireless world october 1981

EPROM PROGRAMMER

$-10 \mathrm{CO}$

S, CMOS KETS

MODELS:
S20 for copying S30 for copying

- Displays contents of EPROMS, instruction codes and failure details.
- Protects EPROMS
- Self tests automatically.
- Simple operation for semi skilled personnel.
- Copies from master EPROM or RAM.
- Verifies master/copies. RAM/master, RAM/ copies.
- Serial or parallel interface

16-20 KELVIN WAY, CRAWLEY, SUSSEX. RH10 2TS.
TEL. CRAWLEY $\{0293) 510448$
wW - O60 FOR FURTHER DETAILS

 - $4 \times 8 \times$ Static Ram

- Vmulates simply a t the tush of of a key
- Powartutu sediting facilities

- 2764 adaptor now available
- EP4000 ex-stock at $£ 545+$ VAT $+£ 12$ delivery

GP INDUSTRIAL ELECTRONICS LTD TOTNES, DEVON TO9 5XL. TEL: (0803)
ww -049 FOR THELEX: 425

TV PATTERN GENERATOR

Using the ZNA 234, along with three readilyavailable CMOS i.c.s. and a ready built u.h.f. modulator, we've formed a very compact pattern generator which is simple to construct and is powered from a mains adaptor. The complete unit, housed in a proprietary case is useful for many servicing applications in the workshop and in the field.

CHOPPERS RULE OK!

Switch mode power supplies are now the rule in colour sets, having finally ousted the thyristor regulated power supply. Servicing
them is another matter however Snelling provides some useful guidelines.
IEIEVETOM
October issue
WELL WORTH A CLOSER LOOK.

ELEGTROALIUE
 MEMORIES Prime stock S4Ls00

 \square Z80 Series
 SPECIAL OFFER 25×4116 each $£ 1.30$ (E32.50 complete, net LOOK OUT FOR CATALOGUE 82 FREE with Practical Electronics
 \qquad 5% 10% orders over 220

WIRELESS WORLD OCTOBER 1981

NORWOOD ROAD, READING

sabtronics

An entire range of low-cost high-performance instruments MM WITH TEMPERATURE
Test our low priced rest equipment. It measures up to the best. Compare our
specs and our prices - no-one can beat our
sabtronics
"Making Performance Affordable"

WW - 026 FOR FURTHER DETALLS
PEAK PROGRAMME AND DEVIATION MONITORING peak deviation meter

PROGRAMMEAND DEVIATION CHART RECORDERS

Now Monthly!

yovk COMPUTER

Following the enormous success of the first two issues, Your Computer is being published monthly. The October issue out now and like its predecessors it is full of articles specially written for the home computer enthusiast

- Review of the Tandy Colour Computer - yet another
contestant in the low-cost computer stakes.
Games. Two articles describe how to write draughts and
chess programs for home computers.
- ZX 80/81 Software. A review of cassette programs now on
sale.
- Prog

Programming the VIC 20. First part of a new series by Pet xpert, Nick Hampshire
All this, plus the calculator page, club news, answers to your problems and six pages of games and program listings to try out on your computer. For only 50p

Put in a regular order with our special introductory take out a subscription a

SPECIAL OFFERS

TANTALUM CAPACITORS
 ELECTROLYTIC CAPS

FULL SPECIAL OFFER LIST AVAILABLE

Harrison Bros. Electronic Distributors
22 Milton Road, Westcliff-on-S 22 Milton Road, Westcliff-on-S Tel: Southend-on-Sea (0702) 32338

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS
 ww - 034 FOR FURTHER DETAILS

Barrie Zlectronics Lta.
3,THE MINORIES,LONDON EC 3N 1BJ
TELEPHONE: O1-488 331688
ww - 062 FOR FURTHER DETAILS

THESHRPMR80K HASCOTHAM

Since its introduction the Sharp MZ-80K has proved to be one of the most successful and versatile microcomputer systems around. Sharp now have a comprehensive range of
products ready to make the powerful $M Z-80 \mathrm{~K}$ with its products ready to make the powerful MZ-80K with its Printer and Disc Drives even more adaptable.
Products include:- Universal Interface Card, Machine Language and Z-80 Assembler packages, CP/M* plus a
comprehensive range of software. "omprehensive range of softwa

UK RETURN OF POST MAIL ORDER SERVICE ALSO WORLDWIDE EXPORT SERVICE

WW - 076 FOR FURTHER DETALLS

Youllil find all the help and advice you need about lis lis
If there is no dealer in your area, or if you require any further Sharp House, Thorp Road,Newton Heath, Manchester M10 (UBE) Ldd.
SHARRP H:R

337 WHITEHORSE ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. $9-5$.
RADIO COMPONENT SPECIALISTS .

Better communication is the key to efficiency so visit
 WEST CENTRE HOTEL,LILLIE ROAD
 Ihir Virutidn Exhibilionn
 The Viewdata Exhibition For Professional \& Business People gives ou the businessman the ideal
 WESTCE
 NOVEMBER 4-6, 1981 $10.00-18.00 \mathrm{hrs}$ (closing 17.00 hrs on the last day)

 OPEN NEW DOORS FOR THE EFFICIENT DEVELOPMENT OF YOUR BUSINESS Entrance to the exhibition is FREE by registration So save time at the door
 WRITE FOR YOUR ADVANCE TICKETS TO Viewdata Tickets,IPC Exhibitions Ldd, Surrey House, 1 Throwley Way. Sutton, Surrev SM1 4 QQ Sutton, Surrev SM1 4QQ
 Please note all applications for tickets must be received by October 26, 1981 to allow time for processing.

 optract the latest information at the touch of a button.Come and see why the most important ompanies in Britain are now heavily involved in viewdata. Benefit from the vast experience of exhibitors like British Telecom, GEC, Philips, ITT, Bishopsgate, Centronics, Viewdata Business Systems and many others who are there to ...

Practical Computing

is just what it says -

practical guide for people who ar getting to grips with personal
computers and want to computers and want to know more
More about equipment. Down to earth reviews of personal computers and peripherals which are on the arket - and why some are better More about software. How to write it. What to look for in business software. Evaluations of software packages software purchases.
Mort ware purchat applications. What can
Mat ou do with a personal computer? Cas diverse as businessmen, manufacture and doctors are using computers in

To Marketing Department, IPC Electrical.Electronic Pre
Quadrant House, The Quadrant, Sutton, Surrey SM2 5 , Please send me Practical Computing for one year. I enclose
Cheque/P. O . for 10 (U.K.// 16 (overseas) made payable to IPC Business Press Ltd.
Name
Address
Address ________
their everyday work
One way or anot in your business. computer newsagent or complete the coupo bet that there's a cor it's a pretty fair future. Being used by a colle your work. On your children's Christmas list. Or in the back of your mind - iust waiting to be bought - perhaps for use
in your business. comes in. For only 80 p you can keep up with your colleagues, stay a ciump ahead of your children and maybe make a
better choice when you buy your own

Act now. Get the October issue of Practical Computing from your

WIRELESS WORLD OCTOBER 1981

RHODE \&' SCHWARZ Selective UHF V/Meter. Bands 4 \& 5. USVF Selectomat Voltmeter USWV £450 UHF Sig. Gen. type SDR 0.3-1GHz UHF Sig. Gen. type SDR 0.3-1 GHz UHenerator SCH £175. XUD Decade Synthesizer \& Exciter. POLYSKOPS SWOB I and II Modulator/Demodulator BN17950/2.	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES vely Dimenions $9 \times 4 \times 5$ ins. . $10+$ (fi
	RANK KALEE 1742 Wow \& Flutter Meter AIRMEC 314A Voltmeter. 300 mV (FSD)-300V. DERRITRON 1 KW Power Amplifier with control equipment for vibration testing, etc. HEWLETT-PACKARD 8551B/851B Spectrum Analyser. $10 \mathrm{Mhz}-40 \mathrm{GHz}$. HEWLETT-PACKARD tuned amp \& null detector. HEWLETT-PACKARD 331A Distortion Meter RADIOMETER Distortion Meter BKF6 £125.	
MARCONI TF995B/2 AM/FM Signal Generator. TF2500 Audio power meter TF1101 RC oscillators $\mathbf{E 6 5}$. 6551 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM TF1066B/1. 10-470MHz. AM/FM TF1152A/1. Power meter. 25 W . 500 MHz TF1370A RC Oscillatar £135. TF791D Carrier Deviation Meter		SPECIAL PURCHASE LAMBDA POWER SUPPLIES Excallent LXS Saries DC power units at less than a tenth of naw price. The snag? - they're all 110 V AC Input. Prices as follows: $5 V$ at $24 A$. LXS D5 oV R. (List f350). 5 V at 14A. LXS CC 50 V , £20. (£258). 24V at 3.1A. LCS C 24. £15. (f223). Carriage each f2.50 extra
		MODULATION METERS RACAL 4093 3-600 WHz. AM/FM.
BECKMAN TURNS COUNTER DIALS Miniature type (22mm diam.). Counting upto 15 turn to 15 turn "Helipots". Brand new with mounting instructions. Only $£ 2.50$ each		
\star COOLING FANS \& BLOWERS 		
		100 V
	TEKTRONIX ${ }^{\star}$ OSCILLOSCOPES SERIES SCOPES AT BARGAIN PRICES: All in good working order. Available to callers only TYPE 543 B with ' CA ' plug-in. 25 MHz with CA . plug-in 25 MHz . TYPE 585A with '82' plug-in. 80 MHz .DB	* BELL \& HOWELL MICROFICHE *
SEALED LEAD ACID BATTERIES 		
20-WAY JACK SOCKET STRIPS. 3 pole type wiht two normaly closed contacts 22.50aach $4+250$ pol Type 316 three pole piugs tor above - 20p ea. (pp free).	PLEASE NOTE. All the pre:owned equipmen shown has been carefuly tested in our worrshop and reconditioned where noces. 	

 THD (typ) 0.0055% 0.005% 0.0055% 0.0055% 0.0055% 0.008% 0.008% 0.008% 0.008 0.01%

 size 80120.25 $80-120-25$ $80-120-25$ $80-120-25$ $861010-25$ $180-10-35$ $80-120-35$ $150-120-20$ 150

-Power output is quoted in wRM5 and is given for two modules off the same power supply. Higher powers can be obtained if using our d
one modue per PSU or if using a stailised power supply,
NEW: We now have a completely new Hi-Fi Kit package to offer:

CK 1010 contains CPR1X, all metalwork connectors wire, etc., to CK 1040 contains 2×608 s, all metalwork dual power supply, connectors heatsinks, wire, etc., 10 make a com
CS 1100 as CK 1040 but at 100 w/hannel

解 specialist Hit-Fi market. Unlike many manufacturers we acknowledge the massive ur amplifiers are technically outstanding have been subjectively 'te. However PRICES

${ }_{E 2}$

MPLETEKITS

Crimscanflelatrik

now youcan reach more new users than youever knewexisted.

Office Systems is new. And it's unique. It's the first quality monthly magazine for directors. partners and senior managers who are new or otential users of electronic office equipment.
Office Systems will solve their problems and Office Systems will solve their problems and answer their questions in clear, businessman
English. No jargon. Office Systems will solve English. Nojargon. Office Systems will solve
advertisers' problems too - with a controlled circulation of named. requested readers right from the start and a total circulation of 32,000 . It will operate a reader-reply service. No wastage No.waiting. Ad. Manager Tony Kaminski is waiting for your call.
FIRSTISSUE:
OCTOBER 81
For more details contact Ad. Manager Tony Kaminski at Quadrant House, The Quadrant Sutton. Surrey SM2 SAS Tel: 01-661 310 Published by IPC Electrical-Electro
A member of IPC Business Press Ltd

Office Systems

MIEASURE UR TO WOUR NEEDS WITF GROTEGE

DC-10MHz
YPE 3035
Bandwidth
$5 \mathrm{mV} /$ div sensit
200ns/div to $0.25 /$ div $\begin{aligned} & \text { Rogulated internal } \\ & \text { supplies }\end{aligned}$ (imebase
Triggering to $20 \mathrm{MHz} \quad 10 \times 8$ div display
5" Bright CRT
BUILT-IN
COMPONENTTESTER £86.5*
If your need falls between 10 MHz and 30 MHz then we can measure up to it, including battery operated models Every scope in the range is designed to meet our basic design philosophy of building in that extra benefit. The 3035 has a full 10 MHz scope specification, plus a Com-
ponent Tester which displays the characteristics of both ponent Tester which displays the characteristics of both
active and passive components. While the 3337 is complete 30 MHz instrument with signal delay, plus a 10 KV CRT for a bright display normally reserved for much wider bandwidth scopes.

$\mathrm{DC}-30 \mathrm{MHz}$
Bandwidth
11.7 ns Risetime

5 mV /div sensitivity
Signal Dolay
Algebraic addition
and subtraction
YPE 3337 *U.K. LIST EXc vat

For your copy of the
Reading (0734) 866945
Cratech instruments Limited
5 Nimrod Way, Elgar Road, Reading, Berks. RG2 OEB. or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards stamp. hese Service Cards are valia six months fi
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION
AGENTS

WIRELESS WORLD
RIRELESS WORLD
Reader Enquiry Servi
429 Brighton Road
South Croydon

Wireless World:

 Subscription Order FormTo become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

The Professional Choice

Amcron 븡

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughou mplification. For power you can depend on choose AMCRON th professional choice.
For further details contact the UK Industrial distributor

ATR G.A.S. ELECTRONICS

1.6, ST. ALFEGE PASSAGE, LONDON SE10

TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

The 9908 Universal Counter is the finest counter in the world in its class.

In operation it will help you to provide a better service for all your customers.
That's because it's designed and manufactured to give unrivalled versatility, greater accuracy and a long dependable life.
For all service organizations actively involved with the repair of mobile radios, CB and Open and other video systems, the 9908 measures the widest range of frequency and time.

Features include frequency coverage to 1200 Hz , 10 mV sensitivity, 0.1 parts per million crystal find the 9908 demonstrates the high quality and design integrity on which Racal has built its reputation.

And that's more than a claim because we'll guarantee the whole unit for two years and the LSI chip for a lifetime. mes to quality we'll give you all the reasons for specifying the 9908.

The Ninety-nine hundred and eight gives you every good reason forcounting on Racal-Dana.

WW - 083 FOR FURTHER DETAILS

JOYSTICK CONTROLS

$0.6 \times$ actual size

FLIGHT LINK CONTROL LTD. BRISTOW WORKS, BRISTOW ROAD
HOUNSLOW, MX wW-086 FOR FURTHER DETAILS

ANY MAKE-UP OR COPY QUERIES CONTACT BRIAN BANNISTER

01-661 3500 extension 3561

LOOKING FOR 51 WINCHESIERS?

The Revolutionary New 8" Thinline
The Revolutionary New
Tandon's revolutionary new 8 inch flopppy disc drive is only half the
thickness of earlier dirives so that you can pack twice the storage thickness ol earlior drives so that tyou can pacct twice the storage into the
tsame space. In addition a new method of construction allows the drive to same space. In addition a new method of construction allows the drive to
constantly compensate for changes in temperature and umuidity so that
real capacities of up to 4. M. by yes are now achievable in the usual sinch
I floppy disc drive envelope size. The TM800 series drives require only D.C.
power (5v and 24 v) so that they run cool and no changing of pulleys and power (5v and 24). So that they run cool and no changing ot pulleys and
belts is needed for manufacturers who want to ship products abroad.
Our new low profile packaging, designed and built in the U.K., complete
with power supplies makes incorporation into, or add ition to, existing
systems
APPLE II \& TRS-80 COMPATIBLE MINI FLOPPIES This is our popular TM 100 series mini ifloppy Tandon make 40,000 of theses a month. Available as bare drives and
packaged in single and dual cabinets with power suplies packaged in single and dual cabinets with power supplies. Capacities
trom 100 .bytes to 1 Mbyte per drive! Compatible with TRS-80, Video Genie, SUPERBRAIN, Horizon, Zenith, SWTP, Heathkit etc., and supplied
as the standard drive with many of these systems. as the standard drive with many of these systems.

TRS-80 compatible (in cabinet with

 (in cabinet withpower supply)

APPLE II Compatible

$$
\text { DUALUNITS } 40 \text { track } 80 \text { track }
$$

SINGLE UNITS $\begin{gathered}\text { 40 track } \\ 80 \text { track }\end{gathered}$
$\begin{array}{ll}\text { Single disc } & \begin{array}{l}£ 249.00 \\ \text { Dual disc }\end{array} \\ £ 488.00\end{array}$
APPLE Controller board DOS 3.3
Prices exclude VAT and delivery charges.

SPARE PARTS SERVICE AND TRAINING

We carry a complete stock of emergency spare parts for Tandon disc
drives and we can fix any drive on a short turr-ound All final testing is
carried out on an in-house ATE drive testing syste. which
carried out on an in-house ATE drive testing system which can run 73
separate diagnostic programs to ensure that your drive leaves us in separate diagnosit crograms to ensure that your drive laves us in
absolutely first class condition. Aless complex calibration service is also
available Full product suppoit exists tor genine available. Full product support exists for genuine OEM cus tomers and
run single day training courses at regular intervals. Call our service
engineering depart run single day training courses at regular interva
engineering department for further information.
We carry the full range of Dysan alignment diskettes and a staff of
Sales Engineers will be pleased to help you with any queries.

Tregat justwhat yavie loding for....
 Our new Micro Winchester gives you from 5 to 20 M . bytes

 hard disc storage from as little as $£ 1425.00$ready-to-go, plug-in system with software. eady-to-go, plug-in system with software. Floppies and larger more expensive hard discs are no
match for our new drives which pack enough data to run serious business or technical applications software into a mini-floppy size $5^{1 / 4}$ "" unit. Your data is into a mini-floppy size $51 / 4$ unit. Your data is
protected in the sealed enclosure making diskette handling problems a thing of the past. The disc is fast -40 times faster transfer rate than a mini-floppy -replacement or an enhancement.

Controllerbility
Our controller comes with a range of adaptors to plug on to most popular micros and there are more adaptors on the way. It supports two discs with ease and while others are struggling with correction circuits, we use a high performance digital design which iterally locks into the data stream and stavs there Incidentally we Iso sell digital data separator card's to OEMs. Real time and multitasking applications benefit from the controller's interrupt capability and macro level command structure and the OEM version features a simple software The software comes on either with extensive development aids. The sofware
$51 / 4$ " or $8^{\prime \prime}$ diskettes together with Boot PROMs.

Service and Support
If you are impressed with the specifications so far, there is more to come. Our packaged sub-systems are assembled in-house and they carry a full one year parts and labour warranty. Our controners are built completely from TTL
logic - there are no fancy chips - so we can fix them it
they ever break down. Dozens of floppy disc drives go
they ever break
through our workshops every month and we are well

HAL Computers limited 57 Woodham Lane New Haw Weybridge Surrey KT15 3ND
TEA-phone: Weybridge 48346/7

STABILISED POWER SUPPLIES FARNELL A15. 2101240V IP. Dual Op. 12-17V per rait a 100 mA . Remote sensing. cur FARNELL $7 / 3 \mathrm{SC}$ C 11202020 V IP. Adjustable current limit. Re
mote sensing. (188 $\times 96 \times 93 \mathrm{~mm}$). Two versions available 15 V at 2 A or 30 V at 1 A . $\mathbf{£ 1 5}$ ea.
COUTANT OAR2: Op. amp, psu, $120 / 240 \mathrm{~V}$ IP. Dual Op. $12-15 \mathrm{~V}$ 100 mA . $(138 \times 80 \times 45 \mathrm{~mm})$. $\mathbf{£ 1 2}$ ea. or $\mathbf{2}$ for $£ 22$. BRANDENBURG Photomultiplier PSU. 19in. rack mounting.
Metered, current limit protection.
 Photo multiplier tubes available.
PIONEER MAGNETIISS POWER SUPPLIES. $.5 V 150$ amp, output input 115 vac. (Switchmode). Price $£ 120$ each.
SPCIAL OFFER. 10 MFD 50 V ECC 20 e ea. $10,00 \mathrm{MFD} 16 \mathrm{~V}$ WIMA polyester $10 \% 40 \mathrm{p}$ ea. Large quantities available. ELECTROLYTIC CAPACTORS. Very large stockholding
Mostly ITY EN1212m EN1235 types.
 470/25R , 7700 25 A
CAPACITORS-DISC CERAMIC
Over 2 million now in stock, mostly ITT. Many high-voltage

4 MILLION

I.t.t. ELECTROLYTICS NEW

AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL The whole range available at unbeatable prices. Send for List PYE HEAD CLEANING CAS-
SETTES. Brand new or boxed, 50 pea.
CASSETTE DECS: reo heads, mechanicallycomplete, but with no
electronics. Smart black electronics. Smart black
modern finish.
We have very large quantio We have very large quanti-
ties of Disc Ceramics High
V Voltage, Plate, etc.
$\begin{aligned} & \text { Special } \\ & \text { offer } \\ & \mathbf{E} 15 / 1000 \text {. Please send for }\end{aligned}$ our Disc Ceramic Stock Lists.
PIHER PRESTS Very large stocks, PT10,
PT15 enclosed types. Please PT15 enclosed types. Please
send for our preset list. Most
values VEAVY DUTY
 We have the following quantities of low profile GOLD
PLATED IC. sockets manu-
factured

D TO A CONVERTERS

 SPECIAL OFFER PRICE: $£ 20$

ANSFORMERS

ANSFO	
3-0-3V 100 mA................f1.06	gue $£ 3.50$ each
$6-0.6 \mathrm{~V} 100 \mathrm{~mA}$	Switchcraft XLR Connec
$6-0.6 \mathrm{~V} 250 \mathrm{~mA}$ ¢1.16	always in stock. Discounts
$0 / 6-0 / 6280 \mathrm{~mA}$ E2.00	on quantity.
$8-0-8 \mathrm{~V} 400 \mathrm{~mA}$ ¢1.25	ALUMIINIUM box
9-0-9V 75mA E1.14	AB7 $134 \times 64 \times 38 \mathrm{~mm}$
9-0-9V 3 A , £3.00	AB8 $102 \times 102 \times 38 \mathrm{~mm}$
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}$ ¢2.00	AB9 $102 \times 57 \times 38 \mathrm{~mm}$.
12-0-1250mA f1.18	AB10 $102 \times 133 \times 38 \mathrm{~mm}$ £ 1.05
	AB11 $102 \times 64 \times 51 \mathrm{~mm} 90 \mathrm{p}$
12 V 130 mA ($0^{0.80}$	AB12 $76 \times 51 \times 25 \mathrm{~mm} \quad 70 \mathrm{p}$
$12-0-12 \mathrm{~V} 250 \mathrm{~mA} \quad \mathrm{f} 1.94$	AB13 $152 \times 102 \times 51 \mathrm{~mm}$ £1.25
12 V 1 A 5 ¢ 1.25	AB14 $178 \times 127 \times 51 \mathrm{~mm}$ £1.55
$13 \mathrm{~V}+6.5 \mathrm{~V}$ Sec 2 Amp £2.00	AB15 $203 \times 152 \times 76 \mathrm{~mm}$ £1.90
	AB16 $254 \times 179 \times 76 \mathrm{~mm}$ ¢2.55
15 V 100 mA ($£ 1.00$	AB17 $254 \times 114 \times 76 \mathrm{~mm}$ £ 2
0/12-0/12 500+500mA £2.96	AB18 $305 \times 127 \times 76 \mathrm{~mm}$ £2.40
9-0-9V 1 Amp en	AB19 305×203x76mm £2.90
	blue rexine covered
15-0-15V 1 Amp ${ }^{\text {e3.62 }}$	ALUMINIUM BOXES
15 V 100 mA ¢1.00	RB1 $152 \times 114 \times 64 \mathrm{~mm}$ ¢1
	RB2 $203 \times 127 \times 76$
30, 24, 20, 15, 12841 A	RB3 $229 \times 127 \times 89 \mathrm{~m}$
£4.84	RB4 $279 \times 152 \times 102 \mathrm{~m}$
	RB5 $279 \times 190 \times 114 \mathrm{~mm}$ £3.80
	BLACK PLASTIC BOXES
20-0-20 400mA £1.80	
${ }_{2-0}^{22-02250 \mathrm{~mA}}$ ¢1.00	75x50x20mm
24 V 100 mA (${ }^{\text {c1.00 }}$	${ }_{90 \times 70 \times 40 \mathrm{~mm}}$
$25 \mathrm{~V}+6.2 \mathrm{~V}$ Sec 1.6 Am	
30, 24, 20, 15, 122 Amp	$170 \times 100 \times 50 \mathrm{~mm}$ £1.65
30, 24, 20, 15, 122 Amp	$200 \times 120 \times 80 \mathrm{~mm}$
9-0.9V 2 Amp ${ }_{\text {e4.70 }}$	FILTERS
12 V 2 Amp ¢4.84	3 Phase 20 AM Filters 433 V
	$50 / 60 \mathrm{HZ}$ Phase to Phase
30-0-30V 2 Amp $£ 7.96$	250 V AC 50/60Hz Phase to
30 V 250 mA ¢1.50	Neutral
30-25-0-25-30 1A6 EC^{6}	U.
0-2-4-6-8-10 5A ¢6.	Single Prase Filter 30 Amps
4-WAY DPDT AND 5-WAY	12560 Hz by Potter $\mathrm{E5} 5$
DPDT DIL SWITC	Soraaue Filter $2 \times 30 \mathrm{~A}$
Components and CTS.	Erie Mains Filters 3 and 5
Gold contacts 80p ea. Brand	Amp 250 V AC 50 HZ
BUZZERS, 6 v and 12v, 50p	All the above mentioned Filt-
WIRE ENDED NEONS ¢20/£ 1,000 .	SPECIAL OFFER: 0.1% TOL
ClAL OfFER. Mini-toggle	resistors. The following
by C. \& K., 3 Pc/o.	able
ng dolly or short, 50 ea.	$10 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{M} \Omega$, W
RESISTORS: Over 2 million	Filmet. Price 30p each
ock at last cou	CERMET PRESETS 15p ea.
ARBON FILM ${ }^{1 / 4}$ W 5\% E12	10A 250 V AC ILLUMINATED
2pe $E 1 / 100$ 20.	CKER SWIT
2p ea. £1/100, ¢6.50/1,000.	Red, DP ST $26 \times 30 \mathrm{~mm}$
METAL OXIDE/FILM: Most	Snap-in type 75p
迷	16A 250V AC ILLUMINATED
A few values in 0.1%	ROCKER SWITC
tolerance available. WIRE WOUND: ORI-100K 3 -	Amber). $14 \times 30 \mathrm{~mm}$ rectang-
200W. A selection of mains	ular snap-in type. SPST 30p
	LICONILLUMINATED
selection of metal clad high	
power types. ROTARY SWITCHES	01-800 Rectāngular Snap-in
	2PCO Latching £1.50
able. from 45p	${ }^{2} \mathrm{PCO}$ Momentary - $\mathbf{E 1 . 5 0}$
3 -pin Plug. Free hanging	Indicator only in 50 p
f1.20	Lenses available in red or
A 3F 3-pin Socket. hanging with lock f1.32	white only.
hanging with lock $\begin{aligned} & \text { f1.32 } \\ & \text { D3F } 3 \text {-pin Socket. Female }\end{aligned}$	WIAREWOUND POT
D3F 3-pin Socket. Female chassis mounting with lock	-100K by A.B., Colvern,
D3M 3-pin Socket. ${ }_{\text {Male }}^{\text {Male }}$ Chassis	
Chassis moung $£ 1.10$	10R-500K 10/20 turn. 11/4in.
o have excellent stocks of semic ogue, phone or visit our shop. Al departments, schools, colleges,	ductors, hardware, cables, rices are exclusive of VAT rade and export welcome.

Put your finger on the Mlectronics industry
Dial Industry will need no introduction to advertisers who had the sense to book into volume 4 covering mechanical engineering. Now's your opportunity to growth industry of electronics. Like its companion volume, it kes you to no less than $40,000 \mathrm{UK}$ buyers.

The Dial Industry series is anew concept in industria
directories. It is specially designed for buyers across British Industry - and the advertisers who need to reach them. Simple and easy to use, it will act as your salesman all the year round. Just look at the sectors
which receive in-depth coverage in this latest publication. And rem your advertising will reach top buyers and specifiers in all of them.
ELECTRICAL, ELECTRONIC • COMPUTER \& DATA PROCESSING • MEASURING, ANALYSING \& CONTROLLING INSTRUMENTS • WATCHES, CLOCKS AND PHOTOGRAPHIC EQUIPMENT AND JEWELLERY
How does Dial Industry work? Just like a classified telephone directory only better! It lists firms and offices along with addresses, postal STD codes and telephone numbers. Entries are classified by products an to named ind unike a telephone directory-Dial Industry is circulated customers.
C!
DOdD ASSOCIATION OF BRITISH \qquad EUROPEAN ASSOCIATION
OIRECTORY PUBLISHERS
Dial Industry, IPC Business Press Information Services Ltd., Windsor Court, East Grinstead House, East Grinstead, West Sussex RH19 1XA.

SIEMENS

 attachenemp and retrogety ydo. dual language capabilityy.
tages over more conventionaliy fifers many advan- teleprinters.
the most significan tages over more conventionaliy styled teleprinters,
the most significant features being quietess of
operation and the extensive use of electronics to
operation and the extensive use of electronics to
replace mechanical parts. The Model 1000 is so
quiettican be
 neecessity for a sepanate telex room housing a
'chattering' teleprinter.

The use of electronics also greaty reduces the need
Toe preventerive mainitenance and regular periodic
checks and, furthermore, makes for ase checks and, furthermore, makes for a smaller, more
economical, easier-to-use machine. A prominent feature of the Model 1000 is the easily replaceable
daisy wheel and

Variants for different purposes
Siemens Model 1000 teleppinters are made in a
tnumber of variants. For example reciventy number of variants. For example, receive-only
versions, with paper tape attachments, and
magnetic tape memories for bulik message storage magnetic tape memories for bulk messsage stor
and editing are availabie. For use in special and editing are available
envirionments there is a environments there is a
Model 1000 V designe ifor militany type
applications.

Model 1000 S
The teteprinter Model 1000 S is an exciling new
developent
using the latest technological
advances. The ersatity of the Model development using the latest technological
addances. The versatity of the Model 1000 S is
illustrated by the illustrated by the fact thatit will produce both latin and non-latin script and switch between them when
required e.g. Arabic, Greek, Cyrilli, Hangul or Farsi required e.g. Arablc, Greek, Cyrilic., Hangul or Farsi.
The Model 1000 s is availabole with heither a dalisywheet, a needle-printer head, or an ink fet. Option-
items include a visual display unit and floppy disk items include a
message store.
Security - a growing problem
Industry, commerce, Govemment departments, and Industry, commerce, Govermment departments, and
targe international concerns and Insitutions trequently have a communications security require-
ment. The Model 1000 CA Application) gives the message orivinatorn and
recipient protection from any electronic 'eaves dropping' Tris is dome by electroynic 'eaves-
decyphering the message thround graphic device. This machine has been designedt to be compatible with all standard telegraph circuit

PT80 - a concept for today
The PT80 printer terminals are a resulf of many communications. In exsence, these machines are electronic terminals suited to a wide range of
communications and data networks as well as commurications
process control.
The PT80 pinter terminal uses either a 12 needie printing head for refinid print quality, or alternatively
lhe Siomens revoutionary ink-jet mechanism to
achieve the ideal particularty in eespect achieve the ideal particulary ink in ret meech on mism to
noise. The PTBO uses the ink-et principite to at noise. The PTBO uses the ink-jet principle to to attain a
printing speed of to to 20 characters per second
The principle is featuredvery simply in the illustration The principle is featuredvery simply in the illustration
on this page, with the droplet being ejected by
means of a shockwave which couses a momentan means of a shockwave which caus
increase in pressure in the nozzle.
What happens immediately atterwardsin ton of the nozzle onfice is shown in our illustration. The
shockwave in hen nozze is generated by a piezoelectric transducer to which a voltage is momentarily
applied. Siemens has ensured that ink is eiectod only as and when needed.

Versatility
As with Siemens' Model 1000 teleprinters a number requirements. For are available to suit specific machines with neede example, there arink-jet priniting, a teleepopinte for automatic send/receiver. There ise a altach a a wide variety of character sets and an extensive range of interace modules to suit most telec
and data peripheral

PT80-H
Also available is the PT8O-H, designed to print airine-Style tickets, multi-part forns and continuous pre-printed stationery. This machine has the ability
to recognise the validity of each licket by series and type and dadiust the print format accordingly. It can
also be fitted with an integra also be fitted with an integral guillotine, so that forms
can be cut to size as they are used. Easy servicing
Again, as with the Model 1000 teleprinter, these
printer temminais are based on the modiar concept. For example, plug-in modules of the PT80 enable a fast and therefore economical sevice
suppon.
Operational flexibiility
PT80 machines generally operate with seven-bit
codes or altematively the PTPO-5
 Suitable for operating at speesds of up to to00 bauud,
the teleprinter variant at up to 200 baud, and the the teleprinter variant at up to 200 baud, and the
PT8io up to 4800 baud. Al the PTR0 terminals
satisty the requirements Notwithstanding their advanced specification, the
PT8O range of printer terminds is fompat and simple to use eand along with the Modedect and 1000 teleprinters they are
words from Siemens'

4

P

27 HIGH STREET, EGHAM, SURREY

ITICRDEYTE LTL.

A RAPID WAY TO CONVERT SOURCE

 PROGRAMS TO EPROMS
$\star \star \star \star \star \star 832$ EPROM PROGRAMMER $\star \star \star \star \star t$

Programs 2708/2716 (TMS and Intell)/2516/2532/2732/2732A RS232 connection to host computer or terminal Download. HEX files from processor to 832 to program EPROM Simple command structure to inspect, modify, verify, find partit
cular bytes, program and compare EPROMS

$\star \star \star \star \star \star$ DEVELOPMENT SOFTWARE FOR USE

 WITH PROGRAMMER $\star \star \star \star \star \star \star$ 8048/9 Cross Assembler and Simulator (under CP/M)M6800 Cross Assembler and Simulator (under CP/M) EXPAND YOUR PROCESSOR'S CAPABILITY

$\star \star \star \star \star$ MICROBYTE 421 MULTIPLEXER $\star \star \star \star \star$

Link up to 4 perip

mple protocol
Automatic baud rate detent for keybboard devices
Software options for non-standard requirements

> All prices exclusive of V.A.T.
One-year guarantee on all products

TEST EQUIPMENT BARGAINS

 SOLAATRTRONCD D 1400 Oscilloscope...

NEW EQUIPMENT
$\begin{aligned} & \text { All prices plus } 15 \% \% \text {..A.T. } \\ & \text { Add } 55 \text { per item coverage }\end{aligned}$
time base
94 Alfriston Gardens, Sholing, Southampton, Hants
Access and Barclaycard Orders Welcome
ww - 085 FOR FURTHER dETAILS

WW - 084 FOR FURTHER DETAIS

amplivox

The New head set and
Series offers
quality
lightweight and
operators feel
The Amplivox AHRM
the majority of
h plug connections
compatible with
exchanges. Amplivox
head sets
existing defenders, hearing aids, and th
new range of lightweigh
086755422 (Telex 837550)

Pleasesend me written details \square Pleaseask your technical rep to call \square
My special interests are

The last word in communication

Amplivox ultra lightweight stethoscopic style or single piece ' U ' shaped microphone model AHRM with a choice of magnetic or dynamic high sensitivity for good microphones. This APRS range is ideal for peech transmission. Its telephone operators, hospital radios,
better, work better airport communications...choose the exact
etter, work better. equipment for each particular operation
Series can replace For further information on these or on the
ising head sets whole Amplivox range of head sets,
foffer also a exclusive 'Amplivox Audiocups'
monaural post the coupon
available 01-903-1444 or

Name

[^1]

DEVELOPMENT/TEST ENGINEER BROADCAST TELEVISION

Croma Research Ltd is a young company associated with a established q quire a Development Test Engineer to work on our range of high quality colour monitors.
You will probably be aged 24 to 26 but most certainly must be
qualified to HND/degree level and have a minimum of three years' relevant experience. You must be prepared to be involved
initially in test work which could initially in test work which could include the formulation of tes
procedures. As the company grows you will become involve procedures. As the company grows you will become involved
full time in development of monitors and other TV broadcast equipment.
Salary, offered will be very competitive. We are situated in an
attractive part attractive part of no
other major towns.
Please either request an application form or send us a full c.v.
addressed to our personnel consultant, M. D. Comber
private office -
9A High Street, Andover, Hants SP10 1LJ. Tel: 0264-64495

Engineering Manager-Communications £10,000 p.a. + car
The job
We are an internationali, long-established company recognised as market leaders in industrial secuurity systems
Due to expansion we
Due to expansion we now seek an Engineering Manager for our
Radio Communiction would be to ensure the efficient whose prime responsibility and support systems. Other duties would include adio Network and support systems. Other duties would include on and off the
job training which would include attending training seminars.
The Requirements
You would need an HNC (Electrical/Electronic levelor equivalent)
and have a comprehensive knowledge of radio systems Pye and have a comprehensive knowledge of radio systems (Pye experience preferred. You should also be aware of new develop-
ments within radio communications technology. You would need to be available to travel throughout the UK and should ideally be aged between 25 -40 although exceptional candidates outside that bracket would be considered.
This is an exce
with first class cont opportunity to join a fast-expanding division ance where approprian benefits, which include relocation assisttravellinge expenses and company car traveling expenses and company car.

If you are interested, please apply in writing,
in the first instance, to: Mr. R.K. Davies

[^2]
Broadcast Studio Equipment Installation and Service Engineers

Go places with Rank Cintel.

If you are a qualified engineer, experienced in capital electronics, there is a world of opportunities awaiting you at Rank Cintel. Cintel telecine equipment is used throughout the world by television production and broadcasting companies. Following a 3-6 month produc training period, you can expect to be working out of the UK for up to
6 months of the year, assignments taking anything from a couple of days to 6 months of the year, assignments taking anything from a couple of days two months or more.

As well as the necessary practical experience, therefore, you should be a resilient selfstarter able to respond to the daily challenge of this highly
rewarding position.
premium can be anticipal in the region of $£ 12 \mathrm{~K}$ per annum including overseas expect from an internationally recognised leader in high technology systems Applications in the first instance to Ian Waterhouse, Divisional Personnel Manager.

RANK CINTEL

Rank Cintel, Watton Road, Ware, Hertfordshire SGI2 OAE. Telephone: Ware 3939,

IRAM
tute for Radioastronomy at mm-wavelengths based in Grenoble (France) is interested in employing an:

ELECTRONICS ENGINEER

with experience in design and construction of digital frequency synthesis circuitry involving phase-lock techniques
Candidates with relevant experience should request an application form and return it before October 13, 1981, to:

IRAM

Administration
Administration
Boite Postale 391
38017 GRENOBLE CEDEX
France
Reference VC/16/LW

Electronics Design

Using State-of-the-Art Technology Up to $£ 14,000$ p.a.
Multitone is an international company engaged in radio paging and associated communications equipment. Rapidly expanding, not only in size but also into new technological areas, we now require additional high-calibre design expertise at ll levels.

We'd like to talk to ny of the following areas:

1. R.F. Receiver Design

2. Custom

I.C.S./Hybrids

We'll tell you how the ight people can earn up to 14,000 p.a. We'll explain how here are openings at our out line the additional advantages on offer to those who join us it, London including flexible working hours and the possibility of local authority housing.

Why not telephone our rite to them at the address be write to them at the address below. Multitone Electronics P.L.C 6-28, Underwood Street, London, N1 7JT.
Tel: $01-2537611$.

TOP JOBS IN ELECTRONICS Posts in Computers. Medical,
Comms, etc. ONC to Ph. D. Free Comms,
service.

Phone: 01-906 0251

FIELD MAINTENANCE ENGINEER

 tirst-class mantenan
East and Scandinavia.
Based in London, the position necessitates extensive foreign travel for a
great doal of the year The successtul candidate will mosit probably be
nder 30 years single.
sam
Please apply, in writing, to David Payne, Managing Director, JJuliana's
Sound Services Ltd, 7 Kensington Church Court, London W8 4 SP.

RECESSION - BOTTOMING OUT?

 We don't know the answer, bvery
cull.

F RECEVER DESIGNE

 Mplytechnoiogy. To tio.000. Berks.
DESIIN ENGINEER for mini compurters and associated perimhharal. Thre years TECHNCIANS. HNC level for complex development on RF and microwave commu
hications equipment including digital controls. To 8 R8,500 Rerks.
 or further deta ils, contact:
Charles Airey Associates

SULTANATE OF OMAN VTR MAINTENANCE ENGINEER VACANCIES

Oman TV has a number of vacancies for experienced VTR maintenance engineers to work on Ampex videotape recording máchines.
Applicants should be qualified to HNC level or equivalent and have not less than six years' maintenance experience on Ampex videotape recording machines with particular reference to the VR 1200B. Experience on 1 " " C " format would be advantageous.
Salaries, which are paid in rials Omani, are fully remittable and tax-free and range from $£ 1,100$ to $£ 1,300$ sterling per month upwards.
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.
Applicants should write stating age, nationality, qualifications and full details of experience to:

Ministry of Information and Youth Affairs, Post Box 600, Miuscat, Sultanate of Oman, marking the envelope "Technical Office" in top left-hand corner.

IRAM
a Franco-German Institute for Radioastronomy at mm -wavelengths based in Grenoble (France) is interested in employing an:

ELECTRONICS ENGINEER

with experience in design and construction of microwave phase-lock loops and phase drift monitoring systems of high accuracy

Candidates with relevant experience should request an application form and return it before October 23, 1981, to

IRAM

Administration
Boite Postale 391 38017 GRENOBLE CEDEX France
Reference VC/17/LW

LABORATORY ENGINEERS/ TECHNICIANS

BBC Engineering Designs Department requires Laboratory Engineers/Technicians, male or female, in Central London premises to assist engineers in the development, construction
and testing of sound and television broadcasting equipment. LABORATORY TECHNICIANS, who will probably be in practical experience of electronics. They will have at least ONC or C. \& G. Part 2 or equivalent. Salary according to
qualifications and experience in the range $£ 5074$ - 5982 p.a. More experienced technicians may be appointed to a salary scale in the range of $\mathrm{f} 6094-\mathrm{-} 6569 \mathrm{p}$.a.
LABORATORY ENGINEERS, will have had several years'
experience of clectronic development work and will have an appropriate Degree or HNC, Higher T.E.C. or C. \& G. Full Technological Certificaté in Telecommunications or Electrical Technicians (271 or 281). Salary in the range £6954-£7509 progressing to tg882.
considered. Requests for application form to The Engineering Recruitment
Officer, BBC, Broad casting House, London, W1A 1AA uoting reference $81 \mathrm{E.4034} / \mathrm{WW}$. For further information please contact Mr. I. Millar on 580-4468 Ext. 4593.

Appointments
WIRELESS WORLD OCTOBER 1981
Develop your potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced communications test equipment and A.T.E. To meet the challenges of tomorrow's markets, we
need more electronics designers and technicians. And need more electronics designers and technicians. And need production and service personnel as well If you would like to develop your potential in the specialist, complete the coupon and send it to us at the address below:
marconı instruments Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost, St. Albans, Hertfordshire, AL4 OBR. Telephone: St. Albans 59292

POOLE GENERAL HOSPITAL

LONGFLEET ROAD

SENIOR ELECTRONICS TECHNICIAN

required. The duties will include providing a repair and
maintenance service for a wide range of electro-medical maintenance service for a wide range of electro-medical
equipment with the East Dorset Health District. Appliequipment with the East Dorset Health District. Appli-
cants should have a broad practical experience in the
maintenance of electronic equipment and in fault maintenance of electronic equipment and in fault
finding, and should possess either O.N.C./H.N.C. or C. \&
G. Full Technicians Certificate in Electronics. Salary on G. Full Technicians Certificate in Electronics. Salary on
the scale $£ 5223$ - $£ 6750$ p.a. (back-dated pay award pending). Hours of duty 37 per Monday to Friday working
week plus "on-call" commitment when required.

Application form and job description from Sector Per-
sonnel Officer by Septer

ELECTRONIC SERVICE ENGINEERS

TRACERLAB SERVICE

ACRON VIDEO

Due to continued expansion at our modern premises in
QUALITY CONTROL ENGINEER
is required to handie all aspects of check-out and inspection
inclucing goods inwards. Applicants will probably be aged be-
tween including goods inwards. Applicants will probably be aged be-
tween $25-30$ years,
ience in a oc envel with pentent. Some knowably 5 years' expertien in ace environment. Some knowledge of professional
ience in
broadcast TV equipment is desirable. Applications should be addrissed. to Mr. R. Browning, Acron
Video, Unit 3 , Lovelace Road, Bracknell RG12 4YT. Tel: Bracknell
5562 , 55625.

THE RANK PHICON VIDEO GROUP CHIEF ENGINEER within their Commercial/Industrial video duplication facility. Applicants should have maintenance experience in $2^{\prime \prime}+1^{\prime \prime}$,
V.P.Rs Rank Citadel Mark lil T/K and ancillary video equipment.
E. Ex.ecllent terms and conditions. For ancillary video equipment.
contact Nick Watkins on $01-5807161$. AUDIO \& VIDEO LTD 48 Charlotte Street, London W1

ROYAL MILITARY COLLEGE OF SCIENCE
SHRIVENHAM, SWINDON, WILTSHIRE DEPARTMENT OF ELECTRICAL AND ELECTRONIC INTEGRATED MILLIMETRE WAVE
AND COMPONENTS
Applications are invited for a research post to carry out
interesting experimental and development work on a new Anteresting experimental and development work on an out range of millimetre wave integrated antennas and cir-
cuits. The post is sponsored for an initial period of two years with a possible extension to a third year. Applicants must possess a a good honours degree or eauivalent t uall
fication in Physics, Engineering or Mathematics and have the ainity to carry out experimental work. The post offers
tan ideal opportunity to gain experience in a new and an ideal opportunity to gain experience in a new and expanding field with an active rese
higher degree will be encouraged.
The successful candidate will be appointed at the grade of
Research Scientist or Higher Research Scientist deResearch Scientist or Higher Research St
pending upon qualifications and experience.
Salary scales: Research Scientist $£ 4,809-\mathrm{f}$. 680 ; Higher
Research Scientist (minimum of two yoars'

Accommodation for a single person may be available in a
Hall of Residence and there is a possibility of housing for Hall of Residence and
a married candidate.
Application forms and further information may be ob-
tained from the Civilian Admin. Office, Royal Military
Apined from the Civilian Admin. Offrice, Roval Military
Collége of Science, Shrivenham, Swindon, Wilts. SN6 Collége of Science, Shrivenham, Swindon, Wilts. SN6
BLA. Telephone (0793) 782551 Ext. 421. Please quote reerence HO 120/1/81. Closing date for applications 8 Octo-

CAPTAL
LONDON W1P 1HG
THE UK's No.. 1 ELECTRONICS AGENCY Design, Development and Test to $E 14,000$

FIILD SERVICE To $£ 12,000$ Pus
We have vacancies in ALL AREAS of the U.K.
Ask for a Free Jobs List
Telephone: 01-6375551 (3 lines)

ELECTRONICS TECHNICIAN/ PRODUCTION/TEST

LINTECH INSTRUMENTS LTD. manufactures and sells worldwide electron beam equipment to the semiconductor in-
dustry. Our Scanning Electron Beam Annealer is used in IC dustry. Our Scanning Electron Beam Anneaer is used in ic
manuuacture. Our Sampling SEM systems are used in VLSI
circuit testing. We are the leading world supplier of installed circuit testing.
systems.
A small company, looking forward to expansion, we urgently need an electronics technician with energy, who aims for man-
agement in the medium term. Qualifications to HNC at least.
Age from 25 to 35 . Age from 25 to 3
Initial responsibilities
prototype/production assembly and test of fast pulse, linear
and high voltage electronics (some P.C. layout work) joint ressponsibility for system commissioning and final test co-ordination of component stores and purchasing. Opportu-
nity for international travel will occur. Apply with curriculum vitae to Dr. G. S. Plows, Lintech Instru-
ments Ltd., Cambridge Science Park, Cambridge CB4 4BN.

B.B.C.
ELECTRONIC
ENGINEERS

OIGITAL EXPERIENCE? | FILLESUPPORT |
| :---: |
| RKOANO SALS |

LOEX

ELECTROMIES PERSOINEL
 SALES - SERVICE - TEST DESIGN - RESEARCH

TELEVISION ENGINEER We are a rapidly expanding television company with an established market place and have the need of f full time engineeer. In addition to a
parctical knowlede of normal broaddast procedures and requirements,
the succesfull candidate prac successfull candidate should havea a working experiinene of
lightweight broadcast cameras, both portable and editing 'C' format and lightweight broadcast cameras, both portable and editing 'C C' Format and
BVU VTR, computer controlled editing systems s C.intel telecine and various support equipment. Duties will include the planning and implementation of regular
maintenanee schedules plus maintaining the technical standard of
in-house facilities. in-house faciilities. A esses plus maintaning the technical standard of A sense of respons.bility and the ability to work unsupervised is
essential. It will also be necessary to work fiexible hours.
The salary offered will be in keeping with the calibre of person we
require, $\begin{aligned} & \text { Initial application to Sheila Clare. } \\ & \text { Television Automation Limited, } 16.18 \mathrm{C}\end{aligned}$,
01-240.5515

Senior Quality AssuranceEngineer

Slough

Sony products are amongst the most sophisticated available. Our advanced
technology keeps us ahead of the field in domestic and industrial audio visual technology keeps us ahead of the field in domestic and industrial audio visual people, because it is to them that we owe our continued success. We therefore take great care of our staff and do everything possible to help them enjoy their work and
receive the best rewards.
Currently, we are seeking
Currently, we are seeking to recruit a senior Quality Assurance Engineer to lead a
small team of engineers in this vital department. Ideally, we are looking for someon who has had at least five years sexperience as an engineer working on fautt finding,
with a City and Guilds radio/TV qualification, plus colour endorsement.
We can offer you a secure future with ample scope for advancement, plus an excellent
salary together with the benefits one would expect of a large successful company. If you feel you have the necessary qualifications we would be delighted If you feel you have the necessary qualifications we would be delighted to hear from
you. Please write giving full details of your career to date, to Miss Linda Burke, you. Please write giving full details of your career tod
Personnel Officer, Sony (UK) Limited, Pyrene House,
Sunbury on Thames,'Middlesex TW16 7AT.
Sunbury on Thames;Middlesex TW16 7AT.

ELECTRONICS
by Horowitz \& Hill Price $£ 13.50$ Warren
DIIGS. HOW Prich
AND HOW TO USE THEY WO.
THE
 THE SHELF INSTGN
CUITS, by Z
 JECTS, by A. W. Barber Price: 55.5

 CUIT DESIGN, by J. E. Olieks
WORLD RADIOTV.
rice
E6.50
 HANDBOOK, bY A.R.R.L.L. Price: $£ 8.00$ ALL PRICES
INCLUDE POSTAGE

THE MODERN BOOK CO. | Specia ist in in scientific |
| :---: |
| |
| Technical Books | 19-21 PRAED STREET

LONDON W2 Ptoren 422.9776
Closed Sat. 1

DO YOU TRANSMIT OVER CABLE CIRCUITS? We manufacture a full range of in-
terface equipment for transmis sion of autios sing inar orevansmivete
wire of telephone circuits, from Narrow Bandsid systems (300 OH 2
3.4Khz) up to Wide Band Music Cir

PARTRIDGE ELECTRONICS

We also manufacture audio mixer
and sub-assemblies
13/43

WANTED

a hyder organ system

$\Rightarrow-7$ ond

Cond hion ind

have you seen the green cat?
 MYERS, Dopt. W.W., 12 Harper Street, Leodad, LS2 YEA - Tal: 452045

Avantek GPD 400 series modular amplifiers ex-stock sale

NEW LOWER PRICES
GPD 401 E. 900 each for $1 \cdot 99$ of

CONSTRUCTION Cascadabie umplifier modules
TO-12 packeal TO- 12 2 package
Avantek in-house transistors APPLICATIONS

 eiements in multichannel systern
and ARF districution networks.
RFfeelbock RF feedback loops
Isolation \& buffer stages (W) Walmore

$$
1
$$

Hern spans Resi

WIRELESS WORLD OCTOBER 1981
Classified

Contact Graham Perrett ${ }_{\text {(1256 }}$

OCT CONSUMER NOTICE

Early models of Bremi BRS 27 power supplies imported
by OCT in common with other currently imported makes by
were designed for the continental market and therefore did not contain the internal protection and three-core flex requir to meet the Bris
OCT have accepted all the recommendations of the BSI (British Standards Institution) and all Bremi power
supplies now on sale are made to this higher specification. power supply.
Consumers should beware of Bremi power supplies that
meet the continental specification which may be availmeet the continental specification which may be avail able from other importers.

CAPACITY AVAILABLE	
I.H.S. SYSTEMS	PCB ASSEMBLY
Oue to expansion of our manufac-	CAPacity avallab
Turing faciines we are athe to under.u	Low or high volumee single or double
boards or complete units in addition to contract development.	bly of printed circuit boards.
We can produce, test and calibrate to	Using the Zevatron flow soldering :istiem to aliver high ouality assemblies
RF equipment in batches of tens thousands.	(en ime, and compenetitively priced. Test
Telephone to arrange for one of our engineers to call and discuss your prompt quotation.	Find out how we can help you with your production. Phone or write. We will be proucction. Mhane or write We will be pieaseed to call on you and discuss y your requirements
TEL. 01-253 4562 or reply to Box No. WW 8237 \qquad	TW ELECTRONICS LTD. BURY ST. EDMUNODST, SUFFOLK TEL:0284 3931
MLECTHOMIC DESICN SERVICE limmediato dappecty veainhio for cricult deajgn and dorvilipment and probtyp production melcome, UAIDSTON. S. Lis. Limt.	-contract assemblers and wirers to the Electronics Industry (13n9)
EQUIPMENT WANTED	
AND WHOLESALERS IN THE ELECTRONIC BADIO AND TV FIELD	
BROADFIELDS \& MAYCO DISPOSALS will pay you top prices for any large stocks surplus or redundant components which - 21 LODGE LANE NORTH FINCHLEY, LONOON N12 8JG Telephone Nos. $01-4450749 / 44527$ After office hours 9587624	YOUR
	LASSIFIED
	0
SERVICES	OPHELIA
	SMITH
	ON
	01-6613033

INDEX TO ADVERTISERS SEPTEMBER

Appointments Vacant Advertisements appear on pages 126-135

Models XS-BP (25 watt) and CS-BP (17 watt) have moulded-on safety plugs, 'unbreakable' handles and detachable hooks-cum-finger-protectors.
Long life iron and nickel plated bits, easily interchanged, slide on or off staintess steel shafts which enclose the heating elements for maximum efficiency of heat transfer.
Both models available for $240 \mathrm{v}, 115 \mathrm{v}$, 24 v or 12 volt R S. P. 55.30 plus V. A. T. oth models available for $240 \mathrm{v}, 115 \mathrm{v}, 24 \mathrm{v}$ or 12 volt. R.S.P. $£ 5.30$ plus V.A.T.

ANTEX LIMITED, Mayflower House, Plymouth, Devon PL1 1BR. Telephone: (0752) 667377.

[^0]: Also available from Electroplan.

[^1]: Post to: Âmplivox Ltd., P.O. Box 105, Kidlington, Oxford, England. OX5 ILJ

[^2]: Securicor Ltd (Communications Division . $\begin{aligned} & \text { Securicor Ltd (Communications Division) } \\ & 24 \text { Gillingham Street, London SWIVIHZ }\end{aligned}$ -

