

Feedback loudspeaker system

Custom-designed integrated circuits

Direct memory access
Video discs update

Autoranging rf. millivoltmeter

wireless world

ELECTRONICS /TELEVISION / RADIO/AUDIO

SEPTEMBER 1981 Vol 87 No 1548

31 View from the footprint
32 Acceleration feedback loudspeaker
by D. De Greef and J. Vandewege
by. De Greef and J. Vandewege

37 Consumer video records
Can we distinguish 'ampli--
fier sound'? This article first discusses the subiective fe st pects of listening tests then
describes objective
le laboratory experiments
verify listeners' reports.

$$
\begin{aligned}
& \text { Invention of stereorecording Medical t } \\
& \text { Television for no-signal area }
\end{aligned}
$$

Microprocessor interfacing.
First of a series on methods for connecting microproces. sors/microcomputers to
other equipment. Part one on a "universal" interface
for 6502 -based microcomfor 6502 -based microcom-
puters.

Multichannel digital recorder. Using an ordinary
stereo cassette recorder and digital electronics to con-
struct a 12 -channel instrumentation tape recorder
with zero wow and flutter.

Current issue price 60 p , back is.
sues (if available) $£ 1.00$ at at Retail and Trade Counter, Units 1 \& 2 , Bankside Industrial Centre, Hop
ton Street, London SE1. Avai-
abie able on microfilm; please
contacteditor.

 Subscription rates: 1 year $£ 10.00$ Student rates: 1 year 65.00 UK istributioutside UK. Hous The Ouadrant, Sulton, Surse,
SM2 SAS. Telephone $01-661$
3500. Subscriptions: Oakfield House,
 change of address.

(©) IPC Business Press Ltd,

Front cover caption shows a Leica camera incorporating
Ferranti u.l.a (see page 52) on a background formed by tracks on an integrated cir-
cuit. Photograph by Brierley.

40 Microcomputer teste by Tony Cassera 43 Letters to the editor

47 Microprocessors in the gas industry

84 New products

86 Waves

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit

FEATURES

- no moving parts
- no magnetic effect
no tip voltage
- no mains interference
changes only) changes only)
orcomplete
2001 Soldering Station
Soldering tool and control unit as Unit 101 but with the additional features
- filtered two speed fume extraction
filtered two speed fum
built in bench lighting
built in bench lighting
solder reel dispenser
- clear bench area
- Adiron ${ }^{\circledR}$ long life bits/tips the same range as that for Unit 101

DON'T GAMBLE

 WITH PERFORMANCE BUY
LEVELL OSCILLATORS

frequency

ACCURACY
sine output distortion

SQUARE OUTPUT
sync output SYNC INPUT
METER SCALES SIZE \& WEIGHT

0 to 1% fine control on TG 2000 MP
 7 V r.m.s. down to $<200 \mu \mathrm{~V}$ with $\mathrm{Rs}=$ $<0.05 \%$ fron
 $\mathrm{T}_{\mathrm{MHzz}}^{\mathrm{T}} \mathrm{M} 2 \mathrm{mz}$. $150 \mathrm{kHz},<1 \%$ at 1 Hz and TG 200D, DM \& DMP only, 7 V peak
down to $<200 \mu \mathrm{~V}$. Rise time
<150, $<150 \mathrm{~ns}$.
$<1 \mathrm{r}$. $\mathrm{m} . \mathrm{s}$.
 TG200M. DM \& DMP only. $\mathrm{O} / 2 \mathrm{~V}$. $0 / 7 \mathrm{~V} \&-141+6 \mathrm{dBm} .4 .3 \mathrm{~kg}$ with
$260 \times 130 \times 180 \mathrm{~mm} .4 .3 \mathrm{k}$,
tG200DM TG200DMP $£ 99 £ 108 £ 125 £ 130 £ 135$

FREQUENCY
ACCURACY coutr SINE OUTPUT
DISTORTION SQUARE OUTPUT
SYMC OTPUT METER SCALES
JIZE \& WEIGHT
3 Hz to 300 kHz in 5 decade ranges.
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ to 100 kHz.
 2. 5 V r.m.s. down to $<200 \mathrm{H}$
$<0.2 \%$ from 50 Hz to 50 kHz $\quad 10 \%$ from 10 Hz , to 200 kHz .
2.5 V peak do
 $\substack{\text { TG152DM. } \\ 260 \times 130 \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg} \text { with } \\ \text { batteries. }}$

CURRENT USED

Everything as new-

ANALOGUE VOLTMETERS AND MULTIMETERS

ANALOGUE VOLTMETERS AND MULTIMETERS	BRIDGES \& COMPONENT TESTERS	Solartron. AZA45 5/2Digr DMM ACIDC vols, resstance	
-		DC vots.	dere
$283 A B R C D C$ Difierentia ассиасу	Cenerainadio. acranapa Acuray	7055 plus processor contrid and R 232 tretice £900.00	466 Dual Thace porabte storace Osclloscope. Spec as par 464 but max wathig speed
			${ }^{30120 a d i v i s ~ V e c t o r s s o p e ~ M e a s u r e s ~ L u r m m a n c e ~}$
Hewlett Packard. 300 V Log scale.	Oscilaters 540247 O Meter	7065 plus processor control and R\$232, 5595,00 intefface FREOUENCY COUNTERS	Ampatude. Drferemitiol Phise and Gaim. As new wenation
$108 M H 2-0.360^{\circ}$ in 2 tanges. z range 82150.00 8405A vector Votmere. t-1000MH: 0.360°	onde \& Schwark 	Advance. C15\& PP: Frequency Counter DC - S00M Mrz, 9 digits	
$\begin{aligned} & \text { in } 4 \text { ranger } \\ & \text { Marcont. } \end{aligned}$	CALIBRATION EOUIPMENT		Equtpment
300 V175.	Fluke 33 DC Votage Calibrator. Oto 1111.110v. 0.1 pom mesouvion. 0.003%		
2203 (1) 		MULTIMETERS Avo	farge CkT
O2R.500m2.	Tektronix. 91 Constant Amplitude Ctherator. 350 KHz -	Funtead kt	164 Dual Trace Spht Screen Bistepole Siorage allostope DC-fCMHa 10m-5OVIDV MAx
GenemiRatioi	DVM's AND DMM'		6 Sid Trare Portable Oxaloscope DC Ithe 5 mv-zoviciv. XY More 1 onty
Gripphici leve recorder. $4.5 \mathrm{~Hz} \cdot 25 \mathrm{~K} \mathrm{~Hz}: 1$ no octave		OSCILLOSCOPES	
Hewlet Packard. 141 - -85578.85544 Spectrum Analyser 100KH2 12 2 250 N		Hewlett Packard Sadual frace Varabie Persysince Storage 	OSCILLOSCOPE PROBES
Tekrenix	$3490 A 51 / 2$ DigltDNM A		OWER SUPPLIES
winh reauency	Prilles $1 / 4 / 2$ Digat OMM. ACDC vals curren and resistance Qquv resolution. Tue RMS	Tektronilx. 454 A Duat frace Pontable Oscllloscoop $\mathrm{DC}-150 \mathrm{MHz}$. $2 \mathrm{mv}-5 \mathrm{~V} / \mathrm{Lav}$	

Brokers TEST EOUIPMENT except the price!

Bruel \& KJaer 2203 Sound Level Meter C/W 4165 1/2in Microphone. 26-140dBA. A,B or C weighting. Fast or slow response. Bargain In Unused Condition Welr.	Tektronlx 455 Dual Trace Portable Oscilloscope DC-50MHz. 5 mV - $5 \mathrm{~V} /$ Idiv. Full delayed sweep. Super condition.	Hewlett Packard. 4204A Digital Oscillator. $10 \mathrm{~Hz}-1 \mathrm{MHz}$ $1 \mathrm{mV}-10 \mathrm{~V}$ $£ 695.00$	Wayne Kerr RAZ00 Frequency Response Analyser. Frequency range 20 Hz 30 KHz or $200 \mathrm{~Hz}-200 \mathrm{KHz}$. 11 in . crt display £850.00
	 	TRANSMISSION MEASURING EOUIPMENT 	Hewiett Packard. 51 0.7.e. E800.00 MFrcind Devation Meter. $4-1024 \mathrm{NHz}$
Cive Uptos smerssser. Matenabe ihme Chat Recerteer tmv Yokagawa 3047 Chen Char Recorrer 0.5mv- 500 V 2 mm (r 6 GOmpmin £435.00	frequency \qquad a-1 lla in of fosteos........ 2095.00 TF2 100 AF Oschlator $20 \mathrm{H} 2-20 \mathrm{KH} .0 .05 \%$ distantion		
SIGNAL SOURCES Avo. HFI 130 AMFM SGOM: Generator $40.120 \mathrm{MH}+$ Onoomvin $20 a s$ steps plus fine canter Of	SOUND LEVEL METERS		
 5			STMP ${ }^{\text {Pa }}$ PESELITE ARRIVALS: Marcon
	T.V. TEET EOUIP 148 PRL TM Mretion Geneaioi provives an Philles PM5 \qquad		Mites Hivalt Pnlluo and timebase Vartaice pessseerce. E2500.00

5 GOOD REASONS WHY YOU SHOULD DEAL WITH ELECTRONIC BROKERS
FULL
GUARANTEE
At Electronic
Brokers wegive
you a TWELVE
MONTHS
WARRANTY on test
equipment and go DAYs
ON MOST COMPUTER
PERIPHERALS And
well stand behind it all
the way.
(1) FAST DELIVER DELIVERY
When you buy
used (2sed $\begin{aligned} & \text { usent } \\ & \text { equipment from } \\ & \text { Electronic }\end{aligned}$ Brokers. it can be yours in a matter of only days. No waiting for
manufacturers te manufacturers lengthy

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

New test
equipment equipment
catalogue just out. Send for your free copy

Hours of Business: 9a.m. 5p.m. Mon:Fri. Closed lunch 1-2p.m. Carriage and Packing charges extra on all tems unless otherwise staled.
A copy of our Trading Condítions is available on request.

Electronic Brokers CURRENT USEDDEC computer equipment and periphals

WW 201 for further detalls

680G MULTIMETER (ILLUSTRATED) 48 RANGES DC voits: $100 m V-2-10-50-200-500-1000 \mathrm{NC}$ $50-500 \mu \mathrm{~A}-5-50-500 \mathrm{~mA}-5 \mathrm{~A}$ AC current: $250 \mu \mathrm{~A}-2.5-25-250 \mathrm{~mA}-2.5 \mathrm{~A}$ Resistance range $1 \Omega-10 \mathrm{M} \Omega$ Up to $100 \mathrm{M} \Omega$ can be measured OdB $=1 \mathrm{~mW}$ into 600Ω Sensitivity $D C 20 K \Omega N, ~ A C$ $4 \mathrm{~K} \Omega / \mathrm{V}$. Accuracy $2.0 \% \mathrm{AC}$ and DC. Battery Eveready No. 8 Overload capability $1000: 1$ on resistance ranges. Protected by internal 3Ω Fuse. size with case $10.8 \times 11 \times 3.7 \mathrm{~cm}$. Meter size 10 cm . £24.50 680R HIGH ACCURACY MULTIMETER 80 RANGES DC volts: $100 \mathrm{mV}-2-10-50-200-500-1000 \mathrm{~V} A C$ volts: 5-50-500mA-5A AC current: current: $50-500 \mu \mathrm{~A}$. voltage and current ranges except 2500 VC be measured using ext. AC supply. dB scale -10 to $+22 \mathrm{~dB} .0 \mathrm{~dB}=1 \mathrm{~mW}$ into 600Ω Sensitivity $D C$ $20 \mathrm{~K} \Omega \mathrm{~N} . \mathrm{AC} 4 \mathrm{~K} \Omega \mathrm{~N} . \mathrm{Accuracy} D C 1 \%, A C 2 \%$. Battery Eveready No. 3. Overload capability 3Ω fuse. Size with case $13.7 \times 10.4 \times 5.4 \mathrm{~cm}$. Meter £32.00 MICROTEST 80 POCKET SIZED MULTIMETER 40 RANGES DC volts: 100 mV - $2-10-50-200-1000 \mathrm{~V}$ AC volts: $1.5-10-50-250-1000 \mathrm{~V} D C$ current: $50-500 \mathrm{\mu A}-5-$ $1 \Omega-5 M \Omega$ dB scale -10 to +22 dB . odB $=1 \mathrm{~mW}$ Accuracy 2% AC and $D C$. Battery Mallory RM 625 N . Overload capability $1000: 1$-on resistance case $9.3 \times 9.6 \times 2.3 \mathrm{~cm}$. Meter size 8.5 cm . Supplied with leads and carrying case. E16.60 Please add $£ 1.50$ carrlage per meter plus 15% VAT on total meter and carriage price. Send for Literature.	

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

Thermalloy International
Advanced lecnnology in semiconductor accessories

WW - 027 FOR FURTHER DETAILS

XIX INTERNATIONAL MAGE, SOUND AND ELECTRONICS SHOW
TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH

BARCELONA (SPAIN) 28th SEPTEMBER - 4th OCTOBER 1981

- 7 Information: Plazad España \sin

 sonimagle

 TEL. 2233101 - TELEX 50458 FOIMB-E

Low-cost voice-logging for people with more important things to do.

The problem: logging telephone and radio messages without spending a fortune on equipment or hiring an expensive technician to operate it. SIMPLICITY
With its automatic cassette-loading and fully automatic changeover from one deck to another Autostore can - quite literally - be operated by oever happens to be around.
nd it provides over 24 hours of unattended continuous recording on eight channels.
VERSATILITY
Able to log radio and telephone messages simultaneously, Autostore can form part of a new system-or fit just as easily into an existing one. And its uses vary from ambulance, fire, police
and security applications to the recording of and security applications to the recording of communications and taxi services.
Racal Recorders Racal Recorders Limited, Hardley Industrial Estate, Hythe, Southampton, Hampshire SO4 6ZH, England.

RELIABILITY
Available in 4 or 8 channel versions, and with integral micro-processor controlled automatic retrieval, Autostore is engineered to the very highest standards by the company which pioneered air traffic control recording techniques.
ULLDETAILS
or full details of Autostore send off the coupon today.
 \square arrange for a demonstration at my own premises

Name.

Company
Address Racal Recorders Limited, Hardley Industrial Estate, W-052 FOR FURTHER DETAILS

CONCISE PARTS CATALOGUE

WW - 065 FOR FURTHER DETAILS

Audio power meter

Wide range:

*30Hz to $30 \mathrm{k} \mathrm{Hz} * 10 \mu \mathrm{~W}$ to 50w

* 1.2 to 1000Ω * mains/battery
* decibel scale-18dBm to +47 dBm

Fimell

farmell instruments limited SANDEECK WAY. WETHERBY WEST YORKSHIRE LS22 40H TELEPHONE (O937) 61961

OUT NOW!

AMBIT'S NEW CATALOGUE

In an attempt to collate and organize our burgeoning ranges
of 'stock' components (now over 7000 line items), we have of 'stock' components (now over 7000 line items), we have
at last produced a concise' 80 page parts catalogue to at last produced a concise' 80 page parts catalogue to
supplement the popular 'Tecknowledgey' series of 'wordy applications catalogues, which now lists a wide range of basic
components - as well as our unique R F and Communications components - as well as our unique RF and Communication
components. The World of Radio and Electronics contain components. The Worla of Radio and Electronics contains
everything the informed electronics user needs, at prices everything the informed electronics user needs, at prices
which we guarantee will match the lowest on the market for equivalent product.
Prices appear on the page alongside the part numbers, and
the catalogue is now updated quarterly - availale either the catalogue is now updated quarterly - available either
direct from here (60 all inc) or at most newsagents and bookstalls where you can find electronist newsagents and
as well as and as well as all the 'run-of-mill' items like resistor, capacitors,
hardware, solder etc - you now have the first genuinely complete, parts source for the radio, communication, elec-
tronics, computer ser. tronics, computer user

Ambit International
200, North Service Road, Brentwood,
Essex CM14 4SG

Quartz Crystals

[^0]This technology is available now from

?

IMMEDIATE DELIVERY ON ALL THESE INSTRUMENTS
PM5519-THE BEST PATTERN GENERATOR
IN THE WOR
PM 55191 CTV pattern generator

* Over 20 colour and b/w test patterns
* Over 20 colour and b/w test patterns * RF signals available in bands $1, I I I, I V$ and \vee
* Variable video output (with I volt fixed

Position)

* External video and sound modulation
facility
* Composite sync output for triggering - * Versions available for non-British TV to the locililv standard Reader inquiry number 220 PHILIPS CHOICE FOR SERVICE

NEW PHILIPS CATALOGUE
The 300 -page 1981 Philips Test and

Measuring instruments catalogue contains
A selection from the range of Philips instruments with wide service applications.
PM 5326 RF signal generator

* $100 \mathrm{kHz}-125 \mathrm{MHz}$ in nine overlap
ranges
$*$ Built-in 5 digit counter
* 50 mVRF output at 75Ω can be
attenuated to over 100 dB
* Electronically stabilized output level
* Wobbulator facility

Reader inquiry number 22I
PM 2517 digital multimeter

* Full four digits
* Full four digits
* Choice of LED or LCD display
* True RMS AC readings details of the company's full audio and video service equipment capability, as well as of its Send for yoaus fring range. by circling reader inquiry number 225 . WHERE TO BUY YOUR PHILIPS AUDIO
AND VIDEO SERVICE EQUIPMENT The entire range is available from the Philips Electronic
Instruments Department (see address below) or from Instruments Department (see address below) or from
Philips Service Centres ' phone 0 - -8660505 for the address of your nearest branch). In addition, the
PM 2517 and PM 3207 are available from Wessex PM 2517 and PM 3207 are available from Wessex
Electronics Lttd, 14 - 116 North Street, Downend. Electronics Ltd, I 14 -1 16 North Street,
Bristol BSI $65 S \mathrm{~S}$. Tel (0272) 571404 .

> * Triggering from either channel or externa

* Auto TV triggering
* Same sensitivity on X and Y channels
* Full $8 \times 10 \mathrm{~cm}$ scr

Reader inquiry number 223
PM 6667 and 6668 high resolution
*! GHz (PM 6668) or 120 MHz (PM 6667)

* Microprocessor control with built-in
intelligence
* Auto trigger
acles \quad on all waveforms and duty
* 15 mV RMS sensitivity
* High stability X-tal oscillators: $10 \% /$ month
* Bet-dagnosis routine

Readers inquiry number 224

* Autoranging with m
* Current up to 10 A
* Options include temperature and data ld probes
Reader inquiry number 222
PM 3207 dual trace oscilloscope
* Ideal for service and general purpose * deal for service
 Use the in quir service to obtain information about the
products which interest you. Atternatively, phone. Cambridge (0223) 358860 and speak to our
Commercial Office on extension 145 or 148 .
PM 5519 CTV pattern generator ${ }^{\text {Inquir }}$ PM 5326 RF signall gennerator PM 2517 digital multimeter
PM 320715 MHz oscilloscope PM $6667 / 15688$ frequency counters
1981 Test \& Measuring catalogue 2220
2222
223
224
225 Pye Unicam Ltd York Street. Cambridge. CB1 2 PX. England
Tel: Cambridge (0223) 358866 Telex: 817331

Test \& Measuring Instruments

ino○S..

. . and the art of Audio Maintenance

This is the LA1 analyser from LINDOS. Not much bigger than a transistor radio - it measures frequency, distortion, level, noise and wow and flutter. It is very accurate and easier to use than most 'complete test sets.' Options are available that transform it to meet almost any requirement.
THE BASIC LA1 ANALYSER COSTS $£ 450$ + V.A.T.
The LA1 P1 (as shown) costs f590 and incorporates true rms, Quasi-Peak Noise and PPM facilities. Made in Britain by LINDOS ELECTRONICS,
Sandy Lane, Bromeswell, Woodbridge, Suffolk, IP12 2PR. Tel: EYKE (03947) 432 . ww - 005 FOR FURTHER DETALLS

Just 50 p will bring you the latest Wilmslow Audio 80 page catalogue packed with pictures and specifications of HiFi and PA Speaker Drive Units, Speaker Kits, Cabinet Kits.

1000 items for the constructor.
CROSSOVER NETWORKS AND COMPONENTS.
GRILLES, GRILL FABRICS AND FOAM. PA, GROUP DISCO CABINETS - PLUS MICROPHONES AMPLIFIERS - MIXERS - COMBOS - EFFECTS-
SPEAKER STANDS AND BRACKETS - IN-CAR SPEAKERS AND BOOSTERS ETC. ETC.

* Expert staff - Sound advice *
\star Choose your DIY HiFi Speakers in the comfort \star (Customer operated demonstration facilities)

$$
(3)
$$

35/39 Church Street, Wilmisow, Cheshire SK9 IAS

New KONTAKT Sprays

PRINTER 66
Spray cleaner for type wheel printers, matrix evinters and chain printers. Can
SCREEN 99
Specially for the
VASELINE SPRAY 701
FAr use in communications engineering and construction of antennae.
Proved successtul as corrosion inhibior for cable clamps connetins screw
.

Special Products Distributors Ltd.

FAST ERECTING
GLARK MASTS 25
Here is the expertise you can depend on ~ When you choose a mast from the compre-
hensive Clark range you are assured of a high standard of Engineering and operational reliability.
Why compromise?
Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg 200 kgs
Sectional or telescopic vehicle mounting Write or phone us for details today.

Clark Q.T.4M/HP mast shown on triClark O.T.4M/HP mast shown on tri-
pod, extended to 4 metres and triod
folded for transit. Available in heights folded for transit. Available in heights
up to 12 metres. up to 12 metres.
This mast is ideal for raising light-
weight antennas for field or vehicle weight ant
mounting.

CLARK MASTS LTD.
Binstead,
PO33 3PA, England
Telephon, Ryde (0983) 63691 ,

WW - 024 FOR FURTHER DETAILS

Put your ideas in our box.

Meet the Idea Box. The short- or a blank toil board you can use
for existing PCB designs. Al!. Meet the ldea Box. The short.
est tiltance betwen diea and
working prototye or onea-at Working peototyee or one-ot-a- housed in our atractive high.
king instrument.
hen
 design the circuirin we provive
then Dowe supplies assimbled
and tested....and the right case

The Idea Box has the
capacity tor big ideas as w

shouldn't be kept wating

SIEMENS

ww - 074 FOR FURTHER DETALL

320 pages worth of the latest \& best in signal processing components.
Write to Pascoll for this new M80 catalogue which covers the complete Merimac range of signol processing components and
integrated networks from DC to 4 GHz . It also provides reliability data in the form of MiBF calculations for each product orea. Merimact is one of the World's most technically advanced
companies specialising in low requenct companies specialising in low frequency lumped element components and megried networs, microwave shipline componenis, subsystems, high power feritit isolators and circulators.
So write to Poscall today for your copy of the M80 on your company's notepacper (or phone
if you prefer indicating your revea of interest -we

Nontwessemac guarantee you'll find if one of the best.

Pascall Electronics Limited
Hawke House

the best in electronics WW - 039 FOR FURTHER DETAILS

You tell us we'll deliver! meie constuction noder uir controll means you can speatry
 Yow want then outchy
 be suristec at what he may have to to tell youl

Bach-Simpson

WW - 016 FOR FURTHER details

Amcran INDUSTRIAL MUSCLE

Model - M600

```
* POWERRESPONSE DC - 45KHz m 1dB
* OUTPUTPOWER IN EXCESS OF 1.5KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
* HARMONMOLSIOR. CONSTANTVOLTAGE CURRRENT PRECISION OSCLLATORS & UNIPOLAR
    AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
    * OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.
    FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.
TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4kW.
* INTERLOCK CAPABILITY FOR UPTO EIGHT UNITS.
\star INTERLOCK CAPABILITY FOR UP TO EIGH
\star UNITS AVAILABLE FROM 100VA-12KVA.
```

For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P.O. BOX 3

NORFOLK NR17 2PF
Tel: 0953-452477

Affodfor

TheWorld's

Radio Broadcasting

Stations and European FM TV
C R Both
The World's Radio Broadcasting Stations provides the
radio enthusiast with information on stations likely to radio enthusiast with hinformation on stations likely to
be heard during worldwide listening. be heard during worldwide listening.
European long, medium and FM stations and the
world's short wave stations are listed in groups by country in order of stations are listed in groups by
concy. Wavelength, power, map coordinates and the name of the town are given.
European VHF and UHF TV stations are also listed by country and accompanied by details of their power, signal polarisations, programme information, town
$213 \times 143 \mathrm{~mm} \quad 226$ pages
$213 \times 143 \mathrm{~mm}$
0408011564
${ }_{\varepsilon 5}^{226} 50$ pages Paperback
ORDER NOW from your local bookseller ncase of difficiculty send cash with order to to Patricia Davies.
Marketing Manager at he address below

Newnes Technical Books

cectivnic oficeriin meat
 now youcan reach morenew users thanyouever knewexisted.

Office Systems is new. And it's unique. It's the first quality monthly magazine for directors, partners and senior managers who are new or potential users of electronic office equipment. and
Office Systems will solve their problems and answer their questions in clear. businessman's English. Nojargon. Office Systems will solve advertisers' problems too - with a controlled circulation of named. requested readers right from the start and a total circulation of 32,000 . It will operate a reader-reply service. No wastage. No waiting. Ad. Manager Tony Kaminski is waiting FIRST ISSUE
OCTOBER '81
For more details contact Ad. Manager Tony Kaminski at Quadrant House, The Quadran Sutton, Surrey SM2 5AS Tel: 01-661 3105 Published by IPC Electrical-Electronic Press Lta Published by IPC Eectrical-Electron
A member of Business Press Ltd

MICROCOMPUTER COMPONENTS

OFFICIAL ORDERS WELCOME

The simple answer to all your power supply problems.

Uninterruptible Power Supplies - UPS 250va to $2000 \mathrm{va}, 50$ or 60 hz
STANDBY POWER computer programme on mains failure wind whing down a computer programme on mains failure and wherev
continuous power is essential. continuous power is essential.
\square STABILISATION. $\pm 5 \%$ Vital t
fluctuations and ensure the operation of equipment at peak efficiency.
\square TRANIENT ATTENUATION. Provides suppression of mains born interference (spikes).
An unbeatable power package from $£ 395$ ex works
including maintenance free lead acid batteries including maintenance free lead acid batteries. $A t$
Galatrek International, UPS are DOWN to uneal Galatrek international, UPS are DOWN to unbeatable
prices. For more information, cut the coupon or contact Galatrek
direct. Mr R Koffler, Galatrek International Sco direct. Mr R Koffier, Galatrek International, Scotland Street, LLanrwst, nr Colwyn Bay, Gwynedd LL26 OAL,
North Wales, Great Britain, Tel No: O492-640311/641298 Night Service: 0492-30592 Telex: 617114 A/B Galahu

TRANSMITTER \& RECEIVER TEST STATION with current B.S. calibration certificates $4000: 300 \mathrm{~Hz}$ to 520 MHz in ALSO AVAILABLE WITH $\begin{array}{ll}\text { ALSO AVAILABLE WITH } \\ 0.1 \mathrm{~Hz} \text { steps extendable to } & \text { CURRENT CALIBRATION } \\ 980 \mathrm{MHz} \text { AM. FM. PM and } & \text { CERTIFTCATES }\end{array}$ $\begin{array}{ll}\text { 980MHZ. AM, FM, PM and } & \text { CERTIFICATES } \\ \text { SWeep. } 2 V \text { Fem, } \mathrm{O}-139.9 \mathrm{~dB} \text { in } & \text { MARCONI AUTT }\end{array}$
$\begin{array}{ll}\text { sweep. } \\ 0.1 \mathrm{~dB} \text { steps } \\ \text { 4900: } \mathrm{P} \text {. } \mathrm{O}-139.9 \mathrm{~dB} \text { in } & \text { MARCONI AUTO } \\ \text { DISTRTION METER }\end{array}$
$\begin{array}{ll}\text { 4900:- Peak and average RF } \\ \text { and AF frequency modulation, } & \text { TF2337A }\end{array}$ $\begin{array}{lll}\text { and AF frequency modulation, MARCONI MODULATION } \\ \text { depth, deviation, noise, and } \\ \text { distortion } & \text { METER TF2300A } \\ \text { §150.00 }\end{array}$ distortion. Both manual or computer POSTALENQUIRIES ONLY to:
programmable. $\begin{array}{ll}\text { Complete with manuals. } & \text { 12 Edgeworth Court } \\ \text { Fordham Road }\end{array}$ $£ 5000.00$ Fordham Road
New Barnet, Herts, U.K

Cavern micro modules Mesigned for 280 based systems, these modules are suitable for
The mocomuter expansion and the development of Micro systems. The modules are based on a 55 -way bust this being a compromise be-
tween flexibitity and economy Terminations are wire-wrap pins which
can al so be soldered or olugged into sockets. can also be soldered or plugged into sockets
First in the range are:
First in the range are:
$80-00616 \mathrm{~K} \times 8 \mathrm{~b}$

80-020 RAM driver I
80-037 RAM driver (with MUX and CAS

- $\quad \mathbf{E} 13.60$

Each RAM
memory. \qquad More will follow shortly

CAVERN ELECTRONIC
Stratiord Road, Wolverton Milton Keynes MK125
Telephone: Milton K Kynes 0 (09088) 3149925
WW - 064 FOR FURTHER DETAILS

STETOCLIP JUNIOR 60 HEADSET
 LIGHTWEIGHT HEADSET STETOCLIP HEADSET

INDUCTIVE LOOP AMPLIFIER TYPE 36A

FHELD STRENGTH

 TESTER FSIThe Danavox policy has always been one of constant improvement.
Our refinement, development and research has enabled us to offer an advanced range of components and accessories for dictation machines, tape recorders, tele-communications hearing aids and electro-acoustic equipment.
All our products are built with care and
precision.
And all carry the Danavox guarantee. WW - 010 FOR FURTHER DETAILS

STETOCLIP GEMINI HEADSET
 EARSET

STETOTUBE HEADSET \&
 SOUND PLUG

STETOMIKE HMT 808

For more information abou any Danavox product, contact John Carter.

danavox

DANAVOX (Gt. Britain) Ltd.
1 Cheyne Walk, Northampton. NN1 5PT Tel: (0604) 36351 Telex 312395

WW - 033 FOR FURTHER DETAILS

FLOPPY DISK DRIVES NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READON!

SIEMENS FDD - 100-8/FDD - 200-8 Fuly Shugar Compatibe Siemens $8^{\prime \prime}$ single and double sided disk drives are
avaibible now with unbeatabie prices at single unit pricing. Note these specifications:

Visual monitoring of anything, anywhere, by phone, in seconds,

 with Robot Phoneline TV.

 and

 Ros

 725 A
522
Tolevio
 ROBOT RESEARCH INC

They don't come brighter than the new Krohn-Hite 5900

seivice.
With the 5900 you get the supreme standards of service Krohn-Hite name, in products which include a number of Function Generators with frequency ranges of between 003 Hz to 30 MHz . Prices from around $£ 245$. Other IEEE units from Krohn-Hite include the 6880 superb range of equipments for general purpose. communications and audio applications. To find out more, fill in the coupon.
And see why Krohn-Hite senvice is no secret.

KEITHLEY

Keithley Instruments Ltd
Boulton Road Reading Berkshire RG2 ONL
R
elephone 00734) 861287
Telex 847047

The New FM/AM 1000s with Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000 s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

F接
 INSIST ON VERSATOWER
 BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover
 36 M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter-V, part 11

Functional design, rugged construc choice for telecommunications.

Trailer mounted or static, the VER SATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous produc development has led to a range of highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enioy today.

VERSATOWER

THE PROFESSIONALS CHOICE

STRUMECH

ORTLAND HOUSE, COPPICE SIDE ROWNHILLS, WEST MIDLANDS EL: (05433) 4321\% TELEX: 335243 SEL
WW - 059 FOR FURTHER DETAILS

ATE DOESN'T HAVE TO COST YOU A FORTUNE
In times of economic stringency, you have to get the most in performance for the least in cost. Increasingly engineers are finding the use of microcomputers in "Do It Yourself" ATE systems the most cost effective solution.
Let CIL take the hit and miss out of doing your own thing.

Take a PCI 1300, Take a Test Fixture, Take a Desk Top Micro, and with a knowledge of Basic, configure your own test system.
CIL Microsystems Ltdi ,

CILs PCI 1300 software configured signal conditioning system will output setpoints, operate switches, output digital data, input digital data, input analogue voltages (Temperature \& Pressure as well if you need it), all under software control, and at an affordable price.
cII Microssystems tit
Decoy hood. Worstims.

Guess who builds this great

Logic Probe...YOUHoin, ${ }^{\text {to }}$ E11.92

With this easy-to-build Logic Probe Kit from GSC and just a few hours of easy assembly - thanks to our very descriptive step-by-step manual - you have a full performance logic probe.
With it, the logic level in a digital circuit is indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from

P4000 Production
EPROM PROGRAMmER

This unit provides simple, reliabbe programming of up to 8
EPROMS simultaneously. Ithas been designed for ease use - a single 'program' key starts the self check - blank check program - verity sequence.
independifint controls are provided along with
menk check $\&$ verify mode, pass/ fail indicators for each copy socket and a sounder to
signal a correct key command $\&$ the end of a porer signal a correct key command \& the end of a programming run.
Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516$;
$2716 / 2532 / 2732$ ($2716 / 2532 / 2732$ (single raii) EPROMS may be selected without hardware or personality card change
PRICE $£ 545+V A T$. Postage paid
BULK EPROM ERASING

MODEL UV141 EPROM ERASER

- 14 EPROM capacity

Fast erase time

- Buit-in $5-50$ minute timer
Convenient
- Convenient slide-tray loading of devices

MINS \& ERASE indicators
Prica 578 + VAT postage paid.
MODEL UV14O EPROM ERASER
Simila to Model UV141 but without timer. Price $\mathbf{£ 6 1 . 5 0}+$ VAT
post paid
BULK EPROMS ${ }^{4}$ sfroon
 $\begin{array}{llllll}\mathbf{2 7 0 8} & \text { (450ns) } & \mathbf{£ 3} .90 & \mathbf{£ 3 . 5 0} & £ 3.10 & £ 2.90\end{array}$
Postage and Packing is included in all prices. ADD VAT at 15%,
All our EPROMS are manufactured by leading companies and are
fully guaranteed, branded and to full specification.
WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
OFFICIAL COMPANY ORDERS/CHEQUES TO
Overseas customers, please telex or write for quotation and

GP INDUSTRIAL

ELECTRONICS LTD.
Telophone: Totnes (0803) 863360 anes
DISTRIBUTORS REQUIRED- Telex: EXPORT 2596 ENQUIRIES WELCOME
WW - 028 FOR FURTHER DETALLS.

WIRELESS WORLD SEPTEMBER 1981

 DELUVERY trom stock - All post paid. Please add Vat. ExPORF enaviries invited. LENRYE \qquad
404 EDGWAREROAD, LONDON W2 1ED A

ONLY 3p EACH
 ORION SCIENTIFIC PRODUCTS LTD.
4 Golden Square, London, W. 1
ww - 034 For further details

The Professionals

VALVES,SEMICONDUCTORS \& COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.
Hall Electric Limited.
Electron House.
Gray Avenue, St. Mary Cray.
Telephone: : Orpington 27099
Telex: 896141
Telex: 896141
MIN DEF APPROVAL 0529/0531

Shure brings
intelligibility \& reliability to professional communications microphones
Experienced operators recognize that the audio quality of he transmitter is limited by the quality of the input from the messages from Shure microphones. Shure microphones have been the overwhelming choice of professional communications users all over the world for over 30 years. Many milestone improvements developed for demanding
professionals sare found on Shure microphones: ARMO-DUR® Case: Lightweight, immune to oit salt spray, sun, rust, and corrosion. Prevents RF burn! Million Cycle" leaf switch: Just one of the crucial wear points TRIPLE-FLEX ${ }^{\circledR}$ Cable: Provides three or four times lonarability. TRIPLE-FLEX® Cable: Provides three or four times longer flex life
than previously available cords on hand-held microphones CONTROLLED MAGNETIC® or Dynamic Transducer: The exclusive Shure-designed super-rugged transducers that
give excellent voice intelligibility and super reliabilit give excellent voice intelligibility and super reliab
To improve your on-air intelligibility we suggest

$$
\square-2-2-2-2
$$

Mobile Application		Fixed Station Application
SSB	$\begin{aligned} & 414 \mathrm{~A}^{*} \\ & 407 \mathrm{~A}^{*} \\ & 577 \mathrm{~A}^{* *} \end{aligned}$	444D 526T Series I
FM	$\begin{aligned} & 414 \mathrm{~B}^{*} \\ & 507 \mathrm{~B}^{*} \\ & 577 \mathrm{~B}^{* *} \end{aligned}$	$\begin{gathered} 450 \\ 526 T \text { Series } \end{gathered}$

*General recommendation: Consult equipme
Manual for correct microphone inpedance.
*Nion
SHURE Hand-Held Mobile Mics

wireless world

View from the footprint

In giving his approval for an early start to satellite broadcasting in the UK, the Hom Secretary has opened a hive of questions demanding attention: who will provide the satellites, the earth stations, the domestic equipment, the programmes, the finance; who will administer the service, what kin of programmes will it offer, how will the
public respond ? and so on. Many o pubse questions are in fact being attended to with apparent urgency, and already at east two companies have been formed specifically to provide and operate
specifically to pro
One source of pressure behind this urgency is the British aerospace and understandably, are keen to exploit the new technology which this type of roadcasting will make necessary British service would given them a good domestic base from which to launch hemselves into the world market. Th xisting broadcasters, BBC and commercial, are also keen to go ahead. contractors are now preoccupied with financial problems in their terrestrial broadcasting and have the prospect of supporting the fourth tv channel to face, potential of satellites as a new medium for advertising.
But in all these projections has anyone eally stopped to consider the man in the footprint, the prospective customer for missions?
So far, it seems, the public has not been consulted in any effective way on what it thinks about the whole scheme. The Home Office has certainly published a report hrough HMSO (News, July issue), but fter spending a year or more preparing publication (on May 19) for anyone to comment on it. Such a time limit is plainly ridiçulous. It is no more than a token esture towards public consultation which governments treat electorates once
they have used them to get into power (cf last month's editorial). Of course, tho
who are directly interested - the who are directly interested - the groups, well-informed individuals and so on - will have responded smartly enough It will have been another "carve-up" mong the elites, while the majority emains almost unaware of what is going on.
A project of this magnitude essentially national because the rransmissions provide immediate coverage of the whole country - justifies public consultation on a arge scae. Averast a year would be needed to ensure that people were properly informed about the proposed service and the remaining months to give them time to think, discus and make considered replies. It would require all this time because the options
available are not straightforward. For one thing, they depend on engineering options that are not simple to explain. For xample, because, as mentioned above, atellite transmitter provides national more efficient way of broadcasting a national service than terrestrial transmitters, which could be reserved for ocal and regional services. Then there is he question of how the available sound and television transmissions, with he possibility of including such newer. evelopments as high-definition television, eriphonic sound and text information

The fact that satellite broadcasting is now possible gives us a fresh viewpoint for ooung at our broadcasting as a whole. It ould be folly to throw away this opportunity because of indecent haste to new commercial gimmick. After all, the idea of satellite broadcasting has been established long enough (since Arthur C. Clarke's article in Wireless World of October 1945). Let us give it the chance it used to the greatest advantage.

Acceleration feedback loudspeaker

Feedback from speaker cone reduces distortion and improves frequency response
by D. De Greef and J. Vandewege. Laboratorium voor Elektromagnetisme en Acustica, Gent, Belgium.

An economical and easily built
An economical and easily built
acceleration-feedback loudspeaker described. It consists of a two-way, passive-crossover speaker system housed in a compact 44 litre box, and a preamplifier to process the woofer good power amplifier with a maximum output power lower th 120W r.m.s. can drive this system; no critical adjustments are required. Acceleration feedback is shown to improve considerably the system
response below 200 Hz . In this region distortion is reduced by a factor 2 to 5 , and the power handling capability of the box is increased by 50 percent. In spite of the simplicity of the design, a $\pm 3 \mathrm{~dB}$, was easily obtained.
A pair of 20 cm diameter Philips our purpose These speakers have a fuil our purpose. These speakers have a built40W r.m.s. each. Electrically connected in series, and acoustically coupled, they displace the same volume of air as a single 25 cm woofer. However, they are mechanicmuch higher frequency $(1250 \mathrm{~Hz}$ for the AD8067/WMFB4 instead of 200 to 400 Hz for a 25 cm woofer).
The coupling between the woofers forces them to behave as a system, showing
a single fundamental resonance. The an effective volume of 44 litres. Its inside dimensions approach the 1.6: 1.25: 1 ratio required for a good distribution of the box resonance frequencies. The oblique partiion successfully eliminates the lowest 260 Hz without deteriorating the around al coupling between both woofers. Figure 2 shows the woofer frequency response measured in an anechoic room at 1 m on axis, after filling the box competely with woofer resonance with a 0.7 quality a Each woofer cone carries a small printed-circuit board (Fig. 3) on which a piezoelectric acceleration transducer and ${ }_{3}$ f.e.t. amplifier are mounted ${ }^{1,2}$. As Reference to the low-frequency, far-field acoustic pressure generated.
The transducer output was recorded while driving the f.e.t. by a grounded-base 4 n-p-n BCS49 to form a cascode stage. Figs speaker response is very well reproduced Further measurements showed the transducer output below 30 Hz to be decreasing, probably because of the finite f.e.t. input impedance. Above 120 Hz , the
oortant dimensions of chipboard nclosure.

The enclosure in an anechoic room: front view showing the soft-dome midrange an
transducer output falls because cone movements are increasingly damped by the sur rounding air. Above 1 kHz , cone break u and transducer resonances dominate. In the region of interest, the difference be tween speaker response and transduce signal can easily be modelled as a first
Feedback system
A source of inspiration was the Philips
MFB speaker system MFB speaker system 22RH532 ${ }^{1,2}$. It has
separated power amplifiers for low (40W) and medium to high frequencies (20W), which are incorporated in the box together with a number of filter stages. Woofer feedback is active (loop gain <1) in the 15
to 400 Hz frequency rang to 400 Hz frequency range.
quality power amplifier for single gooddio range, dio range, by carefully redesigning the feedback system as in Fig. 7. Any good power amplifier can be used, provided its stability's sake), and its power outpu doesn't exceed 120 W r.m.s. Loop gain has to be adjusted, once and for all, to 12 dB at 100 Hz , a 20 per cent fault being hardly noticeable.
the 44 Hz crucial point int our configuration is the 44 Hz low-pass filter in the feedback ponents of the eliminates distortion commedium range, where transducer distor

4ig. 2. Frequency rasponse of the woofers
mounted in the foam-filled enclosure.

Fig. 3. Woofer construction with buit-in
acceleration transducer and f.e.t. stage.

Fig. 4. Acceleration transducer response
with constant speaker voltage applied.

Fig. 6. Modelling the woofer-transducer

tion (0.5 to 1%) exceeds the distortion of he woofers ($<0.5 \%$ around 350 Hz). The naximum allowable loy is optimized for a he system remains stable for a loop gain as high as 22 dB , one should not exceed 12dB: excess input signal would provoke too high
drive signal for the power amplifier causing severe distortion, long settling times and possible destruction of the ower stage or the speakers.
The filter stages a, b and cin Fig. 7 form loop transfer characteristic. Only first-
. A relay shorts the power amplifier put for ten seconds after switch on, to void switching transients. As Fig. 10 shows, the power-amplifie servo-system input level, is a co constan of the woofer frequency response, as determined by the servo loop. Because audio programme material seldom contains strong very low frequencies, this bas
boost does not require cxcessivi levels. However, the box must be carefully sealed and filled with polyether foam in order not to reduce the woofer's low-frequency power-handling capabilities. A the servo loop is operative as low as 12 Hz , when reproducing discs: the filter time constants, however, produce an increasing feedback level for those very low frequencies. Subsonic cone movements are strongly damped, obliging the voice coil to system even for higher drive levels. This raises the processable power level, for typical audio programme material, from 80 to about 120 w r.m.s. Figure 11 shows signal is applied to the boy: closing the feedback loop dramatically decreases low frequency distortion.

Fig. 8. Filter and feedback stages.
order and low-Q (<0.8) second-order filters were employed to avoid any ringing or
overshoot in the system response. The circuitry shown in Fig. 8 is incorporated between the preamplifier and power stage of an existing audio amplifier, and contains all the signal-handling stages required. Except for the connexion of one LM381 in-
put amplifier as part of the transducer f.e.t. cascode stage, its design is very conventional. The 12 dB loop gain adjustment R should be set at about $22 \mathrm{k} \Omega$ for a 34 dB power amplifier gain. The whole is fed by
a single 24 V power supply, shown in Fig.

Fig. 10. Power-amplifier drive signal with
constant servo-system input voltage.

Fig. 11. Total harmonic distortion of the
speaker system with and without feedback, speaker system with and
for 25 W sinusoidal drive.

Fig. 13. Overall system frequency response in anechoic room, at 1 m distance, al on axis. b) $3 \overline{0} \overline{0}$
degrees off axis (horizontal plane).

Crossover

With constructional simplicity in mind, we searched for a good amplitude and tran sient waveform response ${ }^{4}$. Ordinary con stant-resistance filters showed excessive
ringing (squarewave response) and only ringing (squarewave response), and only
combinations of first-order and low-Q second-order filters proved to be acceptable acoustically
Different three-way combinations were built,. in which or a Motorola piezo AD0141T8, was used with a 4 kHz second crossover frequency. Main problems were tweeter resonances in the 1 to 4 kHz re gion, causing poor squarewave response. Moreover, thermal modulation of the drive levels: due to the short thermal tim constants (around two seconds for a 2.5 cm dome tweeter), voice coil resistance can change appreciably with the rhythm of
strong transients ${ }^{\text {s }}$ A much better a 5 cm Philips soft dome midrange, type AD021 10 SQ8, in a two-way configuration
with 900 Hz crossover frequency This speakers has a 20 seconds thermal time constant. Its high-frequency response is Iter stage electronically from 8 to 20 kHzin approximately a first-order pole at 4 kHz) n the crossover network of Fig. 12. The coils are wound on Siemens ferrite drum and resistance. The high-pass section contains no electrolytic capacitors, as these were inaccurate and often inductive at higher frequencies, and parallel combina-

tions of foil capacitors (Siemens MKM series) were used, each capacitor being able to handle 400 mA of current. Low inductance resistors are also to be pre| ferred. |
| :--- |
| Finally |

Finally, Fig. 13 shows the anechoic room amplitude response of the systech Although these curves can stand con parison with much more complicated (and expensive) setups, the most impressive re sult cannot be written down: a very sharp-
cut transient response even at high levels, cut transient response even at high levels,
and a completely uncoloured reproduction of the human voice.

Editorial note
The drive units are obtainable from Philips Spares Division, 604 Purley Way, $£ 22.70$ and $£ 17.25$ for the woofer, 2 in dome and tweeter respectively. Siemens MKM capacitors are stocked by A. Marshall (London) Ltd, Kingsgate House,
Kingsgate Place, London NW64TA:

References

1. H.M. Godijn, Motional feedback system
Radio Electronica, 1973 No $15 / 16$, pp. $539-542$. 2. Philip sosonant, Electuur, 1973 September 3. Jason Chris
speaker measurements with an accelerometer 62-64th Convention AES, preprints.
2. Philip Vanderliin, Auditer 4. Philip Vanderliin, Auditory cues in stereo
phony. Wireless World, September 1979 , pp. $55-$
${ }_{5}^{60}$. P . Skritek H . 5. P. Skritek, H. Pichler Extended application
of TIM test procedures, $64 \pm$ Cond preprints.

Consumer video records

There is still no agreement on a single standard for video disc systems

Lack of agreement on a single
standard for consumer video discs.
has been no barrier to the completion of many other agreements, but
so obviously in the consumers' interests as a single standard. Almost every interested company has an greement to produce more than on kind of video disc system.

The first of the video disc systems to be demonstrated was the laser optical disc originated by Philips a decade and $£ 75 \mathrm{mil}-$
ion ago, and put on the market in the USA $2^{1 / 2}$ years back. Then came RCA's grooved capacitance disc, the product of 15 years earch and development costing b and $\$ 200 \mathrm{million}$, put on sale the form of JVC looking to repeat it VHS video cassette recorder success with grooveless capacitance disc, to go on sale USA and UK. Other systems, such as the optical transmissive of Thomson-CSF, are not destined for the domestic consumer market. So what
Philips may have been first to publicly how their disc and player but they cerainly haven't made most noise. That honour goes to RCA who, ever since the "go" decision for the launch of Selectavision was taken in 1979, have inundared the ing deals, some hardware, most software. First news was that RCA had concluded a licensing arrangement with CBS to make and distribute Selectavision "capacitance natural choice: it had pressing plant that could be converted, falling pudio record sales, a record distribution system, and wanted to get into video discs with the east risk.
North
orth American marketers say that the chances of selling a particular brand to a household are much better if a commitespecially to the extent of owning a colour especially to the extent of owning a colour likely to listen to what its makers recommend. So with the biggest share of the colour tv market (21%), RCA thus hopes for the biggest share of the video disc market. So naturally their first target for
licernsing their technology was the next biggest tv brand - Zenith (20%). News of an agreement with Zenith came three months after the CBS deal and covered the fattor of players and discs and aft exchange

of patent rights
ho erird largest US tv set maker is GE, nology. The next largest sections of that market are retailers' own brands and the Japanese makers. All three "own-brand" names, Sears, Ward, Penney, agreed to ell CED, representing over 11% of the colour market. Japanese makers Hitachi, in the USA (but VHD in Japan and maybe also optical players), whose share comes to over 6%. Remainder of the US makers are either in the optical group (Magnavox, Philips (JVC, Ouasar, Panasonic, about 8\%). A total of nearly 60% for CED.
There have been no agreements announced to market CED in Japan. Which suggests this was the pice of getuing all the that sell in the US to adopt CED rather than VHD.
But such licence agreements do not always mean very much. As an RCA spokesman admitted: "licences only be-
come meaningful when manufacturing starts". As an example, out of 20 CED licensees in Japan, one is Pioneer, who are heavily committed to the optical system, and another is Sony, who already have an exchange agreement with Philips and de-
clare no interest in consumer discs. However, considering the momentum that CED is achieving there is every reason for supposing that manufacturing has begun with a vengeance.

Mock-up or the real thing? Photograph
Clims to show Matsushita laser disc recorder that can playback one of 15,000 images in under half a second.
ing that CED had achieved the most successful introduction of any majo and 200,000 discs. To meet a stronger than expected demand RCA say they are increasing the number of presses and raising this year's production target for discs from wo to three milion, and expect to stamp discs and players could be about $\$ 7.5$ billion by 1990 they say.
But the bulk of the RCA announce ments were about licensing deals for programmes, and involved separate deals with ailms and tv companies. They have so fa Rank, 24 Disney, 100 United Artists, 12 Chaplin, 7 Presley, and 11 Bond films Charlie Brown programmes, music and show productions, NBS "specials", which will doubtless impress the "average family", because it was designed for precisely that market. The opening catalogue had 100 titles, half priced at under $\$ 20$, the rest at between $\$ 15$ and $\$ 28$. This summer 26 new titles were added, a further 25 due a year will be added, say RCA "to maintain excitement and interest
Will success in the programme catalogut decide which is the successful disc format?
many of the agreements being reached are exclusive. What seems to be happening is non-exclusive - RCA named only two items as exclusive. Nevertheless, in a situation as competitive as this one must expect features to be sought on an exclusive basis
and used for promotional purposes. Negohating rights to overseas material is an are where video disc companies are very, active. RCA have formed joint companies in various countries; those announced ar Tapes in the UK, Gaumont in France, a well as a joint company with Columbia Pictures to trade in overseas rights. In proclaiming its 26,000 sales RCA Could be said to be gloating when they
compared this with an estimated sales for the optical system over two years. Optical system protagonists argue that optical player sales had been held back as a result of difficulties in supplying discs. Philips contest the estimated figure, quo ing sales of 40,000 at the end of 1980 . pare with a laser player; limitations of mono sound, no freeze-frame facility, limited stylus and record life go with this unashamedly mass-market machine. And price differential is substantial: $\$ 755$
the optical player and $\$ 499$ for CED The optical disc system, now called La servision and sold by both Magnavox and Pioneer, is set for UK launch later this year* with a promotions budget of $£ 1.5 \mathrm{~m}$
and selling "marginally cheaper" than VCR (£499?). Details are largely as previously reported (see Berlin show reports, especially 1973 and 1975), the major extension in recent years being adoption of constant linear velocity to extend playing
time. This is achieved by cramming more than two fields per revolution as the track radius increases and motor speed decreases proportionately. The constant angular veocity mode, with its facility for reversing speeding up, slowing down and freezing
motion by track jumping, gives only half an hour playing time a side, and is now distinguished from the long-play version by the name "active play". And though the players will accept both kinds of servision you don't get both at the same time.
In addition to the Blackburn and Eind hoven pressing plants of Philips, three ion discs-Sonopress, Bertlesmann, and sion discs-Sonopress, Bertesmann, and
Bavaria. In the USA discs are made by 3M and Discovision Associates (MCA and BM), while in Japan Universal-Pioneer will make discs for the consumer market nd Sony for the industrial market less capacitance disc group may be more willing to exploit interactive instructional programmes than RCA. Matsushita's chief evenue earner is now the video cassette say VHD should offer something the cassette recorder can't. According to a recent

First model of RCA video record player features rapid accesco at 150
x normal speed with muting visual x normal speed with muting, visual search at $16 \times$ normal speed by
groove jumping and is priced at groove jumping and is priced at
$\$ 499.150$ programmes, aimed at "average family", sell at $\$ 15$ to $\$ 28$ each. CBS as well as $R C A$ are
expected to sell r records in the U expected to sell records in the UK,
but a PAL version of the plaver has yet to be demonstrated.

Costing almost as much as a vide cassette recorder, optical players
will accept two kinds of disc;"long
. play" for one-hour per side
programmes with programmes with no 'trick"
modes and "active play" for halfhour programmes with fast, slow and still modes. Average price of
discs will be $£ 15$, players under discs will be $£ 15$, players under
$£ 500$. More compact players with solid-state lasers are in
report in TV Digest, Matsushita have enough films for January's US launch (from United Artists, MCA, EMI) report edly 55% of their first 76 items, with th remainder classed as special interest, i.e teractive instructional discs. Average pric will be $\$ 25$. In the UK Thorn-EMI is spending $£ 5 \mathrm{~m}$ on two disc production sites. A recently acquired factory at Swindon will produc EMI Electrola, Köln. The new factory will be operational by January, in full pro duction by April with 100 employees and so ready for the UK selling in June. Thorn say combined output will be three million
discs, and that could be doubled by 1983 . The process appears to differ from RC.A mastering in at least one respect - a laser cutting head scribes $0.3 \mu \mathrm{~m}$ deep pits into a
coated glass blank. This makes the proces vibration-sensitive and Thorn-EMI sa choosing a site sufficiently free of vibratio has been a problem. Sequential electro forming leads to a metal master from which metal stampers are made. At least thirteen companies have de clared their support for VHD in Japan Sansui, Sanyo, Sharp, Toshiba, Trio Yamaha, in addition to the two Matsushita companies. Many of these will produce players for more than one systeim, and others are almost certain to have licences.
But a large part of the strength of the UK operation lies in the JVC participation with Thorn-EMI. They are both counting on Thorn's rental outlets - nearly 1600 o them - that have been instrumental in the Undoubted success in bringing VHS to the UK.

Field arrangement on two kinds of optically tracked disc. "Active play" half-hour type has increased playing time of long-play version is the loss of slow, fast and still-frame options (right).

Optical video discs carrving education programmes could
be used for interactive teaching be used for interactive teach
programmes tailored to programmes tallored to
individual needs by linking record player to microcomputer
both beneath tv set) with (both beneath tv set) with
cassette program and separa cassette program and separate raining programmes - for Which the features of slow motion, freeze-frame and
reverse play are ideally suited reverse play are ideally

- will not be available initially.
Available for sale in the U.S. early next year, Sharps' VHD ormat video record player
includes "video search," nabling speeded up viewing by either 9 or 120 times normal speed; frame-stop; frame-by-
frame advance in either forward or reverse; variable speed control from $1 / 8$ to five times.
normal speed in either forward ormal speed in either forward.
r reverse; and pause control. In the UK players may turn out o be dearer than the $£ 3$

Secret of capacitance discs

To make a video c.e.d., signals with iden ification codes inserted in the vertical
lanking intervals feed a half-speed cutter made of a diamond stylus and driven by a
piezo element (optical and electron beam piezo element (optical and electron beam
mastering methods have been dropped).
 Yayer of copper coated on a heary alu-
minium disc. Electroplating with nickel minium disc. Electroplating with nicke
and peeling off the coating a few times nd peeling off the coating a few ime
provides a number of nickel masters (negaive moulds). They are returned to the electroplating bath to generate multiple
positive nickel moulds which are thempositive nickel moulds which are them
selves electroplated to produce hundreds of stampers for disc pressing. Two stamprs mounted on a press - one for each sid v.c. compound into a disc. on cooling he discs are washed, rinsed and dried and 20 mm coat of lubricant is sprayed on to

Experiments conducted a decade ago a
RCA showed that the resistivity of a p.v.c./p.v.a. copolymer as used in audio records was too high for a conductive
record, at $500 \Omega \mathrm{~cm}$. Lower resistivity could then only be obtained with polythene-based compounds but they were oo soft and scratched under a sliding sty-
us. So coatings of metal, styrene and oil lus. So coatings of metal, styrene and on
had to be applied to give the disc its
conductance. But when problems with conductance. But when problems with
conductive coatings (adhesion, envirionmencoll exposure, complex equipment) began
to mount the search for a new comto mount the search for a new comdiscovery of a low-resistivity carbon black
made by Akzo Chemie, Netherlands together with a suitable e.v.v.c. copolymer.
The carbon loading level was the tricky The carbon loading level was the trick
thing to get right, affecting not only yesisthing to get right, affecting not only resis-
tivity but also melt viscosity, physical
. characteristics - especially brittleness and
resistance to scratching, warping - and resistance to sc
surface
surface quality.
Electron tunneling theory suggests it is the average width berween particles or ag glomerates that determines conductivity or
the carbon-resin composite (tunneling current is an exponential function of gap width). Detailed investigations showed re-
sistivity to be a steep function of carbon sistivity to be a steep function of carbon
content which hadn't levelled off at resistivities as low as 2.5 Scm , where loading
evel becomes impractical (20%) due to level becomes impractical (20\%) due to
high sheer stress from particle-to-particle high sheer stress form partic--o-patice
contact.
Detailed analysis of the properties of filled polymer composites with a loading
level of 15% showed its suitability - ex-
cept in respect of trittleness. But RCA say "proprietary" additives can modify this to enable the discs to withstand normal hand-
ling and drop tests. ling and drop tests.
In any case, the specification for disc warp i.e. a maximum- peak-peak warp of
0.5 mmm after 48 h at $55^{\circ} \mathrm{C}$ cannot be met by 0.5mm after 48 h a $55^{\circ} \mathrm{C}$ cannot be met by
audio-type p.y.c.p.v.a. systems; but is audio-type p.v.c././.p.v.a. systems; but is
easily met by carbon-filled resin systems of propylene-vinyl chloride copolymer or
p.v.c. p.v.c. homopolymers. It is the success of
this conductive disc that gives CED perhaps its bige est selling point against
optital
pass optital pressings - that records can be
made on existing presses. But an the filled
resin is much stiffer it is more difficult to resin is much stiffer it is more difficult to
form by injection moulding; therefore
compression moulding has to be used.

Microcomputer tester

A simple but versatile fault-finding aid
by Tony Cassera

WIRELESS WORLD SEPTEMBER 1981

signed consisted of an 8080A microprocessor, 8224 clock, 8228 bus controller and, of course, r.a.m., r.o.m. and various othe components.

Signals

To aid the explanation, signal names have been used. The active state of each signal is indicated by suffix H or L , for active high and low respectively, the first time the signal name is mentioned. The following
seven signals used by the tester are stan seven signals used by the tester are stan-
dard for an 8080 -based system; other sig nals peculiar to the tester will be described as they crop up. HOLD H, applied to the 8080, stops the processor and puts its data and address buses into the high-impedance lets the clock generate the RESET H signal which in turn sets the processo program counter to zero. When RESIN is removed, the program starts from zero STSTB clock ic. at the start of each machin cycle. RDYIN H is synchronized with the clock to give READY H to the processor BUSEN L enables the tri-state output buf fers of the 8228. When this signal is high, the output buffers are in their high-im

Functional description
C.p.u. mode. A three position switch with settings marked disable, jump and run is connected to the HOLD and BUSEN sig nals of the system, see Fig.1. In the disable mode a HOLD signal is applied to the
microprocessor and two enable signals, EAS H and EDS H , to the address and data switch buffers respectively. The tester has control of the address bus in this mode.
the HOLD signal is not applied to
rig. 2. Circuits of the tester used to produce signals for read, write, select and reset flip-flops are used to debounce the push switch contacts. RESIN is debounced within the 8224 clock i.c. of the board under
test. Apart from the timing resistor of the monostable, all resistors are $1 \mathrm{k} \Omega$.
microprocessor but the data bus is held in its high-impedance state by the BUSE signal. After resetting the microprocessor runs and advances the program counter the form of 00 from the bus controller. A 00 is the no-op code the microprocesso does not act and the program counter goe on incrementing until the address switch setting and the bit pattern on the address signal goes low and the microprocesso clock stops at the selected address. In the run position the BUSEN signal is low, i.e., active, and other conditions ar the same as those in the jump position. cutes whatever it finds in the program. Address bus. Sixteen single-pole switch are used to write data onto the address bus through tri-state buffers. The enable line to these buffers, EAS, is controlled by the c.p.u. mode switch so that the addres
switches are only active when the c.p.u. switch is in the disable position. Four hex adecimal-input seven-segment display units are used to monitor the bit pattern on the sixteen address lines. The address lines prevent excessive loading.
In disable mode correct functioning of the address and data buses can be checked by reading out known data from r.o.m. coders one or two words can be read from
each memory i.c. used. Extensive r.a.m checking is not possible but data can be written into and read back from r.a.m. and the ability of the r.a.m. to retain data. In the write mode, see Fig.2, data can be written into memory for use when the program is run.
The address
he address switches are also connected o four comparators which are used in
ump mode and to find breakpoints. Data bus. A set of eight single-p switches is used to write onto the data bus through tri-state buffers. These buffers only pass the data on the switches to the
bus when the c.p.u. switch is in the disable or jump positions and when the data bu switch,Fig. 1, is in its enable position. The resulting signal controlling the buffers is called EDS H. Two hexadecimal-inpu displays are used to monitor the data lines and as with the address displays their in
puts are buffered. Comparator. Th the address lines is compared with the settings of the sixteen address switches by a thirty-two input comparator made up of four eight-input comparator i.cs. and
four input AND gate. The output of the comparator is fed into an AND gate along with the STSTB signal from the 8224 clock of the board under test. The result ing signal is fed into a NAND gate along with an enable signal from the breakpoin
switch to form a signal called COMPARE L. One of the four sections of the compara tor is shown in Fig. 1.
Breakpoint. A breakpoint is an address a which the processor will stop. Using sensible choice of breakpoints, it is possible to reconstruct the path of the program under execution. When a the c.p.u. mode switch set to run and the breakpoint switch to enable the program should run and stop at the breakpoint set The address display will read the data on sought by resetting the address switches and pressing the continue switch.
The breakpoint function is outlined in Fig. 1. When the breakpoint switch is in the enable position the set signal is re-
moved from the control flip-flop but the device remains set. RDYIN is high so the processor runs. When a comparison be tween the address data and address switch settings is found the COMPARE signal resets the flip-flop and RDYIN goes ow to
stop the processor. Pressing the continue stop the processor. Pressing the continue the processor continues to the next breakpoint.
Single step. When used in conjunction with a program listing the single step mod can often reveal the obscurest of system
faults. Single cycle stepping is used as opfaults. Single cycle stepping is used as op-
posed to instruction stepping. The address bus is constantly displayed so that when calls are executed the successive outputs of the stack pointer can be monitored. Execution of the instruction code on the display
takes place when the step switch is takes place when the step switch is
pressed. Although single step mode is useful it is also slow so as much use as possible
should be made of the jump and Operation of the single step section of tester is similar to that of the breakpoint section. When the single step switch is enabled the set signal is removed
from the control flip-flop but the i.c. refrom the control slip-flop but the i.c. re-
mains in its set state. RDYIN is high so the processor runs. After one cycle STSTB is returned from the board under test and he flip-flop is reset resulting in a change in state of the RDYIN signal so the processor the next step.
Read. When the read button is pressed Fig. 2, data on the address switches is read and shown on the display. The c.p.u. mode switch must be in the disabled position and the data switches off. In the read
circuit of Fig. 2 a flip-flop is used to debounce the switch contact. The output of the flip-flop goes directly to the board under test and is connected into the read ine of the processor using an OR gate. Write. Provided that the data bus switch is data switches is written into r.a.m. at the address set on the address switches. The write signal is produced in the same way as he read signal described in the preceding aragraph, see also Fig. 2
Select. In the system for which the tester was made the i/o ports were each selecte was generated by a decoded address bus ignal along with the i / o pulse generated by he 8080 when executing an IN or OUT instruction. The tester simulates the i/o
pulse from the processor, Fig. 2, using a lip-flop to debounce the switch contacts and a monostable multivibrator to produce a pulse of around one microsecond. This pulse is fed into the microcomputer $i / 0$ line again using an OR gate.
vice selected. Remember that se the dethe decoder reads the port number in the high byte, i.e., device number 3 may need to be addressed as 0303 . When the select button is pressed the data on the data
switches is clocked into selected output ports. It is not possible to verify data read from input ports but this feature could be added by incorporating an eight-bit latch on the data bus of the tester
Reset. On pressing the reset button, Fig.
2, the RESIN input of the 8224 clock goes low. Debouncing of this signal takes place within the 8224 so a simple switch will suffice in this case, Fig. 2.

Connection

Some forty connections have to be made system. In the system previously described, the c.p.u. board had a built-in test connector but not all boards will be so provided. The simplest way to make the connections is to connect single test clips the signals one by one. This method is, however, tedious and errors can easily be made. Multi-way test clips with test leads soldered in position are much more convenient.

If the processor is mounted in a socket a This test iig has the necessary test leads soldered to its pins and is mounted pick-aback fashion in the processor socket. The microprocessor then plugs into the test jig.
Care must be taken when Care must be taken when connecting the signals) to the tester. On the boards for which the tester was made there were spare OR gates in these lines which were held high with external pull-up resistors. Open
collector outputs in the tester suppied collector outputs in the tester supplied
these gates with satisfactory signals. If there are no spare OR gates available on the board to be tested, an alternative is to wire $O R$ the functions if suitable open collector lines can be found.
To stop clamping of the test signals
where i.c. sockets are used, the appropriate leg of the i.c. may be bent outwards so that it does not fit into the socket. If sockets are not used, either the pin of the c. or the associated track on the p.c.b.
can be cut and rejoined after the fault has been found. The sixteen address line and
eight data line connections don't create a problem as they are connected via tri-state buffers.

Modifications

A single pulse is difficult to see on an oscilloscope so I added a 1 kHz oscillator to the device select circuit as an alternative to the push button.
A small r.a.m. Was considered into which simple test loops could be written.
An extra circuit for directing the program to the starting address of the memory would be required. Data entry using switches is tedious so a hexadecimal key-
pad was envisaged for loading data. At this pad was envisaged for loading data. At this
point I felt that these modifications were too complex and decided that if such features were needed an entirely new design would be required

Literature received

Applications manual on analogue-to-digital and d-to-a converters is published by Pascal

 Electronics. It is mainly a discussion of specification terms and error sources, with additionalinformation on sample-and-hold amplifitions information on sample-and-hold amplifiers and
circuit layout. Copies from Pascall Electronics Ldd, Hawke House, Green Street, Sunbury-on-
Thames, Middx. TW16 6RA. WWw401
Two brochures from Spectra-Physics present
general information and more specific product general information and more specific product
details of fing dye lasers and high-power ion lasers. They can be obtained from Spectra-Physics. Ld at at 17 Brick Knoll Park, St At Abans,
Herts. AL1 5UF.
WW02

Should anyone wish to make a cardboard model Should anyone wish to make a caraboard model
of the Z-LAB 8000 development system, Ziog's new brochure on the equipment provides
he means of doing so, together with a short description of the system itself. Modelmakers should write to Ristog (UK) Ldd, Babbage
House, King Street, Maidenhead, Berks. SL6 DU.

Brochure from Burndept describes a new u.h.f. f.m. transceiver for
Office spec. W645T. Leaffet can be had on application to Burndept Electronics Ltd, St Fi-
delis Road, Erith, Kent DA8 1AU. WWW08 Catalogue of components, tools and hardware can be obtained from HB Electronics Lrd
Lever Street, Bolton, Lancs BL 6 BJ. WWW 409

Specifications and application data for the range
of ERG wirewound power resistors $(0.3$ ohms of ERG wirewound power resistorss, (h. 3 ohme
to 100 kilohms) is available from ERG Compo-

Short c
.
Short catalogue from Bourns gives brief details
of a range of precision potentiometers and of a range of precision potentiometers and
turns-counting dials, together with a number of resistor networks, attenuators, microtransform-
ers and microinductors. Catalogue from Bourns ers and microinductors. Catalogue from Bourns
Electronics Ltd, Hodford House, $17 / 27$ High
Street, Hounslow, Middx. TW 3 1TE.

Advice on the range of Arklone flux removal
solvents and cleaning plant is presented in brochure, available from ICI Mond Division,
Dept P, PO Pox Dept P, PO Box 13, Runcorn, Cheshire. WWW 404

3 M have produced à brochure on the Scotchflex trange of ribbon connectors and the jacketed
and shielded fiat cable and shielded flat cable, recently introduced. Electronic Products Group, 3 M United
Kingdom Ltd, 3 M House, PO. Box

Small tools to assist in the assembly of compoSmall tools to assist in the assembly of compo-
nents onto printed-circuit boards are described
in in a booklet from Vero Systems (Electronic)
Limited, 362 A Spring Road, Southampton,
SO 50 OJ .
Application note from Norsem describes the use
of s.c.rs, diacs and triacs in the switching of of s.c.rss, diacs and triass in the switching of
inductive loads. Copies can be obtaned former Norsem Power Products Division, Level 1, The
Civic Centre, Hartlepool, Cleveland. WW407

Voltage-controlled filter

In the article by A.A. Thomas in our June issue, "Filter design with voltage-controlled sources"
a correction is needed to Fig. 5 on page 81 . The a correction is needed to Fig. 5 on page 81 . The
negative plate of capacitor C_{7} should be connec-
ted to the common rail and not to the -15 V negaive plate of capacitio an should oc connec-
ted to the comon rail nat no to the -15 V
supply as shown. Also, equation (10) defines ω_{0} supply as shown. Also, equation (10) defines ω_{0}
and not ω as shown. Finally, in the Aperdix, the equations for cut-off frequency, low-pass
and high-pass, have a round -left-hand-bracket mitted directly before the first occurrence of the identity α^{2}, reading from leff to right. (See
also comments in a letter to the editor, this also con
issue.)

Morse decoding program

 The sudden-interference handling capability ofthis propram described in the February issue
was affected by this program described in the February issure
was affected by a small error in line OC50 of the machine code. Instruction 8C (ADC A,H)
should have been 84 (ADD A,H) This error should have been 84 (ADD A, A). This error
does not affect normal operation of the proger does not affect normal operation of the program
but increases susceptibility to errors in decoding due to interference.

WIRELESS WORLD SEPTEMBER 198

METNEDS TOTMIEEDNTOD

AMERICAN CB NOT HOUSE TRAINED I could not help but note the item "House
trained c.b." in Sidebands of your May issue. I assume that your "house trained" means the same as our "house broken" and generally con-
sists of training a pet dog, cat, or other animal to sists of training a pet dog, cat, or other animal to
stay clean in a house and to use the grea stay clean in a house and to use the great
outdoors as a bathroom. I hope for your sake that you can establish a ac.b. system that will no
offend your ears in the same way that a dirty pet offend your ears in the same way that a dirty pet
will offend your nose. We have failed to "house break" "ur A American c.b. system. "Mixer" jokes about American c.b. slang. I
doubt if he's heard much. It's not funny; it's filthy, rotten, degrading and totally uncalled filthy, rotten, degrading and totally uncalled
for. He says that slang should evolve naturally.
agree but our evolution was more agree, but our evolution was more of a gradual
degradation. If this is what hap suggest that you take steps to prevent it. Maybe if you learn from our mistakes, we might be able oo adopt your methods to clean up American
c.b. In the meantime, I won't have c.b. in my c.b. In the meantime, I won't have c.b. in my
vehicles or my house. Thank God, I'm a ham! Martin L. Shapiro, WIYSA Needham
Mass., USA

NVENTION OF

STEREO RECORDING
Reg Williamson of Norwich brought up the
subject of the invention of the $45 / 45$ stereo disc recording system in June letters. He makes mention of the issue of some recordings by bell Telephone Labs of experimental work done
beween 1931 and 1932 which includes stereo disc recordings made at that time. Some of the history of the 45/45 stereo system
has been given in my per has been given in my paper published in the
April issue of the $\begin{aligned} & \text { fournal Audio Eng. Soc. and in }\end{aligned}$ Apriissue of the at several meetings the Blumlein question always come up. My answers to these questions are as follows:

1. My first exposure to the Blumlein matter was 1. My first exposure to the Blumlein matter was
by the IRE paper in the October 1958 issue
writen by Fraye \& Davis. written by Frayne \& Davis.
2. My patent (USA Patent No. 2,114,471) was
applied for in 1936 and issued in 1938. Actually our best single groove stereo records were made in 1934 and one of these was lent to the BBC in 1964. Notebook and other written
3. The reasons for the delay in filing were pri-
marily due to the financial depression of the marily due to the financial depression of the
1929 period and the lack of interest by Victor, columbia and other Bell Systemi
promoting a system which "required two loudpromoting a systern which reald not afford to buy
speakers when people col one loudspeaker." This lack of interest seems to
have been reflected in the delayed action by the have been reflected in the delayed action by the
Bell Labs Patent Department. In any case we did not publish the single groove stereo system playing record of 1929 which was a 10 in record playing record of 1929 which was a 10 in record
to replace the 16 in Vitaphone Talking Picture record. Other unpublished work was on gold
sputering electronicheating of plastics, the air sputtering, electronic heating of plastics, the air
dvance hall, erc. The essential telephone was given F -eference during the shortened work given. F
week.
4. Binau
Binaural or stereo records was very much on my mind, particularly single groove systems
such as the multiplex system applied for in 1929
and issued in 1933 as USA Patent No. $1,910,254$. This speaks of wo or more channels in one groove. This patent application also
mentions the moving coil pickup now also be-
 1934 as USA Patent No. 1,981,793 5. The work in developing a single groove stereo
recorder was time consuming and difficult in ecorder was time conssuming and difficult in hannels. My recollection is that the two-channel recorder by linking two rubber line re-
corders started about 1928 and it took several years to be considered adequate.
5. In any case, by the time that Frayne "rein-
vente" "he $5 / 45$ system our USA Patent expired. Frayne should be given credit for the success of the $45 / 45$ system which we were not ble to "sell"" in the early 1930 s. A.C. Keller
Bell Laboratories

Bell Laboratories
Murray Hill, New fersey, USA

WAFER-SCALE
 NTEGRATION

The novel computer architecture described by . Catt in your July issue has some interesting
mplications for experimental psychology and neurology.
It is tacitly assumed by the general public, nost engineers and some psychologists that here is an analogy between computers and the
human brain, so that when we finally produce a powerful' enough computer, a suitable program will enable it to 'think'' like a man. I
suspect that this analogy often affects the way suspect that this analogy often affects the way
that psychologists frame and interpret their experiments.
The unsatisfactory nature of this supposition
can be demonstrated by comparing the facility can be demonstrated by comparing the facility
with which brains and computers perform partiwith which brains and computers perform parti-
cular tasks. The conventional computer can answer questions requiring mathematical manipu-
lation and iterative procedures ("What is the ation and iterative procedures ("What is the
thirteenth root of pi") orders of magnitude more rapidly than a human. For questions involving associative memory ("Where have I noticed that
smell before?"), however, the man may win by a factor nearly as great.
factor nearly as great.
Mr Catt's architecture may produce machines
with a a performance more similar to the human with a performance more similar to the human brain. By enquiring further, it is possible to find
more points of likeness. One feature of the brain which has aroused comment in both popular and learned journals is that it has never been
possible to find (physical) areas of the brain possible to find (physical) areas of the brain
corresponding to particular memories; excision of one piece of grey matter will not lead to loss of memory for all events which happened on June 2 1st or all recipes using eggs. Instead, a
more general degradation of function and memory occurs. The brain has been likened in his respect to a hoiogram, but it may be more
useful to compare it with Mr Catt's distributed sseful to compare it with Mr Catt's distributed
processing and content addressable memory.
The gradual and partial restitution of function The gradual and partial restitution of function
which occurs as neuronal paths re-form after which occurs as neuronal paths re-form after
brain damage would then be equivalent to the reformation of a 'spiral' at switch-on.
From an engineering point of view, the con-
struction of computers more analogous to the struction of computers more analogous to the
brain offers some attractive, if rather remote, brain offers some attractive, if rather remote,
possibilities. Much scientific and programming
ffort is directed towards progreming
machines to perform tasks which humans
perform with relative ease; this endeavour perform with relative ease; this endeavour
might be rewarded with more success. Finally, it might perhaps prove possible to make machines which 'learn' in the way that we do, and so realise the 'thinking' computer. and so realise
Tim Thorpe
Cheltenham
Glos.
.

TELEVISION FOR

NO-SIGNAL AREAS

read with interest the excellent article in your
May issue by J. M. Osborne on active deflectors for tv in "no go" areas. The system is very
similar to one I installed for a rriend similar to one I installed for a friend in Scotland
two years ago. I think there are a few points M wo years ago. I think there are a few points Mr
Osborne failed to mention which I think might help others and these are as follows: L- Larger aerials on the re-transmit and bottom-f-hill receiving station would give approx 6 -9 They would also have a narrower beame wasth, They would also have a narrower beam width, It is best to feed a.c. up the supply . bout 24 volts and use a Radio supply cable at regulator at the top. This eliminates yoltage drop adjustments at the bottom end, prevents lectrolytic action on the wire should it become lightly damaged and makes joining of the wires
if they ever become cut accidentally imple. It might be easier to use standard outdoor inductive splitters instead of 50 -ohm quarterwave matching sections
Implifiers to use on the complete system to
amper conting when anplifirers to use on the complete system to
know what level of signal you are receiving from he main aerial. ch be done by gradually reducing the sighis can be done by gradually reducing the sig-
nal into the portable test set unilil the picture ust shows noise i.e. .ist snowy. This level on
most portables is about $200 \mu \mathrm{~V}$. One has then most portables is about $200 \mu \mathrm{~V}$. One has then of the set, increase the $200 \mu \mathrm{~V}$ by this amount
ont and you have got your approximate signal level.
Mr Osborne shows only one pre-amp driving the $1 V$ amplifier but in our case we had to have wo: one standard 20 dB masthead amplifier into ne 20 dB 500 mV output amplifier and then into he 1 -volt amplifier.
Considering there
Considering there could be three amplifiers in
cascade, all their inputs will have to be de-rated to stop cross modulation. The easiest way to
achieve this is with a Wolsey helical constat achieve this is with a Wolsey helical constant
mpedance attenuator inserted between the first impedance attenuator inserted between the iritst mplifier and the aerial. Mr Oborne's sexcellent On our Scottish job we were unable to run a upply cable to the aerial site so we used two 12 volt car batteries which were kept charged by a I V yacht wind charger.
an the way, sup
equipment made by a leading German manufacturer at very competitive prices (e.g. $£ 45.00$ for
the 1 -volt launch amplifier) or my company can the 1 -volt launch amplifier) or my company can
install any systems anywhere in the UK. The maximum usable line-of-sight range we
have obtained is $11 /$ miles. have obtained is $11 / 2$ miles.
M. f. Rutty, G3UPV Frome Relay Company
Westbury, Witls
|

VOLTAGE

CONTROLLED FILTER The following comments on the article by A. A.
Thomas in your June issue (pp. 79-81) may be helpful.
Filter
Filters of the form shown in Fig. 2, and their
low-pass counterparts, are known as Sallen-and Kew-pass co
Khilers
Whilst it
Whilst it is quite all right to use the factor alpha $(=1 / Q)$ as in the article, it is not the
damping factor as usually defined, but twice that factor. Damping factor is unity at critical Tamping $(Q=1 / 2)$.
The virtual repetition of a rather lengthy alge-
braic expression could have been avoided by writity.
phase shift (high-pass)

(Name and address supplied) | phase shift (low-pass) $)+180^{\circ}$ |
| :---: |

MICROCHIPS

AND MEGADEATHS
Not one of the five contratulatory letters in your
January issue (on your leader in the November January issue (on your leader in the November
1980 issue) answers the fundamental dilemma
posed in my December posed in my December letter. All seem to to
suppose that if we (UK, plus NATO) heeded suppose that if zev (UK, plus NATO) heeded
your words the danger of world cataclysm through nuclear armaments would be removed
or at least greatly reduced. or at least greatly reduced. Do they really
suppose that the USSR would also heed them suppose that the USSR would also heed them
and reduce or stop their enormous and increasing pile-up of armaments of every kind
And do they suppose that the resulting still further increase in Soviet superiority would r.
duce their manifestly aggressive policies of dure their manifestly aggressive polic
which Afghanistan is only one example?
If others would do the same, no one would be
more keen than I to turn over more keen than to turn over our entire arma-
ments industry to better things. But failing eviments industry to better things. But failing evi-
dence to uhe contrary one is bound to conclude
that your supporters in the January issue that your supporters in the January issue
(though I note that none appears to to back your call to actual rebellion), by favouring unilateral disarmament, are in favour,
intentionally or not, of Soviet world dominaion. Tents still being built up, together with the
men ments suil being built up, together with the
steady Soviet policy of annexation by direct or
indirect invasion, leaves no alternative. indirect invasion, leaves no alternative. So or
talk of usually voting Conservative, "the concept of free enterprise being attractive", in coniunction with being in favour of reducing
our arms, is short-sighted. There would be no rree enterprise under Soviet rule.
M. G. Scrogg
Bexhill

Sussex.
I have followed with interest the correspon-
dence arising dence arising out of your excellent editorial
"Microchips and megadeaths" in the Novemer 1980 issue. Mr Linfoot in the April issue suggests that members of my profession who are
worried about the arms race should cease work worried about the arms race should cease work
and become a burden on society to avoid (a)
risking inventing anything of a military nature risking inventing anything of a militiary natare
and (b) contributing financially to the arms I trust Mr Linfoot was simply trying to highlight the dilemmao that some expenses such as
defence are forced upon us whether or defence are forced upon us whether or not we
want them, but just in case he was serious I
should like to offer an ase want them, but iust in case he was serious I
should like to offer an alternative: all cuts in
spending on the bealth service education, the spending on the health service, education, the
arts, etc. should be fully restored, and a proarts, etc. should be fully restored, and a pro-
gramme of expansion commenceced. Defence
spending should at once be cut to the bone and all the foreign targets that Litter our countrayside
should be sent packing to the USA or NATO or
whoever foisted them on us. Then those who are MEDICAL
can take up where thousands of ordinary folk in PTAs, friends of the arts or hospital sociecies have left off. Instead of running bring-and-buy
sales and raffles to give their kids a decent education, they can run them to buy ICBMs and Iruise and Trident.
I wonder bow
I wonder how much support they would get? Nigel E. B
Leicester.

WIEN BRIDGE

OSCILLATOR

I was interested to read Mr Linsley Hood's
article on Wien-bridge oscillators in the issue. My colleague Tom Nash and I have alsi ssue. My colileague Tom Nash and Thave also of a Wien-bridge oscillator ${ }^{1}$. In our circuint,
which admittedy had a different function from that of Linsley Hood, we found that the opto isolator could readily be replaced by a field-
effect transistor? WWe also found tat the effect transistor ${ }^{2}$. We also found that the
system functioned well with little or no smoothsystem functioned well with little or no smooth-
ing at the d.c. feedback stage. Amplitude control was thus achieved without sacrificing speed of response.
Christopher Derrett
London EI7
Christopher Der
London EI7
References

1. Nash T.
.
Nash T. and Derrett C. J. F. Physics E: Scientific 2. Nash T. Trandiducer Technology, March 1979, Vol. 1 ,
pp.28-32.

Now that the unfortunate drawing errors in the Wien-bridge oscillator article by Mr Linsle
Hood in the May issue have been clarified correction, p.78, June issue), I feel I should point out that the preferred " "new configura tion" is in fact that covered in my patent appli-
cation no. $44213 / 59$ of 1959 An oscillator using this
An oscillator using this configuration was
marketed by Solartron (Type C01008) in agreement with NRDC, in whose name the desig was registered. The original version, which
designed at RRE (now RSRE), gave an output of 1Vr.m.s. with a total harmonic distortion at
1000 Hz of about 0.02%. to the standards Mr_{r} Linsley Hood is now to the standards Mr Linsley Hood is now
achieving, but the complete oscillator used only four germanium transistors type OCC44. It was
shown at the 1960 Physical Society Exhbition shown at the 1960 Physical Society Exhibition.
Peter Y. Baxandall Great Malver
Wors

The author replies:

I have a great admiration for Mr Baxandall's
resourcefulness and ingenvity in resourcefulness and ingenuity in the field of
electronics. I am, therefore, neither surprised nor dismayed to discover, when I set off on
some journey of adventure orexploration in this some journey of adventure or.exploration in this
field, that I am merely walking trodden many years previously by Peter Baxandall. I am, however, surprised, in view of the very
considerable advantages inherent in the Wiin-brable advantages inherent in the use of a
anfiguation, in which the CR parallele arm is taken across a simple inverting amplifier, and the CR series arm is taken from
the output of a further inverting amplifier havhig a gain of two, that this arrangempent should have been known for as many years as Mr Bax-
adnall's letter implies and yet not be the stanadnal's's letter implies and yet not be the stan--
dard circuit in use in Wien-bridge oscillators. I can only conclude that the rest of the world is as nobservant as 1 am myself
Tauntin
Tomerset

TECHNICIANS
TRAINING
was surprised to read in "Medical technicians get a new deal" in your May issue Newsun of the
Month, that it was felt that examinations, and hence an improved career structure, should
come from outside medical come from outside medical physics, for we in
the Trent Region have been in the forefront of training in this field, having run the ONC/TEC course in Medical Physics and Physiological
Measurement for seven years. Furthemore, we have encouraged sudents to go on to HNC level courses in medical physics, run by various colleges, or one of the specialised subiects such as
electronics. However, it is very difficult to prodectronics. However, it is very difficult to pro and, in apdition, there are two types of medical physics technician-
First, there is the technician who belongs to a
ecognised medical prest recognised medical physics departmen
tructured in accordance with Whitley Counc definitions; and /secondly there is the ad-ho eesponsible to any department wanting techni responsible to any department wanting techn-
cal support - for any department needing technician is within its rights to employ whoevere it wishes, pay himher on MPT scales and actuNot surprisingly this situation has caused certain amount of resentment among genuin hysics department staffs, who have long bee tanding; and, while recognising the contribu tion made to the NHS by these other technica taffs, we feel that the title "Medical Physic echitably trained persons employed in a recog nised medical physics departoent.
For these reasons and in MPT has not yet been offered adelequate that the sional representation by existing organisations we in the Trent Region have recently estab-
lished the Institute of Medical Physics lished the Institute of Medical Physics Techni-
cians (IMPT working in recognised medical physics depart ments. Its aims are the organisation and standardisation of training and the establishing of communication channels between other repre-
sentative bodies. The initial response would seem to indicate a significant agreement with these aims.
are to be recognisised as profession phys technician the organisation must come forsomal people, then
seen to be professional, seen to be professional, and I would appreciate
any comments or ideas from other regions. Donald F.. Turner (Chas from other regio
Inssitute of Medical Physics Technicians Rnstizute of Medical Physics

Technicians Royal Hold
Sheffeld

ACORN MONITOR BUG

Mr J. L. Gordon's program for an Acorin
microcomputer (May issua) microcomputer (May issue) reminds me of the
existence of a murky and sometimes infinitely existence of a murky and sometimes infinitely
deep pot-hole which awaits the unwary pro grammer. The Acorn monitor p.r.i. m. a allocates
the same memory the same memory location (001A) as temporary
storage space in three of the monitor sub-ru storage space in three of the monitor sub-rou-
tines (Scan, Hex. to display and Wait). If an interrupt occurs when a main program is exe-
cuting one of these sub-routine cuting one of these sub-routines and if subsequentiy the interrupt program uses any one of
thenes sub-routines, then data is lost from 001A
that aese thabroutines, then datt is lost from 001A
and the program may and can!) crash. Disaster
catil be prevented by saving, and latet restoting cart be preveranted by syaving, and craster, restoring,
the data in 001 A ; alternatively the monitor cat the data in 001 A ; alternatively the monitor cant
bei avoided and an amended sub-routtine written

Wireless world september 1981

 easy to watch this TV in any room in the
house.," Perhaps our own manufacturers should pro-
vide drawing rooms, elegantly furnished, quiet, and nicely removed from drawing office and laboratory, and encourage their draughtsmen
and others to repair thither around 40° clock fo best-quality tea (Rington's) served from Royal orter things to match. But then I never have other things to match. But then I never have
believed that inadequately washed earthenware mugs and lab tea are conducive to good work of any sort.
$E . F$. ${ }^{2}$ oo

COMMERCIAL

BROADCASTING
In the April 1981 issue a criticism of commercial
broadcasting was launched by F. V. Bale, partibroaccasting was launched by F. V. Bale, parti-
cularly, I think, with regard to the advertising it carries. My immediate reaction (and perhaps
therefore the most reliable one) to this was one of complete sympathy with the mood of the
letter, though he seemed prepared to exact a letter, though he seemed prepared to exact
high penalty as the price of their success and excess.
However, later reflection brought to mind chapter 25 of "The New Industrial State" by J.
K. Galbraith, where the point is made that "organsed public bamboozlement" is a necessar and acceptable part of society - any society -
from witch doctor through ivory tower to think tank. The rigid democracy he mentions would
surely be the more so if only one organisation surely be the more so if only one organisation
was allowed the monopoly of a particular medium, although scepticism about the im-
mediate benefit to the quality of life to be gained by a proliferation of channels is understandable. infinity of re-runs of older films there would be just one showing of "A face in the crowd"
$D . B r o k s$ "
Blackburn, Lancs
 Sace, both because of its motionary in absolut the sum anown velocity, and also because Also, movement through respect to other stars produce not only changes in frequency from th Suppler effect but also differences in the meavelocity was measured along the whether the movement or at right angles to it. And the Michelson Morley experiment tried to measure these differences in velocity.
Thus, $M r$
Thus, Mr Wellard grossly underestimates the and the carriage of electricity by charged particles and completely mistepresents the Michel son Morley experimen
Lindsay of Birker
${ }^{\text {Chery Chase }}$ Maryland, USA
The author reppies:
Lindsay of Birker
Lindsay of Birker provides much food for
thought. The sun was assumed to be centre of the universe until the Mount Wilso telescope was commissioned in the 1920.s. Mi chelson and Morley's interferometer could no
measure the velocities of light waves. Hertz noticed during his series of experiments that the efficiency of his spark gap was improved when
the gap was irradiated by ultra violet light. This the gap was irradiated by ultra violet light. This only the negative pole of a.spark gap. There is connection between this phenomenon and th
action of a radio valve or a cathode-ray tube actiongy is radiated only from the cathode o negative pole. The sun or any other active star is continually radiating electrical energy, and car be compared with a negative pole or cathode.
The sun is a volume in space occupied by a quantity of active electrical energy, and tha active energy will one day be wotally disperse throurhout space. As a negaive quanuty on
electricity cannot possible exist, the idea that negative quantities of electricity are carried cle, the electron, is illogical cle, the electron, is illogical
Maxwell's mathematical theory was that the energy of the electromag described without hyporthesis as, which may be rization and electric polarization." We should not confuse the mathematical positives and negatives of polarization with positive and nega-
tive quantities. I cannot agree with Einstein's tive quantities. I cannot agree with Einstein's
theory that Planck's packets containing constant terory hiat Planck spackets containing constan
quantities of electricity are accelerated from a state of rest to the velocity of light in zero time. A force is the product of a mass and an accelera-
tion and acceleration takes time. An infinite acceleration produces an infinite force and therefore an infinite amount of energy. The
equation is absurd.

THE DEATH OF
ELECTRIC CURRENT
I was pleased to note that Ivor Catt, in his reply
to my letter (March issue), gave yet another to my letter (March issue), gave yet another
example of the truth of its principal assertion Before dealing with this latest example of nitpicking, it would seem advisable to tackle the
question of reality. I think that most readers of question of reality. I think that most readers of
this journal would agree with the physical reality of the phenomenon whereby energy converted at one location can be transferrred,
with or without the aid of an intervening with or without the aid of an intervening
medium, to a distant location. If you wish to call that electromagneeism, then, certainly, electromagnetism exists. However, to explain the phe-
nomenon we have developed, over the years nomenon we have developed, over the years, a
complicated model which includes such
concepts or constructs as E, H, p and \mathcal{F}. Since
hey are part of the model, these constructs no
more have reality than a ventriloquis's dumm more liave reailty than a ventriloquist's dummy
has life. As a further consequence, any model chat shows that electric current does not exist shows nothing more than that electric current The credibility of a model, or iss implications, can be a stumbling block. Kepler's problem wa that the central construct of his model could b refuted by the observations of any normally-
sighted layman on a fine day! Clearly, the attisighted layman on a ane day! Cleary, the atti-
tudes of electrons to the implicaions of the
ent electric current model are beyond conjecture
Whether we see the detail seized on by Mr Catt as a problem depends on how we mode electrons themselvess, if we see tham as diminu-
tive billiard-balls, then Mr Catt's problem may ive billiard-balls, then Mr Catt's problem may
be real, but if we use a probabilistic model be real, but if we use a probabilistic model
things may not look so bad. II any case, credibi-
lity lity may be affected by extraneous factors, such as religious beliefs (Kepler again) so that othe
means are used to test the viability of a model. We require first that the model be mathe matically rigorous (and I have been led to be-
lieve that Heaviside tended to be respect) and then test the model in the light its agreement with observations. Hence, Kepler's model survived because it fitted stellar and Similarly, electric current theory gives results that agree well with observations -

$$
i=I_{0} e^{-\overline{c r}}
$$

gives a close fit to the observable effects when
capacitor discharges through \mathfrak{a} resistor. The fapectior discharges through a resistor. The
finer the agreement, the better the Now physicists realise that models can be Now physicists realise that modests can be other test conccrns the predictions of the model.
What new facts or relationships does the model What new facts or relationships does the mode
offer, and can they be tested by observation Note that a model is not refined simply by making its structural details more credible to
the user, because of to assessment. If Mr Catt has, indeed, a bette model could he not tell us either where it gives better agreement with known results or what
testable predictions it makes? Until then I sus pect that most of us will continue to muddle through with the current version.
To end on a personal note, I would like to assure Mr Catt that there is no truth in the
rumour that it was I who applied the torch to Bruno's pyre
R. T. Lamb
Post Offfice Telecommunications Headquarters Milton Keymes
Bucks
CB DISTRESS CHANNEL In your news article "C.b. specification pub-
lished" in the June issue, I notice that it is stated there will be 40 channels. As an ex radio officer of the merchant service, and remembering that
in the maritime and port operations v.h.f. ser-
vice there is a distess vice there is a distress, emergency and safety
channel, i.e. channel 16 , I would like to suggest that a channel be designated, in this new c.b. band, for the purpose of catering for distress, used for no other purpose Additien would be used for no other purpose. Additionally, there
should be a guard band on either side of the
distess distress channel, with the same restrictions. 7. Courtenay-Kirkpatrick
Wigan, Greater Manchester

From the day the UK citizens' band service starts,
Channel 9 will be the official distress channel and will be monitored 24 hours a day. An organisation similiar
to REATC in the USA will come into operation to deal
with the distress calls. - Ed.

Microprocessors in the gas industry

Digital experiments at British Gas

Digital electronics are playing an

 increasingly important role throughout industry. Here we take a look at some of the applications that are being researched by British Gas a Killingworth, near Newcastle upon Tyne. As they are responsible for digging so many holes in the roads, it is not surprising that many of the projects will help them to locate the best place to dig, by locating the pipe within a limited bandwidth and a novel way to measure the contents of a gasholder are two other
experiments which will lead to

of the gas industry.

The pipeline system operated by British Gas would stretch around the world six ates and it is being extended or replaced
at the of 300 miles every day. In addition half a million holes were dug by British Gas last year - and each cost about
$£ 250$. Not surprisingly, British
Gas 40 million tons of earth last year. There will always be a need to dig holes in the road, to replace old pipes or repair damaged ones. But it is obvious that improved accuracy in detecting the position
of a pipe would save the industry millions of pounds a year. It would also help excavation gangs to avoid damaging pipes or cables laid by other utilities.
Commercial pipe locators exist but the operators need special training and regular used successfully in congested area such as own centres.
Ideally, each excavation gang would be provided with compact, hand-held, inexpensive equipment that would locate all resolution. While it is possible to approach this ideal in terms of the location of metallic plant, it is not possible to detect plastic or non-metallic plant with simple hand-held equipment. Equipment cur-
rently available is unsatisfactory in terms ently available is unsatisfactory in terms
of resolution and simplicity of operation and is incapable of detecting non-metallic plant.
Following the failure of commercial organisations to respond to the gas industry's
needs, the Engineering Research Station (ERS) of British Gas started to develop two parallel and complementary types of locaion equipment. Although both use electromagnetic field techniques the com
pact equipment employs a low frequency ection of metallic plant, whereas the more sophisticated equipment for non-metallic plant uses the radiated field in the lower microwave frequency region.
ERS has developed an exp
Errument called GASCOPACT, acronym strument called GASCOPACT, acronym
for GAS COrporation Pipe And Cable Tracer, which uses magnetic field detecion. GASCOPACT is a considerable advance on currently available commercial a transmitter to induce eddy currents in the ground and a receiver to detect the
induced current that will flow in buried induced current that will flow in buried pipes or cables. The receiver uses an array of sensors to accurately locate the position
of the pipe or cable. This array is the basis of an automated receiver which gives a digital readout of pipe or cable plan position. All the functions of sensitivity, tuning, etc, which make the operation of coneliminated by automatic control circuits. The receiver I.c.d. display provides an ' X ' indication when the receiver is right over the pipe and an ' O ' indication when near he pipe. The receiver monitors correct operating conditions, indicating when out
of range by displaying ' L ' for low field and 'H'for high field when too close to the transmitter. If the receiver batteries are exhausted the circuitry monitors that condition and displays ' F ' for flat.
Colve very closely spaced pipes to a much higher level than conventional equipment. The instrument is now undergoing limited field trials and has been shown to possess a tracing range of about $\pm 70 \mathrm{~m}$ about the
transmitter, but under favourable conditions can be three to four times this distance. It can locate pipes and cables at depths up to 2.5 m .
Once the trials are successfully comcontract be placed for production models. Thus an effective, simple-to-use pipe and cable locator may become available to British Gas excavation gangs, easing their work and improving operation and hence - one hopes

Ground probing radar The first polyethylene gas main in the UK was laid in 1968. Usage has grown to the point where 80 per cent of the $4,200 \mathrm{~km}$ of
gas mains laid each year for new supplies
or as replacements to the existing system and 90 per cent of the 65,000 services, are in this material. However, new technology one problem is the accurate location of the new pipe underground.
Conventional low frequency pipe locat ing instruments which operate by detecting the magnetic fields associated with electric currents deliberately induced in pipes cannot sense the presence in nonmetallic obiects surc pipes and ducts An an instrument thenware pipes and ducts. An instrumen
capable of reliably locating all types of underground services would assist in improving the efficiency of excavation activities by allowing the use of mechancial digging equipment.
Radar techniques have been successfully
used in the past to detect objects or used in the past to detect objects or geolog.
ical features under the earth's surface. Examples of this are radars used to determine the thickness of ice in polar regions; 10 detect the presence of tunnels (used in
Vietnam); to locate explosive mines buried vietnam); to locate explosive mines buried thickness of coal seams in mines. These past developments have led to the marketing of several radar systems, mainly by US companies, intended for the purpose of However, none possesses the level of performance necessary to operate successfully in the congested streets of Britain's towns

High frequency energy Ground probing radars are similar to confrequency electromagnetic energy are radiated from an antenna. The reflections from distant objects are then collected, usually, but not always, by the same an-
tenna, amplified, detected and displayed so that an operator may obtain information not available by any other means. Normally, conventional radars operate over very large ranges (usually several hundreds medium (free) and the transmission medium (free space) does not absorb
energy. Ground probing radars on the other hand must operate over extremely short ranges (several tens of centimetres), and the transmission medium (the ground) is an extremely effective absorber of energy at the frequencies (approximately
1.0 GHz) which must be used to obtain adequate resolution. In addition, the anenna of a ground probing radar leaks
flected from objects and will be detected by the radar. These signals are usually much larger than those received from tar-
gets buried in the highly absorptive gets buried in the highly absorptive unwanted but interfering signals, of 'clutter', are a very severe problem in ground probing radars.

Possible methods
Within the broad description of ground probing radars, there are several possible methods of implementing a system:-- Microwave imaging. This is a continhous wave or unmodulated radar where an mage similar to an optical image is mathesurements taken in a plane horizontal to

Passive microwave imaging. Similar to the above technique but the instrument does not transmit any energy but detects
the natural emissions from objects within the beamwidth of the antenna.

- Short pulse radar. Pulses of energy lasting 10^{-9} seconds are transmitted using special antennae. Most conventional radars use this technique but with pulses lasting 10^{-6} seconds.
Frequency modulated continuous wave t.m.c.w.) radar. Conventional radar aldetermine altitude.
Of these four techniques, ERS is actively working on short pulse and f.m.c.w.
technigues as being techniques as being the approaches most
likely to offer solutions. Progress in the other techniques will be monitored as part of the development programme.

1. The ' X ' displayed by the Gascopact
locator indicates the locator indicates the position of the pipe.
' O ' would be near the pipe, 'L' that the signal is too low, 'H' that the signal is too strong, and ' F ' that the internal power
supply is supply is low - flat battery. A microswitch in the handle switches the instr
automatically when it is lifted.
2. An experiment to locate pipes using microwave radar. The portable anechoic chamber surrounding the test site would
not be necessary in practice. cessary in practice
3. Placing geophones to pick up the sound
emanating from a gas leak, and the vanload of electronics used to locate the leak. This is at an experimental stage and it is thought that the equipment would be more con
evolved.
4. A service fitter returns to his van to find a print-out waiting for him with details of his next iob. He can acknowledge the call or send a number.of standard messages b pushing the appropriate button on his set
Speech contact is also possible if needed. 5. The Gray scale reflective strips on the measure measure, very
the holder.

WIRELESS WORLD SEPTEMBER 198 British Gas has sponsored a study into f.m.c.w. radars which was carried out by
Queen Mary College, Univerity of Lon don. As a result, a prototype radar system has recently undergone small scale field trials, the results of which have improved
our knowledge of the operational characteristics of ground probing radars. In summary, therefore, various solutions to the problem of detecting un derground services using radar technique are possible. ERS is pursuing two such
approaches. The work so far has indicated that the most significant problems are the highly absorptive nature of ground and the large extraneous signals caused by unwanted targets to which, perhaps, insuffi-
cient attention has been paid in the past. A cient attention has been paid in the past. A
systematic study into the feasibility of radar techniques is being carried out and careful microwave design and sophisticated signal processing and pattern recognition will have to be developed to implement a unique development.

Acoustic leak location It is important that the position of any gas leak is determined within one metre to avoid unnecessary digging. This position is
normally deduced from concentration of gas in the soil above the suspect pipe; the leaks generally lying beneath the points of highest concentration. Samples of the gas and air mixture are obtained by probing through the road surface into the soil be-
low. This technique is usually successful, but sometimes confusing results are ob-

Two methods of detecting leaks with sound waves

50
tained. A method free of ambiguity and able to determine a leak position directly
from the surface will have obvious advantages.
One possible new approach is being de-
eloped at ERS. Sound waves are introveloped at ERS. Sound waves are intro-
duced into the gas using a loudspeaker excited by a known signal. These waves are transmitted along the pipe by the gas. At the point of escape the sound waves
drive the soil into sympathetic vibration rive the soil into sympathetic vibration where gas and soil meet. These vibrations riving at the surface, where it may be detected by geophones.
A vehicle-mounted system using this
principle has been built for principle has been built for experimental
use. On arrival at a reported leak site, a use. On arrival at a reported leak site, a
line of the suspect pipe is traced, and the loudspeaker is connected to the pipe through a standpipe within 50 m of the probably leak position. The system is then ctivated, and the surface above the pipe surveyed progressively using an array of 16 geophones set 30 mmm apart,
acoustic radiation from the leak.
Signals from other sources such as buses nd cars are generally 30 to 40 dB above any leak signals, thus preventing simple
detection of leaks. Cross-correlation methods have therefore been used to reject he incoherent external signals, and receive he signals from leaks which are coherent with the loudspeaker drive. Measurements at experimental and real both pipe breaks and weeping joints. Three artificial breaks were located, while at nine real sites, six leaks were located correctly, one was correctly judged to con-
ain no leak and two gave false indications. This work will continue to validate the method as a leak locating tool.
Further development of the equipment is proceeding to improve the ability to detect low level leak signals and reduce the time to locate a leak. In particular a multihandle signals from many geophones simultaneously, this will have the addiional benefit of increased signal recovering power. The ultimate objective of this development is a practical instrument suit-
able for use by non-scientific staff wherever a leak from a buried pipe is suspected and conventional techniques are not fast enough to pinpoint it.

Control of gas holder stations
Low pressure gas holders still play an important role in the gas distribution network. Being very close to the customer,
they allow variations in the local demand for gas to be smoothed to that the trunk transmission lines can be sized to meet average, rather than peak, demand.
Holders are, however, Holders are, however, extremely costly to demand are very difficult to find. It is therefore important to make maximum use of existing holders, and to do this an extremely reliable height measuring system is
Conventional methods of measuring
 will take over in accordance with a stored programme and perform all the necessary restored. The ERS hope to develop the microprocessor unit to the point where it can be
used to control all the governors, boosters and associated equipment on a holder station site. With an integrated system like this, accurate control will mean the holder station can be run at its optimum capacity,
safely and economically.

Digital mobile radio
communication
British Gas is an extensive user of mobile radio systems for the efficient management of field staff. The number of vehicles equipped with radio has recently been
growing and they claim this is evidenced growing and they claim this is evidenced to respond rapidly to customer requests for attendance. Currently some 15,000
vehicles are fitted with mobile radios. This vehicles are fitted with mobile radios. This
increase in numbers means that more mesincrease in numbers means that more messages have to be passed over the air, which
of course uses more air time. With the present radio spectrum available to mobile radio users in the UK, an increase in the number of messages could lead to congestion and delay.
Against this background other significant developments are beginning to
emerge from within the user departments in the application of computers fer job scheduling and the organisation of records. If vehicle users could be given access to these systems while in the field a further
increase in operational efficiency would result. There is clearly a need to reduce call
durations if the congestion problem is to durations if the congestion problem ir to
be relieved. By making use of data transmission techniques to reduce the time mission techniques
taken to contact the mobile and pass the message it would be a relatively simple
step to interface the mobile radio system step to interface the mobile radio system
with the new work scheduling computer with the new work scheduling computer
arrangement and provide direct access to arrangement and provide direct access to
them from the field vehicles. them from the field velicles revealed that it takes more than 40 seconds to issue job details to customer service field staff. Replacing this voice dictation by transmission of the text in digital form to a
printer or display in the vehicle will proprinter or display in the vehicle will pro-
vide a significant reduction in transmission vide a significant reduction in transmission
time. Even at modest data rates of tume. Even at modest data rates of ment can be expected
This pay-off has been recognised for some time but over the past five years a
number of attempts to apply traditional data transmission techniques (as used in telephone circuits) to mobile radios have met with little success. Work done at ERS, however, has pointed to a data transmis-
ion technique which can cope with the imperfections of a mobile radio channel.

The system

Characters are transmitted using seven-bit ASCII and to each character an eight-bit sub-block. Data messages are transmitted

WIRELESS WORLD SEPTEMBER 1981
using long blocks of 48 characters. Status
functions and acknowledgements use a $\quad \begin{aligned} & \text { rection for the receive direction. It also } \\ & \text { contains the } 300 \text { baud f.s.k. model which }\end{aligned}$ short block of eight characters. Both use a of block have their bits interleaved on of block have their bits interleaved on
transmission and de-interleaved on reception. This technique ensures that long error bursts that occur during fades will be distributed over the block lengths as small groups of one or two errors per character correcting code. The error correcting code used will correct up to two errors in any sub-block with certainty and if more than two errors are detected an asterisk is printed in place of the character.
In addition to the normal error correc-
tion, further protection is given to cal characters transmitted in the long dat block. When numerical characters are con tained in a message the blocks are formed as normal, but in addition the humerical characters are incorporated twice within
the 48 -character block. On reception the numerical characters are checked for a match with the corresponding repeated
one. If they do not match the data block one. If they do not match the data block they will be rejected and a re-transmission
will be requested. This technique almost eliminates the possibility of a number being printed in error.
Both long and short data messages are always acknowledged by a short data block to indicate that messages have been re-
ceived. The acknowlegement will contain information on whether the message has been received correctly or with uncorrectable errors. If no acknowledgement is re ceived or the acknowledgement indicates that more than the predetermined numbe block will be re-transmitted. The presen protocol allows a message block to be retransmitted three times before it is aborted and the operator informed of the action The acknowledgement strategy is arranged
so that the mobile always makes the last reply allowing the control to know that mobiles have received data before moving on to the next message.
Each data block is preceded by a 16 -bit preamble and a 32-bit synchronisation
word. The synchronisation word is in special code which is unlikely to be found in a data block and has a very low probabil ity of being generated by random noise. The system transmits and receives data causes the output signal to the radio to be frequency shifted (f.f. f .) between 980 Hz and 1180 Hz . The 300 Hz clock information amplitude modulates the f.s.k. waveform to enable an accurate clock to be recovered at the receiver end.

System hardware
A prototype field evaluation package has been constructed. At the mobile radio
control point, a desk-top computer is used to control the system. Data messages are fed from the computer via an RS232 interface to a "data preparation module",
this module consists of this module consists of microprocessor
controlled hardware; this adds the error correction and interleaves the data stream for the transmit direction and de-in-

IN OUR
 NEXT ISSUE

Distinguishing 'amplifier sound'

The mobile installation is able to receive both long and short messages whicn allow the functions listed below to be performed Mobiles will receive all data messages, but callsign code. Callsigns consist of one letrer and two digits.

- Receive and print typical work issue messages which normally consist of two long data blocks. The system will, however, allow up to six locks to

message.

Receive a short message containing selective call data and light the indication lamp when a valid code is decoded.

- Allow normal speech operation press-to-talk function is inhibited while the mobile is transmitting or receiving
- Transmit acknowledgement to all data messages received.
- Transmit up to six status condition
which can be identified as required.
The software at the control end allows via the data link.
- Selectively call any mobile.
- Display the queue of waiting mobiles. - Send one of three standard messages held in the store. - Highlight the emergency status on th Highlight the emergency status on
screen when received from a mobile.

The future
A multi-base station system for operational use is at present being studied which will
be based on the principles of the simple be based on the principles of the simple
single base station system described above. single base station system described above.
We would like to thank Dr Mike Sporton, the manager of the Electronics and ton, the manager of the Electronics and
Instrumentation division of the British Gas Engineering Research Station, and his colleagues for their help in compiling these notes.

Some audio enthusiasts claim to be able to distinguish the 'sound' of an amplifier from that of other equipment in a reproducing chain. This article
first discusses the subjective first discusses the subjective aspects of the experience then describes objective laboratory experiments to verify
this claim is justified.

Microprocessor interfacing

First of a short series on
methods for connecting methods for connecting micomputers to other equipment, e.g. for measurement or control applications. Part one describes a "universal" interface board with a-d, d-a and other functions suitable for use with any of the popula

Multichannel digital recorder

 Using an ordinary stereo cas sette recorder and some digi-tal electronics to construct a 12 -channel instrumentation type recorder with zero wow and flutter. Number of channels can be reduced to two,
improving bandwidth from improving bandwidth from
70 Hz to 420 Hz . S/n ratio of 70 Hz to 420 Hz . S/n ratio of
played-back analogue signal is. 60 dB .

On sale 16September

Improved custom-designed I.s.i.

Faster, more dense uncommitted logic arrays

Advertisements for Sinclair's ZX81 persona computer mention its" British custom-designed "master chip" but do not go into
the details that this is a Ferranti device the details from an uncommitted logic array (u.l.a., an array of standardized logic cells metallization layer to form the required system). This is a good example of the use u.l.a. custom design to reduce the ost of manufacture - in a consumer prouct: So is the Leica camera on our front cover this month, which includes a Feranti u.l.a. chip as the main processing nit of its light foa nitrol syster speeds. There has in wide variety of applications for this irm's u.la. process, in both consumer and professional products, ranging from a lack \& Decker drill speed control system to British .Telecom electronic telephone exchange

The maiority of u.l.a. custom designed anti in particular have developed the Bell elephone Laborave developed he Bef ons isolation (c.d.i) bipolar process for sions isolation (c.d.i.) bipolar process for 1970s, has allowed the manufacture of .1.a. chips containing from 100 to 2000 ogic gates. But recent demand for greater hip complexity and higher performance we move fused this firm to develop more advanced type of u.l.a. for customdesigned circuits. The aim has been to produce devices with up to 10,000 gates on chip, propagation delays characteristic of han a nanosecond, and gate power dissipation levels comparable with c.m.o.s. This has been done, claims the comany, with a new bipolar process which milar to c.d.i. in being simple and masks - a desideratum for economic yields in manufacture - but which in fac uses six masks instead of the five required r.d.i. A cross-section of a bipolar n-p

[^1]
hown on the right, alongside a correponding transistor in c.d.i. It will be see mediately that it is smaller. It fact the inimum "feature size" is now $3 \mu \mathrm{~m}$ and rovement in packing density of devices a chip is claimed to be about $2: 1$. The extra, sixth, mask is used to remove the non-selected $\mathrm{p}+$ diffusion away from th solation diffusion in c.d.i. (see footnotes) This reduces the capacitance at the critica mproved speed-power performance higher voltage capability and the availabil ity of a p-channel junction f.e.t. by furthe masking of the $\mathrm{p}+$ region under the tran sistor emplt of the smaller emitter structur mentioned above.
The new uncommitted logic ärrays for custom design arising out of this new process offer chip complexities varying from 500 to 10,000 logic gates and gate
delays varying from 15ns down to 0.5 ns. Oelays varying from 1sns in the $1 . s$.i. bracket, includes five arrays of $500,900,1,200,1,600$ and 2,000 gate complexities. Each array has three gate delay/gate power categories,
$2.5 \mathrm{~ns}, 300 \mu \mathrm{~W} ; 7.5 \mathrm{~ns}, 60 \mu \mathrm{~W}$; and 15 ns , $30 \mu \mathrm{~W}$. These arrays are available for de
sign work now. A second group, of v.s. devices, comprises two arrays of 4,000 and gate delay is 2.5 ns and the gate power $300 \mu \mathrm{~W}$. Engineering samples of these will tomers' designs will be accepted during 1982. Finally, a third group, described as "sub-nanosecond" u.l.as, provides 1,000, 2,000 and 4,000 gate arrays with gate deays of $0.5 \mathrm{~ns}, \operatorname{lns}$ and \ln respective
These will be available during 1982 .

New gate circuit
Apart from the manufacturing process it elf, the new u.l.a. devices also incorporat basic logic gate. The gate circuit has similarities to e.c.l. but is said to consume less power. It consists of a non-saturating current-sourced logic gate with emiter folower buffered outputs (see diagram). as 0.5 ns and, because of the emitter-fol lower buffer, the delay is independent of fan-out. Ferranti think this feature unique in v.l.s.i. arrays, most manufactur cuit because of packing density limi
tations. A further advantage of the emitterfollower buffer is that it allows smaller previously (since the critical collector node is buffered from the loading effects of the gates it drives) and this is a factor in reduc ing the power dissipation. For a $V_{c c}$ of 5 V , a gate with a 250 mV voltage. swing is
claimed to dissipate only a quarter of the power of its advanced c.m.o.s. counterpart.

Cells on the chip
The chip organisation of the uew ' R ' series of devices, as they are called, remains the same as for the current ull.as, that is,
regular matrix of identical cells the centre of the chip, each cell containing a number of uncommitted transistors and resistors whose main function is to satisfy the logic hierarchy of an 1.s.i system. Peripheral cells, also containing a number of around the matrix cells and these are provided to allow interfacing and linear functions. Each matrix cell uses the new buf fered logic circuit input NOR gates.
Industry martand that the Department of combine Ferranti u.l.as with ICL's Multiboard four-layer printed circuit boards (New Products July issue, p.84) to structing electronic equipment

Comparing the structure of a transistor fabricated in the new bipolar process
(right) with the structure in the c. .
(pright) with the structure in the c.d.i. Basic gate circuit used in new u.l.a. device

and 150 years earlier

The firm of Ferranti, which makes the above pioneering work of its founder, Sebastion de Ferranti, in building alternators for the public electricity supply. So, like many others, it discery of ectromatic the by Mischael Faraday earlier in that century. Augus 29th this year is the sesquicentennial of Fara
day's famous experiment with the day's famous experiment with the iron ring and
its copper coils - the first transformer - at the its copper coils - the first transformer - at the
Royal Institution, London, in 1831. Within a matter of days he made the related discover that an electric cartent could be generated in
conductor by moving it near the poles of a mag conductor by moving it near the poles of a mag
net. Sir Ambrose Fleming, wrote (in his book
"FFity "Fifty years of electricity"): "In ten days of day explored so thoroughly, in the laboratories
of the Royal Institution of Great Britain, the new phenomena he thus brought to light, that no one has since been able to add anything to his
work in the discovery of the fund amental facts. work in the discovery of the fundamental facts.
By coincidence, 1831 was also the year in which James Clerk Maxwell was bors (see the appreciation in our March and May issues.
names if these two great scientists are of course forever linked in the history of electromagne tism., It was Faraday's concept of "lines of
force" which stimulated Maxwell (he read
paper on it at the age of only twenty-three) and
led to his later theoretical work on electric and magnetic fields and their interchangeability. Between them the two men produced a profound shiff in the prevailing view of physical reality,
Under the influence of force had been seen as something belonging to material body. Now it was replaced by a subtler concept, namely a field of force; something tha:
was a reality in itself and could be considered in isolation from material bodies. But although it was left to Maxwell to predict formally tha electromagnetic fields are propagated through
space as waves, and that light is electromag netic, some historians of science point out that Faraday might well have had an inkling of thes concepts as early as the 1830s. Here is part of
sealed note, signed by Faraday on 12th March sealed note, signed by Faraday on 12 th March
1832, which had been deposited in a strong box at the Royal Society, London, and was not
opened until 1938 (photographs of the note opened until 1938 (photographs of the note by G. R. M. Garratt, Wireless Worid, 5 May,
apear in "Matism and 1938):
"Certain of the results of the investigations which are embodied in the two papers entitle
Experimental Researches in Electricity, lately rea to the Royal Society, and the views arising thereffom, in connexion with other views and
experiments, lead me to believe that magnetic
action is progressive, and requires time, i.e. that when a magnet acts upon a distant magnet
piece of iron, the influencing cause, (which may for the moment call magnetism), proceed gradually from the magnetic bodies, and requires time for its transmission w
ably fe found to be very sensible. "I think also, that I see reason for supposing
that electric cinduction (f) that electric induction (of tension) is also performed in a similar progressive way.
"I am inclined to compare the diffusion of magnetic forces from a magnetic pole, to the
vibrations upon the surface of disturbed wer vibrations upon the surface of disturbed water
or of those of air in the phenomena of sound or of those of air in the phenomena of sound,
i.e., I am inclined to think the vibratory theor will apply to these phenomena, as it does sound and most probably to light
"By analogy I think it may possibly apply to
the phenomena of induction of electricity o the phenome,"
In the above-mentioned Wireless World article
the author makes this final comment: "To Farathe author makes this final comment: "To Fara day must belong the honour of having put
forward the first suggestion that time is required for the transmission of electro-magnetic forces."
That he should have simultaneously suggested That he should have simultaneously suggested
that their propagation is comparable with that their propagation is comparable wit
waves on the surface of disturbed water suct a short time after his 1831 experiments is
further proof of his genius.

Variable expansion unit

Wideband expansion can successfully be achieved using current biased diodes as voltage controlled resistors. This design produces less than 0.5% t.h.d., below $1 \mathrm{mV}+0.5 \mathrm{mV}$. low $\pm 0.5 \mathrm{mV}$
fo two voltage regulators back-to-back which provide smooth and noiseless control of expansion. One control section can drive up to 12 expanders over a 14 dB
range. If a greater range is required the $10 \mathrm{k} \Omega$ resistor can be reduced. IC_{3} is provided to restore the original volume level and can be omitted. The $22 \mu \mathrm{~F}$ tantalum capacitors should be matched as closely as
possible. Because silicon diodes require possible. Because silicon diodes require
0.4 V to conduct, the resistor network around D_{1} and D_{2} provides a bias voltage so that active rectifiers are not required at low levels. If a higher supply voltage is used, the resistors should be adjusted to provide 0.8 V across points X and Y . To
keep distortion below 1%, the voltage applied to v.c.r. diodes D_{3} and D_{4} does not exceed 7 mV . Also, the $10 \mathrm{k} \Omega$ resistors in series further reduces distortion.
It is not advisable to use a supply voltage below 9 V because the 741 s do not operate R. G. Youn

Newhaven
Sussex

600 ohm floating source
Fig. 1 shows a unity-gain 300 ohm driver which uses voltage and current feedback to provide a high maximum output level from low supply rails. Driving two of these cir-
cuits in antiphase produces a 600 ohm balanced-line output as shown in Fig. 2. However, connecting an unbalanced load to this circuit causes a level drop of 3.5 dB because one amplifier drives into 600 ohms
and the other is shorted. Fig. 3 shows a and the other is shorted. Fig. 3 shows a
current source driven from the currentfeedback resistor of \mathbf{A}_{1}. This provides an infinite common-mode output impedance, i.e. a floating load. By splitting the feed-
back to A_{1} equally between the two output back to A_{1} equally between the two output
terminals as shown in Fig, 4 the output terminals as shown in Fig. 4, the output
amplitude remains constant irespective of whether the centre or either end of the load is connected to ground. D. Austin

Birmingham

Generating

 square-waves with phase-jumpsThe transient response of a p.1.1. can be tested by alternately advancing and retard-
ing by 180° the phase of a square-wave generator. With the values shown, output frequency is about 2 kHz and the phasejumps occur at intervals of about 2 s , bu these figures can easily be altered to suit other applications. The output frequency
is limited to below 1 MHz by the ripplecarry propagation delay of the divider chain. However, if a synchronous divider is used, the frequency range can be signifi cantly increased. If the output is applied to an auxiliary divider, the magnitude of the
phase-jumps will be reduced in the same ratio as the frequency.
Three exclusive-OR" gates form a conventional oscillator which drives the divider chain at about 4 kHz . The fourth gate produces a 2 kHz square-wave which is
reversed every 4096 cycles. A spike produced at each reversal is eliminated by the output 4013 which triggers on opposite oscillator transitions to the divider. At alternate reversals, a second 4013 is trig
gered which resers the first, so the gered which resets the first, so the output

4013 completes one cycle during one oscillator cycle, which represents a phase-ad second 4013 is not triggered and the output 4013 remains in the reset state for two consecutive oscillator cycles. Therefore, three oscillator cycles are required to com plete the sequence and this represents a
retardation of 180°. The output waveform contains the same number of transitions a the first-stage output of the divider chain directly timed by the oscillator.
E. L. Jones Bucknell
Shropshire

Random-number

generator
A simple random-number generator, such as the electronic die circuit shown, can be
constructed by using switch bounce to produce clock pulses. If the switch is biased 1.e.d. E is normally on, so pressing the switch turns E off and enables the display. Each depression'and release of the
switch produces switch produces a random number of J. Cameron Bradford

The EP4000 is not just an EPROM Programmer

Not only does the
EP4000 copy, store,
program and duplicate the 2704/2708/2716(3) 2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but output for memory map output for memory
display to make the display to make the powerful editing facilities really useful and this is in addion to he in-built LED display or stand-alone use), but also comes as standard ith comprehensive
nput/output - RS232, 20mA loop, TTL parallel handshake, cassette, printer and direc memory access. Now the programming pow an be expanded with our

. . . but also a Real Time EPROM Emulator

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your in circuit EPROMs during the process of program development - the EP4000 can be configured development - the EP 4000 can be conf to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380 .
Finally, a full range of accessories in now available - these include Bipolar programming
the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC

Tilt.

Nothing to do with pinball wizardry has a great deal to do with programme

The recording or broadcast engineer attempts to capture the ambience
studio or concert hall but what the listener perceives is the aggregate of this and the reverberation
haracteristics of his listening room.
If all listening rooms were equal the but since some listening rooms are more equal than others, the engineer has to assume some arbitrary norm, and he chances are that further correction and compensation will give improved reproduced in a 'live' listening room will sound overbright and a dry
 verdand and bass heavy.
The tilt control on the Quad 4 characteristics of your room but gently sloping the frequency response of your system about a centre point, chosen to maintain a constant overall
subjective level, it can produce a more subjective level, it can produce a more
natural programme balance, without introducing unwanted colouration.
If you are in any doubt that the listening room characteristics have a fundamental effect upon the final results try listening to the same record
played on the same equipment in two played on the sam equipment in two
To learn all about the Quad 44 write or telephone for a leaflet. The Acoustical Manufacturing Telephone: (0480) 52561
?

So called 'single-chip'synthesizers now in existence require a
now in existence require a as they are designed for use in mixer ype synthesizer applications. This article outlines a simple single-loop ype sjynthesizer designed with the for UK citizens' bands in mind (as far as transceiver specifications and requency allocations are concerned). At the hub of the design are two i.cs rom Plessey; the SP8793, $40 / 41$ dua n.m.o.s. synthesizer controller.

The proposed frequency allocation for citizens ${ }^{\prime}$ band (c.b.) radio in the UK is divided into 10 kHz channels numbered rom 1 to 40 . A simple low-cost frequency synthesizer capable of meeting the pro posed UK c.b. specifications in terms djacent channel noise, spurious side bands, etc. can be made using the NJ8812
and SP8793 i.cs from Plessey. Frequency modulation of the synthesizer is simple but the audio response is shaped to limit adjacent channel power
An n.m.o.s. synthesizer controller, the omprises two the divider. This devic one in the signal path and one for the ference-frequency input to the phase de tector. These dividers feed a digital phase ector, the ouputs of which are used lower as required.
An address consisting of $31 / 2$ words each 4-bits long, is used to program the controller. These words are multiplexed into the device under control of an interna called DS1 and DS2 which form part of the program for a r.o.m. or p.r.o.m
The controller address may be provided in a number of ways from a simple circuit with two 74153 multiplexers to a
microprocessar system. A 2716 p.r.o.m. is used here. The reference divider in the controller can be set to one of sixteen diviSion ratios using pins 8 and 9 (FA and FB) this case, FA and FB and ground respectively.

Circuit description
The circuit, Fig. 1, is a simple single-loop synthesizer with two-modulus prescaling modulus divider, the SP8793, does the
prescaling. This high-sensitivity i.c. has a utput, and an internal voltage resulato so that it can be used with a wide range of upply voltages.
One gate of a CD4011, biased to operate in its linear region, is used for the 4.8 MHz ame i.c. buffers the oscillator signal. The Φ / U (up) and Φ / D (down) outputs of the NJ 8812 are combined in a charge pump circuit. The \varnothing / U output is inverted by a c.m.o.s. gate and fed through a diode into
he loop filter so that when the \emptyset / U output decreases the control line voltage increases. At the same time the $\subseteq D$ output pulls the control voltage lower.
The loop filter, consisting of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and R_{2}, integrates the pulses from the phase low-pass filter with a -3 dB point at $450 \mathrm{~Hz}, \mathrm{C}_{3}$ and C_{4}. The reference frequency fed into the phase detector 0.000444 kHz . Because the loop locks s hat the output frequency of the syntheence frequency, exact 10 kHz steps can only be produced on channels that are an xact multiple of 10 kHz . For example ith a reference frequency of 10 kHz and ivider ratio of 2780 , the output frequency 27801.25 kHz . Thus, channel 1 will be 2760 times the reference frequency and channel 40,2799 times. This results in mall errors of +8.54 H 8.99 Hz at channel 1.

J 8812 is set by means of a crystal ad justed to 4800.215 kHz . The specificatio equires that the transmitter frequency be controlled to within $\pm 1.5 \mathrm{kHz}$ at all times. This means that an accuracy of ± 50
p.p.m. is needed. Through not using exactly 10 kHz as the reference frequency, an error of 0.33 p.p.m. is introduced. This error can thus be ignored. Because the required temperature is $50^{\circ} \mathrm{C}$ the temperarystal should not exceed 0.75 p.p.m. $/{ }^{\circ} \mathrm{C}$ This stability allows for some degradation the other oscillator components.

Voltage controlled oscillator The v.c.o. is the heart of any frequency encsizer. It has to be carefully designed the phase noise is minimized, notonic and that the frequency range is no more than that required

Spectral purity of the synthesizer from a spectrum analyzer. (a) Shows response second sweep. The centre frequency is 27.00125 MHz and each horizontal division is 5 kHz . (b) Is a 20 ms sweep without

modulation starting at the left from a frequency of 20 MHz . Each horizontal division represents 2MHz. (c) is a oneecond sweep, also unmodulated, with a | entre frequency of 27.0012 . kHz /div. horizontally. In all three cases the |
| :--- |
| |

for the cover

In this synthesizer the w.c.o. uses a junc was used because it does not produce if noise and thus minimizes noise modulatio

WIRELESS WORLD SEPTEMBER 1989
of the signal. Tuning is done by a variablecapacitance diode and modulation is ap-
plied to the control line on transmit. For receiving, a second variable-capacitance diode is switched in parallel with the inductor. A parallel trimming capacito dilows
adjusted.
sary isolation between the v.c.o. and the external circuitry. In the prototype a 2N5770 was used for the follower but many other similar divices may be used.
The output from this stage is at a low level The output from this stage is at a low level
and amplification is required in transmit mode. In the receive mode the output is adequate for most receiver mixers. The v.c.o. is buffered to minimize the chance of spurious modulation caused by the divider.

Programming
A $31 / 2$ word $\times 4$-bit address programs the divisor in the NJ8812 and hence determines the output frequency from the ontroller/divider phase-locked loop connation used here is capable of dividing by integer values between 1600 and 11839. When the range input (pin 1) of the controller is at logic 0 the divisor range is from 6720 to 16959. Divisors between input is at logic 1 . The 14 bits th
can be found using a calculator as follows. First find the program number N using the formula,

$$
N=\frac{(1000 \times f)}{C}-R
$$

where f is the v.c.o. frequency in MHz, C is he channel spacing in kHz and R is the devisor range number. When the controller range input is at logic $1, R=1600$ and hen at logic $0, R=6720$
The program number N may be
converted to its decimal equivalent on a calculator using the following procedure:

- enter the number N
- divide by 640
- write down the number before the decimal point
subtract the number before the decimal - moint
- write down the number before the decimal point
subtract the number before the decimal point

- multiply by 40
the nearest whole numbe to the one displayed.
he form $8,11,30$. Thill have an answer in converted to binary noting that the third decimal number gives the last six bits of binary as follows: $1000,1011,011110$, or as four
1110
The least significant word is first en tered during the data read 1 time slot via the inputs $\mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{1}$ and D_{0} and the mos significant last (data read 4 time slot). The
second least significant word contains only two bits entered via the inputs D_{1} and D_{0}. Data presented to the inputs D_{2} and D_{3} during the second time slot is ignored by the controller.
For example, with a v.c.o. frequency of $f=121.2, C=25, R=1600$ and $N=3248$. Conversion to a 14 -bit binary number is performed as follows:
- Divide N by 640
- Write down number before decimal place (word 'D') - Multiply by 16
- Write down number befor decimal place (word ' C ') - Subtract this number - Multiply by 40 number (wn nearest whole

The decimal words 'C' and numbers obtained for converted to 4 -bit binary words, while the decimal number for words ' A ' and ' B ' will convert to a 6 -bit binary word. The least significant four bits of this word give word ' A ' while the two most significant bits give
the least significant bits of word ' B ' (he the least significant bits of word ' B ' (the
two most significant bits of word ' B ' having 'don't care' states). These are presented to the data inputs as follows:

As mentioned above the NJ8812 As mentioned above the NJ 8812 is pro-
grammed for each channel by $31 / 2$ words grammed for each channel by $31 / 2$ words
of 4 bits each. As a result 1120 bits are required to program a 40 -channel synthesizer (i.e. 40 transmit and 40 receive). Be-

Electronics on the road - 2
Automatic control, instruments and display
by J. R. Watkinson, B.Sc., M.Sc.

The first part of this article, in the August issue, was concerned with
ignition electronics and automatic gearboxes. Part 2 is on the use of electronics in controls for braking, suspension and throttle operation.
Electric drive for vehicles is described and there is mention of recent work on instruments and computers.
One of the more important uses of electronics is in braking, partucularly in tions, where jack-knifing can happen.
Antilock braking. Under heavy braking (Fig '8), weight transfer unloads the rear wheels of a vehicle to such an extent tha the reaction from the road may not be enough to turn them against the resistance of the brakes. This results in a rear-wheel slide, which means that braking efficiency
will be lost. More serious, however is the fact that a vehicle with locked rear wheels is directionally unstable, and will spin unless it is travelling dead straight.
An electronic antilock system, as shown in Fig. 9 , monitors the tangential velocity
of the wheels, using pulse generators built into the hubs, or in some cases the speed of the propellor shaft. If the velocity change at a rate much more than \lg then the wheel is sliding. The decision can be made by
differentiating the velocity signal and comdifferentiating the velocity signal and compredicted imminent lockup, the system reduces pressure to the affected wheel(s) with the vacuum operated de-boost unit shown in Fig. 10. This device works by wheel with a ball valve, and then by in .creasing the volume of the fluid reservoir until the wheel is observed to be turning again, when the de-boost unit re-applies line press
Modern tyres are made from hysteresis rubber which dissipates elastic energy a heat. When such a tyre slips in a controlled fashion over road irregularities work is done on the rubber, which implies that a simple friction. By setting up the antilock system to slip the tyres in this way, decelerations of considerably more than lg are possible.
Antilock brakes have been particularly successful in preventing jack-knifing in
articulated vehicles. For diesel vehicles the de-boost unit is designed to run from
the air brake system, as diesels have no inlet vacuum. Current systems cannot prevent power jack-knifing, where engine efrort exceeds the available adhes

Active suspension. When a vehicle cor ners, the force accelerating it toward the centre of the turn acts at ground level, but the centre of mass of a practical vehicle is some distance above. Weight transfer springs, which usually results in an inter-
ction with the steering and changes in the camber angles of the tyres. Energy is
tored in the springs, which must be dissipated by the dampers as the vehicle leaves the corner. The moment of inertia of the vehicle about the roll axis and the roll
stiffness govern the resonant frequency of the system. If the dampers are ineffective, or if the vehicle is high and heavy, roll resonance can turn it over. This is why goods vehicles are sometimes to be seen on heir sides at the exit from a roundabout.

Fig. 8. At constant speed, weight is distributed evenly, while during braking, weight is trans
lock

Fig. 9 . If rate of change of wheel speed, v, exceeds reference, wheel is sliding and brake is
released.

WIRELESS WORLD SEPTEMBER 198 liminate the slow-roll-over phenomenon. As shown in Fig. 11, the suspension spring
is carried on a hydraulic ram, and the wheel position is monitored with a
transducer. If the wheel moves transducer. If the wheel moves toward the vehicle, the movement is sensed by the
ransducer, causing the ram to extend until the wheel is back where it was, which compresses the spring. In the case of a vehicle cornering, as in Fig. 12, one spring
will become compressed, and the other will extend, but the vehicle will not roil: by incorporating an accelerometer into the ystem, the vehicle can actually be made to ean into a corner. The bandwidth of the system has to be carefully restricted, sinc otherwise the suspension would appear in
finitely stiff to road bumps. It will be evi dent that if a heavy load is placed in a vehicle having such a system, it will re main parallel to the ground however badly istributed that load may be. In addition ional to the reaction at the wheel, and could be used to accurately apportio braking effort between the wheels.
With the suspension under complete che servo loop which is derived in roadspeed, such that at low speeds the ground clearance is high for traversing rough ground, and as the speed rises the ground clearance falls to reduce drag and improve stability. Active suspension mechanical fashion ${ }^{10}$, but as the complex ity rises, electronic control has to be considered. A subset of active suspension is self-leveling suspension, which is designed to compensate only for load varia end of the axle are plumbed in parallel, and the bandwidth of the system is very small. Citroen have offered cars with ful self levelling and load-sensitive brak proportioning for many years, although no was launched in the 1950s.

Cruise control. This application takes the form of a feedback loop which compare actual roadspeed with a preset reference and operates the throttle to maintain con-
stant speed. As shown in Fig. 13, roadspeed can be monitored by a puls generator on the propellor shaft, as in the antilock brake system. The servo error drives an actuator one operated. For safety reasons the system disengages if the brake pedal is pressed and a switch is fitted to the clutch pedal to prevent the system blowing up the engin if the clutch is depressed. On most system go faster just by pressing the throttle, th preset speed being resumed when th throttle is released. The desired speed i latched from the roadspeed at the momen that the system is engaged
Having fitted the speed transducer, it is a simple matter to drive a long-scale, the usual drive cable. The odometer then counts pulses from the transducer. Fig. 14 shows such a device which is considerably

Fig. 11. Active suspension interposes rams

Fig. 12. When vehicle corners, ram
gunteract weight transfer ype mechanical speedometer

Electric motor control. The technology of lectric vehicles is well developed, mainly in the fields of rail traction, fork trucks and milk floats. The mass application of development of lightweight batteries or fuel cells since, with current designs, range very limited. The main attributes of electric power are that there is very little
noise, the transmission is very simpe ${ }^{63}$ dynamic braking can be used, which dynamic braking can be used, which
conserves energy. The oft-quoted virtue of reduced pollution is a pure fallacy, as the source of the pollution is simply shifted to the power station. A simple speed control and braking circuit is shown in Fig. $15(\mathrm{a})$. machine is a motor or a generator is made by comparing the supply voltage with the e.m.f. due to rotation. If the e.m.f. exceds the applied voltage, the machine is a applied voltage because mechanical energy is being converted to electrical energy. Conversely, if the applied voltage exceeds he e.em.f. current will flow in to the machine, and it becomes a motor, convertThe current in or out of a machine can be predicted by Ohm's Law, stated as the difference between the applied voltage and the e.m.f. divided by the total circuit resistance. For a constant supply voltage, the very nearly equal e.m.f. The e.m.f. of a conventional d.c. motor is proportional to the field current multiplied by the r.p.m. fiflollows that to increase the r.p.m., the field current has to be reduced, and to reduce the r.p.m In Fig. 15(b), the motor is driving the vehicle. The field current is moderate, and the e.m.f. is just less than the applied volage, causing current to flow into the operated the brake pedal, and instead of dissipating the kinetic energy of the vehicle as heat, the field current is in-

creased, such that the e.m.f. now exceeds the applied voltage, and the motor acts as a
generator, taking energy from the vehicle's generator, taking energy from the vehicle's
movement and puting it back into the movement and putting it back into the
supply. In the interests of efficiency the supply. In the interests of efficiency the regulator.
regulator.
Dynamic braking is already in use in trams and railway trains, where true regeneration takes place. It also finds applica-
tion in very heavy vehicles, such as those used in open-cast mining and civil engineering. Because of the enormous power of such vehicles, conventional clutches and
brakes would burn up. To overcome this brakes would burn up. To overcome this
problem, the transmission from the diesel or gas turbine is by way of a generator driving electric motors. Control is then by field current as previously described. As it is not possible to regenerate with the main engine, the electrical energy developed
during braking is dumped into huge resisduring braking is dumped into huge resis-
tor banks. With all dynamic braking systems it is not possible to brake to a complete halt, and therefore conventional brakes must be provided to finally stop,
and for parking On light and for parking. On light vehicles with a
single motor, these brakes would also be single motor, these brakes would also be
necessary in the case of a motor failure, but heavy vehicles use multiple motors with duplicated systems so that a motor failure
would not interfere with safery requirewould not interfere with safety requirements.

Monitoring and display
Instruments. A replacement for the cableriven speedometer has already been described, and the application of electronics
to other instruments could further reduce the clutter behind the dashboard. Much of the potential lies in the area of displays, which can be made very thin. There are still problems to be overcome, however, as
1.e.d.-type displays cannot be read in
bright sunlight, without elaborate arrangebright sunlight, without elaborate arrangements to enhance contrast, and currently liquid-crystal displays do not appreciate temperature extremes. The widespread
adoption of digital readout is to be discouadoption of digital readout is to be discou-
raged, as psychophysical research has raged, as psychophysical research has
shown that it is quicker in all cases to read an analogue display than a digit, and
therefore safer. The current mania to fit therefore safer. The current mania to fit
seven-segment indicators to everything seven-segment indicators to everything
from f.m. tuners to ballpoint pens will perhaps have given way to more ergonomically reasonable displays by the time that electronic displays are available in motor vehicles. Certainly the swing back to analogue readout wristwatches is an indication
that people appreciate an ergonomic inthat people appreciate an ergonomic in-
terface to electronic equipment. C.r.t. displays have been proposed for road vehicles, but this type of display would appear to have little advantage, since space behind the dashboard is at a premium, and
a suitable size of tube would have considerable depth. Power requirements, warm-up
time, contrast and safery are issues which able depthirast and safety are issues which
time, cont considered, to say nothing of the
must be col must be considered, to say nothing of the
considerable software overhead required to considerable software overhe and pleasing
generate an ergonomi
display. Less attractive features of this display. Less attractive features of the
kind of display have been anticipated ${ }^{11}$.

WIRELESS WORLD SEPTEMBER 1981 computer. Constants such as tank capacity
and calibration factors are entered with a keypad, as is the quantity of any fuel taken on. Commercial units have been available
for about two years which incorporate microprocessors to perform certain useful microprocessors to perform certain useful input data. One unit ${ }^{12}$ offers the following outputs

- instantaneous m.p.g.
- average m.p.g.
- fuel remaining
- time to destination at current speed
- dime to destination at current fuel runs out

Fig. 15. Electric motor control. Armature e.m.f. in (a) is proportional to speed
multiplied by field current. With moderate field current, as in (b), motor draws current and propels vehicle. Heavy field current in (c) causes armature e.m.f. to exceed battery voltage. Motor therefore acts as
generator, reversing battery current

Trip computers. This is a relatively recent instrument as far as motor vehicles are concerned, although it is nothing new in aviation. Referring to Fig. 16, a pulse train distance travelled (pulse count) from the usual sources, and a pulse train from a flowmeter in the fuel line feed the fuel

Fig. 16. Input pulses to represent speed distance and fuel flaw, with further
information manually entered, allow c.p. u. information manually entered, allow. c.p.u
o calculate various quantities.

Collision avoidance. Many problems beset the introduction of collision-avoidance systems for road ehicles. Possibly the
most likely system yet has been researched in the U.S.A. The most common collision in conditions of poor visibility is that of running into the preceding vehicle, and a radar-based system has been postulated to
help prevent this. The main problem with help prevent this. The main problem with
on-vehicle radar is discrimination between the preceding vehicle and those going the other way, not to mention roadside objects. One solution is that the rear licence plate of all vehicles should incorporate a the radar of a following vehicle would only respond to echoes of twice the transmitted frequency ${ }^{13}$. In the U.S.A. one buys licence plates annually instead of tax discs, and as a result it would be possible to
equip every vehicle with a transponder in equip every vehicle with a transponder in
about a year. The radar-equipped vehicle could then compute distance and closing speed, and actuate warning signals znd ultimately the brakes if a transponder was being approached in the path of the
vehicle. Input from the steering would probably be necessary in order to prevent false alarms from parked vehicles at the
side of the road, particularly on bends. side of the road, particularly on bends.
Influences on automotive electronics
Engineering efficiency is only one of the constraints in the design and selection of Social forces. At it deverices. most cars are sold to fleet owners who will keep them for two years before discarding them. There is thus little incentive to make cars
which last much longer without requiring which last much longer without requiring
major replacements. To take just one major replacements. To take just one
example, the cost, countrywide, of replacing corroded exhausts can only be des-
cribed as scandalous. Nevertheless, be-

WIRELESS WORLD SEPTEMBER 1981

 : which the mat
20% of fuel.
cause it is socially acceptable, the nation continues to drive cars with mild steel exhausts which drop off every two years. One of the major features of electronic devices is that moving parts are largely eliminated and that long-term performance is therefore good. In the peculiar logic of the motor industry longevity is not a
virtue, and as a result no electronic device will be selected on this ground alone except by quality makers. The electronic device must actually be cheaper than the mechanism it replaces before the economists who really design mass-produced
vehicles will consider it. The exception to this is if the device can be latched upon by the image makers of the advertising de partment. An example which happily fitted both categories was the alternator, which was actually cheaper to make than
the dynamo, and whose advantages could be explained in nursery language by the Admen. The unfortunate regulator could not be expected to capture anyone's imagination, so for a long time mechanical regu-
lators degraded alternators until electronics became cheaper.

Environment. The underbonnet area of a motor car is pretty hostile to electronic equipment, so good design and engithat the device survives. If, however, the device does survive, it should do so for a ong time.
One problem is the temperature range parked in sub-zero conditions and on starting the engine, parts of the engine compartment can go up to boiling point in a short time. An electronic device has to be carefully positioned to avoid temperature extremes. As electronic devices and water
are mutually exclusive, positioning also has to reflect this. In the past, manufacturers have been peculiarly adept at positioning the electrics where most water will be sprayed. One famous small vehicle the distributor was mounted directly behind the grille!
The power supply in a motor vehicle leaves a lot to be desired from an electronic

[^2]freezing engine, the voltage can drop to as ning it can go up to about $141 / 2$ volts. Superimposed upon this are interference spikes from the ignition and from various electric motors and switching regulators Filtering, decoupling and screening can all lem and careful circuit design has to be used to ensure operation at extremes of supply voltage.
Legislation. The form of modern vehicles is heavily controlled by legislation which, is heavily controlled by legislation which,
in turn, is usually only dictated by safety and emission requirements. In due course the motor industry will probably be forced to employ more electronic devices to mee higher standards demanded by law. Cereconomy legislation in the U.S.A., electronic ignition would not have become so widely used.
Maintenance. Before designing any device, the responsible designer must first establish the level of competence of those who are expected to maintain it. There is little point in designing a complex device for production if it is too difficult to repair.
The motor trade already works extensively The motor trade already works extensively whereby a unit is replaced whole rather than any attempt being made to repair it at component level. The exchanged assemblies are then either repaired by specialis

Smith's $T C$-10 trip computer, designed for
Smith's $T C$-10 trip computer, designea for
the Metro. Calculates distance to go and centres or thrown away, depending on th

ime of arrival, plus many other quatit
economics of the individual assembly con-
cerned. With
mechanical parts, the fault usually pretty easy to locate to an assem-
bly, but this is not necessarily the case with electronic systems. Before designing complex electronic system for a vehicle,
will have to be assumed that the system will have to be assumed that the system
will incorporate sufficient diagnostic ability to call out its own faulty parts. The latest generation of computers incorporate such features, so that the majority of faults can be fixed by relatively unskilled techni-
cians, and it is expected that this tech cians, and it is expected that this tech
nology will filter down to consumer equip ment. Ultimately, of course, someone has to know how these devices actually work, in order to repair the small percentage of faults which the internal diagnostics fail to
locate. Judging by stories of customer dislocate. Judging by stories of customer dis-
satisfaction with the motor trade, it would appear that it is in this support area tha there is a need for a more effectiv structure.
The amateur. The home constructor has a great advantage over the mass producer in that he is not obliged to make a profit Looked at in a cold light, no home-made electronic equipment results in a financia
saving, but the potential for learning and saving, but the potential for learning and
self expression far exceeds that of purchas ing ready-made goods. In the sphere of automotive electronics, there are certain constraints which are not normally applicable to the home constructor. If a homegoing to be too upset, but if, for the sake of argument, your home-made fuel-injection system passes away in the middle of Dart moor you can look fairly silly. It cannot be emphasized enough that in automotive ap
plications a circuit has to be engineered as plications a circuit has to be engineered as
well as designed, and some kind of soak testing has to be carried out before venturing far away. The effects of a failure should be predicted rather than discovered, and steps taken to ensure that it is still possibl to get home in the event of a failure. Grace-
ful degradation and redundancy should be designed in wherever possible. It has bee observed that for putting one's money where one's mouth is, automotive electronics is at about the same point on
the scale as radio-controlled model planes. the scale as radio-controlled model planes
Finally, the safety aspect has to mentioned. As with any application of electronics, some technical knowledge of the field of that application is needed in addition to electronic knowledge. Motor
vehicles have no shortage of parts which can maim, burn and poison if handled unwisely, and yet which are handled in perfect safety by those with the right kin of knowledge.

[^3] .
 . -

Satellite tracking by home computer - 2

Formulae and programs
veoklis Kyriazis, B.Sc.

Part one of this article on a tracking system for circular orbiting satellites controlling aerial azimuth and elevation angles, and aerial rotators and their mountings. This section concludes the article, describing formulars and a Basic/machine-co prograni for the Wireless World
scientific computer. The program uses the formulae to process satellite orbit parameters and converts resulting data for use with the interface.

The complete program consists of two parts; ai BURP MkIII program to handle numerical computations and a machine code program for rotator-motor contro through the interface. All satellite tracking
variables are processed in the BURP program so, thanks to the CALL instruc tion of the MkIII minitor, the machine code program need not be changed whe orbit parameters change. In the machinecode program some subroutines are used the aerial rotators and others are used to check hardware. Both program explanations. refer to the interface and rotators described in part one of this article. Bu fornaulae relating to satellite orbit calculations need to be given.

Formulae
The following formulae, presented in a programming language, outline the proce dure for finding azimuth and elevation angles for a satellite.
$F s=\arcsin (\sin a \sin (2 \pi t / P))$
where $F s$ is the sub-satellite latitude, a is the orbit inclination and t is the time
elapsed after EQX (equatorial crossing) nd
$G s=G x+W e+\arccos (\cos (2 \pi t / P) / \cos F s)$
where $G s$ is the sub-satellite longitude, $G x$ is the EQX longitude and $W e$ is the rotaional speed of the earth which is 15%. If x should be negative
Two intermediate angles given by

and

$d=\arccos (\sin F s \sin F q+\cos F s \cos F q \cos n)$ where $G q$ is the station longitude and $F q$ is the station latitude are required to give the final results;
$A=\operatorname{arcos}((\sin F s-\sin F q \cos d) /(\cos F s \sin d))$

Table 1: This machine-code program uses data from the BUR

where A is the azimuth angle and finally,
$E=\arctan ((\cos d-R /(R+H)) /$ sind $)$
where E is the elevation angle, R is earth's adius in $\mathrm{km}(6367 \mathrm{~km})$ and H is the height $\sin n$ is used as an indicator for the azimuth bearing; if $\sin n$ is used as positive A must be adjusted to $360-A$ for a western bearing.
Machine code
The complete machine-code program is given in Table 1. Once the rotator into the computer with the rotators disconnected and RUN 1775 typed into the computer to start a test routine that sends out a serial character from the keyboard to the B, C, up to O are typed in all the on/off combinations of RLA to RLD should be obtained in binary. This routine tests the operation of the shift register and relay rivers.
When
When the above is satisfactory, connect the rotators and type in 16 F 0 . The azi-
muth rotator should run in a counter clockwise direction until it reaches its stop, when the elevation rotator should run counter-clockwise until it reaches its stop. Now both motors should run until the
azimuth is 180° and the elevation is 0°. This routine is used to set the aerials in the refence position, chosen as due south in the horizontal position, and to set the locations 165 C and 165 D to 0018 . These locaand are used by the routines that control aerial rotation direction. This routine can be used when the aerials or program lose heir synchronization when, say, the com puter is reset while one roasur For manual rotation of the aerials the routine at 1730 is used which first checks if S_{2} of the interface circuit is open and then requests azimuth and elevation angles
from the operator. These angles must be given as two-digit numbers to the nearest 10°, e.g., 0503 for 50° azimuth and 30° elevation. When the ready signal is ob tained the space bar must be pressed to restart the program
The interrupt service routine starts at he MM57109 and adding $1 / 360 \mathrm{~h}$ to it i.e., 10 seconds is incremented each time i.e., 10 seconds is incremented each time a addresses is made by the interpreter in the
memory reserved for variables after the lis of line numbers at the end of the program. Each variable name is stored in two bytes with the second character first. For single character variables 3 A is used as a dummy
second character so T is listed as 3 A 14 second character so T is listed as 3A 14
followed by 631 F which is the reverse order address of the last (rightmost) of six bytes that contain the value of T. The firs four bytes contain the mantissa in the re verse order while the fifth is a sign byt
and the sixth the exponent. and the sixth the exponen.
To inctrate, pi is stored as
265941310 B 01 and the decimal point is assumed to be between the two most significant digits in the fourth byte. The list of variables is made during a run so i the memory location of the variable may also change. After a dummy run of the program with S_{2} closed, use FIND 3A 14 to find the address of T. If the address of T has changed, insert it at locations 1608 ,
1609 and 1618,1619 in the reverse order The routine called at the end of line 12 of the BURP program, starting at location 1624, selects IM2, loads the interrupt re gister with HEX 16 and then jumps to location. 1656 and waits for an interrupt to
return. This routine is used only once to set up the interrupt register for mode-two interrupts.
The routine at line 34 of the BURP program is called when the elevation angl is less than -5° and simply selects IM location $165 \overline{6}$. This routine is used only for time-keeping.
Line 42 of the BURP program calls the routine at location 1636 when the elevation angle is greater than -5°. This routine is a pass and when the programs are being a pass and when the programs are being whether switch S_{2} is closed and if so jump to 1656 then returns when an interrupt is received from the interface timer. If S_{2} is significant digits of the azimuth and elevation angle variables (A and E in the BUR program) are loaded into the D and E registers of the $Z 80$
Unless the BURP program is altered, tions 1 F43 and IEEF; otherwise the byte will change and should be entered in locations 1644,1645 and 1648,1649 in revers order as follows. Use FIND 3A 01 and the memory string holding A and E then put the address of the bytes to the left of the sign byte in the locations as above. Remember that the starting address of A and $3 A 05$ refers to the rightmost byte in the string, which holds the exponent. After the D and E registers are loaded an AND 3F operation is carried out to limi their maximum values to 39 . This operation is required as the number cruncher When all the number jugglin ished the subroutine at 165 E is called to activate the aerial rotators. The H register

This aerial system is used by the author for tracking Oscar satellites. The aerial to the Voft is for 145.9 MHz and the one to the righ the same shaft supported in the middle by the elevation rotator which is mounted on
the azimuth rotator.
holds the command word for the rotato controller and the L register stores the f the H register control forward/rever and start stop functions of the elevation and bits 2 and 3 the same function for th azimuth rotator. The same subroutine register while rotation is carried out.
If the position of the aerial corresponds with the requested position the subroutin returns without action. If the two position not correspond the forward reverse and sary and the subroutine at 16 E 4 called to send the contents of the H register to the ontroller in serial form.
Next, the rotator cam switches are mo nitored at 20 ms intervals via port 00 and previously stored in the L register. The subroutine at 1780 is used to generate the delay. If a switch setting has changed the corresponding shift register, B for azimuth
or C for elevation, is incremented or decremented. To save time, azimuth and eleva tion angles are controlled independently When both azimuth and elevation angles in the BC register are the same as thos
requested in DC register the subroutine stores the new position in 165C and 165D and returns to the BURP program when an
interrupt is received.

The BURP program Starting at line 2 of Table 2 the program requests the following data. ORBIT
TYPE: If this request is answered with 1 the system tracks an ascending orbit. If 2 is
entered a descending orbit is tracked. This ntered a descending orbit is tracked. This for calculating whether the satellite will pass north of the station. EQX LONGI UDE and EQX TIME: The first reques is for the satellite's equator crossing longiequator crossing time in hours and decimal parts of an hour to two places, e.g., 19.85 hours.
In line 4 the real time in hours and minutes is requested. Minutes are the program in this case. Data from line the program in this case. Data from line
200 is read in line 6 . This data is the station's longitude west, the station's latitude, the height of the satellite above the earth in km, the orbit inclination and the Oscar 8 and my QTH in Limassol, Cyprus, line 200 of the program reads as follows
200 DATA 326.7534 .7287799 .99 103.2 This line is not included in Table 2. An circular orbiting satellite can be tracked if
the data as shown above is known.
Further in line 6 and then in line 8 th

Table 2: The BURP program for satellite tracking calculations. Variables such as satellite height, orbit
described in the text.

 4 INPUT"TIME NOW: HOURS" H"MINUTES"MIT=HM60/+
 0 $08 B=A P * 360 / I C=00.25 B * * A C O S O C O S / C O S--L-$ 010

 $012 \mathrm{H}=\mathrm{H} 6367 / 1+\mathrm{REC}!\mathrm{P}=21600 \mathrm{P} / \mathrm{CALL} / 1602 \mid \mathrm{CALL} 1624$ $14 \mathrm{~T} 1=\mathrm{TZ}-!\mathrm{D}=\mathrm{PT} 1 *!\mathrm{F}=\mathrm{DSIN} \mathrm{D}=\mathrm{DCOS}!\mathrm{J}|*| \mathrm{Y}=\mathrm{SIN}$

 $I N=C S$ $018 \mathrm{~S}=\mathrm{S} \operatorname{COS}$
 $18 \mathrm{~S}=\mathrm{S} \cos !U=\mathrm{BJ} * \mathrm{CM} * \mathrm{~S}^{*}+!\mathrm{G}=\mathrm{U} \operatorname{COS}-I V=\mathrm{GSIN}$

 $024 \mathrm{IF} X<0 X=X 36++$ $026 \mathrm{IF}>360 \mathrm{X}=\mathrm{X} 360-$

 O32 P"SLANT RANGE:" LONGTUDE:" X, " LATITUDE:" Y, " GROUND RANGE:" G
 034 IF E <-5 CALL $162 F$ IGO 14 036 IF $W>0 A=180+$ IE $=180 \mathrm{E}$
 $038 \mathrm{~A}=\mathrm{A} 5+10 /$ INT IIF $=1<10 \mathrm{E}-$ IIF $\mathrm{A}>360 \mathrm{~A}=\mathrm{A} 360-$ -
 $040 \mathrm{E}=\mathrm{E} 5+10 /$ /INT IIF $\mathrm{I}=10 \mathrm{E}=10 \mathrm{E}=\mathrm{A} 40+$
 042 CALL 1636 ! GO 14

program calculates two angles, A and C which are used in line 10 to calculate
pointer called W. If W is positive the sate lite will pass north of the ground station When W is positive it is used later in the program so that the limit stops on the rotators are avoided as discussed in part
one of the article. Later in line 10 and then in line 12 calculations relating to satellite tracking begin. Satellite height and orbit inclination and period (H, I and P) are redefined for further use in the program.
The call of 1602 at the end of line 12 is needed to keep the correct time, and call 1624 to initialize the interrupt register. Processing of the formulae mentioned earlier begins in line 14 with the calculation of the relationship between real time
and EQX time and other auxiliary values. The formulae are broken down for the program to reduce computing time. Final variables of the program which may be useful are D which is converted real time (using the HMS statement), A the azimuth degrees, R the slant range of the satellite X and Y the sub-satellite longitude and latitude and G the ground range in relation to X and Y. These results are printed on
the v.d.u. by lines 30 and 32 . If the elevation angle is less than -5° the 'non-active' time-keeping routine at 162 F is called in line 34 and after an in terrupt signal a jump to line 14 is made. The real-ume variable 10 is incremented by tine.
Where the satellite is to pass north of the earth station azimuth and elevation angles are adjusted in line 36 to avoid action of the azimuth-rotator limit stop. In lines 38
to 42 the azimuth and elevation angles are finally converted to the nearest integer representing them in steps of 10° and the tracking routine at 1636 is called. After aerial rotation the sequence is repeated
from line 14

Operating the system

After the aerial-control interface has been tested using the procedure described earlier the system is ready for final setting up. Tors will be at 180° azimuth run the rotation so the aerials can be positioned on the rotator mountings but remember to leave slack in the cables to allow rotation to the limit stops.
To track a satellite enter the DATA the BURP program turn on the aerialcontrol interface and stop the timer by opening switch S_{1} (see the circuit diagram in part 1 of this article). Type RUND @ 2
into the computer and then into the computer and then supply the data
requested by the program. When real time is equal to the time requested in line 4 of the BURP program the timer of the interface should be started by closing switch S_{1} of the rotator-control interface. The program will run 10 seconds later after a
pulse from the timer on the interface is received. Tracking will commence when the elevation angle is greater than -5° and S_{2} of the interface is open. If S_{2} is closed track running the program and rotator will no longer be synchronized. Problems with synchronization will also be encountered if the program is reset while either rotator is running. The routine at 16 F 0 can be used to solve synchronization problems. terface timer can be stopped when the computer's ready light comes on and another satellite can be tracked with the same program but using new data. Accu-
rate timing signals are available on the rate timing signals are available on the
short-wave band at 5,10 and 15 MHz and on 60 kHz MSF (Rugby).

Electrics and Electronics for Small Craft
by John French.
254p., hardback. Mr French is clearly a mariner with many years
of bitter experience. He has been concerned
with the design, installation and maintenance of with the design, installation and maintenance of
marine equipment for thirty years, and the marine equipment for thirty years, and the
second edition of his book compels one to wonder at the temerity of electronic engineers in
designing such equipment at all. Deterioration designing such equipment at all. Deterioration
of hull fittings and even of the wooden or g.r.p. of hull fittings and even of the wooden or g.r.p.
hull itself, hhe hard work of calibration, interference and the crippling cost of it all are such as to
make landlubbers feel guilty at having such an easy life. easy life.
Nevertheless, his book is a model of lucid
explanation of highly technical equipment in an explanation of highly technical equipment in an
accessible manner - its selection, installation accessible manner - its. selection, installation
and maintenance. Parr 1 is on electrical matters and maintenance. Part is on electrical ad eat-

- corrosion, interference suppresion and
etries - and is followed by twelve chapters on teries - and is followed by twelve chapters on
every type of electronic installation to be found every type of electronic installation to be found
in small craft, from echosounders to radar and in small craft, rriat echosounders
hyperbolic navigation systes. Mr French is
extremely thorough and includes a great deal of extremely thorough and includes a great deal of
detailed information, but nonetheless writes in a detailed information, but nonetheless writes in a
humorous and sympathetic style: not many
authers would introduce a chapter on interferhumorous and sympathetic style: not many
authors would introduce a chapter on interference suppression
"Paradise Lost."
The Alien, Numbereater and Other Program for Personal Computers
by John Race
86pp., paperback.
MacMillan,
£3.50.
E3.50.
Dr Race presents fourteen programs, mostly in
Basic Basic, whics are intended as worked examples
of techniques. The programs consist, in the of techniques. The programs consist, in the
main, of games, but one or two are mathematimain, of games, but one or two are mathemati-
cal or problem-solving, such as the one written by Tom Race for finding a set of non-primes, and a a program for cyphering or decyphering messages. There is also an 80 -column histogram
ploter.
ploter.
Each program has been selected to illustrate a
number of techniques, which are listed at the number of techniques, which are listed at the
start, such as recursion, machine-code programstart, such as recursion, machine-code program-
ming, special graphics, heuristics, etc. Some of ming, special graphics, heuristics, etc. Some of
the programs described need a printer or a second cassette deck to work
The programs are all on a cassette, which can
be obtained from MacMillan.
Amateur Radio, by Gordon Stokes and Perer Bubb.
192pp., hardback.
Lutterworth Press, $£ 8.95$
Mr Bubb is a lecturer and coach for the Radio
Amateur Examination and Mr Stokes, also an Amateur, Examination and Mr Stokes, also an
amateur, is a professional writer. Between them, they have produced a book which, it is
claimed, contains the relevant information to claimed, contains the relevant
enable readers to pass the RAE.
The basics of electricity and electronics take
up six chapters and are up six chapters and are treated in such a way that no previous knowledge is neded - the
text is extremely easy to read. Modulation, receivers and transmitters, aerials, propagation, measurements, operating procecdure - all is
dealt with in a manner that reconizes the varied dealt with in a manner that recognizes the varied
background of candidates for the examination. background of candidates for the examination.
There is no mathematical treatment and some of the description is so limited that there may be a
danger of falling short of the exam. requiredanger of falling short of the exam. require-
ments. The book should, however, be a useful introduction to the subiect for those lacking any
electrical knowledge of any kind.

Designing with microprocessors

11° - Direct memory access systems

by D. Zissos assisted by Glen Stone, Department of Computer Science, University of Calgary, Canada

fig. 3. Simplified form of a d.m.a. system.
environments (for example, patient monioring in hospitals), where high sensitivity d fast responses are essential.

Basic d.m.a. configuration
A simplified form of a basic d.m.a. confisration, using either the block transer the cycle steal mode, is shown in Figure 3. he interface consists of two components, he d.m.a. controller and the peripheral nterface, the basic functions of which are s follows. The programmer sends to the ions) three items of information specifying (i) the starting address, (ii) the size of he block, and (iii) the direction of transer, followed by a 'go' command. On receipt of the 'go' command, the d.m.a. by pulling enable signal E in Figure 3 high ($\mathrm{E}:=1$). In its activated state, the interface pheral, and requests the microprocessor to

Fig. 4. Step-by-step operation of d.m.a,
system.
oo hold (HOLD:=1) when the peripheral is ready. No further action is taken until the microprocessor responds
(HLDA:=1), at which time the interface generates the appropriate command signals needed by the memory and the peripheral. The process repeats itself. That is, piece of information is transferred beween memory and the peripheral
whenever the microprocessor is on hold and the peripheral is ready. Each time a piece of information has been transferred between the memory and the peripheral, he d.m.a. controller increments/decrements the word count. When the word count becomes zero, the controller de-acivates the peripheral interface ($\mathrm{E}:=0$), and generates an end-of-transfer signal, denoted by ϵ in Figure 3. Signal ϵ, programmer that the block transfer has been completed. The step-by-step operaion is flowcharted in Figure 4
Note that once the initial conditions

have been set up, data transfers in d.m.a. systems take place autonomously, that is with no programmer intervention.

References

Lissos
sors," D . "System Design with Microproces-

Electronic Pocket Book, by Andrew Parr.
350pp., paperback.
his is a hecroic attempt to cover, in 340 pages argely non-mathematical text, the whole gamut of electronics. It starts with the atom and touches on circuitry, components and systems
from transistor amplifiers to computers in industrial and domestic use.
The book is the fourth edition of a well-
known tite, completely rewriten sincer a ne in 1976. It is by no means a detaile extbook, but is rather an introductory view of he many topics covered: the writing is simple and direct and no background knowledge is necessarily limited and fairly superficial, but the book will serve as a convenient lead-in for the newcomer, who can then follow up his particu-
lar interest in more exhaustive texts: a list of suggested further reading would have been usesuggested furt
ful to this end.

Dictionary of Telecommunications, by S. J. Aries.

Aries. 39pp., hardback. Butterworth, $£ 15$

A companion volume to those by Roberts, Amos and Jackson on related electrical and

BOORS

clusively with those terms used in the broad clusively with those terms used in the broad
field of communications, overlapping, to some extent, the others in the set in its coverage of radio, electronics and audio. Expressions used que US are explained in terms of their UK viations appears at the end of the book, some so being given in subsidiary positions in the main body of the text.
ittees working on er of international comuthority of the entries and terminology: the with a high degree of confidence.
Guide to Acoustic Practice, prepared by K. A. Rose.
BC, $£ 10$ (airmail plus $£ 2.31$) Engineers and architects at the BBC have accu-
mulated a great deal of experience over many years in the design of studios and control rooms, which has been distilled and prepared for pubii-
cation in the form of a guide. Uniil recently, the cation in the form of a guide. Unil recently, the
guide has been in constant use inside the BBC, but demand from overseas has forced the

Insulation to reduce external noise and acousboth covered thoroughly, a further section dealing with the effects of studio furniture and
irtings on sound characteristics. There are two sections on noise borne by service ducts and eenerated by plumbing, lifts, lecetrical equipment and generators. Nearly half the book is
devored to drawings and tables relating to the $\stackrel{\text { devoted }}{\text { text. }}$ This
work an
w

This is a remarkably concise and practical work and is highly relevant to other structures
such as conference halls and music rooms where he sound quality is important. As is pointed out at the beginning, it is no use glueing a few
coustic tiles on the wall and expecting the noise to disappear.

Oscilloscopes by Ian Hickman,

by Ian Hickman,
Newnes Technical Books $£ 3,45$ This is addressed to school physics students and echnicians, as well as to those with an interest with no pretensions to depth, and provides an easily read guide to modern oscilloscopes and crir use, which should help students ap.

1000 Smisiliccoms

Telequipment 1000 Series The choice is yours

tightens time measurement accuracy to $\pm 3 \%$, with improved stability as a bonus base specifications, trigger bandwidths and performance characteristics have been substantially en
Better Display
The D1016A also has a new C The size is just the same easy-toview $10 \times 8 \mathrm{~cm}$ but with an internal graticule and a quick
heat cathode. It has a "GY" heat cathode. It has a "GY equivalent
phosphor which is a near equil phosphor which is a near equivale
to the P31 but is more efficient actinically at low beam currents and high writing speeds. A Choice of Bandwidth
10 MHz or 20 MHz with 5 m V 10 MHz or 20 MHz with 5 m
division sensitivity at full division sensitivity at full
bandwidth and 1 mV division at 5 MHz in the D1016A, 4MHz in the D1011, and a choice of display modes; Algebraic Add, True $X-Y$, Channel 1 and 2 Chopped or Alternated, Channel For further details send reply For further de
coupon today.
「 $---\frac{-}{-}-7$ | D1016A \square D1010/D1011 \square |
| Name \qquad
Position \qquad
I Company
1 Address
Telephone

Tektronix U.K. Ltd

P.O. Box 69,

Harpenden, Herts AL5 4UP
Telex: 25559

Also available from Electroplan.
TELEQUIPMENT < (層 >

CES, Chicago

Round up from the largest American consumer electronics show
by George Tillett

This year the Summer Consumer Electronics Show in Chicago was larger than ever with a record breaking attendance of well over
60,000 . Almost 900 exhibitors were spread over 550,000 square feet of space and 300 demonstration rooms at adjacent hotels: As with recent shows, main interest centred on video, emphasized by the impressive
space age array of giant satellite dishes outside the main entrance

Video disc players were naturally attract ing a lot of attention - in fact, you could hardly miss them, stacked as they were to make an eye-catching video wall. Although the new RCA Selectavision model has only
one audio channel and lacks many of the one audio channel and lacks many of the
features provided by its competitors, it has been popular, mainly because of its lower price. In terms of basic performance, it is comparable with the VHD and laser models in spite of its stylus-in-groove design. Critics described it as "a giant step
backwards" but this hasn't deterred companies like Sanyo and Toshiba who have also opted for this system, now called
CED. The VHD system developed by JVC CED. The VHD system developed by JVC also uses a stylus but it glides over the models were shown by Sansui, Quasar and Sharp, the last-named deciding to go with VHD ""because of the superb stereo sound". Sansui were also showing a CED model and at this
Laser players are made by Pioneer and Magnavox and the former has signed agreements with Columbia Pictures, CO vent Garden Productions and many Holly wood program sources. Further agree
ments are being made between the various film makers so the same movies will eventually be available in all three formats: CED, VHD and Laservision. So the situation is a little better than the quadraphonic
fiasco when the competing manufacturers didn't even agree on the spelling of the name!
Turning to video cassette recorders well, we have had to live with Beta and that we'll have to contend with another standard or standards for portable models. Technicolor introduced a miniature cam-era-recorder last year which used $1 / 4$-inch tape in cassettes not much larger than See also article on vidoo discs elsewhere in this issue.

Pressure zone microphone claims flat amplitude response at all angles of incidence by virtue of tiny phase incidence by
cancelling gap.
those made for audio and weighing onl two ounces. But now Japanese photodisappearing home movie market, have turned their eyes to video so to speak Funai and Canon have already introduced "Camcorders" and other manufacturers
will release models soon. Sony retaliated with the Betapak described as the "world's lightest VCR" at just over 9lb. A grea many Beta and VHS portable and domes tic models were introduced at the Show, and Sansui. Prices have come down to meet the video disc competition but the tape itself is expensive. One reason is the high cost of real-time duplication but the situation
could change. Mitsubishi were showing high-speed video tape duplicator which uses a process called "video anhysteric transfer printing" to copy a four-hour tape in four minutes. It's expensive but the quantities involved are high enough to jus
tify the outlay for many cassette suppliers There are rumours of a video disc system with recording capability but I can find no hard evidence. On the other hand, it true that a company in New England has plans for a playback-only video cassett
machine to cost about half the present models.
A great number of new cassette decks were to be seen: most of the top models boasting automatic bias, equalization and C noise reduction while Marantz, Teac

Yamaha andl Technics have plumped for dbx in somes of their models. Competition between dbx and Dolby has increased recently with the Dolby Labs emphasizing duction over the whole band. Dolby's answer was the HX circuit and Dolby C, plus the reminder that compatibility is mos importani: as there are some 100 millio Dolby decks out there
sion) reciords were being (compatible expanSound Concepts, MXR, Phase Linear by Audionics, all of whem, Phase Linear and ers. At the moment, only four the decod actually on the market but CBS say that all actually on the market but CBS say that all
their records will soon be in this format. Furthermore, their goal is to make it the industry standard for recording. Warner are believed to go along with the idea but at the time of writing, nothing ${ }^{\star}$ has been pany. In some respects the CX process is like the dbx system: it uses the same $1: 2$ exparision ratio in playback but it does not function over the whole dynamic range. No pre-emphasis is used in the encode
and CBS claim that these records will be "audibly acceptable" when played without a decoder. Amplitude response will be unchanged and noise level will be no worse. The decpder parts are relatively inexpensive so eventually, if the idea catches on,
we will see this facility built-in to record players, receivers and amplifiers. Another noise reduction unit was being demonstrated by National Semiconductor. This is the DNR and it is in the form of a single i.c. with two channels. It works on
the same principle as the Burwen-KLH * RCA Records have since agreed to adopt the * RCA Records have since agreed to adopt the
system introduced some years ago. A dy namic filter keeps the bandwidth narrow
with low-amplitude signals but opens it up when the signals are loud enough to mask any background noise. Attenuation commences above 800 Hz and the attack time is less than 1 ms of a second with a release
time of 50 ms . Effective noise reduction is claimed to be 10dB (CCIR weighted) but i doesn't require encoded material as it is
single-ended single-ended.
Crown's PZM microphone is now being
used by many recording studios as well used by many recordings studios as well as
for sound reinforcement at such places as for sound reinforcement at such places as
the Hollywood Bowl and Wolftrap Performing Arts Center. It uses the principle of the pressure field where there is no
direction of propagatio. within a few mil direction of propagation. Within a few mil-
limeters of a large surface, sound levels from a pair of equal signal's add coherently because in close proximity to the surface the particles are still in-phase as they accel erate after being brought to a stop by the:
boundary. So two engineers, Long and boundary. So two engineers, Long and microphone above a Formica surface with a tiny spacing between the diaphragm and the surface, hence the name "pressure zone microphony". It is claimed that no
signals can arrive on axis but can only enter at the sides, so the amplitude response is flat at all angles of incidence. The standard model uses an elecirret capsule and it is mounted on a five-inch square plate. By using various shields, a wide
range of directional characteristics can be obtained, without affecting amplitude response. PZM microphones have been particularly successful with recordings of the piano and large-scale choral works.

Loudspeakers

As usual, there was a tremendous variety of loudspeakers at the Show, rang ing from tiny shoebox systems with giant four-inch bass drivers to huge behemoths costing a sizeable fortune. The Quad did the B\&W 801S which uses a new midrange enclosure made from an acoustically dead plastics-cement mixture. The Sony Esprit APM-8 is a rather unusual floortanding model using four drivers, alll with flat diaphragms. The bass radiator mea-
sures 125 square inches and is driven by four speech coils and it is claimed that this multi-drive system extends the piston range by two octaves. RTR were demonstrating a new electrostatic panel consist-
ing of two vertical arrays of twelve units. One section handles frequencies from 130 Hz up to 2.2 kHz while the other radiates from 2 kHz up to beyond 20 kHz .It is, of course, designed to match a subwoofer. Another RTR model uses a novel
dome tweeter which has a plastic diaphragm reinforced by a geometrical arrangement of hard fibre threads. Ferrofluid is used in the magnetic gap and the low frequency limit is 40 kHz , hile the first reso nance occurs at 40 kHz .
The Cosmostatic system uses eleven
electrostatic panels in an umbrella-shaped array with four 6-inch bass drivers which fire upwards. Low frequencies are aug-

Looking like any combined tv, radio and audio cassette player, this is actually a video cassette recorder
and 20 cm colour and 20 cm colour tv

According to RTR Industries, Dupont's Kevlar fibre - five times stronger than steel - in a special pattern allows behaviour to be modelled by a compu ter.
Most top models of cassette deck feature automatic bias, equalization
and sensitivity circuits.

The built-in ESL matching amplifier claimed to handle peaks up to 1200 watts.

In brief

Yamaha's top receivers are provided with a "spatial expander control" which is
claimed to widen appears to widen the stereo image. the signals from one channel and feeding them to the other . . . The Carver company were demonstrating a new f.m. tuner
which, it is claimed, virtually eliminate multipath distortion. The detector circuit is called the "asymmetrical charge-coupled f.m. detector" but no other details wer really works! Digital ... Digital audio records were demon-
strated by Sony, Fisher, Philips and Stranted by Sony, Fisher, Philips and which provided Dolby B \& C and dbx noise reduction... Mitsubishi were show-
ing a microwave oven which could be operated by voice commands. It makes announcements (your dinner will be ready in three minutes!) and it has a tv screen for
menu displays or tv programs.

NIEWS OF TTYTE MTONTYTT

Once again the BBC has announced that it is oncentrate its efforts into improving the qual will become necessary when there is an increase in interference from European stations on the years.
Aubrey Singer, managing director of BBC
radio, has said that the first priority was to make radio, has said that the first priority was to make
the four national networks 'properly audible on the four national networks 'properly audible on
v.h.f.' This involves re-enginering existing transmitters to include a vertically porarised signal in addition to and equal in strength to the
horizontally polarised signal; in effect to give horizontally polarised signal; in effect to give
'slant' $\begin{aligned} & \text { polarisation. This would improve re- }\end{aligned}$ ception for receivers with vertical aerials, espe--
cially portable sets and car radios. There would cially portable sets and car radios. There would
alas be a programme to build new transmitters to provide a
provided for.
Another long term proposal is a campaign to police and fire services, shifted to a different

EMP and thermionic valves

The electromagnetic pulse (EMP) produced by
a nuclear explosion high above the Earth could wreck telecommunications across a continent according to Anty,
Guardian of 2 July,
With the exception of several US Department
of Defence reports issued in 1977, the Bell (ant Prnciples (1975) and a recent three-part series in Science on the subject (May to June 1981), An Civil Deferce is the first seious treatment in Civil Defence is the first serious treatment.
Several monthly UK iournals have carried material on the implications of EMP over the ast three years, concentrating on the vulnerabil
ity of communications links which employ ey of communications links which employ but none has generated more than a fleeting esponse.
Any atmospheric explosion generates an
electromagnetic pulse because of the interaction of the rapidly expanding ball of ionised gas with the Earth's magnetic field, but in the case of a
nuclear weapon explosion two effects combine to produce a very powerful electrical pulse, resulting in peak signals of kV order (rather than the more normal hVorder) appearing a receciver semiconductor r.f. stages. With much of NATO's military and business data (including strategic information) now spread by p.c.m.
methods, in the event of attack this could mean a dangerous blackout of communications and other vital data services.
The principal effects in such an explosion are The principal effects in such an explosion a into an atmospheric charge (well-known Comp on Effect) and the disruption of the ionospher
the latter could clearly have serious ind - the latter could clearly have serious implica-
tions for general h.f. communications. In theory

BBC radio on v.h.f.
wave band. This has already been proposed by隹 ARC in 1979 but the regulations allow some services to continue in Band II until 1995 .
There will be two European v.h.f. allocation conferences in 1982 and 1984 and the BBC ar nstituting their campaign now so that the British negotiators will have decided upon a
plan well in advance of the conferences. If the dill 88 to 108 MHz band became available fo roadcasting, the BBC could go ahead with plans to have a new v.h.f. network for Radio 1 ,
full UK coverage on v.h.f. for Radio 4 and possibly a separate network for educational
broadcasts including schools and the Open Uniroadcasts including schools and the Open University. Each network would occupy a simila position on the tuning scale regardless of the
transmitter being used, and each sub-band would be 2.8 MHz wide.
In addition the BBC proposes to increase the
number of their local radio stations in England to 38 from the existing 22 at a rate of about thre each year. There would also be some locial sta-
tions in Scotland, Wales and Norther Ireland

Which could opt out of the national region staans and broadcast in Gaelic, Welsh or provide
All this is going to cost some three to four ilions each year.
Aubrey Singer also looked forward to imers tend to stick to one or two radio stations because of the problems of finding and tuning
into the other stations. If push buttons were rov the other stations. If push buttons wers hat more use would be made of the services. nother possibility is the use of programme nodulation on the signal which would not affect meduater on the signal which would not affect included on the set and provide a time readout,
he date, channel identification and possibly he date, channel identitication and possibly
even some news headlines: a sort of Ceefax for ren some news headlines: a sort of Ceefax for
radio. (See BBC reply to letter, October 1980
ssue, p. 49 and news radio. (See BBC reply to letter, October 1980
issue, p.49 and news report December 1978
issue, p. 50 .)

Assuming that The Archers continues, the radio of the future may have a display similar to making test transmissiock-up. The BBC have now announced officially that they have been call it, for the past three years. If further tests are successfull listeners with suitable
microprocessor controlled receivers may be able to tune in by commanding a station even a programme, without having to bother about wavelengths. The final form of the service has not yet been determined in full but it is suggested that programme labelling data may include such information as music tittles, sports scores and future programmes for
display on the receiver's read-out. Among other countries experimenting with programme. labelling are Sweden and France, who have systems similar to the BBC's, and talks are under way in conjunction with the EBU to agree a common European system. More details
the optimum height for such an explosion, were but no actual tests have been possible beccuse the Test Ban Treaty on aumospheric exploWhen a Russion MiG 25 fisher plo When a Russian MiG-25 fighter plane was
flown into Japan by a defector in 1976, it was found that the body shell had been arranged to form a Faraday cage and, even though the tubine technology was very advanced, on-board
radio communications equipnent sub-miniature valve circuits, suggesting that
Russian designers have EMP very much in Russian
mind.

Thermionic valve equipment, while no in of safery, although ofers a greater mar balance the safety factor against the higher effiiency of semiconductor devices. Communications satellites. are therefore
highly vulnerable to EMP but it seems ullikely hat Russian design strategy will involve the use f a thermionic valve equivalent of $1 . s . \mathrm{si}$. - it would probably require the sending of bodies the size of the Albert Hall into Earth orbit.
TThe last (observed) effect of EMP was in 1958 hen a nuclear explosion 250 miles above
Hawaii doused the street lights 800 miles away.

Levy on blank tapes

Six of the main suppliers of blank tape have
banded together to form the Tape Manufacturbanded together to form the Tape Manufactur-
ers' Group. The Group consists of BASF, 3 , Maxell, Memorex, Sony and TDK and has been
brought together specifically to combat any levy brought together specitically to combat any levy
on blank tapes reported to be recommended in
the the governiment Green Paper on copyright law

Mr Bill Fulton, from Sony UK, acting as chairman for the Group, said that the levy plan
proposed by the record industry was impractical proposed
and unworkable. "The problem of home taping has been grossly overstated. A levy would penal.
ise to an unfair degree all tape users, whethe ise, to an unfair degree, all tape users, whethe
they breach copyright or not," he said. "Consumer groups as well as organisations representing the professional interests of journalists, educationalists, businessmen, tape retailers and disc
iockeys appear to agree with us, and a broadly jockeys appear to agree with us, and a broadly
based campaign of opposition is planned." He likened such a levy to a levy on blank paper which would be used to compensate writers and
publishers in case copyrighted material were to publishers in cas
be reproduced.
one British

The British Phonographic Industry has bee

Used to correct the
angle of view of angle of view of photographs taken
from the air, the Wild OR1 orthophoto system is a high-
speed, computerspeed, computer-
assisted differential rectififer. In producing plans from aerial
photographs, the photographs, the
instrument takes into account the effect of slopes in the terrain.
The illustration show The illustration shows
the transformation of the transfor
an oblique
photograph photograph, of a
mosaic floor in Delphi, mosaic floor in Delp
into a true-to-scale reproduction.
the main promoter of the levy. They claim to be losing £1m a day through breaches of copyrigh and say that the levy, which would effectively
double the cost of blank audio tape, double the cost of blank audio tape, would pro-
vide adequate compensation. Mr Fulton would not deny that some home copying from discs
was was carried out but challenged the reported
extent of such breaches of copyright. "The fall extent of such breaches of copyright. "The fal
in sales for which the record companies appea in sales for which the record companies appea
to blame home taping must be due to other
factors within the industry factors within the industry. The development of
low cost, high quality cassettes and home low cost, high quality cassettes and hom
recording equipment has in fact helped th record industry by stimulating an interest in music."
A levy A levy scheme would be fraught with prob lems, such as the proposed exemption for blind
people and for other categories. Another prob lem in the administration of such a scheme would be how to apportion the income from th terfeetiers, who are already selling interior tape
disfuised as the more popular brands disguised as the more popular brands; could
also forge the proposed levy stamp and get that also forge the proposed levy stamp and get that
money in addition. This could throw the whole market into confusion.

Dialled radio

 telephoneThose who are rich/important enough to have any number in the UK or to any of the phones connected to the international direct dialling
network in some 100 countries. This has been network in some 100 countries. This has bee
made possible by the installation of equipment made possible by the installation of equipment,
supplied by Pye Telecommunications, in four supplied by yye
regional centres.
The former manually operated exchange in
London had reached full London had reached full capacity with more
than 3,000 customers. In order to allow more British Telecom are increasing the number of Radiophone channels by reducing the band-
width of each Even so the capacity of the ser width of each. Even so the capacity of the ser
vice is. still limited and cannot expand furthe viless the Home Office allocates more radio bands.
Many of the existing customers are trans
ferring to the new service, which leaves som vacancies on the manual exchange. But there is no need to rush to apply - there is a lon
waiting listof

News in brief

The autumn bunch of exhibitions and conven
tions includes the Business and Light Aviation tions includes the Business and Light Aviation
Show at Cranfield Airfield, 3 to 5 September the Video Show, West Centre Hotel, Fulham, London 16 to 18 October; Viewdata at the same venue, 4 to 6 November; The Sound Braad
casting Equipment Show, Albany Hotel, Bir mingham, 29 September; Electronic Displays
81, The Kensington Exhibite mingham, 29 September; Electronic Displays
'81, The Kensington Exhibition Centre, Lon-
don, 3 to 25 September; The West of England don, 23 to 25 September; The West of England
Electronics Show, Bristol Exhibion Centre, Electronics Show, Bristol Exhibition Centre,
15 to 17 September, Emag 81 , Cavendish
Laboratory, Cambridge, 7 to 10 September.

A radio amateur course is to be held at the
Gosforth Adult Association, near Newcastle Aosforth Adult Association, near Newcastle upon Tyne, starting in September. Further de-
tails may be obtained by telephoning Newcastle aills may be obtaine
upon Tyne 668439 .
The Sixth Annual Microprocessor Workshop on Microprocessor Applications will be held
in the Computer Laboratory of the University in the Computer Laboratory of the University
of Liverpool on the 7 th and 8 th September
within
 lectures on all aspects of microprocesso
hardware and software systems with a special hardware and software systems with a special
session on 'microism'. Details from Miss C . A Bryson, Microprocessor Workshop, Compute
Laboratory, University of Liverpool, PO Box Laboratory, University of
147, Liverpool L69 3BX.
Following our story last month of the collapse
of the Rank empire, we have heard that the Masterca Mastercare service, owned by Currys, for after
sales repair and servicing of elecric and
electronic appliance is to electronic appliances is to take over the guar
antee liabilities of Rank Radio International antee liabilities of Rank Radio International
The Rank distribution warehouse in Milto Keynes has gone to Binatone, and the Murphy irade mark to J. J. Silber, a subsidiary of Grea
Universal Stores.

NRDC merges with NEB

 British electronic inventions like the Ambisonis surround-sound system which hitherro have search Dev new, more vigorous organizatio alled the British Technology Group. This is th result of a merger, recently announced by the Iational Enterprise Board. The merger propo National Enterprise Board. The merger puopoGcvernment, alarmed at reports of inadequacie in the existing system for exploiting British The new BTG will be run much more like a private company, with an eye on profit, setting ntering into partnerships with financial companies in the City of London. It will have about 300 m of investments in over 90 companias andwill be responsible for some 700 research and will be responsible for some 700 research and
development projects. Its general mode of operation will be to provide money to develop nventions and new industral products and,
when they have reached a sufficiently commerwhen they have reached a sufficiently commer-
ial stage, sell them off as investments to private industry.
Chief executive of the new organization is ruce Willmott and his deputy is Dr Jim Cain.

TV subtitles for the deaf

There has been much correspondence in Wirerovision of earphone sockets, for example. These are no good at all for the completely deaf ut there have been some advances on their
behalf in the form of Ceefax and Oracle btitles. Television viewers saw some examples of the current art of subtiting during the recent phonetic rendering were distinctly odd.
Now the Independent Broadcasting Authority, together with the Independent Television Companies Association and the Uni-
versity of Southampton has published Guidelines for the subtitiling of television programmes by Robert G. Baker. Mr Baker is a psycholinguist who specialises in
hard of hearing.
hard of hearing.
The 18-page publication includes detailed ecommendations on the display, editing and preparation routines for subtitle captions. It
emphasises both the action and the captions; the need to reduce frustration in the viewer by subtitling all obvious speech and relevant sound effects, and by placing subtites
time and in position on the screen.
While captioning should not try to reproduce he entire text of a programme, the Guidelines arns against excessive use of abbreviations and
diomatic speech forms. Bad language should diomatic spech forms. Bad language should
ot be bowdlerised, but could be reduced in requency. Such idiomatic phrases as 'he gets ny goat' are usually better presented as 'he
annoys me'. [This could be very confusing to nnoys me'. [This could be
The Guidelines includes practical recom-
mendations on the length of captions, on the use mendations on the length of captions, on the use ters, on the creative use of colour and, for lers, on the creaive use of colour and, for ringing telephone.
ringing telephone.
Copies of the publication are available from he IBA Engineering information Services, Crawley Court, Winchester, Hants SO21 2 QA,
from ITCA, or from the author at the Department of Electronics, The University, South-
ampton.

Industry, education and riots

The importance of computer games as a learning tool should not be underestimated ${ }^{\text {y }}$ said
Kenneth Baker, Minister of State for Industry and Information Technology at the Englis peaking Union in Cambridge.
"This is one way of introducing young people for it - so long as space invaders do not entirely take over the inventive energies of young people.
"We
"We need more young people studying the
kiills industry needs; we produce around 500 lectronics and 200 production engineers per year; the Japanese ten times this number. At ' O ' level hafr a milion studens en le, 500 Computer Studies. Wee must give this fourth ' R ' the push it needs. About 1,700 students entered university study Computer Scie enough.
" 50 per cent of our companies still do not use
nicroelectronics. I recently announced Inormation Technology Year for 1982 to tackle
his. There are huge markets open to us $£ 50$ billion per year world-wide, expanding 10 per cent per annum in real terms. We need to achieve a large slice of this cake; currently we tremendous for wealth and job creation. The huge range of industries that make the products and provide the services under this generic term
Information Technology, stretch from satellites to computer games. But let me emphasise as clearly as I can that if they are going to be the ing decade ing decade and if we cannot make the most of
this enormous opportunity then we will not be able to create in our society the wealth needed to underpin the huge social and educational expen

The heuristical approach to flat panel displays

ventor of a number of display systems includ started a company to explore and develop advances in flat panel displays.
Mr Kuchinsky assumps Mr Kuchinsky assumes that most of the cureny work on displays, in gas plasma, liquid
crystals, electrophoretic and others, all show promise and have specific advantages in difTrent applications. He also believes that too
nany applications involve labour intensive manufacturing processes and not enough attenion is paid to using advanced automated techniques, the availability of outside resources or
the understanding of materials and processes. His studies with the late John G. Bennett, a British humanitarian and educator, led Mr Kuchinsky to identify certain concepts which he
describes as quantum qualities: "instruments of discovery and communication which unify an organisation and lead to creative achievements on a greatly reduced timescale." For this reason
he has called the company Quantum Systems.
His official title of president and heuristician to the company indicates that he intends to use hhe heuristical method; a method of learning hrough self-discovery and trial and error. He
says that the flexible approach to management says that the flexibe approach to management
that are implied in his methods "would triple the performance and profits of almost every

- Two flat screen electro-luminescent display
panels, one intended mainly for messages and panels, one intended mainly for messages and
the other for general graphics, have been
launched in the UK by the other for general graphics, have been
launched in the UK by mpectron Limited. The
units, both manufactured by Sharp Cor-
"An argument put to me against Information oo unemployment is more products, well de-
oigned, well produced, well marketed and prosigned, well produced, well marketed and pro-
duced on time, which meet the nation's needs Many occupations such as chimney sweeps, corn chandlers, cart-builders and others have one from the Department of Employment list
nd have been replaced by other emerging occu: pations, such as data processors and system analys. As the Prime Minister said when
analys. As
pening the recent robotics exhibition we opening the recent robotics exhibition, we
damage job creation opportunities by refusing to agapt to change, and by not grasping the opportunities. As recently as 30 years ago a
report estimated that the UK would only ever report estimated that the UK would only ever tion handling. You all know that things have lurned out very differently; the important thing s to maintain flexibiliity of attitude and skill so and markets which open up.
"Information Technology is one of the areas
greatest scope in moving along the path to of greatest scope in moving along the path to
conomic prosperity." - Shortly after the inner-city riots Mr Baker Anounced that up to 20 centres will be set up in he UK, by the Manpower Services Commission ployed young people training and work experience in microolectronics and computing skills. The centres will develop technical products and
attention will be paid to the relevance of the training to the needs of local industry. Companies in "high technology" will be helping echnology Centres" at present are: Liverpool, Glasgow, Bristol, Manchester, Birmingham, Rhondda, Brixton, Southwark and Sunderland. Most of the centres should be operating by
middle of next year, according to the DoI.
and uniform darstribution of luminow colouring
also combine to minimize eye strain.
poration, are only 39 mm thick and of extremely
lightweight construction. ightweight construction.
The Message Display Unit, Model S-1050, provides a screen area of $186 \times 50 \mathrm{~mm}$, con-
taining 65,536 pixels (picture elements). It is constructed using 512 lines of vertical transparent electrodes on a glass substrate, upon
which a layer of luminescent material is which a layer of luminescent material is
sandwiched between two insulating layers. On top of these layers is a stratum of 128 lines of horizontal electrodes. When an appropriate drive voltage is applied to one vertical and one point' emits a bright orange-yellow spot of light point emirs a bright orange-yellow spot of She
measuring approximately $100 \mu \mathrm{~m}$ square. The
Grephics Display Graphics Display Unit, Moidel $\mathrm{S}-1021 \mathrm{~A}$,
operates on exactly the same principles, but has operates on exactly the same principles, but has
320 lines of vertical electrodes with 240 lines of horizontal electrodes - providing a total of
76,800 pixels. 76,800 pixels.
Booh types Both types of display incorporate logic and
driver circuits which may be controlled from driver circuits which may be controlled from
externally applied signals, and both types may be used to display moving or stationary graphic patterns, symbols or characters as required.
Four input signal lines are required, i.e. data signals, data transfer clock, horizontal synchro ignal and evertical synchro signal.
The desired display position of any image is The desired display position of any image is
specified by selecting the appropriate vertical speciined by selecting the appropriae vertical
and horizontal electrodes in an XY matrix.
Because each pixel is generated at a fixed point, Because ach pixel is generated at a fixed point,
the image is sharp, stable and without either distortion or glare. The orange-yellow colouring
and uniform distribution of luminous intensity

WODLID OF RMMATEUTR RADIO

UOSAT prepares

AMSAT-UK report that the launch date for Britian's first amateur-radio satellitite,
UOSAT, built at the University of Surrey at a cost approaching $£ 100,000$, is unlikely to be before September 4 and probably not before September 15 . The satellite is not expected to become fully operational until
some four weeks after launch, although some four weeks after launch, although 145 and 435 MHz . It is being stressed that this is a highly complex unit that will require considerable post-launch activity to assess the performance of the on-board experiments and service modules. The
Science Research Council has approved a grant of $£ 18,000$ to cover work at the University of Surrey in the three months f lowing the launch. There is still some uncertainty about the correct exposure television camera experiment.
The long-lived Oscar 7 satellite (launched November 1974) began to malunction on June 12 with the transponders remaining mute, apparently due to battery
problems in the deep shadow period. It is hoped that, by resting the transponders for period, a further season of operational usage may prove possible, though clearly the satellite's operational future is in
doubt. AMSAT-UK has recently contridoubt. AMSAT-UK has recently contriGerman work on a Phase 3 satellite.

Radio interference

report
The latest "Radio Interference Report" rom the Home Office's Directorate of harp (10.74%) decrease in the total number of complaints (investigations comleted) but rather more complainants. The ason for this paradox, the Home Offic interference due to illicit c b. transmis ions has necessitated concentration of investigating effort on this form of in errerence, to the detriment of normal in b interference Some 2741 complaints c.b. interference were received between 964 were to television; 646 to radio/hi-fi and 131 to private mobile radio services Rather speculatively, it is claimed that uch complaints in 1981 may equal the ined. The report concludes that the very apid rise in these complaints "is the mos gnificant factor in the interference field recent years ... this cause of interference may soon becom
Only 127 cases of interference from 75 sources are attributed directly to amateur radio transmitters, although 3470 investi-
gations attribute interference to inade
quate receiver immunity, and presumably a number of these are related to amateur throughout the 1970s the number of complaints of interference to sound radio from all sources (23,782 in 1979) shows a sharp downturn to 20,345 (13,980 l.f./m.f., 6365 the increase in recent years of harmful interference to aircraft communication channels, many in the form of broadcast music and speech. The Civil Aviation Authority and the Home Office are cooperating in an investigation aimed at
determining the unidentified sources of interference. In general, contact devices (such as thermostats and switches) in both domestic and industrial equipment remain the largest source of interference, the
11,100 complaints representing 27% of all complaints. There was a total of 41,086 complaints from 35,790 complainants.

More n.b.f.m. on
 28 MHz ?

was drawn to ber 1979 WoAR attention was drawn to the increasing use worldwide of narrow-band f.m. in the 28 MHz
band, particularly in " 10 kHz channels" band, partucularly in "10kHz channels"
between 29.3 to 29.5 MHz , by both fixed and mobile stations and including, in the USA, a number of 28 MHz repeaters with 100 kHz spacing berween input and output channels. A $29.67 / 29.57$ repeater is also ow operational in West Germany including J. D. Harris, G3LWM of Bishops' Stortford, has launched a campaign to persuade more British amateurs to se this band, particularly during the coming years of low sunspot activity when its
use for long-distance operation will be limited. The danger of there being an apparently "deserted" band immediately adjacent to what may rapidly become the only one of the reasons for the group wishing to see more local activity on the band. It is felt, for example, that there is considrable scope for improvement in receiver nsitivity and the dev cient mobile aerials.
They point out that local and mobile background when 144 MHz became available to Class B licence holders. They urge he formation of local 28 MHz activity groups to encourage
monitor for intruders.
The high-percentage of Class B amateurs (144 MHz and above, although they may soon be authorized to use 70 MHz) may make it difficult to achieve substantial
use of 28 MHz for mobile and local use of
working. But clearly this is an urgent requirement if the integrity of the band is to be preserved.

From all quarters

A 3540 km s.s.b. contact on 144 MHz between Mike Lee, G3VYF in Basildon and 4X4IX in Tel Aviv on June 11 is believed to have been brought about by a combinaing. Signal reports were $59+$ both ways and the contact represented the culmination of some two years of preparation and study of the path. During a Sporadic E opening on June 7 many British amateurs White Russia (UC2) and the Ukraine (UB5) at distances approaching the 2500 km limit for unassisted single-hop Sporadic E propagation.
432 MHz appears to have been the first 432 MHz r.t.t.y. teleprinter contact with
Norway was made on June 21 by Alec Fraser, G8PWX in Tynemouth. His contact with $\mathrm{LA} 3 E Q$ was over a distance of 660 km . The first transatlantic contact by moonbounce on the 2.3 GHz band has been dish aerial) and the Californian W6YFK (18ft dish).
BARTG reports that the use of the sophisticated AMTOR mode of r.t.t.t.y.,
developed by Peter Martinez G3PLX, is developed by Peter Martinez, G3PLX, is including Oman and Pakistan. Longdistance contacts using AMTOR have been made from the UK with mobilemarine station G3RSP/MM in New Zea tion proved possible over the shot path with its propagation delay of about 135 milliseconds, but on the long path (about 62 milliseconds delay) only Mode B peration proved possibl.

In brief

The German society DARC recently organized a "fox hunt" for blind amateurs equipped with simple portable d/s re ronized transmitrers hidden along synchpath were all located by the along a 2 km Ellinger, DJONJ in 36 minutes. The 11 participants were accompanied either by guides or guide dogs ...Dr Trevor Wadey, inventor of the Wadley Loop tripleions receivers and also of the Tellurome er system for accurately measuring distances by radio, died recently in Natal, South Africa at the age of 61. . . . The ing held at Glenrothes on Sentember . Mobile rallies include Torbay (ITT Social Centre, Brixham Road, Paignton) n August 30; Vange rally at Nichola School, Basildon on September 6; Telford New Town Centre on September 13; and Sports Stadium on Seprember 20
Sports Stadium on September 20.
PAT HAWKER, G3VA

Phase locked detector
 for double-sideband, diminished-carrier reception

Avoiding transient delays by locking to the transmitted carrier
by D. A. Tong, B.Sc., Ph.D. Datong Electronics

Previous methods of regenerating the diminished-carrier receiver have suffered from delays, causing missed syllables at the start of transmission. In this design, a narrow-band, phaselocked loop is used to track the lowspeech.
In the past few years it has been recognized that amplitude-modulation transmission in which the carrier is either suppressed or diminished in amplitude have potentially significant advantages for equipment such as pocket v.h.f. transceivers, where one of
the biggest limitations to range is the limited capacity of the battery powe supply. Raven has pointed out ${ }^{1}$ tha double-sideband, suppressed-carrier (a.s.b.s.c.) transmissions can be generated of primary power with the scheme shown in Fig. 1. More recently, Petrovic ${ }^{2}$ has described a transmitter using these principles to generate double-sideband, dim nished-carrier (d.s.b.d.c.) transmissions.
Provided that the carrier is reasonabl suppressed relative to the average sideband Mänuscript received in 1974

level $(-13 \mathrm{~dB}$ is used in the system des cribed in reference 1) both d.s.b.b.c. and d.s.b.d.c. transmissions have
teristic that a negligibly small amount of power is consumed when the user is no actually uttering a syllable. Moreover no efficiency penalty is incurred by modulating at a level lower than the peak level
allowed by the transmitter. This is in sharp contrast to conventional amplitude modulation (a.m.) where the carrier is constantly emitted at a high level. Since, for short phrases spoken without pauses, am plitude levels greater than 12% of the peak
amplitude are exceeded for only 50% of the time, and since, in addition, there are many pauses in normal speech, larg power savings are possible in a d.s.b.d.c ransmitter. Indeed Raven states ${ }^{1}$ that per to a 20 W conventional a.m. transmitte become practicable.

Fig. 1. High efficiency, double-sideband suppressed-carrier scheme proposed by Raven. Ampited waveform are processed
the transmite separately, allowing relatively inefficient separately, allowing relatively ine
linear r.f. power amplifiers to be eliminated. Ring-modulator is used as
voltage-controlled 180° phase filter. ψ

The price which has to be paid for the above advantage is the increased complexin of the receiver. For good intelligibility output of a d.s.b.s.c. receiver, is necessary to reinsert the carrier not only with the correct frequency, as in s.s.b., but also with the correct phase relaive to the sideband components. Because of its symmetry, even a d.s.b.s.c.c. signal specify the frequency and phase of the missing carrier, but the techniques used to eplace it (principally either the "recipcating detector" ${ }^{3}$, the " 2 F method" 4,5), or the phase-lock-loop method ${ }^{6}$, ? $)$ all suffer
from the problem that they require a finite time to do the job of regenerating the carrier. This means that syllables of speech have their leading edges chopped off to an extent depending partly on the exactr tech-to-noise ratio, and partly on the finitial degree of mistuning of the receiver. In the reciprocating detector, this delay in negenerating the carrier is apparently cluite, hort, but long enough to give the detector interference. With d.s.b.d.c., the low-level carrier can be used to define the regenerated carrier: any transient delays occur only once per transmission and are not a problem. In
addition, two other worthwhile advantagies are that (a) the carrier, although of reduced amplitude, can be used to reliably operate he squelch and also to control the gain of the receiver, and (b) the receiver is impler.
The remainder of this article describes a the author principally for experiments using d.s.b.d.c. but which also has advanages compared with the more conven ional techniques for demodulating ordi-
nary a.m. and f.m. It was intended for ventual inclusion in a pocket transceiver ong the lines of the one already described by the author in Wireless World ${ }^{\text {b }}$, but using re therefore imposed on the design:

- the power consumption must be minimal
- it should produce an indication (i.e.' a' change in a logic level) that a genuine sigof interference and within as short a time as possible of applying the power supply to the circuit. This is so that an effective battery saving technique can be applied by
incoming signals with a signal-to-noise ratio just inadlequate for intelligibility should be able t.o provide a reliable "signal present" indication. This ensures that usable signals are
operate the squelch.
- stability of the squelch detector should be adequate to make a user-operated control unneclessary.

Circuit opseration

The block diagram of a circuit to meet the above criteria is shown in Fig. 2. It is width narrow enough to allow it to lock onto signals. which are buried in the receiver's noise. The loop comprises a balanced mixerr M_{2}, operational amplifier A_{4}, and the voltage-controlled carrier-insertion
oscillator. By choosing appropriate parameters for the loop filter (A_{4} and associated components) an almost arbitrarily narrow bandwidth can be obtained, but at the expense of an increased lock-up time The phase--lock loop behaves, in effect as a frequency of an incoming signal.
signal, if any. The d.c. component is fed to A_{2} and A_{3} for the use as an a.g.c. source and to provide the "signal present" indicaand to
tion.
It is
a coher

It is worth pointing out at this stage that a coherent detection system such as this
has a number of advantages, even for ordinary a.m., over an envelope detector.

- The signal-to-noise ratio at the audio output is the same as that at the r.f. input. In contrast, an envelope detector has a to-noise ratio is worse than that at the input ${ }^{7}$.
- An envelope detector gives a rectified output for noise-modulated r.f. voltages a any frequency. Thus, broad-band nois than that of the desired signal) at the input adds in the output of an envelope detector to the noise which is present within the information bandwidth. In contrast, in a rodyned to approreadiand noise is hete cies (i.e., higher than the highest compo nent of the wanted signal) and can easily be filtered out with a low-pass audio filter. This advantage has long been u uilised in s.s.b. receivers using so-called "product

When the loop is locked it forces the two 1..f. inputs to M_{2} into a 90° phase difM_{2} is zero. A shift in relative phase of the two signals would tend to give a d.c. output component from M_{2} whose sign and amplitude would depend on the sense and magnitude of the shift. Because the mixer is enclosed in a negative-feedback loop,
however, any tendency to a phase shift is automatically cancelled by a shift in the instantaneous frequency of the carrier-insertion oscillator
The local oscillation fed to M_{1} is phase\mathbf{M}_{2}. When the system is locked, therefore M_{1} gives an output which is proportional o the amplitude of the incoming signal and which contains the demodulated audio enough, frequency modulation will also be demodulated and appear at the output of

Practical circuit

The block diagram could be implemented using commercially available phase-lockloop integrated circuits were it not for the extra constraints mentioned earlier. The and is based mainly on is shown in Fig. 3 and is based mainly on c.m.0.s. logic de-
vices because of their extremely low power consumption. A differential configuration was chosen to eliminate any constant voltage levels (in the absence of a signal) across the capacitor. This allows the circuit and without any delays caused by the time required to charge the capacitors. A diferential system also removes most of the sources of d.c. drift and makes the squelch and a.g.c. thresholds independ Eerature and supply voltage
of c.m.o.s. analogue switches controlled by square-wave switching waveforms a he frequency of the incoming carrier and in such a way that when, for example, versa. When open, the path through a gate behaves like a bidirectional resistor of about 300 ohms, whereas when closed its esistance is of the order of 10^{9} ohms. hen fed with good square waves, such as a phase-sensitive detector and has. the advantages that it can, if necessary, be bidirectional and that its quiescent output voltage is the same as its input voltage. Thus, no temperature-dependent offset ferential symmetry.
Switching waveforms for the four gates (two in each mixer) are derived from IC 5_{5}, which is a dual J-K flip-flop connected as a digital phase-shifter ${ }^{11}$. It requires an inpu the output waveforms, and this is provided by a multivibrator based on IC_{6} as described by Linsley Hood ${ }^{12}$. An alternative oscillator based on shown in Fig 4.

- Because of
- Because of the high gain of the 741 switches from its low limit of about +2 V to its upper limit of $+\left(\mathrm{V}_{\mathrm{cc}}-1\right)$ volts for a extremely small output signal from M_{1} ($\mathrm{IC}_{7(2)}$ and $\mathrm{IC}_{(\mathrm{b})}$. With no input signal or puts to IC_{2} receive virtually identical voltages and the offset null potentiometer R_{30} can be used to ensure that the squelch output signal is "low"
The phase-lock loop uses IC_{4} as the loop amplifier-filter but an addition to the basic
system shown in Fig 3 is that signal is being detected the loop bandwidth is increased by opening gates $\mathrm{IC}_{\mathrm{g}} \mathrm{a}$) (b) thereby shorting the two resistors R_{1}
and R_{19} This reduch the and R_{19}. This reduces the time required
for the loop to lock by a large factor. When fork is achieved the squelch output goe high and the two gates are closed, thereby

Simple 100W inverter

Automatic mains back-up from 12 V d.c. with battery charge mode

This inverter was designed to provide back-up power for a desk-top ower cuts. While the normal mains voltage is available, the inverter circuit 'ticks over' and the 12 V standby battery is charged. If the mains supply fails, the square-wave inverter starts up automatically until the mains is restored. A simple overload protection circuit is
incorporated.
Since the inverter provides a maximum power of about 100 watts, it is suitable for driving most small domestic loads such as television sets, hi-fi apparatus and central
heating pumps. Although the inverter will power a tv load taken over from the normal mains supply, it may not be capable of providing the current peak required when

Circuit operation
The complete circuit is shown in Fig. 1. When there is a likelihood of a power cut, a car battery and the mains supply are
connected to the inputs of the inverter and stances the mains inder these circum connected together and the transformer keeps the battery charged through $\mathrm{D}_{3}, \mathrm{D}_{4}$ and the current limiting resistor, R_{14}. When the mains supply fails, relay RLA disconnects the live input from the highvoltage winding of the mains isolating
transformer and connects its low-voltage windings to the collectors of the Darlington pair output stages, Tr_{6} to Tr_{9}. These two pairs are driven in antiphase by 50 Hz square waves produced in the drive circuit
which operates from a 5 volt suply which operates from a 5 volt supply pro-
vided by a voltage regulator, IC4. Considering the circuit in more detail, C_{1} is a 555 timer connected as an astable multivibrator running at 200 Hz . Variable resistor R_{15} is used to set the frequency. A
dual J-K bistable, IC IC_{2}, divides the frequency of the square-wave from the timer by four to give 50 Hz . Hence we now have wo 50 Hz square waves in antiphase at the Q and $\overline{\mathrm{Q}}$ outputs of the second half of IC_{2}. These two signals, after being buffered by nected to the output stages, Tr_{6} to Tr_{5} -

Current is therefore switched alternately through the two halves of the low-voltage winding of the transforme

Overload protection The usual way of detecting an overload electronically is to place a low-value resis-
tor in a high-current line voltage drop across it to switch a tran sistor. In this design, the 0.7 V required to
switch an overload detection switch an overload detection transistor
would have resulted in a power loss in the detection resistor of some seven or eight watts, which would have significantly reduced the efficiency of the inverter

Fig. 1. Complete diagram of the inverter and battery charger circuits. Two antiphase 50 Hz square waves from $1 \mathrm{C}_{1} / / / \mathrm{C}_{2}$ are
buffered and used to drive two Darlin buffered and used to drive two Darlington
pairs connected to the output transformer The relay coil is shown in its non-active Thate so the inverter is in operation. On
stan mains input, the relay contacts switch and

WIRELESS WORLD SEPTEMBER 1981 The approach adopted, therefore, was to of the output transistors, which rises proportionally with the collector current. Signals at the emitters of Tr_{1} and Tr_{2} are
summed and smoothed and an adjustable proportion of the resulting voltage taken to the base of Trs. With normal loads, this voltage is low enough to ensure that the collector potential of Tr_{5}, and therefore the input potential of the D-type bistable IC_{3}, are close to the positive supply
voltage. The Q and Q outputs are therefore high and low respectively.
As the current through the output stages increases there comes a point when Tr_{5} starts to conduct, forcing the voltage at its
collector towards zero. This point is set by R_{16}. On the next positive voltage transition at the emitter of Tr_{1} the outputs of IC_{3} change state, turning r_{3} and Tr_{4} on and inhibiting both the drive signals at the bases of the output transistors and the
clock input of IC_{3}. Under these conditions the 1.e.d. is lit. The inverter will remain disabled until the reset button is pressed. To avoid the overload circuit being activated when the inverter is switched on, R_{12} and C_{5} have been included.

Construction

The transformer used in the prototype was a standard 240 V primary $/ 12-0-12 \mathrm{~V}$
secondary type rated at 100 VA , but a secondary type rated at 100 VA , but a sions because of its lower losses.
Transistors Tr_{6} to Tr_{9} must be mounted on a heat sink with a thermal resistance of between $1^{\circ} \mathrm{C} / \mathrm{W}$ and $2^{\circ} \mathrm{C} / \mathrm{W}$. Diodes D_{1} and D_{2} are general purpose low-voltage
silicon types, but D_{3} and D_{4} must be capable of carrying at least 4 A without overheating. The latter two diodes are used to charge the battery.
The circuit diagram shows RLA in the non-energized state, i.e., with the mains sets of changeover contacts; RLA 1 and sets of changeover contacts; RLA_{1} and
RLA_{2} should be rated at at least 10 A . Resistor R_{14} has to dissipate several watts when a flat battery is being charged $(W=I 2 R)$, so it should not be mounted in contact with the circuit board. All other ytic capacitors at 10 V d.c. It is important that a suitable grade of wire be used for the high-current carrying connections and that all conductors carrying mains voltage are well insulated.
connect the battery, but is completed supply, and check the current consumption of the circuit. Depending on the state of the battery, the current should be be-
tween 1 A and 1.5 A . Assuming this is satisfactory, adjust \mathbf{R}_{16} so that its slider is at the earthy' end of the track and connect a load such as a 100 W light bulb to the output. Adjust R_{16} until the overload protection circuit just fails to operate. Now make sure output is shorted, exercising extreme caution as the output voltage is potentially lethal. Next, remove the short, connect the mains supply and check that the relay

Fig. 2. Graph showing efficiency and
output voltage variations due to loading For most domestic loads the voltage regulation is sufficient so output/driver
feedback was left out of the pircit feedback was left out of the circuit to keep the design simple
being charged at not more than 4 A Finally, with the mains supply disconquency. In the absence the 50 Hz fremeter the easiest way to set the frequency is to use the inverter to drive a record
player with a stroboscope type speed layer with a stroboscope type speed
checking system. If the turntable speed remains the same when the mains is switched in and out then the frequency is correct. The lamp used to illuminate the
stroboscope disc must, of course, be driven constantly by the mains, the performance of the inverter. The eff ciency is low at low output powers becaus of transformer losses. As the output powe rises, however, the efficiency increases
pidly to about 80% at the rated output: pidy to about regulation is rather poor but th fall in r.m.s. output voltage from 237 V to 210 V at full load should be acceptable for all but the most demanding applications. Regulation could be improved at the ex
pense of simplicity by including some form of feedback from the output to the drive stages. When measuring the outpu voltage, remember that for a square wave
r.m.s. and peak levels are the same.

Phase locked detector

Continued from page 81

quency a disproportionate distance from the correct value, there distance from system to lose lock
With the circuit values shown in Fig. 3, the loop will lock onto an unmodulated carrier whose peak-to-peak amplitude is only one tenth of that of the associated about 500 mV peak-to-peak. A positive indication is obtained from the squelch output that such a weak signal is present within 50 ms of power being applied to the circuit. For larger input signals the lockap time is be the case when ordinary a.m. is being received. Moreover, for a.m. and f.m. reception, a much wider loop bandwidth can be used and there is then no need for gates $\mathrm{IC}_{8(\mathrm{a})}$, (b). R_{18} and R_{19}
can then be reduced to say, $1 \mathrm{k} \Omega$. Similarly, D_{1} and D_{2} can be removed and a much wider acquisition range obtained. If f.m. is received, the output is taken from pin 6 of IC_{4}. In all cases the squelch output perature and supply voltage from $6-15 \mathrm{~V}$.

References

1. P. F. Raven, "The use of DSBSC modulation for portable VHF radio telephones". IEE Conference Publication No. 64, 1969, 43. 2. V. Petrovic, "A high efficiency DSB
transmitter". Paper presented at the "Communications 72 " conference, Brighton, June 1972 .
2. R. S. Badessa' "A communications detecto with a signal-synthesised reference,,' $I E E E$ Transactions on Communications Technolog 4. F. G. Apthrope, "Homody Elecctronic Enghineering, 19 , July 1947 , 238 . 5. R. C. V. Macario, "A VHF surveillance re ceiver adapted for the reception of suppressed
carrier double sideband transmissions", Radio and Electronic Engineer, 43, No. 7, July 1973, 407.
3. J. P. Costas, "Synchronous communica
tions", Proc. IRE, 44, December 1956, 7. L. P. C C. UE, 44, December 1956, 1713 . ceiver", IEEE "A phase-locked AM radio re-
Trelevision Recions on Broadcast and Television Recivers, BTR-15, No. 3, October
1969,300 ${ }_{8 .}^{1969,300}$. A. Tong transceiver",
Aug. p. 293 . 9. D. A. Tong, "Batery savite portable communication World, March 1972, 124.
4. F. M. Gardner "
5. F. M. Gardner, "Phaselock Techniques", Sydney, 1966 . Sydney, 10 ex.
6. See for exple A. J. Turner, "SSB genera-
tion", Wireless Worrd, September 1973, 453. tion", Wireless World, September 1973,453 .
7. J_{i} L. Linsley Hood, "Linear voltage controliled oscillator", Wireless World, No vember 1973,567.
Plessey Company L. Plessey Company Ltd., Plessey Semiconduc
tors, Cheney Manor, Swindon, Wilts.

NIEW PMODDUCTIS

WIRELESS WORLD SEPTEMBER 198
 a.c. The multimeter is battery
operated and portable. Bach-Simpson (UK) Ltd, Trenant Estate, ww305

Supply decoupling

d.i.p. sockets

Assembires comprising a dual-in-
line socket and integral powersupply decoupling capacitor (often the only discrete component re
quired with logic i.cs) can increas
 p.c.b. component packin densil
by 1% and cut tie cost of deoup-
ling by 50% in production appli-

Mounting the capacitor inside th socket gives supply decoupling as
close as possible to the i.c. pins and duces board assen ins an reduces board assembly time by eli-
minating insertion and soldering of a separate capacitor. Removing the
need for an external decoupling caneed for an external decoupling ca
pacitor gives exra boadd space pacitor rives extra board space, so
the sockets can be assembled closer together than usual. These sockets, om a division of the Brand-Rex company called Garry, come in
standard in-line spacings of $0.3,0.4$ or 0.6 in with capacitors ranging from 0.01 to 0.1 HF . Both wire-
wrap and solder-pin versions of the wrap and solder-pin versions of the
'Garry Quiet Socket' can be supplied. Hub Mail/ISA, 35 Mor-
issey. Blvd., Boston, MA 02125
USA. WW306

Power transistors Expansions in Motorola's highcall a "large upcoming high-powe control market'. Three n-p-p Dar-
lingtons, the MJ10050, MJ 1010 50,100 and 200 A and $V_{\text {ceo }}$ rating
of 850,450 and 250 V respectively
of 850,450 and 250 V respectively,
are designed for six-step motor are designed for six-step motor
speed torque control and low-frequency inverters. Maximum power
dissipation of each device (see dissipation of each device (see
photo) is 500 W . Two p-channel photo) is 500 W . Two p-channel
m.o.s.f.e.ts for 8 A continuous maximum drain current are the

MTM814 and MTM815 in TO-3 packages with breakdown voltages
of 80 and 100 V respectively. These of 80 and $100 V$ respectively. These e.ts have an on resigned for
0.4Ω at 4 A and are designed switching पpplications. Plasticpackaye versions are available.
Lastly, two high-speed switch-
mode Darlingtons are available with V ceo ratings of 750 V , the
MJ10024, and 850 V , MJ10024, and 850V, the MJ10025, ratings of 20 A and are designed for power control from 440 V lines. The nanufacturers plan to introduce
more such power devices in the more such power devices in the
near future. Motorola Ltd, York
Houre House, Empire Way, Wembley, Midd
WW307

Schottky diodes

A number of high-power Schottky
diodes have recently diodes have recently been an
nounced by nounced by International Rectifier.
First is the 85 HQ series. These 85 A diodes have DO- 5 type packages,
reverse leakage currents of 45 mA maximum at $125^{\circ} \mathrm{C}$ and can handle
mp to 1300 A pak on a single 50 Hz cycle. Reverse working maxithum voltages range from 30 to 45 V . Th
60 HQ series diodes, similar packaging and construction to the 85 HQ types, are rated at 60 A and
can be bbained with revers. can be obtained with reverse
working-voltages from 60 to 100 V
Three
diodes with current ratings of 12 20 and rating complete the introduc
10 A and tions. They are the 12 CTQ 20 CTQ , 30 CTQ and 10 T respes
tively. These devices, all 220 packages, can be supplied with reverse voltage ratings from 30 to 45V. International Rectifier, Hu wW308

Dummy load Thin-film resistor techniques have
been used by KDI Pyrofilm produce a miniature coaxial dummy load with power dissipatio
ratings of 20 W continuous, 200 W peak a a maximum heat-sink ten

$\mathrm{M}-20$, for frequencies from 0 to
18 GHz , has an impedance of 50 ohms and av.s.w.r. no greater than
1.35 over the bandwidt. 1.35 over the bandwidth. A stain-
less-steel SMA connector to MIL-
C -39012 specifications is used. As-C-39012 specifications is used. As-
pen Electronics Ltd, 2 Kildare Close, Eastcote, Ruislip, Middz wW309

Fibre-optic

 evaluation kit $\underset{\text { Fully assembled Fibre Optic }}{ }$ Evaluation Modules comprising a p.c.b., the main element of whichis a t.t.I. compatible transceiver is a t.t.l. compatible transceiver,
five metres of terminated fibre-
optic cable and an informate optic cable and an information
brochure are available from brochure are available from
Fairchild. These kits, when conFairchild. These kits, when con-
nected to a single 5 V supply, can be
$10 \mathrm{Mbit} / \mathrm{s}$. The brochure covers such topics as fibre-opac cheory,
fibre construction, transmission and coupling losses and, of course, the module's technical specificic-
tions. Each module costs $£ 31.72$ tions. Each module costs
excluding v.a.t. Fairchild Camera
Cal and Instrument (UK) Ltd, 230
High St, Potters Bar, Hed WW310

Pressure transducers Five transducers covering pressure ranges from 100 to $500016 /$ in 2
make up the Vernitech Model 9000 make up the Vernitech Model
series available through Computer Controls Ltd. These pressure transducers weigh under 90 g each
and have a thre--terminal and have a thre
tiometer type tiometer type output so that a
voltage can be obtained directly

which either increases or decreases with pressure rise. Potentiometer resistances of 1,2, and $5 \mathrm{k} \Omega$ are 1 avaiable , al capabe operating from -55° to $+85^{\circ} \mathrm{C}$. Linearity error and repeatability are quoted as 5% and 25% respectivily regaracosding to mea-
ture. Prices vary accordin suring range and resistance but average out at around $£ 50$ each in trols Ltd, 19 Buckingham St, London WC

Speech loudspeaker A small loudspeaker with mounting signed for specch reproduction by

Telecommunications Accessories Ldd. Frequency response, maxi| mum input power and input im- |
| :--- |
| pedance of the CS 100 are 500 to | pedance of the

$3500 \mathrm{~Hz}, 4 \mathrm{~W}$ and 4Ω respectively. Dimensions of the unit are $6.8 \times 6.8 \times 4.3 \mathrm{~cm}$. TelecommuniIndustrial Estate, Bandet Way, Thame, Oxon OX9 3SS.

WW312

Why not some jam

today?

The Bill to give birth to the Act that will cut the umbilical cord joining British Telecom to the rest of the Post Office is labouring its way through the normal ParLamentary processes.
But, even though, as far as I can make idenity, this lively youngster has already made its presence felt in more ways than one. Before we'd even had time to get used to the name or make sense of the new logo - part of which appears to be written in
Hebrew $-B T$, under the approving eye of its proud parent, Peter Benton, got itself involved in what history may call The Great Yellow Paint Controversy. And if ou know of a better way of anring ang T.d like to hear about it
BT's chairman Sir whom we can dub its putative grandfather, has played no mean role in putting his organization on the map of the public upported by snowstoms of releases from, supported by snowstorms of reeases rrom past achievements, told us about what is under way now and lifted the lid off some of the goodies we can expect in the future. we want a good service we're going to have to pay for it. Now, there's a surprise. In fairness, however, even the most cynically critical will admit that BT is in many respects showing a vitaity not usually asexpansion is certainly impressive, and the list of current and future innovations designed to help users get the best out of their telecommunications services $=$ albeit at a price - shows a remarkable awareness of specialized customer needs. Much, for capped. The hard of hearing, the infirm, amputes, even those with sight defects an now enjoy the benefits of the telephone with comparative ease. The rest of us are more efficient the other. And, doubtless, hese things will come to pass.
But, before BT gets too complacent about tomorrow's benefits, it should look It is for instance, quite unacceptable that BT should be congratulating itself while waiting lists for the 'phone remain. It's. ludicrous that we should be reminded we can dial direct to the Sultanate of Oman den establishing contact between Lon raught with difficulty as talking to the Moon. It is unsatisfactory that there should be such a high incidence of crossed lines, causing impatience and undermining elephone confidentiality. Above all, it is
insulting to our inteliligence that we should be exhorted, via the home screen, to make more use of the 'phone by an ill-conceived, utterly repellent bird. All credit to Sir Ge lease, gentle the stars. But lot down here on terra firma that needs 10 be done first - like shooting that foul fowl for a start.

A better break

for Prestel

Meanwhile, back at the Post Office, the ailure, in spite of intensive promotion, of Prestel to take off at the rate hoped for nust be causing a Com well. I would have thought that a facilit or selecting, at the touch of a button, ve-star restaurant, not more than a mil rhe Mr, whicheares a full symphon and serves truffles out of season, would have been snapped up like a pelican gulping down a sprat. One cannot help hinking that there is something wrong tant to fork out a few hundred pounds for the pleasure of spending an evening playing battleships, being psychoanalysed or taking part in a spelling bee. But there I go, mocking again
Perhaps the trouble lies in the average lriton 's inbuilt resistance to change. The the typewriter. They tittered at Hargreaves when he gave his Jenny her first pin. Caxton's printing press was a case for chuckle. But it wasn't amusement that kind of defence mechanism, an instinctive manning of the ramparts against the immient threat of something new that would ramatically alter the established way of became convinced of the enormous advan tages these innovations offered, they were welcomed with open arms.
The need for information has until now een met in two traditional ways: b concerned, or by consulting standard reerence works or other authoritative published data. What's the difference, then, between that technique and Prestel? Not all that much. One 'talks' to the computer tion you're after. Of course, even with its library of hundreds of thousands of pages, Prestel's range of information is still rela ively limited, compared with that found
is only a matter of time.
This notable British achievement dethan it is currently getting than it is currently getting - especially
from the business world which it is uniquely capable of serving.

New thinking

on the news

Still on the subject of information technology, I see that there's good news from he teletext front. One major set manufacurer reports that, followingl the 1981 Spring trade shows, their sales of teletext receivers are up by 250 per cent on last pany's pleasure - which didn't seem to me to be all that startling a revelation - at this trend and added that the multiples have come to realise just how wide the cope of the telext market is
cs held that an increase the law of econoproduct should, all things being equal, be ollowed, as night follows being equal, be followed, as night follows day, by a cut in
its price. Nowadays the trend is to up the its price. Nowadays the trend is to up the price and then point out how much bigger been no jump in sales. Nonetheless, if other setmakers have a similarly joyful tale oo tell, the great British public will be ooking for some movement in the price sector.
There is another angle to this. If teletext is now well and truly on the way to wider public acceptance, the broadcasters have a wonderful opportunity, if not a duty, to This particularly applies to the updating of general news.
Recently, being of an investigative, scientific turn of mind, iconducted a modest experiment. In our home, being the achieve at least a brief occupancy of the bathroom before it is taken over by the emale squatters with whom it is my lot to reside. This means that I can also listen to very day for a week. I carefully made a note of the bulletin headlines. Then, five hours later at midday, I switched on the office teletext set to see what more had happened in the great big world outside in he interim. On practically every one of as far as the transmitting end was concerned.
This is hardly a good advertisement for a service whose prime advantage is professed be the instant transmission of news as it viewers grows, there is going to be an insistent demand for a far better service than that. Now seems to be a good time for he broadcasters to start providing it

Quite simply the test way to make music ...

- COMPREHENSIVE INSTRUCTIONS WITH EVERY KIT KITS REALLY COMPLETE - EVEN SCREWS AND WIRE! ©

- SUPERIOR MATERIALS SUPERIOR FINISH © SUPERIOR SOUND -

wuild the TRANSEENVENT range from POWEFTRAN

- WORLD LEADERS IN ELECTRONIC KITS

- SOLDERING PRACTICE KIT - FREE on request with your first kit, to assist newcomers!

WIRELESS WORLD SEPTEMBER 1981
9

Which amplifier?
1.L.P. Amplifiers now come in three basic types, each of which is available with
or without heatsink. Having decided the sysstem you (models $\mathrm{HY} 30,60$ or 120 for example), super quality hi-fi with extra versatity
(MOS120, MOS200) or Disco/PA/Guitar (HD 120, HD 200 or HD 400 y
 amplifiers for bolting to a metal chassis will suit. With hosice such as this and a
brilliant new range of I.L.P. functional modules to choose from you now have brilliant new range of II.L.P. functional modules to choose from you now have
the chance to build the finest audio system ever offered to the constructor.

AMPLIFIER
WITH
HEAT SINK

BIPOLAR Standard, with heatsinks									Without heatsinks				
$\begin{array}{\|c\|c\|} \hline \text { mooes } \\ \text { number } \end{array}$	$\begin{array}{\|l\|l} \substack{\text { ourpur } \\ \text { pooter } \\ \text { Watat } \mathrm{man}} \\ \hline \end{array}$			$\begin{gathered} \text { supply } \\ \substack{\text { supfage } \\ \text { TrPmax }} \end{gathered}$	${ }_{\substack{\text { sliz } \\ \text { mm }}}$	$\begin{gathered} \mathbf{w r}_{\text {gn }} \\ \hline \end{gathered}$	Price	vat	$\begin{aligned} & \text { MODEL } \\ & \text { MUMBER } \end{aligned}$	$\begin{gathered} \mathrm{sing} \\ \mathrm{sin}_{\mathrm{m}} \mathrm{E} \end{gathered}$	${ }_{\substack{\text { wrs } \\ \text { mis }}}$	prics	vat
Hr3o,	$15 w 4.8 \Omega$	0	<0.006\%	$\pm 18 \pm 20$	$76 \times 68 \times 40$	240	87.29	${ }^{1} 1.09$					
Hro		0.015%	<0.006\%	$\pm 25 \pm 30$	$78 \times 68 \times 40$	240	ع8.33	11.25					
HY120	60w4.88	0.01\%	<0.006\%	$\pm 35+40$	$120 \times 788 \times 0$	410	E17.48	12.62	Hr120p	120×26840	215	115.50	${ }^{12} 23$
H2200	120w4.88	0.014	<0.006\%	± 45550	$120 \times 78 \times 50$	515	¢21.21	E3,18	Hr200p	$120 \times 26 \times 40$	215	[19.46	E2.77
HY400	240 m 48 B	0.01\%	<0.006\%	± 45550	120x788100	1025	${ }^{231.83}$	84.77	Hraoop	120026870	375	¢28.33	${ }_{\text {E4.25 }}$

HEAVY DUTY with heatsinks Without heatsinks

MOSFET Ultra-Fi, with haatsinks

Without heatsinks

 Ppotection: Able 1 In

MODEL NO FOR USE WITH P- PRICE			
PSU30	$\pm 15 \mathrm{~V}$ combinations of HY66/66 series to		
	a maximum of 100mA or one HY67 The following will ${ }^{\text {a }}$ (so drive the HY6/66	¢4.50	${ }^{50.68}$
	series except HY67 which requires the PSU30.		
PSU36	1 or 2 HY30		
PSU50	1 or 2 HY60	E10.94	${ }_{\text {E1. }}^{1.64}$
PSU60		£13.04	${ }_{\text {E1.96 }}$
PsU65	$1 \times$ MOS $12011 \times$ MOS 120 P	£13.32	${ }_{\text {E } 2.00}$
${ }^{\text {PPSU70 }}$	1 or 2 HY 120/HY 120P/HD 120,HD 120p	${ }_{\text {£ } 15.92}$	${ }_{\text {E22, }}$
${ }^{\text {PSUL75 }}$	1 or 2 MOS 120/MOS 120 P	£16.20	${ }_{\text {E2. } 23}$
Psu90	1×HY 200/HY 2000;HD 200 HD 200 P	${ }^{\text {E 16.20 }}$	${ }_{\text {E2. } 23}$
PSU180		£16.32	£2.45
PS	$1 \times \mathrm{HY} 400 / 1 \times \mathrm{HY} 400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HD} 400 \mathrm{P}$	£21.34	¢3.20
PSU		52146	

FP480 BRICIING UNIT FOR
ODUBIMG POWER

Pine: $84.79+72 p$. .a.t.

Which modules?
In launching eighteen different units all within amazingly compact cases to help make
complete aucio systems using I.L.P. power amplifiers, we bring the most exciting, the omplete audio systems using I.L.P. power amplifiers, we bring the most exciti experience. Study the list - see how these modules will combine to almost any audio
project you fancy - and remember all. L. .P. modules are compatible with each other,
 measure $90 \times 2 \times 40$
quible guarantee.

MODEL No	mODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT	
HY6	MONO PREAMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	¢6.44	¢0.97	
HY7	MONO MIXER	To mix eight signals into one	10 mA	£5.15	£0.77	The modules are encapsulated and include latest desigg high quality clip on edge connectors.
HY8	Stereo mixer	Two channels, each mixing five signals into one	10 mA	¢6. 25	¢0.94	
HY9	Stereo pre amp	Two channels mag. Cartridge/ Mic + Volume	10 mA	¢6.70	£ 1.01	
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	£7.05	£1.06	
*HY12	MONO PREAMP	To mix four signals into one + Bass/Mid-range/Treble	10 mA	¢6.70	£1.01	For easy mounting we recommend B6 Mounting board for modules HY6 - HY13$7 \mathrm{Bp}+12$ р. V.A.
*HY13	MONO VUMETER	Programmable gain/LED overload driver	10 mA	¢5.95	¢0.8	
HY66	Stereo pre amp	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	E1.83	
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 \mathrm{~K} \Omega$	80 mA	£ 12.35	¢1.85	B66 Mounting board for HY66 - HY77
HY68	STEREO MIXER	Two channels, each mixing ten signals into one	20 mA	¢7.95	£1.19	
нү69	mono Preamp	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£ 10.45	£1.57	All I.L.P. modules include full connection data.
HY71	DUUAL STEREO PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£1.61	
*HY72	VOICE OPERATED STEREO FADER	Depth/Delay	20 mA	£13.10	E1.97	
*HY73	guitar preamp	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	f12.25	£1.84	
+HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1.72	
+HY75	Stereo pre amp	Two channels, each mixing four signals into one + Bass/Mid-range/Treble	20 mA	£ 10.75	£1.61	
+HY76	STEREO SWITCH MATRIX	Two channels, each switching one of four signals into one	20 mA	Tobeannuunced		I.L.P. Products are of British
+HY77	STEREO VU METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9.25	¢1.39	Design and Manufacture.

ALL WITH ILP'S 5 YEAR NO OUPBLE GURAMTEE

TO ORDER USING OUR
FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate
Sheet of paper, quoting the name and date of this sournal
By sending your order to our address as shown at
botlom of the pase opposite, with
RREEPOST
clear

WW - 062 FOR FURTHER DETAILS

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

	Oscilloscope waveform store-Octob
(tay	
Amplification system-Oct. 1979 - 3 preamp 1 powerampDigital capacitance meter-Aprit $1480-2 \mathrm{~s} . \quad \mathbf{£ 4 . 2 0}$ eachE7.40	
$\underset{\substack{\text { E151.50.50 } \\ \text { Exi.50 }}}{ }$	
Floating-bridge power amp- Oct. 1980	
Motele	
Airmiil add 20%, Europe add 10%, Insurance 10%,	
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W	

Wanld

Dumbisiness be mocponitatlewith all ofice complio?

Here is

 some firee advicePerhaps you are wondering if it would improve your cost-effectiveness. Or maybe you've installed a basic system and plan to enlarge it. Office Systems is designed for you.
It's a brand-new glossy magazine for directors It's a brand-new glossy magazine for directors and managers-and we'll send it to you free each month if you can show you need it.

It will help you avoid expensive mistakes. It will help you solve business problems. and software for your particular needs. and software for your particular needs And it will be written in clear, uncluttered English. Nojargon.

To see if Office Systems is meant for you, simply contact Office Systems, Controlled Circulation Department, Oakfield House, Sussex RH163BR Haywa FIRST ISSUE:

WIRELESS WORLD SEPTEMBER 1981
95

3-PHASE VARIABLE VOLTAGE TRANSFORMERS

FROM STOCK AT PRICES THAT DEFY COMPETITION! AC GEARED MOTORS DC MOTORS
MICROSWITCHES RELAYS
RED SWITCHES PROGRAMM
TIMERS ACCAPACITORS
STROBE KITS REED SWIDCHES
SOLENOIDS

High performance curve.

The Professional Choice

Amcron 붕

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and
reliable amplifier. Their reputation amongst professional users throughout industry, has made the name of AMCRON synonymous with power amplification. For power you can depend on - choose AMCRON, the professional choice.
For further details contact the UK Industrial distributor:
ancores

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON
ESSEX CM9 7NB ENGLAND ESSEX CM9 7 NB ENGLAND
Tel. MALDON $(0621) 56480$
TELEX NO. 995855
ww - 086 FOR FURTHER DETAILS

TEST INSTRUMENTS

thandar	Mains Adaptors:
DIGITAL MULTIMETERS (LED):	PDM 35. DM450, PFM 200. E4.95
${ }_{\text {OM350 }}$	
DIGITAL MULTIMETER	Rechargeable Bait
	סM350,
353.E84.00 TM 354	
PFM200 £49.80 TFO40 £110.00	
00¢145.00	
PAE-SCALER: ${ }^{\text {OSCLILSO}}$	
PULSE GEN: TG105.......... 885.00	Sprung HookTrimmer Pack
FUNCTION GENERAT	(for SC110)....................... $\mathbf{E 2 . 5 0}$
DM235, DM350, DM450......... 77.70	Bench instrument Rack.........19.95
0	
TM353, TFO40,	
200,TG105, TG 100.......... 5.9 .95	AT on all prices
	ndar orders £1 p\&p

SAFGAN SCOPES
 (All prices plus 15\% VAT)

DAROM SUPPLIES 4SANDY LANE. STOCKTONHATH
WARANGAON WA LAY CHEATHE
Telephone: 109251 G7764
WW - 022 FOR FURTHER DETAILS
RECHARGEABLE BATTERIES

PRIVATE \& TRADE ENQUIRIES WELCOME Full range available to replace 1.5 volt dry cells and 9 volt
PP type batteries, SAE for lists and prices. $£ 1.45$ for PP type batteries, SAE for lists, and prices. $£ 1.4 \mathrm{El}$
booklet, "Nickel Cadmium Power," plus catalague.
\star New sealed lead range now available \star Write or call at: SANDWELL PLANT LTD.
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands, 021-354 9764

WIRELESS WORLD SEPTEMBER 1981
(G.T. Ti \mathbb{E} [
 $\underset{\text { FARNELL }}{\text { ST15: }}$ 210/240V IP. Dual Op. $12-17 \mathrm{v}$ per rail at \quad Telex 291429 01-994 6275

FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at
100 mA . Remote sensing, current limit protection. 1164×130
$\times 38 \mathrm{~m})$ $\times 38$ mm). with manual. fil.
FARNELL $7 / 3$ SC $: 120 / 240 \mathrm{~V}$ IP.
 15V at 2 A or 30 V at 1 A . $£ 15$ ea.
COUTANT OA2: Op. amp psu, $120 / 24 \mathrm{VIP}$. Dual Op . $12-15 \mathrm{~V}$
at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm})$. $£ 12$ ea. or 2 for $£ 22$. bRANDENBURG BRANDENBURG Photomultiplier
Metered, current limit protection.
374 300V-1KV at 5 mA . 374300 V -1 KV at 5 mA
77500 V -1K5 at 6 m hoto multiplier tubes availab All models $£ 40$. ullard 35p ea., 3,300 MFD 40 v Mullard 35 p ea. $10 \mathrm{MF} / 63 \mathrm{~V}$ WIMA polvester $10 \% 40 \mathrm{p}$ ea. Large quantities available. ELECTROLYTIC CAPACITORS. Very large stockholding.
Mostly ITN EN1212m EN1235
Plypes. Mleasty send for our electrolytic tlist, 470/25R, 4700/25A, 470/50A, 22
CAPACITORS-DISC CERAMIC

 YE HEAD CLEANING CAS- discount on quantity. One SETTES. Brand new or
boxed, sopea. CASSETTEDECKS: With steeo heads, mechanically-
complete, but with no electronics. Smart black Hodern finish. ${ }^{\text {E5.00 }}$ OUANTTTIES $\begin{aligned} & \text { available } \\ & 0.11 / 16 \mathrm{~V} \text { disc. ceramic but, }\end{aligned}$ U.1u/16v disc. ceramic but,
with no electronics. Smart
biack modern finish. $£ 5.00$ black modern finish.
PIHER PRESETS
E5.00 Very large stocks, PT10 PT15 enclosed types. Please
send for our preset list. Most
values

HEAVY DUTY
KEYSWITCHES 2P KEYSW
2P 10 A 00 VC
880 VAC 10 P 12 A 600V AC
$49 \mathrm{~mm} \square$ Fascia. We have the following quantities of low profile Gob
PLATED I.C. sockets manu-
 This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables,
etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT
(and P\&P). Minimum Mail Order $£ 5+P \& P+$ VAT. Government departments, schools, colleges, trade and export welcome.

By Micro Consultants Ltad. 50Ω cable drive op. Linearity
0.25%, max. 0.125% typ. Setting time: $2 V$ step 70 nS typ 2 MV step 50 n . gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8. TRANSFORMERS:

5	STRIP CABLE,
VV100mA	ted pair $£ 130.00$
8 8-0-8V 400mA $£ 1.25$	box, discount on quantity
	We have large quantiti
11 V A, 22V1A $£ 2.00$	
12 V 130 mA 80p	Pri
12V 1A5 ¢ ${ }^{1}$	good condition
0-12,0-1296VA \quad ¢8.00	
15V 100 mA	SPECIAL OFFER: 0.1% TOL
17 V 300 mA A £1.50	resistors. The following
20-0.20 400mA ¢1.80	values
${ }^{22-0.2250 m A ~ . ~} £ 1.00$	
24 V 100 mA ¢ $\mathrm{El}^{1.00}$	
24 V 250 mA ¢1	
30-25-0-25-30, 1A6 $\mathrm{EC6}^{6.00}$	
0-2-4-6-8-10 5A £6.00	26×3
BURROWS ${ }^{-}$CONNECTOR (LH) 1701, 41c, 20p; Burrows Connector (RH) 1201 , 4LC 25p. Large quantities avalable.	Alum
	ALUMINIUM BOX
	AB7 $134 \times 64 \times 38 \mathrm{~mm}$
	AB8 $102 \times 102 \times 38$
	AB9 $102 \times 57 \times 38 \mathrm{~mm}$
METWAY P.C. CONNECTOR, 3-way type P95/3DS, 10p ea.	AB
	AB
ITT TEMPKIT Electronic thermostat ZBI.5669. Brand new.	AB13 $152 \times 102 \times 51 \mathrm{~m}$
	AB14 178
	AB
4-WAY DPDT AND 5-WAY	A
	AB17 $254 \times 14 \times 76 \mathrm{~mm}$ f 2
G Components and	AB18 305
Gold contacts 80p ea. Brand new and boxed.	AB19 $305 \times 203 \times 76 \mathrm{~mm}$ £2.90
BUZZERS, 6 v and 12 v , 50p ea.	Luminu
	RB1 $152 \times 114 \times 64 \mathrm{~mm}$ £1
	RB2
	RB3 $229 \times 127 \times 89 \mathrm{~m}$
	RB4 $279 \times 152 \times 102 \mathrm{~mm}$
SPECIAL OFFER. Mini-toggle switch by C. \& K., 3 Pc/o. Long dolly or short, 50 p ea.	RB5 $279 \times 190 \times 114 \mathrm{~mm}$ ¢3.
	ES
	$75 \times 50 \times 25 \mathrm{~m}$
RESISTORS: Over 2 million in stock at tast count.CARBON FLLM$1 / 4 W$$5 \%$ range 1 RO -12 M	
	$115 \times 75 \times 30 \mathrm{~mm}$ $110 \times 90 \times 45 \mathrm{~mm}$ 1
	$170 \times 100 \times 50 \mathrm{~mm}$ ¢
	200 $120 \times 80 \mathrm{~mm}$ ¢ 3.55
METAL OXIDE/FILM: Most values in E24 range, $1 / 4-20.1 \%$ tolerance available. WIRE WOUND: ORI-100K 3 200 W . A selection of mains droppers available. Good power types.	16A 250V AC ILLUMINAT
	ROCKE
	mber. $14 \times 30 \mathrm{~mm}$ rec
	ular snap-intype. ${ }^{\text {LICON ILUMINSTED }}$ (
	01-800 Re
	2PCO Latching
ROTARY SWITCHES Over 30 different types availfrom 45p	${ }^{2 P C O}$ Momenta
	Lenses available in red or
miniature LATCHING SWITCHES, 3 Pc/o by Micro a division of Honeywell Ltd., 3 amp 250 v	
	IRO-100K by A.B.i. Colvern,
	etc. $1 \frac{1}{2}$ W 40p, $3 \mathrm{~W} \mathbf{6 0 p}$, 5 W
3 amp 250 v a.c. Part No. 8N3011, £1 ea. Miniature	
momentary 1 Pc/o switch by Micro, 3 amp 250v A.C. Part	
No. 8N1021.	
WHISPER FANS 4, 5 Type number WR2A1. 115 voit, $50 / 50 \mathrm{HZ} 7$ watt. Brand new, $\mathbf{f 4}$ each.	
	background. Brand
o have excellent stocks of semiconductors, hardware, cables, ogue, phone or visit our shop. All prices are exclusive of VAT	
ogue, phone or visit our shop. All prices are exclusive of VAT departments, schools, colleges, trade and export welcome.	

Central Semi~ Conductors

Production problems?
We guarantee prime parts \& ex-stock delivery on all common I.C.'s
Here is part of our list
Z80A $-£ 4.50$
3085A $-£ 4.50$
$8156-£ 5.50$
8255 A
8251 A $\mathbf{-}^{\mathbf{~}} \mathrm{£} 3.20$
2716 - £3.20
200 ns 4164 (64 K Dynamic) $£ 14.00$!!

01-624 8581

WW - 084 FOR FURTHER DETALLS

BUILD YOUR OWN

 QUARTZ LOCKED DIRECT DRIVE TURNTABLE

Complete Quartz Locked Motor, Die-Cast Turntable and Wir ng circuit, £19+ V.A.T. £2. 85 at 15% including postage and
packing. This offer applies to U.K. and Northern Ireland. For quantity discount and export please ask for quote. Per
sonal caliers are welcome. lenclose cheque, postal order, Access, Barclaycard

NAM
ADDRESS

HIFI \& TV REPAIR CO ww - 081 FOR FURTHER DETAILS

Access we welcome Barclaycard VISA.

MEMORIES

Please add 50 pence for carriage All prices EXCLUDE VAT Please send s.a.e. for full list.

STRUTT LTD.

3d BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL'19 OJF Tel. Tavistock (0822) 5439/5548. Telex: 45263

WW - 089 FOR FURTHER DETALS

reprints
 If you are interested in a particular article\%

 special Feature or advertisement published in this issue of
WIRELESS WORLD

why not take advantage of our reprint service. Reprints can be secured at reasonable cost to your own specifications providing an attractive
and valuable addition to your promotional material. (Minimum order 250.)
For further details contact
Martin Bloomfield, IPC Electrical-Electronic Press td. Phone $01-6613036$ or simply complete
and return the form below.

To Martin Bloomfield, Reprints Department Quadrant House, The Quadrant
Sutton, Surrey, SM2 5AS
tam interested in copies of the article advertisement headed featured in
on page(s)
WIRELESS WORLD
Please send mé full details of your reprint service by
return of post.
Name
Address

IRELESS WORLD SEPTEMAR

TV TUBE REBUILDING

Faircrest Engineering Ltd, manufacture a comprehensive
range of equipment for processing all types of picture tubes range of equipment for process ing all typees of picture tubes,
colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an
excellent spares service backed by a strong technical team. thin sur in Full training co
requirements.
For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2XX
$01-6841422 / 01-6840246$

Barrie Electronics Lid.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8

WW - 036 FOR FURTHER DETALLS

The new new name in HinearI/Cs

Anolog Systems, the fast growing linear 1/C company
of Arizona whose products are ovacoilable fiom Poscall ofter a range of high pertormance linear infegrated circuits. Super Low Noise Amplifiers bondwidth.
12.5 mW dissipation
MA $3223.5 n \mathrm{~V} / \mathrm{VHz}$ innut noise,
50 MHz goin bandwidth product.
 LF L 357, OP - 17 . L- 356 , 11071

DO YOU GET STUCK IN THE BATHROOM WHEN THE PHONE RINGS? NOT WITH A CORDLESS TELEPHONE YOU WON'T!

The model 17005 cordless electronic telephone operates just like a standard telephone however, proviedes much more mobil-
ity than phones with even the longest cord. The system consists
of one base unit and one portable ity than phones with even the longest cord. The system consist
of one base unit and one portable unit. The effective commu-
nication range between base and portable units is 700 feet (200 nication range between base and portable units is 700 feet (200
metres), , \mathbf{t} this range varies depending on environmental con
ditions, buidding ronstruct metres), but this range varies depending on envirnmenta con
ditions, building construction, location, etc. Please allow 28 days for delivery
Ring the sales office for quantity

$$
\begin{aligned}
& \text { STRUTT LTD. } \\
& \text { 3d Barley Market Street } \begin{array}{c}
\text { Tavistock } \\
\text { Devoni, PL19 } 0 . J F
\end{array}
\end{aligned}
$$

 ww - 045 FOR FURTHER DETALLS

$$
\begin{aligned}
& \text { Devon, PL19 0.JF } \\
& \text { Tel: Tavistock 0822.-5247/5865 }
\end{aligned}
$$

Telex: 45263

As the range of equipment costing less than $£ 300$ increases, so too does the

- Review of the exciting VIC-20. Commodore's bid for the home computer $\begin{aligned} & \text { market, priced at only } £ 189 .\end{aligned}$
- How good are you at chess? A survey of chess games and a program whic
- Acorn Atom Graphics. Introduction to the advanced graphics facilities on the
- Single board computers as controllers. How a micro computer con be used contro equipment such as lights, thermostats and burglar alarms Also in this big value issue: what next from Clive Sinclar? Computer Club - your
club page. Colculator news, reviews and programs and a competition which gives you a chance to win the fabulous new VIC-20 computer
All this for only 50 p. Why not ask your newsagent to put in a regular arder? O

To: Marketing Department, Room 316 IPC Electrical-Electronic Press Ltd
Quadrant House, The Quadrant, Sution, Surrey SM2 5 AS.
 Please send me 12 issues of Your Computer starting with the following
issue: (Tick one box only to show when subscription should start) June-July $81 \square$ August-September $81 \square \quad$ October $81 \square$ Ienclose a cheque/P.O. for $£ \rightarrow$ UK/ $£ 12$ Overseas, payable to
IPC Business Press Ltd.

Name

Address

U.K. RETURN OF POST MAIL ORDER SERVICE. ALSO WORLDWIDE EXPORT SERVICE

NEW baker Star sound high power full range quality loudspeakers
produced to give exceptional reproduction. Ideal for electric guitars, organs, public
address or
discotheoues Thic diaress or
discontheous. These
lousteakere
recommenden

BAKER 150 WATT MIXER/POWER AMPLIFIER $£ 89$ Postif
 ASPECS LOUDSPEAKERS

RADIO COMPONENT SPECIALISTS

WIRELESS WORLD SEPTEMBER 1981

NEW

ELECTRONIC COMPONENT CATALOGUE (with prices)
from
STOTRON LTD.

PRODUCTS

\star SWITCHES (miniature, toggle, p.c.b., pushbutton, rocker, slide, thumbwheel, keyboard ifluminated)
\star BATTERIES (alkaline manganese, rechargeBATTERY CHARGER

* BATTERY CHARGERS \& HOLDERS
\star ALARMS \& BUZZERS
MAINS FILTERS
CONNECTORS \star KEYBOARDS
INDICATOR LIGHTS $\quad \star$ KNOBS
STOTRON
72 BLACKHEATH ROAD GREENWICH
LONDON, SE10 BDA 01-691 2031

WIMAT RRIERERFORMANGE

$\mathrm{DC}-15 \mathrm{MHz}$ Bandwidth

TYPE 3030
Triggered and
automatic sweep
5 mV /div sensitivity Triggering to 20 MHz
swoep speods
Rectangular CRT $\begin{aligned} & \text { and low low voltage } \\ & \text { suplies }\end{aligned}$
Compact and
lightweight
.
lightweight
BUILT-IN
COMPONENT TESTER
E745*

TYPE 3131
DC- 15 MHz
Bandwidth
200ns/div to $0.2 \mathrm{~s} /$ div
timebase
5 mV /div sensitivit
on both channels
on both channels
Algobraic addition
and subrection
Algabraic addition
and subtraction
X - Y Operation
bUILT-IN BUILT-IN riggering to 36 MH Z Modulation 10×8 div display TV Frame trigger

ع230*
3030 and 3131 just two models in the range, reflect the Crotech philosophy of buildingin extra performance. Both scopes offer the full specification you expect and demand. But now the extra: both feature a
Component Tester which displays the characteristics of active and passive components either in or out of circuit. This benefit extends both instruments bey-
ond the limits of a normal ond the limits of a normal scope. The price?, well that speaks for itseif.
For details telephone Reading (0734) 866945 and ask for our full catalogue.

Crotech Instruments Limited 5 Nimod Wav, Elaga fooa, Reading, Berks. Rg2 oes.
WW - 048 FOR FURTHER DETALLS

Better communication is the key to efficiency so visit
 The Virwifirn Exhibiling
 The Viewdata Exhibition For Professional \& Business Peor you the businessman the ideal
 WEST CENTRE HOTEL,LILLLIE ROAD LONDON
 OPEN NEW DOORS FOR THE EFFICIENT DEVELOPMENT OF YOUR BUSINESS Entrance to the exhibition is FREE by registration So save time at the door.
 WRITE FOR YOUR ADVANCE TICKETS TO Viewdata Tickets, IPCExhibitions Ltd, Surrey House. 1 Throwley Way
 Please note all applications for tickets must be received by October 26 . 1981 to allow time for processing.

 extract the latest information at the touch of a button.Come and see why the most important
companies in Britain are now heavily involved in viewdata. Benefit from the vast experience of exhibitors like British Telecom, GEC, Philips,
Granada, Rediffusion, Radio Rentals, Visionhi ITT, Bishopsgate, Centronics, Viewdata Business Systems and many others who are there to . of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below
overseas subscription

mamibinac

Musimmion

 and

\qquad

Postage

Do not affix Postage Stamps if posted in
Gt Britain, Channel Islands N Ireland or the Isle of Man

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD Reader Enquiry Servic
429 Brighton Road
South Croydon
Surrey CR2 9PS

Enquiry S Readers
 | WW | Ww | WW |
| :---: | :---: | :---: |
| ww | nw. | ww |
| ww | nw. | ww |
| ww | ww. | ww |
| ww. | ww. | ww |
| ww. | ww. | ww |
| ww. | nw. | |
| ww. | ww. | Ww |
| nw. | ww. | ww. |
| ww. | ww. | ww: |
| | ww. | |
| ww. | | ww. |
| ww. | | |
| | | |
| WW. | ww. | Ww |
 Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

> WIRELESS WORLD Reader Enquiry Service 429 Brighton Road South Croydon Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, September 1981 Ww 169

Name

Address
\qquad
\qquad

Quick turn round on estimates/repairs

Large stocks of new AVOMETERS

Avo Sales and Service

Farnell

 InternationalFarnell International Instruments Ltd., Sandbeck Way, Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist
$\square \square \square \square \square \square \square \square$ Vital for Video

The 74D-7.OV is a dual trace 7.0 MHz oscilloscope with active TV sync separator
and line selector specifically designed for
the servicing and alignment of video cassette and disc recorders, colour television and video games.

- ActiveTV sync separator.
$10 \mathrm{~cm} \times 8 \mathrm{~cm}$.display.
Add and invert facility. Probe compensation line selector
Line selector
2 mV sensitivity on both channels
Push button X-Y.
Complete with probes.

At a price of $£ 29000+V A^{T}$ Carriage paid UK mainland Ensures continued British leadersthip in the low cost high performance oscilloscope market.

米 An Independent British Company 糍 ww-042 FOR FURTHER DETALLS

SPECIAL INTRODUCTORY OFFER The manufacturers will send 2 PACKS, post free, $£ 25+$ VAT the single development pack costs only $£ 15$ + VAT, p\&p. To acceppt this offer simpll Circle No. 87 on reader service card. For 4 page
Tider only circle No. 88 .

Kit Case System

Invaluable for prototype, pre-procuction, experimental and design projects in the electronics, electrical, instrumentation,
control, general engineering and other industries.

This KIT CASE SYSTEM, is a new concept offering modular design flexibility, self assembly, extreme versatility, providing a
wide variety of shapes and sizes of cases to be built. The basic ystem builds 12 sizes of cases in 36 combinations. Two packs

The high quality kits are produced in high impact, flame retardant A.B.S

Special features incluje nylon insulating pillars, precision moulded long tracking mating faces, P.C.B. mounting grooves
and many more to facilitate ease of fitting P.C.B.S, facias, dummy front panels, rigidity and rapid assembly.

Cobb-Slater Instrument Company are specialists in precision injection moulding. Consultation is freely available.

COBB-SLATER INSTRUMENT CO. LTD. Cosim Works, Darley Dale, MATLOCK.
Derbyshire, , DE4 2GG.
Tel: Darley Dale 2344.

WIRELESS WORLD SEPTEMBER 1981

- Power output is quoted in wRMS and is given for two m
one module per PSU O 1 If 4 Sing a stailised power supply

Appointments

Advertisements Friday, September 4 for October issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre ($\min .3 \mathrm{~cm}$). LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable).
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box BOX NUMBERS: Ł1.50 extra. (Replies should be addressed to the Box
advertisement, clo Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.) advertisement, clo Quadrant House, The Quadrant, Sutton, S
PHONE: OPHELIA SMITH, 01-661 3033(DIRECT LINE)
Cheques and Postal Orders payable to IPC Business Press Ltd.

ALWAYS AHEAD WITH THE BEST!

E5,000: 15 5,000

PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL cessors: Flight Simulators: ATE: Electro-Medical: Teletext Data-Comms: Automation: Microwave?
Where does your skill and interest lie
Design? Test? Service Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry:
 electronic computer ami management appointments lumited

SENIOR ELECTRONICS
 TECHNICIAN
 GRADE MPT III

$$
\begin{aligned}
& \text { To take charge of an Electronic and Bio- } \\
& \text { Medical Department serving the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Do take charge of an Electronic and B } \\
& \text { Medical Department serving the } \\
& \text { Wolvarnatorito Area Health Authority }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wolverham } \\
& \text { hospitals. } \\
& \text { The app }
\end{aligned}
$$

The applicant must be fully experienced in
the electronics field and experience in medical the electronics field and experience in
engineering would be an advantage.
Aplicants must hold a minimum Applicants must hold a minimum
qualification of ONC in electronics or qualification of NC lectronics or
equivalent.
Sale Salary is f 5223 rising to f 6750 per annum.
New entrants into the Health Service will Nowenence at the beginning of the salary scale. An application ofrm and job description may
be obtained from Mr H Gerrin, Area Personne be obtained from Mr H G Perrin, Area Personn
Officer, Area Administrative Offices,
Wolvertan Officer, Area Administrative Offices,
Wolverhampton Area Health Authority, New
Cross Hospital, Wolverhampton WV1000P.
 Mr J A Simpson, Area Engineer, New Cross
Hospital. Telenhone Wolverhampton 732255
Ext. 2735 . W

WOLVERHAMPTON
Area Health Authority

TECHNICIAN (MOBILE RADIO) to $£ 8500$ Western Home Counties

This subsidiary of a world. wide group markets a diverse range
of electrical and electronic product throughout the UK. Thyy are looking for a Teochnician to inntaul and serviee a range
of radio telephone products. The successful candid ate will be
 Ina also be called upon to develop a contribution to the cus
raining programme. Appiications are invited from candidates qualified by
experience of installation and service work in the mobile ra experience of instaluation and service work in the mobilie radio
elephone field and with the ability to develop as a member of dy nuamic tearn
Candildates
hese duties. a company car being provided. The benefits packege includes a contributory pen
life assuranee plus generous relocation assistance.
Please wryte
 Thumaceander Gerrands
35 Chapel Side, Moscow Rd., W2 4LJ. Tel: 01.727348

Railway Telecommunications Projects Management

c. $£ 10,000+$ Car

The world-wide revival of interest in rail transpor and mass-transit systems is providing the greatestever challenge and opportunity for companies manuTo meet this challenge it is control equipment telecommunications techniques to established and proven railway control systems.
Our British client, an internationally respected leader in this field is therefore looking for an engineer conversant with the latest developments in telecom-
munications and thoroughly familiar with present and potential applications and sources of supply. Working as Project Manager within a multidisciplinary team of engineers the person appointed
will be able to identify and recommend suppliers and
Austin
Knight Selection

UNIVERSITY OF OXFORD INORGANIC CHEMISTRY LABORATORY SHELL
EXPERIMENTAL OFFICER

Applications are invited for the above post established by
Shell Research Limited for 5 years, with possibility for re newal to an established grade 1 A post, to provide instru mentation services to the Inorganic Chemistry Laboratory. The instrumental needs of the department involve mainten-
ance, calibration and alignment, design and deveiopment,
and computer interfacing of an increasing variety of instru-
 electronics, computer technology, vacuum technology,
electron guns and ion sources, magnetometers, and the
techno echniques of high temperature and high pressure are all
relevant. The post offers participation in the development of modern instrumentation in a department active in research
in solid-state, molecular-complexes.organomeatilic, bioinor
ganic electro, photo., photoelectro-, and surfall ganic, electro-, photo-, photoelectro-, and surface chemistry
utiiling a wide range of techniaues. The scope of the pos
will be defined by the measure of the person who occupies it A background in electronic engineering, physics, or prysica
chemistry would be appropriate. Salary in the range $£ 6,070$ to $£ 10,575$.
Applications stating age, qualifications, present salary, and experience aung with sent to the Administrator, Inorganii Chemistry Laboratory. South Parks Road, Oxford OX1 30R
contractors, prepare tender estimates, liaise with lients and act as project co-ordinator for all telecommunications aspects of a contract through to The ideal applicant would be a young qualified engineer, with a genuine interest in railways and a good kn
Career progression is assured for the person who makes the right contribution in this stimulating new area of technological development.
A ull range of staff benefits in he chance to live in an extremely pleasant part of England which offers a wide range of educational, cultural and recreational activities Please send written applications, giving full career the consultant advising on the in confidence, to AK Selection, Ref 71/JS, Austin Knight Limited, London W1A 1DS.

SERVICE/CALIBRATION TECHNICIAN

Electronic Brokers Ltd are Europe's leading suppliers of refurbished Test and Computer equipment. Due to internal promotion we have a position available in our service department for an experienced Technician. The position requires a thorough knowledge of repair
and calibration of the leading Test equipment manufacturers, e.g. Tektronix, Hewlett Packard, Fluke and Marconi.
The successful applicant would join a team of technicians working in a friendly environment but supervision.
This is an opportunity to join a small expanding company in a position that provides both varied and interesting work. The company is situated within easy reach of King s Cross and St. Pancras Stations and an candidate.
For further details please contact
Mike Jones
ELECTRONIC BROKERS LIMITED
61/65 King's Cross Road
Telephone: 01-278 3461, Ext 35

Appointments
 118

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary evels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

JJ ELECTROTECHNICAL PERSONNEL SERVICES, 2 Mount Ephraim, Tunbridge Wells,
Kent. TN4 8AS.
Kent. INA 8 AS.
Tel: 089239388 TJB

Please send me a TJB Appointments Registration form:

Name .
Address.

䖮

BIRKBECK COLLEGE
 University of London

Part-time Evening Deyree
Courses in Physics October 1981
Birkbeck offers evening courses leading to B.A. and B.SC.
Honours degrees and higher degrees of the University of Honours degrees and higher degrees of the University
London. Courses are designed so that students may continue to ean their living during the daytime. Interviews for courses
in Physics (to commence in October 1981) will be held from in Physics to c
June onwards:

B.Sc. Physics

A.comprehensive course in theoretical and experimental
Physics covering all the major fields. Physics is also availab

Physics covering all the major fields. Physics is also availab
with Mathematics or Chemistry for a Combined Sciences
with Mat
degree.
M.Sc. Nuclear and Particle Physics A two-year course, two evenings a wee
M.Sc. Solid State Physics and Devices Starting October, 1982; a new two-year course on the theory of the electronic properties of solids, wit
applications to semiconductor devices.
M.Phil./Ph.D. degrees

Part-time and full-time research students may be accepted in
the following fields:
(a) Theoretical: Fundamental and Nuclear Physics
(b) Experimental: Atomic, High Energy, and Solid State

Further information and application forms may be obtained
from the Assistant Registrar, Birkbeck College, Malet Street,
 Lont of office hours), or trom the Ph
College (Tel. $01-580622$, ext. 289).

Laboratory Technicians

Put your experience to the test.

That's the challenge we're throwing open to but experience and enthusiasm are essential and qualified, experienced men and women who
want to use their skills in a stimulating enwant to use their skills in a stimulating en-
vironmentonawidevarietyofsophisticated
vironmenton.
In the BBC's Equipment Department based at Chiswick, West London - we manufacture prototypes and small batches of hightechnologyequipment
for use in broadcasting. The work is for use in broadcasting. The work is
very varied -it's not just productionand involves testing, diagnostic fault finding and calibration of digital, analogue and signal proce sing equipment. Your qualifications Certificate or equivalent
 inspeetio up well to close atractive - they're very Higher TEC you hold a posts with salaries ranging available.
Giveusaringor write if you want and an application form to:P.W.Green, BBC, Avenue
House, Power Rd., House, Power Rd.,
London W4 5PG. (Tel: 01-994 8541 Ext: 232).

BBG

Senior Television Engineer

£8862-£9363 p.a. inc.
An opportunity to join a specialist team supporting teaching using the
television facilities.
Based at Cockfosters, North London, you
responsibilities would include the design, installation and maintenance of all systems and the supervision and
training of technical operations staff tra in the - operation of television studio equipment, with particula emphasis on colour systems at professional broadcasting level, is esse
appropriate qualifications. appropriate qualifications.
Write quoting ref. L320D for further details and an application form, posting first class to: Personnel Office Middlesex Polytechnic, 114 Chase
5PN. Closing date: September 1.

Middlesex Polytechnic

\square CAPITAL

CAPITAL HOUSE
STREET W1P 1 HG
LONDON W101-637 5551
THE UK'S No. 1 ELECTRONICS AGENCY
Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
SALES to $£ 12.000$ plus car
SALES to $£ 12,000$ plus car
Ask for Maurice Wayne
FIELD SERVICE to E10,000 plus car
Ask for Paul Wallis
Wa have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

MICRO - R \& D

A company has been formed by a ell known successful U.K. Group to develop high technology electronic products and it has strong support: hardware and software engineers are required with background, experience and
qualifications in micro technology to speed the progress in developmen
and production of micro computer systems and dedicated micro
processor and communication devices. Joining this powerfully backed new company will provide good
recognise the creative nature of the work and will be negotiable for senior engineers. Apply (in confidence) to
Box No. W.W. 1278
c/o Wireless World, Quadrant House, Surrey SM2 4AS

Appointments

Engineer - Transmitters

We have a vacancy for an Engineer (male or female) to work in the Transmitter Projec
Section of our Station Design and Construction Department. Section of our Station Design and Construction Department. You will be required to assist in the preparation of specifications for transmitter and
associated equipment including the subsequent analysis and evaluation of tenders. You will also assist in the installation and commissioning at site and will also be involved in the evaluation of new designs of equipment. Some design work will be
involved, therefore, ideally you should have a good knowledge of microprocessors software based systems.
You should be qualified to degree level in Electrical/Electronic Engineering and have
had formal engineering training in broadcasting technology or a related field. You had formal engineering training in broadcasting technology or a related ield. You shouid also have several years post trainine experience in industry or broadcasting essential as the post involves travel away from base.
The commencing salary Idepending upo
The commencing salary (depending upon qualifications and experience) will be on a expenses will be paid where applicable.

IBA

INDEPENDEN BROADCASTING AUTHORITY Please write or telephone for an application form quoting reference number-
WW/624cc, to Christine Gossling. IBA, Crawley Court, Winchester, Hampshire, S021 2QA. Telephone 822270.

Directorate of Telecommunications

Telecommunications Engineers

.ito assist police forces, fire brigades and
other Home Office users to define their telecommunication requirements; study those requirements and proponse appropriate
tystems solutions systems solutions; arrange for the
implementation of systems includin implementation of systems including
preparation of cost estimates, system
spec specifications, time-schedulues, system intation
and commissioning instructions, etc.: carry out practical and theoreticactinvestitatitions
as required and study the applicability of as required and study the applicability of
new techniques to meeting system new techniques
requirements.
Candidates must have a degree in
electrical or electronic engineering or a electrical or electronic engineering or a pass
in the Counciof IE Engineering Institutions
Part Part 2 examinanation in apering instiate subions
an equivalets or qualification The an equivalent qualification. They shoul
preferably have achieved Corporate

WIRELESS WORLD SEPTEMBER 198 1 MAREETNG MANAGER with
 2 SUPPORT ENGINEER to provid SUPPORT ENGINEER to provide
TYechicen Support and de
velopment expertise vechicat exuppore for on-lin
velopment expertis system 110,800 Kent. 3 O.A. ENGINEER work on Micro-

SENIOR ELECTRONIC TECHNICIAN runing laboratory d
veloping speciaist thand
equipment 10,000 Berks. SENIOR ENGINEERS to design
computerised display systern computerised display system
for Military
Middlesplications. $E 10,000$ Middlesex. DEVELOPMENT ENGINEER perience. of microbased contr
systems f10,000 London.

Mone or write, Anthony Giles,
M.Sc., Eng., M.I.E.E. CLIVEDEN CONSULTANTS ${ }^{87}$ St. Leonard's Road

CDVEDEN

WANTED
For full-time position
ELECTRONICS
Une...E. Embasssy component in thi

Londen wlatase for ver
rangement for interviews.
institution or be well experienced in
telecsional telecommunications engineering; and must
have several years' professional experience Mave levera years professional experience
in at least one the following fields: land communications, CCTV, , Iine communic
planning.
Starting salary (under review) $£ 9,615$ -
$£ 11,215$ acc S1, 215 accorraing to qualilifications and
experience. Promotion prospects. For further details and an application
form (to be returned by September 10,1981) write to Civii service Commission, Alencon
Link, Basingstoke, Hants, RG21 1JB, or teleenonone Basingstoke (o2556) 68551
lanswering service operates lanswering service operates outsid
hours). Please quote Ref: $T / 5620$.

TOP JOBS IN ELECTRONICS Posts in Computers, Medical,
Comms, etc. ONC to Ph.D. Free service.

Phone: 01-906 025

URGENT!

PROJECT LEADER $£ 11 \mathrm{~K}$
Senior Engineer required, $28+$, with 280 HW/SW experience,
DIGITAL DESIGN ENGINEERS. $£ 8 \mathrm{~K}+$
Experienced Engineers with background in digital TV
SOFTWARE ENGINEER. $£ 8.5 \mathrm{~K}+$
Must have experience in 280 HW/SW, Herts area.
WE HAVE LOTS MORE JOBS FOR
EXPERIENCED ELECTRONICS COMPUTER ENGINEERS

Contact: Tony Rath, Blue Arrow Executive Selection
50 Bedford Street, London WC1.01-240 $0893 / 4$
20. Bilue Amow

Executive Selection

HOW CANI CuALEY?
By taking our special one By taking our special one year
course at the Chelmer Institute course at the Chelmer Institute
Higher Education, Chelmsford It starts in January 1982 and sponsored under TOPS, the Training Opportunities Scheme. WHAT WILL ILEARN? The programme leads to, the Technical Education Council's Engineering

Specific areas include electrical/electronic principles, industrial studies, telecommunications and engineering principles, computer technology, digital techniques and prográmming applications. AMIELIGIBLE FOR TRAINING?
in Electrical or Electronic Engineering TEC Certificate or City \& Guilds T 3 level in a related field.

You must also have had experience in HM Forces,

PMR/VHF/FM Systems TEST ENGINEER

As part of an expansion programme in the Communica-
tions Division AEL is looking for a Senior Test Engineer tions Divisian AAL is looking for a Senior Test Engineer
with several years' experience in the private mobile radio
industry Involved in the production testing of a new range of high-
quality $V H F / F M$ mobite radio equipent, the ob will be
demanding with plenty of technical interest and may qualty
demanding with mobienty of of tequipment, the int int ob whill be
involve occasional travel within the U.K. and overseas Applicants (male/female) will be preferably in their mid-20s to early 30 s , currently working in a test or systems environment with a manufacturer and will be famisiar with current
Home Office/MPT specifications.
As a key member of a small team, pleasant working condi-
tions and an attractive salary, will be offered to the Please write in the first instance giving personal and career
details to:

John Longhurst, Technical Manager
Communications Division
AERO ELECTRONICS (AEL) LIMITED
Gawick House, Horley, Surrey
Telephone.Horley (02934) 5353

TEEEVISON TECHNCLIAN

The Television Facilities Department of a major London advertising agency requires a T.V. Technician.
In addition to other duties: Repairing, setting up
and operating, Rank Cintel MK II and Mk III and operati
Telecines.

For much more detail please telephone
much more detail please teleph
Colin Forster on 01-836 2424

MODULAP

DEVELOPMENT ENGINEER

ing in idustrialauio communiations. This is an opportunity or an experienced Please contact Mr. B. . J. Park, Modular Communications Limited, Tefford Road,

Appointments potential in our future
 Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced

To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And to turn new ideas into fully operational equipment we need production and service personnel as well. If you would like to develop your potential in the exciting future of Eur
specialist complete specialist, complete he coupon and send it to us a
marcon below. instruments Return this coupon to John Prodger, Marconi Instruments Limited,

| | |
| :--- | :--- | :--- | :--- |
| Name | |
| Address | |

 Haraware and Sottware Engineers,
based in West Sussex. Competitive

Electronics

 R\&DJoin us in the forefront of technology

HF-VHF-UHF

Microwave Optics \& Acoustics A challenging and full career in Government Service
Candidates, normally aged under 30 , should have a good honours degree or equiv alent in a relevant subject, but any candidates about to graduate may be considered. Officer (£6,075-£7,999) or Scientific Officer ($£ 4,805-£ 6,480$) according to qualifications and experience. Promotion prospects. Please apply for an application form to
the Recruitment Officer (Det the Recruitment Officer (Dept. WW981), H.M
Government Communications Centre, Hanslop Park, Milton Keynes, MK19 7BH.

APPOINTMENTS ELECTRONICS
 to $£ 15,000$

message switch data comms-telemetr telegraphr-rf comms Interesting and varied op-
portunitios, U.K. .
sead over.
sor immediate action seas. For immediate action
on salary and acreat
advancement, contact: Technomark

CHANCE FOR YOUNG ENTHUSIAST WITH TOP BRITISH MICRO MAKER TECHNICAL SUPPORT (SALES)

UP TO $\mathbf{E} 5-7.6 \mathrm{~K}$, OXFORD-BASED

Research Machines is one of the leading British manufacturers of microcomputers. Thousands of
users of our $380 Z$, ranging from school teachers and scientists to technicians and DP professionals, regard it as an essential tool of their
trade. Satisfying their hardware and software information needs and solving their problems by telephone and letter - is the first job of
Technical Support. Technical Support.
But there's a lot more to this interesting and
challenging vacancy than that. In addifion to challenging vacancy than that. In addition to sales
and technical support to customers, you will also and technca suppor support to the sales team; support
give technical sul the Sales Manager at exhibitions and demonstrations; provide feedback to relevant
departments on technical matters and sales departments on technical matters and sales
trends; and liaise between customers and maintenance engineers. In the process you will get plenty of opportunity for hands-on experience of our range of hardware and software.

We are looking for a computer enthusiast to join
this young small team in our Sales Deartment this young, small team in our Sales Depar
The successful candidate will probably:
\square be capable of programming in a high-level
be capable of programming in a
language - preferably BASIC;
\square have a real interest in microcomputing
and some knowledge of electronics; and some knowledge of electronics; \square be educated to at least ' A ' level; \square have some admin or sales office experience.
Starting salary is between $£ 5,000$ and $£ 7,600$ depending on age and experience, and we also
offer a number of valuable benefits such as tree
BUPA life and disability insurance BUPA, life and disability insurance.
A pension scheme is being introduced.
If you are interested in this vacancy please contact Mrs Ann England, by phone or letter, for an application form, quoting
WW8 $/ 1$.

RESEARCH MACHINES
 MICROCOMPUTER SYSTENIS

RESEARCH MACHINES LTD MillStreet, Oxford OX2 OBW, Tel: (0865)/4979

Telecommunications Officers
Up to $£ 8185$ (under review)

The posts available are varied, but broadly
they fall into 2 groups at 2 different locations. Hanslope Park (Milton Keynes) Work associated with HF communication equipment, VHF, UHF and microwave links
and associated test equipment; teleprinters and associated test equipment; t.
and other specialised equipment.
Hanslope Park and Central London Work similar to the above, but also including a wide variety of telephone
subscribers' subscribers' apparatus PMBXS, PAXs,
PABXs and ancillary equipment including
that using anal that using analogue and digital
and voice frequency telegraph.
Candidates must have served an apprenticesship or have had equivalent
training. They should normally have 3 year training. They should normally have 3 year
relevant experience, and hold ONC in rele vant experience, and hold ONC in
Engineering (with pass in Electrical

Engineering 'A') or TEC/SCOTEC centificate
or City $~ \& ~ G u i l d s ~ T e l e c o m m ~ T e c h n i c i a n ~$ ertificate Part Il or Part I plus 3 ." $B^{\prime \prime}$ " subjects subect. Ex-Service personne ant who have had
suitable training and teast 3 years suitable training and at least 3 years
appropriate service (as Staff
arargeant or equivalent) will also obe considered. Salary: (under review) £5310-E7170;
London £1016 more. Starting salary may be London fin16 more. Starting salary may be
above minimum for those with additional elevant experience. Promotion prospects. Relocation assistance may be available. For further information and an application
form (to be eeturned by 10 September 1981) Yorm (to be returned by mistion, Alenco
write to Civi Sevice Commission
Link, Basingstoke, Hants Link, Basingstoke, Hants RG21 1 JB, or
telephone Basingsto 10256516851
answering service operates outside offic answering service operates ores.
hours). Please quote ref: $T / 5606$.

Foreign and Commonwealth Office

LELELTRDTILS PERSDTIEL

DIGITAL DESIGN ENGINEER
Microprocessor based control systems.
Good software knowledge desirable.
foo,000.
Surrey.......................... Ref. A4-168
TEST TECHNICIAN
Test and service navigation guidance

systems. | L8.000 |
| :--- |
| London | Ref. A4-212

SALES ENGINEER

 Telecommunications mobile equipment. Car and good allowances. $£ 9,000+$ Ref. A3-102Cambridge
DESIGN ENGINEERS Graduates, UHF and Microwave RX/TX.
Good relocation expenses. $£ 9,500$. South East
For information on these and other vacancies telephone or write, quoting the reference
130 High Street Eton Windsor SL4 6AR Windsor 59252

ARticles for sale

TO MANUFACTURERS, WHOLESALERS \&

 BULK BUYERS ONLYLarge quantities of Radio, T.V. and Electronic Compinents. 1 ohm to 10 meg .
$11 / 2,2,3,5,10,14,25$ Watt.
SURPLUS STOCK Timing Motors, Crouzet Micro Switches, Bulgin Lep and
Panel Lampholders, Transfor-
 Conivergence Potc
Axial, Radial, etc.
rers chokes hopts
 4450749
BROADFIELDS \& MAYCO DISPOSALS

VENTEKSTRW DATA PoINT 1100
PROCESSOR;
two Shugart
dis
 ${ }_{\text {difl }}^{416.4}$ FULL FPEC $\stackrel{\mathrm{In}}{\mathrm{In}} \mathrm{Ba}$ Barclaycard
AArfers Avenu
Southend
Sozo

THF ART OF

ELECTRONICS

by Horowitz \& Hill Price $£ 13.50$

 ELECTBONIC DESIGN WITH OF
EHETSHEL NTEGATED CIR CUITS, by Z. H. Meiksin ${ }_{\text {rice: }}$ f6. 25
 JECTS, by A. W. Barber Price: 55.50 COMPLETE GUDE Price: E55.50 SCHEMATIC DIAGRAMS, by J.
Dogulas Yung Price E.5. 50
 world radiot.v. Price: f6.50 by J. M. Frost
1981
THE HANDBOOK, bY A. R.R.L. .itice: $f 8.00$ 2701

$$
\begin{aligned}
& \text { ALLPRICES } \\
& \text { INCLUDE POSTAGE }
\end{aligned}
$$

THE MODERN BOOK CO Specialist in Scientic
\& Technical Books 19-21 PRAED STREE Phone 402 -9176 Phone 402.9176
Closed 5 an. 1 p.m.

 ENCAFSULATING, coils

 PRE-PACKED screws, nuts,

ELECTRONICS ENGNEERNG Ina Growth Environment

Several major new orders over the last year have ensured that Cossor, leading supplier of professional electronics equipment, have kept to a clearly defined and steady growth pattern.
From this platform we are now able to offer an extremely interesting and varied range of responsibilities to Test and Service Engineers who will be oining busy, established and highly regarded teams at Harlow.

Systems Test Engineers

Ideally you will be qualified to HNC electronics standard and will possess at least three years' relevant experience with RADAR or microwave equipment.

In House Service Engineer

Your activities will be concerned with fault finding, diagnosis and overhau of equipments and systems. HNC electronics and relevant experience are essential
Attractive salaries will be offered for the above positions and excellent company benefits, including relocation assistance where appropriate.

For more information please telephone or write to: David Hilton, Recruitment Manager,
Cossor Electronics Limited, *FREEPOST, The Pinnacles, Harlow, Essex CM19 5BB. Tel: Harlow (0279) 26862

cossor
 electronics

ELECTRICAL ENGINEERS WITH RUSSIAN

Electrical Engineers are required for the preparation of abstracts in English at home from Russian technical ocument
No previous experience of abstracting is nece
good reading knowledge of Russian essential.

Please apply to: The General Manager
 DERWENT PUBLICATIONS LTD.

Rochdale House, 128 Theobalds Road
London WC1X 8RP
London WC1X 8 RP

E360 P.W.?
CONTRACT

t

Eelesomic
Marine Electronic Bench \& Field
ngineer, fami iar with radar, SSB
 TELESONIC MARINE LTD

ARTICLES FOR SALE
INVERTERS High quality DC-AC. Also ."n 19" rack. Auto Charger.

COMPUTER POWER SYSTEM Interport Mains-Store Litd POB 51, London W11 382
Têl $01-727$ 7042 or 0225 310916

TELETEX, TV SPARES \& TEST tatest external unitext kit ancl,
lard Decoder 6101 MLL and
and

 HATC
Pettic
Serate
Scale

\square

- $\begin{gathered}\text { HA } \\ \text { S. } \\ \text { lee } \\ \text { le }\end{gathered}$

 , nis

[^4] I ,

Classified

INNER LONDON EDUCATION AUTHORITY

 LEARNING RESOURCES BRANCH ELEVISION CENTRE
HACKERAY ROAD

ONDON SE8 3TB
 ton within London nand nationally.thasas acolour television sutio, colour

Te Sound sscion of five members works with professionana equipment

MAINTENANCE ENGINEER

ST3) (£8,304-£8,916)

The mainenance secioio has four members and is responsible for all the
equipmentar the studio centre, both vision and sound.

SOUND ASSISTANT

ST2)

Salary is within the scale ef. 181 to 88.025

Cilosing date: 14 days after the appeaiance of this adverisement.

Instrument/

Electronics Technician

 Salary ranges $£ 5607-£ 6420$ and (6420-77182The Authority, in association with its various functions, operates a wide range of instrums.
communication and control systems.
A Technician is required to join a team responsible for
maintenance and commissioning of this equipment Aainetance and courem mis join a team responsible for
throughout the County Applicants, who should be qualified to TEC Ordinary or
Aigher level (or equivalent), should have had several east experience in electrical or electronic servicing. A basic knowedge of computers and programming woul
be an advantage as would previous experience on VHF .
The person appointed will be based in the Division's
workhops at Bridgwater and should hold a valid full workshops at at
driving licence.
Closing date: 3 September 1981
Application forms and iob descsrition obtainable from
Divisional Persomnel oficer, Po Box 9, King Square, Divisional Personnel
Bridgwater. T el: 57333 .

ARTICLES WANTED

WANTED!

all types of scrap and
REDUNDANT ELECTRONIC \& COMPUTER MATERIALS TRANSISTORS \&PRINTED TO COMPLETE COMPUTERS THE COMMERCIAL SMELTING \& REFINING Co, Ltd. T1 FARRINGDON ROA
LONDON ECR1R 3AL
Tol: $01-8371475$ Cabies: COMSMELT, EC1
storage space is expensive, wily

WIRELESS WORLD SEPTEMBER 198
Classified

CIRCOLEC

THE COMPLETE ELCCTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes production, from artwork design and component sourcing. theough
assembly and test to final quality assurance, packing and delivery.
asin We also provide a test, repair and modification service to suit your.
individual requirement. individual requirement.
Free Offerl Ring for details of a free introductory offer to our sub-contr
PCB assembly service.
CIRCOL
PCB assembly service.
CIRCOLEC FREPPOST (no postage required) London SW17 8BR
Telephone: 01-767 123

R

Roehampton

 InstitutePRINCIPLES AND PRACTICE OF TELEVISION PRODUCTION
A four-week summer school involving practical work on television
production, planning and techniques, operational skils, scriptwriting
and studio procedure.

$$
1 \text { September-22 September }
$$

The Institute possesses a 1.500 square feet studio equipped with four
colour cameras and fully operational control room with special
effects Three short pat
during 1981-82.

HND. HNC) Hine enivine bases anion duect train

PHONE
YOUR
CLASSIFIEDS
TO
OPHELIA SMITH
ON
01-661 3033

AMBISONIC SURROUND SOUND DECODER MODULE with STEREO DECODE FACILITY

 high performance are guaranteed. - - - - - Minim Modules Please send me further information on Mini
Ambisonic Decoder/Weekly Programmable Timer.
Name....
Address.

UHIJB Format Ambisonic decode
Stereo decode with adjustable width control Stereo decode with adjustable width control
Stereorppass
S.position
S-positon switched precision layout control PCB

MiniModules Minim Electronics LLd., Lent Rise
Telephone: Burnham (066286) 63724 WW- -077 FOR FURTHER DETAILS

INDEX TO ADVERTISERS SEPTEMBER

Appointments Vacant Advertisements appear on pages 116-127

OVEREASAS ADVERTISEMENT

Hungary: Mrs Editit Bajusz, Hungexpo Adverising

[^5]page

为

Please send the ANEXNew Range full colourbrochure to: NAME

[^0]: Stocks of standard items
 exceed a quarter of a million.
 Individual units to the tightest
 pecification made to order.

[^1]: "Murphy, B.T., et al. "Collector diffusion isol
 ion". Proc. I.E.E.E., vol. 57, , 1969 , pp. 152
 T. 5 See also "Breakthrough in integrated cir tion". Proc. I.E.E.E., vol. 57, 1969, pp. 1523
 7, See also "Breathroug in integrated cir
 cuits", Wireless World November 1971, p. 526

[^2]: I

[^3]: References
 10. Design
 10. Design of Racing Sports Cars. Colin Campbell. Chapman and Hall.
 11. Sidebands. Wireless World May 1981 .
 12. Install Compucruise. Travellin' Vans. Oct. 79. Clutter-free Radar for Cars. Shefer,
 13.
 Klensch, Kaplan and Johnson. Wireless. World

[^4]:

[^5]: 为

