

TRANSMITTER TEST SET,TTS 520

Tests transmitters up to 100 watts rating
For testing base stations: mobile or fixed radios: pocket phones; pagers, etc

Instrument incorporates: r.t. counter - modulation meter directional power meter •a.l. volimeter • a.f. synthesizer distortion analyser • a.f. counter • weighting filters • r.f. power load/attenuator
Transmitter measurements include: frequency • power modulation (a.m. or f.m.) level. frequency. distortion. sensitivity, bandwidth. capability - call tone modulation check • aerial efficiency
Many measuring functions automatic-fewer controls, easier to understand and operate

Reduces operator error and tatigue
Compatible with Farnell SS6520 synthesized signal generato to provide full transceiver testing tacilities
Split concept (receiver/transmitter testing) ofters distinct advantages over dedicated test set or discrete instruments
Programmable. Also IEEE488 option available for low cost computer controlled A.T.E.

Aeleases skilled engineers from routine tests. More time for repairs and other tasks

Pre-service diagnostic tool. Use printer to record condition of radio as received and to verify pertormance to specification after repair or recalibration

Wheless world hucust	
x	
	ELECTRONICS/TELEVISION/RADIO/AUDIO
Front cover shows spider-	AUGUST 1981 Vol 87 No 1547
like legs and contacts of a jig for testing integrated cir-	
cuits, photographed at Wentworth Laboratories by	29 Information versus emancipation
	30 Electronits on the road
IN OUR NEXT ISSUE	by J. R. Watkinson
Acceleration feedback speaker uses a feedback signal from the bass driver cone to improve low-fre-	34 World of amateur radio
quency response and reduce distortion at low frequencies.	35 Simplified design of d.c. power supplies by J. C. S. Richards
Direct memory access in micro systems transfers information rapidly between memory and i/o without	38 Programmable sound-generator interface by M. Shepherd
control and c.p.u. The principle is explained.	39 Letters to the editor
Video discs update. Now	The death of electric current Distortion at amplifier-speaker interface
systems are being launched we report latest developments in this con-	44 Satellite tracking by home computer by N. Kyriazis
nology.	47 Radio and the birth of the universe by E. Eastwood
	53 Digital storage and analysis of speech - 2 by I. H. Witten
Current issue price 60p, back is and Trade Counter, Units $1 \& 2$, Bankside Industrial Centre, Hopable on microfilm: pleas	55 Circuit ideas Voltage change detector/Variable time offset
contact editor By post, currently issue 96p, back issues lif available) E1.50, order and payments to EEP Gen	59 Transient response of audio filters by D. C. Hamill
eralse, The Ouadrant, Sutton, Surrey SM2 5AS. Editorial \& Advertising offices: Quadrant House, The Quadrant,	65 Designing with microprocessors - 10 by D. Zissos and G. Stone
	68 News of the month Meteorite spotting/Recharging dry cells
UK and $\$ 33.80$ outside UK. Student rates: 1 year and $\$ 16.00$ outside	73 Is radiation resistance real? by D. A. Bell
The Quadrant, Sutton, Surrey SM2 5AS. Telephone $01-661$	
3500. Subscriptions: Oakfield House Perrymount Road, Haywards	75 Correlator for angles by T. Spencer
phone 0444 59188. Please notify a change of address.	
USA mailing agents: Expediters of the Printed Word Ltd, 527 Ma	80 New products
York, NY 10022 . 2 nd-class postage paid at New York.	
© IPC Business Press Ltd, 1981 ISSN 00436062	by Mixer

DON'T GAMBLE WITH PERFORMANCE BUY

LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

VOLTAGE \& dB RANGES

$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mathrm{NV} \ldots 500 \mathrm{~V}$ fsd
$\mathrm{Acc} . \pm 1 \% \pm 1 \% \mathrm{fsd} \pm 1 \mu \mathrm{at} 1 \mathrm{kHz}$. Acc. $\pm 1 \% \pm 1 \%$ fsd $\pm 1 \mu \mathrm{Vat} 1 \mathrm{kHz}$.
$-100,-90+5 \mathrm{~dB},{ }^{\text {Scale }}-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref. $1 \mathrm{~mW} / 600 \Omega$
\pm daB from 1 Hz to 3 MHz .
$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz,
$\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz TM 38 filter switch: LF cut 10 Hz .
$H F$ cut $100 \mathrm{KHz}, 10 \mathrm{KHz}$ or 350 Hz .
RESPONSE
input impedance
Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<2 \mathrm{O}_{\mathrm{p}}$.
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<5 \mathrm{op}$
AMPLIFIER OUTPUT 150 mV at fsd

BROADBAND VOLTMETERS

$\begin{array}{ll}\text { H.F. RESPONSE } & \pm 3 \mathrm{~dB} \text { from } 300 \mathrm{kHz} \text { to } 400 \mathrm{MHz} \\ & \pm .7 \mathrm{~dB} \text { from } 1 \mathrm{MHz} \text { to } 50 \mathrm{MHz}\end{array}$
L.F. RANGES As TM3

AMPLFIER OUTPUT Square wave at 20 Hz on H.F. with Square wave at 20 Hz on $\mathrm{H} . \mathrm{F}$. with
amplitude proportional to square of input.
AS $T M 3$ on L.F.

D.C. MICROVOLTMETERS

VOLTAGE RANGES $30 \mu \mathrm{~V}, 100 \mu \mathrm{~V}, 300 \mu \mathrm{~V}, 300 \mathrm{~V}$ CURRENT RANGES 30 pA .100 pA .300 pA .300 mA .
log. range
 $\pm 5 \mu \mathrm{art} \pm 10 \% \mathrm{fsd}, \pm 5 \mathrm{mVat} \pm 50 \%$ fsd,
$\pm 500 \mathrm{~m} V \mathrm{at} \mathrm{fsd}$. RECORDER OUTPUT $\pm 1 \mathrm{Vat}$ fsdinto $>1 \mathrm{k} \Omega$.
TMo 1 Tio 106

CURRENT USED TEST EQUIPMENT
 Everything as newexcept the price!

SIGNAL SOURCE

STATE:OF:
Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

WW-200 for further details very latest state-of
art technology.

Computer equipment and peripherals

Brokers

 CPU's available from
$£ 4000$ £4000

NEW	
Nomes	\%sse
込	

PAPER TAPE PUNCHES
Dintitionics.

Electronic Brokers Limited $61 / 65$ Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G
 ADD 15% VAT TO ALL PRICES
Carriage and Packing charae extran all items unless otherwise stated.
A copy of our Trading Conditions is available on request.

WW-201 for further details

A selection of our indepth range of DEC Terminals. The VT100, Digital's high performance video

WW - 032 FOR FURTHER DETAILS

World-beating Oscilloscope Offers Electronic Brokers $61 / 65$ King's Cross Road $\square \begin{aligned} & \text { London WC1 X 9LN Noad } \\ & \text { Tel: 01-278 3461. Telex } 298694\end{aligned}$ WW - 034 FOR FURTHER DETAILS

WIRELESS WORLD AUGUST 1981

BULK EPROM PROGRAMMING

This unit provides simple, reliable programming of up to 8 EPROMS simultaneously, key starts the self check - blank check use - a single program key starts
propram - verify sequence.
Independent biank check $\&$ verif controts are provided along with Independent blank check \& verify controls are provided along
mode, pass fail indicators for each copp socket and a sounder to
signal a correct key command \& the end of a programming run.
 hardware or personality card changes.
PRICE $545+$ VAT. .ostage paid

MODEL UV141 EPROM ERASER
M 14 EPROM Capacity

- 14 EPROM EPR
- Fast erase time
- Built-in $5-50$ minute timer
- Builtin $5-50$ minute timer
- Convenient slide-tray loading of devices
Safety interlocked do prevent eye and skin damage
Rugged construction
- Rugged construction
- MINS \& ERASE indicators

MODEL UV140 EPROM ERASER
Similar to Model UV141 but witho
BULK EPROMS

2716 (450 ns)
(single rail)
2700 (
$\begin{array}{llll}£ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$
Postage and Packing is included in all prices. ADD VAT at 15%.
All our EPROMS are maníactured by leading companies and are
All our EPROMS are maniufactured by leading companies and are
fully guaranteed, branded and to full speciification.
WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
Overseas customers, please telex or write for quotation and
GP INDUSTRIAL
ELECTRONICS LTD.

DISTRIBUTORS REQUIRED - EXPORT ENOUIRIES WELCOME
ww - 036 FOR FURTHER DETALLS

Electronic Brokers
61-65 King's Cross Road
London, WC1X 9LN
Tel: 01-278 3461-Telex 298694 WW - 035 FOR FURTHER DETAILS

Ambit's new concise component catalogue is out !!

	${ }_{4560}^{4559}$	2.18	7480N	0.30 0.26	${ }_{742735 \mathrm{~N}}$	${ }_{2}^{0.66}$	$\begin{aligned} & \text { 74LS153N } \\ & 744545 N \end{aligned}$	${ }^{0.35}$	$74 \mathrm{CO4}$ 77 CO	$\begin{aligned} & 0.20 \\ & 0.20 \\ & 0 \end{aligned}$	68488	5.25
	4562	0.70 2.75	7481N	0.20	74278N		74LS 155 N		${ }^{74 C 10}$	0.25	280 series	
	4566	1.59	7485 N	0.75	74283 N	1.30	7445157 N	${ }_{0} .36$	$74 C 20$	${ }_{0} .20$	280 A	4.99
	4568 459	2.18 1.95	74868 N 7	0.24 1.05 1	74284N	- 3.50	74LS58N	O. 0.40	744230 $74 C 32$	- 0.20	Z88ADRT	7.50
	4572	0.30	74990 N	0.30	${ }_{742900}$	3.50 1.00	${ }^{744515160 N}$		${ }^{74 C 32}$	0.20	280APIO	
	4580	3.25	74991 N	0.55	74293N	1.05	74 LS 162 N	0.40	74 C	1.03	Z80ASIO/2	14.00
	${ }_{4582}^{4581}$	1.50 0.99	${ }^{74923 N}$	0.35 0.35	${ }^{74297 N}$	2.36 1.85	${ }^{74 L S 163 N}$	0.40 0.50	$74 C 73$ 74674	0.50 0.50	z80ASIO/9	14.00
	4583	0.80	7494 N	0.70	${ }_{74365 \mathrm{~N}}$	0.85	7445165 N	1.20	$74 \mathrm{C76}$	0.48	280CT	4.00
	45	0.49	7495 N	0.60			74.5166 N	1.75 0.85	$74 C 83$ $74 C 85$	0.98	28001	45.00 65.
	4702	4.50	74997 N	1.40	${ }_{77368 \mathrm{~N}}$		${ }_{7} 7415169 \mathrm{~N}$	${ }_{0}^{0.85}$	$74 C 86$	0.26		
	4703	4.48	74100	1.10	74390 N		74LS170N	1.85	74 C		PROM	
		4.24			773939 N	1.85	74.5173 N	0.75	74C90	0.80	2708	2.00
	470	-		0.26			74LS175N	${ }_{0}^{0.55}$	74 C	${ }_{0}^{0.94}$	2532	.50
	4772	00	7410	${ }^{0.35}$	74LSN		74L	1.35		0.48	2732	8.50
			741	0.68	74LSOON	0.11	74LS189N	1.28	74 C	2.26	RAM	
	40	2.54	7412 N 7416 N	1.98 1.98 1	744LSO1N	0.11 0.12	744LS1919	0.60 0.60	${ }_{74 \mathrm{C}}^{74 \mathrm{C}}$	1.52 0.80	2102	70
		0.99	74188 N	0.85	74LS03N	0.12	74LS192N					40
	40	054	7419 N	1.20	744504 N	0.14	74 LS 19	${ }_{0}^{0.68}$	74 C	${ }_{0}^{0.80}$	${ }_{2027}^{2114}$. 78
	40160	${ }_{0}^{0.69}$	74121 N	${ }_{0}^{0.34}$	$744508 N$	${ }_{0}^{0.14}$	74LSSI95N	-0.42	74 C	0.80 0.80	41162	1.59
				- 0.34	774	0.14	74.51	0.65			4116	. 49
				0.40	74L	${ }_{0} 0.14$	74LS200N	3.65	${ }_{74 \mathrm{C}}$	0.72	611	50
	401	${ }^{0.699}$	74126 N 74128 N	0.40 0.65	744L	- 0.15	744LS202N		74 C	0.72	${ }_{8264}$	11.25 12.50
	40	0.75	74132 N	0.50	$74 L 514 \mathrm{~N}$	${ }_{0}^{0.49}$	74LS240N	0.99	74C193	0.80		
	440194	${ }_{0.69}$	${ }_{74141 \mathrm{~N}}$	${ }_{0}^{0.45}$	${ }_{7415}$	0.14	74LS241N	0.95	74 C 1	0.80	XTALS	
	401	69	74142 N	1.85	$74[521 \mathrm{~N}$	0.15	74LS243N	1.65	74 C	1.06	1 MHz	00
	TTL			2.50	${ }^{744524 \mathrm{~N}}$			0.83	74 Cg		3.2768M	
			74145 N	0.75	74LS27N	0.14	7415247 N	1.35	74 Cg	${ }_{0}$	4.19	70
	${ }_{7401 \mathrm{~N}}$	0.10 0.10	${ }_{7} 741488 \mathrm{~N}$	1.50 1.09 1	74LS28N	0.35	74LS248N	1.35	74 C 9	0.38	4.43M	1.25
	7402 N	0.10	74150 N	0.79	74LS32N	O.14	74LS251N	+ 1.35	74490	5.64	${ }_{5} 5 \mathrm{MHNz}$. 00
					74LS333	0.16	74LS253N	0.46	$74 \mathrm{C9}$. 38	${ }_{7} \mathbf{4} \mathrm{MHz}$	${ }_{2}$
	7405 N	0.12	77154 N	${ }^{0.55}$	74LS33N	0.17	74LS257N	0.55	74C9	84	8 MHz	2.00
	740	0.22	74155 N	0.55	74LS	0.13	74LS259N	0.39	74 C910	3.6	${ }_{10} \mathrm{MHz}$	2.00
	${ }^{74008 N}$	0.22 0.15	${ }^{7415575}$	- 0.55	74LS	0.40	7445260 N	0.70	74 7914	0.86	11 MHz	2.00
	740 S	0.15	74159 N	1.90	74LS48N	0.65	74LS273N	0.24 0.90	$74 \mathrm{C925}$	4.32		
	7411 N	${ }^{0.12}$	${ }_{74161 \mathrm{~N}}$	0.55	744	0.61 0.14	744	3.20 0.35	${ }_{74 \text { C927 }}$	4.32 4.32	Voltage Regul	
	741		74162 N	0.55		0.15	74LS280N					
	7441	0.27 0.51 0.51	${ }_{7}^{741634 N}$	0.55 0.55	74LS55N	0.15	$7445283 N$	0.45	essor		78x× 1 A To-220.	9.58
	7416 N	0.27	74165 N	0.55	744S73N	1.50 0.21	744LS229	${ }^{0.58}$	8080	series	79x 7×1 1A T0-220	60
	741	0.27 0.13	74166	- 0.70	74457	0.18	744S229	50	8080AFC/2		796x 1 A to-3	35
	7422 N	0.28	74170 N	1.25	${ }^{7445760 N}$	0.28 0.22	74LS3236	1.50 0.35	${ }_{8212}^{80804 F C / 2}$	7.50 2.30	78G1A ${ }^{\text {P }}$	95
	${ }_{74232 N}$	0.20 0.22	$74173 N$ 7177 N	1.10 0.75	74.5	0.24	74LS364	0.35	8214	5	78H5A TO	25
	7425 N	0.22	74175 N	0.75	74 7S85N	0.50 0.70	${ }_{7}^{74 L S 36368 N}$	+	8224	1.95 3.50	78HG 5 A	
	${ }^{74227 N}$	${ }_{0.22}^{0.22}$	${ }^{741761}$	0.75 0.75	744	0.18	7445333 N	0.78	8251	6.25		
	74	0.35 0.33 0	74778 N	0.90	74LS91N	1.25	7445375N	1.15	8255	5.40	$\stackrel{L M 337.5 A}{ }$	
	7432 N	${ }_{0.23}$	74180 N	1.35 0.75	74LLS932N	0.39 0.38	74LS337N 745378 N	1.90	6800/6809			
	743	0.22	74181 N	.1.22	744	0.48	744S379N	2.15	6800P	3.75		
	7440 N	${ }^{0.14}$	${ }^{741848}$	1.20	74LS	1.20	${ }_{7}^{74 L S 3848}$	2.50	68A00	4.25		
	7441 N	0.54	74185 N	${ }^{1.20}$	74LS109N	0.25	74 LS 386 N	0.29	6802	5.55		
	7443 N	0.62	74190 N	0.55	$7445 L 113 \mathrm{~N}$	-.25	${ }^{7445453930 N}$	0.68	6809		Prices shown exc	VAT
	744	${ }_{0}^{0.62}$	74191 N	0.55	74LS114N	0.25	74LS39	2.10	68 A10	1.85	Postage 50p per or	(${ }^{\prime}: \times 1$
	7446 N	0.62	$74193 N$	${ }^{0.55}$	${ }^{\text {74LSLS122N }}$	0.40 0.55	${ }^{744 L 53998 N}$	1.99 2.75	${ }_{6810}^{6810}$	2.04	be used with writt	
	${ }^{74448 N}$	0.62 0.56	74	0.55 0.55	74.5124 N	1.80	744539	2.30	68820	1.95 1.75	telephone orders	
		0.14		0.55	${ }^{74 L S 525 N}$	0.29 0.29	74LS4479N	1.95	68A21	2.10	MA details on ap	
	${ }^{74553 N}$	${ }^{0.14}$	7	0.55 0.55 0.85	$74 L$ 132N	0.45	7445490 N		68840	2.34 4.25	And a sobecial prize	
	7454 N	0.14	74199 N	1.00	744	0.30 0.25	74LS6688	1.05	68 A			
	7460 N	O.14	74221 N	1.00	74LSL138N	0.40	74LS670N		68	4.75	closely - a free cr	
	7472 N	${ }_{0}^{0.28}$	${ }^{742424 N}$	1.51	744	. 20						
	7473 N	0.28	74248 N	1.89	744	1.20 2.10	74CXX ser			2.17	just cip out the	
	${ }^{74745 N}$	0.28 0.35	74249 N 7425	0.11 1.05	${ }^{74451518 N}$	2.60 1.65	$74 \mathrm{COO}$	0.20		2.75		
					151N				68852	2.95		
\qquad TELEPHONE (STD 0277) 230909 TELEX 995194 AMBIT G POSTCOOE CMI4 456 211 iorth Ervice iona, iremtuond, zate												

For personal senvice visit one of our stores
Dur new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads. There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby Call in and see us soon

Over 100,000 copies sold already! Don't miss out on your copy On sale now in all branches WH Smith in price £1 In case of difficulty check the coupon below.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock * All prices include Vat
* Large range of all the most useful components * First class reply paid envelope with every order * Quality components-no rejects-no re-marks * Competitive prices
* Your money is safe with a reputable company

On price, service, stock, quality and security it makes sense now more than ever to make minimplin your first choice for components every time!

Post this coupon now

Post this coupon now.
Please sesnd me a copy of your 320 page catalogue. I enclose e 1.25
 catalaguve to you and have my money refunded. If you
U.K. send $£ 1.68$ or 12 international Reply Coupons.

(0702) 554155 Sales: (0702) 552911

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911

New! Sinclair ZX81 Personal Computer. Kit: $£ 49.5$

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the Sinclair ZX80, world's first complete
personal computer for under \&100. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price.
Over 50,000 were sold, and the ZX80 won virtually universal praise from Now the Sinclairlea for just $£ 69.95$, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And
the ZX81 kit means an even bigger the ZX81 kit means an even bigg
saving. At £49.95 it costs almost 40% less than the ZX80 kit! Lower price: higher capability With the ZX81, it's just as simple ZX81 packs even greater working capability than the ZX80
It uses the same micro-processor, 8KBASICROM - the'trained intelligen of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up
animated displays animated displays.

And the ZX81 incorporates other operation refinements-the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the

Higher specification, lower pricehow's it done?
reduced the chips in a working $\mathbf{x} 0$ from 40 or so, to 21. The ZX81 reduces the 21 to $4!$
The secret lies in a totally new master chip. Designed by Sinclair and replaces 18 chips from the ZX 80 !

[^0]Kit or builtit's up to you!
The picture shows dramatically how
easy the ZX81 kit is to build: just four easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) -a few iron. And you may already have a suitable mains adaptor- 600 mA at 9 V DC nominal unregulated (supplied with built version).

Kit and built versions come complete with all leads to connect to your TV cassette recorder.

m

If you own a

Sinclair ZX80...
The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop-in replacement chip.
(Complete with new keyboard template (Complete with new keyboard templat and operating manual.) graphics, all the advanced features of the ZX81 are now available on your ZX80-including the ability to drive the
Sinclair ZXPrinter. Sinclair ZX Printer.

Coming soon-

 the IX Printer.
Designed exclusively for use with the

 ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics cated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981, at around $£ 50$ - watch this space!

IGK-BYTE RAM pack for massive add-on memory.
Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing. expansion port at the rear of the com puter to multiply your data/program Use it forlo
grams or as a personal database. Yet it costs as little as half the price of competitive additional memory.

How to order your ZX81 BY PHONE-Access or Barclaycard holders can call 01-200 0200 for persona BYFREEPOST-use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or
Barchaycard
EITHER WAY-please allow up to 28 days for delivery And there's a 14 -day money-back option, of course. We want you to be satisfied beyond doubt -
we have no doubt that you will be.

Ww - 025 For further details West Hyde Developments Limited have brought about a much improved computer
housing situation with the introduction of this superb new series of computer terminal

The new CES micropad

WW - 008 FOR FURTHER DETALLS

- ALL MODELS ON DISPLAY
- RETAIL- MAIL ORDER-
EXPORT - INDUSTRIAL - oxpen Six days a week O CALL IN AND SEE ALL PRICES INCLUDE VAT range of Scopes in stock from $\overline{5} \mathrm{~m}$ Hz Single Trace to 50 mHZDualtrace
Mains and BRttery/Mains portables. Many on demonstration SINGLE TRACE (UK (U/ pert fe. 50)

GENERATORS MKk

PRO' MULTIMETERS

LOGIC PROBES/MONITORS Logit probes indicating hightlow, etc., states
ant int soceses can miss. Al circuit powered to
all
\qquad
SWR/FS AND URCip 950
POWER METERS POWER METERS Range in tock

wW - 029 FOR FURTHER DETALLS Keyboard Housings available to suit both widths of terminal housing, together with a range of slim line
keyboard cases moulded in ABS keyboard cases moulded in ABS.

Audio power meter

Wide range:

* 30 Hz to $30 \mathrm{k} \mathrm{Hz} * 10 \mu \mathrm{~W}$ to 50W
* 1.2 to 1000Ω * mains/battery
* decibel scale-18dBm to +47dBm

OOO FARNELL INSTRUMENTS LIMITED SANDBECK WAY-WETHERBY WEST YORKSHIRE LS22 4DH TELEPHONE (0937) 61961
 wW-010 FOR FURTHER DETALLS

The EP4000 is not just an EPROM Programmer

Not only does the
EP4000 copy, store, program and duplicate the 2704/2708/2716(3) 12508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video
output for memory ma output for memory m
display to make the powerful editing facilities really useful (and this is in addition to the in-built LED display for stand-alone use), but it also comes as standa
with comprehensive
with comprehensive
input/output - RS232, 20 mA loop, TTL inputoutput - RS232, 20mA loop, T TL,
parallel handshake, cassette, printer and direc parallel handshake, cassette, printer and direct
memory access. Now the programming power memory access. Now the programming po can be expanded whow.

. . . but also a Real Time EPROM Emulator

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program circuit EPROMs during the process of program development - the EP4000 can be con
to look like any EPROM it is capable of to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803)
863380 . full range of accessories in now available - these include Bipolar programming

the external system so that data changes, entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

ww - 031 FOR FURTHER DETAILS

HILOMAST LIMITED THE STREET HEYBRIDGE - MALDON Tel. MALDON (0621) 56480 TELEX NO. 995855

We have a comprehensive aris of
Full details fom:-

EAMAEA1 The natural choice for inverters
"Enquiries invited for export
FLOPPY DISK DRIVES NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READ ON!
SIEMENS FDD - 100-8/FDD - 200-8 Fully Shugar Compatible Siemens 8 . single and double sided disk drives are
aviliable now with unbeatable prices at single unitit pricing. Note thess specifications.

\star TRACK OOSENSING * MECHANCALEND STOPS AT 	\star WRITE PRORECC CIIRCUITGY A AUTO DISK EJECTION * PREVANTS NTERLOCK WHICH CLOSING ON A PARTLY INSERTE	
FDD 100-8 Single Side	Double Density	
	Double Density	FROM
OTHER PRODUCTS	c.w.o.	30 DAYS
CP/M 2.2	71.50	0
BASIC 80	156.75	165.00
BASIC COMPILER	175.75	185.00
WORD STAR	218.50	230.00
MAIL MERGE	66.50	70.00
SUPERSORT	94.05	99.00

IRVINE BUSINESS SYSTEMS

L700 Radio

 Link System This exciting and versatile new range of by Telecom includes the Slimline Fquipmen Practice (as illustrated) Practice (as inustrated transportable or wall transportable or wall mounting versions. Upto 132 FDM channels or 30 PCM channels.

SSB. 200
Series
An H.F. Single Sid Band transceiver unit. Mobile or fixed configurations are available. Extensive field trials included most rigorous Land Rover journey across Africa During this Aree month expedition direct radio contac direct radio contact Cambridge H.Q

If anyone works for you, we do

Here are three new equipments to keep you in touch with the action wherever it's happening. For more than thirty years Pye Telecommunications have played the leading role in radio communications.

Our total capability covers mobile, paging, portable and fixed radiotelephone systems and point to point links throughout the world.

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC
 UHJ

SURROUND SOUND DECODER

INTRUDER 1 Mk. 2 RADAR ALARM
With Home Office Type approval

 etc.
Complete kit
$£ 52.50$
plus VAT, or ready built and tested
$\mathbf{6 8 8 . 5 0}$ pius VAT.

Wireless World Dolby noise reducer Trademark of Dolby Laboratories inc.
= =awnumum

 Dyramic range $>90 \mathrm{~dB}$ 30 mv senstivivity
lease send SAE for complete lists and specitications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

WW - 037 FOR FURTHER DETAILS

Amcron INDUSTRIAL MUSCLE

```
POWERRESPONSEDC - 45KHz+1dB
    OUTPUTPOWER IN EXCESS OF 1.5KWW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
    D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2KVA
    * HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1kW INTO }6\mathrm{ OHMS.
\star PLUGG-IN MODULES: CONSTANT VOLTAGE/CURRENT,PRECISION OSCILLATORS & UNIPOLAR
    AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
    * OUTPUTMATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.,
    \star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEL
    \star INTERLOCK CAPABILITY FOR UP TO EIGHTIDEITS
    3-YEAR PARTS AND LABOUR WARRANTY
\star 3-YEAR PARTS AND LABOUR WARRANTY
```

For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P．O．BOX 3
ATtLEBOROUGH
OROLK NR17 2PF

家四官
MODEL 3012－R

Manufacture of the Model 3012 Series II 12＂precision pick－up arm ended in 1972．In response to many requests it for professional and hi－fi appli roduced the Model 3012－R．It is basically similar is classic predecessor but with important refinements in cluding：
－Thin walled stainless steel tone－arm
－New design lateral balance system
－Extra rigid low mass shell with double draw－in pins．
－Main weight system with fine adjustment providing a wide range of balance
－Geometry optimised for $12^{\prime \prime}$ records．
Distortion caused by lateral tracking error is at least 25% less than is possible with a 9 arm and its effective mass of 14 grams makes it particularly suitable for the many medium and low compliance cartridges now on the market
Full details will be sent on request．

Write to Dept 0663
SME Limited，Steyning，Sussex，BN4 3GY，England －Steyning（0903）814321．Telex 877808 SME G

The S2－R shell supplied with it is another SME＇first＇in heavy gauge aluminium with pin－up and pin－down bayonet for positive locking．The sockets of all SME arms employing
detachable shells are double slotted and therefore compatible with this design．

When you're ready to "face" the music we have a tip for reduced distortion

Whether you are seeking to reproduce the full dynamic range in the grooves of today's new superdiscs, or simply to obtain maximum listening pleasure from treasured "oldies" in your record coll ection, you need a pickup cartridge that distortion.
Because the pickup cartridge is the only point of direct contact between the record and your entire stereo system, its role is critical to your pickup cartridge is the single most signifiant (and generally least costly) improvement you an make to your stereo system
To that end Shure now offers the Hyperelliptical Stylus Tip configuration-first introduced on he critically acclaimed V15 Type \mathbb{V}-in a fulline of cartridges with a broad range of prices.
The Hyperelliptical stylus tip is probably the most significicant advance in tip geometry in decades. It has a narrower and more uniform reduced intermodulation and hurmonic distortion
Look over the list at left to see which Shure HE cartridge best matches your tracking force requirements.
For more information about Shure pickup cartridges please write to us at the address below quoting reference IFS-1.

Setting the World Standard in Sound B S M M P

 Shure Electronics Limited Telephone: Maidstone (0622) 59881
wireless world

Information versus emancipation

Editor:
TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHLLP DARRINGTON
$01-6613039$
$01-6613039$
Tachnical Editor:
GEOFF SHORTER, B. Sc.
$01-6613500 \times 3590$
Projects Editor: MIKE SAGIN $01-6613500 \times 358$ Communications Editor MART1NECCLES 3500×3589
News Editor:
DAVVI SCOBIE
On
Drawing Office Manage
Drawing Office Man
ROGER GOODMAN
Technical Illustr
BETTY PALMER
Advertisoment Manager:
Advertisemment
$01-6613130$
DAVID DISLEY
$01-6613500 \times 3593$
bafbata miller
BARBARA MILLER
Northern Salas
HARRRY AIKE
$061-8728861$
Midiand Salos
BASLL McGOWAN
BASIL McGO
$021-5564838$
Classifiod Manager
${ }_{0}^{\text {BRIAN DURRA }} 01-6613106$
$01-6613106$
JAYNE PALME
$01-661$ 3033
BRIAN BANNISTER (Make-up and copy)
$01-6613500 \times 3561$
Publishing Director:
GORDON HENDERSON

Popular will can only express itself within the mits that technical necessities have fixed in Society)
The ICL affair last May showed us that The ICL affair last May showed us that
electronic information processing has national issue. Some twenty gul aid: it is departments and several thousand British firms are dependent on the use of this company's machines. The Government was right to reject the proposal that ICL
should be broken up, its customers sold off to a foreign firm and its research, development and manufacturing centres - constituting much of the country's, strength in "information technology" disposed of like unwanted chattels. If
information technology (broadly the systems formed from digital computers and data communications) is an importan part of the country's industry it must remain under British ownership. And the must not be abandoned to dependence on commercial decisions made by foreign computer firms who have no special concern about the future of any country et alone this one.
Every nation, of course, wishes to maintain its independence by keeping organizations function. In a democracy one would expect this control to be exercised by the popular will. But in
modern industrialized countries the will of modern industrialized countries the will officials in charge of specialized information, and of the means of handling it, become more influential in the ordering of events. Representative democracy, in of legislative assemblies in many countries has been declining relative to the power of the executive. This has happened becaus of the increasingly technical decisions which a modern govern ent has to n
competence of the ordinary representativ of the people, so they have to be made under the guidance bureaucracy of the executive (e.g. the civil service). These bureaucrats always have better, more specialized information at their command than the legislators, and they keep it to Their guidance increasingly takes the form of the already prepared decision, the logical outcome of technical necessity which the legislators cannot reasonably refuse to endorse. Much the same can be
said of two other autocratic influences, the military and the large companies and public corporations. The first can keep information to itself on grounds of national security, the second on grounds of commercial secrecy. It is difficult for mere arguinents because, without full information, the truth of the premises cannot be examined.
In all three groups, rocessing and data communication have processing and data communication without these machines the senior officers and managers would now fail to keep control. At the same time the very presence of such techniques allows the organizations continually to grow larger, in
the resources and people they command, without danger of falling apart. They are integrated and secure. And the chiefs of these power structures, unelected by the people but using the technical products of
their work, privately make decisions which can have profound effects on the economy or security of a whole country.
It's a sad fact for electronics engineers to digest that our contributions to
information technology are now helping to undermine our own freedom to participate effectively in the public policy decisions which govern our lives. But at least it doesn't feel as bad when we know th machinery is our own design.

Electronics on the road - 1
An outline of the main applications of electronics to road vehicles

by J. R. Watkinson, B.Sc., M.Sc.

The peculiar circumstances of the produces vast quantrities of echnically conservative products a market which is largely influenced by cosmetics, dictate that the equipment fitted usually lags the available technology by at least a
decade. Accordingly, many of the applications to be described here may at present be found only on expensive

Power un
Alternators. With the possible exceptio of radios, the alternator wassible exceptio tiry-produced automotive device to rely semiconductors. The benefits of alternators are well known, but their use in road vehicles was only made possible by the development of low-cost reliable rectifiers ${ }^{1}$. For a long time the regulator re-
mained mechanical in form, but now electronic regulators are becoming more common. Those using discrete compo nents or thick film technology have been more successful than monolithic devices primarily because of the adverse environ
ment 2.
An alternator regulator basically controls the field current, as in Fig. 1, and the switching mode is often used to reduce
dissipation.

Electronic ignition. Electronic ignition interesting in the way timing information is derived and in spark generation. The source of timing has now generally polarized into two major groups, the mag-
netic pickup, where a rotating neni pickup, where a rotating part of the
engine modulates the flux linking a coil, and the optical system, where a light beam
is interrupted ${ }^{3}$. Both of the above use th which is not devoid of drawbacks. able exception is the Bowstock system, which uses an r.f.-excited capacitanc transducer to eliminate the advance mech nism ${ }^{4}$.
There are now several variations in the spark generator design. In the inductive discharge system of Fig. 2, the energy tored in the coil is $1 / 2 L_{\mathrm{P}} I^{2}$ joules. The primary current has to be limited to tha which the mechanical contacts can handle be relatively high to allow sufficient spark energy. The time taken for primary cur rent to build up in that inductance reduces park energy at high revolutions, even in he absence of points bounce. Replacecan handle a higher current means that the nductance can be greatly reduced, allowg spark energy to be maintained to gher revolutions. It follows that the main gnition unit will not be realised if if appropriate low-inductance coil is not also fitted.

All commercial inductive-dischar systems are of similar design, with th employs some original thinking. As shown in Fig. 3, this system uses a matchin transformer between the coil and the am plifier, which is of the push-pull type to give a more rapid rate of flux change. The ductance from limiting the spark rate, and the makers claim 1200 sparks per second with undiminished energy. Also unique is the fact that no current flows from the spark.

In a capacitor-discharge system, show in Fig. 4(a), a high-voltage inverter of firing, is discharged into the coil prim ary, which is used as a transformer. An equivalent circuit of the c.d. system is shown in Fig. 4(b). As the mutual inductance of the coil, L_{m}, is an order greater neglected, which simplifies the it can be that of Fig. 4(c). The resonant frequency can be stated as

$$
\omega_{0}=\frac{1}{\sqrt{L C_{\mathrm{ser}}}}
$$

where $C_{\text {ser }}=\frac{C_{p} \cdot C_{s}}{C_{\mathrm{p}}+C_{\mathrm{s}}}$
The primary current displays a half-sin characteristic, as in Fig. 4(d). The dura ion of this waveform, using figures quoted by Hoyer ${ }^{5}$ is

$$
2 \pi \sqrt{31 \mu \mathrm{H} .240 \mathrm{nF}}=10 \mu \mathrm{~s}
$$

This is extremely short, and in fact the ctual spark will be shorter than this. Th spondingly short, and as a result resistive losses before the spark gap breaks down are very small, which accounts for the unparalleled cold starting performance of the
c.d: system. Unfortunately, c.d. system. Unfortunately, the weak the spark too short. Simply stated, a weak mixture is not homogeneous, but consist of patches of strong mixture floating about in very weak stuff. If the spark arrive when no patch of mixture is adjacent to the the cylinder means that a spark maintained for about $300 \mu \mathrm{~s}$ will result in ignition, bu this is obviously a function of engine de-

fig. 2. Many induaive discharge syster
simply replace points with transistor

Fig. 4. Capacitor-discharge system, in basic form at (a). Equivalent circuit at (b) is simplified to that at (c) of coill mutual inductance is ignored. Current waveform produced by circuit at (ai) is
shown at (d), extended by circuit at (e) to waveform shown at (f). Flywheel diode in circuit at shown at (d), extended by circuit
(g) allows long decay shown in (h)
c.d. systems, the spark can be ex ended in a number of ways. Most com-
mon in constructors' circuits is the configuration of Fig. 4(e), where the inverter rectifier forms a return current path, giving a current waveform shown in Fig. 4 (f) In Fig. $4(\mathrm{~g})$, the flywheel diode across the coil primary allows the long current decay duration should be ascertained by oscillocope before using a c.d. system on a lean urning engine, particularly since the riginal coil is often used, and is not necessarily optimal for a c.d. system. Reor their c.d. systems but, as with induc ive discharge, the author has yet to see reasoned argument for the use of matched coils in a motor magazine. The reader is which also gives an interesting insight into the motor fraternity's colloquialisms.
Enhanced-spark systems have been the bject of research for many years now, ut commercial availability is relativel hat the voltage required to maintain th ark is considerably less than th beakdown voltage of the spark plug.

32
A d.c. supply of several kilovolts is applied to the spark plug but, as this potenspark occurs until an e.h.t. pulse is superimposed upon the d.c. The spark gap then breaks down, and the d.c. supply
maintains the arc until the charge is exmaintains the arc until the charge is ex-
hausted. The principle has long been in use in strobe tubes and flash guns, where he trigger pulse generates an intense electric field around the tube, which breaks down and discharges the h.t. cap
citor until extinction voltage is reached? The technique has also been used on electric arc welders to assist in establishing the arc. The components of such a system are under a great deal of stress, and it
remains to be seen how reliable commercial systems are. It should be possible to design a system which keeps working on the trigger in the event of the h.t. failing. A further concern is that erosion of the by the intense sparks generated by such systems. The greatest advantage would appear to
engines 8
This type of spark be known as the plasma system unfortunate term since it implies that the sparks generated by other systems are not also plasmic. Alongside the plethora of misnomers already perpetrated by the industry, such as fluid flywheels and shock The distributor has a number of shortcomings, one of which is that condensation often forms inside the cap, which auses tracking, a surface breakdown of the segments inside the distributor cap, so a second spark spans the gap, causing erosion of the electrodes. The use of a conventional distributor dictates long h.t. leads, leading to radio interference, and extra
leakage to ground to dissipate spark energy, as well as presenting a further spark gap which has to be broken down. A system under investigation at the moment replaces the distributor with reed switches. This approach must reduce lead of such a system has to be questioned. An alternative is to use one coil per cylinder, which is extravagant. There is, however, a compromise. In engines having single-plane crankshafts, whenever one
piston rises on the compression stroke, another is rising on the exhaust stroke. There is no reason why the two cylinders should not spark together, as the exhausting cylinder would not be affected. With this approach only two coils would Distributorless two-cylinder engines have used the principle successfully for many years now. As the two coils fire alternately the effective dwell angle is doubled, mak ing the simple inductive-discharge system
attractive.

Fuel-injection systems eliminate the carburettor by injecting the fuel directly into monly, into the inlet mane, or, more com the valve. Early fuel-injection systems

Fig. 5. Ba
injection
were entirely mechanical, and their unre lability made them as popular as lead ba loons; indeed the permanent repair for some was to fit a carburettor. The advent bility is more a function of what can afforded rather than what was physically possible.
A normal carburettor responds to and engine temperature manifold vacuum and engine temperature. Additionally, temperature-controlled air intake to prevent icing and to eliminate yet another variable. Some carburettors ${ }^{9}$ can adjust hemselves for changes in atmospheric the input parameters are sensed by variety of transducers (shown in Fig. 5) which feed the control unit. This devic ontrols solenoid-operated valves which mit fuel from a pressure-stabilized lin as the inlet valve opens, so the system requires an input to describe the rotationa position of the engine: any of the device used to replace the contact breaker are used to calculate the input parameters ar used to calculate the mass-per-unit-time
airflow into each cylinder, because this dictates the amount of fuel to be injected in conjunction with the mixture strength required. By sensing the inlet air temperature, the temperature-controlled inlet be comes redundant. The system is an which can be programmed to account fo transducer calibration constants, and can perform Gas Law calculations on the inputs to accurately. assess the mass flow. Eitions can be stored as lookup tables in r.o.m., so that one basic system could be adapted to a range of engines simply by
The advantages of fuel injection are that
high volumetric efficiency can theoreti-
cally be obtained in the absence of cally be obtained in the absence of an inlet
venturi, and that on multi-cylinder engines, much weight can be saved by replacing rows of carburettors, since the weight of a fuel-injection system grows little with the number of cylinders. These features are
more relevant to everyday motoring is the action of a fuel-injection system on the overrun, i.e. when decelerating with the hrottle closed. With a carburettor system, the closed throttle causes high manifold
vacuum which evaporates condensed fuel vacuum which evaporates condensed fuel
from the manifold walls. The resulting rich mixture causes a puff of black smoke to emanate from the exhaust. To meet U.S. emissions legislation, carburettors airly bristle with devices to alleviate this problem. The fuel iniection system simply
does not inject any fuel at all under these circumstances, a trick which diesel engines have been doing for years. This may exlain why both fuel injection and diesel engines are renascent in the U.S.A. tion, which is not possible with any other approach, is to change the number of cylinders in use, depending on the load. The argument for this is that by using, say, our cylinders of an eight-cylinder engine power, those cylinders are working at maximum compression and therefore aximum efficiency, whereas all eight cy inders would be working at part compres sion to achieve the same power output
The latest Cadillac V8,6,4 engine use three different configurations, dependen on load, and a seven-segment indicator or the dashboard relays the number of cylin
ders in use. ders in use

Control

Automatic transmission. Theoretically the advantages of automatic transmission are many, but they have to be weighed against the drawbacks of currently avail able units. Relieving the driver of gear

WIRELESSWORLDAUGUST 1981
shifting means that the engine should al ways be running at an efficient speed, and that the driver can concentrate more on the road. In heavy trafic, the benelling.
matic transmission are compelling With some notable exceptions, curren automatic gearboxes rely on a torque convertor in order to skimp on the number of ratios provided. A torque convertor is
supposed to be a kind of variable-ratio torque transformer whose task is to pass engine power to the gearbox proper. Un fortunately, rather a lot of power is wasted as heat in current units. In order to prevent overheating, the convertor is de-
liberately designed to so load the engin that little power can be produced at low roadspeeds. As a result, the acceleration of three-ratio automatics from rest is pedes trian, and that of two-speed automatics can be measured with a calendar. The heat
generated by the convertor represents generated by the convertor represent
wasted fuel, so as a palliative, recent units incorporate a lockup clutch which is used when cruising.

The exceptions to the above have been where the designer has kept the transmis
sion within some efficiency guidelines. In this respect the French have a clear lead. The most efficient types use either a conventional clutch and gears, hydraulically operated, or electromagnetic powder clutches. Power losses in these systems
should be no worse than in manual transmissions, and acceleration and economy are about the same. The most sophis ticated are electronically controlled, using such input parameters as road speed and inlet-manifold vacuum, as well as manual
override controls and kickdown switches Current automatic transmissions have to be forced into low gear by the driver for long descents to avoid overheating the brakes: there is no reason why an intelligent transmission could not work out thi
condition itself. The narrow power band of modern o.h.c. engines, together with an extending motorway system, is dictating trend to more gear ratios, five now being fairly common in manual transmissions. matic gearboxes with as many as eigh ratios, controlled by microprocessors, as in Fig. 6. The gearbox itself need not be particularly complicated, since eight ratios can be obtained by cascading three epicy-
clic reducing stages, which could be engaged in binary combinations. In top gear gaged in binary combinations. In top effient, as all the stages would be locked up, wit no relative movement of the gears.
Electrical system. Legislation and social trends have made the electrical system of the modern car very complicated indeed with devices like rear fog lights and hazard warning lights being introduced to counte
today's conditions. The driver has.
The driver has to be able to operate many different controls within easy reach, body has to be kept warm, and supplied with fresh air, and his ears often require to be supplied with sounds of his choice. He as well as hoping that in the event of an
 ree stages combined in binary sear with Micro processes inputs to arrive at correct tio, controlling hydraulic clutches with solenoid valves Fig. 7. Common-bus vehicle wiring,
showing load switching and transference of data to display

accident he will not be injured by any of the hardware supplying these needs. Th constraints of the above cause the dashboard area to be the most densely packed printed circuits were adopted to simplify some of the dashboard wiring, and multifunction stalk switches on the steerg column al so help to reduce the clutter although the ergo In an attempt to further simplify the hysical arrangement of vehicle wiring, system has been proposed whereby the battery is connected to every electrical de throughout the vehicle. The outer braid is used as the power conductor, the inne onductor being a serial, multiplexed control line, which is driven by a contro unit situated next to the driver, as in Fig.
7. Using computer-type registered address echniques, devices connected to the cable are controlled by transmitting a unique

Control panel for Smith's Industries
electronic heater system. Mass of levers and cables is eliminated, giving flexibility
in siting of panel. Heading picture is artist's siting of panel. Heading picture is artist hich uses both analogue and digital isplays.
address, followed by a control word. Data ansmission in both directions would be possible, so that, for example, one node ransducer sending data to the dashboar display. In order to generate addresses and codes, to arbitrate line use and interface with driver controls, a microprocesso wreat de necessary, and needkess to say, a redundancy would be required to ensur reliability, as a failure would be rathe crippling.

o be continued

References

1. A Alternator regulator. J. R. Watkinson. 2. Joseph Lucas, the Dark Horse. Electronic
components May 1969 . components May 1969 .
2. Optical Contact 3. Optical Contact Breaker I R. Wak 4. Electronic Igneition Techniques. J. R. Wat 4inson. Wircteress W World July 1974 . 5. Electronic Ignition Systems for Motor Cars 6. Electronic Ignicionductors Hat Car. Feb. '81. Readers' Letters. Wireless Wo orld Nov. 1980 8. Big. Burn Theory. David Vizard. Autocar 7
3. Big
Feb. 1981. 8. Big Bu.
Feb. 1981 .
4. Weber Carburettors Tuning Manual. SpA E. Weber Bologna.

Record RAE entry

 A record number of candidates, about 5500, sat the Radio Amateurs' Examina tion in May, and this is sure to be reflected in a continuing surge of new licences overthe next few months. This year has seen the completion of the G8AAA sequence of Class B callsigns and the new G6-three etter calls are already beyond G6CAA Class A licences have reached beyond teur licences by early June was ove 32,500.
In terms of population percentage however, the UK tends to lag well behin uch countries as the USA, Japan, Ne position in West Germany (where for number of years licence totals ran neck and neck with those of the UK) shows tha In view of the criticisms I viced of th RAE papers set in December 1980, it is only fair to report that significantly les adverse comment has been received on the questions set in May, and generally these vance to what people need to know to operate modern equipment without causing interference to other users of the radio frequency spectrum. That having been said, there is no doubt that the inheren problems remain unsolved, and the techni-
cal level remains significantly higher than in the specimen questions issued by the City \& Guilds Institute.
And what, for example, does one make of such a question as: "The advantage of
keying the buffer stage in a teater transmitter is: (a) no energy reaches the aerial during key-up; (b) spurious res ponses are minimized; (c) key-clicks are absent; (d) the oscillator frequency re55)? As keying ocone who has spent much time power amplifier stages (and various combinations of these in differential-keying arrangements) I have no hesitation in label ling this question, in this form, as
meaningless and unanswerable in terms of modern practice! And, once again, the questions on radio propagation are confused and at too high a leve.

Technical exams

The problems inherent in providing a senible "entry examination" for what is inended to be a "self-training" service should not be underestimated; this is particularly true in countries such as the UK
where only a single level of technical examination is held, without any form of "inentive" or "novice" licensing. In recent months, apart from my own criticisms,
conduct of amateur examinations have been expressed by amateurs, or would-be amateurs, in a number of countries, inthe USA. One has to accept that the hobby has changed a great deal over the past two decades; that, whereas 30 years ago a high proportion of transmitrers and aerials and ancillary equipment used by newly
licensed amateurs was home-built, this is no longer true.
Some of the critics want examinations at a higher technical level; others want a "driving licence" approach in which it is ern equipment without fully under standing the circuit design. A few typica comments are:
"The present form of examination is ludicrous . . . the syllabus needs to b trimmed to the must know level rather than including 'nice to know' parameters' New Zealand).
"Exams should be designed so that, through memorization, those who take th operate competently a station and to have an idea of how to fix one . . . amateur radio is effective in allowing thousands of untrained persons an opportunity to learn "WV experience" (USA)
est Germany publishes a brochure stions and answers intended for the examining committee, but it is available to the public and most of the examination questions are exactly the same as in this official publication.... we now have persons licensed to participate There is another aspect of this matter. I could be argued that licensing and examination policy in the UK has led in recent years to undue concentration of amateur amateur band, while at the same time many of the h.f. and u.h.f. bands are now relatively "underpopulated", a situation having many potential dangers and disad vantages.

From all quarters

The RSGB estimate that some 7000 people attended the 1981 National Amateur Radio Exhibition at Alexandra Palace, and cer tainly at times it was quite a struggle to get near the exhibits! About 50 traders supported the event and the 'talk-in' stations
registered some 2000 contacts. The 1982 event is due to be held in the new Alexandra Palace Pavilion from April 22 to 24, 1982.
British amateurs will be watching closely to see whether prices of Japanese
equipment increase as a result of recent changes in the exchange rates, in view of the lack of any noticeable effect when the rate became more favourable to the $£$ ster-
ling. Many complaints have been heard about the lack of competitive pricing by British importers, although "price nego-
iating" is not unknown The iating is not unknown.
ciation, formed originally in 1949 as the crition, formed originally in 1949 as the
Brish Old Timers Association, is opening its ranks to all those who can show evidence of having been interested in the side, for a minimum of transmituing Previously membership has been open only to those who have held a transmitting icence continuously for 25 years. Current nembership is over 550. RAOTA hold net is held on Thursday mornings at net is held on Thursday mornings a
1la.m. President is Ken Alford, G2DX who was originally licensed as TXK befor orld War I. Vice-president is F. J ('Dud') Charman, G6CJ
Application forms from Miss May Drummond House, Fo 2ils, Long Lane, East Finchley, London
Radio-control modellers continue to have problems due to interference from that all will be well when (and if con activity shifts to the higher "legal" chan nels. The alternative model-control frequency of 35 MHz is available only for use
with model aircraft

Running IARU

Views in support of major changes in the the International Amateur Padio Unio have been put forward by the ofverseas liaison officers of the New Zealand Association of Radio Transmitters: Arthur Godfrey, ZL1HV and Fred Johnso
ZL2AMJ. For over 50 . quarters has been administered by the American Radio Relay League with its officers "arbitrarily selected rather than democratically elected" the New Zealanders note. They suggest: (1) IARU should have an executive elected by the
member-societies; (2) administrative work member-societies; (2) administrative work
should be carried out by the regional organizations, who would implement policy "decided by the HQ executive after due consultation with regional executives who
in turn have sought the member societies and reached a consensus".
It is suggested that a measure of decentralisation would permit more use to be made of volunteers and so reduce the need
for professional administrators. The recent for professional administrators. The recent
Region 1 IARU conference at Brighton highlighted a rather different problem: important new recommendations and resolutions can be introduced at a very late stage
and then adopted or rejected without refer and then adopted or rejected wact ence back to member-societies.

PAT HAWKER, G3VA

Simplified design of dc power supplies

Design considerations and formulae for common circuit configurations

by J. C. S. Richards

Although capacitance smoothed dc power supplies are common electronic circuits, surprisingly little has been written on how to desi
them. Much of what has been published gives the impression reasonably accurate prediction of performance demands either a omputer or an extensive set of graphs and tables such as those of over thirty years. This article describes a few simple
approximations to give formulae which are easy to use and accurat nough for most purposes.

To simplify the design procedure it is current in the system are independent of he size of the reservoir capacitance C, provided it is large enough for the peak-topeak ripple voltage, $V_{\text {rip, }}$ across it to be a mall fraction, say 20%, of the dc voltage. easily calculated by taking C to be infinite. The ripple voltage is conservatively given by
$V_{\text {rip }} \approx n I_{\mathrm{DC}}(2 f C)$
(1)
where I_{DC} is the dc output, f is the mains and 2 for the circuits in Fig. 2. A better pproximation for $V_{\text {rip }}$ is given in equation 11. With 50 Hz mains, $I_{\mathrm{DC}}=1 \mathrm{~A}$ and $\mathrm{C}=10,000 \mu \mathrm{~F}, V_{\text {rip }}$ is about 1 V for a fullwave circuit
A second assumption concerns $V_{\text {rece, }}$, the
forward voltage drop in the rectifiers, which depends on the rectifier peak current but is unlikely to be more than 1.5 V for a silicon device. The design procedure assumes that the rectifiers are ideal, infi-
nite resistance in the reverse direction and zero resistance in the forward direction. When calculating the dc output voltage, V_{DC}, from a specified transformer, subtract $V_{\text {rec }}$ from the value obtained with ideal rectifiers. When choosing a transior-
mer, start by adding $V_{\text {rec }}$ to the required value of V_{DC}. Except for very low currents, $V_{\text {rec }}$ should be taken as 1 V per diode, i.e. 2 V for a bridge rectifier. Leakage in the electrolytic capacitor and in any reverse biased rectifiers causes a
voltage drop of up to 0.5 V in the forward biased rectifiers. However, V_{DC} is usually calculated at zero output current so that components with a suitable voltage rating

(a)

(c)
can be chosen, it it therefore advisable to consider $V_{\text {rec }}$ as zero.

Transformer considerations Copper losses are important when determining the transformer performance. cribed by some of the following parame
$V_{\mathrm{p}}-$ nominal r.m.s. primary voltage.
I_{R} - rated r.m.s. secondary current.
$I_{\mathrm{R}}-$ rated r.m.s. secondary current.
$V_{\mathrm{R}}-$ rated r.m.s. secondary voltage or the secondary voltage when the current is
$V_{\text {oc }}$ - open circuit r.m.s. secondary voltage.
$r-$ regulation or $\left(V_{\text {oc }}-V_{\mathrm{R}}\right) / V_{\mathrm{R}}$.
For a custom designed transformer or one whose parameters are found by meatities are usually
R_{1} and R_{2} - primary and secondary resistances.
$n_{R_{s}}$ - turns ratio, given by $V_{p} / V_{\text {oc }}$
$R_{\mathrm{s}}-$ output resistance, given by
$\left(R_{1} / n^{2}+R^{2}\right)$.
Because simplified design methods are particularly useful when only a few items particularly useful when only a few items
are needed and off-the-shelf transformers are used, the formulae below use the first set of parameters. If the second set is pre-
ferred a conversion can be achieved using

(b)

(d)

Fig. 1. Full-wave rectifier circuitre (a) bridge, (b) dual bridge, (c) centre-tapped bridge, (d) two phase. In the design are the ratings for each secondary wo-phase circuit, the rating of each secondary is $V_{R} 1 / 2 l_{R}$.
fig. 2(a). Half-wave circuit, (b) symmetrica

Tolerances are rarely quoted for transformers and it is not uncommon for the
open circuit secondary voltage to be 3% adrift and the regulation r, which is often
given as a typical or a maximum value for given as a typical or a maximum value for a
broad range of transformer, to be 10 or broad range of transformer, to be 10 or
20% different. However, these errors usually combine to make the full load voltage within about 2% of its nominal value. hen a transformer has more than one secondary winding, the variation of output cated because current drawn from one secondary affects the voltages on the rest. However, for a transformer with two imilar secondaries each passing the same terms of $V_{\mathrm{R}}, I_{\mathrm{R}}$ and r as above. This covers the series and parallel connection of secondaries and the rectifier circuits in Fig. $1(\mathrm{~b})$ and (c). For the two-phase circuit secondary is the same, but the current lows in only one secondary at a time. To compare this circuit with a bridge rectifier using both secondaries in parallel, suppose hat $V_{\mathrm{R}}, I_{\mathrm{R}}, r, R_{1}, R_{2}$ and R_{s} are the res are in parallel. In this case the rating of each secondary is $1 / 2 I_{\mathrm{R}}$ and its resistance is R_{2}. If current is taken from only one secondary instead of from both in parallel, drawn without overheating is reduced to $\mathrm{R}_{\mathrm{R}} / \boldsymbol{k}^{1 / 2}$ and the effective output resistance is increased to $k R_{\mathrm{s}}$; where

$$
k=\left(2 R_{2}+R_{1} / n^{2}\right)\left(R_{2}+R_{1} / n^{2}\right)
$$

The value of k must lie between 1 and 2 , designed to have equal primary and secondary copper losses in normal operation.

Design formulae
A characteristic of capacitance smoothed ectifier circuits is that the currents in the transformer and rectifier are pulsed. The erformance is easily calcuated is 2θ, is known, and in proximate formulae below, θ is expressed in radians.
To find the half angle of flow θ, $\theta=1.494 x^{1 / 3}+0.111 x$
where $x=A_{1}[r /(1+r)]\left(I_{\mathrm{DC}} / I_{\mathrm{R}}\right)$.
hase, and $A_{1}=2$ for a $A_{1}=k$ for a two oubler circuit. The second term may be Fored when $x<0.05$.
$V_{\mathrm{DC}}+V_{\mathrm{rec}}=\sqrt{2}(1+r) A_{2} V_{\mathrm{R}} \cos \theta$ (6)
where $A_{2}=1$ except for the doubler circuit
here $A_{2}=1$.
here $A_{2}=2$.
For the r.m.s. transformer current I_{T},

$$
\begin{equation*}
I_{\mathrm{T}} / I_{\mathrm{DC}}=1.37 A_{3} / \theta^{1 / 2} \tag{7}
\end{equation*}
$$

$A_{3}=\sqrt{2}$ for a half-wave, and $A_{3}=2$ for doubler circuit.
I_{p}, the repetitive peak rectifier curren

$$
I_{\mathrm{p}} / I_{\mathrm{DC}}=2.36 A_{\psi^{\prime}} \theta
$$

where $A_{4}=1$ for a bridge or two-phase, and $A_{4}=2$ for a half-wave or doubler circuit. For the r.m.s. capacitor current I_{C},

$$
\begin{equation*}
I_{\mathrm{C}} I_{\mathrm{DC}}=\left(A_{5} I_{\mathrm{T}}^{2} / I_{\mathrm{DC}}{ }^{2}-1\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where $A_{5}=1$ except for the doubler circuit where $A_{s}=1 / 2$.
For the maximum permitted dc current I_{m}, which occurs when $I_{\mathrm{T}}=I_{\mathrm{R}}$,
$I_{\mathrm{m}} / I_{\mathrm{R}}=0.87 A_{6}\left[r /(1+r)^{1 / 5}\right.$
(10) where $A_{6}=1$ for a bridge, $A_{6}=1 / k^{3 / 5}$ for a
two-phase, $A_{6}=0.76$ for a half-wave, and two-phase, $A_{6}=0.76$ for a half-wave, and
$A_{6}=1 / 2$ for a doubler circuit For the peak-to-peak ripple voltage $V_{\text {rip }}$,
$V_{\text {rip }}=A_{7} I_{\mathrm{DC}}\left(1-2 A_{8} \theta / \pi\right) /(2 C f)$ where $A_{7}=A_{8}=1$ for a bridge or twophase, $A_{7}=2$ and $A_{8}=1 / 2$ for a half-wave, $A_{7}=2$ and $A_{8}=1$ for a doubler circuit. The r.m.s. value of the ripple is about $0.3 V_{\text {rip }}$. More exact forms of most of these for-
mulae are given in, or can be deduced from the theory described later. However, any errors introduced by the approximations are nearly always $<3 \%$, and more usually $<1 \%$. Also, errors arising deriving the "exact" formulae and from inaccurate specification of the transformer are likely to be more significant. In practice the total discrepancy between calulated and measured values of V_{DC} has rarely exceeded 1V or 5\%

Choosing a circuit

The choice of circuit is usually between a bridge and a two-phase design. Overall the co-phase circuit is usually better and
cheaper at low voltages and the bridge ins at higher voltages, but the differences in cost and efficiency are small and often less impo
For dual supplies the separate bridges of Fig. 1 (b) allow flexibility in earthing etc, while the centre-tapped briage of Fig. 1(c) positive and negative rails. The only important advantage of a half-wave circuit as hown in Fig. 2 (a) is simplicity. The transormer is used inefficienty, hux in the is poor and the ripple voltage is double that of a full-wave type using the same capaciThe symmetrical half-wave doubler in Fig. 2(b) avoids dc polarisation in the frequency is twice that of the supply, and a high dc voltage can conveniently be obtained using components with a relatively w voltage rating.
The available direct current I_{m}, the corresponding dc voltage V_{m} and the open
circuit dc voltage V with allowance for the rectifier voltage drop $V_{\text {rec }}$, are plotted against r in Fig. 3 for a full-wave bridge. The trend of the curves is the same for all

WIRELESS WORLD AUGUST 198

Fig. 3. Graph for a bridge rectifier circuit showing how the maximum available dc voltage V_{m}, and the open circuit dc voltage V_{0} vary with the regulation of a transformer rated at V_{R} and I_{R}.
circuits. Regulation of the dc supply is $\left(V_{\mathrm{o}}-V_{\mathrm{m}}\right) / V_{\mathrm{o}}$, therefore a transfor even worse regulation. However, when r is very small, the transformer tends to be large and expensive for its VA capacity and $I_{\mathrm{m}} / I_{\mathrm{R}}$ becomes small. Also, it may be
necessary to introduce an external resistance to limit the peak rectifier current, thereby removing any advantage from a low r.
As a
As a general guide, for outputs between 10 and 100 VA , a regulation of about 0.1 transformers are readily available. Transformers with a low power rating, <10VA, are not much cheaper than larger types and, because the relatively larger cooling
surface permits a higher surface permits a higher current density in
the copper, a larger fraction of the winding area is occupied by insulation which tends to make the copper losses and hence r relatively large.
For a bridğe
For a bridge or a two-phase circuit which must provide V_{DC} at a maximum
current I_{DC}, the transformer V_{B} should be about $0.8\left(V_{\mathrm{DC}}+V_{\mathrm{rec}}\right)$ and I_{R} should be around $2 I_{\mathrm{DC}}$. When specifying V_{DC} for a supply which is to be stabilized, allow for the voltage drop in the stabilizer, typically
2 to 3 V , variations in mains voltage, about $\pm 10 \%$, and the minimum voltage across the capacitor which is less the $V_{D C}$ by about $1 / 2 V_{\text {rip }}(0.5$ to $1 V)$. Considering all hese factors, and allowing for a 1 to 2 V drop in the rectifiers, a stabilized output asually requires a transformer with a V_{R} of popular stabilized values of 5,12 and 15 V , the transformer voltages must be around 9 , 15 and 18 V respectively. It is permissible or I_{DC} to exceed I_{m} for periods much less stant, provided that I_{DC} is appropriately less than I_{m} at other times. Note that the thermal time constants of the rectifiers and

WIRELESS WORLDAUGUST 1981
capacitor are relatively short and their ratmum value of I_{DC}. When a supply
current, up to $\sqrt{2} I_{\mathrm{R}}(1+1$) he capacitor, so the an appropriate non-repectitive peak current ating. The repetitive peak peak current of the rectifiers should be at least $\sqrt{2}(1+r) V_{R}$ for the bridge circuits and wice that value for the other circuits, with an allowance for mains voltage variations. The voltage rating of the capacitors should ratings should be increased by 30 to 50% for high reliability.

Design examples

For a supply with an output of 35 V dc at 0.6 A , less than 2 V peak-to-peak ripple, and a bridge rectifier with $V_{\text {rec }}=2 \mathrm{~V}$, a transformer is needed with V_{R} about $0.8 \times$ From equation 10 , the two secondaries in series can provide a dc current I_{m} of 0.85 A , and from equations 5 to 11 the following values are found. The figures in brackets were measured on a prototyp

$$
\begin{aligned}
& \text { with } \mathrm{C}=2,200 \mu \mathrm{~F} . \\
& \text { At } I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=46.2 \mathrm{~V}(45.8 \mathrm{~V})
\end{aligned}
$$

$$
\begin{gathered}
\text { At } I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=46.2 \mathrm{~V} \\
\mathrm{At} I_{\mathrm{DC}}=0.6 \mathrm{~A}, \theta=0.473, \\
V_{\mathrm{oc}}=39.2 \mathrm{~V}(38.4 \mathrm{~V})
\end{gathered}
$$

$$
\begin{gathered}
\text { At } I_{\mathrm{DC}}=0.6 \mathrm{~A}, \theta=0.473, \\
V_{\mathrm{DC}}=39.2 \mathrm{~V}(38.4 \mathrm{~V}) \\
I_{\mathrm{T}}=1.2 \mathrm{~A}, I_{\mathrm{p}}=3.0 \mathrm{~A}, I_{\mathrm{c}}=1 \mathrm{y}
\end{gathered}
$$

$$
\begin{gathered}
I_{\mathrm{T}}^{\mathrm{T}}=1.2 \mathrm{~V}(1.8 \mathrm{~V}) . \\
=1 .
\end{gathered}
$$

For a supply to provide 5 V at 1 A with less than 1 V peak-to-peak ripple, a transformer with two secondaries each rated at
$4.5 \mathrm{~V} \quad 1.3 \mathrm{~A}$, and a regulation figure of nominally 0.1 is suitable. The design equations for a bridge circuit with the secondaries in parallel give the values below measured values

$$
\begin{aligned}
& \mathrm{At} I_{\mathrm{DC}}=0, V_{\mathrm{VC}}=7 \mathrm{~V}(6.1 \mathrm{~V}) \\
& \mathrm{At} I_{\mathrm{DC}}=1 \mathrm{~A}, V_{\mathrm{DC}}=4.2 \mathrm{~V}(4.1 \mathrm{~V}), \\
& V_{\text {rip }}=0.7 \mathrm{~V}(0.6 \mathrm{~V}) .
\end{aligned}
$$

For a two-phase circuit, assuming
$k=1.5$, the following values are obtained.

$$
\begin{aligned}
& \mathrm{At} I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=7 \mathrm{~V}(6.6 \mathrm{~V}) \\
& \mathrm{AI} I_{\mathrm{DC}}=1 \mathrm{~V}, V_{\mathrm{DC}}=4.9 \mathrm{~V}(5.1 \mathrm{~V}), \\
& V_{\mathrm{rip}}=0.7 \mathrm{~V}(0.6 \mathrm{~V}) .
\end{aligned}
$$

These results clearly show that the two phase circuit is superior

Derivation of equations

 An equivalent circuit for a bridge rectifier current and voltage waveforms. The trans former is represented by a sinusoidal generator, $v_{1}=\left(V_{1} \cos \omega t\right)$, and an output resis tance R_{s}.When C is large enough, the voltage across it can be taken as constant and equal
to V_{DC}. Current i_{1} flows into C whenever the magnitude of v_{1} is greater than V_{DC} i.e., when $\left|V_{1} \cos \omega t\right|>V_{\mathrm{DC}}$, or when ωt lies between $(n \pi-\theta)$ and $(n \pi+\theta)$, where n is $0, \pm 1, \pm 2 \ldots$ etc. and 2θ is the angle of
flow. In Fig. $4(\mathrm{~b}),\left|V_{1} \cos \omega t\right|$ and V_{DC} are shown
$V_{\mathrm{DC}}=V_{1} \cos \theta$
(12)

(b)
 Fig. 4(a). Equivalent circuit of a bridge
rectifier system. (b) Comparison of
IV, V_{1} coswt/ and $V_{D C}$ when C is infinite. (c)
Waveform of current $i_{\text {, into }}$ the capacitor. (d) Waveform of transformer secondary current $i_{\text {. }}$. (e) Comparison of V, cossut/d dc output voltage.

Current i_{1} flows in pulses as shown in Fig 4(c), and is given by

$$
i_{1}=V_{1}(\cos \omega t-\cos \theta) / R_{\mathrm{s}}
$$

Because the average value of i_{1} must b equal to I_{DC},
$\sin \theta-\theta \cos \theta=1 / 2 \pi R_{s} I_{\mathrm{DC}} / V_{1}$,

$$
=\pi r I_{\mathrm{DC}}\left[2 \sqrt{2}(1+r) I_{\mathrm{R}}\right]
$$

This equation can be solved by trial and error or by expanding $\sin \theta$ and $\cos \theta$ as truncated power series in θ and then using tion 5 above.
The transformer current is shown in Fig. 4(d) and has the same r.m.s. value I and peak value I_{p} as i_{1}. Therefore

$$
I_{\mathrm{T}}{ }^{2}=\frac{V_{\mathrm{l}}{ }^{2}(2 \theta+\theta \cos 2 \theta-1.5 \sin \theta)}{\left(\pi R_{\mathrm{s}}{ }^{2}\right)}(15
$$

$I_{\mathrm{p}}=V_{1}(1-\cos \theta) / R_{\mathrm{s}}$
(16)

Expanding $\cos 2 \theta$ etc as series in θ and
 equations 7 and 8 . From Fig. 4(a), the current i_{1} divides into two parts, I_{DC} and i_{c} in capacitor C
Because i_{c} has no dc component, the aver Because i_{c} has no dc component, the aver
age value of $i_{c} I_{\mathrm{DC}}$ is zero, and equation 9 age value of $i_{\mathrm{C}} I_{\mathrm{DC}}$ is zero, and equation 9
follows. To find $I_{\mathrm{m}}, I_{\mathrm{T}}$ is made equal to I_{R} and the equation is solved by series expan-
sion to find θ_{m}, from which I_{m} follows by sion to find θ_{m}, from which I_{m} follows equation 13 .
For circuits
For circuits other than the bridge type the constants A_{1} to A_{8} can be found by
sketching the waveforms and making appropriate adjustments to the integration limits when taking averages.
Effect of finite capacitance If the ripple voltage across capacitance C is assumed to be an exact triangle waveform,
the diagram in Fig. 4(e) is produced where $\left|V_{1} \cos \omega t\right|$ and the voltage across C are shown together. The theory given above can be extended to find θ_{1}, θ_{2} and hence V_{DC} etc. ${ }^{2}$, but the improvement is small if
the ripple is small. For example, the the ripple is small. For example, th
 which is $<3 \%$ provided that $V_{\text {rip }} / V_{\mathrm{DC}}$
<0.2 and a transformer with $r>0.05$ is used at or near its maximum capacity. If
such an improvement is justified, a more such an improvement is justified, a more
accurate method of predicting rectifier voltage drop should be used. The discharge current out of C is I_{DC} therefore, if C discharges for a time t_{1},

$$
\begin{equation*}
V_{\mathrm{rip}} \simeq I_{\mathrm{DC}} t_{1} / C \tag{17}
\end{equation*}
$$

From Fig. $4(\mathrm{e})$ and because $\left(\theta_{1}+\theta_{2}\right)$ is tely 2θ, and repetition tim of the ripple is $1 /(2 f)$,

$$
\begin{equation*}
t_{1} \approx(1-2 \theta / \pi) /(2 f) \tag{18}
\end{equation*}
$$

so equation (11) follows, and (1) gives a rough overestimate.
Note that in the doubler circuit of Fig. 2(b), the voltage waveform across caccit. However, the two ripple waveforms are displaced from each other by half a cycle and, when added, give a ripple waveform with a fundamental frequency of twice th mains frequency

References

1. Schade, O. H., "Analysis of rectifier opera-
tion", Proc. I.R.E., Vol. 31 , pp $341-361,1943$. tion", Proc. I.R.E., Vol. 31, pp
2. Leiders, A.-361, "Single.-phase rectifier circuits with CR fillers", Electronic components and ap-
plications, Vol. 1, pp 153-165, 216-225, 1979 .

Tone filters for electronic

organs - correction

On page 61 of Colin Pykett's article in the De
cember 1980 issue, please transpose the first five lines in columnstwo twd three. And on page 60 ,
in
column tree, please read $82 \mathrm{k} \Omega$ for R_{1} and in column three, please read $82 \mathrm{k} \Omega$ for

Programmable sound-generator interface

Z80 control of the AY-3-8910
by M. Shepherd
Although the AY-3-8910
programmable sound. generator was
designed for use with a
microprocessor, it can only be directly
used with CP1600/1610 d devices. .his
inexpensive interface allows up to
four generators to be controlled by
the popular 280 using i/o instructions.
The AY-3-8910 programmable sound gen-
erator, p.s.g., is a a 0 -pin i.c. containing 14
reaa/write registers which determine tone
frequency, noise amplitude and envelope
shape on three esparate audio output chan-
nels. These features make the device suit-
able for computer control and, with simple
programming, a wide range of musical and

Fig. 1. Interface decoding logic for two programmable sound generators.

Fig. 2. Control circuit for one or two p.s.gs.
880 connections are marked with a circle.
Once programmed, the p.s.g. can produce and sustain a particular sound without
further control from the computer several devices can generate elaborate contrapuntal effects.
Individual registers in the generator are accessed and written/read via an 8 -bit bidi-
rectional bus which is controled $\mathrm{BC1}$ and BC 2 signals. If BC 2 is connected to +5 V , bus control can be achieved with the signals shown below.
$\begin{array}{lll}{ }_{0}^{\text {BDIR }} & { }_{0}^{\mathrm{BCl}} & \text { Function } \\ \text { bus inactive }\end{array}$
$\begin{array}{lll}0 & 0 & \text { bus inactive } \\ 0 & 1 & \text { read data }\end{array}$
p.s.g. register
write data to latched p.s.g. \quad adatress register address
The BDIR and BC1 signals are directly available from CP1600/1610 processors, but with other microprocessors they must be simulated and synchronized to allow
data transfer between the processor and data transfer between the processor an
p.s.g. bus. The AY-3-8910 also has two indepen
dent general purpose 8 -bit i / o channels registers 14 and 15 , which have no effect on the sound generation. These are equivalent to a Z80 p.i.o. without the handshake lines and interrupt facility, and can
continued on page 54

IEETMIERSTOTMIE ECDITOD

BETTER R.F.I.
PROTECTION NEEDED It is clear from my own observations that a.m. citizens band equipment operating on the
27MHz frequency is now so firmly entrenched in this country that nothing, certainly not the
belated appearance of a legal specification will belated appearance of a legal specification, wil
sweep it away. Whatever the rights and wrong of the matter may be, there are just too many a.m. rigs in service for them to fade rapialy in obscurity come the glorious day.
I therefore issue a vehement plea for all
manufacturers of domestic electronic equip manuarcurers of domestic electronic equip-
ment to start looking seriously at one aspect of its performance which is usually wholly neg lected - immunity to strong radio-frequency
fields. Manufacturers ought to be forcefully reminded that if their apparatus is not intended to respond to 27 MHz a.m. signals it is a failing on their part if it does. The extra components
needed to secure excellent r.f.i. protection ars neded to secure excellent r.f.i. protection are
not expensive, and their presence would also lems arising from the use of amateur, p.m.r. broadcast or other radio transmitters close to ordinary households.
Perhaps reviewers might observe that an r.f.i. their array of measurements. A number of reputable hi-fi manufacturers produce amplifier with appalling r.f.i. protection, and it seem
that performance in this respect is haphazard there being considerable differences between various models from the same manufacturer,
and no apparent correlation between price and and no apparent
protection.
Norman McLeod
Norman McLeo
Brighton
Brighton
Suscex

DISTORTION AT THE AMPLIFIER-SPEAKER INTERFACE
The two-part article "Intermodulation distor tion at the amplifier-loudspeaker interface" by
Otala and Lammasniemi in your November and December 1980 issues contains serious flaws. This article began life as an Audio Engi-
neering Society Convention preprint, No. 1336 neering Society Convention preprint, No. 1336
of February/March 1978. Its authors are aware of at least three independent rebuttals of tha preprint, one of which has already been pub-
lished. This published rebutal is by R. R. Corlished. This published rebuttal is by R. R. Cor-
dell of Bell Telephone Laboratories, and is available as AES Convention preprint No. 1537 of November 1979, under the title "Open-loop
output impedance and interface intermodulaoutput impedance and interface intermodula-
tion distortion in audio power amplifiers". One of the unpublished rebuttals is by E. M. Cherry and G. K. Cambrell of Monash University
originally submitted to the $A E S$ foumal in Feb originally submitted to the $A E S$ fourna lin Fe
ruary 1979 a revised manuscript was submitte Yuary 197, a revised manuscript was submitted
in October 1980 under the title "Output stages for audio power amplifiers"
Cherry
Cherry
points:

1. If an
iints: tage then, if collector resistance can be varie without changing any other parameter, interfac intermodulation distortion, i.i.m., increase
monotonically as collector resistance is reduced.
2. If an anplififer using a given transistor has
and common-emitter output stage, and if this is
changed to the common-collector configuration and nothing else is changed except the phase of the feedback connection, i.i.m. at best remain
Taken together, 1 and 2 , run absolutely
counter to thie suggested "rule" of providing a low open-loop oupur resistance ${ }_{3}^{1980, \text { p. } .566)}$
ive and cannot purposes, a loudspeaker is passive and cannot iniect a signal back into an ampli-
fier. (a) The motional e.m.f. produced by sound incident on the loudspeaker cone from room enclosure reflections of from other sources is enclosure reflections of from other sources is
minuscule compared with amplifier rated out put voltage. (b) Substantial motional e.m.f. results from the signal applied to a loudspeaker
However the substitution (or compensation) However the substitution (or compensaiuan)
theorem of network theory shows that an activ network which models a loudspeaker and in cludes such a motional e.m.f. can be replaced
identically by the passive LRC network tha completely models the driving-point impedance of the loudspeaker. A loudspeaker is strictly passive so far as any applied electrical signal is
concerned, and there is no possibility of $i . \mathrm{i}$. concerned, and there is no possibiity of i.i.m
as defined because there is no independent sig nal source in the load.
3. I.i.m. is proporional to a product of output arrent amplitudes in Fig. 4. The constant of proportionality depends on the detail of th circuit, but cannot exceed the constant in at given output current amplitudes cannot ex at given output current ampintudes cannot ex-
ceed standard intermodulation at the same current amplitudes.
Taken together, $3(a)$ and 4 suggest that the
distorion power produced in a regl-life situra distortion power produced in a real-life situation
by the interface intermodulation mechanism is minuscule compared with the distortion powe produced by
mechanism.
mechanism.
Department of Electrical Engineering Monash University
Clayton, Victoria, Australia

The authors reply:

The authors reply:
We are not aware of any rebuttals of our AES paper. The paper of Cordell is based on dif frent premises from ours, i.e., Cordell postu-
lates the amplifier open-loop distortion to be lates the amplifier open-loop distortion to be
constant in the comparison, whereas our analysis is based on the closed-loop distortion being held constant. This difference in bound ary conditions taken into account, Cordell's re-
sults are in agreement with ours and the paper sults are in agreement with ours and the paper
can hardly be considered a rebuttal. The two other references quoted are unknown to us, an will be considered if and when available.
The points the writer makes sound familiar The points the writer makes sound familiar to
us as if they were our own results taken from
our paper:

1. This conclusion is a corollary to our paper
We assumed the amplifier closed-loop distortion We assumed the amplifier closed-loop distortion
to be constant, which is a real-life engineering consideration, as discussed in our paper. The writer's assumption is that the open-loop distor
tion is constant and that the amount of overal negative feedback varies with the collector resis-
tance. This leads to complete agreement with
our results, if allowance is made for the differen boundary conditions. However, we doubt if th writer's case could be realistic in practice.
2. Our theory shows that the i.i. m . in thi 2. Our theory shows that the i.i.i. . in this case as the writer states. We cannot see any theoreti-
cal discrerancy here either cal discrepancy here either. Nevertheless, this
kind of a hat-trick would be impossible in practice, and practical measurements show the common-emittter stage to be inferior because o
larger closed-loop distortion larger closed-loop distortion.
3. (a) We agree completely with this point, as is
stated in our paper. (b) As far as the loud staed in our paper. (b) As far as the loud-
speaker is concerned, this is just a meter definition. We would wish to point out that the
proposed $\mathrm{i} . \mathrm{i}$... proposed i.i.m. measurement method was not conceived to simulate the physical loudspeaker, but just to expose the amplifier output port to
such worst-case current and voltage such worst-case current and voltage
relationships which might occur when real loudspeaker loads are being driven.
4. This is a rephrasing of the opening paragraph
of Part 2 of our paper. In many cases be negligible as compared to the CCIF two-tone i.m. However, in a poorly designed amplifier, such as shown in our Fig. 14 , it may equal in
magnitude the two-tone i .m., as can be seen from our Figs. 15 and 17 . In conclusion, the letter does not seem to
indicate any flaws in our paper, on the contrary. Many a thing may seem controversial if viewer
from different positions. However, a more thor ough examination which takes into account the different sets of boundary conditions shows no conflict to exist.
Matit Otala, 耳orma Lammasniemi
Technical Resea
Oulu, Finland
THE DEATH OF ELECTRIC CURRENT
Mr Ivor Catt's very interesting article in your discussion, since, if he is correct in his analysis it would imply that a lot of our fundamental teaching in electronics is wrong. Let me recapitulate first, simply, on the Nor-
mal theory of electric current flow. It is no mal theory of electric current flow. It is now
widely taught that in the following circuit the electric current consists of a flow of electrons,
between adiacent atoms which make up the between adiacent atoms which make up th
material of the wires; the electrons either carrying, or being, elements of electric charge. Th
 Energy converted
to heat at
1 foul second 1 joule fseconc
$=1$ watr in
resistance
harges are given energy by the electromotive force of the battery, such that if 1 coulomb (6.24 $\times 10^{18}$ electrons) of charge is raised through of energy; which is then expended when the current (rate of flow of charge) flows through
flowing through the wire at 1 coulomb/s, then
the current is said to be 1 ampere, and the the current is said to be 1 ampere, and the
resistance of the circuit would be ohm; while
the energy of the current would be dissipated the energy of the current would be dissipated
(e.g. converted into heat) by resistance, at the (e.g. converted into heat)
rate of 1 watt, or 1 joule/s.

It would seem from the successes we hav
had, for example, in making colour televisio radio and stereo systems available to so man people, that these circuit fundamentals must be
quite a valid and useful way of thinking. I am quitso a a a loss to see how Mr Catt can develop his
and theory of the battery and resistor, with the
'energy current' entering the resist side 'energy current' entering the resistor sideway
(on p. 80, December issue) into giving such (on p. 80, December issue) into giving such
useful quantitative concepts as the above circuil
does; but maybe he doesnt does; but maybe he doesn't want to, at prescent
It would seem, however, It would seem, however, that he is at least
asking us to lay aside our hypotheses about the existence of protons, electrons, and therefore presumably even atoms; for we are told that
electric charge does not exist, and nothing flow electric charge does not exist, and nothing flows
in a conductor. This could indeed be revolu-
tionary. philospher, I am only in sympathy wit Mr Catt's initiative. Although I can't really fol
low the flight of his imagination at present, have argued elsewhere ("Mind \& Machine,
The Listener, Oct 17th 1963) that the conce The Listener, Oct. 17th, 1963) that the concepts
and inventions of physics, and indeed the Uniand inventions of physics, and indeed the Uni-
verse itself, should be understood in terms of
the concent of imagination, e.g. of the writing of the concept of imagination, e.g. of the writing of
scientists, and not vice versa. My attempt scientists, and not vice versa. My attempt to
argue this viewpoint however, i.e. that scientific argue ledge does not have to be taken literally as
knowle ultimate truth, was not very well received, and I
was accused of 'dangerous obscurantism'. It was accused of dangerous obscurantism'. It
may, I suppose, one day be possible to explain the 'iimaging, or 'imayining' function of the
brain in physical concepts. However, although I brain in physical concepts. However, although
wish Mr Catt every success in developing hi wish Mr Catt every success in developing his
imagination and new hheories, Ithink he should
be warned be warned, or reminded, that the imagination of scientists does have to be supported, or tested,
by observations and experiments. In short, it by observations and experiments. In short, it
seems that he may be unwise in reviving a Heaviside theory, published in 1892, and in quoting J. A. Fleming ((1898) and Clerk Maxwell (1831 I-
1879), who lived before the discovery of the 1879), who lived before the discovery of the
clectron (1897), through the experiments of J. J. clectron (1897), through the experiments of J. J.
Thomson, had become well known and accepted.
Peeter. M. Dawe
Oxford

The author replies:
Mr Dawe recapi
Mr Dawe's recapitulation, para. 2, deals with a
so-called "steady state" situation. Conventional theory covers for these quite well; it was de-
veloped for that purpose. However, cosyen veloped fhor chat purpose. However, conven
tional theory cannot cope with the transient condition, as we shall sepe. Consider the transiention $1 / 4$ nanosecond after we close the switches in the
diagram below. diagram below.
clectrons must appear in further forward, ex erminate the new E lines inions such as α a voltage difference which now exists in the next inch of transmission line.
Where does the
Where does the electron come from to fill the
next gap α as the stec front advances forward? It cannot be one (say β) from behind the step, because this electron is not travelling at th peed of light. For β to arrive at location α in
time, it would have to travel at the speed of light, since the voltage-current step is sravelling forward at the speedof of light (for the dielectric) A central feature of conventional theory (N
H) is that the drift velocity of electric current slower than the specd of elechtric. Therrentore
Theory N where electric current is the cout Theory N, where electric current is the couse
and $E \times H$ fied an effect, breaks down for the and $E \times H$ field an effect, breaks down for the
simple reason that a cause travelling slower than the speced of light cannot create an effect travel-
lin at at speed of light. It seems clear that if ling $a t$ the speed of light. It seems clear that if we retain a dualistic theory (N or H), the pre-
sent discussion forces us to conclude that Theory H obtains; the cause must be the $E \times H$ field in the dielectric, energy current, which
does travel at the speed of light, and the slower does travel at the speed of light, and the slower
electric current in the wire is merely an effect of that cause. I would agree with Mr Dawe, para. 3, that
practical success would tend to indicate that our fundamental theory is sound. However, coun-ter-instances abound. Lacking sound theory the Romans still built many impressive bridges. Like Mr Dawe, I shall use whatever suits me to
calculate dissipation in resistors, etc. We do not calculate dissipation in resistors, etc. We do no
have to use the theory we believe, when it is
inconvenient inconvenient, rather than travel by another more convenient path in our day-to-day affairs,
Calculation of the steady current from a (car) battery to a resistor (car headlamp) will no
become the sor become the stamping ground for theorerical
discord. Similarly, I think quite happily discord. Similarly, I think quite happily abou
how to avoid "losing the cold" in my deep frecze. There is a time and place for theories. The policeman who charges you with driving
without due care and attention should not have to bother with Newton's Laws of Motion, and is not charging you for ignoring them.
With regard to the last
With regard to the last paragraph, the
electron in majof problems) in expsary (indeed, it creates
TEM step guided between two passage of a TEM step guided between two conductofros.
Should it be necessary in other situations, it can Should it be necessary in other situations, it can
be expected to turn out to be a standing wave be expected to turn out to be a standing wave
energy current. This was proposed by Schrö.
dinger. Jennison's sesign of such as. dinger. Jennison's sesign of such a by schructure
(Wireless World June ' 1979 , pages $45-47$) goes (Wi reless World June' 1979 , pages 45-47) goos
wrong because, like so many others, he is wrong because, like so many others, he is
trapped within the conceptual confines of the
sine wave. Once you drop the sine sine wave. Once you drop the sine wave, it is not
difficult to construct an "elceron" difficult to construct an "electron" out of
energy current. (However, it would then be energy current. (However, it would then be
illogical to hold onto Theory N or Theory H ,
since encgy curn since energy current would then be bordered by energy current (i.e. electrons). Similarly, once it
is realized that a capacitor is a transmission line, it is not logical to retain the alternate lumped L ${ }^{\text {and }} C$ (transmission line) model for the transmission line.)
It think the I think the first part of the last paragraph, like
Osiander, is wrong. It is a tragedy that virtually all contemporary scientists are siding with the
mediaeval church against Galileo. Istand with mediaeval church against Galileo. I stand with
Galileo, Bruno and Kepler, but unlike Bruno I shall not be burnt alive for it. (Sec M. Polyanyi, "Personal Knowledge", RKP 1998 , por. 14 s -
6.) As to the second part of the last para., Iam 6.). As to the second part of the last para., I am
making discovery, not indulging in imagination. As to the electron, although I may allow owe existence of the standing-wave electron, I find
the billiard-ball electron incomprehensible. the billiard-ball electron incomprehensible.
Like Einstein, Ido not accept the quantum.
(Max Born, "The Born-Einstein Letters", Mac--
milan bear directly on Theory C, which merely emoves the (possibly in other situations surviv
ing) electron from the theories of (a) the "steady charged capacitor" and (b) "electric current in a $\stackrel{\text { wire". }}{\text { Ivor Catt }}$

HERBERT DINGLE
Perhaps I may be permitted to make a brief issue on my, late uncle Professor Herbe Dingle. Dr Wilkie writes: "Professor Dingle is described as an expert on relativivty". He makes no comment on this but later in his letter he say
"Professor Dingle was a distinguished historian "f science". The subtle implication is that he nust be regarded as an historian who had no right to be delving into such abstruse matters a
the Theory of Relativity. This impression can best be corrected by quoting from his obituary in The Times of Scpetember 6 th, 1978 . hen it used to be said that only (1922) appeared at a time understood the beoory. If this had bix ben true, Dingle nust be rated high among the six for his litite book
howed a profound grasp of relativity as a physic theory combinen with a a capaciry for reresening it no no
as an esoteric mystery, but as a logical development of as an esoteric mystery, but
the mechanics of Newton".
To this might have been added the comment that he met and discussed scientific matters with Einstein, a privilege that was denied to most of My other point concerns my uncle's love of good English. This was something he inherited
from his father and shared with his brother. It led him to avoid ard jargared whenever possible. Dr Wikkie, who evidently loves technical language,
finds this very tiresome; he holds the remark finds this very tiresome; he holds the remarka
ble view that plain English is ambiguous and iargon is precise. I know from my own profession as a veterinary surgeon just how mistaken
this is. Once people resort to iargon they make wis is. Once people resort to jargon they mak
words mean whatever they want them to mean one only has to recall what happened to 'param eters' to realise that
Thave not the knowledge to tell whether my
uncle's beliefs were correct, but I confess I ay uncle's beliefs were correct, but I confess I am
not impressed by an opponent who admits to difficultry in expressing his case in plain English,
and who links Herbert Dingle's supporters with and who link Herbert Dingle's supporters with
people who believe the Earth to be flat. 'Flat Earther', by the way, can be dealt with quite easily without resorting to technical language.
P. F. Dingle P. 9. Dingle
King
Norfolk

TELEVISION SETS FOR THE DEAF
a am glad that Mr Power has pointed out that hearing impaired people will not necessarily get satisfactory listening. via a manufacturer's
installed outlet socket (May letters). When 15 per cent of the adult population have hearing difficulties it seems appalling to me that none of the manufacturers pays attention to the prob-
lem.
I wrote my original letter to you with my
tongue usta tongue just a lititle in my cheek as I know more
than a litte about the problem. I wos hoping to than a little about the problem. I was hoping to
draw a hail of fire from the various manufacturers but only Decca had anything to say.
May I conclude by sayin May I conclude by sayying that the problem is
not for the hearing impaired alone; it is a probnot for the hearing impaired alone; it is a prob-
lem for their families and neighburs as well.
One of the most common enquiries which I get

WIRELESS WORLD AUGUST 1981
from the area around Southend is: "Can you do
something for my dear old Mum/Dad, he/she
wants the wants the tele
the wall!"
Fred Hollowa
Rel
Fred Holl
Rayleigh
Essex
Essex
MAGNETIC RECORDING As an academic who has for some years been teaching the above topie,
grateful to Wireless World for this fairly regular feature which has been used as a source of update information. With reference to the review
by J. Moir in the March issue, I would like to take up four points.
It is stated: "If the head gap is not at right-
angles to the edge of the angles to the edge of the tape, the first zero in
the response occurring at the frequency at the response occurring at the frequency at
which one edge of the recorded track is two half waves ahead of the other edge."
Whilst this is highly desiriable, azimuth misalignment is most important for replaying pre-
recorded tapes. Slight mis-alignment goes unnorecorded iapes. Sight mis-alignment goes unno-
ticed if the machine replays one of its own
recordinge recordings.
"Though
"Though the actual bias frequency is not im-
portant . . . the waveform of this bias signal is portant of . the
very significant.
The frequency
The frequency may be very critical in the case
of a radio/recorder system. of a radiofrecorder system. The latter part of the
statement is inconsistent with the use of the frequency modulated luminance carrier used as bias signal or the chrominance component in v.c.r. systems. Have the effects of a non-sinu-
soidal bias signal on audio distortion been measured? "Print-through will obviously be reduced by any increase in the thickness of either the tape or the coating."
Whilst I agree that an increase in base
. thickness reduces print-through, an increase in
coating thickness alone will, if anything, in crease print-through. The thicker coating may now carry a greater magnitude of magnetic flux, particularly at lower frequencies, which in turn
will induce a greater print-through into adjacent layers.
Finally - a purely academic point - there is a continual interchange from imperial to metric tended to detract attention from an otherwise most useful review.
$G . E$ Lewwis

G.E. Lewiss Canterbury

Canlerbury, Kent

The author replies:
Mr Lewis raises a number of points that justify Mr Lewis raises a number of points that justify
some additional comment, though I am not quite clear as to the meaning of his first point.
Azimuth mis-alignment, i i.e. the fact that the Azimuth mis-alignment, i.e. the fact that th
recorded track is not at righ angles to the edge of the tape, is the situation responsible for the poor high frequency performance provided by
many cassette recordings. As Mr Lewis commany casserte recordings. As Mr Lewis com-
ments, it is of no great significance if a recordin ments, it is of no great signiificance if a recording
is replayed on the machine on which it was recorded, but azimuth mis-alignment intro-
duces considerable attenuation of the high freduces considerable attenuation of the high fre-
quencies if there is any significant difference quencies if there is any significant difference in
the gap aligmment of the record and replay heads. Extensive experience in assessing the
performance of many hundreds of domestic performance of many hundreds of domestic
machines suggests that few of them have the gap azimuth at right angles to the track edge, the standardised alignment location.
The actual bias frequency is of no great im The actual bias requency is of no great im-
portance as far as the magnetic recording
process is involved, but there are often other
(non-magnetic) reasons why one bias frequency
has advantages over some other frequan Beats berween the bome other frequency. recorded frequency are a well known problem
that can be reduced by shifting the bias frequency. Meny
actually include a control to allow the bias frequency to be shifted by a few kHz if birdie quency to be shiffed by a few kHz if bircdie
whistles appear when the machine is used, par-
ticularly with an f.m. receiver that has inadeticularly with an f.m. receiver that
quate suppression of the sub-carriers.
It is well quate suppression of the sub-carriers.
It is well established that a distrred bias
waveform is responsible for an increase in tape waveform is responsible for an increase in tape
noise. Even harmonics in the bias supply are noise. Even harmonics in the bias supply are
substantially equivalent to the addition of a d.c. component to the record head current. I know
of no evidence that the distorted bias current of no evidence that the distorted bias current
leads to any significant increase in the distortion leads to any signnifal.
of the audio signal.
The extent of any print-through is a function of the tape base thickness and the temperature
dependence of the magnetic properties of the dependence of the magnetic properties of the
coating. The effect of an increase in coating thickness is to move the frequency spectrum of the print-through signal down the frequency
spectrum where it is generally less significant. spectrum where it is generally less significant.
The choice of units is a perpetual problem. We are in a transition stage where several systems of units are in generala use, so we com-
monly find that some dimensions are currently monly find that some dimensions are currently
quoted in imperial or metric units and others in c.g.s.s. or SI wnits. I quoted the parameters in the

units in which they are currently commonly units in which they are currently commonly | expressed. |
| :--- |
| James Moir |

LOW-NOISE

AMPLIFICATION

In his "Introduction to low-noise amplifier design (Apriilsue)
booby trap of basing his method on transistor parameters which are not often published -
particularly remarkable in view of his introducparticularly remarkable in view of his introduc-
tory remarks which recognize that "manufacturers often fail to specify their transisto parameters in a convenient form". How many
manufacturers specify manufacturers specify $r_{b b}$ in their ordinary data
sheets? The Mullard technical handbook yives it sha alist of symbols for semiconductor devices" in the general cexplanatory notes, but never gives
its numerical value; few other manufacturers even do that!
f.G.D. Pratt
Leatherhead, Surrey
The author replies:
I did appreciate the problem that manufacturers
do not specify do not specify ${ }_{\mathrm{b}} \mathrm{b}$. What I I tetempted to show in
my article was that the collector current for the
first stase of my article was that the collector current for the
first stage of a pre-amp should always be choser
to be approximately correct for a to be approximately correct for a given source
resistance. If the source impedance is low, then resistance. If the source impedance is low, then
r_{b} does become significant. Unfortunately we rob does become signiicant. Unfortunately we
have to use tbs, or similar noise constants.
There is no other way. I gave the table covering a few transistors as a guide. For more detailed work where $1 / f$ noise is important $r_{\text {bb }}$ can be
split into two parts and a $1 / f$ brek pint split into two parts, and a $1 / f$ break point and
slope added. Motchenbacher and Fitchen give slope added. Motchenbacher and Fitchen give
comprehensive table for 20 transistors, indicating four noise parameters for each ${ }^{1}$. They als give excellent design equations for noise and
gain, with practical results, for a great variety of gain, with practical results, for a great variety of
circuits. This is the best single reference on lowcircuits. This is he best
noise design I have read.
The most accurated. measurement method for
$r_{b \mathrm{~b}}$ is by actually measuring thermal noise $r_{\text {bb }}$ is by actually measuring thermal nois
against frequency for different operating condiagainst Trequency for different operating condi-
tions. This is discussed by Unwin and Knott
To To give reasonable noise parameters in their
data sheets the manufacturers might have to
measure up to four parameters for each tran-
sistor. Under productions conditions this would
introduce a lower yield (higher cost) if the parameters were guaranteed.
In their transistor data book Motorola do give comprehensive curves of noise figure agains frequer. National Semiconductor publish a book
sistors. Nat let which relates their type numbers with a particular process, and gives some noise curves for
their processes. their processes.
A. Foord A. Foord
Malvern
Worcs

Referéces

1. Morchenba
2. Morchenbacher \& Fitchen. Low-nise Electronic
Design, John Wiey \& Sons, , 1973 .
 determining base spreading resistance, P
vol 127, part 1 , no. 2, April 1980 , $.53-6 \mathrm{~L}$.

INTERFERENCE FROM MICROS
 As a radio amateur encountered the same kind

 of trouble as Hugh D. Ford (March letters),when using my Motorola 6800 cvaluation kit, when using my Motorola 6800 cvaluation kit,
Apple II and TRS80. I got rid of the interferencce by shielding the system completely, which
is the least expensive masure in terms of tin is the least expensive measure in terms of time and money. Mains power is supplied through a
filter and data ports are decoupled by by-pass capacitors.
In my
In my opinion today's microcomputers are very prone to cause radio frequenpytinterfer-
ence. This is made worse by the use of plastic cate. This large p.c. boards, simple power supplies and a minimum
(decoupling capacitors).
(decoupling capaciiors).
Suppliers of filters and shielding elements as,
for instance, R.F.I. Shielding Ltd of Braintree, for instance, R.F.I. Shielding Ltd of Braintree, advise their customers on how to tackle th
interference problem systematically. To m knowledge the only standardisation effort so fa has been undertaken by Verband Deutscher
Elektrotechniker (VDE Verlag GmbH, Bismarckstr. 33, D-100 Berlin 12) and details are discussed in VDE 0871 (radio interference suppression in high frequency equipment fo
ISM and similar purposes) and in VDE 1877 ISM and similar purposes) and in VDE 187
(measurement of interference voltage and field strengths).
The contribution "Controlling electromag
netic interference netic interference generated by a compute
system" in the September 1979 issut of Hewletet system" in the September 1979 issue of Hewleter
Packard ${ }^{\text {fourral }}$ gives an idea of the complexity of the problems involved. Application of such standards to commercial
products would, however, mean a higher sellin products would, however, mean a higher selling
price. The FCC in the United States is setting specifications obliging designers to ray mor attention to c.m. i. .r.f.t.1. problems (see $E D N$,
February 1981). Of course a lot of articles have February 1981 . Of course a lot of artict
been written on this subicect, such as:
"FCC
"FCC computing equipment e.m.i. stan-
dard" "E.m.i. susceptibility testing
system," Comp. Design, March 1980 . computer "Design digital equipment to , EDN, June S, 1980. "Good. shielding techniques control e.m.i.
and r.f.i.", $E D N$, February 18, 1981. QST, March 19, 1980
Yes, we must learn more in this widening field and training courses should be organized on e.mi. control methods and procedures.
label "Approved by VDE" or "Meets FCC label "Approved by $\begin{aligned} & \text { rules" would certainly be an advantage in to- }\end{aligned}$ day's highly competitive markets.
d ainst ronic ed for ,

Decaunes Berm
Epalinges
Swizerland

MICROCOMPUTERS

 FOR SCHOOLSWhile I cannot claim to be an expert in the field
of microcomputers (1 am a final year physics

 noting that this is the price for the 'top of range'
system with dual double-sided mini-floppy disc system with dual double-sided mini-foppy disc
drives.
sers is further worth ocmmenting that Research Machines are develoming a netwer ner
system to allow a number of workstions
 Work contrinter in the main machine. The
workstations will be able to operate indepen-
dentlof denty of the network, The approximate coss of
cach workstation is 500 ofor a 32 K system; this I
 based around a number of Acorn Atons. As yer
the $Z X 81$ does not, to my mind, offer sufficient the $2 X 81$ does not, to omy mind, offer sufficient
sophistictation, although there may well be arole sophisicituon, although there.
for it asa secondary machine.
In
In relation to the Govermment scheme, it is

 the sophisisiation offiered by the the 3002, frist
beccuuse Istarted in computing on the UMRCC because started in computing on the U MRCC
maintrame system and seconally because, being a physicists, my programmes almost ineveviting
require the incrased capability the larger machine offers. What is, I feel, of graetest im-
portance is that, once certain machines are
 should b a adhered to. At least it is inportant to

keep to a common dialect in whatever language | is used. |
| :--- |
| A. R. Cortess |

Deparmmenes of Physiss
Univerisi of Maycheserser

RADIO AMATEURS'

 EXAMINATIONComments have been made about the last Radio
Amateurs Examination, City \& Guilds No. 765,
 p. 54 , Juy issue leteres) and elsewhere, pparticu-
larly by radio amateurs over the air. These all tend to connirm my mers ever erine en wir. These all
serious doubt on the validity of the exam. casts serious doubt on the validitit of the exam.
I and two other licensed amateurs , man

 regularly passed and many of them now have
licences. We had a post-mortem after the exam licences. We had a post-mortem after the exam
from which 1 collected veridence from these
teachers. They are all profesionally involved in teaching pupist for csieiccie exams and, as a
body, well qualified to comment. only if the body, well qualified to comment. Only if the
exam is published could the following points be canfirmed:
c. At least two
ind

1. At least two questions had no right answers.
2. Some narrow topics were questiond than once in the paper.
3. Some questions werc
4. Some questions were badly phrased and am-
biguous so that competent graduate biguous so that competetrt redarased physicisists
were not sure of the expected answer. 4. Some of the distractors ors ofses multiple
choice questions appeated too trivilal, thus rechoice questions appeated too trivial, thus re-
ducing the real valdidity of the exam.
 ferred to a nationality requiremene on orestion Home
Office licence - does it mater whether the
candiate knows or not? His status will be exa-
mined by the Home whether or not he kows Office in due course he fails hhe exam for not krowing!) As professionals from an examination stand point, we feel this poor quality of examin-
ing will discredit those
who
hold
radia ing will discredit those who hold a radio ama-
teur licence. To have qualififed from passing this exam means little in terms of radio experisise,
rather more in terms of luck. It would be a pity rather more in terms of llack. It would be a pity
if the mater were allowed tos osip. The quality of it the matter were allowed to stip. The quality of
operators coning on the air can be juded by
by listeninin in. II varies from excellent todisedrace-
ful. What exacly is the exam achieving ful. What exactly is the exam achieving?
A stringent re-think leading to a rigorous exam is called for. The less serious amateur can now take refuge in the citizens bands. 7. M. Osbore, G3HMO
South London Science Centre

Inner London Science Centre
Iondon SE5 Education Authority

MICROCHIPS AND

MEGADEATHS

In your November 1980 ediorial "Microchips
and megadeaths" you advocate that electronics engineers pull out of andilitarate clact octenctrons. Somes
 title of "Ethics in in action". The subiect and title are unrelated. There is nothing ethical or un ethical in working on military lectronics. There
is, however, a painfully obvious ethical question in killing a somenne. Whethers Iuse a piece of militrary lectronics or a ball-pecen hammer is neither here nor there.
I feel that those pe
 the associated killing. Rather they are only concerred that their
chopping block.
Some people say that peace at any price is
beter than
 lar ethic is not worth living in. Avoiding conflic
in this manner results in intolerable situations
 confictat at futurd date. Military power werise
for one reason It is t ool of coercion IIs for ne reason. It it a tool of coercion. Its levers
are the potential and actual death and destruc are the eotential and actual deat and destruc
tion that it can and does deliviver Militraty power
can be used the lrand can be used (then reanian embassy siege) and power can be used and abused, be it police
 It use or abusel lies toathly with the suer.
I am certain that if we did not have our miliI am certain that if we did not have our mili-
tary capability (and the will to use it when tary capabiily (and the will to wise it when
neneessary countries less scrupulous than ours
woutd

 any form of military power on this earth.
So, the only way toa a genuine e eace is strough
the raising of the general entic by e the raising of the general enicic by which we all
 the balance of power. IIt is instat apity mant people
seem to find it easier to throw away their weords seem to bind feasier to trow waway
than to beat hem into ploughshares. Adrien Belownt
Rocheser
Rochesere
Kent
It is the most important fact of modern life control we are living on time borrowed from Armagedon. We like to dress the nuclear arms
And
 the race is the mad dash of the lemming towards
total destruction. to
toala destruction.

The points made by your correspondent L . response. His first point is is that yourr teader response. His first point is that your leader
should have boalanced' the account of the horrors of Hiroshima with consideration of the J a-
pancese panese tramment of prisoners of war. Doses he te
concept of balance really apply here and, if so, concep to t balance' 'realy apply here and, if so,
what is is the relative weight' of fighting soldiers and innocent civilians, some of them yours

chidren. | children. Does $M \mathrm{Mr}$ Martin regard hism inidren as |
| :--- |
| responsible for the treatment of prisoners by the |

 lo comment on the morality of a particulur inst-
ance of thei ance of their use.
To move on to the second point in Mr Mar-
 counrry would be asked to voice etheri opinion
on the use made by their government of their on the use made by their government of their
experise -but that does not release them from experise -but that doos not release them from
the responsibibiry to oo so, or fom their per-
sorl sonal responsibiitity for thenerir worr. Our cere-
brated Western frecolom is illusory if we so
 The rest of Mr Mrarit's eleter orssists of a
highly simplistic analysis of the likely results of lighly simplistic analysis of the likely results of made is that Britain is not a a supert-power and
 to live in peace and freedom with only manall, or the present, Britian is soing to remañ within NATO, uniliaerarl renis noiaition of of numidear within would reduce the risk of the country becoming a target and would put pressure on the Americans
to adopt a more constructive and urgent approach to arms control negotiations. H Hewerer,
ceven if
Mr vece if Mr Martin's sinpilitications. were cor-
cet and we were faced with rect, and "we were faced with he stark choice
between "keeping our weapons" (and hence the certainy probably sonerer, possibly hancer, of
nef
ncler uclear war) and "world-wide communism complete with its psychatric hospitals for dissi-
dentss. -1 Iknow which I would prefer. 1 think hat if Mr Martin had the imagination to conseive what nuclear war - the ellimate denial of
reedom - woud really be like he with me. Finaliy let me echo Mr_{r} Franckeses's articulate
praise of Wretess World's brodenidn of of interest But could we please have more full-leneth arti cles on the wider aspects of engineering? Some day eninieers will realise that the difference in status between hem and, say, doctors has more
to do with breadth of interest, social conscience and ethics than with what they quaintly call Tremuneration:
Yoht Hind
Belfast
Belfast
Norkerm Ireland

JAMES CLERK

MAXWELL

reader beyond the technical through a discussion of e -m thery. The article on h ames d clerk Maxwell in the March and May issues is
thought-provoking but Ithink it is a little contact with weng but I think it it a a little out of Should the article be serious, it might be acceptable as vulgarisation for readers without contact with physics and without the ability to to
understand dhe understand the principipes, but is standard does
not do uustice to engineers not do i usticic to enginerss
My criticism is is direted Mistrepresesnctation of facters and ideas, not the

WIRELESS WORLD AUGUST 1981
with the important result: the absence of phase
shift between beams upon rotation. It pointless to state that the experiment proves nothing as experiments don't prove theories,
they test them. Elsewhere the author incorrectly represents Lorentz contraction (second order in v / c and of constant sign) as derivable from the
very different Doppler effect (first order in v and so potentially of both signs). I am also unable to find meaning in many of his state-
ments on energy conservation and composition of velocities. discussion of the implication of the A good discussion of the implication of the
Michelson-Morley experiment can be found in Michelson-Morley experiment can ical Theory of
A. S. Eddingon, "The Mathematict
Relativity", Cambridge University Press, 2nd edition.
editor's problem might be to obtain or honest and at least partly valid as well as bein imaginative and attractive to his reader. Th problem is a difficult one since more than a huff
and a puff are needed to bring down moder and a puff are neded to bring down modern
physics. May we look forward to more substantial attempts?
T. de Limeletere
T. de Limelette

The author rephies
T. de Limelette enioys Eddington's mathemattake his reader along a mathematical route from Newton's laws of motion to the law of the conservation of energy and return via a differen
nathematical route to Newton's laws, only Newton's time and space and its one dimensio ength, are absolute or concrete. All units Newton's laws can be derived from the three
fundamental units of mass, time and length, and if their dimensions are not universally concret, for any reason, the mathematical route fron
Newton's laws to the conservation law will ma hematically either generate or destroy an infinite amount of energy. Maxwell said on page 2 of his Treatise "A knowledge of the dimension lied to the equations resulting from any plied thened investigation. The dimensions of every term of such an equation, with respect to ach of the three fundamental units must be bell'
same. If not the equation is absurd." Maxwell mathematics were immaculate. I have merely applied Maxwell's test to the equations of mod ern theory. The equations are absurd. Farir to
see how the adroit and deliberately secretive manipulation of the three fundamental units can $M . G$.Wellard

SLOTTED CYLINDER AERIALS
In June letters Mr James referred to propagation better results would have been obtained, at the better results would have been obtained, at the
higher frequencies (928MHz) if a form of
slotted cylinder aerial had been used instead of a
quarter wave whip.
Earlier this year the RSGB performed some Earlier this year the RSGB performed some
similar propagation experiments in the Eimilar propagation experiments in the
1296 MH a amateur band using horizontal polari-
sation and the aerials to which Mr I. ames refers sation and the aerials to which Mr James refers
in order to examine the potential of these frein ordar to examine the potential of these fre-
quencies; a copy of the resulting paper was sent
to the Home Office for their information quencies, a copy of the resulung paper was sent
to the Home Office for their information. This aerial is also known as the Alford slot,
and is in some ways analagous to the vertically and is in some ways analagous to the vertically
polarised co-linear. It produces horizontal pola-
riation risation with an ominidrectional pattern in the
horizontal plane, and achieves gain by reducing horizontal plane, and achieves gain by reducing
the beamwidth in the evtrical plane. Those used
in our tests were made from thin walled metal
 The edges of the slot in fact form a twin wire
transmission line which is continuously loaded by a shunt inductance formed by the rest of th cylinder. The phase velocity of a wave travellin he free space velocity, in this case four times and so the distribution of the elcectric field along the slot can be a single electrical half wave over
slot that is physically two wavelengths long slot that is physically two wavelengths long
Thus the whole aperture is fed in phase, and gain of about 6 dBi was measured. Higher gain ould be achieved by using a longer tube and Theste aerials were used at each end of both fixed-to-mobile and mobile-to-mobile links with eceivers with 2 dB noise figures, and one wat ransmitters giving an e.i.r.p. of 4 W .
Typical ranges were as follows: Central London suburbs
country
ountry $\begin{aligned} & 1 \text { to } \mathrm{km} \\ & 2 \text { to } 5 \mathrm{~km} \\ & 3 \text { to } 8 \mathrm{~km}\end{aligned}$ Maximum range between well sited mobiles was N.b.f.m. (8 kHz bandwidt) was usat ost of the tests and was found to be superior horter ranges. S.s.b. increased the maximum range, but at short and medium ranges the es s.s.b. almost unintelligible at times. Throughout the tests 3 W of 144 MH into $5 / 8$ whips was used for talk back, and gave ore uniform coverage than the 1296 MH The Alford slot aerials have also been in use or three years on a 1296 MHz beacon
GB3IOW) on the Isle of Wight, and it is hoped GB3IOW) on the Iste of Wight, and it is hoped al rereaters proposed for the 1296 MHz band. .N. Gannaway, G3YGF
Oxford

-

S LIGHT VELOCITY A CONSTANT?
It would be difficult to imagine a more unscienfif experiment than the one referred to in May
etters by D.A. Bell in support of the theory oo relativity. The four clocks were flown round the world by J.C. Hafele and R.E. Keating no separately in commercial aircraft from airport to air port, subiect to landing and take-off at each stage. Hafele and Keating admitted that the ime-keeping qualities of atomic clocks var
with varying physical conditions but claimed with varying physical conditions but claimed would uniformly decrease or increase all four locks and that a random distribution for th
time drifts would be expected unless relativity was active. In fact, since all four clocks were subject to exactly the same changing environ
mental conditions in the same aircraft, on mental conditions in the same aircraft, on
would except their time drifts to be identical All that the experiment showed is that atomic clocks will drift in changing physical conditions
If the four clocks had been flown separately ove the same route in different aircraft at different times the experiment may have had some valid-
ity and a very different result would no doubt ly and a very different result would no doub In the interminab lation it has always been claimed that time goes lower for a body in motion relative to the earth n this case whatever correction may be applie
oo the aircraft's ground speed (there is no suc thing as a stationary frame in Einstein's relativ ity) the airborne clocks had a velocity, the direc
toin of which is immaterial since time-dilation aion of which is immaterial since time-dilation
a function of v^{2}, relativ to the earth. According
oo the Special Theory the airborne clocs
have lost on both occasions whereas on one
flight they actually gained. As Alice might have flight they actually gained. As Alice might have
said, what a strange sort of Throughthe-
Looking-Glass world where a contrary result is held to verify a theory!
Kick Holland North Humberside

HISTORICAL

EOUIPMENT STOLEN

 During the morning of 25th February 1981 a tan gained access, by deception, to the foyer or aluable exhibit from the permanent display of valuable exhibit fom torical Marconi radio equipment. Challenged y security staff, he succeeded in breaking ou he made his escape.The stolen item is a 1907 Multiple Tuner. (see
hoto). It is readily identifiable by the serin) hoto). It is readily idenififiable by the ser number 8015 beneath the

Should any collector be offered this item he r the Historian, The Marconi Compan Limited, Marconi House, Chelmsford, England (elephone $0245-353221$) would wish to hea about it. Prince
Warconi House
Chelmsford, Essex
CB RADIO AND
RC MODELS
Your columnist Pat Hawker is only partly cor have been offered alternative frequenclers have been offered alternative frequencies
(World of Amateur Radio, April issue). It is ruet that a new frequency $(35 \mathrm{MHz}$) is now available but it is only for the use of model aircraft.
Therefore all other radio modellers with 27 MHz equipment have a continuing problem. It is probably not widely known that because of increasing a.m. c.b. interference most radio
control equipment is now f.m. The Governontro' equipment is now f.m. The Govern-
ment's proposals will therefore have the greatest effect on those who have purchased equipment in the last few years. These modellers will therefore have to convert to 35 MHz if they fly
aircraft (costing $£ 20-30$) or purchase 459 MHz equipment (costing about $£ 200$) if they operate in an area where c.b. interference is obtrusive.
As it is unlikely that the illegal a.m. c. operators will change equipment then both model control and the paging systems are likely o become completely unusable
I believe the only honourable course for the
Government to take now would Government to take now would be to provide
another radio control band for non-aircraft use. This should be as near as possible to the present
band so that equipment can be re-tuned and recrystalled at minimum cost. The ce.b. operators should also be asked to pay a licence fee which
would be used to reimburse modellers for the would be used to reimburse modellers for the
conversion costs. conversion
T T. E. Watses
.
ightwater, Surrey

Satellite tracking by home computer

Both software and aerial rotator interface for the scientific computer by Neoklis Kyriazis, B.Sc.

This two-part article describes a tracking system for circular orbiting
satellites using the Wireless World scientific computer. Part one, this issue, deals with the interface circuit for controlling the aerial azimuth and elevation angles, and with aerial next section, the Basic/machine-code program will be presented. This program processes the satellite orbit parameters and converts data for use with the interface.

Many home computers are capable of handing the arithmetic necessary for amounts of software to make thequire large as a numeric calculator. The Z $80 / \mathrm{MM} 57109$ combination used in the Wireless World scientific computer enables the complex trigonometry involved in satellite elevation processed with a minimum of sof be For the program used here, the MkIII BURP interpreter must be installed in the computer.
Although the program was written for racking the Amsat Oscar series, any satellite on a circular orbit can be tracked by BURP program.
Aerials and rotators
The aerial system used by the author for racking Oscars and 8 comprises two yagis; one of eight elements for 145.9 MHz
and one of 16 elements for 435.1 MHz . One aerial is mounted at each end of a 1.5 m long tube supported centrally by a otator which controls the elevation angle. The rotator is mounted on a metal plate
with a tube welded underneath it which is supported by a second rotator for controlling the azimuth angle.
The Alliance U-200 'Tenna rotor’ type aerial rotators used by the author have a four-core control cable; two of these cores
are . for forward/reverse control of the motor, one for the ground connection and one is connected to a cam switch that closes and opens for every 10° rotation of he driven shaft. Semi-air spaced 75 ohm This type of cable is efficient even at u. f . but a masthead pre-amp is required for Mode J down-links. Note that in the system described here, aerial elevation is increased by counter-clockwise rotation of azimuth rotator.

There is a mechanical stop in the rotators used by the author which prevents the
aerials turning through more than 360° This means that if the satellite's azimuth changes from 0° to 360° the rotator must turn through 360° before it can resume tracking. As it takes more than a minute program is arranged so that it calculates orbits passing north of the ground station and adds 180° to the result while keeping 180° elevation so that the aerials rotate in the right direction. The same problen

The interface

Digital information from the computer drives the two aerial rotators via an interface. This interface also conveys in-
formation relating to the positions of the aerials back to the computer. As mentioned earlier, a cam switch on the shafts of the rotators opens and closes for every 10 of shaft rotation. One contact of the switch is connected internally to +5 V via a 2 k 2 ohm resistor. A $100 \mathrm{\mu F}$ capacitor and a 220 ohm resistor are used at these connections as a.c. caused by switching high motor currents may affect the operation of the computer. opens, the voltage across one of the two $100 \mathrm{\mu F}$ capacitors shown in Fig. 1 produces an ' ${ }^{\prime}$ ' level pulse which is fed into the computer via the input port. The of the aerial position and although resolution is only 10°, reception of Amsat Oscar 8 in Mode J using a 16 -element yagi is not affected by the error. If a highly direcrate method of feedback may be more accurate method of feedback may be needed. 90° to each other. One end of each winding is connected to ground and a $150 \mu \mathrm{~F}$ nonpolarized capacitor is connected between he other two supply inputs. The capacitor ent supplied to one of the rotor windings. Two relays are used for each rotator; one to switch the 24 V supply from one winding to the other to determine the direction of otation and one to switch the supply in s used to control the motors via a CD4015 serial-in/parallel-out shift register which drives the relay coils through four buffer ransistors.
An accurate timer is needed to provide
the program with real-time information For this purpose a mains-frequency di-
vider chain consisting of a 7400 and three 7490 i.cs is used to produce a short puls every 10 seconds. This pulse activates the maskable interrupt of the Z80 and sends the processor to a routine that increments the value of the real-time variable, named
T in the BURP program, by $1 / 360$ hours, i.e., 10 seconds. Since the INT pin of the Z80 is used by the MM57109 some simple modifications are necessary to give an OR function between the timer and the
number cruncher, details of which will be number cruncher, details of which will be

Circuit details
Figure 1 shows the complete circuit diagram of the rotator controller. Transformer T_{1} supplies 24 V a.c. for the rotator
motors and 10 V a.c. for the rest motors and 10 V a.c. for the rest of the
circuit. Diode D_{5} and a $2200 \mu \mathrm{~F}$ capacitor provide 12 V d.c. for the relay coils and for the 5 V regulator which supplies the CD4015 c.m.o.s. shift register and the timer section i.cs. Logic signals to and DIN socket and to and from the rotators via two 5 -way DIN sockets. The buffered D7 line from the computer is connected to the data input of the CD4015 at pin 7 while a clock pulse to pins 1 and or the i.c. is supplied from pin 10 of IC $_{2}$
is fed to the CD4015 in serial form from output port HEX A0. The parallel outputs Q0 to Q3 drive transistors Tr_{1} to Tr_{4} hrough 1 k ohm resistors and any spurious pulses created during serial data transfer
are bypassed through 47 nF capacitors Outputs $\overline{\mathrm{Q}} 0$ to $\overline{\mathrm{Q}} 3$ of the 4015 are not used but are available for controlling additional circuits if required. Transistors Tr_{1} to Tr_{4} drive the four relay coils from the c.m.o.s. high h_{FE}. Darlington pairs can be used if necessary
Relays RLA $_{1}$ and RLC $_{1}$ switch the direction of the elevation and azimuth notors respectively while RLB $_{1}$ and RLD $_{1}$ on or off. Each rotator cam switch motors is tied to the +5 V supply through a 2.2 k ohm resistor and a 220 ohm series resistor and $100 \mu \mathrm{~F}$ bypass capacitor in each line prevent a.c. from the motor ground re-
turns passing through to the computer input. When a cam switch is closed a logic ' 1 ', is seen by the computer and when a switch is open a logic ' 0 '. Switch $S 2$, between
ground and the azimuth cam switch input

to the computer, signals the program not to operate the rotator motors when closed. Mains irequency is used as a reference for the ten-second interrupt pulses. Two gates of a 7400 are used as a Schmitt trigger to give a rectangular wave from the
transformer secondary voltage This 50 Hz transformer secondary voltage. This 50 Hz
signal is divided by five by the first 7490 and then by ten in both of the following 7490 st give an output of 0.1 Hz which is differentiated by a $2.2 \mu \mathrm{~F}$ capacitor and 10 k ohm resistor in parallel. The resulting nar-
row pulse is fed through the remaining two gates of the 7400 , also connected as a Schmitt trigger, to the INT input of the Z80. Switch S_{1}, connected to the reset input of the 7490 dividers, is used to start be synchronized with real time.

Computer modifications
As a pulse from the timer can occur while the program is controlling the rotators, the processor mode two) is used so that te processor can be directed to the in-
terrupt service routine anywhere in the
program. When IM2 is specified th processor will look for an eight-bit in the interruptor. Since the RDNPR MREQ lines are inactive during an in terrupt cycle the bi-directional drivers at the data pins of the Z 80 remain in their high-impedance state. Hence, the $Z 80$ is liable to read a random vector unless the Z80 data lines are tied to either logic state. In this design, the data lines are tied to ground through 10 k ohm resistors so that vector, which is half of a 16 -bit interrupt vector whose upper half is provided by the program. The 16 -bit pointer thus formed is used as the address of the memory location from which the starting address of the tion pointer. In this program, the interrupt register is loaded with HEX 16 so that the starting address of the interrupt service routine must be in location 1600 . This gins from 1602.
With the MkIII BURP monitor the INT pin of the Z80 is used by the MM57109 for number transfer so it is necessary to pro-
vide an $O R$ function between this pin and the timer. Spare gates on the computer
board can be used for this purpose as follows. Connect pin 22 of IC C_{6} to pin 13 of IC_{7} instead of to pin 16 of IC_{1} using passive pull-down resistors of 10 k ohm to ground The timer's output is connected to pin 12
of IC7 via one pin of a 6 -way DIN socket used to connect the computer with the controller/timer. Pin 11 of IC $_{7}$ then goes to pin 13 of IC_{14} and finally, connect pin 12 With these connections the MM57109 and the timer can share the INT pin of the and the timer can share the $\mathrm{INT}^{\text {pin }}$ pin of the
processor. Pins 6 and 10 of IC_{53} are also connected to the DIN socket and through a screened cable to the rotator cam switches. IC
00
Sis
is wired to input port HEX 00 and provides six inputs to the proces-
sor, one of which is used by the cassette interface. The azimuth cam switch goes to bit 2 of the data bus and the elevation cam switch to bit 1 . Bit 0 is used by the cassette interface. Two pins of the DIN socket are
used by the buffered D7 line and the clock used by the buffered D7 line and the clock
pulse, which is active when output port HEX A0 is used, from pin 10 of IC_{2}. To be continued

MORE LETTERS

accompanying sketch and, whilst it may be
argued that the method is inefficient argued har
ary battery power at about $£ 100$ per kWh , it represents a considerable saving. With S open
R_{2} is adiusted for in indicated 200 mA with S R_{2} is adiused for an indicated 200 mA . With S
liosed $\overline{\mathrm{R}}_{1}$ is adjusted to reduce the indication to ${ }_{\text {D. }}^{10 \mathrm{~mA} \text {. Caudrey }}$

Berks
The author replies:
My article did
My article did indeed discourage the idea of recharging zincccarbon primary cells and bat-
teries and Ithink that this is the 'fail-safe' approach for those who might otherwise have atempted recharging without first ascertaining
the necessary techniques and precautions the necessary techniques and precautions, article, but it must be borne in mind that in those days the outer strength member of a prim-
ary cell was a very substantial zinc pot, alias the ary cell was a very substantial zinc pot, alias the are all of tleakproof constructions sing wear a the amount of zinc used. For this reason the author considered recharging by whatever means unlikely to be successful, and quoted the
view of a maior battery manufacturer on
topic.
II is interesting to learn of Mr Caudrey's
successful results with recharging but I successful results with recharging, but I guess being recharged. Hallows's original article described the spongy uneven redeposition of zinc with d.c. charging and contrasted it with the
dense even thickness of the zinc pot even after requent recharging with a larger a.c. component superimposed on the net d.c. charging layer type batteries (which I use more than
single cells though I fear this is likely to prove single cellst though I fear this is likely to prove
more difficult. The main problem with layer batreries is thar any evolution of gas simply Corces the layers apart, resulting in an open-cir-
suit battery. However, if the a.c. component in
"dirty d.c." charging prevents the evolution of free gas, even layer batteries may prove re-
chargeable. chargeable.
It would be interesting to hear if any readers
have have successfully extended the life of layer bat-
teries by recharging teries by rechar

INVENTION OF STEREO RECORDING
One of the answers to the question of the prior-
ity of Blumlein's work, raised by Reg Williamson in your June issue. is straightforward enough. Blumlein's British Patent 394,325 was
applied for on 14th December 1931. Both hill applied for on 14th December 1931. Both hill
and dale/lateral and $45^{\circ} / 45^{\circ}$ methods of recording are dealt with. One had always
supposed that Blumlein supposed that Blumlein was the originator of
the whole idea of recording two signals on a single groove.
But was he? I now see that Blumlein's proviBut was he? I now see that Blumlein's provi-
sional specification contains this passage (p. 6: U sional specification contains this passage (p. 6: U
54 .
sol describing something which he pre-
sumably knew of and acknowledged at the time sumably knew of and acknowledged at the time-
of application: of application:
"For the purposes of television previous
proposals have been made proposals have been made whereby a wax disc
has a sunnd record as a hill and dale cut and a picture record as a laterally cut V-shaped groove at the bottom of the hill and dale groove or vice
versa. goes on to say that this kind of record
would be of no use for two unrelated sound would be of no use for tho unrelated sound
signals because of crosstalk, but could be used signals because of crosstalk, but could be used
for stereo signals because a small amount of crosstalk could be toierated or allowed for. He
is too polite to say that it would be of no use for is too polite to say that it would be of no use for
sound and vision signals for television - even for low definition!
W. F. Cuflef
London NW

Radio and the birth of the universe

The cosmic microwave background in the Big Bang theory

by Eric Eastwood, F.R.S.

The radiation which mediated the processes of nucleosynthesis at the birth of the universe and controlled the hellum hydrogen radio prevailing expansion, now described as the 3 K cosmic microwave background. This article first reviews the growth of radio astronomy from the 1940s until 1964 when Arno Penzias and Robert discovery of this cosmic radiation background. It outlines the measuring programme and the immediate explanation of the radiation offered deals with the measurements performed to determine the degree of anisotropy in the radio background and describes how the antenna temperature variation led to a determination of the " The theory of the "hot big bang" is touched upon and there is a summary of the modern state of the theory which has been able to build upon the essential fac supplied by the temperature
measurement of 3 K of the noise background - the ratio of the number of photons to the number of nucleons.
When Karl Jansky set up his aerial and receiver system at Holmdel, New Jersey, launch the science of radio astronomy bu simply to assess the interference from at mospherics that might occur with new radio circuits planned to operate in the h.f band $(2-30 \mathrm{MHz})$. From the inception of
wireless telegraphy in 1896 long waves had dominated world radio communications but in the 1920 s Marconi showed that cos effective radio systems could be engi neered using the so-called short waves.
Jansky recognised that the commercial success of such high frequency radio com munication circuits depended upon a good understanding of atmospheric interference effects. Such interference was familiar a long waves and varied with the seasons of the year and time of day; little experience
of interference at short waves had been accumulated, however, and these were the effects which Jansky set out to investigate. His aerial consisted of a wooden frame rotatable about a vertical axis, on which
This article is reprinted from The Marconi Re
view, Vol. XLIII, No. 218 , Third Quarte rewo, by kind permission of the editor.
was mounted an array of dipoles with reflectors. A horizontal aperture of two of 20 MHz was employed and provided a rather broad beam radiation pattern but with useful suppression of the back lobe The magnitude of the received noise signal was recorded together with time and azi found static attributable to both, Jansky remote thunderstorms but what made his study justly famous was the detection of a weak but steady noise signal which "caused a hiss in the phones that could
hardly be distinguished from the hiss hardly be distinguished from the hiss
caused by set noise". This signal was not isotropic and the directional variation

Conclude that the sun was somehow involved ${ }^{1}$. When the observations ha been maintained over a period long enough to establish the pattern of seasonal change,
however, he was able to show that the radiation was coming from a fixed direction in space, in fact from the general direction of the central region of the gal axy, with the maximum signal being re-
ceived from the direction of the constella tion Saggitarius ${ }^{2}$.
Jansky speculated upon possible causes of the radiation and considered radiatio urge this strongly since he hesitied

Fig. 1. Solar (S) and galactic (G) noise
Fig. . Solar (S) and galactic (G) noise
signals on the p.p.i. of a metric wave radar

48
detect any radiation from the sun (we now
know that this was because the sun was in know that this was because the sun was in
a quiet period). He appeared to favour an a quiet period). He appeared to favour an
analogy with the Johnson noise developed by a resistor, pointing out that there wa much interstellar matter in the galaxy probably charged, and at a high tempera ture and therefore in thermal motion a
with the electrons in a resistor. His propo sal was not wholly incorrect but there the matter rested and this important firs discovery of radioastronomy was not folwed up for some years ${ }^{3}$
Jansky's observation is conveniently
illustrated in Fig. 1 which shows the ap pearance of a p.p.i. radar tube displaying the signal from an experimental radar antenna used as a passive receiver which wa not unlike the array originally employed
by Jansky but giving a much sharper beam by Jansky but giving a much sharper beam
and with reduced side-lobes. An array o 96 horizontal dipoles was arranged in 24 vertical stacks and, at the operational fre quency of 215 MHz , yielded a horizonta beam width of 3° The purpose of this
particular set of measurements was to asion pattern of the array using thal radiahoise patern of the array using the sun as
infinity. Serendipity played its part in these observations, for in he p.p.1. record of Fig. 1 is shown the durnal motion of the noise signal from a ery active sun (marked with an S) but also G. This second signal showed a sidereal rate of revolution and was found to correspond to the general direction of the galactic centre, thus repeating very vividly Jans
ky's original observation - thanks to the ky's original observation - thanks to the ray tube phosphor ${ }^{4}$.
Growth of radio astronomy That the investigation of the radio emis sions from the galaxy which had been ob-
served by Jansky was not vigorously pursued by astronomers was probably attributable to their unfamiliarity with radio and electronic techniques. Radio
taken up the study were fully occupied on he relared sund proparth relationshionstudies and ing magnetic phenomena. It has also to be remembered that the decade of the thirties was the period when the principles of rada were being intensively but secretly researched by all the future participants in
the second world war. These new radio echniques, developed for essentially military purposes by scientists and engineer working in close collaboration with the military services, would ultimately make an invaluable contribution to the science of Nevertheless
observations were made war. Thus Reber in the USA working with 30 -foot parabolic antenna of his own construction plotted contours of noise
missions from the galaxy at a frequency of 60 MHz and so greatly extended Jansky's original observations. Serendipity played a part through observations made from

WIRELESSWORLDAUGUST 1981
radio noise from the sun during a period of sunspot and flare activity was detected and mand of radar frequencies $(20-100 \mathrm{MHz})$. Radars operating in the $20-80 \mathrm{MHz}$ ban deployed by the RAF and the Army fo detecting and tracking 2 missiles in 1944/45 also proved capable of performin the same function on meteors penetrating
the earth's atmosphere, thus initiating the study of meteor astronomy by radar. Particularly important was the use of the army equipment to map with much greater precision the noise signals emitted by the the first recognition of the Cygnus radio source.
With the end of the war radio astronomy was rapidly developed in many laboratories all over the wid. Many types of enhance receiver sensitivity and antenna resolving power. Study of the radio emis sions from stars, galaxies and the univers at large supplied new information which
complemented the findings of the optica astronomers and our undersa bing of th increased by the fruitful marriage of optical and radio methods. Similar increase in understanding will surely stem from the newer techniques of mounting sensors in satelilites and space vehicles so that optical
and microwave radioations, x-ray, γ-ray and microwave radioations, x-ray, γ-rays the attenuations produced by the earth' atmosphere. Radio has had the special ad vantage relative to the other radiation used in astronomy of using comparatively trate deeply into the "dusty regions" of th galaxy (as evidenced by dark clouds obscuring parts of the Milky Way) Coupled with this advantage has been the ability to detect line radiations from such which has permitted the spiral arms of ou own galaxy to be traced; or carbon monox ide ($\lambda=2.6 \mathrm{~mm}$) which is yielding valuable information on the presence of a great ring

Theory of the expanding universe

Improvements in telescopes during the
early 18th century were such that astro nomers were able to distinguish clearly between the stars as point sources of light which appeared as small, faint "clouds", hence the name given to them - nebulae The philosopher Immanuel Kant writing
in 1755 held that many of the nebulae were probably assemblies of stars nike our own Milky Way (the local galaxy, from galaxias universes"
Kant's siew did not prevail until 170
years later; meanwhile, nebula years later, meanwhile, nevaula untorting
was pursued with such good effect by Sit was pursued with such good effect by Sir
William Herschel, the musician turned asrronomer who discovered the planet Ura-
nus in 1781 , and later by nus in 1781, and later by his son, Sir John
Herschel, that by 1864 the Catalogue of Nebulae published by the latter contained over five thousand entries. Yet the nature
and locations of the nebulae remained and locations of the nebulae remained un-
decided, although some of them were by this time considered to be glowing gas clouds Iying widhin the local galaxy. About
this time the spectroscope was this time the spectroscope was married to
the telescope, to increase very significantly the elescope, to increase very significantily
the astronomer's powers for obtaining information about the stars. In this way Sir Norman Lockyer in 1868 identified the
element helium from the sun's spectrum, while Sir William Huggins, in the same year, detected the shift of the absorption
lines in certain stellar spectra. He aturilines in certain stellar spectra. He attri-
buted the wavelength displacement to the Doppler effect so giving the radial velocity of the star with respect to the earth. By the
turn of the century it had been established turn of the century it had been established
that while the more obviously cloud-like that while the more obviously cloud-like
nebulae lying within the Milky Way gave
bright bright line emission spectra, i.e. they were
indeed glowing gas clouds, other nebulae indeed glowing gas clouds, other nebulae
showed spectra crossed by dark absorption showed spectra crossed by dark absorption
lines similar to those of stars. It was found
by Slipher that the by Slipher that the absorption lines of most
of the nebulae he observed were shifted of the enebula he observed were shifted
towards the red and corresponded to quite high radial velocities of recession; this sug.
reat success to measure the distances of no nearer nebulae, but for fainter and more remote nebuuae the Cepheids could Nevertheless, Hubble perservered with his
distance measuring programme, basing it distance measuring programme, basing it
upon luminosiry measurements of idenupon luminosity measurements of iden-
fifiable bright stars. By 1929 Hubble was able to combine his distance measurements
with Slipher's spectrocopically deter-
mined radial velocities and showed that the elocity was roughly proportional to the istance. This work continued until 1936 with distances of still fainter galaxies being estimated from the luminosity of the gal-
axy as a whole (up to about 240 million
light years) and with yelocities provided by light years) and with velocities provided by
he spectroscopist Milton Humason. he spectroscopist Milton Humason.
Nevertheless, the linear relation between vevertheless, the linear relation between velociry equals constant times the radial
istance, with the constant becoming apdistance, with the constant becoming appropriately known as Hubber's Constant
H. Apart from a few nearer galaxies, locluding the Andromeda spiral, all the velocities measured were velocities of re-
cession, i.e. the spectrum lines were cession, $i . e$. the spectra
shifted towards the red.
When newer telescope
Whe after the war, sucescopes becas the Palomar able after the war, such as the Palomar
200 -inch, the measurements were continued but the broad features of Huble's
work remained. More detailed study of the Cepheid variables, in particular the
recognition of two classes of variable, has changed the distance scale so viriat the Anat $2,200,000$ light years. In consequence he distance scale for the galaxies has been crreased and the accepted value of the netres per second per million light years. Hubble's law refers to distances and ve locities measured relative to the earth and would seem to privileged observers of the universe. It was quickly realised, however, that this was not so; all the galaxies are
rushing apart from each other and Hubushing apart from each other and Hub
ble's relation would be observed by an observer on any other galaxy who could qually well regard himself as the centre of Since the relative velocity between any pair of galaxies is proportional to their separation, i.e. $v=H H$, then the time
taken to achieve this separation is some aken to achieve this separation is some
value not greater than $d / v=1 / H$. In other words, the expansion of the galaxies in accordance with Hubble's Law inplies
hat at a time in the order of $1 / H$ in the past that at a time in the order of $1 / H$ in the past al the galaxies must have been in close $15 \mathrm{~km} \mathrm{sec} \mathrm{sec}^{-1}$ per 10^{6} light years $11 / H$ be-
comes 20,000 million years, but since the omes 20,000 million years, but since the
elocities must have been reduced by gravity during the expansion, the time taken must hat.
figure.
The The expansion process can be simply
Thalised by considering, as shown in the iagram, a graticule imaged on to a television screen through a device giving
controllable magnification of the picture (as by a zoom lens in television, or when a
radar plan position display is expanded radar plan position display is expanded
about $a n y$ chosen centre). As the magnification is continuously increased, mo the image points expand away frome each other
and, obviously, the velocity of separation and, obviously, the velocity of separation
of a particular pair of points AB is propor-
tional to the separation as Hubble's Law staes. An observer located at any image
point A would see the same expansion as
would be observè at B , and the "univer
would be observed at B , and the "univers
of points" would appear isotropic and ho
mogeneous. The Cosmological Principli mogeneous. The Cosmological Principle
states than all observers in the universe are
equivalent and will see the universe about equivalent and will see the universe abo
them to be homogeneous and isotropic and
to display similar motions.
The investigations of Hubble and his co workers took place against a backgrou Einstein's General Theory of Relativivity Einstein's General Theory of Relativity of
1916. This is still the best guide we have to the understanding of the interrelation space, time and gravitation regarded as the
essential elements of the universe which we observe. At first, solutions of Einstein equations were sought which would des
cribe a uniform and isotropic universe tha was neither expanding nor contracting but with the acceptance of Hubble'
findings on the expanding universe cosmo lindings on the expanding universe cosmrelied mainly on Friedmann's solutions of 1922 which retained only the constraints of isotropy and homogeneity. These solution
lead to the concept of the universe bein closed, i.e. oscillatory, with collapse fo
lowing the present expansion, or lowing the present expansion, or open, i.
all galaxies expanding to infinity, accord all galaxies expanding to infinity, accord ing as the average density of the presen
universe is greater or less than a certai
critical value This critical value. This values is proportional
the square of the Hubble constant; if H the square of the Hubble constant; if $H=$
$15 \mathrm{~km} \mathrm{sec}^{-1 / 1 / 10^{6}}$ light years then the $15 \mathrm{~km} \mathrm{sec}^{-1 / 1 / 10}$ light years then the
critical density is $5 \times 10^{-30} \mathrm{gm} \mathrm{cm}^{-3}$
which which corresponds to about three hydro-
gen atoms per thousand litres of space gen atoms per thousand litres of space.
Estimates of the present density from known galaxies is about $10^{-30} \mathrm{gm} \mathrm{cm}^{-3}$
which would mean that the universe which would mean that the universe is open; this has prompted many astro
nomers to search for methods of detecting the "missing matter" that might "close" the universe.
sion which launched the expansion is no
to be though to be thought of as merely proiecting mat-
ter into an otherwise empty ter into an otherwise empty space waiting to receive it: General relativity suggests
that the process must be vewwed as an
expansion of space itself, with matter and Vo an image right), ilu strates process of expansion.
Velocity of separation of particula pair ofonoint on the
graticule is proportional to separation (Hubble's Law).
gion of the galaxy. Analyses by radio astronomers hav been made, not only of our own local gal vaster galaxies than our own. This ha allowed detailed comparisons of these radio contours to be made with the sta fields of these regions as recorded by the
optical astronomers, with the result that optical astronomers, with the result that
dentification of many radio sources with optical galaries with known spectral char acteristics has proved to be possible. Thi work coupled with the results of the ref radio sources over the whole of the celestial sphere have had profound implications for cosmology - the study of the volution of the universe itself. With all this post-war activity in obse prosecution and so fascinating in consequences for our understanding of tars and galaxies, it seems astonishing in
retrospect that one discovery so vital fo
like the co-ordinate points of the diagram. Thus the co-ordinate points of the diagram.
velocity relative to the cossesorcinate system velocity relative to the co-ordinate system
which is described as a "pecular" velocity. It was the peculiar a velocity of our our local It was the peculiar velocity of our local
galaxy which Muller's experiment detected and measured.
According to this view of the expanding
universe of the galaxies the red shifts obuniverse of the galaxies the red shifts ob-
served by Slipher and Humason may also be regarded as a consequence of the expanding space which is the co-ordinate
system. In the simple case with the relative velocity of two galaxies such less than the velocity of light c and having separation d, then for radiation of wavelength λ the
Doppler effect will produce a fractional increase in wavelength or red shift of $z=$ $\delta \lambda / \lambda=v / C$. But the transit time of the signal is d / c and during this time the increase in the fractional increase in distance is $(d / c) v$ $(1 / a)=v / c=z$. In other words, the fractional increase in wavelength is equal to the
fractional increase in distance between the transmitting and receiving galaxies; it is for this reason that such a Doppler shift is
described as a "cosmological red shift". described as a "cosmological red shift".
For large velocities, i.e. high values of the For large velocities, i.e. high values of the
red shift z, then special relativity gives $1+$ $z=((c+v)(c-q))^{1 / 2}$ but the proportional-
ity between wavelength and the expansion ity between wavelength and the expansion
factor of the universe remains rrues ${ }^{8}$ and also applies in the general relativity case.
The theory of the expanding universe lined above is nomers and so it is reassuring to find evi-
dence from other branches of science which, at least, are not grossly at variance with the age of the universe derived as the
reciprocal of Hubble's constant. Thus geological studies indicate a lower limitit of four thousand million years for the age of the
earth. Evidence on the age of the galayy earth. Evidence on the age of the galaxy
deduced from stellar sudies suggests a deduced from steliar studies suggests a
figure well in excess of ten thousand mil-
lion years lion years. So $1 / H$ is not a hopeless figure
for the age of the universe, remembering for the age of the universe, remembering
that H itself has not been determined accurately by reason of the difficulty of mea--
suring the distances of all but the nearer
galaxies.

\footnotetext{ -1 -8

 }
in
,
.
progress in cosmology should have had to wait until 1965 to be made - the existence of an all pervading radio noise backof a low temperature black body radiator Serendipity and radio communications re search has helped to correct the omission

Microwave radio noise

background
Just as Jansky in 1931 was looking for sources and magnitudes of noise that might prejudice the performance of a h.f. adio communication circuit, so in 196 working at the same Holmdel Field Staion), Arno Penzias and Robert Wilson, ere engaged on a not dissimilar task heir operational interest related to satellite communication systems but the im ment of interfering noise emissions from he galaxy at microwave frequencies, an lso propagation effects in the atmosphere. In order to measure the received noise power employed whereby the receiver was witched between the incoming sky signal nd the noise signal delivered by a resistiv ad cooled in liquid helium. In this wa noise effects in the receiving system wer
liminated but it was recognised that rrors might still be introduced by nois ignals generated in the antenna structure tself. In their experiment Penzias and Wilson employed a cornucopia type of anell scientists to study the reception ignals passively reflected from the Echo atellite (a 100 ft diameter balloon made of metalized fabric which was ejected from nister after launch into orbit and inflate pia was a shielded parabolic antenna which had a very low level backlobe; it was vir ually immune from microwave radiation from the earth's surface since all the obser ations were made with the forward lobe kely that such a well engineered structure would produce any interfering noise but to confirm that such an effect was totally bsent they made their first observations a a wavelength of 7.35 cm (the Telstar beano noise power would be received from th galaxy. The magnitude of the inevitable terfering emissions from the atmos here, mainly due to oxygen and wate olecules, could be allowed for by taking tion.
In spite of these precautions to eliminate 11 possible sources of error it was foun hat the noise power received was at a
higher level than expected and correhigher level than expected and corre-
sponded to an excess antenna temperature f some $3.5 \pm 1.0 \mathrm{~K}$. The antenna tempe rature when directed to the zenith was 6 . K , of which 2.3 K was attributable to the mosphere and 0.9 K due to back lob ariation of the signal could be detected This was in sharp contrast to Jansky's riginal discovery of the radiation from th
galaxy and eliminated the galaxy as source of the isotropic signal. It appeared bathed in the radio fur ad concluio seemed to be inevitable that the whole universe must be filled with this radiation. What was its spectrum? Could it be black body radiation and, if so, what was its
significance and from whence had the flux originally derived ${ }^{\text {s }}$?
A possible answer to the last question was soon forthcoming and revealed the cosmic importance (literally) of the discovery which Penzias and Wilson had made Tronomy group at Princeton Universit eaded by Robert Dicke and which in luded Peebles, Roll and Wilkinson, that very recent theoretical research pursued by might have existed in the early "fireball" phase of the nascent universe (Dick peculated that it might be the condensed state of a contracted previous universe) had indicated that an intense, high tem been present. This field, being in thermal equilibrium with the matter, would have possessed a black body spectrum. Such a adiation field would have prevented the too rapid nucleosynthesis of helium and
heavier nuclei from the primeval stock of protons and neutrons, for it is known from astronomical observations that hydrogen still forms about three quarters of the matter of the universe. It was suggested that of the universe would preserve its black body spectral characteristics as the universe expanded but its temperature would fall progressively and inversely proportionto the "size of the unilerse as be adiation, or "photon gas" as it may be
regarded, cooled adiabatically ${ }^{6}$. If this were the radiation which Penzias and Wilson had detected it meant that the birth of the universe was being "seen" by radio waves as ancient as the universe itself.
Dicke and his colleagues had estimated that the present temperature of such a space expanded radiation field would be in he order of 10 K and concluded that it would be worth while to look for the radia

Fig. 2. The black body spectrum for 3K. The units of Una
ion. Accordingly two members of the group, Roll and Wilkinson, proceeded to radiation on a wavelength of 3.2 cm . At this point the Princeton group learnt of the Holmdel measurements on 7.35 cm and the need was at once apparent for observations to be made at other wavelengths in order to of the background radiation conformed to black body spectrum. Roll and Wilkinson's observations were immediately pressed to a conclusion and yielded a noise intensity that was indeed compatible with
a black body spectrum of approximately 3 K . In other words the measurements of Penzias and Wilson, and Roll and Wilkinson fitted the black body curve shown in Fig. 2 which is described by the Planck formula:

$$
\begin{array}{r}
u_{u}=\frac{8 \pi h v^{3}}{c^{3}}\left(e^{\frac{e^{2}}{k T}-1}\right) \\
\text { or } u_{\mathrm{a}}=\frac{8 \pi h c}{\lambda^{5}}\left(e^{\left.\frac{k c}{k T \lambda}-1\right)}\right.
\end{array}
$$

where: u_{v} is the energy per unit volume per 4 is the energy per unit volume per unit of wavelength at wavelength λ
h is Planck's constant $\left(6.625 \times 10^{-34} \mathrm{Js}\right)$ is Boltzmann's constant $\left(1.38 \times 10^{-23}\right.$ JK^{-1} is the absolute temperature (K) 6 is the velocity of light $\left(2.99729 \times 10^{8}\right.$ ms^{-1})
Thus the experimental evidence for the xistence of a 3 K cosmic microwave radiation background (as it has come to be
called) was already very good in 1965. As observations by later workers have accumulated the black body characteristic of the radio background has been given a probability bordering on certainty. For heir discovery of the microwave backperature Penzias and Wilson were awarded the Nobel Prize in physics in 1978.

Anisotropy of microwave background
In the letter to the Astrophysical Journal ${ }^{5}$ describing their measurement of the 3.5 K Wilson stated, "This excess temperature is, within the limits of our observations, sotropic, unpolarized and free from seasonal variations". This question of iso-
tropy was examined by a number of workers at the same time as the back body nature of the radiation was being established. By 1973 refinement of ground based experiments had permitted any anis-
tropy that might exist to be shown to be less than one part in five hundred, which corresponds to a few millidegrees in the antenna temperature. In order to refine this measurement still further it was neces-
sary to eliminate or reduce the main source of interference - which was Jansky type noise from the galaxy, but at microwave frequencies. Radio astromoners have

WIRELESS WORLD AUGUST 1981
hown that such radiation is indeed pro electrons, not in the simple thermal agita ion mode that Jansky speculated, but b piralling about the lines of force of the galactic magnetic field - the so-calle Such synchrotro
e wavelength so emission falls off with the wavelength so that by observing terference would be reduced and, at the ame time, the desired signal from the cosmic background would be increased er and his colleagues at the University of California ${ }^{7}$ when planning an experimen ensitive enough to measure the isotropy at he one millidegree level. They decided to operate at a wavelength of 9 millimetre water in the atmosphere they designed th equipment to be operated in an aircraft flying at $50,000 \mathrm{ft}$. Compensation for th aerial temperature component arising from the oxygen radiation was achieved by horns looking at different parts of the sk but at the same angles of elevation so tha similar volumes of oxygen were included
in their respective beams.
This is the principle of the Dicke adio astronomy. A switching frequency about one hundred hertz was employed and by filtering and amplifying the output from the receiver at this frequency any temperature difference between the two ignals from the sun and thermal effects on he antennae were avoided by making the fights at night. When sky temperatur observations are conducted from th ground the portion of the celestial spher beam of the antenna due to the diurna tation of the earth; the same is substan tially true when the equipment is carried in a aircraft.
In order to study seasonal effects the flight programme extended over the whole anisotropy was indeed present. It was found that the temperature of the sk varied smoothly according to a cosine la from a maximum in the direction of constellation Leo to a mimimum in the constellation Aquarius. Temperature differences between these two directions and he average sky temperature was $\pm 3.5 \mathrm{mil}$ lidegrees and the effect was attributed to respect to the radiation field and the Doppler shift that this produces. Apart from the cosine variation the radiation 3000 but in was isotropic to one part in where the antenna velocity is directly posed to that of the radiation its spectrum will be displaced towards the blue i.e. it black body characteristics will be maintained but it will appear to be hotter. No an amount $\delta \lambda$ given by the usual Doppler relation $\delta \lambda / \lambda=v / c$, where v is the resultan velocity of the antenna. But according to

Fig. 3. The anisotropy of the cosmic microwave background

Wien's law the typical wavelength is inverely proportional to the radiation temper ture T i.e. $\delta \lambda / \lambda=-\delta T / T$ and the velocity s given by $(\delta T / T) c$, with $\delta T=3.5 \times 10^{-3}$ the v is about $390 \mathrm{~km} / \mathrm{sec}$.
There are three vector components to this velocity:
) he sun at $30 \mathrm{~km} / \mathrm{sec}$.
(2) the orbital velocity of the solar system $\mathrm{km} / \mathrm{sec}$. (3) the velocity of the galaxy as a whol with respect to the radiation field, or, a discussed later, with respect to those re ast scattering of the radiation which th By appropriate combination of the velocity vectors Muller and his colleague concluded that the velocity of the galax with respect to the radiation field is abou $600 \mathrm{~km} / \mathrm{sec}$.

Cosmic role of radiation When Lord Kelvin made his calculation of the age of the earth, based upon th cooling of a sphere from an inital high temperature, he recognized that his estimate was much too low to satisfy the geolo gists and so he included in his paper a
caveat to the effect that there might be within the earth some undiscovered sourc of heat that would lengthen the time scale We now know that certain nuclei dispersed in the rocks provide one such source. theory of the sun as a means of supplyin the energy it pours out as radiation proved quite inadequate to explain the age of the sun. But increased understanding of suggestions that the fusion of hydrogen to helium could easily supply the required energy and also provide a lead to the synthesis of the heavier nuclei which spec troscopy had shown to be present in the With geophysics
With geophysics and astrophysics al-
ready deriving support from applied nuclear physics, it was not surprising that cosmology should also be penetrated by the new physics. We have seen that there are good reasons for assuming that the
myriad of galaxies which we now see widely distributed through space wer
widely distributed through space were
probably in close proximity to each other
o. Certainly housand million year axies for the universe must have been highly contracted and compressed stat In 1948 Alpher, Bethe and Gamow ${ }^{9}$ pu forward the first version of the so-called "hot big bang theory" which postulated just such a very dense state of the earl niverse in which the temperature was so
igh that thermonuclear reactions could take place in the primeval, wholly neutron "gas". Decay of neutrons to protons wa ssumed, followed by interactions to yiel helium and other heavier elements, with he energy released fuelling the explosio was recognized that radiation would b produced and it was even suggested tha the cooled residue of this radiation shoul still be present in the universe. Curiousl
enough this paper did not prompt a search for the radiation, neither did it influence he discovery of the cosin background by Penzias and Wilson-in 964.

The existence of the 3 K microwav background is the major evidence in
support of the modern Big Bang theor while the isotropy of the radiation argues strongly in support of the Cosmological Principle. The black body character of the spectrum indicates that at the time of it
origin the radiation was in thermal equilibrium with matter. That point in the past can be identified as the time when th expanding fireball which was the univer was a thousandth of the size of the presen universe and, correspondingly, was at the stage when the protons and the helium nuclei formed by thermonuclear processe could combine with the free electrons. Be fore that time (and at higher temperatures) been so high that scattering processes en sured that the universe was opaque to radiation. With the formation of atoms and the removal of the electron scatterers space became transparent to radiation; this wa the so-called moment of decoupling, after tion to its present state commenced, th black body character of the spectrum be ing maintained. Thus the radiation which is now received carries the imprint of thos regions of the new universe where the las
scattering occurred but, as already noted Muller's work did not reveal any inhomo geneities in these regions that might hav suggested that groupings of matter had occurred at that stage. Perhaps this conclusion was to be expected, for only after
decoupling of electrons and radiation was the great pressure of the radiation released which hitherto had prevented any association of the matter into aggregations, so that the formation of the galaxies which we now could then begin
cosmology which stem from knowledge of the cosmic microwave background and it temperature of about 3 K is the fact that it number of photons to the number nuclear particles in the present universe This ratio would have been maintaine

\qquad

 . .
 1
 es
during the fireball era and knowledge of it is necessary to study the progress of th nuclear reactions which then occurred, tion of deuterium as the essential in termediary to the formation of the helium nuclei. Because the present temperature of the radiation background is 3 K , the Planck formula tells us that the wavelength
of the peak emission is about 1 mm . Now the photons, which are the quanta of the energy carried by such a radiation stream, are spatially distributed at roughly a wavelength interval, so that the number of pho tons per litre is in the order of a million; 550,000 . Estimates of the number of nuclear particles in the galaxies then permits the ratio of photons to nuclear particles to be put at between 100 million
to 20,000 million, i.e. a ratio in the order of 1000 million. It is this dominance of the radiation which controls the reactions at the onset of nucleosynthesis. Calculations of the products of the various nuclear processes are obviously very complex
and were first executed by Peebles, and independently by Wagoner, Fowler and Hoyle ${ }^{10}$. The main conclusion was that helium would be the major product and would represent 22% to 28% by weight with hydrogen comprising most of the resmall amounts of deuterium and other light nuclei. Observational evidence on the abundance of various nuclei in our galaxy indicates that 8% of the atoms are helium, hydrogen; thus the percentage by weight of helium is about 26 .
One of the astonishing fedtures of the theory is the very short time required to complete the nuclear processes that
prepared the essential material from which prepared the essential material from which even the slight knowledge that most scientific people now have of nuclear weapons cution of the succession of reactions that the cosmological theory requires. If the initial ingredients of the early universe be taken as a mix of protons and neutrons at a
temperature well above $10^{10} \mathrm{~K}$, together temperature well above $10^{10} \mathrm{~K}$, together
with radiation of density of about 10^{9} photons per nuclear particle, then there will be an accompanying flux of electrons, positrons, neutrinos and antineutrinos, since the temperature is well above the threshold
temperature for the generation of electron + positron pairs from two "colliding" photons of the radiation $\left(5.9 \times 10^{9} \mathrm{~K}\right)$. The density of the universe at this early stage was enormous and so the frequency of the
various particles would be very great and various particles would be very great and
would ensure that the whole world system was in thermal equilibrium. The principles of statistical mechanics may therefore be applied to the assembly of particles and the In particular, the number of protons and In particular, the number of protons and
neutrons must have been equal since the two reactions:
$p+$ antineutrino $\rightleftarrows n+e^{+}$
$n+$ neutrino $\rightleftarrows p+e^{-}$

3 K supplies the present photon density while the ratio of photons/nuclear particles at nucleosynthesis is a factor which in
fluences the production of the residual fluences the production of the residual
deuterium that escaped conversion to helium. If the abundance of deuterium relative to that of protons which obtained at the end of nucleosynthesis could now be
measured then the present average density measured then the present average density
of particles could be derived more accurately than by the crude method of summing up the possible contents of all the galaxies! Deuterium estimates made so far tend to favour the open universe, but
uncertainties in the methods of assessing deuterium are still too great for the open universe concept to be accepted as proven.

Conclusion

The modern version of the Big Bang cos mology has already achieved some notabl successes, not least being the way it ha
been able to build upon the discovery of the cosmic microwave background. Steven Weinberg, awarded a Nobel Prize in 1979 for his work in particle physics, discusses in his exciting book "The First Three may have preceded the $10^{10} \mathrm{~K}$ stage which was taken as the starting point of this sur vey and shows how many fundamental problems in particle physics are involved in the endeavour to look back still further in time. What is certain is that the present
theory of the foundation of the universe theory of the foundation of the universe
provides a great stimulus for further research and establishes the need for more observations, many of which will have to be made from space vehicles. Thus the
techniques ar least of microwave communications will continue to be needed in order to make new data available to the cosmologists.

Reference

1. Karl G. Jansky. "Directional Studies of At1. Karl G. Jansky. "Directional Studies of At
mospherics at High Frequencies", Proc. Inst.
Rad. Eng., 20, 1920, 1932. Rad. Eng., 20, 1920,1932 .
2. Karl G. Jansky. "Elecrical Disturbances 2. Karl G. Jansky. "Elecrical Disturbances Apparently of Extraterrestial
Inst. Rad. Eng., 21, $1387,1933$.
Inst. Rad. Eng., ${ }^{\text {S. Karl }}$. Janky. "A note on the Source of Interstellar Interfere
Eng., $23,1158,1935$
3. E. Eastwood. "Some New Applications of
 5. A. A. Penzias, and R. W. Wilson. "A Mea-
surement of Excess Antenna Temperature at surement of Excess Antena Temperatue
4080 Mc/s $"$, Astrophys.. ., $142,419,1965$ 6. R. H. Dicke, P. J. E. Peebles, P. G. Roll an D. T. Wilkinson. "Cosmic Black Body Radia tion", Astrophys. I., 142,414, 1965
4. R. A. Muller. "The Cosmic Backgroun 7. R. A. Muller. "The Cosmic Background
Radiation and the New Aether Drift". Scientific American, 238, May 1978.
5. D. W. Sciama. "Modern Cosmology", Cam 8. D. W. Sciama, "Modern Cosmology", Cam
bridge University Press, Cambridge 1971.
6. R. A. Alpher, H. A. Bethe and G. Gamow
"The Origit 9. R. A. Alpher, H. A. Bethe and G. Gamow.
"The Origin of Chemical Elements", Phys. "The Origin of Chemical Elements", Phys.
Rev., 7. 7. 803, , 948.
7. R. . Wagner, w. Fowler and F. Hoyle. Re.. R. V. Wagoner, W. Fowler and F. Hoyle.
"The Synthesis of Elements at Very High Tem"The Synthesis of Elements at very High Tem-
peratures", Astrophys. \boldsymbol{y}, $148,21,1967$
8. S. Weinberg. "The First Three Minutes", 11. S. Weinberg. "The First Three Mi
André Deutsch Limited, London, 1978.

Digital storage and analysis of speech

2 - Coding in the time domain
by lan H. Witten, M.A., M.Sc., Ph.D., M.I.E.E., University of Calgary

There are several methods of coding the reduce the darm of a speech signal signal-to-noise ratio, or alternativel to reduce the signal-to-noise ratio for a given data rate. They almost all require more processing, both at the (for regeneration) ends of the digitization process. The aim of this section is to introduce the ideas in qualitative way: theoretical results of listening tests can be found elsewhere.
Syllabic companding
We have already studied one time-domain encoding technique, namely logarithmic quantization, or log p.c.m. (sometimes
called "instantaneous companding"). A called instantaneous companding"). A
more sophisticated encoder could track slowly varying trends in the overall amplitude of the speech signal and use this information to adjust the quantization levels
dynamically Speech coding methods dynamically. Speech coding methods
based on this principle are called adaptive pulse code modulation systems (a.p.c.m.). Because the overall amplitude changes slowly, it is sufficient to adjust the quantization relatively infrequently (compared with the sampling rate), and this is often
done at rates approximating the syllable rate of running speech, leading to the term "syllabic companding". A block floatingpoint format can be used, with a common exponent being stored every M samples
(with M, say, 125 for a 100 ms block rate at 8 kHz sampling), but the mantissa being stored at the regular sample rate. The overall energy in the block,

$$
{ }_{\Sigma}^{h+M-1} \quad x(n)^{2}
$$

$$
\sum_{n=h} x
$$

($M=125$, say $)$
is used to determine a suitable exponent and every sample in the block - namely
$x(h), x(h+1) \ldots x+\ldots(h+M-1)$ - is scaled according to that exponent. Note that for speech transmission systems this method necessitates a delay of M samples at the encoder, and indeed some methods base the exponent on the energy in the last however, the delay is irrelevant. A rather different, nonsyllabic, method of adaptive p.c.m. is continually to change the step size of a uniform quantizer, by mulitplying it by a constant at each sample which is
based on the magnitude of the previous code word.

Adaptive quantization exploits informa tion about the amplitude of the signal, and, as a rough generalization, yields a
reduction of one bit per sample in the data rate for telephone-quality speech over or dinary logarithmic quantization, for for the same data rate an improvement of 6 dB in signal-to-noise ratio can be ob tained. However, there is other information in the time waveform of speech, which can be exploited to give further reductions.
Differential coding
Differential pulse code modulation (d.p.c.m.), in its simplest form, uses the present speech sample as a prediction of
the next one, and stores the prediction error - that is, the sample-to-sample difference. This is a simple case of predictive encoding. Referring back to the speech waveform displayed in Fig. 5, it seems plausible that the data rate can be reduced
by transmitting the difference between successive samples instead of their abso lute values: less bits are required for the

Fig. 9. Conversion hardware for delta mod-

 Fig. 9. Culation.
difference signal for a given overall accur
acy because it does not assume suc extreme values as the absolute signal level. Actually, the improvement is not all tha great - about $4-5 \mathrm{~dB}$ in signal-to-noise
ratio, or just under one bit per sample for a given signal-to-noise ratio - for the dif ference signal can be nearly as large as the absolute signal level
If d.p.c.m. is used in conjunction with adaptive quantization, giving one form o
adaptive differential pulse code modula tion (a.d.p.c.m.), both the overall ampli tude variation and the sample-to-sample correlation are exploited, leading to a combined gain of $10-11 \mathrm{~dB}$ in signal-to-noise ratio (or just under two bits reduction per
sample for telephone-quality speech). sample for telephone-quality speech).
Another form of adaptation is to alter the predictor by multiplying the previous
sample by a parameter which is adjusted sample by a parameter which is adiusted for best performance. Then the $e(n)=x(n)-\alpha x(n-1)$,
where the parameter a is adapted (and stored) on a syllabic time-scale. This lead ratio, which can be combined with tha achieved by adaptive quantization. Much more substantial benefits can be realized by using a weighted sum of the past severa

(up to 15) speech samples, and adapting all the weights. However, this requires a great
deal more computational power - both in deal more computational power - both in
the encoder and in the decoder. the encoder and in the decoder.

Delta modulation

The coding methods presented so far all increase the complexity of the analogue-todigital interface (or, if the sampled wave-
form is coded digitally, they increase the form is coded digitally, they increase the processing required before and after sto-
rage). One method which considerably simplifies the interface is the limiting case of d.p.c.m. with just 1-bit quantization, in which only the sign of the difference between the current and last values is
transmitted. Figure 9 shows the conversion hardware. The encoding part is essentially the same as a tracking d-to-a, where the value in a counter is forced to track the nalogue input by incrementing or decrementing the counter according as the input exceeds or falis short of the analogue equi-
valent of the counter's contents. However, for this encoding scheme, called "delta modulation", the increment/decrement signal itself forms the discrete representation of the waveform, instead of the coun-
ter's contents. The analogue waveform can be constituted from the bit stream with another counter and d-to-a converter. However, an all-analogue implementation can be used, both for the encoder and whose charging current is controlled digitally. This is a much cheaper realization. It is fairly obvious that the sampling frequency for delta modulation will need to be considerably higher than for effect called "slope overload" which occurs when the sampling rate is too low. Either a higher sample rate or a larger step size will reduce the overload; however, larger steps increase the noise level of the input is present - called "granular noise". A compromise is necessary between slope overload and granular noise for a given bit rate. Delta modulation results in lower for a given signal-to-noise ratio if that rario is low (poor-quality speech). As the desired speech quality is increased, its data rate grows faster than that of logarithmic p.c.m. The crossover point occurs at a elephone quality speech, and so although delta modulation is used for some applicaions where the permissible data rate is severely constrained, it is not really suit It is profitable to adiust the step siz leading to adaptive delta modulation. A common strategy is to increase or decrease the step size by a multiplicative constant, which depends on whether the new ransmitted bit will be equal to or differen epsize $(n+1)=$ step
 $x(n+1)>x(n)>x(n-1) \quad$ (slope overload condition);
stepsize $(n+1)$
$x(n-1)<x(n)$ or $x(n+1)$ if $x(n-1)>x(n)$, (granular noise condition).

Programmable sound

 generator interfacecontinued from page 38

The interface decoding logic, shown in Fig. 1, uses A0-A7, IORQ and WR signals from the $Z 80$ and four i.cs to provide BC1
and BDIR signals for two ps.gs. The two separately addressable p.s.gs require four $Z 80 \mathrm{i} / \mathrm{o}$ ports, 252-255, which can be relocated by using one or more of the three spare gates to invert the address lines before IC ${ }_{1}$. The p.s.gs are programmed by latching eading data, whister and then writing or the following instruction
LD A,R $\quad \begin{aligned} & \mathrm{R} \text { is the p.s.g. register } \\ & \text { address, } \mathrm{R}=0.15\end{aligned}$ OUT (252), A latch register address R in LDA, D ${ }_{D}^{\text {p.s.g. }}$ is the output data, LDA, OUT (253), A output data (25) gister in p.s.g. 1 IN A, (253) $\begin{aligned} & \text { return contents of latched } \\ & \text { register in p.s.g. } 1 \text { to } A\end{aligned}$ register in p.s.g. 1 to A
Alternatively, the corresponding Basic commands can be used. The second p.s.g. is programmed in the same way using i/o addresses latched on port 254 . The 8 -input NAND gate enables a dual 2 -line to 4 -line decoder when IORQ is active during i / o cycles involving ports 252-255. IC ${ }_{3 a}$ decodes A0 and WR, and
simulates BC1 and BDIR on data outputs simulates BCl and BDIR on data outputs
2 and 3 for all necessary p.s.g. bus functions except the inactive state. $\mathrm{IC}_{3 \mathrm{~b}}, \mathrm{IC}_{4}$ and two inverters ensure that each p.s.g. bus is only active during the $i / 0$ operations listed above. Therefore, a p.s.g. bus can
only be active when IORQ is active, which is sufficient to fulfil the timing require ments of the pis.g. and a 4 MHz Z 80 system.
The construction of the interface is
straightforward, straightforward, and the complete circuit
for driving one or two AY-3-8910 devices for driving one or two AY-3-8910 devices
is shown in Fig. 2. The interface will also drive the smaller AY-3-8912 i.c., but the pin assignment is different and there is no A9 address line. Because the p.s.g. has a maximum clock frequency of 2 MHz , an 4 MHz clock by 2 or 4 .
Although the three audio outputs in Fig. 2 are connected together, they may be amplified separately with an i.c. such as
the LM 386 which uses a single 5 V supply. the LM 386 which uses a single 5 V supply. four p.s.gs by decoding both A1 and A2 with $\mathrm{IC}_{3 \mathrm{~b}}$. In this case, disconnect A2 from IC_{1} and connect the NAND gate input to +5 V , connect the B input of $\mathrm{IC}_{3 \mathrm{~b}}$ to A2
The inverted data outputs The inverted data outputs from IC_{36}, pin
9 and 10 , then gate another 74 LS 08 to generate the BC1 and BDIR signals for two extra p.s.gs. Four devices are
controlled via eight i/o ports, 248-255, programmable audio channels.

CHRCUTAT IDEAS

Improving the 74S262

character generato

A disadvantage of the 745262 characte generator r.o.m. is that the displayed outputs for zero and upper-case O are iden-
tical. This circuit simulates the style of zero found in other r.o.ms.
The ISO-7 code for zero, 0110000 , dot-row address is modified so that the lower half of the displayed character is a reflection of the upper half. Because only he address inputs to the r.o.m. are mod rounding are not affected. The switch can be included to disable the circuit if required.
A. Pemberton

Sheffield

Voltage-change

detector

This detector produces a negative pulse when the input voltage changes direction by more than about 15 mV . The differenleading edge of a voltage change and the output switches positive or negative. Section B converts any pulses from I_{1} which are 4.5 V or greater to negative pulses.
Section C is a standard monostable circuit Section C is a standard monostable circuit The additional circuit at the input of section A is necessary if the detector is used with a cadmium sulphide cell or a thermistor. The voltage fed to the detector input is restricted to between $1 / 3$ and
$2 / 3 \mathrm{Vcc}$. Other op-amps can be used for IC_{1} provided they have an input impedance of

M. L. Ford

M. L. Ford
Worcester

Despite these adaptive equations, the tep size should be constrained to lie bend minimum, to prevent is from becom ing so large or so small that rapid accommodation to changing input signals is impossible. Then, in a period of potential reventing overload sep size will grow, mum value when overload may resume in quiet period it will decrease to its ninimum value which determines the hanular noise in the idle condition. Note can be deduced from the bit changes in the digitized data. Although adaptation imtion, it is still inferior to p.c.m. at telequalies.
It seems that a.d.p.c.m., with adaptive provide a worthwhile advantage for speech storage, reducing the number of bits needed per sample of telephone-quality peech from 7 for logarithmic p.c.m. to kerhaps 5 , and the data rate from additional complexity in the encoding and decoding processes, and the fact that bytegarithmic p.c.m. is is more convenient 10 computer use. For low quality speech, where hardware complexity is to be minimized, adaptive delta modulation could prove worthwhile - although the reduces the cost advantage. codec chip To be continued

Literature received

Monthly news sheets, which contain details of a instruments, are sent out free of charge by J instuments, are sent (Electrical) Lid, $34 / 6$ America Lane Haywards Heath, West Sussex RH16 3QU.
WW401

Instruments and accessories for measuremen and test, and a number of instrument cases, are
illustrated and specified in a catalogue fro illustrated and specified in a catalogue fron
Global Specialities Corporation, Shire Hill In-

A large range of active and passive components

for thick-film a new catalogue from Norsem Thick Film Com| $\begin{array}{l}\text { ponents, Level 1, The Civic Centre, Hartlepool, } \\ \text { WW } 403 \\ \text { Cleveland. }\end{array}$ |
| :--- |

ww - 022 for further detalls

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions.
Solderable Stud ${ }^{\text {TW }}$ Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the P.C. Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex Telephone 01-902 5941. Telex: 923455.

Thermalloy International Advanced technoogy in semicoonductor accessoneres.

Transient response of audio filters

Sharp cut-off filters are not always the best. Time domain considerations can lead to a reduction in coloration

by D. C. Hamill, M.Sc.

A filler with a sharp cut-off can caus like a resonance near the filter cut-o frequency. The sharper the filter cut off, the worse the coloration appears to become. It also seems to become worse as the cut-off frequency is
moved further into the audible frequency range. This article sets out to explain this effect and suggests how it may be avoided, concluding with a practical design for a variable cut-off low-pass filter.

To try to understand the coloration effect noticed with sharp cut-off filters first think about the human hearing mechanism. As yet there is no single comprehensive theory
of hearing which is generally accepted and which explains all the experimental phenomena, but it seems that the analysis of perceived sounds by the ear and brain is performed partially in the frequency do-
main and partially in the time domain. That is to say, it has been found that although certain parts of the basilar membrane in the ear respond to specific frequency bands, much of the experimental evidence refutes a "frequency analyser"
description of the hearing process. If a signal is produced consisting of two pure tones with frequencies of 200 and 300 Hz the ear hears a pitch corresponding to a frequency of 100 Hz . This can be partly explained by the generation of a dif-non-linear parts of the ear, but it also occurs at low sound pressure levels where it should be negligible. Looking at the combined waveform of the two tones, Fig. 1, this repeats itself with a period equivadescribes this sort of phenomenon which indicates that the ear uses a time-based pitch analysis which detects the repetition rate rather than a Fourier type of analysis
which breaks the signal down into sinusoiwhich breaks the signal
dal frequency components.
Another manifestation of periodicity pitch ${ }^{1}$ can be demonstrated by producing a random signal and mixing a delayed version of this with the original. The ear hears
a pitch which depends on the time delay. If a pitch which depends on the imme and the delay is continuously varied one gets the effect known in pop music as phasing, better described as time separation pitch. Again, there is no Fourier com
responding to tisussion of the various theories of
hearing and the evidence which supports them is given by Lickider?: the timemore widely known and studied, although it is not universally accepted.
Autocorrelation approach The model of time domain analysis most commonly put forward is the autocorrela-
tion process. Autocorrelation measures how similar a signal is to a delayed version of itself. Mathematically the autocorrelation function is
$R(\tau)=\overline{x(t) \cdot x(t-\tau)}$
the bar over the product representing a mean value taken over all time. The signal delay τ, the samples multiplied together, and the product averaged over many samples to give $R(\tau)$. A schematic system for measuring autocorrelation functions is
shown in Fig. 2. The function is generally shown in Fig. 2. The funct
Autocorrelation functions of some simple signals are shown in Fig. 3. A periodic signal such as a sine or square
wave has a regularly undulating autocorrewave has a regularly undulating autocorre-
lation function whereas white noise, a completely random signal, has an autocor-

Fig. 1. Waveform produced by adding 200 Hz sinusoid to 300 Hz sinusoid has a repetition rate of 100 Hz , although there is no fundamental component at this frequency.

WIRELESS WORLD AUGUST 198
relation function which is zero except a nal for evaluating the response of systems because the degree of randomness of the output can easily be assessed. If white noise is passed through a low-pass filter
with an ideal amplitude response - that is one which passes components below the cut-off frequency but completely stops those above cut off - a strong periodicity appears in the autocorrelation function. This indicates that the ideal frequency-do-
main filter is unsuitable for time-domain processing. For no audible ringing, the white-noise autocorrelation function of a network should show no ripple. Compare Fig. 3(d) with (f) which is for a simple low pass RC section. This illustrates the fact tave slope can be used without introducing coloration into the signal.
The autocorrelation function of a signal has been tied up with pitch and coloration by Bilsen ${ }^{3}$, who found the experimental
subjective weighting function $\rho(\tau)$ shown in Fig. 4. The pitch and coloration threshold, according to Bilsen, is given by

$$
\frac{R(\tau)}{R(0)}>\frac{0.063}{\Omega(\tau)} .
$$ That is, if the normalized white noise auto-

correlation function of the system exceeds $0.063 / \rho(\tau)$ coloration may be detected in the signal.

The pitch of white noise fed through a high-pass or low-pass filter is closely re-
lated to its cut-off frequid be expected from its autocorrelation function, Fig. 3(d), which shows substantial ripples of a period corresponding to the cut
off frequency: compare this with the autocorrelation function of a sine wave, Fig. 3(a). This pitch and cut-off frequency relationship was confirmed experimentally by Small and Daniloff ${ }^{4}$ and by Fastl ${ }^{6}$. However, with high-pass filters having a
cut-off frequency below about 600 Hz cut-off frequency belowats results are obtained which suggest that coloration is not audible with high-pass filters in the frequency range
where they are usually used.

Fig. 4. Experimental autocorrelation weighting function is based mainly
work concerned with room acoustics, hence the time scale is in tens of
milliseconds after Bilsen ref

Fig. 3. Autocorrelation functions of various signals.

Arbitrary waveform applied to Arbirirary wavefor
inpul of network
 Waveform is approximated
by staircase function

Staircase can be broken down

Each step produces step
response characteristic

Individual step responses can be added to outriil
output from network.

Fig. 5. Knowing the step response of a network the response to a arbitrary input waveform can be found.

freauency domain

릏

(b) 3rd order
Butterworth filter

(a) Ideal frequer domain filter
(d) 3 rd order
(e) Simple RC filter

The sensation of pitch becomes more definite as the slope of a sharp cut-off filter iments with filters having slopes of 15,50 and $150 \mathrm{~dB} /$ octave above -3 dB frequen cies of between 200 Hz and 5 kHz . He found that "The accuracy of the pitch hadgement decreases for extreme low and ness of noise band skirts improves the accuracy of the pitch judgements but at 5 dB /octave judgement may still be made with considerable consistency." This is in which predicts increased coloration as the filter becomes nearer to the ideal fre-uency-domain filter.
From the weight of experimental evidence then, an autocorrelation theory of function appears to explain the phenomenon of filter coloration satisfactorily.

Step response

The white-noise autocorrelation function of a filter is not a very familiar quantity to many electronics engineers although they of signals. (An oscilloscope is a timedomain display system, invaluable for studying the effect of networks on pulses.) The step response of a network is closely elated to its white-noise autocorrelation
unction: the autocorrelation function of gnal is the time domain description of its power spectral density (its "frequency sectrum") and contains the same in ormation. Given a white noise input, th power spectral density directly depends o
he transfer function of the network. Tak ing this transfer function one can find the impulse response or the step response of he network by means of the Laplace ansform. So the step response is a clos function and contains all its information, as well as additional phase information. If the step response of a network is nown, the response to an arbitrary signal or example speech or music, can b mated by a staircase function, as in Fig. 5 and by taking smaller and smaller steps
one can get as close to the original as neces sary. This staircase function can be decompositive or negative steps of varying mag nitude each of which has its own step res ponse when passed through the network waveform is the response of the network to he input signalk. There is therefore direct connection between the step res ponse of a network and its response to rea signals.
By studying the step responses of some idealized and real filters these can be re-
lated to their white-noise autocorrelatio functions and criteria for audio filters ca be established. Consider first the ideal fre quency-domain filter shown in Fig. 6(a) ringing as would be expected. There is als a precursor, that is a response before the input step is applied, pointing to the non realisability of this ideal filter. A real approximation to this type of response is th third-order Butterworth response show there is still a lot of ringing. This sort of filter is common in audio equipment although it is by no means optimal for th application.
The ideal time-domain filter is one with a fast rise time and no overshoot or ring
ing. This is achiever ing. This is achieved if the amplitude res ponse follows a Gaussian shape and if the a cesponse is linear. The step respons practical filter, a third-order Laguerre Gaussian approximation, gives a delaye response with no precursor and negligible ringing.
The subject of filter families such as Butterworth, Bessel, Chebyshev, is too covered in the literature?

Design criteria

Basically, there is a need for as much attenuation as possible in the stop band with

This is equivalent to convolution of the im pulse response of the network with an arbitrar tion integral method.

61
1

Fig. 6. Step response and amplitude
response of some ideal and real filter. In and (e) the true Gaussian shape is shown in broken line.
flat amplitude response in the pass band. A steep slope in the stop band is not harmfu in itself (the Gaussian filter approaches a infinite slope) but the shape of the res-
ponse curve in the transition region between the pass band and the stop band is
important. Looking at the Gaussian, La important. Looking at the Gaussian, La guerre and simple RC filters, there is little or no ringing when the cut-off is approxi of attenuation. The phase response assoof attenuation. The phase response asso-
ciated with this type of cut-off tends to be linear in the case of practical transfer func tions, and this has sometimes led to the misconception that filters should be minimize ringing. The step response con tains information which is discarded in th autocorrelation response. This implies that a pure autocorrelation theory of hearin ity to phase information, but there has been considerable controversy over the de gree to which phase shifts are detectable What is important in the present context is that phase linearity, by itself, is no gua antee of adequate audio filter design. ponse characteristic and then add an allpass phase equalizer to give good phas linearity, but this would not give freedom from ringing. The ideal frequency-domain filter is a good example of this: even with
zero phase there is bad ringing. Adjusting the phase response near the band edge can alter the symmetry between precursor and overshoot but can never remove the ring ing.
The conclusion must be drawn that the main factor governing transient response the shape of the amplitude response rolloffin the transition region. For best results this should have a Gaussian shape, that is it should follow
$\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\exp \left[-\left(\frac{f}{f-3 \mathrm{~dB}}\right) \frac{\log _{\mathrm{e}} 2}{2}\right]$. and (f) the true Gaussian shape is shown in
broken line. mately Gaussian over the first 10 dB or s misconception that filters should One could choose a sharp cut-off

Fig. 7. Amplitude response curves for a simple variable slope

Fig. 8. In variable low-pass filter overall response is the sum of a
first-order and a variable

This is unrealisable as it stands but i can be approximated by either a Taylor or a Laguerre series expansion ${ }^{8}$. Several othe filter approximations also produce a quasi-
Gaussian roll-off, for example the wellknown Bessel or Thomson family and the in-line pole approximations.
While a Gaussian roll-off is ideal from the point of view of step response, the ear
is not so critical of ringit frequency is raised. This implies that sharper cut may be used at high frequencies without being objectionable
As filters can be broken down into first and second-order terms, the last being res able Q -factor of the various terms in the transfer function could be related to fre quency as a criterion for audio network
High-pass filters are less critical in their design. As previously mentioned, although at high cut-off frequencies ringing is noticeable, below about 600 Hz this effect subjectively disappears. The design of tional frequency-domain considerations. For example, a typical rumble filter might have a third-order Butterworth response with a -3 dB frequency of 24 Hz , giving 1 dB drop at 30 Hz .
** Research into the effect of similar transfer Cunctions in introducing audible coloration has
been carried out at the University of Surrey by
J. M. Bowsher and K. Moulana.

Variable low-pass filter

One solution to the problem of ringing is to use a switched fidelity preamplifier to add an swithed cut-off frequency and slope or roll-off control. In one type ${ }^{9}$ a slope control mainly affects the rate of falloff in the stop band, thus sacrificing
wanted attenuation to reduce the unwanted coloration, Fig. 7. The provision of three switched frequencies plus a slope control gives a comprehensive filtering facility in the sense that the user has a wide this is unnecessarily complicated and that single control can be adequate for most applications if correctly designed Essentially what is required is a steep final rate of attenuation, say $18 \mathrm{~dB} /$ octave but with a gradual initial roll-off approxipossible if the cut-off frequency is mad smoothly variable rather than switched. Secondly, the ear is less sensitive to ringing at the upper end of the spectrum than toward the middle and a sharper cut-off is band edge. The object of this design was therefore to obtain an 18 dB /octave slope which could be shifted along the frequency spectrum whilst automatically changing its shape in the transition region to give the coloration at any setting. This aim has been achieved in the following way.
A second-order low-pass section has a
peak in its response which depends on its -factor. If the Q -factor is allowed to increase as the cut-off frequency is inobtained. If this rising response is offset by a first-order response falling at 6 dB /octave the result is an almost-flat pass-band response with a variable cut-off frequency, the initial roll-off becoming steeper with
increasing cut-off frequency. (In practice, the first-order section must also have a variable cut-off frequency to avoid a peaked response.)
The filter was designed to be variable 6.3 kHz , and a 0.5 dB ripple Chebyshev response with a 20 kHz cut-off. The subjective sensation of pitch is approximately linear with logarithmic frequency subjective effect of reducing the that the width of a signal is also nearly proportiona to the logarithm of the cut-off frequency, this law has been incorporated in the variable control. The resulting circuit is ana-
lysed in the Appendix and its computed lysed in the Appendix and its compute

Practical circuit

A practical circuit suitable for use in high-fidelity preamplifier or in profes sional audio equipment is given in Fig. 11 In addition to the variable low-pass facility
there is a fixed rumble filter built around there is a fixed rumble filter built around
the input stage which cuts off at 18 dB / octave with a Butterworth characteristic.

Fig. 9. Amplitude response of the variable low-pass filter,
Parameter n is percentage potentiometer rotation.

M
Fig. 10. Variation of cut-off frequency with potentiometer setting

The second amplifier is a push-pull arrangement which was found necessary be-
cause of capacitive loading effects; a singleended amplifier would give rise to considerable second harmonic distortion at high frequencies. Capacitor C_{2} is included for
stability, while C_{1} and C_{5} bypass r.f. withstability, while C_{1} and C_{5} bypass r.f. with-
out affecting amplitude response. For best results the source resistance should be low, preferably less than 100Ω, but up to $1 \mathrm{k} \Omega$ is permissible if R_{1} value is reduced to compensate. A load resistance of $4.7 \mathrm{k} \Omega$ or drive lower resistances at a higher distortion figure. Capacitors 3 and 4 should be low-leakage types such as tantalum bead to reduce noise from the control potentiometer. As a single potentiometer is used per

Measured performance of the variable filter

Amplitude response	Very close to computed curves -1 dB at 36 Hz and -15 dB at 15 Hz
Max. input level	$+15 \mathrm{dBm}(4.4 \mathrm{~V}$ r.m.s.) at any frequency
Noise level	-93 dBm max. (measured in noise bandwidth 20 Hz to 20 kHz , input shorted)
Gain	-0.5 dB at 1 kHz
Max. load impedance	$4.7 \mathrm{k} \Omega$ (but see text)
Max. source impedance	100Ω (but see text)
Distortion	0.1 \% t.h.d. at any frequency and input level up to +15 dBm with $4.7 \mathrm{k} \Omega$ load

channel, stereo ganging is very easily achieved. (A version of the circuit was
built using 741 op-amps as unity-gain amplifiers but their limited gain-bandwidth product caused deviations from the theoretical amplitude response.)
Judged subjectively, the filter is very
effective in obiating effective in obviating the coloration. Using significantly colour at any setting and the potentiometer seems to control the filtering action in a smooth and linear manner. With a music signal, lowering the cut-off
frequency progressively frequency progressively removes "edgi-
ness" from the sound, causing instruments such as cymbals and harpsichord to recede and making the sound duller without being coloured.

References

1. M. E. McClellan and A. M. Small, Time
separaion pith asociated with poise pulses \mathcal{F}. separation pitch associated with noise pulses,
Acous. Soc. Am. vol. 40 (1966), p. $570-82$. Acous. Soc. Am. vol. 40 (1966), p. $570-82$.
F. A. Bilsen, Repetition pitch: monaural in action of a sound with the repetition of the same, but phase shif
(1966), p. 295 . 300 .
2. J. C. R. Licklider, Three auditory theories, in Psychology: a study of science, ed. S. Koch,
Sudy 1, McGraw-Hill Study 1, McGraw-Hill (1959). tion for hearing theory and room acoustics, in
Frequen Frequency analysis and pefiodicity detection in A. W. Siithoff, Leiden (1970).
3. A. M. Small and R. G. Daniloff, Pitch of noise bands, 7. Acous. Soc. Am. vol. 41 (1971),
p. $350-4$. (German, with English abstract.). p. 350-4. (German, with English abstract.).
4. A. Rakowski, Pitch of filtered noise, International Congress on Acoustics, Tokyo 1968, A-5-7, A-105.
5. F. F. Kuo, Network analysis and synthesis,
2nd edicion, Wiley, 1966 . D. S. Humphreys, Analys
sis of electrical filters, Prentice-Hall, 1970 Hising transford and G. C. Temes, Filter design
ust using transformed variables, LEEE Trans. vol.
CT-15, 1968 , p. 385 -488 (contains a comprehen-
sive bibliograph of sive bibliography of filter design information).
IEEE Trans. vol. CT-5, no. 4, (Dec. 1958). Special issue on filter design. IEEE Trans. vol. CT-15, no. 4, (Dec. 1968). Special issue on filter design.
6. L. E. Weaver and D. C
7. L. E. Weaver and D. C. Broughton, Gaus-
sian fitiers for pulse shaping, Radio Electronic Eng. vol. 41, (1971), p.457-62. J. Linsley Hood, Direct-coupled high quality
stereo amplifier, part $3, \mathrm{Hi-Fi}$ News vol. 18 , stereo amplifier,
p. $60-3$, , Jan. 1973.
8. D. M. Leakey, Inexpensive variable-slope
filter, Wireless World, vol. 62,1956 , p. $563 / 4$. filter, Wireless World, vol. $62,1956, \mathrm{p} .563$-4/4.
9. D. K. Gannett and I. Kerney, Discernibil 10. D. K. Gannett and I. Kerney, Discernibility of changes in program band
System Tech. \mathcal{F} vol. 23, (1944), p.

Appendix: Analysis of variable low-pass filter
The right-hand part of the circuit, Fig, A1, is a
second-order Sallen and Key section with yaria second-ordack transfer function of this part, $V_{d} V_{x}$, is
which gives a -3 dB point at $\omega=1.76 \omega_{1}$.
Normalizing to $\omega_{1}=1, R_{1}=R_{2}=1$, gives C_{1} $1 \quad 1 \quad{ }_{1}{ }_{1} x_{x}$
$1+2 s C_{3} R_{2}\left(1-A_{1}\right)+s^{2} C_{2} C_{3} R_{2}^{2}{ }^{2}\left(1-A_{1}\right)$ This has a natural frequency
$\omega_{0}=\frac{1}{R_{2} \sqrt{C_{2} C_{3}\left(1-A_{1}\right)}}$
and $\quad Q=1 / 2 \sqrt{C_{3}\left(1-A_{1}\right)}$
As A_{1} increases, both ω_{0} and Q increase. The
left hand part of the circuit has a response given ${ }_{\text {by }}$

Normaizing to $\omega_{1}=1, R_{1}=R_{2}=1$, gives C_{1}.
$=0.431, C_{2}=0.541, C_{3}=0.285$, which can be substituted into equations 1 . Now suppose a 0.5 dB ripple Chebyshev transfer function is
$\alpha=2.53$
$\alpha=\frac{2.53}{\omega_{2}}$
$\beta=\frac{2.44}{\omega_{2}^{2}}$
$\gamma=\frac{2.30}{\omega_{2}{ }^{3}}$
which gives a -3 dB point at $\omega=0.989 \omega_{2}^{\prime}$. Comparing these coefficients with those of
equations 1 , three equations in the variables $A_{\text {Imax }}, A_{2}$ and $\omega_{2} / \omega_{1}=5.65$. Notice that the cut-off frequency range is now
defined by the ratio $0.989 \omega_{2} 17$ which can be denormalized to give a range of 6.28 to 20 kHz . This frequency range in deter-
mined solely by the choice of transfer functions; the two used here give a large range and useful response curves. For comparisons, a Butterworth transfer function when A_{1} is at its
maximum gives a denormalized range of only maximum gives
11.8 to 20 kHz .
The plot of \log cut-off frequency versus A_{1} is
almost linear, as required; however, the addialmost linear, as required; however, the addi-
tion of a resistor between the top of the potention ofer and its wiper improves the law. The
tiomer use of an amplifier for A_{2} is avoided by spliting
C_{1} into two., C_{1} connected to earth and $\mathrm{C}_{1}^{\prime \prime}$ C_{1} into two, C_{1} ' connected to earth and
connected to the output of A_{1}, such that
$C_{1}{ }^{\prime}=\left(1-A_{2}\right) C_{1}$
The final schematic circuit denormalized to an impedance level of $5.1 \mathrm{k} \Omega$ and on a apper cut-off
frequency of 20 kHz is shown in Fig . 2 .

Designing with microprocessors

10 - Concluding interrupt-driven circuits

by D. Zissos and G. Stone Department of Computer Science, University of Calgary, Canada

The last two articles on interrupt described operation, applications and design procedures. This article covers interrupt controllers and outlines th interrupt chips.

The function of interrupt controllers is to generate an interrupt request, IRQ , signal when one or more flags are present, and to ion which will allow it to identify the source of interruption. Fig. 1 last month showed the basis of interrupt systems, and the step-by-step operation is described in reference 1. Interrupts are classified as the type of information made available to the microprocessor. In vectored interrupts, the vectoring address is generted externally prior to program interrupion. In non-vectored types, the controller of the individual flags, and it is left to the programmer to identify the source of interruption. For describing interrupt controllers, it is assumed that the higher he sulis, if is antrup flag, the

Controllers for non-vectored interrupts
he controller for non-vectored interrupts in Fig. 2(a) consists of an i/o port and two gates. The IRQ signal is generated by ORing the flag signals. When program inhe processor status and reads the flag bits into the accumulator by simply executing an Input instruction with address Ap in this case. The processor status is saved to llow the interrupted program to continu orrectly.
After the flag bits are stored in the accumulator, the programmer tests the value of each bit in turn by shifting left one position the contents of the accumulator through the carry flip-flop, and checking Fig. 2(b). If the flip-flop is set, control of the program is transferred to the appropriate interrupt routine, otherwise the shift-and-test operation is repeated as hown in Fig. 3
At the end of each service routine the
processor status is restored the interrupts are enabled and the interrupted program is resumed by executing a Return instruc-
ware polling, involves no special hardware and is often favoured by people familiar with software. However, it is slow and if a arge number of interrupts are necessary, certain real-time applications

Controllers for vectored interrupts
The function of controllers for vectored terrupts is to identify the source of in rruption before generating the interru equest signal, and to load the progran counter with the appropriate vectorin
address when the microprocessor is in terrupted. Fig 4 microprocessor is generating vectoring addresses. In (a) the vectoring address is generated directly by he interrupt controller but in (b), the interrupt controlier sers a pointer to the nemory location which holds the appropriate vectoring address and releases it and the basic operation of this device de-
pends on the execution of the three-by Call instruction which allows direct acces the program counter ${ }^{2}$. This is because the dura bus is linked to the program counter during the last two machine cycles as terrupt request signal when the microprocessor operation is to be interrupted, and waits for the processor to respond with NTA. When this occurs it feeds the data bus with the opcode of the Call instructio. The opcode is loaded into the instruction register and the vectoring address into the program counter as shown in Fig. 5. Before the vectoring address is loaded, its The second method of generating vec toring addresses is used by the Motorola 6828^{3}. In common with all interrupt controllers, the 6828 generates an in errupt request signal in response to exter to respond. The processor responds by outputting consecutively addressed signals

Fig. 2(a). Block diagram of an interrupt controller for non-vectored interrupts.

WIRELESS WORLD AUGUST 198
FFF8 and FFF9. The presence of these signals on the address bus activates the iterrupt controller, which then modifies their values in accordance with the interrupt flags, as shown in Fig. 6. Address bits 1 to 4 are replaced by four new bits $z 1$ to $z 4$. One method of achieving this, using a priority encoder (flag sorter) and some
logic, is shown in Fig. 7^{4}. The priority logic, is shown in Fig. ${ }^{\text {ncoder }}$. The priority priority, see Fig. 8. For example, q2q1q $0=010$ when flag 2 is identified and
q2 2 1q $0=111$ if flag 7 is present. The q2alues of the modified address bits are also given in Fig. 8 which shows

$$
\begin{array}{ll}
z 1=q 0 & z 3=\bar{q} \overline{2} \\
z 2=q 1 & z 4=q 2
\end{array}
$$

A priority encoder and inverter circuit is shown in Fig. 9

Restarts
Restarts are one-byte instructions whose format is 11 dddd111 where ddd are variables. When this instruction is execured, the program counter is pushed on stack,
and bytes 00000000 and 00 ddd 000 are written into it. This means that the execution of a restart instruction transfers program control to one of eight locations
specified by 0000000000 ddd 000 , see Fig. specified by 0000000000 ddd 000 , see Fig.
10 . The restart instruction can be gener10. The restart instruction can be generated by a priority encoder and, because it
is loaded into the instruction register rather than the program counter, all that is required is an i/o port and one AND gate.

References

1. Zissos, D. Interrupt-driven circuits, Wireless World, July, 1981.
2. MCS-85 User's Manual, Intel Corporation, 3. The Complete Motorola Microcomputer Data Library, Motorola Inc., 1978 4. Zissos, , S. System Design with. Microprocessors, Academic Press, 1978

Fig 10 Block diagram showing the operation of Restarts.

Fig. 6. Basic operation of the 6828 interrupt device.

Fig. 8. Modified vectoring addresses, se

Fig. 8.
Fig. 7.

New Quad electrostatic loudspeaker

Electronic detection of meteors

Two young avionics engineers, armed with a from their company, are making a contribution from their company, are making a contribution
to an international scientific experiment this August, involving a comet which appears once in every 119 years. David Fosberry BSc, 25 ,
Project En yiner with Marchi A Project Engineer with Marconi Avionics
Limited and his partner Joe Cardwell, 22, Development Engineer, have designed an electronic detection instrument, the first of its count them automatically.
The new Electronic Meteor Detection System
(EMDS) is to be used (EMDS) is to be used as part of an international experiment, organised by the Meteor Section of
the British Astronomical Association. Known as Project Perseid, it involves studying the appearance of the Perseid meteor stream, which is
associated with the comet known as Swiftassociated with the comet known as Swift-
Tuttle 1862 II , recorded only once before and due to reappear this year.
The EMDS has been
The EMDS has been designed to meet the requirements of Europe's largest amateur Eroup
for meteor observation, the South Downs Astronomical Society, whose President, celebrated
astronomer and broadcaster Patrick Moore, is astronomer and broadcaster Patrick Moore, is
taking a personal interest in the Proiet.
The South Downs Astronomical Society's 80 members are combining their efforts to observe he comet and its many thousands of rapidly-
moving meteors, as their paths cross the earth's moving meteors, as their paths ccoss the earth's
orbit. In addition to the new electronic means of detection, the Society is using visual observation and photographic methods, to gain important
information about the behaviour of meteors, which can yield a better understanding of the nature and origin of the solar system itself. The two Marconi Avionics engineers, and
some 20 other young scientists from schools and universities, are travelling with the South Downs team to the Aubrac mountains in the
Massif Central of France, where, at an altitude
of 1200 metres, the best possible conditions will
be obtained for their observations. Data will be acquirianed by the their observations. Data will be
unciety's team from late July is expected to be whe the number of meteor Usually, meteors are observed by eye, as brief
streaks of ionised gas, radiating in streaks of ionised gas, radiating in all directions,
as if from an invisible point as if from an invisible point. Projecting the
tracks back towards their apparent source, (known as the "radiant"), indicates which
mereors are of the Perseid stream. meteors are of the Perseid, stream. To wid the
human observers, an "all-sky camera" system is human observers, an "all-sky camera" system is
used and it is with this that the new electronic equipment is associated,
The EMDS respond
The EMDS responds to the transient streaks path. The relatively constant background light from stars and planets is cancelled out automat-
ically and an electronic ically and an electronic tally yis kept of the total
number of meteors, together with the times
between each occurrence, to an accuracy of 10 msec (one hundredth of a second). All the
human observer has to do is detect which are Perseids and which to do is detect which are The results will help to determine whether or not the Perseid meteors are occurring at random not the Perseid meteors are occurring at random
and if dense "knots" of more recent material are
present in present in the stream - questions of particular
importance to the better understanding of comets and their meteors.
ets and their meteors.
About the size of a small shoe box, the EMDS
is the first is the first a automatic meteor counting equip-
ment to be built, and its use is expected to ment to be built, and its use is expected to
encourage the more widespread use of electronic detection and counting techniques among amateur astronomers everywhere. The new unit is
to undergo official trials at the South Downs to undergo official trials at the South Downs
Astronomical Societ's Observatory site on the Astronomical Society's Observatory site on the
Trunde, Goodwood, near Chichester, before
being taken to France.

UK satellite broadcasting company formed

Following the Home Secretary's approval for an
early start to satellite broadcassing in the UK (in early start to satelitite broadcasting in the UK (in
the recent Home Office Study - News, July issue), a British company, probably the first of
several, has been formed to provide the several, has been formed to provide the
hardware for this new medium. Called the Satellite Broadcasting Company, it has been formed jointly by N. M. Rothschild, the merchant
bankers, and British Aerospace ankers, and British Aerospace, who are already
involved in the construction of satellites. The new company plans to produce and launch satellites capable of transmitting programmes on two ECS - European Communicions of the ECS - European Communications Satellite
(see Wireless World, December 1978), a satellite

Which is similar to the OTS2 now in operation which is manuuactured by British Aerospace
Dynamics Group for the European Space .
The project is still subject to official approval and plans need to be worked out in detail. It is system became operational would be five years. To receive the broadcast in the home a onemetre dish antenna would be needed which with the associated electronic equipment could add
200 to the price of a tv receiver. Community receiving the price of a tv receiver. Community
rome coble distribution to
homes is another possibility.
When one considers that British Telecon When one considers that British Telecon
spends millions of pounds each day on
equipment for installation it beay equipment for installation, it becomes
apparent that they need to keep close apparent that they need to keep close
quality checks on what appears to be very mundane apparatus. Here the sound output is being checked on a loudspeaking
telephone in the anechoic chamber of telephone in the anechoic chamber of
British Telecom's Quality Assurance laboratories in Islington, London. Facilities
at the laboratories include an artificial at the laboratories include an antificial
mouth and ear for testing telephones, a photometry laboratory for testing lamps ranging from those used for ind ustria lighting to the miniature bulbs for
telephone switchboards. The laborat are listed by the Britishs Calibration Service
and and carry out calibration tests on electrical measuring equipment, including testing
servicing and calibrating some 4,000 oscilloscopes each year.

For many years, whenever ond read a review of
a new loudspeaker, the standard's peaker used in a/b comparisons was salways the Quad ESLL.
Now Quad have announced the ESL-63 because development began in 1963) known to because development began in 1963) known to
its engineers as FRED (full range electrostatic
dobblet) its engineers
doublet).
Peter
Peter Walker postulated that if a very light
diaphragm could be made to reproduce the particle motion found at an imaginary plane
some distance from, and normal to the direction some distance e from, and normal to the direction
of propogation from a theoretical ideal source of propogation from a theoretical ideal source,
the result to the listener would be the same as if he were hearing that ideal source. The Quad ESL-63 achieves this by means of a very light
electrically polarised diaphragm suspended beelectrically polarised diaphragm suspended be-
tween two sets of rigid and acoustically transparant (they have hole in them) concentric annular
electrodes to which the signal is fed through electrodes to which the signal is fed through
sequential delay lines. The sound pressure patsequential delay lines. The sound pressure pat-
tern produced is a replica of that from an ideal senn produced paced some 3 3cm behind the plane of
the diaphragm. The motion of the diaphragm is the diaphragm. The motion of the diaphragm is
roughl a nalogous to the wave motion which roughly analogous to the wave motion which
results when a stone is dropped into a sill pool.
This configuration, says Quad, gives the designer complete control over the directivity of
the loudspeaker. As a dipole with a figure-of cieght dispersion pattern, there is no radiation in the plane of the diaphragm and the ratio of
direct to reflected sound is much higher than direct to reflected sound is much higher than
from an omni-directional source so there is a
great improvement in the localisation of the tereo image.
Visually the ESL-63 is a great improvement over the old ESL and does not look like a room
heater. IT has a height of 92.5 cm and a width of 66 cm . The depth of 27 cm includes the base containing all
mains supply.
The nominal resistance is 8Ω and this is al-
most purely resistiv.

> Microprocessors and product design - a self-study course
> The Open University is now offering a new $\begin{aligned} & \text { self-study course for engineers and designers on } \\ & \text { microprocessors and product design. }\end{aligned}$ $\begin{aligned} & \text { microprocessors and product design. } \\ & \text { It shows how to use microprocessors in pro- }\end{aligned}$ $\begin{aligned} & \text { duct design and covers the complete sequence } \\ & \text { from customers' specification to final design }\end{aligned}$ $\begin{aligned} & \text { from } \\ & \text { stage. } \\ & \text { Mict }\end{aligned}$ $\begin{aligned} & \text { Microprocessors and Product Design: A course } \\ & \text { for Engineers does not assume or require }\end{aligned}$ $\begin{aligned} & \text { or Enineers does not assume or require } \\ & \text { previous knowledge of microprocessors and } \\ & \text { involves between } 60 \text { and } 70 \text { hours }\end{aligned}$ nvolves between 60 and 70 hours study. $\begin{aligned} & \text { It comprises five books specially written for } \\ & \text { self-study; file of date sheets and technical } \\ & \text { titeraure; a fill}\end{aligned}$ iterature; a fully assembled microcomputer $\begin{aligned} & \text { system based on the Intel } 8085 \text { microprocessor } \\ & \text { with full alphanumeric keyboard which in- }\end{aligned}$ cerfaces with students' own tv sets and cassette $\begin{aligned} & \text { recorders; a prototype development board to be } \\ & \text { driven by the microcomputer in various config- }\end{aligned}$ $\begin{aligned} & \text { driven by the microcomputer in various config- } \\ & \text { urations; a user manual for the microcomputer }\end{aligned}$ $\begin{aligned} & \text { and an experiment book. containing practical } \\ & \text { work. The course fee is } £ 395 \text {. There are no tv }\end{aligned}$ $\begin{aligned} & \text { work. The course fee is } £ 395 \text {. There are no tv } \\ & \text { broadcasts or tutorials, so allowing students to }\end{aligned}$ fit study in as best suits them.
> $\begin{aligned} & \text { The course follows through the complete de- } \\ & \text { sign sequence for microprocessor-based pro- }\end{aligned}$
> $\begin{aligned} & \text { sign sequence for microprocessor-based pro- } \\ & \text { ducts: customer specification; overall system } \\ & \text { design; hardware and software development; }\end{aligned}$
> prototype evaluation and production design. $\begin{aligned} & \text { Case studies are brought in to illustrate points } \\ & \text { made and short self-assessment questions allow }\end{aligned}$ $\begin{aligned} & \text { students to check progress. } \\ & \text { The experimental work does not have to be }\end{aligned}$ $\begin{aligned} & \text { done at the same time as reading the texxs. The } \\ & \text { nitial experiments familiarise students with }\end{aligned}$ $\begin{aligned} & \text { initial experiments familiarise students with use } \\ & \text { of the microcomputer and peripherls while }\end{aligned}$ $\begin{aligned} & \text { of the microcomputer and peripherals, while } \\ & \text { later ones follow the design sequence for a }\end{aligned}$ $\begin{aligned} & \text { microprocessor-based product. } \\ & \text { The course follows an earlier one from }\end{aligned}$ $\begin{aligned} & \text { The course follows an earlier one from the } \\ & \text { Open University aimed at managers to give }\end{aligned}$ $\begin{aligned} & \text { Open University aimed at managers to give } \\ & \text { them insight into how the process of product }\end{aligned}$ levelopment is affected by microprocessors. $\begin{aligned} & \text { This was bought by } 3,800 \text { managers drawn from } \\ & \text { all industrial sectors. A survey showed that stu- }\end{aligned}$ dents on average passed on the course to five olleagues and found it to be relevant and of $\begin{aligned} & \text { high quality. } \\ & \text { The course }\end{aligned}$ The course is written by microolectronic exMicroprocesson Appplication Project of the De-
> $\begin{aligned} & \text { partment of Industry. } \\ & \text { For course details and order form, write to } \\ & \text { PPO Centre for Continuing Education, The }\end{aligned}$ $\begin{aligned} & \text { For course details and order form, write to } \\ & \text { MPO, Centre for Continuing Education, The } \\ & \text { Open University, PO Box 188, Milton Keynes, }\end{aligned}$ $\begin{aligned} & \text { Open University, PO Box 188, Milton Keynes, } \\ & \text { MK3 } 6 \mathrm{HW} \text { or telephone } 090879058 \text { (24-hour }\end{aligned}$

The Quad ESL-63 Electrostatic Loudspeaker with the grille cloth removed.
The concentric annula relectrodes which The concentric annular electrodes which
'spread'the sound pressure pattern across spread' the sound pressure pattern
the diaphragm can be clearly seen.
$1.5 \mu \mathrm{bars} / \mathrm{V}$ referred to 1 M , which is
$86 \mathrm{~dB} / 2.83 \mathrm{Vrms}$. The maximum input is 10 V rms continuous, The maximum input is mum peak output with a maximum permitted peak input of 55 V . The maximum output is
$2 \mathrm{~N} / \mathrm{m}^{2}$ at 2 m on axis. The bandwidth with refer-
 ence to - 6 dB limits is 35 Hz to over 20 KHz . ti is
expected that the ESL- 63 will be sold at $£ 1,000$
apair.

Viewdata oils capital's wheels

Stockbrokers in the UK can now turn to electronics to speed up the transmission of
financial information to their clients and so inancial information to their clients and so
compere more effectively with their business Compete more effecively wievice set up by a
rivals. A private viewdata sern new company, Videotex International Lat
enable them to send pages of textual informaenable them to send pages of textual inforn-
tion, such as share prices, company news, commodity prices and research material, to any client equipped with a standard viewdata termi-
nal of the type used by the Prestel public ser-

This development, the first of its kind, is in fact an extension of a large private viewdata system already in use at the London Stock Ex-
change. Called Topic (Teletext Output of Price Information by Computer) it presents the latest stock market prices on 1500 stocks and shares
and also company announcements, exchange and also company announcements, exchange
rates, interest rates and commodity prices. But
Topic is a one-way system, providing informarates, interest rates and commodity prices. But
Topic is a one-way system, providing information only to members of the Stock Exchange. To
enable its stockbroker members to send private enable its stockbroker members to send private
information to their clients, the Stock Exchange is now allowing them to become providers as
well as recipients of information. They will be ble to create and maintain, in the Topic databese, treerir own pages of information specifically
compiled to suit the needs of their clients. They an also specify precisely the recipients of this hformation. These can be individual clients or
roups of clients, and groups with common groups of clients, anmbers of a "closed user
interests can be men

group" - a concept already pioneered by the | group" - a concept already pioneered by the |
| :--- |
| British Telecom for Prestel By the end of 1981 | Briush Yelecom for Preste.

the Stock Exhange expets.
such information providers. such information providers.
To make use of this new
To make use of this new facility, stockbrokers
can apply directly to the Stock Exchange's technical services department or they can become a "sub information provider" to an already estab-
lished information provider This secin lished information provi. This second alter-- which is what the new company Videotex International is offering, from a room within the
ondon Stock Exchange. Formed by Her Ondon Stock Exchange. Formed by Hambros Buate, Modcomp (who provided the Yopic comother equipment), the company undertakes consultancy, database
supply of hardware, but, perhaps most important, it offers a variety of methods by which stockbrokers can feed in their pages of textual through supervised and unsupervised editing, to the use by a stockbroker at his own premises of his own editing terminal, which can either be onerated onf-line, working into a local magnetic
disc store. In the off-line case the contents of the disc store. In the off-line case the contenls either directly to the Topic database or to the bureau's database.
In introducing the service, Harry Fitzgibbons, a director of Hambros Bank, claimed that
one advantage of viewdata type information one advantage of viewdata type information
systems over earlier data processing systems was the familiar appearance of the viewdata terminal. In the past businessmen had been some-
what repelled by the "high technology" appearwhat repelled by the "high technology" appear-
ance of computer terminals, but because the viewdata terminal was superficially the same as a domestic television set-and indeed could be
used as such - they felt much more used as such - they felt much more comfort-
able with it in their offices and more ready to operate it themselves.

Raising standards

For a quarter of a century eading recording loudspeaker engineers have used the Quad electrostatic loudspeaker as a standard of reference. Its influence on the quality of reproduction which we have come to expect has bee

The introduction of its uccessor, the Quad
is an event of great
significance, destined to set he standards for the futur It is no coincidence that the first customers for the Quad ESL-63 have been recording and broadcasting engineers and loudspeaker manufacturers.

The Quad
ESL-63 at Harrogate

The Quad ESL-63 will be on demonstration at the Festival of Sound August 15th-18th in the Duchy
oom-Cairn Hotel.
Complimentary tickets or demonstrations may be obtained in by writing elephoning The Acoustical Co. Ltd., stating
day and time preferred.
Demonstrations will be held every twenty minutes from 11.00 a.m. to 7.40 p.m. on Saturday 15th and Sunday 16th August and at the sam
times on Friday the 14th.

Please note that the exhibition is not open on kind permission of the organisers we are opening day early to give members of the publi 00500

RADIO AND TELEVISION SERVICING 1980-81 MODELS

Editor

R N Wainwright, T.Eng. (CEI), F.S.E.R.T.
The latest volume in the Radio and Television Servicing series-

- Quick reference to hundreds of models - Essential service information - Television (Colour and Monochrome), Radio - (Portable
Clock Radios, Cassettes, In-car, Unit Audio, Clock Radios, Ca

Record Players)

- Latest design techniques described
- Receiver adjustment and alignment Receiver makes covered in Radio and Television Servicing.
1980-81 Models. 1980-81 Models:
Television Receivers (Colour and Monochrome) Alba, Bush, Crown, Decca, Dynatron, Ferguson, G.E.C., Grundig, Hitachi, I...., J....., Murphy, National, Philips, Plustron, Pye, Roberts Video,
Sanyo, Sony, T.C.E., Toshiba, Ultra, Vega, Waltham Radio Receivers (Tape Recorders, Record players, etc.) Alba, Binatone, Bush, Crown, Ferguson, Fidelity, Hacker Sound, Hitachi, J.V.C., Murphy, Philips, Pye, Roberts Radio, Sanyo, Sharp, Sony,
Ultra, Vega, Waltham.

An essential reference book for all service An essential reference book for
engineers. $£ 17.50 \quad 13$ August
Previous volumes available are as follows:
$1968-69$ (£4.25) $19711-72(£ 6.00) 1973-74(£ 6.50) 1974-75$
$(£ 7.00) 1975-76(£ 8.50) 1976-77(99.50) 1977-78(£ 10.00)$ $(£ 7.00) \quad 1975-76(£ 8.50) 1976-77$ (£9.50) 1977-78(£10.00)
$1978-79(£ 11.50) 1979-80(£ 140)$ 1978-79 (£11.50) 1979-80 (£14.50) Enquiries to Sales Dept., Macdonald and Company Publishers Ltd.,
From booksellers, or in case of difficulty, please use the form below.

To: The Sales Department, Macdonald and Company Publishers Ltd., 8 Shepherdess Walk, London N1. Please send mecopy (ies) of RADIO AND TELEVISION
SERVICING 1980-81 Mod SERVICING 1980-81 Models at $£ 17.50$ per copy (post paid).
l enclose my cheque/PD for $£$
 or debit my
\square Access
\square Diners Club
\square American Express
My card number is
\square Barclay Card
Signature
GIRO A/C
GIRO A/C No. 205/422
Address
Please allow 28 days for delivery

SAFGAN ELECTRONICS LTD. WHCWVWD

WWOA9-FOR FURTHER DETAILS
SEMEL-ABACUS
MICROCOMPUTER Features:
Z-80 4MHz CPU
64 K Memory
Two Serial Ports
Two Parallel Ports S100 System Can Support MP/M

From $£ 1,995$
STRUTT LTD.
3d BARLEY MARKET STREET, TAVISTOCK
DEVON PLI9 OJF, ENGLAND
Tel. Tavistock (0822) 5247. Telex: 45263

Is radiation resistance real?

A real resistance produces thermal noise and absorbs power, but does radiation resistance? And why does it depend on the ratio of aerial size to wavelength?
by D. A. Bell, F.Inst.P., F.I.E.E.

One is tempted to think of resistance as being a property of resistors, the latter being typified by lengths of wire of high
resistivity, thin films of carbon or metal and suitable bodies of high-resistivity material like carbon, germanium or silicon. But resistance can be more generally defined either as "that element of a circuit which absorbs power or as at of Johnson (thermal) noise in accordance with Nyquist's theorem". These two are in fact equiva lent, because there is a "fluctuation-dissipation" theorem which says that everyenergy will exhibit the fluctuations which we call thermal noise.
Johnson noise
Look first at the second criterion, the Johnson or thermal noise, which in material resistors is often described as the
Brownian motion of electrons. This is par ticularly appropriate to receiving aerials. Starting with the work of Lorentz ${ }^{1}$ using classical physics and continuing with Bak ker and Heller ${ }^{2}$ using quantum mechanics, it was possible to show that the application conduction electrons in a metal leads to the well-known relations between meanquare noise voltage or current and resis tance or conductance

$$
V_{\mathrm{df}}^{2}=4 R k T \mathrm{~d} f
$$

(la)
$I_{\mathrm{df}}^{2}=4 G k T \mathrm{~d} f$
(lb)
Here V_{df}^{2} or I_{df}^{2} is the mean square of the random (noise) voltage or current within bandwidth $\mathrm{d} f, R$ or G the resistance or conductance involved, T the absolute tem perature and k Boitzmann's constant. or current components in a narrow frequency band $\mathrm{d} f$. A fact which is most eas dy derived by the mathematical technique o contour integration of a complex varia ble is that the mean-square of the total of all frequencies from zero to infinite frequency) is
$V_{\text {ot }}^{2}=k T / C$
$I_{\text {tot }}^{2}=k T / L$
(2a)
(2b)
where C and L are the residual reactive omponents to which the circuit reduces at

Biographical details of Professor Bell appeared in the Janiury issue, page 60.
infinite frequency. Formula $2 b$ was de rived by Brillouin ${ }^{3}$ from a theoretica investigation of the behaviour of conduc tion electrons in a metal. But radiation resistance arises from the launching electromagnetic waves into space, so would appear not to have any system of conduction electrons in random motio One must therefore back-track to the origin of the idea of Brownian motion and follow a fresh track that leads eventually to Nyquist's derivation ${ }^{4}$ of equations 1 ,
which is independent of the internal mechanism of the resistance. The botanist Brown observed through a microscope that pollen grains suspended in water were in continual random motion. At the time there was controversy as to whether thi was due to the pollen being alive, but we
know now that it was not - given a sufficiently high power microscope the same effect occurs with a dilute suspension of Indian ink in water - rather it was due to collisions between the
To take a simple case, suppose a quan tity of mercury vapour is mixed with lighter gas, such as the nitrogen and oxy gen of air. At equilibrium, how will the energy of the heavy molecules of mercury
compare with that of the lighter molecules of gas? The answer given by statistical mechanics is that it will be the same, and that every object of whatever mass or nature will have an average energy (in ther mal equilibrium) of $1 / 2 k T$ per degree of
freedom ${ }^{\star}$. This rule is equally true of gas molecules, suspended particles, larger mechanical systems and electric circuits. As an example of a large mechanical system Kappler ${ }^{\text {m }}$ made a torsion pendulum by suspending a small slip of silvered glass of this mirror corresponded to a mean energy $k T$ and could be explained by the nequal random bombardment with a * In case the concept of "degree of freedom" causes difficulty, the number of degrees is equal io the number of co-ordinates which must b
specified to define the motion of the object or specified to define the motion of the object or
system. A spherically symmetrical body - the idealized monatomic gas molecule - has
three degrees of freedom corresponding to the hree degrees of freedom corresponding to
x, y and z components of motion. An harmon x, y and z components of motion. An harmonic
oscillator has two degrees of freedom corresponding to the amplitude of oscillation and the speed with which it passes through the point of
zero displacement, or to the volage and current in an electrical resonant circuit.
molecules of different parts of its surface So would the effect be eliminated by sus pending the mirror in a vacuum? Reducing he pressure to 4×10^{-3} atmosphere a damping led to sharper resonance) but did ot alter the total energy. If the system not alter the total energy. If the system till receive thermal energy via its suspenion, or in the last resort by radiatio pressure on it. The point of this last sug gestion is that as long as a system is obser hange energy in some form with its surroundings.
Then at the beginning of the century Lord Rayleigh ${ }^{6}$ suggested in connectio with black-body radiation that a box full of radiation would have a number of degree f freedom equal to the number of modes ished in it. (This led to prediction of the "ultra-violet catastrophe" and to the intro duction of quantum theory.) In due cours yquist adopted the sied ideat ission line was determined by the number of standing-wave modes which will support, and matching the characterisic impedance of the line to a resistive ermination then leads to equations 1 . vation is given in Appendix 1. The impor ant point is that as this only depends on matching R to the Z_{0} of the transmissio ine, anything which behaves circuit-wise a resistance will satisfy the equation egardiess of its internal mechanism. quist it need only appear circuit-wise to have a resistance, e.g. as seen from im pedance measurements at its feeder term nals. Secondly from general equipartitio will depend on its exchange of energy with the outside universe. For example, if the aerial of a satellite ground station pointed at an empty region of space (empt meaning a region which does not contain perature of the radiation resistance will be very low; but if it is pointed very near the horizon its temperature will be approximately that of the earth's surface or atmos here. (At lower frequencies it in in various forms of interference from thunderstorms etc. by attributing a higher equivalent temperature to the radia ion resistance.)

Absorption of power
For the radiation resistance of a transmit-
ting aerial one can use the alternative ting aerial one can use the alternative defi-
nition: that element of a circuit which absorbs power. It is then said that if r.m.s. current i flows in an aerial of radiation resistance R_{t} to radiate power W, then
$i^{2} R_{r}=W$. There are then two methods of $i^{2} R_{\mathrm{r}}=W$. There are then two methods of
calculating R_{r} when the geometry' of the aerial is known.
The first, the Poynting vector method, is to calculate the field from a given current and hence the power density at all and so by integration of the power density over the surface of the sphere to find the total power radiated. The mathematics is redious, but radiation resistance is usually proportional to the square of $h \lambda$ where h is wavelength for a straight wire with $h \ll \lambda$ $R_{\mathrm{t}}=80 \pi^{2}(h / \lambda)^{2}$.
The second method is to calculate the in-phase e.m.f. which is induced in all parts of the aerial by its own current. In many practical cases this also involves macan provide a simple example which gives some insight into the reason for R_{r} depending on the ratio of size of aerial to wavelength. In the figure a current $i=i_{0}$. the loop, having the same phase at all points. The magnetic field adjacent to $\mathrm{d} l^{\prime}$ but due to the current in $\mathrm{d} l$ will be delayed by the time taken for it to travel between the two points and so will be slightly out of
phase with the current in d l^{\prime} If there were no delay the e.m.f. induced in d l^{\prime}, proportional to the rate of change of magnetic field, would be exactly in quadrature with the current and the effect would be desan in-phase component, which results in power dissipation and so is resistive. That is why all aerial systems have a radiation resistance which is a function of the ratio of aerial size to wavelength. \dagger The mathemeads to $R_{\mathrm{r}}=20 \pi^{2}(2 \pi a / \lambda)^{4}$, Appendix 2 . The radiation resistance of an aerial is of course, the same for both transmission and reception. It satisfies both the essential criteria of a "real" resistance, namely that sorbs power. Radiation resistance is therefore a real resistance in the same way, for example, as the high-frequency loss resistance of an air-cored inductor (largely due to eddy currents) or the loss resistance
of a capacitor. Both of these resistances, of a capacitor. Both of these resistances,
like radiation resistance, vary with frequency. Resistance is a circuit concept
\dagger The constancy of phase of the current around the loop might be questioned, but it is no
essential. If the magnetic field at dl is not tate than the current at l^{\prime}, because of the time taken for current to travel round the loop be-
tween the two points, then conversely the mag. tween the two points, then conversely the mag.
netic field at d d due to current in l l' will be still further behind the current at $\mathrm{d} l$; and provided the effects are small, which follows from postulating that $a \ll 190$, the overall effect will be the
same as though the current were in constant same as
phase.
which can be applied to anything which satisfies the two criteria of fluctuation and References

1. H. A. Lorentz, Theory of Electrons, Teubner
Leipzij) 1916 . 2. C. J. Bakker \& G. Heller, Brownian motion
in electric resistances, Phica in electric resistances, Physica, 1939, p. 262. 3. L. Brillouin, Fluctuations dans un conduc-
teur, Helvetica Physica Acta, vol. 71934 supplement), p.47.
2. H. Nyquist, Thermal agitation of electric charge in conductors, Phat 5. E. Kappler, Avogadro's number from Brow
198, nian movement in a torsional pendulum (in Ge
man), Annalen der Physik, vol. 11 1933 man), Annalen der Physik, vol. 111931 , p. 233 .
3. Lord Rayleigh, Remarks upon the law. complete radiation, Philosophical Magazine, vol. 49, 1900, p. 539.

Appendix sion line

Figure (a) represents a loss-free transmissio ne of finite length l, open-circuited at its ends. wavelength such that l s and an integral of every wavelength such that l is an integral muluple
12 , and the number of such within a narro requency band $\mathrm{d} f$ is $2 l \mathrm{~d} f \mathrm{f} c$ where c is the veloc y of propagation. Each standing wave, like nd therefore mean thermal energy fredo nergy per unit length of line is then $2 k T \mathrm{~d} f /$ This is the resultant of two travelling wave
moving in opposite directions with velocity of propagation c and therefore carrying power $T \mathrm{~d} f$ each. Now let the line be extended to finite length, but cut at the position of the observer and the right-hand part replaced by pedance Z_{o} of the line. Because the terminatio is matched, conditions in the remaining half of
the transmission line are unchanged. Therefor power $k T$ df will flow along the transmission ling into R and equal power must flow from R into the line. As indicated in figure (c) this can b represented by combining with a noise-free re-
sistor or conductor a voltage or current genera-

(b)

(c)

Nyquist's formula for Johnson (thermal) noise is deduced from consideration of
standing waves on a transmission line.

Method of calculating radiation resistanc or simple circular loop aerial assume elements dl and dl' is calculated and then integration in Appendix 2 .

or having the respective values
 $$
\begin{aligned} & V_{\mathrm{di}}^{2}=4 R k T \mathrm{df} f \\ & l_{\mathrm{df}}=4 G k T \mathrm{~d} f . \end{aligned}
$$

This treatment departs slightly from Nyquist's This treatment dep
original derivation.

Appendix 2: Radiation resistance

 small circular loopThe e.m.f. induced in an element dl will be
obtained from the magnetic yector por at that point according to
$-e=-\mathbf{E} \cdot \mathrm{dl}=(\mathrm{d} / / \mathrm{dt}) \cdot \mathrm{dl} \quad(\mathrm{A} 1)$ where a negative sign has been added on the left because the e.m.f. is opposed to the current. Bold-face type is used for vectors and \oint means
"integral around the circle") If the current in the loop is $i=i_{0}$ exp j jot equation Al leads to
$e=j \omega i_{0} \operatorname{expj\omega t}(\mu / 4 \pi) \oint \int \frac{\exp (-j \omega / z)}{r} \mathrm{dl} \cdot \mathrm{d}^{\prime}{ }_{(\mathrm{A} 2}$
here the double integration around the loo arises as follows. First find the e.m.f. in dil' due to current in dl and integrate dir round the circle
of find the total e.m.f. due to current in dl; and then integrate dl round the circle to find the otal effect for the whole of the current. The
othe
oter part of e which is in phase with the current is the
ceal part of equation A2, but because of th real part of equation A2, but because of th
nitial j this comes from the imaginary part of he integrand, replacing exp $(-j \omega r /(v)$ by $\sin (-\omega r / /)$. Now expand the sine as a serie
of powers of powers of whr and discarr the first powe
because division by r will make it constant and $\phi \oint$ dil.dI $=0$. The cubic term is then the leadin
term and
$R_{\mathrm{r}}=e l i=\frac{\mu}{4 \pi} \iint \frac{\omega^{4} r^{2}}{3!r^{2}} \mathrm{dr} \cdot \mathrm{dl} r^{r}$
(A3)
Now from the geometry shown above Substituting these expressions in $r=2 a \sin \phi / 2$.
$R_{\mathrm{r}}=\frac{\mu}{4 \pi} \frac{\omega^{4}}{3!v^{3}} \int_{1=0}^{2 \pi a} \int_{\phi=0}^{2 \pi} 4 a^{3} \sin ^{2}(\phi / 2) \cos \phi d d d \phi$ (A4)
Remembering that $\omega / v=2 \pi / \lambda$ and μv is "the intrinsic impedance of free space" which equal
120π,
equation
A4 ${ }_{R_{\mathrm{r}}=20 \pi^{2}(2 \pi a / \lambda)^{4}}^{120 \pi,}$

Correlator for angles

This digital correlator, operating by the coincidence of pulses representing angles of rotation, gives
the instantaneous cross-correlation between a selected and a measured angle and also its frequency of occurrence. It can be used for checking timing scatter in automoble
ignition systems, but is also suitable for converting a continuous electronically scanned omnidirectional surveillance radar receiver into one with a variable scanning rate.

Engineers may wish to compare the perEngineers may wish to compare the per
formances of automobile ignition system under laboratory and field conditions in order to select the best system. This might be done, for example, before applying performance and efficiency under variable load and environmental conditions while minimizing exhaust emissions. Doubts have been expressed about the reliability and consistency of spark ignition at some specified angle of advance and it would ignition time, particularly when using the conventional mechanical ignition system. The elimination of spring-operated point contacts, with their inherent contact
bounce, high erosion rate, variation of bounce, high erosion rate, variation of
dwell time with speed and other characteristics of the cam-operated mechanical
switch, including backlash, friction and wear, should reduce the probability of spread in the ignition time. A high degree of consistency in ignition tume can
therefore be expected from electronic igni therefore be expected rom electronchigal
tion systems not using mechanically tion systems n
operated contacts.
Because of the statistical nature of the problem, a measure of the spark scatter about a modal value can be obtained by cross-correlating the firing angle with a selected angle (i.e. summing the product produce an angular frequency distribution. This could be defined in terms of the standard deviation, if a theoretical distri bution can be determined from the measurements at a given speed. Ney st the nominal, or modal, angle will have the smallest standard deviation or spread, determined by counting (or integrating) the cross-correlator output over a range of the most suitable ignition system on this basis, the type of distribution associated with it could be determined, to give a suitable performance criterion.
Cross-correlation
The principle of the correlator used in this inputs $j(t)$ and $i(t)$ are applied to a coincidence circuit or AND gate, whose output $K(t)$, a function of their product, is then
summed over a time T. A continuous trai of such outputs may be formally stated as:

$$
R_{i j}(\tau)=\operatorname{limit}_{T \rightarrow \infty} \frac{1}{T_{1}} \int_{0}^{T} j(t) i(t+\tau) \mathrm{d} t
$$

a cross-correlation function. τ is an arbitrary time delay between the two inputs, which for reasonable co-incidence, may b considered to be zero.
If $j(t)$ and $i(t)$ are k
If $j(t)$ and $i(t)$ are known and unknown inputs corresponding respectively to
selected three-digit encoder output and test pulse (e.g. an internal combustion en gine spark ignition pulse at a preset o required angle of advance) the output K or $R_{i j}(0)$ after summing (counting or intequency of $i(t)$ when coincidence is perfec Thens process of cross-correlation is effected in Fig. 1 by the two-input NAND gat with waveforms ($($) and (i) in Fig 2 applied
to it. After inversion, its output (K) is to it. After inversion, its output (K) is
eventually summed in a digital counter as measure of the frequency of the ignition trigger or test pulse (i).

The digital correlator

In Fig. 1, a train of 360 equally-spaced

- 11 seros-correlator

Fig. 1. Schematic of a cross-correlator
channel. Waveforms at the reference channel. Waveforms arthe refere ince 2.

of speed, is applied to a 9 -stage counter used as a comparator for a 9 9-bit binary
word. Corresponding collectors of each word. Corresponding collectors of each comparator stage are simultaneously applied to one input of nine two-input
NAND and NOR gates in parallel. The econd inputs of these accept from an encoder one of nine bits defining the selected word or ignition angle. When the compartor input pulse corresponding to the reaneous coincidence at each of the nine parallel two-input gates, each NOR gate output is inverted before enabling its arallel NAND gate output at a second Reference.
shows that whether coincidence is positives or zero, this second gate is inhibited with a positive output using t.t.1. circuits for po sitive logic; in the absence of paralle oincidence, its output is zero. tive channel outputs are applied simultaneously to three three-input NAND gates whose outputs are inverted and applied to a single three-input NAND gate Its output inhibits the comparator input
pulse train and, when inverted, simultaneously enables a two-input NAND gate to which is applied the trigger pulse of the
ignition system being tested. At coincience, its output defines the instantaneous ngular cross-correlation.
By counting these angular outputs, the is, the angular frequency. If coincidence occurs within the 1° resolution, correlation will be complete. Any spread in either the instant of triggering or, alternatively, of gap-breakdown exceeding 1°, will reduce quency from its maximum value the fregree of correlation or frequency of the cor relator output at constant speed is therefore a measure of the efficiency of the spark ignition system under test over a revolution at a selected ignition angle of advance.
Although the output frequency defines the cross-correlation between the selected and measured angle of advance, if the latter was the angular trigger pulse, then the
correlator output, after inversion, could enable another two-input NAND gate to which is applied the spark-gap breakdown pulse, thereby simultaneously cross-correlating the ignition system trigger and gap-
breakdown pulses with the selected angle Provision is actually made for this in the correlator. The angular resolution is deter-
mined by the number of slots on an input chopping disc and is halved by using a zero crossing detector; for a 1° resolution, only 180 slots are required on the chopping
disc. disc. the comparator, because in doing so, the comparator input will no longer be inhibited and counting will again begin immediately. The comparator must remain
inhibited at the selected angle of ignition until a reference pulse resest it with monostable τ_{3} in Fig. 3; the comparator reset pulse must be negative relative to the positive supply potential.
Since the comparator will begin count ing pusses immediately the chopping
disc begins to rotate, with only those input disc begins to rotate, with only those input
pulses following the reference pulse being significant, it will be necessary to inhibit any input pulses preceding it. In the
system diagram of Fig. 3 , system diagram of Fig. 3, the correlator
input pulses from a zero-crossing detector are applied to a positive NAND gate (preceding the comparator input) which may or may not be inhibited by the bistable output Q. If Q enables the NAND
gate, its output after inversion is simultaneously applied to the comparator and a 360 -pulse counter, whose output using monostable τ_{2} is applied to an Exclusive$O R$ circuit which will reset Q to \bar{Q} and inhibit the positive NAND gate if 360
palses are applied to it. Had this gate been initially inhibited, there would be no counter output to enable it with the ExclusiveOR and bistable circuits.
When a reference pulse from the chopping disc, using monostable τ_{1}, is applied
to the Exclusive-OR input in the absence of a coincident cuunter output, it will trigger the bistable (on the trailing edge) and enable the NAND gate, if initially inhibited. Simultaneously the reference pulse, coincident with the 360 th input set the counter and comparator with a lowpass delay filter and monostable τ_{3} before the next or first pulse of the sequence is pplied to them; for the counter this is a precautionary measure since it resets itself
at the end of the 360 th pulse. At the 360 th pulse, the counter output is coincident with and inhibits the reference pulse at the Exclusive-OR input, with the input If the reference pulse initially inhibis If the reference pulse initially inhibits complete revolution of the chopping disc will occur before this gate is enabled and he sequence begins. A maximum of less than two and a minimum of almost one therefore be necessary for periodic selection of the required ignition angle of advance: if 360 pulses are counted after one revolution, selection will have alread begun.
The $9 \times$ input angular position switches from 310°

WIRELESS WORLD AUGUST 1981

to 350° with $1.8 \mathrm{k} \Omega$ resistors connected across the +5 V supply to ground at each of the nine encoder outpats. Each output is applied to an inverting buffer whose outthe nine parallel two-input NAND and NOR gates connected to the comparato collectors in Fig. 1.
The correlator operating waveforms are shown in Fig. 3. Waveform (h) is the out-
put of the single three-input NAND gate used for inhibiting the comparator input of Fig. 2 and, when inverted, for gating the ignition trigger or plug gap-breakdown pulse in Fig. 1. Its trailing edge is locke or right with the angular switch positions and occurs at the instant the measured and selected angles are coincident. The leading edge occurs at reset, that is, at the leadin edge of (e) inverted
locating a light source and detector at the 157th slot; an output is obtained when th reference aperture below the 180th slot passes through this position. This tes pulse is amplified and gated by (h), input NAND gate whose inverted output (k) is applied to the final two-input NAND gate of the correlator, enabled by (1) provide a direct measure of the disc speed. By applying the derivative (or preset) terminal of a master slave SN7472N flip-flop and (f) to its reset (or clear) terminal, a bistable output (l) 1° wide and independent of speed is available for strobing the final NAND gate of the correlator. This permits the frequency
distribution of its output to be scanned at the 1° angular resolution of the correlator instead of obtaining a cumulative distribution having a point of inflexion difficult to deiermine if (k) is gated by (j).

nput pulse generation

 As the method of measurement depends on the amplitude of a pulse train the correlation between laboratory and field measurements should be good and independent of the respective prime movers for a constant angular resolution. The ignition pendent of angular velocity perturbations, particularly when using different distributors and an encoder reference. The distri-Fig. 3. Reference circuit for cross-correlator. See Fig. 2 for waveforms indicated by letter symbols.

Fig. 4. Velodyne speed control system

Fig. 6. Circuit for proportional and integral control.

butor automatic advance and retard mechnism could cause angular or uming etheir effectiveness should vary inversely with angular resolution. Variations in dwell and ignition timing through spring inertia and ontact bounce, heel wear, points erosion comparable with the timing over 1° at speeds approaching $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$., without being aggravated by velocity perturbations, which also affect the kinetic energ of the system.

To meet this requirement for constant peed, an electro-mechanical or velodyne speed control system, in which speed of input voltage by feedback methods, was used with a conventional six-way distributor and 7 -in diameter, 180 slot, 0.25 -in thick steel chopping disc coupled directly to the velodyne shaft (Fig. 4).
WIRELESS WORLD AUGUST 1981

How's that again?

". . . to inform a wide general public about the superordinate relationships of
new technologies. It is showing trends and tendencies, of creating transparency and of promoting understanding for a life with controlled electronics by means of relevant information.' (Ineltec 81 press handout). Fowler; it's all about telling Joe Public that electronics is wonderful. There's this big Swiss electronics exhibition in Basle whose purpose, aside from a "mediator function
between manufacturer and user" (selling between manufacturer and user" (selling
gear), is to "eliminate the layman's fear of excessive mental demands, to help him throw a bridge to (at?) the new technologies." Simple, really.
I'm not going. I think one of the younger end should be sent - they have no fear of excessive mental demands.

Yaiplecc Yopld

Near enough, anyway. That, in case you what you ask for when you go to a bookstall in Russia to pick up the latest Wireless World. It isn't a translation, just a transliteration (Ooairless Ooorld). What happens
is that the Russians buy a few copies from us, copy and reprint them with the above on the cover, and send them out. I don't know how many they print, but it must be quite a lot, or it wouldn't be worthwhile doing it at all. It loses a bit in the process tures come out looking a bit wan. And it's all in black and white, so that Paul Brierley's colour photos on the cover suffer direly.
What
What puzzles me is why we don't reU.S.S.R. They're pretty bright people over there - brighter than most in many ways - but I can only remember two contributors in the last decade or so. It would be good to hear a bit more about what goes
on in their electronics - they can't spend all their time orienteering, although they do seem extraordinarily keen on it, judging by their magazine Radio.

Long-felt want

It begins to look as though I'll have to acquire a computer of some sort, even if it's only to guard against abuse from the
younger element here. Three of them have got them now and their conversation has taken a turn towards the grotesque already: it is not easy to maintain my front of mniscience when all around people are
acorns, apples and various other intelligent vegetables
I still have to solve the problem of what I'm going to do with it when I've got it, but that isn't the vital thing. What is important is that I must put on a bit of a spurt to catch up with the language, at least. It's
moving so fast now: one hardly dares speak in case one is unwittingly guilty of a computerspeak solecism. If Shakespeare were writing today, he wouldn't dare make a character say "Go to, ... " in case it was taken as an instrection to jump to the next
scene. It's even got to the stage now where, when I mention the world 'program,' they all think I'm talking about Radio 4, not being able to credit that I've heard about computers yet.
will have having got myself a computer, it whole, I really think I'd like to use it as a word-processor - I can probably live without a list of all the prime numbers up to several million, and I know the state of
my bank account because the manager my bank account because the manager
keeps writing bitter little notes to tell me. No, I think a word-processor might well be a great help: the typewriter I use makes a lot of mistakes and I get so fed up of bother and they get printed. When I do scribble all over the typescript the printers can't read my writing anyway, so mistakes still appear.
All this, so I'm told, will not be a problem with a w.-p. All you do is type the leaps into position, mistakes corrected, paragraphs re-ordered on demand and the right-hand edge straight as a die. Another keystroke and the printer fires it all off at some unbelievable speed, ready for that's for me. It might even do the index every year, so you ll be able to have it before the end of the succeeding year.

Breaker breaking

It's started already. There I was, driving peacefully along between Sutton and errupted Fadsembodied voice rudely singing a Canteloube von Stade, who was vergne, to announce that if any breaker so vergne, to announce that if any breaker so
desired, he was ready to hold converse with them. I think that's what he said, at any rate - I can't claim absolute certainty on this point, because the request was of South London whine and Texas drawl that it might have been anything.
I wasn't able to hear the replies (I suppose he was breaking into the front end because of his proximity) and, in any case,
I was trying to listen to Miss F. von S.
singing her television commercial, but he must have received a repply from someone talk, since he suddenly went all posh, and began to say things I could understand. It was at this point I realised that the c.b. freak was in the car behind, referring to this old creep in front of him who was
driving too slowly. The impudence of the fellow! I was in progress at the maximum speed at which I feel safe - nearly 25 m.p.h., fast enough for anyone

It wasn't the reflection on the verve and
dash of my driving that hurt though dash of my driving that hurt, though, nor
the slighting reference to my noble vehicle as a heap, but the fact that the car behind him was a police car, full to the brim with impassive Woodentops who didn't take the
slightest bit of interest in this verba slightest bit of interest in this verbal as-
sault on me. I suppose they must have had a radio and been as vulnerable to interference as I was, but they didn't turn a hair. All the same, I bet if I'd put my foot down and gone past $32 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., they'd have had
me.

Little boxes

People keep telling me that the audio boom is coming to an end. I dare say it must be if the experts say so, but I haven't magazines which concern themselves with audio are still with us and I haven't noticed any diminution in the number of impres-sive-looking boxes with knobs on in the
shop windows shop windows.
But if the ex
is fading to a thin shriek and the boom is fading to a thin shriek, I can't say I'm
surprised. The public can be taken for a ride by anyone with enough nerve, but not for ever. There is in most of us a hankering
to have the 'latest' of anything, and when it to have the latest of anything, and when it
is impressed on us that the row of 1.e.ds on the new cassette deck is so much better than the meters on the old one that the expenditure of a wad of fivers is as nothing compared to the enhanced quality of music
we can now enioy, we fall for it - for a we can now enioy,
time, at any rate.
Comes the time, though, when a chap begins to wonder. How can it be, he (or she) will muse, that the new amplifier
doesn't sound any different to doesn't sound any different to the old one,
even though it cost twice as much and has a pair of meters. Meters? If the thing sounds as though it's overloading, you turn the wick down, and if it doesn't, you don't. Who needs meters?
The truth is that manufacturers have
exploited the public's weakness for mickry for years, and if the time has come to cool it, they ought not to grumble. Maybe they could start on video machines next - there's a fortune to be made there.

TRANSISTORS

LOW PROFILE D.I.L. SOCKETS 8 PIN 14 PIN 14 PIN 18 PIN 20 PIN 22 PIN 28 PIN 40 PIN

DIODES

ANOLSEOM-ONENS					
device	Price	device	Price	device	Price
2850 FA	IILY	8080 FAMILY		Z80 S10-1 17.50	
2650A	10.00			Z80 SIO-2 17.50	
2651	10.90	8085	8.00	Z80 SIO-9 11.50	
2652	18.35	8155	8.75	Z80A SIO-0 23.50	
2653	9.00	8156	8.75	Z80A SIO-1 23.50	
2661-1	12.00	8212	1.95	280A S10-2 23.50	
6100 FAMILY		8216	1.80	Z80A	15.50
6100	9.25	8224	2.25	6800 FAMILY	
6101	6.40	8226	1.80	9900	32.50
6102	17.75	8228 8238	5.50 5.50	9980 A	20.00
6103	6.75	8238 8251	5.50 3.85	9981	29.30
6402	3.80	8251	3.85	9901	9.94
6403	6.50	${ }_{82554}$	9.00	9902	8.52
6800 FA	IILY	8257	3.55	9903	25.55
6800	3.80	8279	10.50	9911	28.46
6802	5.75	TMS5501	15.00	9914 9927	19.29 27.39
6808	4.45			9927	27.39
6810	2.17	Z80 FAMILY		[minmories	
6821	2.52	Z80 CPU	4.10	2101	1.15
6840	5.50	z80A CPU	6.25	2102	1.15
6850	2.00	280 CTC	4.40	2111	1.25
6852	2.47	Z80A CTC	5.25	2112	1.35
6854	4.60	280 PIO	4.25	2114	3.25
68047	5.64	z80A PIO	4.95	2708	3.45$\mathbf{1 . 5 0}$
68488	5.43	280 SIO-0	17.50	2708-4	
		74LS SERIES TTL			
74LS00	0.14	74LS112	0.25	74LS243	0.85
74LS01	0.15	74LS113	0.25	74LS244	1.10
74LS02	0.14	74LS114	0.25	74LS245	1.60
74LS03	0.15	74LS122	0.42	74LS247	0.80
74LS04	0.15	74LS123	0.59	74LS251	0.45
74LS08	0.15	74LS124	1.15	74LS253	0.45
74LS09	0.15	74LS125	0.30	74LS257	0.50
74LS10	0.14	74LS126	0.30	74LS258	0.50
74LS11	0.15	74LS132	0.50	74LS261	1.98
74LS12	0.15	74LS136	0.27	74LS266	0.25
74LS13	0.30	74LS137	0.75	74LS273	1.10
74LS14	0.50	74LS138	0.40	74LS279	0.42
74LS15	0.15	74LS139	0.40	74LS280	2.15
74LS20	0.14	74LS145	0.80	74LS283	0.70
74LS21	0.15	74LS147	1.20	74LS290	0.60
74LS22	0.15	74LS148	1.08	74LS293	0.60
74LS27.	0.15	74LS151	0.42	74L-5295	1.05
74LS28	0.20	74LS153	0.42	74LS298	1.05
74LS30	0.15	74LS155	0.55	74LS299	2.50
74LS32	0.15	74LS156	0.55	74LS365	0.39
74LS33	0.17	74LS157	0.38	74LS366	0.39
74LS37	0.18	74LS158	0.38	74LS367	0.39
74LS38	0.18	74LS160	0.45	74LS368	0.39
74LS40	0.15	74LS161	0.45	74LS373	1.05
74LS42	0.45	74LS162	0.45	74LS374	1.05
74LS43	0.50	74LS163	0.45	74LS377	1.05
74LS44	0.50	74LS164	0.62	74LS378	0.75
74LS47	0.55	74LS165	0.95	74LS379	0.95
74LS51	0.15	74LS166	1.40	74LS386.	0.27
74LS54	0.15	74LS170	1.50	74LS393	0.75
74LS55	0.15	74LS174	0.72	74LS395	1.15
74LS73	0.25	74LS175	0.71	74LS668	0.67
74LS74	0.20	74LS181	1.45	74LS669	0.67
74LS75	0.30	74LS183	1.96	74LS670	1.65
74LS76	0.25	74LS190	0.60	81 LS95	1.32
74LS78	0.30	74LS191	0.60	81LS96	1.32
74LS83A	0.55	74LS192	0.65	81LS97	1.32
74LS85	0.75	74LS193	0.65	81 Ls98	1.32
74LS86	0.20	74LS194	0.65	8T26A	1.60
74LS90	0.35	74LS195	0.60	8728	1.60
74LS91	0.35	74LS196	0.65	8795	1.50
74LS92	0.35	74LS197	0.65	8796	1.50
74LS93	0.35	74LS221	0.60	8 997	1.50
74LS95	0.50	74LS240	1.10	8798	1.50
74LS107	0.25	74LS241	1.10	8 T125	2.30
74LS109	0.25	74LS242	0.85	8 T 245	2.30
TERMS:- Mail Order Only. Please Add 40p Post \& Packing and 15\% VAT To All Orders.					
AMDE ROMEONENTS LTO					
	Etwall Street. Derby DE3 3DT.				

WRELESS WORLD AUGUST 198


```
TWMIPUSS Dept. WW, Beaumont Centre, 164.167 East Road
```

${ }_{\text {TVEE }}$ RF POWER TRANSISTORS - EX-STOCK							
${ }^{\text {2N3 } 3137}$		$2{ }^{2 \times 933}$	7.80		15.05	Blı53A	
${ }_{2}^{2 N 3375}$	${ }_{1}^{5.27}$		${ }_{1210}^{10.09}$		${ }_{\text {28, }}^{187}$		7.33 7.40 7
${ }_{\text {2nN3632 }}^{2035}$			${ }_{8.94}^{12,10}$	${ }_{\text {B1x66 }}^{\text {Brx }}$	${ }_{4}^{4.91}$		9.40 ${ }^{7.45}$
${ }_{2}^{2 N 373385}$	8.13	${ }_{2}^{22 N 5592}$	ci.44	${ }_{\substack{\text { Blix6 }}}^{\text {R1x }}$	${ }_{\text {che }}^{5.41}$		7.25 7.25 3
${ }_{2}^{2 \times 3924}$	1.66	2 2N5991	10.21	${ }_{\text {Bxx }}^{\text {Bxe }}$	1.15	${ }_{\text {BLYM }}^{\text {Bry }}$	${ }_{8.66}^{3.60}$
-	${ }^{9.298}$	${ }_{2}^{2 N 5642}$	${ }_{\text {l }}^{\substack{4.25 \\ 7.25}}$		${ }_{\substack{8.84 \\ 13.06}}$	${ }_{\text {Bly }}^{\text {Bry }}$	${ }_{\text {c }}^{6.43}$
${ }_{2 \text { 2Na } 127}$	9.18	${ }_{2 N 5643}$	${ }_{12.58}$	${ }_{\text {BLexa }}$	${ }^{19.19}$	$\xrightarrow{\text { Bly rixec }}$	
${ }_{2}^{2 N 0}$	${ }^{11103}$	$\xrightarrow{2 \text { 2N5913 }}$	2.34	${ }_{\substack{\text { Blix94a } \\ \text { Blx }}}$	- 35.79	Bryse ${ }^{\text {a }}$	- 2.65
	1.15	${ }_{2}^{2 N 6081}$	${ }_{9.87}^{5.94}$	cix	${ }_{84.95}^{44.59}$		11.95
2 N 4229	7.90		0.17	81433	187	8 8ı9916	6.90
${ }^{2 N 4430}$	O4		11.08	134	1.07		9.25
${ }_{\text {2Nas32 }}$	${ }_{5.50}$		12.2		${ }_{6}^{7.50}$		9.06

COMMUNICATION tubes --EX-Stock

RADIO COMPONENT SPECIALISTS

 1.L.P. Amplifiers now come in three basic types, each of which is available
or withoutheatsink. Having decided the system you want - home hi-i
motels HY 30,60 or 120 or (models $\mathrm{HY} 30,60$ or 120 for example), super quality hi-fi with extra versatility
(MOS 120, MOS 200) or Disco/PA/Guitar (HD 120, HDO20 or HDNOOO) you will hen decide whether amplifiers housed within their own heatsinks or plate
amplifiers for bolting to a metal chassis will suit. With chooice such as this and a brilliant new range of f...... functional modules. to choose from y you now have
the chance to build the finest audio syste eve offered to the constructor.

BIPOLAR Standard, with heatsinks									Without haatsinks				
MOOL				$\begin{aligned} & \text { suppy } \\ & \text { vupaty } \\ & \text { ryPpmax } \end{aligned}$	$\begin{gathered} \text { size } \\ \mathrm{mm} \end{gathered}$		PaICE	vat	$\begin{gathered} \text { MODEL } \\ \text { MUMER } \end{gathered}$	$\begin{gathered} \text { in mm } \\ \text { in min } \end{gathered}$	$\underset{\mathrm{yms}}{\substack{\mathrm{w} \\ \hline}}$	PRICE	vat
HY30	15w4/88	0.015\%	<0.006\%	$\pm 18 \pm 20$	$76 \times 88 \times 40$	240	17.29	f1.09					
Hygo	30w14.88	0.015\%	<0.006\%	$\pm 25+30$	$76 \times 68 \times 40$	240	18.33	11.25					
HY120	60w4.88	0.01\%	<0.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	177.48	¢2.62	HY120P	$120 \times 26 \times 40$	215	${ }^{15.50}$	£2.33
HY200	120w/4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	120078×50	515	£21.21	L3.18	ну200	$120 \times 26 \times 40$	215	¢18.46	t2.77
HY400	240w/48	0.01\%	<0.006\%	$\pm 45 \pm 50$	$\mid 120 \times 78 \times 100$	1025	\&31.83	[4.77]	нY400P	$120 \times 28 \times 70$	375	¢28.33	E4.25

AMPLIFIER
WITH HEAT SINK

MOSFET Ultra.Fi, with heatsinks

Without heatsinks | MOS 120 | 60 W 4.88 | $<0.005 \%$ | $<0.006 \%$ | $\pm 45 \pm 50$ | $120 \times 78 \times 40$ | 420 | E25.88 | L3.88 | MOS 120 P | $120 \times 26 \times 40$ | 215 | E 23.32 | E 3.50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Protection: Able to cope with complex loads, without the need for very special protection circuiry (IUses will suffice).

POWER SUPPLY UNITS

MODEL NO. FORUSE WITH		PRICE	vat	FP480 BRIDGING UNIT FOR
PSU30	mb			
	a maximum of 100 MA or one HY67	£4.50.	£0.68	DOUBLING POWER
	The following will also drive the HY6/66			
PSU36	series except HY67 which requires the PSU30.	¢8.10	£ 1.22	
PSU50	1 or 2 HY 60	£10.94	E1.64	obtianed and will function with any
PSU60	$1 \times$ HY 120/HY 1 20P/HD 120/HD 120 P	£ 13.04	£1.96	1.1.P. powe supply. l n 1 Itally sealed
PSU65	$1 \times$ MOS $120 / 1 \times$ MOS 120 P	£ 13.32	¢2.00	case, size $45 \times 50 \times 20$ 20mm, withed
PSU70	1 or $2 \mathrm{HY} 120 / \mathrm{HY} 12 \mathrm{PO} / \mathrm{HD120/HD120P}$	£15.92	¢2.39	Conneioritit hus becones possibe
PSU75		¢16.20	${ }^{\text {f2 } 2.43}$	into 8 82. Contribulurry distotion less
PsU90	$1 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD200/HD} 200 \mathrm{P}$ $1 \times \mathrm{MOS} 200 / \mathrm{MOS} 200 \mathrm{P}$	¢ 116.20 $\mathbf{E 1 6 . 3 2}$	¢22.43 ¢2.45	
PSU180	$2 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$			
	Y400/1 1 HY400P/HD $400 / \mathrm{HD} 400 \mathrm{P}$, 1,3	0	
PSU185	1 or 2 MOS200/MOS $200 \mathrm{P} / 1 \times$ MOS400/			
	$1 \times$ MOS400P	¢21.46	¢3.2	

Which modules?
In launching eighteen different units all within amazingly compact cases to help make most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will combine to almost any audio
project you fancy - and remember all.L.P. modules project you fancy - and remember alll.L.P. modules are compatible with each other
they connect easily. Modules HY6 to HY13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY66 to measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no quibble guarantee.

$\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$	MODULE	DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT
HY6	MONO PREAMP	Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	¢6.44	£0.97
HY7	MONO MIXER	To mix eight signals into one	1.0 mA	¢5.15	¢0.77
HY8	STEREOMIXER	Two channels, each mixing five signals into one	10 mA	¢6. 25	£0.94
HY9	Stereo pre amp	Two channels mag. Cartridge/ Mic + Volume	10 mA	£6.70	£1.01
HY11	MONO MIXER	To mix five signals into one + Bass/Treble controls	10 mA	¢7.05	£1.06
*HY12	MONO PRE AMP	To mix two signals into one + Bass/Mid-range/Treble	10 mA	¢6.70	£1.01
* HY13	MONO VUMETER	Programmable gain/LED overload driver	10 mA	£5.95	£0.89
HY66	STEREO PRE AMP	Mic/Mag. Cartridge/Tape/Tuner/Aux + Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83
HY67	STEREO HEADPHONE	Will drive headphones in the range of $4 \Omega-2 \mathrm{~K} \Omega$	80 mA	£12.35	£1.85
HY68	Stereo mixer	Two channels, each mixing ten signals into one	20 mA	¢7.95	£1.19
HY69	MONO PRE AMP	Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£ 10.45	£1.57
HY71	dÚAl Stereo PRE AMP	Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£1.61
*HY72	VOICE OPERATED STEREOFADER	Depth/Delay	20 mA	Tob	ounc
*HY73	GUITAR PRE AMP	Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£12.25	£1.84
+HY74	STEREO MIXER	Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1.72
tHY75	STEREO PRE AMP	Two channels, each mixing two signals into one + Bass/Mid-range/Treble	20 mA	£10.75	£1.61
+HY76	STEREO SWITCHMATRIX	Two channels, each switching one of four signals into one	20 mA	Tobe	ounced
+HY77	Stereo vu METER DRIVER	Programmable gain/LED overload driver	20 mA	¢9.25	£1.39

- Ready August - may be ordeered now
+Ready September - mav be ordered now

TO ORDER USING OUR
FREEPOST FACILITY
Fill in the coupon as shown, or wrire details on a separate
sheet of paper, quoting the name and date of this iournal.

 ending cash, it must be by registered dost. To pay
c.ol. please add 17 to TOTAL value of order. When V. Aering. U.K. . customers must include the appropriat
 WW - 021 FOR FURTHER DETAILS

ALL WTIH IP's 5 Year no oubrie eluranite

"New Breed" for the 80's

Yimou Monoliticic Coramic Capacitiors
Full range of NPO and X7R dielectrics in 3 body sizes Very robust construction
ar rigid leads with menis
Short rectangular rigid leads with meniscus free shoulder

Try the "New Breed"

contact Vitramon Limited for further information

WW - 015 FOR FURTHER DETAILS

THE W.W. DISK OFFER

 RE-OPENS AT LASTWe have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data Total U.K. price including VAT at 15% and carriage, CWO

ONLY $£ 155$ EACH INCLUSIVE

(Drive $£ 132, \mathrm{P}$ and $\mathrm{P} £ 2.78$, VAT $£ 20.22$)
Please make cheques and P.O.s payable to
W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non K. orders send SAE for quotation
wW - 045 FOR FURTHER DETALLS

MONOLITH

electronic products
The Monolith Electronics Co. Lid. 517 Church Street.
Crewkerne. Somerset TA18 7HR. Tel: 0460 74321. Telex:
Crewkerne. Somers
46306 MONLTH G.

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Happy Memories

De-mystify the micro with

 Practical ComphtingCetting through the jargon
barrier is the first problem for
 micro computers - and the
Ausust Issue helps yout do
just that with anentertain
giossary of those techning terms which seem designed as
much
meaning. obscure as to convey

Other features in the August issue include

- Reviews of the Tandy Model III and Snarp PC3021 business systems. - Evaluation of Micromodeller - a business modelling package similar
- How a solicitor in weymouth is using a microcomputer in his practice.

Education - which comes first - hardware or software?
Guidelines for those in schools who are getting to grips with microcomputers.
comper
All this, together with our regular advice columns for users All this, together with our reguiar advice columns for users Acorn'Atom too.

WIRELESS WORLD AUGUST 1981

MICRO TIMES
19 Mill Street, Bideford, North Devon, EX39 2JR
Telephone Bideford (023 -72) 79798 Dept. WWI

		Features Full software control of sound generation microprocessors 3 independently programmed analog out Two 8-bit general-purpose l/O ports $\star \star$ SPECIAL PRICE E6.95 $\star \star$ Data E1. Large S.A.E. please
		 280 A Combo Chip (MK 3886 B -41, 4 meg ,
		ANTEX SOLDERING IRONS
		Model CX. 17 W E Kit SK. 115 W $\mathbf{E} .00$ inc. base/stand \& solder.

KITS FOR BEGINNERS

			ELECTRONIC WhEEL OF FORTUNE Fun Kit Easy to assemble. Case included. Wonderful game. £5

HASBROOK TRADING POSTAL ADDRESS: P.O. BOX 25 ,
CLEMENTI CENTRAL, SINGAPORE 9112 . Lowest Prices - Prompt Delivery - Quality Products

TBA 120	${ }_{0}^{0.57}$		1.80		$\begin{aligned} & 1.59 \\ & 1.59 \end{aligned}$		1.6
TBA 120 S	0.67		1.20		${ }^{1.50}$	TDA 2541	
	0.55				1.50	TDA 2550	
						TDA 25	
	1.2			TDA 20	. 55		
		TBA		TDA 21	55		
		TBA	1.15	ID	55		
	1.05	TBA		DA	55		
	1.20		1.15		55		
					1.55	TDA 2	
			1.148				
TBA 750	${ }_{0}^{1.89}$						

METALFLM RESISTORS 1\% Tolerance, $1 / 4$ Watt

ONLY 3p EACH
 ORION SCIENTIFIC PRRODUCTS LTMD.
4 Golden Sq. 4 Golden Sq., London W1

WW - osfor For further details

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equipment for processing all types of picture tubes

 Fuit trinning sol
reuviremens
For full deatils of ou sesvive contact Neil Uupp
FAIRCREST ENGINEERING LTD.
4 Union Road, Croydon, CRO 2XX
WW - 042 FOR FURTHER DETALLS

100

STRONG, INEXPENSIVE MULTI-PURPOSE BOXES
WITH THAT LITTLE TOUCH OF AESTHETIC SOPHISTICATION

YOU ARE?
WELL SLIDE OPEN A

TUBOX

AND EXPERIENCE REAL TOUGH ELEGANCE

* Anodised aluminium, ' U ' section base extrusion providing long term rigidity
Contrasting, black PVC covered, single piece slide-out covers
75 mm wide $\times 40 \mathrm{~mm}$ deep in 6 lengths
ranging from 70 mm to 220 mm
* 4 screw fixing enabling rapid access

So if you're into
Hand Held Instruments
Walkie Talkies
In-Field Test Gear

TUBOX

Our prices won't make your eyes water Zaerix Electronics Limited 46 Westbourne Grove, London W2 5SF, England
ww - 013 FOR FURTHER DETAILS

102
WIRELESS WORLD AUGUST 1981

Wmetsswomataucusr ris
OUALITY CB
ACCESSORIES
FROM STRUTT LTD

SHURE MICROPHONES

£16.10
K40 ANTENNA £26.99 MODEL 5050
GOLDEN HAWK GOADENNTENNA
tRADE INQUIRIES WELCOME
3d Barley St
Tavistock
Devon. Tel. Tavistock 5865
Bognor Regis 828473

텰33
L.E.D.s . 125 and .2

1N4148 Diodes
$\begin{array}{lllllll}1+ & 100+ \\ 02 & & 1000+ & \text { RED } & 1+ & 100+ & 1000+ \\ 0.013\end{array}$
CARBON FILM RESISTORS E12 SERIES

WW - 055 FOR FURTHER DETAILS

LOW PROFILE I.C. SOCKET

8 pin	texas		scanbe		
		${ }^{100}+588.06$	$\begin{array}{r}1+ \\ 059 \\ \hline\end{array}$	${ }_{\text {cose }}^{100+}$	1000
14 pin	. 09	. 082.073	. 082	. 07	${ }_{.064}$
${ }^{18} 8 \mathrm{pin}$. 125	. 11.096 .10 .085	. 1091	. 088	${ }_{08}^{07}$
20 pin	. 14	. 126 .113	. 12	10	092
24 pin	. 15	.$_{135}^{135}$. 143	. 122	.111
28 pin	. 16	. 1455	. 145		.116
40 pin	. 24	. 215	. 23	. 195	:176

Fiarrison Bros.

 adivishry service, specifications

- Power output is auoted in WrMS and is given for t wo mod
one module per PSU or if using a stabilised power supoly.

BY ORDER OF B. BAMBER ELECTRONICS \& OTHERS

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY

LOTS INCLUDE:

Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares, and two Ford Transit vans. Over 900 lots. Catalogues available

TO BE HELD ON WEDNESDAY, 12th AUGUST, 1981
ON THE PREMISES OF
B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT
CAMBS. CB6 10E
TEL: ELY (0353) 860185

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number Your enquiries will be passed Your enquires wilbe passed on to the manufacturers concerned and you can expect to hear from them
direct in due course. Cards posted direct in due course. Cards post
from abroad require a stamp. from abroad require a stamp.
These Service Cards are valid for These Service Cards are vali
six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a óne year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to. the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: $\begin{gathered}01-7471555 \\ 01-9946275\end{gathered}$

Telex 291429
 DTO A CONVERTERS

By Micro Consultants 15 MHz . 50 B catite drive op. Linearity . MV step 50 . n . colour television transmission standard. Diff gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8.
nused.Ex-maker's pack
SPELIA
TRANSFORMERS:
$5-0-5 V 400 \mathrm{~mA}$
$6-0.6 \mathrm{~V} 100 \mathrm{~mA}$
$8-0.8 \mathrm{CV} 400 \mathrm{~mA}$
$9-0.9 \mathrm{~V} 3 \mathrm{~A}$
$9-0-9 V 3 A$
$11 V 2 \mathrm{VA}, 22 \mathrm{~V} 1 \mathrm{~A}$
12 V 30 mA
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~m}$
12 V 1 mA
12 V 1 A
2-12 $1,0-1296 \mathrm{VA}$
0
15 V 100 mA
17 V 300 mA
$10.0-20 \mathrm{~mA}$
220 mA
220.2200 mA
$22-0-2250 \mathrm{~mA}$
24 V 100 mA
24 V 100 mA
 $30-25-0-25-30,1$ A6
$0-2-6-6-8-105 A$
 ange 1RO-12M.
 2 or 1%. A few values in 0.1% Tolerance available.
WRE WOUND ORI-100K
WIRW roppers available. Goo selection of metal clad high
ROTARY SWITCHES
Over 30 different types avail-
miture
WITCHES, 3 Pc/C by Micro
division of Honeywell Ltd
a division of Honeywell Ldd.
3 amp 250 ov a.c. Part No
BN3011. $£ 1$ ea. Minate momentary 1 Pcco switch by
Micro, 3 amp 250 v A.C. Part
WHISPER FANS 4,
Type number WR2A1. 115
volt, $50 / 50 \mathrm{HZ} 7$ watt. Brand
volt, $50 / 50 \mathrm{HZ} 7$ watt. Brand
new, $£ 4$ each.
SPECTRA STRIP CABLE
twisted pair, £ $\left\{\begin{array}{l}130.00 \\ \text { bex, discount }\end{array}\right.$
e have large quantities of
rice $£ 20.00$ each. All in
ood condition. Callers col-
ect.
$\begin{array}{lll}\text { SPECIAL } \\ \text { SC65 } & \text { OFFER: } & \text { Filmet } \\ 0.1 \% & \text { metal film }\end{array}$ CERMET PRESETS ${ }^{20 p}$ ea 10A $250 V$ AC CILLUMINATED ROCKER SWITCH
DP ST $26 \times 30 \mathrm{~mm}$ red Red, DP ST
Snap-in type
6A 250V AC ILLUMINATED
ROCKER SWITCH ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p
 type or Souvrian/MCMurdo
Daiss 60 p ea. Also Cannon
9w plug, brand new, 6op ea.

BUZZERS, 6 v and 12 v , 50p WIRE ENDED NEONS
E20/£1,000. SPECI LA OFFER. Mini-toggle
swith by C. \& K.
Long dolly or short, 50 pea.
welwyn strain gauge Precision Micro-Mea
surements). Romus gan type MA-09-500B4-350 $£ 3.85$. Large quantities available.
$3 / 15$ Turn Cermet Trimpot
100 kr . 1 off price, 20p. By REDPOINT HEATSINK, Type Discount on quantity. we have Resistors available, $2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 30 \mathrm{~K}, 1 \mathrm{Meg}$ Price 25pea. CONNECTOR
BUROWS CRE
(LH) 1701, 41c, 200; Burrows (LH) 1701, 41c, 20p; Burrows
Connector (RH) $1201,4 \mathrm{LC}$ 25p. Large quantities avail-
able. able.
METWAY P.C. CONNECTOR,
3-1 3-way type P95/3DS, 10p ea.
ITT TEMPKIT ITT TEMPKIT Electronic the
mostat ZBII.5669. Brand new. E4 eav DPDT AND 5-WAY ERG Components and CTS. Gold contacts 80 ea. Brand
new and boxed.
 This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cab
etc, etc. For further detaiis send for our lists and retail price catalogue, phone or visit our shop. Al prices are exclusive of V.
(and $P \& P$). Minimum Mail Order $£ 5+P \& P+V A T$. Government departments, schools, colleges, trade and export welcome.

The Tektronix 2200 Series. So advanced they cost you less.

Advertisements accepted' up to 12 noon Monday, issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col. centimetre (min. 3 cm) LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable).
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.)
PHONE: OPHELIA SMITH, 01-661 3033 (DIRECT LINE)
Cheques and Postal Orders payable to IPC Bus Pr

Electronics R\&D

Join us in the forefront of technology

HF-VHF-UHF

Microwave Optics \& Acoustics A challenging and full career in Government Service
Candidates, normally aged under 30 , should have a good honours degree or equiv-
alent in a relevant subject, but any candidates alent in a relevant subject, but any ca.
about to graduate may be considered. Appointments as Higher Scientific Officer ($(66,075-£ 7,999$) or Scientific Officer
($£ 485-8.6480)$ according to qualifictions ($£ 4,805-£ 6,480$) according to qualifications and experience. Promotion prospects. the Recruitment Officer (Dept. WW881), HM Government Communications Centre, Hanslope Park, Milton Keynes MK197BH

SOUTH HAMMERSMITH HEALTH DISTRICT CHARING CROSS HOSPITAL (Fulham)
Electronics Technician Engineer
with at least 2 years' experience in the maintenance of electronC aquilied or equivalent, required to join th Medical Elect
Department.
The work involves maintenance calibration and electrical safety testing of a a arge range of electronic equipment used throughout the hospital with particular
emphasis on patient care and monitoring in the intensive
care unit and the operating the empe unit and the operating theatres. Design and
care
development of special development of special equipment useng digital, analog
and microprocessor techniques is undertaken. Inclusive salary scale: $£ 4931$-f6317 (MPT IV. grade). The
salary scale is subject to review from 1st April, 1981. salary scale is subject to review from 1st April, 1981 .
For further information and an application form, please For further information and an application form, pleas
contact Jan Newbiginin, Personnel Department,
Brandenturgh Brandenburgh House. P16 Fulham Palace Road, London
W6. Telephone $01-7482040$ ext 2992

SENIOR ELECTRONICS MARINE SYSTEMS ENGINEERS

A knowledge of maxine computers and data accuisition systems would be a avantageous.

Please write to:
Mr. G. T. Harman (Personnel Manager)
Huthy Surve and Consultants Limited
Elstre Warvy
Herts WD6 iSB

Appointments

Senior Engineer／Engineers

Have you considered helping to control the technical quality of Independent
Broadcasting？We take great pride in the fact that our System is one of the best Broadcasting？We take great pride in the fact that our System is one of the best
in the world and great importance is placed on maintaining the quality of the We are looking for staff to work in our Quality Control Section of our Network Wperations and Maintenance Department．Within the two units which form his section we have the following vacancies．
Technical Facilities Unit（Ref．Ww／608cc） This Unit operates comprehensive technical facilities for use by all the Divisions of the Authority within the IBA＇s Winchester and London
Headquarters and at many external locations．We are looking for staff who Headquarters and at many external locations．We are looking for staff who
have the experience of working in technical operations to the ultimate standards associated with UK Television and Radio broadcasters，and who know the system＇s philosophies，as well as the design minutiae，of equipment
as diverse as television cameras，stereo sound desks，vision mixers，audio and sidiverse as television cameras，stereo sound desks，vision mixers，aua You must be used to＂OB life＂－self sufficiency in ad－hoc arrangements ye If you have at least five years＇（for the as wiith permanent Engineer post）and 18 months＇（for he Engineer post）operational experience in radio and television，are qualified work in a team where Quality is the keyword，we would like to hear from you．
Quality Control Unit（Ref．Ww／610cc）
This Unit helps to monitor and control the technical quality of both the ITV and ILR services．We are looking，therefore，for staff who want a challenge－a
challenge of dealing with television cameras，film，audio and video recording， challenge of dealing with television cameras，film，audio and video recording
transmitters and acoustics，to mention but a few of the topics． transmitters and acoustics，to mention buta few or he topics．
If you have at least three years operational experience in radio and television
brodecasting are eualified to the equivalent of HNC level in Electrical／Elect tron broadcasting，are qualified to the equivalent of HNC Ievel in Electrical／Elect tron
Engineering and，above all，want to help maintain a thoroughly professional Engineering and，above all，want to help maintain a th
broadcasting service，we would like to hear from you

All posts involve working a way from
A current driving licence is essential．
A current driving licence is essential． The commencing salary（depending upon qualifications and experience）wil
be an a range which rises to $£ 11,040$ per annum for the Senior Engineer post， and to $£ 9,603$ per annum for the Engineer posts．Salaries are currently unde
review．Generous relocation expenses will be paid where applicable．

IBA
 INDEPENDENT
 BROADCASTIN AUTHORITY

These posts are open to both men and women．Please write or telephone for an application form quoting the appropriate reference number to
Gossling，IBA Crawley Court，Winchester，Hampshire SO21 2QA． elephone： 822270 ．

VISION ENGINEER

The Television Centre produces a range of colour pro－
grammes of broadcast quality which are supplied to schools and colleges throughout the UK and overseas in videocassette form．
Appllcations are invited for the position of Vision Engi－
neer to be responsible for the output of the Link 110 neer to be res
The Vision Engineer will be expected to have practica experience of television studio lighting for all types o cameras and a Rank Cintel Telecine．
Applicants must possess suitable technical qualifica tions，and have a good working knowledge of all the The salary scale（ST3）£8，304－£8，916
Application forms and further details available from：The Education Officer（EO／Estab．1C），Room 365，County Hall
London SE1．Telephone：01－633 7456

へへへ

APPOINTMENTS ELECTRONICS

 to $£ 15,000$ microprocessors COMPUTERS－MEDICAL Design．test，field andsupport engineers－－for Design．Test，field and
support engineers－for
immediate immediate action
salary and career advan ment，please contact：
Technomark

A．T．E．
ENGINEERS CAMBRIDGESHIRE £6K－9K Experience manuiacturer of computer－based systems

 236A．Tell：0776．384 6 C76．

URGENTLY REQUIRED

TRANSMITTER ENGINEERS

DODolby

TEST SUPERVISOR

S．London
£8，000＋

Dolby Laboratories have achieved a worldwide reputa－ reduction equipment which is used in the recording reduction equipment which is used in the recording，
broadcast and film industries．The high quality is main－ tained by extensive testing and precise alignment using the best proprieion and We require a graduate engineer with appropriate
supervisory experience to take charge of the Test depart－ ment．
Responsibilities，in addition to direct supervision，include co－ordination with the Sales Department，recruitment and training of staff and the review of test methods with the Production Engineering Department．
Salary will be dependent on qualifications and exper ence． 22 days＇annual leave．Non－contributory pension and sickness schemes．

Write or telephone：
Dan Bleakley
DOLBY LABBRRATORIES INC
346 Clapham Road，London SW9 9AP
Tel．01－720 1111

EST TECHNICIAN

Telemotive is a company associater with leadership in the radio control of industria machines，systems and processes，in lectronics activitites．
Our products are founded on the Near Field duchion Effect and on other inductive comparable product line and our business herefore offers experience of unusual
interest Training in our techniques is terest．Training in our techniques is provided．
Continued expansion has created a vacancy or a technician whose principal duties will electronic systems and of a variety of appointed will work with a small team of Engineers but must be capable of operating with a minimum of supervision wh
maintaining the highest standards．
Applicants will be expected to have an appropriate qualification and experience of his type of work．

Salary will be negotiable and dependent on
qualifications and experience The company operates a bonus scheme and offers a senerous range of benefits．Prospects dvançement are excellent．
Please apply in writing，giving details of
qualifications and experience to．－

Appointments.

Instrumentation Engineer

Taylor Woodrow Research Laboratories, based in Southall, Middlesex carry out a wide variety of civil and structura
requires instrumentation in various forms
To strengthen our capabilities in this field we are setting up an Instru-
mentation Group to be responsible for this activity within the Laboratory, mentation ${ }_{\text {and }}$ we are seeking an experienced Engineer to head up the Group, which will undertake the following

* Design and construction of instrumentation for materials and structural
component testing under a variety of extreme regimes.

Development of innovative measurement techniques to be
example in surveying structures for signs of deterioration.
Development of systems for data monitoring and analysis using
microprocessors, data loggers, computers, etc.
Providing advice to research groups on the design and procurement of
instrumentation for on-site testing.
Suitable applicants are likely to be in their thirties, have a degree in
Physics or relevant Engineering discipline, considerable electronics exPhysics or relevant Engineering discipline, considerable electronics ex-
perience and a proven record of success in the instrumentation field.
For more information and an application form, please contac
The Personnel Manager (Ref RDB), Taylor Woodrow Construction
Limited, 345 Ruistip Road, Southali,
Middlesex.
Tel: 01-575 4596/4286
TAYLOR
woodrow cresf

Technical Specialist Police Operational Equipment

Chelmsford-based

This is an opportunity to join the Home Office Police Scientific Development
Branch (at Chelmsford, Essex) and be Branch (at Cheimsford, Essex) and be
responsible for the day-to-day running of
the Technical Support Unit. The work involves identifying, selecting
and making items of electronic, optical. acoustic and electrochemical equipmen to support police operations, and
assisting in these operations; constructing new or modifying existing
equipment, maintaining sophisticated equipment, maintaining sophisticated accuratelf recording its use, liaising with
senior police officers and advising on the senior palice officers and advising
possibilities of new techology to improve efficiency. A considerable
amount of travelling is involved and amount of travelling is involve a all
attendance at irregular hours will sometimes be necessary. Candidates must have an ONC,
TEC/SCOTEC Certificate or an equ qualification in engineering, applied physics or other relevant subject: a
higher qualification such as $H N C$ would
ee advantageous. They must have served n apprenticeship, or have had
quivalent training in an appropria
 years' training and experience which
must include wide experience in the construction and operation of the elevant equipment. Some knowledge of
metal detection techniques, photography metal detection techniques, photography
and the use of closed circuit television is necessary. Management
would be an advantage.
Starting salary between $£ 7,000-£ 8,100$
depending on qualifications and epending on qualifications and omotion prospects.
For further details and an application
form (to be returned by 6 August 1981) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21
1JB or telephone Basingstoke (0256) 68551 (answering service operates processor Designer with Video
or Broadcast experience.
f11,000. Middx. 2. CIRCUIT DESIGNER, working on control systems
for handling equipment.
fin E12,000. Bucks. implementation for time
recording systems. $£ 10,000$. 4. PDOWER/CONTROL ENGI4. POWERCONTROL ENGI-
NEER Working with Exociser
system on Motorola 6809. system on Motorola 6809 .
f9.500. Surrey.
5 . REAL TIME SOFTWARE EN. 5. REAL TME SOFTME SORE EN-
GINEERS. Avionics, radar control applications. $£ 11,000$
+Surrey, London, Herts. 6. DESIGN
Domastic equipment for inter nationally known company

 CLIVEDEN CONSULTANTS

CLIVEDEN

INNER LONDON
EDUCATION AUTHORITY
 SENIOR TECHNICIAN GRADE 7

TOP JOBS IN ELECTRONICS Oosts in Compuiérs, Medical.
Comms, etc. ONC to Ph. D. Free Comms.
senice.

Phone: 01-906 0251

HOME AND

 OVERSEAS AGENTS DISTRIBUTORS
 Test instrum
Ossiloscopes,
Multimeters Multimeters
Enquiries to

R \& opportuviries. Sentio

ELECTRONICS TECHNICIANS Total involvement across the spectrum of advanced communications

The Government Communications Headquarters at Cheltenham is one of
the world's foremost centres for research, development and production in the fields of voice and data communications and communications security. Its comprehensive facilities, some of them unique, are geared towards producing creative solutiuns to complex communications problems using
state of the art techniques including computer/microprocessor aplications.
There are currently opportunities for those with proven practical spanning the whole spectrum of electronics technology. As a Telecommunications Tecchnical Officicr you y will supervise a team of technician volved in the management, construction, installation, testing ommissioning and maintenance of advanced technology systems in the UK
nd abroad. Atternatively you will provide vital support tor project engineers nd research scientists involved in planning, research and engineering evelopment

You will take part in most areas of activity and typical examples of current projects include:-
communications
quipping and maintaining new earth stations.
Designing special aerials and electronics for mobile units.
roviding advanced, a
Providing advanced, automated office systems and high speed computers.
Digital Communications
Providing a complex and comprehensive computer network system.
Designing and equipping radio stations.
Most of these opportunities are in Cheltenham but there are others elsewhere in the UK and your preference for location will be taken A significant advantage for people working at GCHQ in Cheltenham is its location in this elegant Regency town set in the heart of the Cotswolds. You can choose to live in the town itself, or in one of the delightful vililages that surround it Either way you will have easy access to good shops, schools,
sports facilities and cultural amenities in Chetenham and nearby Gloucester and also enjoy fast road/rail links to London, the Midlands and the West Country RELOCATION ASSISTANCE MAY BE AVALLABLE Candidates must possess a TEC Certificate in Electronics, Telecommunications or similar disciplines; or a City \& Guilds Part II Telecommunications Technicians Certricicate or Part 1 Plus Mathematics B,
Telecommunication Principles B , and either Radio Ine Transmission B Computers B; or an equivalent or higher qualification. In addition, all candidates must have had appropriate training and will normally be expected
to have had 4 years "hands on" or proven managaerial experience in radio to have had 4 years "hands on" or proven managerial experience in radio opportunities to join GCHQ at Radio Technician Ievel. Starting saiary will be in the range $£ 5310: £ 7170$ depending upon qualifications and experience. There are good prospects of promotion to posts with salaries information and an application form (to be returned by 6 August 1981) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG22 1JJ, or telephone Basingstoke (O256)
68551 (answering service operates outside office hours) 6851 (answering service op.
Please quote ref: $T / 5547 / 2$.

Ch

aries Airey Associates

CENTRAL SERVICES DEPARTMENT OF THE SCOTTISH OFFICE Wireless Technicians Applications are invited for 4 posts of Wireless Technician in the
Central Services Department of the Scottish Office. The posts Central Services Department of the Scottish Office. The posts
are based in Inverness, Edinburgh, East Kilibride and MMontreath-
mont, Forfar. Candidates must hold an Ordinary National Certifimont, Forfar. Candidates must hold an Ordinary National Certifif-
cate in Electronic or Electrical Engineering or a City and Guild
of London Institute Certificate in an apo cate Londen Institute Certrificate in an an aproproiate subject or a
of Lund
qualifiction of a higher or equivalent standard and have 3 A clean current driving licence and
commercial vehicles are essential.

 8400 Ext. 4317 or 5028). Closing date fo
August, 1981.

We, a progressive Broadcast TV facilities company, require an experienced and capable Electronics Engineer to take responsibility for the maintenance and
development of our electronic equipment and CMX computer system.
This is a senior role within the company and the salary
and conditions will reflect the level of the person required.
Suitable applicants ring:
R. Knibbs on 01-722 9255
TRANSVIDEO LIMITED
ST. JOHN'S WOOD STUDIOS, ST. JOHN'S WOOD TERRACE
LONDONNW8

1 CAPTAL

CAPITAL HOUSE 29-30 WINDMILL
STRET LONDON W1P 1 HG
THE UK's No. 1 ELECTRONICS AGENCY
Design, Dev. and Test to $£ 10,000$
Ask for Brian Cornwell
SALES to $£ 12,000$ plus ca
FIELD ŠERVICE TO $£ 10,000$
Ask for Paul Wallis
We have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

An electronics engineer is reauired to set up and tun the new workshop. The post
 onnerned ragni isations. Experience in small scale production ionandor orteaching woult

ELECTRONICS
TECHNICAL ASSISTANT Required for Regional Engineer's Division, based at Walkergate, New-
castie upon Tyne. caste e eppointment will be at Technical Assistant Grade 1. Salary £6633
Thr
T820 ¢78224per annum.
The post offers technologically interesting and varied work with exe The post ofters tecthnologically interesting and varied work, with exce-
lent working conditions and well-equipped laboratories, and invoves
visits to hospials tho Visits to hospitals throughout the Region, for which financial reimburs
ment is Applicinnss must be of high calibre and have had considerable and broad
experience with modern electronic equipment.
 Application form and job description trom the Regional Personnel
Officer, Northerm Regional Health Authority: Benfield Road, Newcastle upos Tyne NE6 6 PY
Closing date: 31 July 1981.

Logic and Television ENGINEERS

We urgently require a Logic Engineer with practical ex perience
monitors.
Interesting and varied work in the Leisure industry. Good salary - negotiable. Prefe 25 or over. Prospects for the right person in this leading company which is a sub
sidiary of Trusthouse Forte. This is not a field service appointment. Candidates mu Apply in writing and strict confidence to
J. C. M. Pryde, Esq., Managing Directo LONDON COIN MACHINES LTD.
22/24 Bromells Road Lind
2224 Bromells Road, London SW4 OBO
NORTHERN REGIONAL HEALTH AUTHORITY

WIRELESS WORLD AUGUST 198

Visnews

Broadcast Facilities

Rapid expansion in the commercial activities of the
Broadcast Facilities Division of Visnews Limited has Broadcast racilities Division of Visnews Limited has
resulted in the creation of immediate opportunities for
suitably qualified and experienced personnel.
Vacancies exist for the following:
Videotape Editors
Operational Engineers
Maintenance Engineers
Videotape Operators
The Division provides television production, post poduction and distribution services to a wide range
of customers in the UK and overseas including majo broadcasters, production houses and record
In addition to the above, the activities of Visnews satellite communication, sponsored productions and overseas training programmes. Growth in the Company provides ample opportunity for career We are offe
We are offering an attractive remuneration package per annum dependent upon qual fifications, experience and pattern of work. Our comprehensive benefits package includes contributory Pension Scheme, free
Life Assurance, car parking facilities, subsidised canteen and bar.
Applications in strict confidence to Miss Alison Newel Personnel Manage
Visnews Limited

Exeter Health Care District
Basic Grade
Electronics Engineer/
Physicist
to join a team of graduates and technicians responsible for he overall management of electronic equipment used to expected to partake in the routine p .p.m. and servicing of a
wide range of instruments. There will also design and development work.
Applications are invited from those who possess a Degree or
equivalent qualifications and equivalent qualifications and have an interesst tin this type of
important work and also wish to assist in developing an association with the Audiological Service. Added to this are the benefits of living in a very pleasant area with excellent Starting salary, 55,346 - $\mathrm{E} 5,958$ p.a. according to qualifications
and experience. Contact either Dr. D. James, ext. 2278 or Mr. J. Burgess, ext.
2240 for further details.

Application form and job description from Personnel Depart-
ment, Royal Devon and Exeter Hospital (Wonford), Barrack ment, Royal Devon and Exeter Hospital (Wonford), Barrack
Road, Exeter. Tel. 77833 ,

Appointments Developyour potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced

To meet the challenges of tomorrow's markets, we to turn new ideas into need production and service personnel as well.

If you would like to develop your potential in the
exciting
specialist, complete
the coupon and send it to us at the address below:-
instruments
Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost, St. Albans, Hertfordshire, AL4 OBR. Telephone: St. Albans 59292

MOVE INTO MICROS WITH TOP BRITISH MANUFACTURER ELECTRONICS TECHNICIAN (SERVICING)
communicationsEngineeronanoversea short service agreement - minimum 3 Operating Company based offshore. The successful candidate's main duties will be the direction and control of the installation, maintenance and operation of telecommunications equipment in off-
shore areas. This includes MF radio beacons, HF, SSB networks, automatic dialling radio telephones, VHF and UHF aircraft stations, VHF ship stations, multichannel microwave circuits with VHF radios, small telephone exchanges and telephone distribution etc.
Applicants, aged 27 to 45 , must possess
.Sc in telecommunications engineering or equivalent, with at least 5 years telecommunications equipment. This post is offered on an unaccompanied duty followed by 27 days off duty, with fares paid to the UK. A progressive salary dependent on age qualifications and experience is paid in Dirhams 8,760 to 10,660 per month at the current exchange rate of approximately Dirhams $7.2=£ 1$. This equates to around £1217 to £1480permonth. Benefits include salary presently free of local tax, free air
conditioned accommodation and free medical attention whilst on site.

Please write giving details of age, qualifications and experience, quoting reference ZH.1,to:
Mrs. S.J. Bartholomeou, Central Recruitment Mrs. S.J. Bartholomeou, Central Recruitmen
The British Petroleum Company Limited, Britannic House, Moor Lane, London EC2Y 9BU.

ALWAYS AHEAD WITH

 THE BEST!£5,000-£15,000
PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL: ECL: RADAR: SONAR: SATCOM: Phototypesetters: Wordpro-
cessors: Flight Simulators: ATE: Electro-Medical: Teletext:
Data-Comms: Automation: Microwave?
Where does your skill and interest lie
Service? Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry:
* Most UK locations and some Overseas.


```
ENSEE ELECTRONICS
```



```
    Mruce,Grove
    Tel:WickTord (03744)
```

services

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE,
Let us realise all or any part of your project from prototypes Let us realise all or any part of your project from prototypes to
production from artwork design and component sourcing through assembly and test to tinal quality assurance, packing and delivery.
We also provide a test, repair and modification service to suit your
individual requirement. Free Offer! Ring for details of a free introductory offer to our sub-contract CIRCOLEC FREEPOST (no postage required) London SW17 8BR Telephone: 01-7671233

E5-7.6K, OXFORD-BASED

Research Machines is looking for an experienced lectronics technician to join the small in-house used microcomputers.
With several thousands of our 3802 systems in use, and a major range of very exciting new maintain a high level of customer satisfaction is xtremely important. Fast, efficient, effective ervicing and rep
mportant to us.
Succesful candidates should have:
\square Experience of working with complex TTL Experience of
logic boards;
\square ONC, HNC, or A level qualifications, but
sood relevant experience would outweigh any lack of formal qualifications; \square Initiative and a sense of responsibility
\square Knowledge of microprocessors is not necessarily required, as long as you have a strong desire to acquire expertise in this
field. field.
Starting salary is between $£ 5100$ and $£ 7600$, depending on age and experience, and we also BUPA, life, and disability insurance. A pension sheme is being introduced.
If you are interested in this vacancy, please contact Mrs Ann England, by phone or lett

RESEARCH MACHINES
 MICROCOMPUTER SYSTEMS

RESEARCH MACHINES LTD Mill Street, Oxford OX2 OBW, Tel: (0865)49791
ROYAL MILITARY COLLEGE OF SCIENCE

RESEARCHSCIENTISTS

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING INTERACTION OF MICROWAVES WITH THE HUMAN BODY Applications are invited for a research post concerned with innovative electromag-
netic engineering design work on microwave antennas and devices for inducin netic engineering design work on microwave antennas and devices for inducing
hyperthermia and monitoring tissue temperature. This research is sponsored by the hyperthermia and monitoring tissue temperature. This research is sponsored by the
Medical Research Council and will be carried out in collaboration with the MRC Unit, Hammersmith Hospital where the clinical applications of microwaves to cancer treat ment is being investigated.
This is a Period Appointment with a duration of three years
Appointment will be made at Senior Research Scientist/Higher Research Scientist
level according to qualifications and experience OUALIFICATIONS: Applicants must hold a good honours degree in physics, mathe matics or engineering and have the ability to carry out experimental and engineering waves.
SALARIES: Higher Research Scientist (minimum of 2 years' postgraduate experience) ience) £7,644-£9,619.
Accommodation for a single person may be available in a Hall of Residence and there is a possibility of housing for a married candidate.

艮 information may be obtained from the Civilian Admin Olice, Royal Military College of Science, Shrivenham, Swindon, Wiltshire SN6 8LA Telephone 0793-782551 Ext. 421, Please quote reference HQ 120/1/122.
CLOSING DATE FOR APPLICATION 6th August

BEACOLOUR T.V.ENGINEER Dio years full-time Higher
Diploma Course in Electronics commences September 1981 and Commences 1982.
Apply to: The Registrar REESWOOD COLLEGE LONDON W2 IBB (1219) Telephone 01-4029985 Coventry (Lanchester) Coventry (Lanchester)
Polytechnic invite TENDERS for the supply of WALKIE-TALKIE SYSTEM

CILITIES AVAILABL

Dieqial Ind Ananiogit

国

PRINTED CIRCUIT BOARDS
 mavano pce co. ito.

BOARDRAVEN LTD.
printedicicutrooaros

SMALL BATCH MCEP produced ANELS. LAEELS. Camera

 TURN YOUR SURPLUS Capacitor

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

INDEX TO ADVERTISERS AUGUST

Appointments Vacant Advertisements appear on pages 109-119

OVERSEAS ADVERTISEMENT

䢒㫦

Models XS-BP (25 watt) and CS-BP (17 watt) have moulded-on safety plugs, 'unbreakable' handles and detachable hooks-cum-finger-protectors.
Long life iron and nickel plated bits, easily interchanged, slide on or off stainless steel shafts which enclose the heating elements for maximum efficiency of heat transfer, Both models available for $240 \mathrm{v}, 115 \mathrm{v}, 24 \mathrm{v}$ or 12 volt. R.S.P. $£ 5.30$ plus V.A.T.

ANTEX LIMITED, Mayllower House, Plymouth, Devon PL1 1BR. Telephone: (0752) 667377.

AP DIP JUMPERS LOWEST PRICE IN THE UK. NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED FREE TC16 WITH EVERY SUPERSTRIP SOLD

PART NO	CONTACTS	LENGTH INCHES	DESCRIPTION	PRICE
924 229-18	25	18	25 PIN MALE SINGLE END 18" LONG	5.97
924 222-18	25	18	25 PIN FEMALE SINGLE END 18' LONG	6.04
924 269-36	25	36	25 PIN MALE TO MALE DOUBLE END $36{ }^{\prime \prime}$	11.73
924 299-36	25	-36	25 PIN MALE TO 24 PIN DIP 36"	8.35
924 339-36	25	36	25 PIN MALE TO 26 PIN SOCKET 36"	10.50
924 262-36	25	36	25 PIN FEMALE TO FEMALE DOUBLE END 36'	11.50
924 292-36	25	36	25 PIN FEMALE TO 24 PIN DIP 36'	8.75
924 332-36	25	36	25 PIN FEMALE TO 26 PIN SOCKET	8.75
924 382-36	25	36	25 PIN FEMALE TO 25 MALE $36{ }^{\prime \prime}$	11.50

ALSO WITH 9, 15, 37 CONTACTS ANY STYLE
HUGE DISCOUNTS FOR QUANTITY
AP sub-miniature " D^{\prime} jumpers have the lowest front to back profile in the world and come to you fully assembled, tested and ready to use. They are directly replaceable with existing " D " connections.

DIP-DIP-DIP-DIP-DIP JUMPERS AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK
 \square EX-STOCK DELIVERY
5 STANDARD LENGTHS

6, 12, 18, 24, 36"
\square WITH 14, 16, 24, 40 CONTACTS - FULLY ASSEMBLED AND TESTED - INTEGRAL MOULDED ON

STRAIN RELIEF \square LINE BY LINE PROBEABILITY

SINGLE-ENDED
CONTACTS | 24

14	$£ 1.67$
16	$£ 1.89$
24	$£ 2.74$

DOUBLE-ENDED all prices 1-9 off. Huge discounts for quantity
$6^{\prime \prime}$
$£ 2.11$
$£ 2.33$
$£ 3.45$
$£ 5.31$

18	24	36
$£ 2.31$	$£ 2.43$	$£ 2.63$
$£ 2.58$	$£ 2.66$	$£ 2.97$
$£ 3.78$	$£ 3.94$	$£ 4.30$

TEST-CLIP TEST-CLIP

Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level.
22 NEW AP TEST-CLIPS TO PICK FROM
examples: TC 14923695 £2.76 TC $16 \quad 923700 \quad £ 2.91$ TC $24 \quad 923714 \quad £ 8.50$ TC $40 \quad 923722 \quad £ 12.88$,

ADVENTURES ON THE IC'S A SPECIAL £6 OFF OFFER

EBBODISCRETE STARTEA PACK STARTER PACK
£6.67.

ADVENTURES TH ELECTRONICS Normal Price
$£ \mathbf{2} .30$.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money . . . With 840 contact points SUPERSTRIP accepts all DIP's and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14-pin DIP's at any one time.
You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee. SUPERSTRIP SS2 923252 PRICE INCL VAT £9.78

All prices shown are recommended retail incl. VAT In difficulty send direct, plus 50 p P \& P.
Send S.A.E. for a free copy of colour catalogues detailing our complete range. AP PRODUCTS, PO BOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

[^0]: Proven micro-processor, new $8 K$ BASIC
 ROM, RAM-and unique new masterchip.

