Philips motor technology turns great ideas into reality...

...Ask IMPEX

This Chessell multi-jen chart recorder uses six low-inertia DC motors for pen drive and a slepoer as paper drive.

Because they're part of Philips with a range of small electric motors and technology second to none, and because they're part of Philips they can bring all the weight and kncw-how of Philips R\&D to your project, whether your project is on-going or merely a glimmer in the eye of your Senior Design Engineer.
Contact Impex right away and find out how they can turn your dreams into reality. Being simply years ahead, Philips can brirg you today the answers to tomorrow's problems, and that's worth knowing.

Front cover shows an Intel microprocessor chip, incorporating a-to-d conversion, compared with a string of pearls. Photographer Paul Brierley.

IN OUR NEXT ISSUE
Microprocessor trainer is a new version of the Nanocomp which uses a newer micro, the 6809, and assette interface.

Digital speech storage and analysis. The start of a series which explains the techniques of handling digital signals.

New coaxial cable development. A cross between conventional coaxial cable and waveguide offers lower losses and better power handling.

Current issue price 60 p, back issues (if available) f1.00, at Retail apd Trade Counter, Units $1 \& 2$ Bankside Industrial Centre, Hopton Street, London SE1, Available on microfilm; please contact editor.
Contact editor. back issues (if available) f1 50 , back issues (if available) El. 50 , order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS
Editorial \& Advertising offices:
Quadrant House, The Quadrant,
Sution, Surrey SM2 5AS.
Telephones: Editorial 01-661 3500. Advertising 01-661 3129. Telegrams/Telex: 892084 BISPRS G.

890084
Subscription rates: 1 year $£ 10.00$
UK and $\$ 33.80$ outside UK.
Student rates: 1 year f5.0C UK Student rates. 1 year
and $\$ 16.00$ outside UK.
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Road, Haywerds Heath, Sussex RH16 3DH. Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed World Ltd, 527 Ma dison Avenue, Suits 1217, New York, NY 10022. 2nd-class postage paid at New York.
© IPC Business Press Htd, 1981 ISSN 00436062

wireless world

ELECTRONICS/TELEVISION/RADIO / AUDIO

JUNE 1981 Vol 87 No 1545

31 Ranks of files
32 Millivoltmeter with I.e.d. display by D. H. E. King
36 World of amateur radio
37 Designing with microprocessors -8 by D. Zissos
40 Morse-code lock by J. Hruska
42 Video system for interference pattern display by E. Hywarren and P. D. Loly
45 Letters to the editor Multipath distortion/Magnetic recording/Ethics in action
50 'Electronic thermometers by A. S. Henderson
53 Waves
54 Optics and communication theory by V. Srinivasan
59 Variable frequency inverter by B. M. Banerjee and S. Chowdhury
62 News of the month Electronics in defence estimates/C.b. specification/School micros
66 Circuit ideas Matching complementary transistors/Voltage-controlled oscillator
69 Accurate sine-wave oscillator by N. Darwood
73 Tracking elliptical-orbit satellites by J. M. Caw
77 Remote keyboard interface by M. D. Alger and B. Benson
79 Voltage-controlled filter by Alan A. Thomas
82 New products

EVERYTHING IN STOCK CONSTRUCTOR!

BAF, LONG FIBRE WOOL, FOAM CROSSOVERS. FELT PANELS, COM PONENTS. SPEAKER STANDS BRACKETS, ETC.
LARGE SELECTION OF GRILLE
FABRICS ABRIC

Send 22p in stamps for gritle fabric samples)

SPEAKER KITS

PA GROUP \& DISCO UNITS

CHARTWELL CEA2O
COLES 4001
COLES 3100
COLES CE $20006^{1 / 2 \prime \prime}$
CELESTION HF 1300 :
ELESTION HF2000
DALESFORD D 10 tweeter
DALESFORD D 10 ferrofluid
DALESFORD D50/153
DALESFORD D50/200 DALESFORD D 100/250 DALESFORD 0300
DECCA London Horn
ELAC 6NC $2046^{\prime \prime} /{ }^{\prime \prime}$
ELAC 6NC204 $6^{1 / 22^{\prime \prime}}$
ELAC 8NC298 $8^{\prime \prime}$
EMI type 350, $13^{\prime \prime} \times 8^{\prime \prime} 4 \mathrm{ohm}$ EMI 14A/770. $14^{\prime \prime} \times 9^{\prime \prime} .8$ ohm ISOPHON KK 10 / JORDAN WATTS MOdule JORDAN WATTS Module Mk III JORDAN WATTS HF kit JORDAN 50 mm Ünit JORDAN crossover each
KEF T27
KEF B1 10
KEF B200
KEF B 139
KEF DN 12
KEF DN 13
LOWTHER PM6
LOWTHER PM6 ME
LOWTHER PM6
PEERLESS KO 10DT
PEERLESS DT10HFC
PEERLESS KO40MRF
RICHARD ALLAN CG8T
RICHARD ALLAN CG12T Super RICHARD ALLAN HP8B
RICHARD ALLAN LP8B
RICHARD ALLAN HP 12B RICHARD ALLAN DT 20 RICHARD ALLAN DI 30 RICHARDAL
SEAS H 107 SEAS H211 ferrofluid SHACKMAN ES units SHACKMAN ES units win $\quad £ 136$ pair

KITS FOR MAGAZIME DESIGNS
Kits include drive unirs, crossovers BAF/hong fibre wool, etc, for a pair of spaakers

Carriage $£ 3.95$
CELESTION G12/50TC £19.50 CELESTION G12/80CE CELESTION 15 100CE CELESTION G15/100TC
CELESTION G18. 200
CELESTION Powercel $12 / 150$
CELESTION Powercel 15/250
FANE CLASSIC $4512^{\prime \prime}$
FANE CLASSIC $5512^{\prime \prime}$
FANE CLASSIC 80 12'
FANE CLASSIC $8515^{\prime \prime}$ FANE CLASSIC 15015 FANE CLASSIC 12518
FANE CLASSIC 17518
FANE GUITAR 80B
FANE DISCO $10012^{\prime \prime}$
FANE PA85 $12^{\prime \prime}$
FANE BASS $10015^{\prime \prime}$
FANE CRESCENDO 12E 12^{*}
FANE CRESCENDO 15 E 15
FANE CRESCENDO 18E $18^{\prime \prime}$
FANE COLOSSUS $15 E$ 15"
FANE COLOSSUS 18 E 18
FANE J73
FANE J104
FANE J 105
GAUSS 3181 A 10" 150 watts
GAUSS $428112^{\prime \prime} 300$ watts
GAUSS $45811^{\prime \prime} 300$ watts GAUSS 4583A 15" 400 watts GAUSS $48821^{\prime \prime} 400$ watts GOODMANS PP1
GOODMANS PP1 12
GOODMANS GR12
GOODMANS I8P
GOODMANS HIFAX 50 HX
GOODMANS HIFAX 100 HX MCKENZIE C12100GP
MCKENZIE C12100TC MCKENZIE C12100 bass MCKENZ|E C12125GP McKENZIE C12125TC MCKEN2 E GP 15 MCKENZIE C15 bass MOTOROLA PIEZO HORN $31^{\prime \prime}$ MOTOROLA PIEZO HORN $2^{\prime \prime} \times 6^{\prime \prime}$ RICHARD ALLAN HD8T RICHARD ALLAN HD $10 T$ RICHARO ALLAN HD 12 T RICHARD ALLAN HD 15 RICHARD ALLAN HDI5P RICHARD ALLAN 15 RICHARD ALLAN 18
> "'
77.00
96.00

ALL PRICES INCLUDE VAT @ 15%
and are correct at 1/2/81

SEND 50p FOR 56-PAGE CATALOGUE CHOOSING A SPEAKER'

(or price list only free of charge)
Export Catalogue £1 or \$3 U.S.

Practical Hi Fi \& Audıo PRO9.TL
including felt panels and level controls $£ 152.75$ carriage 55 Hi Fi Answers Monitor $\quad \begin{array}{r}\text { carriage } \\ \mathbf{E 1 4 6 . 0 0}\end{array}$ H) Fi News State of the Art $\quad \mathbf{£ 1 8 9 . 0 0}$ Hi Fi News Midiline $£ 99.75$ Hi Fi News Miniline £49.00 f66.00 nits
 Hi Fi for Pleasure Compact Monitor or 116.00 Hi Fi for Pleasure E.C.M. (including felit panels, foam etc) $\quad \mathbf{E 7 7 . 5 0}$
Popular Hi Fi Jordan System $1 \begin{gathered}\text { carriage } \\ £ 125.00\end{gathered}$ Popular Hi Fi Jordan System $1 \quad £ 125.00$ Popular Hi Fi Mini Monitor

Popular Hi Fi Round Sound including complete cabinet k | Practical Hi Fi and Audio BSC3 | $\mathbf{£ 7 4 . 0 0}$ |
| :--- | ---: |
| 65.00 | | Practical Hi Fi and Audio Monito $€ 180.00$ Practical Hi Fi and Audio Triangl Practical Hi Fi \& Audio DBS $\mathbf{£ 1 2 0 . 0 0}$ Carriage $£ 5$ Everyday ELectronics EF70 E29.50 Wireless World T KEF carriage $£ 5$ Wireless World T.L. RADFORD $£ 190.00$

Smart badges FREE with all the above kits (to give that professional ouch to your DiY speakers) Reprints/construction details of the above designs 10p each

WILMSLOW AUDIO BA

sub bass amplifie
crossover kit
$£ 37.95$

PRICES PER PAIR CARRIAGE $£ 3.95$
UNLESS OTHERWISE STATED

PRICES PER PAIR CARRIAGE $£ 3.95$	
UNLESS OTHERWISE STATED	
COLES NIMBUS Kit	$\underline{69.00}$
(mounted on baffle)	
DALESFORD SYSTEM 1	¢54.00
DALESFORD SYSTEM 2	¢57.00
DALESFORD SYSTEM 3	£104.00
DALESFORD SYSTEM 4	£110.00
DALESFORD SYSTEM 5	£142.00
DALESFORD SYSTEM 6	¢95.00
DALESFORD 'D' ${ }^{\text {KIT (including cabinet) }}$	
	¢79.95
KEF Reference104 aB kit$\mathbf{£ 1 3 3 . 0 0}$ plus $£ 5$ carriage	
KEF Cantata kit £199.00 plus	5 carriage
LS3 Micro Monitor kit	¢76.00
LOWTHER PM6 kıt	¢132.75
LOWTHER PM6 Mk 1 kit	£139.95
LOWTHER PM 7 kit	£199.00
RADFORD Studio 90	£181.00
RADFORD Monitor 180	£243.00
RADFORD Studio 270	£309.00
RADFORD Studio 360	6450.00
RICHARD ALLAN Tango Twin	¢55.50
RICHARD ALLAN Maramba	¢77.50
RICHARD ALLAN Charisma	£111.00
RICHARD ALLAN Super Triple	¢102.50
RICHARD ALLAN Super Saraband II	
	¢159.95
RICHARD ALLAN RAB kit	£62.75
RICHARD ALLAN RA82 kıt	¢98.75
RICHARD ALLAN RA82L kit	¢108.00
SEAS 223	$£ 42.50$
SEAS 253	£67.00
SEAS 403	$£ 79.95$
SEAS 603	¢134.95
WHARFEDALE OENTON XP2 kit	£31.45
WHARFEDALE SHELTON XP2 kit	£40.40
WHARFEDALE LINTON XP2 kit	£56.20
WHARFEDALE L60 kit	£52.50
WHARFEDALE L80 kit	$£ 72.00$
WHARFEDALE L100 kit	$¢ 87.00$
WHARFEDALE E50 kit	$£ 129.00$
WHARFEDALE E70 kit	£160.00
WHARFEDALE E90 kit	¢249.50

5 Swan Street Wilmslow. Cheshire

Tel. 0625529599 for speaker drive units, kits, PA equipment, mail order enquiries, and all export enquiries.

Tel 0625526213 for Hi-Fi equipment and complete speaker enquiries
\square Lightning service on telephoned credit card orders! 5

35/39 Church Street Wilmslow, Cheshire

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA fo $1_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a $9 V$ battery.

TRANSISTOR RANGES (PNP OR NPN)

${ }^{\text {C CBO }}{ }^{\text {\& }}$ EBO	$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
$\mathrm{BV}_{\text {cbo }}$	10 V or 100 V f.s.d. acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
I_{B}	$10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A, 10 \mu A, 100 \mu A$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }}$:	3 inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into $h_{F E}$ readings.
$V_{B E}$:	1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$\mathrm{V}_{\text {CE(sat) }}$:	1 V f.s.d. acc. $\pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV . $1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V .
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale. Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$. Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA .

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $\pm 2 \%$ with zero output at scale centre. Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

Optional extras are leather cases and mains power units. Prices are ex works, V.A.T. extra in U.K.

\title{

AG्aronc :rorers allopes Prem superlatye
AL:RADD 0

\section*{June 1981

June 1981
 Latest Test Equipment

ANALOGUE VOLTMETERS

 AND MULTIMETERS Boonton.93A Tiue RMS Voltmeter Bandwidth IOHz-

	Fluke. 883AB AC/DC Ditferential Volmeter $20 \mathrm{~Hz} \cdot 100 \mathrm{KHz} .1 \mathrm{mV}$. 1100 V Very high accuracy $£ 975.00$

Unless otherwise stated, all test equipment sold by us carries a 12 month warranty; For VDUs and Teletypes we offer a 90 days warranty, and computers are offered with on site acceptance and diagnostic tests (which may qualify them for independent ongoing maintenance). When you buy from Electronic Brokers you know the equipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the original manufacturer's sales specifications. And it's serviced by our own highly qualified technicians.

A copy of our Trading Conditions is available on request.

BRIDGES \& COMPONENT

TESTERS

Bconton

63 H Inductance Bridge. $0-110 \mathrm{mH}$. Bridge frequency $5-500 \mathrm{kHz} \ldots . . .$| 250.00 |
| :--- | :--- | General Radio.

1608A LCR Bridge. Accuracy 0.05\%. 0.05pF-
1100μ F. $0.05 \mu \mathrm{H}=1100 \mathrm{H} .0 .05 \mathrm{~m} \Omega-1 \mathrm{M} \Omega$
Marconi.
IF 1245-TF 1246-TF $1247^{\prime} O$ Meter and
Oscillators O 5 to $50040 \mathrm{KHz}-300 \mathrm{MHz}$
£950.00 TF 1313 LCR Bridge Accuracy $0.25 \% .0 .1 \mathrm{pF}$. $1 \mathrm{O}_{\mu} \mathrm{F} .1 \mu \mathrm{H}-11 \mathrm{H} .3 \mathrm{~m} \Omega-1 \mathrm{OM} \Omega \ldots \mathrm{E} . \mathrm{£} 95.00$ Rohde $\&$ Schwarz.
LRT (BN6 100) Inductance Meter. $1 \mathrm{pH}-100 \mu \mathrm{H}$. $2.2-285 \mathrm{KHz}$
$£ 395.00$
Solarton.
7055 Microprocessor DMM. Scale Length
20,000. AC/DC volts. resistance. $1 \mu \mathrm{~V}$
resolution
$£ 600.00$
Wayne Kerr.

….................................

CALIBRATION EQUIPMENT

Fluke.
$332 A$ DC Voltage Caibrator 0 to
alibiliov. 0.1 ppm resolution. 0.003% calibration accuracy \quad £1495.00 760 Meter Calibrator. DC/AC Volts and Current
E 2150.00

Tektronix.
191 Constant Amplitude Generator. 350 KHz .
100 MHz

$\mathbf{£ 3 5 0 . 0 0}$
DVM's AND DMM's
Datron.
1051 51/2 Digit DMM. AC/DC Volts.
$\quad £ 750.00$
Fluke.
8800A $51 / 2$ Digit DMM, AC/DC volts,
resistance 1 $\quad \mathbf{V}$ resolution Hewlett Packard.
Hewlett Packard.
3490 A $5 / 2$ Digit DMM. AC/DC wolts. resistance, $1 \mu \mathrm{~V}$ resolution. 30 day warranty

Phllips.
PM2527 41/2 Digit DMM AC/DC volts, current and resistance. $10 \mu \mathrm{~V}$ resolution. True RMS

Solartron.

A $2435^{1 / 2}$ Digit DMM. ACIDC volts, resistance A $24351 / 2$ Digit DMM. ACIDC volts, resistance.
i μV resoiution. 30 day warranty ... $£ 375.00$ 7055 plus processor control and RS 232 interface. 7065 Microprocessor DMM. Scale length
1.400 .000 1.400.000. AC/DC volts, resistance. $\mathbf{£ 6 9 5 . 0 0}$ 7065 plus processor control and RS23

FREQUENCY COUNTERS
Advance. $500 \mathrm{MHz}, 9$ digits 275.00 Fluke.
900A-OI Frequency Counter. $5 \mathrm{~Hz}-80 \mathrm{MHz} .6$ digits. Mains / Dattery operation $\quad \mathbf{\$ 1 9 5 . 0 0}$ digits EMI prool case Phillps.
Phillips.
PM6664 Fully Auto Frequency Counter. 10 Hz
PM6664 Fully Auto Frequency Counter. 10 Hz -
520 MHz .8 digits
$\mathbf{2 5 0 . 0 0}$
Racal.
9905 Timber Counter DC -200 MHZ .8 digits

MULTIMETERS

Avo. $£ 75.00$
$£ 6.25$
Fuli lead kit
S.E.I.
Super 50 selectest. $20 \mathrm{k} \Omega /$ volt.... $\mathbf{~} 77.00$

OSCILLOSCOPES

Hewlett Packard.
1707A Dual Trace Portable Oscilloscope
$D C-75 \mathrm{MHz}$ Full delayed sweep. 30 day warranty $\mathbf{4 5 0 . 0 0}$ 1707 B Dual Trace Portable Oscilloscope, DC -75 MHz .10 mV - $5 \mathrm{~V} /$ div Full delayed sweep $\underset{ }{\mathbf{£ 7 5 . 0 0}}$

Philips.
PM 3212 Dual Trade Portable Oscilloscope DC
-25 MHz 2 mV -lov/div $\quad \$ 575.00$ SE Labs.
SM1216 Channel Monitor $12^{\circ} \mathrm{cr}$ Internal sweep.
$£ 395.00$ Tektronix.

432 Dual Trace Portable Oscilloscope $D C-25 \mathrm{MHz} .1 \mathrm{mv}$
sensitivity. 20 ns .5 s Auto setting mams
input 100.250 V input $100 \cdot 250 \mathrm{~V}$ 54A Dual I race Portable Oscilloscope DC - 150 MHz .2 mV -5V/div.
ull delayed sweep. 1200.00 455 Dual Trace Portable Oscilloscope sweep. Super condition. $\mathbf{£ 9 2 5 . 0 0}$ 464 Dual Trace Portabie Storage Oscilloscope DC - $100 \mathrm{MHz} .5 \mathrm{mV}-5 \mathrm{~V} / \mathrm{div}$. Full delayed sweep. Max writing speed $110 \mathrm{div} / \mu 5$ 465 Dual Trace Portable Oscilloscope 100 MHz .5 mV -5V/div. Full delayed sweep 466 Dual Trace Portable Storage Oscilloscope spec as per 464 but max writing speed 3000div/4S E2875.00 475 Oscilloscope DC-200MHz $\quad 1495.00$ 2 mv - 5 V/div. Deiayed sweep.
485 Oscilloscope DC -350 MHz V-5V/div Delayed sweep.
\qquad 21 A PAL Vectorsco sweep. mersers Luminance Amplitude. Chrominance Phase. Chrominance Amplirude. Differential Phase and Gain. As new condition.............2650.00 935A Osciiloscope DC - 35 MHz mV -10V/div. Delayed sweep.... 595.00 603 Oscilioscope CNN 2 off 7426 and 7853A.
Trace DC - 100 MHz
$\mathbf{2 2 9 5 . 0 0}$
\qquad 7633 Storage Main
Frame c/w. 2 Off 7A26. I Off 7B53A 4 Trace DC- 100 MHz . Full delayed sweep
Max wnting speed Max whting speed
$1000 \mathrm{~cm} / \mathrm{LS}$. $\mathbf{4 4 9 5 . 0 0}$ 7613 storage Oscilloscope CNN 2 off A26 and 7653A. DC - 100 MHz 4 Trace. £3575.00 7704A Main Frame CNW 7A26.7B80. 7BB5
Dual Trace DC -200 MHz £ 3550.00 Telequipment.
32 Dual Trace battery/mains. Ponable
Oscilioscope DC-10MHz. 10 mV -5VI
E310.00 Do3 Dual Beam Oscilloscope chw 2 Off V4 Modules. 4 Traces. DC. $15 \mathrm{MHz} \cdot 5 \mathrm{mV}$-20V/div D83 Osciloscope Main Frame CNV 44 and 52A plug-in units. DC - 50 MHz .5 mV
ull delay

ier Text Equipment Company offer sem zouphend spice

June 1981

OSCILLOSCOPE PROBES

EB90 $\times 1$ Probe 1.2 mtr length DC $-20 \mathrm{Mth} 2^{2}$ CB91 $\times 10$ Probe $1-2$ merlength $D C-$ £1100 EB95 XI, Xioprobe 1.2 mtr length $D C$ 10 MHz or DC $-100 \mathrm{MHz} \quad £ 1500$

POWER SUPPLIES

Advance. MG5.205V @ 20A switching MG24-12 24V @ 12A switching
$£ 160-00$
$\mathbf{E} 12000$
$\mathbf{6 9 5} 0$ + $£ 9500$

Weir.
762 Power Supply Unit
$0-30 \mathrm{~V}$ at 2A. Metered output
£9000

RECORDERS

Racal. Store 7 D Tape Recorder

Store $7 D$ Tape Recorder
7 Channels $F M$ electronics $\mathrm{DC}-20 \mathrm{KHz}$ 1%-601ps550000 S. E. Labs

3006/12 12 Channel UV Recorder. Grid and timing lines 6° paper $\mathbf{5 5 0 . 0 0}$ drive upto 5 metrs/sec 12° paper . . $£ 110000$ Watenabe.
MC6416Channel Chart Recorder. 1 mV -
100 V .250 mm scan width
£1495.00
Yokagawa.
30472 Channel Char Recorder $0.5 \mathrm{mV}-10 \mathrm{CN}$

SIGNAL SOURCES

HF136 AM/FM Signal Generator. 40.120 MHz 0.100 mV in 20 dB steps plus fine control O/F
$Z=75 \Omega$
$£ 41030$

Hewlett Packard
203A Variable Phase Oscillator. 0.005 Hz
$60 \mathrm{KHz} .0-360^{\circ}$
$\mathbf{E 4 5 0 . 5 0}$ 204A Decade LF Oscilator. 10Hz-mV-10V into 600Ω 606 B AM Signal Generator. $50 \mathrm{KHz}-65 \mathrm{MHz}$. AMO-95
£850.00 $0.1 \mu \vee-0.5 \vee$.... \quad E775.00 616 B UHF Signal Generator 18 to 4.2 GHz . ht pulse Mod. 620 B SHF Signal Generator. 7 - 11 GHz $0.1 \mu \mathrm{~V}-0.224 \mathrm{~V}$ into 50Ω Internal PM \&FM $\underset{\mathbf{E 2} 100.00}{ }$ 6518 Test Oscillater. $10 \mathrm{~Hz}-10 \mathrm{MHz}$ $0.1 \mathrm{mV}-3.15 \mathrm{~V}$ 3310 A Function Generator $0000 \mathrm{5} \mathbf{£ 4 1 5 . 0 0}$ 55 V pk-pk into 50Ω. Sine, square, triangle. ramp and + or pulse waveforms $\mathbf{5 8 5 . 6 0}$ $100 \mathrm{KHz}-110 \mathrm{MHz} \quad$ E $1500 . \mathrm{CO}$ 8614A UHF Signal Generator $800-2400 \mathrm{MHE}$. Max O/P + 10dBM into 50S. int square wave mod. Ext AM-FM, pulse mod E1950.CO 8616A UHF Signal Generator 1800-4500 MHz Max O/P + 10 dBM from $1800-3000$ $\mathrm{MHz} .+3 \mathrm{dBM} 3000 \mathrm{MHz}-4500 \mathrm{MHz}$. Mod as
per $8614 \mathrm{~A} \quad \mathrm{E} 1950.00$ per 8014A.
05 to 520 MHz E 3200 col 8654A AM/FM VHF Signal Generator. $0-90 \%$ FMO-100KHz. Mod rate 400 Hz a

Marcont
TF $144 \mathrm{H} / 4 \mathrm{AM}$ Signal Generator. 10 KHz
$72 \mathrm{MHz} .2 \mu \mathrm{~V}-2 \mathrm{~V}$
$\mathbf{~ 7 5 0 . 0 0}$ $72 \mathrm{MHz} .2 \mu \mathrm{~V}-2 \mathrm{~V}$
TF995B/5 AM/FM signal Generator $200 \mathrm{KHz}-1$ 220 MHz i $\mathrm{HV}-200 \mathrm{mV}$ Narrow denation for mobiles

TFI370A Wide Range RC Oscillator. 10 Hz 10 MHz . Sine wave. square wave upto 100 KHz TF2002B AM/FM Signal Generator. 10 KHz 88 MHz . O. I UV-IV. $20 \mathrm{~Hz}-20 \mathrm{KHz}$ Mod frequency
TF2005R 2 Tone signal source 20 Hz -20kHz $\mathbf{£ 1 2 0 0}$ 0.111 dB in 0.1 dB steps295.00 TF 2006 AM/FM Modular signal Generator.
$4-1000 \mathrm{MHz} .0 .2 \mu \mathrm{~V}-200 \mathrm{mV} . O / P Z=50 \Omega$
TF2100 AF Oscillator $20 \mathrm{~Hz}-20 \mathrm{KHz} .005 \%$ distortion
Phillps.
PM6456 Stereo Generator Separate L and Prer Generator Separate Land R OIP 3 mV pk-pk $\quad £ 250.00$ Radiometer.
Radiometer.
SMGiC Stereo Generator. Separate L and R SMGIC Stereo Generator. Separate L and R
Signals Carrier frequency 100 MHz RF O/P $10 \mu \mathrm{~V}$-i 100 mV into $75 \Omega \mathrm{M} . . . \mathrm{£375.00}$ Tektronix.
Tektronlx.
2101 Pulse Generator $2.5 \mathrm{~Hz}-25 \mathrm{MHz}+$ and
2101 Pulse Generator. $2.5 \mathrm{~Hz}-25 \mathrm{MHz} .+$ and
O/P
© 375.00 148 PAL TV Insertion Generator. Provides all required signals to test and measure on video TX systems. Immaculate 481 CPAL Wavelorm monitor $\mathbf{\Sigma 2 5 0 0 . 0 0}$ in as new condition
$£ 2275.00$

SOUND LEVEL METERS

General Radlo.

981 Sound Level Meter. 70-120ab. Digita, and analogue reading, Peak hold A weightung 1983 Sound Level Meter 7012 db A weightir, 9
£195.00

TRANSMISSION

MEASURING ECUIPMENT
MF2332 AF Transmission Test Set. $20 \mathrm{~Hz}-20 \mathrm{KHz}$

Siemens.

 $50 \mathrm{KHz}-100 \mathrm{MHz}$ - $10 \mathrm{~dB}-0 \mathrm{~dB}$ Receive bandwidth 3.1 and $10 \mathrm{KHz} \quad \mathbf{£ 2 2 0 0 . 0 0}$ $W 2006+02006$ Carrer Level Test Set. $10 \mathrm{KHz}-$
$17 \mathrm{MHz}-100$ to $+10 \mathrm{~dB} \quad \mathbf{\$ 1 6 5 0 . 0 0}$ $17 \mathrm{MHz}-100$ to +10 dB E1650.00 $6 \mathrm{KHz}-18.6 \mathrm{MHz}-120$ to $+20 \mathrm{~dB} \quad$ E 1800.00 Wandet and Golterman.
PF-1 Digital Error Rate Measurno Set
PF-I Digital Error Rate Measunng set.
Consisting of PFM-I Digital Error Rate Meter and PFG-1 Pettern Generator $£ 2490.00$ PSO-5 and PMO-5 Level Measuring Set. $10 \mathrm{KHz}-36 \mathrm{MHz}$. -110 to +20 dB . CN AZD-1 Scale expander $\mathbf{2 0 5 0 . 0 0}$ SPM-6 and PS-6 Level Measuring Set $6 \mathrm{KHz}=18.6 \mathrm{MHz}$ - -110 dB to +200 B . Mains/ attery operation. $£ 2150.0$ Andimat (PSM-4 2 MHz Automatic PCM
Testing system) composed of the following
Analyser. PMD-1 Digutal Level and Noise

Generator. PDA- 1 PCM Digital Signal
Analyser, PSM-4 Level Measuring Set. MU-4
Scanner, R1. 1 computer interface ... $\mathbf{6 5 0 0 . 0 0}$

misCELLANEOUS

Data Laboratories
DL905 Transient Recorder with Pre-Trigger transients $\mathbf{5 0 0 0 0}$

Dranetz

606-3 Power Line Disturbance Monitor Ideat unit for computer maintenance and instavation engineers ….............. $\mathbf{£ 2 6 0 0 . 0 0}$

Ferrograph.

RTS2 Recorder Test Set Measures Wow \&
Flutter. Distortion. Gain, $£ 345.00$ RTS2 + ATU- | Recorder Test Set and auxiliary
test set
£375.00

Hewlett Packard

331A Distortion Meter. $5 \mathrm{~Hz}-600 \mathrm{KHz}$
$0.1 \%-100 \% \mathrm{FS}$.
615.00

334 A Auto Nulling Distortion meter 5 Hz $600 \mathrm{KHz} 01 \% \cdot 100 \% \mathrm{FS}$ AM detector $1 / \mathrm{P}$ 432A Power Meter with 478A Thermistor Head. $10 \mathrm{MHz}-10 \mathrm{GHz} .100 \mu \mathrm{~W}-10 \mathrm{~mW}{ }_{£ 450.00}$ 4329A insulation Resistance Meter. Range $500 \mathrm{~K} \Omega$ to 2×10^{16} 8745A S Parameter Test Ser. Filted with 11604 A Universal Arms $0.1-2 \mathrm{GHz} . £ 2750.00$ Marconl.
TF791D Deviation Meter $4-1024 \mathrm{MH}$ TF2 162 MF Attenuator
DC - $1 \mathrm{MHz} 0-111 \mathrm{~dB}$
TF2331 AF Distortion Meter $20 \mathrm{~Hz}-20 \mathrm{KHz} .0 .1 \%-100 \%$ $1 \mathrm{mv}-30 \mathrm{~V}$ voltage range.
. $£ 195.00$

Ronde and Schwarz
MSC Stereo Coder. $30 \mathrm{~Hz}-15 \mathrm{KHz}$
Radiometer.
BKF 10 Automatic Distortion Analyser 20 Hz

Tektronix.

TM5 I 5 Main Frame

Hours of Business: 8 a.m-5p.m. Mon-Fr Closed lunch 1-2p.m.
ADD 15\% VAT TO ALL PRICES
Carrlage and Packing charge extra on all Items uniess otherwise stated.

WW-200 for further detalls

Electronic Brokers is Europe's largest specialist in quality, second user test equipment, computers and associated peripherals. Established 14 years ago, we have pioneered the second user concept in Britain, and many overseas territories
To support our growth we hav a skilled team. This includes trained sales staff, whose role is not oniy to sell, but provide a helpfut information service to our many customers. Backing this team is our own service laboratory where technicians monitor each item of equipment we sell. Our maxim is service, and those who have dealt with $u s$ will know that we endeavour to always live up to our reputation.

Wherever your business is - UK Europe, in fact anywhere in the world the Electronic Brokers Organisation is just a telephcne or telex call away!

Electronic Brokers Limited 61/65 Kings Cross Road London WCIX 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

Electronic Brokers-Europe's Prem supar AnNE oupinainas

June 1981

PDP11 SYSTEMS DEC

PDP11/34A 128 KB MOS. KYII-LB Programmers Panel. DLIIW Interface. $2 \times$ RLOI Disk Drives and Controller. 6 ft . Cabinet, PTP 1134 A 128 KB MOS KY1 Programmers Panel DLIIW interface. RKO5J and RKO5F Disk Drives and Controller 6ft Cabine DECwriter IV Console $\mathbf{£ 9 , 9 5 0 . 0 0}$ PDP $11 / 34$ A 256 KB MO5. KY 11-LB Programmers Panel. DLIIW Interface. $2 \times$ RKO7 Disk Drives and Controller 64 Cabinet, VT100 Console $£ 19,750.00$ PDP I I/34A $12 B K B$ MOS, KY1I-LB Programmers Pane. Disk Drives and Controller. 6t Cabinet VT100Console $\quad £ 12.750 .00$ PDP 1 $1 / 60$ System with 2 RKO7 Disk Drives and Controller, Choice of Console

PDP11 C.P.U.s

PDP ilio3-SD Processor in $31 / 2^{" c}$ chassis complete with 16 KW MOS memory and EIS Opion.

PDPIIMEMORY

DEC.
MEC. IL 8 KW coie memory C/w 9-slot system unit MMIIL SKW core memory MMI ILP 8KW party core memory MMIIDP 16 KW core (ex DEC-maintaned $11 / 34$ sysiems) BARGAIN OFFER - ONLY
memory comple win MMI I UP I6KW Parity core memory complete with 9 -slot MMI MMI IUP I 6KW party core memory pre-requisie MF I IU

MSIIJP I GKW MOS memory MSI T-LB 128 KB MOS MSTI-LD 256kBMOS
MSI 1 -BE 4 KW MOS memory [LSII I
MKIIBE 64 KW IITO memory MS I - MB 256 KB ECC memory for $11 / 70$ DISKS

RKO6.ED Add-on 14 Meg disk drive RK611-ED Unbus Controller + 1 RKOG drive RKO7-ED Add-on 28 Meg disk dive RK 7 I I-ED Unibus Controlle +1 RKO7 disk drive RMO 3-Add-on 67 Meg disk drive RXI I-BD RXO1 Dual floppy + Unibus Controller RLOI

MAGNETIC TAPE

Available from ume to tume - TUIO. TU45. TEI6 TSO3 etc
,
£975.00 $£ 795.00$ E 750.00 E 395.00 1500.00

PDP1 OPTIONS

DEC.
解 4 -slot System Uni
BAII-KF expander Box
DDIIA 4 -sIot System Uni
ODI 18 4-slot System Unit
DLII-DK 9-slot back
DLI IWAVB Serral Interface/Line Clock
DRIIC General Purpose Interface
DRV11B 16-bt Paraliel Interface
DZllA 8 -tne EIAMUX
DZII-B 8-Line Expander MUX
FPII A Floating Point.
KLII TTY Interface.
KW IIL Real Time Clock
KW II P Programmable Clock
M 105 Device Selector
M792 ROM Diode Matrix
M9301-Y8 Bootstrap

POWER SUPPLIES

DEC.

H720 Power supply for BA 11 Expander Box, BRAND NEW

PDP8A C.P.U.

PDP\&A Processors, systems and add-on memory usually available PDP8A MEMORY
MMBAA BKW Core
MM8AB 16 KW Core
PDP8E CPU, MEMORY, OPTIONS
DECEBCOMmuntarions Adapior KABE Positive I 10 Bus KD8E Databreak
KL8E Asynchronous interface
 KP8E Power fallauto restart MM8E 4KW Core inemory stack A8E Dual Cassette Drive and Controlier

TERMINALS

1250.00
E.
£ $1,995.00$
£ $3,500.00$
$£ 3,500.00$
$£ 495.00$
$\mathbf{E} 9500.00$
$\mathbf{E} 5950.00$ $£ 3950.00$ - $£ 3942.00$

> P

plerminal 132 coums
LA36 DEC writer 11 Keyboar Princer Terminal. The Terminal that has become an industry standard. with 132 column uppet/lower case printing and switch-selectable speeas of 10 . $15 \% 30 \mathrm{cps}$ Avaliable with either 2OmA or RS232 interface. NOW ONLY £595.00 VT 52 SPECIAL PURCHASE of this outstanding Video Display Terminal eatunng all uppe flowe display a mary keypad 2×80 cursor addressing and labuiation scroll or hold screen mode with X-off facilty 9 switch-selectable baud rates (75-9600 baud) choice of 20 mA or RS232 interface
BRAND NEW SURPLUS ONLY
$£ 450.00$
L5. 120 High speed keyboard terminal 132 -column printer with adjustable tractor feed and full upper and lower case ASCll printing rates uo to 4800 baud integrat stand RS 232 mterface BRAND NEW SURPLUS ilimited quantityl. ONLY
VT100- limited quantity in as-new condition
$\mathbf{£ 7 5 0 . 0 0}$
DECwriter IV Deskion terminal complete with tiactor reen, paper-

PRINTERS

Heaw Duty Matrix printer with 64 ASCil upper case character ser. 165 cps operation. 132 print positions with adjustable tractor feed
paraliel input. ONLY.... $\mathbf{4 9 5 . 0 0}$

BRAND NEW - LOW COST MATRIX PRINTERIDEAL FOR MICROPROCESSOR USERS SUCH AS HOBBYISTS\& OW-BUDGET APPLICANION

- Full upper/lower case ASCII

PLUS GRAPHICS Mode

- adjustable printing with
adjustable tractor feed
* Standard and double-width characters (12 cpi and 6 cpil 30 cps print speed with 1 -ine 5 sand
standara paraliel fCentronics-
type) interface
Optional interfaces avarlable for Apple il
- ONLY $\quad 199.00$ Mail order total …e.e240.35)
GP80 Optional Interfaces:
RS232
IEEE
Apple.
GP80 Fanfold Paper
Box of 2000×8 in sheets
$\$ 55.00$
$£ 55.00$
$£ 55.00$
$£ 55.00$

$\$ 55.00$
$£ 55.00$
$£ 35.00$
E395.00
E95.00 ع 250.00
f 95.00
£ 350.00
E525.00 E250.00

GE Terminet 1200.
RO printer. 80 columns. tractor feed. upper/lower case. ASCil. 20 mA
$£ 15.00$

Hazeltln
Themal printer. 80 columns. 30 cps silent RO with parallel TTL input
Tally 1602
Matrix printer. parallel input. upper/fower case. tractor feed, as new
Teletype
Reconditioned ASR 33 Teletype Terminals with paper tape punch and reader. even panty keyboard and RS232 interface.
SPECIAI OFFER - CASH AND CARRY ONLY $£ 295.00$

Low Cost PrInter Offer. eletype 33 printer mechanism ncluding case dutno keyooard or 10 cos pinfeed piaten dealfor the electronic hodbyist ONLY E85.00 Texas.
745 Portable Data Terminal ncluding keyboard, printer. carrying case. Total weight only 13 los00

733 ASR terminal utilising high performance twin cassette drive for
ast time-saving transmission and of tine storage

- Silent operation
- Switch-selectable transmission speeds 10. 15. \& 30 cps
- Full tape editing capability
- Standard RS232 intion and rewind

745 LIGHTWEIGHT 113
10/30 cps. carrying case

er Used Computer Company offer sid conpuiri an conouron

June 1981

PAPER TAPE PUNCHES

Digitronic

P135/20 paper tape punch. Solenoid-actuated unit capable of pulse amglitude 8 channel tapes at speeds upto 35 cps

Latest Computer Equipment

KEYBOĀRDS
George Risk New ASCll Keybourd
 Facte 4070.
Facit 4070 .
The top quality
punch that has become ar industry standard. Asynchrorous 75 cps operation.
Adjustable for punching 5.6.7 or 8 level tade. Self-contained desktop unit incorporating supply and take-up spo ols, chad box and TTL compatit le control logic $£ 650.00$ KB756MF as above fitted with Mall Order tota rigidity KB710 10-key nameric Mail Order Total $£ 53.48$ Mail Order Total $£ 9.78$ KB701 Plastic enclosure for KB756 or KB750NF
Mail Or Je Total 12.50 KB70\% KB2376 Spare ROM encoder Mail Orde Total KB15P Edge connector for KB756 Mail Oride Total $\mathrm{DC}-512 \mathrm{DC}$ conve tor to allow operation at 5 V only (plugs in to DB2.... Mail Orde-Total20 $\begin{array}{lll} \\ & \text { Mal Orde Total } & \mathbf{£ 4 . 2 5} \\ \mathbf{£ 5} 46\end{array}$ PERK 56 -station ASIIl keyboard for PET compete with PET interface, built-In power supply and steel entlasure. Discounts avallable for quantities Mail Order TotalEll5.00 PROGRAMMABLE CALCULATORS Hewlett Packard
9830A with 8 K Me mory. Extended I/O ROM1, Эtring Vanables ROM. and 3 parallel interfaces
$E 1695.00$

MODEMS

Racal Miligo
Modem 26 isi $1200^{\prime 2} 2400$ baud, 2 or 4 wire, full/hatf duplex

GENERATORS

45 KV A Generator system comprising $A C$ Induction Motor. $A C$ Generator, AC Excrer and Emreg Regulator

The alternator comprises of a screen-protected rotating field. complete with built in over-hung exciter of the brushless pattern it is wound for 415 V .3 phase, $50 \mathrm{~Hz}, 4$ wire and developing 45 KVA at 018 P.F when running at a speed of 1500 rpre The alternator and exciter are used in conjur ct on with the automatic transistor sed voltage regulator. incc rporating 3-phase sensing. The regulator is so designed that wher the attern ator is on balanced 3-phase lcad and with one phase switched off or disconnected, the paase voltage will not vary more than $\ddagger 6 \%$ under any conditiors numeric/ C (usor control pad and installed incustom-built steel enclosure vith textured blue enamel finith. Ideal for the VDU $174^{\circ} \times 75$ dimensions Total weig 4 kg PRICE Mail Order Total ... Mail Order Total $£ 47.1$, mounting frame for $£ 45$ 3.48 | .78 |
| :--- | $E 18.00$ $E 23.00$ $E 12.50$ E15.24 E431 £7.50 9.20

4.25 46 P.O.A $A C$ -

VDUs
Hazeltine.

Hours ol Bustness: am. 5 p.m
Hours of
1-2p.m.
1-2p.m.
ADD 15% VAT TO ALL PRICES
ADD 15% VAT TO ALL PRICES
Carriage and Packir g charge extra on all items uniess
WW-201 for further details

Electronic Brokers Simited 61/65 Kings Cross Road London WCIX 9LN Erigland Telephone*81-278 3*61 Telex: 298694 Elebro G

Bnef Spec. Amplifier Low tield loroidal transtormer. Mag. input Tape In/ Qut facility (for noise re. uction unit. etc.) THD less than 0.1% at 20 W into 8 ohms. High Stew Rate, Low noise op amps

NELSON-JONES

Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase I.F. and 3 state MPX decoder.

PRICE: $£ 74.95$ + Vat

NRDC-AMBISONIC UHJ SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic ream W W July. Aug The unit is designed to decode not only UHJJ but virually all other quadrophonic' systems (Not CD 4). including the new BBC HJ. 10 input selections
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques Both 2 or 2 input signals and 4 or 6 oulput sin Complete with mains power supply, wooden cabinet, panel. knobs. etc

S5050A STEREO AMP

Very high performance kit
50 watts rms-channel 0
rating 360 w per channel
Tone cancel switch
heatsinks.
Complete kit only $£ \mathbf{£ 9 . 9 5}$ + VAT

(Also available our $20 \mathrm{w} / \mathrm{ch}$ BIFET S2020 Amp)

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved performance The kit is even easier to build. The internal audible alarm turns off after approximately 40 seconds and the unit re-arms. 240 V ac mains or 12 V battery operated Disguised as a hard-backed book Detection range up to 45 feet. Internal mains rated voltage free contacts for external bells
Complete kit $£ \mathbf{5 2 . 5 0}$ plus VAT. or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories Inc

PRICE: £49.95

- VAT (3 head model avalabie)

Also available ready built and teste

Calibration tapes are avalable for open-reel use and for cassette (specity which)
Single channet plug-n Dolby (TM) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts and all components

Typical performance
Noise reducuen Noise reduction better than 9 dB weighted Chipping level 165 dB above Dolby ievel (measured at 1% third Hatmonic distortion 01% at Dolby level typically 005% over
most of band rising to a maximum of $0 \quad 12 \%$ aly
 at Moniror output
Dynamic range $>90 \mathrm{~dB}$
30 mV sensilivily
Price $£ 67.60$ + VAT

All kits are carriage free
IITEGREK LIMITED

THE SMALLER 'SCOPE WITH THE BIG SCREEN

now has extra features (model DTV12-14)...
Fine sweep control| Fine gain controls | Invert channel 2 Sum and difference channels 1 and 2 | Fully passive attenuator
plus all the features of the DT12-5 model...

Large screer. Full 5" diag. display. Internal graticule eliminates parallax error

Small size. 0 lly $12^{\prime \prime}$ deep $\times 11^{\prime \prime}$ wide $\times 63^{3 / \prime}$ high overall. Occujies little bench space. No need for trolley. Weighis only $151 / 2 \mathrm{lbs}$

Bandwidth dc. to 12 MHz
Sensitivity $5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$

XY mode. Horizontal signal via channel 1
Timebase $.5 \mathrm{us} / \mathrm{cm}$ to $.5 \mathrm{~s} / \mathrm{cm}$ plus $\times 5$ expansion
Trigger internal from channel 1 or channel 2 or external. Internal TV frame or line. Auto ensures sweep in absence of signal

Calibrator output for probe compensation or Y amplifier calibration

Alt/Chop automatic

MADE IN GREAT BRITAIN

Send for details now to:-
Accuracy $\pm 3 \%$

Send for detais now

OR HARPENDEN • TELEPKONE (05827) 69071

Look for these - and lots more in THE ONE-OFF SHOP Send for your copy. Test our service by phoning 0703618525 before 3.00 p.m. - and your catalogue will be in the post tonight.

Britain's fastest growing distributor of branded electronic components. Road, Boyatt Wood, Eastleigh, Hants. SO5 4ZY. Telex 477144

WW - 070 FOR FURTHER DETAILS

Analog Systems, the fast growing linear I/C company of Arizona whose products are available from Pascall, offer a wide range of high performance linear integrated circuits.

Audio Amplifiers and pre-amplifiers

MORE SPEC. FOR YOUR MONEY
TYPE 747 UNIVERSAL COUNTER TIMER
DC to $150 \mathrm{MHz} \quad 8$ DIGITS, 3 CHANNELS
measures -
frequency Ch A and Ch C
PERIOD Ch A
TIME $\pm \mathrm{Ch} A 10 \pm \mathrm{Ch} B$
PULSE WIDTH Ch $A+$ or -
COUNT Ch A (may be gated and reset by $\mathrm{B} \& \mathrm{Cl}$
AVERAGES 1 to 1000 events

\& 3.50 carriage, ins etc

IYPE 745 COUNTER TIMER

	OC to $32 \mathrm{MH}_{2}$	5 DIGITS
	measures -	
0, 5	frequency	
D00 0	PERIOD	
	time	
"	COUNT	
£116.38	. 6 GATE TIMES / TIME	UNITS
\& £ ${ }^{\text {carriage. ins. etc. }}$	$10 \mu \mathrm{~S}$ to 1 S	

TYPE 746 AUTORANGING FREQUENCY METER $£ 84.88$ $1 \mathrm{~Hz}_{2}$ to 99.9 KHz

TYPE 615 OFF-AIR STANDARD $£ 97.13$
$10 \mathrm{MHz}_{2} 1 \mathrm{MHz}_{\mathrm{z}}$ and 100 KHz
OMB ELECTRONICS. RIVERSIDE, EYNSFORO. KENT DA4 OAE Tel Farmugham (0322) 863567

Prices, which are CWO and ex VAT, are correct at the time of going
to press and are subject to change without notice

Here is the expertise you can depend on ~ field

When you choose a mast from the comprehensive Clark range you are assured of a high standard of Engineering and operational reliability.

Why compromise?
Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg -

World-beating Oscilloscope Offers Electronic Brokers

61/65 Kings Cross Road, London WC1X 9LN.
Tel:01-2783461. Telex 298694

Soldering equipment designed by specialists for professionals. ADCOLA IOI Soldering Unit

- no moving parts
- variable lockable temperature $120^{\circ} \mathrm{C}-420^{\circ} \mathrm{C}$
- no magnetic effect
- no tip voltage
- no mains interference
- no real maintenance costs (bit/tip changes only)
- total 50 watt electronic control ($\pm 2 \%$)
- simple plug-in bits/tips
- electrical safety approved 240 V 24 V
- easy tool interchangeability from one Unit to another

~or complete $\mathbf{2 0 0 1}$ Soldering Station

Soldering tool and control unit as Unit 101 but with the additional features

- filtered two speed fume extraction
- built in bench lighting
- solder reel dispenser
- clearbench area
- Adiron ${ }^{\circledR}$ long life bits/tips the same range as that for Unit 101

ADCOLA ADIRON (B) long life bits/tips
simple plug-in type suitable for both Unie 101 -nd Unit 2001

Range of 10ADIRON long life bit profiles
B42LL B38LL B50LL B14LL B35LL B44LL B36LL B37LL B46LL B40LL

Forfull details contact ADCOLA

ADCOLA PRODUCTS LIMITED Gauden Road London SW4 6LH Telephone Sales (01) 6220291 Telex 21851 Adcola G

BULK EPROM PROGRAMMING
 P4000 PRODUCTION
 EPRROM PROGRAMMER

This unit provides simple, reliable programming of up to 8 EPROMS simultaneously. It has been designed for ease of operator use - a single 'program' key starts the self check - blank check progràm - verify sequence

- Independent blank check \& verify controls are provided along with mode, pass / fail indicators for each copy socket and a sounder to signal a correct key command \& the end of a programming run. Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516 /$ 2716/2532/2732 (single rail) EPROMS may be selected without hardware or personality card changes.
PRICE 5545 + VAT. Postage paid

BULK EPROM ERASING

MODEL UV141 EPROM ERASER
 - 14 EPROM capacity

- Fast erase time
- Built-in 5-50 minute timer
- Convenient slide-tray loading of devices
- Slafety interlocked to prevent eye and skin damage
- Rugged construction
- MINS \& ERASE indicators
- Price $£ 78$ + VAT postage paid

MODEL UV140 EPROM ERASER

Similar to Model UV141 but without timer. Price $\mathbf{£ 6 1 . 5 0}+$ VAT post paid
BULK EPROMS
2716 (450ns)
(single rail)
2708 (450ns)

$1-9$	$10-24$	$25-49$	$50-99$
$\mathbf{£ 6 . 0 0}$	$\mathbf{£ 5 . 5 0}$	$\mathbf{£ 5 . 0 0}$	$\mathbf{£ 4 . 5 0}$
$\mathbf{£ 3 . 9 0}$	$\mathbf{£ 3 . 5 0}$	$\mathbf{£ 3 . 1 0}$	$\mathbf{£ 2 . 9 0}$

Postage and Packing is included in all prices. ADD VAT at 15%. All our EPROMS are manufactured by leading Companies and are fully guaranteed, branded and to full specification

WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
OFFICIAL COMPANY ORDERS / CHEQUES TO:
PLEASE NOTE NEW ADDRESS \& TELEPHONE NUMBER
GPINDUSTRIAL
ELECTRONICS LTD.
Unit 5, Burke Road, Totnes Industrial Estate, Totnes, Devon
Telephone: Totnes (0803) 863360 sales, 863380 technical
Telex: 42596
DISTRIBUTORS REQUIRED - EXPORT ENQUIRIES WELCOME
 $A C$ volts and current DC volts 200 mV - 1 KV ,
 $10 \mu \mathrm{~V}$ resolution AC volts. $200 \mathrm{mV}-750 \mathrm{~V}$, $10 \mu \vee$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance $200 \Omega-20 \mathrm{M} \Omega, 0.01 \Omega$ resolution. Also reads dB direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 ns . £245 mains model £285 mains battery 8012A $31 / 2$ Digit LCD DMM with true RMS on AC volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$
£218.00 mains model $\mathbf{£} \mathbf{2 4 4 . 0 0}$ mains battery 8010A $31 / 2$ Digit LCD
 DMM Same spec as 8012A plus a 10Amp AC/DC current range, but no low resistance range. £167.00 mains model $\mathbf{£ 1 9 3 . 0 0 \text { mains battery } . ~}$ 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts 200 mV - 1 KV $100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $2 \mathrm{~mA}-2 \mathrm{~A}$ $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution. Conductance 200 n S. Peakhold of AC or DC volts and current Level detector operates around +0.8 V reference. Audio tone on level and continuity, $\mathbf{£ 1 5 5 . 0 0}$, carrying case $£ 8.00$ extra. 8020A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but
 omplete with carrying case. $\mathbf{£ 1 2 5 . 0 0}$ 8022A $31 / 2$ Digit hand held LCD DMM. Spec 7s per 8020A but no conductance ranges and slight reduction in accuracy, $\mathbf{£ 8 9 . 0 0}$ carrying case $£ 8.00$ extra.

Alsn available a range of

 accessories including current shunts, EHT probe, rf probe,Temperature probe and touch and hold probe. Full details on request The warranty period on all items shown is 1 year other than the 8020A
which is 2 years

Electronic Brokers

1 man
61-65 King's Cross Road London, WC1X 9LN
Tel: 01-2783461-Telex 298694
WW - 041 FOR FURTHER DETAILS

New! Sinclair 2X81 Personal Computer. Kit: £49. ${ }^{5}$ compeot

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under £100. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX 81 kit means an even bigger saving. At $£ 49.95$ it costs almost 40% less than the ZX 80 kit!

Lower price: higher capability With the $\mathbf{Z X 8 1}$, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the $\mathrm{Z} \times 80$.

It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard.

Higher specification, lower pricehow's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $Z \times 81$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the $Z \times 80$!

Proven micro-processor, new 8K BASIC ROM. RAM-and unique new master chip.

VIIR I =N THEN GO TQE
VIIR I =N THEN GO TQE
=1
=1
0
0
J+1
J+1
\Gamma 田(a)\A(TT) THEN GQ TQ
\Gamma 田(a)\A(TT) THEN GQ TQ
@!ご
@!ご
J)=Q!
J)=Q!
J=
J=
THEN GCT:回 1E
THEN GCT:回 1E

ew，improved specification

Z80A micro－processor－new faster arsion of the famous Z 80 chip，widely recognised as the best ever made．
－Unique＇one－touch＇ key word entry： the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entry
－Unique syntax－ check and report codes identify programming errors immediately．
Full range of mathematical and scientific functions accurate to eight decimal places．
－Graph－drawing and animated－ display facilities．
－Multi－dimensional string and imerical arrays．

Up to 26 FOR／NEXT loops．
Randomise function－useful for games well as serious applications．

Cassette LOAD and SAVE with med programs．

IK－byte RAM expandable to 16 K tes with Sinclair RAM pack．
Able to drive the new Sinclair printer st available yet－but coming soon！）
Advanced 4－chip design：micro－ ocessor，ROM，RAM，plus master chip nique，custom－built chip replacing ZX80 chips．

 ：X8

nclair Research Ltd，
íings Parade，Cambridge，Cambs．，
：2 1SN．Tel： 027666104.
g．no： 214463000

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the ZX81 are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the IX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full atphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The ZX Printer will be available in Summer 1981， at around £50－watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by 16 ！

Use it for long and complex pro－ grams or as a personal database．Yet it costs as little as half the price of com－ petitive additional memory．

How to order your ZX81
BY PHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BY FREEPOST－use the no－stamp－ needed coupon below．You can pay by cheque，postal order，Access or Barclaycard．
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14－day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be．

Post this coupon now.
Please send me a copy of your 320 page catalogue I enclose $£ 1.25$
(incl. $25 \mathrm{p} p \& \mathrm{p}$). If amm not completely satistied I may return the
catalogue to you and have my money refunded. If you live outside the
U.K. send $£ 1.68$ or 12 International Reply Coupons.
Name-
Address
(Ww6/81)
All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911
WW - 003 FOR FURTHER DETAILS

Elektor magazine 10 Longport, Canterbury, Kent CTI IPE tel. 0227 54439/0

METALFILM RESISTORS
 1\% Tolerance, $1 / 4$ Watt

ONLY 3p EACH
Minimum 5 ocs per value 89 Values (E24)

ORION SCIENTIFIC PRODUCTS LTD.

 10 Wardour St., London W1WW - 046 FOR FURTHER DETAILS

HIGH PERFORMANCE BUT LOW COSTAUDIO SIGNAL GENERATORS SINE/SQUARE WAVE

Model A01 13

Distortion . 02% (1 Khz) otherwise as 146.9 $\begin{array}{ll}\text { Battery version..............f29.50 (+UK Tax } £ 4.40) \\ \text { Mains version } & £ 3.00\end{array}$ Mains version … $\quad \mathbf{E 3 6 . 0 0}(+$ UK Tax $£ 5.40$ P/P $£ 150$

TELERADIO ELECTRONICS
325 Fore Streat, Edmonton, London, N9 OPE T由1: 8073719 Also avalable: R.F. Sig. Gen. P.S.U. T H.D. Analyser, Frequency Meter, MVMT Function (Sweep) Generators. SAE for full lists.

Get a great deal from Marshall's

WE ARE BROAD LINE DISTRIBUTORS FOR SIEMENS \& THOMSON CSF WITH FULL INDUSTRIAL FRANCHISES AND CONSUMER FRANCHISES FOR MULLARD, NATIONAL AND TEXAS.
WE ARE ESPECIALLY STRONG ON ITEMS LISTED AND INVITE YOUR ENQUIRIES. PLEASE SEND FOR STOCK LIST AND CLEARANCE LIST OF SEMICONDUCTORS
COME TO US FOR YOUR REQUIREMENTS OF SIEMENS CAPACITORS • SWITCHES \& OPTO COMPONENTS.
T.T.L. - C.M.O.S. • BAHCO TOOLS SINCLAIR TESTGEAR LEADER INSTRUMENTS PRESENSITISED LIGHT SENSITIVE PRINTED CIRCUIT BOARDS 4 SIZES BOTH DOUBLE \& SINGLE.
A. MARSHALL (LONDON) LTD. KINGSGATE HOUSE, KINGSGATE PLACE, LONDON NW6 4TA. Industrial Sates: 01-328 1009
Mail Order: 01-624 8582 24hr service Retail branches: London Glasgow. Bristol

Second User Test Equipment, Galibrated to Manufacturer's original specification.

ACOUSTIC \& VIBRATION

BRUEL \& KJAER

2203 Sound LevelMeter
2215 Soundmeter inc Octave Fiter
2218 Soundmeter inc LEQ facility
4230 Sound Level Calibrato
4424 Noise Dosemete
4220 Piston Phone Level Cailbrator
2603 Mic amplitier $2 \mathrm{~Hz}-35 \mathrm{KHz}$
1014 BF Oscillator $20 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$
CEL
$\begin{array}{lr}112 \text { Environmental LEQ Meter Batt op } & 450 \\ 144 \text { Improved version of } 112 \text { model } & 1050\end{array}$
BRIDGES \& V and I STANDARDS
FLUKE
341 DC Voltage Calib $10 \mu \mathrm{~V}$ to 1100 V GENERAL RESISTANCE DAS56 DC V ardi Calib $1 \mu \mathrm{~V}$ - 10 V 30 mA
HEWLETT F'ACKARD
4342 OLC Mete $22 \mathrm{KHz}-70 \mathrm{MHz}$
MARCONI
TF868A Universal LCR Bridge
TFi245 Q Meter $1 \mathrm{KHz}-300 \mathrm{MHz}$
WAYNE KERR
B500 LCR Bridge
B601 LCR Bridge RF Osc 6 Det not inc

COMMS \& CABLE TEST EQUIPMENT

CHASE

DYMAR

88015 VHF Radio Telephone - Portable
883 VHF Radio Telephone - Porrable
BC282 Batt Charger for 880/883
HEWLETT PACKARD
3556 A psophometer $20 \mathrm{~Hz}-20 \mathrm{KHz}$
MARCONI
TF2333 Trans Test Set $30 \mathrm{~Hz}-550 \mathrm{KHz}$
NEC
TT537B Noise \& VU Meter -80 to +20 dBm
PYE
PF2UB UHF Racio Telephone - Portable
STC
74216 A Noise Generator CCIT
TEKTRONIX
1502 TDR Cableflester CRT + Recorder DRANETZ
606 3ch Volts Av/Spike/Time/Printe
GAY

MISCELLANEOUS

COMARK

1601BLS Thermom 10 ch $87+1000^{\circ} \mathrm{C}$ tヶpe K 1604BLS Thermom $10 \mathrm{ch}-60+170^{\circ} \mathrm{C}$ typek 82 1625BLS Thermom $10 \mathrm{ch}-100+300^{\circ} \mathrm{C}$ type $T 90$ 1642 BLS Thermom $10 \mathrm{ch}-120+800^{\circ} \mathrm{C}$ type J 75 N.B. Thermocouples not included

SCHWARZBECK
FSME1515 HF Interference Recelver SOLARTRON
1180 XY interface for 117274 T.F.A.
TEKTRONIX
1485C TV Waveform Monitor PAL/NTSC 2300

NETWORK ANALYSERS/ PHASEMETERS

GENERAL RADIO

OSCILLOSCOPES \&

ACCESSORIES

GOULD ADVANCE
OS $1000 \mathrm{~A} 20 \mathrm{MHz} 5 \mathrm{~m} V 2$ Trace TV trig
OS 1000 B 20 MHz 5 mV 2 Trace TV trig
OS 3300 B 50 MHz 1 mV 2 Trace 2 T base
OS33008 50 MHz 1 mV 2 Trace
1740 A 100 MHz 5 mV 2 Trace 2 T base
Trig View
Trig View
1804 A 50 MHz 20 mV 4 Trace Plug.In
1825A Dual Timebase Piug-i
1805A 100 MHz 5 mV 2 Trace Piug-in
PHILIPS
PM3211 15 MHz 2 mV 2 Trace TV trig
PM321225 MHz 2 mV 2 Trace TV itig
PM321425 MHz 2 mV 2 Trace 2T base
PM324450 MHz 5 mV 4 Trace 2T base PM3262 100 MHz 5 mV 2 Trace 2 T base

TEKTRONIX

465100 MHz 5 mV 2 Trace 2 T base
465 B 100 MHz 5 mV 2 T tace 2 T base Probes
475200 MHz 2 mV 2 Trace 2 T base 485350 MHz 5 mV 2 Trace 2 T base 603100 MH 2 CR Crout 3 slot M Frame
$704200 \mathrm{MH}_{2} \mathrm{CRT}$ out 4 siot M Frame
$7904500 \mathrm{MH}_{2} 5 \mathrm{mV} 2$ race Plug in 7 A 12105 MHz 5 mV 2 Trace Plug-in A 19500 MHz 10 mV 1 Trace Plug in
7 A 22 I MHz 10 uV Differential Plug-in
$7 A 24350 \mathrm{MHz} 5 \mathrm{mV} 2$ Trace Plug -in $7 A 26200 \mathrm{MHz} 5 \mathrm{mV} 2$ Trace Plug-in 7853A 2 Timebase Plug-in 100 MHz Trig 78801 Timebase Plug-in 400 MHz Trig 78852 Timebase Plug-in 400 MHz Trig P6013A X 1000 12KV Probe
P6201 FET Probe DC. 900 MHz
TELEQUIPMENT
D34 15 MHz 2 mV 2 Trace Mains

HEWIETT PACKARD

1703 A 35 MHz 10 mV 2 Tr 2 TB 1000 Div/ms 1400 TEKTRONIX
466100 MHz 5 mV 2 Tr 2 TB $1350 \mathrm{~cm} / \mathrm{ss} \quad 2850$
T912 10 MHz 2 mV 2 TI 1 TB $250 \mathrm{~cm} / \mathrm{ms}$ 731325 MHz 3 Siot $\mathrm{M} /$ Frame split $5 \mathrm{~cm} / \mu \mathrm{s}$ 7834400 MHz 4 Slot M/Frame $2500 \mathrm{~cm} /$ /

HEWLETT PACKARD
$435 \mathrm{~A} 10 \mathrm{MHz}-18 \mathrm{GHz}$ Powermete
8481 A Type N Coax sensor for 435A
$432 \mathrm{~A} 10 \mathrm{MHz}-10 \mathrm{GHz}$ Powermeter
478A Type N Coax sensor for 432A
MARCONI
6460 TMHz-12.4 GHz Powermeter
TF $25{ }^{\circ} 2$ DC -500 MHz Powermete,
POWER SUPPLIES etc
ADVANCE
1 V5S inverter 24 V DC to 240 V AC 500 W
FARNELL
L30B 0-30V variable 1A Metered
FLUKE
4158 0. 3.1 KV variable 30 mA Metered
ITT
MARCON
TF2154 1 0-30V variable Metered
SORENSON
DCR $300-2.50-300 \mathrm{~V}$ variable 2.5 A Meter
VALRADIO
812 200S inverter 12 V DC to

PULSE GENERATORS

EH RESEARCH
$13210 \mathrm{~Hz}-3.5 \mathrm{MHz} 50 \mathrm{~V} 50 \Omega$ RT 10 ns 2 pulse MARCON
TF20250.2 Hz $25 \mathrm{MHz} 10 \mathrm{~V} 50 \Omega \mathrm{RT} 7 \mathrm{~ns} 2$

RECORDERS \& ACCESSORIES

BRUNO WOELKE
ME 1028 Wow and Flutter mete
BRYANS SOUTHERN
BS314 Chart $10^{\prime \prime} 4$ Pen 16 speed
BS3 Cheed
HEWLETT PACKARD
7015A XY 1 pen A4 size
7046 A XY 2 pen A3 size
KUDELSKI
NAGRA 4.2LSP Tape Recorder Portable
MEDELEC
4 scope Combined 4 chscope + UVrec'dr 1900
PHILIPS
PM804; XY I pen A4 size
PM825! Chart $10^{\prime \prime} 1$ pen 12 speed
RACAL
Store 4 Tape Recorder 4 ch FM
SE LABS
615051 UV chart $6^{\prime \prime} 12$ ch 12 spd
9946 ch galvo preamp + DC bridge supply
6008 UV chart 8 " 25 ch 16 speed
SMITHS
"RE541 Chart 8" 1 pen 8 speed
RE501 4701 Cht $4^{\prime \prime}$ + XY 1 ch 10 spd
SOLARTRON
3240 Modular Dara Logger system
YOKOGAWA
3046 Chart $10^{\prime \prime} 1$ pen 8 speed
3047 Chart $10^{\circ} 2$ pen 8 speed
are priced less galvos
SIGNAL ANALYSIS
EQUIPMENT
AIRMEC
409 Mod Meter $3 \mathrm{KHz} \cdot 1.5 \mathrm{GHz}$ AM FM
HEWLETT PACKARD

MARCON
TF2300A Mod Meter $1 \mathrm{MHz}-1 \mathrm{GHz}$ AM/FM $\quad 450$
$\begin{array}{ll}\text { TF2330 Wave Analyser } 20 \mathrm{~Hz}-50 \mathrm{KHz} & 425 \\ \text { TF2331 Distortion Meter BW } 100 \mathrm{KHz}+\text { Det. } & 340\end{array}$ WAYNE KERR
A321 Wave Analyser
Note: see a/so' Spectrum Analysers

SIGNALIFUNCTION/

 GENERATORS
GENERAL RADIO

1362 Generator $220-920 \mathrm{MH}$
GOULD ADVANCE
SG70 Generator $5 \mathrm{~Hz}-125 \mathrm{KHz} 600$! $4 \mathrm{~W} \quad 85$
HEWLETT PACKARD
204D Generator $5 \mathrm{~Hz}-1.2 \mathrm{MHz} 600$ s?
8690 B Sweeper mainframe
8620B Sweeper mainframe
3310A Function 005.5 MHz Sin
Sq Tri Rmp \quad Generator $3.8-7.5 \mathrm{GHz}$
612 Generator $450-1230 \mathrm{MHz}$
612 Generator $450-1230 \mathrm{MHz}$
MARCONI
TF144H/4S Generator $10 \mathrm{KHz}-72 \mathrm{MHz}$ AM
TF8010 Generator $10 \mathrm{MHz}-470 \mathrm{MHz} \mathrm{AM}$
TF2015 Generator 10.520 MHz AM/FM
TF2171 Synchroniser for TF2015
TF2012 Generator $400-520$ MHz FM
PHILIPS
PM5127 Function $0.1 \mathrm{~Hz} \cdot 1 \mathrm{MHz} \operatorname{Sin}$
So Tri Rmp

+ swp/brst
PM5326 Gen 0 .125 MHz AM/FM
PM5326 Gen $0.1-125 \mathrm{MHz}$ AM/FM
swo cntr $\rightarrow i \mathrm{MHz}$
PM5326x Gen as 5326 inc 100 MHz Counter
PM5326X Gen as 5326 inc 100 MHz Counter
9081 Gen O Lock 5-520 MHz AM/FM OM
TEXSCAN
9900 Sweeper $10.300 \mathrm{MHz} 6 / \mathrm{in}$ CRT disp
VS60 Sweeper $5 \cdot 1000 \mathrm{MHz}$
TV Markers 31.532 .53539 .541 .5 MHz
LN40A Log Amplifier
WAVETEK
2001 Sweeper $1.1400 \mathrm{MHz} \times$ tal markers
HEWLETT PACKARD
$141 \mathrm{~T} / 8552 \mathrm{~B} / 8555 \mathrm{~A}$ Compiete $.01 \cdot 18 \mathrm{GHz}$
8445 A Pre-selector $0.01-18 \mathrm{GHz}$
$3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{KHz}$ with digi store disp

VOLT/MULTI-METER

(ANALOGUE)
AVO
$8 \mathrm{MK4}$ AC DC
BOONTON
92C AC RF $10 \mathrm{KHz}-1.2 \mathrm{GHZ} 1 / 2 \mathrm{mV} \cdot 3 \mathrm{~V}$
HEWLETT PACKARD
$400 \mathrm{E} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}(\mathrm{OC}-0 \mathrm{P})$
427 A AC DC $\Omega \mathrm{AC}-1 \mathrm{MHz}$
3400 A TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$
DC O P
MARCONI
TF2603 $50 \mathrm{KHz}-1.5 \mathrm{GHz} 300 \mu \mathrm{~V} 3 \mathrm{~V}$
TF $260420 \mathrm{~Hz}+.5 \mathrm{GHz} 300 \mathrm{mV} \cdot 300 \mathrm{~V}$
PHILIPS
PM $2454810 \mathrm{~Hz}-12 \mathrm{MHz} 1 \mathrm{mV} \cdot 300 \mathrm{~V}$ DC O P 250
RACAL
9301 RMS $10 \mathrm{KHz} \cdot 1.5 \mathrm{GHz} 100 \mathrm{HV} \cdot 300 \mathrm{~V} \quad 550$
VOLT/MULTI-METER (DIGITAL)
ADVANCE
DMM7A 1999F
BOONTON
$92 \mathrm{AD} 1999 \mathrm{FSD} 10 \mathrm{KHz} \cdot 1.2 \mathrm{GHz} 10_{\mu} \mathrm{V}$ res
FLUKE
8000A 1999FSD AC DC V $/ 1 / \Omega$
HEWLETT PACKARD
3490A 100000 FSO
SOLARTRON
A200 19999FSD DC
A205 19999FSD TRMS AC OC $\vee \Omega \Omega 220$

Carston
 Electronics Ltd
 01-2675311

Shirley House, 27 Camden Road,
London NW 1 9NR. Telex: 23920

DATALAB
Full details and specification of equipment listed, available. Because of long copy dates this list is not comprehensive - ring for inventory update or tell us your SPECIFIC NEEDS. Hours Monday to Friday $9.00 \mathrm{am}-5.30 \mathrm{pm}$ (4.30 pm Fridays). Prices exclude delivery and VAT.
We take Access or Barclaycard.

The Professionals

VALVES,SEMICONDUCTORS \&COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.

Hall Electric Limited.
Electron House.
Cray Avenue. St. Mary Cray.
Orpington, Kent BR5 30 J.
Telephone: Orpington 2709s
Telex : 896141

MIN DEF APPROVAL 0529/0531

WW-029 FOR FURTHER DETAILS

ALL THESE HIGH TECHNOLOGY PHILIPS INSTRUMENTS

a revolution
digital storage oscilloscons extend way like tour mentions fican.
PM3310. The digital stance. Applications through teatures to 5 ns minutes
limits due sampling rate
50 MHz and

100 MHz OSCILLOSCOPES

UNIQUE NEWCOMER EXPANDS FAMILY.

Philips renowned family of compact 100 MHz
 oscilloscopes has been expanded by a unique new instrument, the PM 3264, which provides comprehensive display and measurement facilities on four channels. This makes possible multi-channel checks on virtually any type of digital circuitry

Like the rest of the
Fully independent triggering allows the PM 3264 s delayed time base to be set to trigger on channel A, which permits speed family, the PM 3264 is based on Philips PM 3262100 MHz oscilloscope, which itself is capable of meeting most measurement problems in today's advanced or everyday electronics environments.

The other 100 MHz instruments are:

- the PM 3263, which has microprocessor controlled timing to give dual delay for time interval measurements and delay by events.
- the PM 3266, which offers variable persistence and fast transfer storage.

Reader inquiry number 220

$25 / 35 \mathrm{MHz}$ OSCILLOSCOPES

LOWER BANDWIDTHSAME HIGH QUALITY.

Try these excellent $25 / 35 \mathrm{MHz}$ oscilloscopes for yourself. You'll find none better at these bandwidths and 25 MHz models now represent even better value

> PHILIDS Test \& Measuring Instruments

S ARE USUALLY AVAILABLE ON SHORT OR IMMEDIATE DELIVERY. INQUIRE FOR DETAILS.

\cdots

PULSE GENERATORS

HAVE YOU STANDARDISED YET?

More and more companies are adopting Philips pulse generators as their standard instruments because of their quality and coverage of a wide range of technologies. Models available range from 10 to 100 MHz and include the truly universal PM 571650 MHz generator which has been purpose-designed to meet all MOS logic testing requirements as well as TTL and other HNVIL circuits.

Its wide range of repetition rates, delay, duration

A number of new instruments have recently joined the Philips LF range, among them the spectacular PM 5134 function generator

It's an easy-to-use yet extremely sophisticated instrument, with a wide 1 mHz to 20 MHz frequency range and selectable 50Ω or 600Ω termination.

The microprocessor-based PM 5190 LF synthesizer is bus compatible and provides a very accurate and stable signa! source. Frequency setting within the range of 0.001 Hz to 2 MHz is possible to within 1×10^{-6}.

Inquiry No. Reader inquiry number 224

100 MHz oscilloscopes 220 Counters/Counter-timers 226 $25 / 35 \mathrm{MHz}$ oscilloscopes 221 Recorders 227 Logic Analysers Pulse generators 223 222 LF range 223
224

1981 Philips Test and Multimeters 225 oscilloscope 229
Pye Unicam Ltd., Philips Electronic InstrumentsDept. York Street, Cambridge CB1 2PX
Tel: (0223) 358866 Telex: 817331
PHILIPS

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope, tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

IFR precision simulators

FieldTech Ltd Heathrow Airport London Hounslow TW6 3AF Te!: 01-759 2811 Telex: 23734
FLDTEC G

The expiling new namein power operational amplifiers

Apex Microtechnology of Tuscon Arizona, whose products are avoilable through Pascall, offer a comprehensive ronge of hybrid power op amps with high input sensitivity and high voltage ond current outputs.

High current-up to 5 amps peak
PA 07 and PA 074 (low drift) -Fet input
PA 10 and PA 10A (low dritt) - High speed

PA 73

Applications

- Motor, synchro, valve and activator control
- Audio amplifiers up to 60 W RMS
- Magnetic deflection circuits up to 4A
- Temperature control up to 180 W
-Low cost

Features

- Low bias curent - Wide supply range - Protected output stage - Thermal shutoff - High output current $- \pm 5 A$ Peak

Send for full product listings of Apex Microtech's exciting
product range

Pascall Electronics Limited, Hawke House, Green Street, Sunbury-on-Thames,
Telephone: (09327) 87418 Telex: 8814536 WW - 022 FOR FURTHER DETAILS movements in 7 attractive case sizes designed for normal or behind panel mounting.

Dino International standard moving coil or moving iron meters with 240° long scale or 90° movements
in 5 case sizes.
Bench Multimeters Choice of $4^{1 / 2}$ or $3^{1 / 2}$ digit true RMS digital multirange instruments with excellent specitication and features. Numerous accessories to greatly extend measurment range.

Anders Electronics Limited,

 48-56 Bayham Place,London NW1 0EU. Tel: 01-387 9092. Telex: 27364.

Audio power meter

Wide range:

* 30Hz to 30k Hz *10رW to 50W
* 1-2 to $1000 \Omega \quad$ * mains/battery
* decibel scale-18dBm to +47dBm

FARNELL INSTRUMENTS LIMITED SANDBECK WAY-WETHERBY WEST YORKSHIRE LS22 4DH TELEPHONE (0937)61961

WW-027 FOR FURTHER DETAILS

LOW VOLTAGE POWER DRILLS AND ACCESSORIES

Illustration shows Titan Drill and Stand (Price £27 inc. VAT and Postage) which is One of the combinations which can be purchased from our comprehensive range of Drills and Accessories Prices from $£ 8.34$ (Reliant Drill oniy) inc. VAT and Postage
Send 25 p for Catalogue

A. D. BAYLISS \& SON LTD.

PFERA WORKS, REDMARLEY GLOUCESTER GL19 3JU Barclaycard, Access Welcome
Tel. Bromesberrow (053 181) 273

STEREO DISC AMPLIFIER 2

THE MOST THOROUGHLY RESEARCHED DISC AMPLIFIER THERE IS for Broadcasting, Diac Monitoring and Transfer

Ring or write for full specifications of this or PPM Boxes $\#$ PPM 2 and PPM 3 drive circuits EErnest Turner movements 640.642. 643 and TWIN with flush mounting adaptors and Moving Coil Preamplifier $* 10$ Outlet Distribution Amplifier \star Stabilizer $\$$ Fixed Shit Circuit Boards $\$$ Stereo R.F. Clipper \star Broadcast Monitor Receiver 150 kHz 30 MHz
SURREY ELECTRONICS, The Forge, Lucks Green, Cranleigh. Surrey GU6 7BG Nent 048665997

-

Chokes, block filters, ceramic filters, resonators, IFTs, oscillator coils, audio filter blocks etc.

LOW PASS FILTERS
Now from 10 kHz to 20 MHz TOKO's recently expanded LPF series covers from the audio spectrum through to 20 MHz in a series of LPFs for mpx, video, radio etc.

The LPFs are based on $7 \& 10 \mathrm{~mm}$ formats with up to 4 LC tuned elements per block. Many stock types available.

WW-036 FOR FURTHER DETAILS

- ORDER BY POST OR TELEPHONE WITH BARCLAYCARD/ACCESS
 - ELECTRONIC TEST EQUIPMENT SPECIALISTS
 - all prices include vat
 ELECTRONICS

SCOPES

A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dualtrace Mains and Battery/Mains portables. Many on demonstration

- ALL MODELS ON DISPLAY
 - RETAIL - MAIL ORDER -
 EXPORT - INDUSTRIAL
 - OPEN SIX DAYS A WEEK
 - CALL IN AND SEE
 FOR YOURSELF

SINGLE TRACE
 (UK c/p etc $£ 2.50$)

50)

$\mathrm{Hm} 307.310 \mathrm{mHZ}, 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm}$ display plus component tes
CO1303D $5 \mathrm{mHZ}, 10 \mathrm{mHZ}, 7 \times 7 \mathrm{~cm}$ display
SC110 10 mHZ Battery portable 10 mV .
SC110 10 mHZ Battery portable, $10 \mathrm{mV} 3.2 \times 2.6 \mathrm{~cm}$ display (Option
f8.86. Nicads f8 63 Mans $£ 8.86$. Nicads $£ 8.63$ Mains unit $£ 5.69$) - CS1559A $10 \mathrm{mHZ} 10 \mathrm{mV} \cdot 5^{\prime \prime}$ display *V151 15mHZ $1 \mathrm{mV} 5^{\prime \prime}$ display

SAFGAN DUAL TRACE C/P UK $£ 2.50$ $10 \mathrm{mHZ} £ 194.95,12 \mathrm{mHZ} £ 201.25,15 \mathrm{mHZ} £ 216.20$, OPTIONAL PROBES (ALL MODELS) XI £6.50, $\times 10 £ 8.50, \times 100 £ 12.95, \times 1-\times 10 £ 10.95$ HAMEG TRIO SINCLAIR - LEADER HITACHI \star Note price includes free Probe(s)

DUAL TRACE
£158.78 CS1566A $10 \mathrm{mHZ}, 10 \mathrm{mV} 5^{\prime \prime}$ display
$£ 115.25 \mathrm{Hm} 312-820 \mathrm{mHZ} .5 \mathrm{mV} 8 \times 10 \mathrm{~cm}$ display
£158.95 CS 1560 AH 15 mHZ 10MV 5^{\prime} display
$\mathbf{£ 1 5 8 . 9 5}$ CS1566A $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display
$£(932.00 \star$ LBO $308520 \mathrm{mHZ}, 2 \mathrm{mV}, 5 \times 6.3 \mathrm{~cm}$ display. Battery/mains
$\mathbf{£ 2 4 1 . 5 0 \text { buitt-in Nicads }} \begin{aligned} & \text { HM412-4 } 20 \mathrm{mHZ}, 5 \mathrm{mV}, 8 \times 10 \mathrm{~cm} \text { display plus Sweep Delay }\end{aligned}$
HM412-4 $20 \mathrm{mHZ}, 5 \mathrm{mV}, 8$
CS1577A $35 \mathrm{mHZ}, 2 \mathrm{mV}, 5^{\prime \prime}$ display
CS1830 $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5$ display plus sweep delay and delay lin
model
$\mathrm{Hm} 512.850 \mathrm{mHZ}, 5 \mathrm{mV}, 90 \times 8 \mathrm{~cm}$ display. Delay Sweep
$\mathrm{*LBO} 1410 \mathrm{mHZ}, 1 \mathrm{mV} \quad\left(5 \mathrm{mV} / 5^{\prime \prime}\right.$ display
*LBO514 $10 \mathrm{mHZ}, 1 \mathrm{mV}$, $(5 \mathrm{mV}) 5^{\prime \prime}$ display
\$V152 $15 \mathrm{mHZ}, 1 \mathrm{mV}, 5^{\prime \prime}$ display
$+V 30230 \mathrm{mHZ}, 1 \mathrm{mV}, 5$ display
$+\mathrm{V} 55050 \mathrm{mHZ}, 1 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ De

26700
£267.00
£284.00
$£ 253.00$
$£ 315.00$
$£ 315.00$
$£ 339.00$
£ 339.00
Portable
$£ 482.00$
$\mathbf{£ 4 8 2 . 0 0}$
$\mathbf{£ 3 9 9 . 5 0}$
£478.00
e-new
$£ 569.00$
f667.00
£294.00
$\mathrm{f} \mathbf{f} 26.00$
f447.35

GENERATORS
 RF

(UK c/p£1.75)
Arange of Signal Generators to cover Audio,

SG402 100 KHZ 30 mHZ with AM modulation 6100 K LSG231 100 m HZ 1 mHZ (adjustable) FM stereo generator, pilot and mod $£ 195.00$ PULSE
20011 HZ 100 KHZ (function) TG 1055 HZ 5 mHZ
40010.5 HZ 5 HHZ 40010.5 HZ 5 mHZ 200P $0.002 \mathrm{H} 25.5 \mathrm{mHZ} \quad \mathbf{E 2 5 3 . 2 5}$ 200SPC as 200 P plus built-in frea. display $/ 100 \mathrm{mHZ}$ counter $\quad \mathbf{£ 4 3 7 . 0 0}$ $\begin{array}{lr}\text { TG100 (Function } 100 \mathrm{KHZ} \text {) } & \mathbf{£ 9 0 . 8 5}\end{array}$
AUD10 (All sine/square)
AG202A $20 \mathrm{HZ}-200 \mathrm{KHZ}$ LAG26 $20 \mathrm{HZ}-200 \mathrm{KHZ}$ AG203 10HZ-1mHZ sine/sq LAG120A $10 \mathrm{HZ}-1 \mathrm{mHZ}$
f69.00
$£ 69.00$
$\mathbf{£} 73.60$ £126.50 £146.00

'PRO' MULTIMETERS

(UK c/p £1.20)

M1200 $100 \mathrm{~K} /$ Volt 30 range plus $A C / D C 15$ | amp | |
| :--- | :--- |
| K 1400 | $20 \mathrm{~K} /$ Volt 23 range large scale |
| $£ 67.00$ | | M1500 20K/Volt 42 range plus AC/DC 10 arg $£ 53.50$ 30 MHz multimeter $\quad £ 95.00$

LOGIC PROBES/MONITORS

Logic probes indicating high/low, etc., states hat scopes can miss. All circuit powered for LP3 50 m LP1 10 mHz logic probe LP2 $11 / 2 \mathrm{mHz}$ logic probe M1 Logic monitor $£ 55.95$ $\mathbf{£ 5 5 . 9 5}$
$\mathbf{£ 3 5 0}$
$\mathbf{~} 19.95$ LDP076 50 MHz logic probe with case $\begin{array}{r}£ 33.00 \\ £ 51.00\end{array}$ Also in stock range of Protoboard kits and breadboards.

SWR/FS AND UK Lip 85p POWER METERS

Range in stock covering up to 150 mHZ and up to ik watt mHZ Grid Dipmeter. SWR5 SWR/FS $3-150 \mathrm{mHZ}$ £9.50 SWR 50 SWR/Power meter $3^{1 / 2}$ 150 mHZ 0.1000 watts $\mathbf{£ 1 3 . 9 5}$ 110 SWR/Power $11 / 2-144 \mathrm{mHZ}$ 0/10/100 watts $\quad 11.50$ 171 As 110 Twin meter plus E/S
Plus large range of BNC/PL259/ etc leads plus adaptors/connec tors always in stock
176 SWR/Power/FS $40 \mathrm{mHZ} 5-50$ watt Plus $25-$ KDMG ac match $£ 16.60$ KDM6 Gnd Dip $11 / 2-250 \mathrm{mHZ}$

DIGITAL MULTIMETERS $=2=2$

MULTIMETERS

KRT $1011 \mathrm{~K} /$ Volt 10 range pocket NH55 2K/Volt 10 rang range pocket NH55 2 K Volt 10 range pocket TMK500 $30 \mathrm{~K} / \mathrm{V} 23$ range $+12 A \mathrm{DC}+$ YN360TR 20K/Voit 19 range pocket plus hte test AT $102020 \mathrm{~K} /$ Volt 19 range de luxe plus hfe test $£ 13.5$ $\begin{array}{lll}708150 \mathrm{~K} / \mathrm{Volt} 36 \text { range plus } 10 \mathrm{amp} \text { DC } & £ 16.95 \\ £ 20.80\end{array}$ TR303TR $20 \mathrm{~K} /$ Vo t plus 12A DC plus hfe test $£ 15.95$ AT20 20 K /Volt 21 range de luxe plus 10 ADC and
5 KVDC AT205 5
£21.95
7080 20K/Volt 26 range large scale, 10 A DC plus
AT2050 50K/Volt 18 range de luxe plus hfe $£ 26.95$
AT210 100K/Volt 23 range de luxe $12 \mathrm{~A} \mathrm{AC/DC}$
360 TR $100 \mathrm{~K} /$ Volt 23 range plus hie checker and ACIDC 10 amps $£ 34.95$ KRT $500150 \mathrm{~K} / \mathrm{V}$ range doubler 10ADC £16.50 CHOOSE FROM UK'S LARGEST SELECTION
TV GENERATORS

LCG-393V PAL 8VHF 6 patts	$\mathbf{£ 1 4 3 . 7 5}$
LCG-392U PAL B UHF 15 watts	$\mathbf{£ 2 2 8 . 8 5}$
LHM 80A 40KV HT metre	$\mathbf{£ 1 8 . 4 0}$
C/P	$90 p$

Stockists of electronic equipment, speakers/kits, PA equipment plus huge
range of accessories UK carriage/packing as indicated Export - prices on request - All prices correct at 1.4.81 E \& OE All prices include VAT

301 EDGWARE ROAD, LONDON, W2 1BN. ENGLAND. TELEPHONE $01-7243564$ ALSO AT HENRYS RADIO, 404/406 EDGWARE ROAD. LONDON W2 1 ED

OTFUPOHIHE corpzillor.

Introducing the first $41 / 2$ digit handheld DMM in a market that's been the exclusive domain of $31 / 2$ digit models. Until now ..
The new Keithley 135.
Combining outstanding specification with impeccable performance. And confirming Keithley's position as a major innovator in D.M.M. technology:

O
0.05\% DCV accuracy

O
Five functions
0 Low battery indicator
Full overload protection: 1000 V max DCV, 1000 V peak ACV, 300V max Ohms10 amp range
ACV bandwidth to 20 kHz
Need a bench unit? Then take a look at the new Keithley 176 . Five functions, $41 / 2$ digits, $\pm 0.05 \%$, DCV accuracy, and full function annunciators. Built up to a standard - not down to a price. Yet the 176 gives quality, $41 / 2$ digit performance at a cost some $31 / 2$ digit manufacturers would dearly love to match.
To find out more, fill in the coupon. And see what keeps Keithley one step ahead.

KEITHLEY

Keithley Instruments Ltd

1 Boulton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287
Telex 847047

fact: this condenser microphone sets a new standard of technical excellence.

The Shure SM81 cardioid condenser is a new breed of microphone. It is a truly high-performance studio instrument exceptionally well-suited to the critical requirements of professional recording, broadcast, motion picture recording, and highest quality sound reinforcement-and, in addition, is highly reliable for field use.

Shure engineers sought-and found -ingenious new solutions to common
problems which, up to now, have restricted the use of condenser microphones. Years of operational tests were conducted in an exceptionally broad range of studio applications and under a wide variety of field conditions.
As the following specifications indicate, the new SM81 offers unprecedented performance capability-making it a new standard in high quality professional condenser microphones.

SM81 puts it all together!

- WIDE RANGE, 20 Hz to 20 kHz FLAT FREQUENCY RESPONSE.
- PRECISE CARDIOID polar pattern, uniform with frequency and symmetrical about axis, to provide maximum rejection and minimum colouration of off-axis sounds.
- EXCEPTIONALLY LOW (16 dBA) NOISE LEVEL.
- 120 dB DYNAMIC RANGE.
- ULTRA-LOW DISTORTION (right up to the clipping point!) over the entire audio spectrum for a wide range of load impedances. MAXIMUM SPL BEFORE CLIPPING: 135 dB ; 145 dB with attenuator
- WIDE RANGE SIMPLEX POWERING includes DIN 45596 voltages of 12 and 48 Vdc.
- EXTREMELY LOW RF SUSCEPTIBILITY.
- SELECTABLE LOW FREQUENCY

RESPONSE: Flat, 6 or $18 \mathrm{~dB} /$ octave rolloff.

- 10 dB CAPACITIVE ATTENUATOR accessible without disassembly and lockable.

Outstanding Ruggedness

Conventional condenser microphones have gained the reputation of being high quality, but often at the expense of mechanical and environmental ruggedness. This no longer need be the case. The SM81 transducer and electronics housing is of heavy-wall steel construction. and all internal components are rigidly supported. (Production line SM81's must be capable of withstanding at least six random drops from six feet onto a hardwood floor without significant performance degradation or structural damage.) It is reliable over a temperature range of $-20^{\circ} \mathrm{F}$ to $165^{\circ} \mathrm{F}$ at relative humidities of 0 to 95% !

Send for a complete brochure on this remarkable new condenser microphone!

SM81 Cardioid Condenser Microphone

wireless world

Ranks of files

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
01-661 3039
Technical Editor:
GEOFF SHORTER, B.Sc.
01-661 3500 X3590

Projects Editor:

MIKE SAGIN
01-661 3500×3588

Communications Editor

MARTIN ECCLES
01-661 3500×3589

News Editor:

DAVID SCOBIE
01-3500 3587

Drawing Office Manager:

ROGER GOODMAN
Technical Illustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-661 3130
DAVID DISLEY
01-661 3500 X3593
BARBARA MILLER
01-6613500 X3592

Northern Sales

HARRY AIKEN
061-872 8861
Midland Sales
BASIL McGOWAN
021-356 4838

Classified Manager:

BRIAN DURRANT
01-661 3106
JAYNE PALMER
01-661 3033
BRIAN BANNISTER (Make-up and copy) 01-661 3500×3561

Publishing Director:

GORDON HENDERSON

Those whose fears have been raised or augmented by recent television and press comment on the alleged prevalence of telephone tapping by police and government officers will not find much for their comfort in Lord Diplock's report on the interception of communications. It is a bland, uncritical and evidently unreasoned assertion of satisfaction that the existing procedure for the authorization of official interception, mainly of telephone traffic, is adequate. The report says that random checks have shown that the public's right to privacy is protected in practice, as well as in theory, but does not mention the ways in which the checks were made or, indeed, how many checks were made. It is not concerned with unofficial interception, and was not asked to be.

Whatever the eventual effect, apart from the signing of Council of Europe Conventions, of Sir Norman Lindop's report on data protection, and notwithstanding Lord Diplock's glow of satisfaction, there is a widespread belief in the public mind that much telephone tapping and misuse of computer data takes place without the knowledge of responsible officials. There is also a nagging suspicion that such activities are virtually impossible to prevent.

The suspicion is very probably well founded. It is a common delusion amongst those in administrative cocoons that the executive arms of their organizations carry out their functions with the 'book' in one hand and the other at the salute. Clearly, such a posture makes it extremely difficult to do anything very constructive and is frequently abandoned in favour of a more practical approach. Regulations imposed by administrators are often so at odds with reality that they must be unofficially modified in the light of common sense. They are also, of course, ignored completely by persons of nefarious intent.

It is the organization that employs complicated equipment, difficult for the untrained to understand, that is most vulnerable to uncontrolled operation. A piece of information lodged in a large
computer could be impossible to find if an accomplished operative wished to prevent its retrieval. Similarly, if it were required to destroy certain information - at the request of a member of the public, for example - it would hardly be possible to ensure that the data really was destroyed. The adoption of the new System \mathbf{X} telephone system will make telephone tapping a matter of software manipulation and control by remote computers: audit trails and access logs may exist, but it seems unlikely that determined rule benders would be indefinitely foiled.

A data protection Act and some kind of legislation to reduce authorized telephone tapping and stop the illicit kind would possibly go some way towards easing the doubts that exist in the public awareness - fears that the gathering and storing of data is becoming so efficient that a bureaucracy with enormous power is coming into being almost unnoticed. But, since there could be no certain way of checking that protective legislation was being complied with, such enactments would provide no permanent solution.

Ultimately, the use of computers and data storage has to be entrusted to trained operators and technical people. Their work could be checked by trained supervisors, who in turn might be subject to the scrutiny of more supervisors but, at some point, all these people have to be trusted not to misuse data for their own, or more sinister purposes. There must be a stage at which an untrained politician or administrator asks to be assured that all is well - and he will take the answer on trust, for he will have no choice.
There is no way out of this problem. Computer memories grow larger, and usually faster, and information gathering techniques become more efficient every year. We cannot prevent the expansion of personal information storage to the ultimate degree, where free text retrieval systems provide collated information about every facet of our lives.

The future of free societies does not, from here, seem safe from attack.

Millivoltmeter with l.e.d. display

Rapid-response, peak-reading instrument for $0-30 \mathrm{kHz}$

by D. H. E. King, M.I.E.R.E.

If one owns an oscilloscope it is easy to measure small voltages and waveforms from zero to audio frequencies. The rather less expensive millivoltmeter, whether having a moving-pointer or digital display, suffers from a slowness of response and the calibration is either r.m.s. (assuming a purely sinusoidal waveform) or peak-reading, this often being waveform dependent. This instrument occupies the gap between the conventional voltmeter and the oscilloscope to indicate peak voltages, and consideration was given to speed, size and cost, though not necessarily in that order. The recent availability of 'bar/dot I.e.d. driver' i.cs has simplified the design and package quantity considerably.

The aim was towards a single-dimension oscilloscope-type display with the following points:

- battery operation, minimum consumption, portability
- four to six vertical (or ' Y ') divisions
- a dot rather than a bar display
- the 'zero' dot to be fully adjustable, over-travel not causing disappearance or extinction of the dot
- a maximum sensitivity of $10 \mathrm{mV} / \mathrm{div}$., range variations being in a 1-2-5 ratio
- an input impedance (resistance) approximately 1 MS on all ranges
- the amplifier input to be a.c. or d.c. coupled, or earthed for zero setting
- a calibration waveform, IV peak-topeak, to be available.

A resumé of the dot/bar driver i.c. may be useful to some readers. The dual 9-pin package of Fig. 1 has ten outputs; pins 1 and $10-18$ drive the ten l.e.ds from a nominal 5 V supply. Between pins 4 and 6 is a string of ten resistors (nominally $1 \mathrm{k} \Omega$ each) from which are fed the reference voltages to the ten comparators, their common input being taken from pin 5, the 'signal' voltage input pin. As this voltage is increased, the l.e.ds are energized in turn; pin 9 will be connected to select only a dot display. From pin 7 is available an on-chip reference voltage of about 1.25 V , the current passing to zero or chassis via a resistor that also defines the l.e.d. current(s) when lit. The 1.25 V reference voltage may be made to ride or 'sit' upon any voltage impressed upon pin 8 but in this instance the pin will be connected to zero. The positive

Fig. 1. Working of LM3914 dot/bar driver i.c.
supply to pin 3 needs to be no greater than 6 V for this application, although, if a large signal voltage is to be displayed, and so require a large voltage at both inputs and feeds to the comparators, then up to 15 V might be needed.

Two 'chained' dot/bar drivers will allow 20 l.e.ds to be employed, giving four divisions, at five l.e.ds per division. Up to ten driver i.cs could be used if more divisions are desired but the string of 1.e.ds could easily become unwieldy and would give little benefit in terms of brilliance or upper frequency limit of the instrument. A little thought shows that a conventional scale marked 1 -10 has also a ' 0 ' digit or mark, a
total of eleven points. The two drivers give twenty points but no zero; an external comparator therefore is used with this design to observe when none of the ' $1-20$ ' l.e.ds are lit and then to energise the 'zero' or 'off-scale' l.e.d.
If the potential divider strings of the dot/bar drivers are connected in series and pin 6 of IC_{2} is connected to pin 7, as in Fig. 3, the overall sensitivity of the basic $20-1 . e . d$. scale is 1.25 V . For the suggested $10 \mathrm{mV} / \mathrm{div}$. (which could easily be amplified to 1 or $2 \mathrm{mV} / \mathrm{div}$. if required) at maximum sensitivity, the 10 mV input must be amplified to drive one-quarter of the divisions within the 1.25 V span, i.e. to about

Fig. 2. Block diagram of millivoltmeter.

Fig. 3. Display circuit and calibration oscillator ($/ C_{3 b}$ and Tr_{1}).

320 mV . Thus a gain of only 32 is needed and to avoid problems with the gain-frequency product of a single-stage op-amp. it was decided to employ a dual op-amp, a f.e.t. input avoiding input damping problems. Although the input offset voltage for a type LF353 is quoted as 5 mV and there are no nulling pins fitted, no problems were encountered using the overall gain needed of about 32 . The gain of a single stage is about six; the first stage has a setgain control at the front panel while the second stage has gains selected in the ratios $\times 1, x^{1 / 2}, \times 1 / 5$ by a 3 -position front panel switch. In conjunction with the 1-10-100 etc. 6-position attenuator the input voltage sensitivities thus match those of a typical oscilloscope's 1-2-5-10 ratios.

The simplified diagram of Fig. 2 shows that there is an overall inversion of polarity between the input and the dot/bar drivers; a positive-going signal could thus produce a display with the dot travelling 'downwards' and care must be taken to get the l.e.ds in the correct order on the front panel if the 'positive-upwards' convention is expected. The voice of experience speaks here - between back and front of a p.c.b., then back and front and top or bottom of a control panel there is needed a mental agility that sometimes falters - my face matched the red l.e.ds!

Circuit design

The display drivers in Fig. 3 are shown virtually as they appear on strip- or matrixboard, a very simple interlinking with only
three resistors allowing power to ge applied early on in the construction and a variable signal voltage then causing the dot to move smartly along the row of l.e.ds. The brightness of any l.e.d. is determined by the current flow and this is programmed by the values of R_{1} and R_{2} at pins 7 ; for about 10 mA use $1 \mathrm{k} \Omega$ values, for 20 mA use 500Ω and so on. (If a bar display were used the battery consumption would be considerable.)

The 6 V supply from four 1.5 V cells is used to feed most circuits and the PP3 9V
is only needed for a negative feed to the signal amplifier op-amps. A 6 V oscillator/ rectifier system was considered and tried for the negative supply but the large physical size, cost and the low efficiency proved the PP3 type to be preferable. The 6 V is reduced to the nominal 5 V for the $1-20$ l.e.d. feed by the series diode D_{27} and the reduction in volt-drop across D_{27} when none of these l.e.ds is lit is used to drive the comparator $\mathrm{IC}_{3 \mathrm{a}}$; when pin 2 is 'low' the output at pin 12 is around +2 V and insufficient to cause current flow via the

Fig. 4. Input attentuator. All resistors should be high-stability types and C_{3} must be of 600 V working.

Fig. 5. Signal amplifier. Resistors R_{30} to R_{40} are of high-stability, and R_{4}, is a linear, wirewound, IW component.
2.6 V needed across D_{0} and D_{21}. With a 'high' pin 2, the output is about +4 V and D_{0} lights.

The calibration square-wave is generated at about 1 kHz by $\mathrm{IC}_{3 \mathrm{~b}}$. Driving Tr_{1} fully off and on results in the saturated collector voltage being nearly, but not quite, zero; D_{22} removes this small $\mathrm{V}_{\mathrm{CE}(\mathrm{SAT}}$ when zero voltage is placed across R_{17}; when Tr_{1} is not conducting, then D_{23} and D_{24} act as a simple (1.2 V approx.) voltage regulator system, allowing a 1 V peak-to-peak voltage to be preset and available at the calibration socket, truly referred to zero.
For the input attenuator in Fig. 4, 'standard' values are used in a series-parallel arrangement; $10 \mathrm{k} \Omega$ shunted by $100 \mathrm{k} \Omega$ is often a more convenient way of obtaining $9.1 \mathrm{k} \Omega$ rather than trekking from dealer to dealer for the elusive $9.1 \mathrm{k} \Omega$ value. Since I have some interest in back e.m.fs generated by inductors, a $200 \mathrm{~V} / \mathrm{div}$. position was added, but any constructor must recognise that the apparent ability to display voltages with scale factor of 200×5, i.e. 4 kV for a full-length display, would severely stress insulation and circuitry and also constitute a hazard to one's own health and safety. Label the 100 V and 200 V switch positions in red and use sparingly and carefully.
The appropriately attenuated input voltage is fed in Fig. 5 via R_{28} to $\mathrm{IC}_{4 \mathrm{a}}, \mathrm{D}_{25}$ and D_{26} only conducting in the event of an over-large input voltage. When a.c. coupling is selected by S_{2}, R_{32} allows the input of $\mathrm{IC}_{4 \mathrm{a}}$ to be referred to zero without seriously affecting the instrument input resistance. A large value for C_{3} allows frequencies of down to 0.05 Hz to be displayed with an a.c. coupling, but the
instrument does then need some time 10 seconds or so - for the display position to stabilize, due to the large time-constant involved. The value of C_{3} may, of course, be reduced say to 0.01μ for faster settling. and an a.c. response still adequate down to about 2 Hz .

The signal amplifier is both tame and simple, no special precautions apart from reasonable tidiness and spacing being used in the prototype; tantalum supply-line decoupling capacitors were added as a routine provision rather than as a necessity, while R_{42} and R_{43} ensure that the batteries are short-circuit-proofed against careless use of the battery-check facility.

Display frequency and accuracy

The upper frequency limit is not wonderful at first sight, being limited to around $20-30 \mathrm{kHz}$. Brief calculations show that a 20 kHz sine-wave occupies only $50 \mu \mathrm{~s}$ per cycle, a half-wave only $25 \mu \mathrm{~s}$ and in this time a display of a ten-l.e.d. stripe, (up and down for the half-wave) would allow only some 1μ s or so per l.e.d. flash, apart from the waveform peak, which might be expected to be on for a little longer and hence to produce slightly brighter 'tips' for a sinusoidal display. The comparator opamps within the display driver i.c. are obviously approaching their frequency and slew-rate limits at about 20 kHz and only if the instrument voltage sensitivity is reduced is it possible to hope for a reasonable display accuracy at the higher frequency of 30 kHz .
The accuracy of voltage indication d.c. or a.c., is of course determined by the number of segments or increments per voltage level, and at IV/div. there are only five points of light to define the levels - a basic accuracy (or inaccuracy) of 0.2 V in one volt is the best that may be hoped for $- \pm 10 \%$ of the input sensitivity. If all 20
1.e.ds are in use and the scale linearity is good the accuracy is better; linearity requires that the divider string of resistors in IC_{1} has the same value as that in IC_{2}. If an a.c. display length of, say five l.e.ds appears to expand or contract in being moved by means of the set-zero control from one end of the display to the other it is possible to adjust the overall scale linearity by a trial-and-error shunting of pins 4, 6 of either IC_{1} or IC_{2} with a resistor, possibly $100 \mathrm{k} \Omega$ or so.

Construction

The low gain and simplicity of the circuit gave no stability problems; the original layout used strip- or matrix-board attached at right-angles to the front panel, so that both sides of the circuit were available for checking, preset adjustments and connexions to the various controls. Separate 'display' and 'signal' boards were constructed and then linked during assembly beneath the panel. The box and panel wereof plastic to allow easy drilling and insulation although no screening. Whatever size container is selected, lay out the panel carefully for minimum wiring lengths. Internal screening may be fitted after calibration. Resistors of $1 \mathrm{M} \Omega$ and over should be 0.5 W types and R_{28} must be a 1 W carbon component; all the rest can be 0.25 W resistors. D_{2} should be a 1 N 4000 ; $\mathrm{D}_{21}-\mathrm{D}_{26}$ can be small silicon junctions such as OA202, IN4000 or emitter-base junctions of BC 108 .

Setting-up and use

This, assuming careful construction, requires only a d.c. voltmeter and a 1.5 V cell. You will already have checked that the set-zero control is able to move the spot up and down the scale; monitor the signal input to the display, at pins 5 of IC_{1} and IC_{2}, and set this voltage to zero or even slightly negative. Adjust R_{6} so that D_{0} is lit

WIRELESS WORLD JUNE 1981

and satisfy yourself that it extinguishes when any other l.e.d. is lit.
Connect a 500Ω-to- $5 \mathrm{k} \Omega 2$ potentiometer across a 1.5 V cell, and set the control to produce IV as accurately as your voltmeter will allow. Apply this voltage to the instrument input terminals and, with R_{29} (front panel) set to about mid-value, the sensitivity set to $1 \mathrm{~V} / \mathrm{div}$. and $\times 1$, adjust R_{37} (internal) for a one-division jump of the lighted l.e.d. when the input is switched on or off, or if S_{2} is changed from 'd.c.' to 'earth'. Check that the operation of S_{3} is as expected; the same $1 V$ input will give a two-division jump of the display if the input is set for $100 \mathrm{mV} \times 2$ sensitivity

The calibrated display may be used to adjust R_{17} to provide a 1 V peak-to-peak voltage at the CAL socket. A d.c. voltmeter will indicate some 0.5 V (average) at this socket but no especial care has been taken to provide a $1: 1$ mark: space ratio, so the voltmeter may not quite agree; this is probably not important in view of the previously argued accuracy that is available. A side effect or use that was not envisaged but has since been turned to advantage is the availability of the CAL 1 kHz waveform via an attenuator and waveshaping capacitor as an amplifier input signal. The output voltage in Fig. 5 is of course simply monitored by the voltmeter both at the amplifier input and on its way through.

The instrument has proved most useful for observing the output voltage of

Fig. 6. Use of the Cal. waveform as amplifier test signal.
microphones and pick-ups, the hum levels in power-supply circuitry and assorted other small signals that would otherwise demand the use of the writer's rather hefty and immovable oscilloscope. The isolation from the mains supply inspires confidence when measuring the effectiveness of coupling and decoupling capacitors in suspect equipment and, as with an oscilloscope, there is freedom from worry about pointerbouncing should the wrong range have been selected. With an input diode and capacitor the instrument is preferable to a moving-coil type for r.f. detection and alignment purposes, due to the sensitivity and speed of response, and with correct choice of capacitor the modulation can be seen riding upon the detected carrier of an a.m. signal. The ability to use a centrezero voltmeter is a boon in many circuits employing the typical $+/ 0 /-$ type d.c. supply, again due to the indication speed.
Experience allows some interpretation
of the input waveform from relative brightness levels; sinewaves have slightly brighter tips than the main length; triangle or ramp waves have evenly distributed brilliance; pulse or square waves produce only high and low dots although the relative brilliance of these allows some idea to be gained of the mark-space ratio. Waveforms taken from coils where transients might be expected, as with s.c.rs or some power supplies, may need virtual darkness ar at least good shading of the display if the peak voltages are to be observed; do not expect the display to compete with bright lighting or sunlight - an oscilloscope trace cannot cope, either!
The prototype has given many hours of useful operation and appears only to suffer from calibration errors if the +6 V and -9 V supplies droop to 4 V or 6 V respectively, showing this to be a pleasingly economical circuit.
Finally, do consider safety. The mains supply does indeed produce a 700 V peak-to-peak indication but the majority of ex-posed-metal components at the front panel will not have this high insulation or working voltage. Switch off the mains to the apparatus under test; connect the l.e.d. display voltmeter, selecting sensitivity range; switch on the mains; do not touch whilst observing; switch off the mains before adjusting or altering controls. These precautions must be observed with highvoltage work; otherwise use the instrument as you would any other voltmeter.

Mini and Micro Computers, by Fabian Monds and Robert McLaughlin. 144pp, paperback. Peter Peregrinus, $£ 9.00$.
As an introduction to small computers and their use, this book, which is published by the Institution of Electrical Engineers, could hardly be improved upon. A tutorial style is adopted, and readers with no experience of either electronics or computing are led from an explanation of the word 'bit', by way of descriptions of several commercial systems, to the elements of computer peripherals, interfaces and software. The final chapter takes the form of a short course on programming in BASIC.

The authors are both at the Queen's University of Belfast and have written the book against a background of teaching computing. It stands out from an abundance of small books for which similar claims are made, and is recommended.
Tape Music Composition, by David Keane 159pp, paperback. Oxford University Press, £5.95.
Despite its title, and the author's insistence that he has written on the use of sounds as well as their method of generation, this book is principally about the technique of using tape recorders to produce sounds which can be used in composing electronic music. Taken in this light, the book is of considerable value. It is addressed to those with no technical knowledge of recording equipment and develops into an easily

readable guide to most of the techniques used, in detail but withour delving into electronic technicalities. All the mechanical tricks of handling tape, microphones and recorders are explained, and there are chapters on mixers and various types of sound processing device. Sound synthesis is dealt with quite briefly, and there is a short piece on setting up a studio. The one chapter on 'basic aesthetic considerations' occupies fifteen pages.
Electronic Manufacturers UK. 462pp, paperback. David Rayner, £55.50.
Eurolec 56 is the latest in the long series of guides to the electronic industry, now compiled by microcomputer. It covers the makers of electronic equipment in the UK, excluding those who make electronic instruments. The listing is alphabetical by company name, and each eniry contains much detail on company make-up, products, staff and related organizations.
The use of Rayner's own program for the compilation may be responsible for the confusing appearance of the pages: they are quite difficult to scan and contain rather a lot of redundancy which could, perhaps, have been reduced by abbreviation. Nevertheless, the listing appears to be thorough and presents a great deal of information which is often difficult to obtain in a convenient form. There are no indices in this edition.

Sound Recording, by David Tombs. 222pp, hardback. David and Charles, $£ 7.95$.
Mr Tombs is a sound recordist with the BBC Natural History Unit and is therefore concerned professionally with the operation of recording equipment, rather than with its engineering. This book is not, however, for professionals, but is intended for the amateur who wishes to use quite simple equipment in a creative way.

Chapters on microphones and recorders are useful guides through the confusing mass of published data, describing the main types of instrument in use, with their characteristics. Recording in stereo is allotted a chapter and in four succeeding sections the author presents practical information on the recording of talks and interviews, drama, music and wildlife. The final chapter describes the home studio, the selection of equipment, processing and editing.

This is a completely 'practical' book on the subject. Technical descriptions of the equipment are maintained at a level where they can be easily understood by the layman, and are only introduced where necessary. The author points out that it is not necessary to spend a fortune on hardware, and emphasizes that the choice and use of microphones, with a few tricks used by professionals to avoid unwanted sounds, is much more important than expensive machinery.

Dead as a triode?

A problem that increasingly faces anyone who attempts to provide technical information for newcomers to amateur radio is to decide what attitude to take towards the thermionic devices that so many of us grew up with - and, at least on the h.f. bands, are still used in the vast majority of amateur stations. Several years ago, thermionic devices were expunged from the Radio Amateurs' Examination and already there must be some thousands of v.h.f. enthusiasts who have forgotten, if they ever knew, the relative simplicity of valve circuitry used for the generation of r.f. power; and also the ease with which faultfinding could be carried out and new valves substituted when emission began to sag. They may also have never become aware of the dangers of high d.c. potentials. For them, diodes and triodes may seem old-hat and as dead as a dodo. They would point out that while solid-state devices have no inherent wear-out mechanisms, a thermionic device shows a progressive change of characteristics from the moment electrons begin to be torn from its cathode.

Curiously, in practice, even today, valved equipment often proves more reliable than solid-state: it is so easy to kill off r.f. power transistors from over-voltages, from mismatched loads, from parasitic oscillation. A recent 'owners' report' (Ham Radio, March 1981) on the long-established Collins KWM2 and KWM2A h.f. transceivers - a valve equipment designed in the late 1950s - shows that virtually every owner of these admittedly fairly high-cost equipments praise their remarkable reliability: some 37 per cent of owners listed this as its best feature, while 25 per cent praised its stability (a characteristic so often claimed for solid-state rigs).
Reading through the comments makes one wonder just what the amateur (with a domestic h.f. station) has really gained from the 'silicon revolution' except the ability to make lightweight, portable equipment for mobile and portable operation. An Australian amateur, Al Rechner, VK5EK has recently commented: "Good applied engineering is concerned primarily with securing a stipulated design objective in the simplest and cheapest manner". He severely criticises the current rash of complex, solid-state constructional projects as, in some cases, "solid-state technology gone berserk" adding that such technology: "affords commercial manufacturers cheap, large-scale production and is ideally suited to logic and non-linear applications. But for transmitters, transverters, receivers and converters of practical simplicity,
valves remain incomparably superior for one-off, home-built projects." He firmly believes that more amateurs could be encouraged to return to the idea of building their own equipment if more simple projects were presented in the journals and other periodicals, for example using valves and components still readily available when salvaged from old television receivers, etc. The problem is that, rightly or wrongly, many amateurs are firmly convinced that valves will become virtually unobtainable except at "collectors' prices" in a very few years' time.

Here and there

${ }^{\text {An }}$ amateur radio link between Gavin Payne 5 N3PJR in Nigeria and Bob Cox, G3PLP in Solihull led to the urgent airfreighting of a rare drug to Lagos for a woman who had had a miscarriage. The drug was not available in Nigeria but Bob Cox passed the message to his local police who, once satisfied there was a real requirement for the drug, with the help of a local priest, traced a supply in Elstree, Herfordshire. The Merropolitan police arranged helicopter transport to Gatwick where it was put on a scheduled British Caledonian flight whose departure had been held for 25 minutes.
Australian amateurs are being urged by the Region 3 Intruder Watch to write to Radio Peking complaining of the highpower broadcast transmissions by the Chinese within the frequency band 7000 to 7100 kHz , drawing attention to Resolution CR of WARC 1979: "that the broadcasting service should be prohibited from the band 7000 to 7100 kHz and that the broadcasting stations operating on frequencies in this band shall cease such operation". The new Radio Regulations come into force next January and it is believed that the Radio Peking management is becoming sensitive to such complaints.
Two Canadian amateurs, VE3QB and VE3PD, using the 'commercial' callsigns VE9LFZ and VE9LIN have been specially authorised to operate daily on 10,101 and $10,149 \mathrm{kHz}$, near the edges of what will become the new " 30 -metre" amateur band next January.
The RSGB has announced that the society will continue to bring to the attention of the Government the problems associated with the licensing of 27 MHz for citizens band (though it considers the choice of frequency modulation is the right one). Concern is expressed that a.m. equipment and high power amplifiers will continue to be used and will give rise to significant levels of interference to domestic entertainment equipment.

Contests with a purpose

While one certainly hears criticisms of the way in which so many weekends on the amateur bands have degenerated into mindless swapping of contest serial numbers (of which the RST report is now almost invariably 599 no matter how strong or weak the signals) there are still a few contests that genuinely encourage the development of novel equipments and/or skills. Among these must surely be included the long-established "Swiss National Mountain Day" in which a complete 3.5 MHz station, including batteries and aerial, has first to be man-handled many metres up the Swiss Alps, so that weight is all important. A recent design by Urs Hadorn, HB9ABO and Urs Lott, HB9BKT has got the weight down to a remarkable 300 g (just over 10 oz) made up of: transceiver (including earpiece) 113 g , batteries 78 g , and aerial (84 m wire deltaloop with carrying frame) 109 g . Some thirty years ago, the NMD rules (for valve equipment) specified a total weight of not more than 6 kg . The winning station in 1950 (HB9J) used six miniature (B7G) valves, split three each for transmitting and receiving); operating from a height of 1800 m , of which the final 300 m had to be made on foot, some 26 contacts were made. From almost 6 kg down to 0.3 kg is a measure of the advantages for portable operation with a handful of transistors having no power-consuming filaments!

The American magazine Ham Radio is attempting to revive the idea of a "world championship', to discover a Morse operator capable of challenging the $40-$ year-plus record of Ted McElroy, exWIJYN. On July 2, 1939 he copied Morse on a typewriter at a speed of 75.2 words per minute. I feel it will take some doing to beat this record.

In brief

UK FM Group members have been unlucky recently: soon after the loss of the West London repeater station to thieves, two transceivers and other equipment were stolen from members' cars during one of the Group's regular meetings in the West End of London . . .The RSGB National Amateur Radio Exhibition is at Alexandra Palace, north London from May 28 to 30

Forthcoming mobile rallies include: May 24, East Suffolk Wireless Revival, Ipswich and Plymouth Radio Club Rally (Tamar Secondary School, Paradise Road, Stoke near Plymouth); June 7, Hull University; June 14, RNARS 21st Birthday (HMS Mercury) and Elvaston Country Park; June 21, Shelley High School, nr Denby Dale.

Designing with microprocessors

8 - Interrupt-driven circuits

by D. Zissos Department of Computer Science, University of Calgary, Canada

Because mistakes in real-time applications are becoming progressively more costly, in both human terms and equipment, it is necessary for systems to be sensitive to their environment if timely action is to be taken to avoid catastrophe. The use of interrupts allows the designer to build into his system varying levels of sensitivity to the environment. This and the following article describe the basic concepts and step-by-step procedures for the design and implementation of interrupt-driven circuits.

In the mode of operation described here an external event signals the microprocessor that it wishes it to suspend execution of its current program and to execute instead a different set of instructions, at the end of which the interrupted program is resumed. This is analogous to a subroutine call, except for the fact that the execution of a different set of instructions is evoked not by the current program but by an external event. To allow the program to be resumed correctly after the interruption, all the information belonging to it, program counters, register contents and states of flags, which are collectively referred to as the re-entry point, must be preserved during the interruption.

Interrupt-driven systems are mainly used in real-time environments, where predetermined responses to certain events must be evoked automatically, particularly in emergency situations where the operator's responses cannot be predicted because of stressful conditions. In such sensitive situations microprocessor-based systems can readily take over from the

Fig. 1. Block diagram showing software response to external events - note the i/o signals.
operator and initiate appropriate action, such as display on c.r.ts, evacuation procedures to be followed by personnel in the vicinity, alert fire, ambulance, police services. See Fig. 1.

With present-day methods and technology, the design and implementation of such systems requires primarily sound management of resources, unlike a few years ago when only highly-trained specialists could tackle such problems.

Basic concepts

When a device wishes to establish communication with another device, it generates an interrupt flag. This is a signal generated
and used by a device to inform some other device that it wishes to communicate with it. The called device responds by generating a 'go ahead' signal, as shown in Fig. 2 unless of course it chooses to ignore the flag, in which case no inter-device communication is established. We shall refer to the calling and called devices in Fig. 2 as device 2 and 1 , respectively.

As we have already explained in Article 4 (September 1980 issue), communication between devices is controlled by an interface. In the case of our two devices the block diagram of a basic interrupt configuration is shown in Fig. 3. Its step-by-step operation is as follows. The interface monitors the status signals of device 2 and generates an interrupt flag when device 2 wishes to communicate with device 1. If device 1 decides to respond to the flag, it

Fig. 2. Block diagram showing how communication between two devices is established using flags.

Fig. 3. Basic interrupt configuration.
sends a 'go ahead' signal to the interface. At this point the interface generates the appropriate sequence of command signals that allow the two devices to communicate with each other.

If device l is a program-driven device, such as a microprocessor, it responds to the external flag by suspending execution of its current program and executing instead a different program, the interrupt routine, at the end of which the interrupted program is resumed, as shown in Figure 4.

The reader's attention is drawn to the following:

1. Because the resumption of a partially executed instruction is extremely difficult, a program can be interrupted only at the end of an instruction cycle, unlike cycle stealing which takes place at the end of a memory cycle.
2. The arrival of external interrupts is normally unscheduled, and therefore not synchronized with the operation of the microprocessor.
3. The interrupt terminal is automatically disabled (masked) when an interrupt routine is entered. It is therefore necessary for the programmer to re-enable (unmask) the interrupt terminal in his interrupt routine -at the beginning for nested interrupts, otherwise at the end.
4. At the end of an instruction the program counter (p.c.) points to the memory location that contains the first byte of the next instruction.

If the instruction that would have been executed, had the program not been interrupted, is stored in memory location A_{r} and the first instruction of our service routine is stored in location A_{v}, the switch from the main program to the interrupt routine is clearly implemented by displacing the contents of the program counter A_{r} by A_{v}. We shall refer to A_{r} as a return address, and to A_{v} as a vectoring address - see Fig. 4. If the interrupted program is to be resumed at the end of the interrupt routine, it is necessary for the return address to be saved, that is to be stored in a memory location from which it can be copied back (loaded) into the p.c. at the end of the interruption, as shown in Fig. 5. The section of memory storing the return address is typically referred to as a stack.
The p.c. is pushed onto the stack automatically, but a software instruction, RETURN, must be executed to pull it out of the stack and copy it into the p.c. The return address is clearly the minimum information needed for an interrupted program to be resumed.
In addition to the program counter, it is also necessary to save the state of other internal registers which hold the information belonging to the interrupted program. PUSH and POP instructions are used in such a case, as shown in Fig. 6.

The basic functions of any interruptdriven system are:

1. To accept and identify unscheduled external requests for service.
2. To resolve contention problems (if and when they arise).
3. To evoke pre-determined responses.

Fig. 5. How the program counter is saved
Fig. 5. How the program counter is saved
and restored before and after interruptions.
Fig. 6. Execution of POP and PUSH instructions.

Fig. 7. Basic configuration of an interrupt system.

WIRELESS WORLD JUNE 1981
some meaningful information, denoted by variable i. The nature of the meaningful information supplied by the interrupt controller varies in complexity from a copy of the interrupt flags to the vectoring address, as shown in Fig. 8. In the first case it is left to the microprocessor to identify the source of interruption and to solve any contention problems, whereas in the second case contention problems are resolved and the vectoring address is generated prior to interrupting the microprocessor. Depending on whether the source of interruption is identified prior to or after program interruption, interrupts are classified either as vectored or non-vectored. Since no software is required to identify the source of interruption, the response time of vectored interrupts is shorter. This method, in addition to shortening the response time, simplifies the software.

Our 'go ahead' signal in the case of microprocessors consists of i/o signals and an i/o address, $\mathrm{A}_{n}-$ see Fig. 7. The reader will recall that the i / o and address signals are generated during the execution of an i/o instruction. From this point of view the function of interrupt interfaces is to monitor external events, generate an interrupt request flag when the process or the peripheral being monitored wishes to do so, and wait for the microprocessor to respond. When the microprocessor responds, it generates the appropriate signals needed by the process or the peripheral.

The step-by-step operation of our basic system, shown in Fig. 7, is outlined next. The interrupt controller, which monitors the flags, generates interrupt request signal IRQ when one or more flags are raised. This signal simply informs the microprocessor that some external event has occurred, to which it is requested to respond. If the microprocessor does not wish to respond, it continues with its task without acknowledging the interrupt request. Otherwise, it completes its current instruction and responds in the following manner.

1. It generates an interrupt acknowledge signal, denoted by INTA in Fig. 7, to indicate that the program has been interrupted.
2. Within the microprocessor chip, a flipflop, referred to as mask flip-flop and shown in Fig. 9, is set. Setting the flip-flop desensitizes (masks, disables) the interrupt request pin, IRQ. We shall refer to this as interrupt masking.
3. The return address, A_{r}, is stored in stack automatically.
4. The source of interruption is identified by inputting i, the meaningful information generated by the program controller in Fig. 7.
5. The status of the working registers, that is registers which hold information belonging to the main program and used by the interrupt routine, is stored in stack using PUSH instructions as shown in Fig. 6, unless this is done automatically at the beginning of each interrupt cycle as in the case of the Motorola 6800.
6. The request is serviced.
7. The interrupt flag is cleared.
8. The status of the working registers prior to interruption is restored using POP in-

Fig. 8. (a) Non-vectored interrupts; (b) vectored interrupts.

Fig. 10. Step-by-step operation of interruptdriven systems.
program counter is saved automatically in stack, all our steps must be executed.

It is the programmer's responsibility to ensure that during a program interruption all information necessary for the correct resumption of the interrupted program is preserved and restored.

Morse-code lock

Battery powered microprocessor uses serial "key" code

by J. Hruska, B.A.

Although the design of a conventional digital lock is reasonably straightforward, a high security device requires around ten i.cs. By using a microprocessor the hardware can be reduced to two i.cs and the flexibility can be enhanced. This design uses a 8748 microprocessor with a 4001 c.m.o.s. i.c. to reduce the standby current. The 8748 is programmed with up to 16 Morse code signals, and these must be repeated serially via a single switch to energise an electric lock.

Fig.1. Block diagram of the electronic lock.

Fig.2. Microprocessor connections and standby circuit.

The 8748 belongs to the MCS-48 family of microprocessors which contain an 8 -bit c.p.u., 1 or 2 K of program memory (r.o.m. or e.p.r.o.m.), 64 or 128 bytes of data memory, 27 I/O lines and an 8-bit timer/event counter. Cycle times range from 1.36 to $5 \mu s$ depending on the version, and over 90 instructions are provided in the set. The program memory of the 8748 is an e.p.r.o.m. which can be programmed like a standard 2708 or 2716 and, if modifications need to be made, the memory can be erased by u.v. light. The I/O lines comprise two 8-bit ports (pl0 to pl7 and p20 to p27), an 8-bit data bus, T0 and Tl inputs and an interrupt input.

Two NOR gates form a flip-flop which is set when the key switch is pressed, see Fig. 1, and switches power to IC_{2} via Tr_{1}. A signal from IC_{2} resets the flip-flop which then switches the power off. Current consumption of the circuit in the standby mode is about $l \mu \mathrm{~A}$ at room temperature and about 60 mA when IC_{2} is operating. The electric lock requires a further 600 mA while operating, so battery life depends on how often the lock is operated. With four standard HP2 cells, and assuming 12 operations a day, the projected battery life is about one year ${ }^{1}$. The key switch is also used to imput the code but, because IC_{2} is switched on by the first dot/dash, this does not form part of the code.

The Morse code pattern is set on 16 d.i.l. switches connecting ports 1 and 2 to ground. A closed switch, binary 0 , represents a dot and an open switch, binary 1 , represents a dash. Unused switches must be closed. The length of the code is set by connecting one to four diodes from the data bus to the T0 input as shown in Fig. 2. A connection represents a binary l and, using DB4 as the l.s.b., the binary number should be one less than the code length.

When operating, the 8748 sets DB1 high if the keyed-in code matches the programmed code. The signal from DB1 operates the electric lock ${ }^{2}$ via a Darlington emitter follower, and when the processing is finished DB0 goes high to switch the 8748 off. Data-bus lines 2 and 3 and the interrupt input are not used, but could be connected to provide other I/O functions.

A flowchart for the software is shown in Fig. 3. To fully comprehend the program the architecture and assembly language of the 8748 must be understood ${ }^{3}$. When IC_{2} is switched on it starts to execute the program at location 0 . The number of dots/dashes are read in by feeding a binary 1 to DB4, 5, 6 and 7 in turn, and checking the input T0. The timer is then started and timekeeping is achieved by incrementing register 6 (location 7). The processor executes a jump-to-subroutine starting at location 7 at every timer-interrupt, therefore, with the 8478 running at 3 MHz , this occurs every 40.86 ms . The 8478 then monitors the keying-in of the code, provides a software debounce period and records the length of time the key has been pressed. Five seconds is the maximum period permitted and one second is the maximum time between successive dots/dashes. If these times are exceeded, the i.c. switches itself off. Note that no resetting is neces-

sary if a wrong code is entered because the 8478 will switch itself off after one second and the code can then be re-entered. These periods were found to be the most suitable after simulations of the Morse code input algorithm were carried out.

After the code has been keyed in and the corresponding key depression times stored in the data memory, the program finds the minimum and maximum times. The average is calculated and signals with a recorded time shorter than the average are accepted as dots and signals which are longer than or equal to the average are accepted as dashes. A 16-bit binary equivalent of the input code is formed in registers 2 and 3 where 0 represents a dot and 1 represents a dash. Unused positions have their corresponding bits set to 0 . The code, programmed by the switches connected to ports 1 and 2 , is then read and compared with registers 2 and 3. If they match, line DB1 goes high for two seconds to operate the lock and the 8748 then switches itself off by feeding a 1 to DB0. If there is no match, the i.c. switches itself off without operating the lock. With this method of
recognition, the code must contain at least one dot and one dash, and the unused switches must be closed.

Construction is simple and the circuit can be mounted on a small piece of Veroboard. Code programming can be conveniently achieved using two or three d.i.l. switches which also save space.

The easiest method of programming the e.p.r.o.m. is with an Intel development aid but, with some care, this can be achieved with other e.p.r.o.m. programmers. Alternatively, Rapid Recall, Wooburn Industrial Park, Wooburn Green, Bucks, will program or supply ready programmed 3 MHz 8748 devices.

References

1. Ever Ready, data sheets $01 / \mathrm{R} 20 / 03 / 07 / 78$ and 01/R20/02/06/78.
2. Hruska, J., Electronic lock, Wireless World, Jan. 1981, pp. 42-43.
3. Intel Corporation, MCS-48 family of single chip microcomputers users manual, no. 9800270 E .

Video system for diffraction interference pattern display

Intensity profiles are displayed alongside direct images

by E. Hywarren and P. D. Loly, Ph.D., University of Manitoba

Abstract

The linear intensity response of a video pickup tube is used to extract an intensity profile of diffraction patterns that can be presented alongside the direct image in a splitscreen presentation. Still shots are used to illustrate N-slit diffraction profiles and the resolution of two sources according to the Rayleigh criterion. The rapid response of the whole video system also allows a dynamic representation of intensity changes.

Demonstrations of diffraction and interference are commonplace in courses covering physical optics. The advent of lasers has made these demonstrations easier to mount, and the light and dark regions of constructive and destructive interference are now quite familiar: however, the difficulty of measuring the intensity of the light in these regions still leaves a gap between theory and experience. Comparative photometers are rather cumbersome and, in common with modern, solid-state photocells, only give spot measurements, so that they must be moved across the interference pattern in some controlled manner.
It so happens that most well equipped television recording studios monitor linescan intensity profiles, as a matter of routine, to provide for the evaluation of video waveforms - a process which amounts to the dynamic recording of intensity variations along a line. In this article, we report results obtained by setting up a number of diffraction experiments in a television studio and simultaneously recording the direct image and the intensity profile.

Procedure

The arrangement of the principal components is shown in Fig. 1. A red, heliumneon laser provides the beam, which is picked up by a standard Philips LDK-2 colour television camera, only the red output signal being used. The laser illuminates a vertical slit, which produces a horizontal splay of rays, these being reflected by a beam-splitter to a highly directional reflecting screen ${ }^{1}$, back through the beamsplitter and into the camera lens.

The camera converts the light-intensity variations of the interference pattern into a video signal, whose sirength represents the intensity. This signal modulates the beam current of a display c.r.t., which is
scanned synchronously with the camera tube, the display ('direct' image) corresponding to the original interference pattern.

To obtain a 'graphical' representation of the interference-pattern intensity variations, a Tektronix 529 waveform monitor is used, with its timebase running at 60 Hz (50 Hz in UK) and the output of the colour camera applied to its Y amplifier. A lowpass filter reduces the bandwidth of the Y signal. The two displays - the graphical display at the output of the monochrome camera and the direct intensity display from the colour camera - are switched by a video production switcher ${ }^{3}$ to provide a side-by-side presentation of the two, which can be recorded on tape.

Results

Figure 2 shows displays generated by the diffraction of beams by multiple slits. The histograms from $n=1,2$ and 4 show excellent agreement with calculated intensity profiles seen in many texts ${ }^{4}$.

Remaining examples are concerned with the resolution of two sources (each represented by a laser) with a single-slit aperture
representing the objective lens of an optical instrument. The slit width is varied in Fig. 3, and the angular separation of the sources is varied in Fig. 4.
The Rayleigh resolution ${ }^{4}$ criterion for distinguishing two equally bright point sources of the same wavelength by the average human eye gives the limit of resolution when the first zero of one pattern falls under the main peak of the other, resulting in a 20% dip in intensity between the peaks. Figure 3(c) has a smaller dip of about 10%, which is not resolved in the direct image.

Figure 4 shows the results of a more difficult experiment, where the angular separation of the two sources is varied. The fixed and moveable beams were required to fall on the same slit and this was accomplished by the arrangement shown schematically in Fig. 5. The fixed slit was mounted on the projected axis of a rotatable table. One laser was mounted on that table and its beam was reflected twice in order to pass through the rotation axis, and therefore also through the slit. The second laser was mounted independently of the rotating table and its beam fell on the same

Fig 1. Schematic view of the principal television components.

Abstract

The camera employed in this work is fitted: with a Flumbicon or lead-oxide vidicon, which exhibits an extremely linear intensity response. It appears, for this purpose, to passess advantages over the older vidicon, which uses a different photosensitive element, and the image orthicon.

In essence, the photoconductor of a Plumbicon consists of three layers the middle one being almost pure lead oxide, which is an intrinsic semiconductor. On

PLUMBICON

the gun side of the intrinsic layer is a ptype semiconductor and the other side is doped n-type by a thin, conducting film of silicon oxide, which forms the transparent photocathode. Since the two doped layers are thin in comparison to the thickness of the lead oxide, the tube is more sensitive than older types. In the intrinsic region, the conductivity is low and the electric field strength high, so that if the target potential is high enough, all the liberated charge carriers contribute to the current.

The planar p-i-n diode formed by the photoconductor is reverse biased by the acceleration voltage of the electron beam; the current flows in the external circuit, which is completed by the beam. A signal voltage is developed across a resistor in the current path, which is proportional to the illumination of each segment of the photocathode diode. This, essentially continuous, array of photodiodes produces a very small dark current and a linear response.

Fig 2. n-slit diffraction (a) $n=1$, b) $n=2$, ana $(c) n=4$. The direct image is seen in the lower portion, and the intensity distribution in the upper portion of each frame.

Fig 3. Two-scurce resolution for variable slit $31 h$ and fixed angular separation, the components as in Fig. 2. (a) wide slit giving clear separation, (b) narrower slit giving bres omponents and some overlap, and, (c) narrowest slit with a 10% dip in intensity between peaks.

Fig 4. Two source resolutron for variabte angular separation and fixed slit width. The direct inage is now above the intensity distribution.
slit, after passing through the half-silvered upper mirror used to reflect the first laser beam. It was then quite a simple matter to vary the angular separation of the two sources and follow the overlapping of their respective diffraction patterns. Figure 4(c) shows the Rayleigh limit and Fig. 4(d) shows the sources at a smaller angular separation.
Some brief comments on the differences between Figs. 2 and 3 are in order. In arranging the final picture it was deemed desirable to maximize the ordinate of the intensity profile by placing it along the long axis of the television screen. The vertical splay of diffracted beams used in the first experiments (Figs. 2 and 3) was then placed on the side opposite to the intensity base line. In contrast, the later experiment with rotating beams gave a horizontal splay of diffracted rays. The diffraction pattern was then picked up by the main camera, displayed on a video monitor rotated 90 degrees to give a vertical pattern, and then picked up by another camera whose output was fed to the waveform monitor. The pronounced histogram appearance of the intensity distributions in Fig. 4 resulted from this extra step, and is probably responsible for some spurious reflections or haloes on the lower edge of the direct images. In all cases the raw results are presented without any retouching whatsoever.

It may be possible, as an alternative to the method described, to use a dual-beam oscilloscope, applying the colour camera output to a Y input and the Z input simultaneously, switching the Z signal on and off on alternate sweeps. This would give a curve, rather than a histogram presentation, but would provide a portable and economical system.

Fig 5. Schematic view of the assembly for varying the angular separation of two laser sources.

We would like to thank the staff of our Instructional Media Centre, especially Jack Campbell and Rudy Dahl, as well as Ian Cameron and Gary Smith of the Physics Department.

References

1. Retro-Flex Front Screen Projection System (Co/Ax Graphics) includes screen and beam splitting mirror.
2. E. F. de Haan and A. G. Van Doorn, 7 . Soc. Motion Picture and Television Engs. 73, 473476, June 1964.
3. RCA-TS40 Video Production Switcher with a Ball Bros. Mark 7E Special Effects Generator.
4. See e.g. F. A. Jenkins and H. E. White, "Fundamentals of Optics", McGraw-Hill 1957; R. S. Longhurst, "Geometrical and Physical Optics", Longmans 1960.

The authors

Elmer Hywarren gained an extensive background in television with stations CKSO (Sudbury) and CFTO (Toronto) in Ontario, Canada, and since 1967 has been with the University of Manitoba as a tv producer/director specializing in the use of tv for educational and instructional purposes.
Peter Loly obtained his Ph.D. in 1966 from the University of London (at Q.M.C. and I.C.) and is now Professor of Physics at the University of Manitoba with research interests in theoretical solid-state physics, especially low-temperature magnetic excitations (spin waves or magnons) and electronic properties of highly anisotropic conductors, as well as pedagogical aspects of oscillations and waves.

IN OUR NEXT ISSUE

Microprocessor trainer

Construction of an uprated version of the Nanocomp published in January. It uses a 6809 device, a more recent and advanced addition to the 6800 family of micros. Also a cassette interface which can be used with either version.

Digital speech storage and analysis

 First of a series of articles which uses the speech waveform in a down-to-earth way$$
\text { On sale } 17 \text { June }
$$

of explaining the latest processing techniques for handling digital signals. Normally mathematical, they are not widely understood. 1. - Storing waveforms digitally.

New coaxial cable development

Lower losses and improved power handling are offered by a cable structure which is a cross between conventional coaxial design and waveguides. Using an outer screen and an inner cylindrical group of parallel wires, it transmits in the dipole mode.

MULTI-PATH DISTORTION

Pat Hawker's writings are always interesting and to the point and his return to the question of multi-path distortion in your April issue is no exception. He cites the NHK study which reemphasises the sometimes underrated importance of these effects and quotes the German IRT/WDR paper in the $E B U$ Review, which casts doubt on the wisdom of adding a vertical component to existing horizontally-polarised v.h.f. radio transmissions.

In the BBC we have of course studied the EBU paper carefully, and perhaps anxiously, in the context of our plans for v.h.f. development. Broadly speaking, these plans aim at:
(a) Improving v.h.f. reception for users of portable and car radios, while leaving reception on fixed aerials unaffected.
(b) Filling gaps in our existing coverage by the provision of additional relay stations.
(c) Provision of additional v.h.f. radio networks to avoid the current necessity of sharing by different programme interests.
Addition of a vertical component, equal in power to the existing horizontal radiation, is intended to satisfy only requirement (a). If we wished to benefit existing listeners with fixed roof-level aerials, then a doubling of the hori-zontally-polarised power would be better than provision of a vertical component.

Pat Hawker, quoting the EBU paper, makes the point that vertically-polarised signals are more subject to long-range reflections, and this is certainly true. Curves in the EBU paper show, however, that with a horizontal receiving aerial there is little (about 1 dB) increase in distortion and stereo crosstalk with mixed-polarisation transmissions as compared with purely horizontal transmission. In other words, a listener staying with his existing horizontal rooflevel aerial will be quite well protected against multi-path distortions arising from addition of a transmitted vertical component.

Turning now to car radio reception, the EBU paper shows that with mixed-polarisation transmissions, received signal levels on a vertical rod aerial are significantly increased, while the transmitted polarisation makes little difference to distortions arising from reflected signals. The EBU paper, surprisingly, makes no reference to use of portable v.h.f. receivers in the home. With vertical rod aerials used in this case also, the findings concerning car radio reception are presumably applicable, although in a building the received polarisations may be significantly different from those transmitted. Certainly it is BBC experience that a vertical component is of considerable benefit to the home portable user, and indeed there could well be a reduction in multi-path distortion since the ratio of direct to reflected signals would of ten be improved.

The EBU paper lays some stress on the poor propagation of vertically-polarised signals, due to diffraction losses: figures are quoted showing vertical component received signal strengths between 3 and 6 dB less than the associated horizontal component. The relative loss of vertical component is said also to increase as overall signal strength decreases, i.e. towards the limits of the service area. In this respect, BBC findings are at variance with the German experience: for
example, tests in South London on the circu-larly-polarised Capital Radio transmissions show no particular difference between horizontal and vertical component propagation, nor any relative variations with overall field strength.

To sum up then, multi-path distortion is a factor to be taken very seriously into account in v.h.f. radio network planning. There are indeed uncertainties as to the precise effects and benefits of a vertically-polarised component, which we have weighed up very carefully. Having done this, we conclude that our initial development at Wrotham will bring significant improvement in the overall reception of v.h.f. in the South-East. As development proceeds in other areas, users of portables and car radios will reap similar benefits; but we shall seek to reassure ourselves that multipath distortion will not prove a greater problem in more rugged terrain.
D. P. Leggalt

Engineering Information Department
BBC
London W1

Pat Hawker comments:

To such kindly criticism it would be ungracious to cavil at mere technicalities! But I take the opportunity of stressing, as I thought I had made clear, that the viewpoints expressed in my article were entirely personal, seen very much from a "learning" situation. The vast majority of broadcast engineers remain fully in favour of mixed polarization, despite the German conclusions. However: (a) the German trials used audio tones at a maximum of 5 kHz , Mitsuo Ohara's work indicates that distortion would have appeared significantly greater had higher audio frequencies been used; (b) in Takeda et al, "FM Multipath Distortion in Automobile Receivers" IEEE Trans on Consumer Electronics, vol. CE26, August 1980, the rather striking opening sentence reads: "Multipath interference is one of the most serious problems for mobile receivers"; and (c) the additional path losses of vertically-polarized v.h.f. signals have been shown, elsewhere than in Germany, to depend very much on local conditions and to be most severe where the path crosses coniferous trees (not an outstanding feature of the South London landscape!) - see for example IEEE Trans Ant © Prop, vol. AP-28, No. 6, November 1980, where Frank H. Palmer's measurements in North-West Canada indicate that the presence of "trees and perhaps other types of ground cover" not only increases path losses by about 5 dB at both v.h.f. and u.h.f. but also greatly reduces cross-polarization losses, a factor that may prove significant in this context for national coverage networks. Indeed it has been recognised for many years that trees cause considerable scattering and polarization shifts on v.h.f. signals, if vertically polarized.

Nevertheless I share (with some personal reservations) Mr Leggatt's hopes that in practice mixed polarization will bring benefits to car listeners without undue degradation of domestic reception. Axeman spare those trees!

COMPUTER ARCHITECTURE AND PROGRAMMING

The photocopy of your February editorial "The new bureaucracy" having completed its tour of the building and having arrived back at my desk today has reminded me that I intended to comment on it. It is fully in line with the refreshing air of naivety that has blown through the editorials lately and as such is welcome. The more political essays have already been commented on in your columns but I would like to add a few points to your attack on the Von Neumann architecture and the "programming bureaucracy."

The application of the serial Von Neumann architecture has been not only downwards to the microprocessor but also, and perhaps more inexplicably, upwards into the most powerful of the computers available today: the array processors where parallel processing has been sought only by connecting many Von Neumann serial processors in parallel. This attitude can also be found in designers' reactions to the problem of fault-tolerant computers; I work on the implementation of a computer-controlled telephone exchange where 100% availability is essential: clearly a case for parallel processing. The problem is, of course, solved by connecting a plethora of serial processes in parallel: with no resulting synergism.
The questions of the "programmer class" (to which I belong) are explained when it is understood that programming is simple enough to require no extensive training but, paradoxically, cannot be carried out by most people. I have met and worked with many programmers in my time and have on occasions, normally when recruiting, toyed with the puzzle of the (lowest) common denominator. The only one seems to be a certain "childishness"; a willingness to play games. Programming is mysterious because it is one of the few occupations that, although simple, cannot be done well by everyone. This is enough for those who can build a mystique around the profession to exclude those who cannot. And once the mystique has been accepted, as it clearly has by the general public, it is only human nature to feel important if one is in the chosen few.
C. W. Hobbs

Bern
Switzerland

"OPEN CHANNEL" FREQUENCIES

The statistical report emanating from Philips Research Laboratories, Redhill (February letters), reminds me of the definition of statistical analysis as being the drawing of a straight line from an unwarranted assumption to a foregone conclusion.
I assume that the monopole antennas mentioned were in effect $\lambda / 4$ mounted on the roof of the van, the roof acting as a ground plane. The comparison between 27 MHz and 958 MHz operations was thus with antennas of heights of 270 cm and 8 cm respectively. Hardly a fair comparison!

It would be interesting to know what is the power gain of a co-linear antenna for 958 MHz of height 270 cm .
I would like to see the tests repeated with, for example, a simple slotted cylinder vertical antenna (B.P. 515684 by A.D. Blumlein (1938) of 2λ height (a mere 2 feet) having omni-directional horizontal polarisation at both transmitting and receiving ends.
I. J. P. James

Pinner
Middlesex

MAGNETIC RECORDING

In the March issue James Moir states that the problems of storing analogue signals on tape do not differ in any basic way from the problems of storing information in digital form on magnetic discs. Although the principles of both are the same, being bound by the same laws of physics, I would submit that the problems are quite different.
It is shown that loss of head-medium contact produces intolerable losses for analogue recorders, yet all disc drives with any pretence to access speed or transfer rate employ flying heads which are typically $1 / 10$ wavelength above the medium. There is thus no wear mechanism. Saturation recording is used, requiring no erase or bias process, and the harmonic distortion produced is of little consequence. These conditions put rather different constraints on the oxide and binder characteristics.

The phenomenon of peak shift distortion, where densely packed transitions tend to spread into less dense areas, requires special precompensation - a problem absent in analogue tape recording. Media defects in tape recorders result in dropout, which is seldom fatal, whereas in digital recording a corrupt machine instruction could result, which is intolerable, and therefore special hardware and software are necessary in order to make surface defects transparent to the system.
fohn Watkinson
Reading

I would like to clarify the interplay between coercivity and remanance of magnetic tape coatings as discussed in "Magnetic Recording Review" by J. Moir in the March issue.

Coercivity has not increased as a by-product of the search for increased remanence as the article seems to suggest. The major problem when trying to record short wavelengths at high levels on tape is that the elemental "bar magnets" laid down on the tape have low proportionality factors or length/thickness ratios (i.e. they are short and fat). Much of the field, conventionally taken to circulate from N to S poles, produced by such a magnet flows within the magnet itself and its direction is such as to cause partial demagnetisation, to an extent dependent on the amount of the flux (i.e. the recording level) and the coercivity of the magnetic material. High coercivity materials require to be driven harder by the record head as Mr Moir says, but by the same token they are more resistant to demagnetisation.

The maximum output obtainable from a reproduce head at low and medium frequencies is proportional to the tape remanence. Coatings are achievable with high remanence, or retentivity as it is often called in the data sheets, but low coercivity. The high frequency output of such coatings at high recording levels is, however, severely limited by demagnetisation. The magnetic medium is not saturated at h.f. in the usual sense, but is simply unable to support its normal
remanent flux density due to the unfavourable magnet shape. The effect is clear when one compares typical cassette recorder frequency response plots at the often quoted 0VU $=200$ $\mathrm{nWb} / \mathrm{m}$ (Dolby level) and $-20 \mathrm{VU}=20 \mathrm{nWb} / \mathrm{m}$ levels.

The various "high energy" tapes ameliorate the problem by using particles with higher coercitivities than the $26 \mathrm{kA} / \mathrm{m}$ (325 Oe) typical of $\gamma \mathrm{Fe}_{2} \mathrm{O}_{3}$ but the retentivity of these more recent tapes is not very different from the 100 mT to $120 \mathrm{mT}(1000 \mathrm{G}$ to 1200 G$)$ of their iron oxide predecessors.

One further point relates to the "grinding" process mentioned by Mr Moir. The mixes which are destined to become tape coatings are milled to ensure thorough dispersion of their constituents, not to grind up the magnetic particles! The chemistry of particle production is largely orientated towards maintaining the acicular particle shapes Mr Moir mentions. The last thing a manufacture wants to do is to break up the carefully grown particles during milling. Broken particles in fact exhibit low coercivity and are a particular nuisance from the point of view of print-through.
f. D. Underwood

Wokingham
Berks.

The author replies:

The comments of Messrs Watkinson and Underwood add some valuable information on the details of tape coating design and digital recording techniques to my contribution on magnetic recording. Having spent some early years involved in the problem of keeping replay heads in good contact with magnetic tape I have often admired the skill of the designers of disc data recording equipment in being able to hold the replay heads so consistently close to the rotating disc and yet out of contact.

I do not think that there are any really significant differences on points of fact in any of the aspects they discuss, but just differences that reflect our respective professional involvements. fames Moir

WW IN 1915

Hugh Pocock's mention in April letters that he was not editor of Wireless World between the years 1914 and 1918 prompted me to look out my copy for April 1915 and indeed the editor's name never appears in that issue.

It is interesting to note that even in those early (and wartime) days the magazine, while soundly technical, was not without humour. The following appeared under the heading "War Notes":

"Kindness of British Tommies

On several occasions recently our soldiers have helped the German aeroplane operators to get a good earth. Strange to say, the operators, when picked up, have shown very little gratitude."

Again we have:

"Misconception of Wireless Possibilities Two German workmen had been arrested as spies, and there had been discovered, hidden beneath the hearthstone of the kitchen in their two roomed (Glasgow) tenement house, a complete wireless installation capable of transmitting messages to Berlin.
"Mr Gibson comments that it is possible to send wireless messages as far as from here to Berlin, but not with apparatus that can be stowed away beneath a kitchen hearthstone - or even contained in a large room."

The issue is full of excellent photographs and cartoons - possibly as padding since there must have been severe restriction on technical articles.
G. Johnson

Livingston
West Lothian

STOP COMMENT ON THE USES OF ELECTRONICS?

I have been dismayed for some time at the damage done to the high reputation of Wireless World by the political take-over of your editorial and correspondence columns. This has lately turned into a party-political take-over, and impelled me, against all my inclinations, to join the correspondence.

In doing this, I believe I may be representing the great majority of the readership, who, as correspondents, will remain grossly under-represented in comparison with the relatively few political activists.

No one disputes the importance of the issues raised, nor the necessity for them to be critically considered. What you and your politically activist correspondents seem to miss, however, are: (a) the issues are raised in the press, radio, and television - volubly, voluminously, stridently, incessantly and some would say ad nauseam; there is not the slightest need to recruit the pages of Wireless World; (b) your readership does think about and consider these issues at least as much and as deeply as by the activists, without, however, wearing their hearts on their sleeves.

May I beg you, therefore, to keep the discredited world of politics out of Wireless World, and to stop trying to push your bleeding heart down the throats of your readers.

R. I. Baker

Newton Abbot
Devon

I have been interested to read in recent issues some protests about controversial political matters being introduced into the pages of Wireless World. My own contributions have been controversial but were certainly not intended to be political since my own opinion is that I doubt very much whether the problems of this country and of the world are going to be solved by politics as we know them at present.
I suspect that this is another attempt to stifle legitimate discussion of subjects which are of concern to us all, whether engineers or not, but more particularly to engineers because we are expected and usually able to deliver the goods (or the bads as the case may be) in the modern world.
Personally I have never been able to split life up into sacred and profane parts whether in the matter of my professional or my spiritual life. To me life is a unity, I do not do my daily work just for the money, handy though it is, but also because I believe that it will be of benefit not only in this country but also world wide to some extent.

It seems to me that Wireless World is an enrirely suitable place where we should be able to discuss as concerned electronics engineers national and international matters of importance. These matters are at least as important as the adverts and no one seems to object to these. W'ilfred Laycock
Abingdon
Oxon

INTERFERENCE FROM MICROS

With reference to Hugh Ford's letter in the March issue, I would confirm strong interference from the Pet 3032 computer on radio and Band I television reception. It is impossible to use a scanner receiver when the Pet is operating. 7. Bruyndonckx

Herentals
Belgium

In March letters Hugh Ford complained about interference from microelectronic devices in toys, trainers and so on. Might I draw his attention to a bigger nuisance, namely television line timebases? The Home Office have seen fit to ignore the interference from television sets, presumably because they feel impotent to deal with such a source. Aren't they (the Home Office) similarly impotent vis-a-vis microelectronic devices? Any shortwave listener would doubtless welcome the compulsory screening of televisions and computers and anything else that oscillates as part of its normal operation.

L. J. Devaney

London W'3

ETHICS IN ACTION

I have read every issue of Wireless World since about 1935, and have subscribed since 1945. Your November editorial coincided with my notice to renew my subscription for 1981. When I consider the number of electronics engineers who died in the course of ensuring that you should have the freedom to write material suggesting that elećtronics engineers eschew defence research, I grow thoughtful - so thoughtful that I am now cancelling my subscription.

D. 7. Dewhurst

Electrical Engineering Department
University of Melbourne
Australia

I note that your "Microchips and megadeaths" editorial in the November 1980 issue is still causing comment. Mr J. S. Linfoot (April letters) seems to believe that the defence electronics engineer has only the dole as an option.
My personal experience does not bear this out. I used to be a microwave engineer heavily involved in major military contracts. After years of growing disquiet, I found myself being pressured to work on a project I found totally unacceptable: a military communications system for the South African Arms Bureau. This had slipped through a loophole in the arms embargo. I blew the whistle and resigned. Yes, I did spend six months on the dole; extensive national publicity did not help the job hunting. However, within eighteen months I was designing again, and have been since, but exclusively for peaceful purposes. No doubt my decision cost me money, but it did cause the loophole to be blocked. More to the point, I can now work without fear of the consequences for us all.
I feel that any engineer of use in military technology is likely to find himself to be of equal value to an employer producing equipment of real use to society. The choice exists.
fock Hall
Braintree
Essex

AERIALS OF LIFEBOAT SETS

A. K. Tunnah (March letters) asks for information about the performance of low powered ships' lifeboat transceivers during actual distress conditions at sea. I can provide the following examples:
(a) The survivors of the Schiedijk, from a lifeboat, in conditions of sleet and snow and rough seas, maintained contact with Tofinoradio (Vancouver Island) from a distance of at least 150 nautical miles on 500 kHz using Radio Holland portable equipment.
(b) On the other hand, the radio officer of the Lebanese sheep carrier Farid Fares, which sank off the Australian coast in March 1980, wrote: "I attempted to contact other vessels with the life-boat set, but was unsuccessful. The set appeared to load the aerial on 500 kHz and 2182 kHz satisfactorily, but after a short period of ime water was all over the insulator . . .
What might be achieved with the 4 or 5 watts available would seem to depend on the quality of the aerial. As Mr Tunnah mentions, the aerial most commonly provided is only a short telescopic mast or a bit or wire hung on a pole. It seems likely that the Schiedijk equipment had a long kite or balloon supported aerial and a well shielded insulator
It is not only lifeboats that suffer from inadequate aerials. J. J. Boyd (December 1980 letters) had to feed 1.5 kW into two 9 -metre lengths of wire, the electrical equivalent of trying to pump 10,000 gallons per minute through a $1 / 4$-inch leaking pipe. It is absurd that on a supertanker a quarter of a mile long it is "impossible" to hang up a good aerial because "there is no room". Similarly, balloon or kite supported aerials should be provided with all lifeboat equipment.
John Wiseman
London E3

TWINS PARADOX OF RELATIVITY

I was surprised to discover that Wireless World had, without giving me prior notice, published an article by the late Professor Herbert Dingle "The twins' paradox of relativity" (October 1980 issue) in which my name is frequently mentioned. I do not think it was wise to publish the article: Professor Dingle died in 1978 and cannot defend himself if the controversy which he aroused is started up again.

Professor Dingle's article asserts that there has been a general lack of published debate on his critique of Special Relativity, and goes on to describe this as a "scandal". From the article it would appear that, at least by implication, Professor Dingle believes me to be party to this "scandal", as I did not publish my replies to his criticisms in 1977. Sir, too much has already been published on the Dingle question, and the time is long past to call a halt to this whole business. I was the last, and one of the least distinguished, of a 20 -vear long succession of physicists who answered, in public or in private, Professor Dingle's questions about Special Relativity. These scientists did not convince him of his errors and, not surprisingly, neither did I. In the panel accompanying his article, Professor Dingle is described as an expert on relativity. My first, succinct answer to his question was couched in terms intelligible to any physics undergraduate, yet he dismissed it as "technical jargon'. I then expended a lot of time, effort, and paper in explaining my answer in non-tech-
nical terms. I was unable to establish the ground on which Professor Dingle rejected my explanation. Before corresponding with him, I carefully read Professor Dingle's book and examined all the published literature on this point. Despite complaints about the debate being stifled, very many papers have been published. I emerged from our correspondence with a much deeper understanding of Special Relativity, and an unshakable conviction that Professor Dingle's criticisms are wholly without foundation
Apart from the personal benefit of my deepened understanding, our correspondence discovered nothing new or uriginal on the ques tion. We were as far from agreement at the end as we had been at the beginning. It therefore seemed futile to me then to publish another tract on a subject which had been well-ventilated in the literature. I am stilt of that opinion. Most academic journals have for some vears rightly viewed the matter as settled and regarded more discussion of it as a waste of paper.
Professor Dingle was a distinguished historian of science. He started to question relativity after he had re-read Einstein's first paper on the subject. Although I do not have German enough to verify this myself, it may be that there is an error or ambiguity in one of the examples Einstein gave in the paper (comparing clocks at the north pole and the equator). Instead of regarding this, if it be true, as an interesting insight into how Einstein himself had not fully thought out the implications of relativity at that time, Professor Dingle chose to regard that paper as a canonical definition of the theory and used it as the spearhead of his attack. As the discoverer of a possible mistake by Einstein, Professor Dingle might have written an illuminating chapter on the history of science; as Einstein's dogged, but mistaken, critic, he has written himself into that history.

His struggle against the scientitic establishment lasted over 20 years. By his energy and persistence, he tempted many scientific heavyweights to step outside their narrow fields of expertise and commit themselves to print in simple everyday terms. Some were wise enough to resist this temptation and, like Nobel prizewinner Max Born, couch their answers in technical terms whose meanings were precise and well-defined. Some of those who did venture an answer in layman's terms tripped themselves up on the imprecision and ambiguity of everyday words. In the face of a critic who scrutinised every word as a theologian does the Bible some scientists showed themselves to be very poor writers, and Professor Dingle triumphantly attributed the obscurities of their explanations to the contradiction he claimed to see in the theory. Where then can one turn to for a definitive statement of the theory? Not to the original papers - for as we have already seen these are the first published thoughts on the subject, and second thoughts may change the author's mind; or can we look to the texthooks - for some of lese are well-written and some badly, they are all written for different readerships and their function is to teach, not to define. This lack of a simple verbal expression of the theory is not fatal as it might seem, for science is not theo$\log y ;$ scientists criticise theories by performing experiments, not by examining texts as if they were Scripture.

In my case, the language of relativity is geometry, not English or German. There is a double irony here, for Professor Dingle's own critique is formulated in everyday terms and he has himself tripped up on the imprecision of our normal vocabulary. Professor Dingle was quick to point out verbal errors by his opponents, yet his criticism of relativity is itself founded on a confusion of language. Perhaps the whole issue
of how a scientific theory can be properly expressed might form an interesting research topic for some future historian or philosopher of science.

Professor Dingle did not succeed in conquering the citadels of science. The measure of his failure was the length of his struggle. For what happened to all the bright research students who were young in the 1950s when Professor Dingle first published his criticism of relativity? Some are now Nobel prizewinners, but the prize which they won is recognition of many years of painstaking labour - albeit illuminated by occasional flashes of inspiration - in the patient obscurity of a specialised field of physics; noone of this high calibre was attracted by the thought that, if a physicist demolished Einstein's relativity, his name would overnight become a household word. The scientific establishment of the 1950 s might have had a vested interest in opposing change, but the younger generation then did not. Other ideas have been overthrown in the last 20 vears, but relativity remains. Yet what credit, what fame, would have accrued to the physicist who dethroned Einstein! That no young student over the last 20 years has seen the chance to make his name by developing Professor Dingle's ideas is eloquent testimony to the erroneousness of these ideas.

In the commentary which accompanies Professor Dingle's article, Professor McCausland poses the questions "Why not discuss relativity?" and "Why is criticism of relativity so resented?". I have deliberately chosen in this letter not to discuss relativity but to treat this whole business as an episode of historical interest. The Special Theory of Relativity is as well established as the theory that the earth goes round the sun. Both theories have consequences that are contrary to commonsense: for example it is a matter of elementary observation that the earth is flat and stationary and that the sun moves round the earth - it requires many precise experimental measurements and a sophisticated theoretical apparatus to arrive at the opposite (and correct) conclusion. Professor Dingle's criticism was not as crude as this example, it merited some attention: it has received too much.
No journal would be accused of suppressing criticism if it ignored a paper asserting the earth was flat, there is no scandal in refusing to publish papers on the geocentric theory of the universe; in the same way, there is no scandal in refusing to discuss further Professor Dingle's critique of relativity.
Criticism of relativity is not resented, only the vain repetition of an empty argument is irksome. Like every other scientific statement, relativity (both special and general) is at the mercy of future experience. Sooner or later an experiment will crop up whose result will be incompatible with relativity and a new theory will be devised to replace it, just as Einstein's theory replaced Galileo's. And just as there was a long struggle against Einstein's relativity, a struggle in which Professor Dingle was the last protagonist, so the scientific establishment of the future will fight against relativity's successor. If the academic journals of the future display to the new theory, when it arrives, the tolerance they have shown to Professor Dingle, the scientific establishment of the future will lose that fight,

Too much has been written on this matter already. Please, let it rest.
Thomas D. B. Wilkic
International Atomic Energy Agency
Vienna, Austria
The above letter, and those of other readers who have responded to Professor Dingle's article, will be dealt with in a composite reply by Protessor McCausland in the next issue. - Ed.

AUDIO KITS

As a manufacturer of hi-fi kits I feel I must comment on the points raised by Mr M. J. Evans (November letters) and Mr M. G. Taylor (March letters) questioning the value and worthiness of these kits.
I would agree with Mr Evans that, generally speaking, hi-fi kits should be avoided. Some kits that I have come across seem doomed to failure - the basic design being unsound. Many kits advertised in electronics magazines arise in the following way. An enthusiastic constructor 'designs' a circuit configuration, and produces one-off, at most a few off, to test the design. The next step is that a component supplier will then be offering kits of the published design, with commonly available parts. The problems arise in many areas. One needs to produce a fairly large batch to be sure that h.f. instability will not occur with a set of 'worst case' components. Next, a change of manufacturer of semiconductors for instance (even of the same transistor number) can give similar problems. It is worth remembering that 'bulk' transistors contain dead or u / s devices - and I don't know how the amateur constructor is expected to locate them. Lastly, having built the kit the constructor often has the suspicion that it may not be 100% perfect - but without good test gear he does not know.
Suppliers of non-assembled p.c.b. kits have very little obligation in law to give any sort of back up service should a kit of parts be nonfunctional. Suppliers often take the attitude that 'correctly built' the kits always work - the logic thus extends to point that all repairs must be paid for, sometimes referring the customer to an independent firm specialising in repair work.
The pre-assembled p.c.b. type of kit gives the customer the assurance that this major item of the kit is fully tested and carries a guarantee to the minimum of that required by law in the 'Sale of Goods' act, if not more so by many manufacturers.

To conclude I would agree with Mr Taylor that the constructor should have basic knowledge of electronics and should choose and build with care.
B. E. Powell

Crimson Elektrik
Leicester

ENERGY FROM SPACE?
 I enjoyed reading M. G. Wellard's "Apprecia-

 tion of James Clerk-Maxwell" (March issue) with his penetrating analysis of modern theoretical physics. The criticisms he makes in a general way were clearly in Vallée's mind when he developed his uniform field theory referred to in my earlier article (October 1978 issue). Vallée starts with a model of space and, in view of the obvious presence of various forms of electromagnetic waves, he makes the assumption that all the energy in space, including gravitational energy, is in an electromagnetic form. Realising too that the mathematical equation relating to the waves are continuous and that the superposition of waves would eventually lead to infinite values of the field, he postulates that there is an upper limit of field at which the properties of space alter so as to prevent any further increase.With these two assumptions added to Maxell's theory he develops a comprehensive unified field theory which furnishes the results generally accepted from other theories but without their contradictions, and also contains many new features, such as physical models for the photon, electron, fundamental particles, the
origin of cosmic rays, and the dual nature of light. However, the most important prediction, which could have a profound effect on our future, is the possibility of reconstructing β radioactive elements without using the energy they liberate on disintegration but by absorbing energy directly from the electromagnetic gravitational medium.

There has long been some evidence that energy could be obtained from space. In 1927, Wolfgang Pauli observed the apparent violation of the law of the conservation of energy in the case of β-emissions. In 1931, Niels Bohr stated that the concept of energy appeared to be inapplicable to sub-atomic phenomena and that in the sun and the stars energy appeared to be provided from nothing. The energy unbalance in the case of β-emissions was attributed to the presence of a new particle - the neutrino; but attaching a name to the phenomenon does not help to explain it.
The ultimate test of a theory is its ability to explain existing experimental results and to predict new ones which are capable of experimental confirmation.
According to Vallee the first experimental evidence was provided by the production of β radiation of six million electron volts in the torus of the "Tokamak" nuclear fusion equipment at the Kurchatov Institute. Similar results were obtained in a specific experiment made with a Tokamak torus at the Department of Plasma Physics, C.E.N., in 1974.

Then what he believes to be the most startling confirmation is provided by the explosion of the French atomic bomb at Mururoa on 25th July, 1979. Its effects, including the emission of an enormously intense electromagnetic wave, were quite different from those of any previous explosion. ${ }^{1}$
Vallee had hoped that his idea might lead to the deveolpment of a safe, cheap and universally available source of energy which could provide mankind with a hope for the future. His work was discouraged but there is now the suggestion that it has been developed in secret to provide a new weapon of destruction. It is to be hoped that we have some scientists who are sufficiently open-minded to study Vallé's theory and its possible application to the peaceful production of energy.
L. Essen Great Bookham Surrey

Reference

1. R. L. Valle e. Synergetique (Bulletin of the S.E.P.E.D.) No. 28, Jan./Feb. 1981.

PAYING FOR GOODS

Perhaps the "large public utility" which Mixer was referring to in Sidebands of February 1981 was British Telecom. I met recently the same situation as the engineer he mentioned, in being unable to persuade a supplier to send the goods until payment had been received and being unable to get the Post Office to part with the cash until I had signed for receipt of the goods.

The first time I took the risk myself and signed in advance, but then I asked the clerical person if there was a better way. He explained that I only had to ask the supplier for a proforma invoice and payment would then be made immediately.

I tried it and it worked. Where there's a will there's a way.
Brian Castle, G4DYF
British Telecom
London WCI

INVENTION OF STEREO RECORDING

In the UK the engineering profession has long attributed to Alan Blumlein the invention of many basic concepts, including the 45/45 system of stereo recording.

My fellow readers will be aware of the issue of some recordings by the Bell Telephone Laboratories of experimental work done between 1931 and 1932, which includes stereo disc recordings made at the time. A friendly dispute has arisen between myself and an American colleague in which he avers that the Bell work predates that of Blumlein's, both in a practical sense and the basic patents.

Now I have been very carefully through all the evidence and in my mind, the information on Blumlein's work is quite explicit; on the other hand, that from the Bell Laboratories which makes no mention whatsoever of work done elsewhere, is obfuscatory in the extreme. The demonstrations do not mention whether they were $45 / 45$ or hill and dale and whilst the patents do mention the $45 / 45$ concept, their relevance to stereo recording is somewhat vague.

However, I am attempting to keep an open mind and I am sure that we would all wish to be fair to Alan Blumlein or, if it turns out to be so, to the work of A. C. Keller at Bell who may not be getting the public credit he may deserve. So may I appeal to my historically knowledgeable fellow readers to come to the rescue and settle it once and for all?
Reg Williamson
Norwich

PICKABACK SPARKS

I find that the very diversity of content in the letters published in Wireless World provides far more stimulation than the very worthy articles which sandwich them. The three letters on pickaback sparks (November, March and April) served to remind me that I have never attempted a literature survey on the triggering of arcs and sparks; and it would certainly be of interest to establish any contribution it made to the technology of early wireless transmitters. Use of an air blast in a.c. discharges goes back well before wireless usage, to Tesla and to Thomson in the 19th century; and it would not surprise me to find that all the possible variations of series and parallel triggering techniques go back a long way too. Certainly, when I was developing light sources for high speed photography in the 1950s (e.g. Four. Phot. Sci. 10 (1962), pp. 271-9) it seemed almost impossible to invent anything that didn't derive from the work of Mach, or at least Cranz, both pioneers in ballistic photography. My only advantage seemed to lie in the greater variety of available electrical components, and more and better insulating materials; so that series and parallel triggering transformers, triggered gaps etc. were either easy to get made in the workshops or could be purchased.

Books like "High Voltage Laboratory Techniques" by Craggs \& Meek on the library shelf, and the later compilation by Frungel, made triggering sound easy enough; but sympathetic discharging of multiple gaps was not unknown. Despite this, I didn't experience the cascade catastrophe of John T. Lloyd until the early sixties; the company electrician was both pardonably annoyed and slightly incredulous when he came to mend the fuse. Co-users of the laboratory were even more disenchanted by the noise from my open air-gap discharges; a tip
worth remembering is that the Marconi Company enclosed one of their marine spark-gaps in a stout wooden box. I put mine in a large bore Pyrex tube and closed the ends with loose corks; the result was a quiet pop instead of a loud bang, followed by bad language as I searched for the corks.
Desmond Thackeray
Music Department
University of Surrey
Guildford

LOGIC DIAGRAMS

It is unfortunate that the common usage term Nor means (a) Or the statements and then (b) invert the result, rather than the other way round. The logic gate which did (a) an Or followed by (b) an Invert was therefore correctly, but most unfortunately, called "Nor" (rather than the more accurate Orn):

Had there been no common usage term Nor, we would have called the gate below a Nor.

I am old enough to remember my horrified reaction when the bastard term Nand began to be used to mean, not the expected Invert followed by And:

but rather And followed by Invert:

I knew then, in 1960 , that we would have to pay for this slovenly development in our terminology. We're paying for it now. See Wireless World, February 1981, page 50.
Changing the subject a little, Tony Cassera's article in November 1980 should have referenced U.S. MIL STD 806B, which originated the philosophy he described. (I am willing to supply copies of this standard at cost. The controlling committee refuse to do so, having merged it now with the very much inferior A.S.A. standard. However, U.S. MIL STD 806 B , the best standard in the world, remains the de facto world standard. For the worst, see British Standards.)
Ivor Catt
St Albans
Herts

FAILURE OF DISTRESS SIGNALS AT SEA

Mr J. J. Boyd's letter in the December 1980 -issue states: "This is only an emergency installation and is a back-up to the ship's main m.f. transmitter which, today, has a p.e.p. output in the region of 1.5 kW ."

It may be that the main transmitter on Mr Boyd's vessel does have a p.e.p. output of 1.5 kW on m.f. I think, however, if he refers to the specification for his main transmitter he will find that on m.f. in the Al mode of transmission (c.w.) it has a power output of 500 W , and in the

A2H mode of transmission (m.c.w.) the power output is 320 W . The designation p.e.p. usually refers to s.s.b. A3A or A3J modes of emission used on the h.f. bands, and on h.f. s.s.b A3J on $4,6,8$ and 12 MHz , the main transmitter does have a p.e.p. of 1.5 kW . But s.s.b. A3A or A3J modes of emission are not used on the m.f. bands. A2H m.c.w. is the usual mode of emission on m.f.
Personally, I would not share Mr Boyd's optimism that in most emergencies at sea the ship's radio officer would have access to his main w.t. transmitter, this being either supplied by power generated on-board by the ship's main or emergency generators. In any emergency at sea, there is a fifty/fifty chance of all locally generated power failing, particularly in the case of fire on-board, thus placing complete reliance on the battery powered emergency transmitter.
I would concur, however, with Mr Boyd, regarding his remark on the comment of one shipping superintendent on costs, at being asked "to foot the bill for a re-designed aerial system". Such remarks by the ship owner or those he employs ashore are typical. Without doubt all ships do conform to the statutory safety rules and regulations, and so long as they do that seems all the owner is concerned about. But one can only ask, is there not room for a complete revision and up-grading of these regulations? This to include all the electronic equipment carried by ships, whether such equipment be compulsorily fitted or not. It makes one wonder, do ship owners write SOLAS (Safety of Life at Sea) as \$O£A\$? Is the ship owners' lack of response to recent letters in $W W$ to be taken as a measure of their interest or concern?

The letter of Mr P. J. W. Sawyer (December 1980) seems to imply that not all aerial insulators are kept clean. This may or may not be so. All I can say is that the losses of power referred to in my letter of May 1980 occurred with clean insulators. The answer to this problem lies in the better engineering design of ships' aerial systems.
A. K. Tunnah

Sydney
N.S.W., Australia

CURRENT DUMPING ANALYSIS

Mr Malvar's article on current dumping (March issue) appears to assume that the output impedance of the non-linear amplifier (B) is zero. In the common case where B is a pusn-pull common collector stage this will not be true for small signals.

In fact his results are independent of this assumption, as I am sure he realises. Using his notation
$V_{1}=A\left(V_{S}-k V_{2}\right)$
$\frac{V_{0}}{R_{p}}=\frac{V_{1}}{R_{3}}+\frac{V_{2}}{R_{4}}$
and hence $\frac{V_{0}}{R_{p}}=\frac{A V_{S}}{R_{3}}+\left(\frac{1}{R_{4}}-\frac{k A}{R_{3}}\right) V_{2}$
When $k A=R_{3} / R_{4}$ the gain is $A R_{p} / R_{3}$ and is independent of V_{2}.

Mr Malvar's use of " B " as a non-linear operator is mathematically unsound since it leaves the question of the amplifier's output impedance undefined. The analysis above shows that his results are true in any case.
K. G. Barr

University of the West Indies
Bridgetown
Barbados

Electronic thermometer

Simple sensing diode provides accurate and reliable temperature measurement

by A. S. Henderson

Abstract

Although several designs for electronic thermometers have been published, most of these have either been complicated or low performance devices. This design has been kept simple for reliable operation, and offers an accuracy within 1% of f.s.d.

The most important part of an electronic thermometer is the sensing device which, in most cases, should be small, have a low thermal capacity, generate a large signal, respond linearly to temperature variations, abstract or dissipate very little energy and have a long life. Several devices such as thermistors, transistors and special i.cs were considered, but the most attractive device appeared to be a miniature signal diode. It is generally accepted that, with a constant current, the forward voltage across a silicon diode reduces by 2 mV per degree increase in junction temperature.

This can be expressed as

$$
\Delta V=\frac{k t}{q} \ln V_{f}
$$

where k is Boltzmann's constant and q is the charge on the electron. As k and q are fixed, the change in voltage must be linearly connected to temperature, and the physical constants of silicon give $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
To test this parameter, six batches of 100 miniature signal diodes were evaluated as shown in Fig. 1, using a 9 to 15 V d.c supply connected in series with a $10 \mathrm{k} \Omega$ resistor, a multimeter and a diode. The diode under test was cycled from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ with a forward current of exactly

Fig. 1. Test circuit to measure V_{f}.
lmA at $0^{\circ} \mathrm{C}$. As there was no detectable change in forward current, this was assumed to be constant. The forward voltage drop, V_{f}, of each diode was measured at ambient temperature to record the spread in V_{f} within a batch. These values were grouped in 5 mV steps, and the distribution of V_{f} within six batches of 100 silicon devices is shown in Fig. 2.
From each type, two devices from the outer distribution spread, ignoring the odd wild values, and three from the central concentration were assembled into probes and tested for V_{f} at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. The correlation between V_{f} at $0^{\circ} \mathrm{C}$ and the voltage excursion, ΔV, over $100^{\circ} \mathrm{C}$ for four types is shown in Fig. 3. The 1N3063, 1S44 and 1N4154 showed no apparent correlation and have been omitted.
A batch of germanium diodes, type 1N3470, was also tested and Fig. 4 shows the distribution of $V_{f}(\mathrm{amb})$ for these devices. An ideal device, indicated in Fig. 3 by a dotted line marked $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, has a

Fig. 2. Distribution of $V_{f}(a m b)$ for six types of silicon diode.

Fig. 3. Correlation between $V_{f}\left(0^{\circ} \mathrm{C}\right)$ and ΔV_{f} $\left(100^{\circ} \mathrm{C}\right.$).
horizontal slope which is independent of V_{f} at $0^{\circ} \mathrm{C}$. The closest slope to the ideal is shared by the BAX13 and 1N3470 silicon and germanium devices respectively.
From the distribution figures it is clear that very few diodes in a batch of 100 will give an exact 200 mV excursion for a $100^{\circ} \mathrm{C}$ change in temperature $(180 \mathrm{mV}$ for the 1N3470), therefore the range of the indicator needs to be adjustable. If the 0° and 100° readings are set by potentiometers, it is possible to achieve accurate and reliable temperature measurement.
The circuit shown in Fig. 5 uses a diode sensor with its anode connected to 0 V and a 1 mA bleed resistor to the negative supply. The junction of the diode and resistor feeds the non-inverting input of an op-amp, and the inverting input is connected to an identical negative voltage from the set $-0^{\circ} \mathrm{C}$ cermet potentiometer. Therefore, with the circuit adjusted, when the diode is at $0^{\circ} \mathrm{C}$ the output from the opamp is 0 V . As the temperature is increased V_{f} at the non-inverting input reduces, i.e. becomes more positive, and the output goes positive. A closed-loop gain of around 5 gives an output of about 1 V . If a 1 mA meter is connected from the output via a $1 \mathrm{k} \Omega$ potentiometer to 0 V , the $100^{\circ} \mathrm{C}$ signal

Fig. 4. Distribution of V_{f} (amb) for a germanium diode.

Fig: 6. Stabilized power supply. The resistor network allows adjustment of the positive rail to exactly twice $V_{\text {ref }}$.
can be adjusted for f.s.d. Alternatively, f.s.d. can be set for any intermediate output to give a wide choice of scale values. Other meter sensitivities can easily be used by altering the value of the set $-100^{\circ} \mathrm{C}$ potentiometer.
To avoid problems with drift, the instrument requires a regulated power supply as shown in Fig. 6, which also provides a temperature-stabilized reference voltage of around 7 V . The $\mathrm{V}_{\text {ref }}$ terminal is used for 0 V and is connected to

Fig. 7. Prototype circuit using a silicon or germanium diode.
earth. The main regulator controls the positive rail at double $\mathrm{V}_{\text {ref }}$. The complete circuit shown in Fig. 7 uses an alternative voltage adjustment network which provides a smoother and less critical adjustment of the output voltage.
For battery operation in a portable unit, the 723 regulator cannot be used because it requires a 9 V input and a slight voltage drop causes trouble. The circuit in Fig. 8 overcomes this problem by using a 7 V 2 and a 3V6 Zener diode for stabilizing the positive and 0 V rails respectively. One drawback, however, is the loss of temperature compensation provided by the 723 .
In applications which require a switched output, such as the control of a heating element, a simple modification is to remove the feedback network from the op-

Fig. 8. Simple regulator for a battery supply.
amp in Fig. 7 and use it as a comparator. However, because the change in temperature is proportional to temperature difference, the probe will not quite reach the ambient temperature and over the last fraction of a degree the output changes very slowly. This will cause the op-amp to oscillate for several seconds before switching and may permit switching by thermal noise. Introducing hysteresis by positive feedback is an effective way to stop the oscillation, but this produces an unacceptable dead band. The problem can be overcome by using a dual op-amp with one half connected as in the original circuit and the output signal fed to the second half connected as a comparator with positive feedback. As the output signal is more than five times greater than the input, the dead band is reduced to less than $0.5^{\circ} \mathrm{C}$. The combined indicator and comparator circuit is shown in Fig. 9. In the prototype some 741 op-amps did not switch off the transistor. If this occurs, a signal diode should be connected in series with the emitter to raise the base voltage.
Because this is a low-gain, low-impedance circuit, construction is not critical and earthing the 0 V line enables a cheap and simple probe to be assembled as shown in Fig. 10. To prevent mains hum a screened lead should be used with the probe.

Multi-channel operation

As explained earlier, diodes of the same type do not exhibit exactly similar characteristics so multi-channel operation is not

Fig. 10. Temperature probe assembly.
straightforward. Using several meters or cermet potentiometers is expensive, and wire-wound types suffer from poor resolution. Matching the diodes provides a lowcost solution and the test circuit in Fig. 11 enables the devices to be sorted into 0.5 mV or $0.25^{\circ} \mathrm{C}$ groups very quickly. The test circuit does not measure V_{F} directly but the differences in V_{F} compared with a preset value, which permits the use of the most sensitive voltage range.

When switching two or more probes at the input to the indicator circuit, the switch must be a make-before-break type so that the op-amp input is always connected. For special applications it is easy to modify the circuit. Closely matched op-

Fig. 9. Temperature indicator and comparator switch. The relay contacts can switch a small load or trigger the optional triac/s.c.r. circuits.

Fig. 11. Test circuit for matching sensing diodes.
amps as in the 747 minimise temperature drift even in a high-sensitivity differential circuit.

Calibration

Calibration is simple and only requires distilled water. Prepare a tray of ice cubes from the distilled water, half fill a suitable container with the ice cubes and add the same amount of cold tap water. Stir thoroughly until the ice cubes are about half their original size, insert the probe and, when the meter reading stabilizes, adjust the $0^{\circ} \mathrm{C}$ control so that the meter reads zero. The mixture should be stirred again and the adjustment checked. Next, boil some distilled water, insert the probe and repeat the procedure for the $100^{\circ} \mathrm{C}$ control.
For intermediate scale lengths such as 0 to $40^{\circ} \mathrm{C}$, proceed as above with a voltmeter connected between the cal point and 0 V . Note the voltages at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, the output voltages at intermediate temperatures will be exactly proportional. Although diodes do not have the same temperature coefficient of forward voltage, the voltage changes linearly with temperature. When calibrating an intermediate scale always start at the bottom end with water about $5^{\circ} \mathrm{C}$ hotter than the minimum value. Insert the probe and calculate from the calibration cycle the output voltage at the minimum value. When the voltmeter agrees with the calculated value, adjust the $0^{\circ} \mathrm{C}$ control for zero. Repeat for the maximum value and adjust the $100^{\circ} \mathrm{C}$ control for full scale. It is better to use the cooling cycle rather than the heating cycle because cooling takes place more smoothly and uniformly.

Stratospheric or catastrophic?

It doesn't seem all that long ago that we were being told that tv broadcasting by satellite on a global scale would soon be as common as the Chinese take-away on the corner. Since then we haven't heard much more. I wonder why?
No doubt money or the lack of it lies at the root. It's a safe bet that development and building costs would call for at least another pound on the price of a pint, which is unthinkable. And the cost of actually launching satellites into space would be astronomical -if you see what I mean. Why, even down here on good old terra firma a 40 -mile trip in a Mini costs around $£ 1.60$ in petrol alone.
Never mind, once we've got the Tories, the Labour Party, the Liberals, Roy Jenkins' lot, inflation and the Royal Wedding out of the way, and Marks and Spencer have taken over at Westminster, things are bound to improve. And a heartened and revitalized tv industry, rising from the ashes of the old, will doubtless resume work on the project.
Certainly the prospect is a dazzling one. Who would resist the idea of sitting at home in the suburban semi watching programmes zooming in from everywhere via that tiny man-made twinkler in the sky? Not me, for one.
But the concept is not without its problems. One of them is fine tuning. And, if that's not licked, you could find yourself getting stations coming in from all directions simultaneously. The situation is further complicated by the fact that, as you know, many countries transmit localized equivalents of our own past or present national favourites.
Among these offerings are Z-Rickshaws from Hongkong, Loudly-Loudly from the US (where they believe in making their ears work for a living), Abdication Street from the USSR (where coronations are forbidden) and Bottom Of The Pops from, as you may have expected, Down Under. Then there's that delightful children's series, Black Peter, from Lagos, and those two workmanlike versions of Mr and Mrs, entitled Herr Und Frau and Sahib \& Memsahib from Berlin and Bombay respectively.
This means that, unless you're firmly locked on to the right frequency, there could be a sudden change of the received programme without your immediately realising it. For instance, seconds could elapse before you cottoned on to the fact that you'd been transported without warning from The Rover's Return to a remarkably similar local in Leningrad.
Time and geographical differentials, too, have to be considered and you must be
prepared to make some swift and radical mental adjustments as you view. Let me give you a few examples. Some of our overseas friends put out virtual carbon copies of our own Tomorrow's World and This Week. Those countries on one side of the international dateline call their shows Yesterday's World and Last Week. On the other side they're known as The Day After Tomorrow's World and Next Week. By the same token that fine series, When The Boat Comes In, emerges either as When the Boat Goes Out or Now The Boat's Come In, depending on tidal variations. News At Ten is available in the full range of hours from one to 24 .

Well, so much for the programmes. The real trouble starts when you get down to the equipment for receiving them. One thing you can't do without is a parabolic or dish aerial. OK, I know that set-top job that's been bringing you pictures of nearphotographic quality from Granada for years is neat and unobtrusive. But it just won't do. Signals from space need a lot more room to land on.
The parabolic comes expensive if only because of its size. (How big? Have you seen pictures of that one at Goonhilly? Well, then . . .) Also, if you want the best reception it has to be mounted on the roof. This is sure to be unpopular with the neighbours and you may also attract the attention of the Town Hall bureaucrats who'll write you stiff letters about planning permission and adjustment of rateable value.
Leaving these incidentals aside, your first task is to get the dish up to chimney level. There are two methods open to you. One is to hire - at ruinous cost - an RAF air-sea rescue chopper, complete with crew, who will lower your aerial by cable. There's one snag about this method. These RAF types have odd ideas about priorities and are quite liable to drop you - and your dish - if they get a sudden call to save some incompetent dinghy-paddler in trouble off the Lizard. New roofs come expensive, too.
The second, and by far the cheapest and most practical, solution is to invite your mother-in-law for the weekend. Then you lush her up with lots of choice food, good wine and compliments. When she has reached the right stage of recklessness, you tactfully suggest she might be able to do you a good turn. Before she's had time to question this proposal, you must swiftly strap the dish on to her back and ease her gently up the ladder you have placed in position previously. With all that booze swilling about inside her, she's bound to enter into the spirit of the thing. And, as she will resemble an adventurous turtle, she cannot fail to provide lots of fun for the onlookers as well. Just one point. Don't take the ladder away. She may want to
come down again.
All right, so you can't afford to hire a helicopter and you don't have a mother-inlaw. In that case you'll have to find some way of accommodating your dish inside the house. The experts don't, I'm told, favour the living room. This is because once you've got your dish in there's no room for anything else - not even the tv set. And that makes the exercise pointless.
However, there is one more thing to think about before you finally decide, when the time comes, to view the world. Signals from satellites have a long way to come and inevitably they meet with objects on their journey, like aircraft, for instance. This has a deflecting effect which could louse up your picture. So consider all the pros and cons well. Unless, of course you live in the middle of the Sahara. You wouldn't have any problems there.

What's all this 'ere then?

It's been suggested that the BBC's traffic information service, Carfax, should be run by the Metropolitan Police. Never mind the politics, this sounds a sensible plan which would open up the possibility of a number of refinements to the service, hitherto undreamed of and backed by the full majesty of the law. Imagine something like this.

You get into your car in the morning, switch on and out comes a courteous, friendly, but authoritative voice: "Good morning, sir or madam, as the case may be. Now, we're going to drive with due care and attention this morning, aren't we? No cutting up old ladies in even older bangers or trying to squeeze between two tankers, eh? And we have heard of speed limits, haven't we? Good." You can almost hear the thumbs being hitched into the belt.

Then, at midday, when you're setting out for an expense-account lunch with that important customer the other side of town, you might hear something like this. "Well, sir or madam, according to sex, it's time to look after the inner man or woman, depending on gender. If we're having sandwiches from home or meat and two veg. in the canteen we've nothing to worry about, have we? But, Oh dearie us if we're planning to consume alcoholic beverages. They can work out so expensive if we have more than we can carry, can't they?"

Come the cool of the evening, you flick the radio switch just once more before bedding down the car for the night. That helpful voice is still at it. "If we've finished motoring for the day, we will be sure to lock the car doors and switch off the lights, won't we?' I think our policemen are wonderful.

Optics and communication theory

Few electrical engineers study optics using a communication theory approach

by V. Srinivasan, Ph. D. University of Singapore

For electrical engineers, a fascinating approach to understanding the behaviour of lenses and other optical elements is by an application of their knowledge of systems and communication theory. Optics provides a fresh insight into several mathematically well-defined signal processing operations such as Fourier transformation, convolution and filtering. Linear system theory on the other hand offers an alternative means of interpreting basic optical phenomena such as diffraction and interference. With the help of a few examples this article explores several analogies between optical and communication systems.

Consider a point object located on the optical axis of a lens with perfect spherical surfaces. A two dimensional impulse function $\delta(x, y)$ is used to represent the signal i.e. photons emanating from o in Fig. 1. These photons are scattered in all directions and only a fraction falling within a cone of apex angle θ are collected by the lens. The resulting image at I is not an impulse function $\delta\left(x^{\prime}, y^{\prime}\right)$, but a circularly symmetric distribution of intensity called an Airy disc:

$$
i\left(r^{\prime}\right)=\left|\mathrm{J}_{1}\left(k r^{\prime}\right) / k r^{\prime}\right|^{2}
$$

where r^{\prime} is the radical coordinate in the image plane, $k=A / 2 \lambda \mathrm{v}, A$ is the aperture diameter of the lens, λ the wavelength, v the image distance and J_{1} a first-order Bessel function. The physical process producing this effect is called diffraction.

Communication theory provides an alternative interpretation: the impulse function $\delta(x, y)$ has an infinite spectral bandwidth and the lens with a finite aperture of diameter A transmits only a part of this spectrum. As a consequnce the photons constituting the image distribute themselves in the form of an impulse response function or Airy disc. Unlike time domain signals, characterized by a one-dimensional frequency spectrum is a two-dimensional complex valued function.

A useful feature of the optical system is the direct accessibility of the frequency space: for example, to modify the impulse response function of a lens the transmitlance of the aperture has to be changed. The Airy disc can be made narrower by increasing the aperture of the lens: this is the reason for operating a camera at a small
"f-number" to record fine details in an object. In communication terminology, a system with a larger bandwidth has a sharper impulse response function. A lens is a low-pass filter for spatial optical signals.

As a filter, a lens has a transfer function called the modulation transfer function (m.t.f.). For a lens with perfect spherical surfaces the impulse response function is the intensity distribution

$$
i\left(r^{\prime}\right)=i_{\mathrm{A}} \cdot i_{\mathrm{A}}{ }^{\star}=\left|i_{\mathrm{A}^{\prime}}\right|^{2}
$$

where $i_{\mathrm{A}}=\mathrm{J}_{\mathrm{l}}\left(k r^{\prime}\right) / k r^{\prime}$ is the amplitude distribution in the Airy disc, $i_{A^{\star}}{ }^{\star}$ is its complex conjugate. Light being an electromagnetic radiation is characterized by a complex field distribution consisting of magnitude and phase parameters. What our eye responds to is the intensity of the field.

The m.t.f of a lens is the Fourier transform of $i(r)$. From the last equation, this is equivalent to the convolution between the transforms of i_{A} and $i_{\mathrm{A}}{ }^{*}$. Intensity i_{A} is the field produced when a plane wavefront, whose extent is limited by an aperture A, is brought to focus by a lens. As a matter of fact i_{A} is the Fourier transform of a function

$$
\begin{aligned}
F_{\mathrm{A}}(\omega) & =1 \text { for } 0<\omega>A \\
& =0 \text { for } \quad \omega<A
\end{aligned}
$$

This is known as the pupil or aperture function in optics. The m.t.f. of a lens may be viewed as the convolution between two circular unit amplitude functions shown in Fig 2. The area of overlap $F(\omega)$ represents the magnitude of the m.t.f. at a spatial frequency ω. In the case of circularlysymmetric systems (most optical systems are) all these functions have a single varia-

Fig. 1. Image of a point object is a circularly symmetric distribution of intensity called an Airy disc.

Fig. 2. Modulation transfer function of a lens may be viewed as an auto-convolution of the aperture function. Area of overlap represents magnitude of the m.t.f. at spatial frequency ω.

SPATIAL FREQUENCY (ω)

Fig. 3. High quality lenses have an m.t.f. close to that of an ideal or diffractionlimited lens.
ble - the radial coordinates - and they are real-valued because of the symmerry. An ideal or diffraction limited lens has an m.t.f. shown in Fig 3. High quality lenses have an m.t.f. close to that of an ideal lens.

If $f_{0}(x, y)$ represents the intensity distribution of an object illuminated by ordinary light, then the intensity distribution in its image formed by a lens is

$$
f_{i}\left(x^{\prime}, y^{\prime}\right) \circledast i(x, y)
$$

where $i(x, y)$ is the impulse response function of the lens and ${ }^{(*)}$ indicatesconvolution.
In communication systems most often a frequency domain analysis is used to predict performance. A similar technique is to compute the transform of an object, multiply by the m.t.f. and by an inverse transformation the image can be predicted. This is a very useful method of evaluating a lens designed for imaging special types of objects, such as precision mask patterns used in the fabrication of intergrated circuits. These mask patterns have a significantly high frequency content as they consist of sharply defined black and white regions.

For illumination with ordinary or incoherent light, every point in the object $f_{0}(x, y$,$) creates an intensity distribution in$ the image plane, $f_{0}\left(x^{\prime}, y^{\prime}\right)$. Intensity $i(x-$ $\left.x^{\prime}, y-y^{\prime}\right)$ and all such intensity distributions add up to produce an image $f_{\mathrm{i}}\left(x_{2}^{\prime}-y^{\prime}\right)$. A unity magnification factor between the object and image has been assumed for convenience. For illumination with coherent light from a laser, images are formed by the addition of complex field distribution where both magintude and phase are involved. The imaging is by the addition of complex valued amplitude, instead of intensities which are real and positive. Many important effects, such as the creation of the Fourier transform of a function $f(x, y)$ using a simple lens, are observed when illumination is by coherent light from a laser.

Coherent optics

Two narrow slits, illuminated by a plane wavefront from a laser and placed in the front focal plane of a lens, produce an interference pattern in the back focal plane, see Fig. 4, whose amplitude distribution is

$$
A\left(x^{\prime}\right)=A_{0} \cos \left(x^{\prime} X / \lambda f\right)
$$

where A_{0} is a constant determined by the intensity of the incident plane wavefront, λ is the wavelength and f is the focal length of the lens. From Fourier transform theory, it is known that a cosine function has a transform consisting of a pair of impulse functions in the frequency space. The double-slit experiment clearly demonstrates the Fourier transformation property of a lens: the amplitude distribution in the front and back focal plane of a lens constitute a Fourier transform pair; the two slits approximate impulse functions. In a laboratory experiment the slits would have widths and as a result the interference pattern falls off in intensity as we move away from the centre.

Fig. 4. Amplitude distribution in the front and back focal plane constitute a Fourier transform pair; the slits approximate impulse functions.

Fig. 5. Optical image processing system operates on the Fourier transform of an image by spatial filtering.

Fig. 6. Two-dimensional intensity distribution at the hologram is a combination of angle and amplitude modulation.

This can also be explained using the concept of convolution: the input signal consisting of two slits may be viewed as a convolution between two ideal impulse functions (located at $x / 2$ and $-x / 2$) and a function representing the transmittance of a single slit of finite width. In the transform what one obtains is an amplitude $A_{0} \cos \left(x^{\prime} x / \lambda . f\right)$ multiplied by the transform of a single-slit transmittance function. The last mentioned falls off in amplitude away from the centre and as a result only a few periods of the interference pattern are clearly visible. The diffraction of light by a grating is a complementary effect: light transmission by a simple grating is mathematically equivalent to a square wave signal and when
placed in the front focal plane of a lens it produces an array of impluse functions in the back focal plane.

If the double slit is replaced by a more general amplitude transmission function $f(x, y)$, such as that created by an image recorded in the form of a transparency, one obtains its transform $F(u, v)$ in the back focal plane. When a screen is placed in this plane what the eye perceives is $|F(u, v)|^{2}$. The two-dimensional signal $f(x, y)$ can be looked on as a synthesis of sinusoidal amplitude distributions, each with a different spatial frequency and relative position in the signal space. In effect this is a Fourier series representation of $f(x, y)$. Every spatial frequency component creates a transform consisting of a pair of impulse functions, whose magnitude defines the spectral value at that frequency. In this manner the complete transform of the input is generated.

Optical image processing

The low cost and simplicity of the method of Fourier transformation using a lens provides a means of implementing, in an elegant form, an image processing system. One lens is used for the Fourier transformation and a filter designed to perform a desired operation is placed in the back focal plane of the lens. A second lens is used for the inverse transformation as shown in Fig. 5. A filtered image is recorded in its back focal plane. This technique is called spatial filtering.

Filters which operate on the magnitude as well as the phase of the image spectrum can be constructed using holographic methods. Spatial filtering is used for image
deblurring (rectifying pictures recorded out of focus or by a moving system), pattern recognition and image enhancement. As a simple example, consider the case of filtering to eliminate the scan lines in a photograph recorded from a television screen. On Fourier transformation by a lens, the scan lines in such a picture would produce a pair of bright peaks in the filter plane. A simple blocking filter can be used to prevent their transmission to the second lens.

In holography, popularly understood as a means of reproducing three-dimensional images, a photographic recording is made of the intensity distribution $I(x, y)$ created by the interference between a wavefront E_{O} emanating from an object and a reference wavefront E_{R} (Fig. 6):

$$
I(x, y)=\left|E_{\mathrm{O}}+E_{\mathrm{R}}\right|^{2}
$$

When this photographic recording is illuminated by a reference wavefront E_{R} the original object wave is reconstructed. Naturally, to create the interference pattern and for reconstruction, the wavefront required must be coherent i.e. derived from a single laser.

In one type of hologram, the reference wave is a plane wave incident at an angle θ, with respect to the hologram recording plane, Fig. 6. Consider the recording of the holograms of a single point P_{1} located on the distant object. The wavefront produced by P_{1} at the hologram plane would be approximately a plane wave, subtending an angle ψ. The intensity distribution in the interference pattern between this wave and the reference plane wave has a certain periodicity T and contrast C, see Fig. 7. Points $P_{2}, P_{3} \ldots$ in the object, depending on their position and scattering intensity, produce in a similar fashion in-

Fig. 7. Superposition of interference patterns, with different period and contrast, between a reference wave and a multiplicity of object waves is responsible for one kind of hologram.
terference patterns with different period and contrast. A superposition of all these patterns is the hologram.
From communication theory, one can deduce the reason why a hologram is able to reproduce the object wavefront. The information about the object is stored as a two-dimensional intensity distribution $I(x, y)$. Intensity $I(x, y)$ is a modulated signal: the nature of modulation is a combination of frequency modulation phase modulation and amplitude modulation. The presence of f.m. can be understood by considering three points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ in the object, each subtending a different angle at the hologram plane. The interference pattern due to each of the points would have a different frequency. Phase modulation occurs because two points, say P_{1} and P_{1}, subtending the same angle ψ produce an interference pattern with the same frequency, but shifted relative to each other. Amplitude modulation results from dif-
ferences in relative scattering intensities of the points forming the object; this affects the contrast C of the interference pattern.

Another interesting property of a hologram of this type is the redundancy of the coding process: even a small piece of the original hologram can reconstruct the complete object, though with a lower resolving power. The redundancy property arises because every region of the hologram receives light from all the points in the object and thus contains information about them. The three-dimensional object has a certain scattering intensity distribution along its visible surface and possesses, in a mathematical sense, four degrees of freedom. From the earlier description of the modulation process, one can recognise five degrees of freedom: the recording is on a two-dimensional plate and three types of modulation are involved. This is one way of understanding the redundancy property of the hologram.

Further reading

More detailed description of optical systems and their theoretical analysis, based on communication theory, may be found in several books and papers.
E. L. O'Neill, Introduction to Statistical Optics, Addison-Wesley, 1963.
J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, 1968.
A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, 1968.
K. Preston, Coherent Optical Computer, McGraw-Hill, 1972.
G. W. Stroke, Optical computing, IEEE Spectrum, vol. 9, Dec. 1972.
A. B. Van der Lugt, Coherent optical processing, Proc IEEE, vol. 62, Oct. 1974.
S. H. Lee (Editor), Optical Information Processing, Springer-Verlag, 1978.

Literature received

A list of over two hundred books on microprocessors and computers, with short descriptions and prices, is available free from March Communications, 7 Victoria Terrace, Liverpool L15 5BH WW40I

A guide to the range of technical publications produced by Mullard, which includes much of interest to the amateur engineer, as well as the professional, is obtainable from Mullard House, Torrington Place, London WCIE 7HD.

WW402
New catalogue from the reorganized Anglia Components is now available. Active and passive components (particularly strong on i.cs, linear and digital) tools and instruments are stocked for the industrial and retail customer. Free from Anglia Components, Burdett Road, Wisbech, Cambs. PE13 2PS.

WW403
Instruments from Ailtech, briefly described in a new brochure, include frequency synthesizers, spectrum analysers, noise-figure instruments and receivers and sweep oscillators - all compatible with the IEEE-488 bus - and several others. Copies can be obtained from Eaton Ltd, EID, Sherwood House, High Street, Crowthorne, Berks

WW404

Two brochures from 3 M describe thermal cutoff devices. The D series is intended for general use in electrical appliances and the MTP type is designed to protect motors and transformers. Both are based on the use of chemical pellets which melt at the design temperature and allow contacts to open. The brochures can be obtained from Ron Freeman, Industrial Electrical Products, 3 M (UK) Lid, 3M House, PO Box 1, Bracknell, Berks RG12 1JU

WW405
A 12 bit data acquisition system, in a single 40 pin package, contains input multiplexer, amplifier, track-and-hold amplifier, a-to-d converter, timing and logic. A brochure describing the Micro Networks MB7140 is available from Pascall Electronics Ltd, Hawke House, Green Street, Sunbury-on-Thames, Middx. TW 16 6RA.

WW406
Two brochures, published by TRW, describe a range of small motors and actuators. Catalog No 1000 is on the subject of stepping motors for incremental motion control, while Catalog 103 concerns itself with precision miniature a.c. and d.c. motion systems, both rotary and linear. The brochures can be obtained from MCP Electronics, 38 Rosemont Road, Alperton, Wembley, Middlesex HA0 4PE. WW407

Flow measuring elements working on the differential pressure principle, and turbine flowmeters are detailed in two publications from Tekflo Lid, Albany Road, Granby Industrial Estate, Weymouth, Dorset DT4 9TH. WW408

Brochures from Imhof-Bedco show a wide range of cabinets and enclosures racks and accessories and small tools for board and enclosure assembly. The firm has also developed Image 90, a range of desk enclosures for minicomputers, word processors and test stations, which is described in a separate leaflet. Imhof-Bedco Standard Products Ltd, Ashley Road, Uxbridge, Middlesex UB8 2SQ. WW409

A very useful little guide is published, free of charge, by the Association of Franchised Distributors of Electronic Components (AFDEC). In three columns, it lists a large number of manufacturers, the names of distributors of their components and the manufacturers' product ranges. It can be obtained by writing to AFDEC at Owles Hall, Buntingford, Herts. WW410
The March issue of Systems Technology, which is the Plessey house journal, is entitled The Silicon Age. It is beautifully produced and gives an insight into the manufacture and application of integrated circuits, setting out some of the background to Plessey's current work, which began in the early ' 50 s . A limited number of copies is available on request from J. C. Smith, Editorial Department, Plessey Telecommunication and Office Systems Lid, Edge Lane, Liverpool L7 9NW. WW411

The Quad ESL-63 full range electrostatic doublet puts an end to rumour and speculation.

The Quad ESL-63 has a very light plastic diaphragm positioned between two sets of acoustically transparent concentric annular electrodes. Signal is fed to the electrodes sequentially via a delay line. The resultant sound pressure pattern is a facsimile of that which would be produced by an ideal point source positioned some 30 cm behind the plane of the diaphragm; completely phase true, very aperiodic, with a level response and near perfect directivity index devoid of all side lobes.

The result with a good programme source is a stereo picture of an acoustic event which we believe to be significantly superior to anything previously available.

The Quad ESL-63 is on demonstration at selected Quad retailers in the U.K.

For further details and the name and address of your nearest Quad ESL-63 retailer write or telephone The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs., PE187DB. Telephone: (0480) 52561
for the closest approach to the original sound

Finally!

FREE OUR CURRENT BARGAIN LIST WILL

transmitter surveillance
Tiny, easily hidden but which will enabie conversation to the pich
parts and circuit. £2.30.
RADIO MIKE

SAFE BLOCK
Mans quich connector will save you valuallin turne, Framuer ncludie
quick spring connectiors, hea
switch. Complete kil 1.95 .
LIGHT CHASER

FISH BITE INDICATOR

As soon as
Price $£ 4.90$
6 WAVEBAND Shortwave radio kit
appearet
unes case

SHORT WAVE CRVSTAL RADIO
 RADIO STETHOSCOPE
RADIO STETHOSCOPE
Easv to tault find - stait at the alial and wor k towards the speake
East then signal s!ops vou have tound the fault Complete kit $£ 4.95$ interrupted beam
This kit enables vou to mathe a switch that will trigger when a
ents - relay. Photo transistor, resistors and caps etc Circuit diagram but no case Price $£ 2.30$
OUR CAR STARTER AND CHARGER KIT has no doubr saved many motorists from embarrassment in an emergency you call start
car off mains or bing your battery up to tull chaige in a couple of car off mains or bung your battery up to full charge in a couple
hours The hit comprises 250 w mann transtormer, two 10 amp bridge rectifiers. start charge switch and full instructions. You can assemble this 1 in the evening, box if up ol leave it on the shet
garage, whichever sulis you best. Price $£ 11.50+£ 2.50$ post. GPO HIGH GAIN AMP/SIGNAL TRACER In case measuring state amplifier designed to use as a signat tracer on GPO cables, etc
With a radio functions very well as a signal tracer. By connecting simple coil to the ,thput sockel a useflul mans cabie tracer can be made Runs on standara 4 ziv battery ano has input, output sockets uses include general purpose amp cueing amp, etc. An absolure
bargain at oniv E1.85. Suliable 800 hm earplece 69 p .

NEW KIT THIS MONTH
 CB RADIO - Listen in with our 40 channel montor
 allet

POWERFUL BATTERY MOTORS
For models, Meccanos, druls, remote control planes, boats etc. $£ 2.50$. WATERPROOF HEATING WIRE
60 ohms per yard, this is a heating element wound on a fibre glass coll and then covered with p.v.c. Dorens of uses - around water
pipes, under grow baxes in gioves and socks. 23p per metri.
COMPONENT BOARD Ref wo998
his is a modern fibreglass boaid which conians a multurude of
very useful parts. most important of which are. 35 assorted diodes
and rectiflers including 43 amp 400 v types (made up in a bridge) 8 transistors type BC107 and 2 type BFY. 51 electroly Hic condensers.
SCR ref $2 N 5062$, 25Ouf 100VOC and 100uf 25 VOC and over 100 other parts including variabie fixed and wire wound res,sto
FRUIT MACHINE HEART 4 wheeis with all fruits, molorised and With solenoids for stopping the wheels, with a little ingenuity
defy your f, iends getting the 'iackpor". $£ 9.95 .+£ 4$ carriage.
defy your thends getting
4.CORE FLEX CABLE
Whita pvc for teliephone extensions, disco lights, etc. 10 me,tres $£ 2$, 100 metres $f 15$. Other my
MUGGER DETERRENT
MUGGER DE TERRENT
A high note beeper, push latching switch, plastic case and battery
Annecior Will scare away any villan and bring help $\mathbf{f} 2.50$ com.

EXTRACTOR FANS

Mains operated-ex. Computer

Noods extractior
6575 Post
100

ods extroctor
E6.90 Post $t 1.25$
£7.50 post $£ 1.00$
Mutin 115 V.
$\mathbf{E 4 . 5 0}$ Post 50 p
Muffin 23 CV

PUSH BUTTON G.PO. TELEPHONES
FOR $£ 25$ (quickly recoverable in saved time) you will improve

SUPER HI-FI SPEAKER CABINETS
Made for an expensive Hi-F, oulfi
will suit any decor. Resonance iree cut-outs for $8^{\prime \prime}$ woofer and tweeter. The front material is
carved Dacron, which is thick and carved Dacron, which is thick and
does not need to be stuck in andi the completed unit is mosi pleas. ing. Colour black. Supplied in pairs price $£ 6.90$ per parr (thes is probably less than the original cost of

3 CHANNEL SOUND TO LIGHT KIT
Complete k
paris fol a

sound to light

unit controil.
ing over 2000
watis of light.
ing. Use this
at nome if

s plenty rugged enough for disco work. The umit is housed in an attlactive two-tone metal case and has controls for each channel. and a master on/off. The audio input and output are by
sockets and three panel mounting fuse holdeis provide thyristor protect on. A four-pin plug and sockel facititate ease of conne

THIS MONTH'S SNIP

UNIVAC KEYBOARD Model No. FI 308-00

Has 57 encoded key switches and 10 mini toggle swiches. As well as a P.C.B. with many IC's etc. These keyboards are in ver good condition. Price only $£ 11.50+$ post $£ 2.00$. Well worth it for the switches alone.

POCKET AUDIO
COMPONENT TESTER

With it you can quickly test diodes, rect,fiers, transistors, cap. actiors, check wiring and $p . c$. boards tor open cricuirs, tind the
anode and cathode of a diode or rectifier and whe ther a tuansisio is PNP or NPN, which are the base collector and emitter connect ions. Condensers, it bad give a continuous signal but if good, give intermitient slanals of varying tength depending on their value.
The test current is very low $(2 \mathrm{~A})$ and the voltage only 14, , The test current is very low (2uA) and the woltage only 1.4 v .
it is also poss ble to check MOS devices, as well as sensitive transistors with out fear of damaging them. The unit is supplied Price £3.45p
MINI-MULTI TESTER \qquad ng cot instrument, Jewelled hearings -20000.0.v.mirrored scale.

DC valis $10,5 \mathrm{C}, 250,100$
DC amps 0-100 m
inuity and resistance 0 . imeg ohms in ranges. Complete with lest prods and in
phon ion book showing how to measure cap
 REE Amps range kit to enble you to read C current trom 0-10 amps, difectiy
on the 0.10 scale te's fres if you On the 0. 10 scale. le's free if you
purchase quickiv. hut of you already purchase quickiv. but of you atread Own a Mint-Tester
one, send $£ 2.50$.

MULLARD UNILEX A mams operated $4+4$ ster
s.ssiem. Rated one of the finest pertorimers in the
stereo field this would

make a wonder ful gift for

mortular form this should sell at about $\mathbf{£ 3 0}$

- but due to a special bulk buy and as an in.
tem complete at only $\mathbf{£ 1 6 . 7 5}$ inciuding VAT and post
FREE GIFT - buy this month and you will seceive a

DELAY SWITCH set wuth pointers knob for periods of up
to $21 /$ hirs. 2 contacts suitable to swutch amps second contract onens a tew min
utes after 1st contact. $\mathbf{E 1 . 9 5}$.

LEVEL METER

Sire approximately $1 / /^{\prime \prime}$ square, scaled signa and power hut cover easilv removable for
rescaling. Sensitivity 200 UA. 75 p .

TIME SWITCH BARGAIN
Large clear marns frequency controiled clock, which will always show vou the
correct time + start and stoo switches with the dials Comes complete with knobs
$£ 2.50$. lapanese made so very good cualify 8 onm impedance. padded.
inating with standard $1 /{ }^{\prime \prime}$. Plug. E2.99 Post 600 BRIDGE RECIFIER 10 for $£ 2.50 .100$ for $£ 20.00$

$$
Q^{3} 0^{3}
$$

LAST MONTH'S SNIP -- STILL AVAILABLE And it stilt carries a free gift of a desotdering pump. which we are
currently selling at E 6350 . The snip is pertaps the most useiul bre down parcel we have ever offered. It is a parcel of 50 nearly alf Ifferent corr:puter panels containing par is which must have cost a dodes, over 200 transistors and several thousand other parts, resist ors, condensors, multi-turn pots, recifiers, SCR, etc. elc. If you act promptly, you can have this parcel for only fB 50 , which when yo deduct the value of the desoldering pump, works out to just a little ver $4 p$ per panel. Surely this is a bargain you should not miss!

MAINS MOTORS Precision made
In record plavers, blow heaters, etc.
Speed usually $: 400$ All have amp
spindle length for coupling fan blade,
puliev. etc. Power depends on stacksize
 stack $£ 3.00 ;$ " stack $£ 3.50 ; 1 / z^{\prime \prime}$ stack
$£ 4.50$. Add 25% to motor cost to cover E 4.50 . Add 25% motor cost to cover pos
\qquad
YOUR LAST CHANCE FOR THIS BARGAIN Hoo twist drtis, regular tool shop price over 550 , yours for only E11.50 With these you will be able to driil metal wood, plastic, e
fom the tiniest holes in P.C. B. right up to about $\%$. Don't miss this snip - send your or der today.

MAGNETIC LATCH
Low voltage (4 8 volt $\mathrm{AC} / \mathrm{DC}$ operation)
Liveli. 1.50 each.

TAPE PUNCH
\& READER
For contiolling machine rools, etc, moror sed 8 bit punch with matching tane reader. Ex- computerss. belilivede din good working
ordet, any not so would be exchanged. $£ 17.50 /$ pair. Post $£ 3.00$

J. BULL (Eiectrical) Ltd.

(Dept. WW), 34-36 AMERICA LANE,
HAYWARDS HEATH, SUSSEX RH16 3QU.

Variable frequency inverter

- traction motors controlled using a 12-phase thyristor bridge

By B. M. Banerjee and S. Chowdhury, Saha Institute of Nuclear Physics, Calcutta

Traction motors need a high starting torque. Brushless, polyphase induction motors are reliable and efficient, but they need a large starting current and at the time of starting they have poor torque and efficiency. If the supply frequency could be reduced, the torque at stall would be increased and the motor would become more efficient, especially in applications such as railway traction. Converters and inverters using thyristors are efficient and we describe here the design and the results obtained from the development of such a system.

The block diagram of the system is shown in Fig. 1. A variable frequency oscillator is followed by a divide-by-twelve circuit. A pulse selector delivers twelve pulses, sorted into pairs at intervals of 30°, which are applied to six transistor drive circuits. The drive circuits are used to switch twenty-four thyristors in six impulse-commutated bridge inverters. Outputs of these inverters are combined systematically in nine transformer secondaries to produce a near. sine-wave, stepped waveform. The maximum output is 3 kW . The frequency can be varied continuously from 10 to 200 Hz , and can be readily increased to the kHz range for centrifuge operation.
Fig. 2 shows the variable frequency oscillator that uses a 555 linear integrated circuit. Its frequency can be readily varied by the $2 \mathrm{M} \Omega$ potentiometer over the range of 10 to 200 Hz and 30 to 600 Hz . Its output, inverted by a BC212 transistor, is used to trigger the digital i.c. 7492, shown in Fig. 3.

The 7492 is a divide-by-twelve circuit, comprising four flip-flops, giving outputs at A, B, C and D. These go to the 74154 decoder, which is a four-line to 16-line decoder which sorts out individual positions in the 12 -pulse sequence, which are 30° apart in phase angle. Starting from left, we get the selected pulses at their 'proper' output positions, from zero up to the fifth.

We get the sixth pulse at position 8 , seventh at position 9 , corresponding to the states of the 7492 flip-flops. At the 12 pulse, 7492 reverts to the zero position and subsequent pulses begin the next sequence.

The output of the decoder is a negative step lasting until the next pulse arrives. This is applied to the drive circuit shown in Fig. 4. The negative pulses, in pairs with 180° phase difference are applied to

2. Variable frequency oscillator.
3. Pulse selector.

5. Bridge inverter. The commutation transformer may be wound with 28 SWG insulated wire, 130 turns centretapped, on a ferrite pot with a 12 mm centre core and an outside diameter of 37 mm . The power transformer has a 220 V primary and a 220 V secondary tapped at 10, 110 and 210 watts. The prototype used 30 SWG wire with 5 turns/volt.

[^0]
7. Turn off waveform.
the p-n-p transistors, BC212, which conduct alternately for a period corresponding to a 30° phase angle. The pulse transformer supplies outputs of correct polarity with adequate amplitude and duration to the four thyristor gates of the corresponding bridge inverter circuit.

The bridge inverter circuit is shown in Fig. 5. This takes power directly from the 220 V d.c. mains (which may be derived from a rectified a.c. supply). Th_{1} and Th_{2} are at the negative side of the supply, while Th_{3} and Th_{4} are at the positive side, with the commutation transformer in between. Current must flow through the power transformer from right to left when Th_{4} and $T h_{1}$ are conducting. When conduction commences in the Th_{2} and Th_{3} pair, Th_{1} and Th_{4} are automatically turned off by the discharge of the condensers through the other halves of the commutation transformers. Conduction in Th_{3} and Th_{2} causes current flow in the power transformer from left to right. The application of pulses to the thyristor pairs causes alternation hof current flow in the power transformer, generating a.c. with rectangular waveform. Power may be drawn from the secondary or from across the primary.
With ferrite core commutation transformers, pulses of short rise-time and duration will secure fast ($\sim 10 \mu \mathrm{sec}$) turn-off in the thyristors. The rise time attainable with ordinary sheet core transformers measures $100 \mu \mathrm{sec}$, so turn off cannot be achieved in a smaller time. As a consequence, the commutation capacities have
to be increased five times to prolong their discharge.

The commutation process is not simple, but the principles are explained in detail in the book by Bedford and Hoft ${ }^{1}$. The design of both commutation transformers and power transformers are involved. Specifications for this design are given with Fig. 5.

The rectangular waveform obtainable at the anode of Th_{1} (or Th_{2}) is shown in the oscillogram, Fig. 6. The turn off wave form can be seen at the faster sweep in Fig. 7. The voltage initially drops to a high negative value, stays negative for the turn off interval and then rises through zero to the full amplitude. The superimposed oscillations are due to shock excitation of the commutation transformer winding with its stray capacitance.

Fig. 8 shows the scheme of vector addition of the nine windings of six inverters in the system. The three-phase combined output, Fig. 9 will show a six-step nearsine waveform (oscillogram). The lowest harmonic present in such waveform has a frequency eleven times the fundamental. When only three inverters are worked, the output contains the fifth harmonic as the lowest, as multiples of two and three are nulled.

We have used 2 N 4444 thyristors which are rated " 5 Amps a.c." and peak forward and inverse voltages of 600 volts. They can be safely loaded to a little over two amperes d.c. flowing through each inverter. The power obtainable in six inverters is, therefore, 2.4 kilowatts. The power is also limited by heating and saturation in the communication transformers. Thyristors failure results probably because of the high

8. Vector addition of the inverter windings.

9. The combined output of six inverters.
peak currents (30A) that are encountered due to core saturation while commutating high voltages.
The outputs of three inverters were applied to a quarter h.p. three phase induction motor. Its windings are star connected and nominal speed 960 rpm at 50 Hz supply. With $2 \mu \mathrm{~F}$ power factor correcting condensers across the lines, the motor would follow the frequency from 10 Hz to 80 Hz , the speed changing from 200 to 1600 rpm . The torque at 10 Hz is good. The total power drawn from the D.C. supply was 250 watts.
An adjustable frequency inverter system for 50 kVA (Flairty, 1961) ${ }^{2}$ has been reported. This report, however, presented only the outlines of the plan, with no details of the design or components. Scaling up the power level may cause snags, but these can surely be overcome. For railway traction, motors must have a power of 100 kW.

For variable speed applications, at present, d.c. motors are generally used. For stability of speed and for precise control, a sophisticated system is required. The variable frequency inverter motor is a modern alternative with a promise of superior performance, superior reliability and reduced complexity.
The authors are indebted to Professor D. N. Kundu, Ex-Director of S.I.N.P., for his kind interest and support. It is also a pleasure to record the interest taken by Professor A. K. Saha in this work.

References

1. Bedford, B. D. and Hoft, R. G. "Principles of Inverter Circuits", Wiley, 1964. pp190-206. 2. Flairty, C. W. "A 50kVA Adjustable Frequency 24-phase Controlled Rectified Inverter". AIEE Industrial Electronics Symposium, Boston. September, 1961. (See also Ref. 1 pp 264-278).

Science research embraces engineering

Uncertainty about what is to be called science and what technology will be increased by the recent renaming of the UK's Science Research Council as the Science and Engineering Research Council. The name has been changed to recognize "the increasing importance SRC has placed on ensuring that engineering research departments in universities and polytechnics have the necessary resources to produce the innovative technology and highly qualified manpower urgently required by UK industry". The Engineering Board's expenditure in universities and polytechnics rose, for example, from $£ 9 \mathrm{~m}$ in $1973-74$ to $£ 27 \mathrm{~m}$ in 1979-80. Its proportion of the total SRC budget rose in the same period by 50% at a time when the budget, in real terms, was falling. The major element of that growth, according to the new SERC, has been "applied to stimulate and support research programmes chosen to be of the greatest potential benefit to the national economy in such areas as marine technology, polymer engineering, manufacturing systems, energy, microelectronics and materials".

Spectrum analysis - and more

"Much more than a spectrum analyser" is Solartron's way of describing their new 1200 and, to emphasize the fact, they call it a signal processor. The description could be confusing to those who work with data loggers, but the instrument itself is one of the most comprehensive dispellers of confusion we have seen for some time.

In its main function of spectrum analysis, the 1200 possesses two input channels for simultaneous time and frequency domain measurements, autoranged from 10 mV to 300 V , with rectangular, flat-top or Hanning weighting. The pretrigger display is up to 100 per cent and the display can be externally synchronized. If an expanded-trace facility is exercised, the 500 line resolution corresponds to 0.002 Hz per line, and this can be done while the other half of the screen displays the unexpanded version of the presentation. The frequency base is linear, logarithmic or in octave divisions.
Stimulus to a passive system is provided by a choice of three noise sources: a pulse, a pseudo-random binary sequence or a novel multi-sine source, which consists of all the relevant frequencies to correspond to the 500 lines. In this way, since control over each frequency is available, examination along the frequency base is precisely controlled and large resonances, which would otherwise mask smaller ones, can be eliminated.
Unusual, and possibly unique in one instrument, are the facilities for Nyquist diagram plotting and cepstrum analysis, which enables the investigation of echoes and harmonics.

The 9 in display is a raster-type, with cursors, and a particularly interesting presentation of time-varying spectra is the waterfall, in which a sequential series of
displays is laid on the screen in a vertical array to provide a spectral 'history'.
The 1200 is thoroughly digital in concept. An array processor, designed by Solartron, calculates the Fast Fourier Transform that is the basis of this instrument. The FFT requires a greatly reduced amount of calculation in comparison with the Direct Fourier Transform, but still needs four complex multiplications and two additions per line: the processor carries these out in 300 ns . Two other 16 bit micros are used for the display and for housekeeping: the total memory capacity is 250 kbytes . The 1200 is compatible with the IEEE 488 bus.
Mechanically, the instrument is somewhat unusual in that it possesses not a single knob or switch of the conventional variety. All controls are membrane switches, 'analogue' functions being of the 'stepping' kind. Selecting a measurement function on the main keyboard brings into play a series of so-called 'soft' keys immediately adjacent to and in alignment with the display. A 'menu' of actions associated with the function selected is shown on the screen and indicates which of the soft keys has been selected. By this means, the operator is relieved of much of the effort of setting up the instrument to perform its range of functions. Control settings can be stored and recalled by the use of one key.

It is clear that a great deal of work has been done on the control layout of the 1200. Without the simplified function controls, range settings and soft keys, an operator would probably spend much of his time manipulating the instrument itself: as it is, the 1200 is 'transparent' to the user. As Solartron say, "it is userfriendly."

Electronics in the defence estimates

"The pace of technological advance, with the rising cost of exploiting it, puts inescapable financial pressure on our defence budget" says the 1981 Defence Estimates, presented to Parliament in April. This is bad news for the British taxpayer but good for the UK electronics industry, where rapid "technological advance" is a constant feature of what it manufactures, especially in weapons. It is nowhere more true than in "electronic warfare" where, as the Estimates point out, the electromagnetic spectrum itself becomes a battleground, with "electronic support measures" (for intercepting and analysing transmissions) "electronic countermeasures", and "electronic counter-countermeasures".

Overall the Ministry of Defence "buys some 20% of British electronics output", a quantity which can be calculated as worth about $£ 1700$ miliion per year to the industry. Although the Estimates do not reveal the precise amounts paid to particular electronics contractors, they do state for example that, in 1980, GEC, Plessey and British Acrospace Dynamics Group each received "over $£ 100 \mathrm{~m}$ " for equipment supplied.

Also, EMI and Ferranti each earned between $£ 50 \mathrm{~m}$ and $£ 100 \mathrm{~m}$, while Racal and Lucas were each paid between $£ 25 \mathrm{~m}$ and $£ 50 \mathrm{~m}$. A list of 32 companies receiving in 1980 amounts between $£ 5 \mathrm{~m}$ and $£ 25 \mathrm{~m}$ includes Cable \& Wireless, Chloride, Cossor, Decca (now Racal), Gresham Lion, Philips, Smiths Industries, STC and Thorn.

In recent years, state the Estimates, about 75% of military equipment expenditure has gone to national contracts placed with British firms. For 1981/82 the MoD plans to spend $£ 5,352$ million on equipment. This is 44% of the total defence budget of $£ 12,274 \mathrm{~m}$ and is 4% up on last year's proportion (News, June/July 1980 issue). Much of it will go on ships, tanks, artillery, aircraft and other mechanical engineering products. Some of the electronics content is within amounts identified as: $£ 442 \mathrm{~m}$ for land equipment (described as "guided weapons and electronic equipment"); $£ 590 \mathrm{~m}$ for air equipment ("guided weapons and electronic equipment") and $£ 528 \mathrm{~m}$ for sea equipment ("weapon systems etc."). An analysis of the money spent on different categories of equipment in 1979/80

Safety in automation

Under the title Microprocessors in Industry, the Health and Safety Executive have published a guide to safety measures important in manufac turing processes which use computer control. It points out that many processes remove dangers formerly present in manual production: it is unnecessary for an operator's hands to be in contact with the cutting or machining surfaces of machine tools: with automatic indicators more information is available to provide operators with greater knowledge to increase the controllability and safety of the machine or plant; it checks and validates signal received from sensors: alarms are buitt in and a record of events can be compiled which may be studied if anything does go wrong. Automatic equipment can also take over from human operators in hostile working conditions, in fumes, dust, heat or radiation for example.
The booklet lays down guidelines to ensure that safety factors are included in any program-
mable electronic system. The control unit itself should be protected from any environmental hazards such as heat, electromagnetic or static interference, transient mains supply interference and atmospheric pollution.
Programs should have built-in safety checks, reviewed at regular intervals. The programs need to be protected against possible corruption.

The level of reliability required must be designed into the system as must any back-up needed in the event of failure.
Control equipment needs to be checked for speed of response, the ability to cope with failure including power failure, and the adequacy of control during start-up or shut-down.
Back-up and emergency systems are dealt with in a separate section, as are operations and maintenance, and the need for adequate staff training. The guide is available through H.M.S.O.

C.c.d. telecine

Telecine is a svstem for converting the information on cine film into a signal suitable for transmission by $t v$ or for storage on a video tape. Early devices were quite primitive and worked by televising the output from a cinema projector. Most machines in use today are a sophisticated version of the same system, using photoconductive tubes or flying spot scanners.

The Bosch FDL 60 telecine is claimed to be the first machine to use charged coupled devices. The solid state image sensing elements are able to replace the conventional tubes used in the past. Each element consists of a flat crystal which contains thousands of individual sensory points. Each point can store the brightness and colour information corresponding to a single dot on the tv screen, and by means of a microcomputer which reads the information passing through each dot, an electronic signal corre-
sponding to the information contained on the film is obtained.

The system eliminates the need to scan the film by a sideways moving beam, and the inherent geometric deflection errors, to provide high quality reproduction. Other advantages include lower maintenance costs, reduced set-ting-up time with no need for high voltage supplies.

The FDL 60 can provide pictures from the telecine in all modes of running - forwards, backwards and stop. Instantaneous switching between the modes is possible, as is viewing the film at up to thirty times the normal speed. This feature is important to technicians and editors in reducing the time spent in searching for relevant film sequences. The machine can handle 16 and 35 mm film gauges and all combinations of sound track.
includes $£ 540 \mathrm{~m}$ for "radio, radar and electronic capital goods"; $£ 84 \mathrm{~m}$ for radio and electronic components; $£ 145 \mathrm{~m}$ for "other electrical engineering"; and $£ 93 \mathrm{~m}$ for instrument engineering.

In addition to their business with the Ministry of Defence, many of the above-mentioned firms export military electronics equipment to the armed services of foreign countries. This is done through the Defence Sales Organization of the MoD, which reckons that receipts from all transactions in 1981/82 will reach about $£ 1,500 \mathrm{~m}$ (some $21 / 2 \%$ of total British exports). The Estimates state that a "significant proportion of defence sales consists of high-technology products with a high added value" and of course electronics must be prominent among these. For 1980, these exports are listed as $£ 55 \mathrm{~m}$ for radio communication and radar equipment and $£ 25 \mathrm{~m}$ for guided weapons and missiles, but this is unlikely to be the whole story, considering that SBAC records for 1979, also reported, included $£ 155 \mathrm{~m}$ in the category "other military electronics." (Other than what? one must ask.)
The 1981/82 estimates also include the substantial amount of $£ 1,682$ million for research and development, and it can be safely assumed that the electronics industry will benefit from the $£ 1,088 \mathrm{~m}$ of commercial contracts in this kind of work. For example, it is mentioned that anti-tank weapons will be improved by current research on "detector and microprocessor systems for application in precision-guided sub-munitions which are dispersed from the main projectile to strike accurately at a number of separate targets". The Estimates identify $£ 223 \mathrm{~m}$ to be spent on $\mathrm{R} \& \mathrm{D}$ for guided weapons and $£ 259 \mathrm{~m}$ for "other electronics". Military research is now being organized through a number of "technology boards" which deal not only with industrial firms but also with academic establishments. In spite of the opposition of some students who have held protest meetings recently, British universities and further educational establishments will be receiving $£ 6 \mathrm{~m}$ for military research and development, 50% up on last year's figure.

Some 58 m of EMI's income from military contracts (see above) will be earned by designing and manufacturing an electronic system to analyse data from flights of the RAF's Nimrod MR Mk 2 maritime patrol aircraft. These aircraft, intended for use against surface vessels and submarines, carry multi-track instrumentation and video tape cassette recorders for continuously recording data received or generated by all their on-board navigation, communications, radar and acoustic sensing systems. The new EMI equipment, on the ground, will replay the tapes and process the data. Information obtained will be used to establish the validity and accuracy of target information, to update situation displays, to revise current and planned sorties and to brief other crews. The system will also be used to evaluate tactics and the performance of crews and aircraft svstems.

- Footnote to our November 1980 editorial: The Defence Estimates report that preliminary work has started at Greenham Common. Berkshire, for the reception of 96 electronically guided cruise missiles, expected to be deployed there by the USA by the end of 1983.

Microcomputers in school

At last the Government has announced a scheme to introduce a microcomputer into every secondary school. The Department of Industry is to spend up to $£ 4 \mathrm{~m}$ to match funds provided locally towards the purchase of the computer for each school; in other words they will pay half and expect the Local Education Authority to provide or raise (through PTAs and local industry) the other half of the cost.

At the launch of the scheme in London the Prime Minister emphasised that this was only the beginning of a comprehensive programme to introduce the 'technology of tomorrow' into education and that there would be a number of areas where activities enable a wider understanding of computers amongst the children of today who would be at work well into the 21 st century.

Further details were published in a strategy document for the Microelectronics Education Programme, produced by Richard Fothergill, the Director of the Programme. In it, he details three main areas for support; curriculum development, teacher training, and resource organisation and support.

The scheme follows on from a very disjointed train of events which commenced in 1978 when the Labour Government of that time ordered reforms of the schools curricula to ensure that children would be aware of the changes, and their importance in working life. A five-year £12m programme, announced in March 1979 was reconsidered by the new Government and a year later they came up with their own programme to spend $£ 9 \mathrm{~m}$ over four years. Richard Fothergill was appointed Director of the scheme in September 1980. (Events and dates reported by Peter Large in The Guardian).

Two computers have been chosen as worthy of the Dol's support. The 380 Z from Research Machines Lid, and the recently announced BBC/Acorn microcomputer. There has been some criticism of the RML 380 Z as being too
expensive at $£ 1,680$ and although developed in conjunction with a Local Education Authority, Berkshire, it is too powerful, giving minicomputer facilities when a micro is all that is necessary. The BBC machine, not yet generally available, seems to fit the bill better. But a question mark hangs over Clive Sinclair and the Sinclair ZX81 micro; again it has been rejected in favour of the 'established' manufacturers' products, and yet it would be possible to purchase about 24 ZX 81 s for the price of one RML 380 Z .

Mr Sinclair has countered by announcing his own subsidy scheme for schools. He will offer
the ZX 81 to schools at half the retail price i.e. $£ 45$ for the computer and a further $£ 25$ for a printer

- Although it was stressed at the launch of the scheme that it was only a beginning, and that there would be further expansion, it may be argued that the provisions of the scheme are still woefully inadequate. Imagine the frustration of pupils eagerly queueing to use the only school computer. Surely the provision of a roomful of micros or of some form of terminals on the lines of a language laboratory would be a more realistic approach to providing our children with adequate knowledge of computer technology.

Pupils at Cheney School, Oxford grouped around a RML 3802, one of the machines selected by the Department of Industry for use in schools

16 bit pact

The Philips/Signetics group has signed an agreement with Motorola to embark on a five-year programme for the development of 16-bit microprocessors. The Philips group will provide an alternative source for the M68000 and will produce pin-for-pin compatible support products as well as develop new devices which may then be manufactured by either participant. At least three Signetics peripheral data communications chip designs are to be added to the M68000 family by the end of the year. Both Motorota and Philips/Signetics will produce
software including operating systems, language processors and application packages, as well as development system tools. It is anticipated that over twelve designs are to be added to the M68000 family over the next two years.
Motorola are hoping that the agreement will boost production and through sheer availability will help to establish the M68000 products as 'the leading 16 -bit family in the industry'.
Philips have said that they specifically chose the M68000 family because it covers the full spectrum of 15 -bit applications and can be expanded to cover 32-bit applications while maintaining software compatibility'.

Open Radio station

Plans have been published for a campaign to create a 24 -hour, participant-controlled radio station in London to be known as London Open Radio. It would not be censored by public opinion or political pressure and would allow participants to create their own standards of broadcasting'. All types of contribution would be welcome; comedy, music, drama, news, public affairs or whatever, and scheduling would result from the decisions of all interested broadcasters. The organisers are not short of ideas.

They are short, however, of technical expertise and would be grateful to any engineers who
can advise them on frequencies, transmitter design, maintenance, studio design and purchase. They also need help in lobbying Parliament and the Home Office to get a change of law to make such a system legal.

It is planned that the station would be financed by public subscription and contributions, and a target of $£ 300,000$ has been set for commissioning the station with an estimated running cost of $£ 30,000$ a year. Although this is a large scale, ambitious project, similar stations already exist in Australia, Italy and the USA.

We believe that such a project would be much more useful than, for example, all the hot air that is being expended over c.b. radio - a community service available to all and not just those

British Association - 150 years old

The British Association for the Advancement of Science is returning to York, the place of its foundation in 1831, for a special Anniversary Meeting in place of the usual Annual General Meeting. The meeting is to be held at York University between 31st August and 4th September. In addition to the usual lectures and addresses by many leading scientists, there will be a special Celebrity Day with a procession to York Minster where the President of the B. A. H.R.H. the Duke of Kent, will give a Presidential Address. On the afternoon of the same day, 2nd September, there will be held four Review Symposia in the physical, biological, earth and social sciences. In the evening there will be four special dinners each with a guest speaker. Applications for those wishing to attend should be addressed to the British Association at Fortress House, 23 Savile Row, London WIX IAB.

with personal rigs.

The organisers would be grateful for all contributions of ideas, advice and, of course, cash and may be contacted at London Open Radio, 2 Warwick Crescent, London W2. Telephone: 01-289 7163.

Growing awareness of Prestel

By the end of 1980 , Prestel, the public viewdata service run by British Telecom, had more subscribers than any other computer based information service in the world, according to Richard Hooper its director. Writing in the April issue of our sister journal Viewdata and Tv User, he said that registrations of 2,035 at 1 st January 1980 grew to 7,387 by 1st January 1981. The Prestel audience, however, consisted mainly of business users (6,443 or 87%) because high costs were "a major obstacle to significant penetration of the residential market'

During the year awareness of Prestel among the UK population had risen from 12% to 29%. Among business men - known technically in the marketing world as ABCl males - awareness had risen to 60%. The Prestel computer network had grown from three computers serving 30% of UK telephone subscribers to 17 computers serving 62% of subscribers. By the
end of the year the system comprised 1,500 ports. The number of main information providers had not risen so rapidly, however, being 133 at the beginning of the vear and 140 at the end. Also, the number of frames filled by these information providers during the year had increased from 152,000 to only 174,000 .
Elsewhere the journal suggests that the information potential of Prestel will be greatly helped by a new scheme called Gateway which in 1982 will allow users to be linked to third party private databases. In other words Prestel will act merely as a network for accessing, or a gateway to, information which it does not itself provide. Although Gateway was developed by a British firm, Systems Designers Ltd, it has not been used publicly in the UK - only by the West German PTT in trials for their Bildschirmtext public viewdata system (see November 1979 issue, p.49) in which ten third-

Micro controls the mighty

Giltspur Microprocessor Systems have been awarded a contract to design and build a microprocessor-based control and monitoring system for a 14,000 ton press belonging to Doncasters Monk Bridge Limited of Leeds. The press is used to forge fan blades and discs by one, two or three blows whose energy level is pre-set by the microcomputer system before each blow. The products formed are destined for use in the aircraft industry and details of the forging process must be printed out as a quality record for each individual product. In addition, other information is generated for maintenance purposes on the press itself, for example, velocity profiles can be produced to help diagnose malfunctions.

The system consists of a master microcomputer, located in the control room, communicat ing with a remote slave microcomputer located adjacent to the press. The master prompts the supervisor for product information, gathers and stores temperatures, pressures and other relevant data during the forging process, prints the billet certificate and archives data on to a dual magnetic cartridge unit. The slave unit provides local data input and readout for the press operator, plus high speed data gathering during the pressing operation. Some of the press instrumentation transducers have also been specified and supplied by Giltspur Microprocessor Systems, and a press load monitoring unit previously supplied by the company is to be integrated into this system

> On the eve of closing down the 405 -line v.h.f. television service, George MacKenzie, BBC's Chief Engineer, Transmissions together with two former holders of that title, Eric Varley (centre) and Maurice Crawt (right), celebrates the 25th anniversary of the Crystal Palace transmitting station. They are posing in front of one of the two transmitters which were first brought into service in March 1956 when the 405 -line service was transferred from Alexandra Palace. Also worthy of celebration but not appearing in the picture is the 750 ft tower which has dominated the South London skyline for 25 years.

party databases were linked to the system.
One commentator, Emma Bird, quoted in the journal, thinks this is the way to put Prestel on a good business footing. "If Prestel redefines itself in this way it can capitalise on the growth of private viewdata sustems and its new job of acting as the gateway to both private viewdata and other computer systems should enable it to achieve sound economic viability". Sometime before Gateway was unveiled Wireless World proposed this kind of approach in its editorial of February 1978 entitled "Viewdata needs encouragement"

News in brief

An interesting conflict arose between different areas of our relationship with the Eastern bloc. The BBC wanted to improve its shortwave service to eastern Europe by locating a new ransmitter at the disused Henstridge airfield in Somerset. Unfortunately, this was quite close to the Royal Navy air station at Yeovilton and it was thought that the BBC transmissions might affect the operation of the air station and the Ministry of Defence lodged a formal objection. The BBC withdrew the proposal. In effect, military hardware was considered more important than the 'friendly persuasion' of the BBC exterhal service.
The world's most powerful v.h.f. tv transmitter is claimed for WXIA-TV, Channel 11 in Atlanta, Georgia, USA who have installed a Harris 100 kW TVD-100H which is transmitting through a twelve-bay circularly polarised antenna. As the transmitter consists of two 50 kW transmitters combined, one half can be maintained while the other continues transmission at 80% of the total power
Another record is claimed by GEC Telecommunications who are to supply the two longest digital transmission systems in the U.K. to British Telecom. Each system will operate at $120 \mathrm{Mbit} / \mathrm{s}$ with a capacity of 1680 speech circuits each. They will link Mondial House, the international switching centre in London, with Madley satellite earth station in Herefordshire. The two systems will operate through coaxial cable on alternative routings over a joint distance of more than 600 km (373 miles) and will be ready for service late in 1982. The digital system was chosen for better quality of transmission, improved stability, and much greater flexibility of network management.

The launching of the Amsat Phase 3B amateur band satellite is scheduled to take place in February 1982 when it will be carried on Ariane L07.

A tentative allocation of the frequencies to be used are:
U-transponder
Uplink
435.150 to 435.300 MHz Downlink
145.820 to 145.970 MHz

Engineering
beacon
145.990 MHz

General beacon
145.8125 MHz

L-transponder
Uplink
Downlink
Engineering
beacon 436.150 to 436.950 MHz

General beacon
436.020 MHz

The 12th International Television Symposium and Technical Exhibition will take place at the Maison des Congres, Montreux, between 31st May and the 4th June. Thirty-five British companies will be exhibiting as part of a British Overseas Trade Board Joint Venture, sponsored by the Electronic Engineering Association.

C.b. specification published

We have received a copy of the draft specificatron for the performance of 27 MHz radio equipment for use in the citizens' band radio service We include here the main parameters and provisions of the specification. All equipment must be covered by a licence and it is a condition that the equipment conforms to and is maintained to certain minimum standards set out in the specification. The specification sets out these standards for 27 MHz f.m. equipment; 934 MHz f.m. equipment is subject to a separate specification.
The manufacturer, assembler or importer of the equipment is responsible for testing the equipment and for ensuring that it conforms with the specification. A reputable test establishment may act on his behalf.

The output r.f. power of the transmitter is limited to 4 W . With the antenna permitted this will give an effective radiated power of 2 W . If the antenna is mounted at a height exceeding 10 m the licence will require a reduction in transmitter power of 10 dB . A 10 dB attenuator should be provided as a standard accessory for this purpose.
The equipment shall provide for transmission and reception only of frequency modulated emissions on one or more of the following r.f. channels: Channel 1 at 27.60125 MHz up to Channel 40 at 27.99125 MHz each channel being 10 kHz from the next. Equipment shall not contain facilities for transmission of any other radio frequencies. Only equipment which employs frequency or phase modulation and has no facilities for any other form of modulation will meet the requirements of the specification.

The equipment shall be provided with a clear indication of the type number and the name of the manufacturer. In addition, compliance with the specification should be indicated by the authorised mark stamped or engraved on the front panel of the equipment. The mark is shown here and should have minimum diameter of 6 mm and a minimum figure height of 1 mm .
Controls which, if maladjusted, could affect the interference potentiality of the equipment, should not be easily accessible.

The power supply should maintain its voltage to within 3% of its nominal value. Frequency error; the deviation in carrier frequency from its nominal value, should be less than 1.5 kHz . Frequency deviation, the difference between the instantaneous frequency of a modulated signal and the unmodulated carrier frequency, should be less than 2.5 kHz .
Adjacent channel power, the power output at frequency of 10 kHz above or below the nominal frequency in use, should not exceed 60 dB below the carrier power of the transmitter, without the need to be below $2 \mu \mathrm{~W}$.
Spurious emission, emissions at frequencies other than those of the carrier and sidebands associated with normal modulation, should not exceed 50 nW in the frequency bands of 80 -to $80 \mathrm{MHz}, 87.5$ to $104 \mathrm{MHz}, 108$ to $118 \mathrm{MHz}, 135$ to $136 \mathrm{MHz}, \quad 174$ to 230 MHz and 470 , to 862 MHz . The power of spurious emissions at other frequencies should not exceed $0.25 \mu \mathrm{~W}$. All emissions from a receiver should be less than 20 nW on any frequency.
The specification also lays down the equipment and test conditions to be used when testing the equipment and the accuracy of measurement needed.
The above specification has already raised howls of indignation amongst existing (illegal) c.b users. The National Committee for the Legalisation of Citizens' Band Radio have noted that the channels suggested by the specification do not correspond to frequencies used for c.b. anywhere else in the world. This means that equipment would have to be specially designed and built for the U.K. and would therefore be very expensive. The National Committee would like to adopt the specification drawn up by the Joint Council for Legalisation of 27 MHz c.b. radio, which corresponds quite closely to the equipment at present in use in the United States and in illegal use here.
We note that the chosen frequencies avoid the ISM; industrial, scientific and medical band as designated by the 1979 World Administrative Radio Conference, but share a fixed and land mobile band. The only information we could get from the Home Office was that the frequencies had been selected 'to avoid conflict with radio modellers' and were 'offset to avoid any harmonic interference with the 102 to 112 MHz frequencies used for approach and landing at airports'

These magnetic tape data recorders from SE Labs, a Thorn/EMI company, have been selected for use by NASA in their installations at the Goddard Space Center, the Johnson Space Center and at the John F. Kennedy Space Center. They will be used to capture the data transmitted back from Spacelab.

Shuttle electronics

After all the ballyhoo of the launch and landing of the first space shuttle Columbia, it may be of interest to look at some of the contributions the electronics industry has played in this venture.

At the Kennedy launch site operational intercommunications runs on two systems; OISRF is a 112 channel system connected to 1,200 terminals, with total conferencing capability, using a 480 kHz band to carry the channels over coaxial cable. All the voice communications channels can be networked into the one integrated system. In addition numerous 21 -channel, four-wire multi-terminal systems serve small geographical complexes, with one or more channels connected to the main system.
The public address and area warning systems are made from standard distribution amplifiers and indoor and outdoor speakers arranged to allow for paging by geographical area or all areas simultaneously, with a capability to over-ride from several remote locations
Also at the Kennedy Space Centre are fifteen v.h.f. base support radio networks, a communications link between the astronauts and the control centre with connections to the medical staff, various directors and, via leased lines, to the Johnson Space Centre.

Data and television transmission facilities link up 29 sites with 1,400 terminals. When the shuttle system is fully operational there will be an additional 400 data modems and data switching equipment to support cargo operations. The system provides the means for transmission of colour and monochrome operational and network tv and other analogue or digital data for distribution through the OIS-RF system. Data includes spacecraft command and telemetry, meteorological and other measurements and the computer system data.

The launch needs to be carefully monitored and there are no less than sixty monochrome ti cameras located on the launch pad all remotely controlled from the launch control centre $31 / 2$ miles away

NASA's public affairs office has all the facilities necessary to provide live television coverage of the launch for release to national and international public tv networks.

The maior instrumentation systems include a microwave scanning landing system, a precision laser tracking system which is used to calibrate the landing systems and also serves as a source of reference during commissioning and flight inspection tests of each landing site. There is also a catenary wire lightning protection system and a lightning voltage measuring system.
All this is on the ground at the Kennedy launch site, and all the equipment mentioned has been supplied by one division or another of RCA. They have also provided satellite communications through the two American satellites which provide 11 wideband data links, 28 voice and data narrowband and television broadcast links. Each shuttle orbiter has several tv cameras with remote controls. The radios contained in the astronauts back-packs provide a number of services in addition to voice communications, they monitor the astronaut's heartbeat and the life support systems

And this is still only a part of the whole; Mission Control at Houston, Texas was built and is operated by Ford Aerospace and Communications Corp. a division of Ford Motors, and electronics control and communications permeate the whole enterprise

Overload indicator

Overloads of either polarity are indicated by a single l.e.d. with signals from dc to 1 MHz . Each overload detector operates as a comparator/monostable and, if the reference voltage is exceeded, the monostable is triggered for approximately 30 ms which turns the l.e.d. on. The monostable can be re-triggered, so if the overload persists the l.e.d. remains on and does not flicker.
R. W. Darlington

Worsley
Manchester

Contributions for circuit ideas should be typed and include a day time phone number if possible. We now pay a minimum of $£ 20$ for all ideas which are accepted for first publication in Wireless World.

Voltage-controlled oscillator

The n-channel f.e.ts within a 4007 package, when used as voltage controlled resistors, track sufficiently well to be used in a voltage-controlled Wien bridge oscillator. Two f.e.ts are used in the Wien network, and the third is used for amplitude control. Because the 4007 protection diodes cause signal distortion with input levels above a few hundred millivolts, $\mathrm{IC}_{2 \mathrm{a}}$ drives the
network with a few tens of millivolts. This requires a wide bandwidth device to sustain maximum output at 20 kHz .

Output amplitude is maintained by a f.e.t. and R_{3} used as a variable potential divider controlling the feedback to $\mathrm{IC}_{2 \mathrm{a}}$. $\mathrm{IC}_{2 \mathrm{~b}}$ controls the f.e.t. by comparing the dc level set on R_{4} with a direct voltage proportional to the ac output signal. With
the components shown, a sweep from 100 Hz to 20 kHz is obtained with a control voltage from 0.5 to 10 V . Maximum distortion at 5 kHz for various samples of IC_{1} was 3%. Below $500 \mathrm{~Hz}, 50 \mathrm{~Hz}$ hum pickup can be troublesome because the f.e.ts are operating at around a megohm so screening of the circuit is advisable.
J. D. Jardine

Dewsbury
Yorks.

Matching
 complementary transistors

By simultaneously displaying I_{C} versus V_{CE} for complementary transistors, matched devices can be quickly selected. Equal collector voltages are provided by identical halves of a power supply. Al though the potential at point A or B is not exactly equal to V_{CE}, due to the voltage drop across the emitter resistors, the approximation is acceptable. Both transistors have the same I_{B} set by a photocoupled germanium diode. The high reverse cur rent of the photodiode ensures that I_{B} is reasonably constant with small voltage variations produced by different values of I_{C}.

Transistors $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ and IC_{2} form a simple switch for the Y axis. Because the curves displayed for increasing and decreasing values V_{CE} do not coincide, IC_{3} blanks the first one. The 555 timer is triggered near to the zero-crossing point of V_{CE} and generates 5 ms pulses for driving the Z input of the oscilloscope. As IC_{3} is triggered before $V_{\text {CE }}$ reaches zero, D_{1} and D_{2} are included to prevent a small part of the trace from being missed close to the origin. The push-button permits identification of the traces. Accuracy of the circuit can be increased if the corresponding components marked x are matched.
I. Safta

Romania

Isolation amplifier

A quad op-amp such as the TLO74 can provide an amplifier with a high-impedance differential input and a low-impedance differential output which is balanced about a third terminal. The circuit can be used to overcome earth loop problems in instrumentation and audio systems. Several amplifiers can be powered from one supply without interac-
tion provided the total signal plus com-mon-mode voltage does not exceed the supply.

Overall gain is set by R_{2} which, with an open circuit, is unity. Resistors R_{1} and R should be matched for accurate balance.
M. R. Hadley

Southampton
Hants.

B.c.d.-to-binary conversion

Two-decade b.c.d.-to-binary conversion with, for example, thumbwheel switches can be achieved with two i.cs. Alternatively, the circuit can easily be extended as shown for three or more decades.
J. A. Fox

Redhill
Surrey

Temperature compensation for varicap diodes

When a varicap diode control is used in a v.h.f. oscillator as shown in Fig. 1, the positive temperature coefficient of the diodes cannot be completely compensated for with n.t.c. capacitors. The circuit in

Fig. 2. overcomes the problem by using a familiar V_{BE} multiplier in series with the supply voltage to the diodes. This method of temperature compensation is particularly useful with a switched-frequency os-
cillator because the compensation depends on the amount of reverse bias applied to the diodes.
T. K. Wong

Edmonton
London

Accurate sine-wave oscillator

Step-by-step calculation means no limit to low frequency range

by N. Darwood

This oscillator does not contain any inductors or capacitors. It is an arithmetic unit that continuously computes sine and cosine values. The output is a sequence of numbers, in binary, which represents the amplitudes of a continuous sinewave. This sequence of values is an ideal medium for digital signalsynthesis. Two or more such sequences are readily added, multiplied, scaled etc. A digital-toanalogue converter is used if the output required is an analogue waveform.

The computation performed by the arithmetic unit of this oscillator to produce a sine-wave sequence of values is: (a) to the current value of sine add a fraction of cosine; and (b) from the value of cosine subtract a fraction of sine. For example, if sine value $=0.4$, cosine value $=0.6$ and the fraction chosen is $1 / 10$ then the computation performed is as follows:
(a) New sine $=0.4+(1 / 10) 0.6=0.46$
(b) New cosine $=0.6-(1 / 10) 0.46$
$=0.6-0.046=0.554$
Computations (a) and (b) form one step. One step produces a new value for sine and a new value for cosine. Fig. 1 shows how the sine and cosine values progress, step by step, as the pair of computations (a) and (b) above is continuously repeated with a fraction of $1 / 2$. (Fig. 1 is explained in detail later.)

The mathematically minded will quickly see that the computation is an approximation:
Given that $\sin (n+\omega)=\sin n \cos \omega+\sin$ ${ }^{\omega} \cos n$ $\cos \omega$ approximates 1 for small ω
$\frac{\sin \omega}{\omega}$ approximates 1 for small ω
$\sin \omega$ approximates ω for small ω
Substituting (2) and (3) into (1), $\sin (n+\omega)=\sin n+\omega \cos n$
where ω is a fraction of a radian.
In words equation (4) means that a new value of sine can be found by adding a fraction of cosine. Similar reasoning shows that a new value of cosine can be found by subtracting a fraction of sine. A further example is shown below.
Current value of sine $=0.2$
current value of cosine $=0.9$
(a) next value of sine $=0.2+(1 / 10) 0.9=$ 0.29
(b) next value of cosine $=0.9-(1 / 10) 0.29$ $=0.9-0.029=0.871$
It is easier for the hardware to first calculate the new value of sine than take this new value for the calculation in (b).
To become familiar with the oscillator let us work through one cycle of oscillation. Assume the sine amplitude is zero and the cosine amplitude is 100 , see Fig. 1.
Let the fraction be $1 / 2$. Finally abbreviate
sine at step $n=\sin (n)$
sine at step $n+1=\sin (n+1)$
cosine at step $n=\cos (n)$ etc.

Fig. 1. Graph of computed sine and cosine values from Table 1
where n is a multiple of a fraction of a radian.

Table 1 lists the results of continuously performing
(a) $\sin (n+1)=\sin (n)+(1 / 2) \cos (n)$
(b) $\cos (n+1)=\cos (n)-(1 / 2) \sin (n+1)$

Sine and cosine values are then plotted as shown in Fig. 1.
A fraction of $1 / 2$ was chosen for ease of working although we could have chosen any value, say $3 / 297$. But then, because of the amount of work involved, we need a computer to simulate the hardware by continuously performing:
(a) $\sin (n+1)=\sin (n)+(3 / 297) \cos (n)$
(b) $\cos (n+1)=\cos (n)-(3 / 297) \sin (n+1)$ (c) go back to (a)

The fraction is a systems parameter. It is hardware wired. A fraction of $1 / 2,1 / 4,1 / 8$ or 1/16 etc. is readily achieved in terms of hardware by a right shift. The fraction is called omega (ω); it defines the number of steps in one cycle of oscillation. The smaller ω is: the smaller the step size; the more steps there are per cycle; the longer it takes to complete one cycle; the lower the frequency; and the less the error.
For $\omega=1 / 2$ the error is about 7%. For $\omega=1 / 32$ the error reduces to about 0.5% (Note in Fig. 1 how one cycle is completed between two steps.) However, there is no cumulative error over many cycles. In fact the error appears to be sinusoidal with a period of $1 / \omega$ cycles. A formal knowledge of the errors, fundamental and truncation (i.e. the effects of rounding off), is not known.

The period of oscillation is evaluated as the product of (the number of steps per cycle) \times (the time for one step). The time for one step is determined by the hardware architecture, in particular, the number of bits in a word, a serial or parallel arithmetic unit, and the clock rate.

The step size i.e. the number of degrees or radians moved by one step (not the time of one step) is determined solely by the fraction (1). From Table 1 and Fig. 1 one step $=$ (1) radians. In this instance, because $\omega=1 / 2$, one step $=1 / 2$ radian, 2 steps $=1$ radian.
Generally, one step $=\omega$ radians
$1 / \omega$ steps $=1$ radian
$2 \pi / \omega$ steps $=2 \pi$ radians $=360^{\circ}$
$=1$ cycle

That is, 1 cycle $=2 \pi / \omega$ steps.
See Fig. 1 where one cycle takes $2 \pi /(1)=2 \pi /(1 / 2)=4 \pi=12.56$ steps

A further example could be where $(1)=1 / 1000$. One cycle is completed by
$2 \pi / \omega=(1000) \quad 2 \pi=6,283.2$ steps. Hence the step size is 0.057°. An accurate continuous sine-wave oscillator with any period is now practical. For example, a device consisting of two 100 -bit shift-registers, an adder/subtractor and a clock of 100 kHz and with $\omega=2^{-60}$ gives a continuous sinewave with a period of 10 years.

Implementation

The oscillator can be built with nine i.c. chips. Sine and cosine are each held in a shift register. This is shown in the block diagram of Fig. 2, which also shows the adder/subtractor and control logic.

Ignore for the moment the "sign extension" and 'complementer"' blocks. Suppose the left hand shift register L, which is of 8 bits, say, holds 100 and R holds zero. Let $\omega=1 / 8$. This means, in terms of hardware that the input to the adder/subtractor is taken from the output of bit 3 of L. Hence the input to the adder/subtractor is $L / 8$, that is, L right shifted 3 places. The resultant output from the adder/subtractor becomes the new value in L as shown in Table 2. Obviously this is just a mechanization in hardware of the illustrative example of Fig. 1, but with a different fraction.

First note, in Fig. 2, one step takes a complete rotation of both shift-registers, i.e. 16 clocks. In the first half of each step, i.e. for the first 8 clocks of each step the adder/subtractor is in the add mode. For the second half of each step the adder/subtractor is in the subtract mode.

In fact, rather than an adder/subtractor only an adder is used. When in the subtract mode, 2 s complement is formed and then

Fig. 2. Block diagram of sine-wave oscillator. Set carry for subtract mode; reset carry for add mode.
added. The 2 s complement is formed in two steps. First a bit complementor (an exclusive OR) is used; this gives 1 s complement. To produce the required 2 s complement a 1 has to be added to the least significant bit, which is performed, as is

Continued on page 78

Fig. 3. Logic diagram of oscillator

Table 1: Illustrative example

	Computation	Result
$\sin (0)$	0	
$0 \cos (0)$	100	50
$\sin (1)$	$0+100 / 2$	75
$1 \cos (1)$	$100-50 / 2$	87.5
$\sin (2)$	$50+75 / 2$	31.25
$2 \cos (2)$	$75-87.5 / 2$	103.12
$\sin (3)$	$87.5+31.25 / 2$	-20.31
$3 \cos (3)$	$31.25-103.12 / 2$	92.97
$\sin (4)$	$103.12+-20.31 / 2$	-66.79
$4 \cos (4)$	$-20.31-92.97 / 2$	59.57
$\sin (5)$	$92.97+-66.79 / 2$	-96.58
$5 \cos (5)$	$-66.99-59.57 / 2$	11.27
$\sin (6)$	$\sin (5)+(1 / 2) \cos (5)$	-102.22
$6 \cos (6)$	$\cos (5)-(1 / 2) \sin (6)$	-39.82
$\sin (7)$	etc	-82.30
$7 \cos (7)$	-80.98	
$\sin (8)$		-41.81
$8 \cos (8)$	-101.89	
$\sin (9)$	9.13	
$9 \cos (9)$		-97.32
$\sin (10)$	57.79	
$10 \cos (10)$	-68.42	
$\sin (11)$	92.00	
$11 \cos (11)$	-22.42	
$\sin (12)$	103.22	
$12 \cos (12)$	29.18	
$\sin (13)$	88.62	
$13 \cos (13)$		

Table 2: Computed by Fig 2

Step	\mathbf{L}	\mathbf{R}	Resultant
	100	0	$0+100 / 8=12$
1	12	100	$100-12 / 8=99$
	99	12	$12+99 / 8=24$
2	24	99	$99-24 / 8=96$
	96	24	$24+96 / 8=36$
3	36	96	$96-36 / 3$
		etc	

CS1560All Dual Trace 15 MHz Oscilloscope - 10 mV to $20 \mathrm{~V} / \mathrm{div}$ sensitivity in $1-2.5$ sequence with fine control - $0.5 \mu \mathrm{~s}$ to $0.5 \mathrm{~s} / \mathrm{div}$ sweep time plus $\times 5$ Mag - Auto and Manual Triggering - Chop and Alt modes - Z Mod - TV Trig - X-Y operation
CS 1560A II CS 1562A DUAL TRACE DUAL TRACE 10 MHz backed by a full 2 Year guarantee and at the right price

CS1566A Dual Trace 20 MHz Oscilioscope - 5 mV to 20 Vidiv sensitivity in 1-2-5 sequence with fine control - $05 \mu \mathrm{~s}$ to 0.5 sidiv sweep time with $\times 10 \mathrm{Mag}$ - Chop. Alternate. Sum and Diff modes - Auto and Video trigger $-Z$ mod and X - Y operation
 3 sequence w th fine controi - $05 \mu \mathrm{~s}$ to 2 ms div-unique sweep leng:n adus:men Ah and Chor. Displcy Bor chan - dea for Lissajous plus Phase Angle Reference simutaneously - Ideal for al为

CS1577A Dual Trace 35 MHz Oscilloscope - with VAR.SIG. DELAY - 2 mV to $10 \mathrm{~V} / \mathrm{div}$ with fine control and UNCAL. IND - $01 \mu \mathrm{~s}$ to 0.5 sidiv sweep time plus X5 Mag - Auto, Manual. SINGLE SHQT. FIX and Video triggering - Alt. Chop. Sum, Diff and X High Quality PDA CRT
House of Instruments Ltd. Clifton Chambers 62, High Street, Saffron Walden Essex CB10 1EE.
 Telex: 81653. performancehitcompetitive hi:reliabilityhi:

WW - 080 FOR FURTHER DETAILS

RAM AND EPROM NEW LOW VAT INCLUSIVE PRICES
2716 5vRail £9-50
27163 Rail $\mathbf{£ 8 - 5 0}$
2708 Ex Equip $£ 2-25$
$2114 \mathrm{~L}-3 \quad 300$ NS 1 KX4 ST 8 for $£ 22-50$
$\begin{array}{llll}2114 L-3 & 300 \text { NS } 1 \text { KX4 } & \text { ST. } & 8 \text { for } £ 22-50 \\ 2102 \mathrm{~L}-3 & 650 \text { NS } 1 \mathrm{KX1} & \text { ST. } & 8 \text { for } £ 5-50\end{array}$
TMS4030JL 300 NS 4KX1 DYN 8 for $£ 9-95$

TELETYPE ASR33

I/O TERMINALS

From $£ 195$
Fully fledged industry standard ASR33 data ter minal. Many teatures including: ASCII keyboard RS232 serial interface. 110 baud 8 bit paper tape punch and reader for off line data preparation and ridicu'ously cheap and reliable data storage. Sup plied in good condition and in working order
Optic: s: Fioor stand $\mathrm{f12.50}+$ VAT

EQUIPMENTCASES
GIVE YOUR M.P.U.

A HOME
ONLY
ONLY
Superb orntessional fully enclosed, made for fraction of their original cost they feature aluminium sides, hinged removable front panet which can be secured by 2 screws to prevent grey and a!though believed brand new may hav

NATIONAL MA1012LED

 CLOCKMODULE
* 12 HOUR

\star ALARM

$+50 / 60 \mathrm{HZ}$

The same module as used in most ALARM/CLOCK radios today, the only difference is our price! All electronics are mounted on a PCB measuring only $3^{\prime \prime} \times 1$ a and by addition of a few switches anck/t
volts $A C$ you have a multi function alarm clock at a fraction of cost. Other features include snooze timer, am pm, alarn set. power fail inicator, flas. Supplied brand new with full data only

SEMICONDUCTOR

 GRAB BAGS
Amazing value mixed semiconductors, include

 recs etc etc. All devices guarenteed brand new, full spec with manufacturers markings, fully guarantee
MDFFW FANS

Keep your equipment Coos and Reliable with out tested ex equipment "Muttin Fans" almost silent running and easily mounted. Avariable in Sop DIMEWSIONS $41 \times 41 \times 1$

ELECTRONIC COMPONENTS

\mathcal{X} EQUIPMENT

Due to our massive bulk purchasing prognt which enables us to bring you the best possible bargains, we have thousands of I.C.'s. Transistors
Relays, Cap's., P.C.B.'s, Sub-assemblies, Switches etc. etc. surplus to our requirements. Because w don't have sufficient stocks of any one item to in to the "BARGAIN PARCEL OF A LIFETIME Thousands of components at giveaway prices! Guaranteed to be worth at least 3 times what you
pay plus we always include something from out ads pay plus we always include something
for unbeatable value!! Sold by weight
2.5kts $£ 4.75+p p £ 1.25 \quad 5$ kss $£ 6.75+p p £ 1.80$ 10uks $£ 11.75+p p £ 2.25 \quad$ 20ids $£ 19.99+p p £ 4.75$

ICL TERMIPRINTER 300 BAUD TERMINALS
 SCOOP PURCHASE 12" VIDEO MONITORS

 In stock nowr testeer spplies, scopes.s. si. ger's', motors,transtomers, equipment, I.C.'s, toois, components, variacs, keyboardo, ransistors, microswitches, V. D U
other stock lines. Just a mere faal for callers.
displayed below: 100 's of bargains

\section*{CONNECT

DIRECT TO
YOUR MICRO}

Made by the "ball miratel" corporation usa the CD12 is a self contained, mains powered chassis professional monitor. All controls are inbult on
single $P C B$ with exception of the brightness control which can be brought out for external use. Many weatures such as composite video, quoted bandwidth of 19 Mhz , superb linearity and definition make this a must for any MICRO/CCTV application.
$\begin{aligned} & \begin{array}{l}\text { Brand new and boxed only } \\ + \\ +\end{array} \mathbf{~ c a r r i a g e ~} £ \mathbf{~} 7.50+\text { VAT. }\end{aligned} \quad \mathbf{9 7 . 5 0}+$ VAT
Input harness, brightness pot and connector $£ 2.50$

+ VAT. Dimensions $9{ }^{\prime \prime} H \times 11^{\prime \prime} 0 \times 11^{\prime 2} W$ HURRY WHILE STOCKS LAST

EPROMBLOWER

 Software development system ists ab on 2716,2708 etc. Blows, copies, reads EPROMS or emulates displaying contents on situ whilst receiver. Many other features $£ 115$ + carr. + VAT Optional 27162716 Function Card E40 + VAT 276, 2716 $+£ 1.50$ carr. + VAT. BRAND NEW PCB organised as a 3 K 8page memory with 24 socketed 2102-L TIL Chips for decoding. All IC's nuaranteed.
rcuit only
$\mathbf{£ 2 4 . 5 0}+\mathbf{f 1 . 7 5}$ P.P.
Dimensions $264 \times 195 \mathrm{~mm}$

Made under licence from the world famous GE Co The ICL Termiprinter is a small attractive unit with space available! Bref spec. as follows: RS232 serial interface, switchable baud rates 110, 150, ence type face, standard paper, almost silent running, form feed, electronic tab settings, suited for word processor applications plus many mor ing order. Limited quantity

WITH TOMORROW'S WORLD TECHNOLOGY TODAY

 The "TANTEL" Post Office approvedPRESTEL-VIEWDATA ADAPTOR

At last this amazing piece of micro technology is available at a price you can

 afford. Just connect to the aerial socket of any colour or black and whitedomestic TV receiver and to your Post Office installed iack socket and you are into the exciting world of PRESTEL. Via simple push button use you are able to view a staggering 170,000 pages of up to the minute information on many services and ulitities, order goods from companies,
games!!All his and more without ever leaving your armchair!

ONLY $£ 170$
 + \&1.75 carn + VAT Send f 197.50 p

Note: When ordering please give the address and telephone number where the Tantel adaptor is to be used we will arrange all details with the Post Office for installation of the ack socket (normally within 7 days)

JUSTIN

 Secondhand chassis $9^{\prime \prime}$ Bluebest mains powered video monitors. composite video input with inbuilt 5 v 3 amp DC P.S.U. Tested, but unguaranteed $£ 39.99+£ 7.50$ carriageMANUFACTURERS ONLY

100,000 EX STOCK Miniature relays continental series by forms all impedances.

CALL FOR QUOTES

WE'VE BOUGHT ANOTHER SHIPMENT!

SAVEOVER E1300!! DZM 180 CPSHIGH SPEED MATBIX PRINTERS

This must be one of our greatest bulk

deals, this fabulous printer is listed at over $£ 1800$ and judging by the construction we are not surprised. Made under license from the LOGABAX CO. the DMZ180 is an exceptionally sturdy high speed 180 cps matrix printer, capable of printing up to 132 characters per line on standard "Fan Fold" sprocket fed paper. A precision 7×7 matrix head using ruby bearings, gives a clear concise type font. Many other features include internal buffer for concise type font. Many orher features include internal buffer for
high throughput, standard ink ribbon, software controllable form and tab functions, standard "CENTRONICS" ASCII parallel interface etc. etc.
Optional extras Floor Stand $£ 30.00+$ VAT, Paper Stand $£ 18.00+$ VAT

Dept. W.W. 64-66 Melfort Rd., Thornton Heath,
MAIL ORDER Croydon, Surrey. Tel: 01-689 7702 or 01-689 6800 Uniess otherwise stated all prices inclusive of V.A.T. Cash with order. Minimurn packin packing not indicated please add 60 p per order. Bona Fida account orders minimum E 10.00 . Export and trade enquiries welcome. Orders despatched
same day where possible. Access and Barclaycard Visa welcome.

MEMOREX/BASF 7 MB HARD DISK DRIVES

Model 630-1B disk drives by Memorex BASF, TTL signals in and out, high speed. IBM 2311 compa $\mathbf{f 1 7 5 . 0 0}+$ VAT BUYERS COLLECT

"THE MULTIVOLT PSU"

he PSU to end a/l Your MPU/LAB requirements, supply features full regulation, current limit, and overvoitage protection on all 7 outputs, just look at the spec.
$+5 \mathrm{v} @ 12 \mathrm{amps},+5 \mathrm{v} @ 4.5 \mathrm{amps},+5 \mathrm{v} @ 4 \mathrm{amps}$,
+30 (@) $+30 v @ 2$ amps, $+12 v @ 1$.
amps and $-9 v @ 1$ amp.
A superb unit supplied in two grades, complete with data.
Brand New, Fully Tested
$£ 59.99$
Used and Untested
£39.99

KEYBOARDS

 Straight from the U.S.A made by the world famous R.C.A Co., the VP600 Series of cased freestanding keyboards meet all requirements of the most exacting user, right down to the price! 5 million operations. The keyboard has a host of other features including full ASCII 128 character set, user definable keys, upper/ower case, roliover protection, single $5 V$ rail, keyboardimpervious to liguids and dust $T 1$ or CM0s outouts even an on-board tone generator for keypress feedback, and a i year full on-board tone generator
R.C.A. backed guarantee.
VP601 7 bit fully coded output with delayed
VP611 Same as VP601 with numeric pad VP606 Serial, RS232, 20MA and TTL output, with $\mathbf{£ 6 0 . 9 5}$
6 selectable Baud Rates. VP616 Same as VP606, with numeric pad, Post, Packing and Insurance.

5v D.C. POWER SUPPLIES

[^1]
Tracking elliptical orbit satellites

An alternative method using accurate drawings to replace involved calculations and computer programs

by J. M. Caw, G4ALV

Abstract

Tracking a satellite in an elliptical orbit without pre-calculated data normally involves complex formulae, best processed using a computer. The author shows here that most of these calculations can be replaced by accurate drawings and still provide a result with an error of less than one degree. Although written with the OSCAR phase lils in mind, the method can be used for any satellite with an elliptical orbit, providing the initial data stated here is available.

This method involves drawing both a scaled-down version of the satellite's elliptical orbit and the satellite path, for use as an overlay on a polar projection map. After one orbit ellipse has been drawn, it can be used to make overlays for satellite paths with any apogee latitude. The latter section of the article deals with antenna elevation and range estimation.
The easiest way of illustrating the method is by means of an example, so the given information is assumed to be: apogee height $=39,000 \mathrm{~km}$ perigee height $=1,460 \mathrm{~km}$ inclination of orbit $(i)=57^{\circ}$ orbital period $(p)=12$ hours The time and position of perigee, and
longitude of the equatorial crossing must also be known, as will be discussed later.

Constructing the ellipse

Firstly, an ellipse needs to be drawn, as shown in Fig. 1. Half the major axis is found by dividing by two the sum of the apogee height, perigee height and diameter of the earth $(12,740 \mathrm{~km})$. Half the major axis is thus $26,600 \mathrm{~km}$.

The distance between the centre of the ellipse and the centre of the earth, OS, is half the major axis minus the perigee

Fig. 2. This graph shows the velocity of the satellite at any point between apogee and perigee, or vice-versa, for the hypothetical orbit shown in Fig. 1. Distances shown on the graph relate to the axes of the ellipse.

Fig. 1. The orbit ellipse. Once the ellipse has been plotted, it can be used to estimate the height of the satellite above the earth at any point on the orbit, along with the time elapsed from either apogee or perigee to the point concerned.
height minus the radius of the earth, and is thus equal to $18,770 \mathrm{~km}$.

Now the eccentricity of the orbit, e, can be found as follows:

$$
e=\frac{\mathrm{OS}}{\mathrm{OA}}=0.7056
$$

With the eccentricity and major axis known, half the minor axis, OB , can be found as follows:

$$
\mathrm{OB}=\mathrm{OA} \sqrt{1-e^{2}}=18,848 \mathrm{~km}
$$

Now the ellipse can be plotted using the standard formula:

$$
y=b \sqrt{1-\frac{x^{2}}{a^{2}}}
$$

where x and y are points on the horizontal and vertical axes respectively, a is half the minor axis and b half the major axis of the ellipse.

Orbital velocities

To find the total time elapsed from perigee to a point on the orbit, the velocity of the satellite needs to be known. At any point on the orbit, the velocity of the satellite can be found from the formula:

$$
v=28,400 \sqrt{\frac{2 R}{r}-\frac{R}{d}} \mathrm{~km} / \mathrm{hr}
$$

where R is the earth's radius, $6,370 \mathrm{~km}, r$ is the distance of the satellite from the centre of the earth and d is the average distance of the satellite from the earth's centre found from the formula:

$$
d=\frac{\mathrm{AS}+\mathrm{SA}^{\prime}}{2}
$$

For the given values, $d=26,600 \mathrm{~km}$. The distance r can be found by measuring from the previously drawn ellipse, Fig. 1.

A distance/velocity graph can now be drawn as shown in Fig. 2, so all that remains is to divide the periphery of the ellipse into sections ($a_{1}-a_{2}, a_{2}-a_{3}$, etc.), find the average velocity and distance travelled in each section, and from these results, calculate the time taken for the satellite to travel through the section. The distance travelled by the satellite in each section may be either calculated or taken from the drawing.
A collection of the data that can now be obtained, either by calculation or from the drawing, is given in Table 1. Column 9 gives the cumulative angle of the earth's rotation from the perigee to the orbit point concerned. Due to the decrease in velocity of the satellite towards the apogee, the results shown in Table 1 are only useful for periods within around one hour of perigee. Table 2 shows the same data arranged for

Table 1: Orbit data, derived from the given example, for plotting paths at up to 1 hr either side of perigree.

Orbit section (see Fig. 1)	Distance taken from orbit drawing (cm)	Equiv. distance in km	Average velocity in km / h	Time of section (t hours)	Time (T) elapsed from perigee to end of sect.	Height above earth's surface at end of sect.	Angle turned from perigee	Earth's rotation from perigee
$a_{1}-a_{2}$	2.0	4000	33000	0.12	0.12	1650	28°	2.0°
$\mathrm{a}_{2}-\mathrm{a}_{3}$	2.3	4600	30900	0.15	0.27	3300	58°	4.0°
$\mathrm{a}_{3}-\mathrm{a}_{4}$	1.55	3100	28200	0.11	0.38	4750	74°	6.0°
$a_{4}-a_{5}$	2.1	4200	25400	0.165	0.545	6850	90°	8.0°
$a_{5} \cdot a_{6}$	1.65	3300	22800	0.145	0.690	8900	101°	$10.5{ }^{\circ}$
$a_{6} \cdot a_{7}$	3.05	6100	20000	0.305	0.995	12750	115°	$14.9{ }^{\circ}$
$\mathrm{a}_{7}-\mathrm{a}_{8}$	3.2	6400	16900	0.379	1.374	17500	128°	$20.6{ }^{\circ}$
$\mathrm{a}_{8}-\mathrm{a}_{9}$	2.0	4000	14700	0.272	1.646	20250	135°	$24.7{ }^{\circ}$
$\mathrm{ag}_{9}-\mathrm{a}_{10}$	2.0	4000	13200	0.303	1.949	23000	141°	29.2°
$\mathrm{a}_{10} \mathrm{a}_{11}$	2.0	4000	11800	0.339	2.288	25750	146°	$34.3{ }^{\circ}$
$\mathrm{a}_{11}-\mathrm{a}_{12}$	2.05	4100	10600	0.387	2.675	28500	152°	40.1°
$\mathrm{a}_{12}-\mathrm{a}_{13}$	2.15	4300	9400	0.457	3.132	31500	157°	47.0°
$\mathrm{a}_{13} \mathrm{a}_{14}$	2.4	4800	8200	0.585	3.717	34500	162°	55.8°
$\mathrm{a}_{14} \mathrm{a}_{15}$	3.1	6200	7200	0.861	4.578	37200	169°	68.7°
$\mathrm{a}_{15}-\mathrm{a}_{16}$	2.3	4600	6200 *	0.742	5.320	38250	175°	$79.8{ }^{\circ}$
$\mathrm{a}_{16} \mathrm{a}_{17}$	2.0	4000	5900	0.678	5.998	39000	180°	90.0°

equal time periods for use over the remainder of the orbit.

Ellipse rotation

An orbital ellipse rotates in its own plane unless at an inclination of 63.4°, when it remains stationary. The orbit rotates forwards for near equatorial orbits and backwards for near polar orbits. For the example data given here, the orbit ellipse moves forwards at a rate of 0.064° per day, so a new overlay will need to be plotted about once every three months, depending on the accuracy required.
The rate of movement, w, in degrees per day can be calculated using the following formula:
$w=4.98\left(\frac{R}{a}\right)^{3.5}\left(1-e^{2}\right)^{-2}\left(5 \cos ^{2} i-1\right)$
where R is the earth's equatorial radius $(6,370 \mathrm{~km}), a$ is half the major axis of the orbit, e is the eccentricity of the orbit and i is the orbit inclination.

Sub-satellite path

Plotting of the sub-satellite path, range data, etc., is done on a transparent overlay

Table 2: Orbit data from Table 1 tidied up by interpolation.

Time elapsed from perigee (minutes)	Angle of sat. relative to earth's centre	Height of satellite (km)	Earth's rotation from perigee
0	0.0°	1460	0.0°
30	86.0°	6250	7.5°
60	116.0°	12750	15.0°
90	132.0°	19000	22.5°
120	142.0°	23500	30.0°
150	149.5°	27250	37.5°
180	155.0°	30500	45.0°
210	160.5°	33250	52.5°
240	165.0°	35500	60.0°
270	169.5°	37250	67.5°
300	173.0°	38200	75.0°
330	176.5°	38750	82.5°
360 arojee	180.0°	39000	90.0°

for a polar projection map with equally spaced latitude circles as shown in Fig. 3. Firstly, not allowing for the earth's rotation, the arc of the sub-satellite path is drawn crossing $90^{\circ} \mathrm{E}$ and $90^{\circ} \mathrm{W}$ on the equator and $57^{\circ} \mathrm{N}$ (the orbit inclination, i) at 0° longitude. This path, marked off from 0-180 in equal parts, is the unbroken arc shown in Fig. 3, and is drawn, either directly on the map or on a separate overlay, using a compass. All sub-satellite path curves are drawn using this arc as a reference.

A piece of stiff cardboard and a drawing pin will be required to revolve the overlay paths around the map, so these can be used if the reference arc is to be drawn on an overlay, and not directly on the map, to fix the relationship between the North Pole and the reference curve.

Using this reference arc, actual satellite path curves can now be drawn using the argument of perigee (part of the initial data previously mentioned) and two sets of figures; one for the angle of the earth's rotation, and one for the angle of the satel-

Fig. 3. A polar projection map for the northern hemisphere, with the sub-satellite path reference arc drawn in, and the azimuth lines and range rings plotted at 0° longitude, 52° latitude, i.e. London.

Fig. 4. Representation of the top side of a transparent overlay. These three sub-satellite paths have been plotted from the example data given in the text at three different paths have been plotted from the example data givence a path has been plotted, it should be usable for about three months, depending on the orbit inclination and the accuracy required.
lite relative to the earth's centre. The two sets of figures are obtainable from Table 2, and the argument of perigee is the angle measured at the earth's centre, in the plane of the orbit, between the right ascension of the ascending node and perigee.

For plotting curves in the northern hemisphere, a given argument of perigee between 0° and 180° can be used directly, but for an argument of perigee greater than 180°, the difference between 180° and the given value must be used and the curve plotted around the apogee.

Figure 4 represents the top side of a transparent overlay with three paths plotted for arguments of perigee of $0^{\circ}, 90^{\circ}$ and 214°. Taking as an example the curve for an argument of perigee of 214°, the first
point of the path will be plotted on the overlay at $34\left(214^{\circ}\right.$ minus 180°) on the reference arc of Fig. 3. This point, the apogee, corresponds to $28^{\circ} \mathrm{N}$ latitude.

Now the rest of the overlay curve is plotted by substituting 180° in Table 2 with 34° and working back from apogee to perigee. Each point of the curve is plotted from points on the reference arc at 34 plus and minus (to and from apogee) the difference between 180° and the relevant satellite angle of Table 2. For example, the first two points plotted after apogee will be plotted from points at 34 plus and minus $3.5^{\circ}\left(180^{\circ}\right.$ minus $\left.176.5^{\circ}\right)$, i.e. from 37.5 and 30.5 , on the reference arc. The third pair of points will be plotted from 27 and 41 points on the arc, and so forth.

Fig. 5. Angles used in the formula for calculating azimuth lines. ϕ_{0} is the observer's latitude and λ is the meridian used to calculate ϕ, the latitude cut by the azimuth line.

Fig. 6. The angle θ, needed to calculate the antenna elevation angle, can be found either by plotting distances on a globe, or by plotting range rings around the observer on the polar projection map.

It can be seen from Table 2 that the time interval between apogee and the first pair of points is half an hour. During this time, the earth will rotate through 7.5°, so the first pair of points of the curve are plotted by measuring off 30.5 and 37.5 on the reference arc and then marking off the two points, one with an offset of 7.5° to the west from the 37.5 point, and one with an offset of 7.5° to the east from the 30.5 point. The first of the third pair of points will be $15^{\circ} \mathrm{W}$ of 41 on the reference arc, and the second $15^{\circ} \mathrm{E}$ of 27 on the arc, and

Table 3: Azimuth line co-ordinates for various observer latitudes.

Fig. 7. For plotting range rings on the polar projection map, to aid evaluation of the antenna elevation required, angle \times must be found for various latitude values using constant values of angle a. In Fig. 3, range rings are plotted for $a=30^{\circ}, a=50^{\circ}$, and a $=70^{\circ}$.
so forth, until the equator is reached by both pre and post-apogee paths. Both the time intervals before and after apogee (or, of course, perigee) and the altitude of the satellite should be noted at each point plotted.
For an argument of perigee of 90°, the angle 90° is read off directly from the reference arc, and it can be seen from Fig. 4 that the perigee occurs at $57^{\circ} \mathrm{N}$. For this curve, Table 1 should be used as the satellite is only above the northern hemisphere for about an hour. The points in this case are plotted around the perigee.

Given the equator crossing longitude and time, the overlay can now be rotated into position on the map and the curve of the sub-satellite path used to judge the position and height of the satellite at any given time, providing the satellite is in the northern hemisphere. If, say, a curve has been plotted for an argument of perigee of 214°, it can also be used for an argument of perigee of 326° if it is turned over.

Azimuth lines

Because of the type of base map used here, bearings can only be read directly from the North Pole, so azimuth lines must be plotted on the map for the observer's latitude. Co-ordinates for plotting azimuth lines for places on $52^{\circ}, 40^{\circ}$ and 26° latitude are given in Table 3. For other latitudes,

the following formula, with the aid of Fig. 5 , may be used to obtain co-ordinates such as those given in Table 3:

$$
\tan \phi=\left(\sin \phi_{0} \cos \lambda \pm \sin \lambda \cot A\right) \sec \phi_{0}
$$

where ϕ_{0} is the observer's latitude, λ is the meridian east or west, ϕ is the latitude cut by the azimuth line and A is the azimuth. Figure 3 shows the azimuth lines plotted from London at 52°.

Antenna elevation

Satellite heights at various points on the path have been noted on the overlay to simplify calculation of the antenna elevation. At a given time, the observer's antenna elevation depends on the satellite height and the distance of the satellite from the observer. The elevation angle can easily be found, as shown in Fig. 6, using θ and the height of the satellite path plus the radius of the earth. To find θ, the distance between the observer and the sub-satellite path must be known.

Owing to the type of map used here, equidistant points from an observer do not form a circle on the map, unless the observer is on the North Pole. This means that the distance must be read from a globe, or co-ordinates calculated and range rings drawn around the observer as shown in Fig. 3. If the second option is chosen,

Table 4: Co-ordinates for plotting equidistant points around the observer on the polar projection map.

Observer's latitude	Angle between observer and range ring to be plotted measured from earth's centre (see Fig. 3)*	Latitude												
		80	70	60	50	40	30	20	10	0	10	20	$30 \quad 40$	
		Longitude degrees east and west of observer												
52°	30°	$\begin{array}{r} 53.4 \\ 197.6 \end{array}$		$\begin{aligned} & 53.4 \\ & 97.4 \end{aligned}$	$\begin{array}{r} 48.5 \\ 84.3 \\ 131.4 \end{array}$	$\begin{array}{r} 40.4 \\ 73.2 \\ 110.5 \end{array}$	$\begin{aligned} & 27.7 \\ & 62.2 \\ & 95.6 \end{aligned}$	$\begin{aligned} & 49.8 \\ & 82.8 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 70.2 \end{aligned}$	56.3	37.9	38.7		
	50°													
	70°													
40°	30°	85.3	81.4		36.2	40.7	39.8	34.8	26.2	0				$\begin{gathered} 0 \\ 27.9 \end{gathered}$
	50°				77.0	72.2	66.9	61.0	54.0	45.3	32.9		0	
	70°			124.2	107.8	97.0	88.3	80.3	72.2	63.5	53.0			
26°	30°				23.4	32.0	33.8	32.0	26.8	15.5				
	50°		41.5	54.2	57.9	58.4	57.0	54.3	50.2	44.3	35.7	20.2		
	70°	125.1	103.3	94.8	89.4	85.0	80.9	76.9	72.5	67.6	61.8	54.4	43.925 .1	

[^2]the angle θ can be read off directly from the map. Table 4 gives pre-calculated coordinates to enable observers at three different latitudes, $52^{\circ}, 40^{\circ}$ and 26°, to draw three range circles representing θ angles of $30^{\circ}, 50^{\circ}$ and 70° which equal sub-satellite point/observer distances of 3100 km , 5500 km and 7800 km respectively.

The longitude values given in Table 4 are offset angles in relation to the observer, so for a given latitude value, the longitude value obtained from the table will be plotted at that latitude on the map, offset in longitude by the value obtained to both east and west.
If required, longitude values other than those given in Table 4 may be calculated. Figure 7 shows the triangle concerned, in which point A represents the North Pole, point B is the point whose longitude offset is to be calculated, and point C represents the observer. The formula for calculating the longitude offset is as follows:
haversine $x=\frac{\text { haversine } a \text {-haversine }(b-c)}{\sin b \sin c}$
where a is the angle between the observer and a point on the radius to be calculated measured from earth's centre, b is 90° minus the observer's latitude, c is 90° minus the latitude value to be used in the calculation for the point to be found, and angle x is the resulting longitude offset value. It should be sufficient to calculate longitude offset values for latitudes at 10° intervals.

When θ is found, the graph shown in Fig. 8 provides an easy means of obtaining the required antenna elevation, by marking off the satellite height at the angle θ and reading the antenna elevation angle from the lines originating from the observer.

Bibliography

Satellites and Scientific Research by Howard Miles, Observing Earth Satellites by D. KingHele and Keeping Track of Oscar by W. Browning.

Acknowledgements

The writer wishes to acknowledge the help received from two gentlemen in the Meteorological Office, Bracknell, Berkshire, who went to a great deal of personal trouble to answer questions and give advice.

Remote keyboard interface

System allows remote and local keyboards to be used simultaneously

by M. D. Alger and B. Benson

This circuit was devised to enable access to a computer from a remote keyboard via a four wire link, without either writing complex software or disabling the existing keyboard. Originally designed for use with an RML380Z machine, this interface can be used with any computer which uses a parallel link for its keyboard.

A 'microcomputer' with all its peripherals is often anything but portable, so the authors set about designing an interface which would allow their computer to be operated from a separate keyboard at a remote location. A monitor link is, of course, no problem. The RS232 link used here should make it possible to operate the remote keybסard at distances of up to

1000 ft from the interface and, if required, both keyboards can be operated at the same time.
Two 15-pin ' D ' series plug/socket combinations are required, one pair for the break in the parallel link betwen the computer and its keyboard, and the other pair for the input and output of the interface, as shown in Fig. 1. A 25 -pin ' D ' socket is

Fig. 1. The complete interface circuit. $I C_{1}$ converts serial data from the remote keyboard to parallel data, and either $I C_{2}$ or $I C_{3}$ passes on parallel data to the computer depending on the state of the flip-flop, I_{4}.

required for connecting the remore keyboard to the interface.

Circuit operation

Basically, the circuit multiplexes two eight-bit signals, one direct from the existing keyboard and one from the remote keyboard. The last-mentioned signal enters the interface as RS232 serial data and is converted to parallel data by the u.a.r.t., IC_{1} of Fig 1. The last strobe pulse received by the interface determines which keyboard is accepted by the computer by enabling either one of the two tri-state octal buffers $\left(\mathrm{IC}_{2}\right.$ or $\left.\mathrm{IC}_{3}\right)$ through the flip-flop, I_{4}.

In this version, the power supply for the interface was taken from the computer, but the circuit can be powered using a 7805 voltage regulator for the +5 V supply and a Zener diode and resistor for the -12 V supply. Maximum current requirements for the circuit are 200 mA from the 5 V supply and 20 mA from the -12 V supply. Capacitors C_{4} to C_{7} should give adequate supply decoupling if distributed.
IC_{1}, the u.a.r.t., converts serial data from the remote keyboard, consisting of one start bit, seven data bits, parity and two stop bits, to parallel data. $\operatorname{Tr}_{1}, \mathrm{D}_{1}, \mathrm{R}_{2}$ and R_{3} invert the incoming RS232 signal and shift it to t.t.l. level. The power-on reset is provided by R_{1}, C_{2} and $\mathrm{IC}_{5 \mathrm{~d}}$, and the u.a.r.t. clock by $\mathrm{IC}_{6}, \mathrm{R}_{6}$ and C_{1}. Pins 34 to 39 of IC_{1} are used to set the data format, the options of which are given in Table 1.
When a complete byte is received by IC_{1}, pin 19 of the i.c. goes high, causing IC_{7} to produce a 1.2 ms pulse at pin 6 , and an equivalent but inverted pulse at pin 7. The pulse at pin 7 of IC_{7} is used to reset pin 19 of IC_{1} via pin 18 of IC_{1}, to prepare the u.a.r.t. for the next byte. $\mathrm{IC}_{5 \mathrm{~b}}$ inverts the output from pin 6 of IC_{7} and resets IC_{4}, which in turn enables IC_{2} and disables IC_{3}.
To ensure that only one keyboard can produce a strobe input at any one time, the two strobe signals are fed into an exclusive OR gate, $\mathrm{IC}_{5 \mathrm{c}}$, after being inverted by IC_{5} and $\mathrm{IC}_{5 \mathrm{~b}}$. The output of IC_{1} can be disabled by driving pin 4 of the i.c. high, but as the i.c. has limited driving capabilities, either the length of the connection

Fig. 2. Optional buffer circuit for 20 mA loop input. This circuit replaces R_{2}, R_{3}, D_{1} and TR ${ }_{1}$ of Fig. 1.
between IC_{1} and IC_{2} will have to be kept small or buffers will have to be used.
The parallel input from the existing keyboard drives IC_{3} in the same way that the remote keyboard drives IC_{2}, apart from the inclusion of R_{5} in the strobe line which ensures that data from the u.a.r.t. is not blocked if the existing keyboard is unplugged.

Circuit options

The circuit of the interface is flexible, and can be adapted to suit individual circumstances. Firstly, the baud rate of the remote keyboard input can be compensated for by adjusting the value of C_{1} of the clock section. R_{6} should not be altered as it is only used to trim the oscillator, and is not effective over its full range. The circuit components shown are calculated for a clock frequency of 4800 Hz and for a baud rate of 300 . If high data rates are to be used, the pulse length from IC_{7} may have to be reduced to less than the length of an incoming byte.
Figure 2 shows the circuit diagram required if a 20 mA loop is to be used instead of RS232. This circuit replaces $\mathrm{Tr}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ and D_{1} of Fig. 1, and feeds pin 20 of IC_{1} from pin 2 of the 25 pin ' D ' socket. If 110 baud rate is to be used, the $0.1 \mu \mathrm{~F}$ capacitor of Fig. 2 should be replaced by a capacitor of around $0.47 \mu \mathrm{~F}$.
Any monostable can be used for IC_{7}, but the values of the timing resistor and capacitor will have to be altered to give the required pulse length. There are also many alternatives to IC_{2} and IC_{3}, which can be

Table 1: Format options

Pin No $\left(I_{1}\right)$	Pin name	'0' level	'1' level
34 35 36	control strobe (CS) no parity (NP) number of stop bits (TSB)	parity 1 stop bit	enter control bits parity ignored 2 stop bits
37 38	No of bits/char. (NB2) No of bits/char. (NB1)	$\begin{aligned} & 0 \\ & 0 \end{aligned}=5 \text { bits }{ }_{1}^{0}=6 \text { bits }$	${ }_{0}^{1}=7 \text { bits }{ }_{1}^{1}=8 \text { bits }$
39	odd/even parity select (EPS)	odd parity	even parity

any 8 -bit non-inverting buffers with tristate outputs, or even a pair of 74LS125s.

Using the principles applied here, expansion to accommodate extra keyboards is simple. The original circuit was built on Vero-board, but the circuit layout is not critical so any bread-board system could be used.

Sine oscillator

continued from page 70

usual practice, by setting carry to a 1 when in the subtract mode. In the add mode, carry is set to zero.
The sign extension logic shown in Fig. 2 extends the sign (1 or 0) for n bits each half step, as is usual practice when right shifting n places. For example

13 in binary is 00001101
$13 / 8$ is xxx 00001
where xxx becomes 000 to result in 00000001 whereas

$$
-13 \text { in binary is } 11110011
$$

and $-13 / 8$ is $\operatorname{xxx} 11110$
where xxx becomes 111 to result in 11111110 which shows digital hardware gives
$-13 / 8=-2$

Fig. 4. Logic details of adder in Fig. 3.
A computer simulation of the device must reflect this form of truncation, which is to round off down to the smallest value.
Fig. 3 shows a logic diagram. The digital to analogue converter and the latch-stores to hold the digital value of sine is refreshed at each step.

Correction

Wien-bridge oscillator - May, 1981

Mr Linsley Hood has pointed out two errors which appeared in this article. Firstly, Figures 4 and 5 should be interchanged and secondly, the inputs of the second 741 in the original Fig. 5 (now Fig. 4) should also be interchanged. We apologize for these mistakes.

Filter design with voltage-controlled voltage sources

Independent frequency, gain and damping for simplified variable filter design

by Alan A. Thomas

This filter design enables secondorder, low- and high-pass functions to be realised with independently definable parameters. Such independence greatly simplifies design procedure, reduces the sensitivity to component tolerances and simplifies the design of continuously variable filters.
The basic configuration of the voltagecontrolled voltage source circuit on which the proposed filter is based is shown in Fig. ${ }^{1}$. An ideal v.c.v.s. circuit exhibits an infinite impedance at its input, and zero impedance at its output. In practice, if a modern operational amplifier is used, results closely approaching this ideal may be achieved.

The parameter H_{0} defines the gain of the filter within its pass band, and is equal to the gain of the v.c.v.s. circuit to which the complex pole network is connected. The v.c.v.s. gain constant, referred to as K, is defined as follows
$K=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=H_{\mathrm{o}}=1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)$
when $X_{\mathrm{c}} \ll R_{\mathrm{b}}$ at all frequencies of interest and the open loop gain of the amplifier is very large.

Fig. 1. Basic voltage-controlled voltage source.

High pass

Figure 2 shows the connexion of the complex, single s-plane pole pair to the v.c.v.s. circuit of Fig. 1 to implement the secondorder, high-pass function. Referring to Fig. 2, the complete transfer function of the system, in terms of the complex frequency plane, is given by the equation:-
$\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}(s)=\frac{K s^{2}}{s^{2}+s\left[1 / R_{2} C_{1}+1 / R_{2} C_{2}+(1-K) / R_{1} C_{1}\right]+1 / R_{1} R_{2} C_{1} C_{2}}$ formed from v.c.v.s. of Fig. 1. nant frequency of the filter;
and the three filter parameters may be defined as follows:
pendently of the K identity for H_{o}, which is only dependent on R_{c} and R_{d}. This may be proved mathematically as follows:-
First, rearranging equation (1) for V_{i}.
$V_{\mathrm{i}}=\frac{V_{\mathrm{o}}}{1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)}$
Now expressing the voltage appearing at the inverting input of the v.c.v.s. circuit of Fig. 1, designated V_{fb}, in terms of $V_{\mathrm{o}}, R_{\mathrm{a}}$ and R_{b}, by proportion,
$V_{\mathrm{fb}}=V_{\mathrm{o}}\left(\frac{R_{\mathrm{b}}}{R_{\mathrm{b}}+R_{\mathrm{a}}}\right)$
which may be re-written
$V_{\mathrm{fb}}=\frac{V_{\mathrm{o}}}{1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)}$
Referring to the equations for damping factor and pass-band gain, they are both found to contain the identity K. These parameters are not, therefore, at present, independent. To make them so, it is proposed that the basic v.c.v.s. circuit of Fig. 1 is augmented such that independent K identities, designated $K \alpha$ and $K H_{n}$, may be generated for each parameter. This method, which is both simple and reasonably accurate, is shown in Fig. 3.

The circuit consists of two v.c.v.s. circuits of the basic form. The complex pole pair network is connected around the first v.c.v.s. circuit in the normal manner, but the filter output is taken via a second v.c.v.s., the input of which is connected to the inverting input of the first v.c.v.s. Referring to Fig. 3, The K identity for α may now be defined by R_{a} and R_{b} inde-

Fig. 2. Second-order, high-pass filter

$$
\omega_{0}=\left(\frac{1}{R_{1} R_{2} C_{1} C_{2}}\right)^{1 / 2}
$$

where ω_{0} is the natural undamped reso-

$$
\begin{align*}
\alpha & =\left(\frac{R_{1} C_{1}}{R_{2} C_{2}}\right)^{1 / 2}+\left(\frac{R_{1} C_{2}}{R_{2} C_{1}}\right)^{1 / 2} \tag{2}\\
& +\left(\frac{R_{2} C_{2}}{R_{1} C_{1}}\right)^{1 / 2}-K\left(\frac{R_{2} C_{2}}{R_{1} C_{1}}\right)^{1 / 2}
\end{align*}
$$

where α is the damping factor which determines the response of the filter; and

$$
\begin{equation*}
H_{\mathrm{o}}=K \tag{3}
\end{equation*}
$$

Finding the gain from input to inverting input by dividing equation (3) by equation (2),
$\frac{V_{\mathrm{fb}}}{V_{\mathrm{i}}}=\frac{\begin{array}{l}V_{\mathrm{o}} \\ 1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right) \\ V_{\mathrm{o}} \\ 1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)\end{array}}{}=1$
Refer now to the augmented v.c.v.s. circuit of Fig. 3. From equation (1),
$K_{\mathrm{a}}=1+\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)$
and from equation 1 and 4
$K H_{0}=\left[1+\left(R_{\mathrm{c}} / R_{\mathrm{d}}\right)\right] 1=1+\left(R_{\mathrm{c}} / R_{\mathrm{d}}\right)$
The filter parameters may now be redefined in terms of the new v.c.v.s. arrangment of Fig. 3.

$$
\begin{align*}
\omega_{\mathrm{o}}= & \left(\frac{1}{R_{1} R_{2} C_{1} C_{2}}\right)^{1 / 2} \\
\alpha= & \left(\frac{R_{1} C_{1}}{R_{2} C_{2}}\right)^{1 / 2}+\left(\frac{R_{1} C_{2}}{R_{2} C_{1}}\right)^{1 / 2}+\left(\frac{R_{2} C_{2}}{R_{1} C_{1}}\right)^{1 / 2} \\
& -\left(1+\frac{R_{\mathrm{a}}}{R_{\mathrm{b}}}\right)\left(\frac{R_{2} C_{2}}{R_{1} C_{1}}\right)^{1 / 2} \tag{8}
\end{align*}
$$

By comparing equations (8) and (9) it is evident that they no longer contain any common identities and α and H_{0} are thus independent. Similarly, comparing equations (7) and (9) reveals no common identities and that ω_{0} and H_{0} are also independent. Comparing equations (7) and (8), however, several common identities are located, namely R_{1}, R_{2}, C_{1} and C_{2}.
Closer inspection of equation (8) reveals that α is not dependent directly on the values of these components, but is dependent solely on their ratios. It follows, therefore, that if R_{1}, R_{2} and/or C_{1}, C_{2} are varied so that their ratios remain constant, ω_{0} may be varied independently of α.
One of the design requirements set for the filter was that each parameter could be continuously varied to facilitate tuning. In order to maintain a constant ratio between R_{1}, R_{2} and/or C_{1}, C_{2}, either both R_{1}, R_{2} and lor C_{1}, C_{2} must be varied simultaneously by equal proportions. This requires some practical consideration. Firstly, ganged variable capacitors are not available in values suitable for low-frequency filters. Secondly, assuming that the resistors must be the variable elements, ganged potentiometers of the standard type are only available with tracks of equal value. The ratio R_{1}, R_{2} must, therefore, be 1:1, for practical reasons.

Consider now the most suitable ratio for the fixed capacitors. It is obviously convenient if $C_{1}=C_{2}$, since problems of locating suitable preferred values to obtain the desired ratio are eliminated; further, this also has the desirable effect of minimizing the temperature sensitivity of α.
Accepting that capacitors suffer worst from temperature drift, if C_{1} and C_{2} are of equal value and of similar construction, any change in value due to temperature, in theory at least, will be equal in both capacitors. Hence, their ratio remains constant, and since α is dependent on those components only through their ratio, α will remain constant with temperature.
In the proposed filter design, therefore, $R_{1}=R_{2}$ and $C_{1}=C_{2}$ and all parameters become independent, providing ω_{0} is varied by simultaneous and equal adjustment of R_{1} and R_{2}.

The filter parameters in Fig. 3 may now be more simply defined.

From equation (7) and given that $R=$ $R_{1}=R_{2}$ and $C=C_{1}=C_{2}$,
$\omega=\frac{1}{R C}$
From equation (8) and given $R_{1}=R_{2}$ and $C_{1}=C_{2}$,
$\alpha=2-\left(R_{\mathrm{a}} / R_{\mathrm{b}}\right)$
and, as in equation (9),
$H_{\mathrm{o}}=1+\left(R_{\mathrm{c}} / R_{\mathrm{d}}\right)$

Low-pass

Figure 4. shows the connexion of the complex s-plane pole pair to the augmented v.c.v.s. circuit, adopted in Fig. 3, to implement the second-order low-pass function. If a similar analysis is carried out
as in the case of the high-pass filter, it is found that, given that $R_{1}=R_{2}$ and $C_{1}=$ C_{2}, identical design equations, namely, equations (10) to (12), appear for the three filter parameters. A common set of simplified design equations may therefore be applied to both high-and-low-pass filters.

Common to both filters is the restriction that the damping factor cannot exceed 2 , given that $R_{1}=R_{2}$ and $C_{1}=C_{2}$. This restriction occurs since the factor $K \alpha$ cannot be less than 1 in the proposed design. In practice, this restriction is of little importance since once α exceeds 2 , the poles are no longer complex.
To aid design, Table 1 lists several damping factors required when implementing standard second-order responses. The ratio R_{a} : R_{b} is also included for convenience.

Finally, a practical example will be given. The circuit of Fig. 5 is intended as a rumble filter. In this design, the cut-off frequency designated f_{0} is continuously variable from less than 20 Hz to greater than 160 Hz using a standard, twin-ganged potentiometer. The response chosen is standard Butterworth, maximally flat, within a design accuracy of 0.2%, using preferred values of the E24 resistor range, and is independent of the chosen cut-off frequency. The pass-band gain, which is also totally independent, has been set to unity by effectively setting R_{c} to zero and R_{d} to \propto By comparison, if the more common unity-gain, second-order, high-pass filter arrangement had been adopted, the response could not have been set to standard Butterworth while still maintaining a standard twin-ganged potentiometer, that is, equal value resistors, to set the chosen cut-off frequency - regardless of the ratio of the two capacitors C_{1} and C_{2}.

No attempt has been made in the example quoted above to optimise clipping levels. The maximum signal which the augmented v.c.v.s. filter circuits can handle before the onset of clipping is related to the values chosen for α and H_{0}. This signal level is limited either to V_{p}, which is the clipping level of the operational amplifier, or
$\left(V_{\mathrm{p}}\left[R_{\mathrm{b}} / R_{\mathrm{a}}+R_{\mathrm{b}}\right]\right)\left(1+R_{\mathrm{d}} / R_{\mathrm{d}}\right)$

Fig. 3. Damping factor and pass-band gain made independent by use of two sources.

TABLE 1
Damping factors and ratios R_{a} / R_{b} for several second order responses

-	damping factor	R_{a} / R_{b}
response	1.414214	0.585786
Butterworth	1.732051	0.267949
Bessel		
Chebyshev (ripple 0.5)	1.157781	0.842219
Chebyshev (ripple 1.0)	1.045456	0.954544
Chebyshev (ripple 2.0)	0.886015	1.11398
Chebyshev (ripple 3.0)	0.766464	1.23354
For the Chebyshev designs, the ripple		
quoted is the maximum peak to peak de-		
viation within the pass band in dB.		

Symbols

f - frequency of interest.
ϕ_{f} - degrees of lead or lag at frequency of interest.
f_{o} - cut-off frequency of the filter.
f_{p} - frequency of response peak.
$G_{f p}$ - gain at response peak.
$G_{f o}$ - gain at cut-off frequency.
ω_{0} - natural undamped resonant frequency of the filer.
H_{0} - band pass gain of the filter.
α - damping factor applied to tailor response of the filter.

should this be $\leqslant V_{\mathrm{p}}$

The thoretical absolute worst-case clipping level occurs when $\quad=0$ and $H_{0}=1$, giving $V_{\mathrm{p}}-9.5 \mathrm{~dB}$. A more practical example, however, would be when Butterworth response has been chosen. Here, $\alpha=1.414$, and assuming H_{o} is at the worst-case value of unity, the clipping level will be $V_{\mathrm{p}}-4 \mathrm{~dB}$.

As a useful general rule, should it be necessary to maintain the clipping level of the filters at a premium, the associated circuitry should allow H_{0} to be a minimum of $3-\alpha$. In most cases, however, there should be no need to take such precautions since filters of this nature are generally positioned at the input of an audio system where the signal levels encountered are naturally at a minimum.

Reference

1. Operational Amplifiers - Design and Application. Jerald G. Graeme (copyright BurrBrown Corp.). McGraw-Hill.

Fig. 5. Practical rumble filter, tunable from 20 Hz to more than 160 Hz .

Appendix

The following equations may be of help when checking low and high pass filter arrangements.

Transfer characteristic-low-pass

$$
\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=H_{\mathrm{o}}\left(\frac{1}{\left[\left(1-\left[\frac{2 \pi f}{\omega_{0}}\right]^{2}\right)^{2}+\left(\frac{2 \pi f \alpha}{\omega_{\mathrm{o}}}\right)^{2}\right]^{1 / 2}}\right)
$$

High-pass

$$
\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=H_{0}\left(\frac{\left(\frac{2 \pi f}{\omega_{\mathrm{o}}}\right)^{2}}{\left[\left(1-\left[\frac{2 \pi f}{\omega_{0}}\right]^{2}\right)^{2}+\left(\frac{2 \pi f \alpha}{\omega_{0}}\right)^{2}\right]^{1 / 2}}\right)
$$

Phase response - low-pass

$\phi_{\mathrm{f}}=-\left(\arctan \left[\frac{1}{\alpha}\left(2 \frac{2 \pi f}{\omega_{\mathrm{o}}}+\left[4-\alpha^{2}\right]^{1 / 2}\right)\right]+\arctan \left[\frac{1}{\alpha}\left(2 \frac{2 \pi f}{\omega_{\mathrm{o}}}-\left[4-\alpha^{2}\right]^{1 / 2}\right)\right]\right)$

High-pass

$\phi_{\mathrm{f}}=+180^{\circ}-\left(\arctan \left[\frac{1}{\alpha}\left(2 \frac{2 \pi f}{\omega_{0}}+\left[4-\alpha^{2}\right]^{1 / 2}\right)\right]+\arctan \left[\frac{1}{\alpha}\left(2 \frac{2 \pi f}{\omega_{0}}-\left[4-\alpha^{2}\right]^{1 / 2}\right)\right]\right)$

Components

Rumble filter
 Resistors
 1. 75 R
 2. 75R
 3. 100 k 4. 220 k
 5. 220k
 6. 220 R
 $\begin{array}{lll}\text { 7. } & 3 k & \\ \text { 8. } 10 k & 2 \%\end{array}$
 $\begin{array}{rrr}\text { 8. } & 10 \mathrm{k} & 2 \% \\ 10 . & 30 \mathrm{k} & 2 \%\end{array}$
 11. $51 \mathrm{k} \quad 2 \%$
 12. 100 k 13. 3 K 3
 14a,b. 100k 5\% ganged All resistors 5\% tolerance unless otherwise stated

Capacitors

1. 150μ	25 V	electrolytic
2. 150μ	25 V	electrolytic
3. 2.2μ	35 V	tantalum
4. 2.2μ	35 V	tantalum
5. 82 n	5%	polystyrene
6. 82 n	5%	polystyrene
7. 10μ	25 V	tantalum
8. 22μ	16 V	tantalum
9. 22μ	16 V	tantalum
10. 27 p	5%	polystyrene

Semiconductors

Tr_{1} BC184LC
$\mathrm{Tr}_{2} \quad \mathrm{BC} 214 \mathrm{LC}$
IC 1 LM1458 or similar

Cut-off frequency - low-pass

$\left.f_{0}=\omega_{0}\left[1 / 2\left(\left[\alpha^{2}-2\right)^{2}+4\right]^{1 / 2}-\left[\alpha^{2}-2\right]\right)\right]^{1 / 2}$

High-pass

$\left.f_{0}=\omega_{0}\left[1 / 2\left(\left[\alpha^{2}-2\right)^{2}+4\right]^{1 / 2}-\left[\alpha^{2}-2\right]\right)\right]^{-1 / 2}$
Frequency of response peak (when α is less than 1.414) - low-pass
$f_{\mathrm{p}}=\omega_{\mathrm{o}}\left(1-\alpha^{2} / 2\right)^{1 / 2}$

High-pass

$f_{\mathrm{p}}=\omega_{\mathrm{o}}\left(1-\alpha^{2} / 2\right)^{-1 / 2}$
Gain at response peak (when α is less than 1.414) - low pass
$G_{\mathrm{fp}}=H_{\mathrm{o}}\left[\left(\alpha^{2} / 2\right)^{2}+\left(\alpha^{2}\left[1-\alpha^{2} / 2\right]\right)\right]^{-1 / 2}$

High-pass

$G_{\mathrm{fp}}=H_{\mathrm{o}}\left[\left(\alpha^{2} / 2\right)^{2}+\left(\alpha^{2}\left[1-\alpha^{2} / 2\right]\right)\right]^{-1 / 2}$
The gain at cut-off frequency for both high and low pass filters is:-
$G_{f o}=2^{-1 / 2} \cdot H_{0}$
and finally, the gain at ω_{0} for both high and low pass filters is:-
$G_{v 0}=\alpha^{-1} . H_{0}$.

Digital transmission system
 Twin wires or Post Office lines can

 be used to convey the condition of up to 240 parallel on/off type inputs in up to six channels using the Highland microprocessorcontrolled multiplexer. The transmitter scans the inputs of each channel and converts the information to serial form for transmission to a remote receiver. Serial data is converted back to parallel form by the receiver. The parallel-data output is identical to the input data to the transmitter. These outputs can be used to drive l.e.d. displays, digital event recorders, alarm systems or remote control equipment. Surge and false signalling protection is provided and the system has built-in fault diagnosing circuitry. Highland Electronics Ltd, Highland House, 8 Old Steine, Brighton, E. Sussex BN1 IEJ.
WW301

Auto ranging d.v.m.

Voltage, current and resistance ranges of the latest digital multimeter from AVO are provided with auto-ranging facilities. The DA118 offers five functions, including direct current and voltage, alternating current and voltage, and resistance ranges, all fully protected against overload. Response time of the d.c. and resistance ranges is less than one second and the manually selected 20 mV d.c. range gives a resolution of $10 \mu \mathrm{~V}$. Basic d.c. accuracy is 99.7%. The $31 / 2$ digit l.c.d. indicates the unit of measurement and decimal point and provides range-hold, polarity, overrange and 'battery low' information. Either battery or mains power can be used for the instrument. Optional probes are available for r.f. and temperature measurements. Avo Ltd, Archcliffe Road, Dover, Kent CT179EN.

WW302

6-18GHz amplifiers

Gallium arsenide f.e.t. amplifiers covering the frequency range 6 to 18 GHz are manufactured by Dexcel. This series, called DXA061800 , consists of five standard units with gains of $9,18,27,36$ or 45 dB over the full bandwidth. All have a maximum noise figure of 8 dB and minimum output power of 10 dBm at ldB gain compression, or 20 dBm to special order. Both input and output v.s.w.r. are 2:1. A 36 dB
gain unit measures $2.67 \times 1.35 \times$ 0.5 in . In addition to these basic amplifiers various options are offered. March Microwave Ltd, 112 South St, Braintree, Essex.
WW303

Typewriter/printer

A bi-directional printer which can also be used as a typewriter has been introduced to the market by Weyfringe Ltd. The Century KSR Il can be used in microcomputer installations where hard copy is needed at the data input stage, or as an interactive second printer in any time sharing system. An integral ASCII keyboard with separate numeric keypad is used for data entry. Lower case type-face has descenders below the line. Up to sixteen characters, entered on the keyboard, can be stored in a first-in/-first-out memory, and to cope with high typing speeds, N -key rollover is suppled as standard.

The KSR II can be linked to any computer with an RS232C, V24 or 20 mA loop interface. The price is around $£ 995$. In the near future, a version of this printer which can produce four different type depths will also be available. Weyfringe Ltd, Longbeck Rd, Marske, Redcar, Cleveland TS116HQ.
WW 304

R.f. screening material

What might be a useful product for those concerned about r.f.i emitted from microcomputers is available from RFI Shielding Ltd. Alumashield, as it is known, is a laminate comprising 40 micron thick aluminium foil and 1.5 mm thick p.v.c. foam with a pressure sensitive adhesive backing. The shielding, after removal of a protective backing sheet, can be applied directly to the inner surfaces of plastic enclosures, etc. This material can also be supplied with copper or tinned copper as the shielding medium (Coppashield?), and with the p.v.c. foam replaced by silicone sponge elastomer in various thicknesses. RFI Shielding Ltd, Warner Drive, Springwood Indust. Est., Rayne Rd, Braintree, Essex CM7 7YW
WW 305

Byte erasable

e.e.p.r.o.m.

Any byte of the 16 Kbit Intel 2816 e.e.p.r.o.m. (electrically erasable p.r.o.m.) can be erased and rewritten in 20 ms . The standard version

WW301

WW302

WW303

WW304
of this $2 \mathrm{~K} \times 8$-bit memory has a 'worst-case' access time of 250 ns and two other versions are available with 200 and 350 ns access times. At $125^{\circ} \mathrm{C}$, data retention is predicted to be at least 20 years and refreshing is not required, regardless of frequency. Byte erase/write or chip erase require 10 ms pulses of 21 V . This 24 -pin device is pin-compatible with the 2716, has a temperature range of 0 to $70^{\circ} \mathrm{C}$ and requires 495 mW in the active state and 132 mW in standby mode. Applications of this i.c. are in any process which requires regular updating of r.o.m., such as industrial control processes. Intel Corp. (UK) Ltd, Dorcan House, Eldene Drive, Swindon, Wilts SN3 3TU.
WW306

'Pocket' pattern generator

This battery operated iv pattern generator, from HRS Components Ltd, measures $160 \times 72 \times 40 \mathrm{~mm}$ and weighs 355 gm . Crosshatch, white synchronized raster and grey scale signals of the PG101 are selected by touch buttons exhibiting the required pattern, and the output is produced in the form of a modulated u.h.f. signal (channel 36) through a lead which plugs directly into the tv antenna socket. After about 15 minutes, the 5 mA supply from a PP3 type dry cell is cut off automatically to save the battery if the unit is inadvertently left switched on. The generator is said to give a stable display suitable for bench or field servicing and the cost, including co-axial connecting lead, is $£ 49+$ v.a.t. HRS Electronic Components Lid, Brasshouse Passage, Birmingham Bl 2HR.
WW307

Golf-ball/computer interface

Standard golf-ball typewriters from IBM can be used to produce printouts from a computer using the USA manufactured Escon in-
terface from Data Resources Ltd. The typewriter keyboard stays active when the interface is connected, so variable information such as names, addresses, etc., can be inserted in standard information sheets by using programmed pauses. An internal 6502 microprocessor controls the interface and protocol routines and baud rates from 75 to 19,200 are switch selectable. Printing speed is around 160 words/minute. Options are available to suit RS232C or 8-bit parallel interfaces and foreign and non-standard IBM golf-ball typewriters. A 512 character buffer is fitted to the RS232 version and a pre-programmed test routine is built-in. Prices start at around $£ 415$ exclusive of v.a.t. Data Resources Ltd, Caldare House, 144-146 High Road, Chadwell Heath, Essex RM6 6NT.
WW308

Variable isolating transformer

Continuously variable alternating voltages from 0 to 250 V at 3 A can be supplied by the Svenska Transduktor type 237 mains isolating transformer from Technical Selling Services. This toroidal transformer is cased, and provided with a voltmeter, ammeter and a 3 A thermal circuit breaker. Although the unit is designed for 220 V mains operation, the distributors say that it will work at 240 V without detriment. With the output set to 220 V , the change in voltage from no-load to full-load conditions is about 5%.

Primary/secondary insulation is tested to 4 kV r.m.s. at 50 Hz . The price is around $£ 148.50$. Technical Selling Services, Unit 5, Brunel Gate, West Portway Indust. Est., Andover, Hants SP10 3SL.

WW309

Lightning simulator

Two generator systems have been developed to simulate the effects of lightning. Model 790, from Pulsar Associates Inc., is a high-current generator, capable of delivering 200 kV and 100,000 amperes in a ringing pulse, from 10 kJ stored

energy. Expansion to 20 kJ with $150,000 \mathrm{~A}$ peak current is possible. Model 890 produces a 1.4 MV output which can produce a six feet long arc through air with a damped peak follow-through current of around $8,000 \mathrm{~A}$. The 890 is used to assess the effects of lightning on scaled down aerospace models. Singer Products Co. Inc., 875 Merrick Ave, Westbury, New York 11590.

WW310

Acoustic calibrator

Dawe instruments have introduced a simple means of calibrating sound level meters with 25 mm microphones in the form of a cartridge, the 1411C, which provides an output of $90 \mathrm{~dB} \pm 1 \mathrm{~dB}$ at $1 \mathrm{kHz} \pm 5 \%$ and is powered from a

9 V battery. Couplers are also available for microphones of 12 and 20 mm diameter. Overall dimensions of the calibrator are $118 \times$ 45 mm diameter. Dawe Instruments Letd, Concord Road, Western Ave., London W3 OSD.
WW311

Load cell

A centre point load cell, for weighing applications, is available from Sangamo. The D99 can measure loads up to 150 mm off centre with $<0.02 \%$ error when half the rated load is applied. These cells are available for ranges from $0-6 \mathrm{~kg}$ to $0-25 \mathrm{~kg}$ with an er ror of 1 in 3000 and a repeatability of 1 in 10,000 , to OMIL specifications. Sangamo, Transducers, North Bersted, Bognor Regis, W. Sussex.

WW312

Instrument cases

Lightweight 19in instrument cases, designated the E2000 series, are available from Optima Enclosures Ltd. These cases, constructed almost entirely from aluminium, are available in $2,3,4$ and 5 U heights and 430 and 522 mm panel-to-panel depths, and have square-hole

mounting brackets. Cases can be supplied in any single or two-colour variations from a range of 12 colours. Optima Enclosures Ltd, Macmerry, Tranent, East Lothian. WW313

High-voltage
 resistors

Continuous voltages of up to 21 kV can be withstood by resistors in the T40 series from Welwyn. Immersed in oil, the maximum continuous voltage is 50 kV , which is also the maximum figure given for pulsed voltages in air. Values ranging from $100 \mathrm{k} \Omega$ to $15 \mathrm{G} \Omega$ are available with tolerances of 1,2 or 5%, and with a temperature coefficient of ± 100 p.p.m. $/{ }^{\circ} \mathrm{C}$. Resistors can be supplied with tighter tolerances, and temperature coefficients down to ± 25 p.p.m. $/{ }^{\circ} \mathrm{C}$. Matched sets, and low-inductance versions can also be supplied. These resistors are available with wire lead outs, or with threads or thread/wire combinations. Welwyn Electric Ltd, Bedlington, Northumberland NE22 7AA.
WW314

\ldots for standard 3 mm \& 5 mm , red, green, yellow, orange and amber LED's with clear, transparent or diffused lens?
. . . . for square, rectangular, circular, stepped, domed, triangular and arrow shaped LED's for use as function indicators and bar graphs etc?
. . . . for nickel plated brass or matt black anodised aluminium indicators, with or without LED's sitting recessed or forward mounted?
. . . . for end stackable, red, yellow or green lensed arrays capable of accepting 2,3,4 or 5 LED's, thereby enabling any number of segments to be selected.

YOU ARE?
WELL
LOOK US UP OUR LED INDICATOR PRICES

WON'TMAKE

YOUR EYES WATER
Zaerix Electronics Limited
46 Westbourne Grove, London W2 5SF, England
Tel: 01-221 3642 Telex: 261306

WW - 054 FOR FURTHER DETAILS

$\mathbf{0 - 1 5} \mathbf{~ M H z ; ~} \mathrm{f}^{\mathbf{1 3 0}}+{ }_{+15 \% \text { vat }}$

New Model SB 15 M Portable Oscilloscope 12 V DC, 240 V AC Y-Deflection. Bandwidth: $-3 \mathrm{~dB}, 0$ to 15 MHz . Sensitivity: $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}$. input Impedance: 1 Mohm $\pm 3 \% \& 30 p F$.

X-Deflection: Bandwidth: -3 dB DC to 3 MHz . Sensitivity: $1.5 \mathrm{~V} / \mathrm{cm}$ to $0.3 \mathrm{~V} / \mathrm{cm}$. Input Impedance: $1 \mathrm{Mohm} \& 45 \mathrm{pF}$. Time Base: Free run or triggered 20 MHz to 15 MHz . Dimension: $150 \mathrm{MM} \times 340 \mathrm{MM} \times 280 \mathrm{MM}$ Weight: 7.6 Kg . Supply: $240 \mathrm{~V}-40 \mathrm{VA}$; or 12 V DC 27 Watts

SPECIAL OFFER

SINCLAIR MULTIMETERS

DM450	£85	+	15\%	VAT
DM350	£60	+	15\%	VAT
DM235	£42	+	15\%	VAT
PDM35	£24	+	15\%	VAT
PFM200	¢42	$+$	15\%	VAT

ALBOL OSCILLOSCOPES
SB3M99 + 15% VAT DB10M …........£199 + 15\% VAT
ALBOL CAR
SERVICING UNIT
SD-10........... $129+15 \%$ VAT

ALBOL EECCTRONIC \& MECHANCAL PROUUCTS LTD.
3 CROWN BUILDINGS, CROWN STREET LONDON SE5 0JR
Tel: 01-703 2311 Telex: 886379

TRANSCENDENT 2000
Complete Kit $£ 168.50$

Designed by consultant Tim Or (formerly synthesizer designer for EMS Lit.) and featured as a con-
structional article in ETI, this live structional article in ETI, this live performance synthesizer is a 3-oc tave instrument transposable 2 oc taves up or down giving sweep Control, a noise generat. There also a slow oscillator, a new pitch also a slow oscilator, sen and
detector, ADSR repeat, sampe and hold, and special circuitry with precision components to ensure features.
The kit includes fully-finished metalwork, fully assembled solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal film), and it really is complete - right down to the last nut and bolt and lasi piece of wire There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed with component ocations, Al with connector plugs directly on the main board, all connections to the board are made whene capable of and construction is so simple it can be buit in a few evthesizer comparable in performance and quality with ready-built units selling for many times the price.
Comprehensive handbook fully describes construction and tells you how to set up your

TRANSCENDENT POLYSYNTH

Complete Kit £320
 if ordered with kit)
By brilliant design work and the use of
high technology components the
Polysynth brings to the reach of the
Polysynth brings to the reach of the
home constructor a machine whose
versatility and range of sounds is
matched only by ready-built equip.
matched only by ready-built equip.
ment costing thousands of pounds.
ment costing thousands of pounds.
Designed by synthesizer expert Tim.
Oesigned by synthesizer exper Tublished in Electronics To
Orr and pion
day International, this latest addition
day International, this latest addition
4 -octave transposable over $71 / 2$ oc
a 4 -octave transposable over $1 / 2$ oc-
taves) polyphonic synthesizer with internally up to 4 voices making it possible to play simultañeously up to
notes. whereas conventional synthesizers handle only one at a time.
The basic instrument is supplied with 1 voice end up to 3 more may be plugged in. A further 4 voices may be added by connecting to an expander unit, the metalwork and woodwork of which is designed for side-by
side matching with the main instrument. Each voice is a complete synthesizer in itself, with 2 VCOS . side matching with the main instrument. Each voice is a complete supply, the voice boards are also ver suitable for modular systems). One of these voices is automatically allocated to a key as it is operated. Ther are separate tuning controls for each VCO of each voice. Ales.
ease of control and to ensure consistency between the voices.
Althouph using very advanced electronics the kit is mechanically very simple with mininal wiring, most of Although using very advanced electronics the kit is mechanically very simple with mininal wiring, most of
which is with ribbon cable connectors. All controls are PCB mounted and the voice boards fit with PCE which sh with ribbon sockets. The kit includes fully finished metalwork, solid teak cabinet, professiona quality components (resistors 2% metal oxide or metal film of 0.5% and 0.1%), nuts, bolts, etc
variable depth control together with a variable detay control so that the vibrato comes in only after waiting a short tim after the note is struck realistic string sounds. to add interest to the sounds and mak tham more natural there is a chorus/en system using CCD (charge coupled de vice) analogue delay lines. The overal effect of this is similar to that of severa acoustic instruments playing the same piece of music. The ensemble circuitry can be switch
mild effects.
Although the DPX is an advanced design using a very large amount of circuitry, much of it

fully finished metalwork, solid teak cabinet, professional quality com

Our Catalogue is FREE! Write or phone now! ANDOVER (0264) 64455

DE LUXE LINSLEY HOOD

$\mathbf{T} \mathbf{2 0}+\mathbf{2 0} \mathbf{2 0 W}$ stereo amplifier $£ \mathbf{\$ 3 . 1 0}$
This easy-to-buitd version of our world-wide acclaimed 75 W amplifier kit based upon circuit borrds interconnected with gold
 MPA 200 100W. (rms into 8 ohms) MIXER/AMPLIFIER

C49.90

$£ 49.90$

general purpose high ower amplitiar. It teatures adaptable input mixer which accepts a wider parige of sources such as MPA 200 is simplicity itself with minimat wiring needed making construction very straightforward. The kit inclu
nut and bo!

1024 COMPOSER

Complete kit $£ 89.50$

DJ90 DISCO SYSTEM - COMING SHORTLY!
read all aboutit

$\mathbf{£ 6 4 . 9 0}$
SP2-200 2-CHANNEL 100W. AMPLIFER

Wo of thesem design use
\qquad power supplies fed from a common toroidal transformer Input sensitivity is 775 mV
V.A.T. NOT INCLUDED IN PRICES
only) adicor Divent for mis sopional service iU.K. mainland

B. BAMBER ELECTRONICS

5 STATION ROAD, LITTLEPORT, CAMBS CB6 10E

SEND OR PHONE FOR OUR FREE MONTHLY CATALOGUE TEL. ELY (0353) 860185

WW - 069 FOR FURTHER DETAILS

9 \& 10 CHAPEL ST., LONDON, NW1
01-723 $7851 \quad 01-2625125$

ADJACENT TO EDGWARE ROAD MET. LINE STATION
PLEASE ADO 15% TO ALL ORDERS INC. CARR.
current range of new lit. Transformers OPEN TPFETAG CONNECTIONS

AUTO STEPDOWN TAMASKRMEPS
FOR AMERICAN EOUPMTNE $240 / 10$ Volts. 80.2250 watts. Regular stock line. Types 80
1500 watts are fully shrouded Fitted with American two or hree pin socket outlets and 3 core 240 V meins lead. Types
1750 and 2250 walls socket outlets. Neon ardicator three with two American carrying handie Send SAE Jor price ist and funther detailis. Amarican sockets, plugg bodaptors alspavailable.

GARDNERS ONIVERSALLT TRANSFORMERS

SPECIAL OFFER OF HIGH GRADE EX.COMPU-
TER AUTO TRANSFORMERS COnservatively rated by fomous makers, perfert condition
fraction of list prich

Volis. C

LATEST PURCHASE. COMPUTER GRADE LT TRANSFORMERS. Conservatively rated. All
Primaries $220-240 \mathrm{~V}$. No. 1 Secs. 27V 10A, 9V
 No. 2 sec. tapped $26.31-36 \mathrm{~V}, 11.2 \mathrm{~A}$ E12. P\&P

 No. $918 \vee 2 \mathrm{~A} £ 2.50$. P\&PE1 No. 10 sect $29-28-27-0-27-28-29 \mathrm{~V} 350 \mathrm{M} / \mathrm{A}{ }^{\prime \prime} \mathrm{C}^{\prime \prime}$
Core $\mathrm{f3}$. P\&PE No. 11 sec 10-7-0-7-10V 0.6 A and 29-21-0-21.
29V 0.37 A E3. P\&P Cl .

heavy duty lt c core TRANSFORMERS
TRANSFORMERS PRI $110-220240 \mathrm{~V}$ sec. 12 V 40 A E22.50. Carr. E4. PRI $110-220-240 \mathrm{~V}$ secs 14 V 3 V $11 / 21 \mathrm{~V}$ Separate windings 40A each, 14 . $15-15 / 2-17-18-181 / 2-19-19 / 2 \mathrm{~V}$ at 40A $\mathbf{E 2 5}$. Carr. £4. PRI $220-240 \mathrm{~V}$ sec. 140 V CT 170 -$0-70 \mathrm{~V}) 104$ size $7 \times 7 \times 7$ ins top panel connections £29.50. Carr. E5.

HEAVY DUTY ISOLATION TRANSFORMERS $240 \cdot 240 \mathrm{~V}$ ex-computer equipment. Large
selection available $10-15$ amps. Fraction of maker price. Teiephone for further details.

HEAVY DUTYMULTITAPPED Ex-computer equipment. Top panel connec $47.5 \mathrm{~V} 5 \mathrm{~A}, 31.75 \mathrm{~V} 9 \mathrm{~A}, 19.5 \mathrm{~V} 13 \mathrm{~A}, 47.5 \mathrm{~V} 5 \mathrm{~A}, 36 \mathrm{~V}$ $4 \mathrm{~A}, 11.5 \mathrm{~V} 12 \mathrm{~A}, 36 \mathrm{~V} 1 \mathrm{~A}$ seven time A

HEAVY DUTY C CORELT

TRANSFORMERS
PRI $220-240 \mathrm{~V}$ Sec. $18 \mathrm{~V} 27 \mathrm{~A}, 40 \mathrm{~V}, 0 \mathrm{~A}, 40 \mathrm{~V} 4 \mathrm{~A}$,
$25 \mathrm{~V} 4 \mathrm{~A}, 52 \mathrm{~V} 1 \mathrm{~A}$. All separate windings. $\mathbf{8 2 7 . 5 0}$.

[^3]

WW - 053 FOR FURTHER DETAILS

YOUR COMPUTER

OUT NOW! The new home computer magazine which introduces you and your family to the fascinating world of computing.

If you are a newcomer to computing. interested in the growing range of equipment - Sinclair ZX80 and 81, Acorn Atom. Commodore VIC 20. TV games, programmable calculators and kit computers - now available for less than $£ 300$ - Your Computer is your magazine.

The first issue contains:

- Review of the new Sinclair ZX81- The first of a regular series on pocket programmable caiculators - A look at the Atari 400 and 800 video games - Introduction to kit-building techniques - Two articles examining different aspects of the Basic programming language - A behind the scenes investigation of BBC plans to popularise the computer in a TV series to be screened early in 1982.

All this plus an advice column and more than
20 games and program listıngs for only 50 p

Your Computer is your home computer magazine Ask your newsagent for a copy or post this coupon now To: General Sales Dept., IPC Electrical Electronic Press, Room 205, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS.

Please send me the June/July issue of Your Computer at a price of 50 p plus 10 p postage and packing:

I enclose a cheque/PO for 60p payable to IPC Business Press Lid NAME
ADDRESS

HILOMAST LIMITED
THE STREET HEYBRIDGE - MALDON
ESSEX CM9 7 NB ENGLAND Tel. MALDON (0621) 56480 TELEX NO. 995855

grows
HeF
New Series(1) (1)

Load impedance both models Input impedance both models $100 \mathrm{~K} \Omega$
$4 \Omega-\infty$ Input sensitivity both
Frequency response both models

CHOOSE AN I.L.P MOSFET POWER AMP when it is

IV1. THE NEW PROFILE EXTRUSIONS
THz-50KHz-3dB

STABILISED POWER SUPPLIES

FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. 12-17v per rail at 100 mA . Remote sensing, current limit protection. (164×130 $\times 38 \mathrm{~mm})$, with manual. $\mathbf{£ 1 2}$.

FARNELL 7/3SC: $120 / 240 \mathrm{~V}$ IP. Adjustable current limit. Remote sensing. ($188 \times 96 \times 93 \mathrm{~mm}$). Two versions available: 15 V at 2 A or 30 V at 1 A . $£ 15$ ea.

COUTANT OA2: Op. amp, psu, 120/240V IP. Dual Op. 12-15v at 100 mA . $(138 \times 80 \times 45 \mathrm{~mm}) . \mathbf{£ 1 2} \mathbf{e a}$. or $\mathbf{2}$ for $\mathbf{£ 2 2}$.

BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Metered, current limit protection.
$374,374 \mathrm{R} 300 \mathrm{~V}-1 \mathrm{KV}$ at 5 mA .
$375500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}$ at 6 mA .
$376660 \mathrm{~V}-1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA .
Model 374R has reversible polarity op. All others have negative polarity op.
All models $£ 40$.
Some photo multiplier tubes available.
COUTANT ESM3: $105 / 115 / 220 / 240 \mathrm{~V}$ IP. Four separate ops: 5 V at 3 A stabilised with current limit, overvoltage crowbar protection and remote sensing.
± 12 to $\pm 15 \mathrm{~V}$ at 500 mA stabilised.
12 or 24 V unstabilised. $(125 \times 80 \times 275 \mathrm{~mm}) . \mathbf{£ 3 0}$.
19" VEROCASES: For mounting Vero 19in. Subrack Units, $4!$ or 6μ size. $\mathbf{£ 1 5}$ ea.

CAPȦCITORS-DISC CERAMIC

Over 2 million now in stock, mostly ITT. Many high-voltage types, e.g.:
$210 \mathrm{p} 8 \mathrm{KV}, 1 \mathrm{n} 1 \mathrm{KV}, 2 \mathrm{n} 22 \mathrm{KV}, 10 \mathrm{n} 2 \mathrm{KV}$
220p $1 \mathrm{KV}, 1 \mathrm{n} 53 \mathrm{KV}, 4 \mathrm{n} 71 \mathrm{~K} 5 \mathrm{~V}$.
Please send for our ceramic capacitor lists.
MYLAR FILM: Very large of the following values.
In 100V, 3n3 100V, 4n750/100V, 47n $50 \mathrm{~V}, 100 \mathrm{n} 50 \mathrm{~V}, 220 \mathrm{n} 50 \mathrm{~V}$ Please send for our capacitor list for quantities.
MULLARD METAL FOIL CAPACITORS: Axial preformed. $220 \mathrm{p} 63 \mathrm{~V}, 1 \mathrm{n} 5160 \mathrm{~V}, 2 \mathrm{n} 2160 \mathrm{~V}, 3 \mathrm{n} 9160 \mathrm{~V}, 5 \mathrm{n} 6100 \mathrm{~V}, 12 \mathrm{n} 63 \mathrm{~V}$, $27 n 63 \mathrm{~V}$.

CASSETTE DECKS: With stereo heads, mechanically complete, but with no electronics. Smart black modern finish. $\quad \mathbf{f 5 . 0 0}$

ELECTROLYTIC CAPACITORS

Very large stock holding. Mostly ITT EN1212, EN1235 types.
Please send for our electrolytic list, e.g.:220/50VA, $2200 / 25 \mathrm{R}, 470 / 25 \mathrm{R}$, 4700/25A, 470/50A, 2200/100 CAN.

PIHER PRESETS

Very large stocks. PT10, PT15 enclosed types. Please send for our preset list. Most values 100R-5M

5-PIN DIN SOCKET

With DPDT switch. PCB, MTG. Large qty. in stock $\mathbf{1 0 p}$
$75 R$ BNC-BNC MALE READY-MADE LEADS (UR70)
£1.00 ea.

LARGE PANEL METERS
140-0-140 $\mu \mathrm{A}(107 \times 145 \mathrm{~mm})$ £5.00
$0-1 \mathrm{~mA}(115 \times 95 \mathrm{~mm}) \quad \begin{aligned} & \mathbf{£ 5 . 0 0}\end{aligned}$
HEAVY DUTY
KEYSWITCHES
2P 12A 600V AC 8P 10A 380 V AC
£1.50 10P 12A 600 V AC $\quad £ 3.00$ $49 \mathrm{~mm} \square$ Fascia.

CINCH BARRIER

STRIP
15A 530 V AC. $6 \mathrm{w}, 8 \mathrm{w}, 10 \mathrm{w}$, $12 \mathrm{w}, 18 \mathrm{w}$ stocked. Large quantities. 3p per way.

ROTARY POTS

Good range stocked. Please phone your requirements. Large stocks of the following:
100 K LiN + push switch 30p 22K LOG + switch 30p 2 K 2 LIN 30p

SLIDE SWITCHES
PCB Mounting:
DPDT min.
4PCO min.
4PCO min. Long knob \quad 30p

D TO A CONVERTERS
 $15 \mathrm{MHz}, 8$ BIT

By Micro Consultants Ltd. 50Ω cable drive op. Linearity 0.25%, max. 0.125% typ. Settling time: 2 V step 70 nS typ. 2 MV step 50 nS colour television transmission standard. Diff. gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE: $£ 20$

TRANSFORMERS

$5-0-5 \mathrm{~V} 400 \mathrm{~mA}$
$6-0-6 \mathrm{~V} 100 \mathrm{~mA}$
$8-0-8 \mathrm{~V} 400 \mathrm{~mA}$
9-0-9V 3 A
$11 \mathrm{~V} 2 \mathrm{~A}, 22 \mathrm{~V} 1 \mathrm{~A}$
12 V 130 mA
12V 1 A5
0-12, 0-12 96VA
15 V 100 mA
17 V 300 mA $20-0-20400 \mathrm{~mA}$
$22-0-2250 \mathrm{~mA}$
24 V 100 mA
24 V 250 mA
30 V 250 mA
30-25-0-25-30, 1A6 0-2-4-6-8-10 5A
RESISTORS: Over 2 million in stock at last count.
CARBON FILM $1 / 4$ W 5\% E12 range $1 \mathrm{RO}-12 \mathrm{M}$.
$2 p$ ea. $£ 1 / 100, £ 6.50 / 1,000$.

METAL OXIDE/FILM: Most

 values in E24 range, $1 / 4-2 W 5$, 2 or 1%. A few values in 0.1% tolerance available.WIRE WOUND: ORI-100K 3 200W. A selection of mains droppers available. Good selection of metal clad high power types.
SLIDER POTS BY EGEN. 60 mm travel plastic. The following values only. 220K R.LOG DG
£1.00
470 K LIN
1 M LIN
2M2 R.LOG
60 p
60 p
60 p

ROTARY SWITCHES

Over 30 different types available.
from 45p
CONVERGENCE POTS
Most popular TV values stocked in depth.
FND 500, 7 segment LED display. f1 ea

SPECIAL OFFER: Filmet SC65 $1 \mathrm{M} \Omega 0.1 \%$ metal film resistors 20p ea. CERMET PRESETS 15p ea.

MINATURE AB16 POTS

PCB mounting $16 \mathrm{~mm} \varnothing$
100K LOG DG
220K LOG DG
100K LIN SG
10A 250V AC ILLUMINATED
ROCKER SWITCH
Red, DP ST $26 \times 30 \mathrm{~mm}$ rect. Snap-in type 75p
16A 250V AC ILLUMINATED
ROCKER SWITCH
(Amber). $14 \times 30 \mathrm{~mm}$ rectangular snap-in type. SPST 30p

ALUMINIUM BOXES:

AB7 $134 \times 64 \times 38 \mathrm{~mm} \quad 70 \mathrm{p}$
AB8 $102 \times 102 \times 38 \mathrm{~mm} \quad 70 \mathrm{p}$
$\begin{array}{ll}\text { AB9 } 102 \times 57 \times 38 \mathrm{~mm} & 70 \mathrm{p} \\ \text { AB10 } 102 \times 133 \times 38 \mathrm{~mm} & 70 \mathrm{p}\end{array}$
AB10 $102 \times 133 \times 38 \mathrm{~mm} \quad 70 \mathrm{p}$
$\begin{array}{lr}\text { AB11 } 102 \times 64 \times 51 \mathrm{~mm} & \mathbf{8 5 p} \\ \text { AB12 } 76 \times 51 \times 25 \mathrm{~mm} & \mathbf{7 0 p}\end{array}$
AB13 $152 \times 102 \times 51 \mathrm{~mm} \quad £ 1.00$
AB14 $178 \times 127 \times 51 \mathrm{~mm} \quad \mathbf{£ 1 . 2 0}$
AB15 $203 \times 152 \times 76 \mathrm{~mm} \mathbf{~} \mathbf{1 . 5 5}$
AB16 $254 \times 179 \times 76 \mathrm{~mm} \mathbf{£ 1 . 7 5}$
AB17 $254 \times 114 \times 76 \mathrm{~mm} \mathbf{£ 1 . 4 5}$
AB18 $305 \times 127 \times 76 \mathrm{~mm} \mathbf{£ 1 . 7 5}$
AB19 $305 \times 203 \times 76 \mathrm{~mm} \mathbf{£ 2 . 4 0}$
BLUE REXINE COVERED
ALUMINIUM BOXES
RB1 $152 \times 114 \times 64 \mathrm{~mm} \quad £ 1.45$ RB2 $203 \times 127 \times 76 \mathrm{~mm} \quad \mathbf{£ 1 . 7 0}$ RB3 $229 \times 127 \times 89 \mathrm{~mm} \quad \mathbf{£ 1 . 8 0}$ RB4 $279 \times 152 \times 102 \mathrm{~mm} \quad \mathbf{£ 2 . 4 0}$
RB5 $279 \times 190 \times 114 \mathrm{~mm} \quad £ 2.70$
BLACK PLASTIC BOXES

$75 \times 50 \times 25 \mathrm{~mm}$	$\mathbf{6 5 p}$
$80 \times 60 \times 40 \mathrm{~mm}$	$\mathbf{9 2 p}$
$90 \times 70 \times 40 \mathrm{~mm}$	$\mathbf{9 9 p}$
$115 \times 75 \times 30 \mathrm{~mm}$	$\mathbf{9 0 p}$
$110 \times 90 \times 45 \mathrm{~mm}$	$\mathbf{£ 1 . 1 8}$
$170 \times 100 \times 50 \mathrm{~mm}$	$\mathbf{£ 1 . 6 5}$
$200 \times 120 \times 80 \mathrm{~mm}$	$\mathbf{£ 3 . 5 5}$

LICON ILLUMINATED

 SWITCHES01-800 Rectangular Snap-in Series.
2PCO Latching $£ 1.50$ 2PCO Momentary $\quad £ 1.50$ Indicator only 50 p Lenses available in red or white only.
MINIATURE PUSH-BUTTON SWITCHES
PTM 20p, PTB 25p, PT M/B 40p.

HEAVY DUTY ROTARY SWITCHES

9P3W 25A 500V AC $\quad \mathbf{£ 3 . 0 0}$ 18P6W 25A 500V AC $£ 3.00$ 18P6W 40A 600V AC £3.00

STEREO RECORD/REPLAY

CASSETTE HEADS $£ 1.00$

WIREWOUND POTS

10R-100K by A.B., Colvern, etc. 11/2W 40p, 3W 60p, 5W 80p.

TRIMPOTS

10R-500K $10 / 20$ turn. $11 / 4 \mathrm{in}$. or $3 / 4 \mathrm{in}$. rectangular 60p ea. JEAN RENAULD SWITCH BANKS
Many types available, e.g.: 4×2PCO 40p $6 \times 2 \mathrm{PCO} \quad 60 \mathrm{p}$
$5 \times 2 \mathrm{PCO}+2 \times 4 \mathrm{PCO} \quad \mathbf{7 0 p}$

VU METERS

$40 \times 30 \times 23 \mathrm{~mm}$ deep.
White/red scale on black background. Brand new.

60 p ea.

This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P). Minimum Mail Order $£ 5+P \& P+V A T$. Government departments, schools, colleges, trade and export welcome.

OTHER PRODUCTS

COMPUTER SPEECH PROJECT
 ADD VERBAL OUTPUT TO A COMPUTER OR LOGIC SYSTEM OF ANY KIND

Modus Systems Ltd. can now supply a range of fixed-vocabulary speech synthesiser boards to aid in the evaluation and addition of speech to any computer or logic device. The words available are basic and revolve around numerical words such as two, "thirty" "pounds", etc. The units of particu (TSII are the 24 and 64 English units, consisting of a controller chip and one or two 2 K ROM's, respectively
Interfacing depends upon three main systems: logic power and audio sections, Madus Systems have developed a General Interface Board which includes all of these aspects and permits easy interfacing to your logic system
Two levels of power supply are required One (+5 Volt) is expected to be supplied from the microcomputer. The other is supplied from a power supply on the interface board, which also includes all The board also has an edge socket in which the speech board sits, and a plug and socket for ribbon cable connection to a computer A small 10 to 15 Volt transformer is required for power and an 8 Ohm speaker for the voice output
A computer s by no means necessary to use the speech board. Any device leven a bank of switches!! Wh ch gives a 6-bit word to signify which word is to be spoken, along with a start signal will control the unit. Applications include speaking clocks, telephone answering, games, calculators, audio readout in industrial control applications etc., etc
Vocabularies and prices
$\mathbf{S 2 A}(\mathbf{£ 4 4 . 9 5}+80 \mathrm{p} P \mathrm{P}+\mathrm{VAT}:$ SPECIAL INTRO OFFER)
24 - Calculator type words: $0-9,+,-\times$ et
S2B (f69.50 $+80 \mathrm{PPP}+$ VAT) 64 words
As for S2A plus "ter" "twenty" etc "p
As for S2A plus ter, 'VAT) 64 'etc., pounds", "cm", "ounces", etc $^{\text {S2C }}$
FULL ASCll set - each ASC11 Code verbalised in sequence. N.B. 24 word French, German and Arabic boards also available
Interface Board (Kit) ($£ 14.95+80 \mathrm{pP}+$ VAT)
S2A, B, C board plugs into on-board socket. This PCB contains tatches, audio filter, PSU, audio amplifier. $1 / 0$ plug and socket
$\star \star$ SERIES 3 SPEECH BOARDS INCLUDING UNLIMITED SPEECH
The new Series 3Board (S3D) includes all the interfacing necessary on the PCB plus an extra (EPROM) socket for custom words. The S3D is a single/supply (Plus 5V) board with audio amplifier included. S3D $£ 180$ (1/off price)
Extr words already in our accent): $£ \mathbf{2 0 0}$ per word

MODUS SYSTEMS LTD. Phons Letchworth (04626) 74468176392 Phone Lotchworth (04626) 7496876392

THE W.W. DISK OFFER RE-OPENS AT LAST

We have obtained a limited stock of European single sided drives so please get orders in soon Circle the enquiry number for data Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$)

Please make cheques and P.O.s payable to W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill
Batford
Herts
Please call 0582-429122 to check on availability before ordering

Allow 21 days for delivery. This offer applies to U.K. only and is subject to availability. For non U.K. orders send SAE for quotation

WW - 074 FOR FURTHER DETAILS

The facts of the case

LINSLEY HOOD CASSETTE RECORDER 2

Qur new improved performance model of the Linsley Hood Cassette Recorder incorporates our VFL 910 vertical front mechanism and circuit modifications to increase dynamic range. Eoard
layouts have been altered and improved but retain the outstandingly successful mother-anddaughter arrangement used on our Linsley-Hood Cassette Recorder 1 . 1 . ${ }^{2}$-flutter of $.09 \%$ - easily
This latest version has the following extra features. Ultra low wow-and-fut This latest version has the following extra features. Ultra low wow-and-flutter of 0.09% - easily
meets DIN Hifi spec. Deck controts latch in rewind modes and do not have to be held. Full Auto
stop on all modes button for level setting Dual concentric input level controls. Phone output. Microphone input facility if required. Record interlock prevents rerecording on valued cassettes. Frequency generat. ing feed back servo drive motor with built-in speed control for thermal stabitity. All these desirable
and useful features added to the excellent design of the Linsley-Hood circuits and the quality of and useful features added to the excellent design of the Linsley-Hood circuits and the quality of
the components used makes this new kit comprable with built-up units of much higher cost than the modest, $£ 94.90+$ V.A.T. we ask for the complete kit.

LINSLEY-HOOD CASSETTE RECORDER 1

We are the Designer Approved supphers of kits for this exceilent design The Author's reputation engineering design of the kit. Advanced features include: High-quality separate VU menters with excellent ballistics. Controls, switches and sockets mounted on PCB to eliminate difticuit wirina for the cassette transport to be set back behind a narrow finger trapping slot. tasy to use, obust Lenco mechanism. Switched bias and equalisation for ditterent tape tormulations. All wiring is terminated with plugs and sockets for easy assembly and test. Sophisticated modular PCB systern metalwork make this a most satistying kit to build. Also included at no extra cost is our new HS 5 Sendust Alloy record/play head, available separately at $\mathbf{£ 7 . 6 0} \mathbf{~ p l u s ~ V A T . ~ b u t ~ R E P R I N T S ~ o f ~ t h e ~} 3$ anicles describing this design 45p. No VA
REPRINT of Postscript article 30p. No VAT

Part Cost of Post, Packing and insurance

Order up to $£ 10-50 \mathrm{p}$ Orders $£ 10$ to $£ 49-£$

P\&P Export Orders Postage or shipping at cost plus

Please send 9×4 S.A.E. or telephone for lists giving fuller details and price breakdowns

Instant easy ordering, telephone your
requirements and credit card number to us on Oswestry (0691) 2894

LINSLEY-HOOD 300 SERIES AMPLIFIERS

These latest designs from the drawing board of John Linsley-Hood, engineered to the very high transparency of the tone quality enabie these amplifiers to outperform, on a side-by-sid comparison, the bulk of amplifiers in the commercial market-place and even exceed the high Three versions are
both with Mosfet output devices. All are of identical outside appearance which is desianed 10 match and stack with our Linsley-Hood cassette recorder? As with all Hart kits the constructors interests have been looked after in a unique way by reducing
extra bonus of the enjoyment of building a sophisticated the very highest sound quality with the 30 -watt Darlington amolifier, fully integrated with tone contro is and magnetic pick-up facility

 Reprints of original Articles from Hi-Fi News 50p. Post free. No VAT.
Heprints of MOSFET article 25p. No V.A.T. Post free

PRACTICAL WIRELESS WINTON MOSFET AMPLIFIER

We are pleased to announce that we are now the suppliers of designer-approved kits for this channel rating gives you ample power for most requirements and the ultra low distortion and stability is not affected by the most difficult loudspeakers you can hang on the output. You will shortly be able to buy from us a matching tuner kit, also designed by Ted Rule o
Armstrong fame, offering the most comprehensive range of facitities for which you could wish Further details of both units are in our free lists. Just write or telephone for your copy could wish Reprints of original articles from "Practical Wireless" "85p. VAT and post free.

HART TRIPLE-PURPOSE TEST CASSETTE TC1

One inexpensive test cassette enabies vou to set up vU ievel, head arim
Invaluable when fitting new heads. Only 62.70 plus V.A.T and 50p postage.

MICROPHONE AMP FOR LHCR 2

a completely self-contained and scre

 his useful unit may recorder 2 deck.nicrophone input. Gain may be independently se application requiring a low-noise high-quality firansducer. Input is by stereo jack socket. Complete kit of channels to duit many different types 4-dig -HOOD PEAK DRIVE INDICATOR. A very useful device, connected to loudspeakers giving 4-digit readouts of peak power delivered for the protection of both the loudspeaker and the durction. Unit uses CMOS technology, is self-contained even for peaks of only 5 microseconds batteries. only $£ 17.40$ plus V.A.T.
Reprint of Article 250 No V.A. T Post free.

CASSETTE HEADS

HS 16 SENDUST ALLOY SUPER HEAD. Stereo R/P. Longer lite than Permatloy. Higher output than Ferrite. Fantastic frequency response. Complete with data
HC20 Stereo Permalloy R/P head for replacement uses in car plavers, etc HC20 Stereo Permalloy R/P head for replacement uses in ca
HM90 Stereo R/P head for METAL tape. Complete with data H561 Special Erase Head for METAL tape H 524 Standard Ferrite Erase Head.
4. Track R/P Head Standard Mountin
R4842/2 (Double Mono) R/P Head. Std. Mtg ME1512/2 Ferrite Erase. Large MIg
CCE/BM $2 / 2$ Erase. Std. MIg.

CLIF electronic MUSIC

WW - 050 FOR FURTHER DETAILS

FREQUENCY COUNTERS-OFF/AIR RECEIVERS

250 MHz
801 B
£250
Crystal oven
3 parts 10
OFF/AIR
RECEIVER
TYPE 103 PRICE £135

20 models available including LED versions

RCS ELECTRONICS
WOLSEY ROAD
ASHFORD, MIDDX.
Phone 53661
WW-078 FOR FURTHER DETAILS

SOUND INVESTMENT

Replacement tape heads from Monolith could mean a big improvement in sound quality from your tape recorder. A full catalogue is available, price 50p, which features a wide range of heads for cassette and reel to reel machines. as well as replacement motors, tape transports, etc.

Universal cassette heads to ElAJ standard, hole centres 17 mm apart, 12 mm from head face:
B12.02 Mono record'playback £ 4.62
B24.01 Stereo playback £ 4.62
B24.02 Stereo r/p
£ 7.66
B24.07 Stereo rip for Dolby systems
£ 9.05
C42RPH20 Stereorlp sendust head. suitable for chrome \& metal tapes
$£ 10.67$
C42RPH04 Stereor/pglass territe the ultmate long life. high performance head £13.34
C42RPS 18 Stereo twin gap r/p long life head for record monitoring
£28.99
C21ESti Mono/Stereo erase head £ 2.13
C44RPHO3 Four channel/trackr/p $£ 15.15$
C22ES04 Twin half track erase £ 5.43
Ex stock deliveries, all prices include VAT. Post and packing 40p.

FLOPPY DISK DRIVES NOW EVEN LOWER PRICES UNBELIEVABLE BUT TRUE! READ ON!

SIEMENS FDD - 100-8/FDD - 200-8

Fully Shugart Compatible Siemens $8^{\prime \prime}$ single and double sided disk drives are Fully Shugart Compatible sbernens at single unit pricing.

Note these specifications

* TRACK 00 SENSING
- activity indication
* MECHANICAL END STOPS AT

TRACKS 00 AND 76

- auitchingtie current

FDD 100-8

Single Sided	Single	or
FDD 200-8	250 K	
Sorgle	or	

OTHER PRODUCTS
CP/M 2.2
BASIC 80
BASIC COMPILER
WORD STAR
MAIL MERGE
SUPERSORT

Full range of SD SYSTEMS S-100 CARDS \& KITS ALSO AVAILABLE
Send S.A.E. for further details
IRVINE BUSINESS SYSTEMS

P.O. BOX 5

IRVINE, AYRSHIRE
TEL: (0294) 75000
TELEX: 777582

The 2001 sweeps the board

Get all the waveforms you need -1 Hz to $\cdot 1 \mathrm{MHz}$ in five overlapping ranges: stable, low-distortion sine waves, fast rise/fall-time square waves, high linearity triangle waves - even a separate TTL square wave output. Plus high- and low-level main outputs
An applied DC Voltage at the Sweep input can shift the 2001's frequency: or sweep up to 100: 1 with an AC signal. A pushbutton activates the DC Offset control, which shifts the output waveform up or down on command.
For value for money the 2001 sweeps the rest off the board.
For immediate action - The G.S.C. 24 hour, 5 day a week service Tel: (0799) 21682 and give us your Access, American Express, Barclaycard number and your order will be in the post immediately or just clip out the coupon.
*price excluding P\&P and 15% VAT

VALES			Minimum Order f1			VALVES VAT IS INCLUDED				
${ }_{\text {A1065 }}{ }_{\text {A } 293}$		$\begin{array}{ll}\text { EL509 } \\ \text { EL802 } & 2.70 \\ 1.70\end{array}$	Qavo6/4			0	10P		${ }^{6057}$	${ }^{2.20}$
${ }^{\text {A22900 }}$		$\begin{array}{ll}\text { EL802 } \\ \text { EL221 } & 1.70 \\ 8.20\end{array}$	av03.12	4.20		${ }_{4}^{0.08}$	1112	${ }_{\substack{19.50 \\ 0.70}}$	${ }_{600}^{600}$	1.95 230
AR			SC1/400	4.50		1.50	${ }^{12 A T 6}$		60,	20
${ }^{\text {ARP3 }}$		EM31 1.60	$\mathrm{SCl}_{51 / 600}$	4.50	6AN	2.50	${ }^{1247}$	0.85	509	30
${ }_{\text {B12 }}{ }^{\text {A1P4 }}$				16.50	${ }_{6405}^{6404}$	3.40 100			${ }^{6088}$	30
		EM84 0.85	425	1.15	$6{ }_{6405}$	1.80	${ }_{12 \mathrm{~A} \times 7}$	0.6	614	20
DA			426	1.15	6AS	1.15	$12 \mathrm{BA6}$	0.90		5
DEF9	${ }_{0}^{26.95}$	${ }_{\text {EY81 }}^{\text {EY51 }}$		1.15	${ }_{\text {6AT6 }}$	0.90	${ }^{128 E 6}$	125	6550	5
DK		EY86/87 ${ }^{0.60}$		${ }_{0}^{0.75}$	${ }_{\text {GAV6 }}^{\text {6AU6 }}$	0.80	${ }_{12 \mathrm{Cl}}^{12 \mathrm{Br}}$	0.65	8552	20
DH		EY88 ${ }^{\text {E }}$	U301	${ }_{0} .85$	${ }_{6 A X 4 G T}$	${ }_{1.30}^{0.35}$	$\underset{1281}{1285}$	${ }^{18.95}$	${ }_{6973}^{855}$	20
DY86		Ez80	U600	$\underset{\substack{11.50 \\ 0}}{ }$		1.30	${ }^{12156 G T}$	0.55	7199	2.85
		$\begin{array}{ll}\text { GM4 } & 5.90\end{array}$	UBC41	120	${ }_{\text {68A6 }}^{686}$	0.50			5FP7	
	14.90	GY501 1.30	UAbCs	0.75	6866	${ }_{1.60}$	${ }_{120767}$	0.80	4EP1	32.00
E8BCC	${ }_{3}^{1.100}$	G232 1.05	UAF42	1.20	${ }_{685}^{66}$	1.30		${ }_{0}^{0.055}$	88.5	
E92CC	1.20	${ }_{\text {G234 }}{ }^{\text {G233 }}$	UBFE9	0.70	68R7	4.80	125 J 7	0.70	${ }_{\text {ck }}^{\text {CV2 }}$	14.00 16.00
${ }_{\text {El }}$	${ }_{6.30}$	${ }^{\text {G2737 }}$	UBL21	1.75	${ }_{68 W}^{68}$	620	${ }_{12507}^{1250}$	1.45	DG7-5	22.40
${ }_{\text {E18 }} 1826$	4.95	9.20°	UCC85	0.70	${ }_{6 C 4}$	0.50	12 Y 4	0.70		
EABC	${ }_{0}^{2.60}$	KT88 MH4 13.80* 150	UCH42	${ }_{1.65}^{1.30}$	${ }_{6 C 6}^{6 C 6}$	- 0.55	1303 1305 1	0.70	DPM9	
${ }^{\text {E日B }}$	${ }^{0.60}$	ML6 2.50	UCHB	0.75	${ }_{6 C 16}$	1.70	1306	0.80		0
EBC	0.90	${ }_{\text {M }}^{\text {M }}$ (10/01 ${ }^{\text {21.50 }}$	UF41	1.95	${ }^{6 C \times 88}$	3.15 1.15	${ }_{1949}^{1457}$	+1.15		
		OA2 0.70	UF80	0.95	6 Cb	0.70	1963			
E8F	0.80	${ }_{\text {OP2 }}^{\text {OPCB0 }}$		${ }_{2}^{0.95}$	${ }_{6 E A 8}^{6 E}$	${ }_{\substack{3.20}}^{1.20}$	${ }^{19 \mathrm{GG6}}$	8.50		
EC52	0.65	PABC85 PC85	UL84	2.95	${ }_{6}^{666}$	1.60 1.10	${ }_{201}^{19+5}$	${ }_{0}^{30.50}$	plu	
		0.95	UMBO	0.90		1.10	2052	0.06		
EC	0.65	88 ${ }^{88}$	UY84	0.70	${ }_{6}^{668}$	0.85	20E1	1.30		
ECC	0.65	PC900 1.15	UY85	0.85	6F14	1.15	20 P 3	0.75	$\times 102$	
		PCC84 0.50	VR105/30	1.25	${ }_{6}^{65}$	1.30	20P4	12		
ECC85	0.60	$\begin{array}{ll}\text { PCCB99 } \\ \text { PCC189 } \\ & 0.855 \\ 105\end{array}$	VR150/30	1.35 0.95	$66^{6} 7$	1.15	${ }^{20 p 5}$			
ECC86	1.70	PCF80 0.80	$\times 61 \mathrm{M}$	1.70	6F24	1.75	${ }_{25746}^{25661}$	0.75	SPECLAL	
ECC88		${ }^{\text {PCFF82 }}$			6533	10.50	30 C			
		$\begin{array}{ll}\text { PCFF84 } & \\ \text { PCF86 }\end{array}$	2759		${ }_{66 \mathrm{Fb}}^{6}$	4.20	${ }^{30 C 17}$	${ }_{2}^{0.50}$	${ }_{4}^{4 C \times 1000}$	
ECFB0		PCFE7 0.50	2749	0.75	$6 \mathrm{GH8}$	0.95	30 F 5	1.15	BM 25 L	
82		PCFF200 1.60	28004	3.45	6H6	1.60	30 FL 2	de	BW	
ECH	2.25	F201 1.65	28014	375 1600	614	1.35	${ }^{30 \mathrm{FLL} 12}$	1.25	DM 25	
	1.70	PCF801 1.75		245	6.5	2.30	${ }^{301515}$	1.10	YL1430	
ECH	0.70	PCFF802 PCER05 0.85 2.45		0.85 0.50	${ }^{6} 5$	0.90	30117	1.10	YL 1440 CL $\times 159$	
ECH84	0.80	${ }^{\text {PCFF806 }}$		0.60		${ }_{0}^{0.90}$	$30 \mathrm{PL13}$	1.25	CV1597	
882	0.75	${ }^{\text {PCFF808 }}$		0.45	6, 6 E6C	2.95	30 PL	2.45		
ECL	1.40	$\begin{array}{ll}\text { PCH200 } & 1.35 \\ \text { PCL81 } & \\ 0.75\end{array}$	${ }_{\text {1T4 }}$	0.45	6K7	${ }_{0.80}^{2.95}$	${ }^{3516 \mathrm{G}}$	${ }_{0}^{1.40}$	4 CX	
EC		PC182 0.95		0.80	$6 \mathrm{L6M}$	2.80	3574GT	0.80	8R 179	
EF37A		${ }_{\text {PCL184 }}$	${ }_{2021}^{1 \times 28}$	1.10	${ }^{6 L 6 G}$	2.50	40	,	CV	
EF39	1.80	${ }_{\text {PCLE805/85 }} 1.25$		5*	${ }_{616 G}^{66 G}$	2.10 1.25	50C5 5066	${ }_{1}^{1.155}$	GM	
	${ }^{0} .85$	PD500/510 4.30	${ }_{2 \times 25}$	11.90	6176	0.06	7581	1.25	BK485/5	2A
	0.60			1.15 0.70	6L18	${ }_{2}^{0.70}$	76		MIL	
EF	0.75	PL36 1.25		2.40	61020	0.70	78	${ }_{0} .95$		
EF899		P181 0.85		0.50	6KG6A	270	${ }^{80}$	70	IC	
EF		$\begin{array}{ll}\text { PL82 } \\ \text { PL83 } & 0.70 \\ 0.60\end{array}$		${ }_{19.00}^{23.00}$	${ }_{\text {6SA }}^{607 \mathrm{G}}$		85A2	1.40.		
EFs		PL84 0.95		0.60	${ }_{6 S} 6$	1.15		11.90	SN74L7	
		${ }^{\text {PL504 }}$	${ }_{583254 M}^{483}$	18.25	${ }_{6 S 5}$	1.05	805	${ }^{20.70}$	SN7485N	
		$\begin{array}{ll}\text { PLL508 } \\ \text { PL509 } & 1.95 \\ & 2.90\end{array}$	5B/255M	${ }^{14.50}$	6SK7	0.95	${ }_{813}^{807}$	1.25 14.80	SN74185	
EF88		PL519 3.20	58/25	12.50	6SN7	0.00	8298	14.00	SN74911	${ }^{32}$
EFf		PL802 ${ }^{3.20}$		${ }^{29.50}$	6s87	1.10	832A	8.90	OM74123	
EH90		$\begin{array}{ll}\text { Pr33 } & \\ \text { PY80 } & 0.70 \\ 0.70\end{array}$	SR4GY 504 C	${ }_{0}^{1875}$	${ }_{\text {656 }}^{65}$	${ }_{1}^{0} .95$	${ }^{86654}$	${ }^{3.80}$	SN15836	
ELE32	1.10 180	PY81/800 0.85	5 5 4 G	0.75	$6 \mathrm{66G}$	0.95	${ }_{9314}^{886 E}$	-6.25	SN76013	
		PY82 0.05	53	150		0.75	954	0.60	SN76033	
		$\begin{array}{ll}\text { PY83 } \\ \text { PY88 } \\ & 0.808 \\ 0.85\end{array}$		1.50	6xawa	2.10	955	0.70	MC680	
EL81		PY500 1.70	524GT	1.05	6 ¢6G	0.90	957	. 1.05	MC1451	
EL82		${ }_{\text {PY809 }}^{\text {Pr801 }}$	${ }_{6487}^{6 / 301}$	0.70	${ }_{787}^{624}$	${ }^{0} .75$	1625	1.80		
E18		OOv03/10 ${ }_{\text {205 }}$	$6 A^{6} 7$	1.15	74	1.25	${ }^{1651}$	+1.90		
${ }_{\text {ELL }}$		Qovo3-20A	${ }_{\text {6AGF }}$	0.150	${ }_{902}$	0.70	5763	4.20		
EL		oovo3-25A ${ }^{14.40}$	${ }^{\text {6AH6 }}$ 6AK5	1.15	9066 $10 C_{2}$	0.85	5848 588	7.50 3.40		
EL504	1.70	-0ve-25A 21.20	6AK8	0.60	${ }_{\text {10F18 }}$	0.70	${ }_{5933}^{5881}$	3.40 6.90		
VALVES AND TRANSISTORS Telephone enquiries for valves. transistors, etc retail 749 3934. trade and export 7430899.					FIELD TELEPHONES TYPE " J ". Tropical, in metal cases.					
					10-LINE SWITCHBOARD				MAG	ETO
PRICES MAY VARY									neto	
TEST SET FT2 FOR TESTING Transceivers A40. A41, A42 and CPRC26. HARNESS "A" \& "B" CONTROL UNITS "A" "R "J1" "J2," Microphones No 5, 6, 7 connectors frames, carrier sets, etc. DRUM CABLE continuous connection YC 00433.					phones. POSTAGE: £1-£3 45p; £3-£5 55p; £5-£10 60p; £10-£15 75p; £15 £2090p; over $£ 20$ free.					
COLOMOR (ELECTRONICS LTD.) 170 Goldhawk Rd., London W. 12						Tel. 01-743 0899 or 01-749 3934 Open Monday to Friday 9 a.m.-5.30 p.m.				

10. 15.
 20

WORLDRANGER TRIBANDER TRIBANDER

'par excellence'

AERIAL $£ 105$ BALUN $£ 12.50$
Plus VAT
Plus VAT
BARNET METAL \& CAR CO. LTD.,
Tewin Road, Welwyn Garden City Herts. AL7 1AG
Telephone: Welwyn Garden 24327 Telex: 28125 Cable: BARMECO

SAFGAN DT-4000 serkis

SPECIFICATION FOR ALL MODELS

- CH1, CH2: $5 \mathrm{mv} / \mathrm{div}-20 \mathrm{~V} /$ div in 12 cal steps
* Bandwidth: 10 MHz (DT-410), 12 MHz (DT-412), 15 MHz (DT-415)
* Time Base: $0.5 \mu \mathrm{~s}$ div $-200 \mathrm{~ms} / \mathrm{div}$ in 18 cal steps $\times 5$ expansion to $100 \mathrm{~ns} / \mathrm{div}$
* XY facility: matched $X=\mathrm{CH} 1, Y=\mathrm{CH} 2$

Trigger: Level Control, \pm slope selection
CH 1, CH2 0.5 div ; 100 mv External Source

* 2 modulation
- CAL o/p for probe compensation
\star Graticule blue ruled $8 \times 10 \mathrm{div}\left(6.4 \times 8 \mathrm{~cm}^{2}\right)$
\star SizeH 215 mm , W 165 mm , D 280 mm , Weight 4.5 kg .

GOODS - p\&p $£ 3.50$ or parcel service $£ 6.50+15 \%$ LONDON STOCKIST: AUDIO ELECTRONICS. TEL: 01-7243564 DT-400s are designed and manufactured by SAFGAN in England

WW - 056 FOR FURTHER DETAILS

Tel. Tavistock (0822) 5439/5548. Telex: 45263

They don't come brighter than the new Krohn-Hite 5900 programmable Function Generator.

- GPIB Programmability

Exclusive, Built-in Auto-Programmer
Internal Infommation Storage Registers

- Sine, Square, Triangle, Pulse and Sawtooth

Waveforms
Q Frequency Range: $100 \mu \mathrm{~Hz}$ to 5 MHz
8 Continuous Gated, Triggered, Digital Lin/Log

- Sweep and Triggered Burst Modes
- 30 Volis P-P Amplitude

All this for considerably less than comparable units

SEMIC.
With the 5900 you get the supreme standards of service and reliability people have come to expect from the Krohn-Hite name, in products which include a number of Function Generators with frequency ranges of between .003 Hz to 30 MHz . Prices from around $£ 245$.
Other IEEE units from Krohn-Hite include the 6880
Distortion Analyzer and the 4180 Oscillator, giving a superb range of equipments for general purpose, communications and audio applications.
To find out more, fill in the coupon.
And see why Krohn-Hite service is no secret.

KEITHLEY

Keithley Instruments Ltd
1 Boutton Road Reading Berkshire RG2 ONL
Telephone (0734) 861287
Telex 847047

WW-010 FOR FURTHER DETAILS

1 N4148 Diodes

$1+$	$100+$	$1000+$
.02	.016	.013

CARBON FILM RESISTORS E12 SERIES

L.E.D.s. 125 and .2
$1+100+1000+$ $\begin{array}{llll}\text { RED } & .08 & .069 & .058 \\ \text { Y. or G. } & .11 & .10 & .09\end{array}$

Prices per 100. Larger and Mixed. Quantity prices available.

100 off one type
500 off one type 500 off one type
1000 off one type

LOW PROFILE I.C. SOCKETS

TEXAS			SCANBE		
$1+$	$100+$	$500+$	$1+$	$100+$	$1000+$
.075	.068	.06	.059	.049	.044
.09	.082	.073	.082	.07	.064
.10	.096	.085	.091	.078	.07
.125	.113	.10	.104	.089	.081
.14	.126	.113	.12	.10	.092
.15	.135	.12	.143	.122	.111
.15	.135	.12	.146	.132	.116
.16	.145	.125	.155	.14	.12
.24	.215	.19	.23	.195	.176

Please add $£ 1.50$ handling charge and 15% V.A.T
We also stock Microprocessors, CMOS, TTL, Transistors, Capacitors, Potentio meters, Connectors, etc. Free catalogue available to trade customers only. En quiries welcome

ERarrison Bros.

Electronic Distributors 22 Milton Road, Westcliff-on-Sea Essex SSO 7JX, England Tel: Southend-on-Sea (0702) 32338

WW - 067 FOR FURTHER DETAILS

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER
 Board $£ 1$ extra

HEAVY METAL PLINTHS Post E 2 Cut out for most BSR or Garrard decks.
Silver grey finish
Suitable Plastic Cover, size $16 \times 14 \times 6$ in f6
WOOD PLINTH, TEAK EFFECT
f4
PIONEER and J.V.C. TEAK VENEERED PLINTH
$19 \times 14^{1 / 2 ı n}$. with Plastic Cover $173 / 4 \times 13$ in $£ 10.50$
TINTED PLASTIC COVERS
Post£1.50
Sizes: $14^{1 / 2} \times 12^{1 / 2} \times 3$ in. $£ 4.18 \times 12^{1 / 2} \times 3$ in. $£ 6$
$18 \times 13^{1 / 4}: 44^{10} . £ 6.17^{1 / 4} \times \mathbf{9}^{1 / 2} \times 3^{1 / 2 i n} . £ \mathbf{3}^{2}$.

BSR SINGLE PLAYER DECKS
 BSR ${ }^{\text {aluminium }}$ speeds turntable Less cartridge $\mathbf{f 2 7}$
 Belt Drivg Post f BSR P172 RIM DRIVE QUALITY DECK
 Manual or automatic play Precision ultra slim arm Cueing device. Bargain price
 £20 Post 52 small two-speed Hi-fi system with stereo cartridge and cang dovice.
 £17 post E 2
 GARRARD 6-200 SINGLE PLAYER DECK
 Brushed Aluminium Arm with stereo ceramic cartridge and Diamond Stylus, 3 -speeds. Manual and Auto Stop/Start Large Mesal Turntable. Cueing Device and Pause Conero Ready cut mounting board $£ 1$ extra. $\mathbf{E 2 2}$ Post $\varepsilon 2$
 ELAC HI-FI SPEAKER
 8in. TWIN CONE $£ 5.95$
 Large ceramic magnet. $50-16,000 \mathrm{c} / \mathrm{s}$ bass resonance $40 \mathrm{c} / \mathrm{s}$ 8 ohm irpedance, 10 watts

10 in . TWIN CONE $£ 7.95$ Posi 99 p) POTENTIOMETERS Carbon Track 5 KO to 2 M N. LOG or LIN. L/S 50p. DP 90p. Stereo L / S £1.10.
DP £1.30. Edge Pot 5 K . SP 45p. Sliders Mono 65 p . Stereo 85p.

EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS With tweeter and With tweeter and
crossover. 10 watt. 8 ohm .15 watts.
 Bass woo er, EM 15 ohm. 20 watt. £10.95 £10.95 Post 99p
SUITABLE BOOKSHELF CABINET £10.50. Pos
Suitable for cassettes, and all sizes of tape reels. AC mains 2001250 V . Hand held size with switch and lead.
Will also demagnetise small tools £8 Head Demagnetiser only $£ 5$

$$
\text { RELAYS. 12VDC £1.25.6V DC 95p. } 18 \mathrm{~V} \text { £1.25 }
$$

BLANK ALUMINIUM CHASSIS. $6 \times 4-\mathbf{£ 1 . 2 0 ;} 8 \times 6-\mathbf{£ 1 . 5 0}$;
 $16 \times 10-52.70$. All $21 / 2 \mathrm{in}$. deep
ANGLE All $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-25$ p.
ALUMINIUM PANELS, $18 s w g$. $6 \times 4-36 p ; 8 \times 6-60 p$; $16 \times 6-90 \mathrm{p} ; 14 \times 9-\mathrm{£} 1.20 ; 12 \times 12-£ 1.30$; $16 \times 10-£ 1.40$ PLASTIC AND ALI BOXES IN STOCK. MANY SIZES ALUMINAM BOXES. $4 \times 4 \times 11 / 2 £ 1.4 \times 21 / 2 \times 2 £ 1.3 \times 2 \times$ BRIDGERECTIFIER $\times 3 £ 2.30$. $12 \times 8 \times 3 \mathrm{£}$. All 18 swg . TOGGE SWITCHES SP 30 p DPST 40 D DPDT 50 p . TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p. RESISTORS, 10Ω to 10M. $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}, 1 \mathrm{~W}, 1 \mathrm{p}$: 2 W 10 p . HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 1 meg .8 p . Ditto 5%. Preferred values, 10 ohms to $10 \mathrm{meg}, 3 \mathrm{p}$.
WIRE-WOUND RIESISTORS 5 watt, 10 watt, 15 watt 15p PICK-UP CARTRIDGES SONATONE 9TAHC $£ 2.50$. BSR Stereo Ceramic SC7 Medium $f 2$ SC8 High $f 2$ PHILIPS PLUG-IN HEAD. AU1020 (G306. GP310-GP233 AG3306. AG3310) £2
SOLDERE SEALING KIT DECCA 118. Complete $£ 1$ SOLDERUNG IRON 240 V 40 W .5 mm bit $£ 2.95$
CAR SPEAKERS on Baffles $7 \times 41 / 2 \times 11 / 2 \mathrm{~m}$, deep, 4 ohms
Twin Units Bass and Treble 10 watts, RMS, Door Mount IN-CAR GRAPHIC EQUALISER. Power Booster, Stereo 20 watts RMS per channel, 5 sliders Graphic Equalisatıon 5^{\prime}
wide $\times 7^{1 / 2}$ deep $\times 2$ in. high. 12 volt D.C. suitalle for Ca Radio or Cassette $£ 30$. Post $£ 1.50$.

MINI-MULTI TESTER
Deluxe pocket size precision moving
coil instrument. Impedance + Capacity -2000 o.p.v. Battery included. 11 instant ranges measure
$D C$ volts $10,50,250,1000$ AC volts $10,50,250,1000$.
DC amps $0-100 \mathrm{~mA}$.
De-Luxe Range Doubler Model, $£ 6.50$ Post 65p $\left\lvert\, \begin{aligned} & \text { De-Luxe Range Doubler Model, } \\ & 50,000 \text { o.p.v. } £ 18.50,7 \times 5 \times 2 \mathrm{in} \text {. Post } £ 1\end{aligned}\right.$

PANEL METERS $£ 4$ each

50ма 100на 500~а,
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$,
25 volt, 50 volt, VU Meter. Facia $23 / 8 \times 13 / 4 \times 11 / 2$ in Fixing hole $1 / \frac{1}{2 i n}$. dia. Lighting kit 6 or 12 v 90 p extra. 1 ma (240° scale) $21 / 4 \mathrm{in}$. sq. £5 Post $65 p$ RCS SOUND TO LIGHT CONTROL KIT Kit of parts to build a 3 channel sound to light unit
1,000 watts per channel. Suitable for home or disco. 15
Easy to build. Full instructions supplied. Cabinet Easy to build. Full instructions supplied. Cabinet
$\mathbf{£ 4 . 5 0}$ extra. Will operate from 200 MV to 100 watt £4.50 extra. Will operate from 200 MV 10100 watt Signal Lights, Edison Screw. 6 for $£ 4$, or 12 for $£ 7.50$. Post 65 p.
'MINOR' 10 watt AMPLIFIER KIT $£ 14$ This kit is suitable for record players, guitars, tape playback,
electronic instruments or small PA systems. Two versions electronic insiruments or smalable: Mono, £14; Stereo, £20. Post 65p. Specification SAE per chis, Full instructions supplied. AC mains powered Input can be modified to suit guitar.
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp Inputs for high, medium or low imp per channel.
with volume control and PC Board
$\mathbf{E 2 . 9 5}$ with volume contro and multi-way

MAINS TRANSFORMERS

$250-0-250 \vee 80 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A}$ $300-0.35 \mathrm{~V} 250 \mathrm{~mA}, 6.3 \mathrm{~V} 4 \mathrm{~A} .4 \mathrm{ACT}, 5 \mathrm{~A}$ $300-0-300 \mathrm{~V} 120 \mathrm{~mA}, 2 \times 6.3 \mathrm{~V} 2 \mathrm{AC}$. . 5 V 2 A

 GENERAL PURPOSE LOW VOLTAGE| Tapped outputs available2 amp. $3.4,5,6,8,9,10,12,15.18,25 ~ a n d ~ 30 V ~$ | | | |
| :---: | :---: | :---: | :---: |
| | | | ${ }_{\text {¢6.00 }}^{\text {¢6.00 }}$ £2 |
| $2 \mathrm{amp} .6,8,10,12,16,18,20,24,30,36,40,48,60$ | | | £9.50 £2 |
| $3 \mathrm{amp}, 6,8,10.2 .16 .18,20,24,30,36,40,48,60$ | | | £12.50 £2 |
| | | | £16.00 |
| $12 \mathrm{~V}, 100 \mathrm{~mA}$ | f1.30 80p | 20V, 40V, $60 \mathrm{~V}, 1 \mathrm{l}$ | ¢4.00 £2 |
| 12V. 750 mA | ${ }^{\text {¢ } 2.00 ~ 80 p ~}$ | 12 V . 3 a | E3.50 £1 |
| 10-0-10V 2 a | £ 3.00 £1 | 10V, 30V, 40v, 2a | ¢3.50 £1 |
| 30 V .5 a and | | 2 of 28 volt 1 | 65.00 |
| 17-0-17V2a | £4.00 £2 | 20 V .1 a | c3.00 |
| 0.5, 8, 10, 16V, 22a | ¢2.50 80p | $20 \mathrm{~V}-0.20 \mathrm{~V}, 1 \mathrm{a}$ | ¢3.50 |
| 9 V , 3a | E3.50 ¢1 | 9.0 .9 V 50 ma | c1.50 |
| 25-0-25V 2a | £4.50 £ 1 | 2 of 18V.6a | £11.00 E2 |
| 30V. $1 / 2 \mathrm{a}$ | £3.50 £1 | 12-0.12V,2a | c3.50 £ 1 |
| $6 \mathrm{~V} 1 / 2 \mathrm{a}$ | ¢2.00 £1 | 9V, 1/4a | E1.50 80p |
| 15-0-15V. 2 a | E3.75 | 32-0-32V. $6^{1 / 2}$ | ¢0 E^{2} |
| AUTO WOUND 115 V to 240 V 150 W ¢8 400 W ¢ 10 | | | 500W £ 12 |
| CHARGER TRANSFORMERS | | Rectifiers | |
| 6.12 volt 3a | E4.00+E | 6.12 volt 2a | Post E1.10 |
| 6-12 volt 4a | ¢6.50 $\mathrm{E}_{\text {¢ }}$ | 6.12 volt 4a | ¢2.00+80p |

 £20 pair Post E 2

LOW VOLTAGE ELECTROL YTICS $16 \mathrm{mfd} .25 \mathrm{mfd}, 30 \mathrm{mfd}$ $1 \mathrm{mfd}, 2 \mathrm{mfd}, 4 \mathrm{mfd}, 8 \mathrm{mfd}$, $10 \mathrm{mfd}, 16 \mathrm{mfd}, 25 \mathrm{mfd}, 30 \mathrm{mfd}$, $\mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} .47 \mathrm{mfd} / 10 \mathrm{v}$; $50 \mathrm{mfd} / 6 \mathrm{v} ; 68 \mathrm{mfd} / 6 \mathrm{v} / \mathrm{t}$ $25 \mathrm{v} ; 100 \mathrm{mfd} / 10 \mathrm{v}: 150 \mathrm{mfd} / 6 \mathrm{v} / 10 \mathrm{v} ; 200 \mathrm{mfd} / 10 \mathrm{v} / 16 \mathrm{v} / 220$ /10v: 1500 mfd/6v/10v'16v: 2200
500 mF 12 V ; 5 p ; 25 V 20 p ; 50 V 30 p
$1000 \mathrm{mF} 12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p}$: 100 V 70 p
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~V} 70 \mathrm{p} ; 3000 \mathrm{mF} 50 \mathrm{~V} 65 \mathrm{p} ; 2000 \mathrm{mF} 100 \mathrm{~V} £ 1$.
$4500 \mathrm{mF} 64 \mathrm{~V} £ 2.4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20 .2700 \mathrm{mF} / 76 \mathrm{~V} \mathbf{~} 1$. HIGH VOLTAGE ELECTROLYTICS

$$
\begin{array}{lll}
8 / 450 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} \\
16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+16 / 450 \mathrm{~V}
\end{array}
$$

$\begin{array}{lll}16 / 350 \mathrm{~V} & 45 \mathrm{p} & 8+8 / 450 \mathrm{~V} \\ 32 / 500 \mathrm{~V} & 75 / 450 \mathrm{~V}\end{array}$

		75 p	$32+32+16 / 350 \mathrm{~V}$							
$32 / 500 \mathrm{~V}$	75 p	$8+16 / 450 \mathrm{~V}$	75 p							
$70 / 20 / 450 \mathrm{~V}$	75 p	$100+100 / 275 \mathrm{~V}$								
$50 / 500 \mathrm{~V} £ 1.20$	$32+32 / 350 \mathrm{~V}$	5 p	$150 / 450 \mathrm{~V}$		$50 / 500 \mathrm{~V}$	$£ 1.20$	$32+32 / 350 \mathrm{~V}$	50 p	$150-2200 / 275 \mathrm{~V}$	
:---	:---	:---	:---	:---						
80 F	70 p									
$\mathbf{5} 120$	320 V	95 p				$8 / 800 \mathrm{~V}$	$\mathbf{£ 1 . 2 0}$	$32+32 / 500$	$\mathbf{£ 1 . 8 0}$	$80-40 / 500 \mathrm{~V}$
:---	---:	:---	---:	:---						
$32 / 350 \mathrm{~V}$	50 p	$50+50 / 300 \mathrm{~V}$	50 p		VALVE OUTPUT Transformers (small) 90p. TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$, 50 pF , 5 p .100 pF , 150 pF , 15p. PAPER 350V-0.1 7p; $0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p}$; $500 \mathrm{~V}-0.001$ - $0.0512 p$; $0.115 p ; 0.2525 p ; 0.4735 p$. MICRO SWITCH SINGLE POLECHANGEOVER 30p SUB-MIN NICRO SWITCH, 30 p . Single pole changeover					

TWIN GANG, $120 \mathrm{pF} 50 \mathrm{p}: 500 \mathrm{~F}$ £1. TWIN GANG, $120 \mathrm{pF} 50 \mathrm{p}: 500 \mathrm{pF} \mathrm{£1}$. GEARED TWIN GANGS 25pF 95p. 365pF $£ 1$ GEARED $36 \sigma^{+} 365+25+25 p$ I 1 . NEON PAN $=$ I INDICATORS 250 V 30 p Replacement 50 p ILLUMINATED ROCKER SWITCH. Single pole. Red 65p. CASSETTE MOTOR. 6 volt $£ 1$
CASSETTE MECHANISM, $12 v$ Stereo Playback oniy $£ 5$
U.H.F. COA KIAL CABLE SUPER LOW LOSS. 25p yd.

BAKER LOUDSPEAKERS

SA	RICE				Post f2 ea
MODEL	INCHES	OHMS	WATTS	TYPE	PRICE
MAJOR	12	4-8-16	30	H1-FI	$f 12$
DELUXE MK II	12	8-16	15	HI-FI	f12
SUPERB	12	8.16	30	HI-FI	f20
AUDITORIUM	12	8-16	45	$\mathrm{HI}-\mathrm{Fl}$	f20
AUDITORIUM	15	8-16	80	H\|-FI	f34
GROUP 45	12	4-8-16	45	PA	f12
GROUP 75	12	4-8-16	75	PA	f20
GROUP 100	12	8-16	100	PA	f20
GROUP 100	15	8.16	100	PA	f28
DISCO 100	12	8.16	100	$015 C 0$	f20
OISCO 100	15	8-16	100	DISCO	f28

BAKER
50 WATT AMPLIFIER
f 69 Post E 2
 Ideal for Halls/PA systems, Discos and Groups. Two inputs
Mixer, Volume Controls. Master Bass. Treble and Gain Special offer 20 WATT MOBILE - 12 volt DC 240 volt AC, 3 inputs $£ 46$. BAKER 150 WATT MIXER/POWER AMPLIFIER Po

£89

100 watts Mobile 24 volt DC
8240 v
16 hmm . volt AC mains. In
-100 volt line $\mathbf{f} 95$

FAMOUS LOUDSPEAKERS

 'SPECIAL PRICES'| MAKE | MODEL | SIZE | WATTS | OHMS | Post $£ 2$ ea PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SEAS | TWEETER | 4 A | 50 | 8 | ¢7.50 |
| G00DMANS | TWEETER | 31/2in | 25 | 8 | f4.00 |
| AUDAX | TWEETER | $3 \frac{3}{4} \mathrm{in}$ | 60 | 8 | £10.50 |
| SEAS | MID-RANGE | 4 in | 50 | 8 | f7.50 |
| SEAS | MID-RANGE | 5 in | 80 | 8 | f10.50 |
| SEAS | MID-RANGE | $41 / 2 \mathrm{in}$ | 100 | 8 | f12.50 |
| G00DMANS | FUll-RANGE | 51/2in | 15 | 8 | f6.50 |
| G00DMANS | FULI-RANGE | 8 in | 30 | 8 | £9.50 |
| G00DMANS | AUDIOM 8p | 8 in | 15 | 15 | ¢8.50 |
| SEAS | WOOFER | 8 in | 30 | | f14.00 |
| CEIESTION | DISCO | 10 in | 20 | $8 / 16$ | f11.50 |
| CELESTION | DISCO | 10 in | 60 | 8/16 | f21.50 |
| RIGONDA | GENERAL | 10 in | 15 | 8 | f6.50 |
| G00DMANS | AUDIOM PG | 12 in | 60 | 8 | $\underline{50.00}$ |
| G00DMANS | PP12 | 12in | 15 | 8/15 | C24.50 |
| G00Dmans | AUDIOM P | 12in | 50 | $8 / 15$ | ¢20.00 |
| GOODMANS | GR12 | 12in | 90 | 815 | ¢27.50 |

BATTERY ELIMINATOR MAINS to 9 VOLT D.C. Stabilised output, 9 volt $400 \mathrm{~m} . a$. U.K. made in plastic case $\times 21 / 2 \mathrm{in}$. Transformer Rectifier Unit. Suitable Radios Cassettes, models, $\mathbf{£ 4 . 5 0 \text { . Post } 6 5 p}$

DELUXE SWITCHED MODEL STABILISED VOLTAGES

[^4]
ECHO CHAMBER or REVERB

Good quality unit with end iess play tape cartridge.
Stationary play heads ensure good reproduction and echo variance is achieved by changing tape speed. Input
imp: 50 k and 600 ohms. imp: 50 k and 600
Power: 240 volts A.C.
£68. Post $£ 2$. Spare tape $£ 5$.
ALUMINIUM HEAT SINKS. $6^{1 / 2^{\prime \prime} \times 2^{\prime \prime} \times 2^{1 / 4^{\prime \prime}} 65 p . ~}$
JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 35p.
JACK SOCKETS. Mono Open 20p; Closed 25
JACK SOCKETS Stereo Open 25p. Closed 30p
FREE SOCKETS Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKETS 20 p .
2.5 mm and 3.5 mm JACK PLUGS 20 p .
DIN TYPE CONNECTORS

DIN TYPE CONNECTORS
Sockets 3-pin, 5-pin 10p. Free Sockets 3-pin, 5-pin 25p
Plugs 3-pin 20p: 5-pin 25p.
PHONO PLUGS and SOCKETS ea. 10p
Screened Phono Plugs ea. 15p.
TV CONVERGENCE POTS 15p each
DRILL SPEED CONTROLLER /LIGHT DIMMERKIT. EASY

Cut costs and speed trouble shooting

with the

Huntron Tracker

This easy to use test instrument displays shorts，opens，and leakage in solid state components．Check diodes，unijunctions，bipolars，Darlingtons，J－FET＇s， MOS FET＇s，LED＇s，electrolytics and IC＇s ．．．IN CIRCUIT！
Test pure digital or analogue hybrid boards ．．．WITHOUT CIRCUIT POWER！ Current limited to protect delicate devices in the MOS．CMOS family
Save $20 \ldots 30 \ldots 40 \ldots$ even 50% of trouble shooting time and recover your investment fast！Exclusive 12 months warranty，available from

MTL Microtesting Limited 1－15 Butts Road，Alton，Hampshire Telephone：Alton（0420） 88022

WW－ 057 FOR FURTHER DETAILS

METER PROBLEMS？

137 Standard Ranges in a variety of sizes and stylings available for 10－14 days delivery．Other Ranges and special scales can be inade to order

Full Information from：
HARRIS 播ECTRONICS（London）
138 GRAYS INN ROAD，W．C． 1
Phone： $01 / 837 / 7937$

Top Pefformance In Every Range

HM 307

HM 307

HM 312

£ 220
Y：Bandwidth DC．20Mrz（－3dB）－Sensitivity $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ X：Trmebase $0.2 \mathrm{~s}-40 \mathrm{~ns} \mu \mathrm{~cm}$ incl．$x 5 \mathrm{Magn}$ ．Trig． $3 \mathrm{~Hz}-30 \mathrm{MHz}(4 \mathrm{mn})$ Dual trace－Y Operation Calibrator Screen $8 \times 10 \mathrm{~cm}$ ． 2 kV

HM 412
£ 350
Y：Bandwidth DC－20MHz（－3dB）－Sensitivity 2 mV －20V／cm（ \pm 3\％） X ：Timebase $2 \mathrm{~F}-40 \mathrm{~ns} / \mathrm{cm}$ incl．$\times 5$ Magn．－Trig．DC－40MHz（ 5 mm ） Dual trace－Algebr．addition－X－Y Operation－Screen $8 \times 10 \mathrm{~cm}$ Swaep delay－Overscan，Trigger，Delay indications－Trigger filter \mathbf{Z}－Modulation－Calibrator Graticuie illumination 2 kV

HM 512
£ 580
Y：Bandwidth DC－50MHz（－3dB）－Sensitivity $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ X：Timebaso $5 \mathrm{sz}-20 \mathrm{~ns} / \mathrm{cm}$ incl．$\times 5 \mathrm{Magn}$ ．Trig． $\mathrm{DC}-70 \mathrm{MHz}(5 \mathrm{~mm})$ Dual trace－Algebr．addition－X－YOperation．Screen $8 \times 10 \mathrm{~cm}$ Dolay tine－Sweep delay－After delay triggering－Trigger filter Single shot＋Reset－Overscan，Trigger，Ready，Delay indications var．Hotd－off－Z－Modulation－Graticule illumination • 12kV

HM 812
£ 1,458
：：Bandwidth DC－50MHr（－3dB）－Sonsitivity 5mV－50V／div．（土 3\％） X ：Timebsese 58 20ns／div．incl． $\mathbf{x} 5$ Magn．－Trig．DC－70MHz（ 0.5 div．） Dual trace analog storage with var．Persistence and Auto－Storage Algebr．addition－X－Y Operation－Screen $8 \times 10 \mathrm{div} .(7.2 \times 9 \mathrm{~cm})$ Delay line－Sweep delay－After dolay triggering－Trigger filter Single shor－Overscan，Trigger，Ready，Delay，AS indications var．Hold－off－Z－Modulation－X－Guard circult－Calibrator－ 8.5 kV

HM 812
Storage

For more informeton
contect：
Ficen U．K
List En．VAT
MAMEC ITD．74－78 Colinodon Streot \qquad
Enfordehirs LU31RX Telophom（0592） 413114 Tchex 925484

W母－035 FOR FURTHER DETAILS

EEEGTROVALIE

BEST SELLERS . .

Rechargeable Calls by SANYO-CADNICA. Size AA 99p; C 2.27: D 3.76; PP3
4.10. With tags: AA $106 . \mathrm{C} 2.43$ D 39
Chargers PP3 4.75, AA 495, A,C,D 7.60 . Plastic boxes PB1 $116 \times 77 \times 35 \mathrm{~mm}$ 2p.
Breadboards Euro 5.70 N , veroblack 3.63. Bimboard 8.03. Buzzer 6 -15V sup CAPACITORS Polystyrene 47.4700 pF ea 7 p . C280. $016 \mathrm{p}, 17 \mathrm{p}, 229 \mathrm{p}$ (full
range). Polyester (PCM 75 mm) $0016 \mathrm{p}, .00477 \mathrm{p}, 0568 \mathrm{p}, 19 \mathrm{p}$, (PCM 10 mm) range). Polyester (PCM 75 mm) , $0016 \mathrm{p}, .00477 \mathrm{p}, 0568 \mathrm{p}, 19 \mathrm{p}$, (PCM 10 m
1 1FF 26 p . Many more values in this rangel. Variable Dilecon 100 pF 2.08 . 500pF 3.21 .
ELECTRDLYTICS Full range
CONNECTORS - $1 / 4$ jack plug $32 \mathrm{p}, \mathrm{skt}$ 12p, 3.5 mm , ack plug 17p, skt 14 p .
2.5 mm 12 p . DIP header 14 pin $38 \mathrm{p}, 16$ pin 43 p Quick lest mains block 525
 Heat sinks Power 1.25° C/W 2.85 . finger tvpe TO3 25D, TO220 25D. INTEGRATED CIRCUITS - Hundreds of types 741 18p, 555 23p, CA3140E
40p. LM $380 \mathrm{~N} 99 \mathrm{p}, \mathrm{LM} 3914 \mathrm{~N} 2.68$. S566B 2.14 TCA965 1.20. IC holders 8 p
 $21 / 2 \mathrm{or} 64$ ohms 93 p . Magneto resistors from 1.60 N . Meters, panel $60 \times 45 \mathrm{~mm} 50$ UA-1A ea 4.80 Opto LEDS red 7p, yellow 9 p, green 11 p .
ultrabright 21 ali colours. LED drivers UAA170/UAA180 ea 1.52 . ultrabright 21 p alt colours. LED drivers UAA 170 /UAA 180 ea 1.52 .

 PRINTED CIRCUIT MATERIALS
$300 \times 150 \mathrm{~mm}$ S/S SREP 1.25 f/gl $1,90,500 \mathrm{gm}$ ferric chloride lab grade 3.40
Positiv 20 photo resist $74 \mathrm{~m} / 1.65$. Etch resist pen 1 O5 silver paint 34.14 N
 2p. Metal oxide TR5 2\% 5p, film MR25 5P. Semiconductors 1 N4007 6p. NN414830. RCA2N3055 70p. BC107.9 family 14p. BC $182 / 212$ tamily 9 P . BFR34A 63p. BFT65 1.19. C106D1 45p. TIP31A/32A ea 44p. TIP41A/42A ea
45 p . TIP2955/TIP3055 ea 55p. Sotder 500 gm 60/40 20 SWG 730 N . Irons An
 cordiess with charger 24.00 N .
SWITCHES - Slider DPDT min 18p, std 20p. Wavechange 1P 12 W . 2P6W. 3P4W. 4 P3W ea 40p. Time Switch 13 A 3on/3off per day 14.68 N . Min toggle 4PST 95p. 10 SST 210 . 10 . Miniature dills 12 Vac TITAN 10 28N. TITAN kit 17.06 N Stand 12.00 N .
Tools CK plisis 4.70 , cutters 6.10 , strippers 4.95 , Vero wiring systern kit 4.42 . wire 1.17. Computer Nascom 1 builit $£ 140.00 \mathrm{~N}$
NASCOM
N kif $£ 295.00$ complete (less $8 \times 4 ; 18$'s $£ 225.00 \mathrm{~N}$). F/S kit. 3amp 32.50N. 16 K
RAM kit 110.00 N .
Add VAT at 15%, to all prices
under 5.75. No indand P\&P on CWO orders.
ELECTROVALUE LTD. DEPT. WW6, 28 St . Judes Road, Englefield Green Egham, Surrey TW20 OHB. Phone Egham 33603 (STD 0784. London 87). Telex 264475 .

Northern Branch (Personal Shoppers only) 680 Burnage Lane, Burnage, Man chester M19 ?NA. Phone (061) 4324945.

Wirewound Ceramic Resistors Axial or vertical mounting 5w-17w OR5-39K

Cable Sleeves and Markers from $£ 1.38$ per 1.000
Crimp Terminals from $\mathbf{£ 9 . 6 0}$ per 1,000
Audible Warning Devices. Buzztone, Bleeptone, Banshee, Bedlam, etc, from $£ 1.14$ each. Self-adhesive Pcb guides from $\mathbf{£ 5 . 0 4}$ per 100.

from $£ \mathbf{\$ 3 . 1 5}$ per 100
Carbon Film Resistors 1/4w 5\% $£ 2.50$ per 1,000 , per value, carriage and VAT extra. rage and VAT extra R8 33R 100R 120R 360R 470R 560R 2K4 2K7 4K7 5K6 7K5 8K2 100 K 120 K 150 K 220 K 300 K 390 K 820K.
Also $1 / 2 \mathrm{~W} 5 \%$ or $10 \% 100$ R 300R 1K 2K2 3K9 24K 33K 75K 2M4 3 M 3 4M75M6
ists available of other wattages and values on special offer.

PBRA LTD.
Golden Green, Tonbridge Cent TN11 OLH
Hopfield (073274) 345 Member Crystalate Group

model 43 mobile service test set packages

Power Range	${ }_{30}^{2-}$		$\begin{gathered} \text { Bends in } \\ \substack{125 \\ 125} \\ \hline \end{gathered}$	$\begin{aligned} & 1000 \\ & 250 \end{aligned}$	200-	${ }^{4000} 100$
5 wans				${ }^{5 C}$		
${ }^{18}{ }^{16}$ want		${ }_{25} 10 \mathrm{~A}$		${ }_{2}^{10 \mathrm{C}}$	100 250	$\stackrel{106}{105}$
	${ }^{50 \mathrm{OH}}$	50A	508	50 C	500	50 S
${ }^{2} 50$ werrs	250 ${ }^{\text {20 }}$	2504	250日	${ }_{250 C}$	+2500	250E
, 1000 wattrs	5000H	-1000A	(${ }_{10008}$	${ }_{\text {lococ }}$	¢0000	${ }_{\text {cosem }}$
500 wath						

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions.
Solderable Stud ${ }^{\text {TM }}$ Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the P.C. Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.

For product samples and full technical literature contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex.
Telephone 01-902 5941. Telex: 923455.

Ψ
Thermalloy International
Advanced technology in semiconductor accessories.

WW - 015 FOR FURTHER DETAILS

WW-021 FOR FURTHER DETAILS

MEMORIES	micros	
	80351	£5.80
8×4116, ceramic, 200 ns $£ 12.80$	8243.	£2.80
2708...23	8085 A.	¢6.80
2716... $£ 3.80$	8085A-2	£8.50
2532/2732............................... $£ 9.30$	8155	¢9.95
2114L, ceramic, 200 ns $£ 2.99$	8155-2	E11.81
6514, 200ns................................£5.30	8251 A	$£ 5.60$
$6116 \mathrm{~L}, 200 \mathrm{~ns}$..........................£28.15	8253-5	¢8.95
[2K $\times 8$ CMOS RAM. I data hold	8255A-	¢4.99
50, A)	8257-5	£10.40
8264-15, 150ns, 64K RAM....... $£ 25.00$	$8259-5$	£7.20
Floppy disc controller μ PD 766 (8272)	8279-5	£9.99
		¢6. 25
Crystals $-5,6$ and $10 \mathrm{MHz} \ldots \ldots . . . \begin{array}{ll}\text { E3.00 }\end{array}$	280 PIO	¢5.75
TTL delay lines, $100 \mathrm{~ns}-10 \mathrm{~ns}$ taps .E5.99	280 CT	¢5.75
200ns-20ns taps $\mathbf{E 5 . 9 9}$	Z80 DM	f19.95
All components guaranteed new, full specification devices.	280 SiO	£29.95
Quantity discounts available on 10- of one device.		
We can quote very competitive prices on any Japanese component. Try us.		
Please add P. \& P. 30p to orders under £25. Add V.A.T. to total.		
BDS MICROSYSTEM DESIGNS		
BDS MICROSYSTEMIDESICNS		

TOROIDAL

TTPE	$\begin{aligned} & \text { SERIES } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { SECOND } \\ & \text { Volis } \end{aligned}$	ARY RMS Current	PRICE
307a $70 \times 30 \mathrm{~mm}$ 0.45 Kg	1×010	$6+6$	2.50	
	1×011	$9+9$	1.66	
	1×012	$12+12$	1.25	C4.48
	1×013	$15+15$	1.00	24.40
	1×014	$18+18$	0.83	+087p P/P
	1×015	$22+22$	0.68	+080p VAT
	1×016	$25+25$	0.60	
	1×017	$30+30$	0.50	
$\begin{gathered} 50 \mathrm{FB} \\ 80 \times 35 \mathrm{~mm} \\ 0.9 \mathrm{Kg} \end{gathered}$	2×010	$6+6$	4.16	
	2×011	$9+9$	2.77	
	2×012	$12+12$	2.08	8493
	2×013	$15+15$	1.66	
	2×014	$18+18$	1.38	+ $5110 \mathrm{P} / \mathrm{P}$
	2×015	$22+22$	1.13	- O 90p VAT
	2×016	$25+25$	1.00	
	2×017	$30+30$	0.83	
	2×028	110	0.45	
	2×029	220	0.22	
	2×030	240	0.20	
$\underset{\substack{80 \times 30 \mathrm{~mm} \\ 1 \mathrm{Kg}}}{\mathrm{SO}_{\mathrm{Va}}}$	3×010	$6+6$	6.64	
	3×011	$9+9$	4.44	
	3×012 3×013	$12+12$ $15+15$	3.33 2.66	C5.47
	3×014	18-18	2.22	+ 51 $43 \mathrm{P} / \mathrm{P}$
	3×015	$22+22$	1.81	+ E104 VAT
	3×016	$25+25$	1.60	
	3×017	$30+30$	1.33	
	3×028	110	0.72	
	3×029	220	0.36	
	3×030	240	0.33	
$\underset{90 \times 40 \mathrm{~mm}}{120 \mathrm{Kg}}$	4×010	$6+6$	10.00	
	4×011	$9+9$	6.66	
	4×012 4×013	$12+12$ $15+15$	5.00 4.00	56.38
	4×014	$18+18$	3.33	+ $1 / 43 P / P$
	4×015	$22+22$	2.72	- E1 ! 7 VAI
	4×016	$25+25$	2.40	
	4×017	$30+30$	2.00	
	4×028	110	1.09	
	4×029	220	0.54	
	4×030	240	0.50	

GOODS DESPATCHED WITHIN 7 DAYS OF RECEIPT OF ORDER

OR SINGLE AND SMALL QUANTTY ORDERS.

TYPF	$\begin{aligned} & \text { SERIES } \\ & \text { No } \end{aligned}$	$\underset{\text { Volts }}{\text { SECOND }}$	ARY RMS Current	PRICE
$\begin{gathered} 160 \mathrm{VE} \\ 110 \times 40 \mathrm{~mm} \\ 1.8 \mathrm{Kg} \end{gathered}$	5×012	12+12	6.66	$\begin{aligned} & \mathbf{4 8 . 4 4} \\ & +\Sigma / 43 P / P \\ & +48 V A T \end{aligned}$
	5×013	$15+15$	5.33	
	5×014	$18+18$	4.44	
	5X015	$22+22$	3.63	
	5×016	$25+25$	3.20	
	${ }^{3} \times 017$	$30+30$	2.66	
	5×018	$35+35$	2.28	
	5X028	110	145	
	5×029	220	0.32	
	5×030	240	0.56	
$\begin{gathered} 225 \mathrm{VA} \\ 110 \times 45 \mathrm{~mm} \\ 2.2 \mathrm{Kg} \end{gathered}$	6x014	18+18	625	$\begin{aligned} & \mathbf{2} 0.06 \\ & +\Sigma / 73 P / P \\ & +\Sigma / 77 V A T \end{aligned}$
	6×015	$22+22$	5.11	
	6x016	$25+25$	450	
	6×017	$30+30$	375	
	6×018	$35+35$	3.21	
	$3 \mathrm{X025}$	$40+40$	2.81	
	$\therefore \times 028$	110	204	
	5X089	220	1.02	
	6 XO 30	240	0.93	
$\begin{gathered} 300 \mathrm{VA} \\ 110 \times 50 \mathrm{~mm} \\ 2.6 \mathrm{Kg} \end{gathered}$	7×016	$25+25$	6.00	$£ 11.66$ $+1 / 73 \mathrm{P} / \mathrm{P}$ + £2 OIVAT
	7×017	$30+30$	5.00	
	7×018	$35+35$	4.28	
	7×086	$40+40$	3.75	
	7×025	$45+45$	3.33	
	7×028	110	272	
	7×029	220	1.36	
	7X030	240	1.25	
$500_{\text {vi }}$ $140 \times 60 \mathrm{~mm}$ 4 Kg	8×017	$30+30$	8.33	$\underset{\substack{52.53 \\+5264}}{ }$
	8×18	$35+35$	7.14	
	8×025	$40+40$	6.25	
	8×025	$45+45$	5.55	
	8×033	$50-50$	5.00	
	8×028 8×029	110	4.54	
	8×029 8×030	220 240	2.27 2.08	
	8×050	240	2.08	

1.L.P. TOROIDALS

Only half the weight and height of their laminated equivalents. in choice of llov. 220 V . 240 V primanies coded as follows: (Secondaries can be connected in sertes or parallel)
for $110 V$ Primary inser 0 in place of " X "in type number For 220V Prtmary (Europe) insent 1 in place of " X " in type number Example - 120 VA 240 V IS $+15 \mathrm{~V} .4 \mathrm{~A}=42013$

Now turn to our ads. on pages 90 and 91

- CUSTOMER DESIGN ENQUIRIES INVITED. QUANTITY PRICE LIST AVAILABLE.
- FREEPOST FACILITY (U K only) Simply send your order in envelope to FREEPOST to address below. NO STAMP REQUIRED
- TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Lid or quote your ACCESS or BARCLA YCARD account No. To pay C.O.D. add fi extra to TOTAL

CANTERBURY CT2 7EP - Phone (0227)54778-Technical (0227) 64723 - Telex 965780

ABOUT THE NEW LAMINATES

I.L.P. LAMINATED
1.L.P. printed-circuit mounted mains transtormers have two independent pnmary windings which can be connecte
sernes for 240 V or parallel for 120 V operation. The two serles for 240 V or paralle. for 120 V operation. The two parallel to give a wide range of output voltage/current configurations. All are wound on split bobbins, eliminating need for a inter-winding screen. Breakdown tested to 2000 VAC minimum
Regulation - 3VA typically 21%; 6VA typically 15%; 12VA typically 10%
To: I.L.P. ELECTRONICS LTD. CANTERBURY CT2 7EP Please supply Transformer(s) No.(s).

Total purchase price $£$
Ienclose Cheque \lfloor Postal Orders \downarrow International Money Order Debit my Access/Barclaycard Account No

NAME
ADDRESS
Signature

Stocks of standard items
excerd a quatter of a million． Individual units to the tightest specification made to order

This techology is a a alable now from

29．Market Suce Cravkerne somersettai 8 7

Cowneme（af（x）7at3： Telen 46283 infare g

No other cleaner has all these advantages：－
1．Only 100% pure．natural diamond grains are utilised
2．Blades are treated with hard chrome to reintorce the selting of the diamond grains to obviate loosening or breakaway during use．This process also prevents clogging of the diamonded surface by residues resulting from use
3．All diamonded blades are rectified to ensure an absoluteiy smooth surface by eliminating diamond grains which may rise above the surface．This eliminates all excessive scratching during use．
4．All diamond grains are rigidly calibrated to ensure a perfectly uniform grain size of either 200.300 or 400.

5．The chrome gives a very weak co－efficient of friction and the rigidity of the nylon hande is calculated to permit proper utilisation and yet pliant enough to avoid undue pressures on highly delicate relays．
－Grain size 200 ．thickness $55 / 100 \mathrm{~mm}$ ．．both faces diamonded For quick cleaning of industrial relays and switching equipment．etc
－Grain size 300 ．thickness $55 / 100 \mathrm{~mm}$ ．both faces diamonded For smaller equipments．like telephone relays computer relays．etc
－Grain size 400 ．thickness $25 / 100 \mathrm{~mm}$ one face diamonded．For sensitive relays and tiny contacts．Two close contacts facing each other can be individually cleaned．because only one face of the spatula is abrasive

Sole Distributors for the United Kingdom SPECIAL PRODUCTS（DISTRIBUTORS）LTD
81 Piccadilly，London W1V OHL．Phone：01－629 9556 As supplied to the M．O．D．，U．K．A．E．A．，C．E．G．B．Britizh Rail and other Public Authoritios： so major industrisk and WW－ 068 FOR FURTHER DETAILS

－holds up to six eproms －SAFFTY INTERIOCHED TRAY －FAST ERAST TIME －QUALITY STEEI CASE
－MONEY BACK GUARANTEE
landel Siree，Mostey，La
WW－062 FOR FURTHER DETAILS

P．\＆R．COMPUTER SHOP

EPSON MX－80 80．GPs DOT MATRIX PRINTER WITH SPECIAL INTERFACES． 3982 IBM I／O PRINTERS VDUs，ASCII KEYBOARDS，ASR，KSR，TELETYPES， PAPER TAPE READERS，PAPER TAPE PUNCHES， SCOPES，TYPEWRITERS，FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$ ．POWER SUPPLIES，STORE CORES，TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT．OPEN MONDAY TO FRIDAY 9am－5pm SATURDAY TILL 1 pm

COME AND LOOK AROUND
SALCOTT MILL，GOLDHANGER ROAD
HEYBRIDGE，ESSEX．
PHONE MALDON（0621） 57440

Voltstab. The simple answer to vour current problem.

If you are experiencing random faults and failures in your microprocessor-based equipment, they are probably caused by voltage irregularities. Even dedicated supplies may not be the answer - they will still suffer from momentary voltage transients and power supply breaks.

Galatrek have the simple answer. A plug-in VOLTSTAB Constant Voitage Transformer. Reliable, efficient and economical, the Galatrek VOLTSTAB offers you:

- Output stabilisation to $\pm 1 \%$ from mains input fluctuations of $\pm 20 \%$
- Transient attentuation
- Momentary power back-up

Available ex-stock from regional stockists in a choice of power ratings from 250 VA to 5 kVA , the Galatrek VOLTSTAB will keep your sensitive electronic equipment running smoothly. Both the factory and the regional stockists throughout the UK will assist you technically to ensure you match the VOLTSTAB unit exactly to your requirements.
Mr R Koffler, Galatrek International, Scotland Street, Llanrwst, nr Colwyn Bay, Gwynedd LL26 OAL, North Wales, Great Britain. Tel No: 0492-640311/641298 Night Service: 0492-30592
Telex: 617114 A/B Galahu
Voitstab is the Registered Trademark of Galatrek International ALATREK ?

Please send me the 18 page Galatrek VOLTSTAB catalogue, which includes details of your Mains Filters and Standby Power Supplies.

TEST INSTRUMENTS

THANDAR-
DIGITAL MULTIMETERS (LED)PDM35.£39.68 DM235.£60.38 DM350. £83.38 DM450 $£ 136.85$ DIGITAL MULTIMETERS (LCD):
TM351.£113.85 TM352.. £57.44 TM353.. $9 \mathbf{9 6 . 6 0}$ TM354.. £45.94 FREQUENCY METERS:
PFM200.£57.27 TF040.£126.50
TF200.£166.75
PRE-SCALER: TP600......... £43.13 OSCILLOSCOPE: SC110.£159.85 PULSE GEN.: TG105......... $£ 97.75$ FUNCTION GEN.: TG100.. $\mathbf{£ 9 0 . 8 5}$ instrument Case................. $\mathbf{£ 1 0 . 2 9}$ Bench Instrument Rack £22.94 Carrying Cases:
DM235, DM350, DM450....... £8.86 PDM35, TM354, PFM200 £3.45 TM351, TM353, TF040 £6.84 TF200, TG105, TG100 £6.84 TM352.... £2.01 SC110..... £8.86 Mains Adaptors:
PDM35, DM450, PFM200 $£ 5.69$

DM235, DM350, TF040 £5.69 TF200, TP600, SC110 £5.69 Rechargeable Battery Pack: DM235, DM350, DM450...... 88.63 SC110............................ $£ 8.63$ Universal Test Lead Set.... £11.27 40 KV Probe £34.44 Connector Pack (PFM200) . $\mathbf{£ 1 1 . 2 7}$ Probe
(For SC110, TF040, TF200)
X1 £8.05 X $10 £ 8.86$
Sprung Hook/Trimmer Pack (For SC110).......................... $£ 2$. SERVICE MANUALS (each)

* No V.A.T. on manuals

All prices include V.A.T. For orders over £20, p. \& p. FREE (U.K.); under $£ 20$ p. \& p. E1 (U.K.).

All prices correct at 1-4-81. E \& OE .

Many more instruments available in the LEADER and TMK ranges
Send for catalogue 30 p (including postage)
Cash with order

DAROM SUPPLIES

Open: Monday to Friday 9 a.m. -5.30 p.m.
4 Sandy Lane, Stockton Heath WARRINGTON, WA4 2AY, CHESHIRE Telephone: (0925) 64764

WW - 065 FOR FURTHER DETAILS

Watch our Television

Television is the leading magazine for enthusiasts and professionals embracing all aspects of servicing, fault finding, construction and new developments.

In this month's issue RANK BEGINNERS

The recent Rank T20/T22 colour chassis, the only U.K. TV chassis to make use of the Siemens-type switch mode power supply, is understandably leading to a great deal of apprehension on the fault finding front! We take a look at the systern and discuss the various difficulties involved.
plus!

* COLOUR PORTABLE RECEIVER-Part 2 * Dealing with AFC problems!

IEEXVFON

Keeps you in the picture! June issue 70p

Ł
 L.J.ELECTRONICS LIMITED
 MICROELECTRONIC AND MICROPROCESSOR SYSTEMS FOR EDUCATION

WW - 042 FOR FURTHER DETAILS

POPULAR FRONT IN POWER

Probably Europe's most popular bench power supply range. More than 50,000 in use. Nine models to choose from (most with NATO stock numbers).
The Farnell L series feature large recessed meters, constant voltage or constant current, overload and short circuit protection, coarse and fine conirols, a separate output switch and LED indicators for mains on and current limit.

THEY'RE EX-STOCK TOO!
Models available:

For quick delivery or specs. and prices contact

FARNELL INSTRUMENTS LIMITED
WETHERBY-WEST YORKSHIRE LS22 4DH-TELEPHONE 093761961 TELEX 557294 FARIST G
or Harpenden (05827) 69071

ALWAYS
 A CHANGING RANGE OF OSCILLOSCOPES, COMPUTERS, TERMINALS ETC.

48 VARIAN RUBIDIUM FREQUENCY STANDARD $100 \mathrm{KHZ} / 1 \mathrm{MHZ} / 5 \mathrm{MHZ}$
49 KEITHEY INSTRUMENTS REGULATED HIGH VOLTAGE SUPPLY $\underset{\text { TYPE }}{\text { E60 }}$
50 T,OA ALECTRONIC POLYRECORDER type EPR-2T
51 STOCDARD AIRCRAFT Radio Interference and Field Intensity Meter type
52 TAYUR VALVETESERTYpe 45D
54 R\& SZ-g DIAPRAPH $300-2400 \mathrm{MHZ}$ BN3562
55 R\& SUnbalanced Standard ATTENUATOR BN $18042 / 50$
56 R \& S VHFUHF FREQUENCYY METER $30-3000 \mathrm{MHZ}$ BN 442
59 R SODIRECT CAPACITANCE METER BN5201
69 B \& KHETERODYNE VOLTMETER type 2005 (LIMPMETER type A2BA
probe mition digital volimmeter type LM1420.2
62 SOLARTRON DIGTAA VOLTMETER type 1420.2 with Meàn AC Unit
64 MARCONI SIGNAL GENERATOR type TF995A/3/S (CT402)
65 JARROLD SWEEP GENERATOR $20-112$ MHZ
HEWLETT PACKARD VALVE VOLTMETER type 412A
HATPELD SELECTIVE LEVEL METER IYDE 100
COSSOR NOISE LEVEL METER CTA54
69 MEA MKITT DECADE RESISTANCE BOX DRIU
0 MARCONI VARIABLE ATTENUATOR tyPe TF1073A/S ICT421]
2 WAY AE KERR UNIVERSAL BRIDGE type B221
3 WAY ME KERR AF SIGNAL GENERATOR type S $12110 \mathrm{HZ}-120 \mathrm{KHZ}$
SIGNQL GENERATOR HyPe CT344 $0.1 \mathrm{HZ}-10 \mathrm{MHZ}$
SGGNL GENERATOR type CT 3440.1 HZ - 10 MHZ
CLARE FLASH TESTER
6 MARCONI RF ATTENUATOR TYOE TF
77 MEA HHKIT VALVE MILLLIVOLTYPETER AV-3U
78 TELONIC SWEEPER 450-900MHZ
79 COSSOR SWEEP OSCILLATOR HYPE CT 202
81 AEIR DIGITAL VOLTMETER AMFYM SIG NAL GENERATOR 500 Mk 3 . 2041 1-320MHZ
82 HATFELD TRAN SISTORISED SELECTIVELEVEL METER SPO 7820
83 S.T.C LEVEL MEASURING SET Type 743098
85 SIEMENS SUPERHET RECEIVER 30 HZ . 1 MHZ
86 R\&S MICROWAVE POWER METERBN2412/50 $0-3200 \mathrm{MHZ}$
87 ADV NCE SIGNAL GENERATOR BAB 100KHZ-100MHZ
89 BRYFNS X-Y PLOTTER - NO PEN
90 ADV NCEE X-YRECORDER Type HR100 No pen
91 MAR NONIDOUBLE PULSE GENERATOR type TF1400/S
O R\& RESONANCE FREQUENCY METER BN $4312 / 230-300 \mathrm{MHZ}$ 94 S.T.C OSCIL LATOR TYOP 7430BA
95 WAVVE KERR VIDEOOSCILLATOR type 022B 10KHZ-10MHZ
96 HATMELD PSOPHOMETER DIg 657167A
$58^{\text {ST HA B. }}$ HTT PACKARD MEMORY DISPLAY 5480 A with 4 S1
and 5485A two channel input
99 E.H. 2 Unit 230 Voits 50 cs 25 VA 75 KV
OO AVO VALVE CHARACTERISTICMETER
pLEASE JHECK AVAILABILITY BEFORE ORDERING

CREED MODEL 75
Still the cheapest way to get a printou from your microproce
used, good condm
As new, Ministry boxed $£ 40$ each

MINIATURE

VARIAC 0.6 AMP
In an attractive Blue Case with Carying
Handle. Size $101 / 4 \times 6^{1 / 4} \times 6^{1 / 2}$. W th 20 good quality screw terminals with integral 4 mm socket giving multiple voltage a As new condition. Individually Boxed.
£15 each. P\&P£2

RADAR AERIALS

Rotary. complete with Waveguide
Coupiers. These are brand new. M nistry boxed. Very impressive. Dish diameter 27 inches. f85 each. Carriage $£ 5$

EX-MINISTRY MASTS
40ft. HEAVYDUTY
f50 each. Carriage $£ 5$
INVERTOR. TYPE 350 Input 115 Volts DC. Output 115 Volts $A C$
$400 \mathrm{HZ}, 3-\mathrm{Ph}$ hase Supplied with connection details
Tested, good condition $£ 30$ each
Tested but scruffy $\mathbf{£ 1 5}$ each
INFRA RED IMAGE
CONVERTER Type 9606
(CV 144)
ent 3 KV to 6 KV , supply individually boxed. With data. $£ 12.50$ each

FERRET A.T.E. £650 Phone for details TRANSISTOR INVERTOR 15 VAC 1.7 Amp Input. Switching is at
20 Khz . Output windings from Pot Core Can be rewound to suit own purpose or unit can be broken for host of corrpanents.
Circuits supplied. $£ 1.25$ each. P\&P $£ 2$.

SOME TEKTRONIX 500

RANGE OSCILLOSCOPES
From $£ 100$. Pr one for details

DIODES

 1N 3430 , NA 45151
100 off $\mathrm{E} 1.50,1.000$ off E 10

```
PULSE TRANSFORMER. Sub min,
MEMO TY TYPE MULTIPLIER. Two high voltage outputs and
OONTT TAKE CHMNCES. Use the proper EHT CABLE. 10p pe
metre or £7.50 Par 100 metre/drum P&& £2
RAPID DISCHARGE capacitors 8mtd 4kV E5 each. P&P &2.
MYSTERY IC PACK,SOme 40 pin good mixture -all ne
Mevces, 25ICs farf1, P&, 50
DECOUPLINGG C&PACITORS 
H.T. Capacitor 500pf 8KV 20p each.
0-waymes ar COLOUR RIBBON CABLE. New 40p per metre
M,
ment, tested 60% each. 
GEC UHF/VHF 6 buttin tuner £2 each
RANCO 250V IEA THERMOSTATS with COntrol knobs cali
```



```
BRAND REX blug wite wraps. }30\mathrm{ metres for £1. P&P 25p,
With knob Lengt+1/2 25p each.
AUTO 240V inplt 115V 1 Amp output E1 25 each. P&P E1 25,
*e.P&P&1. Soc 12V 0.92A Size 21/2\times2\times2".Good quality
E1.50 ea P&P f \ OMM Size 60\times40\times42mm 50p each
240V input. Soc. 12-0.12V 50MA. SI2e53\times45\times40mm E1 ea,
N4005-5p; 1P 4002-3p
BC147, BC148B. BC157, BC158. BC237, OA90, OA81, BA154,
At 25p each:
lol
REGULATOR TEA625 8 to 20V IN -5V out 100MA TO5 Con
```

50p each BF 256C 20p.
TVAMPLIFIER 13 A 120 20 each

2

53	5 p	74	7p	75325	E1
7451	5 p	74538	10p	SN15062	
7402	12p	74502	12p	MC4028	
76	20 p	74154	70p	74	
7495	35p	$74 \mathrm{CO2}$	16p	74	
$74 \mathrm{C00}$	17p	74 CO 4	180	$74 \mathrm{C86}$	
74H74	12p	74 C	18 p		
MOTOROLA DUAL in Line 6-pin Opto Coupler 30p each. Gold plate tester version 50 p each. ELECTROSTATIC VOLTMETER 7.5 KV £ 8 ea. P\&P $£ 1.57$					
Other ranges avalable-please enquireTRIMMERS. Sub min 0.25 to 1.25 pt 1 to 45 pf 7 to $\angle 5$ pt All					
at $6 p$ each.					All
HONE YWELL humidity controlier 5 50p					
THYRISTOR TIMER. Solid Siate 15 secs adjustable (ese!) in plastic relay case. Standard 7 -pin base. Series delay 50 p tach.					
MINIATURE PC MOUNT SLIDE SWITCH. 2 pole 2 wav 10p					
a centre minus sign to the left of the figure one with deama places between digits. Good brilliance at 1.5 V 15 con eections					
$£ 2.50$ oach					
Some E.H.T.					
se enquire.					
black or yrey $£ 7.50$. Older style black $\mathbf{£ 2} .50$ each. Discoloured grey $706 £ 4$ ea. P\&P $£ 150$ per telephone					
OC SERVO MOTOR 110 V 2.5 Amp continuous. Dout le shaft					
Brand new. 4 wire 4 brush $\mathbf{E 1 8}$ ea. Plus cartiage.PC Mount POTS. Wire wound with knot 200 ohm \& 10 ohm .					
10p ea					
MIN RELAY 24 V 2 pole c/o. Brand new 75 p each.					
TIME DELAY RELAY 0.1 to 10 secs. 115 V AC. DPDT C5 each					
CAPACITORS at $5 p$ each. 0.1 uf 400 V . Small rec block PC Moun Gemanclass 3300pt 220 nt 250 V . 0.01 mfd 160 V					
INSERT can be used as MicrophonelEarplece llike used as					
TOROIDAL TRANSFORMERS Input 0.120-240 volts. Cutput $0-12 \mathrm{~V} ; 0-12 \mathrm{~V}$. 10 VA per winding. Encapsulated identical to					
R S. Components at $£ 8.90$ OUR SPECIAL PRICE $£ 5$ er. P\&P					
TANTALUM CAPACITORS All at 10 p each 100 off E 7.50.22 mfd 6 V ; $39 \mathrm{mfd} 10 \mathrm{~V}: 22 \mathrm{mdd} 35 \mathrm{~V}$ 1 1 mfd 35 V .					
MINIATURE SLIDE SWITCHES. Single pole 2 way 10p each10 oft 90 p.					

MOTOROLA DUAL in Line 6 -pin Opto Coupler 30p each. Go

HONE YWELL humidity controlier 5 50p each
THYRISTOR TIMER. Solid Siate 15 secs adjustable (-ese!) in plastuc relay case Standard 7 .pin base. Series deiay $50 \mathrm{p} \rightarrow$ ach
MINIATURE PC MOUNT SIDE SWITCH. 2 pole 2 waw 10p gach 4 CiGiT SEGMENT Pee digt plus af figue one to the elp plus
 places between digits. Good brilliance at 1.5 V 15 con vections
p2. 50 anch
Some E.T. TRANSFORMERS and CAPACITORS available. Somo Eht Tlease nuare

 Brand new. 4 wire 4 brush f 18 ea. Plus cartiage.
PC Mount POTS. Wirg wound with knot 200 ohm \& 10 ohm . PC Mou
10p ea.

MIN RELAY 24 V 2 pole c/o. Brand new 75 p each

MIN RELAY 24 V 2 pole c/o. Brand new 75p each.
TIME DELAY RELAY 0.11010 secs. 115 VAC . OPDT © each
CAPACITORS at 5 p each. CAPACITORS at 5 p each. 0.1 Hf 400 V Sma.l rec bbock MNSERT can be used as Microphone/Earpiece (Like used as
Insent in telephone but superior quality) Ex-Min Brand new wrapped 75 p each, or 10 for $£ 6$.
TOROVAL TRANSFORMERS. Input $0.120-240$ Volts. Cutput E1.50. TANTALUM CAPACITORS All at 10 p each 100 off E 7.50 .
$22 \mathrm{mfd} 6 \mathrm{~V} ; 39 \mathrm{mfd} 10 \mathrm{~V} 22 \mathrm{mfd} 35 \mathrm{~V}, 1 \mathrm{mfd} 35 \mathrm{~V}$. 2 way 10 p each
MINIATURE SLIDE SWITCHES. Singie pole 2 way 10 OH 90 p
HEAVY
HEAVY DUTY RHEOSTAT, $7.50 \mathrm{hm}, 5.5 \mathrm{~A}$
Standard $1 / 4$ shaft $£ 2.50$ each P\&\& $£ 150$
LARGE EX-MINISTRY SPEAKERS OUTSIDE

$\mathbf{f 1}$ 4 p 69 p 14 p 40 p 50 p 24 p
 £1 4 p 69 p 14 p

Happy Memories

4116	$200 n s$	$\mathbf{£ 1 . 7 0}$
2114	$200 n s$	$\mathbf{£ 2 . 9 5}$
2708	$450 n s$	$\mathbf{£ 3 . 3 5}$
2114	$450 n s$	$\mathbf{£ 1 . 9 5}$
2716	5 volt	$\mathbf{£ 3 . 7 0}$

Memorex Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, $£ 19.95$ per 10

Low Profile I.C. Sockets by "Texas

Pins
81416182022242840
Pence
101112161720212837
Memory Upgrade Kits for Apple, 2020, TRS-80, etc., from £13.60, please phone. Quantity prices available on request. Government and Educational Orders welcome

Trade accounts opened
All prices include VAT. Postage FREE on orders over £15, otherwise add 30p
Access and Barclaycard welcome

HAPPY MEMORIES, DEPT. W.W. GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY

 Tel. (054422) 618

CB

ACCESSORIES

TV TUBE REBUILDING

Faircrest Engineering Lid. manufacture a comprehensive range of equipment for processing all types of picture tubes, colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements

For full details of our service contact Neil Jupp

FAIRCREST ENGINEERING LTD.

Wílis Road, Croydon, CRO2XX.

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transtormers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers, Direct Injection transformers for Guitars Multi-Secondary output transformers, Bridging transformers, Line transformers, Line transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk PC8 mounting, Experimental transformers, Ultra low frequency transtormers for Ultra linear and other transformers for Transistor and Valve Amplitiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 voit line transformers to speakers, Speaker matching transformers (all powers), Column Loudspeaker transformers up to 300 watts or more.
We can design for RECORDING QUALITY, STUDIO QUALITY, HI-FI QUALITY OR OR SMALI Y. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE types are in stock and normal dispatch times are short and sensible. OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES, MIXING DESK MANUFACTURERS, RECORDING STUDIOS, HI-FI ENTHUSIASTS have Grours, AND PUBLIC ADDRESS FIRMS. Export is a speciatity and we have oversear cientionnaire which when completed, enab Mios is to EAST, etc. tions by return

E. A. Sowter Ltd. Manufacturers and Designers
 E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990

 The Boat Yard, Cuilingham Road, ipswich IP 1 2EG, Suffolk P.O. Box 36, lpswich IP1 2EL, EnglandPhone: 047352794 \& 0473219390

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not haye your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

Postage will be paid by Licensee

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, \mathbf{N} Ireland or the Isle of Man
\qquad

BUSINESS REPLY SERVICE
Licence No 12045
WIRELESS WORLD
Reader Enquiry Service 429 Brighton Road South Croydon Surrey CR2 9PS

Enquiry Service for Professional Readers

WW	Ww	WW .
WW	WW	
WW	WW.	ww.
WW	WW	WW
ww	ww	Ww
WW	WW	
WW	WW	WW
Ww	Ww	
WW	Ww	WW
WW	WW	WW
WW	WW	WW
ww	WW	
WW.	WW	WW
Ww	WW	WW
WW	WW	
WW. . .	WW	WW

WIRELESS WORLD
Wireless World, June 1981: WW 166
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name .

Name of Company

Address

Telephone Number.

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of emnioyees at this establishment . .
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Wireless World: Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:-

Subscription Manager, IPC Business Press, Oakfield House, Perrymount Roád, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional Readers ONLY.

WIRELESS WORLD

LOOK!
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name

Position in Company

Name of Company

Address

Telephone Nümber

Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in Gt Britain, Channel Islands, N Ireland or the Isle of Man

WIRELESS WORLD
Reader Enquiry Service
429 Brighton Road
South Croydon
Surrey CR2 9PS

Wireless World Subscription Order Form Wireless World, June 1981 WW 166

UK subscription rates
1 year: $£ 10.00$
Overseas 1 year:- $£ 13.00$
Flease enter my subscription to Wireless World for 1 year
I enclose remittance value
made payable to
IPC BUSINESS PRESS Ltd.

Name
Address
USA \& Canada subscription rates
1 year: $\$ 33.80$

ex stock from:
 Farnell International

FARNELL
INTERNATIONAL INSTRUMENTSLTD
WETHERBY.WEST YORKSHIRE.LS22 4DH
for brochures and price lists use the Wireless World Product Reply Service number below:

The New Scopex 14D-10

A dual trace 10 MHz high sensitivity oscilloscope At a price of $£ 240.00$ +VAT.
incorporating all the latest high technology developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.Add and invert facility.
- Probe compensation.
- Push button X-Y.
- Trace locate.
- 10 MHZ (-3dB) over full display.
- Complete with probes.

Ensures British leadership in the low cost high performance oscilloscope market.
Distributors required in certain countries

COPEX

Pixmore Avenue. Letchworth.
Herts SG6 1JJ. Tel: (04626) 72771

liwish to pay by Barclaycard/Trust Card.
Please charge to my account.
My Barclaycard/Trust Card No. is

Please send me full details of the 14DIO.
Name
Company
Address

MICRO TIMES

19 Mill St．Bideford，North Devon．EX 39 2JR Telephone Bideford（023 72） 79798 Dept．WWI

WW－ 061 FOR FURTHER DETAILS

PRINTED CIRCUITS FOR WIRELESS WORLD PROJECTS

U．h．f television tuner－Oct．1975－1 d．s
Stripline rf power amp－Sept 1975－1 d．s
Audio compressor／limiter－Dec．1975－1 s．s．（stereo）
F．m．tuner（advanced）－April 1976－1 s．s．
Cassette recorder－May 1976－1 s．s
Audio compander－July 1976－1 s．s．
Time code clock－August 1976－2 s．s． 3 d s
Date．alarm，b．s．t．switch－June 1977－2 d．s． 1 s．s
Audio preamplifier－November 1976－2 s．s．
Additional circuits－October 1977－1 s．s
Stereo coder－April 1977－i＇d．s． $2 \mathrm{~s} . \mathrm{s}$
$\$ 5.00$
$£ 5.05$
$£ 4.25$
$£ 5.00$
£5．00
$E 4.25$

Morse keyboard and memory－January 1977－2 d．s Low distortion disc amplifier（stereo）－September 1977 $\times 10 \mathrm{in}$ ． Low distortion audio oscillator－September 1977－1 s Synthesized f．m．transceiver－November 1977－2 ds． 1 s s Morsemaker－June 1978－1 d．s．
Metal detector－July 1978－1 d．s
Oscilloscope waveform store－October 1978－4 d s
Regulator for car alternator－August 1978－1 s s ． Wideband noise reducer－November 1978－1 d s． Versatile noise generator－January 1979－1 s．s． 200 MHz frequency meter－January 1979 － 1 ds High performance preamplifier－February 1979－ £15．00 £9．50

Distortion meter and oscillator－July 1979－2 s s

Moving coil preamplifier－August 1979－1 s．s | 88.50 |
| :--- |
| |
| 4.00 | E8．50

Multi－mode transceiver－October 1979 10 E14．00

$£ 2.00$ | 22.50 |
| :--- |

Amplification system－October 1979 － 10 d

$£ 12.00$

$£ 4.50$
$£ 3.75$
$£ 3.75$
$£ 18.00$
$£ 2.00$

$£ 5.00$
5.00

55.00

E 5.00
E .00
$£ 7.00$
$\mathbf{E 5 . 5 0}$
55.50
55.50
$£ 3.50$

Digital capacitance meter April 1980 s
Colour graphics system－Apd $1980-2 \mathrm{~s}$
$£ 16.00$
$E 7.50$
Audio spectrum analyser－April 1980－1 d．s．
Audio spectrum analyser－May $1980-3 \mathrm{~s} . \mathrm{s}$
Multi－section equalizer－June $1980-2 \mathrm{~s}$ s．
解 Nanocomp－Jan． 1981 － 1 d．s． 1 s．s．
Logic probe－Feb 1981－2d．s
Boards are glassfibre，roller－tinned and drilled．Prices include V．A．T．and U．K．postage
Airmail add 20\％，Europe add 10\％，Insurance 10\％
Remittance with order to
M．R．SAGIN， 23 KEYES ROAD，LONDON，N．W． 2
WW－075 FOR FURTHER DETAILS

reprints

If you are interested in a particular article $/$ special Feature or advertisement published in this issue of

WIRELESS WORLD

why not take advantage of our reprint service
Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material．（Minimum order 250．）
For further details contact
Martin Bloomfield，IPC Electrical－Electronic Press
Ltd．Phone 01－661 3036 or simply complete and return the form below．

ーーーーーーーーーーーーーーーーーー
To Martin Bloomfield，Reprints Department Quadrant House，The Quadrant Sutton，Surrey，SM2 5AS
I am interested in ．．．．．．copies of the article／ advertisement headed ．．．．．．．．．．．featured in

WIRELESS WORLD

on page（s）．．．．in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel．No

BECOME AN INSTANT MUSICIAN NO EXPERIENCE NECESSARY

As featured on "TOMORROW'S WORLD"

Create your own music with a VL-TONE. You combine the sound, rhythm and tempo and the VL-TONE plays it back beautifully!

CASIO VL-TONE (VL-1)

Electronic Musical Instrument Electronic Mus
and Calculator

ONLY $£ 3595$

Thanks to Casio's V.L.S.I. advanced technology you can compose and play music with one finger. Simply enter the notes of a melody into the memory maximum 100 notes). Recall the notes in sequence with the One
Select an Auto Rhythm, adjust the Tempo Control by means of the LCD Digital Display readout and record your best performance back into the memory. Mis function lets you play back the melody you have recorded. Add auto rhytrm and you can vary the tempo of both. Pitch can be varied and you can select any one of the 5 buitt-in instrument sounds, or switch to ADSR and create your own sounds with over 80 million variations.
VL-1 29-note synthesiser records and plays back MANUAL or ONE KEY playing he octave shift expands the range to almost 5 octaves.
Preset sounds: Piano, Vialin, Flute, Guitar, Fantasy and ADSR
Facilities: LC Display of notes, tempo and calculations. Battery saving Auto. Power Off with protection of the stored melody and the preset ADSR cata 10 alculator memory totall. A.C. adaptor socket. Built-in amplifier/speaker. Output (0.3 $30 \times 300 \times 75 \mathrm{~mm}$

Dimensions: $30 \times 300 \times 75 \mathrm{~mm}(11 / 8 \times 113 / 4 \times 3$ in. $)$. Weight: 438 g ; 15.40 z
NEW! CT-202 Polyphonic. 49 instrument sounds. Vibrato/sustain $£ 275$. Send 20p or details of Casio, Casiotone and Seiko products.
PRICES include V.A.T., P. \& P. Return of post service. Send cheques, P.O. or phone your ACCESS or BARCLAYCARD number to

ELECTRONICBROKERS New Test Equipment Catalogue

Electronic Brokers Ltd., 61/65 Kings Cross
Road, London WC1X 9LN.
Tel: 01-278 3461. Telex: 298694 Elebro G.

WW - 083 FOR FURTHER DETAILS

FM RADIOTELEPHONES FM9000-HIGHPOWER HAND PORTABLE
 FM2500 REPEATER OR DUPLEX BASE

 (High Band Only)5 watts output with low power switch. 6 channels. High sensitivity receiver Mobile mount charger. External remote $\mathrm{mic} /$ speaker and desk or wall mount chargers available

TONE PRODUCTS

We are the sole UK representatives of Communication Specialists. Their tone products are probably the most advanced available today. Crystal control, DIP switcn programming and small size make their application simple.

ZYCOMM ELECTRONICS LIMITED

47 Pentrich Road Ripley Derby DE5 3DS Tel: (0773) 44281 Tlx: 377466

25 watts output. Tone mute/talk through fitted as standard. Repeater has 8 or 16 channel capability. Auto mains failure standby. Modular construction. All solid state control.
All our equipment is approved to MPT 1301, and can be fitted with selective call and tone mute products
Illustrated leaflets are available on request. Agents throughout the UK.
Suppliers to many Local Authorities, Emergency Services and the Post Office.
 STATION

FM2512 - MOBILE UNIT

25 watts output. 12 channels selected by front panel switch. Easy to install and operate. Mic contains separate speaker module to aid copy under adverse ambient noise conditions

Appointments

Advertisements accepted up to 12 noon Monday, June 1, for July issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre (min. 3 cm)

 LINE advertisements (run on): £2 per line, minimum 5 lines.BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.)
PHONE: JAYNE PALMER, 01-661 3033 (DIRECT LINE)
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Q PIONEER'

require a

TECHNICAL TRAINER

with a difference. $\mathbf{£ 8 , 5 0 0}$ negotiable
To assist with expansion and the further development of our staff and the training of dealer's engineers, we now need a Technical Trainer to organise, prepare and implement training programmes

This will include preparing training material, eg circuit descriptions, practical repair and calibration techniques, etc., with audio visual aids, the training of our Engineers in developing their skills in the repairing and maintenance of high technology products and planning training programmes as necessary for new products

You must be an experienced engíneer with sound knowledge of video and digital tectiniques related to video products and have proven experience in a training environment. Knowledge of microprocessors will be an advantage.

For this position we offer outstanding career prospects to a person who has the ambition and ability to succeed in this highly competitive and exciting industry.
For more information, candidates, male or female, please write to or telephone:

Broadcast Engineer

Test and Service

Seltech Equipment Limited is a leading supplier of broadcast equipment and its increasing share of the market requires further expansion.

The position offered will involve testing and servicing a full range of broadcast products including switching, pulse generation, time code, clock and audio systems, utilizing the latest technology. The successful applicant will probably be qualified to HNC level but broadcast related experience is of prime importance.

The position is based in the company's modern premises at Bourne End, Bucks. Limited travel will be required.

Salary and conditions will be in keeping with the position offered.

In the first instance apply to: D. Craddock, Sales Director SELTECH EQUIPMENT LIMITED

Rose Industrial Estate, Cores End Road, Bourne End, Bucks. SL8 5AT Tel:Bourne End(06285) 29131

INNER LONDON EDUCATION AUTHORITY
LEARNING MATERIALS SERVICE

TELEVISION CENTRE, THACKERAY ROAD, LONDON SWB 3TB

The Television Centre produces a range of educational programmes in the form of video cassettes, sound cassettes and 16 mm film for distribution within London and nationally. It has a colour television studio, colour mobile unit and film unit all equipped to professional Broadcasting standards.

MAINTENANCE ENGINEER (ST3)

(£8304-£8916)
The maintenance section has four members and is responsible for all the equipment at the studio centre, both vision and sound
Applicants must have relevant technical qualifications (a knowledge of digital techniques would be an advantage), and should have good experience in the field, though consideration would be given to experience in allied fields. Limited "on the job" training is available, and the Authority will pay for attendance at specialised manufacturers' courses where will pay fore considered necessary.
Further information and application forms available from the Education Officer (EO/Estab 1c), Room 365, County Hall, London, S.E.1. Telephone 01-633 7456/7546.
Closing date: 14 days from appearance of advertisement.

MOBILE SECTION ENGINEER (ST3)

The mobile section operates colour broadcast standard television facilities including a three camera (link 120) mobile control room and battery portable equipment (Sony BVP, BVU). The main function of the section is to make observational classroom recordings for use in teacher education both in London and nationally. All members of the crew share rigging duties and driving of vehicles. A current driving licence is highly desirable and training will be provided leading to an H.G.V. test.
The engineer will join a team of three engineers who are jointly responsible for the operation and maintenance of the section's equipment. This involves lighting, vision control, microphone rigging, sound mixing and V.T. operation. Experience in one of the fields is essential; however as training in others will be given, it is important that candidates have appropriate academic qualifications and a thorough knowledge of current broadcast engineering practices. Candidates must also possess good health and normal colour vision.
Hours of work will be in accordance with the requirements of the service (the normal working week being 35 hours).
Further details available from the mobile video recording section, telephone 01-622 9966.
Salary within the scale £8304-£8916 (plus an irregular hours allowance of £156 per annum).
Closing date: June 26, 1981
Application forms for both posts from the Education Officer (EO/ESTAB 1c), Room 365, The County Hall, London, S.E.1. Telephone 01-633 7456/7546.

CAPITAL HOUSE 29-30 WINDMILL STREET LONDON W1P 1 HG
TEL: 01-6375551

THE UK's No. I ELECTRONICS AGENCY

Design. Dev. and Test to $£ 10,000$ Ask for Brian Cornwell
SALES to $£ 12,000$ plus car
Ask for Ken Sykes
FIELD SERVICE to $£ 10,000$ plus car Ask for Maurice Wayne

We have vacancies in ALL AREAS of the UK
Telephone: 01-6375551 (3 lines)

SERVICE TECHNICIAN

We are looking for an experienced person to take responsibility for our Servicing and Spares operation.
Key requirements are:

* Sound practical knowledge of electronics.
\star Experience of Professional Audio Equipment.
* Ability to liaise efficiently with our international customers and dealers.
Salary Circa £6,000 p.a.
Write or telephone for an application form:
Mick Newman, Soundcraft Electronics
5-8 Great Sutton Street, London, EC1
01-251 0581

Sony Broadcast Ltd

The continued expansion of one of the world's leaders in professional broadcast television equipment has created an immediate opening for the following

Technical Author

Applications are invited for this new and challenging position which responds to the Technical Training Manager. First class working conditions and facilities will be offered to the successful candidate, who will after a suitable familiarisation period be responsible for the following:

- Compilation of product training manuals.
- Preparation of circuit descriptions.
- Edit relevant articles observed in the periodical press. Also assist with editing technical papers presented by Sony staff.
Candidates should be self motivated, able to express complex technical ideas accurately and concisely and possess a knowledge of modern broadcast technologies/techniques. Specific product training will be provided.
If you like the thought of enjoying the success of world leadership then write in strict confidence to Barry White, Company Personnel Manager, now! And please don't forget a CV.

Sony Broadcast Ltd.

Broadcast
City Wall House
Basing View, Basingstoke Hampshire RG21 2LA Telephone (0256) 5501 i

WANTED

Engineers for hundreds of vacancies including: SOFTWARE RESEARCH ENGINEERS. Assessment of real-time languages and emulation techniques. To $£ 10,000$. South Coast. RF \& DIGITAL ENGINEERS for satellite comms./data collection system. To $£ 10,000$. Berks.
ANTENNA DESIGNERS, MICROWAVE OR RADAR, theoreticians and experienced engineers. To $£ 14,000$.
PROJECT LEADER. MPU and multiprocessor-based word processing systems. Advanced design concepts including speech communications. C. $£ 10,000$. Surrey.
For further information, contact

Charles Airey Associates
 4 Hammersmith Grove. London W6 ONA. Tel: 01-741 4011

RADIO WEST

THE ILR STATION TO SERVE BRISTOL AND AVON (Due on air in Autumn 1981) requires

BROADCAST ENGINEERS

preferably with radio experience. Salaries negotiable.
Write with C.V. to: The Chief Engineer, Radio West, Bush House,
72 Prince Street, Bristol BS1 4NU.

Kiribati

Technical Officer (Marine Electronics) Up to $£ 8,021$ plus allowances

Abstract

Candidates must possess the City and Guilds Telecommunications Technicians Certifcate or an equivalent diploma in marine electronics. In addition, at least two years' experience on installation and maintenance of radio, radar and elecrronic navigation equipment and land-based MF, HF and VHF communications of up to 1 KW output would be an advantage. The successful applicant will be responsible to the Senior Technical Officer for the installation, maintenance and repair of ship stations on locally registered vessels. The appointee will advise ship owners on spares' requirements and holdings and supervise local officers. Shipborne installations comprise JRC (JAPAN) and DECCA radars with navigation equipment mainly of "Kelvin Hughes" and "Omega" origin. The salary includes a substantial tax-free allowance paid under Britain's overseas aid programme. Benefits include: \star Free passages \star Generous paid leave \star Children's holiday visit passages and education allowances \star Subsidised housing \star Appointment grant For full details and application form, please ring Mr. P. Tannett on 01-222 7730 ext 3626 or write quoting reference YR1N/1007/WD.

Crown Agents

The Crown Agents for Oversea Governments and Administrations, Recruitment Division, 4 Millbank, London SWIP 3JD.

THOMAS MERCER LIMITED are developing a range of electronic precision gauging equipment which incorporates the latest microprocessor techniques. They now invite applications for the following appointment.

EEECTRONICS ENGINEER/PROGRAMMER

Working as a member of a small team, the Electronics Engineer/Programmer will be required to programme microprocessor systems and to design and develop electronic circuits primarily based on digital techniques. The successful applicant will need to be self-motivated, have some electronic/design experience and be qualified to H.N.C. or equivalent.
Applications should be made by completion of an application form which is obtainable, together with a copy of the job specification, from

Mrs. T. I. Breed - Personnel Officer
 THOMAS MERCER LIMITED

Eywood Road, St. Albans, Herts, AL1 2ND
Telephone: St. Albans 55313

YORKSHIRE REGIONAL HEALTH AUTHORITY

 Regional Medical Physics Service
ELECTRONICS TECHNICIAN GRADE IV-GRIMSBY

Required to undertake maintenance on a wide range of medical equipment and to assist with the development of new instruments. The post is based at the Grimsby Maternity Hospital, Second Avenue, Grimsby.

Candidates should possess an appropriate degree. HNC, ONC or other relevant qualifications and experience. Further details may be obtained from the Principal Physicist (Grimsby) Mr. J.M.M. Stirling, Tel: (0472) 74111.

Salary-Grade IV $£ 4404$ - $£ 5790$ p.a. The starting point will depend on qualifications and experience.
Application forms and job description obtainable from and to be returned to: District Personnel Officer, Grimsby Health District, Queen Street, Grimsby,Tel: (0472) 53771. Closing date: 10th June, 1981.

GrimsbyHealth Services

Humberside Area Health Authority

Radio Development Engineer

ZIMBABWE

Circa $£ 12,000$
Our client seeks the services of a radio development engineer having minimum 5 years' experience in the development of FM/AM radios, hi-fis and tape recorders. Emphasis is on practical experience. Theoretical qualifications are not of prime importance, but will influence salary offered.

This position is with a leading radio manufacturing company in very pleasant Bulawayo.

Telephone or write: Tony Bridges, 01-995 5151. Mor-gan-Bryant \& Bridges, Personnel Services, Power Road, London W4 5PT.
(1083)

DODolby QUALITY CONTROL TECHNICIAN

We manufacture and market audio reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
The Quality Control technician will be responsible to the Quality Assurance Manager for monitoring product quality in all areas of manufacturing. He, or she, will also carry out reliability trials and investigations.
The successful applicant will have experience in the service or manufacture of audio equipment.
Salary is negotiable.
Write or telephone:
Kevin Cross, Dolby Laboratories Inc.
346 Clapham Road, London SW9 9AP
or telephone: 01-720 1111.

ELECTRONIC TEST TECHNICIANS (up to $£ 6,000$ p.a.) ELECTRONIC INSPECTORS (up to $£ 100$ p.w.)

Exciting opportunities exist to help test and inspect our Simfire range of laser-based microprocessor controlled simulators which are used in the training of tank crews and other military personnel. The need for high reliability in the product's varied operating environment demands skilled and experienced staff.
In our Test area, you will be expected to test and diagnose faults from P.C.B. level through to system integration using a wide variety of both commercial and special purpose test equipment. You should have at least two years' similar experience and have a relevant City and Guilds examination (or equivalent).
For our Quality Control area, you should have at least three years' experience as an electronics inspector preferably holding an MoD or similar stamp. You should be familiar with the use of standard test meters and be able to work with the minimum of supervision carrying out
s e at
detailed inspection on any of our products or systems. Although based mostly within the factory, you will as part of a closely knit team, in both areas, become regularly involved in final testing of the equipment at our nearby outdoor testing range. For this a clean driving licence is essential. For further details and an application form please 2. contact:- Carol Allibone on 01-365 1100, ext. 50 or write to her at:-Weston Controls, Great Cambridge Road, Enfield,

Cancer Research

Campaign

ELECTRONICS TECHNICIAN

If you have confidence, take pride in your designs and would like to work in a modern laboratory, then we should like to hear from you.
Experience in design, although desirable, is not essential, but you will be expected to be familiar with state-of-the-art analogue and digital techniques in the frequency range $\mathrm{DC}-1 \mathrm{GHz}$. Preferred qualifications are degree or equivalent
You will join a small team working on such diverse problems as fibreoptics telemetry and nanosecond spectrophotometry. Much of the work is in conjunction with a unique dual-polarity 4 -million volt Van de Graaff accelerator. Starting salary about $£ 6,000$, dependent on experience and qualifications, on an incremental scale (currently under review).
Application forms and further information from the Deputy Director (5 V) CRC Gray Laboratory
Mount Vernon Hospital
Northwood, Middx. HA6 2RN. Northwood 28611

AIR RECORDING STUDIOS

require a

MAINTENANCE ENGINEER

to work in their West End studios, with a possible tour of duty in the Caribbean. Applicants should be conversant with the latest analogue and digital recording technique and qualified to H.N.C. standard. Salary according to experience with regular reviews and bonus.
For interview please call:
DAVE HARRIES or MALCOLM ATKIN
on 01-6372758

AIR TRAFFIC ENGINEER GRADE 2

Applications are invited from persons aged 25 years or over who hold a minimum of ONC (Eng.), City and Guilds Telecommunications Technician (Course 270/271), up to and including T3, TEC Certificate Diploma in Telecommunications or equivalent technical qualifications, for the post of Air Traffic Engineer Grade 2, at Ronaldsway Airport on the staff of the Isle of Man Airports Board. Candidates should have a sound knowledge of electronics and be experienced in the maintenance of Airport Communications, Radar, Nav. Aids, CCTV or data processing systems.
The post is permanent and pensionable on a non-contributory basis (save for a contribution of $11 / 2 \%$ towards family benefits) and has a salary scale of $£ 6,252$ - $£ 7,170$ per annum. The post involves shift work, including some Saturday and Sunday working for which an additional allowance is payable. Arrangement exist for the transfer of certain pension rights, a removal expenses grant of 60% is payable and the standard rate of income tax in the Island is 20%. The duties of the post include the installation, maintenance, repair and calibration of electronic equipment and systems concerned with Air Traffic Control and Operations at Ronaldsway Airport. Further details can be obtained from the Airport Director (Tel. 0624-823311).
Applications stating full name, address, date of birth, qualifications and experience, together with the names and addresses of two referees, should be submitted to the Secretary, Civil Service Commission, Central Government Offices, Douglas, within fourteen days of the date of this advertisement.
(1103)

CIVIL SERVICE

£25,000?

1. Q.A. MANAGER with $05 / 21$, D.Q.A.B. and C.A.A. experience to manage Quality Control and As surance for volume batch production of precision capacitors to £10,000. Bucks.
2. SERVICE ENGINEERS to maintain small business systems in S.E. England and the Midlands to $£ 7,500$ plus car. Ayrshire.
3. DIGITAL DESIGN ENGINEERS to work on industrial control systems for the paper industry to $\mathrm{f} 11,000$ Hants
4. TRAINEE PROGRAMMER with Test/Development background to train on ATE for digital applica. tions to $£ 9,000$. Berks
5. SUPPORT ENGINEER to provide technical backup for Applications, Marketing, and Customer Training on Line Printers to $£ 9,000$ plus car. Berks.
6. SYSTEMS ENGINEER to work on Underwater Acoustic Equipment to $£ 12,000$. Berks.
HUNDREDS OF OTHER ELECTRONICS AND COMPUTER VACANCIES TO Phone or write: $£ 25.000$
ANTHONY GILES. M.Sc.. C. Eng.. M.I.E.E
CLIVEDEN CONSULTANTS
87 St Leonard's Road. Windsor, Berks
Windsor (07535) 57818
24-hour Ansaphone
CLIVEDEN

Electronics Engineers

MULTITONE leads the world in electronic paging systems; and at a time when other concerns are cutting back, we're looking to expand our activities even further.
To this end we are now seeking to recruit additional Electronics Engineers to work on a variety of sophisticated projects.
Applicants should have a good theoretical background of the type obtained through an Honours Degree in Electronics or Physics. This must of course be coupled with a keen interest in, and a desire to contribute towards, modern communications.
The knowledge will be applied to the design and analysis of analogue circuits and systems, operating from audio frequencies up to 900 MHZ . These circuits will operate in conjuction with various arrays of logic elements, which must also be devised, for the purpose of data decoding and message handling. The practical realisation of such linear and digital circuitry will, in general, be by means of custom designed integrated circuits.
We are offering an excellent salary and benefit package and, perhaps more importantly, a real opportunity for career advancement.
Please apply in writing to:
Personnel Department
Multitone Electronics P.L.C.
6-28, Underwood Street,
London, N1 7JT
multitone
Tel: 01-253 7611

Principal Engineer Aerial Maintenance

The IBA requires a Principal Aerial Maintenance Engineer to lead a small aerial mainlenance group al its Engineering I leadquarters. The successful applicant will he responsible for the group's act ivities which include corrective and planned maintenance of all If A aerials. filter netivork and associated feeder systems in the SHF, UHFF, VHF and MF bands.
Candidates should be of Chartered Engineer level and have considerable practical experience in the installation/maintenance of this equipment and the conlrol and diredtion of itineran staff.
Previous managerial experience is essential as is a willingness to travel throughout the IJK lor which a cir is provided. The post is based at Crawley Court near Winchester. Hampshire Starling salary will be on a range which rises to E13.276 per annum Isalaries are due to be reviewed in fuly). Relocation expenses will be paid whereappropriate.
1.NDIPENDENT

BROMDCiASTIN(;
AL'THORITY

[^5]
Appointments

DATACOMMUNICATONS TEHANCAL SUPPORT ENGNEER

c. $£ 8,000$

In the field of Data Communications our client has secured an International reputation for expertise in the design of Network Management Systems.

An exciting expansion programme has been initiated for the 1980's resulting in the need for a new key member of the management team to make a significant contribution to the Company's successful growth

This newly created position would probably suit an experienced Customer Engineer wishing to develop his career and who has been successfully acting as a technical interface between the company and the end-user.

This demanding role requires an experienced Data Communications Engineer to liaise directly with the "enduser" as the Company "Technical Authority".
JonathanLee

Oxfordshire

He/she would provide a-
\star Technical back up to the Marketing function.
\star Control production of technical specifications and service manuals for all company products.

* Organise product-line customer training for U.K. and International distributors and
* Last-line back up to field service function as well as in-house/end-user troubleshooting function.
The successful candidate will be highly rewarded, not only with an attractive salary package, but also with free B.U.P.A., non-contributory pension, excellent relocation expenses plus the opportunity to join a highly successful, growing company which is set to expand in an International market. A clean driving licence and current passport would be a great asset to the successful applicant.

For further information and an application form write/phone:

Technical Recruitment, Knighton House, 62 Hagley Road, Stourbridge, West Midlands DY8 10D. (03843) 4436 (24 hours)

$\xi^{W} \in$ REDIFFUSION

SENIOR SYSTEMS ENGINEER

To control a team of engineers
involved in the evaluation, design and maintenance of recording studios high speed tape duplication facilities, and on location tape playback equipment.
The applicant will have at least
2 years experience in one or more of the above fields and will have a knowledge of both analogue and digital techniques.
Academic qualifications to HND
or similar level required.
The salary will be circa $£ 8,000$
MAINTENANCE TECHNICIAN
To carry out trouble-shooting, repair and maintenance of a variety of studio and high speed duplicating equipment at the Companies premises at Orpington.
Previous experience of professional tape-recorders, mixer desks and associated equipment and/or high speed duplicating processes is essential and some relevant academic achievment is preferred.
The salary will be circa $£ 4,360$
Apply in writing stating age,
qualifications and experience to
Engineering Manager,
Rediffusion Music Limited
Cray Avenue, Orpington
Kent BR5 3QP

Telecommunications

 Technical OfficersVacancies for Telecommunications Technical Officers Grades II and III exist in the Operations (Technical) Support Group of the Chief Engineer's Department.
Duties vary according to post but include the planning, installation, modificationiand maintenance of a wide range of advanced telecommunications equipment. Such equipment includes mobile and hand held radios, transmitter/receiver sites and base stations, C. C.T.V. and Video/Audio recorders, computer terminals (V.D.U. and printers), microprocessor control, alarm systems and a central systems complex.
Candidates should possess an ONC in Engineering or an equivalent City \& Guilds/TEC qualification. Candidates for Grade III posts should have a foral of 4 years training and experience with a further 3 years experience for Grade II posts.
Posts are in Central London and Thornton Heath.
Salary: (National) Grade III Posts $£ 5,310$ to $£ 7,170$.
Grade II Posts $£ 7,170$ on entry rising to $£ 7,965$.
in addition to the above a London Weighting allowance of $£ 1,016$ p.a. is payable in inner London and $£ 424$ p.a. at Thornton Heath.
Annual Leave: 4 weeks 2 days rising to 6 weeks with an additional $101 / 2$ days public and privilege holidays.
Non-contributory pension scheme.
There are good prospects for promotion and assistance is given for further educational studies where appropriate.

For further defails and an application form apply to:
The Secretary,
Room 2131 ITO),
105, Regency Street
LONDON SWIP 4AN.
Telephone: 01-230 3122 (24 hour answering service).
Closing date for return of application forms is 3rd June 1981.

SCHOOL OF ORIENTAL AND AFRICAN STUDIES Uuniversity of London Malet Street, WC1E 7HP DEPUTY CHIEF TECHNICIAN (Grade 5)

Must have good knowledge of servicing AVA equipment and a general interest in electronics. Previous experience of supervising Technician staff and experience in the field of Higher Education
would both be advantageous. Salary in would both be advantageous. Salary in
the range $\mathrm{f} .265-\mathrm{f7} 145$ p.a rising to the range f6,265-f7,145 p.a. rising to
f6,711-f7,666 p.a. in July 1981 . Good f6.711-f7. 666 p.a. in July 1981. Good
working conditions and prospects. Apworking conditions and prospects. Ap-
ply to Mr. J. Dixon. Tel. 637 2388, Ext. ply 10
237.
(1082)

TOP JOBS IN ELECTRONICS
Posts in Computers, Medical Comms, etc. ONC to Ph.D. Free service.

Phone: 01-906 0251^{-}
(899

Broadcast Transmission Systems

(Network Operation \& Maintenance)

The IBA has a vacancy for an engineer qualitied to HNC tevel in electrical engineering and having a good working knowledge of television and radio broadcasting sustems. The work will involse measuring the performance ol a national network of vision and sutnd circuits interconnecting between the ITV' and ILK Programme Companies and the IB.I Transmitting Stations. It will also call for detailed liaison with staff of the different organisations involved. Although based at the IBA's Engineering Headquarters at Crawley Cour in Hampshime frequent travelling is required Hence a current driving licence is essential.
Salary will be in a range rising 10 ± 8.647 (salaries will be reviewed in fuly) Generous relocation expenses will be paid where appropriate

INDEPENDENG
BROADCASTING;
AUTHORITY
Applicants (mate or female) should write or telephone for an application form (unting relerence WW/BTS to Glynis Powell. Personnel Officer, IBA. Crawley Court. Winchester. Hampshire SO21 2QA. Telephone 822270.

TELECINE ENGINEER

The video department of a large advertising agency requires a telecine engineer.
Ideally applicants should be conversant with colour
broadcast telecine and experienced in the
maintenance or have working knowledge of some of the following studio equipment:

> Rank Cintel Mk. III
> Colour Cameras Video Recorders Vision Mixers Audio Equipment Control Equipment

Salary will be negotiable and depend on experience and qualifications.
For more information write or phone:
Malcolm Syers
DAVIDSON PEARCE LTD.
67 Brompton Road, London, S.W. 3 01-589 4595

PHILIP DRAKE ELECTRONICS LTD.

Manufacture Audio and Intercommunication Equipment for the broadcast industry and have vacancies for the following staff:

PROJECT ENGINEERING ASSISTANT
The Project Department carries out the detailed design of systems, prepared the necessary information for production to build and test the equipment and prepares the customer's handbook. A person is required to assist in the department, initially under supervision, but eventually controlling smaller projects personaliy. A forma electronics qualification would help in the work but is not essential.

ASSISTANT TEST ENGINEER

o rest primarily the custom-built products, mainly intercommunication systems along with the standard product range. Some experience in the testing of audio and digital circuits and in the design of test jigs is desirable.
The company offers a $371 / 2$-hour week with 20 days' holiday minimum. Experience in the broadcast industry and/or suitable qualifications are desirable for all positions Salary negotiable dependent on experience.

Apply by telephone or writing to

Air Traffic Engineers

The Civil Aviation Authority has vacancies for men and women as Air Traffic Engineers Grade 2 in its Telecommunications Division offering a variety of work on a wide range of electronic systems and specialised equipments.
Air Traffic Engineers Grade 2 are involved in the installation and maintenance of radio, radar, air navigational and landing aids, and data processing systems. Staff are employed at some Civil Airports, Air Traffic Control Centres and Radar Stations and other locations throughout the UK but at present most of the vacancies are likely to be in the South of England with a few vacancies elsewhere in the UK.

Qualifications and Experience

You should be at least 20 years of age and have obtained either the O.N.C. (Eng.) with an electronic bias or C. \& G.
Telecommunications Technician T3 Certificates or other similar technical qualifications.
Skilled working experience in radio, radar or data processing is essential.

Salary

Salaries are on an incremental scale $£ 5,683-£ 8,783$. Posts in the London area attract an additional allowance (Inner London $£ 1,082$ - Outer London $£ 452$). Grade 1 posts (maximum salary $£ 10,610$) are normally filled by promotion from Grade 2.

Appointments

Cardiff Royal Infirmary
Department of Medical Physics \& Bio Engineering

MEDICAL PHYSICS TECHNICIAN II (Electronics) Salary: $\mathbf{£ 6 2 9 1 - £ 7 8 4 5 ~ p . a . ~}$

Applications are invited for the above post based at this busy Accident \& Emergency Hospital. The Technician will be required to take day-by-day responsibility for the running of the maintenance team based at Cardiff Royal Infirmary, responsible for a wide range of electro-medical equipment within the Authority.
Applicants should be car owners with a current drivers licence, as the job involves travelling from base to other Hospitals \& H.A. Clinics within the area.
$\mathrm{He} /$ she will, additionally, be responsible for undertaking some design and development work as a member of a team of graduate Scientists \& Technicians.
Applicants should hold a minimum qualification of ONC, but preference will be given to those holding HNC/HND or equivalent. All applicants should have at least 2 years' relevant experience as a Technician III.
Further information available from the Principal Physicist, Cardiff Royal Infirmary, Newport Road, Cardiff. Tel: (0222) 492233, Ext. 659.
Application forms and job descriptions available from: Mrs. D. V. Eaton, Assistant Unit Administrator, Cardiff Royal Infirmary, Newport Road, Cardiff. Tel: (0222) 492233, Ext. 407.
Closing date: 20th June, 1981

UNIVERSITY OF LIVERPOOL

TECHNICIAN

GRADE 5

SCHOOL OF EDUCATION
To undertake responsibility for AVA and CCTV provision in the School.
Applicants should be qualified and experienced in the fields of electronics and Audio Visual Aids, HNC minimum qualification and seven years' experience, capable of working on their own initiative. This is an interesting post involving a variety of activities in the fields of teaching and educational rieds orch
research
Salary in range £5,249-f6, 129 per annum.
Application forms can be obtained from the Registrar, The University, P.O. Box 147, Liverpool L69 3BX Quote Ref. RV/766/WW.

INSTITUTE OF PSYCHIATRY AUDIO-VISUAL TECHNICIAN

A vacancy exists for an Audio-Visual Technician at this postgraduate medical school and associated teaching hospital. Applicants should be experienced in maintenance of television equipmen and preferably hold relevant technical qualifications: e.g. City and Guilds Course 222 or 224. Salary according to experience and qualifications on Whitley Council Medical Laboratory Scientific Officer scale
currently $£ 4,677$ p.a. to $£ 6,597$ p.a. plus London Weighting E527 p.a.
For application form with job descrip. tion please write to the Deputy Secre tary, Institute of Psychiatry, De Cres pigny Park, Denmark Hill, London SE5 $8 A F$ or telephone 7035411 , Ext. 214,
quoting reference MJC/WW. quoting reference MJC/WW.

Overseas Opportunities TEC? C\&G?

The Cable \& Wireless Group, leaders in worldwide telecommunications, are offering excellent opportunities for Telecommunications Technicians to receive specialist training at our Engineering College in Cornwall before taking up an assignment at one of our many overseas branches.
Successful candidates will be offered a very attractive package, comprising two fixed-term contracts with excellent associated benefits.
You will have the opportunity to work on a wide range of equipment including:

Automatic Telex Exchanges International Telephone Switching Centres Earth Stations Radlo Transmission.

Your duties will include maintenance and testing of equipment, wiring, diagnosing and repairing faults, operational checks, monitoring both hardware and software and installation work.
You are aged between 17.25, holder of a Technicians Education Council (TEC) Diploma in Electronics and Communications Engineering or City and Guilds Part II Certificate in Telecommunications (Course 270/271). ' 0 ' levels in English Language and Mathematics would be an added advantage.

Please write or telephone for an application form and brochure to:
The Recruitment Manager, Dept. A.944, Cable \& Wireless Ltd., Mercury House, Theobalds Road, London WC1X 8RX.

Tel: 01-242 4433 Ext. 4008.
Closing date for applications is 30 June, 1981.

(1122)

ARTICLES FOR SALE

TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

LAB CLEARANCE: Signal Generators, Bridges; Waveform, transistor analysers; calibrators; standards; millivoltmeters; dyna mometers: KW meters; oscillo scopes; recorders; 'hermal. sweep,
low distortion true RMS audio deviation. Tel. 040-376236.
$\begin{array}{r}\text { FK. } \\ \hline 8250\end{array}$

BUGGED? UNDER SURVEILLANCE?

 the bugging game

BUILDING RAMS?

Why waste ume hand-wiring RAMS? This
53×25 inch protessional plated thru PCB
BRAND NEW VERO RACKS 19in x $5 \frac{1}{3}$ in, complete with 20 off 40 way edge connectors conly 6 used), 20 card slides and locking front panel (12in long). P.S.U. insitu on card slides having $110 / 240 \mathrm{v}$ input, on/ off switch and power on indicator. Output is +5 v at 5 amps and
-10 v at 5 amps fully stabilised. $-10 v$ at 5 amps, fully stabilised. (Can be converted to +12v at 5
amps). price $£ 35$ P/p and VA't amps). Price $£ 35 \mathrm{P} / \mathrm{P}$ and VAT' inclusive, Rushmoor Electronics

RACAL COMMUNICATION
 E150 RA17L $£ 200$ Or a fow as new $£ 250$
RA117E $£ 300$, all air
Rest RA117E E E 300 , all arr rested, supplied with full
manual, dust covers, in far louvred case for sets in f25. RA99A condition new metal tors. new ond boxed with manual 7 -ISB adap
used used with manual, 775 . RA 218 SSB-ISB adaptors
and fine tune MARCO NI Units for RA117 £65 MARCONI SIG
85 £ 55 to $£ 150$
MARCONI R.F. RADITIO OA1430 (CTA77), as newi in POWER MEYER full manual, power meter in FX rance metal case with , mplete with X-S-L band aerials, $£ 50$
 and 7. Mono and stereo. Serles 4 to $\mathrm{E} 6 £ 10$
$£ 20$ ea Series $7 £ 100$ to $£ 200$ ea Collected EXTEL TRANSTEL MATRIX PRINTERS. EXTEL TRANSTEL MATRIX PRINTERS. 5 level
Baudot Code. Accepts speeds up to 300 bauds Baudot Code. Accepts speeds up to 300 bauds
Supplied set to 50 and 75 bauds switched
Tested with manul, Tested with manual, £165
All items are bought direct from H.M. Govern
 S.A.E. all enquiries. Fhone ior apointment for
demonstrason of any item. JOHNS RADIO,
WHITEHALI WHITEHALL WORKS. 84 WHITEHALL ROAD, BIRKENSHAW., BRADFORD. TEL. BRADFORD
$684007(9.30 \mathrm{a} . \mathrm{m} .-1$ p.m.).

EHCAPSULATING, coils, transform ers, components, degassing, sith cone rubber, resin, epoiy. Los wax casung for brass, brouce, sut ver, etc. impregnating coals, urans
foriners,
components.
\forall acuum foriners, components. V acuum equipment low cost, used and new
Also for CRT regunning met Also for CRT regunning met
allising. Research \& Development allising. Research \& Development

Barratts, Mayo Road, Croydon | CRO 2QP. | $01-684$ | 9917. | 19678 |
| :--- | :--- | :--- | :--- |

ACRON VIDEO

Due to continued expansion at our modern premises in Bracknell, an additional

QUALITY CONTROL ENGINEER

is required to handle all aspects of check-out and inspection including goods inwards. Applicants will probably be aged between 25-30 years, ONC level with preferably 5 years' experience in a QC environment. Some knowledge of professional broadcast TV equipment is desirable.
Applications should be addressed to Mr. R. Browning, Acron Video, Unit 3, Lovelace Road, Bracknell RG12 4YT. Tel: Bracknell 55625.

FOR CLASSIFIED ADVERTISING

 RING JAYNE PALMER ON 01-661 3500 Ext 8158
ARTICLES FOR SALE

PROGRAMMABLE ACTIVE CROSS OVER PCB's based on Hi-Fi News and Record Review design. Ver satile $12 / 18 / 24 d B /$ octave, $\quad 2 / 3 / 4$ band. SAE brings details. B \& J Sound, Kirkby Lane, Tattershall,

COUTANT DC/DC converters. Type DC 10/5, cost £147. Our price $£ 6$ each. Cable stripper 3 m (Scotch lex) type 3537. Cost price $£ 75$. Our price £45. All types of surplus components always required Dionics, 17 Hawkesworth Drive 092659658 . Warwickshire. 1095

[^6]
WRONG TIME?

MSF CLOCK is ALWAYS CORRECT never
gains or loses. SELF-SETTING at swith-on, 8 gains or loses, SELF-SETTING at switch-on. 8
digits show Date, Hours. Minutes and Seconds. can expand to Years. Months and
Milliseconds. auto GMT/BST anid leap year. also parallel $B C D$ output and audio to record and show time on playback. recilves Rugby
60 KHz atomic time signals, built-in antenna 60 KHz atomic time signals, built-in ante
1000 Km range, ABSOLUTE TIME, E54.80.

GOKHZ RUGBY RECEIVER, as in MSF Clack, serıal data output, $£ 15.70$.
Each fun-to buidd kit crrcuit, case, postage.
ance so GET yours NOW

CAMBRIDGE KITS, 45 (WT)
Oid School Lane, Milton, Cambridg

$$
(1088)
$$

CLEARANCE PARCELS: Transistors resistors, boards, hardware, 10lbs
 171 , BC 204 , BC 230 2N 5061 CV7497 Transistors, $10-70 \mathrm{D}, 100$ $£ 5.80$. $2 \mathrm{~N} \quad 3055$, 10 for $£ 3.50$.
 Street, Lydney, Glos.

JAMES MOIR is disposing of som laboratory test equipment, audio signal generator, harmonic analy ser, wow and futter meter, wide range voltmeter, loudspeaker units all in good working condition Telephone Kings Langley 62955 fo details. FOR SALE Variable P.S.U.S 50 volt $\begin{array}{ll}\text { at } & 10 \\ 24 & \text { by } \\ 12 & \text { by } \\ 6 & 60 \\ \text { inches }\end{array}$ 24 by 12 by 6 inches deep galsize bin 75 p each, large quantity available. Castors, brand new industrial typa 3 in wheel ball bearing swivel 4 hole fix $£ 1.50$ each. Please add VAT and postage.
Yateley $(0252) \quad 871048$. Yateley (0252) 871048.

National Heart and Chest Hospitals Brompton Hospital

Medical Physics Technician Grade IV or III (ELECTRONICS)

We require a technician to work in a small but busy department which provides a comprehensive medical electronics/physics service to this leading cardio-thoracic hospital.
Within the department the technician will be engaged mainly in electronics work but other scientific or engineering skills would be an advantage. In addition the technician will be required to work in clinical areas trouble shooting and advising staff in the use of equipment.
Salary within the range of $£ 4931$ - $£ 7277$ inclusive depending on experience. For further information contact Chief Technician, Mr. P. Butler, ext. 4252.
For application forms and job description contact Personnel Manager, Miss J. A. Jenks, Brompton Hospital, Fulham
Road, London, SW3. Tel. 01-352 8121 ext. 4357.
(1004)

ARTICLES FOR SALE

GOING ON HOLIDAY???
BEAT THE BURGLAR THE PROFESSIONAL WAY MICROWAVE
INTRUDER ALARMS
Commercial instruments by famous manufacturer. These units are complete in plastic housing with mounting spigot. They are used but in working. Similar specification to units recently described in constructional article in this magazine (January 1980). Require 12 -volt supply at approx. 200 mA . Price $£ 25$ each or two units for only $£ 40$. A few units without cases $£ 20$ each, f 35 for two.
VAT on total

ELECTRONICS WORKSHOPS
5 Burston Road, Putney
London, SW15
Phone (01)-789 3989 or (01)-373 0439 (1091)

INVERTERS

High quality DC-AC. Also "no break" (2ms) static switch. 19" rack. Auto Charger.

COMPUTER POWER SYSTEMS Interport Mains-Store Ltd.
POB 51, London W11 382
Tél: 01-727 7042 or 0225310916

VIOEO FUR SALE. Philips N1700 VCR LP pius six tapes $2 \frac{1}{2}$ hours eacn. Excellent condition. Little used. £\%45, Private sale, tel: office hours 01-460 61/4. Also, 5C/450A

HRINTED CiRCUITS. Make your own simply, cheaply and quickly! yuer - now greaty improved and yuer - now greauy improved and with full instructions, $£ 2.25$. Veveloper 35 p . F'erric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.75$ sq. ft. Post/Packing 60. - White House | Electronics, | |
| :--- | :--- |
| Sands, Penzance, Cornwall. | Praa |
| 714 | |

NEW 1981

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL
by Markus
Price: $£ 32.50$

RADIO AMATEUR HANDBOOK by ARRL 1981 ed. Price: $£ 8$ THE ART OF ELECTRONICS by P. Horowitz Price: $£ 13.50$ WORLD RADIO TV HANDBOOK, 1981 edition Price: $\mathbf{£ 1 0 . 5 0}$ ELECTRONIC PRINCIPLES 2nd ed. by A. P. Malvino Price: $£ \mathbf{4 . 3 5}$ MANUAL OF ELECTRONIC SERVICING TESTS AND MEA. SUREMENTS by R. Genn Price: $£ 10$ INTRO. TO DIGITAL FILTERS by T.
Price: $\mathbf{~ f 6 . 9 5}$
Terrell MICROPROCESSORS AND MICROCOMPUTERS FOR ENG. STUDENTS AND TECHNICIANS by B. Wollard
USING CP/M A SELF-TEACHING GUIDE by J. Fernandez

Price: $\mathbf{£ 6 . 7 5}$
*ALL PRICES INCLUDE
POSTAGE »

THE MODERN BOOK CO.
Specialist in Scientific \& Technical Books
19-21 PRAED STREET LONDON W2 1.NP

Phone 402-9176
Closed Sat 1 pm
(8974)

BREAKER BREAK. Build your ow CB rig $\{27 \mathrm{MHZ}$ transceiver). full circuit diagram and parts list. Al components available in UK. Send a large SAE and $£ 2.95$ to P . Sher wood. 8 g Alestone Walk. Manches ter M10 9NU. Im on the side; 99

ARTICLES FOR SALE

EXCLUSIVE OFFER

RACK MOUNTING CABINETS HIGHEST QUALTTY 19"				
Ref	${ }_{\text {Hes }}$	width"	Depth"	${ }_{\text {Price }}$
LE10	54	${ }_{21}^{21}$	18	${ }_{\text {E }}$
Π	64	25	26	E45.00
SL	71	${ }_{22}^{25}$	26	${ }^{650.00}$
		22		
Unifra	single			${ }^{\text {E30.00 }}$
Unifra	tiple			E55000
Over 60 types available from $12^{\prime \prime}$ to $90^{\prime \prime}$ high.				
Also twins, triples and consoles Above are only a few types.				

RECORDER-REPRODUCERS	
Ampex Prio 4	
Plessey M5500 igital Unit 7 tracks $1 /{ }^{\prime \prime}$	
Ampex FR600. 4 speeds, 7 track $1 / /^{\prime \prime}$ D.R.I. RC-1. 4 speeds, 4 tracks $1 / 4$ 	

We have a large quantity of "bits and pieces" cannot list - please send us your requiremen We cin

* DataEfficiency Respodrers 240V E28.00

 Oscilloscope Trolleys from Rack Mounting Operaror Tables Racal MA- 75 L L.S.B. Modulators Taly $5 / 8$ Track Tape Readers track spooliRacal RA-63 SSB Adaptors, new
Racal RA 298I.S.B Transistorised Adapto

profession

PLEASEAD P. HARRIS

ORGANFORD, DORSET BH16 6BR
(0202) 765051

TELETEXT, TV SPARES \& TEST EQUIPMENT, TELETEXT. Lates external unit kit incl. Texas XM11 Decoder 6101VML and infra-red remote control 2248 , p/ip e2.80 (furexternal unit kit incl. Texas XM11 decoder, special offer price $£ 168$ p/p £2.80. Both kits incl. UHF modulator, and plug into TV set aerial socket. SPECIAL OFFER
TEXAS XM11 Decoder, new and tested, limited quantity at $\frac{1}{\frac{1}{2}}$ price, £60 p/p $£ 1.40$. Stab. power supply (5v) for Teletext decoders, $f 5.80$.
 face unit, £1.80, p/p 80p. NEW (complete \& tested for sound \& vAR \& CROSS HATCH GENERATOR BAR \& CROSS HATCH GENERATOR
KIT
$(\mathrm{MK} 4)$ PAL, UHF aerial input type, 3 vertical colour bars.
R-Y, Y , grey scale, etc P / B controls $\mathbf{1 3 5}$. Batt holders $£ 1.50$ or stab. mains power supply kit $£ 4.80$, Deluxe case $£ 5.20$ or alum. case $£ 2.90$, p / p £1.40. Built \& tested in De-luxe case (battery) $£ 58$ (mains) $£ 70, \mathrm{p} / \mathrm{p}$ £1.60. CROSS HATCH KIT UHF aerial input type also gives peak
white \& black leveis, batt. op. $£ 11$, white \& black levels, batt. op. £11,
p/p 45 p. Add-on GREY SCALE KIT p/p 45 p . Add-on GREY SCALE KIT
$\mathbf{~} 2.90, \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. De-luxe case $£ 5.20$. U2.90, p/p 35p. De-luxe case METER KIT $£ 17.50$. Alum. case $£ 1.80$. Deluxe case $£ 5.20$ p/p $£ 1.40$ CRT TEST \& REACTIVATOR KIT for
colour \& mono \&24.40. p/p $£ 1.80$. colour \& mono 224.40 , p/p $£ 1.80$. tested panels for popular makes 4part-ex in shop). TV SOUND IF
 £1.80, TV312 (single I.C.) £5. 2718/ BC $6100 \quad £ 5$.
85 p . BUSH 161 Series TB panel A634 85p. BUSH 161 series TB panel A634
£2.80. p/p $£ 1.20$. GEC Series 1 mono panels, $£ 1.80,{ }^{\text {p/p }} £ 1.30$ GEC 2040 G6 S/S conv. panel $£ 2.50$, p/p $£ 1.20$. G8 Decoder panels for spares $£ 1.80$. p / p £1.20. G9 Signal panels for small spares $£ 3.80$, p/p $£ 1.20$. THORN 3500 Line TB panel f5, p / p
£1. 3000 ex-rental panels IF, VIDEO, £1. 3000 ex-rental panels LF VIDEO;
DECODER, $55, \mathrm{p} / \mathrm{p} £ 1.20$. $8000 / 8500$ / 9000 Decoders Salvaged $£ 7.50$, p / p f1.60. 9000 Line TB (incl. LOPT) Salv/spares £7.50 p/p $\begin{aligned} \text { £1.60. } \\ \text { VARICAP UHF TUNERS. }\end{aligned}$ $\begin{array}{lll}\text { UARICAP UHF TUNERS. Mullard } \\ \text { U321 } & \text { ELC1043/06 } & 86.80\end{array}$ ELC1043/05 £5.50. G.I. \&3.50. Salv VHS E V7F ELC2000S $\mathrm{p} / \mathrm{p} 70 \mathrm{p}$. TOUCH TUNE CON TROL units. Bush 16 pos) £4.50, p/p 80 p . VARICAP CONTROL UNITS 3 pos. $£ 1.20,4$ pos. $£ 1.50,5$ pos. $£ 1.80$,
6 pos. $£ 1.80,6$ pos. special offer $£ 1$, p/p 45 p . UHF transtd. Tuners (rotary) incl, s / m drive $£ 2.50,{ }^{4}$
pos. $\mathrm{P} / \mathrm{B} \quad £ 2.50,{ }_{6}$ pos. $\mathrm{P} / \mathrm{B} \quad £ 4.20$,
 details on request). DL50 Delay Line $£ 2.50, \mathrm{p} / \mathrm{p} 50 \mathrm{p}$. Large selection Droppers, and other spares for Droppers, and othour ard mono popular makes of colour and mon TO ALL PRICES - MANOR SUP PLIES, 172 WEST END LANE, WEST HAMPSTEAD LONDON , WW 6 SHOP PREMISES. Tel. 01-794 8751, 794 7346. Easily accessible W, Hampstead Jubilee Tube \& Brit. Rail N. London (Richmond-Broad $28,159,2,13$. Callers welcome Thousands of additional items not normally advertised available at
shop premises. Open daily all week shop premises. Open daily all week
incl. Saturday (Thursday half day). MAIL ORDER: 64 GOLDERS MANOB PLEASE ADD 15% VAT to all prices.

TEKTRONIX 465 oscilloscope, mint condition, calibrated, otner test equipment. - Phone 0582-425721. FR DX-400 AMATEUR BAND RECEIVER. 160 m to 2 m including CB and 4 m . AM, FM. SSB with matching speaker, mint condition, 63968.

SERVICES

PRINTED CIRCUIT manufacturers Fast prototype service possible production \quad P.H.T., photograph silk screening panels and labels. etc. Virasonic Ltd, ${ }^{40}$ All Saints
Koad, London SW19. Tel. $01-543$

CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production. from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery We also provide a test, repair and modification service to suit your individual requirement
Free Offer! Ring for details of a free introductory offer to our sub-contract PCB assembly service
CIRCOLEC FREEPOST (no postage required) London SW17 8BR
Telephone: 01-7671233
NEW! Access, Barclaycard, Diners Card now welcome for payment (544)

PRINTED CIRCUIT

 BOARDSManufactured, any quantity, competitive prices, roller tinned, photographic and artwork services available.

MAYLAND PCB CO. LTD. 4 The Drive
Maylandsea, Chelmsford, Essex Tel: 0621741560

ELECTRDNIC DESIGN SERVICES MICROPROCESSOR HARDWARE and SOFTWARE design facillites havo now been added to our established expertise and comprehensive test facllities prevlously avallable to you for ANALOGUE and COMMUNICATIONS designs. - For fastest Andertronics Ltd Ridgeway Hog's Andertronics Back, Seal
$02518-2639$.

SMALL BATCH PCD': produced from your artwork. Also DIALS, PANELS, LABELS. Camera work undertaken. FAST TURNAROUND. - Details: Winston Promotions, Hatton Place, London EC1N 8RV.
Tel, $01-405$ $127 / 0960$.
TURM
TURN YOUR SURPLUS Capacitors transistors, etc, into cash. Contact
COLES-HARDING \& Co., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement. We also wel come the opportunity to quote for
complete factory clearance. (9509 PROTOTYPE ELECTRONIC design, development, construction. One-off and smawings Fast professional service. Further details: David Lloyd, 25 The Banks, wellingPCE SOLDERING - SERVICING to your requirements by small firm with two electronic engineers and
staff. - E.M.O. Ltd, 62 Bridge St, Ramsbottom. Lancs. Telephone 3036 . 1093 DESIGN DEVELOPMENT assembly and test analogue digital 8080808 dev system, immediate capacity, ford Road. St Albans, Herts. Tele phone 072754920 . 1092 SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes. 1 off or 2685. M. Gear Ltd., 179A Victori Road, New Barnet,' Herts. (812

TENDERS

BEXLEY LONDON BOROUGH
 REPLACEMENT OF TWO-WAY RADIO TELEPHONE SYSTEM

Tenders are invited for the supply, installation and commissioning of a replacement two-way radio telephone system consisting of 1 base station and 50 mobile units.

The Council's existing system
Tender forms available from Direc tor of Engineering and Works. Sidcup Place, Sidcup, Kent DA14 6BT. (Telephone No. 01-303 7777 extension 8205).

P.C.B. MANUFACTURE AND ASSEMBLY

Wave Soldering and inspection. High quality PCBs from your artwork, Proto type design. Artwork from your circuit around
Endean Communications Services Ltd. Baileys Mill, The Cliff, Matlock, Derbys
$(0629) 4929 \mathrm{Tlx} .378267$ ECS G.

DESIGN SERVICE. Electronlc De sign Development and Production Service avallable in Digital and Analogue Instruments, RF Trans mitters and Receivers for control of any function at any range. Tele metry, Video Transmitters and Monitors, Motorised Pan and Tilt Heads etc. Suppllers to the Industry for 16 years. Phone or Write Mr. sey Road. Ashford Middleser sey Road Ashiord, Middlesex.
Phone Ashford 53661 .

DESIGN AND DEVELOPMENT. ANALOGUE, DIGFTAL RF AND
MICROWAVE CIRCUIT SYSTEM DESIGN. Also POB design mechanlcal design and prototype/ small batch production, - Adenmore Limited, Unit 103 Liscombe, Bracknell, Berks. Tel: Bracknell
52023.

ARTICLES WANTED

WANTED!
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS

with precious metal content

TRANSISTORS $\&$ PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL SMELTING 8 REFINING Co. Ltd.
171 FARRINGDON ROAD LONDONEC1R 3A Tel: 01-837 1475 Cables: COMSMELT, EC Works: RECKNEY, Mr. LEICESTER

STORAGE SPACE is expensive, why tore redundant and obsolete equpment? For fast and efficien supplies, PC boards, components tc., regardless of condition o uantitles. Call 01-771 0413. (820 GERMANIUM TRANSISTORS, TOP specification, gain and leakage equal price per 1,000. Box No 1094

WANTED IBM $1130 / 1$ Peripherals console, also spare parts for 1130 1 mainframe, system documenta tion, etc. Write: Griffin, 11 Sun ningwell Road, Oxford OX1 45Z Phone: 0865-723848, evenings. ${ }_{1096}$

ARTICLES WANTED

SPOT CASH

paid for all forms of electronics equip ment and components

> FRG Generaisup Unit 3

Longhill Industrial Estate March, Cambridgeshire Tel: March 56614 Tel: 01-404 5011
Telex: 24224. Quote Ref. 3165

WANTED

Test equipment, receivers, valves, transmitters, components. cable and electronic scrap, any quantity. Prompt service and ash. Member of A.R.R.A

OVERLAY PAGERS

Supplier of Home Office approved AM Hi-band Pagers utilising EEA five tone signalling system required. Contact: Colin McDonald, Car Telephones Ltd., 20 Lower Windsor Avenue, Belfast BT9 7DW. Tel: (0232) 663333. Telex: 747086.
WANTED PDP8A \quad 4-20BN, KK8A,
MM8AA, MM8AB KM8A, KC8AA,
DKC8AA, complete or separate
boards. \quad Patterson, 24 Cyprus
Avenue, Belfast 5.658333 evenings,
(1097

MM8AA, MM8AB, KM8A, KC8AA, DKCBAA, complete or separate Avenue, Belfast 5. 658333 evenings.

I.H.S. SYSTEMS

Due to expansion of our manufac turing facilities we are able to under take assembly and testing of circuit boards or complete units in addition to contract development

We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands
Telephone to arrange for one of our engineers to call and discuss your requirements, or send full details for a prompt quotation

TEL. 01-253 4562
or reply to Box No. WW 8237
18237
P.C.B.s WIRING assembly looms coils, instruments, quallty design prototype and production service in house or on site. - Batvale Ltd. P.C.B. DESIGNS on circuit diagrams, etc. Competitive hourly grams, etc. Competitive hourly rates, quotes free, cheaper hourly
rates for solder resists and legrates for solder resists and leg-
ends. - Helstead Designs Ltd, Helstead. Tel: 0787-477408. (869

BATCH PRODUCTION wiring and assembly to sample or drawings. McDeane Electricald 19b Station Parade, Ealing Common, London, W5. Tel. 01-992 8976 . (169

SERVICES

PCB ARTWORK. Full size negatives produced from your circuit diagram. Prototype boards can
also be supplied. Mr Worrell, 19 also be supplied. Mr worrell, 19
Teal Road, Newport, North Humberside. Telephone $0430 \quad 41273$.

REPAIR SERVICE (PCBS) servicing electronic PCB assemblies our speciality. Programmable automatic test equipment used to service your PCBS, fast efficient ser-
vice. For quotation telephone vice, For quotation shell \& Campbell, Shrewsbury (0743) 65748.

PRINTED CIRCUIT BOARD MANUFACTURE. Speedy service with reliability at low prices. Single/ double sided board. Prototypes or quantity runs. Design layout if required or send us your own artwork. Contact: J. Harrison, Boardraven Ltd., Lancaster Road, Carnaby Industrial Estate, BridlingTelephone (0262) 78788. (443

PRINTED CIRCUIT BOARDS. CONventional double and single sided ventional double and single sided
PS boards. Fast prototype and production runs. Contact John Richards, Phototechnique, 11 Old Witney Road Eynsham, Oxford. Telephone Oxford (STD 0865) 880645.

ELECTRONIC DESIGN SERVICE. Immediate capacity avaliable for circuit dessgn and development work, PC artwork, etc. Small batch and prototype production Welcome MAIDSTONE, Kent. 0622-677916. ${ }_{\text {(9667 }}$

PCB ARTWORK DESIGN SERVICE with component notation masters and assembly drawings. PADS Electrical Ltd, 01-850 6516, 45 Southwood Road, New Eltham SE9.
(7905
COMPARE our charges, quality and turnround for printed board artworks, assembly, test and proto-
type manufacture. Please phone type manuiacture Please phone 357935 or write to H.C.R. Artwork 357935 or write to H.C.R. Artwork
Designs, 1 Bankside, off New Designs, Chelmsford, Essex. \quad (557
Street,

PCB ASSEMBLY capacity available

Low or high volume, single or double sided, we specialise in flow line assembly of printed circuit boards

Using the Zevatron flow soldering system and on line lead cutting, we are able to deliver high quality assemblies on time, and competitively priced. Test facilities available
Find out how we can help you with your production. Phone or write. We will be pleased to call on you and discuss your requirements.

TW ELECTRONICS LTD

120 NEWMARKET ROAD BURY ST. EDMUNDS, SUFFOLK TEL: 02843931

Sub-contract assemblers and wirers to the Electronics Industry
(9068)

EQUIPMENT WANTED

TO ALL MANUFACTURERS

 AND WHOLESALERS IN THE ELECTRONIC RADIO AND TY FIELD
BROADFIELDS \&

MAYCO DISPOSALS

will pay you top prices for any large stocks of
surplus or redundant components which you may wish to clear. We will call anywhere in the United Kingdom

21 LODGE LANE

NORTH FINCHLEV, LONDON N128.JG Telephone Nos. 01-445 0749/445 2713 After office hours 958 7624

CLASSIFIED ADVERTISEMENTS Use this Form for your Sales and Wants

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

To "Wireless World" Classified Advertisement Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

- Rate f2 PER LINE. Average six words per line Minimum $£ 10$ (prepayable).
- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words plus $£ 1$.
- Cheques, etc., payable to "IPC Business

Press Ltd." and cross "\& Co."

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

PDP $11 / 34$. A processor with 32 KW , LA36 and $2 \times$ RLO1. BRAND NEW.
PDP $11 / 23$ SYSTEM comprising $11 / 23$ card with memory management chip Model KDF $11-A A, 54 K$ byte MSV11 card, XYLOGICS Model C510 disc controller with bootstrap, $2 \times$ DIABLO Series 30 disc drives each of 2.5 megabyte capacity - compatible with RKO5. CDC VDU operating at 9600 Baud with 24×80 upper/lower case characters, DEC BA11-MF box with 4 spare slots, LOGABAX LX 180 cps matrix printer. Apart from the Ormer $11 / 03$ hard disc bssed systems with printer and VDU.
Othe
DIABLO Model 1620 KSR daisy wheel terminal with HyType li printer.
DIABLO Model 1641 KSR terminal As above, but with proportional spacing.
LEAR SIEGLER Model 200 KSR high speed printing terminal (with keyboard). Features bidirectional 9×5
upper/lower case matrix printer with Baud rates switchable up to 9600 B .132 col .
EXTE (TRANSTEL) 80 col porable print ing (matrix) 1...........110/150/300 Bau................................. E55
with 2 K byte internal RAM
punch and koyboard. 300 Baud Upper/lower case matrix printer 103 ASR terminal Incorporating LA36 DECwriter printer with paper tape reader/
GENERAL ELECTRIC TermiNet 30. ASR matrix terminal with dual digital cassette drives. Upper/lower case 80 col. 300 end 1200 Baud. In ex-demonstration condition. Current new price c. $£ 3.00, \ldots . ~$. (which may be disabled by insertion of a jumper), paper tape reader/punch and stand (when available) DATA DYNAMICS Mode KSR390. As above, but without tape reader/punch. RS232/V24, 110 Baud........ $£ 150$ Interface...... 700 KSR terminal. 30 cps dot matrix terminal using thermal paper. With 20 mA current loo LOGABAX LX 180 L matrix printer. 180 cps with serisi (V24 to 9600 B) and parallel (CENTRONICS and
LOGABAX) interfaces. These printers are 280 microprocessor controlled with all firmware in LOGABAX interraces. These printers are 280 microprocessor controlled with alif firmware in 2708 EPROM All options, which include a self test facility, are switch selectable. Forms control and alternative founts are
available using control codes. Mnfd. 1980 and unused in original packing

LEAR SIEGLER LS 200 'ballistic' printer. Bidirectional 9×5 upper/lower case matrix printer with Baud rates
switchable up to 9600 B. 132 col., 480 cPs . With self test facility BCL matrix printer. 120 cps with dual tractors and long platen (in excess of 300 col.) Unused DIABLO SERIES 30 DISC DRIVES. These are offered fully refurbished and may be viewed operating on-line at our premises prior to purchase. 2.5 megabyte removable cartridge version is directly compatible with the LOMEC Model 3404 disc drive. 10 megabyte capacity with one fixed end one top loading platter. 2400 . 2850 200 tpi and 2200 bpi . These drives are complete with documentation and have the industry standard interface. IOMEC are no longer in business, nevertheless electronic components are standard and we can suppes BRAND NEW boxed FACIT Model 4070 High Speed paper tape punch with perailel $T \mathrm{~L}$ interface. Complete with all spooling.
 incorporating TALLY punch and CLARY (ADDMASTER) optical reader. Front panel switches permit stand

lease note
VAT and carriage extra all items
Visitors welcome, but by apointment please
We are keen to bid competitively for all good used equipment

INDEX TO ADVERTISERS JUNE

Appointments Vacant Advertisements appear on pages 116-127

Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B. 212. Japan: Mr. Inatsuki. Trade Media - IBPA (Japan), B. 212.
Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo 106. Telephone: (03) 5850581.
United States of America: Ray Barnes, IPC Business Press, 205 East 42nd Street, New York. NY 10017 - Tele-
phone: (212) 867-2080. Telex: 238327.
Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 East Walker Drive, Chicago, lllinois 60601 - Telephone: (312) 63074.
Mr Victor A. Jauch, Elmatex International, P.O. Box 34607, Los Angeles, Calif. 90034, USA - Telephone (213) 821 .
8581 - Telex: $18-1059$.

Mr Jack Mentel, The Farley Co., Suite 650, Ranna Build ing, Cleveland, Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co., P.O. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 5327301. Mr Tim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste

Canada: Mr Colin H. MacCulloch, International Advertis ing Consultants Ltd. 915 Carlton Tower. 2 Carlton Street Toronto 2 - Telephone (416) 3642269.

[^7]

> AP DIP JUMPERS LOWEST PRICE IN THE UK. NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED FREE TC16 WITH EVERY SUPERSTRIP SOLD

PART NO	CONTACTS	LENGTH INCHES	DESCRIPTION	PRICE
924 229-18	25	18	25 PIN MALE SINGLE END 18' LONG	5.97
924 222-18	25	18	25 PIN FEMALE SINGLE END 18' LONG	6.04
924 269-36	25	36	25 PIN MALE TO MALE DOUBLE END $36^{\prime \prime}$	11.73
924 299-36	25	36	25 PIN MALE TO 24 PIN DIP 36"	8.35
924 339-36	25	36	25 PIN MALE TO 26 PIN SOCKET 36"	10.50
924 262-36	25	36	25 PIN FEMALE TO FEMALE DOUBLE END $36{ }^{\prime \prime}$	11.50
924 292-36	25	36	25 PIN FEMALE TO 24 PIN DIP 36"	8.75
924 332-36	25	36	25 PIN FEMALE TO 26 PIN SOCKET	8.75
924 382-36	25	36	25 PIN FEMALE TO 25 MALE 36'	11.50

$A P$ sub-miniature " D " jumpers have the lowest front to back profile in the world and come to you fully assembled, tested and ready to use. They are directly replaceable with existing " D " connections.

DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

- EX-STOCK DELIVERY

6, 12, 18, 24, $36^{\prime \prime}$

- WITH 14, 16, 24, 40 CONTACTS
- FULLY ASSEMBLED AND TESTED
- INTEGRAL MOULDED ON STRAIN RELIEF
■ LINE BY LINE PROBEABILITY

SINGLE-ENDED

CONTACTS	24"	CONTACTS	$6^{\prime \prime}$	$12^{\prime \prime}$	18"	24"	36
14	£1.67	14	£2.11	£2.21	£2.31	£2.43	£2.63
16	£1.89	16	£2.33	£2.45	£2.58	£2.66	£2.97
24	£2.74	24	£3.45	£3.62	£3.78	£3.94	£4.30
40	£4.38	40	f5. 3	f5 61	f5. 91	f6. 22	

We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up, tested, ready for use, cheaper than you can buy the parts, ask for quote.

TEST-CLIP TEST-CLIP

Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level.
22 NEW AP TEST-CLIPS TO PICK FROM
examples: TC $14923695 \mathbf{£ 2 . 7 6}$ TC $16 \quad 923700 \quad £ 2.91$ TC $24923714 \quad £ 8.50$ TC $40 \quad 923722 \quad £ 12.88$

ADVENTURES ON THE IC'S
A SPECIAL $£ 6$ OFF OFFER
 ALL
COMPONENTS
TO
BUILD ALL
16 PRO BUILD ALL
16 PROJECTS

EBBO DISCRETE STARTER PACK Normal Price f6.67.

adventures

TOTAL PRICE ONLY £19 incl VAT post \& packing ANYBODY CAN BUILD ELECTRONIC PROJECTS WITH EBBO BOARDS. We supply EBBO block, adventures with electronics book which gives step by step instructions to build 16 projects including: chip radio, two transistor radio, electronic organ etc. and every component needed. Nothing else to buy.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money . . With 840 contact points SUPERSTRIP accepts all DIP's and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee SUPERSTRIP SS2 923252 PRICE INCL VAT $£ 9.78$

All prices shown are recommended retail incl. VAT
In difficulty send direct, plus 50p P \& P
Send S.A.E. for a free copy of colour catalogues
detailing our complete range
AP PRODUCTS, PO BOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

[^0]: 6. Th, output waveform.
[^1]: Following the recent "SELL OUT" demand for our 5 v
 3 amp P S.U. We have managed to secure a targe quan. 3 amp P.S.U. We have managed to secure a large quanspec.: 240 or 110 V A.C. input. Oufputs of 5 v @ $3-4$ $7.2 v$ outputs are fully regulated and adjustable with variable current limiting on the $5 v$ supply The 7.2 v output is ideal for feeding The 7.2 V output is ideal for feeding "on board" $\times 3$. lators or a further 3 amp LM 323 K regulator to give an Supplied complete with circuit at only $\mathbf{£ 1 0 . 9 5}+\mathbf{£ 1} .75$ pp , Believed working but untested, unguaranteed.

[^2]: - $9^{\circ}=1000 \mathrm{~km}$ on earth's surface

[^3]: PARMEKO CASED TRANSFORMERS
 PRI 240 V SEC. 50 V CTE 250 watts conserva tively rated. Fitted mains on/off switch $£ 10$.
 Carr. E3. Carr.
 PRI 240 V
 mains on/off switch and fuse f6.50. P\&, P £? PRI 240 V sec. 12 V 50 VA , fltted input and out put sockets. On/oth switch and fuse, E7.50
 P\&P E2 Above transformers are designed for low voltage lighting. Supplied brand new at a
 fraction of maker's price.

[^4]: TEAK VENEERED HI-FI SPEAKER CABINETS
 For $13 \times 8 \mathrm{in}$. or 8 in . speaker
 For $6^{1} / 2 \mathrm{in}$. speaker and tweeter
 $£ 10.50$ Post $£ 2.00$
 $£ 9.50$ Post $£ 200$
 Many other cabinets in stock. P \qquad requirements B.A.F. LOUOSPEAKER CABINET WADDING 18 in wide 25p fi

 CROSSOVERS. TWO-WAV $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm $£ 1.90$ 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}, \mathbf{£ 2} 20$
 LOUDSPEAKER BARGAINS
 $\mathbf{3} \mathrm{omm}, 4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}, \mathbf{f} 1.50 ; 61 / 2 \mathrm{in}, 8 \times 5 \mathrm{in}, £ 3 ; 8 \mathrm{in}, \mathbf{f 3 . 5 0}$, $8 \mathrm{ohm}, 25 / \mathrm{inn}, 3 \mathrm{in}, 5 \mathrm{in}, £ 1.50 ; 6^{1 / 2 \mathrm{in}, £ 3 ; \mathrm{Bin}, £ 4.50 ; 12 \mathrm{in}, £ 6}$ $15 \mathrm{ohm}, 3 / 2 \mathrm{in}, 5 \times 3 \mathrm{ohm}, 64,1.50$.
 $25 \mathrm{ohm}, 3 \mathrm{in}, 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}, £ 1.50$. 120 ohm, $31 / 4 \mathrm{in}$ dia. $£ 1.50$.
 MOTOROLA PIEZO ELECTRIC HORN TWEETER Mandles 100 watts. No crossover required. $4.8-16$ ohm $£ 5.0$ BLACK PLASTIC CONSTRUCTION BOX with brushed alu

[^5]: Appliams (male on female) should write or telephone for an application form quating reference WW/586cc to Clynis Powell. Persommel Olficer. HBA. Crawley Court. Winchester. I lampshire SO2I 2QA.
 Telephone: 822270.

[^6]: FOR SALE Marconi. Sig. Generator TF1060/3 $470-950$ MCS AM. FM Solatron pulse generator GO1105 Integrator - differentiator FA240. Posimeter charging unit type P1548/B. Weston Oscilator Model E692. Phone Yelverton 3318 even ings.

[^7]: Printed in Great Britain by QB LId, Sheepen Place, Colchester, and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD., Quadrant House, The Quadrant, Sutton, Surrey The W'm. Dawson Subscription Service Lid, Gordon \& Gotch Lid. SOU'TH AFRICA: Central News Agency Lid: William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News Distribution Inc., 14th floor, 111 Eighth Avenue, New York, N.Y. 10011.

