

Digital capacitance meter New Wien oscillator Receiving tv in no-signal areas

. . . catch this bus with Fansel

and arrive economically at an efficient ATE workstation.
Comprehensive testing under low cost desk computer control.
Manual systems too.

Front cover shows power output stage of 10 kW linear h.f. amplifier by Marconi, photographed by Paul Brierley.

IN OUR NEXT ISSUE

Morse code lock is operated by keying in up to sixteen characters, which are compared with code in memory.
Audio millivoltmeter uses l.e.d.s to provide rapid peakreading display. Will read d.c. and is battery operated.

Remote keyboard for access to a computer without disabling the existing keyboard. RS232 serial transmission is used for computer/keyboard link and no complex software is required.

Current issue price 60p, back issues (if available) $\mathrm{E1.00}$, at Retail and Trade Counter, Units $1 \& 2$, and Trade Counter, Units 1 \& 2,
Bankside Industrial Centre, HopBankside Industrial Centre, Hop-
ton Street, London SE1. Availton Street, London SE1. Avail-
able on microfilm; please able on microfilm; please contact editor.
By post, currently issue $96 p$, back issues (if available) $£ 1.50$, order and payments to EEP General Sales Dept., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Editorial \& Advertising offices:
Quadrant House, The Quadrant,
Sutton, Surrey SM2 5AS.
Telephones: Editorial 01-661 Telephones: Editorial
3500. Advertising 01-661
3129 . $\begin{array}{ll}\text { 3500. Advertising } & 01-6613129 . \\ \text { Telegrams/Telex: } & 892084\end{array}$ Telegrams/Telex: BISPRS G
Subscription rates: 1 year $£ 10.00$ UK and $\$ 33.80$ outside UK
Student rates: 1 year $£ 5.00$ UK and $\$ 16.00$ outside UK.
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH. Telephone 044459188 . Please notify a change of address.
USA mailing agents: Expediters of the Printed World Lid, 527 Ma of the Printed World Lid, 527 Madison Avenue, Suits 1217. New York, NY 10022. 2nd-class postage paid at New York.
C) IPC Business Press Ltd, 1981 ISSN 00436062

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO

MAY 1981 Vol 87 No 1544

37 Pass band
38 Digital capacitance meter by I. H. Ibrahim
42 Data store by running average by J. L. Gordon
45 Measuring transient intermodulation in audio amplifiers by P. Antoniazzi, C. Buongiovanni and S. Tintori
48 Television for no-signal areas by J. H. Osborne
51 Wien-bridge oscillator with low harmonic distortion by J. L. Linsley Hood
54 World of amateur radio
55 Letters to the editor Engineering education Computer architecture 'Just detectable' distortion
A-to-d converter $\quad 60$ Circuit ideas \quad Dariable pulse delay
65 Precision pulse generator by L. Hayward and G. E. G. Sargent
68 Bandpass audio filter by L. Hurst
71 News of the month Wave energy research Microcomputers in the home Rumblings over c.b.
75 Time sharing limited mains supplies by L. Hayward
79 Universal second-order filter by F. S. Atiya, A. M. Soliman and T. N. Saadawi
83 Op-amp tone control by Winthrop S. Pike
86 An appreciation of James Clerk Maxwell 1831-1879-2 by M. G. Wellard
90 New products

If everything were perfect...

It is rarely necessary to have to boost the bass response of a top quality high fidelity system, (although the Quad 44 tilt control does enable subtle changes to be made to the overall balance of the programme), but there are a number of high quality loudspeakers on the market, which because of their Lilliputian dimensions, necessarily have attenuated low frequency response and the Quad 44 is fitted with a bass control which in the lift position provides optimum equalisation.

Considerations of domestic harmony frequently dictate loudspeaker placement that is less than ideal. The almost inevitable result is the excitation of the fundamental eigentones of the room and music reproduction with a characteristic and unpleasant honk:

The step side of the Quad 44 bass control switch eliminates this problem without rolling off the low frequency information, simply by putting a 5 dB step in the frequency response, reproducing domestic bliss and a closer approach to the original sound!

To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561

for the closest approach to the original sound

DON'T GAMBLE WITH PERFORMANCE BUY

LEVELL VOLTMETERS

A.C. MICROVOLTMETERS
VOLTAGE \&
dB RANGES
RESPONSE
INPUT IMPEDANCE
AMPLIFIER OUTPUT
type E $\mathbf{T M} \mathbf{3 A}$
$15 \mu \mathrm{~V}, 50 \mu \mathrm{~V}, 150 \mu \mathrm{~V} . .500 \mathrm{~V}$ fsd Acc. $\pm 1 \% \pm 1 \%$ fsd $\pm 1 \mu \vee$ at 1 kHz $-100,-90 \ldots+50 \mathrm{~dB}$ Scale $-20 \mathrm{~dB} /+6 \mathrm{~dB}$ ref $1 \mathrm{~mW} / 600 \Omega$
$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz
$\pm 0.3 \mathrm{~dB}$ from 4 Hz to 1 MHz above $500_{\mu} \mathrm{V}$. TM3B filter switch LF cut 10 Hz , HF cut $100 \mathrm{KHz}, 10 \mathrm{KHz}$ or 350 Hz .

Above 50 mV . $10 \mathrm{M} \Omega<20 \mathrm{pF}$ On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV}:>5 \mathrm{M} \Omega<50$ pf

150 mV at fsd

$\underset{\substack{\text { TMpe } \\ \text { TM }}}{\text { tic }} £ 145$

BROADBAND VOLTMETERS

H.F. VOLTAGE \& dB RANGES

$1 \mathrm{mV}, 3 \mathrm{mV} .10 \mathrm{mV}$ $3 V$ isd $50-40 \pm 1 \%$ fsd at Scale $-10 \mathrm{~dB} /+3 \mathrm{~dB}$ ref $1 \mathrm{~mW} / 50$?.
H.F. RESPONSE
L.F. RANGES

AMPLIFIER OUTPUT
$\pm 3 \mathrm{~dB}$ from 300 kHz to 400 MHz
$\pm 0.7 \mathrm{~dB}$ from 1 MHz to 50 MHz
As TM3
Square wave at 20 Hz on H.F with amplitude proportional to square of input. As TM3 on L. F.
type
TM6B
£215

D.C. MICROVOLTMETERS

VOLTAGE RANGES

CURRENT RANGES

LOG RANGE $\quad \pm 5 \mu \mathrm{~V}$ at $\pm 10 \% \mathrm{fsd}, \pm 5 \mathrm{mV}$ at $\pm .50 \% \mathrm{fsd}$,
RECORDER OUTPUT
$\underset{\text { TM10 }}{\text { type }} \mathbf{£ 1 0 6}$

acctronta :rorers-anropets reis SUparlatize CALDRAIED TO

The

Electronic

 Brokers GUARANTEEUnless otherwise stated all test equipment sold by us carries a 12 month warranty; Fo, VDUs and Teletypes we uffer a 90 days warranty, 7nd computers are offe ed with on site acceptance ind diagrostic tests (which miv qualify them for independo.nt ongoing maintenance). When you buy from Electronic Brokers you know the exuipment is in 'top notch' condition. It is refurbished in our own service laboratories and checked to meet the orisinal ma $u f a c t u r e r$'s sales specifizations. And it's serviced by our ow.n highly qualified technicians.

A copy of Jur Trading Conditions is available on request.

May 1981

Latest Test Equipment

ANALOGUE VOLTMETERS AND MULTIMETERS
Boonton.
93A True RMS Voltmeter Bandwidth 10Hz Fluke.
883 AB AC/DC
Diferentiai Voltmeter
$20 \mathrm{~Hz}-100 \mathrm{KHz}$ i imv
1100 V Very high
accurcy 9975.00 895ADC Ditferentual Voltmeter 0-1100V Null sensitivity. $100 \mu \mathrm{~V} \cdot 100 \mathrm{~V}$ Very high accuracy Hewlett Packard.
400 E AC Mililvoltmeter. $1 \mathrm{OHz} \cdot 10 \mathrm{MHz}$. ImVis a proportional to ipplifier. Single i/p tange 360 uV -100V O/P 0-1.1V @ $10 \mathrm{mV} / \mathrm{OB}$

Marconl.
TF 2600 AC Milivolmeter. $10 \mathrm{~Hz}-5 \mathrm{MHz} .1 \mathrm{mV}$ -
TF2604 Eectronic Voumeter AC $£ 175.00$ $20 \mathrm{~Hz}-1.5 \mathrm{GHz} .300 \mathrm{mV}-1 \mathrm{KV}$ DC $10 \mathrm{mV} \cdot 1 \mathrm{KV}$. $0.2 \Omega-500 \mathrm{M} \Omega \quad \mathbf{~} 350.00$ TF2606 DC Differential Voltmeter. 1 mV -
E200.00
IOOV on 5 decade diais.

Phillps.

ANALYSERS

Blomation.
1650D 16 Channel Logic Analyser Displays Timing. Map. hex octal Clock rate upto 50 MHz . Suppled with display formatter and a
Hameg HM1312-8 oscilloscope $\quad £ 3600.00$ Dymar.
20HL-50KHz $30 \mu \mathrm{~V}$-300V $\quad \mathrm{E275.00}$
General Radio
1911 A Sound and Vibration Analyser CNW
Graphic eve recorder $4.5 \mathrm{~Hz}-25 \mathrm{KHz} . \quad \mathbf{1 / 2 5 0 . 0 0}$
$1 / 10$ octave 8407 A/B4 12 A Network Analyser. C/W
£3500.00
Hewlett Packard
141 T 8552 B .8554 B Spectrum Analyser
Variable percistence display. $£ 5400.00$ 3580 A LF Spectrum Analyser $\begin{aligned} 5 \mathrm{~Hz}-50 \mathrm{KHz} \\ 30 \mathrm{~V} \\ \mathbf{E 1 9 5 0 . 0 0}\end{aligned}$
Marconi.
TF2330 Wave Analyser $20 \mathrm{~Hz}-20 \mathrm{KHz} .30 \mu \mathrm{~V}$. F 395.00
Tektronix.
Up specrum Analyser. 10 MHz - 2 GHz direct. Wayne Kerr.
RA200 Frequency Responce Analyser.
Frequency range $20 \mathrm{~Hz}-30 \mathrm{KHz}$ or 200 Hz
200 KHz II in er display $\mathbf{£ 8 5 0 . 0 0}$

BRIDGES \& COMPONENT

TESTERS

Boonton.
63 H Inductance Bridge. 0.110 mH Bridge frequency 5.500 kHz 2BOAP VHF O Meter O20to 25.0001250 .00 $210-610 \mathrm{MHz}$
General Radio.
1607A Transter Function and immitance Bridge. $25-1500 \mathrm{MHz}$. Direct reading . $\mathbf{\$ 7 5 0 . 0 0}$ Marconl.
TF 1245-TF 1246-TF 1247° O Meter and
Oscillators Q 5 to $500.40 \mathrm{kHz} \cdot 300 \mathrm{MHz}$

TF $1313 / 2 \mathrm{MI} 0.25 \%$ LCR Bridge. $0.1 \mu \mathrm{H}-1 \mathrm{IOH}$. $0.1 \mathrm{pF}-100 \mu \mathrm{~F} .3 \mathrm{~m} \Omega-110 \mathrm{M} \Omega$. and 10 KHz
Rohde \& Sch arz
KRT (BNS SChwarz) $2.2-285 \mathrm{KHz} \quad$ apacrance Meter ipF-100 $\quad .395 .00$
 Wayne Kerr.
B6410.1\% LCR Bridge 0.002pF. 50.000 MF

CALIBRATION EOUIPMEIVT
Advance.
OFS2B Oft Air Frequency Standard. O/P 1 and
10 MHz
$\mathbf{E 9} 9.00$ Bradiey.
1258 AC Callorator. 0-511V in O.IV steps @1
$50-60-400 \mathrm{~Hz}$
Fluke.
332 A DC Vortage Calibrator Oto
11111110 V .01 ppm resolution 0.003%
calibration accuracy $\quad £ 1495.00$ 760 Meter Calibrator. DC/AC Volts and current

Hewiett Packard
$7418 D C$ Votage Source and $A C / D C$
Differential Voltmeter.
Tektronix.

| 100 MHz |
| :--- | :--- |
| |

DVM's AND DMM's
Datron.
$10515 \frac{1}{2}$ Digit DMM. AC/DC Volts.
Resisiance True RMS. O. i $\mu \vee$ resolution $\quad E 750.00$
Fluke.
8800A $51 / 2$ Digit DMM. ACIDC volts.
resistance i $\mu \mathrm{V}$ resolution
Hewlett Packard
34702 A \& $34740 \mathrm{~A} 41 / 2$ digt DMM. AC/OC
volts resistance
E 225.00
3490A 51/2 Digit DMM. ACIDC voits.
E375.00

Phillps.

PM251431/2 Digit Autoranging DMM. AC/DC volts and current resistance............. 995.00
PM2517E 4 Digit Auro ranging DMM ACIDC vol's and current, resistance........... 115.00 PM2527 41/2 Digit DMM. AC/DC wots. current and resistance. $10 \mu \mathrm{~V}$ resolution. True RMS Solartron
A $24351 / 2$ Digit DMM. ACIDC voits. resistance. $1 \mu \vee$ resolution. 30 day warranty ... $\quad \mathbf{3 7 5 . 0 0}$

esolution $£ 850.00$ 7055 pius processor control and RS232 $\mathbf{E 1 1 5 0 . 0 0}$ 1065 Microprocessor DMM Scale length 1.400.000. AC/DC voits. resistance, $\mathbf{7 0 6 5} \mathbf{9 5 0 . 0 0}$ | 7065 plus processor control and RS232 |
| :--- |
| interface |
| E 1250.00 | weston.

4440 31/2 Digit DMM AC/DC volts. $D C$ current resistance $\mathbf{E 9 0 . 0 0}$

FREQUENCY COUNTERS

Advance.

TC15 \& PI Frequency Counter. DC - $\quad £ 275.00$
500 MHz 9 digits Fluke.
1900 A -01 Frequency Counter $5 \mathrm{~Hz}-80 \mathrm{MHz} 6$
digits. Mans/battery operation...... 195.00
1925A Frequency Counter. $5 \mathrm{~Hz} \cdot 125 \mathrm{MHz} .9$
digits, EMI proof case
$\mathbf{E 3 7 5 . 0 0}$
mips.
2M6664 Fully Auto Frequency Counter Racal.
9905 Tmber Counter DC-200MHZ 80

MULTIMETERS

Avo.
8 MK 5
Anill $20 \mathrm{k} \Omega$ /volt
Test Set Number 1 ZOK Ω ivolt very robu
Full lead kit
S.E.I.
Super 50 selectest. 20KスNolt

OSCILLOSCOPES

Cossor. Trace Portabion $\mathrm{DC}-75 \mathrm{MHz}$ Full delayed sweep. 30 d warranty
1707A Dual Trace Portable Oscilloscope $D C-75 \mathrm{MHz}$ Full delayed sweep. 30 d

17078 Dual Trac
Portable Oscillos
Portable Oscillos
$D C-75 \mathrm{MHz}$
$5 \mathrm{~V} / \mathrm{div}$ Full dela
and intensifieds
Trigger hoid off
Philips
PM3212 Dual Trade Portable Oscillosco
SELabs.
SM 1216 Channel Montor $: 2^{\circ} \mathrm{cr}$. Inter
Tektronlx.

432 Dual Trace Portabie Oscillos
$D C-25 \mathrm{MHz}$.
sensitivity. 20 ns
Auto setting mar
input $100-250 \mathrm{~V}$
454A Dual Tr ace Portable Oscilioscope
DC - $150 \mathrm{MHz} .2 \mathrm{mV} \cdot 5 \mathrm{~V} / \mathrm{div}$ Full delayed sweep $2 \mathrm{mV} / \mathrm{div}$.
455 Dual Trace Poriable Oscilloscope 12 sweep $50 \mathrm{MHz} .5 \mathrm{mV}-5 \mathrm{~V} / \mathrm{div}$. Full delayed sweep Super condrion ED:
464 Dual Trace Portable storage Oscilos $D C-100 \mathrm{MHz} .5 \mathrm{mV}-5 \mathrm{~V} / \mathrm{drv}$ Full delaye weep. Max writing speed 110 div/ $\mu \mathbf{E}$ 105 Dual Trace Portable Oscilloscope. D
100 MHz 5 mV -5V/div Full delayed swe 466 Dual Trace Portable Storage Oscillos pec as per 464 but max writing speed 475 Oscilloscope DC 200 MHz $2 \mathrm{mV} \cdot 5 \mathrm{~V} / \mathrm{div}$ Delayed sweep 485 Oscilloscope DC -350 MHz
5 mV -5VIdiv Delayed sweep $\mathbf{5 2 1 \mathrm { APAL } \text { Vecrorscope Measures } \quad \mathbf { ~ } 2 3 .}$ Amplitude. Chrominance Phase. Chrom Amplitude. Differential Phase and Gain. T935A Oscilioscope DC-35MHz $£ 26$ mV 10V/div Delayed sweep E5 4 Tiace $\mathrm{DC}-100 \mathrm{MHz}$
 delayed sweep. maxwiting speed 4.9 cm 7704A Main Frame CN 7 7A26. 7B80. 78

Electronic Brokers-Europe's Prei

May 1981

PDP1 1 C.P.U.S
DEC
PDP i. $1 / 03$-SD Procêssor in $31 / 2^{2}$ chassis complete with 16 KW MOS Memory and EIS option
BRANDNEW - ONLY BRANDNEW - ONLY $\quad 81495.00$ PDP $1 / 1 / 04$ Processor in $101 /^{\prime \prime}$
memory and DLSIW interfac menory and Lil W interface
BRAND NEW (can be ennanced to 28 kW) MOS
$£ 4500.00$

PDP11 MEMORY

DEC.

 MMIILP BKW parity core memory MMIIDP 16 KW core lexDEC-maintained I I/34 systerns BARGAINOFFER - ONLY (1) $\quad \mathbf{8 9 5 . 0 0}$ | unit |
| :--- | MM I IUP 16 KW parity core memory Ipresequisite MF IIUP MS I IJP 16 KW MOS memory

MSV 11 C 16 KW MOS memory (LSII) E1250.00 MJ1-BE 64KW 11770 memory MS 11-MB 256 KB ECC MOS memory for I 1/44 (NEW| E495.00 DISKS

DEC.
RKO5J add-on disk drive $21 / 2$ meg Exchangeable cartridge type. RKO6 Add-on disk drive 14 meg. Free standing From RK07-ED Add-on Disk drive 28 meg . RLO1-AK Add-on Disk dive 5 meg. RPO2 20 meg add-on disk drive RPO4 add-on 88 meg disk drive
RPO add-on 176 meg disk drive RPO6 add-on 176 meg disk drive RX 11 -BD Dual floppy disk drive and conirol

MAGNETIC TAPE

DEC.
Avallable from time to time - TUIO. TU45. TE 16 TSO3 et

Latest Computer Equipment

PDP11 OPTIONS

AA11D VTOL Controller with 4-slot Syslem Unit E125.00 DDIIA 4-slat Systern Unit
DD1 1B 4-siot System Unit
DDII-DK 9-slot backplane
DLI Serial interface
DLI I WA/B Serial Interface/Line Ciock
DRIIC General Purpose interface
DRV 1 IB 16 -bit Paralle Interface.
DZIIAB-iine EIAMUX
FP 11 A Floating Poin
KLI 1 TTY Interface
KWIIL Real Time Ciock
KWIIP Programmable Clock
M 105 Device selector.
M792 ROM Diode Matrix
M920 Unibus Connect
M9301-YB B.ootstrap

POWER SUPPLIES

DEC.
H720 Power supply for BAll Expander Box. BRAND NEW SURPLUS
PDPBA C.P.U.
DEC.
PDPBA Processors, systems and add-on memory usually available

PDPBA MEMORY

MMBAA bKW Core
PDPBE CPU, MEMORY, OPTIONS
DP8EB Communications Adaptor
KABE Positive I/O Bus.

KD8E Databreak
KL8E Asynchronous Interface
KPBE Power fall/auto restart.
MMBE 4 KW Core memory stack
TABE Dual Cassette Dive and Controller
VT8E Set graphics Control Modules

TERMINALS

DEC.
LA 34 DECwriter IV 30 cps desk-top terminal. 132 columns
upperflower case ASCII

120 High onpeed ONL LA36 DEC wit Printer Terminal 11 Keyboard has become an ind eerminal that has become an industry standard, with 132 column upper/lower case printing and switch-serectable speeds of $10.15 \& 30 \mathrm{cps}$. Avaithab interface. NOW ONLY 5595.00 VT 52 SPECIAL PURCHASE of this outstanding Video Display Terminal featuring full upper/lower case ASCll character set, 24×80 display. auxiliary keypad. direct cursor addressing and tabulation. scroll or hold screen mode with baud rates 175-9600 baud) choice of 20 mA or RS 232 interface. BRAND NEW SURPLUS ONLY
.8450 .00 adjustable uactor feed and fuli upper and lower case ASCll printing (7×7 dot matrix). 180 cps pint speed and oper ator-selectable baud rates up to $\angle 800$ baud. Integral stand. RS232 interface. BRAND NEW SURPLUS [limited quantity) ONLY.................... $\mathbf{E 7 5 0 . 0 0}$ display terminal. Please enquire for latest price and detivery $\mathbf{£ 7 5 0 . 0 0}$

PRINTERS

Heavy Duty Matrix printer ASCll upper case character cps operation. 132 print pos | with adjustable tractor feed |
| :--- |
| Paraliel input. ONLY. Σ |

BRAND NEW - LOW CO MATRIX PRINTERIDEAL FC MICROPROCESSOR USERS AS HOBBYISTS \&
EDUCATIONALISTS OR AN LOW-BUDGET APPLICAT

- Full upperilower case A'
- 80-column printing with
adjustable tractor feed
- Standard and double-w
characters 12 cpi and 6
30 cps print speed with
- buffer
* Standard parallel /Centra typel interface
- Optional interfaces ava RS232, IEEE488, Tandy. - ONLY

Mail order total
GE Terminet 1200.
RO printer. 80 columns. uactor feed. upperflower case. AsCli Interface.
Hazeitine.
Thermal printer 80 columns. 30 cps silent $R O$ with parallel $T t$ Tally 1602.
Marrix printer, parallel input. upper/lower case, tractor feed. a

Teletype

Tele type.
ASR 33 input/outpur terminal incorporating paper tape puncr reader 64 ASCll upper case character ser 110 Daud pperatic parity keyboard choice of RS232 or 20 mA interface NOW ONLY

Optlons
CL-type keyboard
8th level marking.
Remote reader control
Reader step.
Autoread
Pedestal.

Low Cost PrInter Offer. Teletype 33 printer mechan including case but no keybo
electronics 64 upper case a electronics. 64 upper case A
10 cps. pinfeed platen. ıdeal
Termiprinter 7075.
electronic hobbyist ONLY
mpact printer, upper/lower case, pin feed. RS232
Texas.
733 ASR terminal utilising high performance twin cassette oris fast tume-saving transmissiort and off-line storage

* Silent operation
- Switch-selectable iransmission speeds 10. 15, \& 30 cps - Fult tape editing capability
* Hign-speed duplication and rewind

745 E1 745 LIGHT WEIGHT (10130 cps , carrying case

er Used Computer Company offer

 SED COMPUIER NaW CONDIIONVay 1981 APER TAPE PUNCHES gltronics.
$35 / 20$ paper tape punch. Solenord-actuated unit capable of nching 5 to 8 channel tapes at speeds up to 35 cp
£95.00 Facit 4070. Faclt 4070.
The top quality punch that has
12 become an industry standard Asynchronous 75 cps operation. Adjustable for punching 5. 6. 7 or
8 leve tape self contained desk8 lever tape self contained desk take-up spools. chad box and TTL compatible control logic . $\mathbf{£ 6 5 0 . 0 0}$
EYBOARDS
sorge RIsk ?w Low Prices

$\begin{array}{rr}\text { 56-station ASCll keyboard mounted on P C B } & \text { Mail Order Totat } \\ \text { M9.50 } \\ \text { M47.15 }\end{array}$ julaty ...

NEW
KB771 tuperb 71 -5tation ASCII keyboard incorporating separate numeric/Cursor control pad and installed in custom-bult steei enclosure with textured blue
enamel finish, Ideal for the $V D$ enamel finish. deal for the VDU $171 / 4^{*} \times 71 / 2^{*} \times 3 \frac{1}{1^{*}}$ Total weight 4 kg . PRICE $\$ 85.00$ Mair Order Total.............. $£ 103.50$
tal mounting frame for extra Mail 371010 -key numeric pad. supplied with connecting cable $\quad £ 8.00$ 3731 Plastic Mail Order Total $\quad £ 9.78$ Mal Oider To Man
OB7 56 MF Mar Order Total
32376 Spare ROM encoder Mail Order Total
Mall Order Total
315 P Edge connector for KB756 or KB756MF
or KB756MF
Mail Order Total C B.I. C 5 V only plugs in to Mail Order Tota! $\quad \mathbf{E 9} 9$ -25 ERK 56 -statron ASCll keyboard for PET complete with PET te face. built-in power supply and steel enclosure $\mathbf{£ 9 . 0 0}$ iscounts availabte for quantites. Maii Order TotalE115.00

'ROGRAMMABLE CALCULATORS

 ewlett Packard.330A with 8K Memory. Extended IIO ROM. Sumg Variables ROM serla and 3 parallel intertaces
£1695.00 IODEMS
zal Milgo.
odem 26 isi 120012400 baud. 2 or 4 wire, full/half duplex

ENERATORS

awdsley

;KVA Generator system comprising AC Induction Motor, AC merator. AC Exciter and Emreg Regualato
implete with built in over-h ung ex-protected rotating field ound for 415 V .3 phase. 50 Hz .4 wire and developing pattern. it is EP.F. When running at a speed of 1500 rpm ie alternator and exciter are used in conjunction with the tomatic transistorised voltage regulator, incorporating 3-phase nsing The regulator is so designed that when the alternator is on lanced 3-phase load and with one phase swiched off or iconnected. the phase voitage will not vary more than $\neq 6 \%$ unde艮

Latest Computer Equipment

VDUs
Hazeltine.

MONITORS

Ball Miratet TTLIS

isin diagonal green phoshor tube integral power supply. Requires separate horizontal and vertical video input. BRAND NEW £75.00

FLOPPY DISK DRIVES

Shugart SA400.

H1000 The low, low priced teletypewriter-compatible video display termunal, oftering your choice of transmission speeds up to generation and checking. 12×80 display upper case ASCII, RS232 interface. choice of baud rates SUPER VALUE $\quad \mathbf{E 1 9 9 . 0 0}$ Standard baud rates either (a) surcharge for other combinations up to 9600 baud.
H2000 Superb spec. including fult H2000 superb spec. including RY cursor acdressing and edit
tacility. 27×74 display, upper case
ASCII. RS 232 interface. switch. selecrable baud rates $\mathbf{£ 2 9 9 . 0 0}$ H2000C NOW ALSO AVAILABLE with 25×80 line format and
C.MOS logic
M Modular One. Now with upperflower case, XY cursor addressing. 24×80 line d!splay. dual intensity detachable keyboard choice of 8 transmission rates up to 9600 baud $\mathbf{\$ 3 9 9 . 0 0}$
$51 / 4$ MINI.FLOPPY /NEW

- Capacity (unformatted: 1 IOKD |singie density) 220Kb (double density)
* Transfer rate: $125 / 250$ kilobits $/ \mathrm{sec}$
* Average access time: $<63 \mathrm{~ms}$.
* Read/Write and Write Drotect electronics
* Power requirements + 5VDC + 12VDC Dimensions $53 / /^{\prime} \times 314^{\prime \prime} \times 8^{\prime \prime}$. werght 31 bs
Application notes are avai able on interfacing the 5 A400 to intel Application notes are avai able on interfacing the SA400 to Intel
8080A. Motorola etc
E195

Snugart SA450.
Double-sided. double density minitioppy providing 440KB unformatted storage capacity, yet the same compact size and weight as the 5A400 \quad E299.0............ Shugart SABO1.
8 FLOPPY (NEW)

- Capacity |unformatted 400 Kb (single density) 800 Kb (double density)
* Transfer rate 250/500 kilobits/
- Average access time 211 ms
* ReadNVrite and Write Protect electronics
- Power requirements $+24 \mathrm{VDC}+5 \mathrm{VDC}-5 \mathrm{VDC}$
Dimensions $4 \frac{1}{7} \times 91 / 2^{\prime 2} \times 141 / 4^{\prime}$ Supplied complete with technical manuat
Hours of Business: 9 a.m.-5 p.m. Mon-FrI. Closed lunch 1-2p.m.
ADD 15% VAT TO ALL PRICES
Carriage and Packing charge extra on all items unless
otherwise stated
W/W-201 for further detalls

Electronic Brokers Limited 61/65 Kings Cross Road London WCIX 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

New! Sinclair 2X81 Personal Computer. Kit: $£ 49.5$ complete

Reach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough - the Sinclair ZX80, world's first complete personal computer for under £100. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price

Over 50,000 were sold, and the ZX80 won virtually universal praise from computer professionals.

Now the Sinclair lead is increased: for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And the ZX81 kit means an even bigger saving. At $£ 49.95$ it costs almost 40\% less than the ZX80 kit!

Lower price: higher capability

With the ZX81, it's just as simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more powerful 8KBASICROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, or to select a program off a cassette through the keyboard
Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21 . The $Z \times 81$ reduces the 21 to 4 !

The secret lies in a totally new master chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX 80 !

Proven micro-processor, new 8 KBASIC ROM. RAM - and unique new master chip

complete

Kit or built it's up to you!

The picture shows dramatically how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 V DC nominal unregulated (supplied with built version)

Kitand built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

New

Sinclair teach-yourself BASIC manual
Every ZX81 comes with a comprehensive, specially written manual-a complete course
 in BASIC program ming, from first principles to complex programs. You need no prior knowledge - children from 12 upwards soon become familiar with computer operation

```
IIRII=N THEN GO TロE
1
O
J+1}\=N\mathrm{ THEN GQ Tロ 4B
ロ(1,N) >A(T) THEN GO TO
# (J)
j)=&(T)
TI=?
\-2
    A-1HEN GO TG 1F
```


zw，improved specification

 Z80A micro－processor－new faster ：rsion of the famous Z80 chip，widely recognised as the best ever made the ZX81 eliminates a great deal of tiresome typing．Key words （RUN，LIST，PRINT， etc．）have their own single－key entry．
－Unique syntax－ check and report codes identify programming errors immediately．
－Full range of mathematical and scientific functions accurate to eight decimal places．
Graph－drawing and animated－ display facilities．
－Multi－dimensional string and dmerical arrays．
Up to 26 FOR／NEXT loops．
Randomise function－useful for games i well as serious applications．

Cassette LOAD and SAVE with amed programs．
－1K－byte RAM expandable to 16 K ytes with Sinclair RAM pack．
－Able to drive the new Sinclair printer 1ot available yet－but coming soon！）
－Advanced 4－chip design：micro－ rocessor，ROM，RAM，plus master chip unique，custom－built chip replacing 3 ZX80 chips．

zinclair Research Ltd，
；Kings Parade，Cambridge，Cambs．，貊2 1SN．Tel： 027666104.
leg．no： 214463000

If you own a Sinclair ZX80．．．

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop－in replacement chip． （Complete with new keyboard template and operating manual．）

With the exception of animated graphics，all the advanced features of the ZX81 are now available on your ZX80－including the ability to drive the Sinclair ZX Printer．

Coming soon－ the IX Printer．

Designed exclusively for use with the ZX81（and ZX80 with 8K BASIC ROM）， the printer offers full alphanumerics across 32 columns，and highly sophisti－ cated graphics．Special features include COPY，which prints out exactly what is on the whole TV screen without the need for further instructions．The ZX Printer will be available in Summer 1981， at around $£ 50$－watch this space！

16K－BYTE RAM pack for massive add－on memory．

Designed as a complete module to fit your Sinclair ZX80 or ZX81，the RAM pack simply plugs into the existing expansion port at the rear of the com－ puter to multiply your data／program storage by 16 ！

Use it for long and complex pro－ grams or as a personal database．Yet it costs as little as half the price of com－ petitive additional memory

How to order your ZX81
BY PHONE－Access or Barclaycard holders can call 01－200 0200 for personal attention 24 hours a day，every day． BY FREEPOST－use the no－stamp－ needed coupon below．You can pay by cheque，postal order，Access or Barclaycard．
EITHER WAY－please allow up to 28 days for delivery．And there＇s a 14－day money－back option，of course．We want you to be satisfied beyond doubt－and we have no doubt that you will be．

MMEDIATEDELNERY ONALL THESE INSTRUMENTS
 PM5519-THE BEST PATTERN GENERATOR IN THE WORL
 PM 55191 CTV pattern generator
 * Over 20 colour and b/w test patterns carefully selected for maximum versatility
 * RF signals available in bands I,III,IV and V
 * Variable video output (with I volt fixed position)
 * External video and sound modulațion facility
 * Composite sync output for triggering includes the line frame and blanking pulses to the local TV standard
 * Versions available for non-British TV systems
 Reader inquiry number 220
 NEW PHILIPS CATALOGUE

PHILIPS CHOICE FOR SERVICE

A selection from the range of Philips instruments with wide service applications

PM 5326 RF signal generator

* 100 kHz - 125 MHz in nine overlapping ranges
* Built-in 5 digit counter
* 50 mV RF output at 75Ω can be attenuated to over 100 dB
* Electronically stabilized output level * Wobbulator facility

Reader inquiry number 221
PM 2517 digital multimeter

* Full four digits
* Chorce of LED or LCD display
* True RMS AC readings

* Autoranging with manual override
* Current up to 10 A
* Options include temperature and data hold probes
Reader inquiry number 222
PM 3207 dual trace oscilloscope

[^0]

* Triggering from either channel or externa input
* Auto TV triggering
* Same sensitivity on X and Y channels
* B-invert facility
* Full $8 \times 10 \mathrm{~cm}$ screen

Reader inquiry number 223

PM 6667 and 6668 high resolution counters

* I GHz (PM 6668) or 120 MHz (PM 6667)
* Microprocessor control with built-in intelligence
* Auto triggering on all waveforms and duty cycles
* 15 mV RMS sensitivity
* High stability X-tal oscillatars: $10^{7} /$ month
* Self-diagnosis routine
* Battery option

Readers inquiry number 224

Test \& Measuring Instruments

The 300-page 1981 Philips Test and Measuring instruments catalogue contains details of the company's full audio and video service equipment capability, as well as of its entire test and measuring range.

Send for your free copy by circling reader inquiry number 225.

WHERE TO BUY YOUR PHILIPS AUDIO

 AND VIDEO SERVICE EQUIPMENTThe entire range is avallable from the Phlips Electronic instruments Department (see address below) or from Philps Service Centres ('phone 01.6860505 for the address of your nearest branch). In addition, the PM 2517 and PM 3207 are avallable from Wessex Electronics Ltd, 114-116 North Street, Downend, Bristol BSI6 5SE. Tel (0272) 571404

Use the inquiry service to obtain information about the products which interest you. Alternatively. phone Cambridge (0223) 358866 and speak to our Commercial Office on extension 145 or 148.

PM 5519 CTV pattern generator PM 5326 RF signal generator 221
PM 2517 digital multimeter
PM 3207 15 M Hz oscilloscope
PM 6667/6668 frequency counters 224 223 1981 Test \& Measuring catalogue Pye Unicam Ltd
Philips Electronic Instruments Dept
York Street. Cambridge. CB1 2PX. England
Tel: Cambridge (0223) 358866 Telex 817331

TRTISTORMITX：S
ivarwige 0 ：
16
turs

We use advanced winding technology to make our toroidal transformers They have only half the weight and height of their laminated equivalents and are appreciably more efficient Our toroidals cost virtually the same as the older type which they are rapidly replacing．Induced hum is reduced by a factor of ten Supplied with rigid mounting kit with centre boll．steeland neoprene washers．

30 VA
70 mm dia $\times 30 \mathrm{~mm}$ Weight 0.45 Kg
$£ 4.71$ SECONDARY SECONDARY 160 va Weigh 1.8 Kg

120 VA Weight 9.2 Kg

CHOICE OF 3 PRIMARY INPUTS

LP Torondal Transformers are avallable in chore of 110 V ． 220 V ． 240 F ．coded as thlows（Secondaries can be connected in series or parall
For 110 V Primary insert 0 in place of X in type number
220V Primary（Europe）insen lin place of X ．in type numbe
240 V Primary（U K ．insert 2 in place of＇ X ＂ in type number
Example－J20VA $240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013$ ．
＊CUSTOMER DESIGN ENQUIRIES INVITED
QUANTITY PRICELIST AVAILABLE
FREEPOST facility．（U．K．only）．
Sunply address envelope to FREEPOST to address below NO STAMPREQUIRED
TO ORDER Enclose cheque／Postal Order／Money Order payable to $/ L$ L P Electronics Lid or quote your ACCESS or BARCLAYCARD account No To pay C．O．D．add glextra to TOTAL value of Increriblibe Prich！

World－beating Oscilloscope Offers Electronic Brokers
Iニー＝
品

WW－ 036 FOR FURTHER DETAILS

DANAVOX (GT. BRITAIN) LTD
1 CHEYNE WALK
NORTHAMPTON NN 15 PT

TEL. NORTHAMPTON (0604) 36351
 machines, tele-communications, hearing aids and electroacoustic equipment etc."

WW-009 FOR FURTHER DETAILS

vinumin mant HuM Hith aribian

 DMM with true RMS on AC volts and current DC volts $200 \mathrm{mV}-1 \mathrm{KV}$ $10 \mu \mathrm{~V}$ resolution AC volts. 200 mV - 750 V , $10 \mu \mathrm{~V}$ resolution DC/AC current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.01 \mu \mathrm{~A}$ resolution resistance 200 $2-20 \mathrm{M} \Omega, 0.01 \Omega$ resolution. Also reads $d B$ direct referenced to 16 stored impedances. Conductance ranges 2 mS and 200 nS . £245 mains model £285 mains battery
8012A $3 \frac{1}{2}$ Digit LCD DMM with true RMS on AC volts and current. DC volts 200 mV - $1 \mathrm{KV}, 100 \mu \mathrm{~V}$ resolution. AC volts $200 \mathrm{mV}-750 \mathrm{~V}$, $100 \mu \mathrm{~V}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution Low resistance 2Ω and 20Ω, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mu \mathrm{~S}-200 \mathrm{nS}$
£218.00 mains model $\mathbf{£ 2 4 4 . 0 0}$ mains battery. 8010A $31 / 2$ Digit LCD DMM Same spec as 8012A plus a 10Amp $A C / D C$ current range but no low resistance range.
£167.00 mains model £193.00 mains battery 8024A $31 / 2$ Digit hand held LCD DMM with peak hold Level Detector and continuity tester. DC volts 200 mV - 1 KV , $100 \mu \mathrm{~V}$ resolution.
AC volts $200 \mathrm{mV}-750 \mathrm{~V}, 100 \mu \mathrm{~V}$ resolution. DC/AC current $2 \mathrm{~mA}-2 \mathrm{~A}$, $1 \mu \mathrm{~A}$ resolution. Resistance $200 \Omega-20 \mathrm{M} \Omega, 0.1 \Omega$ resolution.
Conductance 200 nS . Peakhold of AC or DC volts and current Level detector operates around +0.8 V reference. Audio tone on level and continuity, $\mathbf{£ 1 5 5 . 0 0}$, carrying case $£ 8.00$ extra. 8020A $31 / 2$ Digit hand held LCD DMM. spec as per 8024 A with extra conductance range of 2 mS but
 Complete with carrying case. $\mathbf{£ 1 2 5 . 0 0}$. 8022A $31 / 2$ Digit hand held LCD DMM. Spec as per 8020A but no conductance ranges and slight reduction in accuracy, $\mathbf{£ 8 9 . 0 0}$ carrying case $£ 8.00$ extra.

Also available a range of accessories inclúding current shunts, EHT probe, rf probe, Temperature probe and touch and hold probe. Full details on request. The warranty period on all items shown is 1 year other than the 8020A which is 2 years.

Electronic Brokers

$\rightarrow \quad$ London, VVC1X9LN
Tel: 01-278 3461-Telex 298694
WW - 048 FOR FURTHER DETAILS

Make it for a Song!

The New Maplin Matinée
 Amazing Value For Only

Easy to build. Latest technology - means less cost, less components and 80\% less wiring. Comparable with organs selling for up to $£ 1,000.00$. Two 49 -note manuals. 13 note pedalboard. All organ voices on drawbars. Preset voices: Banjo, Accordion, Harpsichord, Piano, Percussion. Piano sustain Sustain on both manuals, and pedalboard. Electronic rotor, fast and slow. Vibrato and Delayed vibrato. Reverb. Manual and Auto-Wah. Giide (Hawaiian Guitar Sound). Single finger chording plus memory 30 Rhythms! 8 -instrument voicing. Major, Minor and Seventh chords Unique walking bass lines with each rhythm Unique countermelody line with each rhythm. Truly amazing value for money.
Full construction details in Electronics \& Music Maker magazine.

The complete buyers' guide to electronic components. With over 300 pages, it's a comprehensive guide to electronic components with thousands of photographs and illustrations and page atter page of invaluable data Get a copy now - it's the one catalogue you can't afford to be without

Post this coupon now for your copy of our 1981 catalogue price $\{1$
Please send me a copy of your 320 page catalogue. I enclose £ 1 (Plus 25p p\&ip) If I am not completely satistied I may return the catalogue to you and have my money refunded. If you live outside the UK send $£ 1.68$ or 12 International Reply Coupons. I enclose $£ 1.25$

Name \qquad
Address \qquad

WW581

Catalogue now on sale in all branches of WHSMITH点 Price $£ 1.00$
WW-025 FOR FURTHER DETAILS

MODEL 3012-R

Manufacture of the Model 3012 Series II 12" precision pick-up arm ended in 1972. In response to many requests to re-introduce it for professional and hi-fi applications we have produced the Model 3012-R. It is basically similar to its classic predecessor but with important refinements including:

- Thin walled stainless steel tone-arm.
- New design lateral balance system.
- Extra rigid low mass shell with double draw-in pins.
- Main weight system with fine adjustment providing a wide range of balance.
- Geometry optimised for $12^{\prime \prime}$ records.

Distortion caused by lateral tracking error is at least 25% less than is possible with a $9^{\prime \prime}$ arm and its effective mass of 14 grams makes it particularly suitable for the many medium and low compliance cartridges now on the market.

Full details will be sent on request.

Write to Dept 0663
SME Limited, Steyning, Sussex, BN4 3GY, England © Steyning (0903) 814321. Telex 877808 SME G

BB for CB

> \star R.F. TRANSISTORS \star INTEERATED CIIRCUITS \star POWER UNITS \star MULTI MEEERS - TVI FIITERS \star ANTENNA ROTORS \star BOOKS

\star CONNECTORS

- MOBLLE ANTENNAS \star BASE ANTENNAS \star SWR MEEERS \star MATCHERS \star LINEAR AMPS \star POWER MIKES

SEND FOR OUR CB ACCESSORIES CATALOGUE, PRICE 50p
B. BAMBER ELECTRONICS COMMUNICATIONS HOUSE 5 STATION ROAD, LITTLEPORT, CAMBS. CB6 10E PHONE: ELY (0353) 860185 (TUESDAY TO SATURDAY)

WW - 063 FOR FURTHER DETAILS

HERE IT IS! THE BRAND NEW 8022A HAND-HELD DMM Consider the following features: 6 resistance ranges from 200 ohm- 20 ohms 8 current ranges from $2 \mathrm{~mA}-2 \mathrm{~A}$ AC DC 10 voltage ranges from 200 $\mathrm{mv}-1000 \mathrm{~V}$ DC. 200 mc .750 V $A C$ Pocket size - weighing only 370 gms Full overload protection - will withstand 6kv spikes Rugged construction - virtually indestructable Meets tough military specs drop proqf In line, pushbutton operation for Single-handed useage chip for low power consumption All this plus a 2 -vear full guarantee For only $£ 89$ + vat SOFT CARRYING CASE Carrage and insurance £3 £7 extra			
		LOWUC	TORANGING ON COUNTER 1900A measurement modes
Even more sophinticnted the Fluke 8020A Identical in most respects to the 8022A but in addition incorporates a conductance range from $2 \mathrm{mS} \cdot 200 \mathrm{nS}$. Price $£ 125$ Carrage and insurance $£ 3.00$ A handsome sofl carrying case is included (this model onty)			15 mv zero suppression automatic annunciation and ding 4 hours confinuous operatuon non switches providing resolution to 0.1 Hz overflow indicator hable 1 MHz low pass filier and atrènwavor entring carrying handle annunciation £235 Carrage andid nsurance £3
	PLEASE ADD 15\% VAT TO ALLORDERS EXCEPT WHERE ITEMS MARKED VAT INCLUDED." CALLERS WELCOME We are open 9 a $m-6 \rho \mathrm{~m}$ Monday-Saturday We carry a very large seiection of electronic components and electro-mechanical items	TARY STUD SWITCH SEY 30-way 2 bank pole Contacts 1 amp $A C / D C \quad 0 D 50$ and betore break Siop in yesired arc of travei loeal ching Size 2% dia dia spindle 3.75 (inc. VAT)	BENDIX MAGNETIC CLUTCH

Second User Test Equipment，Calibrated to Manufacturer＇s original specification．

ACOUSTIC \＆VIBRATION 3RUELG KJAER

203 Sound Lovel Moterer
1613 Octave Filter for Level Meter 215 Soundmeter inc Octave Filter 4230 Sound Level Calibrator 1424 Noise Dosemeter 1220 Piston Phone Level Calibrator 2603 Mic amplifier $2 \mathrm{~Hz}-35 \mathrm{KHz}$ 1014 BF Oscillator $20 \mathrm{~Hz}-20 \mathrm{KHz}$

SEL

14 Environmental LEQ Meter Batt op mproved varsion of 112 mode FLUKE
341 DC Voltage Calib $10 \mu \mathrm{~V}$ to 1100 V GENERAL RESISTANCE DAS56 DC V and I Calib $1 \mu \mathrm{~V}-10 \mathrm{~V} 30 \mathrm{~mA}$ DAS76 DC V and I Calib $1 \mu \mathrm{~V}$－10V 1 A HEWLETT PACKARD
4342 OLC Meter $22 \mathrm{KHz}-70 \mathrm{MHz}$ MARCON
TF868A Universal LCR Bridge 1245 Q Meter $1 \mathrm{KHz}-300 \mathrm{MHz}$
WAYNE KERF
B500 LCR Bridge
B601 LCR Bridge RF Osc E Det not inc B641 LCRG Bridge 0.1 \％

COMMS \＆CABLE TEST EOUIPMENT

CHASE
35A Field Strength Meter $20-850 \mathrm{MHz}$ DYMAR
88015 VHF Radio Telephone－Portable 883 VHF Radio Telephone－Portable BC282 Batt Charger for 880／883
HEWLETT PACKARD
3556 A psophometer $20 \mathrm{~Hz}-20 \mathrm{KHz}$ MARCONI
TF2333 Trans Test Set $30 \mathrm{~Hz}-550 \mathrm{KHz}$ NEC
TT537B Noise E VU Meter -80 to +20 dBm PYE
PF2UB UHF Radio Telephone－Portable STC
74216 A Noise Generator CCIT 74261A Psophometer CCIT
TEKTRONIX
1502 TDR Cable Tester CRT＋Recorder WANDEL \＆GOLTERMANN LDS2 200 Hz － 600 KHz sender for gp Dela LDEF2 Filters for DLM
COUNTERS \＆TIMERS HEWLETT PACKARD 5300A 6 Digit Display Unit－P／in reqd 5302 A 50 MHz Counter Timer for 5300 530581300 MHz Counter for 5300 5308 A 75 MHz Counter Timer for 53001 5345500 MHz 11 digit Counter Timer
10590A Adapter 5245 to 5345 Plug ins MARCONI TF2432 560 MHz 8 digit Counter RACAL
$9024600 \mathrm{MHz} 71 / 2$ digit Counte 90251 GHz 8 digit Counte
$983780 \mathrm{MHz}_{2} 6$ digit Counter Timer SYSTRON DONNER 60533 GHz 9 digit Counter BCD O／P 605418 GHz 11 digit Counter BCD 0／F DIGITAL TESTING EOUPMMENT
HEWLETT PACKARD
1600S Logic Analyser 32ch 20 MHz 1600A Logic Analyser 16ch 20 MHz 1607 Logic Analyser 16ch 20 MHz 5011 T Logic troubleshooting k 8016A Dig Word Gen DC $-50 \mathrm{MHz} 9 \times 32$ bit $\quad 12$ TEKTRONIX
7D01F Logic Analyser 16 ch 50 MHz P／in 832 Datacomm Test V24／RS232／1 loop
MAINS TEST EQUIPMENT
COLE
DATALAB
DL905 Digital Siore Spike Monitor

Prices
from E

DL019 Mains Interface for DLS05 DRANETZ
from 450
276 250
1096 1095
1626 1626
96 96
376 376
196 196
200 150 460 1060 RDS

GAY

LDM AC／DC／Spike／Time inc Printe SCHAFFNER
NSG101 Mains Interference Simulator

MISCELLANEOUS

COMARK
1601BLS Thermom $10 \mathrm{ch} 87+1000^{\circ} \mathrm{C}$ type K 76 604BIS Thernom $10 \mathrm{ch} 87+1000^{\circ} \mathrm{C}$ type K 52581S Thermom $10 \mathrm{ch}-100+300^{\circ} \mathrm{C}$ type 1642BLS Thermom $10 \mathrm{Ch}-120+800^{\circ} \mathrm{C}$ type J N．B．Thermocouples not included
SCHWARZBECK
FSME1515 HF Interference Receiver
SOLARTRON
1180 XY Interface for $1172 / 74$ T．F．A．
TEKTRONIX
485C TV Waveform Monitor PAL／NTSC
NETWORK ANALYSERS
PHASEMETERS
GENERAL RADIO
710／11／12／140．4－500 MHz 115 dB range $\quad 2200$
OSCILLOSCOPES \＆

ACCESSORIES

GOULD ADVANCE

OS 1000 A 20 ：A Hz 5 mV 2 Trace TV trig OS 1000 B 20 MHz 5 mV 2 Trace TV trig OS 3300 B 50 MHz 1 mV 2 Trace 2 T base
HEWLETT PACKARD
1740A 100 MHz 5 mV 2 Trace 2 T base
Trig View
804A 50 MHz 20 mV 4 Trace Plug－in 825A Dual Tirnebase Plug－in
1805 A 100 MHz 5 mV 2 Trace Plug－in
PHILIPS
PM3211 15 MHz 2 mV 2 Trace TV trig
PM3212 25 MHz 2 mV 2 Trace TV trig
PM3214 25 MHz 2 mV 2 Trace 2 T base
PM3233 10 MHz 2 mV 2 Baam 2Ch sig delay
PM3244 50 MHz 5 mV 4 Trace 2T base
PM3262 100 MHz 5 mV 2 Trace 2 T base
Tr View
TEKTRONIX
465100 MHz 5 mV 2 Trace $2 T$ base
465 B 100 MHz 5 mV 2 Trace 2 T base

+ Probes
475200 MHz 2 mV 2 Trace 2 T base 485350 MHz 5 mV 2 Trace 2 T base
7603100 MHz CRT r／out 3 slot M／Frame
704200 MHz CRT r／out 4 slot M／Freme
904500 MHz CRT r／out 4 slot M／Frame
$7 A 12105 \mathrm{MHz} 5 \mathrm{mV} 2$ Trace Plug－in
$7 A 19500 \mathrm{MHz} 10 \mathrm{mV} 1$ Trace Plug－in
$7 A 221 \mathrm{MHz} 10 \mu \mathrm{~V}$ Differential Plug－in
7 A24 350 MHz 5 mV 2 Trace Plug－in
7 A 26200 MHz 5 mV 2 Trace Plug－in
7B53A 2 Timebase Plug－in 100 MHz Trig
$7 B 801$ Timebase Plug－in 400 MHz Trig
78852 Timebase Plug－in 400 MHz Trig
P6013A X1000 12KV Probe
P6201FET Probe DC－ 900 MHz
TELEQUIPMENT
03415 MHz 2 mV 2 Trace Mains＋int batts
D75 50 MHz 5 mV 2 Trace 2 T base
D83 50 MHz 5 mV 2 Trace 2T bsse Large crt
TEXSCAN
DU120 Large crt display unit
Note：we hold a renge of cameras P．O．A．
OSCILLOSCOPES（STORAGE）
HEWLETT PACKARD
$1703 \mathrm{~A} 35 \mathrm{MHz} 10 \mathrm{mV} 2 \mathrm{Tr} 2 \mathrm{~TB} 1000 \mathrm{Div} / \mathrm{ms} 1400$
TEKTRONIX
$564 \mathrm{~B} / 3 \mathrm{~A} 6 / 3 \mathrm{~B} 110 \mathrm{MHz} 2 \operatorname{Tr} 2 \mathrm{~TB} \quad 560$

$466100 \mathrm{MHz} 5 \mathrm{mV} 2 \mathrm{Tr} 2 \mathrm{~TB} 1350 \mathrm{~cm} / \mathrm{ss}$ $91210 \mathrm{MHz} 2 \mathrm{mV} 2 \mathrm{Tr} 1 \mathrm{~TB} 250 \mathrm{~cm} / \mathrm{ms}$ 31225 MHz 3 Stot M／Frame split $5 \mathrm{~cm} /$	290	
934	690	$162500 \mathrm{~cm} / \mathrm{\mu s} \quad 6250$

POWER MEASUREMENT

HEWLETT PACKARD
1150 435A $10 \mathrm{MHz}-18 \mathrm{GHz}$ Powermeter 3481A Type N Coax sensor for 435A 332 $10 \mathrm{MHz}-10 \mathrm{GHz}$ Powermeter MARCONI
$646010 \mathrm{MHz}-12.4 \mathrm{GHz}$ Powermeter

200

260

FLUKE

415B 0－3．1 KV variable 30 mA Metered ITT
Poweriab Dual 15 V variable 1 A
MARCONI
TF2154／1 $0-30 \mathrm{~V}$ variable Metered
SORENSON
DCR 300－2．5 0－300V variable 2．5A Meter 460
VALRADIO
B12／200S Inverter 12V DC to
230 V AC 200W
PULSE GENERATORS
EH RESEARCH
$1221 \mathrm{KHz}-200 \mathrm{MHz} 5 \mathrm{~V} 50 \Omega$ RT 12 ns
$13210 \mathrm{~Hz}-35 \mathrm{MHz} 50 \mathrm{~V} 502$ RT 10 ns 2 pulse 120
MARCONI
TF2025 $0.2 \mathrm{~Hz}-25 \mathrm{MHz}$ 10V 5082 RT 7 ns 2 pulse
PHILIPS
PM57151 Hz－50 MHz 10 V variRT＋offset 690 RECORDERS \＆ACCESSORIES BRUNO WOELKE
ME102B Wow and Flutter meter BRYANS SOUTHERN BS 314 Chart $10^{\prime \prime} 4$ Pen 16 speed BS314 Chart 10， 4 Pen 16 speed
HEWLETT PACKARD
7015A XY 1 pen A4 size
7046A XY 2 pen A3 size
KUDELSKI
NAGRA 4．2LSP Tape Recorder Portable 1400
MEDELEC
Mscope Combined 4 ch scope＋UV rec＇dr 1900

TOP CONDITION EX－STOCK DELIVERY

Tektronix 466 Storage Scope
00MHz Dual Trace． $5 \mathrm{mV} / \mathrm{dly}$ sensifiviry．
Dual／Del Time Base．Writing
speed $1350 \mathrm{~cm} / \mu \mathrm{s}$－
complete with pouch＋ probes． Brand new storage

ONE FUL YEAR GUARANTEE

Contact us for a cosh quate tor
our under－utilised fest equipment．

PHILIPS

PM8041 XY 1 pen A4 size
PM8251 Chart 10＇ 1 pen 12 speed

RACAL

Store 4 Tape Recorder 4 ch FM

SE LABS

6150／51 UV chart 区＇$^{\prime} 12 \mathrm{ch} 12 \mathrm{spd}$
6 ch amp
9946 ch galvo preamp＋DC bridge supply $\quad \mathbf{4 6 0}$
6008 UV chart $8^{\prime \prime} 25 \mathrm{ch} 16$ speed
SMITHS
RE541 Chart 8＇ 1 pen 8 speed
RE501／4701 Cht $4^{\prime \prime}+X Y 1$ Ch 10 spd
AC Batt
SOLARTRON
3240 Modular Data Logger systern
YOKOGAWA
3046 Chart $10^{\prime \prime} 1$ pen 8 speed
3047 Chart $10^{\prime \prime} 2$ pen 8 speed
\square
trices

MARCONI
TF2300A Mod Meter 1 MHz． 1 GHz AM／FM
TF2330 Wave Anallser 20 Hz － 50 KHz
TF2331 Distorion Me
WAYNE KERR
A321 Wave Analyser

Ale：see s／so＂Spectrum Anelysers＂

SIGNALFUNCTION／＋SWEEP

GENERATORS

GENERAL RADIO

1362 Generator 220.920 MHz
GOULD ADVANCE
SG70 Generator $5 \mathrm{~Hz}-125 \mathrm{KHz} 6008 / 4 \mathrm{~W}$
HEWLETT PACKARD
204 D Generator $5 \mathrm{~Hz}-1.2 \mathrm{MHz} 6005$ ：
86908 Sweeper mainframe
86208 Sweeper mainframe
3310A Function $0.05-5 \mathrm{MHz}$ Sin

Sq Tri Rmp

618 G Generator 3．8－7．5 GHz
612 Generator $450-1230 \mathrm{MHz}$
614 Generator 0．8－2．1 GHz
MARCONI
TF144H／4S Generator $10 \mathrm{KHz}-72 \mathrm{MHz}$ AM
TF801D Generator $10 \mathrm{MHz}-470 \mathrm{MHz}$ AM
TF2015 Generator 10.520 MHz AM／FM
TF2171 Synchroniser for TF2015
TF2012 Generator $400-520 \mathrm{MHz}$ FM
PHILIPS
PM5127 Function $0.1 \mathrm{~Hz}-1 \mathrm{MHz} \mathrm{Sin}$
Sa Tri Rmp
PM5129 Func． $1 \mathrm{mHz}-1 \mathrm{MHz}$ Usual
＋swp／brst
PM5131 Function $0.1 \mathrm{~Hz}-2 \mathrm{MHz} \operatorname{Sin} \mathrm{Sq}$ Tri
PM5326 Gen 0．1－125 MHz AM／FM
swp cntf $\rightarrow 1 \mathrm{MHz}$
PM5326X Gen as 5326 inc 100 MHz Counter
RACAL
9081 Gen \emptyset Lock $5-520 \mathrm{MHz}$ AM／FM／DM 1900 TEXSCAN
9900 Sweeper $10-300 \mathrm{MHz} 6$／in CRT disp
$\checkmark S 60$ Sweeper 5.1000 MHz
TV Markers 31.532 .53539 .541 .5 MHz
LN40A Log Amplifier
WAVETEK
SPECTRUM ANALYSERS
HEWLETT PACKARD
141T／8552B／8555A Complete ．01－18 GHz 8445A Pre－selector 0．01－18 GHz $3580 \mathrm{~A} 5 \mathrm{~Hz}-50 \mathrm{KHz}$ with digi store disp
VOLT／MULTHMETER
（ANALOGUE）
AVO
$8 \mathrm{Mk4} 4 \mathrm{AC} / \mathrm{DC} /-\mathrm{VI}+\Omega$
BOONTON
92C AC／RF $10 \mathrm{KHz}-1.2 \mathrm{GHZ} 1 / 2 m \mathrm{~m}-3 V$
HEWLETTPACKARD
$400 \mathrm{E} 10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$（DC－0／P）
$427 \mathrm{~A} A C / D C / \Omega \mathrm{AC}-1 \mathrm{MHz}$
3400 A TRMS $10 \mathrm{~Hz}-10 \mathrm{MHz} 1 \mathrm{mV}-300 \mathrm{~V}$
DCO／P
MARCONI
TF2603 $50 \mathrm{KHz} \cdot 1.5 \mathrm{GHz} 300 \mathrm{HV}$－3V
TF2604 $20 \mathrm{~Hz} \cdot 1.5 \mathrm{GHz} 300 \mathrm{mV}-300 \mathrm{~V}$
PHILIPS
PM2454B $10 \mathrm{~Hz}-12 \mathrm{MHz} 1 \mathrm{mV}$－300V DC O／P RACAL
9301 RMS $10 \mathrm{KHz}-1.5 \mathrm{GHz} 100 \mu \mathrm{~V}-300 \mathrm{~V} \quad 660$
VOLT／MULTHMETER（DIGITAL）
ADVANCE
OMM7A 1999FSD AC／DC／V／I／Ω
116
BOONTON
FLUKE
$10 \mathrm{KHz} \cdot 1.2 \mathrm{GHz} 10 \mu \mathrm{~V}$ res
8000A 1999FSD AC／DC／V／I／』
HEWLETT PACKARD
3490A 100000FSD AC／DC／V／Ω
SOLARTRON
A200 $19999 F S D$ DC only $1 \mu \mathrm{~V}-1 \mathrm{KV}$
A203 19999FSD AC／DC／V／』
a 20519999 FSD TRMS AC／DC／V／』

PA;CE ap360 POWER AMPLIFIËR

AP360 Stereo Power Amplifiers have been well-tried and proven in the music industry. They prove that sonic quality, ruggedness and reliability can be combined in one amp.

Independent power supplies elminate crosstalk and ensure an accurate sound reproduction.
Power Output. 180 Watts RMS per stereo channel, into 4 Ohms

$$
\begin{array}{lll}
\text { AP360 (jacks) } & \ldots . . & \mathbf{£ 1 8 8} \\
\text { AP360 (XLR) } & \cdots . & \mathbf{£ 1 9 8}
\end{array}
$$

(Incl. Carriage U.K. Mainland. Excl. V.A.T.) Manufactured in England by:

> PACEINDUSTRIAL EQUIPMENT LTD.
> Queen's Road, Royston SG8 5AQ Tel. (0763) 45321. Telex 817929

Professional ASCII Kevboards

THE ‘APPLE’ COMPUTER KEYBOARD

> - 52 key 7-bit ASCII Coded

> Positive Strobe, $+5 v-12 v$
> Full ASCII Characters
> - Parallel output with Strobe.

> Power Light on Control
> National MM5740 Chip, TTL Output
> - Superbly made, size $12 \times 5.5 \times 1.5 \mathrm{in}$.
> - Black keys with white legends
> - Escape, shift, return and reset keys Complete with Circuit and Data

Ideal for use with TANGERINE, TRITON, TUSCAN, APPLE and most computers.

Ex-stock from Henry's.
This is definitely the BEST BUY. Supplied BRAND NEW in manufacturer's original packing (ANTI-STATIC).
Just post remittance, total $\mathbf{£ 3 5 . 9 5}$ (incl. VAT \& Post).

404 Edgware Road, London W2 1ED, England I.E.D. 01-402 6822

WW-011 FOR FURTHER DETAILS

Chokes, block filters, ceramic filters, resonators, IFTs, oscillator coils, audio filter blocks etc.

LOW PASS FILTERS
Now from 10 kHz to 20 MHz TOKO's recently expanded LPF series covers from the audio spectrum through to 20 MHz in a series of LPFs

The LPFs are based on $7 \& 10 \mathrm{~mm}$ formats with up to 4 LC tuned elements per block. Many stock types available.
 for $m p x$, video, radio etc.

AMBIT internutional
 TELEPHONE (STD 0277) 230909 TELEX 985194 AMBIT G POSTCODE CM14 4 SG 200 Marth Service Rond, Brentuonal, Esses

Aturopanan surrce for Microwave and Ceramic Chip Capaciturs

is now available from Pascall who offer the full range from Eurofarad, one of Europe's leading capacitor manufacturers. Eurofarad's specifications meet all industrial, military and aerospace applications.

- 4 sizes	Tinned termination option
E6 \& E12 kits available	High self-resonant
UK stock of individual	frequency values
Available with ribbon	High power capability
leads	High stability

Pascall Electronics Limited Hawke House, Green Street,
Sunbury-on-Thames, Middlesex TW16 6RA Telephone: (09327) 87418 Telex: 8814536

Def. Stan. 05-31/BS 9000/CECC Approved.

the best in electronics

WW-027 FOR FURTHER DETAILS

tinéar ics	Lin	EAR ICS	NEA	S LINEA	IC	4000 ser	ies 40	000 s		Tti	N	LPSN	TTL	N	LPSN'	TTL	N'	'PSN'	TTL ${ }^{\text {N }}$	'LPSN'	micron	KET	EDS	Es									
TBA1	1.00	SL1611P	O	HA11235	5	1	0.18		0.25	TTL	'N'								TTL 'N'	LSN ${ }^{\text {c }}$	8224		STO DON	YPES									
L200	1.95	SL1611P	1.60	HA11225	1.45	4001	0.18	4069	0.25	7400	0.13	0.20	7454	0.20	0.30	74128	0.74		741941.05		$\begin{aligned} & 8251 \\ & 8255 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 5.40 \end{aligned}$	5 mm RED	$\begin{aligned} & 12 p \\ & 15 \quad 15 p \end{aligned}$									
U2378	1.28	SL1612P	1.60	HA12002	1.45	4002	0.24	4070	0.30	7401	0.13	0.20	7455		0.30	74132	0.73	0.78	741961.34	1.20	6850	7.50	3mm										
U2478	1.28	SL1613P	1.89	HA12017						7402	0.14	0.20		0.20		74136		0.40	741971.10		6880	7.50	2.5x5										
U2578	1.28	SL1620p	2.17	HA12402	1.95	4008		${ }_{4}^{4072}$	${ }_{0}^{0.24}$	7403	0.14	0.20	7463		1.24	74138		0.72	741981.60		6820	7.45	5 mm GR										
LM301H	0.67	SL1623P	2.44	HA12412	1.55	4009	0.58	4075	0.25	7405	0.18	0.26	7472	0.30		7414	0.75 2.65		74199	0.93	6850	4.90	3 mm GR	16p									
LM301N	0.30	SL624C	3.28	LF13741	0.33	4010	0.58	4076	0.90	740	0.36		7473	0.35	0.45	74143	3.12		74257	1.08	6852	4.85	${ }_{2}^{3 \mathrm{~mm}}$, $5 \times 5 \mathrm{GR}$	16p									
LM3087	0.65	SL1625	2.17	SN76660N	0.80	40	0.24	4077	0.35	7407	0.38		7474	0.35	0.35	74144	3.12		74260	0.89	${ }_{2114}^{\text {MC2 }}$	6.00 6.50	5 mm										
LM324	${ }_{0}^{0.6}$	SL1626P	2.4 1.62	FREC. DI	AY	4012	0.24	408088	${ }^{0.30}$	7408	0.19	0.24 0.24	7475	0.5		74145		0.97	74279	0.88	${ }_{4027}^{2114}$	6.78 5	$\frac{3}{3 m m}$	${ }_{6 p}$									
LM348N	1.86	SL1640P	1. 89	AND		4013	0.55	4093	0.86	7410	${ }^{0.18}$	0.24	74786	0.41	0.45 0.50	74147 74148	1.75	1.19	74283 74293	$\xrightarrow{1.30}$	2102	1.70	3 mm YL										
LF351	0.49	SL1641P	1.89	DEVICES		4015		4175	1.15	7411	0.26	0.32	7480	0.52		741	0.99		74365	0.66	2112	3.40	2.5×5	${ }_{20 \mathrm{p}}^{200}$									
LF353N	${ }^{0.76}$	YLAZ0242a	1.25 3.05		3.75 3 3	4016	0.52	4503	1.5	7412	0.27		7481	1.20		7415	0.55	0.90	74366	0.65	HM47	7.54	5 mm OR										
LM374N	3.75 1.00	ULN22838	1.00	SAA1058	3.35	${ }_{4019}$	0.80	4510 4510	${ }_{0}^{0.68}$		0.32 0.51		7482	0.75		74	0.70	0.85	74367	0.64	${ }_{81 \text { LS97 }}$	$\begin{aligned} & 4.00 \\ & 1.25 \end{aligned}$	3 mm	-									
LM380N.	1.00	CA3080E	0.70	$11 \mathrm{C900C}$	14.00	4020	0.98	4511	1.49	7414		0.40		4	0.99 0.40		1.30 0.75	1.10	743688 74374	${ }_{1}^{0.92}$			2.5×50	40									
LM381N	1.	CA3089	1.84	LN1232		4021	0.82	4512	0.98	7416	0.30		7489	2.05		74156	0.80		74377	1.99	Leds	DS	5 mm	56p									
2N44	1.98	CA3090AO	3.35 1.40	LN1242	19.00	${ }_{4022}^{4023}$	0.96		2.55	7417	0.30		7490	0.42	0.90		0.78	0.70	74379	2.15	FLAT	LEDS:	BPW41	1									
NE544N	1.8 0.3	CA3123E	1.40 0.80	MSL2318	11.84	${ }_{4023}^{4023}$		4520	1.09	7420	0.19 0.38	0.24 0.24	7491	0.85	1.25			0.71	74393	1.40	SHAPES		IF Opto	1.44 50									
NE55	0.5	CA3130T	0.90	MSM5524	11.30	4025	0.75	4521	2.36	7423	0.27		7492																				
NE560N	3.5	CA3140E	0.46	MSM55		4026	1.80	4522	1.49	7425	0.27		7493	0.57		${ }^{74161}$		1.9	ta		RECT. 2	5mm	TRA	ORS									
NE562N		CA3189	22	MSM55	7.85	4028	0.79	4529	1.61	7427	0.32	. 35	7495	0.70	1.15	74162		1.30	78 se	00	TRIA $3 \times$		F25										
NE564	1.00	MC3357P	2.85	MSM55271	9.75	4039	1.59	4549	1.50	7428	0.35	0.35	7496	0.58	1.20	7416	0.9	0.95	78 m serias	0.65	TRIA		Sk	号									
NE	1.6	LM3900N	0.60	MSLL2312	3.94	4035	1.20	4554	1.73	7432	0.32	0.28	744107		0.45	74164	1.20	1.45	78 Lb ser	0.35	ROUND		2 SK 1	5 p									
NE570	3.85	LM3909N	0.6	Sp8629	3.85	4040	0.98	4560	2.18	7437	0.40		74109			74167	2.50		79.05				${ }^{\mathrm{J} 176}$	5									
SL624	3.28	LM3914N	2.80	SP8647	6.00	4042	0.85	4566	1.59	7438	0.33	0.35	74110	0.54		74169		2.10	79 MGT 2 C	1.75	price		40823	65p									
8465	1.81 0.64	${ }_{\text {KB4400 }}^{\text {LM3915N }}$	2.80 0.80	95H90PC	7.80 2.45	${ }_{4}^{4043} 4$	0.85 0.93	4568	2.18	7444	0.20 0.74	. 28	74111	0.68		74170	1.05	2.88	723 CN	0.65	col		40673	35×51									
UA709P	0.46	K84406	0.60	HD44015	4.45	4044	0.94	4572	0.30	7442	0.70	0.99			0.45	7417	1.85	1.10	1200	1.95 0.75	Re	17p	35 Sk 35 L 351	49 p									
UA710HC	0.65	K84412 K84413	1.95	HO 12009 HO44752	6.00	4046	1.30	4585	1.00	7443	1.15		74114		0.40	74176	0.80		NE5553N	1.25		20 p	3SK60	8 p									
$1{ }^{1}$	0.65	${ }^{\text {K844417 }}$	1.80	MC145151	12.45	${ }_{4049}$	${ }_{0}^{0.59}$			7445	1.05		74118	0.85		${ }_{7}^{74177}$			LM317MP	1.48	Orange	$6{ }^{\circ}$	3SK	24									
41 CN	0.27	KB4420B	09	MC145156	8.75	4050	0.55			7446	1.32		74121	.		74181 74183		$\begin{aligned} & 3.50 \\ & 2.98 \end{aligned}$	7 MP		TRANSIS	ORS	MEM680	$75 p$ $70 p$									
	0.76 0.36	${ }_{\text {KB44 }}$	2.30	MISC		4051	0.78 0.79			7448	0.56	0.89	74122	0.46		74184	1.35		CROM	KET			BF194	8									
UA748	2.44	KB4424	1.65	ICM7106CP	9.55	${ }_{4053}^{4052}$				7448 7449	0.56	0.99	74123 74124			74	1.34		${ }_{8212} 8080$ /2	7.50 3 3	BC238	$8 p$	BF195	18p									
	2.35	KB4431	1.95	${ }_{\text {ICM }}$ ICM 71076 CP	9.55 19.50	0	1.54			7451	0.20	0.25	74124 74125		0.86	74190 74192	1.20	1.80	8212 8214	3.50 3	8C239	80	BF224	22 D									
TBAB20	0.78 1.80	K84432 KB4433	1.95 1.52	ICM7555	0.9					7453	0.20		74126	0.57	0.46	74193	1.42	1.80	8216	1.95	- $\begin{aligned} & \text { BC307 } \\ & \mathrm{BC} 308\end{aligned}$	8p		18 p									
TDA1028	2.11	K84436	2.53	CRYSTALS		CRYSTALS			RACIO CONTROL			ALL PRICES EXCLUDE VAT - CURRENTL.Y AT 15\% POSTAGE 50p ORDERS UNDER f12. FREE OVER E12									BC309	8 p	BF440	$21 p$									
TDA1029	2.11	K84437	1.75	CRYYSTAL					8C4	10p	BF4										210												
A 41062	1.45 1.95		22	1006 Hz	3.85	10.698		50							${ }_{\text {BC4 }}$		${ }_{\text {BF }}{ }_{\text {BF }}$	180															
TOA1072	2.69	KB4445	1.29	45	5.00	10		-	FM $\mathrm{EX}^{\text {A/RX }}$																					BC416	11 p	8F479	${ }^{66 p}$
TDA1074	5.04	KB4446	2.75	1.000N	2.95	10.701		. 50				for schoools, colleges, industrial users etc. Please ask for									${ }_{8 C}$	12 p	BF679S	${ }_{33}{ }^{51}$									
TDA1083	31.0			4.000	2.00	11.115		.00				details. ACCESS/BARCLAYCARD may be used for mail									-8C550	12 p	BFwat	60 p									
HA1137	1.20	NE5532N	2.2	4.1934	2.00	11.520		. 00	FMTP: Fund			details. ACCESS (MARCLAVCARD (Mastercharge/Visa overseas). Please add									8 C 560	12p	BFY95										
1196	2.00	SD6000	3.75	4.096	2.00	8.9985 9.0015		00													BC639	22 p	40238	90p									
HA1197 TDA1220	1.00 1.40	SL6270	2.03	${ }_{4}^{4.0333619}$	2.00	9.0015 21.000		. 00	PAIF S...AM 3.10 PAIFS FM 3.25 CHIN													18p		2.34									
LM 1303	0.99	SL6600	3.75	4.8		24.000		. 00	PAIFS. FM 3.25CHANNELLING:			airmail rates have been dramatically increased-in Jantuary.									29872A	14 p	2SB723	2.34									
LM1307	1.5	SL6640	2.75	5.00	2.00	25.000		. 00				This listing gixes-atrief insiabt intaste -wne range of active and									SSD666A	30p	${ }_{2}$ 2S 134	3.10									
C1310	1.90 1.20	SL6440		7.000	2.00		$18.000-250$		$\begin{aligned} & 27 \mathrm{M} \mathrm{~Hz} \\ & 35 \mathrm{Mz}: 50 \mathrm{kHz} \\ & 20 \mathrm{kHz} \end{aligned}$$35 \mathrm{M}-\mathrm{z}: 20 \mathrm{kH}$			passive components available from AMBIT. Our full catalogues \&									${ }^{2 S 8846 A}$	30p	2Ski9	4. 40									
C1350	120	SL6700	2.35	7.68	2.00							pricelist include the LARGEST STOCK RANGES OF CO									2SB48A	$40 p$	2 L J50	4.25									
37	1.9	ICL8038C	4.50	8.000 9.0	2.00 2.00							KES, CERAMIC/MECHANICAL/CRYST									2SO 60	45p	${ }_{2 S 183}^{2 S 127}$	3.55 3.55									
${ }_{490}$	2.75 1.86	MS	1.75	10.000	2.00	80 l10220;SSB, 8 pole.						icated OIY		M	er	is in	w	E1	(inc) will	y you	${ }^{2585} 2547$												
1496p	1.25	HA11211	1.9	10.240	2.00							tal	(2,3 \&	4)	r 7 tppo	,	section.	28A1085	20p	2N3866	85p											

MORE SPEC. FOR YOUR MONEY
TYPE 643 FUNCTION GENERATOR
0.01 Hz to 999 KHz

SINE SQuare and triangle
oigital setting
oc OFFSET
PROGRAMMABLE
SIMULTANEOUS OUTPUTS

50Ω MAIN DUTPUT
\& $£ 3$ carriage, ins. etc.
[1OV. attenuable)
TYPE 643A FUNCTION GENERATOR
0.01 Hz to 1.1 MHz

SINE SQUARE and triangle
dial Setting
DC OFFSET
programmable
simultaneous outputs
\& £ \mathfrak{c} carriage, ins. etc.
600Ω MAIN OUTPUT
(10V. attenuable)

OMB ELECTRONICS, RIVERSIDE, EYNSFORO, KENT OA4 OAE
Tel Farningham (0322) 863567
Prices, which are CWO and ex-VAT, are correct at the time of going to press and are subject to change without notice.

FROM OMB ELECTRONICS

WW - 008 FOR FURTHER DETAILS

MICRO SPEECH 2 DOES YOUR COMPUTER SPEAK TO YOU?
 MICROSPEECH 2 is a stand alone speech synthesizing unit. It

 converts ASCII text or phonetic code into a speech output. MICROSPEECH 2 may be interfaced to any computer system because all the computation necessary to synthesize speech is performed by its own dedicated microprocessor. Up to one thousand phonetic characters, representing about one minute of speech, may be assembled in the unit's internal buffer before it is commanded to speak.
FEATURES

- Extremely low data rate required ($40 \mathrm{bits} / \mathrm{sec}$.)
- Runs from phonetic code, giving unlimited vocabulary and simple operating software
- English to phonetics translator allows operation directly from ordinary text.
- Uses standard RS232/ V24 interface.
- Totally self contained with in ternalloudspeaker and power sup-
 ply
- No need to worry about complex interfacing or support software.

PRICE 9950 + VAT
Available from
TIM ORR DESIGN CONSULTANT
55 Drive Mansions, Fulham Road, London SW6 (01) 7312077

COSTRONICS ELECTRONICS 13 Pield Heath Avenue Hillingdon, Middlesex. Uxbridge (0895) 38791

BULK EPROM PROGRAMMING
 P4000 PRODUCTION
 EPROM PROGRAMMER

This unit provides simple, reliable programming of up to 8 EPROMS simultaneously. It has been designed for ease of operator use - a single 'program' key starts the self check - blank check progràm - verify sequence
Independent blank check \& verify controls are provided along with mode, pass / fail indicators for each copy socket and a sounder to signal a correct key command $\&$ the end of a programming run. Any of the $2704 / 2708 / 2716$ (3 rail) \& $2508 / 2758 / 2516 /$ $2716 / 2532 / 2732$ (single rail) EPROMS may be selected without hardware or personality card changes.
PRICE 5545 + VAT. Postage paid

BULK EPROM ERASING

MODEL UV141 EPROM ERASER

- 14 EPROM capacity
- Fast erase time
- Built-in 5-50 minute timer
- Convenient slide-tray loading of devices
- Safety interlocked to prevent eye and skin damage
- Rugged construction
- MINS \& ERASE indicators
- Price $£ 78$ + VAT postage paid

MODEL UV140 EPROM ERASER
Similar to Model UV141 but without timer. Price £61.50 + VAT post paid

BULK EPROMS
 2716 (450ns)
 (single rail)
 2708 (450 ns)
 $\begin{array}{lll}1-9 & 10-24 & 25-49\end{array}$ $\mathbf{£ 6 . 0 0} \quad £ 5.50 \quad £ 5.00 \quad £ 4.50$
 $\mathbf{£ 3 . 9 0} \quad £ 3.50 \quad £ 3.10 \quad £ 2.90$

Postage and Packing is included in all prices. ADD VAT at 15% All our EPROMS are manufactured by leading companies and are fully guaranteed, branded and to full specification.

WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND OFFICIAL COMPANY ORDERS /CHEQUES TO:

PLEASE NOTE NEW ADDRESS 8: TELEPHONE NUMBER

GP INDUSTRIAL

ELECTRONICS LTD.
Unit 6, Burke Road, Totnes Industrial Estate, Totnes, Devon Telephone: Totnes (0803) 863360 sales, 863380 technical Telex: 42596
DISTRIBUTORS REQUIRED - EXPORT ENQUIRIES WELCOME

COMPUTER SPEECH PROJECT

ADD VERBAL OUTPUT TO A COMPUTER OR LOGIC SYSTEM OF ANY KIND
Modus Systems Ltd can now supply a range of fixed-vocabulary speech synthesiser boards to aid in the evaluation
and addition of speech to any computer or logic device. The words available are basic and revolve around numeriral words such as "two", "thirty" "pounds", etc. The units of particular interest, produced by Telesensory Systems inc (TSI) are the 24 and 64 English units, consisting of a controller chip and one or two 2 K ROM's, respectively.
Interfacing depends upon three main systems: logic, power and audio sections, Modus Systems have developed a General Interface Board which includes all of these aspects and permits easy interfacing to your logic system. expected to be supplied from the microcomputer The other is supplied from a power supply on the interface board which also includes all necessary interfaces to the compu ter. The board also has an edge socket in which the speech board sits, and a plug and socket for ribbon cable connec tion to a computer. A small 10 to 15 Vott transformer is required for power and an 8 Ohm speaker for the voice output.
A computer is by no means necessary to use the speech board. Any device (even a bank of switches!! which gives a 6 -bit word to signify which word is to be spoken, along with a start signal will audio readout in industrial control applications, etc etc

Vocabularies and prices
S2A ($\mathbf{f 4 4 . 9 5}+80 \mathrm{p} P \mathrm{PP}+\mathrm{VAT}:$ SPECIAL INTRO OFFER).
24 - Calculator iype words: 0-9,
$\mathbf{S} 2 \mathrm{~B}(\mathbf{E} 69.50+80 \mathrm{p} P \mathrm{PP}+\mathrm{VAT}) 64$ words
A_{S} for S2A plus "ten", "twenty" etc "pounds"
"ounces" etc.
S2C (f69 $50+80 p P P+V A T) 64$ words
FULL ASCll set - each ASC11 Code verbalised in sequence N.B. 24 word French, German and Arabic boards also avail able.
Interface Board (Kit) ($\mathbf{f 1 4 . 9 5}+80 \mathrm{pPP}+$ VAT)
S2A, B, C board plugs into on-board socket. This PCB contains latches, audio filter PSU, audio amplifier, $1 / 0$ plug and socket
\rightarrow SERIES 3 SPEECH BOARDS INCLUDING UNLIMITED SPEECH
The new Series 3 Board (S3D) includes all the interfacing necessary on the PCB plus an extra (EPROM) socket for custom words. The S3D is a single/supply (Plus 5V board with audio amplifier included. S3D $£ 180$ (1/off price)
Extra words (1 only charge)
For words already in our texicon, the cost per word is: $£ 100$, new words (in any accent): $£ 200$ per word

t COMING SOON

Series III speech board containing 119 words and all interfacing necessary on a single PCB (requires a single +5 V supply only). Spare ROM socket may be used for a

LOW COST

EDUCATIONAL

 MICRO-
COMPUTER

you can even make it talk with our
speech board!
fuukr $£ \mathbf{3 8 . 9 5}$ $+80 p P P+V A T$
Designed by Dr. A. A. BERK

TECHNICAL SPEC

** CMOS 1802 Processor (RCA) - excellent MPU for control
** 256 bytes of RAM - plenty for learning machine codes * Hexadecimal display - large and readable
** Full hex keyboard - positive "click" type switches
** Full manual - starts at soldering, ends with control circuits
** Loudspeaker output - simple audio experiments
** Excellent for all ages from secondary school level upwards.

The EDUKIT has proven a great success providing an excellent introduction to silicon chip technology from the bottom upwards. Many schools and colleges are using the kit, and sales now extend world wide. The machine is not meant to form the basis of a large and expandable personal computer system. The EDU KIT teaches all those things which a purely BASIC running machine cannot: ie the basis of hardware electronic control, down-to-earth Bits and Bytes, Machine Code, etc. - and all this at a really throw away price. The manual is written by Dr. A. A. Berk to impart educational understanding from the beginning. 1802 USER'S MANUAL (essential for full understanding of MPU used in EDUKIT) $\mathbf{f 4 . 7 5}+50 \mathrm{p}$ PP
FULL SOCKET SET for EDUKIT: $\mathbf{£ 2 . 9 9}+$ VAT (PP included)

EPROM PROGRAMMER P.C.B. £8.95 (fully inc.)
(For 2708 s and multi supply 2716s)
See P.E. Dec. ' 79 and Jan. ' 80 for full description of programmer, along with interface to COMPUKIT.
Memories Price
2114L-300ns £2.10
4116-200ns £1.89
2708-450ns £3.15
2716-450ns £4.99
74LS series
74LS240 £1.54
74LS243 £1.54
74LS244 £1.54
74LS245 £1.70
Bridge Rectifiers
25 Amp 50 volt £0.74
25 Amp 100 volt £0.94
25 Amp 200 volt £1.26
25 Amp 400 volt £1.68
25 Amp 600 volt £2.10
25 Amp 800 volt £2.63

Please add 50 pence for carriage.
All prices EXCLUDE VAT
Please send s.a.e. for price list.

STRUTT LTD.
 ELECTRONIC COMPONENT DISTRIBUTORS ETC.
 3c BARLEY MARKET STREET, TAVISTOCK DEVON, ENGLAND PL19 0JF

Tel. Tavistock (0822) 5439/5548. Telex: 45263

Wide range:

*30Hz to $30 \mathrm{k} \mathrm{Hz} \quad * 10 \mu \mathrm{~W}$ to 50 W
$* 1.2$ to $1000 \Omega \quad$ * mains/battery

* decibel scale-18dBm to +47dBm

Funell

The Professionals
VALVES,SEMICONDUCTORS \& COMPONENTS for:-

Communications, Displays, Radar, Computer,
Audio etc.

Hall Electric Limited.
Electron House.
Gray Avenue. St. Mary Cray.
Orpington, Kent BRS 30S.
Telephone: Orpington 27099
T'elex: 896141

MIN DEF APPROVAL 0529/0531

Jon the Protessionals..

Crimson modular audio amplifiers feature: Llow values of transient and steadystate distortions $\$$ Envelope distor. tion (below 500 Hz) less than 0.05% Yon-board elactronic protection \&P.C.B. pin and edge connactor termination \& Full range of complimentary components, i.e. P.S.U.'s, heatsinks etc. available from Crimson.

CE1704

MC1

CP3000

XO3

Teumson range of ampinier modules are built to very high standards and have earned an enviab Iguaranteed for two vears) and can be used to advantage where high quality signal amolification and tested The power amplifier modules range from 6 传RMS mode. All feature substantial heatsink brackets which can be bolted up to wice this amount in bridge Crimson purpose designed types. Input sensitivity is set at 775 mV and power supply requirements are catered for by one of the three Crimson toroidal power supplies. The Pre-amplifier module (CPR1) is basically a phono amplitier with soohisticated circuitry incorporating R I A A equalisation (CPR1) board is auxiliary amplification for tape and tuner inputs. A separate module (MC1) is also available gives the required boost for low output moving coil type cartridges. External components required are potentiometers for volume and balance, switches for signal routing and a regulated $\pm 15 \mathrm{~V}$ D.C. powe source (REGI). Complimenting this range, are the electronic crossover modules XO2/XO3 which with special muting board muli can be incorporated in all types of active speaker systems.
Numerous applications are possible with Crimson modules. For example, a complete Hi-Fi Pre \& Power amplifier of $40-125$ WRMS/channel can be built using our Hardware kits Isee Hobby Electronics review, August 1980 . Alternatively. Mono or Stereo slave amps of up to 500 WRMS can be built into proprietory Ight cases, while other uses include active loudspeaker systems such as designed by R.I. Harcourt in ireless World October/November 1980. Further details of how to use the modules are contained in the

SPECIEICATIONS

9 CLAYMILL ROAD, LEICESTER LE4 7JJ, ENGLAND. Tel. 0533761920 . Telex 34694 Chamco G CRIMLEK

RUBBER DUCK 70 LOGI BAIRD-

 SAY GOOD BUDDY, WHERE DO I GET TRANSISTORS AND I.C'S FOR C.B. AND R.F. APPLICATIONS

Anglia is a franchised distributor with a wide product range. Our catalogue is available to all professional users

> NEW FOR 1981 WIDE COVERAGE VHF BAND RADIO DIRECTION FINDERS MODEL ADFS-320

- 108 to 174 MHZ tuning range now standard
- 70-250 MHZ, 25-250 MHZ, and 100-500 MHZ ranges also available.
- Compact, rugged, and lightweight for portable use - battery or AC operation.
- Interchangeable antenna mounts for land vehicle, aircraft, ship, field, and base-station installations.
- Synthesizer tuning in 1 kHZ increments - plus options for 1 to 99 preprogrammed frequency channels.
- Efficient CRT direction display for homing and tracking applications.
- Digital bearing readout, scanning circuit and computer-operated "remote control" system also offered
A. $\mathbf{R}^{\text {division of }}$

General Indicator Corp.
10447 Roselle St., San Diego, CA 92121 U.S.A.
Telephone (714) 453-4013 - TELEX 697852 Cable: OAR CORP

OFF THE SHELF CUSTOMISING

Body Options
$10,14,21,29$ \& 38 mm dia. circular, with or without wings in black or grey gloss finish. 14 \& 21 mm dia. circular in black, grey or red matt finish.

Push Fit Caps

In black, grey, red, yellow, green, blue, ivory or chrome plate, gloss finished caps are plain or lined, matt finished caps are plain or arrowed.
Lined \& Plain Nut Covers
For hiding control mounting nuts on smaller knobs, in black, grey, red, yellow, green, blue and ivory.

Multi-Coloured Pointers

Push fit onto base of knob in black, grey, red, yellow, green, blue and ivory.
Indicator Dials
Sectored, arrowed or numerically scaled in grey, black or transparent.
Shaft Diameters
$1 / 8^{\prime \prime}$ as standard for 10 mm bodies, $1 / 4^{\prime \prime}$ standard for all other sizes plus 3,4 and 6 mm to special order.
Our prices won't make your eyes water
Zaerix Electronics Limited
46 Westbourne Grove, London W2 5SF, England
Tel: 01-221 3642 Telex: 261306
WW - 069 FOR FURTHER DETAILS

new from Eletror Book 2 of

(1200)

This, the second in the Junior Computer Book series, follows in a logical continuation of Book 1 and is an indispensable aid to users of the Junior Computer. The book contains a detailed appraisal of the software. Three major programming tools, the monitor, an assembler and an editor, are discussed in detail together with practical proposals for input output and peripherals. The complete source listing with relevant comments for all described programs, and the entire contents of the EPROM, are included.

JUNIOR COMPUTER BOOK 2 is available now from:
Elektor Publishers Ltd., 10 Longport, Canterbury, Kent CT1 1PE. Price UK $£ 4.75$, overseas $£ 4.95$ inc. postage and packing.
JUNIOR COMPUTER BOOK 1 is also available -
Price UK $£ 4.25$, overseas $£ 4.45$ inc. postage and packing.

Counter Intelligence

 Only £129-95 plus VAT
 High precision, performance, reliability at a very

 low price. The HFC 60 high frequency counter is based on the very latest LSI technology- Bright 8 digit 0.5" LED display
- Mains input for normal use
- DC power input, 9-16 volts, for mobile use
- Tough anodised metal case, neat tilt legs
- Model HFC 60 - £129.95 plus VAT (60 Mhz)
- Model HFC 600 with high gain X10 UHF pre-scaler
extends operation to full 600 Mhz - $£ 15995$ plus VAT
- Proportional temperature controlled crystal oven available for both models. Supplied fitted or as easy 'add on' $£ 30$ extra plus VAT.

Get full details on these and our other models now. Why pay more?

DRALLIM DAVIS ELECTRONICS LTD Bretl Drive Bexhill-on.Sea. East Sussex TN40 2JA Telephone 104241216611 Telex 95285

METALFILM RESISTORS 1\% Tolerance, $1 / 4$ Watt

ONLY 3p EACH
Minimum order $£ 10$
Minimum 5 pcs per value 89 Values (E24)

100 R	1 k	10 k	100k	
110 R	\|k		+1k	110 k
120R	1k2	12k	120k	
130 R	$1{ }^{1} 3$	13k	130 k	
150 R	1 k 5	$15 k$	150 k	
160 R	1 k 6	16 k	160k	
180R	1 k 8	18 k	180 k	
200 R	2k	20k	200k	
220 R	2k2	22k	220k	
240 R	2 k 4	${ }^{24} \mathrm{k}$	240 k	
270 R	2 k 7	27k	270x	
300R	3 k	30k		
330 R	3k3	33k	330k	
3608	3k6	36k		
390R	3 k 9	39k		
430 R	4 k 3	43k		
470 R	467	47k	470k	
510 A	5k1	51 k		
560 R	5 k 6	56 k	560k	
620R	6k2	62 k		
680R	6k8	68\%	680k	
750 R	7 k 5	75k		
820 R	8 k 2	82k	820k	
910 R	9*1	91k	1 M	

jipecial Offer: 5 PCS of EACH (445 RESIS TORS) ONLY £11.50.
High Quality High Stability. Huge Strength.
VAT inclusive. Add $£ 1.00$ p\&pall area
ORION SCIENTIFIC PRODUCTS LTD. 10 Wardour St., London W1

TV TUBE REBUILDING

Faircrest Engineering Ltd manufacture a comprehensive range of equipment for processing all types of picture tubes colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an excellent spares service backed by a strong technical team

Full training courses are individually tailored to customers requirements

For full details of our Service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2XX
01-6841422/01-6840246
-ORDER BY POST OR TELEPHONE
WITH BARCLAYCARD/ACCESS

- ELECTRONIC TEST

EQUIPMENT
SPECIALISTS

- ALL PRICES INCLUDE VAT

- ALL MODELS ON DISPLAY
- RETAIL - MAIL ORDER EXPORT - INDUSTRIAL - OPEN SIX DAYS A WEEK - CALL IN AND SEE FOR YOURSELF

SCOPES

A range of Scopes in stock from 5 mHZ Single Trace to 50 mHZ Dualtrace Mains and Battery/Mains portables. Many on demonstration

SINGLE TRACE

DUAL TRACECS166A 10 mHZ , $5 \mathrm{~m}, ~$ display$£ 267.00$
$£ 284.00$ $\begin{array}{ll}\mathrm{Hm} 307.310 \mathrm{mHZ}, 5 \mathrm{mV}, 6 \times 7 \mathrm{~cm} \text { isplay plus component test } & \mathbf{£ 1 5 8 . 7 8} \\ \text { CO1303D } 5 \mathrm{mHZ}, 10 \mathrm{mHZ} 7 \times 7 \mathrm{~cm} \text { display } & \mathbf{£ 1 1 5 . 2 5}\end{array}$
 £8.86. Nicads $£ 8.63$ Mains unit $£ 5.69$) *LBO12A $10 \mathrm{mHZ} 10 \mathrm{mV} .5^{\prime \prime}$ display $\star C S 1559 A 10 \mathrm{mHZ} 10 \mathrm{mV}$. 5^{\prime} disp
$\star V 15115 \mathrm{mHZ} 1 \mathrm{mV} 5^{\prime \prime}$ display Enal case
£ 158.95 £158.95
$\mathbf{f} 195.00$ $\mathbf{£ 2 3 2 . 0 0}$
$\mathbf{f 2 4 1 . 5 0}$

CS $312.820 \mathrm{mHZ} 5 \mathrm{mV} 8 \times 10 \mathrm{~cm}$ display
$\mathrm{CS} 1560 \mathrm{~A} 11 \mathrm{mHZ} 10 \mathrm{MV} 5^{\prime}$ display
CS 1566 a $20 \mathrm{mHZ}, 5 \mathrm{mV}, 5^{\prime \prime}$ display
\star LBO3085 $20 \mathrm{mHZ}, 2 \mathrm{mV}, 5 \times 6.3 \mathrm{~cm}$ display. Batterv/mains. built-in Nicads
HM4124 $\quad \mathbf{E 4 8 2 . 0 0}$
CS $1577 \mathrm{~A} 35 \mathrm{mHz}, 2 \mathrm{mV}, 5$ " display $\quad \mathbf{~} 399.50$
CS1830 $30 \mathrm{mHZ}, 2 \mathrm{mV}, 5$ "display plus sweep delay and delay line new
$\begin{array}{ll}\text { model } \\ \mathrm{Hm} 512-850 \mathrm{mHZ}, 5 \mathrm{mV}, 10 \times 8 \mathrm{~cm} \text { display. Detay Sweep } & \mathbf{£ 5 6 9 . 0 0} \\ \mathbf{E 6 6 7 . 0 0}\end{array}$
$\begin{array}{ll}\mathbf{t L B O 5 1 4} 10 \mathrm{mHZ}, 1 \mathrm{mV},(5 \mathrm{mV}) 5^{\prime \prime} \text { display } & \mathbf{£ 2 9 4 . 0 0} \\ & \mathbf{~} 326.00\end{array}$
$\begin{array}{ll}\star \mathbf{L E} \\ \star \mathrm{V} 15215 \mathrm{mHZ}, 1 \mathrm{mV}, 5 \text { display } & \mathbf{m 2 6 . 0 0} \\ \star \mathrm{V} 30230 \mathrm{mHZ}, 1 \mathrm{mV}, 5 \text { display } & \mathbf{5 4 4 7 . 3 5}\end{array}$ $\star \mathbf{\star} \mathbf{~} 50230 \mathrm{mHZ}, 1 \mathrm{mV}, 5 \mathrm{mHZ} 1 \mathrm{mV}, 10 \times 8 \mathrm{~cm}$ Delay sweep +3 channel display $\mathbf{£ 7 9 9 . 2 5}$

SWR/FS AND UK ${ }^{\text {CPP } 950}$
'PRO' MULTIMETERS
M1200 $100 \mathrm{~K} /$ Volt 30 range plus AC/DC $15 \mathrm{amp} \quad \mathbf{f 6 7 . 0 0}$ K1400 20K/Volt 23 range large scale
£ 79.95 M1500 20K/Volt 42 range plus AC/DC 10 amp £53.50 K200 38 range FET 10 m OHM input

LOGIC PROBES/MONITORS

Logic probes indicating high/low, etc.,
states that scopes can miss. All circuit states that scopes can miss. All circuit powered for all ICs
LP3 50 MHz logic probe LP1 10 MHz logic probe LM1 $\quad £ 19.95$ LM1 Logic monitor £33.00 LDP076 50 MHz logic probe with case
Also in stock range of Protoboard kits
and breadboards.

150 mHZ and up to 1 K watt oower PL259 sockets. Also 25 mHz Grid Dipmeter. SWR50 SWR/Power meter. $31 / 2$
SW. $150 \mathrm{mHZ} 0-1000$ watts $£ 13.95$ 110 SWR/Power 0/10/100 watts 44 mHZ 171 As 110 Twin meter plus E/S Plus large range of BNC/PL259/ etc leads plus adapto 176 SWR/Power/F $144 \mathrm{mHZ} 5-50$ watt Plus $25-$ KDM6 Gnd Dip $11 / 2-250 \mathrm{mHZ}$
K16.60
SAFGAN DUAL TRACE C/P UK $£ 2.50$ OPIONAL PROBES (ALL MODELS) HAMEG, $10 £ 8.50, \times 100 £ 12.95, \times 1-\times 10 £ 10.95$ \star Note price includes free Prabels)

DIGITAL MULTIMETERS

Portable and Bench LCD and LED Counters up to 600 mHZ . Prices include batteries and eads

HAND HELD (UK post etc 85p) PFM200 20 HZ to 200 mHZ 8 Digit LED $£ 57.27$ MAX50 100HZ to 50 mHZ 6 Digit LED $£ 56.35$ MAX550 30 KHZ to 550 mHZ 6 Digit LED
£97.00

BENCH PORTABLES

MAX100 8 Digit LED $5 H Z$ to 100 mHZ £ 89.00 TF200 8 Digit LCD 10 HZ to 200 mHZ f 166.75 7010 A 9 Digit LED $10 H Z$ to $600 \mathrm{mHY} £ 169.00$ TP600 600 mHZ Pre-Scaler for TF200 $£ 43.13$ 200 SPC 6 Digit 100 MHZ LED built into 0.002 HZ to 5.5 MHZ Pulse Generator £437.00
TF040 8 Digit LCD 20MHz £ 126.50
CSC - SINCLAIR OPTOELECTRONICS - NEWTRONICS

MULTIMETERS

KRT101 $1 \mathrm{~K} /$ Volt 10 range pocket
ATM $1 /$ LT1 $1 \mathrm{~K} /$ Volt 12 range pocket ATM 1/LT $11 \mathrm{~K} /$ Volt 12 range po
NH55 $2 \mathrm{~K} / \mathrm{Volt} 10$ range pocket ATI $2 \mathrm{~K} / \mathrm{V}$ olt 12 range pocket de fuxe YN360TR $20 K /$ Volt 19 range pocket conts

AT 1020 20K/Volt 19 range d/l blus hfe test 7081 50K/Volt 36 range plus 10 amp DC TR303TR $20 \mathrm{~K} /$ volt plus 12A DC plus hte tes 5 KV DC $\begin{array}{ll}\text { AT205 50K } / \text { Volt } 21 \text { range d/t plus } 10 \mathrm{ADC} & \mathbf{£ 2 1 . 9 5} \\ \mathbf{£ 2 4 . 9 5}\end{array}$ 7080 20K/Volt 26 range large scale, 10A DC plus
5 KV AC/DC
£26.95 AT2050 50K/Volt 18 range d/I plus hfe rest $\mathbf{£ 2 8 . 5 0}$ AT210 100K/Volt 23 range d/I 12A AC/DC $£ 29.95$ 360TR $100 \mathrm{~K} /$ Volt 23 range plus hife checker and
AC/DC 10 amps
$\mathbf{£ 3 4 . 9 5}$ $\begin{array}{ll}\text { AC/DC } 10 \mathrm{amps} \\ \text { KRT } 500150 \mathrm{~K} / \mathrm{V} \text { range doubler IVADC } & \mathbf{£ 3 4 . 9 5} \\ \text { E16.50 }\end{array}$ ETC 5000 As above with coloured scale LARGEST SEIECTION

TV GENERATORS

LCG-393V PAL 8VHF 6 patts £143.75
PAL B UHF 15 patts
LHM 80 A 40 KV
HT metre
HT me
C / P
Stockists of electronic equipment, speakers/ki1s, PA equipment plus huge range of accessories UK carriage/packing as indicated Export - prices on request
end large SAE (20p UK)
etc free Companies
301 EDGWARE ROAD, LONDON, W2 1BN, ENGLAND. TELEPHONE 01-724 3564
ALSO AT HENRYS RADIO, 404/406 EDGWAREROAD, LONDON W2 1ED

FAST ERECTING chan MASTS

 Here is the expertise you can depend on ~ Specialist
field

When you choose a mast from the comprehensive Clark range you are assured of a high standard of Engineering and operational reliability.

Why compromise?

Extended heights 4 metres- 30 metres, capable of lifting headload 1 kg 200 kgs . Sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today.

Clark Q.T.4M/HP mast shown on tripod, extended to 4 metres and tripod folded for transit. Available in heights up to 12 metres. This mast is ideal for raising lightweight antennas for field or vehicle

CLARK MASTS LTD.
Binstead,
Isle of Wight,
PO33 3PA, England
Telephone : Ryde (0983) 6369I, Telex: 86686.

SAFGAN DT-4000 serkes

SPECIFICATION FOR ALL MODELS
$\star \mathrm{CH} 1, \mathrm{CH} 2: 5 \mathrm{mv} / \mathrm{div}$ - $20 \mathrm{~V} / \mathrm{div}$ in 12 cal steps.
\star Bandwidth: 10 MHz (DT-410), 12 MHz (DT-412), 15MHz (DT-415).

* Time Base: $0.5 \mu \mathrm{~s}$ div - $200 \mathrm{~ms} / \mathrm{div}$ in 18 cal steps
$\times 5$ expansion to $100 \mathrm{~ns} / \mathrm{div}$
$\times 5$ multiplier $101 \mathrm{~s} / \mathrm{div}$.
* $X Y$ facility: matched $X=\mathrm{CH} 1, \mathrm{Y}=\mathrm{CH} 2$
- Trigger: Level Control, \pm slope selection

CH1. CH2 0.5 div: 100 mv External Source

- Z modulation.
- CAL o/p for probe compensation.
*Graticule blue ruled 8×10 div $\left(6.4 \times 8 \mathrm{~cm}^{2}\right)$.
\star Size $\mathrm{H} 215 \mathrm{~mm}, \mathrm{~W} 165 \mathrm{~mm}, \mathrm{D} 280 \mathrm{~mm}$, Weight 4.5 kg .
PROBE (X \uparrow - REF - X10) £ 1150 - VAT
orders to: SAFGAN ELECTRONICS LTD. 56 BISHOPS WOOD, ST. JOHNS, WOKING

GOODS - p\&p $\mathcal{3} .50$ or parcel service $\mathrm{f} 6.50+15 \%$ LONDON STOCKIST: AUDIO ELECTRONICS. TEL: 01-724 3564 DT-400s are designed and manufactured by SAFGAN in England

WW - 056 FOR FURTHER DETAILS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston
PR1 2XQ
Telēphone 077257560

Memories

8085 \& Z80

8085A	E6.80
8085A-2	c8.50
8155	¢9.95
8155-2	£11.81
8251 A	15.60
8253-5	58.95
8255A-5	£4.99
8257 -5	£10.40
8259-5	${ }^{6} 7.20$
8279-5	$\underline{59.99}$
280	E6. 25
280 P1O	¢5.75
280 CTC	¢5.75
Z80 DMA	¢19.95
Z80 SIO/2	$\underline{29.95}$

We can quore for any japanese component. Full range of micros available - 8048, 8049, 8021, 8022,6800 series.
Please add P.\&P 30p to orders under $£ 25$. Add VAT to total

> 28 PinS Microsystem Designs Ltd. Telephone: St. Albans (0727) 31831

Analog Systems, the fast growing linear I/C compony of Arizono whose products are available from Pascall, offer a wide range of high performance linear integroted circuits.

Second source linear IC's

MA 00357 equivalent to
MA 00087/8 equivalent to LF 357

TL 08-087/-088

MA 00017 equivalent to OP-17
and LF 357A
 \title{
Hhet new name
 \title{
Hhet new name The new name
in Tineari/Cs
} The new name
in Tineari/Cs
}

MA 00318 equivalent to LM 318; HA 2500; NE 530 series

Send for full product listings of Analog Systems exciting
product range

Pascall Electronics Limited. Hawke House. Green Street, Sunbury-on-Thames,
 Middlesex TW16 6RA Telephone: 10932 7) 87418 Telex: 8814536 Def Stan 05-31 / BS9000/CECC approved WW-052 FOR FURTHER DETAILS

WW-028 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings avallable tor $10-14$
days delivery Other Ranges and special scales can be made to order

Full information from

HARRIS ELECTRONICS (London)
138 GRAY'S INN ROAD, W.C. 1

amcron INDUSTRIAL MUSCLE

Model - M600

\star POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$

* OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 ohm LOAD (CONTINUOUS R.M.S.)
* D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVa
\star HARMONIC DISTORTION LESS THAN 0.05% DC-20KHz AT 1 kW INTO 6 OHMS
\star PLUG-IN MODULES: CONSTANT VOLTAGE / CURRENT, PRECISION OSCILLATORS 』 UNIPOLAR AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS
* OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
* TWO UNITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW
\star INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS
* 3-YEAR PARTS AND LABOUR WARRANTY.

For full details on all Amcron Products write or phone Chris Flack

INSIST ON VERSATOWER
 BY PROFESSIONALSFOR PROFESSIONALS

The VERSATOWER range of telescopic and tilt-over towers cover a range of 25 ft to 120 ft (7.5 M to 36M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with CP3 Chapter V, part 11

Functional design, rugged construction and total versatility make it first choice for telecommunications.

Trailer mounted or static, the VERSATOWER solves those difficult problems of antenna support, access and ground level maintenance.

A programme of continuous product development has led to a range of over 50 models, all available at highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain the leader position we enjoy today.

VERSATOWER

THE PROFESSIONALS' CHOICE

STRUMECH

PORTLAND HOUSE, COPPICE SIDE BROWNHILLS. WEST MIDLANDS
TEL: (05433) 432I. TELEX: 335243 SEL

Get a great deal from Marshall's

The new Marshall's 80/81 catalogue is now available. A veritable treasure house of components, test gear, tools, etc.
Specially interesting to the radio amateur are the following Leader instruments available from stock:
Antenna Coupler LAC895 3.5 to 28 MHz

Antenna Coupler LAC896 50 MHz
Antenna Coupler LAC897 144-148 MHz
TRDIP Meter LDM 815
1.5 MHz to 250 MHz

Antenna Impedance Meter
LDM 870A 1.8 MHz to 150 MHz
RF Power
Meter LPM 8800.5 to 120 W
Price: $£ 73.00$
SHR/Watt meter LPM 885 : OW to
100W
Price. $£ 47.00$
Send SAE for details or phone Richard Kaiser
024073568 for specialist advice.

Send for our latest
catiderpue: Free to industrial customers. 75 ! bust |adel to frivate imeliviluals.
A. Marshall (London) Ltd. Kingsgate House. Kingsgate Place. London NW6 4TA Industrial Sales: 01-328 1009 Mail Order: 01.624858224 hr service Retail branches: London; Glasgow; Bristol.

Sowter Transformers

With 40 years' experience in the design and manufacture of several hundred thousand transformers we can supply:

AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAME IT! WE MAKE IT! OUR RANGE INCLUDES

Microphone transformers (all types), Microphone Splitter/Combiner transformers. Input and Output transformers. Direct Injection transformers for Guitars, Mine transformers to G.P.O. Isolating Test Specification, Tapped impedance matching transformers, Gramophone Pickup transformers, Audio Mixing Desk transformers (all types), Miniature transformers, Microminiature transformers for PCB mounting, Experimental transformers, Uitra low frequency transformers, - Ultra linear and other transformers for Transistor and Valve Amplifiers up to 500 watts, Inductive Loop Transformers, Smoothing Chokes, Filter, Inductors, Amplifier to 100 volt line transformers (from a few watts up to 1,000 watts), 100 volt line transformers to speakers, Speaker matching transformers (all powers), Column
Loudspeaker transformers up to 300 watts ormore Loudspeaker transformers up to 300 watts or more.
We can design TOr RECORDING QUALITY, STUDIO QUALITY, HI.FI QUALITY OR P.A. QUALITY. OUR PRICES ARE HIGHLY COMPETITIVE AND WE SUPPLY LARGE OR SMALL QUANTITIES AND EVEN SINGLE TRANSFORMERS. Many standard types are in stock and normal dispatch times are short and sensible
OUR CLIENTS COVER A LARGE NUMBER OF BROADCASTING AUTHORITIES BAND GROUPS AND PUBLIC ADDRESS FIRMS ETUDIOS, HI-FI ENTHUSIASTS, have overseas clients in the COMMONWEALTH.E E.C USA. MIDDLE EAST etc Send for our questionnaire which, when completed, enables us to post quotations by return.

E. A. Sowter Ltd.
 Manufacturers and Designers

E. A. SOWTER LTD. (Established 1941), Reg. No. England 303990 The Boat Yard, Cullingham Road, Ipswich IP 1 2EG, Suffolk
P.O. Box 36, Ipswich IP 1 2EL, England

Phone: 04735279480473219390

The NewScopex 14D-10

A dual trace 10 MHz high sensitivity oscilloscope incorporating all the latest high technology developments to bring you all these outstanding features as standard.

- $10 \mathrm{~cm} \times 8 \mathrm{~cm}$ display.
- 2 mV sensitivity on both channels.
- Add and invert facility.
- Probe compensation.
- Push button X-Y.
- Trace locate.
- 10MHZ -3 dB) over full display.
- Complete with probes.

Pixmore Avenue, Letchworth
 Please charge to my account.
My Barclaycard/Trust Card No. is

At a price of $£ 240.00+$ VAT.
Ensures British leadership in the low cost high performance oscilloscope market.
Distributors required in certain countries

COPEX

Herts SG6 1JJ. Tel: (04626) 72771
liwish to pay by Barclaycard/Trust Card

Please send me full derails of the 14D10.
Name
Compony
Address

WILMSLOW AUDIO

7) SWIFT
 OF WILMSLOW
 The firm for $\mathrm{Hi}-\mathrm{Fi}$

5 Swan Street
Wilmslow Cheshire

CELESTION G 12 / 50 TC CELESTION G12/80CE	£19.50	KITS FOR MAGAZINE DESIGNS
CELESTION G12/80TC	¢23.75	
CELESTION G12/125CE	¢42.00	Kits include drive units, crossovers,
CELESTION G15/100CE	¢37.95	BAF / long fihre wool, efc, for epair of
CELESTION G15/100TC	£38.50	
CELESTION G $18 / 200$	¢64.75	Carriage $£ 3.95$
CELESTION Powercel 12/150	¢66.00	unless otherwise stated
CELESTION Powercel 15/250	¢88.00	
FANE CLASSIC 45 12"	£13.95	
FANE CLASSIC $551{ }^{\prime \prime}$	£15.50	Practical Hi Fi \& Audio PRO9
FANE CLASSIC $8012^{\prime \prime}$	£19.75	including felt panels and level controls
FANE CLASSIC $8515^{\prime \prime}$	£26.00	¢152.75
FANE CLASSIC $15015^{\prime \prime}$	¢37.95	carriage ${ }^{\text {E }}$
FANE CLASSIC $12518^{\prime \prime}$	¢43.95	Hi Fi Answers Monitor \quad E146.00
FANE CLASSIC $17518^{\prime \prime}$	£47.95	Hi Fi News State of the Art $£ 189.00$
FANE GUITAR $801{ }^{12}{ }^{\prime \prime}$	£26.25	Hi Fi News Midiline \quad E911.75
FANE GUITAR 80B/2 $12^{\prime \prime}$	¢27.25	Hi Fi News Miniline $¢ 49.00$
FANE DISCO $10012{ }^{\prime \prime}$	£28.75	Hi Fi News Tabor with J 4 bass units
FANE PA85 $12^{\prime \prime}$	¢26.75	¢66.00
FANE BASS $10015^{\prime \prime}$	¢39.00	Hi Fi News Tabor with H4 bass units
FANE CRESCENDO 12E $12^{\prime \prime}$	£57.50	¢70.00
FANE CRESCENDO 15E $15^{\prime \prime}$	¢74.50	Hi Fi for Pleasure Compact Monitor
FANE CRESCENDO 18E 18*'	£94.75	£116.00
FANE COLOSSUS 15E 15'	¢99.95	Hi Fi for Pleasure E.C.M fincludng felt
FANE COLOSSUS 18E 18'	£107.00	panels, foam etc) ¢77.50
FANE J44	16.90	carriage $£ 5$
FANE $J 73$	¢10.90	Popular Hi Fi Jordan System 1 £125.00
FANE J104	£15.95	Popular Hi Fi Mini Monitor $\quad \mathbf{¢ 7 7 . 0 0}$
FANE J105	E23.95	Popular Hi Fi Round Sound
GAUSS $3181410^{\prime \prime} 150$ watts	£115.00	including complete cabinet kit $\mathbf{£ 7 4 . 0 0}$
GAUSS $428112^{\prime \prime} 300$ watts	£146.00	Practical Hi Fi and Audio BSC3 $\mathbf{£ 6 5 . 0 0}$
GAUSS $458115^{\prime \prime} 300$ watts	£162.00	Practical Hi Fi and Audio Monitor
GAUSS 4583A 15" 400 watts	¢162.00	$¢ 180.00$
GAUSS $488218^{\prime \prime} 400$ watts	£220.00	Practical Hi Fi and Audio Triangle
GOODMANS 8PA	$¢ 5.05$	£120.00
GOODMANS PP12	£22.50	Practical Hi Fi \& Audio DBS4 $\quad \mathbf{¢ 8 5 . 0 0}$
GOODMANS DI 12	£25.50	carriage $£ 5$
GOODMANS GR12	£24.95	Everyday Electronics EE20 $\quad \mathbf{E 2 9 . 5 0}$
GOODMANS 18P	£48.45	Everyday ELectronics EE70 ¢150.00
GOODMANS HIFAX 50HX	£21.85	carriage 65
GOODMANS HIFAX 100HX	£24.50	Wireless World T L. KEF $£ 125.00$
McKENZIE C12100GP	£24.45	Wireless World T L. RADFORO $£ 190.00$
McKENZIE C12100TC	£24.45	
McKENZIE C12100 bass	£24.45	
MCKENZIE C12125GP	£39.95	Smart badges FREE with all the
MCKENZIE C12125TC	£39.95	above kits (to give that professional
MCKENZIE GP15	£35.10	touch to your DIY speakers).
MCKENZIE TC15	£35.10	Reprints/construction detaits of the
MCKENZIE C15 bass MOTOROLA PIEZO HORN $31 / 2^{\prime \prime}$	$£ 59.60$	above designs 10 p each.
MOTOROLA PIEZO HORN $2^{\prime \prime} \times 6^{\prime \prime}$	'£12.25	
RICHARD ALLAN HDBT	£20.25	WILMSLOW AUDIO 8A 1
RICHARD ALLAN HD $10 T$	£21.75	sub bass amplifier.
RICHARD ALLAN HD12T	£29.75	crossover kit $£ 37.95$
RICHARD ALLAN HD 15	¢52.75	plus £1 carriage
RICHARD ALLAN HDI5P	$¢ 52.75$	
RICHARD ALLAN $15^{\prime \prime}$	¢77.00	
RICHARD ALLAN 18*	$£ 96.00$	

ALL PRICES INCLUDE VAT @ 15\% and are correct at $1 / 2 / 81$

SEND 50p FOR 56-PAGE CATALOGUE 'CHOOSING A SPEAKER' (or price list only free of charge)
 Export Catalogue £1 or \$ 3 U.S.

Tel. 0625529599 for speaker drive units, kits, PA equipment, mail order enquiries, and all export enquiries.
Tel 0625526213 for Hi-Fi equipment and complete speaker enquiries
Lightning service on telephoned credit card orders!

EVERYTHING IN STOCK FOR THE SPEAKER CONSTRUCTOR!

BAF, LONG FIBRE WOOL FOAM CROSSOVERS, FELT PANELS, COM BRACKETS, ETC large selection of grille FABRICS
(Send $22 p$ in stamps for grille fabric samples)

SPEAKER KITS

KITS FOR magazine designs

Kits include drive units, crossovers, BAF / long fihre wool, etc, for epair of Corriege E 3.95
ractical Hi Fi \& Audio PRO9-TL €152.75 riage ${ }^{£ 5}$
146.00 146.00 €911. 75
£49.00 E66.00 € 70.00 16.00 7.50 ge 5.00 7.00 $£ 74.00$ 65.00 80.00 20.00 Practical Hi Fi \& Audio DBS4 $\quad \mathbf{8 5 . 0 0}$ Everyday Electronics EE20 $\mathbf{£ 2 9 . 5 0}$ Wireless World T L. KEF $\quad \begin{array}{r}\text { carriage } £ 5 \\ \mathbf{£ 1 2 5 . 0 0}\end{array}$ (eless Wond Tl. RADFORO

Smart badges FREE with all the above kits (to give that professional touch to your DIY speakers).
Reprints/construction detaits of the above designs 10 p each.

PRICES PER PAIR
CARRIAGE £3.95
UNLESS OTHERWISE STATED

35/39 Church Street Wilmslow. Cheshire

S-2020TA STEREO TUNER / AMPLIFIER KIT

NEW HIGH PERFORMANCE TUNER

A high-quality push-button
FM Varicap Stereo Tuner with pilot cancel decoder combined with a 24 Wr.m.s. per channel Stereo Amplifier, using Bifet op. amps.

Brief Spac. Amplitier Low field lorotdal transtormer. Mag. input. Tape In/Out tacility (for noise re, uction unit, etc.) THD tess than O-1\%at 20 W into 8 ohms High Slew Rate. Low noise op amps used throughout. Power on Of1 FET ransient protection All sockets. fuses. etc. are PC mounted for ease or assembly funer section uses UM i 81 FET module requrs ing no RF alignment ceramic IF. INTERSTATION MUTE, and phase-locked IC pilot cancel. stereo decoder. LED tuning and steieo fndicators tuning range 88-108 MHz 30dB mono S/N@

PRICE: $£ 69.95$
NELSON-JONES
Mk. 2 STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer ready built front end, triple gang varicap tuning, linear phase l.F. and 3 state MPX decoder.

PRICE: $£ 74.95$ + VAT

NRDC-AMBISONIC

 UHJ SURROUND SOUND DECODER

The first ever kit specialiy producedoy integrex for his british NRDC backed surfound sound system which is the result of 7 years research by the Ambisonic leam W Wily Aug The unit is designed to decode not only UHJ but vitually all other quadrophonic systems (N ot CD 4). including the new BBC HJ. 10 input selections The decoder is linear throughous and does not rely on listener tatiguing logic enkancement techniques Both 2 or
Complete with mains power supply, wooden cabinet panel, knobs, etc

S5050A STEREO AMP

Very high performance kit
rating 360 w per channe
Tone cancel swith
heasinks
Complete kil only $£ 69.95$ + VAT

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original Wireless World published Intruder 1 has been ie-designed by Integrex to incorporate several new teatures along with improved performance The kit is even easier to buita The intarnal audible alarm turns oft ipproximately 41) seronds and thoul hit re-arms $2: 0 \mathrm{~V}$ ac mans
 Complete kit $£ 52.50$ plus VAT or ready bult and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT

Wireless World Dolby noise reducer
 Typical performance

Trademark of Doiby Laboratories the

Noise reduclion better than 9 dB we ghted flipping level 165 dB above Dolby level (measured ai 1 third Harmonic distortion 01% at Dolby tevel typically 0.05 \% over nost of band rising to a maximum of 012 Signal to-noise ratio $75 \mathrm{AB}(20 \mathrm{~Hz}$ to 20 kHz signal at Dofby levell Dynamic range 90.01 B 30 mv senstivity Price 667.60

We guarantee full after-sales technical and servicing facilities on all our kits have you checked that these services are avallable from other suppliers?	

All kits are carriage free
IIITEGREK LIMITED

fact: you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects.
Take, for example, the Shure SM58 and SM59 microphones:

SM58
Crisp, bright "abuse proof"

Probably the most widely used on-stage, hand-held cardioid dynamic microphone. The SM58 dynamic microphone is preferred for its punch in live vocal applications . . .especially where close-up miking is important. It is THE worldstandard professional stage microphone with the distinctive Shure upper mid-range presence peak for an intelligible, lively sound. Worldrenowned for its ability to withstand the kind of abuse that would destroy many other microphones. Designed to minimize the boominess you'd expect from close miking. Rugged, efficient spherical windscreen eliminates pops. The first choice among rock, pop, R \& B, country, gospel, and jazz vocalists.
...some like a "presence" peak.

professional microphones...by

wireless world

Band pass

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor:

PHILIP DARRINGTON
01-661 3039
Technical Editor:
GEOFF SHORTER, B.Sc.
01-661 3500×3590

Projects Editor:

MIKE SAGIN
01-661 3500×3588
Communications Editor:
MARTIN ECCLES
01-661 3500×3589
News Editor:
DAVID SCOBIE
01-3500 3587
Drawing Office Manager:
ROGER GOODMAN
Technical lliustrator:
BETTY PALMER
Advertisement Manager:
BOB NIBBS, A.C.I.I.
01-6613130
DAVID DISLEY
01-6613500 X3593
BARBAFA MILLER
01-661 3500×3592

Northern Sales

HARRY AIKEN
061-8728861
Midland Sales
BASIL McGOWAN
021-3564838
Classified Manager:
BRIAN DURRANT
01-6613106
JAYNE PALMER
01-6613033
BRIAN BANNISTER (Make-up and copy) 01-661 3500×3561

Publishing Director:
GORDON HENDERSON

Most readers will be aware that the Home Secretary has given his assent to the use of personal radio (c.b.) equipment in the UK. The bands to be allotted in the Autumn are around 27 MHz and 930 MHz , frequency modulation to be used in both.

We congratulate all those concerned with this decision for recognizing that the public has a right to the private use of radio communication, and for choosing a specification that will afford users a tractable frequency (27 MHz) while keeping potential interference to a minimum by the use of f.m. It is probably the best that could be hoped for by any thinking person: while 930 MHz transceivers would probably be even better from the interference point of view, there has been enough adverse comment on this suggested band to reduce its chances of large-scale adoption. Its possible dangers to health, despondent guesses at the short range to be expected and some wild estimates of high prices may be exaggerated, but some of the mud will doubtless stick, at least until the rest of the world adopts this u.h.f. band, as is possible.
The choice of modulation is a blow in the face for the very large number of users of illicit 27 MHz , amplitude-modulated sets in the UK. These people have operated their 'rigs' for several years now, and have conducted a campaign to have an a.m., 27 MHz band legalized. They have shown themselves to be not in the least concerned with the effects of their activities on the community and will probably continue to use their illegal equipment: the cachet of respectability and social responsibility is unlikely to be worth the cost of a new transceiver and a licence to operate.
Sooner or later they will begin to change
to f.m. sets, and as soon as this happens, the rest will have to conform or face the danger of being left high and dry, talking to themselves. The Home Office choice of f.m. is a good one: not only will it lead to much less interference than a.m., but it is a rap across the knuckles for the pirates. They have deliberately broken the law and cannot grumble when they are put to some expense and inconvenience.

Amateur radio could well find itself the slightly surprised beneficiary of any surge of enthusiasm for c.b. radio. Throughout the campaign for c.b., amateurs have presented a fairly equable face to the $\mathrm{c} . \mathrm{b}$. fraternity: relatively few condemnatory remarks have been published - fewer than might have been expected. It may be that, attracted by the temperate attitude of the amateurs and limited by the inflexibility of c.b. equipment, c.b. enthusiasts will 'graduate' to full amateur status and worldwide, rather than local communication.
The protracted lobbying for a personal radio band ought to have its effect on the Home Office, too. Its job is to ensure that the radio spectrum is properly used, not to assume ownership. This decision could have been taken many months ago, long before the number of a.m. sets constituted a problem. There was no constitutional reason not to take it: nothing has changed - if 27 MHz f.m. is available now, it could also have been made available then. If it was considered that such an allocation would cause interference then, it will do so now, and the public interest is being compromised.

If a similar demand for an allocation occurs in the future, let us have a little more open discussion and less concealment or exaggeration of selected facts, on both sides.

Digital capacitance meter

A four-digit meter with input circuit protection for measuring values from 1 pF to $1000 \mu \mathrm{~F}$

by I. H. Ibrahim, Ph. D., Cairo University

Input protection circuits on widerange, low-cost, capacitance meters are often a source of non-linearity errors. This article describes the theory of operation and construction of a four-digit capacitance meter which can be used to measure capacitors from 1 pF to $1000 \mu \mathrm{~F}$ in six ranges. Emphasis has been placed on the design of the input protection circuit and other parts of the circuit where errors could possibly be introduced. A null adjustor allows compensation for stray capacitance, and a polarizing voltage can be used for electrolytics.

The different techniques used for measuring the value of a capacitor at low frequencies can be divided into three general groups: reactance compensation, impedance comparison and charge injection. When low frequncies are used, the effects of lead inductance and high-frequency dielectric losses may be neglected. In the first technique, reactance compensation, the capacitor to be measured is connected to the input of the meter and the impedance of the input adjusted until its reactance at the fixed operating frequency is equal to that of the capacitor, but with opposite sign. The capacitor and the impedance of the input form a resonant network and the value of the capacitor can be obtained from the impedance value of the input at the point at which the peak voltage or current
is obtained. This method, although accurate, is difficult to apply when high-value and electrolytic capacitors are to be measured.

In the second method, impedance comparison, the capacitor under test is connected as part of a bridge circuit. When balance conditions are obtained the value of the capacitor can be calculated from the known values of the other components of the bridge and the operating frequency. This method is suitable for high-accuracy measurements, but it has the disadvantage that the balancing procedure in manually balanced bridges is tedious. On the other hand, automatic and self-balancing bridges are very expensive.

The third technique is the charge-injection method in which an electrical charge of Q coulombs is injected into the capacitor during a charging period of T seconds. This will cause a change of V volts in the capacitor voltage. The value of the capacitor is then obtained as the ratio Q / V farads. In some meter circuits Q is a constant value while V is inversely proportional to the value of the capacitor. In other meter circuits the change in voltage over the capacitor is constant, while Q is directly proportional to the value of the capacitor. But as the charge Q is the integration of current with time it is possible to design meter circuits so that the charging period T is directly proportional to the measured capacitor. The latter method is used in this design and is the most convenient for digital capacitance meters, in which the charging period is measured by counting the
number of clock pulses that occur during that period. These clock pulses are usually obtained from a stable crystal oscillator.

Input protection

Most low-cost meter circuits do not include a means of protecting the meter against any initial charge stored in the capacitor under test. The need for protection becomes greater when the meter is designed for measuring large and electrolytic capacitors, which are capable of storing large electrical charges over long periods. In this case, it is vital to insert a suitable protection network between the capacitor under test and the input port of the meter. The insertion of such a network usually causes a non-linear relation between the value of the capacitance and the charging period T and this in turn causes nonlinearity errors in the readings. Fortunately, with optimum design of the protection network, it is possible to reduce these errors to negligible proportions - much smaller than the errors caused by the tolerances of the values of the circuit components. The various sources of error will be discussed in more detail later in this article.

Charge-injection technique

Although this technique is well known, a quick review will help to show the effect of inserting the protection network. Figure 1 shows the basic idea of the charge-injection method. The capacitor C_{x} is charged from

Fig. 1. Simplified diagram of the charge-injection technique used to measure capacitors.

Fig. 2. The simplified charge-injection circuit with input circuit protection consisting of R_{2}, D_{1} and D_{2}. An initial charge in C_{x} is discharged through R_{2} and the switch S.
$V_{c c}$ through R_{l} until the voltage across it reaches the value of the reference voltage V_{r}. The output voltage from the comparator will then go positive. This will be sensed by the logic-control circuit, which will then close the switch S , discharging the capacitor to a voltage V_{d}, which is less than V_{r}.
In digital capacitance meters, the data is updated every T_{o} seconds by triggering of the control-logic circuit, which opens switch S and starts the capacitor charging. During the charging period T, the voltage across the capacitor will rise from V_{d} to V_{r} in a time T, given by:
$T=R_{1} C_{x} \log _{e} \frac{V_{c c}-V_{d}}{V_{c c}-V_{r}}$
and is directly proportional to C_{x}. The period during which the capacitor is being discharged (switch S closed) will be termed the relaxation period, and is equal to $T_{o}-T$. In Fig 1, the relaxation period has no effect on the charging period, assuming that switch S is ideal.

A similar situation will arise if $V_{c c}$ and R_{I} are replaced by a current source I. The charging period then becomes:

$$
\begin{equation*}
T=C_{x} \cdot\left(V_{r}-V_{d}\right) / I \tag{2}
\end{equation*}
$$

and is still directly proportional to C_{x}.
The circuit of Fig 2 is similar to that of Fig. 1, apart from the addition of the protection circuit R_{2}, D_{1} and D_{2}. When a capacitor with an initial charge voltage greater than V_{r} is connected as shown in Fig. 2, it will be discharged through R_{2} and the closed switch S . When the voltage across the series combination of C_{x} and R_{2} is less than the reference voltage V_{r}, the logic circuit will trigger, open the switch, and start the capacitor charging up again. The two diodes are used to keep the input voltage of the comparator between $-V_{D 2}$ and $+\left(V_{D I}+V_{c c}\right)$, where D is the forward voltage-drop of the diode used.

The following formula shows that for steady-state conditions, the period I can be obtained:
$V_{c c}-V_{d}+$
$\left(V_{c c} \frac{R_{2}}{R_{1}}-V_{r}\left(1+\frac{R_{2}}{R_{1}}\right)\right) \cdot \exp \left(\frac{-\left(T_{o}-T\right)}{R_{2} C_{x}}\right)=$
$\left(1+\frac{R_{2}}{R_{1}}\right) \cdot\left(V_{c c}-V_{r}\right) \cdot \exp \left(\frac{T}{C_{x}\left(R_{1}+R_{2}\right)}\right)$
The solution of this formula is a non-linear relation between the value of the capacitor and the charging period. Before considering this relationship, take the limiting case where the updating period T_{o} and the relaxation period $T_{o}-T$, are very long compared with the time constant $R_{2} C_{x}$. Equation 3 can then be simplified and the following expression applied:

$$
\begin{equation*}
T_{1}=\left(R_{1}+R_{2}\right) C_{x} \log _{e}\left(\frac{R_{1}\left(V_{c c}-V_{d}\right)}{\left(R_{1}+R_{2}\right)\left(V_{c c}-V_{r}\right)}\right) \tag{4}
\end{equation*}
$$

Fig. 3. The error in the charging period T caused by the protection network.
equation 4. Ideally, the charging period T needs to be directly proportional to C_{x} so we investigated practical circuit modification which would make T of equation 3 approach the limiting solution given in equation 4.

Because the analytical solution of equation 3 is difficult to obtain we solved it numerically for a specific case where we

$$
\begin{equation*}
\cdots \mathrm{l}_{01}^{v_{\mathrm{cc}}} \log _{\mathrm{e}} \frac{R_{1}\left(V_{c c}-V_{d}+\left(I_{01}-I_{o 2}\right) R_{1}\right)}{\left(R_{1}+R_{2}\right)\left(V_{c c}-V_{r}+\left(I_{01}-I_{o 2}\right) R_{1}\right)} \tag{5}
\end{equation*}
$$

Equation 5 indicates that T is still proportional to C_{x}, but now a new problem arises, due to the dependence of the proportionality constant on the reverse saturation currents, which are temperature dependent. If the two diodes are identical, the effect of the reverse saturation currents will be cancelled out. It is advisable to select the diodes so that the error in T caused by the drift in the circuit components is compensated tor by the ettect of the drift in $I_{o l}$ and $I_{o 2}$. The second source of error that should be investigated is the input capacitance of the comparator. lts effect is considered in the following section.

Input capacitance effects

In the circuit of Fig. 1, the comparator input capacitance $C_{\text {in }}$ is in parallel with the capacitor C_{x} and the charging period is given by:
$T=\left(C_{x}+C_{i n}\right) \cdot \log _{e} \frac{V_{c i}-V_{d}}{V_{c i}-V_{r}}$
For the circuit of Fig. 2, it is difficult to find an exact expression for the charging period, so an approximate expression is given.

For sake of simplicity the analysis begins with the assumption that T_{o} is greater than $6\left(C_{x}+C_{i n}\right) \cdot\left(R_{1}+R_{2}\right)$, and $V_{d}=0$. The Laplace transform of the voltage input to
the comparator during the charging period will be equal to:
$V_{i n}(s)=\frac{V_{c c}}{s} \times$
$\frac{1+R_{2} C_{x} s}{s^{2} R_{1} R_{2} C_{x} C_{\text {in }}+. s\left(R_{1} C_{\text {in }}+R_{1} C_{x}+R_{2} C_{x}\right)+1}$
where s is the complex frequency. The frequency domain expression for $V_{i n}(\mathrm{~s})$ has two real poles, and a third pole located at the origin of the complex frequency-plane. The locations of the two poles can be obtained from equation 7 .

It is interesting to consider the relationships between the values of the components R_{1}, R_{2}, C_{x}, and $C_{i n}$ of a practical meter circuit under these three conditions:
(a) When the meter is set to measure small capacitances. In this case the resistance R_{l}, which is the range setting resistor, will have a very large value compared with R_{2}.
(b) When the meter is used to measure medium value capacitors, usually where $R_{1} C_{x} \gg R_{2} C_{\text {in }}$.
(c) When the capacitor to be measured, $C_{x} \gg C_{i n}$.
In any of the above cases it could easily be shown that the two real poles of equation 7 are located near s_{l} and s_{2} by:
$s_{1}=-\left(\frac{1}{R_{1} C_{i n}}+\frac{1}{R_{2} C_{i n}}+\frac{1}{R_{2} C_{x}}\right)$
$s_{2}=\frac{-1}{R_{1}\left(C_{i n}+C_{x}\right)+R_{2} C_{x}}$
Under the conditions stated in (a), (b) and (c) above we find the pole at s_{1} is located much further to the left of the pole at s_{2} in the complex frequency plane. This means

Table 1

Range	1	2	3	4	5	6
C_{x} (minimum)	1 pf	10 pf	100 pf	1 nf	10 nf	$0.1 \mu \mathrm{f}$
C_{x} (maximum)	10 nf	$0.1 \mu \mathrm{f}$	$1 \mu \mathrm{f}$	$10 \mu \mathrm{f}$	$100 \mu \mathrm{f}$	$1000 \mu \mathrm{f}$
$\mathrm{T}_{\text {max }}$ (seconds)	0.01	0.1				1.0
Clock frequency	1 MHz	100 kHz				10 kHz
R_{1} (ohms)	910149	910149	90939	9061.1	1137.5	1137.5
$\frac{R_{1} \cdot C_{x}(\min .)}{R_{2} \cdot C_{i n}}$	20.22	202.2				2527
T_{0}^{-}(seconds)	0.1	1.0				10.0

that in the time-domain, the first pole will produce rapidly decaying exponential components that will decay down to a negligible value before the charging period is reached. To a good degree of approximation, the time-domain expression for $V_{\text {in }}$ will be:

$$
V_{\text {in }}(t)=V_{a}+V_{b} \exp \left(s_{2} t\right)
$$

The charging period after which the voltage $V_{\text {in }}$ reaches the reference voltage V_{r} will then be inversely proportional to s_{2} as is shown by:
$T=\left(\left(R_{1}+R_{2}\right) C_{x}+R_{1} C_{i n}\right) \times$
$\log _{e} \frac{R_{1}\left(V_{c c}\right)}{\left(R_{1}+R_{2}\right)\left(V_{c c}-V_{r}\right)}$
This shows that the indicated value for the capacitance will be greater than the true value by an amount proportional to $C_{\text {in }}$. That error can be easily compensated for

Fig. 5. Circuit diagram of the chargeinjector, input protection, null adjustment, range-selectors and counter-drive sections.
by inhibiting the clock pulses to the counter for a short period.
The meter was built around a four-digit counter and an NE555 timer operating in the monostable mode so that the duration of the output pulse is a linear function of the measured capacitance. The design was optimized according to the above theoretical analyses, so that the accuracy of the meter is maintained throughout all the ranges.
Figure 5 shows the monostable configuration and the protection circuit. To start with, a reasonable value for the currentlimiting resistor R_{2} must be found, so that the discharge current through pin seven of the ic does not exceed 200 mA . We chose R_{2} as $1 \mathrm{k} \Omega$, to allow measurement of capacitors that are initially charged up to 200 volts without causing damage to the NE555.

The second step is calculating the value of the charging-up resistor, R_{I} (one of the range selection resistors $R_{l a}$ to $R_{l d}$), using equation 4 with $V_{d}=0, V_{r}=2 / 3 V_{c c}$, and the charging period T (which is arbitrary) chosen from Table 1.

The third step is to calculate the dataupdating period T_{o} to be greater than or equal to $6\left(R_{1}+R_{2}\right) . C_{x}(\max)$ for each range. Table 1 shows that T_{o} was chosen slightly greater than $10\left(R_{1}+R_{2}\right) C_{x}(\max)$ and therefore the error caused by the protection network will always be less than 0.01% of the indicated value.

If a polarizing voltage is required, the circuit of Fig. 5 can be easily modified. The negative terminal of C_{x} could be connected to an adjustable negative voltagesource of voltage V_{p}. The polarizing voltage applied to the capacitor is then equal to $V_{p}+1 / 2 V_{c c}$ and can be adjusted to the desired value. The timer is protected against the polarizing voltage and the operation of the circuit remains unchanged.
A second timer circuit, also operating in the monostable mode, provides the null

Fig. 6. Counter circuit (above) with crystaloscillator and frequency-divider circuits (below)
adjustment circuit, as shown in Fig. 5. On the application of the trigger pulse to both monostable circuits, the voltages of the two outputs will rise to $V_{c c}$ shortly after the application of the trigger pulse. The output voltage of the second monostable will fall after a time T_{z} which depends on the value of the trimmer capacitor, but the output of the first monostable circuit will fall to zero after a time T, as given by equation 4. The four NAND gates will then allow the clock pulses to pass to the counter during a time period $T-T_{z}$. The value of the trimmer capacitor can then be adjusted until the effect of the input capacitance $C_{i n}$ is compensated for and $T-T_{z}$ becomes directly proportional to the mea-
sured capacitor C_{x}. Setting up is achieved by setting the meter to range 1 , removing C_{x}, and adjusting the trimmer capacitor until the meter reading is zero.

Figure 6 shows the circuit of the fourdigit counter and the clock circuit.

The use of an l.s.i. chip for the counter circuit of Figure 6 will save space, power and could, especially if i.c. sockets are to be used, save money. (Ed.)

Bibliography

1. McMOS Integrated Circuit Data Book, first edition, December 1973, Motorola Inc., pp 210, "Input Circuit Protection."
2. Ryan, A., "Digital capacitance meter", Wireless World, April 1980.
3. Holford K., "Capacitance meter", Wireless World, Oct 1978.
4. Drummond-Murray, A., "Electrolytic capacitor tester", Wireless World, May 1977.

Data store by running average

Processor-based measuring system for long term readings

by J. L. Gordon

In monitoring systems which measure variables, periodic readings over many days are often required for a data base. For some applications, such as recording the light level during a season, an average reading is needed rather than individual items of data.

This system can be used in applications where individual readings are not required and the variable changes value at a rate which allows processing between readings.

In digital systems, data is sampled at regular intervals with a sampling frequency greater than twice the highest frequency of the variable being monitored. For the example above, the period of change may be minutes rather than seconds, so sampling at five-second intervals is more than adequate. However, sampling every five seconds requires a considerable number of readings over a year if the data is held as individual totals. An alternative scheme, which gives a running average of the sampled data, can often
provide all of the necessary information. Data available in this form is accessible immediately as an average of the individual samples taken and, by multiplying this average by the number of readings, a figure representing the total units read can be obtained. Furthermore, predictions for the completed total can be made if the running average is multiplied by a constant which represents a period of time.

An instrument for producing a running average has been conveniently constructed using a 6502 based Acorn microcomputer.

Fig. 1. Simplified block diagram of the prototype instrument.

This prototype samples data every five seconds and reads it in via a 10 -bit bus. Data is presented as d.c. levels from 0 to 10 V , and the system can take continuous readings for 2.66 years without loss of accuracy. An additional 8154 i.c. is provided in a spare socket on the Acorn controller board to interface between the microprocessor and external circuits. This device provides two 8 -bit i/o ports which can be used as separate lines. Normally, port A and two bits of port B are used to read data from a binary counter, but two additional bits can be used for greater accuracy. Three lines of port B are used to control the sampling circuit and the remaining line is available for expansion as shown in Fig. 1.

The five-second interrupts are initialized by the program so that the necessary conditions can be set by the processor before an interrupt is received. When an interrupt signal arrives, the measuring circuit is controlled by the program. Anal-ogue-to-digital conversion is achieved by a 9400 voltage-to-frequency converter, and the optimum digital value for an analogue input can be adjusted by modifying the program listing, i.e., the time that the count takes.
The main program displays the data present in two bytes of memory. When an interrupt command is received by the NMI, new data is read. Initially the 6502 registers and accumulator are saved and then the binary counter is reset to zero to

035C.	C6	99		3839	03A3	A0	01			O3EE	10	Fb	
035E	C6	90		from new	0345	84	27			03 F 0	A2	0 F	
0360	18			average	0347	18				03F2	85	30	
0361	98			Hex to Dec	03 A 8	66	72			03F4	95	50	
0362	69	01		¢ conversion	03AA	66	71			03F6	CA		
0364	A8			then	03AC	66	70			03F7	10	F9	
0365	8 A			dump for	O3AE	90	03			$03 F 9$	A6	2 F	
0366	69	00		display	03 BO	20	Co	03	process	03FB	60		
0368	AA				$03 \mathrm{B3}$	C8							
0369	90	E9			0384	CA				Shift			
036 b	E6	92			0385	10	EE			DOAO	$\varepsilon 6$	$2 F$	
036d	bo	F5			$03 \mathrm{B7}$	60				00A2	18		
0367	84	20								0043	A2	FO	
0371	86	21		,	Proce					00A5	36	60	
0373	68				03 CO	86	26			00A7	E8		
0374	A8			retrieve	03 C 2	20	E5	03	transfer	00AB	DO	FB	
0375	68			A, X, Y,	03 C 5	A6	27			OOAA	90	03	
0376	AA				03 C 7	20	A0	00	shift	DOAC	20	b8	00
0377	68				03CA	CA				O0AF	46	$2 F$	
0378	40			return	03Cb	D0	FA			00b1	60		
					03cd	20	d3	03	add				
					0300	86	26			Alarm			
Subr	nes				0302	60				0008	86	$2 E$	
										00ba	A2	07	
Multi					Add					00bc	A9	49	
0380	42	02			0303	86	$2 F$			OObE	95	10	
0382	B5	28			0305	18				OOCO	CA		
0384	95	70			0306	D8				00 Cl	10	F9	
0386	CA			*	0307	A2	$F 0$			00 C 3	- 42	80	
0387	10	$F 9$			03D9	85	60			00 C 5	20	OC	FE
0389	A2	OF			03D6	75	50			$00 \mathrm{C8}$	AO	18	
038b	A9	C0			03DD	95	50			OOCA	20	cd	FE
038d	95	40			03DF	E8				00cd	88		
038F	CA				03E0	DO	F7			OOCE	do	FA	
0390	10	Fb			03E2	A6	$2 F$			00do	CA		
0392	18				03E4	60		-		00d1	00	F2	
0393	66	72								00d3	A2	07	
0395	66	71 70			Tran					00d5	49 95	00 10	
0397	66 90	. 06			OSES $.03 E 7$	A6	$2 F$ Of			00d7	C5	10	
039b	20	E5	03	transfer	03 E 9	A9	00			00nA	- 10	Fb	
039E	20	03	03	add	03Eb	95	50			00dC	A6	$2 E$	
03A1	A2	46			03Ed	CA				OOdE	60		

Fig. 2. Data flow within memory during executing program. The numbers refer to zero page locations.
clear the previous reading. The counter gate is then opened for a specific period which is controlled by a delay subroutine in the Acorn monitor. The gate is then closed and new data is read into two bytes in zero page memory. When this operation is complete, the existing running average from a 16 -byte register in zero page is multiplied by the number of readings taken, which is contained in three bytes of zero page. New data is then added to this total and the number-of-readings register is incremented. To complete the averaging procedure, the total from the multiplication plus the new data is divided by the incremented number of readings and then returned as a new figure to the 16 -byte register reserved for the running average. The new data is added to the multiplication so that it has 64 trailing zeros, which provides a fixed decimal point for division. The two least significant bytes, which form whole numbers, from the running average are converted to decimal for display by the main program. These bytes correspond in significance with the data read in, so the running average total will never exceed the two bytes which are displayed. The event, that take place during the processing of new ,ata are shown in Fig. 2.

As the 3 -byte register conaining the numberof readings can cater for 2^{24} events before overflow, a reading every 5 s can be stored for over 2.5 years before data is lost. Because the register containing the running average has, in effect. 2^{6+6} decimal places, after 2.5 years new data can still significantly alter the running average. If only two bytes of data are displayed, small variations in totals will not be seen immediately although the information will be stored in memory.
A sample program listing used with the prototype instrument is shown in Table 1 .

However, both the hardware and software can be modified to suit specialized applications.
One practical use for a modified instrument is the calculation of a domestic electricity bill. A current transformer with an accurate resistor across it can be used as a transducer to provide a voltage proportional to the current. This output is rectified by a single germanium diode so that the voltage drop across the device is small. Peak voltage can be measured by choosing a suitable smoothing capacitor and using the correct frequency of readings for the time constant of the circuit.

The data can be multiplied by a constant which includes an adjustment to give the r.m.s. values and a conversion to kW . With this arrangement the maximum desired bill can be selected and, if the running average is such that the bill will be drastically exceeded, an alarm can be triggered or non-essential equipment can be disconnected until the average is reduced.

If faster operation is needed, the program can be speeded up by changing from hex-to-decimal conversion to a different type, and increasing the frequency of the v-to-f converter so that the counter gate-time can be reduced.

IN OUR NEXT ISSUE

Audio millivoltmeter

A simple instrument which uses 20 l.e.ds to give a fast-response, peak reading indication. It can be used for audio frequencies and d.c. and is battery-powered. The meter offers many of the advantages of a pointer meter without the inertia of the movement.
Morse code lock
An 8748 microcomputer recognizes sixteen morse characters, keyed-in by the
On sale 20 May
user, and operates an electric lock when the input code corresponds with that held in memory. The lock uses only two integrated circuits, and the standby current is around 1 microamp.

Remote keyboard

Using an RS232 serial link, this design allows a remote keyboard to be connected to a computer and used simultaneously with the existing keyboard, without complex software. The circuit can easily be adapted to suit individual circumstances.

Measuring transient intermodulation in audio amplifiers

The 'inverting-sawtooth' method for low t.i.d. measurements

by P. Antoniazzi, C. Buongiovanni and S. Tintori, SGS-Ates, Milan.

Over the last ten years transtent intermodulation distortion (t.i.d.) has attracted considerable interest in audio engineering circles, as a glance at the bibliography shows. Among the many published papers on the subject a number deal with the measurement of t.i.d.
The best known method consists of feeding sine waves, superimposed onto square waves, into the amplifier under test. The output spectrum is then examined using a spectrum analyser and compared to the input. This method suffers from serious disadvantages: the accuracy is limited, the measurement is a rather delicate operation and an expensive spectrum analyser is essential.

Recently, a new approach has been described by S. Takahashi and S.
Tanaka which is, in their own words, simple yet precise. This method, which we will refer to as the "inverting sawtooth" method, is also fast, cheap - it requires nothing more sophisticated than an oscilloscope and sensitive - and it can be used down to t.i.d. values as low as 0.002% in high power amplifiers.

Transient intermodulation distortion is an unfortunate phenomenon associated with negative-feedback amplifiers. When a feedback amplifier receives an input signal which rises very steeply, i.e., it contains high-frequency components, the feedback can arrive too late so that the amplifier overloads and a burst of intermodulation distortion will be produced, as in Fig. 1.
Since transients occur frequently in music this is obviously a problem for the designers of audio amplifiers. Unfortunately, heavy negative feedback is frequently used to reduce the t.h.d. (total harmonic distortion) of an amplifier, which tends to aggravate the transient intermodulation (t.i.m.) situation.

Method of measurement

The 'inverting-sawtooth' method of measurement is based on the response of an amplifier to a sawtooth waveform. The amplifier has no difficulty following the slow ramp but it cannot follow the fast edge. The output will follow the upper line in Fig. 2, cutting off the shaded area and thus increasing the mean level. If this output signal is filtered to remove the sawtooth, a direct voltage remains which indi-
cates the amount of t.i.m. distortion, although it is difficult to measure because it is indistinguishable from the d.c. offset of the amplifier. This problem is neatly avoided in the i.s.-t.i.m. method by periodically inverting the sawtooth waveform at a low audio frequency as shown in Fig. 3. In the case of the sawtooth in Fig. 2, the mean level was increased by the t.i.m. distortion; for a sawtooth in the other direction the opposite is true.
The result is an a.c. signal at the output whose peak-to-peak value is the t.i.m. voltage, which can be measured easily with an oscilloscope.

Practical measurements

The equipment needed for i.s.-t.i.m. measurement is shown in Fig.4.A 20 kHz sawtooth generator, its output inverted every 256 cycles, is followed by a high pass filter which attenuates the 78 Hz switching component by more than 100 dB . A suitable circuit, shown in Fig. 5, is a straightforward, $36 \mathrm{~dB} / \mathrm{oct}$. Butterworth filter, with a cutoff at around 1 kHz . The circuit contains a simple RC network to limit the maximum signal slope to a reasonable value. It can be switched to supply signals of varying severity to the test amplifier: for most purposes the $f_{\mathrm{c}}=30 \mathrm{kHz}$ position gives realistic results but for "super-fi" amplifiers the 100 kHz position can be used. An intermediate position, not normally used, is provided.
After leaving the amplifier under test, the 20 kHz sawtooth must be filtered out so that the t.i.m.-induced voltage can be measured. The passive low-pass network in Fig. 6 gives the desired response.

Finally, the filtered output signal is displayed on an ordinary oscilloscope. If the peak-to-peak value of this signal and the peak-to-peak value of the inverting sawtooth are measured, the t.i.d. can be found very simply from:

$$
\text { t.i.m. }=\frac{V_{\text {out }}}{V_{\text {sawteoth }}} \times 100
$$

The two oscilloscope photographs show the waveforms actually ohserved. The top one shows part of the $20 \mathrm{kII} \%$ inverting-

Fig. 1. Response of negative-feedback amplifier to very steep input slope

Fig. 2. Input sawtooth and response of amplifier

Fig. 3. Inverting sawtooth and filtered output of amplifier under test

Fig. 4. Block diagram of measurement setup

sawtooth waveform at the output of the generator, while the second shows a typical filtered output waveform ($20 \mathrm{kHz} / 256=$ 78 Hz) which is used to measure the peak-to-peak amplitude of the t.i.m.-induced voltage.

Inverting sawtooth generator

To generate the special inverting-sawtooth waveform we designed the simple circuit shown in Fig. 7. An ordinary sawtooth signal is generated by a relaxation oscillator consisting of the constant current generator Tr_{1}, a capacitor Cl , inverting triggers $\mathrm{IC}_{\mathrm{la}}$ and $\mathrm{IC}_{\mathrm{lb}}$ and an analogue switch, $\mathrm{I}_{2 \mathrm{a}}$. Capacitor C_{1} is charged by the constant current generator until the voltage across it reaches the upper threshold of the trigger $\mathrm{IC}_{1 \mathrm{~b}}$, which is about 6.5 V . This closes the analogue switch and discharges C_{1}. Discharging continues until the voltage across C_{1} falls to the lower threshold of the trigger, about 3 V , when the analogue switch opens and C_{1} charges again. The frequency of the resulting sawtooth waveform is adjusted to 20 kHz by the trimmer in Tr_{1} emitter.

The buffer, Tr_{2}, minimizes the loading on C_{1} and attenuates the signal to avoid saturating the phase-splitter that follows. The phase-splitter, Tr_{3}, provides two out-of-phase sawtooth waveforms, the trimmer in the collector of Tr_{3} adjusting the symmetry of these waveforms. Another trimmer in the inverted signal decoupling network, adjusts the relative offset of the two waveforms.

The analogue switches $\mathrm{IC}_{2 \mathrm{~b}}$ and $\mathrm{IC}_{2 \mathrm{c}}$ select either the direct or the inverted sawtooth under control of the counter, which divides the discharge pulses from the relaxation oscillator by 256 , so that the out-

Inverting sawtooth is shown in top trace: bottom picture is t.i.m.-induced voltage after filter.

Fig. 5. High-pass filter and signal slope limiting network

Fig. 6. Low-pass filter characteristic
put sawtooth signal changes phase every 256 cycles. The inverting sawtooth is buffered by Tr_{4}.

The output of the counter also serves to synchronize the oscilloscope used in the measurements. Without this sync., it would be virtually impossible to observe the inverting sawtooth waveform.

Some results

TO see how the inverting sawtooth method works in practice, we have tested a variety of audio integrated circuits - standard operational amplifiers, monolithic power amplifiers and an RIAA preamplifier based on a new high-quality preamplifier i.c. For the t.i.d. measurements on the operational amplifier, a unity-gain buffer, shown in Fig. 8, was used to match the low
impedance filter to the op-amp. input. Figure. 9 shows the results obtained from an LS148 op-amp. with three different values of compensation capacitors.

These results show t.i.d. values higher than those obtained using other methods - a result of the greater sensitivity of the i.s.-t.i.m. technique. Extensive comparison of t.i.d. measurements using various methods have been published elsewhere and confirm the validity of the invertingsawtooth method. Although it is possible to measure t.i.d. as low as 0.002% this only applies to high-power amplifiers when the t.i.m. voltage can be measured more easily.

Figure 10 shows typical t.i.d. values for a 15 W monolithic amplifier, the TDA 2030, in the test circuit, Fig 11. As in the case of the operational amplifier the measurements were carried out at the three different settings of the signal slope
continued on page 53

Fig. 7. Inverting sawtooth generator

Fig. 10. T.i.d. measurements on TDA2030 audio power amplifier

Fig. 11. Test circuit used for TDA2030/TDA2040

Fig. 8. Unity-gain buffer

Fig. 9. T.i.d. measurements on LS148 op.amp.

Fig. 12. R.I.A.A. preamp. based on TDA2310 (one channell

Television for no-signal areas

An "active deflector" for re-directing broadcast signals

by J. M. Osborne, G3HMO

In the last decade u.h.f. colour television broadcasting has, for all practical purposes, replaced black-and-white at v.h.f. The use of the higher frequencies sharpens the "no-go" areas where no signal or no usable signal exists; rectilinear propagation rules. However many relay stations are erected, inevitably there will be isolated sites for which this solution must be uneconomic. From many of these isolated sites, perhaps for most, it is possible to see
a point on local high ground from which in turn a television broadcast mast is visible; visible in theory, that is, or with a telescope on a clear day. An active deflector becomes a plausible possibility.
If the signal at the top of the hill is received in the conventional way and redirected towards the 'no-signal' site, normal reception there can be achieved. The description that follows is a case history of how a single installation provided six

households in three neighbouring 'no-signal' sites with normal signals. Conventional aerials with and without masthead amplifiers at these sites give performance not significantly different from that received by those at the top.
The situation is a classic one; the houses are on the coast with high ground inland. The problem: all broadcast tv stations, high power and relay, within range are screened by this high ground. The solution: a signal (of a few millivolts) received up top, amplified as necessary, is redirected to give a comparable signal down below perhaps 500 to 1000 m away.

The hardware is basically very simple. The main aerial, about 3 m high, is connected to a head amplifier and then by 20 m or so of low-loss, low-leakage coaxial cable to another r.f. amplifier. This wideband amplifier is crucial to the project and its specification is quoted later. The output is connected via a further short length of lowleakage coax to three aerials on an adjacent mast about 2 m high. A specially made harness using quarter wave 50 -ohm sections matches the amplifier (75 ohms) to the aerials (each also 75 ohms). These aerials, pointing at the respective sites, are vertically polarised to minimise the possibility of oscillation or instability through coupling to the main horizontally polarised aerial.
Coax with low r.f. leakage is used throughout to avoid feedback problems. These cables also run at ground level except where running vertically up the earthed aluminium masts, for the same reason. It is comforting that at no time has r.f. feedback occurred with these simple precautions. How far these precautions can be relaxed before running into trouble has not been investigated.
At the three receiving sites, normal tv aerials (vertically polarised and pointing up the hill) with and without head amplifiers result in good quality colour pictures on all three channels. In fact, the aerials need only have a clear line of sight to the top of the hill and need not, in general, be above the roof. Fixing to a wall makes a cheap, tidy installation. On one site a black-and-white portable gives a usable (though admittedly slightly noisy) picture

Nature of the terrain can be seen from this view with the three transmitting aerials in the foreground.

Main items of equipment

Main amplifier:

Amethyst (u.h.f. only). Wolsey Electronics, Cymmer Road, Porth, Mid Glamorgan CF39 9BT. (Trade price £77.48 plus VAT.)

Aerials:

Antiference TC18 (one) and TC10 (three).

Masthead amplifier:

CM7025/CD. Labgear Ltd, Abbey Walk, Cambridge CB1 2 RO.
using its built-in halo aerial, if the set is placed in the window on the right side of the house.
The amplifier that made this project possible is the Amethyst supplied by Wolsey Electronics. The u.h.f. version cost less than $£ 100$, including the mains power supply. This unit is designed as a distribution amplifier, e.g. providing a large number of outlets in blocks of flats from a communal aerial on the roof. It is ideal for the present application: broad band, ultra linear, 75 -ohm coax input and output, up to $1 V$ r.f. output and an integral d.c. supply up the input coax for the head amplifier.

A mains supply up the hill is out of the question. The power unit was therefore removed from the Amethyst. The amplifier draws an economical 240 mA at 24 V . This is supplied by a pair of p.v.c. 24s.w.g. wires run up the hill for the most part through the uncultivated undergrowth under an old dry wall. It is fairly unlikely to be disturbed. At the lower end this pair of wires is run into an outhouse along the posts of a chicken run. At the top, where it connects to the amplifier, a series diode provides polarity protection. The resistance of the wire (25 ohm) at 240 mA and the diode drop requires that a 30 V supply be provided. This is left on permanently in the outhouse.

The weather protection of the amplifier is taken care of by standing it clear of the ground on an inverted tray as used for market garden produce. It is covered with plastic sheets (ventilated, not sealed). Over the whole is placed a large heavy-gauge plastic box, upside down to keep out the wind and rain.

The aerials are standard yagis made by Antiference Ltd. Their disposition is clear from the photographs. The excellent directional and gain properties make them a good choice in this application. Their ability to take the weather, including gales and storms, is implicit. The head amplifier, replacing the first one of Continental origin which proved to have inadequate gain, was a Labgear CM7025 compatible with the Amethyst coax supply. Its ability to stand the weather is likewise implicit.

The masts have to be guyed to withstand gale and storm on such an exposed site. They are guyed with stainless steel stranded wire to heavy iron staves driven deep into the ground with a sledge hammer. The staves are made from fencing angle iron, cut and sharpened. The

The three transmitting aerials mounted on a mast a little way down the hill. In the foreground is the r.f. amplifier box (with rock on top of it!)
base of each mast has been set in concrete.
Now that the project has been brought to a successful conclusion - for the time being anyhow, since nothing lasts forever - it is interesting to reflect on the variety of problems and solutions engendered by it.

The only instruments used were an Avo multimeter and a Ferguson black-andwhite portable which would operate for a short time for test purposes on 12 V from heavy duty dry cells. As one was unwilling to lay out cash on an unproved project, the proving of the signal up top was done with redundant aerials. (These became redundant when a local relay was established elsewhere in the West country.) The coax was salvaged from a previous highly satisfactory project - an amateur radio telescope of 1959 - being low-loss cable supplied by J. Beam Ltd to connect the arms of an interferometer made with J. Beam skeleton slot 1.5 m aerials.

Before any stage of this project was implemented it was proved. Everything up top was carried up a tortuous path 350 ft a.s.l. taking 25 minutes by the easiest route (and 15 minutes down). Weather was relevant to what could be done and how

Method of matching three transmitting aerials (each 75 ohm) to the coaxial cable from the r.f. amplifier. 75 -ohm inners and outers connect to respective $50-\mathrm{ohm}$ inner and outer

An imaginary panoramic view, illustrating the need for and the implementation

Main receiving aerial, installed on high ground, with sea in the background.

A plot of contour heights along the path from the broadcast transmitting aerial. Height of the aerial and grid reference are obtained from the BBC Engineering Information Department. The contours are from the Ordnance Survey.
long it took. To test the effect of a single change (2 minutes in a lab) might take half the morning. The iustification of the work and the expense of the amplifier was confirmed when good pictures were received down below on a battery operated amplifier (four EverReady 6V type PJ996 batteries ran for two days, the voltage falling to 16 V before signals became significantly weak). The laying of the 24 V line followed. This involved cutting through undergrowth which must compare with the Burmese jungle. Certainly I wore top boots in view of frequent sightings of adders!
A paradoxical situation arose as a result of the installation of the Labgear head amplifier. That, together with the 18 element Antiference yagi, overloaded the amplifier, causing cross-modulation. A faint interference band across the screen moved slowly up or down. Blank parts of the screen when the set was tuned to one channel revealed faint ghosting from another. All that was needed was to turn
the attenuator on the input of the amplifier - but by how much? A system of flag signalling was devised using red (up) blue (down) and white (OK) items of clothing. This, together with executive signals from the top, enabled a good setting of the attenuator to be found. (Citizens' band walkietalkies will come in handy for this kind of work.)

A non-problem was permission from a neighbouring landowner to park an aerial on his territory. No loss to him but equally no gain - and it's always easier to say no. The greatest reward is the pleasure brought to neighbours by television in dark winter evenings. Cynics may dispute the programme value even in such isolated surroundings. Is a good book a better option, once the novelty wears off? I think not. We shall soon have four channels to choose from. They surely cannot always be simultaneously an American detective/police/car chase or world news or home political broadcast.

I very much hope the active deflector will keep us going for a decade, by which time a dustbin lid on the roof will provide a plethora of satellite relayed programmes.

Footnote on interference

An active deflector of this kind, if set up in a populated area, could cause interference. Television receivers already getting a signal direct and in line of fire of a deflected signal would suffer interference from this delayed signal. It is therefore necessary to consider this possibility where there are dwellings already receiving tv in sight of the proposed deflector. If the distance from the deflector is large, the direct signal strong and the directivity of the receiving aerial adequate, no problem need arise. If the direct signal is weak and interference is shown to arise, using the signal from the deflector, picked up by an aerial blind to the direct signal, may prove to be the solution. Television engineers and their aerial fitters, using knowhow and tact, might well extend the number of dwellings getting good colour using this technique. As 405 -line tv comes up to retirement it might. be the only solution in some places.

Licences

To operate an active deflector of this kind you are legally required to obtain a licence ($£ 100$ valid for 5 years). To obtain a licence you must first have your scheme technically approved by the broadcasting authorities (Home Office and either BBC or IBA). Procedure is as follows:

Contact the Home Office, BBC or IBA requesting a licence to operate a "selfhelp" scheme. Either the BBC or the IBA, depending on your area, will send you an enquiry form and an explanatory booklet "Self-help television reception". On receiving your completed form the broadcaster will plan the scheme for aerial radiation pattern, power and coverage to ensure that the active deflector will not cause interference to existing viewers or other services. When details have been agreed at a joint BBC/IBA Home Office television planning group you will be given permission by provisional licence to install the equipment. When the installation is working, inform the broadcaster concerned, who will check it for interference. If then it is approved, the Home Office will issue the full licence.

It is your own responsibility to procure the site and obtain planning permission. Nor do the broadcasters take responsibility for the picture quality obtained.

Addresses: Home Office, Broadcasting Department (Room 668), 50 Queen Anne's Gate, London SW1H 9AT. BBC, Engineering Information Department, Broadcasting House, London W1A 1AA. IBA, Engineering Information Service, Crawley Court, Winchester, Hants SO21 2QA.

Wien-bridge oscillator with low harmonic distortion

New way of using Wien network to give 0.001% t.h.d.
by J. L. Linsley Hood, Robins (Electronics)

The Wien-bridge network can be connected in a different way in an oscillator circuit to give a sine wave with very low total harmonic distortion. An I.e.d/photocell amplitude control is external to the circuit.

The Wien-bridge network remains the most popular method of construction of variable-frequency sine-wave oscillators, since the basic circuit can be very simple in form. It is a fairly straightforward matter to design oscillators of this type in which the harmonic distortion is only of the order of $0.01-0.02 \%$, and which allow frequency control by means of a simple 2 -gang potentiometer.

The basic circuit for an oscillator of this form, using a single operational amplifier as the gain block, is shown in Fig. 1, and the author has shown a practical design of oscillator, based on this, for a use as a simple, general-purpose workshop tool. ${ }^{1}$ However, in the form shown in Fig. 1, a significant problem exists in that the transmission of a normal Wien network, at the operating frequency, is only $1 / 3$, which means that an inconveniently large proportion of the output signal voltage appears at the inputs of the amplifier, and will lead to non-linearities in the transfer characteristics of the amplifier due to 'common mode' defects. An oscillator design, which employed an input device operated in a cascode configuration with a junction f.e.t. to minimize this type of defect, was shown by the author in 1977, ${ }^{6}$ and allowed a t.h.d. at

TABLE 1.Phase and transmission charac- teristics of simple Wien network.		
F/F0	phase	transmission
0.1	73.14°	0.10
0.2	57.99°	0.18
0.3	45.32°	0.23
0.4	34.99°	0.27
0.5	26.57°	0.30
0.6	19.57°	0.31
0.7	13.65°	0.32
0.8	8.53°	0.33
0.9	4.03°	0.33
1.0	0°	0.33
1.2	-6.97°	0.33
1.5	-15.52°	0.32
2	-26.57°	0.30
3	-41.63°	0.25
5	-57.99°	0.18
8	-69.15°	0.12
10.	-73.14°	0.10

1 kHz of some 0.003%, which tended to increase with frequency above this point, as the effectiveness of the common-mode isolation deteriorated.

However, it is not implicit, in the use of a Wien network as the frequency-control method, that the configuration shown in Fig. 1, in which the output of the network is taken to the non-inverting input of the amplifier and the amplitude controlling negative-feedback signal is taken to the other, is the only circuit configuration which can be employed. In particular, consideration of the phase and transmission characteristics of such a network, shown in Table 1 and Fig. 2 for equal values of C

Fig. 1. Basic Wien-bridge oscillator circuit

Fig. 2. Gain and phase characteristics of Wien network

Fig. 3. Rearrangement of Wien network between signal sources gives small inphase signal at point X

Fig. 4. Use of arrangement of Fig. 3 in oscillator circuit

and R, implies that if, instead of the network of Fig. 3(a) being connected between a signal source $E_{\text {in }}$ and the 0 V line, it was connected between two signal sources $+E_{\mathrm{x}}$ and $-E_{y}$, where these are sinusoidal and identical in frequency and the negative sign implies phase opposition, as shown in Fig. 3(b), then a small, in-phase signal would exist at the point ' X ', at the frequency of maximum transmission, $\left(f_{\mathrm{o}}\right)$, if $+E_{\mathrm{x}}$ was slightly greater than $-2 E_{\mathrm{y}}$.
This could then be used as a positivefeedback signal in a circuit such as that shown in Fig. 4, to sustain oscillation at the frequency f_{0}. Indeed, such a circuit will work quite well, and will sustain a constant output magnitude of oscillation if a thermistor is employed, as shown, to make the gain of the second, inverting, amplifier stage dependent on the amplitude of the input signal. However, there is, in practice, a small snag with such an arrangement, and that is that the inverted negative-feedback signal applied to the input of A_{1} will suffer an additional phase error due to the internal time lag within A_{2}, and this will cause unwanted h.f. instability if '3rd generation' high speed op.amps. such as the CA 3140 , or the 1741 S, are used in the realisation of this circuit.

It is, fortunately, an easy matter to resolve this difficulty if the circuit is recast in the form shown in Fig. 5, in which the negative-feedback signal, equivalent to $-E_{y}$ in Fig. 3(b), is derived from the amplifier A_{1}, and the positive-feedback signal is obtained from the output of the second inverting amplifier A_{2}.
This configuration offers several significant advantages.

- The input signal to A_{1} is extremely small, since it is only required to be $E_{\text {out }} / 2 M$, where M is the open-loop gain of A_{1} - typically 100 dB for a good modern op.amp. i.c. - and, as pointed out by the author in an earlier article ${ }^{2}$, with semiconductor amplifiers the non-linearity of such devices is essentially an input characteristic, dependent on the magnitude of the input signal.
- The second-stage amplifier is operated as a shunt-feedback element, and the nonlinearities of such a stage can be shown to
be significantly lower, because of the very small input-signal amplitude and the absence of any internal transfer errors between the inverting and non-inverting inputs, than is the case for an identical amplifying element in a series-feedback configuration. ${ }^{3,4}$
- The time-delay errors in the second amplifying stage $\left(\mathrm{A}_{2}\right)$ no longer contribute to loss of stablility in the system, but only to a very small compensatory shift in the

Fig. 5. Final form of new configuration in low-distortion oscillator

Fig. 6. Measured total harmonic distortion of improved oscillator of Fig. 5

Fig. 7. New oscillator with external optoelectronic amplitude-control circuit. Silonex (formerly National Semiconductors) cell, Type NSL395, is obtainable from Cheston Electronics Ltd., Vanguard House, 56 Oughton Street, Ormskirk, Lancs. Tel: 069572456

third harmonic - is that due to the dependence of the resistance of the thermistors used to control the amplitude of the oscillation on the instantaneous value of the signal potential applied to them. This characteristic of oscillators with averaging control systems has been analysed by Robinson ${ }^{5}$ who suggests that the distortion of such a system, which is shown to be mainly third harmonic, will be

$$
\frac{x_{3}}{x_{1}} \simeq \frac{1}{8 \eta} \cdot \frac{A_{0}-\eta}{\eta} \cdot \frac{1}{2 \pi f T}
$$

where $\left(A_{0}-\eta\right) / \eta$ is the fraction by which the low-level loop gain exceeds the gain required to initiate oscillation, and T is the time constant of the control system (thermistor or similar). In the case of a Wienbridge oscillator, $\eta=3$.

This equation indicates that if the feedback amplitude is very little above that required to sustain oscillation - which is implicit in the design - the residual distortion will be dependent on the time constant of the control mechanism. By the use of series and parallel resistors of appropriate values with the thermistor, this can be made to control the amplitude of the oscillation at a resistance value which is only a little less than its room-temperature value. Under these circumstances, the settling time of the amplitude is long perhaps 3-4 seconds at 1 kHz , but the t.h.d. will be very low. The penalty in curred in this type of adjustment, apart from the obvious inconvenience of a relatively long settling time following any disturbance, is that the two gangs of the potentiometer used to control the operating frequency of the oscillator must be reasonably well matched in resistance value across the adjustment range, and also, if switched capacitors are used to provide step changes in frequency sweep, the ratios of their values must remain the same.

However, this is merely a statement of the obvious, that it is a pointless exercise to try to design high-performance equipment using low-performance components. Nevertheless, within the limitations imposed by the use of a thermistor as the stabilizing element, the performance of a very simple oscillator, built around a dual operational amplifier (a Texas Instruments TL072), is very good, as is shown in Fig. 6. The total harmonic distortion from this arrangment, in which the resistors associated with the thermistor were adjusted to give a settling time of 5 seconds at 1 kHz , and an output voltage of 2 volts r.m.s., is lower than that obtainable from any other simple Wien-bridge oscillator (that is to say with the exception of systems with lowpass output filtering) known to the author. This distortion is almost exclusively third harmonic - decreasing with frequency which implies that the source of this waveform distortion is the instantaneous change in. gain of the system, during the excursion of each half sinusoid, due to the limited thermal inertia of the thermistor.

The very high performance obtainable from such a circuit encourages the consideration of alternative methods of amplitude control such as that employing a
photo-conductive cell and the light-emitting diode combination shown in Fig. 7, in which the time constant and other dynamic characteristics of the control circuit can be optimized by a suitable combination of proportional, integral and differential (p.i.d.) adjustment to the gain of the control circuit (A_{2}). Needless to say, the photoresistive element should be chosen to have a very low voltage coefficient of resistance and an adequate response speed to avoid the introduction of a further significant time delay into the control loop.

Leaving aside the question of the means employed to control the amplitude of the output signal (which imposes limitations of an identical kind on any oscillator system, in terms of the settling time, and the influence of the control time constant on the harmonic distortion at any given frequency) the improvement in performance given by the circuit design shown in Fig. 5 over that obtainable from the more conventional arrangement shown in Fig. 1, suggests that it would be sensible to regard the improved circuit as a general replacement for the earlier system in all future designs.

References.

1. Linsley Hood, J. L., Hi-Fi News and Record Review, March 1975, pp 63-67.
2. Linsley Hood, J. L., Wireless World, Sept. 1971, p 437.
3. Linsley Hood, J. L., Wireless World, Jan. 1973, pp 11-12.
4. Taylor, E. F., Wireless World, April 1973, p 194.
5. Robinson, F. N. H., Intl. f. Electronics, No. 2 pp 137-148. (1980)
6. Linsley Hood, J. L., Wireless World, Sept. 1977, pp 40-42

The impact of new technology at work

More than $£ 90,000$ is being made available over three years by two research councils for studies into the shop-floor impact of the introduction of new technology.
Three studies are planned: on telephone exchange modernisation; on the adoption of a computer-based freight information system in British Rail; and on the introduction of electronic news gathering (ENG) equipment in television.

The Science and Social Science Research Councils are sponsoring the work which will be carried out by the New Technology Research Group of Southampton University. The Group has been formed by engineers and social scientists committed to interdisciplinary research "on the introduction of new electronic and computer technologies at the level of the individual workplace"

The two main objectives of the work will be to explore the process of technological change and to develop interdisciplinary research methods for the problems that arise. The team will be investigating the nature of technological innovation and engineering decision-making in the economic and social context of business organisations; the bearing of organisational structures on the capacity of managers to generate methods and mechanisms for the introduction and control of new technology; the development of union strategies towards new technology; the consequences of technological change for the nature of work and occupations; and the effectiveness of industrial relations procedures in handling new technology issues.

Measuring transient intermodulation

continued from page 47

limiting filter.

The authors are interested in measuring t.i.m. principally to test the effectiveness of anti-t.i.m. measures such as input filters, and to design low-t.i.m. monolithic amplifiers. The availability of a simple and accurate measuring system has already provided useful results, exemplified by the R.I.A.A. preamplifier shown in Fig. 12; a circuit designed around the TDA 3210 stereo preamplifier i.c. The filter on the output is intended to minimize t.i.m. in the next stage. This circuit, in terms of traditional parameters, represents the current state-of-the-art in i.c. R.I.A.A. preamps in which the total harmonic distortion is 0.02% at 20 kHz . The frequency response is 20 Hz to $20 \mathrm{kHz} \pm 0.5 \mathrm{~dB}$ and the dy namic range 100 dB .

Further reading

T. Roddam - Calculating transient response, Wireless World, Aug. 52, pp. 292-295.
M. Otala - Transient distortion in transistorized audio power amplifiers IEEE Trans. Audio and Electroacoustics, Sept. 70, pp. 234239.
J. R. Stuart - An approach to audio amplifier design, Wireless World, August 73, pp. 387-391 - Sept. 73, pp. 439-446 - Oct. 73, pp 491 494.
M. K. Vander Kooj - Predicting and avoiding slew-rate limiting, Electronic Engineering, Febr. 73, pp. 18-19.
W. M. Leach - Transient i.m. distortion in power amplifiers, Audio, Febr. 75, pp. 34-42. B. Sundquist - Transient intermodulation in amplifiers, Wireless World, Febr. 77, pp. 37-39 M. Otala - Non-linear distortion in audio amplifiers, Wireless World, Jan. 77, pp. 41-43
E. Leinonen, M. Otala and J. Curl - A method for measuring transient intermodulation distortion, AES fournal, July 77.
E Leinonen and M. Otala - Correlation audio distortion measurements AES fournal, Jan. 78, pp. 12-19.
W. G. Jung, M. L. Stephens and C. Todd An overview of SID and TIM Audio, June 79, pp. 58-79 - July 79, pp. 38-47 - Aug. 79 pp. 42-59.
R. Cordell - Comments on "A method for measuring TIM" and "Correlation of audio distortion measurements", AES fournal, April 79, pp. 295-300.
R. Cordell - Another view of TIM, Audio, Feb. 80, pp. 38-49 and March 80, pp. 39-42.
S. Takahashi, S. Tanaka - A method of measuring intermodulation distortion, AES Convention, May 79.
S. Takahashi, S. Tanaka - A new method of measuring TIM: a comparison with the conventional method, AES Convention, Nov. 79.
P. J. Baxandall - Audio power amplifier design, Wireless World, Jan. 78, March 78 and May 78.
Yuri Miloslavskii - Audio preamplifier with no TIM, Wireless World, Aug. 79, pp. 58, 59, 60, 86.
A. Morando, Introduzione Analitica alla distorsione d'Intermodulazione Dinamica, IAF. 1 suppl. a "Suono" Aprile 77.
P. Nuti, Misure di Intermodulazione Dinamica, Suono, Nov. 77 pp. 115-120.
R. A. Belcher, An experimental investigation of test-noise signals for the measurement of nonlinear distortion of sound signal, BBC report RD1974/2.

RAE: useful or lottery?

Some 2100 candidates are reported to have successfully passed the Radio Amateurs' Examination held last December. But despite this, this particular examination, more than any other that I can recall, has raised serious doubts about the overall fairness, effectiveness and true purpose of the RAE in its present form. Has it, people are asking, since the adoption in 1979 of the multichoice form, become little more than a lottery conducted in secret? Are those now holding the prized RAE "Pass" certificate, with or without "credit" endorsements, really so much better qualified to operate a radio transmitter than those who were unlucky enough to fail? Amateurs have not been slow to point out that RAEalone restricts operation to 144 MHz and above - the new c.b. permits, without examination, will provide speech on 27 MHz .
The City and Guilds of London Institute, responsible for RAE, appears to have established a "pool" of questions from which papers for the twice yearly exams are composed; they therefore attempt to restrict circulation of genuine papers. It is only by good fortune that the December set has come my way, all 35 questions of Part 1 (mainly on licence conditions) and the 60 more general questions of Part 2. I am not impressed.
As noted in the February WoAR, C and GI recognised that one question could not be answered correctly; but it is now clear that this was not the only mistake. Among several extremely dubious and ambiguous questions there was yet another (Part 2, question 14) in which all the four "answers" are unquestionably wrong due to the printer having made capacitive reactance equal to $1 \mathrm{fC} /(2 \pi)$ instead of $1 /(2 \pi \mathrm{fC})$! Several questions on radio propagation are confused, while what does one make of Question 58: "A standing wave meter is used to check: (a) stability of the oscillator; (b) efficiency of a transmitter; (c) resonant frequency of an aerial; and (d) operation of the aerial feeder"? That appears (at least to me) also virtually unanswerable.

One finds two questions (Part 2, No 6 and 11) devoted to calculations involving coulombs and microcoulombs. Yet how many amateurs ever find it necessary, or even useful, to be able to do this? In 45 years (without the benefit of an RAE) I have not needed to worry about such quantities of electricity.
Agreed that one purpose of RAE is to check that candidates are likely to benefit from the "self-training" of amateur radio: but surely not by erecting such dubious barriers? Yet the current syllabus requires no knowledge of the valves still used in the vast majority of amateur h.f. transmitters
which, with high voltages, call for an appreciation of suitable safety pręcautions.

Again, with mistakes and ambiguities in the papers who can be sure that the "marking" may not be suspect? What are the pass marks? And how do these compare to the average probability of a candidate picking up 25 per cent by picking answers with a pin - while a "lucky" candidate, by the laws of probability, could end up with an appreciably higher "pin-score"? To try to counter this, the examiners appear to have tried to make at least some questions unduly difficult or obscure or (for Part 1) to expect candidates to commit to memory every minor detail of the licence conditions, rather than to show sufficient knowledge of needing to refer to the licence itself before attempting such modes as slow-scan tv, etc.
In 1946 the licensing authority (then the Post Office) handed responsibility for RAE to C and GI, with its long-established reputation for conducting examinations, aided by liaison with the RSGB. The Institute should examine seriously the present state of this multichoice examination, if only for the good of its own reputation, and even if 2100 people had the good "luck" to pass.

Long-path "transequatorial'?

A new twist to the unfolding story of transequatorial and chordal hop propagation has been given by the Greek amateur SVIDH. On February 16, signals were received in Athens from Zimbabwe on both 50 and 144 MHz , and from South Africa on 50 MHz . But he found these signals were audible only when his beam was pointing northwards. This makes it look as though they were arriving via the "long path" round the other side of the world and passing close to both Poles, and presumably involving some form of layer entrapment even at the very high frequency of 144 MHz . On the same day, ZD8TC in Ascension Island and KP4EOR in Puerto Rico are reported to have made contact across the South Atlantic on 144 MHz , yet another curious example of East/West transequatorial v.h.f. propagation.

Up the Amazon

A recent BBC2 series "Travellers in Time" featured original film of famous expeditions of the 1920s and 1930s. One programme was on the Hamilton-Rice expedition to the Upper Amazon, one of the first expeditions ever to take along an h.f. transmitter (shown in several sequences of the original film) and run from a 100 -watt petrol-electric generator.

Turning to Wireless World of February

11, 1925 one discovers that the first British amateur to make contact with this station (SA-WJS) was the famous Gerald Marcuse, G2NM. Expedition operator J. Swanson was using a one-valve transmitter with an output at the time of only 13 watts to a "T" aerial. G2NM was told: "Your signals come in very strong on detector alone using counterpoise as receiving antenna". It is doubtful whether it would be possible to repeat this today, with so much more interference!
A few days before, on February 1, 1925, another pioneer South American amateur, Carlos Braggio, CB8, Argentina had made the first contact with a British amateur: this time E. J. Simmonds, G20D. During this contact official messages were sent from CB8 to the RSGB and also to The Times - something that today would be much frowned upon as representing thirdparty traffic.

Here and there

The first British-built amateur radio satellite - the UOSAT project at the University of Surrey - is nearing completion and is scheduled to be launched from California into a polar earth orbit at a height of 530 km on or about September 15, 1981. A report from Dr M. N. Sweeting, G3YJO, the project manager, indicates that there should be few major difficulties in clearing the final hurdles.
The RSGB are continuing to view the: Home Secretary's decision to legalise 27 MHz CB operation "with deep concern"" although recognising that frequency-mod.. ulation will "to some extent help reduce interference problems".

The IARU Region 1 Triennial Confer. ence is being held at Brighton from April 27 to May 1 with a crowded agenda includ.ing many band-planning and other operating recommendations to discuss. A station will operate with the callsign GB1IARU.
Mobile rallies include Midland \& Stoke.. on-Trent at Drayton Manor Park near: Tamworth on April 26; Southend Airport Exhibition Centre on April 26; Maidstone Y. Sports Centre, Cripple Street, on May 3; Northern Mobile Rally, Victoria Hall, Victoria Park, Keighley on May 17; and East Suffolk Wireless Revival, Ipswich on May 24.

Hull University is to bestow an honorary MA degree on Brian Rix, G2DQU
Trisha Day, G4KYY in Saltash, Cornwall is the first "XYL" to be appointed a GB2RS newsreader ... The French society REF has run into severe financial problems . . . A Californian amateur, K6RO, is reported to have contacted (and received confirmation of 200 different countries in 200 days.

PAT HAWKER, G3VA

ENGINEERING EDUCATION

Professor Bell raises again the question of 'fundamentals' in an engineering education (January issue). In the particular case of electronics engineers, the almost universal academic assumption is that the fundamentals of the subject are essentially physics and maths. Before abolishing engineering schools, however, should we not observe that almost the only constant factor (since the 1930s anyway) has been circuit engineering and circuit design principles? The circuit 'greats' of that era would adapt quite quickly to, say, m.o.s. dynamic logic. My own basic education over 20 years ago at Newcastle-upon-Tyne is still relevant in this area. The physics and maths of the subject have, of course, changed completely!

Incidentally, another good case can be made for teaching engineers basic sales techniques. Even the pure researcher is stymied if he or she cannot sell the idea to be worked on.
R.C. Foss

Mosaid Incorporated
Ottawa, Canada
I am not surprised that Professor Bell is concerned about the education of electronic engineers (January issue).

Since the great expansion of higher education in the 1960s was not of course matched by a corresponding increase in the number of 'highfliers' seeking engineering qualifications a large number of school leavers of limited academic potential and with indifferent A-level results has been admitted to honours degree engineering courses: entrance requirements simply had to be reduced to fill the increased number of places made available.

Having struggled through the course with limited benefit and obtained a pass or poor honours degree these graduates have neither the potential to become innovative leaders in their profession nor the practical training to become good technician engineers, which in any case -many might feel would be 'beneath' them. Meanwhile the HND courses have been deprived of many suitable applicants.

Currently industry requires a small number of highly innovative professional engineers, together with a large number of technician engineers to support them. What it is presented with is a lot of people who have been exposed to enough education to imagine they are truly professional engineers and unwilling to think of themselves and unable to perform well as technician engineers, while the supply of good technician engineers from HND courses has been severely curtailed.

This in turn might lead to a more serious social problem. If universities and polytechnics continue to turn out greatly increased numbers of engineering graduates with high expectations into an industry which cannot absorb them into constructive employment then the graduates may coalesce into an indigestible lump of discontent in the heart of the profession - some will say this has already happened. Arts graduates at least have the advantage of knowing that their qualifications are generally non-vocational and do not have such high expectations of related employment and job satisfaction.
The solution must be to reverse the expansion
in higher education and curtail the number of places on honours degree engineering courses to match the limited number of opportunities in industry for engineers of this calibre. Keen competition for places will ensure entrance requirements are raised to the level required for entry into other professions, such as law and medicine, and contribute to enhancing the status of the profession. Courses for technician engineers could then be expanded to meet demand, confident of a supply of suitable applicants.
Me? Well, I left school with a ' D ' and ' E ' at A-level and much to my surprise was offered a place on an honours degree electrical engineering course. Qualified, and equipped at least with Professor Bell's "enthusiasm for getting things done properly" I have spent the last eight years drifting from employer to employer looking for the one that was interested in "doing things properly". All they seem to want to do is to make money - strange, isn't it?
Fohn Harvey
Darlington

Co. Durham

The author replies

The difference between Dr Foss and me lies in the assumption of what constitutes "fundamentals". Surely circuit design principles are fundamental? It is not a topic in which I have specialised, but I suppose that circuit design consists of two parts: the first step, to obtain the desired frequency (or time) response and gain, is abstract and mathematical (one is even allowed to introduce things like ideal gyrators); but the second, which may be briefly described as "tolerancing", is to see whether the abstract design can be adequately approximated with available components. The first step is fundamental but the second is technological, since the tolerance on initial values, possibilities of adjustment and stability of the components will depend on whether one is working with discrete components, thick film circuits, integrated circuits or whatever the future may bring forth. Yet the general idea of tolerancing is a fundamental principle.
As regards changes in physics, I can only say that over the past 20 years I have been very grateful that I was introduced to the rudiments of wave mechanics before the transistor was invented. "Mathematics" covers such a vast range of topics that not even professional mathematicians cover all of them: on one occasion a mathematician whom I asked for help replied "There is only one man in the country who can help you with that problem." (The one man in question did get the problem solved.) All the engineer can hope to learn is a few currently useful techniques and enough basic principles and notation to enable him to seek specialist advice when needed.

Engineers recoil from the idea of "sales techniques", thinking it means persuading a customer against his better judgment. If instead it means presenting one's case in a readily understood form, it is part of the art of communicating which everyone believes in; but does it need a university course to teach that a case to be presented to higher management for the support of a project should not be written in the same form as a scientific paper recording the theory and past experimental results?

On the whole I agree with Mr Harvey. But who encourages school leavers of limited academic potential to apply for university places? The schools? The Government, in implementing the Robbins recommendation of giving a grant at a level of two Es? Each university or polytechnic department makes its own choice of the level between four As and two Es which is prima facie evidence of acceptability. As I am not now responsible for such a decision I do not want to comment on what is a suitable level, beyond saying that I do not think any department with which I have ever been associated has accepted D,E as a prima facie acceptable qualification. (One must make occasional exceptions for illness etc.)

For remedial action, adaptibility may be better than determination to stick to engineering. Some firms advertise appointments for which the qualification is "a degree in any subject": an engineering graduate should be just as eligible as an arts graduate
As regards the need of industry for a small number of highly innovative professional engineers, see the Finniston report and the current action of the IEE in accrediting university courses of high standard
D. A. Bell

BATTERY MARKINGS

In the article 'Battery powered instruments' in the February issue, the author remarks that "we can expect UK manufacturers to follow suit (in adopting IEC designation) in the next year or two".

I would like to point out that Berec (Ever Ready), the largest manufacturer of Leclanché (zinc-carbon) batteries in the UK, have been producing batteries in the most popular sizes with dual nomenclature (Ever Ready/IEC) since July 1979. New battery types introduced since then use the IEC designation only and, obviously, it is our future object to label all batteries in this manner

We too regard the ending of company and national size coding as most desirable.
D. H. Spencer

Berec Group Limited
London N15

DIGITAL ELECTRONICS TEACHING

In a letter published last November I charged colleges and faculties with refusing to teach the rudiments of digital electronic design. In March, Dr F. D. Cocks asked me to reveal all about these rudiments.

Although it is difficult to publish material which is not already part of college courses because the text book publishers rightly fear they might make a loss on the project, my colleagues in CAM Consultants and I have succeeded in publishing much of the material in question. No college or faculty I know of teaches any of the very important content of our book Digital Hardware Design, pub. Macmillan 1979. For our other books, see the list of books in print at any library and look under my name.
Ivor Catt
St Albans
Herts

TELEVISION SETS FOR THE DEAF

The recent correspondence on tv sets for the. deaf could lead many hearing impaired people to believe that the problem of hearing the tv sound can be overcome by the acquisition of a television set with headphone facilities. This sadly is not the case.

The headphone facilities provided on most tv sets do not give sufficient output to benefit many hard of hearing people, let alone those with a more severe hearing loss. The relatively high values of resistance wired in series with these sockets would indicate that the output is intended to give a comfortable listening level through headphones for those with normal hearing, making them useless for many hearing impaired people

In order to hear ty sound it is very often necessary for those with hearing difficulties to have the audio output of the set taken from across the loudspeaker terminals through an isolating/matching transformer to an output socket, thus enabling them to use headphone, tv listening aid or audio frequency induction loop system. This modification has to be carried out at considerable expense to those who sometimes can least afford to pay

Surely it is no more expensive to provide a high level of headphone output. The value of series resistance need only be sufficient to protect the audio output stage against short circuit.

Apart from the benctits to deaf people, others may wish to connect a higher qualiff loudspeaker to improve the $t v$ sound and those wishing to use headphones could use a headset which incorporates volume controls.
R.F. Power (Technical Officer)

Roval National Institute for the Deaf
London WCl

SCIENCE AND SOCIETY

I would like to support strongly the basic tenor of your editorial in the November 1980 issue entitled "Microchips and megadeaths" which stresses the position of electronics engineers as a part of weapons production. However it is not just within the field of arms development that the scientist plays a crucial role. An understanding of the position of science and scientists within society is vital for all people as science now permeates the lives of everyone. Given a realisation that science is inextricably linked to the society within which it exists then we must act to ensure that science serves the people as a whole. Everyone should be involved in deciding what science should be pursued by society and how. This means that society itself will have to be changed
I would like to bring it to the attention of your readers that there already exists an organisation. that is concerned with these kinds of questions: the British Society For Social Responsibility in Science. To quote from the BSSRS policy statement: "Science is not neutral. It cannot be separated from politics. It both reflects and helps to determine the values of society
The claim that science is neutral is itself a weapon of mystification and domination. The hierarchical nature of science together with the jargon of science ensure that scientific knowledge remains accessible only to a small minority. Social and political decisions are taken behind a smokescreen of scientific 'objectivity'

We are committed to fighting for the use of science and technology by and for the benefit of working people, to demonstrating the politi-
cal content of existing sçience, and to furthering links between scientific workers and the rest of the labour movement."
As part of this BSSRS publishes a quarterly magazine called Science for People and has a network of local groups, of which Edinburgh Science for People Group is one. Further, there is a number of 'work hazards groups' and a Hazards Bulletin is published every two months as well as occasional booklets being produced. There are also several groups concerned with particular areas including, among others: agriculture, microprocessors, energy, sociobiology, hospital hazards, radiation hazards, women and work hazards, science teachers, health, statistics.
BSSRS may be contacted at 9 Poland Street, London W1; all will be very welcome, whether scientist or non-scientist. If you are really concerned about the role of science and technology within society then join us. As the November editorial indicated, the future existence of humankind is at stake.

Alan Beard

Edinburgh Science for People Group University of Edinburgh

BATTERY COMPARISONS WANTED

I am writing to say how helpful and informative I found Ian Hickman's article on battery powered instruments in the February issue. The information given in the tables showing estimated service life of various layer type batteries was especially useful and I wonder if you could supplement this article by persuading one of your contributors to compile a survey of the various different types of cell now available.

For instance, my camera and digital watch both use silver oxide cells. But it is possible to buy mercury hearing aid cells of the same size for a fraction of the cost. There are also alkaline and rechargeable silver/zinc cells. What are the comparative merits of these various types?
In the conventional zinc/carbon types there are Super cells, High Power cells, battery clock cells, and Power Plus cells. A comparison of these types with alkaline and nickel cadmium rechargeable cells would be useful.
If you could arrange to publish an article along these lines I am sure that many other readers who are as confused as I am about the choice of battery type would find it of great benefit.
W. A. Klos

Harrow
Middlesex

'JUST DETECTABLE' DISTORTION

As a sound recordist in the largest film unit in the world. I have listened to a lot of distortion in the last twenty years, most of it self-generated, so I was very interested to read James Moir's article on 'just detectable' distortion in the February issue.

I was pleased to see "continuous sine waves" discarded early in the article, only to be dismayed by their resurrection on the last page. There is no such thing as a continuous sine wave, but we can fool ourselves into believing in them as our brains can forget what happened when we switched on. Substituting a sine wave of an arbitrary frequency in order to measure, approximately, the equivalent harmonic distortion of a music signal is like taking out a loan of $£ 100$ then working out the interest in Altarian Dollars without knowing what the exchange
rate is. Any attempt to deduce one from the experiment is sitting on the tree branch one is sawing off.

The actual total harmonic and intermodulation and other distortions (see below) can of course be measured by subtracting input from output and dividing by input, but here we start revealing the mathematical snags; do we use the peak levels, an average level, or a continuously variable level and extract the peak value of distortion as the most significant? All of these approaches are valid in differing circumstances; for instance, with crossover distortion at an inaudible 0.1% at peak level, this becomes 3.2% at -30 dB , where the ear can be extraordinarily sensitive in the gaps between words etc. It is at these levels that reverberation and so on colours the whole acoustic image.
It is comfortable to think that an "exchange rate" exists between "continuous" sine wave distortion and reality, and this is good for hi-fi salesmen, but can 1 just list some factors not covered by this and the other parameters usually quoted such as noise and frequency response: transient intermodulation; transient clipping (undetectable as t.h.d. but removing a lot of the energy from the transient, softening it); compression, often deliberate but also inherent in the magnetic recording process; modulation distortion, often classed as noise but not measurable as such; loudspeaker Doppler distortion; and phase distortion.

This latter one is usually regarded as inaudi-, ble from tests done with (not again!) sine waves, and, up to 90 degrees, probably is. But it is cumulative, and by the time a signal has been analogue recorded twice (with tw film this can be up to eight times), some frequencies can be shifted more than 360 degrees, causing ringing on transients. This is nothing to do with frequency response, and is, I believe, the source of the "Rice Kellogg sound" of flapping paper inherent in even the best of moving-coil loudspeakers, which all sound quite different.

Mr Moir was trving to find what levels of distortion were just detectable with an already distorted signal, and I suppose this is valid with all commercially produced analogue recordings containing many percents of harmonic distortion, but it does introduce yet another imponderable, and is probably why figures for JDD varied from 0.01% to 5%, rather a large spread.

If one is to be indissolubly wedded to t.h.d. measurements, to ensure standardisation, maybe the answer is to substitute a different signal for measuring purposes. Now the most critical source to record is not music - as the most diabolical liberties are taken with the fidelity of reproduction of most music, making it sound better - but the human voice, which cannot be undetectably reproduced, compared with the original. (Try it, behind a curtain, with the best of equipment.

If the one is too critical, and the other not enough, and neither steady enough for easy measurement, some synthetic signal is called for, and white noise, generated by a pseudo random binary sequence may prove a basis for this. It contains all components of interest, including transients, can be split into frequency bands for harmonic and enharmonic distortion measurement, and can be made cyclic so the same sequence can be used for all tests. I have experimented with top quality tape recorders and found p.r.b.s. white noise always sounds different on replay when $A-B$ checked with the incoming. I then went on to try very short sequences, finishing up with a twenty pulse digital train ... 11100010101010101010... which contains more harmonics than one would ever need, based on a musical major chord. The transients in it show up the inadequacies of the
best tape recorders on a 'scope, which also reveals shocking phase responses. Harmonic distortion can be measured using a low pass filter first, then a high pass, and intermod distortion can be measured by removing one or more of the fundamental or low harmonics, and measuring what comes back. As an audible check, it is very critical and gives a good stereo image, lacking with sine waves. My fundamental was at 87.3 Hz .

If one takes, as a criterion for assessing 'just detectable' distortion, the human voice beside a loudspeaker behind a curtain, it may prove just too critical a test, and my guess is, even with the best electrostatic speakers and a steady state system distortion of less than 1%, various forms of compression distortion are going to be the bugbear. If one thinks of varying levels as having the effect of changing the acoustic image distance, which is how it sounds, then clipped transients, for instance, may make $r k s$ and $t \mathrm{~s}$ come from the back of the head, and a loud word audibly propel the speaker's image back a metre or so, instantly. If this is not distortion, then what is it, as it is generated by non-linearity in the overall transfer characteristic?

I'll bet you any number of Altarian Dollars, at the usual exchange rate, that Mr Moir has not found the ultimate answer to distortion levels. (Nor even the ultimate question?)

Dave Brinicombe

Stanmore

Middlesex

The author replies:

Mr Brinicombe rightly raises objection to the use of total harmonic distortion as an indication of all the subjectively judged distortions, and I would join him in this, but the contribution did not suggest that t.h.d. should be so used. Nevertheless all the international standards use this criterion as the best single measure of 'distortion' and as these standards are the result of the deliberations of hundreds of eminent engineers their views must be given due weight in coming to any decision on what criteria should be used.

My contribution was aimed at co-ordinating the previous data on 'just detectable' distortion with the more recent findings, including those of our own investigations. As the majority of the earlier data was in the form of harmonic distortion quotations I had to conform in order to make comparison possible. I doubt whether any professional engineer believes that t.h.d. figures are an accurate indication of the total distortion when this is subjectively judged, but I know of no evidence that t.h.d. is not the best indication currently in use to express the distortion performance of professional amplifiers.

Considerable experience appears to show that the 2 nd and 3 rd harmonics comprise almost all the distortion components in professional quality amplifiers. It is very easy to find signal waveforms that sound different at the input and output of even very good amplifiers, but to the best of my knowledge there have been no attempts to co-ordinate the objectively estimated distortion using these waveforms with the quality deterioration when the amplifier is used for reproducing music and speech. White noise, pink noise, tone bursts and d.c. pulses are a few of the test waveforms that have been used, but few supporters of these have taken the precaution of limiting the test signal bandwidth to the audio band. The use of test signals that overload the amplifier at frequencies well above the audio range produces audible effects inside the band but this is no indication that these effects are present when the test signal bandwidth is limited to that characteristic of speech and music.

The relatuvely simple and well understood harmonic distortion measurement techniques have almost all the advantages, except where the assessment must be made at frequencies near the upper limit of the system bandwidth. Twofrequency intermodulation tests have many advantages when working near the upper frequency limit but are of little value for tests near the lower frequency bandwidth limit. It seems unlikely that any single test will ever be produced that will assess all the distortions that occur in a system. Distortion measuring techniques have to be selected to be the most effective when used to measure the particular distortion being investigated.

Mr Brinicombe's comments about the audible effects of phase distortion are grossly exaggerated. Could I suggest that he re-reads the contribution on this subject in Wireless World dated March 1976? Similarly I do not think that there is any evidence that continuous sine wave test techniques and the amplifier design procedures based on such tests are inadequate to ensure a good performance in reproducing transients. However, the writer raises such a large number of red herrings that it is impossible to discuss each of them in any detail. Perhaps he could look up the July 1978 issue of Wireless World dealing with the subjective comparison of three amplifiers, one of the valve type and two transistor designs. Between the three of them they included almost all the design points criticised by Mr Brinicombe and yet a skilled listening panel was unable to differentiate between them.
James Moir

PARALLEL-TRACKING PICKUP ARM

I am pleased to see Mr Gutteridge has realized the excellent performance which my paralleltracking arm design is capable of achieving (January letters), but I am surprised he has had to resort to a lathe to make the nylon slider and the pulley wheels. The latter are available from model shops - the most useful being those manufactured by Ripmax, reference numbers N906 (1/2in dia.), N907 ($3 / 4 \mathrm{in}$. dia.) and N908 (lin dia.).

The nylon slider (which replaced the original brass/steel one) is not supplied as a ready-made part in the kit offered by J. Biles because it has to be individually fitted. However, it is so soft that it can be easily shaped with a sharp knife, and I have made several of these quite accurately using an art knife and a small file.

As for the rubber belt drive, this is essential for decoupling the motor/gearbox from the rest of the mechanism, otherwise noise will find its way to the pickup. It also provides a good deal of latitude for the mounting position of the motor/gearbox, and is most tolerant of alignment errors. The "lossy" expanded-neoprene drive bands supplied with the kit gave outstanding isolation from vibration, so there need be no qualms about this method of driving the lead screw.

As there have been many improvements to the design since it was first published, I hope to offer a follow-up article later. This will include a design of gearbox which allows rapid forward and reverse tracking, which has been called for by the majority of constructors, who want a more flexible and faster operation. The original design had a leisurely return time of 2 minutes; this has been reduced to a few seconds.
Rod Cooper
Lichfield
Staffordshire

COMPUTER ARCHITECTURE AND PROGRAMMING

Your editorial "The new bureaucracy" (February 1981) contains much that is true, but also much that is both false and silly.

It is true that the "von Neumann" architecture is a millstone round the neck of technology. But so is the internal combustion engine, and they both remain with us for much the same historical reasons. Please do not think that computer systems engineers are unaware of this: in fact, much work has been done, in university departments and in industry, to try to evolve new architectures.

The von Neumann architecture was indeed copied into today's microprocessors. But the early microprocessors were designed by electronics engineers who did not know that computer systems engineers might have advised them otherwise. I say "might", because it would have been premature in the early 1970s. We are likely to see new architectures appearing in microprocessors in the mid-1980s.

The hatchet-swinging in your final paragraphs is somewhat undirected. If I may mention university courses in computer systems engineering (often called "computer science" for bureaucratic reasons), it is certainly not the case that we produce, or wish to produce, "uninformed programmers" for a "technically uneducated parasitic bureaucracy". We never tire of telling applicants from schools that computer systems engineering is not just programming. Such courses consist of theory, computer systems design, and computer applications. Theory needs no excuse. Computer systems design consists of both hardware and software, taught in an integrated way. Computer applications are studied so that our students, who are not "ignorant of the technological nature of their machines" can go on and take a genuine and informed "interest in the customer's real.problem, for which he wanted a mechanised solution".
W. Freeman

Department of Computer Science
Universitv of York

You use your February editorial comment to attack my trade (computer programming), and that of railway information staff, with some venom. I do not propose to reply in vitriolic kind, nor to be drawn into pained self-justification - for which I contend there is no need; but I must contradict some of the supposed facts of your argument:

Firstly, it is not "the programmer class" which dictates the architecture of computers, but a mixture of history (most of us don't have this year's model), government procurement policy, what management thinks it wants and, above all, what technologists tell management it can have.

The last constraint leads to my second remark: to knock the von Neumann architecture is no more than a cheap smear unless you are offering a worthwhile alternative; yet in this matter you make no suggestions. To be sure, we have the ICL DAP, but the price of such systems, while not unreasonable, is hardly such as to make them an appropriate architecture for the microprocessor market. Moreover, a substantial number of the programmers whom you so despise are presently trying to find ways of applying this equipment to problem-solving - a task substantially more complicated than applying a von Neumann machine. And thence arise my final remarks.
Problem-solving by machine is a mechanical,
not a magical, process; it is and will always be necessary to devise a method of solution and express it as a list of steps (not necessarily all sequential). At present this process is done by programmers, who, far from nurturing the "parasitic bureaucracy" you picture to your less-informed readers, have been and are notably active in devising means to mechanise ever more of the programming process, and to render the non-mechanical parts more accessible to the non-specialist (their success is attested by the transformation of the computer from academic toy to commercial tool).

Finally, this need of programming drastically (and rather obviously) undermines your argument. How, without "computer science on your back", do you propose to harness the "massive poteritial for social benefit" of digital electronics? Its greatest software-free contribution to the public good so far, apparently, has been the inestimable boon of the digital watch.

Without obsequies,

Oohn Fraser

Liverpool 8
I find that ill-informed and destructive criticism is too often voiced by certain engineers about engineers of other disciplines. The preiudices behind these attacks build artificial barriers. These prevent many individuals gaining experience outside their immediate field. They disrupt the design of complete systems, lead to poor understanding, and inhibit vital cooperation.
That certain malcontents should air these views in private is regrettable. That Wireless World should give one editorial space is unforgivable.
Ian Miller
Leatherhead
Surrey

IS LIGHT VELOCITY A CONSTANT?

Michael M. Albahari (MMA) correctly argued in February letters that one does not need to carry out experiments in order to expose the flaws of relativity. The relativists, however, have developed a diabolically flexible logic, by which inconsistencies such as $A=B, A \neq B$ can be comfortably accommodated.

Unfortunately, MMA's analysis of his proposed experiment suffers from a century-old serious error: In his formulae $t_{\mathrm{B}}-t_{\mathrm{A}}=d(c-v)$ and $t_{\mathrm{A}}-t_{\mathrm{B}}=d(c+v)$ the frame relative to which the velocities c and v are referred is implicity assumed to be the solar system $(v=30 \mathrm{~km} / \mathrm{s}$ is the orbital velocity of the Earth). Why the solar frame is chosen, nobody has ever explained. Why not the galactic frame? Why not the Jovian system? Indeed, why not the geo-frame? After all it is in the stark terrestrial environment that this kind of experiments are performed. It has been shown ${ }^{\text {t }}$ that it was this failure to specify the proper reference frame for a correct analysis of these experiments that led to the ill-conceived ideas of relativity. It has also been argued that the heavy burden of the responsibility for this mistake falls squarely on Maxwell ${ }^{2}$.
Maxwell correctly showed that "light is an electromagnetic disturbance propagated through the electromagnetic field according to electromagnetic laws." ${ }^{3}$ Maxwell had earlier defined the electromagnetic field as "that part of space which contains and surrounds bodies in electric and magnetic conditions." On the basis of these statements one must conclude that the media through which light and electromagnetic signals (involved in terrestrial experiments) are propagated, are the electromagnetic fields that
contain and surround the Earth. So the orbital velocity of the Earth cannot possibly enter into the theoretical analysis of these experiments; and the velocity of light $c=300000 \mathrm{~km} / \mathrm{s}$ must (in these experiments) be referred to the geocentric, and no other, frame. For the electromagnetic fields of the Earth, through which light is propagated, are firmly tied onto the Earth, not on the Sun, or Jupiter, or else. Maxwell and all his followers ${ }^{4}$ failed to draw these simple conclusions - with literally tragic consequences.
So in MMA's formulae one must put $v=0$ and thus $t_{\mathrm{B}}-t_{\mathrm{A}}=t_{\mathrm{A}}-t_{\mathrm{B}}$. But this does not mean of course that c is constant relative to any frame as the relativists have supidly concluded; it simply means that the luminiterous medium - thegeoether - is securely attached onto the body of the Earth.

The common man does not demand that an experiment be performed in order to show that the magnetic field of the Earth is firmly tied on the body of the Earth. Numerous experiments (Michelson-Morley, Trouton-Noble, etc.) have already affirmed this inexorable fact in an unambiguous fashion. The relativists, on the other hand, have, for reasons best known to themselves, boldly abolished the geofields altogether; and they dictatorially "establish by definition that the time required by light to travel from A to B equals the time it requires to travel from B to A." This is not science; it is worse than medieval scholasticism.
T. Theocharis

London SWI8.

References

1. T. Theocharis, Hierarchical Schesis, Dissertation, Imperial College, 1980.
2. T. Theocharis, "Maxwell's Error", 1980, unpublished.
3. J. C. Maxwell, "A Dynamical Theory of the Electromagnetic Field", Phil. Trans. Row. Soc. Lond. 155, 489, 1865.
4. Except C. A. Zapffe (Seven Short Essays on $\left(1-v^{2} / c^{2}\right)^{-1 / 2}$, Lakeland Color Press. Brainerd, Minn. 1977), and T. Theocharis (see ref. 1).
5. A. Einstein, "On the Electrodynamics of Moving Bodies", Ann. d. Phys. 17, 891, 1905; italics in original.

The velocity of light (February letters) is obviously crucial to navigational systems which depend on the time taken by radio waves to travel over various paths; but when navigation depends on the phase difference of signals received from different transmitters (as in Decca etc.) and moreover the transmitters are widely separated in order to give world coverage by the system (as in Omega) there is the further problem of doing something which appears to be forbidden by relativity, i.e. securing simultaneity of events at widely separated places.

One might hope to achieve this by transporting a standard clock (in practice a caesium clock) from one place to another. But according to the theory of relativity, the rate of a clock will change if it is moved at an appreciable speed and this is so difficult to accept in "common sense" terms that it provides quite a crucial test of relativity theory. One should in fact use general relativity, according to which the rate of a clock depends on the gravitational potential of the point at which it is situated: this has to be mentioned, because the effect of reduced gravitational potential at a height of 10,000 metres is greater than the predicted effect of the velocity of a jet aircraft. Now the velocity effect is calcu-
lated from the special theory of relativity which is based on an inertial (non-rotating) frame of reference; and so if one sends a clock on a round-the-world flight from East to West the rotational velocity of the earth's surface must be added to the ground speed to find the velocity relative to a stationary frame of reference, but subtracted if the flight is the other way.

A pair of papers by J. C. Hafele and R. E. Keating in 1972 (Science, vol. 177 pp. 166-168 and 168-170) describe first the theory and second the result of an experiment in which four standard clocks were sent on round-the-world flights, (a) travelling Eastward and (b) Westward. Summarised very briefly, the theoretical and experimental values of the difference in nanoseconds between the flying clocks and a stationary clock were as follows:

	Eastward flight	Westward flight
Theoretical	-40 ± 23	275 ± 21
Experimental, mean of four clocks	-59 ± 10	273 ± 7

Unless someone has since produced contradictory evidence, this seems to be adequate vindication of the theory of relativity, or at least of its use as a mathematical tool.
D. A. Bell

Beverley
North Humberside

FAILURE OF DISTRESS SIGNALS AT SEA

I would like to comment on John Wiseman's letter in the August 1980 issue and John J. Boyd's reply in the December 1980 issue.
The fourth paragraph of Mr Bovd's letter notes the problem of ship design as influencing aerial system configurations. I had arrived at the same conclusion in 1971. I prepared a report on the container ship conversion problem in 1971, where a deck was added, and the antennas were reconstructed from the standard between-the-main-masts wire antenna to a top loaded vertical , and a wire antenna contained in a very small space, by folding it back. Prior to conversion, the vessel was of the "Mariner" class. At present the name of the vessel is the American Accord.
On the American Accord, and on other vessels, I have had numerous occasions of being unable to obtain any radiation on 500 kHz . I had thought that this was distinctly characteristic of the American vessels, since they are on the whole floating junk shops all the way around, and I am much surprised to learn that British ships are so afflicted. As with Mr Boyd's experience, I find that it appears that the steamship companies and the radio companies, who are licensees of the stations, seem to want to preserve the junk shop condition into perpetuity.

If it could be ascertained that the disappearance of the Poet without signal could be accounted for by inability to produce radiation on 500 kHz . I would not be surprised in the least. Kenneth Cossaboom
W'indham
New Hampshire, USA

[^1]
ROBOTICS AND
 ARTIFICIAL
 INTELLIGENCE

I was delighted to see the interesting article by Malcolm Peltu on artificial intelligence in your January issue. It was some time ago that the Computer and Control division of the IEE set up a professional group on robotics. This reflected the increasing awareness among engineers and scientists in the UK that development of robotics could play a key role in advancing Britišh industry and technology. In IEE News, September 1980, Member of Parliament Mr G. Roberts admitted that Britain needs massive investment in robots and mentioned a figure of £350 million. Is this enough?
It was also pointed out that the countries leading in this branch of the technology are somehow finding more money for this purpose, e.g. West German research projects in this field exceed $£ 10$ million a year. Robotics in the UK is lagging behind if compared with activity in the USA, Japan, West Germany, Italy and Sweden, where this, together with other fields of technology, is receiving considerable support.

A competitive industry in electronics and related fields of technology has always existed in the UK. Why shouldn't we keep it this way? Examples given by Mr Peltu in his article reflect the willingness of British researchers to put the UK a step ahead. Unfortunately this is not enough. To close the existing gap, I believe, it is necessary to make use of imported skills and equipment, and, most important of all, to launch a massive research programme on robotics.

Mr Peltu also draws attention to the running battle between computer scientists and AI researchers. Computer scientists who are worried about AI drawing off some of their resources complain that AI is too vague. No, Mr Computer Scientist, you are wrong. AI is sufficiently wide, sufficiently deep and an extremely interesting field of study having the most promising future. It can stand up firmly as a coherent discipline; it has to. There is so much to get on with. AI cannot be mistreated. It has every right to exist as a research field.

H.E. Piskobulu

Thames Polytechnic
London SE18

ELECTRONIC ORGAN TONE FILTERS

May I, through your columns, disagree with Dr Pykett's and Mr Robins's implied assertion (December 1980 letters) that the function of an electronic organ is to imitate, as closely as possible, the sound of a pipe organ. A visit to any organ showroom will make it clear that the electronic organ has long since evolved into an instrument in its own right, possessing as it does a wide range of new synthetic sounds, percussions and automated aids to performance, with comparatively few tones reminuscent of its winddriven forbear. (This is exactly as it should be; every age has given rise to new instruments appropriate to the music of the time.) Indeed, to buy an electronic equivalent of a church or cinema organ at a reasonable price and without surplus gadgetry seems well-nigh impossible although published designs for the amateur constructor continue to appear.

After listening to many electronic organs, my own impressions are as follows: string and flute tones can be reproduced with a reasonable degree of fidelity together with some of the solo reeds. Diapasons are less satisfactory although tolerable in an instrument of the "cinema"
variety where they are of secondary importance to the tibia clausa. Never, though, have I heard a remotely lifelike organ trumpet, let alone a full swell chorus.

Why must this be so? A chorus reed pipe has an extensive range of upper harmonics, but so does the sawtooth wave from which it is derived. Is it the changing phase relationship between these harmonics? Are some or all of them out of tune? Do they have differing envelopes? Does white or pink noise exist? In short, what is the difference between a waveform which is harmonically rich and one that sounds "brassy"?

If any of your contributors could answer these questions and suggest a straightforward means for realising such tones in practice then I submit they would make a very worthwhile contribution to the literature on electronic organs.

F. E. Norrington

Bromley
Kent

SPECIAL RELATIVITY

Am I the only reader of Wireless World with an interest in physics who finds the articles on special relativity somewhat boring? Of course special relativity is "only" an hypothesis, as are all scientific theories ${ }^{1}$; of course it is a sin to try and justify them as a priori true. Obviously there exist paradoxa in almost all the theories of what textbooks call modern physics. It is a dangerous sign that Lorentz covariance has become a methodological requirement for any theory of, say, high energy interactions. But one cannot deny that these theories can be both accurate (quantum electrodynamics) and of great explanatory power (quantum chromodynamics) and to my taste, at least, more fun. For that reason one can sympathise with the editors of scientific journals who set up "special provision" for the sort of articles Prof. Davies was dealing with in his New Scientist article ${ }^{2}$.

When a new, more inclusive theory arises, which will embrace quantum mechanics and general relativity, I suspect that few "anti-relativists" will like the result. But boring it won't be.
Keith Burnett
Wallasey
Merseyside

References

1. K. R. Popper, "Unended Quest," Fontana. 2. P. Davies, New Scientist, 7 August 1980, p 463.

DEDICATED LOUDSPEAKER BOX

The letter from Mr J. T. Lloyd in the February issue reminds me of some experiments which I did some time ago using a guitar as the box for a loudspeaker. What I did was to remove all the strings and place a suitable speaker face down on the guitar aperture. The speaker was then held in place with sticky tape.

Guitar tunes, kindly executed by my wife on the same instrument, were played back into this enclosure from a good cassette deck and, although there were no tears of joy, the results were remarkable. The same tape played through my hi-fi system just did not sound like the original, not even when listening with headphones.

Next I tried a cassette with pieces executed by Segovia and the sound was simply impressive. I can quite believe Mr Lloyd when he says that the effect is stunning.

The drawback is of course that only one instrument can be played on a dedicated box. But hi-fi is concerned with the exact reproduction of sound and it would not be surprising if one day we saw "variable enclosures" changing shape according to the type of music being played or multi-track tape recorders feeding several musical instruments.
D. Di Mario

Milan
Italy

OSCILLATING CRYSTALS

Reference is made to Dr Thackeray's interesting letter, August 1980 issue, and the item "Sixty years ago" in May 1980, p.60. Here Dr G. W. Pickard's heterodyning crystal radio receiver was mentioned. It is interesting to note that W. T. Ditcham's timely article appeared in May 1920, and the circuit diagram of Pickard's heterodyning receiver in QST, March 1920, p.44, just two months earlier. There is no question whatsoever that England originated the semiconductor era through the discovery, in 1910, by Dr W. H. Eccles, of crystal diode oscillation. It is hard to realize that it took about ten years for practical active crystal-diode circuits to appear, in spite of Ditcham's reminder - circuits that included both r.f. and a.f. amplification. The last one, at the time, was totally unknown to most "affectionados", one of them being the author of this letter.

Most of the credit for practical devices goes to O. V. Lossev, Russia, whether or not he knew of Eccles' pioneer work a decade earlier - he should have known about it; one has the right to expect that he as a qualified scientist was familiar with the world's scientific literature. Lossev is better known, however, for his amazing discovery of the light emitting diode, l.e.d., in 1923, but here we have a repetition of what happened with the oscillating crystal. The l.e.d. was discovered by H. J. Round already in 1907, and his publication occurred in Electrical World, February 9, 1907. Just like Eccles, Round was too busy with other fascinating things in science, and today Lossev is honoured as the father of the l.e.d.

The fact that in 1948 Bell Telephone Laboratories (BTL) totally failed to mention the amazing pioneer work done by Eccles, Lossev, Pickard, Round, and others, claiming all the credit for the transistor for themselves, may be explained away by the fact that the earlier gadget was a diode, while the transistor is a triode. However, to set the record straight, the triode oscillator/amplifier was not only invented much ahead of BTL's priority date for the transistor, but patented years earlier by a man who should have been given extensive credit. He was another genius, as they come and go, Dr J. E. Lilienfeld, of electrolytic capacitor fame. He created his non-tube device around 1923, with one foot in Canada and the other in the USA, and the date of his Canadian patent application was October 1925. Later American patents followed, which should have been well known to the BTL patent office. Lilienfeld demonstrated his remarkable tubeless radio receiver on many occasions, but God help a fellow who at that time threatened the reign of the tube. Nevertheless, forgetting about gadgets, BTL in 1948 gave the world something of unmeasurable value - the electron-hole theory.
H. E.Stockman

Sercolab
Arlington
Mass., USA

Simple a-to-d converter

A continuous a-to-d converter that can, in principle, be extended indefinitely is shown in Fig. 1. The complement of the digital word represents the input voltage, from 0 to V_{cc}, and is available at the output. The inverters must switch at $\mathrm{V}_{\mathrm{cc}} / 2$ volts within $\pm 1 / 2^{\mathrm{n}+1}-2$, where n is the number of bits generated, and their outputs must be either 0 V or $\mathrm{V}_{c c}$. They must also have a high input resistance and a low output resistance. These requirements are met by an op-amp, with its inverting input connected to $\mathrm{V}_{\mathrm{cc}} / 2$ volts, in series with a c.m.o.s. inverting gate.

If 4-bit accuracy or less is sufficient, a quad 2 -input NAND or NOR c.m.o.s. gate is just adequate. The input resistance of this circuit is approximately $22 \mathrm{k} \Omega$. Because the four gates are on the same chip, variation between switching voltages is small and to some extent self compensating, although selection of a suitable chip may be necessary.
A. E. Prinn

Newton
Merseyside

Reducing power supply ripple

Power supply ripple can be easily reduced, to 2 mV in the prototype, by using an opamp as a low-pass filter and feeding the a.c. content back through a capacitor to reduce the a.c. gain of the op-amp'

A. Bartram

Exeter
Devon

Variable-width pulse delay

If a pulse of variable length must be delayed without disturbing its length, this can be achieved with three i.cs.
The leading positive edge of the input pulse triggers monostable $\mathrm{IC}_{\mathrm{l}_{\mathrm{a}}}$ which, after a selected time, triggers $\mathrm{IC}_{2 \mathrm{a}}$. The second monostable then sets bistable, IC_{3}. The trailing negative edge of the input pulse repeats this action through $\mathrm{IC}_{\mathrm{l}_{\mathrm{a}}}$ and $\mathrm{IC}_{2 \mathrm{a}}$ to reset the bistable. The original pulse is therefore reconstructed and delayed by $\mathrm{IC}_{1}, \mathrm{IC}_{\mathrm{la}}$. Accuracy of the circuit depends upon the equality of the delay times.
A. B. Palmer

Leeds

Power monitor for remote loads

Remote loads can easily be monitored using this simple indicator. The l.e.d. is sufficiently bright to be seen in normal daylight, and the specified diodes are suitable for loads up to 100 W .
L. Ghiotto

Genova
Italy

Thyristor bridge battery charger

This circuit was designed to charge a 6 V , 6Ah motorcycle battery on demand from a permanent-magnet alternator, but it can also be used as a standby battery charger.

Unijunction transistor Tr_{1} forms a 100 Hz oscillator which is buffered by Tr_{2}, and antiphase signals from Tr_{3} switch the thyristors. The voltage at point D is monitored by Tr_{4}, and when the voltage rises above the preset level, Tr_{4} turns Tr_{3} off. A relaxation oscillation then takes place which gradually slows down, as the battery voltage rises to equal the preset voltage, until the circuit switches off. When a load is connected, the circuit restarts and charges the batterv.
G. V. Whitney

Sale
Cheshire

Digital sine-wave generator

By using an up-down counter and inverting part of the decoded output, a sine wave can be generated digitally without several shift registers and repeated resistor values as normally used. Weighted resistors R_{1} to R_{9} form the first 90° of the sine function as each is pulsed high by the inverted output of the decoder. A latch, formed by $\mathrm{IC}_{\mathrm{lc}}$ and $\mathrm{IC}_{1 \mathrm{~d}}$, is set and reset by the falling edges of Q_{0} and Q_{9}, and permits the 74193 to count up ten steps and then count down.

The output from the summing amplifier resembles a full-wave rectified sine wave, so inverting alternate half cycles produces a complete sine wave. Inversion is accomplished by IC_{3} which acts as a unity gain buffer or an inverter, depending on the drain-source resistance of the f.e.t. and hence the Q output of the 7474. Tr_{1} and D_{1} provide level shifting, and Tr_{2} squares the edges to prevent glitches at the zero crossing point where the f.e.t. is partially conducting.

The 7404 devices should be from the same batch so that their output voltages are similar. Offset voltage is removed by R_{1}, which should be adjusted until the output of IC_{2} is zero when the counter is at 0000, corresponding to the zero crossing point. The circuit can be extended from 40 to 64 steps per output cycle by using a 74154 decoder and different weighting resistors. The high-frequency limit is set by the slew rate of the op-amps.
R. M. Everson

London

Microprocessor controlled servo

Use of a microprocessor to control the demand signal to a servo system can simplify the hardware and reduce component tolerance effects. In this system, which is used with a digital tape transport, the processor monitors various control inputs and changes the demand signals to the capstan servo as appropriate. In addition, on receipt of a start or stop command, the processor generates a precision ramp demand for the servo. To use the full dynamic range of the system, the digital input to the d-to-a converter is adjusted, and the appropriate gain change for the servo amplifier is made by means of the PR signal.
A temperature compensated Zener diode provides a reference voltage for the 8 -bit multiplying d-to-a converter, and the curtent output is converted to a voltage, whose polarity is determined by the appro-
 are included in the capstan servo to ensure servo stability and to provide the required response.
D. S. Cutler Wookey Hole Somerset

thavodis COWPLETE PORTABLE TEST BENCH

LCD HAND HELD CULTIMETERS

TM354 3½ Digit

- DC Volts: 1 mV to 1000 V • AC Valts: 1 V to 500 V $\mathrm{AC} \mathrm{ms} \bullet D C$ current $1 \mu \mathrm{~A}$ to $2 \mathrm{~A} \bullet$ Resistance 112 to 2M1) Diode Check - Basic accuracy \pm (c.75\% of reading +1 digit) \bullet Battery life Typically 2000 hours e E39. 95 + VAT

TM352 3½ Digit

- DCVolts: $100 \mu \mathrm{~V}$ to 1000 V - ACVo ts 1V to $1000 \mathrm{~V} \bullet$ DC current: $100 \mathrm{nA} 10^{-0} 0$ - Resistance : 1 (2 to 2 MI - Diode check - heg measurement Audible continuity check - Easic accuracy: $\pm 10.5 \%$ of eading - 1 digit) Battery life

TM351 3½ Digit - DC and AC Volts: $100 \mu \mathrm{~V}$ to 1000 V (750 V AC rms) $-D C$ and AC current: 100nA to (20A for 10 secs) - Resistance: $100 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega \bullet$ Diode check \bullet Basic accuracy: $\pm(0.1 \%$ of reading +1 digit $) \bullet$ Battery life : up to 4000 hours - $£ 99+$ VAT (inc. batts)
TM353 3½ Digit

- DC and AC Volts: $100 \mu \mathrm{~V}$ to 1000 V (750 V AC rms - DC and AC current : 100 nA to 2 A - Resistance: 1Ω to $20 \mathrm{M} \Omega \bullet$ Diode check \bullet Basic accuracy : $\pm 1025 \%$ of reading + 1 digit) - Battery life : Typically >3000 hours \bullet e $84+$ VAT (inc. batts).

路
 जN

1 117 x ºtio

DM350 31/2 Digit;
34 ranges; 0.1% basic accuracy
672.50 + VAT

FREQUENCY 4 -00000000 2 METERS TF040 8.Digit LCD

- Frequency Range: 10 Hz -

Sensitivity: 40 m V rms - Timebase
accuracy: better than $0.5 \mathrm{ppm} \bullet$ Battery life Typically 80 hours - $£ 110+$ VAT (inc. batts)

TF200 8-Digit LCD

- Frequency Range : $10 \mathrm{~Hz}-200 \mathrm{MHz}$ (to 600 MHz with TP600) © Sensitivity : 10 mV rms - Frequency Range. 10 Hz 200 MHz (to $100 \mathrm{MHz} z-200 \mathrm{MHz}$ - Timebase accuracy : better than 0.3 ppm - Batreny life: Typically 200 hours $\bullet 145+$ VAT (inc. batts).

PFM200 8-Digit LED Hand Held Meter

- Frequency Range : $20 \mathrm{~Hz} \cdot 200 \mathrm{MHz}$ (to 600 MHz with TP600) - Sensitivity : Typically 10 mV - Timebase accuracy : better than 2 ppm - Battery life : Typically 10 hours - 549.80 + VAT

TP600 600 MHz Prescaler

- Frequency Range : 40 MHz to 600 MHz - Serisitivity: 10 mV - Output Typically 500 mV peak-peak $-£ 37.50+$ VAT

For full technical details together with price list and nearest stockist please contact:

thandar

DM235 31/2 Digit; 21 rañges; 0.5% basic accuracy: $£ 52.50+$ VAT
PDM35 3½ Digit; Hand held; 16 ranges; 1% basic accuracy; $\mathfrak{£ 3 4} .50+$ VAT

Precision pulse generator

by L. Hayward and G. E. G. Sargent

Standard pulse generators normally use an RC oscillator as a time-base and RC monostables to define the pulse width. This method gives a continuous tuning range and a simple circuit, but the accuracy is typically
within 5% of the dial reading, and the pulse width and repetition frequency vary with temperature
This design uses a crystal-controlled digital circuit to give high accuracy at a reasonable cost. With a suitable crystal, and oven, if necessary, the generator can be used to synthesize navigational or radar data, or to check computer systems.

This generator uses four thumb-wheel switches to select pulse width and separation from one microsecond to 9999 milliseconds in three ranges. The output is t.t.I. compatible and can provide any frequency in this range, i.e. $f=1 /$ t. In addition, a standard-frequency square wave of 10 kHz , 100 kHz or 1 MHz is available.

To prevent reflections along a coaxial connecting line, the source and receiver must match the impedance of the line. This is easily done at the receiver by padding the input with a suitable resistor. The transmitter should have its output also presented via a similar impedance, but the pulse must then be twice the required amplitude to allow for the voltage drop in a terminated receiver. Because this arrangement can lead to an accident if the termination is inadvertently disconnected and over-voltage occurs, a compromise is made. When the output is low, the line transmitter is terminated with 75Ω, and

Fig. 1. Complete circuit. The thumb-wheel switches provide complement b.c.d. outputs.

Main pulse output

Fig. 2. Timing diagram.
when the output is high it is connected to +5 V . Consequently, the terminating resistance has little effect on the voltage. Although this may appear to be bad line practice, it works well and is much better than no termination. The variable output is intended for bench testing use and is not terminated. Two further outputs are provided to give a pulse which coincides with the leading or trailing edge of the main pulse. These outputs are of fixed duration, either $1 \mu \mathrm{~s}$ or 1 ms , but can easily be changed.

When gating a crystal oscillator some uncertainty exists because the oscillator is not synchronous with the source. The worst error will be one clock period, $0.1 \mu \mathrm{~s}$, which with long pulses is negligible, but may be of consequence with short pulses. For this reason a single-shot input is provided and the output rises with the input after a short delay of about 30 ns . The falling edge occurs after the selected duration $\pm 0.1 \mu \mathrm{~s}$. In the free-run mode the rise and fall transition times are similar, so the timing error will be primarily that of the crystal oscillator.

A conventional t.t.l. crystal oscillator provides a timing source at 10 MHz and this is divided by a chain of 7490 counters which are selected by transmission gates as shown in Fig. 1. Pulse width and separation are selected by the 74192 programmable counters which operate in the countdown mode and are wired as a wide divide-by-n circuit. The number selected by the decade switches is loaded into the counter, and subsequent clocking clears the counter until a borrow pulse is provided at pin 13 to reload the counter. Because this circuit is fed by a defined pulse rate, the countdown sequence lasts as long as the selected number of units. The separation counter has a pulse-stretching circuit comprising a diode, resistor and capacitor to main a sufficiently wide reload pulse. The output from the counting chains combine to set and reset the counting chains combine to set and reset the output bistable as shown in Fig 2.

In the single-shot mode the clock and divider are held at reset until a positivegoing t.t.l. signal is present at the input. When this occurs, one pulse is produced and the single-shot input is then taken low, ready for the next pulse. A fast monostable i.c. is included to ensure that single-shot operation is independent of the input pulse width.

Although the circuit layout is not critical, $0.01 \mu \mathrm{~F}$ ceramic capacitors should be placed across the supply rails for each i.c., together with $10 \mu \mathrm{~F}$ tantalum capacitors for each row of i.cs. It is advisable to screen the entire unit with a metal box to prevent r.i. interference from affecting nearby equipment.

The use of transmission gates allows the operating switches to be fitted in a convenient position on a panel. Most of the outputs can be short-circuited without damage, but the main output will be damaged by a load below los2. The current requirement of the entire circuit is about 1.2 A , and a stable supply derived from a regulator is recommended.

Viewdata Lucy gets it together

The difference in cost between an ordinary television receiver and one capable of receiving British Telecom's Prestel service could be reduced by around 30%, according to Mullard. Their new 'Lucy' integrated circuit is an l.s.i. peripheral to an 8049 micro, the new system providing much more flexibility than earlier teletext/viewdata chip sets, while reducing the package count from 19 to 4 . The SAA5070 Lucy chip is already in production at Mullard's Southampton factory.

Lucy, a name which represents a major triumph for the forces of determined imagination over those of logic, is alleged to be a corruption of 'Line coupling unit u.a.r.t.', which, admittedly, is considerably less attractive than Lucy. The chip is designed to select and control various sources of information such as line, keyboard, tape, to avoid the need to interrupt micro operation to scan the inputs: the information is then presented to the micro on an 8 -bit bus. (Most viewdata decoders use a micro to take account of varying levels of complica-
tion in different applications: software is more easily altered than hardware.) The software approach means also that Lucy can be used for any viewdata system - Antiope, Telidon and the Continental variations of Prestel can all be accommodated.

Among the facilities offered by the use of Lucy are tape recording and playback of pages (modified Kansas City standard), a multi-page memory r.a.m., non-volatile memory for automatically dialled telephone numbers or passwords, time-out periods to disconnect the line, extra ports (each port provided has a storage shift register) and an on-chip modem.

A keyboard can be connected to allow the writing and editing of pages on a domestic set - a facility which, were it not for restraints imposed by British Telecom on the use of telephone lines for data would make communication between terminals possible. There is provision in Lucy for data transmission at 1200 baud, in addition to the normal rate of 75 baud used for Prestel access.

Designing with microprocessors - correction

The following table is a corrected version of Table 3 (hex listing of the PRINT problem when implemented using the test-and-skip mode and the Intel 8080) which appeared in Part 6 of "Designing with microprocessors" December 1980 issue, page 73.

	Hex address	Hex listing	Mnemonics

Bandpass audio filter

Active circuit desıgn for a.m./s.s.b. radio communication

by L. Hurst, B.E., University of Auckland

This article describes the design of an optimum, active RC filter intended for tailoring the frequency response of communication channels to the passband 500 Hz to 3 kHz . Formed from two lowpass and two highpass sections, the circuit operates from a 12 V supply and has a current drain of about 20 mA . It will handle a maximum input signal of about 3 V peak.

From tests on speech articulation, intelligibility and power spectrum, one finds that by removing all frequencies below 500 Hz

Fig. 1. Required frequency response limits for the bandpass filter.
the articulation can remain as high as 96% while the speech power requirement is reduced to approximately 42%. Similarly, by removing all frequencies above 3 kHz , articulation is still about 83% although speech power is reduced only by about 5%. As an approximation one can say that the effect of restricting the speech bandwidth to $500-3000 \mathrm{~Hz}$ is to reduce articulation to about 80% and speech power to about 40%.

Fig. 2. Complete circuit of bandpass audio filter. Component values in brackets are "ideal values". The actual response with preferred values is shown in Fig. 3.

Hence a considerable saving in power requirement (4 dB) and spectrum bandwidth can be obtained while intelligibility will still remain close to 100% (for normal speech). In addition, when reducing the bandwidth at the receiving end of a "noisy" communication channel, the sig-nal-to-noise ratio may be so improved as to result in better intelligibility.
For such an application the elliptic filter response is generally the most effective for the least number of components. The design offered here is an elliptic filter to give a response of $500-3000 \mathrm{~Hz}$ with ripple of less than $1 / 2 \mathrm{~dB}$ in the passband and greater than 40 dB in the stop band. Requiring the stop band to be below 300 Hz and above 4 kHz , the response limits may be drawn as in Fig. 1.

Fortunately the very extensive work of calculating the coefficients or an active elliptic filter have been done for us and applied to a particular circuit. In "Electronic Design 21", October 14th 1971, by A. B. Williams, a set of tables applied to a basic section have been given. To meet above specifications with these tables we use two filters. These are a highpass filter, having $f_{c 1}=500 \mathrm{~Hz}$, cascaded with a low pass filter, with $f_{c 2}=3000 \mathrm{~Hz}$. For those interested, the treatment of these two filters, each of which has two sections, is given in the Appendix.

The filter sections so designed are combined to give the required overall response. It is necessary, however, to provide inter-stage buffers to give high input impedances and low output impedances for each stage. Also it is desirable to provide an overall gain of unity (unless some other specific value of gain is required). This is given by the input attenuator, where R_{1} is chosen as,

$$
R_{1}=2.2 \times 10^{4}\left(\prod_{n=1}^{4} A v_{n}-1\right)
$$

$=2.2 \times 10^{4}$
$(1.475 \times 0.9057 \times 1.565 \times 1.149-1)$

$$
\begin{aligned}
& R_{1}=2.2 \times 10^{4}(2.40-1) \\
& R_{1}=30.8 \mathrm{k} \Omega-\mathrm{use} 33 \mathrm{k} \Omega
\end{aligned}
$$

The complete circuit is shown in Fig. 2.

Choice of i.c.

The choice of the integrated circuit is not particularly critical. The application lends itself to the quad 741 package; thus two i.cs will complete the filter, e.g. two LM348N, MC4741-CP, etc.

Choice of resistors, capacitors

For this application a small change in f_{c} or f_{s} will not seriously affect the performance of the filter. However, if the values of R and C are not accurately chosen the amplitude response of the filter can be degraded. Component values should be selected as close as possible to those stated, but certainly should be within 2%. To minimise temperature dependence, resistors should 'preferably be metal oxide and capacitors polystyrene.
A plot of the measured frequency res-

Fig. 3. Overall frequency response of the bandpass audio filter.
ponse is shown in Fig. 3. It can be seen that the initial requirement is approximately met, the minor departure from the original specification being accounted for by the non-exact component values. Closer matching of component values would reduce the departure from the original requirement.

For use in a transmitter, the high-pass section should be used first, followed by an amplitude limiter, say 10 dB of limiting. The highpass section reduces the amount of limiting required in clipping the high amplitude, low frequency, vowel sounds in speech. The low-pass filter then follows the limiter to reduce the level of distortion products generated in the limiting process.

It can be seen from the circuit diagram in Fig. 2 that the filter is designed to operate from a single +12 V supply. This is available in most solid-state equipment. Maximum current drain is about 20 mA . The maximum amplitude of signal which can be handled is approximately three volts peak, into a load resistor of not less than $2 \mathrm{k} \Omega$.

References

1. Radio Engineering Handbook, ed. Keith Henny, McGraw-Hill, 1959.
2. Electronic Design Vol. 21, "Design active elliptic filters easily" by A. B. Williams, October 14, 1971 .
3. "The design of high performance active RC bandpass filters", Kerwin and Huelsman: Reprinted in Active Inductorless Filters, ed. Sanjit K. Mitra, IEEE Press.

Appendix: design of filter sections

The treatment of the lowpass filter is simpler, so we will deal with that first.

Lowpass filter

The basic section used for the filter is shown in Fig. 4. The number of sections required is given by $n=(N-1 / 2)$, where N is the order of the filter quoted in the tables.

To use the tables referred to in the main text, which are normalised for $\omega_{c}=1 \mathrm{rad} / \mathrm{s}$, we require $R \mathrm{~dB}, A \mathrm{~dB}$ and ω_{s}. From our specification:

$R \mathrm{~dB} \leqslant 0.5 \mathrm{~dB}$

$A \mathrm{~dB} \geqslant 40 \mathrm{~dB}$
$\omega_{s} \leqslant \frac{f_{s 2}}{f_{s 1}}=1.333$
From the tables for $\omega_{s}=1.3054 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& A \mathrm{~dB}=39.17 \mathrm{~dB} \\
& R \mathrm{~dB}=0.28 \mathrm{~dB}
\end{aligned}
$$

we find $n=2$ sections and the normalised component values as follows:

1st section:

$R_{1}=0.5280$ ohm $\quad C_{1}=2.757 \mathrm{~F}$
$R_{2}=1.056$ ohm $C_{2}=0.6127 \mathrm{~F}$
$R_{3}=0.6027$ ohm $\quad C_{3}=1.073 \mathrm{~F}$
$R_{4}=2.712$ ohm $\quad C_{4}=0.5368 \mathrm{~F}$
$K=2.479$
$\mathrm{Av}=1.565$
To denormalise, we use a convenient scaling factor M, so that,

$$
\begin{aligned}
& C^{\prime}=\frac{C}{2 \pi f_{c} \cdot M} \\
& \text { and } R^{\prime}=R . M
\end{aligned}
$$

where R, C are the tabulated normalised values and R^{\prime}, C^{\prime} are the denormalised component values for the chosen cut off frequency, f_{c}
To find a convenient scaling factor, we choose a preferred value for C_{1} ', hence,
$M=\frac{C_{1}}{2 \pi f_{c} \cdot C_{1}^{\prime}}=\frac{2.757}{2 \pi 3000 \times 2.2 \times 10^{-8}}=6648.3$
then, $C^{\prime}=\frac{C}{2 \pi f_{c} 6648.3}=7.9797 \times 10^{-9} . C$

$$
R^{\prime}=R \times 6648.3
$$

Thus we have
$R_{1}{ }^{\prime}=3510$ ohm
$C_{1}{ }^{\prime}=22 n \mathrm{~F}$
$R_{2}^{\prime}=7021$ ohm
$R_{3}{ }^{\prime}=4007 \mathrm{ohm}$
$R_{4}{ }^{\prime}=18.03 \mathrm{kohm}$
$C_{2}{ }^{\prime}=4.889 \mathrm{nF}$
$R_{4}{ }^{\prime}=18.03 \mathrm{kohm}$
This is implemen
$C_{3}=8.562 \mathrm{nF}$
ed in Fig. 5
$\left.\begin{array}{l}R_{6}=1 \\ R_{7}=K-1=1.479\end{array}\right\} \begin{aligned} & \text { scale by }\end{aligned}\left\{\begin{array}{l}R_{6}{ }^{\prime}=15 \mathrm{kohm} \\ R_{7}{ }^{\prime}=22.185 \mathrm{kohm}\end{array}\right.$
2nd section
$R_{1}=0.3942 \mathrm{ohm} \quad C_{1}=4.572 \mathrm{~F}$

Fig. 4. Basic filter section.

Fig. 5. First section of lowpass filter, $A v=1.567$.

Fig. 7. First section of highpass filter, $A v=1.475$.

Fig. 6. Second section of lowpass filter,
$A v=1.149$.

$$
\begin{array}{ll}
R_{2}=0.7884 \mathrm{ohm} & C_{2}=1.015 \mathrm{~F} \\
R_{3}=1.439 \mathrm{ohm} & C_{3}=0.5564 \mathrm{~F} \\
R_{4}=6.477 \mathrm{ohm} & C_{4}=0.2782 \mathrm{~F} \\
R_{5}=1.000 \mathrm{ohm} & C_{5}=1.831 \mathrm{~F}
\end{array}
$$

$K=1.360$
$\mathrm{Av}=1.149$
Scaling factor $M=C / 2 \pi f_{c} C^{\prime}$
$=4.572 / 2 \pi 3000 \times 0.047 \times 10^{-6}$

$$
=5160.68
$$

$R^{\prime}=\mathrm{R} \times 5160.68, C^{\prime}=1.028 \times 10^{-8} . C$
Thus, we have
$R_{1}{ }^{\prime}=2034$ ohm
$R_{2}{ }^{\prime}=4069 \mathrm{ohm}$
$R_{3^{\prime}}=7426 \mathrm{ohm} \quad C_{2^{\prime}}=10.43 \mathrm{nF}$
R, 33.43 k
$C_{3}{ }^{\prime}=2.86 \mathrm{nF}$
R_{4}, C_{5} may be scaled independently, so choose
$M=1.831 / 2 \pi f_{c} 0.01 \mu \mathrm{~F}$
$=9714$, hence
$R_{5}{ }^{\prime}=9714 \mathrm{ohm}$

$$
C_{s}^{\prime}=0.01 \mu \mathrm{~F}
$$

$\left.\begin{array}{l}R_{6}=1 \\ R_{7}=K-1=0.360\end{array}\right\}$ scale by 6280
$R_{6}{ }^{\prime}=6280$ ohm
$R_{7}{ }^{\prime}=2261$ ohm
This is implemented as in Fig. 6. This completes the lowpass filter design and it is only necessary to provide input and output buffers to preserve the response and gain equalisation to give unity gain. These details may be left till last and incorporated with the high pass filter.
Highpass filter
For the highpass filter we use the same basic circuit, except that the frequency response determining $R \mathrm{~s}$ and $C \mathrm{~s}$, that is, $R_{1.5}, C_{1.5}$, are interchanged, i.e. resistors become capacitors and vice versa.

The reciprocal of the tabulated value is used for the new component. For example, our specification calls for $\omega_{\mathrm{s}} \leqslant 500 / 300=1.67, A \mathrm{~dB} \geqslant$ $40 \mathrm{~dB}, R \mathrm{~dB} \leqslant 0.5 \mathrm{~dB}$. Several options are available in the tables and the choice may require a small compromise. I have selected the following table: for $\omega_{\mathrm{s}}=1.7013$ (hence $f_{s 1}=293.89 \mathrm{~Hz}$ which is close enough) $A \mathrm{~dB}=40.81, n=2 \mathrm{sec}-$ tions, $R \mathrm{~dB}=0.01$, and the normalised component values for the

Fig. 8. Second section of highpass filter, $A v=0.9057$.

1st section

$R_{1}=0.4847 \mathrm{ohm}$	$C_{1}=2.591 \mathrm{~F}$
$R_{2}=0.9695 \mathrm{ohm}$	$C_{2}=0.5757 \mathrm{~F}$
$R_{3}=0.7114 \mathrm{ohm}$	$C_{3}=0.7845 \mathrm{~F}$
$R_{4}=3.201 \mathrm{ohm}$	$C_{4}=0.3923 \mathrm{~F}$

$R_{4}=3.201 \mathrm{ohm}$
$C_{4}=0.3923 \mathrm{~F}$
$K=2.145$
$\mathrm{Av}=1.475$
Change C s and $R \mathrm{~s}$ and write values as reciprocals;
$C_{1}=2.0631 \mathrm{~F} \quad R_{\mathrm{t}}=0.3860 \mathrm{ohm}$
$C_{2}=1.0315 \mathrm{~F} \quad R_{2}=1.7370$ ohm
$C_{3}=1.4057 \mathrm{~F} \quad R_{3}=1.2747 \mathrm{ohm}$
$C_{4}=0.3124 \mathrm{~F} \quad R_{4}=2.5491 \mathrm{ohm}$
Scaling factor, $M=C / 2 \pi f_{c} C^{\prime}$

$$
\begin{aligned}
& =\frac{2.0631}{2 \pi 500 \times 0.1 u \mathrm{~F}} \\
& =6567.05
\end{aligned}
$$

$C^{\prime}=4.847 \times 10^{-8} \times C,$ hence,	$\times C, \quad R^{\prime}=6567.05 \times R$
$C_{1}{ }^{\prime}=100 \mathrm{nF}$	$R_{1}{ }^{\prime}=2535 \mathrm{ohm}$
$C_{2}^{\prime}=50 \mathrm{nF}$	$R_{2}{ }^{\prime}=11.41 \mathrm{kohm}$
$C_{3}{ }^{\prime}=68.14 \mathrm{nF}$	$R_{3}{ }^{\prime}=8.371 \mathrm{kohm}$
$C_{4}{ }^{\prime}=15.14 \mathrm{nF}$	$R_{4}{ }^{\prime}=16.74 \mathrm{kohm}$
$\left.R_{6}=1 \quad\right\}$ scale by $\left\{R_{6}{ }^{\prime}=10 \mathrm{kohm}\right.$	
$\left.R_{7}=K-1=1.145\right\}$	$\int 10^{4} \quad R_{7}^{\prime}=11.45 \mathrm{kohm}$
This is implemented in Fig. 7.	
2nd section	
$R_{1}=0.3866$ ohm	$C_{1}=3.583 \mathrm{~F}$
$R_{2}=0.7732 \mathrm{ohm}$	$C_{2}=0.7963 \mathrm{~F}$
$R_{3}=1.613 \mathrm{ohm}$	$C_{3}=0.3817 \mathrm{~F}$
$R_{4}=7.259 \mathrm{ohm}$	$\mathrm{C}_{4}=0.1908 \mathrm{~F}$
$R_{5}=1.000$ ohm	$C_{5}=1.039 \mathrm{~F}$
$K=1.050$	
$A v=0.9057$	
Change Cs and $R \mathrm{~s}$ and write as reciprocals;	
$C_{1}=2.5867 \mathrm{~F}$	$R_{1}=0.2791$ ohm
$C_{2}=1.2933 \mathrm{~F}$	$R_{2}=1.2558$ ohm
$C_{3}=0.6200 \mathrm{~F}$	$R_{3}=2.6199 \mathrm{ohm}$
$C_{4}=0.1378 \mathrm{~F}$	$R_{4}=5.2411$ ohm
$C_{5}=1.000 \mathrm{~F}$	$R_{5}=0.9625 \mathrm{ohm}$

Scaling factor $M=C / 2 \pi f_{c} C^{\prime}$

$$
=2.5867 / 2 \pi 500 \times 0.1 \mu \mathrm{~F}=8233.72
$$

$C^{\prime}=3.866 \times 10^{-8} C \quad R^{\prime}=8233.72 . R$
$C_{1}{ }^{\prime}=100 \mathrm{nF} \quad R_{1}{ }^{\prime}=2298 \mathrm{ohm}$
$C_{2}{ }^{\prime}=50 \mathrm{nF} \quad R_{2^{\prime}}=10.34 \mathrm{kohm}$
$C_{3}^{\prime}=23.97 \mathrm{nF} \quad R_{3^{\prime}}=21.57 \mathrm{kohm}$
$C^{\prime}{ }^{\prime}=5.327 \mathrm{nF} \quad R_{4}{ }^{\prime}=43.15 \mathrm{kohm}$
R_{5}, C_{5} may be scaled independently, so choose, $M=C / 2 \pi f_{c} C^{\prime}$
$=1.000 / 2 \pi 500 \times 0.01 \mu \mathrm{~F}=31830.99$
$\mathrm{C}_{5}{ }^{\prime}=10 \mathrm{nF} \quad R_{5}{ }^{\prime}=30.64 \mathrm{kohm}$
$R_{6}=1$
$R_{7}=(K-1)=(1.050-1)=0.050$
Scaled by $\left\{R_{6}{ }^{\prime}=150 \mathrm{kohm}\right.$
$150 \quad\left\{R_{7}{ }^{\prime}=7.5 \mathrm{kohm}\right.$
This is implemented in Fig. 8.

Microcomputers in the home

Two announcements, almost on the same day were important in that they were both concerned in bringing computers to the man-in-thestreet rather than the computer buff or hobby ist. The first was that the BBC has chosen a manufacturer for a Microcomputer to be used in conjunction with a television series on computer literacy, scheduled to commence in January 1982. The other announcement was the launching of an up-dated version of the Sinclair personal computer to be known as the ZX81

The BBC Microcomputer is to be designed and produced by Acorn Computers and will be a condensed version of the Acorn Proton. A very long-term strategy has made it important that the computer is as flexible and as expandable as possible, so that it may be used initially as a fairly simple 'familiarization' tool and may be expanded up to serious business applications The basic machine will have 16 K of r.a.m. with add-on options to give it a maximum of 96 K . A domestic cassette recorder can be used to store programs and a disc memory system will become available. With a high-quality keyboard and the addition of a printer, full word-processing facilities will be available. Another add-on facility will be a teletext receiver which will give access to all Ceefax and Oracle transmissions, including a series of computer programs which may be read off the air directly into the computer's memory. All this is to be coupled to high resolution graphics in black-and-white or colour and there will be a further add-on facility to enable the computer to be networked

The minimum price of the BBC Microcomputer will be about $£ 200$, and in contrast, the Sinclair ZX81 is available fully built for $£ 69.95$ and in kit form for as little as $£ 49.95$. As the internal workings have been reduced to four micro-chips, the kit is comparatively easy to build. ZX81 has a 1 K r.a.m., but it is claimed that with the one-key BASIC commands this actually represents considerably more than with a conventional system. Advantages over the previous 2X80 are that it uses the unused part of the tv frame as time for computing and can offer continuous and animated displays without the flicker associated with the earlier machine. With a bigger, 8 K , BASIC r.o.m, it can offer full floating-point arithmetical operators and may be used as a scientific calculator with log. and trig. facilities. Like the ZX80, the new computer may expand its memory with an add-on 16 K byte r.a.m. module. Further additions include a 32 column printer which can reproduce all the characters and graphics which are available from the keyboard. The operation of a 'Copy' key will instruct the printer to reproduce anything which is on the screen without need for further instruction. This printer has been demonstrated and is likely to be available very soon - in June or July. Sinclair has also developed a series of cassettes which include a number of useful programs; some games and an educational tape which can teach basic mathematics and other disciplines to children.
It seems likely that there might have been a direct connection between these two stories. At the launch of the ZX81, Clive Sinclair made clear his disappointment at not being selected

The Sinclair ZX81 improves its outward as well as its operational design over its predecessor. It is shown here with a prototype of the ZX printer, available later in the year.
by the BBC to produce their microcomputer. He indicated that he would be able to offer all the facilities that the Corporation might require at a lower price than any competitor. A BBC spokesman has said that the Corporation had taken "advice from a variety of experts" who
had selected a computer which best met their requirements.
It has been rumoured that Mr Sinclair is to go ahead with a computer that will meet the BBC specification and will be a low-cost alternative to the 'official' BBC microcomputer.

Pay tv pilots get go-ahead

The Home Secretary has announced the names of the successful applicants for licences to provide subscription television by cable relay. British Telecom have been granted a licence to operate in the Milton Keynes and Newport Pagnell area; Greenwich Cablevision in Greenwich; Philips in Northampton and in Tredegar, Gwent; Radio Rentals in the Medway towns of Chatham, Gillingham and Rochester, and Swindon; Rediffusion are to proceed with pilot schemes in Burnley, Hull, Pontypridd, Reading and Tunbridge Wells. The licence will run for an initial period of two years.

It is envisaged that at the beginning, the programmes will consist of feature films, all passed by the British Board of Film Censors and the Home Office has laid down certain rules: that Certificate ' X ' films may not be shown before 10 pm ; sporting events of a national importance may not be secured on an exclusive basis; programme schedules must be submitted in advance to the Home Office.

The charge for the service is likely to be between $£ 5$ and $£ 8$ a month with an additional installation fee.

British Telecom already operate in Milton Keynes, a system of distribution of five chan-
nels of television and a full range of broadcast radio services including the local community radio station. The subscribers will get an additional channel of feature films and facilities for a community television service. Many of the other licencees have, of course, operated cable distribution of the national BBC and ITV channels and at least one, Greenwich, has had previous experience in operating a subscription service.

The Cable Television Association has welcomed the Government announcement but feel that "the terms of the licence and the scope of the pilot schemes appear to be rather restrictive". A statement from the C.T.A. reported in Cablevision News also said,"We cannot see why, providing our members conform to the law of the land and the dictates of good taste, they should not have precisely the same freedom to offer the same consumer choice as the book publisher, the newspaper editor, the cinema operator or the video disc manufacturer Subscription tv does not require any Government funding; nor does it make claim upon that scarce public resource - space on the ether. It 'does not come into the home without the public seeking it"

Medical technicians get a new deal

The Instituce of Science Technology has announced the formation of a new Interest Group within the Institute concerning itself with Medical Physics and Physiological Measurement technicians. At present, there are few colleges prepared to undertake the organisation of a suitable course for them so one of the aims of the MPPM Interest Group is to prepare a nationally recognised educational qualification equivalent to $\mathrm{HNC} / \mathrm{TEC}$ for those attending college or who are studying privately. In this respect the IST will set a Diploma examination based on an acceptable syllabus.

Although the number of these technicians has increased and quality improved significantly, a steady decline in their status compared with their colleagues in radiology and medical laboratory sciences has been shown. Possibly their poor career structure can be improved with the Diploma examination followed by the Fellowship of the IST. The Interest Group hopes to keep open good channels of communications with other institutes and bodies relevant to the MPPM's and organized a seminar on Biofeedback Mechanisms at Birmingham on 9th April.

Synchronising tv sound to picture

Videotape editing facilities has been improved to a state where it is now practicable to make a high number of recording breaks and editing cuts. The BBC has found that this can play havoc with the sound track and have devised a system called Sypher-2 so that the dialogue sound and special effects can be brought together with music and added to the edited video tape in perfect synchronisation. Time codes are added to a separate video recording and a multitrack sound recording of the programme, additional music and sound effects can be recorded

Energy from waves sponsored research

An important contract to research the operating and maintenance costs of wave energy devices has been awarded to EASAMS Limited (a GECMarconi company) by the Department of Energy via the Energy Technology Support Unit (ETSU).

In addition to cost assessment the contract also calls for EASAMS to act in an advisory role to the DoE. The scope of this advice extends from detail design and location of installations, to the choice of the best maintenance philosophy, methods and facilities, for both off-shore and onshore operations. This will involve the Company in regular and increasing liaison with universities, government establishments and industrial contractors.

The contract continues the work carried out by EASAMS since July 1979 in studies intended to assess and optimise the operation and maintenance cost of an offshore system to convert the energy of ocean waves into electrical power which can be fed into the UK national grid.
Research and development for such a system has received a high priority within the Department of Energy programme to investigate alternative energy sources for the UK. The geographical location of the British Isles makes wave energy a particularly attractive option especially as it is a resource for which the peak supply tends to coincide with the peak national demand over the year.

The current proposals for a wave energy conversion system involve a very large array of wave energy conversion units sited up to 20 km off-shore, each unit being similar in size to an
ocean going ship. Such an array, extending along 400 km of coastline, could deliver the mean annual output of a typical large modern power station, which uses fossil fuels. The wave energy programme has investigated a wide and diverse range of conversion devices, and several teams at universities and research establishments are working to improve the energy conversion efficiency and reduce the capital cost of the more promising designs. One part of a more general parallel programme is also investigating component reliability and developing systems which can remotely monitor the condition of machinery, and control the converter output, according to the available wave climate.

By its very nature a wave energy system will be expected to function in sea conditions that will be a severe handicap both to the reliability of any engineering equipment and to any efforts to gain access to it or carry out maintenance work. Therefore although the basic resource is freely and indefinitely available, the annual cost of maintaining the equipment needed to collect this resource and transmit power to the shore may be a deciding factor in assessing the commercial economics of wave energy.
EASAMS contribution to the programme has thus been in this important area. It has involved an assessment of maintenance costs and identifying the factors that have a significant effect on them. These include the relative merits of different locations in terms of supply base facilities and sea and air transportation links which may be as important in the selection of a wave energy site as the actual wave climate available.
on the other track of the sound recorder and the Sypher-2 system can re-unite sound and picture in synchronisation using the time codes as coordinates. The synchroniser is of modular construction so that a number of 'slave' recorders may all be run in synchronisation.

Terry Newbery, of the BBC Studio Capital Projects Department, discusses the Sypher-2 sound-synchronisation system with Mike Jones, a sound supervisor. On the right is computer-assisted mixing console made by Neve which includes the control units for the
Sypher-2 system.

Infra-red 'radar' detects low-level planes

British Aerospace Dynamics Group has been chosen, following a highly competitive assessment, to develop passive infra-red surveillance for low-level air-defence systems.

To date, the Company has spent some three million pounds on this vital programme which could revolutionize the detection of low flyingaircraft in the future.

Radiating active-surveillance systems will need to become increasingly more complex in order to counter the jamming and location devices likely to be used by a future enemy. One low cost solution to this requirement has been to develop a passive surveillance system with no detectable emissions, and, since 1975, the Dynamics Group have been researching into an infra-red analogue of surveillance radar.

To undertake the numerous field experiments to prove this system, the equipment has been installed in a trailer and, in a two-week trial to prove the effectiveness, 96% of engageable aircraft targets were observed and located passively at ranges which would have made engagement by a SAM system entirely practicable. The majority of those aircraft, which covered a range of types, would have been destroyed.

The infra-red system will not replace the surveillance radar, but will, in fact, be complementary

Hardware for the first model of the military version is now available and is compact enough to be mounted on a Land Rover.

News in brief

The Government has announced its intention to back International Computers Ltd by providing guarantees of up to $£ 200 \mathrm{M}$ for a period of up to two years and to increase financial aid towards research and development in the company. This has become necessary because, in these times of recession, customers are not buying large computers and there has been a "significant fall in orders". Most main-frame computer companies have similar experiences, according to Mr Kenneth Baker, Minister for Information Technology. The Government are, of course, major customers of ICL who have supplied the computers for the Ministry of Social Security, the whole of the tax system, and for many hospital administrations.
Components sale. Home Radio (Components) Ltd, together with Harvesons and G. P. Transformers, is holding a sale of all types of components including resistors, capacitors, pots, speakers, transformers and tools, all at exceptionally reduced prices (many below manufacturing cost). Home Radio are turning over the whole of their first floor to this sale which will run from Saturday, 25th April until Saturday, 2nd May inclusive (early closing Wednesday) The address for the sale is 269A Haydons Road, London S.W. 19 which is in South Wimbledon.

Electric vehicle research - on the move

Lucas and Chloride have announced the settingup of a joint company to merge their electric vehicle development programmes and have been granted 'substantial financial support' by the Government over a five-year period.
Battery-driven vehicles are attractive because they are able to take advantage of a wide range of energy resources and also cause less pollution - noise and atmospheric. Electric vehicles recharging at night would not increase the burden on the National grid and would help to level the daytime load.
So far, both companies have concentrated on the urban delivery vehicle, Lucas having produced some 100 electric prototypes based on a one-tonne van, while Chloride has specialised in vehicles with gross weights of six to seven tonnes and payloads of $11 / 2$ to 2 tonnes. Over 70 'Silent Karrier' prototypes have been produced. Lucas is also developing a drive-system for hy-brid-electric passenger cars, which combine the benefits of electric vehicles with the flexibility of petrol or diesel power.

The joint company, Lucas Chloride EV Systems Ltd, plan 10 maintain the British lead
in the development of electric vehicles and to exploit a potentially very large world market.

- A different vehicle is the Electric Monarch an eight-berth battery-powered narrowboat, built by the Original Boat Company of Evesham. The fully-fitted, luxury canal boat is powered by a 72 -volt Chloride motive power battery, as used in milk floats and industrial trucks and the fuel costs are approximately one-fifth of conventional boats with the overall running cost as little as one-seventh.

The motor used in the boat is rated at 8 hp , at 3 mph , although it is electronically governed to operate at 2.5 to 3 hp . Research was carried out by the Original Boat Company to identify the precise operating requirements. These included determining the size of the boat, the route, the time available for the journey, the location of mains supplies for re-charging, the speed limits applicable and the energy required for manoevering and carrying ancillary loads. The result is a pollution-free boat with a high degree of passenger comfort which is very easy to operate.

Low level spy plane with no pilot

Marconi Avionics Limited has now achieved the first flight of its unmanned air vehicle. Machan, the company's new research aircraft, is now undergoing flight evaluations, having made its first flight from the Royal Aircraft Establishment airfield at Bedford, England, on 19 February 1981.

The unusual shape of Machan derives from its role as an unmanned aircraft, to carry specialised, miniature, electronics payloads, including surveillance equipment. It typifies a new kind of air vehicle, capable of operating under remote control, over battlefields or other areas of interest. With a 12 foot wingspan and an 18 hp 2 -stroke engine, it can carry 33 lb (15 kg) of payload for two hours, landing, at a chosen spot, on fibreglass skids.

The Machan programme, which is sponsored by the UK Ministry of Defence (Procurement Executive) and Marconi Avionics, includes development and proving of the air research vehicle, the ground control station and the allimportant electronics payloads. As well as managing the overall programme, the company is developing these payloads and has produced the aircraft's advanced attitude and motion sensing system, the datalink and microprocessor-based ground control equipment. The latter is contained in a ground station, provided by the Royal Aircraft Establishment.

Aircraft description

Fixed shoulder-wing monoplane, with ducted pusher propeller, powered by Weslake twin-cylinder 18 hp 2 -stroke petrol engine. Diamond cross-section fuselage with flying controls on empennage, comprising all-flying 'tailerons' and rudder.

Leading particulars of model 01: length 7 ft (2.13 m), wangspan, initially, $12 \mathrm{ft}(3.66 \mathrm{~m})$, (to be reduced after initial handling trials), max speed (level flight) $115 \mathrm{kt}(59 \mathrm{~m} / \mathrm{s})$, cruising speed $64 \mathrm{kt}(33 \mathrm{~m} / \mathrm{s})$, gross t.0.w. 16 ll (73 kg), payload 33 lb (15 kg), endurance (at cruising speed) 2 hours. Launch from tricycle 'drop-off' undercarriage, recovery by conventional approach or, in emergency, by parachute.

Avionics

Digital, microprocessor-based flight control system, with 68 MHz command link. Stability augmentation and attitude reference from three axis 'strapdown' sensor package. Command and telemetry facilities can be used in conjunction with the ground station computer for investigating outer loop control without modifying equipment on board. First payload contains a nongimballed TV camera to include stabilised, steerable imaging sensors.

NASA cuts
 threaten
 European
 research

THE decision by NASA to cancel the American spacecraft forming part of the two-spacecraft International Solar Polar mission (ISPM) has been rejected by the European Space Agency, the partner in this cooperation.

At a high level meeting between the two Agencies on Monday 23 February in New York, NASA explained that it had to take this decision because of the severe budgetary cuts imposed on NASA by the Office of Management and Budget in the preparation of the Reagan Administration's federal budget. ESA stated at the meeting that the cancellation of the NASA satellite, which was effected without consultation, was a unilateral breach of the Memorandum of Understanding between the two Agencies, and that this cancellation was therefore unacceptable to ESA, which requested full restoration of the programme to its original level. ESA also stressed that unilateral actions of this kind would be detrimental to future space cooperation between Europe and the United States. The ESA position is motivated by the fact that the decision was taken by NASA without consultation and by the fact that, as a result of this decision, European scientists from some 17 scientific institutes who were supplying experiments for the NASA spacecraft would no longer be able to fly them. The experiments were already in an advanced state of dcvelopment, and more than 50% of the total costs had been committed and would consequently be lost without corresponding scientific return. In addition, ESA remarked that when the ISPM project was decided by the ESA Science Programme Committee in 1979, it was chosen in preference to a number of other, purely European missions because of the value ESA attached to transatlantic cooperation.

Threat to Public service broadcasting

Public service broadcasting in the USA, very much a minority service, faces proposals that it should be commercialised, as a result of the public spending reductions intended by the Reagan administration. "Perhaps the time has come for some form of limited advertising on public tv and radio" said the Republican Senator Goldwater recently. He was introducing a bill which calls for significant reduction in government funding for US public service broadcasting in 1984-86 and urges the FCC to reconsider its present restrictions on the sale of advertisement time by such stations.

Meanwhile, according to Weekly Television

Digest, a more immediate proposal of the Reagan administration to cut the 1982-83 funding of public service broadcasting by some 25% has been staved off by the Senate Budget Committee. Members of this committee said that Congress should not rescind the appropriations as it had already committed itself through the advance funding process. One Democratic commentator said that, although he thought the administration's proposals were not a politically motivated attack on public service broadcasting, nevertheless if they were approved they "would set the precedent for further compromises of public broadcasting's independence in the future."

Selling publications by Prestel

The Technical Publications Department of Mullard Ltd has formed a 'Publications Club' which enables members with viewdata terminals to order publications direct from an index displayed on Prestel simply by feeding in an identity number, using the conventional keypad issued with all viewdata terminals. Previously it had only been possible to operate such a direct-
order service if the customer had access to an alphanumeric keyboard hooked up to a viewdata terminal. The Technical Publications Department (TPD) index is displayed on page 5562014 of Prestel. Customers wishing to become members of the Publications Club should apply to Technical Publications Department, Mullard Ltd, New Road, Mitcham, Surrey CR4 4XY, for further details.

Rumblings over C.b

While welcoming the announcement from the Home Office that Citizens' Band radio is to be made legal in Autumn, The National Committee for the Legalisation of Citizens' Band Radio (Natcolcibar) are disappointed at the selection of a frequency modulated system. They argue that some 300,000 people are already using the a.m. system; the European C.B. Federation has called for the adoption of 27 MHz a.m. as a panEuropean system, since it is already in legal use in 12 European countries. Those countries with a legal f.m. system have experienced widespread illegal use of a.m. : a.m. equipment is readily and cheaply available on the world market.

Consequently they are making strong representations to the Home Office to get the proposals altered.

- At a recent meeting of the Joint Council for Legalisation of 27 MHz Citizens' Band Radio, a number of 'breakers', as the enthusiasts call themselves, expressed their dissatisfaction with the Government proposals. The Joint Council has issued an Open Channel Preferred Specification which conforms to the U.S. Federal Communications Commission's specification with additional, more stringent specifications in respect of harmonic and spurious signal emissions, to avoid interference.

The Joint Council estimates that over a million people are using c.b. sets illegally; many of the breakers present at the meeting expressed a determination to continue to use a.m. sets even if they are not made legal by the proposed legislation. Annette Box, who uses the code-name or 'handle' of 'Yellow Peril' chose to go to Holloway Prison rather than pay the $£ 600$ fine imposed for illegal c.b. transmission.

All-Electronics Show

Sponsored for the first time by the Electronics Components Industry Federation, the fifth All-Electronics/ECIF Show runs from Wednes-

Detecting wind speed by radar

 involving a minimum of logistic support and training.
News in brief

New Fellows of the Royal Society elected at a meeting of the Society on 19th March include the following who have made some 'outstanding contribution' to their field of research: Dr D. M. Brink, studies on nuclear structure and nuclear reactions; Dr J. A. Barker, statistical mechanics and thermodynamics of molecular systems; Prof I. Butterworth, meson and baryon spectroscopy; Dr B. Carter, general relativity and astrophysics; Dr E. R. Pike, statistical optical spectroscopy; Prof K. A. Pounds, solar and cosmic X-ray astronomy; Prof D. J. Wheeler, design of digital computers and programming systems. We congratulate them and the other new Fellows, recipients of the 'knighthood of British science'.

The International Electrotechnical Commission (I.E.C.) has pointed out to us that this year includes the 150 th anniversary of the discovery of electromagnetic induction by Michael Faraday, the centenary of the first International Electrical Congress, where international standards of units of measurement were reached, as well as the 75th anniversary of the founding of the I.E.C.

The Second London Computer Fair, organised by the London Computer Clubs is due to be held at the time that this issue of WW reaches the newsagents. So if you happen to be reading this before the rest of our erudite contributions there may yet be time to dash round to the North London Polytechnic, Holloway, London N7 on 14th to the 16th April. There will be seminars, demonstrations and on the Thursday, a bring-and-buy sale.

The Plessey WF3M is currently the primary sensor of upper winds in the British Army's Artillery Meteorological System. Its light weight and basic simplicity make the WF3M ideal for use in hazardous environmental conditions. It tracks automatically after the initial acquisition of a passive balloon target. Positional data of the target is then available in digital form for computer processing and displayed on decimal indicators for manual processing if preferred. Only minimal supervision by a single operator at the control and display position is required. The use of solid state techniques ensures high reliability and ease of maintenance

Time sharing limited mains supplies

Automatic digital control for sharing mains power

by L. Hayward

If a number of loads on the same

 mains source requires more power than is available, some means of automatic power time-sharing is often the only practical way of avoiding blown fuses and overloaded generators and cables. The author was faced with the problem of using a 4kVA generator to drive a domestic cooker requiring 9 kW with all its elements in operation. Although the design was originally intended for use in the kitchen it will be of value in any application where a number of cyclically heated devices are to be powered from a limited mains supply.-Fig. 1. The complete circuit of the power time-sharer shown here can be roughly divided into six parts; the current sensing section (IC ${ }_{7}$), the clock inhibit circuit ($/ C_{2}$), the counter and decoder $\left(I C_{4}, \mid C_{3}\right)$ and the power drive ($\mathrm{Tr}_{1-3}, \mathrm{THY}_{1-3}$) and power supply circuits.

The problem that led to the designing of this circuit arose when a cooker rated at 9 kW with all its elements in operation had to be driven from a 4 kVA generator. Manual switching of the elements to share the power was possible but tedious and any mistake could have caused an overload, so some means of automatic power sharing was sought.

It was found that the elements of the cooker could easily be divided into three groups, each of which when driven alone
would not overload the generator. All that remained was to design the following circuit to time-share the power between two or three of the groups automatically when the need arose.

Operating principle

The circuit is activated by switching on the cooker at its main terminal. To simplify the following explanation the term a 'group requiring power' is used to describe a group or part of a group which has been
switched into the circuit either by the operator via the cooker control panel or by a thermostat.
When the circuit is activated but none of the groups require power each group is scanned in a $1-2-3-1$ sequence to check whether it requires power. The scanning rate is determined by the mains frequency derived clock signal. When any group requires power it is detected by a current sensing circuit and the scanning stops. That group is then powered for around seven seconds and then the scanning continues. If the power requirement of the group ceases in less than seven seconds the scanning continues from that point. Because the scan time is very small in relation to each seven second power-up time full use of the available power is made however many groups are switched in.
To summarize, if only one group requires power it receives power constantly apart from the small scan time at the end of each seven second period. If two groups require power they each receive it alternately for seven second periods. When all three groups require power each receives it in turn for seven second periods according to the 1-2-3-1 sequence.

Circuit operation

Load switching is achieved by 40A triacs sequentially driven from a ring-of-three counter and decoder whose outputs are buffered by Tr_{1-3}. These transistors can also be used to drive optional l.e.ds for monitoring the outputs. The triacs chosen have a higher current rating than is strictly necessary, so that heat sinks may be kept small, and to withstand enough current to trip a circuit breaker in the event of a short circuit.

The 240 V a.c. input is transformed to provide the low voltage supply and clock signal. All mains current output passes
through R_{1} which is made up of five $0.1 \Omega, 5 \mathrm{~W}$ resistors connected in parallel This low resistance value was chosen to reduce dissipation and avoid wasting power. When the voltage across this resistor exceeds a preset level the comparator output changes to logic 0 on every positive half cycle. The time constant of R_{1}, C_{2} is chosen to integrate these pulses sufficiently to provide a constant logic 1 at the output of the first Schmitt trigger. When no current is drawn from the mains the first Schmitt trigger output will be low and the output of the third trigger ($\operatorname{pin} 4, \mathrm{IC}_{2}$) will be high and mains frequency clock pulses will be admitted to the counter, IC_{4}. This counter is a modified divide by four circuit.
The decoder consists of four AND gates, the outputs of which go sequentially high as long as clock pulses are received by the counter. Three of the gates, when high, each trigger one triac through a buffer transistor. The fourth gate sets the counter to restart the sequence. If a load is connected to any of the triacs, the momentary triggering caused by the scan causes a voltage drop over R_{1}. The comparator changes state and the Schmitt trigger configuration blocks the clock pulses from the counter for a period determined by $\mathrm{R}_{8} / \mathrm{C}_{4}$ - about seven seconds. The triac concerned remains triggered for this period normally but if the load is removed from the triac within the seven seconds the comparator changes state again and the clock is no longer blocked as pin 4 of IC_{2} changes state.

Construction

Although the circuit is fairly simple to construct there are one or two points which must be mentioned here for safety reasons. So that the mains live side be switched it is necessary to connect the cir-

Literature received

Microcomputer analogue I/O systems for several types of bus, together with data converter modules for lab. and industrial application, are all described in a new catalogue from Data Translation, Ltd, an American company which has its UK sales office at 430 Bath Road, Slough, Berks. SL1 6BB.

WW401
Information on the Fiberfil range of flame-retardant, reinforced thermoplastic compounds, including processing information, is contained in a leaflet produced by Fiberfil Europe, c/o Capital Controls Division, Dart Industries, Crown Quay Lane, Sittingbourne, Kent ME10 3JE.

WW402
Over 1600 power semiconductor devices, made by Marconi Electronic Devices Ltd (MEDL) are listed, with their salient electrical characteristics and mechanical information in a 26 page guide, which can be obtained from MEDL at Carholme Road, Lincoln LN1 1SG.

WW403
Two impressive publications from Plessey provide an overview of the company and its products. An index of products is included. 'Plessey Product Directory' and 'Plessey Group' are available from The Publicity Liaison Unit, Vicarage Lane, Ilford, Essex.

WW404
The ZIP ASR/K7 terminal is a printer, a keyboard and two mini-cassette drives in one unit, and will perform the function of a paper tape reader and punch terminal. A leaflet on the equipment is published by Data Dynamics Ltd, Data House, Springfield road, Hayes, Middlesex.

WW405
British Standard BS3363:1980 is entitled 'Specifications for Letter Symbols for Semiconductor Devices and Integrated Microcircuits', replacing BS3363:1968. It is available at $£ 16.50$ from British Standards Institution, 2 Park Street, London W1A 2BS. Two supplements are also published at $£ 12$ and $£ 9$.

Introducing GSC's Model LM-3 Logic Monitor: a new breed of test instrument, and a real winner. Providing instant information, at a single glance, on the logic states of up to 40 separate test points, the LM-3 gives the user a direct check on the operation of the most complex logic circuitry - and at a fraction of the cost of conventional logic analysers.

The LM-3 is an odds-on favourite for anyone looking for value for money in digital troubleshooting. It combines 40 fast-operating high-impedance precision logic-state indicators in a single compact package, and displays the results on a linear array of 40 light-emitting diodes - numbered so that the user can see the condition of specific test points instantly.

And the LM-3 really reveals its thoroughbred capabilities in its triggering facilities and versatile operating modes: the RUN mode for following up to 40 channels of data; the LATCH mode for
 storing and displaying the data; and the RETRIG mode for updating the latched data on each subsequent trigger.

Applications? - the field is wide open, limited only by the user's imagination. Just connect the test clips to any combination of bus lines, test points, integrated-circuit pins or other circuit nodes. Device testing, system troubleshooting, side-by-side tests against known good circuits, following logic trees - the LM-3 provides all these capabilities. And, as an added bonus, it even makes an ideal tool in education and training for demonstrating the fundamentals of digital systems.

Performance? - Like all products from the GSC stable, the LM-3 offers some rather special features: * 40 logic channels, * Triggerable memory, * Variable threshold covering past, present and future logic families from ECL to C-MOS, " Constant input impedance at every threshold level, * 5 MHz channel response.

And the LM-3's pedigree is backed up by a support package which includes test clips, cables, connectors and an application manual as innovative as the instrument itself.

The Starting Price? - only * $£ 290$ and you'll find no handicaps with the LM-3. For more on the LM-3 and GSC's other logic-testing aids, fill in the coupon now. You won't regret it.

TOMORROW'S TOOLS TODAY

GLOBAL SPECIALTIES CORPORATION
 \square

G.S.C. (UK) Limited, Dept. 7KK,

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.

- Telephone: Saffron Walden (0799) 21682 7 elex: 817477

Toroidal Power liansformers

Budget range for the amateurand professional

女
 L. J. ELECTRONICS LIMITED

WICROELECTRONIC AND MICROPROCESSOR SYSTEMS FOR EDUCATION

Universal second-order filter uses single op-amp

Design equations for hybrid i.c. filters

by F. S. Atiya, A. M. Soliman and T. N. Saadawi, Cairo University

This network can realise the various forms of second-order transfer functions, whether non minimumphase transfer functions such as a notch filter or an all-pass network,or minimum-phase transfer functions such as low, high and band-pass filters. Its importance lies in using one active device. The universal network has the advantages of being canonic, always stable and capable of realizing a high pole Q. Both passive and active sensitivities are given and the effect of the one-pole roll-off model of the operational amplifier examined in detail; the circuit having low sensitivities to the gain-bandwidth product of the operational amplifier.

Integrated monolithic construction offers many advantages that are attractive to the designer of active filters. One of these is the reduction in cost, particularly if the filter is manufactured in large quantities. Unfortunately there is the problem of how to cover the numerous requirements specified by every application. A solution to this problem may be to design a limited number of standardized filter building blocks for a given frequency range. Then for a specific application, certain combinations of some of them may be used to produce a filter having the desired characteristics. The total number of building blocks can be reduced either by controlling certain characteristics of each block with a single element, or by overdesigning to satisfy excessive requirements.

The use of the first-order all-pass section as the basic building block for secondorder transfer functions has been given by Moschytz ${ }^{1}$ and Aronhime ${ }^{2}$, but the Moschytz realization requires three or four opamps, and Aronchime's is limited to allpass transfer functions and requires two op-amps. Also both networks are not canonic.

Here a network based on using a firstorder all-pass section is introduced. The circuit is capable of realizing the various forms of second-degree transfer functions. The universal filter has the advantages of using one op-amp, being always stable and canonic and capable of realizing a high pole Q. A unity gain factor is obtained in the case of high-pass, all-pass and notch responses. The ω_{p} and the pole Q sensitivities to passive and active circuit components are derived, and the effect of the limited frequency response of the op-amp given.

4
Fig. 1. Filter comprises passive network N_{1} (Fig. 2) and an active network N_{2} which can be excited at either port γ or ω.

Fig. 2. Three-port one-pole network forms network N_{1} in Fig. 1.

General configuration

The new filter consists of two networks, Fig. 1, the first a three-port one-pole passive network N_{1}, the second a four-port one-pole active network N_{2}. Network N_{1} is excited at port 1 by the input voltage $V_{\text {in }}$, and at port 3 by the output voltage V_{0}. The output voltage V_{2} of the network N_{1} is

$$
\begin{equation*}
V_{2}=V_{\mathrm{in}} T_{12}+V_{0} T_{32} \tag{1}
\end{equation*}
$$

where $\quad T_{12}=\left.\frac{V_{2}}{V_{1}}\right|_{v_{3}=0} \quad T_{32}=\left.\frac{V_{2}}{V_{3}}\right|_{V_{1}=0}$
Network N_{2} is excited at port P by the voltage V_{2}, which is the output voltage of N_{1}. There are three cases regarding excitations at ports γ and ψ '.
Case I: N_{2} is excited at port γ by the input voltage, while port ψ is left open circuit. In this case

$$
\begin{equation*}
V_{0}=V T+V_{\mathrm{p}} T_{\mathrm{p}} \tag{2}
\end{equation*}
$$

From equations $1 \& 2$ the overall voltage transfer function is

$$
\begin{equation*}
\frac{V_{0}}{V_{\mathrm{in}}}=\frac{T+T_{\mathrm{p}} T_{12}}{1-T_{\mathrm{p}} T_{32}} . \tag{3}
\end{equation*}
$$

Case 2: N_{2} is excited at port ψ by V_{in}, while $V=0$. Here

$$
\begin{equation*}
V_{0}=V_{\psi} T_{\psi}+V_{\mathrm{p}} T_{\mathrm{p}} \tag{4}
\end{equation*}
$$

where $T_{v}=\left.\frac{V_{0}}{V_{v}}\right|_{V_{\mathrm{p}}=0, v_{\gamma^{\prime}}=0} T_{\mathrm{p}}=\left.\frac{V_{0}}{V_{\mathrm{p}}}\right|_{\mathrm{s}^{\prime}=0, \mathrm{v}_{w}=0}$
Using equation 1 again,

$$
\begin{equation*}
\frac{V_{0}}{V_{\mathrm{in}}}=\frac{T_{\mathrm{s}}+T_{\mathrm{p}} T_{12}}{1-T_{\mathrm{p}} T_{32}} . \tag{5}
\end{equation*}
$$

Case 3: $V=0$, while port ψ is left open circuit. In this case $V_{0}=V_{2} T_{\mathrm{p}}$. Therefore

$$
\begin{equation*}
\frac{V_{0}}{V_{\mathrm{in}}}=\frac{T_{\mathrm{p}} T_{12}}{1-T_{\mathrm{p}} T_{32}} . \tag{6}
\end{equation*}
$$

The passive RC one-pole three-port network, Fig. 2, has the following transfer functions

$$
\begin{align*}
& \left.T_{12}(s) \equiv \frac{V_{2}}{V_{1}}\right|_{\mathrm{v}_{3}=0}=\frac{K b}{s+b} \tag{7}\\
& \left.T_{32}(s) \equiv \frac{V_{2}}{V_{3}}\right|_{\mathrm{v}_{1}=0}=\frac{M_{s}}{s+b} \tag{8}
\end{align*}
$$

where $b=\frac{R_{1}+R_{2}}{C_{\mathrm{n}} R_{1} R_{2}}, K=\frac{R_{2}}{R_{1}+R_{2}}$
and $M=\frac{R_{3}}{R_{3}+R_{4}}$
and assuming that the resistive attenuator (R_{3} and R_{4}) is much smaller than $1 / s C_{n}$.

The network in Fig. 3 represents the four-port first-order network ${ }^{2}$. It realizes $T(s)$ as a one-pole all-pass transfer function by applying the input voltage at terminal γ, with terminal ψ left open circuit ($R_{\mathrm{D}}=\infty$), or as a one-pole low-pass transfer function with negative gain constant $T_{4}(s)$ by applying $V_{\text {in }}$ at terminal ψ while terminal γ is earthed. At the same time, it can realize $T_{\mathrm{p}}(s)$ which is a one-pole lowpass characteristic with a positive gain constant. Referring to Fig. 3 and taking into consideration the effect of finite gain of the op-amp,
$\left.T(s) \equiv \frac{V_{0}}{V_{0}}\right|_{\substack{V_{\mathrm{r}}=0 \\ 4 \\ 4^{0 . c .}}}=\frac{s-\frac{\alpha a}{1+\frac{\alpha+1}{A}}}{s+a}$
$\left.T_{\mathrm{w}}(s) \equiv \frac{V_{0}}{V_{4}}\right|_{\substack{y_{0}=0 \\ V_{i}=0}}=\frac{-m a}{s+a} \cdot \underset{\left(1+\frac{\alpha+m+1}{A}\right)}{ }$
$\left.T_{\mathrm{p}}(s) \equiv \frac{V_{0}}{V_{\mathrm{F}}}\right|_{\substack{v_{y}=0 \\ \mathrm{q}, \mathrm{c} .}}=\frac{a(\alpha+1)}{s+a} \cdot \frac{1}{\left(1+\frac{\alpha+1}{A}\right)}$
where $a=\frac{1}{C R_{\mathrm{A}}}, \alpha=\frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}$ and $M=\frac{R_{\mathrm{C}}}{R_{\mathrm{D}}}$.
As $A \rightarrow \infty$ the above equations reduce to

$$
T=\frac{s-\alpha a}{s+a}
$$

which realizes a first-order all-pass if $\alpha=1$

$$
\begin{gather*}
T_{4}=\frac{-m a}{s+a} \tag{11}\\
T_{\mathrm{p}}=\frac{a(\alpha+1)}{s+a}
\end{gather*}
$$

Also the transfer function T_{p} which is defined in equation 4 is

$$
\begin{equation*}
T_{\mathrm{F}}=\frac{a(\alpha+m+1)}{s+a} \tag{12}
\end{equation*}
$$

Filter realization and design equations

Combining the networks of Figs $2 \& 3$ and guided by the block diagram of Fig. 1, the universal second-order filter is obtained as shown in Fig. 4. First the realization of allpass, notch and high-pass characteristics. Here the transfer function is given by equation 3 , using equations $7,8,9$ and 10 and as there are extra degrees of freedom choose $R_{3}+R_{4} \gg R_{A}$ to minimize the effect of loading. Thus the transfer function is
$T(s) \equiv \frac{V_{0}}{V_{\text {in }}}=\frac{s^{2}\left(1+\frac{\alpha+1}{A}\right)-s\left[\alpha a-b \cdot\left(1+\frac{\alpha+1}{A}\right)\right]+a b[K(\alpha+1)-\alpha]}{\left.\left.s^{2}\left(1+\frac{\alpha+1}{A}\right)+s[a+b-c M(\alpha+1)+a+b)\left(\frac{\alpha+1}{A}\right)\right]+a b\left(1+\frac{\alpha+1}{A}\right)\right]}$

As $A \rightarrow \infty$, equation 13 becomes

$$
\begin{equation*}
T(s)=\frac{s^{2}-s[\alpha a-b]+a b[K(\alpha+1)-\alpha]}{s-{ }^{2} s[a+b-a M(\alpha+1)]+a b} \tag{14}
\end{equation*}
$$

By choosing proper values for the parameters a, b, and K the above equation can realize all-pass, notch and high-pass transfer functions having
$\omega_{\mathrm{p}}=\sqrt{a b}, Q_{\mathrm{p}}=\frac{\sqrt{a b}}{a+b-a M(\alpha+1)}$
For simplicity of design, choose $\alpha=1$ (i.e. $R_{\mathrm{B}}=R_{\mathrm{C}}$). Thus equation 14 reduces to
$T(s)=\frac{s^{2}-s(a-b)+a b(2 K-1)}{s^{2}+s(a+b-2 M a)+a b}$.

All-pass filter

Equation 16 realizes an all-pass transfer function if $K=1$ (i.e. $R_{1} \ll R_{2}$) and $b=a M$. Using the above relation between the two time constants a and b, and for $\alpha=1$, the ω_{p} and Q_{p} of the transfer function become

$$
\omega_{\mathrm{p}}=a \vee M, Q_{\mathrm{p}}=\frac{\sqrt{M}}{1-M}
$$

For the case of interest, namely $Q_{p} \ll 1$, the above equations can be solved to give the following design formulae

$$
\begin{gathered}
M \approx 1-\frac{1}{Q_{p}} \text { thus } \frac{R_{3}}{R_{4}} \approx Q_{p}-1 \\
a \approx \omega_{p}\left(1+\frac{1}{2 Q_{p}}\right) \quad b \approx \omega_{\mathrm{p}}\left(1-\frac{1}{2 Q_{p}}\right)
\end{gathered}
$$

High-pass filter

A high-pass transfer function is obtained if $K=1 / 2$ (i.e. $R_{1}=R_{2}$), and $a=b$. Thus ω_{p} and Q_{p} are the same as in the case of ${ }^{\mathrm{p}}$ notch filter, and therefore the design equations for M, a and b are given by equations 17 and 18.

Low-pass filter

The low-pass filter in Fig. 4(b) is slightly different from that in Fig. 4 (a), as terminal γ is grounded instead of being excited by the input voltage. Thus the transfer function in this case is given by equation 6. Using equations 7,8 and 10 and substituting in 6 , assuming $R_{3} \gg R_{\mathrm{A}}$, the transfer function is

$$
T(s)=\frac{K a b(\alpha+1)}{s^{2}\left[1+\frac{\alpha+1}{A}\right]+s\left[a+b-a M(\alpha+1)+(a+b)\left(\frac{\alpha+1}{A}\right)\right]+a b\left[1+\frac{\alpha+1}{A}\right]}
$$

Fig. 3. Four-port active network realizes an all-pass function with the input at γ and (1) open circuit, or a low-pass function with input at γ and ψ earthed.

Fig. 4. All-pass, notch and high-pass functions are available by appropriate choice of parameters, a, b and K in equation 14 in circuit (a). With terminal grounded a low-pass characteristic is given (b), while the input applied to ψ gives a band-pass transferfunction (c).

As $A \rightarrow x$, this equation becomes

$$
T(s)=\frac{K a b(\alpha+1)}{s^{2}+s(a+b-M a(\alpha+1)+a b}
$$

which realizes a low-pass filter having (1) p and Q_{p} as given in equation 15.
Design equations: choose $\alpha=1$, thus $R_{\mathrm{B}}=R_{\mathrm{C}}$. For unity d.c. gain, $K=1 / 2$, thus $R_{1}=R_{2}$. An extra degree of freedom exists in this case, so for simplicity of design, choose $a=b$, thus ${ }^{1}{ }_{\mathrm{p}}=a$, and

$$
M=1-\frac{1}{2 Q_{\mathrm{p}}}, \text { thus } \frac{R_{3}}{R_{+}}=2 Q_{\mathrm{p}}-1 .
$$

The d.c. gain in the general case is $K(\alpha+1)$, and so can be adjusted to any desirable value.

Bandpass filter

Fig. 4(c) represents the bandpass filter, terminal γ is earthed and the input is applied to terminal ψ. The transfer function can be obtained by substituting equations $7,8,11$ and 12 in equation 5. For $A \rightarrow x$, $\alpha=1$.

$$
T(s)=\frac{-m \mathrm{as}+a b[K(m+2)-m]}{s^{2}+s[a+b-a M(m+2)]+a b}
$$

For a bandpass, $K=m /(m+2)$. The ω_{p} and Q_{p} values are

$$
(1)_{\mathrm{p}}=\sqrt{a b}, \quad Q_{\mathrm{R}}=\frac{\sqrt{a b}}{a+b-a M(m+2)}
$$

Choosing $a=b$,

$$
\omega_{\mathrm{p}}=a, \quad Q_{\mathrm{P}}=\frac{1}{2-M(m+2)} .
$$

The parameter m controls the magnitude of the gain at ω_{p}. If $\left|T\left(\mathrm{i}_{\mathrm{p}}\right)\right|$ is required to be $Q_{r}, m=1$, the design equations are

$$
\begin{gathered}
a=b=(1)_{\mathrm{p}} \\
m=1, \text { thus } R_{\mathrm{C}}=R_{\mathrm{D}} \\
K=1 / 3, \text { thus } R_{1}=2 R_{2} \\
M=1 / 3\left(2-\frac{1}{Q_{\mathrm{P}}}\right), \text { thus } \\
R_{3}=\frac{2 Q_{\mathrm{P}}-1}{Q_{\mathrm{P}}+\widetilde{1}} 2 \text { for } Q_{\mathrm{P}} \gg 1 .
\end{gathered}
$$

The table shows the design values for the different types of a second-order transfer function.

Effect of non-ideal op-amp

Here the frequency limitation equations of the network are given based on the onepole roll-off model of the op-amp which is characterized by

$$
\begin{equation*}
A=\frac{A_{\left.0^{(1)}\right)}}{s+(1,1)} \approx-\frac{G B}{s} \tag{19}
\end{equation*}
$$

where A_{0} is the open-loop d.c. gain of the

op-amp, ω_{1} is the open-loop $3-\mathrm{dB}$ bandwidth, and $G B=A_{0} \omega_{1}$ is the gain-bandwidth product. When equation 19 is substituted in 13 , the denominator of $T(s)$ becomes $D(\mathrm{~s})=$

$$
s^{2}+\frac{\omega_{\mathrm{p}}}{Q_{\mathrm{p}}} s+\omega_{\mathrm{p},}^{2}+\frac{(\alpha+1)}{G B} s\left(s^{2}+s(a+b)+a b\right)
$$

For the special case $\alpha=1, a=b$, thus
$\dot{D}(s)=s^{2}+\frac{\omega_{\mathrm{p}}}{Q_{\mathrm{p}}} s+\omega_{\mathrm{p}}^{2}+\frac{2 s}{G B}\left(s^{2}+2 \omega_{\mathrm{p}} s+\omega_{\mathrm{p}}^{2}\right)$.
Following the Budak-Petrela analysis ${ }^{3}$, the relative change in ω_{p} and Q_{p} due to the limited frequency response of the op-amp are
$\frac{\Delta \omega_{\mathrm{p}}}{\omega_{\mathrm{p}}}=-\left(2-\frac{1}{Q_{\mathrm{p}}}\right) \frac{\omega_{\mathrm{p}}}{G B} \approx \frac{-2 \omega_{\mathrm{p}}}{G B}$ for $Q_{\mathrm{p}} \gg 1 / 2$
$\frac{\Delta Q_{p}}{Q_{p}}=-\left(2-\frac{1}{Q_{p}}\right) \frac{\omega_{p}}{G B} \approx \frac{-2 \omega_{p}}{G B}$ for $Q_{p} \gg 1 / 2$

Passive sensitivities

From equation 14 the ω_{p} and Q_{p} sensitivities to all passive circuit components are

$$
\begin{aligned}
& S_{\mathrm{C}}^{(1) \mathrm{p}}=+S_{\mathrm{C}_{\mathrm{n}}}^{(1) \mathrm{P}=-1 / 2}, S_{\mathrm{R}_{\mathrm{A}}}^{(1)} \mathrm{p}=-1 / 2 \\
& S_{\mathrm{R}_{1}}^{()_{\mathrm{p}}}=-1 / 2\left(\frac{R_{2}}{R_{1}+R_{2}}\right), S_{\mathrm{R}_{2}}^{\omega_{\mathrm{p}}}=-1 / 2\left(\frac{R_{1}}{R_{1}+R_{2}}\right), \\
& S_{\mathrm{R} 3}^{\left(\omega_{\mathrm{D}}\right.}=S_{\mathrm{R}_{4}}^{\left(\omega_{\mathrm{p}}\right.}=S_{\mathrm{R}_{\mathrm{B}}}^{()_{\mathrm{p}}}=S_{\mathrm{R}_{\mathrm{C}}}^{\left(\omega_{\mathrm{p}}\right.}=0 \\
& S_{\mathrm{R}_{1}}^{\mathrm{Q}_{\mathrm{p}}} \approx\left(\frac{R_{2}}{R_{1}+R_{2}}\right) Q_{\mathrm{p}}, S_{\mathrm{R}_{2}}^{\mathrm{Q}_{\mathrm{p}}} \approx\left(\frac{R_{1}}{R_{1}+R_{2}}\right) Q_{\mathrm{p}}, \\
& S_{\mathrm{R}_{3}}^{\mathrm{Q}_{\mathrm{p}}}=-S_{\mathrm{R}_{4}}^{\mathrm{Q}_{\mathrm{P}}}=\left(\frac{R_{4}}{R_{3}+R_{4}}\right) 2 Q_{\mathrm{p}} \text { : } \\
& S_{\mathrm{R}_{\mathrm{A}}}^{\mathrm{Q}_{\mathrm{p}}} \approx-Q_{\mathrm{p}}, \quad S_{\mathrm{R}_{\mathrm{C}}}^{\mathrm{Q}_{\mathrm{P}}}=-S_{\mathrm{R}_{\mathrm{B}}}^{\mathrm{Q}_{\mathrm{p}}} \approx Q_{\mathrm{p}} \\
& S_{\mathrm{C}_{\mathrm{p}}}^{\mathrm{Q}_{\mathrm{p}}}=-S_{\mathrm{C}}^{\mathrm{Q}_{\mathrm{p}}} \approx Q_{\mathrm{p}}
\end{aligned}
$$

The Q_{p} sensitivities to the passive circuit components are proportional to $Q \mathrm{p}$ as is the case with other good high frequency performance networks, refs 4-6, and the circuit in this case belongs to class 1 filters as classified by Faulkner and Grimbleby ${ }^{7}$. The network will perform satisfactorily only when realized in hybrid integrated circuit technology ${ }^{8}$ for which it is intended.

Filter type	Design values	T(s)	ω_{p}	Q_{p}
All-pass Fig. 4(a) $T_{\gamma}=\frac{s-a}{s+a} .$	$\begin{aligned} & \alpha=1 \\ & K=1, b=a M \\ & M \approx 1-\frac{1}{Q_{p}} \\ & a \approx \omega_{p}\left(1+\frac{1}{2 Q_{p}}\right) \\ & b \approx \omega_{p}\left(1-\frac{1}{2 Q_{p}}\right) \end{aligned}$	$\frac{s^{2}-s a(1-M)+a^{2} M}{s^{2}+s a(1-M)+a^{2} M}$	$a \sqrt{M}$	$\frac{\sqrt{\bar{M}}}{1-M}$
Notch Fig. 4(a) $T_{\gamma}=\frac{s-a}{s+a}$	$\begin{aligned} & \alpha=1 \\ & K=1, \dot{a}=b=\omega_{\mathrm{p}} \\ & M=1-\frac{1}{2 Q_{\mathrm{p}}} \end{aligned}$	$\frac{s^{2}+a^{2}}{s^{2}+s 2 a(1-M)+a^{2}}$	a	$\frac{1}{2(1-M)}$
High-pass Fig. 4(a) $T \gamma=\frac{s-a}{s+a}$	$\begin{aligned} & \alpha=1 \\ & K=1 / 2, a=b=\omega_{\mathrm{p}} \\ & M=1-\frac{1}{2 Q_{\mathrm{p}}} \end{aligned}$	$\frac{s^{2}}{s^{2}+s 2 a(1-M)+a^{2}}$	a	$\frac{1}{2(1-M)}$
Low-pass Fig. 4(b)	$\alpha=1$	$\frac{2 K a b}{s^{2}+s[a+b-2 M a]+a b}$	$\sqrt{a b}$	$\frac{\sqrt{\bar{a} b}}{a+b-2 M a}$
$\underline{V} \gamma=0$	$\begin{aligned} & K=1 / 2, a=\bar{b}=\omega_{p} \\ & M=1-\frac{1}{2 Q_{p}} \end{aligned}$	$\frac{a b}{s^{2}+s 2 a(1-M)+a^{2}}$	a	$\frac{1}{2(1-M)}$
Band-pass Fig. 4(c)	$\begin{aligned} -\alpha & =1 \\ K & =\frac{m}{m+2} \end{aligned}$	$\frac{-\operatorname{mas}}{s^{2}+s[a+b-a M(m+2)]+a b}$	$\sqrt{a b}$	$\frac{\sqrt{a b}}{a+b-a M(m+2)}$
$\begin{aligned} & V_{Y}=0 \\ & T_{\psi}=\frac{-m a}{s+a} \end{aligned}$	$\begin{aligned} & m=1 \\ & K=1 / 3 \\ & a=b=\omega_{\mathrm{p}} \\ & M=1 / 3\left(2-\frac{1}{Q_{\mathrm{p}}}\right) . \end{aligned}$	$\frac{-a s}{s^{2}+s a(2-3 M)+a^{2}}$	a	$\frac{1}{2-3 M}$

References

1. Moschytz, G. S. High Q-factor insensitive active RC network similar to the TarmyGhausi circuit but using single-ended operational amplifiers, Electronics Letters, vol. 8 1972, p.458/9.
2. Aronhime, P. Realization of complex pole all-pass networks, IEEE Trans. Circuits \mathcal{E} Systems, vol. CAS-22 1975, p.324-8.
3. Budak, A. and Petrela, D.M. Frequency limitations of active filters using operational amplifiers, IEEE Trans. on Circuit Theory, vol. CT-19 1972, p.322-8.
4. Geffe, P. R. RC amplifier resonators for active filters, IEEE Trans. on Circuit Theory, vol. CT-15 1968, p.415-9.
5. Thomas, L. C. The biquad: Part I - Some practical design considerations, IEEE Trans. on Circuit Theory, vol. CT-18 1971, p.350-7.
6. Soliman, A. M. New active RC configuration for realizing non-minimum phase transfer functions, Circuit Theory and Applications, vol. 2 1974, p.307-15.
7. Faulkner, E. A. and Grimbleby, J. M. The effect of amplifier gain-bandwidth product on the performance of active filters, Radio: and Electronic Engineer, vol. 43 1973, p.54752.
8. Moschytz, G. S. FEN filter design using tantalum and silicon integrated circuits, Proc. IEEE, vol. 58 1970, p. 550-66.

Viewdata and teletext -a national sales strategy

Following a conference held earlier this year at which representatives of the industries concerned - broadcasting; retail and rental companies; t.v. and equipment manufacturers and information providers - together with representatives of the Department of Industry, the Department has issued a paper, UK Teletext and Viewdata: From commitment to action. This outlines a strategy for "the active, aggressive and immediate promotion of teletext in the consumer market-place, along with Prestel's carefully targetted marketing programme at the business community, which will be the best way to accelerate the arrival of mass-market Viewdata, and consolidate the growth of teletext".

Mr Kenneth Baker, Minister for Information Technology, has written to senior management in each sector of the industry asking for their company's endorsement of the plan and their support in carrying the commitments through to action.
An attack on the North American market has been launched by the foundation of British Videotext and Teletext, the joint venture of Logica Ltd and British Telecom.

- But what of the man on a Clapham omnibus? Does he really want all that writing on his tv screen? Would he use it even if he had a teletext-adapted set? Or would he prefer to sit back and enjoy Coronation Street, as usual?

Op-amp tone control

A m.o.s.f.e.t.-input bipolar i.c. design using potentiometers or switch controls with optional treble curves.

by Winthrop S. Pike, RCA Laboratories

To the ear, linear potentiometers used as control elements for standard tone controls have little effect on the overall sound around the middle of their travel and a rather sharp increase toward the ends. This high input/low output impedance tone control, designed around a m.o.s.f.e.t. input bipolar i.c., has a control element option in the form of a rotary switch, the fixed components of which are selected to give an even spread of boost or cut over the full rotation. A variation of this switch control moves the treble turnover frequency depending on the amount of boost or cut.

The $47 \mathrm{k} \Omega$ input impedance and low output impedance of this tone control make it suitable for connection between most audio amplifier circuits. Figure 1 shows the circuit, based on the RCA CA3140 series 'BiMOS' operational amplifier, in its simplest form. This i.c. has a m.o.s.f.e.t. input stage coupled with bi-polar output circuitry and is available in single or dual form (CA3240) and in different packages.

Understanding of the operation of the circuit of Fig. 1 may be easier if C_{3} and C_{4} are assumed to be short, and R_{3} and R_{4} assumed to be open circuits. Under these conditions, a signal at the input terminals, after d.c. blocking by C_{1}, is applied to the non-inverting input of the op-amp through an $11: 1(20.8 \mathrm{~dB})$ attenuator comprising R_{1} and R_{5}. The output of the op-amp is fed back to the inverting input through an identical attenuator, R_{2} and R_{6}.

In this configuration, the gain of the opamp is $1+\left(\mathrm{R}_{2} / \mathrm{R}_{6}\right)$ or $11(20.8 \mathrm{~dB})$, so the loss from the input attenuator and the gain of the op-amp give an overall gain of unity $(0 \mathrm{~dB})$. The response of the system so far described will be flat throughout the audio band, the low-frequency roll-off caused by the input RC well below audibility and the high-frequency roll off caused by the opamp well above.

With R_{3} and R_{4} now 'reconnected', and the slider of the treble potentiometer, P_{1}, moved to the extreme left, C_{2} in series with R_{3} will shunt the non-inverting input of the op-amp. As the reactance of C_{2} decreases with increasing frequency, treble roll-off will result. Also, the entire resistance of P_{1} will be inserted into the circuit between C_{2} and the inverting input of the $\mathrm{op}-\mathrm{amp}$. This will increase the negative feedback around the op-amp at high fre-
quencies, reducing the h.f. gain of the system. With the values given, about 15 dB of treble cut at 20 kHz will be produced.

When the slider of P_{1} is moved to the extreme right, no treble roll-off occurs, but the negative feedback around the opamp is reduced at high frequencies, resulting in about 15 dB of treble boost at 20 kHz . If the slider is centred, the two effects cancel, giving a flat response.

Variations in the positions of the slider of P_{1} have little effect on the response below 1 kHz , because below this frequency the impedance of C_{2} is high compared with R_{5} or R_{6}. Similarly, with the hypothetical short circuits on C_{3} and C_{4} removed, frequencies above about 1 kHz are not affected by P_{2}, as these two capacitors are of low reactance at these frequencies.

Fig. 1. Circuit diagram of the tone control in its simplest form. R_{3} and R_{4} may be reduced slightly to compensate for potentiometers which don't give zero resistance at the extremes of their travel.

In the bass region, the reactances of C_{3} and C_{4} increase as the frequency decreases and become appreciable compared with R5 and R6.

When the slider of the bass potentiometer, P_{2}, is moved to the extreme left, C_{3} will be shorted out and cannot affect the signal reaching the non-inverting input of the op-amp. Capacitor C_{4} is now only shunted by $50 \mathrm{k} \Omega$, the resistance of P_{2}, so the negative feedback of the op-amp circuit increases at low frequencies. This negative feedback causes 15 dB of bass cut at 20 Hz .

With the slider of P_{2} moved to the extreme right, C_{4} is shorted out and can no longer affect the negative feedback. Capacitor C_{3} is now shunted by $50 \mathrm{k} \Omega$ and the gain of the op-amp increases at low fre-

Fig. 2. To obtain more evenly spread boost and cut control, the linear potentiometers of Fig. 1 may be replaced by rotary switches and fixed resistors as shown here. The switches have make-before-break contacts.

Fig. 3. Response curves of the circuit when the switched resistor controls are used, showing the $3 d B$ steps at 20 Hz and 20 kHz .

quencies, resulting in a gain of about 15 dB at 20 Hz .

Switch controls

In Figure 1, the linear taper potentiometers shown for the treble and bass controls are a compromise in the interests of economy and availability. Ideally, one needs potentiometers with an ' S ' shaped taper, with which the rate of change of resistance with rotation is greater in the centre of the slider travel and less at each end. The ' S ' type taper can be simulated using rotary switches with fixed resistors, as shown in Fig. 2, to give five steps of either cut or boost in 3 dB increments at 20 Hz and 20 kHz . Figure 3 shows the response curves for the circuit with the switch control of Fig. 2 substituted.
An alternative circuit with variable treble turnover frequencies is shown in Fig. 4. In this version of the tone control, the bass end of the spectrum is controlled exactly as before, but the treble control is achieved by switching capacitor values. This moves the turnover point of the treble boost or cut along the frequency axis as the treble control is adjusted. Figure 5 shows the resulting response curves.

Two of the bass curves of Fig. 5, at +12 dB and -9 dB , have been plotred to 1 kHz without truncation to show their true shape. These curves cross the 0 dB axis and then return to it as do all the bass boost and cut curves between 6 and 12 dB - anomalies which are also found in many commercial tone controls. As the magnitude of these inaccuracies does not exceed $\pm 1.5 \mathrm{~dB}$, their effect is barely audible.
At 1 kHz , the maximum level change for any combination of control settings will not exceed about $\pm 1.5 \mathrm{~dB}$.

Construction

Because of the simplicity of the circuit, this section is limited to a few construction tips.

Resistors $\mathrm{R}_{3}-\mathrm{R}_{26}$ and capacitors $\mathrm{C}_{2}-\mathrm{C}_{14}$ may be mounted directly on the control switches (or potentiometers) so that only two unscreened leads and an earth need be run between op-amp and controls. If the leads to the inverting and non-inverting inputs of the op-amp (points A and B) are twisted together, any hum or noise picked up by the two tends to be cancelled out by the common-mode rejection properties of the op-amp.
Each op-amp supply must be by-passed by a ceramic capacitor of between 47 nF and $0.22 \mu \mathrm{~F}$, positioned as close to the i.c. pins as possible.

Interfacing

One of the advantages of this tone control is its relatively high input impedance. Figure 6 shows the tone control incorporated in an audio amplifier system immediately following the volume control. The output impedance of the volume control depends, of course, on the position of its slider. In the situation shown, the maximum impedance at the slider of the potentiometer will be when the resistance of the potentiometer on the input side of the

Fig. 4. This variation of the switched resistor tone control moves the treble turnover frequency as the amount of treble boost or cut is varied. The resistors shown in dotted lines are $22 \mathrm{M} \Omega$ and may be required if static build up over the capacitors causes switching clicks.

Fig. 5. Response curves of the circuit with the switch control shown in Fig. 4 substituted, showing the variations in treble turnover frequency with different boost and cut levels.

Fig. 6. Block diagram of a typical audio amplifier system with the tone control inserted after the volume potentiometer.

Fig. 7. Effects on the overall performance of the tone control caused by different driving impedances.
slider is equal to the resistance on the grounded side of the slider plus the input impedance of the tone control (added as parallel resistors). Taking $100 \mathrm{k} \Omega$ as the volume control resistance, the maximum impedance driving the tone control will be about $25 \mathrm{k} \Omega$.

Figure 7 shows two sets of curves produced by the tone control using 25Ω (solid lines) and $24 \mathrm{k} \Omega$ (dotted lines) driving impedances. The only significant difference between the two sets of curves is the 3 dB overall loss caused by the $24 \mathrm{k} \Omega$ driving impedance so a $100 \mathrm{k} \Omega$ potentiometer may be used before the control without buffering. Note, however, that if such a highresistance potentiometer is used, its law will be affected slightly by the input impedance of the tone control.

Outside the audio frequency band, boost and cut are limited to about 20 dB at all frequencies but if the 3140 is used, further h.f. limiting may be applied, if required, by connecting about 27 pF between pins 1 and 8 of the op-amp.

Using a prototype circuit with rather long leads and no shielding, the maximum undistorted output into $2.2 \mathrm{k} \Omega$ was about 8 V r.m.s. and with the input signal removed, residual hum and noise at the output was 0.4 mV r.m.s., giving a dynamic range of 86 dB . A load of less than $2.2 \mathrm{k} \Omega$ will reduce the maximum output voltage.

Wireless Exhibition

On the Air: The story of radio and television is an exhibition to be held at the Livesey Museum, 682 Old Kent Road, London SE15 1JF, open Monday to Saturday from 12th May to 25th July. The exhibition celebrates the history of broadcasting in Britain and considers its future.
Guglielmo Marconi's famous 'black box' which contained the 'wireless' apparatus he brought to England in 1896, will be amongst the historical exhibits. Transmissions from the Marconi stations at Chelmsford and Writtle proved so popular a public broadcasting service was opened in 1922 by the British Broadcasting Company. Photographs and original documents
are used to plot the early years of the BBC which only became a public corporation in 1927.
'Wireless' was a flourishing hobby in the 1920s - many listeners made their own homemade sets from kits. A selection of valve receivers and crystal sets will be on display amongst the crystal sets will be one in the shape of a book entitled "The Listener"!

The exhibition tells the story of John Logie Baird, a one-time dealer in socks and jam, often called the "Father of Television". In 1925 visi tors to Selfridges Store saw images produced by his television apparatus which was made from an assortment of army surplus valves, knitting needles and cardboard! "The Televisor", an early television receiver designed by Baird will be on display.

Radio had its finest hour during the Second World War but the young television service was closed down. Television re-opened after the war and 1955 saw the birth of commercial television - which Churchill dismissed as "that tuppenny Punch and Judy show". Colour broadcasts officially began on the new BBC 2 channel in 1967 and a demonstration will explain colour television in simple terms.

Broadcastung has always sought to educate and entertain so this exhibition will also focus on some of the most interesting aspects of pre-sent-day broadcasting. There will be sections dealing with local radio, news broadcasting and audience research. Exhibits from the very popular television series Hitch-hikers' Guide to the Galaxy will be displayed in the section about the studio.

The exhibition concludes with a section on cable television, broadcasting direct from satellites to viewers' homes and the latest in video equipment. The new Philips video-disc player will be on display, alongside displays of Ceefax, Oracle and Prestel, television games, an autocue system and a selection of video tapes covering subjects like local radio, recording television programmes and special 'electronic' effects used in television.

Many special events will accompany the exhibition. Capital Radio's "Capital Cruiser" will be at the museum on the 28th May during the afternoon. "Three in a Row" the BBC Radio 2 quiz game is being recorded on 19th May at the North Peckham Civic Centre (adjacent to the museum). "The Radio Enthusiast" a demonstration/talk will be given by Ralph Barrett on 16th May at 2.30 pm .

Literature

received

Catalogue from Cambion contains information on a very wide range of small components, such as sockets, wire-wrap equipment, circuit cards, patch cords, jacks. It can be obtained free from Cambion Electronic Products Ltd, Castle ton, nr Sheffield S30 2WR.

WW 420

Two brochures from Hybritek describe the company's capability in the processing and assembly of dies, including t.t.l., c.m.o.s. and e.c.l. in a variety of packages. The brochures are available from Hybritek Ltd, 125 Long Lane, Chadderton, Lancs. OL9 8AY. WW 421

A range of our 200 power supplies from Datel Intersil is fully described in a new catalogue, which can be obtained from DI, 9th Floor, Snamprogretti House, Basingstoke, Hants.

WW 422

Passive r.f. components, made by Weinschel Engineering, are imported by Marconi Instruments, who can supply a short catalogue. M.I. are at Longacres, St Albans, Herts. AL4 0JN.

WW 423
An eight-page data sheet from Pascall provides preliminary details of the new Micro Networks MN5 282 16-bit a-to-d converter, which is a low cost, thin-film circuit in a 32 -pin d.i.p. Application information is included. The publication can be obtained from Pascall Electronics Lid, Hawke House, Green Street, Sunbury-onThames, Middlesex, TW 16 6RA.

WW 424
Analogue-to-digital converters, d-to-a converters, sample/hold amplifiers, op-amps and data acquistion products are all described in a short catalogue from Zeltex, who are represented in the UK by MCP Electronics Lid, 38 Rosemont Road, Alperton, Middlesex HA0 4PE. WW 425

Three brochures from Ocean Applied Research describe five v.h.f. automatic direction finders, operating in the range $25-50 \mathrm{MHz}, 27 \mathrm{MHz}$ or $83-110 \mathrm{MHz}$. The instruments are Model ADFS-922/932/940/928/938. Brochures are obtainable from OAR at 10477 Roselle Street, San Diego, California, 92121, USA.

WW 426

A large range of thumbwheel, leverwheel and pushwheel switches by Cherry is described in a new' catalogue, which is obtainable from Cherry Electrical Products Ltd, Coldharbour Lane, Harpenden, Herts. AL5 4UN.

WW 427
The range of opto-electronic components from International General Electric, includes couplers, emitters and detectors of many different types, and is described in a short catalogue from Norbain Electro-Optics Ltd, Norbain House, Arkwright Road, Reading, Berkshire RG2 0LT.

Electronic combination lock - correction

The caption of Fig. 1 on p. 42 of the January issue may have given the impression that if the digits $3,6,9,7$ were typed in on the keyboard, the lock would operate with the given switch settings. Due to the action of the shift registers, the digits need to be typed in the reverse order. From a practical point of view, digit 1 on the drawing should be called digit 4, digit 2 becomes digit 3 , etc.

An appreciation of James Clerk Maxwell, 1831-1879, part 2

Have we got the allocation of honours between Einstein and Maxwell right?

by M. G. Wellard

Abstract

''The object of these experiments was to test the fundamental hypothesis of the Faraday-Maxwell theory, and the result of the experiments is to confirm the fundamental hypothesis of the theory" wrote Hertz in his book Electric Waves. The fundamental hypothesis of the Faraday-Maxwell theory was that space was not empty. This article continues an attempt to explain why we should turn the cuckoo clocks back to Maxwell and start again.

When Maxwell decided to study the science of electricity, he resolved "to read no mathematics on the subject till I had first read through Faraday's experimental researches on electricity," and a little later in the preface to his treatise he recommended the student "after he has first learned, experimentally if possible, what are the phenomena to be observed, to read carefully Faraday's experimental researches in electricity. He will there find a strictly contemporary account of some of the greatest electrical discoveries and investigations, carried out in an order and succession which could hardly have been improved if the results had been known from the first, and expressed in the language of a man who devoted much of his attention to the methods of accurately describing scientific operations and their results." Maxwell was very careful in his choice of words. He was hinting that Faraday did, more often than not, know the results of his experiments in advance; that Faraday's great electrical discoveries were experimental proof of Faraday's theories. Maxwell's insistence on accurate description of factual experiments is obvious.
Maxwell's laws are the result of his mathematical treatment of Faraday's theory that everything in the universe, including space, were different forms of one mysterious force, a manifestation of his God and a true field of force, although Maxwell filled only space, including the space permeating molecular structures, with a medium or ether having quite specific and mathematically measurable actions and reactions by "bodies" which obeyed Newton's laws of motion. Maxwell found some ideas of Faraday impossible to develop mathematically and designed himself a working model of his ether with the sole objective of using the model as an aid in developing his electromagnetic theory of light. The model's greatest success was his development of the idea of displacement current, the forces of electricity being
displaced in shape as they were squeezed against the "bodily" resistance of a nonconductor of electricity. Light travels through space, a non-conductor, and his displacement current was vital to his theory that light was electricity in the form of a wave, squeezing its way through the non-conductor in space. He realised that conductors of electricity were the exception, rather than the rule, fully appreciating Faraday's analysis of conductors and non-conductors that the only continuous path through any material is via the space surrounding the material's atoms, and therefore atoms were centres of power, with the power to decide whether the space surrounding them should be a conductor or just like the rest of space outside.

Maxwell's design for space was filled with two types of ball bearings, Newton's bodies, one for electricity, and the other for magnetism. When a force acted on the electric bodies, they acted on the magnetic bodies. In all actions there were always two bodies in physical contact with each other acting equally and in opposition. The action of the electric bodies always induced a rotary action in the magnetic bodies. Magnetism was caused by a rotary action of his medium and was Maxwell's method of explaining Ampere's theory that the magnetism in magnets was caused by electric currents encircling the magnet's. molecules. When the majority of the magnet's tiny electric currents were in parallel, they acted like coils of wire wound around a former. Each magnet was really an electromagnet with its coils connected in parallel rather than in series. Only when the bodies moved was electricity detectable.

The initial action on the electric bodies threw the medium into a state of stress, the stresses appearing as electric and magnetic phenomena. The stresses in his medium were analogous to the stresses produced in other media such as solids and liquids. His working model was designed specifically to help him identify the correct mathematical analogies between the forces involved in electromagnetic phenomena and forces involved in the stresses of material structures. Although the two bodies of his medium were a form of particle, the particle nature of his medium was unimportant. What was important was the changing stress in the medium which he could follow anywhere in space. His energy did not disappear at one point in space to magically reappear somewhere else, the theme of modern electromagnetic theory. Max-
well's energy was always conserved. Maxwell's medium or ether was capable of providing a force of opposite reaction. It was a form of energy capable of performing work in resisting a disturbance of its state of rest or inertness. Its inertia, its resistance to change, is known as its impedance. The disturbance of its state of rest caused by the action of a wave of light, is resisted by the medium, and the magnitude of this resistance is known as the impedance of free space, about 377 ohms. Maxwell headed page 459, volume two, of his treatise, Energy of the medium, and he meant us to take him literally.

Faraday had proved that magnetism interacted with polarized light and therefore light was most probably an electromagnetic phenomena. Included in Maxwell's thousand-page treatise is a twenty-page chapter detailing his mathematical proof that light is an electromagnetic wave phenomenon passing through his medium. He was so far ahead of experimental physics that more than twenty years were to elapse before Hertz confirmed Maxwell's maths. Maxwell then became a posthumous hero for a few years, but unfortunately the majority of physicists concentrated their speculations on the twenty-page chapter of Maxwell's treatise and ignored the rest. His medium was studied chiefly as an ether, a carrier of light waves that Michelson and Morley said acted very strangely.
Since Newton first published his formula forecasting the attractive forces of gravity capable of acting across the space separating the centres of two pieces of matter, physics has been dominated, apart from a few years immediately following Hertz's experiment with Maxwell's waves, by action-at-a-distance theories. Maxwell devoted the last chapter of his treatise to a mathematical and almost physical attack on them. These theories say that forces can act across a distance in space without two "bodies" necessarily being in physical contact with each other. There is an exchange of the attractive force of gravity between the apple and the earth unaided by the action of any bodies in the space separating them. Time plays no part in the exchange of force, the mutual sensing of force taking place instantaneously. Faraday and Maxwell believed that forces were transmitted across space isolating two bodies from each other by the shunting action of a string of other bodies ioining the centres of force, and that the shunting action was only possible if all bodies were in physical contact with each other. Forces
could not be exchanged across empty space without the aid of bodies in physical contact with each other along the line of least action. Because each body along the line took a finite time to act and react, the exchange of forces always took time. In Faraday's day there was no known method of measuring the time taken to charge a capacitor, but when Hertz proved that light was an electromagnetic wave that took time to cover a distance in space, all action-at-a-distance theories in which time was not the essence were completely discredited.

During the period that Maxwell was busy writing and re-writing his treatise, all action at a distance theories involved carriers of forces. The force of gravity is carried in the centre of every piece of matter and there it stays, but the forces of electricity and magnetism move about. These moving forces were carried either by fluids, hence electric currents and an ether, or by particles. Particles were best because they slotted neatly into the infinitesimal calculus and were defined Newton bodies. Fluids became too involved mathematically and acquired remarkable properties. In the final chapter of his treatise, headed Theories of Action at a Distance, Maxwell gave a critical analysis of rival theories, first those involving electricity carried by particles, and then those involving the propagation of light by different particles. The last words of his treatise are an appeal to the common sense of those who rejected his logic, a logic he was never to see proved. The final sentence is, in more ways than one, the saddest sentence in science.
"In fact, whenever energy is transmitted from one body to another in time, there must be a medium or substance in which the energy exists after it leaves one body and before it reaches the other, for energy, as Torricelli remarked, "is a quintessence of so subtle a nature that it cannot be contained in any vessel except the inmost substance of material things.' Hence all these theories lead to the conception of a medium in which the propagation takes place, and if we admit this medium as an hypothesis, I think it ought to occupy a prominent place in our investigations, and that we ought to endeavour to construct a mental representation of all the details of its action, and this has been my constant aim in this treatise."

Maxwell might have been a successful psychiatrist. Just before his linal words extracted above he wrote:
"There appears to be, in the minds of these eminent men, some prejudice, or a priori objection, against the hypothesis of a medium in which the phenomena of radiation of light and heat and the electric actions at a distance take place. It is true that at one time those who speculated as to the causes of physical phenomena were in the habit of accounting for each kind of action at a distance by means of a special aethereal fluid, whose function and property it was to produce these actions. They filled all space three or four times over with ethers of different kinds, the properties of which were invented merely to save ap-

pearances, so that more rational enquirers were willing rather to accept not only Newton's definite law of attraction at a disrance, but even the dogma of Coates that action at a distance is one of the primart properties of matter, and that no explanation can be more intelligible than this fact. Hence the undulatory theory of light has met with much opposition, directed not against its failure to explain the phenomena, but against its assumption of the existence of a medium in which light is propagated.'

Following Hertz"s experiment, attempts to construct a mental representation of the ether's action were short-lived. Lorenz soon discovered a simple way of re-introducing an action at a distance theory Maxwell's ether would carry particles that carried electricity. Maxwell had said that electrical phenomena were symptoms of stresses of his medram, and magnetism the result of a rotary action of the same medium. His ether was capable of some form of motion, Lorenz's particles were eztremely sensitive to actions of the ether, so much so he decided that it was in the best interest of everybody if he introduced a law forbiding the ether to move. "Since we have assumed that the ether doesn't move, why should we ever speak of a force acting upon the medium ... Indeed this
conception (his theory) rejects the equality of action and reaction
" Lorenz had found a bophole in Newton's third law of motion. His initial theory had two particles that carried electricity, one positive and the other equally and oppositely negative. The negative particle is now called an electron. He never did find the other one.

In Rutherford's model of the atom (a pianer) the negatively charged particle (the electron) orbits a sun, the positively charged particle (the proton). The charges are equal and opposite and therefore the inert atom is electrically neutral. Physicists using the mathematics of Newton's laws of motion discovered that although the proton was electrically opposite to the electrom, it was about 1,800 times unequal. Every atom in the universe was carrying an excess of positive electricity. Many years after Lorenz re-introduced his action at a distance particles, his carrier of positive electricity was discovered, the positron. This particle is very scarce, which is just as well, because all atoms in the universe are still generating 1,800 times their mass number of excess positive electricity. It only requires someone to discover that the proton is not encircled by an electron, but by the proton's anti-particle the antiproton, for electricity to get back to normal.

Rutherford's theory of the atom does not satisfy the principle of the conservation of energy. Without the aid of the mathematics of the quantum theory, an afterthought, it is generating an unbalanced amount of positive electricity. The quantum theory says that there are three fundamental particles, each with its own anti-particle. One particle carries negative electricity, another positive electricity, and the third is electrically neutral. The antiparticles of the first two carry an electric charge that is equal and opposite to the charge carried by its particle. These particles are the normal constituents of atoms and are capable of emitting or disintegrating into other particles and their associated anti-particles. The total number of particles and anti-particles now exceeds 200, a great improvement on Lorenz's original theory which only had two particles and no anti-particles. Their actions are now governed by 14 conservation laws, some with a corresponding anti-law.
When Lorenz's particle carrier of negative electricity, the electron, enters a slit cut in a sheet of metal, it emerges as a wave. This odd behaviour of electricity has lead to the concept of duality; electricity can choose between acting as a particle or a wave - the reason why 14 laws are required to control its actions. Oracles can always be used to dimiss all reactions to actions, and the electron is no exception. It can throw a stone into a dried-up,pond and generate a water wave. Like Maxwell's equations, it can now wave through a space devoid of anything to wave. One major particle, Einstein's photon, does not have an associated anti-particle until it spins, when it then transforms into a particle and an anti-particle each with a half-spin. This transformation is necessary because no particle or anti-particle can perform a complete revolution. The photon represents the electromagnetic energy of one complete cycle of a Maxwell wave measured by Planck's constant. The second half cycle of a wave is the equal and opposite action to the reaction of the first half cycle to the action of a medium, this total action allowing both the medium and the wave to conserve their energy. The word radioactive indicates that an atom is emitting Maxwell waves which have two half cycle, equal and opposite actions. The anti-particle is the equal and opposite reaction to the action of its particle. If Planck's quantum thesis is a mistake, presumably the terms particle and anti-particle refer to the first and second half cycles of an electromagnetic wave, and an electron travelling through space is the negative half cycle of such a wave. The usual method of producing electrons is by heating a slightly radioactive piece of metal, and the frequency of the electron lies in the spectrum of heat. The uncertainty principle allowed an intercepted electron to have an amount of energy that lay along a line which followed the varying energy of one half cycle of a Maxwell wave. If a Maxwell wave oscillating at many million times per second is casually intercepted by a conductor of electricity, it is impossible to guarantee with certainty the exact energy level
of the wave at its point of interception.
In a medium of constant energy level, a wave will expand spherically through the medium, both medium and wave conserving their energy. If one cycle of a Maxwell wave has an amount of energy equal to Planck's constant at its point of origin, it will have to spread that energy evenly over an ever increasing spherical wavefront. The area of a sphere varies with the square of its radius, the law of inverse squares. The wave expands spherically because the reaction of the medium to the action of the wave is perfectly balanced, and one part of the wave's front does not travel faster than another part. The law of inverse squares is symptomatic of an equal and opposite reaction aimed at the origin of a radius. The amount of energy in the light from a star that reaches the earth is only a minute fraction of the light's total energy at source, the rest of the energy is spread over the surface of a sphere whose radius is the distance between the star and the earth. With a particle, the law of inverse squares does not apply. The electrical energy of a particle at its point of destruction equals the particle's energy at its point of origin. The only way to make a particle's energy follow the energy pattern of a wave is to multiply the particle's energy by a wave equation. The mathematics of the quantum theory, wave mechanics, are a collection of equations developed by many eminent men, in no way responsible for the initial decision to ignore Maxwell, to make three equations developed from the theoretical interpretation of three single experiments satisfy the principle of the conservation of energy.

Rutherford's negative electron and positive proton theory of the atom only agreed with the atomic weight of hydrogen, the lightest atom. The weight of all other atoms was balanced by the discovery of the third fundamental electrically neutral particle, the neutron. A bomb has been named in horror of this non-existent particle. With a little bit of luck this bomb may be filled with nothing more dangerous than a few mathematical equations, the product of the only known form of organic atomic energy with intelligence.

In the chapter of his treatise headed On the Induction of a Current on Itself, Maxwell noted that the analogy between the flow of a liquid through a tube and the flow of a current of electricity along a wire was not perfect. The flow of liquid did not depend on how the tube was bent, or on the presence of anything outside the tube. The way in which a wire was bent affected the induction current, as did the presence of a piece of soft iron.
"We are therefore led to enquire whether there may not be some motion going on in the space outside the wire, which is not occupied by the electric current, but in which the electromagnetic effects of the current are manifested."

The original idea of the ether was based on the analogy between light and sound, and there are many analogies between the actions of sound and light waves, and the
reactions of their media; wavelength, frequency, velocity, reflection, refraction, focusing, interference, polarization, resonance, and a close analogy between a cavity resonator and a Helmholtz resonator. There is also a close analogy between the action of a magnetic needle encircling the electricity in a cylindrical conducting wire, and a weather vane following the rotational action of a movement of air encircling cylindrical centres of high and low atmospheric pressure, especially if the current in the wire is considered to create a volume of high or low electrical pressure in the surrounding ether. Winds encircle centres of atmospheric high and low pressure to relieve a state of stress, the line of least action being a rotation because a line aimed at or from a pressure centre would not relieve the stress on the surrounding air; nothing would happen. This analogy will explain the action of magnetism as a rotary action of the normally inert ether around centres of high and low electrical pressure.
Maxwell said in his treatise his medium could become "a receptacle of two forms of energy," half potential or electric, and half kinetic or magnetic. He also proved that the potential or electric energy in his ether was equal to its kinetic or magnetic energy. In Ferraro's Electromagnetic Theory, the author goes one step further. In para. 243 headed Magnetic Energy of Electric Current, he says:
"By Ampere's theory of magnetism it follows that a system of electric currents has magnetostatic energy of amount . . the integral extending over all space; we term this the magnetic energy of the system of currents. We shall now prove that this is equal and opposite to the potential energy of the currents."
Two "bodies" acting equally and in opposition and only one of them can be Maxwell's ether. The density of the mass of the ether was confined in Maxwell's working model to the rotating magnetic bodies, and clearly magnetism is the equal and opposite reaction of a form of energy, Maxwell's ether, to the action of the other bodies, another form of energy, electricity. Maxwell's space was "a receptacle of two forms of energy".
His equations are an elegant and infallible aid to those forecasting the weather in his ether. Unfortunately, in the 1890 's, his equations were over-simplified by the removal from sight and mind of his vectorpotential, his aid to the forecasting of the direction and strength of the ether wind. An atom is merely a stage in the evolution of electrical energy. A body, Newton's word for a mass described in units of his space and time, is as Newton said ${ }^{2}$ when referring to gravity, "material or immaterial", a fact proved by Maxwell who based his equations on the application of accelerations to unidentified masses to forecast the magnitude and direction of the forces of electricity and magnetism.
If weather maps had been published in Maxwell's day, no doubt he would have spotted the analogy. The only maps he had were Faraday's lines of force, samples of which Maxwell reproduced at the end of

WIRELESS WORLD MAY 1981
both volumes of his treatise. He was the last of the great natural philosophers, unconcerned with the art of thinking about thinking. He was not, as is commonly supposed, an outstanding visionary and dreamer. He had both feet planted very firmly on the ground, prepared to stretch his theoretical and mathematical logic to their limits. but ever mindful of the folly of developing original ideas. He wrote his own epitaph in the preface to his treatise.
"I shall avoid, as much as I can, those questions which, though they have elicited the skill of mathematicians, have not enlarged our knowledge of science". Science has not satisfied the principle of the conservation of energy during the hundred years since Maxwell's death. It has wasted Maxwell's energy and its own. Faraday and Maxwell had developed unified pictures of the universe, and if a phenomenon of force didn't fit their picture, they were willing to wait until it did. They were completely incorruptible in their search for the unemotional modesty of the truth.
Maxwell said that Faraday's method was to begin with the whole and arrive at the parts by analysis. Having studied the whole pieced together by the democracy of astronomy, and analysed the parts of this insignificant planet that are busy proving that Darwin's theory of our evolution is an insult to monkeys, I take this opportunity of not thanking, in advance, certain physicists for their indispensible assistance in the final proof of Thom's catastrophe theory ${ }^{3}$. That is an illuminating, uplifting and heartwarming experiment by theorists wasting and concentrating what is a finite amount of energy in themselves and in the business end of action at a distance theories, and suggest they follow the example of Lorenz and pass a law forbidding themselves to move until they have explained exactly how and why the atoms of organic energy with intelligence are immune from the law of the conservation of energy and all that its principle implies. If organic atomic energy, with or without intelligence has a choice, its own uncertainty principle, and can avoid taking the line of least action or waste, its actions must be governed by the law of the survival of the most efficient. This law governs the behaviour of the fourth force capable of acting across a distance in space, and like the laws of Newton and Maxwell, gives silly answers to silly questions.

Einstein may have wasted an incalculable amount of energy, but he left science a legacy; experimental proof that the more an idea deviates from the 100% efficiency of the truth, the more a bureaucracy defends the idea by repression, censorship, dogma and the cult of the personality, to waste and concentrate in itself an ever increasing amount of energy attempting to prove the unprovable. Extreme ideas are propagated by portable laboratories whose only property is the mincing of words, the bigger the better, the more the merrier, especially when the words like TIME and SPACE are spelt in capital letters. They can be temporarily diverted from their avowed objective of saving us from being fools, by forcing them to save themselves
by never answering an awkward question. Just as a machine that develops a loss of efficiency concentrates the wasted energy in the point of inefficiency, so did Einstein's friends condemn their successors to waste and concentrate their energy in the point of most inefficiency, a collection of atoms called Einstein. This phenomenon, known as the cult of the personality, is the reason for the strange allocation of honours between Einstein and Maxwell.

Much of this article is based on the mathematical proof that a sound wave was really a particle called a phonon, the forerunner of four-dimensional sound and the Bunkum Theory, on the books of three authors toasting "Faraday, the hero", - Maxwell's treatise, Pearce Williams' biography of Michael Faraday, and Berkson's Fields of Force - on the works of M. Thom, the Newton of the evolution of all forms of energy, and on the anti-Einstein comments, written with unemotional modesty by L. Essen, who suffered the slings and arrows of an outraged bureaucracy for daring to think for himself and the rest of us that we have a problem.

References

1. Berkson's Fields of Force. Routledge \& Kegan Paul, 1974, page 283.
2. Ibid. page 114. Extract from Newton's letter to Bentley.
3. René Thom, Structural Stability and Mophogenesis: an Outline of a General Theory of Models. W. A. Benjamin, 1975. The subject of the 1978 Faraday Christmas lecture for children broadcast by BBC TV from the Royal Institution.

Wireless World index and binding

The index for Volume 86 (1980) of Wireless World is now available, price 75 p including postage, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.
Our publishers also offer a service of binding volumes of Wireless World, each complete with the appropriate index. If you wish to use this service send your copies to Press Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London, SE17 with your name and address enclosed. Confirm your order to the General Sales Department (address in first paragraph) and with this letter to Quadrant House send a remittance of $£ 6.90$ for each volume (this price includes the index).

In both cases cheques should be made payable to IPC Business Press Ltd.

Paul Voigt dies at 79

An audio pioneer

Paul Gustavus Adolphus Helmuth Voigt, the famous audio pioneer, died at his home in Ontario, Canada, early in February following a heart attack. Born in December 1901 in London, he was of German ancestry but his father had become a naturalised British subject late in the 19th century.
A contemporary of Alan Dower Blumlein, he was granted a total of 32 British patents between 1923 and 1953, the first being concerned with wireless transmission. In the early part of this period he designed the Edison Bell dual silicon crystal detector. (Once a good spot was found on one crystal this could be kept in reserve while trying to find a better spot on the other.) Although he developed very advanced moving coil disc cutters and pickups during the mid 1920 s Voigt will be remembered most for his work on loudspeakers, notably for his development of the moving coil loudspeaker and his domestic corner horn. The m.c. loudspeaker was in advance of its time in underlining the importance of maximum gap flux density - primarily for "damping" and only incidentally for efficiency. Other m.c. innovations were the dual diaph ragm and the aluminium-wire voice coil.
The domestic corner horn loudspeaker stemmed from the earlier designs of high flux drive units and large tractrix horns he had built for cinema sound. The large corner horn enclosure incorporated a vertical tractrix horn and reflectors, covering the range above about 100 Hz , combined with rear radiation of the lower frequencies using a broad bandwidth $1 / 4$ wavelength tapered pipe. This l.s. system gave a very high electro-acoustic efficiency, wide angular distribution and freedom from colouration, together with natural image characteristics consistent with monophonic reproduction. Even today a pair of these loudspeakers can offer stereo sound comparable with that from the first current low efficiency designs.

The corner horn was one of the products of his own company, Voigt Patents Ltd, which he started in 1933 after the economic slump had finished off Edison Bell. During this time he was a protagonist in the move away from massive pickup elements and produced a notable moving coil unit with minimal moment of inertia. Wireless World owes a lot to him for his help and advice on microphones when, in the mid 1930s, the staff were developing an automatic response curve tracer.

Paul suffered from periods of ill health and in 1950, with his wife Ida, he emigrated to Canada. Since then, although keeping abreast of audio developments, his spare time was largely devoted to studying radically new concepts of electromagnetic propagation and the nature of gravitational attraction and to proposing a unified field theory.
Voigt's outstanding contribution has already been well documented, and a complete report on the man and his work is given in: British Kinematography, Sound and Television, vol. 52, no. 10, October 1970, p. 316, under the title "Paul Voigt's contributions to Audio".

Waveguide transitions

Double-ridged, wideband waveguide transitions, formerly only obtainable from American sources, are now made in the U.K. by Micro Metalsmiths. They are primarily intended for military use, covering WRD $475(4.75-11 \mathrm{GHz})$ and WRD $750(7.5-18 \mathrm{GHz})$ and being fitted with SMA or TNC connectors, or Type N to special order. Their voltage standing wave ratio is better than 1.2 , and the insertion loss is less than 0.25 dB over the entire band. While the bodies are normally made in aluminium, copper-based alloy types can be specified. Micro Metalsmiths L.td, Kirkbymoorside T()6 6DW', N. ''orks.

WW301

Function generator

Switch-selectable sine, square and triangle wave outputs in the range 1 Hz to 100 kHz are available from a 600 s output on the latest addition to the Thandar range of measuring instruments, the TGl00 function generator. A separate output is pro-
vided to drive up to 20 standard t.t.I. loads and a $39 \mathrm{k} \Omega$ impedance sweep input can give a sweep rates of up to 1000:1. Controls of the generator are: a 0 dB or -40 dB output level switch with variable-potentiometer output-level control, d.c. offset switch - also with variable potentiometer control, five-decade range selector switch with fine frequency control, and function selector switches. Sinewave distortion is typically 1%, triangle waveform non-linearity 0.1% and the rise and fall times of the square wave are 150 ns into $600 \Omega 2 / 20 \mathrm{pF}$ Sinclair Electronics Ltd, London Road, St Ives, Huntingdon, Cambs PE174HJ
WW302

Optical isolator for measurement

Measurements down to 20 mV can be made in the presence of 1.5 kV d.c. common-mode voltages on a safely grounded test instrument, using the A6902 optically coupled voltage isolator from Tektronix. The bandwidth of this dual channel device is zero to 15 MHz and cali-

WW303

WW301
brated attenuators, with sensitivities from 20 mV to $200 \mathrm{~V} / \mathrm{div}$, are provided on each channel. At 60 Hz , the isolation specification is $200,000: 1$, or -160 dB . Standard accessories of the A6902 are two pairs of voltage probes, one set for high voltages and the other for lower voltages. There is also available an A6901 ground isolation monitor that allows one to make floating measurements to safety extra low voltage (40 V) more safely. The photo shows the A6902. Tektronix (UK) Lid, Beaverton House, P.O. Box 69, Harpenden, Herts.
WW303

Data display monitors

High-resolution, colour datadisplay monitors, designed for use in v.d.u. terminals and other dataprocessing equipment, have been introduced to the market by Cotron Ltd. The DDC series consists of three basic models with tube sizes of 9,12 or 14 in , all available either cased or in chassis form. For the 9in version, resolution is 414×552 pixels and for the 12 in version, 603

WW304

$\times 804$ pixels, to enable reading of 64 and 80 characters per line respectively. A standard-resolution tube is used in the relatively lowcost 14 in model for display of up to 48 characters per line. All models accept direct red, green and blue inputs at $1 V$ peak saturation level and a negative synchronization pulse of 0.5 to 4 V peak. Open frame units also accept line and field drive pulses at t.t.1. levels. Space is provided inside the cased version for further electronic circuits, such as the logic of a v.d.u. terminal, which can be driven by the monitor's power supply. Cotron say that the cost of these units is significantly below that normally associated with comparable units. Cotron Ltd, Rockland Works, Eagle St, Coventry CV14GJ.
WW304

Ultrasonic echo ranging system

A designer's kit, based on the ultrasonic focusing system by the Polaroid Corp, is available through Polaroid (UK) Ltd. This kit comprises two ultrasonic transducers,

bandwidth. This unit is capable of providing an output power of 19 dBm at ldBm gain compression and provides reverse voltage and transient protection. Power supply requirements are from 15 to 24 V d.c. at 140 mA and the aluminium housing measures $3 \times 1.75 \times 1.07$ in with a choice of either SMA or BNC connectors. March Microwave Lid, 112 South St, Braintree, Essex.

WW310

User port for ZX80

This plug-in user port is disigned around the ZX80 parallel input/output ports and is programmable in four modes, providing access to $16 \mathrm{i} / \mathrm{o}$ data lines and four control lines. These lines are made available through a 24 -pin d.i.l. socket, which also gives access to the power supply of the computer. The USR and GOSUB commands are used to transmit or receive data. Software, on a C12 cassette, and an instruction booklet are included in the price of $£ 29$. The manufacturer claims that with this package, the newcomer will be able to control d.c. motors, mains appliances, and be able to input data relating to temperature and light levels. J.M.J. Interfaces, Old School House, Rettendon Turnpike Battlesbridge, Wickford, Essex.

WW311

Wideband op-amp

Outputs of $\pm 30 \mathrm{~V}$ at 150 mA and a slew rate of 300 V , us are specifications of the 1460 wideband op-amp from Teledyne Philbrick. The maximum operating frequency is quoted as 10 MHz and with an external capacitor, unity gain is at l(iHz. A v.m.o.s. output stage is

used to reduce secondary breakdown problems usually associated with power op-amps. Technical Selling Services, Unit 5. Brunel Gate. W'est Portway Industrial Estate, Andover, Hants.
WW312

Microchips and megadeaths

It's a hazardous business, writing editorials, at the best of times. There is always someone who disagrees, and can't wait to say so in print - it proves, at least, that someone is paying attention and it makes for interesting Letters pages. But sometimes the people who write in to congratulate or castigate seem to have missed the point, and one wonders whether the latest editorial has been written in the clearest possible English. It isn't very often, though, that a leader provokes a response like that following the publication of the November 1980 piece 'Microchips and megadeaths'. From reading the letters it seems pretty clear that a lot of those who have written to us decided they thought they knew what was being written and didn't bother to read the words that were really there.

We have been accused of treachery, of consorting with the Red Menace, of incitement to rebellion - and worse, of being wet liberals. The fact is, as anyone who takes the trouble to read the piece properly can verify, that the editorial was addressed to engineers in all countries, not just ours. It was not concerned with capitalism, communism, fascism or any other kind of political activity, but with the possibility of millions of people being destroyed or horribly injured because one group of politicians thinks their way of life better than the other group's.

Armaments build-ups, new kinds of 'deterrent' and the bellicose posturings of political 'leaders' are a global sickness which has been made possible by engineers in all the developed countries, and the burden of the November editorial was that engineers are the ones to stop it.

How is it possible to disagree with that?

Traffic
 diversions

The trend towards cathode-ray tubes instead of 'clocks' on aircraft instrument panels seems to be starting in cars, according to a communication from Zenith Radio Corporation. What's happened, they say, is that clear trends in down-sizing, federal display legislation and competitive pressures have led to highly featureoriented vehicles. The good news is that trans-illuminated displays are easily eyeinterpreted and provide increased information density.
You've got to hand it to them: their c.r.ts may or may not be the bee's knees, but if you can't understand a word they say
you're in no position to argue. Still, they tried to make it a bit more easily braininterpreted by printing pictures and giving a list of what Zenith thinks the up-to-theminute driver of 1987 will want to know. There's a section on comfort and convenience, which not only provides for a calculator and personal computer, but power seats (with memory). Leaving aside the somewhat alarming question of power seats, and why it is felt necessary to provide them with a memory, the spine-tingling vision of thousands of cars streaking about at high speed, while their drivers work out their income-tax returns on personal computers is one that should bring a gleam to the eye of any far-sighted insurance salesman.
All the usual facts about speed, temperature, fuel, time and whatnot will be presented, with an intruder alarm (surely you know when someone is trying to break into your car, even if you're engrossed with a personal computer), crash recorder (that computer again) and a flasher control, which I presume shows when the ice-cold jet of water is being projected at the pavement.

Finally, we are informed, there may be a game. Well, I should just think there will - the trendy driver in 1987 will not want to spend all his time computing. Zenith don't say what kind of game they have in mind; maybe it's one of those where you have to try and steer a 'car' along a twisty 'road'.

Business as usual

Forgive me for returning to the theme of doom and gloom, but I've just spotted an indication that a nuclear attack may not be quite as bad as you might have thought, and I think it deserves to be better known.

I dare say a lot of you thought that a few bombs carefully deployed over Britain would leave very little of consequence standing. If, however, you do subscribe to the school of thought that says the aftermath of such a catastrophe would be a landscape like a dark brown billiard table, only smoother, then take heart, because the Co-op will still be there. At least, the Co-op clearly has every intention of being there, because it was represented at a seminar, run by the Nuclear Protection Advisory Group, on protecting industry in a nuclear attack. One of the seminar's aims is to ". . . help business planners assess what they can do to protect their work forces and essential plant . . .".

Fair takes your breath away, it does. I mean, there they are, the half-dozen or so irradiated wrecks of humanity who manage to survive the first fortnight after the
bomb, climbing out of their holes in the ground to find complete devastation all around. No people, no buildings, no trees but, wouldn't you know it? the local Coop, advertising sweeping reductions on home decorating materials.

There'll be others, too - the ones who have protected their plant and work forces. So, some people will be left, and I can quite see that the uppermost thought in any worker's mind, after a 50 megaton bomb just wiped out umpteen million people and most of Britain, would be to get back to churning out kitchen furniture and ball-point pens as quickly as possible.

This sort of thinking is absolute nonsense. Dangerous, pathetic half-baked nonsense. If a nuclear war starts, THAT WILL BE THAT, and anyone who kids himself that there will be any significant amount of life left on this planet afterwards ought not to be in a position where he can influence the gullible.

House-trained c.b.

I don't suppose it will ever be called Open Channel. Personal radio has been c.b. for years now, and it will take more than a quirky Civil Service name-coiner to change it. Anyway, whatever its name, come the Autumn, breakers will stop being law breakers and revert to their previous state of respectability, assuming that was their previous state.
It seems probable that the majority of c.b. operators are not primarily interested in the techniques of radio and the engineering side of the hobby, and will continue to buy their equipment just for the fun of using it. Nevertheless, there are bound to be some of our readers who want to make their own rigs, so we have decided to publish a design for the construction of a transceiver, which should perform a bit better than the usual run of existing gear. It might well cost a bit more, too, but it will be professionally designed, using professional components and we think you will like it. It should be ready for the start of licit operation.

So I suppose everyone will start learning American c.b. slang now, and that does strike me as a thoroughly pointless thing to do. Slang isn't something you have to learn - it evolves naturally by use and it is relevant to the people using it, not another group several thousand miles away which has a different life-style. To address a contact whose real name is Albert Ollerenshaw or Ada Birtwhistle as "Good buddy" is a bit like singing 'On Ilkla Moor B'aht 'at' in a Welsh accent.

We might even get the Americans calling each other "mate" and signing off with "T.t.f.n.".

CREED MODEL 75

ALWAYS
 A CHANGING RANGE OF OSCILLOSCOPES, COMPUTERS, TERMINALS ETC.

 new 12 month swarranty (No warranty $\mathbb{E} 1,400$) 2 TEKTRONIX STORAGE OSCILLOSCOPE YPD 564 Wihh 3 A6 \& 3 B4 3 HAMEG OSCILLOSCOPE TyPe A12. Dual Trace Dual Trace 10 MHz
5 SCOPEX OSCILLOSCOPE type 4DDO. Dual Trace 10MHZ 6 HEWLETT PACKARD OSCILLOSCOPE type 1208. X-Y) AVOCONIWAVE UNALVERSAL BRIDGE B150 with adaptor A15
ADVANCE SIGNAL GENERATO H Y E ER EROOKHZ-100MHZ B K AUTO VIBRATOR EXCITER CCNTROL

B ADVANCE V H.F. Millivoltmeter tve VIM79- No probes
4 ADVANCEA.F. SIGNAL GENERATOR tupe J2
5 KNIGHT RF Sig Gen KG686 with Sweep Marker Gen KG68 5 KNIGHT RF Sig Gen KG686 whth Sw eig Marker Gen KG
BEULAH VIDEO MONITOR
18 LYONS PULSE GENERA WAYEGENEFATOR 2OHZ-1MHZ AVO UNIVERSAL BRIDGE TYZe 1
P.S.1. LMS VOLTMETER TYPA A 625 COLOURMATCH GENERATOR CM 6004 PG 3 ADVANCELF OSCCLLLATOR IVDE SG65A
4 TAYLOR AMFM SIGNAL GENEEATOF type $62 A \mathrm{Mk}$
 SOLARTRON TREE RMS VOLTMETER YYO VM1 484
89 RANK V.H.F. SIGNAL STRENGIHINDILACHCY 32 MHZ type 836
30 WAYNE KERR CAPACTANCE BRIDGE TYpe B541C
31 WAYNE KERR COMPONENT BRIDGE YPE B121
32 HEWLETT PACKARD DC CURRENT SOUREE type 61818 $0-250 \mathrm{MA}$
33 MARCONI SAUNDERS LEVELLING AMPLLFIER Type 6587
54 RACAL I PAE TRIGGER PULSE GENERATOR type
36 MARCONI STANDARD SIGNAL GENERATOR TyPe TF14AH 10 K
37 SCHLUMBERGER SOLARTRON AUTOMATIC COUNTER type FB260
38 BRANDENBURG PHOTOMULTIPLER POWER UNIT O-2500VOITS
40 HEWLETT PACKARD AC CONVERTOS Type 34514
1 MUIRHEAD WAVE ANALYSER K- I34-A 30-310HZ
43 HEATHKIT CAPACITOR CHECKERIT-28
44 HEWLET PACKARD DIGITTAL VOLTMETER TyPe 3440A
45 HE WIET PACKARD FREOUENCYCONOR HOR OHPe 8729 A
46 RACAL AUTO FREOUENCY CONVERTOR HYP
47 AIRMEC ELECTRONIC VOLTMETER TVDE $314 A$

48 VARIAM RUBIDIUM FREQUENCY STANDARD $100 \mathrm{KHZ} / 1 \mathrm{MHZ} / 5 \mathrm{MHZ}$ 9 KEITHLEY INSTRUMENTS REGULATED HIGH VOLTAGE SUPPLY TVPE ${ }^{24}$ T.O.A. ELECTHONIC POLYRECORDER tyPe EPR-2T

TAYLO IVALVE TESTER TVRe 45D
52 TAYLO VALVE TESTER HYR 45D
R\&SZ.g DIAPRAPH $300-2400 \mathrm{MHZ}$ 8N3562
5 R\& S Absamiad Standard ATEN MATOR BN 18042/50
7 has SiRECCAPCIIANCEMETER BN5201 (CT375)
WA WN KERR UNIVERSALERIDGE type B521 (CT375)
9 B K K ETERODYNE VOLTMETER tyPe 2005 MPMETER type 428A
probe
2 SOLAFTRON DIGTAL VOLTMETER tvPe 1420.2 with Mean AC
3 MARC JNI SIGNAL GENERATOR type TF995A/3/S (CT402)
55 JARRGLD SWEEP GENERATOR 20.12 MHZ
66 HEWLET PACKARD VALVE VOITMETETH YPD 412A
HATFIELD SELECTIVELEVELMETKEA
69 HEATMKITDECADE RESISTANCE BOX DR1U
MARCON VARAEBLEATTENUATOR Hpe TF1073A/S (CT421)
ROCH AR UNIVERSAL COUNTER TIMER type
WAYME KERR UNIVEFSAL BRIDGE EYPE B221
WAYNE KERR UNIVERSAL BRIDGE TYDe B21 12110 HZ -120KHZ
SIGNL GENERATORHYPE CI $3440.1 \mathrm{HZ}-10 \mathrm{MHZ}$
CLARE FLASH TESTE F TYPD O 103 B
MARCONI RF ATTENUATOR AyPA TF1073A
HEAT-HKIT VALVEMILIVOLTMETER AV-3U
TELOUIC SWEEPER 450.900MHZ
COSSOR SWEPOSCCILATOR H YTP CT202
AIRM $=C$ AM IFM SIGNAL GENERATOR TyPe 2041.320 MH
AIRM=C AMIFM SIGNAL GENERATOR HYPE 204 1.320MHZ
S.T.C LEVEL MEASURING SET Type 74309 B
AVO TRANSISTOR ANALYSER type CT446

AVO TRANSISTO
SIEM NS SUPERHET RECEIVER 3OHZ. 1 MHZ
R\&S MICROWAVEOWERMETERBN2412.50 $0-3200 \mathrm{MHZ}$
ADVANCE SIGNAL GENERATOR BEBE 100 KHZ I 100 MHZ
HEWLEET PACKARD DIGITAL RECORDER TyPE 5050B
BRYENS X-Y PLOTTER - No pen
ADVANCE X.Y RECORDER
90 ADVANCE X.Y RECORDER TYDE HR100-No pen

94 S.T.C. OSCILLATOR type 74308A
95 WATNE KERA VIDEO OSCILLATOR Type 0228 10KHZ-10MHZ
${ }^{96}$ HATFIEL PSOPHOMETER Drg 657167 TEA
ST1A TE. HEWEET PACKARD MEMORY DISPLAY 5480
and 5 5 85 A two channel input

99 E.H.- Unit 230 Volis 50 cs 25 VA 75 KV
00 AVO VALVE CHARACTERISTIC METER

PLEASE -heck availability before ordering
rinter with keyboard. Late mode Still the cheapest way to get a printout from your microproce
connections supplied.

Used, good condition
ONLY £25 each
As rew, Ministy boxed $\mathbf{£ 4 0} \mathbf{e a c h}$
RACAL SA520
f15 each
INFRA RED IMAGE
CONVERTER Type 9606 (CV 144)

13/4in diameter. hequires single low eur With data
£12.50 each
infra Red Lamps also adventised
FERRET A.T.E. £650
Phone for details

VARIAN RUBIDIUM STANDARD
Mode! R20. 5miz, $1 \mathrm{mhz}, 0.1 \mathrm{mhz}$ £600

EX-MINISTRY SOLID STATE
400 HZ INVERTOR
28 VDC input, 115 V output. Size $7 \times 21 / 2$ 15 n approx. Connection details supplied Connection
18 each. P\& P f2

TRANSISTOR INVERTOR

$15 V$ AC 17 Amp inout. Switching is

 CKhz. Output windings from Por Core Can be rewound to suit own purpose o unit can be broken for host of components. Circuits supplied.$\ddagger 1.25$ each. P\&P $£ 2$.

SUPER BATTERY CHARGER

 Attractive green ministry quality case with remova ble top and bottom plates - heavy duty powerswitches, high powered resistors to control current, good quality centre mourted ams meter, strip of wing nut terminals on front panel which can be used for connecting leads. All this for $£ 3.50$. P\&\&

STEPPING MOTORS
6/12 position with additional where the rotor is coils. Device can be used as a tacho. Diagram
supplied. Will actually work on 5 volts. $12 / 24$ recommended
$£ 1.50$ each P\&.P $75 p$
or 5 for $£ 5$ P\& $£ 1.50$.
STEPPING MOTORS

200 Steps. 20 oz/in, torale, $12 / 24$ volt input 5 wire

KEYBOARD PAD
Size $3 \times 2^{1 / 2 x}$ keys marked in green $0-9$ and a star with one blank
f4 each P\&P 1 or 5 for $£ 15$ P\&P $£ 2$.

MINIATURE KEYBOARD
Push contacts, marked (I-9 and A-F and

$$
50 \mathrm{peach}
$$

CRYSTALS 50 peach UDHALEAS T B B B ternal batteries supplied Howl swith $£ 20$ ea. P\&P § 2
 BRIDGE RECTIFIER 2 Amp 50 p ea
PHOTODIODE DETECTOR 4 fly leads, 25 p ea
spacing. 15pe
ard MAINS LEAD Moulded (3 vertical flat wins
centre offset) 60 pea .
FANS. 115 V 13 watts. Size $3^{1 / 4} \times 3^{1 / 4} \times 1^{1 / 2}$ BRAND NEW
£4.50 ea. Secondhand $£ 2.50$ er .
Size $2 \times \times 1 / 16 \times 5 / 16$ New $25 p$ ea.
MOTOR 12 V DC with pulley a d integral semiconductor
Speed Control. New f1 eal
LEDEX ROTARY SOLENOIDS. $115 \mathrm{~V} D C$. No switch assembly
15pea.
DIAMOND H CONTROLS ROTARY SWITCH. Single po
way. Printed Circuit Mount New 100 ea. 100 for $\mathbf{E 7 . 5 0}$.
SOME TEKTRONIX 500RANGE OSCILLOSCOPES
From $£ 100$. Phone for details

All new full spec. devices
in 3063 BAX 13 . 1 S 44 , in4148:
1N3470; 1N4151.
100 off $£ 1.50,1,000$ off $£ 10$
-

PULSE TRANGFORMER Sub
Secondary cenwe tapped Now
REMO TY TYPE MULTIPLIER.
focus, E1 each OON'T TAEGCHANCES. Use the proper EHT CABLE 10p per
motre or E7.50 3er 100 metre/drum. P\&P F 2
PHOTOGRAPH C LAMPS. Pearl 230 V 500 watl Screw cap 75p

MYSTERY IC FACK Some 40 Din good mixure ali new

$0.05 \mathrm{mfd} 10 V$,
100 tor E 1.50 .
E. H.T. Capacitor 500pf $8 K \mathrm{~V} 20$ each
10-way MULTICOLOUR RIBBON CABLE. New 40 p per metre

10 -way MULTI COLOUR RIBBON CA

menit tested 6Jp each.
GEC UHF/VHF 6 -button tuner $t 2$ each.
931 P PHOTO MULTPLIERE2 each P\&PE1
RANCO 250 V 18A THERMOSTATS with Control knobs

BRAND REX Uue wire wrass. 30 metres for $\varepsilon 1$. P\&P 25 D .
SLIOER CON ROL BOX 500 K Log Single Irack Cormplete
With kob Leegth $3^{1 / 2} \quad 25$ each

$115 V$ input Sec $10.0-1$
SEMICONOUCTORS
At 5 peach
BC147, BC143B, BC157, BC158, BC237, OA30, OAB1, BA15 BA243.

 or ar at in each
REGULATOF TBA625 8 to 20 V in - 5 V out 100 MA TO5 Con

MINIMUM ORDER $£ 3$ VALUE OF GOODS. MINIMUM P\&P $£ 1.50$ - where P\&P not stated please use own discretion -- excess refunded.
£5 CARRIAGE ON ALL UNITS. P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN $9 \mathrm{am}-1 \mathrm{pm}$ and $2-5 \mathrm{pm}$ Monday to Saturday inc

	LOW VOLTAGE POWER DRILLS AND ACCESSORIES \qquad \qquad \qquad \qquad VAT and Postage end 25 p for Catalogue A. D. BAYLISS \& SON LTD PFERA WORKS, REDMARLE GLOUCESTER GL19 3JU

TRANSCENDENT 2000 swgle board swruhesizer

Designed by consultant Tim Orr (formerly synthesizer designer for EMS Lid) and featured as a constructional article in ETI, this live peitormance synthesizer is a 3 octave instrument transposable 2 octaves up or down giving sweep conirol a noise generator and an ADSR envelope shaper There is also a slow oscifator a new prich detecto to ensure tuning sample and hold. and spectal circuir
stability amongst its many features The kit includes fully finished mbtalworik, ful'y assembled solid teak cabinet, fiter sweep pedal. protessional quality components (all resistors either 2%, metal oxide or 12% meta friml, and it really is complete the kit - you need buy absolutely no more parts before There is even a ' 3 , plug in the kit - Virtually all the components ate on the one plugging in and making great musicinted with component locations Alt the controls mount directly on the main board alt connections to the board are made with connector plugs and construction is so simple it can be builit a tew evenings by almost anyone capable of neat soldering' When finished you will possess a synthesizer comparable in performance and quality with ready-buit units selling for many umes the price Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!

COMPLETE KIT ONLY
 $£ 168.50$ + VAT!

Cabinet size $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

NEW! TRANSCENDENT POLYSYNTH
 EXPANDABLE POLYPHONIC SYNTHESIZER

Cabinet size $31.1^{\prime \prime} \times 19.6^{\prime \prime} \times 7.6^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL
By brilliant design work and the use of high technology components the Polysynth brings to the
 and published in Electronics Today international this latest addrion io the tamous
and
Transcendent tamity is a 4 octave (transposable over 7% octaves) polyphonic, synthesizer with Transcendent tamily is a 4 octave (transposable over
iniernaliy up to 4 vorces making it possible to piay simultanest nsly up to 4 notes whereas internentional synthesuers handle oniy one ala ume conventional synmesier suppliod with 1 voice and up to 3 more may be plugged in A further 4 voices may be added by connect ting to an expander unit, the metalwork and wood work of which is designed tor side-by side matching with the main insirument
synthesizer in issell. with 2 VCOS. 2 ADSRS. a VCA and a VCF (requirng only contiol voltages synthester in iser
and power supply, the voice boards are also very sultable tor modutar systems) One of these and power supply. Whe vaice tisation to key as it is operatied There are separate tuning controls for each VCO of each vore All other control
ensure consistency beween the voicess
Although using very advanced electronics the kit is mechanically very simiolio with minimal wiring most: 0 which is with ibbon cable connectors All controts ate PCB miounted and the
voice boards tit with PCB mounted plugs and sockets The kit includes fully tinished metalwork volce beards tat with PCB mounted plugs anct sockets ine kitional quality components lesistors 2% mptal oxide or metal tilm, of

COMPLETE KIT ONLY £320
Extre voicen, $£ .62$ + VAT or $£ 48$ + VAT if ordered with kit.
EXPANDER, COMPLETE KIT £295

+ Vat

MULTI-VOICE SYNTHESIZER

TRANSCENDENT DPX

Another superb design by synthesizer expert Tim Orr published in
Electronics Today International

COMPLETE KIT ONLY
 £299 + VAT!

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}\left(\right.$ rear $3.3^{\prime \prime}$ (front)
\qquad The Transcendent DPX is a realy versatile 5 octave keyboardinstrumen
sound-fully polyphonic you can play chords with as many noles as you like on the second output there is a wide range of different vorces still fully polyphonic it can be a straightforward piano as a honky tonk piano or even a muxture of the two' Alternatively you can piay strings over the whotrange of the the first two octiaves) or vice.versa or even a
 sounds - -ust like an acousic piano The digitally controlied multiplexed system makes practical touch sensitivity with the complex dynamics law necessary ior a high agegret so that the
vibrato comes in only atter waiting a short time after the note is struck for even more teaistic string sounds
To add interest to the sounds and make them more natural there is a chorus ensembie unis which is a complex phasing system using CCD tcharge coupled device) anatigue detay lin
 Although the DPx is an advanced design using a veir large amount of eirculty inuch of it very sonhisticated the kit is mectranically extremely simple with exceellent access to althe There is a master volume and tone contiot a separate control for the brass sounds and also a vibrato corcus As the system is based on digitater

Electronic Measurement Services

REPAIR \& CALIBRATION SPECIALISTS OF TEST \& MEASURING INSTRUMENTS

* Fast turn around time
\star High quality backed by warranty
\star Competitive rates
\star Certification if required
* Nationwide collection and delivery service

Stockport Road, Longsight, Manchester M13 0LF

061-273 4653

WW No. 032
WW -062 FOR FURTHER DETALLS

Cut costs and speed trouble shooting

with the

This easy to use test instrument displays shorts, opens, and leakage in solid state components. Check diodes. unijunctions, bipolars, Darlingtons. J.FET's. MOS FET's. LED's, electrolytics and IC's.. IN CIRCUIT!
Test pure digital or analogue hybrid boards . . WITHOUT CIRCUIT POWER' Current limited to protect delicate devices in the MOS.C.MOS family. Save $20 \ldots 30 \ldots 40 \ldots$ even 50% of trouble shooting time and recover your investment fast! Exclusive 12 months warranty. available tron

MTL Microtesting Limited

1.15 Butts Road, Alton, Hampshire Telephone: Alton (0420) 88022

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £85.00 + VAT
This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minima Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring while distortion is less than 0.01\%.

1024 COMPOSER READ ALL ABOUT IT!

COMPLETE KIT ONLY $£ 89.50$ + VAT!

IN ELECTRONICS TODAY INTERNATIONAL

Pgrammed from a synthesizer, our latest design to be featured in ELECTRONICS TODAY INTERNATIONAL the 1024 COMPOSER Controls the synth. with a sequence of up to $t 024$ notes ol a large number of shorter sequencese $g 64$ of 16 notes all with programmable note length In addition a rest of series of ests can be ene the programit dter switch off The aut includes fully tinished metalwork. fitregiass PCB controis. wire etc - Complete down to the lasi nut and bolt ${ }^{1}$
Cabinet size $13.3^{\prime \prime} \times 8.0^{\prime \prime} \times 3.8^{\prime \prime}$ (rear), 3.0" (front)

POWFBTRAN
 BLACK HOLE
 CHORALIZER

The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing be natural and elected by delaying the offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a spacey fee to the sound achieved down as the time input signal and mixing it back with the op generator. An optional dowble chorus mode allows exciting antiphase effect to be added. The device is floor standing with foot switch controls. LED effects selection indicators, has variable sensitivity, has high signal/ hoise ratio device highly superior, rugged steel, beaut if
complete kit only $£ 49.80+$ Vat! (single delay line systern)
De Luxe version (dual delay line system) also available for $\mathbf{£ 5 9 . 8 0}+\mathrm{VAT}$

CHROMATHEQUE 5000

This versatile systenn featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel Control of the lights is comprehensive to say the least. You can run the unit as a str some superb random and sequencing effects Each channel handles up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward Kıt includes fully finished metalwork, fibreglass PCB controls. COMPLETE KIT ONLY£49.50+ VAT!

MPA 200100 wATT (rms into 8Ω) MIXER/AMPLIFIER

- but protessionally finished - general purpose high power ampifier it features adaptable inpui
mixer which accepts a wider range of sources such as misimal wiring needed making construction very straightorward
MATCHES THE

CHROMATHEQUE 5000 PERFECTLY!
 All kits also available as separate pack
etc.) Prices in our FREE CATALOGUE

SP2-200 ${ }_{\text {2.ChanNel loow amplefer }}$ - NEW KIT!
 The power amplifier section of the MPA 200 has proved nom ory economical but very rugged and reliable too this new design uses two of these amplifier sections

 powered by separate power supplies ted from a common toroidal wa nstormer, in Even simultianeusly driven, each channel delivers over 100 W rms ino 8 ohmThe kit includes fully tinished metalwork, fibreglass PCBs, controls. wire, etc. The kit includes fully tinished meatalt

> COMPLETE KIT ONLY £64.90 + VAT!

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3'1
MANY MORE KITS ON NEXT PAGE!
 our catalogue is FREE! write or phone NOW!

RHODE \& SCHWARZ
Selective UHF V/Meter, Bands 4 \& 5 USVF
Selectomat Voltmeter USWV $£ 450$.
UHF Sig. Gen type SDR 0.3 -1 GHz $£ 750$
UHF Signal Generator SCH $£ 175$.
XUD Decade Synthesizer \& Exciter
POLYSKOPS SWOB I and II
Modulator/Demodulator BN17950/2
UHF Sig. Gen type SCR. 1-1.9GHz

MARCONI

TF995B/2 AM/FM Signal Generator
TF2500 Audio power meter
TF1 101 RC oscillators $\mathbf{E 6 5}$.
TF1 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM
TF1066B/1. $10-470 \mathrm{MHz}$.
TF1066B/1. $10-470 \mathrm{MHz}$. AM $/ \mathrm{FM}$
TF $1952 \mathrm{~A} / 1$. Power meter. 25 W .500 MHz
f50
f50
TF1370A RC Oscillator $£ 135$.
TF791D Carrier Deviation Meter
U.H.F. SIGNAL GENERATORS

TF1066B/2 $400-555 \mathrm{MHz}$. Deviation to 300 KHz .
TF1050/2 450-1250MHz
TF1058 $1.6-4000 \mathrm{MHz}$.

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mounting instructions. Only $£ 2.50$ each.

PRINTED CIRCUIT MOTORS

Printed Motors Ltd' type G16M4.60V DC 5.5 amps. Continuous torque 140 oz in 2350 rpm Diameter $7.5^{\prime \prime}$. Depth 2.5". Shaft diam $1 / 28$ \$150 Price from Printed Motors is now over £150 ea. Supplied in good, used condition tested \& guaranteed $£ 25$ each (postage $£ 3$).
AUDIO \& RF SIGNAL GENERATORS ADVANCE types H1, H1E, C2, SG62B, J4A. TAYLOR 62A (AM/FM). AVO HF134 AIRMEC 352 Sweep Generator MARCONI TF $1066 \mathrm{~B} / 9$ (AM/FM 10
470 MHz) 470 MHz)
LABORATORY OVENS. - Gallenkamp 3 cu H. £145. Also Morgan Grundy 1 cu it. $£ 55$.
20 -WAY JACK SOCKET STRIPS. 3 20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts $\mathbf{£ 2 . 5 0}$ each ($+25 \mathrm{p} p \mathrm{p}$). Type 316 three pole plugs for above $\mathbf{- 2 0 p}$ ea. ($p \mathrm{p}$ free)

O.F. RALFE ELEGTRONRGS
 10 CHAPEL STREET, LONDON. NW1

TEL: 01-723 8753

RANK KALEE 1742 Wow \& Flutter Meter
AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V. AIRMEC Wave Analysers types 853 \& 248A. DERRITRON 1KW Power Amplifier with control equipment for vibration testing, etc
HEWLETT-PACKARD 8551B/851B Spectrum Analyser. 10Mhz-40GHz.
HEWLETT-PACKARD tuned amp \& null detector HEWLETT-PACKARD 331A Distortion Meter RADIOMETER Distortion Meter BKF6 $£ 125$.

LABGEAR T.V PATTERN GENERATORS 625-line cross-hatch/dot/grey scale $£ 45$ ($£ 1$ post)
RANK SIGNAL STRENGTH METERS UHF Channels 20-60. Battery operated $£ 30$ ($£ 1$ post).

TELEVISION TEST EQUIPMENT

TEXSCAN VS-60B Sweep Generator. 0-1000MHz $£ 250$ TEXSCAN DU-88 X-Y Display units $£ 95$. TELONIC 2003 Sweep Generator System $£ 225$ TELONIC 101 X-Y Display units $£ 75$. TELONIC 1204 Sweepers $0-500 \mathrm{MHz} £ 150$. TELONIC $121 X$-Y Display units $£ 95$.

OSCILLOSCOPE SALE

ADVANCE OS250. Dual Beam 10MHz £185
HEWLETT. PACKARD $1707 \mathrm{~A} .75 \mathrm{MHz} \mathbf{~ £ 4 5 0 .}$
TELEQUIPMENT D75
TELEQUIPMENT DM64 Storage scope
OYNAMCO D7100
HEWLETT-PACKARD 122A SB. Audio
AIRMEC 279. 4 Beam Display Scope
TEKTRONIX 581A. 545A \& B, 544, 661, 515A.
NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first-class operational condition and most items carry our three months' guarantee Calibration and certificates can be arranged at cost. Overseas enquiries
wetcome. PLEASE ADD 15% VAT TO ALL PRICES

DC POWER SUPPLIES

*APT 10459/8, 12-14V@5 Amps £25 (£2 p.p.) *APT 10459/8, 24V@5Amps £25(E2p.p.) \star We can supply the above power supply at any fixed voltage between 5 V and 36 V at $5 \mathrm{~A} £ 25$. \#Mullard Dual supplies. Brand new with handbook. Pos \& Neg
vely. Dimensions $9 \times 4 \times 5$ ins. $£ 10+(£ 1$ p.p. $)$ *FARNELL Current limited. Dimensions $7 \times 5 \times 4$ ins

SPECIAL PURCHASE

 LAMBDA POWER SUPPLIESExcellent LXS Series DC power units at less than a tenth of new price. The snag? - they're all 110 V AC

15 V at 12A. LXS D15 R. £20. (£339).
5 V at 14A. LXS CC 50 V . £20. (£258)
24 V at 3.1A. LCS C 24. £15. (£223).
Carriage each $£ 2.50$ extra

MODULATION METERS
 AIRMEC 2103 -300MHz. AM/FM. E125

RADIOMETER AFM/1 3.5-320MHz AM/FM. $£ 145$ RACAL $4093-600 \mathrm{MHz}$. AM/FM.

ROTRON INSTRUMENT

 COOLING FANS
Supplied in excellent condition, fully

 tested:$115 \mathrm{~V}, 4.5 \times 4.5 \times 1.5^{\prime \prime} \mathbf{£ 4 . 5 0} \mathbf{2 3 0 V}$
£5. $115 \mathrm{~V}, 3 \times 3 \times 1.5^{\prime \prime} £ 4+$ postage ea. 35 p
CT2 12 RF Signal Generators. $85 \mathrm{KHz}-32 \mathrm{MHz}$ 655.

BELL \& HOWELL MICROFICHE VIEWERS

Type SR5. Screen size $9 \times 5^{\prime \prime}$. New condition $£ 75$.

DIGITAL MULTI-METERS
DE FOREST ELECTRONICS TYPE MM200. DC $V 0.1 \mathrm{KV}$. AC V 0-700. DC 1.0-1 A. AC 1.0.1A. Each in 4 ranges. Resistance 0-19.99 Mohms. Each in 4 ranges. Resistance
5 ranges. LED Display 1999. BRAND NEW. SPECIAL REDUCED PRICE OF

E39, INCLUDING VAT \& P.P

WW-041 FOR FURTHER DETAILS

Wirewound Ceramic Resistors Axial or vertical mounting 5w-17w OR5-39K from $£ 9.35$

Cable Sleeves and Markers from £ 1.38 per 1,000
Crimp Terminals from $£ 9.60$ per 1,000.
Áudible Warning Devices. Buzztone, Bleeptone, Banshee, Bedlam, etc, from $£ 1.14$ each. Self-adhesive Pcb guides from $£ 5.04$ per 100 .

from $£ 3.15$ per 100 100 off at 1000 off price during
MAY, 1981

Carbon Film Resistors 1/4w 5\% $£ 2.50$ per 1,000 , per value, carfiage and VATT, per 6 R8 33R 100 R 120 R 360R 470 R 6R8
560 K 2 K 4 2K7 $4 K 75 K 67 \mathrm{~K} 5$ 8K2 100 K 120 K 150 K 220 K 300 K 390 K 820 K .
Lists available of other wattages and values on special offer.

PBRA LTD.
Golden Green, Tonbridge
Kent TN1 1 OLH
Hopfield (073274) 345
Member Crystalate Group

STEREO PLAYBACK SYNTHESIZER PS 2001
 (Europat. Pend.)

HPMEE OSCILLOSCOPES

Top Parformanco
In Every Range

HMN 307

RT1 307
Y: Bend width DC-10NHz 3 AB , Sonetivit 5 mV - $20 \mathrm{~V} / \mathrm{CD}(\pm 5 \% 1$

HM 312
$£ 220$
Y: BandwidthDC-20MHz $1-3 \mathrm{~dB})$ Sensitiviey $5 \mathrm{mV}-20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$

HM 412
£ 350
: Bandwidth DC-20MHz (-3dB) - Sensitlvity 2 mV - $20 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ x : Timebase $2 \mathrm{~s}-40 \mathrm{~ns} / \mathrm{cm}$ incl. x 5 Magn. Trig. DC-40NHz $(5 \mathrm{~mm})$ Dual trace - Algebr. addition E X-Y Operation. Screen $8 \times 10 \mathrm{~cm}$ Sweep delay - Overscan. Trigger, Delay indications - Trigger filter
Z-Mraticula illumination
2 kV Z-Modulation - Calibrator

HM 512
£ 580
Y: Bandwidth DC-50MHz (-3 dB) Sensitivity $5 \mathrm{mV}-50 \mathrm{~V} / \mathrm{cm}(\pm 3 \%)$ X : Timebase $5 \mathrm{~s}-20 \mathrm{~ns} / \mathrm{cm}$ incl. $\times 15 \mathrm{Magn}$. Trig. DC. $70 \mathrm{MHz}(5 \mathrm{~mm})$ Dual trace. Algebr. addition - X-Y Operation. Screen $8 \times 10 \mathrm{~cm}$ Dalay line - Swasp delay - After delay triggering o Trigger filter Single shot + Reset - Ovarscan, Trigger, Hedy, Dolay indicalions ver. Hold-off - Z-Modulation - Graticulie illumination - 12 kV

HM 812
£ 1,458
Y. Bandwidth $D C-50 \mathrm{MHz}(-3 \mathrm{~dB})$. Sensitivity $5 \mathrm{mV} .50 \mathrm{~V} / \mathrm{div} .(\pm 3 \%$ X. Timebase $5 \mathrm{~s} .20 \mathrm{~ns} / \mathrm{div}$, incl. $\mathbf{z} 5 \mathrm{Magn}$. - Trig. $\mathrm{DC}-70 \mathrm{NHz}$ (0.5 div. Dual trace analog storago with var. Persistence and Auto-Storage Algebr. adolition - X-YOperation - Screen $8 \times 10 \mathrm{div} .(7.2 \times 9 \mathrm{~cm})$ Dolay line - Sweop delay - After delay wiggering - Trigger filter Single shot Overscan. Trigger, Ready, Delay, As indications var. Hold-off - Z-Moculatation - X-Guard circuit - Calibrasor - 8.5kV

Far mora motomation
Proter U. X
List contact

HAMEC ITB 74-78 Colngdonsurat turon

WW - FOR FURThER DETAILS

OTHER PRODUCTS

AVO TEST METERS

 Latest Model 8 Mk. 5 £106.40 71 Electronics MM5 MINOR WEE MEGGER DA211 LCD Digita DA212 LCD Digita DA116 LCD DigitalMegger 70143500 V Megger
Avo Cases and Access 87.00 P\&P £1.32. VAT 15%

BRIDGE RECTIFIERS

200 v	2A	45p
400 v	1A	25p
400 v	2A	55p
100 v	$25 A+$	£2.10
$200 v$	4A	65p
400 v	4 A	85p
400 v	6A	$¢ 1.40$
500 v	12A	£2.85
	P 20 p	VAT 15\%

> Barrie Electronics Litd.
> 3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 33168
> nearest tube stations: Aldgatealiverpool st

PURE GOLD!

Top-quality, low-profile, gold-plated contacts,

IC SOCKETS

$\begin{array}{lr}8 \mathrm{pin} & 8 \mathrm{p} \\ 14 \mathrm{pin} & 14 \mathrm{p}\end{array}$
16 pin 16 p
$18 \mathrm{pin} \quad 18 \mathrm{p}$
20 pin 20p
$\begin{array}{ll}22 \mathrm{pin} & 22 \mathrm{p} \\ 24 \mathrm{pin} & 24 \mathrm{p}\end{array}$
28 pin 28p
40 pin 40p

Minimum Order £10. Add £1 P.\&P.
$500+$ and one type less 5%. 1,000 + any mix less 10%. Special offer $10 \times 8 \mathrm{pin}, 20 \times 14 \mathrm{pin}, 20 \times 16 \mathrm{pin} .5 \times$ all others £11.50
ORION
Orion Scientific Products Ltd., 10 Wardour St., London, W. 1

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

BSR DE LUXE AUTOCHANGER

Plays $12^{\prime \prime}, 10^{\prime \prime}$ or $7^{\prime \prime}$ records. Auto or Manual. A high quality unit backed by BSR reliability. Stereo Ceramic Cartridge. AC 3 speeds. Above motor board 3 speeds. Above motor board with Ceramic Stereo carridge. $£ 20$

HEAVY METAL PLINTHS
cut out for most BSR or Garrard decks. Silver grey finis.
Size $16 \times 14 \times 6 \mathrm{in}$.
WOOD PLINTH, TEAK EFFECT
Cut for B.S.R. NTH
PIONEER and J.V.C. TEAK VENEERED PLIN
£10.50
TINTED PLASTIC COVERS

BSR SINGLE PLAYER DECKS

BSR P1 72 RIM DRIVE QUALITY DECK Manual or automatic play.Thre Precision ultra slim arm.
$£ 20$ post $£ 2$ Cueing device. Bargain price
With stereo ceramic cartridge
BSR P207 BUDCET SINGLE PLAYER ideal for disco or small two-spe $£ 17$ Post E_{2}

GARRARD 6-200 SINGLE PLAYER DECK

 Brushed Aluminium Arm with stereo ceramic cartridge and Diamond Stylus, 3-sperds. Manuaviand Aut Pause Control. Ready cut mounting board $£ 1$ extra£22 Poat E_{2}
ELAC HI-FI SPEAKER 10in. TWIN CONE Large ceramic magne.
bass resonance $40 \mathrm{c} / \mathrm{s}$.
8 or 16 ohm impedance.
10 watts. RMS. $£ 7.95$ post 99 p

POTENTIOMETERS Carbon Track

$5 \mathrm{~K} \Omega 102 \mathrm{MQ}$. LOG or LIN. L/S 50p. DP 90p. Stereo L/S $£ 1.10$.
$\mathrm{DP} £ 1.30$. Edge Pot 5 K . SP 45p. Sliders Mono 65 . Stereo $85 p$.
EMI $131 / 2 \times 8 \mathrm{in}$. LOUDSPEAKERS
With tweeter and
With tweeter and
8 ohm .15 watts
3 or 8 ohm

Post 99p

THE "INSTANT" BULK TAPE ERASER Suitable tor cassettes. and all sizes of tape with switch and lead

Will also denayiet se small tools
Head Demagnetiser only $£ 5$
RELAYS. 12V DC $£ 1.25 p$. 6 V DC 85 p BLANK ALUMINIUM CHASSIS. $6 \times 4-£ 1.20 ; 8 \times 6-£ 1.50$
$10 \times 7-£ 1.90 ; 12 \times 8-£ 2.20 ; 14 \times 9-£ 2.50 ; 16 \times 6-£ 2.40$ $6 \times 10-\mathbf{E 2 . 7 0}$
ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 i n-25 p$.
ALUMINIUM PANEES. $6 \times 4-36 p$: $8 \times 6-60 p$:
14×3-60p; $10 \times 7-80 p ; 12 \times 8-90 p ; 12 \times 5-60 p ;$
 PLLUSTIC AND ALINIUM BOXES. $4 \times 4 \times 11 / 2 £ 1.4 \times 2 \times 2 £ 1.3 \times 2 \times 1$
 BRIDGE RECTIFIER 200 V PIV 4 amp $£ 1.50$. 8 amp $£ 2.50$ TOGGLE SWITCHES SP 30p. DPST 40p. DPDT 50p. RESISTORS. 102 to 10 M . 14 WW , $1 / 2 \mathrm{~W}$. TW. 1p: 2 W 10 p HIGH STABILITY. $4 \mathrm{w} 2 \% 10$ ohms to 1 meg. $8 p$. Ditto 5%. Preferred values, 10 ohms to 10 meg , 3p
PICK-UP CARTRIDGES SONATONE 9TAHC £2.50. PICK-UP CARTRIDGES SONATONE 9TAHC £2.50. ESR Stereo Ceramic SC7 Medium $£ 2$. SC8 High $£ 2$.
PHILIPS PLUG-IN HEAD. AU1020 (G306. GP310. GP233 PHILIPS PLUG-IN HEAD
LOCKTITE SEALING KIT DECCA 118 . Complete $\mathbf{\text { fit }}$ SOLDERING IRON 240 V 40W $£ 2.75$
VALVE OUTPUT Transtormers (small) 90p.

CAR SPEAKERS on Baffles $7 \times 41 / 2 \times 11 / 2 \mathrm{n}$ deep. 4 ohms

 Siereo par $£ 14$IN-CAR GRAPHIC EQUALISER. Power Booster Stereo 20 watts RMS per channel, 5 sliders Graphic Equalisation C . suitable for Car Radio or Cassette $£ 30$.

MINI-MULTI TESTER Deluxe pocket size precision moving 2000 o.p.v. Battery included. 11 instant ranges measure AC volts $10,50,250,1000$ DC amps $0-100 \mathrm{~mA}$. Continuity and resistance 0-1 meg De-Luxe Range Double Model, 50,000 O.P.V. £18.50
$£ 6.50$
PANEL METERS $£ 4$ each
50иа 100ヶа 500~а,
$1 \mathrm{ma}, 5 \mathrm{ma}, 50 \mathrm{ma}, 100 \mathrm{ma}$,
25 volt, 50 volt, VU Meter
Facia $23 / 8 \times 13 / 4 \times 1 \frac{1}{2}$ in.
Fixing hole $11 / 2 \mathrm{in}$. dia.
Lighting kit 6 or 12 v 90 p extra.
$1 \mathrm{ma}\left(240^{\circ}\right.$ scale) $21 / 4 \mathrm{in}$. sq. £5 Post 65p
RCS SOUND TO LIGHT CONTROL KIT
Kil of parts to build a 3 channel sound to light unnt
1,000 watts per channel Suitable for home or disco 18 Easy to build. Full instructions supplied Cabinet Post 65
 200 Watt Rear Reflecting White Light Bulbs Ideal for Disco
Lights Edison Screw 6 for $\mathbf{E 4}$, or 12 for $£ 7.50$. Post 65 p

MINOR' 10 watt AMPLIFIER KIT E14 This kit is sutable for record players gutars tape playback.
electronic ins:yments or small PA systems Two versions

£20 pair post $£ 2$
OW VOLTAGE ELECTROLYTICS \qquad ALL 10p

 4700 mid 4 v ALL 10p.
$500 n i f 12 V 15 p$: $25 \vee 20 p$; $50 \vee 30 p$.
1000m= $12 \mathrm{~V} 20 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 50 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$. 2000 mF 6V 25p; $25 \mathrm{~V} 42 \mathrm{p} ; 40 \mathrm{~V} 60 \mathrm{p} ; 1200 \mathrm{mF} 76 \mathrm{~V} 80 \mathrm{p}$.
 HIGH VOLTAGE ELECTROLYTICS

$\begin{aligned} & 8450 \% \\ & 635+\cdots \end{aligned}$	$45 p$: P 450 V		75p	$12+32+16350 v$			
		d. 16	50V	75p				90p
リי!	75p	$20+20$. 150 V	75p	$100+1$	M0 2		5p
-09V	£1. 20	$32+32$	350 V	50p	$150+2$	OO 2	275	0p
prov	¢1.20	$32+32$	500	£1.80	2204	50 V		5
3235 N	50p	$50+50$	300 V	50p	$80+40$	$500 \vee$		E2

TRIMMERS 10pF, 30pF, 50 pF, 5p. 100pF, $150 \mathrm{pF}, 15 \mathrm{p}$.

 CERAMIC, 1 pF to 0.01 mF , 5p. Polystyrene 2 to 5000 pF . 5 p . 20p; 500V-0 001 7p; 0.5 13p; 1 mF 150 V 20p; 2 mF 150 MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change ove TWIN GANG, 120pF 50p: 500 pF \&GÉARED TWIN GANGS 25pF 95p 365pF £
GEARED $365+365+25+25 \mathrm{pF}$ £1
TRANSISTOR TWIN GANG. Japanese Re
NEON PANEL INDICATORS 250 V 30 p .
LLUMINATED ROCKER SWITCH. Single pole. Red 65p VIRE-WOUND RESISTORS 5 watt. 10 watt, 15 watt 15p
CASS ETTE MECHANISM. 12v Stereo Playback only $\mathbf{5}$ J.h.F. COAXIAL CABLE SUPER LOW LOSS. 25p Y

BAKER LOUDSPEAKERS "SALE PRICES"

'SALE	C			Po	f2
- model	INCHES	DHMS	WATTS	TYPE	PRICE
MALOR	12	4-8-16	30	H1-FI	¢12
OELUXE WM II	12	$8-16$	15	H-FI	E12
SUPERB	12	8-16	30	HI-FI	¢20
AUDITORIUM	12	$8-16$	45	$\mathrm{HI}-\mathrm{Fi}$	¢20
Aubitopdum	15	8-16	60	H1-fl	¢34
GRDUP 45	12	4-8-16	45	PA	¢12
GROLP 75	12	4-8-16	75	PA	¢20
GROUP 100	12	8-16	100	PA	¢20
GROUP 100	15	8-16	100	PA	¢28
Disco 100	12	$8-16$	100	DISCO	¢20
DISCO 100	15	$8-16$	100	disca.	£28

BAKER 50 WATT AMPLIFIER

$\varepsilon 69$ Post E
deal for Halls/PA systems, Discos and Groups. Two inputs. Mixer. volume Controls, Master Bass, Treble and Gain Controts. 50 watts r.m.s. Three loudspeaker outlets 4, 8, 16 ohms

BAKER 150 WATT MIXER / POWER

 AMPLIFIERProfessional 4 inputs with
volume controls. Will mix mics. decks. musical instruments, etc. $\mathbf{8 8 9}$

Slave version available $£ 75$
FAMOUS LOUDSPEAKERS
'SPECIAL PRICES'

"SPECIAL PRICES"				Post $\{2$ ea	
MAKE	m00el	SIZE	WATP	OHMS	Price
SEAS	TWEETER	4 in	50	8	$¢ 7.50$
gocomans	TWEETER	$31 / 2 \mathrm{in}$	25	8	¢4.00
audax	TWEETER	33 im	60	8	110.50
SEAS	MID-RANGE	4 in	50	8	¢7.50
SEAS	MID-RANGE	5 in	80	8	C10.50
SEAS	mid-RANGE	41/2in	100	8	¢12.50
gCODMANS	FULL-RANGE	51/2in	15	8	c6.50
goodmans	FULL-RANGE	8 in	30	8	c9.50
goodmans	AuD10 ${ }^{\text {bp }}$	8 n	15	15	c8.50
coodmans	axiom	Bh	15	15	c1.00
SEAS	WOOFER	\%in	30	8	¢14.00
rigonda	CENERAL	10 in	15	8	C6.50
goodmans	audrom pg	12 m	60	8	¢20.00
goodmans	PP12	12in	75	$8 / 15$	¢24.50
goodmans	GUDIOM P	12 in	50	$8 / 15$	¢20.00
goodmans	GR12	12in	90	$8 / 15$	¢27.50
goodmans	AUBIOM P	15m	50	15	¢25.00

BATTERY ELIMINATOR MAINS to 9 VOLT D.C.

 stabilised output. 9 volt 400 m a. U K. made in plastic case with screw terminats. Safety overload Unit Suitablit Radios. Cassettes, models. $£ 4.50$. Post 65 pDELUXE SWITCHEO VOLTAGES MODELSTABILISED
$3.6 .71 / 2-9$ valt 400 ma DC max Universal ounput plug and lead Pitot liaht. mains swich. Dolarity swich E7.50. Post 65

TEAK VENEERED HI-FI SPEAKER CABINETS
 For $6 / 2$ in. speaker and tweeter. Phone your requirements.
Many other cabinets in stock. Pher
SPEAKER COVERING MATERIALS. Samples Large S.A.E. SPEAKER COVERING MATERIALS. Samples Large S.A.E.
LOUDSPEAKER GABINET WADDING 18 in wide 25p ft .

CROSSOVERS. TWO-WAY 30@ C/S
£1.90. 3-way $950 \mathrm{cps} / 3000$ cps. $£ 2.20$.
LOUDSPEAKER BARGAINS
3 ohm, $4 \mathrm{in} 5 \mathrm{in}, 7 \times 4 \mathrm{in}$. $£ 1.50 ; 61 / 2 \mathrm{in}$. $8 \times 5 \mathrm{in} £ 3 ; 8 \mathrm{in}$. $£ 3.50$.
 15 ohm, $31 / 2 \mathrm{in} .5 \times 3 \mathrm{in} .6 \times 4 \mathrm{in}$. 11.50
$25 \mathrm{ohm}, 3 \mathrm{in} 5 \times 3 \mathrm{in}, 7 \times 4 \mathrm{in}$. £1.50
120 ohm, $31 / 4$ In dIa $£ 1.50$.
MOTOROLA PIEZO ELECTRIC HORN TWEETER $£ 6.50$ MOTOROLA PIEZO ELECTRIC HORN TWEETER 86.50 hand
ohm
BLACK PLASTIC CONSTRUCTION BOX v. th brushed

ECHO CHAMBER

 jood quality unit with endlessblay tape cartidge Stationary
\%ldy heads pnsure good reproluction and echo variance is thieved by changing tape

£68.
ALUMINIUM HEAT SINKS. FINNED TYPE
$6^{1 / 2 "} \times ?^{\prime \prime} \times 21 / 4^{\prime \prime} 65 p$
JACK PLUGS MORO
JACK PLUGS Mono Plastic 25p; Metal 30p.
JACK PLUGS Stereo Plastic 30p; Metal 36p.
JACK SOCKETS. Mono Open 20p; Closed 25
JACK SOCKETS. Mono Open 20p; Closed 25p. FREE SOCKETS - Cable end 30p.
2.5 mm and 3.5 mm JACK SOCKETS $15 p$
2.5 mm Bnd 3.5 mm JACK PLUGS 15 p . DIN TYPE CONNECTORS
Sockets 3 -pin, 5 -pin 10p. Free Sockets 3 -pin, 5 -pin 251 Plugs 3-pin 20p: 5-pin 25p.
PHONO PLUGS and SOCKETS ba. 10p
Free Socket for cable end ea. 15
Screened Phono Plugs ea. $15 p$.
TVCOERVERGENCE POTS $15 p$ each

DRILL SPEED CONTROLLER/LIGHT DIMMERKIT. EASY DE LUXE MODEL READY BUILT 800 warte plus Photo
have been designed primarily for economy in situations that have a low throughput.

Although low cost, they are also the fastest and most efficient erasers of their size.

All models are fitted with 600 hour UV tubes, safety interlocks and housed in gold anodised aluminium casings.
PE 146 chips $£ 56.00$
PE 14T 6 chips $£ 76.58$

For larger
systems users, model
PE 24 T has a double tube
construction and automatic shut-off with 60 minute timer.

Chiptech Limited

Chiptech Limited.
Tewin Court, Welwyn Garden City, Herts. AL7 IAU
Tel (07073) 32140. Telex 8953451

FAST ERECTING GJRK MASIS

For World-wide Telecommunications in the 1980's
Clark Masts Ltd are specialists in the design and manufacture of telescopic and sectional mast systems. With over 25 years' experience in supplying masts to meet exacting military and civil specifications we have the expertise you can depend on

Extended heights $4 \mathrm{~m}-30$ metres capable of lifting headioad $1 \mathrm{Kg}-200 \mathrm{Kgs}$, sectional or telescopic air operated for field or vehicle mounting. Write or phone us for details today

Teiescopic air operated
Clark Masi Type
QT $4 \mathrm{~m} / \mathrm{HP}$ mounted
on portable tripod

CLARK MASTS LTD
Binstead,
Isle of Wight,
PO 33 3PA, England
Telephone Ryde (0983) 63691,

Telex 86686

SEMICONDUCTORS

	 	 -1-40-000000000n-1-1-000000000000000000
		 $0000000000000000000000000000000 \mathrm{nHnhnt-}$
	 	 NW-0n000000wh-R---0000000000000000000000
 000000000000000 	 	
+ - - क0 00- $0-0000000000$ \square	 	 --000000000000-NN-0000000000-1-0000001-n-
 $000000-100000=000$ 	 	
 $0000-000--N 0000-100$ 	 	 $0000000000000000000000000000-0$ NMNTNMWH
 	9 9 	
 	 	 $0000000000 \mathrm{n}-0000000000000000000000+40-0$

FIVENEW SENSES FOR YOUR MICRO

IEEESTANDARD
A-D CONVERTERS
D-A CONVERTERS
RELAY UNITS
APPLEINTERFACES

THE COMPLETE SOLUTION TO STRAIN GAUGE AMPLIFICATION

- COMPLETE WITH BRIDGE SUPPLY
- COMPLETE WITH ALL ADJUSTMENTS (SPAN ZERO BRIDGE VOLTAGE)
- COMPLETE (NO EXTERNAL COMPONENTS NEEDED)

The series SGA 700 provides the complete solution to Strain Gauge Amplification. Simply connect the bridge, connect the power supplies and the SGA 700 does the rest. It also offers high stability. Miniature size, good supply rejection - in fact a specification as good as many instruments many times the price and size.
CIL
CIL. Electronics L.td 14 Willowbrook Road, Worthing, Sussex BN 14 8NA. Tel: Worthing (0903) 204646 Telex: 87515 WISCO G ATT CIL WW-086 FOR FURTHER DETAILS

Happy Memories

4116	200 ns	$\mathbf{f 1 . 9 5}$
2114	200 ns	$\mathbf{£ 2 . 9 5}$
2708	450 ns	$\mathbf{£ 3 . 9 5}$
2114	450 ns	$\mathbf{£ 2 . 2 0}$
2716	5 volt	$\mathbf{£ 4 . 7 5}$

Memorex Soft-sectored mini-discs for PET, TRS-80 etc. Supplied in FREE LIBRARY CASE, £19.95 per 10

Low Profile I.C. Sockets by "Texas"
Pins
81416182022242840
Pence
101112161720212837
Memory Upgrade Kits for Apple, 2020, TRS-80, etc from £18, please phone. Quantity prices available on request. Government and Educational Orders weicome Trade accounts opened

All prices include VAT. Postage FREE on orders over $£ 15$, otherwise add 30 p Access and Barclaycard welcome
HAPPY MEMORIES, DEPT. W.W. GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY Tel. (054422) 618

P.\&R. COMPUTER SHOP

EPSON MX-80 80.GPS DOT MATRIX PRINTER WITH SPECIAL INTERFACES. 3982 IBM I/O PRINTERS. VDUs, ASCII KEYBOARDS, ASR, KSR, TELETYPES, PAPER TAPE READERS, PAPER TAPE PUNCHES', SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime}$ POWER SUPPLIES, STORE CORES, TEST EQUIPMENT AND MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MONDAY TO FRIDAY 9am-5pm SATURDAY TILL 1 pm .

COME AND LOOK AROUND
SALCOTT MILL, GOLDHANGER ROAD
HEYBRIDGE, ESSEX.
PHONE MALDON (0621) 57440

SERVICE TRADING CO
 FT3 NEON FLASH TUBE
 VARIABLE VOLTAGE TRANSFORMERS

WHY PA Y MORE?
MULTI RANGE METERS TYPE MF $15 A$. AC/DC
volis 10.50 .250 .500 .1000 Ma 0.50 .100100
 ($£ 8.63$ inc. VAT \& P.)

METERS (New) - 90mm DIAMETER AC Amp. Type $62 \mathrm{~T} 2: 0-$
AC Volt, $0-15 \mathrm{~V}, 0.300 \mathrm{~V}$
DC Amp.
15 V .30 V
a-10A , 0.20A 0.50A DC Volt

HEAVY DUTY SOLENOID Mfg by Magnetion approx 201b, pull at 1.25 in Ex equip.
Tested. Price $£ 5.95+£ 1.50$ P\& ($£ 8.57$

240 V A.C. SOLENOID approx: 101 b pull. 10% rating. Size
12V DC SOLENOID
12V DC heary duty Solenoid 4 Kp pull. Easily removable from
plate. Ali. chassis containing $4 \times 24 V$ DC Push Solenoids $11_{2}^{1 / 2}$ tb approx). 5-fig Counter. 6 min photo cells. Sub-min Microswitches
$\& p$ (total incl. VAT E 12.65)
12 V DC SOLENOID Appror
12 V DC SOLENOID Approx. 1 b pull. Price $\mathrm{ft} .50+\mathrm{P} \& \mathrm{P} 40 \mathrm{p} / £ 2.18$
SOLENOIDS
Westool Series D6 Madel A3. 24 V DC. Price $£ 1.50+50 \mathrm{p}$ P\&P
$(\mathrm{f} 2.30$ incl VAT). Westooi Series D4 Model A 24 V D.C. Price $\mathrm{f1.00}$ ($£ 2.30 \mathrm{incl}$ VAT). Westool Series D4 Model A 24 V D.C. Price $£ 1.00$ AG/GT 24V. DC 700 hm Coil Solenoid Push or Pull Adjustable travel to $3 / 16 \mathrm{in}$. Fitted with mounting brackets and snark suppres-
sor. Size $100 \times 65 \times 25 \mathrm{~mm}$. Price 3 for $£ 2.85+50 \mathrm{p}$ P\&P(min 3 off)

MINIATURE SOLENOID FLUID VALVE ${ }_{(C}$

800 WATT DIMMER SWITCH except fluorescent at mans voltage. Price: $£ 3.90+$ 50 P \& $P(\mathbf{f 5} 5.06$ incl. VAT $)$

 £9.55)
MICRO SWITCHES
Sub. Min. Honerwell Lever m / s type $3115 \mathrm{~m} 906 \mathrm{t}, 10$
for $\mathbf{£ 3} .50$ post paid $\mathbf{f 4 . 3 7} \mathrm{incl}$ VAT).
These V3 1ypes.
Button Type (Pye

N.M.S.O lever $\mathrm{m} / \mathrm{switch} \mathrm{mfg}$. by Chem Co USA
DP C/O

Precious metal. low resistance contacts. 10 for $\mathbf{£ 3 . 0 0}$
SOLID STATE E.H.T. UNIT
nput 230 V A C. Fully isolated output. 10 mm spark. Approx.
15 KV . Built-in 10 sec . Timer. Easily modified for 20 sec., 30 sec., to continuous operation. Designed tor boiler ignition.
Dozens of uses in the field of physics and electronics, e.g. supplying neon or argon tubes, erc, E.H.T. Stater for lasers,
xenons, C.S.I lamps, Van de Graatt Generator, loss of valuum detector, Ouidini Coils, etc. ett.
Size Lgth 155 mm Width 85 mm . Ht 50 mm . Wr 530 gms . Price
A.E.G. CONTACTOR

ARROW-HART MAINS CONTACTOR
 SMITH BLOWER
SMITH BLOWER
 CENTRIFUGAL BLOWER UNIT
CENTRIFUGAL BLOWER UNIT
 $24 V$ DC BLOWER UNIT
USA made 24V DC 08 amp blower to operates well on 12 v 0.4 amp ing dia 110 mm , depth inc motor 75 mm , nozzie length 19 mm , dia P\&P 75p (£6.04 inc. VAF \& P) N. M.S.
INSULATION TESTERS (NEW)

YET ANOTHER OUTSTANDING OFFER

New 1 MFD 600 V Dubilier
NPUT $230 / 24 \mathrm{CV}$ a.c. $50 / 60$ OUTPUT O-260V

3-PHASE VARIABLE VOLTAGE
TRANSFORMERS
Duat input 200-240V or 380-415V. Star connected

LT TRANSFORMERS

 $0.6 \mathrm{~V} / 12 \mathrm{~V}$ at $20 \mathrm{amp} £ 16.20 \mathrm{P} \& \mathrm{P} £ 200$ (inc. VAT $£ 20.93$)

$06 \mathrm{~V} / 12 \mathrm{~V}$ at $10 \mathrm{aing} £ 9.10 \mathrm{P} \& \mathrm{P}$ £2.00ic. VAT $£ 12.76 \mathrm{inc}$ VAT

VAT)

ZENON FLASHGUN TUBES
Range available from stock. S.A.E. for details

ULTRA VIOLET BLACK LIGHT
FLUORESCENT TUBES
4 ft 40 watt $£ 8.70$ inc. VAT $£ 10.00$ (callers only)
2 f 20 watts $£ 6.20$. Post $£ 125$ ($£ 8.57$ inc VAT $\& P$)
(For use in standard bi-pin fittings).
12 in 8 watt $£ 2.30$ Post $45 p$ ($£ 3.75 \mathrm{inc}$. VAI \& P)
gin
9 in 6 watt $£ 2.25$ Post 45 p ($£ 3.10 \mathrm{inc}$ VAT \& P).
6 in 4 watt $£ 2.25$ Post $45 \mathrm{p}(\mathbf{~} 3.10 \mathrm{inc}$ VAT \& P).
Complete ballast unit for either $6^{\prime \prime}$, $9^{\text {" }}$ or 12 ", tube 230 V AC op
E4.50 Post 45 p . ($\mathbf{5 5} .50 \mathrm{inc}$ VAT \& P). Also available for 12 VDC op

 VAT \& P $)$) 400 watt UV lamp only $£ 14.00$. Past $£ 2.00$ ($£ 18.40$ in
VAT $\&$ P

PROGRAMME TIMERS

E1.25 P\&P. (E 10 . 0 .

VEEDER-ROOT PRE-SET COUNTER

Type MG1636 3 fig countdown any number from 999 to 001.230 V circuitry on completion of countdown. Size: Wdth 85 mmm . H
65 mm . Dpth, 70 mm Price: $\mathbf{f 4 . 0 0} \div 75 \mathrm{p}$ P\& (Total inci VAT $\mathbf{E 5 . 4 6}$)

Superior Quality Precision Made

em ceramic construction, vitreous enamel

50 WATT $250 \mathrm{C} \mathbf{£ 4 . 5 0}$ Post 50 p ($\mathbf{E 5} .75$ inc VAT \&
100 WATT $1 / 5 / 10 / 25 / 50 / 100 / 250 / 300 / 500 / 1 \mathrm{kN} / 1.5 \mathrm{kSI} / 2.5 \mathrm{kl} / 5 \mathrm{kN}$
 bush. Ideal to above Rheostats 24 p ea

RELAYS

230/240V AC Relays: Arrow 2 c/o 15 amp $\mathbf{£ 2 . 5 0}+30 \mathrm{p}$ P\&P ($\mathbf{£ 2 . 0 7}$
 P\&P 30 p . Total incl. VAT ($\mathbf{C 1} 1.90$ inc. VAT)
D.C. Relay, sealed $612 \mathrm{DC} 2 \mathrm{c} / 10$ amp contacts. Single hole
 $24 \mathrm{VDC} 2 \mathrm{c} / 07 \mathrm{amp}$ contacts Sealed octal base $\mathbf{f 1 . 3 0 \text { pius P P P } 3 0 \rho}$ E1. 84 inc. VAT.
Mercury Wetred relay mfg by Clare Type HGSM $100318 / 24 \mathrm{VDC}$
 (amps = contact rating) $P \&$ \& on any relay 20p
Very special offer. $0.12 \mathrm{VDC}, 2$ make contacts, new 3 for f 1.75 plus 250 P\&P (inc VAT $£ 2.30$
Reed Relay mfg. by Alma Type CPR1/D 69V DC 700 n coil 5 for

 (EA. 32 incl VAT)
HELLERMAN DEUTSCH. Hermetically sealed sub -min. Relay 12 -

GEARED MOTORS

 $11 / 2 \mathrm{rpm}$ KLAXON motors approx. 251 binch .28 rpm WYNSALE motors approx. 201 b inch
11 rpm WYNSCALE motors approx 10 . Above three motors are designed 101 b inch, supplied with auto transformer for 110 V AC operation with auto transformer for 240 V AC \&PR (£20.13 inc. VATN.M.S. A.C.P.M. 10 A.C. 50 hz 100 lb incl, reversible. Will operate on 230
 56 rpm .240 V AC. 501 b in. 50 Hz 0.7 amp Shaft length 35 mm . Dia 16 mm . Wt. 6 kg .
600 g . Mt. FRACMO. Price $£ 15.50-£ 2.00$ P\&P (E220.13inc. VAAT) R \& T.

250 mm . Dia 135 mm . Spindie dia. 15.5 mm iength 145 mm . Tested Price $14.00 \mathrm{E} 2.00 \mathrm{P} \mathrm{\& P}$ ($\mathbf{f} 18.40 \mathrm{inc}$ VAT). R. \& T. Suitable Transformer for $230 / 240 \mathrm{~V}$ operation Price 100 rpm 110 V A Single phase split capacitor Immense power. Totally enclosed. Length 250 mm . 145 mm Tested Price $£ 14.00+£ 2.00 \mathrm{PSP}$ fer for $230-240 \mathrm{~V}$ op Price $\mathbf{~} 8.00+£ 1.50$
mep

Suitable Transformer for $230-240 \mathrm{~V}$ AC Price $\mathbf{6 6 . 0 0}+\mathbf{£ 1 . 5 0} \mathrm{P} \mathrm{\& P}$ $1 \mathrm{ppm} 230 / 240 \mathrm{~V}$ AC synchronous geared motor. MF. HAYOON 2 pmo $230 / 240 \mathrm{~V}$ AC SYnchronous geared Motor. Mi. CAOUZNET.
Either type $£ 3.90$ - 40 p P\&F ($\mathbf{~} 4.95$ inc. VAT). N.M.S. N.E.C. geared Motor, 152 R.P.M. 2001b.
inch. 230 A.C. 50 hz . Ratio 9.2 to 1 . Non inch. 230 ACC 50 hz . Ratio 9.2 to 1. Non reverse incl. capacitors. Fraction o
maker's price $\mathbf{~} 35.00$ P\&\&P $£ 4$. ($£ 44.85$ inc VAT). Also available 230 A.C. 60 hz .182

INCREDIBLE OFFER

230 VOLT AC FAN ASSEMBLY Powertul continuously rated AC molor com
plete with 5 blade $61 / 266$ or 4 blade 366 aluminium fan. New reduced
(6.04 inc. VAT $\&$ P P

24V DC GEARED MOTOR

24 VDC 200 rpm $10 \mathrm{lbs} / \mathrm{ins}$ continuously rated geared Motor mfg by either Parvatux or Carter. Easily removable from heavy ali chassis
containing $9 \times 24 \mathrm{VDC}$ Solenoids. microswitches, friction clutch. precision gearing, etc, etc. Ex-equipment London Transuort Ticket
Printer. Price $\mathbf{£ 1 1 . 0 0}+£ 2.00 \mathrm{p}$ \& p . (total incl. VAT $£ 14.95$)

24V D.C. Reversible Motor
Parvalux type SD12L, 24 D. C. shunt wound Motor. 133rpm. 651bs. in. Gearbox ratio $30-1$. Current 6.8 amp Rating continuous. Will operate on reduced power and speed at $9 V$ D.C. ol less Size Dia.
16 mm . Width 150 mm . Shaft dia. 16 mm . Price $£ 16.50$ plus 18 ip.$~$ E2.00 (E21. 28 inc. VAT). N.M.S.
60 rpm 1001b in rating. Price as above
100 W Rheostat 1Ω speed control $\mathbf{E 6 . 9 0} \mathrm{P} \mathrm{\& P} \mathbf{7 5 p}$ ($\mathbf{E 8} .80$ inc. V.A.T.)
ROTARY CARBON VANE VACUUM $\&$
COMPRESSOR Direct coupled to $1 / 3 \mathrm{~h} . \mathrm{p} .110 / 115 \mathrm{~V}$ AC
 Max. airflow 3 C.f.m. at 66066 H.G Price $\mathbf{£ 3 0 . 0 0}+P \& P$ P4.00
$(\mathbf{£ 3 9 . 1 0}$ inc. VAT) N.M.S Suitable tran
VATI.N.M.S.

WATER PUMP

Mfg. by S.P.A. Astaisi of Itaty. 220/240v AC. 50 hiz 2800 R.P.

VERY EXCEPTIONAL OFFER REDUCTION DRIVE GEARBOX

Ratio 72 : 9 Input spindle $1 / 4$ in. $1 / 2$ in. Output spindle 2×3 in $10 n g$
Overall size approx. $120 \times 88 \times 66 \mathrm{~mm}$. All metal construction. Ex
AC Wkg TUBULAR CAPACITORS

Fraction of maker	start, etc.		75 p
	60p	5.4 mfd 280V AC	
2 mtd 250 VAC	60p	65 mfd . 280 VAC	¢1.00
2 mfd 450 VAC	75p	7.5 mfd .200 V AC	f1.00
22 mfd 440 VAC	75p	10 mfd 250 VAC	E1.00
3 mid 440 VAC	¢1.00	15 mfd 250V AC	c1.50
4.1 mfd 440 VAC	$f 1.00$	(block)	
5 mfd 400 VAC	¢1.25	19 mfd 280 VAC	¢2.00
5.3 mfd 160 VAC	60p	20 mfd 250 VAC	f2. 25

P\&P up to 2.5 mfd . 25 p .3 mfd to 20 mfd . 50 p . All plus VAT. N.M S Spectal discount for bulk nurchases.

TIME SWITCH VENNER TYPE

on/2 off every 24 hrs at any manually pre-set time Buht to highest Electricity Board Specification
Price $\mathbf{1 0 0 0 0}$. P\&P $£ 1.50(\mathbf{f 1 3 . 2 3}$ inc VAT) R\&T.

SANGAMO WESTON TIME SWITCH

TEST INSTRUMENTS

THANDAR

DIGITAL MULTIMETERS (LED)PDM35 £39.68 DM235. $\mathbf{£ 6 0 . 3 8}$ DM350. £83.38 DM450 $£ 136.85$ DIGITAL MULTIMETERS (LCD): TM351.f113.85 TM352.. $\mathbf{£ 5 7 . 4 4}$ TM353.. $\mathbf{£ 9 6 . 6 0}$ TM 354 .. $\mathbf{£ 4 5 . 9 4}$ FREQUENCY METERS
PFM200.£57.27 TF040. $\mathbf{£ 1 2 6 . 5 0}$ TF200 £ 166.75
PRE-SCALER: TP600........ $\mathbf{£ 4 3 . 1 3}$ OSCILLOSCOPE: SC110. $\mathbf{£ 1 5 9 . 8 5}$ PULSE GEN: TG105......... $\mathbf{£ 9 7 . 7 5}$ FUNCTION GEN.: TG100. $£ 90.85$ Instrument Case............... $\mathbf{£ 1 0 . 2 9}$ Bench Instrument Rack $\mathbf{£ 2 2 . 9 4}$ Carrying Cases
DM235, DM350, DM450...... £8.86 PDM35, TM354, PFM200 TM351, TM353, TF040 TF200, TG105, TG100 TM352.... £2.01 SC 110.
Mains Adaptors
PDM35, DM450 PFM200

DM235, DM350, TF040 $£ 5.69$ TF200, TP600, SC110. Rechargeable Battery Pack DM235, DM 350 , DM 450 $£ 8.63$ £5.69 SC110.................................... $\mathbf{£ 8 . 6 3}$ Universal Test Lead Set.... $\mathbf{£ 1 . 2 7}$ 40 KV Probe $£ 34.44$ Connector Pack (PFM200) . $\mathbf{£ 1 1 . 2 7}$ Probe
(For SC110, TF040, TF200)
$\begin{array}{ll}\times 1 & \mathbf{£ 8 . 0 5} \\ \times 10\end{array}$
Sprung Hook/Trimmer Pack
(For SC1 10)......................... $\mathbf{E 2 . 8}$ SERVICE MANUALS (each)

* No V.A.T. on manuals

All prices include V.A.T. For orders over $£ 20$, p. \& p. FREE (U.K): under $£ 20$ p. \& p. $£ 1$ (U.K.)

All prices correct at 1-4-81. E \& OE .

Many more instruments available in the LEADER and TMK ranges
Send for catalogue 30p (including postage)
Cash with order

Open: Monday to Friday 9 a.m. 5.30 p.m. 4 Sandy Lane, Stockton Heath WARRINGTON, WA4 2AY, CHESHIRE Telephone: (0925) 64764

FLOPPY DISK DRIVES

``` New Low Prices! Unbelievable but True! Read On!
```


SIEMENS FDD - 100-8/FDD - 200-8

```
Fully Shugart Compatible Siemens \(8^{\prime \prime}\) single and double sided disk drives are available now with unbeatable prices at single unit pricing.
Note these specifications
\(\star\) TRACK 00 SENSING
* activity indication
* MECHANICALEND STOPSAT
- AACKS ODAND 76
A AUTO WRITE CURRENT
SWITCHING AT TRACK
- Write project
- auto disk ejection
- FAIL SAFEINTERLOCK WHICH PREVENTS THE COVER FROM INSERTED DISKETTE
```

FD100-8
Capacity per disk unfor-
matted
Bit Density inner track
Recording Method
Head Engine
Access Time Track Track
Settling Time
Number of Recording Surfaces
MTBF
Power requirement
AC-Power
DC-Power
DC-Power
FD200-8
Same as above except
Capacity per disk unfor
matted.
Number of Recording
Surfaces

SINGLE DENSITY

400 K Bytes 3.2 MBit 3268 BPI innertrack
${ }_{250 \mathrm{KBit} / \mathrm{sec}}$
250 MS
3 MS
12 MS
6000 hrs
20 mins
$240 \mathrm{~V}, 50 \mathrm{HZ}$
+24 V @d 1.8 amps
+5 V (a 1.3 amps
5.9 kg

800 KBytes 6.4MBIT
1600 KBytes 12.8 MBits

``` 2
```


FDD-1008 FROM £249.95 EACH

```
PRICING FDD-200-8 FROM £360.00 EACH
IRVINE BUSINESS SYSTEMS
```

[^2]```
TEL: (0294) 75000
TEL: (0294) 75000
TELEX: 777582
```


# Cul 9.30-5.30 

RAM AND EPROM NEW LOW VAT INCLUSIVE PRICES

2716 5vRail $\mathbf{£ 9 - 5 0}$<br>27163 Rail $£ 8$-50<br>708 Ex $\mathbf{4 - 5 0}$<br>$4116 \quad 200$ NS $76 K \times 1$ DYN. 8 for $£ 19-95$<br>$2102 \mathrm{~L}-3 \quad 650$ NS 7 KX1 ST. 8 for $£ 22-50$<br>$2102 \mathrm{~L}-3 \mathrm{G50} \mathrm{NS}$ iKX1 ST. 8 for $£ 5.50$

TELETYPE ASR33
1/0 TERMINALS


Fromf195
Fully $\ddagger$ ledged industry standard ASR33 data ter and printer for data 1,0 , auto data detect circuitry. punch and reader for off line data preparation and ridicu'ously cheap and reliable data storage. Sup plied in good condition and in working orde
Optiars: Floor stand $£ 1250+$ VAT

EOUIPMENTCASES GIVE
YOUR M.P.U.

A HOME ONLY $\xlongequal{〔 9.95}$
Superb orrfessional fully enclosed. made tor the G.P. O. to the highest standard, offered at
fraction of their original cost they feature fraction of their original cost they feature
aluminium sides, hinged removable front pane alumintum sides, hinged removable front pane
which can be secured by 2 screws to prevent prying finger: All are finished in two tone G.P.O minor scuff marks/scratches due to bad storage.

## NATIONAL MA1012 LED CLOCK MODULE

## * 12 HOUR

## $\star$ ALARM

$\star 50 / 60 \mathrm{HZ}$
The same module as used in most ALARM/CLOCK radios today, the only difference is our price! All electronics are mounted on a PCB measuring only
$3^{\prime \prime} \times 11^{\prime \prime}$ and by addition of a few switches and $5 / 16$ volts $A C$ you have a multi function alarm clock at a fraction of cost. Other features include snooze timer, am pm, alarm set, power fail indicator, fiashing seconds cursor, modulated alarm output etc Supplied brand new with full data only $£ 5.25$
Suitable transformer $£ 175$

## SEMICONDUCTOR GRAB BAGS'

Arnazing value mixed semiconductors, include transistors. digital, linear I.C. 's, triacs, diodes, bridge
recs etc otc. All devices guaranteed brand new, full recs. AtC etc. All devices guaranteed brand new, full

## MDIFIN FANS

"Muth fors" two voltages. 110 V.A.C. $£ 5.05+$ pp 90 p OR 240 v A.C. $£ 6.15+\rho p$ SOD DIMENSIONS 4 : $\times 4$. $\times$

## ICL TERMIPRINTER SCOOP PURCHASE 300 BAUD TERMINALS 12" VIDEO MONTORS

hracknow, cower supolies, scopes, sig. gen's, motors, per ranstormers, power supplies, components, variacs, keyboards,
equipment. I. . ' s , tools, com ransistors, microswitches, V. D.U's sub-assemblies + thousands of ther stock lines. Just a mere fraction of our vast range, is displayed below: 100's of bargains for callers.


##  <br> EPROM BLOWER

 Sorware development system ists, etc. Enables open heart surgery on 2716. 2708 etc. Blows, copies, eads EPROMS or emulates displaying contents on dom whist eceiver Man other teat 1115 carr + VAT Optional 27162716 function Card $\mathbf{E 4 0}+$ VAT PSU $\mathbf{E 2 0}$$+£ 1.50$ carr + VAT
$3 \mathrm{~K} \times 8$ STAIIC
AND NEW PCB
DAN PCB organised as a $3 \mathrm{~K} \times$ 8page memory with 24 socketed 2102 IIL Chips tor decoding All IC's and 16 teed.
circuit only
£24.50 + £1.75 P.P.
Dimensions $264 \times 195 \mathrm{~mm}$

## OP PRESS - STOP PRESS - STOP PRESS - ST STEP INTO THE 80's

WITH TOMORROW'S WORLD TECHNOLOGY TODAY The "TANTEL" Post Office approved
PRESTEL-VIEWDATA ADAPTOR
afford. Just connect to the aerial socket of any colour or black and white domestic TV receiver and to your Post Office installed jack socket and you are into the exciting worid of PRESTEL. Via simple push button use you are
able to view a staggering 170,000 pages of up to the minute information on many services and utilities, order goods from companies, even play

## 

Note: When ordering please give the address and telephone number where the Tantel adaptor is to be used, we will arrange all details with the Post Office for installation of the


## MEMOREX/BASF 7 MB HARD DISK DRIVES

Model $630-1 \mathrm{~B}$ disk drives by Memorex BASF, TTL signass in and out, high speed, iBM 2317 compa
ible. Sold in good condition but unguaranteed

## $£ 175.00$ + VAT

## BUYERS COLLECT

## "THE MULTIVOLT PSU"

The PSU to end all your MPU/LAB requirements, mape by Weir" Electronics at over $£ 200.00$. The overvoltage protection on all 7 outputs, just look at

## the spec. <br> + 5 v @ $12 \mathrm{amps},+5 \mathrm{v} @ 4.5 \mathrm{amps},+5 \mathrm{v} @ 4 \mathrm{amps}$,

 $+30 \mathrm{v} @ 2 \mathrm{amps},+12 \mathrm{v} @ 2.5 \mathrm{amps},-12 \mathrm{v} @ 2.5$ amps and-9v@1amp. A superb unit supplied in two grades, complete Brand New, Fully Tested£59.99 Used and Untested £39.99

##  KEYBOARDS

Straight from the U.S.A made by the world famous R.C.A. Co ..the VP60 Series of cased freestanding keyboards meet all requireUtilising the latest in switch technology. Guaranteed in excess of 5 million operations. The keyboard has a host of other features inctuding full ASCII 128 character set, user defnnable keys, upper/lower case, rollover protection, single 5 V rail, keyboard impervious to iqquids and dust, TIL or Cmos outputs, even an on-board tone generator for keypress feedback. and a 1 year full R.C A backed guarantee.
VPGOM 7 bit fully coded output with delayed
Strobe, etc
VP611 Same as VP601 with numeric pad.

Dept. W.W. 64 -66 Melfort Rd., Thornton Heath Croydon, Surrey. Tel: 01-689 7702 or 01-689 6800 MAIL ORDER INFORMATION Under othe wise siated ali prices inclusive of V. A. Cash with order. Minimu packing not indicated please add 60 p per order. Bona Fida account orders minimum $£ 10.00$. Esport and trade enquiries welcome. Orders despatched

VP606 Serial, RS232. 20MA and TTL Output, with 6 solectable Baud Rates.
Post Packing as 606 , with numeric pad.
arDER MOW
$5 v$ D.C. POWER SUPPLIES

## SIEMENS

## The all-standard TV aerial tester - for both the professional and enthusiast

The Siemens S43202-M-C TV Antenna Level Meter is a portable, self-contained unit which greatly simplifies antenna orientation to receive TV signals including those of foreign transmission. Signals are visually monitored on the integral 70 mm diameter screen, giving the facility of detecting ghosting, unlike meters relying on directional pointers.
The unit is very accurate, yet remarkably simple to operate and embodies all the technological sophistication allied with supreme reliability for which Siemens is recognised.
Contact Telecommunications Test Equipment Department at:


Siemens Limited, Siemens House, Windmill Road, Sunbury-on-Thames, Middlesex.
Tel. Sunbury-on-Thames 85691
Telex 8951091

## A Siemens tester for all standards

WW - 073 FOR FURTHER DETAILS


WW - 081 FOR FURTHER DETAILS

## CB ACCESSORIES

ANTENNAS, COAX CONNECTORS MIKES SWR METERS BOOKS 40 \& 80 CH RECEIVERS

## SPILTH ELECTRONICS

## 3D Barley Market Street Tavistock, Devon

Phone 08225865
Telex 45236











## MEET SUNITA'S FAMILY OF MONITORS



Sunita is very proud to announce that her low-cost Monochrome Video and Data Display Monitors are of British Manufacture.

Our range consists of the following versions

## WIRE FRAME

MPM2/5", $6^{\prime \prime}, 9^{\prime \prime}, 12^{\prime \prime}$ Composite video or separate video, line sync and field sync.
MPM $3 / 5^{\prime \prime}, 6^{\prime \prime}, 9^{\prime \prime}, 12^{\prime \prime}$ Direct drive.
These can also be supplied with Integral power supply at extra cost.

## CHASSIS TYPE

MPM2/6"', $9^{\prime \prime}, 12^{\prime \prime}$ Composite video.
Separate video, line sync and field sync can be supplied at small extra cost.

## VDU TYPE

MPM2/9', $12^{\prime \prime}$. To your choice of signal drive
We can also give our attention to your special requirements. We are here to surprise you with our best quality, high performance and low cost.

For further information: RING STAINES (0784) 57007

Or write to
SUNITA ELECTRONICS LTD.
UNIT 18, STAINES CENTRAL TRADING ESTATE STAINES, MIDDX. TW18 4XE

WW - 078 FOR FURTHER DETAILS

# ANY MAKE-UP OR COPY QUERIES CONTACT BRIAN BANNISTER 01-661 3500 extension 3561 

## ELECTRONIC EQUIPMENT CO.

SPRINGFIELD HOUSE TYSSEN STREET LONDON E82 ND
Tel. 01-2495217
TIX. 8953906
MANUFACTURERS SURPLUS LOW VOLTAGE ELECTROLYTICS

| Per 10 |  | Per 10 |
| :---: | :---: | :---: |
| 33uf/63V Radial..................... . 24 | 22uf/6.3V Axial. | Pe... 24 |
| 100uf/6.3V............................ . 30 | 33uf/. | . 27 |
| 470uf/6.3V ............................. . 48 | 100uf/. | . 30 |
| 10 uf/10V .............................. . 16 | 33uf/10V | . 28 |
| 22uf/10V............................... . 30 | 47uf/. | 30 |
| 47uf/10V.............................. . 35 | 100uf/ | 38 |
| 1000uf/10V........................... . 66 | 330uf/ | 80 |
| 3300uf/10V ......................... 1.30 | 1000uf/ | . 80 |
| 100uf/16V............................. . 35 | 22uf/16V | 28 |
| 220uf/16V............................ . 45 | 33uf/. | 30 |
| 330uf/16V ............................. . 50 | 330uf/ | 60 |
| 10uf/50V ............................... . 25 | 1000uf/ | 1.00 |
| 33uf/50V ............................... 40 | 22uf/35V | . 27 |
| 330uf/50V.......................... 1.80 | 22uf/. | . 40 |
| 470uf/50V .......................... 1.75 | 33u1/. | . 45 |
| MIXED DIALECTRIC CAPACITORS |  | Per 10 |
| 0.22600 V.D.C./300V.A.C. Axial |  | 1.00 |
| 0.0022 1000V.D.C./600V.A.C. ... |  | . . 70 |
| 0.0033 1000V.D.C./600V.A.C. |  | . 70 |
| 0.0047 1500V.D.C./300V.A.C. |  | . 70 |
| 0.0221000 V.D.C./300V.A.C. |  | . 80 |
| 0.047 1000V.D.C./300V.A.C. |  | . 80 |

0.047 1000V.D.C. 300 V.A.C. ......................................... 80

Thorn GC 2278 15uf 350 V Capacitator $£ 2.50$ ea. $+30 \mathrm{p} \mathrm{P/P}$ ( $£ 3.22 \mathrm{inc}$ VAT).
Spraque Powerlytic Type 36 D 120000 uf 15 V.D.C. $£ 2.50$ ea. +30 p P/P (£3.22 inc. VAT)
$30 \mathrm{p} P / P+$ V.A.T. on all orders

## SPECIAL OFFER

15 Button Universal telephone modern G.P.O. design, grey body with brown handset, brand new and unused, complete with connecting box, $£ 10$ each $+£ 1.00$ P/P (£12.65 ea. inc. V.A.T.)

## RELAYS

12 V.D.C. Enclosed type, 4 pole. C/O £1.50 plus 25p P/P (£2.00 inc. VAT).
12 Volt miniature low profile 2 pole, C/O £2.00 plus 25 p P/P ( $£ 2.60$ inc. VAT).
24 V.D.C. plug in series $890 \Omega 24$ pole C/O £ 1.50 plus 25 p P/P ( $£ 2.00$ inc. AT).
110 V.D.C. Plug in A.M.F. 4 pole C/O $£ 1.75$ plus 25 p P/P ( $£ 2.30$ inc. VAT).
220/240 V.A.C. Relay by Siemens 2 pole C/O. Heavy duty contacts completely enclosed, $£ 2.00$ plus 30 p P/P ( $£ 2.65$ inc. VAT)
Osmor Reed Relay 650 ת Coil 12 V.D.C. N/O Contacts P.C. mounting $50 \mathrm{p}+15 \mathrm{p}$ P/P ( 0.75 inc . VAT) .

## MICRO SWITCHES (Brand new).

Button type Sub Miniature. Cherry E61 5 amp rating at 250 V.A.C. $£ 3.00$ for 10 ( $£ 3.45$ inc. VAT and Post). Honeywell V3s Button type amp rating, $£ 3.00$ for 10 ( $£ 3.45$ inc. VAT and Post
Burgess WR22 Series Button Type, $15 \mathrm{amp}, 250$ V.A.C. $£ 5.00$ for 10 ( $£ 5.75$ inc. VAT and Post).

CABLES AND FLEXIBLES
$13 / 0.2 \mathrm{~mm}$ polarised fig. 8 speaker flex. $£ 5.50$ per 100 metres plus 50 p P/P (£6.90 inc. VAT)
$7 / 0.2 \mathrm{~mm}$ flexible connecting wire P.V.C. covered, $£ 1.75$ per 100 metres, 25 p P/P ( $£ 2.30 \mathrm{inc}$. VAT)
$1 / 0.6 \mathrm{~mm}$ Solid connecting wire P.V.C. covered, $£ 1.75$ per 100 metres plus $25 \mathrm{p} P / \mathrm{P}$ ( $\mathbf{£} 2.30$ inc. VAT).

WW - 076 FOR FURTHER DETAILS

## THE PRINTER SCOOP OF THE YEAR, SAVE OVER E1400 THE LOGABAX 280 MICROPROCESSOR CONTROLLED <br>  <br> A massive bulk purchase enables us to offer you this superb professional printer at a fraction of its recent cost of over $\mathbf{£ 2 0 0 0}$. Utilising the very latest in microprocessor technology, it features a host of facilities with all electronics on one plug in P.C.B. Just study the specification and you will instantly realise it meets all the requirements of the most exacting professional or hobbyist user. <br> STANDARD FUNCTIONS $\star$ Full ASCII character set $\star$ Standard ink ribbon $\star$ RS232/V24 serial interface $-7 \times x$ xal controlled baud rates up to $9600 \star 194$ characters per line $\star$ Parallel interface $\star$ Handshakes on serial and parallel ports * 4 Type fonts, italic script, double width, italic large, standard $\downarrow$ Internal buffer Internal self test $t 170$ CPS $t$ Variable paper tractor up to $17.5^{\prime \prime \prime}$ wide $\#$ Solid steel construction $\star$ All software in 2708 eproms easily reconfigured for custom fonts etc. <br> £525 <br> + carriage and ins. $\mathbf{5 1 8 . 0 0}+$ VAT <br> OPTIONAL EXTRAS * Lower case £25.00 $\uparrow 16 \mathrm{~K}$ buffer $£ 30.00$. Second tractor for simultaneous dual forms E85.00 Logabax maintenance P.O.A. All prices subject to VAT - AVAILABLE ONLY FROM

## DAIWA POWER METERS

CN620A 1.8-150 MHz up to 1 KW CN630 $140-450 \mathrm{MHz}$ up to 200 W CN650 1.2-2.5 GHz up to 20 W .
£52.81 inc. VAT . $\mathbf{£ 7 1 . 0 0 \text { inc. VAT }}$ £95.00 inc. VAT


Carriage on Meters $£ 1.25$ Carriage on Mike System $£ 1.50$

## POWER SUPPLIES



JRC Japan Radio Co., Itd. NRD 515

The NRD 515 is a PLL-synthesised communications receiver of the highest class featuring advanced radio technology combined with the latest digital techniques.
The new NRD 515 is full of performance advantages including general coverage, all modes of operation, PLL digital VFO for digital tuning, 24channel frequency memory (option), direct mixing, pass-band tuning, etc. JRC's 65 years of radio communications experience will give you "the world at your fingertips.
The NRD 515 is but a single item from the JRC product range which extends all the way to full marine radio installations for supertankers.

Until recently, the in-line measurement of RF power and SWR involved calculation or the use of two instruments. Now, DAIWA have introduced a range of power meters which provide an elegant solution to the whole problem of RF measurements. Utilising two provide an elegant solution to the whole problem of RF measurements. toroidal current transformers to detect true forward and reflected power, and teedngsure outputs to a twin movement meter with crossed pointers, it is now possibie to measure
forward power (LH scale), reflected power (RH scale) and SWR (where the pointers cross) at forward power (LH scale), reflected power (RH scale) and SWR (where the pointers cross) a a single glance. The DAIWA CN series power meters represent the ultimate power meter for the professional and amateur alike, and are indispensable in the fully equipped station. Three models are currently available covering frequencies right up to 2.5 GHz so there's one for you whatever your interests.

## DAIWA CORDLESS INFRARED MIKE

RM940 $£ 45.00 \mathrm{inc}$. VAT
S9 Spare Senor $£ 6.50$ inc. VAT M9 Spare Mike £13 inc. VAT Windshield for Mike 75p each

The Daiwa infrared mike system, comprising of a control box. sensor and infrared mike enables you to dispense with the hand mike and cable when operating in your car or shack. By using an infrared beam audio is transmitted from the mike to the sensor and then to the control box which activates the transmitter. To transmit, press the locking switch on the mike and talk. To receive, release the switch and your rig immediately returns to receive. When you have finished your contact return the mike to its slot in the control box and the mike nicad battery is maintained at full charge. For the mike nicad battery is maintained at drive with all those of you who like fresh air and drive with all
windows open there is a matching wind shield availwindows open there is a matching wind shield avail-
able at an additional 75p. So there we are, the latest in technology to bring safety to your mobile operation, the Daiwa infrared mike.

## THE 3 MODELS

ALL MODELS 240 VOLTS A.C. INPUT
The PP1305 4 amp 13.8 volts d.c. $£ 18.40$ inc. VAT The PP137 7 amp 13.8 volts d.c. $£ 32.00$ inc. VAT The PP1310 10 amp 13.8 volts d.c. $£ 49.50$ inc. VAT Carriage $£ 2$


NRD 515 SYNTHESISED HF RECEIVER ...... £948.75 inc. VAT NHD 515 MULTI CHANNEL MEMORY UNIT
$\mathbf{£ 1 6 1 . 0 0}$ inc. VAT
NVA 515 LOUDSPEAKER $\mathbf{£ 2 7 . 6 0}$ inc. VAT
CFL 260 600Hz CW FILTER $\mathbf{£ 3 4 . 5 0}$ inc. VAT


## The exhibition for the professional radio amateur.

May 28th \& 29th 10am-6pm,30th 10am-5pm.


RSGB 1981 EXHIBITION AT ALEXANDRA PALACE
Whether you are a professional involved in electronics, a dedicated radio amateur, short wave listener or interested in any aspect of electronics as a hobby, this specialist exhibition is well worth a visit.

Find out how radio amateurs bounce signals off the moon and off meteors as they enter the earth's atmosphere, and if you feel inspired by that you can also find out how to join the ranks of over 1 million radio amateurs world wide.


How to get there
Public Transport. Alexandra Palace is easlly reached by road and has free car and coach parking Bus services 29. 41. 102 123,134, 212. 221 and 244 are within easy walking distance and service W3 connects with the Underground at Wood Green (Piccadilly Line) and Finsbury Park (Piccadilly and Victoria Lines).
By Car A.P. is near Muswell Hill or Wood Green off the North Circular Road

## FM S22 or SU8 (initial calls) SSB 144.28 MHz (listening watch) <br> Discover the world of - AMATEUR RADIO

PRINTED CIRCUITSFOR WIRELESS WORLD PROJECTS
Uhf television tuner-Oct 1975-1 d s ..... $£ 8.50$Stripline r.f. power amp-Sept 1975-1 dsStripline r.f. power amp-Sept. $1975-1$ d.s.
Audio compressor/limiter-Dec 1975-1 s.s. (stereo)Audio compressor/limiter-Dec 1975-1 s.s. (stereo)F.m. tuner (advanced)-April 1976-1 s.sCassette recorder-May 1976-1 s.sAudio compander-July 1976-1 s.sTime code clock-August 1976-2 s.s. 3 d.sDate, alarm, b.s.t. switch-June $1977-2 \mathrm{~d}$ s.Audio preamplifier-November $1976-2 \mathrm{~s} . \mathrm{s}$Additional circuits-October 1977-1 s.s.Stereo coder-April 1977-1 d.s. $2 \mathrm{~s} . \mathrm{s}$Morse keyboard and memory-January 1977-2 d s(logic board $101 / 4 \mathrm{in}$. $\times 5 \mathrm{in}$ ) (keyboard and matrix $13 \mathrm{in} \times 10 \mathrm{in}$.)
Low distortion disc amplifier (stereo)-September $1977-1 \mathrm{~s}$.$\pm 8.50$
$£ 5.00$$£ 5.00$$£ 4.25$$€ 5.00$E14.00Low distortion audio oscillator-September 1977-1 s.s$E 14.00$
Low distortion audio oscillator-September 1977-1 s.s. £3.50
Synthesized f.m. transceiver-Nov ..... £ 12.00Morsemaker-June 1978-1 d.s.Oscilloscope waveform store-October 1978-4 dsOscilloscope waveform store-October 1978-4 dsRegulator for car alternator-August $1978-1 \mathrm{~s} . \mathrm{s}$.Wideband noise reducer - November 1978-1 ds.Versatile noise generator-January 1979 - 1 s.s200 MHz frequency meter-January 1979-1 d.sHigh performance preamplifier-February 1979-1 s sDistortion meter and oscillator - July 1979-2 s.s$-1 \mathrm{ss}$£4.50£3.75
$£ 2.00$$£ 5.00$
$£ 5.00$$£ 7.00$$£ 5.50$
Moving coil preamplifier-August 1979-1 s.s
£35.00
Amplification system-October'1979-3 preamp 1 poweramp
Digitai capacitance meter-April 1980-2 s.s_(E4.20 esch) £16.00
Digitai capacitance meter-April 1980-2 s.s £ 7.50
Colour graphics system-April 1980-1 d s
Audio spectrum analyser-May $1980-3 \mathrm{~s} . \mathrm{s}$
Multi-section equalizer-June $1980-2 \mathrm{~s} . \mathrm{s}$.
£18.50
£18.50
£10.50 C 8.00
Floating-bridge power amp-Oct. 1980-1 ss. (12V or 40V) £4.00 Nanocomp - Jan. 1981 - 1 d.s. 1 s.s $£ 9.00$
Logic probe - Feb. 1981 - 2 d.s $€ 6.00$
Boards are glassfibre, roller-tinned and drilled. Prices include V.A.T. and U.K. postage
Airmail add 20\%, Europe add $10 \%$, Insurance $10 \%$
Remittance with order to:
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

## WW - 079 FOR FURTHER DETAILS

[^3]RECHARGEABLE BATTERIES

## TRADE ENQUIRIES WELCOME

Full range available to replace 1.5 volt dry cells and 9 volt PP type batteries, SAE for lists and prices. $£ 1.45$ for booklet, "Nickel Cadium Power," plus catalogue. $\star$ New sealed lead range now available $\star$

Write or call at
SANDWELL PLANT LTD 2 Union Drive, Boldmere Sutton Coldfield, West Midlands, 021-354 9764

## WW-043 FOR FURTHER DETAILS

MODERN LABORATORY TOOL HOUSED LOW in attractive steel case
$\star$ WILL HOLD UP TO SIX EPROMS COST
$\star$ SAFETY INTERLOCKED EPROM TRAY EPROM

* fasterase time
- MONEYBACK

GUARANTEE
£38.50
POST
FREE
Including VAT

WW - 046 FOR FURTHER DETAILS

## EPROM PROGRAMMER with master to slave copying facilities PKW-5000



London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ, England. Tel: St. Ives (0480) 64646

Telex: 32250

## Appointments

Advertisements accepted up to 12 noon Tuesday, May 5 , for June issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 12$ per single col. centimetre (min. 3 cm ) LINE advertisements (run on): $£ 2$ per line, minimum three lines.
BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in the advertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 4AS.) PHONE: JAYNE PALMER, 01-661 3033 (DIRECT LINE)
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

# ELECTRONICS APPOINTMENTS <br> £5,000-£15,000 <br> your professional approach to a new opportunity 



Several opportunities at various levels with our client - a prime manufacturer of computer-based systems. Experience gained with Membrain - Terradyne or similar ATE systems/software plus good Digital/Analogue circuit knowledge would bring rewarding career development prospects.

Ref. 236A

## MICROCOMPUTER <br> TECHNICIANS <br> MID-BUCK

MICROWAVE
R\&D
$\qquad$
REAL TIME
SOFTWARE
to cf $10 \mathrm{~K}+\mathrm{Car} /$ Allowances

## MICROPROCESSOR <br> Hardware/Software

to $\mathrm{c} £ 12 \mathrm{~K}$

Use your Digital/Micro ability in the test/system commissioning of advanced micro-based data-collection/communication systems.
An expanding and well-backed young company offers high job interest + career potential in a pleasant rural environment. Ref. 235A
At various sites in Herts. - Cambs. - Northants - Beds. and other areas. Engineers and Group Leaders for Components; Systems Satcoms and Radar. Ref. 237
Excellent opportunities for Mini and Micro people - ideally several years' RSX11; RDOS; RT11; Assembler: M/C Code, etc.

Ref. 238
N.W. England; Scotland; S.E.; S.W. and E. Anglia. Clients of all shapes and
sizes: Control, Telemetry; Graphics; Medical and Military applications.

Ref. 239
To install and maintain offshore Comms./Telemetry and Monitor Systems good salary/leave packages.

Ref. 240
Most U.K. areas - both field service and in-house opportunities to use your $\mathrm{mini} / \mathrm{micro} /$ peripheral experience. Some offer European travel as well. Ref. 241

Many opportunities at all levels to Chief Engineer for good Digital/Analogue/ Mechanical experience.

Ref. 242

[^4]
# SULTANATE OF OMAN 

## RADIO AND TV BROADCAST ENGINEERING VACANCIES

The Sultanate of Oman operates a modern colour television and radio broadcasting service with studio centres situated in the North and South of the country, the two centres being linked by satellite. High power VHF and low power UHF transmitters are employed to provide a 625 PAL TV service to populated areas of the Sultanate. The radio broadcasting service uses HF, MF and VHF transmitters of various powers. Both services are managed by the Ministry of Information and Youth Affairs.

Due to expansion of the service vacancies for a variety of posts have arisen and applications are invited from suitable qualified persons.

## TRANSMITTER ENGINEERS

For maintenance of high power VHF TV transmitters and low power UHF transposers, high power MF, HF and VHF FM sound transmitters. The work will involve travel and in some cases overnight stops away from base. The transmitters operated within the Sultanate are manufactured by Siemens, Philips, Marconi and Continental Inc., U.S.A.

## STUDIO ENGINEERS

For maintenance on cameras, vision mixers, S.P.G.S., vision distribution systems, telecine machines and video monitors, etc. There will also be operational work, particularly on outside broadcasts.
The equipments employed are Philips LDK15 cameras, Bosch Fernseh KCU40 and KCP cameras, vision mixer units by C.D.L. and Bosch Fernseh, telecine by Rank Cintel and Bosch Fernseh.

## SOUND MAINTENANCE ENGINEERS

To maintain a wide range of high quality sound broadcasting equipment.

## VTR ENGINEERS

For maintenance on Ampex VR1200B and Bosch Fernseh BCM40 machines. There will also be some operational work. During the forthcoming year it is intended that 1 in . " C " Format VTR machines will be installed.

## PLANNING AND PROJECT ENGINEERS

To carry out planning for a wide range of transmitter installations for both TV and radio. Planning and Systems Engineers are also required for work on new radio studios to be constructed over the next few years.
Successful applicants will be expected to be directly involved with the nuts and bolts of the installation work, in some cases in remote areas. Applications are also invited for a number of senior positions in the transmitter, studio groups and electro-mechanical services groups. If you feel you can apply your knowledge and expertise to the efficient running of these groups we will be pleased to hear from you.

Applicants should be qualified to degree or HND level and have not less than six years' relevant - experience. The senior positions require considerably more years of varied but relevant experience. In most cases a knowledge of Arabic - although not essential - would be useful.
Salaries, which are paid in Rials Omani, are fully remittable and tax-free and range from pounds sterling 1100 to 1300 per month upwards. The senior positions start at pounds sterling 1500 to 1700 per month (depending upon current rate of exchange).
Married accommodation is provided together with free air passage at beginning and end of contract for family. Air tickets are also provided for leave after the first year of service.

Applicants should write stating age, nationality, qualifications and full details of experience to:
Ministry of Information and Youth Affairs, Post Box 600, Muscat, Sultanate of Oman, marking the envelope "Technical Office" in top left-hand corner.

## Appointments



POLYTECHNIC OF CENTRAL LONOON
School of Engineering and Science

## ELECTRONICS WORKSHOP TECHNICIAN

## GRADE 3

Required in workshop group involved in analague and digital electronics. Work will consist of the construction of newly developed equipment, plus testing and Experience in electronics and workshop practice is desirable.

ELECTRICAL
WORKSHOP/LABORATORY TECHNICIAN

## GRADE 3

Required to service and maintain Electri cal Laboratory and provide backup to teaching service to students at all levels in Analogue Computers, Measurements Power Group of laboratories will also be required at various times.
Qualifications for both posts: ONCIOND or equivalent and/or appropriate indust rial experience. Experience of 3-5 years inclusive of training. Salary: on scale f5322-f6060 p.a. inclusive of London Allowance.
Application forms and further details from: Establishment Office, PCL, 309 Re gent Street, London W1R 8AL. Tel. 01 580 2020, Ext. 212
(1020)

## TOP JOBS IN ELECTRONICS

Posts in Computers, Medical Comms, etc. ONC to Ph.D. Free service.


## TRAINEE BROADCAST ENGINEERS

ITN needs more engineers to support its expanding programme of news coverage - expansion which is expected to continue through the 80 s with the introduction of the fourth channel. We have a number of vacancies for Engineering Trainees vacancies which could give you the opportunity to start a career in Broadcast Television Engineering with ITV.
Firstly, we need you to have a firm interest in pursuing a career in the technical side of broadcasting.
Then you should have completed, or expect to complete, theo retical training in Electronic Engineering or closely allied subjects this academic year.
Applicants may have a wide range of acceptable initial qualifications, but those generally most suitable are either the TEC's Higher Technical Diploma, Higher Technical Certificate, HNC or HND.
initially, you would be involved in a 9-12 month familiansation period by attachment to our five maintenance areas and the Projects Department, on a rotational basis.
After successful training you would be employed on the maintenance or operation of a wide range of broadcast equipment in our Central London Studio near Oxford Circus, from which the ITV National News Programmes are networked.
Successful applicants will join ITN in early September, 1981 Starting salaries would lie within the range of $£ 4,300$ (at 18) to £5,734.
If you are interested in Video Systems, Audio Systems, Video or Audio Recording or any of the many techniques involved in News Broadcasting in a busy, lively environment, then call us on 01-637 8644 for an application form or write to The Manager Technical Training, ITN House, 48 Wells Street, London WiP $4 D E$, with a short resume of your interests, qualiftratıons and experience, quoting vacancy number 40771

## Broaccast fill sERVICEE ENGINEERS MIDDLE EAST/AFRICA

To join a highly professional team responsible for installation and service of VTRs, cameras, etc., throughout the Middle East and Africa.

## Key requirements are:

- a sound theoretical knowledge of electronics
- experience in the broadcast industry.
- the ability to work on own initiative while travelling away from base (product training will be given).

Excellent salary plus a pension and benefits package tailored to meet individual needs, including relocation as appropriate.


Please send full curriculum vitae to:
Maureen Brake
Ampex Great Britain
Limited
Acre Road, Reading
RG2 00R
England

## SERVICE ENGINEERSONLY PARTOF THE GOODNEWS

 UPTO $£ 8,500$ ANDTHAT'SKodak - the name that has pioneered virtually every photographic advance for a century - now stands for new achievements in copier-duplicators. Our technologically exciting Ektaprint copier-duplicators have earned high user ratings in North America on every count - quality, reliability, cost effectiveness and service. Now we're getting ready for their UK launch and this could be your opportunity to come in at the start and help us form an integrated Equipment Service Team.

To take responsibility for installation, maintenance and repair of our copiers, we need men and women who will maintain the highest standards of customer service. You will need practical experience in mechanical and electromechanical engineering (craft apprenticeship preferable), a sound knowledge of
 electronics, previous experience of servicing copier-duplicators or similar products such as micrographics equipment, and ability to handle the associated paperwork.
 pass our initial technical and aptitude tests, this will be followed up by a comprehensive product training and company orientation programme. The value of your rewards package, including some overtime, will be from around $£ 8,000-£ 8,500$ in Central London (without car) to $£ 7,000$ in Greater London (plus car). In addition we provide a number of attractive employee benefits and prospects are all you would expect of an international company.

Aged 25 to 35 and want to take a closer look at our offer? Then phone or write for an application form to: Mr. C. Long, Kodak Limited, Station Road, Hemel Hempstead, Herts.
Tel. Hemel Hempstead (0442) 61122 ext. 27.

## ELECTRONIC ENGINEERS

Worldwide Airborne Surveys

Our Engineers prepare electronic sensing and digital recording systems at UK base for eventual in-flight operation by themselves in fixed and rotary winged aircraft engaged on overseas geophysical projects. Typical overseas project duration is between 2 to 6 months

A wide spectrum of electronics is covered with a growing emphasis on microprocessor based devices. Qualifications or experience to HNC standard, together with a flair for fault diagnosis, solving interfacing problems and mechanical packaging ability is desired.

Persons interested in joining our teams or who require further information should apply to:

The Personnel Manager Hunting Surveys \& Consultants Limited<br>Elstree Way<br>Borehamwood<br>Herts, WD6 1SB

## INNER LONDON EDUCATION AUTHORITY

Learning Materials Service Television Centre Thackeray Road London SW8 3TB
The Television Centre produces a range of Educational programmes in the form of video cassettes, sound cassettes and 16 mm film for distribution within London and nationally. It has a colour television studio, colour mobile unit and film unit all equipped to professional broadcasting standards.

## SOUND MAINTENANCE ENGINEER (STUDIO TECHNICIAN 3)

A vacancy has arisen for a senior engineer to undertake maintenance and project work on a wide range of equipment associated with television programme production. Some of this is video, but the engineer will be required to specialise in sound, as experienced video engineers already exist within the section. The equipment at present includes Neve, Studer, Sondor and ITC items.
It is intended to expand the post-production side of the work, and applicants should be familiar with SMPTE time code and digital techniques generally. If the successful candidate requires further training in these fields, time off and financial help can be given to attend suitable manufacturer's courses.
Salary within the scale (£8115-E8709).
Application forms from the Education Officer (EO/Estab.1C), Room 365, County Hall, London SE1. (Telephone No. 633 7456/7546.)

## Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICAL PERSONNEL SERVICES,
12 Mount Ephraim,
Tunbridge Wells, Kent. TN4 8AS.

Tel: 089239388


8
Please send me a TJB Appointments Registration form
Name
Address

DIGITAL EXPERIENCE?
FIELD SUPPORT AND PRODUCTION. VACANCIES IN COMPUTERS. NC COMMS. MEDICAL, VIDEO ETC
MEDICAL, VIDEO ETC
For free registration ring 0453883264 $01-2900267$

ELECTRONICS RECRUITMENT SERVICE LOGEX HOUSE. BURLEIGH STROUD GLOUCESTERSHIRE GL5 2PW
TEL $0453883264.01-2900267$

## BRHMSH ANHAROHC SURVGY

## RADIO OPERATOR TFCHNICIANS

The British Antarctic Survey require Radio Operator Technicians to man single handed radio stations at permanent Antarctic bases for period appointments of 34 months commencing July/August 1981

As communication between the Falkland Islands (ultimately the United Kingdom), other BAS bases, foreign Antarctic stations, ships and aircraft is by morse, teleprinter and voice, applicants need to be qualified (MRGC or better), and capable of sending and receiving morse at at least 20 wpm . The ability to maintain SSB transmitting and receiving equipment and aerial systems is essential, and a knowledge of teleprinters and touch typing would be an advantage. Applications from amateur and Armed Service trained personnel will be considered, provided that the necessary expertise can be demonstrated.

Applicants, to work overseas, should be single, aged between 22-35, physically fit and male.

Salary: £5804 per annum for Officers with no previous experience, $£ 6120$ for experienced Officers. Clothing, messing and canteen on base and messing on voyage are all provided free. Low income tax.

For further details and an application form please write to: The Establishment Officer, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET. Please quote ref: BAS 46 . Closing date: 1lth May 1981

# USE YOUR TECHNICAL EXPERTISE TO BROADEN YOUR HORIZONS Customer Engineers 

If you have excellent practical Engineering experience in the Broadcast Industry, probably in an operations/ maintenance or design role. You will be equipped to tackle this unique technical challenge with the highly successful subsidiary of an international Company, based in the South East.
Your duties will be to commission and service the Company's professional Broadcast T.V. Equipment, including the 1 inch VTR, to diagnose and rectify any technical problems and report back on customer enquiries

As part of this young, dynamic and committed team you will travel extensively into Europe and occasionally to Africa and the Middle East.

Aged 24-35, adaptable and highly self-motivated, you will operate autonomously, requiring real initiative and discipline in establishing priorities as well as the ability to relate convincingly at all levels.
You will receive an excellent salary of up to $£ 10,000$ p.a., and other benefits include 4 weeks holiday, Pension/Life Assurance, P.P.P. and relocation assistance where necessary
If you have the enthusiasm, drive and ambition to succeed in this challenging technical role, ring or write now to me; Stephen Boyd, at Cripps, Sears \& Associates (Personnel Consultants), Burne House, 88/89 High Holborn. London WCIV 6LH. Telephone; 01-404 5701 (24 hours). Telex: 893155 CRIPPS G.
(The above position is open to both men and women)

## Cripps,Sears

PRESTON POLYTECHNIC
Faculty of Science and Technology
School of Electrical and Electronic
Applications Engineering CHIEF

## LABORATORY

TECHNICIAN
Salary Grade T5: £6750-E7212 per annum plus an additional allowance up to f 102 per annum for an acceptable $36^{1 / 4}$ hours, 5 day week
nuable.
The successful candidate will be res. ponsible for the efficient operation of laboratory services in the School of Electrical and Electronic Engineering. He/she must be self-motivated and be able to direct the work of the group of Senior Laboratory Technicians/Laboratory Technicians. He/she should also have the ability to provide the group that the person appointed will possess a recognised technician qualification and sound electronic/electrical engineering expertise
Application forms from: The Personnel Officer, Preston Polytechnic, Corporation Street, Preston. Tel: Preston 51831.

Reference No: : NT/80/81/55 Closing
Date: 24th April, 1981

## ELECTRONIC ENGINEERS NEEDED IMMEDIATELY

Trec Video is expanding its broadcast facilities at its new premises close to Waterloo Station
Applications are invited for engineers interested in working in the following areas.
A) Outside broadcast unit B) Broadcast video tape recorders C) General equipment servicing

Please ring, or write to: Mr Alan English Managing Director
Trec Consultants Ltd 1-7 Boundary Row London SE1 8HP Tel: 01-633 9494

# OPPORTUNITIES IN SOUTH AFRICA TWO WAY RADIO ENGINEERS/TECHNICANS 



South Africa's leading two-way radio Company require service staff with a thorough knowledge of Base/Mobile Radiotelephone systems.
Applicants must have at least two years' experience on VHF/UHF FM Mobile radios and associated Base Station networks.
A thorough practical ability is the main requirement, however C \& G Intermediate Cert. in Telecommunications would be an advantage.
More Senior positions for System Engineers also exist.
Commencing salary: $£ 7,500$ negotiable p.a. (approx. R13,500 p.a.)

Candidates interested in emigrating to South Africa would be preferred. However service conditions are flexible and $2 \frac{1}{2}$-year service contracts, with gratuity payments on completion of contract, could be negotiated.
Interviews in LONDON, June 18 \& 19, 1981.
Apply in writing in the first instance before May 25, 1981 to: K. H. BERRY REF. EMP-06-LDN c/o J. GERBER \& CO.

1 Golden Square, LONDON W1R 3AB.

## ELECTRONICS ENGINEER

## Due to our continued expansion into the NC

 and CNC applications to our range of machine tools - Horizontal Boring and Milling machines, we now wish to appoint an Electronics Engineer to join a small team engaged in the application, design development anc field support ofmicroprocessor machine tool controls and high performance $D C$ servo motor drives.

Applicants should be qualified to a good first degree standard in electronics and have some relevant industrial experience in electronic control.

Please write or telephone for an application form, to:

Merlin Ceophysical Co. Ltd. is a small, expanding, British company providing seismic data processing services for the oil industry. We require a
D. Morgan, Personnel Manager

STAVELEY MACHINE TOOLS LIMITED
Kearns-Richards Division
Broadheath, Altrincham, Cheshire
Tel: 061-928 3284

## A division of SOS Bureau Ltd

## The SOS Group

## Trading as:

## SOS Staff Bureau

## SOS Industrial Staff

SOS Senior Appointments
The following are a selection of the many vacancies currently on file:
RADIO FREQUENCY DEVELOPMENT ENGINEER! £8,000! Defence Projects TEST TECHNICIAN! £6,500!
Service Telecommunication and Radio Test Equipt! COMMISSIONING ENGINEER! $£ 6,900$ !
$+£ 2,500$ Allowances! Exchange Equipt! TEST TECHNICIAN! $\mathbf{£ 7 , 0 0 0}$
Test, Repair and Calibrate Instruments in the frequency range, DC to 40 GHz !
DEVELOPMENT ENGINEER! £8,000!
Communications Equipt Associated with Security Systems?
TECHNICAL AUTHOR! $£ 7,740$ !
UHF, VHF and Microwave Technology!
SALES ENGINEER! £9,000!
Car! North England! Relocation package! Telecommunications!

For information on these and other vacancies nationwide please contact: Lee Wood, 71 The Mall, Ealing, London W5 5LS. Tel. 5677466.

## COMPUTER SERVICE ENGINEER

for maintaining all hardware in one of our processing centres. This hardware consists of Systems Engineering Labs 32-77 C..P.U'S, STC Mag Tape, Laser Plotter etc. Applicants must be single and prepared to work abroad. initially for one year and for shorter periods thereafter Thery should have approximately 2 years related
experience, including some prior mainframe training and H.N. ( E.E. or equivalent. The sucressful applicant will be trained on the S.E.L. 32-77 and Peripherals as necessary and can expert many of the benefits assoriated with large companien plos the satisfaction and involvement dorived from working in a small expanding company
Salarv $: 7000$ p.a. + depending unon relevant experience Applisations
addressed 10:- The Operations Director


## LORD MEDICALITD

3 Charterhouse. Eltringham Street London SW1日 1TD
Lord Medical is a new company with a novel range of products specialising in Electrocardiography.
Having reached the final phase of an intensive research programme we are now seeking the following:

## DESIGN ENGINEER

At least 3 years' digital and analogue exper ience and capable of taking designs to final production engineering.

## TEST/PRODUCTION ENGINEER

Besides small scale production testing and fault finding experience, P.C.B. layout and Design would be an advantage.
Salaries are negotiable and depend on the applicant.
Please apply in writing enclosing a full C.V.

## Join us in the forefront of technology

## DODolby ELECTRONIC TEST ENGINEERS

We manufacture and market audio noise reduction equipment which is used by major recording companies, recording studios, the film industry and broadcasting authorities throughout the world.
We need experienced Test Engineers to join a dedicated team who are proud to be world leaders in the manufacture of professional noise reduction equipment
Those with practical knowledge of electronic testing and have rapid trouble-shooting abilities can enjoy varied and interesting work and high rates of pay.
Telephone TONY HILL 01-720 1111
DOLBY LABORATORIES INC
346 Clapham Road, London SW9 9AP
(1061)

NATO HEADQUARTERS ALLIED FORCES CENTRAL EUROPE
6440 AG Brunssum
The Netherlands
Applications are invited from qualified candidates for the permanent civilian posts of:

## One FIELD <br> SERVICE ENGINEER

(Assistant Telecommunications Engineer - NATO Grade A-2)

## Two FIELD

 SERVICE TECHNICIANS(Senior Telecommunications Technician - NATO Grade B-5)
In a travelling team maintaining an international micro-wave telecommu nications system. Home base near Aachen, Germany Competitive inter national salaries/allowances and pension scheme.
Candidates should apply with short curriculum vitae, before 15th May 1981, to: Civilian Personnel Office, HQ AFCENT

THE PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY DEPARTMENT OF ELECTRICAL AND COMMUNICATIONS ENGINEERING

## Senior Technical Instructors -Communications

Applications are invited for the above-mentioned positions An appoint ee's principal duties will be teaching on the University's diploma in communications engineering course. The course is designed to train technical officers for the National Broadcasting Commission, the Department of Posts and Telecommunications, and the Civil Aviation Agency. Applicants should have practical experience in at least one area relevant to the above fields, and teaching experience at technician level. Salary scale: K13,425-K15,275 (K1=Stg 0.6711$)$
The initial contract period will be for 3 years. Other benefits include a The initial contract period will be for 3 years. Other benefits include a gratuity of $24 \%$, appointment, repatriation fares and leave fares for the
staff member and family after 18 months of service, settling-in and out staff member and family after 18 months of service, settling-in and out
allowance, six weeks' paid leave per year, education fares and assistance allowance, six weeks' paid leave per year, education fares and assistance
towards school fees, free housing. Salary continuation and medical benefit schemes are available.
Applications including particulars of age, nationality, riarital status, farnily, qualifications, experience and the narnes and addresses of three referees, should be sent to the Registrar, Papua New Guinea University of Technology, P O. Box 793, Lae, Morobe Province, Papua New Guinea by 8th May, 1981. Applicants resident in the United Kingdom should also send an additional copy to the Association of Commonwealth Universities (Appts.), 36 Gordon Square, London WCIH OPF


## SITUATIONS VACANT

## £25,000?

1. SOFTWARE ENGINEER, to develop microprocessor systems for military and commercial applications, to 111,000 . MIDDX.
2. SIMULATOR ENGINEER, to design Aircraft Simulators, to f 25 000. FRANCE.
3. DIGITAL DESIGN ENGINEERS, to work on microprocessorbased navigation and control systems, to $£ 10,000$. HANTS.
4. RF DESIGN ENGINEERS, to work on commercial VHF \& UHF equipment, to $£ 10,000$. HANTS.
5. RECEIVER ENGINEER, to design HF, VHF \& UHF systems, to f10,000. BERKS
6. MICROPROCESSOR ENGINEER, to work on VDUs in a small but expanding company. to $£ 9,000$, SURREY.

HUNDREDS OF REGISTERED VACANCIES - PERMANENT AND CONTRACT

ANTHONY GILES
M.Sc., C.Eng., M.I.E.E.

CLIVEDEN CONSULTANTS
87 St. Leonard's Road Windsor, Berks.
Windsor (07535) 57818
(24-hour Ansaphone)

## THE HOSPITALS FOR

 SICK CHILDRENGREAT ORMOND STREET LONDON WC1N 3JH
BIOMEDICAL ENGINEERING DEPARTMENT

## TECHNICIAN

To maintain the performance and safety of a wide range of medical, laboratory and electronic equipment; also to assist with light constructional and wiring work. Some travelling involved.
Minimum qualifications required - ONC or equivalent in an electronics subject. Three years' practical engineering experience essential.
This post is graded as Medical Physics Technician Grade III, with a salary scale of $\mathbf{£ 5}, 750$ rising by 7 annual increments to $£ 7,277$ inclusive of London Weighting
Application form and further details from Group Personnel Department $01-4059200$ extension 228.
(1044)

Royal Marsden Hospital
Fulham Road, London SW3

## Medical Physics Technician

Grade IV/III

required in the Radiotherapy and Physics Electronics Workshop of the above hospital. The person appointed will work in a small group responsible for the maintenance of rastiotherapy equipment, including three Cobalt units, a Phims 10 MeV Linear Accelerator and cants should hotd ONC HNC or similar qualifications in electrical engineerinu o electronics and have at least 3 veals relevant technical experience to obtain salary on scale f5750-f7277.
Application form and job description available from Miss E. M. Bewley,
Group Personnel Officer Royal Marsden Hospital. Tel 01-352 8171. Ext. 446

## RADAR DESIGN ENGINEERS

- State of the art technoiogy with a market leader
- Major supplier of advanced radar equipment
- Design concepts to manufacturing
- Attractive south location
- Superb environment
- Top benefits
 Familiar with radar equipment Able to control staff and work to budgets Able to work on custom design assignments Ambitious and looking for clear promotional path

If we meet in the middle, we would very much like to meet you properly. Please contact Rod Evans for a preliminary chat.

## Electronics Technicians

Petty-Ray Geophysical
Division of Geosource is Division of Geosource is one of the leading Companies in the field of oil exploration and due to our ever increasing workload require single personnel, in the age range 21-25, who are looking for a varied and interesting career working overseas.
You should be educated to HNC/ONC in Electronics orC \& G Radio and TV Technician level and on appointment you will be assigned to one of our field crews either in Africa or the Middle Eas! for on the job training in the operation and
maintenance of digital seismic recording equipment.
Candidates must be in possession of a current driving licence.
We offer a good starting salary which is paid NET, food and accommodation will be provided and rest leaves are generous. If you would like to have more informationabout these positions please write, giving brief career details. to:- The Personnel Officer, Petty-Ray Geophysical Division of Geosource, 3-5 The Grove, Slough, BerkshireSL1 1QG.


## ARTICLES FOR SALE



PROGRAMMABLE ACTIVE CROSS-
OVER PCB's based on Hj-Fi News and Record Review design. Ver-
 band. SAF brings details B \& J J Sound
lincoln. LNA $4 P$ P.

TEKTRONIX $585 A \quad 85 \quad$ MHZ $\quad$ dual beam delay 1 mebase scope. S295.
Another 33 MHZ type 545 i215. Both excelleni. cumplete with probes. leads. manuals. Marcuni TFsu1/th/35 sig. цen. $10-485 \mathrm{MHZ}$ complete with Trads manual, E120. All uno. Also Standard Meters. Telephone 02514. 6483 Hants. 1049

JAMES MOIR is disposing of sume laboratory test equipment. adudio signa generator harmonic anaiy
ser. wow and tiutier meter, wide range voltmeter lourlspeaker units all in wood working condition Telephone Kings langley 62955 for (etetalls. 11035

CLEARANCE PARCELS: Transistors resistors boards, hardware inths only 55.80 . 1.000 Resistors $£ 4.25$ 500 Capaciturs 83.75 . BC 1118 . BC $171 .{ }^{2} \mathrm{BC} \quad 204 . \mathrm{BC} 230.2 \mathrm{~N} 5061$




SITUATIONS VACANT

School of Electrical
and Electronic Engineering

## BSc, BSc (Hons) and HND COURSES IN ELECTRICAL AND ELECTRONIC <br> ENGINEERING (Sandwich)

## Applications are invited for places on the above courses starting in October

 1981Further detals and application forms
obtainable from obtainable from
Mrs. R. A. Earl, Faculty of Engineering Registrar, Ref. JS111, North East Lon don Polytechnic, Longbridge Road,
Oagenham, Essex RMB 2AS. Tel: 01 Dagenham, Essex
5907722 Ext. 2061,
NELD.
$\{$ APPOINTMENTS ELECTRONICS to $£ 12,000+$
MESSAGE SWITCH DATA COMMS-TELEMETRY TELEGRAPHY-RF COMMS Interesting and varied opportunities, U.K. and overseas. For immediate action on salary and career advancement, contact:

## Technomark

11, Westbourne Grove LondonW2.01-229 9239 (1060)
TESTERS, TEST TECHNICIANS, TEST ENGINEERS. Earn what you're really worth in London
working for a World Leader in Radio \& Telecommunications, Phone Len Porter on 01-874 7281 , or Write: REDIFON TELECOMM WARASWONS London, SW18.
ARMAGH OBSERVATORY, ATmagh, Northern Ireland. Applications are invited for the post of TECHNICAL
OFFICER (ELECTRONICS/INSTRUOFFICER (ELECTRONICS/INSTRU$\begin{array}{ccc}\text { MENTATION) } \\ \text { tenable } & \text { on } & 1\end{array}$ He/she will form part of a small astronomical research team, in
which he/she will assume responwibility for the development and maintenance of computer systems, measuring equipment, and associashould have a degree in Physics. Astronomy or Electronics Engineering with experience in physics or computer hardware/software. Salary on the Universities' IB or IA
scales for Research and Analogous Staff. Further particulars are available from The Secretary, Armagh
observatory, Armagh BT61 9DG, Northern Ireland. Closing date for
applications is 15 May. 1981. 11031

## ARTICLES FOR SALE

ENCAPSULATING, coils, transformers, components, degassing, sllicone rubber resin, epoxy, Los
wax casting for brass, bronze. si ver. etc. Impregnating coils, trans. formers, components. Vacuum equipment low cost, used and new.
Also for CRT regunning metallising. Research \& Development.


## TO MANUFACTURERS, WHOLESALERS \& BULK BUYERS ONLY

## Large quantities of Radio. T.V. and Electronic Compinents

RESISTORS CARBON \& C/F $1 / 8,1 / 4,1 / 2,1 / 3$. 1 Watt from 1 ohm to 10 meg .
RESISTORS WIREWOUND. $11 / 2,2,3,5,10,14,25$ Watt.
CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics. Metalamite, C280, etc.
Convergence Pots, Slider Pots, Electrolytic condensors, Can Types, Axial, Radial, etc.
Transformers, chokes, hopts, tuners, speakers, cables, screened wires, connecting wires, screws, nuts, transistors, ICs, Diodes, etc., etc. All at Knockout prices. Come and pay us a visit. Telephone 4452713, 4450749.

## BROADEIELDS \& MAYCO DISPOSALS

21 Lodge Lane, N. Finchley, London, N.12. 5 mins, from Tally Ho Corner (9461)

| RACAL COMMUNICATIONS RECEIVERS. $500 \mathrm{kc} / \mathrm{s} 30 \mathrm{mc} / \mathrm{s}$ in 30 bands 1 MHz wide. RA 17 £1.50. RA17L $£ 200$. Or a few as new $£ 250$. RA117E E300. all air tested, suppled with full manual. dust covers. in fair condition. new metal louvred case tor sets $£ 25$. RA98A SSB-ISB adaptors. new and boxed with manual $£ 75$ RA96D used with manual. £75. RA218 SSB.\|SB adaptors and fine tune units for RA117 £65. |
| :---: |
| MARCONI TF801D/88, E 150. <br> MARCONI R.F. RADIATION \& POWER METER. OA1430 (CT477), as new, in gray matal case with full manual, power meter FX range, $10 \mathrm{mc} / \mathrm{s}$ to $10 \mathrm{gc} / \mathrm{s}$, complete with X-S-L band aerials, $£ 50$. |
| MUIRHEAD FACSIMILE EQPT. TX D901 D/S 550. RXD900 D/S or P/D $£ 75$ each. |
| WEATHER SATELLTE. RX D900 S/1A or S/2A £125 each with manual. |
| EXTEL TRANSTEL MATRIX PRINTERS. 5 level Baudot Code. Accepts speeds up to 300 bauds. Supplied set to 50 and 75 bauds switched. Tested with manual, £165. |
| All items are bought direct from H.M. Government, being surplus eqpt. Price is ex-works S.A.E. all enquiries. Phone for appointment for demonstration of any item JOHMS RADID, WHITEHALL WORKS, 84 WHITEHALL ROAD, BIRKENSHAW, BRADFORD. TEL. BRADFORD |

(848)


LAB CLEARANCE: Signal Generators: Bridges; Waveform, standards; millvoltmeters; dynamometers; KW meters; oscillo. scopes: recorders; Thermal sweep, deviation, Tel. 040-376236. 18250

TEKTRONIX 465 oscilloscope, mint condition, calibrated. other test
equipment. - Phone $0582-425721$.

WIRELESS WORLD and Eiectronic Engineering. 1954 to 1976 . Offers please. Telephone 0273 w Barber. Waterloo House.
Street. Hove, East Sussex.
'1037

| TELETYPE KSR 33 with punch and |
| :--- |
| reader, £325 ono. Telephone: West |
| Wittering $1024366,2388$. |
| 1036 |


NEW 1981

## MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL

by Markus
Price: $£ 32.50$

RADIO AMATEUR HANDBOOK by ARRL 1981 ed. Price: £8 THE ART OF ELECTRONICS by $P$. Horowitz Price: $£ 13.50$
WORLD RADIO TV HANDBOOK, 1981 edition Price: $\mathbf{£ 1 0 . 5 0}$ ELECTRONIC PRINCIPLES 2nd ed. by A. P. Malvino Price: $£ 4.35$ MANUAL OF ELECTRONIC SERVICING TESTS AND MEA. SUREMENTS by R. Gen

Price: $\mathbf{£ 1 0}$
INTRO. TO DIGITAL FILTERS by T.
Terrell Price: $\mathbf{£ 6 . 9 5}$
MICROPROCESSORS AND MICROPROCESSORS AND
MICROCOMPUTERS FOR ENG. STUDENTS AND TECHNICIANS by B. Wollard

Price: $£ 5.65$
USING CP/M A SELF-TEACHING
GUIDE by J. Fernandez
Price: $\mathbf{£ 6 . 7 5}$

* ALL PRICES INCLUDE

POSTAGE *

## THE MODERN BOOK CO.

Specialist in Scientific
19-21 PRAED STREET LONDON W2 1NP

Phone 402-9176
Closed Sal 1 pm (8974)

BRAND NEW VERO RACKS 19in $x$ $5 \frac{1}{2 n}$, complete with 20 off 40 way edge connectors tonly 6 used, 20 card slides and locking front panel slides having $110 / 240 \mathrm{v}$ input, on/ off switch and power on indicator. Output is $+5 v$ at 5 amps and -10 v at 5 amps, fully stabilised. (Can be converted to +12 V at 5
amps). Price $£ 35 \mathrm{P} / \mathrm{P}$ and VAT amps). Price f35 $P / P$ and VAT
inclusive. Rushmoor Electronics Ltd, 43 Queens Road, Farnborough. Hants. Telephone 0252 515373. 975

GET INTO TELEPHONE ANSWERING SERVICING. Telstor cold modell operational manual, $£ 4.50$. Autophone manual £3.75. Old model Telstor spares available. SAE enquiries, G Hay, 189 West Hendon Broadway, London NW9. 01-202 3344
Catlers by appointment plasel.

[^5]TELETEXT, TV SPARES 8 TEST EQUIPMENT, TELETEXT. Latest external unit kit incl. Texas XM11 remote control £248, p/p £2.80 (fur ther details on request). Also MK1 external unit kit incl. Texas XM11 decoder, special offer price $£ 168$ $\mathrm{p} / \mathrm{p}$ £2.80. Both kits incl, UHF modulator, and plug into TV set aerial socket. SPECIAL OFFER
TEXAS XM11. Decoder new and tested, limited quantity at new and $£ 60 \mathrm{p} / \mathrm{p}$ £1.40. Stab. power supply (5v) for Teletext decoders, $£ 5.80$ $\mathrm{p} / \mathrm{p}$ £1. Thorn design XM11 interface unit, $£ 1.80$ p/p 80p. NEW complete \& tested for sound \& vision), £28.50. p/p £1. COLOUR BAR \& CROSS HATCH GENERATOR KIT (MK4) PAL, UHF aerial input type, 3 vertical colour bars R.Y, B-Y. grey scale, etc, P/B con
trols $£ 35$. Batt holders $£ 1.50$ or stab. mains power supply kit $£ 4.80$ Deluxe case $£ 5.20$ or alum, case $£ 2.90$, $\mathrm{p} / \mathrm{p}$ £1.40. Built \& tested in De-luxe case (battery) £58 (mains £70, p/p
$£ 1.60$ CROSS HATCH KIT UHF £1.60. CROSS HATCH KIT UHF aerial input type also gives peak
white \& black levels, batt. op. £11. white \& black levels. batt. op. E11, £2.90, p/p 35p. De-luxe case £5.20. KIT £17.50. Alum. case £1.80. Deluxe case £5.20, p/p £1.40. CRT colour \& mono £24.40. $\mathrm{p} / \mathrm{p} £ 1.80$. COLOUR PANELS, large selection of tested panels for popular makes (part-ex in shop). TV SOUND IF TRANSTD. Tested $£ 6.80$ p/p 85p. BUSH SURPLUS IF PANELS. A816 £1.80, TV312 (single 1.C. 25.2718 , BC6100 £5. A823 (Exp) £2.80. p/p
85p. BUSH 161 series TB panel A634 £2. $80 \mathrm{p} / \mathrm{p}$ £1.20. GEC Series 1 mono £2.80, p/P 80 p/D \&130 GEC 2040 CDA panel $£ 4.50$, p/p $£ 1.20$. PHILIPS G6 S/S conv. panel £2.50, p/p $£ 1.20$. G8 Decoder panels for spares $£ 1.80$. $\mathrm{p} / \mathrm{p} \quad \mathrm{f} 1.20$. G9 Signal panels for small spares £3.80. p/p £1.20. THORN 3500 Line TB panel £5, p/p DECODER, £5. p/p $£ 1.20$. $8000 / 8500 /$ 9000 Decoders Salvaged $£ 7.50$, p/p
$£ 1.60 .9000$ Line TB (incl. LOPT) salv/spares $£ 7.50 \quad \mathrm{p} / \mathrm{p} \quad £ 1.60$. VARICAP UHF TUNERS ELC1043/05 6550 G I 5350 Salv (asstd) $£ 1.50 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Varicap UHF/ VHF ELC2000S $£ 8.50$. Bush (dual) $£ 7.50, \mathrm{p} / \mathrm{p} 70 \mathrm{p} . \mathrm{TOUCH}$ TUNE CON-
TROL units. Bush ( 6 pos) $£ 4.50, \mathrm{p} / \mathrm{p}$ 80 p . VARICAP CONTROL UNITS 3 pos. $1.20 . ~$
6 pos. $£ 1.80,6$ pos. special offer $£ 1$, 6 pos. $£ 1.80,6 \mathrm{pos}$ special offer £1,
$\mathrm{p} / \mathrm{p} 45 \mathrm{p} . \mathrm{UHF}$ transtd. Tuners irotary) incl. $\mathrm{s} / \mathrm{m}$ drive $£ 2.50$, ${ }^{4}$
pos. P/B $£ 2.50$, 6 pos. $P / B \$ 4.20$, $\mathrm{p} / \mathrm{p}$ £1.20. (Special types available, details on request, DL50 Delay Line $£ 2.50, p / p 50 \mathrm{p}$. Large selection of LOPTS. Triplers. Scancoils. Mains Droppers, and other spares for popular makes of colour and mono receivers. PLEASE ADD PRICES. MANOR SUP. PLIES. 172 WEST END LANE. WEST HAMPSTEAD, LONDON, N.W.6. $\begin{array}{ll}\text { SHOP PREMISES. Tel. 01-794 } & 8751 \text {, } \\ 794 & \text { Easily accessible }\end{array}$ Hampstead Jubilee Tube \& Brit Rail $N$. London (Richmond-Broad St.) and St. Pancras-Bedford. Buses 28. $159,2,13$. Callers welcome. Thousands of additional items not normally advertised available at shop premises. Open daily all week incl. Saturday (Thursday half day). MAIL ORDER: 64 GOLDERS MANOR DRIVE. LONDON NWII 9HT

| PLEASE |
| :--- |
| prices. |

## BUILDING RAMS?

Why waste time hand-wiring RAMS' Thus
$53 \times 25$ inch professional plated thru PCB mounts on your prototyping board looking like an 8 K byte TTL compatible statc RAM 13 address lines. 8 data $1 / 0$ write enable 2
neq and 1 positive card selects Assembled with sockets, pins and caps, Jus plug in 162114 s and 1 74LS138 \& 21
 bix Electronic Design 56 H Norris Hill Driv Stockport, Cheshire


$$
\Gamma
$$


$\qquad$H6H Norris Hil Brive
Heaton Norris


WW - 075 FOR FURTHER DETAILS

## TIME WRONG?

MSF CLOCK IS AL WAYS CORRECT never gains of loses. SELF SEPTING at
switch-an, g digits show Date. Hors Min SWitch-on, geigits show date. Hours, Min-
Hes and Seconds, can expand to Years,
Months and Miliseconds, auto GMT/BST Mant leap year. also parallel BCD output and audio to record and show lime on playback,
receives Rugby 60 kHz atomic time signals. built-in antenna, 1000 Km range. ABSO-
LUTE TIME. 55480 .
60 KHz RUGBY RECEIVER, as in MSF Clock. serial data outout, E15 70
Each tur to-build kit includes all parts, printed
circuit. case., oostage erc.. money back assurance, so GET yours NOW
CAMBRIDGE KITS, 45 (WS) Old School Lane. Milton, Cambridge.

8 bit da converter
\& 20.00
data sheet
FREE
Remlock Design Lit.
149 LONDON ROAD
HIGH WYCOMBE
BUCKS.
$\qquad$
FOR SALE. Solartron Shlumberger 4000 C synthesised siggen AM/ 2.000. C 25 cu it inside dimen sions $£ 150$. Oscilloscopes. Telequip sions
ment D75
2550. Advance OS O £250. HP 180 §300. Tektronix 581 A with 1A1 plug in 2250 . Tektronix 5 siA with 82 plug in 250 . Bridge megger solich state 500 volts $£ 50$. Farnell switched mode P.S.U. 5 volts at 40 amps $£ 100$. Multimeters 1 British) 20,000 ohms/iolt. in leather case 125. ITT Pseudo Eprom programmer 5850 . Solartron D.V.M. 7050 £200. Marconi TF 1101 AF. oscillator $£ 80$. Hatfield attenuator 600 ohms 100 Db in 9 steps $£ 60$ type and TF1246 oscillators and TF1247 £600. Please add postage and VAT 600 Please add postage and atelev 1871048 , Camberlev. Sur rey. 11040

## INVERTERS

High quality DC-AC. Also "no break (2ms) static switch, 19" rack. Auto Charger.


COMPUTER POWER SYSTEMS Interport Mains-Store L.td POB 51, London W11 3BZ Tél: 01-727 7042 or 0225310916
G.W.M. RADIO LTD, $40 / 42$ Portland Road. Worthing. Sussex. Telephone
34897
for surplus. 34897 Eddystone 770 VHF Receivers retail. Eddystone 770 VHF Receiver and Marine Communications receivers for callers. Changing stocks of test equipment, part exchanges etc. Radin telephone equipment supplied to the trade. Mascot 70 CT 42244/11 termination unit. Model 7 Avometers $\{32$ incl. Some Avo meter movements available for selection by callers. Dashboard watches by Golay $\{35$ each incl. WANTED end lots and runs for shop and mail order. Test equip surplus R/T sets and svitems. surplus. $R / T$ sets and systems. 1070

VIDEO FOR SALE. Philips N1700 VCR LP plus six tapes 23 huuls used. £245. Privale sale Tel. Wtlice hours 01.4606174 salso $5 \mathrm{C} / 450 \mathrm{~A}$ ralves. Two for sale. Any offers.

FOR SALE. PIPP 8 computer plus Basic plus Fortran plus Focal etc variable (stablelised) 57 en Telephone Braintres. Essex. 24118 $\xrightarrow{ }$

## THE SCIENTIFIC WIRE COMPANY

## ENAMELLED COPPER WIRE

| SWG | 11 b .80 c | 402 | 202 |
| :---: | :---: | :---: | :---: |
| 8 to 29 | 2.761 .50 | 0.80 | 0.60 |
| 30 to 34 | 3.201 .80 | 0.90 | 0.70 |
| 35 to 39 | 3.40, 2.00 | 1.10 | 0.80 |
| 40 to 43 | 4.752 .60 | 2.00 | 1.42 |
| 44 to 47 | 8.375 .32 | 3.19 | 2.50 |
| 48 to 49 | 15.969 .58 | 6.38 | 3.69 |
| SILVER-PLATED COPPER WIRE |  |  |  |
| 14 то 30 | 6.503 .75 | 2.20 | 1.40 |
| TINNED COPPER WIRE |  |  |  |
| 14 to 30 | $3.85 \quad 2.36$ | 1.34 | 0.90 |
| Prices inc Orders un Lis | $8 \mathrm{P}, \mathrm{VAT}$ an please add enquiries we | Wire 2p. S lcome | Data E for |

## BUGGED? UNDER SURVEILLANCE?

is a unique. previousiy restricted book describ.
ing modern counter-survellance and eavesdro ping techniques. A virtual encyclopedia of hid.
den knowiedge it tells ALC YOU NEED TO den knowiedge" it tells ALL YOU NEED TO
XNOW about professional and secret service XNOW about professional and secret service
mothods PART 1 TELEPHONE SYSTEMS PART 2 RADIO \& MICROPHONE SYSTEMS PART ${ }^{3}$ ELECTRONIC SURVEILLANCE \&
COUNTERMEASURES. 300 pages of unoban COUNTERMEASURES. 300 pages of unobrant
able information DON 1 WAlT) thes book able information oon
could easily disappear from the market . Price $£ 9$ per set including postage. CYBERSCAN IN TERNATIONAL 35 Dell Farm Road
Middiesex HA4 7TX Tel ( 08956 ) 73265
(1034)

PRINTED CIRCUITS. Make your own simply, cheaply and quickly quer - now greatly improved and very much faster Aerosol cans with full instructions. $£ 2.25$. Developer 35p. Ferric Chloride 55p. Clear Acetate sheet for master 14p. Copper-clad Fibre-glass Board approx. 1 mm thick $£ 1.75 \mathrm{sq}$. ft. Post Packing 60. - White House Electronics, Castle Drive, Praa Sands. Penzunce, Cornwall. $\quad(714$
MANUFACTURER has surplus test equipment and components for yo whealland for wallase Mer sevside 1.44 7EH. 1970

VLF MONITOR SYSTEM $10-200 \mathrm{khz}$ Consists receiver, Spectrum analy ser, Marker generator, 5550 . Also Bradley CT471 Electronic Multi


FR DX-400 AMATEUR BAND RRCEIVER. 160 m to 2 m including CB and 4 m . AM. FM. SSB with matching speaker, mint condition f185. - Telephone Swanley (Kent) 63968.

Kent)
$(1067$

## ARTICLES WANTED

## SPOT CASH

paid for all forms of electronics equip ment and components
F.R.G. General Supplies 550 Kingston Road London SW20 8DR
Tel: 01-4045011
Telex: 24224. Quote Ref. 3165
(8742)


STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and eiflcient clearance of all test gear, powe supplies, PC boards, components eic. regardless of condstion or
quantit.es. fatl 01.771 COSNECTOR REQUIRES 920/39 Wheless crvstal T/V set. Also mteresting wireless items of the period. - Tel Secenoaks 6
$\qquad$

## CIRCOLEC

THE COMPLETE ELECTRONIC MANUFACTURING SERVICE
Let us realise all or any part of your project from prototypes to production. from artwork design and component sourcing, through assembly and test to final quality assurance, packing and delivery We also provide a test, repair and modification service to suit your individual requirement.
Free Offerl Ring for details of a free introductory offer to our sub-contract PCB assembly service.
CIRCOLEC FREEPOST (no postage required) London SW17 8BR
Telephone: 01-7671233
NEW! Access, Barclaycard, Diners Card now welcome for payment.

## PRINTED CIRCUIT BOARDS

Manufactured, any quantity, competitive prices, roller tinned, photographic and artwork services available.

> MAYLAND PCB CO. LTD. 4 The Drive

Maylandsea, Cheimsford, Essex Tel: 0621741560

[^6]ELECTRONIC DESIGN SERYICES. MICROPROCESSOR HARDWARE and SOFTWARE design facilities have now been added to our established expertise and comprehensive test you for ANALOGUE and COMMUNICATIONS designs. - For fastest results please phone Mr. Anderson, Andertronics Ltd, Ridgeway, Hog's Back, Seale (nr. Farnham), Surrey 02518-2639.

## BUSINESS FOR SAIE

## FOR SALE

Long Established
FULLY EQUIPPED TV TUBE REBUILDING PLANT

Own Freehold Factory Building. Customs delivery van, land for expansion. Would suit group buyers, or rental company, to produce or rental company, to produce
own tubes of following types own tubes of following types
Colour, Delta - Inline - Mono Colour, Detta - Inline - Mono -
20 mm Portable. Present stock of 20 mm Portable. Present stock of
tubes. Owner wishes to retire. No tubes. Owner wishes to retire. No reasonable offer refused. Replies: Box No. 1041

Phone your Classifieds
to
JAYNE PALMER
on
016613033

## P.C.B. MANUFACTURE AND ASSEMBLY

Wave Soldering and inspection. High quality PCBs from your artwork. ProtoFast turnaround

Endean Communications Servicen Ltd. Baileys Mill, The Cliff, Matlock, Derbys. (0629) 4929. TIx. 378267 ECS G.
(859)
P.C.B. PROTOTYPE and small batch production. Design layout, assem bly and testing. Fast, relible Ser Vice. Wye valley Electronics, 15 (0594) 41267.

SHEET METAL WORK, fine or general front panels chassis, covers, boxes, prototypes. 1 off or batch work, fast turnround. 01-449 2695. M. Gear Lid., 179A Victoria Road, New Barnet, Herts. (812

DESIGN SERVICE. Electronic De sign Development and Production Service available in Digital and Analogue instruments, RF Trans any function at any range. Telemetry, Video Transmitters and Monitors, Motorised Pan and Tilt Monitors, Motorised Pan and Tilt
Heads etc. Suppliers to the Industry for 16 years. Phone or write Mr. Falkner, R.C.S. Electronics, 6 Wolsey Road, Ashford, Middlesez. Phone Ashford 53661.
(8341
TURN YOUR SURPLUS Capacitors. transistors, etc, into cash. Contact COLES-HARDING \& Co., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement. We also wel complete factory clearance. 19509

PRINTED CIRCUIT MANUFACTURE. Very fast, reliable service. Lowest prices. Prototypes welcome. Inhouse photography. Phone 0674-573 for instant quote or write to AKTRONICS Ltd.. $42 / 44$ Ford Street. More

## EQUIPMENT WANTED

TO ALL MANUFACTURERS AND WHOLESALERS IN THE ELECTRONIC RADID AND TV FIELD

## BROADFIELDS \&

MAYCO DISPOSALS
will pay you top prices for any largé stocks of surplus or redundant components which you they wish to clear W

## 21 LODGE LANE

NORTH FINCHLEY, LONDON N128.JG
Phone Nos. 01-445 0749/445 2713 After office hours 9587624

## CAPACITY AVAILABLE

PCB ARTWORK DESIGN SERVICE and assembly drawings, PADS and assembly drawings, PADS Electrical Ltd, 01880 Eltham
Southwood Road, New
$(7905$ (180

## 

## Courses in Electronics

BSc IN ELECTRONIC ENGINEERING
A four year part-time degree course for mature students. Of particular interest to those engaged in Digital, Telecommunications or Control Systems. Entry qualification required is an HNC or equivalent in Electrical and Electronic Engineering or Applied Physics. This CNAA degree is considered by the Council of Engineering Institutions as meeting their C.Eng. academic requirements.

CEI PART II
One year full-time or two years part-time course in preparation for the CEI Part II examination which is the present academic qualification for Chartered Engineers. Subjects offered include Electronics, Communication, Control and Computer Engineering. Entrants should have passed CEI Part 1 or have been exempted; holders of HNC and endorsements or HND are so qualified.

Further details and application iorms are available from the Information Office, Room H268, Cambridgeshire College of Arts and Technology, Cambridge, CB1 2AJ. Telephone
(0223) 63271
1026)

## CAPACITY AVAILABLE

## I.H.S. SYSTEMS

Due to expansion of our manufacturing facilities we are able to undertake assembly and testing of circuit boards or complete units in addition to contract development
We can produce, test and calibrate to a high standard digital analogue and RF equipment in batches of tens to thousands
Telephone to arrange for one of our engineers to call and discuss your equirements, or send full detalls for a prompt quotation.
TEL. 01-253 4562
(8237)
P.C.B.s WIRING assembly looms. oils, instruments, quality design prototype and production service Ely (0353) 778756 . - Batvale (982
P.C.B. DESIGNS on circuit diagrams, etc. Competitive hourly ates, quotes free, cheaper hourly rates for solder resists and legHelstead Tel: 0787-477408

PRINTED CIRCUIT BOARDS. CON ventional double and single sided PS boards. Fast prototype and production runs. Contact John Richards. Phototechnique, 11 Old Witney Road Eynsham, Oxford 880645 Oxferd
80645

PRINTED CIRCUIT BOARD MANU FACTURE. Speedy service with reliability at low prices. Single, double sided board. Prototypes or quantity runs. Design layout if required or send us your own art work. Contact: J. Harrison, BoardCarnaby Industrial Estate, Bridlington. North Humberside, YO16 3QY Telephone (0262) 78788.

## PCB ASSEMBLY CAPACITY AVALLABLE

Low or high volume, single or double sided, we specialise in flow line assem bly of printed circuit boards
Using the Zevatron flow soldering system and on line lead cutting, we are able to deliver high quality assemblies on time, and competitively priced. Test facilities available.
Find out how we can help you with your production. Phone or write. We will be requirements
TW ELECTRONICS LTD.
120 NEWMARKET ROAD
BURY ST. EDMUNDS, SUFFOLK TEL: 02843931

Sub-contract assemblers and wirers to
the Electronics Industry
(9068)

ELECTRONIC DESIGN SERVICE. Immediate capacity available for circuit design and development work, PC artwork, etc. Small batch and prototype production welcome MAIDSTONE K.S. Kent 93 b King Street MAIDSTONE, Kent. 0622-677916.
(9667

REPAIR SERVICE (PCBs) servicing electronic PCB assemblies our speciality. Programmable
matic test equipment used to ser ice your PCBS, fast efficient ser ace. For quotation telephon 0743 ) 65748.

COMPARE our charges, quality and turnround for printed board art works assembly, test and protoSharon Halfhide on Chelmsford 357935 or write to H.C.R. Artwort Designs 1 Bankside off New Street, Chelmsford. Essex. 1557

# RELIABLE TONE MUTE FOR YOUR TWO WAY RADIO 

The Communication Specialists' range of tone units are probably the most advanced products available today. Custom designed CMOS large scale integrated circuits and crystal control ensure consistent performance. Operate from supplies between 6 and 30 V DC, and select tones without measuring equipment. Fitted to a wide range of differing manufacturers' equipment throughout U.S.A. and U.K.

We are Sole U.K. Representatives for Communication Specialists ZYCOMM ELECTRONICS LIMITED<br>47 Pentrich Road Ripley Derby DE5 3DS Tel: (0773) 44281 Tlx: 377466



TS32 - Encoder/Decoder (Dencoder). Programmable to give any of one of 32 sub audible tones using DIP switch. Size $32 \times 26 \times 11 \mathrm{~mm}$.
SS32 - Encoder. Programmable to give any one of 32 sub audible or Group B (Test, Burst or Touch Tones). Size $23 \times 33 \times 11 \mathrm{~mm}$.

Send for full colour leaflet

## INDEX TO ADVERTISERS MAY

Appointments Vacant Advertisements appear on pages 121-132

|  | PAGE |
| :---: | :---: |
| Acoustical Manufacturing Col.td, The ................... 2 |  |
| Ambit International | 18, 19 |
| Anglia Components ......................................... 24 |  |
| AP Products |  |
| Audio Electronics........................................... 27 |  |
| Avel Lindberg | 78 |
| Bamber Electronics | 16 |
| Barrie Electronics I, id | 101 |
| Bayliss, A.D. | 96 |
| BDS Microsystems Ltd | 29 |
| Breuns Electronics | 100 |
| Brewster, S. \& R | 64 |
| Carston Electronics Lid | 7 |
| Catronics | 30 |
| Chiltmead Lid | 93 |
| CIL Electronics Lid | 106 |
| Chiptech Itd | 104 |
| Clark Masts Lid | 28,104 |
| Clef Products (Electronics) Ltd. | 100 |
| Colomor. | 96 |
| Continental Specialists | 77 |
| Costronics | 20 |
| Cotswold Electronics Lid | 78 |
| Crimson Elcktrik | 24 |
| Danavox (GB) Lid | 12 |
| Darom Supplies | 108 |
| Display Electronics | 09, 112 |
| Drallim Davies | 26 |
| Elektor Publishers ........................................... 26 |  |
| Electronic Brokers Lid .....................4, 5, 6, 7, 11, 13 |  |
| Electronic Equipment ..................................... 112 |  |
| Electronic Measurement | 98 |
| Electro-Tech Comps Lid.................................. 16 |  |
| Faircrest Eng .................................................. 26 |  |
| Farnell Instruments .............. 22, cover ii readers card FH Precision Engineers |  |
|  |  |
| Fylde ....................................................... 28 |  |

[^7]PAGE
PAGE

| Global Specialties Corp. ................................... 77 |  |
| :---: | :---: |
| GP Industrial Elicc. Ltd | 21 |
| Hall Electric | 23 |
| Hameg | 101 |
| Happy Memories | 106 |
| Harris Electronics (I.ondon) Lid | 30 |
| Harrison Brothers | 96 |
| Hart Electronic Kits I.td | 102 |
| Henrys Radio ................................................ 18, 96 |  |
| ILP Electronics Ltd | 94,95 |
| ILP Transformers I Id |  |
| Integrex Ltd | 35 |
| Interface Quartz. |  |
| Irvine Business Svstems | 108 |
| Keithley Instruments ..................................c.cover is |  |
| Kelsey Acoustics |  |
| Kirkham Amplifier |  |
| Langrex Supplies Ltd...................................... 105 |  |
| Levell Electronics |  |
| LJ Electronics Lid | 78 |
| Lowe Electronics | 113 |
| Maplin Electronic Supplies .................................. 14 |  |
| Marshall, A. (London) Ltd................................. 32 |  |
| Midwich ...................... | ... 21 |
| Mills, W. .................................................. 115 |  |
| Modus Systems............................................... . 22 |  |
| MTL. <br> Mura Electronics |  |
|  |  |
| Northern Electronics ...................................... 115 |  |
| Ocean Applicd Research .................................. 25 |  |
| OMB Electronics ........................................... 20 |  |
| Orion .................................................... 26. 102 |  |
| Orme Scientific |  |

[^8]Mr Jack Mentel, The Farley Co., Suite 650, Ranna Build ng, Cleveland, Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles, Ray Rickles \& Co., PO. Box 2028, Miami Beach, Florida 33140 - Telephone (305) 532730 Mr Tim Parks, Ray Rickles \& Co. 3116 Maple Drive N.E Atlanta, Georgia 30305 Telephone: (404) 2377432. Mike Loughlin, IPC Business Press, 15055, Memorial Ste 119. Houston, Texas 77079 - Telephone (713) 7838673.

Canada: Mr Colin H. MacCulloch, International Advertising Consultants Litd., 915 Carlton Tower, 2 Carlton Street Toronto 2 - Telephone (416) 3642269


AP DIP JUMPERS LOWEST PRICE IN THE UK. NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED FREE TC16 WITH EVERY SUPERSTRIP SOLD


DIP-DIP-DIP-DIP-DIP JUMPERS
AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK


## ■ EX-STOCK DELIVERY - 5 STANDARD LENGTHS

 6, 12, 18, 24, $36^{\prime \prime}$■ WITH 14, 16, 24, 40 CONTACTS
■ FULLY ASSEMBLED AND TESTED

- INTEGRAL MOULDED ON STRAIN RELIEF
■ LINE BY LINE PROBEABILITY

SINGLE-ENDED
| CONTACTS

| 14 | $£ 1.67$ |
| :--- | :--- |
| 16 | $£ 1.89$ |
| 24 | $£ 2.74$ |

DOUBLE-ENDED all prices $1-9$ off. Huge discounts for quantity

| CONTACTS | $6^{\prime \prime}$ | $12^{\prime \prime}$ | $18^{\prime \prime}$ | $24^{\prime \prime}$ | $36^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | $\mathbf{£ 2 . 1 1}$ | $\mathbf{£ 2 . 2 1}$ | $\mathbf{£ 2 . 3 1}$ | $\mathbf{£ 2 . 4 3}$ | $\mathbf{£ 2 . 6 3}$ |
| 16 | $\mathbf{£ 2 . 3 3}$ | $\mathbf{£ 2 . 4 5}$ | $\mathbf{£ 2 . 5 8}$ | $\mathbf{£ 2 . 6 6}$ | $\mathbf{£ 2 . 9 7}$ |
| 24 | $\mathbf{£ 3 . 4 5}$ | $\mathbf{£ 3 . 6 2}$ | $\mathbf{£ 3 . 7 8}$ | $\mathbf{£ 3 . 9 4}$ | $\mathbf{£ 4 . 3 0}$ |
| 40 | $\mathbf{£ 5 . 3 1}$ | $\mathbf{£ 5 . 6 1}$ | $\mathbf{£ 5 . 9 1}$ | $\mathbf{£ 6 . 2 2}$ | $\mathbf{£ 6 . 8 1}$ |

## TEST-CLIP TEST-CLIP

Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level. 22 NEW AP TEST-CLIPS TO PICK FROM examples: TC 14923695 £2.76 TC $16 \quad 923700 \quad £ 2.91$
 -

$$
\begin{array}{l|lll}
\hline \text { We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up, } & \text { TC } 24 & 923714 & £ 8.50 \\
\text { tested, ready for use, cheaper than you can buy the parts, ask for quote. } & \text { TC } 40 & 923722 & £ 12.88
\end{array}
$$

## ADVENTURES

 ON THE IC'S A SPECIAL f6 OFF OFFER

TOTAL PRICE ONLY £19
incl VAT post \& packing ANYBODY CAN BUILD ELECTRONIC PROJECTS WITH EBBO BOARDS. We supply EBBO block, adventures with electronics book which gives step by step instructions to build 16 projects including: chip radio, two transistor radio, electronic organ etc. and every component needed. Nothing else to buy.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD


[^9]

Keithley D.M.M. Test Equipment:
Quality. With machines like the 169 shown above. $31 / 2$ digits; . $25 \%$ accuracy. A nononsense five function D.M.M. at a no-nonsense price.


Cost. And at a price even fewer can match.
From $£ 79$ + V.A.T., Keithley D.M.M. test equipment is backed by the resources of a specialist company with a formidable reputation. To find out more, just fill in the coupon, and get your free literature today.

## KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL Telephone (0734) 861287

Choice. The Keithley range spans Pocket, $31 / 2,41 / 2,51 / 2$ digit D.M.M.'s; many with I.E.E.E. options. So we can be sure of having exactly the right product for your own requirements. Build to a standard that very few people can equal.


[^0]:    * Ideal for service and general purpose applications
    * $15 \mathrm{MHz} / 5 \mathrm{mV}$

[^1]:    Multiplex keying for organs. In the letter by $L$. W. Ellen in the April issue (p.55) the fourth line in the middle column of the page should read "Widor Toccata uses just over half the capacity . . ." Apologies for a printing error which drastically altered the meaning.

[^2]:    P.O.BOX

    IRVINE, AYRSHIRE

[^3]:    
    TELEPRINTER TYPE 7B: Pageprinter 24v. d.c. power supply. Speed 50 baıds per min . Sthand, good cond. (no parts broken), £28.75. OR G.P.O. MODEL, as above except motor, $110 / 230 \mathrm{v}$. a.c., £34.50. Carriage either type £9.50. Send S.A.E. for list of Telcpi47 PADAR TEST
    TS. 147 RADAR TEST SET Combination Sig. generator and frequency meter and Power meter. Provides C.W. and F.M. signals, 115v. a.c., £225. Carr. £7. HEWLETT PACKARD Siznal Generator HP608B. Freq. $10-400 \mathrm{MHz}$ C. W' and A.M. TRANSISTORISED 3 . Mod. $400-1000 \mathrm{~Hz} .230 \mathrm{v}$. a.c., £225. Carr. £10. switch, $9 \times 4 \mathrm{~cm}$ ISED 3 cm . RADAR AMPLIFIER SWITCH: with 24 x : wavegujd INSUL $X$ cm ins. with crystal CV 2355 and spark gap VX 1046, $£ 17.95+$ [1 post. NNGULATION TEST SET 0 to 10 KV , negative earth, with lonisation Amplifier, BC-221 FREQUENCY METER: $125-20,000 \mathrm{kc} / \mathrm{s}$, complete with original calibration charts, $£ 24.15+$ carr
    ROTARY INVERTER TYPE: PE218E: Input $24-28 \mathrm{v}$ DC, $80 \mathrm{amps}, 4,800 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Outpul $11 \mathrm{vAC}, 13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}$. IPh.P.F. 9 . $£ 23+\mathrm{carr}$
    RESONATOR PERFORMANCE CTC 4248.5 to $9.0 \mathrm{kmcs} 3 \mathrm{~cm}, £ 80.50+\operatorname{post} £ 2$ INVERTER 24 v . DC input $\$ 00$ cycles $1 \mathrm{pH} 6600 \mathrm{r} . \mathrm{p} . \mathrm{m} .200 \mathrm{v}$, peak, $£ 8.05+£ 2$ post
    INVERTER $24 v$. DC input 100 cycles $1 \mathrm{pH} \times 600$
    OXYGEN BOTTLE $18001 \mathrm{t}, \mathrm{w} . \mathrm{p}$. $£ 11.50 \times$ carr
    NOISE SOURCE UNIT with CV. 1881 noise source mount. Produces thermal poise $15.5 \mathrm{~dB} 200 / 250 \mathrm{v}$. AC. $£ 80.50$.
    HS 33 HEADSET. Low imp. $£ 5.35+75$ p post.
    MUIRHEAD DECADE OSCILLATOR TYPE 890D, $£ 92$ - carr. £5
    SIEMENS POWER METER REL3U/84/Alb: $0-12 \mathrm{kmHz} 1 \mathrm{mw} 500 \mathrm{mw} 6$ ranges. 0.17 dB
    50 ohms, $£ 92+$ carr. RAY TUBE: $(09 \mathrm{D}, 09 \mathrm{G})$, 4 in . screen, green electrostatic base B12B. HT 1200 volts, heater 4 volts, $£ 11.50$
    VACUUM AND PRESSURE DEAL TEST EQUIPMENT: complete with $2 \times \mathrm{fin}$. gauges indicating 0.20 lb . p.s.i. 0.301 l . vacuum. W'ith stand, hand pump, ctc., $£ 34.50+\mathrm{ca}$ TELEPRINTER MODEL 75, available with perforator attachment, $£ 74.75+£ 10 \mathrm{car}$ DIGITAL CLOCKS MODEL 304 with automatic recorder. Printout system model 301. SPERRY TRANSIST
    
    C.C.T.V. EHT UNIT, 50 K v. $£ 75-£ 10 \mathrm{carr}$.
    C.C.T.V. CABLE, 22 -Way, 500 metres, $£ 650+$ carriage
    large stocks of unused U.S.A.F. surplus maps. weather charts. ets: including:
    UNC.E1 - U.K. in fult and part N. W. Europe Scale 1:1.000.000 JNC-9N - N. Europe U.K... Scandinavia. Scale 1:2.000.000 SIZE $58^{\prime \prime} \times 42^{\prime \prime}$ colour. Many others. Please send S A.E. for list Price each 75p (inc. P\&P) $25 \times$ Maps (either same type OR assorted), $£ 10+\mathbb{E} 1.60 \mathrm{P} \& \mathrm{P}$ $14 \times$ Maps (either same type OR assorted), E6.50 (in P\&P)

    All prices include VAT at $15 \%$
    Carriage quotes given are for 50 -mile radius of herts.

    ## W. MILLS

    The Maltings, Station Road SAWBRIDGI WORTH, Herts Tel: Blshop's Stortford (0279) 725 772

[^4]:    $\star$ ECM is a technically competent consultancy offering advice and assistance at no charge to candidates.
    $\star$ We are aware of 100 s of electronics engineering opportunsties throughout the U.K.

    * For confidential discussion and positive action contact: MIKE GERNAT on 076-384 676/7 (Till 8 p.m. most evenings).

[^5]:    OSCILLOSCOPES TEKTRONIX 455 50 mhz portable, dual trace, delayed sweep, complete with probes and
    manual. $2 \frac{1}{2}$ years old, perfect conmanual. 2, vears old, perfect con-
    dition, recalibrated. $£ 675$. - Tele-

[^6]:    SMALL BATCH PCE's produced from your artwork. Also DIALS, PANELS, LABELS. Camera WOrk undertaken. FAST TURNAROUND, Hatton Place London ECiN shy 'f'el. 01.405 4127/0980. (9704

    DESIGN AND DEVELOPMENT. ANALOGUE, DIGITAL, RF AND MICROWAVE CIRCUIT AND mechanical design and prototype; mechanical design and prototype/ more Limited, Unit 103 Liscombe. Bracknell Berks. Tel: Bracknell Bracknel, Berks. Lel. Brackne1
    $\mathbf{5 2 0 2 3}$.

[^7]:    OVERSEAS ADVERTISEMENT
    AGENTS
    France \& Belgium: Norbert Hellin, 50 Rue de Chemin
    Veat, F-9100. Bouloyne, Paris.
    Hungary: Mrs Edit, Bajusz, Hungexpo Advertising
    Agency, Budapest XIV, Varosliget.
    Telephone: 225008 - Telex: Budapest 22-4525
    INTFOIRE
    Italy: Sig C Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6, 20154 Milan
    Telephone: 347051 - Telex: 37342 Kompass

[^8]:    Japan: Mr. Inatsuki. Trade Media IBPA (Japan), B. 212 Azabu Heights, 1-5-10 Roppongi. Minato-ku, Tokyo 106 Telephone ( 03 ) 5850581

    United States of America: Ray Barnes, IPC Business Press. 205 East 42 nd Street New York. NY 10017 - Tele phone: (212) 867-2080. Telex: 238327.
    Mr Jack Farley Jnr., The Farley Co., Suite 1584, 35 Eas Walker Drive, Chicago, Illinois 60601 - Telephone (312) 63074
    Mr Victor A Jauch, Elmatex international P.O. Box 34607 Los Angeles, Calif. 90034, USA -Telepnone (213) 821

[^9]:    When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives You more for your money... With 840 contact points SUPERSTRIP accepts all DIP's and discrete components and with
    eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14 -pin DIP's at any one time. You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee
    SUPERSTRIP SS2 923252 PRICE INCL VAT $£ 978$ SUPERSTRIP SS2 923252 PRICE INGL VAT $\mathbf{f 9} 98$

    All prices shown are recommended retail incl. VAT
    In difficulty send direct, plus 50p P \& P.
    Send S.A.E. for a free copy of colour catalogues
    detailing our complete range.
    AP PRODUCTS, PO BOX 19,SAFFRON WALDEN, ESSEX, (0799) 22036

