

Eight optional accessories including an r.f. probe, a peak-to-peak probe, a temperature probe, and a coaxial T-connector, make the TF 2650 Solid State FET Multimeter one of the most comprehensive general purpose multimeters available. Such versatility makes the TF 2650 ideal for use in servicing, production, technical education, research, design and many other applications, while the battery/mains option makes it equally suitable for field, laboratory or workshop

Accuracy is $\pm 1.5 \%$ on most ranges and the f.e.t input amplifier gives an output resistance of typically 100 $M \Omega$ with good overload protection. Scales cover from
1.5 mV and 0.15 mA f.s to 1500 V and 1.5 A a c. and d.c. The accessories extend the ranges up to 30 kV and 150 A , r.f. up to 1 GHz and temperatures up to $500^{\circ} \mathrm{C}$. Resistances can be measured from 100Ω to $100 \mathrm{M} \Omega$ mid-scale with a facility to make in-circuit measurements on solid-state devices. A centre-zero facility is available on most ranges.

The basic instrument is supplied complete with co-axial leads, crocodile grips, test prods and a leather carrying case

For further information write or phone:

mi MARCONI INSTRUMENTS

[^0]
wireless world

Electronics, Television, Radio, Audio DECEMBER 1977 Vol 83 No 1504

Contents

35 Frequencies, technology and society
36 Teletext decoder modifications by Richard T. Russell
42 News of the month
The electronic arm of the law
Ferrograph swap
Improvements in tape and disc reproduction
46 The Bizarrm by Ernest Lowinger
50 World of amateur radio
51 Letters to the Editor
Matrix H decoding
Using a microprocessor
Minimization in logic design
55 Microcomputer design - 2 by Phil Pittman
60 Logic design - by B. Holdsworth and D. Zissos
65 High speed analogue-to-digital conversion by O. J. Dōwning and P. T. Johnson

70 H. F. Predictions
73 Analogue function generator by $\ddot{G} . J$. Phelps
78 Circuit ideas
Inductance bridge
"No loss" capacitor
Variable slope low-pass filter
83 Synthesized f.m. transceiver - by T. D. Forrester
86 New products
90 Sidebands by "Mixer"
134 Appointments vacant
152 Index of advertisers

[^1]

Front cover, showing a microcomputer using Intel devices on a single p.c. board, introduces our second article on microcomputer design in this issue.
Photographer Paul Brierley

IN OUR NEXT ISSUE

Traffic information broadcasting. Latest developments in the BBC's proposed system using a multiplicity of low power m.f. transmitters on $a^{\text {a }}$ single frequency.

Fuses - their physical functioning, design and characteristics. A detailed look at a somewhat neglected component.

Power into loads: why we don't apply the maximum power transfer theorem to active devices in linear circuits.

When dealing with a variety of projects, electronic filtering requirements change rapidly and need to be met with minimum fuss and maximum flexibility. The Barr \& Stroud EF3 Modular Filtering System is designed around the most compact of basic main frames containing the power unit and function switching with capacity for two slide-in filter units. The modular concept allows you to begin with the minimum of a mainframe and one filter unit. Thereafter you can extend your 'library' of filter capability as requirements dictate and budgets make possible.

The EF3 is a system that grows with every plug-in module and constantly expands as new modules are developed and introduced. Current modules give a pass band capability from d.c. to 10 MHz and within this spectrum filter units can be operated individually or in a combination to give low-pass, high-pass, band-stop, band-separate or band-combine modes

The EF3 system is a part of the comprehensive Barr \& Stroud range of electronic filters that could well meet all your filtering requirements. If not,

Barr \& Stroud welcome the opportunity to study your problem and come up with a custom-built solution. The full spectrum of Barr \& Stroud capability in electronic filtering is covered in a range of literature available on request

[^2]
LOW COST VOLTMETERS

These highly accurate instruments incorporate many useful features, including long battery lite. All A type models have 83 mm scale meters, and case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$.

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN 5 5SD
Tel: 01-449 5028/4408686

Prices are ex works with batteries. Carriage and packing extra. VÄT extra in U.K. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments

Builda microprocessor electronic musical door chime which can play 24 different tunes!

Accomplete chnoma chime Kit far anly E18 inc.p. \&p. \&V,AT.

* A great introduction to the fascinating cuarld of microcamputers.
* Saue paunds an normal retail price by building yourself.

```
TOCHROMATRONICS, RiverWay. Harlow, Essex, U.K.
Please send \(\square\) Chroma Chime Kits at \(£ 18.00\) each
including VAT and post and packing
| PLEASE USE BLOCK CAPITALS
```

Name
Address
1
I enclose cheque/PO value f
or debit my ACCESS/BARCLAYCARD account No
\square

Signature

N.B. The CHROMA-CHIME is also available, fully assembled, price $£ 24.95$ inc VAT and post and packing Please allow 7-21 days for delivery.

Plays:
Greensleeves
God Save the Queen
Rule Britanna
Land of Hope and Glory
Oh Come All Ye Faithlu
Oranges and Lernons
Westminster Chimes
Sailor's Hornpipe
Beethoven's "Fate Knockıng
The Marseillaise
Mozart
Wedding March The Lorallie
'These tunes play longer it the push button is kept pressed

* Handsome purpose built ABS cabinet
* Easy to build and install
* Uses Texas Instruments TMS1000 microcomputer
* Absolutely all parts supplied including I.C. socket
* Ready drilled and legended PCB included
* Comprehensive kit mannual with full circuit details
* No previous microcomputer experience necessary
* All programming permanently retained is on chip ROM
$*$ Can be built in about 3 hours!
* Runs off 2 PP3 type batteries.
* Fully Guaranteed

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume. tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all. well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by

CHROMATRORIES
 River Way, Harlow, Essex.

 consumer/telecommunications and other applications.
Our distributors form a direct pipeline from us to you. For easy access to the widest range of advanced microelectronics call them and ask for a free copy of our latest shortform catalogue.

UK DISTRIBUTORS: Semiconductor Specialists Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex Tel: West Drayton (08954) 46415 Telex: 21958 Semicomps Ltd., Wellington Road, London Colney, St. Albans, Herts. Tel: Bowmans Green 24522 Telex: 21108 Semicomps Northern Lid., Ingrow Lane, Keighley, W. Yorks. Tel: Keighley 65191 Telex: 517343 Semicomps Northern Ltd., East Bowmont Street, Kelso, Roxburghshire. Tel: Kelso 2366 Telex: 72692 Semicomps Ltd., 3 Warwick House, Station Road, Kenilworth, Warwickshire. Tel: 092659411 Telex: 312212 G.D.S. (Sales) Ltd., 380 Bath Road, Slough SL 1 6JE. Tel: Burnham (06286) 63611 Telex: 847571
G.D.S. (Sales) Ltd., 24 Broughton Street, Cheetham Hill, Manchester. Tel: 061-8317471 Telex: 668304 G.D.S. (Sales) Ltd., 192 Moulsham Street, Chelmsford, Essex CM2 OLG. Tel: 024569545 Telex: 99443
S.D.S. Components Ltd., Jubilee Unit, The Airport,

Eastern Road, Portsmouth, Hants.
Tel: 070565311 Telex: 86119
S.D.S. Components Ltd., 111 Alexandra House,

East Kilbride, Glasgow G74 1LX.
Tel: 055248617 Telex: 778044

We help you compete

DTARII

From Otari for uncompromising recordists. MX5050-2SHD designed for peerless two-track quarter-inch masters.

Japan: Otari Electric Co., Lid., 4.29.18 Minami Ogikubo Suginami-ku, Tokyo 167, Japan
U.E.: C.E. Hammond \& Co., Ltd., 111 Chertsey Road, Byfleet, Surrey KT14 7LA
France: Reditec, 62.66, Rue Louis Ampère, Zone Industrielle des Chanoux, 93330 Neuilly-s/Marne West Germany: Peter Strùven GmbH, 2 Hamburg 53. Bornheide 19

Belgium: Trans European.Music S.A., Koeivijverstraat 105, 1710 Dilbeek, Brussels
Italy: Exhibo Italiana S.R.L., 20052 Monza, Via F. Frisı, 22
Switzerland: Audio Bauer AG, CH-8048 Zurich, Berner strasse-Nord 182, Haus Atlant
Australia: Klarion Enterprises Propnetary Ltd., Regent House, 63, Kingsway, South Melbourne, 3205

It's an exception of compact recorders. Specially designed for critical professional applications from the ground up. It leaves nothing to be desired. 68 dB signal-to-noise and great-er-than-60dB crosstalk. Variable speed DC-servo capstan motor for less than 0.05% wow/flutter and $\pm 7 \%$ pitch control. +19 dBm headroom before clipping. Motion sensing control logic Front panel edit and cue; stepless bias adjustability; built-in test and cue osciallator; all front accessible. 600 ohm , +4 dBm or $-10 \mathrm{dBm} \cdot$ fixed-level output and XLR connectors. Remote controllability for all transport functions. In short, it's a sheer professional masterpiece to produce desired 15 or $7-1 / 2$ ips masters.

The performance and reliability have been fully proven since its original version was introduced in 1973, in more than one thousand practical applications by broadcasters, studio recordists, audio-visual professionals and musicians all over the world. For the full story of this unique and compact professional machine, ask anyone who uses it or get in contact with your nearest Otari distributor.

Address

"What else does an op amp range need than to be rugged reliable and economical?"

RCA has combined the best of Bipolar and MOS to give BiMOS. Two technologies on one chip that means a greatly improved product performance - at no extra cost.

The table gives an indication of just what you can expect from a simplified range that covers virtually every application.

The BiMOS philosophy is in step with the trend towards standardising on fewer components that can do more jobs. It can help reduce costs all along the line - from design, manufacture and purchasing, to inventory control and incoming inspection.

And now the BiMOS range is available in plastic packaging. At a lower price of course. Good news for those concerned about profitability today.

Whether you're a systems designer, an engineer or in management, BiMOS gives you something to think about. And act upon.

Crellon Electronics Ltd., (incorporating ECS and GDS Sales)

A. D. BAYLISS Behind this name there's a lot of real POWER!

Illustrated right is a TITAN DRILL
Mounted in a multi-purpose stand. This drill is a powerful 1001 running on $12 v^{\prime} \mathrm{DC}$ at approx The multi-purpose siand is robustly constrocted ch capacity $300 \mathrm{~m} / \mathrm{m}$
The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are Jinished in hammer blue
stand is the RELIANT DRILL which is a smaller version of the Titan

TITAN DRILL \& STAND
titan drill oniy
RELIANT DRILL \& STAND
reliant drill only
TITAN MINI KIT DRILL
Plus 20 tools

RELIANT MINI KIT DRILL

 Plus 20 ToolsTRANSFORMER UNIT

These are examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids
To back up the power tools. Expo offer a comprehensive selection of Drills, Grinding Points and Other tools

AMP for full details to main distributors.
A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU

Stockists Richards Electric, Worcester and Gloucester; Hoopers of Ledbury; Hobbs of Ledbury; D\&D Models, Hereford; Bertella, Gloucester
WW-030 FOR FURTHER DETAILS

WW-026 FOR FURTHER DETAILS

...The leaders through creativity GR 1657 Digibridge

Automatically measures R, L, C, D and Q . Ranging from 0.001Ω to $99.999 \mathrm{M} \Omega, 0.0001 \mathrm{mH}$ to 9999.9 H , 0.0001 nF to $99999 \mu \mathrm{~F}$. D from 0001 to 9.999 and Q from 00.01 to 999.9. Basic accuracy 0.2\%. Five digit display for R, L and C, four digit display for D and Q .
Microprocessor - directed ranging. Selectable test frequencies of 1 KHz and $100 \mathrm{~Hz}(120 \mathrm{~Hz})$. Series or parallel measurement selection. Built-in Kelvin test fixture tests radial and axial lead
components. Other bridges from our range include:

GR1650	GR1656	GR1608
RLC Bridge	RLC Bridge	RLC Bridge
Precision 1\%	0.1%	0.05%

It is easy to test components with GenRad. Write or call for descriptive literature to GenRad Ltd. Bourne End, Bucks SL8 5AT
(06285) 26611

GenRad

3009 + FD200

The FD200 fluid damper renders the pickup arm less lively. In this respect it performs a similar function to the shock absorber of a motorcar. The damper does not resist the normal slow passage of the arm across the record, but any influence which would tend to produce rapid arm motion is resisted because of the flow characteristic of the fluid.

The benefits are smoother bass, resis-

The illustrations show typical extreme low frequency response characteristics of three cartridges in the Series // /mproved arm.

Note the substantial reduction in the Q of the low frequency resonance. Although
these frequencies are themselves outside the range of human hearing they give rise to undesirable side-effects which are audible.
tance to external shock and reduction of spurious low frequencies. The prior art has been to apply damping at the bearings but this method is inherently inefficient and liable to migration of the damping fluid. The FD200 overcomes these problems as it is applied at a radius of 1.45 inches (36.8 mm) making it several times more effective.

It is suitable for use with all Series II and Series II Improved arms and offers a choice of three damping rates to suit all cartridge compliances.

The attractively presented kit includes all parts necessary for the conversion which is easily carried out by the user following the explicitly illustrated instruction booklet. It is recommended for all cartridges, particularly those of relatively fow compliance which might otherwise require a more massive arm.

Write to Dept 0643B • SME Limited Steyning • Sussex • BN4 3GY

The best pick-up arm in the world

PLASTIC FASTENERS FOR ELECTRONICS

SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to fiat surfaces. No drilling or fixing screws necessary. The peel-off backing is removed immediately before placing the clip. The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

CABLE STRAPS are semi-permanent fasteners for strapping wires and cables into tight, compact looms. The ratchet fastener is adjustable and can be released by pinching-In the sides of the fastener head. Cable straps are made from black nylon.

WIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-looming times. Wire ties are made from nylon and are available in various sizes each determined by a different colour.
The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and grips p.c. boards firmly and securely. The guide is available in two types of material - yellow acetal or grey Noryl, for high temperature and voltage applications.
 P.C. BOARD SPACERS are simple to fit, onepiece mouldings for use with p.c. boards. They have a self retaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of $0.062^{\prime \prime}$ thickness. They have good resistance to vibration and are suitable for board-to-board or board-tochassis use
P.C. BOARD STAND-OFFS are quickly assembled, self-retaining panel supports for p.c. boards. Made from natural (off white) nylon and have good resistance to vibration. Suitable for panels up to $0.079^{\prime \prime}$ thickness. Stand-Offs accept a No. 4 self-tapping screw

PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materlals like fibreglass, hardboard and glass. Shank, head and pin are one piece. Fixing is by driving the pin through the head into the space between the legs, gripping the work
DRIVE FASTENERS hold two or more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boatshaped DRIVE Fasteners are for panels of thin and medium thickness and are removable. Rlbbed Drive Fasteners are used in blind holes where hole length exceeds lergth of shank

PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and moisture. Attractively shaped heads give a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole. Plugs are made from nylon and are non-corrosive.

LOKUT ANCHORS are used to strengthen holes by providing additional- screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily fitted by hand

1000's DF OTHER TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST

when is a box not a box?

Instrument boxes are often sold in standard sizes - not always the most practical sizes for your needs. When bought they take up a lot of storage space.

WIDNEY DORLEC Series 3 is a new, simple
constructional system for building cases, boxes, chassis, frames, drawers etc. etc. Just 3 basic extrusions and 3 simple brackets- available as components for DIY, kits,
or fully finished products to your design.
Custom made cases at prices you pay for standards. Ideal for Laboratories, Universities, small workshops. Call Cyril Vaughan on 021-359 3044 for more details.

P.O. Box 133

Birmingham $\mathrm{B4} 4 \mathrm{BD}$.
Telephone: 021-359 3044
Telex: 338054.

WW-025 FOR FURTHER DETAILS

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High periormance instruments measuring frequency, period, time, treq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

CRYSTAL OVEN
OPERATING MANUAL.
TWO TONE BIUE CASE
£280 250 MHz
Sensitivitv 10 mV . Stability 5 parts $10 .^{10}$ \rightarrow Resolution ± 1 Count

401A	32 MHz 6 Digil $£ 135$
701 A	80 MHz 8 日igil $£ 210$
901 M	520 MHz 8 Digil $£ 385$
1001 M	1.2 GHz 8 Digil $£ 670$
Memorv versions	available in nol
suffixed M	£30 extra

Type 101 1 MHz 100 KHz 10 KHz Crystal Standard $£ 98$ Type 103 0ff/Air Standard £98

SUPPLIERS TO: Ministry of Defence. G.P.O., B.B.C., Government Depta.. Ciryster Manufacturers and Electronic Laboratories world-wide
R.C.S. ELECTRONICS 6 WOLSEY ROAD, ASHFORU MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

Four Good Reasons for using Zettler Relays:

Zettler Relays are first class quality
We have about 50 years experience in producing relays. Zettler Relays are readily available. Most are available ex stock Harrow
Zettler Relays are proved in practical applications. Millions are used in our own electronic systems and products Zettler has the right relay for most applications, e. g.

AZ 412 Hermetically

Sealed Relay
D. C. operated relay. 2 changeovers.
Contact rating
28 volts 2 amps D. C
Spec.: MIL-R-5757.
Constant, low contact resistance. independent of ambient conditions in temperature range in temperature range
$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Long life. 10^{\prime} "dry circuit" operations:

Zettler UK Division
Brember Road Harrow, Middx. HA2 8AS • Tel. (01) 4220061
Zettler offers more than technology

WW-075 FOR FURTHER DETAILS

Ferranti make it an all-British line-up for their family of RF Power Transistors.

Ferranti can now offer a popular range of RF power transistors to cover B and C Series -175 MHz and 470 MHz , for 12 volt and 28 volt applications. And there's a choice of three power outputs in each range- 3 watts, 12 watts and 25 watts and a choice of ceramic stripline with stud or flange mounting.

They're competitively priced and can be used as plug-in replacements for other B and C Series transistors.

Of course our full product range covers 2 MHz to 2 GHz , and power outputs up to 70 watts. We can supply whole line-ups at VHF and UHF frequencies, for FM and AM systems and devices, for amplifiers, oscillators or frequency multipliers.

And don't forget Ferranti RF power transistors are ruggedised and 100% tested to withstand infinite VSWR at all phase angles. Ferranti are the only independent British supplier of RF power transistors. Our technology is all home based and we have an application team ready to help with design problems.

Send for a copy of our comprehensive shorttorm catalogue
Ferranti Limited, Electronic Components Division, Gem Mill, Chadderton, Oldham, Lancs, OL9 8NP Telephone: 061 -624 0515 Telex: 668038

FERRANTI
 RF power. We can deliver.

The Industrial Tube Guide

RCA offer the definitive guide to industrial tube products. A collection of literature, full of information on a vast range from camera tubes to digital display tubes. Lasers to photomultipliers. Power devices to

receiving tubes. LEDs to CCD Image Sensors. It can save time, trouble and money, yet it's free on request.

The brochures set out clearly and conveniently, data on a wide and diverse range of product groups. Apart from initially grouping products into types and outlining major parameters, there are expanded catalogues on most products.

These include selection, replacement, equivalents and characteristics tables to help you narrow your choice.

If your business involves industrial tubes, this is one guide you should not be without. Just call or send the coupon.

[^3]WW-089 FOR FURTHER DETAILS

They're here! For PAL.

Yes, actually available in Britain! II took a year due to unprecedented demand for NTSC. But the outstanding $3 / 4^{\prime \prime}$ U-format colour video casselte recorders from IVC have now arrived.
Six brilliantly versatile models with the name that's known for innovation. You've heard about them. You've talked about them. Now see for yourself what's behind their global reputation. Whatever the brief - for boardroom or classroom, oil-rig or top-flight recording studio - there's a model that's right.. flexible in operation... reliable in the extreme.
From JVC-the name worth its wait.
And for all U-format systems - famous tor colour clarity the Fuji video cassette. Beridox, is also available from Bell \& Howell.
回 BelleHowell

TiN for alactronie ussinn anyinaers!

FIX-PRINT for printed circuils

Invaluable for
holding P.C.B.s and other
panels when inserting and soldering
components. Can be adjusted to suit work up to 280 mm . rotating to gain access to reverse side and locks in any position. All metal.

Write or phone for full details

52 Drill Siand

Robust, all metal with ample throat dimensions. Adjustable height canti lever with lever actuated feed Spring return. Will accept both P1 \& P2 drills Price $£ 18.50$ inc VAT P\&P 106p P2 Drill£16.50 inc VAT P\&P 86p

S1 Drill Stand

Constructed to take the popular P1 drill and ensure a high degree of accuracy in दll types of electrical precision work Price $£ 5.13$ inc VAT P\&P 38p P1 Drill $£ 9.67$ inc VAT P\&P 38p

대줄

VISUAL DISPLAY TERMINAL

* 16 Lines per page
* 64 or 32 Characters per line
* Upper and lower case letters
\star Scrolling or Page Mode Operation
\star Control Characters decoding - 32 Combination
\star Prints Control Characters
* Usable with any 8 Bit Ascii Computer
* Reversed Background - HIGFLIGEINGI
* 128 Character Ascii Set
* $110 / 220$ Volt $50-60 \mathrm{~Hz}$ Power Supply

Complete with:- Chassis and cover, cursor control, 110-1 200 Baud serial interface and keyboard. Optional monitor show in photo available.
Now you can buy it. The Terminal that has all the features that people have been asking us to include. The CT- 64 has all the functions that you could want in a terminal and they may be operated by either switches, or through a software programme.
All cursor movements, home-up and erase, erase to end of line, erase to end of frame, read on, read of, screen reversal, scroll, no scroll, solid cursor, blinking cursor, page selection and a beeper to warn you of end of page; all are provided. for your use in the CT-64.
You may also switch from upper case only, teletype style operation to upper-lower case typewriter style operation. You can reverse the field on individual words to highlight them, or you can reverse the whole screen.
CT-64 is complete with keyboard, power supply serial interface and case. A matching 9 inch monitor with co-ordinated covers is also available to make a complete system.

Price effective 1/11/77 Visual Display Terminal CT-64£230 Kit Form Matching Monitor CT-VM £140 Assembled

A UHF Modulator is also available which allows you to plug into the aerial socket of your T.V. On some T.V.s unless the line length is limited to 32 characters some definition will be lost.

MOD 1 Modulator $£ 4.50$
Prices quoted dú not include VAT

Please send me details of your full range of computer equipment and software

SOUTHWEST TECHNICAL PRODUCTS CO. 174 IFIELD ROAD LONDON SW10
 TEL. 01-373 8571

BULK ERASURE PROBLEMS?

LR71
MAX REEL SIZE 11 1/2"
LR 70
MAX REEL SIZE $81 / 4{ }^{\prime \prime}$

If it's personal we can only advise a diet or joining weightwatcheas If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes cartridges and reels of tape up to a maximum reel size of $11 \frac{1}{2^{\prime \prime}}$ and tape width of $1^{\prime \prime}$. quickly and efficiently within the time it takes to read this advertisement

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments Educational Establishments and the Computer Industry
Moderately priced and available from
'LEEVERS-RICH EQUIPMENT LIMITED INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley
WW-04! FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$
seenfrom the

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accousticai conditions.

Specifications:

Frequency Response: $40-18000 \mathrm{~Hz}$. Output Level at $1 \mathrm{kHz}: 0,14 \mathrm{mV} / \mu$ bar 's $-56 \mathrm{dbm}(0 \mathrm{dbm} \cong 1 \mathrm{~mW} / 10$ dynes/cm2). EIA Sensitivity Rating: -149 dbm . Hum Pickup Leval:
$5 \mu \mathrm{~V} / 5 \mu$ Tesla $(50 \mathrm{~Hz})$. Polar Pattern': Hypercardioid. Output Impedance: 200Ω. Load Impedance: $>1000 \Omega$, Connections: M $201 \mathrm{~N}(\mathrm{C})=$ Cannon XLR-3-50 T or Switchcraft: $2+3=$ $200 \Omega_{1}, 1=$ ground. $\mathrm{M} 201 \mathrm{~N}=3$-pin DIN plug T 3262: $1+3=200 \Omega$ $2=$ ground. $\mathrm{M} 201 \mathrm{~N}(6)=6$ pin Tuchel.
Dimensions: length 6", shaft $\varnothing 0,95^{\prime \prime}$. Weight: 8,60 oz.

BEYER DYNAMIC (GB) LIMITED
1 Clair Road, Haywards Heath, Sussex.
Tel:Haywards Heath 51003
WW-03I FOR FURTHER DETAILS

ziMcONSOLES

= IMMEOXES

=1MBEARDS

- mimpalles

EIMDICATORS

ABS \& DIECAST BIMBOXES

5 sizes, in either $A B S$ or Diecast Aluminium ABS moulded in Orange, Blue, Grev or Black Diecast Aluminium available in Grey Hammertone or Natural

All boxes incorporate guides on all sides for holding 1.5 mm thick pcb's and stand-off bosses in base for supporting small sub-assemblies etc. Close fitting flanged lids held by screws running into integral brass bushes (ABS) or tapped holes (Diecast)
$(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 110 \times 60 \mathrm{~mm})$

MINI DESK BIMCONSOLES

Moulded in Orange, Blue, Black or Grev ABS and incorporating guides on all sides for holding 1.5 mm thick pcb's. 1 mm Grey Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. Stand-off bosses in base for supporting small sub-assemblies etc. 4 self adhesive rubber feet also included. BIM1005 $(161 \times 96 \times 58 \mathrm{~mm})$ £1.97*
BIM1006
($215 \times 130 \times 75 \mathrm{~mm}$)
£2.70*

Also available in Grey Poly
screws BIM2007/17 £0.82

Diecast BIM2002/12 £ 0.87^{*} BIM2003/13 £0.97* BIM2004/14 f1.05* BIM2005/15 £1.18* $\begin{array}{ll}\text { BIM2006/16 } & \text { £1.84* }\end{array}$ BIM5002/12

Hammertone £1.20* £ 1.50^{*} £ 1.86^{*} £2.38* £2.38*

LOW PROFILE BIMCONSOLES

1 mm Grey Aluminium panel sits recessed into front of console base, which is moulded in Orange, Blue, Black or Grey ABS and sits on 4 self adhesive rubber feet. Incorporating guides for holding 1.5 mm thick pcb , the base also has stand-off bosses for supporting small sub-assemblies etc. and ventilation slots. Front panel is held by 4 screws which run into integral brass bushes.
BIM6005 ($143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.14 *$ BIM6006 ($143 \times 170 \times 55.5[31.5] \mathrm{mm}) £ 2.73^{*}$ BIM6007 (214×170×82[31.5] mm) £3.75*

Natural

£0 97*
£ 1 20*
£ 1 49*
£191*
£285*

\square

ALL METAL BIMCONSOLES

MULTI-PURPOSE BIMBOXES
Moulded in Orange, Blue, Black or Grey ABS with 1 mm thick Grey aluminium recessed front cover which is retained by 4 screws running into integral brass bushes 1.5 mm pcb guides are incorporated on all sides and as with all ABS boxes they are $85^{\circ} \mathrm{C}$ rated. 4 self adhesive rubber feet also included.
BIM $4003(85 \times 56 \times 28.5 \mathrm{~mm})$
£1.13* BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm})$ £1.42* BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm})$ £1.87*

MAINS BIMDRILL Operates directly from $220-240 \mathrm{Vac}$ and supplied with 2 metres long cable fitted with 2 pin DIN plug. Will drill brass, steel and aluminium as well as pcb's etc. Has integra biased-off switch and accepts tools with 1,2 and 3.2 mm dia shanks $£ 9.72^{*}$
Accessory Kit including $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\circ}$ twist drills, 5 burrs and 2.4 mm collet $£ 2,20$

12 VOLT BIMDRILLS

2 small but powerful 12 V dc drills, easily held in hand or used with lathe/stand adaptor. Both drills have integral on/off switches and 1 metre long cable.
Mini Bimdrill with 2 collets up to 2.4 mm capacity $£ 7.56^{*}$
Major Bimdrill with 3 collets up to capacity $£ 12.96$ * Mains to 12 Volts adaptor, fathe, stand and accessory kits also available, detaiłs on request

Bimboards accept all sizes of DIL packages as well as resistors, diodes, capacitors and LED's etc. They have integral Bus Strips running up each side for carrying Vcc and ground as well as Component Support Brackets for holding lamps, fuses and switches etc. Available as either single or multiple units, the latter mounted on 1.5 mm thick, matt black aluminium back plates which stand on non slip rubber feet and have 4 screw terminals for incoming power.
Bimboard 1 contains 500 individual sockets whereas the multiple units containing 2 . 3 or 4 Bimboards incorporate $1,100,1,650$ or 2,200 individual sockets, all arranged on a $2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$ matrix.
Bimboard 1 £ 9.72* Bimboard 2 £22.68* Bimboard 3 £ 32.40^{*} Bimboard $4 £ 42.12^{*}$

15° Sloping Pane
BIM 71.51 ($102 \times 140 \times 51[28] \mathrm{mm})$ £ 7.66^{*} BIM 7152 ($165 \times 140 \times 51(28) \mathrm{mm})$ £ 8.51^{*} BIM $7153(165 \times 216 \times 51[28] \mathrm{mm})$ £ 9.35^{*} BIM7154 ($165 \times 211 \times 76[33] \mathrm{mm}) £ 10.21 *$ BIM $7155(254 \times 211 \times 76[33) \mathrm{mm}) \quad £ 11.05 *$ BIM $7156(254 \times 287 \times 76[33] \mathrm{mm}) £ 11.92^{*}$ BIM $7157(356 \times 211 \times 76[33] \mathrm{mm}) £ 12.76^{*}$ BIM7158 ($356 \times 287 \times 76[33$] mm) £13.60*
30° Sloping Panel
BIM 7301 ($102 \times 140 \times 76[28] \mathrm{mm}$) £ 7.66^{*} BIM 7302 ($165 \times 140 \times 76[28] \mathrm{mm})$ £ 8.51* BIM7303 ($165 \times 183 \times 102[28] \mathrm{mm}) £ 9.35^{*}$ BIM7304 ($254 \times 140 \times 76[28] \mathrm{mm}) ~ £ 10.21^{*}$ BIM7305 ($254 \times 183 \times 102[28] \mathrm{mm}) € 11.05 *$ BIM7306 ($254 \times 259 \times 102[28] \mathrm{mm})$ £ 11.92^{*} BIM 7307 ($356 \times 183 \times 102\left[28\right.$] mm) $£ 12.76^{*}$ BIM7308 ($356 \times 259 \times 102(28] \mathrm{mm}) £ 13.60^{*}$

DIL COMPATIBLE BIMBOARDS

HIGH POWER DC-COUPLED AMPLIFIER * UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT * OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.

* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise $(20-20 \mathrm{kHz})$ Other models in the range

DC-20kHz a 150 watts +1 db . Odb 500 watts rms into 2.5 ohms +0 . -15 DC to 20 kHz . 1 watt 8Ω Below 0.05\% DC tn 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω At least 110 db below 150 watts watţs per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection
Power supply
Dimensions
D150A - 150 watts per channe

Other models available from 100 watts to 3000 watts

MAGINNES FRANCE
18 Rue Botzaris
Paris 75019, France
Tel: 206-60-80 or 206-83-61

 WAS MADE FOR YOU

VERO QUAD BOARD was designed to provide a simple circuit board capable of accepting nearly all types of integrated circuits, plus transistors, resistors, capacitors and many other components.

ASK FOR V-Q - IT WAS MADE FOR YOU No track cutting. 1,624 holes on $0.1^{\prime \prime} \times 0.1^{\prime \prime}$ matrix. Packed complete with layout sheet. Fits Vero Plastic Cases 1237, 1238 and 1239. Costs about 90p from your local shop or mail order company.
Send for our booklet describing many other products made for you, S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$ plus 10p to:

VERO ELECTRONICS LTD. RETAIL DEPT. INDUSTRIAL ESTATE, CHANDLERS FORD, HANTS. SO5 3ZR.

Maimparidil eleatimias

A major international conference organised by ElectronicsWeekly.

Hilton Hotel,Park Lane,London. Thursday, December 8th,1977

An opportunity to discover how developments in electronics will bring far-reaching changes to industry, commerce, leisure and society.
This major international conference is an attempt to create an awareness of what is happening in terms of the social and economic effects of the electronics revolution, which can only be minimised and turned to good account if all those concerned understand what is involved.
In a series of papers, leading figures in electronics from Britain and other countries will explain that while new technology may be disruptive, this can be lessened if long-term plans based on sound knowledge are made.
This conference can be your first step towards acquiring this knowledge - the key to choosing the right way ahead.

Subjects and speakers will include:
The Impact of Electronics - P'ast, Present and Future, by lack Akerman (Managing Director of Mullard Ltd. Chairman of the Electronic Component Industry Federation, and member of Electronics EDC).
The Impact of New Technology in
Telecommunications, by Kenneth Corlield
(Deputy Chairman and Managing Director of Standard Telephone and Cables Lidd, and Senior Officer of ITT in the United Kingdom).
The Microprocessor in the Home, by Dr Steve Forte (Managing Director of General Instrumen: Microelectronics Led since 1971 and has many years experience of the Semiconductor industry). The Microcomputer in Industry and Commerce, by Alex d'Agapeyeff, OBE, (Chairman ot Computer Analysts and Programmers (1d).
The Impact of Microelectronics on Employment, by Dr Alfred Prommer (Vice l'resident of
Siemens AG, West Gertrany, and head of sales and marketing in the company's componens group). Lord Orr-Ewing, OBE. C. Eng. (Chairman of Ultral Elecaronics Lid): Sir leuan Maddech, CB OBE, FRS (Deputy Chairman of the National Electronics Council and Lord Thorneycrott (Chairman of Fye of C.mbridge Led) have alf agreed to chair the sessions.
The concluding Open Forum will feature a panel of experts which will include William C Hittinger (Execut ive Vice President, 'research and engineering, RCA Corporation USA); Gerrit leelot (Chairman and Managing Director of P'hatips Industries UK); Derek Roberts (Managing Director of Plessey Micrasystems Division) and Frank Chorley (Managing Director Plessey Electronic Systems Ltd)
The conterence comnemess at O.OQum and closes al 5.30 pm
The tee in CoO plus 8% VAT If +.80 per delegate. To be sure of reserving your seat for this uceasion piense complete the form on right

From TOKO, the world's foremost manufacturer of wound components, a complete range of quality

- IMPEDANCE 50 to 500Ω

TYPE RET - DELAY TIMES to within $\pm 5 \%$

- PEAK PULSE VOLTAGE 50v
- 10 TAP POINTS
- LOW COST

The RET series DIL epoxymolded delay lines are designed to fulfill a wide range of applications where accurate timing of fast pulse waveforms is required.

Also from TOKO's Standard Range of Delay Lines $\begin{array}{lll}\text { Type } & \text { Taps } & \text { Maximum delay } \\ \text { F10R } & \text { nil } & 10 \mathrm{~ns} \text { to } 600 \mathrm{~ns}\end{array}$ FXT $10 \quad 400 \mathrm{nS}$ to 1.5 uS MKT $20 \quad 100 \mathrm{nS}$ to 3uS BMT $10 \quad 400 \mathrm{nS}$ to 8uS And the new PROGRAMMABLE: M10CG 4 or 5 sections, with a maximum Td of 150 nS

Also from TOKO's General Range of components:
TOKO (UK) Ltd Ward Royal Parade Alma Road Windsor, Berkshire.
 Signal coils, transformers and chokes for radio, tv, tel: Windsor (07535) 54057 telex: 848095 mpx etc. DC-DC converters, Pulse Transformers,
Wire memories, ceramic, mechanical and LC filters.

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Series H3020

Basic error 25\%
Sensitivity 8 mA F.S.D
Response 0.2 sec
Width of each channel
Single and three-pen
recorders: $\quad 80 \mathrm{~mm}$
Five-pen recorders 50 mm

Chart speeds, selected by push buttons 0.1-0.2-0 5-1.0-2.5-5.0-12.5-25 mm/sec

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames Curvilinear co-ordinates
Equipment: Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc

H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high

PRICE $£ 108.00$
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high PRICE $£ 160.00$
H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$
high
PRICE £295.00

Series H327

Polarized moving iron movements with syphon pens directly attached. Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4\%. Frequency response from $D C$ to 100 Hz 2 dB .

Sensitivity 0.02-0.05-01-0.2-0.5-1-2-5volts $/ \mathrm{cm}$ Width of each recording channel 40 mm
Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
Chatt speeds 1-2-5-10-50-125-250mm/sec.
Type H3271-1. Single pen: Dimensions $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

PRICE $£ 265.00$
Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos

PRICE £520.00
Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$ Weight 25 kilos

PRICE £770.00.

Note Prices are exclusive of VAT
Available for immediate delivery

For fast, competitive service, contact:
Bob Bowles, Eimac Division,
Varian AG, P. O. Box, 6300 Zug, Switzerland Tel. 042 / 316655
Telex 78789 or 78841
Sales offices in:
Zug, Switzerland and
Paris, London, Munich, Torino, Amsterdam, Brussels, Stockholm.

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Uesign of Digital Systems.

plus 90 p packing and surface post anywhere in the world.
Overseas customers should send for Proforma invoice. Quantity discounts available on request. VAT zero rated.

Also available - a more elementary course assuming no prior knowledge except simple arithmetıc.
Digital Computer Logic and Electronics.
In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits 10 Carry Out Logical Functions
4. Flipflops and Registers
$£ 4.60$
plus $90 p$ P. \& P.
Offer Order both courses for the bargain price £11.10 plus 90 p P. \& P. A saving of $£ 1.50$.

Designer Manager Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

NEW from Cambridge Learning Enterprises:	
FLOW CHARTS \& ALGORITHMS use, design \& layout; vital for computing, training, wall charts, etc.	$\underset{\substack{\text { plus } 45 p \\ \text { p \& p }}}{ }$

Guarantee - If you are not entirely satisfied your money will be refunded.

```
To. Reg. Office Cambridge Learning Enterprises. Dep COM FREEPOST
    Rivermill House, St Ives, Huntingdon Cambs PE 17 4BR
    Rivermill House, St lves, Luntingdon. Cambs Pegistered in England No 132876
Proprietors Drayridge Lid
    Proprietors Drayridge Ltd Registered in England No 32876
    included
    or set(s) of Digital Computer Logic and Electronics at \(£ 550\) each. \(\rho\) \& \(p\)
    included
    or combined set(s) at \(£\{200\) each. \(p\) \& \(p\) included
    or The Algorithms Writers Guide at \(£ 340\) each. \(p\) \& \(p\) included
    Name
    Address
1
1
delete as applicable
No need to use a stamp -- jusi print FREEPOST on the envelope
-
```


WW—016 FOR FURTHER DETAILS

WW-040 FOR FURTHER DETAILS

2. WW-085 FOR FURTHER DETAILS

The most economical,compact and

 convenient breadboards on the market!They are the PROTO-BOARD* PB-6 and PB-100 solderless breadboard kits.
Buy them, and you are only minutes away from the first circuit.
Contacts are made from non-corrosive nickel-silver alloy, and are reliable for more than 10,000 insertions.
Contact resistance is a mere $0.4 \mathrm{~m} \Omega$, insertion force is typically 3 ozs per lead, and interterminal capacitance is typically less than 5 pF .
The kits are a must for experimental and development work in digital, audio, RF, video and beyond.
Resistors, capacitors, transistors, DIP's, LED's, transformers, pots, jumpers and any other component with leads between 0.015 " and $0.032^{\prime \prime}$ will fit the contacts.

You can run circuits well beyond the recommended ambient operating temperature $\left(100^{\circ} \mathrm{C}\right)$ if you wish, because the plastic used in the
PROTO-BOARD is rated to over $200^{\circ} \mathrm{C}$.
The kits come complete with instruction manual, assembly hardware, binding posts non-scratch feet and the appropriate number of preassembled sockets and bus strips.
The sooner you order, the sooner you'll have that first circuit operating.

THEPB-6.630 SOL DERLESS CONTACTS. TAKES UP TO SIX 14-PIN DIPS.OREQUIVALENT IN LARGER AND SMALLERIC'S FOUR 5-WAY BINDING POSTS, $6^{\prime \prime} \times 4^{\prime \prime}$ ONLY COSTS £10.47.

THE PB-100. 760 SOLDERLESS CONTACTS
TAKES UP TO TEN 14 PIN DIP'S OR EQUIVAKENT IN LARGER AND SMALLERICS TWO 5-WAY BINDING POSTS. $6^{\prime \prime} \times 4$ 5" ONLY COSTS E13.50.

speciolties

Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue. Our prices include VAT (8\%) and postage. All prices and specifications correct at the time of going to press.

The Quickest, Simplest Way of Punching Holes in Sheet Metal

Q-Max punches make clean, accurate holes every time. In no time. With no filing, no jagged edges, virtually no burrs - with no hard work. And no holes are barred. Round or square, QMax punches are available in sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge No wonder they're used by all government services (Atomic, Military, Naval, Air, GPO, Ministry of Works) and all over the world by radio, motor and industrial manufacturers. plumbing and sheet metal trades and garages

Wholesale and Export enquiries welcomed. Further detais trom, "Q-MAX" (ELECTRONICS) LTD 40-41 FURNIVAL STREET. LONOON EC4 - 01-242 7400 WW-080-FOR FURTHER DETAILS

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case. Fिrobe and internal $11 / 2$ volt standard size battery.
 Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price £25.00 "Model "Mini-2 Hi " measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} \quad £ 27.50$ [VAT 8% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC $1 \times$ 8AX
(Phone 01-837 7937)

INTERPROJECTS LTD Technical Services Sponsored by IPC Magazine PRACTICAL ELECTRONICS are organising a TWO-DAY COURSE on

SYSTEM DESIGN WITH MICROPROCESSORS

Conducted by Prof. D. Zissos, University of Calgary JANUARY 6 \& 7, 1978
at the Institution of Electrical Engineers
Savoy Place, London W.C. 2
Prof. C. Turner, Kings College, London will open the proceedings
An intensive two-day course aimed to enable practising engineers, technical managers and hobbyists to design and implement their own microprocessor systems using methods that require no specialist knowhow of electronics or programming other than a basic knowledge of logic.
D. Zissos has written numerous books and articles on the subject and he is a practising design consultant known for his pragmatic approach.
Registration Fee: $£ 45$ (plus $£ 3.60$ VAT) PP, includes a book "Problems and Solutions in Logic Design'" by D. Zissos and comprehensive lecture notes.

Applications to:
INTERPROJECTS LTD., 29 Church Street
Edmonton, London N9 9DY. Tel. 01-803 6896
WW—078 FOR FURTHER DETAILS

WW-042 FOR FURTHER DETAILS

PROTECTION FOR YOUR TAPES!

R.B. ANNIS HAN-D-KITS NOW AVAILABLE IN EUROPE!

Valuable audio and video tapes can be damaged when played on equipment that is not thoroughly and regularly demagnetized. Magnetism can easily build up in capstans, tape guides or recorder heads to a point where it will degrade the magnetically recorded signal on tapes passing over them. Tape damage is first apparent as a loss of recorded high drequencies and a progressive increase in frequencies and a progressive increase in
background noise each time they are played on background noise each
magnetized equipment.

Until recently, there has been no easy way to tell when demagnetizing was needed, and most

Demagnetizers on the market were far too weak to be effective, particularly on offending hardened steel guides or capstans, etc. Now, with the introduction of the Audiophile Hand-D-Kit, both measurement and correction problems can be solved easily at modest cost.

Here in one convenient package is everything needed to measure magnetic levels quickly, along with a handy, powerful unit to demagnetize components completely before they can spoil valuable tapes.

Photo shows extra long probe - and standard Han-D-Mag. Both so powerful that they can be used for occasional bulk erasing of cassettes and $1 / /^{\prime \prime}$ tapes.

HERE'S WHAT THE AUDIOPHILE HAN-D-KIT CONTAINS
"NOTES ON DEMAGNETIZING" ETC. Explains causes of magnetism with particular reference to tape recorders How to measure it accurately and how to eliminate it
Interesting experiments also included

DISTRIBUTOR FOR EUROPE

WANT TO KNOW MORE?
WRITE FOR YOUR FREE COPY OF OUR 8-PAGED BROCHURE INCLUDING "NOTES ON DEMAGNETIZING'
audio system, sweden
ANNIS AUDIOPHILE HAN-D-MAG
A rugged dual-use Demagnetizer having a powerful. sine wave demagnetizing field strength of over 350 oersteds $1 / 4$ " beyond the tip of the $21 / 4$ " long probe

FACK, S-132 02 SALTSJÖ-BOO, SWEDEN
WW-037 FOR FURTHER DETAILS

servos
synchronous steppers
d.c. motors control systems gearboxes friction clutches instrument couplings
for a technical advisory service and off the shelf delivery, contact

F.M. TUNERS, MODULES \& KITS by

Tuner
T2 TOUCH TUNED T3 DIGITAL (AS SHOWN)
£121.00
£149.00

Kit
$£ 109.00$
£139.00

This tuner must surely provide the best value for money available today. Combining the best of the modules shown below, it includes a full digital readout of frequency to a resolution of 0.1 MHZ , so that exact station identification can be made. In addition. six pre-set stations may be selected by touch controls having internal solid state lamps, while manual tuning allows easy searching for distant stations under the guidance of the digital meter.
A switchable mute system allows reception of the weakest stations while muting inter-station norse and spurious responses. Perfect reception is assured by not permitting any station to be heard which is far enough out of tune to cause distortion. The tuning indicator lamp provides a means of very fine tuning, and is automatically extinguished between stations. A powerful A.F.C. system is also incorporated which holds all stations in tune, while not preventing manual tuning.
Good stereo reception is assured by the use of a phase locked decoder with full 'birdie' and spurious output filtering.
Finally, but not least, the external appearance and styling bring a fresh new look to $\mathrm{Hi}-\mathrm{Fi}$. The sturdy wooden cabinet is finished in mat teak veneer, housing an attractive gold and brown anodised aluminium front panel, which carries black controls and inscriptions. The indicator lamps and digital displays are in red, giving the finishing touches to a tuner you will be proud to own

DIGITAL FREQUENCY METER M6

We are very proud of this one. We don't have to say it's the best, as far as we know it's the only one! On a board less than $4^{\prime \prime}$ square is all the electronics of a stable counter with i.f. offset (added) and a stabilızed power supply! With the aid of a small daughter board (not shown) which fits neatly into the above module (M1), the exact station frequency is displayed to the nearest 0.1 MHz . It's a tuning scale $20^{\prime \prime}$ exact station frequency is displayed accurate calibrations every $0.1^{\prime \prime \prime}$ You get the transformer, daughter board (ready wired in), polarized filter, and a list of station frequencies. What more do you want?

MAIN RECEIVER MODULE M1

We have claimed before that this F.M. system is the most advanced on the market, and after nearly three years we repeat our claim. Some have borrowed ideas, some have not, but no other tumer gives you all the features of this unit. How many tuners mute the spurious tuning effects found at either side of a correctly tuned station? How many tuners fade the sound out as you tune too far off station for good quality sound? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How many offer you drift free tuning? We could go on. If you want a tuner that has been well thought out and engineered, start with this module

TOUCH TUNE MODULE M5
This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button. No moving parts to go wrong, or contacts to get dirty. Internal illumination shows you which button has been touched, while the tuning adjustment is made using high reliablity multi-turn cermet pots for repeatable selection of the most used stations, yet retaining the use of separate manual tuning This module interfaces directly with the M1 above, being wired between the board and the normal manual tuning control. A touch of sheer genius!

FULL CABINET/METALWORK KIT
(Including all Nuts and Bolts, Plugs and Sockets, etc.)
£28.16

OTHER MODULES etc.

ALL PRICES + $\mathbf{1 2 . 5} \%$ VAT, U.K. ONLY

ORDERING INFORMATION

All $\cup K$ orders post free plus 125% VAT Export orders allow extra for postage at cost, no VAT due, credit witl be refunded
Payment by sterling cheque on London bank. or credit card, International MO etc
Other items and kits avaltable send for illustrated leaflets price list and order form. etc (inc 50p armall overseas) from

33 Restrop View
Purton, WILTS SN5 9DG

WIRELESS TIME: 1コ: ヨ4.

 approx. 1/ full size digits shown hereNational's MA1012 LED digital clock module is a complete clock \& alarm unit, operating from 50 or 60 Hz mains, and offering all the features you would expect: Hours-minutes display in bright $0.5^{\prime \prime}$ leds with optional seconds, sleep and snooze alarms, fast and slow setting, AM/PM indicator, switched alarm outputs - but best of all no RFI. Thus the MA1012 is suitable for use in any radio/tuner applications and requires just $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total. (Ex. transformer).
 Two modules, and two transformers for $£ 20.00$ ($+8 \%$ vat)
In the latest Ambit catalogue: more TOKO coils, chokes, filters etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts and information manufacturers of $\mathbf{£ 1 0 0 +}$ detectors would rather you didn't know. $£ 1.00$ each.
The Bionic Ferret 4000 - a VCO metal locator based on the PW seekit, including all parts, plasticwork, ready wound coil etc. Inc. free copy of detecknowledgey. $£ 34.26$ in pp and VAT at 8%.
Special announcement. The Bionic Radiometer metal locator is at last to be released. A full VLF discriminator, with simultaneous display of ferrous, non-ferrous and foil objects. With a iittle practise, you can actually find objects obscured by junk. Outperforms units costing $£ 150+$. Digital control.

COMPONENTS

Herewith the list of first quality parts and modules for wireless, inc. Europe's largest range of signal coils and inductors. $1 / 2 \mathrm{~m}$ in stock!

CA3089E FM IF 1.94 BC413 lo noise $0.18 \quad \mathrm{MFL} 2.4 \mathrm{kHz}$ ssb mech $\begin{array}{lllllll}\text { KB4402 } & \text { FM IF } & 1.94 & 40238 & \text { shld RF } & 0.25^{*} & \text { filter for ssb gen/IF } 455 \mathrm{kHz} \\ \text { HA1137W FM IF } & 2.20 & \text { BF224 } & 6 \mathrm{ghz} \text { RF } 0.22 & \text { with matching }\end{array}$ HA1137W FM IF 2.20 BF224 Gghz RF 0.22 with matching transf's. 9.95 TBA120 FM IF 0.75 BF274 . 7 ghz RF $0.18 \quad \mathrm{MFH}$ series $4 / 5 / 7 \mathrm{kHz}$ bandTBA120S FM IF 1.00 ZTX212 $50 \mathrm{v} / .3 \mathrm{w} 0.17$ width @ $455 \mathrm{kHz} \quad 1.95$ sn 76660n FM IF 0.75 2TX213 $30 \mathrm{w} / 3 \mathrm{w} \quad 0.16 \quad$ MFK series $7 / 9 \mathrm{kHz}$ bw 1.65 $\begin{array}{lllllll}\text { ua720 } & \text { AM rad } 1.40 & \text { ZTX214 } & 30 \mathrm{v} / .3 \mathrm{w} & 0.17 & \text { Modules/tunerheads etc. } \\ \text { CA3123E } & \text { AM rad } 1.40 & \text { ZTX451 } & 60 \mathrm{v} / 1 \mathrm{w} & 0.18 & \text { EC330 } 3\end{array}$ $\begin{array}{llllll}\text { CA3123E } & \text { AM rad } 1.40 & \text { ZTX451 } & 60 \mathrm{v} / 1 \mathrm{w} & 0.18 & \\ \text { HA1197 } & \text { AM rad } 1.40 & \text { ZTX551 } & 60 \mathrm{v} / \mathrm{w} & 0.18 & \\ \text { EC302 3cct v/cap } \mathrm{fm} & 7.50\end{array}$ | HA1197 AM rad 1.40 | ZTX551 | 60v/1w | 0.18 EC3302 3cct v/cap fm 7.50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}\text { TBA651 } & \text { AM rad } 1.81 & 80515 & 45 v / 10 w & 0.27 & \text { EF5600 sct v/cap fm } & 12.95 \\ \text { MC1350 } & \text { EF5800 } 6 \mathrm{cct} \mathrm{v} / \mathrm{cap} \mathrm{fm} & 15.25\end{array}$ $\begin{array}{llllll}\text { MC1350 agc gain } 1.00 & \text { BD516 } & 45 \mathrm{v} / 10 \mathrm{w} & 0.30 & \text { EF5800 (cct v/cap fm } & 15.25 \\ \text { EF5801 (5800tosc op) } & 17.45\end{array}$

 $\begin{array}{llllll}\text { LM1496 } & \text { Bal mix } 1.25 & \text { BD536 } & 60 \mathrm{v} / 50 \mathrm{w} & 0.53 & 7252 \text { complete } \mathrm{fm} \text { mono }\end{array}$ $\begin{array}{lllllll}\text { MB4 } \\ \text { KB400 } & \text { as }\end{array}$ $\begin{array}{llll}\text { ca3090aq } & \text { as above } 2.20 & \text { BD6 dec4.35 } & 80 \mathrm{v} / 90 \mathrm{w} \\ 1.20 & 7253 \text { complete } \mathrm{fm} \text { stereo }\end{array}$ $\begin{array}{llllll}\text { HA1196 } & \text { mpx dec4.20 } & \text { BF256 } & 1 \mathrm{ghz} \text { fet } & 0.34 & \text { tunerset. afc, agc, mute } 26.50\end{array}$ $\begin{array}{llllllll}\text { LA1 } \\ \text { LM80 } & \text { mpx dec4.20 } & \text { E176 } & \text { p ch swt } & 0.38 & 7020 & 10.7 \mathrm{MHz} \mathrm{fm} \text { if } & 6.95\end{array}$ LM381 (40822) 0.38* 7030 linear phase fm if 10.95 tda2020 15w AF 2.99 MEM616 (40673) 0.67* 93090 ca3090aq dec 8.36 tca940E 10w AF 180 MEM680 lo noise $0.75 * 923101310$ decoder 6.95 tba810as 7w AF 1.08 BA102 vhf varic $0.30 \quad 91196$ hal 196 decoder 12.99 LM301an op amp 0.39* BA121 vhf varic $0.30 \quad 91197 \mathrm{mw} / \mathrm{lw}$ v/cap tun. 11.35
 LM3900 op amp 0.68* BB105 uhf varic 0.40 KIT 15v tuning* 9.00
 tda1412 12v/1/2A0.95* muam $11515 \mathrm{v} / \mathrm{AM} 1.05$ 78 M 20 20v/1/2A 1.20^{*} mvam125 25v/AM 0.90 $78 \mathrm{M} 24 \quad 24 \mathrm{v} / 1 / 2 \mathrm{~A} 1.20^{\circ}$. TOKO Coils \& Filters NE550a as above $0.80^{*} 10 \mathrm{~mm}$ \& 7 mm (rad cont) taa550b 32 v ref 0.50^{*} AM IFts with cap 0.30 icl8038cc sig gen 4.50° FM IFts with cap 0.33 NE555v timer 0.70^{*} eg NE566v vco 2.50^{*} YHCS11098AC2 0.30 NE567v tone dc 250. YHCS1 2374AC2 0.30 $\begin{array}{llll} \\ & \text { Hene de } 2.50 & \text { YHCS1 2374AC2 } & 0.30 \text { Full instructions } \\ 86.95\end{array}$ Ne560B hf pll 3.50* YHCS11100AC2 0.30 Audiomaster amp. Matching NE561 B hf pll 3.50 * KALS4520A $0.33 \quad 25+25 \mathrm{~W}$ rms amp. 79.00 NE565K If pll 2.50 * KACSK586HM MC1312 quad 1.50 LLC238 7 mm $11 \mathrm{C} 90 \quad 650 \mathrm{mhz} 14.00$ LLC4827 7 mm $50 \mathrm{v} / 3 \mathrm{w} 0.14$ LFS10.7 0.33 MW/LW ferrite rod 100.25 ZTX108 $30 \mathrm{v} / 3 \mathrm{w} 0.14 \quad$ CFS10.7 ceramic 0.50 min . foil trimmers (see pi) ZTX109 30v/.3w 0.14 BBR3132 6pole fm 2.25 RFchokes: 1 uH to 120 mH VAT is extra at $121 / 2 \%$, except where otherwise shown (* 8%). PP now 25p per order. Catalogue 45p (inc). Pse send A5 or larger SAE with enquiries. Price lists free with an SAE. Full range of components etc available to callers at our new easy-to-get-to premises.

ambit INTERNATIONAL ©

Number 2, Gresham Road, Brentwood, Essex. CM14 4HN telephone (0277) 216029
Our new premises ate onl/ 200 yards from Brentwood * station - with parking facilities outside the door I!

WW-722 FOR FURTHER DETAILS

Instant LCRAnswers

Component Meter 8424

Wayne Kerr's new component meter

The B424 is a simple-to-operate, low-cost meter that gives accurate component measurements over an extremely wide range. It will verify claimed values and tolerances almost as quickly as components can be connected.
It is particularly suitable for batchtesting at Goods l.nwards, and for individual component checking at Inspection or in laboratories.

Readout on the LCD display is within an accuracy of $0.25 \% \pm 1$ digit on all ranges.
Advanced features include fully automatic adjustment of test signal level and frequency, so the operator doesn't have to calculate and reset for each type of measurement.
Full information is available from : Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB England Tel: Burnham (06286) 62511 Telex: 847297

Key features of the B424 include:

- Measurement from 0 to 20 megohms, 20 millifarads and 2000 henrys.

E Input protection against charged capacitors.

- Battery/mains operation.
- Low-level test signals to protect components.
- Analog and digital outputs for ancillary equipment (such as Limits Unit at Goods Inwards).
- Continuous up-dating of display for changing values.

Name

Company
Address

Wilmot Breeden Electronics Limited, 442 Bath Road,Slough,SL1 6BB

Lots of people think ITT are the only people selling FlukeDMM's

It's true in one sense - ITT are the sole UK stocking distributors for the range of Fluke DMM's. But of course, as the world's leading DMM's, Fluke really sell themselves. What we do is back them up with a streamlined, thoroughly dependable and quick-off-the-mark service that's as much a No. 1 in its field as Fluke are in their's.

Write or phone for more details. Edinburgh Way, Harlow, Essex. Telex: 81525

ITT instrument services

The only way to buy. Harlow (0279) 29522.

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER. B.Sc.
Phone 01-261 8443

Projects Editor:
MIKE SAGIN
Phone: 01-261 8429

Communications Editor:
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043

News Editor:
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
Phone 01-261 8622

LEO KEMBERY
Phone 01-261 8515

C̈HRIS PRIER
Phone 01-261 80:37

Classified Manager
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423

EDDIE FARREI.L (Classified Advertisements))
Phone 01.2618508

JOHN GIBBON (Make-up and (opy)
Phone 01-261 835 :

Frequencies, technology and society

To judge from all the preliminary discussions about WARC 1979 one would think that radio systems began and ended with frequency space. Of course, when there's a shortage of it the various users making their claims and counter-claims become preoccupied with the subject and develop an almost pathological concern for spectral lebensraum. But if we are going to need more communication, broadcasting and other radio systems in the future we can't afford to ignore the other, equally important, dimensions of a communication channel: space, time and signal-to-noise ratio. And to make use of these, our traditional thinking and methods of transmission and reception will have to be supplemented by fresh ideas and new technology.

By "space" is meant simply the physical volume occupied by a radio transmission. If you physically confine transmissions you can have many using the same frequencies without interference. Furthermore, signals can be kept within coaxial cables, waveguides, leaky feeders and optical fibres, and it makes sense to use such methods when transmitters and receivers are fixed. There are people, for example, who maintain that broadcasting is a misuse of the radio spectrum because the transmitters and many receivers can be connected by cables. The dimension of time can be used in a variety of ways. For example, where pauses occur in a message, as between spoken phrases, the gaps can be occupied by portions of other messages automatically switched into them. Redundancy in certain signals can be used to reduce the maximum information rate and hence the bandwidth required. Television broadcasting is a notorious consumer of time and bandwidth. Since many tv programmes are little more than homogenised pap dished out of cans, why not send them out at night, to be recorded on video tape machines fitted in receivers, so that the spectrum space could be used by other services during
the day? Signal-to-noise ratio can be "traded" by modulation and encoding methods so that channels are utilized more efficiently. Spread spectrum techniques are one possibility and more attention could be given to determining human tolerance to noise-type background interference from pseudo-randomized signals as against background interference from intelligible signals.

But all this assumes a continuation of present trends in society. A fundamental question affecting all communication technology is what will happen in the future. Can the present process of industrialization and economic growth continue indefinitely in a finite environment, or shall we be forced into a state of "global equilibrium" at a lower level of activity as predicted by the famous MIT study "The Limits to Growth"? The well-known economist the late Dr E. F. Schumacher thought that our present system could collapse as a result of three impending crises: a revulsion of human nature against "1984" technological, organizational and political patterns; a breakdown of the living environment which supports human life; and exhaustion of the world's non-renewable resources, in particular, the fossil fuels. Energy, on which depends all industrialization and economic growth, could indeed be a decisive factor. Ichiro Miura, the director of communications policy in Japan's ministry of posts and telecommunications, thinks that because of this the widely predicted "information-oriented society" will not in fact succeed industrial society and that we may well revert to the "resources society" which preceded industrialization (Telecommunication Journal, September 1977).

If the natural limits of the environment do restrict economic growth and as a result the structure of society is modified, then obviously the requirements for electrical communication - both in amount and pattern - will be greatly changed.

Publishing Director:
GORDON HENDERS(ON

Teletext decoder modifications

New circuits to take advantage of the latest facilities

by Richard T. Russell

Since the original articles on the Wireless World Teletext decoder appeared (November 1975 to June 1976 issues), a new teletext specification has been published ${ }^{1}$ which describes a number of extra facilities and allocates some of the hitherto unused control characters for use with four new display modes. These are: graphics hold, double height, separated graphics and background colour, and were described in the February 1977 issue of Wireless World, p. 61. These new facilities are intended to enhance the appearance of teletext pages and remove some of the limitations imposed by the original specification. The photographs show typical examples of their use.
Another facility not provided by the original design, although present in an earlier specification and used by both Ceefax and Oracle, is the "concea-led-display" mode. This allows, by the action of a control character, selected characters to be displayed as spaces until "revealed" by the viewer, and is useful in a question and answer situation. All these new facilities are provided by the additional circuitry to be described.
At the time of writing, Oracle (the IBA's teletext service) makes extensive use of these facilities on test pages with some use on normal information pages, whilst Ceefax (BBC) is just beginning to use some of the new facilities on an experimental basis.

New board

The new cirćuitry comprises 25 t.t.l. integrated circuits, which decode the apropriate control characters and implement the new display modes. These i.cs have been numbered 101 to 125 to avoid confusion with i.cs 1 to 90 used in the original decoder design. There is sufficient room in a decoder using the cabinet and printed boards described in the original articles to mount an extra board containing the new circuitry, and the number of connexions between this board and the rest of the decoder has been kept to a minimum to simplify installation. In a decoder of this sort, the new board
mounts above digital board 1 in the area between the analogue board and the left-hand end of the cabinet. The new board, which will be referred to as digital board 3 , is principally intended to work with a decoder using the 74S262 (X887) character generator r.o.m., which provides the full upper and lower case teletext character set. A small modification will allow the board to be used with a decoder using the 2513 r.o.m., although since it occupies the area used by the add-on lower-case board, an alternative location for this will have to be found if the new board is to be fitted into a decoder of this sort.

Most of the connexions to the new board are to the existing edge contacts linking digital boards one and two, and therefore installation is particularly simple in a decoder using these boards. The only external modification required

Fig. l. Control character codes.

Bits	$\begin{aligned} & b_{7} \\ & b_{6} \\ & b_{5} \end{aligned}$	O_{0}	0 0 1
$b_{4} b_{3} b_{2} b_{1}$		0	1
0000	0		
0001	1	$\begin{gathered} \text { Alphan } \\ \text { rea } \end{gathered}$	Graphics red
0010	2	$\begin{aligned} & \text { Alphan } \\ & \text { green } \end{aligned}$	Graphies green
0011	3	Alphan yellow	Graphics yeflow
0100	4	Alpha ${ }^{\text {n }}$ blue	Graphics blue
O101	5	A)phan magenta	Graphics magenta
O 110	6	Alpha ${ }^{\text {n }}$ cyan	Graphics cyan
0111	7	$\begin{aligned} & \text { Alphan } \\ & \text { w, white } \end{aligned}$	Graphics white
1000	8	Flash	CONCEAL DISPLAY
1001	9	Steady	CONTIGUOUS GRAPHICS
1010	10	End box	SEPARATED GRAPHICS
1011	11	Start box	
1100	12	NORMAL HEIGHT	BLACK BACKGROUND
1101	13	DOUBLE HEIGHT	NEW BACKGROUND
1110	14		$\begin{aligned} & \text { HOLD } \\ & \text { GRAPHICS } \end{aligned}$
1111	15		RELEASE GRAPHICS

is the provision of a push-button "reveal" switch on the front panel.

Control codes

The latest list of control characters, showing their binary equivalents, is given in Fig. 1. The control codes which are detected and implemented by digital board 3 are shown in capitals. There are nine of these in all. Usually these control codes are allocated in pairs, one of each pair to establish the specified mode and the other to end it. The exception is the conceal mode. There is no reveal control character; instead the normal revealed condition is established on the occurrence of any character in the shaded portion of the table (i.e. characters $0 / 1$ to $0 / 7$ and $1 / 1$ to $1 / 7$ inclusive).
A significant point, which has considerable importance in the detail of the circuitry adopted, is that before the advent of graphics hold, all control characters were displayed as spaces. This meant that the transition between two display modes was invisible, and could take place anywhere within the control character rectangle. Now that the control character rectangle may be filled with a "held" graphics character, it is important that a change in display mode (e.g. a colour change) takes place at the boundary of the character rectangle, not part way across the character. Certain of the display modes are said to be "set at" the occurrence of the control character, meaning that the mode changes at the left-hand boundary of the control character rectangle. Others are "set after" the control character, meaning that the mode does not change until the right-hand edge of the character rectangle.

Circuit description

As mentioned, it is required to change certain of the modes at the left-hand edge of the control character rectangle. To achieve this, it is necessary that the data at the output of the page store have been stable for a period sufficient to decode the control character. In the
original design the left-hand edge of the character rectangles corresponded to the point at which the data latches on the outputs of the page store were clocked. This does not provide the necessary period, so with the new board the character rectangle is redefined as being one clock-pulse later than before. Conveniently this means that the rectangle edges correspond to the negative edge of the signal on IC_{1}, pin 8 (January, 1976 issue), and all mode changes are made synchronous with this edge. For simplicity, the alphanumeric characters are not moved by a corresponding amount, and this means that these characters are displaced slightly to the left with respect to the character rectangles. This is of no consequence, however, as there is still a gap between the character and each edge of the rectangle.

As can be seen from Fig. 1, all the control codes of interest have bits b6 and b7 at logic 0 , and bit b4 at logic 1 . These bits are gated together by $(106,13)$ and (101,3), and gated additionally with a mixed blanking signal at IC_{101}, pin 6 , giving a logic 1 at $\mathrm{IC}_{10 f}$, pin 10 for valid control characters (Fig. 2). This leaves bits b1, b2, b3 and b5 to be decoded into a separate signal for each control code.

Examples of the new facilities, obtained using the modified decoder.

A 4-line-to-16-line decoder could have been used for this purpose but, since only nine of the control codes are of interest a saving can be made by inverting bits b3 and b5 and using a 4-line-to-10-line "decoder IC_{113}, (7442). Bits b3 and b5 are inverted so that the inputs to IC_{113} corresponding to the wanted control codes are in the range 0000 to 1001 (0 to 9). Binary inputs in the range 1010 to 1111 res' it in none of the outputs being enabled.

As explained, the display modes must change at the edge of the display rectangle. This is achieved by feeding the inputs to IC_{113} from a D-type latch IC_{112}, clocked by the signal from IC_{1}, pin 8 inverted in $(118,8)$. Bits bl and b2 are fed directly to the inputs of this latch from the page store output latch IC_{28} on digital board 1 (February 1976 issue). Bits b3 and b5 are fed to I_{112} via NAND gates $(101,8)$ and $(101,11)$ which perform the dual function of inverting them, and gating them with the valid character signal at IC_{106}, pin 10 . If this signal is at logic 0 (i.e. "invalid") pins 12 and 13 of IC_{113} are clocked to a logic 1 , thereby disabling all its outputs.

There remains the reveal signal to be generated, which as mentioned corresponds to codes $0 / 1$ to $0 / 7$ and $1 / 1$ to $1 / 7$ inclusive. Gates $(106,1),(118,2),(111,3)$, $(116,11)$ and $(116,8)$ provide this signal, which is synchronised with the character rectangles by D-type latch $(117,15)$.

Graphics generator. A completely new graphics generator is included on board 3 , the original on digital board 2 being made redundant. The reason for this is twofold. Firstly, the necessity to provide the held graphics function means that the graphics character has to be stored in a latch so it can replace a control character when required. Secondly, the separated (or "non-contiguous") graphics facility requires a more complex graphics generator. To have incorporated the original graphics generator circuit would have entailed an excessive number of interconnexions.

The graphics generator operates as follows. The six-bit latch IC_{102} contains the held graphics character. This is defined as the last character having bit b6 at logic 1, so the clock (pin 9) is gated with b6 in $(116,3)$. This latch also synchronizes the graphics character with the character rectangle. Data selector IC_{107} selects either bits bl, b3, b5 or bits b2, b4, b7 according to the state of pin 1 , which is a logic 0 for the left-hand half of the character and a logic 1 for the right-hand half. On the outputs of IC_{107}, therefore, are the three bits corresponding to the three vertical cells in that part of the graphics character (Fig. 3). $1 C_{104}$ is a 16 -line to 4 -line data selector (multiplexer), the address inputs of which (pins 11 to 15) are driven from a vertical (line) address which runs from 15 at the top of the

ORACLE 120 NonIAFOb ITV $20.47 / 33$

NEU FACILITIES - BACKGROUND COLOUR

Allous both graphics and alphanumeric chareciers to be displayed hatinst - colour-background.

BRACLE 120 HONIAFOG ITV 20. SAR14 NEU FACILITIES "HOLD"

This allous transition from colour to colour in the graphics mode uithout any gap.
Us:hou: HOLD:
an
Yith HOLD:

character rectangle, through 0 , to 8 at the bottom (10 lines in all, or 20 counting both fields). This is the same address which feeds the character generator r.o.m. on digital board 2 . Assuming IC_{-121}, pin 9 is at logic 1, the gates in IC_{109} act simply as non-inverting buffers. The inputs to IC_{104} are connected to the appropriate outputs of IC_{107} to give the correct allocation of lines to the three graphics cells - 3 to the top cell, 4 to the middle cell and 3 to the bottom cell. This symmetrical arrangement gives a slightly better appearance than the 4-3-3 scheme adopted in the original decoder.
The decoded control signals for contiguous and separated graphics at

Fig. 2. Circuit diagram of the new digital board 3 .
the outputs of IC_{113} are fed to a latch comprising $(120,8)$ and (119,8). This latch is additionally set to the contiguous condition by the inverted mixed blanking signal at IC_{124}, pin 8 as all rows start in the contiguous state. The specification states that the contiguous/separated graphics mode shall be part of the structure of the held graphics character, so the contiguous/ separated signal is fed to D-type flip-flop IC_{121}, clocked by the signal at $\mathrm{IC}_{102}, \operatorname{pin} 9$.
When separated graphics are in use there are gaps between the graphics cells in both the vertical and horizontal directions. In the vertical direction this is achieved by IC_{109}, the outputs of which are held at 0 in the separated mode thereby inhibiting the graphics on lines $1,4,7$ and 10 of the character
rectangle (counting from top to bottom). When separated graphics characters are vertically adjacent this gives a larger gap between the rows (2 lines) than between the cells within a character (1 line) but this is unavoidable.
In the separated-graphics mode IC_{106}, pin 6 goes to a logic 0 , thereby allowing the signal on $(124,6)$ to be fed to the strobe input of IC_{104}, pin 9 . This signal provides the gaps between the graphics cells in the horizontal direction (Fig. 3).

Display colour. To simplify the background colour circuitry, and to arrange that the display colour changes at the boundary of the character rectangle, a new display-colour selection circuit is included on the new board. For convenience the aphanumerics /

graphics selection is also included. The circuits on digital board 2 which originally performed these functions are no longer used.

If any control character in the shaded portion of Fig. l occurs, then the red, green and blue components of the display colour obtaining for the next and subsequent characters (display colour is a "set after" display mode) correspond directly to bits $\mathrm{b} 1, \mathrm{~b} 2$ and b 3 respectively. For example, if bit bl is 1 then the colour includes red. It will be remembered that this group of control characters is the same as that defining the reveal condition, and a corresponding signal is available at IC_{117}, pin 15. By gating this signal with the charac-ter-rate square wave in $(111,6)$ a suitable signal is obtained for clocking the display colour latch IC_{115}. To the

D-inputs of this latch are applied bits b1 b2 and b3, all delayed by one character and inverted. By inverting the inputs and using the $\overline{\mathrm{Q}}$ outputs of the latch, the clear input (pin 1) may be used to set the display colour to white at the beginning of each row. the fourth latch in IC_{115} is used to store the alphanumerics/ graphics signal (which is a function of the state of b5) in the same way.

Background colours. It may be helpful at this point to explain how the set at and set after requirements are met. The occurrence of a control code of interest causes one output of IC_{113} to go low for exactly one character period (or more if two or more identical control characters occur in succession). Both edges of this signal are synchronised to the edges of the character rectangle. If a^{\prime} set at
function is required, the signal is fed to a logic-0 sensitive preset, clear or enable input, causing a change to take place immediately it goes low. Examples of this are hold and conceal. For the set after function, the signal at the output of IC_{113} is fed to a positive-edge sensitive input causing the mode to change on the trailing edge of the signal. Examples of this are double height and release which are fed to the clock inputs of D-type flip-flops.

On the occurrence of a new background control character the current display colour is adopted as the new background colour. Both new background and black background are "set at" modes, so what is required is a 3 -bit latch to store the background colour with level-operated preset and clear inputs. One device which meets this

Fig. 3. Waveforms in the graphics generator. In the separated-graphics mode, only the small squares are illuminated.
requirement is the four-bit counter 74177, and this is used as IC_{110}. It is used simply in its parallel load mode and the clock inputs are disregarded. The black background signal is combined with inverted mixed blanking in $(123,8)$ to ensure that all rows start with a black background.

The data selector IC_{105} switches between the background colour on its A inputs (in r,g,b form) and the display colour on its B inputs according to the white output signal from digital board 2 (IC_{67}, pin 6). Mixed blanking is fed to the strobe input, pin 15.

Concealed display. Conceal is a set at mode and reveal a set after mode. Consequently, the conceal signal is fed to the clear input of a D-type flip-flop (114,1) and the reveal signal to its clock input, pin 3. Inverted mixed blanking is fed to the preset input (pin 4) to ensure all rows start revealed. The signal at pin 6 , which is logic 1 for conceal, is gated with the signal from the manual reveal switch in $(120,6)$ and fed via $(119,6)$ as a blanking signal to digital board 2 .

Held graphics. Graphics hold is a set at and graphics release a set after mode. The other half of IC_{114} is used as the hold/release latch with the hold signal from (113,3) fed to pin 13 and release from $(113,4)$ to pin 11 . The connexion to pin 10 presets the latch to the release condition at the start of each row.
the signal at $(19,13)$ is a logic 1 during a control character and logic 0
otherwise. This signal, fed via $(119,12)$ and (119,6) normally blanks control characters. However, if graphics have been selected (and during a control character this can only occur in the held graphics mode) the blanking is disabled by the signal at $(118,6)$.
The select graphics signal at $(122,10)$ can only go to a logic 1 under the following circumstances. Gate input $(122,8)$ must be at $\operatorname{logic} 0$, that is, the display must be in the graphics mode, and neither a 'blast-through' alphabetic character (122,11) nor a control character in the graphics release mode $(122,12)$ must be selected. Blast-through characters are identified by b6 being 0 and $b 7$ being 1 . During a control character in the graphics hold mode $(116,4)$ and $(116,5)$ are both at logic 1 . Output $(116,6)$ is therefore also at logic 1 and $(122,13)$ is forced to logic 0 . If in graphics rather than alphanumerics mode, $(122,8)$ is at logic 0 and $(122,10)$ goes to a logic 1 to select the held graphics character for display. At the same time the normal control character blanking is inhibited by $(118,6)$ as mentioned.

Earthing the test-point $(119,1)$ disables the control character blanking so that all control characters are displayed (except when hidden by being in the same colour as the background). This can be useful for fault diagnosis, especially with the 74 S 262 character generator which includes special characters for all the control codes (Fig. 4). With the 2513 character generator the control characters will appear as various alphanumeric symbols.

Double height. This is the most complex of the new display modes as it involves two distinct processes. The first is the

Fig. 4. Symbols generated by the Texas 74S262 character generator.
switching between single and double height characters across a particular row, and the second is arranging that any row containing double-height characters is read from the page store twice in succession, the row which would normally occupy the position of the second of the pair of rows being ignored, i.e. not read from the store. Additionally, on the second row of the pair any characters which are not double-height characters must be displayed as unboxed spaces.

Double height is a set after mode and the signal at (113,11) is fed to the D-type clock input $(121,3)$. Normal height is a set at mode and, gated with inverted mixed blanking in (123,11), the signal at $(113,10)$ is fed to the clear input $(121,1)$. The data selector IC_{108} switches the vertical (line) address of a character from the normal $0,1,2,3$.. to one changing at half the rate (i.e. $0,0,1,1 .$.) thereby expanding the top-half of the character to fill the whole row height. On the first of a pair of double-height rows, and on all normal rows, the only purpose of IC_{103} is to subtract 1 (add 15)
from the vertical address in order to move the alphanumeric characters down one line. If this is not done, characters (from the 74 S 262 r.o.m.) can run into graphics in the row above. This does not apply to the 2513 r.o.m.s and a small modification of this part of the circuit to inhibit the subtract 1 function will be described later.

The section of the double-height circuitry described so far results in the first row of the pair being displayed correctly - normal height characters being displayed conventionally and double-height characters having their upper-half stretched to fill the rectangle.

The function of IC_{125} and the associated gates is as follows. If there are no double-height characters in a row, $(125,8)$ and $(125,12)$ remain at logic 0 . Although both flip-flops are clocked after every row, their J and K inputs are at logic 0 in each case, and in this condition the outputs remain unchanged (Table 1.). Pin 1 of IC_{123} is therefore at logic 1 and the most significant bit of the line address is fed, inverted by $(122,4)$, to IC_{11}, pin 11 on digital board 1 . The positive-going edge of this signal clocks the row address once per row in the normal way.

If a double-height character is present, IC_{125}, pin 6 will pulse to a logic 0 , thereby changing $(125,8)$ to a logic 1 . This has no immediate effect but at the end of the last line in the row, when the signal at $(122,6)$ goes low, this is prevented from reaching IC_{11}, pin 11 and the row address is not incremented. Instead, as $(125,14)$ is now at logic 1 , pin 12 of IC_{125} changes from logic 0 to logic 1. This signal feeds $(108,2)$ and, when a double-height character is selected, it becomes the most significant bit of the vertical character address. That is, instead of the address counting $0,1,2,3$. it counts $8,9,10,11 \ldots$ What is required, however, is for the address to count $5,6,7,8$ to display the lower half of the character correctly. This is achieved by $(103,7)$ and $(103,11)$ going to logic 0 , thereby subtracting a further three from the vertical address. The double-height characters are now displayed correctly.

The signal at $(125,12)$ is also gated with the output of the normal/ double-height latch to give a signal $(120,3)$ which is zero for all nor-mal-height characters in the second row of a double-height pair. This blanks the display via $(119,5)$ and also inhibits the cut-hole signal at $(123,6)$.

CLK	J	K	Q	\bar{Q}
ΓL	0	0	Q_{0}	\bar{Q}_{0}
\sqrt{L}	0	1	0	1
\sqrt{L}	1	0	1	0
\sqrt{L}	1	1	\bar{Q}_{0}	Q_{0}

At the end of the last line in the second double-height row IC_{125} is again clocked. This time (125,7) is at logic 1 as is $(125,14)$. $(125,8)$ changes back to a logic 0 but $(125,12)$ remains unchanged. At this point $(120,12)$ is at logic 0 so $(123,3)$ changes to a logic 1 , thereby clocking the row address. Shortly afterwards $(120,12)$ goes to logic 1 . This causes $(120,11)$ to go to 0 and $(123,3)$ to return to 0 . At the same time (122,1) goes to $1,(124,3)$ goes to 0 and $(125,12)$ is cleared back to a zero via. $(120,11)$ this causes $(123,3)$ to go back to 1 . In this way a narrow negative-going pulse appears at $(123,3)$ of a duration equal to the total delay around the loop (120,11), 122,1), (124,3) plus the clear-to-Q delay of IC_{125}. This narrow pulse is sufficient to clock the row address again, for the second time in quick succession. In this way the hidden row is skipped as required. Figure 5 shows the waveforms associated with the double-height circuitry.
The teletext specification states that after a change in either the alphanumerics/graphics or the normal/ double-height modes the held graphics

Fig. 5. Waveforms for the double-height mode.
character should be taken to be a space. This is arranged as follows. When in the alphanumerics mode, IC_{115}, pin 7 is at $\operatorname{logic} 0$. If $(118,3)$ is at $\operatorname{logic} 0$, i.e. the next character is not a valid held graphics character, IC_{111}, pin 11 goes low and the held graphics character is cleared to a space character. On a change from double to normal-height, or from normal to double-height, pins 12 and 13 of IC_{124} will be momentarily at the same logic level due to the delay through the RC network. A short negative-going pulse will occur at $(124,11)$ which will similarly clear the held graphics character via $(111,8)$ and $(111,11)$.

Reference

1. Broadcast Teletext Specification, September 1976. Published jointly by the B.B.C., I.B.A. and B.R.E.M.A.

Notes on installation and testing will appear next month

Literature Received

Two programme reference guides, published by Rapid Recall. list the assembly language in both ri:emonic and hex. machine language form for the 8085 and 8048 microcomputers. There is also a table of the ASCII character set and controls with hex. values. Rapid Recall Ltd, 9 Betterton Street, Drury Lane. London WC2H 9BS WW401

Static, uninterruptible power supplies for use with electronic equipment whose performance must not be affected by transients, voltage fluctuations or power failures are produced by Chloride Transipack. A brochure describes the systems, which rectify mains a.c., charge
batteries and convert back to a.c. by means of inverters. Chloride Transipack Ltd, Stanley Road, Bromley, Kent BR2 9JF

WW402
A chart illustrating many varieties of audio and power connector is obtainable from Beacon Audio Components, 282 Hatfield Road, St. Albans, Herts AL1 4UN .. WW403
More than 3000 components for use at r.f., including connectors, adaptors, leads and probes, are completely specified in a catalogue from Greenpar Engineering Ltd, P.O. Box 15. Station Works, Harlow, Essex

WW404
Microprocessors and i.cs for use in telecommunications are described in a booklet from National. Other equipment mentioned includes tone receivers, modems, touch-tone dialling. companders, filters and memories. National Semiconductors (UK) Ltd, 19 Goldington Road, Bedford MK40 3LF
. WW 406

Hall effect heads

A new type of tape recorder head has been developed which will give higher output, better signal to noise ratio and improved distortion figures, say the makers, Hitachi. The head uses the Hall effect principle, whereby a current flowing through a material along the y axis and subjected to a magnetic field acting along the z axis will produce a potential difference across the x axis. The effect is most marked in a semiconductor. The induced x axis Hall electric field, if the current along the y axis is constant, is proportional to the magnetic field strength. If the magnetic field strength is varying, as when a recorded tape passes over the head, then the electric field appearing across the semiconductor will vary accordingly.

In the Hitachi stereo cassette head there are four sections, enabling simultaneous stereo recording and playback. In other words, cassette users will be able to monitor off tape as they record, as reel to reel machines have allowed for years. According the provisional specification the record and playback heads, with casing, are only 10 mm wide along the direction of tape travel, and the distance between record and playback heads is a mere 2.6 mm .

According to a New Scientist report the head is the subject of over a hundred patent applications round the world. The improvement in signal-to-noise ratio is 3 dB over conventional inductance coilheads. The semiconductor used is a thin film of indiumantimony. Hitachi's provisional specification says that at a flux level of -20 dB ref. 250 n Wbian the output level at 1 kHz would be around $280 \mu \mathrm{~V}$.
Hail effect devices are frequently used in measurement but it is only recently that they have been applied to domestic equipment. Matsushita, for example, have developed linear and switch-type silicon monolithic Hall i.c.s with a Hall element and amplifier on a single chip. This can be used for keyboard switches, microswitches, rotation detectors for tachometers, tape recorders and so on, and for position detectors for movie cameras and sewing machinies.

Can you hear the picture?

Another spectacular tape recording development, again from Japan, is the use of video recorders to tape high quality sound. Sony are about to sell in Japan a black box for attachment to their Betamax video cassette recorder which will encode sound signals serially and put them on the half-inch video tape. Pre-recorded cassettes will be available which, when decoded through the playback section of the circuit, will give a dynamic range of 95 dB . The dynamic range for selfrecorded material will be about 85 dB , say Sony. Other measurements are: distortion 0.03% from 2 Hz to 20 kHz ; unmeasurable wow and flutter (because of storage and time-base correction); and frequency response 2 Hz to $20 \mathrm{kHz} \pm 1 / 4 \mathrm{~dB}$. The sampling rate is 44.1 kHz and, for the domestic version of the device, three words are put into each line, each word having two 13 -bit information portions and six parity bits. The box accepts line-level audio inputs on the record side. The selling price of the equipment, which can be attached to any conventional helical-scan recorder, will be around the same as the player, around $£ 800$.
It is reported that the Japanese broadcasters may transmit high quality sound signals after normal transmission hours. These will be received by the television set and decoded to the amplifier and speakers through the black box. Sony expect that the Betamax will now attract a great deal of professional attention since, although it would not normally be good enough for professional video use, the new technique will make it one of the best sound machines available, and one which offers a three-hour playing time. It was first introduced in Japan in May 1975. In November 1964 Sony introduced what they say was the world's first home use video recorder, the CV2000, and in October 1969 they announced the first video cassette system, the U-matic.

- The IBA announces that its director of engineering since 1966, Mr Howard Steele, is leaving to join Sony Broadcast at the beginning of 1978.

Electronics takes two prizes

Two of the four prizes awarded this year by Technical Development Capital Ltd, a funding organisation, for outstanding innovation went to electronics companies. BSH Electronics (Manchester) Ltd shared the runnerup prize with two other firms, one of them SEMA Electronics Ltd of Dundonald, Ayrshire.

BSH's development was of a device for turning a rear windscreen-heater into a car aerial. The inventor, Mr J. J. Kropielnicki, got the idea for his Bi-Fi aerial when he was having trouble with his own, conventional, car aerial. His wife came and asked why he didn't use "the aerial in the back window," and he set about designing a system that would allow him to do just that. The device has the advantage that it cannot be torn off the car, like conventional whip or rod aerials, though we have no information about its efficiency with a variety of rear windscreenheaters.
SEMA's prize was for developing a light,
portable gas detector. According to its inventor, Mr R. L. Dries, the idea for this came to him when he had taken the top off a transistor 12 years ago, and found that the air contaminated it.

The first devices he made which used this phenomenon were too heavy to carry and consumed too much current, he said. He had to wait until the i.c. arrived before he could make the device as portable as he wanted. So far he had tested about 400 gases and it had worked on all of them. Each detector will only respond to one kind of toxic or inflammable gas, so the customer has to say what he wants the device to do. The detector and the electronics are then made to suit.

The detector and electronics can be in the same case, or a remote sensor can be fitted. "You can put half a mile of cable on the detector, it makes no difference." He could not say anything about the detector other than that it was a $\mathrm{p}-\mathrm{n} \mathrm{p}-\mathrm{n} \mathrm{p}-\mathrm{n}$ multiple sandwich. The detector reverted back to normal after the gas went away, so there was no ageing effect. Full scale deflection was a contamination of one part per million. "It will detect the unburnt combustibles in smoke. It will work in an inert atmosphere and doesn't require oxygen to make it work."
At the presentation of the awards Lord Seebohm, chairman of Technical Development Capital Ltd, a subsidiary of Industrial and Commercial Finance Corporation Ltd, said that 155 people had made submissions. "Before introducing the prizewinners I want to stress that the TDC award is not for the innovation itself. The new products are important ingredients ... but they are far from being the whole story ... In choosing the winners of our competition we have taken all aspects of the business into account." The winner, who showed a method of injecting concrete blocks with insulation, received $£ 10,000$ and each of the runners-up received $£ 1,667$.

Ferrograph swap

The impending closure of the Ferrograph factory in South Shields has forced the National Enterprise Board to arrange a marriage between Ferrograph and North-East Audio Ltd (NEAL). Wilmot Breeden, who have owned Ferrograph since 1968, sold the company for nearly $£^{1 / 2}$ million. The announcement came in mid-October.
Ferrograph had been struggling for some time. Although the old Ferrograph Series 7 tape recorder had been well thought of, the BBC, for example, using it extensively, successors to the machine, the Super 7 and Logic 7, had met with a less than enthusiastic response. Had Wilmot Breeden closed the South Shields factory, moving production down to Bognor Regis, only the Ferrograph test set and the Studio 8 tape recorder would have remained in production. There were also long lines of communication between South Shields, Bognor and Wilmot Breeden's Birmingham headquarters.

Ferrograph's difficulties were compounded by problems elsewhere in the electronic division of Wilmot Breeden: the Wayne Kerr factory at Bognor Regis, for example, went on a three-day week last January "due to a run down in orders." The electronics division made losses of $£ 1 / 2$ million last year attributable partly to Rendar and partly to Ferrograph.
The Bognor factory went back to full-time working after 12 weeks, and a spokesman
told Wireless World, performance had now improved in other parts of the division.
The National Enterprise Board was anxious that Ferrograph's South Shields factory should not close. Its 140 or so employees live in an area which is suffering from even worse unemployment than other parts of the UK. The NEB approached NEAL with an offer to take a 49% stake in NEAL if they would take on the factory. The NEB holding means a new injection of $£ 400,000$ into NEAL, whose founder and managing director, Alan Helliwell, was chief engineer or chief executive at Ferrograph for the four years to 1972.

As well as audio tape recorders, Ferrograph make audio test equipment and marine echo sounders. NEAL will take over the whole range except for the ARAl cathode ray tube response unit, though this may be supplied in future under an o.e.m. arrangement with Wayne Kerr. The Studio 8 recorder is a professional machine designed to compete with the $£ 3,000$-plus Studer machines. It was developed in Bognor Regis and is now made under subcontract. All other Ferrograph manufacture, NEAL's own factory in Newcastle, and the sales office in London will be moved to South Shields.

Mr Helliwell told Wireless World that after a slow start the sales of the Studio 8 were doing "very well." As for the rest of the company: "We have quite a long job in front of us. We're not going to do it overnight. Our aim is to try to get it back to what it was ten years ago within three to five years, though if it takes five years I shall be disappointed." One of his first tasks would be to make the existing product range more attractive

He expected that, at the end of next year. NEAL would contribute half of the company's turnover. His approach would be to attack several markets from the base of the same technology rather than, as the Japanese had done, attacking one market with several technologies. The latter course was, in any case, rather expensive. It would be little more expensive to market Ferrograph and NEAL combined than NEAL alone since, for example, they only had to buy space for one exhibition stand to show both products.

Light on records

Teac showed a record player that used a laser beam instead of a stylus at the recent AllJapan Audio Fair in Tokyo. Production won't begin for five years but the price is expected to be around $£ 320$ a unit. The development is expected to result in a large reduction in record wear.

BBC's Wood commended

The Society of Motion Picture and Television Engineers (SMPTE) has awarded MrC . B. B. Wood, head of engineering infor mation at the BBC, a special commendation award for "his many outstanding contributions to motion pictures and television." Wood worked at the BBC research department for 26 years, during which time he had worked on television film recording. After the introduction of colour tv he was awarded the MBE in 1971. In 1968 he received the

Geoffrey Parr award of the Royal Television Society for his physics group's work in improving tv reproduction of colour films. In 1972 he won the Pye Travelling Scholarship for work on the standardisation of reproduction chromacities. He is a fellow of the SMPTE, an honorary fellow of the BKSTS, and a fellow of the Royal Television Society.

Radio and the danger of explosions

A gas terminal receiving supplies from the Frigg field is so close to a new Royal Navy communications base that the radio waves from the base might cause a serious explosion, according to the British Gas Corporation. Yet the Admiralty, who decided to go ahead with the project, for which they have received a Nato grant, in 1969, before the St Fergus gas terminal three miles away was even contemplated, say they have no intention of closing the base down. The terminal will eventually supply 40% of Britain's gas.

The Navy's plans for the base at Crimond, Grampian, according to the Ministry of Defence, were known to Total and the British Gas Corporation before they went ahead with the terminal. The base is due to open formally next January, but test transmissions have been carried out and are continuing though at reduced power while an investigation is carried out.

The Navy told Wireless World that although the frequencies and powers to be used were not publicly available, this information had been given to the parties concerned with the building of the gas terminal when planning permission for the base was going through.

It has now been well established that radio waves, particularly those received near to a powerful transmitter, can cause the explosion of inflammable gases. Currents induced in metal pipes by the waves can cause a dangerous spark, and a British Standard, BS4992, has been published on the subject.

The two winners of the TDC award see "Electronics takes two prizes." Top: the inside of the Bi-Fi car aerial device. and (below) the SEMA gas monitor.

That standard places the onus for the protection of flammable gases on the user of the material so hazarded, and that is one reason why the Navy feel the British Gas Corporation should carry out any necessary protective work themselves.

British Gas say that when they first thought of building the terminal the hazards of radio waves were not much known or thought about by the scientific community. It was only after construction began in 1972 that enough work on the subject had been done to make it clear that it could be a hazard, and this was long after the Navy had sought planning permission, in 1970. The British Standard was published in April, 1974. Ironically, when British Gas sought a site for their terminal they investigated Crimond, and discovered the Navy had already got it.
Since "hundreds of millions of pounds," according to BGC, have already been spent on St Fergus, and Shell and Esso will also build terminals there for passing products on from the Brent field, there is no question of closing that down either. A committee of representatives from the Energy Department, Defence Ministry, British Gas and Total will now have talks and safety measures will be agreed, though it is not known how long this will take.

Sinclair pushing tv

Production problems at the beginning of the year caused Sinclair to depart from the target dates they announced for the pocket television set when it was launched at the beginning of January. (See WW March, p.37.) Although Clive Sinclair had said that the sets would be in the shops in February, that did not happen until June, four months later.

The delay was partly attributable to faults in the case moulding, each one of the first batch of which had to be altered by hand There is also some doubt about the quantities now in production. By August they were making about 800 a month, and 1,000 a month after that. During September they had hoped to make 1,500 a month but the failure of delivery of tuner circuits cut that figure by a third. At an October press conference to launch a new calculator range and pocket multimeter, Clive Sinclair announced that production was "now 2,000 a month," and he expected it to reach 4,000 a month within two months.

Even allowing, however, for a little hyperbole in these figures the assertion that "demand exceeds supply" is probably correct. All the sales are being made either here or in the United States, roughly half each, and Sinclair expects the tv to account for half the company's turnover eventually.

The calculator market which built the company up is now very competitive, and Sinclair executives were finding this year's going a bit hard, which is why they welcome the success of the television and are keen to get production up to its (as yet undisclosed) maximum. There are immediate plans to increase capacity to about double the present figure.

There were reports that there had been some difficulty in the supply of the AEG Telefunken tube, which the German company are contracted to supply only to Sinclair for this application. Clive Sinclair denied this, and there do not at the present appear to be any plans to find second sourcing for the tube, though this may change next year if, as Sinclair hopes, the production of the sets
goes well ahead and the market opens up. After Christmas test marketing of the set will start in Europe.

Sinclair said at the October press conference that the investment by both the NEB and the company, which now totals over £2 million, had resulted in large increases in turnover; in November, he said, turnover would be "at least double" that for the same month last year. And profits were also "increasing very rapidly."

The cost of producing a colour version of the set may be prohibitive, at least for the present, but, in view of Sinclair's growing interest in the instrument market, it would not be all that surprising to see a pocket oscilloscope being launched at some future date.

Beeb's light drama to be lighter

The BBC is conducting a one-year experiment in electronic news gathering. The first use of the new equipment was for an interview with Mrs Margaret Thatcher on October 10 , just before the Conservative party conference and it now averages two or three stories a day.
A Range Rover has been equipped with a Philips LDK11 camera, Sony $38003 / 4 /$ in Umatic cassette video recorder and Sony Trinitron monitor, radio telephone, and transmission links. An intermediate Microwave Associates 13 GHz "window" link, with a range of about $1 / 2$ mile, will be able to transmit to the e.n.g. unit. From there a more powerful $21 / 2 \mathrm{GHz}$ link will carry the signals to the top of London's Millbank Tower, and cable takes them to Television Centre. Other base stations, which have already been tested, will be used when necessary. Where a cable link already exists for outside broadcasts, at such places as Downing Street or Heathrow Airport, the video cassette can be played straight down the cable. Another choice is to send the cassette to the Centre by dispatch rider, as already happens for cans of exposed film.
The BBC plan to do live inserts into television news broadcasts. This has been done in the past with the o.b. units, sending signals back over temporary links.

The BBC have been carrying out tests with various types of equipment for the past two years, and talks with the unions have been going on for the past 18 months. Film camera crews have been retrained to operate the electronic equipment. The Range Rover will have a crew of two, plus a reporter who will travel separately and the despatch rider, if needed. The LDK11 camera is rather larger than the latest cameras available for such uses. Nevertheless its weight compares well with that of a 16 mm camera. Crews can either connect the camera to the recorder on the van, or carry the recorder with them for playing back later from the vehicle. The reporter can play back the whole tape and send cues and editing instructions to Television Centre via the radiotelephone. Cue numbers are visible on an elapsed-time readout, and are generated by an SMPTE code on the tape.
The BBC are not giving any figures for the cost of the experiment, though it is believed that the equipment of the van cost about $£ 70,000$, and another $£ 30,000$ was spent on associated equipment at the centre. This total of $£ 100,000$ will be written off over five

The BBC's experimental e.n.g. unit. See "Beeb's light drama to the lighter."
years. A film unit costs about $£ 20,000$ to put on the road, but the operating costs of the electronic unit are believed to compare favourably with those of film units, since there are no processing costs and the "stock" can be re-used almost indefinitely. Ten minutes of film cost about $£ 20$. All in all the comparative total costs of e.n.g. as against film are about the same over the five-year period.
The small new cameras have other advantages besides being easily carried. According to BBC engineers the $2 / 3 \mathrm{in}$. tubes are more sensitive than those of larger cameras, giving a picture even in bad light. In this respect they perform about as well as film cameras, but they have the added advantage of giving a better colour balance. Editing is allelectronic, and will take about the same time as film editing does now, though no time has to be spent on film processing, which can take from 40 minutes to an hour.
The Corporation is doing a great deal more lightweight production for drama and current affairs than on news, which represents only about 9% of output. According to a BBC spokesman, 67% of $t v$ output was now being produced electronically, and they aimed to enable drama producers, for example, to use locations as easily as they now did the studio.

This can have important benefits on productivity. Whereas a production unit might only shoot four minutes of film a day because there might be doubt about the light conditions, for instance, with electronic production this can be increased to 12 minutes a day or more because the results can be seen immediately without processing. Twocamera units using lin tubes have been operating in drama for about three years. The next step would be electronic field production using lin helical scan tape recorders instead of the heavy 2 in tane machines now. in use, which do not offer still-framing.

The BBC has just bought three Ampex V PR1 recorders for news and current affairs in Newcastle and Manchester, and these and other machines may be bought for drama.

Solar power nearer

Bell labs are developing solar cells made from liquids and solids which may be more economical than all-solid cells. They are also easier to make and may last longer, say Bell.

Efficient but expensive solar cells may be made from joining two single crystal solids, and less expensive but less efficient cells can be made from the junction of polycrystalline materials. The latest liquid junction Bell cells also use polycrystalline materials but are cheaper to make: "Junctions in all-solid cells are difficult to form since layers of crystals must be aligned precisely," say Bell. "Liquids conform to solids easily."
The new cells comprise two electrodes in a water-based solution. One of the electrodes is a semiconductor, the other carbon or any of a number of common metals. When light falls on the semiconductor current flows from one electrode to the other via the liquid. The solution is of sulfide polysulfides in water, and it remains relatively unaffected by the process. This accounts, say Bell, for the long life of the cell, up to four years in one case. In one experiment using cadmium selenide as the semiconductor electrode over a twentieth of the incident light was converted into electricity, about two-thirds the efficiency of the equivalent crystal cell.

An 8% efficient solar cell is reported to have been made by annealing with a single 30 ns laser pulse, according to a report from the 1977 Photovoltaic Solar Energy conference in Luxembourg. The result is a silicon ion-implanted solar cell. Another cell, a 50 mm thick silicon cell uniformly thinned by etching in sodium hydroxide has a claimed efficiency of 14%.

A Rugby engineer, Mr A. T. Freeman, has built a solar powered car which does not store the energy in conventional batteries. The solar cells, made by Ferranti, are mounted in a canopy above the vehicle's seat and produce a maximum of 35 W . Eventually he wants to produce a commuter vehicle which will have a roof area of $50 \mathrm{ft}{ }^{2}$, producing 250 W , and a maximum speed of $15 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. The cost at the moment would be $£ 5,000$ for the panels but he is hoping this will eventually come down to $£ 50$.

The electronic arm of the law

Suffolk Police háve installed over $£ 100,000$ worth of computer equipment at their headquarters at Martlesham, near Ipswich. The equipment, to control the force's more than 200 vehicles, to record incidents, to switch messages between teleprinters in a communications network, and to hold local criminal, firearm, and stolen property records, was commissioned in November 1975 and installed beginning in the summer of the following year.
Currently 96 of the police vehicles are fitted with terminals which link them with the computer. Fourteen v.d.u.s are in divisional control rooms at Ipswich, Bury St Edmunds and Lowestoft, and at force headquarters. The message switcher controls 18 teleprinters distributed among the 13 sub-divisions and force HQ , and also a journal printer. The processor used is the GEC 4080 , supported by 256 kbytes of core store, two 35 Mbyte discs, magnetic tape, line and logging printers, and communications interfaces operating at 2,400 baud to the v.d.us. and 75 baud to the teleprinters.

The Suffolk police regard the installation as one of the most advanced of its type, even though they are aware that computer technology has advanced some way since the system was commissioned. The force serves a community whose industry is expanding rapidly and includes the port of Felixstowe. The new police headquarters, housing 250 police and civilian workers, is a showpiece, and, like the computer system, has been designed to meet Suffolk's needs well into the future.

Suffolk is one of the latest forces to embrace the computer. Recent reports in the specialist and daily press have mentioned the growing police use of computers in Glasgow, Staffordshire, the West Midlands, Devon and Cornwall, Lincolnshire, Tayside, the Thames Valley, and, of course, Scotland Yard. Many more of the country's 43 police forces are taking advantage of the computer, and there is no doubt that one day they will all be computerised. Those not already so may be using their local authority's computer for the same purposes.

Stations linked

The arrival of the blue serge computer is mainly attributable to the shortage of police manpower, and to the related switch in emphasis in recent years from crime detection to crime prevention, or, as the bobbies inimitably put it, "pre-emptive policing." But while this is a desirable end, serious doubts have been raised by the means.

There is nothing a computer can store that could not be stored on paper. The difference is in the amount of storage and the ease with which it can be made available. Data banks can hold enormous amounts of information with very little trouble, and when what was previously held in paper files is so easy to store there is an overwhelming temptation to add all sorts of other details as well.

All of the 800 police stations in England and Wales are linked to a national police computer, based on a Burroughs main frame, at Hendon. This project went ahead in 1969 and began to operate in 1974. According to the Government white paper on computers and privacy, "its purpose is to automate the storage and retrieval of certain of the records
held by the central and regional criminal record offices and by police forces: these comprise indices to records of persons convicted of serious offences, wanted and missing persons, stolen vehicles, disqualified drivers and persons with suspended sentences."

In addition, each day a new tape is carried from the vehicle registration computer at Swansea to Hendon for feeding into the computer. This is necessary because the Swansea computer works on tape and that at Hendon on disc, for speedy access. This transfer means that, by 1979, the names of 26 million people owning licensed vehicles will be on the file, along with address, date of birth, details of the vehicle and other codes saying whether, for example, the car is "of long term interest to the police." The total number of entries will be over 36 million.
This contradicts a government assurance that the information used for one purpose would not be transferred for use in another. There are some 220 central government administrative tasks which are computerbased. The public sector has around 3,500 computers at its disposal, roughly a quarter of the private and public sectors' combined total. The Home Office and Metropolitan Police joint automatic data processing unit, for example, has five central processors, 500 staff and a capacity of 768 kwords. The Home Office has spent $£ 14$ million on computers in the last ten years. In January, 1973, Computer Weekly reported that detectives on a murder enquiry had searched the memory banks of a Department of Health and Social Security computer, looking for a letter. Also, the Balcombe Street bombers were partly tracked down by tracing a computer dating form from a Time Out advertisement which one of the bombers had filled in as a joke.

The police national computer also has a fingerprint file for those convicted and sentenced over the last 40 years (the Rehabilitation of Offenders Act, 1974, is supposed to ensure that a conviction vanishes from the record after five years) as well as those awaiting trial, a total of 2.25 million people. Those detained under the Prevention of Terrorism Act also had their fingerprints taken and stored even though 19 out of 20 of them were acquitted. (See Wireless World, September 1975, p.406.) A Police Review editorial once described the information in police files as "frequently libellous".

BBC

This is why the government white paper stresses that the disclosure of criminal and other records from the computer is not "given to anyone, however responsible unless considerations of public interest justify it." Yet the number of people with authorised access includes public bodies or authorities about to employ doctors, dentists, nurses, youth leaders or teachers, civil servants, atomic energy and Post Office temporary or permanent staff, magistrates, justices of the peace, barristers, solicitors and their clerks. Astonishingly the paper also admits that "the police also maintain the practice, which does not have specific statutory authority. of helping social services departments in considering applications from adoptive and foster parents." Anyone
who applies to join the police, or for an award under the Criminal Injuries compensation legislation, or for a gaming licence, is also checked.
In addition, a recent book* by Patricia Hewitt of the National Council for Civil Liberties points out that criminal records are also available to anyone who knows how to work the system. For this reason the practice, not confined to security firms, of hiring ex-policemen has become widespread. The most outstanding example must be the BBC's appointment of Robert Huntley, former head of the bomb squad, as security adviser. Anyone applying for a BBC post might therefore expect the corporation to have access to a great deal of information which would otherwide be closed to them. Yet when the police computer was being set up, in 1971, the then Home Secretary, Mr Reginald Maudling, told the Commons that access to it would be restricted to the police.

Passport details

Scotland Yard's computer provides a good example of the dangers computers may present. In February this year The Times revealed that nearly 1.5 million names of criminals "and their associates" will have been fed into the computer by 1985. Stewart Tendler wrote that Scotland Yard refused to say whether this would include the names of those suspected of subversion. A $£ 900,000$ contract for the computer was announced last year but no other details, including the name of the winner of the contract, for which 25 companies competed, have been released. However, Computer Weekly revealed in December last year that the contract had gone to Computer Technology Ltd, one of their biggest ever orders.
Notably, the records include passport details and details of bankruptcies. "By 1985," said The Times, the computer could be storing information equivalent to one-fifth of the population in the area of the Metropolitan Police's jurisdiction." Although the kind of information stored is supposed to be subject to the guidelines in the white paper, and therefore not secret, Scotland Yard refused to say why the information was classified, or whether it was true that an astonishing two-thirds of the names on the biggest section of the records was of suspects and associates rather than people with criminal records.

A further report in September said that the names of tens of thousands of those suspected by the special branch "for reasons of national security" were to be fed in. The special branch was allocated up to 600,000 of the total capacity of $1,300,000$ names for such purposes.
No one doubts that the tracing of bombers and murderers after the event, still more the prevention of their atrocities beforehand, is of benefit to the community, though more often the beginning of the spiral is the mere tracing of stolen cars. But, the objectors say, these worthy objects may become the excuse for producing just the kind of peephole society the bombers would resort to if they ever found themselves in control. Be it noted that, after nine years' work, the FBI has abandoned a national police computer it was to set up in the United States, largely because of the privacy issue.

[^4]
Low-cost pickup arm using mono-filament suspension needs no special tools

by Ernie Lowinger

Many pick-up arm designs for home manufacture have already been described in the journals. Most very beautiful, all very sophisticated and requiring the use of a lathe and appropriate precision. For some time I have sought the design for an arm that could be made with a minimum amount of costly precision tools.
My aim has been to produce an arm with performance as good as there is, with a reasonable appearance, from inexpensive materials which are easily found, using tools I have to hand: electric drill, drilling stand, assorted drill bits and a few BA taps.

I have tried miniature ball races and found them too temperamental. A unipivot is out, hydraulics and knife edges, too. For some time I toyed with the idea of a thread or wire suspension. The idea finally took form when I saw two mentions of a thread-suspended bias compensation device in some old WW and HFN \& RR copies ${ }^{1}$. This was not my first acquaintance with this form of

First design, in whch the arm is carried by the signal wires.
thread suspension. It defeated me the first time I met it as an A-level maths problem years ago. This time I derived the equation $M=W a^{2} / h$, where M is the moment, W the total mass of the arm, 2 a the distance between the threads, and h the suspension height (see Appendix 1). The principle is simple enough; the arm is supported by only two threads, Fig. 1. The resulting friction is due only to the torsional hysteresis of the threads and the lead-out wires. I have made two arms utilising this principle. One uses fine nylon fishing line for suspension. The other uses the signal wires themselves to support the arm.

In addition to having low inherent friction the principle also offers automatic bias compensation. The moment on the arm is proportional to the sine of the angle of rotation of the arm, i.e. $M^{\propto} \sin \theta$. If θ is centred on 90° then for a sweep of 23° of the 9 -inch arm there is only 4% variation in M .

Bias compensation

To arrive at some concrete dimensions for the threads and the values of a, h and W it is necessary to look into this bias business.

If a cartridge is offset ϕ degrees in a pick-up arm, Fig. 2, but is tracking a groove tangentially, there will be a force F due to friction along the cartridge's longitudinal axis. This force can be resolved into a pull along the arm P from the pivot, and a pull S at right angles to the arm which tends to make the stylus ride the inner wall of the groove harder than the outer

$$
\begin{aligned}
& S=F \sin \phi \\
& P=F \cos \Phi
\end{aligned}
$$

(see Appendix II)

Now \mathbf{F} is proportional to the tracking weight and it has been shown ${ }^{2}$ that the constant of proportionality can be anything between 0.2 and 0.9 , depending on the record and this can be increased by 80% more on highly modulated grooves in the case of certain cartridges. It is quite likely that a resulting variation of $10: 1$ can occur across one record. One might well ask, is it worth the bother?
Anyway, to start somewhere the equation has become

$$
S=k G \sin \phi
$$

where G is the tracking weight and k a constant. Taking a mean value for k of 0.5 , a 9 -inch arm with an offset angle of 23° and a range for G between 1 and 3 grams, S ranges between 0.2 and 0.6 grams. This means a moment at the pivot of a 9 -inch arm of between 1.8 and 5.4 gram-inches, if you will forgive the mixed units. This is the range of the values for M in the equation $\dot{M}=W a^{2} / h$.

The crunch

The effective mass M_{e} of a pick-up arm (moment of inertia divided by the square of its length) and the compliance C of the cartridge combine to give a resonant frequency f of bounce on the stylus suspension, according to

$$
f=\frac{1}{2 \pi \sqrt{ } M_{\mathrm{e}} C}
$$

I have read ${ }^{3}$ that f should be kept between 6 and 14 Hz and to achieve this with the range of cartridge compliances likely to be met, the arm less cartridge should have an effective mass of 7 to

10 gm . Generally speaking, this implies a fairly massive counterweight kept close to the pivot point. This is because inertial moment and therefore effective mass is proportional to the mass of the counterweight but the square of its distance from the pivot.

There is, however, a counter constraint. If $M=W a^{2} / h$, we may have to keep W down to keep a and h convenient and still have the right M. In the event, it has been quite easy to keep the effective mass in the 7 gm region with an all-up W of 58 gm , and if we take a as $3 / 16$ in (i.e. the threads are $3 / 8 \mathrm{in}$ apart), then h becomes about half an inch. This can be increased to lin for a value of 1.8 for M. However, if you want to increase M, I think it would be better to increase ' a ' than reduce h much more, otherwise the stress on the wire may be excessive (see Appendix 3).

It wobbles

You might think that, dangling there on the end of its thread, the arm would be rather unstable. You are right. However, analysis shows that the wobbles are predictable and amenable to control.
Going back to the first principle, there are three modes of oscillation in the system that cause trouble, Fig. 3.
A - The lower rod $A B$ can rotate about its own longitudinal axis.
B - The lower rod AB can swing at the end of the two threads moving in tandem about an axis at right angles to the projection of the two threads in plan, Fig. 4.
C - The lower rod $A B$ can swing about the upper rod $C D$ and its longitudinal axis.
Not sure which would be the best orientation for the threads, I made two arms. In the first, Fig. 5, the lower rod $A B$ forms a part of the rod itself. The four signal wires emerge from small holes in the arm tube. Two of the wires actually carry the arm. The remaining two are loosely coiled to contribute as little torsion as possible. The wires are held firm in the arm by simply tying a large knot which jams in the hole, just behind the cartridge, through which the wires enter the arm. At the other end the wires are 'knitted' into a tubular hollow cross tree. The suspension height can be varied by tweaking the wires in and out of the holes. This cross tree is now the upper rod CD. It acts as the pivot axis for vertical movement of the arm. So we have no trouble from the type (c) wobbles. Type (a) wobbles do happen. This is because the centre of mass has to be below the line joining the stylus tip and the support point on the arm, to stop it falling over. So you end up with a sort of compound pendulum. This wobble is difficult to eliminate. By keeping the centre of mass quite low down the period of oscillation is kept long and partially damped by the sogginess of the support wires. The method used for damping type (b) wobbles helps a little too, but I found

Second arm has its own cross-member and uses nylon threads.
that jolts on the turntable can set it wobbling. However, the movement only lasts a second or so and, more important, does not cause any audible modulations. Wow.

Type (b) wobbles are the worst. I found the easiest way to control them was to drape some cotton thread over a piece of wire and fix one end to the pivot point of the arm. The other carries a small weight. The two or three $1 / 8 \mathrm{in}$ lead split shot do quite well. The friction of the thread running over the wire seems to be enough to damp them out completely. As the arm is only free to wobble in one direction, one thread and weight is enough.

The disadvantages of this arm are that the vertical pivot point can be rather high above the surface of the record for low tracking weights and small anti-skating forces, Fig. 6. Also bias adjustment is rather fiddly and so rarely undertaken. On the other hand it is simple and neat and performs well with a G820SE tracking at $1 \frac{1}{4} \mathrm{gm}, 2 a$ $3 / 8 \mathrm{in}$ and h lin.

In the case of arm number two, the suspension is turned through 90° about a vertical axis, Fig. 7. The arm itself has to have a cross tree to take the ends of the support threads. These threads are $11 / 2-\mathrm{lb}$ breaking strain nylon monofilament. This has very little inherent damping property so I had to be a bit more careful. The cross tree acts as the axis for vertical movement of the cartridge, and so type (a) oscillations do not happen. Both types (b) and (c) occur in this arrangement, the last-mentioned taking the form of the whole arm swinging about a line joining the stylus tip and the upper end of the support threads. These wobbles caused considerable wow and flutter when left undamped and required two threads of the type already described, at right angles to each other, to damp all
tendency to movement in the horizontal plane. They are completely effective but the wire frame to carry them is a bit of a contorted shape. With its easily adjusted suspension, height and therefore bias compensation, very low friction and complete lack of wobbles this arm is magnificent but looks very Heath-Robinson-esque. I use it at present with an ADC Q36 tracking at $1 \frac{1}{4}$ gm again.

Both arms were simple to make but incredibly fiddly to assemble and set up. The horizontal pivot point does not stay in one place as the arms move across the record, variation in the friction component P along the arm causes some change. This, however, is not a problem as long as the arm is set up to give zero tracking error at the end-ofside, as is usually the case.

Friction

To keep friction low the important thing is to use sufficiently fine lead out wire, and finding it was a bit of a job. Writing to SME for a free sample would be admitting defeat so I kept looking. For arm number one I found some four-way screened and sleeved wire supposedly for pickups, but stiff as a salami. However, when you strip off the sleeving and screening, you get four pretty coloured p.v.c. covers each containing 10 strands of 47-gauge copper wire, untinned, and these are quite flexible.

For the second arm I used $3 \times 48 \mathrm{~g}$ Litz wire, enamelled and silk covered. This is about as fine as one would wish to use, somewhat fragile and a trifle tricky to solder. Four pieces are cut to length and then given different colours with fibre tip pens.

Measuring lateral and vertical friction is a bit of a problem because of the constant lateral moment. However, I must confess to not having seriously tried. Inspection of the only sources of friction, the lead-out wires and nylon support threads, would I am sure convince the reader as it did me that in the case of arm number one the friction at the stylus is approximately sweet F.A. and with arm number two, even less.

Materials

Arm: You can buy 12 -inch lengths of 10-gauge fine-wall aluminium. tube from any good model shop for about 10 pence. It weighs about 5 gm and can be bent with bare hands. It is quite strong, too. It is $3 / 16-\mathrm{in}$ o.d. and nine-inches serves for the arm, the remaining three inches take the counterweight.
Counterweight: 1 used about $1 / 4 \mathrm{in}$ of $11 / 4$ in brass bar. Aim for about $1 \frac{1}{2} 02$ weight.
Support pillar: $1 / 2$ in aluminium tube from Band I TV aerial.
Cartridge retaining clip and finger lift: 16-gauge aluminium sheet.

Support base: I happen to have some green perspex $1 / 8$ in thick and some clear 1/4in.

Arm 1
Cross tree: 12-gauge brass tube from model shop.

Arm 2
Thread carrying platform: 1/4in clear perspex and 6BA threaded brass rod
Cross tree in arm: 10 -gauge welding rod.
Damping frame: 18-gauge steel wire
Various 8, 6 and 4 BA screws and nuts, and that is about it.

Construction

I can say nothing that will improve on the constructional information published by $H F N \& R R$ and $W W$ in the past ${ }^{4}$ and construction of this arm is clearly much indebted to the work of Bickerstaffe. The March and April 1971 articles are particularly useful as regards the arm itself and I will not try and improve on them. Suffice it to say that the arm must be bent to give a 23° offset angle and the pivot region should be on the same horizontal plane as the stylus tip. As cartridges tend to vary a bit in dimensions it will have to be set up for the individual case. The head is undercut, and various holes are started off with a sharp metal spike. The tube wall is very thin; once it is penetrated the actual-size hole can be made with an appropriate drill worked between finger and thumb. In the case of very small drills, wrap the shank in scotch masking tape to a thickness of $1 / 4 i n$. I found this the most accurate and least damaging way to cut holes in fragile tubing.

A hand vice is required for drilling all the other components. Brass and perspex both tend to snatch when being drilled. Low revs and a very slow feed rate are essential. Even so I frequently saw the hand vice whirling round the drill shank at $900 \mathrm{rev} / \mathrm{min}$. The drill would be well and truly bent and the vice and workpiece then hurled through the window, or worse into one's guts.

Threading the signal wires into the arm is fairly straightforward if one uses nylon thread or 5 -amp fuse wire to pull through. Similarly the hollow cross tree in arm number one. In arm two, the solid cross tree is glued into the arm with Araldite.
The support platform in arm two is fiendishly hard to set up the first time but easier when you know how. Assemble the height-adjustment screw in the platform. Take a good foot of nylon line. (You only need a foot but you have to buy a hundred yards; still, it's cheap enough.) Form a blob at one end, about y_{11} in diameter, by holding the end near a gas flame. This is a finnicky task and you burn through a few foot lengths of line before you get a good secure blob. Now pass the unblobbed end down
through one hole in the screw, a hole in the perspex platform immediately below, then up through the adjacent hole $3 / 8$ in away and up through the appropriate hole in the screw. Now form another $1 / 16$ in blob at the other end of the line. Carefully turn the adjustment screw and the nylon line should fit neatly in the grooves in the screw. Three full turns gives about an inch adjustment.

Fit the platform to the support pillar and pass the nylon loop under the cross tree in the arm. The arm will 'already have its signal wires inserted. The wire can now be threaded through the support pillar.

It would be nice to terminate the wires in a smart plug-socket arrangement at the bottom of the support pillar. After a long search I found a miniature seven-pin plug/socket that does reasonably well, Fig. 8. I filed the threads of the plug part and soldered the arm wires to it. It just fits in, and is retained in the bottom of the pillar by an 8BA screw. The screw also carried a fly lead to earth the pillar itself. (The arm is earthed by a fly lead from one of the cartridge earth tags.) The socket part is soldered to the twin screened lead which leads to the amplifier.

There is a lot of unscreened signal wire floating about. I was worried about this and made up some screening cans from aluminium film canisters. However, during use I found that they made absolutely no difference and with the cartridges I use and $68-\mathrm{k} \Omega$ input impedance at the preamp there is no hum at full volume. So I threw the screens away.

The pillar base is a sandwich of green perspex top and bottom and clear in the middle. Total thickness $1 / 2 \mathrm{in}$. The whole is solvent welded with chloroform. You can get this from your chemist but you will have to sign the poisons book.

Drill the $5 / 8$ in mounting hole $83 / 8$ in from the record spindle.

Further development

The pick-up arm can be suspended by any number of threads. If their upper ends are regularly spaced about the
circumference of a circle of radius a centred on the upper support, and the lower ends of the threads similarly fixed about a circle centred on the pivot point of the arm, then the couple on the arm, ceteris paribus, remains $\mathrm{Wa}^{2} / \mathrm{h}$.

The theoretical pivot for both lateral and vertical movement of the arm, is a point halfway between the centres of the upper and lower circles.
With regard to stability, there will always be one direction in which such an arm would be free to wobble. It will therefore require one stabilizing thread arranged as in the Type I arm. The lateral stability will be enhanced however.

A simple way of making such an arm will be to use a modified Type I arm with all four signal wires doing the supporting. The stress on the wires, and their slight tendency to creep will be correspondingly reduced.

Conclusion

They might not require a lathe, but instead require extensive wrestling with almost invisible bits of wire and thread. However, they work, and better than I had ever hoped. They are not beautiful, but they have a certain rustic charm. They are certainly cheap.

References

1. Bickerstaffe, J. Torsional stability and the unipivot, Wireless World vol. 72, 1966, pp.23$6 \& 62-7$. Building a woggle arm, $H F N \& R R$ October 1971.
Bartholemew, David. Unipivot arm. HFN \& RR April 1972.
2. Snell, R. and Rangabe, A. Frictional drap and bias compensation, HFN \& RR, February 1970.
3. Wright, J. S. Approach to pick-up arm design, Wireless World, vol. 73, 1967, pp.17882.
4. Bickerstaffe, J. Pick-up arm design. HFN \& RR, January to July 1971.
continued on page 64

Type 1 arm in use.

The power game

The power race that has taken such a firm grip on m.f. and h.f. broadcasting in so many countries (appropriately enough Babel, Iran now has a 2MW m.f. station) has not left British amateurs unaffected. Without wishing to be a spoil-sport one cannot help feeling that the authorities never foresaw the power levels that have been made possible by exploitation of (or misunderstanding of?) the Post Office ruling some years ago that British s.s.b. stations could use up to 400 watts p.e.p. output, although this was clearly meant to be directly comparable with the 150 W d.c. input for a.m., f.m. and c.w. modes.

Today some British amateurs are using power amplifiers that for any mode other than s.s.b. would be rated at over lkW d.c. input; for example the Heathkit SB220 which is usually listed as 2 kW p.e.p. and the popular K2RIW design of a 432 MHz stripline amplifier with two ceramic tetrodes, considered in the United States as a "kilowatt" amplifier. Such amplifiers often have two 4CX250B or 8930 valves for u.h.f. or t wo $3-500 \mathrm{Z}$ or similarly rated valves for h.f., with power supplies built to provide over 2.5 kV at up to $800-1000 \mathrm{~mA}$ on peaks, occasionally with heavy r.f. speech clipping to increase significantly the duty cycle of the transmissions.

While such equipment may be operated under legal conditions for s.s.b. it must be extraordinarily difficult to get them down to anywhere near l50W d.c. input when used for other modes. 'On u.h.f. such equipment, combined with high-gain aerials, can provide effective radiated powers as high as $50-100 \mathrm{~kW}$, without taking into account the clipping "gain"

Again, the more stringent power limits imposed by our licences for 1.8 MHz (10 W d.c. input and on s.s.b. 26.67W p.e.p. output) do not appear to prevent many amateurs using on that band medium power h.f. transceivers that have no facility for reducing power and which, I am assured, often cannot readily be operated within the authorised power levels. An American 1.8 MHz enthusiast, recently visiting the UK, was prepared to identify certain

Top Band signals he hears regularly and is convinced do not emanate from 10-watt transmitters.

If only to sort out the current confusion, and if the Home Office have no objection to the use of high-power transmitters for s.s.b., should they not authorise at least a similar legal 400 W p.e.p. output for c.w., f.s.k., and n.b.f.m.? Or is this a case where it is left to "self-regulation"?

Many amateurs believe that our radio and tv set makers could do more to make receivers, broad-band mast-head amplifiers and audio equipment far less susceptible to high r.f. fields - but it is asking a lot for domestic equipment to be capable of operating directly in a 100 kW e.r.p. beam of a nearby transmitter.

At the other end of the scale, David Johnson, G4DHF, recently made more than 40 contacts on the 144 MHz band during a low-power contest at distances up to 300 km : he was using a home-made transceiver based on the SL600 series of integrated circuits with an r.f. output of about 25 mW .

Scanning the bands

The British Amateur Radio Teleprinter Group reports a membership increase of 40 per cent during the past year to over 550. John Jones, GW3IGG, suggests that the advent of visual display units for "teleprinter" display has brought many new operators to r.t.t.y., even though most stations are currently still using hard copy machines for two-way contacts, and he wonders if the increasing interest in such display units and microprocessors is beginning to make the very term "radio teleprinting" seem too restrictive for moden usage. Reginald Wigg, G6JF, has worked some 136 different countries on r.t.t.y. and is the top British station in BARTG's "quarter century award" listings. Leading station is the Belgian ON4BX with 154 countries. Brian Hodgson, G3YKB, has taken over the editorship of the group's newsletter (now appearing in an attractive new format) in succession to Dennis Goacher, G3LLZ who has produced the newsletter for eight years.

The Home Office has now resumed licensing the additional amateur repeater stations forming "Phase 2 " of the RSGB's current plans but has stated that it is not prepared to consider any applications beyond this present phase for the time being. It has expressed concern at the high sites being chosen for some of the repeater stations. However, preliminary planning for Phase 3 is continuing. With London now served by three u.h.f. repeaters, the UK FM Group is considering closing down the GB3LO v.h.f. repeater which continues to be subject to many abuses by a group apparently wishing to bring repeater operation into disrepute.

French beacon stations have been allocated the prefix "FX" and will
include: FX3TEN on 28.227 MHz ; FX3VHF on 50.1 MHz ; FX0THF on 144.741 MHz ; FX3THF on 144.905 MHz ; FX7THF on 144.985 MHz ; FX9UHF on 432.5 MHz ; FX4UHF on 432.83 MHz ; and FX6UHF on 432.870 MHz . French v.h.f. activity generally appears to continue to increase rapidly as indicated by the recent story of 200 stations on 144 MHz , 36 on 432 MHz and 3 on 10 GHz for their 1977 National VHF Contest.

A novel constructors' contest has been announced by the East London RSGB Group. This is for home-constructed items of audio, electronic or radio equipment "totally enclosed by a $20 z$ tobacco tin with lid." Optionally the power supply need not be enclosed in the tin.

H.F. transmitting aerials

Bob Haviland, W4MB, recently analysed the aerials used by 500 stations contacted on 21 MHz . Just over half were using Yagi beams (80% of them 3-element, 5% 2-element); second most popular group were the verticals (mostly multiband types using traps); just under 15% were various forms of "quad" loop arrays (nearly all of them 2-element); dipoles (including invertedvees) formed 12% of the total; "long wires" only 1.8%. Height of the elements varied from 10 ft to over 120 ft (12% over 80 ft , average 10 ft). In Europe the simpler aerials form a higher percentage of the total. A check on 100 stations on 14 MHz and above showed 38 using ground-planes and other "verticals"; 31 were using various types of dipole (including W3DZZ trapped dipoles and G5RV multi-band dipoles); only 13 were using 3 -element Yagi arrays; 7 were using 2-element "quads".

In brief

The 1978 president of the RSGB will be Dr Dain S. Evans, G3RPE, who for a number of years has been one of the leaders of the "more activity on microwave bands" group that has done much to popularise 10 GHz in the United Kingdom By August 31, the number of UK amateur licences had risen to over 22.750 (Class A 16,205; Class B 6559) ITU international prefixes now include J 3 for Grenada and H 4 for the Solomon Isles The Braun SE401 series of 144 MHz multi-mode transceivers is believed to be the first commercially-built amateur equipment to use a v.f.o. which used a $64 \mu \mathrm{~s}$ PAL-type delay line as a integral part of a stable phase-locked-loop system It was exactly 50 years ago, at the Washington Radio Conference of October-November 1927, that 350 delegates of 74 countries first defined internationally the harmonically related amateur bands from 1.7 to 56 MHz .

PAT HAWKER G3VA

CONTROL OF SOLAR HEATING

Congratulations to Mr K. D. C. Passey (Letters, October issue) for highlighting the importance of an electronic control system for solar energy pre-heating of domestic water. However, it is also important that the complexity of any control/recording system be kept within practical limits, so that the extra cost of the control/recording system and its maintenance does not exceed the extra saving over a less sophisticated electronic control.
The necessity for limiting pressure drop due to lime deposition may of course be avoided completely by using an indirect solar heating system.

We are at present conducting tests on a prototype electronic control system specifically designed for solar applications, which uses a true double differential technique, where the pump "turn-off" condition is determined completely by the pump requirement and the selected flow rate. It would be quite possible to monitor various functions by connections to points within the circuitry and to have a display panel some distance from the control proper.

We plan to start work in the near future on a control system based on microprocessor techniques which should certainly afford the user the kind of assistance advocated by Mr Passey.
F. B. McKee

McKee Solaronics L.td.
Southminster
Essex.

MATRIX H SURROUND SOUND DECODING

In commenting upon certain statements in Michael Gerzon's multisystem and J matrix decoder (July issue), might I point out that not everyone can afford room-space or expenditure for two stereo speakers, let alone the four or six proposed for the J matrix. Popularly, stereo listening is being accomplished on headphones (two or four channel).

Since the phase-shift between left and right channels does not significantly widen the subjective "stereo-head-phone" stage width in the same way as when listening on conventional stereo loudspeakers, it is thus important that the encoding locus should pass through left-only and right-only if only to achieve good compatibility for the many thousands who listen to f.m. stereo (H "quad") on headphones. It is thus not an "unnecessary design restriction" as Mr Gerzon seems to suppose. At least SQ and (in theory) RM, QS and BMX (Nippon Columbia UD4) also give full headphone separation in stereo at least for pop-surround and dramatic programme material, some broadcasts of which have been surprisingly impressive on "binaural" listening.

Secondly, the deliberate curvature of the H matrix locus allows non-conjugate decoding or at least some measure of compatability when using decoders of other systems, e.g. even a simple " $10-40$ " blend SQ decoder may be used if the connections to speakers are rearranged. Connections are: $\mathrm{SQ}-\mathrm{L}_{\mathrm{B}}$ becomes approximately equal to H front, $S Q-R_{H}$ becomes H centre-back (two speakers in series in the left-back and right-back positions can be fed with this "ambience" signal, which in theory contains little matrix H centre-front since $S Q$ (blend) right-rear is almost 160° from the front on the phase-amplitude sphere), $S Q-L_{F}$ becomes H due left, and $S Q-R_{F}$ becomes H due right.

The deliberate curvature of the H-matrix locus is by no means caused by a departure from "optimal" three-information-channel source encoding. For instance, the bent locus is produced by the matrix below from only three microphones: (i) omni-directional plus (ii) figure-of-eight oriented left-right plus (iii) another figure-of-eight oriented front-back, approximately as below, θ measured clockwise from centre-front.
(The equation is covered by the BBC patent.) Thus it follows that since H does not have to be produced from pairwise-panpot fourchannel sources, the "third-matrixed (narrowband) channel" technique to restore most of the $3 \rightarrow 2$ channel matrix "lost" information is as applicable to H as to J ; and is not therefore a function of locus-straightness as has been suggested by Mr Gerzon et al.

Finally, the difference in rate-of-change of curvature (phasebending) between the front-half H locus and the rear, could well be the reason that stereo headphone listeners can get some impression of front-back stereo perspective.
T. W. J. Crompton,

Crawley,
Sussex.

RADIO AND AIR SAFETY

Letters printed in your August, October and November issues brought to my attention the editorial in your June issue "Radio and air safety." As an experienced broadcast engineer with direct involvement in v.h.f. broadcasting and as an experienced and active airplane pilot, I tend to agree with the letters which you published. Your editorial is

$$
\left[\begin{array}{l}
\mathrm{L} \\
\mathrm{R}
\end{array}\right]=\left[\begin{array}{l}
0.53 \mathrm{e}^{-175}, 0.36 \mathrm{e}^{+773},-0.53 \mathrm{e}^{175} \\
0.53 \mathrm{e}^{+175}, 0.36 \mathrm{e}^{177}, 0.53 \mathrm{e}^{175}
\end{array}\right]\left[\begin{array}{l}
1=\mathrm{omni} \\
\cos \theta=\text { fig. } 8 \text { (iii) } \\
\sin \theta=\text { fig. } 8 \text { (ii) }
\end{array}\right]
$$

based on an inadequate knowledge of aeronautical voice communications systems and equipment and the role of voice communications in air traffic control.
There is nothing inherently wrong with a.m. mode or with 2.7 kHz bandwidth. My experience with audio quality on 747 class civil airliners and all the control towers that I hear is that audio quality is quite good and background noise level is low. There may be problems with aircrews whose command of the English language may be less than is desirable. There may be faults in the system, i.e. the architecture of the communications system, which is a "party line" - no control on "access" to the communications channel. Basic aeronautical transmitters and receivers are OK. We may not be using them properly all the time.
I suspect the final Tenerife accident report will show that the reception of one of the control instructions was partially "blocked" by another aircraft transmitting at the same time. This is not a fault of the equipment but rather one of "system architecture." The Tenerife communications channel was not noisy or significantly bandwidth limited.

1. Switzer

Switzer Engineering Services Ltd
Mississauga
Ontario. Canada

USING A MICROPROCESSOR

There are some difficulties in using the 8080 -based microcomputer discussed in J. Skinner's article, "Using a Microprocessor" (June and September issues)

The interrupt input to the 8080 is wired to a switch (START) which is used to allow the 8080 to get past the halt instruction (HLT) at address 5 . For this to operate properly it is necessary to have an interrupt instruction port wired to input a single-byte, eight-bit instruction to the 8080 during the interrupt acknowledge cycle. This is not shown. It is readily accomplished with another 8212 integrated-circuit. A no-operation (NOP $=00_{16}=000_{R}$) should be the instruction hard-wired at the interrupt instruction port.

Mr Skinner's 8080 configuration may be useful in some applications, but it eliminates the use of the interrupt for other, more sophisticated tasks. Perhaps there will be further articles which cover this important topic. If interrupts are to be preserved a sense flag could be used to replace the interrupt connection. In this way a single bit is input and tested under software control. This requires the use of a spare bit position at an input port. If this is not available, a single input port is quickly constructed. Mr Skinner's circuit is simple and just what may be needed for a simple application where thousands are to be manufactured without further changes or add-ons. Readers should be aware, however, that there are other uses of interrupts.
After providing the register codes in three-bit octal (base eight) notation it is sad to see that the programme is encoded in hexadecimal (base sixteen) format. This is not Mr Skinner's fault, but rather the fault of all 8080 manufacturers. The octal format is much easier to encode and understand.

As per the information in Table I in the article, each of the 8080's registers is given a
three-bit binary code which is easily translated into an octal equivalent, $A=111=7 \% \quad \overline{-}=010=2$, etc. The data transfer instructions provided in the article are good examples of the use of octal notations.

The data transfer between registers is broken down as follows:

$$
01 d d d \operatorname{ss}
$$

where the ddd is the binary code of the destination register and the sss is the binary code of the source register. Each of the three groups shown above is then translated into an equivalent octal code:
MOVAD $=01111010_{2}=172$;
MOVHA $=01100111=147$
MOVLA $=01101111=157$
MOVAE $=01111011=173$
MOVEA $=01011111=137$
It seems much easier to code the instructions in octal than in hexadecimal. The last two examples prove the point by showing that when destination and source registers are interchanges, the octal digits representing the registers are interchanged in the instruction code. This is not apparent in hex notation; 7 B to 5 F .

Memory addressing is also simple, remembering the rule that memory is treated as 256 word blocks with a high address and a low address with the same grouping of bits as shown above:

$$
X X \quad X X X \quad X X X
$$

The rule is that when the low address goes from 377 to 000 the high address is incremented by one; 001377 to 002000,125 377 to 126000 , etc.

I was pleased to see that Mr Skinner's programme listing is on a line-by-line basis as opposed to other programme listings which tend to cram too much on each line.
Jonathan A. Titus
Tychon Incorporated
Blacksburg
Virginia, USA.

DIRECT SENSING OF RADIO WAVES?

For some two years I have been plagued by clearly defined environmental "noises" which I have come to believe to be of electromagnetic as opposed to acoustic origin. Advertisements in the national press have yielded dozens of letters from people all over Britain who appear to experience similar phenomena which are often attributed to medical/psychological causes. My own observations, however, indicate that my sensation of "noise" is due neither to causes within myself nor to acoustic stimulation from outside.

In order to test my theory I wish to construct a tuner-amplifier to feed a loudspeaker or cathode-ray oscilloscope but since the frequencies are in the audio band (400 to 1100 Hz) the design of a suitable tuner presents some difficulty. Since my knowledge is limited and rusty, I would be most grateful to any interested reader who could offer me technical assistance. I shall be only too pleased to answer any letters.
Donald Wood
Oaklands
Dorstone
Hereford
Editor's note: Mr Wood's letter was accompanied by a confidential report from a highly reputable research organization which lends some support to his belief.

MINIMISATION IN LOGIC DESIGN

I have been following your series of articles on logic design with interest, but find some of the underlying assumptions puzzling. The methods are said to be mainly for the use of inexperienced designers, although specialists may use them to improve their technique in dealing with more sophisticated assemblies. To this end a trade-off is presented where reliability, simplicity and transparency of design are won at the expense of a certain extravagance.

Minimisation is said to be relatively unimportant in the days of i.cs, where what counts is to minimise chips, not gates. However, since the sort of circuit discussed can often be part of something larger, a single gate saved here and there can quite easily lead to the elimination of a chip. Nor do the extravagances seem to be always small. Take Example 2 in the July issue (p.65), a circuit which allows a pulse on input M to gate a single pulse from a train on input X to input Z. It uses, besides, a dual J-K flip-flop, a 3 -input NAND, two 2 -input NANDS and two inverters. These can be replaced by a single OR gate as below (assuming t.t.l.| clock polarities):

This configuration would never stem from the advocated design method for two reasons. First, it uses the Clear inputs. They were dealt with in connection with RS flip-flops but not included in the J-K equations - which hardly meets the practicalities of the t.t.l. and c.o.s.m.o.s. families. Secondly, the method assumes common clocking.

Example 1 is more debatable. Unless I have misunderstood the problem, state S3 is stable because its effect is to inhibit further clocking pulses. If so, the authors have demonstrated the vulnerability of their method in even the most expert hands by wasting four gates (quite possibly a chip) in providing redundant stability, since their circuit would work with $K_{A}=6$ and $J_{B}=4$. A further gate can be saved as shown below.

This is achieved by altering the assignments of A and B to the various states. The authors skate over. that topic as not concerning the inexperienced designer: presumably they are not addressing themselves to their specialist readers at this point.
I imagine that in practice the inexperienced designer means the infrequent designer like myself. I have not found minimisation as
unimportant as the articles suggest. On the other hand, while I agree that the mathematical steps advocated are simple enough when you are familiar with them, familiarity involves remembering a lot of highly forgettable detail. Each occasional foray into logic is likely to involve mugging the whole thing up again, which defeats part of the object of the exercise. In contrast I have found mapping methods, which are not developed at length in the series so far, easy to remember and usefully graphic and instinctive.
R. M. Hutton

London SW4
The authors reply:
First of all we would like to point out that at no time have we suggested that minimisation of the number of gates or the number of chips used in a logic system is unimportant. Clearly, considerations of space and power consumption are two important aspects which the designer must balance against the charge for his time occupied in producing a simpler solution. However, what we are saying is that a formal method of approach to logic design is essential to the inexperienced designer and also to the student, whose difficulties we have frequently encountered.

For example, the solution presented for Example 2 seems to us to be an intuitive solution. A design method has not been presented and we can only assume therefore that there isn't one. Intuitive solutions are fine if the designer can come up with one that fits the specification, but it is very useful to have a formal method of approach available when one's intuition fails. As the logic problem becomes more complex intuition becomes more difficult to apply and it seems to us that under these circumstances a formal approach to design through the state diagram is absolutely essential. Our experience with students has been that once they have grasped the design method described in these articles they are very quickly able to develop quite complex logic systems with a minimum amount of difficulty.

Obviously we are aware that the Clear line of a JK flip-flop can be used as an additional control line. It is not possible to cover all these points in a series of articles of this nature. However it is easy to set up a truth table for the JK flip-flop incorporating the Clear signal which leads to the following equations

$$
\begin{aligned}
& Q^{t+n t}=[C l(J \bar{Q}+\bar{K} Q)]^{t} \\
& \bar{Q}^{t+n t}=(\overline{\mathrm{C}} l+\overline{J Q}+K Q)^{t}
\end{aligned}
$$

and similarly it is equally possible to draw a state diagram for the flip-flop which

incorporates the Clear signal as shown above.
B. Holdsworth and L. Zissos

PROGRAMMABLE CALCULATORS as REACTION TIMERS

My letter in the August issue on calculators as stopwatches aroused a little interest. Here is a project which grew out of the programme for the digital clock. The question arose: what are the minimum intervals of time to which the Texas SR56 can respond? My guess was: the time required to go from one operation to the next without performing any operation (a NOP instruction). How could this be used? In a reaction timer.

A programme was written in which the calculator displayed a count-down sequence: $5,4,3,2,1$, using the "pause" instruction. We then had a counting loop in order to have a pause of length different from that of the intervals between the previous digits. " 0 " was then displayed for about $1 / 2$ second, using the "pause" instruction. The person whose reaction time is under investigation has to press the R/S key immediately he realises that the " 0 " has disappeared. The programme has a string of NOP instructions after the instruction to display " 0 ." When the programme has been stopped by pressing the R/S key, to find the score it is necessary to press the LRN key. This shows the location in the programme memory at which the programme was stopped. An operator who is quick on the draw scores a low number. If he cheats, and presses the R/S key while " 0 " is still in the display, he reads the location after the "pause" instruction, which in my programme is stored at location 14.

Locations 15 to 94 have NOP instructions. It takes between 1 and 2 seconds to run through them; this gives an idea of the resolution of which the calculator is capable. At location 95 we have a few instructions to set up the calculator for another run. When the operator is ready for another test, it is only necessary to press the R/S key to start the count-down sequence.

In a group of students, the calculator can find the one with the best reaction time. Those with poor scores (including me) simply cannot - despite practice - bring them down to the score of a good sharpshooter. My interest was in writing the programme. I have not used it to study the effect of alcohol on my reaction. This one may be new to the wife.

The programme is entered after storing 5 in Register 0. The programme starts at location 00.

RCL; 0, PAUSE; dsz; 0; 0; I; 0; STO; 0; dsz; 1 ; $0 ; 0$; PAUSE; NOP.

NOP; 5; ST0; 0; R/Ș: RST at location 99.

If we wish to find the time necessary for a NOP instruction, we can write a programme with 95 NOP steps and a few instructions to add I to Register 1. We can run the programme for 60 seconds and stop it with the R/S key; we then note the contents of Register 1 (and the line at which the programme stopped). We repeat the programme with 50 NOP steps. We can then write two simult-, aneous equations from which we can find the time for a NOP instruction and the time required to add I to Register I. In my calculator, the NOP instruction takes 0.0137 seconds.
Instead of a count-down sequence preceding the display of zero, we could arrange a slightly more demanding test. A programme is written which displays random numbers in
the range 0-99. Person A controls the test: person B is tested. A quotes a certain number, e.g. 57 , which he has stored at a certain register. B observes random numbers appearing and, as soon as the chosen number has appeared and disappeared, he must press the R/S key as quickly as possible. After the chosen number has appeared, the programme branches to a series of NOP instructions; B's score is found, as in the first method, by pressing the LRN key. Of course, if the random number generator is arranged to give number up to 10 digits, the test is all the more exacting. With my programme for random numbers which may have up to 10 digits, we may have 18 numbers displayed in a minute, each display lasting between $1 / 4$ and $1 / 2$ second. (Part of the time, when the calculator is crunching numbers, the display is blank.) Reading a 10 digit number in the available time, and deciding that it is, or is not, the specified number, requires a certain mental speed.
T. Palmer

Acton Technical College
London. W3.

SIMULATING BIRDS' GEOMAGNETIC SENSE

With some trepidation I refer to the magnificent correspondence entitled "Electrodynamically induced e.m.f.," which spanned nearly two years from its inception in "Cathode Ray's" articles "Electricity and Magnetism?" (September and October 1974) via the spirited introduction of the aeroplane problem by Todd and Taylor of Brunel University (July 1975). May I engage the attention of those readers who would agree with C. R. Masson (Cambridge), "Cathode Ray," D. H. Preis (Harvard), B. J. C. Burrows (Culham), D. Midgley (Hull) and me! in order to help solve what seems like a very nonWireless World problem - the geomagnetic sense in birds?

I have made a computer simulation of an "electrodynamic" model of bird flight. Due to wing-flapping the voltage-gradient varies, depending upon the instantaneous direction of the wing with respect to the direction of the geomagnetic field. The simulation resolves wing movement in three axes and the earth's field in two axes.
There are two effects, however, which I am unable as yet to incorporate:

1. What is the effect of the vertical electric field ($\approx 100 \mathrm{~V} . \mathrm{m}^{-1}$) upon the small computed voltage gradient induced in the wing (varying between $\approx-200 \mu \mathrm{~V} \cdot \mathrm{~m}^{1}$ and $+100 \mu \mathrm{~V} \cdot \mathrm{~m}^{\prime}$)? A simplistic argument runs like this: the external electric field is confined to the bird's surface, in the manner of Faraday's ice-pail, by induced charge. This charge gives rise to a leakage current which is limited by the low conductivity of the surrounding air to $\approx 10^{-1} \mathrm{~A}$, and which varies with movement of the wings in common mode for both wings. I fancy that a more advanced treatment would suggest that movement normal to an electric field gradient invokes a magnetic field at right angles which would modify the apparent direction of the geomagnetic field. 2. A varying voltage gradient in a bird's flapping wing demands ion movement to provide a "displacement" or "polarisation" current along the wing. If one uses values for wing "external" capacitance of the order of 10 pF , one is left with a value of displacement
current of $\approx 10^{-14} \mathrm{~A}$ which is uncomfortably low although possible. I would like to think that there is some analogous internal capacitance, which describes the separation of charge carriers normal to the planes of equal internal voltage, which might have the effect of increasing this small displacement current. At any rate, the phase of this current appears to vary with the bird's heading, at a frequency of twice the flap frequency of about 7 Hz in pigeons (i.e, narrow band f.m.).
As a matter of interest New Scientist describes bird navigation as "a central problem of avian biology!" Any offers?
B. Whatworth,

Addlestone,
Surrey.

LOSS OF INFORMATION CONCEPT

I have noted the comments in your August issue both in the leader and in Mr Greenbank's letter.

The first point you both make is that I did not express the "loss of information" concept (Letters, June 1977) in engineering terms, i.e. those that can be objectively quantified. However, in the context of a letter to a magazine I do not feel that this was the place to expand these ideas any further. This does not mean that we do not or can not measure "loss of information" objectively. Now, as in my previous letter, I do not propose to go into great depth on the measurement of "loss of information" but perhaps if any of your readers are both interested and suitably equipped they may care to try the following test which is one of many ways of ascribing a figure to "loss of information".

Submit the equipment under test to two signals, one of large amplitude which reasonably stresses the equipment and a second which is of higher frequency and smaller amplitude. At the output of the equipment under test the large signal is filtered out so that the smaller signal may then be examined. In this test one is concerned with distortion of the small signal during and after stress conditions caused by the large signál - for example, in the case of an amplifer, driving an electromechanical load.

The difference in dynamic range between the two input signals may be as large as 90 dB . This test is the basis of a range of tests which can characterise the ability of a piece of audio equipment to reproduce a given dynamic range at one instant in time. This ability is crucial to the reproduction of music. I would propose however that conducting these tests on a piece of equipment after it has been designed is rather like shutting the garage door after the car has been stolen.

I was most interested by Mr Greenbank's disclosure that during amplification "latch-up" periods of 100% intermodulation occur. Intermodulation is a term that describes what occurs when two signals modulate each other, i.e. produce input dependent intermodulation products e.g. f_{1} $-f .+f_{1}, 2 f_{i}-f_{2}$ etc. As far as I have uecil able to ubserve when an amplifier is "latched-up" it does not respond to input signal in any predictable way.
J. Vereker

Naim Audio Ltd
Salisbury
Wilts.

AURAL SENSITIVITY TO POLARITY

I suspect that Dr Lipshitz (October Letters) and I are getting round to dealing with apparent misunderstandings rather than real differences of opinion on the question of polarity maintenance.

The polarity effects that Dr Lipshitz described do exist and have been known to exist for some 30 years and I discussed the generally accepted explanation. The waveforms of speech are known to be asymmetrical and either by coincidence or evolution the asymmetry just about compensates for asymmetry of the opposite polarity in the ear drum system. To maintain the compensation that nature apparently intended, it is necessary that our radio transmission systems maintain this polarity relation, a positive going sound pressure wave at the studio microphone producing a positive going sound pressure wave in the listening room. Polarity changes anywhere in the system will produce a change in the quality of the reproduced sound. However, the effect is subtle and I think that it requires equipment of professional quality if it is to be detectable.

I think Dr Lipshitz will agree that the experiments that he describes only tend to support this explanation.
James Moir
Jumes Moir \& Associates
Chipperfield
Herts

ADVANCED
 PRE-AMPLIFIER DESIGN

I found Mr Jung's letter in the September issue most interesting; it is gratifying to encounter someone who constructs and measures the circuit under discussion before commenting on it. However, I think it is important to distinguish clearly between the two types of restriction of output swing that occur at high frequencies in the type of disc pre-amplifier being discussed. It is, I think, better to stick with the accepted nomenclature and reserve the term "slew limiting" for that effect arising from the open-loop behaviour of an amplifier, and caused by finite currents charging and discharging compensation capacitance.

The other form of output restriction, which Mr Jung deals with under the same heading, is rather different, being peculiar to closedloop amplifiers with significant shunt capacitance in the feedback arm. This is of course precisely the situation that occurs in an RIAA equalised input stage where the gain is designed to be relatively low so that a high overload margin may be obtained (assuming that a gain control of some kind is then placed before any further voltage gain). The core of the problem is that the feedback-loop shunt capacitance falls in reactance as the frequency being handled increases, and so an increasing current demand is placed on the output section of the amplifier; if this cannot be satisfied then a form of clipping results, and the output capability (and hence the input overload
performance) is restricted at the top of the audio spectrum.
The output structure of the disc input stage of the "Advanced pre-amplifier" is a simple emitter-follower; this is much better at sourcing current than sinking it, and so Mr Jung's graph shows a curtailment of output capability at full drive and high frequencies, indicated by the abrupt rise of harmonic distortion that is typical of clipping. Examination will show that deformation of the output waveform only takes place on the downward half-cycle, due to the limited current-sinking capability, and in this respect the effect is quite different from what is normally known as slew-limiting.

It is at this point important to note that "full drive" is some 40 dB above the nominal operating level of the stage, so the effects discussed here are unlikely to be obtrusive in the day-to-day performance of the preamplifier. Mr Jung's graph shows that if the test signal amplitude is reduced by 12 dB there are no output-restriction effects in the audio band.
Finally, I have tested the effect of Mr Jung's modification (reduction of R_{e} to $1 \mathrm{k} \Omega$), and while the graph he displays is certainly correct in its essentials*, I feel it would be more meaningful to plot maximum available output swing against frequency. If this is done, it will be seen that the modification has its maximum effect at about 6 kHz , where another 3.2 dB of output voltage is available, giving a corresponding increase in input overload margin. However, the improvement diminishes either side of this frequency, falling to 1.0 dB at IkHz and to 2.4 dB at 10 kHz . Readers must judge for themselves whether this is worth the extra 14 mA drawn from the power supply; confirmed lily-gilders may care to note that the same improvement can be implemented without increase in the current drawn by replacing R_{e} with a constant-current source delivering 6 mA .
D. R. G. Self

London E. 17
*The distortion figures shown for below 3 kHz seem rather high - in particular it is most suspicious that the t.h.d. at 1 kHz is shown as being higher at $1.25 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$. than at 5 V r.m.s. I assume that the data shown includes the imperfections of the test equipment.

CEE22 MAINS CONNECTORS
 STANDARD OR FIASCO?

Do manufacturers of electrical equipment using the CEE22 mechanical size and shape connector have any requirement to use a particular pin configuration? Many of the mains leads for these equipments (if not the majority) are of the moulded variety, and consumers tend to implicitly trust these leads.

Although it is becoming less common, single pole switching is still in use and production. The danger lies in the fact that while the equipment is switched off or when the mains fuse is blown the internal circuit is still live if the live and neutral leads are reversed. God forbid the results if the earth lead is transposed!
To date I have found three different manufacturers issuing equipment with live/neutral transposed leads. Two of these put no names on the leads.

I hope more people can be made aware of the moulded lead quality control/nonstandard hazard.
K. A. Yates,

Glenrothes,
Fife.

ELIMINATING ADJACENT-CHANNEL INTERFERENCE

I find the July 1977 issue article on eliminating adjacent channel interference by P. L. Taylor to be most interesting. I have been attacking the problem for some time and have also developed a system to attenuate in-band interference on double sideband transmissions. This has been demonstrated to operate well with in-band modulated carriers and numerous in-band tones. Noise is also reduced. However, I have been unable as yet to satisfactorily eliminate cross modulation between noise and the wanted signal, and, of course, depending on how noise theory is interpreted and extended, this may or may not be possible.

As the system is somewhat complex this is not the place for its description. However, I find the reactions that I have been receiving to it to be surprising and rather depressing, and unfortunately some of these reactions would also apply to Mr Taylor's design.

The first reaction from Canadian Government officials is that interference and noise do not pose any problem as current equipment provide noise-free reliable links. Next, the system only applies to double sideband transmissions. This form of radio communication is now obsolete and is being legislated out of existence to be replaced by single sideband. A reaction from Canadian industry is that it is too complex to warrant risking development money and would necessitate synchronous receiver operation which has proved unpopular in the past. From Canadian universities and research establishments comes the comment that the system cannot possibly work for noise because Shannon set the God-given limits twenty years ago and any suggestion that his theory can be developed to show more than 3 dB advantage for double over single sideband transmission is rank heresy; common interference reduction is of no interest. Incidentally, the one exception here is McMaster University in Hamilton, Ontario.

Double sideband amplitude modulation produces a unique signal having a "mirror image" frequency spectrum and constant phase. Interference can be detected in very much the same way as used to be employed in old movies for a man to tell whether or hot he was real. If he saw his reflection in a mirror he was real, if no reflection was there he had to conclude that he was a ghost.

There is the possibility that a double sideband signal can be lifted out of interference and noise to an extent that is an order of magnitude greater than current communications theory implies. It is not that the theory is wrong, it is that it is limited. Mr Taylor's system shows one approach, my own shows another.
L. Illingworth

Cerman \& Milne
Montreal
Quebec. Canada

Microcomputer design

2 - Practical hardware and software

by Phil Pittman, B.Sc., in association with NASCO Ltd

Having now looked at the various elements which constitute a microcomputer system we shall move on to examine the detailed construction and operation of a practical system. The example chosen is based on the microcomputer kit shown as a block diagram in Fig. 1 (see panel in November issue).

This system is intended as a "home" computer kit for amateur and educational use. By using commonly available domestic equipment as peripherals, for example a standard television set for a display and an audio cassette player for storing and loading programmes, a low cost system has been produced. The Z80 c.p.u. connects to the memory and the i/o components via the three bus arrangement described last month. The $1 \mathrm{~K} \times 8$ e.p.r.o.m. is programmed with a system monitor programme. This programme automatically starts running
when power is applied and allows the user to communicate with the system. Commands may be entered via the keyboard and interpreted and executed by the monitor programme. This then allows the system to function as a general purpose computer where user programmes may be keyed in to the r.a.m. memory for subsequent execution, again under control of the monitor programme. The monitor supports such functions as: entering information into memory, displaying memory contents on the tv screen, loading memory from cassette tape, storing memory contents on cassette tape, starting programme execution from any given memory address and stopping programme execution when a predetermined point is reached.
Although the entire $2 \mathrm{~K} \times 8 \mathrm{r} . \mathrm{a} . \mathrm{m}$. is available to the user of the system as a

Fig. 1. Block diagram of the commercial microcomputer kit.
programme or data store, $1 \mathrm{~K} \times 8$ of it is generally reserved as a character store for the tv screen information. However, because this screen memory is accessible by any programme in the system it is possible to achieve some interesting graphic effects by this conventional video interface.
A serial interface is implemented in the kit in order to provide a serial data stream to and from the cassette system. The keyboard is connected via a parallel interface controlled by the monitor software.

The essential parts of this hardware system are shown in detail in Fig. 2. Before considering the operation of the system it is useful to examine the timing of a general Z 80 system. Fig. 3(a), (b) and (c) show the bus timing relationships for a programme memory access, data memory access and i/o access respectively. Note that each c.p.u. machine cycle is made up of a number of timing states. A complete instruction cycle may consist of one or more machine cycles, each consisting of at least three clock cycles, depending on the complexity of the particular instruction. The simplest Z 80 instruction requires four clock cycles (or "T" states). During the T_{1} state the memory or i / o address is placed on the address bus. The "memory request" or "input/output request" signal indicates whether the address is for a memory or i / o operation. T_{2} is the time allowed to retrieve the memory or i/o data. The data travels on the data bus during T_{3} time. The "read" and "write" signals indicate whether a read (or input) or write (or output) operation is in progress. This control structure, although described for the Mostek Z 80 microprocessor, is fairly general for most processors. Other signals, more specific to the Z80 operation, will not be described here.

Referring to the circuit of Fig. 2, notice that because each bank of memory is $1 \mathrm{~K} \times 8$, the address decoding is relatively straightforward. To address 1024 memory locations requires 10 address bits and so lines $\mathrm{A}_{0}-\mathrm{A}_{9}$ are common to all banks. In order to select

Fig. 2. Partial circuit diagram of the commercial microcomputer kit.
Integrated circuits are labelled with their type numbers and other annotation corresponds to Mostek's technical literature. Negated names, e.g. $M R E Q$ indicate that the function is active when the signal is low. At this stage it is not necessary to follow the circuit in detail.
the appropriate bank, lines $\mathrm{A}_{10} \mathrm{~A}_{12}$ are decoded via a 3 to 8 line decoder. The resulting memory map is shown in Fig. 4. The monitor p.r.o.m. is located in address range $0-1 \mathrm{~K}$ because on po-wer-up or system rest, programme execution is forced to resume at address zero. Consequently this is a convenient method to automatically begin execution of the monitor programme.
Since there very few i/o circuits in the system an address decoding scheme is not necessarily required for these, i.e. port addresses may be chosen such that individual address bus bits can select the appropriate device.

So far we have looked at the basic hardware components of a microcomputer system, showing how they relate to one another. Although one particular application has been considered, the hardware arrangement is capable of being universal. However, without software the hardware has no "personality". Software gives life to the hardware and will form the subject of the following discussions.

Stored programme concepts

The previous section has presented the hardware of the microcomputer kit after developing some of the concepts involved in its design in the previous article. In order to perform any useful function, the hardware must be given a programme to be stored in the microcomputer's memory. This then gives the system a unique "personality". In the following paragraphs some of the basic principles of programme execution and programme flow are introduced. A summary of the use of the "operations monitor' programme of the microcom-
puter kit is included in order to show some of the facilities available for verification of programmes, once written.
Any computer programme exists as a sequence of instructions within the main memory of the machine. These instructions are sequentially executed by the central processing unit to perform the desired task. Each instruction is represented within the memory as a binary number, which is decoded by the c.p.u. in order that the instruction may be executed. The instructions to be used are selected, by the human programmer, from what is called the "instruction set" of the c.p.u. The instruction set is the repertoire of binary codes which the c.p.u. is capable, by virtue of its design, of "recognising". The Z80 microprocessor, for example, has an instruction set consisting of 158 basic instructions.

In order to run a complete programme the c.p.u. must go through a process of repetitively fetching instructions from the memory into an internal store called an instruction register (see Fig. 5 November issue) and then decod-

Fig. 4. Microcomputer system memory map.
ing and executing the instructions. This "fetch-execute" cycle is the basis for all programme operations.
The "fetch" part of the cycle is accomplished by the processor's placing the memory address of the next instruction in sequence on to the address bus and initiating a "memory read" operation. The instruction at this address then travels via the data bus into the processor, where it is subsequently executed. Upon completion, the next instruction must be fetched, and so on. Consequently there must be some mechanism provided within the c.p.u. for supplying sequential instruction addresses for successive fetches. This is in fact provided by the programme counter register. It is the contents of the programme counter which are placed on the address bus at the start of an.

Fig. 3. System timing of the Z80 microprocessor, for (a) programme memory access, (b) data memory access and (c) i/o access.
instruction fetch. Then, before another fetch occurs, the programme counter is incremented so that the following instruction in sequence will be fetched next.

Once an instruction is in the c.p.u., the instruction decoding logic (Fig. 5, November) activates the appropriate internal circuits and an execution phase begins. Executing the instruction may be a completely internal operation within the c.p.u., e.g. performing an arithmetical, logical or data transfer operation on data contained in the microprocessor's registers. Alternatively, the execution of an instruction may require the movement of data in another area of system memory. If this is the case then the c.p.u. must put the new memory address on the bus for the transfer. This state of affairs may be further complicated by the fact that the data memory address may either exist in registers within the c.p.u. or may first have to be supplied to the c.p.u. from the "instruction memory", i.e. the programme memory may, in fact, consist of a mixture of instructions and data or addresses. The instruction contains a binary "operation code" which tells the c.p.u. exactly what to do during the instruction phase and whether to interpret subsequent information as data, address or a new instruction.

The following examples illustrate some of these possibilities. The c.p.u. has several internal 8 -bit general purpose registers which will be referred to as A, B, C, D etc. Suppose we want to construct a programme to simply add the contents of B to A and then put the result into register C. A typical sequence of instructions could be

1. Add B to A
2. Load C from A

This simple programme requires two instructions as shown, each residing in one location of the programme memory.

Since the source and destination of the data for each instruction are contained wholly within the c.p.u.'s internal registers, no additional information need be supplied during the execution phases of the instructions.

Suppose now that it is desired to add a constant, n, to the contents of register A and then again put the result into register C. The programme instructions could be:

1. Add n to A
 2. Load C from A

This programme must supply the number, n, to the c.p.u. from the programme memory. Consequently the programme memory would appear as follows:

Address

This time, the number, n is embedded within the instruction stream and so a total of three memory locations is required for the two instructions. In the above examples the "load" instructions are identical, having the same data source and destination. However, the "add" binary instruction codes must be different in order to instruct the c.p.u. to get the data from the appropriate place. In the second example the programme sequence would be as follows: first, the programme counter contents (p) would be issued by the c.p.u. in order to fetch the "add" instruction. By decoding this the c.p.u. would then "know" that it must fetch data from the next sequential memory location. Now, during the execution of any instruction the programme counter will be advanced by one. Consequently the data address will be given by the new value in the programme counter. When this is fetched the c.p.u. completes the instruction execution and proceeds to fetch the next.

Another variation of this situation is given in the next example. Suppose it is required to add the contents of register B to those of register A and then store the result in another external memory location specified in the programme. The programme could be:

1. Add B to A
2. Load memory address $m n$ from A.

The memory address $m n$ may be typically a 16 -bit number, therefore requiring two 8 -bit memory. locations. Consequently, the programme may appear as shown below:

This time the "load" instruction code instructs the c.p.u. that the destination address is contained in the next two memory locations and so the programme counter is incremented and sent out two more times before the c.p.u. has fetched all the information it requires. Now in order to complete the execution of this instruction, the address value ($m n$) must be sent out from the c.p.u., on the address bus, in order to access the required data memory location. During this cycle the data (contents of register A) is placed on the data bus so that it may be written into memory.

Table 1: Microcomputer kit software commands
\(\left.$$
\begin{array}{llll}\hline \text { T } & \text { ssss } & \mathrm{ffff} & \begin{array}{l}\text { Tabulate memory contents from address ssss to ffff } \\
\text { D } \\
\text { Dump memory to cassette from address ssss to ffff }\end{array} \\
\text { L } & \text { ssss } & \text { ffff } & \\
\text { M } & \text { nnnn } & & \begin{array}{l}\text { Load memory from cassette }\end{array}
$$

Modify memory location nnnn\end{array}\right]\)| Execute programme (from address nnnn) | | |
| :--- | :--- | :--- |
| B | nnnn | or E |

These simple examples have illustrated two important points: the way in which data and/or addresses may be included in programme instructions and how the c.p.u. is guided by the instruction operation codes into interpreting the sequence of information in the programme memory. The examples have shown how instructions are executed one by one, from start to finish of a programne. However, one of the principal features of a digital computer is its decision-making ability. In other words, the c.p.u. has the ability to select its own path through a programme depending on the results it gets from processing en-route.
In general this is achieved by certain instructions being able to examine the logical state of various bits within the a.l.u. Then, depending on these states, the c.p.u. may either continue with the next instruction in sequence or be diverted to a new area of programme memory. Diverting the c.p.u. in this manner is accomplished by loading a new value into the programme counter.
More specifically, the Z80 c.p.u. has, as part of the a.l.u., several single-bit "status registers" which remember conditions relating to the previously executed arithmetic or logical operation. These include the carry bit from the adder, an arithmetic overflow bit, an indication of a zero result, the sign (if relevant) of the a.l.u. result and an indication of the parity of the result in the a.l.u. Instructions in the c.p.u's programme "jump" group are able to interrogate any of these bits and either load the programme counter with a new value or leave it unchanged, depending
on the binary state of the particular status bit.
In the programme shown below the c.p.u. tests the value stored in register A to see if it is less than 10 . If so it subtracts 6 or otherwise leaves the number unchanged:

1. Compare A with 10
2. Jump if carry $=1$
3. Subtract 6 from A
4. Next instruction

Here the "compare" instruction has a similar effect to that of subtracting 10 from A although the A register contents will remain unaltered. However, 'the carry bit of the a.l.u. (effectively a 9 th a.l.u. bit) will be set to 1 if the number 10 is greater than the contents of the A register. The conditional jump instruction can examine the carry bit and thereby decide whether to continue normally or to jump out of the normal flow to another point in the programme. The programme memory would look as shown below.

When the jump instruction is fetched, all three memory bytes, i.e., including the 16 -bit jump address, will be read into the c.p.u. However, if the test is true then the value $(p+7)$ will be put into the programme counter causing the "subtract 6 " instruction to be missed.
The instructions used in the above examples are but a few of the many which are common to most microprocessors.
Before continuing to look at further programme writing techniques it is relevant to complete the discussion of the microcomputer kit facilities by

Address		Compare instruction operation code
p	Compare	
$p+1$	10	Operand (10) for compare instruction
$\mathrm{p}+2$	Jump if carry	Conditional jump operation code
$p+3$	$p+7$	16 bit jump address to $p+7$
$p+4$		
$\mathrm{p}+5$	Subtract	Subtract operation code
$p+6$	6	Operand (6) for subtract instruction
$p+7$	Next instruction	Next instruction in sequence

Table 2: Hexadecimal number system

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111

examining the features offered by the kit's own software package.

A practical software system

The lKbyte e.p.r.o.m. programme of the kit is intended as an aid to debugging and executing programmes written by users of the kit. This software supports seven basic commands as outlined in Table l.

Before proceeding with a description of these commands it is useful to introduce the concept of the hexadecimal number system. When working at machine code level with computers it is obviously very tedious to work in pure binary notation since the numbers are very cumbersome and difficult to visualise easily. Similarly, it is inconvenient for the computer to work with a decimal system since binary bit patterns are not readily convertible to and from decimal numbers. Consequently a suitable compromise is the hexadecimal system which works to a base of 16 . Here the symbols 0 to 9 are no longer adequate by themselves and six additional symbols are required for representation of hex numbers. These are chosen to be letters A to F. of the alphabet. Table 2 shows the equivalent binary and decimal values for the hex digit set. The advantage now is that numbers can be easily converted between binary and a notation which is less tedious to write because each hex digit corresponds directly to 4 bits of the binary value. Table 3 shows examples of a 16 -bit and an 8 -bit binary conversion to and from hex.

The software of the kit uses this
number system for both displaying and entering numerical information. Each command entered via the keyboard by the user must consist of a single letter identifier followed in most cases by one or two 4 -digit hex numbers. If two such parameters are required they must be separated by a space. The kit automatically generates the space between the letter identifier and the first parameter. To cause the command entered to be executed, the user must type a "carriage return" (cr) character When the system is ready to accept a new command it "prompts" by issuing a full stop (.).

The "tabulate" (T) command allows the user to display the contents of the system's memory by specifying the upper and lower address limits concerned as part of the command. An example of this is shown in Table 4. Note that eight hexadecimal memory bytes are displayed per line, preceded by the address of the first byte on that line.

The "dump" (D) command works in a similar way but causes the information to be recorded on to the cassette tape system. As it does so, an additional item of data, called a "checksum" is calculated for each line of data. This checksum is not displayed but is recorded on tape for subsequent checking by the "load" (L) command.

The "load" command reads programmes or data from cassette and stores the relevant memory values in the system's memory at the addresses specified at the beginning of the information blocks. Checksums are again calculated by the processor and compared with those on tape. If they differ, the computer assumes that there has been a tape reading error and stops further loading. At this point the user can take whatever action is desired.

The "modify" (M) command allows memory locations to be examined or modified via the keyboard. Variations on this command enable the user to examine a single byte, replace it with a new value, delete a wrongly entered value, continue to the next consecutive memory address or terminate the command.

A programme "breakpoint," as it is called, may be set using the "B" command. A breakpoint is a very valuable facility when initially checking out a programme to see if it runs correctly. The address value given as part of the breakpoint command represents the point at which it is desired to stop a programme being executed. At

Table 3: Examples of binary/hexadecimal conversions

(a)	Binary	0001	1010	1110	0110
	Hex Decimal	$\left.\begin{array}{c} 1 \\ (1 \times 16 \end{array}\right)$	$\begin{gathered} A \\ (10 \times 16) \end{gathered}$	$\stackrel{E}{14 \times 161}$	$\begin{array}{r} 6 \\ \text { (6) } \end{array}$
(b)	Hex	$\overbrace{0011} \leftarrow 3 F>\overbrace{1111}$			

Table 4: Typical display format from kit

| (.) | T | 800 | 813 | | (Entered by user) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0800 | 00 | 11 | 22 | 33 | 44 | 55 | 66 | 77 |
| 0808 | 88 | 99 | $A A$ | $B B$ | $C C$ | $D D$ | $E E$ | $F F$ |
| 0810 | $A 1$ | $B 2$ | C3 | D4 | | | | |

this time, the kit software prints out the current contents of the c.p.u.'s programme counter and accumulator registers. Also, the remaining c.p.u. registers are automatically saved in r.a.m. so that they may be examined later with the " M " or " T " commands. In this way the programmer is able to "see inside", the c.p.u. chip at any desired stage in the programme and then modify the registers accordingly, if required, before continuing.
The "execute" (E) command is used to start execution of a programme from a desired address. If no address is specified with the command then execution will continue from the address which was in the programme counter before the previous breakpoint was encountered. Register values saved at a breakpoint will be restored automatically prior to execution.
The "single step" (S) command is similar to the "executive" command but causes only one instruction to be executed before stopping.

The above facilities enable programmes to be debugged on the kit in a way that would not be possible otherwise. The value of these will be illustrated in a more practical way in a future article on programme writing and debugging.

SPECIAL TERMINOLOGY

To access. The noun "access" used as a verb. meaning to gain access to a memory location in which binary information is already stored or can be stored To open up a set of connections to allow reading from or writing into this location.

Instruction. An expression that defines a computer operation and identifies its operands.

Programme. A prepared list of instructions, written in a special "language" or code, to be carried out in sequence by a computer or other programmable device.

Instruction set. The total list of instructions that can be performed by a given microprocessor

Operation code. The symbols within an instruction that represent the particular operation to be performed (e.g. add).

Register. A small-capacity store intended for temporarily holding a small number of binary digits such as a word.

Jump. A departure from the normal sequence of instructions in a programme to a different part of the programme of Article 7, which appeared in the September issue.

More synchronous and ripple-through counters

by B. Holdsworth* and D. Zissos \dagger
'Chelsea College, University of London tDepartment of Computing Science, University of Calgary, Canada

Decade binary 'up' counter. Examination of the unused states in Fig. 5(a) shows that they can be represented by the Boolean function $B D+C D$

The flip-flop equations are the same as for the scale-of-16 'up' counter, namely, $J_{A}=K_{a}=1, \quad J_{B}=K_{B}=A$, $\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{AB}$ and $\mathrm{J}_{\mathrm{D}}=\mathrm{K}_{\mathrm{D}}=\mathrm{ABC}$, with the modifications shown below, which are required to inhibit the S_{9} to S_{10} transition and initiate the S_{9} to S_{0} transition.
The transitions from S_{9} to S_{10} and S_{9} to S_{0} are shown below:
pulses and trip an alarm, using the Boolean function representing these states, $\mathrm{f}=\mathrm{BD}+\mathrm{CD}$. A suitable circuit for suppressing the clock pulses is incorporated with the counter implementation in Fig.5(b).
A decade of binary 'down' counter can be designed using the same technique and the corresponding flip-flop equations are: $J_{A}=K_{A}=1$, $\mathrm{J}_{\mathrm{B}}=\overline{\mathrm{A}} \mathrm{C}+\overline{\mathrm{A}} \overline{\mathrm{D}}, \mathrm{K}_{\mathrm{B}}=\overline{\mathrm{A}}, \mathrm{J}_{\mathrm{C}}=\overline{\mathrm{A}} \mathrm{D}, \mathrm{K}_{\mathrm{C}}=\overline{\mathrm{A}} \overline{\mathrm{B}}$ and $J_{D} \cdot=K_{D}=\bar{A} \bar{B} \bar{C}$. The output of a
binary decade counter can be converted to a decimal number using a 4-10 line decoder as shown in Fig.6.

Consider the transition in such a counter from 0001 to 0010 and assume that flip-flop B changes faster than flip-flop A. The sequence of changes that take place are:

[^5]

To inhibit the set of flip-flop $B, S_{5}=$ ABS_{9}, where $\mathrm{S}_{9}=\mathrm{ABCD}+(\mathrm{BD})+$ (CD). Simplifying: $S_{9}=A D$, hence: S_{B} $=A \bar{B} \bar{A} \bar{D}=A \bar{B}(\bar{A}+\bar{D})=A \bar{B} \bar{D}$. Therefore, $J_{B}=A \vec{D}$. To initiate the: reset of flip-flop $D, R_{D}=S_{9}=A D$. Therefore, $\mathrm{K}_{\mathrm{D}}=\mathrm{A}$.

If the counter should assume one of the unused states due to circuit misoperation then a suitable corrective action might be to suppress the clock

Fig. 5(a) shows the state diagram for a decode binary 'up' counter, and at (b) is the circuit implementation.

Fig. 6. A 4-10 line decoder.

Table 8. The XS-3 Gray code.

D	C	B	A
O	0	1	O
0	1	1	0
O	1	1	1
0	1	0	1
0	1	0	0
1	1	0	0
1	1	0	1
1	1	1	1
1	1	1	0
1	0	1	0

Fig. 7. State diagram for a XS-3 Gray code counter is at (a) and (b) shows the circuit.

Hence a spike will occur on the output line marked 3 during the transient state. Clearly this can occur at any point in the binary counting sequence where more than one flip-flop is required to change state during a transition. The difficulty can be eliminated by using a Gray code counter, in which only one flip-flop changes state at each transition.
Decade Gray code 'up' counter. As an example of the design of a Gray code counter, the XS3 code will be converted to a Gray code which will be used as the basis for the counter design. The conversion is carried out by obtaining the exclusive-OR sum of each pair of digits in the code starting with the two
least significant digits first, as shown below. It is assumed that there are five digits in each code combination, the fifth and most significant, always being 0.

The complete XS3 Gray code obtained using this procedure is shown in Table 8. A convenient procedure for designing a Gray code counter is:
(1) Determine the S and R expressions for each flip-flop and, using the * equations $\mathrm{S}_{\mathrm{Q}}=\mathrm{J}_{\mathrm{Q}} \overline{\mathrm{Q}}$ and $\mathrm{R}_{\mathrm{Q}}=\mathrm{K}_{\mathrm{Q}} \mathrm{Q}$,
obtain the corresponding expressions for J and K .
(2) Optional products defined by the unused states, (if there are any.) can now be used to reduce the J and K expressions. For the state diagram and codes, see Fig.7(a).

Examination of the unused states in Fig.7(a) shows that they can be represented by the Boolean expression $\overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{C}}$.

The flip-flop equations are:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{A}}= & \mathrm{S}_{1}+\mathrm{S}_{5}=\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}+\overline{\mathrm{A}} \overline{\mathrm{~B} C D} \\
\mathrm{~J}_{\mathrm{A}} & =\mathrm{BC} \overline{\mathrm{D}}+\overline{\mathrm{BCD}}+(\overline{\mathrm{B}} \overline{\mathrm{~B}})+(\mathrm{A} \overline{\mathrm{C}}) \\
& =\overline{\mathrm{B}}+\mathrm{BCD}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{A}}=\mathrm{S}_{3}+\mathrm{S}_{7}=\mathrm{ABCD}+\mathrm{ABCD}$
$\mathrm{K}_{\mathrm{A}}=\overline{\mathrm{B}} C \overline{\mathrm{D}}+\mathrm{BCD}+(\overline{\mathrm{B}} \overline{\mathrm{C}})+(\mathrm{A} \overline{\mathrm{C}})$
$=\bar{B} \bar{D}+B C D$
$S_{B}=S_{6}=A \bar{B} C D$
$\mathrm{J}_{\mathrm{B}}=\mathrm{ACD}+(\overline{\mathrm{B}} \overline{\mathrm{C}})+(\mathrm{A} \overline{\mathrm{C}})$
$=\mathrm{AD}$
$\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{2}=\mathrm{ABCD}$
$K_{B}=A C \bar{D}+(\bar{B} \bar{C})+(A \bar{C})$
$=A \bar{D}$
$S_{C}=S_{0}=\bar{A} B \bar{C} \bar{D}$
$\mathrm{J}_{\mathrm{C}}=\overline{\mathrm{A}} \overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{D}}+(\overline{\mathrm{B}} \overline{\mathrm{C}})+(\mathrm{A} \overline{\mathrm{C}})$
$=\bar{A} B \bar{D}$
$\mathrm{R}_{\mathrm{C}}=\mathrm{S}_{8}=\overline{\mathrm{A}} \mathrm{BCD}$
$K_{C}=\bar{A} B D+(\overline{\mathrm{B}} \bar{C})+(\mathrm{A} \ddot{\mathrm{C}})$
$=\overline{\mathrm{A}} \mathrm{BD}$
$S_{D}=S_{4}=\bar{A} \bar{B} C \bar{D}$
$\mathrm{J}_{\mathrm{D}}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+(\overline{\mathrm{B}} \overline{\mathrm{C}})+(\mathrm{A} \overline{\mathrm{C}})$
$=\bar{A} \bar{B}$
$\mathrm{R}_{\mathrm{D}}=\mathrm{S}_{9}=\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}} \mathrm{D}$
$\mathrm{K}_{\mathrm{D}}=\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+(\overline{\mathrm{B}} \overline{\mathrm{C}})+(\mathrm{A} \overline{\mathrm{C}})$
$=\overline{\mathrm{C}}$
The circuit implementation of the counter is shown in Fig.7(b).
The output of the counter can be converted directly to decimal with the aid of a 4-10 line XS3-Gray-to-decimal decoder, which is available as a chip.

If the above procedure is adopted for the design of an XS3-Gray code decade 'down' counter the following flip-flop equations are obtained:
$\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{B}} \overline{\mathrm{D}}+\mathrm{BCD}, \mathrm{J}_{\mathrm{B}}=\mathrm{A} \overline{\mathrm{D}}, \mathrm{J}_{\mathrm{C}}=\overline{\mathrm{A}} \mathrm{BD}$, $\mathrm{J}_{\mathrm{D}}=\overline{\mathrm{C}}$.
$K_{A}=\bar{B} D+B C \bar{D}, K_{B}=A D, K_{C}=\bar{A} B \bar{D}$, $K_{D}=\bar{A} \bar{B}$.

The unreduced, and hence the reduced, J and K values of the flip-flops in one direction are the same as the K and J values of the flip-flops in the reverse direction, i.e. to reverse the direction of count it is only necessary to interchange the J and K inputs of each flip-flop.
It should be noted that the method of design employed does not always produce the simplest flip-flop equations but it has advantages when applied to the implementation of 'up-down' Gray code counters.

'Up-down' control

'Up-down' counters are counters in which the pulse count is stepped up or stepped down by each input pulse according to whether Yhe value of an external control signal R is 0 or 1 . In practice, the input signals that step the count up or down will appear on two separate lines X and Y , as shown in Fig.8(a). The designer has to generate the clock pulses that will drive the counter flip-flops and the 'up-down'

(a)

Fig. 8(a) shows the input/output characteristics required of an up/down counter, with the state diagram at (b). The control circuit is shown in (c).

control signal R. It will be assumed that step-up and step-down signals do not appear simultaneously.

The control signal must not be allowed to change during the presence of the input data. In this case, the control signal will be generated from the input data and a race condition can be prevented by using the first pulse in each pulse train to change the value of R. Since each time the value of R is changed an input pulse is not counted this method results in a maximum count
error of 1 for an odd number of changes in R and no error for an even number of changes in R.

The logic circuit used to perform the function described above is event driven and the methods used in the third article of this series will be employed in its design.

Step 1 Figure 8(a) shows the input/output characteristics.
Step 2 A suitable state diagram is shown in Fig.8(b).

Step 3 State reduction is not attempted so that clarity of design is maintained.
Step 4 Turn-on set of $Q=R \bar{Y}$
Turn-off set of $Q=\bar{R} \bar{X}$
Turn-on set of $\mathrm{R}=\overline{\mathrm{Q} Y}$
Turn-off set of $\mathrm{R}=\mathrm{QX}$
The sequential equations are:
$Q=\underline{R} \bar{Y}+Q(\underline{R}+\underline{X})$
$\mathrm{R}=\overline{\mathrm{Q}} \mathrm{Y}+\mathrm{R}(\overline{\mathrm{Q}}+\overline{\mathrm{X}})$
and $c=S_{0} X+S_{2} Y=\bar{Q} \bar{R} X+Q R Y$
The circuit implementation is shown in Fig.8(c).
'Up-down' XS3-GRAY code counter. Combining the flip-flop equations for 'up' counts when $R=0$ and for 'down' counts when $R=1$ the following results are obtained for the XS3-Gray code counter:
$\mathrm{J}_{\mathrm{A}}{ }^{\prime}=(\overline{\mathrm{B}} \mathrm{D}+\mathrm{BC} \overline{\mathrm{D}}) \overline{\mathrm{R}}+(\overline{\mathrm{B}} \overline{\mathrm{D}}+\mathrm{BCD}) \mathrm{R}$
$=J_{A} \bar{R}+K_{A} R$
$K_{A}^{\prime}=(\bar{B} \bar{D}+B C D) \bar{R}+(\bar{B} D+B C \bar{D}) R$
$=K_{A} \bar{R}+J_{A} R$
Similarly
$J_{B}^{\prime}=J_{B} \bar{R}+K_{B} R$
$K_{B}{ }^{\prime}=K_{B} \bar{R}+J_{B} R$
and so on for $\mathrm{J}_{\mathrm{C}}{ }^{\prime}, \mathrm{K}_{\mathrm{C}}{ }^{\prime}, \mathrm{J}_{\mathrm{D}}{ }^{\prime}$, and $\mathrm{K}_{\mathrm{D}}{ }^{\prime}$, where J^{\prime} and K^{\prime} are used to denote the flip-flop inputs in the 'up-down' mode:

Asynchronous binary counters

For counts of powers of 2 the basic arrangement consists of T flip-flops, (or alternatively JK flip-flops with J and K permanently connected to 1), connected in cascade as shown in Fig.9(a). As can be seen from the diagram the output of each flip-flop provides the clock signal for the next. The input signal X is used as the clock pulse for the first flip-flop.

The time-diagrams for a scale-of-8 (up) counter are shown in Fig.9(b), where all changes of state are assumed to take place on the trailing edge of the clock pulses. Examination of the time diagrams shows that flip-flop A changes state on each trailing edge of the input pulses X. The output of flip-flop A is used as the clock pulse for B and a change in state of this flip-flop occurs on the trailing edge. of the A pulses. Similarly the output of B provides the clock pulse for C and this changes state on the trailing edge of the B pulses.

The various states of the counter are indicated on the time diagram and the binary digits associated with each state are marked on the time diagrams for the signals A, B, and C.

It is a simple matter to show that the above circuit will count down if the signals \bar{A} and \bar{B} are used as the clock pulses for flip-flops B and C respectively.

Scale-of-ten 'Up' Counter.

This circuit requires four flip-flops, as shown in Fig 10(a). The associated time diagrams are displayed in Fig.10(b). Starting with all the flip-flops in the 0

Fig. 9(a) is a 3-stage ripple-through counter, and at (b) are the timing diagrams.

(a)

(b)

Fig. 10 is a scale-of-ten ripple-through counter. Timing diagrams are at (b).
state, the count follows the normal binary sequence up to and including the count of eight. On the trailing edge of the tenth input pulse, flip-flop A makes a transition from 1 to 0 , which would normally induce a transition in flip-flop B, changing its state from 0 to 1 . However $\mathrm{J}_{\mathrm{B}}=\overline{\mathrm{D}}=0$ at this instant and consequently flip-flop B remains in the reset condition. At the same instant it is also necessary to reset flip-flop D and it changes state from 1 to 0 . All the flip-flops are now in the reset condition and are ready for the arrival of the first pulse of the next counting cycle.

Scale-of-twelve 'Up' counter

The basic circuit of a scale-of twelve asynchronous counter is shown in Fig.11(a), whilst the time diagrams describing its behaviour are shown in Fig.11(b). Flip-flops A, B, and C count from 000 to 101 inclusive. With $\mathrm{D}=0$ the counter reaches the state $\mathrm{ABCD}=1010$ (S_{5}), and when the next X input pulse is received it must go to the state $\mathrm{ABCD}=0001$.

Flip-flop A is controlled by the X pulses and changes state to $A=0$ on the trailing edge of the sixth of these pulses. Flip-flop B remains in the $\mathrm{B}=0$ state since $\mathrm{J}_{\mathrm{B}}=\mathrm{C}=0$ and flip-flop C takes up the state $\mathrm{C}=0$ since $\mathrm{J}_{\mathrm{C}}=\mathrm{B}=0$ and $\mathrm{K}_{\mathrm{C}}=1$. The change of C from 1 to 0 represents the trailing edge of the clock pulse for flip-flop D and hence there is a change of state for this flip-flop such that $\mathrm{D}=1$.

After another six X pulses the state of flip-flop D is restored to 0 and the counting cycle of twelve states is completed.

Fig. 11 shows the form and timing diagrams of a scale-of-12 asynchronous counter.

Continued from page 49

Appendix 1

To arrive at a general solution, take two threads of equal length y. By their top ends they hang from the ends, C and D of a fixed bar 2 a long, Fig. 9. The lower ends are fixed to the ends of a moveable bar AB, 2 b long.
The bar has a mass W and requires horizontal couple of moment M to rotate it through θ degrees about a vertical axis passing through the centres of $A B$ and CD. There will be a tension T in the threads, which will be at an angle α to the vertical.
$W=2 T \cos \alpha$
$M=2 b T \sin \alpha \sin \beta$
$M=b W \tan \alpha \sin \beta$

Now $\mathrm{Y} \sin \alpha \sin \beta=\alpha \sin \theta$ and substituting for $\sin \beta$

$$
M=\frac{W a b \sin 0}{y \cos \alpha}
$$

This is the general case. In our case we assume $a=b<1 / 3$, so $y \cos \alpha$ becomes h and constant. $\theta=90^{\circ}, \sin \theta=1$ and the equation becomes

$$
M=\frac{W a^{2}}{h}
$$

Appendix 2

The stylus only tracks a groove tangentially at the end of a side. This is in fact how the arm is set up. At the start of a side there is a tracking error γ, which in a well-designed arm should not exceed two degrees. This decreases across the record. The equation on page becomes

$$
S=F \sin (\phi+\gamma)
$$

Appendix 3

-typical values, in grams

Component	Mass-W	Me
Cartridge	7	7
Arm	5	1.5
Wire	2	0.5
Clip and screws	2	2
Counterweight	42	3
	-	-
Totals	58	14

For weighing things I use ordinary kitchen scales which turn nicely at $1 / 1, \mathrm{Oz}$. A tuppenny piece weighs $1 / 40 z$, one penny weighs $1 / 8$ oz and $1 / 2$ pence weighs $1 / 16 \mathrm{oz}$. And, of course, 1 oz is 28 grams. For objects weighing four grams or less, I use a stylus scale: hopelessly inaccurate but can be recalibrated.

Books Received

Tower's International Fet Selector by T. D. Towers and N. S. Towers starts with a brief introduction to f.e.ts followed by a list of about 2,600 devices together with chracteristics and ratings. Four appendices provide information on the tabulations, package outline and pin configuration manufacturers house codes, and manufacturers address. Price $£ 4.50$ Pp.57. W. Foulsham \& Co. Ltd, Yeovil Road, Slough, Bucks

Microphones - How They Work \& How to Use Them, no. 875; The Complete Handbook of Vidocassette Recorders, no. 811; The Complete Handbook of Slow-Scan TV, no 859; and Practical Solid-State DC Power Supplies, no. 891, are recent paperback publications from Tab Books. A hardback book entitied TV Lighting Handbook is also available from the same company. For further details and UK prices contact Tab Books, Blue Ridge Summit, Pa. 17214, U.S.A.
Microcircuit Device Reliability: Digital Generic Data and Linear/Interface Data are two publications which are now available from London Information. The data has been compiled from technical reports and information from various manufacturers. Each publication contains reliability details together with information of the field and test conditions. London Information (Rowse Muir) Ltd, Index House, Ascot, Berks.

High-speed analogue-to-digital conversion

Recent developments and applications

by O. J. Downing, Ph.D and P. T. Johnson, B.Tech., University of Bradford

Digital signal processing and data transmission, particularly for television and radar systems, have stimulated a demand for faster and more accurate analogue to digital converters. Much of the current research and development in this field has given Britain a significant technological lead. Converters capable of coding to 8 -bit accuracy with sampling rates greater than $\mathbf{3 0 M H z}$ have been demonstrated and have opened up many new applications. The two authors have spent several years researching a-to-d convertors at Bradford University with the intention of producing a cheap manufacturable converter particularly suitable for tv signals. This article describes some of the most recent systems including the author's prototype $2+2+2+2$ serial coder design, opposite, and suggest ways in which gross coding rates greater than $400 \mathrm{Mb} / \mathrm{s}$ may shortly be achieved.

It has been said that the solution to one problem begets ten more. Certainly, in the realms of digital signal processing, the inherent attractions of digital operation have led to a steadily growing range of more demanding applications for the devices and interfaces.

One recent example of the power of digital signal processing is the television signal standards converter DICE ${ }^{1}$ (Digital Intercontinental Conversion Equipment). In this equipment a complex and extensive sequence of operations are performed on a digitized tv signal using high-speed logic. This system has resulted in corresponding improvements in mean signal quality, in the amount of maintenance and setting up required, and in the general effectiveness of the equipment when compared with the analogue counterpart. Digital techniques are now being used in the design of television, radar and communication systems, and in the area of transient signal measurement with similar benefits.

In all of these applications, however, the major attractions of digital operation depend on speed, accuracy, stability, reliability and cost of the analogue-to-digital conversion process.

Thick-film integrated and hybrid a-to-d and d-to-a convertors have been available for some time. In these devices the conversion techniques such as rampcounting, feedback successive approximation, and dual-slope integration require a trade-off between the rate at which input signal samples are translated into binary digits (the conversion rate), and the accuracy to which the output bits represent the instantaneous value of the input signal (the dynamic accuracy). Although developments in component technology are relieving these restrictions to some extent, the majority of existing high-speed converters use combinations of serial and parallel conversion techniques. Integration, however, does offer mainly trouble-free and stable circuit operation. The aim of many a-to-d converter designs therefore, has been to obtain higher conversion rates and dynamic accuracy using integration techniques which require few precision components and do not need a great deal of adjustment.

Pulse-code modulation

The derivation of a pulse-codemodulated output from an analogue
input signal requires three basic operations. Firstly, the input is sampled, according to the Nyquist criterion, at a rate greater than twice the highest spectral component contained in the input signal. A low-pass filter in the input path is often used to ensure this condition. The instantaneous value of the sample must be accurately stored for a length of time which enables the converter to decide which output code it should produce. Secondly, each sample amplitude is compared with a number of preset reference levels to determine the amplitude. This quantization process commonly uses linearlyrelated levels, although expansion or compression of the dynamic signal range by the use of non-linear quantization law has been used in the logarithmic encoding of speech signals. Finally, the digital outputs of the comparison circuitry are re-coded into a more convenient form. The resulting parallel bit streams are latched to remove time-skew between them.
Typically, a converter producing an n-bit parallel binary output for each input sample requires $2^{n}-I$ accurate reference levels. The processes of sampling, quantization and coding are

Fig. 1

Fig. 2

Fig. 1. Sampling quantization and coding processes for pulse-code modulation of video signals.

Fig. 2. (a) Diode gate sampling switch and (b) m.o.s.f.e.t. switch with feedthrough cancellation.

Fig. 3. Parallel quantizer using comparators and a precision resistor chain for the reference levels.
shown in Fig. 1. Subjective tests with digitalized and reconstructed System I PAL tv signals suggest the need for at least eight bits per sample at sampling rates around 13 MHz . For many radar applications much higher sampling rates are required, often with similar quantization accuracy.

Sample and hold techniques

In principle, the process of sampling and holding a signal is accomplished by switching the signal into a capacitor store which charges to the current signal amplitude. The switch is then opened whilst the quantizer operates on the sampled value. In practice, the time taken for electronic switches to change from low and high resistance states, the parasitic reactances associated with these devices and, in high speed samplers, slewing of the input signal all combine to limit the maximum speed and accuracy.

To reduce the decay of the stored charge during the holding interval, the capacitor is buffered by a highimpedance amplifier and its capacitance is maximised. However, to ensure that the capacitor charges to the signal amplitude during the sampling period its value must be minimized. In general, the sampling period must also be minimized because quantization cannot begin until sampling is complete. Because the input signal continues to slew during the time taken for the sampling switch to open, any shifting of this point caused by noise or sampling clock jitter will cause an error in the sample value. Furthermore, the relative magnitudes of the input and switching signals can shift the sampling period and cause a further error called "aperture uncertainty". If any coupling exists between the switch and the hold store, a proportion of the sampling pulse can be fed to the store capacitor and cause a corresponding error in the voltage.
Two types of sampling switch that have recently become popular are the diode gate and the m.o.s.f.e.t. switch, see Fig. 2. In the first-mentioned the diodes are reverse biased during the hold interval but are forward biased by a current pulse from the transmformer during the sample interval. Voltage sources are included to ensure that the diodes do not become forward biased by high signal slewing during the hold interval. The use of matched lowresistance high-speed Schottky diodes

minimizes sample pulse feedthrough and charging time, but aperture errors are still determined by the slew drive rate of the driving pulse and drive transistors. Aperture errors of less than 100ps at sampling rates in excess of 50 MHz are possible with samplers of this type. A recent development has made use of the m.o.s.f.e.t. possible in high-speed samplers ${ }^{2}$. In the circuit shown, sampling pulse leakage caused by gate-source capacitance is cancelled by feeding a complementary pulse directly onto the sampling capacitor. Cancellation levels up to 40 dB have been achieved with an aperture error below 300 ps .

Serial and parallel quantizers

An obvious technique for quantizing a signal is to apply it to the commoned inputs of several comparators, the reference levels for which are derived from a precision resistor chain as shown in Fig. 3. Because the comparators have

Fig. 4. Serial-successive approximation quantizer. This system only uses one comparator and precision reference level per output bit.
to settle, their outputs are latched some time after the sampling period. Recoding of the output into binary can be accomplished by simple combinational logic as shown. Although this technique is accurate and using e.c.l. comparators conversion rates approaching 100 MHz with four bits per sample are feasible, the component cost is high; for an n-bit binary converter, $2^{n}-1$ comparators and resistors are required.
At the other end of the scale, the serial successive approximation converter shown in Fig. 4 uses only one

Fig. 5. Single stage of a folding encoder. This system uses a cascade of fast precision rectifiers.
comparator and precision reference level per output bit. The result of each comparison is used to decide whether a voltage, equal to the reference level for that comparator, should be subtracted from the stage input signal. The output from the subtractor is used as an input to the following stage. A successively more accurate representation of the input sample amplitude is built up by subtraction of binarily related reference voltages as the residue propagates along the cascade. Variations in propagation delay are removed by latching all outputs on the leading edge of the next sampling pulse. Because each stage must complete its operation before the next commences, the available time for stage operation is severely restricted. For example, a tv converter may require accurate stage operation in less than 8 ns . One solution is to add a delay line into the signal path of each stage at the point marked $\times \times$ on Fig 4. By correctly timing the latch pulse

to each comparator and re-designing the latch it is possible to arrange that whilst the first stage is determining the most significant bit of the present sample, the second stage is determining the second m.s.b. of the preceding sample and so on. This allows each stage to have nearly a complete sampling interval to settle. Because each stage must be accurate enough to drive the rest of the cascade, only the first stage requires maximum accuracy. Furthermore, this design has the advantage of automatically producing a binary-coded output.

A further modification, which allows the use of a common reference voltage for all stages, is to give the subtraction process a precise gain of two. Unfor-
tunately, the precision subtractor with a stable zero-offset is a problematic part of this design.

Folding encoder

An alternative form of serial converter which has been successfully used commercially, the so-called folding encoder, uses a cascade of fast precision rectifiers. Fig. 5 shows that the transfer

Fig. 6. Eight bit series/parallel a-to-d converter with digital error correction.

Fig. 7. Recirculating parallel coder. Residue from the first four-bit quantization is fed back to the same quantizer/coder.

function of the system has a typical repetitive form, but, in this case, produces a Gray-coded output. Therefore, conversion errors occurring at major output transistions, say between binary 01111 to 10000 , are less noticeable bè́cause only one bit changes per least-significant transition. The circuit is also susceptible to a high degree of integration.

Hybrid series-parallel converters

A solution to the compromise between speed, accuracy and cost is a combination of serial and parallel conversion techniques. An eight-bit 15 MHz design developed by the $B B C^{3}$ uses a four-bit quantizer/coder, producing the four m.s.bs of the output, feeding a four-bit d-to-a converter, see Fig. 6. The output of the converter is subtracted from a delayed version of the input sample to produce a voltage equal to the error caused by quantization to 2^{4} levels. This residue, after amplification, is coded in a second four-bit quantizer/coder to produce the least-significant four bits of the output. Errors caused by propagation delay in the two sets of four-bit outputs are removed by suitably timed latches. This design is interesting because it uses extra comparators in the second stage to detect under-range and over-range input voltage errors produced by a marginally accurate first stage. The comparators also correct the l.s.b. outputs by digital subtraction or addition. ${ }^{4}$.

The recent development of an integrated comparator ${ }^{5}$, latch, precision current switch and binary-coding logic has enabled the speed and accuracy of this technique to be greatly improved. Use of a current-summing d-to-a converter coupled with current subtraction allows significantly faster operation, 30 MHz , than the corresponding voltage-based design. We have experimented with a modified version of this design at the University of Bradford, see Fig. 7, where the residue from the first four-bit quantization is fed back via a m.o.s.f.e.t. re-sampling switch into the same quantizer/coder. It is possible to code to eight-bit dynamic accuracy with sampling rates almost as high as the $4+4$ converter but using only half as many comparators, and precision resistors.

Another home-produced design which is faster, more accurate and more economical, uses a cascade of four high-speed two-bit coders. Inter-stage voltage gain and I to V conversion by current summing are not required. The maximum conversion rate of this system exceeds 30 MHz . Fig. 8 shows the circuit and the residues from each stage produced by the quantization of a slow ramp sampled at 20 MHz . Dynamic accuracy measurement of this converter suggests that the addition of a simple error corrector to the final stage could allow a further one- or two-bit stage to be added which would reduce the

(a)

Fig. 8. (a) Single stage of a
$2+2+2+2$ serial coder. (b)
Analogue output after coding a slow ramp.

(b)

Fig. 9. Fast d-to-a conversion using binary-weighted switched currents which are summed using (a) virtual earth technique, (b) a $R-2 R$ precision resistor network. The photograph shows a practical design which combines the two techniques.

(a)

maximum conversion rate to around 25 MHz and offer a, so-far rather elusive, ten-bit high-speed converter.

Digital error correction

The technique of error correction can be used in most forms of a-to-d converter although it is usually only used in high speed designs where the increased accuracy and stability justify the added complexity. The principle is to measure the conversion error in terms of either positive or negative least significant bits and to correct the coder output accordingly. Error detection is usually incorporated in the final stage of serial quantization where the converter is attempting to resolve to a least significant bit. Any errors that have been introduced earlier in the cascade will cause the signal amplitude at the final stage to lie outside its nominal range. These errors can be measured precisely by the addition of extra comparators. Digital arithmetic controlled by the outputs of these comparators is then used to subtract the error from the coder output.

Digital-to-analogue conversion

Re-conversion of digital signals into analogue form presents few problems for the levels of accuracy and word rates quoted so far. Precision highstability resistors and thick-film networks have been available for some time although commercial integrated high-speed d-to-a converters are still thin on the ground. Two similar techniques, shown in Fig. 9, are popular for high-speed designs. In the first, precision binary-weighted switched currents are summed at a virtual-earth point. In the second, similar precision switched currents are summed binarily in a precision resistor network. The first technique has the advantage that the summing node is a virtual-earth and hence, stray capacitance associated with the current source has less effect in slowing down current transitions. Unfortunately, precision binary-weighted current generators are difficult to produce. In the second technique the advantage and disadvantages are reversed. A logical solution to the compromise is to combine the techniques and sum groups of binarily related switched currents in a reduced resistor network. A circuit which sums three groups of three precision-switched currents $I, I / 2$ and $I / 4$ in an R to $8 R$ resistor ladder can be used to decode eight-bit binary data at word rates above 50 megawords per sec. However, dynamic errors have proved to be troublesome in high-speed converters. Even if data propagation error is limited by latching the input data with a delayed sampling clock, different propagation delays in the resistor or current networks, and parasitic reactances associated with components and circuit layout produce transient spikes or "glitches" on the analogue output waveform when the input data changes.

Resampling this waveform, using a second delayed clock, after the glitches have settled, reduces the problem and also simplifies the design of the subsequent low-pass reconstruction filter.

Future developments

The commercial development of any new technique depends on market conditions. At present, although a considerable range of exciting and attractive applications have been proposed for high-speed digital signal processing, particularly the prospect of digital broadcast tv systems, the cost of existing a-to-d converters is prohibiting their large-scale exploitation. Of the converter types described in this article, the serial cascade is perhaps the most attractive for future development. The idea of an integrated n-bit coder with subtractor, buffer, and latch on a single chip, which could be cascaded to any length, has obvious merits.
Techniques will shortly be capable of producing up to four-bit units with settling times of less than 8 ns . On this basis, converters with gross bit-rates approaching $300 \mathrm{Mb} / \mathrm{s}$ are feasible. The inclusion of an external delay line in each stage may push this limit closer to $400 \mathrm{Mb} / \mathrm{s}$.
Acknowledgement. - The authors would like to express their gratitude to Dr C. Davis of Cambridge Consultants Ltd, and Mr N. Green of Independent Television Companies Association Ltd for their encouragement during the course of over three years research.

References

1. Digital video processing/DICE, IBA Technical Review, No. 8, Sept. 1976.
2. Downing, O. J. and Johnson, P. T. New Electronics, Vol. 9, No. 20, 19th Oct. 1976.
3. Fletcher, R. Video analogue to digital conversion, pp. 47 to 57. IEE Conference publication 119, International Broadcasting Convention 1974.
4. Verster, T. C. Method to increase the accuracy of fast serial/parallel analogue to digital converters, pp. 471 to 473 , IEEE Trans. on Electronic Circuits, No. 13, 1964.
5. Davies, C. and Fryers, A. S. Analogue to digital conversion, Private communication and IEE colloquium, Nov. 1976.
6. Henning, H. and Edsen, J. Broadband codecs for an experimental 224 M bit/sec p.c.m. terminal, pp. 1887 to 1940 . Bell System Tech. Review, Vol. XLIV No. 9, 1965.
7. High speed analogue to digital conversion, IEE Seminar, Oct. 1975.

Microcomputer seminar

Readers interested in our current series on microcomputer design may like to know that a seminar is being held to introduce the Nascom I minicomputer kit (November issue, p.45) at the Wembley Conference Centre, London, on November 26, starting at 9.50 a.m. Organizers are: Lynx Electronics (London) Ltd, 92 Broad Street, Chesham, Bucks (tel: Chesham (02405) 75154).

HF predictions

Circuit reliability is the product of the probability of ionospheric reflection and the probability of achieving a desired signal to noise ratio and is thus at a maximum somewhere between FOT and LUF. The term FOT, which is the French equivalent of OWF (optimum working frequency), is thus a misnomer since it relates only to skywave probability. However since LUF is dependent on many factors which cannot be generalised it is found satisfactory in practice to take FOT as being what it says it is.

How cyen better, cven more powerfuld The uniquewristaleulator

AYAILABLE ONLY AS A KIT.

Assembling the Science of Cambridge wrist calculator.

The wrist calculator comes as finished components, ready for assembly. All you need is two or three hours, and a finetip soldering iron

If anything goes wrong, we'll repace damaged components free. We want you to enjoy building the kit, and to end up with a valuable, useful, powerful calculator.

Contents.

Acrwic/ABS case and display window parts. Tiwo-part stitched strap and spring bar clips. PCB. Special directdrive chip (no imterface chip required). Displav. Kerboard compononts Batterics.

Each of the 34 components. is contained in a plastic box; and neatly shrink-wrapped, accompanied by full instructions for assembling and using the calculator All components are fully guaranteed
A wrist calculator - the ultimate in common-sense portable calculating power. Goes where you go, ready for action at a flick of your wrist.

By virtue of its size, a wrist calculator is different to a pocket calculator. And now this wristmachine has another difference. It has even more power than some much larger pocket calculators!

And what's more, because it's a kit, supplied to you direct from the manufacturer, it costs just $£ 9.95$ (plus 8% VAT, P\&P And for that you get a calculator with extra power, and all the satisfaction of building it yourself!

Put real calculating power up your sleeve.

The Science of Cambridge wrist calculator gives you the full range of arithmetic functions $(t,-, \div, \times,=)$. It uses ordinary algebraic logic, which means you enter calculations as you would write them. It has a $\%$ key, the convenience functions, $\sqrt{x,} 1 / x, x^{2}$ and a full 5 -function memory.

And incredibly, it has a clear-last-entry key, pi, brackets, and $\%$. It even has an automatic linear metric conversion function!

Very few ordinary calculators have the same functions for the same sort of money.

Now 10 keys can do the work of 32.

All those functions, from just 10 keys? In such a small calculator? The secret lies in the special four-level keyboard Each level has a different set of functions. Simple two-way switching system allows you to select any keyboard level quickly and easily. Each set of functions is carefully grouped, to let you whisk through calculations with the minimum of switching

And the answers come up bright and clear, too. The display uses 8 full-size red LED digits. It has wide-angle magnification, and is easily visible under any light conditions

The wrist calculator kit is available only direct from Science of Cambridge If, for any reason, you're not completely satisfied with your wrist calculator, return it to us within 10 days for a full cash refund. Send the coupon today!

Science of Cambridge Ltd.

6 Kings Parade, Cambridge, Cambs. CB2 ISN

To: Science of Cambridge L.td, 6 Kings Parade, Cambridge, Cambs CR2 1SN
*Please send me (total [11) each
Overseas orders may be subject to postal surcharge
*I enclose cheque/PO/money order for \mathcal{L}
NAME
ADI)RESS

Valves are finished'

their best friends should tell them!

Valves from

THE HOUSE OF POWER
Pinnacle Electronic Components, Electron House, Cray Avenue, St. Mary Cray, Orpington, Kent BR5 30J. Phone : Orpington 71531 Telex: 896141 Northern/Midlands Sales Office: 11 Palmyra Square, Warrington. Phone: Warrington 50145. Telex: 627349

Analogue function generator

A straight-line approximation design

by G. J. Phelps, B.Sc.

This article describes a versatile function approximator, whose analogue input and output signals are related by a segmented characteristic. The function characteristics are made up of a number of straight lines (segments), each one joining the next, at "break points,' to form a continuous line. A variable characteristic is obtained by adjusting the position of intersection of any two segments.

The generation of an analogue function from an input variable has many applications, especially in the fields of measurement and process control. An example would be the linearization of a signal from a non-linear transducer in a control system.

The circuit described can be used to generate many functional relationships between its input and output signals, using a straight-line "fit" technique to produce the required characteristic.

Straight line approximators are not new. The diode function generator', which is a typical example of past designs, consists of the type of circuit shown in Fig. 1(a). As more of the
feedback diodes are brought into conduction, so the effective amplifier gain alters. A typical characteristic for the circuit is shown in Fig. 1(b).
This scheme has two major drawbacks. Firstly, diode action affects its temperature stability, and secondly, altering one of the feedback resistors means the resetting of all of the resistors that follow it. A different approach is needed in order to obtain versatility.

Mark-to-space-ratio averaging

If we were to apply a zero-to-five-volt square wave to a simple single-timeconstant $C R$ smoothing network, any variation of the mark-to-space ratio (m.t.s.r.) would cause a change in the output of the CR smoothing network. This output change has two extreme limits, namely zero and five volts, which correspond to a total absence of a pulse (zero percent m.t.s.r.), and a pure d.c. level of five volts (100% m.t.s.r.), being applied to the input of the CR network. Indeed, the output of the network varies linearly with respect to the m.t.s.r.

Now consider three d.c. levels: zero,

five, and seven volts, for example. Switching between the first two and filtering, as above, will produce a zero-to-five-volt signal depending on the m.t.s.r. However, if we now consider switching in the same way between the last two (five and seven volts), the output of the filter will be somewhere between five and seven volts, depending on the m.t.s.r. This process may be expanded still further.

The circuit described in this text has ten adjacent d.c. levels. Each level can be switched on and off, and there is a criterion that only adjacent pairs of levels can be switched, as in the simplified three-level case above. Interpolation between each level, by the m.t.s.r. process, is the basis of the function generator design.

Signal-to-time averaged b.c.d. circuit
The input to the signal-to-time averaged binary-coded-decimal (b.c.d.) circuit lies between set limits. If we choose this input to vary over zero to nine volts, relative to the circuit common, and consider the 0 to 100% variation of the input, we may divide it into nine equal intervals defined by ten input voltages (i.e. $0,1,2,3,4,5,6,7,8$ and 9 V). Call these ten voltages, break voltages.

The ten break voltages correspond to the ten break points of the straight-line function generator, which composes its required function out of a nine-segment line ("fit"). As will be seen later, each break point of the function can be individually adjusted (without affecting any other), so that many different functions may be generated in a highly versatile manner.
The input to the circuit is scaled and fed into the non-inverting inputs of a string of nine comparators (see Fig. 2). Each comparator is set to "trip" (change state) at successively increased voltage levels.

Fig. 1. (a) A typical diode function generator in which the amplifier gain alters as more of the feedback diodes are brought into conduction. (b) shows a typical characteristic for this circuit.

Fig. 2. Signal-to-time-averaged b.c.d. circuit consisting of nine comparators, each set to change state successively as the input voltage-level increases. The output from the encoder i.c. is in inverted-b.c.d. (see text).

The scaling is set such that, as the input voltage passes the break voltages of $1,2,3,4,5,6,7,8$ and 9 volts, comparators 1 to 9 trip in turn.

The output of each comparator passes into an encoder i.c. (SN74147) and the resulting inverted-b.c.d. output from this section of the circuit contains information about the input signal and the input break voltages. The exact value of the input signal relative to the ten input break-voltages is obtained by using a time averaging technique. A triangular wave, of peak-to-peak amplitude equal to the intervals (in this case 1 V) between the ten break voltages, is added to the input signal. This resulting signal, which is applied to the input of the comparators, will lie between two break voltages (assuming that the input signal is not mid-way between two break voltages), see Fig. 4.

Consider now one period of the triangle waveform, and observe the
time within the period that the combined signal spends between break voltages. It can be seen that this time, relative to the period of the triangular wave, is a direct function of the magnitude of the input signal. Each time the combined input voltage crosses a break voltage, the comparator for that break voltage will trip and change the b.c.d. output of this section of the circuit. It can therefore be seen that the average state of the b.c.d. output, in terms of time, will yield the exact position of the input signal relative to the ten input break voltages.

Note that for a static input signal, the typical b.c.d. output will consist of two adjacent b.c.d. states; the m.t.s.r. of each state being determined by the input magnitude relative to the ten break voltages.

Output and function generation section

The output circuit converts the time averaged b.c.d. signal of the previous state into a meaningful output. Basically, each b.c.d. state fed into the output section switches on one of ten voltage levels, all of which are pre-set by potentiometers to the functional characteristic required by the user. The
voltage levels are then summed up by a summing amplifier (see Fig. 3). After passing through a second-order RC filter, the resulting signal appears at the output of a buffer amplifier $\left(\mathrm{IC}_{17}\right)$. Finally, the signal is scaled by the output amplifier.

The actual function generation of the circuit is achieved by mark-to-space ratio averaging, as mentioned earlier. However, here the magnitude of the input signal determines which voltages are switched on and off and what m.t.s.r. is applied to the switching voltages. The user, however, dictates the magnitude of each of the voltages switched, and therefore the way the average of the voltages changes as the m.t.s.r. of each voltage varies. Theretore; the final output of the circuit (after scaling) consists of a nine segment characteristic having ten break points, see Fig. 5. Note that each segment joins smoothly with its adjacent segments. Note also, that the break points are all independently adjustable. This means that virtually any (but not every) characteristic/function may be approximated by a nine segment fit using this circuit.
It would not be difficult to expand on

Fig. 6. Main power supply circuit.
the above idea, and produce a fit composed of more than nine segments.

Design considerations

For the circuit to be able to resolve small changes in the input, and convey the information to the b.c.d. signal, the hysteresis effect at the input (differential) of the comparators at small differential signals (specifically at the break points) must be considered. The design should also allow for the slew rate of the comparators so that the relatively fast t.t.l. can respond to the fast-changing differential input signals to the comparators.
In this case a resolution of 0.1% was desired and, with a maximum considered input hysteresis voltage of 5 mV , this set the maximum signal to the comparators, for 100% input to the complete circuit, at five volts. The slew rate of the comparators was effectively speeded up by lowering the frequency of the triangular wave to about 200 Hz . 'This gives ample time for the comparators to respond to a 5 mV input differential.

The non-inverting input to the comparators is protected by using zener diode tied to the -5 V rail (see circuit). The choice of comparators and b.c.d. encoder i.c. also necessitates the incorporation of diodes D_{2} to D_{10} inclusive. This arises due to the lack of input protection diodes on the l.s.i. chip, and the possible 'harmful' voltage surges at the comparator outputs. The final output of the circuit is provided with full zero and span adjustments so that the output can be calibrated.

The function generator is considerably accurate, because the conversion is largely digital. The prototype, which used metal film resistors and cermet
potentiometers, showed a negligible change due to ambient temperature fluctuations.

There are many applications for this circuit. They include linearity correction of non-linear signals, generation of mathematical functions, and the generation of voltage programming functions.

Generation of periodic waveforms

The following is as an application example of the analogue function generator being used to produce continuous functions, of variable period
and complex shape. This may sound difficult, but it is really very easy.

Consider the arranged input/output characteristic (or transfer function) of the analogue function generator to be a single period of the first waveform in Fig. 8. Remember, that this complex function has been pre-programmed into the analogue function generator by use of the adjustable trimpots R_{68} to R_{77}.
Now, by using a ramp generator attached to the input of the analogue function generator, the output of the last-mentioned generator will follow
Fig. 7. Power supplies for the mother board.

the programmed characteristic as the ramp rises, returning back to the start of the characteristic as the sharp edge of the ramp falls. Therefore the output of the analogue function generator will be a continuous complex function, of programmable shape and period equal to that of the ramp input. Fig. 8 shows examples of repetitive waveforms generated in this manner.

Component list

Resistors (all 2\% metal oxide unless otherwise stated)

	39 k
1	100 k
2	22 k
3	3 k
4,5	6.8 k
6	1.2 k
7	$825,1 \%$ or better
$8-17$	1.5 k
18	$39 \mathrm{k}, 10 \%$ carbon
$19-37$ (odd)	4.7 k
$20-38$ (even)	2 k
$39-48$	220 k
49	1.2 k
50	$220 \mathrm{k}, 10 \%$ carbon
51,52	1 k
53,54	2 k
55	200
56	$120,10 \%$ carbon
57	1.2 k
58	$130,10 \%$ carbon
59	1.2 k
60,61	1 k
62	

Fig. 8. Examples of periodic waveforms which can be produced by the analogue function generator

63	470, 10% carbon
64	1k
65	1.5k
Variable resistors (Cermet trimmers)	
66, 67	10k
68-77, 79	1k
78	50k
Diodes	
${ }^{1} 1$	6.8V $5 \% 400 \mathrm{~mW}$ zener
2-20	1 N914
21, 22	100V 2A bridge rectifier
23	20 V ,
24	$5.6 \mathrm{~V}\} 5 \% 400 \mathrm{~mW}$ zeners
25	6.2 V

Integrated circuits

$1-3$	$\mu \mathrm{~A} 741 \mathrm{C}$
$4-12$	$\mu \mathrm{~A} 710$
13	SN74147
14	SN7404
15	SN7442
$16-18$	$\mu \mathrm{~A} 741 \mathrm{C}$
19,21	$\mu \mathrm{~A} 7815$ regulator (1A)
20	$\mu \mathrm{~A} 7805$ regulator
22,23	$\mu \mathrm{~A} 741 \mathrm{C}$

All available from Bi-Pak Electronics, Ware, except IC $1: 3$ which can be obtained from Aries Electronics, Maidenhead

Transistors

$1-10$	2N3709
11	2N3055
$12-14$	2N3053
15	2N2904

Transformer

Primary: 240 V r.m.s.
Secondary: $2 \times 20 \mathrm{~V}$ r.m.s. at 300 mA
Barrie Electronics, London
Capacitors ($\mu \mathrm{F}$ unless otherwise stated)

1	220 n
2,3	2.2
4,7	680 E
5	10 E
6	22 E
8	6.3 E
9,10	10 n
Reference	

1 Crump, A. E. Diode function generators, Wireless World, Dec. 1967, pp. 594-598.
A set of two p.c.bs for the function generator and power supply is available for $£ 7$ inclusive from M. R. Sagin at 23 Keyes Road, London NW2.

Matrix HJ: technical refinement and political jostling?

Last month the BBC strongly reacted to a recent FCC subjective evaluation of surround reproduction system by publicly criticising the FCC Laboratory "not for what they have done so much as the limitations that they pose". The report, part of an FCC Inquiry into "Quadraphonic" broadcasting, showed SQ was preferred to other two channels systems and H and QS in musical preference tests for "quad", stereo and mono. And in what could be viewed as preparation for a united front to the FCC Inquiry, as well as a response to recent criticism of Matrix H broadcasts, the BBC Matrix H surround formula has been changed.

From about half way through the promenade concerts the centre front phase difference - until then 48° - was changed "fairly significantly", C. B. B. Wood head of engineering information told WW "and the sort of figures we are talking about are 28°, 29° and 30°.

The change from Matrix H to HJ follows criticism of the stereo compatibility of Matrix H broadcasts, particularly of the proms, now no longer described as completely "unimpaired".

The BBC had kept the change quiet to avoid prompting listeners but at an IEE lecture on the 13th October, the change was made public. They almost got through the proms without any response: the 30 letters received were largely "self cancelling" they said. At the meeting David Meares described
the change to HJ as "slight" and combining "most of the worthwhile features of H and J ". The tentative HJ is actually in the form of tolerance zones on the phase-amplitude or energy sphere. "Zones are really the only way" the BBC now say, because of the variety of microphone techniques. The zone broadly encompasses those points covered by phase-reduced centre-front H and J loci. Front left and right points are reduced in phase from 75° to 60° and also in amplitude. "To give credit where it is due" said the lecturer, "the format was iointly agreed with Michael Gerzon and the BBC". They hope to sort it out by the end of the year and plan further experiments within its confines. If this is "firmed up" it would then appear to provide an opportunity to argue the FCC tests to be invalid.

First discussions with the J team were kept a secret at the BBC's request, a move that could have an advantage in giving a better impression of unity than might actually be the case. There is certainly not much apparent unity between the two broadcast organizations. Whilst not disagreeing so much with Meares' analysis of the FCC report, they certainly were at odds over the feasibility of a narrow band third channel system. With the BBC refusing to take the issue any further and the IBA revving to go, given the manpower. the pointed remark by Meares, "We look forward to hearing more
details of this", drew comment from the IBA engineers at the meeting.
The attitudes of the two organizations are well illustrated in two recent pronouncements. "The penalty of the extra channel may be very much smaller than initially supposed" (Alan James, IBA, IEE meeting, October 13th). "We are filled with doubt as to whether a three channel system would ever get off the ground in Europe. Stranger things have happened of course. But the way to -prove the pudding is well known. We would like to see someone conduct a one-year test of the three channel system and we would like to know at the end of the year how many three channel tuners and three track cassette decks the service had attracted" (C. B. B. Wood, AES Annual Dinner, 13th September, 1977).

In answer to a query by David Read on circuit alterations to the BBC Matrix H decoder design (June issue, page 34) Meares said that although he had not put pen to paper on the effect, he couldn't tell the difference between an HJ encoding and an H encoding through an H decoder. In any case further changes may still be made. BBC Research Department tell us that due to unequal loading on the phase shift circuits in the BBC H decoder circuit, they recommend a directly-coupled emitter follower be inserted following each of the three summering circuits. Emitter load should be $10 \mathrm{k} \Omega$.

Circuit Ideas

Variable slope low-pass filter

An important feature of audio pre-amplifiers is a low-pass filter to limit the bandwidth at high frequencies. It is desirable to incorporate a variable slope device as this allows the amount of filtering to be selected for a particular programme source. A Sallen-Key design is suitable for second order filtering and the circuit may be realized with any suitable form of unity gain amplifier. This circuit uses an enhanced source follower which offers a high input impedance, low input bias current, and low distortion. The low bias current enables the gate of the f.e.t. to be directly coupled to the slider of the potentiometer. Resistor R_{4} prevents any

noise occurring from the slifer and R_{3} restricts the fractional setting of R_{2} to about 0.1. This ensures that there is an ultimate roll off above audible frequencies, and also prevents any stray capacitance at the amplifier input from forming a high Q filter.

With the values shown the turnover frequency is about 6 kHz and the attenuation with minimum slope is about 2 dB at high frequencies. Combined with a simple CR network, the slope can be adjusted between 6 and 18dB/ octave but the author's preference is to use a second switched Sallen-Key filter with fixed slope to give a total variation from 0 to 24 dB /octave.
R. J. Tidey,

Oxford.

Long duration c.m.o.s. monostable

The duration of a pulse from standard c.m.o.s. monostable i.cs is affected by temperature changes and other short term variations. When accurate pulse duration is required, a more stable circuit can be made using a 4060 14stage counter and oscillator, and half of a 4027 dual JK flip-flop.
Initially, the dividers are held at 0 V by a high on their reset line. A monostable pulse is triggered by a positive edge which sets Q to a high, clears the reset line, and allows the counters to operate. After 2^{n-1} counts, the $\div 2^{n}$ output goes

Inductance bridge

This circuit was developed to replace a high cost differential amplifier used with a.c. bridge circuits. A pulse transformer with 3 windings is connected in series with the lower limbs of the bridge. Decade resistance box Rv, and variable inductor Lv , are used for fine balancing while the ratio R_{1} / R_{2} provides a course adjustment. As the bridge is brought towards balance, the inductance of the transformer drops rapidly to its leakage value which causes an increase in sen-
sitivity of the system. The third winding is followed by an amplifier with a gain of about 500 . If this is fed into a transistor threshold detector it is possible to detect inductance changes of less than $0.1 \mu \mathrm{H}$ in $30 \mu \mathrm{H}$.
If the unknown limb is used in a noisy environment the interference can be filtered and fed into the known limb through capacitor C to produce a cancellation.
G. C. Kervill \& T. Austin,

Sacol Controls,
Southampton.

high to reset the bistable and zero the counters. Pulse duration is approximately $2^{\mathrm{n}-1} \times 2.2 \times R t \times \mathrm{Ct}$ seconds and the variation, in normal room temperatures, is about 0.5%. Variation in supply voltage will increase this figure.
Apart from stability, this circuit has the advantage of long variable pulse times with good linearity. Application notes ICAN 6086 and 6539 from RCA give details of a crystal control which can be used to produce even more stable, fixed durations.

R. Price,

Medical Physics Department,
Leeds University.

Microprocessor 5V clock generator

Many microprocessors require a clock with a full 0 to 5 V swing. Standard c.m.o.s. circuits are unable to provide sufficiently fast rise and fall times and, although t.t.l. has the required speed, the high level needs forcibly pulling up to the 5 V rail. The 74121 monostable has a \bar{Q} output which may drive a fast switching transistor, which in turn pulls the Q output up to 5 V during a logic 1 as shown. An appropriate threshold for Tr_{1} is provided by the potential divider R_{2}, R_{3}. Capacitor C_{2} ensures that the transitions are shorter than 50 ns , and excessive overshoot or ringing is prevented by the damping resistors R_{4} and R_{5}. For the M6800 microprocessor, two non-overlapping clock phases are required with a frequency of approximately 1 MHz . These waveforms may be obtained by connecting two monostables in a ring. The values shown for the timing components give approximately 500 ns pulse lengths. If a single 74123 is used for M_{1} and M_{2} there

will be no spare A inputs to 5 V , but the spare clear inputs must be tied to the supply rail. Also, R_{1} and R_{6} should be increased to $3 \mathrm{k} 9 \Omega$. The circuit will drive loads of 150 pF and keep within Motor-
ola's specified requirements for the M6800.
Tim Perkins,
MRC Neurological Prostheses Unit, London S.E.5.

Line charged h.v. pulse circuit

On the positive half cycle of the mains, C_{1} charges to peak line voltage through D_{1}. On the negative half cycle, C_{2} is charged through D_{2}, D_{3} and R_{1}, to the peak voltage of diac D. When the diac fires at about $30 \mathrm{~V}, \mathrm{C}_{2}$ discharges partially through the gate circuit of the thyristor. The thyristor then turns on and discharges C_{1} through the primary of a car ignition coil, which generates a 20 kV pulse in L_{2}. This sequence repeats 50 times per second.

The light sensitive resistor prevents the circuit firing if illuminated by a light source such as the flame in an oil burner which is ignited by a h.v. spark.
A. Refsum,

The Queen's University of Belfast.

Earth referenced V to I

Circuits often require a voltage controlled current source in which a variable load is connected directly to earth. Most operational amplifier configurations produce either a current source or sink referenced to the supply rail. This circuit produces a voltage controlled current which may be injected to the earth rail via the load.

The operational amplifier and Tr_{1} act as a voltage controlled current sink. The balanced tracking of the current mirror Tr_{2} and Tr_{3} is used to convert this sink current to a source current. The circuit has good thermal stability and a linearity to within 3% for output currents up to 3 mA . This circuit also develops the full supply voltage across the load. B. Wilson \& K. Patel, University of Technology, Baghdad.

"No loss" capacitor

This simple circuit provides a "perfect" capacitor at frequencies below about 100 kHz . The principle has been used to construct fixed-frequency capacitance standards for use in an accurate capacitor bridge. An oven mounted prototype provided a stability of one p.p.m. and a residual phase angle difference from pure capacitance of one micro-radian. All capacitors are silver mica types.
B. J. Frost,

Paignton,
S. Devon.

(a)

Automatic micropower battery charger

In micropower equipment it is sometimes necessary to switch between an intermittent power source, such as a solar cell, and a storage battery which must be kept charged. The circuit shown offers this facility with very few components. When the solar cell voltage is 0.2 V below the battery voltage, the circuit is powered through the forward biased diode. When the cell voltage is greater than the battery voltage, the battery is charged by an approximately constant reverse leakage current from the diode. The diode, which may be a Germanium point con-
tact or junction type such as an OA90 or OA73, should be selected for a suitable reverse leakage current. The battery can be a manganese-alkaline type or a Zn -AgO watch type cell.
M. Hadley,

University of Southampton.

Sequence generator

This sequence generator uses a gated shift register made from a 7475 D-type latch, and four exclusive OR gates. A

simple programmer can also be constructed using two 7493 binary counters. The outputs can be used as a signal source for a synthesizer, or as a sequencer for a lighting unit.

The clock pulse should be narrow to avoid race-round effects. If desired, a 74175 can replace the 7475 , as this has a clear input which may be useful for resetting.
P. D. Maddison,

Portswood,
Southampton.

Books Received

Modern Electronics Made Simple by George H. Olsen is suitable for O and A level students or those teaching themselves general electronics. This book is one from a series of 67 different titles and, judging by some of the other titles such as Electronic Computers, Mathematics, and Electricity, the areas which are not covered in this book can be found in one of the others. Fifteen chapters deal with components, amplifiers, radio and television, digital electronics, power supplies, oscillators, and high-fidelity. Each chapter has a few questions at the end, and a final chapter describes ten projects. Price $£ 2.95$. Pp. 306. W. H. Allen \& Co. Ltd, 44 Hill Street, London W1X 8LB.
Advanced Data-Transmission Systems by A. P. Clark is based on research, and lecture courses in digital communications at Loughborough University of Technology. The book is intended for practising or student engineers and deals with principles and techniques rather than practical considerations. Mathematical analysis is used where necessary together with worked examples. The emphasis is on future systems and, although many of the systems described have not been built, they have all been studied by computer simulation and theoretical analysis. The main purpose of these techniques is to enable the maximum transmission rate to be achieved over a linear channel, for an acceptable tolerance to noise, and an acceptable degree of equipment complexity.
After an introductory section, chapter 2 develops the theory of the discrete Fourier transform using matrix algebra and then applies it to the analysis and distortion in a sampled baseband signal. Chapter 3 develops the theory of optimum detection and estimation of a sampled baseband digital signal and applies the theory to cases where the noise is Gaussian. The final three chapters cover techniques for detecting distorted digital signals in synchronous serial data-transmission systems and parallel systems, which use code-division multiplexing. Price $£ 12.50$. Pp. 427. Pentech Press, 4 Graham Lodge, Graham Road, London NW4 3DG.

Manual of Solid State Circuit Design and Troubleshooting by Vester Robinson starts by covering the characteristics and biasing of semiconductor devices, together with design considerations. Subsequent chapters deal with audio and radio frequency circuits, signalgenerating circuits, and power supplies. Design examples and graphical information are given where appropriate. The final two chapters describe bench testing procedure and troubleshooting techniques. Price £15.15. Pp. 413. Prentice/Hall International, 66 Wood Lane End, Hemel Hempstead, Herts HP2 4RG.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM 35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ $(+8 \%$ VAT'), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PIM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM135 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read LED) display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.0001 HA).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 Ma . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard $10 \mathrm{M} \Omega$ input impedance.

Compare it with an analogue meter!

The PDM 35's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of $10 \mathrm{M} \leftrightarrows$ is 50 times higher than a $20 \mathrm{kr} /$ /volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)

Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.

DC Current (6 ranges)

Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: 1 n to 20 Ma .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 \frac{1}{2}$ in.
Weight: $6^{1 / 2}$ oz.
Power supply: 9 V battery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PIDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PI)M135 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ P() for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your Pl)M35 by return! Sinclair Radionics L.td, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England. Regd No: 699483.
\qquad
To: Sinclair Radionics Ltd, London Road, St lves. Huntingdon, Cambs., PE174HJ.
Pleane send me__(qty) PI)M35(s)
$\pi, 233.00$ (inc $\mathcal{L} 2.40 \mathrm{VAT}$ and $65 \mathrm{p} \mathrm{P} \& \mathrm{P}$)

$\pi, 23.00$ (inc 2.40 VAT and $65 \mathrm{p} \mathrm{P} \mathrm{\& P})$
each:... ℓ.
-.. q) De-luxe padded
carrying case(s) © $£ 3.00$ (inc VAT
and $\mathrm{P} \& \mathrm{P}$) each:...................................
240 V 50 Hz power (1) $£ 3.00$
(inc VAT and P\&P) each:......................
\qquad
(inc VAT and P\&P) each:......................

> AEROSPACE-BLOODFLOW.COMMUNICATIONS DIESELS•EDUCATION•FACSIMILE•HYDRAULICS MACHINE TOOLS•NON-DESTRUCTIVE TESTING OCEANOGRAPHY-POWERSYSTEMS QUALITY CONTROL-RAIL\&ROADTRANSPORT SIESMOLOGY-TELEMETRY•ULTRASONICS VOICEPRINTS-WELDING Some of the many applications for Medelec Fibre Optic Recorders

Since the introduction of Medelec's range of Alternatively, please let us know if you Fibre Optic Recorders the instruments have become involved in ever-widening fields of industry and research.
We now have valuable background information available on a wide variety of applications. Please circle the number below and we will send you a free copy of our Technical Information Service Brochure (No.51) which gives broad outline data. have a specific field of interest on which detailed information would be more useful.

medelec

medelec limited
Manor Way, Woking, Surrey, U.K. Telephone: Woking (0482) 70331 Telegrams: Medelec, Woking

Synthesized f.m. transceiver - 2

The receiver and transmitter sections

by T. D. Forrester, G8GIW

Part. 1 of this article described the synthesizer and oscillator sections of the transceiver and discussed the method employed for channel and mode selection. This second part describes both the transmitter and receiver sections and concludes with some tips on construction and the alignment procedure.

The receiver part of the transceiver uses standard and well-proven circuitry and should have no alignment or constructional problems. Figure 5 shows the circuit diagram for the receiver.
Tr_{5} is a dual-gate m.o.s.f.e.t. which is used as a r.f. preamplifier. It has just enough gain to overcome the mixer
noise and consequently it helps to ensure a good dynamic range. Tr_{6} is another dual-gate m.o.s.f.e.t. This device converts the 145 MHz signals to the i.f. frequency of 10.7 MHz . It has a resistive drain load and feeds the 10.7 MHz crystal filter, which gives the receiver all its selectivity. It must therefore be a top quality item.
The bulk of the receiver gain is produced after the filter by the SL612 and the HAll 137 f.m. discriminator. This also helps to ensure a good dynamic range combined with excellent sensitivity. The squelch control is a built-in function of the HA1137 and is sensitive
enough to be lifted by a $0.2 \mu \mathrm{~V}$ signal at 145 MHz .
$\mathrm{Tr}_{7}, \mathrm{Tr}_{8}$ and Tr_{9} act as the a.f. power amplifier, developing 200 mW into an 8Ω load.
Tr_{10} and Tr_{11} form the frequency
Fig. 5. Circuit diagram of the receiver section of the transceiver. Selectivity is determined by the bandwidth of the 10.7 MHz crystal filter in the i.f. circuit.

Correction: First frequency multiplier stage requires a 1000 pF decoupling capacitor between top of tuned circuit and earth.

multiplication circuit needed to convert the 22 MHz signal to the required 134 MHz local oscillator frequency. Tr_{11} is a Class B doubler, bringing the frequency up to 44 MHz , and Tr_{10} is a Class C tripler, which converts this to approximately 134 MHz .
In terms of sensitivity, noise figures, dynamic range and selectivity, the performance of the receiver is excellent; indeed it is very much better than some of the commercial transceivers available to the radio amateur.

The transmitter

As stated previously, the transmitter is based on a Mullard design, which was developed some years ago. It has been slightly modified to ease alignment problems associated with transmitter frequency multiplication. The circuit diagram for the transmitter multipliers and power amplifiers is shown in Fig. 6.
Tr_{12} acts as a Class B grounded-base frequency doubler for bringing the 24 MHz synthesizer frequency to 48 MHz . Tr_{13}, with its collector tuned to the 145 MHz band, acts as a Class C frequency tripler.
Tr_{14} is a 145 MHz amplifier which has a little forward bias applied in order to minimize the amount of r.f. drive required. Tr_{15} and Tr_{16} amplify the

Fig. 6. Circuit diagram of the transmitter multipliers and power amplifiers.

145 MHz signal, present at the Tr_{14} collector, to a level of 2.5 W ; again Class C is used in the power stages to maintain a high level of efficiency.

If the transmitter is to be used from a good portable location, it is advisable to use a band-pass filter to reduce any harmonics to an acceptable level.
Fig. 8 shows the microphone compressor and deviation control circuits of the transmitter.
Frequency modulation is applied to the varicap diode via the preset potentiometer R_{82}, which adjusts the level of deviation. The SL622, IC_{13}, is an audio compressor. This ensures that the level of deviation remains constant over the wide range of microphone inputs.

Construction

As the synthesizer is the heart of the transceiver, it was decided to build this unit first, thereby enabling it to drive

Fig. 7. A suitable regulated 15 V power supply circuit for the transceiver. It requires an unregulated 12 V power supply.

the transmitter and receiver at a later date.
The synthesizer logic was built on a piece of Vero-Board measuring $33 / 4 \times$ 4 in , and hard wired between i.c. pins using sub-miniature wire. This method of construction was chosen as it allows easy modification and also enables the board to be made smaller than a conventional p.c.b.
The v.c.o. associated with the synthesizer was built on a separate double-sided p.c.b., one side of the board being used for a ground plane the other side being used for interconnections. Using the varicap shown, the v.c.o. operates from 18 to 36 MHz for a control voltage of 0 to 12 V respectively. However, other types of varicap diode may be suitable, providing the v.c.o. is capable of operating over the range of 20 to 25 MHz .
The transistors used in the v.c.o. are general purpose, types 2N3707. Other types such as the BC108 and the BC109, are equally suitable.
The power supply for the synthesizer logic must provide a well-regulated and noise-free 15 volts. This is to ensure that the 4059 is sufficiently fast to cope with the 6 MHz clock. A suitable power supply is shown in Fig. 7. This supply is designed to provide 15 V at 100 mA over a voltage input range from 9 to 18 V . Note that the 74LS74 requires a 5 V rail, not 15 V as with the c.m.o.s. devices. To interface the 5 V logic of the 74LS74, a pull up resistor, R_{7}, is used.
The receiver is built on a double-sided p.c.b. and contains all the circuitry shown in Fig. 5. Again, one side of the p.c.b. is used as ground plain, this is to simplify board design and minimize the possibility of instability occurring.
When building the r.f. and mixer stages it is important to keep lead lengths as short as possible in order to minimize lead inductance, which can be appreciable at v.h.f. frequencies.

The 10.7 MHz stages, consisting of the SL612 and HAll37, must be logically laid out. This means keeping inputs away from outputs. Also, as there is a considerable amount of gain at 10.7 MHz , attention should be paid to the screening of the receiver, otherwise there might be i.f. breakthrough.

The i.f. filter probably represents the most expensive item in the receiver and could cost as much as $£ 20$. However, at the time of writing there were many ITT and STC surplus crystal filters on the market at very competitive prices. As the filter gives the receiver all its selectivity, care must be taken to ensure that the i.f. signal cannot leak around it, otherwise the receiver may be blocked off by a strong local station on another channel.

The layout of the transmitter multiplier and p.a. stages is not unduly critical, providing all leads which carry r.f. current are kept short, that is, less than $1 / 8 i n$, (this includes the $\ln F$ disc capacitors associated with the supply decoupling). Clip-on heatsinks should be fitted to the driver and p.a. stages to keep the collector temperature below $70^{\circ} \mathrm{C}$.
The actual method of assembling the four boards into a complete transceiver is left to the discretion of the constructor, but it is a good idea to fit the synthesizer logic into a screened box with leads for power in, 24 MHz in, control wires in, and error voltage out only. This is to reduce the possibility of any noise generated by the synthesizer logic interfering with the receiver.

The transmit/receive switching has also been left to the discretion of the constructor, although in the prototype, electronic transmit/receive switching was used, with the exception of the aerial changeover, which was a sub-miniature relay.

Alignment

The first unit to be adjusted is the v.c.o. (see Fig. 4). This is accomplished by connecting the control wire of the varicap diode to earth, then adjusting the slug in L_{1} for a frequency of approximately 20 MHz . After this operation, connect the control wire to $V_{\text {cc }}$ and check that the frequency rises to above 25 MHz , then tune L_{2} for maximum output at 24 MHz .
When the v.c.o. is aligned, connect it to the logic in the synthesizer and set the thumbwheels to channel 00 and the mode switch to normal transmit. If all is well the control voltage should settle to a value between 2 and 8 V and the output frequency should be 24.16666 MHz . If the frequency is slightly out, then C_{2} requires adjustment to set the reference accurately at 1.0146666 kHz . Switching the thumbwheels to 01 should cause the frequency to increase by 4.1666 kHz at 24 MHz , (25 kHz at 2 metres).

To check the receiver i.f. and repeater shifts, it is only a matter of switching

Fig 8. Microphone compressor and deviation control circuit for the transceiver.
from normal transmit on channel 00 to normal receive and checking that the output shifts from 24.1666 to 22.38333 MHz , (a 10.7 MHz shift down in frequency at 2 metres).

Likewise, to check the transmitter 600 MHz repeater shift, switch from normal transmit to repeater transmit and check that the frequency shifts from 24.16666 to 24.06666 MHz , that is, a 600 kHz shift down in frequency at 2 metres. Again, when testing the inverse-repeater receive, check that the frequency shifts from 22.3833 to 22.2833 MHz , that is, another 600 kHz shift down in frequency at 2 metres.

If all appears well with the synthesizer, then it can be connected to the transmitter. Set the mode switch to normal transmit on channel 20 and adjust L_{9} (Fig. 6) for maximum voltage across R_{72} (about IV), ensure that the drive to Tr_{13} is on 48 MHz ($\operatorname{not} 24 \mathrm{MHz}$), then adjust C_{68} for maximum voltage across R_{75} (above 0.1 V) and check that the collector of Tr_{13} is tuned to 145 MHz (not 96 MHz). It is only necessary to tune $\mathrm{C}_{69} \mathrm{C}_{79} \mathrm{C}_{71}$ and C_{73} in turn to produce maximum output on 2 metres.
The transmitter r.f. stages are now complete, and it only remains to apply audio to the varicap diode to produce a f.m. transmission on 2 metres. Adjusting R_{82} (Fig. 8) sets the level of deviation, and should be adjusted by monitoring the transmission on a receiver of suitable bandwidth.

To align the receiver, set the synthesizer to normal receive on channel 20, and then adjust L_{7} (Fig. 5) for maximum voltage across $\mathrm{R}_{3 \mathrm{~g}}$ Inject a signal on 145.5 MHz at the aerial input and adjust $\mathrm{C}_{64}, \mathrm{C}_{65}$, and C_{67} in turn for maximum sensitivity, reducing the level of the signal as the receiver is tuned up.
Finally, to achieve the best noise figure, adjust the coupling between C_{27} and L_{8} for maximum sensitivity. The receiver alignment is now complete and should require less than $1 \mu \mathrm{~V}$ for full
quietening, and the mute should lift on signals down to $0.5 \mu \mathrm{~V}$. After connecting an aerial to L_{3} and selecting a popular channel, stations should be heard. It may be necessary to trim C_{64} slightly to match the aerial correctly. It may also be necessary to adjust the value of R_{65} slightly, to remove any crossove distortion present in the output stage.

The transceiver is now completel: ready for use on the air.

Conclusion

Through the extensive use of integrate circuits in the synthesizer, and receive i.f. section, it is hoped that alignmen problems associated with multichannt transceivers have been lessened considerably. That is, it is only necessary to adjust the reference crystal to 1.000 MHz and the transceiver will be exactly on frequency, no matter which channel or mode is selected.

It is also possible to build the synthesizer separately and to use it todrive commercial rigs, thus avoiding many expensive crystals which could cost about $£ 5$ per channel (a 22 -channel transceiver would have $£ 110$ worth of crystals inside it). By comparison, a synthesizer of the type described could be built for as little as $£ 30$ and it would also produce all 40 channels in addition to offering repeater and inverse repeater operation - obviously a great saving.
Correction notes. The $220 \mathrm{k} \Omega$ resistors R_{8} to R_{25} (see Fig. 3) on the 4560 inputs (pins 15,1 , $3,5,14,2,4$ and 6) are pull-down resistors which should be between the inputs and earth, and not as shown. Connections should also be made direct between the inputs and the thumbwheels and mode lines; 15 to $\mathrm{a}, 1$ to b, etc. The right-hand pin on IC 4 shown as pin 3, should read 'pin 8'. Further details in next issue.

Printed circuit boards

A set of p.c.bs comprising two double sided and one single sided is available for E1. 1 inclusive from M. R. Sagin at 23 Keyes Road, London NW2. The boards accommodate components for the receiver, transmitter, synthesizer and v.c.o.

Synthesized communications receiver

A communications receiver, designated the PR2250, is claimed by the makers, Plessey Avionics \& Communications Ltd, to be the first receiver unit - as distinct from system (see p.85, Nov. 76 issue) - to take most of the tedious manual labour out of surveillance and monitoring operations. The receiver, which covers l.f., m.f. and h.f. bands from 10 kHz to 30 MHz , is a solid-state high-stability synthesized instrument capable of being digitally controlled from either a keypad on the front panel or from an external serial data stream. An optional microprocessor module, claimed to be unique in this type of equipment, may be programmed to allow the receiver to interface with many different control systems. Tuning is by this keypad or a photodiode, and l.e.d. dial scanning-system

(as described in pp.65-6, Sept. 77 issue), enabling fast and accurate searching to be carried out.
The tuning dial has two tuning rates, one for fine tuning and one for searching, both providing frequency steps of 10 Hz . The keypad enables a new frequency to be selected quickly by simply punching in the desired frequency in kHz . A non-flicker I.e.d. display indicates the receive frequency in MHz. Push button controls also provide selection of a.m., f.m., c.w., u.s.b., 1.s.b. and i.s.b. modes, bandwidth filters, a.g.c. and a.f.c. All of these selections, and the frequency, can be stored in a built-in 16 -channel memory so that they can be recalled almost instantly.

The synthesizer, a patented Plessey design, allows tuning from one end of the frequency range to the other in

10ms (typical). Specifications include a sensitivity on s.s.b. of 15 dB signal-to-noise-plus-noise for a $1 \mu \mathrm{~V}$ (e.m.f.) input and a typical noise figure of 10 dB from 100 kHz to 30 MHz . Intermediate frequency and spurious signal rejection is greater than 80 dB down.

Although this product represents astep forward in British-made professional communications equipment, at a price of about $£ 6,500$ - which doesn't include the microprocessor - it remains to be seen whether it can survive the competition if the Japanese, who are proving to be very proficient at producing this type of equipment at low cost, succeed in entering the professional communications equipment market. Plessey Avionics \& Communications Ltd, Ifford, Essex.
WW 301

Digital printer

A microprocessor controller is used in the SP302 five-by-seven impact dotmatrix printer to enable it to perform functions such as double-width printing and double and triple spacing, which, the makers claim, are not available on competitive units. Tab functions are fitted as standard and may be externally controlled by simple software. The standard input baud rate is 110 , but other rates can be internally set. The unit prints at a rate of 50 characters per second. It will print multiple copies and is also capable of using ordinary $37 / 8 \mathrm{in}$ adding-machine paper. The SP302 measures $244 \times 127 \times 305 \mathrm{~mm}$ and has a power requirement of 25 W from 115 to 230 V at 50 or 60 Hz . Syntest, 169 Millham Street, Marlboro, Mass. 01752, U.S.A.
WW 302

Low-cost DMM

A calculator-sized $31 / 2$-digit multimeter, the PDM35 introduced by Sinclair Radionics Ltd, is available in the UK at $£ 29.95$ plus 8% v.a.t. The meter measures $155 \times 75 \times 30 \mathrm{~mm}$ and weighs only 175 g . Its design is claimed to be based on the results of an international survey which tried to determine the features required from a multimeter by the majority of users. As a result, the meter does not have an alternating-current range. The PDM35 has four direct-voltage ranges, from 1 mV to 1 kV , and six direct-current ranges, from $\ln A$ to 200 mA , with a $10 \mathrm{~m} \Omega$ input impedance on the voltage ranges, and a maximum resolution of 0.1 nA on the current ranges. Accuracy in each case is $1 \% \pm 1$ digit of the reading. Its alternating-voltage range is suitable for frequencies from 40 Hz to 5 kHz from 1 to 500 V r.m.s. with an accuracy of $1 \% \pm 2$ digits. The meter also has five resistance ranges from 1Ω to $20 \mathrm{M} \Omega$ with an accuracy of $1.5 \% \pm 1$ digit, and five junction-test ranges. Sinclair Radionics Ltd, London Road, St. lves, Huntingdon, Cambs PE 17 4HJ.

WW 303

Sound level meter

The db-306 Metrologger is a pocketsized sound-level meter incorporating a minicomputer which measures and displays A-weighted sound levels over a selected 64 dB range. It also indicates the equivalent continuous sound level, the maximum sound level sampled and the time duration of the measuring period. The instrument, which utilizes a microprocessor, is normally supplied with a $1 / 4 \mathrm{in}$ ceramic microphone that can either be mounted on the Metrologger or be positioned up to 100 ft away. Sound levels are displayed in 1 dB incre-
ments on a digital readout which is updated four times per second. An inexpensive 9 V battery having an operating life of about 72 h is used to supply the device. Dawe Instruments Ltd, Concord Road, Western Avenue, London W3 0SD.
WW 304

R.f. analyser

All the elements to form a complete transmission and reflection measuring instrument are contained in the Wiltron 640 r.f. analyser. The unit comprises a swept r.f. generator covering 1 to $1500 \mathrm{MHz}, \log$ arithmic amplifier with detectors, one of which is for reflection measurements, and a display (built by Tektronix). The display is in the mainframe of the instrument, the other elements of the system being in the form of plug-in units. System noise level is around -60 dBm and the r.f. output is calibrated to +10 dBm , so that a 70 dB dynamic -range is obtained. Several marker systems, for level and frequency, are provided; a nice refinement is the 'tilt' facility for frequency marker pips to enhance visibility on the skirts of responses. The output level is held to within 0.2 dB over the 1500 MHz range, and over the often-used 400 500 MHz sections it is constant to within 0.1 dB . Wiltron, 825 E Middlefield Road, Mountain View, CA 94043, U.S.A. WW 305

WW 302

WW 303

R.f. transistor

A r.f. transistor, the BF199 manufactured by AEG-Telefunken, is suitable for video i.f. amplifier stages. It is a silicon n-p-n epitaxial planar transistor having a feedback capacitance of only 0.32 pF . Absolute maximum ratings include a $V_{\text {CEO }}$ of $25 \mathrm{~V}, \mathrm{~V}_{\text {CBO }}$ of $40 \mathrm{~V}, \mathrm{~V}_{\text {EBO }}$ of $4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}$ of 25 mA and I_{B} of 2 mA . Total power dissipation is 300 mW and the junction temperature is $150^{\circ} \mathrm{C}$. Other characteristics include a typical gain bandwidth product of 500 MHz and a typical h_{fe} of 88 . The BF199 is packaged in a T092Z case. Norbain Semiconductor Division, Norbain House, Arkwright Road, Reading, Berkshire RG2 0LT.
WW 306

A-to-d converter

The LD 130 three-digit analogue-todigital converter i.c., from Siliconix, has been reduced in price by 45% from $£ 6.36$ to $£ 3.45$ (for quantities of 100 or more). This follows the company's improvements in high-volume manufacturing techniques. Sampling rates for this device vary from 1 to 60 per second and accuracy is quoted as $0.1 \% \pm 1$ digit, with a 1 mV resolution. Siliconix Ltd, 30A High Street, Thatcham, Newbury, Berks RG13 4JG.
WW 307

WW 304

Microcomputer development system

A microcomputer system known as the muPro- 80 comprises a complete 8080A microcomputer, a control and display panel, an in-circuit emulator, a dual floppy-disc system and a software package. The software package includes a multi-purpose real-time executive and a high-level relocatable output assembler, having a number of sub-routines with Algol-type statements such as 'if', 'then begin', 'end' and 'else begin'. This package also includes a disc operating system and a text editor. User programmes can be operated in a time-share mode. The control and display panel enables memory or register contents to be examined or changed, break points to be set and the last 64 instructions to be executed and traced. All of the functions are provided for without the use of any of the system memory locations, such that all the 64 K memory locations, 255 i/o ports and interrupt lines are available to the user. Microsystem Services, Duke Street, High Wycombe, Bucks.
WW E98

TV aerial isolators

Three aerial-isolation assemblies, types L1910, L1911 and L2114, have been designed for use in the 75Ω coaxial inputs of television receivers. The assemblies accept both 9.5 and 9 mm diameter plugs and are suitable for v.h.f. and u.h.f. receivers. Type L1910 has a single input and single output, type L1911 has a single input into a diplexer board giving two outputs, one v.h.f. and one u.h.f., and type L2114 has a single input and output but includes a built-in high-pass filter. Radio interference immunity in the frequency band from 470 to 775 MHz is greater than 25 dB , and from 775 to 860 MHz is greater than 20 dB . Signal attenuation figures at 10 MHz range from 0.5 dB for the L1910 to 25 dB for the L2114. The assemblies are accepted by many national safety authorities in Europe, Scandinavia and South Africa. Belling \& Lee Ltd, Great Cambridge Road, Enfield Middlesex. WW 309

D.m.o.s. f.e.ts

A range of d.m.o.s. f.e.ts, available from Mullard, is comprised of siliconinsulation gate f.e.ts of n-channel enhancement mode. The devices are manufactured by a double-diffused process which gives them frequency performances up to 2 GHz . Characteristics claimed include high gains, low noise levels, good linearites, low intermodulation distortion, and low feedback capacitances. Types available include TO72 devices for general purpose r.f. amplifiers up to u.h.f. (types SD200 to

SD203), high speed f.e.ts having low 'on' resistances (SD210 to SD215), and dualgate f.e.ts for v.h.f. and u.h.f. mixer and amplifier applications (types SD300, SD303 to SD308). Also available is the eight-pin d.i.l. type SD6000 which consists of two dual-gate devices in a single encapsulation. It is intended for use in varactor and conventional tuners for v.h.f. f.m. circuits. One device is characterised as a mixer, and the other as a r.f. amplifier. Mullard Ltd, Mullard House, Torrington Place, London WClE 7HD.
WW 310

High-current r.f. inductors

Two encapsulated r.f. inductors, introduced by Plessey Windings, are designed to carry higher-than-normal direct currents without degrading the inductance value. Type 11207, which has an inductance range from $50 \mu \mathrm{H}$ to 10 mH and a typical $\ddot{\mathrm{Q}}$-factor greater than 100 , measures only 7 mm in height and 19 mm in diameter. Its superimposed d.c. value (the direct current which will cause the inductance to reduce to 95% of the zero d.c. value) is from 85 mA to 1.2 A , depending upon the inductance value. Type 11206, measuring only $61 / 2 \mathrm{~mm}$ inheight and 14.5 mm in diameter, has an inductance range from 1 mH to 100 mH , Q-factors from 75 to 200 , and its superimposed d.c. ranges from 7 to 60 mA . Plessey Windings, The Plessey Company Ltd, Ilford, Essex.
WW 311

Locking dials

Two precision locking dials, types LK25 and LK50, have been made by Argo Electronic Components Limited. The LK25 is a miniature dial (measuring 22 $\times 25 \mathrm{~mm}$) having a photoanodized face with graduations of $0-10$ over an arc of 270 degrees and $0-100$ over an arc of 300 degrees. The LK50, which incorporates a dial measuring approximately 2 in
square, has standard graduations of $0-10$ over 270 degrees and $0-100$ over 300 degrees. However, for both dials, graduations can be supplied to customer specification, and may be used over 360 degrees. Argo Electronic Components Limited, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex, SS0. WW 312

Crystal oscillators

A high-power v.h.f. crystal oscillator, the model CO-284W, provides a stable fixed-frequency output of $1 \mathrm{~W}(+30 \mathrm{dBm}$ into 50Ω) at any frequency from 5 to 300 MHz , and $0.5 \mathrm{~W}(+27 \mathrm{dBm}$ into $50 \Omega)$ in the range 300 to 500 MHz . The standard stability is $\pm 0.0025 \%$ from 0 to $70^{\circ} \mathrm{C}$, with optional stabilities of $\pm 0.0003 \%$ from 0 to $50^{\circ} \mathrm{C}$, or -55 to $125^{\circ} \mathrm{C}$. Although the oscillator is factory set to within 10p.p.m. of the specified frequency, adjustment to within lp.p.m. is available as an option. For pha-se-locking applications, electronic tuning (v.c.x.o.) is also optional. Other models in this v.h.f. family are available with lower-level sinewave (5 to 500 MHz) or e.c.l.-compatible (5 to 200 MHz) outputs. Lyons Instruments Limited, Hoddesdon, Herts.
WW 313

WW 309

WW 308

Push-fit terminals

Push-fit terminals in the Terminette range include both stand-off and lead-through types which are supplied in matched sets of pins and p.t.f.e. insulators. The insulators are supplied in a variety of colours and are chamfered on the lower edge to enable an easy push-fit into a prepared hole. Subsequent insertion of a pin will rigidly lock an insulator into a chassis. Terminals are available for chassis hole sizes from 0.062 to 0.156 in and in metric sizes. All types meet the requirements of DEF5334B and some of these have NATO references and can be released to MOD05-29. H \& T Components Limited, Crowdy's Hill Estate, Kembery Street, Swindon, Wiltshire.
WW 314

DMM kit

The Model 2000 easy-to-build kit assembles into a bench/portable $31 / 2$ digit multimeter having an accuracy, when correctly calibrated, of $0.1 \% \pm 1$ digit, and an input impedance of $10 \mathrm{M} \Omega$. It has five functions, giving 28 ranges, and is provided with 100% overrangeand overload protection. The alternatingand direct-current and resistance functions each have six ranges, enabling resistance measurements from 1Ω to $20 \mathrm{M} \Omega$ and current measurements from 100 nA to 2 A to be made. The direct- and alternating-voltage functions each have 5 ranges providing voltage measurements from $100 \mu \mathrm{~V}$ to 1 kV . Overrange load indication, polarity and zeroing are all automatic. Price is less than $£ 70$ including tax. Sabtronics (UK) Ltd, 50 Galton Road, Westcliff-on-Sea, Essex. WW 315

Silicon rectifiers

Silicon-controlled rectifiers in the MCR100 series, from Motorola, are sensitive to gate-trigger currents up to a maximum of $200 \mu \mathrm{~A}$. These devices, which will pass a forward r.m.s. current of up to 800 mA , are supplied in peak reverse- and forward-blocking-voltage ratings from 100 to 600 V in 100 V steps. The reverse- and forward-blocking currents are no more than $100 \mu \mathrm{~A}$ at $125^{\circ} \mathrm{C}$ and the maximum holding current is only 5 mA . Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middx HA9 0PR.
WW 316

Miniature trimming resistor

A high-resolution ten-turn trimming resistor, from Lemo (UK) Ltd, measures
9.7 mm (max. height) by 4 mm diameter It is available in maximum values from 100μ to $100 \mathrm{k} \mu$, with the lowest adjustable values being about 25% of the quoted values. Power ratings are 370 mW at $40^{\circ} \mathrm{C}$, tolerances are $\pm 30 \%$, and the temperature coefficient of resistance values vary from 1×10^{-3} per degree Kelvin, for up to $1 \mathrm{k} \Omega$, to $2.5 \times$ 10^{-3} per degree Kelvin for up to $100 \mathrm{k} \Omega$. Lemo (U.K.) Ltd, 6 South Street, Worthing, W. Sussex BNll 3AE.
WW 317

Temperature-operated switch

A temperature-operated switch, from Lee Green Precision Industries Ltd, operates in temperature ranges between 50 and $80^{\circ} \mathrm{C}$. The Thermotrigger, as it is called, is made from vanadium pentoxide, the resistance of which changes abruptly from a high value at a low temperature to a low value at a high temperature. Temperature coefficient of resistance changes are -5% in the pre-transition region, -8% in the transition region, and -20% in the posttransition region. Lee Green Precision Industries Ltd, Grotes Place, Blackheath, London SE3 0RA.
WW 318

Tweezer pliers

Stirex k-40 tweezer-pliers are moulded in glass-filled propylene and have adjustable locks and self-opening handles. The locking device can be moved up or down the handles so that the jaws can grip and hold objects up to 7 mm in diameter. They may also be used without the locks. The pliers, which have finely serrated jaws with tip widths of 4 mm , are 165 mm long overall. They are non-hygroscopic, non-magnetic, resistant to most acids, and they weigh only 14 g . Tele-Production Tools Limited, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex SS0 9NW.
WW 319

High-current relays

Relays in the Ideco range have up to four change-over contacts and are available in ratings up to 10A. Most of the relays are plug-in types having five, eight or eleven-pin bases.

Contact materials include gold-plated pure silver, silver-cadmium oxide or silver-palladium. The springs are phosphor bronze, with mechanical lives of about 50 million operations, and coil voltages range from 6 to 110 V direct or 6 to 240 V alternating. A. B. Relays Ltd, Orgreave Crescent, Sheffield Sl3 9NQ. WW 320

WW 317

M.I.s.-Mine's lots safer

As Arnold Postlethwaite once said, "It's not t'fall as 'urts thee, lad - it's t'sudden stop at t'bottom." Arnold was speaking with difficulty at the time, having just fallen downstairs, hitting every tread on the way down and was, one felt, hardly in a position to come on with the homespun philosophy.

But a little philosophy, homespun or not, would seem to be appropriate to those deliberating on the microwave landing systems of the future - electronic assistance in avoiding "t'sudden stop at t'bottom." Amid clamorous protestations of thinking only of the good of passengers, all the parties interested in the final choice of British, American or German systems are intent on making sure that they finish up on the gravy train, morally as well as financially (I use the word 'morally' in the sense of 'moral victory' and in no other manner). Whichever system is adopted by ICAO, the manufacturers who 'lose' stand to make very nearly the same profit as they would if their own system were chosen, since those who propose the Doppler method can make scanning equipment equally well, and vice versa.

So, it appears that the choice of a system is being held up for nebulous reasons of national pride, rather than for commercial and technical considerations - Doppler and scanning-beam both seem to work well in most situations. Computers don't seem to be able to come up with a clear-cut choice, particularly when told that airports have suddenly sprouted imaginary buildings, and it seems that aircraft have got to go and actually land at various 'troublesome' airports and find out the hard way. Let's hope they get on with it and reach a decision soon; one based on the facts and not political manoeuvrings, as has happened so often before. Let us also hope that, when automatic landing is eventually a common procedure, the reliability of the equipment is not open to question. The alternatives of landing on the runway or twenty feet under it must not hang on the life expectancy of a $100 \mathrm{k} \Omega$ resistor or the cleanliness of a plug and socket.

Table talk

While desultorily casting around for something revolutionary to invent during the afternoon, my colleague froze, the peas from his knife rolling in a steady stream across the table, ununheeded. "Why not?" he said, as our ravioli and chips grew cold, "Why not design a computer graphics thing for the telly?" We stared at him, as he caught the peas with his fork, temporarily at a loss for words, and then we all started talking at once. "But,"
"Whatdya mean . .?". .. "You can't . .."
. and similar meaningful human communication.

As the last chip disappeared and chocolate sponge spoons were wearily taken up, we had decided that to do the job properly you would need a mainframe computer about the size of our office, and our management people are a bit funny about that sort of thing. But the idea was a good one. For example, you could rearrange all the furniture and view it from different angles, in perspective. That cabinet for all the hifi equipment can be seen from all viewpoints and you may then see that it would completely block Grandpa's view of the tv when the turntable lid was up. Exhibition designers would find it helpful and architects could completely remodel Bruddersfax town hall or the Humber bridge without spending a penny on concrete until it looked about right.

Not that it's a new idea, of course but, using a microcomputer and a domestic tv as display unit, it could be a lot more useful than playing ludo. Personally, I never believed all that about NAAFI tea, but I'm beginning to wonder about our canteen's ravioli.

Watt voltage?

Many years ago in the dear, dead days of my youth and long before I learned not to argue with 'experts', I had to show one of these experts who was also an M.P. one of the new signal generators made by the company for which I worked. Its attenuator was calibrated in decibels relative to $l_{\mu} V$ across 50Ω and, because he felt that he had to say something intelligent, the chap said "Ah, but are they voltage or power decibels?" Well, that took me aback a little, but I came back, quick as a flash, and said that it didn't matter because the calibration was the same for voltage or power. The ensuing argument, which was thickly be-spattered with expressions to do with going back to school and with the possession of infinite Z between the ears did not reach an amicable conclusion, but I was saved from the Star Chamber by the fact that someone's power supply exploded and diverted his attention.

The fact is, of course, that so long as the impedances do not change, decibels can be either voltage or power. The
ratio of the gain of an amplifier at 1 kHz to its gain at 20 kHz may be 3 dB and, if you work it out, you can see that this can mean either voltage or power assuming that the output impedance is still the same. It does mean that the power output is halved and the voltage output is $1 / \sqrt{ } 2$ that at 1 kHz , but this is -3 dB in each case.

Perhaps I can now stop the argument that started twenty years ago and refer people to this piece in the future.

Would you care to re-phrase that?

Far too headstrong, that's the basic problem with colonials, particularly with those in America. Give them their head and heaven only knows what they'll get up to. I dare say that, after a little time to reflect on the working of this Declaration of Independence thing, they're already beginning to regret the whole nasty business. We've been good to them - some would say we've been too generous by half. They've come over here and we've been so glad to see them back that we've let them make their motor-cars here and pretended to marvel at their talking pictures and no one's ever said an unkind word. Well, not many, anyhow.

They're good chaps, taken as a whole, although perhaps a little slow on the uptake when they're wanted, but they have had this attitude of late that has denoted a certain, well, greediness. They have turned up here and bought things. Things like England, for instance. And it's got to stop - they'll be wanting to take Yorkshire back to San Francisco next and reassemble it stone by stone.

As a warning not to be so selfish, then, several British companies have already decided that the best and wisest way to deal with these youthful high spirits is to do the same sort of thing back to them. Racal, for example, has taken over not only Milgo, but Dana Electronics as well. I expect they'll give them back in a little while, but it's the example that's important. EMI has had companies over there for some time now and lots of our firms have colonial outposts. Goodness knows how they manage it, what with Indians and the weather, but they all come from good, pioneering stock.

It's all very well to be independent all young people need to break away once in a while - but freedom has to be used properly. Let us hope that they have learnt their lesson now. After all, we've done our best to keep them out of trouble. Geordie George from up in Washington all the way down to young Robert (Hope, that is) have actually gone there and kept an eye on them and still they keep saying they are independent now. They even managed to convince poor old George. Well, they can't say they weren't warned.

40,000 L series power supplies sold . . .

If we hadn't built them so well we could be selling more now! The stiffest competition we find against making a sale is a iab. full of the old black-faced original L30's-still performing reliably after more than 10 years service.

Acknowledged the U.K.'s most popular range of bench power packs the latest version of the L series is still uncompromising in performance and reliability and provides constant voltage OR constant current, features large recessed meters overload and short-circuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available			
L50-05	0.50V, 0.5A	L12-10C*	0-12V, 10A
L30-1	0-30V, 1A	LT50-05 w	$2 \times 0-50 \mathrm{~V}, 0.5 \mathrm{~A}$
L10-3C*	0-10V, 3A	LT30-1 iw	$2 \times 0-30 \mathrm{~V}, 1 \mathrm{~A}$
L30-2	0-30V, 2A	LT30-2 iw	$2 \times 0-30 \mathrm{~V}, 2 \mathrm{~A}$
L30-5	0-30V, 5A	*with adjusta	ge protection

For full specification and prices contact:

FARNELL INSTRUMENTS LIMITED SANDBECK WAY WETHERBY WEST YORKSHIRE LS22 4DH
Telephone 0937-63541 TELEX 557294

TELEPHONE 01-864 7433 \& 7434

WE KNOW OF ONLY ONE OTHER POWER AMPLIFIER MODULE SUPERIOR TO OUR

 JPS 100 - The JPS 150For starters. JPS Power Amplifier Modules are designed. manutactured and tested in England, yet sold throughout the ,
Incorporating comprehensive protection circuits including mismatch, short and open circuits, impedance and thermal reliability and top performance

Unike other models. they offer an indefinite life-span: Should they ever require any attention or repair, all components on both Modules are easily replaceable And, That's confidence for youl carry a full two-year guarantee

	JPS 100 E28. 50	JPS 150 c 33.30
Power Output	110 waths Rams ohms	170 watls Ras 88 ohms
Froquency Rasponse	$10.22 \mathrm{kHz}-02088$	$10-30 \mathrm{kHz}+0 \mathrm{~dB}-02 \mathrm{~dB}$
Power Bandwidh	$10.22 \mathrm{kHz}-02 \mathrm{~dB}$	$10-22 \mathrm{kH2}+0 \mathrm{~dB}-02 \mathrm{~dB}$
Slowing hata	8.4 Volit per microsecond	9.00 Velts per microsecond
Tolal Harmanic Distortion	0.04\% @ 1kHz	$0.04 @ 1 \mathrm{kHz}$
Osmping Factor	$115 d 8$ below 100 watts	115018 below 150 watis
anput Sansilivity	Greater lhan 300 to 1 kHz Od8 [0.775 Yolts) 100 wa	Grasier than 400101 kHz
	47k	Ode [0.775 volts] 150 walls
\%mput impedance	- 45 Volls	- 55 Volits
Power Requirements	12 transistors. I imiegrated	12 Iramsistors. 1 intagraled
Transistor Comploment	circuit.	circuit
Module Dimensions	$4^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W} \times 2^{\prime \prime} 0$	
Buarantee	Full 2 yaar	Full 2 year

LID'JPS Associates
Thase parameters may be changed to suit particular requiremanls.
For indusirlal usage frequency response can be oxtended OC io 30kHz +008 - $0.2 d 8$ [150 only]

Powert I JPS 150 Price $[21.50$

THRULINE ${ }^{\circ}$ WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say.

Exclusive UK representative

-1 Wilmslow Audio

THE Firm for Speakers!

SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC.
AND DISCOUNT PRICE LIST

ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC - FANE - GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER O McKENZIE MONITOR AUDIO PEERLESS - RADFORD - RAM - RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO ${ }_{\text {Ioep. } 1 \text { wm }}$

SWAN WURKS. bank square. WILMSLOW. Cheshire sk9 ihf Discount Hi-FI, etc at 5 Swan Street and 10 Swan Street Tel. Wilmslow 29599 for Speakers Wilmslow 26213 for HI-FI

WW-032 FOR FURTHER DETAILS

MAGNUM AUDIO MODULES

ENCAPSULATED AUDIO MODULES WITH UNIQUE FEATURES FOR BUILDING QUALITY HI-FI SYSTEMS.
 BACKED BY FIRST CLASS APPLICATION DATA, INFORMATION SERVICE AND FULL RANGE OF ANCILLARY COMPONENTS-TWO YEAR GUARANTEE.

CP-P1

A fully encapsulated stereo pre-amplifier/tone control module incorporating four separate amplifiers and a stabiliser circuit which may also be used to power the CP-FG1. Equalisation networks associated with the low noise input stages may be switched in for disc replay and provision is made for optimum cartridge loading. The magnetic input noוse level is $>70 \mathrm{db}$ down on 3 mV and distortion is $<0.02 \%$. The 33db overload margin is extended to $>40 \mathrm{db}$ when used in conjunction with the CP-FG1. It only takes connection to a few pots and switches and to a $\pm 18 \mathrm{~V}$ supply to make a complete state of art' pre-amplifier.

CP-FG1

This fully encapsulated audio function module incorporates some unique features. Two stereo filters ('rumble' and 'hiss') are provided, each with its own slope control and choice of three cut-off frequencies. A stereo separation control allows variation of the apparent image width to suit listening conditions. This can provide a degree of realism not possible from conventional systems. Signal to noise and distortion performance is in line with that of the CP-P1.

CP-TM1

A peak programme monitor circuit which. when used with a suitable meter movement, is capable of capturing the peak-transient information in an audio signal and storing it long enough for it to be displayed by the meter movement and noted by the user. When used in any of the the Magnum Systems. It can ensure that the available signal to noise and distortion performance is realised

CP-DR 1

This dynamic range controller has two main applications. Firstly it may be used to compensate for any compression or peak limiting which may have been applied to radio broadcasts or commercial gramophone recordings and thus restore lost realism
Secondly, it may be used to make 'noise free' tape recordings as an additional $30-40 \mathrm{db}$ of dynamic range can be encoded and recorded onto most cassette recorders and then decoded and recovered on replay. The unit may also be used as a compressor for listening in high noise environments (the motor car?) or for the preparation of 'constant volume' background music.

CP-LX1 and LX2

Linear phase active crossover networks which may be used to replace any passive crossover network in. an existing speaker or in your next 'creation why not try an LX1 in the High Quality Bookshelf Speaker WW Oct. 77 p.42)? In addition to the advantages of improved loudspeaker damping. transient response and intermodulation performance, these crossovers are easily adjusted to your chosen frequency(ies) by selecting two resistors per crossover point. Should you wish, we will preset them for you.

CP2-15/20

Encapsulated into a generous heatsink are iwo 15/20 Watt r.m.s. amplifiers. By virtue of their configuration, a single module can give 20 Watts per channel using 40 hm speakers or 15 Watts per channel with 8 Ohm speakers. Alternatively, both the amplifiers in a module may be used ro drive a single speaker, effectively doubling the power to 30 Watts r.m.s. with 15 Ohm speakers or 40 Watts into 8 Ohms.
These amplifiers operate in 'Class A ' up to 3-4 Watts before entering 'Class B ' and hence give excellent crossover performance. Protection is provided against overload and short circuit operation and inadvertent reversed supply connection and each amplifier has its own thermal overload switch. Transient performance is virtually unaffected by loading and free from overshoot and 'T.I.M. distortion. All this adds up to a versatile and robust unit capable of giving an extremely 'clean' and 'musical' performance.

Send SAE for details of all MAGNUM AUDIO MODULES

CP-P1. Stereo Pre-Amplifier

CP-FG1. Audio Function Module
CP-TM1. Peak Programme Monitor
CP-DR1. Dynamic Range Controller / Tape Noise Eliminator CP-LX1. Single Point Linear Phase Active Crossover Network CP-LX1-P. CP-LX1 set to your choice of frequency CP-LX2. Two Point Linear Phase Active Crossover Network CP-LX2-P. CP-LX2 set to your choice of frequencies

CP2-15/20. Stereo Amplifier Module
£14.46
CP-AR1. Voltage Stabiliser Module
$£ 7.57$
CP-AR 1. Voltage Stabiliser Module

CP-MC1. Printed Circuit Board for CP-P1 and CP-TM1 (optional) and
controls

 controls Also available . pots. .
All prices fully inclusive
Barclaycard and Access facilities avaılable.

Get a great deal from Marshalls

A. MARSHALL (LONDON) LTD., Dept WW

LONDON - 40-42, Cricklewood Broadway, NW2 3ET
Tpl n1-452 $0161 / 2$ Telex. 21492
\& 325 Edgware Road, W2. Tel 01.7234242/3
GLASGOW - 85 West Regent St. G2 2QD. Tel 041 -332 4133 BRISTOL - 1 Straits Parade, Fishponds Rd., BS 16 2LX Tel: 0272654201

NEW CATALOGUE 77

POPULAR SEMICONDUCTORS [A very small selection from our vast stocks, please enquire about devices not listed.]

AF 139	0.69		0.62		0.1	2N3638A					
AF23	0.65	2N70	0.28	2N2924	0.15		0.23	2N3962			0.32
ASY28	1.20	2N718	0.27	2N2926	0.15	2N3663	0.26	2N40	0.85		33
ASY5	0.65	2N914	0.35	2N2926	0.15	2N3702	0.13	2N40	0.20	2 S 70	0.38 3.95 3.9
BC 11	0.20	2N923	0.25	2N3019	0.55	2N3703	0.15	2N412	0.25	25	
BC154	0.27	${ }^{2} \mathrm{~N} 930$	0.26	2N305	0.26	2N3704	0.15	2N41	0.17	403	3.00 0.55
BC167	0.12	N1132	0.37	2N3055	0.70	2N3705	0.15	2N4	0.17		
BC	0.12	2N 1483	1.70	2N310	0.60	2N37	0.16	2N4250	0.24	403	1.30
BC	0.12	2N1613	0.30	2N3133	0.45	2N370	18	2N426	0.20		
8C1718	0.16	2N1711	0.30	2N3392	0.16	370	0.13	2N42	0.35	${ }_{\text {ACl }}$	
-	0.11	2 N 1893	0.38	2N3393	0.15	2N3709	0.15	2N42	0.20	${ }^{\text {ACl }} 12$	0.45
BC182L	0.14	2N2060	5.00	2N34,	0.40	2N3710	0.16	2N428	0.20	${ }^{\text {AC }} 15$	0.50
BC184	0.14	22	0.35	2N3439	0.88	2N371	0.16	2N44	0.18	AC,	0.55
BC212A	0.14.	2N2221	0.25	2N3441	0.85	2N3771	1.95	2N4822	0.75	AC187	
BC214L	0.17	2N2222	0.25	2N3553	2.99	2N3773	2.90	2N4916	0.20	ACi	0.60
8D135	0.37	2N222AA	0.25	2N3565	0.20	2N3794	0.20	2N5129	0.20	ACY22	
	0.15	2N2368	0.25	2N3566	0.20	2N3819	0.36	2N5192	0.75		
	0.34	2N2369	0.25	2N3567	0.20	2N3854A	0.25	2N5222	0.18	AF106	
	0.25	${ }^{2 N} 2646$	0.75	2N3571	3.70	856A	0.25	5	0.34		
	0.40	N	0.37	2N3572	3.50	2N3859A	0.21	2N5447	0.15		
N697	0.30		0.28	3638	0.16	2N3905	0.22	54	0.19		

WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LDNDON BRANCH AT 325 EDGWARE ROAD, W2, ABDUT 100 YARDS NORTH OF THE WESTWAY FLYOVER. EXTENSIVE STOCK RANGE. MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY.

Prices correct 25 Oct 1977. but please add VAT p\&p 40p

Heard any good books lately?

Good listening begins with the right equipment - and the Hi-Fi Year Book gives you the low down on just about everything the market has to offer. With separate illustrated sections for every major category of equipment, it's got descriptions, prices, specifications, who makes it, where to buy it -everything you " need to know. And all this information is backed by authoritative articles on the latest hi-fi developments, including quadraphonic recording. But you'd better order your copy quickly - lots of people will be pricking up their ears at news of this latest edition.

HI-FI YEAR BOOK 1978

Available direct from the publishers @£3.40 inclusive or from leading booksellers and newsagents price £3.00.

Here's a brand new multimeter from Eagle: 100,000 opv, 3-colour scale anti-parallax mirror, taut band movement, electronic protection, reversible polarity, 15 amps AC range. Complete with real leather carrying case, shoulder strap and probes.

And all that for a retail list price of under $£ 47.00$!

But that's not all - we've got a range of other meters to cover every possible need of the electrical or electronic engineer from about $£ 6.50$ upwards. Send the coupon now for the complete catalogue.

WW-036 FOR FURTHER DETAILS

carbon film resistors £2:50 trat per 1000!

$1 / 4 \mathrm{~W} \quad 5 \% \mathrm{TOL} \quad$ E24 RANGE

SUPPLIED ONLY IN MULTIPLES OF 1000 pcs per OHMIC VALUE MIN. ORDER £25 While stocks last

SEND FOR LISTS \& SAMPLE OTHER ITEMS AVAILABLE PBRA LTD THREE ELM LANE GOLDEN GREEN TONBRIDGE TN11 OLH phone HOPFIELD (073274) 345

The world's most famous company in communication, the Nippon Electric Company Lid., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present:
NEC CQ 110 E DIGITAL

allband $\mathrm{HF}, 300$ wattstransceiver $160 / 80 / 40 / 20 / 15 / 11$ h 10A/10B/10C/10D/WWV, modes FSK, USB, LSB, CW, AM, with separate 8 pole X-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC co 301

allband HF, 3KW, linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ ' 10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CO 301 can be driven by our CQ 110 E or other exciters capable of about $50-10 \overline{0}$ watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!

Sole distributor in Europe
CEC Corp., Via Valdani 1 - CH 6830 CHIASSO-SWITZERLAND Phone: (091) 4426 51. Telex: 79959 CH

High quality modules for stereo, mono and other audio equipment.

The 450 Tuner provides instant program selection at the touch of a bution ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls. Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, logether with the Transformer T538.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

FET Input Siage * VARI-CAP diode tuning

- Switched AFC - LED Stereo Indicato

Typical Specification
Sensitivity 3μ volts Stereo separation 30db Supply required 20-30v at 90 Ma max.

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges It is provided with a standard DIN Full instructions supplied

The Stereo 30 comprises a complete stereo pre-amplifier power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner stereo tape deck etc. Simple to install, capable of producing really hirst class results, this unit is supplied with full instructions, black tront panel knobs, main swich fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available ddeal for the beginner or the advanced constructor who requires Hi - Fi performance with a minimum of installation difficulty (can be installed in 30 mins) TRANSFORMERE3.25 plus 50p p \& p TEAK CASE $\mathbf{E} 5.45$ plus $70 p \rho \& p$

AL 60

25 Watts (RMS)

* Max Heat Sink temp 90C. * Frequency response 20 Hz to 100 KHz * Distortion better than 0.1 af 1 KHz Supply voltage $15-50 v$ * Thermal Feedback \star Latest Design Improvements Load - 3,4,8, or $\mathbf{1 6}$ ohms Signal to noise ratio $80 \mathrm{db} *$ Overall size 63 mm . 105 mm Signal
13 mm

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63
Transformer BMT80
£5.40 +86 p postage

THE
 DYMamIC DUo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers S 15 produces a system of incredible performance
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on / off switch
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size

C15/15
15 Watts per channel into 4Ω
Distortion 0.2% at 1 KHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{KHz}$
Input Impedance 8Ω nominal
Input sensitivity 2 volts R.M.S for 15 watts output
Power line 10-18 volts
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches

Data on S15
6" Drameter
$5^{1 / /^{\prime \prime}}$ Air Suspension
$2^{\prime \prime}$ Active Tweeter
20 oz Ceramic magnet
15 Watts R M S handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency response
4Ω Impedance

IWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Puchuse Price
| Enclose Cheque: 77 Postal Orders 77 Money Order 7
Please deint my Access account ? Barclaycard accoant \square
Account number
Name \& Addiess

NRDC-AMBISONIC 45J

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team W.W. July, Aug., ' 77
The unit is designed to decode not only 45J but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC Matrix H, 10 input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 to 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet. panel, knobs, etc

Complete kit, including licence fee $£ 45.00$ + VAT
Or ready built and tested. $£ 61.50+$ VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval
As in "Wireless World", designed by Mike Hosking, 240 V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet. Complete kit. Exclusive designer approved kit $£ 46.00$ + VAT, or ready built and tested. $£ 54.00$ + VAT

Wireless World Dolby noise reducer
 Trademark of Dolby Laboratories inc.

Featuring:

- switching for both encoding (low-level h.f. compression) and decoding
a switchable f.m. stereo multiplex and bias filter
provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines.
check tape switch for encoded monitoring in three-head machines

Typical performance
 Noise reduction better than 9dB weighted

Clipping level 165 dB above Dolby level (measured at 1% third harmonic content)

Harmonic distortion 0.1\% at Dolby level typically 0.05% over most of band. rising to a maximum of 0.12%
Signal-to-noise ratio $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby levell at Monitor output
Dynamic Range $>90 \mathrm{db}$
30 mV sensitivity
Complete Kit PRICE: $£ \mathbf{3 9 . 9 0}+$ VAT

Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ \mathbf{2 . 2 0}+$ VAT
Single channel plug-in Dolby PROCESSOR BOARDS (92 $\times 87 \mathrm{~mm}$) with gold plated contacts are available with all components

Price £8.20 + VAT
Single channel board with selected fet
Price $\mathbf{£ 2 . 5 0 + V A T}$
Gold Plated edge connector
Price $£ 1.50+$ VAT
Selected FETs $\mathbf{6 0 p}$ each + VAT, $\mathbf{1 0 0}$ p +VAT for two, $£ \mathbf{1 . 9 0}+$ VAT for four
Please addVAT@ $12 \frac{1}{2} \%$ unless marked thus, when 8% applies (or current rates)

We guarantee full after-sales tecnnical and servicing facılities on all our kits, have you checked that theșe services are available from otner suppliers?

INTEGREX LTD.

Please send SAE for complete lists and specifications
Portwood Industrial Estate, Church Gresiey,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button

 FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo

Amplifier.

Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30dB mono S/N @ 1.2 NV . THD 0.3%. Pre-decoder 'birdy' filter

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}, 20 \mathrm{~dB}$ mono quieting@0.75 uV. Image rejection - 70dB. IF rejection - 85dB. THD typically 0.4\%

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders
Compare this spec. with tuners costing twice the price.

Mono $£ \mathbf{3 2} .40+V A T$
With ICPL Decoder $£ 36.67+$ VAT
With Portus-Haywood Decoder
$£ 39.20+V A T$

Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$ THD typically 0.3% Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £ $31.95+$ VAT
 Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £ 33.95 +VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT	$£ 14.28+V A T$	PHASE-LOCKED IC DECODER KIT \ldots	$£ 4.47+$ VAT
BASIC MODULE TUNER KIT (stereo)	$£ 16.75+$ VAT	PUSH-BUTTON UNIT	$\ldots 5.00+$ VAT

LYNX ELECTRONICS (London) LTD.

92 Broad Street, Chesham, Bucks. Tel (02405) 75154 VAT 8% except \# which are $121 / 2 \%$ Return Post Service P\&P 30p. Overseas 90p. Matching 20p per pair New Price List 20p Prices correct at 20th October 1977. ACCESS WELCOME

MARCONI TEST EQUIPMENT

TF329G circuit magnification meter $£ 125$
TF455E Wave analyser. New. £ 135
TF1101 RC oscillators. E65
TF 109920 MHz sweep generators
TF1041B \& C. VT Voltmeters
TF 1102 Amplitude modulator. 500 MHz TF 1020 A Power meter. 100 W .250 MHz . 885 TF1152A/1 Power meter. 25 W .500 MHz . $\mathbf{~} 75$ TF890A/1 RF test set. $\mathbf{E 4 2 5}$
TF801B/3S Signal generator $£ 175$
TF1417 200 MHz counter (imperfect) TF 1400 Puise generator
TF675F Pulse generato
TF 1370 Wide-range RC oscillator $£ 125$
TF 2163 UHF attenuator DC-1 GHz. £95
TF2200 Oscilloscope
TF2904 Colour gain delay test set
TF 1058 UHF / SHF signal generator
ALL EQUIPMENT IS AVAILABLE FOR HIRE AT VERY REASONABLE RATES. PLEASE TELEPHONE YOUR REQUIREMENTS

POLARAD TYPE TSA. SPECTRUM
ANALYSER. C/w type STU/2M plug-in
unit covering from 950 to 4500 MHz .
EVER-READY NICKEL-CADMIUM
BATTERIES
Size ' N ' (HP2) $125 \mathrm{~V}, 3.5 \mathrm{AH}$ Only small quantity
available at $£ \mathbf{2}+10$ p post.

APT POWER SUPPLIES. Stabilised and regulated 6 V (variable) at 3 A Brand new

 € 25 .
BECKMAN TURNS COUNTER DIALS

Minature type 122 mm diam) Counting up to
15 turn Helipots'. Brand new with mounting 15 lurn 'Helipots'. Brand new with mounting instructions Only $£ 2.50$ each
Wandel \& Gotterman Equipment
Level Meter 0.2.1600KHz
Level Oscillator 0.2.1600KHz
Level Transmitter . 3-1350 KHz
Carrier Frequency Level Meter

P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753		

 SIEMENS Level oscillator $12-160 \mathrm{KHz}$ SCHNEIDER type ct 252100 MHz counter (red) SCHOMANDL type FD 1 frequency meter SOLARTRON type CD 1212 oscilloscope Bruel \& Kjoer type 3301 Automatic Frequency Pes $£ 145$ Recorder $200 \mathrm{~Hz}-20 \mathrm{KHz}$
Airmec 201A Signal Generator $30 \mathrm{KHz}-30 \mathrm{MHz}$ MUIRHEAD-PAMETRADA D489EM Wave Analyser HEWLETT PACKARD 5090B recording recelver £125 TEKTR
extra.
TEKTRONIX $585 A$
oscilloscope with 82 PI
DC -80 MHz TEKTRONIX type 526 Vectorscope TEKTRONIX type 180A Time-mark generator WANDEL \& GOTTERMAN Signal Gen $10 \mathrm{~Hz}-30 \mathrm{MHz}$ NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and recondtioned where necessary it is sold in first-class operational condition and most tems carry our three months guarantee Calibration and certificates can be arranged at cosi Uverseas enquiries

ROHDE \& SCHWARZ EQUIPMENT

HUZ Field Strength Meter $47-225 \mathrm{MHz}$ AMF TV. Demodulator 470.790 MHz Selective UHF V/meter, bands 485 . USVF. Selectomat. RF Voltmeter. USWV. BN 15221. £450
Standard attenuator $.0-100 \mathrm{db} \quad 0-300 \mathrm{mHz}$ DPR.
UHF Sig. gen type SDR $03-1 \mathrm{GHz}$. $£ 750$
UHF Signal generator type SCH. £175
UHF Test recelver type USVD. £325
POLYSKOP SWOBI.
POLYSKOP SWOB II.
SBTF. T V. Signal generator, vision-sound modulator and transmitter.

ICL type 2640	Paper tape readers	250 cps
New		
Westrex 8 -hole paper-tape punches	$\mathbf{£ 9 5}$	
Sound-proof case avallable	$\mathbf{£ 9 5}$	

MUFFIN INSTRUMENT COOLING FANS

Made by Rotron Holland These are very high quality. quiet running fans specially designed tor the cooling of all tipes
of electronic equipment Measures $45 \times 4 \quad 5 \times 15$ of electronic equipment Measures $45 \times 4 \quad 5 \times 15$
115 VAC 11 Watts The list price of these is over $\varepsilon 10$ each We have a quantity available brand new for only $£ 4.50$ each

500V TRANSISTORISED INSULATION
 \section*{TESTER}

Lightweight small size $(13 \times 7 \times 4 \mathrm{cms})$ Reads insulation
from $02-100 \mathrm{~m}$, from $02-100 \mathrm{M}$? at 500 V
standard $9 \mathrm{VPP3}$ Brand new

TELEVISION MONITORS

Phillips studio quality precision colour monitors and Pye

 PACE ELECTRONICS VARIPLOTTER Type 1100 E£175
MUIRHEAD DECADE OSCILLATORS

type 890A

$1 \mathrm{~Hz}-110 \mathrm{kHz}$ in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator. Reduced to $£ 75$.

Tel: Chesham (02405) 75154
Telex: 837571

MICROCOMPUTER KIT FOR ONLY £197.50 (ex. VAT)

We are proud to announce the launch of our NASCOM I Microcomputer kit at a seminar being held at the Wembley Conference Centre on November 26th

BASIC FEATURES

-Z80 Microprocessor
-2 K RAM
-1 K EPROM operating system software
-Visual display through ordinary domestic TV
-Full keyboard software controlled

- Program storage through standard cassette recorder
-Teletype interface included
-Expandability to 64 K bytes + high level language as future products

PHONE OR WRITE FOR YOUR TICKETS PRICE $£ 3.50$ (Lunch extra $£ 4.50$ (optional))

SEMINAR DETAILS

9.55 a.m.-5.00 p.m.

Highlights include:
10.00-10.20 Introduction to Home Computing
10.20-11.00 Introduction to Hardware
11.20-12.00 Introduction to Software
12.00-12.30 Introduction to NASCOM I
2.30-3.10 Interface
3.10- 3.50 Applications
4.10-5.00 Question Time

All ticket holders will have a chance to win a NASCOM I kit on the day. The winning number will be selected by NASCOM 1
We have held back 50 tickets for Wireless World readers who have just learned of the project in this issue. So it is still not too late to attend the seminar.

Z \& I AERO SERVICES LTD.
 Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641 Telex: 261306

MULTIMETER F4313 (Made in USSR)

SENSITIVITY.
1200V DC range. $10.000 \mathrm{R} / \mathrm{V}$ Other DC ranges $20.000 \mathrm{~g} / \mathrm{V}$ 1200 AC range. $6.000 \mathrm{~g} / \mathrm{V}$ 600 VAC range. $15.000 \mathrm{R} / \mathrm{V}$ 600 VAC range $15.000 \mathrm{\Omega} / \mathrm{V}$
300 VAC range $15.000 \mathrm{\Omega} \mathrm{~V}$ $300 \mathrm{~V} A C$ range $15.000 \Omega / \mathrm{V}$
Other $A C$ ranges. $20.000 \Omega / \mathrm{V}$.
$\mathrm{AC} / \mathrm{DC}$ current ranges $60-12 \dot{0}^{-600} \mu \mathrm{~A}-3-12 \cdot 300 \mathrm{~m} \mathrm{~A}-1.2-6 \mathrm{~A}$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges, $60-300 \mathrm{mV}-1.2-6-30 \cdot 120-300-600-1200 \mathrm{~V}$
Resistance ranges' $300 \Omega \mathrm{R}-10-100-1000 \mathrm{~K}$
Accuracy 15% DC; $2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer Taut suspension of movement. Transistor amplifier is used for all $A C$ ranges thus achieving a common linear scale for both $A C$ and DC ranges
Meter is profected by a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source 515 V dry cells. Dimensions $95 \times 225 \times 120 \mathrm{~mm}$.

PRICE $£ 39.50$ plus VAT
Packaging and postage E1. 10

OSCILLOSCOPE CI-5

Made in USSR
Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate 3 in . tube giving a 50 $x \quad 50 \mathrm{~mm}$ clear display. Amplitude and time base $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and
free-running time base, suitable for displaying pulses free-running time base, suitable for displaying
from 01 msec to 3 m sec . A.C mains operation.

Price $£ 55.00$ ex, works, plus VAT
Packing and carriage 'UK only' $£ 300$

FULLY GUARANTEED											
0A2	0.45	12405	0.65 0.55					EY88	0.50	P1509	0.30
082	0.45	12ai7	0.45					E240	0.5	PL509	$1.30-$
OC3	0.45	12aU7	0.38					E241	0.7	PY31	
003	0.45	12AV6	0.60					E280	0.30	PY33	0.63
18369	0.55	12av7	0.90	-				E781	0.35	PY81	0.45
1 HS	0.55	12Ax7	0.38			I		KT66	3.40	PYB2	0.45
5月46Y	1.00	$1284 A$	0.80					KT88	4.80	PY83	0.50
5146	0.55	128a6	0.60			-	(1)	PC86	0.65	PY88	0.50
5746	0.55	128E6	0.60					PC88	0.65	PY500A	1.10
5Y36T	0.65	128H7	0.60			AlV		PCC84	0.45	TT21	6.30
6ajs	0.65	12×4	0.50			ALV		PCCA5	0.45	TT22	6.30
6aks	0.45	19A05	0.75					PCCB8	0.65	UABC80	0.50
6ALS	0.30	30A5	0.70					PCCs9	0.55	UA142	0.70
6AS5	0.65	35A3	0.70	ECC84	0.35	Ecas	0.65	PCC189	0.65	UBCA1	0.50
6asg	0.80	35A5	0.80	ECC85	0.45	ECL86	0.55	PCF80	0.40	UBCPI	0.50
6AT6	0.60	3585	0.70	ECC86	1.25	Crso	0.35	PCFA2	0.40	UBF80	0.50
6avg	0.50	35C5	0.70	ECC88	0.60	EFB8	0.45	PCF86	0.65	U8F89	0.50
6AW8a	0.75	35A5	0.80	ECC89	0.60	Ef86	0.40	PCF200	0.80	UCC84	0.75
6aU6	0.40	35 w 4	0.60	ECC189	0.80	EF183	0.35	PCF201	0.85	UCC85	0.50
6896	0.38	50C5	0.70	ECF80	0.45	EF184	0.40	PCF802	0.55	UCF80	0.75
6BEE	0.45	eabc80	0.40	ECF82	0.45	EFL200	6.75	PCH2OO	0.75	UCH42	0.80
68J6	0.75	EAC91	0.55	ECF86	0.75	El34	0.70	PCL81	0.55	UCH81	0.50
68N6	0.80	EAF42	0.70	ECF801	0.75	El36	0.60	PCL82	0.40	- UCL82	0.40
6876	0.55	EAFBOI	0.65	ECF802	0.75	EL81	0.60	PCL3	0.50	-ucibs	0.70
6871	0.70	EBC41	0.75	ECH42	0.85	ELB2	0.60	PCL85	0.60	U51	0.75
6C4	0.40	E8Cal	0.50	ECH81	0.50	EL83	0.60	R4, 96	8.85	- $\mathrm{TH}^{\text {a }}$	0.75
${ }_{6} 686$	0.50	EBF80	0.50	ECH83	0.50	EL84	0.35	PCL200	0.75	UF80	0.40
6EAB	0.75	E8F83	0.50	ECH84	0.50	EL95	0.70	PL33	0.40	UF85	0.50
66K5	0.70	EBF89	0.40	ECL80	0.40	EL500	0.80	PL36	0.60	. UF89	0.50
6 J 4	0.75	EC86	0.75	ECL81	0.75	EM80	0.55	PL38	0.65	UL41	0.70
${ }^{6} \mathrm{~J} 56 \mathrm{~T}$	0.55	EC88	0.75	ECL 82	0.42	Em81	0.60	PLB1	0.55	ULPA	0.50
GJ6	0.35	EC91	2.80	ECL83	1.15	Em84	0.40	PL82	0.50	UY41	0.55
$6 \mathrm{6L6T}$	0.60	ECC81	0.45	ECL24	0.60	EY8!	0.45	PL83	0.50	UY42	0.55
6SL76T	0.55	ECCs2	0.38		sare	clusive		PL84	0.50	UY82	0.60

MINIMUM EXPORT ORDER $£ 100$
LARGE STOCKS
OF
SEMICONDUCTORS

> 1976/1977 CATALOGUE AVAILABLE 30p

Designed by Texas engmeers and described in Practical Wireless the Texan was an immedrate success Now $120+20$ delivers 20 W rms per channel of true H H.FI at exceptionally low cost The eagy to build design is tase a a single F/Glass PCB and features all the normal facilities found on quality amplifiers including scrateh and umble fiters adaptable input selector and headphones socket In a follow-up article in Practical Wireless furthe modications were suggested and these have been incorporated into the $130+30$ These include

Pack	120	1
9. Filireglass PCB	¢3.50	£3.9
10. Sell of metalwork. lixing parts	55.20	6.20
11. Sot of cables. mains lead	c0.40	$\underline{5}$.
12. Handbook	c0.25	¢0.2
13. Teak cabin ot $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.88^{\prime \prime}$	E4.50	
amplifiar. Tolal cost		

SPECIAL PRICES FOR COMPLETE KITS
T20+20 кIT PRICE $£ \mathbf{\$ 3 . 1 0}$ т $30+30$ KIT PRICE $£ \mathbf{\$ 8 . 4 0}$

WWII TUNER

* *

The requirement was a simple, low cost design which could be constructed easily withou special alignment equipment but which still gives a first class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment Not finding a suitable published circuit. the requirement was met by design and development work in our own aid of nothing more sophisticated than a multi-meter. A phase-locked-loop is used for stereo decoding and controls include switchable aft switchable muting and push-button channe selection (adjustable by controls on the front panel) This unit matches well with the T20 +20 and $\mathrm{T} 30+30$ amplifiers

PRICE FOR COMPLETE KIT $£ \mathbf{\$ 5 . 9 0}$
avaliable as complete kit onir

Wirdess Word Amplifer Dosigns. Fult kis arf not avalialie for these propects but omponent packs and PCBs are stocked for the highly regarded Bailey and 20 W class $4 B$ design Sutable tor diving these amplifiers is the Bailey Burrows pre amplifier and our crcuit board lor the stereo version of it tealures 6 inpurs scratch and fumble fiters and
wide range tone conloros which may be either rotary orslider operating Fort tape sysiems wide range tone conirots which may be either cotary or slider operating For tape systems set of thee PCBS have been prepared tor the integrated circuit based high pertorman

30W Batey Amplifer
BAIL Pk 2 Resistors Capacio
OW Linslev Hiconductor se
20 W Linsley Hood Class A
egularar Power Supity se
Regularar Power Suppir
6ovs Pk 1 F/Glass PCB
OVS Pk 2 Resistor Capactior set
OVS Pk 3 Semiconductor set
VS $\mathrm{Ph}^{\text {GA }}$ Toidal rranstormer (tor use with Balleyt
Balley Burrows Stereo Pre Amp
BBPA Pk 1 F) Glass PCB (stereo)
BBPA Pk 3R Rotary Potentiometer set isteren
BBPAPk 3S Slider P
Suant Tape Recorder
HOS Pk 1 Bias Erase 'Stabuizei F Glass PCB (stereo)

SQ QUADRAPHONIC DECODERS

These state-of-the art circuits described by CBS ate offered as kin of superior quatity with
close tolerance capacitors metal oxide resistors and Fibreglass PCBs designed tor edge onnecior insertion Further intormation on these kits is given 1 Bastic matrix decode
1 full logic decoder
2A Full logic decoder with variable nienc
lor with carbon film resistors\}
aM1 30 Decoder
$30+30$ amplifier
Value Added Tax not included in prices UK Carriage FREE

PRICE STABILITY: Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement until January 1 st. 1978. If this month's advertisement is mentioned with your order Errors N. ORDERS: Subject cluded
.K. ORDERS: Subject to $121 / 2 \%$ surcharge for VAT (1 e add $1 / 8$ to the price) No charge is made for carsiage or at cursent rate if changed
add £250 NAT IVEAV: For this optional service (UK mainland only) SALES COUNTER: If you prit
at Sales Counter (at rear of factory) Open your kit from the factory cal Thursday

SEMICONDUCTORS as used in our range of quality audio equipment

2 N 699	¢0.20	BC 107	f0. 10	8F257	¢0.40	MPSAO5	c0.25	IIP30C	¢0.60
2N3055	¢0.45	BC 108	E0.10	BF 259	¢0.47	MPSA12	c0.35	TIP41A	¢0.70
2N3442	E1. 20	BC109	E0.10	8FR39	co. 30	MPSA55	c0. 25	T1P42A	co. 80
$2 N 3711$	c0.09	BC109C	c0.12	BFR79	¢0.30	MPSA65	co. 35	T1P4i8	¢0.75
2N3904	¢0.17	BC125	¢0.15	BFY51	£0.20	MPSA66	¢0.40	T1P42B	co. 90
2N3906	¢0.20	BC 126	£0.15	BFY52	¢0.20	MPSU05	¢0.50	1N914	¢0.07
2N5087	¢0.25	BC182	¢0. 10	r43046	co. 70	SBA750A	E1.90	IN916	¢0.07
2 N 5089	¢0.25	BC212	E0. 12	M 3014 N	¢0.55	Sl30)	¢1.30	15920	¢0.10
2 H 4557	¢0.45	BC182L	¢0.10	LP 1186	6.50	St 3045	61.20		
2N5459	¢ 0.45	BC184t	c0. 11	MC1310	C2.20	SN72741\%	c0.40		
2N5460	c0. 50	BC212L	E0.12	MC1351	c 1.05	SN72748p	¢0.40		
2N5461	¢0.50	BC2141	0.14	MC.17416g	E0.65	Sticas 3	c2.40		
2N5830	¢0.35	BCr72	¢0.13	MFC4010	¢0.95	TIL209	c0.20		
40361	¢0.40	80529	c0.65	MJ481	f1.20	TIP29A	c0.40	Filter	
40362	c0.45	8D530	¢0.55	mj49:	E1.45	tip304	$¢ 0.45$	FM. 4	E1.00
74004	¢0.35	BDr 56	¢ 1.60	MJE521	¢0.60	T1P29C	¢0.55	SFJO 7MA	¢1.50

NEW PROJECTS

LINSLEY-HOOD LOW DISTORTION OSCILLATOR
A Wien bridge audio oscillator ($10 \mathrm{~Hz}-100 \mathrm{KHz}$) with sine or square wave output (1 mV - 1 V) published in Wireless World September. October 1977
Pack 1 Fibreglass PCB
rock 2 Capacitors, 2% metal oxide resistors
Pack 3 Transistors. IC, IC socket, thermistor
$£ 1.65$
$£ 2.60$
$£ 3.90$

ERICF. TAYLOR PRE-AMPLIFIER
A low noise low distortion (0005%) stereo pre amplifier for use with magnetic pick-up (RIAA equal zation)
'ack 1 Fibreglass PCB (Stereo)
4.ak 2 Metal oxide resistors. capacitors (Stereo)

QUALITY: All components are brand new first grade full specification guaranteed dewices All resistors except where stated as metal oxide) are low nolse carbon film types All printed circuit boards are fibreglass. drilled roller tinned and supplied with circuit diagrams and construction layouts

AFTER-SALES BACK-UP: Servicing facilities (very rarely required for our kits) are avallable for all ** complete kits Further detals will be sent on request

FOR FURTHER INFORMATION PLEASE WRITE OR
telephone for our FREE CATALOGUE

PACK PRICES FOR STANDARD KIT
Pack Price
1．Fibreglass printed circuit board for power amp
2．Sel of resistors．capaciors．pre．sets for power ${ }^{3} \mathrm{mp}$ Set of semiconductors lor power amp ．． $\mathrm{E6.50}$ 4．Pair of 2 drilled．linned heal sinks ．．．．E1．10 ．Fibreglass printed－circuit hoard for pre－amp Sel of low noise resistars．capacitors．pre－8ets for pre．amp preamp of low noise．high gain semiconductors for pre－amp ．．．．．．．．．．．．．．．．．．．．．．．．．．E240 Sel of potentiometers s fincluding mains swilch］ 9．Sel of 4 push－button switches．rotary mode switch 10．Taroidal transformer complete with magnetic screen／housing primary： $0 \quad 117.234$ V secondaries： $33 \cdot 0.33$ V． 25 －0．－25 У ．．．$£ 10.95$

audio kits of distinction from POWERTRAN NEW！
 DE LUXE EASY TO BUILD LINSLEY－HOOD 75W AMPLIFIER

LINSLEY－HOOD CASSETTE DECK＊＊

Pack Price
II．Fibreplass printed circuil board for power supply
12．Set of rasistors，capacitors，secondary fuses． samiconduclors lor power supply ．．．．$£ 5.40$ 13．Set of miscellaneous parts including Din skts．． mains input skl．，fuse holder．interconnecting
cable contral knobs 14．Set of metalwork parts iacluding silk screen printed fascia pansl and all brackels．fiximg parts．
 15．Handbook
$\varepsilon 0.30$
$\Sigma 10.70$
2 aach of packs 1．7，I each of packs 8.16 inclusive are required for complate stareo amplifier．Total cosi of individually purchased packs ．．．．． $\mathbf{£ 9 0 . 8 0}$

STANDARD LINSLEY－HOOD 75W AMPLIFIER

special price for complete kit $£ \mathbf{7 9 . 8 0}$

Pack
1．Stereo PCB laccommodates 2 rep．amps． 2 meter

Pack Price potentiometers for above ．．．．．．．．．．．．$£ 7.95$ Stereo sel of semiconductors for above ．$£ 8.50$ 4．Miniature relay with secket ．．．．．．．．．．$£ 2.90$ 5．PCB．afl components for solemoid．speed control circuits tor power supply［Powartran design］．．E2．80 I．Sel of misceilaneons parts．including sockets．fuse holder．Iuses．interconnecting wire．atc $\quad \mathbf{5 3 . 4 0}$ 2．Set of metalwork including silk scrasned tascia panel．intitinal screen，fiximg parts．etc $\mathbf{8 7 . 1 0}$ Construction moles＂．．．．．．．．．．．．．．．．． $\mathbf{E} 0.25$
Goldrint ane machansm as specitiou $\varepsilon 18.50$
6．Guldring－Lenco mechanism as specified $£ 18.50$
7．Function switch．knobs
8．Dual VU meter with illuminating Iamp ．．$£ 6.95$ 0．117V．234V．Sec．I5V ．．．．．．．．．．．$£ 4.90$

One sach of packs 1.14 inclusive are raquired for comptete steree cassetis deck．Tolal cost of individually purchased packs ．．．．．． $\mathbf{E 8 3 . 0 0}$
Published in Wireless World（May．June．August 1976）by Mr Linsley－Hood．this design．although straightforward and relatively low cost nevertheless provides a very high standard of performance To permit circuit optimization separate record and replay amplifiers are used the latter using a discrete component front end designed such that the noise levelis below that of the tape background Push button switches are used to provide a choice of equalization time constants．a chotce of buas levelsand also an option of using an additional pre－amplifier for microphone use The mechanism used is the Goldring－Lenco CRV．a unit distinguished in its robustness and ease of operation Speed control and automatic cassette ejection are both implemented by electronic circuitry This
and the Linsley－Hood 75 Watt Amplifier

Special pric f or complete kit $£ \mathbf{7 0 . 2 0}$

Designed in response to demand for a tuner to complement the korld－wide acclarmed insley．Hood 75W Amplifier this kit provides the perfect match The Wireless World inclusion into this outstan）published original circuit has been ded front end module cellent ino this outstanding slimline unit and features a pre－aligned front end modut
 transformer and integrated regulator For long term stability metal oxide resistors are used throughout

EXPORT A SPECIALITY！

worid Some of the countries to which we sent kits last year are shown wh this world Some of the countries to which we sent kits last year are shown in this advertisement To assist in estimating postal costs our catalogue gives the weights of alt packs and kits This will be sent free on request，by armall together with our Export postal Guide＇which gives current postage prices

Pack
1．Fibregtass printed beard for tront end IF strip demodulater，AFC and mule circuits ．£2． 15 2．Set of metal oxide resistors，thermistor． capacitors．cermat preset for mounting on Pack ． 4.80 3．Set al transislors．diodes．LEO．Intagrated circuits for mounting on Pack 1 ．．．．E5．25 Pre－aligned tront end module．coil assembly． three seclion ceramic filter ．．．．．．．． $\mathbf{E 8 . 5 0}$ ．Fibreglass printed circuil board for ster80 Set ot matal oxide resistors capacitors ．．．．．．．．．．．．．．．．．．．． preset for decoder ．．．．．．．．．．．．．．$£ 2.60$ Set of transistors LEO．integrated circuit lor decoder ．．．．．．．．．．．．．．．．．．$£ 2.90$ Set of components lor channel selector switch module including fibreplass printed circui beard．push－bultion switches．knobs．LEOs． preset adjusiers．etc．．．．．．．．．．．E9．40 Function switch． 10 turn tuning potentiomater knobs

Pack Price Fraquency meier meter drive components． Threglass printed circ uil board ．．．$£ 10.35$ PTimary： 0.117 V 234 V ．secondary 15 SV E4．90 Set of capacitors．rectifiers．volizge regulator for power supply ．．．．．．．．．．．．．．．．．E2．10 Set of miscellaneous parts．incleding sockels． luse holder．fuses．inter－cannacting wire．atc
Set al matafwark parts including silk scres Set of metafwark parts includiang silk screan
prinled tascia panel．acrylic silk scresm printed prinled tascia panel．acrylic silk scresen printed fixing parts etc． Construction mote
16．Teak catinal $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1{ }^{\prime \prime}$
Une sach of packs 1.16 inclusive are required for complete steree FM Tuner．Total cast individually purchased packs ．．．．．．E81．15

EXPORT OfDERS：No mirnmum order charget prices same as for $X X$ customers no Value Added Tax charged Postage charged at actual cost plus 50 p documentation and handing Please send payment with order by Bank Draft．Postal Order international $\oint 500$ we will accept Irrevocable Letter of Credit payable at sight in London

OUR CATALOGUE IS FREE！

JUST SEND YOUR NAME AND ADDRESS TO RECEIVE YOURS

HART ELECTRONICS

The Only Firm for Quality Audio Kits

Are proud to offer the only DESIGNER APPROVED kit for the
 J. L. Linsley-Hood High Quality Cassette Recorder

As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have professional hardware allowing us to design a very advanced modular system This enables a more satisfactory electrical layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable
with this layout and require no extra stabilising components Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold-plated sockets The most obvious is the reduction of crosstalk and interaction which coutd cause trouble on a single plane board. with our modular system the layout is compact but there is no component separate identical modules and bulding with the ald of our component-by-com ponent instructions is childishly simple but the finished result is a unit designed not to normal domestic standards but tothe best professional practice
All printed circuits are of glasstibre material. fully drilled with a tinned finush for easy and reliable soldering Component locations are printed on the reverse side of the board and are arranged so that all identification numbers are still visible fter

71x Complete set of parts for Master Board, includes bias oscillator, relay. controls. eic $£ 983+£ 123$ VAT
72x Parts for Motor Speed and Solenold Control for Lenco CRV deck This is the proper board layout as given
73x Complete set of parts for stereo Replay Amps. and VU Meter drive £ $12+£ 102$ VAT
74x Complete set for stereo Record Amps $£ 674+84 p$ VAT
$75 x$ Complete set of parts for Stabilised Power Supply to circuit given in Article This uses a special low hum held transiormer with better charac eristics than the commonly used toroid $£ 879+£ 110$ VAT

700 M 2 Individual High Quality VU Meters with excellent ballistic

700C/2 High Quality Custom built stee Case Complete with Brushed aluminium front plate, mains switch. record microswitch, turned record level knob, plastic cabinet feet, all bolts. nuts and mounting hardware All necessary holes are punched and Complete step-byeptroplated instructions are included The cover is finished in an attractive black crackle surface $£ 1650+£ 206$ VAT

LENC ISM
 ISM CRV CASSETTE MECHAN-

 High Quality. robust cassette transport for Linsley.Hood recorder Features fast forward, fast rewind. record, pause and facilities Fitted with Record / play and erase heads and supplied complete with Data and extra cassette ejection spring for above horizontal use Price $£ 2160+$ £2 70 vatTotal cost of all parts $£ 8358$
Special offer for Complete Kits $£ 8150+$ £10 19 VAT

Optional extra solid teak end cheeks. $£ 3$ pair + 38p VAT

Reprint of 3 Linsley-Hood Cassette Recorder articies $45 p$ post and VAT free

We also supply complete kuts to make a tully integrated 30 watt stereo amplifier und the Bailey Power Amplifier circuit with the Quilter with the Quilter Tone control modificaPrinted
circuits and components are avalble for the Stuart tape circuirs These articles described a high quality tape link
circuit for use with a reel-to-reel deck Reprints of the three articles are available from us price 40 p Post Free (No VAT)

ALL PARTS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and Price breakdowns
Penylan Mill, Oswestry, Salop
but please note we are closed all day Saturday

RADFORD HD250
High Definition Stereo Amplifier

A new standard
for sound reproduction in
the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av, continuous per channel ínto any impedance from 4 to 8 ohms, both channels driven-

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 Khz)
Hum and noise: Disc. -83 dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mv)

Line -85 dBV measured flat (ref 100 v)
-88 d BV "A" weighted (ref 100 v)
Hear the HD250 at

SWIFT OF WILMSLOW
 Dept. WWV, 5 Swan Street, Wilmslow, Cheshire (Tel: $2621 \overline{3}$)

Mail Order and Personal Export enqurres: wilmsiow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
Now available ZD 100 power amplifier and ZD22 pre-amplifier

WW-050 FOR FURTHER DETAIIS
carbon film RESISTORS
ON BANDOLIERS OR PREFORMED 12.5 mm AT NO EXTRA COST

AERO SERVICES LTD.
41 A Westbourne Grove
London W2 5SF
Tel. 01-7275641 Telex 261306
WW-077 FOR FURTHER DETAILS

Audio Connectors

Broadcast pattern jackfields, jackcords, plugs and jacks

Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Birschmann Banana plugs and test probes $\bar{X} L R$ compatible in-line attenuators and reversers.

Low cost slider faders by Ruf.
Future Film Developments Ltd. 36-38 Lexington Street
London W1R 3HR 01-437 1892/3

15-240 Watts!

HY5
Preampilifier
The HY5 is a mono hybrid amplifier idealty sutted for all applications All common input functions (mag Cartridge tuner etc) are catered for internally the desired function is achieved etther by a
mult-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting to external potentometers (not included) The HY5 is compatible with all ILP power amplifiers and power supplies To ease construction and mounting a P C connector is supplied with each pre-amplifier
FEATURES: Complete pre-amptifier in single pack - Mult-function equalization - Low noise - Low distortion - High overload - two simply combined for stereo
APPLICATIONS: $H_{1 .}$ F - Mıxers .- Disco - Guitar and Organ ... Public address
APPLICATIONS: H
SPECIFICATIONS
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV Tuner 100 mV Microphone 10 mV OUTPUTS Tape 100 mV Man output 500 mV R M S
lACTIVE TONE CONTROLS Treble - 12 dB at 10 kHz Bass + at 100 Hz
DISTORTION 01% at 1 kHz Signal/NoIse Ratio 68 dB
OVERLOAD 38dB on Maanetic Pick-up SUPPLY VOLTAGE - 1650 V
Price $55.22+65 p$ VAT P\& P free
HY 5 mounting board B1 48p + 6p VAT P\&P free

HY30

15 Watts into 8Ω
The HY30 is an exciting New kit from I $L P$ it features a virtually indestructible IC with short circur and thermal protection The kit consists of I C heatsink. PC board, 4 resistors. 6 capacitors mounting kit together with easy to follow construction and operating instructions This ampliter in ideally suted to the beginner in audio who wishes to use the most up-to-date technology available
FEATURES: Complete kit - Low Distortion -- Short. Open and Thermal Protection - Easy to Build FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protection - Easy to Build
APPLICATIONS: Updating audio equipment - Guitar practice amplifier -- Test amplifier -- Audio APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier -- Audio SPECIFICATIONS:
OUTPUT POWER 15 W RM S Into 8:? DISTORTION 01% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE - 18 V .
HY50
25 Watts into 8Ω
The HY50 leads I LP s total integration approach to power amplifier design The amplifier teatures an integral heatsink together with the simplicity of no external components. During the past three years the amplitier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors

- No external components

APPLICATIONS: Medium Power HI-Fi systems - Low power disco - Guitar amplifier SPECIFICATIONS: INPUT SEN SITIVITY 500 mV
OUTPUT POWER 25W RMS in 8:2 LOAD IMPEDANCE 4-16:2 DISTORTION 004% at 25 W at 1 kHz
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$
Price $\mathbf{E 6 . 8 2}^{\mathbf{8}} \mathbf{8 5}$ p VAT P\&P free
HY120
60 Watts into 8Ω
requrements ine bathy of the new high power range designed to meet the most exacring design FEATURES: Very low distorion -Imegral Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS: HI-FI -- High quality disco - Public address - Monitor amplifier -. Gutar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 8:? LOAD IMPEDANCE 4.16:) DISTORTION 004% at 60 W at SIGNAL/NOISE RATIO gOdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&P free.
HY200
120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the mos rugged conditions. such as disco or group while still retaining true H_{1}-FI performance
FEATURES: !harmal shudown - Very Iow disiortion - Loadine protection - - Imegral Henisink No external components
APPLICATIONS: HI-FI - Disco - Monitor - Power Slave -- Industrial - Public address SPECIFICATIONS INPUT SENSITIVITY 500 mV
OUTPUT POWER 1 2OW RMS Into 8:) LOAD IMPEDANCE 4-16!? DISTORTION 005% al 100 W at SIGNAI NOISE RAIIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$

$$
\text { Price } \mathrm{f} 23.32+\mathrm{f} 1.87 \text { VAT P\&P free }
$$

HY400
240 Watts into 4Ω
he HY400 is I LP's "Big Daddy of the range producing 240W inio 4, it has been designed for high nnwer disco or public addiess applications it the amplifier is to be used at continuous high power levels n cooling fan is recommended The amplifier includes all the qualities of the resi of the family to
lead the market as a true high power hi-fidelity power module fEATURES: Thermal shutdown -- Very low distortion

ponents

APPLICATIONS
SPECIFICATIONS
OUTPUT POWER 240W RMS Into 4!? LOAD IMPEDANCE 416 ? DISTORTION 0 ? $1 / 4$ at 240 W at
SIGNAL NOISE RATIO 94 AB FREQUENCY RFSPONSE 10 Hz 24 kHz - 3 CB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$ Price £32.17 + £2.57 VAT P\&P free.
POWER SUPPLIES

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Posial Orders \square Money Order \square
Please debit my Access account \square Barclaycard account
Account number
Name \& Address
Signature

AUTO TRANSFORMER: $230 \mathrm{v} .50 \mathrm{c} / \mathrm{s}, 1000$ watts. Mounted in strong steel case CRYSTAL TEST SET TYPE 193: Used for checking crystals in freq. range $3,000-10,000 \mathrm{kHz}$. Mains 230 v 50 hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in

CATHODE RAY TUBES: $5^{\prime \prime}$ screen, tube CV- $1536 £ 4.32+£ 1.00$ post. Type 95 J 20 Square
WEATHERPLOTTER RECEIVING SET AN/GMH-5: Facsimile reproducing system for weather maps. Further details on request, $\mathbf{£ 4 5 9 . 0 0}$ (inc. 8% VAT). CLASS 'D' WAVEMETER NO: 1: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{mHz}$. Power supply $6 v$. d.c. Good s/hand cond. $\mathbf{E 9 . 2 0}+£ 2.00$ carr.
RING TOROIDAL DUST CORES: Size $21 / 2^{\prime \prime}$ outside, $13 / 4^{\prime \prime}$ inside, $5 / 16^{\prime \prime}$ thick. Box of two $£ 1.10+30$ p post.
ROTARY INVERTERS TYPE PE-218E: Input $24-28 \mathrm{v}$. d.c. $80 \mathrm{amps}, 4,800 \mathrm{rpm}$ Output 115 v . a.c. $13 \mathrm{amp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph. P.F. $9 £ 21.60+£ 3.00 \mathrm{carr}$
FREQUENCY METER BC-221: $125-20,000 \mathrm{kc} / \mathrm{s}$ complete with original calib ration charts. Checked out, working order. $\mathbf{£ 2 2 . 7 0}+\mathbf{£ 2 . 0 0}$ carr. rating. £37.80, carr. £5.00.
PAPER TAPE: $1 / 2^{\prime \prime}$ roll (teleprinters, etc.) Box of ten rolls $£ 1.50+£ 1.00$ post. CREED TELEPRINTER TABLE: £25.00 $+£ 5$ carr.

KAY MARKER SWEEP OSCILLATOR 154C: $50 \mathrm{kHz}-110 \mathrm{mHz} 50$ ohms imped ance. Sweep rate $0.01-1000 \mathrm{~Hz}$ variable. Meter indicates IV. rmf. Crystal Puls markers $2,5,10,15,20,40,60$ and $80 \mathrm{mHz}, £ 135.00$ carr. $£ 3.50$
ATTENUATOR UNITS STC: Impedance 75 ohms. Two different types: (A) Push button $0-0.9$ decibels in steps of 0.1 dB and (B) Push button $0-90$ decibels in steps of 10 dB . Both types price $£ 5.40$, post 70 p.
MARCONI SIGNAL GENERATOR $801 /$ DS: $10-480 \mathrm{mHz}$. $\mathbf{E} 318.60$

> Large stocks of unused U.S.A.F. surplus maps, weather charts, etc. including:-

ONC-E1 - U.K. in full and part N.W. Europe. Scale 1:1,000,000.
JNC-9N - N. Europe, U.K.. Scandinavia. Scale 1:2,000,000
IN-2IN - Europe (Mediterranean). Scale $1: 2,000,000$.
SIZE: $58^{\prime \prime} \times 42^{\prime \prime}$, colour. Many others. Please send S.A.E. for list. Price each 70p (inc. $p+p$)
$25 \times$ Maps (either same wpe (OR assorted) $£ 10.00+£ 1.00 p+p$ $10 \times$ Maps (either same type OR assorted) E6.月n (inc $p+p$)

Above prices include VAT at 8% [except where stated) Carriage quotes given are for 50 -mile radius of Herts.
3 \& 3a BALDOCK STREET, WARE, HERTS. SG12 9DT WARE 66312 (STD 0920)

NEW COMPONENTS Resistors 5\% carbon E12 1Ω to 10M $1 / 4 W 11 / 2 p$. IW 3p. Preset pots sub minature 0.IWE3 100Ω to 4 M 7 verica 9p, horizontal 9p. Potentiometer 025 W E3 $4 K 7$ to 2 M 2 log or lin single 30p, dual 95p. Polystyrene capacitor E1263V 22 pf to 8200 pf $31 / 2$ p. Cerami capacitors vert 50V E6 22pf to 4700p 3p. Polyester capacitors 250V E6 01	TV GAMES IN FULL COLOUR AY-3-8500 £6.95. Black and white TV games kits Standard model $£ 11.95$. Economy model £6.95. Colour TV games kits Standard model $£ 19.45$. Economy model $£ 14.95$. Colour Generator kit, adds colour to most black and white games $\mathbf{£ 7 . 5 0}$. Rufle kit £4.95. Send SAE for giant. free data leaflet
$1 \mathrm{mf} 51 / 2 \mathrm{p}, 15.22 \mathrm{7p}, 47 \mathrm{mf} 11 \mathrm{p}$ Electrolytics $50 \mathrm{~V} 47,1,2 \mathrm{mt} \mathrm{5p,25V}$ 5. $10 \mathrm{mf} 5 \mathrm{p} .16 \mathrm{~V} 22,47 \mathrm{mf} 6 p .100 \mathrm{~m}$ 7p. 220 mf 9p. $470 \mathrm{mf} 11 \mathrm{p}, 1000 \mathrm{~m}$ 18p. Zener diodes 400 mW E24 3v3 $33 \vee 81 / 2 p$.	BATTERYELIMINATOR BARGAINS 3-WAY MODELS Swithed 6/71/2/9V 300mA £2.99. 100MA RADIO MODELS With press-stud connectors. $9 \mathrm{~V} £ 3.45$. $6 V$ £3.45. $9+9 V £ 5.15 .41 / 2+41 / 2 V$ £5.15. 6 + 6 V E5.15. 150MA CASSETTE MODELS $71 / 2 \mathrm{~V}$ with 5 -pin din plug $£ 3.65$.
	BATTERY ELIMINATOR KITS 100 mA radio types with press stud battery terminals $41 / 2 \vee £ 2.10 .6 \mathrm{~V} £ 2.10$, $9 \vee £ 2.10 .41 / 2 V+41 / 2 \vee \subset 2.50 .6 V+6 V$ £2.50. $9 \mathrm{~V}+9 \mathrm{~V}$ £2.50.
PRINTED CIRCUIT MATERIALS 50 sq ins peh $\mathbf{4 0 p}$ lib FeC $£ 1.05$. Etch resist pens: Economy type 45p. Dalo type 83p. Small drill bit 20p. Laminate cutter 75p. Etching dish 68p.	
S-OECS AND T-DECS S.DeC £1.94. T-DeC £3.61. u-DeCA $£ 3.97$ u-DeCB £6.67. 16 dil IC carriers $£ 1.91$.	$3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V}$ 100mA model £3.20. 1 Amp model £6.40. Heavy duty 13 -way types $41 / 2 / 6 / 7 /$ $8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 /$ $28 / 34 / 42 V$ 1A £4.85, 2A £7.95. Car Converter kit Input 12V DC Output 6. $71 / 2 / 9 \vee 1 \mathrm{~A}$ regulated $£ 1.95$.
BI-PAK AUDIO MODULES S450 Tuner £21.95. AL60 £4.86. PA100 E14.95. MK60 audiokit £36.45. Stereo 30 £17.95. SPM80 £3.75. ВMT80 £4.25.	Stabilized power kits 3.18 V 100 mA £3.60. $3-30 \mathrm{~V} 1 \mathrm{~A} £ 9.95$. 3.60 V 1 A £10.95. 3-60V 2 A £13.95.
	JC12, JC20, JC40 AMPLIFIERS JC12 6WIC audro amp with pcb E1.95. Also new JC40 20W Model with peb £3.95. JC20 10W integrated circuit amp with pcb £2.95. Send sae for free data on all three modets. and associated power and pre-amp kits
SINCIAIR CALCULATORS * Cambridge Scientific programmabie calculator £13.95. Prog library £4.95. Mains adaptor £3.20. Cambridge Scientific £8.95.	
FERRANTI ZN4 14 IC radio chip 81.44. Extra parts and pcb for radoo $£ 3.85$. Case £1. SAE for data	
SWANLEY ELECTRONICS OEPT WW, PO BOX 68, 32 GOLOSEL RO. SWANLEY, KENT BR8 8 TO Mail order only No callers Send sae for free data on kits Post and packing 30f Prices include VAT Offictal orders welcome Overseas customers deduct 7% VAT on items marked and 11% on others	

U.K. RETURN OF POST MAIL ORDER SERVICE, A.LSO WORLDWIDE EXPORT SERVICE

BSR HI-FI AUTOCHANGER STEREO AND MONO $£ 17.50$ Post 75
 B S R SINGLE PLAYER similar to above w and cueing device. large turntable £ 13.50 8.S.R. P128 with magnetic cartridge Balanced arm PORTABLE PLAYER CABINET in design. Rexine covered \checkmark ynair front grille Chrome firtings £4.50 Post 75p

HEAVY METAL PLINTHS

COMPLETE STEREO S.YSTEM

 to loudspeakers making it extremely compact. overall size only $3 \mathrm{~m} \times 10 \times 8 / 2 \mathrm{~m}$. 3 waxis perchannel, playsall record controls Attractive Teak finishELAC HI-FI SPEAKER 8in. TWIN CONE
Dual cone plastic roll surround Large
ceramic magnet $50-16.000 \mathrm{c} / \mathrm{s}$ Bass 15 watts RMS \&5.95 Post 35 p

SMITH'S CLOCKWORK 15 AM

 TIME SWITCH$0-6$ HOURS E 3.30 Post 35ρ Single pole two-way Surface mounting
with fixing screws Will replace existing wall swich to give light for return home garage, automatic anti-burglar lights, etc Variable knob Turn on or off at fuil or
intermediate settings Brand new and fully guaranteed
TEAKWOOD LOUDSPEAKER G
board S $12 \mathrm{ze} 10^{1 / 2} \times 7 \% 10-45 \mathrm{p}$
R.C.S. "MINOR" 10 watt AMPLIFIER KIT his kit is suitable for record players. guitars. tape playback electronic instruments or small PA systems Two versions
available Mono. $£ 11.25$; Stereo. $£ 18$. Post 45 p Specification 10 W per channel, input 100 mV : size $91 / 2 \times 3 \times 2 \mathrm{~m}$ approx SAE detals Full instructions supplied AC mains powered

VOLUME CONTROLS

 35p. DP 60p. STEREO L./S 85p. DP £1. Edge 5 K S P ransistor 45p.80 Ohm Coax 8 p yd. fringe low loss 15 p ya. Ideal 625 and col our
PLUGS 10 . SOCKETS 10 . INE SOCKETS 18p.

ELAC $9 \times \operatorname{5in} \mathrm{HI}-\mathrm{FI}$
SPEAKER TYPE 59RM
£3.45
E.M.I. $131 / 2 \times 8 i n$. SPEAKER SALE!

BLANK ALUMINIUM CHASSIS, $6 \times 4-70 p ; 8 \times 6-90 p$.
$10 \times 7-\mathbf{£ 1 . 1 5 : 1 2 \times 8 - £ 1 . 3 5 ; 1 4 \times 9 - £ 1 . 5 0 ; 1 6 \times 6 £ 1 . 4 5 ; ~}$ $6 \times 10-£ 1.70$. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in} .-15 p$. ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14 \times 3-25 p ;$
$10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times 6-43 p ; 14 \times$ $10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times 6-43 p ; 14 \times$ MANY ALI BOXES IN STOCK MAN
MANY ALI BOXES IN STOCK. MANY SIZES
VARICAP FM TUNER HEAD with circuit \& Connections $£ 4.95$ AGG STRIP 28 -way 12 p.
TAPE OSCILLATOR COIL. Valve type 35 p
BRIDGE RECTIFIER 200V PIV $1 / 2 \mathrm{amp} 50 \mathrm{p}$.
TOGGLE SWITCHES S P 30p. D P S T 40p. D P D T 50p. MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS GP91 £1.50. GP93 $£ 2.50$ SONOTONE STEREO £2.00. SHUREM 75 ECS $£ 8$ WIRE-WOUND RESISTORS 5 wat 10 watt is

R.C.S. SOUND TO LIGHTKIT

$£ 14$
1.000 watts per channel

Post 35p
Easy to buld. Full instructions supplied Cabinet $£ 3$.
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
$£ 2.95$
orinted circuit rectifiers and double wound
Post 45
mains transformer Input $200 / 240 \mathrm{~V}$ a.c
Output voltages avalable. 6 or 75
Please state voltage required
R.C.S. POWER PACK KIT
$£ 3.35$

R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE
Ideal for Mike. Tape. P U, Guitar. etc Can be used with battery
9.12 V or H T line $200-300 \mathrm{Vdc}$. operation Size $1 / 4 \times 11 / 4 \times \mathrm{x}$
3/4n Response $25 \mathrm{c} / \mathrm{s} 1025 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}$ gain
For use with valve or transistor equipment
E1.45
Full instructuons supplithed
RCS DRILL SPEED CONTROLLEAE/LIGHT DIMMER KIT.
Easy to build kit Will control up to
£3.25 Post 35p
500 watts $A C$ mans
build this pre-amp
RCS STEREO PRE-AMP KIT. All parts to bull this pre-amp
toputs for high. medium or low imp per channel. with volume
hputs for high. medium or low imp per channel, with volume
£2.95 Post 35p

R.C.S.

BOOKSHELF SPEAKERS

$13 \times 10 \times 6 \mathrm{in}$
50 to 14.000 cps
8 wats 4.8 or 16 ohms

GLOBAL SPEAKERS £4.95 ea.
These little marvels of modern sound reproduction are ideally suited for today's domestic audio set-up. Two of these smart spheres, each with 5 watt deep throated ceramic magnets, will produce superb stereo reproduction
The globe shaped cases in high gloss mouldings of red and green. are finished with chrome frontal trim and provided $\frac{\text { with screw-on rubber inset }}{\text { metres of strong lead }}$ metres of strong lead
already fitted with phono plug is supplied. $100.20,000 \mathrm{~Hz}^{R}$ mpedance: 8 ohms

- Ho
2.4 5. 8. 16. $25 \quad 30.50 .100 .200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.

500 mF 12 V 15 p ; 25 V 20 p ; 50 V 30 p ;
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 420 \mathrm{mF} / 500 \mathrm{~V}$ £ 1.30
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$3900 \mathrm{mF} 100 \mathrm{~V} £ 1.60 .4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20 .2700 \mathrm{mF} 76 \mathrm{~V} £ 1$. $5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p}$; $35 \mathrm{~V} 85 \mathrm{p} ; 5600 \mathrm{mF} / 76 \mathrm{~V}$ £ 1.75 MANY OTMER ELECTROIYTICS IN STOCK
SHORT WAVE 100pF air spaced gangable tuner. 95 p
TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF} .50 \mathrm{pF} .5 \mathrm{p} .100 \mathrm{pF} .150 \mathrm{pF} 15$ TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}$. 50 pF . $\mathbf{5 p}$. 100 pF . 150 pF 15 p .
CERAMIC, 10 FF to 001 mF . $\mathbf{5 p}$. Silver Mica 2 to 5000 pF , 5 p . CERAMIC, 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pF , 5 p .
PAPER $350 \mathrm{~V}-017 \mathrm{p} ; 0513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 20 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}$

 SUB-MIN MICRO SWITCH, 25p. Single pole change ov TWIN GANG, $385+385$ pF 50p; 500 pF standard 75 p ; $365+365+25+25 p$ F Slow motion drive 65 p . 120 pF TWIN GANG, 50 p ; 365 pF TWIN GANG, 50 p . NEON PANEL INDICATORS 250 V . Amber or red 30p. RESISTORS. $1 / 4 \mathrm{~W} 1 / 2 \mathrm{~W} 1 \mathrm{~W} 20 \% 2 \mathrm{p}$; 2 W . 10p; 1001 to 10 M HIGH STABILITY. $1 / 2 W 2 \% 10$ ohms to $6 \mathrm{meg} 12 p$
Ditto 5% Prelerred values 10 ohms to 10 meg . 5 p

ELECTRO MAGNETIC

PENDULUM MECHANISM
15 V d c operation over 300 hours continuous on SP2 teaching electro magnetısm or for 95 p post 30p

BAKER MAJOR $1 \mathbf{2}^{\prime \prime} £ 15.00$

BAKER "BIG-SOUND" SPEAKERS. Post r1 00 each 'Group 25' 'Group 35' 'Group 50/15'
 BAKER LOUDSPEAKER, 12 INCH. 60 WATT.
GROUP 50/12, 4 OR 8 OR 16 OHM HIGH POWER FUIL RANGE PROFESSIONAL QUALITY
RESPONSE 30.16000 CPS
$\mathbf{2 1 . 0 0}$ MASSIVE CERAMIC MAGNE
ALUMINIUM PRESENCE CENTRE DOME
TEAK VENEERED HI-FI SPEAKERS AND CASINETS For 12 in or 10 in speaker $20 \times 13 \times 12$ in $£ 14.50$ Post f £8.50 Post $£ 1$ For $61 / 2$ in speaker and tweeter $12 \times 8 \times 6$ in $\mathrm{E5.80}$ Post
Many other cabinets in stock Phone your requirements
SPEAKER COVERING MATERIALS. Samples Large SAE LOUDSPEAKER CABINET WADDING 18 in wide 20p it
R.C.S. 100 watt

VALVE
AMPLIFIER
CHASSIS

Four inputs four way - mixing master volume treble and bass controls Suits all speakers This professional quality amplifier chassis is suitable for all groups disco PA where high quality output socket Produced by demand for a quality valve amplifier 100V line output to order
Suitable carrying cab $£ 16.50$ Price $£ 94 \begin{gathered}\text { Send for leaflet } \\ \text { carr } £ 250\end{gathered}$ Horn Tweeters 216 kc 's 10 W 8 ohm or 16 ohm $\mathbf{£ 3 . 6 0}$ Horn weeters Deekrs $3-1 \mathrm{Bkc}$ /s $30 \mathrm{~W} 8 \mathrm{ohm} \mathbf{£ 7 . 5 0}$. De Luxe Horn weeters
CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}$. £2.20.
LOUDSPEAKERS P.M. $\mathbf{3}$ OHM 7×4 in $£ 1.50 ; 61 / 2$ In £ 1.80 ; 8×5 in £1.90; 8in $£ 1.95$.
SPECIAL OFFER: $80 \mathrm{ohm} 21 / 4 \mathrm{In} 23 / 4 \mathrm{ln} 35 \mathrm{ohm} 3 \mathrm{~mm} 25$ 5 mn .15 ohm. $31 / 2$ in dia. $6 \times 4 \mathrm{~m} \quad 7 \times 4 \mathrm{in} \quad 5 \times 3$ in 3 ohm. ${ }^{24 / 6 i n} .31 / 2 \mathrm{n},{ }^{5}$ in dia $£ 1.50$ each
PHILIPS LOUDSPEAKER, 8 in 4 ohms 4 watts $£ 1.95$ RICHARO ALLAN TWIN CONE LOUDSPEAKERS 8in diameter $4 W \mathrm{E} 2.50$. 10 in diameter $5 \mathrm{~W} £ 2.95$; 8in diameter $4 W$ モ2.50. $01 n$ diameter $5 W$ E2.95; PIEZO ELECTRIC HORN TWEETER. Handles up to 100 Tweeter volume Control 15 ohms 10 W with one inch ton threaded bush for wood panel mounting 1/4in spindle 65 p. BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER All purpose transistorised
Ideal for Groups Disco

and

Output $4 \quad 8 / 16$ ohms ac Mans
hass controls Master volu
Guaranteed Details S 4 E
$E 7$
100° WATT DISCO AMPLIFIER

ALUMINIUM HEAT SINKS. FINNED TYPE.
Sizes $61 / 2^{\prime \prime} \times 41 / z^{\prime \prime} \times 214^{\prime \prime} 95 p .6^{1 / 2^{\prime \prime}} \times 2^{\prime \prime} \times 2^{1 / 4^{\prime \prime}} 65 p$. BALANCED TWIN RIB8ON FEEDER 300 ohms. 5p yd.
JACK SOCKET Std. open-circuir 20p, closed circuit $25 p$ p Chrome Lead-Socket 45p. Mano or Stereo.
Phono Plugs 8p. Phono Socket 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15p. STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chassis 3 -pin 10p. 5 -pin 10p.
DIN SOCKETS FREE 3 -pin 25 p ; 5 -pin 25p. DIN PLUGS 3-pin 25p; 5-pin 25p. VALVE HOLDERS, $10 p$; CANS $10 p$. TV CONVERGENCE POTS
MONO PRE-AMPLIFIER. Mains operated
solid state pe-amplifier unit designed to comp-
lement amplifiers without tow level phono and
tape input stages This free-standing cabinet
incorporates circuitry for automatic R I A A
equalisatian on magnetic phono inpui ond
NA A equalisation for tape heads Power por
ON/OFF. PHONO/TAPE switches and plot
lamp are on the front panel phono socket input
and ouiput are rear located
r located
£4.50 each or $£ 8$ pair. Post 50 p

SPECMA LOMPRCE ARRANGEMENTS eorvistive OVEBSEAS TRADE FAIRS

IPC Electrical－Electronic Press Ltd．，the world＇s largest publishers of computer，electrical and electronic journals，have made special arrangements for readers wishing to visit important overseas trade fairs．The cost，in most cases，is little more than the normal air fare but includes－travel by scheduled airline from Heathrow and Manchester＊first－class hotel accommodation $⿻ 丷 木$ arrival and departure transfers 米 admission to the trade fair $⿻ 丷 木$ services of an experienced tour manager．The current programme comprises the following tours．

[^6]

IINHEIE

THE AUDIO AMATEUR magazine, now eight years old, is totally dedicated to good sound for the do-it-yourself audiophile. TAA's thoroughly tested construction articles range from simple overload indicators to hand-made electrostatic speakers with thir own direct drive power amplifiers to mixers and much, much more. Our authors include Reg Williamson, B.
J. Webb, and Alan Watling.

TRANSFORMERS
ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT $8 \% 12$ and/or 24-VOLT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{PRí 120/240V SEC $120 / 240 V$ Centre Tapped and Screened} \& \multicolumn{4}{|l|}{Separate $12 v$ windin
Ref} \&

\hline Ref. \& (Wents) \& \& P\&P1 \& \& $$
12 v
$$ \& 24v \& \&

\hline 07* \& 20 \& 4.40 \& 79 \& 111 \& 0.5 \& 0.25 \& 2.20 \&

\hline 149 \& 60 \& 6.20 \& 96 \& 213 \& 1.0 \& 0.5 \& 2.64 \&

\hline 150 \& 100 \& 7.13 \& 1.14 \& 71 \& 2 \& 1 \& 3.41 \&

\hline 151 \& 200 \& 11.16 \& 1.50 \& 18 \& 4 \& 2 \& 4.03 \&

\hline 152 \& 250 \& 12.79 \& 1.84 \& 70 \& 6 \& 3 \& 5.35 \& 9

\hline 153 \& 350 \& 16.28 \& 1.84 \& 108 \& 8 \& \& 6.98 \& 11

\hline 154 \& 500 \& 19.15 \& 2.15 \& 72 \& 10 \& 5 \& 7.67 \& 11

\hline 155 \& 750 \& 29.06 \& OA \& 116 \& 12 \& 6 \& 8.99 \& 1.3

\hline 156 \& 1000 \& 37.20 \& OA. \& 17 \& 16 \& 8 \& 10.39 \& 1.3

\hline 157 \& 1500 \& 45.60 \& OA \& 115 \& 20 \& 10 \& 13.18 \& 2

\hline 158 \& 2000 \& 54.80 \& OA \& 187 \& 30 \& 15 \& 17.05 \& 2.08

\hline 159 \& 3000 \& 79.05 \& OA \& 226 \& 60 \& 30 \& 26.82 \&

\hline \multicolumn{4}{|l|}{*115 or 240 sec only} \& \multicolumn{5}{|c|}{30 VOLT RANGE}

\hline \multicolumn{4}{|c|}{50 VOLTRANGE} \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{Primary 220-240v
SEC TAPS 0.12-15-20.24.30}}

\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{SEC TAPS 0-20-25-33-40-50V}} \& \& \& \& \&

\hline \& \& \& \& \multicolumn{5}{|l|}{}

\hline 57 \& voltages available \& AVAILABLE \& \multirow[t]{2}{*}{4050 V} \& \multicolumn{5}{|l|}{}

\hline \multirow[t]{2}{*}{Ref.} \& 810

25.0 .25 \& 20.0.20 \& \& \multirow[t]{2}{*}{Ref
112} \& \multicolumn{2}{|l|}{Amps} \& \multicolumn{2}{|l|}{£}

\hline \& Amps \& E \& P\&P \& \& \& \& 2.64 \&

\hline 102 \& 0.5 \& 3.41 \& 78 \& 79 \& \& \& 3.57 \&

\hline 103 \& 10 \& 4.57 \& . 96 \& 3 \& \& \& 5.27 \&

\hline 104 \& 2.0 \& 6.98 \& 1.14 \& 20 \& \& \& 6.20 \& 1

\hline 105 \& 3.0 \& 8.45 \& 1.32 \& 21 \& \& \& 7.44 \& 1

\hline 106 \& 4.0 \& 10.70 \& 1.50 \& 51 \& \& \& 8.37 \& 1

\hline 107 \& 6.0 \& 14.62 \& 1.64 \& 117 \& \& \& 9.92 \& 1

\hline 118 \& 8.0 \& 17.05 \& 2.08 \& 88 \& \& \& 1.73 \&

\hline 119 \& 10.0 \& 21.70 \& OA \& 89 \& 10 \& \& 3.33 \&

\hline
\end{tabular}

BRIDGE RECTIFIERS

200 V	2 A	$\mathbf{4 5 p}$
400 V	2 A	$\mathbf{5 5 p}$

200 v
400 v
400 v
500 v

500 v

METERS

AVO8
AVO7
$\begin{array}{ll} & £ 77.92 \\ \text { AVO71 } & £ 29.00 \\ \text { AVO73 } & £ 39.10\end{array}$

WEE MEGGER $\quad £ 58.80$
ester
$\mathbf{@ 3 3 . 6 5}$
$U 4315$ budget mete
$20 \mathrm{Km} / \mathrm{VDC} / 2 \mathrm{~K} / \mathrm{VAC}$
1000 V
AC/DC $2.5 A$ AC/DC 500 K res

- Avo Cases and Accessor 14.95

Avo Cases and Accessories
in stock
P\&PE1 15 VAT B\%
MINIMULTIMETER
DC-1000V AC. 1000 V
DC-100mA Res -150 K
Bargain at $£ 5.86$
AT B\% P\&P 62

STEREO F.M. TUNER

Phase lock loop 4 pre-selected
stations Varicap
£20.45 (VAT $121 / 2 \%$) P\&P 40p Pre-selected station
Switched AFC
Supply 20-35v 90Ma Max

Barrie Electronics Ltd.

 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

TEN GOOD REASONS FOR BUYING THE NEW FLUKE 8020A DMM.

1.26 ranges of $\mathrm{AC} / \mathrm{DC}$ volts and amps, ohms and conductance.
2. 0.25% vdc accuracy over $10^{\circ} \mathrm{C}$ range for 1 year.
3. 'High power' ohms for diode testing.
4. 'Low power' ohms for in-circuit resistance measurement
5. Conductance ranges allow leakage measurement to $10,000 \mathrm{M} \Omega$
6. $9 v$ battery gives typically 200 hrs. life
7. Protected to 250 v dc or rms on any range any function.
8 . Protects to 6 kv for $10 \mu \mathrm{~s}$ on any range, any function.
9. 2 year warranty on parts and labour
10. Large liquid crystal display.

Harlow(0279)29522

ITT instrument services

Edinburgh Way, Harlow, Essex. CM20 2DF. Telex: 81525
The only way to buy.

Over a century ago we provided the raw material for producing that distinctive Aussie sound. Today we're still giving the world the benefits of British sound technology by producing the ultimate in hi-fi loudspeaker quality.

Celestion is in the forefront of that British capability with the famous Ditton and new UL ranges that offer everything you want for the price you are prepared to pay to get the best out of your hi-fi system.

From the small compact bookshelf
speaker up to the big Ditton 66 , whatever you choose you get the ultimate in speaker experience with Celestion

Ask any hi-fi enthusiast and he'll confirm our claim. But first have a look for yourself at the sound we're selling. Send for our literature or visit your local stockist.

Celestion

Name
Address

WEST HYDE DEVELOPMENTSLTD., RYEFIELD CRESCENT, NORTHWOOD HILLS, NORTHWOOD, MIDDLESEX HA6 1NN. Phone: Northwood 24941, 26732,27051 WW-101 FOR FURTHER DETAILS

(Wireless World November 1977)
We are offering a Component Kit which comprises all resistors, variable resistors, capacitors, transistors, diodes and integrated circuits at an inclusive price of £59.00. Part kits are also available.

Other designs in our component-kit range include the Low noise low distortion preamplifier, Low distortion oscillator, Matrix H decoder. Sensitive metal detector, and Electrolytic capacitor tester

For further details please send s.a.e. to Circuit Services, 36 Hallowes Crescent S. Oxhev, Wattord, Herts.
(Mail Order only) (Mail Order only) \longrightarrow
S. Oxhey, Wat ord, Herts.

reprints

If you are interested in a particular article /specia Feature or advertisement published in this issue of

MIDDLE EAST ELECTRONICS

why not take advantage of our reprint service Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material (Minimum order 250).
For further details contact
Brian Durrant, IPC Electrical-Electronic Press Ltd Phone: 01-261 8597 or simply complete and return the form below

To Brian Durrant, Reprints Department
Dorset House, Stamford Street, London SE 1 9LU
I am.interested in
copies of the article / advertisement headed
featured in

MIDDLE EAST ELECTRONICS

on page(s).......... in the issue dated
Please send me full details of your reprint service by return of post

Name
Company
Address

Tel No.

SERVICE TRADING CO

LT TRANSFORMERS

HY-LIGHT STROBE KIT Mk. IV Latest type Xenon white light tube Solid state timing and triggering	
Designed for large rooms, halls, etc. Light outpul greater than many (socalled 4 Joule) strobes Price $\mathbf{£ 1 8 . 0 0}$ post $\{1$ ($\mathbf{(1 2 0 . 5 6} \mathrm{nc}$ VA	
- \& P) Speciatly designed case and reflector for Hy-Light $\mathbf{8 . 2 5}$ Post * E1 00 (E9.99 inc VAT \& P)	
+ ULTRA VIOLET BLACK LIGHT	
+ FLUORESCENT TUBES	
- 4 ft .40 watt $€ 7.75$ (callers only) 2 ft .20 watt $\in 5.50$. Pos 160 p - (For use in stan bi-pin fittings) Min, 12in. 8 wart E1.95. Post $25 p$ t \& P P) 6 in 4 watt $£ 1.75$ Post $25 p$ ($£ 1.78$ inc VAT $\&$ P)	
- Complete ballast unit Either 6", $9^{\prime \prime}$ or $12^{\prime \prime}$ tube 230 V A.C op © 3.50 plus $P \& P 40$ p ($\mathbf{£ 4 . 2 1}$ inc VAT \& P) Also avadable for 12 V 	
XENON FLASH GUN TUBES Aange of Xenon lubes avallable from slock SAE for full details	
\& E A $\begin{aligned} & \text { Wide rathge of } A C \text { and } D C \text { relays avalable } \\ & \text { trom stock } P \text { Phone or wrile in yout } \\ & \text { enquilies }\end{aligned}$	

NI-CAD BATTERIES	Height (mm)	Width (mm)	Length (mm)
23 AH 12 l Pliastic Case E4	214	79	21
35 AH 12 V Metal 5650		75	
$40 \mathrm{AH} 12 v$ Plastuc Case $£ 8$ Postage 30p per unt 1	275	80	35
UNISELECTOR SWITCH operation Ex now equipment, $\mathbf{£ 4 . 2 5}, \mathrm{P}$ \& P 75 p Total prite ine VAT $£ 5.40$.		,	
MINIATURE UNIS			

FT3

BIG INCH

INSULATION TESTERS

(NEW)

£40.00 post 80p (E44.06

AT CURRENT RATE
MUST BE ADDED
TO ALL ORDERS
FOR THE TOTAL VALUE OF GOODS INGLUDNG
POSTLEE UNLESS OTHERWISE STATED
COUNT CUSTOMERS MIN. ORDER E 10.00

GEARED MOTORS

100 R.P.M. 115 lbs. ins.!!

CITENCO

REVERSIBLE MOTOR 230 G A.C. antivibration mounting bracker and capacitor $0 / A$ size 110 mm .
95 mm Spindie $5 / 16^{\circ}$ dia. 20 mm long Ex equipment lested $\mathbf{f 3 . 0 0}$ Post 50 p ($\mathbf{£} \mathbf{3 . 7 8} \mathrm{inc}$ VAT \& P)

METERS 90mm Diameter

> A.E.G. TIME SWITCH
$00 / 250 \mathrm{~V}$ AC $1 \mathrm{on} / 1$ off every 24 hrs 80 amps contacts (ideal

SANGAMO WVESTON

600 WATT DIMMER SWITCH

ALL MAIL ORDERS, ALSO CALLERS AT

57 BRIDGMAN ROAD. CHISWICK,

LONDON. W4 5BB. Phone: 01-995 1560

SERVICE TRADING CO.

SHOWROOMS NOW OPEN AMPLE PARKING

POWER SUPPIY UNITS

IN A
RANGE
OF 1
MODELS
FROM
12 TO
70V
OUTPUTS

WITH STABILIZED LOW－VOLT TAKE－OFF POINTS

Tested and guaranteed．Stirling Sound power units offer supreme value and have the added advantage of including a stabilized take off point on all models except SS． 312 and SS． 300 add－on stabilizing unit．Output ratings quoted unloaded．Prices include V．A．T．；goods sent post free in U．K
SS．312 12V／1A E6．60 SS．300 Output stabilizing unit to SS． 318 18V／1A $\mathbf{E 6 . 9 5}$ add to standard supply units SS． $324 \quad 24 \mathrm{~V} / 1 \mathrm{~A} \quad £ 7.65$ Output adjustable from 10 to 50 V ． SS． $334 \quad 34 \mathrm{~V} / 2 \mathrm{~A} \quad £ 8.75 \quad$ Short－circuit protection $£ 5.50$ SS． $345 \quad 45 \mathrm{~V} / 2 \mathrm{~A} £ 1 \mathbf{0 . 7 5} \quad \mathbf{S S . 3 1 0 / 5 0}$ Stabilized power sup－ SS． $350 \quad 50 \mathrm{~V} / 2 \mathrm{~A} £ 11.75$ ply unit with adjustable output 10 SS． $360 \quad 60 \mathrm{~V} / 2 \mathrm{~A} £ 12.75$ to $50 \mathrm{~V} / 2 \mathrm{~A}$ ．Short circuit protected SS． $370 \quad 70 \mathrm{~V} / 2 \mathrm{~A}$ £14．75 £17．75

5\％OFF WHEN YOU BUY A POWER AMP AND POWER SUPPLY TOGETHER

If you order any Stirling Sound Power Amplifier and Supply Unit together，deduct 5% from the total price．A wide choice of amps is available up to 100 watts．R．M．S． output quoted $\pm 1 \mathrm{~dB}$
UNIT ONE Pre－amp／Tone Control Unit for Ceramics，etc，STEREO， with front panel $\mathbf{£ 9 . 0 0}$ UNIT TWO Pre－amp／Tone Con－ trol Unit for magnetic P．U．etc with panel £12．43

DEDUCT FURTHER $£ 1$ if ordered together with power amp and sup－ ply

SS． $1055 \mathrm{~W} / 13.5 / 3 \Omega$ SS． 110 10W／24V SS． 120 20W／34V SS． 140 40W／45V SS． $16060 \mathrm{~W} / 50 \mathrm{~V}$ SS． 1100 100W／70V
£3．95 $£ 4.65$ $£ 5.15$ $£ 6.50$ E8．50 £8．50 $£ 10.50$

FOR CAB OWNERS

 The Sturling Sound＇Super Spark＇Mk 5 capacity discharge ignition unit with switch for instant return to normal ignition，rev limiting control，leads，etc In metal case approx $6^{3 / 4^{\prime \prime}} \times 43 / 4^{\prime \prime} \times$ $2^{\prime \prime}+$ or－earth．Easy to fitKIT－$£ 10.50$ ．READY BUILT \＆TESTED $£ 12.75$
PAY ONLY THE PRICE YOU READ AND NO MORE
All prices quoted include VAT and Goods are sent posi free in UK Owing to the time between preparing this ad．and its appearance to the public．prices may be subject to alteration without Stinimy Sound

37 VANGUARD WAY，SHOEBURYNESS，ESSEX SHOP：220－224 Weat Rd．，Weateliff－on－Sea，Essex S\＄O 9DF．Southend（0702） 351048
 To：STIRLING SOUND， 37 Venguard Way，Shoeburyness，Essex． Please supply
（or pay by Access or Barclaycard）
For which I enclose \mathfrak{E}

Name

Address
W127

Optoclectronics Theory and Practice will prove an indispensable souree of information on this rapidly growing technology

It is the latest textbook to be written by staff at Texas Instruments applications laboratorics
As uptocketronic technology improves and cost reductions continue the use of opto devices is becoming more widespread． Since many engineers last acquaintance with the physics of light was in their schooldays，the need for such a book becomes very important．

For just $£ 8.75$（including $p+p$ ）this new textbook meets that nerd．
Simply，yet fully，it covers in detail the physies of optical radiation，the principles of calculation and，in a second section，gives many practical applications，design hints and suggestions for users of optoelectronic components．
Couplers．photo－transistors IR I EDs，VLEEDs and more－it＇s all in TI＇s latest．
Order your copy now．$\left\{\begin{array}{l}4 \\ 4\end{array}\right.$
Texas Insiruments 1ばいもし

An important new textbook from

 Texas Instruments．

To obtain copies of this book and a full list of TI publications contact：
Bedford Distribution Co Ltd．，St．John＇s Works，Bedford． Tel： 023444595 （C．W．O only）

WW－ 038 FOR FURTHER DETAILS

HAVE YOU DONE IT LATELY！

Two hooks irom Wireless World

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanaṭory introduction.

BOOK 1

Basic active filters
Switching circuits
Waveform generators
AC measurements
Audio circuits

Constant-current circuits Power amplifiers Astable circuits Optoelectronics Micropower circuits

ORDER FORM

To: General Sales Department
IPC Business Press Limited,
Room CP34, Dorset House,
Stamford Street, London SE1 9LU.
Please send me
each inclusive. I enclose remittance value $£$
(Cheques payable to IPC Business Press Ltd.)

BOOK 2

Basıc logic gates Wideband amplifiers Alarm circuits
Digital counters
Pulse modulators

C d as - signal processing
C d.as - signal generation
C d as - measurement and detection
Monostable circuits
Transistor pairs

Name (please print)
Address

(1) WEET HYDE COMPONENTS WEET HYDE MIT

Above: Rers LED, R Threaded chrome LED, Q, S. PCG, PCE.'PCH. PCI, PCF, PCC, PCB, PCA, PPA, PPB. LEDs in red, green on own or in threaded chromium housing, 5.5 mm d. hole 5 nean 5.5 mm d. O neon square. PP 12.5 mm d. $6^{\circ "}$ leads std.. $30^{\prime \prime}$ extra cost; neon only. 110,220 or 500 volts
HADIULES
 On A. anod. \& chromium Wide range (47 different) in PVC nylon.
 Pop up 20,000 ohms/v. LT801, 17 ranges. Pocket LT 101 low cost, 12 115 mm scale 5 amos AC \& DC 2.500 y AC, wetl damped many accessories.

ThE INEBTAUMENT

NAME TO REMEMBER
 For

- With every 80 Mhz Counter Purchased you receive a FREE 520 Mhz Scaler. (Limited Until 16-12-77) Price £259, Exc;
- EQUIPMENT TO SUITE APPLICATIONS UP TO

1.2 Ghz

- Ask for info on our range of OVENED

OSCILLATORS.
From f60.00

NOW
 FOR THE MICRO-PROCESSOR USER A LINE PRINTER YOU CAN AFFORD THE I.C.L. 667 BARREL PRINTER

$150 \mathrm{lpm} \times 96$ characters; 64 ASCII Character repertoire; Format control: TTL input to hammers and TTL outputs from character and index infra red sensors. Standard 240 V Single Phase motors. Attractive Fibreglass case. Size only $28 \times 291 / 2 \times 121 / 2^{\prime \prime}$
GOOD CONDITION - $£ 62.50$ each As New $£ 95$ each. Less Hammer Driver Electronics (hence size $\left.13 \times 291 / 2 \times 121 / 2^{\prime \prime}\right) £ 45$ each. Carriage all units $£ 3.25$

TEKTRONIX OSCILLOSCOPES
$541 A$ with G Plug-in $£ 160$. 545 with CA Plug-in $£ 200.547$ Main
Frame 581 A Main Frame 585 with 82 Plug-in $£ 425.651$ wit 4 . Frame.
350 .
Stocks of better oscilloscopes always changing. Enquiries please Plug-in units not sold separately
SOLARTRON CD1 740 DB-3dB 50MHz. Solid State $\mathbf{£ 3 7 5}$ each TEKTR ONIX 647 3dB $50 \mathrm{MHz} £ 450$.
R\&S Audio Freq. Spectrograph BN48301 $\mathbf{£ 6 5 0}$.
MARCONI Sweeper TF $1099 £ 45$ each.
MARCONI AM/FM Sig. Gen. TF1066B £ 350
R\& S POLYSCOP SWOB $£ 450$ ea
MARCONI OSCILLOSCOPE TF 1330
MARCONI OSCILLOSCOPE TF 133015 MHZ £ 70 each
TELEQUIPMENT Oscilloscope D33R $6 \mathrm{MHZ} £ 90$ each
H.P. Oscilloscope type 1858 £ 100 each

WAYNE KERR Universal Bridge £75.
WWNE KERR Wniversal Bridge $\mathbf{£ 7 5}$.
TEKTRONIX OSCILLOSCOPE type 502 High gain. Limited bandwidth $£ 185$ each.
EX-MINISTRY X BAND SPECTRUM ANALYSER CT 152 (Marconi TF 1035) B.5GHZ to 9.7 GHZ . Power input $115 / 250 \mathrm{~V}$ 45.650 HZ Pan-climatic $£ 85$ each.
J.A.C. ELECTRONICS FREQUENCY METER type 331, HZ to 3 GHZ In and Out $£ 55$ each.
MARCONI SIGNAL GENERATORS. Freq range 10.470 MHZ Type Tf8010/1/S £260 each.

LATION METER TF2300S. One only
£950.
FM / AM SIGNAL GENERATOR
420MHZ Limired quantity E 300 each
MUIRHEAD FREQUENCY ANALYSER D699A £50
HEWLETT PACKARD OSCILLOSCOPE 175A DC. 50 MHZ Double
Beam $£ 190$ with delay amp $£ 220$.
BRUEL \& KJOER Automatic Vibration Exciter type 1016. Sine Wave sweep from 5 HZ to $10 \mathrm{KHZ} £ 125$ each.
AIRMEC WAVE ANALYSER type 248 £ 40 each.
POLARAD RECEIVER Model FIM-B2. Complete 1-10GHZ £325. MARCONI OSCILLATOR TF1101 20HZ-2OKHZ. Nice condition. Special price $£ 50$.
MARCONI Wide Range Oscillator TF1370. Freq. range 10 HZ to to 31.6 V Good value 10 HZ to 100 KHZ . Square Wave. High outputs up MARCONI ADAPTOR TM6113 for TF2700, TF1313, TF8668B f 20 each.
AIRMEC 4 trace scope Type 279. Large screen $£ 95$.
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes any spurious components up to $30 \mathrm{KHZ} £ 29.50$ ea.
MARCONI PORTABLE FREQUENCY METER TF 1026/11. 100 to 160 MHZ Very fine condition $£ 25$. TF $1026 / 4 \mathrm{M} 2-4 \mathrm{GHZ} £ 35$ ea DECCA NAVIGATOR DISPLAY UNIT. Very impressive £ 12.50 .
COURTENAY MAJOR Mk. 2. 250 poules, 5 outputs. Can be COURTENAY MAJOR Mk. 2. 250
combined 1250 joules. No heads $\mathbf{£} \mathbf{3 0}$.
RHODE \& SCHWARZ Turntable Indicating Amplifier UBM E75. TEKTRONIX 1BOA Time Making Generator $£ 55$.
RHODE \& SCHWARZ POWER METER. BNRD.BN $2412 / 50$ E50.
MARCONI RF POWER METER. TF1020A/ 1.75 ohm $\mathbf{E} 65$. I.C. TESTER by SCHLUMBERGER. Model TCL232 - tests 741
709 etc. Dual in lines flat packs or TOS $\mathbf{~} 40$. 709 etc. Dual in lines, flat packs or TOs $£ 40$.
RHODE \& SCHWNARZ
RHODE \& SCHWWRZ Power Signal Generator BN $41001,100 \mathrm{KHZ}$ to 30 MHZ £ 325 .
JERONIC SWEEP GENERATOR GOOA £165
TELONIC SWEEPER SM 2000 - many plug-ins available - state
frequency required between 0 to 1000 MHZ .
MARCONI CT44 Watt Meter $0-6$ watts $£ 30$.
-MARCONITF675F Wide Range Pulse Gen £18 ea
MARCONI TF987/1 Noise Generator £15 ea.
EDWARDS HIGH VACUUM PUMPS 1 SC 30 £50, ES35 440 H.P. MICROWAVE CONVERTER type 2590B £250. R. \& S. PHASEMETER BN 194 ¢ 45 .

PRECISION AVOMETER Meeting section 6-BSS 89/1954 eg $+1-0.3 \% £ 75$ each.
R.
$3 \mathrm{MHZ} £ 250$
H.P. UHF GENERATOR MOdel 612A 450-1230 MHZ £350
H.P. WAVE ANALYSER type 302A £ 150
R. \& S. SWEEP GENERATOR BN 4242 5OKHZ-12MHZ £ 175
each, SWEEPER 1.5 MHZ -220MHZ CW or Sweep $\mathbb{\text { K }} \mathbf{1 2 0}$
FURZEHILL Valve Voltmeter V200A $£ 25$ each
POWER UNIT 3KV Stabilised $£ 25$ each.
FENLOW Low Freq. Analyser 03 HZ to $1 \mathrm{KHZ} £ 75$.
REMSCOPE SO 1 . Basically working - tube good
REMSCOPE SO1. Basically working-tube go
H.P. FREQ. CONVERTER type 5252 E £50.
H.P. FREQ. VIDEO AMPLIFIER type 5261 A 10 HZ to $50 \mathrm{MHZ} £ 25$.
S.T.C. DISTORTION SET 74252 E 65 .

FEED BACK LTD. Wave Form Gen. Sin/Trap/Saw/Sq. + DC offset
f80.
EIRD WATTCHER. RF Power Monitor/Alarm Model 3128.2
meters presettable 10 W to 500 Watts $19^{\prime \prime}$ rack $£ 85$.
H.P. VHF DETECTOR type 417A £75
H.P. VHF DETECTOR type 417A £75.

BROOK FIELD VISCOMETER MOdel RV
\& stand. For 230 V 50 HZ . As new $£ 275$.

EX-MINISTRY OSCILLO-

SCOPE CT436

Double Beam DC-6 MHZ £120

MARCONI SIGNAL

GENERATOR TF801B/3/S
Freq. range $10-470 \mathrm{MHZ}$ £185

PICK-A-PACK 50 PENCE A POUND

From our "Pick-A-Pack" area weigh up your own components. No restrictions on what you take.

MINIATUAE - OXLEY PATCH PANELS - BRAND NEW
EX-DYNAMCO. 10×10 complete with pins $£ 8$ each P\& EX-DYNAMCO. 10×10 complete with pins $£ 8$ each. P\&P
50p.
*TELEPHONES. Post OHfice style 746 Black or two tone
 ea. P\&P 750 sach. Oid black styie $£ 1.50$ each P\&P $£ 1$.
*HANDSETS only 706 style $\mathbf{£ 1 . 7 5}$ each. older style $£ 1$.
 TELEPHONE EXCHA
(exchange on $\mid y)$ from E95.

SUAPLUS - BRAND NEW - REPLACEMENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE
 Banclwidth $60 \mathrm{MHZ}+$ Reciangular $6 \times 10 \mathrm{~cm}-1 \mathrm{kV} \mathrm{EHT} \times$
Senstivity $15 \mathrm{~V} / \mathrm{CM}$. Y Sensitivity $6 \mathrm{~V} / \mathrm{CM}$, standard heaters LHIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100
SCOPE OR IDEAL FOA THE HIGH-O SCOPE OR IDEAL FOR THE HIGH-QUALITY TRANSISTO
SCOPE BUILDER. A1 $£ 65$ each. Carriage $£ 2.50$

To Tube purchasers only. Numetal Shields at $£ \mathbf{2} .50$.
FURTHER STOCKS of the BRIMAR D10-2 10GH/32
 graticule, BRAND $N E W$. Enabtes us to sell these at $\mathbf{£ 4 0}$ each

PAPST Model 240 V available at $£ 7.50$ ea. P\&P 75 p
PAOTOMUTIPLER TYDe $913 A \& 4$ ea P\&P 750 Other
PHot
tyoes avalable.

P\&P $15 p .100$ oft $£ 3.50$. P\&P $75 p$. 500 off £15. P\&P
$£ 1.25 .1 .000$ off $£ 25$. P\&PE1 50 EARGE RANGE OF ELECTOSTATIC VOLTMETERS. From $0-300 \mathrm{~V} 2^{\prime \prime} £ 3$, to 20 KV Max. General guide $5 \mathrm{KV} 3^{1 / 2^{\prime \prime}}$ E5. Thereatter E1 per KV. P\&P 75 P .
OON'T FORGETYOUR MANUALS SAE

requirements
E.H.T. TRANSFORMERS $20 \mathrm{KV} 2 \mathrm{KVA} £ 70$ ea

240 KV SINGLE PHASE 20 KVA OUALD $2 \times 25 \mathrm{KV}$ E85
240 V SINGLEPHASE 1 KVA Outtut 40 KV 25 K . 175 .

PICK-A-PIECE

FROM OUR
PICK-A-PIECE" AREA
\star I.C. Board Pack
50 IC and other useful components tor £1 P\&P 75p.
\star Semiconductor Pack
$\mathbf{5 0}$ dovicast tor $£ 1$ Pap 40 o
DYNAMCO DATA LOGGER

hence $£ 35$ oach

NEW STOCK OF EX-MINISTRY GENERATOR 0-20KHZ

Sinewave output. Metered. 600 Ohms. Size $16 \times 10 \times 9^{\prime \prime}$ deep. Standard mains now at $£ 15$ ea.

At 5p each
BC147: 2N3707: 2N4403; BC172B; BC261; BC251B: BC348B; $\mathrm{BC} 171 \mathrm{~A} / \mathrm{B} ; \mathrm{BC} 413 ; \mathrm{D} 10 ; \mathrm{BC} 182 ; \mathrm{BC} 212 ; B A X 13 ; 1 \mathrm{~N} 937$ BA 1028E; BZX83: 2TX107: 2N4047: TIS61: 2N5040.
At 10p each
BFXB5 1N4
BFXB5; 1 N4733A: SN $7451 \mathrm{~N} ; \mathrm{BYX10-1.5KV;} \mathrm{0.36A;}$
BYZ 10 15p ea; LM 733 CN 20p ea. TIP 30 20p ea; TIP34A - 50p ea BD53B - 40p ea; Heavy Duty Bridge Rectifier - 20p ea; TBAB10S -75p ea; CA3123E-£1 ea; BDY55-£1 ea; BU104-£1 ea:
2N3055-40p aa
TBA560CQ £2 ea: 1 N 4436 T - T03 Flat mount 10A 200piv £1 ea $2 N 5879$ with 2N588 1 Motorola 150 W Comp pair. £2 pr. BD535 Binear Amp $709-25$ pair pr
High Speed Voltage Comparator 710-15p ea.
P\&IP Extra on all items.
FINNED HEAT SINK - single TO3 - Size $43 / 4^{\prime \prime} \times 3^{\prime \prime} \times 11 / 4^{\prime \prime} 50 \mathrm{p}$ ea. P\&P 75p
DESKS with Punch Reader. Printer and Keyboard. Some ASC

$$
1 / 2^{\prime \prime} \text { MAG TAPE }
$$

$$
\text { Approx. } 2.000 \mathrm{ff} \text { NOW 25p each. P\&P } 10 \mathrm{p}
$$

Or 5 for $£ 1$ carr. $£ 2.75$ p.
FOR THE VDU BUILDER tube type CME $122024 \times 15 \mathrm{~cm}$ at $\mathbf{\&} 9$ ea. Base connections supplied.
SUPURB PROFESSIONAL VDU CASES, size $23^{\prime \prime} \times 16^{\prime \prime} \times 15^{\prime \prime}$ on stands. Hammer grey. BRAND NEW SCHLUMBERGER Surplus
c20 each
C.D.C. DISK DRIVERS, TWIN E.D.S. E240 each

TELETYPE ASR 33 from $\mathbf{E 4 5 0}$
TELETYPE KSR33 £325
NON-STANDARD KSR 33 eg basic ASC 1 1-20MA loop - but small print 0 to 9 above standard 0 to 9 , some of the symbols having been elocated, $£ 250$.
ELETYP 35RO no cases £120 each
TELETYPE 35RO cased. £ 180 each
TELETYPE 35RO

- with electronic keyboard. 1370

VITRON PROCESSOR consisting of VDU twin cassette information, $£ 425$. One only
MELCOM 83 System with information, $£ 600$.

BACK IN STOCK -
 CREED 7B TELEPRINTERS
 THE CHEAPEST WAY OF GETTING A FULL

 ALPHA/ NUMERIC PRINTOUT FROM YOUR MICRO Large Ministry purchase enables us to offer these at
£25 each

BAUDOT converter tor coupling to 24 Voris DC Requires ASC $11 /-$ BAUDOT converter for coupling to your micro-processor. These units
are Processor tested before dispatch. Circuits included. Adequately are Processor tested before dispatch. Circuits included. Adequately
arked to guarantee safe arrival for $£ 325$

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS. ETC., on view at LOW COST

[^7]

7/9 ARTHUR ROAD, READING, BERKS (near Tech. College, King's Road). Tel. Reading 582605

Electronic The Test Equipment People

SIGNAL SOURCES

ADVANCE

Signal Generator J4． $10 \mathrm{~Hz}-100 \mathrm{KHz} 600$ ohms impedance，Sine \＆Square Brand V．H．F．Square wave Generator SG21．00 $\mathrm{KHz}-100 \mathrm{MHz}$ Max． $\mathrm{o} / \mathrm{p} 2 \mathrm{~V}$ ．$£ 50.00$ H1E Audio Signal Generator Sine $\&$ Square Wave $15 \mathrm{~Hz}-50 \mathrm{KHz} 200 \mathrm{~V}$ to 20 V （Square）Brand new condition $\mathbf{~} 75.00$

Type PG59 Pulse Generator 2 Channel double pulse．Functions：Frequency， Width．Rise \＆Fall Time，Amplitude， Oftset，Delay，Prepulse \＆Gate．Repetition
Freq． 1 Hz to $10 \mathrm{MHz}(20 \mathrm{MHz}$ in double Freq． 1 Hz to $10 \mathrm{MHz}(20 \mathrm{MHz}$ in double pulse mode）．Delay \＆Width 25 6595.00 Type SG67A Wide Range Oscillator Freq． Type SG67A Wide Range Oscillator Freq．
Range 1 Hz －1 MHz．Sine or Square．Output Amplitude up to 2.5 V ．Battery operated．
R．F．Signal Generator $84 B 730 \mathrm{KHz}$－ 30 MHz ，Output Z：-75 Int．Mod
400 Hz ． $\mathrm{O}-80 \%$ Provision for Audio o／p $0-10 \mathrm{~V}$ at 400 Hz into 6000 SG68A Low Distortion Oscillator， $\begin{array}{r}1-5 \mathrm{~Hz} \\ \hline 165\end{array}$ $150 \mathrm{KHz} \mathrm{c} / \mathrm{w}$ BE 2 battery pack．New AVO AVO R．Fignal Generator HF134 $100 \mathrm{KHz}_{2}$ Ext．mod facility Int．mod． $1 \mathrm{KHz} @ 30 \%$ ． HEWLETT PACKARD
10515A Frequency Doubler Extends the usable frequency range of signal generators．Operating on input frequencies 0.5 MHz to 500 MHz it provides a doubled output in the range of 1 MHz to 1 GHz ．The frequency response of this 50 ohm device is very flat（ $< \pm 2 \mathrm{~d} 8$ typically）over the entire frequency range suppressed ET5．00 F．M．／A．M．Signal Generator 202H F．M． A．M．C．W \＆pulse coverage 54 to 216 Impedance ．．．．．．． $\mathbf{4 9 5 . 0 0}$ 612 A－U．H．F Signal Generator $450-$ $1230 \mathrm{MHz} .0 .1 \mu \mathrm{~V}-0.5 \mathrm{~V}$（ 50 ohms ）A．M． Internal \＆external．Pulse mod．facilities．
SUPERB CONDITION
$\mathbf{E 1 2 5 0 . 0 0}$ MARCONI INSTRUMENTS TF 1060 U．H．F．Signal Generator 450
1250 MHz Sine wave and pulse a m Signal Geneato TF867 15KH200．00 ／p $0.4 \mu \mathrm{~V}-4 \mathrm{~V}$ ．Int．\＆Ext $5 \mathrm{KHz}-30 \mathrm{MHz}$ with Terminating unit ．．．．$£ 185,00$ Solid State Generator 6058B．Freq．range 8.12 .5 GHz ．Int．\＆Ext．mod freq Stab $0.003 \% .50 \cap$ impedance $£ 530.00$ A．M．Signal Generator T
Military version $10-485 \mathrm{MHz}$
Milary $\begin{array}{r}\text { £450．00－£800．00 }\end{array}$ R．C．Oscillator TF1370A $10 \mathrm{~Hz}-10 \mathrm{MHz}$
Square Wave up to 100 KHz Square Wave up to 100 KHz High outputs
up to 31.6 V
$£ 225.00$ Phase／AM．Signal Generator TF 2003 O．4－12MH2 Signal Generator $\quad \mathrm{M} 150.00$ F．M．／A．M．Signal Generator TF

$995 A / 3 \mathrm{~S}$ ．Ministry type No．CT 402 $1.5 \mathrm{MHz}-220 \mathrm{MHz}$ ，R．F．$o / \mathrm{p} 2 \mu \mathrm{~V}-200 \mathrm{mV}$ Internal \＆External Mod Facilities V good | condition |
| :--- |
| A．M．Signal Generator TF8010／1．Freq． |
| 385.00 | A．M．Signal Genarator TF8010／1．Freq．

range $10-470 \mathrm{MHz}$ R F output 0 － 1 －IV range $10-470 \mathrm{MHz}$ R．F．output $0-1 \mu-1 \mathrm{~V}$
Piston attenuator 500 hms impedance A M．Signal Generator TF BO $1 \mathrm{~B} / 3 \mathrm{~S}$
$12.485 \mathrm{MHz} .0 .1 \mu \mathrm{~V} .1 \mathrm{~V}$
E Signal Generator TF144H／4．Later models in super condition
MF／HF Signal $\mathbf{E 5 0 0 . 0 0}$ to $\mathbf{£ 6 5 0 . 0 0}$ MF／HFSignal Generator TF2002 $10 \mathrm{KHz}-72 \mathrm{MHz}_{2} 100 \%$ A．M．depth int A．M．Variable from 20 Hz to 20 KHz R．F．
$0 / \mathrm{p}, 0.1 \mu \mathrm{~V}$ to 2 V Solid State E 675.00 AM／FM Signal Generator TF995B／2

MARCONI－SANDERS

Microwave Sweep Generator type 6600A £2．500．00 MUIRHEAD L．F．Decade Oscillato D880A．2－phase $0.01 \mathrm{~Hz} \cdot 11.2 \mathrm{KHz}$ Decade Oscillator D890D $1 \mathrm{~Hz}-11.2 \mathrm{KHz}$ PHILIPS
PM5501 Colour bar generator．Extremely light and compact instrument for mobile maintenance， 5 different test patterns for and service．R．F．output signal switchable． VHF ，Band III and UHF Band IV．IKHz tone for sound performance checks（sine
wave）
$£ 165.00$ wave）$\quad £ 165.00$

50 MHz Pulse Generator PM5712 | Pulse Generator PM5775 ．．$\quad \mathbf{£ 8 9 0 0 . 0 0}$ |
| :--- |
| 8900 | Pulse Generator PM5776 $\quad \mathbf{£ 9 0 0 . 0 0}$ L．F．Generator PM5 105 10Hz－100KHz

Sine $\&$ Square Wave $2 \mathrm{~V}(\mathrm{R} . \mathrm{M}$ S．） Stabilised o／p．Low Distortion：＜0．8\％ $(10 \mathrm{~Hz}-100 \mathrm{KHz}) \ldots \mathrm{E}$ ） 156.00

DIGITAL VOLTMETERS AND MULTIMETERS

Avo

 Model 7x \quad £40．00 Heavy Duty Mk 5 （with case）$\quad £ 40.00$
 AVO Model 9 or Test Set No $1 \quad \mathbf{£ 5 5 . 0 0}$ DYNAMCO
Digital Voltmeter DM $2023 \mathrm{c} / \mathrm{w}$ DC ranging unit C1．Scale 999990.001%

HEWLETT PACKARD

DVM type 3430 A 3 digit 5 ranges 100 mV to 100 V ．FS input resistances 10 Mohms Digital Multimeter 34702 A with Display 34740 A． 4 digit display． 4 ranges both $A C$ \＆DC plus 6 ranges of ohms $A C$ function covers 45 Hz to 100 KHz ．Ohms ranges are 1000 hms to 10 Mohms FS LED display．New condition．A much sought－ G400．00
PHILIPS

Electronic Analogue Multimeter PM 2503 $D C \& A C$ Volts， 100 mV .1 KV f．s．d． Resistance 100 ohms－10M Ohms．DC 81
AC Current $1 \mu \mathrm{~A}$－ A is．d．\quad E 90.00 SIGN／ROGERS
A．F．Voltmeter
A．C．Converter LM 1219 ． $30 \mathrm{mV}-300 \mathrm{~V}$ mean reading．Freq．range $10 \mathrm{~Hz}-10 \mathrm{KH}$ D．C Digital Voltmeter LM1420．2 $2.5 \mu V-1 \mathrm{Kv}$ in 6 ranges $\pm 0.05 \%$ DC
E235．00 accuracy
D．V．M．Type LM1420．2Ba．©235．00
DC，true R．M．S．and mean A．C sensing．Accurate measurement irrespective of harmonic distortion accuracy $\pm 0.25 \%$ Freq．
$20 \mathrm{~Hz}-20 \mathrm{KHz}$ DVM Type LM $1440210 \mu \mathrm{~V}-2 K \vee D C 5$ ranges Oven controlled zenerdiode．
Accuracy $\pm 0.033 \% \quad$ FSD
$\pm 0.005 \%$ Accuracy $\pm 0.033 \% \quad$ FSD $\pm 0.005 \%$
reading D．V．M．LM 14803 Autoranging version of LM 1440.3 Max reading 39999 $5 \mu \mathrm{~V}-2 \mathrm{KV}$ DC．Full spec．on request \quad P．O．A． D．M．LM 1604 DC only $1 \mu \mathrm{~V}$ sensitivity． 0.01% accuracy．Max reading Autoranging 110 dB series mode reject $\begin{array}{ll}\text { On．No common Mode error } & \text { P．O．A．} \\ \text { D．M．M．} 7050 \text {（Autoranging）} & \text { E245．00 }\end{array}$

OSCILLOSCOPES

Dual Trace Scope 4000． 50 MHz 7 nsec Rise Time $5 \mathrm{mV} / \mathrm{cm}$ sensitivity．Calibrated sweep delay．Gated trigger．X－Y display 8 $x 0_{\mu} \mathrm{V} / \mathrm{cm}$ ．Scope $130 \mathrm{C} \quad 595.00$
500 KHz bandwidth．Identical X and Y amps．$X 2$ to MARCONI INSTRUMENTS
MARCONI INSTRUMENTS
40MHZ TF 2200 series supplied with 3 plug ins． 6455 （single trace）

TM 6456 （dual trace）．
TM 6457 （TV diff）．
Full specs．on request． 6 MONTH
WARRANTY
PHILIPS
PM6507 Transistor Curve Tracer．Solid State CRT $-10 \times 12 \mathrm{~cm}$ ．Full spec．on
request

probes

$\times 1$ Part No 90 ．．．．．．．．．．．．．． $\mathbf{£ 7 . 0 0}$
$\times 10$ Part No． 91
$\times 18 \times 10$（switchable）Part No $£ 9.00$
£11．00
SOLARTRON
CD1740 50 MHz Scope System c／w CX1741 \＆CX1744．Dual Trace，DC－ $50 \mathrm{MHz} 10 \times 8 \mathrm{~cm}$ display．Sensitivity Solid State $\quad \mathbf{4 8 5 . 0 0}$ Portable Scope DC－6MHz Double Beam
CT 436

TEKTRONIX

DC3OMH2 Oscilloscope 545A c／w CA \＆L
Plug－ins
f 445.00
Plug－ins

Type 485350 MHz Portable．Dual Trace 5 mV ／div． $1 \mathrm{nsec} / \mathrm{div}$ sweep rate．Delayed sweep Auto focus，variable trigger hold off 50 ohms internal input protection
$\mathbf{£ 3 . 2 5 0 . 0 0}$ Type 549 （Mainframe） $\begin{aligned} & \mathbf{£ 3 , 2 5 0 . 0 0} \\ & \mathrm{DC}-30 \mathrm{MHz}\end{aligned}$ Bistable split screen storage．Automatic Erase． $5 \mathrm{~cm} / \mu \mathrm{S}$ writing speed．Calibrated sweep delay Various plug－in units $\begin{array}{lll}\text { avalable } \\ \text { Type } & 551 & \text { DC－27MHz Main frame } \\ \mathbf{7 7 5 0}\end{array}$ power supply Various plug－In units Type 5648 （Mainframe）Storage Oscillo scope Various plug－in units available
$\mathbf{£ 7 5 0 . 0 0}$

TELEQUIPMENT

Rack Mounting Scope S54AR Fitted with P7 long persistence CRT．Single trace
DC－ $10 \mathrm{MHz} \quad 10 \mathrm{mV} / \mathrm{cm}$ Unused condition $10 \mathrm{mV} / \mathrm{cm}$ E205
\square
 $\begin{array}{ll}\text { 49－53 Pancras Road } & \text { ADD 8\％vat } \\ \text { London NW1 2QB } & \text { TO ALL PRICES }\end{array}$ Tel：01－837 7781．Telex： 298694

Brokers Itd 49-53 Pancras Road, Lon̄don NW12QB Tel: Ol-837 7781

 New Catalogue just out. Send for your copy now - POST FREE

SCOPE TEST EQUIPMENT

Time Mark Geneatior $184 \quad$ £275.00

Snsce Pulse Generatior Model 21010 c/w | | loads and connectors |
| :--- | :--- | :--- | TRANSMISSION TEST EQUIPMENT

AIRMEC/RACAL
Wave Analyser 248A. $\begin{aligned} & 5.300 \mathrm{MHz} \\ & \text { E } 250.00-£ 300.00\end{aligned}$ Wave Analyser 248 Freq range 5 MHz $\begin{array}{ll}\text { 300MHz } \\ \text { Modulation Meter } 409 & \begin{array}{c}\text { E145.00 } \\ E 295.00\end{array}\end{array}$ Type 210 A Modulation Meeter 2.5.
300MH AM Range 0.100% FM Range $010 \pm 100 \mathrm{KHz}$ in 4 ranges
general radio
Type 1900A Wave Analyser c/w Graphic
Spec: $\quad 1900 \mathrm{~A} \quad 20 \mathrm{~Hz}-50 \mathrm{KHz}$
bandwidths 3.10 and 50 Hz Tracking averages 30 mV .300 V F.S.D. Inpu impedance 1 M ohm 3 meter speeds Spec: $15218 \quad 4.5 \mathrm{~Hz}-200 \mathrm{KHz} 1$ sensitivity. Linear d8 plot of r.m.s ac
voltage tevel 20,40 or 80 dB range £2,000.00 HEWLETT PACKARD
Sweeping Local Oscillator 3595A Plug-in for use with 3590A Wave Analyser Freq MARCONI INSTRUMENTS
Distotion Factor Meter $\begin{aligned} & \text { Fundamental Freq. Range } 100 \mathrm{~Hz}-8 \mathrm{KHz}\end{aligned}$ Dist measuring ranges $0-5 \% \quad 0-50 \%$ Measures all spurious components
30 KHz
$\mathbf{£ 6 0 . 0 0 - £ 8 0 . 0 0}$ RADIOMETER
Wave Analyser FRA 2 T3 Special version of FRA 2 with facilities for Intermodulation measurements of frequency responses Freq. range 30 Hz to 16 KHz incremental freq. $0 \mathrm{~Hz}_{\mathrm{z}}$ to $\pm 60 \mathrm{~Hz}$. Selectivity 3 curves with following 1 dB points $\pm 1.25 \mathrm{~Hz}$
$\pm 12.5 \mathrm{~Hz} \pm 63 \mathrm{~Hz}$ Voltage range $100 \mu \mathrm{~V}$ 1 KV . Auxiliary Oscillator Range OHz to
1.6 KHz and 1.5 to 1.6 KHz o $/ \mathrm{p}-10 \mathrm{~V}$ (EMF) continuously variable impedance 1

BRIDGES

AVO/BPL
(ype Cza $/ 5$ Componen Comparator E245.00 MARCONI INSTRUMENTS FT245 CCT Magn Meter C Wscillato WAYNE KERR
COMPONENT BRIDGE 8521 (CT375) Resistance 10 ranges from 1 M ohm to om 50 kuF to 500 pF . Inductance 10 ranges from $1 \mu \mathrm{~F}$ to 500 KH . Capable of measuring components in situ $\mathbf{£ 1 0 5 . 0 0}$ Universal Bridge 8221A (CT530) 0.1\% Accuracy. Measures R, G £275.00 operated

FREQUENCY COUNTERS

ADVANCE

- $\mathbf{E 1 1 0 . 0 0}$ Timer Counter TC14 9 digit. Display
storage. $\mathrm{DC}-250 \mathrm{MHz}$ Time limits $\begin{array}{ll}\text { storage. } \\ \text { selectable } 0.1, ~ & \text { s-100s. Multiple period } \\ \text { average } & 10.10 \quad \text { Sensitivity } \\ 10 \mathrm{mV}\end{array}$ $100 \mathrm{mV}, 500 \mathrm{mV}$. Overload protected
carriage and packing charge extra on all items unless otherwise stated

Timer Counter
and plug-in capability. DC

resolution in only 2 secs
$\mathbf{E 2 0 0 . 0 0}$ resolution in only 2 secs $\quad \mathbf{E 2 0 0 . 0 0}$ 80MHz Gate times 10μ s to steps. Sensitivity
wave Overload protected ($\mathrm{m} . \mathrm{s}$.) sine
E290.00 Frequency DC - 100 MHz 6 digit. Time. period. period average, count, totalise,
pulse width, ratio. 300.00 Type TC18 Time Counter Freq. measurement 10 Hz - 512 MHz 6 digit LED
display UNUSED CONDITION E 275.00 display
FLUKE FLUKE
Industrial Counter Industrial Counter Totaliser $1 \mathrm{g4} 1 \mathrm{~A} .5 \mathrm{~Hz}$ -
40 MHz 40 mV sensitivity R.P. measurement sensitivity R1PM. VENNER
3MHz Freq counter TSA $6674 \quad £ 80.00$ RACAL
9520 Pry Period Meter 5 Hz .10 MHz E110.00 Universal Counter Timer 9838 Measuring functions:- Frequency. Single and multi period. Ratio and
Multiple ratio. Time interval - single line Multiple ratio. Time interval - single line
and double line totalising. 10 Hz to 100 MHz Frequency. 10 Hz to 5 MHz Period.

VOLTMETERS

BOONTON

R. F. Voltmeter 91 C . Measurement range 1 mV to 3 V . Frequency range. 20 KHz to
1200 MHz (with ' T ' Adaptor supplied). 1200 MHz (\mathbf{W} ith R Adaptor supplied)

Supplies also with R.F probe and tip and | Supplies also with R.F probe and tip and |
| :--- |
| 50Ω termination. Weight 12 lbs. |
| 455 | BRUEL E KJOER

measurements of voltage, frequency and modulation factor AM and FM High impedance FET probe 50Ω termination and 60 d 8 attenuator included. Sensitivity $50 \Omega \mathrm{~V}-50 \mathrm{~V}$ FSD. 100 KHz to 230
MHz Built in reference voltage and MHz . Bult in reference
loudspeaker for identification
Electronic Voltmeter 2409 True R.M.S. Average and Peak 2 Hz to 200 KHz . FLUKE
DC Differential Voltmeter 891 A . Input ranges. $1,10,100,1000 \mathrm{~V}$. DC with
10% overanging. Infinite input resistance 0.1100 V Absolute accuracy $\pm 0.01 \%$ of input. 1 mV full scale Null Sensitivity
Resolution 1 ppm of range
E395 Resolution 1 ppm of rang
GENERAL RADIO
Electronic Voltmeter 1806A AC DC 9

HE WLETT PACKARD
R.F. Voltmeter $3406 \mathrm{~A} 20 \mu \mathrm{~V}$ sensitivity £485 RHODE \& SCHWARZ

$1521 \quad 10 \mathrm{KHz}-30 \mathrm{MHz} \quad 0.2 \mathrm{~V}-\mathrm{IV}$

MISCELLANEOUS

ADVANCE
Digital Panel Meters. DPM. 102. 103, 343 Price and specs. on application AVANTEK
Unit Amplifier Type UF 101 Gain control modules designed torms. Weight $1 / 20$ amplifier or other systems. Weight $1 / 202$
50Ω impedance Frequency response 10 $500 \mathrm{MHz} \mathrm{f150}$ Unit Amplifier Type UA 103. Frequency
response $10-500 \mathrm{MHz}$ io-70dB of gain by cascading modules. 50Ω impedance Unit Amplifier Type UA 301 Frequency $\begin{array}{r}\text { E50 } \\ \text { ¢7 }\end{array}$
 Response Nominal gain $13 \mathrm{~dB} \quad £ 100$ Full specs
on request BIRD
Coaxial Resistor 8053 10W RF coaxial load resistor
E20.00 Wartmeter Termaline 68353 ranges 0 -
$120 / 0.600 / 0.1200 \mathrm{~W} 30-500 \mathrm{MHz}$ $120 / 0.600 / 0-1200 \mathrm{~W} 30-500 \mathrm{MHz}$

Watmeter Termaline 673 ranges $0-25 /$
$0.100 / 0-500 \mathrm{~W} / 30-500 \mathrm{MHz}$ £265 BRUEL K KJAER
Random Noise Generator $1402 £ 250.00$ Automatic Vibration Exciter $1018 \mathbf{£ 4 9 5}$ CAMBRIDGE
GENERAL RADIO Standard Frequency Multiplier 1112 A.
Price \& specs. on application Standard Frequency Multiplier 11128 HEATHKIT \& specs. on application MARCONIINSTRUMENTS $\epsilon 75.00$ $\begin{array}{ll}\text { R.F. Power Meter TF1152/1 } & \text { £75.00 } \\ \text { R.F. Power Meter TF1 } 152 A / 1 & \text { E80.00 }\end{array}$ Coqr Gain and Delay Test Set TF2904 625 line 5505.00 R.F. Power Meter
ranges $D C-1 \mathrm{GHz}$ F. Extension Unit. TM6448 for use with
$\mathbf{~} \mathbf{2 0 0 . 0 0}$

VHF Field Strength Meter HFV 25
300 MHz in 1 band Measurement range $100 \mathrm{~dB}(\mu \mathrm{~V}) 50 \mathrm{ohm}$ impedance $£ 1,750$ Standard Stereodecoder MSDC BN4 193 Polyscop 1 $\quad \mathbf{£ 8 5 0 . 0 0}$ Selektomat USWV E8N... E800.00 requency Indicator FKN © $\mathbf{E 4 7 5 . 0 0}$ $30 \mathrm{~Hz}-15 \mathrm{KHz}$. $\mathbf{E 8 5 0 . 0 0}$ Type MSC Stereocoder BN4192/2 $\mathbf{£ 1 , 2 5 0}$ RECORD

Chart Recorder - $500 \mu \mathrm{~A}$ Movement 1 in
E 70.00

WAVETEK

END OF YEAR SPECIAL OFFERS

Quantities of these equipments at bargain 'st December, 1977.
OSCILLOSCOPES

MARCON TEKTRONIX
531A c/w CA Plug-In DC-13MHz. Dual 533 A c/w CA Plug-In DC-13MHz. Dual race $£ 185.00$ $535 A \mathrm{c} / \mathrm{w}$ CA Plug-In DC-13MHz. Dual
Trace
$\mathbf{£ 2 0 0 . 0 0}$
$545 \mathrm{c} /$ wCA Plug-In DC-24MHz £225 OSCILLATORS
ADVANCE
MARCONI
AF POWER METER
MARCONI

Please note: All instruments offered are secondhand and tested and guaranteed $\mathbf{1 2}$ months unless otherwise stated

A1065	1.25	E	0.35	Pr83	50
AR	0.80	EL86	0.50	PY88	0.
ARP3	0.60	EL90	0.50	PY5004	1.35
ATP 4	0.50	EL91	1.60	QQVO3-10	
B12H	3.00	EL95	0.70		
DAF96	0.60	EL504	0.80	V06.40A	
DET221	2.85	EL821	3.00		
DF96	0.60	EM31	0.75	14.00	
DK96	0.80	EM80	0.55	avo3	2.00
DL92	0.50	EM81	0.60	R19	0.80
DL96	0.70	EM84	0.40	S104/1K	2.50
DY86/87	0.45	EM87	1.00	SC1/400	O
DY802	0.45	EY51	0.45	SC1/600	4.00
E88CC/0	11.30	EY81	0.45	Sp61	85
E180CC	1.30	EY86,	0.50	$\Pi 21$	O
E182CC	3.50	EY88	0.50	U25	1.00
E8 10 F	6.00	EZ40	0.60	026	5
EA50	0.45	EZ41	0.75	427	1.00
EA 76	2.00	EZ80	0.30	U191	5
EABC 80	0.40	EZ81	0.35	U80	
EAF42	0.70	GY501	0.80	UABC80	0.50
EB91	0.30	Gz32	0.65	UAF42	5
EBC33	1.00	Gz33	2.50	UBC4 1	0.60
EBC4 1	0.75	G237	2.00	UBF80	0
¢8F80	0.45	KT66	4.00	UBF89	0.50
EBF 83	0.	K188	. 00	UBL1	0
EBF89	0.40	MH4	1.00	UBL21	0.75
EC52	0.40	ML6	1.00	UCC85	0
ECC81	0.45	A2	0.45	UCF80	0.80
eccer	0.40	082	0.45	UCH42	
¢CC83	0.40	PABC	0.40	UCH8	0
ECC84	0.35	PC86	0.65	UCL8	5
ECC8 5	0.45	PC88	0.65	UCL8	\%
C86	1.25	$\mathrm{PCS}^{\text {P }}$	0.65	UF41	5
ECC88	0.55	PCC84	0.45	UF80	0.40
ECC 189	0.80	PCC85	0.50	UF85	0.50
ECF 80	0.45	PCC89	0.55	UF89	0.50
ECF8 2	0.45	PCC189	0.65	UL41	5
ECF801	0.75	PCF82	0.40	UL84	0.50
ECH42	0.85	PCF84	0.85	UY41	. 55
ECF81	0.45	PCF86	0.65	UY85	\%
ECH84	0.50	PCF201	0.90	/30	
ECL80	0.60	PCF801	0.55	VR150/30	
ECL82	0.40	PCF802	1.55		
ECL83	1.20	PCF 805	1.10		0.50 1.50
ECL86	0.55	PCF88	1.85	+66	1.75
EF 36	0.75	PCH200	0.80	z800u	3.00
EF40	0.70	PCL81	0.60	2801u	3.50
EF4 4	0.75	PCL82	0.45	2900	1.50
EF80	0.35	PCL83	0.70	143	. 80
EF83	1.50	PCL84	0.50	$1{ }^{164}$	0.30
EF85	0.45	PCL86	0.60	185	0.55
EF86	0.4	5	85	154	0.40
EFP89	0.35		0.60	155	0.40
EF9 1	0.85	PFi200	0.70	114	0.40
EF92	0.75	PL36	0.60	1×28	0.80
95	0.45	PL8 1	0.55	2×2	0.80
Efis 3	0.40		0.50	2021	0.55
EF184	0.40	PL83	0.50	$2 \mathrm{2k25}$	9.00
EF804	2.00	PL84	0.50	3 A 4	${ }^{0.60}$
EFL20	0.75	PL504	0.85	3 E 29	5.50
H90	0.60	PL508	0.5	306	0.40
EL32	0.80	PL509	2.00	354	0.50
EL34	1.20	PL802	2.50	3 V 4	0.85
EL37	3.00	PY33		58/254M 550	
EL4 1	0.80	Pr80 0.60		58/25SM 5.50$58 / 258 \mathrm{M} 5.50$	
E181	0.60	PY81/80	0.45		
EL. 82	0.60		0.45	5B/258M 5.50	

PLUMBICON TUBES TYPE XQ.1020R

Mullard-£150					
5046	0.60	6SA7	0.55	30PL 1	1.00
5 V 4 G	0.65	65G7	0.60	3 PLL 13	
${ }_{5 \times 3 \mathrm{GT}}$	0.65	6557	0.60	${ }^{30 \mathrm{OLL}} 14$	1.10
523	1.00	653791	0.50	${ }^{3516 G T}$	0.80
${ }^{524 \mathrm{G}}$	0.70	6SK7	0.60	${ }^{35154}$	0.60
524 Gr	0.75	6SLITG	0.55	${ }^{357461}$	0.70
$64{ }^{6} 7$	0.60	6SN7GT	0.55	50 C 5	0.70
$6 \mathrm{AC7}$	0.60	6507	0.65	${ }^{50 C 066}$	1.20
бан6	0.75	6 V 6 Gr	0.60	75	1.00
6ak5	0.45	6×4	0.45	${ }_{7501}$	
6akb	0.40	6×56	0.45	76	0.80
6AL5	0.30	6x5GT	0.55	${ }^{78}$	0.75
6alsw	0.65	${ }_{6} \mathrm{Y} 6 \mathrm{G}$	0.95		0.75
6AM5	1.60	674	0.65	${ }^{854} 2$	0.75
6amb	0.65	6.30L2	0.90	$723 \mathrm{~A} / \mathrm{B}$	9.00
6AN8	0.85	787	0.80	803	
6405	0.50	$7{ }^{7} 4$	0.80		18.00
64asw	0.85	9 D 2	0.60	${ }^{807}$	1.00
${ }^{6456}$	0.80	906	0.75	${ }^{813}$	6.50
6at6	0.65	1163	11.00	${ }^{8298}$	5.50
${ }^{6446}$	0.40	12 Ab	0.60	${ }_{8}^{832 A}$	4.50
6av6	0.50	$12 \mathrm{AL5}$	0.70	${ }^{8664}$	2.80
${ }^{64 \times 4 G I}$	0.80	${ }^{2} 2 \mathrm{ar6}$	0.45		
6 6x5GT	1.00	$12 \mathrm{Al7}$	0.45		0.50
${ }^{687}$	0.75	$12 \mathrm{AU7}$	0.40	${ }_{9}^{956}$	0.50
${ }^{684} \times 6$	0.40	${ }^{12 A V 6}$	0.70		.90
${ }^{6866}$	0.45	2 AXP	0.40	1625	1.00
${ }^{68 G 6} 6$	1.90	2846	0.5	1629	. 80
${ }_{6816}$	0.75	$12 \mathrm{EE6}$		2051	1.00
${ }^{680}$	-0.60	12 BH	0.60		3.00
	2.30		0.55		3.85
${ }^{68 W}$	2.80				0.85
68w	1.00	2J5Gr	. 40		
${ }_{6} 6$	0.40	12 k	0.6		
${ }^{6}$ C6	0.55	析	0.70		
${ }_{6} 6$	0.50	2asa	. 0.5		1.00
${ }_{6}$	3.00	12SC	0.55		
606	0.55		0.55	51	
${ }_{6 E 48}$	50	行		568	
${ }_{6 F 8 G}$	0.75	${ }_{1}^{1254}$	0.40 1.00	802	5.50
Add $121 / 2 \%$ for V.A.T.					

6 F 12	0.65	19405	0.75	9001	40
6 F 17	1.00	1963	10.00	9002	0.55
6 F 33	4.20	1966	6.00	9003	0.70
$6 \mathrm{H6}$	0.45	19 H 5	17.0	9004	0.40
$6 J 4 W A$	1.75	20P3	0.60	90	0
6 J 5	0.75	20P4	1.10	C.f. T	Ubes
6J5GT	0.55	$25 \mathrm{L6GT}$	0.80	OG7.5	15.00
636	0.35	30 C 15	1.00	DG13-2	22.00
6.57	0.70	30 C 17	1.10	W13.	5
6.79	0.50	30 C 18	1.10		35.00
6 K 7	0.55	30F5	1.00	VCR139	10.00
6K7G	0.35	30 FL 12	1.20	3BP 1	8.00
6K8GT	0.55	30FL14	1.00	5FP7	10.00
$6 \mathrm{L6M}$	1.90	3015	1.00	88	9.00
6L6GT	0.60	30117	1.00	88L	9.00
6 L 7	0.65	30P12	1.00	CV1526	10.00

POSTAGE: E1-£2 20p. £2-£3 30p: £3-£5
VIDECON TUBE TYPE P863B
English Electric-£20

TF 801D/1/s SIGNAL GENERATOR. Range 10 -
 1 KHz at up to $\mathrm{gO} \mathrm{\%}$
TF $801 \mathrm{~S} / 2$. Spec as for 8010 but minor circuit difterences Fow only left $₹ 150$. TF 995A/1 or A/2 or A/2M or A5 SIGNAL GENERATORS. Very high class AM/FM 1 SMHZ to TF $995 / 35$ with additional amplifier to give extra high

TF 1400 O OUUBLE PULSE GENERATOR
WITH TM $6600 / S$ SECONOARY PULSE WITH TM 6060/S SECONOARY PULSE UNIT. For testing radar nucleonics scopes
counters. fitiers etc SPEC. TF 1400s. Rep freq Counters. Hers etc SpEC. TF 1400s. Rep req
10 Hz to 100 kHz , pulse width 0110100 sec . delay -15 to $+3000{ }_{\mu} \mathrm{sec}$, Tise time 30 N sec
$\$ P E C$. TM $6600 / \mathrm{s}$. As tor TF 1400 S except pulse width 05 to $25_{\mu} \mathrm{sec}$ delay 0 to $+300_{\mu}$
sec $£ 230$.
TF 144 H SIGNAL GENERATOR
HIGH FREQUENCY SPECTRUM ANALYSER. MARCONI TYPE 1094 A / S Basic, Frea range 3 to 30
Mc / s and with LF unit from 100 Hz to 3 MHz Measures Mc / s and with LF unnt from 100
relative amplitudes up to 60 dB
TF 934 DEVIATION METER. 250 MHz
TF1041 B VALVE MULTIMETEA. DC voltage from
300 mV to 1000 V AC voltage from 300 mV to 300 V at up 101000 MHz
$T F 1370 \mathrm{C}$ OSCILATOR FOR SQUARE \& SINE WAVE. Fieg -316 V rms 10 Hz .1 MHz square wave
$0.732 \mathrm{pp} 10 \mathrm{~Hz}-100 \mathrm{kHz}$ Attenuator range -50 dB to -102

SIEMENS

LEVEL OSCILLATOR TYPE BEL 3W5 18 . Frequency
from $10 K \mathrm{~Hz}$ to 17 MHz Modulation is external. output from +10 dB to -60 dB in 8 steps and in continuance 135.75 .650 hms

LEVEL OSCILLATOR TYPE REL 3 W29. Frequency
from 3 to $1200 \mathrm{Kc} / \mathrm{s}$ MOd ext output from +16 dB to - 60 dB Impedance output 75140600 ohms

SPECIAL VALVES BR189 250.00	VAT FOR TEST
M 503 -2, ${ }^{\text {d }}$ 22	EQUIPMENT
65.00	8\% PLEASE
K301 7.00	8\% PLEASE
$\begin{array}{lr}\text { KRN2A } \\ 7254 & \mathbf{6 . 0 0} \\ \mathbf{2 5 . 0 0}\end{array}$	ADD 8\%
${ }^{7}$ 2J/52A 75.00	
CV2339 45.00	PLEASE SEND
CV5228 17.50	STAMP WITH
	ENQUIRIES
	VALYES AND
A tot of these valves are	TRANSISTORS
each delivery. so we reserve	relephone enquries
the night to change prices	values, transistors.
for new stock when	retall 7493934 . trade

TEKTRONIX ntype 4 S 1 dual trace sampling unn and probess
545A. Bandwidth DC 1030 MHz (3 dB down at 30 MHz) /2dB depending on plug-in unit Specification and PICe on request
70 CHARACTERISTIC CURVE TRACE 17A OSCILLOSCOPES wide band high voltage hotographically recording wave form having extremel short rise tmes CEDIFONSSETRANSISTORISEOTRAN IOOWP CD. 21. Frequency range 02 Hz to 2 MHz if ranges. TEXSCAN ELECTRONIC SYSTEM ANALYZER ODEL 9990. Frequency range 10 MHz to 300 N FURZEHILL SENSITIVE VALVE VOLTMETER put amplitar
TRAINING SET Ior Pado Opats wis 10 key TRANSMITTER RECEIVER. Transmituer Type M9 eceiver Type M 17 with fixed frequency (x-tal 37.40 or TEST SET FT
nd CPRC 26
UNIVERSAL WIRELESS TRAINING SET No 1 M 2 YA 8316 to 11 ain 32 operators simultaneousiy on key packed in 3 special ransit cases
HARNESS *A" \& "B" CONTROL UNITS "A"'R

COLOMOR

170 Goldhawk Rd., London, W. 12
Tel. 01-743 0899 Open Monday to Friday 9-12.30, 1.30-5.30 p.m.

Flectronic Brokers The Computer Peppile

STOP PRESS

Just received large quantity of top quality computer flooring. Bargain Price, installation available.

Vini~Computer Exchange

DEC PDP8E SYSTEM

- 8K Processor KC8EA Programmer's Panel KL8M nd KL8JA Serial Interfaces RK8E Oisk Control $2 x$ with power Supply.
DEC PDP8E SYSTEM
8K Processor PCBEA High Speed Reader/Punch L8E Serial Interface $3 \times$ OF 32 Oisk Drives AFC8 A/O

DEC PDP8I SYSTEM
8K Processor 680-1 64-line communication system e
DEC PDP8L SYSTEMS
KK and BK Prol Sirs
DEC PDP11/04 SYSTEM
32K Processor Serial Interface Real Time Clock DEC PDP11/40 SYSTEM

- 32 K Parity Memory Processor Serial Interface DEC PR8E
DEC PR8E
Tape Reader. complete with Interface DEC AFO1
nalog-Digit Converter and Multiplexer (rack-mounting
SPECIAL CLEARANCE OFFER!
DEC DF32
Oisk Drive and Control. ONLY E695.00
DEC DF32
DEC PDP8E and PDP11 OPTIONS
KK8E Processor module sets MM8E 4K Memory stack MMBEJ 8K memory stack KM8E Memory extension and time-share module OKBEA Real Time Clock KA8E Positive Bus Module KO8E Oatabreak module KP8E Power fail module KE8E Exiended Arithmetic element KL8E Teletype Interface KL8J DR11C General Purpose Interface OL11 Serial Intarface RX11 Unibus Interface RK05 Disk Packs (hardiy (DEC PDP8I, PDP8L, PDP12 Modules Large stocks available - let us know your requirements DEC TU10
MEC Ti Tape Oeck in 6 ft . cabinet.
DEC PR1
High-speed Paper Tape Reader complete with POP1
DEC POWER SUPPLIES
large stocks available
DEC RK8E / RKO5

SCOOP

HAZELTINE 1000

Compact terminal providing 12 line by 80 character display (960 chs). full/half Duplex, MOS-shift register New List Price $£ 900$ NEW LOW PRICE $£ 495$

KB8 REED-SWITCH KEYBOARD

* 78 Station ASC 11 Keyboard including separat numeric cluster, cursor control keys, and 6 special function keys
- Standard TiL logic

Power requirements + 5V @ 100 mA and $-12 \mathrm{~V} @$

- 8-bit ASC1 1 code (including parity)
providing full 96 -character set with upper and
lower case outputs
* negative strobe with 40 ms delay

Overall dimensions $161 / 2 \times 73 / 4 \times 2^{\prime \prime}$, supplied complete with full technical data and circuit diagrams. DXSCRT 96 stion ASC118 coded (Send $£ 6075$ DXS-CRT 96 station ASC1 1 B-coded TTL-compatible 4 bank alphanumeric keyboard, 8 -bitate numeric pad Delayed strobe and 2 -key rollover. Mounted in attractive box overall dimensions $201 / 2 \times 71 / 4 \times 31 / 2^{\prime \prime}$ PRICE £65.0D $+£ 3$ carriage $+8 \%$ VAT (send $£ 73$ 44) 55SW3-1 54-station BCD-coded 4-bank alphanumeric keyboard Hall-effect switches, input +5 VOC negative logic and strobed output, two-key rollover. Set in attractive panel incorporating 5 indicator lamps and on/off switch. Oimensions $151 / 2 \times 51 / 2 \times$
 18-KEY PUSH-BUTTON CALCULATOR KEYBOARD
Numerals 0-9 decimal point CK $+-x+=$ Mounted on PRICE $£ 4.00+50$ p P\&P $+8 \%$ VAY (send $£ 486$)

HONEYWELL KEYBOARDS
4-bank alphanumeric ex-equipment keyboards, 50 keystations. diode-encoded, 7 -bit positive logic, positive strobe. TTL/DTL-compatible. Power requirements 5 V
100 mA . Layout similar to IBM 029 Price $£ 25.00+£ 1$ P\&P + 8\% VAT (Send £28 08)

Frinters and Terminals

LARGE STOCKS OF ASR33 AND KSR33 TELETYPE TERMINALS

- ASC11 Keyboard

* Hard-copy unit (friction or sprocket paperfeed)
* Paper Tape punch and reader (ASR33 only)

Overhauled in our own workshops to the highest standard and sold with 90-day warranty
Prices from $£ 425$ (KSR33) and $£ 625$ (ASR33).
Also available:
DATA DYNAMICS OD390. ASR and KSR
rminals with acoustic covers
CENTRONICS 102A twin-head printer
132 print positions. 330 cps
$\times 7$ dot matrix
DIABLO Hi-type 1 dassy-wheel printer 30 CDS (BRANO NEW, and offered complete with interfac module for Data General processor)
TEKTRONIX 61 ' Storage Display
1" CRT XY input, stored
COSSOR
COSSOR DIOS 401-2A and 402-2A visual display inits. 13 lines of 80 characters. 600/1200 baud rate modified ASC 11 code.
IBM 731 and 735 INPUT/OUTPUT WRITERS
0 pitch golfball, BCO or correspondence coding. 11 in or 15 in . platen. Max op. speed 15 cps . PRICES FROM 1527500
$£ 20$

TEXAS SILENT 700 KS \bar{R} TERMINALS ASCII Keyboard, silent high-speed operation up to 300 baud. 5×7 dot matrix print-head. full or half-duplex operation
Portable and desk-top models available at prices from 70000
PAPERTAPE EQUIPMENT FACIT 4070 high-speed punch, BRANO NEW in original packing

Also avaiable: FACIT 4060
Also available: FACIT 4060
and 4001 Punches and Readers: Teletype BRPE Highspeed electromechanical punches. Elliott medium and high-speed table-mounted readers

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI. 6743

9 \& 10 CHAPEL ST., LONDON, N.W. 1 01-7237851 01-262 5125 ADJACENT TO EDGWARE ROAD MET. LINE STATION

\section*{} | Pri $220-240$ |
| :--- |
| $\mathrm{E} 8.95, \mathrm{pg}$ |

WODEN POTTED TRANSFORMERS

LOW POWER L.T. TRANSFORMERS PRIMARIES 230-240V		
No		
nections E1.50, pp 50p No. $613 \times 3 \mathrm{~A}$	${ }_{6}$	${ }_{21}^{225}$
$\begin{aligned} & 45 \times 35 \\ & 35 \mathrm{P} \\ & \hline \end{aligned}$		
20.1 10 $100.12 / 3 \Omega$. $7.5 \Omega .152 \mathrm{El} .95$, po		
AUTO STEPDOWN TAANSFORMERS FOR AMERICAN EQUIPMENT can two or three pin socket outler and three co 240 v mains head Send sae for latest pricelistAmerican plugs. sockets. extension leads also avallable \qquad ? \qquad		
	$\frac{1}{6,1}$	
		Pane higr sensitive switch und
		RELAYS NEW AND BOXED three for $£ 1.50$, pp 25 p 700 O 4 CO contact
GARDNERSISOLATION RANSFORMERS connections Pri 220.240 v Sec. 240 v 6 amps$\mathbf{2 2 5 0}$ cari $\mathbf{5 3}$ connections Pri $200.220-240 \mathrm{v}$ Sec 240 V700 watus $\mathbf{E 1 0}$, 240 sec 240 v 3 amps built in metal case $\mathbf{6 1 5}$,cart t 2		

ELECTRONIC BROKERS LIMITED (New Products Division) 49-53 Pancras Road, London, NW1 2QB - Tel: 01-837 7781 Hours of business: - Telex: 298694 9 a.m.-5 p.m. Mon.-Fri.; closed lunch ADD 8\% VAT Carriage and Packing charge extra 1-2 p.m. TO ALL PRICES on all items unless otherwise stated WW-087 FOR FURTHER DETAILS
LANGREX SUPPLIES LTD
Climax House, Fallsbrook Rd., Streatham, London SW16 6ED
RST

SEMMICONDUCTORS

BASES

\section*{ | BxA unstired |
| :--- |
| B9a skirted |}

 ${ }_{8}^{\text {Leclal }}$ Bin

Tel: 01-677 2424 Telex: 946708
RST

Keeping in iouch with a fast developing technology like microelectronics can be difficult. And. like jumping on a moving train. The initial contact cari he hazaidous, if not actially painful.

That's why a unique line -up of IPÇ Business Press furumals have goi together To organise three days of talks and presuntations plus an exhibrion which will give you a chance to come to grips with the now ter hmolegy of microsystams

That means not gust momopiocessors, but also interfares, peupherals and sofiware. Everyihung, in fan I whit his reeded to transfinm a muraprocessak intu atl uperalumal system.

Sinclimbsumband Mirusystans 78 . Ti learn more athrult the winlat s fastest mesuing techinglugy Witheral formy limown uff balance en havang the stern stammed in your face.
 attend Nicmosystems 78 . Bitweill give veillust eight of thent

Electronics Weekly

 GOMPITR WEENIY dataprocessing miditopmocerssors

I:lectrical Times clectrical review world

All fop joutinals iri then fields ám all sperss(x) iof Miciusystems'78. Need we say mone ? FxCopl please cumplete andyeturn the cumpon.
I am interested in Microsystems' 78 .
\square Please send me details of the
seminarprogramme, when finalised. Name.

QUOTE WW-081 FOR YOUR OWN TRADE COPY NOW

Semiconductor

anmen 1977 aranoum Supplies Orchard Works, Church Lane. Wallington. Surrey. SM6 7NF Telephone: 01-647 1006 (5 LINES) TELEX 946650

Here are just some of the products stocked by THE UK's BIGGEST EQUIPMENT CENTRE, ITA:-

Revox Teac Otari Itam Quad H \& H

fitarm

Dual channel multispring reverb infit. Each Channel features four springs - far smoother than single spring systems. "Twang" and "boing" are virtually eliminated by incorporating a floating threshold imiter. Bass, mid-range EQ and bandwidth controls. The best com pact reverb unit available.

ORBAN
 PARASOUND from USA

RESEARCH MACHINES $380 Z$ COMPUTER SYSTEM
VAILABLE THROUGH SINTEL
RESEARCH MACHINES $380 Z$ SYSTEM $16+K$ Ready built with 16 K RAM. 2 K ROM Monitor With Keyboard £1063.00 RESEARCH MACHINES 380Z SYSTEM 4/KIT \qquad $£ 499.00$
SOFTWARE 8 K Extended Basic for 3802
Various combinations of the 3802 are a
Various combinations of the 3802 are avalable e.g $4 \mathrm{~K}-32 \mathrm{~K}$ RAM. Assembled or Part-Assembled Kit Form, with or without Keyboard PLEASE CONTACT SINTEL FOR DELIVERY 1 to 8 weeks PRICES Exclusive of VAT and $p \& p$

MICROPROCESSORS			
A SELF-CONTAINED MICROCOMPUTER KIT: THE MEK680002. Keyboard			
Data Enry. 6 Digit Hex Display Integral Cassette interface. 256 Words of RAM. Single +5 V Power Supply			
Order as MEK68000			£190.00
MC6800	¢15.97	MC6820	$¢ 8.02$
Z80-CPU (2.5MHz)	£28.44	Z80A.CPU (4 MHz)	£36.98
z80-CTC	£12.80	280-PIO	£12.80

COMPONENTS									
SILDERCOn		chock ghips		displays		CRYSTAL 22.'50К内7	3.50	mek 6800 D 2 MC6800	190.0015.97
		A75 1202	3.10						
100 1000		${ }^{\text {N/4.5025 }}$	5.61	Fmb500 CE	1.30	MEMORIES/ $/$ Ps		Mc.6820	8.02
1000	4.00							280.CPU	28.44
3000	10.50							ZBDA CPU	36.98
					4.90		${ }_{20}^{2.05}$	$280.5 斤$	12.80
Frae dara is avalable on some or these llems SEmo for free catalogue.							2.90	280-910	12.80

CMOS Manly RCA			1.04				0.58	CO	0.23	CO4098	1.13
				CDsu							
		CD	0.58		1.48	CD4050	0.58	C04073	0.23	C04502	1.24
			1.04	034	1.97	CD405 1	0.94	CD4075	0.23	CD4510	1.41
		CD40	1.03	4035	2	C04052	0.94	CD4076	1.34	CD451	2
		CD4019	0.58	CD4036	3.29	CO4053	0.94	C04077	0.45	CD4514	2.84
CO4000	0.17	CD4020	1.28	CD4037	0.98	C04054	1.20	C04078	0.23	CD4515	3.24
C04001	0. 18	CD4021	1.04	CD4038	1.10	CD4055	1.36	CD4081	0.23	CO4516	1.40
CD4002	0.17	CD4022	0.94	CD4039	3.20	CD4056	1.36	C0408	0.23	CD4518	1.25
CO4006	1.20	CD4023	0.23	CO4D40	1.11	CO4059	4.93	C04085	0.74	CO4520	1.19
C04007	0.18	CD4024	0.80	CD4041	0.86	CO4060	1.15	CD4086	0.74	CO4527	1.64
CO4008	1.00	CD4025	0.23	CD4042	0.86	CO4063	1.13	C04089	1.60	CD4532	1.39
CD4009	0.58	CD4026	1.78	CD4043	1.01	CD4066	0.63	C04093	0.92	CU4555	0.90
CD4010	0.58	CD4027	0.58	CD4044	0.96	C04067	3.85	C04094	1.94	CD4556	0.90
CD4011	0.20	CD4028	0.92	CD4045	1.45	CD4068	0.23	CD4095	1.08	MC14528	1.22
CD40;2	0.23	CD4029	1.18	C04046	1.37	CD4069	0.23	CD4096	1.08	MC1455	4.68
CD4013	0.58	CD4030	.	C04047	1.04	C04070	0.51	C04097	3.85	im6508	8.05

SINTELRED DGII DESKCLOCK CLOCKKITS I 59.1	coo	PRICE
6 Red Digil Alarm Clock w 205 mm h 40 mm d 140 mm	ACK	E28.80
4 Red Digit Desk Clock w 154 mm ¢ 40 mm d 85 mm	119.222	E 15.50
4 Green Drgit DESK CLOCK w 154 mm h 40 mm d. 85 mm	GCK	E12.95
6 Red Digit CAR Clock with timer w 205 mm h 40 mm d 140 mm	CCK	c41.90
4 Red Digit CAR CLOCKw. 154 mm h 40 mma 85 mm 50 Hz CRYSTAL TIMEBASE KIT	AUT-CK	18.85

[^8]ALL PRICES ARE VALIO UNTIL DECEMBER 31, 1977
OFFICIAL ORDERS ARE WELCOME from Companies, Govt. Depts., Natn. Inds
VAT ar 8 + 350p\&p TELEPMONF and CAEDIT (Invoicel Orders ad AT at 8%. 600 o\& 0 (minimum charge. the balance will be added at cosi) 'FAST SERVICE: EXPORT Orders welcome, no VAT but add 10% (Europe). 15% (Overseas) for Air
ORDERS TO: SINTEL.
PO BOX 75C, OXFORD
Tel: 086549791

MERRY CHRISTMAS AND A VIDEO NEW YEAR

Impress the neighbours with A game they haven't seen vet and proudly tell them you made it yourself.
 NE
 8 GAME T.V. PROJECT

BASED ON AY-3-8600

* Basket-ball * Grid-Ball * Hockey * Tennis * Squash * Football + Two - One.Player Games. * Horizontal and Vertical Bat Coverage * Automatic Ball Speed-Up * Players Colour Coded * Three Tone Sound-Effects * Sound from T.V * Ball Colour Coded to indicate turn in Squash-Game * All Components supplied guaranteed including sound and vision modulator C.H. 36 UHF.
* Power requirement 9v battery * Just add controls and case.

Basic AY-3.8600 Paddle II Kit B + W £21.00 only $£ 15.00$ Colour $£ 29.00$ only $£ 20.90$ $\mathrm{B}+\mathrm{W}$ Mini-Pack Chip + P.C.B. only $£ 12.90$ COLOUR Mini-Pack Chip + P.C.B. only $£ 13.90$
POPULAR AY-3-8500 PADDLE I

* Three Tone Sound Effects
* All components supplied guaranteed just add controls, speaker and case

* UHF varicap modulator (B+W)
* Power requirement - 9v battery
* Stock clearance price down Black + White $£ 10.50 £ 9.90$ Mini-Pack P.C.B + chip B+W 56.90 Cole

JOY STICK CONTROLS

DESIGNED FOR T.V. GAMES
(A Y-3-8550-AY-3-8600) Subminiature Size
UNBEATABLE LOW PRICE
One off $£ 1.90$
Two off $£ 3.50$

COLOUR CONVERTER KIT

* Easily connects to all b+w games using AY-38500 - AY-38550 * Green background-Red boundaries-Yellow and Blue bats - White ball * No extra parts \% No special equipment needed
\&f New even lower price $£ 8.50$ complete
VISION MODULATOR UHF-CH36 SOUND BULLT \& TESTED $£ 2.90$ Order both CONNECTS WITH ABOVE $£ 2.90$ together
£5.50

TELETEXT DECODER SAVEOVER $£ 50.00$

TEXAS TIFAX - XM11

Tested and Guaranteed Only $£ 99.90$
Full Colour Display ORACLE AND CEEFAX Simple to interface with most TV's.
Keyboard and power supply extra.
Also in stock NEW Colour TV's complete with Teletext FROM $£ 399.00$
All Projects supplied with easy to follow assembly instructions.
All prices include VAT + Postage. Orders under $£ 10.00$ - Add 20p p \& p. Make all Cheques or Postal Orders payable to

A Dedicated Visual Display-Company
Mail Orders: 53 Warwick Road, New Barnet, Herts, EN5 5EQ.
Retail Shop and Demonstrations - 14 Station Road, New Barnet, Herts
For further Details and Technical Help - Phone 01-440 7033
(French and German spoken)
Quantity discount negotiable.
For extra speed phone your order on Barclay-or-Access Cards.

Foil Trimmers by DAU

The widest capacitance range available from any one manufacturer. C max from 5.5 pF to over 300 pF . Working temperature from -40 C to +125 C . Commercial and professional grades.

WW 093

Heatsinks by Fischer

Europes most comprehensive range of extruded heatsinks Over 53 stock profiles. Also over 200 various other heatsinks for small devices. WW 094

I.C. Sockets by Fischer

A range of D.I.L. and S.I.L. integrated circuit sockets wide enough to cover most connection problems. Included in the range are L.E.D. display and low profile T05 sockets.

Church House, 94 Felpham Road, Felpham Bognor Regis, West Sussex PO22 7PG Bognor Regis (02433) 28122 Telex 877285

BY Poppular REQUEST

Demand for reprints of Wireless World constructional projects for audio equipment is so high that we have gathered 25 of the best of them together in High Fidelity Designs. These are the 'most requested' articles which you have asked for and all have been fully updated. Hurry for your copy - it's likely to sell out fast!

Tape/disc/radio/amplifiers/speakers/headphones
A BOOK FROM WIRELESS WORLD
$£ 2.50$ from newsagents and bookshops or $£ 2.75$ by post from the publishers

Contents: FM tuner design - Novel stereo FM tuner Low-noise, low-cost cassette deck - Wireless World Dolby noise reducer - Wideband compander design • High-quality
compressor / limiter - An automatic noise-limiter - Modular integrated circuit audio mixer - The "walltenna" - Electronic piano design - Advanced preamplifier design - High quality tone control - Multi-channel tone control -Bailey-Burrows preamplifier - 30-watt high fidelity amplifier - 30-watt amplifier modification - Baxandall tone control revisited - Active crossover networks • Electrostatic headphone amplifier - Class A power amplifier - An I.C peak programme meter - Horn loudspeaker design - Horn loudspeaker - Transmission-line loudspeaker enclosure - Commercial quadrophonic systems

The decade that changed our view of colourTV!

TELEVISION looks back at "Ten Years of Colour" in our main feature which is a compilation of 3 articles dealing in detail with the development of colour TV from 1967 to 1977. In the first we look at this progress from the set manufacturer's point of view ; the second article deals with the servicing angle ; the third examines the back ground politics that influenced the decision makers in their choice of systems.
also
"Dealing with VCR Servo Systems"
plus
all our regular servicing features

Look into

TELEUISION December issue 50p on sale Monday 21 November

HIGH QUALITY LOW DISTORTION OSCILLATOR
An ideal instrument for testing hi-fi systems.
Designed by Mr J. L. Linsley

Hood
Kit price, £19.50. Made and tested, $£ 23$ (+ tax at 8%) p.p. and insurance $£ 1.00$

Specification - Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in 4 steps Output: $10 \mathrm{mV}-1$ volt in 3 steps Sine- and Square-wave forms: Dist. below . 02% Attenuator: Powered by 9 V battery.
Other instruments: MILLIVOLTMETER, FREQUENCY METERS, 60 V I A REG P.S.U., F.M. SIG GEN., DISTORTION ANALYSER AIsO: HI-FI AMP KITS 10-100 W.F.M. TUNERS, KEF SPEAKER UNITS and the latest Mr . Linsley-Hood oscilator (WW. Sept-Oct. '77) at $£ 36$, including metal case and front panel
SA.E for further information to
TELERADIO ELECTRONICS
325 FORE STREET, EDMONTON, LONDON, N. 9
Telephone: 01-8073719

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (088 384) 3221

ÏA $\mathbf{3} 6$ D̈́CWRITER 2. Latest Model and BRAND NEW $£ 925.00$

CASSETYPER Model 2. IBM Selectric typewriter with fully electronic keyboard and twin Philips-type cassettes. Less than three years old £1,225.00.
ITEL Paper Tape Selectric typewriters from $£ 400.00$.
FLEXOWRITERS. Model 2305 automatic typewriters from less than $\mathbf{£ 3 0 0 . 0 0}$. Model Ones from $\mathbf{£ 1 2 0 . 0 0}$.
TELETYPES. ASR 33 s . Now available at $\mathbf{£ 4 9 5 . 0 0}$. KSR 35 s at $\mathbf{£ 2 2 5 . 0 0}$. OLIVETT! Model 349 Intelligent Terminal with RS 232 interface. Clean. but doesn't work. £275.00.
SAGEM RO Electronic Teleprinter, 7 -unit, 60 mA interface, $\mathbf{£ 4 5 . 0 0}$
IBM Model 715 Selectric 1/O. £150.00.
ANNE ARBOR VDU. 24 Lines $\times 80 \mathrm{ch} .$. RS 232, Band rates 110-9000. With standard video out and less keyboard. Under one year old. $\mathbf{\text { E295.00. }}$ PDP 8L with 4 K memory and TTY interface: $£ 550.00$ (BASIC \& FOCAL incl.).
SPC 12 Minicomputer with $4 \mathrm{~K}, £ 150.00$.
CORE MEMORIES, $4 \mathrm{~K} \times 12$, complete with all drivers and logic on one card. These are COMPATIBLE WITH THE PDP 8 I/L $£ 75.00$.

LITTON Model 1231 COMPUTER with 35 c p.s. printe
reader/punch. Processor uses plug-in 74 series TTL $\mathbf{£ 4 9 5 . 0 0}$.
DIABLO Model 30 Removable Disc Unit, £495.00.
DEC High Speed Reader/Punch for PDP 8, $£ 350.00$.
RHEEM High Speed READER with electronics. Rack mounting: $\mathbf{E 9 5 . 0 0}$. DATEK Model 40 READER. 40 c.p.s. Brand new and cased. £38.00. SINGER 35 C.P.S. PUNCH. With all electronics, p.s.u. and spooling £75.00.
NOVA
MUIRHEAD Facsimile interfaces (some new) available at very low cost. MUIR HEAD Facsimile equipment avalable. P.O.A.
JAC INSTRUMENTS Modet 331 Frequency counter and standard
£75.00. E75.00.
NATIONAL CCTV System with one monitor and one camers £135.00.
SCHNEIDER Model 252100 MHz frequency counter, $\mathbf{£ 9 5 . 0 0}$.
PERTEC Model 6840 Tape Transport, $\mathbf{£ 7 5 . 0 0}$
MOHAWK MDS 1103 key to tape unit. $\mathbf{£ 1 6 0 . 0 0}$
PLEASE NOTE:

* Prices exclusive of VAT and Carriage.
* Callers very welcome, but by appointment please
* We are keen to bid competitively for good used equipment.

DRAKE
 Radio Shack Lid

DRAKE'S SUPERB TRANSCEIVER TR-4CW

S.A.E. for details please
as well as drake equipment we are the direct importers of hat RTTY AND MICROPROCESSORS. ATLAS, NYE MORSE KEYS, PRESTEL VHF/UHF PROFESSIONAL FIELD STRENGTH METERS. HAM RADIO. CIR ASTRO 200. HY.GAIN, CDR ROTORS, HUSTLER, OMEGA-T SYSTEMS, MFJ FILTERS AND
SPEECH PROCESSORS, SUPEREX. WE ALSO STOCK SHURE MICROPHONES. SPEECH PROCESSORS, SUPEREX. WE ALSO STOCK SHURE MICROPHONES, YAESU, MICROWAVE MODULES, SOLID STATE MODULES, ICOM. COPAL
CLOCKS, G.WHIPS, BANTEX, MOSLEY. DAIWA, ASAHI, JAYBEAM, DECCA AND THE USUAL ACCESSORIES --COAX. CONNECTORS. INSULATORS. VALVES, ETC. SEND FOR A COPY OF OUR P PRICE LISTISTATamps please)
We are situated just around the corner from West Hampstead Underground Station (Bakerloo line) A few minutes walk away is West Hampstead Midiand Region station. 28. 59. 159. Hours of opening are 9.5 Monday to Friday Closed for Lunch 1.2 Saturday we are open 9.1230 only World wide exports

RADIO SHACK LTD.
188 BROADHURST GARDENS, LONDON NW6 3AY
Giro Account No. 588 7151. Telephone: 01-624 7174. Cables: Radio Shack London, N.W.6. Telex: 23718

WW-052 FOR FURTHER DETAILS

BEAR MICROCOMPUTER SYSTEMS LTD.

- 77-68 DESIGN MANUAL (a simple 6800 based Microcomputer) Fully supported with kits of parts for CPU. Memory and Teletypewriter interface p c.b s Also supported with an active User Group (no VAT)
* 6800 Support Literature Text Books. Motorola Manuals and Games Sofware
* 4k Byte Memory Extension Kit for MEK 6800D
- Hardware Components
£14.25
6800P Microprocessor
£1.50
$2102-1450 \mathrm{~ns} 9 \mathrm{k} \times 1$ STATIC RAM
2102 L

811597	¢1.43	MC 1488.	40
811598	¢1.43	MC $1489{ }^{\circ}$. 40

P\&P 30p. VAT at 8% Plus full range of Low Power Schottky TTL
for full details and an up-to-date Catalogue contact.
BMS LTD.
24 College Road
Maidenhead, Berks. SL6 6BN
WW 092 - FOR FURTHER DETAILS

MAIL ORDER PROTECTION SCHEME (Limited Liability)

If you order goods from mail ordar advertisars in this magazine, excepi for claszithad atvertisements. and ayy by poit in advance of delvery. Wireless Warld will consider you fer companatien if the atvertiser should bacame insalvent ar bankrupl. provido
You hew net rectived the geods or had yeur maney roturned; ent
2. You write to the pubizthor of Wraloas World explainicy the pasition met sarlier than 28 deys from the day you sant your order and not later than 2 montha from that day.
 clam and whal evidence of payment is required.
Wa parraite to meet elsims trom resters mats in sccordsace with the shova'procedure as soen 18 posaike after the advertiser has been declared bankrupt or insolvent up to : Imil a

 noed to sel some winit to thas comminment and to lasera quickly of reaters' difficelites.
 maguxion (ned. for examplo. payments made in respense to cataliguss. ofc., recoived as a result of masworing such adver lisemenis). Personal adverlisembats are excluided.

If you stillthink were like this

or this

Electronics Weelkly

you must be missing this

Electronics Weekly

Today's Electronics Weekly has more news. More new products. Invaluable techrical teach-ins on major innovations - the current series features Microprocessors. A new feature, 'Perspective', which turns a penetrating and impartial eye on leading topics of the day... these are just some of the ways in which it is constantly increasing-its depth and scope. If you haven't seen a copy for some time, find out how behind-the-times your ideas about Electronics Weekly are. Post this coupon now!

To Electronics Weekly IPC Electrical-Electronics Press Ltd Dorsel House Stamford Street London SE1 9LU
Please send me Electronics Weekly for a year I enclose cheque D.0 for $£ 6$. |Annual subscription inc post and packing Cheques should be made payable 10 IPC Business Press Ltd)

Name
Address.

ElectronicsWeekly
moves as fast as the industry it serves.

C.H.L. COMPONENTS LTD.
 Manufacturers of Boxes and Components

 for the Electronics Industry

ABS ADAPTABLE BOXES
Moulded in ABS with lids retained by 4 screws into brass corner inserts.
MB1 $77 \times 56 \times 37$ MB2 $95 \times 71 \times 35$ MB3 $115 \times 95 \times 35 \mathrm{~mm}$ CONCOURSE INSTRUMENT CASES
Manufactured from PVC coated steel. Two part construction Fourteen sizes to choose from
Our smallest Conl $80 \times 111 \times 50 \mathrm{~mm}$
Our largest Conl $4309 \times 31 \times 117 \mathrm{~mm}$
ENCAPSULATION BOXES
EN $134 \times 36 \times 19$ EN $248 \times 28 \times 23$ EN3 $51 \times 38 \times 25 \mathrm{~mm}$
ALBERT WORKS, ST. HUBERT STREET, GREAT HARWOOD, LANCS
TEL. GREAT HARWOOD 886790
WW-084 FOR FURTHER DETAILS

NEW FROM CASIO
 WATER RESISTANT WATCHES WITH STOPWATCH

Casio watches are probably the success story of the decade. These superb quality watches have a constant liquid crystal display of hours, minutes, ten seconds, seconds (by flash) and AM/PM. At a touch of the calendar button they display day, date and month, with automatic 28 30 and 31 -day calendar adjustment. They all have night illumination. In new slim Stainless Steel cases with mineral glass face, they are anti-magnetic, shock resistant and water resistant to 100 feet. They all have a STOPWATCH from one second to 13 hours and, except the 31QR-12B and Ladies watches, they all have DUAL TIME ZONE facility. The display, with a life expectancy of over 6 years, can be easily changed at low cost.

Five CASIO Ladies models from $£ 29.95$. Available soon: Alarm watch and two chronograph watches for under $£ 65$
Bottom left: IBICO 451ES Chrono, 6 digit, 6 functions, $1 / 100$ second to 1 hour. Net and lap times. All S/S, glass, 100 feet. £45.50. Send 15 p for our illustrated catalogue. ACCURIST, CITIZEN, etc. Prices include VAT, P\&P. Send cheque, PO or phone your credit card No. to

WW - 106 FOR FURTHER DETAILS

MISCELLANEOUS

J. Lloyd XY Plotter Type PL£160
S. E. Labs. UV Recorder Type 3006DL$£ 600$
Grubb Parsons Type IRG A20 Analyse$£ 480$
Fribourge Charge Amp Type TA-3/D£85
SE Labs 19" Rack Comprising OSC Type 511 /S and6 off Carrier Amps Type 423/1£350
6 v 25 Amp. Power Supply Units $£ 25$
D.M. Digital Voltmeter. Type 2022 S $£ 240$
Electro Scientific Industries Portametric PVB 300£180
Stanley Lab. Counter Timer SL1 11 £350
Flure 8800A D.V.M £500
DYNAMCOType D7100 with Delay SweepPrice on App.

OSCILLOSCOPES

TEKTRON/X'	
Type 551 with Power Supply	£350
Type 545A with 1A2 Dual Trace Amp	£485
Type 585 with Type 82 Dual Trace	£550
Type 581A with Type 82 Dual Trace	$£ 550$
Type 7603	P.O.A.
Type 7313	P.O.A.
Plug in Modules	
Type CA, G, H, L, K	£80 each
Type 3A75 Amp. 4 MHZ	£80
3 38 Operational Amp	£75
3T77 and 3S76 Sampling	$£ 250$
82 Dual Trace Amp	£135
1 A4 Four Trace Amplifier	$£ 550$

HEWLETT PACKARD
Type 180A with 1801A Dual Channel Vert Amp. 1820A Time Base
£650

THE TEST EQUIPMENT BROKERS EQUIPMENT SOLD, PURCHASED RENTED, LEASED ALL PRICES EXCLUDE VAT AND CARRIAGE TEL. NEWPORT 0633211243.

EUROTECH
25 CHEPSTOW ROAD NEWPORT, GWENT, U.K.

Mm YAESU MUSEN
 YAESU

 FOR THE FINEST VALUE IN THE WORLD

 FOR THE FINEST VALUE IN THE WORLD}

THEFRC7 Synthesised General Coverage Communications Receiver

The FRG7 is a solid state mains and 12 v . receiver
offering continuous coverage $0.5-30 \mathrm{MHz}$ with
specifications unparalleled in its price range.
Its advanced circuitry provides superb performance for professional or amateur alike: search. monitor, test, amateur or broadcast band applications.

The use of a Wadley loop (using the same VHF oscitlator to mix up, then after pre-mixing with a stable crystal source down again (this cancelling all drift from the variable oscillator). It provides equivalent performance to 30 crystal controlled converters feeing a low IF, but without the image problems of such an arrangement.
The signal path starts with the choice of 3 antenna connectors: for $1.6-30 \mathrm{MHz}$, a $50 / 75 \mathrm{ohm}$ feed (to a SO 239 (UHF) coax socket and a binding post) and for $0.5-1.6 \mathrm{MHz}$ (medium wave) a separate high impedance binding post. A 3 position $0-40 \mathrm{~dB}$ switchable attenuator aids reception of very strong signals and reduces adjacent channel interference. The low noise MOSFET RF amplifier provides a SSB sensitivity of 0.25 LV (for $10 \mathrm{dBN}+\mathrm{S} / \mathrm{N}$ at 10.5 MHz) and is sharply tuned by a well calibrated "pre-selector" capacitor with 4 band switched coils. Its output is low pass filtered ($\mathrm{fc}=35 \mathrm{MHz}$) removing VHF image problems from the following mixer. This comprises a pair of JFETS, driven by the " MHz set" $55.5-84.5 \mathrm{MHz}$, oscillator, which upconverts the signal to the band pass first IF to $55 \mathrm{MHz} \pm 500 \mathrm{KHz}$ where it is MOSFET amplified. The second IF of $2-3 \mathrm{MHz}$ is produced by a FET mixer by hetrodyning with the synthesiser derived 52.5 MHz signal. A 1 MHz crystal oscillator and diode harmonic generator produces a $3-32 \mathrm{MHz}$ comb spectrum. This, with the first hetrodyne oscillator (MHz set) is fed to a dual balanced i.c. pre-mixer. The output is expurged by a multiple stage selective amplifier producing the 52.5 MHz second oscillator. A small fraction of this is rectified, DC amplified and lights the 'lock' LED (saving power) when the MHz oscillator is malset. The 2-3 MHz signal is MOSFET amplified and fed to the third mixer (a JFET whose input and output are tuned by capacitors ganged to the main tuning control) where it is hetrodyned to the final IF by the main VFO which covers a 1 MHz range (2.455-3.455), is clearly calibrated, to 5 kHz (or better), well buffered and highly stable. The third (455 kHz) IF starts with the ceramic selectivity element and is followed by two stages of bipolar (the first in the signal path) amplification before the choice of detectors; twin diodes for AM, or a 4 diode product detector. with well buffered switched frequency (for selectable
 sidebands) B.F.O. A diode rectifies, a fraction of the output from the final IFT, this is boosted to drive the illuminated " S " meter and automatically gain control the MOSFET amplifier in the RF, second and third IF stages, reducing fading and distortion. Immediately following the demodulator is an automatic noise limiter, highly effective in suppressing pulse type interference on AM signals, and a three position "tone" switch a (high, low or band pass) audio filter, reducing the bandwidth to that required. A transformerless AF amplifier : delivers a generous 2 W to the internal $5^{\prime \prime} \times$ $3^{\prime \prime}$. or external speaker, drives a phone jack, and a "volume" independent output for tape recorder. The receiver is, mains (234VAC), external ($12 v \mathrm{DC}$) or internal dry cell powered, the most economic source being automatically chosen. This is reduced to a stable regulated 10 v . (or 9 v . for oscillator and the harmonic generator). A dial lamp switch is provided to conserve power on battery operation.

PERFORMANCE WITH ECONOMY WORLD WIDE WIRELESS

FREQUENCY RANGE 0.5 .30 MHz
General coverage in 4 bands
AUOIO OISTORTION less than 10% at 2 W output
AUOIO OUTPUT more than 2 W
ANTENNA IMPEOANCE $50-75$ ohms. Unbalanced for $1.6-30 \mathrm{MHz}$. High impedence for $0.5 \cdot 1.6 \mathrm{MHz}$.

MOOES SSB (selectable USB\&LSB) AM, AM / ANL or CW
CIRCUITRY 13 bipolar and 9 field effect transistors 2 ICs and 16 diodes
SIZE $13 \frac{1}{2^{\prime \prime}} \mathrm{W} \times 6^{\prime \prime} \mathrm{H} \times 11 \frac{1}{2 \prime \prime} \mathrm{D}$
POWER REQUIREMENTS 13.5 V OC Neg
ground or 8 off HP11 or $100 / 110 / 117 / 220 /$ 234 V AC $50 / 60 \mathrm{~Hz}$.

FREQUENCY STABILITY within 500 HZ during any 30 mins after warm up SELECTIVITY $\pm 3 \mathrm{KHz}$ at 6 dB (nominal) and $\pm 7 \mathrm{KHz}$ at -60 dB down.
WEIGHT $151 / 2 \mathrm{lbs}$ without batteries.
SENSITIVITY 0.25 uV for $10 \mathrm{~dB} \mathrm{~N}+\mathrm{S}: \mathrm{N}$ ratio for SSB and CW. $0.7 u V$ for 30% modulated AM at 10.5 MHz .

OUR AGENTS

Amateur Electronics
508-514 Alum Rock Road
Alum Rock
Birmingham B8 3HX

South Midlands Communications Lid
S.M. House, Osborne Road

Totton
Southampton. Hampshire SO¹4 4DN

Western Electronics (UK) Ltd Fairfield Estate
Louth
Lincolnshire LN1 1 OJH

PA GROUP \&
DISCO UNITS

SPEAKER KITS
KITS FOR MAGAZINE DESIGNS etc

Audax HD 12.9 D25
Audax HD20825J4
Audax HD 11 P25EBC
Baker Superb
Castle 8RS/DD
Coles 4001
Coles 4001
Coles 3000
Celestion HF 1300 il
Celestion HF2000
Dalesford D20/1054"
Dalesford D30/110 5"
Dalesford D50/513 61/2
Dalesford D50/200 8"
Dalesford D70/250 $10^{\prime \prime}$
Dalesford D100/310 $12^{\prime \prime}$
Decca London
Decca C0/1000/8
Elac TW3/04
Elac 6RM 171
Elac 6NC2O4
Elac $8 N C 298 \mathrm{~d} / \mathrm{c}$
Elac $8 N C 245$ bass
E.M.I i $4 \mathrm{~A} / 77014^{\prime \prime} \times 9^{\prime \prime}$ E.M.I. $8^{\prime \prime} \times 5^{\prime \prime} \mathrm{d} / \mathrm{c} 10$ watt
Goodmans Axent 100

Goodmans Twinaxiom 10" 8Ω Isophon KK10/8
Isophon KK8/8
Jordan Watts Module
Jordan Watts Module
Jordan 50 mm Unit
Jordan CB Crossover
KEF T27
KEF T15
KEF B110
KEF B200
KEF B139
KEF DN 13
KEF DN 12
Lowther PM6
Lowther PM6 MKI
Lowther PM 7
Peerless DT 10 HFC
Peerless K0100T
Peerless KO4OMRF
Reerford BD25 II
Radford MD9
Radford MD9
Radford MD6
Radford MD6
Radford FN8/FN831
Radford FN8/FN831
Richard Allan CG8T
Richard Allan CG8T
Richard Allan CG12T Sup
Richard Allan HP8B
Richard Allan LP88
Richard Allan HP 128
Richard Allan DT 20
Richard Allan DT30
Tannoy HPD 295A
Tannoy HPD 315 A
Tannoy HPD 385A
. $£ 7.50$ $£ 10.95$ $£ 10.95$
$£ 6.95$ $£ 6.95$

$£ 2250$ $\mathbf{2 2 . 5 0}$ | $£ 9.95$ |
| :---: |
| $\mathbf{f} 5.90$ | E 5.90 $E 6.25$ $E 7.50$ | 4.75 |
| :--- |
| 9.75 | 69.95

69.95

$£ 9.95$ $£ 10.95$

$£ 10.95$
$£ 10.95$
$£ 10.95$
$£ 24.95$ $£ 24.95$
$£ 30.95$ $£ 30.95$
$£ 37.25$

$£ 37.25$ $£ 7.95$

$\mathbf{8} 7.95$ $\mathbf{£ 2 4 . 5 0}$

Baker Group 25
Baker Group 35
Baker Group 50/12
Baker Group 50/15
Baker Auditorium 12"
Baker Auditorium 15"

Celestion G 12 M
 Celestion G 12 H Celestion G 15 C

 Celestion G 18 C Celestion G12/502244/5 £21.95 Celestion G $12 / 502235 / 6 \quad £ 19.95$ Celestion G12/50 2238/9 £20.50 Celestion Gowercell $12^{\prime \prime} /{ }^{\prime \prime} 00 \quad \mathbf{£ 2 1 . 5 0}$ Celestion Powercell $15^{\prime \prime} / 100 £ 46.95$ Celestion Powercell 15"/125 46.95Fane Pop 33T
Fane Pop 50
Fane Pop 55
Fane Pop 60 Fane Pop 70
Fane Pop 100
Fane Guitar 80L
Fane Guitar 80B
Fane Disco 80
Fane PA80
Fane Bass 85
Fane Bass 85
Fane Crescendo 12A
Fane Crescendo 12A
Fane Crescendo 128
Fane Crescendo 128
Fane Crescendo 15/100
Fane Crescendo 15/100
Fane Crescendo 15/
Fane Crescendo 18
Fane 92011 Horn
Fane HPX1
Fane PH50
$£ 39.95$
$£ 42.95$
$£ 78.95$

\section*{£8. 25}
 $£ 8.25$ $£ 10.50$

$£ 10.50$
$£ 26.95$
$£ 26.95$
$£ 14.50$
$£ 14.50$
$£ 17.95$
$£ 17.95$
$£ 19.95$

$E 8.95$ $£ 19.50$

$£ 19.50$ $£ 13.50$

$\begin{array}{r}\text { E } 9.25 \\ \hline\end{array}$
$\begin{array}{r}\mathrm{E} 21.50 \\ \hline\end{array}$

$E 6.25$

$E 6.95$
$£ 83.00$
$\begin{array}{r}£ 93.00 \\ \hline\end{array}$
£110.00

The firm for $\mathrm{Hi}-\mathrm{Fi}$
5 Swan Street,
Wilmslow. |Cheshire.

Send 15p stamp for free 38 page catalogue 'Choosing a Speaker"

Telephone: Speakers, Mail Order and Export Wilmslow 29599 Hi-Fi: WilmsIow 26213
Lightning service on telephoned credit card orders!

Swan Works, Bank Square,
Wilmslow, Cheshire.

Appointments

Advertisements accepted up to 12 noon Monday, November 28, for the January issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 1.10$ per line, minimum three lines.
BOX NUMBERS: 50 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Land a goodjob

Your

 Radio Officer's qualifications can mean a lot here on shoreIf you're thinking of a shore-based job. here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of home where you appreciate them most - at home!

The Post Office Maritime Service has vacancies at Portishead Radio and some of its other coast stations for qualified Radio Officers to undertake a wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone operating.
To apply, you must have a United Kingoom Maritime Radio
Communication Operator's General
Certificate or First Class Certificate of Proficiency in Radio-telegraphy or an equivalent certificate issued by a

Commonwealth Administration or the Irish Republic. And, ideally, you should have some sea-going experience.
The starting pay at 25 or over works out at around £4093; after three years' service this figure rises to around £5093. (If you are between 19 and 24 your pay on entry will vary between approximately $£ 3222$ and £3732). Overtime is additional, and there is a good pension scheme, sick-pay benefits, at least 4 weeks' holiday a year, and excellent prospects of promotion to senior management.

For further information, please telephone Andree Trionfi on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (L690), ET17.1.2, Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

HEAD OF TECHNICAL SERVICES

PLYMOUTH

SALARY $£ 4759$ to $£ 5512$ (including supplements)

A well qualified and experienced television engineer is required to take charge of a broadcast colour studio and all associated control, telecine and recording areas In addition to normal operation and maintenance the person appointed will be expected to play an active role in the develop. ment of new facilities incorporating ment of new facil
digital techniques.

For further details and application form, please write to CHIEF EDUCATION OFFICER (BR6), DEVON COUNTY COUNCIL, COUNTY HALL, EXETER, EXZ 4QG, DEVON.

HAMPSHIRE SYSTEMS ENGINEERS

Our client requires Systems Engineers to provide tendering/ sales engineering back-up for mobile radio/paging equipment. Some overseas travel involved. Previous experience in VHF/ UHF and paging systems essential

For details of these challenging and highly rewarding positions please write or telephone:-
L. Smith, Personnel and Recruitment Manager AMEECO (PERSONNEL SERVICES) LTD. Ameeco House, Bentalls, Basildon, Essex Telephone: Basildon (0268) 284361

YOUNG ELECTRONICS ENGINEER

for Central London (W1) Company

We need a young person (17.18) with some practical experience (preferably in Digital Electronics) to join our small team working on electronic cash registers and calculating machines

On the job further training and every opportunity for advancement given.

A good starting salary, with rapid progress will exist in this career job progress
$9.00-5.30$, 5 -day week, generous holidays

Telephone or write to: Mr Norman, Geller Business Equipment Lid., 15 Percy Street, London, W.1. Tel: 01-580 1614

Do us a service and put us to the test Service and Test Engineers

As aircraft and electronics equipments become more sophisticated and our servicing programme expands, the need for experienced Service and Test Engineers increases.

At Stanmore, we are involved in the provision of spares and the repair, maintenance and overhaul of a variety of British and American airborne electronic equipment.

We need Engineers who can successfully maintain the high standards and efficiency required both in the aircraft and the workshop.

It's skilled work, calling for sound practical experience of radio and electronics theory, ranging from audio to microwave and including the use of advanced test equipment for fault diagnosis. Training in this field will be given to suitable, less experienced engineers.

The Company offers excellent salaries and benefits together with first-class working conditions in well-equipped workshops. This Unit is conveniently situated in pleasant surroundings within easy reach of the A_{I} and Mi.

A GEC-Marconi Electronics Company

If the job sounds interesting and you'd like to put us to the test, write with details of experience to: Mrs. E. Wagg, Marconi-Elliott Avionic Systems Ltd., 22-26 Dalston Gardens, Stanmore, Middlesex HA7 IBZ. Tel: oI-204 3322.

JOIN THE DIGITAL REVOLUTION

Do you have several years experience in the design of high speed digital signal and/or data processing equipment? If so why not contact Pye TVT Limited, where new appointments are to be made at Senior Development Engineer level?
The work will take place in our modern Studio Engineering Laboratory and the successful candidates will be involved in all aspects of the project assigned to them.
A degree or equivalent qualification is required for these positions together with proven digital design experience. Software design experience is an advantage and experience in the broadcast TV equipment field is highly desirable. Occasional travel overseas will be necessary.
Benefits are all those normally associated with a progressive company and include in approved cases relocation expenses to this pleasant part of East Anglia.
Please write or telephone : Dave Barnicoat, Personnel Officer,
Pye TVT Limited, PO Box 41, Coldhams Lane, Cambridge CB1 3JU.
Telephone Cambridge 45115

SENIOR ENGINEER Links Outside Broadcast Unit Hanworth

The above vacancy exists at the Hanworth Division of Thames Television. Duties involve the maintenance and operation of microwave links and communications equipment, planning and surveying microwave paths.

Candidates should have extensive engineering knowledge together with the appropriate qualifications. Salary for this position will be not less than £6,000 per annum.

For further details and an application form please contact
Mr. I. D. McGuinness, Staff Relations Officer, Thames Television Limited, 306-316 Euston Road, London NW1 3BB.
Telephone 01-3879494
extension 338.

MARINE ELECTRONICS TECHNICAL OFFICER

An electronics Technical Officer is required to assume duty as soon as possible after 31 st
January 1978 , in the Marine Geoscience January, 1978, in the Marine Geoscience Group of the Department of Geology. Duties of marine geophysical equipment, both in the laboratory and at sea. Some experience in this field would be a recommendation. The successful applicant will spend several 2.3 week cruises per year aboard the University's research vessel "Thomas B Davie."
In addition to a salary on the scale R4040 x $180-5100 \times 240-5580 / / \times 240-$ $6300 / / \times 360-6660$ per annum plus a
pensionable allowance of 10% of salary the University Offers a veriety of excellent fringe benefits.

Further detalls may be obtained from the Professor of Marıne Geoscience, Department of Geology, University of Cape Town. Rondebosch, 7700 South Africa

Applications giving names of two referees must reach The Registrar, University of Cape Town. Private Bag, Rondebosch 7700, by 31 st January. 1978.

DESIGN/DEVELOPMENT

 ENCINEERS1200 MORE JOBS FB $M_{O D}$ Ord FERRANA $g_{0 \text { es to }}$ er r $_{\text {rant }}$

Come and make headlines with us.

Headlines like these are only possible when you're acknowledged internationally as one of the world's leaders in avionics. To keep us at the forefront we need highly motivated design/development engineers keen to make their mark. And at Ferranti there's plenty of opportunity to do just that. On projects like the Tornado, Sea Harrier, Jaguar and Lynx.

And headlines like these also mean expansion. Which explains why we're looking for more graduate mechanical and electronic engineers to join our airborne radar and inertial navigation teams. They must have the design/development experience to spearhead the progress of equipment from drawing board through to production.

We are particularly interested in talking to engineers with backgrounds in the design of:-

Digital/analogue circuitry.
Microwave and laser techniques.
Small digital computers.

Advanced instruments.

So if you're keen to make your mark on avionics, you'll find you're very much on our wavelength.

Think about it. Then ask the family how they'd like living in Edinburgh, freely acknowledged as one of Europe's finest cities.

Salaries are negotiable and, of course, we operate a contributory pension and life assurance scheme and pay realistic relocation expenses.

For an application form, write to John McPhee at the address below:

Ferranti Limited
Ferry Road
EDINBURGH EH5 2XS
Tel: 031-332 2411.
These posts are open to both male and female candidates

Appointments
 Printed CircuitDesign Engineers

To meet the challenge presented by future telecommunications systems, S.T.C. one of the leaders in the field of electronic telephone switching equipment, require Printed Circuit Design Engineers to work in the Equipment Design Department.

Using logic information supplied, the job is to design and check printed circuit layouts to meet circuit parameters and manufacturing constraints, and to digitise and edit these layouts. To assist their work, the Designers will have access to the most advanced interactive graphic design aids.

The required qualifications are a minimum of ONC Electrical or Mechanical Engineering or equivalent, with previous experience in Printed Circuit Design and Mechanical Drawing Office practises. We are offering competitive benefits and very good prospects to the right men or women.

The positions are being offered at the New Southgate location of S.T.C. which is on the outskirts of North London. The location is well established and pleasantly situated with all the extra amenities and facilities that a large Company can provide.

For further information please 'phone or write to:
Mike Randal (Department 32210),
Switching Main Exchange Products Division,
Standard Telephones and Cables Limited, Oakleigh Road South, New Southgate, London N11 1HB. 01-368 1200 Ext. 3066.

Standard Telephones and Cables Limited

A Bitish Company of ITIT

IMPERIAL COLLEGE TECHNICIAN GRADE 5

required to assist in the maintenance and operation of the S.R C sponsored AEI EM 7 1 MEV high voltage electron microscope. ghe success ful candidate will work under the
guidance of a Grade 7 Technician to maintain and improve a wide range of electromechanical, electronic and vacuum systems, so that a knowledge of electronics and electron optic instruments would be an advantage. The nature of the work is not routine and candidates must be prepared to adapt to changes in work requirements The duties of the successful canddate will also
include involvement in cine film and video include involve
tape editing.
Salary range £3377.£3761 including London weighting
Applications giving details of qualifications and experience together with the names of two referees should be sent before 30
November 1977 to Mr.G J Green. DeNovember of Metallurgy and Materials Science, Imperial College of Science and Technology. Prince Consort Road, London SW7 2BP.
(7695)

UNIVERSITY COLLEGE HOSPITAL MEDICAL SCHOOL

requires an

AUDIO-VISUAL TECHNICIAN

to take charge of the Audio-Visual Aids Department. Salary within University or London VA Technicians scale E2929 to Superannuation benefits
Applications, giving the names of two referees, to the Secretary. University College Hospital Medical School (WW). University Street. London. WC1E 6JJ. from whom further particulars may be obtained

ELECTRONIC ENGINEERS

Required to join a progressive research team as Research Engineers. Applicants should be conversant with electronic çircuit design, both analogue and digital. A knowledge of stepping motors and servo systems an advantage.
This is a challenging position and will appeal to those engineers who enjoy combining both their theoretical and practical abilities. A B.Sc. or equivalent is the required qualification.
Please write with full personal and career details or telephone for an application form 01-205 7050.

Personnel Officer

DESOUTTER BROTHERS LIMITED
The Hyde, Hendon, London NVV9

FIELD \& BENCH ENGINEER

required for work on radio telephone equipment
(7609)

ROYAL COLLEGE OF ART

TELEVISION TECHNICIAN

Is required in the School of Film and Television to assist in the daily operation and maintenance of a colour television studic equipped to broadcast standards. A sound knowledge of colour television systems is essential and some experience
with studio equipment would be an advantage. Candidates should hold C \& G Part II Certificate or equivalent although Part I Centificate holders may be consid. ered.
The salary will be in the range £3376. £3855 according to qualifications and experience. 4 weeks holiday. Pensionable appointment.
Interested applicanis should write giving fult details of previous ex-
perience, etc.. to: Mr. H. Denyer, porience, orc.: of Mr. K. Kensington Gore, SW7 2EU.
(7678)

CHELSEA COLLEGE
University of London

ELECTRONICS TECHNICIAN

Grade 3 required as soon as possible by the Department of Pharmacy. The job invotves the repair and maintenance of scientific equipment with some construction and design work. Experience and/or electronic qualifications are necessary. Salary in the range $£ 2930-£ 3276$ per annum (inclusive of London Allowance and Supplements). Application forms from the Manager of Technical Services. Department of Pharma6LX. Closing date: 30th November 1977.

PUBLIC ADDRESS ENGINEER

Applications are invited for persons with

 knowledge of public address work at conferences and An intelliAn intelligent practical person with limited
experience and willing to learn would be considered.
A good salary with opportunity for overtime will be offered to successful applicants. Please write giving age and previous experience to.
GRIFFITHS HANSEN (RECORDINGS) LIMITED
12 Balderton Si, London WiY 1TF (7664)

THE POLYTECHNIC OF CENTRAL LONDON
 School of Engineering and Science

TECHNICIAN GRADE 3

for an expanding group working in communication and computer fields. Experience in electronics and workshop practice necessary. OND or ONC or 2 A levels or Ord. required $£ 2790-£ 3120+$ suppl. max. £208. Apply to the Establishment Officer, PCL. 309 Regent Street. London, W1R 8AL. 01-580 2020. Ext 212.

The Plessey Development Laboratory at Havant, Hampshire, is sub-contractor for the most advanced VHF communications system ever to be developed for the British Army. This system - known as "Single Channel Radio Access" - allows mobile subscribers to use the Ptarmigan trunk telephone net work for both voice and data messages.
We are now proceeding with the second phase of development, creating new career opportunities for Technician Engineers who wish to advance their knowledge.
What jobs are on offer?
We are looking for 'Technician Engineers with a minimum of 5 years' relevant experience in industry or H.M. Services to work in the following fields.

VHF Radio Equipment Development and Evaluation

Successful candidates will be responsible for getting development models of transmitters and receivers working and characterising their electrical and environmental performance under a wide varietyof conditions.

Development of Special Purpose Test Equipment

This new development of automatic test equipment for use in the Army's Electronic Repair Vehicles will interest candidates with a knowledge of ATE and associated programming techniques.

Development and Evaluation of Digital Logic Modules

Candidates with a special interest in digital circuits and systems will find opportunities to work under the guidance of experienced senior engineers on the most up-to-date techniques, including microprocessors.
What qualifications?
The type of work we do needs people with plenty of solid practical experience of transistorised equipments, a common sense approach and a willingness to work with others towards a common goal. However, if you have the experience we are looking for, it is likely that you will also possess a City \& Guilds Full Tech. Cert., ONC or HNC.
Salaries and cureer prospects
We operate a separate career structure for Technician Engineers which offers plenty of opportunity for promotion. You could become a Principal Technician Engineer in charge of a small section, while the exceptional younger person would be encouraged to qualify to transfer into the Professional Engineering grades. Because our plans for business expansion are soundly based on a full order book for a wide range of both government sponsored and private venture products, we can offer you both job stability and the up-to-date experience which is essential to our future growth.
Technician Engineers are recognised as important members of our teams and are rewarded accordingly. These jobs will carry salaries up to $£ 4,000$ p.a.
Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several seaside resorts, we are well placed for housing, educational and recreational amenities. Relocation assistance will be given and there is a comprehensive range of large company benefits.
Please write with brief career details or telephone for an application form. L. Wise, Recruitment Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. Tel : (07012) 6391. Applications are invited from either sex.
©plessey

Instrumentation Technologist
 Salary c. £4,500

Redland Technology provide Research and Development services for manufacturing divisions of the Redland Group who manufacture materials and building components for the construction industry.
The post available is for an electronics engineer or physicist to work in the instrumentation section of the research centre, set in pleasant countryside at Graylands, Horsham, Sussex.
The successful candidate will be responsible for designing and constructing specialised instrumentation systems and for advice and consultation services on suitable techniques for process control and materials testing. He/she will be provided with technical support staff.
The work involves the measurement of a wide range of parameters, but particularly load, vibration, noise, temperature. A microcomputer is available to analyse data recorded on FM tape. Projects often result in the development of novel solutions which, where appropriate, will be patented.
Minimum qualifications are a degree or HNC in an appropriate subject plus at least two years relevant experience. Car ownership would be an advantage as some travelling will be necessary.
Please write in the first instance to
Dr. R. A. Hazelwood, Redland Technology Limited
Technology and Product Development Centre, Graylands, Horsham, Sussex. Tel : Horsham 2351 Ext 281

THE UNIVERSITY OF LIVERPOOL

DEPARTMENT OF INORGANIC, PHYSICAL AND INDUSTRIAL CHEMISTRY

TECHNICIAN

The successtul applicant witt work on the maintenance, repair and onstruction of a wide range of scientific insirumentation, involving amplification of low level signals (including lock-in amplification) R.F. echniques and digital and analogue techniques. Salary in a range up to E3367 per annum (under review)
Application forms may be obtained from the Registrar. The University Quote ref RV/590/WW

(7679)

Immediate opportunity in Amman, Jordan, for
 ELECTRICIAN/ ELECTRONICS TECHNICIAN

to join staff of new Army museum Will have sole charge of sophisticated British designed electrical system ncluding electronically controlled audio-visual installation. Appointment for approx one year, during which time applicant will train Jordanian national. An interesting and responsible post. Salary by arrangement. All Jordanian expenses paid.
Please write in first instance Box
No. WW7730.

[A CAPITAL
 APPONTMENTS LTD.
 FREE JOBS LIST

FIELD SERVICE ENGINEERS
BASIC SALARIES TO $£ 5,000+$ CAR

30 Windmill Sireet, Landon. W1 01-637 5551

Salies MANAGER for Mainline Electronics

The Mainline division of Crellon Electronics has been formed to supply electronic components to the amateur market.
The division requires a Manager (male or female) with entrepreneurial flair and drive to take over sales and marketing
Applicants, who must have considerable experience in this field will be fully responsible for the total promotion of the division's products - and directly concerned with its profitability.
Salary around $£ 5,000$ plus a generous profit sharing scheme Which should produce over $£ 7,500$ p.a.

WILTSHIRE
 AREA HEALTH AUTHORITY

 Area Physics Service
Medical Physics Technician
 (GRADE IV)

Required for this new department which provides an Area physics service (centred on the City of Bath) and serving ultimately three health districts. The person appointed will be assisting with the provision of physics service chiefly to the clinical measurement activities in the Area. An interest in electronic techniques and instrumentation desirable
Salary: £2346-£3267 per annum plus supplements.
Job description and application forms are available from the Area Personal Officer, Wilishire Area Health Authority, Rowden Hill House, Chippenham, Wilts SN 15 2AN. Tel. 0249-51251 ext. 236.
Closing date: 12 th December, 1977

MARINE ELECTRONICS FIELD EN GINEER experienced install \& ser vice SSB VHF radar, autopilots electronics. Able to work on own nitiative. Home and abroad. Must tive in or near London. The right person could advance to manage ment level. Telesconic Marine Lid 243 Euston Road, NW1. (7680

RADIO - TELEPHONE ENGINEERS Experienced in V.H.F. mobile equipment. Top salaries for top ability. We are a young progressive company currently the busiest. and fastest expanding radio-telephone firm in London. Ring London Communications on 01-328 5344 ask for Mike Rawlings or
Clarke.
$(7356$

Write or telephone
Alan Thompson Mainline Division Crellon Electronics Ltd 380 Bath Road, Slough. Berks. Tel: Burnham (06286) 4434

H.M.G.C.C.

has vacancies for

ELECTRONIC ENGINERS

to work in fields of:
a. VHF/UHF communications equipment design.
b. General circuit design analogue and digital.

Qualifications

Candidates should have one of the following academic qualifications
i. Degree in Science or Engineering
ii. Degree standard membership of a Professional Institution
iii. HNC or HND in a scientific or engineering subject
or equivalent qualifications.

Experience

For the grade of Higher Scientific Officer the following post-qualification is also required, 2 years for candidates with 1 st or 2 nd Class Honours degrees and 5 years for other candidates.

Salaries

Scientific Officer (under age 27)
£2462-£3840
Higher Scientific Officer £3567-£4767

A pay supplement of $£ 313.20$ per annum is included in the above salary scales. An additional supplement of 5% of total earnings subject to a minimum of $£ 130.50$ per annum and a maximum of $£ 208.80$ per annum is also payable.

Application forms may be obtained from:

The Administrative Officer
HM Government Communications Centre
Hanslope Park
Hanslope
Milton Keynes MK19 7BH

Metropolitan Police Office

Tape Recording Specialist

to work in the Tape Laboratory, Camberwell, London, on copying and processing tapes, and preparing tapes for specialist tape recorders. Duties also include giving evidence in Court about work carried out on tapes, and occasionally analysing various phenomena of tape recordings using specialist analytical equipment and then acting as expert witness in Court. The successful candidate will be responsible for own case work (initial training given) and will work in close collaboration with Police Officers and with the various Constabularies which will necessitate travel anywhere in the country.

Candidates (aged at least 21.) must have ONC in Engineering (with a pass in Electrical Engineering " A '") or C\&G Radio. TV and Electronics Technicians Cert. No. 272, or an equivalent or higher qualification. In addition, they should have a thorough understanding of tape recorders and recording techniques; have experience of work in professional broadcast studios on audio and video tape recorders; and be fully conversant with checking tapes for quality and defects.

Salary starting between $£ 3490$ and $£ 4460$ (according to age) and rising to $£ 4765$. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 8 th December, 1977), write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote $\mathbf{T} / \mathbf{9 6 2 5}$.

ELECTRONICS ENGINEER
 (LIGHTING CONTROLSYSTEMS)

We are a leading company in the field of thyristor controlled lighting and associated equipment, including standby power sources. power distribution and industrial control. A high percentage of our production is exported

We require an Electronics Engineer to carry out design and development on both existing and now products The work encompasses all aspects of design from initial concept and prototypes to final production, and may include some project work.

Applicants should have a minimum qualificiation of HNC together with some industrial design experience involving analogue and digital techniques. The ability to work with minimum supervision is essentia

Contact: P. J. Harrison, Technical Director

oaron Controls Limited 60/62 Greenhill Crescent Holywell Industrial Estate Watford, Herts WD1 8RL Tel. Watford (0923) 37144 Telex 922080

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY

TECHNICAL STAFF GRADE 5

Vacancy for electronics technician to construct and develop specialised electronic and electrical equipment, and to assist research groups with electronic instrumentation in the field of control, measurement and data-handling.
Salary range $£ 3377-£ 3856$ per annum inclusive of London weighting and permitted supplement. Four weeks' holiday plus additional days at Christmas and Easter. Superannuation scheme. Sports and social facilities. 37 and half hour, 5 day week.
Apply to Mr. G. J. Green, Department of Metallurgy and Materials Science, Imperial College of Science and Technology, South Kensington, London SW7 2BP.

CATHODIC PROTECTION TECHNICIAN

Wisbech

up to $£ 3957$
Applications are invited from suitably qualified persons for the above post based in Wisbech, Cambridgeshire.
The successful applicant will be required to carry out resistivity surveys, potential surveys, locations and Pearson surveys, continuity and insulating flange tests and all patterns of interference tests. Responsibilities also include negotiating with Electricity, Water, Post Office and all other Authorities concerned with Cathodic Protection.
Candidates should be experienced in all aspects of Cathodic Protection including installation and maintenance of impressed and sacrificial schemes, ground bed installations, transformer rectifiers, test posts, and all general duties associated with Cathodic Protection.
Salary within the range $£ 2769-£ 3456$ plus Phases I and II pay policy supplements. Excellent conditions of service including sick pay, holiday and pension schemes. The region operates a car mileage scheme.
Apply to Mr. J. G. Hagger, Area Personnel Officer, Eastern Gas, Newmarket Road, Cambridge CB5 8JE. Tel. Cambridge 65341, as soon as possible.

EASTERNGAS

SOUTH OF SCOTLAND ELECTRICITY BOARD HUNTERSTON

'A' \& 'B' NUCLEAR POWER STATIONS require

INSTRUMENT CRAFTSMEN

AVERAGE SALARY $£ 77$ for $\mathbf{4 0}$ hours per week on a 3 shift 5 cycle week pattern or $£ 69$ for 40 hours per week for 1 -week-end in 4 day stagger pattern.

Full details will be supplied to craftsmen writing for the standard application form and quoting reference 67/IND174/77 to the Manager, Hunterston 'A' \& 'B' Nuclear Power Station, West Kilbride, Ayrshire LA23 90.J.

The above vacancies are open to male and female applicants.

SATELLITE COMMUNICATIONS ENGINEERING

Within the International Telecommunicatıons Satellite Organisation (INTELSAT) two types of satellite earth station are used -
Standards ' A ' and ' B '. Cable and Wireless is the world's largest operator of both types of INTELSAT earth station. Our involvement encompasses ownership, operation, maintenance, consultancy and the lease of earth stations to clients. The Satellite Division plans and coordinates the procurement and commissioning of earth stations, including our own design of Standard 'B' station, and is involved in systems studies for our own network and for projected domestic satellite schemes. Rapid growth in this high-technology field means outstanding opportunities are availab.e to men and women in the following key posts

Satellite Systems Engineers

You will be involved with the study of satellite systems, and in the preparation of specifications and procurement of earth station sub-systems. You should be numerate and hold a degree or equivalent in electrical engineering, electronics or a related discipline. Experience in microwave techniques or
radio communications is essential, and experience in satellite communications systems engineering would be advantageous. Candidates with specialised experience in related fields (such as digital radio, antenna theory or microwave propagation) will also be considered.

Satellite Earth Station Planning Engineers

You will be concerned with the planning of satellite systems and the preparation of specifications, tender evaluations, procurement and installation of earth station sub-systems. You should hold an HNC or equivalent in electrical engineering, electronics or a related discipline, and membership of the Institution of Electrical Engineers or the Institution of Electronic and Radio

All posts are London-based, but as most of our business is overseas. you will make short trips abroad.
Starting salaries (currently under review) will be around $£ 5,000$ rising to £6,000 in annual increments. Subsequent promotion. leading to salaries of $£ 7.600$, is possible. Benefits are those to be expected of an

Engineers would be an added advantage. Experience in microwave techniques or radio communications is essential, and experience in satellite communications systems engineering would be an advantage. Candidates with field operations experience but without planning experience will also be considered.
international company, and includes relocation assistance where necessary.
Please telephone or write with full CV to:
Recruitment Manager,
Dept. A907/749,
Cable \& Wireless Limited, Mercury House, Theobalds Road, London WC1X 8 RX .
Tel: 01-242 4433 ext. 4059.

Team Leaders

The Directorate of Radio Technology, Central London, provides the technical expertise and engineering support for forming and implementing management policy, and is concerned with all aspects of spectrum engineering. It is also involved in the technical preparations for the 1979 World Administrative Radio Conference.

The successful candidates will each lead a section dealing with one of the following activities: the forward planning. management and regulation of civil frequency bands; radio propagation over the whole frequency spectrum; specifications and equipment type approval for fixed and mobile services, including microwave links; the application of computer techniques to frequency management problems; the nationwide radio interference service; the provision of technical advice on radio services' licensing; and the operation of an international radio monitoring service.

up to $\mathbb{£ 6 , 9 1 5}$

Candidates must have qualified for corporate membership of IEE or IERE, and in addition have several years professional experience. They must have at least two years' experience in a relevant field, and should have a broad outlook enabling them to appreciate the general principles of frequency spectrum engineering.

Starting salary between $£ 5705$ and $£ 6915$, depending on qualifications and experience. Non-contributory pension scheme. Promotion prospects.

For further details and an application form (to be returned by 9 December 1977) write to Civil Service Commission. Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote $T(D) 85 / 1$.

Engineering Opportunities

Pye Business Communications Limited, a member of the Pye Group of Companies - part of the international Philips organisation - markets, installs, commissions and services a wide range of communications equipment
The Engineers appointed to the following positions will enjoy the excellent employment conditions associated with a major cumpany
FIELD MAINTENANCE ENGINEERS 1) To cover Northern England, resident in Central Yorkshire, to work on Intercom and CCTV systems ii) To cover Southern Area, pieferably resident in Greater London, to work on Intercom and CCTV systems, Radio and Inductive Paging equipment iii) To cover Midlands, resident in Birmingham close to Spaghetti Junction, to work on CCTV equipment for which experience of digital techniques is essential

INSTALLATION \& COMMISSIONING

 ENGINEER- Southern Area, resident North of the Thames, for Private Telephone systems, Intercom and Public Address systems and Paging Equipment A Final C. \& G. Telecommunications Certificate, ONC or equivalent is essential for the above vacancies, together with a clean driving licence. Company cars will be provided.
BENCH MAINTENANCE ENGINEERS
to work at our Wembley Depot on RF and Inductive Loop Paging Receivers and/or CCTV equipment Minimum qualification of Intermediate C. \& G Telecommunications Certificate required

Please apply to
Mrs. Ann Macnab, Personnel Manager. Pye Business Communications Limited, Cromwell Road, Cambridge CB1 3HE Telephone Cambridge 45191

Pye Business Communications Ltd

ChELSEA COLLEGE University of London
 ELECTRONICS TECHNICIAN

Grade 3 required for the construction and maintenance of electronic equipment in the Electronics Undergraduate Teaching Labo ratory, and also to assist with laboratory
classes and Audio Visual Aids requirements

Day release for an approved course of study could be arranged. Relevant experience and ONC or equivalent required. Salary $£ 2930$ £3276 inclusive. Further information and application forms from Mr, M. E. Cane
(3ET), Department of Electronics, Chelsea College. Pulton Place. London. SW6 5PR

THE UNIVERSITY OF LEEDS. Electronics Technician (Grade 5) required, in School of Chemistry thectronks Workshop. to work on of electronic equipment. The appliof electronic equipment. The applicant must be conversant with dircuits printed circuit techniques and electromechanical equipment Preference will be given to the applicants who have substantial knowledge of, and service experience on, multiohannel analysers. Qualification - HNC or equivalent and candidates must have a mini mum of 7 years appropriate exper ience. Salary on a scale $£ 2,889$ g3,367 p.a. Applications in writing, qualifications and state of health to Mr. G Spink School of Chemistry The University, Leeds LS2 9JT.

VERY EXPERIENCED Electronic Engineer for electronic, keyboard and amplification services. Salary negotiable. Phone Maurice Placy. quet 01-749 3232 .

Chelsea college ELECTRONICS TECHNICIANS GRADE 5

Vacancies exist in our Electronics Workshop and Electronics Research Laboratory. Interesting prototype design and development plus servicing or experimental work. Relevant experience essential. Salary in the range $£ 3377-£ 3856$ per annum (inclusive of London Allowance and Supplements) Application forms and further details frm Mr. M. E, Cane (5E), Department of Electronics, Chelsea College, Pulton Place, London SW6 5PR.
SENIOR ELECTRONICS ENGINER for search. programme of Space Research, programme of satellite and related experiments, in parvears experience of designing ana logue and digital circuitry re. quired, familiarity with high re liability applications, computer interfacing techniques, computer interfacing techniques and micromrocessors ars advtantage. HNC Salary scale £2889-£3367 p.a. (under review) apply Assistant Secretary Personnel Office, University of Birmingham, P.O. Box 363 , Birmingham B15 2TT Ref $105 / \mathrm{C} / 287$.
(7678
ELECTRONICS TECHNICIAN (IGrade 5) required in Department of Psychology, University of Reading. Final C.G. Electronic Servicing or equivalent qualification desirable. Salary in scale £2889-£3367 pa (under review). Apply with full details and names of 2 referees. quoting Ref. T.W.W. 46A to Assistant Bursar (Personnel), University of Reading. Whiteknights, Reading,
Berks, RG6 2AH.

Research Officer

Ideal opportunity occurs for a suitably qualified person to undertake interesting and varied projects and investigatory work in the field of electromagnetic interference
The ideal applicant, male or female, will be aged $22-40$ with graduate or HNC qualification, experience of Radio frequency measuring techniques - measurement and calibration
ERA is an independent engineering organisation specialising in the profitable application of electrotechnology within industry, commerce and the public sector.
Competitive conditions of employment amid pleasant rural surroundings offer attractive career prospects
Contact the Personnel Manager ERA Ltd., Cleeve Road. Leatherhead Surrey. Leatherhead 74151

7662

ELECTRONICS TECHNICIAN (Grade 6) required by Physiology Dept for 6) required by Physiology Dept for the design and construction of used in muscle research. Experience in analog, digital and computer interfacing circuitry desirable. This is a grant supported post. Salary in range $£ 3.802$. ${ }^{4} 4,435$ inc. of London Weighting. Application form from Personnel Officer (Technical Staff FF15) University Corlege London, Gower
St., London WiciE 6BT.

ELECTRONIC TECHNICIAN Grade 5 required in the Chemical and Biofor the electronic workshap knowled ge of fault-finding and seor vicing standard electronic instruments required, together with the ability to work on prototype circuits. Salary in range $\mathbf{~} 3,377$ to £3,856 including London Weighting. Application form and further details from Personnel officer (Tech nical Staff EB8). University College London. Gower Street, WC1E 6BT (7716

ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton.
Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates.
Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts. tel: St. Albans, 59292

DATEK SYSTEMS LTD.

A leading Company in the Phototypesetting Industry requires a

SENIOR TEST ENGINEER

The position requires a man with several years' experience of digital systems with the ability to fault-find 74 series T.T.L. to chip level. A background in the data prep or V.D.U. market would be most appropriate and an academic level of at least H.N.C. would be expected. The job involves some field service support in the U.K. and overseas. Salary up to $£ 5,000$ per annum

JUNIOR TEST ENGINEER

This position requires a young engineer with a degree or Dip. Tech. in Electrical Engineering with an electronics bias.
Some experience in T.T.L. logic or microprocessors would be useful. Salary about $£ 3,000$ per annum
The Company offers four weeks holiday and sickness and pension scheme

Phone or write for application form to

Miss L. Bux

DATEK SYSTEMS LTD.
849 Harrow Road, Wembley, Middx. Telephone: 01-904 0061

IT N

SENIOR ENGINEERS £5712 p.a.

A senior television engineer is required to augment the existing shift maintenance team which is responsible for the day-to-day electronic maintenance of a wide range of broadcasting equipment. The duties would include the maintenance of such items as Vision Mixers and Routing Switchers, Digital Standards Converters, Oracle Computers, Character Generators and many other devices. Applicant should preferably possess an HNC or equivalent and several years of appropriate experience Reference Number 8211
A further vacancy exists in the electronic development section which has a five-day week work pattern. A variety of projects using latest technology, are already under way and for the right person an interesting future is assured. Applicants for the post should possess academic qualifications to HNC standard plus a minimum of four years' appropriate development experience. Reference Number 3213
Application forms are available from Independent Television News Ltd., Personnel Office on 01-637 3144. Please quote the appropriate reference number. The closing date for these vacancies is three weeks after publication.

GUNN DIODES

 Barrier diodes

SUITABLE FOR W.W. MICROWAVE VOICE LINK \& INTRUDER ALARM

BAV 46 ------ $1-75$

AERIAL MASTS, 32 ft , complete

 with guidelines, insulators, fixings, etc. f20 each. - Marconi TF144G RF signal generator, two MarconiTF985 generator, two Marconi TF958 value voltmeters. - Westalite variable d.c. power supply AVo Model 3 valve tester - FM oscillator. All equipment in excellent condition. For further details ring Martin Keefer on 01 8649720 (evenings)

LOW PROFILE RELAYS, . $1^{\prime \prime}$ Pin Spacing, AT A FRACTION OF ORIGINAL COST

1 Changeover
 1 Changeover (H/Duty)

 2 Changeover 2 Changeover
High Quality Manufacture Brand New Eact with Protective Dust Cover Add 20p P \& P with all Orders (Data Sheet Supplied), or send S.A.E. for details Power Electrolytics. 800uf 450 v (Value not stamped on Can) Single end connections with
screw terminals. $21 / 2^{\prime \prime}$ dia. $\times 41 / 2^{\prime \prime}$ high inc. studs. Min. Order 4 for $£ 2.00$ inc. VAT (add $80 p$ screw terminals. $2^{1 / 2^{\prime \prime}}$ dia. $\times 4^{1 / 2^{\prime \prime}}$ high inc. studs. Min. Order 4 for
LINWVAY ELECTRONICS

843 Uxbridge Road, Hayes End, Middx., UB4 8HZ Tel. 01-573 3677 VISIT OUR SELF.SERVE RETAIL PREMISES AT THE ABOVE ADDRESS

QUARTZ CRYSTAL UNITS from
 - 10-sco mamz
 - bast oelivear
 - TIG OEF STABILTA
 (6044)

T.V. TUEE REBUILDING PLANT, Western-Whybrow Engineering have designed and manufactured the latest in T.V. Tube Rebuilding Plant, for example the Western 3 .
station Recirculating Oven, constrolled by Recording Temperature Programmer and available with fully automatic or semi-automatic activation and tip-off unit is unrivalled for the quality production of rebuilt colour tubes for a Whybrow provide a compertion. Westernvice including training, instalation. and all associated supplies. Western-Whybrow Engineering WECO Works. Praa Sands Cross. Penzance. Tel: (073 676) 2265.

LINCOLNSHIRE E.T.V. CONSORTIUM, BISHOP GROSSETESTE COLLEGE, Lincoln (0522) 27347 EX. 40. FOR SALE: Ampex V.T.R.

5103 , Edit with spin physics head 5103 , Edit with spin physics head £250, Anipex V.T.R. 5003 £ 195 , Redifusion Colour Mecca Monitor MVA $2400 £ 80$ £200, Decca Monitor MVA $2400 £ 80$, E250, R.B.M. 20in monitor $£ 70$, Sony V60D, and V60H "once used" $\mathbf{i 3}$. lnch video tape Sony/Scotch; Memorex, $3,000 \mathrm{ft}$ for Ampex 5004 | Meries, $£ 10$. |
| :--- |
| s. |
| |
| 7666 |

TYPE 3,000 G.P.O. Telephone Relays 100 30p. Crampin. Grimsby 0472 56345.

LINSLEY-HOOD 75 watt power amp modules, fully built and tested, from £13.50 each. Linsley-Hood 75 watt amplifiers constructed and repaired. Brand new guaranteed,
spares by return. BDY56 £1.85, BD529 55p, BD530 55p. BF258 40p. BFR39 30p, BFR79 30p. Interference suppression kit, with instructions, £1.45. Inclusive prices post and details of kits, I G Bowman 59 Fowey Avenue. Torquay. S. Devon. (7699

TELETYPE 33KSR sprocket feed. Good working order ${ }^{\text {G180. }}$ Tel:

BARGAIN PACK 100 transistor. High power, audio, RF, gen purpose, fine selection of branded makes, all £15. Only $£ 5$ inc p\&p. CWO (UK only). Instant refund if not delighted. A. Philpott, 171 Great Brays, Harlow. Essex CM18 6DT,

RECEIVER UNIT small personnel type battery operated covers 500 Kc to $18 \mathrm{Mc} / \mathrm{s}$ cont in 4 bands uses 4 valves plus BFO in superhet circ,
requires 1.5 y and 67.5 v o/p for earrequires 1.5 v and 67.5 v o/p for earphone. Uses a single 4 way coil 100 and supplied with copy of cal chart and circ approx size $6 \frac{1}{\prime \prime} x$ $33^{\prime \prime} \times 1 \frac{1}{\prime \prime}$ made for use by Army
$£ 10.80$ U.H.F. Rx unit use 225 to $400 \mathrm{Mc} / \mathrm{s}$ crystal controlled, double conversion single chan 230 v I/P $19^{\prime \prime}$ rack mt . with circ 830 V.H.F. Test Set type 210 provides $0 / \mathrm{p}$ over range 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands C.W. or Pulse Mod $0 / \mathrm{P}$ also as int noise generator, reqs 250 and 6.3 v with charts and circ. Was used for testing Gee Nav equip. 110.80 COAX RELAY ass etc with relay coil 6.3 v ac, L. p. filer $420 \mathrm{Mc} / \mathrm{s}$, directional coupler for $100 / 150$ watts with f12 per set osc DRIVER Ass I/P $6 / 11 \mathrm{Mc} / \mathrm{s} \quad 0 / \mathrm{p} \quad 72 / 134 \mathrm{Mc} / \mathrm{s}$ with 6AH6, 5763×2, 832 with circ $f 1080$. DRIVER PA. UNIT $1 / P \quad 72 / 1340 / P$ $216 / 402 \mathrm{Mc} / \mathrm{s}$ with 3 type $4 \mathrm{X150A}$ valves rated 100 watts into 50 ohm with circ $£ 18$ BLOWER UNITS for
use with P.A. $115 v £ 4$. AUTO TRANS $230 / 115 v$
DRIVE radio compass drive unit with two 24 v de motors enclosed unit with drive shaft, as o/p to drive 24 v desyn ind suitable for small beam £8.50, CRYSTAL UNIT dual 100 Kc and $\mathrm{LMc} / \mathrm{s}$ in 10 X case with circ e2.80. CRT Visor with magnifer Size approx
new $£ 3$. PANEL METER fSd 1 Ma special scale marked yell. green, yell 2" dia new £1.30. K Band travelling wave tubes type M2114.H by M.E. Corp $£ 30$ ea, also misc w.g. fittings RG91 etc. H.P. Type tronics one only $£ 65$. PROG BOARD 320 way with approx 40 preset boards and qty of jumper leads removed from dig card test set approx size $6^{\prime \prime} \times 5^{\prime \prime} £ 40$. The following for callers Dish Ae ass 3 Cm wh w.g. drive motors etc $£ 10$ to $£ 15$ ea. Prices include carr and Vat, all items in good cond. SAE for list 18 or enquiry. A. H. Sup-
plies, 122 Handsworth Rd, Sheffield p9 4AE. Phone 444278 (0742).

7657

HALLICRAFTERS

FREQUENCY SYNTHESIZERS . $\cdot 2 \mathrm{Mhz}-34 \mathrm{Mhz}$ ex U.S. Gov $£ 50$ with manual plus
carriage. Also wide range of electronic surplus, Skipton Electronic Supplies Ltd. Tel. 0756-4397.

COLOUR, UHF AND TY SPARES. TELETEXT 77 IN COLOUR. MANOR SUPPLIES " EASY TO ASSEMBLE" KIT, Including TEXAS Decoder. Aerial Input, completely external
unit no further connections to set Fulit facilities, mixed TV programme and Teletext, Newsfash Update, and many special features not found in other units. Demonstration model in operation at 172 write for further information NEW COMBINED COLOUR BAR GENERATOR PLUS CROSS HATCH KIT (Mik4) UHF Aerial input type. Eight vertical colour bars plus R-Y, $B-Y$. Luminance combinations, Grey scale etc. Push button controls, Battery operated. $£ 35^{*}$, Case $£ 2.40^{*}$, Battery Holders 78p*, p/p $£ 1$
CROSS HATCH KIT, UHF CROSS HATCH Ki, input type, also gives peak white and black levels, Battery operated,
£11* $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add.on Grey Scale ${ }_{\text {kit }}{ }^{\circ} \mathrm{p} / \mathrm{p} / \mathrm{p} .{ }^{45 \mathrm{p}} \mathrm{p}$. Add-on Grey Scale kit $£ 2.90^{\circ} \mathrm{p} / \mathrm{p} 3 \mathrm{Bp}$. Add-on Colour
Bar Kit (Mk 3) $£ 25^{*}$, Cases $£ 1.40^{*}$ $\mathrm{p} / \mathrm{p} 95 \mathrm{p}$. Cross Hatch Unit, com. plete and tested in De Luxe case ${ }_{618.00^{\circ}} \mathrm{p} / \mathrm{p}$ f1.
"Wireless World" TV Tuner and FM Tuner Projects by D. C. Read. Kits of parts available. CRT test and reactivator kit for colour and
mono $£ 18.80^{*} \mathrm{p} / \mathrm{p} £ 1.20$. UHF Signal Strength Meter kit $\mathrm{f1}^{\circ} \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. 625 TV IF Unit for $\mathrm{Hi} \cdot$ fi amps or tape recording $\varepsilon 6.80 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Decca Colour TV Thyristor Power Supply Unit, incl. H.T.. L.T., etc. Incl.
cuits
e 3.80
p/p
£120 Bush CTV
25 Power suppl L.T.. etc. Env.20 plue lateral $£ 3.60 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Philips Single Standard Convergence Units complete incl. 16 controls $£ 375 \mathrm{p} / \mathrm{p}$ 85p. Colour Scan Coils, Mullard or plessey f 6 p/p 90 p , Mullard or 1023/05 Converg. Yoke $£ 2.50 \mathrm{p} / \mathrm{p}$
75 p . Mullard or Plessey Blue Laterals $75 \mathrm{p} p / \mathrm{p} 35 \mathrm{p}$. BRC 3000 type Scan Coils $£ 2$ p/p 90 p . Bush CTV 25 Scan Coils $£ 2.50$ p/p 90p. Delay: Lines: DL20 £3.50, DLA0 $£ 1.50$,
DL1E. DL1 $85 p$ p/p 45 p . Lum, delay lines $50 \mathrm{p} p / \mathrm{p} 40 \mathrm{p}$. G8 Tripler f6. BRC 300 Tripler $6.60 \mathrm{D} / \mathrm{p} 75 \mathrm{p}$ coder art-complete $£ 250 \mathrm{p} 0 \mathrm{D}$ coder part-complete. $\mathrm{G}_{\mathrm{G}} \mathbf{2 . 5 0} \mathrm{p} / \mathrm{p} 75 \mathrm{p}$ coder $£ 5.00$. Time Base £5.00. p/p 90 p . VARICAP TUNERS, UHF: ELC 1043 £4.50, ELC $1043 / 05$ £5.50, VHF:
ELCC 1042 £ 40 Philios VHF $£ 3.80$. ELC 1042 \&4.80, Philips VHF 83.80. £1.50 p/p 35p SPECIAL OFFERS: 6 Psn Varicap Control Unit 11,7 Psn De Luxe Control Unit £2.50, p/p 35p. UHF Transd. Tuners incl. 610 w motion drive f 3.80 . 4 Psn and 6 Psn. Push button transd. $£ 4.20$ p/p ${ }_{\mathrm{f} 1.20}{ }^{95} \mathrm{p} / \mathrm{p}$ Hep. Thorn 850 D . Dual ${ }^{4}$ for Time Base panels 50 p . Philips 625 IF IF panel incl. cct. 50 p p/p 70 p . Featherlight, Philips 19TG170, GEC 2010 etc. 2.50 . Fireball Tuners. Ferguson. HMV, Marconi 80p. p/p all tuners 80p. Mullard Mono Scan Coils for Philips, Stella, Pye. Ekco, Ferranti, Invicta e2.00 p/p 85p. Large selection LOPTs, FOPTs available for most popular makes.
MANOR SUPPLIES, 172 WEST END MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W.6. Shop Premises. Callers welcome. Thounot normally advertised. (Nos 28 159 Buses or West Hampstead: Bakerloo Line and British Rail) Mail Order: 64 Golders Manor Drive London N W11. Tel. 01. 7948751 V.A.T. Please ADD 123%
TO ALL PRICES (EXCEPT WHERE MARKED ${ }^{(1)}$ V.A.T. 8\%)

DISCOUNT PRICES

Single connecting wires and cables Range of types. sizes. colours. including Heath

Speaker flex $13 / 02 \mathrm{~mm}$ white
RF. Coaxial cables. Multicore cable. etc
Also comprehensive range of semi.
conductors, capacitors. resistors, preset and sliddend. controls, motors. transformers, battery holders. etc

Trade and manufacturing enquiries to

Electronic Equipment Co. Lid. Springfield House Tyssen Street
London E8 Tel. 01-2495217

AUDAX

HD 129 D 26

HD 13D34
HD13D34H
HD13D37
HD10D25AV HD11P25B HD1 7837 HD20B2534 HD20B2534
HD20B26H4 HIF13E 5 HIF21E $8^{\prime \prime}$

CELESTION
CELESTIO
HF1300
HF2000
7.50

COLES

4001
5.90
6.25

EMI
35040 HM
7.95
$12^{\prime \prime} 14 A / 1200$
$14^{\prime \prime} \times 9^{\prime \prime \prime} 14 A 770$
$18^{\prime \prime}$ BASS
12.50

DALESFORD

D20/106 4" MID
D30/110 5" BASS D50/153 61/2 BASS D50/200 8"BASS D70/200 8"BASS D100/200 8" BASS D70/250 $10^{\prime \prime}$ BASS D100/310 12"BASS 9.95 9.95
10.95
10.95 10.95
10.95 10.95
21.75 21.75
23.50 23.50
24.95

FAME

$13^{\prime \prime} \times 8^{\prime \prime} 138 / 10 \mathrm{~T} \quad 5.95$ JORDAN WATTS MODULE 17.95 JORDAN WATTS HI FRE QUENCY KIT 7.95

KEF

K2F	$\mathbf{8 . 5 0}$
$T 27$	$\mathbf{1 0 . 7 5}$
715	$\mathbf{1 0 . 9 5}$
8110	$\mathbf{1 1 . 9 5}$
8200	$\mathbf{2 4 . 9 5}$
B139	$\mathbf{7 . 2 5}$
DN12	$\mathbf{4 . 9 5}$
DN13 SP1106	$\mathbf{4 . 9 5}$
DN13 SP1017	$\mathbf{3 6 . 0 0}$

MOTOROLA
PIEZO HORN
8.50

TANNOY

HPD295A
HPD315A
HPD315A

78.75
 85.50

99.00

Everything in stock for the speaker constructor! BAF long fibre wool, foam, flet panels, crossovers and components. Large selec tion of grille fabrics. Send
15 p stamps for samples $15 p$ stamps for sample

```
Send \(15 p\) stamps for free 38 -page catalogue "choos ing a speake
```


digital clocks
in kit form or assembled

Avalable in alarm
Green display

- Easy assembly
* Complete with attractiv wood finish in teak or walnut (state prefer

Non-Alarm: $£ \mathbf{1 4 . 5 0}$ Alarm $£ \mathbf{1 5 . 5 0}$
Prices include V.A.T. Add $75 p$ for $p \& p$
For assembled clock add $£ 2.00$ to above prices
Send CWO to

HEP Electronics
 30 Hertford Road, Canvey Island, Essex Tel: 037-43 62003

HIGH PERFORMANCE AUDIO MODULES
MIC. PRE.AMPS £8 00
MAGNETIC PRE-AMPS E750
CHANNEL MODULES
TONE CONTROLS
MIC. TRANSFORMER £700
POWER SUPPLIES
Full detads
Drsaressive Electranic Praducto
593 HIGH RD., LEYTON, E. 10

WE INVITE ENQUIRIES from any-
where in the world. We have in stock several million carbon resis. tors $\frac{1}{4}$. $4, \frac{1}{2}$. and 1 watt, million wire wound resistors 5 and 10 watt electrolytic condensers - $\frac{1}{2}$ million transistors and diodes, thousands of potentiometers, and hosts of other components. Write, phone or call at our warehouse. - Broadfields and Mayco Disposals Ltd., 21 Lodge Lane, North Finchley London, N.12. 01-445 0749. 4452713. (5907)

TELEPHONE ANSWERING Machines for Sale. New £120. Answers and Records. Plus 2 -way Conversations and Dictation. Free Accessories and guaranteed 1 year. Callsaver. -1 ,
C.R.V. Electronics Lid., 01.249
0416, 01.580 1800. 30 Goodge Street. Lon: don, W.1. 30 Goodge Street. ${ }_{(7096}$

VALVES RADIO - T.V.-IndustrialTransmitting. We dispatch valves to all parts of the world by return of post air or sea mail. 2,700 types
in stock, 1930 to 1976 Obsolete types a speciality. List 20 p. Quota. types a speciality. List 20p. Quota.
tion S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish to pur-
chase all types of new and boxed chase all types of new and boxed
valves. Cox Radio (Sussex) Ltd., valves. Cox Radio (Sussex) Ltd.,
Dept WW, The Parade, East WitterDept WW, The Parade, East Witter-
ing. Sussex PO20 SBN. West Wittering 2023 (STD Code 024366).

ELECTRONIC INSTRUMENTATION. lf you are interested in the buying or selling of good quality used Reading 51074, Martin Associates and converse with our Sheila Hatch who will deal promptly with your enquiry. $\begin{aligned} & \text { whom } \\ & \text { wis }\end{aligned}$

60 KHz MSF Rugby Receiver. BCD 60KHz MSF Rugby Receiver. BCD
TIME OF DAY UUTPUF. High perTMME OF DAY UUTPUF. High performance, phase locked loop radio second LED indication. Kit comsecond with tuned ferrite rod aerial il4.08 (including postage and VAT). Assembled circuit and cased. up version also avalable. Send for details, Toolex. Sherborne
(4359), Dorset.

NEW MULLARD C.R.T. D14/121/GH $8 \times 10 \mathrm{~cm}$. $50 \mathrm{MHz}+\mathrm{Y} 4.2 \times 15.5$ Volts/cm. Ex Bradley with Mu Shield, Case LT and EHT Trans 2749511.

COMPONENT CLEARANCE; NEW used Transistors, ICs Capacitors Ferrites Units Valves. 8 pages 700 items. Lists - stamps apprec iated. Box No. WW. 17723

TELETYPE 33 KSR Spocket feed Good working order, \&180. Tel: Chorley (02572) 78835 HAYES.

$$
(7725
$$

LAB CLEARANCE: Signal Generaors: Bridges: Waveform, transistor analysers; calibrators: standards millivoltmeters; dynamometers KW meters; oscilloscopes; record ers: Thermal, sweep, low distor tion true RMS audio. RF devia tion. Tel. 040-376 236 . 17713

TV TUBE REBUILDING?, w specialise in supplying the wides range of Electron Guns, Parts and Tube components backed by the fullest Technical advice on all aspects of Rebuilding. Ask for our literature. for competitive prices Griftronic Emission Lid 4 Bishop. rriftronic Emission Lid 4 Bishop
ton Lane, Stratford-upon-Ayon Warks. 'Phone 0789-66831. (7693

TIRRO ELECTRONICS the mai order division of Ritro Electronics UK offer a wide range of components for the amateur enthusiast. Large SAE or 20 p brings list. Grenfell Place. Maidenhead. Berks.
SL6 1HL.

FILM TRIMMER CAPACITORS ${ }^{7 P F}$ to 8PF. Price $10 / £ 1.50$, 1000/ f110. Electronic Mallorder Ltd.,
Ramsbottom, Bury, Lancs.
$(7586$

EXCLUSIVE OFFER

Prices of above $£ 70$ to $£ 500$
Ar Traf Deck to 20

We have a large quantuly of "bits and pleces" we
cannot list - please send us your requirements, we cannot list - please send us your requiremen
can probably help - all enquiries answered.

All our aerial equipment is professional MOD quality

We hase a quantity of Techals
quipment not of Technical Man als of Electronic Amencan Nolists Enquiries invited

PLEASE ADD CARRIAGE AND V.A.t.
P. HARRIS RGANFORD

BH16 6BR

BOURNEMOUTH (0202) 765051

ENAMELLED COPPER WIRE

$\$ w g$	1	1 b	402.
$14-19$	2.40	.69	-50
$20-29$	$\mathbf{2 . 4 5}$.82	.59
$30-34$	$\mathbf{2 . 6 0}$.89	.64
$35-40$	2.85	$\mathbf{1 . 0 4}$.75
inclusive of $p \& p$ and VAT			

SȦE brings ${ }^{-}$Catalogue of copper and resistance wires in all coverings
THE SCIENTIFIC WIRE COMPANY
PO Box 30, London E4 9BW (7347)

ENAMELLED COPPER WIRE

VHF MONITOR RECEIVERS, air marine or business radio bands, all crystal controlled, $f 50$ to $£ 200$. Send 15p Po, not stamps. Radio

CAPACITY AVAILABLE

ELECTRONIC ASSEMBLY AND WIRING

CAPACITY AVAILABLE
J.N. Electronic Supplies

Osiers Road, London, SW18 Tel. 01-874 6162

AIRTRONICS LTD. for coil winding Large or small production runs. Bobbln - Layer Wave - Biflar Limited, Gardner Industrial Estate, $\underset{\text { Limited, Gardner Industrial Estate }}{\text { Kent }}$ Kent BR3 1UG. Tel. 01-659 1147 .
pC̈Bs/WIRING/ASSEMBLY. Design, artwork manufacture assembly, wiring of small batches of boards Quick turnround and competitive prices. Contact us first: HAMILL prices. Contact us first: hamill Road, London SW20. 01-542 9203.

BATCH Production Wiring and AsMeDeane Electricals ${ }^{0}{ }^{198}$ drawings. Marade Ealing Common, London W.5. Tel: 01-992 9876 .

SKILLED HAND assembly, oneoffs and small batch runs. Bowman Electronics,
Torquay, S. Devon.

SPARE CAPACITY - Quick Turn around Specialist wiring assembly of large and small items cable forms, P.C.B. Wire wrapping. $\underset{(093)}{\text { panels, }} \underset{677781 .}{\text { etc. Lewco, Wellingborcugh }} \underset{(7698}{(0)}$

[^9]RAMTEK LTD for PCB assembly using flow soldering techniques. Try us for competitive quotations against your own internal costs.
No job too small rapid turn around Capacity also available for wire cutting. stripping and 100 m manufacture. Call us today on 0242 38658. Lansdown Industrial Estate. Cheltenham. Glos. $\quad(7690$

PRINTED CIRCUITS. Ulitra fast turnaround. Very competitive prices paper or glass. Punched or drilled. Single or double sided. Also prototypes, artwork, photography. Kibmore Circuits Ltd., 120 Garlands Road, Redhill, Surrey RH1 6NZ. Phone Redhill 68850 .

A COMPLETE and efficient PCB Service from layout through to as sembly. Incorporating quality reliability and price. No order too large or too small. Also mechanical
detailing is undertaken. For dedetailing is undertaken. For details and free estimates please con-
tact: J. S. Roberts on $01-553 \quad 2577$ H.R.C. Artwork Design, 45 High H.R.C. Artwork
Street. Mouldon Essex $\quad \underset{(7731}{\text { Digh }}$

[^10]
ARTICLES WANTED

WANTED SECONDHAND TV BROADCAST EQUIPMENT

anything from Pal Colour Cameras 10 Microwave Links and UHF Transmit ler. In working, order.
Write or call with price and condition STANDARD TELEVISION NETWORK

$$
\text { P.O. Box } 525
$$

Victoria, MAHE, Seychelles Cables: Allrisk
Telephone: (Seychelles) 23956 Call or phone Cill Road, London, W. 12 01-7430899 (7006)

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS. ETC.

 Spot cashCHILTMEAD LTD.
7, 9, 11 Arthur Road Reading,
Berks.
Tel. (0734) 582605

* MINICOMPUTERS
 PERIPHERALS
 INSTRUMENTATION

COMPUTER APPRECIATION Godstone (088 384) 3221

WANTED, all types of communica thons receivers and test equipment.
Details to R T.
, I. Electronics Details to Ril. . \& I. Electronics Ltd., Ashville Oild Handon, E.11. Ley 4986 Ashville ${ }_{63}$

WE BUY new valves, transistors and clean new components. Jarge and slean new components detarse
or smant
quantities, and

\qquad
WILL BUY ANYTHING, any quantity if ${ }^{\text {if }}$ price is isight Ring Stan
Willetits,
West 0186.
(6815
TURN YOUR SUPLUS Capacitors, ransistors, etc., into cash. Contact COLESHARDCh Cambs 0945-4188 Brink, Wisbech, Cambs. come the opportunity to quote for come the factory clearance. (7439

StORAGE SPACE is expensive, why
STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and efficient supplies, PC boards, components etc. régardless of condition o quantity call $01-7719413$

[^11]
TRANSISTORS

 \& PRINTEDCIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL. SMELTING \& REFINING Co. Ltd.
171 FARRINGDON ROAD LONDON, ECIR 3AL Tel: 01-837 1475 Cables: COMSMELT, EC1 (roos)

WANTED!

```
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
```

arks: FLECKNEY, Nr. LEICESTER.

WANTED
for immediate cash ALL MAKES OF OLD RADIOS AND GRAMOPHONES PRIOR TO 1940
Offers with details and photes (returned) $\mathbf{2 0}$:
Walliass. PO Box 1244
W Germany $\quad 735$

A.R. Sinclair
 Electronic Stockholders Stevenage 812193

We purchase all types of Mechanical and Electronic Equipment and Surplus stocks

MINICOMPUTERS PERIPHERALS INSTRUMENTATION

For fastest, better CASH offer

Phone

CHILTMEAD LTD.
Reading (0734) 586419

WE PURCHASE, FOR CASH the Varactor Diodes and all specia components normally used in VHF UHF Transmitting equipment MODULAR ELECTRONICS, 95 High Street, Selsey Sussex. PO20-0QL Tel. Selsey 2916.

WANTED. Plug-in units for Teleonic Sweeper type SM-2000. Any frequency range from 10 Kizz to 3000 MHz. Any condition will do. Write
to S. M. Corry, 149 Stanborough Road, Plymstock, Plymouth, Devon. $\begin{array}{r}7715\end{array}$
B.D. ELECTRONICS offer prompt settlemen for surplus electronic components, t.v./audio spares are of particular interest. Contact Miss Hughes, 9 Westhawe, Bretton.
Peterborough. Tel 265219.

EQUIPMENT WANTED

BROADFIELDS AND MAYCO DISPOSALS
21 Lodge Lane, N. Finchley
London, N12 8JG Telephone:
$01-4450749 \quad 01-9587624$
MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS.
We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

TUNNEL DIODES wanted equivalent IN 2941 IN 3712 to 3721 , AEY 25 or Other Spec. or Factory BILSTON LANE WILLENHALL West Midlands. Telephone (0902) 68121/2 68121/2. ALL SURPLUS or used equipment wanted. Radio telephones - comequipment and smalil boat radios - components, partly assembled chassis etc. etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited, 40/42 Portiand Road, Worthing, Sussex

BOOKS
THE DALESFORD SPEAKER BOOK
BY R. F. C. STEPHENS
This book is a must for the keen home
constructor Latest technology DIY speaker
designs Contains full plans for infinite baffle
and reflex designs for $10-100$ wats, also
unusual centre-bass system for those who
want Hifi to be "heard and not seen". E. 95
($£ 2$ 2 post paid. $\$ 5$ Overseas.)
VAN KAREN PURLISHING
S SWAN STREET, WILMSLOW
CHESHIRE

TV REPAIRS SIMPLIFIED, Full repair instructions any British TV for 84.50 . Circuit Diagram on request: details unique books e.g. Every mono British TV circ. diag./ layout $£ 9.50$. Also colour. Aus + WW, 76 Church Street. Larkhalif
Lanarks. Lanarks

SERVICES EURO BTRCUTTS

Printed Circult Boards - Master

 lavouts - Photography - Legendprinting - Roller tinning - Gold printing - Roller tinning - Gold plating - Flexible films - Convention
al fibre glass - No order too large or too al fibre glass - No order too large or $1 \infty 0$
small - Fast turnround on prototypes Small - Fast turnround on prototypes
All or part service available NOW . . 7669
EUFO CIRCUITS TD. Heghfield House
West Kingsdown WK2344
Nr. Sevanoalks. Kent. WK

LABELS, NAMEPLATES, FASCIAS on aluminium or plastic, Speedy delivery G.S.M Graphic Arts borough (02873.4443), Yorks, U.K.
(5305)

PERFORMING of free issued resis tors or, of our competitively priced Erie carbon film 5% resistors at highly attractive rates. 24.hour turnround. (0223) 54093.
(7667

RECEIVERS AND AMPLIFIERS

HRO Rx5s, etc. AR88, CR100. BRT400 G209, S640, etc., etc. in stock. R. T \& I. Electronics. Ltd, Ashville Oid Hall, Ashville Rd. London, E11. Ley 4986.
SIGNAL Generators Oscilloscopes Output Meters, Wave Voltmeters Frequency Meters Multi-range Meter, etc., etc., in stock. R. T. \& $\{$, Blectronics Ltd, Ashville old Hall, Ashville Rd., London E. 11 Ley 4986.
"YINTAGE CRYSTAL SETS, 19221972', Just published by Wireless World contains 128 pages. Chapters on the first diays of broadcasting. The Crystal Set, Vintage wireless Trademarks. Also catalogue crystal sets together with their original prices in £:s:d. A book for the collector or those interested in nostalgia. Available from main bookshops or direct from us. Please send £2.80 inclusive to IPC Business Press Ltd., Room 11, Dorset House, Stamford Street, London, SE1 9LU.

FOR CLASSIFIED ADVERTIIING RING EDDIE FARRELL ON 01-261 8508

AUCTIONS
 AUCTION 23RD NOVEMBER 1977 anor Road, Wales
 Nr. Sheffield
 STOCK IN TRADE OF RADIO \& ELECTRICAL DEALERS

Including Radio and TV and Electrical Spares and Equipment including Wireless Transmitting and receiving set
Full detals and catalogue 10 p from
the auctioneers
T. SAXTON 8: CO.

53 Queens Street Sheffield, $\$ 11$ UG

074277635

COURSES

RADIO and Radar M.P.T. and C.G.L.I Courses Write: Principal, Nautical College, Fleetwood FY 8 JZ

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SĒI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate £1.10 PER LINE. Average six words per line. Minimum THREE lines.
- Name and address to be included in charge if used in advertisement
- Box No. Allow two words plus 50p
- Cheques, etc., payable to "Wireless World" and crossed "\& Co.
\qquad
\qquad
\qquad
\qquad

	.		
	-__		
	1		1
			REMITTANCE VALUE................................. ENCLOSED

PLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS.

TMIRF I.C.E. MULTIMETERS
 TWICE the information in HALF the size

The I.C.E. range of multimeters provides an
unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, complete range of add-on accessories for more ranges, more functions.
All I.C.E. multimeters are supplied complete with unbreakable plastic carrying case, test leads, etc.. and a 50-plus page, fully detailed and illustrated Operating and Maintenance Manual

Supertester 680R

(illustrated)

20k? $2 / \mathrm{V} .-1 \%$ fsd on dc $4 \mathrm{kr} / \mathrm{V}-2 \%$ fsd ona c 80 Ranges - 10 Function $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£ 2 5 . 2 5}+$ VAT
For Mail Order add 80p P\&P

Supertester 680G
$20 \mathrm{k} \cdot / / \mathrm{V} .-2 \%$ isd on d
$4 \mathrm{k}: 1 / \mathrm{V}-2 \%$ fsd on a c 48 Ranges -10 Functions $109 \times 113 \times$
£19.95 + VAT
(For"Mail Order add 80p P\&P)
Electronic Brokers Lid
49-53 Pancras Road, London NW1 20B
Tel. 01-837 7781 Microtest 80
 $4 \mathrm{k} / \mathrm{V} V+2 \%$ fsd on a c
40 Ranges -8 Functions 40 Ranges -8 Functions only $93 \times 95 \times 23 \mathrm{~mm}$
$£ 14.95$ + VAT
(For Mall Order add 80p P\&P

WW-088 FOR FURTHER DETAILS

INDEX TO ADVERTISERS Appointments Vacant Advertisements appear on pages 137-151

Page	PAGE	PAGE
AEL Crystals Ltd 30	Farnell Instruments Ltd. 91	Powertran Electronics 104, 105
Ambit-Toko 24	Ferranti Ltd.	Precision Petite Ltd. 18
Ambit International 32		
Aspen Electronics Ltd. 92	Future Film Developments 106	Q. Max Electronics Ltd. 28
Astra-Pak 92	General Inst. Microelectronics Ltd. 16	Radio Components Specialists 109
Audio Amateur 111	Genrad Ltd. 11	Radio Shack Ltd. 133
Audix Ltd. ${ }^{82}$	Greenwood Electronics Ltd. 13	Ralfe P. Electronics 102
Avo Ltd. 29		R.C.S. Electronics 14
Barr \& Stroud Ltd.	Harmsworth Townley \& Co. Ltd. 13	Rola Celestion Ltd. 113
Barrie Electronics Ltd. 111	Harris Electronics (London) Ltd. 20, 28	R.S.T. Valves Ltd 126
Bayliss, A. D. \& Sons Ltd.	Hart Electronics 106	RTVC 99
Bear Microcomputer Systems Ltd. 133		Samsons (Electronics) 124
Bell \& Howell Ltd. 17	Y/Book	Science of Cambridge 71
Bentley Acoustic Corp. Ltd. 124		Scopex Instruments Ltd. . \because. . 112
Beyer Dynamics (G.B.) Ltd.	ILP Electronics Ltd. 9 . 98,107	Scott J. Electronic Eng's. Ltd. 10
Bib Hi-Fi Accessories Ltd. cover iv	Industrial Tape Applications ${ }^{\text {a }}$. 129	Semi Conductor Supplies Ltd. 128
Bimos (RCA) 7	Industrial Tape Applications 10.100 .101	Service Trading Co. 115
Bi-Pak Semiconductors Ltd. 96, 97	Integrex Ltd. Interface Quartz Device. ${ }^{\text {L }}$ Ltd. 22	Shure Electronics Ltd. Cover iii
Boss Industrial Mouldings Ltd. 21	Interport Mains-Store Ltd. \square	Sinclair Radionics Ltd. 81
	Interprojects Ltd. 28	Sintel 129
Cambridge Learning 25	ITT Instrument Services 34112	SMC (Yaesu Musen) 135
Catronics 32		SME Ltd. 12
CEC Corporation	JPS Associates 92	Smith, H. L. 26
Chiltmead Ltd. 119	JPS Associates 92	Sombras Audio 30
CHL Components 134	K \& N Electronics 26	Southwest Technical Prods. Ltd. 19
Chromasonics	K \& N Electronics 26	Sowter, E.A. 148
Circards No2 117	Langrex Supplies Ltd. 126	Special Products Ltd. 26
Circuit Services 114		SST Distributors \ldots........................ 32
Commercial Trade Travel 110	Leevers-Rich Equipment Ltd. ${ }^{2}$	Stirling Sound (Bi-Pre-Pak Ltd.) 116
Colomor (Electronics) Ltd. 122	Light Soldering Developments Litd. 18	Strumech Engineering Ltd. 10, 29
Commercial Trade Travel 110	Lion House . 108	Sugden, J. E. \& Co. Ltd. 30
Compcor Electronics 132		Surrey Electronics Ltd. 132
Computer Appreciation 132	Logic Leisure 102	Swanley Electronics Ltd. 108
Continental Specialities Corp. 27	Lynx (Electronics) London Ltd. 102, 103	Swift of Wilmslow 106
Crellon ${ }^{5}$	McKnight Crystals 148	Technomatic Ltd. 128
Crimson Elektrik 28	MacInnes Laboratories Ltd. 22	Television 132
	Magnum Audio Ltd. 93	Telecraft 130
Datong Electronics Ltd. 116	McLennan Servo Supplies Ltd. 30	Teleradio Hi Fi 132
Dau (U.K.) Ltd. 130	Mail Order Scheme 133	Tempus .. 134
Drake Transformers Ltd.	Maplin Electronic Supplies 9	Texas Led Opto 116
	Marconi Instruments Ltd. Cover ii	Trampus Electronics 111
Eagle International ${ }_{\text {Electro/Eurotech }}{ }^{\text {E }}$	Marshall, A. \& Sons (London) Ltd. 94	
Electronic Brokers Ltd. (New Prods. Div.) 125	Medeleac . ${ }_{12} 8$	Varian A. G. 25
Electronic Brokers Ltd. (I.C.E. Multimeters) .. 152	Microsystems '78	Vero Electronics Ltd. 22
Elecíronic Brokers Ltd. (Second User Computer	Modern Book, The 148	West Hyde Developments Ltd. 114, 118
(Div.)	Monolith Electronics Co. Ltd. 116	West London Supplies 132
Electronic Brokers Ltd. (Used Test Equip. Div.) $120,121$	MTG (Instruments) Ltd. 118	Widney Dorlec 14
Electronics Weekly 120.123		Wilmot Breeden Electronics Ltd. 33
Electrovalue Readers card	Otari Corporation	Wilmslow Audio 92, 136
European S/Guide 122		
E. W. Conference 23		Z. \& I. Aero Services Ltd. 24, 103, 106
OVERSEAS ADVERTISEMENT AGENTS:	Japen: Mr Inatsukı. Trade Media - IBPA (Japan), B 212. Azabu Herghts' 1-5-10 Roppongi. Minato-ku, Tokyo 106 Telephone (03) 585.05 B 9	Mr Jack Mentel, The Farley Co. Suite 650, Ranna Bulding Cleveland. Ohio 4415 - Telephone: (216) 6211919. Mr Ray Rickles. Ray Rickles \& Co.. P.O. Box 2008. Miami Beach, Florida 33140 - Telephone: (305) 5327301 Mr Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N. E. Atlanta. Georgia 30305. Telephone: (404) 2377432 Mike Loughlin. IPC Business Press. 15055 Memoriat, Ste 119. Houston. Texas 77079 - Telephone (713) 783 8673.
France: M D Soubeyran. Compagnie Francaise D Editions Division Internationale, 40 Rue du Colisee. Paris 8 e.	United Stetes of America: Ray Barnes, IIPC Business Press. 205 East 42 nd Street. New York. NY	
Telephone: 225-77-50 - Tel 280274.	10017 - Telephone. (21 2) 6895961 - Telex: 421710	
	4. 35 East	
Hungary: Mrs Edit Bajusz. Hungexpo Advertising Agency.		
Budapest XIV. Varosiget	Mr Richard Sands. Scott. Marshall. Sands \& Latta inc. 5th Fioor. 85 Post Street, San Francisco, California 94104 -	Canada: Mr Colin H . MacCulloch, International Advertising Consultants Ltd . 915 Carlton Tower. 2 Carlton Street. Toronto 2 -Telephone: (416) 3642269. -Also subscription agents
Telephone 22500 B - Telex. Budapest $22-4525$. INTFOIRE		
	$\begin{aligned} & \text { Telephone } \\ & \text { Francisco. } \end{aligned}$ Francisco. Mr. William Marshall, Scott, Marshall, Sands \& Lattä Inc	
Italy: Sig C. Epis. Etas-Kompass. Spa - Servizo Estero.	1830 West Eighth Street, Los Angeles. California 90057 -	
Via Mantegna 6. 20154 Milan	Angeles.	
Telephone, 347051 - Telex 37342 Kompass		

AEL Crystals Ltd
Ambit-Toko
Ambit International
Aspen Electronics Ltd.
Astra-Pak
Audio Amateur
Avo Ltd.
Barr \& Stroud Ltd.
Harris Electronic
Hart Electronics
0, 28
Hi-Fi Designs
Icon Designs
ILP Electronics Ltd.
保
Interface Quartz Devices Ltd.
nterport Mains-Store Ltd.
ITT Instrument Services
JPS Associates

Langrex Supplies
Leevers-Rich Equipment Ltd.
20
Levell Electronics Ltd.
Lion House
108

McKnight Crystals
Magnum Audio Ltd.
McLennan Servo Supplies Ltd.
Maplin Electronic Supplies
Marconi Instruments Ltd.
Lid.
Cover ii
Marshall, A. \& Sons (London) Ltd
94
.82
Microsystems '78
Modern Book, The
127
..... 148
信

Otari Corporation

Pinnacle Electronic Comps. Ltd
Powertran Electronics104, 105
Q. Max Electronics Ltd.28
133Radio Shack Ltd.
14R.C.S. Electronics
R.S.T Valves Ltd 126
Samsons (Electronics 124
Scopex Instruments Ltd 112
Semi Conductor Supplies Ltd. 128
Cover iiShure Electrog
81
129Sintel
SMC (Yaesu Musen) 135
Smith, H. LSouthwest Technical Prods. LtdSowter, E. A.30products Lld.148
26
Stirling Sound (Bi-Pre-Pak Ltd.) 116
Sugden J E. \& Co. Ltd. 30
Surrey Electronics Ltd. 132Technomatic Ltd.128
Television 130
Teleradio Hi Fi 132
Texas Led Opto116
Varian A. G. 25
West Hyde Developments Ltd. 114, 118Widney Dorle$\begin{array}{r}14 \\ 14 \\ \hline\end{array}$
Wimot Breeden Electronics Ltd24, 103, 106

Cleveland Ohis 4415 Thite 650, Ranna B Mr Ray Rickles. Ray Rıckles \& Co.. P.O. Box 2008. Miam Beach, Florida 33140 - Telephone: (305) 5327301 Mr Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N. Mike Loughlin. IPC Business Press. 15055 Memoriat, Ste . Houston. Texas 77079 - Telephone (713) 783

Caneda: Mr Colin H. MacCulloch, International Advertising Consultants Ltd. 915 Carlton Tower. 2 Carlton Street. Toronto 2

[^12] Balance a system...Balance a budget.

Quick and accurate adjustment of sound system frequency response is finally within the reach of most budgets. The Shure M615AS Equalization Analyzer System is a revolutionary breakthrough that lets you "see" room response trouble spors in sound reinforcement and hi-fi systems-withour bulky equipment, and at a fraction of the cost of conventional analyzers.

The portable, 11-pound system (which includes the analyzer, special microphone, accessories, and carrying case) puts an equal-energy-per-octave "pink noise" test signal
into your sound system. You place the microphone in the listening area and simply adjust the filters of an octave equalizer (such as the Shure SR107 or M610) until the M615 display indicates that each of 10 octaves are properly balanced. You can achieve accuracy within $\pm 1 \mathrm{~dB}$. without having to "play it by ear.
Send for complete descriptive brochure

Shure Electronics Limited
Eccleston Road
Maidstone ME 15 6AU
Telephone: Maidstone (0622) 59881

TECHNICORNER

The M615 Analyzer's display contains 20 LEDs that indicare frequency response level in each of 10 octave bands from 32 Hz to $16,000 \mathrm{~Hz}$.
A rotary hi/lo envelope control adjusts the HI LED threshold relative to the LO LED threshold. Ar minimum serting, the resulting frequency response is correct within $\pm 1 \mathrm{~dB}$. Includes input and microphone preamplifier overlood LEDs. A front panel switch selecrs either flot or "house curve" equalization.
The ES615 Omnidirectional Analyzer Microphone (also available separarely) is designed specifically for equalization onalyzer systems.
5 SHURE

[^0]: Marconi Instruments Limited Longacres St. Albans Hertfordshire England AL4 OJN Tel: (0727) 59292 •elex 23350 Marconi Electronics Inc. 100 Stonehurst Court. Northvale. New Jersey 07647 USA. Tel: (201) 767-7250. Twx: 710-991-9752 Marconi Instruments • 32 avenue des Ecoles • 91600 Savigny-Sur-Orge France •el: 996.03.86. Telex: 600541 . F Marconi Messtechnik GmbH . 8000 Munchen 21 Jorgstrasse 74. West Germany. Tel: (089) 582041 . Telex: 5212642

[^1]: Current issue price $40 p$, back issues (if available) 50 p, at Retail and Irade counter, Paris Garden, London SE1. By post, current issue 55 p, back issues (if available) 50 p, order and payments to Room 11, Dorset House, London SE1 9LU.
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620. Advertising 01-261 8339.
 Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables: Ethaworld, London SE1.
 Subscription rates: 1 year: $£ 7.00$ UK and overseas (\$18.20 USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas ($\$ 9.10$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH.
 Telephone 044459188 . Subscribers are requested to notify a change of address.
 USA mailing agents: Expediters of the Printed Word Ltd., 527 Madison Avenue, Suite 1217,
 New York, NY 10022. 2nd-class postage paid at New York. © I.P.C. Business Press Ltd, 1977

[^2]: BARR \& STROUD LIMITED
 London Office:
 1 Pall Mall East, London SW1 5AU
 Telephone: 01-930 1541
 Telex: 261877

[^3]: Crellon Electronics Ltd..,
 380 Bath Road,Slough, Berks SLI 6JE.
 Tel: Burnham (06286) 4434 Telex: 847571
 Please send me the RCA Industrial Tube Guide
 Name
 Company
 Address \qquad
 \qquad

[^4]: *Privacy: the information gatherers. Patricia Hewitt, National Council for Civil Liberties. E1.25.

[^5]: D C B A
 $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
 $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ (transient state)
 $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$

[^6]: To obtain a brochure and booking form，tick the box against the tours in which you are interested，complete the coupon and post to the exclusively appointed travel agent，Commercial Trade Travel Lid．，Carlisle House， 8 Southampton Row，London WC1．Telephone 01－405－8666 or 01－405－5469．

 International Exhibition for Electronic Production－ PRODUCTRONICA \qquad

 Munich

 Paris

 Brussels
 Paris
 Philadelphia
 Basel
 Munich

 November 22－26
 1977
 April 3－8 1978
 April 19－27． 1978
 May 9－12 1978
 September 20－22， 1978
 October 3－5． 1978
 October 3－7， 1978
 November 9－15， 1978

 Please send details of the tours indicated above．
 \qquad
 \qquad

[^7]: Minimum Mail Order $£ 2$. Excess postage refunded. Unless stated - please add $£ 2.75$ carriage to all units
 VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8%
 Official Orders Welcomed Gov./ Educational Depts., Authorities, etc., otherwise Cash with Order

[^8]: ur offices are at 209 Cowler hoad, Oxford, bur olease do not use this as a postal addres

[^9]: SMALL BATCH PRODUCTIONS wir ing assembly to sample or draw ings. Specialist in printed circuits assembly. Rock Electronics, Har low, Essex. 027933018.

[^10]: Than TENDERS
 STORNO RADIOTELEPHONE EQUIPMENT. Tenders are invited for the purchase of a complete Storno FM Radio-telephone system (72-88 MH band). which is surplus to requirements due to a change of system. The equipment com prises:-1 Storno Base Station type telephones type CQM 634. 4 Dash mounted radictelephones type CQL 634. 1 Transportable radiotelephone type CQP 634, 2 Hand portable radiotelephones type CQP 532. The above complete with control boxes, wiring harness, whip antennae etc. The equipment has been dismantled and stored pending sale, and can be inspected by appointment at Mr B Owen Llangefni. Contact Mr B. Owen. Llangefni 723262. Tenders in a sealed envelope en
 dorsed RADIO EQUIPMENT to be dorsed RADIO EQUIPMENT to be Highways and Transportation Department. Gwynedd County Council, Maesincla Caernarfon, by 16th December, 1977 .

[^11]: WANTED: Service manual for old Scophony Baird mechanical TV system. Replies to Box No. WW

[^12]: Printed in Great Britain by QB Ltd. Sheepen Place. Colchester and Published by the Proprietors IPC ELECTRICAL-ELECTRRONIC PRESS LTD.. Döset House, Stamford St. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service Ltd, Gordon \& Gotch Ltd. SOUTH AFRICA: Central News Agency Ltd: William Dawson \& Sons (S.A.) Lid. UNITED STATES: Eastern News Distributors Inc., 14th Floor, 111 Eighth Avenue, New York, N.Y. 1001,1.

