

A Synthesized Signal Generator from $\mathbf{~ m i}$ £8,000? £6,000? £4,000? under $£ 2,000$?

Somehow some of our customers have been persuaded that our prices are as big as we are. Sometimes the biggest brains are the most cost-conscious brains. For example, our illustration shows a synthesized signal generator which costs $£ 1,800$ *: the new 520 MHz TF2015/I Signal Generator with its associated Synchronizer. With this combination, synthesizer operation is obtainable without any degradation of generator signal purity, performance and versatility.

Leakage specification is lower than any other available VHF/UHF source and output accuracy at low levels beats all others in the price range.

Building on the enviable reputation of the TF2015 for performance, reliability and value, we have now introduced two new a.m./f.m. versions: the TF2015/1 for narrow band mobile radio testing and TF2015/2 for telemetry and other wideband applications. The U.K. price for TF2015/2 with Synchronizer is $\mathrm{f}, 950^{*}$. All have a frequency coverage of 10 to 520 MHz with calibrated a.m. and f.m.

Tuning in 100 Hz steps whilst under locked conditions provides a valuable facility for bandwidth measurements and channel stepping. Digital setting of frequency with direct readout means no waiting for counter gate times when you want high resolution, and no r.f. leakage from display holes.
*Special U.K. price

One in four

Only one in four of our customers tells us he needs the stability of a synthesizer. So the other three can save almost half the cost of the synthesizer combination by buying the analogue part alone. So, whether you require a synthesizer or a signal generator you can now obtain quality at ordinary prices.

Optional accessories include Pulse Modulator TF2169. i.f. probes for 'squelch killing', multiple calibration plates for units of output level, matching pads, attenuators, reverse power protection and carrying case.
Write or 'phone for full details:

Marconi Instruments Limited - Longacres . St. Albans . Hertfordshire - England . AL4 OJN.
Telephone: St. Albans 59292 . Telex: 23350.

wireless world

Electronics, Television, Radio, Audio

SEPTEMBER 1977 Vol 83 No 1501

Contents

```
39 The engineering class
40 Low-distortion oscillator by J. L. Linsley Hood
44 Logic design - 7 by B. Holdsworth and D. Zissos
47 Band II ferrite aerial unit by R. D. C. Thoday
4 8 ~ B o o k ~ r e c e i v e d
4 9 \text { News of the month}
    Computer links for the battlefield
    CEI inquiry to be "experimental"
    Call for British FCC
52 Using a microprocessor - 2 by J. Skinner
55 Distortion in low-noise amplifiers - 2 by Eric F. Taylor
60 Automatic gain control systems by N. A. F. Williams
62 Amateur radio equipment - 2 by Ray Ashmore
68 H.F. predictions
71 Telephones and new technology by John Dwyer
75 Identifying European television - 3 by G. Smith and K. Hamer
81 Letters to the editor
    Slew rate in amplifiers
    Surround sound
    Interference from amateur stations
84 Circuit ideas
    Phase shift oscillator
    D.C. motor control
    Digital keyboard
87 Audio Fair preview
91 World of amateur radio
92 New products
96 Sidebands by "Mixer"
141 APPOINTMENTS VACANT
152 INDEX TO ADVERTISERS
```

[^0]

With P.I.L. fast becoming the most comprehensive instrument stockist in the U.K., offering instruments manufactured by over 60 established world-wide companies, and the expertise of I.E.C. in the repair of virtually any type of electrical as well as many types of electronic measuring instrument, you will see why you are dealing with
companies that are experts in the field of electrical measurement.

So remember, the next time you need our kind of help - take a generous measure of P.I.L. or I.E.C., you can rely on it - always.

Precision Instrument Laboratories Instruments Electrical Company Limited Instrument House, 212 IIderton Rd., London SE15 1NT
Tel: 01-639 0155 Telex : 8811854

WW - 092 FOR FURTHER DETAILS

LOW COST VOLTMETERS

These highly accurate instruments incorporate many useful features, including long battery life. All A type models have 83 mm scale meters, and case sizes $185 \times 110 \times 130 \mathrm{~mm}$. B types have 127 mm mirror scale meters and case sizes $260 \times 125 \times 180 \mathrm{~mm}$.

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel: 01-449 5028/440 8686

Prices are ex works with batteries. Carriage and packing extra. VAT extra in $\cup K$ Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments.

PLASTIC FASTENERS FOR ELECTRONICS

SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to flat surfaces. No drilling or fixing screws necessary. The peel-off backing is removed immediately before placing the clip. The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

CABLE STRAPS are semi-permanent fasteners for strapping wires and cables into tight, compact looms. The ratchet fastener is adjustable and can be released by pinching-in the sides of the fastener head. Cable straps are made from black nylon.

WIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-looming times. Wire ties are made from nylon and are available in various sizes each determined by a different colour
The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and orips p.c. boards firmly and securely. The quide is available in two types of material - yellow acetal or grey Noryl, for high temperature and voltage applications.

P.C. BOARD SPACERS are simple to fit, onepiece mouldings for use with p.c. boards. They have a self retaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of $0.062^{\prime \prime}$ thickness. They have good resistance to vibration and are suitable for board-to-board or board-tochassis use
P.C. BOARD STAND-OFFS are quickly assembled, self-retaining panel supports for p.c. boards. Made from natural (off white) nylon and have good resistance to vibration. Suitable for panels up to 0.079" thickness. Stand-Offs accept \qquad a No. 4 self-tapping screw
\qquad

PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materials like fibreglass, hardboard and glass. Shank, head and pin are one piece. Fixing is by driving the pin through the head into the space between the legs, gripping the work.
DRIVE FASTENERS hold two or more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boatshaped DRIVE Fasteners are for panels of thin and medium thickness and are removable. Ribbed Drive Fasteners are used in blind holes where hole length exceeds lergth of shank.

PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and moisture. Attractively shaped heads give a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole Plugs are made from nylon and are non-corrosive.

LOKUT ANCHORS are used to strengthen holes by providing additional screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily fitted by hand.
100O'S DF OTHER TYPES DF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST

HARMSWORTH

HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMORDEN LANCS OL14 5JY
Phone TODMORDEN 2601 (STD 070-681 2601)

I NTERNATIONAL DANAVOX (GT. BRITAIN) LTD. "BROADLANDS" BAGSHOT ROAD SUNNINGHILL. ASCOT, BERKS. TEL: 0990 23732/6 TELEX: 84584

Qfreserrchara"on components and accessories for dictating machines, tele-communications, hearing aids

WW - 041 FOR FURTHER DETAILS

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Basic error 2.5\% Sensitivity 8mA F.S.D Response 0.2 sec Width of each channel Single and three-pen Five-pen recorders: 50 mm

Chart speeds, selected by push buttons 0.1-0.2-0 5-1.0 2.5-5.0-12.5-25 mm/sec.

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames Curvilinear co-ordinates
Equipment Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc

H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$
high
PRICE £108.00
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high PRICE £160.00
H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high

Series H327

Polarized moving iron movements with syphon pens directly attached Built-In solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4\%. Frequency response from $D C$ to 100 Hz 2 dB

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5volts/cm Width of each recording channel 40 mm
Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
Chat speeds $1-2-5-10-50-125-250 \mathrm{~mm} / \mathrm{sec}$
Type H3271-1. Single pen: Dimensions $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

PRICE £265.00
Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos PRICE $£ 520.00$ Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$ Weight 25 kilos

PRICE £770.00.

Tel. 01-727 5641

HIGH POWER DC-COUPLED AMPLIFIER

\star UP TO 500 WATTS RMS FROM ONE CHANNEL

* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise $(20-20 \mathrm{kHz})$

DC- 20 kHz a 150 watts +1 db . Odb.
500 watts rms into 2.5 ohms
$+0 .-15 \mathrm{DC}$ to 20 kHz . 1 watt 8Ω
Below 0.05% DC to 20 kHz
Below $0.05 \% 0.01$ watt to 150 watts
Greater than 200 DC to 1 kHz at 8Ω
At least 110 db below 150 watts

```
Other models in the range: D \(60-60\) watts per channel
```

8 volts per microsecond
Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

1 ohm to infinity
175 V for 150 watts into 88 10K ohms to 100 K ohms
Short mismatch \& open cct protection $120-256 \mathrm{~V} \cdot 50-400 \mathrm{~Hz}$ 19" Rackmount. 7"High, 93." Deep

Other models available from 100 watts to 3000 watts

MACINNES LABORATORIES LTD.
Macinnes House, Carlton Park Industrial Estate
Saxmundham. Suffolk IP17 2NL. Tel: (0728) 22622615

MACINNES FRANGE

18 Rue Botzaris
Paris 75019, France
Tel: 206-60-80 or 206-83-61

Scottish Office:
13 Murray Place, Stirling Telephone: 07863823.

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES

P.O. BOX 3 RAYLEIGH ESSEXSS6 8LR

Telephone: Southend (O702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex
ICliosed on Monday) Telephone: Southend (0702) 47379

IT'S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete projects to build!
Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DQQN'T MISS OUT! SEND 60p NOW!

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE PRICE 60p

Please rush me a copy of your 216 page catalogue by return of post I enclose 60p, but understand that if \mid am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME
ADIRESS

The Industrial Tube Guide

RCA offer the definitive guide to industrial tube products. A collection of literature, full of information on a vast range from camera tubes to digital display tubes. Lasers to photomultipliers. Power devices to

receiving tubes. LEDs to CCD Image Sensors. It can save time, trouble and money, yet it's free on request.

The brochures set out clearly and conveniently, data on a wide and diverse range of product groups. Apart from initially grouping products into types and outlining major parameters, there are expanded catalogues on most products.

These include selection, replacement, equivalents and characteristics tables to help you narrow your choice.

If your business involves industrial tubes, this is one guide you should not be without.

Just call or send the coupon.
$\overline{\bar{C}}$ rellon Electronics Ltd.

380 Bath Road, Slough, Berks SL1 6JE.
Tel: Burnham (06286) 4434 Telex: 847571
Please send me the RCA Industrial Tube Guide
Name \qquad
Company \qquad
Address \qquad

Tel:

Sensible Choice in DMM's

-part of the 'Philips choice'

Sensible choice because the range has been developed to meet practically every requirement, from the high technology systems compatible models to the general purpose meters shown here.

And because whatever the application the optimum price/performance ratio can be achieved. We believe that these alternatives, not readily found with competitive instruments, make Philips the right choice of dmm's for you.

PM2513A New 3½-digit Battery operated dmm with 11 mm LED display

The RANGE ofexperience

Because Philips is experienced in every major field of electronic activity it can produce a range of meters to meet the professional users every need
There are many other alternatives available from Philips, please ask or use reader reply service for details. display

PM2522 3½-digit General Purpose dmm with excellent overload protection

PM2523 3½-digit Autoranging dmm with Manual data and range hold

Test \& Measuring Instruments

Ferrograph - manufacturer of highest-quality reel-to-reel recorders - has designed two timesaving test sets suitable for checking any type of audio system. In seconds, the ARA1 Audio Response Analyser gives precise response information, displayed as a gain/frequency plot on a longpersistence CRT. A unique feature of this fast, accurate test set is its frequency-sensing facility. Operation is entirely independent of synchronising or trigger signals Consequently, there are no problems resulting from a time-lapse between input and output signals.

Other features include:

- Range 20 Hz to 200 kHz , resolution to 0.1 dB
- X-Y plotter outputs for permanent records.
- Large display on 27 cm CRT choice of graticules.
- Manual and automatic tuning for one-shot and repetitive sweeps.
Full details and comprehensive specification are included in a new leaflet.

The RTS2, sold in thousands round the world, is a comprehensive low-cost test set that will run up to ten different checks on an audio system's performance-using just one pair of leads. You don't need to put up with an array of incompatible test gear, improvising and compromising with numerous lead connections, wasting time sorting out hum loops. With the RTS2 you get
fast, push-button operation. And accurate results.
Ferrograph audio test equipment: used by,broadcast and recording studios throughout the world. Send for full details today.

Ferrograph

Wilmot Breeden Electronics Limited 442 Bath Road Slough SL1 6BB
Telephone: Burnham (06286) 62511
Telex: 847297

Ferrographwill give you an unbiased opinion on anyaudiosystem.

Ferrograph Test Equipment. For fast and accurate audio analysis.

the 201 is something quite personal...

The M 201 Hypercardioid moving coil microphone is designed for recording or broadcasting. The M 201 offers excellent separation characteristics in extreme accousticai conditions.

Specifications:
Frequency Response: $40-18000 \mathrm{~Hz}$. Output Level at $1 \mathrm{kHz}: 0,14 \mathrm{mV} / \mu$ bar ' $\triangleq-56 \mathrm{dbm}(0 \mathrm{dbm} \triangleq 1 \mathrm{~mW} / 10$ dynes/cm2). EIA Sensitivity Rating: -149 dbm . Hum Pickup Level: $5 \mu \mathrm{~V} / 5 \mu$ Tesla $(50 \mathrm{~Hz}$). Polar Pattern: Hypercardioid. Output Impedance: $200 \&$. Load Impedance: >1000 Q. Connections: M $201 \mathrm{~N}(\mathrm{C})=$ Cannon XLR-3-50 T or Switcheraft: $\mathbf{2 + 3}=$ 200 Q, $1=$ ground. $\mathrm{M} 201 \mathrm{~N}=3$-pin DIN plug T 3262: $1+3=200 \mathrm{Q}$ $2=$ ground. $\mathrm{M} 201 \mathrm{~N}(6)=6 \mathrm{pin}$ Tuchel.
Dimensions: length 6", shaft $\varnothing 0,95^{\prime \prime}$.
Weight: 8,60 oz.

BEYER DYNAMIC (GB) LIMITED
1 Clair Road, Haywards Heath, Sussex.
Tel:Haywards Heath 51003
WW - 047 FOR FURTHER DETAILS

WW-008 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc., etc. Just plug-in the Probe. and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery
Model "Mini-Z $1^{\prime \prime}$ measures from- $\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 25.00$ Model '"Mini-Z $2^{\prime \prime}$ measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price £25.00 Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} \quad$ £27.50 [VAT 8\% EXTRA]
Write tor.further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX (Phone 01-837 7937)

- Tracking force of 2.5 g with $0-1.5 \mathrm{~g}$ fine adjustment and 1 g of coarse adjustment
 fine adjustment.
- Fluid-damped lowering and raising control.
- Output : twin gold-plated phono
sockets plus separate ground.
For further information, write to
Dept $0645 \mathrm{~A} \cdot$ SME Limited \cdot Steyning
Sussex \cdot BN4 3GY Sussex • BN4 3GY
moulded carbon fibre and nitrogenmany times that of aluminium or other conventional materials, and providing a natural loss of unwanted acoustic information.
- Viscous damping in both planes, with choice of three damping rates covering
- Bias graduated from 0 to 2.5 g with fine adjustment.
ridges mom-inertia operation for car weighing anything from 12 g down to
- Ingenious construction, with highdensity, metal cores in precision plastic mouldings.
- Conventional tone-arm and she! I are
replaced by an integral carrying arm which is interchangeable for multicartridge use. Carrying arm is formed of

SEW analogue panel meters are now available ex-stock (compared with 6-8 week delivery date from competitive manufacturers). And that's not the only advantage to buyers now ITT Instrument Services are sole UK stockists and distributors.

You also enjoy big choice of types, in-depth stocks, smooth streamlined progressing of your order and of course, a friendly personal service.
mbroad range of sensitivities and sizes.

- Low individual cost* with attractive quantity discounts.
- Special scales to meet individual customer requirements on quantity orders.
- Precision construction with high quality pivot and jewel movement.

■Choice of moving coil, rectified moving coil and moving iron movements to suit applications.

Edinburgh Way, Harlow, Essex. Tei: Harlow (0279) 29522 Telex: 81525
TIT] instrument servioes THE ONLY WAY TO BUY.

Analogue Panel Meters. Only SEW and ITT give you all this.

WW-023 FOR FURTHER DETAILS

A. D. BAY LISS Behind this name there's a lot of real POWER!

Illustrated right is a TITAN DRILL
Mounted in a mult-purpose stand This drill is a powerful tool running on 12 v DC at approx 9000 rpm with a torque of 350 grm cm Chuck capacity $300 \mathrm{~m} / \mathrm{m}$
The mult-purpose stand is robustly constructed of steel and aluminum
finished in hammer blue
Also avalable for use in the stand is the RELIANT DRILL which is a smaller version of the Titan Approx speed $9000 \mathrm{rpm}, 12 \mathrm{v}$ OC torque 35 grm cm Capacity $24 \mathrm{~m} / \mathrm{m}$
TITAN DRILL \& STAND

titan drill only

RELIANT DRILL \& STAND
reliant drill only
TITAN MINI KIT DRILL Plus 20 Tools

RELIANT MINI KIT DRILL Plus 20 Tools

TRANSFORMER UNIT
£19.50
 $68.90+8 \% V A T=\{961+35 \mathrm{P} P \mathrm{P} \mathrm{P}$ £16.27
 $\mathbf{5} .22+8 \%$ VAT $=\mathrm{E} .64+35 \mathrm{P}$ P\&P
$\mathbf{£ 1 4 . 7 5}$ $+8 \%$ VAT $=\mathrm{E} 1593+50 \mathrm{P}$ P\&P

8\% VAT $=£ 13.08+50.00$

- £8.55
.

These are examples of the extensive range of power tools designed to meet the needs of development engineers laboratory workers model makers and others requiring small precision production aids
To back up
other tools
SEND STAMP for full details 10 main distributors
A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU

Stockists Richards Electric. Worcester and Gloucester Hoopers of Ledbury Hobbs of Ledbury D\&D Models Hereford Bertella Gloucester

Low Power Schottky TTL cuts down on everything. Except performance.

Motorola Low Power Schottky TTL cuts down on supply current and noise. As well as the size, cost and weight of equipment.

But it additionally offers far more than that. Now you don't have to choose between speed and power in performance terms. As the graph clearly shows, it dissipates eleven times less power than 74 S , suffering a delay of only 1.7 times.

There are no problems with interfacing, as it is compatible with other TTL types and CMOS. It's faster than CMOS, and due to the Bipolar technology, no special handling is necessary.

Reliability, economy and speed. These are the areas that Motorola Low Power Schottky TTL hasn't cut back on.

Crellon Electronics Ltd.,
380 Bath Road, Slough, Berks SL1 6 JE .
Tel: Burnham (06286) 4434
Telex: 847571
Please send me full information on the Motorola
Low Power Schottky TTL.
Name
Company
Address
Tel:__

General Instrument Microelectronics Limited are the leaders in microcircuits for consumer/telecommunications and other applications.

Our distributors form a direct pipeline from us to you. For easy access to the widest range of advanced microelectronics call them and ask for a free copy of our latest shortform catalogue.

UK DISTRIBUTORS: Semiconductor Specialists Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. Tel: West Drayton (08954) 46415 Telex: 21958 Semicomps Ltd., Wellington Road, London Colney, St. Albans, Herts. Tel: Bowmans Green 24522 Telex 21108 Semicomps Northern Ltd., Ingrow Lane, Keighley, W. Yorks. Tel: Keighley 65191 Telex: 517343 Semicomps Northern Ltd., East Bowmont Street, Kelso, Roxburghshire Tel: Kelso 2366 Telex: 72692 Semicomps Ltd., 3 Warwick House, Station Road, Kenilworth, Warwickshire. Tel: 092659411 Telex: 312212 G.D.S. (Sales) Ltd., 380 Bath Road, Slough SL 1 6JE. Tel: Burnham (06286) 63611 Telex 847571 G.D.S. (Sales) Ltd., 24 Broughton Street, Cheetham Hill, Manchester. Tel: 061-8317471 Telex: 668304 G.D.S. (Sales) Ltd., 192 Moulsham Street, Chelmsford, Essex CM2 QLG Tel: 024569545 Telex: 99443 S.D.S. Components Ltd., Jubilee Unit, The Airport, Eastern Road, Portsmouth, Hants Tel: 070565311 Telex: 86119
S.D.S. Components Ltd., 111 Alexandra House,

East Kilbride, Glasgow G74 1LX
Tel: 055248617 Telex: 778044

We help you compete

GENERAL INSTRUMENT MICRDELECTRDNICS LTD
57-61 Mortimer Street, London W 1N 7TD England
Telephone: 01-636 2022 Telex: 23272

Sweet sixteen

The Quad 405 is only the sixteenth product to carry the Quad name each of which, has made a significant contribution to the development of sound reproduction and acquired a following of loyal and satisfied customeis
The Quad 405 current dumping amplifier represents another step forward in amplifier technology executed with the attention to engineering and aesthetic detail.
and manufactured with the concern for reliability which have been the hallmarks of Quad equipment
for twenty-five years.
For further details on current
dumping and other Quad products write to

Dept. WW
The Acoustical Manutacturing Co
Ltd., HUNTINGDON, Cambs
PE187DB Telephone (0480) 52561

QUAD

for the closest approach to the original sound for twenty-five years
QUAD is a Registered Trade Mark

INSULATE THAT CHASSIS, OR COMPONENT,
THE EASY WAY BY MOUNTING WITH TRANSIPILLARS

FOR
STRENGTH

INJECTION MOULDED NYLON PILLARS WITH INSERTS MOULDED IN FOR SUPER STRENGTH

TRANSIPILLARS

ARE
STRONGER THAN ANY SIMILAR DEVICES HAVING MECHANICALLY ASSEMBLED INSERTS

SIZES FROM 6BA ½"LONG TO OBA 23/4" LONG
METRIC EQUIVALENTS ALSO AVAILABLE
MIXED TERMINATIONS
(E G 2BA ONE END, 4BA AT OTHER END)
AND LENGTHS MADE TO USERS' REQUIREMENTS

DETAILS, PRICES AND SAMPLES FROM

POWER UNITS
 Vahradio
 PRODUCTION TESTING ઐ DEVELOPMENT SERVICING

 TYPE 250VRU/30/25
 Input $200-250 \mathrm{v} 50 \mathrm{~Hz}$ or $100-120 \mathrm{~V} 60 \mathrm{~Hz}$ to order. Output 1 $0-30 v 25 A$ DC. Output 2: $0-70 \mathrm{~V} 10 \mathrm{~A}$ AC. Output 3: 0-250v 4A AC
 PRICE: $£ 233.60$ excluding VAT
 Regulated and unregulated outputs with output voltages of $12,24,50,110$ or $220 v$ DC are also available at very competitive prices.
 Send for further details of these versatile units to
 Valrodio
 BROWELLS LANE, FELTHAM, MIDDX. TW13 TEN PHONE 01-890 4242 or 4837
 WW - 061 FOR FURTHER DETAILS
 Four Good Reasons for using Zettler Relays:
 Zettler Relays are first class quality

We have about 50 years experience in producing relays Zettler Relays are readily available.
Most are available ex stock Harrow
Zettler Relays are proved in practical applications Millions are used in our own electronic systems and products. Zettler has the right relay for most applications, e.g.

Miniature Relays AZ 420 ... 439
International standard relay 2,4 or 6 change-overs. Plug-in type saves maintenance costs Coil voltages: 1.2 to 180 Volts D. C 6 to 240 Volts A. C
Life expectancy to 100 million operations
Balanced spring-held armature allows operation in any mounting position. Relay extends only $1 / 4$ " from PC board when used with right -angle socket (also available)

Let us help you with your switching problems

est 1877
Zettler UK Division
Brember Road Harrow, Middx. HA2 8AS • Tel. (01) 4220061
Zettler offers more than technology

601 Function Generater. All the features or 200 the 600 plus 0.001 Hz to $1 \mathrm{MHz}, 20 \mathrm{~V}$ pk-pk

- 602.Variable Phase Oscillator I OHz to - 00 - variable throughout 360°.

4 603 Sine Square Oscillator, square wave with

6Io Digital Frequensy Meter. True - 0e Frequency readings even beto iomionz.

Five new test instruments on perfermance and price to meet your spectifieations

The Feedbact GeORange
see for yourself, by sending for our free colour brochure. ToFeedback Instruments, Park Road, Crowborough, sussex TNS 2 QR or telephone George Butterfield on (089 26) 3322.
Name
Company
Address.

I am interested in $600 \square \mathbf{6 0 1} \square \mathbf{6 0 2} \square 603 \square 610 \square$
WW - 006 FOR FURTHER DETAILS

An'off-the-shelf' solution to all your filtering problems
 Barr \& Stroud Active Filter Modules

In so many electronic projects there is a need to incorporate an element of filtering Quickly, easily and-above all-for a minimum cost.

The most rapid solution is to select one of the Barr \& Stroud 'ready to use' compact filter units. They are inexpensive and readily available. They come 'one-off' or in 'thousands' to match your requirements.

Each containing a basic filter function, adjustable for cut-off or centre frequency and response type. Adjustment is simple. No filter knowledge is required. The modules are available in low-pass, high-pass, universal and notch designs with a pass band capability from d.c. to 1 MHz . Complete details are in freely available literature, yours on request.
BARR \& STROUD LIMITED
London Office:
1 Pall Mall East,
London SW1Y 5AU
Tel: 01-930 1541
Telex: 261877

Glasgow and London

For printed circuit boards

It pays to know the right drill

KB-2 drilling machine by Kema Elektronik

The KB-2 is a compact, high-speed drill ideal for all precision drilling tasks in workshop or laboratory especially printed circuit board work. With a 2 mm maximum drill diameter, and a 20 mm maximum drill depth, it runs at $15,000 \mathrm{rpm}$ with voltage (variable) 220 volts and maximum power 25 VA. Measuring $13 \frac{1_{2}^{\prime \prime}}{} \times 5 \frac{1}{2}{ }^{\prime \prime} \times 10^{\prime \prime}$, the KB-2 is Swiss precision engineered, extremely reliable and moderately priced.

For full details, contact
SPECIAL PRODUCTS DISTRIBUTORS LTD.
81 Piccadilly, London W1V OHL. (01-629 9556)
WW-009 FOR FURTHFR DFTAILS

WW - 065 FOR FURTHER DETAILS

WW-074 FOR FURTHER DETAILS

TAKE YOUR PICK

with many control and terminal configurations to choose from

Erie offer three styles of Hot Moulded Carbon Potentiometers - Pancl Mounted, Preset and Edge Controlled. Presets are now also available with cermet track rated at $1 W^{\prime}\left(\left(a 70^{\circ} \mathrm{C}\right)\right.$, in addition to the long established moulded carbon track rated at $\ddagger W$ (a $70^{\circ} \mathrm{C}$).
Although standard styles are available for each type, Erie can custom-adapt any of these models to give you the exact component you want.
For full details, contact:
ERIE ELECTRONICS LHMITED, Resistor Division,
South Denes, Gt. Yarmouth, Norfolk NR30 3PX. Tel: 0493 56122, Telex: 97421, Cables: Resistor

The Quickest, Simplest Way of Punching Holes in Sheet Metal
Q-Max punches make clean, accurate holes every time. In no time. With no filing, no jagged edges, virtually no burrs-with no hard work. And no holes are barred. Round or square Q.Max punches are available in sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge. No wonder they're used by all government services (Atomic, Military, Naval, Air, GPO, Ministry of Works) and all over the world by radio. motor and industrial manufacturers. plumbing and sheet metal trades and garages.

Wholesale and Export enquirles welcomed. Further detaits from,
"Q-MAX" (ELECTRONICS) LTD 40-41 FURNIVAL STREEI. LONDON EG4 - 01-242 7400

We' ve just made the impossible . . . a professional $31 ⁄ 2$ digit DMM Kit for less than $£ 70$

The Sabtronics Model 2000 is an impossible £69.95!
And that price still includes phenomenal accuracy, range and professional features.

This all-new bench/portable multimeter, reading to ± 1999, has a basic accuracy of $0.5 \% \pm 1$ digit, and has five functions giving 28 ranges, 100% overrange and overload protection. So you know it's no toy!

Besides, what toys are as automatic as the 2000? With automatic overrange indication, automatic polarity, even automatic zeroing!
Yet the 2000 is easy to assemble. We send you all the parts you need, even the high-impact case. We also send you clear, step-by-step assembly instructions.
So you end up with a professional quality $31 / 2$ digit DMM for the unheard of price of less than $£ 70$ From Sabtronics, specialists in digital technology. And manufacturers of the impossible.

Order yours today!

-2

SPECIFICATIONS: (condensed)

DC volts in 5 ranges: 100 NV to 1000 V AC volts in 5 ranges: 100 iV to 1000 V
DC current in 6 ranges: 10 nA to 2 A
AC current in 6 ranges: $10 n A$ to 2 A
Resistance in 6 ranges: 1Ω to $20 \mathrm{M} \Omega$.
Input Impedance: 10MS.
Display: 9 mm ($36^{\prime \prime}$) LED
Power requirements: 4.5 VDC to 6.5 VDC.
(4 "C" cells - not included).
Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3.0^{\prime \prime} \mathrm{H}$.
$(203 \mathrm{~W} \times 165 \mathrm{D} \times 76 \mathrm{H} \mathrm{mm})$.
ORDERING INFORMATION FOR READERS OUTSIDE THE U.K.
The price listed is for readers in the $U K$ only which includes import duties and V A T
For readers in overseas countries the price is $£ 4995$ olus $£ 500$ for Handing and postage. not included are any import duties or other taxes levied upon recelpt of goods overseas Payments from overseas
customers should be made only by Bank drafts or International money
orders and payable to Sabtronics International Orders should be sent to
Sabtronics International Ltd.
Winkelriedstrasse 35
6003 Luzern
Switzerland

Sabtronics (U.K.) Ltd.
50 Galton Road
Westcliff-on-Sea
Essex
ww?
To: Sabtronics (U.K.) Ltd.
50 Galton Road
Westcliff-on-Sea, Essex

Please send me
Sabtronics Model 2000 DMM Kit(s) at $£ 69.95$ each incl. V.A.T. and Postage.

Total enclosed herewith: $£$

Name

Address

City

County
Readers Overseas please see ordering Information.

WHY SETTLE FOR LESSTHAN A 6800 SYSTEM

MEMORY -

All static memory with selected 2102 IC's allows processor to run at its maximum speed at all times. No refresh system is needed and no time is lost in memory refresh cycles. Each board holds 4,096 words of this proven reliable and trouble \longrightarrow free memory. Costonly $£ 80.00$ for each full 4 K memory.

INTERFACE-

Serial control interface connects to any RS-232, or 20 Ma . TTY control terminal. Connectors provided for expansion of up to eight interfaces. Unique programmable interface circuits allow you to match the interface to almost any possible combination of polaity and control signal ar. rangements. Baud rate selection can be made on each individual interface. All this at a sensible cost of only£30.00for either serial, or parallel type

POWER

"'Motorola" M6800 processo: with Mikbug ${ }^{\circledR}$ ROM operating system. Automatic reset and load ing, plus full compatability with Motorola evaluation set software. Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various Baud rate outputs for the interface circuits. Full buffering on all data and address busses insures "glitch" free operation with full expansion of memory and interfaces.

DOCUMENTATION-

Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer. This includes the Motorola programming manual, our own very complete assembly instructions, plus a notebook full of information that we have compiled on the system hardware and programming. This includes diagnostic programs, sample programs and even a Tic Tac Toe listing.

Mikbug ${ }^{\circledR}$ is a registered trademark of Motorola Inc.

with serial interface and 4,096 words of memory. \qquad £275.00

PRICE EFFECTIVE 1st OCTOBER, 1977

Prices quoted do not include VAT

Please send me details of your full range of peripherals and software including extended BASIC for $£ 10.00$.

NAME ADDRESS 174 Ifield Road, London, SW10

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-037 FOR FURTHER DETAILS

BULK ERASURE PROBLEMS?

LR71

MAX REEL SIZE 11 1/2"

LR 70
MAX REEL SIZE $81 / 4 "$

If it's personal we can only advise a diet or joining weightwatchers. If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They ate simple to operate and will erase cassettes. cartridges and reels of tape up to a maximum reel size of $11 \frac{1}{2^{\prime \prime}}$ anci tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement

The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry
Moderately priced and available from:
LEEVERS-RICH EQUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW 18 3SL Telephone 01-8749054
Cables: Leemag London SW18. Telex 923455 Wembley

WW - 013 FOR FURTHER DETAILS

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CO radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present:

NEC co 110 edigital

allband $H F, 300$ watts transceiver, $160 / 80 / 40 / 20 / 15 / 11$ $10 \mathrm{~A} / 10 \mathrm{~B} / 10 \mathrm{C} / 100 / \mathrm{WWV}$, modes FSK, USB, LSB CW, AM with separate 8 pole X-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC co 301

lallband HF. 3 KW , linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ 10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CO 301 can be driven by our CQ 1 10E or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!
Sole distributor in Europe
CEC Corp., Via Valdani 1 - CH 6830 CHIASSO -SWITZERLANDO Phone: (091) 442651 . Telex: 79959 CH

The Allen and Heath Broadcast Feed Forward Delay Limiter.

The only limiter that makes it IMPOSSIBLE for a transient peak to pass through the unit, without the use of clipping devices. Included in its design is a revolutionary bucket brigade integrated circuit. This delays the main signal path by approximately one thousandth of a second. Thus gain reduction is fed forward before there is any increase in the programme level. The unit can be used with high powered equipment such as broadcast units and P.A. systems. Use it too in studios-with effects units.
Try and tesf one at our demo. studio. Pembroke Hóuse, Campsbourne Road, Hornsey, London N8.
Or, for more informatior, call Andrew Stirling at 01-340 3291.

It'sthe engineering we put into the Calinda that makes it sound so muchbetter.

With dozens of speakers on the market, all around the same size, shape and price as the Calinda, how on earth do you choose?

Obviously, you can start with a listening test, using your own ears and judgement.

But demonstration conditions are seldom ideal, and probably quite different from those in your own home.

You can ask your knowledgeable friends; you can read magazine reports; you can plough through bookfulls of comparisons.

More and more of them are recommending speakers made by KEF.

Because KEF loudspeakers, like the Calinda, are designed from start to finish by engineers, whose aim is to give you as near as possible the same sound as the recording engineers put on record.

Because the effective sound source in the mid unit is further back than that of the tweeter, this means that sound from each will travel the same distance to the listeners' ears, with no audible inter-unit time delay, another cause of distortion and loss of clarity.

Or, to put it another way, crossover frequency sound is 'aimed' at the head of a seated listener, and not his feet.

The KEF 'total system'

design approach.
But perhaps the biggest reason for the high performance of the Calinda is the KEF 'total system' approach to design and development, using computerised measurement and calculation techniques which are a thousand times faster than manual methods, cutting out the old guesswork and mumbo jumbo previously associated with loudspeaker design.

First, look at the cabinet.

There's a lot of thought gone into that.
For a big, 45 litre capacity it is tall and elegant, so that a pair of Calindas can fit happily into most people's sitting rooms.

It's fairly narrow; for technical reasons this permits a wide dispersion of sound.

It's deep, from front to back; this keeps the sound radiating units well away from the wall or furniture behind, cutting down on disturbing reflections.

It's quite tall; so that we can put the all important midrange unit well away from the floor. Reflections from the floor, reaching your ear, can give a nasty 'double impression'; you don't want that.

And it's still, heavy and well damped. When choosing a loudspeaker, give it a sharp knock with your knuckles. A good one, like the Calinda, gives you a solid, dull 'thud', with no rattles, twangs or reverberations.

The Drive Units.

The treble, mid-range and bass radiator units in the Calinda are all designed, developed and made by KEF,

- using advanced, acoustically damped plastics materials which give much better performance than conventional, paper cones.

We put the mid-range unit

 above the tweeter.This is unconventional.
And it's a very good idea. Not only does it take the mid-frequencies away from the floor (as mentioned above, you only want even Beethoven once), it also has a very valuable effect at the crossover frequencies, where the mid and treble units radiate the same notes.

In this system, the cabinet, drive units and dividing network are developed together, to reach an ideal target performance.

As a result, the Calinda gives a truer frequency response, greater clarity and a sharper stereo image than any previous speaker of equivalent size and price.

Write to KEF for the latest leaflet on the Calinda, its smaller brother the Corelli bookshelf speaker and the big, 150W Cantata.

TRANSDUCER and RECORDER

AMPLIIIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

49/51 Fylde Road Preston
PR1 2X0
Telephone 077257560

Fylde

 Electronic Laboratories Limited.
BIRD HIGH POWER

 ATTENUATORS ATENUKERS ATIENThe widest pomer max AIIEN in 50-ohm High Power Attenuators. Steect from nineteen Al WUAIURS models in our catalog ATIENUATORS from 25 watts to 4000 watts contrinuous power ATIENUATORS 3dB to $30 \mathrm{~dB}, 0-\mathrm{To000} \mathrm{MHz}$. ATIENUATORS Who Else But
 ATIENUATORS 373:

WW - 057 FOR FURTHER DETAILS

PUT IT ON RECORD WITH WATANABE

MULTICORDER-SERVOCORDER

- POTENTIOMETRIC
- 1-6 PENS • 250 mm CHARTWIDTH
- MULTI RANGE - MULTISPEED

글 | Environmental equipments (Morthern) LTo.. 64 Welsh Row. Nantwich. Cheshire. Tel: Nanlwich 65115

LINEARCORDER - MINIWRITER

- FAST RESPONSE DC - 100 Hz - 1-16 PENS - $4 \& 8 \mathrm{~cm}$ PER CHANNEL
- MULTI RANGE • MULTISPEED

X - Y RECORDERS

- HORIZONTAL \& VERTICAL USE
- $1 \& 2$ PEN - TIME BASE
- ROLL CHART OPTION

WW - 016 FOR FIPRTHER DETAILS

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{/^{\prime \prime}}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits and on to a complete understanding of the design and operation of calculators and computers
Uesign of Digital Systems

plus 80 p packing and surtace post anywhere in the world
Payments may be made in foreign currencies
Quantity discounts avalable on request.
VAT zero rated

```
Also avallable - a more elementary course assuming no prior
knowledge except simple arithmetic
Digital Computer Logic and Electronics
In 4 volumes
```

Basıc Computer Logıc
2. Logical Circuit Elements

3 Designing Circuits to Carry Out Logical Functions
4 Flipflops and Registers
$£ 4.20$
plus 80p P. \& r
Offer Order both courses for the bargain price £9.70, plus 80 p P. \& P

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita, Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

[^1]1

Resistance Bridges

High resolution with electronic null detector

8 ranges

0 to 111,110
Resolution on $11 \mathrm{~m} \Omega$ range $0.1 \mu \Omega$ Type KB5

For low resistance measurement with Electronic Null Detector

Type KB3

Dry Battery Operation 3 Measuring Dials Self Contained. 6 Ranges

CROPICO FOR RELIABILITY

CROYDON PRECISION INSTRUMENT CO.

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency, period, time. freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

TYPE 801B
CRYSTAL OVFN
OPI RATING MANUAI.
TWOTONF BIUE CASE
$£ 274 \quad 250 \mathrm{MHz}$
Sensitivity 10 mV . Stability 5 parts $10 .{ }^{10}$
Resolution ± 1 Count

$\begin{aligned} & 301 \mathrm{M} \\ & 501 \\ & 801 \mathrm{~B} / \mathrm{M} \end{aligned}$		401A	32MHz 6 Digit £ 135
	32MHz 8 Digit £192	701A	80MHz 8 Digit £210
	250MHz 8 Digit £280	901 M 5	520MHz 8 Digit £385
		1001M	1.26Hz 8 Digit £670
	Start/Siop versions plus $£ 18$	Memory versions suffixed M	ns available if not £30 extra
Type 101 1 MHz 100KHz 10 KHz Crystal Standard $£ 98$ Type 103 0fi/Air Standard $£ 98$			

SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depts., Crystấ Manufacturers and Electronic Laboratories world-wide

WW - 079 FOR FURTHER DETAILS

World-wide exporters of crystals \& filters Manufacturers of DIP crystal oscillators from 240 Hz to 20 MHz
sole agents for
FILTRONETICS. LC \& crystal filters from 10 Hz to 100 MHz
[STATEK Ultra miniature low frequency crystals
ELECTRO DYNAMICS High volume timing crystals
29 Market Street, Crewkerne, Somerset England TA 1873 U Telephone (0460) 74433 Telex 46283 inface g

Look up to a Versatower installation and your radio communications will achieve new heights!
Acclaimed as the World's leading telesconic tilt-over tower in the international field of radio communication.
A complete range of models: from 20 to 120 feet, static and mobile.
Full details and specifications are in our brochure.
Gend for it today!
Strumech Engineering Limited, Portland House, Coppice Side, Brownhills, Walsall,
West Midlands WS8 7EX.
Telephone. Brownhills 4321

> Designed in accordance with CP3: Chapter V : Part 2 for wind speeds from 85 mph to 117 mph depending on area of array.

STRUMECH

Cutcostshy 50% with the same tigh performance.
 Isn't that what new ideasareallabout?

Light in weight and low in cost,new Thermalloy heat sinks are designed specifically for plastic or metal case power devices.

They are remarkably simple to use, no extra mounting hardware is requiredand they can be attached to the device after board assembly.

The slip on types have positive retention and can be supplied with locking tabs.

For full details of the range, simply return the coupon-cutting costs without cutting performance is a good idea you ought to know about.

The new uni|omni directional|hand held|neck slung|desk mounted amplified |auto level control|LED indicator|chimed Reditronics microphones offer you variety.

ODM2 Neck-slung.

Amplified UDM1 + button.

ODM2 on solid mahogany base. UDM1 + chime + LED
Take the mahogany or black desk stand finishes and your choice is just between uni or omni directional.

Or within the standard metal base you can have a built in amplifier thus reducing wiring interference problems.

Or a built in auto level control. Plus, if you like, a chime or an LED for indicating 'on air'

You must admit we give you a choice.

* REDITRONICS

REDIFFUSION REDITRONICS LTD.
La Ponquelaye, St. Helier, Jersey Tel: (0534) 30321 Telex 41341 A inember company of the Rediffusion Organisation.

Total systems capability.

WW-096 FOR FURTHER DETAILS

WW - 052 FOR FURTHER DETAILS

OSCILATOR EREOUENCY COUNTER This versative instrument has been designed to meet the exacting requirements of the professional audio engineering OSCILATA
 covers the range of 1 Hz to 10 kHz in four pushbution fanges, with eigh prese thequencescy-counter may be separately accessed via the COUNTER INPUT equipment. The output may be switched to give fast first-time square wave The trequel
socket on the front panel
or further details contact: Audio Producis intl. Via Gaspare Epontini 3 rident Audio
Sales Office: 112/114 Wardour St., London. W
20131 Milano Tel: 273896
Sales Office: 91201 Telex 27782 Tridisc
Factory address: Shepperton Studios
Squiresbridge Road, Shepperton, Middx

"He's asking for a reed relay assembly with a 30ky isolated coil" red relay

rise and fall

Music is spiced with transients; requiring rapid response. Precise damping is critical.

Measurements are essential. But design by data only, remains to be achieved. Experienced ears are rare

monitor loudspeakers

IMF
ELECTRONICS

when is a box not a box?

Instrument boxes are often sold in standard sizes - not always the most practical sizes for your needs. When bought they take up a lot of storage space.

WIDNEY DORLEC Series 3 is a new, simple constructional system for building cases, boxes, chassis, frames, drawers etc. etc. Just 3 basic extrusions and 3 simple brackets-available as components for DIY, kits,
or fully finished products to your design. Custom made cases at prices you pay for standards. Ideal for Laboratories, Universities, small workshops. Call Cyril Vaughan on 021-359 3044 for more details.

3 MORE MAGNUM MODULES

CP-TM 1 CP-DR 1 Dynamic Range Controlier / Tape Noise Eliminator

JOYSTICKS

Precise, reliable, Iong-life Joystick Control Units, in single, dual or triple axis forms. Sprung to centre, or held by adjustable friction locks. Choice of wirewound, cermet or plastic film potentiometers (all standard $3 / 8^{\prime \prime}$ bush types) - or rotary switches.
Already in quantity production for remote control, TV games, electric wheelchairs, audio control panels, etc., etc. Any quantity from one-off to hundreds per month. Typical one-off prices: Single axis $£ \mathbf{4 . 5 0}$. Dual $£ \mathbf{7 . 5 0}$. Triple $£ 11.00+$ VAT.

TELEVISION GAME JOYSTICKS

We are now "small" quantity distributors for A.B. Controls Ltd. TV game Joystick. Available from end of September.

FLIGHT LINK CONTROL LTD.

Bristow Works, Bristow Road
Hounslow, Middlesex, 01-570 4065
WW - 060 FOR FURTHER DETAILS

ambit wreanamonat NEW SSB MECHANICAL FILTER-MFL-

TOKO amounce an entirely new SSB mechanical filter. with 6 elements, ultra smooth passband. easy transformer matching, 2.1 kHz at -6dB. at an unbeatable price of $£ 9.95$. (including two matching transformers) Type MFL455, $-6 \mathrm{~dB}: 2.1 \mathrm{kHz},-60 \mathrm{~dB}: 5 \mathrm{kHz}, ~ F \mathrm{Fc}: 453.5 \mathrm{kHz}, 5 \mathrm{k}$ ohms in $/ 1 \mathrm{k}$ out.

NEW'UNIBAND' TUNER MODULES

Based on the incomparable HA1197 radio system, the 7122 bas three stage tuning - cither varicap or crystal controlled. The varicap control will cover any $3: 1$ frequency range in the region 100 Hz to 30 MHz , with the correct coil pack. Kit - with varicaps - $£ 9.00$. MW coil pach standard. Use the Uniband tuner for tuneable $\mathrm{IFs} /$ dual conversion, or simply to provide AM facilities on FM only equipment.
The Bionic Ferret 4000 VCO metal locator. Tunermodules: The Best:
The sophisticated metal detector system All If systems have deviation muting, AGC, that can be aligned with just a test meter. meter outputs, additive AFC.
Complete kit now £33.75 inc PP and VAT. $\begin{aligned} & 7020 \text { twin ceramic filter/single detector } 6.95 \\ & 7030 \text { linear phase/double detector }\end{aligned}$ Complete tuner and amplifier kits 7030 linear phase/double detector 253 stereo tunerset with varicap tunereas The Larsholt signalmaster Mk8 comes with $\begin{aligned} & \text { (4 stage) } \text { IF and decoder integral } \\ & 26.50\end{aligned}$ a preadjusted RF/IF tunerset and decoder - 7252 mono MOS tunerset and is thus a sophisticated performer with a simple construction. Suitable for even the relatively inexperienced. $£ 85.00$ ex VAT EF5 circuits, AGC etc. 14.00 And the 25 W per channel matching audio EF5600 5 cct varicap tunerhead 12.95 amplifier, the Audiomaster. Torroidal PSU EC3302 3 ct varicap tunerted and very wide dynamic range. $£ 79.00$

91196 hi -spec PLL decoder/filters $\quad 12.99$
MEHT $\$ 55$ mech filten 195 P Choke 12 New coils for $S W$. formers, AFHK 455 mech filter 165 p luht to
\qquad CFT +55c47(1).

 1077 225 p typer ine new radio control 190 p 7 mm types. nork for VHF
10p roo many whathere, pue 33 send for catalugue - or end Edgewise meters: many new types available. Also new low cost flat meters
ICs, varicaps, trimmers, discrete semiconductors, varicap tuning pots, MOSFETs etc.

TERMS: CWO pse. Postage 25 p per order / $£ 3.00$ for complete tuners/amplifiers kits. Catalogue 40p, SAE with enquiries pse. VAT 12.5% except where shown. Write to Ambit taternational, 37 a High Street. Brentwood. Essex. CM14 4RH Almbir filterliationla
telephone (0277) 216029

745 COUNTER TIMER

 DC-32 MHz FREQUENCY, PERIOD, TIME \& TOTALISE ± 5 ppm STABILITY @ $25^{\circ} \mathrm{C}$

745 COUNTER TIMER $£ 94+2.50$ p $8 p$ Other product include.
744 Counter Timer £85
WW 103
643 Function Generator £98 WW 104
643A Function Generator £85 WW 105
631 Filter Oscillator $£ 108$
WW 106
Delivery is normally ex-stock - telephone for confirmation
Prices correct at time of gaing to press, subpect to change without notice
OMB electronics, Riverside, Eynsford, Kent. Tel: 0322863567

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - 'MUSICAL' - POWER AMP MODULES

* T.H.D. TYPICALLY .007\% @ 10W. 500 Hz
* ZERO T.I.D. [SLEW-RATE

LIMIT $16 \mathrm{~V} /: \mathrm{S}$]
Module size
$120 \times 80 \times 25 \mathrm{~mm} . \mathrm{using}$
glass fibre pcb wilh ident
and solder resist.
Illustrated with light dufy
heatsink

[^2]
BUY FLLKE'SNEW DMM AND POCKET THEDIFFERENCE

Never before has a DMM packed so much into such a small space. Fluke's new 8020 offers 24 ranges of $\mathrm{AC} / \mathrm{DC}$ volts, amps and ohms plus two ranges of conductance, teamed with an 0.25% VDC accuracy.

Ideal for dozens of applications from Hi-Fi to engineering, it's particularly suitable for work in the field. Features include one hand operation, a new design LCD
display you can see even in poor light, tough construction and a 9 V battery life of 200 hours. TheFluke 8020 is only available from ITT Instrument Services, an incomparable service that can put it in your pocket immediately from stock. Write, phone or telex for full details.

ITT Instrument Services, Edinburgh Way, Harlow, Essex. Telex: 81525.
$\overline{\text { Please send me details of the new }}$ Fluke 8020
Name: \qquad
| Company: -. -

Harlow (0279) 29522
ITI instrument services
The only way to buy

wireless world

TOM IVALL, M.I.E.R.E.

Deputy Editor:
PHILIP DARRINGTON
Phone 0I-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 0I-261 8043
JOHN DWYER
Phone 01-261 8620

Production:

D. R. BRAY

Advertisement Controller:
 G. BENTON ROWELL

Advertisements:

Phone 01-261 8622

LEO KEMBERY
Phone 01-261 8515

CHRIS PRIER
Phone 01-261 8037

Classified Manager
 BRIAN DURRANT

Phone 01-261 8508 or 01-261 8423

EDDIE FARRELL (Classified Advertisements) : Phone 01-261 8508

The engineering class

As Wireless World predicted in the June issue, an enquiry has been announced into the engineering profession. The Commons statement from the Secretary of State for Industry, on July 5, made it clear that the educational standards in engineering will be closely studied, since education is considered either the source of, or the remedy for, many of the discontents that engineers have voiced.

Unfortunately the level of debate so far has not been very high. Many of the public utterances on the subject have merely been the battle cries of sectional interests, even though the nation never needed unity of purpose quite so much as it does now. Currently the discussion seems awash with mistaken notions, among which the most wrong-headed must be that status should, or even can, be pursued in isolation from esteem well-earned from the public at large. Nearly as foolish is the idea that a calling, by putting aspiring entrants though as many academic hoops as possible, can pull itself up by its own bootstraps. Another fallacy is that engineering is a learned profession in the same way that medicine or the law are. The nearest one could get to classifying engineering is that it is probably somewhere between a trade and a profession, but it is only a result of the British preoccupation with social class that engineers would not be just as proud to be members of one as of the other.

Sadly, some of these ideas ran through a major speech by the president of the Institution of Electrical Engineers, Mr Eric Booth, at the IEE's annual dinner some months ago. To be fair, he did insist that status "must be earned," but it is revealing and depressing that such an eminent man should worry any further about status, as such, at all. At the heart of the matter is the shortage of recruits into engineering, but status is a side-issue; everyone is aware, for example of what the world thinks of the journalist, yet the number of aspiring scribblers far exceeds the number of vacancies open to them.
Mr Booth complains that the
engineer does not enjoy the status of the doctor or the lawyer, and says this is because in the past "our engineers were mainly self-taught men of imagination who had an intuitive grasp of engineering principles. On the other hand, doctors and lawyers, who represent high status professions, had for centuries been the products of the universities and the Inns of Cdurt when the rest of the community was largely illiterate." On this he bases his argument that status will follow if academic standards are increased.
Yet Mr Booth has confused cause and effect. The engineer in the industrial revolution compared so unfavourably with doctors and lawyers not because of education but because of, again, differences in social class. Those of higher social standing were the only ones to whom a university education, and a degree at the end of it, were open. They were then able to go into the law and medicine, and did so partly because an upper middle class gentleman felt that, in return for his good position in society, he was obliged to render some service to the community, an element that has been all too absent from the current debate. It can be argued, therefore, that the law and medicine have accrued status as a result of the natural status of those who practised them, not just as a result of their superior education.
If engineers are not highly thought of it is because, they seem not to have made the contribution society has been led to expect. It may even be that our industrial performance is undermined by the eagerness of some sections of our society, engineers among them, to spend twice as much energy forcing their superior view of themselves on other people as they do in earning their own and the nation's living. Perhaps, too, engineering, and the whole community, would benefit if the routes towards an engineering qualification were less diverse, less class-ridden. The committee might consider why the distinction made at first between the engineer who has taken a degree course and his "less well qualified" colleague so often turns out to have been artificial.

Low distortion oscillator

1 - An improved Wien bridge design

by J. L. Linsley Hood

This instrument uses a modified circuit to reduce the typical output harmonic distortion of a Wien bridge oscillator by a factor of up to 10 . A sine wave output from 10 Hz to 100 kHz in four switched ranges is available together with a square wave. A constant impedance output attenuator is also provided with four switchable levels from 1 V to 1 mV . The complete unit can be powered from two 9 V batteries.

The Wien bridge arrangement shown in Fig. 1 is one of the most convenient

Fig. 1. Basic Wien bridge oscillator circuit. For frequency variation either R_{x} and R_{y} are used as a twin gang potentiometer or $C_{x} C_{y}$ as a ganged capacitor.

Fig. 2. Conventional Wien bridge circuit which produces around 0.01% harmonic distortion.
circuit configurations for use in a wide range variable frequency oscillator circuit because the operating frequency can be made continuously variable by means of a twin-gang potentiometer for
R_{x}, R_{y}, or ganged capacitor for C_{x}, C_{y}. However, most of the conventional Wien-bridge oscillators using this type of circuit, such as the example in Fig. 2, have a minimum distortion figure of

Fig. 3. Bipolar f.e.t. cascode arrangement.

Fig. 4. Modified Wien bridge oscillator circuit. To reduce surface recombination noise a p.n.p. bipolar device is used in the input.

Fig. 5. Spot frequency distortion measurements of improved circuit.
around 0.01 to 0.02% which is barely adequate for test purposes with modern amplifier designs. This has encouraged the more widespread use of the less convenient parallel T oscillator arrangement for producing very low distortion reference signals.

On analysis it is apparent that the major cause of residual harmonic distortion in the conventional thermistor stabilized Wien-Bridge oscillator circuit, at frequencies high enough for thermal modulation of the thermistor to be unimportant, is due to common mode failure ${ }^{2.3}$ in the first stage amplifying device. Here the peak signal voltage applied in common mode to the base and emitter of Tr_{1} is approximately $2 \sqrt{2} / 3 \quad V_{\text {out }}$ r.m.s., which can be a significant proportion of the available $V_{c e}$ in Tr_{1}. Improved performance can be achieved in three ways; by reducing the ratio of $V_{o u t}$ to $V_{c c}$, which may not be convenient. By reducing the magnitude of the signal voltage fed back to Tr_{1}, or, finally, by reducing the sensitivity of the input stage to common mode malfunction. In view of the high independence of output impedance and drain current with respect to drain voltage in most junction f.e.t.s, the use of an f.e.t. as the input device is attractive. The straight substitution of an f.e.t. for the input bipolar transistor, however, results in a large reduction in loop gain. The use of a bipolar device in cascode with an f.e.t. as shown in Fig. 3 overcomes this problem and offers a gain which is characteristic of the bipolar device together with an output impedance and common mode rejection ratio typical of a junction f.e.t. Moreover, the collec-tor-emitter voltage of the bipolar input device is maintained at a constant
potential, appropriate to the drain current drawn from the f.e.t., and as such provides a bootstrap action.

A practical circuit using this type of input configuration is shown in Fig. 4. Some small additional improvements in this circuit are the use of a p.n.p. input device, which produces less surface recombination noise in the junction, and the use of a constant current load for the output amplifying stage which gives greater output linearity and improved independence of $V_{c c}$. The
typical t.h.d. of this design is shown in Fig. 5. Over the frequency range 200 Hz to 3 kHz , for an output of 1.5 V r.m.s. into a $2 \mathrm{k} \Omega$ load, the distortion content is between 0.0015 and 0.003% associated with a settling time of less than 2 seconds. This is independent of $V_{c c}$ in the range 13 to 20 V or ± 6.5 to 10 V if a split supply is used as shown in Fig. 4.

Because most of the residual distortion arises in the output stage, somewhat lower values can be obtained for a given output load if the current,
determined by R_{5}, is increased. For the values shown this is about 10 mA .

The settling time of low distortion oscillators has been examined by Oliver ${ }^{4,5}$ with the general conclusion that this will lengthen as the t.h.d. becomes lower, especially at lower frequencies because this is related to the number of cycles of signal applied to the thermally sensitive element. However, this is less of a problem with a Wien-bridge system compared to feedback networks which produce a transmission null at the operating frequency.

Output attenuator

It is accepted as a practical convention that low frequency signal sources should have an impedance of 600Ω. The easiest method of achieving this is to take outputs from tapping points along a conventional resistive transmissionline attenuator as shown in Fig. 6 (A). Resistor values can be calculated for any desired characteristic impedance and attenuation factor, provided that the line is either of infinite length or is correctly teminated at both ends by resistor R_{T}.

The attenuation of the line from x_{2} to x_{1} is $R_{\mathrm{T}} / a+R_{\mathrm{T}}$ and if this is defined as $1 / K$ then $K=a+R_{T} / R_{T}$ where K is the reciprocal of the attenuation factor. If this definition is correct it must hold true for the shortest element of transmission attenuator as shown in Fig. 6 (B). The characteristic impedance of this line, as seen at x_{1} and $x_{2}\left(R_{C}\right)$ is $R_{\mathrm{C}}=R_{\mathrm{T}} / /\left(a+R_{\mathrm{T}}\right)$, so

$$
\frac{R_{\mathrm{C}}}{R_{\mathrm{T}}}=\frac{R_{\mathrm{T}}}{R_{\mathrm{T}}} / / \frac{\left(a+R_{\mathrm{T}}\right)}{R_{\mathrm{T}}}
$$

therefore $R_{\mathrm{C}} / R_{\mathrm{T}}=1 / / K$ which equals

$$
\frac{K}{(1+K)} \cdot R_{\mathrm{T}}
$$

therefore $R_{\mathrm{T}}=\frac{(1+K)}{K} \cdot R_{\mathrm{C}}$
This defines the terminating resistors.
For calculation of the series resistor a, if the characteristic impedance of the line is specified and the attenuation characteristic is known,

$$
K=a+R_{\mathrm{T}} / R_{\mathrm{T}} \text { or } K \cdot R_{\mathrm{T}}=a+R_{\mathrm{T}}
$$

therefore $a=K \cdot R_{T}-R_{T}$, which equals R_{T} ($K-1$). As already shown,

$$
R_{\mathrm{T}}=\frac{(K+1)}{K} R_{\mathrm{C}}
$$

therefore $a=\frac{(K+1)(K-1)}{K} R_{C}$
sò $\quad a=\frac{\left(K^{2}-1\right)}{K} R_{\mathrm{C}}$.
To calculate the shunt resistor b, consider a line with these elements as in Fig. 6(C).
The impedance at x_{2}, as defined by R_{C}, is

Fig. 6 Basic resistive transmission line attenuator and the sections which are considered when calculating the resistor values.

Fig. 7 Practical attenuator. The $5 k 940 \Omega$ resistors can be formed by a $6 k 8 / / 47 k \Omega$, the 733Ω by a $6 k 8 / / 820 \Omega$, and the 660Ω by a $22 k / / 680 \Omega$.
$b / / \frac{\left(a+R_{\mathrm{T}}\right)}{2}$
or $\frac{1}{b}=\frac{1}{R_{\mathrm{C}}}-\frac{2}{\left(a+R_{\mathrm{T}}\right)}$
therefore $\frac{1}{b}=\frac{1}{R_{\mathrm{C}}}-\frac{2 R_{\mathrm{T}}}{\left(a+R_{\mathrm{T}}\right) R_{\mathrm{T}}}$
$=\frac{1}{R_{\mathrm{C}}}-\frac{2}{R_{\mathrm{T}} K}$
$=\frac{R_{\mathrm{T}} K-2 R_{\mathrm{C}}}{R_{\mathrm{C}} R_{\mathrm{T}} K}$

$$
\frac{(K+1)}{K} \cdot K R_{C}-2 R_{C}
$$

therefore $\frac{1}{b}=$

$$
\frac{(K+1)}{K} \cdot K R_{c}^{2}
$$

which equals $\frac{K+1-2}{(K+1) R_{C}}$
therefore $b=\frac{(K+1)}{(K-1)} R_{C}$
which allows the value of b to be calculated.

If a step attenuation of $\times 10$ or
greater is used, the influence of the source impedance to the line can be ignored. In the practical circuit of Fig. 7 the attenuator is fed from a potentiometer to give amplitude variation between ranges. The non-standard resistor values can be produced by the parallel combinations detailed in the caption.

Printed circuit board

A p.c.b. which accommodates the Wien bridge oscillator, frequency range capacitors, square wave generator and output attenuator will be available for $£ 3.00$ from M. R. Sagin at 23 Keyes Road, London, NW2. The board follows the authors complete circuit to be published next month.

References

1. Ferranti 'E line' transistor applications, Aug. 1971 p. 67.
2. Linsley Hood, J. L., Wireless World, Jan. 1973, pp.11-12.
3. Taylorr, E. F., Wireless World. April 1973, p. 194.
4. Oliver, B. M., Hewlett-Pàckard Journal, Vol 7, No. 6, 1956.
5. Idem. Vol 8-10, April-June 1960.

Letter from America

by G. W. Tillett

This year the eleventh annual Consumer Electronics Show in the USA opened with a great feeling of optimism. Exhibitors numbered well over 700 - a record - and they were spread out in the huge exhibition halls at McCormick Place in Chicago while another 150 had audio demonstration rooms or suites at the nearby plush McCormick Inn. A further contingent of nearly a hundred were dispersed in hotels all over Chicago, making it quite an ordeal for anyone determined to see most of the exhibits! Although there was this feeling of optimism, there have been some disturbing setbacks in some areas. For instance, sales of the new 40 -channel citizens' band radios have not been as high as expected, partly because of the stocks of 23 -channel models left over. Consequently, prices of both types have been ruthlessly cut and neither dealers or importers are making any money. On the other hand, companies like SBE and TI (yes, Texas Instruments) have introduced expensive models using microprocessor technology with keyboard tuning, programmable memory, fast and slow scanning and all kinds of refinements. The TI model is an s.s.b. unit and all the controls are in a small hand-held unit which looks like a calculator. Readouts show the channel number, sideband mode and signal strength. Two m.p.us are employed, one in the control unit and the other in the main section. Hy-gain also use m.p.u. circuitry in their Model 16 which has all the controls plus the loudspeaker built into a neat hand-held unit. Two pushbuttons control the volume level and there are digital readouts for channel numbers, r.f. output power and the time!

It is more than likely that the present emphasis on high quality c.b. products is a reaction to the chaos caused by price-cutting in the calculator and digital watch industries where $\$ 100$ items were eventually cut right down to $\$ 10$ or less. Many of the "fly-by-night" companies have picked up their profits and stolen away, leaving the dealers with faulty watches and calculators plus impossible servicing problems. Some of the larger firms, like Benrus have moved out of the digital watch business, but all-in-all it looks as if the industry will settle down to a more stable growth pattern - let the chips fall where they may (sorry about that!) Already, digital watches are responsible for nearly half the total watch sales and there is no sign of a decrease. Windert were showing several interesing models, one of which was combined
with a 9 -digit calculator and another having full chronograph features with elapsed time, lap time and split-time. It boasts a 6-digit display for hours, minutes, seconds, tenths and hundreths of a second! But the model which was attracting most of the attention was a Programmable Message model that gave the user a choice of a 5 -letter, 5 -word programme from any 26 letters, 10 numerals and 5 symbols. It was said to be very easy to change displays which might appeal to those who elect to show the name of their girl friends!

There are several calculators that use solar power but only one that required no batteries at all. This was the Teal 14 -function model which measures only 63 mm by 111 mm by 7 mm thick - and it has no on-off switch. The Sharp EL-8130 features an electronic auto-sensing panel with no keys or moving parts and it includes a four-key memory system, overflow error check device and automatic power-off circuit. It is less than 5 mm thick and the price? Just $\$ 34.95$. Most manufacturers have a bottom-of-the-line model in the range and the Sharp EL-203 is fairly typical. It is an l.c.d. model with total memory, square root and percent keys listing at under $\$ 10$.

Video games were well in evidence, although many of the smaller firms have disappeared from the scene. Most of the games seen last year used simple paddles but present-day models are much more sophisticated, offering the user all kinds of alternatives. Some use cartridges so the customer can buy additional programmes later. One of the new games I saw involved a wall of bricks and the player must remove them one at a time before he can escape. A four-position switch gives a choice of "handicaps".
As far as turntables were concerned, there is no doubt that the new BSR Accutrac was the hit of the Show but there were some other models of note. Infinity were showing a prototype which had a built-in pump to provide an "air cushion" for the platter and Fisher introduced a model with a linear motion motor. The field coils are mounted all round the turntable, just underneath, and a 120 -pole ferrite magnetic band is attached to the under-rim of the platter - not unlike the old Simpsons turntable. Sensing coils control the speed via a servo system.

Burwen were demonstrating a new record "pop, crackle and scratch" remover which uses the steep wavefront of the noise to operate a gating circuit. To fill the "hole" a portion of the preceding signal is "tailored in". This appears to be quite similar to the SAE 5000 but it was stated that the switching times are much less and it would reduce low amplitude "hash". The SAE unit uses a delay circuit, and programme material prior to and after the impulse noise is patched in. A switch marked "invert" allows the user to hear the
actual pops and clicks the unit is removing. In a demonstration, a brand new Sheffield record was gouged with a knife but no scratches were audible when the record was played!

The trend towards higher powered amplifiers and receivers continues and it was interesting to see the various methods used to obtain higher efficiency and reduce the size of the heat sinks, etc. Infinity have had a p.w.m. amplifier for some time now and Sony were also showing a prototype. Hitachi had amplifiers and receivers with "class H" amplifier. A "class G" output stage consists of four devices, two to handle the positive swings and two to take the negative swings. One pair is fed from a low voltage supply and functions as a low power class B amplifier, but when the signal reaches a certain value it cuts-off and the high power stage takes over.

Soundcraftsmen take a rather different approach in their "class H" circuit. Two power supplies are employed with one supply voltage being about twothirds of the other. As the signal input increases, a "vari-portional" circuit turns on the high voltage supply long before the clip point. Thus the amplifier is operating at a lower voltage most of the time, reducing power stage dissipation. It should be emphasised that the high voltage supply is only on for peaks, so a sinewave signal will cause the second supply to function for a fraction of the waveform. This was clearly demonstrated on an oscilloscope and it was possible to gradually increase the input signal until the high voltage trace began to show a rise too! Most ingenious, and the big advantage is that there is no switching inside the amplifier, as all the control functions are outside the feedback loop. So distortion, slew rate and stability is not affected. The amplifier demonstrated had a rated output of 250 watts per channel and it features l.e.d. indicators showing operation of the "vari-portional" circuit, VU meters and a "crowbar" protection circuit.

This year, more than twenty-one British exhibitors were showing their products under the aegis of the Federation of British Audio, plus another four or five independents like Sinclair and Rank-Wharfedale. Goodmans have returned after more than ten years' absence from this market and both Leak and Wharfedale are making a bid for recognition again. There is a growing number of people who are satisfied with nothing less than the finest audio equipment money can buy and already at least six magazines are catering to their needs - and a new one seems to appear every month! It is in this area of super amplifiers, loudspeakers and so on that British companies can compete successfully and there is no doubt whatsoever that their share of the market will increase very substantially as time goes on.

Designing synchronous and asynchronous counters

by B. Holdsworth* and D. Zissos \dagger
*Chelsea College, University of London tDept. of Computing Science, University of Calgary, Canada.

Counters are cyclic sequential

 circuits which return to their initial state after a specified number of changes in the input state. The output of a counter in its specified code gives the number of changes of the input signal or the number of input pulses received since the circuit was last in its initial state. Counters are being used extensively in industrial plants for such functions as controlling the position of a machine tool or for packing a specified number of items in a box. They are also used in laboratory environments for such functions as counting frequency, recording time, speed and acceleration.
Codes

The most commonly used codes in electronic counters are:

- True binary (8-4-2-1) code,
- Gray codes,
- B.c.d. codes and
- Ordered codes, for example the excess-3 (XS-3).,
The true binary code, often referred to simply as the "binary code" is the simplest because each digit is represented in a conventional binary system. Gray codes are those in which adjacent numbers differ in one bit only, eliminating races which arise when two or more bits attempt to change simultaneously. The true binary code is shown in Table 1, for four binary digits.

If all the sixteen combinations in the sequence in Table 1 are used, the counter is called a maximum-length counter; if, on the other hand, only the first ten combinations are used the counter is called a scale-of-ten counter.

A Gray code in which only one digit changes at a time is called a single-step code, the best known one being the reflected binary code. This code is tabulated in Tables 2(a) and 2(b) for both three and four binary digits. Examination of Table 2(a) shows that reflection of the three least significant digits takes place about the centre line of the code. All those combinations above the centre line have a most
significant digit of 0 whilst those below have a most significant digit of 1 . Similar comments can be made about the three-digit code except that, in this case, reflection of the two least significant digits takes place.

The sequence of the 4 -bit reflected binary code is shown plotted on a

Table 1. True binary code, with unused combinations for decade counters.

Karnaugh map in Fig. 1(a). The plot shows that, as the code proceeds from one combination to the next, only one cell boundary is crossed. It is clear that any single-step Gray code can be developed immediately from a Karnaugh map by tracing a single step path through the map as shown in Fig. 1(b). The code sequence for this example is shown in Fig. 1(c).

In b.c.d. (binary-coded-decimal) codes, each of the ten decimal digits 0 to 9 , is represented by a binary code, frequently the 8-4-2-1 code. For example the b.c.d. (8-4-2-1) representation of 456 is $0100,0101,0110$. B.c.d. codes provide a useful link between the counting systems used by digital machines and those used by human beings.

The codes tabulated in Tables 3(a) and 3(b) are examples of weighted b.c.d. codes.

In a weighted code a weight W_{i} is assigned to the $j^{\text {th }}$ binary digit. For example, for the 8-4-2-1 code combination 1001, $W_{4}=8, W_{3}=4, W_{2}=2$ and $W_{1}=1$
Hence,

$$
Z_{\text {dec }}=\sum_{j=1}^{j=4} W_{j} S_{j}
$$

Table 2. Four-bit reflected binary (a) and three-bit (B) reflected binary code.

d	D	C	B	A	d	D	C	8	A
0	2	4	2	1		5	4	2	1
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	1
2	0	0	1	0	2	0	0	1	0
3	0	0	1	1	3	0	\bigcirc	1	1
4	0	1	O	0	4	0	1	0	0
5	1	\bigcirc	1	1	5	1	0	0	0
6	1	1	0	0	6	1	0	\bigcirc	1
7	1	1	0	1	7	1	O	1	0
8	1	1	1	0	8	1	\bigcirc	1	1
9	1	1	1	1	9	1	1	O	0

Table 3. Weighted codes. 2-4-2-1 code is at (a) while (b) shows 5-4-2-1 code.
where S_{j} is the value of the $j^{\text {th }}$ binary dīgit, and

$$
Z_{\mathrm{dec}}=1 \times 8+0 \times 4+0 \times 2+1 \times 1=9
$$

The various code combinations in the $2-4-2-1$ and the 5-4-2-1 codes can be evaluated in a similar manner.

In an ordered code, the various combinations are assigned to the different decimal digits by means of a mathematical equation. An example of this is the XS-3 code. For this code
$Z_{\text {dec }}=\sum_{j=1}^{j=4} W_{j} S_{j}-3, \quad$ where
$W_{4}=8, W_{3}=4, W_{2}=2, W_{1}=1$.
Hence, the code combination $0100=(0$ $\times 8+1 \times 4+0 \times 2+0 \times 1)-3=1$. The XS3 code is shown tabulated in Table 4.
Codes can be made error-detecting by the addition of extra bits, called parity bits. In Table 5(a) the 8-4-2-1 code has an additional bit in the column headed p which establishes odd parity in each code combination, i.e., each code combination contains an odd number of 1 's. Similarly in Table 5(b) a parity bit has been added to the same code which, in this instance, establishes even parity for each code combination. Detection equipment is now required at the receiving end which, in the case of odd parity, is used to determine whether each code combination has an odd number of l's.

d	D	C	B	A
0	0	0	1	1
1	0	1	0	0
2	0	1	0	1
3	0	1	1	0
4	0	1	1	1
5	1	0	0	0
6	1	0	0	1
7	1	0	1	0
8	1	0	1	1
9	1	1	0	0

Table 4. Excess-3 code (XS-3).

Codes can also be made error-correcting by the addition of extra bits whose function is to detect an error and its position. The most important codes of this kind are the Hamming codes, in which the bit positions are numbered in sequence from left to right. Those positions numbered as a power of 2 are reserved for parity check bits, whilst the remaining positions are used for the information bits.

For a seven bit code combination:

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

$$
p_{1} p_{2} x_{3} p_{4} \quad x_{5} \quad x_{6} x_{7}
$$

p_{1}, p_{2} and p_{4} are the parity bits and x_{3}, x_{5}, x_{6} and x_{7} are the information bits. The parity bits are obtained from the information bits as follows:
p_{1} is selected to establish even parity over bits $1,3,5$ and 7
p_{2} is selected to establish even parity over bits 2, 3, 6 and 7
p_{4} is selected to establish even parity over bits $4,5,6$ and 7
The Hamming code combinations for the natural n.b.c.d. code are shown below in Table 6.
The correction process for this code is carried out on the assumption that only one bit is in error and that it is only necessary to locate that bit. This is achieved by checking for odd parity over the same three code combinations for which even parity was established at the transmitting end. The check is carried out with the aid of the exclusi-ve-OR function.
For the exclusive-OR function $\mathrm{A} \oplus \mathrm{B}=\overline{\mathrm{A}} \dot{\mathrm{B}}+\mathrm{A} \overline{\mathrm{B}}$ and hence

d	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	1	1	1	0
6	1	1	1	1
7	1	1	0	1
8	1	1	0	0
9	0	1	0	0

d	D	C	B	A	D
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1

a	D	C	B	A	p
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0

Table 5. Parity. 8-4-2-1 code at (a) has extra bit to give odd parity and that at (b) has even parity.

d	p_{1}	p_{2}	x_{3}	p_{4}	x_{5}	x_{6}	x_{7}
0	0	0	0	0	0	0	0
1	1	1	0	1	0	0	1
2	0	1	0	1	0	1	0
3	1	0	0	0	0	1	1
4	1	0	0	1	1	0	0
5	0	1	0	0	1	0	1
6	1	1	0	0	1	1	0
7	0	0	0	1	1	1	1
8	1	1	1	0	0	0	0
9	0	0	1	1	0	0	1

Table 6. Hamming combinations for n.b.c.d. code.
$0 \oplus 0=0$
$0 \Theta 1=1$
$1 \oplus 0=1$
$1 \oplus 1=0$
The above tabulation shows that the value of the exclusive-OR function is 1 when either A or B are 1 , and is 0 when both A and B are either 0 or 1. In other words the value of the exclusive-OR function is 1 when odd parity exists.

The check functions are:

$$
\begin{aligned}
& \mathrm{c}_{1}=\mathrm{p}_{1} \oplus \mathrm{x}_{3} \oplus \mathrm{x}_{5} \oplus \mathrm{x}_{7} \\
& \mathrm{c}_{2}=\mathrm{p}_{2} \oplus \mathrm{x}_{3} \oplus \mathrm{x}_{6} \oplus \mathrm{x}_{7} \\
& \mathrm{c}_{4}=\mathrm{p}_{4} \oplus \mathrm{x}_{5} \oplus \mathrm{x}_{6} \oplus \mathrm{x}_{7}
\end{aligned}
$$

If $c_{1}=1$ there must be an error in p_{1}, x_{3}, x_{5} or x_{7}. The bit in error, E , may be obtained from the table below

c_{4}	0	0	0	0	1	1	1	1.
c_{2}	0	0	1	1	0	0	1	1
C_{1}	0	1	0	1	0	1	0	1
E	0	1	2	3	4	5	6	7

For example, suppose the code combination received is 1101101 . Then $c_{1}=1$, $\mathrm{c}_{2}=0$ and $\mathrm{c}_{4}=1$. Hence the $5^{\text {th }}$ bit is in error and the code combination should
read 1101001 .

Synchronous counters

The design steps for synchronous counters are (1) draw a state diagram, (2) code the states with the selected counting code, and (3) derive the input equations for the counter flip-flops.
Binary counters (maximum length). For the sake of consistency, variable A is assigned to the 2 " bit, B to the 2^{\prime} bit, C
-

Fig. 1. Karnaugh plots of reflected binary (a) and Gray code (b). Tabulation of Gray code is at (c).
to the 2^{2} bit and so on. In deriving the general form of maximum-length binary counters, use will be made of the fact that the addition of higher order counting stages does not affect the lower order counting stages. This, of course, is also the case in conventional decimal counts - for example, the "units" and "tens" of a car odometer change at the end of every one and ten miles travelled, irrespective of the number of stages in the odometer.
Scale-of-2 'up' counter. Figure 2(a) shows the state diagram and codes.
The flip-flop equations are:
$\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{0}=\overline{\mathrm{A}}$, therefore, $\mathrm{J}_{\mathrm{A}}=1$
$\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{\mathrm{l}}=\mathrm{A}$, therefore. $\mathrm{K}_{\mathrm{A}}=1$
The corresponding circuit is shown in Fig. 2(b)

Scale-of-4 'up' counter. $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$, as for a scale-of-2 counter. The state diagram and codes are in Fig. 3(a). The flip-flop equations are:
$\mathrm{S}_{\mathrm{B}}=\mathrm{S}_{1}+\left(\mathrm{S}_{2}\right)=\mathrm{AB}$, therefore, $\mathrm{J}_{\mathrm{B}}=\mathrm{A}$
$\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{3}+\left(\mathrm{S}_{0}\right)=\mathrm{AB}$, therefore, $\mathrm{K}_{\mathrm{B}}=\mathrm{A}$
The corresponding circuit is shown in Fig. 3(b).

Scale-of-8 'up' counter. $J_{A}=K_{A}=1$ and $J_{B}=K_{B}=A$, as for the scale-of- 4 counter. The state diagram and codes are in Fig. 4(a) and the flip-flop equations are;
$\mathrm{S}_{\mathrm{C}}=\mathrm{S}_{3}+\left(\mathrm{S}_{4}\right)+\left(\mathrm{S}_{5}+\left(\mathrm{S}_{6}\right)=A B \bar{C}\right.$, there -
fore, $\mathrm{J}_{\mathrm{C}}=\mathrm{AB}$.
$\mathrm{R}_{\mathrm{C}}=\mathrm{S}_{7}+\left(\mathrm{S}_{0}\right)+\left(\mathrm{S}_{1}\right)+\left(\mathrm{S}_{2}\right)=\mathrm{ABC}$, there -
fore, $\mathrm{K}_{\mathrm{C}}=\mathrm{AB}$
The corresponding circuit is shown in Fig. 4(b).

Scale-of-2n 'up' counter. By observation, the flip-flop equations are;
$\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
$\mathrm{J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=\mathrm{A}$
$\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\mathrm{AB}=\mathrm{BJ}_{\mathrm{B}}$
$\mathrm{J}_{\mathrm{D}}=\mathrm{K}_{\mathrm{D}}=\mathrm{ABC}=\mathrm{CJ} \mathrm{C}_{\mathrm{C}}$
$\mathrm{J}_{\mathrm{E}}=\mathrm{K}_{\mathrm{E}}=\mathrm{ABCD}=\mathrm{DJ}_{\mathrm{D}}$ and so on.
If speed is essential, large input gates must be used to implement directly the functions in the third column.

(a)

(b)

Fig. 2. State diagram for one-stage (scale-of-two) counter (a) and its circuit realization (b).

Synchronous 'down' binary counters (maximum length) can be designed in precisely the same manner and the following flip-flop equations are obtained.
$\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$
$\mathrm{~J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=\mathrm{A}$
$\mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\overline{\mathrm{A}} \overline{\mathrm{B}}=\overline{\mathrm{B}} \mathrm{J}_{\mathrm{B}}$
$\mathrm{J}_{\mathrm{D}}=\mathrm{K}_{\mathrm{D}}=\overline{\mathrm{A}} \overrightarrow{\mathrm{B}} \overline{\mathrm{C}}=\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{J}_{\mathrm{C}}$ and so on
Note that in the case of binary counters it is possible to use an 'up' counter to count down by utilizing the complementary flip-flop outputs as shown in Table 7.

d	C	B	A	d	\bar{C}	\bar{B}	\bar{A}
0	0	0	0	7	1	1	1
1	0	0	1	6	1	1	0
2	0	1	0	5	1	0	1
3	0	1	1	4	1	0	0
4	1	0	0	3	0	1	1
5	1	0	1	2	0	1	0
6	1	1	0	1	0	0	1
7	1	1	1	0	0	0	0

Table 7. Using the complementary outputs of a chain of flip-flops to count down.

The next part of this article will continue the treatment of counters, going on to discuss Gray code types, up-down counters and their control and ripplethrough counters.

Fig. 3. Two-stage (scale-of-four) counter state diagram and codes (a) and circuit embodiment (b).

(b)

Fig. 4. State diagram (a) and circuit (b) of three-stage (scale-of-eight) counter.

Band II ferrite aerial unit

Eliminating the whip aerial used for v.h.f. reception in portable radio sets

by R. D. C. Thoday, M.I.E.R.E. BBC Research Department

V.H.F. radio transmissions provide a high quality service to listeners, but wide acceptance for more general listening (for news, background music, etc.) has been discouraged by competition from l.f./m.f. portable receivers with built-in ferrite aerials. While the availability of portable receivers for v.h.f. has been improving steadily, one of the great disadvantages of present models is the whip aerial which must be extended and oriented for maximum signal each time the set is moved to a new location. It tends to be affected by hand capacitance and the proximity of conducting objects, so that an optimum position is not readily found. Moving the receiver with the aerial extended can also prove hazardous. Experimental v.h.f. receivers using ferrite aerials ${ }^{2}$ have been built in the past but they do not appear to have been brought into general production because of the high cost of the ferrite materials employed.

A cheap ferrite material has recently become available which has good characteristics at v.h.f. and so opens up the possibility of built-in aerials for v.h.f. portables. A ferrite aerial unit has been built and added to a small inexpensive portable receiver. ${ }^{\prime}$ Generally the performance, in terms of sensitivity, of the ferrite aerial has proved to be approximately equal to that of the whip aerial.

The rod employed is a nickel-zinc ferrite rod manufactured by Neosid Limited under the code number F29, which is 123 mm long by 8 mm diameter.* The initial permeability of the material is 12 and it has a small loss angle at 100 MHz .

The arrangement of the aerial circuit is similar to that used for ferrite rod aerials in m.f. receivers. A tuned coil and a coupling coil are wound on the rod. Variable tuning is provided by means of a varicap diode. A f.e.t. pre-amplifier buffer stage is inserted between the coupling coil and the receiver input. The circuit diagram is shown in Fig. 1 and

The use of these rods for v.h.f. aerials for, broadcast receivers was originally suggested by P. A. Tingey of BBC Designs Department.
the layout of the unit on a printed circuit board is shown in Fig. 2.

As the permeability of the rod is relatively low, the prime consideration for the aerial circuit design is maximum sensitivity. This is achieved by matching the transferred input resistance of the f.e.t. amplifier to the tuned circuit loss resistance. The signal developed at the input gate of the f.e.t. amplifier is then independent of the number of turns wound on the rod.

The choice of tuned circuit inductance was largely dependent on the capacitance range of the varicap diode when operated from the receiver battery supply (6 V). Three turns of enamelled 26 s.w.g. wire wound on the rod give an inductance of $0.35 \mu \mathrm{H}$ with a circuit magnification factor (Q) of 195 measured at 50 MHz . The tuned-circuit Q is also dependent on the capacitor losses. The maximum series loss resistance for the varicap diode is quoted by the manufacturers at 0.8Ω, giving an unloaded Q of 110 for the combination of these components. The effective Q under matched conditions is

Fig. 1. Circuit diagram of the ferrite aerial unit.
half of this value. In the above considerations the radiation resistance has been neglected since it is small compared with the circuit loss resistance. The input admittance of the f.e.t. amplifier is approximately $(0.3+\mathrm{j} 3.5) \mathrm{mS}$. The mutual inductance between the tuned and coupling coils on the ferrite rod required to match the resistive component of the primary and secondary circuits is $0.12 \mu \mathrm{H}$. A coupling coil of two turns has been used and the separation between the two coils has been adjusted to achieve this. Initial adjustments were made using an. inductance bridge but the final adjustments were made on the assembled unit to give maximum sensitivity.
A simple circuit is used to transform the receiver input impedance to a suitable load value for the f.e.t. amplifier. The measured voltage gain of the amplifier when terminated in a 50Ω load is 5 dB .

The calculated ratio between the output of the ferrite rod aerial unit and that of a $\lambda / 2$ dipole is -11 dB . Little improvement can be made to the sensitivity of the unit by increasing the length/diameter ratio of the rod or by increasing the number of turns on the rod.

Incorporation in the receiver

The aerial unit has been substituted for the whip aerial in a small domestic portable receiver. The receiver tuning is performed with a mechanically variable capacitor that is unsuited for direct coupling to the aerial unit tuning control. Purely for experimental purposes a separate potentiometer tuning control has been used, and a meter, indicating the receiver a.g.c. level, has been added so that the user can tune the aerial unit for maximum signal and correct r.f. alignment. In a properly designed receiver the use of varicap diodes for all circuits can provide ganged tuning in a simple way, and no tuning complication arises.

At present nearly all European v.h.f. transmitters radiate \dagger a horizontal electric field component; although it may be weaker than the vertical field component near the ground for the few stations which radiate a vertical component additionally (slant, circular or mixed polarizations), the horizontal field component is always present. The ferrite rod has therefore been set with its axis vertical to give maximum signal pick-up for horizontally polarised signals.
An idea of the receiver performance with the ferrite rod unit can be obtained from Fig 3. This shows the measured signal-to-noise radio with the receiver placed in a known field strength. (The measurements were unweighted in the band $0-15 \mathrm{kHz}$ when the reference signal was a 400 Hz tone at 22.5 kHz peak deviation.)
The performance at low signal strengths is limited by the noise generated in the tuned circuit loss resistance. Calculation shows that the Johnson noise voltage equals the available signal when the field strength is $20 \mu \mathrm{~V} / \mathrm{m}$. The performance of the receiver with the ferrite rod aerial was similar to that when used with its own whip aerial. This may seem somewhat surprising in view of the estimated ratio between the output of the ferrite unit and a $\lambda / 2$ dipole output, but it can probably be attributed to the fact that the whip aerial will not be very efficient when untuned, using a small chassis as a counterpoise.
Although the main reason for this work has been to eliminate the whip aerial from the receiver, it is possible that it should be retained and positioned in the receiver near the ferrite rod, so that under difficult reception conditions it can be extended and oriented to enhance the signal induced in the ferrite rod.
Some further development would be necessary to incorporate a simple control, tuning both aerial unit and the

TThe main exception is Radio Telefis Eireann of Eire which makes systematic use of vertical polarization. In the United Kingdom, one low power local radio relay station serving parts of Derby also radiates with vertical polarization only.

Fig. 2. The complete ferrite aerial unit mounted on a printed circuit bourd.

Fig. 3. Receiver signal-to-noise output vs. field strength level.
receiver together. For receivers using varicap diode tuning throughout this should not be unduly difficult.

It is hoped that this idea will be taken up and developed by industry as a means of providing a vital improvement in portable receivers that could help to increase the popularity of listening on v.h.f.

Acknowledgements

The author thanks the Director of Engineering of the BBC for permission to publish this article.

Reierences

1. MacEwan, D. Radio in the '80s. Wireless World. vol. 83, May 1977, no. 1497, pp. 36-40. 2. Schieffer, C. A small Ferroxcube aerial for v.h.f. reception. Phlips Technical Revew. vol. 24, 1962/3, pp. 332-336.

Books Received

Problems and Solutions in Logic Design, by D. Zissos, is the source book for our current series of articles on logic design. The book is written with the needs of teachers and students in mind, but is also for engineers looking for a reliable and economical method of design. No engineering or other specialized knowledge is assumed: the procedure is simply set out as (a) draw a flow-chart, (b) derive logic equations and (c) draw the circuit. A potential reader will be considerably heartened by the author's statement in the preface that "all our circuits work!" The book is published by the Oxford University Press at $£ 1.75$ in paperback form. A hardback version is available.
Television Video Transmission Measurements. Published by Marconi Instruments and written by the former head of the BBC Measurements Systems Laboratory, this book is firmly based on much practical experience. Techniques described are not given a gloss of perfection and difficult areas glossed over; where problems exist, they are discussed. Essentially, this is a practical treatment of video measurements.

A description of the manner in which picture quality can be assessed is followed by a chapter on the measurement of signal level. Distortion in the signal path and noise are well covered, as are the effects and measurement of return loss. The use of insertion test signals is discussed, with descriptions of national and international test signals and methods of measurement. The effects of distortion contributions from all the elements in a PAL transmission path are estimated in an appendix and there is a reference list of picture impairments. Department 345, Marconi Instruments Ltd, Longacres, St Albans, Herts, pp.113, £7.50.

Computer links for the battlefield

The Ministry of Defence is evaluating what is claimed to be the first effective computerised field command and control system. Changes in command and field dispositions now relayed by secure telephone links will, when the system becomes operational, be disseminated automatically from terminals at corps and divisional headquarters, forward positions and step-up units to all other points in the network.
The contract for the pilot scheme, which will end with user trials by the British Army of the Rhine early next year, is worth $£ 2$ million to the radar division of Plessey Electronic Systems. The original requirement for Wavell, as the automatic data processing project is code-named, was accepted by the Army Combat Development Committee in 1975 and, if the field trials prove successful, the system is expected to come into service in the early 1980s. Preliminary studies took place as long ago as 1970 .
At the moment much of the time of staffs at each level of command involves logging, sifting, collating, recording and passing on information over the Bruin telephone network. Bruin is a secure six channel trunk network capable of a total t.d.m. data rate of $250 \mathrm{kbit} / \mathrm{s}$. The army estimate that over half of the divisional operational staff time on the Bruin system is spent disseminating, confirming and handling location information, and although Wavell will be used in the future for a much greater range of data, as a first step its use will be confined to sending location information automatically according to predetermined instructions. Eventually the computer will up-date maps automatically.
Bruin has been in operation since 1967 and, according to one army source, is currently "chock-a-block". A lot of calls are made to check that the system itself is working, so that although one of the channels has to be made switchable to Wavell, the elimination of such sys-tem-checking calls, together with the
availability of the other five channels, should reduce the traffic load on the system. The army say the combined communications system will be more efficient, increasing the speed of dissemination to match the greater mobility of troops and enabling staff to deal with the greater volume of information both from normal sources and those they refer to mysteriously as "improved surveillance techniques". Bruin is nearing the end of its useful life and will be replaced eventually with Ptarmigan, which will be built around the Plessey PP250 processor.
The difficulties of using computers in the battlefield before have centred around the hostile conditions in which they have to work. Besides the problems caused by throwing or building normally delicate disc hardware into trucks and jeeps, they have to be able to operate in high temperature and humidity, and to respond even when used by soldiers under battle stress. They must be demountable, for use in barns and so on, and must tolerate poor power supplies. Yet withal the army's policy is to buy readily-available commercial equipment, use it, and develop it as the system becomes more familiar. They argue that this is more cost-effective.

This does have a bonus for the suppliers in that it avoids their having to make specials for the MoD and provides, or should do, a product which can be readily sold abroad. In this case the army is helping Plessey to find markets abroad, particularly since a Nato project on a joint communications system collapsed some years ago and the Americans have not so far produced their battlefield automatic data processing system. Wavell is already being looked at "very carefully" by our Nato allies, say Plessey, "and we hope it's to be adopted as a Nato standard." It could easily be changed to meet the needs of other armies; each potential customer's application "would be treated on its merits"

Swindon cable station near closing

Unless "substantial" funds are forthcoming in the near future, Swindon Viewpoint, one of the only two remaining cable tv stations, will close by the end of September. A statement issued after a board meeting on July 1 said that the station was short by $£ 7,500$ of £23,500 promised to the station, including $£ 2,000$ from Thamesdown Borough Council. Much of the pledged cash depended on Swindon reaching its £65,500 complete operating budget. "It is possible," said the statement, "that further finance may come from the voluntary services unit of the Home Office, and from the Gulbenkian Foundation - and further, in a full year Swindon Viewpoint can earn about
 and video programmes for industry." A year ago Swindon Viewpoint said they could definitely continue for three more years. (WW, October 76, p.44).

CEI inquiry to be "'experimental"

Sir Monty Finniston is to chair a Committee of Inquiry into the engineering profession, the Industry Secretary, Mr Eric Varley, announced in the House of Commons on July 5. The terms of reference are to review, in the light of national economic needs: the requirements of British manufacturing industry for professional and technician engineers, the extent to which those needs are being met, and the use industry makes of engineers; the role of the engineering institutions in relation to the education and qualification of professional and technician engineers; the advantages and disadvantages of statutory registration and licensing of UK engineers; and the arrangements in other countries, particularly the EEC, for handling these problems.

The terms of reference are very similar to those suggested to Mr Varley in a joint letter from the IEE and IMechE at the end of January, though there is not a specific reference to the CEI. (See WW April 77, p. 53 and June 77, p.39).

Mr Varley's statement in the Commons was in response to a question from Mr Arthur Palmer, chairman of the Commons Select Committee on Science and Technology, who has led the fight to get an inquiry set up. Mr Palmer, who represents the Electrical, Electronic, Telecommunication \& Plumbing union, told Wireless World: "The terms of reference are broadly as I suggested. As I see it this is an inquiry into the electrical engineering profession, the part it should play in the life of the nation, and engineers' status - their pay will come into it because I don't see how you can avoid it - and the particular problems of engineers." He thought there should be statutory registration of engineers since, at the moment, an engineer could cease to be chartered if he forgot to pay an annual subscription to one of the institutions. The registration of engineers would overcome that, and an engineer would be free to join an institution if he wanted.

Some confusion has been caused by the inclusion of the words "to review for manufacturing industry". Sir Monty Finniston told Wireless World, however, that the phrase was used because manufacturing was an essential element in the industrial strategy, as well as "the major base from which the economy would develop." The scope of the enquiry had to be limited: "You would need infinite time if you were to examine everything."

Asked what he thought the inquiry,
which he hopes will report to the Industry Secretary by the end of 1978 , would achieve, Sir Monty said: "Engineers are a very important and essential element of the industrial strategy by which the country hopes to regenerate its industrial life and its economy. I hope engineers will be reorganised so that they will be able to meet the demands made on them in the future. I hope they will gain a more collective voice in their own fields of interest, a new sense of status, and a greater sense of responsibility, and accountability, to the community at large as well as the industrial community."

It would be conducted openly, receiving written submissions and interviewing individuals, groups and institutions. "I also want to try some experiments, things that haven't been tried before at these inquiries." He could not say what they were until they had been agreed elsewhere.
"We are a nation of engineers ...We are experts if only we could organise ourselves to give of our best. The profession has been denigrated, but the British engineer is a man of high quality and should be regarded as such. But he has got to work for it."

Remote software

As teletext decoders become more widespread an increasing number of people are seeking to use them other than to receive ORACLE or CEEFAX. One very interesting idea (writes John Hedger of the Independent Television Companies Association) is called Telesoftware, or "software at a distance". The technique enables the transmission of computer programs in object code form via teletext. The program, which is transmitted using normal teletext characters, is stored after receipt in the decoder RAM. This memory can be accessed by a microprocessor, so forming quite a powerful stand-alone computer: the teletext keypad provides input and commands and the television screen becomes a video display unit. The applications of the microprocessor are limited only by the range of software transmitted and, of course, its own processing capacity.

With a number of decoder manufacturers already basing their decoders on a microprocessor, Telesoftware could be an inexpensive yet efficient way of extending the uses of an expensive item, provided, of course, the broadcasters agree to transmit the software.

ITCA made some experimental software transmissions using ORACLE in February. They consisted of a simple demonstration program and a bootstrap loader written in the instruction set of the 2650 microprocessor. The software was written by Telesoftware's inventor, Will Overington, who sees a big future in it.
He would eventually like to see

A Bell Labs scientist silhouetted against Bell's new millimetre-wave aerial. This sensitive radio antenna is being used, according to Bell, to study "the highest frequency signals ever continuously beamed down to earth from orbiting satellites." The experiments will help tell if these higher frequency signals, from two satellites transmitting at 19 and 28 GHz , could be used reliably for future satellite systems. A third satellite will join them in May next year.

Telesoftware being broadcast by ATS6-style satellite to developing countries where its computing power could be used in community groups for such purposes as computing sterilisation processes for community food canneries. A special feature of the design is the ability to condition a standard terminal to display information in languages using non-roman character founts by means of software.

But perhaps the most marketable use for Telesoftware might be in video games. With the present boom in sales of these plug-in tv extras, a manufacturer in the USA has already developed a programınable version of video games. In this device, ROMs containing the programmes for individual games are housed in plastic cassettes, which are simply inserted into the machine. However, these ROMs are expensive to produce and a much cheaper alternative would be to send the program for the game via teletext. In this way broadcasters could send a variety of games, changing them each week. They could even transmit a weekly chess problem into the heart of the games unit.

IBA 3-channel surround sound "milestone"'

IBA engineers have made a significant step forward in demonstrating the feasibility of a surround-sound broadcast system using a narrow-band third channel. They have shown that the bandwidth of a third channel in the

NRDC 45J system can be reduced to around 2 kHz without significant loss in surround-sound realism. Tests on an initial batch of 20 stereo receivers showed that distortion due to addition of a 2 kHz quadrature-phased third signal about the subcarrier frequency is not noticeable on program when its level is reduced to -7 dB (though it is noticeable with pure-tone signals). "We are now able to see where we are going in the future" said T. S. Robson, deputy director of engineering, at a press open day. "We have reached a milestone point in surround-sound."

Sufficient theoretical and laboratory work has been done in the last year or so at the IBA Engineering Centre, Winchester, that it is now possible to formulate a tentative proposal for a surround broadcast system based on a two-channel coding similar to H or 45 J but with a third channel of narrow bandwidth added in quadrature to the difference signal in the manner of 45JT proposals. Even if a two-channel system were to be adopted initially, the IBA view is that it should be capable of expansion into such a " $21 / 2$ "-channel type of system. IBA engineers say that the "undoubted merits of the 45 J system must not be neglected" whilst pointing out that it is highly desirable that the same system should be used widely, not only by broadcasters but also by the recording companies.

Before a formal proposal can be formulated and put to interested parties it is necessary to "optimize the compromise" according to F. H. Wise, head of network and service planning and IBA representative on EBU Working Party 'S'. For, although a lot has been learned in the last few years and enough is probably known about the compromises to be made in two-channel systems, $2 \frac{1}{2}$-channel systems now appear to be feasible and it is necessary to take stock and think again. IBA engineer Ian Collins says, " 45 J is somewhere near optimum but some refinement is probably desirable" extra work on stereo compatibility is planned if the Authority decide to continue work in this area. "We'd like to see some further tests, later this year, to explore what the (centre front) phase angle should be," Fred Wise told Wireless World and he feels it likely to be in the region of 35 to 40°. Further work would also test more models of stereo receiver and the effects of reducing the bandwidth of the third channel to 1.5 kHz , and would include a comprehensive series of pilot transmissions in various formats, probably making use of the two London v.h.f. transmitters.

There is a marked difference of opinion between the BBC and IBA over the feasibility of a three-channel system. The BBC have consistently set themselves against the idea, claiming that it would produce an unacceptable worsening of signal-to-noise ratio. They used a wider bandwidth, but never
published their evidence, and it was not clear how detailed were their investigations into effects of bandwidth restriction. "We're not convinced of the interpretation of results of the BBC's three-channel studies" commented one engineer. For a 2 kHz third-channel bandwidth, at a level of -10 dB , the loss in signal-to-noise-ratio , for stereo reception is 0.2 dB (worst case azimuth), according to IBA calculations, and the resultant loss of service area would be insignificant. This rises to 0.5 dB at -6dB level for 2 kHz bandwidth, the figure quoted in our February story (page 43) and which a BBC spokesman subsequently rejected. Signal-to-noise ratio for $21 / 2$-channel reception relative to that for stereo would be -4.4 dB unweighted, or -1.4 dB C.C.I.R.weighted (worst case azimuth).
One advantage of the J system in practice is that the effect of cross modulation in the receiver would be a symmetric reduction of stereo stage width, which would be difficult to detect. Other codings would give rise to an asymmetric effect called image "slewing" which would be more noticeable.

Call for British FCC

Most communication users and manufacturers in the UK "feel that the administration and control of frequencies, which is under the political control of the Home Office and the Home Secretary, is unsatisfactory," according to Air Call Ltd, who supply car telephone answering services. In a statement commenting on the Annan Committee's report on broadcasting, Air Call says "Small or independent users cannot do anything to put right the many things that are wrong with the control of frequencies. For instance, radio links fill up the mobile bands, defence and marine allocations are much greater than required, channel widths vary and agencies such as the BBC and the police use frequencies incorrectly allocated or commandeered in the wrong parts of the spectrum." It was an advantage of the independent agency, as exemplified by the FCC in Washington, that "all the hearings are in public and 'John Citizen' is supreme instead of having a hidden political man in charge who may be motivated by reasons that are quite outside the public interest".

Air Call suggest the setting up of a Royal Communications Commission which would not have any control over the broadcasting authorities but would be responsible only for the regulation of frequencies, channel usage, interference and so on.
"We want the same sort of legal processes as the FCC . . . It is extremely undesirable that the Minister in the
form of the Home Office should be going to the next world conference on frequency allocation without the real power and responsibility for talking for the whole nation. What we require is a non-political, permanent body which can speak for Britain in this conference."

Carter: "End the PO monopoly"

The Post Office has fallen well behind other countries, particularly America, in taking advantage of new telecommunications technology and should, if necessary, buy a foreign stored programme control design to add to TXE4, says the Carter committee on the Post Office. The cost of supplying the telecommunications service is higher than it should be, says the committee, partly because Britain has fallen behind in the installation of economically maintained systems.

The committee visited the United States and report that the stored programme control network in use there since last year has reduced maintenance by half, doubled the productivity of the remaining staff because of centralised maintenance, reduced installation cost and time, decreased capital costs dramatically, improved traffic measurement and management information, and eased the sending of more accurate bills. As a result, Bell Telephones have been able to reduce surplus capacity to a minimum, and introduced a number of new services to customers.

By contrast, although there have been two experimental s.p.c. exchanges, not one is in regular use in the British Post Office network. "The Post Office has told us that the development of s.p.c. for the new exchange TXE4 was considered in the late 1960 s but rejected because the estimated cost and the risk of delay associated with its development were too high. However right that decision appeared at the time, the unmistakable consequence is that the Post Office and the British telecommunications industry have no operationally proven s.p.c. system available either for use at home or for export, whilst their main competitors abroad have this desirable product available and are five or six years ahead of them in the world league. This may not seem a serious matter to the Post Office, because TXE4 may satisfy its operational requirements for some years to come, nor are the advantages forgone readily apparent to its captive customers. It is, however, a very serious matter for the prosperity of the major suppliers in the United Kingdom and for British exports of telecommunications equipment."

The committee adds that regardless
of the improvement offered by TXE4A "without full s.p.c. we will be building a considerable long term disadvantage into the telephone system ..." The question should be re-examined and the possibility of introducing a proven design of full s.p.c. through licensing from a foreign manufacturer considered.

The committee found the management of the System X project "a major cause for worry." When, in six years' time, the first generation of the new technology appears in the UK, it will have to compete with the second generation of foreign control equipment. (See "Telephones and new technology," p.71.)

Above all, the project must be completed on time, yet the Post Office appears to feel no urgency about developing System X , "indeed the Post Office has yet to make any firm commitment to its eventual purchase." Added to that uncertainty, the required close co-operation between all three suppliers and the Corporation is inhibited by mutual suspicion among the suppliers and bureaucracy at the Post Office: "This project is falling behind schedule, retarded by a complex apparatus of committees and discussions."

On the Post Office equipment monopoly the committee says: "Experience in the United States of America seems to have shown that it is feasible to establish workable rules and conditions for subscribers to connect their own terminal equipment to the telephone lines without endangering the network ... We are therefore not convinced that the balance of advantage to the community favours the continuation of the present monopoly situation in the United Kingdom." They recommend a trial of privately supplied equipment but at first of only one type of apparatus, such as a small private automatic branch exchange.

0

New energy adviser: Sir Hermann Bondi, Defence Ministry chief scientist, has moved to the Energy Department. The July 28 announcement follows the abrupt departure of Dr Walter Marshall from Energy a month earlier, partly because of a conflict of interest. (WW, Dec 76, p.76). According to the Energy Department, Secretary Tony Benn wanted a full time chief scientist Marshall had been only part-time - and it is believed Benn could not have promoted him to the post without presenting a public rebuff to Marshall's boss at the United Kingdom Atomic Energy Authority, Sir John Hill, who advises the department on nuclear matters.

Using a microprocessor

2 - Hardware and programming

by J. Skinner, Leafields Engineering Ltd

At the end of the first part of the article, the flow chart had been derived. Consquently, the designer is now able to develop the programme and translate his thoughts into hardware.

Programming

In the completed programme, each instruction is denoted by a mnemonic and a binary machine-code word. The binary coding is used by the microprocessor and programmed instructions must end up in this form, but the procession of ones and zeros is not the easiest way to see what is happening. It is common, therefore, to use the mnemonic form of the instruction for juggling about with a programme and to convert it into machine code later, with the aid of the instruction-set table. Assembler programmes will, when run on a microprocessor, convert mnemonic codes into machine codes. The abbreviated instruction set for the 8080 is shown in Table I.

Points to bear in mind when tackling the programme include the way in which each instruction is handled by the c.p.u. Two or three bytes are needed to carry out each instruction and this fact must be taken into account to preserve the logical sequence. The programme is held in memory in a sequence in which the step number is the actual memory address, so that the order of addressing the memory by the c.p.u. is vital.

I/O. The simplest way of selecting the I/O block required for a particular function is to use binary code ($1,2,4,8$, 16 , etc.) which can be produced automatically by the c.p.u. This binary code can be read into the c.p.u. in the ordinary way as data and transferred to the address lines when needed. In this way, each address line calls up a separate I/O block, as in Fig. 4 of part 1.
Jump instructions. Instructions which call for the programme to jump consist of three bytes, the second and third of which are the least significant and most significant bits respectively of the address to which the programme is to jump.

Table 1. Abbreviated instruction set for the 8080 , showing only those instructions used in the programme discussed

Mnemonic	Machine code	Machine code (hex)	Function
MVI. A	00111110	3 E	Load accumulator
OUT	11010011	D3	Output
E 1	11111011	FB	Enable interrupt
HLT	01110110	76	Halt
MVI. D	00010110	16	Store in register D
MOVA. D	01111010	7 A	Move data from register D to accumulator (A)
IN	11011011	DB	Input
ANI	11100110	E6	AND with data in accumulator immediately
FO	11110000	FO	Bits generated to perform AND function in text of article Not part of instruction set
RRC	00001111	OF	Shift accumulator right
CMPL	10111101	BD	Compare the content of L with content of accumulator
JM	11111010	FA	Jump if result of last operation is minus quantity
DCRD	00010101	15	Decrement or count down content of register D
JNC	11010010	D2	If the relevant "flag" is zero. Jump (Jump on no carry)
DI	11110011	F3	Disable interrupt
JMP	11000011	C3	Jump to assigned address unconditionally
Register code		Register letter	
000		B	
001		C	
010		D	
011		E	
100		H	
101		L	
110		Memory	
111		Accumulator	

Rotation. The data held in the accumulator can be shifted to the right or left. As it moves out of the register, the data will be lost unless it is fed back to the beginning, in which case eight shifts will return an 8 -bit register to its ordinary state. This process is termed "rotation" for obvious reasons. A bit shifted out of the register can be tested for a value of 1 or 0 and a condition "flag" signal set or reset. For example, at address 52 (34 in hexadecimal or 00110100 in binary) the contents of the control valve register E have been transferred to the accumulator, rotated right and transferred back to E. If the flag bit is zero, the programme is to jump to the next control line address.
Initializing. It may be necessary; as in this programme, to see that the output ports are in the correct condition, since the reset function of the 8080 (wired) is only concerned with the programme counter; c.p.u. registers must be set to their initial conditions. Immediately on switching on, therefore, the accumulator and valve controls are set to zero. Since the programme has now started,
it must be halted and an interrupt start signal awaited for the main part of the programme to continue.
Coding. It is common to translate the pure binary of the machine code into hexadecimal for ease of handling. The code is shown in Table 2 for those who are unfamiliar with it. For example,

Table 2. Decimal, binary and hexadecimal. equivalents.

decimal	binary	hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

using the eight-bit word of the 8080 , the instruction to read in data is 'IN' (mnemonic), 11011011 (binary), DB (hexadecimal).
Programme. The final form of the programme is seen in Table 3, in which the hex. code is used for the programme address and machine-language instructions, for which mnemonics are also given. Incidentally, the division of the eight-bit machine code into two four-bit words, each being given a hex. code, does not mean that this is how the code is made up. In the MOV instructions, for example, the first two bits are always 01 , followed by two, three-bit addresses for destination and source of the data to be moved. Register B has the code 000 and register D is coded 010 ; as in Table 2, so that the instruction "Move the contents of register B to register D" would be coded 01010000 , which can be grouped 01010000 , translating into hex. code as 50.

Use of r.a.m. Where the data storage provided in c.p.u. is not sufficient, extra capacity in the form of r.a.m. may be included, as shown in Fig. 1. The memory element is coupled to address data-bus lines in exactly the same way as the r.o.m. and I/O elements, but an additional control function has to be provided in order to distinguish between the r.o.m. amd r.a.m. elements in the read mode. Usually, there are spare address lines available and these can be used to control the memory elements via the chip-select (CS) function provided. Thus if A0-A7 are used for normal addressing for 8-bit, 256 -word r.o.m. and r.a.m. A8 can be used to supply CS for r.a.m. For the r.o.m. it is necessary to invert A8 and gate with memory read (MR). Instructions involving r.a.m. must then include an address code starting at 2 . A similar technique starting at higher addresses may be used where a larger r.o.m. is required. If insufficient address lines are available for this technique to be used, address decoding must be used, following the same general philosophy.

A technique known as "memory mapping" is described in the INTEL users manual. This technique treats the I/O elements as part of the memory array, selection being via the appropriate address code. This has the advantage of allowing direct transfer of data between $1 / O$ and registers of memory, without data having to be routed through the accumulator.

Hardware.

The complete system, used for developing and proving the programme described above, is shown in Fig. 1, with a glossary in Table 4. Although r.a.m. was not required for this application, it has been included so as to be available for future use. This configuration will, we hope, prove to be universal. There are several proprietary m.p.u. systems now available in p.c. form, although

Table 3. Complete programme

Address (Hix)	Mach. Code (H_{x})	Mnemonic	Function
0	3E	MVI, A	Set accum
1	00	0	$=0$
2	D3	out	Output ' O ' to valve controls
3	08	8	($1 / 0$ block address $=8$)
4	FB	E	Enable interrupi
5	76	HLT	Halt (and await interrupt start signal)
6	D3	OUT	Output ' O ' to card select column and complete flag
7	10	16	$(1 / O$ block address $=16$)
8	16	MVI. D	Store number of card columns to be read in register ${ }^{\circ} \mathrm{D}$
9	07	7	(0 to 7)
A	1 E	MVI. E	Store number of valves to be processed in register E
B	80	80 H	(0 to 7 in binary)
C	7 A	MOVA. D	transter from register O to select
0	D3	OUT	next card column
E	10	16	1/O address
F	DB	IN	Fetch card ms.b. data from
10	01	1	1/0 address 1
11	67	MOVH. A	Store card m.s.b. data in register ' H '
12	DB	IN	Fetch card l.s.b. data and d.v.m. l.s.b. data
13	02	2	from 1/O address 2
14	E6	ANI	Blank off d.v.m. I.s.b. (This is the AND function
15	FO	FO	referred to in part 1 of the article.)
16	OF	RRC	
17	OF	RRC	Shift right 4 tumes
18	OF	RRC	Shitt right 4 trmes
19	OF	RRC	
1 A	6 F	MOVL. A	Store card I.s b data in register 'L'
1 B	7 B	MOVA. E	Transter data from register E to
1 C	D3	OUT	select next valve
10	08	8	1/0 address
IE	DB	IN	Fetch card l.s.b. and d.v.m. I.s.b. data
1F	02	2	from 1/O address 2
20	E6	ANI	Blank off card Is b (The AND function)
21	OF	OF	
22	BD	CMPL	Subtract card I s.b. from d v.m Is.b
23	FA	JM	Return to Fetch if result negative
24	1E		Is.b jump address
25	00		m s.b. jump address
26	OB	IN	Fetch d.v.m. m.s.b, data
27	04	4	1/O address 4
28	BC	CMPH	Subtract card ms b from d v m m.sb
29	FA	JM	Return to fetch if result negative
2A	26		Is b. ןump address
2 B	00		m.s.b. jump address
2 C	3E	MVI. A	Set accum. to
20	00	0	$=0$
2E	D3	OUT	Output ' 0 ' to control valves
2 F	08	8	1/0 address
30	15	OCRO	Count down card column select register
31	78	MVA. E	
32	OF	RRC	Count down control valve select register
33	5 F	MOVE. A	
34	02	JNC	If flag is zero. return and select next
35	7A	C	control line Is b. jump address
36	00		ms b jump address
37	3 E	MVI A	
38 39	-08	$\begin{aligned} & 8 \mathrm{H} \\ & \mathrm{OUT} \end{aligned}$	Output signal to 'complete flag
3 A	10	16	
3 B	F3	DI	Disable interrupt
3 C	CB	JMP	Return to start
30	00		Is.b. jump address
3E	00		ms.b ןump address

none has yet been seen with the I/O structure as described in this article, most of the products being best suited to data-transmission applications. It is appreciated that most of the interface elements, such as the universal, asynchronous, receiver-transmitter (u.a.r.t.) and programmable peripheral interface (p.p.i.) could be used in the system of Fig. 1; but they are unnessarily complicated and more expensive that the simple device described (actually, little more than an 8 -bit latch). Most of the system components have already been described but some additional comments may be helpful.

System control. This is a single element provided by Intel for decoding and synchronizing the control bus. A bi-
directional data bus driver is included, as is isolation of memory and $1 / \mathrm{O}$ controls.
1/O. The Intel 8212 element is used, as mentioned above, for sheer simplicity. It is basically an 8 -bit latch with 3 -state output for bus operation. A made control enables either input or output function to be selected. In the system of Fig. 1, this is determined by a wired link, but could also be programmed by the c.p.u. Interrupt and clear facilities are provided, these not being required in this application.
R.a.m. 8 bits $\times 256$ words of storage are provided in the form of 2,4 -bit, 256 -word elements. The two sets of four data bits appear side by side to form the 8 -bit data word. Addresses are common to both elements. Gating for r.a.m./r.o.m. selection is provided by a single 7400 .

P.r.o.m. An 8×256-bit p.r.o.m. is shown, whose size can easily be increased, since there are spare address lines available. A r.a.m. was used for this function during development, a plug-in version simulating the 8702 p.r.o.m. being purchased. This could be constructed very easily and cheaply but, since we were more interested in developing the m.p.u. technique than developing a ro.m. simulator, we decided to buy one. The simulator is provided with hex. coded programme and address thumbwheels and binary display of the data which, apart from its usefulness for programming, we found useful during programme check out.
R.a.m. and r.o.m. speed. The 8080 c.p.u. is designed to operate with memory components having an access time of approximately $450-550 \mathrm{~ns}$, although times of up co 850 ns are suggested as being suitable. Cost is, of course, related to speed and many users will wish to use the slower devices - the 8702 for example has a maximum access time of $1.3 \mu \mathrm{~s}$. Provision for slower devices can be made by controlling the "ready" input to the c.p.u. (the clock controller in this example). One or more clock periods are used to provide a "wait" state suited to the access time of the memory system used. The two functions of 850 ns memory access and single-step drive are incorporated in the complete system of Fig. l.
De-bugging. Faults are of two kinds hardware and software. Monitoring the data lines enables the programme sequence to be verified, and address-line

Fig. 1. The complete circuit of a universal microprocessor. The three modules at the lower left form the 850 ns memory access (right and left i.cs) and a single-step function (centre and right i.cs).
monitoring can also be useful, while buffered l.e.ds plugged into a spare socket or even wired in permanently will prove invaluable even to the experienced. Checking correct operation of all components, with the exception of the c.p.u. is straightforward. The c.p.u. can prove difficult to test because of its high operation speed and also because of its complexity. Fault finding equipment is costly and substitution is the usual way out.
P.r.o.m. protection. Intel mention in their Memory Design Handbook the need to protect p-type p.r.o.m. data inputs from the negative levels produced on the data bus by an n-type r.a.m. The 8702 p.r.o.m. is a p-type and the 8101 r.a.m. is an n-type so that protection should be provided in order to avoid damaging the p.r.o.m. All that is required is the inclusion of a series limiting resistor of 250Ω and shunt diode, in each of the p.r.o.m. data input lines.

Conclusion

This is a system which has been tried and proved. The programme may be used to prove hardware. It is hoped that

Table 4. Abbreviations used in system diagram.

$\overline{\mathrm{CE} 1}$	Chip enable
$\overline{C E 2}$	
R/W	Read/write input
OD	Output disable
INT	Interrupt request
INTA	Interrupt acknowledge
HLD	Hold
WR	Write output
DBIN	Data bus in Signal to system controller that data bus is in input mode
HLDA	Hold acknowledge Signal in response to hold signal
$\overline{\text { STSTB }}$	Status strobe
$\overline{\mathrm{CS}}$	Chip select input
	Device select input
MD	Mode
MEMR	Memory read
MEMW	Memory write
T/OR	1/0 read
1/OW	1/0 write
Negated names indicate that the function is active when the signal is low	

the stages in development of both hardware and software have been dealt with in sufficient detail for constructors to proceed with their own designs. Neither the hardware nor software is considered to be unique but it is hoped that it will prove to be applicable to many future problems.

The author gratefully acknowledges the assistance of Howard Kornstein of Intel and the staff of Rapid Recall Ltd., in developing the system. Thanks are also due to K. Sharman who constructed and tested the system and also developed the single stepping facility.

Distortion in low-noise amplifiers

Low-noise, low-distortion preamplifier design with RIAA equalization

by Eric F. Taylor, Electrical Engineering Laboratories, The University, Manchester.

Abstract

The first part of this article considered the effects of transistor non-linearities on the distortion performance of feedback amplifiers. This concluding part illustrates the practical application of some of the low distortion design principles established, by the design of a low-noise, low-distortion, audio preamplifier equalized for use with a magnetic pickup. With a nominal output of 100 mV for 5 mV input at 1 kHz , it has 30 dB overload capability and an harmonic distortion of 0.005% at all frequencies and all overload levels.

The primary function of an audio preamplifier is to raise the input signal above the system noise level whilst meeting certain specifications regarding distortion and overload. Nominal output level should be high enough to prevent the design of subsequent stages being compromised by noise considerations but should not be so high as to severely restrict the overload capability of the amplifier. A nominal output level of 100 mV is a reasonable compromise but even so an overload capability of 30 dB demands a peak-to-peak output swing of approximately 9 V .
In Part 1 of this article attention to the non-linearity of the differential gain of a low-noise amplifier was confined to the non-linearity of the input stage on the ground that the output stage could be made as linear as required by local feedback. Adopting a similar approach and assuming that all distortion is produced by the exponential $I_{C} V_{B E}$ characteristic of the transistors in the input stage, allows the minimum open-loop gain necessary to meet the distortion specification to be determined as follows.
The peak output amplitude V_{0} is determined for the specified overload capability; in the present design it is equal to 4.47 V for 30 dB overload referred to 100 mV . For a given value of open-loop amplifier gain A the differential input voltage to the amplifier is then V_{0} / A and the harmonic distortion can then be found either from the graph of Fig. 7 (Part 1) or more conveniently from the table given in Appendix 3.

Thus if for example the gain A was equal to 1000 , the differential input signal for 30 dB overload would be 4.47 mV and the distortion generated by a single common-emitter stage would be 4.3%.
It is now necessary to determine the feedback factor of the amplifier, $(1+$ $\mathrm{A} \beta$), as distortion in the open loop gain is reduced by this factor in the closedloop configuration.* The feedback factor is readily determined from the expression for the closed-loop gain A_{f}.

$$
A_{\mathrm{f}}=\frac{A}{(1+A \beta)} \quad(1+A \beta)=\frac{A}{A_{\mathrm{f}}}
$$

With RIAA equalization the feedback factor should be determined for frequencies below 50 Hz as the amount of feedback reaches a minimum at these

[^3]frequencies. In the present design the sensitivity is specified as 100 mV output for a 5 mV input at 1 kHz and therefore at frequencies below 50 Hz the closedloop gain of the amplifier will be 200 . From this equation the feedback factor is therefore equal to 5 and the closedloop distortion will be $4.3 / 5=0.86 \%$.

Repeating these calculations enables the distortion to be plotted as a function of the open-loop gain and this has been done in Fig 8 for a single transistor stage and a two transistor long-tailed pair stage in which the collector currents are matched to within 5%. With the single transistor input stage an open-loop gain of at least 9500 is required to meet the 0.01% distortion specification whereas with the two transistor long-tailed pair input stage the open-loop gain need only be 1500 .

The open-loop gain also needs to be sufficient for the closed-loop gain to be

Fig. 8. Calculated distortion due to input stage of preamplifier as a function of open-loop gain.

closely defined as a function of frequency according to the RIAA equalization characteristic. At frequencies below 50 Hz a closed-loop gain of 200 is required and an open-loop gain of 2000 would give an acceptable 20 dB of negative feedback.

With a long-tailed pair input stage the minimum open-loop gain is therefore dictated by feedback requirements and should be approximately 2000 , whereas with a single transistor input stage the open-loop gain is dictated by the distortion specification and should exceed 9500 .

The input stage

The superior distortion performance of the long-tailed pair input stage compared to the single transistor input stage has been established beyond question. The signal-to-noise ratio of a long-tailed pair input stage is of course inferior to that of a single transistor input stage, but as shown in Appendix 4 the deterioration in the signal-to-noise ratio of an amplifier designed for use with a magnetic pickup is only 0.22 dB . ${ }^{*}$ There seems to be little reason therefore for not using the long-tailed pair input stage unless the ultimate in noise performance is required.

Figure 9 shows the complete circuit diagram of the preamplifier. The longtailed pair input transistors each operate at a collector current of approximately $90 \mu \mathrm{~A}$ for optimum noise performance with a magnetic cartridge input and the tail current is derived from a current source to give a good positive supply rejection ratio and improve the common-mode performance of the amplifier. A single-ended output is. taken from the input stage via a current mirror, the advantages of this arrangement being
-the useful gain of the input stage is doubled
-a good negative supply rejection ratio is achieved
-the current mirror can be used to balance the collector currents of the long-tailed pair.
The importance of balancing the long-tailed pair stage to obtain optimum distortion performance was errphasised in the first part of this article. With $10 \mathrm{k} \Omega, 1 \%$ resistors in the current mirror overall negative feedback around the preamplifier maintains the collector currents of $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ to within 5% for up to 25 mV mismatch in V_{BE} of $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$.

The output stage

The noise contribution of the output stage of a preamplifier cannot be ignored but the design is primarily influenced by the overload capability, and therefore output voltage swing, that is required.

[^4]
Low noise of series feedback + high overload of shunt

A low-noise, low-distortion audio pre-amplifier, equalized for use with a magnetic pick-up cartridge, has been developed using low cost, readily available components. The basic amplifier can however be considered as a high performance, 7.5 MHz unit-gain bandwidth operational amplifier which can easily be adapted for other purposes, e.g. different sensitivities and/or equalization.

Distortion measurements on the preamplifier have verified much of the theoretical treatment and have clearly shown that the distortion performance of a series feedback amplifier with a standard input is limited at high audio frequencies by distortion resulting from the common-mode input signal and the non-linearity of the common-mode input impedance. The common-mode input signal can however, be virtually eliminated by using an unconventional feedback connection in which the input signal is introduced directly in the feedback path of the amplifier. With this connection it is possible to achieve the low-noise performance of the series feedback connection with the high
overload capability of the shunt feedback connection.

At low frequencies the distortion of a low-noise audio amplifier is dominated by the non-linearity of the differential-mode gain and ultimate performance is limited by the exponential relation between collector current and base-emitter voltage of the input stage transistor or transistors. The two-transistor long-tailed pair has a much more linear transfer characteristic than a single common-emitter input stage and enables a significant improvement in distortion performance to be achieved with only a slight deterioration in signal-to-noise ratio.

The design example shows how low-distortion design can be treated quantatively and that it is not difficult, at least in an audio preamplifier, to achieve an harmonic distortion of less than 0.005%. It may be argued that this level of performance is academic when other imperfections in an audio system are considered, but if it has been achieved at low cost then such an argument can only conform that progress at least has been made towards the ideal preamplifier.

Large voltage swings in any transistor circuit inevitably lead to distortion because of the effects of base-width modulation. Even the popular currentdriven common-emitter stage is subject to this type of distortion, because

Fig. 9. Complete circuit diagram of RIAA equalized preamplifier. Unused input must be shorted. Resistors marked $10 k \Omega^{*}$ are matched to within 2%. Three of the input resistors should be metal oxide types.
variations of β with $V_{C E}$ are not insignificant. A current-driven common-base configuration would probably be the most linear single-transistor output stage because the current gain α is relatively independent of V_{CE}. However the high output impedance of both the common-emitter and the common-base stage make them unsuitable for use as an output stage in a feedback amplifier unless the output is buffered to prevent instability with capacitive loads.
An output stage consisting of at least two transistors is therefore indicated

and at this point the use of an operational amplifier becomes attractive in terms of cost and performance. An integrated circuit operational amplifier with shunt feedback and the output stage operating in class A is used in the present design, the advantages of this arrangement being
-large output swing capability
-low distortion due to local feedback and class A output
-low output impedance
-virtual earth input minimizes voltage changes and therefore distortion of the preamplifier input stage
-optimum feedback configuration for low-noise amplification of the signal from the input stage
-the open-loop gain of the pre-amplifier is well defined.
The operational amplifier used in the output stage of the preamplifier has to meet certain large signal voltage swing and slew rate specifications to operate satisfactorily under overload conditions. The preamplifier is designed to give a nominal 100 mV r.m.s. output with a 30 dB overload capability which demands a maximum peak-to-peak output of approximately 9 V . The maximum slew rate under these conditions for a sine wave output is calculated as follows

$$
\begin{gathered}
V_{\text {out }}=V_{0} \sin 2 \pi f t \\
\frac{d V_{\text {out }}}{d t}=2 \pi f V_{0} \cos 2 \pi f t \\
\left.\frac{d V_{\text {out }}}{d t}\right|_{\max }=2 \pi f V_{0}
\end{gathered}
$$

Evaluated at $f=20 \mathrm{kHz}$ for $V_{\mathrm{o}}=4.47 \mathrm{~V}$ (30 dB overload) this indicates a maximum slew rate requirement of 0.56 $\mathrm{V} / \mu \mathrm{s}$.

The ubiquitous 741 operational amplifier is just capable of meeting the voltage swing and slew rate requirements but the LM301 is a much better alternative at little extra cost. With feedforward compensation' the LM 301 has a limiting slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ and a peak-to-peak voltage swing in excess of 24 V at 20 kHz . In addition whereas the 741 has a unity-gain bandwidth of 1 MHz , feedforward compensation extends the unity-gain bandwidth of the LM301 to 10 MHz , a significant improvement as the loop roll-off frequency of the preamplifier is a function of the unity-gain bandwidth.

Little information is available concerning the distortion performance of general purpose integrated circuit operational amplifiers. However, Linsley Hood ${ }^{2}$ has obtained figures of less than 0.02% harmonic distortion at 1 V r.m.s. output with a 741 in a shunt feedback configuration and measurements by Walker ${ }^{3}$ show that intermodulation distortion in an LM 301 under similar conditions is less than 0.03%. As the output stage of the preamplifier is contained within the overall negative

Fig. 10. Open-loop distortion of the preamplifier as a function of frequency and output amplitude.
feedback loop, it would appear that both of these amplifiers would enable the 0.01% distortion specification to be achieved.

Frequency compensation

The low-frequency open-loop gain of the amplifier is

$$
A_{o}=-g_{\mathrm{m}} R_{\mathrm{f}}
$$

where the mutual conductance of the input transistors g_{m}, is equal to $3.6 \mathrm{~mA} / \mathrm{V}$ with the transistors operating at a collector current of $90 \mu \mathrm{~A}$. The high-frequency break point ofthe input stage is calculated to be 12.0 MHz and the h.f. break point of the output stage is 10 MHz . Compensating the amplifier for unity loop gain at 7.5 MHz gives a reasonable stability margin.
It is not necessary for the amplifier to be compensated for unconditional closed-loop stability as the feedback network which defines the equalization characteristic can be used to attenuate the loop gain. Thus the resistor R_{3} in the equalization network (Fig. 9) usefully extends the frequency at which the loop gain must be rolled off by the compensation network to ensure stability by a factor of two.
The amplifier is compensated by the capacitor C_{f} in the output stage which gives a dominant pole in the open-loop response. The required value of C_{f} is given by

$$
\frac{1}{2 \pi C_{\mathrm{f}} R_{\mathrm{f}}}=\frac{7.5 \times 10^{6}}{A_{\mathrm{o}} / 2}=\frac{2 \times 7.5 \times 10^{6}}{g_{\mathrm{m}} R_{\mathrm{f}}}
$$

which gives 38 pF . For an open-loop gain of $2000 \mathrm{R}_{\mathrm{f}}$ needs to be $560 \mathrm{k} \Omega\left(A_{o} / \mathrm{g}_{\mathrm{m}}\right)$ and the loop gain then rolls off at 7.5 kHz .

It is interesting to note that the value of C_{f} necessary for stability is a function
only of the input stage transconductance and the high frequency attenuation of the loop gain by the feedback network. If the high frequency attenuation of the feedback network can be increased, as may be possible for example in a high-gain equalized preamplifier, then the value of C_{f} may be reduced proportionately to maintain the 7.5 kHz break frequency in the loop response. It is not recommended that C_{f} is reduced below 10 pF however as the operational amplifier output stage may become unstable within its own local feedback loop.

Resistors R_{1} and R_{2} in series with the output are used to isolate the LM301 from any load capacitance and prevent high frequency instability.

Performance

The distortion performance of the amplifier is presented graphically in Figs $10 \& 11$. Figure 10 shows the open-loop distortion of the amplifier as a function of frequency for several values of output voltage. At low frequencies the distortion corresponds closely to that predicted for the input stage. As the frequency is increased above 1 kHz there is a slight reduction in distortion, probably as a result of the 3.25 kHz break frequency in the output stage (for these measurements the amplifier was compensated for unconditional closed-loop stability) which will attenuate the predominantly thirdorder harmonic distortion components generated in the long-tailed pair input stage. Above 5 kHz the distortion increases rapidly with frequency and must be attributed to the output stage of the amplifier as distortion generated in the input stage is independent of frequency. At 3.0 V r.m.s. output however, corresponding approximately to 30 dB overload, the distortion has only risen to 0.2% at 20 kHz .
The distortion of the amplifier with

RIAA equalization is shown in Fig. 11. These characteristics were obtained using the standard input configuration and a source impedance equivalent to that of a 600 mH cartridge. At low frequencies the distortion decreases with increasing frequency as expected because of the increase in loop gain of the amplifier. The distortion reaches a minimum at 1.5 kHz and with a 3 V output (30 dB overload) the distortion is less than 0.001%. Above 2 kHz the distortion increases rapidly with fre-
quency until at 20 kHz the distortion with a 3 V output has risen to 0.1%.

Measurement with the feedback input connection have shown that the distortion is less than 0.005% at all frequencies up to 20 kHz and all overload levels up to 30 dB . Unfortunately it has not been possible to plot any meaningful distortion characteristics for the feedback input connection because of the difficulty in making reliable distortion measurements below 0.001%.

Fig. 11. Total harmonic distortion of the preamplifier, with RIAA equalization, as a function of frequency for various output amplitudes for standard input configuration.

Fig. 12. Printed circuit board layout viewed from component side.
Ready-made and drilled boards will be available from M. R. Sagin, 23 Keynes Road, London, NW2.

The maximum output signal amplitude before clipping is 5.6 V r.m.s. which gives a 35 dB overload capability referred to 100 mV .

Signal-to-noise ratio of the preampli.fier is greater than 75 dB ref. 5 mV at 1 kHz for both the standard and feedback input connection with a 600 mH source inductance.

Construction

Figure 12 shows a printed circuit board layout of the preamplifier and two amplifiers for stereo operation can easily be mounted in an Eddystone 7134 P die-cast box measuring $111 \times 60 \times 31 \mathrm{~mm}$. The printed circuit board allows for either the standard input or floating input connection. In my system the preamplifier is mounted directly adjacent to the pickup and no problems with hum or instability have been encountered with the floating input connection.

The power supply is not critical and the circuit operates satisfactorily with the positive and negative supplies derived from a simple half-wave rectifier with Zener stabilization. The positive and negative supplies should be capable of providing approximately 10 mA .

Acknowledgements. The assistance of Dr D. A. Edwards with the computer programming and Mr D. H. Warne with the design of the printed circuit board is acknowledged.

Appendix 3 -Total harmonic distortion (\%) of a common emitter and long-tailed pair transistor stage due to the exponential relation between collector current and base-emitter voltage of a transistor.

Ampli- tude (mV)	Single trans- istor	Long-tailed pair 0% Mis- match		
0.			5% Mis match	10% Mis match
0.1	0.0967	0.0000312	0.00242	0.00484
0.2	0.193	0.000125	0.00484	0.00967
0.3	0.290	0.00218	0.00726	0.0145
0.4	0.387	0.000499	0.00968	0.0194
0.5	0.484	0.000780	0.0121	0.0242
0.6	0.580	0.00112	0.0146	0.0290
0.7	0.677	0.00153	0.0170	0.0339
0.8	0.774	0.00200	0.0194	0.0387
0.9	0.870	0.00253	0.0219	0.0435
1.0	0.967	0.00312	0.0244	0.0485
2.0	1.93	0.0125	0.0499	0.0975
3.0	2.90	0.0280	0.0777	0.148
4.0	3.87	0.0498	0.109	0.199
5.0	4.83	0.0778	0.143	0.253
6.0	5.79	0.112	0.182	0.309
7.0	6.76	0.152	0.226	0.368
8.0	7.72	0.198	0.276	0.431
9.0	8.68	0.251	0.330	0.497
10.0	9.63	0.309	0.390	0.566
11.0	10.6	0.373	0.455	0.640
12.0	11.5	0.443	0.526	0.718
13.0	12.5	0.519	0.602	0.800
14.0	13.4	0.600	0.683	0.887
15.0	14.4	0.687	0.770	0.978

Note. \% mismatch for the long-tailed pair stage is defined by $2\left(I_{\mathrm{C} 1}-I_{\mathrm{C} 2}\right) /\left(I_{\mathrm{C} 1}+I_{\mathrm{C} 2}\right)$, where $I_{C 1}$ and $I_{C 2}$ are the collector currents of the transistors.

Appendix 4 - Input stage nọise

The noise generators of an amplifier with a single transistor common-emitter input stage and designed for use with a magnetic pick-up cartridge can be represented as

where $v_{N 1}$ is the equivalent noise voltage generator of the transistor, $v_{N 2}$ the equivalent noise voltage generator of the input resistance $R_{i n}, v_{N 3}$ the equivalent noise voltage generator of the equivalent feedback network resistance R_{f}, \mathfrak{i}_{N} the equivalent noise current generator of the transistor, and L the inductance of the magnetic cartridge, assumed purely inductive.
The total mean square noise voltage at a frequency for a bandwidth δf referred to the input can be shown to be

$$
\begin{array}{r}
4 \mathrm{k} T \delta f\left\{R_{\mathrm{Nv} 1}+R_{\mathrm{f}}+R_{\mathrm{in}}\left[\frac{\mathrm{j} \omega L}{R_{\mathrm{in}}+\mathrm{j} \omega L}\right]^{2}\right. \\
\left.+\frac{1}{R_{\mathrm{Ni}}}\left[\frac{R_{\mathrm{in}} \mathrm{j} \omega L}{R_{\mathrm{in}}+\mathrm{j} \omega L}\right]^{2}\right\} \\
=4 \mathrm{k} T \delta f\left\{R_{\mathrm{Nv} 1}+R_{\mathrm{f}}+R_{\mathrm{in}}\left[\frac{\left(\omega / \omega_{\mathrm{o}}\right)^{2}}{1+\left(\omega / \omega_{\mathrm{o}}\right)^{2}}\right]\right. \\
\left.1+\frac{R_{\mathrm{in}}^{2}}{R_{\mathrm{Ni}}}\left[\frac{\left(\omega / \omega_{\mathrm{o}}\right)^{2}}{1+\left(\omega / \omega_{\mathrm{o}}\right)^{2}}\right]\right\}
\end{array}
$$

where the noise voltage and current generators have been replaced by equivalent noise resistors and ω_{0}. $=R_{\mathrm{in}} / L$. If this noise is now, passed through an RIAA equalizing network with a transfer function $A(j f)$, the total mean square noise voltage over a band of frequencies is
$\overline{V_{\mathrm{N}}^{2}}=4 \mathrm{k} T \int\left\{R_{\mathrm{N} v 1}+R_{\mathrm{f}}+R_{\mathrm{in}}\left[\frac{\left(f / f_{\mathrm{o}}\right)^{2}}{1+\left(f / f_{\mathrm{o}}\right)^{2}}\right]\right.$
$\left.+\frac{R_{\mathrm{in}}{ }^{2}}{R_{\mathrm{Ni}}}\left[\frac{\left(f / f_{\mathrm{o}}\right)^{2}}{1+\left(f / f_{\mathrm{o}}\right)^{2}}\right]\right\}|A(\mathrm{j} f)|^{2} \mathrm{~d} f$.
With L of 600 mH and R_{in} of $50 \mathrm{k} \Omega$, if can be shown ${ }^{3}$ that

and it is readily shown that

$$
\int_{50}^{20.000}|A(\mathrm{j} f)|^{2} \mathrm{~d} f=8.015 \times 10^{3}
$$

For a 2N5087 transistor operating at I_{c} of $100 \mu \mathrm{~A}$ with a β of 250 and neglecting flicker noise the equivalent noise resistors are ${ }^{4}$

$$
\begin{aligned}
& R_{\mathrm{Nv1}}=\left(r_{\mathrm{b} \mathrm{~b}^{\prime}}+1 / 2 \mathrm{~g}_{\mathrm{m}}\right) \approx 200 \Omega \\
& R_{\mathrm{Ni}}=2 \beta / g_{\mathrm{m}}=1.25 \times 10^{5} \Omega
\end{aligned}
$$

Putting $\mathrm{R}_{\mathrm{f}}=1000 \Omega$, the value used in the design example, and substituting for all values in equation 5 gives

$$
\begin{aligned}
\overline{V_{\mathrm{N}}^{2}}= & 2.655 \times 10^{14}+1.327 \times 10^{-13} \\
& +2.472 \times 10^{-13}+9.887 \times 10^{-14}
\end{aligned}
$$

where the components are due to the noise voltage of the transistor, the noise voltage of the feedback network; the noise voltage of the input resistance and the noise current of the transistor respectively. Thus

$$
V_{\mathrm{N}}=\sqrt{5.053 \times 10^{-13}}=0.711 \mu \mathrm{~V}
$$

which corresponds to a signal-to-noise ratio of 76.94 dB referred to 5 mV .

With the long-tailed pair input stage two additional noise generators are introduced into the equivalent circuit as shown in Fig. A4. These noise generators are identical with the noise generators of the transistor in the common-emitter input stage (they are not correlated however) and the total mean square noise voltage is now

$$
\begin{aligned}
& \overline{V_{N}^{2}}=5.053 \times 10^{-13} \\
& +2.655 \times 10^{-14} \times 7.14 \times 10^{-16}
\end{aligned}
$$

The first term of this expression is the noise present in the single transistor input stage and the last two terms represent the additional noise due to the noise voltage and noise current generators respectively of the second transistor. Thus

$$
V_{\mathrm{N}}=\sqrt{5.326 \times 10^{-13}}=0.730 \mu \mathrm{~V}
$$

which corresponds to a signal-to-noise ratio of 76.72 dB referred to 5 mV . The deterioration in signal-to-noise ratio of the long-tailed pair compared with the

The reason for only a small deterioration in signal-to-noise ratio with the long-tailed pair is that the noise voltage
generator associated with the additional transistor is small compared with the noise voltage associated with the $50 \mathrm{k} \Omega$ input resistance and the noise voltage produced across the source impedance by the noise current generator of the original transistor. The noise current generator of the additional transistor produces a negligible noise voltage across the low impedance of the feedback network.

References

1. Dobkin, R. C., Feedforward compensation speeds op-amp, National Semiconductor Application Note LE-2, 1969.
2. Linsley-Hood, J. L., Feedback amplifiers, Wireless World Letters, Vol. 79 1974, pp. 11/12.
3. Walker, H. P., Feedback amplifiers, Wireless World Letters, Vol. 79 1973, pp. 193/4.
4. Baxandall, P. J., Noise in transistor circuits, Wireless World vol 74 1968, pp. 454-9.

Drilled boards to this design, shown actual size, will be available for $£ 1.65$ inclusive from M. R. Sagin, 23 Keynes Road, London NW2.

Surround-sound decoders - correction

An error in the components list for the Sansui Variomatrix decoder circuit (September 1976 issue) was regretably perpetuated in the variable-matrix H decoder list on page 38 of the June issue. Values of C_{63} to C_{65} and of $C_{8 /}$ C_{90} and C_{91} should be ten times greater than shown. (In the original QS list this also applies $10 C_{55}, C_{56}$ and C_{73} to C_{75}. $Q S$ kit constructors will also have noticed values for R_{91} and R_{92} were transposed in the list with those of R_{125} and R_{126} and that R_{107}, R_{108} are $6.8 k \Omega$ and not $68 \mathrm{k} \Omega$.) Input capacitors for the output phase shift circuits on page 35 are $4.7 \mu \mathrm{~F}$.

Should constructors of either circuit find that the voltages on pins 5-8 and 12-15 on the HA1327 i.cs do not reach their proper value of - 5 V . Sansui recommend a modification, which we understand is now applied to all Variomatrix circuits. Capacitors C_{58} to C_{61} and $\mathrm{C}_{79}, \mathrm{C}_{80}, \mathrm{C}_{85}$ and C_{86} should be taken to the +24 V 'rail rather than OV ; this means capacitor polarity must be reversed.

Automatic gain control systems

Design considerations and parameters

by N.A.F. Williams, B.Sc. M.I.E.E.

Abstract

The purpose of all automatic gain systems is to control a variable gain amplifier so that its output voltage stays approximately equal to a reference voltage for all values of input signal within certain limits. These limits define the working range of the system. .To carry out this function, negative feedback is used. It is therefore worthwhile considering the parameters which define the operation of a negiative feedback-amplifier, as shown in Fig. 1.

Fig.I. Basic negative feedback amplifier.

The differential amplifier has a gain A, and the output voltage V_{3} is equal to $A\left(V_{1}-V_{2}\right)$. Voltage V_{2} is that fraction of V_{3} defined by the potential divider R_{1} and R_{2}. If $R_{1} /\left(R_{1}+R_{2}\right)=B$, then $V_{2}=$ $B V_{3}$ and a simple calculation shows that provided $A B \gg 1$ the magnitude of the gain V_{3} / V_{1} is approximately equal to 1/B. It should be noted that open loop gain A is the ratio V_{3} / V_{1} when feedback link X is broken. The closed loop gain is approximately equal to $1 / B$, and is the ratio of V_{3} / V_{1} when the link is closed. The loop gain, of magnitude $A B$, is the

Fig.2. Negative feedback arrangement used in automatic gain control systems.
gain around the feedback loop which determines the stability and precision of the amplifier.

The negative feedback arrangement used in automatic gain control systems differs from Fig.1, and is shown in Fig. 2. The input signal passes through an amplifier of variable gain G and, usually after rectification, is compared with the reference voltage V. The error voltage e is then passed through an amplifier of gain M whose output is control voltage v. Loop gain is determined by M multiplied by the transfer functions of any networks present in the loop. For example, a rectifier converting the output of amplifier G to the direct voltage E before comparison with V, and the factor relating v to G. Let us assume that these are all constants, so that the loop gain $L=K M$ where K is a constant. Besides being responsible for the stability and transient response of a negative feedback system, the loop gain decides what error may exist in the loop under steady state conditions, or under varying input signal conditions where the frequency of variation lies within the bandwidth of the feedback system. In the case of a.g.c. systems, it determines the accuracy of control as shown by the following equations. In Fig.2, $E=L e$ and $e=V-E$. Therefore, $e=V-L e$ or $e(1+L)=V$. From the last equation, if the loop gain $L=100$ then $e=V / 101$ so the actual output differs from that required by only about one per cent. Changes in loop gain will cause corresponding changes in the accuracy of control. For example, reducing the gain to ten reduces the accuracy to within ten per cent. Also, the loop gain is not independent of frequency because all practical systems include frequency sensitive components. In general L has the characteristic of a low pass filter which has a constant amplitude C up to frequency F. Beyond this point the frequency sensitive components begin to take effect and reduce the magnitude of L. The a.g.c. system will respond with an accuracy determined by loop gain $L=$ C for variations of input signal which occur within the frequency range 0 to F. For frequencies greater than F the
system will respond with a reduced accuracy. In operation the output of amplifier G is nearly constant for all values of input signal. Hence, for .constant loop gain a constant absolute change of output voltage from amplifier G for a given change of v is required for all values of G. If the relationship is considered to be linear, as shown in Fig. 3 (a) a change of v gives a constant

Fig.3. Relationships of amplifier gain G versus control voltage v. Linear trace (a) will not provide a constant loop gain but exponential curve (b) produces a constant loop gain for all values of G.
change of G. Numerically however, it does not provide the desired output voltage for all values of G. For example, let G vary from 100 to 1000 and let the required output voltage be 10 V . When the gain is 1000 , the input voltage is $10 / 1000=0.01 \mathrm{~V}$, and when the gain is 100 , input voltage is $10 / 100=0.1 \mathrm{~V}$. In each case let v change by an amount which causes G to change by say 20 while the input voltage remains constant at either of the two values corresponding to a gain of 100 and a gain of 1000 . When the gain is 1020 the output voltage is $0.01 \times 1020=10.2 \mathrm{~V}$, and when the gain is 120 the output voltage is $0.1 \times 120=12 \mathrm{~V}$. Thus when G is 1000 a given change of v alters the output voltage by 0.2 V , but when G is 100 the same change of v alters the output voltage by 2 V . This means that the loop gain has changed by a factor of ten, and is greater at the lower value of G. It should be noted that this is a variation in the low frequency flat part
of the loop gain characteristic. For any given setting of this zero-frequen-cy-response, reactive elements that may exist within the loop will modify this curve in the usual way as it extends into the higher frequency region.
As a linear relation between v and G will not provide a constant loop gain the preceding calculation shows that a constant percentage change of G is required, that is $d G / d v / G=a$ constant, or $d G / d \nu=K G$ where K is a constant. Curve (b) of Fig. 3 shows such a characteristic. If $G=K e^{-a v}$ then $d G / d v$ $=-K a e^{-a v}$ and $d G / d v / G=-K a e^{-a v} ;$ $K e^{-a v}=-a$. This indicates that the relationship between v and G should be exponential if the loop gain is to remain constant for all values of G. Because G $=K e^{-a v}, \log _{e} G=\log _{e} K-a v=K_{1}-a v$ where K_{1} is another constant, and as $\log _{n} m=\log m / \log n$ to any base of logarithms, $\quad \log _{10} G=\log _{10} e\left(K_{1}-a v\right)=$ $K_{2}-K_{3} v$ where K_{2} and K_{3} are two more constants. This is the equation of the straight line shown in Fig. 4 and shows that G in decibels versus v produces a straight line with the desired characteristic.
Variations in the zero-frequency loop gain not only cause changes in the accuracy of the a.g.c. system but can cause instability at settings of G that

Fig.4. Gain in $d B$ versus control voltage \checkmark produces a straight line with the desired characteristic.

Fig.5. Graphs illustrating that variations in zero-frequency loop gain can cause instability. Curve (a) crosses the OdB point (unity-loop gain) with a slope of $12 d B$ per octave corresponding to a loop phase shift of 180 degrees. Curve (b) is stable because the loop phase shift is 90 degrees at unity loop gain.

Fig.6. Variable resistor using a f.e.t. The feedback resistor linearises the effective resistance.
give the highest value of loop gain. This is demonstrated in Fig. 5 where curves (a) and (b) have the same form but different zero-frequency gain. The amplitude falls off 'at 6 dB per octave from frequency F to frequency W, and at 12 dB per octave from frequency W onwards. The system represented by curve (b) is stable because unity loop gain (0 dB) occurs with a phase shift around the loop of only $90(+180)$ degrees, as indicated by the 6 dB per octave rate of change of amplitude assuming a minimum phase network. The system of curve (a), however, is unstable because the 0 dB line is crossed at a slope of 12 dB per octave, corresponding to a loop phase shift of $180(+180)$ degrees. It is difficult to maintain the loop gain constant, and in some systems considerable variations may be permissible. Knowing the extent of the variation allows its effect to be calculated, and gain controlled amplifier circuits which approximate to an exponential relation between G and v. will therefore be suitable.
Integrated circuit amplifiers, intended mainly for r.f. or i.f. amplification, are available from several manufacturers. Some of these amplifiers give an approximately straight line characteristic when their gain in decibels is plotted against their a.g.c. control voltage, at least over most of their working range. These are very suitable for applications requiring high constancy of loop gain. Considering simple bipolar transistor and field effect transistor amplifiers, neither has an in-

Fig.7. A.g.c. system where a f.e.t. used as a variable resistor forms the collector load of a grounded emitter amplifier.
herent suitable relationship between gain and some easily controllable parameter such as emitter or drain current. However, if the gain of the common-emitter bipolar transistor amplifier is plotted in decibels against emitter current it is found that the gain varies approximately linearly with emitter current in the low emitter current region. The gain of a com-mon-source field effect transistor amplifier is proportional to the square root of the drain current, and this relationship also approximates to the desired characteristic for low values of drain current. An alternative use for the f.e.t. is as a voltage controlled variable resistor, and Fig. 6 shows a well known arrangement of feedback from drain to gate which linearises the effective resistance of the f.e.t. The drain to source resistance $R_{d s}$ of this circuit is given by the expression $R_{O} /\left(1-V_{c} / 2 V_{p}\right)$ where R_{O} is the drain to source resistance when the voltage between gate and source is zero, V_{p} is the pinch off voltage, and V_{c} is the control voltage shown in Fig.6. For a given device, R_{O} and V_{c} are constants, and the expression can be written as $R_{\mathrm{ds}}=k_{1} / 1-k_{2} V_{\mathrm{c}}$ where k_{1} and k_{2} are constants. Plotting this equation gives a curve which, although not an exponential, does approximate to one and is suitable for some applications. The maximum possible slope of the R_{o} versus V_{c} graph is fixed by the values chosen for the feedback resistors in Fig. 6 although for clarity the effect of these resistors has not been included in the previous expression for $R_{d s}$. By adjusting the values of R the degree of approximation to an exponential curve can be altered. To make use of this voltage controlled variable resistor the controlled amplifier gain must be made proportional to R_{ds}. This can be achieved by letting R_{d} form the collector load resistor of a grounded emitter transistor amplifier, as shown in Fig.7, in which R_{2} is very much greater than $R_{d s}$.
Another method of maintaining roughly constant loop gain for varying amplifier gain is to make straight line approximations to the desired response curve by using diodes to provide the break points in the slopes of the straight lines. No doubt readers will visualise other possibilities.

Amateur radio equipment - 2

A survey of modern commercially-built receivers, transmitters and transceivers

by Ray Ashmore, G8KYY

Part 1 of this survey discussed commercially-built receivers which are available today. This second part is mainly concerned with transmitters and transmitter-receivers, or transceivers. Today, however, there are few separate transmitters available and most of the design changes can be seen in the receiver sections of transceivers. In fact, it is here that receiver design trends such as the use of single-conversion superhets and synthesizers are most common.

Amateurs, licensed by the Home Office, may operate their stations according to the terms, provisions and limitations (all of which we shall call "conditions") laid down by the wireless telegraphy Act of 1949. They must also comply with the relevant provisions of the International Telecommunication Convention. The conditions vary slightly according to the type of licence in question, for example whether it is a Class A or a Class B licence.
There are also conditions for mobile or portable operation. Briefly, the licensee is entitled to set up his station at a particular address, or temporarily or alternatively at another location for a limited period - for the purpose of sending to, and receiving from, other licensed amateur stations as part of the self-training of the licensee in communication by wireless telegraphy. Note that the word "telegraphy" is used here to mean both c.w. and telephony. He, or she, is also entitled, under the same conditions, to use the station during disaster relief operations conducted by certain sncieties and forces in the UK, as requested by those societies or forces, and for the reception of transmissions in the Frequency Service.

The term "as part of self-training of the licensee in communication" outlines the main difference between amateur licences and the Citizens' Band type licences issued in most countries. Typical operative words in CB licences could be summarized as "for business or pleasure communications."

Of particular importance to the amateur licence is the condition that a satisfactory method of frequency
stabilization should be employed in the sending apparatus and that equipment for frequency measurement should be provided capable of verifying that the sending apparatus is operating with emissions within the authorized frequency bands. In addition, the apparatus should be designed, constructed, maintained and used so that it does not cause any undue interference to any wireless telegraphy. At all times every precaution should be taken to avoid over-modulation, to keep the radiated energy within the narrowest possible frequency band and to ensure that the radiation of harmonics and other spurious emissions are suppressed to such a level that they cause no undue interference to any wireless telegraphy.

Also included in the licence is a schedule stating the classes of emission (a.m., s.s.b.-reduced, suppressed or full carrier, p.d., f.m., c.w., etc.), the frequency bands authorized within the terms of the licence and the maximum input or output powers which may be used in the station. In brief, the Class A schedule permits telephony on a.m., s.s.b. and f.m. and telegraphy (c.w.) on a.m. and f.m. in the ham bands from 1.8 to 146 MHz and 432 to $24,250 \mathrm{MHz}$ with maximum d.c. input powers of from 10 to 150 W (or peak-envelope-power outputs of from $26 \frac{2}{3}$ to 400 W) depending on the frequency range. From 430 to 432 MHz the schedule permits a.m. or f.m. telephony or telegraphy with a maximum effective-radiated-power of 10 W , and in selected ham bands between 2,350 and $10,450 \mathrm{MHz}$ it permits
pulse-type modulation of maximum input powers of 25 W mean or 2.5 kW peak. Some of the bands in the above frequency ranges may be used for slow-scan tv, facsimile and high definition tv. However, extra conditions are written into the schedule and certain bands can only be used upon the receipt of written consent from the Secretary of State.

All of these conditions form the basis of the specifications on commercial-ly-built amateur equipment.

Transmitters

Since 1959 when Collins Radio introduced the KWM-1, probably the first transceiver suitable for the amateur, commercially-built separate transmitters have slowly reduced in number. Wireless World could find only four examples on the current amateur market, namely; the Trio T-599D, the Drake T-4XC, the Yaesu Musen FL-101, and the STE Milan ATAL-228, a 2 m transmitter. There was also the all-valve Decca KW-204, which has recently been withdrawn, and a 2 m module transmitter, the AT- 23 from STE Milan. The former transmitters were designed specifically for operation with the following receivers: the Trio R-599D, the Drake R-4 series, the Yaesu Musen FR-101, and the STE ARAC-102.

Apart from the increased use of semiconductors there have been very few changes in the design of transmitters or the transmitter stages of transceivers over recent years. The amateur transmitter may still be considered in terms of five main stages:

A $2 m$ f.m. mobile transceiver; one of Heath's easy-to-build kits. The HW-2036, as it is called, is frequency synthesised to provide a 2 MHz frequency range which is selected in 5 kHz -steps by conventional thumbwheels. It also includes 600 kHz frequency shifts and tones for repeater operation.

an oscillator, frequency multipliers, to get this frequency up to the transmitter frequency, a modulator, a power amplifier and a tank circuit for aerial matching. In most cases the transmitter stages in amateur equipment use a mix of discrete semiconductors, valves and often i.cs.
Normally valves, operating in Class ABl , are preferred for the driver and p.a. stages of the transmitter. It has been claimed that some amateurs, upon comparing the 'back-end' circuits of all-solid-state transceivers with circuit diagrams in instruction manuals have found extra components or component changes. This could be due to out-ofdate manuals or it could equally be evidence of design changes which the manufacturers have found necessary to bring individual units into specification, perhaps because of differences in characteristics between devices having the same type number. Wireless World has been unable to find confirmation of this practice.
A pi-network filter arrangement is normally used in the anode circuit (tank circuit) of the power amplifier because it is more efficient at suppressing harmonics, and this is important in order to avoid television interference. Harmonic radiation figures for com-mercially-built transceivers are typically 40 to 60 dB down.

Transceivers

Transceive operation is normally obtained by using one common oscillator as both the local oscillator of the receiver superhet, and as the v.f.o. of the transmitter. Therefore, once the receiver has been tuned to the exact frequency of an incoming signal, the transmitter is already set to transmit on the same frequency. To allow for drift and inaccuracies the receiver can usually be tuned over a range of about 1 to 5 kHz using a receiver-incremental (or independent) tuning (r.i.t.) control, without altering the transmission frequency.
Fig. 1 shows a more complex system, as used in the Trio TS820. This transceiver uses phase-locked-loop (p.1.1.) circuitry to provide an accurate mixer.

Fig. 1. Frequency construction of the Trio TS-820 h.f. transceiver. A phase lock loop is used for frequency derivation and the circuit employs a double carrier system to allow sideband switching without re-calibration. See text.
frequency for the transmitter circuit and the single-conversion receiver circuit, and to keep spuriae to a minimum. The carrier oscillator circuit is divided into Carrier 1 and Carrier 2 such that the former serves c.w. and f.s.k. receive, u.s.b. and l.s.b. and the latter serves c.w. and f.s.k. transmit. This system enables the p.li. frequency to remain the same when switching sidebands without the need for re-calibration every time.

Because semiconductors are being used, many of the transceiver designs are now based on modular boards. Providing the modules can be easily removed so that they may still be operated while under test they can be of advantage to the amateur, but if the circuit makes access to certain parts of the circuit difficult under test conditions they serve only to make the inside of the unit neat and tidy. However, semiconductors and modules do save space in modern transceivers, and this allows more facilities to be fitted into any particular-sized chassis.

Automatic level control, gain control, noise limiter and squelch facilities are now standard on most transceivers. Microphone- or voice-operated control switching (m.o.x. or v.o.x.) and noise blanker circuits are now also fairly standard on h.f. transceivers and v.h.f. multimode transceivers.

Some h.f. transceivers include a built-in speech processor for increasing speech power in DX communications. One system of processing is clipping, which simply cuts off loud peaks in the audio signal, but this makes the voice sound harsh and creates harmonics. Speech compression systems, which use an automatic volume control to amplify quiet passages in the audio, are preferred. The speech processor used in the TS-820 converts the audio frequency into a 455 kHz s.s.b. signal, compresses it
using a small time constant, and then converts it back to an audio signal again.

Typical specifications

There are now so many transceivers on the amateur market that it would not be practical to print all of their specifications here. However, Table 1 gives some idea of the types and models available.

In general, h.f. transceivers have maximum frequency coverages of from 1.8 to 29.7 MHz , normally in up to nine ranges of about 500 kHz each, including the $160,80,40,20,15$ and 10 m ham bands. About a half of the transceivers available do not have the 160 m band and a few do not have the 10 m band, or they have only a portion of it. However, the ranges that are missing can often be fitted using optional crystals in auxiliary bands. Common additions are receive-only ranges for the 27 to 27.5 MHz band and WWV frequencies.

Modes of operation normally include u.s.b., l.s.b. and c.w. with facilities for f.s.k. and r.t.t.y. Some units also have an a.m. mode.

Maximum input powers, in peak-en-velope-power (p.e.p.) on s.s.b. and for a 50% duty cycle on c.w., range between about 140 and 700 W , although these are normally a little lower for the 160 m and 10 m bands. A.m. and f.s.k. inputs in general range between 50 and 75 W . For comparison against the output p.e.p. figures quoted in the licence one would need to know the overall p.a./tank circuit efficiency for each transceiver, but by using rule-of-thumb values of 60% for valve outputs and 50% for solid-state outputs, approximate figures can be obtained.
Carrier and unwanted-sideband suppression figures are normally greater than between 40 and 60 dB down for a 1 kHz audio tone. Selectivity and sensitivity figures are generally as good as or better than the figures quoted for the receivers in Part 1 of this article, that is, typically 2.4 kHz at 6 dB down and 3.5 to 7 kHz at 60 dB down (for s.s.b.) and from 0.25 to $0.5 \mu \mathrm{~V}$ for a 10 dB $(S+N) / N$ ratio.
Because most of the transceivers
available are carefully designed using only single or double conversion receivers (see Part 1), spurious response figures are typically as good as or better than $1 \mu \mathrm{~V}$ equivalent to the antenna input.

V.h.f. transceivers

Transceivers designed for v.h.f. operation differ considerably from h.f. transceivers. They normally cover only a small frequency band of about 2 to 4 MHz , and rarely need muchı bandswitching. If the transceiver is a multimode unit it will usually incorporate a v.f.o., but if it is a single mode unit it is more likely to have switched-channel frequency selection. An r.i.t. is therefore necessary for s.s.b. models. Table 1 lists most of the v.h.f. transceivers available and some of their main features.
Most v.h.f. transceivers are designed with mobile operation in mind. Usually they require a direct voltage supply of about 12 to 13.8 V , but incorporate a power supply either as a built-in unit or as an add-on unit.
Some transceivers, normally f.m. instruments, are designed specifically for portable or hand-held use. Examples are the KP-202, the HW-2021 and the IC-202.

The FDK Multi-2700, from Fukuyama, includes a 29 MHz receiver specifically for Oscar satellite reception. There are two amateur satellites in operation at the present time. The Oscar 6 satellite, which is likely to go out of service shortly, after more than completing its operational lifetime, has a two-to-ten metre, 100 kHz bandwidth, transponder (repeater) on board. Its input frequency range is 145.9 to 146 MHz and its output range is 29.45 to 29.55 MHz . The second satellite, Oscar 7, has two repeaters on board, one for two-to-ten metre operation and one for a 432.125 to 432.175 MHz input. This mode has a transmit output from 145.975 to 145.925 . The 2700 is therefore suitable for the two-to-ten metre satellite modes on both Oscars.

Most v.h.f. f.m. or multimode transceivers include devices for repeater operation. A repeater is a device which retransmits signals primarily in order to provide improved communications range and coverage for mobile stations or for amateurs in dwellings, such as city flats or bedsits, where it is difficult to fit high gain aerials and rotators. The improved communications are made possible by siting the repeater on a hill or tall tower.

A simple repeater would consist of a receiver with its audio output connected to the audio input of a transmitter which is tuned to a second frequency, and is 'accessed' by a carrier-operated relay (c.o.r.). In practice repeaters tend to be more complex than this. Most of the UK repeaters require a $1750 \pm 25 \mathrm{~Hz}$, 500 ms tone to switch the repeater on before the c.o.r. can operate. In addition, transmission time-out systems, protection circuits etc, are normally fitted by amateur repeater

Table 1. Most of the transceivers currently on the UK amateur market. Key gives limited information, according to literature in author's possession, about each product.

Trio-Kenwood

TS820 h.f. SCDR*PV3/TK1JEW9B200 i/p
TS520 h.f. SCV3/TEY7BK2J140//180 i/p
TR7500 v.h.f. FZ40TEH2m10o/p
TR7400 v.h.f. FZ(5k/4M)RTK2EH2m25o/p
TR700G v.h.f. SCAFJX11TK2H2m100/p
TR7010 v.h.f. SCX48T2m8o/p
TR7200G v.h.f. FX22TK2H2m10o/p
TR2200GX v.h.f. FX12TK2H2m2o/p
TR3200 u.h.f. FX12TK2H70cm2o/p

Yaesu Musen
FT101E/EE h.f. SCAP*V3/TK2JW6B260i/p
FT301/D h.f. SCAR*PTK1JW6B200i/p
FT200B h.f. SCAJY5T260i/p
FT620B v.h.f. SCAJT6m24i/p
FT221R v.h.f. FX23K2T2m10o/p
FT2 v.h.f. X8 Autoscan FTH2m10o/p

Heath (Heathkits)

HW101 h.f. SCJV20/TY8B180i/p
SB104 h.f. SCJRTY8B100o/p
HW104 h.f. SCJY8B100o/p
HW2036 v.h.f. FZ(5k/2M)DTK2H2m10o/p
HW202 v.h.f. FX6TK2H*2ml0o/p
HW2021 v.h.f. FX10TK1H2mlo/p handheld

Inoue (Icom)

IC211E v.h.f. SCFJDRTK1/2EH2m10o/p 1C240 v.h.f. FZ22DTK2EH2m100/p 1C245E v.h.f. SCFJDRTK $1 / 2 \mathrm{EH} 2 \mathrm{~m} 10 \mathrm{o} / \mathrm{p}$
1C202 v.h.f. SCX4 (vxo) T2m3o/p portable
IC30A u.h.f. FX22TK2H70cm10o/p
IC215 v.h.f. FX15TK2H2m3o/p portable

Fukuyama (FDK)

Multi-11 v.h.f.
X4Autoscan + X23 FK2T2m10o/p Multi-Ull u.h.f.

X4Autoscan + X23FK3T70cm100/p
Multi-2700 v.h.f.
SCAFZJRTK1/2EHO2m10o/p
Quartz-16 v.h.f. FX25K2T2m10o/p

Garex

Twomobile v.h.f. FAJ2m
Fourmobile v.h.f. FAJ4m
Nippon Electric Company
CQ11OE h.f. SCAJRDV6/TK1W11B300i/p
CQP2200 v.h.f. FX12H2m3i/p portable

Atlas

210-X h.f. SC.JK1Y5BN200i/p 215-X h.f. SCJK1W5N200i/p
groups to make the repeater suitable for its local operating conditions.

Repeaters common to the UK operate in the 2 m and 70 cm bands. In the former case the repeater receive frequency is 600 kHz below its transmission frequency, hence it shifts the operator's transmission frequency up by 600 kHz . In the latter case the transmission is shifted down by 1.6 MHz . This means, of course, that transceivers designed for repeater operation require both tonebursts and frequency shift.

At present there is a trend towards greater use of u.h.f. repeaters in preference to v.h.f. repeaters. The main reason for this is that coverage is increased in built-up areas due to the improved signal penetration obtained with u.h.f. Since repeater antennas are sited high up, and both u.h.f. and v.h.f. give

Swan

700CX h.f. SCJY5B700i/p

CIR Industries
Astro 200 h.f. SCJDRTKIY5BM200i/p

Signal-one

CX-11 h.f. SCJRPW7B150o/p

Hy-Gain

Model 3750 h.f. SCJRV3/TK2EW9B200i/p

ST Communications

KF430 u.h.f. FX12TH70cml0o/p

Uniden

Model-2030 v.h.f. FX12TK2H2m100/p

Belcom

Liner 430 u.h.f. SCX(vxo)K2T70cm 10o /p

Drake

TR-4CW h.f. SCAJV20/TY5B300i/p

Kyokuto

Digital-2 v.h.f.
FZ(5k/2M)DRTK2EH2m10o/p
KP-202 v.h.f. FX6TH*2m2o/p handheld
STE Milan
AK-20 v.h.f. FX12TH2m3o/p

Signamizer

Model-200R v.h.f. FZ(10k/2M)TH2m

Key:
S: s.s.b., C: c.w.. A: a.m., F: f.m., J: v.f.o., M: momentary switch v.f.o. tune, $\mathbf{X}()$: number of switched crystal channels, $\mathbf{Z}()$: number of switched synthesized channels or kHz -steps/freq.-range, \mathbf{D} : digitally synthesized, \mathbf{R} : digital readout, P: speech processor, T: solid state, $\mathbf{V}()$: number of valves, $\mathbf{K}()$: number of receiver conversions, E: phase locked loop employed, W(): total number of ranges including 160 to 15 m ham bands, $\mathrm{Y}($): total number of ranges including 80 to 15 m ham bands. B: some or all of 10 m ham band included, H : repeater facility. O: Oscar satellite facility. N: no r.f. amp. stage, * after key signifies option, Final figures are typical Hi i/p or o/p p.e.ps in watts (for h.f. or v.h.f. multimodes, s.s.b. figure is given, for v.h.f. metre band is given also).
line-of-sight communication, the range is little different to that obtained using a v.h.f. repeater. This trend will almost certainly result in an increase in the number of u.h.f. mobile transceivers in the near future.

Transverters, suitable for use with h.f. transceivers, are readily available for v.h.f. communications at frequencies of 70,144 and $1,296 \mathrm{MHz}$. These modules enable amateurs who already have a h.f. transceiver to operate in the v.h.f. bands without having to purchase a separate v.h.f. transceiver. Fig. 2 shows a block diagram of a typical 432 MHz transverter suitable for use with a h.f. transceiver tuned to the 28 MHz band.
Typical specifications for a transverter suitable for a frequency coverage of 144 to 146 MHz , with an input of 28 to 30 MHz , and input and output impe-
dances of 50Ω, are as follows: converter gain is typically 30 dB , converter noise is about 2.5 dB max, and the input required for 10 W continuous rated transmit output is about 5 mW .

Synthesizers

Digital synthesizers are being used increasingly in v.h.f. equipment. In the not too distant past synthesizers were avoided because of the risk of spuriae due to the many frequency components produced by the number of multiplication stages used. Now the use of phase-locked-loop techniques has enabled synthesizers to be made without introducing spuriae. One main advantage with synthesizers is that, in channel-switched transceivers, large numbers of expensive crystals are avoided.

The use of digital synthesizers in amateur radio equipment can perhaps best be shown by the latest Icom v.h.f. transceivers. In the IC-240, a synthesizer is used to provide a number of 25 kHz channels, the frequency of which can be programmed by a diode matrix. In the IC-211E and IC-245E multimode transceivers digital synthesizers are used to give v.f.o. frequency selection.

Let us first consider the IC-240. (See Fig. 3). Since this transceiver uses a first i.f. of 10.7 MHz , for receive frequencies from 144 to 146 MHz , an oscillator having frequencies from 133.3 to 135.3 MHz is required for the first mixer oscillator. This is provided by a free-running voltage controlled oscillator (v.c.o.), in this case a junction f.e.t. Clapp oscillator. This oscillator has a good noise ratio and a frequency stability of the order of ± 50 p.p.m. per degree C. Its output is fed to a buffer amplifier to minimise the effects of load variation.
The v.c.o. is controlled by a phase detector which compares a 12.5 kHz pulse output from a quartz crystal reference oscillator and divider with a 12.5 kHz pulse output derived from the

Fig. 2. A typical 432 MHz transverter suitable for use with a 28 MHz transceiver. This block diagram represents a Modular Electronics design.
v.c.o. output, a local oscillator and a diode matrix. The diode matrix being the reference which governs the required v.c.o. output for the selected channel. If the output frequency derived from the matrix and the feedback from the v.c.o. output becomes higher than the reference frequency, the output voltage of the lag-lead filter in the phase detector becomes low and the v.c.o. frequency is lowered. When the derived output becomes low the action is the reverse, and so the v.c.o. synchronises the output with the reference frequency.

The local oscillator consists of an overtone oscillator of 43.9 MHz . Connected to its collector is an inductor which is tuned to three-times the overtone oscillator frequency to give an

Fig. 3. Block diagram for the first mixer oscillator used in the Icom IC-240 digitally-synthesized transceiver. Operating frequency is determined by a diode matrix r.o.m. which decides the dividing ratio of a programmable divider in the phase lock loop. See text.

output of 131.7 MHz . A portion of the buffer output and the local oscillator output are fed to a frequency transducer which is in fact a low-noise balanced mixer. Since this heterodyne process produces many frequencies at the transducer outputs a l.p.f. is used to limit them to 6 MHz or lower. These signals are then amplified by the broadband limiter-amplifier and divided by two before being input to the programmable divider i.c.

For any operating frequency the divided pulses out of this i.c. should be at 12.5 kHz and, for any particular operating frequency, the dividing ratio is determined by the diode matrix. This is a matrix of 23 arrays (representing 23 channels) of eight possible diode positions. The diode matrix is in effect a r.o.m. which defines a frequency as a binary number equal to the dividing ratio (N). For example, for a receive frequency of 145.000 MHz , the p.l.l. output frequency would need to be 134.300 MHz . This corresponds to an output of 2.6 MHz from the transducer which when divided by two is 1.3 MHz . Therefore, to give a 12.5 kHz output at the divider, this should be divided by 104, which in binary corresponds to a diode array of 01101000 .

In IC-240s intended for Europe, N is normally selected from 64 to 144 (for 144 to 146 MHz) - a choice of 81 possible 25 kHz -spaced receive channels.

An adder, shown at the bottom left of Fig. 3, provides the repeater shifts of 600 kHz for repeater or reverse-repeater (duplex) operation.

In the IC-211E and IC-245E, v.f.o. tuning is by a strobe device on the tuning dial. The strobe sensing device consists basically of two l.e.ds firing into two photocells, which are slightly offset from the dial strobe. A large-scale-integration (l.s.i.) chip forms most of the digital circuitry in these transceivers (see Fig. 4).

The circuit shown at the top-right corner of the diagram determines the direction in which the dial is being turned, and provides a series of pulses to the l.s.i. The chip has two up-or-down counters which are fed by the output

from the clock at CK. Inputs X or Y at 'space select' determine whether the counters are updated in 5 kHz or 100 Hz steps, and these are selected by the speed switch TS on the front panel of the transceiver.
Counter select determines which of the counters are to be clocked. For example, if the transceiver is being used for simplex operation both counterṣ are clocked together, but if it is being used for duplex or reverse-duplex operation the counters are clocked separately, one for receive and one for transmit, depending upon the duplex and invert switch positions.
The counter outputs (A0 to B4), which are in groups representing binary-coded-decimals, are fed to the decoder driver and the internal programmable divider. Each group represents a digit of a frequency readout display, that is, $1 / 10 \mathrm{kHz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz . The last two groups indicate whether the frequency band is 144.4, .5, . 6 or . 7 .

The running oscillator, which is a v.c.o., operates in the range 133.3 to 135.3 and is fed through a buffer to a mixer. This mixer oscillator frequency is derived from a 14.7 MHz crystal, which, when multiplied by nine, gives 132.3 . Hence the mixer output, which is fed to the FIN input of the 1.s.i., has a bandwidth of 1 to 3 MHz . In the same way as in the IC-240 system, the programmable divider then divides these frequencies down to 10 kHz for comparison with another 10 kHz reference derived from a 50 MHz oscillator. As before the output from the phase detector (PD) is used to control the frequency of the v.c.o.

However, this only gives frequencies in 10 kHz steps, it does not provide v.f.o. tuning. In order to obtain full v.f.o. selection the liogic is used to actually

Fig. 4. Block diagram for the first mixer oscillator used in the Icom IC-211E and IC-245E transceivers. This system uses a m.o.s. l.s.i. chip to provide v.f.o. tuning coupled with p.l.l. digital-synthesized circuitry. See text.
move the master 14.7 MHz oscillator frequency. Outputs AO to DI, which are binary coded-decimals representing the last two digits of the required frequency (e.g. the 01 in 144.6001), are passed through a digital-to-analogue converter to produce a signal suitable to adjust a varicap diode circuit. This circuit then pulls the crystal frequency slightly to move the oscillator frequency up by 100 Hz . In this way all the frequencies within the 10 kHz band can be obtained, and the frequency can be recorrected every 10 kHz .

Japanese imports

Whën buying or contemplating buying Japanese equipment the amateur cannot help but wonder how much the same rig would cost in Japan and what he is paying on top of this. Some feel that they are perhaps lining the importers' pockets. The following analysis is based purely on the information given to Wireless World by importers, traders and Japanese representatives.

Most Japanese equipment is purchased by UK importers through letters of credit (l.o.c.) which may be valid for about 2 to 3 months. These are agreements between UK banks and Japanese banks that payment for goods will be transferred as soon as the goods leave Japanese shores. In Japanese banks an l.o.c. is regarded as security just as if it was money. It is normally drawn up in yen at the going exchange rate.

Most of the bulk orders arrive by sea
and once the equipment is on board ship, having been purchased at the free-on-board (f.o.b.) price, the importer must pay for freight and insurance cover for the goods and capital invested. This cost, insurance and freight (c.i.f.) charge is usually between 5 and 6% of the equipment value.

Freight is dependent on weight and volume. Typical freight charges for a batch of between 20 and 50 transceivers would be about $£ 1.50$ each for a small mobile unit and $£ 4.50$ for a large transceiver - this is comparable with carriage from Scotland.
When the equipment reaches the UK

The CQ-P-2200E $2 m$ f.m. portable transceiver, from the Nippon Electric Company.
port an import duty must be paid. For amateur equipment this payment varies between 11% for a transmitter and 14% for a transceiver or receiver and it is added to all payments made up to this point. Other expenses which the importer meets, some of which are subject to the import duty, include the bank charges for letters of credit, currency exchanges, interest on cash used by banks and clearance charges from Japanese agents.
So far, then, this is the price at which the importer can expect to get the equipment

According to figures given to Wireless World, a mark-up of up to about 25% may be made by the importer, and a further 25% by the retailer. However, equipment prices are usually competitive from all traders despite the fact that many of the importers are also retailers. This is because the importers normally give up to 20% discount (equivalent to up to 25% mark-up) to the retailers. These profit margins are low compared to the domestic markets, where mark-up is not usually less than 30%. Unlike domestic goods, however, one rarely sees amateur equipment carrying a discount tag. This is not surprising because a 25% mark-up can represent only about 8 to 12% profit after overheads - a typical trader's profit margin.
Table 2 is a comparative analysis of Japanese equipment prices before and after importing. Most of the figures and percentages used in this analysis are not necessarily accurate because they are based on typical values which are subject to variation with each product and with time. However, this article should make the reader aware of where these variations can occur so that they can be taken into account For example, although wholesale prices in Japan are usually 80% of the recommended retail price (r.r.p.), in the Akihabara district of Tokyo and the Nihonbashi district of Osaki, the wholesale price is from 73 to 80% of the r.r.p. depending in the retailer.

In addition, variations in exchange rates, import duties, freight, bankers and agents charges and UK carriage can also affect the final price in each case.

The negative percentage figures for the Yaesu Musen (FT range) products

Table 2. Wholesale price of Japanese equipment (taken as 80% of Japanese recommended retail price (r.r.p.) and at exchange rate of $£ 1=470$ Yen) plus c.i.f. charges at 5%, import duty at 14%, a single mark-up of 25% and v.a.t. at $121 / 2 \%$ compared with r.r.p.s (including v.a.t.) for the same equipment in the UK. These estimates do not include bank charges, agents charges or carriage in the UK. In addition the wholesale price quoted is not necessarily the free-on-board (f.o.b.) price

Model	r.r.p. in Japan	Wholesale price in Japan	(a) Price after c.i.f. duty. mark-up and v.a.t.	(b) r.r.p. in UK	Percentage difference (b-a)/b	
FT-101E	374.47	299.57	504.27		448.87	--12
FT-221R	287.23	229.78	386.79	\cdots	336.37	-15
TS-820 Dig	489.36	391.49	658.98	751.00	12	
TS-520	297.45	237.96	400.55	432.00	7	
TS-700G	286.80	229.44	386.21	392.62	2	
IC-211E	314.89	251.91	424.04	529.00	20	
IC-240	122.34	97.87	164.74	198.00	17	
MULTI-2700	318.72	254.98	429.20	489.00	12	

Photo shows a complete Trio-Kenwood separates' station, the $S-599$ speaker console, the $R-599$ receiver and the T-599 transmitter.
may be a result of the fact that these units are imported by three independent companies. If this is so, it is almost certainly the mark-up figures which are reduced. In the case of the Icom (IC range) products, since there are no exact equivalents of the transceivers quoted, the prices shown are for units which are as alike as possible. Unlike the other products, Icom transceivers are purchased against the American dollar instead of the Japanese yen.

It should also be noted that these figures may also reflect differences in the type of equipment, and other products from the same companies may give completely different results.

Delivery of Japanese goods is normally very good and reliability is said to be nothing short of excellent Typically four to six weeks from placing an order the goods are released from Japan. They then spend about four weeks on the boat and up to two weeks going through customs. Consequently traders can say with confidence that the

The Icom IC-2lle $2 m$ v.h.f. transceiver from Inoue. It uses a patented Icom m.o.s. l.s.i synthesiser to give v.f.o tuning on the s.s.b., c.w and f.m. modes. Other features include repeater facilities and a digital frequency display giving a readout to the nearest 100 Hz .
goods will arrive within three months of placing an order.

Basing one's conclusions on the above analysis, it would be fair to say that, without exception, the British amateur is getting Japanese equipment at a fair price, especially when considering the excellent deliveries and after-sales service given.

Table 3 shows a comparison of some transceiver prices in the UK, America and West Germany. These prices have been obtained from UK-bank "selling" exchange rates and r.r.p. values (including taxes) in the respective countries.
Prices in America are seen to be generally lower than in the UK; the one exception in the table being the FT221R which was also shown to be low priced in Table 2. The main reason for the lower prices is that US import duty and tax is lower than in the UK. For transceivers, US import duty is only 6% and tax, which may change slightly in each state or city, is only about 4% of the value of the goods - this is a zonal tax, they are not subject to excise tax. The third column in the table shows what these prices would be if subject to UK duties and tax.
Prices in Germany, however, are higher, even though import duties and taxes are the same. One reason for this could be that, unlike in the UK, most of their equipment is sold through retailers, and not directly from the importers, and consequently mark-ups, which may be higher anyway, are being taken on both importing and retailing.
Other price differences could be explained by the fact that a transceiver designed for one country's market may

Table 3. Comparison of amateur transmitter and transceive, prices in UK, USA and West Germany based on exchange rates of $470 \%, \$ 1.715$ and 3.98 DM .

Model	UK \mathbf{E}	USA \mathbf{E}	USA** \mathbf{E}	W. Germany \mathbf{E}
FT101E	448.87	425.07	494.51	477.39
FT221R	336.37	346.94	403.61	437.19
IC211E	529.00	436.73	508.07	518.59
T-4XC*	450.00	349.27	406.33	483.67
TS520	432.00	366.76	426.68	462.31
IC245E	396.00	290.96	338.49	388.69

"Made in USA
"Prices if subject to UK import duties and tax
be slightly different to a transceiver designed for another country's market.

Why Japanese?

One question which has been asked for many years is why the Japanese seem to be able to make amateur equipment cheaper than any other country. It is claimed that in the mid-sixties, when the Japanese importing first started, certain UK companies made complaints to local MPs to the effect that they suspected the Japanese manufacturers were being subsidized by their government and were dumping equipment in this country. Wireless World has made enquiries into this to try to find out what conclusions were made at that time.

The Department of Trade could find "no substantial records to indicate that any action was taken" - probably due to lack of evidence. So far the archives of the Department of Industry have not turned up any information either.

Our investigation did show, however, that UK tarriff headings for imported goods do not, even now, distinguish between amateur, professional, military, commercial or domestic communications equipment. This makes it difficult even to obtain figures for amateur imports, èspecially when the headings depend to a certain extent on descriptions made by the exporting

Photo shows the CQ-301 linear amplifier, CQ-110E, digital v.f.o. CQ-201 and the $2 m$ portable CQ-P-2200 (on top of CQ-110E), all Nippon Electric Company products.
country. In the mid-sixties the records were even more ambiguous and, because they listed country of consignment and not origin, it would be difficult even to distinguish which goods had come from Japan. This, coupled with the complexity of the Japanese government, banking and industrial structure, would surely have made any serious investigation very difficult indeed.

However, there are good reasons why the Japanese manufacturers could be producing cheaper equipment. Firstly, few could argue that they are not efficient; certainly their good deliveries, excellent after-sales service and flexibility of design shows them to be extremely efficient. Probably the main reason for this is that they have invested large amounts of capital ${ }^{\text {in }}$ automation.

Although their labour costs are higher, there is less labour per item, due to the automation, and using the same number of workers they can produce more products. Since materials and components are made on a similar basis, they are cheaper and more readily available within their own country.

In the amateur field it must also be remembered that the Japanese homemarket is one c^{f} about $1 / 2$ million amateurs, compared with only about 25,000 in the UK. Amateur equipment exports represent only a fraction of their overall amateur market.

HF predictions

Circuit reliability is the product of the probability of ionospheric reflection and the probability of achieving a desired signal to noise ratio and is thus at a maximum somewhere between FOT and LUF. The term FOT, which is the French equivalent of OWF (optimum working frequency), is thus a misnomer since it relates only to skywave probability. However since LUF is dependent on many factors which cannot be generalised it is found satisfactory in practice to take FOT as being what it says it is.

CDICOM

THE WORLD LEADERS IN VHF AMATEUR COMMUNICATIONS

IC-211E
Synthesized Base station multimode transceiver 10W. CW/USB/LSB/FM

IC-245E
Synthesized mobile multimode transceiver
10W. CW/USB/FM

IC-240
Synthesised 10W mobile FM transceiver

IC-215
crystal controlled 3W portable FM transceiver

INTRODUCE LSI SYNTHESIS TO THE AMATEUR MARKET
UK DISTRIBUTOR:

THANET ELECTRONICS
 143 RECULVER ROAD, HERNE BAY, KENT TELEPHONE (02273) 63859. TELEX 965179

WW-026 FOR FURTHER DETAILS

stephens-james limited

47 Warrington Road, Leigh, Lancashire Telephone: 0942676790

> NORTH WEST'S LEADING SUPPLIER FOR ALL YOUR AMATEUR REQUIREMENTS

Receivers - Transmitter
Transceivers - Antennas Test Equipment

Stockist for

ATLAS - BANTEX - BARLOW WADLEY - BELCOM CDE - CALETTI - DECCA - DRAKE - G. WHIPPS HY.GAIN - HI MOUND - JUNKER - JAYBEAM KATSUMI - LINTEC - MICROWAVE MODULES NOVEL - OMEGA - SEIWA - S.T.E. - SWAN TECHNICAL ASSOCIATES - YAESU MUSEN, etc.
For the DX listener we have a comprehensive range of Antenna Tuners, Filters, etc.
For the caller we have a wide range of plastic and metal cabinets, aluminium chassis, panels, tubing, etc.
Full on the spot HP facilities. Access and Barclaycard. SAE with all enquiries.

The Sinclair DM2 digital multimeter $31 / 2$ digits. 5 functions. Fully portable. Yet at only \&49 plus VAT, it's less expensive than most good analogue meters.
 The DM2 provides full digital multimeter facilities for every

Five functions in $\mathbf{2 2}$ ranges
DC volts
AC volts
DC current
AC current
Resistance
plus 8\% VAT

1 mV to 1000 v 1 mV to 500 v 100nA to 1A AC adaptor/charger $1 \mu A$ to $1 A$ Rechargeable pack all plus 8\% VAT

+ or write for full specifications or write for full specifications
and complete list of distributors to.
application including field servicing, testing, and laboratory work. 25,000 DM 2 s are already in service.
With 5 functions in 22 ranges, $31 / 2$ digit resolution, automatic polarity selection and 0.5% accuracy it's got all the performance you need.
With large high brightness LED display, rugged steel case and full overload protection it's robust and reliable in use. Powered from a dry battery it's fully portable, and options include an ever-ready carrying case, AC adaptor/charger, and a rechargeable battery pack.
Available from Hi-FiCare, 245 Tottenham Court Road, London W1. 01-637 8911.
Cubegate Ltd,
301 Edgware Road,
£5 LondonW2. 01-724 3564.
£3 Duvals,
£12 44 George Street, Oxford
(0865) 48549.

Action Electronic Development Ltd, 171 Queen Victoria Street, London EC4. O1-236 7819.
Norman Rose (Electrical) Ltd, 8 St Chads Place, Grays Inn Road, LondonW1. 01-837 9111.
25-27 Harkness Street, Ardwick, Manchester. (061) 2731498.
10 Sackville Street, Bradford, Yorks. (0274) 26104.

Department D 3, Sinclair Radionics Limited, London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ. Tel: St. Ives (0480) 64646.

Telephones and new technology

How progress can change an industry

By John Dwyer

Well into July, some four months after Plessey announced that they would have to sack 4,000 workers as a result of cutbacks in Post Office ordering, 200 women were still occupying Plessey's telecommunications plant at Kirby, Liverpool. The sackings caused a great deal of political heat at the time, and the Prime Minister was moved to appoint Mr Michael Posner of Cambridge University, a specialist in the economics of the public sector and a former deputy chief economic advisor to the Treasury, to examine the Post Office's equipment ordering methods.
His report was published at the end of May and welcomed at once by the Post Office, It is a vague, largely impenetrable document, full of tables and largely innocent of any suggestion of suffering that the tables might convey. At one point the professor offers two equations the Post Office uses to determine its future equipment needs, explaining that the studies which led to changes in the figures used in one of the equations are discussed in appendix 2; on the following page he adds'; "I would not pretend to have understood fully the complex calculations reported in appendix 2." The Post Office's decisions, he concludes, had been broadly correct.
Posner has not even approached the much broader, and more important questions raised by the dismissals: Why are there so many different types of exchange in use? If correct technical decisions had been made at the right time, and adhered to, would those sacked workers now be employed in a thriving, export-led telecommunications industry? Has new technology at last begun to make people surplus to requirements? Who supports either those made surplus or, for that matter, the Posners of this world?
The latest staff cuts are merely an unfortunate acceleration in a process that has been going on largely unobserved for some years. Thirty years ago the GPO, as it was until 1969, was pre-eminent among telecommunications authorities mainly because of its strict adherence to rather conservative but very high technical standards. Also

The Post Office uses five different types of exchange, apparently as a result of shrinking from unpleasant decisions over the years. The Plessey closures appear to show that the result was the same in the end anyway. This article traces the history of British telephone exchanges and asks whether we have learnt enough from it.
important, however, was Britain's position at the head of the Empire; it was this which attracted Automatic Electric of Chicago to set up, with BICC, a subsidiary in Liverpool to make Strowger exchange equipment. The first British Strowger step by step exchange was opened at Epsom in 1912. Eventually there were five companies making Strowger in Britain: Automatic Telephone and Electric (ATE, taken over by Plessey in 1961); Ericsson (a Swedish company banished in 1948); GEC; Siemens (later taken over by AEI); and STC, now a subsidiary of ITT. Because of the Empire, these companies had available to them a large export market which they could exploit merely by hanging on to the GPO's coat tails. With a quarter of the industry's production going abroad, Britain was the top exporter of telecommmunications equipment even as late as 1963 .
As an exporter Britain has now fallen from first place to fifth. The companies and their unions say that this is the fault of the Post Office, which has not ordered the type of equipment that is acceptable abroad and has changed its ordering plans so frequently that it has become impossible for them to plan ahead.

The export story

It is perhaps true that the suppliers and their potential export markets parted company a long time ago. Until the late 60 s the Post Office refused to buy a newer alternative to Strowger, the crossbar exchange. As the demand for telephones grew it became clear that the Strowger system had serious limitations. It is noisy, acoustically and
electrically, has a lot of moving parts and so needs a lot of maintenance. Crossbar is also an electromechanical system but it has fewer moving parts and needs less frequent adjustment. Crossbar systems have been used in Sweden since 1926. Perhaps more important, though, is that Strowger is a step by step system in which the call has to be routed one step at a time all the way to the dialled number before it discovers that the line is engaged. This wastes line space, a problem which can be overcome if all the calls are controlled from a central point in the exchange. The common control then allocates a route and operates all the switches along it. In Sweden in the late 1930s Ericsson invented a crossbar exchange system which used common control. The control unit takes the dialled number and registers it, then looks at the outlet and, if the number is free, operates the line switches to work a path back to the caller's phone. The system still uses electromechnical switches but is a lot more economical in line space.

If the common control fails, the system fails, unlike a Strowger system, and so duplication is necessary but, during the 1950 's, continental exchanges began to standardise on crossbar, and pressure built up in Britain to develop an exportable crossbar system. Plessey developed the 5005 crossbar, which they offered to the Post Office, but the Postmaster General, after consulting the GPO, said that the Government would prefer to wait for the inevitable arrival of all-electronic systems than invest in an intermediate electromechanical system. The manufacturers appear, reluctantly, to have agreed.

The Post Office went ahead with an experimental all-electronic (time division multiplex) exchange in Highgate, North London. This exchange opened one day in 1962. It closed the same day, having collapsed once it reached a quarter of its full traffic load. The Post Office was forced to fall back on Strowger. This helps to explain why even today 85% of the Post Office's 6,000
local exchanges are still Strowger, and why the suppliers have been so dependent on Strowger orders for so long.

Reed relay exchanges

While fulfilling its immediate needs with Strowger the Post Office, more cautious now, accelerated development of a reed relay exchange system first installed in Leighton Buzzard in 1967. This had been developed since 1961 through the Joint Electronics Research Agreement between all the suppliers. The TXE1, as the reed relay system was known, was developed by Plessey into the TXE2 for small rural exchanges. The Post Office now have about 800 of these exchanges in use, some from each supplier, and Plessey have been able to sell a commercial version, Pentex, successfully abroad.

However, there had been no version of TXE2 available which would be suitable for large exchanges. STC went ahead on their own after the JERA was ended and funded development of TXE4.
But in the period just after Highgate failed TXE4 was still a long way off the first such exchange, at Birmingham Rectory, did not open until February 1976. In addition, demand for telephones was growing, particularly since the nationalised industries were forced to hold prices below what they considered an economic level: demand doubled between 1965 and 1971. The Post Office were forced, after all, to buy crossbar, and the first crossbar exchanges went into service in the late 1960s.

Why more crossbar?

In 1971 the Post Office appears to have decided once again to make all its large exchanges electronic, and the following year they were trying to choose between TXE4 and more crossbar as an interim measure. The dilemma was heightened by the heavy reliance of the manufacturers on crossbar orders, and the smoother transition that TXE4 appeared to offer to electronic technology. See Wireless World, March 1976 p.92.

In February 1973 the Government announced approval of a decision to spend $£ 350$ million on crossbar and $£ 100$ million on TXE4. That this decision may not have been to the Post Office's liking is shown by a $£ 15$ million order received the previous year by STC from the Post Office for 16 TXE4 exchanges. In a speech in November 1972 Mr C. A. May, head of exchange systems division of Post Office telecommunications development wrote in the journal of the Institute of Post Office Engineers that TXE4 was "capable of providing the British Post Office's requirements for large scale telephone exchanges over the next decade or more." It was the result of consistent and logical development work since 1956. At that time,
however, GEC and Plessey were pressing for the adoption of a computerised stored programme control version of crossbar, TXE4 being, they thought, unexportable.
Then GEC defected. In 1973 *the company signed a ten year agreement for the exchange of technical information with STC. Plessey, it was thought, was out in the cold, particularly when it become known three months after the STC/GEC deal that GEC had won the Post Office's contract for the processor to be used with the planned "System X". all-electronic exchanges. The orders for the 2 BL processor would be worth £10million a year by the 1980s. All three companies had competed for this contract - Plessey submitted its PP250 processor - but it appears that when large companies compete for government contracts nobody loses. For one thing any company which wins a Post Office contract shares its information, for a price, with the others. For another, by purest coincidence, Plessey were awarded the contract to supply the PP250 for the Ptarmigan military communications system just as the GEC 2BL contract was announced.

Exports? - Forget it.

As a result of all this the Post Office exchange system is a melange of five different interworkable, but not interchangeable, systems. That means five lots of maintenance, five lots of spares, and five lots of training for the personnel associated with them. None of them has given the suppliers any export advantage. The Post Office crossbar system does not use multifrequency signalling, as the foreign market requires. None of them offers common control with a central microprocessor - Plessey's 5005 common control crossbar system failed to compete with those built by Ericsson and Siemens, who had a ten year lead.

Even TXE4 appears to have faults. TXE4 uses a number of smaller distributed processors instead of a central processor. In essence, it keeps a map of the state of all the switches which is updated every few milliseconds, and the call is routed by looking at the map the instant the number has been dialled. As Sir Raymond Brown pointed out in a report to the National Economic Development Council, TXE4 exchanges "do not have the computer control facility which is currently being offered by our competitors." The computer control he refers to is the ability to alter switch instructions electrically. For example, not only can such a system recognise a fault (as can TXE4) but the programme in the computer can route all the calls round the fault. This is known as stored programme control, or s.p.c. According to a report by white collar union ASTMS, TXE4 cannot perform tandem switching economically. A tandem exchange provides a central junction through which all calls are
routed instead of providing links from every exchange in an area to every other exchange.
ASTMS also advanced another reason for the poor export performance of the suppliers: "Our main criticisms of the British companies is that they have acted far too conservatively. Because of their extremely close business relationship with the Post Office, they have failed to engage in any serious degree of entrepreneurial enterprise. Their record is one of lack of innovation; they have, waited for the Post Office to order and take (sic) few risks. In this they are unlike other companies abroad, such as Siemens, which takes initiatives, exporting even if the domestic German Post Office does not order the equipment the company makes." According to ASTMS, Plessey invested 3.2% of its total sales in $\mathrm{r} \& \mathrm{~d}$ where Siemens put in 8%. In 197452% of the UK suppliers' output was accounted for by public telephone exchange equipment, transmission equipment accounted for another 10% and subscriber equipment 10% more. That is, three-quarters of their output was bought by the Post Office. Sir Ray Brown's figures, based on the Business Monitor for 1975, are rather different, but they still show that the Post Office bought two-thirds of the industry's output in that year.
In addition, the companies appear to have had enough trouble meeting Post Office orders without trying to produce exports as well, if an Arthur D. Little study of 1972 is to be believed. In August that year McKinsey management consultants were brought in to investigate their late deliveries.

Lack of initiative does not account entirely for the decline in the telecommunications industry. The Post Office had been accused of being inflexible in specifying the equipment it wants without regard for the need of suppliers to sell that equipment elsewhere. One example was the Post Office's choice of a non-standard crossbar system. Another, say STC, is the PO insistence on servicing the equipment from the back, whereas most foreign equipment is serviced from the front. Yet another is the Corporation's choice of Coral 66 as a programming language for System X, the future all-electronic exchanges. Coral 66 is not widely used outside the UK. It happens that Coral 66 is the standard language for military programming. The suppliers also complain that they have to pass any cost reductions they achieve as a result of greater efficiency on to the Post Office.

Where is everybody?

So far these upheavals appear to be more a result of the industry's own peculiar history than of changes in technology. But the changes began to affect the number of people employed the moment the Post Office moved away from Strowger. In a recent speech to the Royal Society STC chairman and

The control panel for the Pye TMC electronic director at Surbiton exchange. The v.d.u. shows the exchange codes and the codes to which they are translated for routing the call to a distant exchange. The pushbutton panel on the lower shelf puts new exchange codes into the director or may change existing ones. This updating used to be done once a week by changing the straps on a hard-wire panel. The new director occupies one fourteenth the space of the previous electromechanical equipment. It has been on test at Surbiton for two years, and development started in 1969.
managing director Kenneth Corfield gave the following figures: to manufacture 500,000 lines of electromechanical equipment a year needed 3,300 directly employed workers; to make the equivalent amount of semi-electronic equipment needed only 1,250 , while the wholly-electronic equipment would need only 120 workers.

The same is true of the numbers needed to look after such equipment. A good example is provided by the recent installation of an electronic director by Pye TMC at Surbiton exchange. In large conurbations the calls from a number of exchanges within an area are controlled by directors. Director areas have seven figure numbers. The first three digits are translated by the director into a train of pulses which route the call to the exchange connected to the dialled number. The final four digits are stored by the director until all three code numbers are dialled and translated and these four digits are then transmitted without translation. Without directors those connected to one exchange would need a different telephone directory to subscribers connected to different exchanges in the same area.

Directors are in continual use since
they deal with one call and then go on to the next. The electromechanical director needs frequent adjustment, and oiling once a month. In spite of constant attention electromechanical directors often misroute calls. In addition a strap field has to be altered manually once a week to deal with changed numbers and other alterations to the hard-wired programme. At Surbiton a team of eight is needed to keep the director and other equipment working.
The prototype Pye electronic director has been in use in Surbiton for two fault-free years. The translations are changed by a keypad which replaces the strap field, updating the store. It runs silently, enabling the engineers to talk to one another without shouting. It can work next to the electromechanical equipment in the exchange, which produces back-e.m.fs that can reach $1,300 \mathrm{~V}$ if a section fuse blows: the p-channel m.o.s. l.s.i. logic uses a ' 1 ' level of 25 V and a ' 0 ' of -3 V . The electronic director cannot misroute calls and samples one call in every 16 to make sure it is correctly routed. Not only is it actually cheaper than the electromechanical alternative, it takes up only one rack where its equivalent would have taken 14, and this enables the Post Office to take up any increase in telephone traffic without having to move to larger, and very expensive, new buildings. It does not need anything like the maintenance of the electromechanical equipment. With all these advantages it becomes plain that the Post Office cannot afford not to use more of this type of technology wherever it can and, following the Surbiton trial, the Post Office has ordered 280 electronic directors worth £7million to replace the electromechanical ones in 243 exchanges by 1981.
This is bound to have a great effect, as it is meant to, on staff levels. In the rest of the telecommunications industry the

The prototype electronic director at Surbiton. This equipment rack replaces 14 of the electromechnical type. The equipment has a translation store of 2,000 individual routing instructions, any of which can be rewritten using a keypad, providing for the routing of traffic to several hundred local exchanges, to the trunk network or various information centres. The translators are installed in triplicate in case of failure, but there have been no faults on the equipment in two years.
effects have bitten deep already. According to Sir Ray Brown's figures, between 1971 and 1975 the number of people employed in telecommunications fell from 91,000 to 77,000 . In the first quarter of 1975 there was a halt in the increase in telephone traffic, largely because of the fall in business activity and the large number of bankruptcies.

The recent review

Even more crucial, however, was a change in the method of measuring the flow of calls through the exchanges. In mid-1975 a new computer system for Exchange Equipment Review came on stream. The Post Office estimated that they would have to wait a year before they had built up sufficient data on which to base their predictions. "As a result of that," say the Post Office, "at the end of that year the capacity of switches was much greater than we had thought hitherto." The Posner report estimates that the excess in capacity was about 20%. The Corporation also began to even out the peaks and troughs in telephone traffic by making calls at the most popular time, the morning, more expensive.

On top of all this, in 1975 Post Office charges were increased. In 1976 public spending cuts forced nationalised
industries to be more self-reliant. The PO cut back its ordering programme drastically. The revised figures were published last November. $£ 44$ million worth of orders for GEC/Plessey Crossbar in 1977/8 had become $£ 25$ million. Strowger orders were slashed by three-quarters to $£ 10$ million. The investment programme for 1976 to 1980 was trimmed from $£ 884$ million to $£ 665$ million.

Perhaps the bitterest taste left by these cuts is that, when the Post Office increased its prices in October 1975 the then Prime Minister, Harold Wilson, on advice from the Post Office, said that the Corporation's ordering programme, outlined the previous year, could be regarded as definitive, and there would be no further need for redundancies. STC have since sacked 2,000 working on exchange equipment and GEC have cut their 33,000 work force by a third. The number in telecommunications has fallen a further 10,000 and the unions have said that the Plessey closures in March are but the first instalment in further cuts of 15,000 .
Sir Ray Brown describes System X as "the most ambitious programme ever undertaken by the British telecommunications industry." The Post Office is funding a $£ 100$ million development programme, half each to be spent in the Post Office and by the suppliers. Only scattered details are known about System X since Post Office staff involved are covered by the Official Secrets Act and the participating firms have to sign non-disclosure agreements before meetings at which the system is to be discussed. However, we do know that the Advisory Group on System Definitions, set up in 1968 and comprising representatives from the PO and industry, has agreed the basic idea behind the system, and that the first stage, the definition of requirements and the corresponding contracts, have been completed. The contracts are now being prepared so that the equipment can be produced. See Wireless World March 1976, p.92-94.
The reason for the secrecy is the manufacturers' heavy dependence on System X for future exports. Yet there have been serious doubts expressed, inside the Post Office as well as outside it, about the way the system is taking shape. One source of disquiet is the Post Office's insistence that System X will be based on "proven technology", meaning that it will use techniques which have been in use for some years.
Some authorities believe, however, that this caution is inappropriate when one takes account of the way modern circuits are manufactured, and may prove disastrous if System X has to rely on being ahead of its rivals. One eminent source told Wireless World. "System X will determine whether or not there's a future for the telecommunications industry for the next God knows how many years; it's very, very important." Yet he felt that System X planning was
awry, starting with the decision to buy the 2BL processor. To begin with it used t.t.l. technology, which was years behind the times. In addition it was a powerful processor which would be used in large control centres to control a number of exchanges connected by data or modem links. This, he said, went against the tendency in other countries to use distributed systems with a large number of exchanges controlled individually by microprocessors. The architecture of the system had been decided far too early, and its production was taking far too long. "Whether anyone will want System X by the time it appears, since the technology has moved on, is doubtful. I don't think there'll be a telecommunications industry in a few years if decisions keep being made as they are."
Until now electronics has been used almost exclusively to control existing systems rather than to provide, as it is hoped System X will do, a technicallyimproved alternative. One good example is the Pye director. Although the technology used could be applied to some future electronic system, the equipment itself merely replaces electromechanical equipment and does not fit into the framework already decided for System X.
Another example of the improvements electronics can make is the STC-developed variant on TXE4, TXE4A. The Post Office has ordered the first TXE4A exchange for Leicester's Belgrave exchange to come into use in January, 1980. TXE4A uses i.cs instead of discrete components, including m.o.s. reprogrammable read-only memories for the program store. Directory numbers and other information are fed

The new m.o.s. reprogrammable read-only memory store for STC's semi-electronic telephone exchange, TXE4A. The threaded wire equivalent used in TXE4 is in the background. As a whole TXE4 saved around 20% of space on Strowger, and the new version saves a further 20% on that. Both memories contain the programme for the exchange's main control unit which establishes the routing of the calls through the exchange.
from a keyboard to m.o.s. shift registers. "In addition," say STC, "an interface has been incorporated which will enable communication with local and remote processors which will permit the future provision of exchange management processors to give improved administrative control of System X." Other ways in which electronics can support telecommunications were explained in "Electronic telephone exchanges," Wireless World, June and July 1974.
Some of the effects of the new technology may be mitigated by the increasing use of the telecommunications network for other purposes than telephone calls. Data transmission, Telex, videoconferences, Viewdata, facsimile, and radio and tv signal transmission all require new techniques and better equipment, and the transmission network is rapidly being modernised. But the number of people in the industry is still bound to reduce. The evidence for this is so overwhelming that even ASTMS, in their report on the industry, (Wireless World February, p.46) say that a comprehensive programme of retraining, redeployment and generous compensation is needed to minimise the effects on industrial employees.
But someone has to pay, and it would end up being the Post Office. Even Posner's mild suggestion that perhaps all the Strowger orders for the next 10 years should be concentrated in the next two years would cost the Corporation $£ 5$ million. And the Post Office's own manning problems don't end with the closing down, last October 14, of the last manual exchange. It has applied to the EEC for a grant to retrain engineers whose jobs will disappear with the introduction of new technology
However the problem is tackled it is of much wider interest than a few factories closing down temporarily because of adverse economic conditions. This may be Britain's first taste of what may become a regular diet. The speed at which the Post Office progresses towards all-electronic exchanges may determine the speed at which the industry that made the old technology goes into decline, but nothing will alter the fact that, if Mr Corfield's figures are correct, at the end of that process one worker will be needed where there were once 27 . What happens to the 26 ? Who will support them? What then happens to the price of the product made by the one employee if part of that money has to support his former colleagues? Should nationalised industries support the industries who supply them or should we pay people to do nothing, through taxation, rather than to make out-ofdate equipment? These questions have to be tackled, because Plessey's closures are what the effects of technology mean, and the process, in this and other industries, has not yet even begun.
(Carter and the Post Office: see News, this issue)

Identifying European Television-3

A final selection of test cards and identification captions

by G. Smith \& K. Hamer

In the previous two articles sporadic E and tropospheric propagation have been mentioned as methods of receiving long-distance television stations in the United Kingdom. Although these two propagation modes are the main sources of reception, there are several other methods.

From time to time there are periods of intense solar activity which gives rise to solar flares. These flares cause a vertical reflecting sheet to be formed due to the magnetic disturbance and ionization of the Earth's D, E and F layers. Signals tend to be received from a northerly direction and there is a characteristic rumbling or sleigh-bell effect on sound, and horizontal bars on vision. It is possible to receive trans-Atlantic signals during exceptionally high solar flares.

An observation of the sun will indicate whether auroral reflection is likely because it is governed by magnetic storms in the sun's photosphere which in turn produce visible sun-spots. The chances of receiving signals by this mode of propagation are increased if there are many sun-spots present. It should be stressed that if a study of the sun is to be made the sun's image should be projected on to a piece of card to show the state of the sun-spot activity. Due to the rotation of the sun, there is a tendency for a re-occurrence of auroral reflection after 27 days but this cannot be guaranteed to affect television channels which, incidentally, are usually in Bands I and II.

Signals can also be received when small meteors enter the Earth's atmosphere at high velocities and produce an ionized trail. These particles can cause signals to be received at any time of the day or night and reception is entirely random. At certain times of the year, however, there are specific showers of meteors which can cause reception on a fairly predictable basis. Signals via this propagation mode tend to be of short duration, typically between 1 and 10 seconds but nevertheless interesting signals can be received. Usually Band I channels are affected. The originating transmitter can usually be identified by using the "List of Television Stations"
which is published annually by the European Broadcasting Union.
A somewhat dangerous method of reception is via lightning flash. During severe storms, lightning causes the atmosphere to become highly charged and television signals can be received during such periods. With this form of propagation, both v.h.f. and u.h.f. transmissions can be received. Incidentally, if an outdoor aerial mast is used, it should be earthed and insured as a precaution against lightning strikes.
Reception via F2 propagation is also possible during intense solar activity, when the maximum useable frequency rises and the F2 layer is ionized. This layer, which is approximately 200 miles above the Earth's surface, is able to refract television signals which can originate from transmitters over 2,000 miles away. F2 layer reception occurs when solar activity is at maximum and such activity has a cycle of approximately 11 years. Double-skip reception can occur via F2 propagation and leads to interesting possibilities because the reception range is not confined to Europe alone.

When the F2 layer disintegrates at dusk, another effect can take place called trans-equatorial skip. Due to the

11 year cycle, F2 and trans-equatorial skip propagation modes are not very common but it is hoped that the next peak will produce spectacular reception. Signals can also be received directly from satellites provided that suitably modified equipment is used. Television transmissions intended for Indian villages have been received in the UK from the American ATS-6 satellite. This satellite was in synchronous orbit over the Indian Ocean until last August. The experimental signals were transmitted on u.h.f. at 860 MHz with wide band f.m. video modulation. This satellite has now been moved and consequently the transmissions to India have ceased.

Further information about reception techniques can be found in Television magazine which has a regular DX column by Roger Bunney. As mentioned in a previous article, a 56 page book entitled "Guide to World-Wide Television Test Cards" is available through bookshops or directly from HS Publications at 17 Collingham Gardens, Derby DE3 4FS, price $£ 1.30$ inclusive. Virtually all television services throughout Europe and the rest of the world are featured with over 260 test card and identification caption photographs.

Poland TVP (D, K) - Televizja Polska's news programme caption. The initials DTV are also used.

Tunisia RTT (B) SECAM colour - Radiodiffusion-Télévision Tunisienne has ten main transmitters, all of which operate in Band 3.

East Germany DDR-F (B, G) SECAM colour - Alternative identification used with the DDR-F electronic test card.

Algeria RTA (B) - Identification caption used by Radiodiffu sion Télévision Algérienne. All transmitters are in Band III.

Vertical bars pattern - This pattern is used by the Polish and Russian Services. Spain also uses it but with a greater number of bars.

Iceland RUV (B) - Rikisutvarpid Sjonvarp has three high-powered Band I transmitters.

Czechoslovakia CST (D, K) SECAM colour - The new electronic test card as used by Ceskoslovenska Televize.

Monaco TMC (L) SECAM colour - The Philips PM5544 electronic test card is now used with the identification "Tele Monte Carlo."

Czechoslovakia CST (D, K) SECAM colour - The FUBK electronic test card is used as an alternative to the PM5544.

Cyprus PIK (B,H) - The PIK test card "G". The service is also identified hy the letters "CBC" and "RIK"

Norway NRK (B, G) PAL colour - At present, Norsk Rikskring-kasting mainly transmits on v.h.f., but u.h.f. transmissions are being introduced.

Lebanon CLT (B) SECAM colour - Compagnie Libanaise de Télévision has been received in the U.K.

Hungary MTV (D, K) SECAM colour - Magyar Televizio has three high-powered Band I and one Band II transmitters in operation.

RTVE-Spain/PTT: SRG: SSR: TSI-Switzerland - Off-screen photograph from RTVE. The Swiss service replaces " Ω Omega" with "tv".

Ghana GBC (B) - Although not in the official E.B.U. European Broadcasting Area, the Ghana Broadcasting Corporation has been received in the U.K.

France A2 (L) SECAM colour - "Antenna 2" is the second network of Télévision de France. The photograph was taken off a monitor.

Saudi Arabia HZ 22 (M) - The Indian Head test card as used by Aramco Television in Dhahran.

France FR3 (L) SECAM colour - France Region 3 is the third network of T.D.F. The first network uses a similar electronic test card with the identification "TDF TF 1".

Morocco RTM (B) - Morocco's transmitters are at present confined to Band III which makes reception of this service difficult.

High quality components from EEV are the best replacements in fixed station, portable or transportable radio transmitters.

EEV are one of Europe's leading manufacturers in this field with unparalleled experience and expertise.

Many types are available in the 50 to 1000 watt range, but only one standard of quality, the highest.

If you want to know more, please fill in the coupon and send it to us at Chelmsford.

To: EEV, Chelmsford, Essex, CM1 2QU, England Please send me details of EEV Triodes and Tetrodes. \square
General information. \square Please tick. Or information for equipment type
Name
\qquad
Position
Company
Address

Telephone
Telex

S5166/ww

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited.
Electron House.
Cray Avenue, St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Letters to the Editor

PRICE OF SMALL COMPONENTS

As a director of a business which certainly would have met the description of a "local shop" beloved by "Mixer" in the Ally Pally day (July issue), may I please comment on his horror at the price of small components?

Certainly in the early 'fifties we supplied many local constructors with their bits and pieces. Although we employed a shop assistant for about ten pounds a week in those days, and paid about the same in rent, I doubt if we actually made a profit in meeting their needs. We did get a lot of fun from meeting individuals with like minds, and this made it worth while.

Today we employ knowledgeable salesmen highly trained to help our customers select their teak furniture with knobs on; they earn five or six times as much as our old shop assistants and a high-street location is costing nearly as much per square foot today as the whole shop cost then.

Despite our trade accounts, we often find it cheaper and quicker to pop up the Edgware Road to one of your advertisers when we need some bits to make the odd construction. The same manufacturers who will not supply "Mixer" as a member of the public will not supply us, either, in the quantities we could buy. It is only the purchasing power in the hands of a relatively small number of mail order firms, sited away from costly high streets, that enables "Mixer" to buy his components at all.
Maurice Sokel,
JMS Kadio and Television Ltd.,
Edgware
Middlesex.

SLEW-RATE IN AMPLIFIERS

In his letter in the June issue Mr Nalty misleadingly states that a low slew-rate amplifier may be represented by a high slew-rate amplifier followed by an (unqualified but "suitable") RC filter, presumably low-pass.

This is suggesting that an essentially non-linear effect can be represented by cascading two linear circuits and is clearly unreasonable

Slew-rate distortion occurs when the
demanded output rate-of-change of voltage exceeds the maximum output slew-rate of the amplifier. The usual mechanism for slew-rate limitation (especially in op-amps) is a constant current source charging a compensation capacitor. Once the limit has been exceeded the output will therefore be a linear ramp until the output voltage "catches up" with the demanded output voltage, although, as pointed out by Professor Otala previously, and in a letter (June issue), in many cases the amplifier is detectably non-linear at a tenth of the slew-rate.
Slew-rate distortion is hence a non-linear distortion, and as the input sinewave amplitude is increased the output tends towards a triangular wave of peak-to-peak amplitude $S r / 2_{f}$ where $S r$ is the slew-rate in volts/second and f is the input frequency in Hz . Some reduction from the expected output fundamental will occur, but as this depends on the input amplitude, as well as frequency, it cannot be synthesised by a combination of ideal amplifiers (i.e. high slew-rate) and RC circuits.
G. J. Barton,

Department of Engineering
and Cybernetics, University of Reading.

SURROUND SOUND

Ever since it was introduced, I have been highly sceptical of surround sound as a form of reproduction for use in the domestic environment. My scepticism remains undiminished in respect of all "quadraphonic" systems (which I will henceforward refer to simply as "quad") and arises from two reasons.

The first reason is the difficulty of installing the speaker array in the required fashion in the average (UK) living room. Living rooms have to be used as living rooms as well as auditoria. The second revolves around the technical aspects, and it is with these that I am really concerned. However, before going into these I must digress briefly and discuss objectives.
There are basically two uses for surround sound systems: for reproducing what I would like to call "surround" presentations and "ambience" presentations.

It is normal for music and drama to be presented on a stage. This is convenient for the performers. It is also convenient for the audience, who need only concentrate their attention in one general direction. It is disturbing for an audience if important sounds are produced from directions remote from the stage. Thus, whilst an ability to reproduce surround presentations realistically might be hailed by some as opening up great new vistas, this facility would mostly be used for material which was either gimmicky or trivial. What I think I could best call the mainstream requirement for surround systems is the reproduction of ambience presentations. Nevertheless, the touchstone of the quality of any quad system appears to be its ability to reproduce surround presentations, so I will assume that for quad this is the prime objective.

Now back to the technical aspects. "Quad" implies four of something: in this case, four channels of information and four speakers. There appears to be a theory that reproducing four discrete channels through four speakers in a square array will produce the required effect. The theory is based on the idea that adjacent speakers will behave as stereo pairs and reproduce sounds in their
correct locations in the intervening spaces. In his January / February 1972 Wireless World articles, Mr Shorter very aptly called quad "four-channel stereo". So let us take a look at quad from this multiple-stereo angle.

I have at this address an excellent stereo system. It gives a wide spread of sound between the speakers with good localisation of solo instruments. Most importantly, with "serious" music, except on very rare occasions it is impossible to hear any sound as apparently originating from the speakers: one cannot detect the speaker positions by ear, even when trying hard to do so. The speakers are at the conventional angle of 60°. Widening the angle to 70°, the stereo image gets a bit diffuse. Widen it to 90° and the effect is very ping-pongy, so that I am very much aware of the presence of two sound sources. Quad requires the speaker pairs all to be at 90°, so with quad I would expect to hear not surround sound but four speakers. And at demonstrations of quad that is just what I have heard. And I am not the only one. "Ping-pung-pang-pong", as Mr Gerzon so nicely puts it. To some people's ears, including mine (and I suspect to just about everybody's), quad does not work. It is quite simply based on false premises. I have long wondered whether we were all being conned or whether those researching quad systems were kidding themselves (or both).

Quad requires four discrete channels of information. These can be put on to discs using carrier techniques, but it is simpler if the public can use their standard stereo pickups. So we have "matrixed" systems in which the four channels are compressed into two and the listener has a decoder to sort them out again. Simple decoders give heavy crosstalk, so some very complex ones have been devised to improve the "discreteness" of the recovered signals: albeit with some undesirable side-effects. Whilst one can admire the ingenuity which has gone into developing circuits such as the Variomatrix, one can only regret that it has been fundamentally misdirected.

For some years there have been several competing matrixed systems on the market, and these have recently been joined by the BBC's Matrix H. This is another quad system, its originators exhibiting the four-discrete-channel syndrome with its obsession regarding crosstalk, and not surprisingly their preferred approach is to use a Variomatrix to sort it out. As may be imagined from what I have already said, I read parts of Messrs Ratliff and Meares article with a certain amount of disbelief.
Matrix H is claimed to be compatible with stereo and mono reproduction. However, I must question its stereo compatibility on ambience presentations. Messrs Ratliff and Meares say that "The front quadrant spans most of the stereo stage...." Does, it? Looking at the encoding equation (panpot form), I see that there is 36% (-9 dB) crosstalk for sources in the front quadrant. Now a receiver giving only 9 dB stereo separation would be regarded as exceedingly poor, so this looks bad. However, the crosstalk is phase-shifted, and if I have read him correctly, Mr Gerzon implies that this widens the apparent stereo image. Well, I have here a tape of a Matrix H-encoded broadcast from the Royal Festival Hall, London. I find that whilst the stereo image is well enough defined, it is unusually narrow, the orchestra occupying barely half the angle between the speakers. This is roughly what I would expect for -9 dB crosstalk. A single sample is not necessarily representative, but I regard it as indicative.

Following hard on the heels of Matrix H we have Ambisonics and System 45 J. Ambisonics is (are?) not quad. Four channels are not used, and whilst four amplifiers and speakers can be, they are not obligatory. The concepts of discreteness and multi-stereo have gone out of the window, and concern about crosstalk has gone along with them. I think it can hardly be disputed that the Ambisonics approach is the right one, and it looks as if it actually works. With the publication of the decoder design (and the availability of some 45 J -encoded material?) we should be able to find out for ourselves. If, as I anticipate, the claims for Ambisonics and 45 J turn out to be justified, then the BBC would surely be ill-advised to continue promoting Matrix H. I hope that the present "experimental" broadcasts will not turn out to be the thin end of a wedge.

It appears that two-channel ambisonic decoders have the unavoidable disadvantage of giving a certain amount of phasiness and that for best results a third (or two-and-ahalf) channel is desirable: at least for surround presentations. Perhaps Mr Gerzon could let us know whether there is any significant disadvantage in having only two channels available for ambience presentations. Also, for ambience presentations is the four-speaker arrangement of his Fig. 7(a) (July) significantly poorer than his preferred six-speaker arrangements?

Finally, might I suggest that Mr Gerzon and his colleagues should round their work off by investigating the desirable speaker characteristics for their system? They have studied all the earlier parts of the chain. The speakers I use are a non-directional type, and for stereo I regard them as significantly superior to the conventional box-type with its multiple units aimed at the listener. With the latter, unless they are spaced rather closer than the conventional 60°, I find that I am always aware to a greater or lesser extent of the presence of the individual speakers. Why the difference? I don't know and can only speculate, though the sound fields produced will be different and that's for sure! I would expect the difference in bahaviour to be greater, if anything, with surround sound.
J. E. A. Fison

Abu Dhabi
Arabian Gulf

IMPROVING SURROUND SOUND ENCODING

The letter of Mr Andrew Sturt, of London Weekend Television, in the July issue, is particularly welcome for its engineering approach to the problem of optimising 2 -channel encoding specifications. Certainly a front-centre phase of 48° can be objectionable to discriminating listeners under some conditions, and we would ourselves prefer to reduce it to 45° or less.

Moreover the average phase-angle of the Matrix H encoding over the front sector is larger than its front-centre value, particularly for the pairwise-blended locus. This could be justified if the boundaries of the "impairment zones" could be taken literally, but on actual programme material this front-sector phasiness seems to have a cumulative effect not fully accounted for in the single-source tests used to delineate the impairment zones.
We agree also that insistence on the locus
passing through the left-only and right-only points is an unnecessary restriction which curtails the quality of optimisation, and that very precise conditions have to be fulfilled, as they are in the 45 J specifications, in assigning azimuths to points on the encoding locus.

However it is necessary to correct the misapprehension that in the choice of 45 JB , the two-channel member of the intercompatible 45 J hierarchy of encoding specifications, any less attention has been paid to mono and stereo compatibility than in Matrix H . The essential difference lies rather in our preference for optimising the performance averaged over the whole range of likely programme material, whereas the $B B C$ have aimed at minimising the single-source impairment that can occur in the worst possible case, however rarely this case may happen in real programme listening. This is a reason for the significantly lower phasiness of 45 JB over the front sector where important sound-sources are most likely to be found. There are also many other aspects to consider. There should for example be an even distribution of direct and, more especially, ambient sound in stereo reproduction avoiding distracting concentrations of sound from the direction of the two loudspeakers. Robustness to transmission errors also needs to be considered.
We naturally believe that our criteria for optimisation are the more realistic. Equally the BBC will have their own opinion, but this does not mean that the BBC claims for better mono and stereo compatability need to be taken at face value. Neither do we think that 45 JB is so perfect that it cannot be improved. In fact the difference between the 45 JB and Matrix H encodings is quite small by "quadraphonic" standards, and what remains to be done is a fine-tuning of the 2-channel specification for best results both now and in the future when higher standards may be demanded. This is taking place through the recently announced agreement between the BBC and NRDC to exchange technical information and experience with the aim of finding a common specification optimised for both broadcasting and recordings on disc or tape.

P. B. Fellgett

Department of Engineering
and Cybernetics
University of Reading

ADVANCED PRE-AMPLIFIER DESIGN

It was interesting to read the correspondence in your March issue relevant to the "Advanced preamplifier design" published in the November 1976 issue.
Mr Nalty makes an excellent point on the susceptibility of feedback equalized pre-amplifiers regarding high level, high frequency distortion. As he correctly concludes, it seems that many designers are unaware of the problem, and this is unfortunate indeed. Mr Self would seem to be included in this category as he maintains that slew limiting is caused by the open loop characteristics of the amplifier itself and not the feedback network.
In actuality, slew limiting can be caused by either the amplifier itself or load capacitance. The mechanism is simply a taxing of the I/C voltage rate of change, a basic relationship. In the case of RIAA pre-amps, insufficient current to support a full level high frequency output will result in distortion. This is easily measured by a full voltage level output t.h.d. sweep, or by a swept two-tone difference i.m. method.

To further illustrate these points, Mr Self's input amplifier was built and tested. In its published form it is severely slew limited by the single ended current available from Tr_{3} to charge the 10 nF feedback capacitor. In the graph, this is indicated by the 5 V r.m.s. t.h.d. versus frequency curve. Distortion begins at roughly 4 kHz , but doubling the emitter current in Tr_{3} moves this break point upward by a factor of two.

Without the capacitance, the distortion follows a more gradual rise, which is bandwidth related and eventually slew limits at 80 kHz . The difference between these two curves, both taken at 5 V r.m.s. out, is that in one case the slew limiting is caused by the capacitive feedback load, while in the other it is the amplifier's internal limit which is the culprit.
At lower levels, the slew limit break point is pushed outward in frequency, approximately 20 kHz , for a level of 1.25 V r.m.s., roughly the ratio of amplitudes.

A point to be made relevant to all of this is that this form of distortion can very readily
be heard, and it often sounds as Mr Nalty has described. Pre-amps are particularly susceptible to slew limiting as they must handle the full dynamic range on the disc regardless of volume control settings. This dynamic range must be present with full fidelity across the entire audio band, and even beyond, not solely at 1 kHz where overload specs are typically cited.
W. G. Jung

Forest Hill
Maryland, USA

References

1. W. G. Jung, "Slew induced distortion in audio amplifiers." The Audio Amateur, issue 1, 1977.
2. W. G. Jung, M. Stephens, C. C. Todd, "Slewing induced distortion and its effect on audio amplifier performance - with correlated measurement/listening results". AES Spring Conference, May 1977.

AURAL SENSITIVITY TO PHASE

It may well be that, if one makes the assumptions about the auditory system suggested by J. H. Asbery (July letters), the arguments about phase audibility are resolved, but, unfortunately, we are in no way justified in regarding the ear in the manner proposed by Mr Asbery
I would concede that the ear begins as a non-linear transducer, in the sense that the outer ear modifies the energy spectrum of the sound entering it, but so do recording machines. As I pointed out in my letter of July 1976, this modification is of use to the system, not detrimental. However, except at high intensity levels, there is no evidence for harmonic distortion; in other words Mr Asbery's 2nd harmonic cannot be detected.
It is not possible to state the exact Q of the auditory filters, as its value varies with frequency and method of testing, and the filter shape has steep cut-off on one side and shallow on the other. A simple test procedure based on the detection of a tone in a band of noise leads to very modest values for the Q; say around 6 at 1 kHz .

One certainly cannot accept that the only information reaching the brain, concerning each frequency, is its amplitude. The auditory nerve, leading from ear to brain, is tonotopically organised; in other words the different fibres of which it is composed seem to be carrying information about different frequencies, with the higher frequencies towards the outside of the bundle. Placing an electrode in a fibre and measuring its electrical activity shows any given one to have a characteristic frequency, to which it responds best. If a series of tones are presented to the ear, then the activity of a fibre falls off at frequencies above and below the characteristic frequency. The loudness of an auditory stimulus is encoded as rate of "firing" of the nerves - a kind of amplitude-to-frequency conversion. However, a given nerve fibre does not fire at random intervals; it has been shown that firing occurs near peak displacements of the initiating waveform and so remains in phase with it, although for a sound of low intensity a nerve does not respond to every displacement.

From the above necessarily abbreviated account it can ben seen that phase information is indeed available to the brain, but does it use this information? In general it
is a safe rule that, if an organism has the necessary apparatus to extract a certain facet of knowledge from its environment, then the organism is using that knowledge. That the human brain not only has available, but also responds to, phase information in a sound can be demonstrated by a simple experiment. One listens, via headphones, to a tone embedded in white noise; the connections being such that the sounds are in phase at each ear. The intensity of the tone is then reduced until just subthreshold. It can now be rendered audible again by inverting its phase at one ear, the phase of the noise being left unaltered. Readers will see immediately that this ability of the auditory system to use phase information is of enormous benefit when trying to listen to some sound source in a noisy environment.
In conclusion I will repeat the theme of my 1976 letter. The ear-brain combination is undoubtedly sensitive to relative phases in the components of a signal, but at the same time the system is remarkably adaptable, as it has to be to recognise and understand a voice a few steps away, at the other end of a telephone, or across a crowded room. The particular distortions of a given environment are quickly recognised as constants, allowances are made and at the conscious level they are ignored. All of which does not imply that a difference cannot be detected when rapid switching between two conditions is possible.
Peter Naish
Department of Experimental Psychology University of Oxford

INTERFERENCE FROM AMATEUR STATIONS

I have one or two pertinent comments to make concerning the letter in the June issue from Mr D.P. Doo of the British Radio Equipment Manufacturers' Association.
Under the heading "Interference from Amateur Stations", I find it difficult to imagine that manufacturers get "so few complaints", and one can only surmise the computer backfired; furthermore, the number of complaints would vary inversely with the country of origin. In view of the fact that large quantities of high fidelity equipment, radio and television sets, etc., sold over here emanate from Japan, Germany, Scandinavia and other foreign countries, it is possible that this category would not be brought to Mr Doo's attention

The writer has held an amateur licence for 45 years and has been a member of the Radio Society of Great Britain for 32 years, and on behalf of the amateur fraternity, we appreciate your correspondent's "clear. and sympathetic understanding of the technical and social problems involved". However, I am afraid he is somewhat behind the times if he imagines the amateur licensee takes the matter into his own hands by having a technical relationship with a complainant. Granted, we used to do this in days of yore (and I, for one, would dearly like to have continued this service), but just breathe on somebody's $£ 250$ hi-fi or television receiver today and the "pattern" is always the same: "It was fine until he came and fitted that gadget - it's never been right since!"'

No, Mr Doo, it's more than we dare, in this modern age, and one has to rely implicitly on the Home Office authorities for such liaison as may be necessary.

The implication that the Post Office do not notify the manufacturer of unsolved cases of interference is ludicrous. Provided the correct Division is handling the matter, and this is vitally important, I guarantee not one case ever goes unheeded. The engineering staff have to carry out most of their work at night-time and do so in a most efficient and capable manner and, to put it mildly, far exceed the call of duty.

With the advent of solid state devices, one must be brutally frank and state that manufacturers of all countries are still not taking adequate steps to screen and by-pass both low gain audio stages from r.f. pick-up - and, let's face it, this is ninety percent of all troubles as far as amateurs are concerned and audio amplifiers without radio are not covered by any licensing terms of reference.
Rex J. Toby, G2CDN
Isleworth
Middlesex

TELEPHONE ANSWER. ING MACHINES

It was interesting to read your report on page 39 of the July issue entitled "An end to listen-only answering machines".

The comment "hideously unsociable devices" is, of course, an odd one to make and I only assume that the author of this emotive and inaccurate phrase was not aware of the thousands upon thousands of companies from ICI to Brooke Bond Oxo relying heavily upon Ansafone machines for efficient throughput of information and in some cases directly linked with a computer system in order to save considerable amount of turn-round time on deliveries, etc. Also, the author apparently did not realise that the remote recall facility in telephone answering machines is quite common and by no means new. This facility has been extensively used for many years.

Apart from the many large industrial applications of these machines, the report also demonstrates by omission a lack of appreciation of their global use throughout business and the professions not only in this country but in the whole world.

The report referred to also states that "operation hitherto has been cumbersome". This again of course is nonsense, particularly when one refers to the Ansafone range of sophisticated compact machines and especially the new 800 with its many exclusive features.
Leo Jewell
Ansafone Ltd
London Wl

Stolen transmitters

We have been asked by the police at Oakham, Leicestershire, to inform readers of the theft of two Pye transmitters from an EMEB site at Tinwell, Leicestershire. The instruments, Model T470, a u.h.f. transmitter (serial number 3193), having an operating frequency of 462.465 MHz , and Model T30AM a v.h.f. transmitter (serial number 2688) having an operating frequency of 139.71875 MHz , were stolen on 18 or 19 April. If you can offer information which could lead to the recovery of this equipment, please contact the Oakham police on $(0572) 2626$, or your local police.

Circuit Ideas

Phase shift oscillator for electronic music

The envelope of an electrical waveform from any percussion instrument has a sharp rise and gradual decay as shown in Fig (a). The periodic signal within this envelope can be approximated to a sine wave and the frequency is normally in the range 100 to 400 Hz . The decay time of this envelope is dependent on the form of the beat. A modified phase shift oscillator can be used to obtain the damped sinusoidal waveform which gives an audio output similar to that of a drum. To obtain oscillations it is not necessary to have equal values of resistances and capacitances in the $R C$

(b)
sections of the oscillator. By applying a positive trigger pulse at the transistor base, the circuit starts to oscillate. Resistor R_{2} is adjusted so that the oscillations cannot be sustained and hence decay gradually. One method of obtaining drum sounds of different tonal quality is to vary C_{3} which changes both the frequency and the envelope of the waveform. Quality and
diversity of the drum sound can be increased by adding a f.e.t. in parallel with R_{1}, as a voltage controlled resistor. The f.e.t. gate voltage is varied from 0 to -250 mV which alters the decay time. V. C. V. Pratapa Reddy, S. Anantha Narayanan
\& P. V. Raghavan,
Madras,
India.

D.C. motor control

This circuit will control most types of d.c. motor and enable full torque to be produced at any speed from maximum down to below 100 r.p.m. Transistors $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ and Tr_{5} form a switching regulator where the base drive for Tr_{3} is
derived from the on-state base-emitter drop of Tr_{5}. Advantages of this unusual configuration are the ability to control high currents with a low on-state voltage drop, and the elimination of protection diodes at Tr_{3} base as the
voltage swing on C_{3} is automatically limited to around 1 V pk to pk .

When Tr_{5} is off, the motor back-emf is compared with a reference from R_{11}. The resulting collector current in Tr_{1} determines the mark/space ratio of the regulator. Resistors R_{4} and R_{7} attenuate the motor voltage by 10% to ensure that full speed may be reached within the range of R_{11}.
To prevent the inductive overshoot pulse, produced when Tr_{5} switches off, from overcharging C_{2}, the circuit around Tr_{2} is included which senses this pulse and clamps the junction of $R_{4} R_{7}$ to ground. Resistor R_{12} provides adjustment of the clamp pulse length to suit the characteristics of different motors, and is adjusted to the point where the applied power responds to load changes in a critically damped manner.
The circuit will operate from almost any power supply, even rectified a.c., although the addition of a smoothing capacitor improves the speed stability. Because no attempt has been made to stabilize the supply to R_{11}, the motor speed will be proportional to the supply voltage. If accuracy of speed is important, R_{11} may be fed from a zener diode or i.c. regulator.
I. W. Rudge,

Edinburgh.

Digital keyboard

Note	Latch					
	6	5	4	3	2	1
	A	A	A	A	A	A
C	A	A	A	A	A	B
C	A	A	A	A	B	A
D	A	A	A	A	B	B
D	A	A	A	B	A	A
	etc					

Most music synthesizers have keyboards where each key selects a voltage from a resistor chain and applies it to an analogue sample and hold circuit. Due to the very short sample time and long hold time required this unit becomes complex. The accuracy of each note also depends on the degree to which 49 or 61 resistors can be matched. A better solution is to use a digital keyboard as shown. Each key has 7 associated diodes which set six latches to give a binary representation of the note
selected. The seventh diode feeds a transistor invertor to give an output for triggering an envelope generator. The outputs of these latches are fed to a d-a converter using an open collector l.e.d. invertor and an operational amplifier. For a C to C keyboard, the diodes are connected as shown in the table.
D. Bryant, Totton, Hants.

Modified intruder alarm circuit

This revised circuit of the Doppler movement detector (July issue, page 38) incorporates the improved delay circuit and includes C_{4} and R_{4} inadvertently omitted from Fig. 5. Capacitor C_{8} is $1 \mu \mathrm{~F}$ not 1 nF and C_{13} shown as 10 nF . was incorrectly labelled C_{12}. Resistor R_{15} has a new
value. Components marked with an asterisk have different values in the kit version. Transistor Tr_{5} and other $n-p-n$ types is a ZTX300, 302 or A11: the p-n-p transistors are ZTX500 or ZTXA2 1.

The complete home entertainment show

As is evident from its subsidiary title, the Audio Fair has markedly broadened its horizons this year. Only a couple of years ago, anything which did not have an exclusively 'hi-fi' flavour could not be exhibited, which meant that the newer expressions of the electronic engineer's art were ignored. Now, anything to do with the use of electronics in any kind of entertainment equipment is to be shown, from teletext to tv tennis, from cassettes to cabinets. High-quality audio equipment will, of course, be well to the fore.

Thames Television will be showing displays of their Oracle teletext system, which is now beginning to be seen in commercial form in the more recent television receivers, and the Post Office intend to demonstrate Viewdata, the two-way information display system using telephone lines. Viewdata is to be evaluated by a thousand users during 1978 and it is expected that a full service will start in 1980. The BBC will show their version of teletext, Ceefax, and are also expected to demonstrate Matrix H , the recently-developed method of broadcasting surround-sound material, for which we have published decoder designs in the last few months.

Wireless World will, of course, show examples of recent constructional projects and intends to present. a series of lectures by well-known figures in the field of high-quality sound reproduction. John Linsley Hood is to speak on cassette-deck design and on the causes and methods of reducing several types of distortion. The "audibility of phase" controversy will be tackled by James Moir, who will include the results of his own investigations, while Arthur Bailey intends to review the design of loudspeakers, demonstrating different types of enclosures and drive units. Jack Dinsdale will present his view of the most recent advances in the whole audio field, with a look at his own work on horn loudspeakers. The production of electronic music and effects will be described and demonstrated by Desmond Briscoe from the BBC Radiophonic Workshop and Peter Zinovieff of EMS and a view of the contribution made by amateur radio to

Audio Fair '77
Olympia, London. 12-18 September, 1977

The exhibition is open for trade visitors between 2 p.m. and 7 p.m. on Monday, 12 th, and 10 a.m.-2 p.m. on Tuesday, 13th. From 2 p.m. to 9 p.m. on Tuesday and from 10 a.m. to 9 p.m. Wodnesday to Saturday (8.30 on Sunday) the show is open to the public. Admission is $\mathbf{6 0 p}$ for visitors of all ages.
Public transport to the show is probably easier than motoring, since car parking is fairly difficult. Tube trains (District and Piccadilly lines) stop at Earl's Court, where a special shuttle service runs to Olympia. Red buses 9, 9(a), 27, 28, 33 and 73, and Green Line coaches 704, 705; 714 and 716 pass the door.
professional communication will be given by an RSGB speaker.

Audio

There is a continual drive to improve the quality of reproduction provided by both domestic and professional equipment, but it is in the domestic sphere that innovations are most frequently

ADC QLM Mk II 36 induced-magnet cartridge. Mass is claimed to be low for better tracking.
discussed. This is possibly because of marketing pressures, which force the appearance of new styling, new facilities and sometimes even new designs, which are copiously reviewed and discussed in the consumer electronics press.

Solid advances continue to be made in technique, however, and recent months have brought the BBC's system for surround-sound broadcasting, Matrix H. This has been test broadcast since May, 1977, and has produced reactions ranging from indifference to ecstasy. Decoders for this system are being produced in kit form and in some receivers. The NRDC-backed Ambisonic System 45J is still a contender, both here and abroad, and the fight for eventual adoption by broadcast authorities is not yet over, although there is now agreement between the proposers of the two systems to exchange knowledge ("News of the Month" August).

Record decks, until recently, were the only fully mechanical piece of audio equipment left. It seems that these days are now numbered with the introduction of the parallel tracking arm - more .electronics than an amplifier-and the remote controlled turntable with memories for track selection - more electronics than many hi-fi systems. BSR, the originators of the last mentioned deck, will be showing the Accutrac +6 . This is another remotelycontrolled instrument which has the features of the original deck plus the ability to play the tracks on six separate albums in any sequence and as often as required. Remote volume control is also provided. The heart of this turntable is the "Accuglide computer-activated record transport system". Unfortunately very few details were available at the time of going to press, but we understand that record selection is by a small platter which spirals up through the main platter, seeks out the correct record and lowers it on the deck proper - sounds as though it should be shovelling up soil samples with Viking 2. Visitors to the Audio Fair will be able to see demonstrations of the Accutrac

List of Exhibitors

The following list is as complete as we can make it at the time of going to press.

Adam Imports

Agfo-Gevaert
A.M.S. Trading (Amstrad)

Artifact Designs
BASF (UK)
BBC Radio Publicity
Beyer Dynamics (GB)
Bib H-Fi
BSR
Cambra Cases
Chuo Senko (UK)
Contek Magnetics
Countdown
Decca Radio 8: Television
Decimo
DTR Electronics

Electronic Manufacturing

Gale Electronics \& Design
Grabern Audio
Grundig (GB)
Haymarket Publishing
Hitachi Sales (UK)
IBA
ILP Electronics
JR Loudspeakers
JVC (UK)
Kirsten, G. \& A.
Koss Stereophones
Link House Group
London Car Radio Centre
Metrosound Audio Products
National Panasonic
Natural Sound System
Omex Products
Parkar, J. \& Co. (London)

Plustronics
Post Office Telecommunications
Purpax Manufacturers
Pye
Pyral Magnetics
Pyser
Rank Hi Fi
Record Housing
RI Audio
Sanyo Marubeni
Shure Electronics
SME
Steepletone Products
Tannoy Products
Tape Music Distributors
Training Services Agency
Videotone
Vor International
Wavelength
Wilmex
Wireless World
+6 , although it will not be available until early next year.

Another area in which electronics has been introduced is speed control. Technics have produced a quartz-controlled, phase-lock loop, direct-drive turntable. The rotational speed of this unit is independent of the a.c. power supply and temperature. Maximum drift is quoted as $\pm 0.036 \mathrm{sec}$ over the 30 -minute playing time of an l.p. side which should be adequate for most records in the average collection!

The modern equivalent to the radiogram of old, the music centre, is out-growing its initial, somewhat shamefaced, image and some of the recently-introduced models are of very high quality (and price!) indeed. This is a trend reversal - a few years ago no high-fidelity buff worth his salt would

The NAD 120 receiver, which produces 20W per channel ($20 \mathrm{~Hz}-20 \mathrm{kHz}$) both channels driven. Total harmonic distortion and intermodulation distortion at 20 W are better than 0.2%. The receiver is distributed by Pyser Ltd.
have considered a ready-assembled outfit a fit subject for discussion. There is still some resistance: after all, a top-level music-centre can look very like its more pedestrian counterpart, whereas a collection of separate units leaves no doubt in the mind of a casual onlooker that one's equipment is 'hi-fi'.
Audio power amplifiers are forced to provide greater and greater amounts of power, at lower levels of various kinds of distortion, as ears become better educated and loudspeakers more inefficient. Output-stage configurations proliferate and we have now reached Class G in the chain of evolution, offering improved efficiency and a reduction in weight. The basic principle is an output arrangement which has two supply voltages $V_{c c}$ and approximately $1 / 2 \mathrm{~V}_{\mathrm{cc}}$. A conventional push-pull pair operate between the two low voltage rails of a positive and negative supply. When high level signals are applied and the complementary pair begins to saturate, two more transistors, which are in series with the first pair, begin to turn on. This second pair of output transistors is connected to the full supply rail and handles signal peaks.

The main snag with this system is the crossover points, one in the middle and two either side. Even so, the designers have managed to keep the t.h.d. figures to around 0.006% for 100 W at 1 kHz rising to 0.035% at 20 kHz . Class D has made something of a comeback, now that faster, beefier transistors are with us and Peter Walker's current-dumping amplifier is another Quad success. Power field-effect transistors made an impression but, at the other end of the evolutionary process, valves have been seen in recent amplifier designs.
On the subject of speakers, progress is made in size reductions and in the design of crossover networks - chiefly to reduce phase anomalies. The LS3/5A BBC monitor speaker is probably the smallest high-quality reproducer available and is capable of truly remarkable performance, while the latest Tannoy and Radford products are in the outsize class, the Radford ISO360 using no less than eighteen drivers' to provide all-round emission. The 'stepped' appearance of some speakers, notably the Bowers and Wilkins and Technics designs, are an additional attempt to get the radiation from the separate drive units in phase. Together with a minimum phase-shift crossover network, this approach is intended to provide a linear phase response over the whole frequency range:

Remote control of domestic equipment is usually the province of television receivers, but there are now one or two remotely-controlled pieces of audio gear - and why not, indeed? The Bang and Olufsen music centre provides control of most of its functions by means of an ultrasonic control pad, which we have operated from one side of a large hall to the other. Control of the BSR Accutrac turntable is also by ultrasonic keypad, which allows the user to select tracks according to a preselected programme, the arm using an infra-red detector and m.o.s. circuitry to count and identify the tracks.

New from Antex-the CX miniature soldering iron, the very latest addition to the range that has given us a reputation second to none.

Manufactured on the same principle as the extremely successful X25 the CX incorporates these points:
\square Heating element encased by inner thin ceramic tube, outer tube of stainless steel.
\square Soldering bits fit precisely over steel tube, with easy and quick exchange possible for any of the additional bits (shown in photograph).

Model X25 is a general purpose soldering iron, also with two shafts for oughness and perfect insulation. Available for 220-250 volts or 100120 volts at 25 Watts and priced at E3.40 exclusive of VAT.

Stand Model ST3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at $£ 1.40$ exclusive of VAT.
\square Use for ordinary or micro-soldering: tip sizes range from 6 mm down to 1 mm .
\square Available for $220-250$ volts or $100-120$ volts
\square Weight $-11 / 20 \mathrm{z}$ (40 gram) Length $-71 / 2^{\prime \prime}(19 \mathrm{~cm})$.
\square Price - $£ 3.40$ fitted with standard bit $3 / 32^{\prime \prime}$ (2.3 mm). Spare bits $£ 0.46 ; £ 0.72 ; £ 0.84$. Exclusive of VAT.

Adaptable, efficient and with a very high safety standard, the Antex CX may be small-but it's already building up a big reputation!

Send the coupon below for colour catalogue and price lists.

Mayflower House, Plymouth Telephone (0752) 67377/8 Telex 45296 Giro 2581000 To Antex Ltd
Freepost Plymouth PL11BR.
Please send me catalogue and price list.
Name
Address

Qum ciman conamen

40,000 L series power supplies sold .

If we hadn't built them so well we could be selling more now! The stiffest competition we find against making a sale is a lab. full of the old black-faced original L30's-still performing reliably after more than 10 years service.

Acknowledged the U.K.'s most popular range of bench power packs the latest version of the L series is still uncompromising in performance and reliability and provides constant voltage OR constant current, features large recessed meters overload and short-circuit protection, coarse and fine adjustment controls, a separate output switch and LED indicators for mains on and current limit.

Models available		
L50-05	0-50V, 0.5A	L12-10C* 0 - 12V, 10A
L30-1	0-30V, 1A	LT50-05 t win output unit $2 \times 0-50 \mathrm{~V}, 0.5 \mathrm{~A}$
L10-3C*	0-10V, 3A	LT30-1 iwin output unit $2 \times 0-30 \mathrm{~V}, 1 \mathrm{~A}$
L30-2	0-30V, 2A	LT30-2 iwin output unit $2 \times 0-30 \mathrm{~V}, 2 \mathrm{~A}$
L30-5	0-30V.5A	*with adjustable overvoltage protection

For full specification and prices contact

 Furnell

FARNELL INSTRUMENTS LIMITED SANDBECK WAY WETHERBY WEST YORKSHIRE LS 22 4DH
Telephone 0937-63541 TELEX 557294

World of Amateur Radio

Opposition to repeaters

There is still considerable opposition to (as well as support for) the use of amateur v.h.f./u.h.f. repeaters in the U.K. - to an extent where an amateur operator recently pleaded guilty in a magistrate's court to causing damage to the GB3SN repeater in Hampshire. It was claimed by the prosecution that four other amateurs were present at the time although no charges were brought against them. A conditional discharge was accompanied by damages and legal costs of almost $£ 100$.

Two UK FM Groups (London and Southern) have set up a fund to allow them to take legal action to stop deliberate jamming and interference to repeaters. In an attack on the anti-repeater groups who take the law into their own hands, the Newsletter of the UK FM Group (London) states: "The amateur who only has a black-box and restricts himself to repeater operating (and there must be precious few such amateurs) is to be pitied and not despised. He is cutting himself off from many of the pleasures and rewards that this hobby has to offer. The solution, however, is not to prevent him from using his equipment (and those who do so by unlawful means do a great disservice to the amateur movement as a whole) but rather should be concerned with encouraging the newcomer to look at a wider horizon."

Oscar 6 fading fast

The condition of the ni-cad battery on the highly-successful Oscar 6 amateur satellite - launched October 15, 1972 deteriorated rapidly during the period May 23 to June 10. Martin Sweeting, G3YJO of the University of Surrey Amsat Telecommand Centre, reported in late June that the battery voltage plummeted alarmingly from 27 V on May 23 to 13 V on June 1 and 5 V on June 10 , adding:
"It was decided to shut the spacecraft down until mid-July when the sun angle improves and the battery receives more charge. On Sunday, June 12, however, the downlink telemetry became garbled
and since then has been reading constant values for each frame, although the transponder and command system were still fully operational.
"On June 16, W3UN switched the satellite on for telemetry tests and was unable to switch it off during that orbit. Since then it has not responded well to ground command and at times the transponder may be found on: however, it is imperative not to use it in order to maintain the possibility of re-activation later this year.
"Extensive experiments are being carried out here in an attempt to analyse the failure mechanism in detail to increase command reliability."

Oscar 7 remains operational and the next Amsat satellite is now scheduled for launch about February/March 1978, rather than November 1977. There are also persistent rumours that a Rus-sian-built amateur spacecraft, carrying a 144 to 28 MHz transponder, with beacons on 20.08 and 29.5 MHz , has been built and is awaiting launch.

Squaring up for WARC 1979

Amateurs in many countries are watching the preparations for the World Administrative Radio Conference in 1979 with concern. For it is becoming clear that many administrations anticipate major revisions to the international table of frequency allocations - as occurred at Atlantic City 1947 - rather than just a few tidying-up amendments as at Geneva 1959.
The provisional Home Office proposals for h.f. amateur allocations, though still unpublished, are believed to represent a favourable attitude towards amateur allocations, including several attractive new bands. The latest FCC proposals, though less radical, seek to maintain or enlarge most existing amateur bands with a new 13m (25.76 to 28.86 MHz) band. But there is growing evidence of strong pressures in some countries for new h.f. broadcasting allocations that represent a real or potential threat to the amateur bands (since unfortunately world broadcasters seldom stick rigidly to the frequency table in the way that amateurs have to!).

Tom R. Clarkson, ZL2AZ, the veteran overseas liaison officer of NZART with much experience of these conferences, has recently circulated a long and detailed appraisal of the problems facing amateurs, noting particularly how Atlantic City 1947 represented an important defeat of idealism and the abandonment of world-wide uniformity in frequency usage in the creation of the three Regions and the hundreds of footnotes to the table. This has meant that traditional American support for the amateurs is no longer as effective as in the period 1927 to 1947.

He notes that, since 1945, in placing value on h.f. broadcasting, developing
countries have attacked amateur allocations. Yet the amateur service, Tom Clarkson believes, not only helps the advance of all radio communication services but, for developing countries, participation in amateur radio is in their national self-interest, in introducing an environment favourable to self-sufficiency in radio talent.

In brief

The number of British Class A licences has now passed the 16,000 mark Sporadic E propagation as high as 144 MHz occurred during June and also produced periods of extremely 'short skip' on 14,21 and 18 MHz ... A Dutch 10.1 GHz Gunn-diode beacon transmitter, PA0HSM, at Zaandan, north-west of Amsterdam, has four horn antennas, one beamed on London. It is planned to install a higher-power crystal-controlled transmitter at Noordwyk soon Efforts are also being made to link the UK with Holland for 10 GHz amateur television pictures... Another slow-scan television convention is being organised by the British Amateur Television Club at the University of Aston, Birmingham, on Saturday, November 19, from 10 a.m. to 5.30 p.m. Amateurs are invited to bring equipment to show and demonstrate and all known s.s.t.v. firms are being invited to exhibit products; there will be lectures in the afternoon. Non-members of BATC are welcome (50 p admission with free car parking. Details and map from Mike Crampton, G8DLX, 16 Percival Road, Rugby, Warwickshire CV22 5JS (please include return postage)... September events include the Scottish Amateur Radio Convention, Adam Smith Centre, Kirkcaldy, on September 10; North-west Amateur Radio Convention at the University of Lancaster on September 17-18; Welsh Amateur Radio Convention, Oakdale Community College, Blackwood, Gwent, on September $25 \ldots$ Mobile rallies include Preston at Walton le Dale County Secondary School, Bamber Bridge, Preston, on August 21; Torbay at Haldon Racecourse near Exeter on August 28; Peterborough at Walton Secondary School, Mountsteven Avenue, Peterborough, on September 18; Harlow at Netteswell Comprehensive School, .Harlow, on September $25 \ldots$ There will be an amateur station at the National Town and Country Festival, National Agricultural Centre, Stonleigh, Warwickshire, on August 27-29 . . . New Australian 3.4 GHz record of 114 km established recently with a contact between VK2AHC/P and VK2SB... The FCC recently issued several hundred amateur callsigns with the prefix "WC" but these are being changed to WB or WD. No, the reason is that WC is allotted to the Radio Amateur Civil Emergency Service.

New Products

Cordless soldering gun

A soldering gun now available from Greenwood Electronics is rechargeable, feeding solder automatically and illuminating the working area. The Isotip MK III, as it is named, has powerful, rechargeable, nickel-cadmium batteries which can provide power for up to 400 electronic joints. A 'dead' soldering gun can be fully recharged overnight. By operating the trigger of the gun, the Isotip achieves soldering heat in five to eight seconds. On squeezing the trigger a little further the solder feed tube automatically positions the solder for quick accurate work. A choice of four different snap-in tips is offered; the tip operates under low voltage and is isolated to eliminate electrical leakage, so reducing the risk of damage to electronic components. Price, including

High-stability receiver

A general-purpose, high-stability communications receiver, operating over the frequency range 100 kHz to 30 MHz , has been developed by Eddystone Radio Limited. The receiver, type 1837/2, combines very high stability and a digital frequency readout with a continuous tuning system, which allows absolute freedom for search purposes. It provides reception facilities for c.w., m.c.w., and a.m. signals together with upper and lower sideband reception of $\mathrm{A} 3 \mathrm{~A}, \mathrm{~A} 3 \mathrm{H}$ and A3J signals. The receiver can be operated from any $100 / 130 \mathrm{~V}$ or $200 / 260 \mathrm{~V}, 40-60 \mathrm{~Hz}$ a.c. supply or from a $12 / 24 \mathrm{~V}$ direct source using an external inverter.
There are nine frequency ranges on the instrument and once one is selected the receiver is operated in the search mode as a normal medium stability receiver, the tuned frequency being displayed on the digital readout. When
the lock control is pressed an error-correcting circuit locks the receiver to the tuned frequency at that moment and the high-stability mode comes into operation. The receiver continues to function in this mode until the lock facility is dispensed with, when it reverts to a medium-stability receiver, enabling search to be continued. The receiver conforms to the climatic, shock and vibration requirements of MPT1201, MP1204 and CEPT draft recommendations and it is designed generally to meet British Defence Specification 133 Class L2. An optional f.s.k. unit, suitable for transmissions having frequency shifts of 85 to 1100 Hz with baud rates in excess of 300 , is also available. Eddystone Radio Limited, Alvechurch Road, Birmingham, B31 3PP.
WW 301
solder feed, spool, recharger, one high temperature bevelled tip and one chisel tip is $£ 33$ plus v.a.t. Greenwood Electronics, Portman Road, Reading, Berkshire, RG3 1NE.
WW 302

Retaining clips

Retaining clips in the RC series, from Astralux, are designed to prevent 'walk-out' - the tendency of cable plugs to separate from their sockets regard-
less of the retention forces of the socket contacts on the plug pins. Although a force of at least 4.5 kg is required to overcome the effect of one of these clips, the cable plug can be removed at any time by a simple procedure. Four sizes of clip are available and a selection chart indicates which clips can be used with different manufacturers' cable plugs. Astralux Dynamics Limited, Brightlingsea, Colchester, CO7 0SW, Essex.
WW 303

WW 301
ww303

Robust power supply

A variable voltage power supply, manufactured by Roband Electronics, was built to meet a rigorous Ministry of Defence requirement for a rugged instrument for use in mobile and laboratory applications. The Rovar, as it is called, will provide outputs from 0 to 33 V at 0 to 12 A , and its circuitry gives high stability, an improved over-current protection system, over-voltage protection, two-wire or four-wire operation, and facilities for remote programming. It is approved to DEF 133 and is coded Z4/6625-99-637-0740. In addition, it has military-pattern connectors at the rear and a circuit breaker mains switch. Roband Electronics Limited, Charlwood Works, Charlwood, Surrey, RH6 0BU.
WW 304

Systems trainers

Equipment designed for the A-level course in Electronic Systems is announced by Feedback Instruments and, together with teacher's notes and handbooks, is named the ESP700 Electronic Systems Teaching Programme. The course includes basic electronics, processing systems, communication systems and feedback systems, the equipment needed comprising seven circuit boards with components, and a few basic instruments.

The TT179 Transformer Trainer, also from Feedback, consists of a transformer which can be taken apart and a four-meter measuring instrument for the display of primary and secon-

WW304
dary current, voltage and power under various conditions. A handbook is provided.

Further teaching equipment from Feedback includes the Communications Teknikit, which is in twelve modules (signal source, tuned circuits, modulator, detectors, etc) and teacher's and student's manuals. Feedback Instruments Ltd, Park Road, Crowborough, Sussex TN5 2QR.
WW 305

Microprocessor analyser

In use with any microprocessor which has accessible data and address buses, the Model 50 analyser will display the contents of the buses on 32 l.e.d.s. A built-in match register is compared with the address bus of the micro under test and initiates a delay period when the comparison is positive. The register controlling the delay determines the interval before a strobe signal appears, at which time the contents of the address and data buses of the micro are latched and displayed. The clock rate can be varied from slow to 4 MHz , up to 'eight machine cycles being displayed in an instruction cycle. The match and delay registers are set by front-panel switches, the delay being specified as a number of clock or instruction cycles or a number of times matching must occur before the strobe is generated. The programme can also be stepped slowly or can be 'searched' for fault conditions. Systron Donner Ltd, St. Mary's Road, Sydenham Industrial Estate, Leamington Spa, Warks.
WW 306

Function generator

A frequency range of 0.003 Hz to 30 MHz is covered by the Model 2000 function generator from Krohn-Hite. Waveforms produced are sine, square, ramp with variable slopes, positive and negativegoing pulses and a pulse for use with fast t.t.l. circuitry (6 ns edges), all waveforms being subject to a variable symmetry control. The frequency of the generator can be externally voltagecontrolled to a linearity of around 99%. Output voltage is a maximum of 30 V p-p from 50 ohms, with a calibrated minimum of 2 mV , and fixed and variable offset controls are provided to set positive or negative peaks at zero or at a maximum of 15 V above or below zero. The instrument is imported by Keithley Instruments Ltd, 1 Boulton Road, Reading, Berks RG2 0NL.

WW 307

Matched transistors

Two n-p-n transistors in an integrated circuit, matched for $V_{b e}$ to better than $50 \mu \mathrm{~V}$, form the National LM194. The noise figure is claimed to be immeasurably low and is said to be at the theoretical minimum of $1.8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. Matching between the two base-emitter junctions tracks to within $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ between $1 \mu \mathrm{~A}$ and 1 mA , the minimum current gain is 500 , matched to 2%, and a c.m.r.r. of 124 dB is said to be obtainable using this device. A TO-5 can is used for the LM194, which is for operation between $-55^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ - the cheaper LM394 working between 0 and $70^{\circ} \mathrm{C}$. National Semiconductor U.K. Ltd., 19 Goldington Road, Bedford MK40. WW 308

WW309

WW310

WW311

Pulse generator

The model 801 is a 5 MHZ pulse generator designed for general purpose laboratory use. It gives full control of primary pulse triggering and shaping plus simultaneous t.t.l., e.c.l., e.c.l. and sync pulses. Offset, amplitude, pulse width, delay and independent rise and fall times may be controlled and positive, negative or complimentary outputs may be chosen. It provides ten volts into 50Ω with a minimum rise and fall time of 5ns. External triggering can be set to any point on the leading or trailing edge of the trigger signal. In addition, single or double pulses may be triggered, pulse width may be trigger controlled, continuous pulses may be gated and a precise number of pulses may be triggered for a burst output. Manual and external triggering is indicated by a l.e.d. on the front panel. Wavetek Electronics Limited, 109 Crockhamwell, Woodley, Reading, Berks.
WW 309

Magnetic C cores

Magnetic C cores, manufactured using Supermendur alloy, have been made available by Walmore Electronics. These cores can operate at 21,000 gauss with core losses of 12 W per pound at 400 Hz . The cores enable transformer sizes to be reduced by 15 to 40%. This is claimed to be the first basic improvement in magnetic cores for airborne power transformers since the introduction of super-oriented silicon steel about 15 years ago. Supermendur is a highly purified cobalt, iron, vanadium alloy which exhibits superior magnetic properties when field annealed. The cores are available in 1, 2 or 4 thousandths-of-an-inch material in any of the standard toroidal core sizes, as well as in C core form. Walmore Electronics Limited, 11-15 Betterton Street, Drury Lane, London WC2H 9BS.
WW 310

Desoldering wick

The type 3 S -wick, from the Swiss company, Ernest Spirig, is claimed to be the answer to the problems associated with desoldering. The copper braid is de-oxydised and coated with several layers of flux and protection lacquers under vacuum. This vacuum technique produces a capillary action between the molten solder and the wick, thereby removing the solder and leaving no corrosive residue - the wick contains practically no chlorines or halogens. Spirig wick is available in three standard sizes: $A A$ for small joints, $A B$ for medium and BB for large. Each reel contains $51 / 2$ feet of wick and is priced from 45 pence per reel. Tele- Production Tools Limited, Stiron House, Electric Avenue, Westcliff-on-Sea, Essex, SS0 9NW
WW 311

Packaged double Darlington

L149 is a quasi-complementary Darlington pair intended as a power driver for use in direct-current servos, capstan drivers, magnetic deflection yokes and general-purpose audio power stages, as well as in a closed feedback loop to augment the output current of an operational amplifier. The biasing circuitry and an inhibit facility are included and safe operating area, thermal and short-circuit protection are also provided. Current gain is typically 10,000 , supply voltage can be up to 44 V and the device can take up to 3A. SGS-Ates (UK) Limited, Walton Street, Aylesbury, Bucks.
WW 312

CECC-approved
 transistors

Approval from the CENELEC Electronics Components Committee has been received by Ferranti for some commercial transistors, including the BC140 and BC141. Both these devices are silicon diffused types in TO- 39 cans, rated to 1 A and designed for medium power applications. CENELEC being the European body for standardization and unification of national specifications, future BS E9000 specs will carry an additional CECC number which will eventually supplant it. Ferranti Ltd, Electronic Components Division, Gem Mill, Chadderton, Oldham OL9 8NP. W'W 313

Axial ceramic capacitors

The AVX Spinguard range of dipped multilayer ceramic-capacitors provides axial equivalents to the well known radial Skycap range. These capacitors are lead taped and reeled to ElA RS-296 for automatic insertion. Four temperature coefficients are available in four case sizes rated at either 50 or 100 V . Capacitance values range from 10 pF to $0.82 \mu \mathrm{~F}$. Waycom Limited, Wokingham Road, Bracknell, Berkshire.
WW 314

Wide-band op. amps

Dual operational amplifiers MC4558 and 4558 C are wide-band versions of the MC1558/MC1458, the extended unitygain bandwidth being increased to 2.8 MHz (typical) from 1 MHz . The new devices are otherwise similar in performance and pin configuration to the original types, being offered in metal, ceramic and plastic packages. Supplies are $\pm 18 \mathrm{~V}$ for the C and $\pm 22 \mathrm{~V}$ for the extended temperature version, which works between -55 and $125^{\circ} \mathrm{C}$. Motorola Ltd, Semiconductor Products Division, York House, Empire Way, Wembley, Middlesex HA9 0PR.
WW 315

WW316

Crimping tool

A ratchet-controlled hand tool, from Hollingsworth Terminals Ltd, is designed to crimp various sizes of Hollingsworth fully-insulated slip-on terminals, nylon female couplers and piggy back slip-ons. The H13 crimps through the insulation on to the conductor, alleviating the need for separate insulated housings. H13 dies are also available for fitting to the Hollingsworth $\mathrm{H} 28-13$ portable air tool, which can be hand held or bench mounted. Hollingsworth Terminals Limited, Barwell Trading Estate, Leatherhead Road, Chessington, Surrey.
WW 316

Triple-output power supply

A triple-out power supply, the HP-62312D from Hewlett-Packard, is designed specifically for microprocessor systems that need independently adjustable and isolated voltages. The main output is rated at 4.75 to 5.25 V at 3 A , while the other two each range from 4.75 V at 0.38 A to 12.6 V at 0.6 A . All outputs are isolated from each other and from the chassis, providing the user a wide selection of polarities. Periodic and random deviation is 1 mV r.m.s. or 3 mV pk-pk at 20 Hz to 20 MHz . The supply also features remote programming terminals to control the main 5 V output for margin testing. Input voltage taps can be changed by the user to cover the a.c. ranges of 104 to 127 V or 208 to 250 V at 48 to 63 Hz . Protection features include an internal a.c. fuse, a fixed foldback current limit and standard overvoltage protection on the main 5 V output (optional on the other two outputs). Hewlett-Packard Limited, King Street Lane, Winnersh, Wokingham, Berkshire, RG11 5AR.
WW 317

U.h.f. linear amplifiers

A range of custom-built, u.h.f. class A power amplifiers, from Microwave Associates Ltd, have excellent linearity and are suitable for a.m. television or other applications where low distortion
amplification of a.m. signals is required. These amplifiers are designed to meet customers' specific requirements, the final performance capability being dependent on the operating centre frequency, required bandwidth and certain other factors. A typical amplifier now in production has been designed for 450 MHz a.m. signals. It is capable of delivering a mean carrier power output exceeding 10 W into a 50Ω load with up to 100% modulation (40 W p.e.p.) giving very low envelope distortion. It is a non-resonant circuit but performance is optimized for the working frequency, giving a -3 dB bandwidth of 80 MHz centred on 450 MHz . The input power required is nominally 200 mW and the input v.s.w.r. is better than $1.3: 1$. Power supply requirement is $13.8 \mathrm{~V} \pm 1.5 \mathrm{~V}$ direct at 10A. Microwave Systems Division, Microwave Associates Ltd, Woodside Estate, Dunstable, LU5 4SX. WW 318

Tuning fork oscillators

A range of miniature tuning fork oscillators and ancillary modules, from Straumann of Switzerland, are robust, compact sources of standard frequency and timing signals in the range 0.25 Hz to 192 kHz . The tuning fork oscillators have frequencies from 960 Hz to 6 kHz and are accurate to ± 25 p.p.m. ± 1 p.p.m. per degree C. Short term stability is 2×10^{-8} and long term stability is less than 10 p.p.m. per decade of time. In addition a selection of divider modules are available in fixed ratios from $1: 2$ to 1:4096 to provide outputs down to 0.25 Hz . A frequency multiplier having simultaneous $\mathrm{X} 2,4,8,16$ and 32 outputs, to provide frequencies to 192 kHz , is also available. Finally a range of sinewave shapers, for frequencies from 30 Hz to 10 kHz , are available to provide low distortion sine outputs from the c.m.o.s.-compatible outputs of the dividers, multiplier, or oscillators. All of the modules are t.t.l.- and c.m.o.s.-compatible and will operate at supply voltages from 5 to 15 V d.c. Lyons Instruments Limited, Hoddesdon, Herts.
WW 319

Epi-base power transistors

A range of epitaxial-base power transistors, including a version of the 2N3055, is announced by RCA. The new devices are designed for wider bandwidth and lower cost than the hometaxial variety. Complementary to the 2 N 3055 in the new range is the BDX18, which is rated at 115 W - the MJ2955 is a 150 W alternative, while a further pair is formed by the 100 W 2N6569 and 2 N 659440 V . For 60 W output the RCS617 and 618 are 115W devices, working at 80 V . RCA Ltd, Solid State-Europe, Sunbury-on-Thames, Middlesex.
WW 320
sidebands

Goldfish-breeder becomes Prime Minister

Well, no, perhaps that's a bit too alarmist, although maybe if he'd stuck to that we'd all be a lot better off. What made me think of that, though, was this peculiar handout I got through the post, which soberly informs me that "Karate expert joins sales force" or something like that. Now, press handouts (which are usually called 'press releases', as though they'd finally been released to the world in reluctant response to the importunate pleas of journalists) are often very funny in lots of ways, but this one has an extra dimension - a kind of pointed irrelevance. Probably the chap is quite good at karate, just as the chairman of his company may well be a whizz at carving chessmen out of billiard balls or the sales manager the country's leading exponent of giraffe racing, but it seems less than likely that these, no doubt fascinating pursuits figured prominently on their job applications. I see the point, of course. They thought we'd be hooked on this karate bit and mention the company's name just to poke fun at them. Well, really! Who do they think they're dealing with, these people? Let me tell them that while Wireless World continues in its great tradition, no-one, not even Coutant, will get a mention that way.

Radio-assisted bankruptcy

It must take a lot of courage to experiment with electronics in the form of radio control ("telearchics" as Free Grid was fond of calling it). If ever there were an activity where one's money had to go where one's mouth formerly was, this must surely be it. And, in particular, model aircraft. Ships? well, they can sink, of course, but solid earth is never all that far below and they can be recovered. But just imagine a careful-
ly-made, six-foot span Spitfire, with its engine and electronics, costing anything up to three or four hundred pounds. Everything is going fine - all systems GO, as they say - when the mean time to failure of a 3 p resistor suddenly expires. Can you imagine the expression on the chap's face as his creation peels off, stands on its prop. and screams earthwards in a tight spin? And then the slow shamble over to the wreckage, accompanied by the inevitable urchin who wishes to know whether you can stick it together again, Mister? I remember once seeing a man bring a beautiful model of an S.E. 5 to the flying field, make all the radio tests, fill the tank and take the model off in a smooth climb into the sun. He tweaked all the knobs by the right amount at the right times and the S.E. 5 didn't turn a hair. It went straight on and disappeared out to sea. It was the most roundabout way of throwing $£ 200$ away I've ever come across. And yet, as the 'pilot' collected together his attenuated belongings he was heard muttering that he'd never liked the thing and was going to build a Tiger Moth next.

The scale of things

Have you ever thought that maybe we are all taking rather a lot for granted? In electronics, I mean. For instance, the MSF frequency standard from Rugby is maintained at 60 kHz within one part in ten to the eleventh, so that a digital clock such as those we have recently described will still be giving the correct time, within a second, in about 3,000 years from now, barring accidents. It is unimaginable. If you think in terms of waveforms, think of a counter, clocking at 100 MHz , the period of the input being 10ns. Now apply a burst of the input and simultaneously switch on a torch,

EGGS WITH CHIPS. The transmitter from one of the glass-fibre eggs referred to in the August issue. This one goes in a swan's egg, but Mr Howey is trying to make smaller transmitters using un-encapsuluted i.cs.
aimed at a wall 100 feet away. Keeping one eye on the output from the decade counter and trying not to blink, while the other watches the wall, you will possibly notice that the counter will count ten pulses and produce its output before the light hits the wall. Your eyes have to be pretty sharp for this sort of thing, mind you.
Or again, how about an audio power amplifier with a low average $\mathrm{S}: \mathrm{N}$ ratio of 92 Bb , power output of 20 W and speaker impedance of eight ohms. That means that the power rail is 40 V and the noise voltage forty thousand times less at 1 mV . And the better amplifiers are often said to give $\mathrm{S}: \mathrm{N}$ figures of 110 dB or more.
This trick we have of camouflaging terably(!) large or small quantities as friendly little expressions like GHz and ns sometimes makes us (me, anyway) forget what we are really talking about. I suppose if we did use the real numbers, we would assume it was all impossible and stop trying.

CB - Complete Balderdash?

Well, it's a point of view, particularly if you're a high-fidelity sound fan and happen to live in America. All those thousands of Citizens' Band outfits seem to be causing their share of problems to the FCC and to the users of audio gear, according to a leader in the latest The Audio Amateur published in the States. It isn't just the CB transceiver itself, but the fact that a beefy great linear amplifier is often tied on the end of it, so that one's chat about the World Series or Grandma's leg will get through, come what may. If the Citizens simply annoyed each other, some would say 'serve 'em right', but all too often, it seems, they become a sort of permanent alternative programme in a lot of audio amplifiers. Presumably the signal is detected by sensitive and non-linear front ends.
The FCC, says the leader, have recently said that the situation is now out of control and that they are unable even to monitor activity on the band. They have also stopped asking CB operators to pay for a licence. So, since it appears that no paid licence is needed and no monitoring or control can be carried out, there is very little to stop anyone from doing anything. I don't know how you feel about that. but it scares me to death. The TAA leader writer concludes that unless the FCC can do something to control CB ". . . they had better review the feasibility of CB itself."
I wouldn't like to knock CB too much on this score, because I have no personal experience of it. Perhaps some of our American readers could comment on the above.

Z \& I AERO SERVICES LTD. Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641 Telex: 261306

Retail Branch: 85 Tottenham Court Road London W1. Tel: 5808403

MULTIMETER F4313
 (Made in USSR)

SENSitivity
1200 V DC range: $10.000 \mathrm{\Omega} / \mathrm{V}$ Other $D C$ ranges $20,000 \Omega / \mathrm{V}$ 1200 AC range $6.000 \mathrm{D} / \mathrm{V}$ 600 V AC range 15.000 Q N 300 VAC range $15,000 \mathrm{D} / \mathrm{V}$ Other $A C$ ranges: $20.000 \Omega / \mathrm{V}$
$\mathrm{AC} / \mathrm{DC}$ current ranges $60-120-600 \mathrm{\mu A}-3-12-300 \mathrm{~mA}-1.2-6 \mathrm{~A}$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges $60-300 \mathrm{mV}-1.2-6-30-120-300-600-1200 \mathrm{~V}$
Resistance ranges 300 $2-10-100-1000 \mathrm{~K}$
Accuracy 15% DC: 25% AC (of full scale deflection)
Mirror scale and knife edge pointer Taut suspension of movement. Transistor amplifier is used for all AC ranges thus achieving a common linear scale for both $A C$ and $D C$ ranges

Meter is protected by a transistorised cut-out relay circuit Range selection is achieved by clearly marked piano keys. Power source: 51.5 V dry cells. Dimensions. $95 \times 225 \times 120 \mathrm{~mm}$

PRICE $£ 39.50$ plus VAT
Packaging and postage £ 110

OSCILLOSCOPE CI-5

Made in USSR

Extremely simple and easy to use singie beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straighiforward and inexpensive Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both too expensive and delicate $3: n$. tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations Sensitivity $30 \mathrm{~mm} / \mathrm{v}$ max. Triggered and free-running time base, suitable for displaying pulses from 0.1 usec to 3 m sec AC mains operation

Price £55.00 ex. works, plus VAT
Packing and carriage (UK K. only) $£ 3.00$

THE

 DYMamIC Duo

 DYMamIC Duo}

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit It is simply wired in series with the existing speaker leads and in conjunction with our speakers S 15 produces a system of incredible performance
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on / off switch
The amplifier is sealed into an integral heatsink and is termmated by screw connectors making installation a very easy process
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size

C15/15
15 Watts per channel into 4Ω
Distortion 0.2% at 1 KHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{KHz}$
Input Impedance 8Ω nomina
Input sensitivity 2 volts R.M S for 15 watts output
Power line 10-18 volts
Open and Short circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches

Data on S15
$6^{\prime \prime}$ Diameter
5 $1 / 4^{\prime \prime}$ Air Suspension
2" Active Tweeter
200z Ceramic magnet
15 Watts R.M.S handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency response 4Ω Impedance

IWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd	Please Supply
Crossland House	Total Purchase Pince 1 Enclose Cheque [7 Postal Ordersil Money Order 7 l
Nackington, Canterbury	Please debil my Access account [? Barclaycard account \square
Kent CT4 7AD	Account number
Tel (0227) 63218	Signature

DIY SPEAKER KITS
15-WATT KIT IN CHASSIS FORM When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the enclosures illustrated below Size 13 8' (approx.) woofer (EM1),tweeter, and matching crossover components Power handling capacity 15 watts rms. 30 watts peak
$\mathbf{f} 1700$ PER STEREO PAIR

EASY-TO-BUILD WITH ENCLOSURE
Specialiy designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak.
simulate enclosures, two EMI 13" • 8" (approx.) woofers, two tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagran.. and crossover components. Input 15 watts rms. 30 watts peak, each unit. ${ }^{\text {f }} 25^{50}$ Cabinet size 20 - 11. 9!' PER STEREO PAIR (approx.).

COMPACT' FOR TOP VALUE
How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only E 7.50 - just what you need for low power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \cdot 9^{\prime} \cdot 5^{\prime \prime}$ (approx.) deep, and is in wood simulate. Complete with two 8" (approx.) speakers
 per
stereo
pair
fair
${ }^{2} 70$
$+p \& p$
c1.70
SPEAKERS Two modeis - Duo llb, teak veneer. 12 watts rms, 24 watts peak. Size approx. $7^{7} \cdot 2^{*} \cdot 4_{4}{ }^{\prime \prime}$. TOP 10 Power Supply Nominal 12 volts AWARD positive or negative earth (altered internally) Power
Output 4 watts into 4 ohms. $+p \& p f 1.50$${ }^{1} 12^{50}$
$18 \frac{1}{2}$ " $13 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \cdot 7{ }_{3}^{\prime \prime}$
 40 watts peak. 27. 13*-11尔 (approx.)

< 52 PER PAIR

 The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons. four medium band and one for long wave band
The tuning scale is illuminated and attractive four medium band and one for long wave band
The tuning scale is illuminated and attractive smatl aluminium control knobs are used for manual tuning and volume control. The modern style fascia has been designed to blend with most car interiors and the finished radio will slot into a standard car radio aperture. MOTOR
 slot into a standard car radio aperture. MOTOR

PERSONAL SHOPPERS ONLY
Viscount IV 20×20 Amplifier as illustrated plus 1 pair of speakers finished in teak with melamine panels 8° drive unit and 3." approx tweete 22 13
size approx ${ }^{5} 45^{00}$

illustrated 20×20 WATT STEREO AMPLIFIER
Superb Viscount IV unit in teak-finished cabinet. Silver fascia with aluminium
cotary controls and pushbuttons, red mains indicator and stereo jack socket $\mathbf{~} \mathbf{7 9} 90$ function switch for mic. magnetic and crystal pick-ups, tape. tuner, and auxiliary Rear panel fectures two mains outlets. DIN speaker and input $+p$ \& pf2.10 sockets. plus luse. $20+20$ watts ims. $40+40$ watts peak.

OFERAL
DEDUCT [1]/ DEDUCT $[-1 /$ Owo speakersyeremumpie viscount Amplithe \qquad A on complete stereo sysiems using MP60 tupe turntable complete starred Products

PERSONAL SHOPPERS ONL

PLINTH \& cover bsh or garraro teak finish	4^{95}
G000man $5^{\prime \prime}$ approx. 1 watt hass speaker	
AM. FM. TUNER P C B with Mullard LP. 1186. $1185 \mathbf{1 1 8 1 m}$	
CROWN 5 push button car radio. LW MW 12v Pos. neg earth 5 w output. tone control comple te with speaker and fixing kit, in dash	5
Stereo cassette tape player negative earth only. 3 watts per channel oufput	16^{50}
AM. FM. STEREO multiplex car rado/cassette player in dash fixing Negative earth 5 watts output	${ }^{5} 36^{00}$
I.C. Stereo 8 track to Cassette adaptor converts, any 9 track player to cassette player.	${ }^{1} 1895$
Global Spherital speaker 8 ohms 5 watts	3^{50}
100K Multiturn Varicap funing pots 6 for	0
heavy duty fibre glass copper clad boano	$¢^{190}$
" $\times 17 \times \frac{1}{17}$ " Approx. per sheet only	
OC1000 Steres Cassette Record deck P.C B. complete	f^{55}

BSR TURNTABLES
BSR MP60 TYPE
Single play record player (Chassis form) $£ 15.95$ less cartidge. P \& P $\mathbb{C} 200$ Cartridges to suit above acos magnetic
STEREO $\mathbf{f 4 . 9 5}$
CERAMIC STEREO $\mathbf{f 1 . 9 5}$
 Popular BS MP 60 dian linth and type, complete with cover. magnetic cartridge. Ready wired

30×30 WATT AMPLIFIER KIT
Specially designed by RT-VC for the experienced constructor. this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready punched, drilled and ormed Cabinet is finished in teak veneer. Silver fascia and easy-tohandle aluminium knobs.

Dutput $30+30$ watts ims, $60+60$ peak.
£2900 - $+\mathrm{p} \& \mathrm{pf} \mathrm{f} .10$

DECCA 20 WATTS STEREO SPEAKER This matching loudspeaker system is hand made. kut comprises of two 8 diameter approx. base drive unit. with heavy die cast chassis laminated cones with rolled P.V.C surrounds. two 3! diameter approx do.ned tweeters romp with crossover networks
$400 \mathrm{p} \not \mathrm{p}$ p
${ }^{5} 20^{00}$

Order giving your credil card number ONLY | ALL P |
| :--- |
| !!III |

 We are unatie to shon all our products so Personal Shoppers EOGWARE ROAGI 9 30alli 5 30pm. Hall day 21E HIGH STREET. ACTON. LONDON W3 6NG
portable
MONO
DISCO

with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type autorefurn, single play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. p \&p $£ 6.50$ Simply connects into your $\quad{ }^{\mathbf{E}} \mathbf{6 4 0 0}$

35-WATT MONO DISCO AMP

${ }^{£} 27^{50}$

 Size appio $133^{3}{ }^{\prime \prime} 5 \frac{1}{4}$

Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms. 70 watts peak output. Big features include two disc inputs. both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume

100 WATT
 MONO
 DISCO AMP
 Size approx.
 $4^{-} \cdot 4^{-} \cdot 10 \frac{1.1}{4}$
 Sloping facia.you can use the controls

 without fuss or bother. Brushed alumimum fascia and rotary controls. Five smooth acting, vertically mounted slide controls - master volume, tape level, mic level, deck level, PLUS INTER DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade level control (PFL) lets YOU hear next disc before fading $\mathbf{E 6 5 0 0}$ it in. VU meter monitors output level Dutput 100 watts RMS 200 watts peak. p\&pe 4.00
PRACTICE GUITAR

 AMPLIFIER WITH BUILT-IN SPEAKER This budget practice amplifier, has been specially designed for the amateur. who requires a qualıty self contained unit with all facilities. 2 inputs for mic or guitar, the 2nd for record player or cassette deck, it also can be used for cine-sound amplification. 2 volume controls, 1 for each input. also base and treble controls. Power output with internal speaker, 10 watts RMS, with remote speaker (not supplied) 20 watts $\mathbf{£ 3 2 5 0}$ RMS. Size approx. $17^{\prime \prime}+9^{*} \cdot 11+p \& p £ 3.00$HOME 8 TRACK
CARTRIDGE PLAYER
Automatically switches
programmes monitored by indicators
with manual override track selection. This unit will match with the Unisound modules and is compatable with the Viscount IV amplifier with Sim teak

4×4 STEREO AMP

KIT £14.50 P \& P £2.00 for the experienced constructor who wants o design his own stereo.
 Kit includes all necessary components including constructors manual. Plus Pair of easy to build 4 watt speakers in kit form, with teak simulate finish cabinets $12^{\circ} \times 9^{\prime} \times 5^{\prime}$ approx.

Complete ready to install Wave bands LM. VHF STEREO. VHF MONO Controls for tuning volume, balance. bass and treble. Power output 7 watts R M S per channel 14 watts peak 8 ohms

8 approx chassis speakers and BSR auto record player deck

PERSONAL SHOPPERS ONLY $\mathbf{5} 500$

F.M. TUNERS, MODULES \& KITS by
 - con

T1 PUSH-BUTTON VERSION
T2 TOUCH TUNED
T3 DIGITAL (AS SHOWN)

Tuner	Kit
$£ 110.00$	$£ 98.47$
$£ 115.00$	$£ 101.31$
$£ 139.00$	$£ 132.14$

This tuner must surely provide the best value for money avalable today. Combining the best of the modules shown below, it includes a full digital readout of frequency to a resolution of 01 MHz , so that exact station identification can be made. In addition, six pre-sel stations may be selected by touch controls having internal solid state lamps, while manual tuning allows easy searching for distant stations under the guidance of the digital meter
A switchable mute system allows reception of the weakest stations while muting inter-station noise and spurious responses. Perfect reception is assured by not permitting any station to be heard which is far enough out of tune to cause distortion The tuning indicator lamp provides a means of very fine tuning, and is automatically extinguished between stations. A powerful A.F.C. system is also incorporated which holds all stations in tune, while not preventing manual tunıng.
Good stereo reception is assured by the use of a phase locked decoder with full 'birdie' and spurious output filtering
Finally, but not least, the external appearance and styling bring a fresh new look to HI - Fi The sturdy wooden cabinet is finished in mat teak veneer, housing an attractive gold and brown. anodised aluminium front panel. which carries black controls and inscriptions. The indicator lamps and digital displays are in red. giving the finıshing touches to a tuner you will be proud to own.

MAIN RECEIVER MODULE M1

We have claimed before that this F.M. system is the most advanced on the market, and after nearly three years we repeat our claim Some have borrowed ideas, some have not, but no other tuper gives you all the features of this unit How many tuners mute the spurious tuning effects found at either side of a correctly tuned station? How many tuners fade the sound out as you tune too far off station for good quality sound? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How many offer you drift free tuning? We could go on. If you want a tuner that has been well thought out and engoneered, start with this module.

TOUCH TUNE MODULE M5

This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button No moving parts to go wrong. or contacts to get dirty Internal illumination shows you which button has been touched, while the turing adjustment is made using high reliability multi-turn cermet pots for repeatable selection of the most used stations, yet retaining the use of separate manual tuning This module interfaces directly with the M1 above, being wired between the board and the normal manual tuning control A touch of sheer genius ${ }^{1}$

ORDERING INFORMATION

All $\cup K$ orders post free plus 125% VAT Export orders allow extra for postage at cost no VAT due credit will be refunded
Payment by sterling cheque on London bank, or credit card International MO etc
Other wems and kits avaiable send for illustrated leaflets price list and order form etc from -

M2 Stereo decoder
M3 Push button 'M5 M4 Power supply. SL1310 decoder IC TBA 750 fm . If 2OV regulator IC Fiter SF 110 that Filter, SFJ 707 MA
7 segment L.E D (c/a Descriptive booklet
£7.60 kıt £6.22
$£ 15.95$ kı $£ 14.70$
$£ 6.30$ kut £5.90
£1.95
£1.95
$£ 1.55$
$£ 1.50$
$£ 1.50$
$£ 7.75$
$£ 7.75$
$£ 1.55$
$£ 1.99$
c 0.50

33 Restrop View Purton, WILTS SN5 9DG

HART ELECTRONICS

The On/y Firm for Quality Audio Kits

Are proud to offer the only DESIGNER APPROVED kit for the J. L. Linsley-Hood High Quality Cassette Recorder

As these circuits are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price We have therefore spent a little more on professional hardware allowing us to design a very advanced modular system This enables a more satisfactory electrical layout to be achieved, particularly replay preamps These are totally stable replay preamps these are totally stable
with this layout and require no extra with this layout and require no extra
stabising components Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold-plated sockets The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board. with our modular system the layout is crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple. but the finished result is a unit designed not to normal domestic standards but tothe best professional practice
All printed crrcuits are of glassfibre material fully drilled with a tinned finish for easy and reliable soldering. Component locations are printed on the reverse side of the board and are arranged so that all identitication numbers are still visible
after assembly. atter assembly
$71 \times$ Complete set of parts for Master Board, includes bias oscilator, relay.
72x Parts for Moor Speed and Soleno
72x Parts for Motor Speed and Solenoid Control for Lenco CRV deck This is the articles $£ 352+44 p$ VAT
73x Complete set of parts for stereo Replay Amps, and VU Merer drive $£ 812+£ 102$ VAT
$74 \times$ Complete set for stereo Record Amps $£ 674+84$ p VAT
Complete set of parts for Stabilised Power Supply to circuit given in Article This uses a special low hum field transformer with better characreristics than the commonly used torond $\mathrm{E} 879+\mathrm{E} 110$ VAT

700M2 Individual High Quality VU Meters with excellent ballistics $£ 848+£ 106$ VAT. Per Pair
$700 \mathrm{C} / 2 \mathrm{High}$ Quality Custom built stee Case Complete with Brushed aluminium front plate mains switeh record microswitch, turned record level knob. plastic cabinet feet, all All necessary holes are punched and all surfaces ars and Complete step-by-step assembly instructions are included The cover is finished in an attractive black crackle surface $£ 1650+£ 206$ VAT

LENCO CRV CASSETTE MECHAN-
ISM
High Quality. robust cassette transport for Linsley. Hood recorder Features for forward, fast rewind record, pause and full auto stop and cassette ejection facluties Fitted with Record / play and erase heads and supplied complete with Data and extra cassette ejection spring for above horizontal use Price $£ 2160+$ £2 70 VAT
Total cost of all parts $£ 835 B$
Special offer for Complete Kits $£ 8150+$ E10 19 VAT

Optional extra solid teak end cheeks. $\{3$ pair $+38 p$ VAT

Reprint of 3 Linsley-Hood Cassente Recorder articles 45 p post and VAT free
We also supply complete kits to make a fully integrated 30 watt stereo amplifie, using the Barley Power Amplifier circuit and the Bailey / Burrows Pre-amplifie with the Quiter Tone control modifica-
tion
Printed circuits and components are availble for the Stuart tape circuits These articles described a high quatity tape link circuit for use with a reel-to-reel deck Reprints of the three articles are avanlable from us price 40 p Post Free (No VAT)

TIME + FUEL+ EFFORT =MONEY

You can effectively reduce costs by the installation of a STORNO mobile radio system.

To investigate further, write, telephone or telex to

RADIO COMMUNICATION SYSTEMS
Storno Limited, Frimley Road, Camberley, Surrey. Telephone: Camberley (0276) 29131 Telex: 858154

WW - 010 FOR FURTHER DETAILS

PHILIPS

The top sellers for home assembly in Europe - now available in the U.K.
Now - read all about the Philips range of quality kits for home assembly - mixers, amplifiers, speakers, etc, etc. Send today to
S.S.T. Distributors (Electronic Components) Ltd., West Road, Tottenham, London N17 ORN

Unique alpha-numeric listings of ratings and characteristics of a very wide range of semiconductors of international origin and with an extensive substitution guide USED WORLDWIDE • PROFESSIONALLY

INTERNATIONAL TRANSISTOR INDEX AND THE DIODE/SCR INDEX

WE HAVE

A SPECIAL DFFER

FOR NEW AND EXISTING SUBSCRIBERS
SEND FOR DETAILS - DON'T DELAY

- available for

A LIMITED PERIOD ONLY
SEMICON INDEXES LTD.

7, KING'S PARADE, KING'S ROAD, FLEE T, HAMPSHIRE. GU13 9AB. U.K.
TELEPHONE. FLEET (025 14) 28526 TELEX• 858855 Barmer G

WW - 087 FOR FURTHER DETAILS

Tune into the world...

The 31st edition of World Radio TV Handbook... the only complete directory of international broadcasting and TV stations . . . endorsed by UNESCO, Eurovision, Intervision and the world's leading broadcasting organizations.
Includes 'Listen to the World', a special editorial section; the latest world time charts and tables; with comprehensive coverage of short-wave, long-wave and medium-wave.
The essential guide to anyone associated with
 international, professional or amateur DX-er. Copies at $£ 5$ each can be obtained from Argus Books Limited, Station Road, Kings Langley, Herts.

RETURN OF POST MAIL ORDER SERVICE

B S R SINGLE PLAYER similar to above with
and cueing device. large turnable $£ 13.50$ Cueng device £24.50. Post $£ 1$
PORTABLE PLAYER CABINET
Modern design Rexine covered
Vynair front grille Chrome fittings
Size $17 \times 15 \times 8$ in approx
Motor board cut for BSR or Garrard deck
4.50 Post $75 p$
HEAVY METAL PLINTHS

COMPLETE STEMEO SYSicIM
 only $133 / 4 \times 10 \times 81 / 2 \mathrm{n}$. 3 watts per channel, plays all records
$33 \mathrm{rpm} \quad 45 \mathrm{pm}$ Separate volume and $\begin{aligned} & \text { controls Attractive Teak finnsh } \\ & 240 \mathrm{Va} \text { a.c mains }\end{aligned}$
$\mathbf{2 2 2 . 5 0} \mathrm{£} 1$ carriage

ELAC HI-FI SPEAKER 8in. TWIN CONE

ceramic magnet $50-16.000 \mathrm{c} / \mathrm{s}$ Bas
resonance $40 \mathrm{c} / \mathrm{s} 8 \mathrm{ohm}$ impedance 15 watts RMS $£ 5.95$ Post 35p
SMITH'S CLOCKWORK 15 AMP
TIME SWITCH
0-6 HOURS $£ \mathbf{3 . 3 0}$ Post 35 p Single pole two-way Surface mounting
with fixing screws Will replace existing wall switch to give light for return home, garage, autom
Variable knob
Vaflable knob Turn on or off at full or
intermedate settings Brand new and fully

TEAKWOOD LOUDSPEAKER GRILIES will easily fit to batfle TEAKWOOD LOUOSPEAKER GRI
board Size $101 / 2 \times 7 \% / 8$ In- $\mathbf{4 5 p}$.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This $k t$ is suitabie for record players guitars. tape playback
electronic instruments or small PA systems Two versions available Mono. £11.25; Stereo. $£ 18$. Post 45p Specification 10 W per channel. input 100 mV . size $91 / 2 \times 3 \times 2 \mathrm{n}$ approx
S.A E details Full instructions supplied. $A C$ mains powered

VOLUME CONTROLS 35p. DP 60p. STEREO 85p. D P £1. Edge $5 K$ S P Transistor 45p.	80 Ohm Coax 8 p yd Standard type vhe fringe low loss $15 p$ yd. Ideal 625 and colour PLUGS 10p. SOCKETS 10p. LINE SOKETS 18 p. OUTLET BOXES 50p.
ELAC $9 \times \operatorname{5in} \mathrm{HI}-\mathrm{FI}$ SPEAKER TYPE 59RM $£ 3.45$ This famous uni now avalable 10 watts 8 ohm	

TAG STRIP 28 -way $12 p$.
TAPE OSCILLATOR COIL. Valve type. 35p.
BRIDGE RECTIFIER 200 V PIV $1 / 2$ amp 50 p .
TOGGLE SWITCHES S P 30p. DP S T 40p. DPD T 50p.
MOGGY OTHER TOGGLES IN STOCK
MACK-UP CARTRIDGES ACOS GPQ1 $£ 150$ GPG3 $£ \mathbf{5 0}$
PICK
SONOTONE Stereo $£ 2.00$. SHURE M 75 ECS $£ 8$.
E.M.I. $131 / 2 \times 8 \mathrm{in}$. SPEAKER SALE!

R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to
1,000 watts per channel. $£ 14$. Post $35 p$
Easy to build Full instructions supplied Cabinet $£ 3$.
R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
inted circuit rectitiers and double wound
mains transtormer. Input $200 / 240 \mathrm{Vac}$
$£ 2.95$
Output voltages avalitable 6 o
Post $45 p$
tate vollage required
R.C.S. POWER PACK KIT

E3.35
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE
deal for M -A Tape P Gutar, etc Can be sued win
$\begin{array}{ll}3 / 4 \text { in Response } 25 \mathrm{c} / \mathrm{s} \text { to } 25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB} \text { gain } \\ \text { for use with valve or transistor equipment } & £ 1.45\end{array}$
RCS DRILL SPEED CONTROLLER/LIGHT DIMMER KIT.
$£ 3.25$ Post 35 p
RCS STEREO PRE-AMP KIT. All parts to build this pre-amp Inputs for high. medium or low imp per channel, with volume
control and PC 8oard Can be ganged to make multi-way stereo
£2.95 Post 35 p
MAINS TRANSFORMERS All POST

$350.0-350 \mathrm{~V} 80 \mathrm{~mA}$. 63 Z 35 A 63 V 1 A or 5 V 2 A E5 $\mathbf{E 0}$

$300-0.300 \mathrm{~V} 120 \mathrm{~mA}$. $2 \times 63 \mathrm{~V} 2 \mathrm{AC.T} .5 \mathrm{~V} 2 \mathrm{~A}$ | $220 V 45 \mathrm{~mA} .63 \mathrm{~V} 2 \mathrm{~A}$ | |
| :--- | :--- |
| | |
| HEATED TRANS | |
| 63 V | | HEATED TRANS $63 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{amp}$ £1.40

GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2

 48. $60 £ 8.50$

 $40 \mathrm{~V}, 2 \mathrm{amp}, £ 2.95 .30 \mathrm{~V} 5 \mathrm{~A}$ and $34 \mathrm{~V} 2 \mathrm{ACT} £ 3.45,05$
$81016 \mathrm{~V} 1 / 2 \mathrm{amp}, £ 1.95,20 \mathrm{~V} 1 / 2 \mathrm{amp}, £ 1.75,20 \mathrm{~V} .1$
 $20-0.20 \mathrm{~V} 1 \mathrm{amp} £ 3.50 .30-0.30 \mathrm{~V} 3 \mathrm{amp} £ 7.2 \times 18 \mathrm{~V} 6$ amp E11.00.
 FULL WAVE BRIDGE CHARGER RECTIFIERS
6 or 12 V outputs. $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$.
CHARGER TRANFORMERS $11 / 2$
$12 \mathrm{~V} 1 / 2$ A HALF WAVE Selenium Reclifier; $\mathbf{2 5 p}$.
R.C.S.

BOOKSHELF SPEAKERS

$13 \times 10 \times 6 \mathrm{~m}$
501014.000 cps

£16 pair

KUBA-KOPENHAGEN STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+\overline{5}$ WATT This Continental 4 -band radiogram chassis uses first class qualty
components throughout Features Large facia panel with 7 push components throughout Features Large facia panel with push
buttons for medium iong, short VHF.FM AFC phono mains on-oft 4 -rotary controls tuning volume tone balance Facia size DIN-connector sockets for tape record/playback, loudspeakers DIN-connector sockets for tape record/playback, loudspeakers
phono pick-up external FM-AM aerials Automatic stereo beacon light Built-in ferrite rod aerial tor medium /longwave A C 240 V mains Circuit supplied
Above speakers are suitable $\mathbb{£ 3 . 5 0}$ LOW VOLTAGE ELECTROLYTICS
 $500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} ; 420 / 500 \mathrm{~V} £ 1.30$
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p}: 100 \mathrm{~V} 70 \mathrm{p}$. 2000 mF 6V 25p; 25 V 42p; $50 \vee \mathrm{V7p} ; 420 / 500 \mathrm{~V} £ 1.30$. $2000 \mathrm{mF} 6 \vee \mathrm{V5p} ; 25 \mathrm{~V}$ 42p; $50 \vee \mathrm{57p} ; 420 / 500 \vee £ 1.30$.
$2500 \mathrm{mF} 50 \vee 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. $2500 \mathrm{mF} 50 \mathrm{~m} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$.
$3900 \mathrm{~V} £ 1.60 .4700 \mathrm{mF} 63 \mathrm{~V} £ 1.20$. 5000 mF 6V 25p; 12V42p; 35V85p. MANY OTHER ELECTROLYTICS IN STOCK
SHORTWAVE 100 ot at upat oct grngable turer 95p. TRIMMERS 10pF 30pF 50pF 5p. 100pF 150 pF 15 p CERAMIC, 1 pF to 01 mF 5p. Silver Mica 2 to 5000 pF 5p.
PAPER 350 V - $1 \mathbf{7 p} ; 05$ 13p; 1 mF 150 V 20p; 2 mF 150 20p: 500 V - 001 to 005 5p; 01 10p; 025 13p; 04725 p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Single pole change over
TWIN GANG, $385+385 \mathrm{pF} 50 \mathrm{p}$; 500 pF standard 75 p ; 36 $365+25+25 \mathrm{pF}$ Slow motion drive 65 p .
120 pF TWIN GANG, 50 p ; 365 pF TWIN
120pF TWIN GANG, 50p; 365 1 F TWIN GANG, 50p NEON PANEL INDICATORS 250V. Amber or red 30p.
RESISTORS. $1 / 4 W 1 / 2 W$ 1W 20% 2p. 2 W . 100 : 100 . 10 . RESISTORS. $1 / \mathrm{WW} 1 / 2 \mathrm{~W}$ 1W 20\% 2p; 2 W . 10p: 100 to HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 6 meg 12p WIRE-WOUND RESISTORS 5 watt 10 watt 15 wat
WIO

BLANK ALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p: 10$ $\times 7-£ 1.15 ; 12 \times 8$-£1.35; $14 \times 9-£ 1.50 ; 16 \times 6-£ 1.45 ; 16$
$\times 10-£ 1.70$. ANGLEALI. $6 \times 3 / 4 \times 3 / 41$ - $15 p$. ALUMINIUM PANELS. $6 \times 4-17 \mathrm{p} ; 8 \times 6-24 \mathrm{p} ; 14 \times 3-25 \mathrm{p}$;
 MANYALI BOXES IN STOCK. MANY SIZES

JUBILEE

74 SERIES TTL IC'S

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED NOT FORGETTING TO GOD $121 / 2 \%$ TO PRICES MARKED A.T.

POSTAGE AND PACKING
25 POSTAGEAND PACKING EXTRAFOR AIRMAIL
MIN. ORDER E1.00.

ZENER PAKS
36320 mixed walue 400 mm zener dindes 310 V
J 6470 mixed value 400 mw zener diodes 1133 V
E 1.00
$£ 1.00$
A. MARSHALL (LONDON) LTD., Dept W W

LONDON - 40-42 Cricklewood Broadway, NW2 3ET
Tel 01-4520161/2. Telex: 21492
GLASGOW - 85 West Regent St. G2 200. Tel: 041.3324133 BRISTOL - 1 Straits Parade, Fishponds Rd, BS 96 2LX

Tel: 0272654201

POPULAR SEMICONDUCTORS [A very small selection from
Our range covers over $\mathbf{8 , 0 0 0}$ items. The largest selection in Britain. Top 200 ICs, TTL, CMOS \& LINEARS.

Abstract

$$
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline Ca302 & 2.29 & м 38 & 1.05 & SN76 & 2.20 & TB & & co & 1.10 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{BSTO246 \({ }^{\mathbf{0}} \mathbf{1 . 6 5}\)}} \\ \hline CA302 & 1.01 & IM388N & & & & & & & & & \\ \hline CA3030 & 1.35 & LM & 1.75 & & & & & & & & \\ \hline CA3036 & 1.10 & & 0.65 & & 1.45 & & \({ }_{2}^{2.30}\) & CO4 & 24 & & \\ \hline CA3045 & 1.40 & & 0.4 & & 1.45 & & 1.98 & & & & \\ \hline CA3046 & 0.89 & [M71 & 0.60 & SN76023 & 1.26 & & & & & & \\ \hline \(\mathrm{CAS3O4B}^{\text {a }}\) & 2.23 & LM>1 & 0.60 & SN7603 & & TBA & 2.21 & & & & \\ \hline CA3049 & \({ }_{\text {c }}^{1.80}\) & im723C & 0.85 & SN761 & 1.18 & TBA & & & & & \\ \hline Ca & 1.62 & LM \({ }^{\text {c }}\) & 0.75 & SN7611 & & TBA & & & 15 & & 1.18 \\ \hline \({ }_{\text {CA }}^{\text {CA }}\) Cos & 75 & LM74 & -0.65 & SN761 & \({ }^{1.66}\) & & & & & & \\ \hline CA3080 & 1.88 & LM714 & 8.40 & \({ }^{\text {SN }} 762\) & 1.20 & & - \(\begin{aligned} & 3.22 \\ & 1.29\end{aligned}\) & & & & \\ \hline CA30 & 0.60 & LM74 & & SN7622 & 1.20 & tras7 & 38 & & 0.18 & K02 3. & \\ \hline CA30 & 1.70 & LM 74 & 0.55 & SN762 & 1.41 & TBA & & 18 & & & \\ \hline CA3089 & \({ }_{2}^{2.50}\) & Lim748N & 0.55 & SN7653 & 0.75 & tba65 & 2.20 & \({ }^{22}\) pin & 30 & & \\ \hline CA & \begin{tabular}{l} 4.00 \\ 0.98 \\ \hline \end{tabular} & LM180 & 1.76 & & 1.40 1.20 1 & & 1.52 & 24 pm & & & \\ \hline LM30 & \({ }_{0}^{0.67}\) & LM & \(\xrightarrow{1.92}\) & SN765 & 1.44 & & \({ }_{2}^{1.31}\) & \({ }^{28} 80 \mathrm{pin}\) & 0.45 0.55 & & \\ \hline & 0.40 & LM330 & 0.85 & SN76 & 1.65 & TBA750 & 1.98 & triacs & & MM2101.2N & \\ \hline Lm3 & 2.45 0.65 & 1 M & \({ }^{0.85}\) & & \({ }^{1.44}\) & T8A7 & 2.07 & & & & \\ \hline & 0.85 & LM3 & & & 0.52 & \({ }_{\text {trabi }}^{\text {tabi }}\) & & lol 400 VA & & & \\ \hline & \({ }_{3}^{1.85}\) & LM3 & \begin{tabular}{l} 1.60 \\ 0.68 \\ \hline 1 \end{tabular} & & 1.65 0.90 & TBA8 & 1.25 & 400 V 12 & 85 & MM74092 & \\ \hline & 2.26 & & & & \(\xrightarrow{1.10}\) & & 2.90 & & & & \\ \hline LM & \({ }^{6.46}\) & MC1 \({ }^{\text {M }}\) & 1.54 & & 0.60 & \({ }_{\text {TBA940 }}\) & \({ }_{1}^{1.62}\) & 40 & 00 & & \\ \hline LM3398N & \begin{tabular}{l} 1.40 \\ 1.50 \\ \hline 1 \end{tabular} & MC1 & & & 0.92 & TCA160 & 1.85 & thyris & & & \\ \hline & 2.75 & MC & & ta 32 & 1.00 & TCA270 & 2.25 & 100V 4A & & & \\ \hline LM & \begin{tabular}{l} 2.50 \\ 1.70 \\ \hline \end{tabular} & & & & 1.00 1.90 & TCA & 1.30 & 200V 4 & & & 5.33 \\ \hline Lim3 & 1.70 & MC & & taA5 & 0.60 & TCA420a & & 400V 4 A & & MM 2702 Aa & \\ \hline LM3 & \begin{tabular}{l} 2.80 \\ 3.10 \\ \hline \end{tabular} & & & TAA & 75 & \({ }_{\text {TCA }}\) & 3.22 2.76 2 & \({ }^{8 \text { 8A }}\) & A 0.43 & & \\ \hline LM & t.75 & MC & & taab & 1.85 & TCA & 2.30 & 300 VA & A 0.5 & SC/MP CHIP & \\ \hline & \({ }_{3.9}^{2.2}\) & NE & & & \(\begin{array}{r}2.15 \\ \substack{150} \\ \hline 1\end{array}\) & TCA & \({ }^{1.38}\) & 400V 8A & \({ }^{\text {A }} 0.62\) & & \\ \hline LM & 0.90 & NE5 & 1.30 & & 3.91 & & 2.00 & 1oov 12 & 2 AO .57 & & \\ \hline & 0.98 & & 1.65 & taAg3 & 1.30 & UAA180 & 2.00 & 200 V 12 A & 2A 0.65 & & \\ \hline & 2.65 & & \({ }^{1.80}\) & & \begin{tabular}{l} 1.30 \\ 1.95 \\ \hline 1 \end{tabular}
$$ \& \& 0.24 0.24

2 \& \& \& \&
 \hline \& 125 \& \& 2.50 \& \& \& \& . 24 \& 600V $12 A$ \& \& \& 16
 \hline \& \& \& 1.25 \& \& \& \& 1.34 \& \& \& \&
 \hline 6N \& 0 \& SN76001N \& \& tBa500 \& 2.21 \& CD4007 \& 0.24 \& tic 46 \& 0.4 \& DP821 \& 8
 \hline \end{tabular}

We also stock a comprehensive range of capacitors, resistors, switches, etc.

our vast stocks, please enquire about devices not listed.]

Better instruments. Better service.

We have established a nationwide network of approved service organisations to deal with the repair and maintenance of our instruments. Every repair is backed by a full 12 month guarantee. Here's where to find them

ENGLAND London Instrument Reparr Centre, Acton Lane, Chiswick
London WA 5HJ. Trade Reception Cunnington Street Tel: 01.9959212 London Instrument Repair Centre, Archcliffe Road. Dover, Kent el. Dell 202620
Farnell international instruments Ltd, Sandbeck Way, Wetherby West Yorkshire LS22 4DH. Tel. Wetherby (0937) 3541
T.E. R. Instrumemnts Ltd. Peel Lane, Astley, Manchester M29 7JH

Tel: Atherton (05234) 2275 or 5611
Midlands instrument Repair Centre. Thorn Automation Ltd
Armitage Road Rugelev, Staffs. Tel: Rugeley 108894) 5151
SCOTLAND Falcon Electronics, 92 High Street, Johnstone, Scotland
Te: Johnstone (0505) 23377
WALES Electro Services, 25 Chepstow Road. Newort. Cwent NPT 88 X

The manufacturers' joint service organisation.
WW - 059 FOR FURTHER DETAILS

RADFORD HD250
High Definition Stereo Amplifier

the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av, continuous per channel into any impedance from 4 to 8 ohms, both channels driven

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts, lesa than 0.02% at rated output (Typically 0.01% at 1 Khz)
Hum and noise: Disc, -83 dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mv)

Line -85 dBV masasured flat (ref 100 v)
$-88 d \mathrm{BV}$
Hear the HD250 at

SWVIFT OF WILMSLOW

Dept. WW, 5 Swan Street, Wilmstow. Cheshire (Tel: 26213)
Mail Order and Personal Expori enquries: Wilmsiow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
Now available ZD100 power amplifier and ZDO 22 pre-amp/ifier

NEW PRODUCTS!

NRDC-AMBISONIC 45J

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug. and Sept. 77
The unit is designed to decode not only 45 J but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC Matrix H .10 input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit. Complete with mains power, wooden cabinet, panel, knobs, etc.

Complete kit, including licence fee $£ 45.00+$ VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval.

As in this issue of "Wireless World", designed by Mike Hosking, 240 V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet. Complete kit. Exclusive designer approved kit $£ 46.00+$ VAT, all ready built and tested $£ 54.00+$ VAT

Wireless World Dolby ${ }_{\text {Trademak of }}$ nobly

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter

Typical performance

Noise reduction better than 9 dB weighted
Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)
Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%

Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output

Dynamic Range $>90 \mathrm{db}$
30 mV sensitivity

- provision for der.oding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Complete Kit PRICE: $\mathbf{£ 3 9 . 9 0}+$ VAT
Also available ready built and tested
Price $£ 54.00+$ VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ 2.20+V A T$
Single channel plug-in Dolby (mROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts are available with all components

Price $£ 8.20$ +VAT
Single channel board with selected fet
Price $£ 2.50$ +VAT
Gold Plated edge connector
Price $£ 1.50+V A T$ *
Selected FETs 60p each + VAT, $\mathbf{1 0 0 p}+$ VAT for two, $\mathbf{£ 1 . 9 0}+$ VAT for four
Please addVAT @ $12 \frac{1}{2} \%$ unless marked thus', when 8% applies (or current rates)

We guarantee full after-sales tecnnical and servicing facilities on all our kits, nave you checked that these services are avaliabie from other suppliers?

Please send SAE for complete lists and specifications
INTEGREX LTD.

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button

 FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.
Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramıc IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter.

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection - 85dB. THD typically 0.4\%

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price

Mono $£ 32.40$ +VAT
With ICPL Decoder $£ 36.67+$ VAT
With Portus-Haywood Decoder $£ \mathbf{3 9 . 2 0}+$ VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$ THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £31.95 + VAT

S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Power 'on/off' FET transient protection.
Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N $\overline{7} 2 \mathrm{~dB}$. Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: $£ 33.95+$ VAT

> ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BASIC NELSON-JONES TUNER KIT	$£ 14.28+V A T{ }^{\text {P }}$	PHASE-LOCKED IC DECODER KIT
BASIC MODULE TUNER KIT (stereo)	£16.75 + VAT	PUSH-BUTTON UNIT

LYNX ELECTRONICS (London) LTD.

92 Broad Street, Chesham, Bucks. Tel (02405) 75154

P\&P 30p. Overseas 90p. Matching 20p per pair New Price List 20p Prices correct at 31st July, 1977. ACCESS WELCOME

TRANSISTORS

REGULATORS	
723	$\mathbf{0 . 4 5}$
7805	1.50
7812	1.50
7815	$\mathbf{1 . 5 0}$
7898	$\mathbf{1 . 5 0}$
LM309K	$\mathbf{0 . 9 5}$
LM340.5	$\mathbf{1 . 3 5}$
LM340.-12	$\mathbf{1 . 3 5}$
LM340.15	$\mathbf{1 . 3 5}$
LM $340-18$	$\mathbf{1 . 3 5}$

	CLOCK CHIPS			NEWS FLASH
		1531	3.25	
		531	3.85	Lynx will be holding a
3		-5-1	3.25	seminar this auturn
-		54	FTS	on microprocessors microcomputers and
-		Pin	0.13	their applications
		${ }_{\text {Prin }}$	0.14 0.14	Fiee Competition for a system based on 280
		Pin	0.15	More detals next
5		Pin	0.45	month
		Pin	0.80	

NT WEET HYDE Eluminin

THE INETRMOMENT
WW - 075 FOR FURTHER DETAILS

15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input tunctions (mag Cartridge tuner, etc) are catered for internally, the desired function is achieved either by a multi-way swich or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting to external potentiometers (not included) The HY5 is compatible with all I.L.P. power amplifiers and power supplies To ease construction and mounting a P.C connector is FEATURES: Completer
FEATUS: Compleamplifier in single pack - Multi-function equalization -- Low noise - Low APPLICATIONS: Hi.Fi - Mixers simply combined for stereo
.- Disco -- Gutar and Organ -- Public address
Auxilary Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV : Tuner 100 mV Microphone 10 mV OUTPUTS Tape 100 mV . Main output 500 mV R M
ACTIVE TONE CONTROLS Treble +12 dB af 10 kHz , Bass \pm at 100 Hz
DISTORTION 01% at 1 kHz Signal/ Noise Ratio 68dB
OVERLOAD 38तB on Magnetic Pick-up: SUPPLY VOLTAGE $\pm 1650 \mathrm{~V}$
Price £5.22 + 65p VAT P\&P free

促
The HY30 is an exciting New kit from I L.P it features a virtually indestructible I C with short circuit and thermal protection. The kit consists of I C, heatsink, P.C board, 4 resistors. 6 capacitors mounting kit, together with easy to follow construction and operating instructions This amplifier is FEATURES: Complete k:t - Low Distortion - Short, Open and Thermal Protection - Easy to Buald APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS
OUTPUT POWER 15W RM S into 80 DISTORTION 01% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Pricef $22+6$ vat PRPfoe.

HY50

25 Watts into 8Ω the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections -- 7 Amp output transistors

- No external components

SPECIFICATION INUM POwer Hi-Fi systems -- Low power disco -- Guitar amplifie
OUTPUT POWER 25W RMS in 8\% LOAD IMPEDANCE 4.16\% DISTORTION 004% at 25 W at SIGNAL/ NOISE RATIO 75dB. FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 10550.25 mm Price E6.82 + 85p VAT P\& P free

HY120

60 Watts into 8Ω equirements including toad line and thermal protection, this amplifier sets a new standard in modular FEATURES: Very low distortion - Integral Heatsink - Load line protection -- Thermal protection APPLICATIONS: Hi.Fi -. High quality disco -- Public address - Monitor amplifter .- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into BO LOAD IMPEDANCE 4-16\% DISTORTION 004% at 60 W at
SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-4.5 \mathrm{kHz}-3 \mathrm{~dB}$ SÚPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&P free.

HY200

120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the mos ugged conditions, such as disco or group while still retaining true H1-Ft periormance FEATURES: Thormal shutdown - Very low distortion - Load Ine protection - Integral tiearsink No external components
APPLICATIONS: H_{1} - Fi -- Disco -- Monitor -- Power Slave -- Industrial -- Public address SPECIFICATIONS:
NPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 8:) LOAD IMPEDANCE 4-16:.2 DISTORTION 005% at 100 W at SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 23.32+£ 1.87$ VAT P\&P free
HY400
240 Watts into 4Ω
high power disco or s. Big Daddy of the range producing 240 W into 4Ω. Thas been designed to levels a cooting tan is recommended The amplifier includes att the qualities of the rest of the family 10 lead the market as a true high vower hi-fidelity power module
FEATURES: Thermal shudown - Very low distortion - Load line protection - No external componenis
blic address - Disco -- Power slave -- Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS Imto 40 LOAD IMPEDANCE 4-161 DISTORTION 01% a: 240 W
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE NPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 32.17$ + £2.57 VAT P\&P free.
POWER SUPPLIES

PSU90 sultable for one HY 200 E 12.65 plus $£ 101$ VAT P / P triee
PSU180 switable for two HY2000's or one HY400 E23.10 plus $£ 1.85 \mathrm{VAT}$ P/P free

two years' guarantee on all of our products
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

GWenderntrange noedularamplitiers

 amplifiers having power ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.Manufacturers of sound systems and electronics

Station Road, Wenden Saffron Walden Essex CB11 4LG
Saffron Waiden (0799) 40888

ELID

 0
3% Measuring Accuracy Stabilised Power Supplies 10 MHz Dual Trace

Over a century ago we provided the raw material for producing that distinc tive Aussie sound. Today we're still giving the world the benefits of British sound technology by producing the ultimate in hi-fi loudspeaker quality.

Celestion is in the forefront of that British capability with the famous Ditton and new UL ranges that offer everything you want for the price you are prepared to pay to get the best out of your hi-fi system.

From the small compact bookshelf
speaker up to the big Ditton 66, whatever you choose you get the ultimate in speaker experience with Celestion

Ask any hi-fi enthusiast and he'll confirm our claim. But first have a look for yourself at the sound we're selling. Send for our literature or visit your local stockist

Rola Celestion Ltd., Ditton Works,
Foxhall Road, Ipswich, Suffolk IP3 8JP
Telephone: Ipswich (0473) 73131
Cables: Voicecoil Ipswich. Telex:98365

Name

Address

Demand for reprints of Wireless World constructional projects for audio equipment is so high that we have gathered 25 of the best of them together in High Fidelity Designs. These are the 'most requested' articles which you have asked for and all have been fully updated. Hurry for your copy - it's likely to sell out fast!

Tape/disc/radio/amplifiers/speakers/headphones
A BOOK FROM WIRELESS WORLD
$£ 2.50$ from newsagents and bookshops or $£ 2.75$ by post from the publishers

Contents: FM tuner design • Novel stereo FM tuner - Low-noise, low-cost cassette peck - Wireless World Dolby noise redager - Wideband compander design - High-quality compressor/limiter - An automatic noise-limiter

- Modular integrated circuit audio mixer - The "walltenoe" - Electronic pizno design
- Advanced preamplifiendesign - High quality tone conted - Multi-channel tone control Bailey-Burrows prea,míplifier - 30-watt high fidelity amplifier - 30-watt amplifier modification
- Baxandall tone controterisited - Active crossover network.s - Electrostatic headphone amplifier - Class A powd amplifier - An I.C peak programme meter - Horn loudspeaker design - Horn loudspeaker - Transmission-line loudspeaker enclosure - Commercial

POWERTRAN ELECTRONICS

HI-FI NEWS 75W/CHANNEL AMPLIFIER

Tocoidal tramzormer with electrostatic screta Primary: 0.117V 234 V $£ 4.90$ 12. Set of capcilurs. rectifiers. valiage repulatar for power supply $\mathbf{£ 2 . 1 0}$ 13. Sef of miscelhaeous parts, including sockets, luse helder. luses. inter-cannecting wire. elc... E2.05 4. Sar paseal merylic silk sereen printed tuin bacia panal. | indictitor panel insert. imiternal sereen. fixing parts. |
| :--- |
| etc. |
| 88 |
| 0 |

 6. Teak cabinet $10.3^{N} \times 12.7^{" 1} \times 3.1^{1 "} \ldots .$. E 10.70

One sach of packs 1.16 inclusive are required tor complete1 stor so FM tuner. Total cost of individually purchased.
Price
1.15
1.

 6. Sen of mw moise rasistors. cipactions. pro-sets hr 7. Sat of …........................... E4.10 8. Set ol pol
9. Si porntiometers (including mains switch) $\mathbf{\text { 3 }} \mathbf{3 . 5 0}$ pat-mition switches. rotery mold

Pack Fibraghas printod-circuit board for power Preee-
12 Set of resizters. copacitori. secto... 80.85
13. semi-conductors for power supplyc. 5.40

 14. Sol of matahert paris lacke............. E6. 20 lascia panet and all brackets. fixing parls. etc

2 asch af packs 1-7 inclazive are ropuired for camplete

In HI-Fi News there was published by Mr Linsley-Hood a series of four articles (November, 1972-February, 1973) and a subsequent follow-up article (April. 1974) on a design for an amplifier of exceptiona performance which has as its promcipal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts levels The power amplifier is complemented by a pre-amplifier based one discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition requencies of the tone controls and the variable slope of the scratch fitter here is a choice of four inputs, two equalized and iwo linear. each having independently adjustable signal level The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed oroidal transformer

FREE
 TEAK CASE WITH FULL Kits
 kreactonve $£ 79.80$

WIRELESS WORLD FM TUNER

Designed in response to demand for a funer to complement the world-wide acclaimed Linsley Hood 75W Amplifier, this kit provides the perfect match The Wireless World (Skingley and Thompson - April. May 1974) published original circuit has been developed further for inclusion into this outstanding rejection and controlled either continuousiy or by push button pre-selection. Which may be indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set The PLL stereo decoder incorporates active filters for "birdy' suppression and power is supplied via a toroidal transformer and integrated regulator for long term stability metal oxide resistors are used throughout

들 TEAK CASE WITH FULL KITS
wrimactan $£ 70.20$

LINSLEY-HOOD CASSETTE DECK

Published in Wireless World (May, June, August 1976) by Mr Linsley-Hood, this design, although straightforward and relatively low cost nevertheless separate record and replay amplifiers are used, the tatter using a discrete component front-end designed such that the noise level is below that of the
cape background. Push button switches are used to provide a choice of equalization tume constants, a choice of bias levels and also an option of using an additional pre-amplifier for microphone use. The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robusiness and ease of mplemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellen match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier

PRICE STABILITY

Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement until October 31 st . 1977, provided that this month's advertisement is quoted with your order E\&OE VAT rate changes excluded
All components are brand new first grade full specification devices. All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts
Value Added Tax not included in prices.
EXPORT OROERS No VAT charged Postage charged at actual cost plus 50 p documention dind handing Please make payment by lrevocatle Letler ol Credn SECURICOR DELIVERY For this optional service (U.K Mainland only) add $\ddagger 2$ SO NAT INC.) per kit.
K
MAIL ORDER ONLY (tor at current rate if changed)

Pack

1. Stereo PCB |accommodates 2 rap. amps. 2 Price amps. 2 mater amps. bias/brase osc. relay|c 3.35 Steree set of capitors. M.0. resistors. potentiomaters far above.
2. Stereo set of semiconductors tor above | £9.80 |
| :---: |
| 8.50 |
3. Miniature relay wilh sockel
4. PCB. anl composents tor solenoid £2.90 circuits 6. Goldrimp Lenco mectianism as specifiod. $£ 21.95$ Goldring Lanco mechanism as specified. $\mathbb{E 2 1 . 9 5}$
Function swilch. knobs 8. Dual wu meter with ill
5. Texoital transtormer with ES s... $£ 8.70$ Taroinal tranatormer with E.S. seraen prim.
0-117V. 234 V . Sec. 15 V

SPECIAL PRICE FOR

 COMPLETE KITSPack
10. Set of capacilors, reciliers ic voltase Prope lor power supply |powertran design) . . $£ 2.80$ Sat of miscellshous qarts, inclusiag sockots. fuse . Sot of mizcelsatous parts. intiaxiag sockets. inse 12. Sat of mulaiwork incluting silk scraened facia panel. internal screan. fixing parts. atc. . $£ 7.10$ 11. Consiruetion notiss $\ldots \ldots, \ldots, \ldots, \ldots$................. One each of packs $1-14$ inctusive aro deck. Total cost of individually purdeck. Total cost of individually pur-

£85.90

Further details of above given in our FREE CATALOGUE EXPORT CUSTOMERS. Please send five INTERNA.
TIONAL REPLY COUPONS OR EO 50 for catalogue to

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NN
Indonesia Brazil Switzerland Canada Saudi Arabia New Zealand Norway lceland Sweden

AUDIO KIT SUPPLIERS TO THE WORLD

T20 + 20 and T30 + 30 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to trclude a Toroidal transformer and additional The design is based on a single ${ }^{-}$F/Glass PCB and teatures all the normal facilities found on quality amplifiers. including scratch and rumble filters. adaptable input selector and head phones socket. In al tollow up article in Practical Wireless further modifications were suggested and these have been incorporated into the $130+30$. These include RF interference filters and a tape monitor facility Power output of this new model is 30 W per channel.

Pack	T20	T30
1. 8at of low metar rexistors	1.60	1.70
2. Sel al small cuptectors	2.60	3.40
3. Sed of power tuphy caprehors	2.20	2.50
4. Sal of clecellamons parts	3.50	3.50
5. EAt of athe. malas, P.E. swithes	1.50	1.50
6. Sa in mex. selocior swith	2.80	2.60
7. Set of mamicenducters. ICs. shts.	7.25	7.75

Pack
8. Torcial translormer -240V prin -1. servem 9. Fibradoss PCB T20 130 . $\begin{array}{ll} & 130 \\ 5.60 & 7.20 \\ 3.50 & 3.90\end{array}$ 10. Set of metatwork. fixied parts I. Sef of catitas mains load

SPECIAL PRICES FOR COMPLETE KITS!

 T30+30

WW SFMT II

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model, designed to
complement the T 20 and T 30 amplifiers. The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptional value for money. Facilities included are switchable afc. adjustable, switchable muting, channel selection by slider or readily adjustable pre-set push-button controls and LED tuning indication. Individual pack prices in our free list.

POWERTRAN SFMT

This easy to construct tuner using our own circuit design includes a KIT PRICE preaingene tront end module. ALI sitereo decoder, adjustable, switchable
muting switchable atc and push-bution channel selection. As with all our, muting. switchabie atc and push-button channel selection. As with all our,
full kits, all components down to the last nut and bolt are supplied together with full constructional details.

CONVERT NOW TO QUADRAPHONICS!

Wrolees World Amplifier Dedigns. Full kits arre not avalable lor these projecis but
component packs and PCBs are stocked for tha highly regarded Bailey and 20 W class $A B$ Linsley Hood deandons. logether with an etticient rogulated power supply of our own design. Sutrable for driving these amplifiers is the Bailey Burrows pre-amplifier and our arcuit board, for the sterso version of it features 6 inputs, scratch and rumble filters and
made range tone controls which may be either rotary or slider operating. For those intencing to get thy best out of their speakers. We also ofter an active fitter systame, ascribed by DC Read, which splits the output of each channel trom the pre-emplifier
into three channels aach of which is fed to the appropriate speaker by its own power into infee channels aich of which is fed to the appropriate speaker by tis own power
amplifier. The Resd/Texas 20 W , or any of our other kits are suitable for these. For tape systems a set of three PCBs have been prepared for the integrated circuit based. high 3OW Bailoy Amplitier,
BAIL Pk 1 F/Glass PCB
BAIL Pk. 2 Resisiors, Capacitars. Potentionatar set
20 W Limsloy Hood Class AB

LHAB Pk. 3 Semiconductor set
Regulator Power Supply
60 VS Pk. 1 F/Glass PCB
60VS Pk 1 F/Gless PCB
6OVS Pk. 2 Resistor. Cap
60 VS Pk. 3 Sesmicorductor ser
60VS Pk. 6A Torodal transtormer (tor use with Bailey)
60 VS Pk. 6 B Torcidal transtomer (for use with 20 W)
60VS Pk. 6B Torcidal trensformer (for use with 20 W (H)
sentey Butrows Sterwo Pre-
BBPA Pk $1 \mathrm{~F} / \mathrm{Glass} P C B$ stereo.
B8PA Pk 2 Resisios capactitor semiconducior set istereo,
BBPA Pk 3R Rotary Potentiometer set. Stereo
Active Filter Glis. 1 Glass PCB
FILT Pk. 2 Resesistor, Capacitor set (metal oxide 2\%, polysityrene $2 \dot{2} \%$)
FILT Pk 3 Semiconductor sor
2 off Pks 1.2 .3 rad for ster

READ Pk 2 Resistor. CCB Cacitior set
READ Pk. 3 Semiconduction

TRAC Pk 1 Record Amp F/Glass PCB Slereo

EXPORT NO PROBLEM

SQ QUADRAPHONIC DECODERS

With 100 s of titles now available no longer is there any problem over suitable software. No problems with hardware elther. Our new unit the SQM1-30 simply plugs into the tape monitor socket of your existing amplifier and drives iwo additional speakers ar 30W per channe!. A full complement of controls including volume, bass. treble and balance are provided to used for either front or rear channels by-passing the decoder for stereo-only use and exchanging left and right channels. The 50 matrix decoder is based upon a single integrated circuit and was matrix decoder is based upon a single integrated circuit and was
designed by CBS whilst the power and ione control sections are identical to those used in our $\mathrm{T} 30+30$ amplifier which the SQM 1-30 matches perfectly. Kit price includes CBS licence fee.
feed 2 channels (200-1000mV as obtainable from most pre-amplifiers or ampliner
tape monntor outlets) into any one of our 4 decoders and take 4 channels out with no overall signal level reduction. On the logic enhanced decoders Volume. Front-Back. LF̈-FFF balance. LB-RB balance and Dimension controls can all be implemented by simple single gang potentiometers.
These state-of-the-ari circuits used under licence from CBS are offered in kits of superior quality with close tolerance capacitors, metal oxide resistors and fibre-glass PCBs designed for edge connector insertion. All kit prices include CBS licence fee.

1. Full logic controlled decoder with "wave matching" and "front back logic" for enhanced channel separation. All
$£ 17.20$ '

2A. More advanced full logic decoder with "variable blend" for increased front back separation. All components.
 increased frequency response. All components (carben film resistors). PCB $£ \mathbf{E 2 5 . 9 0}$ Also avilenency
Also available with M.O resistors, cermet pre-set - add
SEMICONDUCTORS ias used in our range of quality audio equipment.

U Export Department will be pleased to advise on postal costs to any country in the world. Some of the coun
surrounding this advertisement.
Tunisia Germany Nauru Hong Kong Australia Eire Gambia Denmark France Muscat \& Oman ${ }^{\circ}$

EIERIPI.TEH

CHFITDTETISIIT

315, 317,364 EDGWARE ROAD, LONDON W2 TEL: 01-723 5667 \& 01-402 5580

Prices include VAT Carr./p. \& p. quoted UK. only
ACCESS \& BARCLAY accepted. Minımum order $£ 5$ otherwise C.W.O For credit on

TTL buik users
 UNI-SELECTOR
 ${ }^{240 v} A C$ or $D C$ operation Split 30 way double bank contacts 0 Overall size approx $23 / 9^{\prime \prime}$ dia $\times 21 /{ }^{\prime \prime}$ deep Brand new Bargain at $\mathbf{E 4 . 5 0}$. p \& p

REED SWITCHES
 strvana swicch

10 for E 2.50 50 for E 11.00
100 for E 18.00

MOTORS
RANCO $1 / 6 \mathrm{H.P} .1425$ rpm 240 O 50 Hz Split phase
$1 / 2^{\prime} \times 3^{\prime,}$ long shaft Unused Normally crade mounted
 drive approx $280 \mathrm{rpm} 3 /{ }^{\prime \prime}$ "dia shatt Size $14^{\prime \prime}$ nic
gearbox $\times 51 /{ }^{\prime \prime}$ dia plus cap and base New Robusi
E23.95. car $£ 300$
ACADEX shaded pole motor Open trame 230 V 50 Hz
 Spindles $£ 1.50$ of 8 p 4 45 p

 eliminates wow and flutter 50 Hz capactior trept
siart
MODEL HSKZ $32806 / 12220 \mathrm{~V}$ Dual speed tape deck MOOEL HSKZ $32806 / 12220 \mathrm{v}$ Dual speed tape deck
motor $500 / 1000 \mathrm{pm} 12 \mathrm{~mm}$ drive shatt gives trape
speeds of $953 / 1905 \mathrm{~cm} / \mathrm{sec}(31 / 71 / 2 \mathrm{~ms} / \mathrm{sec}$,

 PYE. ETHER LTO Thrust operates through spring loaded
hinged tever giving a tith pull or push Complete with
 RELAYS

FANS
DUAL EXTRACTOR FAN
24OV 50 H2 Two thick stack
shaded pole motors make this
highly efficeent unit producing

$A D$ 18

 highly efficent unt producing apowefiul aifllow Mounted in
heavy steel frame each has five ellement $61 /{ }^{\prime \prime \prime}$ blades Stze
$2213^{\prime \prime} \times 14^{\prime \prime} \times 51^{\prime \prime}$ deep $\mathbf{E 8 . 9 5 , \text { carr }} \mathbf{E} 275$
 MINIATURE LAMPS

BENDIX MAGNETIC CLUTCH

chanics Main body in two $\begin{aligned} & \text { in Home. Farm. } \\ & \text { sections coil section fixed with } \\ & \text { Workshops \& Lab }\end{aligned}$

SODECO PRINTING IMPULSE JABSCO (ITT) ROTARY PUMPCOUNTER.
digit dec,mal counter 2nd channel date and time
register Supplted in orgnal makers packing complete
with motruction manual $\& 87.50$, \&

Based on the famous A77 Series design, the new 3.77 Professional has been introduced specifically for the studio user. Look at these new features:

17 /

1) 3 tape speeds; ($33 / 4 / 7 \frac{1}{2} / 15$ ips or $7 \frac{1}{2} / 15 / 30 \mathrm{ips}$ to choice).
2) Wide-ranging built-in variable speed gives you 100% speed variation on each speed.
3) Full logic control with motion sensing.
4) Excellent editing facilities-the 3.77 has a flat facia for easy access to the heads PLUS internal audio line up oscillator, edit dump control and "capstan servo off" selector, PLUS end of tape lamp defeat button. Easiest editing ever!

For immediate delivery $£ 575$ +VAT

Britain's best-selling 64-page electronic kit and component catalogue from Doram with new products, new ideas!

Extra copies of catalogue available (send 20p to cover post and packing) from Doram Electronics Ltd, PO Box TR8, Wellington Road Estate, Wellington Bridge, Leeds LS 122 UIF. Tel: 34222
(STD code 0532).

WW - 02I FOR FURTHER DETAILS

MARCONI VALVE VOLTMETER TF428B£15 ea

EX-MINISTRY
GENERATOR 0-20KHZ
Sinewave output. Metered. 600 Ohms 240 V Input. Size $16 \times 10 \times 9^{\prime \prime}$ deep. $£ 22.50$ each

EX-MINISTRY

MARCONI 0-6WATTS
Multi Range. Multi Impedance POWER METERS. $£ 30$ each

EDWARDS HIGH VACUUM PUMPS
Type 15C30@ £55 each
Type ES35 @ £40 each
Carriage £2.75

MARCONI NOISE GENERATOR

TF987/1
4 Ranges 0-5: 0-10; 0-15; 0-30. Due to large purchases now priced at $\mathbf{£ 1 5} \mathbf{5}$ ea.

TRIPODS WITH PAN
AND TILT HEAD
Will take 75 lb . load £ 32.50 each

MARCONI TF675F WIDE RANGE PULSE GENERATOR

 - variable outputs up to 50 V Optional delay. Small compact unit. £18 eaROYAL INVERTORS manufactured USA. 28 V DC Input. Output 115 V AC 400 HZ up to 24 KVA Brand new. Crated $£ 12.50$ ea.

PICK-A-PACK 50 PENCE A POUND

From Our "Pick-A-Pack" area weigh up your own components. No restrictions on what you take

EX-DYNAMCO Oscilloscopss INVERTORS 30V inpur
$6 K \mathrm{KV}$ Output. Size $2^{\prime \prime} \times 4 \mathrm{y}^{\prime \prime} \times 11 / 2^{\prime \prime}$. Complete with Curcuit 170 eac

tTELEPHONES. Post OHice style /a6 Black
 6.50 ea Modern styie 706 Black or two 10 ene grey $£ 4.50$
ea P\&P 75 p each Oll black slyle $£ 1.50$ ea P\&P ह. \#HANDSETS only 706 style $\mathbf{E 1 . 7 5}$ each older style $\mathbf{E T}$. PELEPHONE EXCHANGES. Eg 15 way automatic (exchange oniv) from $£ 95$.
MOOERN FANS. $4 \frac{1 / 4}{} \times 3$
quiet 6 hades $£ 4.50$ ea P\&P $75 p$
PAPST Model 240 V avalahle at $£ 7.50$ ea P\&P 75 p
SURPLUS - BRAND NEW - REPLACE MENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR D $13-51 \mathrm{GH}$ Mesh PDA Transistor Scan Wide Bandwidth $60 \mathrm{MHZ}+$ Rectangutar $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivily $15 \mathrm{~V} / \mathrm{CM} Y$ Sensitivity, $6 \mathrm{~V} / \mathrm{CM}$ standard heaters Lengith $131 / /^{\prime \prime}$
THIS IS A MUST AS A SPARE FOR THE THIS IS A MUST AS A SPARE FOR THE
DVNAMCO 7100 SCOPE OR IDEAL FOR THE DVNAMCO 7100 SCOPE OR IDEAL FOR THE
HIGH QUALITY TRANSISTOR SCOPE BUHLDER ALITY TRANSISTOR SCOPE B
At $£ 65$ each Carrage $£ 2.50$
To Tube purchasers only Numetal Shields at
$\mathbf{£ 2 . 5 0}$ ALSO AVAILABLE TUBE TYPE BRIMAR D10-210GH 32 Rectangular $7 \times 5 \mathrm{~cm}$ Mesh
PDA Shart $91 / \mathrm{g}^{\prime \prime} 30 \mathrm{MHZ}+$ Sensitivity $\times x$
 CM BRAND NEW
Carriage $£ 250$

PHOTOMULTIPLIER
tynes avalatile
*POTENTIOMETERS

 C5. Thereatter E1 per KV. P\& P 75 p
DON' \mathbf{T} FORGET YOUR MANUALS.
reanurements
TUBE Type DB

240KV SINGLE PAHSE 2OKVA OUIPUT $2 \times 25 \mathrm{KV}$ ©85,

a large quanitity of miscellaneous test GEAR. CHASSIS UNITS. Gic., on view at Low Cost
PICK-A-PIECE
FROM OUR
PICK-A-PIECE" AREA

PICK-A-METER - £1 EACH

a large selection of brand NEW AND EX-EQ. METERS

BACK IN STOCK

Attractive cast alloy front panel, vertical mount. Size $161 / 2 \times 151 / 2 \times 5 \frac{1}{2} 2^{\prime \prime}$ containing 72 push buttons with manual or electrical reset (28 V) with provision for labelling with your code: 65 illuminated symbols or functions (complete with 28 V lamps) which again you can change; 16 bit front panel microswitch assembly to enable your coded cards to be read, and host of other electronic parts. NOW $£ 5$ each.

```
DESKS with Punch, Reader Printer and Keyboard Some ASCil Various models from \(£ 200\).
```


1/2"'MAG TYPE

Approx. 2.000 tt. NOW 25p each. P\&P $£ 1$

INTERFACING

serial/parallel - parallel/serial. til buffered ins and Outs Inverted and Non-inverted: Pos or Neg strobe Adustable
Baud rates (dispatched at 110) Min 20 mA drive tor all outouis Baud rates (dispatched at 10$) \mathrm{Min} 20 \mathrm{~mA}$ drive for all outputs
Requires +5 V S Supplied with edge connectors $£ 38.50$ ea P\&P $£ 1$.
 Requires $+12 \mathrm{~V},-12 \mathrm{~V}$ and $/ 5 \mathrm{~V}, £ 19.50$ ea. P \& P 75 p . Requres $+1 \mathrm{~V},-1 \mathrm{~V}$ an
DRIVER BOARD to suit Paper Tape Punches. TTL to $24 / 48 \mathrm{~V}$ for solenoids etc 9 Channel. £55 ea. P\&P £2
TELETYPE PLUG COMPATIBLE 20 mA to 0.5 amp Drive Board with edge connector $£ 18.50$ ea $\mathrm{P} \& \mathrm{P}$ £1 Requires external 18-0-18V 1 amp transformer. 1500 mid 50 V Cap and Power Transistor
NOTE. Demand for these items already means one month delay Save Money save time order "KITS" al HALF PRICE - you assemble

WEARE BREAKING COMPUTERS
UNIVAC/ HONEYWELL/ICL 1900 etc
Boards. Power Supplies Core Stores are available
CALL AND SEE

ITEMS OFTEN AVAILABLE

CORE STORES with Drivers from £100.
Some small RAM Boards from $£ 15$.
Good used TWIN PACKS $£ 10$ each
GINGIE DISK f5 PACK $£ 25$ each
SINGLE DISK $£ 5$ each
CORE PLANES (no drivers from $£ 5$
P.C. MOTORS (Disc Drives?) £15 each

FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M 38 at the ridiculous price of $£ 4$ each. And also
still avariable the CME1220. $24 \times 15 \mathrm{~cm}$ at $£ 9$ ea. Base connections for both tubes supplied

C.D.C. DISK DRIVES TWIN E.D.S.

Single phase - alr condrete with copy of manal and 50 packs

 condition £240 each. CompleteSize approx $2^{\prime} \times 2^{\prime} \times 3^{\prime} 6^{\prime \prime}$ high

SUPERE PROFESSIONAL V̇DU CASES, SIZe $23 \times 16 \times 15$ On stands Hammer grey BRAND NEW SCHLUMBERGER Surplus $£ 20$ each

SOMETIMES AVAILABLE

TELETYPE ASR23 at $\mathbf{£ 5 0 0 .}$

KSR33 at £325.
KSR33 non standard e.g basic ASCii-20ma loop - but small print 0 to 9 above standard 0 to 9 . some of the symbols having been relocated $£ 250$ ea

WE HAVE BEEN TRYING
and are still trying. and should soon succeed in getting a few systems up and running to enable us to demonstrate the increasing number ttems that are becoming available. Most Callers will be Welcome

NO TIME WASTERS PLEASE!
PS. No Floppy disks - no cheap memory

Minimum Mail Order $£ 2$ Excess postage refunded Unless stated - please add $£ 2.75$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 a m to $5.30 \mathrm{p} . \mathrm{m}$. Mon to Sat

7/9 ARTHUR ROAD, READING, BERKS (near Tech. College, King's Road). Tel. Reading 582605

The SECOND-USER CTRO Systems,Peripheral Compuler Specialists

Mini Pomputrer Zxohemes
Latest arrival -
Super PDP8 SYSTEM
DEC PDP8E 8K Processor
KC8EA Programmers Panel
KL8-M \& KL8JA Serial Interfaces
RK8E Disk Control
$2 \times$ RK05-BB Disk Drives
Mounted in standard DEC 4 ft cabinet complete with power supply In immacu late condition and highly recommended.
DEC PDP8M-ML Processor 8 Kk core
KCMBM Operations Panel
DEC PDP8I System
$8 K$ Processor
6801 64-line communication system
DF 32 disk drive and control
Mounted in 2 standard DEC 6 ft cabinets complete with power supply
DEC PDP $11 / 40$ System
TU 10/TM 11 magnetic tape station and control
$2 \times$ RKO5 disk drives and control
DEC TM/11/TU10 magnetic tape station brand
DEC TU55 single DEC tape drive complete with brand new magnetic head
DEC PR8E High-speed reader and control
DEC LA36 DEC writer terminal (paraliel Interface)
DEC KE11A Extended Arthmetic element complete
with backplane
DEC AFO1 Analog-Digital Converter and Multı Plexer (rack-mounting unit)
DEC DF32/DS32 Disk drive and control plus
EXTENSIVE STOCKS OF PDP8E/ PDP81/PDP11
series interface, processor and special feature modules
et us know your requirements.
AVAILABLE SHORTLY
PDP8E System
8K processor
-speed readel / punch
$\angle A B O P D D E C$ writer with parallel interface
AFCB A/D Convector
WANG 2200B-1 Systems
CRT Display
Twin floppy disk drive (524 K)
Twin fioppy disk dive
Matrix prinier (180 cps)
2) 8 K Processor
4.9 Meg Diablo disk drive

Matrix printer (180 cps)

Fpintens Enc Gerninele

LARGE STOCKS OF ASR33 AND KSR33

TELETYPE TERMINALS

* ASC11 Koyboard
* Hard copy unit (friction or sprocket paperteed
* Paper Tape punch and reader (ASR33 only)
* Line Unit ($20 \mathrm{~mA} / 6 \mathrm{~V} / 80 \mathrm{~V}$)

Overhauled in our own workshops to the highest standards and sold with 90 -day warranty Prices from £425 (KSR33) and £625 (ASR33)

Also available:

DATA DYNAMICS DD390 ASR and KSR terminals with acoustic covers
CENTRONICS 102A iwin-head printer
132 print positions. 330 cps
9×7 dot matrix
DIABLO Hi-type I darsy-wheel printer
30 cps (BRAND NEW, and offered complete with interface module for Data General processon
TEKTRONIX 611 Storage Display
$11 "$ CRT XY input, stored
COSSOR DIDS $401 \cdot 2 \mathrm{~A}$ and $402 \cdot 2 \mathrm{~A}$ visual display units. 13 lines of 80 characters. $600 / 1200$ baud rate. units. 13 lines of 80
modified ASC 11 code.

Special Purchase of:
CATHODE RAY TUBES BY
Ideal for Visual Dispiay units and monitors
$70{ }^{12} 2^{\prime \prime}$ diagonal screen
P4 phosphor tube
Electrostatic focus and magnetic deflection
Overall dimensions $101 / /^{\prime \prime} \times 73 / 7^{\prime \prime} \times 171^{\prime \prime \prime}$ (neck dia
$1 / /^{\prime \prime}$) Brand new surplus in orignal mantacturer's packing Supplied with full technical data Our bargain price $£ 10.00$ plus $£ 6$ carriage $+8 \%$ VAT
(Send £ 17 28)
JST RECEIVED - A NEW CONSIGNMENT OF CLARE-PENDAR ASC 11 CODED REED-SWITCH KEY BOARDS. IDEAL FOR VISUAL DISPLAY UNIT APPLICA. TIONS

Equipment \& Components for Data Processing
Keyboards

LARGE STOCKS
OF A WIDE
RANGE OF
KEYBOARDS
ALWAYS
AVAILABLE

KB8 KEYBOARD

* 78 Station ASC1 1 Keyboard including separate
numeric cluster. cursor control keys. and 6
special function keys
* Standard TTL logic
* Power requirements + 5V @ 100 mA and -12V@

4 ma

- 8-bit ASC 11 code (including parity)
providing full 96 -character set with upper and
lower case outputs
* negative strobe with 40 ms delay

Overall dimensions $161 / 2 \times 73 / 4 \times 2^{\prime \prime}$, supplied complete with full technical data and circuit diagrams
PRICE $£ 55.00+£ 125$ p $\& \mathrm{p}+8 \%$ VAT (send $£ 60.75$) DX8-CRT 96 station ASC1 18-coded TTL-compatible 4 bank alphanumenic keyboard 8 -bit code upper and Delayed strobe and 2 -key rollover. Mounted in attractive box averall dimensions $201 / 2 \times 71 / 2 \times 31 / 3^{\prime \prime}$
PRICE $£ 65.00+£ 3$ carrage $+8 \%$ VAT (send PRICE
E 73 44)
55SW3-1 54-station BCD-coded 4-bank alphanu. neric keyboard Hall-effect switches Input + 5VDC negative logic and strobed output. two.key rollover Set in attractive panel incorporating 5 indicator lamps and PRICE $£ 39.50+£ 2$ P\&P $+8 \%$ VAT (send £44 82)

18-KEY PUSH-BUTTON CALCULATOR KEYBOARD

Kerals 0-9 decimal point K

 on PCB overall dimensions $51 / 2 \times 4 \% / 2 \times 1 / 2$PRICE $£ 4.00+50 p$ P\&P $+8 \%$ VAT (send $£ 48$) MINIATURE MATRIX PROGRAMME BOARDS:
Brand new X-Y Matrix boards with 3 mm grating 3×10 positions (1)/4.

HAZELTINE 1000
Compact terminal providing 12 line by 80 character
display (960 chs), full/ hall Duplex, MOS-shift register memory with constam retresh Underline cursor
New List Price £900.
OUR PRICE £525.00

SCOOP
 up to 45\% OFF manufacturer's list prices

Exclusive Purchase from Hazeltine World Leaders in CRT Terminals
Teletype-compatible 12° Diagonal Screen *TTY Format Keyboard $* 64$ ASCII Charactar Set $\$ 5 \times 7$ Dot Marrix ${ }^{6}$ Switch-selectable Transmission Rate up to 9600 baud \star Switch-selectable Parity Standard CCITT V. 24 Interface

HAZELTINE 1200 All the fatures of the Moder 1000 but with double screen capacity (24 lines of 80) Reverse block image Cursor New List Price $£ 941$. OUR PRICE £725.00

HAZELTINE 2000

Sunerb butiered termina winf full edif tacilities 1998 character capactiy (27 lines of 74). detachable ASCI keyboard including 10 -key Mumeric pad and 13 -key edin/cursor control cluster Selectabie transmission
New List Price £1649.
OUR PRICE £895.00

buy, lease or rent:

- Teletype 33 and DD 390 (10 cps) printer terminals
- DECWRITER LA36 and DD303 (30cps) printer terminals
- OKIDATA $110(66 \mathrm{lpm})$ and Teletype $\mathbf{4 0}(300 \mathrm{lpm})$ high. speed printers
- Lear Siegler ADM 1,2 and 3A video keyboard display
- Teletype 40 (7200 baud) asynchronous and synchronous displays
- DD Paper tape punch range (up to 110 cps)
for prompt delivery telephone

London(O1) 8489781 Edinburgh (031) 2266201 Menchester (061) 2243306
ctax 935428

WW—040 FOR FURTHER DETAILS

C.H.L. CONCOURSE INSTRUMENT CASES
 Our Concourse range of instrument cases are manufactured from PVC coated steel in a simple two piece consiruction giving maximum access to chassis mounted compon. ents
 ents
 Write or phone for further detals
 CHL Component:
 Appleby St. M Appleby St.
 Black burn, Lancs. Black bum 56546

NEW COMPONENTS Reaistors 5\% carbon E12 1Ω to 10 M . $1 / 4 \mathrm{~W} 11 / 2 \mathrm{p}$. present pots subminiature 0 IW E3 100Ω to 4 M 7 vertical 9 p . horizontal 9p. potentiometers 025 W E3 $4 K 7$ to $2 \mathrm{M} 2 \log \mathrm{r}$ lin single 30p. dual 95 p . polystyrene capacirors E12 63V 22 pf to 8200 pf $31 / 2$ p. ceramic capacitors vert 50 V E6 22 pt to 4700 pf 3 p . mylar capacitors $100 \mathrm{~V}, 001$. 002. 0054 p . 01. 02 . $02541 / 2 p$ p. polyester capacitors 250V E6. 01 to $1 \mathrm{mf} 5 \mathrm{y} / 2 \mathrm{p} .15,22$ $7 p .47 \mathrm{mf} 11 \mathrm{p}$. electralytics 50 V 47 I . $2 \mathrm{mf} 5 \mathrm{p} .25 \mathrm{~V} 5,10 \mathrm{mf} 5 \mathrm{p} .16 \mathrm{~V} 22.47 \mathrm{mf}$ 6 6. 100 mf 7p. 220 mf 9 p. 470 mf 11 p. 1000 mf 18p. xener diodes 400 mW E24 $3 \vee 3$ to $33 \vee 81 / 2 p$.
MAINS TRANSFORMERS $6-0.6 \mathrm{~V} 100 \mathrm{~mA}$ 94p. 9-0-9V 75 mA 94 p . 12.10-12V $50 \mathrm{~mA} \quad 94 \mathrm{p}$. 0/12/15/20/24/30V IA £3.85. $0 / 12 / 15 / 20 / 24 / 30 V 2 A \subset 5.15$ $60-6 \mathrm{~V} \quad 11 / 2 \mathrm{~A} £ 2.75$. $9-0.9 \mathrm{~V}$ 1A £2.39. 12-0-12V 1A £2.69. 15-0.15V IA E2.89. 30-0-30V IA e3.59.
PRINTED CIRCUIT KITS, ETC• Containes etching dish 100 sq ins of pc board. I lb ferric chloride. etch resist pen. drill bul and laminate cutter £3.85. I lb fernc chloride $£ 1.05 .100$ sq ins pc board 80p. etch resist pen 75p.
S.DECS AND T-DECS S-DeC £1.94 T-DeC £3.61 u-DeCA £3.97 u-DeCB £6.67 16 dil IC carriers £ 1.91
SINCLAIR PROJECT 80 MODULES PZ5 £4.95. Z40 $£ 5.75$ BI-PAK AUDIO MODULES \$450 tuner £21.95. AL60 £4.86. PA 100 £14.95. MK60 audio kit $£ \mathbf{3 6 . 4 5}$. Stereo $30 £ 17.95$. SPM 80 £3.75. BMT £4.25
FERRANTI ZN414 IC radio chip £1.44. Extra parts and pcb for radio £3.85. Case $£ 1$ Sae for data

TV GAMES CHIP

AY-3-8500 £11.50. Printed circuit and k of extra parts $£ 9.95$. Colour model $£ 24.95$
Send sae for data

BATTERY ELIM!NATOR BARGAINS 3.WAY MODELS

With 4-way mult-jack connector Type 1 $3 / 41 / 2 / 6 \mathrm{~V}$ at 100 mA £2.30. Type $2-$
$6 / 71 / 2 / 9 \mathrm{~V} 300 \mathrm{~mA}$ £2 90 100MA RADIO MODELS
With press-stud connectors $9 \mathrm{~V} £ 3.45$. 6 V £3.45. $9+9 V £ 5.15 .41 / 2+41 / 2 V £ 5.15$ $6+6 \mathrm{~V}$ £5.15
150MA CASSETTE MODELS
$71 / 2 V$ with 5 pin din plug $£ 3.65$

FULLY STABLIZED MODEL £6.40 Swithed $3 / 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}$ 100 mA radio types with press stud battery terminals $41 / 2 V$ £2.10. $6 V$ £2.10. $9 V$ | £2.50. $9 v+9 v £ 2.50$. $92.50 .6 V+6 V$ |
| :--- | Stmbilized Q wav typo

Stabilized 8-way types transıstor stablized | to give, low |
| :--- |
| $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V}$ | model £3.20. 1 Amp model £6.40. Heavy duty 13-way iypes

$4 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28$ 1A £4.85. 2A £7.95. Car Convertor kit Input 12 V DC Output
$6.71 / 2 / 9 \mathrm{~V} 1 \mathrm{~A}$ regulated $£ 195 \mathrm{~V}$. 6. $71 / 2 / 9 \mathrm{~V} 1 \mathrm{~A}$ regulated $£ 1.95$. Stablized laboratory power kiz Switched
1 to 30 V in o V steps 1 Amp f 12.45 l Amp £14.95. IV steps 1 Amp £12.45. 2
SINCLAIR IC20
IC20 $10 \mathrm{~W}+10 \mathrm{~W}$ stereo amp kit with printed circuit £6.95. PZ20 power supply for above $£ 8.95$. Send sae for data JC12 AND JC4O AMPLIFIERS JC 12 6W IC audio amp with dat
and printed
circuit $£ 1.95$.
Also new JC40
20W model with
ocb £3.95. Send sae
पhin
SINCLAIR MICROWONOERS Sinclair pocket TV $£ 165$. camb sc_{1} £8.45. Oxford scientific $£ 10.60$.

SWANLEY ELECTRONICS

DEPT WW, PO BOX 68, 32 GOLDSEL RD. SWANLEY, KENT BR8 8 TO Mail order only No callers Send sae for free data on kits Post and packing 30p Prices include VAT Official orders welcome Overseas customers deduct 7% VAT on tems marked
and 11% on others

(iv
 ONLY
$£ 14.95$
Latest transistorised Telephone Amplifier is completely automatic with detachable plug-in speaker. Placing the receiver on to the cradle activates a switch for immediate two-way conversation without holding the hand-set. Many people can listen at a time. Increase efficiency in office, shop. workshop. Perfect for "conference" calls: leaves the user's hands tree to make notes, consult files. control Model with sape-recording facility $£ 1695+$ VAT $£ 136 \mathrm{P}$ \& P 87 P fachity 16 - 10 -day price refund guarantee

WEST LONDON DIRECT SUPPLIES (W/W)

169 Kensington High Street, London W. 8

Strobes, Tachos, Meters, Generators and Telecommunications Test Equipment

NEW FUNCTION GENERATORS!

G432 is a source of sine, square and triangle signals, 1 Hz to 1.1 MHz . 5 V from 50Ω. via

£115Also independently 10 V from 600日 fixed level. Variable d.c. off-set.

G430 (illustrated) provides Sinewave ($0-10 \mathrm{Vrms}$) and Squarewave ($0-20 \mathrm{~V}$ p-p) from 600』. continuously variable, via $0-60 \mathrm{~dB}$ step attenuator. Frequency range 1 Hz to 1 MHz

Send for details of our complete range

NEW POWER SUPPLY UNIT!
Model PG312 'Hercules'

(illustrated above)

This high-power (180 watts, max) bench p.s.u features dual protection - a current-limiter PLUS an electronic cut-out proof against persistent short circuits.

* 10 to 15 Volts, variable, at 12

Amps, maximum \star Ripple less than 10 mV at full-load * Stability 0.3%

Send for full details of our range of power supply units

NEW TRANSISTOR TESTERS!

KDP Model TT1

This compact unit facilitates the rapid checking of junction transistors (NPN or PNP), indicating a fault in either junction, excess leakage current PLUS a spot-check of d.c. current-gain
Invaluable in any Service Department or Development Laboratory

See mside tractry
cover for details
of ICE Supar
range of multi-
meerei
\square ELECTRONIC BROKERS LIMITED (New Products Division) details on request
49-53 Pancras Road, London NW1 2QB. Tel:O1-837 7781

reprints
 If you are interested in a particular article/ special Feature or advertisement published in this issue of
 WIRELESS WORLD
 why not take advantage of our reprint service.
 Reprints can be secured at reasonable cost to your own specifications providing an attractive and valuable addition to your promotional material.
 For further details contact
 Brian Durrant, IPC Electrical-Electronic Press Ltd. Phone: 01-261 8597 or simply complete and return the form below.

To: Brian Durrant, Reprints Department
Dorset House, Stamford Street, London SE1 9LU
I am interested incopies of the article/ advertisement headed..............................featured in WIRELESS WORLD
on page(s)
......... in the issue dated
Please send me full details of your reprint service by return of post
Name
Company
Address
Tel. No

Complete with SAU2 arm, template and easy-to-follow instructions. Ready for operation in a short time
A FEW OF THE MANY BIG FEATURES
Wow/Flutter 0.15% peak Rumble-60dB weighted - Removeable headshell Viscouse damped cueing device * Easily adjusted tracking force and bias setting © Two speed. 16 pole synchronous motor

> BRAND NEW IN SEALED CARTONS 12 MONTHS GUARANTEE OUTSTANDING VALUE OUR PRICE
 Dimensions $378 \times 28.3 \mathrm{cms}$ Plinth and cover available $£ 12.50$ ($+£ 1.75 \mathrm{p} / \mathrm{p} \&$ ins) Goldring G800 Cartridge £4.50. Call in or send a cheque, P.O, M.O, or Access, Barclaycard, American Express or Diners Club number.

227 Tottenham Court Road, London W.1. Tel 01-580 7383

Brokers Ltd

 49-53 Pancras Road, London NWI2QB
 Tel: Ol-837 7781

Main Sweep (b) Delaying Sweep. orightened segment of trace indicates
time relationshio between delaying sweep display and main sweep display (c) Main Delayed Sweep (d) Mixed Sweep (e)
Single sweep of main sweep $£ 295.00$ PHILIPS
PM6507 Transistor Curve Tracer Solid (ate CRT-10× 12 cm Full spec o PROBES
$\begin{array}{ll}\mathbf{\times 1} \text { Part No } 90 & \mathbf{8 6 . 5 0} \\ \times 10 \text { Part No } 91 & \mathbf{8 8 . 5 0}\end{array}$
$\begin{aligned} \times 1\end{aligned} \& \times 10$ (Switchable) $\begin{array}{r}\text { Part } \\ \mathbf{E} 10.50\end{array}$

CD1740 50MHz Scope System
DC-50MHz $10 \times 8 \mathrm{~cm}$ display Sensitivity Solid State E485.00 E485.00 CT436
E105.00 Portable Scope DC 1400.15 MHz Plug in E180.00 TEKTRONIX

ع180.00
OC 30 MHz Oscilloscope $545 \mathrm{Ac} /$ w CA \&
Plug-ins
$£ 445.00$ Plug-ins
Type 475200 MHz Portable Dual Trace
§45.00 mul yeep 485350 MHz Portable Dual $5 \mathrm{mV} / \mathrm{div} 1 \mathrm{nsec} / \mathrm{div}$ sweep rate Delayed sweep. Auto focus. variable trigger hold off 50 ohms internal input protection
$\mathbf{E 3 , 2 5 0 . 0 0}$ rype $531 \mathrm{ADC}-15 \mathrm{MHzc} /$ w CA Plug-in -
Oual Trace
E275.00 Dual Trace Type $531 \mathrm{~A} \mathrm{DC}-15 \mathrm{MHz}$ c/w Single Trace
E.245.00 Type 549 (Mainframe) DC-30MHz rrase 5 cm . S writing speed Calibrate weep delay. Various plug in units avail Type $551 \mathrm{DC}-27 \mathrm{MHz}$ Main $£ 750.00$ yower supply various plug-in units anail E450.00 Type 564 B (Mainframe) Storage Oscillo-

SCOPE TEST EQUIPMENT

Carriage and packing charge extra on all items unless otherwise stated

5nsec Pulse Generator Model 210
loads and connectors $\begin{array}{lr}\text { loads and connectors } & \mathbf{6 5 7 5 . 0 0} \\ \text { Time Mark Generator } 2901 & \mathbf{4 5 0 . 0 0}\end{array}$ 695.00 TRANSMISSION TEST EQUIPMENT
AIRMEC/RACAL

Nave Analyser 248

£250.00-£300.00 Wave Analyser 248 Freq range $\begin{array}{ll}5 \mathrm{MHz}-300 \mathrm{MHz} & \mathbf{£ 1 4 5 . 0 0} \\ \text { Modulation Meter } 409 & \mathbf{£ 2 9 5 . 0 0}\end{array}$ ype 210 Modulation Meter (earlie Type 210 A Madulation Meter
25.300 MHz AM Range 0.100%. FM號 0 to 100 KHz in 4 ranges GENERAL RADIO
(yp evel Recorder 15218
Spec $1900 \mathrm{~A} .20 \mathrm{~Hz}-50 \mathrm{KHz} 3$ band widths 3,10 and 50 Hz Tracking averages
30 mV -300V F.S D Input impedance 1 M $30 \mathrm{mV}-300 \mathrm{~V}$. S D
ohm 3 meter speeds
Spec: $\quad 15218 \quad 4.5 \mathrm{~Hz}$-200K Hz
sensitivity Linear d8 plot
d8 range
$\mathbf{£ 2 , 0 0 0 . 0 0}$
Sweeping Local Oscillator 3595A Plug-in for use with 3590A Wave Analyser Freq MARCONI INSTRUMENTS f650.00 range 30 Hz to 550 KHz Measures range 30 Hz to 550 KHz Measures
response of active and passive transmission network. Full spec. on request Distortion Factor Merer TF142F Funda mental Freq. Range $100 \mathrm{~Hz}-8 \mathrm{KHz}$ Dist measuring ranges $0-5 \% \quad 0-50 \%$ Meas
ures all spurious components up to 30 KHz A F Tranamission Measuring Set Model TF2332. Frequency Range
20 KHz
$\mathbf{6 4 0 0 . 0 0}$ RADIOMETER
Wave Analyser FRA 2 T3 Special version measurements and selective measure. ments of frequency responses Freq range 30 Hz to 16 KHz incremental freq OHz to $\pm 60 \mathrm{~Hz}$. Selectivity 3 curves with following 1 d 8 points $\pm 1.25 \mathrm{~Hz}$
+63 Hz and 60 d 8 points $\pm 40 \mathrm{~Hz}$ Hz
50
Voltage range $10 \mu_{\mu} \mathrm{V}-1 \mathrm{KV}$ Auxiliary O $16 \mathrm{KHzofo}-10 \mathrm{~V}$ (EMF) continuously variable impedance 1 Kohms $16 \mu \mathrm{~F}$

BRIDGES

AVO/BPL
E375.00
component Comparator Used for testing or calibrating resistors. MARCONI INSTRUMENTS TF936 Impedance Bridge £125.00 TFT245 CCT Mat M $\mathbf{E 5 2 5 . 0 0}$ TF1246 $\mathbf{E 6 8 5 . 0 0}$ ROHDE \& SCHWARZ LC Bridge Type LCB 8 N 620 Used as
Inductance Bridge $10 \mu \mathrm{H}$ to 1000 H Used as Capacitance Bridge 1 OnF to $1000 \mu \mathrm{~F}$ WAYNE KERR
Self-contaned BRIDGE B521 (CT375) Self-contained portable mains-operated measurements over an extremely wide range of resistance, capacitance, induct10 ranges from 1 M ohm to 1000 M ohm Capactrance 10 ranges from $50 \mathrm{k} \mathrm{\mu F}$ to 500 pF . Inductance 10 ranges from $1 \mu \mathrm{~F}$ to 500 KH Capable of measuring compoFREQUENCY
COUNTERS ADVANCE
Counter TC 16 5Hz-80MHz ${ }^{5}$ diglt Timer Counter TC12A 5 digit 2 Hz to
15 MHz Time \& Period 10 mV sensitivity
Band $£ 160.00$
Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

B. BAMBER ELECTRONICS

DEPT. WW, 5 STATION ROAD, LITTLEPORT, CAMBS,

 CB6 1QETEL. ELY (O353) 860185 (TUÉSDAY TO SATURDAY)
TERMS OF BUSINESS: CASH WITH ORDER, MINIMUM ORDER OF £2.00
ALL PRICES NOW INCLUDE POST \& PACKING (UK ONLY)
CALLERS WELCOME BY APPOINTMENT ONLY
Please enclose stamped addressed envelope with ALL enquiries

tools for the electronic ENTHUSIAST
BY DRAPER. SPIRALUX, etc
AND A GOOD RANGE OF WELLER SOLDERING EQUIP. IN STOCK SAE FOR LISTS

$\frac{\text { ALL BELOW }+8 \% \text { VAT }}{}$

MAINGTRANSFORMERS. TYPE 60/2, main Qutput 0. 20-40-60V at 240-250V AC Postic case. approx. $71 / 2 \times 41 / 2 \times \frac{1}{4}$, fully fused (ideat for PSU), $£ 3.00$ each
MAINS TRANSFORMERS. TYPE $15 / 300.240 \mathrm{~V}$ input. 15 V at 300 mA output, $\mathbf{E} 1.50$ each

MAINS TRANSFORMERS. TYPE 45/100, 240 220 . 110,20 . OV input. 45 V at 100 mA output
f 1.50 each.

TRANSISTORS
 BFY51, 4 for $60 p$ BCY72, 4 for 50p
 BSX20 (NHF osc/mult). 3 for 50p BC108, 4 for 50p
 PBC108 (Plastic BC 108). 5 for 50p BF152 (UHF Amp/mixer). 3 for 50p 2N3819 (Fet), 3 for 60) BC148 (NPN
 BC148 (NPN SILICON). 4 for 50p BC158 (PNP SILICON). 4 for 50p BA121 varicap Diodes. 4 for 50 p BAY31 Signal Diodes, 10 for 35p

RF CONNECTORS

BNC PLUGS (ex-equip), 5 for $\mathbf{£ 1 . 5 0}$
N-TYPE Pluge 50 ohm, $\mathbf{6 0 p}$ each, 3 for $\mathbf{£ 1 . 5 0}$
N-TYPE Sockets, 4 hole fixing small coax, lead type, 50p anch
PL259 Pluge (PTFE). brand new packed with reducers. 65p aech or 5 for $£ 3.00$

SO239 Sockets (PTFE) brand new (4 hole fixing lype). 50p each or 5 for $£ 2.25$

RIGHT-ANGLED UHF SERIES ADAPTERS. PL259 to SO239, £ 1.00 each

TIME FOR WIRELESS? ㄹ․․․

The MA1012 LED digital clock module is a full 12/24 hour format clock unit, operating from $50 / 60 \mathrm{~Hz}$ mains and offering a host of features: Hours, minutes display in bright $0.5^{\prime \prime}$ LEDs, with optional seconds, sleep and snooze alarms, fast and slow setting, PM indicator, switched output for radio, but the most important feature is the non-multiplexed directly driven display. This means no RFI, so the MA1012 is ideal for use in any type of radio/tuner etc. The neat fitting means it can be slotted into many existing cabinets/chassis - only $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total! $£ 9.45$ per module - isolating mains transformer $£ 1.50$ (8% vat) Two modules and two transformers for $£ 20.00+8 \%$ VAT. AMBIT announce a new addition to the catalogue - information on TOKO's new ceramic ladder filters, 2.4 k Hz SSB filters etc HF coils, new flat faced low cost panel meters. Catalogue 45 p.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts that the manufacturers of $£ 100+$ metal locators wouldn't like you to know !! $£ 1.00$ The Bionic Ferret 4000 - A little detector technology of our own. The VCO based metal locator for the electronics constructor, including platsic moldings for housings of electronics and search coil, tubing etc. Can be set up using just a test meter. 'All in' price $£ 34.26$ inc PP and 8% VAT.

demonstrations available at our offices in brentwood high st

COMPONENTS Etc

As usual, Ambit offers a comprehensive range of components and modules for wireless, including over 300,000 types of signal inductors for just about every conceivable RF signal application from 5 kHz to 300 MHz .

> VAT is extra at 12.5% except where otherwise shown. Postage now 25p per order please. Catalogue 45p inc pp \& vat. Please send an SAE with all enquiries (a5 or larger size please) Price list free with an SAE (a5 size)

> AIVBIT INTERNATIONAL

37a High Street, Brentwood, Essex. CM14 4RH Tel (0277) 216029

TRANSFORMERS

ALL EX-STOCK - SAME-DAY DESPATCH MAINS ISOLATING PR1 $120 / 240 V$ SEC $120 / 240 \mathrm{~V}$ Ref. VA (Watts) Ref.
07
149
150
151
152
153
154
155
156
157
158
159

				r 220	Volts
	Ref			E	P\&P
P\& \mathbf{P}		12v	24v		
79	111	0.5	0.25	2.20	43
96	213	1.0	0.5	2.64	78
14	71	2	1	3.41	78
50	18	4	2	4.03	96
84	70	6	3	5.35	96
84	108	8	4	6.98	114
15	72	10	5	7.67	1.14
OA	116	12	6	8.99	1.32
OA.	17	16	8	10.38	132
OA	115	20	10	13.18	2.08
OA	187	30	15	17.05	2.08
OA	226	60	30	26.82	OA
	30 VOLT RANGE				

50 VOLT RANGE SEC TAPS 0-19-25-33-40-50V

Ref.	Amps	£	P\&P
102	0.5	3.41	78
103	1.0	4.57	96
104	2.0	6.98	1.14
105	3.0	8.45	1.32
106	4.0	10.70	1.50
107	6.0	14.62	1.64
118	8.0	17.05	2.08
119	10.0	21.70	OA

60 VOLT RANGE Primary 220.240V SEC TAPS 0-24-30-40-48-60V voltages available			
$\begin{array}{llllllllll}6 & 8 & 10 & 12 & 16 & 18 & 20 & 24 & 30 & 36\end{array}$ 404860 V or $24.0-24 \mathrm{~V}$ or $30-0-30 \mathrm{~V}$			
Ref.	Amps	£	P\&P
124	0.5	3.88	96
126	10	5.58	96
127	2.0	7.60	1.14
125	3.0	10.54	1.32
123	40	12.23	1.84
40	50	13.95	1.64
120	6.0	15.66	184
121	8.0	20.15	OA
122	10.0	24.03	OA
189	120	27.13	

	AUTO TRANSFORMERS			
	113	$20 \quad 0.1$	5-210-240v 2	2.48
	64	75 0.1	$5-210.240 v \quad 3$	3.95
	4	$150 \quad 0.1$	$5-210-220-240 \mathrm{~N}$	5.35
	66	300		7.75
	67	500		10.99
	84	1000		18.76
	93	1500		23.28
	95	2000		34.82
	73	3000		48.00
	SCREENED MINIATURES			
	Ref.	mA	Volts	£
	238	200	3-0.3	1.99
	212	1A. 1 A	0-6. 0-6	2.85
	13	100	9-0-9	2.14
	235	330. 330	0-9, 0-9	1.99
	207	500. 500	0-8.9, 0-8-9	2.59
	208	1A. 1A	0.8-9, 0-8.9	3.53
	236	200. 200	0.15, 0.15	1.99
	214	300, 300	020, 0-20	2.56
	221	700 (DC)	20-12-0-12-20	3.41
	206	1A, 1A	0-15-20, 0-15-20	4.63
	203	500,500	0-15-27. 0-15-27	3.99
	204	1A, 1A	0-15-27, 015.27	5.39
	S 112	500	0.12-15-20-24-30	02.64

CASED AUTO. TRANSFORMERS

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS:ALDGATE \&LIVERPOOLST.

London WIR 3HR 01-437 1892/3

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI.
ALL PRICES SHOWN INCLUDE V.A.T. AT $121 / 2 \%$
 \qquad N339
N379
P09
PP1
PAB8
PC86
PC88
PC92
PC95
PC97
PCo
PCC
PCC
PCC
PCC
PCC
PCC
PCC
PCF
PC
PC
PC
PC
PCL
PCL
PCL
PCL
PCL
PCL
PCL

MATCHED TRANSISTOR SETS
/OC81D and $2 /$ OCB1, 515 p.
$1 / O C 82 \mathrm{an}$ and $2 / \mathrm{OC} 82$. 54p. Set of $3 / O C 83,7 e p$ 1. watt Zenners. 2.4. 2.7 v . $3 \mathrm{v}, 3.6 \mathrm{6}$,
16 v .18 v . $20 \mathrm{vv}, 24 \mathrm{v}, 30 \mathrm{v}$. 12 p each.

 ALL
PRICES
INCUDE
V.A.T.
NOTHING
EXTRA
TO
PAY

All hoods are unused and subject to the manufacturers' guarantee.
Terms of business. Cash or cheque with order Despatch charges. - Orders below $\mathcal{C 2 5}$ in value, add
50 . Any parcel insured against damage in transt for for packing free of charge. All orders cleared same day. prices subject to change without notice.
Spectal offer of $E F 50$ valves, solled but new and tested. $£ 1$ each.

Wilmslow Audio

THE Firm for Speakers!
SEND 10p STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC.
AND DISCOUNT PRICE LIST

```
ATC AUDAX BAKER BOWERS & WILKINS
    CASTLE CELESTION CHARTWELL
    COLES DALESFORD DECCA EMI
        EAGLE ELAC FANE GAUSS 
        GOODMANS HELME I.M.F.
    ISOPHON JR JORDAN WATTS KEF
        LEAK LOWTHER McKENZIE 
MONITOR AUDIO PEERLESS RADFORD
        RAM RICHARD ALLAN SEAS
    TANNOY VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO (Dept. ww)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1 HF
Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street Tel. Wilmslow 29599 for Speakers Wilmslow 26213 for Hi-Fi

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets $6^{\prime \prime} \times 4^{1 / 2}{ }^{\prime \prime} £ 2.50$ with all symbols for direct application to pc board. Individual sheets 25p each
(1) mixed symbols; (2) lines .05 (3) pads; (4) fish plates and connectors; (5) 4 lead and 3 lead and pads; (6) DILs; (7) bends 90° and 130°; (8) 8-10-12 T.O.5. cans; (9) edge connectors . 15; (10) edge connectors .1 (11) lines .02; (12) beds .02; (13) quad in line.

CIRCUIT LAYOUT TRANSFERS SIZE 2:1
One sheet $12^{\prime \prime} \times 9^{\prime \prime}$ giving all transfers as in etch resist from No 3 - No 10 inclusive makes circuit layout easy Black only. Price $£ 1.00$

FRONT AND REAR PANEL TRANSFER SIGNS

All standard symbols and wording over 250 symbols signs and words also available in reverse for perspex, etc. Choice of colours red, blue, black or white. Size of sheet $12^{\prime \prime} \times 9^{\prime \prime}$. Price $£ 1.00$.

GRAPHIC TRANSFERS WITH SPACER

 ACCESSORIESAvailable also in reverse lettering. Colours red, blue, black or white. Each sheet $12^{\prime \prime} \times 9^{\prime \prime}$ contains capitals, lower case and numerals. $1 / \mathrm{B}^{\prime \prime}$ kit or $1 / 4^{\prime \prime}$ kit $£ 1.00$ complete

ALL ORDERS DISPATCHED PROMPTLY. ALL POST AND VAT PAID. EX U.K. ADD 50p FOR AIR MAIL
SHOP AND TRADE ENQUIRIES WELCOME E. R. NICHOLLS
P.C.B. TRANSFERS, DEPT. WW

46 LOWFIELD ROAD, STOCKPORT, CHESHIRE 061-480 2179
Specialists in design and manufacture of pneumatic and winch operated telescopic masts and towers. Vehicle, field and wall mountings available. Many standard models ex-stock.

HILOMAST LTD.

THE STREET - HEYBRIDGE - MALDON - ESSEX - CM9 7NB ENGLAND
Tel. MALDON (0621) 56480

> PNEUMATIC TELESCOPIC MASTS

WW- III FOR FURTHER DETAILS

K \& N Electronics Ltd. Cordwallis Street Maidenhead Berks. Tel; 0628 22447/9 Telex 847692

The RIVLIN slide potentiometer type CS 60 incorporates a carbon track with an electri-- cally screened metal case which presents an extremely smooth mechanical action combined with a low level of electrical noise.

Specification

60 mm single track. Range $1,5,10,25,50$, 100 and 500 K . Log and linear mechanical travel $60 \mathrm{~mm} \div 0.40 \mathrm{~mm}$, effective travel 55 mm , fixing holes $2+\mathrm{m} 3$ on 80 mm centres.

RIVLIN also produce the above components for twin track and quad applications. Complimenting this range is the WS wire wound slide potentiometers, available in 70 , 100 and 150 mm . Values from 1 to 100 K .

WW-118 FOR FURTHER DETAILS

MARCONI TEST EQUIPMENT

TF329G circuit magnification meter $£ 125$ TF455E Wave analyser. New. £135
TF 1101 RC oscillators. £65
TF 109920 MHz sweep generators
TF1041B \& C. VT Voltmeters
TF 102 Amplitude modulator. 500 MHz TF 1 020A Power meter. 100 W .250 MHz . $£ 85$ TF $1152 \mathrm{~A} / 1$ Power meter. 25 W . $500 \mathrm{MHz} £ 75$ TF $11590 \mathrm{~A} / 1$ RF test set. $\mathbf{£ 4 2 5}$
TF801B/3S Signal generator. £175
TF 1417200 MHz counter (imperfect)
TF 1400 Pulse generator
TF675F Pulse generator
TF 1370 Wide-range RC oscillator $£ 125$
TF2163 UHF attenuator DC-1 GHz £95
TF2200 Oscilloscope
TF2904 Colour gain delay test set
TF 1058 UHF/SHF signal generator

POLARAD TYPE TSA. SPECTRUM ANALYSER. C/w type STU/2M plug-in unit covering from 950 to 4500 MHz .

EVER-READY NICKEL-CADMIUM BATTERIES.
Size ' ${ }^{\prime}$ ' (HP2) $1.25 \mathrm{~V}, 3.5 \mathrm{AH}$ Only small quantity available at $\mathbf{£ 2}+10$ p post.

APT POWER SUPPLIES. Stabilised and regulated. 6 V (variable) at 3 A Brand new £25.

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam) Counting up to 15 turn 'Helipots'. Brand new with mounting instructions Only $£ 2.50$ each
FRACMO Geared motors 24 V AC 0 5RPM 68A. Torque 401b in. Price including staring capacitor $£ 10.50$
CENTRIFUGAL TYPE Blowers 12 V DC Outlet diam. 7 cms Overall diam 15 cms and 17 cms deep Very powerful tans

10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753

TEST EQUIPMENT

ADVANCE SG62B signal gen $150 \mathrm{KHz}-220 \mathrm{MHz}$ AIRMEC 399 Video oscillator $15 \mathrm{~Hz}-15 \mathrm{MHz}$
AIRMEC 254 High-power oscilator/amplifier BOONTON 80 Signal generator $2-400 \mathrm{MHz}$ BOONTON 230A RF Power Amplifier BPL Capactance decade (5) CD 133. 100pt-1 uF BPL Capacitance decade (5) CD 133 . 100 pt -1 IuF
GERTSCH Frequency meter and deviation meter
GR Standard sweep generator $400 \mathrm{KHz}-230 \mathrm{MHz}$ HEWLETT PACKARD 693D sweep oscillator HEWLETT PACKARD 432A Power meter DERRITRON Digital Wheatstone Bridge MUIRHEAD K-134-A Battery op wave analyser PYE EHT scalamp voltmeter $0-40 \mathrm{KV}$

RADIO CORPS PB 1 pulse \& bar generator SIEMENS Level oscillator $12-160 \mathrm{KHz}$ SCHNEIDER type ci 252100 MHz counter (red) SCHOMANDL type FD 1 frequency meter SOLARTRON type CD 1212 oscilloscope TAYLOR type 62A AM/FM Sig gen 4.120 MHz WAYNE-KERR RF Bridge 15 KHz .5 MHz B 901 MUIRHEAD-PAMETRADA D489EM Wave Analyser HEWLETT PACKARD 5090B recording receiver TEKTRONIX type 575 transistor curve tracer TEKTRONIX 585A oscilloscope with $82 \mathrm{PIDC}-80 \mathrm{MH}$ TEKTRONIX type 526 Vectorscope
TEKTRONIX type 180 A Time-mark generator WANDEL \& GOTTERMAN Signal Gen $10 \mathrm{~Hz}-30 \mathrm{MHz}$

NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary it is sold in first-class operational condition and most ttems carry our three months guarantee Calibration and certificates can be arranged at cost Overseas encuiries celticates can be arranged at cost overseas encluiries
welcome prices quoted are subject to an additional 8% VAT

ROHDE \& SCHWARZ EQUIPMENT

HUZ Field Strength Meter. $47-225 \mathrm{MHz}$. AMF TV. Demodulator $470-790 \mathrm{MHz}$. Selective UHF V/meter, bands $4 \& 5$. USVF. Selectomat. RF Voltmeter. USWV. BN 15221. £450
Standard attenuator $0-100 \mathrm{db} .0-300 \mathrm{mHz}$. DPR.
UHF Sig. gen type SDR 0.3-1 GHz. £ 750
UHF Signal generator type SCH. £175
UHF Test receiver type USVD. £325
POLYSKOP SWOB I.
POLYSKOP SWOB II
SBTF. T.V. Signal generator, vision-sound modulator and transmitter.

ICL type 2640 Paper tape readers	250 cps
New	$\mathbf{£ 9 5}$
Westrex 8-hole paper-tape punches	$\mathbf{£ 9 5}$
Sound-proof case avalable	$\mathbf{£ 1 5}$

MUFFIN INSTRUMENT COOLING FANS

Made by Rotron Holland These are very high quality. quiet running tans, specially designed for the cooling of all types of electronic equipment Measures $45 \times 4 \quad 5 \times 15$
115 VAC 11 Wavis The 1,51 price of We have a quantity avalable brand new for only $£ 4.50$ we hav

500V TRANSISTORISED INSULATION

TESTER

Lightweight small size $(13 \times 7 \times 4 \mathrm{cms})$ Reads insutation from $02 \cdot 100 \mathrm{M}!$ at 500 V pressure Runs from
standard 9 VPP 3 Brand new
$\mathbf{£ 1 6 . 5 0}$

ROTARY INVERTERS 24 V . DC Input.
115 V . AC Output, 400 Hz .25 KW . $\mathbf{6 5 5}$. 115 V . AC Output, 400 Hz .2 .5 KW . £65. Collection only
PACE ELECTRONICS VARIPLOTTER Type 1100 E £175

MUIRHEAD DECADE OSCIILLATŌRS type 890A.
$1 \mathrm{~Hz}-110 \mathrm{kHz}$ in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator. Reduced to $£ 75$.

Direct from the makers

THEESPBE SPETEKMMK5
 any hempit bimio UNIT THAT SAVES MONEY AND IMPROVES PERFORMANGE

ADAPTABLE TO + OR EARTH AS REQUIRED
REV.LIMITING CONTROL INSTANT REVERT-TO-NORMAL IGNITION SWITCH
ON-OFF SWITCH TO IMMOBILIZE ENGrive

FULLY GUARANTEED

VALUE SUPREME!. EASY TO INSTALL
Nothing extra to pay for
With SUPER SPARK MK. 5 you get all the advantages starting, fuel economy bour cas - year-round easier
betrang life from the

engine pLUS essential features which come as extras in
other makes Bult from heavy duty components
mproved circut board now in heavy gauge aluminium cose $6 / 4 \times$ oded leads (approx 2 O". $^{\text {OV }} 14000$ SUPER SPARK UNITS HAVF AIREADY BEEN SOLD BEEN SOLD
OR DFLIVE

eurolec

Facts Profits

The first of our standard reference books to be published using our new computerbased information system is the second edition of "INSTRUMENT MANUFACTURERS United Kingdom 1977/1978 (eurolec 52)." Its 320 pages provide detailed background information on around 500 companies whose main activities are the manufacture in the UK of industrial instruments and systems. It costs $112.00+95 p$ post and packing.

Also produced using the new accurate system is its valuable companion - the respected "EIECTRONIC MANUFACTURERS United Kingdom 2nd edition 1977/1978 (eurolec 53)" This covers around 800 companies whose main activities are the manufacture in the UK of electronic products, including capital equipment, consumer goods, and components. It costs E16.00 + E1. 20 UK post and packing

Produced at the end of last year our fat "ELECTRONIC COMPONENTS ON OFFER IN THE UK (eurolec 50)" has proven very popular. Its 520 pages give sound background information on manufacturers, importers and distributors.

Our books are up-to-date, comprehensive, unique and very professional - they are of prime interest to marketing people and buyers. For more details contact our Business Manager at eurolec, Little Waltham Chelmsford CM3 3NU tel: Chelmsford 360344 (STD 0245).

The year's biggest public hi-fi and audio fair is nearly here. Your chance to see and compare the newest, most intriguing, most sophisticated products across the span of hi-fi, radio, tapes and music-making.
It's the biggest, most exciting show ever - with opportunities to test and compare every type of electronic home entertainment equipment

There's a free theatre, live groups, lectures on various aspects of hi-fi trends and design, demonstrations on advanced TV concepts such as Teletext and Viewdata ... Bring the family for all the fun - as well as the information!

Tues 2pm - 9pm Wed/Sun incl. 10am - 9pm Admission 60p.
HI-FI•RADIO•TV•MUSIC•TV GAMES•RECORDS•TAPES

ANNOUNCEMENT

FURTHER INFORMATION ON 280 COMPUTER SYSTEMS

We will be oftering iwo different packages The lirsi system the RESEEARCH MACHINES 38OZ, will b
avarlable bult and tested and also in kil form This is a fuliy independent computer systern when used
conjuncton
The second system, the RESEARCH MACHINES 280Z,
Cost kepboard The RESEARCH. MACHINES 2802 is des,gned to ser a new low in compurer system pricing These computers are designed and manulactured in Oxford by SINTEL S pareni company AESEA

RESEARCH MACHINES $380 Z$ will have the following specitications
completoly unmodified domestic lelevision The TV screen will then display 24 rows of 40 characters (950 characters) The unit can display the 128 character isO set. including upper and lower Case
ASCIf GRAPHICS DISPLAY The 3802 cen display graphics on the TV screan on a matrix of 80 thorizontil) Na (vertical) Graphics and alphanumeric characters can be insermixed INPUT. Ver
 without adding any memory PCBs Using a page seiect mode the computer memory can oo expanded ndelinutely FIRMWARE (This means software supplied and avalable at Swurch.On in ROM
otherwise known as the MONITOR) MONITOR COMMANDS List Memory. Modify Mernory Load from Casserte. Dump On Cassette Single Step.Trace Go To User Programme. Bieakpoint, etc
SOFWARE We will be offering. Extenderd Monitor Various Basics. Texi Edito with both sequential and iminediate mode. Machine Language Graphics Subroutines. Games Packages. Resident Assernblea
HAROWARE CON FIGURATION COMRuter IS housed in an instrunent case with power of room for expansion Keyboard is in a separate case All connections between units are made with

RESEARCH MACHINES 2 Boz

An exciting new low cost computer using the $Z 80$ micronrocessor surable lor amateur use or as a
professional Engineer 5 Computer Deveiopment Kit RESEARCH MACHINES 2802 features Optional power supply a low cost keyboard. VDU UHF output providing an ASCll alphanumeric disptay on a
domestic television, cassette interlace and a reasonable amount of random access memory This offers exceptional value for money It will cost somewhere between the potice of a Manufaciurer's
Development Kit using hex display and keyboard and a fully cased computer system

A RANGE OF SINTEL INDUSTRIAL MODULE KITS

KITS FOR LATCHED COUNTER MODULES

	TTL		cmos		
	Part No.	Price	Pari No		Price
2 digit	526-412	510.52	548.470		[10.42
$4{ }^{4}$ digit	657-412	¢17.98	191-470		E18.11
6 d 'gl	721.412	¢ 25.66	869-470		¢25.85

COUNTER PCB SETS

2 dg 11	815.950	¢ 2.97	855-950	
$4{ }^{4}$ digt	246.950	¢4.53	462.950	62.48 515
6 digit	610.950	¢6. 16	719.950	E5.01

SETS OF JUMBO D'SPLAYS WITH DISPLAY MOLDING PCB

TYPE Non-Multiplezed	COMMON ANODE Part No Price		$\underset{\text { Part No }}{\text { COMMON CATHODE }}$	
2 d git Counser	574822	[3.37	446.822	
4 dignt Counter	777-822	66.63	128.822	E2.97 65.83
6 digit Counter	684822	C9.89	271-822	${ }_{68.69}$
4 digin Clock	301-822	c6. 66	262-822	
6 digit Clack	417.822	f10.15	-452-822	65.86 $¢ 8.95$
8 dignt Counter	119-822	¢13.09	$\begin{aligned} & 452-822 \\ & 515-822 \end{aligned}$	68.95 $\mathbf{6 1 1 . 4 9}$

Official orders are welcome fram Companies, Govi. Oeptz, Netn. Inde., Unive, Polys., ete
orders
p\&o and please see FASTSERVICE: EXPORT Orders weicome no var bul ada 10\% (Europe). 15% (Overseas)
for Alr Mal

SINTEIE:
 SINTEL
 PO BOX 75C, OXFORD
 Tel. 086549791

We know of only one other Power Amplifier Module superior to our JPS 100 The JPS 150

For starters, JPS Power Amplifier Modules are designed, manufactured and tested in England, yet sold throughout the world.

Incorporating comprehensive protection circuits including mismatch, short and open circuits, impedance and thermal protection, these Modules will ensure a high standard of both reliability and top performance.

Unlike other models, they offer an indefinite life-span! Should they ever require any attention or repair, all components on both Modules are easily replaceable. And, what's more, they both also carry a full two-year guarantee. That's confidence for you!

Frequency Response
Power Bandwidth
Slewing Rate
Total Harmonic Distortion Hum and Noise
Damping Factor -Input Sensitivity -Input Impedance Power Requirements Transistor Complement Module Dimensions Guarantee


```
JPS 150 £32.61
    170 watts RMS 8 ohms
    10.30kHz+OdB -02d8
    0-22kHz +0dB - 02dB
    9.00 Volts per microsecond
    0.04@ 1kHz
    115dB below 150 watts
    l15dB below 150 watts
    OdB (0 775 volts) 1 }50\mathrm{ watts
    47k
    #55 Volts
    12 transistors. 1 integrated circuit
    64H\times5'W W 2'D
    Full }2\mathrm{ year
```


*These parameters may be changed to suit particular requirements
For industrial usage frequency response can be extended DC to $30 \mathrm{kHz}+0 \mathrm{~dB}-02 \mathrm{~dB}$ (150 only)

POWER SUPPLIES
PS 100 powers 1 JPS 100 price $\mathbf{£ 1 5 . 5 1}$
PS 150 powers 1 JPS 150 price $\mathbf{£ 1 9 . 2 2}$

PS 50 powers 1 JPS 60 price $£ 13.50$ PS $100 / 2$ powers 2 JPS 100 price $\mathbf{£ 2 8 . 8 2}$
PS $150 / 2$ powers 2 JPS 150 price $\mathbf{£ 3 0 . 7 5}$

Il Prices are subject to 8% VAT

All module drive cards are based on industry standard Eurocard system (100 x $150 \mathrm{~m} / \mathrm{m}$)

ID JPS Associates
 BELMONT HOUSE STEELE ROAD PARK ROYAL LONDON NW10 7AR

		avaılable in kıt or 763 (STD 0273) iries welcome
MODEL PRICES	KIT	ASSEMBLED \& TESTED
$401-6$ 401-6-R (with No-Cad battery pack)	¢49 00 E61	$\begin{aligned} & £ 5900 \\ & £ 71.00 \end{aligned}$
UK orders add 8% VAT Packing and postage included Overseas orders, no VAT. Add 10\% for air parcel post		
OUTSTANDHG FEATURES OF MODEL AOI QUARTZ CHRONOMETER * One sacond accuracy per menth at $20^{\circ} \mathrm{C}$. * Protoction againat maiss borne intertorence and frequency variations. * An-cinargabila Mi-Cad battery pack prevides partability and mains failure proteclien. May be left on charge contimeasky. * Easy to read LEO display. 24 or 12 hour modes availatie. * 220/240 mains operation. 110 V and oxtornal battery options are available. * Woight 0.5 kg , with 13 cm . dapth 5 cm , height 12 cm . * 12 month puaranter for correctily assembled kits and ready buill chronomaters. Low cosi 'get you going" rapair service tor kits it requirad. * Nll components neeted supplied lia kits, meluding comprehensive instructions, wirb, scraws. case and .battery charpar.		
New Models avalable Timer 402-M, Chronograph. Timer 403-M Panel Chronometer 404-P for $19^{\prime \prime}(485 \mathrm{~cm})$ mounting with a range of options available including master/slave drive latched BCD output. one pulse per second output etc		
TO: ELECTRO SYSTEMS E TIAING CO. 18, Southdown Romd, Portaisde, E. Susber BN4 2HN, U.K.		
$\square 401.6 \mathrm{kıt}$ 401-6.R kit (U K	6 assemb sted add 8%	$\square 401$-6.R assemb
Name		
Address		
enclose Cheque, pofor \&		UNI

THE TWENTY WATT BREADBOARD IS HERE.

Power semiconductor devices can't easily be used on breadboards. Now Ramp's Power Board solves the problem. T03 and T066 metal devices, and T03P. T066P, T0127 and T0220 plastic devices fit rapidly onto two ten watt heatsinks, and connect simply into the breadboard without soldering. T092 devices can be fitted for thermal stabilisation.

Ramp's Power Board is part of a new system that complements and extends the new . $1^{\prime \prime}$ matrix DIL compatible breadboards, speeding up prototyping and design work. All the details are in our free catalogue.

ELECTRONICS pо вох hн2 Leeds L.S8 4Hg

wW-031 FOR FURTHER DETAILS

When yourre talking Electronics there are three points to remember.
 This year EPG Exhibitions are being held in Coventry, London and Bristol.

They're the electronic instrument exhibitions that keep you fully up to date with all the latest developments in professional electronic instrumentation.

And they bring news to you. So you don't have to travel miles to see what's going on.
EPG Exhibitions are supported by 60 major electronics companies in the UK and have a proven record of success.

For the past 11 years they have been organised in many parts of the UK by the Elec tronics Promotion Group to complement large London and NEC exhibitions.

The exhibitions are staffed by professional engineers representing their companies and provide a relaxed and informal at mosphere in which to see, and have demonstrated, the latest innovations in electronic instrumentation.

Make a point of catching up on the electronics industry at an EPG Exhibition by completing the coupon for your free tickets and visitors brochures.

EPG 77 will be held at:

Coventry EuroCrest Hotel (Formerly Esso Hotel)
October 5-61977
Opening Hours 9.30-17.30hrs.
(9.30 - 17.00 hrs . last day)
The Bloomsbury Centre Hotel, London
October 11-12 and 13,1977.
Opening hours 9.30-17.30 hrs.
(9.30-17.00 last day)

Bristol EuroCrest (Formerly Esso Hotel),
November 8-9,1977
Opening hours 9.30-17.30 hrs.
(9.30-17.00 hrs last day)

PEAK PROGRAMME AND deviation monitoring

PPM2 drive circuit with standard performance under licence from the

 Inounting adaptors which alow illumination are avaliable tor the 642 and
and 643 mouidings to support a 38 mm festoon bulb $12 V$ 3W supplied
PEAK DEVIATION METER

chart reconoer
 The unt holds the tiue peak amphiude apples this slowly to the pen to avord over shoots holds to make a mark and then tuns the pen down stowly Thws is arranged to give correct moniroring of ransients as well as a good
impression of dynimi range Used in broadcasting to 24 .hour records of levels or presence of programme at inpression of dynamic
transmiters orion lines

What a trip old Richard's Rhine journey could have become had he built his own mixers, 900 watt amps, octave equalizers, 24 inch woofers. electronic crossovers, and home brew electrostatics.
Zounds what sounds!
Ask our Rhine maidens for details.
(1) Audio

Yellow Oak Cottage Tillington nr. Hereford HR48LQ
Send now for a free prospectus.
(raik starh it STiREO REVIEW sas Top qualley omb U.S. publicatoondevesed to the serions minephic constructor. Name
Address

NEW
 for electronic design engineers!

FIX-PRINT JIG for printed circuits

Invaluable for holding P.C.B.s and other panels when inserting and soldering components. Can be adjusted to suit work up to 280 mm , rotated to gain access to reverse side and locks in any position. All metal.
Price £10 inc. VAT. P\&P
 £1.

S2 Drill Stand

Robust, all metal with ample throat dimensions. Adjustable height cantilever with lever actuated feed. Spring return. Will accept both P1 and P2 drills. Price £18.50 inc. VAT. P\&P £1. 06

S1 Drill Stand

Constructed to take the popular P1 drill and ensure a high degree of accuracy in all types of electrical precision work.
Price £5.13 inc. VAT. P\&P 38p
Write or phone for full details.

Sole UK Distributors

PREGISION PETITE LTD

119a high street TEDDINGTON MIDDLESEX TWI1 8HG

Tel. 01-977 0878

RELAYS-UNISELECTORSSWITCHES

MINIATURE PLUG-IN RELAYS (Siemans/Varley) with perspex dust cover and base 6-12-24-48v D. C. In Stock
$4 \mathrm{c} / 0$ 75p: P \& P 10p
s.T.C. MINIATURE (P.C. Mounting)
with dust cover
$2 \mathrm{c} / 0(18 / 24 \mathrm{v}) 45 \mathrm{p}$ P P. 10p
$2 \mathrm{c} / \mathrm{o}(18 / 24 v) 45 \mathrm{p}$ P. P. 10p
$4 \mathrm{c} / \mathrm{o}(24 / 36 \mathrm{v}) 50 \mathrm{p}$ P.P. 10p
$6 \mathrm{c} / \mathrm{o}(36 / 48 \mathrm{v}) 75 \mathrm{p}$ P.P. 10 p
I.T.T. $240 v$ A.C. Plug-In RELAYS
with perspex cover) 10 amp contacts
3 c/o 75p P.P 10p
H.D. TIME SWITCHES (100 amp contacts) 1 on/off in 24 his Excellen condition. $240 \mathrm{v}-50 \mathrm{hz} £ 6.50$ P.P $£ 1.00$ UNISELECTORS 25 WAY
5 Bank Full Wipe $75 \mathrm{ohm} £ 5.50$ P.P. 50p
6 Bank Full Wipe 75 ohm $£ 6.25$ P.P 50 p
8 Be
SMALL 12 V UNISELECTORS 4 Bank 11 way $\mathbf{E} 2.50 \mathrm{PP}$
50p SOLENOIDS $24 v$ (Cont Rated)
1016 Pull 20 mm Stroke Size $50 \times 48 \times 42 \mathrm{~mm}$
75p P.P. 15p
TELEPHONE HANDSET with Press-to-Speak Switch
C1.50 P P 40 p
CITENCO GEARED MOTORS, 240 V 50 hz 19 rpm
torque $145 \mathrm{~kg} / \mathrm{cm}$ £6.75 \{new) PP 50p
DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons. 6 mm digits 75p each P P 10p
KEY SWITCHES ' 1000 ' TYPE
$4 \mathrm{c} / \mathrm{o}$ each way locking 60 p P. P. 10 p
6 make each way locking 60 p P. ${ }^{2} 10 \mathrm{p}$
6 make each way locking 60 P P.P.
Bank of $44 \mathrm{c} / \mathrm{o}$ each way. 1 biased £1.25 P.P. 15p
MAGNETIC COUNTERS
MAGNETIC COUNTERS
3 DIGIT RESET COUNTE
3 DIGIT RESET COUNTERS ($12 v$ DC.) E1.50 (Ex Equip, P.P 20p
3 DIGIT RESET COUNTERS (240 v 50 mz) £ 1.75 (new) P.P 25p

6 DIGIT RESET COUNTERS (24v D C.) \&4 (new) P.P 25p
4 DIGIT NON-RESET (24y DC.) 11 (New) P.P 20p 5 DIGIT NON-RESET ($24 \vee$ D.C.) £1 (Ex Equip.) P.P 20p 6 DIGIT NON-RESET ($48 v$ D C) E1.50 (New) PP 20p

MULTICORE CABLES

4 CORE RIBBON (RAINBOW) CABLE $4 \times 10 / 2 \mathrm{~mm}$
 PP 1p per melre
8 CORE RIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
8x
$10 \mathrm{~m}-£ 1.50: 50 \mathrm{~m}-£ 6.50: 100 \mathrm{~m}-£ 12.00$ P.P. 1ρ per metre
5 CORE H.D. CABLE $5 \times 70 / 76$ P V C
Black Outer P.V.C. O.D. $1 / 2$ in
$10 \mathrm{~m}-£ 2.50: 50 \mathrm{~m}-£ 12$: $100 \mathrm{~m}-£ \mathbf{2 2 . 5 0}$ P.P. $2 p$ per 10 m
metre
10 CORE CABLE $10 \times 7 / 76$ (10 colours) P.V.C O.D
$7 \mathrm{~m} . \mathrm{m}$
$10 \mathrm{~m}-£ 2: 50 \mathrm{~m}-\mathbf{£ 8 . 5 0}: 100 \mathrm{~m}-£ 16$. P.P 2p per metre 16 PAIR RIBBON CABLE 16×2 core P.VC double sheathed forming $55 \mathrm{~m} . \mathrm{m}$ wide strip $10 \mathrm{~m}-\mathbf{£ 3}$;
50m-£25: 100 m -£40. P P 2p per metre
EQUIPMENT COOLING FANS (100 C.FM)
PAPST-LUFTER $120 \times 120 \times 38 \mathrm{~m} \cdot \mathrm{~m} \quad 19 \mathrm{v}$) 50 hz £ 5.75
PAPST-LUFTER $120 \times 120 \times 38 \mathrm{~m} . \mathrm{m} .115 \mathrm{v} 50 \mathrm{hz} \mathbb{£} 5.75$
(New) P P 50D
PAPST $112 \times 112 \times 55 \mathrm{~m} . \mathrm{m} .220 \mathrm{~V} 50 \mathrm{hz} \mathbf{E} \mathbf{3 . 5 0}$ (Ex. Equip)
PP 50p
MUFFIN TYPE $120 \times 120 \times 38 \mathrm{~m} . \mathrm{m} \mathrm{E} \mathbf{3}$ (Ex Equip) P.P
$\frac{50 p}{\text { SMA }}$
WOOL TRANSFORMERS $240 / 1 / 5 v$ 40p each
WOODS EXTRACTOR $130 \times 130 \times 80 \mathrm{~m} . \mathrm{m}$ 240v 50 hz
PAPST (SQUIRREL CAGE) 9 Blade Less Mounting £ 3.50 (new) $240 \vee 50 \mathrm{hz}$ P.P 50p

VARIOUS

AIR PRESSURE SWITCHES $Q-10 \mathrm{lb}$ valable switch contacts 15 amp change-over (a quality unit in furned plated brass: £1.50 P P $25 p$
E.H.T. MODULES. Input $190-260 \mathrm{v} 50 \mathrm{HZ}$ Output 13.7 KV PK@ $0.50 \mathrm{~m} / \mathrm{a}$. $150 \times 95 \times 70 \mathrm{~mm}$) £12.P.P. £ 1
MYRIA MEGOHMMETER TYPE 35A. 20-200K MEG/OHMS 500V test. Excellent condition. E45, carr £2.50. SYNCHRONOUS 20 r.ph 6 r.ph 2 rp.h all 240 V E 1.50 ea P P 25p
P.C. EDGE CONNECTORS

32 way (1 pitch) tinished ends 45p P. P 10p
56 way (1 prtch) cuttable 65p P.P 10p
64 way (. 1 putch) cuttable 75p PP 10p
Mounting Pillars for $56 / 64$ way $15 p$ parr
Gold Plated Contacts 15p extra
32 way (15 pitch) Double-Sided Gold Plate Contacts 50p P 10p
H.D. ALARM BELLS (Ext /int use)

4 in. Dome (Ext Gong) $41 / 2 / 6 v$ D.C £2.50 P.P $£ 1.00$ 6 in. Dome (Ext Gong) 6/8v D.C. ©2.75 P P £1.25 6 in Dome (Internai Gong) $12 v$ D.C. $£ 3.75$ P.P. $£ 1.25$
10 in . Dome (Int Gong) $24 / 48 v$ D.C $£ 5.00$ P.P $£ 1.50$ D.C. POWER SUPPLIES Input 240 v A C

YYPE $120 v$ D.C. at 1 amp. Fully regulated $155 \times 155 \times 75$ mm totally enclosed $£ 5$ P.P. 75p

PLEASEADO 8\% V.A.T.

J. B. PATTRICK
191/193 LONDON ROAD ROMFORD, ESSEX RM7 9DJ ROMFORD 44473

Appointments

Advertisements accepted up to 12 noon Tuesday, August 30, for the October issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min .3 cm). LINE advertisements (run on): $£ 1.10$ per line, minimum three lines.
BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from £2234 to £2627 according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.
Post Offifice Telecommunications

THE OPEN UNIVERSITY
 Audio-Visual Maintenance Technician
 (£2889-£3367 p.a.)

Audio-Visual Department

 The suitable applicant, male or female, should have served a recognised apprenticeship followed by $8-10$ years' experience in the repair and maintenance of audio-visual equipment, including at least 4 years with CCTV and VTR equipment.Qualifications HNC electronics or equivalent.
Application forms and further particulars are available, by postcard request please, from The Personnel Manager (AVT1), The Open University, PO Box 75 , Walton Hall, Milton Keynes MK7 6AL, or by telephone from Milton Keynes 63868. $\quad 7431$

LEEDS AREA HEALTH AUTHORITY (TEACHING) EASTERN DISTRICT

ST. JAMES'S UNIVERSITY HOSPITAL

MEDICAL PHYSICS TECHNICIAN
 (GRADE IV)

We require a technician to service electronic X-ray equipment and closed-circuit TV systems at St. James's and Chapel Allerton Hospitals. The ability to understand complex circuits and locate faults quickly is a prime requirement.

Qualifications required: O.N.C. in electrical/electronic engineering or equivalent. Further training will be given.
Hours: 38 per week.
Salary: $£ 2658$ rising annually to $£ 3579$ per annum plus 5% of annual salary subject to a minimum of $£ 130$ and a maximum of $£ 208$ per annum.
Application form and job description available from Central Personnel Office, St. James's University Hospital, Beckett Street, Leeds LS9 7TF. Tel: (0532) 33144 ext. 730.
Closing date for receipt of completed forms: Thursday. 25th August, 1977.

UNIVERSITY OF ABERDEEN TELEVISION SERVICE

television

 ENGINEERApplications are invited for the post of Television Engineer in the University's
Television Service. which operates in colour to broadcast standards

Applicants should be protessional television engineers with experience of operations and maintenance of colour television origination and recording equipment Work will be a unt and at Medical School Normal colour vision is a requirement for this post

Salary on scale £2904-£4811 with appropriate placing

Further particulars from The Secretary The University Aberdeen with whom applications (2 copes) should be lodged by
26 August. 1977

Cable and Wireless Ltd., a leader in global telecommunications, has interesting vacancies for engineers in the following disciplines for its Head Office Engineering Department in Central London.
International and National Telex- MF, HF, VHF, Microwave and Satellite Radio; Multiplex; Data and Telegraph Transmission and Switching; Telemetry; Supervisory and signalling systems.
The above positions are essentially of a Head Office planning nature although occasional overseas visits may be necessary. The responsibilities embrace the complete range of systems project work from facility appraisal through system design; preparation of specifications and invitations to tender; tender evaluation and selection; site investigation and selection; planning of installation and back-up resources; costing and monitoring; overseeing field work; to commissioning and acceptance.
Applicants should have specialist knowledge and experience of one or more of the above disciplines together with a wide appreciation of
telecommunication operations in general. A BSc, HND/HNC or C \& G Final in Electronics, Telecommunications, Electrical Engineering or related subjects is required, but exceptional candidates with no formal qualifications but extensive relevant experience will be favourably considered.
The positions offered are mainly of a permanent nature although there are some contract assignments.
Competitive salaries are offered commensurate with experience and qualifications. Benefits are those normally associated with a large organisation and include, pension scheme, staff restaurant, an active sports and social club, generous overseas allowance and relocation assistance where appropriate.

Please write for an application form:-
The Recruitment Manager,
Cable \& Wireless Limited (A587A1702)

Theobalds Road,

London WC1X 8RX

ELECTRONIC TEST ENGINEER

We are a leading company in the design and manufacture of scientific instruments using electron optical devices.
An engineer is required to join a team in our Test Department in which the responsibilities include fault finding, testing and calibration of electronic equipment. -The work is varied and interesting as each system is customised to some extent.
A mature person with several years' industrial electronic experience and qualifications to ET5 or HNC desirable.
We offer a good salary and ample opportunity for overtime and bonus earnings. Other conditions include $371 / 2$-hour, 5 -day week, contributory pension scheme, free life assurance, 20 days' holiday and free canteen facilities.
For further information please write or telephone:

Telephone: Hemel Hempstead 832525

Car Radio Technician

We are Robert Bosch Limited. the UK subsidiary of a worldwide organisation. We market a wide range of high quality Blaupunkt in-car entertainment, automotive products, power tools. domestic appliances, kitchen furniture and specialist engineering products.

Following the recent growth in our market shares with Blaupunkt in-car entertainment equipment, we are looking for an experienced Car Radio Technician. You should be qualified to Radio \& Television City \& Guilds (Final) stage. You will be responsible for carrying out repairs and checking new equipment.

Competitive salary - Attractive pension scheme Staff discount - Flexible hours - Staff restaurant - Plus usual benefits associated with a major worldwide company.

Please telephone Personnel Department, Robert Bosch Limited. Rhodes Way, Watford WD2 4LB, telephone number Watford 44233, extension 306, quoting reference WW 6816.

DESIGN/DEVELOPMENT EICINEERS
 Ferranti wins Army contract.

1200 MORE JOBS FB $M_{O D}$ FERRANTI EXPANS

Come and make headlines with us.

Headlines like these are only possible when you're acknowledged internationally as one of the world's leaders in avionics. To keep us at the forefront we need highly motivated design/development engineers keen to make their mark. And at Ferranti there's plenty of opportunity to do just that. On projects like the Tornado, Sea Harrier, Jaguar and Lynx.

And headlines like these also mean expansion. Which explains why we're looking for more graduate mechanical and electronic engineers to join our airborne radar and inertial navigation teams. They must have the design/development experience to spearhead the progress of equipment from drawing board through to production.

We are particularly interested in talking to engineers with backgrounds in the design of:-

Digital/analogue circuitry.

Microwave and laser techniques.

Small digital computers.

Advanced instruments.
Optics.
Airborne structures and light mechanisms.
So if you're keen to make your mark on avionics, you'll find you're very much on our wavelength.

Think about it. Then ask the family how they'd like living in Edinburgh, freely acknowledged as one of Europe's finest cities.

Salaries are negotiable and, of course, we operate a contributory pension and life assurance scheme and pay realistic relocation expenses.

For an application form, write to John McPhee at the address below:

Ferranti Limited

Ferry Road

EDINBURGH EH5 2XS
Tel: 031-332 2411.
These posts are open to both male and female candidates.

Appointments

Marconi Instruments EECTRONC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton.

Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates. Further information may be obtained in confidence from John Prodger

Marconi Instruments Limited,

Longacres, St. Albans, Herts.tel: St. Albans, 59292


```
CITY OF LONDON POLYTECHNIC Department of Biological Sciences
```


ELECTRONICS

 TECHNICIAN GRADE 5The City of London Polytechnic require as soon as possible an Electronics Technician physiotogical and neurophysiological apparatus for teaching and research apparatus for teaching and research
together with day-to-day servicing of neurophysiotogical teaching laboratory, and supervision of the electronics workshop Candidates should possess an H N.C. in an appropriate field Starting salary, which will depend on qualifications and experience. be within the scale of £. $3.216-£ 3.672$ including London Weighting, plus Pay supplement 5\% - $£ 130$ minimum E208 maximum Further details and an application form can be obtained from Popartmental Secretary City of Departmen: of Biological Sciences. Calcutta House Precinct. Old Castle Street, London E1 7NT

Allen \& Heath, Professional Audio Equipment Manufacturer is looking for a young
EXPERIENCED WIRING \& ASSEMBLY PERSON
The right applicant will have a keen and enthusiastic approach to electronic assembly and must have the ability to guide and co-ordinate a young team Telephone:
Mrs. Michael 01-607 8271

Grow with one of the world leaders in gas turbines

From design to manufacture, GEC are completely involved in furthering the role of gas turbines in the world
Our latest innovations have meant that our workload is ever increasing.
Now. we need more first-class engineers who want the involvement and satisfaction of working with this great British Company.

CONTROLS ENGINEERS

Mechanically orientated. You'll have responsibility for the electro/hydro/pneumatic/mechanical control systems in our turbines. From the content of drawings to the actual components, and to making sure every system functions perfectly
Similar experience would be useful. A sound engineering background, with minimum H.N.C., is essential
Electronically orientated. Working with a team, you'll be involved in the design of electrical/electronic control units and complete systems. You'll also supervise the development of your designs.
Essential qualifications are a general understanding of electronic control engineering, plus drive, initiative and at least a relevant H.N.C.

As a large international company within the GEC Group we offer attractive working conditions, security, excellent career prospects and job satisfaction Relocation expenses are paid where applicable
Come and talk to us now. Ring or write with brief details of age, experience and qualifications to
H. P. Cross, Esq

GEC GAS TURBINES LTD.
Cambridge Road
Whetstone
Leicester, LE8 3LH
Tel. Leicester 863434
(These appointments are open to
male and female applicants)

TEST ENGINEER

Required for fault finding on our range of oscilloscopes This is an interesting and rewarding post for an engineer with a sound knowledge of semi-conductor circuits.

Minimum qualifications required for this senior post are full Technological Certificate in industrial electronics or HNC

For your chance to join a marke
eader write with full details to
The Chief Test Engineer SCOPEX INSTRUMENTS LTD

Pixmore Industrial Estate
Pixmore Avenue
Letchworth
Herts

ELECTRONIC AND MECHANICAL DESIGN ENGINEERS A CAREERIN CANADA $\$ 15,000+$ Neg.

ELECTRONIC and MECHANICAL design engineers are required to work at a new manufacturing plant

 in Winnipeg, Canada.Electronic enginears should be graduates, with industrial experience in at least two of the following fields

* Magnetic Recording
* High Frequency Amplifiers
- DC Power Supplies
* Phase Locked Loops
* Servo Systems

Mechanical engineers should also be qualified, with practical experience of at least two of the following:

* Precision Electromechanisms
\star Materials Technology
\star Finite Element Analysis
These posts are with a worldwide computer group with over 61 engineering and manufacturing plants in 10 countries. RELOCATION assistance available, plus excellent health and pension benefits.

EDUCATION

SCHOOL
EXAMS PASSED
UNIVERSITY or COLLEGE
EXAMS PASSED
CURRENT EMPLOYER . SALARY

DATES
title
DUTIES (in detail)
PREVIOUS EMPLOYER . SALARY

DATES . TITLE
DUTIES (in detail)

PREVIOUS EMPLOYER
SALARY
DATES
title
DUTIES (in detail)

COLOLOLOLOEOLOLOLOLOLOLO One foot
 Working in Cambridge with Pye Telecommunications Lid., you will be working

 where $£ 5$ million has just been invested in new laboratories and headquarters, where there is confidence of continued growth into the next decade and where you can help to pioneer the advances of the telecommunications systems for the next century. You will be working on exciting development projects with a world market leader in two-way radio communications systems and you'll receive that all important technical back-up that the resources of an international organisation backed by Philips can provide. To strengthen our existing teams we now seek the following enthusiastic, qualified, men and women who wish to add and contribute new dimensions to their careers and environment
Development Engineers

 \& SeniorDevelopment Engineers
Telecommunications development experience and familiarity with VHF/UHF design principles or low/medium capacity multiplex radio links essential. Some of our areas of activity also require a knowledge of digital design and ancillary equipment.
You will work in a small, close team, developing fixed, mobile, portable and link products or sub-units. You will be expected to work on your own initiative and make quick decisions.
You should have a B.Sc. in Electrical Engineering or Electronics or an H.N.D. in similar subjects. Those with H.N.C and C \& G and a considerable experience
Design Draughtsmen \&
Senior Design Draughtsmen
Wide experience of electronically orientated mechanical product design and medium and high quantity production methods is essential, as is experience
of design in sheet metal, plastics, die-casting and printed wiring boards. Mechanical design experience with an electro-mechanical company an advantage
As a mechanical designer of the highest calibre, you will be joining our expanding Engineering Department to work on your own initiative in a small team atmosphere
You should ideally have attained H.N.C. level, but O.N.C. or C \& G level applicants will also be considered.
In either capacity, you will be working among young, dynamic men and women and have excellent company benefits, including a generous relocation allowance and great career prospects. Working in Cambridge, you will have easy access to London and yet be able to enjoy the many sporting, recreation and relaxation facilities of East Anglia and there is also a wide choice of housing.
Please apply by phone or ietter to Alan Depauw. Personnel Officer, Pye Telecommunications Ltd, Newmarket Road, Cambridge. Tel: Cambridge 61222 Ext. 143

(
 Pye Telecommunications Ltd
 New marker Road Cambridge England CB5 8PD
 Tel Cambridge (0223) 61222 Telex 81166 pert ificcon cambi

cororo

ELECTRONICS

SERVICE ENGINEER
Watted for interesting and varied work
with organs. hitis and amplification With organs, hi-ft and amplification
Good salary for successful candidate
Apply in writing giving full detats of experience to Mr. W. Lea, Whit
70 High Stroet, Winchester.

RADIO - TELEPHONE ENGINEERS Experienced in V.H.F. mobile equipment. Top salaries for top ability. We are a young, progressive company currently the busiest. and fastest expanding radio-tele phone firm in London. Ring London Communications on $01-328 \quad 5344$ $\underset{\text { ask for Mike Rawlings or }}{\text { Bil) }}$ (7356 clarke.

PAPUA NEW GUINEA UNIVERSITY OF TECHNOLOGY
 TECHNICAL INSTRUCTOR

DEPARTMENT OF

 ELECTRICAL AND COMMUNICATION ENGINEERINGApplications are invited from experienced and qualified people to teach subjects in the communication engineering course The
successful applicant would have experience in microwave systems with emphasis on baseband equipment (telephony and data) transmission. reception. and repeater stations and/or experience in broadcast systems with emphasis on sound studio equipment and low and medium power broadcast transmitters
Salary range K8883-K9853 (KINA $1=$ 0.72 p approx.)

Allowances additional to salary are payable as follows: married K2300 per annum: circumstances a child allowance of K156 per annum is also payable. An educational
allowance and additional fares may be provided for children being educated away from their parents place of residence Other benefits include furnished housing (hard goods only) supplied at nominal rental, second vear and equivalent fares to Canberra. Australia each alternate vear and six weeks annual leave. leave of six months will accrue after five semesters of service
Applications in duplicate should include particulars of age, nationality, marital status,
family if any, qualifications. experıence present post and the names and addresses of three referees from whom confiential enquiries can be made Further information will be forwarded to all applicants. Applications are required by $\mathbf{3 0}$ Septom-
ber, 1977 and should be sent to the ber, 1977 and should be sent to the
Registrar. The Papua New Guinea University of Technology. P O Box 793, Lae. Papua New Guinea. A copy of the application New Guinea. A copy of the Association of Sommonwealth Universities (Appis.). 36 Gordon Square, London WC 1H OPF, from whom general information can be obtained.
THE POLYTECHNIC
WOLVERHAMPTON
Department of Economics and social
Seudies
ELECTRONICS
TECHNICIAN
FOR THE
PSYCHOLOGY GROUP
To assisi in the design construction and
maintenance of electronics equipment for
the Psychology Laboratory
Applicants should have some experience of
working with electronic circuitry and
preferably have or be studying for an H N C
or another electronics qualification
Salary Scale T2 E2841 - E3165 plus
Supplement Stage II per annum Additions
to scale for recognised qualifications
Application forms and detais form the
Establishment Officer. The Polytechnic.
Wolverhampton

UNIVERSITY OF SOUTHAMPTON WOLFSON UNIT, INSTITUTE OF SOUND AND VIBRATION RESEARCH
Applications are invited for technical appointment on staff of this Consulting Unit which forms part of the Institute of Sound and Vibration Research to assist with the use
of data measuring equipment and instruof data measuring equipment and instru-
mentation The Unit mivestigates noise and vibration problems for a wide range of clients in $\cup K$ and abroad -- some work away from Southampton may be expected
Candidates should have a recognised qualification in electronics or electrical engıneering (at least O NC or equivalent) and considerable relevant industrial or
laboratory experience in applied electronics laboratory experience in applied electronics
The appoinimeni will be annually renewable at a salary within range £2889-£3367 per annum (under negotiation). Applications. stating age, qualifications and experience and giving the names of two referees should be sent to D A S Copland. The University,
Southampton So9 5 NH , quoting reference $262 / T / W W$

Television Broadcasting
This is a good opportunity for technically qualified people (male or female) to join one of the major ITV companies.
Firstly, we want an experienced

TELEVISION ENGINEER

preferably with experience of broadcast videotape recording equipment and techniques, although applications from engineers with experience in other areas of television broadcasting will also be welcome.
The appointment will be made within the range $£ 4012$ - $£ 5507$ p.a. (including allowances), with automatic progression and subsequent increments. (Vacancy 41 E)
Secondly, a TRAINEE ENGINEER will be appointed in the Vision Control Section. Applicants should have a good theoretical knowledge of television engineering techniques, together with practical experience in electronics. A keen interest in television is important, as is the ability and motivation to learn a specialised job. The preferred upper age limit is 30
$£ 2859$ p.a. (including allowances) during the nine months training period. (Vacancy 40E).
The positions will be based at the Elstree Studio Centre, N.W. of London, which is well equipped and has good facilities.
Applications to: The Recruitment Officer

ATV NETWORK LIMITED

Eldon Avenue
Boreham Wood, Herts
Please quote appropriate vacancy number

LEARNING RESOURCES

RECORDING AND TRANSCRIPTION ENGINEER
£3,678-£4,407 p.a. plus up to $£ 17.38$ a month supplement

Experienced technician required to operate, maintain and exploit television and radio off-air recording, colour telecine and video dubbing and colour editing for teaching / learning processes. Details and application form from Personnel Officer, Brighton Polytechnic, Moulescoomb Brighton, BN2 -4GJ. Tel. Brighton 693655. Closing date: 1st September 1977. (7436)

R.F. DESIGN ENGINEER

Radıo frequency design engineer required for varied and interesting work in a small but well equipped company specialising in the design and manufacture of RF interference measuring instruments and systems. Salary will be commensurate with experience and ability but the successful candidate should be able to negotiate a salary in excess of to negot
E6.000.
For further details please contac
CHASE ELECTRICS LIMITED
Church Lane
Teddington, Middx.
Tel. 01-977 0251/2

VERY EXPERIENCED Electronic Engineer for electronic keyboard Engineer for electronic keyboard negotiable. Phone Maurice Placquet
$01-749 \quad 3232$.

The Administrative Officer
HM Government Communications Centre Hanslope Park
Hanslope
Milton Keynes MK19 7BH

BBC requires radio telegraphy operator

for its Monitoring Service near

 ReadingDuties involve operation of radio receiving apparatus, including Radio Teletype terminal equipment. monitoring of plain language Morse transmissions. research listening duties (including schedule checking and band scanning), and correcting, logging and routing of incoming material

Essential qualifications are: ability to type international Morse code in plain language at $25 \mathrm{w} . \mathrm{p} . \mathrm{m}$., aural or visual recognition of signalling codes used in communication systems, operational experience of modern receiving equipment and understanding of radio propagation and frequency usage. Perfect hearing. Candidates will be expected to attend for Morse typing and signal recognition test
Salary £2334 p.a. x. £111 to £2889 p.a. plus $121 / 2 \%$ Shift Allowance aod appropriate Pay Supplement.

Telephone or write immediately, enclosing addressed envelope, for application form quoting reference applica WW to Appointments Department, BBC, London W1A Department, BBC, London
1AA. Tel. 01-5804468, ext. 4619 .
(7470)

[^5]
YOUNG TELEVISION ENGINEER

REQUIRED (Woolwich SE 18)
We are looking for a young person with some practical Radio and Television experience, who will be capable after training of dealing with repairs to complete receivers, P.C.B. panels, car radios and Hi-Fi equipment
Some technical qualifications are desirable but not essential Excellent starting salary is offered, and benefits include:

* Office Hours Monday to Friday
* Three weeks' Holiday, rising to four weeks
\star Pension Scheme, Life Assurance' \star Yearly bonus
If you feel you have the above experience, and are seeking a really progressive position please write or telephone

Barry E. Russell

National Service Manager Mitsubishi Electric Service (UK) Ltd.

17 Westfield Street
Woolwich SE18
Tel. 01-317904976960582

INTERNATIONAL FIELD SERVICE ENGINEER

Required for our International Mass Spectrometer Service Division based in the U.K. A sound knowledge of modern electronics is essential and a working knowledge of high vacuum systems would be an advantage, although training will be given. Applicants should possess City and Guilds or equivalent qualifications. Due to the extensive travel involved, the position is probably more suitable for a single person aged between 20 and 30 years.
The Company is internationally renowned for the quality of its products and offers excellent working conditions, including company car, pension scheme, superannuation and profit sharing bonus scheme

Write or telephone for an application form

LKB

Service Manager
 G Division
 LKB Instruments Limited
 232 Addington Road
 Selsdon, South Croydon
 Surrey CR2 8YD
 01-6578822

Appointments

URGENT

Professional Audio Equip ment Manufacturers (Lon don based) requires Top

AUDIO TECHNICIAN

Must be a thoroughly capable Test Engineer looking for further development as there will be considerable involvement in new products.
Please telephone in the first instance Mrs. Michael 01-6078271.

CHELSEA COLLEGE University of London
TECHNICIAN GRADE 4
required to run Physics 2nd and 3rd year undergraduate Teaching Laboratory and to assist in Electronics Teaching Laboratory
Outies include the development construc-
tion and maintenance of physics teaching apparatus A knowledge of Physics
preterably to at least HNC standard and aptitude and experience in practical
electronics is required Satary £ 3175 to
£3575 per annum (inclusive)
Further detals and application forms fromMr M. E. Cane $(4 \mathrm{PT})$. Chelsea Coliege. Department of Physics and Electronics Pulton Place, London SW6 5PR

ELECTRONIC TECHNICIAN (Grade 5) required for Dept of Physiology To be responsible for inspection in laboratory classes, e.g. oscillo. scopes, pen recorders, stimulators scopes, pen recorders, stimulators
etc, and to rectify faults or arrange for them to be rectified. Experience of electronic apparatus and ability to read and understand instruction manuals essential. Sal. ary in range $\{3,377-£ 3.856$ including London Weighting. Application form from Personnel Officer (Technical Staff FF 12/WW) University College London, Gower Street, London WCIE 6BT.
(7443
V.H.F. SERVICE TECHNICIAN REMobile Radio mobile and base station equipment. Applicants will work in our modern and well equipped workshops in Croydon with occasional work in the field Applicants should be responsible and fully experienced. Friendly and fast expanding company. salary commensurate with ability and experience with ample opportunity phone Jonothan Clark London TeleTelephones, $01-680 \quad 1010$. $\quad 17293$

UNIVERSITY OF BRADFORD Educational Development Service Television Unit. TECHNICIAN. Ap. plications are invited for the post of Technician Grade 6 in the Television Unit of the University's Educational Development Service. The duties will include the operation and maintenance of a wide video-recording and distribution equipment and the supervision of equipment and the supervision of cants should have a minimum of cants should have a minimum of an HNC or equivalent qualification in an appropriate subject. Addi. tional experience and qualifications at degree level advantageous. Salary on scale $£ 3,314-£ 3,950$ p.a Application forms and further par ticulars are available from the Personnel Office, University of Bradford. Richmond Road Brad. ford BD7 1DP. telephone Bradford 33466 ext 252 Please quote refer-
ence

RANK CINTEL Research and Development Engineers
 a

Could you design an amplifier with a log characteristic over a bandwidth of DC-20 M Hz?
We are Britain's Number One marketer and manufacturer of Telecine equipment with hard-won respect and profitability in the World broadcast equipment market places.
Our product development has won us a reputation for producing probably the finest Telecine systems available.
With a Queen's Award for export tucked under our calculators we are now pleased to be in the market for some exceptional Research and Development talent.
You will have at least an HNC, preferably a good degree and will be of a type capable of making a positive contribution within a team of other high-calibre engineers
You will have proven experience in either analogue or digital systems, ideally both. You'll possibly have a knowledge of microprocessors and their applications.
Vitally important is a broad-based understanding of discreet and complex circuit design
In return we can offer you exceptional scope for your lateral thinking, originality and innovation. Many research and development specialists find that their life is spent in just one area. Here is an opportunity to work across the whole spectrum of a fast changing field. The ability to accept the challenge of working on the next generation of equipment could be the key to an interesting future
The salary is negotiable according to your talents and experience. There are better than usual benefits in a small enthusiastic unit and relocation expenses will be met where necessary
Write in the first instance to Mr. I. S. Waterhouse,
Divisional Personnel Manager, Rank Cintel, Watton Road, Ware, Herts. Tel. No. Ware 3939
RANK CINTEL

FOR MEDICAL ELECTRONICS APPOINTMENT

MUST BE EXPERIENCED IN LOGIC/ANALOGUE CIRCUITRY

TELEPHONE CHARLES COOPER O1-2729212

[回 CAPIIAL
 FREE JOBS LIST
 FIELD SERVICE ENGINEERS BASIC SALARIES TO $£ 5,000+$ CAR
 34 Percy Strect. London. w1 01-637 5551

ELECTRONICS TECHNICIAN for computer communications, computer centre for construction and mainterance of wide range of communications equipment: HNC/ONC and several years experience in logic design, preferably small computers. Training given on comSalary scale $£ 2889-£ 3367$ patques. $660 / C / 185$ Apply Assistant Secre tary. Personnel oftice. University of Birmingham. P.O. kox 363 Birmingham B15 2TT. (7484

DESIGN TEST
FIELD SERVICE
Immediate vacancies exist in most areas for engineers qualified to $\mathrm{BSc} / \mathrm{HNC} / \mathrm{C} \& \mathrm{G}$ with analogue digtal or R F experience
Phone or write
APEX PERSONNEL
800 FULHAM ROAD LONDON SW. 6
$01-7314353$

Electronic Designers

> If your forte is circuit design, this is your opportunity to join our expanding design and development function and work on a variety of electronic instrumentation for the process industries.
> You will enjoy first-class laboratory facilites, the support of a stimulating development group and the advantages of working in small multidıscipline project teams on a new generation of products.
> The emphasis is on transducer design, high accuracy analogue and pulse totalising circuitry, digital display instrumentation and the use of microprocessors. Ideally, applicants should have several years' experience in one or more of these fields and possess HND/Degree qualifications. Located at Luton, conveniently close to London and the Home Counties, there is a wide range of reasonably priced houses available. Company benefits include assistance with relocation where appropriate, four weeks annual holiday and excellent pension/life assurance/sickness pay schemes.
> For an application form please telephone or write to Mike Hopkins, Personnel Department, Kent Instruments Limited, Biscot Road, Luton, LU3 IAL. Tel: Luton (0582) 24558.

KENT INSTRUMENTS LIMITED
A member of the George Kent Group of Companies.

(7430

MAINTENANCE TECHNICIANS

Tax-free opportunities for Maintenance Techricians in Television Transmission equipment, Television Studio equipment and Television Camera equipment A progressive company operating in Saudi Arabia and North Yemen is seeking experienced technicians in the above branches and offers suitable applicants:
High tax-free salary - negotiable;
One-year contract - renewable for up to 3 years;
One month's paid leave at the end of first year;
Accommodation allowance equal to three months' salary; Local transportation allowance.
Interested applicants should write, giving full details of experience and salary required, to:

S.A.A.T. ENGINEERING INTERNATIONAL

P.O. Box 116625

Beirut, Lebanon

or to
88-90 Avenue Niel
S-75016 Paris
7480

REQUIRED IMMEDIATELY

MEDICAL ELECTRONICS TECHNICIAN
 (Medical Physics Technician III) £3.776-£4.708

Based at the Dcpartment of Medical Electronics at St Bartholomew s Hospital Applications are invited for the above post to service patient connected electronic equipment in the Hackney Sector hospitals
The equipment includes that used in cardiology and obstetrics and a broad knowledge of analog. digitat and RF techniques would be an advantage You will atso be required to construct special purpose equipment in any of the ahove fields
You should hold a current driving licence and will be responsible to the Head of the Sub department of Medical Electronics. Hackney Secior
For further information contaci Dr B Evans Depi of Medical Electronics Ext 3390
For application form ring 01-600 9000, ext 3188, or write to the Personnel Department. St Bartholomew's Hospital EC1A 7BE Please quote ref PTB/91/WW
City and Hackney Health District - part of The City and East London A H A (T)

Are You Interested In

 RadioCommunications
and do you have practical experience in this field
if you have City and Guilds Intermediate Certificate in Electronics or
Telecommunications; ONC; or an equivalent qualification
then the Metropolitan Police Office has a job for you as a Radio Technician.

we offer

Good pay;
Excellent prospects
Secure employment 4 weeks holiday Day release

Phone our Engineer Mr. H. G. Fielding on 01-653 0881, during office hours, to arrange an informal interview, or write to Metropolitan Police, Room 1634, New Scotland Yard, Broadway, London SW1H 0BG.

ARTICLES FOR SALE

SONY VTR CV2200 converted to operate on 50 Hz £100 ono. Telephone Phil Thomas 0481 24781. 7456 T.V. TUBE REBUILDING - FAIR-
CREST ENGINEERING LTD. Offer CREST ENGINEERING LTD. offer
a comprehensive range of equip-
ment ior processing all types of ment $10 r$ processing all types of
picture tubes. Standard or custom built units for established or new businesses. Full training courses. Individually tailored \& backed by 27 years' experience in tube making. FAlRCREST ENGINEERING LTD., Willis Road, Croydon CR0 2XX.' Tel: 01-689 8741 .

VINTAGE WIRELESS PARTS avail able. S.a.e. for list from D. T Farnham, Surrey. (7458

LAB CLEARANCE: Signal Genera tors; Bridges; Waveform, transistor analysers; calibrators; standards; millivoltmeters; dynamometers. KW meters; oscilloscopes; recorders: Thermal. sweep. low distor:
tion true RMS. audio, RF. tion true RMS. audio, RF. deviation; Marconi. Wayne-kerr. R\&S. B \& K. G.R.. BPL. Plug-ins. refrigeration equipment. etc. Tel:
040-376236. 040-376236.

ROHDE and Schwarz Diagraph type ZDU 30 to 420 MHZ , clean condition $£ 200$ or offer. - Twigworth (0452) 730628.

17448

BPO COMPONENTS ex-stock, incl large stock of miniature lever keys and multiway fexible cable. TWC NW9 7EA. Tel. $01-203$ 2814. (7360
SITUATIONS VACANT
Pye Telecommunications of Haverhill has immediate
vacancies for Production Test Engineers, of either sex. The
wark entails checking to an exacting specification VHF/UHF
applicants must equipment before customer delivery:
and testing electronic equipment, preferably communica-
tions equipment. Formal qualifications, while desirable, are
not as important as practical proficiency. Armed service
experience of such work would be perfectly acceptable.
Pye Telecommunications is a major exporter of radio-tele.
phone equipment. and there are good opportunities for
promotion within the Company.
Relocation assistance is available and there is also the
possibility of obtaining local authority housing.
Write or telephone without delay for an application
form to: Miss C. M. Dawe
mata

ARTICLES FOR SALE

BY ORDER OF NATIONAL AIR TRAFFIC SERVICES

SALE BY TENDER

7 Type OS 12 STANDARD TELEPHONE ANO CABLES LTD TRANSMITTERS VII
7 Type OS 12.5 Type DS 10 and 3 Type DS 132 2 Co-axial Sub Exchanges 6 Marconi HR1 1 Diversity Telegraph Receiving Equipment Mullard Automatic R Q Test Equipment Marconi Lying at WINSTONE TRANSMIT

CIRENCESTER, GLOS

TENDERS CLOSE 16/9/7
Tender Forms, viewing and furtherinformation from RUSSELL. BALDWIN \& BRIGHT. Dep
TWW. Auctoneers, 20 King Street. Hereford Tel 043255441

Over half a million potentiometers Volume controls wirewounds, pre-sets convergence, etc. £2,500 the lot 021-327 2339

QUARTZ CRYSTALS

REGULATOR

 MODULESAdjustable ouiput 2 to 33 votrs 2 amp current
1 ming - short circuit protection Supplied with
bwer current bower current limit or prosention Supplied with
request $£ 370$ outpu1 voltage on request £3 70 each PBP 12p
Mounted on heatsnk $\overline{£ 440}$ P\&P 25p P\&FP Mounted on heatsink $\overline{\sum 440}$
orders over $£ 10$ SAE detalls

WILSON ELECTRONICS 11. Royal Parrade, Manger Lave, Esting, London

A

Semiconductor suppliers for industrial and consumer service requirements, can offer a very wide range of semiconductors, including many obsolete types. Now available Texas Instruments silicon grown junction transistors to the following specifications.
2N332 / 6
2N2349
2S701/3
2SOO1/5
2S741/5
J623/31

Anglia Components, Burdett Road, Wisbech, Cambs. PE13 2PS. Telephone 094563289.

HIGH PERFORMANCE POWER SUPPLY KIT ZERO $>30 v$

(30p) 12 v 100 mA 60p (20p)
\dagger Electrolvtics
$4700 . .40 \mathrm{~V} 60 \mathrm{p}(15 \mathrm{p}) .2200$. 63 v 40 p $15 \mathrm{p}) 15000$ - 40 v £1 (25p). 10.000 u $100 \vee \mathrm{E} 2.20$ (50p) 30000 - $30 \vee 80 \mathrm{p}$ (30p)
 RMS 80p (25p)
Papst fans ex Various
CFM Humidity switches adjustable $\begin{array}{r}\mathbf{E 3 . 5 0}(65 p) \\ \mathbf{8 0 p}(15 \mathrm{p})\end{array}$ Relay mans coil 11 -pin $3 p \mathrm{c} / \mathrm{o}$ ex
eqpt
$\mathbf{7 5 p}(15 \mathrm{p})$ $\begin{array}{lr}\text { eqpt } & \mathbf{7 5 p}(15 p) \\ \text { Relay } 12 v \text { coil } 8 \text {-pin } & \text { E1 (15p) }\end{array}$ $\begin{array}{cc}\dagger & \text { MPul31 } \\ \text { unyunction } & \text { Programmable } \\ \mathbf{2 5 p}(10 p)\end{array}$ $\begin{array}{ll}\text { unlunction } & \mathbf{2 5 p}(10 p) \\ 115 v \text { fans chassis. } 2 \text { for } & \mathbf{E 2 . 5 0 (6 0 p)}\end{array}$ $115 v$ fans chassis. 2 for
Bead Thermistors N T C $\quad \mathbf{£ 2 . 5 0 (6 0 p)}$ Res at 20 C 250 R 1 K 22 K 20 K 220 K
 Mains latching relays
Bulk Items carriage EXTRA
80p PTFE Eqpi wire $7 / 02 \mathrm{~mm}$
Yellow Yellow
PTFE SINGIE SCREENEO WHITE Ideal for thermistor probes $\quad \mathbf{8 0 / 1 0 0 0}$ yds 1A reed inserts TXE/4 type £15:1000 PVC eqpt wire $63 / 02 \mathrm{~mm}$ Alt colours
£30/£45 1000 m
P\&P shown in hrackers min order $£ 2$ Add $12 \% \%$ Var to item

KEYTRONICS
332 LEY STREET, ILFORD, ESSEX
op
Telophone 5531863
WE INVITE ENQUIRIES from any
where in the world. We have in
$\begin{aligned} & \text { Where in the world. We have in } \\ & \text { stock several millun carbon resis. }\end{aligned}$
tors w 4 . $\frac{1}{2}$. and 1 watt $\frac{1}{4}$ million

- 1 million capacitors -1 million
electrolytic condensers - million
transistors and diodes. thousands
of potentionneters, and hosts of
other components. Write. phone or
call at our warehouse. - Broad.
fields and Mayco Disposals Lid..
21 Lodge Lane. North Finchley
London. N.12. 01-445 0749. 4452713.

5907)

VHF MONITOR RECEIVERS, air.
marine or business radio bands.
Send 15 p PO not stamps Hadio
Communications Ltd St Sampsons
Guernsey. C.I. \quad (7434
EXTEL AB31 Electronic Teletype
$50 / 75$ bauds. Recieve only. C/W
Handbook. £350.00. - Tel: 0254×1
3182.

PRECISION

 POLYCARBONATE CAPACITORSAM High Stability - extremely Low Leakage

440V A.C. RANGE Value Dimen \|af sioms (mm)			Price 8ach	63v D.C. pangè Value ($\mu \mathrm{F}$) Tol.				
				± 19.		5\%		
0.1	27	127		0.018	£1.28	75p	50p	
0.15	27	12.7		80p	0.22	£1.32	77p	51p
0.22	33	16	$86 p$	0.33	¢1.32	71p	$51 p$	
0.25	33	16	92p	0.47	¢1.32	71p	$51 p$	
0.33	33	16	99	0.68	$\underline{1.44}$	84p	56p	
0.47	33	19	E1.10	1.0	£1.56	910	60p	
0.5	33	19	¢1.16	1.5	$\underline{\$ 1.74}$	£1.16	67p	
0.68	50.8	19	£1.25	22	$\underline{11.98}$	¢1.32	75	
1.0	50.8	19	£1.37	3.3	¢2.40	11.60	99p	
1.5	50.8	25.4	E1.64	4.7	$\underline{2.82}$	£1.88	£1. 23	
2.0	50.8	25.4	E1.95	6.8	$\underline{5} .48$	E3.32	11.47	
				10	54.98	E. 32	¢2. 01	
				15	$\underline{57.14}$	¢4.76	£2.88	
				22	¢9.66	96.44	\%3.90,	

tramsistons I.C.:

6c107/8/9		-8E212/2122	12p	2110055	50p
	12	"CLC213/213	11 p	0 071/2	12
${ }^{\text {"8C147/ } / 9}$	10	-1214/214	11 p		
${ }^{\circ} \mathrm{BC} 153$	16p	"限19/5	12p	-741 fmm DM	32
BC154/7/8/9	12	BrF50/1/2	20p	2mi4	11.15
-8C182/182L	11	aflif	40 p	su76013m0	1.50
${ }^{\text {- }{ }^{\text {Cl }} \text { 183/183L }}$	11	N239	38	Sm7608300	sa
-BC184/189L	12 p	2213770/4	11 p	trabioas	81.12*

Purulat quones

cou pace zemen owits man

Semb S.A.E. Thr andiluant slock Insls.
ARCO
MARCO TRADING (Dept P5)

Tol whanall $464 / 465$ IS 50.098972

HIGH PERFORMANCE

 AUDIO MODULESMIC PRE-AMPS

MAGNETIC PRE-AMPS £800 CHANNEL MODULES TONE CONTROLS $\begin{array}{lr}\text { CHANNEL MODULES } & £ 3800 \\ \text { TONE CONTROLS } & £ 700 \\ \text { MIC TRANSFORMER } & £ 550\end{array}$ POWIR SUSFORMER POWFR SUPPLIES
£5 50 full detals

Prigresdiue Electranic Praducts
593 HIGH RD., LEYTON, E. 10
(01) 5580678

COLOUR, UHF AND TV SPARES. TELETEXT 77 IN COLOUR. MANOR SUFPLIES " EASY TO ASSEMBLE ' KIT. Including TEXAS Decoder Aerial Input, completely external unit, no further connections to set Full facilities, mixed TV pro gramme and meletext. New features Update, and many special features not found in other units. 172 stration modelin operation at 17 NEW COMBINED COLOUR GENERATOR PLUS CROSS HATCH KIT (Mk9) UHF Aerial input type. Eight vertical colour bars plus R.Y $\mathrm{B} \cdot \mathrm{Y}$. Luminance combinations, Grey scale etc. Push button controls. Battery operated. $£ 35^{*}$. Case $£ 2.40^{*}$ Battery Holders 78p*. p/p fl. CROSS HATCH KIT, UHF Aerial mput type, also gives peak white and black levels, Battery operated, £11* $\mathrm{p} / \mathrm{p} 45 \mathrm{p}$. Add-on Grey Scale kit $£ 2.90^{*} \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Add-on Colour
Bar Kit (MK 3) 25^{*} Cases $£ 1.40^{*}$ Bar Kit (Mk 3) £25*' Cases £1.40* p/p 95p. Cross Hatch plete and tested ¢18.00* p/p $£ 1$.
Wreless World TV Tuner and FM Tuner Projects by D. C. Read and reactivator kit for colour and mono $£ 18.80^{\circ} \mathrm{p} / \mathrm{p}$ £1.20. UHF Signal Strength Meter kit $£ 18^{*} \mathrm{p} / \mathrm{p} 90 \mathrm{p}$ 625 TV IF Unit for Hi-fi amps or tape recording $\mathbf{x} 6.80 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Decca Colour TV Thyristor Power Supply Unit, incl. H.T. L.T.. etc. Incl, cir cuits Power $^{\text {Supply }} \mathrm{p} / \mathrm{p}$ £120 Bush CTV 25 etc. $£ 3.20 \mathrm{p} / \mathrm{p}$ £1.20. Bush ĆTV 25 Convergence Panel plus yoke, blue lateral $£ 3.60 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$. Philips Single Standard Convergence Units com
 ${ }_{\text {plessev. }}^{85} \mathrm{p}$. Colour Scan Coils. Mullard 90 p . Mullard 1023/05 Converg. Yoke $£ 2.50$ p/p 75D. Mullard or Plessey Blue Laterals 750 p/p 35p. BRC 3000 type 25 Scan cois p/D 90p. Bus Delay Lines: DL20 $£ 3.50$, DL40 $£ 1.50$ DL1E. DL1 85p p/p 45p. Lum. de lay lines 50 p p/p 40 p . G8 Triple E6. BRC 300 Tripler $£ 6.60 \mathrm{D} / \mathrm{p} 75 \mathrm{p}$ Others available. Philips G8 De $\begin{array}{ll}\text { coder part-complete } & \text { E2.50 p/p } \\ \text { GFE } \\ 75040 \\ \text { Ex-Rental } \\ \text { Panels. }\end{array}$ coder £5.00. Time Base £5.00. p/p 90p. VARICAP TUNERS. UHF: ELC $\begin{array}{ll}1043 & £ 4.50, ~ E L C \\ \text { ELC } \\ 1042 & \text { £4.80. Philips VHF } \\ \text { £3.80 }\end{array}$ ELC 1042 U4.8F \& VHF Varicaps f1.50 p/p 35p. SPECIAL OFFERS: 6 Psn Varicap Control Unit
Ps
£ $1.50 ~ L u x e ~ C o n t r o l ~ U n i t ~$
$£ 2.50$, p/p 35p. UHF Transd. Tuners incl. slow motion drive $£ 3.80$. 4 Psn and 6 Psn. Push button transd. $£ 4.20$ $\begin{array}{llll}\text { p/p } & 95 \mathrm{p} & \text { Helical Pots } 100 \mathrm{~K} .4 \text { for } \\ \mathrm{f} 1.20 \mathrm{p} / \mathrm{p} & 30 \mathrm{p} \text {. Thorn } 850 \text { Dual }\end{array}$ Time Base panels 50 p . Philips 625 IF panel incl. cct. 50p p/p 70 p . VHF Turret Tuners AT 7650 for KB Featherlight, Philips 19TG170. GEC 2010 etc. 22.50 . Fireball 80 . p/p Ferguson. H0p. Mullard Mono Scan all tuners Ferranti Invicta $82.00 \mathrm{p} / \mathrm{p} 85 \mathrm{p}$. Large selection LOPTs, FOPTs available for most popular makes. MANOR SUPPLIES. 172 WEST END LANE LONDON, N.W.6. Shop sands of additional items available not normally advertised. (Nos. 28 , 159 Buses or West Hampstead. Bakerloo Line and British Rail). Mail Order: 64 Golders Manor 7948751 V.A.T. Please ADD 12% TO ALL PRICES (EXCEPT WHERE MARKED* V.A.T. 8%

LINSLEY-HOOD 75 watt amplifiers constracted and repaired. Brand new guaranteed spares
BDY 56 \&1.85, BD529 55 p, BD530 $55 \mathrm{p}, 2 \mathrm{~N} 5459 \quad 45 \mathrm{p}$. Interference sup. pression kit with instructions $£ 1.35$ Inclusive prices. P\&P 15p. SAE for list. J. G. Bowman, 59 Fowey Avenue. Torquay. S. Devon. (745
AMPEX FR $1200 \quad 24$ track instru mentation tape recorder, six speeds solid state, includes tapes etc, one only at $£ 500$. - Tel. Durs ley 3768.

LANGHAM THOMPSON AC

 CELEROMETER LAZused with test certificate $150, ~ u n$
01 used. With test certificate, 8683 (Middx) Surplus com ponents purchased 17474
ponents purchased.

SOWTER TRANSFORMERS
FOR SOUND RECORDING ANT
REPROOUCING EQUIPMENT We are suppliers to many well-known companes.
studios and broadcesting authorites and were studios and broadcesting authorities and were
established in 1941 Early deliveries Competitive probes Large or small quantuties Lel US quote
sOWTR TYPE 3878
4 recent releas
MULTITAP MICROPHONE TRANSFORMEA Primary windings for 600 ohm .200 ohm and 60
ohm with Secondary loadings from 2 Kohm to 10 K ham Frequency response plus/minus $1 / / \mathrm{dB} 20 \mathrm{~Hz}$
to 25 KHz Contaned in well inished Mumetal box 1025 KHz Contanned in well finished Mumetal box
33 mm diameter by 22 mm high. with colour coded 33 mm diameter by 22 mm high, With colour coded
and leads. low distornon
OELIVERY (small quantules) EX.STOCK HIGHLY COMPETITIVE RICE FULL DETAILS ON REQUEST E. A. SOWTER LTD.
ransformer Manufacturers and Designers
7 Ood Ipiwich IP4 IJP. Tol. 0473.52794

MULLARD COMPUTER GRADE ELECTROLYTICS

071/072/432 series. Approx. 50,000 pieces. Your offer to

021-327 2339

WIRELESS WORLD bound volumes 1947 to 1957, offers. Renolds. 1947 to 1957

W/w TELETEXT DECODER with keyboard interface accepts view. data wood grained housing
well, only f160. $01-551 \quad 2092$.

WAYNE KERR video oscillator waveform analyser, $£ 30$ each. TF899 valve Milli voltmeter solartron laboratory amplifier, $£ 20$, Wireless World, Box No. 7486

V tube rebuilding plant. Western-Whybrow Engineering have designed, manufactured, and in. stalled complete TV tuhe rebuilding plant to eight large TV rental firms in 1977. Although demand is great. urders are now being accepted for delivery winter $1977 / 78$. If you can afford the best contact WesternWhybrow Engineering, Praa
Cross, Penzance ($073 \quad 676$ 2265).

SAGEM TELEPRINTER electronic model, integral punch'reader, two colour print three-speed console dial unit, inanuals, circuits, tools, $\begin{array}{ll}\text { £325 delivered. Telex time } \\ \text { ing } 01-455 & 8831 .\end{array}$ ing. 01-455 8831

VALVES RADIO - T.V.Industrial Transmitting. We dispatch valves to all parts of the world by return of post air or sea main. 2.700 obsolete
in stock. 1930 to 1976 . Obser types a speciality. List 20p. Quota tion S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 . Closed Wednesday 1.00 . We wish to pur chase all types of new and boxed valves Cox Radio iSussex) Ltd. Dept WW. The Parade. East Witter Wittering 2023 (ST'D Code 024366)

Best choice for used TV
Best choice for used and mono TV in Britain.

- 1976 exports exceeded 250,000 sets.

Iand TV Trade Services
Midiand Kirade Services,
Worcester Road, Kidderminster DY10 1 YY
England Tel. Kidderminster 61907 or 67390 .

England. Tel. Kidderminster | Telex 337993 |
| :--- |
| 17301 |

ENAMELLED COPPER WIRE

MAGNETIC MICROPHONE SPEAKERS $4 T$ Inserts, deal for all sound speaking and
4stand

SUPPLES, 141 Shamsford $\mathbf{s t r e e n}$
Nr. CANTEREURY, Komt CT4 $70 Z$

CUSTOM BUILD ELECTRONICS and POWER SUPPLIES
Call: Luton (0582) 415832/3

Cliffpaim Ltd.

$3,00010^{1 / 2^{\prime \prime}} \times 1 / 2^{\prime \prime}$ MAGNETIC TAPES

Used once only. All boxed.

 Pristine condition. All offers considered.021-327 2339
17463)

VHF POCKET PORTABLE RADIO tuning $108 / 138 \mathrm{MHz}$. High sensitivity. Easily adjusted to tune over 144 MHz band. \&. 16.50 (inc. postage $\&$ VAT). Romak Ltd, 10 Hibel Road
Macclesfield Cheshire.

BUSINESS OPPORTUNITIES,

TO ALL PRODUCERS
of Hi-Fi equipment, complete systems or
components who ate developing new techniques and are looking for a distribution outiet in SWITZERLAND and possibly WESTERN GERMANY
WE CAN OFFER
your prodicts strategcall helo you place
vour products strategically on the lucrative
Swiss and German matker
Swiss and German market Our young
Organisation is endeavoured to enable you
ieturs
interested manufacturers apply 10 TONAG,
Hi-Fi-Produkte, Schmelz-bergstrasse
51. CH-8044 Z̈ürich. Schweiz. Telex
tonag impet ch 58378

FINANCE FOR ELECTRONICS

$£ 10.100,000$ available to young Engineers with bright ideas for a business venture.
Write in confidence to Box No. WW. 7433

CONTRACTOR/INSTRUMENT Maker required to produce 1,000 unipivot
Pick-up arms monthly. Box No.

TELEPHONE ANSWERING Machines for Sale. New $£ 120$. Answers and Records. Plus 2 -way Conversations and Dictation. Free Accessories and Quaranteed 1 year. Callsaver. $\overline{\text { C. }}$ 01.580 1800. 30 Goodge Street. London. W.1. don. W. 1

60 KHz MSF Rugby Receiver. BCD TIME OF DAY OUTPUT. High performance, phase locked toop radio receiver. 5 V operation with
second LED indication. Kit comsecond LED indication. Kit comolete with tuned ferrite rod aerial £14.08 lincluding postage and
VAT). Assembled circuit and cased130 version also available. Send for version details. Tonlex. Sherborne

WANTED!
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precous metal content
TRANSISTORS \& PRINTED
CIRCUIT BOARDS TO COMPLETE COMPUTERS
THE COMMERCIAL SMELTING \& REFINING Co. Ltd. 171 FARRINGDON ROAD LONDON, ECIR 3AL Tel: 01-837 1475
Cables: COMSMELT, ECI Works: FLECKNEY. Nr. LEICESTER ${ }^{[700}$

Wanted: Test Equipment, RF power transistors, and components of VHF/UHF type.
Immediate cash available
Wanted. Philips E10-12 scope tube Modular Electronics
95 High Street, Selsey
Chichester. Sussex PO20 00 Tel-024.361 2916

MINICOMPUTERS

PERIPHERALS
INSTRUMENTATION
For fastest, better CASH offer Phone:

CHILTMEAD LTD.

 Reading (0734) 586419
: TEST AND COMMUNICATION EQUIPMENT
single items or quantities. also RF plugs.
Call or phone sockets and connectors.
170 Goldhawj Road, London, W. 12 01-743 0899

* MINICOMPUTERS
 \star PERIPHERALS
 \star INSTRUMENTATION

computer appreciation Godzrone (088 384) 3221

EQUIPMENT WANTED

BROADFIELDS AND

MAYCO DISPOSALS
21 Lodge Lane, N. Finchley Telephone: Telephone:
$01-4452713$
$01-4450749$ 01-958. 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC TRONIC COMPONENTS AND EQUIPMENT .IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

WANTED

for immediate cash ALL MAKES OF OLD RADIOS AND GRAMOPHONES PRIOR TO 1940

Offers

with details and turned) to:
Wallfass, PO Box 1244
V Germany

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS. ETC.

CHILTMEAD LTD.

7.9, 11 Arthur Road Reading, Berks. Tel. (0734) 582605

WANTED, all types of communica tions receivers and test equipment Details to R. T. \& I. Electronic Ltd., Ashville Old Hall, Ashville
Rd. London, E.11. Ley 4986 . 63

SURPLUS COMPONENTS, EquIP ment and Computer panels wanted for cash. Ring Southampton 772501

WE BUY new valves, transistors and clean new components darge or small quantities, all details guotations by return. - Walton's
55 Worcester St. Wolverhampton
\qquad
WILL BUY ANYTHING, any quan Willetts, price is right. Ring Stan Willetts, West Bromwich. 021-553
nigh.

ALL SURPLUS or used equipment wanted. Radio telephones - com plete systems purchased. Ships - componen'ts, partly assembled chassis, etc etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited, $40 / 42$ Portland Road. Worthing. Sussex

TURN YOUR SUPLUS Capacitors. transistors, etc., into cash. Contact Brink Wisbech © Co.. 103 South Immediate settlement We also wel. come the opportunity to quote for comolete factorv clearance. (7439

STORAGE SPACE is expensive. why store redundant and obsolete equipment? For fast and efficient clearance of all test gear. power supplies, PC boards. components. etc. regardless of condition or
aualities call $01-771$
9413 .

WANTED, semiconductors and clean new components, quotations by return. Hewitts. 9 ST Peter's ST
suston. Leics

B00KS

TV REPAIRS SIMPLIFIED. FUll pair instructions any British for $£ 4.50$. Circuit Diagram on request; details unique books e.g layout $£ 9.50$. Also colour. Aus WW. 76 Ohurch Street. Larkhal Lanarks. $\quad(7217$
"VINTAGE CRYSTAL SETS. 19221972'. Just published by Wireless World contains 128 pages. Chapters on the first days of broadcasting. The Crystal Set. Vintage Wireless Trademarks. Also catalogue
sections listing and describing sections listing and describing crystal sets together with their
original prices in f:s:d. A book for original prices in f:s:d. A book for the collector or those interested in nostalgia. Available from main bookshops or direct from us. Please ness Press Ltd.. Room 11. Dorset House. Stamford Street London SE1 9 LU .

LAEELS, NAMEPLATES. FASCIAS on aluminium or plastic, Speedy delivery G.S.M. Graphic Arts borough $(02873 \cdot 4443)$ Lane, Guis(5305)

RECEIVERS AND AMPLIFIERS

HRO Rx5s. etc. AR88, CR100
 stock. R. T. \& I. Electronics. Lid.
Ashville Old Hall, Ashville Rd.. Ashville old Hall, Ashville Rd.
London, Ell. Ley 4986 .

SIGNAL Generators Oscilloscopes Output Meters. Wave Voltmeters Frequency Meters Multi. range Meter, etc., etc., in stock. R. T. \& I. Electronics Lid. Ashville Old Hall, Ashville Rd.. London E.11.

CAPACITY AVAILABLE

PRINTED CIRCUIT BOAROS Quick deliveries. competitive
prices quotations. prices quotations on request ality small drilling, etc., speci quantities available. , Jamperger Automatics Lid. $1-5$ Westgate Brid lington N. Humberside, for the attention of Mr. J. Harrison. Tel. (0262) 74738/77877. Harrison. Tel.

RADIO and Radar M.P.T. and C.G L.I Courses Write: Principal, Nautical College, Fleetwood. FY7

EVENING COURSE IN TELEVISION ENGINEERING

The Polytechnic of Central London, 11.5 New Cavendish Street, London. W.1, will run a course in television engineering starting Wednesday. September 28. 1977, for 30 weeks on Wednesday evenings, 6.00 to 9.00 pm .

This course is recognised by the IEE as a post-HNC electrical engineering endorsement subject (A3).

FEE E8

Enrolment will take place on Tuesday, September 27, and Wednesday September 28 , between 530 and $700 \mathrm{p} . \mathrm{m}$

TEL. 4865811 . EXT 6234

PCB ASSEMBLY OESIGN capacity immediately available. Competitive prices. Glentronics, 34 Glenister Road. Chesham. Bucks. Tel 6605 for quote.

EUROLEC. Lons run capacity available on one and six ounce plastic injection moulding machine moulds manufactured to design at realistic prices. Light precision Engineering capacity also available. Tel: 01669 Wallington. Surrey.
PRINTED CIRCUITS. Small catch wiring, electrical testing. minicomputers undertaken by Wandtronics Ltd. Skilled ex Philips workers hone or write for details: Wandsworth Borough Council EDO. 01 . 746464 ex 6475 . 7488 Wallington, Surrey

ARRTRONICS LTO. for coil winding Large or small production runs - Miniature Toroidals - Bifilar Limited. Gardner Indusirial Estate. Kent House Lane. Beckenham Kent BR3 1UG. Tel. 01-659 1147 .

17158
SMALL BATCH PROOUCTION wiring. assembly to sample or circuit assembly. Rock Electronics, 41 Silver Street, Stansted, Essex Tel. Stansted 10279) 33018/814006.

19

\qquad

TWICE the information in HALF the size
 I.C.E. MULTIMETERS

The I.C.E. range of multimeters provides an
unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus a complete range of add-on accessories for more ranges, more functions.
All I.C E. multımeters are supplied complete with unbreakable plastic carrying case, test leads, etc., and a 50 -plus page, fully detaled and illustrated Operating and Maintenance Manual.
Now avalable from selected stockists. Write of phone for list or for detals of direct mall-order service

Supertester 680R

(illustrated)
$20 \mathrm{k} 2 / \mathrm{V}+1 \%$ fsd on dc - 80 Ranges - 10 Functions $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{E} 25.25+$ VAT
(For Marl Ofder add 80p P\& P)

Supertester 680G

$20 k!? / V .2 \%$ tsd on dc
$4 \mathrm{k} .2 \mathrm{~V}-2 \%$ isd on a c 48 Ranges - 10 Function $109 \times 113 \times 37 \mathrm{~mm}$
$£ 19.95$ + VAT (For Man Order add 80 p P\&P)

Electronic Brokers Ltd
49-53 Pancras Road, London NW1 2OB
Tel. 01-837 7781

Microtest 80

 $20 \mathrm{k}, 2, \mathrm{~V} .+2 \%$ fsd ond c -40 Ranges - 8 Function - Complete with 8 Function only $93 \times 95 \times 23 \mathrm{~mm}$E14.95 + VAT
E14.95 + VAT

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 139-151

Gardners Transformer
PAGEGEC Eng. Electric Valve Co. Ltd
Gen. Inst. Micro. Electronics Ltd.
Greenwood Electronics Lid.
Hall Electric
Harmsworth Townley \& Co LtdHarris Electronics (London) LidHart ElectronicsH.H. ElectronicsHi-Fidelity DesignsHilomast Ltd.29
79
16
Icon Designs
LP Electronics
MF ElectronicsIndustrial Tape Appli
Industrial Trade Fair
Integrex Ltd
LidITT Instrument Services
JPS Associates
Kef Electronics
K \& N Electronics
Langrex Supplies Ltd.
Ledon Instruments Ltd.Leevers-Rich Equipment Lid.Levell Electronics Ltd.Lion HouseLloyd, J. J. Insts. Lid
London Instrument Repairs
Lowe Electronics Ltd
Lynx (Electronics) London Ltd
McKnight Crystal
MacInnes Laboratories LtdMaplin Electronic SupplieMarconi Instruments Ltd.Marshall, A. \& Sons (London) Ltd.MCP ElectronicsMedelec
Modern Book. The
Lid.Multicore Solders Ltd.
North East Au
Nicholls, E. R.OMB ElectronicsPattrick, J. B.Phab Elec. (PHD) Ltd.Portescap Lid.
Powertran Electronics
Lid. ...Precision Instruments Ltd.Precision Petite Ltd.Pye UnicamQ. Max Electronics Ltd.22
120
Quality Electronics120
Radio Components Specialists 104
69
Radio Shack Ltd.
132
Ralfe. P. F. 136
Ramp Electronics30
R.C.S. Elect
Reditronics113
Rola Celestion Ltd. 122
R.S.T. Valves Ltd 100
RTVC
RTVC 23
abronics (UK) Ltd128
Scopex Instruments Ltd. 112
Scott, J. (Engrs.) Ltd.4
103
107
Semicon Indexes Ltd107
120
Servo \& Electronic Sales Lid.
Cover iii
Sinclair Elnstrumics Ltd.70
135
Sintel
SME Ltd 13
Southwest Technical Prods. Lid
SST Distributors 24
102
Stephen-James Ltd $\begin{array}{r}69 \\ \hline\end{array}$
Sowter, E. A.
20
Special Products Ltd.
133
Stirling Sound (Bi-Pre-Pak Ltd.) 102
Storno Lid.
31
28
Sugden, J. E. \& Co. Ltd.
137
Surrey Electronics Ltd.
124
106
Swift of Wilmslow
Technomatic Ltd. 130
Teleradio Hi Fi 124
69
Thanet Electronics
Trampus Electronics121
36
Triangle Digital
Trident Audio Developments Ltd. 33
Valradio Ltd. 19
West Hyde Developments Ltd. 110
West London Supplies 124
Whiteley Electrical Radio Co. Ltd Widney Dorlec 34
36Wilmot Breeden Electronics Ltd
Wilmslow Audio $\cdot 131$
Xeroza Radio 124
Z. \& I. Aero Services Ltd. 6. 36,98
Zettler (UK) Division $\begin{array}{r}98 \\ \hline\end{array}$

OVERSEAS ADVERTISEMENT AGENTS:

France: M D Soubeyran. Compagnie Francaise D'Editions Division Internationale, 40 Rue du Colisee, Paris 8 e Telephone 225-77-50 - Telex 280274

Hungary: Mrs Edit Bajusz. Hungexpo Advertising Agency Budapest XIV. Varosliget
 INTFOIRE 225008 - Telex Budapest 22.4525

Malu: Siq C Epis. Etas-Kompass. S p a - Servizio Estero
Via Mañtegna 620154 Milan
Telephone 347051 - Telex 37342 Kompass

Japan: Mr Inatsukı, Trade Medıa - IBPA (Japan) B2 12
Azabu Heights. $1-5-10$ Roppongı Minato-ku Tokyo 106 Telephone (03) 585-058 1

United States of America: Ray Barnes

IPC Business Press. 205 East 42nd Street New York. NY 10017 - Telephone (212)6895961 -- Telex 421710 Mr Jack Farley Jnr. The Farley Co Sulte $1584 \quad 35$ Easi
wacker Drive Chicago. Illinors 60601 -- Telephone $(312) 6$ 3074 Tive 3074
Mr Richard Sands Scott, Marshall Sands \& Latle Inc 58 Floor 85 Posi Street San Francisco Califorma 94.104
Telephone $(415) 42 \dagger 7950$ - Telegrams Dascottco Sal Fidncisco
Mr William Marshall. Scott Marshall Sands \& Latta Inc 1830 West Eighth Sireet. Los Angeles, California 90057 Telephone (213) 3826346 - Telegrams Dascottco Los Angeles

Clevaland Mentel fiet Fatley C_{0}, Sute 050 Ratind Bulding Mr Ray. Ohio 4415 - Telephone (216) 6211919 Mr Ray Rickles Ray Rickles \& Co P O Box 2008 Mram Beach. Florida 33140 - Telephone (305) 5327301 A lant Rarks Ray Rickles 2 Co 3 H 16 Maple Drive N E Atlanta Georgla 30305 Telephone (404) 2377432 119 Houston Texas 77079 . Telephune (713) 783 119 Houston Texas 77079 - Telephune (713) 783
8673

Canada: Ms Cotin H MacCulloch International Advertising Consultants Lid 915 Carlton Tower 2 Carlton Street Toronto 2 - Telephone (416) 3642269

[^6]

The Test of Time

Critics were most generous in their praise when the Shure V-15 Type III pickup cartridge was introduced The ultimate test, however, has been time. The original engineering innovations, the uniquely uniform quality and consistent performance reliability of the $V-15$ Type III have made it THE classic choice as the source of sound for the finest music systems, both here and abroad.

Consider making the relatively modest investment of a new cartridge to upgrade the performance of your entire hi-fi system. Why not ask Shure Electronics Limited for their recommendation?

Shure Electronics Limited
Escleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

The original manuscript by J. S. Bach shown is reproduced by kind permission of The British Library.

Even if tin prices stabilised, a change from 60/40 alloy to Savbit Solder could save you fioo/tonne, ensure a better job...

The reason is that Multicore Savbit not only solves the problem of fine copper wires and thin foils deteriorating during soldering, but also contains less tin than 60/40 alloy. We make both so we are just offering to alleviate your rising metals costs.
During normal soldering, a dissolving action causes the wire to weaken and embrittle-often to break during subsequent field use.
Savbit, however, is a rosin based, 5 -core wire solder comparable in joint quality to standard high performance alloys, but capable of dramatically inhibiting the copper dissolving action.
As this diagram shows,* compared with a 60/40 alloy, Savbit can reduce the dissolution of copper by as much as 100 times. Yet wetting rate, flow, conductivity and capillary force are almost identical - with creep strength and shear strength actually increased.
*(Indicative of product advantages only; not to scale)

$£$ per tonne price

60/40

SAVBIT 60/40

Erosion of fine copper wires

Cracked iron-plated bit, after 40,000 simulated operations using 60/40 Solder.

Add this advantage to the increased reliability and joint quality Savbit offers, and you'll understand why more and more 60/40 users are making the change and profiting. The Ministry of Defence have given a special new Approval No. DTD 900/4535A for Savbit alloy with ERSIN 362 flux to be used in lieu of Solders to B.S. 219 and B.S. 441. iron bits, but this isn't true. cracks in the plating.

Some people think Savbit alloy is only usable with plain copper soldering

As these photographs illustrate dramatically, Savbit also saves significantly on the cost of iron-plated soldering iron bits, which have a copper core. This is exposed through

Cracked iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.

For full information on Savbit or any other Multicore products, please write on your company's letterhead direct to:

[^0]: Current issue price 40 p , back issūes (if available) $50 \bar{p}$, at Retail and Trade Counter, Paris Garden, London SEl. By post, current issue 55 p, back issues (if available) 50 p, order and payment to Room 11, Dorset House, London SE1 9LU.
 Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620. Advertising 01-261 8339.
 Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables: Ethaworld, London SEl
 Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas ($\$ 9.10$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London ECIR 0NE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH.
 Telephone 044459188 . Subscribers are requested to notify a change of address.
 USA mailing agents: Expediters of the Printed Word Ltd., 527 Maidson Avenue, Suite 1217,
 New York, NY 10022. 2nd-class postage paid at New York. © I.P.C. Business Press Ltd, 1977

[^1]: To Cambridge Learning tnterprises. Uept COM, FREEPOSI
 Rivermill House. St Ives. Huntingdon. Cambs. PE17 4RR
 -Please send me . . set(s) of Design of Dightal Systems at $£ 7.00$ each p \& p included
 orset(s) of Digıal Computer Logıc and Electronics at $£ 5.00$ each. p \& p^{\prime} included
 or . combined set(s) at $£ 1050$ each. p \& p included
 Name
 Address
 |
 | delete as applicable
 No need to use a stamp - Just print FREEPOST on the envelope

[^2]:

[^3]: *This is not strictly correct because with fre-quency-dependent feedback all harmonic components are not subject to the same attenuation. With equalization which has a falling gain-frequency characteristic the distortion will therefore be less than the calculated value.

[^4]: *Experimentally it has been found that with 2N5087 transistors the signal-to-noise, ratio of the longtailed pair input stage is approximately 0.6 dB worse than that of the common-emitter stage.

[^5]: BE A SUCCESSFUL TV ENGIN EER. Join our full-time Two-Year College Diploma Course, specially designed to cover the examinations of the City and Guild Radio Television and Electronics Technician's Certificate Full theoretical and practical instruction on all types of modern receivers including the now under way for September 1977. Minimum entrance requirements are Senior Cambridge or ' 0 ' Level or equivalent in Mathematics and English, September includes a specialised Colour TV and FM Stereo servicing course, plus a 2nd year Technicians' Course. Contact us for free prospectus. - THE PEM BRIDGE COLLEGE OF ELEC TRONICS, Dept. WW. 34a Hereford 9117 London W2 5AJ. Tel: 01229 9117.

[^6]: Printed in Great Britain by QB Ltd. Sheepen Place. Colchester and Pubtished by the Proprietors IPC EI.ECTRICAL-ELECTRONIC PRESS LTD. Dorset House. Stamford S
 ondon. SEI 9 LU, telephone $01-2618000$. Wireless world can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND Gordon \& Gotch Ltd. INDIA. A H. Lindon, SE1 giv, telephone $1-2618000$. Wireless World can be obtained abroad rom the following. AUSTRALIA and NEW ZEALAND Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service Ltd, Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid: William Dawson \& Sons (S.A.) Lid UUNITED STATES: Eastern News Distributors Inc., 14 th Floor, 111 Eighth Avenue, New York, N.Y. 10011.

