

wireless world

Electronics, Television, Radio, Audio

JULY 1977 Vol 83 No 1499

Contents

35 The Ernie and Arnie show?
36 Microwave intruder alarm by M. W. Hosking
40 Kinetic images from sound by Thomas E. Mintner
43 Multi-systemvambisonic decoder by M. A. Gerzon
48 News of the month
Viewdata cracks the PO armour
MRUA call for mobile "Annan"
Plessey chief wants social responsibility
51 Digital television via satellite by M. E. B. Moffat
54 H.F. predictions
55 Eliminating adjacent-channel interference by P. L. Taylor
58 Letters to the editor
Annan and cable
Improving Matrix H surround sound?
Transient intermodulation distortion
62 Crystal ladder filters by J. Pochet, F6BQP
64 Logic design - 6 by B. Holdsworth and L. Zissos
66 World of amateur radio
67 Time code clock alarm by N. C. Helsby
71 Decoupling by S. W. Amos
75 Paris components show
79 Modification of weather satellite facsimile machine for radio weather charts by G. R. Kennedy
84 New Products
86 Sidebands by "Mixer"
123 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS

[^0]

Front cover shows multi-colour projected laser traces produced from sound signals. System is outlined in "Kinetic images from sound" p. 40

IN OUR NEXT ISSUE

Shortwave broadcasting efficiency. System developed by Radio Canada International to measure how successful a s.w. broadcasting service is in reaching its intended listeners.

Distortion in audio ampli-

fiers analyses the mechanism of distortion resulting from transistor non-linearities in low-noise circuits. A design example follows later

Amateur radio equipment. A survey outlining design and performance trends in commercial transmitters, receivers and transceivers at present available for amateur operators.

ISSN 00436062
ibpa
ABC

We measure up to your standards

B900
Automatic Digital Bridge $1 \mathrm{kHz} 0.1 \%$

B224
Wide-range Audio Bridge 1592 Hz
($200 \mathrm{~Hz}-20 \mathrm{kHz}$ external)

B331
Self-balancing 0.01% Precision Bridge

B642
Autobalance Universal Bridge 0.1\%

B421
Direct-reading Component Meter 0.25\%

WAYNE KERR BRIDGES

LOW COST TESTERS

PORTABLE INSTRUMENTS

INSULATION TESTER

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is switched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V .
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre. Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA

CURRENT RANGE

100 pA to $100 \mu A$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value. Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$.
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

< 3s for resistance on all ranges relative to CAL position.
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position.

RECORDER OUTPUT

1 V per decade $+2 \%$ with zero output at scale centre.
Maxim um outpüt $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for ${ }^{1} / I_{B}$ ratios of $10,20,30$. The instrument i.s powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1}$ CBO ${ }^{\& 1} I_{\text {EBO }}: 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$ and $100 \mu \mathrm{~A}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$, $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$. 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$.
BV ${ }_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d.acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 \mathrm{nA}, 100 \mathrm{nA}, 1 \mu \mathrm{~A} . \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A, 10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$, $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and $100 \mathrm{~mA} \mathrm{acc} . \pm 1 \%$.
$h_{F E}: \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I_{B} into h_{FE} readings.
$V_{B E}: \quad 1 V$ f.s.d. acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E(s a t)} \quad 1 \mathrm{Vf.s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ selected at 10,20 or $30 \mathrm{acc} . \pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{1} D R$: ASI ${ }_{E B O}$ transistor ranges.
V_{Z} : Breakdown ranges as $B V_{C B O}$ for transistors.
$V_{D F}: \quad 1 \mathrm{Vf}$ s.d. acc. $\pm 20 \mathrm{mV}$ at ${ }_{\mathrm{DFF}}$ of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA .

See us at Leeds
Electronics Exhibition
28/30 June, 1977
£

LEVELL ELECTRONICS LTD.
Moxon Street, High Barner, Herts. EN5 5SD
Tel:01-449 5028/440 8686

Prices are ex-works with batterles Carriage and Packing extra. VAT extra in U.K Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments

British Centra
Electrical Ltd
Briticent House
172 Honeypot
Lane

Stanmore

Telephone
01-2049111
Branches at
Slough 28616
Mitcham
01-640 9121
Cosham (07018)
83621
Yeovil 5596
Twickenham
01-8947561
Chingford
01-5293715

D T.V Group Ltd
126 Hamilton Road West Norwood London SE27
Telephone
01-6706166

Farnell
Electronics Ltd
Canal Road
Leeds LS 12 2TU
Telephone: Leeds
(0532)636311

Lock Distribution
Neville Street Middleton Road
Oldham
Telephone
061-6526166

Spenco
Electronics (Phoenix) Ltd 79 Carron Place Kelvin Industrial Estate East Kilbride, Scotland
Telephone
East Kilbride
(03552) 36311

Your nearest phone will solve your encapsulant problems. Immediately.

Whatever your encapsulant, potting or sealant requirements, your local specialist Dow Corning distributor is able to supply you immediately. Wherever you are, there is a local Dow Corning siliconetrained electrical/ electronics productexpert to help you.

dow corning

Not a win on the pools. a trip to a Pacific paradise, or a reduction in income tax, but distortionless 'current dumping'
Z 's 1 to 4 are the four passive components which interconnect the current dumpers, (the output transistors which supply the power), to the small high quality amplifier which provides the error signal, so that when the above condition is met the current in the load, the loudspeaker, is independent of the current in the dumpers and hence distortion is solely dependent on the quality of the error amplifier, which because it is small can be very good
Wonderful indeed.

For further details on current
dumping and other Quad products write to Dept. WW
The.Acoustical Manufacturing Co Ltd.. Huntingdon, Cambs. PE187DB Telephone (0480) 52561

"Something wonderful happens when $\mathrm{Z}_{1} \mathrm{Z}_{3}=\mathrm{Z}_{2} \mathrm{Z}_{4}{ }^{\prime \prime}$

*

QUAD

* Elektor Electronics

Magazine No. 8. Dec. 1975
for the closest approach to the original sound for twenty-five years

If you accidentally connect the mains to this multimeter on any range for up to 10 seconds, it'll only cost you the price-of a new fuse to repair it. Better than buying a new instrument. Better than the safety hazard of conventional fuse protection without the AVO fail-safe circuit. This improved overload protection is just one of the features which makes the Avometer Model 73 a must for electrical and electronics maintenance work of all descriptions.

Other features include: \quad Sensitivity of 20,000 $2 /$ VDC ■ AC current included in a useful set of ranges - Tough, resilient case Remarkably low cost.

Get in touch with us today for further details and order from your wholesaler or AVO Distributor.

Avo Limited,

Archcliffe Road, Dover, Kent, CT17 9EN.
Telephone: (0304) 202620.
1 Thorn Measurement and Components Division

Gardners TheBest of British

Where pefformance

 is paramount, professionals prefer Gardners...

WW7/77

RCA has combined the best of Bipolar and MOS to give BiMOS. Two technologies on one chip that means a greatly improved product performance - at no extra cost.

The table gives an indication of just what you can expect from a simplified range that covers virtually every application.

The BiMOS philosophy is in step with the trend towards standardising on fewer components that can do more jobs. It can help reduce costs all along the line - from design, manufacture and purchasing, to inventory control and incoming inspection.

Good news for those concerned about profitability today.

Whether you're a systems designer, an engineer or in management, BiMOS gives you something to think about. And act upon.

HIGH POWER DC-COUPLED AMPLIFIER \star UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT * OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
 * 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20.000 Hz . The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan)
Phase Response Harmonic Distortion Intermod. Distortion Damping Factor
Hum \& Noise ($20-20 \mathrm{kHz}$)

DC- 20 kHz " 150 watts $+1 \mathrm{db}-0 \mathrm{db}$ 500 watts rms into 2.5 ohms +0 . -15 DC to 20 kHz . 1 watt 8Ω Below 0.05% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω ? At least 110 db below 150 watts

Other models in the range: D60-60 watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply
Dimensions

D150A - 150 watts per channe
Other models available from 100 watts to 3000 watts

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend (0702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex
iClosed on Monday) Telephone: Southend 10702147379

IT'S A FANTASTIC BESTSELLER!

216 big ($11^{\prime \prime} \times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation ...Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1 / 4^{\prime \prime}}{}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics
In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.20

plus 80 p P. \& P
Offer Order both courses for the bargain price $£ 9.70$. plus 80p P \& P

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yoursell the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita, Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

Look up to a Versatower installation and your radio communications will achieve new heights!
Acclaimed as the World's leading telescopic tilt-over tower in the international field of radio communication. A complete range of models: from 20 to 120 feet, static and mobile. Full details and specifications are in our brochure.
Send for it today!
Strumech Engineering Limited, Portland House, Coppice Side, Brownhills, Walsall,
West Midlands WS8 7EX
Telephone: Brownhills 4321
Due to the enormously increased demand for Versatower systems we have now opened our new West Works. Phone us - we'll be glad to show you around.

STRUMECH

WW-027 FOR FURTHER DETAILS

- Built-in thermostat
- Adjustable with special key
- Close drift-free control
- Mains or 24 volts

Details from
LIGHT SOLDERING DEVELOPMENTS LIMITED
97. 99 Gloucester Road, Croydon, Surrey.

Tel: 01-6890574 Telex: 8811945

WW - 073 FOR FURTHER DETAILS

EIMEIOARD

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New

BIMBDARD

The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket

Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only £9.72 (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors

Shure fries 'em

Shure Safety Communications Microphones are tested for level and response at a searing $69.4^{\circ} \ldots$ often up to an incredible $85^{\circ} \mathrm{C}$. for day-long periods and even though the inside parts are too hot to touch

The potentiometer with greater potential

The new DCPotentiometer ModelT7100 is, without doubt, an exceptional piece of laboratory equipment. What makes it so, is its high accuracy over itssix decades of measurement available at the same time.Dial 1 offers an accuracy of $+10.001 \%$ $+0.1 \mu \mathrm{~V}):$ Dial $2+(0.001 \%+0.1 \mu \mathrm{~V})$ and Dials $3-6$ $+0.1 \mu \mathrm{~V}$.
This 'triple pot'offers not only exceptional long term accuracy and stability, but also a built-in self calibration check. Added'to this, wound components have been replaced by resistors printed on a heat sink substrate-so there is virtually no source of drift or thermalemfs. The T7100 is as good as it looks. It's worth finding out more about Get in touch with us today for the fullfacts

Sullivan

H.W. Sullivan Limited, Archcliffe Road,Dover,Kent,CT179EN
Tel: 0304202620 Telex: 96283
$\frac{1}{\text { hroem }}$ Thorn Measurement Control and Automation Division
WW - 070 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $1 / 2$ volt standard size battery.
Model "Mini-Z 1 "' measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Price $£ 25.00$ Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ £27.50 [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC 1×8 AX (Phone 01-837 7937)

WW-053 FOR FURTHER DETAILS

[^1]

Shure freezes 'em

Shure Safety Communications Microphones are plunged to an appalling -45.6° C. for $1 / 2$ hour periods during severe temperature tests, and even though they're covered with frost

When dealing with a variety of projects, electronic filtering requirements change rapidly and need to be met with minimum fuss and maximum flexibility. The Barr \& Stroud EF3 Modular Filtering System is designed around the most compact of basic main frames containing the power unit and function switching with capacity for two slide-in filter units. The modular concept allows you to begin with the minimum of a mainframe and one filter unit. Thereafter you can extend your 'library' of filter capability as requirements dictate and budgets make possible.

The EF3 is a system that grows with every plug-in module and constantly expands as new modules are developed and introduced. Current modules give a pass band capability from d.c. to 10 MHz and within this spectrum filter units can be operated individually or in a combination to give low-pass, high-pass, band-stop, band-separate or band-combine modes.

The EF3 system is a part of the comprehensive Barr \& Stroud range of electronic filters that could well meet all your filtering requirements. If not,

Barr \& Stroud welcome the opportunity to study your problem and come up with a custom-built solution. The full spectrum of Barr \& Stroud capability in electronic filtering is covered in a range of literature available on request.

BARR \& STROUD LIMITED London Office:
1 Pall Mall East, London SW15AU
Telephone: 01-930 1541
Telex: 261877

Gut coststy 50% with the same high performance. Isn't that what new ideas areallabout?

 in cost,new Thermalloy heat sinks are designed specifically for plastic or metal case power devices.

They are remarkably simple to use, no extra mounting hardware is requiredand they can be attached to the device after board assembly.

The slip on types have positive retention and can be supplied with locking tabs.

For full details of the range, simply return the coupon-cutting costs without cutting performance is a good idea you ought to know about.

[^2]

...They work

CHERE communications microphones

Look for the name Shure moulded into the back of the case of every microphone you buy. It identifies the microphones that have undergone the most rigid and demanding tests in the industry. And, it's your peace-of-mind assurance of reliability, know-how, quality, quality-control, and conscientious fast service!

Shure Electronics Limited Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881 ww-061 FOR FURTHER DETAILS

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation level between line and equipment windings gives protection against voltage surges, lightning strikes and fault conditions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your own - we're always interested!

Whiteley Electrical Radio Co. Ltd Mansfield, Notts NG18 5RW, England. Tel: 062324762.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery Other Ranges and special scales can be inade to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937
WW-009 FOR FURTHER DETAILS

Contractors to H.M. Govt. P.O.
 REPAIRS OF ELECTRICAL MEASURING INSTRUMENTS 7-14 DAYS SER VICE

STOCKISTS ALSO SUPPLIERS OF GEC RISSO AND OTHER MULTI-RANGE TEST SETS

WE SPECIALISE IN ASSEMBLIES, AND IN THE REPAIR, CALIBRATION AND CONVERSION OF ALL TYPES OF INSTRUMENTS, INDUSTRIAL AND PRECISION GRADE

LEDON INSTRUMENTS LTD.

GLADSTONE WORKS, GLADSTONE RD,
FOLKESTONE, KENT.
TEL: (STD) 030357555
WW-023 FOR FURTHER DETAILS

IM0 relays. You shouldnt pay more.

Although at IMO we have a fine range of relays which suit many needs, we'd be the first to say there are some applications that would be better off with Omron relays.

True, some Omron relays are more expensive than the IMO equivalents, but understandably so. Because they're designed to be used in specifications where a critically
higher standard of reliability is vital.
So, now the finest timers and relays are under the same roof. Not to mention the same consistent, reliable and helpful IMO service.

IMO and Omron; a combined range that covers just about every need in every price bracket. Why settle for less?

Omron relays. You shouldn't pay less.

IMO. Now most people know

PLASTIC FASTENERS FOR ELECTRONICS

SELF－ADHESIVE CABLE CLIPS are a quick and simple means of securing cables，cords and small looms to flat surfaces．No drilling or fixing screws necessary．The peel－off backing is removed immediately before placing the clip． The coating adheres to most clean，flat surfaces and withstands a wide range of humidity and temperature．Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables．

CABLE STRAPS are semi－permanent fasteners for strapping wires and cables into tight compact looms．The ratchet fastener is adjust－ able and can be released by pinching－in the sides of the fastener head．Cable straps are made from black nylon

WIRE TIES are a flexible means of fastening wires and small cables into orderly，compact looms．They are quick and easy to fit and can be re－used，greatly reducing re－looming times． Wire ties are made from nylon and are available in various sizes each determined by a different colour

The P．C．BOARD GUIDE is a self－retaining edge support for printed circuit boards．It has good panel retention and grips p．c．boards firmly and securely．The guide is available in two types of material－yellow acetal or grey Noryl，for high temperature and voltage appli－ cations．

P．C．BOARD SPACERS are simple to fit，one－ piece mouldings for use with p．c．boards．They have a self retaining shank for fastening into panels and a T－shaped anchor for securing p．c． boards of $0.062^{\prime \prime}$ thickness．They have good resistance to vibration and are suitable for board－to－board or board－tochassis use．

P．C．BOARD STAND－OFFS are quickly assem－ bled，self－retaining panel supports for p．c． boards．Made from natural（off white）nylon and have good resistance to vibration．Suitable for panels up to $0.079^{\prime \prime}$ thickness．Stand－Off＇s accept a No． 4 self－tapping screw．

PLASTIC RIVETS fasten panels，fittings and name plates to metal plastic and wood．Resilient enough to fix into brittle materials like fibre－ glass，hardboard and glass．Shank，head and pin are one piece．Fixing is by driving the pin through the head into the space between the legs，gripping the work．
DRIVE FASTENERS hold two or more panels together．Easily fixed，normally by thumb pressure．No special tools required．Boat－ shaped DRIVE Fasteners are for panels of thin and medium thickness and are removable． Ribbed Drive Fasteners are used in blind holes where hole length exceeds lergth of shank．

PLASTIC HOLE PLUGS are quick，inexpensive means of plugging unwanted holes．Hole Plugs keep out dust，dirt and moisture．Attractively shaped heads give a neat finish．The snap action grip of the Hole Plug makes a vibration resistant seal．Hole Plugs are made from nylon and are non－corrosive．
LOKUT ANCHORS are used to strengthen holes by providing additional screw thread engagement in materials where self－tapping screws would be unsatisfactory．Made from high strength nylon and used in insulation，and electrical chassis work．Easily fitted by hand．

1ロロロ＇s OF OTHEA TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST
 HARMSWORTH

HARMSWORTH，TOWNLEY \＆CO．LTD． HAREHILL TODMORDEN LANCS OL14 5JY
Phone TODMORDEN 2601 （STD 070－681 2601）

The Quickest， Simplest Way of Punching Holes in Sheet Metal

Q－Max punches make clean，accurate holes every time．In no time．With no tiling，no jagged edges，virtually no burrs－with no hard work．And no holes are barred．Round or square Q．Max punches are available in sizes down to 10 mm up to 75 mm for use on sheet metal up to 16 gauge No wonder they＇re used by all government services（Atomic Military，Naval，Air，GPO，Ministry of Works）and all over the world by radio． motor and industrial manufacturers． plumbing and sheet metal trades and garages

SHETT
SUALCHES
Wholesale and Export enquiries welcomed．Further details from， ＂Q－MAX＂（ELECTRONICS）LTD 44 PENTON STREET－LONDONN1 9QA Tel：01－2782500 WW－007 FOR FURTHER DETAILS

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency，period，time， freq．／ratio and calibrated output facility，Fast delivery．Specials by arrangement．

CRYSIALOVIN
OPYRATING，MANUAI
TWOTONE BILECAS
£274 250 MHz
Sensitivity 10 mV ．Stability 5 parts 10 ．${ }^{10}$
Resolution ± 1 Count

301 M	32MHz 5 Digit £95	4014	32 MHz 6 Digit £ 132
501	32 MHz 8 Digit £188	7014	80 MHz 8 Digit $£ 205$
8018／M	250MHz 8 Digit £274	901 M	520 MHz 8 Digit £375
		1001M	1.26 Hz 8 Digit £670
	p versions plus £ $£ 15$	Memor sulfixe	ons available if not £25 extra

Type 1011 MHz 100 KHz 10 KHz Crystal Standard $£ 95$
Type $1030 \mathrm{ff} /$／Air Standard $£ 95$
SUPPLIERS TO：Ministry of Defence，G．P．O．，B．B．C．，Government Depts．，C̄rystâi Manutacturers and Electronic Laboratories world－wide

Eddystone VHF/UHF antennae

VHF Sleeve Dipoles

Available in versions from 100 MHz to 500 MHz for general mast or tower mounting (Cat. 1530) and as special marine version covering $156-165 \mathrm{MHz}$ (Cat. 992).
Strong, weatherproof, potted construction of Fibreglass sealed with epoxy resin. Cat. 1530 aerials are slide fit inside standard scaffolding mast, but sherardised mild steel mounting brackets can be provided (standard for Cat. 992 marine dipole).
Bandwidth 5\% of centre frequency. Gain is unity over half-wave dipole, 3 dB over isotropic. Impedance 50Ω or 75Ω.

Heavy Duty Folded Centre Fed Dipoles

Cat. 1531 available for frequencies 50 MHz to 220 MHz . Most standard radiotelephone bands can be covered with wide bandwidth and good VSWR characteristics. Gain is unity over dipole, 3 dB over isotropic. Impedance 50Ω. Very rugged construction of anodised aluminium alloy with low density polythene insulator. Boom and brackets supplied. Marine version available in stainless steel.

Eddiscone

Omnidirectional Antennae

Ideal for applications requiring well-defined gain, VSWR and bandwidth characteristics.
Four main versions cover range 27 MHz to 870 MHz with 75Ω or 50Ω impedance, and special versions can be provided if required. Gain is unity 1 dB compared with a half-wave dipole.
Rugged construction of anodised aluminium with epoxy resin sealing. All versions supplied with brackets for mounting on masts of $1 \frac{1}{2}$ " to $2 \frac{1}{2}{ }^{\prime \prime}$ diameter.

PLEASE WRITE FOR FULL DETAILS

Eddystone Radio Limited
 Member of Marconi Communication Systems Limited

A GEC Marconi Electronics Company

Sullivan offer you a full range of $A C$ and $D C$ Null Detectors. There is a wide span of ranges available, with battery operation, portability and high quality being common to all.
NEW Model 3336 DC Detector is a versatile production and laboratory instrument offering discrimination of $1 \mu \mathrm{~V}$ in $10 \mathrm{k} \Omega$ and sensitivity of $10 \mu \mathrm{~V}$ This instrument offers low zero drift, linear or logarithmic response and high stability.
NEW Model 3337 Microvolt Detector has 9 centre zero ranges from 10 V to $1 \mu \mathrm{~V}$. It has a resolution of $0.1 \mu \mathrm{~V}$ into $10 \mathrm{k} \Omega$. Battery operation eliminates mains voltage interference There are many other features,too, not least of which is a surprisingly competitive price

Model 4444 AC Detector is a specially designed, battery operated solid state AC detector for the detection of very low level imbalance signals from modern AC bridge and potentiometric measuring systems.
Model 3334 DC Null Detector is a compact unit specially designed for null point measurement It is small in size, low cost and rugged and these are just three of the features that make it ideal when replacing pot galvanometers in potentiometers and bridges For fulier facts about Sulivan Detectors. simply contact: Tel: 0304202620 Telex: 96283

WW - 07I FOR FURTHER DETAILS

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Series H3020

Basic error 2.5\%
Sensitivity 8 mA F.S.D
Response 0.2 sec Width of each channel Single and three-pen recorders $\quad 80 \mathrm{~mm}$ Five-pen recorders 50 mm

Series H327

Polarized moving iron movements with syphon pens directly attached Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps Two marker pens are provided
Basic error 4% Frequency response from $D C$ to 100 Hz 2 dB .

Chart speeds, selected by push buttons 0.1-0.2-0.5-1 0 2.5-5.0-12.5-25 mm/sec

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames Curvilinear co-ordinates
Equipment: Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc
H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$
PRICE £108.00
H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$
 H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high

Available for immediate delivery

Z \& I AERO SERVICES LTD.

44A WESTBOURNE GROVE, LONDON W2 5SF

[^3]
F.M. TUNERS, MODULES \& KITS by

£44.40

TOUCH TUNE MODULE M5

This module must put the finishing touches to an outstanding combination. Six pre-set stations at the touch of a button. No moving parts to go wrong, or contacts to get dirty. Internal illumination shows you which button has been touched, while the tuning adjustment is made using high reliability multi-turn cermet pots for repeatable selection of the most used stations, yet retaining the use of separate manual tuning. This module interfaces directly with the $M 1$ above, being wired between the board and the normal manual tuning control. A touch of sheer genius!

Tuner	Kit
$£ 110.00$	$£ 98.47$
$£ 115.00$	$£ 101.31$
$£ 139.00$	$£ 132.14$

This tuner must surely provide the best value for money. available today Combining the best of the modules shown below. it includes a full digital readout of frequency to a resolution of 0.1 MHz , so that exact station identification can be made. In addition, six pre-set stations may be selected by touch controls having internal solid state lamps, while manual tuning allows easy searching for distant stations under the guidance of the digital meter.
A switchable mute system allows reception of the weakest stations while muting inter-station noise and spurious responses. Perfect reception is assured by not permitting any station to be heard which is far enough out of tune to cause distortion. The tuning indicator lamp provides a means of very fine tuning, and is automatically extinguished between stations. A powerful A.F.C. system is also incorporated which holds all stations in tune, while not preventing manual tuning. Good stereo reception is assured by the use of a phase locked decoder with full birdie and spurious output filtering.
Finally, but not least, the external appearance and styling bring a fresh new look to Hi-Fi. The sturdy wooden cabinet is finished in mat teak veneer, housing an attractive gold and brown. anodised aluminium front panel, which carries black controls and inscriptions. The indicator lamps and digital displays are in red, giving the finishing touches to a tuner you will be proud to own.

DIGITAL FREQUENCY METER M6
We are very proud of this one. We don't have to say it's the best, as far as we know it's the only one! On a board less than $4^{\prime \prime}$ square is all the electronics of a stable counter with i.f. offset (added) and a stabilized power supply! With the aid of a small daughter board (not shown) which fits neatly into the above module (M1), the exact station frequency is displayed to the nearest 0.1 MHz . It's a tuning scale $20^{\prime \prime}$ long with accurate calibrations every $0.1^{\prime \prime!}$ You get the transformer, daughter board (ready wired in), polarized filter, and a list of station frequencies. What more do you want?

ORDERING INFORMATION

All U.K. orders post free plus 12.5% VAT. Export orders. allow extra for postage at cost, no VAT due, credit will be refunded
Payment by sterling cheque on London bank, or credit card, International MO etc.
Other items and kits available, send for illustrated leaflets price list and order form etc, from -

33 Restrop View Purton, WILTS SN5 9DG

Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:

* Nery low distortion content-less than 0.03\%
* an output conforming to R!AA recording characteristic
* battery operation for no ripple or hum loop
* square wave output of fast rise time
$\mathbf{£ 6 0 . 0 0}$
a/so available

Si452 Distortion Measuring Unit
\star low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch, etc.

ALL PRICES PLUS VAT
J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON, W. YORKS. BD19 5LA

WW-020 FOR FURTHER DETAILS

WW-088 FOR FURTHER DETAILS

WW-037 FOR FURTHER DETAILS

We've just made the impossible . . . a professional $31 ⁄ 2$ digit DMM Kit for less than $£ 70$

The Sabtronics Model 2000 is an impossible £69.95!
And that price still includes phenomenal accuracy, range and professional features.

This all-new bench/portable multimeter, reading to ± 1999, has a basic accuracy of $0.5 \% \pm 1$ digit, and has five functions giving 28 ranges, 100% overrange and overload protection. So you know it's no toy!

Besides, what toys are as automatic as the 2000? With automatic overrange indication, automatic polarity, even automatic zeroing!

Yet the 2000 is easy to assemble. We send you all the parts you need, even the high-impact case We also send you clear, step-by-step assembly instructions.
So you end up with a professional quality $3^{1 / 2}$ digit DMM for the unheard of price of less than $£ 70$. From Sabtronics, specialists in digita! technology And manufacturers of the impossible

Order yours today!

sabtronics

SPECIFICATIONS: (condensed)

DC volts in 5 ranges: 100 NV to 1000 V
AC volts in 5 ranges: 100 uV to 1000 V
DC current in 6 ranges: $10 n \mathrm{~A}$ to 2 A
$A C$ current in 6 ranges: $10 n A$ to 2 A .
Resistance in 6 ranges: 112 to $20 \mathrm{Ms} \Omega$
Input Impedance: 10Ms
Display: 9 mm (. $36^{\prime \prime}$) LED
Power requirements: 4.5 VDC to 6.5 VDC
(4 " C " cells - not included)
Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3.0^{\prime \prime} \mathrm{H}$.
$(203 \mathrm{~W} \times 165 \mathrm{D} \times 76 \mathrm{Hmm})$

DRDERING INFORMATION FOR READERS DUTSIDE THE U.K.

The price listed is tor readers in the U. K only which includes import duties and V A.T
For readers in overseas countries the price is $£ 49.95$ plus $£ 500$ for Handling and postage, not included are any import duties or other taxes levied upon receipt of goods overseas. Payments from overseas
customers should be made only by Bank drafts or International money
orders and payable to Sabtronics International. Orders should be sent to
Sabtronics International
Winkelriedstrasse 35
6003 Luzern
Switzerland

Sabtronics (U.K.) Lid
50 Gation Road
Westcliff-on-Sea
Essex
ww7
To: Sabtronics (U.K.)
50 Galton Road
Westcliff-on-Sea, Essex

Please send me
Sabtronics Model 2000 DMM
Kit(s) at $£ 69.95$ each incl. V.A.F. and Postage.

Total enclosed herewith: £

Name

Address

City
County
Readers Overseas please see ordering Information.

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers
Today we present:

NEC CQ 110 E digital

allband $\mathrm{HF}, 300$ wattstransceiver, $160 / 80 / 40 / 20 / 15 / 11$ 10A / $10 B / 10 \mathrm{C} / 100$ /WWV, modes FSK, USB, LSB, CW, AM, with separate 8 pole X-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

NEC CQ 301

allband HF, 3KW, linear amplifier, $160 / 80 / 40 / 20 / 15 / 11 /$ 10 meter, for modern amateur communication. Two EIMAC $3-500$ Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CO 301 can be driven by our CO 110 E or other exciters capable of about 50-100 watts of drive. AC power supply $100-235$ volts is built in of course
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!

Sole distributor in Europe
CEC
Corp., Via Valdani $1-\mathrm{CH} 6830$ CHIASSO-SWITZERLAND Phone: (091) 442651 . Telex 79959 CH

BULK ERASURE PROBLEMS?

LR71

MAX REEL SIZE $111 / \mathbf{2}^{\prime \prime}$

LR70
MAX REEL SIZE $81 / 4 . "$

If it's personal we can oniy advise a diet or joining weightwatchers If it's to do with tape, then why not consider the LR70/71 ibulk tape erasers. They are simple to operate and will erase cassettes cartridges and reels of tape up to a maximum reel size of $11 \frac{1 / 2^{\prime \prime}}{}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement

The LR70/71 bulk erasers are currently used in Broadcas Companies. Recording Studios, Government Departments, Educational Establishments and the Computer Industry.
Moderately priced and available from
LEEVERS-RICH EOUIPMENT LIMITED
INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL
Telephone 01-874 9054
Cables: Leemag London SW18. Telex 923455 Wembley

NOW,A PROFESSIONAL DMM FOR UNDER £100

You're a professional and therefore insist on a professional instrument. Now it's here-our 8020A - a pocket-size DMM weighing only 370 grammes. It has the accuracy and the functions of a lab instrument, yet fits your pocket and purse. costing only $[99$

It goes wherever you go. Your 8020A DMM operates for two hundred hours on a standard 9 volt battery. And wherever it goes it is supported by Fluke's renowned worldwide service.

Look at the features. You wont find any other instrument in size or price which, hesides full DMM capability.

FUNCTION	RANGES	ACCURACY
DC. Vohts	(5) $100 \mu \mathrm{~V}-1000 \mathrm{~V}$	$\pm 0.25 \%$
AC Volts	(5) $100 \mu \mathrm{~V}-750 \mathrm{~V}$	$\pm 0.75 \%$
DCAmps	(4) $1 \mu \mathrm{~A}-2000 \mathrm{~mA}$	+0.75\%
AC Amps	(t) $1 \mu \mathrm{~A}-2000 \mathrm{mat}$	± 1.5
Resistance	(6) $100 \mathrm{~m} \Omega-20 \mathrm{M} \Omega$	$\pm 02 \%$
Conductance	(2) leakage from $20 \mathrm{nS}-2 \mathrm{mS}$	
Disule Test	(3) $2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 20 \mathrm{M} \Omega$	

offers conductance and diode test. And Fluke's wide accessory-range

Fluke International Corporation
Garnett Close Watford WD2 4TT
Tel.: 0923-330066
Telex: 934583
ITTI Instrumernservices
Edinburgh Way,
Harlow, Essex CM20 2DF
Tel: (0279) 295.22
Contact us for your nearest dealer or distriburor.

When you're already unique in your field -why bother to be better?

BECAUSE it's the only way to keep pace with . Europe's fast-expanding electronics industry. That's why there are some major changes in Electronics Weekly. Apart from more pages and a new look throughout. you'll find MORE NEWS in each department MORE COVERAGE especially of innovations. MORE COMMENT on developments behind the news. MORE TECHNICALSURVEYS.

Order your own copy by using this form

To Electronics Weekly, Room 218. Dorset House Stamford Street. London SE1 9 LU
I wish to take out a one-year subscription to Electronics Weekly. Remittance enclosed for f 6.00 (U.S.A./Canada

- \$15.60). Cheques made payable to

NAME
(Please print)

Address

ElectronicsWeekly

WW-029 FOR FURTHER DETAILS

ELECTRONORGTECHNICA carbon film RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
EX-STOCK
£4.90 PER 1,000 PLUS \& POSTAGE
Minimum export order $£ 100$
Contact John Gingell

TIME + FUEL+ EFFORT = MONEY

You can effectively reduce costs by the installation of a STORNO mobile radio system.

To investigate further, write, telephone or telex to

Storno Limited, Frimley Road, Camberley, Surrey. Telephone: Camberley (0276) 29131 Telex: 858154

WW-055 FOR FURTHER DETAILS
Big saving, good looking, fast checking NEW Doram

DIGITAL MULTIMETER-

 BUILD IT YOURSELFANDSAVE UPTO £40!A clear functional multimeter featuring extremely accurate digital display, in superbly styled shatterproof carry-case. It could cost f 100 : But the complete Doram kit with case, printed circuit board, leads and all components is yours for just $£ 54.50$ plus $£ 4.36 \mathrm{VAT}$.
Based on Ferrantitechnology with accuracy $\pm 0.6 \%$, the new Doram Multimeter is an indispensable tool ata terrific saving. Measurëment is indicated by a $31 / 2$ digtit display updated twice per second display flashes to indicate overload.

And it saves you money before it's even built!
DEPEND ON DAKAM
Thousands of kit makers do for top value and Doram Electronics Led. PO Box TR8. Wellington Road Industria!' Estate. Wellington Bridge Leeds. Wes
Yorkshre LS 122 UF R Aegistered in London No 1155856 Directors:

643A FUNCTION GENERATOR
 SINE, SQUARE \& TRIANGLE
 0.01 Hz to 1.1 MHz
 $10 \mathrm{Vpp} \pm 5 \mathrm{~V}$ DC OFFSET 1000 : 1 Vco RANGE

643A FUNCTION GENERATOR $£ 85+£ 2.50 \mathrm{p} \& \mathrm{p}$

Other products include.				,
643	FUNCTION GENERATOR	$£ 98$	WWW065	
745	COUNTER TIMER	£94	IVW066	
744	COUNTER TIMER	£85	IVW067	
631	FILTER OSCILLATOR	£108	IVW068	
Del	livery is normally ex-stock clude VAT and are correct change wit	- telep	for contir ing to pre	Subject to
	OMB e		322	567

The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available.
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted.
The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)
GJ-SPCO: $24 p$ each GE-4 pairs : 45p each GB-2 pairs: 27p each GH-5 pairs : 57p each GC-3 pairs: 36 p each 4PS-SPCO \& 3 prs: 53 p ea Palladium Wire Bus Bars - 1 octave lengths : 50p each We also stock kits and PCBs for the P.E. Synthesiser, P.E. Joanna (electronic piano), P.E. Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p)

PHONOSONICS
 DEPT. WW77, 22 HIGH STREET SIDCUP, KENT DA14 6EH

VAT: Add $121 / 2 \%$ to final total on all U.K. orders EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNELISLES \& B.F.P.O. classify as Export.
mall order and C.W.o. only - Sorry but no callers please

WW-048 FOR FURTHER DETAILS

WW-045 FOR FURTHER DETAILS

Four Good Reasons for using Zettler Relays:

Zettler Relays are first class quality
We have about 50 years experience in producing relays Zettler Relays are readily available Most are available ex stock Harrow. Zettler Relays are proved in practical applications Millions are used in our own electronic systems and products. Zettler has the right relay for most applications, e. g.

Miniature Extra
Heavy Duty Relay AZ 230
Capable of switching high powe
in spite of small physical size.
Contact: 1 changeover.
Contact : 1 change
Contact material
Contact material
Silver cadmium oxide
Rating 3.5 kVA .16 A .250 VAC max
Dielectric strength: 2.5 kV rms .
Coils: $5 \mathrm{~V} D C-110 \mathrm{~V} D C$
Size $35.5 \times 19 \times 30.2 \mathrm{~mm}$
Printed circuit mounting

Let us help you with your switching problems.

est. 1877
Zettler UK Division
Brember Road Harrow, Middx. HA2 8AS Tel. (01) 4220061
Zettler offers more than technology Please look us up a

UNIVERSITY OF LEEDS 28 th, 29 th, 30 th JUNE

WW-008 FOR FURTHER DETAILS

PAY LESS FOR LOADS?

With nearly 3 decades of experience built into every TERMALINE Coaxial Load Resistor, buying BIRD will often cost no more or save you money. BIRD QC Quick-Change Connectors on many models ofter a choice of any common RF connector, eliminating the need for performance-degrading adapters.
Twenty aircooled dry Loads (2 W to 225 W), thirteen aircooled liquid Loads (20W to 5 kW) and nineteen watercooled TERMALINE models (1 kW to 50 kW) are listed in our 1977 Catalog. Ask for it
EXCLUSIVE U.K. REPRESENTATIVE FOR BIRD ELECTRONICS

aspen

electronics limited

「

 Y 7 \square ETRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2X0

Fylde Electronic Laboratories Limited.

WW-024 FOR FURTHER DETAILS
HVS
NON-CONTACT MEASUREMENT AND CCTV DISPLAYS

NON-CONTACT MEASUREMENT, using standard CCTV cameras. Fast, versatile measurements for Production and Test:
VP 101 / 2 TARGET LOCATORS for automatic positioning VP 103 TARGET HEIGHT INDICATOR for dimension checking.
VP 104 AUTOMATIC VISIBLE FLAW DETECTOR VP 105 INTENSITY INDICATOR checks brightness at selected spot
CCTV DISPLAYS compatible with standard CCTV equipment:
BAR GRAPH GENERATORS 8-32 way displays
SUBTITLE/INDICATOR superimposes pre-stored and typed-in messages, also movable arrow and box, on CCTV picture

HAMPTON VIDEO SYSTEMS LTD.
Heath Road, Twickenham. Tel. 01-891 1974

WW-087 FOR FURTHER DETAILS

WW-050 FOR FURTHER DETAILS

ACTIVE CROSSOVER SYSTEM

LATEST MAGNUM MODULE FOR LINEAR PHASE ACTIVE CROSSOVER NETWORKS

With the CP.LX 1 - the latest in the expanding range of MAGNUM AUDIO MODULES
build an acive crossover network tor
buld an active crossover network for any multiple speaker system. using one CP-LX1 per crossover
trequency In addinion to the improved loudspaker din such systems. the CP-LX1 scheme is readily adjustable so that a desired int response resuling from Such systems the CP-LXI scheme is readily adjustable so that a desired specitication may be achieved
with an ease and conlidence not possible with passive systerms Moreover any sell adjusiments may be made for a few pence so that optimum pertormance is always ach invable As with ail MAGNUM AUDIO MODULES, full application data is provided Should you wish we will also provide your CP-LX1 preset to your choice of frequency (order as CP-LX1-P and frequency).
${ }_{\text {CPLX1 }}$
68.65
69.65

Cliffpaim

MODULES

Ltd.
DEPT. JW, 13 HAZELBURY CRESCENT LUTON, BEDS, LU1 1DF. Tel: 0582415832

Better instruments. Better service.

We have established a nationwide network of approved service organisations to deal with the repair and maintenance of our instruments. Everv repair is backed by a full 12 month guarantee. Here's where to find them.

ENGLAND London Instrument Repair Centre, Acton Lane, Chiswick London W4 5HJ. Trade Reception: Cunnington Street. Tel: O1-9959212 London Instrument Repair Centre, Archcliffe Road. Dover, Kent Tel: Dover (0304) 202620
Farnell international Instruments Ltd., Sandbeck Way. Wetherby. West Yorkshire LS22 4DH. Tel: Wetherby (0937) 3541
T.E.R. Instrumemnts Ltd. Peel Lane, Astlev, Manchester M29 7JH. Tel: Atherton (05234) 2275 or 5611
Midlands Instrument Repair Centre, Thorn Automation Ltd.
Armitage Road, Rugelev, Staffs. Tel: Rugeley (08894) 5151
SCOTLAND Fakcon Electronics, 92 High Street, Johnstone, Scotland Tel: Johnstone (0505) 23377

WALES Electro Services, 25 Chepstow Road, Newoort. Gwent NPT 8BX Tel Newport (0633) 211243

The manufacturers' joint service organisation.
WW-034 FOR FURTHER DETAILS

DETECKNOWLEDGEY

DETECKNOWLEDGEY?
Not a spelling mistake, but a new publication from AMBIT that sets out to explain some of the basic theory that surrounds metal location techniques. It is an explanation, that builds up from first principles, why iron sometimes reacts like a non-ferrous metal, what determines detector range, what the shortcomings are, how to avoid them. In fact, it explains about BFO, IB,
VCO and Pulse Induction techniques, as a result of research carried out to produce our range of locators, and why we chose the methods we used. As a general purpose reference work for designers, constructors, users etc., we think you will find it unique. $£ 1.00$ inc. postage.
Bionic Ferret Metal Locators
As a result of our investigations, we offer you three metal locators now: The VCO 4000, the IB phase angle meter, and the 'Pulsedec' pulse induction metal locator. It is impossible to catalogue the relative virtues of each type here, so please send an SAE for details

Components for Wireless: ICs, Coils, Ceramic \& Mechanical Filters, trimmers etc
\qquad $\begin{array}{ll}\text { Linear ICs } \\ \text { CA3089E/KB4402 } & 1.94 \\ \text { ICL8038CC* }\end{array}$
MC1310/KB4400 2.20 NE555V**

TBA120/SN76660	0.75	NE565/6/7*
	1.80	NE560B*

$4.50 \left\lvert\, \begin{aligned} & \text { Tuner modules/TOKO parts } \\ & \text { EF5800 } 6 \mathrm{cct} \text { varicap head }\end{aligned}\right.$

UA753
CA3090AQ
HA1196
UA720/CA3123E
HA1197
TBA651
LM380N
M381N
LM381N
TDA2020
TCA2020
TBA810AS
1.09|BA102/BA121

$7805 U C$	1.50	ZTX/BC107/8/9

78M12* /TDA1412 1.55 ZTX/BC212/4

$78 \mathrm{M} 20^{*}$	1.20	ZTX451/55

78M24* $\quad 1.20 \mid$ BD609
A723CN* $\quad 0.80$ BD610

PLEASE NOTE: Vat is extra, at 12.5% except where marked * (8%). PP 22p per order An A5 size SAE for free current price lists, or $40 p$ for the complete catalogue. Write to 37a High Street, Brentwood, Essex. CM14 4RH. (tel. 0277.216029)

WW-094 FOR FURTHER DETAILS

QUARTZ DEVICES LTD.

World-wide exporters of crystals \& filters Manufacturers of DIP crystal oscillators from 240 Hz to 20 MHz
sole agents for
[ILTRONETICS LC \& crystal filters from 10 Hz to 100 MHz
STATEK Uitra miniature low frequency crystals
ELECTRO D YNAMICS High volume timing crystals
29 Market Street, Crewkerne, Somerset England T.A18 7JU Telephone (0460) 74433 Telex 46283 infase g

WW-015 FOR FURTHER DETAILS

Bargain Time!

TO INTRODUCE THE

Unique alpha-numeric listings of ratings and characteristics of a very wide range of semiconductors of international origin and with an extensive substitution quide. USED WORLDWIDE - PROFESSIONALLY

THE

SEMICON

INTERNATIONAL TRANSISTOR INDEX AND THE DIODE/SCR INDEX

WE HAVE

A SPECIAL OFFER

FOR NEW AND EXISTING SUBSCRIBERS SEND FOR DETAILS - DON'T DELAY

- available for

A LIMITED PERIOD ONLY
SEMIICON INDEXES Ltロ.

WW - 056 FOR FURTHER DETAILS

Wilmslow Audio

THE Firm for Speakers!

SEND 10p STAMP FOR THE WORLD'S best CATALOGUE
OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS, ETC.
AND DISCOUNT PRICE LIST

```
ATC AUDAX BAKER BOWERS \& WILKINS
    - CASTLE CELESTION CHARTWELL
    COLES DALESFORD DECCA EMI
        eagle elac fane gauss -
            GOODMANS HELME IMF
    ISOPHON JR JORDAN WATTS KEF
            LEAK LOWTHER McKENZIE
    MONITOR AUDIO PEERLESS RADFORD
        - RAM RICHARD ALLAN - SEAS
    TANNOY VIDEOTONE WHARFEDALE
```

WILMSLOW AUDIO ${ }_{\text {(Dep. ww) }}$ sWan works, bank square. wilmslow. Cheshire skg ihf Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street Tel. Wilmslow 29599 for Speakers Wilmsiow 26213 for Hi.F

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35,40
TermiNet 30, $300 \& 1200$ (30 and 120 cps) Teleterm 1132 and 1200 series (portable /fixed 30 cps) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance * Other types and models available
* Refurbished units also available
* Short and long period rentals
* Minicomputer interfaces
* Quantity discounts
* Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables RAHNO Tring Telex 82362 A/B Bateicom Tring

15

 240

 240 Watts!

HY5

Preamplifier

HY30
15 Watts into 8Ω

HY50
25 Watts into 8Ω
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge tuner, etc) are catered for intemally, the desired function is achieved either by a muth-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 is comparible with al 1.L.P power amplifiers and power supplies To ease construction and mounting a P C connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low distortion -
APPLICATITIS: Hi-Fi - Mixers - Disco - Guitar and Organ -- Public address
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV : Tuner 100 mV Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$, input impedance $47 \mathrm{k!}$) at 1 kHz
OUTPUTS Tape 100 mV ; Main output 500 mV R.M S
ACTIVE TONE CONTROLS Treble * 12 dB at 10 kHz ; 8ass $\div 31100 \mathrm{~Hz}$
DISTORTION 01% at 1 kHz Signal/Noise Ratio 68 dB
OVERLOAD 38dB on Maqnetic Pick-UP: SUPPLY VOLTAGE +1650 V
Price $£ 5.22+65$ p VAT P\&P free
HY5 mounting board B1 $48 p+6 p$ VAT P\&P free
The HY3O is an exciting New kit from I LP it features a virtually indestructible I C with short circurt and thermal protection. The kit consists of IC heatsink, PC board, 4 resistors. 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplable ideally suited the theginner Law Distortion - Short. Open and Thermal Protection - Easy to 8uild APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier -.. Audio oscillator
SPECIFICATIONS
OUTPUT POWER 15W R M.S into 8:) DISTORTION 01% a: 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz} \cdot 16 \mathrm{kHz}-3 \mathrm{c} 8$ SUPPLYVOLTAGE $=18 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P \& P free.
The HY50 leads I L.P's total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be ore of the most felable and
Fidelity modules in the World Fidelity modules in the World
FEATURES: Low Distortion
APPLICATIONS: Medium Power H.Fi systems -- Low power disco -- Gutar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV .
OUTPUT POWER 25W RMS in 8: LOAD IMPEDANCE 4-:6! DISTORTION 0.04% at 25 W at
1 kHz NOISE RATIO 75 d 8 FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE = 25 V SIZE 1055025 mm
Price $£ 6.82+85 p$ VAT P\&P free
HY120
60 Watts into 8Ω
The HY1 20 is the baby of I.L.P's new high power range designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular
Fesign Five connections - No externat components
Five connections - No externat components SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 8.) LOAD IMPEDANCE 4.169 DISTORTION 004% al 60 W at SIGNAL/NOISE RATIO 90 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 35 \mathrm{~V}$
(ize $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&iP free.

HY200

120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the mos giged conditions such as disco or group while stll retaining true Hi-Fi performance FEATURES: Tharmal shutdown - very Iow distortion - Load line protection - Integral Heatsink No external components
APPLICATIONS: H_{1} - F_{i}-- Disco -... Monitor -- Power Siave - Industrial -- Public address SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS Into 30) LOAD IMPEDANCE 4-16:) DISTORTION 0.05% at 100 W at 1 kHz . NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$-. 3 dB SUPPLY VOLTAGE SIRE $114 \times 100 \times 85 \mathrm{~mm}$.
Price $£ 23.32+£ 1.87$ VAT P\& P free
HY400
240 Watts into 4Ω
The HY400 is I.L.P's Big Daddy of the range producing 240 W into 4 glt it has been designed for high pinwer disco or public address applications the amplitier ts to be used at contmunus high power levels a cooling fan is recommended the amplifier includes all he qualthes of the rest of the ramily to FEATURES: Thermal shuddown - Very low distortion - Load line protection - No external FEATURES:
APPLICATIONS: Public address - Disco - Power slave .- Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4\% LOAD IMPEDANCE 4-16) DISTORTION 01% al 240W at SIGNAL NOISE RATIO 94GB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 AB SUPPLY VOLTAGE -45 V SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 32.17+£ 2.57$ VAT P\&P free.
POWER SUPPLIES

PSU36 Sutable for iwo HY30 $\mathbf{E 5} 5.22$ Flus $65 p$ VAT P, P tree

PSU90 sultable for one $+1 y 200 £ 12.65$ plus 10 VAl 10 Plee

B148p

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Ordier \square
Please debit my Access account \square Barclaycard account \square Account number
Name \& Address

Lots of people think ITT are the only people selling Fluke DMM's

It's true in one sense - ITT are the sole UK stocking distributors for the range of Fluke DMM's. But of course, as the world's leading DMM's, Fluke really sell themselves. What we do is back them up with a streamlined, thoroughly dependable and quick-off-the-mark service that's as much a No. 1 in its field as Fluke are in their's.

Write or phone for more details. Edinburgh Way, Harlow, Essex. Telex: 81525

IITI
 instrument services

The only way to buy. Harlow (0279) 29522.

Editor:
TOM IV ALL, M.I.E.R.E

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc
Phone 01-261 8443

Assistant Editors:

MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
JOHN DWYER
Phone 01-261 8620

Production:
D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
PHILIP NOSSEL (Manager)
Phone $\overline{01}-2618622$

LEO KEMBERY
Phone 01-261 8515

CHRIS PRIER
Phone 01-261 8037

Classified Manager
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423

EDDIE FARRELL (Classified Advertisements)
Phone 01-261 8508

JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

Publishing Director:
GORDON HENDERSON

The Ernie and Arnie show?

Mr Ernest Harrison, chairman and managing director of Racal Electronics, has been calling for further rationalization of the British electronics industry. It is "bound to come" he declared at a press lunch. And "it won't be too long in coming, I believe". Asked if he had had any discussions with the National Enterprise Board, he replied "Yes, we've all been involved, not just Racal but all the other companies as well". Mr Harrison's main concern is to improve Britain's chances of obtaining big overseas orders. He feels that the present system, of several UK companies bidding competitively, without Government support, fares badly against that of other countries which have their governments assisting one or two large groups. Mr Harrison made it clear what he had in mind, at least for Racal. "We want another group matching GEC" he said. "A bit of competition might be good for Arnold Weinstock, good for his company and good for the country".

In principle rationalization is a good thing. Its purpose is to eliminate wasteful duplication of resources, the splitting in too many ways of capital investment, materials, labour and other factors of production inevitable in normal business competition. It should mean that whatever resources are available in an industry they will all be used continuously and efficiently. And the government, which has to be seen to be even-handed, is much more likely to give diplomatic and financial support to a single large group tendering for an overseas contract than it is to favour invidiously one of several companies in a freely competitive situation.

In practice, however, rationalization means take-overs. These can be achieved by agreement, when the willing "victim" is in a weak financial state, or covertly, by secret buying of shares on the stock market (as Racal started to do with Ultra some months ago). Now one immediate effect of rationalization for merger purposes is
loss of jobs, as happened in GEC, for the improved efficiency required can seldom be achieved without this shedding of labour. With unemployment as serious as it now is in Britain, those considering rationalization of the electronics industry will have to weigh very carefully the certain social consequences against the expected economic benefits.

Another problem inherent in rationalization is that it can create a business monopoly. One could argue that if we had two big groups in electronics, say GEC and Racal, there would be competition between them. Well, there is competition between ICI and Unilever, but no sign that these two giants are fighting each other to the death. Between them they dominate the market for a wide range of household products in Britain. Experience shows that when a small group of companies holds a captive market there is a tendency towards price fixing - remember the telephone equipment "ring" of the 1950s - and the people who work for them feel they are in a safe job, so there is no need to labour hard but just keep one's nose clean. Both of these facts of life are against the interests of the public.
Finally, if an industry is concentrated into one or two big groups that industry is ripe for nationalization. We. have just seen the British Aircraft Corporation and Hawker Siddeley Aviation being merged and nationalized into British Aerospace. What this will achieve remains to be seen. But a recent French parliamentary report on their aircraft industry considers that the possible nationalization of Dassault and merging with the already nationalized Aerospatiale to form a single national group would do more harm than good. It would eliminate competition which, the report says, is essential and "exerts a decisive influence on export sales". Maybe there are some experiences here for our electronics industry chiefs to ponder on.

Microwave intruder alarm

Construction of Doppler radar to detect movement

by M. W. Hosking, M.Sc., M.I.E.E., British Aircraft Corporation

Abstract

Based on the Doppler frequency shift principle, this domestic intruder alarm system uses straightforward and simple techniques, together with materials that are readily available to everyone and brings what has hitherto been a costly and professional system within the reach of a domestic budget. Most of the components can also be used to make a simple voice communications link, with the main addition of an audio modulator. Construction of a voice link, including the microwave transmitter and receiver will be described in a later article.

The microwave transmitter and detector circuits are constructed in waveguide. But, for those who do not wish to go to the lengths of building these components, a complete intruder alarm kit is available with these items already built and set to the correct frequency. This complete system has been given type approval by the British Home Office as satisfying their transmission regulations.

General principles

The microwave intruder alarm operates on the principles of a small radar system. It transmits a signal at the appropriate frequency which travels outward as a radio wave until it meets an object, whereupon a portion of the signal is reflected back again toward the receiver. If this returned signal can be detected and suitably processed, then
information can be extracted about the reflecting object.

With the advent of solid-state sources of microwave signals ("Realm of microwaves" Wireless World Feb. 1973) the way has opened for very small, cheap, low-power transmitters operating from low-voltage, d.c. power supplies. In this instance, the transmitter is a Gunn diode operating from a 7 V rail. The device is encapsulated in a package about the size of a match head, but to control the frequency spectrum and to extract power efficiently, it is mounted in a waveguide resonant cavity. The detector, a Schottky barrier diode, is also waveguide-mounted. Further details, including a method of fabrication for those who wish to build their own will be given in a later article.

If the reflecting object shown in the schematic arrangement of Fig. 1 is moving toward or away from the receiver then, in similar fashion to the train-whistle example usually cited at school, the receiver frequency will differ from that transmitted. The difference between the two is the Doppler frequency. In addition to the directly transmitted signal, a small portion is arranged to couple directly into the receiver and acts as a local oscillator drive. The returning frequency-shifted

Fig. 1. Principle of the c.w. Doppler radar wherein the transmitter is also the local oscillator.

signal at frequency $f_{o} \pm f_{\mathrm{d}}$ is thus mixed with this local oscillator at frequency $f_{\text {o }}$ and the output circuit bandwith adjusted to extract the beat frequency difference, f_{d}.
The creation of a Doppler shift in frequency can be visualized by considering the two waveforms in a little more detail. As the transmitted signal moves out, with its amplitude varying sinusoidally, its phase angle relative to the starting point will change by 2π radians (360 degrees) every time the distance increases by a wavelength. In this case, the wavelength is about 28 mm . Exactly the same thing is happening to both the returning signal and to that forming the local oscillator. These two are mixed together in the diode to form the beat or difference frequency.
The amplitude at this i.f. is a phase function of the two input signals. If the path, $2 R$, traced by the reflected signal was half a wavelength different than that taken by the direct local oscillator wave, then the two would subtract at the receiver. The output would not actually go to zero, as the two signals are not normally comparable in amplitude, but would be a minimum. Conversely, when both inputs had traversed an integral number of whole wavelengths, they would combine in phase to produce an i.f. output of maximum amplitude. If the reflecting object happens to be moving, then the relative phase of the two inputs is also changing. The local oscillator path remains constant, but the path taken by the radar. signal is varying at twice the reflector speed. $2 \mathrm{~V} \mathrm{~m} / \mathrm{s}$.
Back at the mixer, the effect is as if the two wavetrains were sliding past each other at $2 V / \lambda$ wavelengths per second to produce an alternating output voltage at this rate as they reinforced or subtracted from each other. This is the Doppler frequency $f_{d}=2 \mathrm{~V} / \mathrm{\lambda}$

To comply with the regulations, the transmitter must operate at 10.687 GHz i.e. $\lambda=28.07 \mathrm{~mm}$. Thus, the Doppler frequency is 71.25 Hz for each m / s of reflector speed, or 31.85 Hz per mile $/ \mathrm{h}$. Fig. 2 shows this relationship in graphical form.

Extraction of this Doppler signal can be used as an efficient means of detecting a moving object against a stationary background. For use as in intruder alarm, the reflections from walls and furniture will all be stationary in phase difference and so will produce no alternating beat frequency, whereas a moving object will generate an i.f. typically in the low audio range. This signal can then be amplified and used to trigger an alarm. This type of system thus gives the type of selectivity that is required and, operating as it does in this relatively uncluttered area of the frequency spectrum, is not so vulnerable to interference. There are no beams to break, as in some systems, as the signal fills the whole room and movement anywhere can trigger the alarm. Nor is it sensitive to spurious acoustic noises as are another class of alarm systems. A gain control on the alarm allows the triggering threshold to be adjusted to suit the size of room and the reflecting target, i.e. to choose the larger reflection from a human as opposed to that from the the domestic pet.

Transmitter and receiver

The general design of the transmitter and receiver cavities for the ready-made Mullard CL8960 unit are shown in Fig 3(a) and Fig. 3(b) the schematic electrical connections. The operating frequency is controlled by the length of the transmitter waveguide between the Gunn device and the back wall. However, insertion of the tuning screw perturbs the field within the cavity in such a way as to appear initially as an inductance and to lower the resonant freqr ${ }^{1 / 4} A_{y}$. The side-by-side arrangement is to allow coupling of the local oscillator signal which occurs by direct leakage into the receiver waveguide. However, the level of signal is very low at about $10 \mu \mathrm{~W}$ and a small amount $(30-35 \mu \mathrm{~A})$ of forward bias is necessary on the mixer diode.

Some precautions are necessary when making the electrical connections to avoid damage to the microwave semiconductor devices. The mixer diode

Fig. 2. Graph shows how the Doppler frequency varies with target speed for the case of a transmitter at $10,687 \mathrm{MHz}$.

(a)

Fig. 3. General view of the Doppler module (a) and schematic electrical connections (b)
is easily damaged by voltage transients on the mains supplies, so it is recommended that soldering appliances be disconnected from the mains just prior to making the mixer connection and during any subsequent contact with this component. Forward bias should not be allowed to exceed 1 mA . The gunn device will not tolerate a reversed supply voltage, so check before connecting. As supplied, the mixer is fitted with a shorting wire to the case and this should be left in place until assembly is finally completed and then removed. The Gunn device appears as a dynamic negative resistance and it is possible for oscillations to be induced in the supply circuit. To avoid this, connect a small l0nF capacitor directly across the terminals as shown in Fig. 3(b).

General conditions of operation for the assembly are:

Frequency $10,687 \pm 12 \mathrm{MHz}$ (preset)
Gunn device supply voltage $+7.0 \pm$
0.1 V (+7.5 V max.)

Gunn device supply current 130 to 16.5 mA (140 mA typ.)

Mixer diode forward bias 30 to $34 \mu \mathrm{~A}$. Power output 8 mW typ. (10 mW max.) The microwave module is supplied with a small, $5-\mathrm{dB}$ gain antenna, constructional details of a 20 dB gain horn will be given later. The magnitude of the Doppler output at the mixer terminals is a function of the size of the reflecting object and its range. Typically, however, a man would have a radar cross section of $1 \mathrm{~m}^{2}$ and, using the 5 dB antenna, the received signal would be 100 dB down on that transmitted at a range of 15 m . This will produce about $40 \mu \mathrm{~V}$ of Doppler signal for signal-plusnoise to noise ratio of 18 dB .

Fitted with the 5 dB gain antenna, the Doppler module is reasonably matched to free space and has a polar pattern of the form shown in Fig. 4. The widebeam coverage together with the filling-in effect from multiple reflections

(b)

Fig. 4. Beamwidth of the Doppler module in two planes using the $5 d B$ antenna which illustrates the wide angular coverage obtainable.

means that comprehensive coverage of a room is effectively achieved.

An interesting game has evolved at home: in a room about 30 ft long, children endeavour to creep and crawl up on the intruder alarm without being detected. No matter how subtle the approach, this has not so far been achieved without triggering the alarm.

Receiver and alarm

It is necessary to selectively amplify the Doppler signal to a level sufficiently high to trigger an alarm, whilst at the same time rejecting false alarms from spurious noise levels (Fig. 5).

More conventional circuits could be used for the amplifier, but the intruder system has been developed side-by-side with a voice link and as much commonality as possible has been built into the two systems.
Sensitivity of the Doppler receiver is a function of the i.f. amplifier input noise figure and bandwidth. The narrower the bandwidth, the less the contribution of

Fig. 5 (top). Amplifier and alarm trigger circuit with power supply (bottom) to p.c.b. and transmitter.

Components marked with an asterisk may have different values in the kit design.
thermal noise power. Thus, the first section of the circuit is an RC filter having the measured bandpass charac-
teristic of Fig. 6. The combination of Tr_{1} and $I C_{1}$ provide a first stage voltage gain of about 1000 , together with a reasonable input noise figure. The slightly unusual connections to the operational amplifier are mainly for the benefit of the voice link receiver, as they provide a means of achieving a high slew rate from a normal 748 op -amp by by-passing the input stages.
$\left[\begin{array}{llll}\hline \begin{array}{l}\text { Resistors: } \\ \text { indicated }\end{array} & 1 / 4 \text {-watt } & \text { rating } & \text { except where } \\ R_{1} & 1 \mathrm{k} \Omega & & \\ R_{2} & 1 \mathrm{k} \Omega & R_{16} & 1 \mathrm{k} \Omega \\ R_{3} & 10 \mathrm{k} \Omega & R_{17} & 1 \mathrm{k} \Omega \\ R_{4} & 33 \Omega & R_{18} & 100 \Omega \Omega \\ R_{5} & 22 \mathrm{k} \Omega & R_{19} & 100 \Omega \Omega \\ R_{6} & 10 \mathrm{k} \Omega & R_{20} & 3.3 \mathrm{k} \Omega \\ R_{7} & 33 \mathrm{k} \Omega & R_{22} & 2.7 \mathrm{k} \Omega \\ R_{8} & 10 \Omega & R_{23} & 2.2 \mathrm{k} \Omega \\ R_{9} & 10 \Omega & R_{24} & 1 \mathrm{M} \Omega \\ R_{10} & 220 \mathrm{k} \Omega & R_{25} & 10 \Omega, 1 / 2 \text { watt } \\ R_{11} & 10 \mathrm{k} \Omega & R_{26} & 56 \Omega \Omega 5 \text { watt } \\ R_{12} & 22 \mathrm{k} \Omega & R_{27} & 1 \mathrm{k} \Omega \\ R_{13} & 33 \mathrm{k} \Omega & R_{28} & 2 \mathrm{k} \Omega \\ R_{14} & 10 \mathrm{k} \Omega & R_{29} & 50 \mathrm{k} \Omega \\ R_{15} & 100 \Omega \Omega & R_{30} & 4.7 \mathrm{k} \Omega \\ & & \end{array}\right.$

General

Transformer 6VA miniature. Two independent $12 \mathrm{~V}, 0.25 \mathrm{~A}$ secondary windings with interwinding screen.
Relay $18 \mathrm{~V}, 1 \mathrm{k}$! coil with internal diode Contacts rated $250 \mathrm{~mA}, 50 \mathrm{~V}$
Alarm 18 V audible warning device, 60 mA mean current, 1 A peak.
$F_{1} \quad 500 \mathrm{~mA}$ mains fuse
$S_{1} \quad$ miniature dp.d.t
$\mathrm{S}_{2} \quad$ 3-pole screened jack plug and socket $\mathrm{S}_{3} \quad$ s.p.s.t. on/off
Doppler module Mullard CL8960 or approved alternative
Self-oscillating mixer Mullard CL8630S or approved alternative

The second amplifier provides a good voltage gain which can be varied with the potentiometer R_{28}. The diode pump and clamping circuit of $\mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{D}_{9}$ and D_{10} defines the voltage threshold and time constant necessary to switch on the $\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$ Darlington drive to fire the s.c.r. Potentiometer R_{29} provides additional control of the drive level and the l.e.d. gives a visual indication of each time that a trigger signal is generated. It is also used for initially setting the maximum gain that can be obtained from IC_{2} before any instability occurs.

In the prototype, the alarm itself is an 18 V audible warning device which emits a penetrating, modulated wail at about 3 kHz . However, as the alarm trigger takes place through a relay, it would be a straightforward matter to connect up to other warning devices such as a door bell, or to add an extra feature such as camera and flash unit.
Assuming that the intruder alarm will be fitted in a roon or hallway of domestic premises, it is obviously necessary that the circuit should be activated when everybody is out of the way, otherwise one's own movement would trigger the alarm. Two options are provided in Fig. 5 for achieving this. Firstly, the positive supply rail for the s.c.r. and relay is routed via the $\operatorname{Tr}_{5} \mathrm{Tr}_{6}$ combination, so that sufficient current to operate the relay can only flow when Tr_{5} and Tr_{6} are switched on. This can

Capacitors			
C_{1}	$1 \mu \mathrm{~F}$	C_{14}	10 NF
C_{2}	$0.22 \mu \mathrm{~F}$	C_{15}	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$
C_{3}	$1 \mu \mathrm{~F}$	C_{16}	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$
C_{4}	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$	C_{17}	$1000 \mu \mathrm{~F}, 25 \mathrm{~V}$
C_{5}	10 pF	C_{18}	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$
C_{6}	$0.1 \mu \mathrm{~F}$	C_{19}	$4.7 \mu \mathrm{~F}, 10 \mathrm{~V}$
C_{7}	$0.1 \mu \mathrm{~F}$	C_{20}	100 FF
C_{8}	$1 \mu \mathrm{~F}$	C_{21}	$47 \mu \mathrm{~F}, 20 \mathrm{~V}$
C_{9}	$47 \mathrm{~F}, 10 \mathrm{~V}$	C_{22}	$47 \mathrm{~F}, 20 \mathrm{~V}$
C_{10}	10 pF	C_{23}	$0.1 \mu \mathrm{~F}$
C_{11}	$1 \mu \mathrm{~F}$	C_{24}	$0.1 \mu \mathrm{~F}$
C_{12}	$1 \mu \mathrm{~F}, 16 \mathrm{~V}$	C_{25}	$47 \mu \mathrm{~F}, 10 \mathrm{~V}$
C_{13}	10 nF	C_{26}	10 NF

Semiconductor devices

$\mathrm{Tr}_{1,2,3}$	ZTX 500 or equivalent
$\mathrm{Tr}_{4,5,6}$	ZTX 302 or equivalent
Tr_{7}	Plastic style 3055
$\mathrm{IC}_{1,2}$	SN72748 or equivalent
C_{3}	$\mu \mathrm{A} 723$ or equivalent
$\mathrm{D}_{1} 10 \mathrm{D}_{8}$	1 N4001 or equivalent
$\mathrm{D}_{9,10}$	1 N914
SCR,	TIC44 or eq
LED,	
$z_{1,2}$	BZY88-C8V2

Suppliers

The system built around the CL8960 module can be obtained as a kit of parts or in ready-built form - see advertisement by Integrex.

Both kit and ready-built system have been given type approval by the Home Office for internal use on premises, under the type name Intruder 1 and have undergone thorough performance and reliability testing

A set of two p.c.bs is available for $£ 4$ inclusive from M. R. Sagin, 23 Keyes Road, London NW2. One board accommodates the intruder alarm circuit together with the power supply components, and the second board accommodates the voice link circuit.

Fig. 6. Typical input filter response for the amplifier showing emphasis placed on the Doppler frequency from slow. moving objects.
only occur when C_{22} has charged through the high resistance path of R_{24} Thus. when the overall system is switched on, the Doppler module. amplifiers and supply rails are all activated, but the relay will not operate to trigger the alarm until after a short delay. This delay is set by the timeconstant of R_{24} and C_{22} which, in this case has been chosen as $45-60$ seconds: ample time to leave the room and close the door. Using this method, the alarm will be triggered on re-entering the room, say the next morning. If this was acceptable, then it could be looked upon
is providing a daily check on the system.

An alternative uses the jack plug and socket arrangement. Inserting the plug by-passes the delay circuit and allows the alarm to be set by a remote switch taken out of the room and located at some convenient point. The circuit has been tested with over 100 ft of flex between alarm and switch. Whichever method is used, once fired, the s.c.r. and hence the alarm will remain on until reset by the appropriate switch

To be concluded

An end to listen-only answering machines

The proliferation of telephone answering machines is likely to advance even more rapidly if a device made by LMG Electronics gains wide acceptance. Normally the user of one of these hideously unsociable devices has to travel back to his office in order to hear the rude things people have shouted into it, but the LMG system enables an accredited caller to dial into the machine from a distant telephone and hear the messages over the phone.
According to an article by the company's founder, Mr Graham Bent, in NRDC Bulletin number 45 the idea is not new "but operation hitherto has been cumbersome, and only a single rewind could be initiated." The LGM device controls stop, start, rewind, playback and erase on the answering machine by means of coded pulses of tone generated by the user on a distant phone. The audible tone pulses are produced by a pocket unit the interrogator holds against the mouthpiece of the telephone he is using. One control button provides an operating code of five trains of pulses. Only this pulse can open the machine to remote operation. "There are over 40,000 possible combinations," the article says. Once the recognition code has been established the machine receives short common pulse trains enabling control of the machine from four buttons. The unit is powered from a 9 V battery which should last 12 months.
When LGM approached the National Research and Development Council they asked for $£ 3,000$ repayable over 12 months but the NRDC thought they were being optimistic and lent them $£ 4,000$ repayable over three years. The loan was unsecured at 20% instead of the more usual royalty on sales. In addition the firm had $£ 5,000$ of Bent's money and a similar amount from the bank. That was in 1972. The NRDC loan was repaid "A few months ago," according to Graham Bent.

Kinetic images from sound

American developments in a modern art form

by Thomas E. Mintner, University of lowa

With the advent of certain technologies such as video, lasers and integrated electronic circuitry the contemporary artist or composer has resources available which allow forms of expression unheard of as little as fifteen years ago. One obvious example is the field of electronic music, where the proliferation of synthesizers and similar devices has resulted in a deluge of electronic music studios, compositions, live performances and commercial applications. A related area is concerned with devices and compositions designed to take advantage of simultaneous presentation of music with light and images.

Historically, this area ranges from essays on "colour music" dating from the early part of this century to devices utilizing the latest technology. Now, as in the past, efforts in this area come not from any one discipline, but from composers, artists and sculptors, engineers, dancers and architects. Technologically, there is a wide span from simple colour light boxes to video or laser devices incorporating advanced combinations of electronic and electro-optical techniques. This article is not intended to be a comprehensive listing
of all such aural/visual devices or works, but rather an overall view with detailed information on some projects with which the author has been associated.

If there can be one conclusion drawn from most of the artistic attempts at correlation of audible and visual information, it is that effective and natural co-ordination is difficult to achieve.

Although some early attempts were severely hampered by a lack of suitable technology, there is a still more basic problem. The fundamental differences in the two sensory systems involved are many. Since our senses of sight and hearing tend to complement each other in day-to-day activities, we may tend to overlook the many perceptual differences which must be confronted when we attempt to create a set of stimuli (a composition) that will utilize both senses together. Investigation of these

Fig. 1. One method of deflecting a laser beam by a sound source: a small nurror is attached to the loudspeaker cone. The laser beam is further modified by passing it through a clear diffuser.

two sensory systems is still at the level of basic research and modelling for even relatively simple stimuli. Complex sig. nals such as music or visual arts can also be analysed in terms of their content, both from the point of view of their respective disciplines (e.g. music theory) and from the more general basis of information theory.

Given these facts, it is not hard to understand the limited success of early "colour organ" type efforts at musiclight correlation. Generally, it was assumed that there would be some sort of fixed relation between the colour spectrum and the musical scale (12 note), with perhaps differences in colour intensity used to represent octave displacement of pitches. There were also numerous other schemes, all with similar problems. However, it should be noted that at least one major composer wrote an orchestral work, still performed and recorded, with a notated part in the score for "tastiera per luce" or keyboard of light. This is A. N. Scriabin's Prometheus, The Poem of Fire (1909-10). Scriabin's correlation theories are somewhat more interesting than those above, and in fact a modern realization of his composition has been performed.

Colour organs, along with the pioneering work of artists such as Thomas Wilfred, who was the originator of the Lumia (or light box) in art, are part of a broad range of efforts relating more to colour than image. With the development of the cathode-ray tube it became relatively simple to generate visual image analogues to sound and music through the use of $\mathrm{X}-\mathrm{Y}$ display techniques. This involves routing two sets of signal information or two similar components of the same information (e.g. left and right stereo channels of recorded music) to the vertical and horizontal inputs respectively of a cathode-ray tube. As early as 1953 an American artist exhibited his Oscillons - images created by photographing specially generated signals fed to a c.r.t. ${ }^{2}$

In the mid and late 1960s there was increased development of new techniques. Lowell Cross described his experiments and compositions with

X-Y display art as a kinetic form with music in articles for Source magazine. ${ }^{3,4}$ The use of this type of display as an adjunct to electronic music allowed for another level of interest in a live or taped performance. Although the analogues produced with these methods are not necessarily the only way to interface the elements of sound and visual information, they are generally effective, and have been used in many works in recent years. Cross progressed from oscilloscopes to specially modified television sets and eventually to laser deflection systems, as we shall see later.

During the same period, various artists and composers began experimenting with video imagery. One technique which was "discovered" for artistic purposes was video feedback. In its simplest form, a camera is pointed at the video monitor that it is feeding. As in the familiar situation in audio, oscillations are set up because of the relatively uncontrolled feedback path. By controlling this path, it is possible to use feedback as a versatile method of image generation. Various limiting and processing devices may be inserted into the feedback loop to modify and control the images. The author's introduction to this method was in 1969 in work with Glenn R. Sogge and Timothy Skelly, both composers and artists. At that time, considerable effort was sometimes necessary to convince studio supervisors that video feedback experimentation under controlled situations would not necessarily leave the video chain in flames! However, onde this was done, it became possible to present a series of concerts/events with specially generated video imagery and electronic music.

Up to this point there was no actual electronic interface between the two domains. The initial attempt in this direction, which was moderately successful, was as follows. Oscillators being used in the generation of musical sounds were connected and mixed so that their outputs were fed to a balanced modulator as well as to their normal destinations. These oscillations were then modulated with a frequency high enough that the upper sidebands were in a video frequency range. The output of the modulator was then sent through an encoder to produce a composite video signal. In the intervening years various video processors and "synthesizers" have been developed using i.c. technology and methods borrowed from electronic music. Composers, film-makers, and video artists are continuing to experiment in this area.

One example of such experimentation from the Center for New Performing Arts of the University of Iowa is the Video Cbtour Quantizer System. The basic system is a modification of a standard unit manufactured by Colorado Video, Inc., an American firm. Franklin Miller, a film-maker at the university, started the experimentation

Fig. 2. Method of laser beam deflection used in the Sonovision system.
with this unit. Basically the quantizer is a device which accepts a monochrome video signal and has sixteen adjustable signal comparator thresholds relating to the amplitude of the video signal. At these various levels from black to white along the grey scale, sixteen points can be set to trigger production of sixteen different pre-assigned, synthetically generated colours. With the colour mixing unit incorporated in this version any combination of colours may be set to allow modifications such as synthetic colour generation, grey scale reversal and other effects.

A recent grant has allowed the design and construction by the author of a voltage control interface for the quantizer system. With this interface the sixteen threshold points, or "slice levels," can be determined by the application of a d.c. or a.c. control voltage. This means that a colour assigned to a given grey level range may be made to change with the applied voltage, or that a threshold can be shifted electrically to alter (by colour addition) several other colour areas in the image. In addition, the master outputs of red, green, and blue can each be gated with a control trigger. Signals routed to this total of nineteen control inputs may be used directly, as in the case of electronic music, or may be generated from other music through the use of an amplitude detector or a pitch-to-voltage converter. Another performance possibility is to use control signals derived from other than musical sources, or to split the allocation of control inputs, with some control voltages coming from musical material, and some from other sources, such as devices sampling video signals or sensors attached to dancers. As a part of the grant programme, two colour films are to be produced, one by the author, and one by Peter Tod Lewis, composer and director of electronic music at the

University of Iowa. These films will have specially composed sound tracks to control the video colour quantizer interface.

Another interface project is a work realized by West Coast US artists and engineers Bob Watts, Bob Diamond and David Behrman. The work, called the Cloud Music, uses a video camera trained on the sky during daytime periods. As clouds pass into the field, the changing video signal, sampled at various cursor points on the screen, controls a system by composer David Behrman which produces electronic music "on the spot." The piece functions as a kind of performing sound sculpture (depending, of course, on the weather).

Shortly after small lasers became commercially available, artists began experimenting with them in a variety of ways. The laser light itself is the object of some of these investigations. The highly collimated beams lend themselves to a variety of illumination tasks, including large outdoor geometric constructs using the stationary beams of high power lasers. On the question of light and sound correlation, however, we find that most uses of lasers involve methods of scanning the beam. Various approaches have been tried, and the most sophisticated systems in use today use galvanometer mirror scanners to produce $\mathrm{X}-\mathrm{Y}$ scanning. Thus we find that principles of music-light correlation applicable to oscilloscope type displays find a new and much larger scale medium in $\mathrm{X}-\mathrm{Y}$ laser scanning.

In addition to this simple $\mathrm{X}-\mathrm{Y}$ scanning there are other techniques which are sometimes combined with X-Y systems. By passing a laser beam through an uneven glass or plastic surface, for example, one can generate patterns of a "cellular" nature which results from the interference of the laser light with itself as it passes through the material. If the beam is deflected slightly as it passes through the material, kinetic images related to the deflection signal (e.g. music) may be generated. One of the deflection methods which

could be used in this application involves attaching a small first surface mirror to a loudspeaker (Fig 1). A signal fed into the speaker will cause the mirror to move and deflect the beam. An early experimenter in this area was Lloyd Cross (not to be confused with Lowell Cross), who developed a system called Sonovision ${ }^{5}$ using a loudspeaker covered with a reflective membrane (Fig. 2). In addition, the system, which was intended to be commercially available, had a rotating prism assembly for generating more complex multiple images. A slightly more useful version of this idea uses two loudspeakers (Fig. 3), each of which has a hinged mirror assembly connected to the cone. The hinges restrict the movement of each mirror to one axis. Thus a simple X-Y scanning system is formed. The deflection is limited to relatively low frequencies and the system response is not at all linear because of the many mechanical resonances.

More sophisticated $\mathrm{X}-\mathrm{Y}$ scanning systems use commercially available galvanometer mirror scanners. The first such system assembled for the artistic purpose of exploring kinetic inter-relationships between light and sound was Video/Laser I, an experimental laser deflection system initiated by Lowell Cross, Carson Jeffries and David Tudor at Mills College, USA. This was in May 1969. Soon after, another such system was commissioned for use in the Pepsi-Cola Art and Technology Pavilion at the 1970 World Exhibition in Osaka, Japan. Both of these early systems have been dismantled. However, Video/ Laser III, the latest system constructed by Cross and Jeffries for the Center for New Performing Arts at the University of lowa had its premiere in a concert with orchestra on November 29, 1972. ${ }^{5}$ Improvements and additional electronic control devices are being added on a continual basis by Lowell Cross and the author.
The system used is as follows. The

Fig. 3. Beam deflection system using two loudspeakers, each with a hinged mirror moved by a connecting member attached to the cone.
output beam of a 2-watt krypton-argon laser is split into its component beams. This is achieved by passing the initial greenish-white output beam through a direct vision prism. Any four of the approximately sixteen available colours may then be selected and routed to the four beam deflection systems. Each system contains a beam chopper/interrupter and two mirror scanners for deflection (X and Y). Each deflection component of each channel has its own direct coupled amplifier, and any audio signal may be fed to the systems. The devices used have certain frequency response limitations because of necessary compromises between maximum scanning angle and frequency response.

The maker of the scanners, General Scanning, Inc., through a subsidiary, is now involved in $\mathrm{X}-\mathrm{Y}$ scanning systems for artistic purposes also. One such system, called Skywriter, is designed with X-Y inputs and an accompanying vector generator system to produce a variety of line images, including a kind of animation.

Multi-colour laser systems using large lasers are capable of creating extremely large images on any suitable projection surface, indoors or out, though generally the area must be in relative darkness for best results. The Video/Laser III system mentioned above is used in a variety of performance situations, often with electronic music as a sound source. It is conceived of as an experimental performance and research instrument.

One fairly recent performance with the Video/Laser III system may demonstrate how the original art of "colour music" has progressed to its current position. A performance of A. N. Scriabin's Prometheus was given on

September 24, 1975, with the laser system functioning to realize fully, perhaps for the first time, Scriabin's wishes for the keyboard of light. A specially constructed keyboard interface was used, with a performer playing the written part as indicated in the orchestral score. The keyboard controlled the gating of the various colours, while the images were generated both directly from the orchestral sound and also by electronic means with auxiliary equipment. In addition to the lighting effects, fog and various scents were present in the hall at appropriate points in the performance.
This unusual meeting between the latest technology for realization of one type of kinetic music/light performance and the ideas of one of the earliest and most interesting proponents of this art form may serve as an appropriate point to conclude this brief survey. However, work involving video, lasers, and other systems for the realization of this very old dream of "music light" will undoubtedly be continuing for years to come.

References

1. A. Wallace Rimington, Colour Music: The Art of Mobile Colour, Hutchinson \& Co. 1912 2. Ben Laposky, "Oscillons: Electronic Abstractions" Kinetic Art: Theory and Practice, Dover Publications 1974.
2. Lowell Cross, Carson Jeffries, David Tudor, "Audio/Video/Laser," Music of the Avant Garde, issue No. 8.
3. Lowell Cross, "Musica Instrumentalis Video II(b), Video II(c), VideoII(1) Music of the Avant Garde, issue No. 9.
4. S. R. Wagler, "Sonovision: A Visual Display of Sound," Kinetic Art Theory and Practice, Dover Publications 1974.

The front cover of this issue shows examples of projected multi-coloured images produced by the Video/Laser III equipment described by the author.

Teletext a permanent service?

Officials of the British Radio Equipment Manufacturers' Association estimate that there should be about 12,000 teletext receivers in operation by the end of this year. This figure will include purpose-built sets by British manufacturers, existing colour TV sets fitted with external teletext adaptors, and sets with external decoders similar to the Wireless World design. BREMA members are hoping to get the price of sets down to about $£ 750$ to $£ 800$.
The set makers are anxious for a statement from the government that teletext, at present an experimental service, will soon be established as a permanent public service. Unless this happens they seem unlikely to achieve any substantial sales to the public. Sources close to the Home Office hint that such an announcement could come in the autumn of this year.

Multi-system ambisonic decoder

1 -Basic design philosophy

by Michael A. Gerzon, M.A., Mathematical Institute, Oxford

Abstract

This series of articles describes a decoder capable of decoding all major existing and proposed two-channel surround-sound systems, including the Ambisonic System 45J, SQ, Regular Matrix, BMX and BBC Matrix H. For systems other than SQ, the decoder gives full psychoacoustically optimized results using NRDC Ambisonic decoding technology. In addition, Ambisonic playback of mono, stereo and of three-channel studio-format signals is provided. The decoder is suitable for three-amplifier/four-speaker, four amplifier/four-speaker, and four-amplifier/six speaker reproduction.

The NRDC Ambisonic project has developed a comprehensive technology for creating, encoding and decoding sound ${ }^{1-4}$. While this ambisonic technology can give of its best only with optimized programme material and encoding (i.e. the System 45J described in reference l), the methods can be applied to getting improved results from nearly all existing surround-sound systems. Later articles in this series will give the detailed circuit and some constructional details for a decoder for all the above-listed two-channel systems. As this decoder does a great deal more than any previously-published decoder designs, it is necessary to describe its many facilities in some detail, as well as giving some idea of what the circuitry is intended to do.

The aim of any surround-sound decoder is to provide the listener with an illusion of sounds coming from all (horizontal) directions around him. Moreover, if the decoder is well designed, the directions should be those intended by the recording engineer. and should be heard by a listener through the usuable listening area. Conventional "quadraphonic" decoder designs give very poor images for sounds in inter-loudspeaker directions, especially at the sides, resulting in a rather gimmicky 'ping-pung-pang pong' effect at the four corners.

The full theory used to design ambisonic decoders is mathematical, and computing facilities are required to
carry out the extremely complex design calculations involved. It is clearly not possible to give full details here of why the various parts of the decoders have the exact values that they do, but some idea of what is going on can be given.

Two previous articles in Wireless World ${ }^{1.5}$ have described some, but not all, of the psychoacoustics lying behind ambisonic decoder design. Essentially, the ears use different methods of localizing sounds, not just one or two. The more of these hearing mechanisms that are satisfied the better the sound and accuracy of the result. In particular, if a decoder satisfies several different methods of hearing, the biain has to do far less work to unscramble the complex sound reaching the ears, and the result is particularly "relaxed" listening, with little listener fatigue. While the mathematics of the design is aimed at getting accurate sound localization for all directions, it is undoubtedly true that the biggest musical benefit comes from this consequent low listening fatigue, rather than from any ability to "shoot the pianist".

Some aspects of sound that ambisonic decoders are designed to optimize are now described. At low frequencies, below 500 or 700 Hz , there are three important aspects of sound localization: the "Makita" direction of a sound (the direction one turns to to face the apparent sound direction), the "velocity magnitude" (the degree to which the sound stays in its correct localization as one turns to other directions), and the "phasiness" (the degree to which unwanted components of sound not in phase with the desired sound are heard). It turns out that for all systems other than SQ , it is possible to design a decoder matrix below 700 Hz to get the Makita localization correct for all encoded sound directions. In addition, a careful adjustment of the gain of the various signal components in the decoder permits the velocity magnitude to be made correct also. Thus, at low frequencies, a listener will hear all directions correctly reproduced in direction, no matter which way one faces.

Phasiness is more of a problem with two-channel systems, as it is not
possible to design decoders that get rid of it altogether. The effect of phasiness is not only to blur the sound image, but also to create an unpleasant sensation often described as "pressure on the ears" that actually makes some people feel sick, although others don't seem to notice it much. Studies by the BBC6. and NHK^{8} have given a good indication of how much phasiness can be tolerated. In addition, it is found in practice that phasiness is more acceptable for sounds behind the listener than for sounds in front. Two-channel ambisonic decoders are therefore designed for very low phasiness in the front sector of sounds, while giving rather higher phasiness in the rear.

There is another reason why phase shifts cause poor directional reproduction that comes into action below 300 Hz . In a real-world listening room, the loudspeakers are at a finite distance from the listener (often about 2.5 metres for British listening rooms), which means that the sound wave from each loudspeaker arrives as a curved wavefront at the listener, rather than as a plane wave. This curvature can be shown to cause the "phasiness" components of the reproduced directional sound to be converted into rotations of sound images around the listener at low frequencies. However, it is possible to remove these low-frequency errors by means of two high-pass filters in the "velocity signal" paths in the decoder. These speaker-distance compensation filters are RC types with -3 dB points at about 20 Hz for 2.7 m speaker-to-listener distance. this may seem too low to worry about, but listening tests here confirmed the design theory and show that image displacements of as much as 15 to 30° can occur for instruments such as double basses when situated behind the listener unless distance compensation is used. Distance com pensation does not turn a bad decoder into a good one, but it does give a "tighter" and more well-defined sound to an already good decoder design.

The ears use different methods of locating sounds at higher frequencies say from 700 Hz to 5 kHz . However. a rather magical result emerges from the

Fig. 1. Block diagram of multi-system ambisonic decoder, switching arrangements omitted. Shelf filters, inoperative for SQ decoding, depend on system being decoded, as does the resistor matrix. Also not shown is switching for C_{B} or C_{R} output.
design theory that states that, in effect, the basic sound localization of a decoder will automatically be the same at low and higher frequencies provided that the loudspeaker outputs of the decoder are derived via a particular type of amplitude matrix, the matrix involved depending only on the loudspeaker layout being used by the listener.
Besides getting the basic high frequency localization correct, it is necessary to minimize phasiness in this frequency range also, and to ensure that the sound image does not move around as the listener faces other directions. To get this last requirement right, it turns out that the best decoder design at higher frequencies involves different relative signal gains from those apt at low frequencies, so that the decoder has to be made frequency-dependent. The

Fig. 2. Phase-compensated shelf-filter circuits allow frequency-dependent decoding. Convertional $R C$ shelf filters would cause unwanted phase differences between signal paths.
effect of minimizing the image movement as the listener rotates his head is to avoid an unpleasant "in-the-head" sensation often, but incorrectly, described as "closeness" of sound by other authors 9 .
There are numerous other detailed aspects of decoder design, particularly those involving the way reverberation is reproduced (where a careful choice of encoding system such as $45 \mathrm{~J}^{1}$ can help), the effect heard by listeners seated away from the centre of the listening area, and the tone quality of the sound. It may seem strange that absolutely flat frequency response reproduction can sound coloured when reproduced through several speakers, the coloration depending on the precise speaker feeds used in the decoder. Many simple "matrix quadraphonic" decoders suffer from a tubby bass or harsh treble due to these effects, However, it is possible to account for most of these effects by the psychoacoustic design theory, and to minimize them in the decoder design. In practice, sounds encoded at the back are allowed to sound a little more colored than frontal sounds in ambisonic designs, because the ears appear to be more tolerant of marginal faults at the back. although one should assume that they are infinitely tolerant!

All decoder designs for two-channel encoding systems are a compromise between conflicting factors, and no design can achieve perfect performance in all ways. In this respect, the design of decoders is akin to loudspeaker design in being in the final analysis an art based on experience and listening. However, the science (i.e the comprehensive psychoacoustic theory) is a very necessary part of reducing the almost infinitely complex design problem to a point where the designer can be sure of achieving his particular compromise as well as possible. The compromises inherent in these designs are based on the requirements:

- for front-stage material, the sur-round-sound should be subjectively superior to stereo for musical listening
(few existing designs meet this minimal requirement!),
- good results for listeners facing non-frontal directions and in non-central listening positions, especially behind-centre, and
- "musicality" of effect on both "ambient" and "surround" programme material, leading to low listening fatigue.
To some extent these requirements conflict with those based solely on the localization of direct sounds, such as in the experimental results quoted in ref. 10 , where image sharpness for a for-ward-facing central listener has been achieved in a simple matrix decoder at the expense of "in-the-head" sound and severe image mislocation for non-for-ward-facing and non-central listeners. Good single-sound localization for most directions and listening positions can be achieved using a signal-actuated variable matrix decoder, but such decoders give a high level of listening fatigue on music due to the constant variation of signal parameters. Such decoders may be useful for surround-drama, where accuracy of localization becomes more important than "musicality" or low listening fatigue, and a fully-fledged ambisonic 'variable matrix' design is under development for such specialist applications. However, there is no doubt that a non-variable decoder is going to remain the preferred method of serious listening to music despite its superficially less "impressive" performance.

The basic diagram of the ambisonic decoder to be described in detail in later parts is shown in Fig. 1. Left and right signal inputs are fed to a sum-and-difference matrix to derive the sum $\Sigma=L$ +R and difference $\rfloor=\mathrm{L}-\mathrm{R}$, because this leads to simplification of the later parts of the decoder, as well as to a slightly greater tolerance to small component errors. These two signals are each fed to 0° and 90° phase shift networks, and the 90°-shifted signal is also phase inverted to yield a -90° phase shifted signal in each case. The

(a)

(b)

Fig. 3. Methods of feeding four loudspeakers using four amplifiers (a), and three amplifiers (b). Speaker terminals marked + are the positive-phase terminals in each case.

Fig. 4. Compensation is provided for non-square layouts. Angle ϕ is set on a layout control.

Fig. 5. Better results can be obtained from four-amplifier, six-speaker regular hexagon decoding. Connections are shown for two hexagon layouts with the angle $\dot{\square}$ used in the equations of the output matrix.

4 arros 6 speakers Layout control $\phi=30^{\circ}$
phase-shifters used are high precision types, as the ears are capable of hearing very small errors in localization (as little as 2° in real life). Previous "quadrophonic" decoders have not required such high precision mainly because they gave in any case a poor decoded effect due to sup-optimal design.

The six signals are then fed to a resistor matrix, which derives the required combination of these signals to produce the correct pressure and velocity signals $\mathrm{W}^{\prime}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$, for the particular encoding system in use. (For a discussion of this aspect see ref. 1, in particular in connection with its Fig. 2). The resistor matrix used is different for different encoding systems, so that switching is provided for different matrix resistance values. The resistor matrix, which involves no active circuitry, also includes a switched three-channel input option suitable for use with three-channel ambisonic mastertapes. In a later article we hope to describe live ambisonic recording for the keen tape enthusiast. These three channel inputs only cost a few resistors and input sockets in the present decoder, and so come virtually for free; in addition, they provide useful test signal inputs for setting-up purposes. We shall give the resistor matrix formulas for the various encoding systems for the signals $\mathrm{W}^{\prime}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$ in part 2 of this series. An output $-\mathrm{jW}^{\prime}$ is provided for phasiness-control in some systems, as described in references 1 and 3.
The frequency-dependent aspects of the decoder are provided by the shelf filters which give one decoding matrix at low frequencies and a second at high frequencies, with the transition centred at 400 Hz . Were conventional RC shelf filters to be used, there would be phase shifts between the various signal paths, which would cause quite bad localization errors. For this reason, the shelf filters are designed to give phase shifts identical to one another by making them "all-pass" types. The basic circuit of the phase-compensated shelf filters is shown in Fig. 2. The particular arrangement shown has an input impedance of R at all frequencies, which means that it is seen by the resistor matrix as a resistive load, suitable for terminating a matrix circuit. The value of $\mathrm{R}_{2} / \mathrm{R}$ controls the ratio of high-to-low-frequency gain of the shelf, and R_{3} provides extra h.f. gain to make up the losses of the preceeding resistor matrix.

Thus the shelf filters are made to do five different jobs: terminate the matrix circuit, provide gain, give a different matrix circuit at low and high frequencies, give matched phases over the transition frequency band, and give an overall flat frequency response to the decoder at all frequencies.
An additional complication arises because different methods of encoding require different shelf filters in the decoder. In practice, the shelf filters required for BMX, RM, 45J and BBC H
differ only slightly, so that a compromise choice has been made to do all these systems. Decoding mono, stereo and three-channel studio format requires, for best results, a different set of shelf filters, and SQ requires that no shelf filters be used. (SQ decoders cannot be designed to give full ambisonic results; there is a mathematical theorem to this effect. The decoder for SQ provided is, however, less phasey in quality than the SQ designs on the market, and was designed specifically for incorporation into this design. It is not in accordance with CBS Laboratories' SQ specification, but in the author's opinion, it is better than decoders that are.)
The switching of the shelf filters involves equipping the op-amps of Fig. 2 with several filter circuits, which are switched in and out as required.
The outputs of shelf filters acting on Y^{\prime} and $-\mathrm{jW} \mathrm{W}^{\prime}$ (see Fig. 1) are added to reduce front-stage phasiness, and the velocity signals are then subjected to the RC high-pass distance compensation. This gives us three signals $\mathrm{W}^{\prime \prime}, \mathrm{X}^{\prime \prime}$ and $\mathrm{Y}^{\prime \prime}$ representing respectively the signal pressure, forward component of acoustic velocity, and leftward component of acoustic velocity heard by the listener. These are fed to an output amplitude matrix. which includes a layout control adjustment to adjust the outputs of the decoder to match different shapes of rectangular loudspeaker layout in the room.
The decoder provides six different outputs L_{B} (left back), L_{F} (left front), R_{F} (right front), R_{B} (right back), W" (pressure) and either C_{B} (due back) or C_{R} (due right), switched. The way these six outputs can be used is itself an interesting story, for they can be used to provide decoding via four loudspeakers in a wide range of rectangle shapes using either four amplifiers, Fig. 3(a), or, remarkably, using just three power amplifiers as shown in Fig. 3(b). The three-amplifier set-up in no way means that there is any compromise in the psychoacoustics of the decoded signal, as precisely the same speaker signals are produced as in Fig. 3(a)!
To see this, we first remark that the outputs of the decoder are given by the formulae
$L_{B}=1 / 2\left(W^{\prime \prime}-\sqrt{ } 2 \sin \phi X^{\prime \prime}+V^{2} \cos \phi Y^{\prime \prime}\right)$ $L_{F}=1 / 2\left(W^{\prime \prime}+\sqrt{ } 2 \sin \phi X^{\prime \prime}+\sqrt{ } 2 \cos \phi Y^{\prime \prime}\right)$ $R_{\mathrm{F}}=1 / 2\left(W^{\prime \prime}+\sqrt{ } 2 \sin \phi X^{\prime \prime}-\sqrt{ } 2 \cos \phi Y^{\prime \prime}\right)$ $R_{\mathrm{B}}=1 / 2\left(\mathrm{~W}^{\prime \prime}-\sqrt{ } 2 \sin \phi X^{\prime \prime}-\sqrt{ } 2 \cos \phi Y^{\prime \prime}\right)$ where ϕ depends on the setting of the layout control, being 45° for a square layout, and being equal to the angle ϕ shown in Fig. 4 for a rectangle layout. From these formulae
so that

$$
L_{\mathrm{B}}+R_{\mathrm{F}}=L_{\mathrm{F}}+R_{\mathrm{B}}=W^{\prime \prime}
$$

$$
\begin{aligned}
& L_{\mathrm{B}}=W^{\prime \prime}-R_{\mathrm{F}} \\
& R_{\mathrm{B}}=W^{\prime \prime}-L_{\mathrm{F}},
\end{aligned}
$$

and it will be seen that the rear speakers of Fig. 3(b) indeed are connected so that the potentials of their "positive phase" terminals relative to their negative phase terminals are $W^{\prime \prime}-R_{F}$ and $W^{\prime \prime}-L_{F}$
respectively.
Even more remarkable however, are the four-amplifier six-loudspeaker arrangements possible with this decoder. It has been known for several years that decoders using six loudspeakers are capable of better results than is possible using four, no matter how well-designed the decoder may be. If properly used, the extra speakers give more solid image location over a larger area, with less tendency for the image to hug the loudspeakers than when using four, particularly on difficult waveforms such as audience applause. It has not been possible to market six-speaker equipment; few homes could properly accommodate it, and the market for such special equipment was thus too small to justify manufacture. However, the ambisonic decoding method permits the same decoder and the same four amplifiers to be used for six speakers for the few who can manage it, making this improved form of decoding domestically available for the first time. We emphasise that in no way does the use of four amplifiers imply substandard results: exactly the same speaker signals are given as one would design a psychoacoustically optimized six-amplifier decoder to give.

The six-speaker connections for two shapes of regular hexagon layout are shown in Fig. 5. The three speakers'that are fed in a "simple" manner in each case form an equilateral triangle of speakers; this helps minimize the subjective effects of slight mismatches of amplifier gain. The signals C_{B} and C_{R} are

$$
\begin{aligned}
& C_{B}=1 / 2\left(W^{\prime \prime}-\sqrt{ } 2 X^{\prime \prime}\right) \\
& C_{R}=1 / 2\left(W^{\prime \prime}-\sqrt{ } 2 Y^{\prime \prime}\right) .
\end{aligned}
$$

Although detailed instructions for calibrating and using the decoder will be given at the end of this series of articles, it is worth emphasizing now that all amplifiers and loudspeakers

Fig. 6. Approximate listening area for ambisonic decoding (shaded) with a rectangle speaker layout obtained for BMX, 45J, Matrix H and RM systems as well as stereo. Optimal listening is at the centre (X).
must be accurately matched for correct ambisonic results. Unlike "quadraphonic" decoders, both front and rear loudspeakers co-operate to produce sounds in any direction. Thus, for example, the rear speakers provide outputs that help to reinforce the localization of sounds that are reproduced in front of the listener. Thus one cannot try turning the rear speakers up or down in the mistaken idea that the front and rear are independent of one another. When the outputs are not matched, the sound field tends to "fall apart"; in fact turning down the rear speakers often makes them much more audible (as distracting noises at the back) than in a correct balance.
While it is not absolutely necessary to have all power amplifiers of the same make, they should be adjusted for identical gains and phases, and one should check (e.g. by using an X-Y oscilloscope display) that they have substantially identical phase responses over the audio band. If in doubt, identical amplifiers should be used. While identical speakers should be used, a small number of speaker manufacturers (e.g. IMF Electronics) have taken trouble to match the different models in their range carefully, and in such cases different models can be used at front and rear. Again, if in doubt, use identical speakers for best results
The decoder not only reproduces surround sound from a variety of existing systems, but also handles mono and stereo, using ambisonic techniques to get the most natural possible reproduction (using four or six speakers) from existing records and broadcasts. Except for exceptional stereo material, the decoder does not create "pseudo surround sound", but reproduces stereo over a conventional frontal stage with a subtle enhancement over two-speaker stereo, and without any gimmickry. The mono decode mode reproduces a mono source from straight in front, but the

Fig. 7. Most stable front images are provided by arrangement (a), most stable side images by (c), while (b) is a compromise between these extremes.
rear speakers help to lock the image solidly in space behind the front loudspeakers. Neither mono or stereo decode modes enhance badly recorded material, but neither do they degrade it any further. In practice, many ambient SQ classical recordings, such as those released by EMI, will be found to reproduce better in the stereo decode mode than via SQ decode mode, owing to the inherent limitations of the SQ system.
Fig. 6 shows the approximate usable listening area for most decoding modes (excluding SQ) in a typical domestic room using a rectangle layout. The listening area will in practice depend on the loudspeakers used, the room acoustics, the layout shape used, the programme material. and also on the system being decoded. The type of listening area shown has been obtained both with ambisonic recordings made in concert halls, and with commercial "easy listening" (sic) music in the BMX, 45J, Matrix H and RM systems, as well as with stereo material played in stereo decode mode.

It is found that a longer-than-wide layout of four speakers as in Fig. 7(a) gives the most stable front images for non-central listener and the least stable side images. A wider-than-long layout as in Fig. 7(c) gives excellent stable side. images for most listeners, although the front stage tends to be drawn over to the nearest speaker. A square layout,

Fig. 7(b), is a compromise in terms of image stability between these extremes. Extremely thin rectangles (whether long or wide) cannot be expected'to give good results, although the layout control adjustment will help to minimize the inevitable defects.
Part 2 will give details of the decoding matrices used. Patent rights in circuits described in this and subsequent parts of this article are owned by the National Research Development Corporation. A kit of parts for the decoder will be available from Integrex Ltd - see advertisement.

References

1. Gerzon, M.A. NRDC surround-sound system. Wireless World vol. 83, Aprill 1977, p. 36-9.
2. Gerzon, M.A. Ambisonics Part II: Studio techniques, Studio Sound, vol. 17, Aug. 1975, pp.24-6. 28, 30, Correction: ibid vol. 17. Oct. 1975, p. 60
3. Gerzon, M.A. Optimum Choice of Sur-round-Sound Encoding Specification, preprint A5, 56th AES Convention. Paris, 1st March, 1977.
4. Gerzon, M.A. Design of precisely coincident microphone arrays for stereo and surround sound, in collected papers, 50th AES Convention, London, March 1975
5. Gerzon, M.A. Surround sound psychoacoustics. Wireless World, vol. 80, 1974, pp.483.6.
6. Bower, J. S Subjective effects of interchannel phase-shifts on the stereophonic image localization of wideband audio signals, BBC Research Department Report, BBC RD1975/27, Sept. 1975
7. Bower, J. S. Subjective effects of interchannel phase-shifts on the stereophonic image localization of narrowband audio signals, BBC Research Department Report, BBC RD1975/28, Sept. 1975.
8. Nakabayashi, K. Method of analyzing the quadraphonic sound field, J. Audio Eng. Soc., vol 23, 1975, pp.187-93.
9. Meares. D. J. and Ratliff, P.A. Development of a compatible 4-2-4 quadraphonic matrix system. BBC Matric H, EBU Review (Technical) no. 159, Oct. 1976.
10. Ratliff, P. A. and Meares, D. J.. BBC Matrix H. Wireless World, vol. 83, May 1977, pp.41-5.

Broadcasting satellite receivers

Mullard's research laboratories have released details of the microwave receivers which they, in co-operation with Philips at Eindhoven, have built for picking up broadcast television signals from "Hermes", the Canadian-American Communications Technology Satellite (News, April, p.40). The receivers convert the 12 GHz f.m. broadcast signals picked up by small dish aerials to a form suitable for feeding into the aerial socket of standard NTSC colour television sets. Five receivers and associated 1.6 m (or in some cases 1.2 m) diameter metal-coated glass-fibre-reinforced polyester parabolic aerials were supplied by Philips, and one receiver of somewhat different design but using the same aerial was
supplied by Mullard. To accommodate satellite drift provision was made for remote control motor tracking of the aerials on a single axis.

An outdoor part of the receiver with an integral waveguide horn is placed at the focus of the aerial and provides fixed-tuned conversion from 12 GHz to 410 MHz , with a noise figure of about 7 dB . It consists of a microstrip Schottky-barrier-diode mixer, followed by a 40 dB amplifier. The local oscillator is a Gunn device delivering about 10 mW at approximately 11.7 GHz and, in the Mullard version, this is located in an aluminium cavity integral with the converter. Diélectric temperature compensation maintains frequency drift within 5 MHz (over the range $-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$) which is well within the range of the automatic frequency control applied to the second mixer. This is located in an indoor unit fed with the 410 MHz signal by a coaxial cable.

The indoor part of the receiver provides further conversion to 120 MHz prior to limiting and frequency discrimination to yield the NTSC composite video colour signal and 5.14 MHz f.m. sound signal. The last-mentioned is converted to the normal 4.5 MHz intercarrier frequency and with the video is used to amplitude-modulate a 500 MHz carrier to provide a 10 mV signal suitable for the aerial input of a standard NTSC colour television set. Extensive use is made of integrated circuit techniques.

The Mullard receiver is installed at the Canadian government communications research centre in Ottawa. The aerials were aligned first by a simple level of compass then final adjustment was made by means of the satellite signal itself and a signal strength meter. Mullard say excellent picture and sound quality was achieved and the received signal strength was close to the expected level of -105 dBW .

Plessey chief wants social responsibility

Sir John Clark, chairman and chief executive of Plessey, has expressed concern about unemployment caused by technical change. Plessey workers making electromechanical telephone exchange equipment are threatened with redundancies as a result of the Post Office's unexpectedly sudden decision to change to electronic exchanges. Speaking at the opening of the London Electronic Component Show, Sir John asked "Should technology be pursued for technology's sake? And what impact will the changes caused have on people? We are constantly being told we live in the technical age. But there is, I think, an optimum beyond which it is not cost-effective to go. The impact of change on people should be given the most urgent consideration. Not only how it will affect the jobs they do and how they do them, but also on the crucial social question of whether some jobs will remain to be done at all.
"In contemplating the equation of change", continued Sir John, "the social consequences must be taken into account and weighed carefully against any other advantages which might accrue. This is why one of your major
customer-industries - namely telecommunications, which as you know Ples sey has a considerable interest in - has appealed to the Government against the cumulative effects of Post Office cuts, recently announced, in the traditional electromechanical telephone systems. Of course we believe the British telecommunications industry should move forward quickly into the new technical area with equipments brought to modern technical standards. But some regard must be paid to social responsibility by the decision-makers. By their decisions, they have the power to wipe out the livelihood of thousands of people without adequate time being given for an orderly and manageable transition from the old to the new. In my view, it should not be done without due regard to the consequences."

Plessey is one of the companies mentioned by Mr Ernest Harrison, chairman of Racal, as possibly being involved in a rationalization of the British electronics industry (see leader)

A to D conversion at 30MHz

A design group at Cambridge Consultants working on high speed ana-logue-to-digital conversion have developed a convertor which they describe as the fastest eight-bit a.d.c. in Europe. It will perform, they say, "a full accuracy eight-bit conversion every 33ns." Two have now been delivered, one each to Plessey Ltd, whose Allen Ciark Research Centre developed a high speed comparator using the circuit

A new independent viewing centre for use with the EMI X ray scanner. It provides a display and data reprocessing at a point remote from the main scanner. The area of interest can be enlarged and there are other image manipulation facilities.

element, and the Admiralty Surface Weapons Establishment.
Two years ago CC were working on a military contract for which they developed a six-bit, 30 MHz convertor Cambridge believed the technology available would allow the development of an eight-bit version. With the completion of the previous contract, however, they needed funding and a client to build both the circuit element to Cambridge's specifications and a circuit in which to use it. The money came from the Ministry of Defence directorate for Components, Valves \& Devices (CVD), and Plessey's comparator circuit provided an opportunity to use Cambridge's expertise.
The Cambridge equipment is designed for use in radar signal processing and transient recorder applications where low aperture uncertainty, a parameter affecting the accuracy of sampling at a signal's zero crossing point, and full accuracy at high sampling rates are required
A commercial version, the ADC 30.8 is available from Cambridge Consultants. It includes a matched, high speed, low jitter sample hold, operates from a 50 ohm analogue input and samples with an aperture time uncertainty of 10 ps r.m.s. The sample command input and the offset binary coded digital output, overrange and internal 30 MHz clock signals are all of 50 ohm impedance and e.c.l. compatible. The unit, priced at $£ 3,510$, comes with power supplies in a 19in case. The designers were Dr Chris Davies and Julian Coles, and the project manager was Dr Robin SmithSaville

Post Office buys solid state stored speech

The Post Office have installed two prototype automatic, changed-number intercept equipments for service trials in Birmingham and Chelmsford telephone exchanges. If, at the moment, a number is changed the caller, on dialling the old number normally has his call intercepted by the operator, who then tells him the new number. The new system puts the caller through to an automatic spoken message which is stored digitally in memory. This stored message is passed on to the caller

The equipment supplied by Pye TMC; builds up the message from a limited vocabulary of words and phrases. Each word or phrase is decoded from its digital form and kept going round an audio highway. If one were to listen to one of these highways one would hear a single word or phrase repeated continuously. Line circuits which recognise that a call has reached a disused line are programmed to select the highways in the correct sequence to build up a message for that line. A test message is available by dialling Chelmsford 62101

MRUA call for mobile radio "Annan'

Following the Home Secretary's call for comments before the 1979 World Administrative Radio Conference the Mobile Radio Users' Association have published their submission to the Home Office. The Association, who say they represent 80% of all private mobiles in the UK, submit that

- Mobile radio use should be encouraged on economic grounds
- Demand will increase, also because of the need for economies.
- The Home Office's predictions of spectrum requirements "are based on reports which appear negative in spirit." - 100 MHz extra spectrum is needed for mobile radio, the extra frequencies being found by moving.fixed services to higher bands, standardising on 12.5 kHz channel spacing, and releasing frequencies from bands 1 and 3 , and other places in the spectrum allocated but under-used.
- Mobile radio is important enough to justify setting up a body like the Annan Committee whose conclusions should be published.
The MRUA say the submission is based on feedback from their members, study of the Home Office Warden Report and Pye's Pannell report, a survey which MRUA did of all p.m.r. users in the UK, and other submissions which they have seen. The MRUA believe that mobile radio is the one use of spectrum which gives tangible and measurable economic benefits and, since most western countries' problems at the moment appear to be economic, mobile radio ought to have first priority. The UK commercial and industrial world was not yet conscious of the benefits offered by p.m.r. and so the government should actively encourage them to use it, instead of restricting p.m.r's use. Demand may be artificially low, say MRUA, because of delays in issuing licences. The submission continues: "Our main objection to the policy apparently to be followed by the UK delegation is that their attitude from all indications to date appears to be negative. It seems to be a matter of how few people should use radio and how small the necessary allocation can be, whereas we feel the attitude should be the opposite."

MRUA also say they believe that if the government has allocated to it large areas of the spectrum which they do not use they should release them for p.m.r.
To standardise on 12.5 kHz would "in some measure degrade system performance, but this must be tolerated in the interests of spectrum economy. However we are of the opinion that any further channel splitting is not a true economy with existing modulation systems owing to degradation of signal to nomse ratio." This view had been expressed before when channels had
been progressively split as technology developed: "Our objection to a further split in channels is not based on any shortcomings of the equipment, which may well be capable of performing at narrower spacings; it is based on the degraded signal-to-noise performance resulting from the reduced bandwidth. The MRUA would oppose any move away from the general policy of two frequency working as a result of pressure from any other administration. They also believed that fixed point to point links should be moved eventually to beyond 512 MHz . Propagation difficulties and high costs would prevent the use, for the time being, of frequencies in the $850-960 \mathrm{MHz}$ band for p.m.r.
"We believe that in the interests of progress it is too easy to underestimate the information capacity of simple speech. Speech has the advantage of infinite flexibility and to a small extent an additional range of meanings resulting from tone of voice. It is unlikely that data systems will ever match this, and they are costly both in capital and maintenance terms. We believe that there are a few p.m.r. applications which could usefully consider data, whereas we believe that many government services, such as police and fire brigades, could make great use of data for routine messages, and thus effect spectrum economy in those regions of the bands."

No two uses of p.m.r. are alike, they add, and they would oppose any blanket for measuring channel occupancy.
The British Gas Corporation have published a paper presented to a private meeting of the Joint Radio Committee
of the nationalised industries held at Lincoln College Oxford in late March. The main points of the speech made by East Midlands Gas Marketing Board director Peter Quinn are that: the use of self-identification in the calling procedure takes up to 20% of the message length, and can exceed the message time; that the greater demands on operators made by selecting among a number of base stations "is not ideal, and that his time could be more beneficially spent controlling. wörk allocations, etc"; that operators need to be well trained to control incoming calls, and to ensure that all calling mobiles are correctly acknowledged, passed on immediately or put on standby; the amount of information that has to be passed on by a fitter takes some time and "represents poor use of the channel"; and the passing on of a message to a third party often involves bringing whoever is to receive the message into the radio room to take over the equipment for the duration of the call, with considerable disturbance.

On selective call systems Mr Quinn noted that their use in the gas industry had reduced call sign transmission time, shown a caller immediately that his call had been received, alerted fitters returning to vehicles that a call had been made while they had been away, all of which produced "better channel management and hence the possibility of supporting more mobiles per channel."

The normal view of selective calling systems among other users appears to be that until interference becomes very much worse the selective calling equipment would provide unrequired facilities at greater cost. Hence Mr Quinn's remark that they had been "slow to find supporters." He added that they would be an essential part of future fully automated systems.

Viewdata cracks the PO armour

Details are emerging of the Post Office's delayed Viewdata market trial, to begin in the middle of next year. One thousand sets are to be distributed among interested viewers selected to represent an exact cross-section of the British population, according to income and social class, chosen from 6,000 applicants. The Post Office have even stipulated that the suppliers of the sets. ITT, Philips, Thorn, GEC and so on, supply a proportion of the 1,000 according to their market share. Although the news that the Post Office and the manufacturers were co-operating closely was published in the annual report of the British Radio Equipment Manufacturers' Association, issued on May 19, the Post Office is reluctant to discuss the experiment as yet. In a statement issued to Wireless World
they said: "We have agreed with BREMA on an integrated approach to the development of Viewdata decoders. This employs a unit in the tv sets which will also include the line interface with the telephone network and as such will demodulate the incoming signals from the telephone line and also generate appropriate loop-disconnect pulses for calling the designated Viewdata computer." They said they would be making an announcement shortly.
The Post Office originally requested that the sets used for the test should be as near as possible to the final production models but the manufacturers told them this would be out of the question in the time available. For that reason rather more equipment will be hanging outside the set than the viewer who buys Viewdata equipment would
expect to see if the trial is successful. In addition the Post Office will be providing isolating equipment and "line terminating units" which perform the same function as the standard PO modem but have a lighter specification. When the full Viewdata service is operating the Post Office will make available higher quality lines to make possible this slight easing of tolerances. The manufacturers will be building into the sets or connecting to them a teletext decoder and a Viewdata decoder module.
Clearly this is the first time the Post Office has moved from its determination to prevent anyone connecting any equipment to a telephone line other than that it has supplied itself. Equally clear is that unless it agreed to this the Viewdata service would founder. While the Post Office is taking no chance of risk to its personnel or equipment there is some talk of using two stages of isolation from the telephone line there is no that some in the electronics industry will see this as setting a precedent.
Meanwhile in Germany the competition to run the Viewdata service is hotting up, and for once British manufacturers are making the running in supplying to whoever wins. At the end of May representatives of the German press met in Hamburg to decide their tactics for running the proposed teletext service, and at the largest German electronics show, the Funkaustellung, (August 26 - September 4) both they and the broadcasters will be competing to show that they and not the other are the ones who deserve the prize. The German press are arguing that teletext is a newspaper of the air, while the broadcasters argue that it is
part of their medium. And with Viewdata coming the German PTT in Bonn, who have already bought the Viewdata software programme, want to keep a grip on the system whoever wins. The German post office have already taken the BBC's Ceefax service and shown it to some of their staff, and the BBC have German sub-editors working with them. At the Funkaustellung there will be demonstrations, including those by British tv manufacturers, notably GEC. Philips and ITT will also be involved.

GEC have also announced that they have delivered to the German Post Office a 4080 computer system for the proposed German equivalent to Viewdata, the Bildschirmtext. The hardware also includes a 128 kbyte core store, 4.8/4.8 Mbyte fixed/exchangeable cartridge disc, magnetic tape storage and paper tape equipment. GEC say the equipment was installed at Darmstadt five weeks after official receipt of the order.

In February we reported (p.40) on a system which used teletext to provide information for the deaf. Now teletext is being used for the blind. Clarke and Smith last year developed with the National Research \& Development Council a Braille computer terminal that would fit into a suitcase. It consists of a typwriter keyboard for writing and a 48 character, 14 inch long touch strip operated by t.t.l. controlled solenoids. The information is put in one line at a time and the operator signals "next line" for the tactile display to be changed. The operator can also skip back to previously-read lines.
The snag at the moment is the high price, $£ 2,800$, but a read-only version is available at around $£ 500$.

Alternative to cellular radiotelephone proposed

Three radio common carrier firms have asked the FCC for permission to build land test a new radio telephone and paging system in competition with the ART cellular system in the Washing-ton-Baltimore area (WW June p40). The alternative would cost just over \$1 million with equipment and technical help to be provided by Harris Corporation. The group have told the FCC they could test and install the service by the 1979 deadline. It would, according to Harris, be less costly to build and maintain, and would use digital transmission to provide the "ultimate in communications security." The pocket pagers and radiotelephones provided to customers would be lighter and less expensive than those currently in use.
the Harris system would use a single powerful transmitter to cover the same area instead of the many base station transmitters within small geographic
cells proposed in the cellular system. It would also operate in the 900 MHz band. The single, high power. broadband transmitter, similar to that used in broadcasting, would cover 30 to 50 miles in radius. Ninety-six or more channels could be accommodated by time division multiplexing to mobile units. Broadband remote receivers could pick up conventional narrow band f.m. signals from the mobile units. The receivers would "transmit the spectrum occupied by mobile units back to the central base station via microwave links, where signal processing will occur. The system does not require wireline links between satellite receivers and the base station. The only telephone lines that will be required are those interfacing the [radio common carrier'sl main terminal with the telephone company's central office equip ment".

Naval weapon life study

The Royal Navy has initiated a three year study aimed at reducing the life cycle costs of naval weapons equipment. Announcing the contract to carry out the study, Mr Brian Mair, manager of Plessey's Product Assessment Laboratories, said the analytical study was intended "to produce rules by which designers of future weapons equipment can predict the life cycle cost of that equipment." The reasons for the study "will become apparent when you consider the way modern technology has changed the Navy's equipment."

Naval equipment has become much more complicated, and difficult to repair. It is no longer possible to keep a full set of spare parts on board ship and expect sea-going personnel, no matter how well trained, to be able to repair it on the spot. It is more likely that plug-in modules would be used which can be repaired when the ship is returned to port. All that is needed is to identify a faulty module and replace it. The difficulty, which the Navy hopes the Plessey study will sort out, is that ships may be at sea for long periods. It is not certain which equipment is more likely to fail, or how much spare equipment it is economical to store in a ship, even with the high reliability the Navy needs. The design of the equipment can make these variables more predictable. As Mr Mair said, "There is an increasing cost of materials support to the Navy for modern weapons equipment. The designer can make trade-offs between reliability of equipment and subsequent maintenance costs. The study is to understand these trade-offs and to study how they can be more effective in the use of money in future.

The cost of the study is undisclosed, but most of the expenditure will be in the salaries of the 14 scientists who will be engaged on it for the next three years. According to a Plessey statement, "The Plessey team will be devising a series of computer operated models in a form which can easily be used by project design teams. The data, vital to validate the models, is being obtained with the co-operation of other major defence contractors."

Brian Mair is now taking charge of an expanded business. Product Assessment Laboratories is now augmented by Plessey Reliability Service and Plessey Calibration Service. The group is called Plessey Assessment Services, of which Mair is business manager. His previous post as manager of PAL will be taken over by Geoff Matthews. The expansion means that PAS will be recruiting over 50 engineers and technicians over the next two years to work at their Titchfield, Hants, base.

Digital television via satellite

Multiplexed 60Mbit/s PAL television and sound signals sent through Intelsat IV from Goonhilly

by M. E. B. Moffat, M.A, D.Phil, M.I.E.E., M.Inst.P. BBC Research Department

For many years now the transmission of colour television and sound signals via geostationary satellites has made possible the world-wide exchange of programmes for broadcasting, either "live" or with a few hours delay to suit programming. Such transmissions usually involve analogue baseband signals and f.m. techniques, but in recent years interest has grown in digital coding in conjunction with multi-phase-shift keying modulation
Provided that efficient bit-rate reduction and modulation methods are used, theory shows that digital coding can form the basis of a better tv transmission system than f.m. for the economic use of r.f. bandwidth and power. The DITEC system of Comsat Laboratories in the USA, described in 1972 ${ }^{1}$, was the first practical attempt to realise a digital system of this kind. It has been used in North America for the experimental transmission of NTSC 525 line, 60 field/s. 4.2 MHz bandwidth colour television signals in the form of a $33.6 \mathrm{Mbit} / \mathrm{s}$ digital signal through geostationary satellites. Four-phase-shift keying modulation was used, occupying an r.f. bandwidth of about 20 MHz , which is about half of that available in an Intelsat IV transponder

To transmit a high-quality picture using $33.6 \mathrm{Mbit} / \mathrm{s}$ for PAL 625 line, 50 field $/ \mathrm{s}, 5.5 \mathrm{MHz}$ bandwidth colour television signals, i.e. for System I signals as broadcast in the UK, is a more difficult problem than DITEC had to cope with. This is because of the higher horizontal and vertical resolution, offset somewhat by the reduced field-rate.

In 1974 the UK Post Office agreed to support a BBC Research Department proposal that experimental digital transmissions of System I signals should be attempted via an Intelsat IV satellite. The bit-rate envisaged for the video signals was between $44 \mathrm{Mbit} / \mathrm{s}$ and $54 \mathrm{Mbit} / \mathrm{s}$. Added to this would be bit-rates corresponding to error-correction and audio signals, bringing the total bit-rate of the "package" up to $60 \mathrm{Mbit} / \mathrm{s}$, the capacity of the experimental channel through the satellite.

The experiments took place in April and May 1976 (see Wireless World, August 1976, page 71); they were envisaged as a further contribution to a

Fig. 1. Diagram outlining the transmission system used in the $60 \mathrm{Mbit} / \mathrm{s}$ experiments at Goonhilly Downs.
programme of field-research into digital tv and audio transmission. They were not the first $\mathrm{PO}-\mathrm{BBC}$ co-operative exercise on digital video transmission. $120 \mathrm{Mbit} / \mathrm{s}$ video waveguide-transmission experiments were demonstrated jointly by the Post Office, the BBC and GEC in September 1970 at the inauguration of the first 1 km length of circular waveguide at the Post Office Research Department. In 1971, Standard Telecommunications Laboratories and the BBC demonstrated $120 \mathrm{Mbit} / \mathrm{s}$ video transmission through an optical fibre at the IEE's centenary celebrations. In 1975, the BBC co-operated with the PO , STC, GEC and Plessey in $120 \mathrm{Mbit} / \mathrm{s}$ cable-transmission tests, involving two $60 \mathrm{Mbit} / \mathrm{s}$ video-audio packages provided by the BBC Research Department (see News of the Month, Wireless World. February 1976, and Reference 2).
Further transmission tests with satellite, cable, optical fibre, s.h.f. link, and waveguide systems are envisaged, and some of these tests may use a video bit-rate as low as 30 to $34 \mathrm{Mbit} / \mathrm{s}$, if the continuing work on bit-rate reduction leads to satisfactory picture quality at these rates. A precise choice of bit-rate in the 30 to $34 \mathrm{Mbit} / \mathrm{s}$ region would take into account the bit-rates of $34368 \mathrm{kbit} / \mathrm{s}$

and $32064 \mathrm{kbit} / \mathrm{s}$ from the transmission bit-rate hierarchies proposed for Europe and Japan respectively.

Experimental transmission system

The transmission system used in the 1976 satellite experiments is shown in Fig. 1. The primary video sources were provided in London by the BBC Designs Department; they comprised a flyingspot colour slide-scanner, BBC Television network channels, conventional test-waveform generators, and a trans-verse-scan video-tape recorder.

Much use was made of the slidescanner, with a wide selection of colour transparencies drawn from a new set prepared by the European Broadcasting Union - one of which is shown in Fig. 2(a) - together with other slides often used by television authorities in subjective assessments of picture quality.

The analogue video signal was trans-
mitted by the Post Office via permanent cables and s.h.f. f.m. links to and from their Earth station at Goonhilly Downs in Cornwall. For the digital tests, the analogue video signal was fed to BBC Research Department equipment temporarily located at Goonhilly; this equipment was by-passed on one occasion to afford a brief test using an f.m. channel through a satellite.

The digital video signal was incorporated in a video-audio $60 \mathrm{Mbit} / \mathrm{s}$ multiplex, which was fed as two $30 \mathrm{Mbit} / \mathrm{s}$ signals and a clock signal to a quadrature phase-shift keying (q.p.s.k.) modulator, built by the Post Office Telecommunications Development Department.* The 36 MHz bandwidth, 70 MHz i.f. output from the modulator
*The corresponding demodulator was developed by Marconi Research Laboratories.

(a)
(b)

was up-converted to s.h.f., amplified, and transmitted through Aerial 1 to and from the Intelsat IV Flight 1 satellite stationed over the Indian Ocean, occupying virtually the full bandwidth available in one transponder. Video and audio monitoring was provided at Goonhilly and at the BBC Designs Department in London. Audio transmission, both ways, between the Designs Department and Goonhilly was provided by BBC sound-in-syncs equipment.

Video coding

In the digital video coder the analogue PAL signal was sampled at precisely twice the PAL colour subcarrier frequency, i.e. at $2 f_{s c}$ about 8.87 MHz . According to Nyquist's theory this is too low a sampling frequency to conserve the video information. However, G. J. Phillips and M. Weston of the BBC Research Department had shown that, because of the nature of the line spectrum of the video signal, subNyquist sampling at $2 f_{\text {sc }}$ conserves virtually all of the wanted video information; unwanted "alias" components fall halfway between the lines of the video spectrum and are removed by comb-filtering, with the teeth of the comb spaced at line-frequency. ${ }^{3}$

Eight bits per sample were used in the initial video signal quantisation, including its line and field synchronising signals.

The eight-bit sample-words were re-quantised non-linearly as six-bit words, or, optionally, five-bit words, using differential pulse-code modulation (d.p.c.m.) or a hybrid of differential and "straight" p.c.m. termed h.d.p.c.m. When five-bit video words were used, a dummy sixth bit was added for instrumental convenience. Six-bit straight p.c.m. was also provided. The essence of h.d.p.c.m. is that straight p.c.m. is used for a sample when the numerical difference between its actual value and its value predicted in the d.p.c.m. coder is large. In this $2 f_{s c}$ equipment the second-previous sample is used as the prediction. Large differences result from sharp luminance transitions, for which the eye accepts relatively coarse quantising, perhaps because they are relatively rare. When the difference is small, and can therefore be accurately represented by five-bit or six-bit words, differential p.c.m. is used, i.e the five-bit or six-bit word gives the value of the difference rather than the absolute value of the sample; in plain coloured areas the difference is zero.

Of the various options available. six-bit h.d.p.c.m. was the one mostly used.

Video scrambling

During preliminary tests with the q.p.s.k. modem it was found that the channel performance was not independent of the transmitted bit-sequence. The salient problem arose with carrier recovery in the demodulator, where
recovery was quite all right with pseudo-random bit-sequences but was somewhat picture-dependent with digital video signals; certain pictures gave rise to troublesome and lengthy bitsequences. The problem arose because the troublesome bit-sequences contained insufficient carrier-recovery information for the particular type of recovery circuit used, which was designed for digital telephony applications and not for the experiments described here. The problem was overcome by scrambling the digital video signal to make it appear pseudo-random for transmission, and de-scrambling it before decoding. The way in which this was done is outlined in Fig. 3, where the modulo-2 addition is equivalent to the exclusive OR logic function. The square boxes represent one-bit shift registers clocked at the serial bit-rate. The modulo- 2 sum on the figure shows how the output of the de-scrambler always equals the input to the scrambler.

Video error-correction

P.c.m. video-transmission errors cause small points of enhanced or reduced brightness to appear in the picture. But d.p.c.m. transmission errors are more serious since the effect of a single error is to cause a streak across the picture from the point at which the error occurred to the right-hand side where the sample difference is reset to zero. H.d.p.c.m. transmission error-streaks do not often extend so far because they stop where the coding mode changes from d.p.c.m. to p.c.m.; indeed this effect is the main advantage of h.d.p.c.m. However, even h.d.p.c.m. is not rugged enough to withstand a random trans-mission-error rate of more than about 1 in 10^{8}, without more than a very-slight picture impairment, and the error-rate on the satellite channel was expected to be somewhat higher than 1 in 10^{8}. Therefore a form of video error-protection was provided in the BBC equipment.

The method used is known as Wyner-Ash convolutional error-correction with a $(16,15)$ code. ${ }^{4}$ The numbers mean that the ratio of the number of error-correcting bits to the number of video-data bits is $1: 15$. Six error-correctors of this kind were provided to operate independently on each bit of the six-bit video words. Six-bit words at a rate of $2 f_{s c}$ give a serial bit-rate of $53.2 \mathrm{Mbit} / \mathrm{s}$. Adding the error-correcting bits brought this rate up to $56.8 \mathrm{Mbit} / \mathrm{s}$.

The use of six independent error-correctors meant that a burst of up to six consecutive bit-errors could be corrected. This feature was important because the use of q.p.s.k. could extend a single phase-shift error beyond a single video-bit period. Placing the error correction coders downstream from the scrambler avoided upsetting the bursterror correcting feature by scrambling.

The performance of this error-correction method was such that an actual

Fig. 3. Five-stage scrambler and de-scrambler.
random transmission-error rate of 1 in 10^{5} was reduced in effect to a rate of about 1 in 10^{8}.

Audio coding

The $3.2 \mathrm{Mbit} / \mathrm{s}$ between the bit-rate of the error-corrected video signal and the $60 \mathrm{Mbit} / \mathrm{s}$ satellite channel capacity was used for audio signals, and for multiplexing and synchronisation. The audio coding equipment was designed to multiplex six high-quality 15 kHz sound signals into $2048 \mathrm{kbit/s}$ (including audio synchronisation and error-protection signals) using "near-instantaneous" digital companding. ${ }^{5}$ This is a companding technique in which, in this case, a block of 32 ten-bit sound-sample words is coded to a quantising accuracy which corresponds to $13,12,11$ or 10 bits per sample depending upon the peak value of the audio signal occurring in the block of 32 samples. In the equipment used in the satellite experiments two of the possible six audio channels were equipped with coders and decoders.

Multiplexing

The audio multiplexer and demultiplexer were designed to give and receive a serial $2048 \mathrm{kbit} / \mathrm{s}$ signal, coded and timed for interfacing with national and international digital transmission paths meeting CCITT standards. The $60 \mathrm{Mbit} / \mathrm{s}$ video-audio multiplexer combined the serial $2048 \mathrm{kbit} / \mathrm{s}$ signal with the parallel $56.8 \mathrm{Mbit} / \mathrm{s}$ error-protected video signal, the latter being provided on six wires each bearing approximately $9.5 \mathrm{Mbit} / \mathrm{s}$. Because the protected video signal thus comprised six-bit words, it was convenient to form up the multiplex "frame" from six-bit words, some of them audio, most of them video, a few for synchronisation,
and a few bits spare in some of them for auxiliary signalling. The frame length was 1800 bits ($30 \mu \mathrm{~s}$).
To maintain the proper relationship between the output ($60 \mathrm{Mbit} / \mathrm{s}$) and input bit-rates, without locking any of them together, the content of some of the synchronisation words was controlled to comprise either dummy data or real video or audio bits; this "elastic" timing method is known as "positive justification."
The $60 \mathrm{Mbit} / \mathrm{s}$ output was then divided into the two serial $30 \mathrm{Mbit} / \mathrm{s}$ signals and a clock signal to drive the Post Office q.p.s.k. modulator; similar signals were returned from the q.p.s.k. demodulator to the $60 \mathrm{Mbit} / \mathrm{s}$ demultiplexer, as shown in Fig. 1.

Error and slip monitor

Perhaps the most important parameter to monitor on a digital transmission channel is the bit-error rate. It is a sensitive indicator of the state of most parts of the channel equipment and transmission path. The error-monitor module used in the experiments is shown in Fig. 2(c). Fed with data from the error-correction and multiplexing equipment, it gave a clear presentation of the overall error rate or error count, together with a display of lights and audible alarms to indicate bit-errors in the video (VID) and synchronising (FAW), signals, and slips in overall synchronisation (MUX) and synchronisation of video error-correction (PAR).

The test transmissions

For most of the test transmissions the slide-scanner in London was used as the video source, but some more critical tests were done using a BBC digital video waveform generator ${ }^{6}$ located at Goonhilly. The audio source was usually a stereophonic tape-recorder at Goonhilly, replaying orchestral or piano music, but synthesised audio signals and live speech were also used, the
latter chiefly as a commentary to accompany the transmitted video signals for tape-recording in London.

The elevation of the Goonhilly aerial beam above the horizon was necessarily small, namely about five degrees, which is about the smallest elevation for satisfactory analogue or digital transmission. Consequently, careful adjustment of parameters such as group-delay equalisation of filters was needed. When this was done, a bit-error rate of about 1 in 10^{6} was attained, which was random in nature and adequate, using error protection, for high-quality picture and sound transmission. Indeed, with this channel condition, the video and audio qualities were negligibly affected by transmission to and from the satellite. This was shown by bridging across the transmission path at the 70 MHz i.f. stage or at the $60 \mathrm{Mbit} / \mathrm{s}$ $\mathrm{BBC} / \mathrm{PO}$ interface.

A brief comparison was made between the picture quality attained with the $60 \mathrm{Mbit} / \mathrm{s}$ package using six bits per video sample (h.d.p.c.m.) and that with an analogue f.m. arrangement provided by the Post Office, virtually the full bandwidth of one transponder on the satellite being occupied in both cases. The consensus was that, although both picture qualities were very good, the digital picture was slightly better than the f.m. picture. The absolute impairment of the digital picture was known from previous research to be "just perceptible," the salient feature of the impairment being a small loss of diagonal resolution, a characteristic of sub-Nyquist sampling. The salient impairment of the f.m. picture was slightly increased chrominance noise

Conclusions

The informal subjective assessments of picture and sound quality obtained during the experiments suggested the long-term possibility of attaining slightly higher quality using digital techniques rather than analogue f.m. techniques, without requiring additional r.f. bandwidth or incurring unacceptable interference between satellite channels. This possibility will be studied further in the broader context of efficient use of satellite channels having usable r.f. bandwidths both narrower and wider than the 36 MHz used in these experiments. However, the current use of equipment employing f.m. transmission techniques, which provides a service even under degraded propagation conditions or in reduced bandwidth situations such as two television channels per 36 MHz transponder, makes it unlikely that analogue f.m. will be superseded by digital techniques in the near future.

Acknowledgements. The author acknowledges the valuable contributions to the experimental work made by a large number of colleagues in the BBC

Research, Designs, and Communications Departments, and in the Telecommunications Development and Service Departments and External Telecommunications Executive of the UK Post Office. The permission of the BBC Director of Engineering to publish this paper is also acknowledged. The co-operation of the authorities responsible for Intelsat operations in providing free use of the satellite channel for the experiments was greatly appreciated.

References

1. Golding, L. S. 1972. DITEC - A digital television communications system for satellite links. Proceedings of the Second International Conference on Digital Satellite Communication. Paris, Editions Chiron, 1972, pp.384-397.
2. Osborne, D. W. 1976. Experimental digital transmission of multiplexed audio and video signals at $120 \mathrm{Mbit} / \mathrm{s}$. International Broadcasting Convention 1976. IEE Conference Publication No. 145, pp. 84-88.
3. Devereux, V. G. and Phillips, G. J. 1974. Bit-rate reduction of digital video signals using differential p.c.m. techniques. International Broadcasting Convention 1974. IEE Conference Publication No. 119, pp. 83-89. 4. Stott, J. H., Oliphant, A. and Osborne, D. W. 1974. Digital video: error-correcting codes and a practical study of a Wyner-Ash error-corrector. BBC Research Department Report No. 1974/40.
4. Croll, M. G., Osborne, D. W. and Spicer, C. R. 1974. Digital sound signals: the present BBC distribution system and a proposal for bit-rate reduction by digital companding. International Broadcasting Convention 1974. IEE Conference Publication No. 119, pp. 90-95.
5. Chambers, J. P. 1974. The use of digital techniques in television waveform generation. International Broadcasting Convention 1974. IEE Conference Publication No. 119, pp. 40-46.

High-fidelity Designs

The second edition of our popular collection of reprinted articles, High-Fidelity Designs, is now on sale. It is bigger, with twenty-five of the most popular articles on audio equipment and techniques that we have published in the last few years. Some of the material in the first edition has been kept, but most of the content is new, including David Read's tuners, the Dolby noise reducer, the Linsley Hood cassette deck and Doug Self's advanced preamplifier. Jack Dinsdale's and John Greenbank's horn loudspeakers are also printed again here. The book is obtainable from booksellers at $£ 2.50$ or direct from General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU, at $£ 2.75$ inclusive of postage and packing. Cheques and postal orders should be made out to IPC Business Press.

MF predictions

As an example of the use of the charts take reception of 14 MHz . From South Africa the earliest that signals can be expected is 0500 . Reception should always be possible between 0630 and 1830 but signal-to-noise ratio will be poor between 0730 and 1500. Fadeout will occur between 1830 and 2100 .

From South America a skywave path should always be possible between 1100 and 2200 but a workable signal-to-noise ratio is likely only after 1900 .

Availability of North America and the Far East will be erratic with generally poor signal-to-noise ratios.

Eliminating adjacent-channel interference

by P. L. Taylor, M.A., F.I.E.E., F.I.M.A., University of Salford

Adjacent-channel interference between amplitude-modulated signals can be overcome, even when the carrier frequencies are so close together that the sideband of one signal overlaps the carrier of the other.

The problem of adjacent-channel interference has been with us almost since radio communiction began. Fig. 1 illustrates the situation in which it arises: the carrier frequency of an unwanted amplitude-modulated signal U is too close to the carrier frequency of a wanted signal W. The result is that some of one sideband of U intrudes into the part of the spectrum occupied by W. A receiver tuned to W must have a pass-band sufficiently wide to accept the sidebands of W, and so cannot reject the unwanted sideband of U. The audible result, after detection, is unintelligible and annoying "sideband splash" or "monkey chatter" caused by the beating of the unwanted frequencies with the carrier of W.

If U is not too close to W, as in Fig. 1(a), then it is possible to design the receiver to accept only the "clean" sideband of W (which contains all the modulation information in itself) and to treat the resuit as a single-sideband signal; but this requires very sharp and precise filtering, which of course is expensive. If the two carrier frequencies are as close together as is shown in Fig. 1(b) it has been generally

Fig. 1. If the carrier of an unwanted signal U is too close to that of a wanted signal W there is interference. In case (a) it is possible to filter out the "clean" sideband of W. Up to now it has been thought that nothing could be done in a situation such as (b).

Fig. 2. Block diagram for both methods of overcoming interference.
thought that there is nothing one can do about the situation. In addition to the monkey chatter one must put up with an inter-carrier whistle at the difference frequency between the two carriers.

Here are two methods ${ }^{1.2}$ which provide solutions to the problem. Both begin with synchronous demodulation of the wanted signal, as in the homodyne and synchrodyne receivers. \dagger For brevity, the wanted signal will be represented by $A_{w} \cos W$, where $W=2 \pi f_{W} t, f_{W}$ being the frequency of the wanted carrier. Similarly, the unwanted signal will be represented by $A_{U} \cos U$. We want to recover A_{w}, uncontaminated by A_{U}

In synchronous demodulation, the
wanted carrier is multiplied by an oscillation having exactly the same frequency and phase. The result is

$$
A_{W} \cos W \times \cos W=1 / 2 A_{W}+1 / 2 A_{W} \cos 2 W
$$

(Table I may be a helpful reminder).
Thus the wanted signal A_{W} is recovered, together with an oscillation at twice the carrier frequency, which is easily removed by filtering.

Table I
$\cos A \cos B=1 / 2 \cos (A-B)+1 / 2 \cos (A+B)$
$\sin A \sin B=1 / 2 \cos (A-B)-1 / 2 \cos (A+B)$
$\sin A \cos B=-1 / 2 \sin (A-B)+1 / 2 \sin (A+B)$
$\cos (-C)=\cos C \cdot \sin (-C)=-\sin C$

First method

Figure 2 is the block diagram, in which the expressions in square brackets should be ignored, since they relate to

[^4]the second method. The combined signals are applied to demodulator 1 , where they are multiplied by $\cos W$. The output of this demodulator (after filtering) is now $1 / 2 A_{W}+1 / 2 A_{U} \cos (W-U)$. The second term in this expression is the audible interference. The multiplier cos W is obtained from a voltage-controlled oscillator VCO_{1} which is phaselocked to the wanted carrier via demodulator 2. VCO_{1} produces quadrature outputs. The phase-lock loop will settle itself so that the v.c.o. output which is presented to demodulator 2 is in quadrature with the wanted signal, so this output must be represented by $\sin W$ and the quadrature output will be cos W. It is arranged that when capture has occurred the loop bandwidth is reduced to about 1 Hz by extra filtering so that the oscillator is not disturbed by the other frequencies present in the signals. Also, the loop includes an integrator so that the phasing is exact.

Now the output of demodulator 2 contains the component $1 / 2 A_{U} \sin$ ($W-U$), but no component involving A_{w}. The clue is too obvious to be missed: if the phase of this oscillation could be changed from $\sin (W-U)$ to $\cos (W-U)$ it could be used to cancel the unwanted component in the output of demodulator 1 . This could be done by multiplying, in a third demodulator, by $\sin 2(W-U)$:
$1 / 2 A_{U} \sin (W-U) \times \sin 2(W-U)=$
$1 / 4 A_{U} \cos (W-U)-1 / 4 A_{U} \cos 3(W-U)$
Thus the desired phase-shifting has been accomplished but at the cost of introducing a 3rd-harmonic oscillation, and, if ($W-U$) is small, it may not be possible to filter it out. But if $1 / 2 A_{U} \sin$ ($W-U$) is multiplied by the series
$S_{1}(W-U)=\sin 2(W-U)+\sin$
$4(W-U)+\ldots+\sin 2 n(W-U)$,
the result is:
$1 / 4 A_{U} \sin (W-U) S_{1}(W-U)=$
$1 / 4 A_{U} \cos (W-U)-1 / 4 A_{U} \cos (2 n+1)$
($W-U$).
The intermediate products give rise to sum- and difference-frequency terms which cancel, leaving the interfering oscillation at a frequency which may be made as high as desired by a suitable choice of n; this oscillation may now be filtered out easily. Thus, the desired cancellation signal is obtained, and processing is completed as shown in Fig. 2.
A waveform, whose Fourier series components form $S_{1}(W-U)$, is obtained from a function generator which is described later. The generator is phase-locked via VCO_{2} and demodulator 4 to the beat frequency $(W-U)$. Note that the series S_{1} is one in which all the first ($n-1$) harmonics are equal in amplitude to the fundamental, which has a frequency twice that of the beat frequency.

Second method

If the unwanted signal is stronger than the wanted signal it will probably be easier to lock VCO_{1} on to the unwanted carrier, so that (taking the expressions in brackets in Fig. 2) the output of demodulator 2 becomes $1 / 2 A_{W}$ sin ($W-U$). Thus, the unwanted signal is rejected directly at this stage, but the problem now is that the wanted signal is modulated on a carrier frequency that lies within the audio range.

The wanted signal could be demodulated by multiplying by $\sin (W-U)$:
$1 / 2 A_{W} \sin (W-U) \times \sin (W-U)=$
$1 / 4 A_{W}-1 / 4 A_{W} \cos 2(W-U)$
but this introduces an interfering oscillation, at twice the beat frequency, which may still be too low to filter out. But if $1 / 2 A_{W} \sin (W-U)$ is multiplied by the series
$S_{2}(W-U)=\sin (W-U)+\sin 2(W-U)+$ $\ldots+\sin (2 n+1)(W-U)$
the result is
$1 / 2 A_{W} \sin (W-U) S_{2}(W-U)=$
$1 / 4 A_{W}-1 / 4 A_{W} \cos (2 n+2)(W-U)$.
The intermediate products give rise to sum- and difference-frequency terms which cancel, leaving the interfering oscillation at a frequency which may be made as high as desired by suitable choice of n; it is thus easily filtered out. In this method the wanted signal is taken from the output of demodulator 3 .

Function generation

It would be possible to generate the series S_{1} or S_{2} by taking a number of oscillators, of appropriate harmonic frequencies, and phase-locking them together and to the beat frequency (W-U). But this would be clumsy, and would also require that the demodulator 3 should be a true multiplier. The simplicity of a switching demodulator may be retained as follows.

In normal use a switching demodulator acts to change the sign of the signal to be demodulated in step with alternate half-cycles of the multiplier oscillation. That is, it effectively multiplies the signal by a square wave switching function f, drawn as the solid line in Fig. 3 , which alternates between the values +1 and -1 with the same period T as the

Fig. 3. Illustrating the derivation of the special switching functions.

multiplier oscillation. As drawn in Fig. 3, the function f is odd (in the mathematical sense), that is, $f(-t)=-f(t)$, and the graph has rotational symmetry about the point $t=0$. Hence its Fourier series consists of odd functions (sine terms) only:

$$
f(t)=\frac{4}{\pi}\left[\frac{2 \pi}{T}+\frac{1}{3} \sin 3 \frac{2 \pi}{T}+\frac{1}{5} \sin 5 \frac{2 \pi}{T}+\ldots\right)
$$

Thus, the demodulator does multiply the signal by the required frequency (the first term in the series). It also multiplies by the higher frequencies in the series, but the results are usually filtered out.

Now, suppose that two extra edges are introduced, at t_{1} and t_{2}, to give the dotted wave. Since S_{1} consists only of sine terms the rotational symmetry must be preserved, by introducing corresponding edges at $-t_{1}$ and $-t_{2}$. Now t_{1} and t_{2} can be chosen at will; the question is, can we choose them so that the first two harmonics of the new waveform have amplitudes equal to the fundamental? The answer is yes, and the result is quite general: if n extra edges are introduced, then the first n harmonics can be made to have amplitudes equal to the fundamental.

The correct instants $t_{1}, t_{2} \ldots t_{n}$ are found as follows. The expression for the Fourier series of the new waveform is found in the usual way, and from it the conditions that the coefficients of the first n harmonics shall be equal are found. This results in a set of simultaneous equations in the unknown t. However, the equations are non-linear, so the solution of them is best entrusted to a computer.

Thus a square waveform can be designed such that the first terms in its Fourier series form S_{1}. A similar argument leads to a waveform the terms of which form S_{2}. There is a small complication in this case because only the odd harmonics are required. Both series continue with higher-order terms, but these do not matter because the unwanted products to which they give rise will be filtered out anyway.
The waveforms may be generated quite easily by digital techniques. VCO_{2} is made a high-frequency oscillator, the cycles of which are presented to a digital counter. The counter output is presented in turn to a number of digital comparators (one for each edge) which are hard-wired with numbers defining the instants at which the edges occur. Whenever a coincidence is detected, an edge is generated by triggering a bi-stable.
In an alternative method, numbers representing the differences between successive edges are placed in a readonly memory (r.o.m.). A presettable counter is loaded with the first number, and is counted down to zero by VCO_{2}. When zero is reached an edge is generated, the number in the next address in the roo.m. is loaded into the counter and so on until the cycle is
completed and control is returned to the first address in the r.o.m. This method is more economical of hardware, and more flexible because the numbers for several series can be stored in one r.o.m. Any waveform can be selected simply by choosing the appropriate starting address.

Sidebands

Though the mathematical analysis given above indicates that the methods should work, and experiment shows that they do work, it is not so far clear exactly how it is that the overlapping sidebands are disentangled.

Take as an example the first method Suppose that initially VCO_{1} has not locked on to the wanted signal, but is running at some frequency F higher than W. The output of both demodulators 1 and 2 is a group of signals at the sum- and difference-frequencies, as in Fig. 4(a). Only the lower frequency group is retained; the other is eliminat ed by the low-pass filter.

Now suppose that F is reduced towards W. The lower frequency group moves towards zero frequency and a stage is reached when some of the sideband frequencies of the wanted signal should become negative, as shown at (i) in Fig. 4(b). The practical effect differs in the two demodulators In the case of demodulator 1 the product is $\cos W \times \cos F$, and therefore is also a cosine. The cosine of a negative quantity is the same as the cosine of the same positive quantity (see Table I) so the negative frequency components are reflected about zero frequency, without change of sign, to become positive frequency components as shown at (ii). In demodulator 2, which is multiplying $\cos W \times \sin F$, the output is a sine; and the sine of a negative quantity is minus the sine of the same positive quantity so in this case the reflected components must be shown as negative, as at (iii).

Finally, let F be reduced to equal W so that VCO_{1} locks. In the output of demodulator l the lower sideband of the wanted signal folds back to reinforce the upper sideband, and both now start from zero frequency, i.e. the wanted signal is demodulated. This is shown in Fig. 4(c). The unwanted signal is modulated on to the beat frequency ($W-U$) and its lower sideband is folded back. In the output of demodulator 2, Fig. $4(\mathrm{~d})$, the sidebands of the wanted signal exactly cancel each other, being of opposite sign, so the wanted signal does not appear in the output of this demodulator.

Now consider the effect of multiplying (d) by the series S_{1}. The resulting spectrum of the output of demodulator 3 is shown at (e). First, there are sumand difference-components centred on the frequency of the first term in the series, $2(W-U)$. We are now dealing with a sine \times sine product, which is a cosine, so the part of the lowest sideband which is partially reflected about zero is reflected without change

Fig. 4. (a) Result of multiplying the incoming signals by a frequency F greater than W. (b) If F is only slightly greater than W some reflection of the lower sideband occurs. (c), (d) Outputs of demodulators 1 and 2 respectively when $\mathrm{F}=\mathrm{W}$. (e) The result of multiply. ing (d) by the series S_{1}.
of sign; and the sum-frequency components have a negative sign.
For clarity, the sum- and differencefrequency components centred on the frequency of the next term, $4(W-U)$, are shown on a lower line. The diagram is drawn for the case where it is necessary to go only as far as the third term in the series, of frequency $6(W-U)$. When all the various bands are added together there is a lot of mutual cancellation; there are left only the lowest group of frequencies, which are now of the right form for subtraction from (c), and the highest group; in between there is a big gap, so that filtering out the highest group is easy.

The foregoing description makes it clear that the methods are really exploiting the fact that an a.m. signal has two symmetrical sidebands to effect mutual cancellation of unwanted signals. It is also clear that the cancellation will be less than exact if the sidebands suffer differential gain and/or phase shift in their passage through the r.f. and i.f. stages of a receiver. It is unlikely,
therefore, that these methods will form a satisfactory basis for an "add-on" unit for an existing receiver, in which these aspects of performance will probably not have received much attention. It is also clear that, unfortunately, they will not work for s.s.b.!
I am very grateful to Mr L . J. Unsworth for constructing the experimental apparatus in which these ideas were tested.

References

1. Patent applied for.
2. Taylor. P. L. 'Methods of separating overlapping amplitude-modulated signals', Electronics Letters, 19th August 1976, 12, 17, pp. 424-425
3. Tucker, D. G. 'The history of the homodyne and synchrodyne', J. Brit. I.R.E., April 1954, 14, pp. 143-154.

Space shuttle comms

The Battelle Institute say the communications industry could save millions of dollars in the 1980s if their satellites used the space transportation system of which the shuttle is a part. A NASA funded study is being carried out at Battelle's Columbus Laboratories with five satellite manufacturers to make their systems compatible with s.t.s.

ANNAN AND CABLE

The Annan Committee was asked to report, among other things, on the future technology of broadcasting and any changes in organisation which would be required as a result. It was perhaps a silly question to put to a group of academics, politicians, trade unionists and assorted odd bodies and it has drawn a silly answer. At the time of its appointment some senior engineers in broadcasting recommended that it should have a technical sub-committee which could keep it straight on the facts and prevent it from having the wool pulled over its eyes by important people with their own interests to serve. That this, unfortunately - but inevitably - has happened is shown most clearly by the Committee's report on cable. They accept, quite correctly, that the future of broadcasting lies primarily in cable and that the next 15 years will be the swan-song of conventional broadcasting (paragraph 25.2); but they provide no guidance as to how the inevitable transfer from wireless to wire might be made and prefer to leave it all to the woolly generalisation of the Post Office about the possibilities of integrated national networks in the late 1990s.

How little they have understood the technology of cable is clear from their reference (paragraph 25.41) to broad band Post Office systems on the one hand and private narrow band networks on the other. The Post Office system in Milton Keynes, to which so much importance is attached, is a conventional f.d.m. type using a v.h.f. trunk network with final distribution at v.h.f. for 405 lines and sound programmes and at u.h.f. for 625 lines. It is no "broader" than anybody else's network of that type and nothing like as "broad" as the switched h.f. system which has been developed in the private sector.

In short, the Committee was overcome by the air of unchallengeable authority in which the Post Office managed to present themselves and refused to allow that the people of this country should be permitted - while waiting for the Post Office's new millennium - to pay the existing cable operators for a wider choice of programmes if they wanted to. In spite of all their expressed desire for diversity and the claim that "we act in accordance with the concept of pluralism which has been the leitmotiv of all of us in this Report", they have rejected for no discernible reason the one immediate possibility of achieving those ends. A possibility. moreover, which involves no cost to anybody except those who wish to pay for more diversity and those who are prepared to risk their own money in providing it.

This is the answer to those, including both Annan and yourself in last month's issue, who quote the cost of a national broad band network from the Technical Sub-Committee of the Television Advisory Committee and rule it all out because we cannot afford a billion. Nobody is suggesting we should but, even so, it does not sound so much when related to the 6 billion which we are cheerfully spending to equip ourselves for colour. What is suggested is that the investment already made in networks with a capacity of six channels or more should be put to use so that the public can decide what extra services, if any, it will support. When -we know that, the basis of any further investment in cable will be secure.

Having recognised both the importance of cable for the future and the need to conserve the frequency spectrum, one might have expected the Committee to look with some care at the proposal that the remains of Phase 1 of the u.h.f. transmitter programme covering groups of population exceeding 1,000 and Phase II for populations between 500 and 1,000 , might employ wire instead of wireless wherever it was simpler and cheaper to do so. This proposal was first made by the TAC/TSC in 1972 and was supported by the Crawford Committee in November 1974. Nothing has happened, mainly because there is a genuine difficulty about how such cable networks might be financed. Everyone concerned had hoped that the Annan Committee might make some sensible recommendation for finance and administration but all they do is to propose that Phase II should be completed at oncē by transmitters at a cost of $£ 114$ per person or over $£ 300$ per home covered. That is around five times as much as it would cost to do the job by cable which would also avoid altogether the need for still more space for broadcasting in the frequency spectrum. Here again, they have simply bowed to the authority of the BBC with its insatiable appetite for the frequency spectrum and its determined view of cable as a rival instead of an ally and a source of extra revenue for them which it so easily could be.

As you say, the proposal for a telecommunications advisory committee to determine national policy for all telecommunications, not only broadcasting, is overdue and very welcome. Considering its importance and the intensity of the opposition such a proposal will meet from the heavily entrenched broadcasting and telecommunications establishments, it is a pity that the Committee did not devote more than the odd paragraph or two to the reasons for it and the form it should take.
R. P. Gabriel,

Rediffusion Ltd,
London, SW1.

IMPROVING MATRIX H SURROUND-SOUND?

Reading the surround-sound articles in Wireless World. 45J by Michael Gerzon in April 1977, and Matrix H by Dr P A. Ratliff and D. J. Meares in May 1977, it is apparent that the main difference between the two systems is the effect of the coding of the back sector sounds.
In Matrix H the better mono and stereo compatibility of a bent locus is considered more important, whilst in 45 J the listener with a surround-sound decoder is favoured
with the improved side image localization and ambience reproduction of a circle locus (whose side view on the energy sphere is a straight line).

Those who have to choose between the two systems will resort, inevitably, to decision by committee.

However, Michael Gerzon mentions other properties of 45 J coding which are not referred to in the BBC article and which, if incorporated, might offer in improvement to Matrix H coding. If my understanding is correct they are:

1. Reduce the centre-front interchannel phase angle from 48 to 45 to improve the stereo phasiness of front-sector sounds and to improve mono compatibility.
2. Reduce the curvature of the pan locus until it just touches the "speaker position" curve and, therefore, no longer goes through the left-only and right-only points. If the circle locus of 45 J is better than a bent locus for ambience reproduction, it is intuitively obvious that reducing the curvature of the Matrix H locus will improve its ambience reproduction.
3. Optimize the distribution of the different encoded directions within the elliptical cross-section of the pan locus, to improve the reproduced ambience in surround-sound and to widen the stereo presentation for front stage sounds and, therefore, improve the stereo compatibility.

Perhaps the BBC men would be kind enough to comment, favourably or otherwise.
Andrew Sturt,
London Weekend Television,
London, SE1.

RADIO SETS OF THE FUTURE

Further to the interesting article by Duncan MacEwan in the May issue ("Radio in the ' 80 s'), the following observations come to mind.

The average listener to the portable radio of today probably doesn't find station finding very difficult, and just listens to background music on Radio 1 or 2 all the time.
Is there really a need for a "better" portable set with improved f.m. reception (for the serious listener)? This probably couldn't be all that cheap: for a few pounds more he or she could obtain a budget priced hi-fi tuner-amplifier and get far better results if "serious" music listening is the object.
What 1 suggest we do not need is legislation, the effect of which is costly, and multi-channel push-button complicated receivers that are not wanted or necessaiy. that could spring into life when the great gods news and sport come on the air every few minutes!
There is room for improved, easily readable printed information on programmes: the poor design, layout, typography and general presentation of the Radio Times is perhaps the obvious example.
E. Gilbert,

London N18

Mr MacEwan replies.
I think Mr Gilbert may be overestimating people's ability to find their way around the crowded dial; certainly our own extensive Audience Research supports this. Radio has
to be interested in not only the average litener, but in the others including potential listeners. Radio 3 has a weekly patronage figure of 5 million people, Radio 4 a daily following of 6 million and Local Radio about 2 million; the BBC has no wish to neglect what our correspondent might regard as minorities - quite the reverse.
I believe there is a growing market for the higher quality portable - listening in the kitchen, study or bedroom should surely not be confined to narrow band a.m. transmissions or limited to daylight hours - and what of the music lover, those following educational courses, etc. Radio today is very much about choice - choice of programme and choice of quality.
On the Radio Times issue he makes a fair point, but the truth of the matter is that the extra page (or even two pages which would be necessary to meet his wishes and mine) would change the journal's balance sheet from a fairly healthy if faint black colour to a very bright red and that the BBC cannot afford.
Duncan MacEwan.

DIGITAL FILTERS USING MICROPROCESSORS

It was with great interest that I read recently V. J. Rees' article "Digital filter design" in your Oct ober 1976 issue. I am impressed with much of what he said. With a variety of digital filtration algorithms available, it is indeed useful to check out the response to a simple sawtooth or square-wave input, whether aided by calculator or computer. Not only does this, as Gérald Garon (Letters, May issue) indicates, increase understanding, it may also point out some of the pitfalls. In V. J. Rees' example the input was a $\pm 10 \mathrm{~V}$ 50 Hz sawtooth, the single-pole low-pass filter had a turnover frequency of $180 / \pi \mathrm{Hz}$ and the sampling period was 1 ms . In Fig. 11 have drawn the actual filter response as the smooth solid curve. The algorithm used by V J. Rees was:

$$
\begin{equation*}
V_{0}=A V_{1}+B V_{0}^{\prime} \tag{1}
\end{equation*}
$$

with $A=\tau / C R=k$, and $B=\mathrm{e}^{-\tau / C R}=\mathrm{e}^{-k}$,
where \bar{V}, and V_{0} are the input and output voltages for the present sample, V_{0}^{\prime} is the output in the previous sample, τ is the

Fig 2
sampling period and $C R$ the time constant of the filter. Taking V. J. Rees' figures, I have plotted out the result of formula (1) as a staircase - as the output of one's d.-to-a. converter would be. The error at the peaks is over 20%. The performance of formula (1) would indeed correspond to the theoretical curve if k were small - like 0.01 . In practice one can rarely afford the luxury of such a high sampling rate. Normally, either one's computer is too slow or a great deal of other real-time signal processing is required as well as the filtration.

An alternative low pass algorithm is as follows:

$$
\begin{equation*}
V_{0}=A V_{1}+B V_{0}^{*} \tag{2}
\end{equation*}
$$

with $A=1-\mathrm{e}^{-k}, B=\mathrm{e}^{-k}$ and $k=\tau / C R$
The performance of this formula is shown as the solid staircase in Fig. 1. Not only is formula (2) much more accurate at sizeable values of k but, as shown by Gérald Garon, it is also faster when rearranged to use only one multiplication:
$V_{11}={ }_{1}-C\left(V-V_{0}^{\prime}\right)$
with $\mathrm{C}=\mathrm{e}-\mathrm{k}$ GéraldGaron also obtained in his elegant M6800 programme a "high pass" output as well as the low pass output of formula (3). This high pass algorithm may be written:

$$
\begin{equation*}
V_{0}=V_{1}-V_{1}^{\prime}+B V_{0} \tag{4}
\end{equation*}
$$

with $B=\mathrm{e}^{-k}$ where V_{1}^{\prime} is input in previous sample (4)
In Fig. 2 I have again used the sawtooth input and kept τ and $C R$ at the same 1 ms and $1 / 360$ respectively. Again the response of the capacitor and resistor high pass filter is shown as the solid curve (also courtesy a PD P12). The effect of formula (4) is indicated by the dotted

staircase. Once more there are errors of nearly 20% at the peaks. A rather more accurate high pass formula that still only requires one multiplication is:
$V_{0}=V_{1}-V_{1}{ }^{\prime}+B V_{0}{ }^{\prime} \quad$ with $B=1 .-k$
Formula (5) is plotted as the solid staircase in Fig. 2 - the errors at the peaks seem to be around 4\%.
Finally, I'd just like to add the filtration of e.e.g. to the list of applications where a "slow" microprocessor like the M6800 has proved adequate. In a 2 ms sampling period there is still plenty of time left over for other useful processing.
T. A. Perkins,

MRC Neurological Prostheses Unit,
London, SE5.

REVIVING
 NICKEL-CADMIUM CELLS

I ran across Mr Johnson's article on reviving NiCd cells in the February issue and used the method successfully to rejuvenate a set of four celis which had been in the discard bin for some months.

These four AA cells had perished when a young visitor left my pocket calculator on, a fact which went unnoticed for a week or so. When I found they would then not hold a charge, they were replaced and left on the back of the bench for about six months. After reading the article. I checked them and. sure enough, each cell was shorted and read zero volts.

I first processed one cell as described, with a battery charger as the current source and an ammeter as the load - the only deviation being that the low-current was removed during the high-current phases. The cell came "unstuck" after the first jolt. eventually responded to the overcharge state, and provided 500 mAh on slow discharge. I then processed the other three cells as a series unit and achieved the same results, in much less time than it would have taken to do each one individually. Perhaps I was fortunate in having cells in approximately the same condition.
After a 24 -hour normal 50 mA charge, all four cells in series were drained across a dummy load at 50 mA , and lasted close to eleven hours, with the No. 1 cell going dead
first. Two more charge-discharge cycles were then tried, this time with a portable radio drawing $10-15 \mathrm{~mA}$ as a load; with intermittent use of 4-5 hours per day, the cells provided approximately 500 mAh each time, with the No 2 cell going dead first in these cases. Fully charged voltage was 1.30 V (1.35 in overcharged state); at the time of one cell going down the remaining three read 1.25-1.27V.

The cells are completely anonymous, no type of manufacturer's marking, so I do not know what quality they represent. The fact is, though, that thanks to Mr Johnson's article, they represent a handsome salvage.
B. G. Doutre,

Montreal,
Quebec, Canada

LONG WAVES FOR AMATEURS?

Mr May's announcement (Letters, May issue) that he is "normally in favour of amateur radio" must have caused all amateurs to read the rest of his letter with justifiable suspicion.

His present approval, or disapproval, of us appears to be based on a lamentable lack of research. It is a shame to see in the pages of Wireless World the suggestion that amateur radio is "just for low power local broadcasting." We will happily accept the accusation that we use low power, indeed we do so with a certain pride in our aerial systems and operating techniques. On the other hand we must point out that contacts with the antipodes are routine and that amateur signals have been bounced off the Moon, which is hardly local! The use of the term "broadcasting" instead of "transmitting" displays an almost unbelievable ignorance and must have upset many people, including, no doubt, some at the Home Office.

In reply to Mr May's warning about interference, we can only point out that amateurs have learnt to live with interference from domestic machines and broadcast stations as well as from each other. We often operate on channels the professionals would describe as unusable

It may be recalled that in the early days of radio the amateurs were given frequencies thought to be too high for "serious" use. It is tempting, but inaccurate, to draw a parallel here; we merely suggest that anyone truly concerned that the very low frequencies are being underrated could do worse than give them to radio amateurs.
N. R. W. Long (G4BIN), J. G. Morgan (G3ZHL) and R. A. L. Williams (G4EAL),
Cambridge University Wireless Society

inTERFERENCE
 FROM AMATEUR STATIONS

Sporadic listening to professional usage of the "ether" leaves me with the impression that interference by amateurs is but a drop in the ocean of the problem as a whole. I look forward anyway to the second part of the article by I. Jackson in the issue of March 1977 [see June issue - Ed.]. In the meantime, you can see from the enclosed cutting from the Electrician of February 9, 1912, that, like the poor, interference by amateurs has always been with us.
"Wireless Telegraph Notes. - The "Electrical World" states that an investigation of the extent of interference by amateur wireless-telegraph operators in the transmission of legitimate messages between ship and shore stations has been undertaken by the United States Navy Department. The immediate cause of the investigation was a delay of more than one hour in the transmission of messages of distress from the torpedo-boat destroyer "Terry". During this delay the wireless-telegraph apparatus on the vessel was disabled, and the exact position of the ship in distress could not be ascertained. It is estimated that at least 500 stations are in use and owned by amateur operators in the neighbourhood of New York."

Or is it that amateurs have always been a vulnerable minority, and therefore a convenient scapegoat? Having no personal involvement, I could wish only that all users of the radio spectrum would turn over a new leaf, starting with the commercial stations that sit on top of the standard frequency transmissions. Blatant use of 2182 kHz for personal chit-chat during the silent listening periods is not at all uncommon, almost certainly maritime mobile users fouling their own nest. And yet there are parts of the radio spectrum which get very little use at all! Desmond Thackeray,
Department of Chemical Physics,
University of Surrey,
Guildford.

AURAL SENSITIVITY TO PHASE

Though I believe that the effects of phase shift on the waveform and the sound quality of the signal in a monaural channel are of no importance provided that the concomitant time delays stay within the CCIR limits, Mr Lipshitz's letter in the May issue draws attention to one of the many situations where phase shifts are of importance in their effect on sound quality. There are many others.

It has long been the practice of amplifier designers to arrange for the compensation of distortion between the stages in an amplifier by adjusting the operating conditions of successive stages to allow the distortion introduced by one stage to be reduced by the introduction of distortion in the opposite phase by the following stage, the explanation of Mr Lipshitz's results. Similarly, it has been the practice of recording engineers to minimise the peak signal amplitudes and hence the amplitude dependent distortions by appropriate phasing of the signal components. These phase dependent distortion compensating effects make it difficult to measure and specify the amplitude distortion in any good f.m. receiver. The distortion introduced by the best signal generators is of the same order as that introduced by the best current receivers and in consequence the measured overall distortion may vary between almost zero and twice that introduced by the receiver, depending upon the relative phase of the distortion introduced by generator and tuner.

The sound quality of a loudspeaker is subtly dependent upon the relative polarity (phase) of the studio microphone and the listener's loudspeaker but, unless equipment of professional quality is used throughout, the effect is extremely difficult to detect, in
part because it is critically dependent upon volume setting.

These are some of the many situations where phase shifts may introduce audible effects but little use can be made of this by the ordinary user, for the distortion cancellation is dependent upon the relative phase and relative amplitude of the recorder-reproducer distortions.
Mr Lipshitz's letter draws attention to a situation where nature anticipated engineers in this practice of distortion cancellation. It has long been known that the negative and positive peaks in ordinary conversation speech are of unequal amplitude, but nature apparently arranged this to compensate for the non-linear stiffness relation of the ear drum. Which effect came first is difficult to identify.
James Moir,
Chipperfield,
Herts.

I suggest that if one regards the ear as a non-linear transducer followed by a set of high-Q tuned circuits each driving a mean amplitude meter, the outputs of which are separately sent to the brain, all arguments are resolved and all observations and tests accounted for, are they not?

As far as the brain is concerned it only receives one parameter for each frequency, namely amplitude of the signal arriving at the resonator; it receives no information concerning phase. However, when a sine wave arrives at the ear, because of non-linearity it produces its own harmonics. if now for example a given amplitude of second harmonic is added to the signal this will be reinforced or reduced in amplitude by the time it reaches the inner ear by the harmonic of the original signal produced by the distortion of the first stage of the ear. In this sense the ear is phase sensitive, as altering the phase of the 2nd harmonic fed to the outer ear alters the amplitude of the second harmonic received by the inner ear.
If, however, we have a generator in which we can control the amplitude of all the harmonics, after altering the phase of one or more we can usually by altering the amplitude only of these and the other harmonics apparently reproduce the original sound. This is because changes in amplitude of applied signal correct for the changed cancellation reinforcement pattern of the "ear produced" harmonics. In this sense the ear is not phase sensitive.

There are cases when this is not true. If for example the amount of second harmonic applied is of the right amplitude and phase to cancel the ear-produced 2nd harmonic, the amount of this arriving at the inner ear will be nil. If we now alter the phase of the 2nd harmonic from our speaker, cancellation will no longer take place and second harmonic will reach the inner ear. No amount of change of amplitude will cause the amount of second harmonic reaching the inner ear to be reduced to zero.
One cannot answer the question "is the ear sensitive to phase?" by a yes/no answer, only by "the inner ear is insensitive to phase but the outer ear distorts".

J. H. Asbery,

Wembley,
Middlesex,

Perhaps I may be allowed to reply to Mr Coleman's letter in the February 1977 issue, even in isolation from the long correspondence on aural phase sensitivity. There is, I
think, very little in that letter which relates to his earlier convictions (as expressed in September 1976 letters), whilst those few points he chooses to expand from my reply in December 1976 show further misconceptions or even mistakes.

The phasor representation of amplitude and angle defines the variation of output. amplitude and phase of a linear realisable system to an input sinusoid, to which it is responding in the steady-state. In this condition, any characteristic phase advance or delay may be assigned. The concept may be extended to isolated waveforms, wherein the Fourier Integral allows the response of the system in the transient state to be described in terms of its steady-state characteristics. There are cases, for example in simultaneous amplitude and angle modulation, where the concept of instantaneous phase may be defined, though this cannot be done simply by specifying an elementary reference time. If Mr Coleman wishes to attach any meaning to system phase other than the widely accepted one, he should specify the conditions and give his own reasons for doing so.

I am content to be identified with James Moir, in a commonsense approach to resolving any problem; in teaching or in research, to picture a problem in another domain may help its understanding, which is advantageous. Commonsense is not born of ignorance, as Mr Coleman would seem to baffle your readers into accepting; it is a quality by which the truly knowledgeable scientist may be distinguished from the untrained academic mind.

My grasp of basic principles is not so uncertain that I could believe Coleman's claim that "tone bursts which differ in the framing of phase of the sine wave with respect to the burst envelope have spectra of different shapes." A little commonsense would reveal that by shifting the carrier with respect to the pulse train in this waveform a simple linear phase shift of all spectral lines is produced, as was the purpose of my experiment. Hence it is Mr Coleman's conclusions which are invalid, not mine.
Roger C. Driscoll,
The Polytechnic of North London,
London, N7.

TRANSIENT
 INTERMODULATION DISTORTION

I would like to comment on the very informative article on transient intermodulation distortion by Bert Sundqvist published in your February 1977 issue

He has shown by analysis that in order to prevent transient intermodulation distortion in an amplifier. the method proposed by Professor M. Otala' (that of extended open-loop bandwidth in the power amplifier with subsequent passive band limiting in the preamplifier) need not be adhered to rigidly and the simpler method of band limiting the first stage of the amplifier achieves the same result. He suggested three methods for producing this band limiting: (1) input lag compensation, (2) use of a high-impedance current source as collector load, (3) operation of the first stage with a very low collector current. Of these, however, only the third seems to be new, as far as preventing transient intermodulation distortion is concerned.

To see why this is so, consider the frequency limiting mechanisms at work in the basic common emitter stage. There are mainly two. Firstly, the transfer mechanism, which is a physical motion of charge carriers, introduces dispersion and delay of the carriers and this results in the fall off of current gain (produces f_{t}). Secondly, existing between the various terminals of the transistor are frequency dependent impedances that are predominantly capacitive and these contribute to frequency limiting.

Considering Fig. I, C represents the collector to base capacitance of the common emitter stage. Using Miller's theorem, this capacitance can be replaced by C_{1} and C_{2} as shown in Fig. 2, where A_{v} is the voltage gain between the inverting input and output

(corresponding to the base and collector of the transistor). The time constant int roduced by R_{s} and C_{1} produces a dominant pole, and in general this is the mechanism that produces frequency roll-off in the common emitter stage. Input stage lag compensation increases C and a very high-impedance collector load increases A_{v}. Both result in a reduction of the bandwidth of the resulting input $R C$ network. However, this $R C$ network lies outside the loop of the feedback amplifier of which this stage is a part and indeed corresponds to the passive $R C$ filter that Professor Otala recommends be placed before the input of power amplifiers in order to prevent the transmission of frequencies outside their open-loop bandwidths.

Thus, the only new technique which the results of Mr Sundqvist's analysis has uncovered is the reduction of the cut-off frequency of the input transistor which can be done by lowering the collector current, as he suggests. In fact, this method is more directly as a result of his analysis since the first pole within the loop encountered by an input signal is that due to fall-off of current gain of the input transistor.
Stephan Gift.
University of the West Indies,
St Augustine, Trinidad.

Reference

1. M. Otala J. Lohstroh. An Audio Power Amplitier for Ultimate Quality Requirements, IEEE Transactions on Audio, vol. AU-21, no. 6. December 1973.

Mr Sundqvist replies:
I would like to thank Mr Gift for his clear explanation of the input stage frequency roll-off mechanisms. When I wrote my article I had not yet considered the details of how the frequency roll-off should be effected in practice. However, I would suggest that any band limiting procedure that gives a high input capacitance should be avoided, as this could give trouble when using a pre-amplifier with high output impedance, especially in combination with long connecting cables.

I have two other comments on my article which could be of interest to the readers. Using the original Otala design method, one ends up with a power amplifier with very wide bandwidth. However, the total audio system bandwidth is still limited by the pre-amplifier roll-off at $20-30 \mathrm{kHz}$. Although I do not think that an excessively large bandwidth is always desirable, this has always seemed to me to be a waste of good design work. Using the method outlined in my article the system bandwidth can be made as large or small as desired, as no frequency limits are involved in the design.

I would also like to point out that there are other methods to avoid t.i.m. without using Professor Otala's design method. My article was written in January, 1976, and since then Malmqvist' has published an interesting analysis of why t.i.m. is not produced by the Xelex range of amplifiers in spite of their relatively heavy feedback.
Bert Sundqvist,
Umeo,
Sweden.

Reference

1. M. Malmqvist, "Transient distortion", Musiktidningen, vol. 4, no. 4, p.53, Aug. 1976 (in Swedish); presented at the 56 th AES Convention, Paris, March 1977.

INDUSTRIAL CONSULTANCIES IN UNIVERSITIES

I noticed with interest your article in the February 1977 issue on the "Crisis in scientific and engineering education," and am writing to comment on certain statements made in the article.

Most of the universities in the UK have established industrial consultancy or liaison offices of one kind or another. The current count is some 33 universities with such offices. In general, consultancy work carried out for industry using university facilities is conducted or monitored by these units and the universities require a proper return to them for such use. While it would be highly undesirable to restrict the contact of individual academics with their industrial counterparts, most universities now require that academic staff be given permission for any consultancy work that they undertake and there is normally some limit as to the level of additional remuneration they can receive from such work.

In conclusion I would comment that most of the universities have established liaison bureaux and industrial consultancies which are free to exploit results of research, and there is a growing degree of co-operation between university staff and their opposite numbers in industry.
R. J. L. McLaren,

Centre for Industrial Research and Consultancy,
University of Dundee.

Crystal ladder filters

How to build low-cost s.s.b. filters using surplus crystals

by J. Pochet, F6BQP

This article gives design calculations for making crystal filters for s.s.b. applications and includes results of tests made on samples constructed by the author. The arrangement used in each case is that of a ladder filter where the crystals are connected in series. This very simple arrangement, see Fig.1, enables constructors to make low-cost filters, in comparison with commercial units, by using crystals having identical resonant frequencies.

The filters to be described in this article were made using 8314 kHz crystals, as these were readily available to the author. The measurements were made in a laboratory with automatic instruments of high precision. Table 1 gives the results of measurements on one of the filters compared with the wellknown XF9A filter. Definitions of the terms are shown in Fig. 2.

The results obtained from these tests are very satisfactory; the ultimate out-of-band rejection, better than 95 dB .

Fig. 1. Typical crystal ladder filter for 830 ohms impedance. In the ladder arrangement all the crystals, in this case devices having resonant frequencies of 8314 kHz , are connected in series.

Fig. 2. Attenuation/frequency characteristic for a crystal ladder filter indicating the definitions used in the text.

Table 1 - Comparative results between a four-crystal ladder filter and the XF9A filter

	Ladder filter	XF9A filter
Insertion loss	1.4 dB	2.5 dB
Ripple	0.8 dB	0.8 dB
Bandpass:	1800 Hz	2350 Hz
-3 dB	2050 Hz	2540 Hz
-6dB	2950 Hz	3200 Hz
-20 dB	5200 Hz	4250 Hz
-40dB	6950 Hz	4650 Hz
It50dB	$>95 \mathrm{~dB}$	$>48 \mathrm{~dB}$
Ultimate out-of-band rejection	830 ohms	500 ohms
Impedance		

is excellent, the slopes of the sides of the filter are a little less steep than those of the XF9A, and the pass-band at -6 dB is a little narrower. It should be mentioned that the measured characteristics of the XF9A filter are better than those claimed by the manufacturers.

How to design the filter

A filter of this kind can be made using two, three or four crystals in series. Fig.

Fig. 3. Typical crystal ladder filters. All crystals are of the same resonant frequency - preferably between 8 and 10 MHz for s.s.b. units. The coefficients indicated against each capacitor should be multiplied by $1 / 2 \pi f R$, where R is the design impedance and f is the resonant frequency of the crystal in hertz, to give the correct capacitor value. Three and four-crystal filters are capable of giving very good results. Two-crystal filters, although reasonably good, have relatively poor shape factors. See text.

3 gives the values of the capacitors as a function of the impedance and frequency values adopted. The choice of impedance is important because, in effect, the more this is reduced the more the pass-band is reduced and the higher will be the insertion loss. This is because the series resistance of the crystal becomes more significant in relation to the impedance.
On the other hand, if one chooses an impedance which is too high, the calculations will result in low capacitance values, and construction then becomes limited by the stray circuit capacitances.

In practice, for a frequency of about 8 to 10 MHz , the impedance should be about 800 to 1000 ohms to obtain a pass band of 2100 Hz , suitable for s.s.b.

It is necessary to underline the importance of the impedance of a filter, no matter what type is used. It is also of paramount importance that the filter should be correctly terminated because any significant mismatch could lead to a pass-band ripple of some 10 dB .

It is possible to adjust the values of the capacitors; reducing them increases the passband but also increases the ripple in the pass-band (If a ripple of 2 dB can be accepted, the passband can be increased by up to 20%). Note that it is advisable not to take advantage of this opportunity unless the necessary test instruments are available to check the results of any such adjustments (a wobbulator and oscilloscope are the ideal instruments for this type of adjustment).
The following is an example of how to calculate capacitor values for crystal ladder filters.

When R is the design impedance and f is the resonant frequency of the crystal in Hz , if f is 8314 kHz , and R is 830 ohms, then $1 / 2 \pi f R$ is equal to 23 pF . From this one may obtain capacitor values for a four-crystal filter, as follows.
$\mathrm{C}_{0}=0.4142 \times 23=9.5 \mathrm{pF}(8.2 \mathrm{pF})$
$\mathrm{C}_{1}=1.82 \times 23=41.8 \mathrm{pF}(39 \mathrm{pF})$
$\mathrm{C}_{2}=2.828 \times 23=65 \mathrm{pF}(56 \mathrm{pF})$
and for a three-crystal filter:
$\mathrm{C}_{0}=0.707 \times 23=16.3 \mathrm{pF}(15 \mathrm{pF})$
$\mathrm{C}_{1}=2.121 \times 23=48.8 \mathrm{pF}(47 \mathrm{pF})$
and for a two-crystal filter:
$\mathrm{C}_{0}=1 \times 23=23 \mathrm{pF}(22 \mathrm{pF})$
$\mathrm{C}_{1}=2 \times 23=46 \mathrm{pF}(47 \mathrm{pF})$

The values in brackets refer to 10% preferred values.

These three filters have been built and the results obtained are shown in Table 2. In all three cases the passband ripple is less than a decibel. The results showed that with three or more crystals one may obtain a very good filter. Although the two-crystal filter gives a reasonably good out-of-band rejection (50 dB), the sides are not very steep and the shape factor is modest. With a single crystal the out-of-band rejection is only about 20 dB .

Remarks

In the cases described above the passband extends from approximately 8314 to 8316 kHz . The series-resonant frequency of the crystals therefore determines the lower limit of the passband; this is of interest since it is necessary only to use an additional crystal, of the same frequency as the others, for the carrier, to permit the selection of the upper sideband.

The choice of filter frequency depends on the availability of the crystals. It is possible to use frequencies from 5 to 20 MHz , but if one has the choice it is preferable to use 8 to 10 MHz . As an example, for a frequency of 5 MHz it would be necessary to use an impedance of at least 1500 ohms in order to obtain the necessary bandwidth for s.s.b.

By using a lower frequency and lower

Table 2 - Measurements on two, three and four crystal ladder filters (for 8314 kHz and 830 ohms impedance)

	Two crystals	Three crystals	Four crystals
Insertion loss	0.9 dB	1.1 dB	1.4 dB
Bandpass:	2150 Hz	2050 Hz	2050 Hz
-6 dB	2700 Hz	2350 Hz	2250 Hz
-10 dB	4850 Hz	3400 Hz	2950 Hz
-20 dB	8900 Hz	5050 Hz	3900 Hz
-30 dB	$16,100 \mathrm{~Hz}$	7500 Hz	5200 Hz
-40 dB	$>50 \mathrm{~dB}$	$>75 \mathrm{~dB}$	$>95 \mathrm{~dB}$
Ultimate out-of-band rejection			

impedance, it is possible to make an excellent c.w. filter.

The filters described above could be constructed on a p.c.b. and fitted into a small metal box, which should be connected to ground to avoid stray leakages.

An example circuit arrangement

Let us finish with an example of a circuit arrangement allowing the filter to be inserted at points of impedance equal to its own. This circuit is shown in Fig. 4. The output impedance of the first stage is practically equal to the collector resistance of Tr_{1} (common emitter configuration) and the input impedance of the second stage (Tr_{2} in common collector configuration). In this way the correct termination of the filter is obtained with the advantage of a very low output impedance (that of Tr_{2}), suitable for connection to the mixer on transmit and the i.f. stage on receive.

This circuit could also be very useful for measuring the filter's response curve with a sufficiently stable h.f. generator. a digital frequency meter and a voltmeter incorporating an h.f. probe, or better still a wobbulator.

In conclusion the author recognizes that it would be interesting to study this technique further; trying for example readily-available surplus FT243 crystals, or low-cost 27 MHz crystals having 9 MHz fundamentals.

Fig. 4. One method of connecting a crystal filter into a transceiver circuit to ensure correct impedance matching. See text.

Pat Hawker comments: This is a free translation of an article, "Essais, mesures et realisation de filtres a quartz" by J. Pochet, F6BQP, published in Radio-REF, journal of the Reseau des Emetteurs Francais, in May 1976. For many years the vast majority of crystal bandpass filters used in h.f. communications have been based on the half-lattice or lattice configuration, plus some limited use of the bridged-T approach. The recent use of higher frequency filters, particularly around 5,9 and 10.7 MHz has opened the way to greater use of the attractive ladder filter. At these frequencies it is possible with three or four identical frequency crystals and with practical values of impedance and capacitors to achieve passbands of between 2 to 3 kHz , reasonably good shape factors and high ultimate out-of-band rejection.

While it would seem possible to obtain better shape-factors and ultimate rejection by using more crystals, this will usually require careful adjustment of capacitor values and is less easy to arrange in a symmetrical form having equal input and output impedances.

Acknowledgement. Wireless World thanks Pat Hawker, G3VA, for translating this article from the original French.

Logic design - 6

Examples of clock-driven circuits

by B. Holdsworth* and D. Zissos \dagger

*Chelsea College, University of London
 †Dept. of Computing Science, University of Calgary, Canada

Some examples of the design of clockdriven circuits using the techniques set out in the last article can now be considered.

Example 1. Paper Tape Reader

Design a circuit that will stop the paper tape reader, shown in Fig. 9(a), by turning signal m off when the character sequence $4-5-6$ is detected, and at the same time generates a buzzer signal b.
A synchronizing pulse is generated by the reader each time a new character is output.
(1) I/O characteristics. See Fig. 9(a)
(2) Internal characteristics. A suitable state diagram is shown in Fig. 9(b)
(3) State reduction. The state table corresponding to Fig. 9(b) is shown in Fig. 9(c). Examination of this table shows that merging of rows is not possible.
(4) Primitive circuits. Suitable binary codes are allocated on the state diagram. By direct reference to this

(a)

(b)

(c).
diagram the input equations to the JK flip-flops are obtained.

$$
S_{A}=S_{1} 5+\left(S_{2} 6\right)
$$

where the term in brackets is an optional product.

$$
S_{A}=\bar{A} B 5+(A B 6)
$$

The optional product cannot be used for reduction purposes.

Hence, $\mathrm{S}_{\mathrm{A}}=\overline{\mathrm{A}} \mathrm{B} 5$ and $\mathrm{J}_{\mathrm{A}}=\mathrm{B} 5$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{A}} & =\mathrm{S}_{2} 4+\mathrm{S}_{2} \overline{4} \overline{6}+\left(\mathrm{S}_{0}\right) \\
& =\mathrm{S}_{2} \overline{6}+\left(\mathrm{S}_{0}\right) \\
& =\mathrm{AB} \overline{6}+(\overline{\mathrm{A}} \overline{\mathrm{~B}})
\end{aligned}
$$

The optional product cannot be used for reduction purposes.

Hence, $\mathrm{R}_{\mathrm{A}}=\mathrm{AB} \overline{6}$ and $\mathrm{K}_{\mathrm{A}}=\mathrm{B} \overline{6}$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{B}}= & \mathrm{S}_{0} 4+\left(\mathrm{S}_{1} 4\right)+\left(\mathrm{S}_{1} 5\right)+\left(\mathrm{S}_{2} 4\right) \\
= & \overline{\mathrm{A} \bar{B} 4} 4+(\overline{\mathrm{A}} 4)+(\overline{\mathrm{A}} \mathrm{~B} 5)+ \\
& (\mathrm{AB} 4)
\end{aligned}
$$

The optional product ($\overline{\mathrm{A}} \mathrm{B} 4$) need not be used for simplification purposes since \bar{B} will be eliminated when converting from S_{B} to J_{B}.

Hence, $\mathrm{S}_{\mathrm{B}}=\overline{\mathrm{A}} \mathrm{B} 4$ and $\mathrm{J}_{\mathrm{B}}=\overline{\mathrm{A}} 4$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{B}} & \left.=\mathrm{S}_{1} \overline{4} \overline{5}+\mathrm{S}_{2} \overline{4} \overline{6}+\mathrm{S}_{2} 6+\mathrm{S}_{0} \overline{4}\right) \\
& =\mathrm{S}_{1} \overline{4} \overline{5}+\mathrm{S}_{2} \overline{4}+\left(\mathrm{S}_{0} \overline{4}\right) \\
& =\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{5} \overline{5}+\mathrm{AB} \overline{4}+(\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{4}) \\
& =\mathrm{B} \overline{4} \overline{5}+\mathrm{AB} \overline{4}+(\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{4})
\end{aligned}
$$

The optional product cannot be used for simplification purposes, hence

$$
R_{B}=B \overline{4} \overline{5}+A B \overline{4} \text { and } K_{B}=\overline{4} \overline{5}+A \overline{4}
$$

The circuit is shown in Fig. 9(d).

Example 2. One-shot circuit

High-frequency clock pulses are fed to terminal X in Fig. 10(a). Design a circuit

Fig. 9. Circuit of Example I is shown at (a). Its state diagram is at (b) and its state table at (c). The resulting circuit is shown at (d).

(d)

so that each activation of a manual switch m allows one complete clock pulse output on line Z. The duration of signal m can be assumed to be greater than the pulse width.
(1) I/O characteristics. These are shown in the time diagrams of Fig. 10(b).
(2) Internal characteristics. A suitable state diagram is shown in Fig. 10(c).
(3) State reduction. It is left as an exercise for the reader to construct the state table and examine the possibility of state reduction.
(4) Primitive circuit. By direct reference to the state diagram the following turn-on and turn-off equations are obtained.
$S_{A}=S_{0} m=\bar{A} \bar{B} m$. Therefore $J_{A}=\bar{B} m$.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{A}} & =\mathrm{S}_{1}+\mathrm{S}_{3}+\left(\mathrm{S}_{2}\right)+\left(\mathrm{S}_{0} \overline{\mathrm{~m}}\right) \\
& =\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}+(\overline{\mathrm{A}} \mathrm{~B})+(\overline{\mathrm{A} \overline{\mathrm{~B}} \mathrm{~m})} \\
& =A . \text { Therefore }, K_{A}=1 .
\end{aligned}
$$

$S_{B}=S_{1}+\left(S_{2} m\right)=A \bar{B}+(\bar{A} B m)=A \bar{B}$. Therefore $\mathrm{J}_{\mathrm{B}}=\mathrm{A}$.

$$
\begin{aligned}
R_{B}= & S_{2} \bar{m}+S_{3}+\left(S_{0}\right) \\
= & \bar{A} B \bar{m}+A B+(\bar{A} \bar{B}) \\
= & B \bar{m}+A B . \text { Therefore } K_{B}=\bar{m}+A . \\
& \quad Z=S_{1} X=A \bar{B} X
\end{aligned}
$$

The circuit implementation of these equation is shown in Fig. 10(d).

Example 3. Pulse distributor

Signal X in Fig. 11(a) is a pulse train. The input pulses are to appear at the output terminals as shown in Fig. 11(b).
continued on p. 74

Fig. 10. Problem of Example 2, (a) and the required timing at (b). The state diagram is seen at (c) and the circuit realization is shown at (d).

Fig. 11 (a) is the problem for Example 3, with the specified output at (b). State diagram (c) and state table (d) result in the circuit shown at (e).

Cost of new licences

Somewhere, sometime, somebody in authority will have to make his mind up whether amateur radio should be treated purely as a tolerated hobby or as a socially useful form of technical selftraining. For it is becoming more and more expensive for a youngster to obtain a British amateur licence. The latest increase in the fee for taking the Post Office amateur-licence Morse test - it goes up from $£ 4$ to $£ 6$ on July 1 means that this charge (which was only 50p until October 1970) will have gone up by a factor of 12 in less than 7 years! It is similarly difficult to keep abreast of the steadily rising cost of taking the Radio Amateurs Examination, since this involves not only the City \& Guilds fee but also the local centre fee. Applicants for these examinations may also have to meet substantial travelling costs, and, of course, if successful pay the first annual licence fee. All of this is certainly not a way of encouraging a new generation of amateurs.

Yet such costs could surely be greatly reduced by adopting some elements of the system used in some overseas countries of bringing the local clubs and groups into the licence-issuing process. Is it for instance really necessary for the Morse Test to be given by one of the now relatively small number of trained Post Office operators? There are plenty of local amateurs who could do this, with any necessary precautions against abuse.

If Lord Wallace, the RSGB president, can argue that the communications industry has reason to be grateful for the enthusiasm and expertise implanted in young industry apprentices by their participation in amateur radio, is it not time that the whole procedure was looked at with a view to making this more possible? One can understand the Post Office view that it cannot be expected to subsidise the cost of Morse tests - the real question is should they be involved at all?

European v.h.f./u.h.f. records

The following is a listing of current European distance records for the amateur bands above 144 MHz as pub-
lished recently in the Dutch journal Electron:
$144 \mathrm{MHz} \mathrm{F} 5 \mathrm{JC} / \mathrm{SM} 5 \mathrm{AGM}$ (tropo, 1930km); SM6FBQ/UA3TCF (aurora, 1830km); SM5LE/UA9GL (meteor scatter, 2200 km); SM7BYU/9HlCD (sporadic $E, 2250 \mathrm{~km}$).
$70-\mathrm{cm}$ F8MM/SM5LE (tropo, 1560km); SM5CUI/UA3ACY (aurora, 1260 km); SM5LE/VK2AMW (moonbounce, $15,680 \mathrm{~km}$).
$23-\mathrm{cm}$ G3LQR/SM5CCY (tropo, 1100 km); PAOSSB/VK3AKC (moonbounce, $20,000 \mathrm{~km}$).
$13-\mathrm{cm}$ OKlKIR/OKlWFE (tropo, 400 km)
$9-\mathrm{cm}$ PAODBQ/G3LQR (tropo, 230 km)
$6-\mathrm{cm}$ G3BNL/G3EEZ both portable (tropo, 160 km)
$3-\mathrm{cm}$ OKlVAM/OKlWFE (tropo, 200 km).

This list brings out several interesting contacts although the two records attributed to Czech stations appear to have been overtaken by the G3LQR/OZ9OR tropo contact on 13 cm (760 km) and the G4BRS/GM3OXX contact on $9 \mathrm{~cm}(521 \mathrm{~km})$ recorded during the past year.

Band scan

Microwave beacons are now operational on The Wrekin (GB3WRN) on 1296.91 MHz and near Sheffield (GB3UOS) on 3456 MHz .

The weekly GB2ATG rtty news bulletins transmitted on Sunday mornings (1200 local time on $3590 \mathrm{kHz}, 1230$ and 1245 on 144.6 MHz) are now also being sent on 3590 kHz at 1900 local time on Sunday evenings.

The well-known New Zealand short-wave listener, Arthur Cushen, was heard recently being interviewed on the Club Forum programmes transmitted by Radio Australia on Saturday mornings. This is one of a number of amateur and s.w.l. programmes broadcast regularly on the h.f. broadcast bands; the Dutch programmes on Radio Netherlands were recently judged the most popular in a ballot organised by I.S.W.L.

The "Phase l" programme of amateur u.h.f. repeaters has been completed with the coming into operation of GB3IH at Ipswich, GB3LV at Cheshunt and GB3LW in Central London.

859 certificates of Morse proficiency have been issued by the Royal Naval Amateur Radio Society since the regular transmissions on G3BZU were begun in 1962. These transmissions are made on the first Tuesday of every month on or about 3520 kHz at 2000 hours local time. Speeds from 15 to 40 words per minute in increments of 5 w.p.m. are sent for 3 minutes each, and must be copied without any errors to obtain a certificate or endorsement. A charge of 30 p is made for a 15 or 20 w.p.m. certificate and endorsement "stickers" for other speeds require only
a stamped addressed envelope. Present manager of the service is Mick Puttick, G3LIK, and transmissions are made from the RNARS headquarters station in Hampshire using a KW Viceroy transmitter and dipole aerial (RNARS, G3BZU, HMS Mercury, Leydene, Petersfield, Hampshire).

The American National Association of Broadcasters has recently petitioned the FCC , seeking the right to rebroadcast transmissions made on Citizens' Band and amateur radio bands. It has been suggested to broadcast stations that they could broadcast emergency traffic or weather reports and information vital to public safety and convenience.

In the picture

Mike Cox, G8HUA, of Brigg, South Humberside has taken over from Joe Rose, G8CTG, as general secretary of the British Amateur TV Club. CQ-TV also shows, in a letter from Peter Cossins, VK3BFG, that there are now some 20 fast-scan amateur tv stations in the Melbourne area. A weekly WIA news bulletin is transmitted on amateur tv every Sunday morning and pictures are from time to time exchanged with VK7EM in Tasmania some 400 km distant.

Several British amateurs are now using standard u.h.f. transverters driven from h.f. or v.h.f. standard equipment with simple homebuilt video modulators: for example, Lawrence Woolf, GJ8AAZ (formerly GC6RAX/T) uses an FT620 drive source, Modular Electronics 50 to 432 MHz transver. To receive $70-\mathrm{cm}$ atv signals the output from the transverter is fed into a Band 1 tv receiver; for transmission a 50 MHz video modulator uses just one transistor plus an SL610c integrated circuit.

In brief

The number of amateur licences in the USA has for the first time passed the 300,000 mark, an increase of over 10 per cent in a year.... Of 2351 Austrian licences, 1317 are for h.f./v.h.f. operation, 980 for v.h.f. only and 54 are club stations. .. The RSGB's VHF National Field Day runs from 1600 GMT July 2 to 1600 GMT July 3 with groups operating up to four separate stations, one each for the $70,144,432$ and 1296 MHz bands.... The Royal Naval Amateur Radio Society is holding its annual mobile rally at "HMS Mercury" (a shore establishment between Clanfield and East Meon, near Petersfield, Hants) on Sunday, June 19 with trade stands, arena events and a static display of pre-1963 racing cars. Talk-in stations GB3SN on $144 \mathrm{MHz}, 70 \mathrm{MHz}$ and $3660 \mathrm{kHz} . \ldots$ Sprat, the journal of the G QRP (low power) Club, points out that it is illegal for a station to sign /QRP but calling CQ QRP is within the terms of the licence.

PAT HAWKER, G3VA

Time code clock alarm

by N. C. Helsby, M.A. University of Essex

The provision of an alarm circuit is relatively simple and requires the digital comparison between a stored alarm time in b.c.d. form and the current received time also in b.c.d. The alarm time is determined by the positions of thumbwheel switches, which are easy to set and give a continuous read-out. The received time is present on the inputs to the display of the clock, except during the instant that the new code is being received serially. The alarm is blanked during this time by the application of waveform G to the digital comparator circuit. When the GMT to BST changeover is carried out automatically, and the alarm is connected to the output of the converter, a further blanking signal is applied in the form of waveform H . During the time that H is high the alarm is inhibited while the output of the converter continuously changes until all of the information has been received by the date decoder.

Exclusive-OR gating is used to make the comparison between the actual time and the alarm time. This system is cheaper than digital comparators, and full information about the comparison such as greater-than and less-than is not required. The output of each exclu-sive-OR gate is only low when both inputs are either high or low. Any exclusive-OR output being high will keep Tr_{1} turned on, including the outputs G and H previously mentioned. However, when all outputs are low the collector of Tr_{1} goes high and clocks $\mathrm{IC}_{5(a)}$. Although rarely occurring in normal use, it should be noted that a break in transmission or noisy conditions could cause a particular display to be "skipped" and prevent detection of the required alarm time. The virtue of high accuracy may justify the extension of the alarm time to include seconds, which requires two more sections to the thumbwheel switch unit and one extra 7486 i.c. plus diodes. It is equally possible to reduce the precision and hence reduce the chance of skipping the alarm time, by not including the minutes' comparison, and setting the alarm to the nearest ten minutes or even to the nearest hour.
The time at which the alarm is
cancelled is determined by counting minutes, although seconds may be substituted if preferred, and resetting the D type flip-flop after a pre-selected number of minutes. The c.m.o.s. decade counters IC $_{6}$ and IC ${ }_{7}$ have ten decoded outputs allowing pre-selection of a count from 0 to 99 . When the pre-selected count is reached, both inputs to $\mathrm{IC}_{8(\mathrm{~b})}$ are high which resets the D type until the next alarm is detected. A reset may be effected at any time before this by the use of Sw_{1}. During the alarm period a relay is energized allowing a wide variety of functions to be switched electrically and independently. If a number of circuits need to be automatically switched on and off at different times and for different periods, several alarm circuits can be used in parallel.

Printed circuit boards

A set comprising two double-sided boards and one single-sided board for the date decoder/BST switch, display, and alarm circuit is available for $£ 8.00$ inclusive from M. R. Sagin, at 23 Keyes Road, London N.W.2. The decoder board allows leading zero blanking, and the alarm board offers automatic cancelling after a preselected number of minutes.

A set of five p.c.b.s and special components are still available for the original time code clock as detailed in the August 1976 issue of Wireless World

Correction

IC_{3} in Fig. 2 of the June issue should be a 4013 and not a 4015 as shown in the components list.
$\left.\begin{array}{|ll|}\hline & \\ & \\ & \\ & \\ \text { Component list for one alarm circuit } \\ \text { (shown overleaf) }\end{array}\right]$
Complete alarm circuit. To improve noise immunity the 13 exclusive-OR gate inputs from the thumbwheel switches can be fitted with $8.2 \mathrm{k} \Omega$ pull-up resistors to +5 V . The complementary b.c.d. code contacts in the switches should be used and are marked with a bar.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House.
Cray Avenue. St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

3009+VERSATILITY

Series II Improved precision pick-up arms balance cartridges weighing between 4-9 grams. This can be extended to $1 \frac{1}{4}-21 \frac{1}{4}$ grams, however, by the use of alternative balance weights, thereby covering the wider range of cartridges now available.

The best performance from your arm and cartridge is obtained with the correct balance weight, and information sheet No 21 enables you to select what is required. A copy will be sent on request.

Write to Dept 0644 • SME Limited Steyning Sussex BN4 3GY

The best pick-up arm in the world

Decoupling

Some circuits and some thoughts on their purpose

by S. W. Amos, B.Sc., M.I.E.E.

Decoupling is usually defined in technical dictionaries as the reduction of unwanted coupling between stages in multi-stage equipment and, in the example usually quoted, the unwanted coupling is caused by an impedance in the common power supply. Such coupling can cause oscillation and the remedy is to include a decoupling network as illustrated in Fig. 1 which shows the essential components of a three-stage $R C$-coupled amplifier. $R_{\text {s }}$ represents the resistance of the power supply and $R_{d} C_{d}$ is the decoupling network. By redrawing the circuit diagram as in Fig. 2 we can see that it has the form of an astable multivibrator circuit. R_{s} is the effective collector load of Tr_{3} and, if large enough, causes the circuit to generate relaxation oscillations at a frequency determined primarily by the capacitors C_{2} and C_{3} and the associated base resistors. In audio amplifiers the oscillation frequency is usually very low - of the order of 1 Hz - and gives rise to an audible effect known as motor boating. The decoupling network is situated between Tr_{3} collector and Tr_{2} base in one of the cross couplings which gives rise to oscillation and, if it introduces sufficient attenuation at low frequencies, can prevent oscillation.
Fig. 2 is useful in showing, for example, that there is little point in putting a decoupling network in the collector circuit of Tr_{2}. Such a circuit would appear at the point marked X in Fig. 2: it would smooth the supply to Tr_{2} but would do nothing to discourage multivibrator action.
R_{d} and C_{d} serve purposes other than the prevention of multivibrator oscillation. For example they act as smoothing components for the supply to Tr_{1} and attenuate any 50 Hz or 100 Hz ripple. Such ripple is applied directly to the base of Tr_{2} and is subjected to the gain of this and subsequent stages of the amplifier. For example if $R_{d}=1$ kilohm and $\mathrm{C}_{\mathrm{d}}=100 \mu \mathrm{~F}$ any 100 Hz components present at the output of the power supply are attenuated by a factor of approximately 60 (the reactance of $100 \mu \mathrm{~F}$ being 16 ohms at 100 Hz).

But possibly the most important effect of a decoupling network is on the transfer of signal-frequency energy from one stage to the next. To illustrate this consider Fig. 3, which shows a common-emitter tuned amplifier. $\mathrm{R}_{4} \mathrm{C}_{2}$ are collector decoupling components similar to $R_{d} C_{d}$ in Fig. 1. But by arranging $\mathrm{R}_{4} \mathrm{C}_{2}$ as shown in Fig. 3 we can see that C_{2} plays an important role in the output circuit of the transistor. The output signal from the transistor is, of course, generated between collector and emitter and, to minimise signal loss, these two electrodes should be connected by low-impedance paths to the output load, i.e. the primary winding of the output transformer T_{2}. There is a
direct connection between the collector and one end of the load: the decoupling capacitors C_{2} and C_{3}, provided they have suitable capacitances, provide a low-reactance path between emitter and the other end of the load.
Similar considerations apply at the input of the amplifier. The input signal should be applied between the base and the emitter of the transistor. The source of input signal is the tuned secondary winding of the transformer T_{1} and one end of this is directly connected to the base. A low-impedance path from the other end of the tuned winding to the emitter is provided by the decoupling capacitor C_{1} (which effectively shortcircuits the lower arm R_{2} of the

Fig. 1. Essential features of a three-stage $R C$-coupled amplifier. R_{s} represents the resistance of the power supply and $R_{d} C_{d}$ are decoupling components.

Fig. 2. The circuit of Fig. 1 redrawn to show its similarity to that of an astable multivibrator

Fig. 3. $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} are decoupling capacitors providing low-impedance paths for the input and output signals of the transistor.

Fig. 4. A simplification of the output-circuit decoupling of Fig. 3.

Fig. 5. A simplification of the inputand output-circuit decoupling of Fig. 3.

Fig. 6. A circuit in which a single capacitor $\left(\mathrm{C}_{2}\right)$ provides input and output decoupling.
potential divider) and C_{3} (which similarly short-circuits the emitter resistor R_{3}).
$\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} in Fig. 3 thus provide examples of an important function of decoupling components: by providing low-impedance paths they confine signals to the areas where they are wanted and, by implication, prevent them from entering areas where they could cause difficulties.

Emitter decoupling

C_{3} was introduced in the preceding paragraphs as a means of providing low-impedance paths for the input and output signals of the transistor. It has, however, another function and this is to eliminate the negative feedback introduced by the emitter resistor R_{3}. This feedback is generally undesirable because it reduces the gain of the transistor and increases the input and output resistances. Increase in the input resistance would be a nuisance if this resistance is used to determine the passband of the tuned input transformer T_{1}. To be effective in eliminating feedback C_{3} must have a low reactance at the operating frequency. Because the reactance of a capacitor is inversely proportional to frequency, feedback elimination becomes less effective as frequency is reduced and the value of C_{3} is therefore so chosen that effective elimination is achieved at the lowest frequency of interest: it is then automatically better at higher frequencies. This requirement also ensures that the capacitor is large enough to provide low-impedance paths for the input and output signals. It might be thought that the value of the emitter decoupling capacitor would be determined by R_{3} and the operating frequency, the loss due to feedback being 3 dB at the frequency for which the reactance of C_{3} equals R_{3}. This is not true, however, because the internal emitter resistance r_{e} of the transistor is effectively in parallel with R_{3} and is normally much smaller than R_{3}. Thus the true 3 dB loss frequency is that for which the reactance of C_{3} is equal to the parallel resistance of R_{3} and r_{e}. From this relationship it is possible to deduce the value of the decoupling capacitor to use in a particular circuit. It is given by the following expressions.

For bipolar transistors

$$
C=\frac{h_{f e}}{2 \pi f_{\min }\left(h_{f e}+R_{e}\right)}
$$

where R_{e} is the value of the external emitter resistor.
For field-effect transistors and valves

$$
C=\frac{1}{2 \pi f_{\min }}\left(g_{m}+\frac{1}{R}\right)
$$

where R is the value of the external source or cathode resistor.

The formal deduction of these expressions was given by P. Engstrom in Wireless World for December, 1971.

We have so far discussed collector, base and emitter decoupling. In valve technology decoupling is also required for the screen grid of pentodes (still used in high-power equipment such as transmitters). For an a.f. pentode the effect of resistance in the external screen-grid circuit is precisely analogous to that of resistance in the external cathode circuit, i.e. it causes negative feedback and reduced gain. To eliminate this effect an external screen-grid decoupling capacitor is introduced and its value can be calculated from the expression given above by substituting g_{s} the screen conductance for g_{m} and R_{s} the external screen-grid resistance, for R.
R.f. pentodes also require screen-grid decoupling but here it is necessary for a different reason. As its name suggests the screen grid is required to act as an electrostatic screen between anode and grid circuits and to do this it must be effectively connected to cathode at signal frequencies though at a positive potential to give a reasonable anode current. A capacitor between screen grid and cathode enables this to be done and such a capacitor can legitimately be called a decoupling component because it confines anode and grid signals to their respective areas and prevents leaks between them which could cause r.f. instability.

Decoupling circuits

Examination of Fig. 3 shows that the circuit could be simplified and the impedance of the output signal path further reduced by omitting C_{3} and returning C_{2} to emitter as shown in Fig. 4. Indeed this arrangement must be adopted in certain circuits where signals are injected into the emitter, e.g. some types of oscillator or frequencychanger circuit. A disadvantage of this circuit is that the smoothing of the collector supply by $\mathrm{R}_{4} \mathrm{C}_{2}$ is offset by the ripple injected into the emitter circuit via R_{3}. But possibly a more serious objection to the circuit of Fig. 4 is that R_{3} is no longer decoupled and so provides negative feedback. However, this disadvantage can be overcome by applying to the input circuit the same technique used for the output circuit and which led to the circuit diagram of Fig. 4, i.e. by returning C_{1} (Fig. 3) to emitter as shown in Fig. 5, which also includes output-circuit decoupling. Although the emitter resistor R_{3} is not now shunted by a low-reactance capacitor there is no negative feedback: this is because the input signal is applied directly between base and emitter and the signal generated across R_{3} by the collector current is not returned to the base circuit.
In some tuned amplifiers the stepdown ratio required in the input transformer is achieved by use of a capacitance potential divider. It is then possible to dispense with capacitor C_{1}

Fig. 7. A Hartley oscillator circuit.

Fig. 8. The circuit of Fig. 7 with simplified decoupling arrangements.

Fig. 9. Essential features of the Tobey-Dinsdale circuit.

Fig. 10. Simplification of the previous diagram.
by returning the potential divider to the positive supply lines as shown in Fig. 6. Here the single decoupling capacitor C_{2} provides a low-impedance path for input and output signals. C_{4} and C_{5} in series tune the secondary winding and C_{4} is larger than C_{5}, to give the required impedance match to the low input resistance of the transistor.

Hartley oseillator

Similar decoupling techniques are possible in oscillator circuits. In the Hartley oscillator, for example, one end of the tuned circuit should be connected to collector, the other end to base and the inductor tapping to emitter. Fig. 7 shows a circuit diagram in which stabilisation of the mean collector current is achieved by the potential divider $R_{1} R_{2}$ and the emitter resistor R_{3}. Such an arrangement is likely to be used if the transistor is required to operate in class A as in oscillators required to give a particularly pure waveform. The required low-impedance connection to the collector is achieved by direct coupling and to the base by the low-reactance capacitor C_{1}. The connection between tapping and emitter is, however, achieved via the decoupling capacitors C_{2} and $\mathrm{C}_{3} . \mathrm{C}_{2}$ is sometimes a smoothing capacitor in the power supply but to minimise impedance in the tapping-emitter connection C_{2} should preferably be a separate local component. As before, C_{3} can be dispensed with provided C_{2} is returned to emitter as in Fig. 8.

Tobey-Dinsdale circuit

A particularly interesting application of decoupling occurs in the TobeyDinsdale amplifier circuit, a development of the Lin circuit. The essential features of the decoupling circuit are shown in Fig. 9. The intention here is to drive the complementary pair $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ as common-emitter amplifiers from the output of Tr_{1}. The impedance of $\mathrm{D}_{1} \mathrm{R}_{3}$ is very small and thus Tr_{2} and Tr_{3} are effectively in parallel although, because they are complementary, their output currents are in push pull. We can thus simplify the circuit by replacing Tr_{2} and Tr_{3} by a single transistor Tr_{4} as in Fig. 10 and the output current from Tr_{1} must be directed into the base-emitter junction of Tr_{4}. There is a direct connection from Tr_{1} collector to Tr_{4} base and thus a low-impedance connection is required between Tr_{4} and Tr_{1} emitters. Unfortunately such a connection would short-circuit the output of the amplifier which is taken from Tr_{4} emitter. The inclusion of a resistor in Tr_{1} emitter circuit would not make the circuit satisfactory because the internal emitter resistance of Tr_{1} would still act as a shunt on the amplifier output: moreover the return of the output signal to Tr_{1} emitter would give rise to considerable feedback. This problem is solved, as shown in Figs 9 and 10, by providing a low-impedance path between Tr_{4} emit-
ter and R_{1}, R_{2} junction. The decoupling capacitor C_{1} performs this function so that Tr_{4} effectively short-circuits R_{2} and thus ensures that most of the signalfrequency output of Tr_{1} enters Tr_{4}. For successful operation R_{2} should, of course, be large compared with the input resistance of Tr_{4} i.e. of the complementary pair. If C_{1} were instead returned to the negative supply rail the base-collector junctions of Tr_{2} and Tr_{3} would be effectively connected across R_{2} : the complementary pair would then operate as emitter followers and their high input resistance would make it difficult to drive adequate current into them.

A consequence of returning C_{1} to the top end of R_{2} is that the decoupling resistor R_{1} is effectively in parallel with the output load of the complementary pair: thus R_{1} must be large compared with this load resistance.

Inductors in decoupling circuits

Many of the decoupling circuits which have been discussed include a resistor in the supply lead. This reduces the collector supply voltage available to the transistor and the need to retain an adequate collector voltage limits the resistance that can be used for decoupling. This difficulty can be overcome by use of an inductor in place of a resistor, for its reactance then determines the effectiveness of the decoupling circuit while the resistance determines the loss of collector supply voltage. A.f. inductors are, however, bulky and expensive components and

Fig. 11. The diode detector circuit provides two examples of decoupling.
this solution is generally reserved for r.f. amplifiers where small and inexpensive inductors can give adequate reactance. At u.h.f. and v.h.f. ferrite beads threaded on supply leads can give adequate reactance and these can be combined with bush capacitors to form particularly compact decoupling networks.

Diode a.m. detectors

In all the examples of decoupling networks so far considered we have concentrated on the provision of lowreactance paths to confine signals to the areas where they are required. We could, however, alternatively regard these networks as examples where the signals are prevented from reaching areas where they are not required. For example in Fig. 3 signals in the output circuit are prevented from entering R_{4} by the provision of C_{2} and from entering R_{3} by the provision of $\mathrm{C}_{3} . \mathrm{R}_{4} \mathrm{C}_{2}$ and $\mathrm{R}_{3} \mathrm{C}_{3}$ are both, in fact, current dividers in which the current is mainly confined to
the capacitor by making its reactance small compared with the associated resistance. In some decoupling circuits the same end is achieved by the use of potential dividers and the diode a.m. detector circuit of Fig. 11 provides two examples. $\mathrm{R}_{3} \mathrm{C}_{3}$ is intended to convey direct current to the earlier stages of the receiver to control their gain but it must prevent audio signals from reaching these earlier stages. To be effective therefore the reactance of C_{3} must be small compared with R_{3} even at the lowest audio frequency of interest, say $50 \mathrm{~Hz} . \mathrm{R}_{3}$ is normally given a value large compared with the diode load resistance so that there is no appreciable shunting effect. 50 kilohms might be a suitable value for R_{3} and C_{3} can then be $l \mu \mathrm{~F}$ which has a reactance of 3 kilohms at 50 Hz .

Similarly $\mathrm{R}_{2} \mathrm{C}_{2}$ is intended to prevent r.f. signals from entering the a.f. amplifier but it should not, of course, attenuate audio signals significantly. Thus the reactance of C_{2} should be large compared with R_{2} even at the highest audio frequency: it will then be even larger at lower frequencies. It would be satisfactory therefore to make the reactance of C_{2} equal to R_{2} at, say, 10 kHz . The loss will then be 3 dB at $10 \mathrm{kHz}, 1 \mathrm{~dB}$ at 5 kHz and less at lower frequencies. If the reactance of C_{2} is equal to R_{2} at 10 kHz it will be only $1 / 46$ th of R_{2} at 460 kHz , approximately the intermediate frequency of a.m. receivers. This gives a loss of 35 dB . If R_{2} is 820 ohms C_{2} could be $0.02 \mu \mathrm{~F}$ which has a reactance of 800 ohms at 10 kHz .

- continued from p. 65

Design a clock-driven circuit using JK flip-flops and NAND gates that will satisfy the given specification.
(1) I/O characteristics. As shown in Fig. 11(a) and Il(b).
(2) Internal characteristics. The internal state diagram of the required circuit is shown in Fig. 11(c).
(3) State reduction. The state table is shown in Fig. 11(d) and examination of this table shows that no state reduction is possible in this case.
(4) Primitive circuit. Binary codes are allocated as shown on the state diagram. By direct reference to this diagram the following equations are obtained.

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{0}+\mathrm{S}_{2}=\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}=\overline{\mathrm{A}} \\
\text { Therefore } \mathrm{J}_{\mathrm{A}}=1 \\
\mathrm{R}_{\mathrm{A}}=\begin{array}{l}
\mathrm{S}_{1}+\mathrm{S}_{3}=\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}=\mathrm{A} \\
\text { Therefore } \mathrm{K}_{\mathrm{A}}=1
\end{array} \\
\mathrm{~S}_{\mathrm{B}}=\mathrm{S}_{1}+\left(\mathrm{S}_{2}\right)=\mathrm{A} \overline{\mathrm{~B}}+(\overline{\mathrm{A}} \mathrm{~B})=\mathrm{A} \overline{\mathrm{~B}} \\
\text { Therefore } \mathrm{J}_{\mathrm{B}}=\mathrm{A} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{3}+\left(\mathrm{S}_{0}\right)=\mathrm{AB}+(\overline{\mathrm{A} \overline{\mathrm{~B}})}=\mathrm{AB} \\
\text { Therefore } \mathrm{K}_{\mathrm{B}}=\mathrm{A}
\end{array} \\
& \begin{array}{c}
\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{0}+\mathrm{S}_{2}=\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}=\overline{\mathrm{A}} \\
\text { Therefore } \mathrm{J}_{\mathrm{A}}=1 \\
\mathrm{R}_{\mathrm{A}}=\begin{array}{l}
\mathrm{S}_{1}+\mathrm{S}_{3}=\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}=\mathrm{A} \\
\text { Therefore } \mathrm{K}_{\mathrm{A}}=1
\end{array} \\
\mathrm{~S}_{\mathrm{B}}=\mathrm{S}_{1}+\left(\mathrm{S}_{2}\right)=\mathrm{A} \overline{\mathrm{~B}}+(\overline{\mathrm{A}} \mathrm{~B})=\mathrm{A} \overline{\mathrm{~B}} \\
\text { Therefore } \mathrm{J}_{\mathrm{B}}=\mathrm{A} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{3}+\left(\mathrm{S}_{0}\right)=\mathrm{AB}+(\overline{\mathrm{A} \overline{\mathrm{~B}})}=\mathrm{AB} \\
\text { Therefore } \mathrm{K}_{\mathrm{B}}=\mathrm{A}
\end{array} \\
& \begin{array}{c}
\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{0}+\mathrm{S}_{2}=\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}=\overline{\mathrm{A}} \\
\text { Therefore } \mathrm{J}_{\mathrm{A}}=1 \\
\mathrm{R}_{\mathrm{A}}=\begin{array}{l}
\mathrm{S}_{1}+\mathrm{S}_{3}=\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}=\mathrm{A} \\
\text { Therefore } \mathrm{K}_{\mathrm{A}}=1
\end{array} \\
\mathrm{~S}_{\mathrm{B}}=\mathrm{S}_{1}+\left(\mathrm{S}_{2}\right)=\mathrm{A} \overline{\mathrm{~B}}+(\overline{\mathrm{A}} \mathrm{~B})=\mathrm{A} \overline{\mathrm{~B}} \\
\text { Therefore } \mathrm{J}_{\mathrm{B}}=\mathrm{A} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{3}+\left(\mathrm{S}_{0}\right)=\mathrm{AB}+(\overline{\mathrm{A} \overline{\mathrm{~B}})}=\mathrm{AB} \\
\text { Therefore } \mathrm{K}_{\mathrm{B}}=\mathrm{A}
\end{array} \\
& \begin{array}{c}
\mathrm{S}_{\mathrm{A}}=\mathrm{S}_{0}+\mathrm{S}_{2}=\overline{\mathrm{A}} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B}=\overline{\mathrm{A}} \\
\text { Therefore } \mathrm{J}_{\mathrm{A}}=1 \\
\mathrm{R}_{\mathrm{A}}=\begin{array}{l}
\mathrm{S}_{1}+\mathrm{S}_{3}=\mathrm{A} \overline{\mathrm{~B}}+\mathrm{AB}=\mathrm{A} \\
\text { Therefore } \mathrm{K}_{\mathrm{A}}=1
\end{array} \\
\mathrm{~S}_{\mathrm{B}}=\mathrm{S}_{1}+\left(\mathrm{S}_{2}\right)=\mathrm{A} \overline{\mathrm{~B}}+(\overline{\mathrm{A}} \mathrm{~B})=\mathrm{A} \overline{\mathrm{~B}} \\
\text { Therefore } \mathrm{J}_{\mathrm{B}}=\mathrm{A} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{S}_{3}+\left(\mathrm{S}_{0}\right)=\mathrm{AB}+(\overline{\mathrm{A} \overline{\mathrm{~B}})}=\mathrm{AB} \\
\text { Therefore } \mathrm{K}_{\mathrm{B}}=\mathrm{A}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{Z}_{1}=\mathrm{S}_{0} \mathrm{X}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{X} \\
\mathrm{Z}_{2}=\mathrm{S}_{0} \mathrm{X}+\mathrm{S}_{1} \mathrm{X}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{X}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{X}=\overline{\mathrm{B}} \mathrm{X} \\
=\mathrm{Z}_{3}=\mathrm{S}_{0} \mathrm{X}+\mathrm{S}_{1} \mathrm{X}+\mathrm{S}_{2} \mathrm{X} \\
=\mathrm{S}_{3} \mathrm{X}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{X}=(\overline{\mathrm{A}}+\overline{\mathrm{B}}) \mathrm{X}
\end{gathered}
$$

The circuit implementation of these equations is shown in Fig. 11(e).

Professor D. Zissos will conduct a five day course on Logic, Interfaces and Microprocessors from July 4 to 8 at the Southgate Technical College, London N14. Further details from Interprojects Ltd, 29 Church Street, Edmonton, London N9 9DY.

Philips and MCA will present their first UK public demonstration of the optical video disc system at the Video Disc '77 conference in London, November 8 and 9 , say the organisers. The last Video Disc conference was held two years ago, before which similar demonstrations were to be held but the only equipment shown was the now defunct Teldec.

2,000 candidates responded to NASA's invitation to participate in the Spacelab experiment in 1980 (See WW May 1977 , p66). NASA say they and the European Space Agency have now selected 222 representing the US and 14 other countries: NASA chose 81 from the US and the rest from India, Japan, Canada France and Belgium. The other 136 investigators came from 10 ESA member states, Austria and Norway.

Salon International des Composants Electroniques

New products seen at the Paris show

For one week in April, Paris again became the centre of world electronics. It brought together 1260 exhibitors, of which 534 were French and 726 were from 30 other countries. Entrance passes alone indicated that there were 75,972 visitors, from 87 countries, almost 13% of these being from foreign countries. Although this is 5.1% more than last year, it must be remembered that last year's show did not include a section on test and measuring equipment.

Apart from increases in the number of foreign exhibitors this year - for example, there were about 30% more British and 10% more West German participants - and the introduction of newcomers from countries such as Korea and India, there were also changes in the mixture of activities of the companies exhibiting. Although exhibitors from the USA increased by almost 60%, the number of major American semiconductor companies was less than in 1976.

It is always difficult, at a show of this size, to assess a particular industry, but, if judged solely on the enthusiasm of the exhibitors and visitors at the show, a fair conclusion would be that the European electronics industry is alive and well.

Several families of power semiconductors were launched by RCA Solid State - Europe. Among these developments was a 'quick-connect' package intended for medium- and high-power silicon controlled rectifiers and triacs. The package, which may be fixed on a TO-3 heatsink, uses AMP type connectors. An example device in the new package is the T6260 40A triac. Also being launched by RCA was the Versawatt TO-220 range of silicon controlled rectifiers. These fast-switching devices are designed for reverse-blocking applications and have turn-off times as short as $6 \mu \mathrm{~s}$. The rectifiers are rated at 5 A r.m.s. with maximum trigger currents of 50 mA . RCA was also showing a new range of epibase power transistors in TO-3 packages, which they claim is the largest range of its kind on the market. This range includes the 2N3055 device, which is also available in hometaxial construction.

Other products launched by the company included a range of mediumpower $n-p-n$ transistors, several integrated circuits and a microprocessor aid. The transistors, designated as RCP111/3/5 and /7, are high-voltage, low collector-base capacitance types, especially designed for television applications such as video and audio output stages, regulators and linear amplifiers. The new microprocessor aid is a hand-held data terminal which offers a low-power, soft-copy alternative toconventional printing terminals. It uses a calculator-type keyboard and an eight-digital l.e.d. display. The Cosmac CDP18S021 Micro-terminal, as it is called, is designed to interface with Cosmac hardware support systems to provide control, communications and debugging functions.

On the AEG-Telefunken stand was the TDA1062, an f.m. tuner unit for car radios. The unit consists of a mixer, modulator and phase-sensitive detector

The new miniature 220 to 250 V Bimrill shown by Boss Industrial Mouldings Limited. The drill is supplied with three collets for accepting twist drills, burrs and mops with shanks up to $1 / 8$ in diameter. Its 7500 rev/min motor is powerful enough to drill through brass and steel.
suitable for frequencies up to 200 MHz . It also has a built-in a.g.c. amplifier for external p-i-n diodes, and is adaptable to capacitance diodes. Variometer or variable capacitor tuning may be used and tuning a voltage of only 2 to 7.5 V is necessary. The makers claim that no alignment is needed. Another device was the TDA1068 noise suppressor, which is designed for the a.f. section of car radios. It will work from a supply voltage from 9.5 to 15 V and is suitable for mono or stereo operation. Three PAL colour-TV devices, TDA2140/50 and $/ 60$, were also shown. Type 2140 is a sub-carrier reference oscillator, type 2150 forms a luminance and chrominance amplifier and type 2160 contains the synchronous modulator and RGB matrix.

Of particular interest on the Texas Instruments stand was the TBM0103, a non-volatile, 92,304 -bit, magnetic-bubble memory on a single chip. The bubble chip is comprised of a gadolinium-gallium garnet substrate upon which a magnetic epitaxial film is grown. Patterns of permalloy metal are deposited on the film to define the path of bubble domains, which are made to move in a shift-register fashion when in the presence of a rotating magnetic field. The 14 -pin d.i.l. module measures $1.0 \times$ $1.1 \times 0.4 \mathrm{in}$ and is specified for 100 kHz operation, with an access time of 4 ms for the first bit and a cycle time of 12.8 ms for the 144 -bit page. Contin-ous-rated power consumption is $1 / 2 \mathrm{~W}$.

Four differential line-transceiver i.cs, types SN55118, SN55119, SN75118 and SN75119, were also announced by Texas Instruments. These devices are designed for interfacing between t.t.l.type digital systems and differential data transmission lines. Each circuit combines a three-state driver and a receiver in one package.

A m.o.s.f.e.t. transistor hãs been developed by Texas Instruments to help manufacturers improve the performance of the r.f. section of Citizen's Band tuners. The TIS148 transistor provides 20 dB conversion gain with only a 3.2 dB conversion noise figure when used as a mixer for 27 MHz . The device also eliminates the need for an r.f. amplifier.

A new 16-bit microprocessor has also been introduced by Texas. It is believed to be the first monolithic central processing unit produced using bipolar integrated injection logic (in). The SBP9900 microprocessor uses this technique to provide selection by the user of speed and power and static operation, to enable a single non-critical d.c. power supply to be used and to ensure direct t.t.l.-compatible inputs and outputs.

A digital multimeter was launched at the show by Gould Advance Limited. The new instrument called the Alpha III, is a low cost version of the Beta multimeter launched in 1976. The instrument has a $31 / 2$-digit l.e.d. display and is claimed to operate for more than 50 h from one set of batteries.
Nippon Electric were showing a microcomputer board teaching kit called the TK-80. The kit, which until the show had not been introduced to the European market, provides all the hardware elements, software tools and information for tutorial introduction to, and advanced details for, the μ PD8080A 8 -bit microcomputer and its software. The TK-80 is built around NEC's $\mu \mathrm{COM}-8$ microcomputer family of 1.s.i. devices, including the μ PD8080A c.p.u., a clock generator, a r.a.m., a r.o.m., a keyboard and an l.e.d. display.
The largest of all the stands at the show was that representing ThomsonCSF, who had a large array of new products ranging from transistors and capacitors to brushless d.c. motors and cathode-ray tubes. Included in the devices from the Electron Tubes division was the TH5108 elec-tronically-tunable, X-band Gunn diode source. This model delivers more than 30 mW over its $\pm 100 \mathrm{MHz}$ tuning range and its centre operating frequency can be anywhere in the 9200 to 9300 MHz band. The frequency drift for this varactor-tuned source is less than $200 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$
The THX914, also from ThomsonCSF, is a plasma display panel having a capacity of over 1300 characters (32 lines of 42 characters) with a useful screen area of 163 mm square. The THX914, which is t.t.l-compatible, has all the normal functions of an a.c.-driven plasma panel, with a fast access time of $200 \mu \mathrm{~s}$ to write a five-by-seven point character.
Another device from the Electron Tubes Division was the THX1107 c.c.d. device which is a development of the THX1105, first introduced in 1976. This analogue delay line has 512 elements, a maximum bandwidth of 5 MHz and a distortion figure of 1% for a 500 mV output signal.
SGS-Ates have managed to produce i.c. amplifiers capable of handling high currents ($\left.\mathrm{I}_{\mathrm{C}(\max)}=3.5 \mathrm{~A}\right)$ and high voltages ($\mathrm{V}_{\mathrm{CE} \text { (sus) }}>44 \mathrm{~V}$). This has allowed a typical output power of 20 W into a 4Ω loudspeaker, with a distortion of less than 1%, using a single and inexpensive integrated audio amplifier, the TDA2020. Output powers of 180 W

A dual-in-line test clip, displayed by UMD Amphenol, is suitable for use on 14 and 16 contact devices. The clip, called the DIP/LOC, is designed to lock on to an i.c. to ensure positive contacts with all leads.

A new surface-acoustic-wave filter designed for PAL television receivers shown by Siemens Electron Tube Division. With this device it is possible to design an i.f. stage that features superior performance and stability characteristics compared to the conventional L-C type. These types of filter are particularly suitable for teletext decoder circuits.
can be achieved using two of these amplifiers. SGS-Ates is also developing a new family of power transistors giving up to 50 A current handling capability, high switching speeds of less than $0.5 \mu \mathrm{~s}$, and operating frequencies of 50 MHz . Devices in the range also have low leakage currents. The transistors will be manufactured in planar technology, so that they will withstand adverse operating conditions.

A large selection of new devices was being shown by Siemens. An audio amplifier i.c., in a TO220 case, was developed by the company specifically for use in car radios. With two 4Ω loudspeakers connected in parallel, the TDA 2870 provides 10 W from 14.4 V , and when used with only one 4Ω loudspeaker the output power is 5 W . The device has built-in temperature-sensing overload and short-circuit-current protection. In addition it has a low thermal resistance of $5^{\circ} \mathrm{C} / \mathrm{W}$ maximum.
Among the new power semiconductors from Siemens was a fast silicon diode for TV receivers, a mains thyristor and two fast power diodes. The silicon diode, type BY302, has a soft recovery performance and a reverse recovery time of 250 ns . The thyristor, type D10, has a high blocking stability and a mean on-state current of 8 A . The power diodes, types SSiN 36 and SSiN 46 , are intended preferably for use in forced-
commutated s.c.r. circuits. Model N36 is a screw bolt design having a maximum allowable r.m.s. current rating of 550 A and model N46 is of the disc type, rated at 900 A . Maximum forward voltage ratings for the devices are 2.05 V and 2.00 V respectively.

Other power devices were the BStP49 and the BStQ63, both high-speed thyristors, and the BStR68L power thyristor, all in flat-pack ceramic insulated cases. These devices were developed mainly for line-commutated converters. Maximum r.m.s. on-state currents and turn-off times (at the maximum junction voltage) for the P49 and Q63 are $1100 \mathrm{~A} \& 10 \mu \mathrm{~S}$ and $1000 \mathrm{~A} \& 50 \mu \mathrm{~s}$ respectively.

Also seen at the show

Continental Device (India) Limited: a solar cell designed to supply transistor radios. The device provides about 6 V at 300 mW (in India), and is available in different sizes and with various specifications.
Intersil; types 7106 and 7107 c.m.o.s monolithic a.-d. converters designed for direct drive of $3 / 1 / 2$-digit l.e.d. displays or equivalent l.-c. displays.
Raytheon; type 2901A, a four-bit microprocessor slice, said to be 30% faster than the 2901. Three quad op-amps; type HA4741, which has no crossover, the pin-compatible LM348 with built-in overload protection, and type RC4156, having an improved noise figure and a 3.5 MHz bandwidth.
Silicon Transistor Corporation (STC); the model STA9160 switching transistor in a TO-3 can. This device has ratings of 500 W and 100 A , and a $\mathrm{V}_{\text {cco }}$ of 120 V .
Jaybeam Limited; a 2.5 m skeleton parabolic dish antenna having yagi and shrouded feed assemblies. Models available include an 18 dBd (w.r.t. a dipole) antenna for the 400 MHz band, a 24 dBd antenna for u.h.f. TV bands, and a 26 dBd antenna for the 900 MHz band. In addition there is a 28 dBd dish for 1500 MHz and a 31 dBd dish for 2 GHz .
ITT; a battery-operated laser torch designed specifically for use with night vision equipment. The lens system can be adjusted and will provide a spot diameter from 1.5 to 8 m at 100 m range.
Hewlett Packard; two dual opticallycoupled isolators, models HCPL-2730 and 2731. These units have very high transfer ratios (10:1) and low input currents of 500 A and will operate up to 200 k -bits $/ \mathrm{s}$. Isolation between inputs and outputs is 3000 V .
Thomson-CSF; a bipolar power transistor, designed by the Microwave Microelectronics Division, which is claimed to be one of the best r.f. transistors on the market. The 250 W p.e.p. device, model TH430, is intended for s.s.b. transmitters in the range 2 to 30 MHz . It has a power gain of at least 14 dB .

Ion out your quality control problems

The AVO Breakdown and Ionisation Tester RM215-L/2 is specifically designed to help solve all manner of quality control problems.

It measures resistive leakage current under both $A C$ \& DC voltage testing conditions as well as total AC leakage current. Test voltages up to 12 kV DC and 6 kV AC are continuously variable and breakdown current level is adjustable up to 1 mA . A built-in loudspeaker gives audible detection of ionisation and there are connections for earphone or an oscilloscope.

The circuit features low internal resistance yet at the same time limits the maximum output current, even at short circuit.

With the RM215-L/2 you can carry out general flash testing, measurement of breakdown voltage -even after breakdown-and the detection (and counting) of spurious flashovers.

Equally suited to both destructive and non-destructive testing, the RM215-L/2 is a piece of test equipment you cannot afford to be without. If you have some problems that need to be 'ioned' out, get in touch for full details.

APPLICATIONS

Flash testing of electrical components.
Measurement of breakdown voltage on electrical components and materials.
Measurement of insulation resistance at high voltage.
Measurement of d.c. leakage current
Measurement of a.c. leakage current and total current.
Non-destructive insulation testing of materials and components
Detection of ionisation in electrical assemblies.
Designed to meet B.S., V.D.E. and I.E.C. Safety Requirements.

Avo Limited, Dover, Kent.
Tel: Dover (0304i) 202620

Thorn Measurement Control and Automation Division.

The most powerful Monolithic IC amplifier in the world.

20 watts output (continuous sine wave) ... Less than 0.2% total harmonic distortion at all powers, al/frequencies And totally electronically indestructible!

Until recently, all monolithic IC chips suffered from two basic design weaknesses First, thermal runaway causing heat to build up as current increased; and second, short circuiting.

Standard plastic package with copper slug
Until the SOC2O IC chip! This extraordinary new power amplifier chip is uniquely designed to improve thermal dissipation. It also has two separate built-in circuits, one of which measures on-chip temperature. If this should rise above $150^{\circ} \mathrm{C}$ the output transistors are switched off thus preventing thermal runaway.

And short circuits? The other circuit continuously monitors both current and voltage. If the product of current and voltage rises above a critical level, the

SOC20 plastic package with chip directly soft-soldered to copper slug.
drive is adjusted to bring the transistors within safe operating limits.

The amplifier can drive speakers of any impedance - maximum power will only fall outside the recommended $4!-8!$ range.

And any pin on the chip may be shorted to any voltage in the system for any length of time ... and no damage will occur!

Superb quality . .

extraordinary power
The SOC20 isn't only safe . . . it's also extraordinarily sophisticated. Total harmonic distortion is less than 0.2% at all powers and all frequencies - and in normal use is well below 0.1%.

If power is at a premium, use two SOC2O amplifiers in 'Full Bridge' to give over 40 watts continuous into 8 !! speakers.

The SOC20 is naturally guaranteed unconditionally for one year. Although with the SOC2O's unique patented design, we think you'll have little cause to make use of any guarantee!

Specification

Maximum supply voltage
$\pm 22 \mathrm{~V}(44 \mathrm{~V}$ total)
Output power
20 watts continuous $4!$ or $8!$
Open loop gain
100 dB
Supply voltage rejection 50 dB
Input noise voltage 4 nV
Number of transistors 18
Supplied with free printed circuit board, heat sink mounting bracket, comprehensive instructions, and suggested applications.

WW - 079 FOR FURTHER DETAILS

The SOC20 will work on any supply from 12-44 volts and therefore can be used for in-car as well as domestic applications. Apart from its obvious audio uses the fact that it is DC coupled throughout makes it ideally suited for servo systems - in radio-controlled models for example.

Incorporate the SOC20 in your equipment today!

SOC20's cost $£ 4.95$ each, or $£ 7.95$ a pair for, say, stereo applications. Only a few readily-available components are needed to build a full amplifier unit.

Of course, the SOC2O comes with a 10-day money-back guarantee.
Sinclair Instrument Ltd, 6 Kings Parade,
Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

Weather-satellite picture facsimile machine - 5 Modification of the facsimile machine for radio weather charts

by G. R. Kennedy

Parts one to four of this article described a prototype rotating-drum facsimile machine for producing APT, SR and WEFAX transmission pictures. This final part describes modifications to the basic design of the machine so that it may be used specifically for meteorological purposes. The modifications will enable both weather satellite and radio facsimile broadcasts to be printed.

Weather charts, prepared by hand or computer, are transmitted by shortwave and long-wave radio by most national meteorological organisations, (see Ref. 13). The internationally adopted standards for drum rotation speeds and index of co-operation (i,o.c.) are 60,90 and $120 \mathrm{rev} / \mathrm{min}$ and 576 or 288 respectively. The 288 index is sometimes referred to as 'alternate line scanning'. $90 \mathrm{rev} / \mathrm{min}$ charts are invariably for aeronautical use. The transmissions are frequency shift keyed $\pm 400 \mathrm{~Hz}$ on short-wave and $\pm 150 \mathrm{~Hz}$ on long wave. Some charts are sent on one sideband of a double side-band trans-

Fig. 16. Frequency-shift keying (f.s.k.) terminal block diagram,
mission, often with teleprinter traffic on the other. Reception requires a good communications receiver with a stable beat frequency oscillator (b.f.o.) and a frequency shift keying (f.s.k.) terminal connected to the receiver audio output (see Fig. 16). This provides a machinecompatible output to the facsimile machine described earlier. The audio

Fig. 17. Input detector of f.s.k. terminal circuit.
signal from the receiver is detected and *applied to one input port of an analogue modulator or mixer, an accurate 2.4 kHz signal being applied to the other. The output is the product of the two signals. Since most charts are black and white, the detector is arranged to latch between two levels corresponding to black and white; this enhances copy under poor signal conditions. For those cases where greys are required, such as for the Russian composite chart and Meteor satellite transmissions, the detector can be switched to respond to varying levels. The detector and a.m. modulator are powered from a stabi-

lized power supply with a very low output ripple.
The circuit details for the input detector are shown in Fig, 17. The receiver audio is applied to one input of the phase-lock loop IC_{23} via C_{37}, while the other input is balanced to ground. The output comprising the f.m. demodulation of the input frequency-shift passes through the low-pass filter R_{75}, $\mathrm{R}_{76}, \mathrm{R}_{77}, \mathrm{C}_{41}$ and C_{42} to operational amplifier IC_{24}. The d.c. level from IC_{23} is maintained by the input to the noninverting input of the op-amp via R_{78}. C_{43} decouples any residual v.c.o. signal, and together with the low-pass filter removes the loop p.s.d. sum frequency. IC_{24} is run with its negative rail to ground to ensure that only positive signals are passed to the next stage. Switch S_{6} allows the option of a black and white picture by placing a large value feedback resistor, R_{82} across IC_{24} so that it latches solidly between positive and ground. Alternatively a lower value of feedback gain can be obtained by selecting RV_{17} which can be preset to give the required grey scale. The grey reference level for half carrier shift is finely set by preset $R V_{16}$.
The output of the detector is applied to the detector i / p terminal of balanced modulator IC_{25} via RV_{19}, which sets the modulation depth. IC_{25} is a double balanced mixer which is used here to amplitude modulate the detected signal onto a 2.4 kHz carrier. This is fed in via $R V_{18}$, which sets the carrier level, to the carrier input. Input biasing is effected by $\mathrm{R}_{86}, \mathrm{R}_{87}, \mathrm{R}_{88}$ and R_{89}. The residual level of the output carrier is set by RV_{20} so that the carrier is modulated to 75%, the residual 25% being used in the facsimile machine for clocking. The gain is preset by R_{90}, the bias by R_{92}, and R_{93} and R_{94} are the chip output transistor collector loads. The output terminals are at approximately +10 V , so the output signal is a.c. coupled by $\mathrm{C}_{48} \cdot \mathrm{R}_{85}$ and R_{91} set the carrier mean d.c. level. The -5 V rail is derived from the -12 V supply by $\mathrm{R}_{95}, \mathrm{D}_{17}$ and C_{49}. (Note: pin assignments are shown in Fig. 18 for the 'L' 14 pin d.i.l. version of the Motorola MC1496. With appropriate pin connections, the Motorola ' G ' version or the Signetics NE5596 'A' or 'K' can be used).
With the circuit values given, the v.c.o. frequency of IC_{23} is 5.5 kHz . This was found to be a good compromise between the upper frequency limit of the receiver audio amplifier and the lower frequency limit for black to white transitions for fine detail. Tests showed that for a b.f.o. frequency of 3 kHz fine lettering was not discernable, and few communication receivers have a good response above 8 kHz .

A crystal-controlled 2.4 kHz generator is shown in Fig. 19. There are many ways of producing the frequency accurately, but this shows a method using a fairly standard crystal bar. The 144 kHz crystal is the feedback element in a simple t.t.l. gate oscillator, IC_{26}. The

Fig. 18. Amplitude modulator of f.s.k. terminal circuit.

$120 \mathrm{rev} / \mathrm{min}$ radio weather facsimile chart. A typical chart for general meteorological use, showing sea ice and 5 day mean sea isotherms.

$90 \mathrm{rev} / \mathrm{min}$ radio

 weather facsimile chart. Charts sent at 90 rev/min are invariably for aeronautical use. This chart shows upper air wind speed for pilots flying the North Atlantic.output is divided by five in IC_{27} and further divided by 12 in IC_{28}. The resultant 2.4 kHz is taken directly to the f.s.k. modulator IC_{25} and buffered and inverted in IC_{29}. This output is used in the facsimile machine to drive the motor circuitry and detector. The inversion in IC_{29} partially corrects for phase shift in the f.s.k. input detector and precludes $R V_{8}$, the sample pulse delay pot in the facsimile machine having to be adjusted differently for satellite pictures and facsimile charts. The power supply circuit for the f.s.k. terminal, shown in Fig. 20, uses i.c. voltage regulators IC_{30} and IC_{31} with external transistors Tr_{20} and Tr_{21} to increase the regulating sensitivity. This gives no output protection, but gives a very high input rejection and hence extremely low ripple. If a less smoothed supply is used, hum bars are prone to appear on the final print as a regular speckling of the chart lines.

The actual modifications to the facsimile machine itself are straightforward and involve the addition of a phaselocked frequency generator, two binary dividers, and switching to change the motor drive frequencies. Fig. 21 a shows the essentials of the basic system before modification. Note that the APT/SR switch S has been added to illustrate the routing of APT or SR line division frequencies - in the basic machine the $1 / 5$ line position of the line division switch S_{3} can be used for APT/WEFAX. The modifications to the basic design are shown in Fig. 21b. The line division switch remains, but the APT/SR switch is enlarged to give positions for 60,90 , 120 and 240 drum revolutions per minute, as well as the SR line division rates of $240 \mathrm{rev} / \mathrm{min}$ for $1 / 5$ line, 192 $\mathrm{rev} / \mathrm{min}$ for $1 / 4$ line and $144 \mathrm{rev} / \mathrm{min}$ for $1 / 3$ line. For 60,120 and $240 \mathrm{rev} / \mathrm{min}$ the 2.4 kHz is divided by 50 and is selected by $\mathrm{S}_{7 \mathrm{~b}}$ to pass directly to the motor drive power amplifier, or divided by two, or divided by four, to give 240,120 or 60 $\mathrm{rev} / \mathrm{min}$ respectively. For $90 \mathrm{rev} / \mathrm{min}$ the path is the same as for $60 \mathrm{rev} / \mathrm{min}$ except that the 2.4 kHz is increased $11 / 2$ times to 3.6 kHz to give an output of 60 $\mathrm{rev} / \mathrm{min}$ times $11 / 2$, i.e. $90 \mathrm{rev} / \mathrm{min}$. The 3.6 kHz generator is shown in Fig. 22. The 2.4 kHz input is applied to phaselock loop IC_{32}. The output of the 3.6 kHz v.c.o. is amplified by Tr_{22} and taken to the drum function switch $\mathrm{S}_{7 \mathrm{a}}$ and to duodecal divider IC_{33} connected as a divide-by-three circuit. The 1200 Hz output from this circuit is returned to IC_{32} in order to phase lock the v.c.o. to the 2.4 kHz irput. The SR signal path remains the same as in the basic scheme. Since the motor drive circuit is not as efficient at lower frequencies, RV_{11} in the motor drive circuit (Fig. 12) is advanced when the chart modification is carried out. The drive at the higher frequencies is then automatically reduced by $\mathrm{S}_{7 \mathrm{~d}}$ switching the $\mathrm{R} \mathrm{V}_{1.1}$ wiper to ground via R_{111} for $240 \mathrm{rev} / \mathrm{min}$ and R_{112} for the $S R$ frequencies. The motor drive voltage therefore remains

Table 1. Settings for gain potentiometer RV_{6} (on a scale of $0-10$) as used on the prototype facsimile machine.

Charts (rev/min)	I.o.c	Setting	
120	228	(no expansion, linear)	
120	576	(no expansion, linear)	8.20
90	576	(no expansion, linear) (no expansion, linear) with appropriate log/lin and expander settings) with appropriate log/lin and expander settings)	7.20
NOAAs, Meteor-25		6.80	
ATS-3		3.00	

Fig. 20. Low-ripple power supply for f.s.k. terminal circuit.
approximately constant at all drum rates. Depending on the type of transformer used in the motor power amplifier, the values of coupling capacitors $\mathrm{C}_{24}, \mathrm{C}_{25}$ and of tuning capacitor C_{27} in Fig. 12 may have to be increased, although in the prototype this was not found to be necessary.

The traverse modification concerns the provision of two traverse speeds by switching and an alternative gear train. The same gears are used for SR pictures and $120 \mathrm{rev} / \mathrm{min}$ charts, but for 60 rev/min charts the standard synchronous motor used for the traverse would not run on a 12 Hz supply in the prototype and simple switching was arranged to apply 50 Hz mains to the motor with a replacement gear train to give the correct rate of drive. For 120 $\mathrm{rev} / \mathrm{min}$ the switching between the synchronous low speed (normal) and the 50 Hz rate (fast) gives approximately the correct drive speeds for 576 and 288 i.o.c. respectively. At 60 and $90 \mathrm{rev} / \mathrm{min}$, charts are normally only sent at 576 i.o.c. The gearing has to be changed to a ratio of $7: 1$, using the motor and roller size described earlier. The situation for printing satellite pictures remains the same, i.e. direct drive (1:1) for ATS-3, 2:1 at "normal" for NOAAs, and $2: 1$ at "fast" for Meteor-2. (Note: as a guide, in the original machine the $7: 1$ nominal gearing was $60-107$ for motor to shaft, 23-90 for shaft to roller, these representing teeth of diametrical pitch 100).

Operation for radio facsimile charts

The facsimile machine gain pot setting has to allow for the effective writing speed of the crater-tube light beam at different drum and traverse rates. The prototype used an analogue turns counting dial for setting RV_{6} (see Fig. 7). The settings used are set out in Table 1.

The output of the f.s.k. terminal is taken to the expander input, with the expander set for a direct signal i.e. no expansion. Phasing is carried out as for satellite pictures. No strobing is used and the monitor oscilloscope is triggered from the sync output socket. The drum edge pulse thus appears every two or four sweeps of the oscilloscope time-base; this is quite adequate for positioning the drum and chart edges. Detector switch S_{6} is set to black-andwhite, the receiver is tuned to the required signal and the beat frequency oscillator set to give bright/dim keying of the crater tube. This can be done without great precision on short-wave

Fig. 21. Essential modifications to the facsimile machine, showing (a) before modification and (b) - after modification,

but requires more finesse on v.l.f. signals due to the reduced frequency shift. Received chart quality can be improved in the presence of interference by reducing the receiver i.f. bandwidth to just encompass the carrier shift. As a matter of detail, most transmissions have a white inter-chart level and short duration black edge phasing pulses. Those stations of French, or previously French colonial origin, send a black resting level and half-line black/white phasing bars. According to which side of the carrier the b.f.o. is tuned - for double sideband transmissions - the chart may be printed as black lines on white or viceversa. The option is useful not only for slide production but also to enable a readable copy to be obtained if there is severe interference to one side of the carrier.
The Russian weather charts, that contain strips of computer-processed Meteor satellite pictures, require the detector to be switched to grey on S_{6} and RV_{17} adjusted for optimum results. consistent with black lines being printed on the chart.

Photographic materials

The author has found that a most suitable material for all prints. both satellite pictures and radio facsimile charts, is Ilford's Ilfospeed 2.1.M and 3.1. M, a fast-processing resin coated, polyethylene laminated paper. For development an Ilfospeed developer is available, although Kodak D-19 used in its concentrated working solution strength has given excellent results.

It should be noted that this article refers to special radio transmissions and any enquiry concerning reception licencing should be addressed to the relevant licencing authority.

Fig. 22. Phase-locked 3.6 kHz generator circuit for " $90 \mathrm{rev} / \mathrm{min}$ " charts. Correction note! On IC_{32} the connection shown from pin 10 to ground via C_{65} should be a connection from pin 11 to ground via C_{63}

Components list

Resistors ($1 / 4 \mathrm{~W} 20 \%$ unless otherwise stated)

72	560	96	$1.8 k$
73	560	97	$150 k$
74	$4.7 k$	98	$1.8 k$
75	$3.3 k$	99	$120,1 W$
76	$3.3 k$	100	$270,1 / 2 W$
77	$3.3 k$	101	470
78	$10 k$	102	10
79	$10 k$	103	$2.2 k$
80	$4.7 k$	104	680
81	$4.7 k$	105	680
82	$1.2 M$	106	10
83	$270,1 W$	107	$2.2 k$
84	$270,1 W$	108	680
85	$1 k$	109	680
86	47	110	$27 k$
87	47	111	100
88	47	112	330
89	47	113	$1 k$
90	$1 k$	114	$1 k$
91	$1 k$	115	$15 k$
92	$6.8 k$	116	$1.8 k$
93	$3.9 k$	1117	100
94	$3.9 k$	118	$1 k$
95	$330,1 / 2 W$	119	$1 k$

Transistors

20
21
BFY5 1 or similar
BFY51 or similar
2N3704 or similar

Transformer

$30-20 \mathrm{~V} @ 1 \mathrm{~A}$
0-20V@1A
RS Components

Switches
 6 SPST toggle
 74 pole 5 way rotary

Crystal

144 kHz quartz bar (Senator Crystals)

Diodes	
$15-19$	5.1 V 400 mW zeners
20	RS REC 70 or similar
21	RS REC 70 or similar
Integrated circuits	

Integrated circuits

23	NE565	29	SN7437N
24	SN72741N	30	AA723C
25	MC1496L	31	A723C
26	SN7402N	32	NE562B
27	SN7490N	33	SN7492N

Variable resistors (presets)
2.5 k 10 turn 0.5 M
10 k 20
21

10k

Capacitors (.. F unless otherwise stated)

37	0.022	53	$100 / 25 \mathrm{~V}$
38	$0.01+0.0015$	54	$100 / 25 \mathrm{~V}$
39	0.0012	55	$200 / 35 \mathrm{~V}$
40	0.022	56	100 p
41	0.047	57	$100 / 35 \mathrm{~V}$
42	0.047	58	$200 / 35 \mathrm{~V}$
43	0.082	59	100 p
44	$100 / 25 \mathrm{~V}$	60	$100 / 35 \mathrm{~V}$
45	$100 / 25 \mathrm{~V}$	61	0.1
46	0.22	62	1.0 Mylar
47	0.33	63	0.068
48	0.10	64	0.068
49	$47 / 12 \mathrm{~V}$	65	0.082
50	0.0068	66	0.082
51	560 p	67	0.47
52	001	68	1.0

New

Electromagnetic pump

The Appliance Components Eckerle ETU21 electromagnetic piston pump will handle both corrosive and non-corrosive thin, clean liquids. The latest version is fitted with Delrin inlet and outlet fittings but a more expensive model with stainless steel fittings is available. Measuring $2^{1 / 4}$ in $\times 3^{1 / 4}$ in, the pump is self-priming and will handle up to 11 gallons an hour. It may be driven via a silicon semiconductor diode for a 12 to 240 V 50 Hz a.c. supply, and operates at 25 times a second. Maximum discharge height is 65 ft and the maximum vertical lift is 10 ft . Apart from non-return valves, the only moving part is the metal piston. Internal metal components, which require no lubrication, are made from corrosion resistant materials. The materials used for the moulded seals and valves can be selected to suit the liquid being handled. Appliance Components Ltd, Cordwallis Street, Maidenhead, Berks SL6 7BQ.
WW 301

I/O ports

Bidirectional, latched input/output ports (interface vector bytes) are announced by the Signetics group of Mullard. The 8 -bit ports are intended as interface elements for microprocessors, being compatible with the 8 X 300 micro Each i.v. byte contains eight data latches, which can receive data from
either a microprocessor port or a user port, the two modes being under separate control. Priority is given to the user port.

The bytes are programmed by the user or manufacturer to recognize an 8 -bit address, which opens the port and allows data through when a 'select' signal is applied. Data transfer is stopped when the address no longer matches the programmed, internal address of the byte. Types 8T32 and 8T36 possess three-state outputs, while the 8 T 33 and 8 T 35 bytes are open-collector units. 8 T 32 and '33 are synchronous, '35 and '36 asynchronous. The voltage supply needed is 5 V and the modules are in 24-pin packages. Mullard Ltd, Mullard House, Torrington Place, London WC1E 7HD.
WW 302

Component meter

The Wayne Kerr component meter B424 measures resistance, capacitance and inductance on the bridge principle. The display reads up to 1999, and measurements are given up to $20 \mathrm{M} \Omega, 20 \mathrm{mF}$ and 2 kH . Resolution on the most sensitive ranges is $10 \mathrm{~m} \Omega, 0.1 \mathrm{pF}$ and $0.1 \mu \mathrm{H}$. An analogue output is available to feed ancillary equipment. The instrument has an accuracy of 0.25% (\pm one digit) on all ranges, and is suitable for battery or mains operation. Selection of R, C or L is by push-button, and range-changing by 9 -position rotary switch. Illuminated pointers indicate the most appropriate range, and the display also includes decimal points and units. Operating the range switch automatically selects the most suitable test frequency: 1 kHz or $100 / 120 \mathrm{~Hz}$. Two test terminals are normally used, but a third is available if required for screened connections. Bias voltage is provided for polarising electrolytics under test. When inductors with high-permeability cores are being measured the test signal level is held below 100 mV . Wilmot Breeden Electronics Ltd, 442 Bath Road, Slough, Berks SLI 6BB
WW 303

Fluxmeter

The Austrian made Norma Fluxmeter detects voltage time integrals to measure magnetic flux, flux density and mutual induction. The range is from 0.1 to 50 mWb in six ranges with a sensitivity of $1 \mu \mathrm{~Wb}$ and an accuracy of $\pm 1 \%$ of f.s.d. The instrument has an auto-zero facility and a recorder output, with a source resistance of $2 \mathrm{k} \Omega$, on which 1 V corresponds to f.s.d. The instrument operates either from the mains or rechargeable batteries. Two probes are available, one with a turns \times area of $10^{-2} \mathrm{~m}^{2}$, and the other $6 \times 10^{-4} \mathrm{~m}^{2}$. A standard source is also available with a $3.5 \times 15.5 \mathrm{~mm}$ airgap having an induction, say Cropico, of $500 \mathrm{mT}^{4}$, accurate to within 1%. The unit measures $160 \times$ $240 \times 310 \mathrm{~mm}$ and weighs 3.8 kg . The price is $£ 964$ excluding v.a.t. The search coils and calibrating magnet are extra. Cropico say delivery is around three to four weeks. Cropico Ltd, Hampton Road, Croydon CR9 2RU.
WW 304

Microwave power meter

The Sanders Division of Marconi lnstruments have introduced a programmable, thin film, thermo-electric (t.f.t.) power meter, type 655 oB , for power measurement at microwave frequencies. Replacing the type 6550A, the meter has binary-coded decimak, programmable ranging, automatic range and scale selection and auto-zero

WW 304

WW 301
facilities. It can be used with a range of t.f.t. power heads covering frequencies between 10 MHz and 40 GHz with a power range from $1 \mu \mathrm{~W}$ to 3 W . The instrument can be used in automatic test systems, but in its manual modes is also suitable for use as a conventional power meter. The t.f.t. power heads available are compatible with all the power meters in the company's range. Marconi Instruments Ltd - Sanders Division, Gunnels Wood Road, Stevenage, Herts, SGl 2AU.
WW 305

Dual-in-line reed relay

A range of d.i.l. packaged reed relays is now offered by Feme. Single-pole normally-open, double-pole normallyopen, and single-pole changeover contact arrangements are available as standard with coil voltage ratings of 5 , 6,12 , and 24 volts d.c. Rhodium contacts are used to obtain maximum life at power levels within the ratings of the contacts. Quiller Components Ltd, Cardigan House, Winton,
Bournemouth, Dorset, BH9 1AU.
WW 307

Dot matrix printer

A dot matrix serial printer developed by Honeywell Information Systems Italia is controlled by a built-in microprocessor. Its printing head (see photo) has needles operated electromagnetically to a 7×7 or $7 \times 9 \operatorname{dot}$ matrix and operates

WW 309

WW 307
at speeds up to 120 characters per second. There are 132 print positions and the character set, which can be changed by replacing a character generating read-only memory, comprises 128 symbols. An original and up to four copies can be printed, and options such as front feed or dual paper movement are available. At every print interruption the print head automatically moves a space to the right to make the printed characters visible. The inked ribbon is contained in a removable cartridge. Honeywell Information Systems Italia, Caluso, Turin, Italy.
WW 309

25MHz oscilloscope

A range of measuring facilities usually found on wider-band instruments is provided by Philips on the dual-trace PM3214. The delayed timebase, which can be displayed effectively at the same time as the main sweep and strobe, is calibrated and can be made to start immediately after the delay or on receipt of a trigger after the delay. Sensitivity is 2 mV per centimetre from 0 to 25 MHz and triggering modes include full-range auto, a.c. or d.c. and television line or frame.

For those occasions when signal "low' cannot be earth, the instrument is double-insulated to enable it to be used without an earth connexion. Batteries may alternatively be used and a variety of mains supply voltages can be accommodated. Pye Unicam Ltd, York Street, Cambridge.
WW 311

Television off-air receiver

A crystal controlled mono-channel, mono-standard receiver for off-air professional television applications has been introduced by Barco. Designated VSD2/X, the receiver is supplied for any channel between 47 and 865 MHz , including mid-band channels, and for television standards BG, DK, I, and L. The channel selectivity is sufficiently
high that the receiver can be used in situations where the field strength of the adjacent (disturbing) channel is several times higher than the strength of the chosen channel. Relative indication of the field strength is presented on a front panel meter. N.V. Cobar Barco Electronic, Video Systems Department, Th. Sevenslaan 106, 8500 Kortrijk, Belgium.
WW 306

1000-watt transceiver

The National Radio transceiver type NCX-1000 has a transmitter power output of 1000 watts p.e.p. on s.s.b.; 1000 watts c.w. (normal c.w. duty cycle); and 500 watts a.m. or f.s.k. Its frequency coverage is 3.5 to 30 MHz . Output impedance is $25-100$ ohms (minimum tuning range of pi network). Carrier and opposite sideband suppression is greater than 40 dB , while receiver sensitivity is better than $0.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~s}+$ $\mathrm{n}) / \mathrm{n}$ ratio. Selectivity is 2.7 kHz (a crystal lattice filter is used) and the receiver dynamic range is 105 dB . Image and i.f. rejection is better than 60 dB . Export Division, EMEC Inc., P.O. Box 1285, Hallandale, Florida 33009, USA. WW 310

Operational amplifier

The $1435 / 1435-83$ is a differential input operational amplifier designed for amplification of wideband complex waveforms with frequency components from d.c. to 1 GHz . Gain accuracy is 0.01%. This is reflected in the settling time specification of 70 ns to 0.01% for a 10 -volt output step. There is a level frequency response beyond 100 kHz and smooth $6 \mathrm{~dB} /$ octave roll-off beyond 100 MHz . When handling complex waveforms such as square pulses, overshoot is less than 1% of output pulse amplitude. Operating temperature is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Teledyne Philbrick, Heathrow House, Bath Road, Cranford, Middlesex TW5 9QQ.
WW 308

WW 305

Sidebands by mixer

Bletherization

The on-going initiation of marketingoriented buzzwords develops in their enunciator an in-built motivation for the generation of enhanced input/output ratios. When it comes to the crunch, marketing is an aggressivelyformulated scenario of both software and hardware-oriented data organization, using sophisticated, numbercrunching equipment for the on-line analysis of a cash-flow situation. At the end of the day, the viability of any throughput-motivated validization operation must hopefully depend on the dialogue between personnel engaged in hardware generation and those who basically adjust output-level values to maximize financial advantage, in a committed operation. When intelligence communication is contraindicated, obscurantization can be generated by sophisticated employment of in-built jargonisation, soonest. Or something.

Update

Some of our readers who have been amateur constructors since capacitance was measured in jars have been baffled by the newer system of component values that are now common. We have explained them before, but we still receive the odd query: if you've been used to dealing with $0.01 \mu \mathrm{~F}$ capacitors for fifty years, it comes as a shock to find that you should have been calling the wretched things 10 n .

Briefly, it goes something like this. The idea developed from a British Standard designed to avoid decimal points and long strings of noughts on components themselves. On circuit diagrams, the nature of the component can also be omitted - a capacitor is obviously measured in fractions of a farad, so the F is redundant. The decimal point is replaced by the multiplier of the unit ($k, M, \mu, e t c$) and the full range of noughts needed is two. For example, $0.0033 \mu \mathrm{~F}$ would be written 3 n 3 . meaning 3.3 nanofarads (nano $=10^{-5}$). A resistor of $3,300 \Omega$ is 3 k 3 and an inductor of 0.0048 henries becomes $4 \mathrm{~m} 8(4.8 \mathrm{mH})$. A $0.1 \mu \mathrm{~F}$ capacitor is 100 n , and so on. It's much simpler than the old way and it does avoid decimal points, which can so easily be missed out.

Sounds philological

The sheer labour that engineers go through to bring forth a new device or system fades into insignificance beside the agonies of mind they suffer when they have to think up a name for it. The systems of sound reproduction that use three or more loudspeakers are no exception, in that they have been called everything from quadraphonic to surround-sound, from perisonic to four-channel: and they are just the printable ones. Surely, it's now time to settle down, put away the Latin, Greek and Oxford English dictionaries and come up with a sensible name.
"Quadraphony" is not a good choice. To start with, it's a Graeco-Roman mess, conceived on the wrong side of the blankets, and secondly, the meaning is wrong. It implies a square sound, which is surely not what is intended: a square-sounding punk rock group is not an idea I can easily contemplate. In any case, it should be quadro-, the adjectival form, not quadra-. Or perhaps quadri-, if the number four is intended.
"Surround-sound" has been used rather a lot and has the merit of describing the effect rather than the means of producing it, which could change - it avoids the use of any part of a word meaning "square" or "four". We already have systems, which can use three or six loudspeakers, to which the term quadraphonic is not applicable. My feeling is, though, that the word is too long and is ugly when used adjectivally.
"Ambisonic" is good, but is used almost as a trade-name. For this reason, it is unlikely to be adopted by orgnizations who have their own nominal axes to grind.
Any reference to the number four is not a good idea, even if it were always the right number. It has most relevance to a system using four completely separate ch annels, but this can't be used for all types of sound reproduction and can't, therefore, be used in an overall description. My own suggestion is to term the reproduced surrounding sound field the phonosphere and to coin the word "phonospheric" to describe such equipment. I shall now sit back and await retribution for my temerity.

$\mathbf{2 p}$ or not $\mathbf{2 p}$?

Not that tuppence will get you very far in this inflationary age, but it does seem extraordinary that a plain, ordinary (or even coloured ordinary) resistor can cost up to 5 p. It seems possible, since the majority of our readers are employed in the electronics industry, that whenever they are seized with the desire to build an amplifier, a commensurate number of relevant components promptly disappears from their labs (a company I know of used to keep small components for engineers to use as they needed them, without having to sign a stores chit, on the basis that each engineer would probably only build one tele-
vision set and one amplifier and that number of components could be written off).

But that is irrelevant if the prospective builder is not able to liberate components or does not possess the legendary "junk box", beloved of writers of books entitled "The Practical Guide to ..." So, they are faced with problems of supply and, having located a source, the cost. Time was when you could find a radio shop in any town which sold components, not teak-finished furniture with knobs on, where you could buy everything needed. I remember buying everything I needed for a 12 in television set, quite casually, from the local shop. (I won't say how long ago, but Sutton Coldfield and Ally Pally had it all to themselves.)
The only way you can buy stuff now is to send off to a mail order establishment, and very good some of them are, if expensive. I would have thought, and I have no doubt that a great number of component suppliers will put me straight here, that the High Street shops of yore could still perform a very useful function and make a profit doing it. Admittedly, they couldn't stock all the exotic bits and pieces we are now used to, but the ordinary components and materials ought to be no problem. They would be able to buy in bulk from manufacturers who won't deal with the public and, in any case, couldn't handle an order for a few pence. Free of the burden of postage, packing and insurance, they could probably sell components at a lower price, and to boost their sales they could assemble kits of parts for the more popular small designs and sell them both directly and by mail order. Perhaps the new 'byte' shops will do something like that.

Cuckoos

"Nah, well, it's analogue, innit? Wot yer want's a digital readaht." Thus spake a young man of nearly six at the recent RSGB exhibition, as his friend (well turned seven) commented on some frequency-measuring instruments. They caught sight of me and, since it looked as though they might draw me into the discussion, I hurried away before they discovered my relative ignorance of such matters.

But really, haven't these infants more immediately fascinating pursuits to occupy them? Have grass-snakes and guinea-pigs totally disappeared from these islands? Surely not, and yet here were these two, looking as unlike infant prodigies as it is possible to imagine, discussing, oscillator stability and instrument design while outside, the toads were toadying and field-mice fielding away like anything.

The sign of a mis-spent youth may no longer be a degree of proficiency at snooker, but deftness with a couple of c.m.o.s. chips and a bit of Veroboard.

Safe, tough, efficient anc versatile - that's our new miniature CX iron.
Safe because it is virtuall; leak-free (leakage current less than $1, \mathrm{~A}$). Earth it if you like three core lead. It is made to conform with B.S. 3456 and has a breakdown voltage of more than 4000 V .
Tough because the handle is almost unbreakable and the ceramic shaft is covered by a stainless steel shaft.
Efficient because the element is situated right inside the soldering bit and the heat generated by its 17 watts is not wasted.
Versatile because the iron can be used for a wide variety of soldering jobs; with six easily interchangeable, slide-on bits, ranging from $\frac{1^{\prime \prime}}{4}$ right down to $\frac{3}{64}$ " (1 mm). It's suitable for small, miniature and micra miniature joints.

Available for $220-250$ volts or $100-120$ volts. Weight - $1 \frac{1}{2} \mathrm{oz}$ (40 gram). Eength $7 \frac{1}{2}$ " $(19 \mathrm{~cm}$). Price - $\mathbf{£ 3 . 4 0}$.fitted with standard bit $\frac{3}{32}{ }^{\prime \prime}$ (2.3 mm). Spare bits $£ 0.46 ; \mathfrak{£ 0 : 7 2 ;} \mathbf{£ 0 . 8 4}$ exclusive of VAT.

Stocked by most of the well-known wholesalers and many retailers. Or direct from us if you are desperate.

Model $X .25$ is a general purpose soldering iron, also with iwo shafts fer toughness and perfect insulation. Available tor $220-25 \mathrm{C}$ volts or 100-120 volts at 25 watts and priced at \&3.40 exclusize of VAT.

Stand moded S.T. 3 has a chromium plated steel spring, two sponges for cleaning the bits and is priced at $\mathbf{£ 1 . 4 0}$ exclusive of VAT

(A) P E 5

Mayflower House, Plymouth Telephone (0752) 67377/8 Yelex 45296 Giro 2581000

Forget all you've ever read about miniaturised soldering irons. This is the NEW ANJEX CX.

The SC/MP LCDS that is truly a Low Cost

 MEMORY CARDS

The National Semiconductor LCDS really does make programming simple. You can develop your own program step-by-step to see how it works and if it works. And with it you can develop the potential of your SC/MP microprocessor.

The simple keyboard and display give you a chance to look at your program as you go-so you can learn programming in your own way. A built-in routine makes software debug so easy.

LCDS is not a kit-it comes fully assembled and tested at less than $£ 350$, which is cheaper than the software expert is likely to charge for one program. It is expansible too with additional plug-in RAM, ROM/PROM Eurocards. Available software aids include a Line-by-Line Assembler and a new enhanced language-NIBL (National Industrial BASIC Language) which allows plain English man/machine interface. We make technology work. Every time.

ALSO AVAILABLE

THE FAMOUS
INTROKIT + KEYBOARD KIT

SC/MP INTROKIT

CONTAINS ALL YOU NEED TO GET STARTED ON LOW BUDGEI MICROPROCESSOR KIT, EUROCARD + CON. SC/MP CHIP. $512 \times$ B PROM, 256×8 RAM VOLTAGE REG, XTAL
TTY INTERFACE, ETC REQUIRES $+5-12$ VOLT SUPPLY IF YOU DON'T HAVE A TTY. THEN OUR KEYBOARD KIT IS WHAT YOU NEED

$16 \times$ HEX COMMAND KEYS ABORT AND GO KEYS TERMINATE AND MEMORY KEYS 6 DIGIT HEX DISPLAY COMPLETE SYSTEM CONTAINS KIT BUG PROM

AVAILABLE FROM

A. MARSHALL (LONDON) LTD 42 CRICKLEWOOD BROADWAY LONDON NW2 3ET
 TEL: 01-452 0161 TELEX: 21492

and at 85 West Regent Street. Glasgow (041-332 4133)
1 Straits Parade, Fishponds. Bristol (0272-654201)
Distributors and stockists for all National Semiconductor commercial and consumer devices

Two hooks from Wireless World

These books are of very special appeal to all concerned with designing using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.

BOOK 1

Basic active filters Switching circuits Waveform generators AC measurements Audio circuits

Constant-currenticircuits Power amplifiers Astable circuits Optoelectronics Micropower circuits

BOOK 2

Basic logic gates
Wideband amplifiers
Alarm circuits
Digital counters
Pulse modulators

C d as-signal process.ng
C das - signal generation C d as - measurement and detection
Monostable circurts
Transistor pairs

ORDER FORM

To: General Sales Department. IPC Business Press Limited.
Room 11. Dorset House
Stamford Street, London SE1 9 LU
Please send me copy/copies of
Circuit Designs - Number 1 at $\mathrm{f} 1040 \square$
Circuit Designs - Number 2 at $£ 12.50 \square$ each inclusive I enclose remittance value $£$ (cheques payable to IPC Busıness Press Lid.)

Name (please print)
Address

MARCONI TEST EQUIPMĖNT

TF329G circuit magnification meter. £ 125 TF455E Wave analyser. New. £ 135
TF801D RF signal generator. £ 195
TF1101 RC Oscillators. £65
TF995B/2 AM/FM generator £425 TF1041B \vee, T. Voltmeter $£ 65$
TF2200 Osilloscope £225
TF1100 Sensitivity $V /$ voltmeter $£ 70$
TF1152A/1 RF power meter. £75
TF890A/1 RF test set $£ 425$
TF1417 $2 \overline{0} 0 \mathrm{mHz}$ frequency counter. E 150
TF144H/S signal generator $£ 325$
TF1370 Wide-range RC oscillator. £125 TF2163 UHF attenuator $\mathrm{DC}-\overline{1} \mathrm{GHz}$. $\overline{\mathrm{E}} 95$
TF2500 Af power meter. £135
TF2606 Differential DC voltmeter £205
TF2604 Electronic voltmeter. £105
TF1066B/1 AM/FM Sig gen $10-470 \mathrm{MHz}$ TF791D Deviation Meter

MARCONI TF995B/2. AM/FM GENERATORS.
$200 \mathrm{kHz}-220 \mathrm{mHz}$ in 5 bands.
$0.1 \mu \mathrm{~V}-200 \mathrm{mV}$. Continuously variable
FM in two ranges to 75 kHz . Price and Full spec. upon request. $£ 425$
EVERREADY NICKELCADMIUM BATTERIES.
Size 'D'(HP2) $1.25 \mathrm{~V}, 35 \mathrm{AH}$. Only small quantity available at $£ 2+10$ p post.
APT POWER SUPPLIES. Stabilised and regulated 6 V (variable) at 3 A .

BECKMAN TURNS COUNTER DIALS

Miniature type (22 mm diam.) Counting up to 15 turn 'Helipots' Brand new with mounting instructions. Only $£ 2.50$ each
FRACMO Geared motors. 24V. AC 0.5RPM 68A. Torque 401 b in. Price including starting CENTRIFUGAI TYPE Blow 1 E10.5 CENTRIFUGAL TYPE Blowers. 12 V DC
Outlet diam. 7 cms . Overall diam. 15 cms and

P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753

NOTICE. All the pre-owned equipment shown has been carefully tested in our workshop and reconditioned where necessary. It is sold in first class operational condition and most items carry our three months guarantee. Calibration and certificates can be arranged at cost. Overseas enquiries welcome. Prices quoted are subject to an additional 8% VAT

ROHDE \& SCHWARZ EQUIPMENT

Midget crystal clock type XSZ. BN 15221 Selective UHF V/meter, bands $4 \& 5$. USVF Selectomat. RF Voltmeter USWV BN 15221 £ 450
Standard attenuator $0-100 \mathrm{db} .0 .300 \mathrm{mHz}$ DPR
UHF Sig. Gen type SDR $0.3-1 \mathrm{GHz}$ £750
UHF Signal generator type SCH. £ 175
UHF Test receiver type USVD. £325
POLYSKOP SWOB I.
POLYSKOP SWOB II
SBTF T.V. Signal generator, vision-sound modulator and transmitter.

ICL type 2640 Paper tape readers	250cps
New	$\mathbf{£ 9 5}$
Westrex 8-hole paper-tape punches	$\mathbf{£ 9 5}$
Sound-proof case available	$\mathbf{£ 1 5}$

MUFFIN INSTRUMENT COOLING FANS

Made by Rotron Holiand. These are very high quality quiet Munning fans, specially designed for the cooling of all quipes running fans, specially designed for the cooling of all types
of electronic equipment Measures $4.5 \times 4 \quad 5 \times 1.5$ 115 V . AC. 11 Watts. The list price of these is over $£ 10$ each. We have a quantity avalable brand new for only $£ 4.50$
each

500V TRANSISTORISED INSULATION

 TESTERLightweight, small size ($13 \times 7 \times 4 \mathrm{cms}$) Reads insulation standard 9V.PP3 Brand new pressure. Runs from

ADVANCE Transistorised Inverter.
24 V DC-240V AC. $50 \mathrm{~Hz} .150 \mathrm{~W} . £ 75$
PACE ELECTRONICS VARIPLOTTER
Type 1100 E
$£ 175$

MUIRHEAD DECADE OSCILLATORS

 type 890A.$1 \mathrm{~Hz}-110 \mathrm{kHz}$ in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent accuracy of fre
generator. $£ 135$.

NEW COMPONENTS Resistors. 5\% carbon E12 278 to 10M	$\begin{aligned} & \mathrm{AY}-3 \\ & \text { of } \end{aligned}$	
ture 0.1 W e3 100 s to 4 M 7 . vertical 9 p . Horizontal 9p. Potentiometers 0.25W E3	BATTERY ELIMINATOR BARGAINS	
4K7 to $2 \mathrm{M} 2 \log$ or 1 in. single 24p, dual		
75p. Polystyrene capacitors E12 63 V	With 4 -way multi-jack connector. Type	
22 pt to $8200 \mathrm{pt} 31 / 2 \mathrm{p}$. Ceramic capaci-	3/41/2/6V at 100 mA ¢2.30. Type	
zors vert 50 V E6 $222 \mathrm{pt} \mathrm{to} 4700 \mathrm{3p}$. . Mylarcapacitors 100 V vert 001.002 .005	100MA RADIO MODELS	
4p. $01.02,025 \quad 41 / 2 p$. Polyester		
	With press-stud connectors 9 V ¢3.45. 6 V ,	
$51 / 2 \mathrm{p} .15,227 \mathrm{p} .47 \mathrm{mf} 11 \mathrm{p}$. Electrolytics 50 V .47 .1 .2 mf 5 p .25 V 5.10 mf 5 fp16 V 22.47 mf 6 p .100 mf 7 p .220 mf 9 p .	$6+6 \vee$ E5.45. 150MA CASSETTE MODELS	
	$71 / 2 \mathrm{~V}$ with 5 -pin din plug $£ 3.65$. FULLY STABILIZED MODEL £5.45. Switched $3 / 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}$	
$16 \mathrm{~V} 22.47 \mathrm{mf} \mathbf{6 p} .100 \mathrm{mf} 7 \mathrm{p} .220 \mathrm{mf} 9 \mathrm{p}$. 470 mf 11 p . 1000 mf 18p. Zener diodes 400 mW E24 3 V 3 to $33 \mathrm{~V} 81 / 2 \mathrm{p}$.		
MAINS TRANSFORMERS		
$6-0.6 \mathrm{~V} 100 \mathrm{~mA} 94 \mathrm{p}$. 9 -0.9V $75 \mathrm{~mA} \mathrm{94p}$.	BATTERY ELIMINATOR KITS 100mA radio types with press stud battery terminals. $4 / 1 / 2 \mathrm{~V} £ 2.10$. $6 \mathrm{~V} £ 2.10$. 9 V	
12/5/20 24/30v		
12/15/20/24/30V 2A E4		
-9V 1 A £2.19. $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ £2.49		
$15-0.15 \mathrm{~V}$ 1A £2.69. $30-0-30 \mathrm{~V}$ tA £3.39. PRINTED CIRCUIT KITS, ETC.*	Stabilized 8 -way types transistor stabrlized to give low hum	
PRINTED CIRCUIT KITS, ETC. * Contains etching disil, 100 sq ins of pc board, 1 lb ferric chioride etch resist pert. drill bit and laminate cutter $£ 3.65$. 1 lb ferric chloride 95p. 100 sq ins pc hoard 75p. Etch resist pen 75p.	$3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V}, 100 \mathrm{~mA}$ $\text { model } £ \mathbf{3 . 2 0} \text {. } 1 \text { Amp model } £ \mathbf{6} \mathbf{5 0} \text {. }$	
	Heavy duty 13-way types	
	4/1/2/6/7/81/2/11/13/14/17/21/25 A ¢ 4.95 2 27.95	
	Convertor Kit. Input 12 V DC Output $71 / 2 / 9 \mathrm{~V}$ 1A regulated £1.95. 2 Amp 4.95.	
hoard 75p. Etch resist pen 75p.		
S-DeC $£ 1.94$ T-DeC E 3.61 u-DeCA $£ \mathbf{3 . 9 7}$ u-DeCB £6.97 16 dil IC carriers $£ 1.91$		
	printed circuit £4.95. PZ20 power supply for above £3.65. VP2O control and preamp	
	JC12 6W IC au-	
SINCLAIR PROJECT 80 MODULES PZ5 £4.95. Z40 $£ 5.75$.	dio amp with data and printed cricurt	
BI-PAK AUDIO MODULES S450 tuner $£ 20.95$. AL60 £4.60. PA 100		
£14.95. MK60 audio kit E31.95. Stereo		
30 £15.50. SPM80 £3.65. BMT80 £3.32.	with pob £3.95. Send sa é for free leaflet	
FERRANTI 2N414 IC radio chip $£ 1.44$. Exira parts and pcb for radio £3.85. Case.£1. SAE for data	SINCLAIR MICROWONDERS Sinclair pocket TV £165. Cambridge scientific calculator $£ 8.45$. Oxford scientific $£ 10.60$.	
SWANLEY ELECTRONIC		
dept. WW, PO Box 6b, 32 GOLDSEL ROAD. SWANLEY, KENT BRE		
£4.50 otherwise free. Prices include VAT Otficial orders welcome Overseas customers		
deduct 7% VAT on items marked and 11% on others		

DIY SPEAKER KITS
15-WATT KIT IN CHASSIS FORM
When you are looking for a good speaker. why not build your own from this kit. It's the unit which we supply with the enclosures illustrated below Size. $13^{\prime \prime}$. $8^{\prime \prime}$ (approx.) woofer (EMI) tweeter, and matching crossover components. Power handing capacity
15 watts rms. 30 watts deak.
f1700 PER STEREO PAIR $+P \& P\{3.40$

EASY-TO-BUILD WITH ENCLOSURE

Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teak. simulate enclosures, two EMI $13^{\prime \prime}>{ }^{-8} \mathbf{8}^{\prime \prime}$ (approx.) woofers, two iweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-to-follow circuit diagram, and crossover components. Input 15 watts rms. 30 watts peak, each unit. ${ }^{\text {¢ }} 25^{50}$
Cabinet size $20^{*}=11^{\circ} \quad 9 \frac{1}{2}^{-}$PER STEREO PAIR (approx.). $+\mathrm{p} \& \mathrm{p} £ 5.50$

COMPACT' FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only f 7.50 - just what you need for low power amplifiers. These infinite batfle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{-} \times 5^{\prime \prime}$ (approx.) deep, and is in wood simulate. Complete with two 8" (approx.) speakers

SPEAKERS Two models - Ouo llb, teak veneer, 12 watts rms. 24 watts peak $18 \frac{⿺^{-}}{-} \cdot 13 \frac{1}{2}{ }^{-\cdots} \cdot 7 \frac{1}{4}$

(approx.)

PER PAIR
Duo III. 20 watts rms.
40 watts peak.
$27^{-} \cdot 13^{-}$- $11 \frac{1}{2}$ (approx.)
<f52 PERPAIR
EASY TO BUILD
RECORD PLAYER KIT
Ideally suited for the
constructor who requires
a complete stereo unit at
a budget price. comprising
ready assembled stereo
amp. module, Garrard auto/manual
deck with cueing device, pre-cut and
finished cabinet work. Output 4 watts $£ \mathbf{2 6 9 5}$
per channel, phones socket and
record / replay socket

[^5]PERSONAL SHOPPERS ONLY Viscount IV 20×20 Anplifier as illustrated plus 1 pair of speakers finished in teak with melamine panels $8^{\prime \prime}$ drive unit and 3:" approx tweete
$22^{\prime \prime} \quad 13^{\prime \prime}$
size approx
${ }^{£} 4500$
SPECIAL
OFFER
illustrated above 20×20 WATT STEREO AMPLIFIER
Superb Viscount IV unit in teak-finished cabinet. Silver tascia with alimunium
rotary controls anil pushbuttons, red mains indicator and stereo jack socket Function switch for mic. magnetic and crystal pick-ups, tape, tuner, and auxiliary Rear panel teatures two mains outlets. DIN speaker and input ${ }^{\text {£ } 2990}$ sockets, plus fuse $20+20$ watts rms, $40+40$ watts peak

$+p \boldsymbol{q} \mathrm{f} 2.10$

SPECIAL OFFERS

 For example-DEDUCTTIU! DEDUCTTF! Maliorder ony (molonpostase) Personal Shoppersonity starred Products

Duo speaker systen, II or III, Viscount Amplifier, MP 60 type lurntable complete

PERSONAL SHOPPERS ONLY

DECCA DC1000 Stereo cassette, ready built tape deck, replay/ $\quad \mathbf{3 ^ { 9 5 }}$ record P.C.B. with pair record/replay heads
AM. FM. TUNER P.C.B. with Mullard L.P. 1186. 1185.1181 modules $\mathbf{f} 950$ CROWN 5 push button car radio. LW. MW. 12v Pos neg. earth 5 watts $\mathbf{£} \mathbf{5 5}$
output, tone control complete with speaker and fixing kit, in dash type output, tone control complete with speaker and fixing kit, in dash type STEREO CASSEITE TAPE PLAYER Negative earth only, 3 watts $\mathbf{f} \mathbf{6 5 0}$ per channel output
AM. FM. STEREO MULTIPLEX CAR RADIO/cassette player in f3900 dash fixing Negative earth 5 watts outpul
only ${ }^{\mathbf{f}} \mathbf{6}^{95}$

BSR TURNTABLES BSR MPGO TYPE Single play record player (Chassis form) $\mathbb{1 5} \mathbf{5} .95$ less cartridge. P \& $P £ 200$
 Cartridges to suit above aCOS MAGNETIC STEREO CERAMIC STEREO $\mathbf{£ 1 . 9 5}$
30×30 WATT AMPLIFIER KI7 Specially designed by R T-VC for the experienced constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier Chassis is ready punched. drilled and formed Cabinet is finished in teak veneer. Silver fascia and easy- tohandle aluminium knobs.
decca 20 WATtS STEREO SPEAKER This matching loudspeaker system is hand made. kit comprises of two 8 "dia meter approx. base d'rive unit. with heavy die cast chassis laminated cones with rolled P. V.C. surrounds, two $3 \frac{1}{2}$ " diameter approx. domed tweeters comp with crossoyer networks
£ 4.00 p \& p stereo pair $\mathbf{~}^{\mathbf{2}} \mathbf{0}^{\mathbf{0 0}}$
Output $30+30$
watts rms. $60+60$ peak.
£2900

PYE STEREO GRAM CHASSIS

 Complete with circuit-diagrams)Complete ready to install-Wave bands LM. Vhf Stereo. vif mono. Controls for tuning volume, balance, bass and treble. Power output 7 watts R.M.S per channel 14 watts peak 8 ohms. " 8 " approx chassis speakers and BSR auto record player deck $£ 3500$ PERSONAL SHOPPER deck.

 Ist June and subbect to change withoul notice 323 EDGWARE ROAO. LONDON W2
We are unabie to show all our prodets, so please Send stamped addressed envelope Personal Shappers togwahe hian am onlpm. .arl day
2IE HIGH STREET, ACTON. LONDON W3 GNG ter our tully descriplive catalogue and any turther 2IE ACION: Mail Order only No callers
inflornation.

with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto return, single play professional series record decks Plus all the controls and features you need to give fabulous discopertormances. p\&p 66.50 Simply connects into your existing slave or externa! amplifier.
${ }^{5} 64^{00}$
35-WATT MONO DISCO AMP
${ }^{\text {£ } 2750}$

Size approx

$3 \frac{3}{3^{\prime \prime}} \quad 5 \frac{1}{4}{ }^{\prime \prime} \quad 6 \frac{3}{4} \quad$
Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches. Independent bass and treble controls and master volume.

100 WATT
 MONO
 DISCO AMP
 Size approx.
 $14^{\circ} .40 \frac{1 \pi}{4}$ loping facia, you can use the controls

 without fuss or bother. Brushed alumimium fascia and rotary controls. Five smooth acting, vertically. mounted slide controls - master volume, tape level, mic level. deck level. PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre-fade leuel control (PFL) ets YOU hear next disc before fading $\mathbf{f 6 5 0 0}$ it in. VU meter monitors output level Output 100 watts RMS 200 watts peak. p \&pf4.00PRACTICE GUITAR AMPLIFIER WITH BUILT-IN SPEAKER This budget practice amplitier, has been specially designed for the amateur, who requires a quality self-contained unit with all facilities. 2 inputs - 1 for mic or guitar, the 2nd for record player or cassette deck, it also can be used for cine-sound amplification 2 volume controls. 1 for each input. also base and treble controls. Power output with internal speaker, 12 watts RMS. with remote speaker (not supplied) 20 watts $\quad \mathbf{5} \mathbf{2}^{\mathbf{5 0}}$
RMS. Size approx. $17^{\prime \prime}+9^{\prime \prime}, 11^{\prime \prime} \cdot+\mathrm{p} \& \mathrm{p} £ 3.00$

HOME 8 TRACK

CARTRIOGE PLAYER
Automatically switche's
programmes monitored by indicators.
with manual override track selection. This unit will match with the Unisound modules and is compatable with the Viscount IV amplifier with Sim teak cabinet approx. $9 \quad 8 \quad 3 \frac{1}{2}, \mu \& p \mathrm{E} 1.50 \quad \mathbf{f} \mathbf{6 0}$

4×4 STEREO AMP

KIT f14.50 P \& P f2.
For the experienced constructor who wants to design his own stereo Kit includes all necessary components including constructors manual. Plus Pair of easy to build 4 watt speakers in kit form, with teak simulate finish cabinets $1^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ approx.

I.C 20, 20 WATTS STEREO AMPLIFIER KIT WITH PZ 20

 POWER UNITA build it-yourself stereo power amplifier with latest integrated circuitry. 10W RMS per channel output, full short-circuit and DUR PRICE overheat protection.
Complete with
PZ20 Power Supply

BUY A CASE FROM A SMALL RANGE, YOU GET ACASE-BUY A CASE FROM A BIG RANGE YOU GET

A prestige anodised case, black PVC steel top and bottom which can be
supplied louvied at no extra cost Freestanding or rack mounting, avatable
 3her all or PVC steel. Built-on sloks tor PC cards dividers eic Chassis or

CHIS INETMGDNENT

Instrument cases

\qquad

GAEE BRBCIALIETE

SPECIAL OFFER
 FREE CASIO FX-110 SCIENTIFIC CALCULATOR
 with every CASIOTRON watch, listed below purchased before ist

 Sept., 1977. Other calculators by arrangement, or a further f 10 discount

CASIOTRON. Arguably the best watch in the world 8 functions and backlight Stopwatch ftime out lacility) to 3 ho
Water resistant to
All stainless st to 4 atmospheres (130 feet) Mineral glass face
Battery hatch 15
Rapid adjustm. 15 months' battery life
Rapid adjustment / setting facility
GS 15 B Heavy $G \mathrm{P}$ S 15 B GS 15 B Heavy G.P on bracelet
GS 15 L . Heavy G.P on strap.

RADFORD HD250
High Definition Stereo Amplifier

for sound reproduction in
the home! We believe that no other
amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av, continuous per channel into any impedance from 4 to 8 ohms, both channels driven.
Maximum power ourtput: 90 watts av, per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)

Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z)}$

Hum and nöise: Dísc, -83 dBr V measured flat with noise band width $\mathbf{2 3} \mathrm{Khz}$ (ref 5 mV): -88 dBV " A " weighted (ref. 5 mv)

Line - 85 dBV measured flat (ref 100 v)
$-88 d$ BV " A " weighted (ref 100 v)
Hear the HD250 at
SWIFT OF WVILMSLOW
Dept. WWV, 5 Swan Street, vvilmslow, Cheshire (Tel: 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Willmslow (Tel, 29599)
Now available ZD 100 power amplifier and Z022 pre-amplifier

Demand for reprints of Wireless World constructional projects for audio equipment is so high that we have gathered 25 of the best of them together in High Fidelity Designs. These are the 'most requested' articles which you have asked for and all have been fully updated. Hurry for your copy - it's likely to sell out fast!

Tape/disc/radio/amplifiers/speakers/headphones
A BOOK FROM WIRELESS WORLD
$£ 2.50$ from newsagents and bookshops or $£ 2.75$ by post from the publishers

Contents: - FM tuner design - Novel stereo FM tuner - Low-noise, low-cost cassette deck - Wireless World Dolby noise reducer - Wideband compander design - High-quality
compressor/limiter - An automatic noise-limiter

- Modular integrated circuit audio mixer - The "walltenna" • Electronic piano design
- Advanced preamplifier design - High quality tone control - Multi-channel tone control -Bailey-Burrows preamplifier - 30-watt high fidelity amplifier - 30-watt amplifier modification - Baxandall tone control revisited - Active crossover networks - Electrostatic headphone amplifier - Class A power amplifier - An I.C peak programme meter - Horn loudspeaker design - Horn loudspeaker - Transmission-line loudspeaker enclosure - Commercial quadrophonic systems

PAKS - PARTS - AUDIO MODULES

PANEL METERS

4'' RANGE	
Size 41/4" $\times 3{ }^{\frac{1}{4} /{ }^{\prime \prime} \times 12}$	
Value	No.
0.50UA	1302
0.100 UA	1303
$0-500 \mathrm{UA}$	1304
0.1 MA	1305
0.50v	1306
2' RANGE	
Size $23 /{ }^{\prime \prime} \times 1{ }^{13 / 4}{ }^{\prime \prime} \times$	
Value	No.
O-50UA	1307
0-100ua	1308
0-500ua	1309
0.1 MA	1310
0.50V	1311

MR2P TYPE

EDGEWISE
\qquad MINIATURE
BALANCE/TUNING METER
Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity
$100 / 0 / 100 \mathrm{MA}$
\qquad
BALANCE/TUNING Sensitivity
$100 / 0 / 100 \mathrm{UA}$
\qquad
MIN. LEVEL METER Size $23 \times 22 \times 26 \mathrm{~mm}$
Sensitivity 200 UA
No
\qquad
Vu METER
Size $4 \times 40 \times 2 \mathrm{~mm}$
Sensitivity 130 UA
No
1321
MINI-
MULTI-
METER

TRANSISTORS

BI-PA
 K
 High quality modules for stereo, mono and other audio equipment.

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose. by simply changing the settings of the pre-set controls changing the settings of the pre-set controls Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit eic. Alternatively the PS 12 can STEREO 30 or the MK60 Kit eic. Alternatively the PS12 can be used if no suitab
Transformer T538.
Transformer S538. The S450 is supplied fully built, tested and aligned Th
easily installed using the simple instructions supplied

STEREO PRE-AMPLIFIER

A $10 p$ quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output
MK. 60 AUDIO KIT: Comprising $2 \times$ AL60's $1 \times$ SPM80 $1 \times$
BTM80 $1 \times P A 1001$ front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator stereo headphone sockets plus instruction booklet. COMPLETE PRICE $£ 29.55$ plus 85 p postage TEAK 60 AUDIO KIT: Comprising Teak veneered cabinet
 parts include aluminium chassis heatsink and front panel bracket plus back panel and appropriate sockets etc. KIT PRICE £10.70 plus 85 p postage.

Fैrequency Response +1 dB 20 Hz
20 KHz Sensitivity of inpets
1 Tape Input 100 mV into 100 K ohms 1 Tape Input 100 mV into 100 K ohms
2 Radio Tuner 100 mV into 100 K ohms Magnetic P 3 Magnetic P
50 K ohnis
 1 dB from 20 Hz to 20 KH Supply $-20-35 \mathrm{~V}$ at 20 mA

* FET Input Stage
* VARI-CAP diode tuning
* Switched AFC
* Multi turn pre-sets
\star LED Stereo Indicator
Typical Specification:
Sensitivity 3μ volts
Stereo separation 30dh Supply required $20-30 \mathrm{v}$ at 90 Ma max.

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A 30 , a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges
it is provided with a standard DIN It is provided with a standard DIN
input socket for ease of connection. £2.85 Full instructions supplied
 replacing our AL20 \& 30. The versatility of its design replacing our AL20 \& 30 . The versatility of its design
makes it ideal for record players, tape recorders. stereo amps, cassette and cartridge players. A power supply is SPECIFICATION 6ohms.

ONLY £3.60
 T538 also for stereo, the pre-amp PA12

- Output Power 10 w . Supply 22 to 32 valis.
- Load impedance 8 to input limpedance 50 K .
- Sensitivily 90mv for tull - Total Harmanic Disisartion Less than $.5 \%$ Typicaliy $.3 \%$.
- Froquency Response
60Hz $\mathrm{lo} 25 \mathrm{KKHx}+206$. Max. Heat Sink Temp

The Stereo 30 comprises pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main swith fuse and fuse holder and universal mounting brackets enabling it to be installed in a record pouth binets construction or the cabinet plinth, cabnels or your or cabined avallable Ideal onstructor who requires hi-f performance with minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER $£ 2.45$ plus $62 p p \& p$ TEAK CASE $£ 5.25$ plus $62 p p$ \& p.

AL60

* Max Heat Sink temp 90C. * Frequency respons 20 Hz to $100 \mathrm{KHz} \star$ Distortion better than 0.1 at 1 KHz * Supply voltage $15-50 v$ * Thermal Feedback * Latest Design improvements ${ }^{\text {t Load }}-3,4,0$, or 16 ohms \star Signal to noise ratio $80 \mathrm{db} \star$ Overall size 63 mm .105 mm . 13 mm .
Especially designed to a strict specification Only the
pinest components have been used and the latest finest components have been used and the latest
solid state circuitry incorporated in this powerful titite
amplifier which should satisfy the most critical AF amplifer
enthusiast

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm Incorporating short circuit protection.
Transformer BMT80
$£ 2.60+62$ p postage

25 Watts (RMS)

Power supply for AL30A
PA12, SA450, etc

\section*{| NEW |
| :--- |
| PS12 |}

OUR PRICE Output current 800 mA Max. Size $60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$ \& 30 Transformer T538 £2.30

POWERTRAN ELECTRONICS
 AMBerracousITMS

HI-FI NEWS 75W /CHANNEL AMPLIFIER

Pack
II. Fibreglass printed-circuit board for pawer $\begin{aligned} & \text { Puice } \\ & \text { supply } \\ & \text { E0. } 85\end{aligned}$
11. Fibreglass printed-circuit board for pawer supply
12. Sel of resistors................................
semi-conductors far power supply
13. Set of misceillangous parts including oin skts. mains input skl. fuse holder. inter-connatting cable. contral knobs
14. Set of matarwork parts inciuding sility screen printed lascia panel and all brackels. lixing paris. etc

2 each of packs 1.7 inclusive are required for camplete sterea system. Tofal cosi ol individualy purchased

In Hi-Fi News there was published by Mr. Linsley-Hood a series of four articles (November, 1972-February, 1973) and a subsequent follow-up article (Aprit. 1974) on a design for an amplifier of exceptiona performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 watts
whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed
Toroidal transformer.

FREE

TEAK CASE WITH FULL KITS
arrace onv $£ \mathbf{7 9 . 8 0}$

WIRELESS WORLD FM TUNER

Designed in response to demand for a tuner to complement the world-wide acclaimed Linsiey Hood 75W Amplifier, this kit provides the perfect match The Wireless World (Skingley and Thompson - April, May 1974) published slimline unit and features a pre-aligned front end module. excellient a rejection and temperature compensated varicap tuning, which may be rejection and emperature compensated varicap tuning, which may be indicated by a frequency meter and sliding LED indicators, attached to each channel selector pre-set. The PLL stereo decoder incorporates active fitters fo birdy" suppression and power is supplied via a toroidal transformer and integrated regulator. For long term stability metal oxide resistors are used throughout.

Paek

1. Rivequas primuted bearit for frout Ardes Pa
. Ampleas mind batri lor frout and If strip.
 2. Set of motal exide resistors, themimister, capecitors. cemorl provel lor mourtiag on pack 1 $£ 4.80$ 3. Sol of transistors.
2. PTountiligned and pack 1
3. Pre-aligned fromi end medula, cail assembin. three
section cersmic fitter 5. Fibreglass prinited circuit board lor $£ 8.50$
-. Set of metal oxide presel tor decoder
E.
E2.90 8. Set of components for chanael selector switch
module including fibreglass printed circuit board moun buthiuding
pish--bution switches, knobs. LEDs. preset adjusters elc. $\quad 59.40$
4. Function switch. 10 urn tuning polentiometer. knabis
5. Frequency meter, meter drive components. fibraglass printed circuil board $£ 10.35$

Pack. Poroidal Price
Thoroidal transtormer with electrostalic screan. Primary: 0-1 17V 234 V $£ 4.90$ 12. Set of capacitors. rectiliers, voltage regulatar for ${ }^{\text {power supply }}$
13. Sel of miscellaneous parts. including sackels tuse halder. luses. inter-connecting wire. etc. $£ 2.05$ 14. Set of melal work parts including silk screen primed tacia panel. acrylic silk screen printed tuning
indicalor panel insert inter indicalor panel insert, internal screen, fixing parts. 15. Const. 15. Construction notes (iree with complete kitl) . $\mathbf{E O . 2 5}^{\text {1. }}$ Teak

One each of packs $1-16$ inclusive are requir ed for complete stereo FM Itener. Total cosi of individually purchased
packs . . .

FREE
E $\mathbf{E 7 0 . 2 0}$

LINSLEY-HOOD CASSETTE DECK

this design, although straightforward and relatively low cost nevertheless provides a very high standard of performance. To permit circuit optimization separate record and replay amplifiers are used, the latter using a discrete component front-end designed such that the noise level is below that of the
tape background. Push button switches are used to provide a choice of an additional pre-amplifier for microphone use. The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of operation. Speed control and automatic cassette ejection are both implemented by electronic circuitry. This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellen match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier

PRICE STABILITY

Order with conridence! Irrespective ōt any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts

Value Added Tax not included in
prices.
EXPORT ORDERS. No VAT charged Postage charged al actuat cost plus 50p documentation and handing Please make payment ty Ir evocable Letter of Ciedit \& 500 minimum, Bank Draft, Postal Oider internation Mant Mainland only) add E2.50 NAT INC per kit
U.K. ORDERS: Subject to $\mathbf{1 2 1 / 2 \% * s u r c h a r g e ~ f o r ~ V A T . ~ C a r r i a g e ~ f r e e ~}$ MAIL ORDER ONLY. (tor at current rate if changed)

Pack

1. Slerea PCB |accammodates 2 rep. amps. $\left.2 \begin{array}{c}\text { Prict } \\ \text { rec. }\end{array}\right]$
amps. 2 meler amps. blas/erase osc. relayje 3.35 2. Stereo set of capitors. M.O. resistors. potentiomaters for above.............e9.80 3. Siereo set ol semiconduclors for above E8.50 5. PC8. all components for solemoid, speed cantrol circuits components lor solenoid, spesd cant.80 6. Goidring Lenco mechanism as specitied. £21.95 7. Function switch: knobs $£ 1.90$ 8. Oual VU meter with illumirating lamp ... EB .70 9. Toroidal transformer with E.S. screen prim. 0.117v. 234v. Sec. 15v
SPLCIAL PRICE FOR

COMPLETE KITS

Pack
10. Sel ol capacitors. rectillers, I.C. vallage regulator i0. Sel of capacitors. reciliters, I.C. voliage regulator

tor power supply $\{$ Powertran design) . . $£ 2.80$ 11. Sel of miscellananeus parts, inclusding sockets. fuse hoider tuses, interconnecling wire. etc. | E3.40 |
| :--- | 12. Set of metalwork including silk screened facia 13. panast. internal screen, fixing parts, etc. \quad E7.10 13. Construction notes

14. Teak cabinel $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$ E10.70
One each of packs $1-14^{\prime \prime}$ inclusive are required for compete stereo cassette deck. Total cost of individually purchased packs
£85.90
Further details of above given in our FREE CATALOGUE EXPORT CUSTOMERS. Please send five INTERNA-

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NN
Indonesia Brazil Switzerland Canada Saudi Arabia New Zealarid Norway fceland Sweden

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T 2 0 + 2 0}$ and dur new $\mathbf{T 3 0 + 3 0}$ 20W，30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success． Now develooed further in our laboratories to include a Toroidal transtormer and additional he design is based on a single F／Glass PCB and teatures all the normal facihtes tound on quality amplifiers，including scratch and rumble hiters，adaptable input selector and head phones socket．In ollow up aricle in Practical Wreless further moditications were suggested and these have been incorporated into the T30 +30 these include RF interference filters and a tape monitor facitrty

Pack	T20	530	Pack	520	T30
1．Set of low noise resistors	1.60	1.70	8．Toroidal transformer－240\％prim．		
2．Sot of small capacitors	2.60	3.40	e．s．screen	5.60	7.20
3．Set of power supply capacitors	2.20	2.50	9．Fibreglass PC8	3.50	3.90
4．Sot of miscellaneous paris	3.50	3.50	10．Set of metalwork．fixing parts	5.20	6.20
5．Set of alide．mains．P．B．swithes	1.50	1.50	11．Set of cables，mains lead	0.40	0.40
6．Set of pots，seliector switch	2.80	2.80	12．Handbook \｜free with complete kit）	0.25	0.25
7．Set of semiconducters．ICs．skts	7.25	7.25	13 Teak cabinel $15.4^{\prime \prime} \times 6.7{ }^{\prime \prime} \times 2.8^{\prime \prime}$	4.50	4.50

2 MATCHING TUNERS！

WW SFMT II
World FM Tuner kit we are no pleased to introduce our new cost reduced model．designed to more advanced model has been omitted and the mechanics simplified however the circuity is identical and this new kit offers most exceptional value for money Facilities included are switchable afc adjustable switchable muting，channel selection by slider or readily adjustable pre－set push－button controls and LED tuning indication．Individual pack prices in our free list．

POWERTRAN SFMT
This easy to construct tuner using our own circuit design includes a
pre－aligned front end module，PLL stereo decoder，adjustable，switchable muting，switchable afc and push－buttor channet selection As with all ou fill kits，al together with full constructional detals．

SPECIAL PRICES FOR COMPLETE KITS！
 T30＋ 30
 KIT PRCE only $£ \mathbf{£ 9 . 5 0}$

KIT PRICE
$£ 35.90$

CONVERT NOW TO QUADRAPHONICS！

SQM1－ 30 KIT PRICE $£ 40.75$

Wirelear World Amplifier Designs．Full kits are not available tor these profects bur Cormponent packs and PCBs are stocked for the highly regarded Bailey and 20 W class $A B$
Linsley Hood designs．together with an efticien！regulared power supoly of our own design．Suitabie for driving these amplifiers is the Bailioy Burrows pre－amplifier and our
circuil board，tor the stereo version of it features 6 inputs，scratch and rumble turs and circue range tone controls which may be either rotary or slider operating For those intencing to get the best out of their speakers，we also offer an active filter system解 amblitief．The read／texas 20 W ．of any of our other kits are suitable for these for tape
systems a set of three PCBs have been prepared tor the integrated circuit based，high

30W Bailey Amplifier
Ball Ph Ress PC
20 W B 3 Semiconductor sit
${ }^{2} \mathrm{HAB}$ Pk． 1 F／Giass PCB
LHAB Pk 2 Resistor Capacito Potentiometer set
Regulator Power Supply
$60 \mathrm{VS} \mathrm{Pk}^{2} 1 \mathrm{~F} / \mathrm{Glass} \mathrm{PCB}$
60VS Pk 2 Resistor．Capactior set
60 VS Pk． 3 Semiconductor se
60VS Pk 6A Toraidal transtormer（for use with Bailey）
60VS Pk． 68 Torodal（ransformer（for use with
Bailey Burrows Stereo Pie－Amp
BBPA Pk 2 Resistor capacilor semiconductor sel slees
BBPA Pk 3R Rotary Potenilometer sel Stereo．
BBPA Pk
3S Sider Potentiometer sel will knobs，Stered
FALTPK 1 Filler $/$ Glass PCB
FILT Pk 2 Resistor，Capacitor set（metal oxide 2% ，polystyrene $21 / 2 \%$ ）
．Pks 1.2 .3 rad tor stereo sctive filter system
Read／Texas 20W Amp
READ Pk 2 Resistor．Capacitor sel
READ Pk 3 Semiconductor sel
Stuant Tape Recorder

EXPORT NO PROBLEM

$£ 1.00$ $£ 82.35$ $£ 4.70$
 E4．30

E3．35
60.85
62.20
63.10 $£ 6.70$
$£ 2.85$
$£ 8.10$ $£ 2.85$
$\mathbf{E} 3.10$ 6.10
1.40 $\mathbf{1} 1.40$
$\mathbf{6 4 . 2 0}$
$\mathbf{c} 2.25$ E2．

E 1.00
E 1.20 11.20
$£ 2.30$
51.30

51.70

位 L3A Decoder similar 10 L2A but with discreet component front end with high precision 6－pole phase shift networks for
increased frequency response．All components（carbon film resistors）．PCB
$\mathbf{E 2 5 . 9 0}$ Also available with MO．resistors，cermet pre－set－add $\quad \mathbf{E 4 . 2 0}$

SQ QUADRAPHONIC DECODERS

Feed 2 channels（ $200-1000 \mathrm{mV}$ as obtainable from most pre－amplifiefs or amplitier reduction On the logic enhanced decoders Volume Front－Back．LF－RF balance L．B－RB balance and Uimension capacitors metal oxide resistors and fibregiass PCBs Sicence fee Basc matrix rolled decode with wave matching and front pack components PCB$£ 25.90$
$£ 4.20$

SEMICONDUCTORS as used in our range of quality audio equipment．

2N699	t0． 20	BC108	¢0 10	BF257	${ }_{6} 0.40$	MPsáus	¢0．25	FIP296	$\underline{60.55}$
2N1613	$\underline{60.20}$	${ }^{8 C 109}$	c0． 10	8F259	¢0．47	K．PSA12	60.35	．IP 30C	${ }_{60.60}$
$2 N 3055$	c0．45	BC109C	c0． 12	8FR39	c0． 30	MPSA 14	£0． 30	TIP41A	E0．70
2 N 3442	¢1．20	BC125	co． 15	BFF79	20．30	MPSA55	co． 25	TIP42A	¢0．80
2 N 3711	¢0．09	BC126	¢0． 15	BFY51	¢0． 20	MPSA65	co． 35	TIP418	E0．75
2N3904	¢0．17	BC182	60． 10	BFY52	¢0．20	MPSAG6	t0．40．	T｜P42日	c0．90
2 N 3905	¢0． 20	BC212	co． 12	CA3046	60.70	MPSU05	¢0．50	1N914	¢0．07
2N5087	80.25	BC182L	c0．10	LP1186	c6．50	SBA750A	¢1．90	1 1N916	¢0．07
2N543／	$\underline{60.45}$	BC 184 L	c0． 11	MC1310	E2． 20	Sl301	c1．30．	． 15920	¢0．10
2N5459	c0．45	BC212L	60.12	MC 2351	61.05	St 3045	\＄1．20		
2N5461	c0． 50	BC214L	c0．14	MC1741CG	$\underline{60.65}$	SN72741P	c0．40	Filte	
2N5830	60.35	BCY72	60.13	m－Caulu	c0． 45	SN72748P	¢0．40		
40361	50.40	80529	60.55	MJ481	11.20 1.45	Tlt 209	$60.20{ }^{\circ}$		¢1．00 $\mathbf{C 1 . 5 0}$
40362	¢0．45	8 B 530	c0． 55	MJ491	¢1．45	TIP29A	¢0．40		
BC107	¢0． 10	BDY56	$\ddagger 1.60$	MJES21	¢0．60	11 P 308	c0． 45		

With 100 s of titles now avatiable no longer is there any problem over sultable sotware NC ，problems with hardware either Ou of your existing amplifier and drives two additional speakers at 30W per channel A ful！complement of controls including volume．bass，treble and balance are provided as are comprehensive swithing facilities enabling the unil to be used for enter trom or rear channels，by－passing the decoder for matrix designed by identical to those used in our $\mathrm{T} 30+30$ amplifier which the

Tunısia Germany Nauru Hong Kong Australia Eire Gambia Denmark France Muscat \＆Oman ${ }^{6}$

Z \& I AERO SERVICES LTD. Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641

Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403

MULTIMETER F4313 (Made in USSR)

SENSITIVITY
$1200 \mathrm{~V} D$ range $10.000 \mathrm{Q} / \mathrm{V}$ Other DC ranges: $20,000 \Omega / \mathrm{V}$ 1200 AC range $6.000 \mathrm{D} / \mathrm{V}$
600 VAC range. $15,000 \Omega / \mathrm{V}$ 300 VAC range: $15,000 \mathrm{O} / \mathrm{V}$
Other AC ranges: $20,000 \mathrm{Q} / \mathrm{V}$
$\mathrm{AC} / \mathrm{DC}$ current ranges $60-120-600 \mu \mathrm{~A}-3-12.300 \mathrm{~mA}-12-6 \mathrm{~A}$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges: $60-300 \mathrm{mV}-12-6-30 \cdot 120-300-600-1200 \mathrm{~V}$ Resistance ranges: $300 \Omega-10-100 \cdot 1000 \mathrm{~K}$
Accuracy $1.5 \% \mathrm{DC}, 2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge poithter. Taut suspension of movement. Transistor amplifier is used for all $A C$ ranges thus achieving a common linear scaie for both $A C$ and DC ranges.
Meter is protected by a ransistorised cutout relay circuit Range selection is achieved by clearly marked piano keys. Power source 51.5 V dry cells. Dimensions. $95 \times 225 \times 120 \mathrm{~mm}$

PRICE $£ 39.50$ olus VAT

OSCILLOSCOPE CI-5

Made in USSR
Extremely simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightorward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable fo general electronic applications and educationa purposes where a sophisticated instrument would be both too expensive and delicate. 3in tube giving a 50 $x 50 \mathrm{~mm}$ clear display. Amplitude and time base calibrations. Sensitivity $30 \mathrm{~mm} / v$ max. Triggered and from $0.1 \mu \mathrm{sec}$ to 3 m sec A.C mains operation Price $£ 55.00$ ex. works, plus VAT Price $£ 55.00$ ex. Works, plus VAT

FULLY GUARANTEED											
0A2	0.45	12AL5	0.65					EY87	0.50	P(504	0.90
043	0.55	12A05	0.55					EY88	0.50	PL508	0.90
082	0.45	12417	0.45					E240	0.60	PL509	1.30
00^{3}	0.45	12au7	0.38					E241	0.75	PY31	0.50
003	0.45	12AV6	0.60					E280	0.30	PY33	0.63
183GT	0.55	122v7	0.90	5				E281	0.35	PY81	0.45
175	0.55	12AX7	0.38		1	11		KT66	3.40	PY82	0.45
5R4GY	1.00	12848	0.80			31		KT88	4.80	PY83	0.50
504G	0.55	12846	0.60		,	\square	(R)	PC86	0.65	PY88	0.50
5246	0.55	12866	0.60					PC88	0.65	PY500A	1.10
5Y3GT	0.65	$128 \mathrm{H7}$	0.60					PCC84	0.45	TT21	6.30
6AJ5	0.65	12×4	0.50			L		PCC85	0.45	TT22	6.30
6ak5	0.45	19A05	0.75					PCC88	0.65	U188С80	0.50
$6 \mathrm{Cl5}$	0.30	30as	0.70					PCC89	0.55	U1442	0.70
6as5	0.65	35A3	0.70	ECCB4	0.35	ECL85	0.65	PCC189	0.65	UBCA)	0.50
6AS6	0.80	35A5	0.80	ECCB5	0.45	ECL86	0.55	PCF80	0.40	U8C81	0.50
6AT6	0.60	3585	0.70	ECC86	1.25	EF80	0.35	PCFB?	0.40	UBF80	0.50
gav6	0.50	35c5	0.70	ECCB8	0.60	EF85	0.45	PCFB6	0.65	UBF89	0.50
6AW8A	0.75	3545	0.80	ECC89	0.60	EF86	0.40	PCFF200	0.80	. $\mathbf{u c c a s}^{\text {d }}$	0.75
6RUJ	0.40	35W4	0.60	ECC189	0.80	EF183	0.35	PCF201	0.85	UCC85	0.50
68а6	0.38	50C5	0.70	ECF80	0.45	EF184	0.40	PCF802	0.55	UCF BD	0.75
6BE6	0.45	Eabcbo	0.40	ECF82	0.45	EFL200	0.75	РСН200	0.75	UCH42	0.80
68J6	0.75	Eac91	0.55	ECF86	0.75	El34	0.70	PCL81	0.55	UCH81	0.50
68N6	0.80	Eaf42	0.70	ECFRO1	0.75	El36	0.60	PCL182	0.40	'UCL82	0.40
6826	0.55	eafbol	0.65	ECFP02	0.75	E181	0.60	PCLB4	0.50	UCL83	0.70
6827	0.70	E8C4]	0.75	ECH42	0.85	E182	0.60	PCL85	0.60	UF41	0.75
$6 \mathrm{C4} 4$	0.40	E8C81	0.50	ECH81	0.50	E183	0.60	PC186	0.60	UF42	0.75
6 C86	0.50	EBF80	0.50	ECHB3	0.50	EL84	0.35	PCL200	0.75	UF80	0.40
6EA8	0.75	EBF83	0.50	ECH84	0.50	El95	0.70	PL33	0.40	UF85	0.50
6GK5	0.70	E8FB9	0.40	ECL80	0.40	EL500	0.80	Pl36	0.60	UF89	0.50
6.4	0.75	EC86	0.75	ECL81	0.75	EM80	0.55	Pl38	0.65	UL41	0.70
$6.556 T$	0.55	EC88	0.75	EC182	0.42	EM81	0.60	PL81	0.55	ULb4	0.50
G.J6	0.35	EC91	2.80	ECL83	1.15	EM84	0.40	PL82	0.50	UY41	0.55
6L6GT	0.60	ECCD 1	0.45	ECL84	0.60	EY81	0.45	PL83	0.50	UY42	0.55
6SL7GT	0.55	ECC82	0.38					P184	0.50	UY82	0.60
6SM76	0.55	ecc83	0.38	All pr	es are	exclusive		P195	0.70	UY85	0.50

MINIMUM EXPORT ORDER £100

LARGE STOCKS	1976/1977
OFATALOGUE	
SEMICONDUCTORS	CVAILABLE 30p

AMATELUAR CDMPDNENTS

For Semiconductors Capacitors Resistors I/C Sockets L.E.D's and
 BC108
BC108A ${ }^{11}$ 1 Hi - Fi Accessories (MIN ORDER£200 + P\&P 20p)

RETURN OF POST MAIL ORDER SERVICE

R.C.S. "MINOR" 10 watt AMPLIFIER KIT electron surable for record players, guitars tape playback avalable Mono £11.25: Stereo E18. Post 45 . Swo versions 10 W per channel input 100 mV , size $91 / 2 \times 3 \times 2 \mathrm{in}$, approx
S.A.E detals Full instructions supplied. AC mains powered

CONTROLS	80 Ohm Coax 8 STANDARD TYPE VHF fringe low loss 15
	FRINGE LOW LOSS 15 p yd.
35p. JP 60p. STEREO	PLUGS 10
S 85 p.	
Tran	OUTLET BOXES 50p.
DRILLSPEED CONTROLLER /LIGHT DIMMERKIT. Easy to huild kit. Will control up to 500 watts $A C$ mains £3.25 Post 35 p STEREO PRE-AMP KIT. All parts to buld this pre-amp 3 inputs for high, medium or low gain per channet with volume control and P.C. 8oard Can be ganged to make mult-way stereo mixers	

E.M.I. $131 / 2 \times 8$ in. SPEAKER SALE!
With weeter and
crossover 10 watt
State 3 or 8 ohm

crossover to watt State 3 or 8 ohm As illustrated	Ditt 15 watts 8 ohm
$\underbrace{5.95}_{\text {Poss } 45 p}$	$\underset{\text { Pos } 165 p}{8.50}$
With tweeter and crossove 20 watl 8 ass res 25 c.p.s. Flux $=11000$ gauss 4 or 8 or 15 ohm 201020	$\underset{\substack{\text { Post } \\ 0.50 \\ 0.5 p s}}{ }$

Bookshelf Cabinet Teak finish. For EMI 13×8 speakers.	$\begin{aligned} & \mathbf{£} \mathbf{7} \mathbf{5 0} \\ & \text { Post } £ 1.00 \end{aligned}$
THE 'INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER. Suitable for cassentes, and all sizes of tape reels AC mains 200/250V Leaflet S A E Will also demagnetise small $£ 4.50$	

BLANK ALUMINIUM CHASSIS. $\overline{6} \times 4-70_{0} 8 \times 6 \times 190$;

 $3-25 p ;$
$6-43 p ;$

R.C.S.

BOOKSHELF SPEAKERS
$13 \times 1 \times 612$
50 to 14900
£16 pair post £i 30
KUBA-KOPENHAGEN STEREO

TUNER-AMPLIFIER CHAŚSIISAM-FM 5 +5 WATT his Contirental 4 -band radiogram chassis uses first class quality components throughout Features Large facia pane: with 7 push outtons for medium, long, short, VHF-FM, AFC, phono, mains on-off 4 -rotary controls, tuning, volume, tone, balance Facia
size $17 \times 41 / 2$ inches Chassis size $17 \times 41 / 2 \times 51 / 2$ inches phono pick-up, external FM-AM aerıals Automatic stereo beacon light. Built-in ternte rod aerial for medium/longwave

$30.14,500 \mathrm{c} / \mathrm{s}, 12 \mathrm{mn}$ double cone. woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of14.000 gauss and a total flux of 145.000 Maxwells 8ass resonance $40 \mathrm{c} / \mathrm{s}$. Rated 25W. NOTE: 4 or 8 or 16 ohms must be stated.\qquadtweeter, crossover, baffle be and instructions Post $£ 1.60$ peach BAKER "BIG-SOUND" SPEAKERS. Post E1.00 each. BAKER LOUDSPEAKER, 12 INCH. 60 WATT. GROUP 50/12, 8 OR 15 OHM HIGH POWER. FULL RANGE PROFESSIONAL QUALITY RESPONSE 30-16.000 CPS MASSIVE CERAMIC MAGNET WITH aluminium presence centre dome. TEAK VENEERED HITFI SPEARERS AND CABINETS For 12 in or 10 in speaker $20 \times 13 \times 12$ in $\quad £ 14.50$ Post $£ 2$. $\begin{array}{ll}\text { For } 61 / 2 \mathrm{In} \text { speaker and tweeter } 12 \times 8 \times 6 \text { in } & \mathbf{8 5 . 5 0} \text { Post } £ 1, \\ \text { £5.80 Post } 75 p\end{array}$ Many other cabinets in stock. Phone your requirements

R.C.S. 100 watt

VALVE
AMPLIFIER CHASSIS
Four inputs Four way mixing, master volume, treble and bas controls Suits all speakers. This professional quality amplifie power is required. 5 speaker outputs. A/C mains operated. Slave output socket. Produced by demand for a quality valve amplifier 100 V line output to order $\mathbf{8} 55$ Send for teaflet Suitable carrying cab £14 $£ 85$ carr. $£ 2.50$ SPEAKER COVERING MATERIALS. Samples Large S A E LOUDSPEAKER CABINET WADDING 18 in . wide 20p
Horn Tweeters $2-16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm or 15 hm E 3.60 De Luxe Horn Tweeters $3.18 \mathrm{kc} / \mathrm{s}$. 30W. $8 \mathrm{ohm}, \mathbf{£ 7 . 5 0}$ CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm E1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}, \mathbf{£ 2 . 2 0}$.
LOUDSPEAKERS P.M. $\mathbf{3 \times 5}$ OHM $7 \times 4 \mathrm{in}$. £1.50; $61 / 2 ı \mathrm{n} ., ~ £ 1.80$ $8 \times 5 \mathrm{in}$ £1.90; $8 \mathrm{in}, \ldots 1.95$.
SPECIAL OFFER: 80 .
SPECIAL OFFER: 80 ohm, $21 / 2 \mathrm{in}, 23 / 4 \mathrm{in}$.. 35 ohm , $3 \mathrm{in}, 25$

3 ohm, $2^{1 / 2 i n}$., 2% in. $31 / 2 i n, 5 \mathrm{in}$, dia. E 1.25 each. RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 Bin diameter $4 W \mathrm{f} 2.50$. 10 in . diameter 5 W £2.95; 12 in diameter $6 \mathrm{~W} \mathbf{£ 3 . 5 0}$. $3 / 8 / 15 \mathrm{ohms}$, please state PIEZO ELECTRIC HORN TWEETER. Handles up to 100 watts. No crossover required $\mathbf{£ 9 . 9 5}$.
Tweeter Volume Control 15 ohms 10 W with one inch long

All purpose transisiorise
Ideal for Groups. Disco
and PA 4 inputs
bass controts. Master volur
Guaranteed. Details S.A.E
NEW MODEL MAJOR - 50 watt, 4 input
£1.50 car

100 WATT DISCO AMPLIFIER

volume, treble, bass controls. $500 \mathrm{M} . \mathrm{V}$. or 1 volt input - $\mathbf{£ 9}$.
Four loudspeaker outputs 4 to 16 ohm . All transistor
BARGAIN 4 CHAÑNEL TRANS̄ISTOR MONO MIXER BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER
Add musical highlights and sound effects to recordings Add musical highights and sound effects to recordings with separate controls into single output 9V £6.95 TWO STEREO CHANNEL VERSION
BARGAIN 3 WATT AMPLIFIER. 4 Transistor 8.95 Push-Pull Ready Built, with volume. Treble $£ \mathbf{3 . 9 5}$ and bass controls. 18 volt d.c. Mains Power Pack $£ 3.45$
 BALANCED TVIN RIBBON FEEDER 300 ohms 50 JACK SOCKET Std. open-circuit 20p, closed circuit 25 p; Chrome Lead-Socket 45p. Mono or Stereo.
ACK PIUGS St Ch Socket 8
ACK PLUGS Std. Chrome 30p; Plastic 25p: 3.5mm $15 p$ STEREO JACK PLUG 30p. SOCKET 25p
DIN SOCKETS FREE 3-pin 25p: 5pin 25p. DIN PLUGS
3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p. TVCONVERGENCE POTS 15p Each Valves $=5,7,10,20,50.100,200,250,470.2000$ ohms
R.C.S. SOUND TO LIGHT KIT

Kit of parts to build a 3 channel sound to
1,000 watts per channel $£ 14$. Post $35 p$.
PERIOD LOUDSPEAKER CABINETS. Two styles available Regency and Queen Anne. Size approximately priced from $£ 10$ eagch. Callers only.

Industrial Tape Applications

othe world...

SINTEL for the ZILOG Z80 KITS and FAST SERVICE

SINTEL INDUSTRIAL MODULE KITS

Using orly the highest quality
from
Blu-chip Mennu foctirers
KITS FOR TTL LATCHED COUNTER MODULES
Each int includes a set of displays ($05^{\prime \prime}$ Red LED type TIL321/FND507) and two PCBs. one each per sigit of 7447,7475 and 7490 , plus brackers, resistors, capaciors, a single in-line plug and socket, nuts,
screws, washers. instructions, etc. Sockets are NOT included and we recommend thal you order Soldercon Pins separately (112 for a 2 digit module. 224 for a 4 digit module and 336 for a 6 digit
module). Each mod which holds the remaining components. Full K tor 2 digit THL Counter with Latch Order as $525-\mathbf{4 1 2}$
Full Kt for 4 digit TTL Counter with Latch: Order as $\mathbf{6 5 7 - 4 1 2}$
$\mathbf{6} 10.52$
$\mathbf{5 1 7 . 9 8}$ Full K: for 4 digit TTL Counter with Latch: Order as $657-412$
Full Kit for 6 digit TTL Counter with Larch. Order as $721-412$ 617.98
625.86

KITS FOR CMOS LATCHED COUNTER MODULES
Similar to the TTL kits above but using $0.5^{4 \prime}$ common cathode LEDs two 4511 and one 4518 CMOS ICs $\begin{array}{lll}\text { Fuil kit for } 2 \text { digit CMOS Counter with Laich Order as } & 548-470 & \mathbf{8 1 0 . 4 2} \\ \text { Fuil kitit for } 4 \text { digit CMOS Counter with Latch Order as } \mathbf{8 6 9 4 7 0} & \mathbf{8 1 8 . 1 1}\end{array}$ Full kit for 4 digit CMOS Counter with Latch. Order as $\mathbf{8 6 9 - 4 7 0}$

Full kit for 6 diglt CMOS Counter with Larch Order as 191.470 | 10.42 |
| :--- |
| 18.11 |

PCBs used in our Tit Latched Counter Modules are atso avallable separately including brackets. layout. 2 digit TTL Counter PCB Set: Order as $915-950$ dign TTL Courter PCB Sel. Order as 246-950 5 digll TLL Counter PCB Set. Order as $\mathbf{8 1 0 - 9 5 0}$

Kit FOR SINGLE PGE CMOS COUNTER MODULE
Order as $\mathbf{1 4 2 - 2 6 9}$
SETS OF JUMBO DISPLAYS WITH DISPLAY HOLDING PCB
Each kit consist of the approptiade number of 0.5 red LE0 displays (either common anode
TH. $321 /$ FND 507 or common cathode TIL322/FND500s) and a display holding PCB. OPTHONS PCBs wired

TYPE Non-Multiplexed	COMMON ANODE Part No. Price		COMmon Cathode Part No. Price	
2 digir Counter	574-822 777.822 684.822	$\begin{aligned} & £ 3.37 \\ & £ 6.63 \\ & 69.89 \end{aligned}$	$\begin{array}{r} 446-822 \\ 128-822 \end{array}$$271.822$	$\begin{aligned} & 62.97 \\ & \mathbf{6 5 . 8 3} \\ & \mathbf{6 8 . 6 9} \end{aligned}$
4 digit Counter				
6 digit Counter				
Multiplexed				
4 digl Clock	$801-822$ 417.822 T19-822	$\begin{array}{r} \mathbf{£ 8 . 6 6} \\ \mathbf{£ 1 0 . 1 5} \\ \mathbf{£ 1 3 . 0 9} \end{array}$	$\begin{aligned} & 262-822 \\ & 452.822 \\ & 515-822 \end{aligned}$	$\underline{5.86}$
6 digit Clock				¢8.95
8 digit Counter				c11.49

LOW COST SOLDERCON IC SOCKETS

orders: C.W.O. add Va 50p P\&P, and please see "FAST SERVICE.: EXPORT Orders (min E10) welcome no VAT but add 10% Europe), 15% (Overseas) for Air Mail P\&P For Export postage rates on heavy items - coniact us first.

SINTEL
PO BOX 75C, OXFORD Tel. 086549791

SINTEL chooses the ZILOG 280

COMING IN A FEW MONTHS

A COMPUTER USING THE Z80
In kit form and ready-built
We think it's worth waiting for

Sintel offers you the world's most advanced 8 -bit microprocessor. designed by the team who created the Mostek - the world's leading memory menufacturer

Here are some features that with warm the expert shea

8 instructions. nncluding all 78 of the 808	Single +5 V power supply
Automatic dynamic RAM refresh	Static operation
Superb sel of addressing modes	Single, simple ciock
4 - bit rotares for BCD multiplication	1.6 sec cycte ume
Loop counting and exit with single instruction	Block move instruction
Great interrupt handing	Two index registers

Great interrupt handing
Singie. simple ciock
.6 sec cycle time
Block move instructio
Two index registers

Send in vour name and address to go on our $\mathbf{2 8 0}$ Mailing Lies

 zilog Z80 Datasheat

CATRONICS FREQUENCY COUNTERS

Without doubt the best

 CATRONICS DMF5 $\mathbf{1 0 H z}$ to $250 \mathbf{M H z}$* full 7 dign 0.355^{2} amber display * Aulomatic suppressed zeros on 3 liending digits Auromatic supprassed det
recuuce power consumptio
- TLT and ECL i.c.s. used to give a high degree of reliability
 PRICE ONLY £137.50 + VAT

TELETEXT DECODERS

MATRIX H DECODER
s available for Matrix H Decoder Design as featured in last
month s "Wireless World" - send SAE for details

Are you receiving us? NEW Doram

DIGITAL FREQUENCY METERYOURS FORONLY £54.50 ${ }^{\text {+ } 4.36 \text { VAT }}$ could save you up to $£ 25$. It's easy to see how accurate this new Doramm meter is thanks 4 digit display with extra shift left to check 5 digits for even greater accuracy! hou can see the well-designed display till-foot looks so much more expensive than many a kit product. But Doram kits always give you the best for less. This complete kit with case, printed circuit boards, all cornponents and instructions is yours for only $\mathrm{£} 54.50+£ 4.36$ VAT.
 The meter covers 20 Hz to 50 MHz with prescaler (additional purchase) provision allowing you to measure up to 500 MHz Input impedance and sensitivity are very high with read-out accurate to ± 0. So the message comes through loud and So the message comes through houd clear-don bargain.
 DEPEND ON DQLAM
 Thousands of k.

 4 Reigiteredin London No 115

WW-041 FOR FURTHER DETAILS

INJECTION AND COMPRESSION MOULDING TO YOUR REQUIREMENTS ALSO INDELIBLE PRINTING OF G.R.P. ALUMINIUM AND COATED PANELS.
GLASS FIBRE CASES. D.M.C. OR S.M.C. GREY, BUT OTHER COLOURS BY ARRANGEMENT.

SIZES	BOX	WITH
$8^{\prime \prime} \times 51^{1 / 2^{\prime \prime}} \times 5^{\prime \prime}$	$£ 1.94$	$£ 2.71$
$9^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$	$£ 1.30$	$£ 2.07$
$6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$	$£ 1.10$	$£ 1.96$
$5^{\prime \prime} \times 3^{\prime \prime} \times 11^{\prime \prime}$	$£ 0.51$	
$4^{\prime \prime} \times 4^{\prime \prime} \times 11^{\prime \prime}$	$£ 0.54$	

Plus VAT and carriage
WITH FRONT PANEL, INSIDE PANEL (BOTH ALUMINIUM) AND 4 RUBBER FEET
trade prices on request Polythene Bags to your requirement, Dept. DP
THOMAS MAUGHAN \& ASSOCIATES (DEPT. AW)
CLARENCE MILL. BOLLINGTON, NR. MACCLESFIELD, CHESHIRE Tel: BOLLINGTON 74294

TRANSFORMERS
ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT $8 \% \quad \mathbf{1 2}$ and/or 24-VOL
PRI 120/240V SEC $120 / 240 \mathrm{~V}$

Ref.	(Watts)	¢	P\&P
07*	20	4.40	79
149	60	6.20	96
150	100	7.13	1.14
151	200	11.16	1.50
152	250	12.79	1.84
153	350	16.28	1.84
154	500	19.15	2.15
155	750	29.06	OA
156	1000	37.20	OA
157	1500	45.60	OA
158	2000	54.80	OA
159	3000	79.05	OA
* 115 or 240 sec only			
50 VOLT RANGE			
SEC. TAPS 0-19-25-33-40			
	Amps		
102	0.5	3.41	78
103 104	1.0 2.0	4.57 6.98	1.96
105	3.0	8.45	132
'106	4.0	10.70	1.50
107	6.0	14.62	64
118	8.0	17.05	2.08
119	10.0	21.70	OA

HIGH VOLTAGE Pri $200 / 220$ or $400 / 440$ Sec $100 / 120$ or $200 / 240$
VA Ref.

1000	250	$\mathbf{3 5 . 6 5}$	OA
2000	252	$\mathbf{5 4 . 2 5}$	OA

DECS SOLDERLESS BREADBOARDING
$\begin{array}{ll}\text { S Dec } 70 \text { contacts } & \mathbf{£ 1 . 9 8} \\ \text { T Dec } 208 \text { contacts } & £ 3.38\end{array}$

BRIDGE RECTIFIERS

BR 200 400

$\begin{array}{ll}200 \mathrm{v} & 2 \mathrm{~A} \\ 400 \mathrm{v} & 45 \mathrm{p} \\ 200 \mathrm{v} & 4 \mathrm{~A}\end{array}$
SCREENED MINIATURES Primarv 240 V

Ref.	mA	Volts	¢	P\&P
88	200	3.0 .3	1.99	. 55
212	$1 \mathrm{~A}, 1 \mathrm{~A}$	0-6, 0.6	2.85	78
13	100	9-0-9	2.14	. 38
235	330, 330	0-9, 0-9	1.99	. 38
207	500, 500	0-8-9, 0-8-9	2.59	. 71
208	$1 \mathrm{~A}, 1 \mathrm{~A}$	0-8-9, 0-8-9	3.53	. 78
236	200, 200	0-15, 0-15	1.99	. 38
214	300. 300	0-20, 0-20	2.56	. 78
221	700 (DC)	20-12-0-12-20	3.41	. 78
206	$1 \mathrm{~A}, 1 \mathrm{~A}$	0.15-20, 0-15-20	4.63	. 96
203	500, 500	0-15-27, 0-15-27	3.99	. 96
204	1A, 1A	0-15-27, 0-15.27	5.39	
5112	0	0-12-15-20-24-30	2.	
CASED AUTO. TRANSFORMERS				
240 V cable input. USA 2-pin ou:lets				
	VA 4.	6. P\&P 96	Ref.	113W
	VA E6.	3. P\&P 114	Ref.	64 W
	VA $¢ 8$.	8. P\&P - 1.14	Ref	4W
300	VA £12.	3. P\&P 1.45	Ref	66W
	VA $£ 15$.	3. P\&P 1.64	Ref	67W
	VA ¢18.	5. P\&P 1.76	Ref	83W
1000	VA £22.	8. OA	Ref	$84 W$
2000	VA £37.	5. OA	Ref	95 W

AUTO TRANSFORMERS					
Ref.	VA V	atts	TAPS	E	P\&P
113	20	0-11	$5.210-240 \mathrm{v}$	2.48	71
64	75	0-11	5-210-240v	3.95	96
4	150	0.115	-210-220-240v	5.35	96
66	300	..	-.	7.75	1.14
67	500	,		10.99	1.64
84	1000			18.76	2.08
93	1500			23.28	OA
95	2000			34.82	OA
73	3000			48.00	OA

High Qualitr modules vat $12 \frac{1}{2} \%$ 10 watt RMS Amplifier
Pre-Amp for 3-5-10w
Pre-Amp for 35 w
Pre-Amp for 25 w
Power Supplies for 3-5-10 W
Power Supplies for 25 w
Transformer for 5.10 w
Transformer for 25 w (one modut
Transformer for 25 w (one module)
P\&P Amps/Pre-Amps/Power Supplies
P\&P Amps/Pre-Am
P\&P Transformers
$£ 3.66$
$£ 4.57$
$£ 6.95$
$£ 13.88$
$£ 1.35$
$£ 3.76$
$£ 2.41$
$£ 4.79$
$40 p$
$96 p$
Complete chassis STEAEO $\mathbf{3 0}$
Complete chassis, inc $7+7 \mathrm{w} \cdot \mathrm{m} . \mathrm{s}$ amps, pre-
amp, power suply, front panel, knobs amp, power supply, front panel, knobs (needs
mains trans. $£ 19.05$. Mains tans. $£ 2.45$. Teak veneered cab. ©5.25. P\&P £1.02. VAT $121 / 2 \%$. POWER UNITS CC12-05. $3,4.5,7.5,9,12 \mathrm{v} 500 \mathrm{~mA} \quad \mathrm{E5.29}$ STABILISED 3. $6,7.5,9 \mathrm{v}$ at $\angle 00 \mathrm{~mA} \quad £ 5.95$ $\mathbf{3 3 0 0}$. 6, 7.5, 9v at 300 mA plugs direct into 13A
socket (fused)
$£ 3.30$ P\&P 70p VAT $12 \% \%$ 15W £3.46. 18W £3.46. 25 W £3.20 Stand for above $£ 1.45$. P\&P $\mathbf{4 6}$ PLEASE ADD VAT AFTER P\&P PANEL METERS AND SEMICONDUCTOR STOCKISTS, AUDIO ACCESSORIES \& BARGAIN AKS. SAVE POSTAGE CALLERS WELCOME
(MON.-FRI.) OR SEND STAMP FOR LISTS
PRICES CORRECT AT $7 / 4 / 777$

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8

NEAREST TUBE STATIONS: ALDGATE \& LIVERPOOLST

NRDC-AMBISONIC 45J

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W.W. July, Aug. and Sept. 77
The unit is designed to decode not only 45 J but virtually all other 'quadrophonic' systems (Not CD4), including the new BBC Matrix $H 10$ input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versatile unit

Complete kit, including licence fee $£ 45.00+$ VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval.
As in this issue of "Wireless World", designed by Mike Hosking, 240V ac mains operated and disguised as a hardbacked book. Detection range up to 30 feet. Complete kit. Exclusive designer approved kit $£ 46.00+$ VAT.

Typical performance

Noise reduction better than 9dB weighted
Clipping level 16.5 dB above Dolby level (measured at 1% third harmonic content)

Harmonic distortion 0.1% at Dolby level typically 0.05% over most of band rising to a maximum of 0.12%

Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output

Dynamic Range $>90 \mathrm{db}$
Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter

30 mV sensitivity.

- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

Complete Kit PRICE: $£ \mathbf{3 9 . 9 0}+$ VAT
Also available ready built and tested
Price $£ 54.00$ +VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price £2.20 + VAT *
Single channel plug-in Dolby PROCESSOR BOARDS ($92 \times 87 \mathrm{~mm}$) with gold plated contacts are available with
all components
Price $£ 8.20$ +VAT
Single channel board with selected fet
Price $£ 2.50$ +VAT
Gold Plated edge connector
Price £1.50 + VAT*
Selected FETs 60p each + VAT, 100p + VAT for two, $\mathbf{£ 1 . 9 0 + V A T}$ for four
Please addVAT @ $121 / 2 \%$ unless marked thus*, when 8% applies (or current rates)

We guarantee full after-sales technical and servicıng tacilties on all our kits, have you checked that these services are available from other suppliers?

Please send SAE for complete lists and specifications
INTEGREX LTD.
Portwood Industrial Estate, Church Gresley,
Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent (0283) 215432 Telex 377106

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button

FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than 0.1% at 20 W into 8 ohms. Power on / off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$.30dB mono S/N@1.2 NV . THD 0.3%. Pre-decoder ' birdy' filter

PRICE: £58.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection -70 dB . If rejection -85 dB . THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo witk a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.
Mono £32.40 + VAT
With ICPL Decoder $£ 36.67+$ VAT
With Portus-Haywood Decoder
$£ 39.20$ + VAT

Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £31.95+VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers,
switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape $\ln /$ Out facility (for noise reduction unit, etc.). Tornidal mains transformer.

PRICE: £33.95 + VAT

ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES,
NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

LYNX ELECTRONICS（London）LTD．
＇92 Broad Street，Chesham，Bucks．Tel（02405） 75154
VAT 8% except \star which are $12 \cdot 1 / 2 \%$
P\＆P 30p．Overseas 90p．Matching 20p per pair New Price List 20 p Prices correct at 30th April，1977．ACCESS WELCOME

N																THYR	ISTOR						
${ }_{\text {AC }}{ }^{\text {c } 126}$	0.	BC182		80Y60	1.70	BU133	$1.60{ }^{\circ}$	2N29260	0.				7400	SERI			1						
AC1 127 AC128	0.16 0.16		0．12．	BDY61 BDY62	1.65 1.15	时204	0．	${ }_{\text {2N2926R }}$		PLA	TIC								14060 ［0220］	［10220］	10220）（10）	201） 15048	
${ }_{\text {ACl } 128 \mathrm{~K}}$		BC1	${ }^{0.10} 0^{\circ}$		2.14	BU206	2.40°	2 N 2926 G	0．10	400	0.20		0.16	748	0.55		0.35		0． 0.55	0.58	$0.60 \quad 0.6$		
	－ 0.22	${ }_{8 C 1}^{8 C}$	0.111° 0.12	$80 \mathrm{ra6}$ Bor97	${ }_{2} 4.96$	${ }^{84208}$	2．60	${ }_{2}^{2 N 3053}$	0.20 0.50		0.20	74	0.16	7486	0.32	${ }_{600}$	${ }_{0}^{0.65}$	0.85	0.70	${ }_{1.09}$	${ }_{1}^{1.198}$	1281.80	
AC142	0.18	BC186	0.20 ．	BF179	0．30	MJ481	1.05	${ }_{2}^{2 N 3137}$	1.10	${ }_{4006}$	1．20	740	－0．18	7489	${ }^{2.02}$								
AC：	${ }_{0}^{0.32}$		${ }^{0.24}$ ．	180	0.30	MJ490	${ }^{0} 9.90$	${ }_{2}^{2 N 3440}$	${ }^{0.56}$	${ }^{4007805}$	0.20	7405	0.18	7491AN	0．65．	¢1．00		1.60	$\$ 1.60$	$\underline{1.00}$	0		
${ }_{\text {A }}$	0.3	8 BC	0.11.	${ }_{\text {8F }}{ }_{\text {8F } 181}$	O．30	MJ ${ }^{\text {MJE }}$	${ }_{0} .40^{\circ}$	${ }_{2}^{2 N 3}$	1．20			${ }^{7408}$	0.18	7492	0.57								
AC18	0.	BC212L	0.12 ．	8F183	0.30	M M E520	0.45	2N3702	$0.10^{\text {－}}$	401085	0.52	7410	${ }^{0.15}$			TRIAC	CS－		c	20 Pa	ka	Isola	
AC18		8C21		8F 184	20			$2 \mathrm{N3703}$	0.10	40118 E	0.20	7412	0.25	7495	0.67	Tab							
		214	－					退7704		40	0.20	741	0.40	74	0.82								
${ }_{\text {AD }}$		BC214L	0.15 ．	${ }^{8 F} 196$		OC45	0.32	2×3706	0.10	${ }^{4014} 4$	${ }_{1}^{0.50}$	7714	0.72	74100	1.07 0.35 0		，		SA				
	0.35	bc237	0.1	8F197	0.12	OC46		2 N	0.1			7420	0．16										
${ }^{\text {A }} 16162$		BC238	$0.16^{\text {c }}$	BF224J	．	OC70	0.30	2 2 3708	0.09	4016	0.54	7425	0． 30	74122	0.47	IDOOY	0.600 .60	0	0.70	0.78	$0.03{ }^{0.63}$	1.01	
${ }_{\text {AF }}^{\text {AFP1 } 14}$	0.20 0.20	${ }_{8}{ }^{\text {BC301 }}$	${ }_{0} 0.32$	${ }_{\substack{\text { BF2 } 24 . \\ 8 F 257}}$	0.17 0.30	OC72	－ 0.32	2 N 3709 2 N 3710	－ $0.09{ }^{0.10}$	${ }_{40178}^{4017}$	1．108	7427 7430	0．30	74123 74141	0.65		0.77	8	（1）${ }^{5}$	${ }^{0.07}$	${ }_{1.13}^{0.97} 1.19$	${ }^{1.17}$	
	0.20	${ }^{8 C} 302$	0.40	8F936		${ }^{\circ} \mathrm{CB4}$	0.40	2 N 3711	0.10	40198E	0.50	7432	${ }_{0.28}$	${ }_{7145}$	${ }_{0.88}^{0.78}$		0.960 .95		1.10		12	2.1	
AFF117 AF 118	${ }_{0}^{0.20}$	${ }_{\text {BCr } 30}$	${ }_{0}^{0.465}$	${ }^{\text {F333 }}$	$3^{35^{\circ}}$	OC139 OC140	1.30 1.30	${ }_{2}^{2 \mathrm{~N} 3715}$	1.70		1.12	7437	0.30	74154	1.30								
AFI24	0.25	вС¢31	0.55	${ }_{\text {BFW30 }}$	－1．25		0.23 ．	2 N 3771	1.60	${ }_{402288 \mathrm{EE}}$	1.03	744	0.76	74164									
AF125	0.25		${ }_{0}^{0.50}$	BFW59	0.30			2 N 377	1.90	40238		7445		74174	1.40								
	O． 35	${ }_{8 \mathrm{Cr} 34}$	0.55	bFw60	0.36		${ }_{0}^{0.54}$	${ }^{2 \text { 233773 }}$	${ }^{2.10}$	402	0.88	744	0.8	74175	0.94								
AF239		вCr38	50	BF×29	0．26	T1P32A	0.64	$\stackrel{\text { 2N3819 }}{\text { 2N434 }}$	1.10	${ }_{402}^{402}$	1．55	7448	0.32	741	$\underset{\substack{1.06 \\ i>0}}{ }$	SG309к	K	． 95	т1209	d		1	E1．15
	1.30	${ }_{\text {BCr }}^{\text {BC4 }}$	1.1	${ }_{B F \times 84}$	0.23	${ }_{\text {TIP4 }}^{\text {T1P }}$	0.68 0.72	2 N		${ }^{4027 B E}$	0.62	7472	0.2	74191	1.33	NPN To．	3 Powe					Ctipers	00．4
		Y42	0.30	BFX85	0.25	2N404	0.40	${ }_{2}^{2 N 48771}$	－ 0.35.	${ }_{402988}^{402886}$	1.10	7474	0.32	${ }_{74193}^{74192}$	1.20 1.35 1	${ }_{\text {rably }} \mathrm{TRANS}$	Stors		TRANSIST	tors		CKAC	0.80 ．
1110		${ }^{8 \mathrm{BCr54}}$	1.60		0.20				㖪	40308E	0.55		0.47			unmark	Sim		Medium	Volt		ase sp	
				bfx	0.20	${ }_{2 N 706}$	${ }^{-15}$	2N4919	0.75	4041 BE	0.80	7476	0.36	74196	1.64	102 N 305			High Ga	in Type		A 1	
${ }_{\text {BC1 }}{ }^{\text {che }}$	0.1	BCY72	1		1.10	2 N 1131	0.15	${ }_{2} \mathrm{~N} 4922$	${ }^{0.58}$	${ }_{40348 E}$	．00					EE：	$50+$		Simia			4	1.
${ }_{\text {BC108B }}$	0.12	${ }_{80}$	－ 0.36	r18		H		2N493		4044	0.9								107／				
ac^{109}	0.12	80132	0.40	BFY40	0.50	$2 \mathrm{~N}^{1303}$	0.40				1.32					＜1	3 V		pcs	$\mathrm{fl}_{1.20}$			1．20．
	0.12	135	0.36							40	${ }_{0}^{0.54}$		EAR	I．C．s						－ $\begin{aligned} & \text { E3．50 } \\ & \text { WARE }\end{aligned}$		d Anod	
${ }_{\text {BCLII7 }}$		80	0.3	FY5	0.18	2N130	45	E24		40698 E	0.30	301A		MCI					Mica．W			es， 1	
${ }_{8 C 119}$		${ }_{80} 8138$	${ }_{0.48}$	${ }^{\text {BFYY2 }}$	0．19	2N130	050	100		407065	0.50	307	0.55 ．	MC13			ع 13.0		Soider				
	0．18．	80139	0.5	${ }_{8 \times Y 64}$	0	2 N 130	0.60	／2	${ }^{1.5 p}$	${ }_{40728 E}$	${ }_{0.28}$	${ }^{381}$	${ }_{1}^{0.80}{ }^{0.80}{ }^{\text {a }}$	MC14961		＋	＋		50 sets for	65p		\star	
${ }_{\text {BC1 }}{ }_{\text {BC14 }}$		${ }^{\text {B01 }} 154$	2．80	BFY90	0.90	${ }_{2}^{2 N 1309}$				4081 BE	0.20	3900	$0.70{ }^{\text {．}}$	SAS560	2.25								
8 BC	0.28	BD18	研	BSx 19	0.16	2N210	0．44			${ }^{40828 E}$	0.26 1.42	709	${ }^{0.27}$	SAS570									
BC_{3}	0.23		0.92			2 N 22	30					${ }_{748}$				MEmo	dies	DIOD	des				
${ }_{\text {BC14 }}$		183	－1．97	${ }_{\text {BSY }}$	\bigcirc	${ }^{2} \mathbf{N} 233$	0.14	${ }_{01}{ }^{\text {c280 }}$		${ }_{4516 \mathrm{BE}}$	1.35	NE555	${ }_{0}^{0.45}$	TAA550	${ }^{0.45}$	2102A． 6	3.60	${ }^{\mathrm{BY} 20}$	06 0.15	B2x61	1es		${ }^{0.04}{ }^{\text {P }}$
	0.09	80232	0.60		0.33		0.14	${ }^{1} 140$	22 6p		1.20	NE565	$2.00 \cdot$	tas6118		$2112 \mathrm{~A} \cdot 4$	． 75	－ $\mathrm{r} \times 1$					
${ }^{\mathrm{BC} C 149}$		B0233	0.48	Y54	0.33	2 N 2484	0.16		$3{ }^{1}$			${ }_{\text {NES565 }}$	${ }^{1.50}{ }^{1.00}$		${ }^{1.65}$				3000.12		0.11	in 400	
${ }^{\text {BC }} 158$		80237 80238 080	0．55		0.30	2N2646	0.20	4 p	100				${ }_{0.85}^{2.00}$	tbas30	1．85．		7.85		6000.15	Bzrse S		4	
${ }^{\text {BC159 }}$	0.09	BD410	0.60	BSY95A	16	2 N 2712	0.15	0334868	8 14p			CA3046	0．50	tbas300	1.90	2102	2.50		1200 ．21				
${ }_{3 C 1} 16$	0.32		2.30	105	1.80	90	0.20	0474 p 10	17p	so		A3130		TBA560	2．80	2107	10.00		${ }^{18-}$			，	
日C161	0.38.		1.50 2.00			2 N	${ }_{\text {a }}^{0.18}$	． 068 5p 1.5	25p	Popular		${ }_{\text {MC1 }}$		TCA270		2112	4.50		3000.50	QA85	0.12	IN4148	，
					3.00	2	－ 0.22									25	8.50		600.5				
${ }_{\text {BC169C }}$	8.14.	B0Y38	0.80	时126	1.60	${ }_{2 N 2925}$	${ }_{0} 0.14$ ．					MC1361P				2602	2.50		900 1200 12065 0.65	${ }_{\text {OAP210 }}^{\text {OAP }}$	${ }_{0}^{0.08}$		

ANY MAKE-UP OR

 COPY QUERIES CONTACT JOHN GIBBON 01-261 8353TELERADIO SPECIALISTS IN DESIGNS by John Linsley Hood
Example. 25 to 75 watt. Very Low Distortion HIGH FIDELITY STEREO AMPLIFIER. D.C Coupled T.H.D hardly measurable $£ 73$ in kit form ($+12 \frac{1}{2} \%$ VAT)

Supplied as a Kit of parts or in ready assembled module form
Also available. Phase Locked Loop: F.M Tuner; Millivoltmeter: Audio Signal Generator, T.H Distortion Analyser F.M. Signai Generator/Wobbulator

Send SAE for comprehensive illustrated lists and up-to-date prices
TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London N9 OPE
Telephone: 01-8073719
Closed Thursdays

STEREO DISC AMPLIFIER 2

FOR EROADCASTING DISC MONITORING AND TRANSFER WITH THE HIGHEST QUALITY Stereo Disc Amplifier 2 is a self-contained mains powered unit which accepts cartridge inputs and produces balanced line level outputs. Permanent rumble filtering and switched scratch filtering is included.
Distortion
Outpur $+10 \mathrm{dBV} .7 \quad 30 \mathrm{~Hz}-20 \mathrm{KHz}$ below noise
Outpu: + 20dBV 7
$1 \mathrm{KHz} 88 \mathrm{~dB} .0 .004 \%: 30 \mathrm{~Hz}-20 \mathrm{KHz} 82 \mathrm{~dB} \quad 0.008 \%$
$\begin{array}{ll}\text { Output }+10 \mathrm{dBV} 7 & \text { Static } 90 \mathrm{~dB} .0003 \% \text { limit of measuremer }\end{array}$
Dynamic Intermodulation Distortion 3.18 KHz square wave isingle poie -3 dB $100 \mathrm{KHz})+15 \mathrm{KHz}$ sine wave 4

41
Preemphasised input IV pk-pk
-60 db .01 ,
Cartridge impedance interaction on frequency response.
Clippin Pan 0.2 dB
$30 \mathrm{~Hz}-20 \mathrm{KHz}$ Complementary to RIAA Curve 1 KHz clips al +24 dBV .7 outout Clipping determined by onset of peaky distortion products of TH THO
Differential Phase shify of peaky distortion products or THD exceeding - BOdb $50 \mathrm{~Hz}-20 \mathrm{KHz}$ Within 0.5
Worst error at LF and HF
filter turnovers.
Crosstalk within 5

SURREY ELECTRONICS
The Forge, Lucks Green, Cranleigh, Surrey GU6 7BG (STO 04866) 5997

DEMA ELECTRONICS
 INTERNATIONAL

MEMORIES w/DATA

1101256 Bit Ram Mos
11031024 Bit Ram Mos
7489 (8225) 64 Bit Ram TTL 82S23 Programmable ROM
52601024 Bit Ram Low Pwr 52611024 Bit Ram L Power 1702A 2048 Bit Ram
21021024 Bit Status Ram
$V=$ Mini $\operatorname{Dip} A=14 \mathrm{~L}$ Dip
CALCULATORS $\&$ CLOCK w/DATA

$$
\begin{array}{l|llr}
1.45 & 5002 & \text { Cal Chip } & \text { £0.79 } \\
1.95 & 5005 & \text { Cal Chip } & 0.79 \\
145 & 5725 & \text { Cal Chip } & 1.10 \\
1.56 & 5312 & \text { Clock Chip } & 2.50 \\
5.25 & 5316 & \text { Clock Chip } & 3.95 \\
1.50 & \text { CT7001 } & \text { Clock Chip } & 3.85 \\
B=16 \mathrm{~L} \text { DIP TO99 8-Pin Header }
\end{array}
$$

Data sheets supplied on request. Add 20 ea excepted as noted.

DISCOUNTS:	MIN.	All Items
10% on orders over £10	ORDER	Guaranteed by
15\% on order over £25	D2.00	ELECTRA

[^6]
SPECAL OM PRGE ARRANGEMENTS FOR MSTME OMERSEAS TRADEFATIS

IPC Electrical-Electronic Press Ltd., the world's largest publishers of computer, electrical and electronic journals, have made special arrangements for readers wishing to visit important overseas trade fairs. The cost, in most cases, is little more than the normal air fare but includes - travel by scheduled airline from Heathrow and Manchester * first-class hotel accommodation ${ }^{*}$ arrival and departure transfers 米 admission to the trade fair 米 services of an experienced tour manager. The current programme comprises the following tours.

[^7]

How to mate an amplifier with a breadboard. Without great difficulty.

Connecting breadboards to external signal sources and loads isn't always as easy as it might be. Ramp's bread board connectors plug commonly used leads straight into .1" matrix breadboards.

Save time and extend your breadboard - details of the Ramp breadboarding system are in our free catalogue.

WEST LONDON DIRECT SUPPLIES (W/W)

MARCONI TF675F WIDE RANGE PULSE GENERATOR $+/$ - variable outputs up to 50 V Optional delay. Small compact unit £ 18 өа.

ROYAL INVERTORS manufactured USA. 28 V . DC Input. Output 115 V AC 400 HZ up to 2 KVA . Brand new. Crated $\mathbf{£ 1 2 . 5 0}$ ea.

MARCONI NOISE GENERATOR TF987/1
4 Ranges $0-5 ; 0-10 ; 0-15 ; 0-30$ Due to large purchases now priced at £15 ea.

AVO TRANSISTOR
ANALYSER CT446
Suitcase style
NOW $£ 27.50$

EDWARDS HIGH VACUUM PUMPS
Carriage $£ 2.50$

Type 1SC30@ £55 each. Type ES35@ £45 each

FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M38 at available the CME $1220,24 \times 15 \mathrm{~cm}$ at $£ 9$ ea. Base connections for both tubes supplied.

WE ARE BREAKING COMPUTERS
UNIVAC/HONEYWELL/ICL 1900 etc.
Boards. Power Supplies. Core Stores are available CALL AND SEE

UNIVAC MAGNETIC TAPE UNITS

Complete with heads and 10 reels of tape
£77.50 Carriage paid
R\&S DIAGRAPH \& GENERATOR 3-300MHZ. Verv nice condition £440
PHODE \& SCHWARZ ADMIYTANCE METER BN 3511 . As new
POLARAD RECEIVER MOdel FIM.B2. Complete 1.10 GHZ £375.
MARCON OSCILLATOR TF $110120 \mathrm{HZ}-20 \mathrm{KHZ}$. Nice Condition. Special price $\mathbf{£ 5 0}$
MARCONI Wide Range Oscillator TF1370. Freq, range 10 HZ to 10 MHZ . Sine Wave 1 OHZ
to 110 KHZ Square Wave. High outputs up to 316 V . Fantastic value at $£ 90$ ea.
MARCONI ADAPTOR TM6113 for TF2700 TF1313. TF8668B $£ 20$-88.
MARCONI ADAPTOR TM6113 for TF2700 TF1313. TF8668B £20 \&a.
AIRMEC 4 trace scope Type 279 Large screen $£ 95$.
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a dire:tly calibrated dial and includes an spurious components up to $30 \mathrm{KHZ} £ 29.50$ ea. MARCONI PORTABLE FREQUENCY METER TF1026/11, 100 to 160 MHZ . Very fine
condition £25.
DECCA NAVIGATOR DISPLAY UNIT. Very impressive $£ 12.50$ e*.
COURTENAY MAJOR Mk. 2. 250 joules. 5 outputs Can be combined - 1250 joules.
No heads. $£ 30$.
MARCONI SIGNAL GENERATORS. TF801B from £140; TF8010 £240. Usually available ex-stock

```
ITEMS OFTEN AVAILABLE
    CORE STORES with Drivers from £100
    Some small RAM Boards from £15.
    DISK PACK - new singles £20 each
    Good used TWIN PACKS &10 each
    GOOd used MULTI PACK &25 each.
    HEADS for PACKS (individual) &15 each.
    P.C. MOTORS (Disk Drives?) £15 each.
```

RHODES \& SCHWARZ POWER METER. BNRD-BN24 $12 / 50 \mathbf{5 0}$
MARCONI RF POWER METER. TF1020A/1.50 ohm $£ 65$.
HEWLETT PACKARD 11 Channel Numerical Printer $£ 30$.
I.C. TESTER by SCHLUMBERGER. Mödel TCL232 - tests 741 . 709, etc. Dual in lines;
flat packs or TOS $£ 65$ ea.

1/2" MAG TAPE

Approx. 2,000ft. NOW 25p each $P \& P £ 1$

PICK-A-PACK - 50 PENCE A POUND

FROM OUR "PICK-A-PACK" AREA WEIGH UP YOUR OWN COMPONENTS
NO RESTRICTIONS ON WHAT YOU TAKE
SUPERB PROFESSIONAL VDU CASES, sIze $23^{\prime \prime} \times 16^{\prime \prime} \times 27^{\prime \prime}$ on stands.
Hammer grey. BRAND NEW
EX-DYNAMCO Oscilloscopes INVERTORS
SCHLUMBERGER Surplus $£ 35$ each. Carriage $£ 2.50$
AIRMEC MODULATION METER 210 £ 95
HILGER \& WATTS SPECTROMETER H $1170 £ 240$
RHODE \& $\mathbf{\&}$ SCHWARZ Tunable Indicating Amplifier UBM £ 75
TEKTRONIX 180A Time Marker Generator $\mathbf{5} 55$
S.E. Labs Oscilloscope Type 102 £220.
GENERAL RADIOPULSE SWEEP \& TIME DELAY GENERATOR Type $1391 \mathrm{~B} £ 120$

SPECTRUM ANALYSER by NELSON ROSS. Plug-in for TEKTRONIX Oscilloscopes $561 / 506$ etc. Freq $0-500 \mathrm{KHZ}$ £ 225

SOLARTRON CD1212 SB 40 meg. E85. DB 24 meg. twice £120. Many other types avallable.
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC 6MHZ $£ 95$ ea.
*TELEPHONES. Post Office style 746 . Black or two-tone grey $\mathbf{£ 6 . 5 0}$ ea. Modern style
 TELEPHONE EXCHANGES. eg. 15 -way automatic (exchange only) from $£ 95$. MODERN FANS. $4^{3 / 4} \times 43 / 4 \times 11 / 2^{\prime \prime} .240$ Volts Superbly quiet. 6 blades $£ 4.50$ ea. P\&P 75 p.
PAPST Model 240 V available at $£ 7.50$ ea. P8P $75 p$
PHOTOMULTIPLIER Type $931 \mathrm{~A} £ 4$ өa. P\&P 75 p . Other types available.
*POTENTIOMETERS - All 5p ea. P\& \& extra. Metal bodied AB Linear, PCB Mount. Brand \star BEEHIVE TRIMMERS $3 / 30$ pt Brand New 10 off $£ 40$ p P\&P $15 p$; 100 off $£ 3.50$, P\&P 750.500 Off £15, P\&P £ $1,25,1,000$ off £25, P\&P £ 1.50 .
LARGE RANGE OF ELECTROSTATIC VOLTMETERS. FIOM $0-300 \mathrm{~V} 2$ " £3, to 20 KV Max. General quide $5 \mathrm{KV} 3 y^{\prime \prime \prime} £ 5$. Thereater $£ 1$ per KV. P\&P 75 p .

E.H.T. TRANSFORMERS 2OKV 2KVA £ 70 ea. Many other EHT transformers and EHT Capacitors available.
TUBE Type DB7/36-Replacement for Telequipments S31 £11 ea. P\&P £1.50.

C.D.C. DISK DRIVES TWIN E.D.S.

Single phase - air conditioning not essential Guaranteed fine condition $£ 240$ each. Complete with copy of manual and 50 packs.
Size approx. $2^{\prime} \times 2^{\prime} 10^{\prime \prime} \times 3^{\prime} 6^{\prime \prime}$ high.

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR, CHASSIS, UNITS, etc., on view at LOW COST.
MINIATURE - OXLEY PATCH PANELS - BRAND
NEW
EX-DYNAMCO
10×10 complete with pins $\mathbf{£ 8}$ each. P\&P $50 p$

SURPLUS - BRAND NEW - REPLACEMENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR D13-5IGH

Mesh PDA Transistor Scan Wide Bandwidth $60 \mathrm{MHZ}+$ Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivity $15 \mathrm{~V} / \mathrm{CM}$ Y THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100 THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100
SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BU:LDER

To Tube purchasers only Numetal Shuelds at $£ 250$ ALSO AVAILABLE TUBE TYPE BRIMAR D $10-210 \mathrm{GH} / 32$ Rectangular $7 \times 5 \mathrm{~cm}$ Mesh P.D.A. Shor1 $9^{1 / \mathbf{l}^{\prime \prime}, 30 \mathrm{MHZ}+}$
Senstivity $\times 14 \mathrm{~V} / \mathrm{CM}$ Y $10 \mathrm{~V} / \mathrm{CM}$ BRAND NEW at $£ 70$ each Carriage E2 50

DATA LOGGER by DYNAMCO

These are BRAND NEW not finished - DATA LOGGERS BY

They are completed but for the plug-in boards. The case with hinged lid is quite superb and extremely adaptable. It contains as well as the mother board an equally superb Power Supply with the following voltages $+28 \mathrm{~V},+15 \mathrm{~V}:+5 \mathrm{~V}, 25 \mathrm{~A}$ - this supply is crowbar protected: $-5 \mathrm{~V} ;-14 \mathrm{~V} ;-20 \mathrm{~V} ;-24 \mathrm{~V},-48 \mathrm{~V}$ and other supplies including auto 110 V This unit supplied in its original cardboard box complete with original manual and must be of serious interest to the professional constructor and anyone considering the construction of a micro processor system. Unit size $7^{1 / 2^{\prime t}}$ high $\times 19^{\prime \prime}$ wide $\times 23^{\prime \prime}$ deep.

Price $£ 45$ each. Carriage $£ 2.50$

PICK-A-PIECE - 50 PENCE EACH

FROM OUR "PICK.A.PIECE" AREA

PICK-A-METER - £1 EACH

A LARGE SELECTION OF BRAND NEW AND EX-EQ METERS

Minimum Mail Order $£ 2$. Excess postage refunded Unless stated - please add $£ 2.75$ carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8%
Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9 a.m. to 5.30 p.m. Mon. to Sat

7/9 ARTHUR ROAD, READING, BERKS (rear Tech. College, King's Road). Tel. Reading $\mathbf{5 8 2 6 0 5}$

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. Tel. 6743 ALL PRICES SHOWN INCLUDE V.A.T. AT $12 \frac{1}{2} \%$
\qquad

$0 A_{2}$	- 0.85
0 B 2	0.40
0 C 3	0.50
024	0.55
1A3	0.60
'1.45GT	0.55
1A7GT	0.60
IB3GT	0.55
1C2	1.00
1 D 5	0.75
$1 \mathrm{C}_{6}$	1.00
IH5GT	0.80
1 L 4	0.25
1LD5	0.80
LLN5	0.70
IN5GT	0.75
IR5	0.50
1S4.	0.40
1 155	0.35
1 T 4	0.30
IU4	0.70
1U5	0.85
2D21	0.55
$2 \mathrm{GK5}$	0.75
2×2	0.70
3 A 4	0.55
$3 \mathrm{B7}$	0.55
$3 \mathrm{D6}$	0.40
3 C 4	0.80
3 35GT	0.70
354	0.45
3Vt	0.30
4CB6	0.75
4GK5	0.75
${ }^{5 C G 8}$	0.75
5R4GY	1.00
5 T 4	1.00
5U4G	0.60
${ }^{5 V} 4 \mathrm{GG}$	0.60
5Y3GT	0.55
5 Z 3	1.00
524G	0.48
.5Z4GT	0.55
630 L 2	0.79
6 ARG	1.40
6 AC 7	0.55
${ }_{6}{ }^{\text {AG5 }} 5$	0.35
6AG7	0.60
${ }_{6}^{6} \mathbf{H} 6$	0.70
6A.5	0.70
6 A 18	0.40
6AK5	0.45
6AK6	1.25
6 AK 8	4.40
$6 \mathrm{AL5}$	0.20
6AM6	0.50
6AM8A	0.70
6an8	0.70
,6AQ5	0.68
6AQ8	0.39
6AR5	0.80
6 AS7	1.00
6AT6	0.50
6aU6	0.40

\qquad
\qquad
\qquad

MATCHED TRANSISTOR SETS
LPI5 (AC113, AC 154, AC157. AA12
$1 / 0 C 810$ and $2 / 0 C 81,50 p$
$1 / 0 C 44$ and $2 / 0 C 45,50 \mathrm{p}$
$1 / 0 \mathrm{C} 82 \mathrm{a}$ and $2 / 0 \mathrm{OC82}, 56 \mathrm{p}$
All goods are unused and subject to the manufacturers' guarantee.
Terms of business. Cash or cheque with order. Despath charges: - Orders below $\mathcal{L} 15$ in value, add
25 p for post and packing. Orders over \&15 post and packing free of charge. All orders cleared same day.
Any parcel insured against damage in transit for Any parcel insured against damage in transit for 5 p extra per parcel. Condtrions of sale available on
request. Many others in stock too numerous to list. Please enclose S. A. . for reply to any enquiries.

Strobes, Tachos, Meters, Generators and Telecommunications Test Equipment

NEW FUNCTION GENERATORS!

G432 is a source of sine, square and triangle signals, 1 Hz to

$£ 115$attenuator Also independently 5 V into 6005? fixed level. Variable d.c. off-set.
G430 (illustrated) provides Sinewave $(0.10 \mathrm{Vrms})$ and Square. wave ($0-20 \mathrm{~V}$ p-p) from 6001? continuously variable, via $0-60 \mathrm{~dB}$ step attenuator. Frequency range
£95
Send for
details of our
complete range

NEW POWER SUPPLY UNIT!
Model PG312 'Hercules'
This high-power (180 watts, max) bench p.s.v. features dual protection - a current-limiter PLUS an electronic cut-out proof against persistent short circuits.

* 10 to 15 Volts, variable, at 12

Amps, maximum \star Ripple less than
10 mV at full-load *Stability 0.3% E 5
Send for full details of our range of power supply

See inside back cover for details of ICE Supar range

ELECTRONIC BROKERS LIMITED (New Products Division)
Callers welcome-
Monday to Friday
Monday to Friday 49-53 Pancras Road, London NW1 2QB. Tel:O1-837 7781

 BBC MATRIX H

We are offering a component kit comprising all resistors, capacitors, transistors, and diodes for this purpose built quadraphonic decoder. Price £20.00 including postage and packing. A pair of p.c.bs is available separately for $\mathbf{£ 6 . 0 0}$ inclusive.

Other kits include the electrolytic capacitor tester (Wireless World, May 1977), and the sensitive metal detector (Wireless World, April 1977). Send s.a.e. for full list of parts and prices. Mail order only to Circuit Services, 36 Hallowes Crescent, South Oxhey, Herts.

HLEAMD．TEAH

 HOMPDIETISSITI
315，317， 364 EDGWARE ROAD，LONDON W2

TEL：01－723 5667 \＆01－402 5580

Shops and maiTorder dept（mail to 364）open 9 to 6 Mon．to
Prices include VAT．Carr．／／p．\＆p quoted U．K．only
ACCESS \＆BARCLAY sccepted．Minimum order $£ 5$ otherwise C．W．O．For credit on approved accounts
BULK USERS

PHONE FOR QUOTATION NIXIE TUBES
 ceramic bese for PCB mounting． $108^{\prime \prime}$ dia．． $1.38^{\prime \prime}$ hig
Olus $1 /{ }^{\prime \prime}$ base depth inc．pins．Operating voltage 170 V DC
min．Complete deta and connetions E1．50．P．\＆ 20 p .10 offe 1.00 esch． 100 or more 85 p

ROTARY STUD SWITCH

 plessey． 30 way．${ }^{2}$ bank．Single poie，Contactis t amp． 240 V AC／DC． 00512 res Areak before make．Stop infinitoly mdustable allowing for any desired arc of travet．Ideal
for instrument and model switching．Size

UNI－SELECTOR
30．way double bank operation．Split

TRANSFORMERS

2KVA cantinuously rated．Tapoed for any voltage from

 0．5－10V isolated winding ol 5 amps．Same connections．
Size $4 / 2^{\prime \prime} \times 3^{3 / 4} \times 43 / 4^{\prime \prime}$ ．Alsc bargain at $£ 12.50$ ．Can
$E 2.00$ G2．ES Pri $10 \cdot 0 \cdot 200 \cdot 220 \cdot 240 \mathrm{v}$ ．Sec．tapped
$0-3 / 2 /-711-32-33-34.35$ at 10 amps to give 24 useful ollages．$£ 6.00 \mathrm{cart} £ 100$
TORROIDA
$\mathrm{Pre}^{\mathrm{Pr}} 15 \mathrm{O} .210 .240 \mathrm{~V}$ Sec． 140% at $35 \mathrm{~m} / \mathrm{a}, 31 \mathrm{v}$ ．at 500 m／a．c．t．
c 3.95 p. at 30 p
C3．95 P \＆p ． 30
MINIATURE

REED SWITCHES

overall lenght $11_{1}^{\prime \prime \prime} 10$ oft E 100 p． $8 \mathrm{p} 25 \mathrm{p} \quad 100$ of SYIVANIA SWITCH

MOTORS
RANCO 1／6 H．P． $1425 \mathrm{rpm}, 240 \mathrm{v}, 50 \mathrm{~Hz}$ Split ohase
Normally crade
che cradle，hence low price of $\varepsilon 7.50$ plus $\varepsilon 1.50$ crade．
carriage．

ACADEX shaded poie motor Open frame 230v 50 Hz
 spindies．E1．50 p\＆ 45 p p．
CROUZET shaded pole motor Open frame $115 / 230 \mathrm{v}$
 PAPST motors．Noted for advanced design not constry parmy
outer body acts as flyweight and eltminates
wow and flutter 50 Hz c copacitor stati Now and flutier． 50 Hz ．capacitor staft．
MODEL HSKZ $32.80-6 / 12.220 \mathrm{v}$ ．Dual speed tape dec
 espectively．Size approx， $5^{1 / 2^{\prime \prime}}$ dia．$\times 31 / 2^{\prime \prime}$ pius 1% MODEL RO 32.654 ．Dus

SOLENOIDS 240V A．C．

30 p \＆\＆ p ．
PYE ETHER LTD Thrust operales through spring loaded
hinged lever giving a 11 b ．pull or push Complete with hinged lever glving a 1 lb ．pull or push Complete with
mounting bracket and push．on connections Size overal
ince pracket RELAYS
Octal base $2 \mathrm{C} / 06$ amp contacts．Following
wW－ 086 FOR FURTHER DETAILS

FANS

 miniature lamps

pCB EDGE CONNECTOR

ixing endplates erabling connector to be cut and useo in any le
30p．
MEM LIMIT SWITCH
Srap action 5 amps at $240 / 410$ A．C．size base． $33^{\prime \prime}{ }^{\prime \prime}$ ＂w when compressed．Very robust for tireless operation． JABSCO（ITT）ROTARY PUMP

Adacx yat to ai
cros evom． \square ELECTRONIC BROKERS LTMITED（Comprter Sales \＆Semices Divston） 49－53 Pancras Road，London NW1 2QB．Tel：O1－837 7781

SIGNAL SOURCES
 H1 Audio Signal
Sine and Square
E2 R. F. Signal Ge
H1E Audio Stgnal Generato. Sine e spume W.vo

Diceran
GENERAL RADIO
 mith Power Supply Type
HEWLETT PACKARO
hewlett packaro

 Audio Signal Generator $2064 \quad 20 \mathrm{~Hz}-20 \mathrm{KHz}=2 \%$
arcuracy Distontion $\angle 1 \%$
 Mod facilites SUPERBCNDTION Exiernal P1.00 MARCONL INSTRUMENTS
IFIO6O U. H F Signal Generator 450.1250 MHz , Sine

 Unit
TF 2005R Two Tone Source
E185
The insirument comprises

 good Condition
FM./AM Signal Generator TF995A/5
1.5.220385
E3

 50 ohms impedance. Modulation int A.M. 1 KHz Ext
AM 30 Hz -20KHz $\checkmark S W$ R. 12 or less

 Dorect or vila Aluenuvior L Less than $0.5 \% 50 \mathrm{~Hz}-20 \mathrm{KHz}$
Less than $1 \% 20 \mathrm{~Hz}-200 \mathrm{KHz}$ Signal Generator TF14AH/4 Late models in super TF995B/5 AM/FM Signal Gen
 MARCON.SANDERS
Mirrowave Sweep Generator type 6600A $\mathrm{c} / \mathrm{W} 6619$
E2900.00

Electronic Brokers Ltd, are one of the leading electronic instrumentation companies in the UK, providing a full range of services to Univarsities, Industry, Colloges and
Covernments both at home and overseas.
We have the largest stocks of secondhand rest equipment in Europe as well as a selecred renge of new products. These are on display at Cur London showrooms where cuistomers can examine the equipment of their choice and see it working.

Electronic Brokers Ltd. have fully equipped workshops on the premises to test and report on the majority of equipment we cell.

```
PHILIPS F
M,
*)
lol
lol
Ma,
\
M()
SANOERS
$5GHz.45GMz Signal Generator
RHode& SChwartz
M
Mpsilators Tyy LO.4 4. 41MHz
My%
    MULTIMETERS
```


Type 175 A 50 MHz . Bright, sharp trace, $6 \times 10 \mathrm{~cm}$
 Eight plug-ins provide mexumum ver satility Easy to
callibrale and mannain few adustments. no distributed

 Sweep Delay Generator Sweep Selector provides (a)
Main Sweep (b) Deiaying Sweep, brightened segment of trace indicates time relaionshitp between deliayng swoep display and Main sweep display (c) Main
Delayed Swoep (d) Mixed Swoep (e) Single Sweep of Delayed Sweep (d) Mixed Sweep (e) Single Sweep of
main sweep
E295 main sweep
POLANo
Meratester Mullimeter 1.5 mv to 1.5 ky full scale AC
 1.5% ovet wide range Resistance $\&$ decibel
meassurement. Battery or $A C$ suply operation. Input

BRIDGES

marcontinst
IF936 Impedance Bidge

TFI246
WAYNE KERR
Rado FFeq Bridg B601
RF Admurance Bridge
Meter c

COMPONENT BRIDGE B52 (CT 375)
Soli-connained portible mans operated equipment
designed to provide accurate measurements over an
dexfer extremely wide range of resistance capacitance.
inductance and impedance values Resistance

E125.00

150 mV ranges (AC). 100 Mohms 20 pF 500 mV io
$1.5 \mathrm{KV}(\mathrm{AC}) \mathrm{NEW}$
\qquad

Dual Trace Scope $4000 \quad 50 \mathrm{MHz}$ 7nsec Rise Time
rigger X - Y display $8 \times 10 \mathrm{~cm}$ display delay. Gated
Yype 720015 MHz Dual Channel Portable C / w Plug

 Units 1×2 \& irz Solsd Stase.. Oual Channel, Delayed
Sweep. $10 \mathrm{mV} /$ div. sensitivity with $\times 10$ imver GREENPAR
HObe Kis GE81600/1 - New
HEWLETT PACKARO
188A or Plug-in 187 C
$\begin{aligned} & \text { PHILIPs }\end{aligned}$ Sampling c/w Plug-1n
E.395.00 PHILLPS
10 MHz Dual Beam Oscilloscope PM $3233 \mathrm{mV}, ~$
 Transistor Curve
sOLARTRON SOLARTRON Ponable Scope OC-6MHz Double Beam Cr 436 £ 105 $\begin{array}{llll}\text { Porrabie } & \text { Scope } & C D & 1400 \mathrm{c} .15 \mathrm{MHz} \text { Plug ins avalable } \\ \text { C } \times 1441 & 1443 & 1448 & 157,\end{array}$ TEKTRONIX
DC.15MHz Portable Oscilloscope 422 Dual Trace
Small size and lightweight $10 \mathrm{mv} / \mathrm{div}$ to $20 \mathrm{~V} /$ div Small size and lightweight $10 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ - Osciloscope 545A c/w CA \& L Plug-ins

ELEOTRONIE

 Plinth, cover and cartridge available, P.O.A. Call in or send a cheque, P.O, M.O, or Access, Barclaycard American Express or Diners Club number.

227 Tottenham Court Road, London W.1. Tel 01-580 7383

The GR Electronics Pocket TTY offers the keyboard facilities of a teletype - at a fraction of the cost. - Outputs serial ASCII code to any Teletype -compatible device - 20 mA loop or RS232 mode - 36 keys giving full 64 character alphanumerics - 9 digit LED display of characters entered - All solid-state with optical coupling for reliability Pocket TTY can be used for microprocessor programming, production data entry, warehousing, mobile data collection, training and education.
G.R.ELECTRONICS LTD.

80 Ghurch Road. Newport NPT 7EH. Gwent. England. Telephone: Newport (0633) 67426 Telex: 28604 Ref: 1796 WW-093 FOR FURTHER DETAILS

Appointments

BRUNEL UNIVERSITY
DEPARTMENT OF EDUCATION

TECHNICIAN

required to supervise three others in a Visual Aids and Reprographics work shop and a Physical Sciences Labora tory. The successful applicant will be required to diagnose faults and, if appropriate, repair a wide range of electro-mechanical and electronic equipment. Applicants should be educated to H.N.C. level or equivalent, and a knowledge of photographic techniques is desirable, as is experience of simple TV production techniques

Salary within the grade 6 scale £3328-£3964 plus £275 London Weighting Supplement. Four weeks annual leave (plus Easter and Christmas weeks). Good conditions of service, sports and social facilities etc.

Write for applicatic.) form to Assistant Secretary (Establishement), Brunel University, Uxbridge, Middlesex UB8 3PH or telephone Uxbridge 37188 extension 49. Closing date: 8 July. 1977.

The Media Department of the British Council has two vacancies for

Television Engineers

to operate and maintain their studios, situated in Tavistock Square, London
The studios are used to train personnel from countries overseas in broadcasting and closed circuit television techniques in support of developmental broadcasting and education. As well as for the regular training courses, the studios are used to produce videotapes, films and other audiovisual programmes.
Some of the training activity takes place in institutions situated overseas and there may be opportunities for the successful applicants to work and travel abroad.
An essential qualification is the City and Guilds Telecommunications Certificate or HNC or equivalent or broadcast engineering training. Candidates should also have practical experience in studio operations including vision control, lighting, sound and videotape One of the posts includes responsibility for the supervision of a small team of operational and maintenance engineers; for this post experience of managing staff would be an advantage.
The salary scales, including London Weighting and pay supplements, range from around $£ 4760$ to around $£ 5880$. There is a non-contributory pension scheme.
For further details and an application form to be returned by 4 July telephone 01-499 8011 extension 3041 or write to Staff Recruitment Department, The British Council, 65 Davies Street, London W1Y 2AA quoting reference $\mathrm{G} / 5$.

CHELSEA COLLEGE
 LETRONICS TECHNICIAN GRADE 2B

required for the construction and mainten-

 ance of equipment and apparatus and to assist in the running of Electronics and tories. Day release availabie for approved courses. Salary in range $£ 2.769$ to $£ 3,112$ per annum (inclusive). 371/2-hour week. Further details and application form from Mr. M. E. Cane (2B.ET) Pulton Place Fult London SW6 5PRFURTHER APPOINTMENTS CONTINUED ON PAGE 122

hart electronics

The Only Firm for Quality Audio Kits
Are proud to offer the only DESIGNER APPROVED kit for the

J. L. Linsley-Hood High Quality Cassette Recorder

As these circuits are capable of such an excellen performance we feel that it is not sensible 10 sacrifice this potential by destgning a kit down to a price. We have
therefore spent a little more on professional hardware allowing us to design a very advanced modular systern. This enables a more satisfactory electrical layout to be achieved. particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold-plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, win component crowding Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished resutt is a unit designed not to normal domestic standards but to the best professional practice
All printed circuits are of glassfibre material, fully drilled with a tinned finish for easy and reliable soldering Component locations are printed on the reverse side of the board and are arranged so that all identification numbers are still visible after assembly
$71 \times$ Complete set of parts for Master Board includes bias oscillator, relay, controls. etc $£ 9.83+£ 1.23$ VAT
72x Parts for Motor Speed and Solenoid Control for Lenco CRV deck. This is the proper board layout as given in the articles $£ 3.52+44 p$ VAT
73x Complete set of parts for stereo Replay Amps. and VU Meter drive $£ 8.12+£ 1.02$ VAT
74x Complete se1 for stereo Record Amps £6.74 +84 p VAT
$75 \times$ Compiete set of parts for Stabilised Power Supply to circuit given in Article. This uses a special low hum eld commonly used toroid $£ 8.79+£ 110$ VAT
700M2 Individual High Quality VU Meters with excellent ballistics $£ 8.48+£ 1.06$ VAT Per Pair
700C/2 High Quality Custom built steel Case Complete with Brushed aluminium front plate, mains switch, cabinet feet, all bolts. nuts and mounting hardware All necessary holes are punched and all surfaces are electroplated. Complete step-by-step assembly instructions are included. The cover is finished in an attractive black crackle surface $£ 16.50+£ 2.06$
$\sqrt{\text { AT }}$ VAT

LENCO CRV CASSETTE MECHANISM
High Quality, robust cassette transport for Linsley-Hood ecorder Features fast torward, fast rewind record, pause and full auto stop and cassette ejection facilities Fitted with Record/play and erase heads and supplied complete with ala and extra cassete ejection
Toul col al
Total cost of all parts $£ 83.58$
Specia ofer Cot Kits E81.50 + £10 19 VAT

Reprint of 3 Linsley-Hood Cassette Recorder articles. 45p post and VAT free

MATRIX 'H' QUADRAPHONIC DECODER
竍 boards and kits to our usual quality are being prepared for this design. Senal for list

We also supply complete kits to make a fully integrated 30 watt stereo amplifier using the Balley Power Amplifier circuit control modification
Printed circuits and components are avalable for the Stuart tape circuits. These articles described a high quality tape three articles are witable ree-to-reel deck Rest Free (No hree articles are avatable ficm us price 40p Post Free (NO

ALL PARTS ARE POST FREE

Please send 9×4 SAE for lists giving fuller details and Price breakdowns

Penylan Mill, Oswestry, Salop
Personal callers are always welcome, but please note we are closed all dáy Saturday

RELAYS-UNISELECTORSSWITCHES

MINIATURE-PLUG-IN RELAYS (Siemans/Variey) with perspex dust cover and base 12.24.48v D. C. In Stock $2 \mathrm{c} / 050 \mathrm{p}$: 6 make 60p
4c/o 75p: P\&P10p
S.T.C. MINIATURE (P.C. Mounting)
with dust cover
Co(18/24v) 45p P.p 10p
c/o (24/36v) 50p P.P. 10p
(36/48v) 75p P.P 10p
I.J. 240v A.C. Plug-In RELAYS
with perspex cover) 10 amp contacts
3 c/o 75p P.P 10p
H.D. TIME SWITCHES (100 amp contacts) $1 \mathrm{on} / \mathrm{off}$ in
24 hrs Excellent condition $240 \mathrm{v}-50 \mathrm{hz}$ £6.50 P. P £1.00 UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm £5.50 P. P. 50p
6 Bank Full Wipe 75 ohm £6.25 P.P. 50p
8 8ank Full Wipe $\overline{75}$ ohm $£ 7.50$ P P 50p
12 Bank Half Wipe 68 ohm E6.50 P.P. 60p
SMALL 12 V UNISELECTORS 4 8ank 11 way E 2.50 P. P 50p
D.C. SÖLENOIOS $24 v$ (Cont Rated)

101b Pull. 20 mm Stroke. Size $50 \times 48 \times 42 \mathrm{~mm}$
75p P.P. 15p
TELEPHONE HANDSET with Press-to-Speak Switch E1.50 PP 40p.
CITENCO GEARED MOTORS, 240v 50hz 19 rpm
orque $145 \mathrm{~kg} / \mathrm{cm} . € 6.75$ (new) P.P. 50 p .
DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons. 6 mm digits 75 p each P.P. 10p
KEY SWITCHES '1000' TYPE
4 c/o each way lockirg 60p P.P. 10p
6 make each way locking 60p P. P. 10p
8ank of 4.4 c/o each way. 1 biased £1.25 P.P. 15p
MAGNETIC COUNTERS
3 DIGIT RESET COUNTERS (12v D.C.) £1.50 (Ex Equp.) PP 20p
3 DIGIT RESET COUNTERS (240 v 50 hz) £1.75 (new) P.P. 25p

6 DIGIT RESET COUNTERS ($24 \vee$ D.C.) 44 (new) P.P 25p
4 DIGIT NON-RESET ($24 \vee$ D.C.) £1 (New) P.P. 20p
5 DIGIT NON-RESET ($24 \vee$ D.C.) $£ 1$ (Ex Equip.) P.P. 20p
6 DIGIT NON-RESET ($48 \vee$ D.C.) $£ 1.50$ (New) P.P. 20p

MULTICORE CABLES

4 CORE RIBBON (RAINBOW) CABLE $4 \times 10 / 2 \mathrm{~m} . \mathrm{m}$ forming $1 / \mathrm{mm}$ wide strip $10 \mathrm{~m}-75 \mathrm{p}: 50 \mathrm{~m} \rightarrow \mathrm{f} 3: 100 \mathrm{~m}-\mathrm{f} 6$. 8 CORERIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
$10 \mathrm{~m}-£ 1.50: 50 \mathrm{~m}-\mathbf{£ 6 . 5 0 : 1 0 0 \mathrm { m } - £ 1 2 . 0 0 \text { P.P. } 1 \mathrm { p } \text { per }}$ metre
5 CORE H.D. CABLE $5 \times 70 / 7 \overline{6}$ P.V.C
8lack Outer P.V.C O.D $1 / 2$ in
10m-£2.50: $50 \mathrm{~m}-\mathrm{£12:} 100 \mathrm{~m}-£ 22.50$ P.P. 2 p per metre
10 CORE CABLE $10 \times 7 / 76$ (10 colours) PV.C OD
10m-£2: $50 \mathrm{~m}-\mathbf{£ 8 . 5 0 :} 100 \mathrm{~m}-£ 16$. PP. 2p per metre 16 PAIR RIBBON CABLE 16×2 core P.V.C. double sheathed forming 55 mm wide strip $10 \mathrm{~m}-£ \mathbf{3}$; $50 \mathrm{~m}-£ 25: 100 \mathrm{~m}-\mathbf{£ 4 0}$. P. P 2p per metre
EQUIPMENT COOLING FANS (100 C.F.M.)
 (New) P P 50p
PAPST $112 \times 112 \times 55 \mathrm{~mm} 220 \mathrm{~V} 50 \mathrm{hz} \mathbf{£ 3} \mathbf{5 0}$ (Ex. Equip)
PP 50p
MUFFIN TYPE $120 \times 120 \times 38 \mathrm{~m} . \mathrm{m}$ £3 (Ex Equip) P.P 50p
SMALL TRANSFORMERS $240 / 115 v 40 p$ each
WOODS EXTRACTOR $1 \overline{3} 0 \times 13 \overline{0} \times 80 \mathrm{~mm} 240 \mathrm{v} .50 \mathrm{hz}$ £3.50 (Ex Equip.) P P 75p
PAPST (SQUIRREL CAGE) 9 Biade Less Mounting.
£ 3.50 (new) 240 V 50 hzP . 50 p

VARIOUS

AIR PRESSURE SWITCHES $0-10 \mathrm{lb}$ varabile switch contacts 15 amp change-over (a quality unif in turned mated ensst E1.50 PP $25 p$
E.H.T. MODULES. Input $190-260 \mathrm{~V} 50 \mathrm{HZ}$. Outpu: 13.7 Kv PK@ $0.50 \mathrm{~m} / \mathrm{a} .(150 \times 95 \times 70 \mathrm{~mm}) £ 12$. P.P \&
MYRIA MEGOHMMETER TYPE 35A. 20 -200K MEG/OHMS 500v test Excellent condition e45, carr £2 50
SYNCHRONOUS GEARED MOTORS (Smiths) 2 rp.m 3 rp.m. 30 rp.h 20 rph 5 rph 2 r.p.h all 240 v £1.50
P.C. EDGE CONNECTORS

32 way (1 pitch) finished ends 45p P P 10p
64 way (1 pitch) cuttable 65p P.P 10p
64 way (1 pitch) cuttable 75p P.P 10p
Mounting Pillars for $56 / 64$ way 15 p pair
Mounting Pillars for $56 / 64$ way
Gold Plated Contacts 15 p extra
32 way (15 putch) Double-Sided Gold Plate Contacts 50p PP 10p
H.D. ALARM BELLS (Ext int USe)

4 in Dome (Ext Gong) 41/2/6v D.C. £2.50 P.P £1.00 6 in Dome (Exi Gong) $6 / 8 \mathrm{~V}$ D.C $\mathbb{2} .75$ PP £1.25
 D.C. POWER SUPPLIES Input 240v A.C. D.C. POWER SUPPLIES Input 240 V A.C.
mm totally enclosed $£ 5 \mathrm{PP} \mathbf{7 5}$ p mm totally enclo

PLEASE ADD $8 \% \vee$ A. T.
J. B. PATTRICK

191/193 LONDON ROAD ROMFORD, ESSEX RM7 9DJ ROMFORD 44473

Advertisements accepted up,
for the August issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 1.10$ per line, minimum three lines.
BOX NUMBERS: 50 p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T. -
 \title{
Appointments
}
 \title{
Appointments
}

ELECTRONICDESIGN/ DEvionmenticnears FERRANTI OFFERS YOU FREEDOM

.freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:Digital and analogue electronic circuitry design.
Design and application of small digital computers.
Microwave and laser techniques.
Advanced instrument design including gyroscopes of inertial quality.
Design of small mechanical structures and analysis of stress.
In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should have some design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sport and entertainment, is one of the ideal cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiable and the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications to

Staff Appointments Officer,
Ferranti Limited,
Ferry Road,
EDINBURGH, EH5 2XS.
Please quote Ref. WW / 5

ELECTRONIC CIRCUIT DESIGN PHGY 5182

Do you enjoy the challenge of using advanced technology to solve complex interdisciplinary problems. Are you thoroughly conversant with the use of discrete components, microcircuit amplifiers, function generators, TTL and C mos techniques? Can you design both analogue and digital circuits? We have one vacancy for a circuits? We have in a small team senior technician in a small team providing a comprehensive design,
construction and maintenance service construction and maintenan
for teaching and research.

Candidates must have at least 9 years relevant experience including 2 years design work. HNC standard is required and the ability to supervise other staff is essential. Familiarity with medical electronics an advantage.
Salary on University Technical Scale Grade $6 £ 3315 \times 7-£ 3950$. Letters of application stating age, qualifications, experience and the names of 2 referees to Administrator, University of Oxford, Department of Physiology, Parks Road, Oxford OX1 3PT
Further details from Wilf Laycock, Supervisor, Electronics Group. Ox ford 57451 .

7310

UNIVERSITY OF STRATHCLYDE CENTRE FOR EDUCATIONAL PRAC TICE (AUDIO VISUAL UNIT)

TELEVISION

ENGINEER

Grade 3
required with experience in the maintenance of electronic equip. ment. The work includes the repair and operation of a wide range of audio visual equipment. The Engineer will also become a member of the studio crew as a Television Cameraman. Applicants should hold an
O.N.C ON.D or City and Guild's Certificate and have $3-5$ years relevant experience.

Salary Scale fincluding all supplements): £2455-£2788 per annum, dependent on experience and qualifications.

Applications in writing, QUOTING REFERENCE CEP 13/WW giving details of age. experience and qualifications, should be made to The qualifications, should be made to the
Personnel Officer, University of Personnel Officer, University of
Strathclyde, Royal College Building, Strathclyde, Royal College Building,
204 George Street, Glasgow G1 1 XW .

Hoggett Bowers

Trade Magazine Editor
 Hong Kong Attractive salary negotiable

Our client, a major South East Asiá publishing group, requires an editor for a growing consumer electronics trade magazine. The successful candidate will initially assist the Group Managing Editor, who is currently editing this magazine, and will assume full editorial control as soon as he has gained sufficient knowledge of the trade in the region. He will then be expected to develop the magazine further and increase the coverage into new countries.

Applicants must have had at least five years experience in journalism with at least three in electronics, and will have gained some knowledge of the technical,
as well as marketing aspects of the industry. Taxation in Hong Kong is very low and the package will include excellent fringe benefits.
H.W. FitzHugh, Ref: 20053/WW

Male or female eandidates should telephone in confidence for a Personal History Form to: LONDON: 01-734 6852,
Sutherland House, $5 / 6$ Argyll Street, WIE 6EZ. Offices also in Birmingham, Glasgow, Leeds, Manchester, Newcastle and Sheffield.

Appointments

You listen to Radio? You watch Television? You're a qualified electronic engineer and yet you've never considered working in broadcasting?

Then perhaps you need to know a little more about some of the opportunities available with the BBC.

Studio Capital Projects

Engineering staff are based in central London, but will travel to various studio centres to assist in the design, installation and commissioning of radio and television studio equipment.

Transmitter Capital Projects

Again based in central London, engineers are required to travel to studios all over the U.K. to assist with the design and commissioning of radio and television transmitters and their associated aerial systems.

Candidates for both these departments should either possess a British university or polytechnic degree in electronic engineering or physics.

Television

Working in the Television Service, based in West London, engineers are involved in the maintenance and operation of the equipment used in the origination and distribution of television programmes.

Transmitters

Engineers are allocated to the majorstations in various parts of the country and are respon-
sible for both the maintenance and operation of radio and television transmitter plant. For these positions a current driving licence would be an-advantage.

BBC Receiving Station

This station, basedatCaversham, Berkshire, requires engineers to operate and maintain the elaborate receiving terminal equipment to enable foreign broadcasts to be monitored.

For these three departments candidates should possess either a City and Guilds full Technological Certificate in Telecommunications (course No. 271) or an HNC in Electronic Engineering. Shift working will normally be involved, for which generous extra payments are made.

Candidates for all positions must have normal colour vision and hearing.

For further information and an application form, write stating which type of engineering you are interested in to the Engineering Recruitment Officer, Broadcasting House, London W1A1AA, quoting reference No.77.E.4034/WW and enclosing a self addressed foolscap envelope.

Closing date for completed application forms is 14 days after publication.

BGB

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.

Post Offifice Telecommunications

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
Duties cover highly skilled Telecommunications/electronic work, indluding the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer an analytic machinery
Qualifications: Candidates must hoid either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualification.
Salary scale from $£ 2,230$ at 19 to $£ 2.905$ at 25 (highest pay on entry), rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries Pay supplement of $£ 313.20$ per annum
Annual Leave allowance is 4 weeks rising to 6 weeks after 27 years service.
Opportunities for service overseas
Candidates must be UK residents

Further particulars and Application forms available from
Recruitment Officer
Government Communications Headquarters
Oakley, Priors Road
CHELTENHAM, Glos GL525AJ
Tel. Cheitenham 21491 Ext. 2270
(STD 0242-21401)

ilea

Learning Materials Service

Television Centre, Thackeray Road, SW8

Maintenance Engineer

The Television Centre of the ILEA Learning Materials Service, situated at Battersea, has a vacancy for a maintenance engineer with specialist knowledge of professional studio and film sound equipment. The Centre, which produces programmes for over one thousand educational establishments, is provided with television and film production facilities at broadcast level, which are shortly to be converted to colour.

The successful candidate will join the maintenance section (four in number) and, with other members, will be responsible for maintaining a very wide range of vision and sound equipment which includes helical scan VTR's and cassette machines. He or she will be expected to be the department's expert in sound with particular knowledge of professional mixing desks, tape recorders and 16 mm magnetic film recorders and reproducers (some involving digital techniques) and must have a number of years experience in this work. An HNC, the final City and Guilds certificate or a similar qualification in relevant subjects is desirable.

Salary within the scale $£ 4,864-£ 5,191$ (Studio Technician 3).
Application forms, returnable within 14 days of the publication of this advertisement, from the Education Officer, Estab 2A/2, Room 4A Addington St. Annexe, County Hall, London SE1 7UY. Tel: 01-633 7456

If you score five or more "Yes" answers, then you could qualify for a really interesting career as a Test Technician with MarconiElliott Avionic Systems.

In our Mobile Radar Division at Borehamwood in Hertfordshire we're looking for men and women with a good basic electro nics background to join teams working on the development, test and manufacture of a wide range of radar equipment and electronic surveillance and alarm systems.

It's challenging work and our Laboratories employ the most advanced techniques. Your experience, plus some training from us, will enable you to enjoy a satisfying future with a top company in the field of electronics development.

If you would like more details, get in touch now with G. Cock at MarconiElliott Avionic Systems Limited, Elstree Way, Borehamwood, Herts. Tel: 01-953 2030, Ext. 3195 .

Appointments
 COMMUNICATIONS ENGINEER

Newcastle upon Tyne up to $£ 4131$
The Engineering Research Station at Killingworth is looking for a Communications Engineer to be involved in developing techniques which will increase the capacity of the Corporation's mobile radio channels. Work may be broadly split into two areas:
(i) investigation of the performance and implementation restrictions of wide area-coverage schemes.
(ii) investigations leading to more effective use of spectrum including problems associated with the transmission of digital information to mobile receivers.
A considerable involvement in discussions with user departments will be needed to ensure feasible integration of new techniques with existing systems.
Candidates should have a degree in Electronics, preferably with a specialisation towards communications.
Starting salary will be within an incremental scale rising from $£ 2361$ to $£ 3819$ plus a flat rate supplement of $£ 312$ p.a., with initial placing according to age, qualifications and experience
Application forms may be obtained from the
Manager/Management Services, British Gas Engineering Research Station Killingworth, Newcastle-upon-Tyne NE99 1LH
quoting reference
RD/539656/ERS (656) WW

TELEVISION ENGINEERS EXPORT OPERATIONS

Rediffusion Consumer Electronics is expanding its engineering team to give greater technical support to its customers with particular emphasis on export markets

If you are a qualified television engineer with current experience in at least'some of the following disciplines we should like to hear from you

* Design and development of colour TV receivers
* Safety engineering, radiation measurements and test house submissions.
* Quality Assurance in a modern factory environment.
* Customer service with particular emphasis on export markets
* Assessment of audio products from world wide sources

The team is based at our engineering centre at Chessington. Surrey, but occasional visits to our factories in the North East of England and to our customers, home and abroad, will be required Salaries are attractive and assistance with relocation expenses will be offered if appropriate. If you feel you can make a real contribution towards the further success of our operation please write to

Mr. H. Brearley
Head of Technical Services
REDIFFUSION CONSUMER ELECTRONICS LTD.

Fullers Way South

Chessington

Surrey, KT9 1HJ
or phone 01-3975411

Vacancies will exist for Technical Assistants in the Summer 1977 tow ork in the Communications Departments of the RBC based in Central London.
Technical Assistants will work under subervision on the mamtenance and in some cases the operation of electronic equipment used in the distribution of radio and television programmes
Duties
Technical Assistants will be concerned with the switching and routing of both television and radio programmes and in the provision and maintenance of all communication systems.
Training
Technical Assistants receive full-time training, which if successful should enable them to qualify internally as BRC Engineers insomething over two years
Qualifications
Applicants, who must be between the ages of 18 and 26 and have normal colour vision and hearing. should have had a good general education and be able to offer G.C.E. O' levels in English, Maths and Physics. o: the equivalent. and have read up to 'A level in Aaths and Physies. Alternatively anONC or Parll of the City \& Guids Telecommunications Technicians Course (No. 271) would be aceptable. In addition it is essential that they candemonstrate the ability to apply the ir knowledge of electricity and magnetism to related practical applications in the fields of communications, radio and television
Salary
Depending upon experience the starting salary on appointment will be in the range $\pm 251+$ to $£ 2706$ pa Additional payments will be made for those Technical Assistants who are required to work shitt rotas or irregular hours. In addition a monthly pay supplement depending on total earming of between $£ 10.86$ and $£ 17.38$ is payable under the current Incomes I'olicy
Forturtherdetails and application fompleasewriteto The Engineering Recruitment Olficer, BBC, Broadcasting House, London W1A 1AA quoting reference number $77 . \mathrm{E}$ (R) $4036 / \mathrm{WW}$ and enclosing an addressed envelope at least $9^{\prime \prime} \times 4^{\prime \prime}$. Closing date for completed applica tion forms is 14 days after publication.

ENGINEERS/TECHNICIANS

The Independent Television Company for North and East Scotland seeks electronic engineers or technicians for duties at its Studio Centre in Aberdeen

The successful candidates will be employed in the operation and maintenance of modern electronic broadcast equipment

Experience in this field is desirable but candidates without this experience, having a sound technical training, willbe considered

Salary is in the range $£ 2689$ to $£ 4887$, dependent on experience, with the prospects of later promotion through competitive interview to more senior posts.
Applicatıons, in writing, to
Mrs. E. A. Gray
Personnel Officer
Grampian Television Limited
Queen's Cross
Aberdeen AB9 2XJ
'SERVING THE OIL COUNTRY'
GRAMPIAN

SALES ENGINEERS

If you are looking for a stimulating and demanding job with the prospect of regular overseas travel on a world wide basis, why not join Pye TVT, one of the world's leaders in the design and manufacture of broadcasting equipment?
Continuing expansion has led to the need within the Technical Sales Department for Sales Engineers in the following fields:

1. Video Tape Recording.
2. Video Mixing, Switching and Assignment, including Station Automation and Computer Editing Systems.
3. Colour Cameras and Telecine.

In each case the successful candidate will be required to discuss advanced and sophisticated equipment at a high engineering level and to : assist the regional and area managers in the marketing of these products.
A degree or equivalent qualification is desirable, but several years experience in the relevant field is more important.
These are very responsible posts and salaries will reflect the importance we attach to these appointments. Relocation expenses to this pleasant part of East Anglia will be given in approved cases.
Please write or telephone : Dave Barnicoat, Pye TVT Limited, PO Box 41, Coldhams Lane, Cambridge CB1 3JU.
Telephone: Cambridge 45115

WIRELESS TECHNICIANS

There are vacancies at Home Office Wireless Depots throughout England and Wales for Wireless Technicians to assist with the installation and maintenance of VHF and UHF Systems etc.
Applicants must be able to drive a car and be in possession of a current United Kingdom driving Licence

Salary

is $£ 2010$ (at 17), $£ 2450$ (at 21) and $£ 2905$ (at 25) ising to $£ 3385$, plus a 1976 pay supplement of 313.20 a year and a 1977 pay supplement of 5% of total earnings, subject to a minimum of $£ 101.79$ a year and a maximum of $£ 208.80$ a year

A Secure Future

with a non-contributory pension scheme, good prospects of promotion and a generous leave allowance. There are opportunities for day release to gain higher qualifications

Qualifications

Candidates, male or female, must hold a City and Guilds Intermediate Telecommunications Certificate or equivalent qualification and have had good experience in Telecommunications.

Interested?

Then write or telephone for further details and an pplication form to:- Mr C B Constable, Directorate of Telecommunications, Home Oftice, 60 Rochester of Telecommunications, Hame Oftice, 60 Rochester
Row, London SW1P 1 JX. Telephone: $01-2116420$.

ELECTRONICS ENGINEERS

Are you a young flexible, electronics engineer preferably with HNC and some experience in design/development, able to analyse circuitry and modify existing equipment as well as creating original equipment?

Does the opportunity of joining a small Company in the forefront of scientific instrumentation where hard work and initiative are well rewarded appeal to you?

The job involves the on-site installation, commissioning and after-sales servicing of our range of complex instrumentation and requires a high degree of technical skili, initiative and responsibility.

In return we offer plenty of interest and travel (sometimes international) coupled with first-class working conditions Salary is by negotiation and all travelling expenses are reimbursed.

Please apply in writing to:

R. F. LADBURY

BRUKER SPECTROSPIN LIMITED
UNIT 3, 209 TORRINGTON AVENUE COVENTRY, CV4 9HN

Botswana Telecomms Engineer

For varied engineering and administrative duties to ensure the efficient functioning of telex, telephone, telegraph, and broadcast services for the Botswana Ministry of Posts and Telecommunications.
Candidates, under 55, must be MIEE or MIERE, preferably with a degree. 15 years' experience in telecomms operations is required, including responsibility for maintenance of telex, radio relay and multiplex systems, automatic exchanges, subscribers' equipment and distribution networks. A knowledge of electronic exchange working, exchange signalling systems, and broadcast transmitters is desirable.
Starting salary is equivalent to $£ 6145$ £7680 pa and includes a substantial tax free allowance paid under Britain's overseas aid programme. Basic salary attracts a 25% tax-free gratuity.
Benefits include free passages, generous paid leave, children's holiday visit passages and education allowances, subsidised housing, appointment grant and interestfree car loan.
For full details and application form write quoting $M X / 1202 / w D$ to

Grown Agents a

The Crown Agents for Oversea Governments and Administrations, Appointments Divisic \qquad

RADIO ENGINEER/TECHNICIAN FOR THE CARIBBEAN

Needed to work as technical adviser to the Radıo Schoots in Haiti. a
non-governmental literacy development programme. Responsibility for the training
of local counterparts.
of local counterparts.
A British Volunteer Programme Post volunteer terms of service include free accommodation, living and other allowances, return air travel, language and accommodation, liv
orientation courses.

Write with details of curriculum vitae to
CIIR Overseas Volunters, CIIR Overseas Volunteers, ${ }^{1}$ Cam-
bridge Terrace, London, NW1 4.1.
OVERSEAS
VOLUNTEERS

ARTICLES FOR. SALE

MTV

Best choice for used TV - Largest stock and selection of colour and mono TV in Britain.

- 1976 exports exceeded 250,000 sets. Irade enquiries to:
idand TV. Trade Servider Worcester Road, Kidderminster DY10 1HY, England. Tel. Kidderminster 61907 or 67390. Telex 337993

MAGNETIC MICROPHONE SPEAKERS
4T Insorts. ideal for all sound speaking and
listenng applications very lugged DC res. 20 listening
onms.
size. 1

40pea +10 p P\&P
6 /or $£ 2.20+20 \mathrm{p}$
12 Pa

SA.E for lis
B.B. SUPPLIES, 141 Shatmeford Sweet
NT. CANTERBURY, Kont CTA 707

ASSISTANT ELECTRONICS ENGINEER

required for a Research and Development company in West London.
A vacancy exists for a young engineer educated to HND standard to join a design and development section working on the control of vehicle engines. Experience in industry is desirable but not essential as the applicant would be at a junior level in the first instance.
Please apply, giving details of age, qualifications and experience to.

The Development Manager, SGRD Limited
Concord Road, LONDON W3 OSE

ARTICLES FOR SALE

VHF Rx ass for use on $121.5 \mathrm{Mc} / \mathrm{s}$ but can be moded to any freq $100 / 150 \mathrm{Mc} / \mathrm{s}$ as 9 min . valves, O / P for phones, crystal controlled HC6/u type not supplied, new cond with circ $£ 6.50$. ISOLATING TRANS pria $230 \mathrm{v} \sec 26 \mathrm{v}$ at 13 amp with c.t. fitted in case with ammeter new $£ 1780$. I.F.F TRANSPONDER for use in range $950 / 1100 \mathrm{Mc} / \mathrm{s}$ with tunable T_{x} and $R x$ cavities, $60 \mathrm{Mc} / \mathrm{s}$ I. F. strip. pulse modulator circs. $115400 \mathrm{C} / \mathrm{s}$ I/P, plus large number of misc parts with circ, note these are supplied less valves and ext store soiled otherwise complete $£ 1080$. INFRA RED TEST SETS contain mains p.u. giving 24 v . d.c. infra red source, ent unit giving' 12 Kv from 24 v , meter, test jig cables, etc, áll in neat case transistorised used to test image convertor tubes, good cond £15. BATTERIES. Dryfit sealed lead acid two types 18 A / hr. size, $23 / 4 \times 2 \times 2^{\prime \prime} £ 5.40$ and $2.6 \mathrm{~A} / \mathrm{hr}$ size $51 / 4 \times 1^{1 / 2} \times 2^{1 / 4^{\prime \prime}}$ E650, both new. KEYBOARDS for telephone 0 to 9 digits size $4 \times 3^{\prime \prime}$ new $£ 1.50$. PLUG \& SK min. 12 -way req $3 / 4^{\prime \prime}$ fix hole new £2 per pair. C.R.T.s all new electrostatic CV2184 23/4" P7 £4.50. CV1746 61/2" P. 1 ordf. tube £6. CV1534 $11^{\prime \prime}$ P11 orange £ 10.80 . SELSYNS mains power type 230 V $£ 25$ per pair. RADAR SCANNER by Decca $24 v$ drive X band with gty of w.g. £54. TIMBERS will measure up to 60 secs in $1 / 100$ ths of a sec 24 v new £15. TAPE RECORDER airport type audio 10 track with rec and playback amps (no erase) for $230 \mathrm{v} 19^{\prime \prime}$ rack with handbook one only $£ 108$ U.H.F. GROUND $T_{x} / R x$ inst comprise $T x$, Md \& $R x$ covers $225 / 400 \mathrm{Mc} / \mathrm{s}$ single channel, O/P 100 watts a.m. I/P 115 v $50 \mathrm{c} / \mathrm{s}$ units are for $19^{\prime \prime}$ rack mt , American surplus $£ 173$. The following for callers: Marconi h.f. spec analysers $3 / 30 \mathrm{Mc} / \mathrm{s}$ $£ 45$. P.A. Amps 100 watt valve type with c.u. etc mains $£ 27$. P.A. speaker outdoor type $15^{\prime \prime} £ 8$ ea. TANNOY 200 watt transis amps with control gear also high power p.a. speakers. SCOPES. Solartron CD643 DC to $15 \mathrm{Mc} / \mathrm{s}$ large $5^{\prime \prime}$ single beam scopes $£ 30$. Prices inc. VAT and Carr. Goods ex. equip. unless stated new. Carr. applies mainland only.
A.H. SUPPLIES

122 Handworth Road, Sheffield S9 4AE. Phone 444278 (0742)

HEATHKIT SEMI CONDUCTOR reSTER. Latest model ITI21 As new. Factory tested. £45.-Teleradio 325 Fore St.. London N9. 01.
8073719.
$(7278$

Interested in computers?
 Lecture on ComputerServicing

We are looking for Lecturers to teach the practicalities of computer servicing. You will be based at our Engineering Training Centre in Letchworth, Herts - the largest of its kind in Europe. Here you will be given a comprehensive grounding in computer technology in general and ICl equipment in particular.

You will be thoroughly prepared to train engineers to the point where they will be capable of maintaining computers at the optimum operational specification.

Ideally, you will have an HNC or Forces' training in a technical subject. Any experience of digital electronics, computers or instructing on these subjects, while not essential, will be useful. Fluency in written and spoken French or German would be a distincl advantage but is not essential.
We'll start you as an Assistant Lecturer on a salary of not less than $£ 3800$ a year, subject to review in the near future. You'll be encouraged and expected to progress to the position of Senior Lecturer which carries a salary in excess of $£ 5000$.

Relocation expenses will be considered where appropriate.

For an application form, phone David Reeves on 01-7887272 extension 4150, or write to him at $\mathrm{ICL}, 85 / 91$ Upper Richmond Road, Pulney, London SW15-2TE. Pleasequote

Do us a service

 and put us to the test Service and Test EngineersAs aircraft and electronics equipments become more sophisticated and our servicing programme expands, the need for experienced Service and Test Engineers increases.

At Stanmore, we are involved in the provision of spares and the repair, maintenance and overhaul of a variety of British and American airborne electronic equipment.

We need Engineers who can successfully maintain the high standards and efficiency required both in the aircraft and the workshop.

It's skilled work, calling for sound practical experience of radio and electronics theory, ranging from audio to microwave and including the use of advanced test equipment for fault diagnosis. Training in this field will be given to suitable, less experienced engineers.

The Company offers excellent salaries and benefits together with first-class working conditions in well-equipped workshops. This Unit is conveniently situated in pleasant surroundings within easy reach of the AI and Mr.

MARCONI
ELLIOTT AVIONICS
A GEC-Marconi Electronics Company

If the job sounds interesting and you'd like to put us to the test, write with details of experience to:
Mrs. E. Wagg,
Marconi-Elliott Avionic Systems Ltd., 22-26 Dalston Gardens, Stanmore, Middlesex HA7 IBZ. Tel: OI-204 3322.
V.H.F. SERVICE TECHNICIAN RE QUIRED with full experience o Mobile Radio, mobile and base station equipment. Applicants wil work in our modern and wel. with occasional work in croydon With occasional work in the field Applicants should be responsible and fast expanding company, sal. ary commensurate with ability and experience with ample opportunity for overtime if required. - Telephone Jonothan Clark, London Car Telephones. 01-680 1010. (7293

ELECTRICAL/ ELECTRONICS ENGINEERS

a consultancy/managerial/designer role

The Government Communications Headquarters has a constant demand for specialised complex equipment and systems designed by its own engineers, as well as readily available commercial equipment.

The successful candidates will undertake engineering project officer duties. These will include interpreting non-technical briefs; advising clients on the best method of approach; preparing specifications and designs; and managing projects right through to implementation.

Currently there are vacancies in the following fields: 'Radio Communication Systems across the range from VLF to microwaves and the millimetric bands; Line and Data Communication Systems including computer application; and Main Computer systems together with a wide range of peripherals.

Candidates must have a degree in electrical or electronic engineering or be academically qualified for corporate membership of the IEE or IERE, and have at least 5 years' recognised study, professional training and experience

Starting salary betwen $£ 3950$ and $£ 5240$, depending on qualifications and experienced. Promotion prospects. Non-contributory pension scheme.

For further details and an application form (to be returned by 11 July, 1977) write to

Cheltenham Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone Basingstoke (0256) 68551 (answering service operates outside office hours). Please quote T(A) 85/1

Engineer Programmers

For advanced test programming techniques

Engineer Programmers are needed by the Electronic Switching Products Division of S.T.C. The job is to prepare test programmes using a high level language and/or to derive test generation techniques to control the testing of digital printed circuit board assemblies on automatic test equipment.

If you have had experience in testing, fault finding, commissioning, or a similar field using modern electronic methods and devices, these positions may interest you. A formal qualification - degree, HNC or equivalent, in electronics is necessary.

We are situated on the outskirts of North London with all the amenities of a large established location. We are offering competitive benefits and there is a very real scope for advancement for the right men and women.

For further information please telephone or write to
Mike Randal, Electronic Products Switching Division,
Personnel Dept, Standard Telephones and Cables Ltd, Oakleigh Road South, New Southgate, London, N11 1HB. 01-368 1200 Ext. 3066.

Standard Telephones and Cables Limited
A British Company of ITT

SYSTEMS TEST ENGINEERS £3，500－£4，000

Several interesting opportunities are available for Test Engineers；qualified to O．N．C．／H．N．C．，degree standard，or ex－military personnel，to join our Test Engineering Department which is currently located in North London but will be moving to new premises in East Anglia／East Midlands later this year．Therefore，we would be interested in receiving applications from candidates who are either currently seeking a new appointment，or who may be interested in changing their jobs later in the year．

Suitable applicants will have had 1－5 years＇practical experience of testing， modifying and repairing electronic systems．A knowledge of analogue and digital electronics is required and an understanding of computers would be an advantage．Full training will be given．

These positions offer progressive salaries with regular reviews and good employment benefits．

Please telephone or write for an application form quoting reference $\mathrm{G} / 1013$ ， to：－

Linda Geers，Personnel Officer， CROSFIELD ELECTRONICS LIMITED， 766 HOLLOWAY ROAD， LONDON N19 3JG，ENGLAND
Telephone：01－272 7766.
A member of the De La Rue Group of Companies．

ARTICLES FOR SALE

SILICON SOLAR CELLS and modules can provide a useful alter－ native to transformer power sup－ power instruments energy for low ment equipment can be obtained from equipment can be obtained from nickel－cadmium batteries
charge－maintained by silicon cells．We have in stock two types of cell：$-\quad 35 \mathrm{~mW}$ stock two types 5 V －$£ 5.95$ $250 \mathrm{~mW} .5 \overline{\mathrm{~V}}-£ 9.55$ ．Prices include VAT and postage．Data is supplied free with the units or separately at 20 p ．Booklet＇Solar Cels＇ 75 p Edencombe Ltd． 16 Princes
Avenue．Kingsbury．London NWg
（7271

QUARTZ CRYSTAL

UNITS from
－1．0．90．0 maz
－fast oeluyer
－migh stallity
－to ofe 5271A

WRITE FOR MckNight CRYSTAL Co．LId．
handiey inolistrial HAROLEY INOUJ
ESTATE，HTTHE TEI．HYTHE 84896 SID CODE 0703 SOUTHAMPTON SO4 82 （6044）

[^8]VALVES RADIO－T．V．－Industrial Transmitting We dispatch valve to all parts of the world by return of post，air or sea mail，2，700 types in stock． 1930 to 1976．Obsolete types a speciality List 20p．Quota－ tion S．A．E．Open to callers Monday to Saturday 9.30 to 5.00 ．Closed Wednesday 1.00 ．We wish to pur－ chase all types of new and boxed valves．Cox Radio（Sussex）Lid． Dept WW，The Parade，East Wit－ tering 2023 （STD Code 024366）．

Buatiso d operear 2 240 strataght tot the bit A． $\mathrm{R} \cdot \mathrm{O}$
 SOLDERING IRON

Probably the smallest 18 watt soldering iron to comply with Consumer Protection Regulations ES No． 3456214. New method of bit－securing（pat．pend．） Built in suspension hook． All parts very easily replaced Insulation tested at 1500 V ．ac at max．temp． S：R．BREWSTER 估 86－88 UNION ST．，PLYMOUTH Telephone $0752 \cdot 65011$ Manufacturers and Distributons

440V A．C．RANGE				6zv d．C．range Valvi $[\mu$ 个 Tol．			
（山）	Dimen－ sitans（mm）		Priceeach		± 10		$\pm 5^{6}$
	1	0		0.01 \＆			
0.1	27	12.7	68p	0.1	£1．28	750	50p
0.15	27	12.7	80p	0.22	£1．32	77p	51p
0.22	33	16	86p	0.33	£1．32	77p	51p
0.25	33	16	92p	0.47	£1．32	71p	S1p
0.33	33	16	99p	0.68	£1．44	84 p	56p
0.47	33	19	E1．10	1.0	£1．56	91p	60p
0.5	33	19	$E 1.16$	1.5	£1．74	£1．16	67p
0.68	50.8	19	£1． 25	22	¢T－98	£1．32	75p
1.0	50.8	19	£1．37	3.3	$\underline{52.40}$	£1．60	99p
1.5	50.8	25.4	£1．64	4.7	$\underline{.2} 82$	1.88	\｛1．23
2.0	50.8	25.4	E1．95	6.8	¢3．48	£3．32	£1，47
				10	¢4．98	£3．32	¢2． 01
				15	57.14	14．76	［2．88
				22	¢9．66	¢6．4	£． 9

thansistansicis
BC107／8／9

sulcom plastic nectifiens－ 1.5 smp．wire－onded po2f： 100

BAIOEE NECTIFIEAS－ 2 h amp 200 Y 40 p ：350V 45p：600\％55p．

Pease nod zop post and pacximg om all ohdens．EXPoht－nod cost SEA NHMMAL．Add 8＂．VAT to all lions oxcepl mose markes wilh＂ Which 3 Ir $12 \% \%$

Send S．AE lor viditivenal stock luts．
MARCO TRADING（Dept P5）
the on Schaol．tatasion．Wam．Shropsh
Tel．Whixall $464 / 465$［ST0 094872 ｜
（Propers．Minicoss Trating Lis．）
CASSETTE HEADS． 4 track head： this head which is used in audio／ visual equipment can also be fitted phonic material：3－head system． fitting these 3 heads to existing cassette decks will allow off－tape monitoring during recording：Cas－ sette mechanism；top loading，with stereo heads and piano－key con－ trols：C90 cassette tapes available in small quantities at bulk prices． For data send large SEA，Box No
7139

Fal

PHOTO ETCH
Limitea plad 9 LOWER QUEEN STREET PENZANCE，CORNWALL！ TR184DF
Prototype or long run ．we will süpply your printed circuit require？ ments
Also facilities for Design．Assembly and Test
Prompt and efficient service assured
IT eenzanct（at3e）aat
T．V．TUBE REBUILDING－FAIR－
CREST ENGINEERING LTD．Offer a comprehensive range of equip． ment for processing all types of picture tubes．Standard or custom built units for established or new businesses．Full training courses Individually tailored \＆backed by 27 years＇experience in tube mak－ ing．FAIRCREST ENGINEERINC 2XX．Tel： 01689 8741．（7305）

Marconi Instruments ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton. Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates.
Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts. tel: St. Albans, 59292

A GEC-MARCONI ELECTRONICS COMPANY

ARTICLES FOR SALE

ENAMELLED COPPER WIRE

TELEPHONE ANSWERING Machines for Sale. New f120. Answers and for Sale. New 120 Answers and Records. Plus 2 -way Conversations and Dictation. ree Accessornes and Guaranteed 1 year. Clectronics Ltd. $01-249$. 0416 , $01-580$ 1800. 30 Goodge Street, London W.1.
(7096)

60 KHz MSF Rugby Receiver. BCD TIME OF DAY OUTPUT. High performance, phase locked loop radio receiver. 5 V operation with 1 second LED indication. Kit complete with tuned ferrite rod aerial e14.08 (including postage and VAT). Assembled circuit and cased$\operatorname{upp}_{\text {for }}$ version also available. Send (4359), Dorset.

300,000 MULLARD C280 \& C281 for sale, values from $01 u f$ to above 1 uf $250 / 400 \mathrm{v} / \mathrm{w}$, price per mixed pack. $100 / £ 1.50,500 / £ 6.00$. P $\&$ P (export 50 p). Electronic Mailorder Ltd, Ramsbottom, Bury Lancs.

FOR DISPOSAL AT CLEARANCE PRICES. Up to 15 miles of 10 way cable. Overall diameter 8 millimetres approx. SAE for sample. Eddystone receiver $500-1000 \mathrm{MHz}$. $550+$ VAT as seen. Jennings vacuum capacitors. Variable 8 to 35 mm fd nominal $35 . \mathrm{K} . \mathrm{V}$. $\mathrm{f}^{6}+$ VAT ea. including $p \& p_{\text {. }}$ Fixed 25 mm fd 30 K.V. f 44 VAT ea. Some larger ones for callers only. Road, Worthing Sussex. Tel. 34897.

Abstract

10.7 MHZ CRYSTAL FILTERS ITTO24DE/923L $121 / 2 \mathrm{KHz}$ channe। spacing. $£ 6.00$ ea £6.00 each. STC455/LQU/901A 50 KHz channel spacing. $£ 2.50$, all new and unused Plastic semi-airspaced trimmers 10 mm dia. $2-25 \mathrm{pt}$. 5500 2-25pf 1,000 $170 \mathrm{v} 1 /{ }^{\prime \prime \prime}$ characters with left and right hand decimal points 10 for $£ 4.75: £ 32.00$ per $100 ; £ 25000$ per 1,000 ITT GN9A std size nixie tubes, no decimal point, same price as above 1 "" VIDICON SCAN COILS transistor type to $^{\text {suit }}$ suit std $1^{\prime \prime}$ vidicon tube, with picture centring magnets and tube clamp no gen.. new. 56.25 pre-formed vertical mounting we have a large quantity of these at $£ 3.50$ per 1,000 Send for list or phone for values in stock (only supplied in 1.000 of one type) EIRE 1000 pi 500 v disc ceramic capacitors. 7 mm dia., $£ 11.00$ per 1,000 ALL ITEMS ex-stock prices include VAT \& POST, manufacturing quantities available 59 Waverley Road. Rugby, Warks. Phone 76473 (0788). Callers by appointment

10.7 MHz $111 \mathrm{mmz} \times 57 \mathrm{~mm}$ p.c.b.: R's. C's: i.c.; transistors; pots; skts. You supply case, battery, etc. Features saw ooth generator, frequencies ed 12.96 inc VAT (8 per cent rate) and post and packing Dovedale Electronics Limited. Post Office Box 47 Derby, DE1 2BE, Derby (0332) 40717

LINSLEY-HOOD AMPLIFIERS constructed and repaired. Brand new, guaranteed, spares by return. BDY

 BFR39
ference suppression kit with inference suppression P\&P 15p. SAE for list. I. G. Bowman (Dept WW), 59 Fowey Avenue, Torquay, S. Devon. (7287

ELECTRONIC INSTRUMENTATION. If you are interested in the buying or selling of good quality used Electronic Test Instrumens, Asociates reading 51074 , Marth our Sheila Hatch who will deal promptly with your enquiry.
(6578)

ANTIQUE COLLECTOR'S ITEM, 30 ANTIQUE COLLECTOR'S ITEM, 30 tube. Offers to McBain, 52 Hawne Lane Halesowen. West Midlands. Tel. $021 \quad 550 \quad 2827$.

SEMICONDUCTORS International Dictionary in seven languages English. French - German - Italian, Pontuguese-Russian-Spanish. 2 volumes, originally published in 1971 by Weatherhead's Bookshop 58 Kingsbury, Aylesbury Bucks. Tel. 0296 23153. (7330

TEKTRONIX $4 \frac{1}{2}$ DMM DM501, universal counter DC503, function generator FG501, dual power sup ply PS503 dual trace scope. port able 326 vgc $£ 550$ ono. - Tel Welwyn Garden City 32271. (7331

PROFESSIONAL TV TUBE REBUILDING PLANT designed and manufactured with 20 years' exper. ience of tube rebuilding. Also all associated supplies including Electron guns. Regular training courses. Western-Whybrow Engineering, WECO Works, Penzance, TR20 9 QT (073676) 2265 (6542)

BURGLAR ALARM EQUIPMENT Safes - Trade supplies - Astro alarms - 25 Stockton Road SunFree lists. SAE W274

WIRELESS WORLD NOVEMBER 1939 TO SEPTEMBER 1947 COMPLETE, Offers. - Hayes 159 Beechwood Drive, Glasgow. G11
7 DX . Telephone 041-334 4369.

THE TTL DATA BOOK FOR DESIGN ENGINEERS

By Texas Instruments PRICE: $£ 5.50$ RADIO, TV \& AUDIO TECH NICAL REFERENCE BOOK by S: W. Amos. Price £24.70. MICROPROCESSOR MICROPROGRAMMING HANDBOOK by B. Ward Price $£ 4.00$.
WORLD RADIO TV HANDBOOK. J. M. Frost. Price £5.50.
BUILD YOUR OWN WORK ING ROBOT by D. L. Heiserman. Price £3.70.
THE RADIO AMATEUR'S HANDBOOK 1977 A.R.R.L. Price $£ 6.60$.

THE MEMORY \& MICRO-
PBOCESSOR DATA BOOK FOR DESIGN ENGINEERS by Texas. Price $£ 3.40$.
TOWERS'INTERNATIONAL TRANSISTOR SELEC. TOR by T. D. Towers 1977. Price $\mathbf{£ 5 . 0 0}$.
SOUND RECORDING PRACTICE by Borowick, J. Price £16.60.
\star Prices include postage \star
THE MODERN BOOK CO
SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET LONDON W2 1NP
Phone 7234185

ARTICLES FOR SALE
COLOUR, UHF AND TV SPARES WEW COMBINED COLOUR BAR GENERATOR PLUS CROSS HATCH KIT (MK4) UHF Aerial input type.
Also
gives R.Y B.Y Luminance combinations, Grey scale etc. Push button controls. Battery operated, $£ 35$, Case $£ 1.80$, battery holders 78p, p/p 85p.
CROSS HATCH KIT, UHF aerial input type, also gives peak white and black levels, battery operated. kit, $£ 2.90 \mathrm{ppp}$ 30p. Add-on Colour
Bar kit (Mk3)

£25, cases $£ 1.40, \mathrm{p} / \mathrm{p}$ | Bar kit (Mk3) 825 , cases $51.40, \mathrm{p} / \mathrm{p}$ |
| :--- | .

CEEFAX parts shortly available. "Wireless World" TV Tuner and FM Tuner Projects by D. C. Read Kits of parts available. CRT Re-
 or $\mathrm{Hi}-\mathrm{Fi}$ amps or tape recording $86.80 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. Decca Colour TV $\underset{\text { H.T., L.T. Power Supply Unit. incl. }}{\text { Thel. }}$ circuits $£ 3.80$ p/p 95 . Bush CTV 25 Power Sup-
 gence panel plus yoke, blue lateral
$\$ 3.60 \mathrm{p} / \mathrm{p}$ 80p. Philips single stand convergence units complete, incl. 16 centrols, ${ }^{£ 3.75} \mathrm{p} / \mathrm{p}{ }^{75 \mathrm{p}}$. Colour p / p 90p. Mullard AT1023/05 Con. verg. Yoke $£ 2.50$ p/p 75 p . Mullard 30p. BRC 3000 type scan coils f 2 p/p ${ }^{80 \mathrm{p}}$. Bush CTV 25 Scan Coils $£^{23} 50$. DL40 11.50 DL1E DLI 85 p p / p 40p. Lum. delay lines $50 \mathrm{p} p / \mathrm{p}$ $\begin{array}{lllll}30 \mathrm{p} . & \text { Bush/Murphy CTV } & 25 & 3 / 174 \\ \text { EHT } & \text { quadrupler } & \text { £8.50 } & \text { p/p } & 85 \mathrm{p} .\end{array}$
 75p others, available. Philips G8 Panels,
plus/salvaged:
part complete,
Decoder
$£ 2.50$. Base ${ }^{\text {£1 }}$ p/p 70 p . FEC 2040 CRT Base 75p Fip sop. GEC 2040 Decoder panel Ior spares $£ 3.50$ p/p ${ }^{70 p}$ VARICAP
TUNERS. UHF: ELC
1043 £4.20 ELC $1043 / 05$ E5, VLC ${ }^{\text {EL }}{ }^{\text {ELC }} 1042$ UHF \& VHF Varicaps $£ 150$ ped 35p. SPECIAL OFFER: RBM 6 pSn Varicap control unit $£ 1$ p/p 35 p .
UHF Tuners transd incl. slow ino tion drive $£ 380.4$ Psn and 6 PSn .
 Helical Fots 100 K , 4 for 1.21 .20 , p / p
20 p . Thorn 850 dual stand. time base panels 50 p . Philips 625 IF panel incl. cct. 50 p . p/p 75 p . VHF theriight. Philips 19 TGG170. GEC 2010, etc $£ 2.50$ Fireball tuners.
 coils for Philips, Stella, Pye, Ekco. Ferranti, Invicta $£ 2$ p/p 75 p , Large
selcetion LOPTs FOPTs available cor most popular makes MANOR SUPPLIES, 172 West End Lane, London. N.W.6. Shop premises. Callers wel-
come. Thousands of additional items available not normally advertised. (Nos. 28,159 buses or West Hampstead Bakerloo Line and British Rail). Mail Order:
ers Manor Drive. London,
N. W. 11 . Tel.: 01-794 8751. V.A.T. Please CEPT WHERE MARKED * VA.T.

BOOKS

TV REPAIRS SIMPLIFIED. Full $\underset{\text { re }}{\text { re }}$ pair instructions any British TV
for
e4.50. Circuit
Diagram on re quest; details unique books, e.g. Every mono British TV circ. diag.
 Lanarks.
'VINTAGE CRYSTAL SETS, 19221927". Just published by Wireles. World, contains 128 pages. Chapters on the first days of broadcastless Trademarks. Also catalogue sections listing and describing crystal sets together with their original prices in $\mathrm{f}: \mathrm{s}: \mathrm{d}$. A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us. Please send
ness
Press
Li.
Lid. . Room ness Pres.

* MINICOMPUTERS
\star PERIPHERALS INSTRUMENTATION
For tastest, best CASH ofter, phone
COMPUTER APPRECIATION Godstone (088 384) 3221

Wanted: Test Equipment, RF power transistors, and compon ents of VHF / UHF type.
Immediate cash available.
Wanted Philips E10-12 scope tube 95
Chichester. Sussex PO20 00L Tel: 024-3612916

\star MINICOMPUTERS
 \star PERIPHERALS
 ^ INSTRUMENTATION

For fastest best CASH offer phone:

CHILTMEAD LTD.
Reading (0734)586419
WANTED, all types of communica tions receivers and test equipment details to R. Ti Lid., Ashville Ondon Hall, Ashville

SURPLUS COMPONENTS Equip ment and Computer panels wanted for cash. Ring Southampton 772501

WE BUY new valves, transistors and clean new components, large or small quantities. all details, quotations by return,
55 Worcester St. Wolverhampton's,

BUSINESS OPPORTUNITIES

FINANCE FOR ELECTRONICS
$£ 10-£ 100,000$ available to young Engineers with bright Write in confidence to

Box No. WW7270
CONTRACTOR/INSTRUMENT Maker required to produce 1,000 unipivo

PLANT FOR SALE

HEATSKIL INFRARED CONVEYOR OVEN SM1114 380/415 volts 3PH Netral Secomak soft air blower SM S1131. Gas-fired Barlow Whitney
stoving oven type G.D. $300 / 763$ stoving oven. type G.D. $300 / 763$
VAF Kresslink silk screen printing machine, type G2, FABR 2042, Gyrex roller coater model 530cAve., South Oclenden, Essex. (7280

ARTICLES FOR SALE

RECHARGEABLE BATTERIES. pencell (HP7) $£ 1.26$; Sub 'C' ${ }^{21.29}$ PP3 54.98 . Matching chargers 55.91 each except PP3 charger $£ 4.99$. Charging holder
6 pencells 35p;
$\underset{\text { holders. }}{6}$ pencells only 350 p . Prices in holuders VAT. Add 10% post, package and insurance. orders under 220 . 5 and insurance orders under $£ 20$. plus 50 p for 'Nickel Cadmium Power booklet Mail orders to
SANDWELL PLANT LTJ I DenSANDWELL PLANT LTJ., 1 Den-
holm Road Sutton Coldfield West Midlands. Tel. 0213549764 Callers to T.L.C.,
ing Cross. London, W.C.2.

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD.
7, 9, 11 Arthur Road
Reading, Berks.
Tel. (0734) 582605

GUMP

WANTED: TEST AND COMMUNICATION EQUIPMENT
ingle items or quan tities. also RF plugs,
sockets and connectors
Call or phone. 170 Goldhawj Road, London, W. 12 01-743 0899

WILL BUY ANYTHING, any quantity if price is right ring stan 0186. Wils, West Bromwich, (6815)

5pf APROX SINGLE TURN TRIMMERS, large stock required. Elec tronic Mailorder Limited, Ramsbottom. Bury. Lancs. Tel. (070 682)
\qquad
WANTED OSCILLOSCOPES TEST EQUIPMENT, cheap electronic kits Hobby Computers Eng. E. Aclickes S.42431 Angered/Sweden Skolpacet
(7276

ALL SURPLUS or used equipment wanted. Radio telephones - com plete systems purchased. Ships equipment and small boat radio's chassis etc, etc. Established 20 chassis, etc, etc. Established 20 years, For prompt attention contact
Mr Grout at Worthing 34897 . GWM Radio Limited $40 / 42$ Porlland Road Worthing, Sussex. (7307)

LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts $\underset{\text { Ltd., } 1-5 \text { Rectory } \text { Lane, Guis }}{\text { borough }} \mathbf{(0 2 8 7 3 - 4 4 4 3) , ~ Y o r k s , ~ U . K . ~}$ (13)

AGENTS WANTED.

TECHNICAL EREAKTHROUGH sound radiation by small English creasing range of unique prestige creasing range of unique prestige
products for Hi Fi Studio and products for Hi Fi. Studio and We are now seeking home and overseas agents to handle these on an exclusive basis - E. J. Jordan Ltd.. Stoneyway, Bovingdon
Green, Marlow. Bucks. England

FOR CLASSIFIED ADVERTISING RIMG EDDIE FARRELL
 ON 01-261 8508

EQUIPMENT WANTED

BROADFIELDS AND

 MAYCO DISPOSALS1 Lodge Lane, N. Finchley
London, Ni2 8JG
Telephone:
$01-4452713$
014450749
01-958 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELECTRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

CAPACITY AVAILABLE

ELECTRONIC ASSEMBLY AND WIRING CAPACITY AVAILABLE

M.O.D. approved
J.N. Electronic Supplies

Osiers Road, London, SW18
Tel. 01-874.6162
SMALL BATCH PRODUCTION wiring, assembly to sample or drawings. Specialisits in printed circuit assembly. Rock Electronics 41 Silver Streat, Stansted, Essex Tel. Stansted (0279) 33018/814006

AIRTRONICS LTD. for coil winding Large or small production runs. Bobbin - Layer - Wave - Bifilar - Miniature Toroidals. Airtronics Limited Gardner Industrial Estate, Kent House Lane, Beckenham Kent BR3 1UG. Tel. 01-659 1147 (7158

PRINTED CIRCUITS UItra fast turnaround, very competitive prices. Also Prototype, Artwork Photograhy. Tel. Redhill 68850. 7283

PRINTED CIRCUITS. Ultra fast turnaround Very competitive prices paper or glass. Punched or drilled. Single or double sided. Also prototypes, artwork, photo-
graphy. Phone Redhill 68850

PRINTED CIRCUIT BOARDS -
PRINTED deliveries, competitive
Quick prices quotations on request. roller tinnings, drilling, etc, speciality small batches larger quan tities available. Jamieson Auto. matics Ltd. I-5 Westgate, Bridling ton N. Humberside for the atten tion of Mr. J. Harrison. Tel. (0262)

PRINTED CIRCUIT ASSEMBLY to sample/drawings. Fast professional work at lowest prices. Glentronics (Chesham). 34 Glenister Road, Chesham, Bucks. Tel. 6005. 17308

COURSES

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write Principal, Nautical Coliege, Fleetwood, ${ }_{8} \mathrm{~J} Z \mathrm{I}$.

RECEIVERS AND AMPLIFIERS

HRO RX5S, etc. AR88, CR100, BRT400 G209, S 640 etc. etc. in Ashville oid Hall, Ashville Rd., London, E11. Ley 4986.

SIGNAL Generators, Oscilloscopes, Frequency Meters, Multi-range Meters etc., etc. in stock. R. T. \& I. Electronics Litd., Ashville Old
Hall, Ashville R.d., London E. 11 .

TWICE the information in HALF the size
 The I.C.E. range of multimetars provides an

unrivalied combination of maximum performance within minimum dimensions, at a truly ow cost. Plus, a complete range of add-on accessories for more ranges, more functions.
All I.C.E. multimeters are supplied complete with unbreakable plastic carrying ase test leads etc. and a 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual
Now available from selected stockists. Write of phone for list, or for details of direct mail-order service

Supertester 680R
(illustrated)
20 k g/V $=1 \%$ fsd on d.c. 80 Ranges -10 Functions $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£ 2 5 . 2 5}+$ VAT
(For Mail Order add 80p P\&P)

Supertester 680G

$20 \mathrm{k} 2 / \mathrm{V}$. 2% fsd on d.
$4 \mathrm{k} \mathrm{Z} / \mathrm{V} . \pm 2 \%$ fsd on a.c. 48 Ranges - 10 Functions $109 \times 113 \times 37 \mathrm{~mm}$
£19.95 + VAT (For Mail Order add 80p P\&P)

Electronic Brokers Ltd 49-53 Pancras Road, London NW1 2QB Tel. 01-837 7781

Microtest 80

 $20 \mathrm{k} \mathrm{D} / \mathrm{V}=2 \%$ fsd on d.c. $4 \mathrm{k} \cap / \mathrm{V}, \pm 2 \%$ fsd on a c. 40 Ranges - 8 Functions Complete with case with case$95 \times 23 \mathrm{~mm}$
£14.95 + VAT
(For Mail Order add 80p P\&P

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 122-135

Fylde Electronic Labs Ltd

Greenwood Electronics Ltd. 13

Hall Electric
Hampton Video Systems Ltd.
Harmsworth Townley \& Co. Ltd
Harris Electronics (London) Ltd.
Harris Electronics (London) Ltd
Harris, P.
Hart Electronics
Heyco Mfg. Co. Ltd
Hi-Fidelity Designs
Icon Designs
1LP Electronics Ltd
1MO Precision Controls Lid.
Industrial Tape Applications
Integrex Ltd.
17T' Instrument Services

Ledon lnstruments Ltd.
Leeds Exhibition
Leevers-Rich Equipment Lidd.
Levell Electronics Ltd
Light Soldering Developments Ltd
Lion House
London Instrument Repairs
Lynx (Electronics) London Ltd.

McKnight Crystals
Maclnnes Laboratories Ltd
Maplin Electronic Supplies
Marconi Instruments Ltd.
Marshall, A. \& Sons (London) Ltd.
Maughan, Thos. \& Assoc. Ltd
MCP Electronics.
Modern Book, The
Multicore Solders Ltd.
.................. 29
...... Cover iv
Nombrex (1969) Ltd.
26
OMB Electronics .27

Pattrick, J. B.
PBRA Ltd.
109

Powertran Electronics
Precision Petite Ltd.
Q. Max Electronics Ltd

PAGE

Radio Components Specialists101
90
Ralfe, P. F. Ramp Electronics 111
R.C.S. Electronics18
96
91RTVC
Sabtronics (U.K.) Ltd.
Sabtronics (U.K.) Ltd. 23 23
Samsons (Electronics) Lid 116
Scopex Instruments Ltd 112
Semicon Indexes Ltd. 32
97
Service T'rading Co.
$\cdots 103$
Servo \& Electronic Sales Ltd.
11, 13, 15
11, 13, 15
Shure Electronics Ltd. .78
104

Sintel

SME Ltd

Sonic Sound Audio
Sowter, E. A.
Special Products Ltd.
Storno Ltd.
Strumech Engineering Ltd.
Sugden, J. E. \& Co. Ltd.
Sullivan, H. W. Ltd. . .
Surrey Electronics Ltd. .
Swanley Electronics Lid.
Swift of Wilmslow70
116
133
Technomatic Ltd.
111
eleprinter Equipment Ltd

$$
\begin{aligned}
& \text { eepranter Equ } \\
& \text { Teleradio } \mathrm{Hi} \mathrm{Fi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Teleradio } \\
& \text { Tempus. } \\
& \text { Tramnus }
\end{aligned}
$$

Trampus Electronics
Trident Audio Developments Ltd. 20
Valradio Ltd. 27
108
West Hyde Developments Ltd. 92
Whiteley Electrical Radio Co. LtdWilmot Breeden Electronics Ltd.16Wilmslow Audio
20, 26, 100 2. \& I. Aero Services Ltd 29

OVERSEAS ADVERTISEMENT

AGENTS:

France: M D. Soubeyran. Compagne Francaise D'Editions Division Internationale, 40 Rue du Colisee, Parıs 8 e Telephone 225-77.50 - Telex: 280274

```
Hungary: Mrs Edit Bajusz. Hungexpo Advertising Agency,
Budapest XIV. Varosliget
Telephone 225008-Telex. Budapest 22-4525
Telephone
```

Italy: Sig C Epis, Etas-Kompass, Spa-Servizio Estero
Italy: Sig. C. Epis, Etas-Kompa
Via Mantegna $6.20 i 54 \mathrm{M}$ Ian
Telephone 347051 -Telex 37342 Kompass

Japan: Mr Inatsuki. Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5.10 Roppongi. Minato-ku. Tokyo 106 Telephone (03) 585-058
 United States of America: Ray 8arnes,

${ }^{\text {TPC }} 8 \mathrm{Bu}$ iness Press. 205 East 42 nd Street. New York. NY '1PC 8usiness Press, 205 East 42 nd Street. New York. NY
10017 - Telephone (212) 6895961 -Telex 421710 10017 - Telephone $\mathbf{M r}$ Jack Farley Jnr The Farley Co. Suite 1584.35 East Wacker Drive, Chicago, Illinois 60601 -- Tełephone: (312) 6 Wracker
3074
Mr Richard Sands Scot: Marshall Sands \& Latta Inc, 5 th Floor, 85 Posi Sireet, San Francisco. Calformia 94104 Telephone (415) 4217950 - Telegrams Dascottco Sa Francisco
Mr William Marshall. Scott, Marshall. Sands \& Latta Inc. Telephone: (213) 3826346 -- Telegrams Dascotico Los Angeles.
\bar{M}_{1} Jack Mentel The Farley Co Sulte 650 Ranna Bullding Cleveland. Ohio 4415 - Telephone (216) 6211919 Mr Ray Rickies. Ray Rickles \& Co. P O. Box 2008 , Miar Beach. Fiorida Mr Jim Parks, Ray Rickies \& Co 3116 Maple Drive Atlanta, Georgia 30305 Telephone (404) 2377432 Mike Loughlin. IPC Business Press. 15055 Memorial Ste 119, Houston. Texas 77079 - Telephone (713) 783 8673
Canada: Mr Colin H MacCulloch, Internatonal Advertising Consultants Lid 915 Cariton Tower. 2 Carlion Sireet Toronto 2 - Telephone (416) 3642269

Even if we didn't make it, welll make it work.

Bradley Services have the expertise and manufacturing capability necessary to make the most sophisticated electronic systems and electro-mechanical devices However, equally important are the facilities we have for repair and calibration. We can handle virtually any type of instrument within the frequency range $D C$ to 36 GHz - irrespective of manufacturer.

We also have a Post Design Services Group which provides every type of
after-sales engineering support, from the provision of technical literature to the upgrading of complete systems.
These facilities all approved to MOD Def. Stan. 05-21, have been developed over more than 20 years and during that time we've handled practically every type of instrument in use. So, if you've got a problem with some equipment, the chances are that, even if we didn't make it, we can still make it work.

Bradley Electronics

G \& E Bradley Limited Electral House, Neasden Lane London NW101RR Telephone: 01-450 7811 Telex: 25583

Even if tin prices stabilised, a change from 60/40 alloy to Savbit Solder could save you floo/tonne, ensure a better job...

The reason is that Multicore Savbit not only solves the problem of fine copper wires and thin foils deteriorating during soldering, but also contains less tin than 60/40 alloy. We make both so we are just offering to alleviate your rising metals costs.

During normal soldering, a dissolving action causes the wire to weaken and embrittle-often to break during subsequent field use.

Savbit, however, is a rosin based, 5 -core wire solder comparable in joint quality to standard high performance alloys, but capable of dramatically inhibiting the copper dissolving action.

As this diagram shows," compared with a 60/40 alloy, Savbit can reduce the dissolution of copper by as much as 100 times. Yet wetting rate, flow, conductivity and capillary force are almost identical - with creep strength and shear strength actually increased.
*(Indicative of product advantages only; not to scale)

60/40

Erosion of fine copper wires

Some people think Savbit alloy is only usable with plain copper soldering iron bits, but this isn't true
As these photographs illustrate dramatically, Savbit also saves significantly on the cost of iron-plated soldering iron bits, which have a copper core. This is exposed through cracks in the plating.

Cracked iron-plated bit. after 40,000 simulated operations using 60/40 Solder.

Add this advantage to the increased reliability and joint quality Savbit offers, and you'll understand why more and more 60/40 users are making the changeand profiting. The Ministry of Defence have given a special new Approval No. DTD 900/4535A for Savbit alloy with ERSIN 362 flux to be used in lieu of Solders to B.S. 219 and B.S. 441

For full information on Savbit or any other Multicore products, please write on your company's letterhead direct to
Multicore Solders Limited,
Maylands Avenue. Hemel Hempstead, Herts. HP2 7EP. Telephone: Hemel Hempstead 3636. Telex: 82363

[^0]: Current issue price 40 p , back issues (if available) 50 p , at Retail and Trade Counter. Paris Garden. London SEl. By post, current issue 55p, back issues (if available) 50p, order and payment to Room 11, Dorset House, London SE1 9LU.
 Editorial \& Advertising offices: Dorset House. Stamford Street, London SE1 9LU.
 Telephones: Editorial 01-261 8620. Advertising 01-261 8339.
 Telegrams/Telex: Wiworld Bisnespres 25137 BISPRS G. Cables: Ethaworld, London SEI Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year, $£ 3.50$ UK and overseas ($\$ 9.10$ USA and Canada).
 Distribution: 40 Bowling Green Lane, London EC1R 0NE. Telephone 01-837 3636.
 Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RHI6 3DH
 Telephone 044459188 . Subscribers are requested to notify a change of address.
 USA mailing agents: Expediters of the Printed Word Ltd., 527 Maidson Avenue, Suite 1217.
 New York, NY 10022. 2nd-class postage paid at New York. I.P.C. Business Press Ltd, 1977

[^1]: WW-012 FOR FURTHER DETAILS

[^2]: Thermallöy
 MCP Electronics Ltd. Alperton, Wembley, Middlesex Tel: 01-902 5941.

 Please send me full details on Thermalloy heat sinks.
 Name
 Company Address
 \qquad
 \qquad

[^3]: Sensitivity 002-0.05-0.1-0.2-0.5-1-2-5volts/cm Width of each recording channel 40 mm
 Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
 Chart speeds $1-2-5-10-50-125-250 \mathrm{~mm} / \mathrm{sec}$
 Type H3271-1. Single pen: Dimensions $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

 PRICE £265.00
 Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos PRICE E520.00
 Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$ Weight 25 kilos

 PRICE $£ 770.00$

[^4]: \dagger This is history repeating itself. When Professor Tucker did his work on the synchrodyne he was led to consider the present problem, and suggested an approximate solution. Some while ago the author was casting round for projects for his final-year undergraduate students and thought it might be interesting to see what could be made of the synchrodyne using modern technology. He, too, was led to consider the problem; this time the suggested solution is exact.

[^5]: Complete with speaker, baffle and fixing strip The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons. four medium band and one for long wave band The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control. The modern style fascia has been designed to blend with most car interiors and the finished radio will slot into a standard car radio aperture. MOTOR Size approx. 7" $\mathbf{2 "}^{\prime \prime} 4 \frac{1}{4}$. TOP 10 Power Supply Nominal 12 volts AWARO positive or negative earth (altered internally) Power ${ }^{5} 2^{50}$ Output 4 watts into 4 ohms.${ }^{4} 12^{50}$

[^6]: ERMS PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER. ACCESS CARD BANKAMERICARD BARCLAY CARD ACCEPTED (Card No. and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS

 ## POSTAL AND HANDLING CHARGES

 SHIPMENT VIA AIR MAIL
 under 4.99
 add 45
 add 35
 £10 and over
 500-9.99
 No Charge

[^7]: -

 To obtain a brochure and booking form, tick the boxagainst the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

 International Exhibition of Computers and Peripheral equipment - SYSTEMS \qquad Munich
 October 17-21
 1977
 Internepcon/Industrial
 Electronik
 Vienna
 November 9-12
 1977
 International Exhibition for
 Electronic ProductionPRODUCTRONICA \qquad Munich

 November 22-26
 1977

 Please send details of the tours indicated above.

 NAME... COMPANY. \qquad
 \qquad
 \qquad

[^8]: WE INVITE ENQUIRIES from any Where in the world．We have in stock several million carbon resis－ tors ath．$\frac{1}{2} \frac{1}{2}$ ，and 1 watt $\frac{1}{2}$ million wire wound resistors 5 and 10 watt － 1 million capacitors－ 1 million electrolytic condensers－$\frac{1}{2}$ million transistors and diodes，thousands of potentiometers，and hosts of other components．Write phone or call at our warehouse－Broad－ 21 Lields and Mayco Disposals Ltd． London N． 12 01－445 0749 F45 2713 London．N．12．01－445 0749， 445 2713
 （5907）

