# wireless 

## world

APRIL 1977 35p

## Metal detector Stereo coder



## RELIABLE

## 120 BASIC RANGES

$A C V, 1 \& d B$
DCV, $1 \&$ NULL
RESISTANCE
LEAKAGE at 3 V
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$ Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $R=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity eversible. Acc. $+1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering $\pm 4$ decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits. Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

## 30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 22+$ VAT.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ Fsd, $A C / D C$, using HV Probe. Price $£ 16+V A T$.
$1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $\mathrm{AC} / \mathrm{DC}$, using Current Shunt. Price £15 + VAT
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price £38 + VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., or, AC mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at $\mathrm{El} 3+\mathrm{VAT}$

## LEVELL :

MOXON STREET, BARNET, HERTS., ENGLAND, EN5 5SD
TEL: 01 - $4495028 / 4408686$
WW - 054 FOR FURTHER DETAILS

## Professional Performance at Popular Prices!

Automatic test equipment on your assembly lines will dramatically reduce production costs. But it must be the right type of equipment; low priced, easy to use, and readily adaptable to your various test needs. Like the Wayne Kerr Testmatics.
After installing a Testmatic, one company reported a 70\% saving in year one; the Testmatic took just 20 seconds to do what used to take 20 minutes.
Another company - manufacturers of plug-in PCBs - bought a Testmatic after a thorough search of the test equipment market. Because the Testmatic was capable of making 60 separate checks in just six seconds, production bottle-necks became a thing of the past. Again, big cost savings were achieved.
No matter what testing costs you now - in salaries, overheads, rejects, errors, hold-ups, test equipment... anything-Wayne Kerr Testmatics will make immediate and significant savings. In many cases, Testmatics have a pay-back period of less than twelve months. Find out more by completing the coupon.

Wayne Kerr Testmatics.

Ferrograph Rendar Wayne Kerr
Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB, England. Telephone: Burnham (06286) 62511 Telex: 847297
-
 <br> \section*{If assembly-line <br> \section*{If assembly-line testing costs you
20,000 per year, testing costs you
20,000 per year, testing costs you
£20,000 per year, testing costs you
£20,000 per year, that could be that could be £14,000 too much.} £14,000 too much.}

# Eddystone <br> <br> VHF Monitoring System 1538 

 <br> <br> VHF Monitoring System 1538}


Modes AM, FM, CW, Pulse, covering the spectrum 25 MHz to 500 MHz .
Receiver available with synchroniser or crystal facility.
990R (illustrated right) is alternative
VHF receiver covering 27 MHz to 240 MHz .

Please write for an illustrated brochure


DCA No: 10D/CA/5967

Eddystone Radio Limited<br>Member of Marconi Communication Systems Limited<br>Alvechurch Road, Birmingham B31 3PP, England<br>Telephone: 021-475 2231 Telex: 337081<br>A GEC-Marcon: Electronics Company




See us on STAND 37C at the Institution of Electronics 8 th Scottish Exhibition \& Convention - March 22-24


We've got interesting literature on the extended Arrow
$C$ series ranges

## Arrow-Hart (Europe) Ltd.

Plymbridge Road, Estover, Plymouth PL67PN, England. Tel: Plymouth (STD 0752) 701155 Telex: 45340

## Midlands Office:

1626/8 Coventry Road, Yardley, Birmingham B26 1 AN.
Telephone: 021-7070696.
WW-035 FOR FURTHER DETAILS

Scottish Office:
13 Murray Place, Stirling.
Telephone: 07863823

# F. M. TUNER MODULES BY 

These modules are fully assembled, tested and guaranteed units, as featured in our tuner. Designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.


The Electronic Design Specialists

M1, M2, M3, M4, M5, AND NOW:-

## M6 DIGITAL FREQUENCY METER (warch for furtuef aootions)

## * CMOS CIRCUITRY <br> * FULL POWER SUPPLY <br> * MOUNTS INSIDE TUNER <br> * 4 DIGIT L.E.D. DISPLAY <br> * NO TAMPERING WITH FRONT END REQUIRED <br> * MONEY BACK GUARANTEE


#### Abstract

We are very pleased to be able to announce this new module which has been in development for over 12 months. It has been designed to suit the specific requirements of F.M. tuners, to provide accurate station identification at a glance, at a sensible price and a sensible size. The complete outfit, which is NOT a kit, consists of the transformer, logic and display module and local oscillator take-off board. This latter fits directly to our main receiver board, and requires NO direct connections or modifications to the LP 1186 front end module. If you are interested drop us a line for full details and prices of all our modules




Correction and Diagnostic Sheets for the original article design (W.W. April/May ;74) still available.


A booklet is available for 50 p (post free U.K.) Fully describing the completely updated tuner. Prices subject to $12.5 \%$ VAT

To:


33 Restrop View Purton, WILTS SN5 9DG

## HIGH POWER DC-COUPLED AMPLIFIER



* UP TO 500 WATTS RMS FROM ONE CHANNEL * DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended. amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan)
Phase Response
Harmonic Distortion
Intermod. Distortion
Damping Factor
Hum \& Noise $(20.20 \mathrm{kHz})$
Other models in the range: D6

DC 20 kHz " 150 want + 1 db . Odb
500 watts rms into 2.5 ohms
+0 . 15 DC to 20 kHz 1 watt $8 \Omega$
Below 0.05\% DC to 20 kHz
Below 0.05\% 0.01 watt to 150 watts
Greater than 200 DC to 1 kHz at $8 \Omega$
At least 11 Odb below 150 watts
watts per channel

## Slewing Rate

 Load impedance Input sensitivity Input Impedance Protection Power supplyDimensions

19"Rackmount. 7 High. $9 \frac{3}{4}$ " Deep
8 volts per microsecond
1 ohm to infinity
175 V for 150 watts into 8 ?
10K ohms to 100 K ohms
Short mismatch \& open cct protection
$120-256 \mathrm{~V} \cdot 50 \cdot 400 \mathrm{~Hz}$

Other models available from 100 watts to 3000 watts


CONNECT UP WITH THE WORLD


LONDON ELECTRONIC COMPONENT SHOW

LECS 77 brings you a host of the world's major component manufacturers

LECS 77 is the twenty fifth London Electronic Component Show - the British based show which consistently attracts the close attention of the World's component buyers. The show coincides with the expected upturn in manufacturing industry and improvement of national economies. LECS 77 gives you a unique opportunity to assess the best of the world market at the right moment.

Visit LECS 77 and connect up with the world
THE LONDON ELECTRONIC COMPONENT SHOW 17-20 MAY 1977, OLYMPIA, LONDON
Organised by Industrial and Trade Fairs Ltd.
Radcliffe House, Blenheim Court, Solihull, est Mid lands B912BG, England. Telephone: 021.7056706 . Telex: 337073. Cables: Indatfa Solihull



WW - 076 FOR FURTHER DETAILS

| Z \& I AERO SERVICES LTD. <br> Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF <br> Tel.: 7275641 Telex: 261306 |  | $\begin{aligned} & \text { Retail Branch: } \\ & \text { 85 Totenh am } \\ & \text { London W1. Tel: } 580840 \text { Road } \end{aligned}$ |
| :---: | :---: | :---: |
| MULTIMETER F4313 made in | A SELECTION FROM OUR LARGE STOCKSTRANSISTORS |  |
|  |  |  |
| CILLOS |  |  |
|  | P\&P 25p min. (U.K. only). Please add $8 \%$ VAT $\star 12.5 \%$ |  |
|  | MINIGUM EXPORT ORDER £100 FULLY GUARANTEED |  |
|  |  | 1976/1977 |
|  |  | CATALOGUE |
|  |  |  |

G $62.40+6$

## Join the Digital Revolution

## Understand the latest developments in calculators,

computers, watches, telephones,
television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories counters and simple arithmetic circuits and on to a complete understanding of the design and operation of calculators and computers.
Uesign of Digital Systems

plus 80 p packing and surtace post anywhere in the world
Payments may be made in loreign currencies
Quantity discounts available on reques:
VAT zero rated

Also avarlable - a nore elementary course assuming no prior knowledge except sımple arıthmetıc
Digital Computer Loqic and Electronics.
In 4 volumes

1. Basic Compute Logic

2 Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functıons
4 Flipflops and Registers

## $£ 4.20$

plus 80p P. \& r
Offer Order both courses for the bargain price $£ 9.70$, plus 80p P. \& P

## Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the thenry and application of digital logic Learning by self instruction has the advantages of being quicker and more thorough than classroom learning You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

## Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita. Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

| To Cambridge Learning tnterprises vept COM FREEPOST Rivermill House S: lves Huntingdon Cambs PE174RR |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Please send me set(s) of Design of Digital Systems at 5700 each p \& p included |  |  |  |  |  |  |  |  |  |  |
| 'or .....set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each. p \& pincluded |  |  |  |  |  |  |  |  |  |  |
| or combined set(s) at k. 1050 each p \& p included |  |  |  |  |  |  |  |  |  |  |
| Name |  |  |  |  |  |  |  |  |  |  |
| Address |  |  |  |  |  |  |  |  |  |  |
| delete as applicable <br> No need to use a stamp -- رust punt FREEPOST on the envelope |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |



## transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available


MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER WITH UNIVERSAL
END FRAMES AND TURRET LUG CONNECTIONS


WW - 065 FOR FURTHER DETÄILS

## A. D. BAYLISS \& SON LTD.

 Behind this name there's a lot of real POWER!Illustrated right is a TITAN DRILL
Mounted in a mulu-purpose stand This drill is a powerful tool running on 12 v DC at approx 9000 rpm with a torque of 350 grm cm Chuck capacity $300 \mathrm{~m} / \mathrm{m}$
The mult-purpose stand is robustly constructed of steel and aluminium The base and bracket are inished in hammer blue
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan Approx speed 9000 rpm .12 vDC . torque 35 grm cm Capacity $24 \mathrm{~m} / \mathrm{m}$

TITAN DRILL \& STAND
ITtAN DRIL ONLY
RELIANT DRILL \& STAND
reliant drill only
TITAN MINI KIT DRILL
Plus 20 Tools
RELIANT MINI KIT DRILL
Plus 20 Tools
TRANSFORMER UNIT
£19.50
$\mathbf{1 8 . 9 0}+8 \%$ VAT $=£ 2106+£ 1 P \& P$
$\mathbf{E . 9 0}+8 \%$ VAT $=\lceil 961+35 p$ P\&P
$55.22+8 \%$ VAT $=£ 1752+£ 1 P \&_{1} P$
$+$
$+8 \% V A T=\varepsilon 1593+50 \mathrm{P} P \mathrm{P} P \mathrm{P}$

£8.55
$+8 \%$ VAT $=£ 923+75 p{ }_{P}{ }_{8} P$
These are examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids
To back up the power tools. Expo offer a comprehensive selection of Drills, Grinding Points and
other tools
SEND STAMP for full details to main distributors
A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos. GL19 3JU

Stockists Richards Electric. Worcester and Gloucester; Hoopers of Ledbury: Hobbs of Ledbury: D\&D Models, Hereford: Bertella, Gloucester


WW-088 FOR FURTHER DETAILS

## JES AUDIO INSTRUMENTATION

## Illustrated the Si453 Audio Oscillator SPECIAL FEATURES:

$\star$ very low distortion content - less than 0.03\%
$\star$ an output conforming to RIAA recording characteristic

* battery operation for no ripple or hum loop
$\star$ square wave output of fast rise time
$£ 60.00$
also available


## Si451 Millivoltmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

Si452 Distortion Measuring Unit

* low cost distortion measurement down to $001 \%$ with comprehen sive facilities including L.F. cut switch, etc. ALL PRICES PLUS VAT
J. E. SUGDEN \& CO. LTD., CARR STREET, CLECKHEATON, W. YORKS. BD19 5LA.


Look up to a Versatower installation and your radio communications will achieve new heights!
Acclaimed as the World's leading telescopic tilt-over tower in the international field of radio communication.
A complete range of models: from 20 to 120 feet, static and mobile. Full details and specifications are in our brochure.
Send for it today!
Strumech Engineering Limited, Portland House, Coppice Side, Brownhills, Walsall,
West Midlands WS8 7EX.
Telephone. Brownhills 4321

Due to the enormously increased demand for Versatower systems we have now opened our new West Works. Phone us - we'll be glad to show you around.

## STRUMECH



WW-079 FOR FURTHER DETAILS

## ELECTRONIC INDUSTRIAL THERMOMETER



THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air, Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model "Mini-Z $1^{\prime \prime}$ " measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Price £25.00 Model "Mini-Z 2" measures from-5 ${ }^{\circ}$ C to $+105^{\circ}$ C Price $\mathbf{£ 2 5 . 0 0}$ Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C} £ 20.00$ [VAT 8\% EXTRA]
Write for turther detalls to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)
WW-022 FOR FURTHER DETAILS

## BULK ERASURE PROBLEMS?



LR71
LR 70
MAX REEL SIZE $11^{1 / 2 \prime \prime} \mathbf{2}^{\prime \prime}$ MAX REEL SIZE $81 / 4^{\prime \prime}$

[^0]Manutacturers of sound systems and electronics

Station Road, Wenden Saffron Walden Essex CB11 4LG Saffron Walden (0799) 40888

## Eurix

## Hi-Fi Systems that GROW with you

MAGNUM III System as well as the features illustrated, has 20 W r.m.s. per channel (you could have 40), with typical distortion of only $0.07 \%$. The magnetic input has $>70 \mathrm{~dB}$. $\mathrm{S} / \mathrm{N}$ ratio (Ref. 3 mV ) and an overload margin of 43 dB


For detals of CLIFFPALM AUDIO MODULES send targe sae or see ad in Feb W.W NOW EX STOCK. All other parts required-knobs, pots (rotary and linear) switches sockets, etc NEW THIS MONTH. P.C.B s on which to build your MAGNUM I, II or Ill system. POWER MODULE CP-PS-18/2D. £6.50 +81 pV. A.T
Prices include full application datia, posiana packing U.K. only
These products carry a 2 year guarantee
Cliffpaim Lid.
DEPT HW 13 HAZELBURY CRESCENT
LUTON, BEDS LU1 1DF Tel 0582-415832

# Plug into world-wide coverage with the new T1000 

## solid-state $2-30 \mathrm{MHz}$ Linear Amplifier

This compact desk-top package incorporates the following features

- New generation high power transistors giving 1000 W PEP, 600 WCW output.
- Broadband requires no operator tuning

Full VSWR protection
. Drive requirements 70-120W

Full technical information is available on request from the sole distributors in the UK


Aero Electronics (AEL) Ltd Gatwick House, Horley
Surrey, England RH6 9SU. Telephone Horley 5353
Cables Aerocon. Telex Horley; Telex 87116 (Aerocon Horley)

WW-018 FOR FURTHER DETAILS

## EMVIOAED

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New

The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket Has Over 500 Individual Sockets

And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors


Only $£ 9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors $=E=$ IIDUSIRILHOULDIGGS IID
Higgs Industrial Estate, 2 Herpe igili iosa London. SE24 OAU, England
Telephone 01-737 2383
Telex 919693

## nombrex

MODEL 41
R.F.SIGNAL GENERATOR

Price £54.85

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
* 8 clear scales - Total length 130 mm .
* Spin-Wheel Slow Motion Drive 11-1 ratio.
* Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all
ranges.
* Mechanical scale adjustment for accurate alignment against internal
- 1 MHz crystal oscillator
* Powered by $9 V$ Battery

Trade and Export enquiries welcome
Send for full technical leaflets
Post and Packing El 00 extro
NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON, TQ12 1 NE

Tel. Newton Abbot 68297


The Quickest, Simplest Way of Punching Holes in Sheet Metal
QMax punches make clean, accurate holes every time In no time. With no filing, no jagged edges, virtually no burrs-with no hard work. And no
holes are barred. Round or square Q.Max punches are available in sizes down to 10 mm up 1075 mm for use on sheet metal up to 16 gauge No wonder they're used by all government services (Atomic government services (Atomic. Works) and all over the world by radio, motor and industrial manufacturers, plumbing and sheet metal trades and garages


Wholesale and Export enquiries welcomed. Further detaiss from, Q Max Electronics) Lta, 44 Penton Street, London Ni9QA 01-278 2500




> INSTANTCIRCUIT DESIGN WITH THE BUG SYSTEM

THE PROFESSIONAL BREADBOARDS FOR STUDENTS \& HOBBYISTS!

 resistance 5 milliohm average. , $\mathbf{1 3 . 3 8}$


SK50. Half size version of SK 10 for tight places and student use. Takes 4 DILs $\mathbf{\Sigma 7 . 8 0}$.


LABEL THOSE ICs. Self adhesive 'Bug Backs' for many 7400 series TTL ICs. identify pins and device. Saves time and
 temper! Pack of $500 \mathbf{\Sigma 6 . 4 0}$.


pulses. Monitors outputs. 8 LED indicators. 4 logic switches. 2 pulsers. Variable frequency clock. £41.75.

All prices include VAT and P \& P
Send for the Bug System leaflet and order form or cheque with order
HEPWORTH ELECTRONICS
Telephone: Kidderminster

## NEW 3000 TWEETER



Technical Data
Frequancy rasponse:
2 Kcsio 15 Kcs wilh: 3do
Impadance:
15 oims or 8 ohms
Flux Density:
10000 gmuss
Dimensions Frone Mounting:
Body $24(702 \mathrm{~mm})$ da $\times 4$
( 31 mm ) deep

( 3 n ) m) thick

Power Handing:
For use on 30 50 watt Amplifiers
Suggested Crossover:

COMBINE THE WELL-ESTABNEW 3000 TWEETER OUR BRAND A SOUND BOTH SMO PRODUCE IMMEDIATE, WITH SMOOTH AND AND | CLARITY AN OPENNESS |
| :--- |
| ASTOUND YOAT WILL | Coles

Electroacoustics Ltd.
pindar road hoddesoon enil obz Telophong Hoodesson 6868560060
Send sae for suggested cabinet arrangement
WW - 055 FOR FURTHER DETAÏLS

## METER PROBLEMS?



137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be inade to order

## Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators.
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the world.
The NEC. which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers.
Today we present:

## NEC CQ 110 E DIGITAL,


allband, HF. 300 wattstransceiver, $160 / 80 / 40 / 20 / 15 / 11$ $10 \mathrm{~A} / 10 \mathrm{~B} / 10 \mathrm{C} / 10 \mathrm{D} / \mathrm{WWV}$, modes FSK, USB, LSB. CW, AM. with separate 8 pole $X$-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube.
This feature alone makes of the NEC CQ 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC 100-235 volts and DC 13.5 volts power supplies are built in of course.

## NEC Co 301


allband HF, 3KW, linear amplifier, 160;80/40/20/15/11/ 10 meter, for modern amateur communication. Two EIMAC 3-500 Z triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CQ 110 E or other exciters capable of about 50-100 watts of drive. AC power supply 100-235 volts is built in of course.
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers!
Sole distributor in Europe:
CEC
Phone: (091) 4426 51. Telex: 79959 CH
servos synchronous steppers d.c. motors control systems gearboxes friction clutches instrument couplings

for a technical advisory service and off the shelf delivery, contact

## Mclennan

telephone 034465757 /8
MOTOR STOCKISTS FOR: IMPEX, PORTESCAP PRINTED MOTORS


Mclennan SERVO SUPPLIES LTD. KINGS ROAD, CROWTHORNE, BERKS.

WW-020 FOR FURTHER DETAILS

## UEROWIRE. GET THE COMIEETION

- A new and ideal wiring system for prototypes, Breadboards, and limited production. -Achieves a permanent interconnection of components, at high speed, on a very high density.
- Based on the use of Verowire(R) wiring pen with unique spring wire clamp for wire retention, advancement and retraction.
- Moulded wiring combs fitted to board route the wire from point to point neatly holding and stabilising the wiring layout.
- By using a specially designed tool, I.C. legs are deformed and positively held in the board enabling the wire to be easily wrapped around them.
E Using a self-fluxing polyurethane coated wire, no pre-stripping is required. Connections are completed by soldering, melting the insulation and at the same time making a permanent soldered joint.
E A complete introductory Verowire kit is available consisting of a wiring pen, spools of wire, terminal pins and all tools necessary. A sample board from the Vero high density D.I.P. board range is also included in the introductory kit.
- Soldering iron now available from slock

Available world wide through 3 subsidiary companies and 25 agents.

Vero Electronics Ltd.
Industrial Estate, Chandler's Ford, Eastleigh, Hampshire S05 3ZR.
Telephone: Chandler's Ford 2956


UDRID LEMDERS in PRTHACIIS TECHMOLOCY

WW-077 FOR FURTHER DETAILS

## ANY MAKE-UP OR

 COPY QUERIES CONTACT JOHN GIBBON 01-2618353ANTENNA DESIGN E PRODUCTION


We are specialists in the design, development and production of all types of antennas and controls, including those to military specifications.

We invite your enquiries

STRINGER CLARK ANTENNAS LTD.
CHILD OKEFORD • DORSET • DT118EH
Telephone: 025886-8293
the indispensable


## THRULINE ${ }^{*}$ WATTMETER

$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say.

Exclusive UK representative
aspen electronics limited TELEPHONE: 01-868 1188 - TELEX 8812727

WW-033 FOR FURTHER DETAILS

## ELECTRONORGTECHNICA carbon film RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12
EX-STOCK
$E 4.90$
PER 1,000
of one value
pLus V.A.T.

Minimum export order£100 Contact John Gingell

# Z. <br> AERO SERVICES LTD. <br> 44A Westbourne Grove <br> London W2 5SF <br> TEL 01-7275641 TELEX 261306 

WW - 059 FOR FURTHER DETAILS


## ambit international man

The Wireless Specialists for components \& modules.
EF5800, 7030 \& $91196-.9 \mathrm{uV} / 30 \mathrm{~dB}$ S/N., $0.2 \%$ TIID
Our top three FM tunermodules. (EF5800 shown with can off).


From left to right, the EF5800 6 circuit varicap FM tunerhead with the 7030 linear phase IF and the 91196 PLL stereo decoder with integral 55 kHz 'birdy' filter. The system provides afc muting, meter drives, agc, auto stereo switch, \& a specification that exceeds broadcast requirements. Now available with a new EF5801 tunerhead, with FET buffered oscillator output for synthesiser/frequency readout facilities.
EF5801.£17.45; EF5800..£14.00; 7030..£10.95; $91196 . . £ 12.99$
Complete FM tuner kits/systems (Carriage $\mathcal{C} 3$ extra.)
The Mark 8 Signalmaster - by Larsholt Electronics
This tuner is based on the popular 7252 tunerset, and provides an incomparable combination of style and performance that can be built by even the relatively inexperienced constructor Complete kit....£85.00; matching $25+25 \mathrm{~W}$ amplifier...£79.00
International Mark 2 Tuner kits:
Complete tuner kit, based around the 7253 tunerset, $£ 65.00$ Or just the chassis, cabinet, heavey aluminium front panel for your own choice of modules- see our new info. leaflet on the International Tuner. (SAE please)
NEW-NEW NEW NEW NEW NEW NEW NEW RIONIG FERRET METAL LOCATOR
Amtit has designed a new approach to cost effective sensitive metal locators, and now we proudly present the first of the family of 'Bionic Ferrets' Details OA, but we can say it will detect a top piece at $8-10$ inches. Coupled with low power consumption and many innovations, this is the first radically advanced detector that can be made from a kit. $£ 37.99$
Radio module selection: (Prices for kits in our catalogue \& PL) EF5800 Ambit 6 stage varicap $88-108 \mathrm{MHz}$ tunerhead $£ 14.00$ EF5600 TOKO 5 stage varicap
$\begin{array}{lll}\text { EF3302 TOKO } 3 \text { stage varicap } & . . & \text { E7.50 }\end{array}$
7020 Dual ceramic filter FM IF system module $£ 6.95$
92310 MPX decoder, with stereo filter and preamp $£ 6.95$
93090 MPX decoder with CA3090AQ + filter stage $£ 7.35$
91197 MW/LW varicap AM tuner module £11.35
771 New 'Off-Air' UHF varicap TV sound tunermodule
9014 MW/LW/Stereo FM iuner chassis. Mech. tuned f26.00
Components: ICs, coils, filters, trimmers diode law pots etc.
HA1137W/3089E FM IF 1.94 TOKO AM IFTS:
$\begin{array}{lll}\text { TBA } 120 \mathrm{FM} \text { IF and demodo.75 } & 455 / 470 \mathrm{kHz} \text { types } \\ \text { MC1350 FM IF preamp } & 0.97 & 10.7 \mathrm{MHz} \text { types }\end{array}$
$\begin{array}{ll}\text { MC1350 FM IF preamp } 0.97 & 10.7 \mathrm{MHz} \text { types } \\ \text { SN76660 FMIF and det. } 0.75 & 10 \mathrm{~mm} \text { square with int, } 0.33\end{array}$ SN76660N FM IF and det. 0.75 ( 10 mm square, with int, cap.) $\begin{array}{lll}\text { MC1310/4400 PLLMPX } & 2.20 & 455 \mathrm{kHz} \mathrm{Mechanical} \text { filters } \\ \text { CA } 3090 \mathrm{AQ} \text { PLL MPX } & 3.75 & 40 \mathrm{kHz} 7 \mathrm{kHz} \text { bandwidths }\end{array}$ $\begin{array}{lll}\text { CA3090AQPLLMPX } & 3.75 & 4 \text { or } 7 \mathrm{kHz} \text { bandwidths } \\ \text { HA1196 PLL MPX } & 4.20 & 455 \mathrm{kHz} \text { ceramic IF filter }\end{array}$ $\begin{array}{lll}\text { HA } 720 \text { AM radio system } \\ \text { uA } \\ 1.40 & 655 \mathrm{kHzceramic} 1 F \\ \text { filters } \\ \mathrm{kHz} \text { bandwidth CFT }\end{array}$
 HA1197 AM radio system $1.40 \quad 455 \mathrm{kHz}$ dual ceramic CF $\times 1.80$ LM1496 balanced mixer $\quad 1.25 \quad 10.7 \mathrm{MHz}$ filters for WBFM
 LM381N audio preamp st. 1.81 CFS ceramic filters $\begin{array}{lll}\text { TCA } 940 \text { 10W audio amp } 1.80 & \text { Pilot tone (MPX) filters: } \\ \text { OLR } 3107 \mathrm{~N}\end{array}$ $\begin{array}{ll}\text { TCA940 } 10 W \\ \text { NE723 voltage reg IC } & 1.80 \\ 0.80 * & \text { BLR3107N stereo }\end{array}$ NE723vortage reg $78 \mathrm{M} 2020 \mathrm{~V} 500 \mathrm{~mA} \quad 1.20 *$ BLR3172N tape bias trap TAA550B varicap regulator $0.50 * 88$ R 85172 N tape bias trap, with NE $560 / 1 / 2 \mathrm{BPLL}$ ICs
ICL 8038 CC function gen 4.50 * various chokes etc. see price list ICL8038CC function gen 4.50 * 22 turn 100 k diode law trimpots, with integral knob Also....meters for tuners, AM tuning varicaps, MOSFETs etc...
-post/packing 22p per order - except where indicated General: All prices shown here exclude VAT, which is generally $12 \frac{1}{2} \%$. (Except where marked*). The latest price leaflet is available FOC with an SAE. Please send a (large) SAE with any enquiries. Full catalogue still 40p.

37 High Street, Brentwood, Essex. CM14 4RH. TELEPHONE (0277) 216029 -after 3pm if possible please.

## when is a box not a box?

Instrument boxes are often sold in standard sizes - not always the most practical sizes for your needs. When bought they take up a lot of storage space.


WIDNEY DORLEC Series 3 is a new, simple constructional system for building cases, boxes, chassis, frames, drawers etc. etc. Just 3 basic extrusions and 3 simple brackets - available as components for DIY, kits,
or fully finished products to your design.
Custom made cases at prices you pay for standards. Ideal for Laboratories, Universities, small workshops. Call Cyril Vaughan on 021-359 3044 for more details.
P.O. Box 133,

Birmingham B4 7BD
Telephone: 021-359 3044
Telex: 338054.

WW-098 FOR FURTHER DETAILS


# The greatest puldic show of home entertainment -at Olympia in September 

That's the Audio Fair this year. It's moved with the market as the emphasis changes, so does the Fair. More people buy systems. More people look to home electronics for entertainment, as outside attractions become priced out of the market. More people want the package deal. So ... not only audio and hi-fi, but also the whole spectrum of

## RADIO...TELEVISION...MUSIC...TV GAMES RECORDS ...TAPES ...HOME RECORDING and MUSIC-MAKING

More young people are among the buyers. More older people are getting into the new scene of sound. That's why the Audio Fair is a big family occasion, with the big family attractions.
Already the exhibitors include Agfa-Gevaert, Amstrad,
Hitachi, National Panasonic, Natural Sound Systems, Rank, Sanyo - to name a few that indicate the width of appeal.

## There's a whole world of Home Entertainment at the Audio Festival and Fair this year. You ought to be there! It's Sound Sense!

- LONDON'S OLYMPIA - the industry's favoured location, where the people and the money are . . . and the only venue with the size, scope and facilities for this great trade and public festival.
- SEPTEMBER 12 to 18, 1977 - the preferred pre-Christmas selling-time period and opening with a day and a half for the trade only.
- BACKED by major IPC specialist, trade and consumer publications, commanding a combined readership of 1,750,000.
- ORGANISED by the IPC Business Press specialist exhibition company, with a remarkable record and reputation for handling specialist fairs.


## THE COMPLETE HOME ENTERTAINMENT SHOW

To: Audio Fair
Iliffe Promotions Limited,
Dorset House,
Stamford Street
London SE1 9LU
YES, I MUST find out more about the 1977 International Audio Festival and Fair. Please send me an exhibitor's brochure. right away.
Name
Position in firm
Address

Products we want to exhibit

...The leaders through creativity GR 1657 Digibridge
Automatically measures R, L, C, D and Q . Ranging from $0.00^{\prime} 1 \Omega$ to $99.999 \mathrm{M} \Omega, 0.0001 \mathrm{mH}$ to 9999.9 H , 0.0001 nF to $99999 \mu \mathrm{~F}$. D from 0001 to 9.999 and Q from 00.01 to 999.9. Basic accuracy $0.2 \%$. Five digit display for R, L and C, four digit display for D and Q .
Microprocessor - directed ranging. Selectable test frequencies of 1 KHz and $100 \mathrm{~Hz}(120 \mathrm{~Hz})$.
Series or parallel measurement selection. Built-in Kelvin test fixture tests radial and axial lead components. Other bridges from our range include:

It is easy to test components with
GenRad. Write or call for descriptive literature to GenRad Ltd. Bourne End, Bucks SL8 5AT.
(06285) 26611


| GR1650 | GR1656 | GR1608 |
| :--- | :--- | :--- |
| RLC Bridge | RLC Bridge | RLC Bridge |
| Precision 1\% | $0.1 \%$ | $0.05 \%$ |

$\begin{array}{lll}\text { GR1650 } & \text { GR1656 } & \text { GR1608 } \\ \text { RLC Bridge } & \text { RLC Bridge } & \text { RLC Bridge } \\ \text { Precision 1\% } & 0.1 \% & 0.05 \%\end{array}$
Digital RLC Bridge Digital RLC Meter Automatic, 0.1\% Automatic, 0.1\%

GEORG SIMON OHM

## 15-240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally sulted for atl applications. Alt common input functions (mag Cartridge. tunet etc) are catered for internally the desired function is achieved either by a multi-way switch or direct connection 10 the approprate pirs The internat volume and tone circuits merely require connecting to external potentiometers (not inctuded) The HY5 is compatible with all I LP power amplifers and power supphes To ease construction and mounting a P C connector is FEATURES. Complete pre-amplí
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low
distortion - High overload -- wo simply combined for stereo
APPLICATIONS: Hi Fi - Mixers - Disco - Guitar and Organ - Public address
SPECIFICATIONS:
INPUTS Magnelic Pick-up 3 mV Ceramic Pick-up 30 mV Tuner 100 mV Mictan
Auxiliary 3.100 mV . Auxilary OUTPUTS Tape 100 mV Main output 500 mV R M S
ACTIVE TONE CONTROLS Treble $=12 \mathrm{~dB}$ at 10 kHz Bass \% at 100 Hz
DISTORTION $0: 1 \%$ at 1 kHz Signat/Noise Ratio 68 dB
OVERLOAD 38 dB on Maqnetic Pick-up SUPPIY VOLTAGE \& 1650 V
Price $£ 5.22+65 p$ VAT P\&P fres
HY30
15 Watts into $8 \Omega$
The HY30 is an exciting New kit from I $P$ it features a virtuatly indestructible I C with short circuif and thermal protection The kit consists of IC heatsink. PC board, 4 resistors, 6 capacitors. mounting kit. together with easy to follow construction and operating instructions
ideally suited to the beginner tn audio who wishes to use the most up-to-date tectinology available FEATURES: Complete kit -- Low Distortion -- Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier - Audio APPLICATION SPECIFICATIONS
OUTPUT POWER 15 W RM S into 8U DISTORTION 0 . $1 \%$ al 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz} \cdot 16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE 18 V
Price $£ 5.22+65$ VAT P\& free.

## HY50

25 Watts into $8 \Omega$
The HY50 leads 1. . P s total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifer has been refined to the extent that it musi be one of the most reliable and robust High Fidelity modules in the Worid
TURES: Low Distortion

APPLICATIONS: Medium Power Hi-Fi systems -- Low poweı disco -- Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 m
SPECIFICATIONS: INPUT
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE - 25V SIZE 1055025 mm


Price $\mathbf{£ 6 . 8 2 + 8 5 p}$ VAT P\&P free
HY120
60 Watts into $8 \Omega$
Tequrements including load line and inermal protection this amplifier sets a new standard in modular design FIve connections - No external components APPLICATIONS: $\mathrm{H}_{1}-\mathrm{F}_{1}$ - High quality disco

## SPECIFICATIONS

OUTPUT POWER 6OW RMS into 8: LOAD IMPEDANCE 4-160 DISTORTION $0.04 \%$ at 60 W at 1 kHz
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 35 \mathrm{~V}$ Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&P free

## HY200

The HY200 now improved to give an output of 120 Watts has been designed to
rugged conditions, such as disco or group while still retaining true Hi.FI periormance
FEATURES: Inermal shundown -- Very low distortion - load line protection - Integral Heatsink
120 Watts into $8 \Omega$
APPLICATIONS: H1-F1 - Disco -- Monitor - Power Slave - Indusirial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 5OW RMS InTO 8:? LOAD IMPEDANCE 4-16! DISTORTION $005 \%$ at 100 W a
SIGNAL/ NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 23.32+£ 1.87$ VAT P\& P free.

## HY400

The HY400 is I LP's Big Daddy of the range producing 240 W into 40 It has been designed to high power disco or putbic address applications if the amplitier is to be used at continuous high power fevels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to lead the market as a true high power h-fidelity power module
FEATURES: Thermal shutdown - Very low distortion - Load tine protection - No external
240 Watts into $4 \Omega$
components
APPLICATIONS: Public address - Disco -- Power slave - - Indusiria
SPECIFICATIONS:
OUTPUT POWER 240W RMS ITIO 40 LOAD IMPEDANCE 4.160 DISTORTION $01 \%$ at 240 W a
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}_{2}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE $+15 \mathrm{~V}$
INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{£ 3 2 . 1 7 + £ 2 . 5 7 V A T P \& P \text { free. }}$
POWER
SUPPLIES


## IWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque $\square$ Postal Orders $\square$ Money OIder $\square$
Please debit my Access account $\square$ Barclaycard account $\square$
Account number
Name \& Address

## (1) RADFORD

## AUDIO LABORATORY INSTRUMENTS

for the professional


LD03 Low Distortion oscillator
A continuously varia. ble-frequency labora-
tory oscllator with a lory oscilator with
range 10 Hz $100 \mathrm{kH} \frac{1}{4}$ having virtually zero distorion over the audio fre. quency band with a tast setting tume

## LDO3.B Low Distortion Oscillator,

## balanced output

A LOO3 but fitted with an output amplifier and screened balanced transtormer providing a 600 ohm floating /balanced output. and 150 ohms unbalanced output
DMS3 Distortion Measuring Set (illustrated)
Measures total harmonic distortion down to $0.001 \%$ speedily and accurately Direct reading from calibrated meter
HSVI High Sensitivity Voltmeter
As HSVI but true r ms s reading.
ANMI Audio Noisemeter
An accurate voltmeter and norsemeter with 16 ranges 10 V .300 V is d fitted weighting characteristics Wide band. DIN Audio Bank, IEC/DIN Curve A' and CCIR Average responding
ANM2 Audio Noisemeter
As ANMI but true im.s reading
ANFI Audio Noisefilter
An active filter to CCIR weighting characteristic for use with external voltmeter (Ref Dolby Laboratories Inc. Bulletin No 43. Mar 76)
Also in stock: All Radford Speaker drive units and crossovers and B \& N/Radford monitor loud speaker systems

HIGH PERFORMANCE AMPLIFIERS
for the enthusiast and professional


ZD22 Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion Inputs for disc iunet and two tape machines providing comprehensive recording and reproducing facilities Sensitivities Disc 1 mV , and Auxiliaries 50 mV . for IV output Exceptional signal/noise ratio Output at clip level 18 V r.m.s

## ZD100 Power Amplifier

A stereo power amplifier of all aluminium construction with high thermal mass and designed for continuous operation at high output level Provides 150 watts per channel into 4 ohms and 90 watts per channel into 8 ohms at virtually zero distortion

## HD250 Stereo Integrated Amplifier

Uses 2D22 pre-amplifier with a power amplifier having a power output in excess of 50 W per channel into $4-8$ ohms Distortion less than $002 \%$ at rated power. typrally less than $001 \%$ True complementary symmetry output Headione output Inputs Disc tuner. and two tape machines
ZD22. ZD 100. HO250 are avallable from stock
Avallable soon $2 D 50$ ( $110 \mathrm{wpc} / 4$ ohms. $70 \mathrm{wpc} / 8 \mathrm{ohms}$ ) and ZD200 (250 wp.c $/ 4$ ohms, $150 \mathrm{wpc} / 8 \mathrm{ohms}$ )

## FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High performance instruments measuring frequency, period, time, freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.


TYPE 801B

£274 250 MHz
Sensitivity 10 mV . Stability 5 parts 10 ." Resolution $\pm 1$ Count

| 301 M | 32mHz 5 Digit ¢95 | 401A | 32MHz 6 Digit £132 |
| :---: | :---: | :---: | :---: |
| 501 | 32mHz 8 Digit £188 | 701A | 80MHz 8 Digit £205 |
| 8018/M | 250 MHz 8 Digit ¢274 | $\begin{aligned} & 901 \mathrm{M} \\ & 1001 \mathrm{M} \end{aligned}$ | 520MHz 8 Digit £375 <br> 1.2GHz 8 Oigit $\mathbf{E 6 7 0}$ |
|  | versions plus £12 | Memor sulfixe | $s$ available if not £25 extra |

Type 1011 MHz 100 KHz 10 KHz Crystal Standard $£ 95$ Type 103 0ff/Air Standard $£ 95$
SUPPLIERS TO: Ministry of Dafence, G.P.O., B.B.C., Government Depts., Crystail Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS 6 WOLSEY ROAD, ASHFORU MIDDX. TW15 2RB
Telephone: Ashford (Code 69) 53661/2

## DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35: 40
TermiNet $30,300 \& 1200$ ( 30 and 120 cps ) Teleterm 1132 and 1200 series (portable /fixed 30 cps ) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance * Other types and models avaılable
* Refurbished units also available
$\star$ Short and long period rentals
* Minicomputer interfaces * Quantity discounts
$\star$ Immediate delivery

TELEPRINTER EQUIPMENT LTD.
70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables RAHNO Tring
Telex 82362
A/B Batelcom Tring


WW-049 FOR FURTHER DETAILS

## Blob Board Offer 30\% off

Circuit diagram to circuit board in minutes. Layout circuit plan .1" graph paper. Select Blob Board, lay components out with leads on copper strip. Blob of solder onto lead and your circuit is complete. Blob Boards normally half price of competitive boards. Roller tinned to solder components directly. No drilling or mounting. Modifications in seconds. Blob Board is re-usable.

## I.C. PACK

Comprises one of each: ZB1IC (for one 16 -pin I.C. pad, approx. area $4.5 \times 3 \mathrm{in}$.) ZB2IC (for two 16 -pin I.C. pads, approx. area $4.75 \times 3.25 \mathrm{in}$.)
ZB81C (for eight 16 -pin I.C. pads, approx. area $9.5 \times 7.5 \mathrm{in}$.)
Regular Price: $£ 2.66$
OFFER PRICE: $£ 1.79$ inc
DISCRETE PACK
Comprises one of each:
ZViV (approx. area 2.5 x
5in.)
ZB5D (approx. area
$3.6 \times 2.4 \mathrm{in}$.)
SB8D lapprox. area
$9 \times 7.5 \mathrm{in}$.)
Regular Price: $£ 2.29$
OFFER PRICE: $£ 1.64 \mathrm{inc}$

## PB

PB Electronics (Scotland) Ltd. 57, High Street, Saffron Walden, Essex. CB10 1AA


WW-069 FOR FURTHER DETAILS


WW-034 FOR FURTHER DETAILS


## Thisisan echochamber?



Yes, and much more! It is the first N-channel Bucket Brigade Device designed with the audio engineer in mind. The SAD-1024 Serial Analog Delay will provide reverberation echo, tremolo, vibrato and chorus effects in electronic organs and musical instruments. It will equalise speaker systems in an auditorium, or can be used in speech compression or voice scrambling systems. The SAD-1024, which contains two independent sections of 512 analog storage elements will accomplish all of these with a signal-tonoise ratio in excess of 75 dB . The two sections may be used independently or they may be connected in sequence to provide 1024 clock periods of delay. The delay provided by the device can be continuously varied by the clock rate from less than one millisecond to more than one second. Other performance characteristics include: signal bandwidth from 0 to 200 KHz , less than $1 \%$ total harmonic distortion, 0 dB insertion loss, and less than 5 mW power requirements from a single 15 V power supply
You get all these features for less than 1 p per storage element in OEM quantities
We also ofter an optional complete circuit card to help you evaluate this exciting new device. Other devices for applications such as time base correction in the video bandwidth are also available.


## RETICON

The SAD-1024 and circuit card is available immediately from Reticon's sole UK distributors, Herbert Controls and Instruments Limited, Spring Road, Letchworth, Herts SG6 4AJ. Telephone: 04626-3841. Telex: 825535.

## MORE POWVR= MORE TORQUE with the NEW MK. IIDRILL•

## SPEED

10,000 r.p.m.
TORQUE
120 cmg
VOLTAGE
9-14v d.c.
DRILL ONLY £8.79
(p\&p 35p)
STAND $£ 4.40$ (p\&p 35p)
Inc. VAT
(Together 50p p\&p)
Send a $9^{\prime \prime} \times 4^{\prime \prime}$
SAE for illustrated leaflet and order form to:

## PRECISION PETITE LTD.

119 H HIGH STREET, TEDDINGTON, MIDDX.
TEL. 01-977 0878
(24-hour answering service)


8 DECADE RESISTANCE BOX
 TIME ELECTRONICS LTD. Botany Industrial Estate Tonbridge, Kent Tel. Tonbridge (0732) 355993

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.


Our product range comprises:
Low profile (flatform) Timing Miniature Low contact capacity Herme tically sealed - Stepping Mains switching Latching Contact stacks - Solenoids

## Miniature Extra

Heavy Duty Relay AZ 230
Capable of Switching High Power in spite of small physical size. Contact: 1 Changeover
Contact Material
Silver Cadmium Oxide
Rating: 3.5 kVA .16 A .250 VAC max. Dielectric Strength: 2.5 kV rms Coils: $5 \mathrm{VDC}-110 \mathrm{VDC}$ Size: $35.5 \times 19 \times 30.2 \mathrm{~mm}$ Printed Circult Mounting.

We resolve your switching problems rapidly and expertiy. Please contact us for further details.


Zettler UK Division
Brember Road
Harrow, Middx. HA2 8AS Tel. (01) 4220061
A member of the worldwide ZETTLER electrical engineering group. est 1877

## WW-048 FOR FURTHER DETAILS



SHORT \& OPEN CIRCUIT, IMPEDANCE OVERLOAD, MISMATCH AND THERMAL PROTECTION. ONLY 5 EXTERNAL CONNECTIONS REQUIRED.
Full 2 YEAR guarantee.
-NEW•100w MODEL

| Power Output | JPS price <br> ( 80 $(18.75)$ | $$ | $\begin{array}{ll} \text { JPS } & \text { price } \\ 150 & \text { (£29.65) } \end{array}$ |
| :---: | :---: | :---: | :---: |
|  | $\text { 70watts RMS } 7.5 \text { ohms }$ | $\begin{gathered} \hline 110 \text { watts RMS } \\ 7.5 \text { ohms } \end{gathered}$ | $\begin{array}{\|c\|} \hline 170 \text { watts RMS } \\ 7.5 \mathrm{ohms} \\ \hline \end{array}$ |
| Frequ. Respanse | $10.30 \mathrm{kHz} \cdot 0.5 \mathrm{~dB}$ | $10.30 \mathrm{kHz}=0.5 \mathrm{~dB}$ | $10.30 \mathrm{kHz}=0.5 \mathrm{~dB}$ |
| Slewing Rate | 7.3Vper microsec. | BVoer microsec. | 8.4Vpermicrosec |
| T.H.D. | 0.05\% © 1kHz | 0.05\%@ 1kHz |  |
| Damping Factor | 200 | 400 | 400 |
| Hum \& Noise | 116 dB below 70 watts | 115 dB below 110 | 115 dB below 170 watts |
| Input Sensitivity | $0 \mathrm{~dB}(0.775 \mathrm{~V}) 70$ watts | $\begin{array}{\|c\|} \hline 0 \mathrm{~dB}(0.775 \mathrm{~V}) 110 \\ \text { watts } \end{array}$ | $\begin{gathered} \mathrm{OdB}(0.775 \mathrm{~V}) 170 \\ \text { watts } \end{gathered}$ |
| Input Impedance | 47k | 47k | 47 k |
| Power Requirement $\pm$. 35 V olts |  | $\pm 45$ Volts | $\pm 55$ Volts |
| Overall Dimens. | $\begin{aligned} & 5.8^{\prime \prime} \text { Long } \times 3^{\prime \prime \prime} \\ & \text { wide } \times 1^{\prime \prime} \text { High. } \end{aligned}$ | $\begin{aligned} & 5.8^{\circ} \text { Long } \times 3^{\circ} \\ & \text { Wide } \times 1^{\prime \prime} \text { High } \end{aligned}$ |  |
| For Industrial usage the frequency response of the amplifiers can be extended down to $\mathrm{DC}+0 \mathrm{~dB}-0.2 \mathrm{~dB}$ Input Impedance \& Sensitivity can be modified to suit particular requirements. |  |  |  |
| POWER SUPPLIESPS 100 powers 1 JPS 100 price £14.10 |  |  PS 150/2 powers 2 JPS 150 price $£ 23.43$ Subiect To 8\% VAT |  |
| PS 100 powers 1 JPS 100 price $£ 14.10$ <br> PS150 powers 1 JPS 150 price E 17.48 <br> All Prices Ar |  |  |  |  |
| BELMONT HOUSE - STEELE ROAD PARK ROYAL - LONDON NW 10 7AR TELEPHONE 01-961 1274 |  |  | $y$ |



# microprocessors is the success story of 1977 

MICROPROCESSORS was launched as a quarterly journal in September 1976 to meet the challenge posed by the enormous growth of microprocessor applications in the electronics industry
the response was tremendous, and as this growth continued into 1977 MICROPROCESSORS is expanding - from February 1977 it is published alternate months
in fact, the only thing about $M / \angle R O P R O C E S S O R S$ that is not expanding is the price - an annual subscription (six issues now) still costs $£ 20.00$ in the UK and $£ 26.00$ ( $\$ 67.60$ ) overseas

| Advertisement rates | 1 insertion | 4 insertions |
| :--- | :---: | :---: |
| Whole page ( $255 \times 177 \mathrm{~mm}$ ) | $£ 200$ | $£ 150$ |
| Half page | $£ 125$ | $£ 100$ |
| Quarter page | $£ 75$ | $£ 60$ |
| For further details, contact: |  |  |
| John A. Godley |  |  |
| Advertisement Manager |  |  |
| MICROPROCESSORS. Dorset House. Stamford Street, |  |  |
| London SE1 9LU |  |  |
| Telephone: 01-2618359/8503 |  |  |
| Telegrams/Telex: Micprosurs, Bisnespres London 25137 |  |  |

## Rencropprocrossore <br> keepspace with the technical developments. Devoted solely to the hardware, software and applications of microprocessors and microcomputers, it is international in outlook and readership

$\qquad$
To: IPC Science and Technology Press Limited, IPC House, 32 Ifigh Street, Guildford, Surrey, England GUI 3EW Telephone: 0483.71661 Telex: Scitec Cd 859556 . Please send me further details about MICROPROCESSORS and a subscription order form

## Name

Organisation and address

| PROJECT 80 AUDIO MODULES <br> P25 £4.95. $240 \subset 5.75$ <br> Project 8050 18.95 <br> BI-PAK AUDIO MODULES <br> S450 luner £20.95. Al60 £4.60. <br> PA100 £14.95. MK60 AudiO Kit <br> £31.95. Teak 60 £12.95. Stereo 30 | SINCLAIR CALCULATORS. WATCHES AND POCKET TV New Sinclaı Pocket TV $£ 165$. Cambridge Scientific $\mathbf{£ 8 . 9 5}$. Oxford Scientific £13.30. Mains units £3.20. Grey watch bracelet E16.45. White watch £ 13.95 |
| :---: | :---: |
| £16.95. SPM80 £3.95. BM T80 £3.62. PS 12 £1.75. T538 £3.15. Send sae for free data <br> SAXON ENTERTAINMENTS MODULES <br> SA1208 £20.50. SA1204 £14. SA608 | SINCLAIR IC20 <br> \|C20 10W +10W stereo amp kı1 with printed circurt £4.95. P220 Power supply for above £3.95. VP20 Control and preamp kit £8.55. |
| £13. PM $1201 / 8$ £12. PM $1202 / 8 £ 19$. PM1201/4 £12. PM1202/4 £19. PM601/8 $£ 12$. | JC12 AMPLIFIER <br> 6W IC audio amp with free data and printed circuit <br> £2.25. <br> DELUXE KIT FOR JC12 <br> Volume and tone controls and extra parts for the pcb Mono £2.39. Stereo £5.25. JC12 POWER KIT <br> Supplies 25 V 1 Amp $£ 3.95$. <br> JC12 PREAMP KITS <br> Type 1 for magnetic pickups. mics and tuners Mono£1.50. Stereo E3.00. Type 2 for ceramic or crystal pickups Mono 88p. Stereo £1.76. <br> SEND SAE FOR FREE LEAFLET |
| JC40 AMPLIFIER <br> New integrated circuit 20W amplifier chip with pcb and data $£ 4.45$. |  |
| FERRANTI ZM414 <br> IC radio chip £1.44. Extra parts and pcb for radıo £3.85. Case £1. Send sae for iree leaflet. |  |
| BATTERY ELIMINATORS <br> MILLENIA KITS <br> 5 Transistor highly stabilized power units. Switched 1 to 30 V in 0.1 V steps. Send sae for free leaflet 1 Amp kıt £12.45. 2 Amp kıt £14.95. Cases £2.95. <br> RADIO MODELS <br> 50 mA with press-stud battery connectors. 9 V £3.75. $6 \mathrm{~V} \in \mathbf{~} 3.75 .41 / 2 \mathrm{~V} £ 3.75$. $9 V+9 V \quad £ 5.45 . \quad 6 V+6 V \quad £ 5.45$. $4^{1 / 2} V+4^{1 / 2} V £ 5.45$. <br> CASSETTE MAINS UNITS <br> $71 / 2 \mathrm{~V}$ with 5 pin DiN plug 150 mA E3.95. <br> 3.WAY MODELS <br> Switched output and 4-way multi-jack Type $13 / 4^{1 / 2} / 6 \mathrm{~V}$ at $100 \mathrm{~mA} \mathbf{E 3 . 2 0}$. Type $26 / 71 / 2 / 9 \mathrm{~V}$ at 150 mA £ $\mathbf{3 . 3 0}$. FULLY STABILIZED MODEL E 6.45 Swiched $3 / 6 / 71 / 2 / 9 V 400 \mathrm{~mA}$ Stabl. tized. <br> CAR CONVERTORS <br> Input 12 V DC Output $6 / 71 / 2 / 9 \mathrm{~V}$ DC 1 Amp Transistor stabilzed £5.10. |  |
|  | S-DECS AND T-DECS |
|  | $\begin{aligned} & \text { S-DeC } £ 2.24 \\ & \text { T-DeC } £ 4.05 \end{aligned}$ |
|  | u-DeCA $£ 4.45$ <br> u-DeCB $£ 7.85$ |
|  | 16 dil ic carrie |
|  | with sockets ¢2.05 |
|  | BATTERY ELIMINATOR KITS |
|  | 100 mA radio types wit |
|  | battery terminals $41 / 2 \mathrm{~V} £ 2.10$. |
|  | $9 V £ 2.10 .41 / 2 V+41 / 2 V$ ¢2.80. |
|  | £2.80.9V + 9V£2.80. |
|  | 100 mA cassatte type: $7^{1 / 2} \mathrm{~V}$ din plug £2.10. |
|  | Stabilized 8-way types: transistor stabilized to give low hum $3 / 41 / 2 / 6 /$ $71 / 2 / 9 / 12 / 15 /+8 \mathrm{~V} 100 \mathrm{~mA}$ model |
| PRINTED CIRCUIT KIT |  |
| Make your own printed circuits Contains eiching dish, 100 sq ins of copper clad board lib terric chioride, etch resist pen. drill bit and laminate cutler $\mathbf{£ 4 . 2 5}$. | $81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28$ <br> 34 / 42 V 1A £4.95. 2A £7.95. <br> Car convertorkit: Input 12V DC Output <br> $6 / 71 / 2 / 9 V D C 1 A$ regulated $£ 1,95$. |

SWANLEY ELECTRONICS
DEPT. WW, PO BOX 68, 32 GOLDSEL ROAD, SWANLEY, KENT BR8 8 TO
arder only Na callers. Post 30 on orders under 22 23. otherwise free. Prices include

WHAT IS IT?


IT'S
A QUARTZ DIGITAL CLOCK Mrs Mins. AM/PM Day Date A Alarm Memories A STOPWATCH To 9 hrs 59 mins a calculator ANO and Date calculations
ANOTHER CASIO

NEW
1977 Casio Casiotron Watches 8 functions and backlight
Arguably the best watches in the world - at any price Certainly the most versatile R188 (R R.P E75.95\}
S168 (R R.P. $£ 89.95$ ) S168 (R. R.P. £89.95)
S15B (R.R.P E99.95) S 15 B (R.R.
(ll|ustrated)
Other CASIOTRON watches


Fairchild Timeband L.C.Ds. Battery Hatch for Self-change Free Replacement Battery
Lower prices - Higher quality $5+4$ functions. Round watch on strap TC411. Chrome £25.95. TC410. Gold £28.95 $5+4$ functions Illustrated
TC413. Chrome

NEW. TIMEBAND DIGITAL ALARM CLOCK with snooze button $£ 14.95$ Send 10 p for ou IlLUSTRATED CATALOGUE Probably the WIDEST RANGE of the BEST watches at the LOWEST prices. Accurist. Ibico National Semiconductor

## Dept. W.W.

19.21 Fitzroy Street Cambridge CB1 1EH
Telephone: 0223312866
 WW-029 FOR FURTHER DETAILS

## AMPLIFIER MODULES

25-100 W rms FROM TAMBA ELECTRONICS
LOW COST QUALITY POWER AMPLIFIER MODULES POWVER SUPPLIES \& MIXERS FOR HI-FI, DISCO, P.A GROUP \& CLUB APPLICATIONS

TAM1000 100 watts rms into 4 ohms. 65 v supply $£ 9.80$
TAM500 50 watts rms into 4 ohms, 45 v supply $£ 7.50$
TAM250 25 watts rms into 8 ohms, 45 v supply $£ 4.75$
$20-20,000 \mathrm{HZ} \pm 1 \mathrm{~dB}$SILICON CIRCUITRYTHROUGHOUT
High sensitivity ( 100 mV 40 K ) Low distortion (typically POWVER SUPPLIES:
$0.1 \%$ ) $\begin{array}{ll}0.1 \% \text { ) } & \text { POWVERSUPPLIES: } \\ \text { Low profile ( } 1 \text { in high } \times 31 / 2 \times & \text { For one TAM } 1000\end{array}$ Low profile ( 1 in high $\times 31 / 2 \times$ 3 in ) Four simple connections Gour simple connections TAM 250/500 £ 7.50
High grade components used throughout e.g. Texas Mul lard, R.C. A. Plessey etc

## MODULAR MIXER PRE-AMP £6.50

## 60 mm slider volume

$\qquad$ controls
Buitt-in supply smoothing
Operates from main supply

ised alu minıum facia
High \& medium sensitivity mputs Form up to 10 channe systems
Accepis a wide variety of


WW-027 FOR FURTHER DETAILS

The All-Electronics Show, Grosvenor House, Park Lane, London, W.1. 19th - 21st April.

## We're name dropping!

T. Foxall \& Sons Ltd GEC Semiconductors Lid Gemini
Giltech Components Ltd W.L. Gore \& Associates Lid Gould Advance Ltd Hartley Measurements Havant Instruments Lid Highland Electronics Lid Hunting Hivolt Ltd Icthus Instruments Ltd icthus Instrument Intel Group of Compani Intime Electronics Ltd ITT Component Group ITT Electronic Services ITT Microprocessors JThicroprocessors Journal of ATE Kemo Ltd
KGM Electronics Ltd Labhire Lid
Lambda Electronics Ltd Lan Electronics Lid F.C. Lane Electronics Ltd Lascar Electronics Lawtronics Ltd Lemo U.K. Ltd Lititelfuse (GB) Lid Littex
Lipa \& Isostat (GB) Lid J.J. Llavd Instruments Ltd Malden Electronics Molex Lid
New Electronics Nortronic Associates Normatair Garrett Oakleigh Engineering Oakleigh Engineer Electronic Instruments

Philcom Electronics Ltd Phoenix Electronics Lid Pinnacle Electronics Ltd Plastronics Lid Plessey Aerospace Plessey Semiconductors Plessey Traffic \& Instrumentation Powertron Ltd Practical Electronics Pye Unicam Ltd Raytheon Semiconductors Reading Windings Lid Redpoint Ltd Ritro Electronics Lid Ross Courtney Roxburgh Electranics R.S. Components Lid S.A.S.C.O. Semiconductor Specialists Serab Electronics Siliconix Ltd Sprague Electric U.K. H.W. Sullivan Lid Symot Lid
Synchro Services Tektronix U.K. Ltd Teledyne Semiconductor Telequipment Telonic Altair Texas Instruments Toko U.K. Ltd Unimatic Engineering Lid Variohm Components Vero Electronics Walter Logan \& Co Lid Wavetek Weir Electronics Ltd Zettler U.K.

## CATRONICS WW TELETEXT苗 ...... m DEDDER

Our kit contains alt the printed circuit boards and components necessary to build the complete decoder
within the televiston cabinet and the main decoding control and memoryally installed separate cabinet positioned on top of the television

PRICES (INCLUDING VAT) ARE AS FOLLOWS:

| INCLUDING VAT) ARE AS FOLLOWS: |  |  |
| :---: | :---: | :---: |
| Siandard version | New version | Post $\&$ |
| using 2513 | with Texas $\times 887$ | Packing |
| $£ 2070$ | $£ 2065$ | 300 |
| $£ 12095$ | $£ 13370$ | $£ 100$ |

Set of 5 PCBs
£12095
£13370
£1 00
add-on Unit for lower
£270
case
PC8 only 1270
Component K $£ 1375$
$£ 1485$
Cabinet £ $£ 1485$ £1485
PLATED THROUGH hole PCBs are avalable for TEXAS version only at additional cost of
A reprint of the series of articles is avaitab $£ 27$
COMPONENTS ALSO AVAILABLE SEPARATELY - SAE for price list. READY BUILT \& TESTED DECODERS also available at $£ 241.87+£ 3$ Carr.

## MOBILE <br> AERIALS

A 'must' for all users of Commercial Radio
Catromics stock a wide range of whip type aerials and a variety of bases. including types that do not require a fixing hole in the car. We can, therefore, supply virtually ANY frequency aerral for mounting on ANY cart These aerials are particularly suitable for MINIcabs, Breakdown Trucks and other RADIO-CONTROLLED service vehicles


## 曰

Used Video Equipment bought and sold daily If we do not have what you want, we enter your require ments on our register and advise you when it is available
U.H.F. Modulators supplied for connecting a camera directly to a domestic TV or Philips VC.R Camera Kits for the enthusiast also in stock
Fujinon lens available
Repars of all types of Video
equipment undertaken
WHATEVER YOUR VIDEO REOUIREMENTS
IRST CONTACT CROFTON
CROFTON ELECTRONICS LTO
35 Grosvenor Road
Twickenham
Middx. TW1 4AD 01-891 1923

Get mixed up with SOUNDEX
This year 6-2 mixer

| Floating | Each | RSA | PPM | All- |
| :---: | :---: | :---: | :---: | :---: |
| transformer | with | \& | to | metal |
| mputs | 5 modes | pan-pot. | BS 4297 | case |

Plus: Pre-fade listen, break jacks on four channels, A-B tape monitoring, Built-in 1 KHz line-up osc. XLR-type connectors, 24-volt power input. For broadcasting and recording. less than $\mathbf{£ 4 0 0}$ plus VAT

## SOUNDEX LIMITED

728 High Road, Leytonstone, London. 539.4347
WW—087 FOR FURTHER DETAILS


Erie Technological Products Inc. with manufacturing locations at Erie, State College and Carlisle in Pennsylvania U.S.A., Trenton in Ontario Canada and Nogales in Mexico, offer an unequalled range of electronic components for the professional market. Product ranges manufactured include - -
Monolithic Ceramic Capacitors (Monoblocs) Rectangular and Tubular moulded, and tubular glass sealed.
Trimmer Capacitors (ceramic, air, plastic, glass and quartz).
'Transcap' Disc, feedthru, and tubular ceramic
capacitors, button micas, plastic film capacitors.
Low pass filters, custom design filter connectors and multi section filters
H.V. rectifiers, and multiplier assemblies.

High voltage power supplies.

## For furrher information contruct:-

## ERIE ELECTRONICS LIMITED

Resistor Division
South Denes, Great Yarmouth, Norfolk.
Tel: 049356122 Telex: 9742 I

## TIME + FUEL+ EFFORT = MONEY

You can effectively reduce costs by the installation of a STORNO mobile radio system.

To investigate further, write, telephone or telex to


RADIO COMMUNICATION SYSTEMS
Storno Limited, Frimley Road, Camberley, Surrey. Telephone: Camberley (0276) 29131 Telex: 858154

## SCRUMPI

Bywood's Evaluation Kit for the SC/MP microprocessor system. The kit contains MPU chip, $256 \times 8$ bit RAM, 2 4 bit I/O latches, 24 LED lamps and drivers, 16 data and control switches, all IC sockets, all associated components, PCB and cable. The switches allow you to program the $256 \times 8$ bit RAM and then execute the program in that RAM. Several operating modes allow for ease of programming and testing. SCRUMPI can be extended to access up to 64 K bytes and can easily be interfaced to RAM, EAROM, PROM, Keyboard, VDU, Printer, etc. Kit requires $+5,-7 v @ 200 \mathrm{~mA}$. Kit price $£ 64.81$ + VAT.
SCRUMPI EXTENDER CARD. Available early 1977 this PCB contains interface to 1 K PROM, 1 K EAROM, 512 RAM, plus device controls. Supplied with or without chips, write for further details.
RAMs, PROMs, EAROMs, Floppies, Printers, Keyboards, Interfaces, VDU systems, Power Supplies and even consultancy. We can set you up in microprocessors with very little trouble and with very little pain.
For expert advice on hardware or software or even if you want to know the difference, or to order any of our products' ( 25 p to $£ 5000$ ) ring us on 0442-62757. our technical people don't bite.

## PAYMENT TERMS

Cash with order, Access, Barclaycard (simply quote your number and sign). Credit facilities to accredited account holders. Pro-forma invoices can be issued.


BYWOOD ELECTRONICS
68 Ebberns Road Hemel Hempstead HP3 9RD
Tel 044262757

## HVS VIDEO PROCESSORS

for Industry, Education, Research


Fast non-contact measurement of position and size, using input from standard CCTV cameras
Automatic visible-flaw detection
Graphical and message displays on standard CCTV monitors. Interfaces for hard-wired and computer systems
VP $101 / 102$ Video Target Locators
(for automatic positioning systems)
VP 103 Video Target Height/Position Indicator
VP 104 Visible Flaw Detector
VP 105/106 Video Level Indicators
VG 101 Bar Graph Generator
(displays on CCTV monitor)
Specials designed and manufactured
Further information from
HAMPTON VIDEO SYSTEMS LTD.
Heath Road, Twickenham TW1 4BN Tel: 01-891 1974


World-wide exporters of crystals \& filters
Manufacturers of DIP crystal oscillators from 10 kHz to 20 MHz
sole agents for
[FILTRONETICS LC \& crystal filters from 10 Hz to 100 MHz STATEK Uitra miniature low frequency crystals ELECTRO DYNAMICS High volume timing crystals


29 Market Street, Crewkerne, Somerset England TA18 7JU Telephone (0460) 74433 Telex 46283 inface g

WW-07I FOR FURTHER DETAILS

modification whatsoever! You just plug the decoder's output into your aerial socket. Our Teletext decoder has its own mains power supply, works with any 625 -line receiver, monochrome or colour, and to make assembly particularly easy, the design uses four p.c.b.s which plug in to a main 'mother' board. Also, to simplify alignment, the very latest receiver techniques are used in the i.f. strip. All p.c.b.s will be made available through Television magazine's Reader's P.C.B. Service.
Part 1 of the Teletext decoder is in our March issue on sale now. It covers fundamentals and power supply details. Part 2 in the April issue begins the logic section.
Take up the March issue out now

## JOYSTICKS



Precise, reliable, long-life Joystick Control Units, in single, dual or triple axis forms. Sprung to centre, or held by adjustable friction locks. Choice of wirewound, cermet or plastic film potentiometers (all standard $3 / 8^{\prime \prime}$ bush types) - or rotary switches.
Already in quantity production for remote control. TV games, electric wheelchairs, audio control panels, etc., etc. Any quantity from one-off to hundreds per month. Typical one-off prices: Single axis $£ 4.50$. Dual $£ 6.50$. Triple $£ 11.00+$ VAT.

TELEVISION GAME JOYSTICKS
We have finalised the design of an ULTRA LOW COST dual axis Joystick for the home television game market. and wish to arrange mass production for a large scale manufacturer of such games, in the mass production

## FLIGHT LINK CONTROL LTD.

Bristow Works, Bristow Road
Hounslow, Middlesex, 01-570 4065
WW-086 FOR FURTHER DETAILS

TELERADIO SPECIALISTS IN DESIGNS by John Linsley Hood
Example 25 to 75 watt. Very Low Distortion HIGH FIDELITY STEREO AMPLIFIER D.C. Coupled T.H D. hardly measureable.


Supplied as a Kit of parts or in ready assembled module form
A/so available: Phase Locked Loop. F.M Tuner: Millivoltmeter: Audio Signal Generator: TH. Distortion Analyser; F.M. Signal Generator/Wobbulator.

Send SAE for comprehensive illustrated lists and up-to-date prices INCLUDING BROMLEY AND BAILEY DESIGNS
TELERADIO ELECTRONICS
325 Fore Street, Edmonton, London N9 OPE
Telephone: 01-8073719
Closed Thursdays

## carbon film resistors £2:50 trat per 1000! <br> $1 / 4$ W 5\% TOL E24 RANGE

SUPPLIED ONLY IN MULTIPLES OF 1000 pcs per OHmic VALUE MIN. ORDER £25 While stocks last

SEND FOR LISTS \& SAMPLE OTHER ITEMS AVAILABLE PBRA LTD THREE ELM LANE GOLDEN GREEN TONBRIDGE TN 11 OLH phone HOPFIELD (073274) 345

WW-038 FOR FURTHER DETAILS


## The dual trace D6la

The D6la from Telequipment is a versatile 10MHz dual trace model particularly suited to radio and TV servicing or for general laboratory or classroom work. The dual trace facility includes automatic selection of 'chopped' or 'alternate' modes and an XY capability. A large viewing screen, and simple but effective triggering make the D6la ideal for the busy service engineer.

## \& the $\mathbf{S 6 1}$ single trace

The Telequipment S 61 - a rugged 5 MHz single beam 'scope featuring ease of operation and efficient triggering using the absolute minimum of controls. Viewing is enhanced by a large 5 inch CRT screen. In the auto-mode, the sweep free-runs so that in the absence of a signal you still see the trace Its simplicity of operation makes it ideal for general industrial purposes or for use by non-technical personnel.


# wireless world 

## Electronics, Television, Radio, Audio

## APRIL 1977 <br> Vol 83 <br> No 1496

## Contents

35 Time, gentlemen, please
36 NRDC surround-sound system by M. A. Gerzon
39 News
40 Characteristics and load lines $-\mathbf{5}$ by S. W. Amos
44 Wireless World amateur radio station
45 Sensitive metal detector by D. E. O'N. Waddington
48 H.F. predictions
53 New of the month
Bullock's boardroom and the engineer
Britain pioneered the integrated circuit
Vmos devices "middle of this year"
57 Education by radio in Honduras by M. K. Bates
60 Literature received. 100 years ago
61 Circuit ideas
Simple noise generator
Variable band-pass filter
Ripple eliminator
65 Viewdata - 3 by S. Fedida
70 World of amateur radio
73 Electronic rhythm unit - 2 by A. Battaiotto and G. Ronzi
76 Letters to the editor
The Warden Report
Current dumping amplifier
Advanced pre-amplifier design
79 Broadcast stereo coder by T. Brook
83 Power semiconductors by M. R. Sagin
93 New products
96 Just for the record by A. D. Foster
APPOINTMENTS VACANT
INDEX TO ADVERTISERS

[^1]ISSN 00436062


## The Test of Time

Critics were most generous in their praise when the Shure V-15 Type Ill pickup cartridge was introduced. The ultimate test however, has been time. The original engineering innovations, the uniquely uniform quality and consistent performance reliability of the V-15 Type
 II have made it THE classic choice as the source of sound for the finest music systems, both here and abroad.
Consider making the relatively modest investment of a new cartridge to upgrade the performance of your entire hi-fi system. Why not ask Shure Electronics Limited for their recommendation?

Shure Electronics Limited
Eccleston Road. Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881


The original manuscript by J. S. Bach shown is repro duced by kind permission of The British Library

## wireless world

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors
MIKE SAGIN
Phone 0I-261 8429
RAY ASHMORE, B.Sc., G8KYY
Phone 01-261 8043
JOHN DWYER
Phone 01-261 8620

## Production:

D. R. BRAY

Advertisement Controller:
G. BENTON ROWELL

Advertisements:
PHILIP NOSSEL (Manager)
Phone 01-261 8622

LEO KEMBERY
Phone 01-261 8515

OWEN BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

## Time, gentlemen. Please!

When this issue of Wireless World appears on the news stands the deadline for submissions to the Home Office on British policy on frequency reallocations for the 1979 WARC will be only six weeks away. (See News of the Month, March p.37). Yet a few months ago even this much consultation seemed out of reach. The Home Office is to be congratulated on reversing its policy of selective consultation and giving the public a chance to have their say. It could be argued, indeed, that the process might have begun much earlier had the electronics industry and its representatives been less acquiescent in the Home Office's reluctance to encourage public intrusion. Even though the discussions to which the discreet trusties we referred to in December found they had an exclusive entrée were on matters of public concern far beyond their immediate interests, they made, at first, no effort to press for a programme that might dilute their own bargaining strength.

But it is for the electronics industry, singly and collectively, to put its own house in order. The immediate need is to make sure that the 1979 package is a fair reflection of the views of all those with an interest in the allocation of frequencies. The Home Secretary's statement is only a beginning. Indeed it contains a surprising admission of the inadequacy of what he has craftily called "the preliminary phase" of the work for the conference: although, he says, a substantial measure of consultation with users and manufacturers has already taken place, during the next phase "those known to have an interest will be specifically invited to comment." One wonders how "substantial" the measure of consultation during the preliminary phase could have been.

One hopes, too, that equal weight will be given to the public's views as to those "specifically invited." This can only be the case if the public is as well informed as those "known to have an interest," yet we have not received any details of the Home Office proposals for disseminating the contents of the Warden reports and any others relevant to the WARC. If the "wider programme of consultation" is to be anything more than an empty political gesture these reports must be made public.
The ten days following the publication of the next issue of Wireless World will not give enough time to read the available material, to consult colleagues, and to draft a considered proposal. The consultation period should be extended, just as the Annan committee extended theirs. An extension to the end of the year would give officials a clear year to collate and prepare the British case. Is that so much to ask?

# NRDC surround-sound system 

# Michael Gerzoñ reveals the thinking behind system 45J 

by Michael Gerzon, M.A., Mathematical Institute, Oxford

This article gives a feel for how it has proved possible to evaluate the whole range of possible methods of encoding and decoding surround-sound based on fundamental psychoacoustic principles. Although the full development was highly mathematical, the basic principles underlying the Ambisonic or NRDC 45J system" of surround-sound are described without mathematics, this new system being the best possible according to the methods used.
Up to now, surround sound system design has to a considerable degree been based on guesswork as to what signals fed to an array of loudspeakers will produce a "desirable" directional affect. As an exhaustive experimental evaluation of the directional effect of arbitrary crosstalk patterns for even just a square speaker array involves consideration of a six-parameter family of crosstalk configurations, and as even small variations of the crosstalk pattern can produce significant alterations of directional effect, it would be necessary to do experiments for about 10 different crosstalk patterns before one could say that a system could be optimized purely on the basis of experimental data. This is impracticable

A very general theoretical framework has been developed' to assist in maxi mizing the information that can be deduced from limited experimental tests on human directional psychoacoustics. Certain aspects only of this psychoacoustic framework are discussed in this article.

At low frequencies, the information reaching the brain consists of the sum of the inputs to the two ears, i.e. an omnidirectional or "pressure" sound pick-up and the difference of the inputs to the two ears, i.e. a sideways-pointing figure-of-eight or "velocity" pick-up Fig. 1. Most low frequency ( $<700 \mathrm{~Hz}$ ) theories of hearing assume that only the interaural phase is used to determine direction, which is equivalent to saying that only those components of the sideways figure-of-eight pick-up that

* System 45 J is the subject of a UK-section AES meeting to be held on 12 April at the IEE, savoy Place. 19.00 h . Title is "Hearing and sur-round-sound," by P. B. Fellgett. M. Gerzon and T Takagi.
are in-phase or out-of-phase with the pressure signal components are used by the ears. In practice the $90^{\circ}$-phase components of figure-of-eight pick-up do affect localization quality toward the top end of this low frequency range, and produce an effect called "phasiness."

In practice, the head may rotate, so that the forward-pointing figure-ofeight pick-up of sound information is also used to determine sound direction. The relative intensity of in-phase figure-of-eight signals in the forward and sideways direction defines a vector pointing in the apparent sound direction according to Makita's theory and is susceptible to calculation as described in reference 4 . The length of this vector


Fig 1: Pressure and velocity (figure-of-eight) pick-up characteristics of the sum and difference of the inputs to the two ears of a listener at low frequencies.
(divided by the pressure amplitude) should be one for real-world sounds, and so decoders should be designed with a pressure-to-velocity ratio assuring this requirement for all reproduced sound directions at low frequencies, in addition to ensuring correct Makita localization. It is an incorrect velocityvector length that makes the side image reproduction so poor in conventional "discrete" quadraphonics.

If there is too high a phasiness, it is clear that this can be reduced for a given decoder design by subtracting from the figure-of-eight signals a suitable amount of $90^{\circ}$ phase-shifted pressure signal. In practice, the amount of unwanted $90^{\circ}$-shifted figure-of-eight information varies with sound direction, so that phasiness compensation to reduce phasiness in one direction will tend to increase it in the opposite direction. Nevertheless, it is possible to use this technique to give a subjectivity optimized phasiness, as shown in Fig. 2.

The block diagram of Fig. 2 is a psychoacoustically optimized decoder consisting of a phase-amplitude matrix producing pressure, forward and sideways velocity and $90^{\circ}$ phase-shifted pressure signals from the input channels; the design of the phase-amplitude matrix depends on the encoding system.

Fig 2: Block diagram of decoder satisfying the main psychoacoustic requirements. Shelf filters are all-pass types designed to have identical phase responses, and make the decoding matrix varying frequency according to the frequency-dependent properties of human hearing.


The shelf filters are frequency-dependent gains that permit adjustment of the relative velocity and pressure gains so that at low frequencies the velocityvector length is correct, and at higher frequencies other psychoacoustic requirements, described later, are satisfied. The "distance compensation" is high-pass RC filtering of velocity, typically -3 dB at 20 Hz , to compensate the bass boost of the velocity signals produced at the listener by the curved sound field (caused by finite loudspeaker distance). It is mainly the phase response of this filter that is psychoacoustically important. The output amplitude matrix produces speaker feed signals, dependent on the speaker layout used, that create correct pressure and velocity at a central listening position.
At higher frequencies, about 700 to 5 kHz , a different class of theories of hearing take over. In these theories localization is via signal energy, and is determined by drawing a vector pointing to each speaker having length equal to the energy of a sound from that speaker. The sum of these vectors is a vector pointing in the intended sound direction, which direction is the "energy vector localization." The length of this vector, divided by total energy (energy vector magnitude) is 1 for real-world sounds, and should be as large as possible in decodecs for good localization.
There is a transitional frequency band, 250 to 1.5 kHz over which both classes of theories may apply, and it is important that decoders should give both correct pressure/velocity and energy localizations as far as possible over this transitional range. This is ensured by designing decoders to give Makita and energy vector localizations that are identical at all frequencies; this may be ensured for many types of speaker layout (rectangle, hexagon, etc.) by a suitable design of output matrix. The shelf filters in Fig. 2 are then chosen to give optimum velocity magnitude at low frequencies and optimum energy vector magnitude at high frequencies. Note that this design procedure involves designing not only optimum low and high frequency decoding matrices, but an optimal variation of the matrix over the transition frequency ange.
One result that emerges from this theory is a remarkable mathematical theorem to the effect that the optimal accuracy of reproduction of images in non-speaker directions via a rectangle of speakers can be obtained only if the four speakers are fed with not more than three information channels; it may be shown that $-L_{B}+L_{F}-R_{F}+R_{B}$ should always be zero for best results. Experiment confirms the theory.

Given that we have a means of designing decoders for optimal psychoacoustic results for any encoding system capable of producing suitable pressure and velocity signals, the aim is


Fig 3: Angle $\theta$ of stereo stylus motion in record groove corresponds to an angle 20 on a circle representing possible stereo positions.


Fig 4: Circle point $A$ goes to point $B$ on sphere by a rotation by angle $\theta$ equal to the phase lead on the left channel.


Fig 5: Typical stylus motions (for sine wave signals) and left and right channels gains corresponding to various points on the energy sphere.
then to find the best encoding system, i.e.. the one whose optimized decoder gives better results than for all other encoding systems.

It is possible to classify mathematically all systems with not more than three channels that are capable of satisfying the Makita, energy vector and velocity magnitude requirements via suitable decoders. This classification involves about 40 pages of mathematics, but can be solved exactly. The theory involved also gives the detailed
parameters of decoders that optimize the reproduced psychoacoustics of the directional effect for every sound direction.

The requirements on surround-sound performance of such systems include the following.

- The two baseband stereo signals L and R must be decodable for surround directional reproduction in a way satisfying all the basic psychoacoustic criteria discussed earlier.
- It must be possible to supplement the baseband with a third signal capable of being decoded with improved directional effect. A fourth channel is not required as it can only degrade directional reproduction.
- To achieve high quality from carrier discs, which have certain inherent theoretical limitations determinable by standard information theoretic analysis, it is necessary to bandlimit the subcarriers to a few kHz .
- It is required that satisfactory decoders be designable for the case when the third channel is bandlimited, not only in directional effect, but also in flat reproduced frequency response in all encoded directions. The directional effect requirement for such " $21 / 2$ channel" use means that, as the third channel is attenuated the Makita (and hence energy vector) localization of a three-channel decoder should remain unaltered.
- Within these above constraints, the two channel decoding should be capable simultaneously of low phasiness for front-stage sounds, good localization at the left and right side positions, and with a uniform reproduction of ambience information around the listener on "natural" ambient recordings.

A way of describing the two-channel baseband encoding is the "energy sphere" (ref. 2) which represents the relative phase and amplitude gain of each sound on the two channels as a point on a sphere. A sound recorded on the two groove walls of a stereo disc (Fig. 3), without the use of phase shifters is represented by a point A on the horizontal circle of this sphere, at an angle from the right-most point of the circle twice as big as the angle made by the stylus motion from the right-chan-nel-only direction of stylus motion. In this way all in-phase and out-of-phase lines of stylus motion are mapped to points around a circle. If the left channel is now made to phase-lead one right channel by a phase angle $\phi$, then the point $B$ on the sphere representing the method of encoding is also obtained from A by rotating the circle about its left/right axis by an angle $\phi$ as shown in Fig. 4. Stylus motions and left and right channel phases and gains corresponding to various points on the energy sphere are shown in Fig. 5.

One may describe a method of encoding by the way its energy sphere point varies with encoded direction. The locus traced out on the sphere as the


Left lags Right
Fig 6: View from right side of energy sphere, showing RM (Regular Matrix) BMX and BBC Matrix H system two-channel encodings. Angles indicated round edge show the phase lead of the left channel.
sound rotates through $360^{\circ}$ is shown as the "pan locus" of the encoding system. The best-behaved systems are those in which the left-half and the right-half of the pan locus are mirror images of one another. For such systems, it is convenient to view the locus on the sphere from the right hand side; Fig. 6, shows the side view with various existing system pan loci. The angles round the edge indicate the relative phase lead of the left channel over the right channel, and the centre point represents left-only or right-only.
Fig. 7 gives a rough indication of the acceptability of the mono and stereo quality, as previously discussed. The shaded nearly antiphase region at the back of the sphere must be avoided for direct sounds, both because sound in this region is excessively attenuated in mono, and because the sound is very "phasey" and hard-to-localize in stereo. (It is not always undesirable to have reverberation information in this region, however). Approximate regions of low and medium phasiness effects in stereo are also shown, although the boundaries are not in practice sharply defined. It is possible to have a sensation of unpleasant phasiness for some programme material even when it is all in one low phasiness region, and some material can sound acceptable even in the high phasiness region. In practice, it is found preferable to minimize stereo phasiness for front-sector sounds, even if this means making phasiness marginally worse for rear-sector sounds.

The stereo image must have full stage width. This need not mean the locus passing through the left-only point, but can be achieved as long as the pan locus touches the "speaker position" curve Fig. 7 along which sounds appear to lie in one speaker only in stereo. Thus to get good mono and stereo compatibility, the locus must be moved as far forward as possible, especially for front-encoded sounds, while touching the speaker-position curve.


Fig 7: Quality of mono and stereo reproduction shown on energy sphere viewed from right side. "Speaker position" curved indicates appearing to come from one speaker only in stereo.


Fig 9: Showing optimized
non-symmetric distribution of different encoded directions within the circle "pan locus" of the systems shown edge-on in Fig 8. $\mathrm{C}_{\mathrm{F}}$ stands for
"centre-front," $R_{B}$ for "right-back," $C_{L}$ for "centre-left" and so on. This figure is not a picture of the energy sphere.

Another constraint lies in the requirement for good surround decoding. The effect of using a bent locus, see Fig. 6, rather than a circle locus (whose side view is a straight line!) is that surround decoders give poor sideimage localization and it can be proved that this is inevitable for any design made for such systems according to psychoacoustic theory. The asymmetry between side-to-side and front-to-back performance of bent loci means also that ambience reproduction is poor and that $2^{1 / 2}$-channel decoders cannot give a substantially flat frequency response for all directions of encoding. For these reasons, a circle-locus system must be chosen; otherwise surround reproduction quality inevitability must be degraded.

Pulling a circle locus as far forward as it will go on the sphere while touching the speaker position curve yields possibilities shown in Fig. 8. As the frontcentre interchannel phase angle increases from $30^{\circ}$ to $65^{\circ}$, the stereo phasiness becomes progressively worse for front-sector sounds, but better for back-sector sounds, and mono compatibility improves. One can argue indefinitely about which compromise of compatability properties is best, but we have found that the $45^{\circ} \%-115.5^{\circ}$ locus


Fig 8: Three possible choices of two-channel encoding system having optimized mono and stereo reproduction.


Fig 10: Energy sphere (side view) picture of two-channel version of System 45J encoding.
seems best to satisfy the needs of the widest range of users, including record companies and broadcasters. Moreover, this locus has good performance when used with existing regular matrix (RM) and UMX equipment for decoding. Thus a changeover to this standard should cause minimal disruption, and could simplify the confused market situation by reducing the number of systems on the market.

A further optimization of reproduced surround effect comes from a careful choice of the way different encoded directions are distributed within the circle locus. Low decoded front-stage phasiness in surround may be combined with uniformly reproduced ambience if a sound-azimuth distribution within the circle locus is chosen, as in Fig. 9. This distribution helps widen the stereo presentation for front-stage sounds, thus also giving much better stereo compatibility. The front quandrant of directions alone gives an image filling over 0.8 of the stereo stage in subjective tests. Such "asymmetric circle encoding" requires a careful choice of thirdchannel encoding to achieve the best $21 / 2$-channel decoded results; the mathematics of this is described in reference 4.
The resulting system of encoding, Fig. 10 , is called System 45J, and was chosen only after both exhaustive theoretical studies and experimental tests, as well as international discussions within the audio industry. As it is the first system design based on a complete mathemati-
cal analysis of both system theory and human psychoacoustics, it is possible to say with some confidence that no system appreciably different from it can exceed its performance in optimal surround-sound decoding, so that no further system change is ever likely to be needed for horizontal encoding.
Unlike all previous proposals, System 45 J can handle virtually any legitimate requirement in terms of recording philosophy and yet be suitable for listening in mono, stereo, two-channel surround, $2^{1 / 2}$-channel surround or three-channel surround, giving good results in all modes. There are no sound positions which producers should not use, no incompatibility with types of recording technique such as coincident microphones, and no requirement that variable-matrix decoders be used with their inevitable side-effects.

This choice of encoding system does not prevent equipment manufacturers from using their own decoding philosophy if they desire. For example, both Sansui Variomatrix and the logic decoders can easily be adapted or designed for System 45J. However, if optimum musical results are required, decoders satisfying the maximum number of requirements of human directional psychoacoustics should be used. We have outlined how such decoders may be built ${ }^{*}$; and in the near future, a decoder will be publicly demonstrated reproducing sounds via an arbitrary rectangle speaker layout, that can also be hooked up to feed a hexagonal six-speaker layout for an even closer approach to the ideal illusion.
So far, experimental testing has been carried out via about 30 psychoacoustic decoder designs for a wide variety of encoding systems, and a broad spectrum of studio technology developed to get the best possible results. This information will be made available to the industry. The use of System 45J with this technology gives results that are far more convincing and musical, even via two channels, than was the underdeveloped "quadrophonic" approach to surround sound which has now been rendered obsolete by this work. This work was done as a part of the Ambisonic project of the U.K. National Research Development Corporation.

## References

1. M. A. Gerzon. Surround-sound psychoacoustics, Wireless World vol. 801974 pp. 483-6.
2. M. A. Gerzon. Geometric model for two-channel, four-speaker matrix stereo systems, JAES vol. 23. 1975, pp98-106.
3. M. A. Gerzon. Compatible two-channel encoding of surround sound Electronic Letters vol. 111975 pp. 615-7.
4. M. A. Gerzon. Optimum choice of sur-round-sound encoding specification, 56th AES convertion, Paris March 1977

Following articles will give circuit details of a decoder based on these principles and which will decode system 45J and stereo for square. restangle and hexagon speaker layouts, with distance and psycho-acoustic compensation. - Tech. ed.

## Post Office "holding back technical improvement"

Sixty-one votes prevented Mr Nicholas Ridley from introducing a bill on February 1 to end the Post Office monopoly of the supply of telephone equipment. Seeking leave to introduce a bill he said: "It may be that there are some subscribers who want telephones of different colours from those provided by the Post Office, and they cannot get them. The Post Office monopoly prevents it.
"A more important example is the pushbutton telephone device. We have these in this House, and I can well understand why they have not been allowed outside. If they were unleashed upon the unsuspecting public, dissatisfaction with the Post Office would increase apace. But there is no reason why a really effective push-button telephone should not be offered to subscribers."
Other examples, he said, included automatic telephone dialling equipment, loudspeaking telephones, and more varied answering equipment. "Telephone engineers believe that eventually it will be possible for the telephone connected to one's house to operate as a minicomputer and to give access to one's bank, department store or supermarket direct, and to allow one's meter to be read direct by the telephone. There are all sorts of imaginative, labour saving and exciting devices all within the realms of possibility. But there is one small difficulty the Post Office is sitting on them, and its monopoly is preventing the proper development of these technical devices."
This criticism also affected the dégree of choice available to those subscribers with their own exchanges. His bill proposed that a committee of independent people should check that any equipment developed for the home was compatible with the Post Office network.
The reply to Mr Ridley, the Conservative member for Tewkesbury, a civil engineer and the opposition spokesman on technology and trade from 1969 to 1970, was given by Mr Ian Wrigglesworth, the Labour and Co-operative member for Thornaby and press spokesman for National Giro. He gave a number of reasons why the bill should not be read. The first was that the Carter committee on the future of the Post Office was still sitting, and would probably consider this very point. The second was that the Annan committee was also sitting; "It will no doubt comment on the future of cablevision and on the whole question of common carrier cables."
A third reason he gave was that the testing of each piece of equipment to be
connected to the system would be "a cumbersome, expensive and ineffective process and the consumer would have to bear the costs." Another was that all Mr Ridley hoped to achieve was the creaming off of profitable parts of the Post Office's operations, of which this was one, leaving the Corporation with unremunerative services like the expensively-maintained 'phone boxes. There was already competition among private firms for making small private branch exchanges, special telephones, data transmission and teleprinter equipment provided by the Post Office, though he agreed the range of the equipment so provided ought to be extended. "The Post Office needs to be much less cautious and more aggressive in its marketing and in the number of pieces of equipment that it provides." Joint efforts with manufacturing industry to provide exportable equipment for sale abroad ought to be done through putting pressure on the Post Office
In the division 175 members voted for the motion, 236 against.

## New hope for solar power

A student working on a PhD thesis on the properties of films at the department of plasma physics at Sydney University appears to have discovered an important way of tapping solar energy. Until now, solar cells have managed to produce temperatures of a maximum of 150 C , but the reports from Australia indicate that the new method is able to achieve 300 C as well as being cheaper than other methods. Details of the method are not yet available, but it appears to be based simply on a characteristic of one film that was tried, with chromium oxide as a main constituent, in converting much of that part of the sunlight it absorbs into heat. The student is a pupil of Dr Charles Watson Monro, the professor of plasma physics, and Professor H. Messel.
News of the development came about a week before the government published its long awaited paper on solar energy (Solar Energy: its potential contribution within the United King-dom-Dept of Energy, Energy paper 16, HMSO $£ 3$ ) and announced that the Department of Energy would be adding $£ 3.6$ million to the $£ 2.4$ million already being spent by the Industry and Environment Departments in r \& d on solar energy. The main areas of the new study will be in domestic water and space heating. Up to half the cost of suitable projects by commercial firms would be supplied.

A lecture on "An experimental energy-saving house" will be given at the IEE, Savoy Place on April 21 at 5.30 .

# Characteristics and load lines 

## 5 - Non-linear load lines

by S. W. Amos, B.Sc., M.I.E.E.

Part 3 (October 1976) and Part 4 (February) were devoted to linear load lines but in practical circuits load lines can be non-linear for a number of reasons. In this part we shall examine the forms of non-linearity of load lines that can occur and the effect this has on circuit performance.

## A.c. and d.c. load lines

When a load resistor $R_{1}$ is capaci-tance-coupled to a following resistor $\mathrm{R}_{2}$ there are effectively two load lines, one representing the steady-state or d.c. conditions in the circuit and the other representing the signal-frequency or a.c. conditions: these are sometimes known as the static and dynamic load lines. Because the a.c. resistance in the load circuit is necessarily less than the d.c. resistance, the a.c. load line has a greater slope than the d.c. load line and intersects it at the quiescent point as shown in Fig. 1. As a result the output voltage available from an amplifier is reduced by the connection of $\mathrm{R}_{2}$ : in Fig 1 the peak-to-peak value of the voltage is reduced from $A B$ to $a b$. It is possible that the reduced output may still be adequate for the following stage but the restriction of output voltage is sometimes serious and it is useful to know precisely how great it is. The calculation is easy because the voltage developed across an unshunted load resistor $\mathrm{R}_{1}$ is $I R_{1}$ where $I$ is the alternating component of the active device output current. For the shunted resistor the output voltage is $I R_{1} R_{2} /\left(R_{1}+R_{2}\right)$ in which the reactance of the coupling capacitor is assumed negligible compared with $R_{2}$ at the operating frequency. The ratio of the two voltages is $R_{2} /\left(R_{1}+R_{2}\right)$ which shows that if the shunting resistor is equal to the load resistor the output voltage is halved. To limit the reduction in output voltage to 10 per cent of that developed across $R_{1}$ alone, $R_{2}$ must not be less than $9 R_{1}$. This underlines the requirements, well-known for a voltage amplifier, that the output should be terminated in a high-value resistor.

Fig. 1 also shows the output current waveform as a reminder that there is no corresponding reduction in amplitude as a result of shunting the load. On the contrary the effective reduction in the value of the load resistance increases the current output.


Suppose the amplitude of the input signal to an amplifier with an unshunted load resistor is adjusted so that the operating point moves over the entire length of the d.c. load line. If the load is now shunted the operating point transfers to the a.c. load line which is rotated clockwise with respect to the d.c. load line about the quiescent point. As a result one half cycle of the output signal is clipped as shown in Fig. 2. In effect the a.c. load line now includes a short length of the voltage axis and is thus non-linear. This may seem an academic point because any distortion arising from such non-linearity could easily be avoided by reducing the amplitude of the input signal so that the excursions of the operating point are confined to the linear portion of the a.c. load line. The reduction in amplitude required to do this is given by the expression deduced above $R_{2} /\left(R_{1}+R_{2}\right)$. This is not an academic point, however, because in dióde a.m. detectors harmonic distortion can arise from precisely this cause if there is a resistive

Fig. 1. The reduction in output voltage due to the different slopes of d.c. and a.c. load lines.


Fig. 2. Clipping of output voltage waveforms as a result of the difference in slope between a.c. and d.c. load lines.


Fig. 3. Clipping of output voltage of a diode detector as a result of the different slopes of the a.c. and d.c. load lines.


Fig. 4. Relationship between base current and base voltage for a bipolar transistor.
shunt on the diode load. The mechanism of the effect is illustrated in Fig. 3 which shows the anode voltage/anode current characteristics for a diode. These are sometimes known as rectification characteristics and each curve shows the relationship between current and voltage for a particular value of peak input.
It is assumed that the diode feeds a capacitor which charges up to the peak value of the applied signal. Thus for a $I-V$ peak input signal the diode anode takes up a voltage of -1 V for zero anode current. If current is taken from the diode the anode voltage falls as indicated by the slope of the characteristics. If the signal applied to the diode is amplitude-modulated the peak value varies in accordance with the waveform of the modulating signal and for a $0.5-\mathrm{V}$ peak signal, modulated 100 per cent, the input swings between zero and 1 V . The diode load can be represented by a d.c. load line as discussed earlier and $\operatorname{PQR}$ shows a load line for 5 kilohms, a value commonly used in transistor a.m. receivers. $Q$ is the quiescent point where


Fig. 5. Skeleton form of a driver feeding a complementary class-B stage.


Fig. 6. D.C. and a.c. load lines for the circuit of Fig. 5.


Fig. 7. A.C. load line $P$ ' $Q R^{\prime}$ shows the effect of doubling the step-down ratio of the driver transformer feeding a class-B stage.
the characteristic for $0.5-\mathrm{V}$ peak value intersects the load line. In the absence of modulation, therefore, the diode anode has a voltage of -0.38 V and the diode current is 0.07 mA . When 100 per cent modulation occurs the operating point moves up and down the d.c. load line between the limits of $0.86 \mathrm{~V}(1.7 \mathrm{~mA})$ and zero. This represents the performance of the detector if its true load at signal frequencies is 5 kilohms.
In a practical circuit, however, the output of the diode must be applied to the following stage, normally an a.f. amplifier, and this stage has an input resistance which shunts the diode load. Let us assume that this has an input resistance of 10 kilohms. The a.c. load resistance is thus 3.3 kilohms and the a.c. load line therefore has a slope corresponding to this value of resistance and
passes through the quiescent point as shown by $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ in Fig. 3. This load line intersects the voltage axis at -0.15 V , so clipping one of the peaks of a 100 per cent modulated input to the detector as shown by the shaded area. This represents serious distortion because the upper third of the amplitude range of the signal is not reproduced. The detector can operate reasonably successfully only if the depth of modulation of the input signal is limited to 67 per cent. The tendency in a.m. broadcasting is, in fact, to keep the modulation percentage high so to give a good signal-to-noise ratio. Thus to enable the detector to handle high modulation percentages the shunting effect on the diode load must be minimised and the a.f. amplifier should therefore have an input resistance high compared with the value of the diode load. Perhaps the easiest way of ensuring low distortion would be to interpose an emitter follower between the diode load and the a.f. amplifier.

## Non-linear load resistance

So far in this series it has been assumed that the loads presented to active devices are purely resistive: the load lines are accordingly linear, showing the direct proportionality between current and voltage for such loads.
If, however, active devices are connected in cascade as in multi-stage equipment the load for one stage is often largely determined by the input resistance of the following stage. For a bipolar transistor the input resistance is not linear but varies with input voltage as indicated by the $I_{\mathrm{b}}-V_{\mathrm{b}}$ characteristic in Fig. 4. The slope of this curve is low for small values of $V_{\mathrm{b}}$ showing that the input resistance is high for such values but as $V_{\mathrm{b}}$ increases the slope increases and the input resistance decreases. For small alternating signals the changes in input resistance may be negligible and it is common in the design of small-signal amplifiers to assume that the input resistance is constant throughout each cycle of input signal. For large signals, however, the variations are significant and must be taken into account in designing circuits. This is particularly true of the input resistance of class-B stages where the transistor is biased near collector-current cut-off and is driven into conduction by the input signal. Because a transistor so biased can amplify only one half cycle of a sinusoidal input, class-B stages in linear equipment are operated in push-pull. This makes the stage symmetrical so that the input resistance for a particular value of positive-going input is the same as for a negative-going input of equal amplitude.
As input increases, however, input resistance decreases. To deduce the effect of such input-resistance variations on the shape of the load line for the driver stage consider the circuit shown
in Fig. 5. The d.c. load line for $R_{c}$ is PQR in Fig. 6 and this represents the relationship between $\mathrm{Tr}_{1}$ collector voltage and collector current in the absence of any shunting effect from the following class- B stage. Q is the quiescent point at which, we shall assume, the two class- B transistors $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ are almost cut off. The effect of a resistive shunt on $R_{c}$ is to introduce an a.c. load line which passes through $Q$ and is rotated clockwise with respect to the d.c. load line to an extent which increases with decrease in the value of the resistive shunt. Thus the rotation is slight for small-amplitude signals (i.e.
for operating points near Q) for which the class- $B$ stage presents a high resistance. The rotation increases however as signal amplitude increases and operating points move away from Q. Thus the a.c. load line has the elongated $S$ shape shown as $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ in Fig. 6.
If a sinusoidal signal is assumed applied to $\mathrm{Tr}_{1}$ base it is possible to deduce from Fig. 6 the waveform of the corresponding collector current and voltage. The curvature of $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is such that it can cause serious distortion of the collector-voltage waveform but this is not generally of importance because it is the shape of the current waveform


Fig. 8. Current-voltage relationship for a linear resistor.


Fig. 9. Derivation of the elliptical load line for a parallel $L R$ combination.
which matters and, provided the load line is reasonably steep, there is unlikely to be serious distortion of the current waveform. This is to be expected because a current amplifier should bepresented with a low-value load. Such a load ensures that any load-value variations have negligible effect on the output current and that most of the current enters the class-B stage rather than $\mathrm{R}_{\mathrm{c}}$.

If a transformer is used to couple a class-B stage to the driver stage, the turns ratio can be adjusted to present the driver stage with a desired value of load resistance. As an example consider Fig. 7 which shows at $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ the load line representing the input resistance of a class-B stage. If the step-down ratio is doubled, the effective resistance at the primary winding is quadrupled and the driver stage is called upon to deliver twice the voltage swing and one half the current swing. The load line thus rotates anticlockwise about the quiescent point and its new position is at $\mathrm{P}^{\prime} \mathrm{QR}^{\prime}$.

## Elliptical load lines

In linear amplification where transformers are used between cascaded stages it is normal practice to make the primary inductance so large that the reactance even at the lowest frequency is large compared with the load resistance. The effective load is then purely resistive and the load line is linear as described earlier.

Suppose, however, that the shunt reactance is not large and absorbs an appreciable fraction of the output current, or that an inductor is connected in series with a load resistor to extend the upper frequency limit as in a video amplifier. How does the reactance so introduced affect the load line?

To determine this consider Fig. 8 which shows the current-voltage relationship for a linear resistor initially free of associated reactance. It is assumed that the resistor is the load of a transistor and the voltage plotted along the horizontal axis is not the voltage drop across the resistor but the voltage at one end of it, e.g. the collector voltage of the transistor feeding the resistor. The other end of the resistor is assumed connected to the positive supply terminal. Thus an increase in the collector voltage means a decrease in the voltage across the resistor and a proportional decrease in the (collector) current through it. If the collector current varies sinusoidally as shown at abcde the corresponding collector voltage $A B C D E$ is inverted with respect to it.

Suppose now that the resistor is shunted by an inductor with a reactance at the frequency in use of twice the ohmic value of the resistor. The sinusoidal current abcde flows in the resistor as before but there is now an additional current (in the inductor) which has half the amplitude of the resistive current and lags it by $90^{\circ}$. This reactive current is shown as $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime}$ in


Fig. 10. A purely-reactive load has a load line in the form of a true ellipse. This ellipse and the associated current and voltage waveforms apply to a purely-capacitive load.

Fig. 9. The current in the LR combination, i.e. the output current of the active device, is the sum of abcde and $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime}$. If we take the datum line ace as representing zero current, the sum of $a$ and $a^{\prime}$ is at $a^{\prime}$. Similarly the sum of $b$ and $b^{\prime}$ is at $b$. By continuing in this way we can deduce the shape of the waveform of the net current. It is shown in dashed lines $a^{\prime} b c^{\prime} d e^{\prime}$ in Fig. 9 and is, of course, sinusoidal with a frequency equal to that of the voltage but phase retarded relative to the voltage. The amplitude of this current is in fact approximately 1.12 of that of the resistive current and is $26.5^{\circ}$ retarded relative to it. We now know the waveform of the voltage across the LR combination and that of the net current through it. From this information we can deduce the form of the load line in the following manner. The current corresponding to voltage $A$ is at $a^{\prime}$ : vertical and horizontal lines from these points meet at $U$ which is therefore a point on the load line. Similarly the current corresponding to voltage $B$ is at $b$ giving point V on the load line. By continuing in this manner we obtain points X and Y and the next point is back again at $U$, showing that the load line has the form of an ellipse and that the operating point moves in a clockwise direction around the circumference of the ellipse at the rate of one revolution per cycle of signal.
The elliptical shape results from the interaction of two sinusoidal signals at the same frequency but with a phase displacement between them and can be demonstrated on an oscilliscope by applying the two signals to the X and Y plates: the ellipse is, in fact, one of the Lissajous figures.


Fig. 11. Elliptical load line for a series LR combination.


Fig. 12. An elliptical load line superimposed on a set of $I_{c}-V_{c}$ characteristics.

The ellipse shown in Fig. 9 was for a parallel combination of resistance and inductance. For a parallel RC circuit the reactive current is phase advanced on the voltage but a similar elliptical load line results, the operating point this
time moving anticlockwise around the perimeter.
In a series LR combination it is the current which is common to the two components. As shown in Fig. 11 the voltage across the resistor is in phase
with the current; that across the inductor leads the current by $90^{\circ}$. The two voltages are added to obtain the net voltage across the combination and this, together with the current waveform, enables the shape of the load line to be deduced. It is again an ellipse and operating-point rotation is clockwise. A series $R C$ combination gives a similar ellipse but the operating point moves anticlockwise around it.

The "fatness" of the ellipse, i.e. the ratio of the minor to major axis, depends on the phase displacement between the current and voltage in the load. If there is no displacement the ellipse becomes the linear load line VY in Fig. 9. If there is $90^{\circ}$ phase displacement, as for a purely inductive or capacitive load, the ellipse has the form shown in Fig. 10. The major and minor axes are now vertical or horizontal and this is a true mathematical ellipse obeying the equation $x^{2} / a^{2}+y^{2} / b^{2}=1$.*. By suitable choice of scale for the current and voltage axes the major and minor axes can be made equal and the ellipse then becomes a circle. An elliptical load line such as that shown in ,Fig. 9 is a combination of a true ellipse (representing the reactive component of the load as in Fig. 10) and a linear load line (representing the resistive component of the load). An important point is that the ellipse is not symmetrical about the linear load line but is rotated slightly about the quiescent point in a clockwise direction for a parallel reactance/resistance combination and anti-clockwise for a series combination: thus the resistive load line does not coincide with the major axis of the ellipse.

The shaded areas in Fig. 9 represent the additional current which the active device has to deliver as a result of the reactive component of the load. The voltage swing is unaffected by the addition of the reactive component as would be expected for a parallel combination.

Fig. 11 applies to a series LR combination and the shaded areas here represent the additional voltage which the active device must deliver as a result of the addition of the reactance: the current swing is unaffected.

Curvature of load lines is usually associated with waveform distortion and it might therefore be expected that an elliptical load line (which has pronounced curvature) would also produce disortion. In fact, as shown in Fig. 9, it produces phase shift between the current and the voltage waveforms. This is perhaps clearer in Fig. 12 which shows the same elliptical load line superimposed on a set of $I_{c}-V_{c}$ characteristics. For the particular reactance/resistance ratio chosen (2:1) the collector voltage is phase advanced on

* This equation applies when the centre of the ellipse is the origin of the rectangular co-ordinate system.
the antiphase condition by $26^{1 / 2^{\circ}}$. If the load line for a parallel reactance/resistance combination is known only as an ellipse the position of the linear load line representing the resistive component can be found by drawing two vertical tangents to the ellipse at its left-hand and right-hand extremities and by joining their points of contact. (For a series reactance/resistance combination the tangents should be horizontal and touching the upper and lower extremities of the ellipse). The reciprocal of the slope of this line gives the value of the resistance. This construction has been carried out in Fig. 12 and the linear load line PGR corresponds to a resistance of 50 ohms. The shunt reactance is 100 ohms. An input (base)
current swing from 13 mA to 83 mA gives a collector current swing from 0.15 A to 1.25A. The corresponding collector voltage swing is from 60 V to 10 V . Although the current limits are 0.15 A and 1.25 A some of this is due to reactance (see Fig. 9) and the useful power output is provided by the swing between 0.2 A and 1.2 A , the current limits for the linear load line. The single-peak current and voltage values are thus 0.5 A and 25 V giving the power output as 6.25 W .

This has been by no means a complete account of load lines: for example there has been no mention of load lines for push-pull amplifiers. It is hoped, however, that it has proved an interesting introduction to the subject.

## Wireless World amateur radio station

On January 29 Wireless World's amateur radio station went on the air. This club station, call sign G8LWW, is licensed to operate in the amateur frequency bands from 144 MHz and above (conditionally up to 24 GHz ). Under the recently-modified licensing conditions this means that Wireless World is permitted to operate the modes of fixed, mobile, pedestrian mobile, r.t.t.y. (radio-teletype), television, slow-scan television, facsimile, data and d.s.b.s.c. (doublesideband suppressed carrier). This will also include satellite communications through the amateur satellites Oscar 6 and Oscar 7.

The decision to have a permanent station was made in order that Wireless World can participate, in the practical sense, in communications in the same way that it does in the electronics field through constructional projects. This is the first time the journal has had a permanent amateur radio station; the only other time that an amateur station operated from its offices was when Wireless World celebrated its 60 th anniversary in 1971 with the station GB3WW operating under a special short-term licence (see May 1971 issue).

The station, whose "main address" is at


Dorset House, Stamford Street, London. S.E.1, is situated at the top of a nine storey building at about 50 m above-sea-level. In due course Wireless World intends to design and build its own equipment but until time can be found to carry out this project the station will continue to use tried and proven commercial equipment. Equipment presently in use in the 144 to 146 MHz ( 2 metre) band is the Icom IC201 multi-mode transceiver which provides f.m., u.s.b., l.s.b. and c.w. modes. This 'rig', which uses a v.f.o. to give full 2 -metre coverage, also has full facilities for repeater and reverse repeater, an automatic tone burst, break-in on c.w., and v.o.x. (voice-operated switching). The 10 W output is fed into a ten-element crossed-yagi aerial mounted twenty feet above the roof of the building on a heavy-duty rotator, and connected for right-hand circular polarization (in preparation for satellite communication). The aerial apparatus and associated equipment was supplied by South Midlands Communications Limited. G8LWW is presently being operated by the licensee, Ray Ashmore, an assistant editor of Wireless World, whose own call sign is G8KYY. The station also has available an h.f. ( 3 to 30 MHz ) transceiver, the Yaesu Musen FT301, which has been operated from the Wireless World station by Ron Leath under his call sign G4ASE. This transceiver, which is capable of delivering the maximum permissible output of 400 W , was used with a $40 / 80 \mathrm{~m}$ trap-dipole and, after only three QSOs on 80 metres, made contact with SV4KS in Greece.

One disadvantage of the station location is a 31 storey building, part of the IPC complex, directly to the north and only about 100 m away from the aerial. Although the effect that this building has on transmission and reception from and to the station has not yet been accurately determined, it represents a line-of-sight restriction of about 12 degrees, which will make contacts to the north of England and Scotland more difficult on 2 -metres. However, it is hoped that the favourable "take-off" towards Europe will prove interesting, especially during the summer months when good v.h.f. propagation conditions will be more frequent.

# Metal detector 

# B.f.o. circuit using fifth search oscillator harmonic for enhanced sensitivity 

by D. E. O'N. Waddington, M.I.E.R.E.


#### Abstract

Metal detectors have fascinated people for a long time and a great many have been designed and built. Some work, but a high proportion have been abandoned as impractical by their disillusioned constructors. This article, in addition to giving the design for a practical metal detector, will explain some of the pitfalls and show how they may be circumvented.


All the metal detectors known to me use the modification of the magnetic field associated with one or more inductors to locate metal. Three main types are made commercially; b.f.o., induction balance and pulse induction. I will confine my description to the b.f.o., since this is the simplest to implement and, provided that due precautions are observed, it is adequate for most purposes.
Before proceeding any further, however, I think that it is as well to look at some of the legal aspects of metal detectors. Since, under the terms of the Wireless Telegraphy Act 1949 they have been deemed wireless telegraphy apparatus, they come under the jurisdiction of The Home Office who, at present, requires that a licence should be obtained for the use of the detector. Currently, this is $£ 1.20$ and permits the use of a "pipe finder" for a period of five years. In addition, the frequency of operation is limited to the range from 16 to 150 kHz , with a forbidden band from 90 to 110 kHz . In practice, the preferred bands are 85 to 90 kHz and 110 to 144 kHz . Before a detector may be used it must be "type approved" by the Home Office. Needless to say, the circuit to be described has approval.

With regard to the use of the detector for "treasure hunting" it is as well to observe a few rules:

Never prospect a known archaeological site. If you do, you will incur the undying wrath of the archaeological fraternity in addition to possibly destroying historical information.

- Report unusual historical finds to your local museum.

If you find any gold or silver, report the find immediately to the police, who will inform the local coroner. He will hold an inquest to decide to whom the find belongs. (A study of the laws relating to 'treasure trove' will help you to understand your rights.)

- If you find unexpioded ammunition or a bomb, mark the place, leave well alone and inform the police.
- Do not leave a mess after excavating your finds.
- The issue of a licence does not absolve the licensee from obtaining any necessary consent before entering on any private property with any apparatus.

The principle of the b.f.o. detector is illustrated in Fig. 1. The outputs of two oscillators, tuned such that there is a small frequency difference between them, are mixed. The difference frequency is selected by a low-pass filter, amplified and fed to a loudspeaker or headphone. When a metallic object is brought near to the search coil, its inductance changes causing a change in the frequency of oscillator 1 and a corresponding change in the difference frequency. Non-ferrous metals will cause the frequency of the search oscillator to increase and ferrous metals should have the opposite effect. I use the word "should" since, in practice, both the shape of the object and its state of decomposition appear
Fig. l. Block diagram of a simple b.f.o. metal detector.
to affect the sense of the change. At first sight, it would appear a simple matter to apply this principle to a practical metal detector but there are a number of problems which need to be overcome before a satisfactory design can be achieved. The first of these concerns the search coil.

The frequency of oscillation will change if the reactance of the coil changes at all. Thus it is as susceptible to capacitance as to inductance changes. Indeed the change in coil capacitance caused by moving it relative to the ground may well exceed the inductance change caused by the object being sought. Fortunately, it is quite easy to minimize this effect by fitting a Faraday screen to the coil. This is done by wrapping the coil with a conductive foil, which is connected to the internal "earth" of the oscillator, There should be a break in the foil so that it does not constitute a short-circuited turn. When I first tried this out, I feared that it would reduce the sensitivity of the coil to metallic objects but measurements showed that the sensitivity was unchanged, while capacitive effects were reduced to negligible proportions. Another cause of spurious frequency change is heat: moving the coil from sunlight to shade can cause a large and fairly rapid frequency change. This effect can be reduced by suitable thermal insulation.

In order to select the best size of coil for the detector I made a series of tests plotting the frequency change caused



Fig. 2. The lines show the contours of equal frequency change for a $1 / 2 p$ coin at a frequency of 100 kHz with various coil sizes (a) $6^{\prime \prime}$ (b) $8^{\prime \prime}$ (c) $10^{\prime \prime}$
by a $1 / 2 \mathrm{p}$ coin with various coils. The inductance of the coil does not appear to be an important factor, but the diameter is. The results for 6 in, 8 in and 10in coils are shown in Fig. 2. They may not be strictly accurate, since the measurement is a very tedious one, but they do show what is to be expected. The important points are:

- The frequency change is very small.
- The sensitivity at the centre of the smaller coils is much the same, while the 10 in coil is less sensitive.
- The larger the coil, the larger the sensitive area. However, this is not alw. !an advantage, since it is still necessary to pin point the article being sought and the smaller coil gives a much better "focus". For my own design I have chosen the 6 in coil.
The magnitude (or should I say smallness), of the frequency change is
one of the main problems in using a b.f.o. metal detector. One very practical solution is to set the oscillator frequencies such that the frequency difference is very small $<\underline{1} 0 \mathrm{~Hz}$. When this is done a change of one or two hertz is readily discernible. If the frequency difference were of the order

Fig. 3. Block diagram of an improved metal detector.
of 250 Hz this change could only be heard by a trained listener. Since a normal loudspeaker or headphone does not reproduce low-frequency tones, the low frequency waveform can be converted into a pulse train, which is then easily reproduced.
The sensitivity of the b.f.o. can be increased as shown in Fig. 3. Here the search coil oscillator is operated at a frequency of 125 kHz and its output is converted to a square wave, which is rich in harmonics. The beat oscillator runs at a frequency of 625 kHz , i.e. five times the search oscillator frequency. Thus, the beat oscillator is mixed with the 5th harmonic of the search oscillator so that any frequency change is multiplied by five. This makes it very much easier to hear a change in frequency, although the susceptibility to drift is much greater. A higher harmonic could be used but it should be remembered that, with a square wave, only odd harmonics are present and the amplitude of the harmonic will be equal to the amplitude of the fundamental divided by the harmonic number. The rather odd choice of frequencies has been dictated by the fact that most constructors will only have a medium-wave radio receiver for setting up purposes and will have no simple means of checking the frequencies. If the beat oscillator is set to 625 kHz , the beat note will only be heard strongly if the search oscillator is tuned to an odd sub-harmonic $(625 / 5=125$ or $625 / 7=$ 89.286) and the forbidden band from $90-110 \mathrm{kHz}$ will be avoided. This precaution is necessary as it is difficult to control all the stray capacities associated with the search coil.

## Design

The circuit of a metal detector based on the above considerations is shown in Fig. 4. I chose the "long-tailed-pair" oscillator for this application because it is easy to design, the tuned circuit needs only two connexions and the output is isolated from the tuned circuit so that the frequency of oscillation is virtually unaffected by loading or signals fed to the output. This last is particularly important for this application, in which it is essential that the oscillators do not lock to each other when the frequency, or in this case. harmonic frequency



Fig. 4. Circuit diagram for metal detector.
difference is small. The search oscillator uses ${ }^{1} r_{1}$ and $I r_{2}$ with $L_{1}, C_{1}, C_{2}$ and $C_{3}$ forming the tuned circuit. It will probably be necessary to select $C_{1}$ to give the correct frequency, since the Faraday screen and the screened lead add an indeterminate amount of capacitance in parallel with the coil. This capacitance depends upon the physical construction of the coil and the materials used and is rather variable. Coarse tuning is carried out by $\mathrm{C}_{2}$, while $C_{3}$ is used for fine adjustment. The search oscillator output is taken from the collector of $\mathrm{Tr}_{2}$ to the mixer $\mathrm{Tr}_{3}$. The beat oscillator uses $\operatorname{Tr}_{4}$ and $\mathrm{Tr}_{5} ; \mathrm{L}_{2}$ and $\mathrm{C}_{8}$ form the tuned circuit, which resonates at 625 kHz . The drive to the shunt gate mixer $\mathrm{Tr}_{3}$ is taken from the collector of $\mathrm{Tr}_{4}$. The difference frequency is selected by the low-pass filter, formed by $R_{9}$ and $C_{9}$ and is amplified by $\mathrm{IC}_{1}$, differentiated and then fed to $\mathrm{Tr}_{6}$, which drives the phones or loudspeaker. The volume can be controlled by connecting a variable resistor in series with the output.

## Construction

The layout of the circuit does not appear to be critical - a practical version using matrix board is shown in Fig. 5. Mount the circuit inside a screened box so that hand capacitance does not affect the tuning.
The construction of the search coil is very important. It should be sufficiently robust to withstand rough handling, light, so as to be portable and adequately insulated against temperature change and moisture. I found that the. construction shown in Fig. 6 works very well. ${ }^{\circ}$ First cut a ring of about $3 / 8$ in plywood as shown. To wind the coil, draw a $6 \frac{1}{4}$ in diameter circle on a piece oi wood. Hammer $3 / 4$ in panel pins at about lin intervals around this circle and then
wind 45 turns of 26 s.w.g. ( 0.46 mm ) wire around the pins. Tape the coil in four places to stop it springing undone. Remove the pins. Tape the coil tightly to the underside of the wooden ring, taking care that the ends of the winding come opposite to the tab for the handie. Cover the coil with a second layer of tape. Cut a strip of aluminium cooking foil about lin wide and tape the coil with it, starting on one side of the tab and finishing at the other. It will probably be necessary to use more than one length of foil, in which case the ends should be overlapped. However take care that the start and finish of the coil do not short to each other. Bind the finish of the coil with 22 s.w.g. tinned copper wire and connect it to one end of the coil and to the screened lead. The other end of the coil is connected to the centre conductor of the screened lead. Cover the coil with a layer of tape. Cut a lin wide strip of $1 / 8$ in thick expanded polystyrene sheet

Fig. 5. Layout of circuit, using pin board (no copper tracks).
and wind this around the coil. Cover the whole with another layer of tape. Assemble the coil to the handle and paint it with white waterproof paint.

## Setting up

The first step is to set the beat oscillator to the correct frequency.

- Short the search coil to disable the search oscillator.
- Switch on and adjust the core of $L_{2}$ so that the frequency of the beat oscillator is set to 625 kHz . If you have no access to a frequency counter, a medium wave radio receiver may be used. Set the dial of the receiver to $625 \mathrm{kHz}(480 \mathrm{~m})$. If the receiver has an aerial connection, place the aerial lead close to the osciliator, but if it only has a ferrite rod aerial it will be necessary to place the receiver close to the oscillator. This setting up must be carried out with the detector circuit mounted in its screened box with the lid off. Tune for maximum signal. Remember that you will be looking for an



Fig. 6. Coil construction.
unmodulated carrier, so that only hiss will be heard. However, you can check whether you have the correct carrier by shorting the coil. The next step is to set the search oscillator to the correct frequency.

- Remove the short from the search coil.
- Set both the coarse and fine controls to mid-travel.
- Fit a 470 pF capacitor for $\mathrm{C}_{1}$.
- Adjust $\mathrm{C}_{2}$ and check that a beat note can be obtained. If necessary increase the value of $\mathrm{C}_{2}$ by 100 pF .
- When a beat note is heard, check the frequency of the search oscillator as follows:
(a) Short the beat oscillator tuning coil.
(b) Using the receiver near the search coil, look for the harmonics of the search oscillator which should be as shown in Table l. It is very probable that you will only be able to identify the odd harmonic frequencies.
(c) If the frequencies are too close together, the search oscillator will probably be running at 89.3 kHz . Reduce the value of $\mathrm{C}_{1}$ and repeat the procedure. If possible it is a good idea to select a value of $C_{1}$ which gives the correct frequency with $\mathrm{C}_{2}$ set to mid travel. This will allow for any drift which may occur during the life of the detector.

Table 1

| Harmonic <br> Number | Frequency | Wavelength |
| :--- | :--- | :--- |
|  | 625 kHz | -480 m |
| 5 | 750 kHz | 400 m |
| 6 | 875 kHz | 342.85 m |
| 7 | 1000 kHz | 300 m |
| 8 | 1125 kHz | 266.67 m |
| 9 | 1250 kHz | 240 m |
| 10 | 1375 kHz | 218.18 m |
| 11 | 1500 kHz | 200 m |
| 12 | 1625 kHz | 184.615 m |
| 13 |  |  |

## PARTS LIST

## Resistors

2 k 2 All resistors $1 / 4 \mathrm{~W} \pm 5 \%$

## Capacitors

560pF polystyrene (see text) 150pF varıable 10pF variable 0.01 - F disc ceramic 0.01 jF disc ceramic 0.01 F disc ceramic 0.01 F disc ceramic 150 pF polystyrene O. 1 ~F 100 V P.E.T 0.1 F 100 V P.E.T $47 \sim F 10 V$ electrolytic 4.7.F 10 V electrolytic 4.7 ~F
100 F 10 V electrolytic

| $\begin{array}{ll}\mathrm{Tr}_{1} \\ \mathrm{Tr}_{3} & \end{array}$ | BF 238 . BCl 108 or equivatent BC308, BCY72 or equivalent |
| :---: | :---: |
| - $\mathrm{D}_{1,2}$ | 1N4148 |
| $\mathrm{IC}_{1}$ | -A741C |
| $L_{1}$ | see text |
| $L_{2}$ | 49 t 0.28 mm wire or Mullard Vinkor LA 1157 (260 m H) |

## ThenewT900fromTektronix isgoodnews foreveryone. (SeeitattheAll-ElectronicsShow)

Here's the feature story:
This new development in oscilloscopes from Tektronix is a family of workhorses.

And they're going to become very familiar to you.

First, because their specification is tailor-made to the increasing requirements of engineers for enhanced performance.

And second, because they are reliable and freely portable - at only 15 lbs.

The T900 range takes Tektronix into new territory. 10 to 35 MHz ; single or dual trace; all with 2 mV
sensitivity; one with storage.
You will also benefit from a new level of economy and a lower operating cost.
Unprofitable downtime is
cut to a minimum and maintenance is simplicity itself thanks to new levels of reliability engineering.

The T900's are very rugged, very strong.

And they're so easy to use you'll soon come to regard the model you choose as indispensable.
WW-005 forfurtherdetails.

TEKTRONIXE Tektronix U.K. Ltd., Beaverton House, P.O. Box 69, Harpenden, Herts.
Tel: Harpenden 63143 . Telex: 25559.


## The new Maplin Catalogue is no ordinary catalogue. ,

Catalogue includes a very wide range of components: hundreds of different capacitors; resistors; transistors; I.C's; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY MANY MORE


Our bi-monthly newsletter keeps you up to date with latest guararteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copyl


ELECTRONIC SUPPLIES
P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR Telephone: Southend (0702) 715155
Call at our shop 284 London Road, Westcliff-on-Sea Essex (Closed all day Monday) Telephone Southend (0702) 47379


## CEI split again

The Council of Engineering Institutions has attacked the government's believed intention to hold an enquiry into the engineering profession. Sir Charles Pringle, the chairman, has told the Prime Minister in effect that such an enquiry would cause a further period of uncertainty just as the CEI was sorting itself out after its two years of dissension. But although at least half a dozen of the CEI's 15 members are said to share Sir Charles Pringle's objections to an inquiry, among the larger institutions there is a feeling that Sir Charles has spoken out of turn. All the signs are that yet another big row is brewing.

The CEI reached their attitude after a council meeting on February 10. They say that in opposing the enquiry they were reflecting the IEE and the IMechE though these bodies had also said that if there were an enquiry they would want it to include certain topics. The CEI say their attitude is that an enquiry is unnecessary but that they would cooperate if one were held.
It appears, however, that the two senior institutions take a more positive attitude to the putative inquiry. On 27th January they wrote to Mr Eric Varley saying that they would welcome it, and that it should cover: the education and training of engineers; how that education met the needs of industry; a study of compulsory registration in other countries; a study of how compulsory registration might be applied in the UK, and the allocation of certain jobs in industry to professional engineers.
The CEI say publicly there is merely a difference of emphasis between themselves and the IEE and IMechE, but we are told reliably that the CEI sent a letter to the two institutions, after they sent their letter to Varley, asking for an open apology for putting forward their point of view outside the auspices of the Council. From the other side, the dissenting Institutions have been so angered by the CEl's public pronouncements that they would now like the enquiry to review the CEI itself.

# Radar simulator for the RAF 

A simulated timebase and echo generator (STEG) is to be added to the airborne early warning mission trainer at RAF Lossiemouth. The STEG will generate fifteen controllable radar targets on the AEW trainer displays as well as "own" aircraft movement, sea clutter, Indicate Friend or Foe, thermal noise and a blind arc. The simulator, which is portable, can also superimpose radar echoes on to a background picture derived from a video recording of an actual mission. Operators learn to spot unidentified radar echoes and to guide interceptor aircraft on to the intruders.

Four hand-held keyboards are connected to the simulator by flexible leads. The keyboards first set the STEG to match the radar parameters and then to set up and control the targets and other effects. Marconi, who make the device, say the system is one of many applications of STEG, which can be couipled to any continuously rotating pulse position indicator radar display via an interface.

## Components helped again

Electronic components is one of the five industrial sectors singled out by the Chancellor of the Exchequer, Denis Healey, and the Industry Secretary, Mr Eric Varley, for special help as part of an experiment "to see whether there is scope for the government to act as a catalyst in bringing about, in concert with both sides of the industries concerned, a more rapid improvement in performance.
Because each industry sector is different the approach will be different in each case, but Healey and Varley say in their memorandum to the National Economic Development Council, responsible for bringing together the necessary elements to the working of the Government's industrial strategy, that "One possible approach would be to begin in the case of each sector with a general wide-ranging meeting with both management and trade unions in that sector together with the members of the Sector Working Party, under the chairmanship of the appropriate minister. This meeting would identify the main issues to be tackled. Thereafter, we envisage that it would be useful to hold discussions with individual firms or, if particular subjects lend themselves to more broadly based consultations, with groups of firms, to pursue these issues." Companies would be asked for their views, particularly on
the sector working party reports but also on the whole range of Government policies.
An element of the Government's as yet vague proposals especially welcome to the components chiefs will be that although in the current economic circumstances resources are limited, "to the extent that public money is needed to solve the problems of the five sectors set out above (or those of other sectors) or, indeed to push forward the work on industrial strategy generally, the resources will within reason be available."

The proposals also follow news of a £20 million aid scheme for the components industry, which Wireless World reported last month. Still further help. is expected from the European Commission (see WW News, March p48).

## Students for industry

Sponsored students may get an extra £500 a year from their employers without a reduction in the local authority grant under a scheme outlined by the Education Secretary, Mrs Shirley Williams, in the Commons on February 3. From September 1977, she said in a written reply, "payments by employers to students whom they wish to sponsor, or by institutions who wish to give scholarships of up to $£ 500$ per annum will not be taken into account in the assessment of mandatory awards by local education authorities. This will be in addition to the amount of income disregarded under the present arrangements which is $£ 185$ per annum and now under review for the academic year 1977/8."

At present a local authority, in assessing a student's income for making a grant, does not take into account the first $£ 185$ per annum of income, any holiday earnings, or various pensions and benefits. Later in the year changes in the rates and conditions applying to mandatory awards, including the £185, will also be announced.

Currently about 7,200 undergraduate students and 2,600 postgraduates are fully supported by employers rather than by a grant. About a third are supported by industrial or commercial concerns and the rest by Government departments. Normally an employer makes a choice bet ween giving a student £185 on top of his grant or paying him a salary greater than the grant would have been. About 400,000 students in Britain receive grants totalling $£ 382$ million, according to the Department of Education and Science, though this includes acontroversial $£ 107$ million supplied by parents or spouses. In 1974-75 a Department survey showed that about half the students on mandatory grants did not get all the parental contribution, or $£ 90$ for each student underpaid.

## Bullock's boardroom and the engineer

Lord Bullock himself has acknowledged that the proposals the majority of his committee agreed after a year's work may never be carried out. But he is not discouraged. The vigour of the debate since his report was published on January 26 has shown that the call for greater involvement of workers in company policy decisions which affect them has suddenly become a political issue. It is likely to remain so.

Among those who gave evidence were the Association of Professional Scientists and Technologists, the Business Equipment Trade Association, the CEI, the Electrical, Electronic, Telecommunication \& Plumbing Union, EMI, GEC, Philips Electronic and Associated Industries, and the United Kingdom Association of Professional Engineers. The EETPU expressed the strongest opposition to the representation of trade unions on the board because they saw a conflict between collective bargaining and such representation: "It is not the responsibility of work people to manage the enterprise

It is essential that trade unions retain their independence." The EETPU thought that the job of the trade unions was, through collective bargaining, to "consider, contest and oppose, if necessary, the exercise of managerial prerogatives," but Bullock, unimpressed, says unions and management "have the same objective: to enable employees to participate in decision-making in the enterprise in which they work."
Reading the report makes you no wiser about the future role of the engineer, the scientist or the technician in the proposed new democratic boardroom. It is a fact of modern industrial organisation, however, that their skills and experience are badly needed.

Most of what Bullock says that is relevant to engineers is about middle management.

## Staff associations count

"Some people have suggested to us that managers and other professional groups play a particularly important role in the running of companies and often occupy a unique position between the board and other employees - at one point representing the company in discussions with employees and at another being employees themselves - and they have argued that a special seat on the board should be reserved for these groups. Provided that professional and managerial employees are organised collectively, as increasingly many of them are, we can see no reason why they should not be represented on the board amongst the employee representatives. But we do not think that a special seat should be reserved for them on the board by law." Bullock explains that it would be unfortunate to
give the impression that some employees had a speciai, and therefore higher, status in the eyes of the law.
Bullock adds that there is no objection to a staff association or professional association or any other employee organisation not affiliated to the TUC from being represented on the board provided it is independent of the company but recognised by it.

## Trade Unions

So if the Bullock proposals are implemented the degree to which technicians and engineers will be able to contribute to the better running of their companies will be largely dependent on the extent to which they are involved in trade unions. The Confederation of British Industry has made clear its bitter opposition to Bullock on just these grounds, saying that trade unions speak for only half the workforce. The true picture is, however, a great deal more complicated than the CBl makes out. Trade union membership is not distributed evenly throughout industry, and the smaller the firm the less likely it is to be unionised.

Of the total workforce, it is true, $50.4 \%$ are members of a union. But in manufacturing industry membership is $62 \%$, and if enterprises with less than 200 workers are left out of account the proportion jumps to $89 \%$. in the Post Office and telecommunications the figure is $87.9 \%$ and in metals and engineering $69.4 \%$. Bullock's proposals. if adopted, would only affect enterprises employing more than 2,000 . In the others, according to Bullock, trade unions represent only $20 \%$ of the workforce, and it is because of this that these firms have been excluded from the proposals.
Against that, these smaller companies represent 11 million of the 18 million people employed in the private sector, and two thirds of the total number of enterprises. It seems true that small firms are becoming less important - the 1968 census of production showed that firms with over 2,000 employees then represented only $21 \%$ of the enterprises - but it also seems that the Bullock idea is not to extend industrial democracy to workers in the small firms, where the majority of work is done. The CBI has not been heard to complain about that.

## Unionised engineers

On the other hand, trade unionism is still a more potent force among the wearers of blue than white collars. The qualified engineer is generally regarded as a white collar worker and as such if he is a member of a union, he is one of 4.3 million, whereas his manual union colleague is one of 7.5 million. Engineers, therefore, stand less chance than manual workers of getting into the boardroom if Bullock is adopted. But the report also notes the increasing rate at which white collar workers have joined trade unions. Since 1948, union membership among white collar
workers has increased 117\%, while manual union membership has increased $0.1 \%$. In the four years to 1974 union membership among manual workers actually fell $1.3 \%$ but rose $19 \%$ among those off the shop floor.

## The ' $Y$ ' element

For the moment, a much more likely opening for engineers lies in the proposal that a third element should balance the shareholder and union representatives. This third element, the $Y$ in the now famous $2 X+Y$ formula, has to be an uneven number greater than one, must be less than a third of the whole board and its membership must be agreed by the other two elements. The system, says the report "will provide an important means by which special experience and expertise can be brought into the boardroom from inside and outside the company. . It may be, for example, that there will be someone in the company itself - among senior or middle management - who both sides agree could be a useful addition to the board."

## The industry view

The electronics industry has identified itself with the CBI's view of Bullock. The Electronic Engineering Association told Wireless World: "Our input on that will be done through the CBI," Latest figures are not available but a quick check of 39 of the companies in the EEA shows an average number of employees of around 9,6700. Many of these are companies with a large number of subsidiaries with activities across the whole range of electronics. A council meeting of the British Radio Equipment Manufacturers' Association on February 10 decided that the attitude of many of their members would be decided by parent companies here or abroad, many of them in the EEA.

## Size of firms

According to figures for the third quarter of 1976 at the Business Statistics Office at Newport, 48 enterprises in telegraph and telephone equipment employ 73,100 people; 252 enterprises in radio and electronic components employ 126,700; 37 computer firms employ 44,300; and 132 firms in radio, radar and electronic capital goods employ 90,400 . No figures are available for the number of employees in the broadcast receiving and sound reproducing equipment sector.

## Does it matter?

Membership of the EEC, for which the CBI must hold itself largely responsible, commits us to some form of worker participation in the boardroom. However, the National Enterprise Board has, since the report was published, dropped its commitment to putting worker directors on its board, and the Prime Minister agreed with the CBI in February that the Bullock proposals need not be implemented as long as there is greater consultation below board level.

## V.m.o.s. devices "'middle of this year"

American Microsystems (AMI) say devices which use their patented v.m.o.s. technique will be available commercially around the middle of 1977. "We are currently in the process of bringing them into production," said AMl's president and chief executive Glenn E. Penisten at a press conference in February.
He described the device as a "short channel n.m.o.s. structure fabricated in $v$-shaped grooves which entered the silicon surface." Advantages included vertical current paths, higher current density, and higher gain bandwidth than was possible with other devices. It was possible to get 285 dies from each 3in wafer of silicon with a side length of 145 mils each. In line with the general tendency for a reduction in the memory cell area per bit, such devices could be used to store 16 kbits of information and this could be increased to 65 k "before 1980 ". Mr Penisten told Wireless World that the speed of the devices was "approaching bipolar speeds, the 40 ns kind of category." AMl also say the speed is less dependent on temperature change, and could work well at "enhanced ambient temperatures of $70^{\circ} \mathrm{C}$." Although others might be producing discrete products using the technique AMI were further ahead, they say, in optimising "the speed/power relationships." It had been thought that v.m.o.s. was a dead-end technology because it could not be scaled (reduced in size to ower silicon consumption), but, said Penisten, that was wrong. "Our product is a product that has been scaled and scaled again." The first commercial product, a 1 K static memory would be available "probably by mid-year."

## Goldring falls with the pound

A receiver was appointed on February 3 for Goldring, which in 1973 was trading so strongly that it offered 1.5 million 10 p shares at $£ 1.17$ each and closed the offer oversubscribed. The day before the receiver, Mr Christopher Morris of Touche Ross, was appointed they were down to 8 p.

Goldring was heavily dependent on the home market. About $85 \%$ of it's business was in the UK, according to the Financial Times, and this had a number of effects. The first was that when VAT was increased to $25 \%$ they suffered more than firms like Garrard. which now exports something like $70 \%$ of its output. At one time Goldring stopped producing almost completely and relied on selling Swiss Lenco turntables. for which they had an agency. Another effect was that when
the pound started to fall this Lenco equipment became uncompetitive in the market they relied on.
Another blow was that Lasky's stopped selling Goldring equipment when the Japanese put the marketing pressure on direct-drive turntables. While a belt-driven model might have withstood this, Goldring's rim-driven turntables were too far behind the times. They could not rely on the kind of business BSR had so successfully built up, supplying turntables for fitting to other sound systems. BSR turntables can even be found in audio systems imported from Japan, as in the case of Crown, now imported by York Electronics. Goldring also imported Toa public address equipment, which had been affected by import restrictions.
To add to everything else Goldring's premises at Leytonstone were compulsorily purchased by Walthamstow council, and they were faced with the disruption and cost of moving to Bury St Edmunds, still a matter of dispute with Walthamstow council. Cost control was not too strict, and they spent $£ 100,000$ there in offices alone, according to one account. Although staff had been reduced from 298 to 179 during 1975, effecting a reduction in the wage bill from $£ 466,772$ to $£ 427,622$, directors fees went up around $£ 200$ to $£ 46,629$. In the same year, the Barclay's bank overdraft jumped from $£ 3,650$ to $£ 160,746$, and the company borrowed a further $£ 200,000$ from the family of Mr E. Sharf, the president.

According to an informed source the receiver has now recovered the money owing to Barclay's and it now remains to get back the Sharf money, after which the future of the company seems grim indeed. Most of the money so far obtained has been won by selling off the considerable stock at a low price and keeping staff on while there are enough parts in the store to make more. The main value of the Goldring name will rest on the pickup cartridges and styli, and it has been suggested that Sharf will eventually buy the goodwill of the possibly liquidated firm. Toa have wasted no time in setting up Toa (UK) Ltd, and C. E. Hammond have already taken over the Lenco agency

## Britain pioneered the integrated circuit"

Mr G. W. A. Dummer, formerly superintendent of applied physics at the Royal Signals and Radar Establishment, has no doubt that Britain was the pioneer in the invention of the integrated circuit, though not the inventor in the full sense of the word. In a letter to the American journal IEE Spectrum (December 1976) he distinguishes between the pioneer "who thinks of it,"


Liquid-cooled logic. Current mode logic circuits used in Honeywell's new 66/85 computers. Honeywell say the elimination of transistor storage time makes each chip five to seven times as fast as t.t.l., using half the power: One 3in square micropackage there are up to 110 chips, "almost as much circuitry as a standard 12 in square circuit board." At the back of each micropackage a liquid cooled heat exchanger eliminates the need for system air cooling. The exchanger is an oxidised copper diaphragm which. when pressurised by liquid flowing behind it, conforms to the surface of the micropack. Each board has 12 micropacks arranged in four columns of three. The coolant is pumped in parallel through each column. The liquid is cooled in an air-cooled radiator cabinet with an air blower. If the cooling system fails the computer shuts down automatically.
the experimenter "who makes a working model" and the exploiter "who develops and produces it." He writes "The pioneering stage was certainly that of the Royal Radar Establishment (RRE) in Great Britain. It must be remembered that the "solid circuit" idea was no flash in the pan, but the result of six years' work on miniaturization. The model shown to US military and other visitors at the United Kingdom Symposium in 1957 was intended to indicate my views on the logical future of component miniaturization techniques." The real inventors of the integrated circuit, in Dummer's opinion, were "Noyce and his dedicated team at Fairchild."

As a result of reporting the 1957 UK symposium under the title "Solid Circuits," Wireless World (Nov. 1957 issue) subsequently ran into a spot of bother with the lawyers of Texas Instruments because TI, at a date somewhat later than the report, had decided to use "Solid Circuits" as a trade name for their devices (before the term "integrated Continued on page 92

## Binaural broadcast

## First announced BBC programme

From a preliminary analysis of listeners' letters, a large majority of respondents got a sound sensation outside of the head when listening to "Oil Rig" on headphones, says the producer, Richard Imison. The Radio 3 programme was made with "binaural" microphones intended for headphone listening and was the first announced broadcast of its kind in the UK. After reading the first 500 letters, Mr Imison said about a third had experienced good all-round perception, but of the remaining two-thirds, a majority had good sound except within an arc of around $\pm 45^{\circ}$ of centre front, and a significant minority found everything in front and nothing behind. The programme, auditioned for the press six days before transmission on 8 th Fe bruary, was a 75 -minute distillation of 37 hours of interviews and sound effects from a North Sea oil rig.

An interesting choice of location, this, for while life on an oil rig may possibly make for good journalism, its remoteness from everyday life did perhaps make it a little difficult to relate it to reality, acoustically. But it wasn't difficult to discover the weak point of the technique, that is, in portraying frontal sound images, a widely recognised problem with such binaural techniques.
One found the background sensation to be good and generally located outside the head, though almost always taking place behind. Three kinds of speech were heard. Studio-produced mono narration which, as it was fed to both channels equally, appeared in the head On location, speech was either in the head or out of the head and elevated but never in front (for those at the audition anyway).
The two sensations were produced

with two different microphone techniques. One used a 10 -in diameter perspex disc with two forward-pointing eccentric omnidirectional microphones mounted either side to correspond with ear-to-ear spacing. This was used in the interview of the cook, but gave too much ambient noise on most interviews. The alternative was to mount microphones on the head of the speaker in "stethoscope" fashion - hence an in-head image.

One sometimes found it disconcerting when the out-of-head speech, clearly directed at the listener, didn't come from in front where one would have liked it to come from. This lack of centre front speech is not so upsetting on special demonstrations that are intended to startle, such as on the Sennheiser dummy head recording, but it can spoil the illusion where a speaker is addressing you constantly from behind or the sides - in real life one would quickly turn to face the speaker.

## Why dummy heads weren't used

This disc baffle arrangement came about after three years of experiments by BBC Radio using first the Neumann artificial head and then the Sennheiser (both pictured on page 336 September 1974 issue). They say the heads were subject to countless tests involving hundreds of tapes, starting with a large, dead studio and going on to other studios and the open air, with different kinds of material including test sequences, plays, outside broadcasts, music.
They found that while the Neumann head was "convincing" and impressive on headphones, it had quality shortcomings on loudspeakers, in particular a steep roll off at 5 kHz . The Sennheiser head and "stethoscope"-type microphone arrangement brought a

The baffle and (right) "stethoscope" microphone pairs described in the text.
response up to 15 kHz , but the top was "edgy" and "rather hard" and the quality was not the best. Results with this arrangement on a real head were "a little better with the 'stethoscope' mikes but not good enough," commented Richard Imison. "Not really up to broadcast standards"

This was the point where an alternative had to be found; in fact the project was nearly abandoned, recalls Richard Imison. Derek Taylor of programme operations then found that good results could be obtained using better quality microphones in stethoscope fashion Sony omnidirectional ECM50's were mounted on a headband with windshield and worn at the ears.
Because of the obvious limitations of this technique, checks were then made to see how much an artificial head actually contributed, starting with a head-sized carpet baffle between earspaced microphones (with and without plasticine pinnae!). Directional properties of the set up didn't seem any worse. In Derek Taylor's words "As long as the mics were about ear distance apart, with a baffle between to give the correct path length, the directional effects were not significantly different. Model ears or baffles behind the mics did not seem to help in resolving front-to-back confusion.' Richard Imison agrees: there is "no significant difference" between the techniques tried as far as front localization is concerned. (They also agree that there isn't much difference in results between closed and open-type headphones either.)
Front-to-back ambiguity, it is argued, occurs with single, transient live sounds anyway. For continuous or longer live sounds one's head has more of a chance at assessing direction, either by unconscious minute head movements or by conscious larger movements, and the poor frontal localization with headphones is thought to be due to loss of such clues.

The BBC have obviously reached a point where they want to experiment with a large audience. But the data from listeners will have to be carefully interpreted as it seems far more likely that those who were impressed with the technique - say on account of well-defined images - would respond more readily than those for whom the technique was disappointing.
The ear-spaced microphone with baffle arrangement was made into more permanent form, as in the photograph. and used for the Oil Rig programme, as well as on other occasions including a proms recording. The prom recording, as with others, was not nearly so effective on loudspeakers though BBC personnel found it as good as the conventional stereo recordings, in some cases better. In simple informal preference tests between conventional and binaural stereo over loudspeakers, the binaural version was the preferred one - GBS.

# Education by radio in Honduras 

# A case study in electronics technology in a developing country 

by Michael K. Bates* B.A. Eng. Tripos, Cambridge)


#### Abstract

Electronics technology is at such a level of sophistication that few countries can sustain their own electronics industry. Nevertheless radio is an effective means of communication the world over and it has had a significant impact on developing' countries. In studying a particular application in Honduras, the author draws lessons about the suitability of present technology for use in other developing countries.


Honduras, Central America, is reputedly the second poorest country in the Western Hemisphere. Although Honduras is less than half the size of the UK, its population density is low since the total population is only three million, of whom nearly all are Span-ish-speaking Catholics; over two million eke out a subsistence living in rural areas and are known as campesinos, or peasant farmers. Most of the land is mountainous, containing small but fertile valleys. The wide strip of highly productive land on the Caribbean seaboard is mostly owned by foreign. banana companies.

Communications systems within the country are on the whole ineffective: not even all the major towns are linked by paved roads, many villages are accessible only on foot or horseback, telephone links are over-subscribed and unreliable, and both the circulation of newspapers and the coverage of television are mostly confined to the cities. But radio has proved to be highly suitable and is the dominant medium for mass entertainment, dissemination of information and passing of messages. The success of radio broadcasting is largely due to an influx of cheap portable transistor radios, ownership of which is often regarded as an indication of social status, and this may account for the range at which the average transistor set is audible. Most broadcasting is on a private commercial basis from nearly one hundred local radio

[^2]

Fig. 1. Map of Honduras showing locations of radio stations mentioned in the text.
stations transmitting in the 540 to 1600 kHz band, although use is also made of the 60 m short-wave band and the standard v.h.f. f.m. band.

## Radio schools

Although education is free in Honduras and primary school is, in theory, compulsory it is evident that few compesinos benefit from it: most have been to school for perhaps only a year or two and over $65 \%$ are illiterate. There are obvious difficulties in sparsely populated areas in bringing together enough pupils to make a conventional school viable, especially if the aim is education of working adults. Use of radio can, however, offer a solution to problems like these.

The system of radio schooling prevalent in Latin America originated in Colombia in 1947, when Radio Sutatenza went on the air with a 100 W transmitter and just forty-five pupils. The idea proved successful and the organization grew rapidly, until today
the station controls four transmitters with a combined output of over 750 kW . Meanwhile radio schools were started in fifteen other Latin American countries, including Honduras.
The radio schools of Honduras have grown up under the auspices of Accion Cultural Popular Hondureña (ACPH), a non-government independent development agency which is financed from voluntary sources. There have been considerable problems in achieving autonomy from the influences of commercial enterprise, political forces and more recently a sector of the Catholic Church, partly because ACPH relies on agreements with sympathetic radio stations to buy air-time for transmission of the schools classes: hence, its effectiveness is closely linked to the progress of these stations.

Experimental education of adults by radio began in 1959 with broadcasts from Radio Católica in Tegucigalpa, the capital, and grew successful to encompass 700 school groups by 1964. After several years of organizational problems, the system was re-vitalised in 1969 with the opening by foreign priests of

Radio Paz, in southern Honduras, and the acquisition the following year of Radio Progreso in the north by Jesuits. As well as transmitting schools programmes, then as now recorded in the ACPH offices in Tegucigalpa, both stations followed normal commercial schedules. Plans for more comprehensive coverage of the country developed, and in 1974 surplus equipment was bought in the USA and shipped to Honduras for in-country construction of transmitters and studio facilities with local help. However this scheme has not reached fruition due to diverging aims of ACPH and the Catholic Church, a situation which has also caused Radio Católica to cease passing schools classes. Some expansion of the network was nevertheless achieved in 1975 with a low power short-wave installation at Radio San Isidro, La Ceiba, and complete new studios and transmitters for medium and short wavebands at Radiolándia, Comayagua. But these gains were offset by the closure of Radio Paz in June 1975 by the military government, following struggles over land tenancy in the east of the country, and attempts to regain the broadcast licence have so far only brought prevaricative responses.
The current disposition of facilities illustrates the wide spread of techniques which occurs in any technology in Honduras, ranging from the relatively sophisticated to the unbelievably crude. At the more impressive end of the spectrum, Radio Progreso broadcasts via a new Gates/Harris 5 kW pulse-width modulated transmitter on

Fig. 2. Transmitter construction in workshops at Radio Paz. Cháuteca. On the right is the completed transmitter for
Radiolóndia; in the centre is a copy of it under construction; on the left is a BC610 US surplus being converted for short wave broadcasting. Note the tin bath, used to supply cooling water for a dummy load during necessarily brief transmitter tests at full power.

1110 kHz , with a modified 10 kW Collins on 4920 kHz ; on both frequencies there are back-up transmitters, a rare achievement for a Honduran station. Radio Paz transmitted on 990 kHz using a modified Contel unit with $4-1000$ tetrodes in the modulator and 3-1000 triodes in the final, and the locally constructed transmitter for Radiolándia draws from the same series of valves but with a single anode-modulated zero grid bias $4-1000$ on the r.f. side to deliver 1.5 kW on 1460 kHz . For short-wave broadcasting at both Radiolándia and Radio San Isidro BC610 transmitters are in use, boosted to 500 W with a final 833 , a good robust valve which has been known to withstand accidental use as a light bulb. Even surplus equipment like this looks elegant alongside some home-made transmitters, which have been seen to use wood blocks to support and isolate transformers and domestic light switches on the control panel. It will be noticed that transmitter powers are all fairly low: 10 kW is the legal upper limit and Honduran stations are at the moment spared the spiral of ever-rising powers. Despite the higher radio noise levels under tropical conditions, most areas are served well by their local transmitters and there is little adjacent or co-channel interference even at night.
On the studio side, there is such a range of equipment in use as to prohibit more than a mention here. The radio schools central recording studio is well equipped with a double turntable sound mixing desk, two Magnecord professional recorders, three Ampex series 600 machines and two high-speed tape duplicators. So too Radio Progreso has an impressive line up of Ampex 351 recorders in two fully interchangeable control rooms serving three studios, However, at the other end of the scale, the type of station with "mic and two decks" (one of them probably nonoperational) is common.

Broadcasting policy
Radio Schools classes are broadcast from 4 p.m. to 6 p.m. Monday to Friday
with supplementary material on Saturday including news and current affairs for campesinos. These programmes are followed by some 1200 community school groups involving about 22,000 students which means that, with their families included, the broadcasts affect some 100,000 people, around $5 \%$ of the rural population. Each group is guided by a monitor who will be a local campesino with approximately one month's training at one of a number of regional centres. The monitor also plays an important part in a feedback path of opinion via a regional co-ordinator to the production team in the capital. Instruction is given in reading, writing and basic arithmetic, progressing to geographical and cultural knowledge, but at all stages there is practical advice on agriculture, health and home management. However it is the teaching method which is significant. Education follows the idea, originated in Latin America, of "conscientization", a very pragmatic philosophy intended to create a critical awareness of one's environment and capabilities within it, with emphasis on democratic and co-operative processes as means of achieving communal aims. Hence it is not so much a "handing downwards" of information but rather a combined search by students and teachers in the context of a localized community to find solutions to very real practical problems.
The importance of employing local radio stations is noteworthy. Firstly the schedules of classes need to differ in various parts of the country to accommodate variations in the tending of crops. Secondly there is a chance for the local radio station to become the focal point in a community and give a sense of identification to those living around it, through their knowing personally the announcers, being able to participate in discussion programmes, or merely by hearing their own record dedications.

Fig. 3. A typical radio schools class, making use of a primary school out of normal school hours.



Fig. 4. An exercise in Handwriting for a Honduran campesino.

## Operational problems

Operation of a radio network in a developing tropical country brings its own special difficulties not normally encountered here. There are frequent troubles with the campesino transistor radios which are often subjected to extreme conditions of heat or mechanical abuse, such as use as a temporary seat in a bus with doubtful suspension driven along a rocky dirt road. Sometimes a little "home servicing" is attempted too, with the aid of the first implement which comes to hand, normally a machete, and often the back of the set is lost and the loudspeaker cone is eaten by cockroaches.

Broadcasting stations also suffer from the climatic conditions. Ventilation can be a major difficulty: at the Radio Paz transmitter in Choluteca, admittedly one of the warmest parts of the country, shade temperatures in March and April regularly exceed $40^{\circ} \mathrm{C}$, and even after increasing the size of blowers it was necessary to run the transmitter without sides and play a domestic fan on the modulator chassis. Concurrent with temperature problems are often those of high humidity: a particuarly bad case is in La Ceiba, where the damp salt-air has affected even the BC610, designed for military and tropical use. During the wet season, lightning strikes cause frequent disruption of service and damage to transmitters and for this reason a folded unipole (caged) aerial configuration, in which the base of the tower is earthed, has been adopted for m.w. radiation at both Radio Progreso and Radiolándia.

The studio equipment is not normally subjected to such extreme conditions, but in studios without air conditioning there are problems of overheating in turntable and tape-recorder motors, and much valve equipment such as line amplifiers and compressors has to be blown. Fluctuations in mains voltage
can also be troublesome; for example the Radiolándia transmitter shows a tendency to trip out on the surge caused by a local factory shutting down at the end of the day.

Many stations have no technical staff and hence no regular maintenance, repairs being effected only when breakdown occurs. In a country dependent on agriculture rather than industry and technology, the whole environment is non-scientific and there are few technicians and engineers of any description. There appear to be several reasons for this. The social circumstances of most families tend to inhibit rather than encourage a child's natural curiosity; the education system, for those who benefit from it at all, is biased towards learning by rote rather than from exploratory and logical deducation processes, and Honduran technicians experience particular difficulty in fault diagnosis. For those few privileged enough to go on to higher education, most seeking technical studies would travel to the U.S.A. or Mexico, ana perhaps not return. Latin American technicians encounter additional problems with language, as a large proportion of service manuals and specification sheets are in English only. Nevertheless, the enthusiasm and capacity for hard work of those trying to better themselves is an inspiration. Moreover most Hondurans are capable with their hands and adept at improvisation with what materials and knowledge they possess.

## Electronics technology for developing countries

One of the dilemmas which developing countries face is whether to accept certain totally imported technologies,

Fig. 5. Rudio schools classes are often held in ordinary campesino houses such as this one near Choluteca.
such as electronics, or to manage without them. The extent of radio ownership leaves no doubt that radio broadcasting is both desirable and successful in Honduras, yet even an organization like the radio schools, trying to go its own way to suit the needs of its own people, has to accept the technology of the industrialized countries and the way in which it is administered.

Furthermore, there is no half-way stage in radio, no "intermediate" technology. Other branches of engineering, for example transport, can be upgraded by better techniques while remaining within the framework of traditional styles: the wooden wheels and axles of an ox-cart can be replaced by pneumatic tyres and a suspension system without a complete changeover to use of a tractor and trailer. But there is no parallel process in radio, which is not a development of a traditional method of communication but a totally new science. It is hard to simplify a transmitter beyond a basic valve-driven anode-modulated circuit, yet at present this remains as incomprehensible to most Hondurans as ampliphase, Doherty or pulse amplitude systems: it is just another proverbial "black box".
So how suitable is present day electronics technology for developing countries such as Honduras? Despite the extent and importance of radio systems in such countries, little equipment is manufactured specifically for their needs and often standard equipment is unsuitable without modifications such as tropicalized components or additional cooling. At times equipment cannot be set up correctly or maintained through lack of test gear and spares: an example is an ampliphase transmitter imported into Honduras which has never given optimum performance. On the other hand, confusion is caused when a range of test equipment is specified which is not normally used

outside a laboratory; the list of "required equipment" for tape-head alignment on one model of recorder included a valve voltmeter, a low-distortion oscillator and a spectrum analyser. The station concerned did not possess even a multimeter.

Nevertheless, the Latin American broadcast equipment market is booming; a periodical is produced, in English and Spanish, for free distribution to any radio personnel requesting it, and many of the larger electronics companies now have agencies in Central and South America.

Bearing in mind the possible size of the market for electronic and radio goods in developing countries, it seems appropriate to consider some of their basic requirements. It would indeed be a noteworthy advance if there were available a cheap, simple, foolproof transistor radio, in a tough impact-resistant case with firmly secured back and control knobs, with reliable battery contacts and protection against incorrect battery insertion. Suitable circuitry might include integrated circuit i.f. and a.f. stages and ceramic filters, with servicing simplified to the level of quick circuit-block replacement or perhaps even a complete change of encapsulated, throwaway electronics. The criteria of low cost, robustness under exacting conditions and misuse, reliability and ease of servicing by non-expert personnel also apply to broadcasting equipment, appearing more important than high performance and sophistication of design. Such ideas as solid-state relays, ball-race bearings lubricated for life, modular construction but with far more attention given to connectors, and generously rated components immediately suggest themselves. A plea might well be added for VU meters with flexible pointers and unbreakable end-stops.

Current technology can adequately satisfy these requirements if suitable production and marketing policies are adopted. Future demands from developing countries are likely to be for television as well as radio equipment in ever-increasing quantities, but understanding and ability to use the technology can only come slowly. In the meantime, these countries require the sort of equipment which can be used successfully in the present environment. The Honduran campesino needs his indestructible transistor radio for entertainment and for education, and must hope that progress in electronics technology will move towards providing it. And there might even be something in it for us.

## Acknowledgements

Thanks are due for the considerable assistance provided by R. J. Levey, engineer for ACPH; P. G. Nairne, now with the British Council; and the Catholic Institute for International Relations.

## One hundred years ago

No, Wireless World was yet a thing of the future in 1877, but the groundwork for the development of the electronic twentieth century was being laid and already, a hundred years ago, an impressive list of theoretical and practical invention was in existence. Computers, relays, transformers, diaphragm microphones, motors, fuel cells had all been made and the theory of wave propagation was well advanced.

In April 1877, Thomas Alva Edison filed a U.S. patent application for the design of the carbon microphone, which immediately took precedence over the efforts of Reis (diaphragm type - 1860) and Bell (magnetic - 1875). The "other end" of a speech communication system was attacked by E. W. Siemens, who applied for a German patent on the moving-coil loudspeaker in December, 1877. The device used the now-familiar motor with a circular coil moving in a radial field.
A rather more publicized centenary this year is the invention by Edison of the phonograph (or gramophone) using tin foil wrapped round a hand-cranked cylinder. This patent was applied for in December, 1877.

Moving on to fifty years ago, 1927 was an important date in the history of the cinema
when the first really effective "talkie" film, "The Jazz Singer", with Al Jolson, was a tremendous success. The Western Electric sound system - the Vitaphone - used 16in disc turntables driven at $331 / 3$ r.p.m. from the same constant speed motor system as the film projectors. But this method of synchronism was soon to be supplanted by the "sound track" (sound-on-film system) introduced in the same year by Fox Movietone News. On a quieter and somewhat less distorted note, but highly significant to audio engineering, was the invention in 1927 of the negative feedback amplifier by H.S. Black of Bell Laboratories.

These are just a few of the significant inventions described in a new book "Electronic Inventions $1745-1976^{\prime \prime}$ by G. W. A. Dummer just published by Pergamon Press at $£ 4.00$. This contains mainly brief accounts of important inventions in electronics but also has some interesting graphs showing historical trends. For example, it shows that in the 200 years from 1745 to 1945 some 106 electronic inventions originated in Europe against 66 in the same period in the USA; but in the mere 31 years from 1945 to 1976 the situation was reversed with 32 inventions for Europe and 85 for the USA.

Connectors in the Amphenol range include the r.f. types to DEF standards - the 27 GB Subminax, the 31 GB series quick disconnecting connectors and the 82 GB ' $C$ ' weatherproof type. A set of data sheets covering all these is now obtainable from Amphenol Ltd. Thanet Way, Whitstable. Kent CT5 3JF .

Distance measurement techniques over a period of 5000 years are illustrated on a new wall-chart from Tellurometer, which has been involved in only the later, microwave methods of measurement. Tellurometer, Oakcroft Road. Chessington, Surrey KT9 IRQ .

Capacitors and semiconductor devices by RIFA are fully described in a catalogue. now available. A very full range of capacitors is offered and the semiconductors are rectifiers. timers and driver/ interface circuits. Rifa, Fac, S-161 II Bromma. Sweden .................................. WW409

Power supplies by Garơners are detailed in a series of recently published leaflets. Chargers for nickel-cadmium cells, 50 Hz d.c.-to-a.c. inverters, regulators and d.c.-to-d.c. converters are all described and the leaflets can be obtained from Gardners Transformers Ltd, Christchurch, Dorset, BH23 3PN

WW4I0
Speaker drive units, crossovers. materials and accessories for loudspeaker construction are listed in a new catalogue, obtainable from Badger Sound Services Ltd. 38(a) St Andrews Road South. St Annes. Lytham St Annes. Lancs FY8 IPS at 10p per copy.

Pressure transducers of various types are made by Bell \& Howell who describe them in four bulletins. Types covered are: thin-film types. high-output versions with amplifiers, marine and industrial transducers with electronics in a bulkhead-mounting case and flameproof transducers. Bell \& Howell Ltd. Electronics and Instruments Division, Lennox Road. Basingstoke. Hants RG22 4AW..... WW411

General electronic components, instruments, kits and books are all listed in the Maplin 1977 catalogue, available at 50 p from Maplin Electronic Supplies, PO Box 3, Rayleigh. Essex SS6 8LR.

# Circuit Ideas 

## Voltage/current meter switch

The circuit arrangement shown enables a single pole two way switch to be used in place of the two pole, two way type which is usually required when one meter indicates both current and voltage. Resistors $R_{1}$ and $R_{2}$ are the meter shunt and series resistances respectively. The change of output voltage due to $R_{1}$ being switched in and out will usually be negligible if the circuit is included in the feedback loop of a stabilised power supply.
S. V. Essex,

London W. 14.


N -stable multivibrator
This circuit produces a fixed number of pulses when triggered. Applications include number indicators, frequency multiplication, and number loaders. A monostable feeds a gated astable and, by adjusting the frequency control of
the last mentioned, between two and thirty pulses can be obtained. This has been realised using a single CD400l i.c. A pushbutton can be used instead of a trigger pulse for manual circuits.
Dr K. Padmanabhan,
University of Madras,
India.


## Variable band-pass filter

Sometimes it is required to have a high-Q, bandpass filter which is adjustable over a wide frequency range without an appreciable change in $Q$, or more particularly, without the loopgain becoming greater than unity which causes oscillation. With this circuit the centre frequency can be adjusted over a $100: 1$ range whilst maintaining $Q>100$, and over smaller frequency ranges, a $Q$ of up to $10^{4}$. In addition, a two-phase output is also available.
Two cascaded all-pass networks, B and C , each have a $0^{\circ}$ to $180^{\circ}$ phase variation, and unity gain at all frequencies. This cascade is driven from a third operational amplifier whose feedback signal is the sum of the input
and output of the all-pass network. The sum becomes zero when there is exactly $180^{\circ}$ phase shift over the cascade, and thus the overall gain approaches half the open-loop gain of amplifier A. At other frequencies the gain tends towards unity.

Because the frequency determining components only affect the overall phase-shift and not the gain, there is a no danger of having a loop-gain greater than unity. If the two-phase output or large frequency range is not required one $R$ can be fixed. The $Q$ is adjusted by $R_{2}$, and with the values shown gives the circuit a 20 Hz to 2 kHz range.
J. M. Worley,

Colchester,
Essex.


## Ripple eliminator

This shunt regulator circuit virtually removes all mains ripple without using a large capacitor, and is inherently short-circuit proof. The regulator is ideal as a stabilized supply line for audio preamplifiers and other applications where a precise voltage level is not important but freedom from ripple is. The circuit's simplicity is due to silicon transistors which can operate at very
low levels of collector-emitter voltage. The zener diode should be operated with enough current to make its dynamic resistance significantly less than $\mathrm{R}_{1}$. Transistor $\mathrm{Tr}_{3}$ may be a power type or a Darlington. The Miller capacitor should be large enough to stop high frequency oscillations. P. S. Bright, Christchurch, New Zealand.


Earth warning indicator


This simple circuit gives a warning if the earth wire is disconnected from the chassis of an instrument. It is particularly useful for oscilloscopes which may be left in a hazardous state when the earth wire is purposely disconnected to avoid hum loops etc.

The neon is normally extinguished, and flashes if the earth is not connected. R. H. Troughton,

Gatwick Airport, Surrey.

## Simple noise generator

Phase-lock loop techniques, for the recovery of low level information from noisy signals, have become increasingly important. This note describes a simple noise generator in which both signal and noise levels are continuously and independently variable from zero to maximum. The only point requiring care is the positioning of the transformer to avoid 50 Hz hum. The voltage. doubler supply may be replaced by any convenient configuration. The input
impedance is approximately $500 \Omega$. Four stages of gain have been used to minimize instabilities and provide the maximum noise amplitude without reaching the limits of output excursion. The a.c. coupling between stages eliminates offset compensation and provides low frequency roll-off. High frequency roll-off is determined by the gain of each stage and varies slightly with the noise level control. Output noise is essentially "white" from below 50 Hz to above 5 kHz . This range was selected as appropriate to demonstrate
the recovery of a 500 Hz signal from noise of similar frequencies. The circuit will operate at maximum $n c$ e output into a load of $1.5 \mathrm{k}!$. For sma ${ }^{2}$ r load impedances, the noise level must be reduced or the $1000 \mu \mathrm{~F}$ power supply capacitors increased to prevent oscillation.

The author wishes to acknowledge the contributions of Dr T. G. L. Shirtcliffe, Mr J. E. Nixon and Mr P. D. Turner to the project.
J. E. Morris,

University of Wellington,
New Zealand.


# We complete the open circuit in your money supply. 

In almost any industry these days, the gap between invoicing and getting paid is widening so fast it's causing cash flow problems even for sound companies.

It's the creditability gap.
It affects the quality of work and frustrates plans for improving productivity and profits through expansion. It prevents good companies from forging ahead.

Here's the professional answer to the problem.

Alex. Lawrie will bridge your creditability gap by converting up to $75 \%$ of your invoices into ready cash-immediately. You inject it into your businessimmediately. And together, you and Alex. Lawrie generate a sound cycle of money supply. Let's face it, if you've.got a good business going in this critical economic climate, you have no alternative but to protect it. Phone the Alex. Lawrie Regional Manager and talk to him now. Or send for details.


# Alex.Lawrie Factors Limited 

Gould Advance offer a comprehensive range of generators - and every one's a winner.

Take the J3A and J4A Test Oscillators, for example. Both feature a choice of four different outputs, and both give you outstanding performance at a very modest price.

Then there's the SG200 RF Signal Generator, offering 7 ranges from 160 kHz to 230 MHz , and excellent frequency stability with fine setting to within 1 kHz .


There are Pulse Generators too. The PG58A, for instance: an inexpensive general-purpose instrument providing single or double pulses as well as square

waves. And the PG52B; not really one instrument, but up to eight modular units in one Main Frame. There are twelve modules to choose from, enabling you to generate an extremely wide range of pulses and pulse patterns. And if you need still more versatility, there's a 16 bit Word Generator and a Gate Module to provide even more complex pulse patterns.

Look into the Gould Advance range for yourself. You'll find that it's hard to beat for price, performance and reliability. In fact, we've guaranteed every instrument in the range for no less than two years.
Didn't we do well!
Gould Advance Limited,
 Instrument Division, Roebuck Road, Hainault, Essex IG6 3UE.
Tel:01-500 1000 Telex:263785

WW-073 FOR FURTHER DETAILS

# 3 - Operation of the system: terminals and codes 

by S. Fedida, B.Sc. (Eng), M.Sc., F.I.E.E., A.C.G.I. Post Office Research Centre

Part 1 of this series, in the February issue, gave an introduction to Viewdata, with mentions of earlier systems. Part 2, in the March issue, dealt mainly with applications. This article inow describes the overall arrangement of the system, the codes used and the Viewdata terminal.

Fig. I gives an overail view of a Viewdata connection. The home terminal, shown at the bottom left hand side, comprises a domestic television set, a telephone instrument, a Viewdata adaptor and a keypad. The actual assembly is shown in Fig. 2. Two types of keypads proposed are shown in Figs. 3 and 4. The basic keypad is Fig. 3; this provides the ten numerals, *and = symbols and keys for automatic dialling, if installed. Fig. 4 is an alphanumeric keypad. This contains in addition to the above, the complete upper case alphabet, punctuation marks and symbols like $£, \%, /$, arithmetic and algebraic symbols and cursor control characters. A typical Viewdata terminal for the office, the Viewdataphone, is shown schematically at the bottom right hand side of Fig. 1. This consists of a Viewdata terminal and a self-contained telephone instrument. A typical Viewdataphone was shown in the March issue. The Viewdata computer is shown at the top of Fig. 1, notionally connected to a variety of data banks, either direct or through the switched telephone network.

As mentioned in the February issue communication between the terminal and the Viewdata computer is at a rate of 1200 bits/s from computer to terminal and 75 bits/s in the opposite direction. More details of this arrangement will be given later.

In order to establish a connection to the Viewdata computer the user dials the telephone number of the computer as for a normal telephone call. When the connection is established the computer generates a high pitched tone (frequency 1300 Hz ) which is heard in the telephone receiver. The user then presses a button marked "data" on the telephone set, which switches the telephone line from the telephone set to a modem (modulator-demodulator). The telephone receiver is then set by the
side of the cradle. Once contact is established, the computer transmits a first frame, which requires the user to enter a user number. When this has been done Viewdata offers the first index (shown in the February issue, p. 32).

The action is now transferred to the keypad. On this the user keys-in his user number and any further responses. Suppose the user wishes to obtain information about entertainment activities for a given day of the week. The
user may enter the entertainment page direct by keying ${ }^{*} 3230=$. An example of one of the pages in the entertainment sequence was Fig. 6 in the February issue. In later models of the terminal, use is made of the calling key on the keypad. This calls the Viewdata computer automatically and switches over to the modem without the user's intervention. The keypad may then be used as previously.

The design philosophy of Viewdata which has been dealt with in the first

Data
banks
Fig. 1. Overall picture of connections in


two parts of this article referred to the need to keep the cost of Viewdata down to very low levels, both on the terminal side and on the computer usage side. Indeed, unless the cost of using the computer facility is kept substantially below that of using current computer time-sharing systems, the whole project may not become viable. This therefore postulates the use of a distributed computer system, so arranged that the majority of users may have access to a nearby computer centre, at the cost of a local telephone call for the connection plus a correspondingly modest charge for the use of the computer and the information provided.
The resulting network is typically as shown in Fig. 5. Users are within a local. call distance of their computer centres, shown as rectangles. A cluster of local computer centres is grouped under the control of a regional centre for the purpose of data gathering and distribution. A national data centre controls the operation of the whole system and distributes to each regional centre new information, news and data updates. Regional centres also accept information of regional or local interest and distribute this to the local centres.

## The Viewdata terminal

Display format. The display format of Viewdata is identical with that of teletext, i.e. a page consists of 24 rows of 40 characters each, each character being generated by a $5 \times 7$ matrix with upper and lower case, character rounding, graphics symbols and colour. Thus. a great deal of the electronics in a terminal may be common to Viewdata and teletext, the differences being primarily concerned with the additional functions needed in Viewdata, the different modes of transmission applicable to these two systems and the different contraints appertaining to the different communications media involved.

In the case of Viewdata the data enters the terminal via the telephone line at relatively low speed, and, as the probability of data corruption is quite low, little is needed for the purpose of error detection and correction. Indeed, extensive Viewdata tests have been

- Fig. 2. Home terminal for Viewdata, with television set, telephone (right) and keypad on the table.

- Fig. 3. Basic keypad used in a Viewdata terminal, providing ten numerals and a few other keys.
carried out over the past two years from a large number of centres in the UK and on the Continent. In all these tests the public switched telephone network was used to connect up to the experimental Viewdata system based at Martlesham, near Ipswich, and transmission difficulties have been very rare.
The character codes used for Viewdata and teletext are also identical,
except for the actual codes transmitted over the line, where a slight change is made to comply with International Standards Organization recommendations.

The table of codes used for Viewdata is shown in Figs. 6, 7 and 8. Fig. 6 shows the joint Viewdata and teletext codes for alphanumeric characters only. This differs from earlier versions in the following characters:

| Column | Row | Was | Is now |
| :---: | :---: | :---: | :---: |
| 5 | 11 | $[$ | $\leftarrow$ |
| 5 | 12 | $\vdots$ | $1 / 2$ |
| 5 | 13 | $\square$ | $\rightarrow$ |
| 5 | 15 | - | $=$ |
| 6 | 0 |  | - |
| 7 | 11 | $\vdots$ | $1 / 4$ |
| 7 | 12 | i | $\square I$ |
| 7 | 13 | $\vdots$ | $3 / 4$ |
| 7 | 14 | - | $\div$ |

Note: The top, left-pointing, arrow is used as an assignment statement; the lower, rightpointing, arrow means "go to"; and the sign = is used as a terminator and for special functions. Note also that the arithmetic operator $\times$ (multiply) used in Viewdata is shown as $x$ (lower case $x$ ), while the minus sign $(-)$ is code $2 / 13$ and the exponentiation sign is code $5 / 14$ shown as $\uparrow$

Fig. 4. More elaborate, alphanumeric,
keypad with a variety of other symbols.


- Fig. 5. A distributed Viewdata network, showing local computers, regional centres and national data centre.



Fig．6．Codes for alphanumeric characters only， as used in both Viewdata and teletext．

Fig． 7 shows the graphics and control characters use in teletext，as at Sep－ tember 1976＊，the conventions being as before，that is：
1．All character rows start in the ＂steady＂，＂alphanumeric white＂and ＂unboxed＂condition without control characters．
2．Control characters shown are dis－ played as spaces，but control whether alphanumeric or graphic characters are displayed and what colour is used．
3．Alphanumeric characters in columns 4 and 5 ，i．e．all of the upper case letters and a few others，may be displayed next to graphic symbols without an inter－ vening space．
While the intervening space conven－ tion following a control character is essential in teletext，it has been accept－ ed in Viewdata for the sake of unifor－ mity，although it is not really essential and imposes undesirable constraints on the page format．
Additional control characters have recently been added to teletext to provide enhanced display facilities．The ＂intervening space＂convention is somewhat modified and made less onerous，although not all its undesirable effects are eliminated．

The new control characters，which may be applied equally in Viewdata are in four groups：
Contiguous／separate graphics．Codes $1 / 9$ and $1 / 10$ in teletext， $5 \mathrm{a} / 9$ and $5 \mathrm{a} / 10$ in Viewdata．This provides the choice of graphics symbols filling the whole of a character rectangle，or only six discrete and separate dots．
Normal height／double height．Codes 0／12 and $0 / 13$ in teletext， $4 \mathrm{a} / 12$ and $4 \mathrm{a} / 13$ in Viewdata．This provides for the optional display of alphanumeric characters in the standard size，i．e．within the normal char－
＊Broadcast Telecext Specification．Published jointly by the Broadcasting Corporation，Indepen－ dent Broadcasting Authority and British Radio Equipment Manufacturers Association．

|  |  | $\begin{aligned} & b_{7} \\ & b_{6} \\ & b_{5} \end{aligned}$ |  | $\begin{array}{lll}0 & & \\ & 0 & 1\end{array}$ | 0   <br>  1  <br>  0  | 0  <br>   <br> $\cdot$  <br> $\cdot$ 1 | $1 \begin{array}{lll}1 & \\ 0 \\ & 0 \\ & \\ & \end{array}$ | $\begin{array}{lll}1 & \\ & 0 \\ & 1 \\ & 1\end{array}$ | 1  <br> 1  <br>   <br>   <br>  0 | ${ }^{1} \begin{array}{ll}1 \\ & 1 \\ & 1\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bits | $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1}$ | Col | Oa | 1a | 2a | 3 a |  |  | $6 a$ | 73 |
|  | 0000 | 0 | （NUL） | （DLE） | 芒 | E； |  |  | F | 5 |
|  | 0001 | 1 | $\begin{gathered} \text { alpha } \\ \text { red } \end{gathered}$ | graphics red | 島 | ［： |  |  | ： | － |
|  | 0010 | 2 | alphan ${ }^{n}$ green | graphics green | 温 | L |  |  | 田 | 畆 |
|  | 0011 | 3 | alphan yellow | graphics yellow | 四 | － |  |  | 519 | $\square$ |
|  | 0100 | 4 | alphan blue | graphics blue | E | ＇${ }_{\text {E }}$ |  |  | E | L |
|  | 0101 | 5 | alphan magenta | graphics magenta |  | ${ }^{7}$ |  |  | E | E |
|  | 0110 | 6 | alphan cyan | graphics cyan | ［1］ | H |  |  | 5 | － |
|  | 0111 | 7 | alphan white | graphics white | f | $\square$ |  |  | 5 | 5 |
|  | 1000 | 8 | flash | conceal display | $19$ | H |  |  |  | $\square$ |
|  | 1001 | 9 | steady | contiguous graphics | 5 | E |  |  | E | 5i |
|  | 1010 | 10 | end box | separated graphics | ! |  |  |  | 5 | － |
|  | 1019 | 11 | start box | （ESC） | 5 | 1 |  |  | 4 | 5 |
|  | 1100 | 12 | normal height | black background |  | 4 |  |  | 1 | $\cdots$ |
|  | 1101 | 13 | double height | new background | H |  |  |  | 5 | L |
|  | 1110 | 14 | （so） | hold graphics |  |  |  |  | 1 | － |
|  | $\begin{array}{llll}111 & 1\end{array}$ | 15 | （ 51 ） | release graphics |  | $\square$ |  |  |  |  |

Fig．7．Codes for graphics used in teletext．


Fig．8．Control and graphics codes used in Viewdata．
acter rectangle or stretched vertically to double height, the width of each character and the intervening spaces between characters remaining the same.

Black background/new background. The background colour of the character rectangle is normally black. Whenever the new background control character $1 / 13$ in teletext or 5a/l3 in Viewdata occurs, the display colour then obtaining is adopted as the new background colour.
Hold graphics/Release graphics. Codes 1/14
and $1 / 15$ in teletext, $5 \mathrm{a} / 14$ and $5 \mathrm{a} / 15$ in Viewdata. This allows a limited range of abrupt display colour changes in a row whereas normally there is at least one space between rectangles with different display colours in the same row.

The graphics and control characters in Viewdata are show in Fig 8, but before these are looked at in detail, the use of a cursor in Viewdata should first be explained.

Cursor. The cursor in Viewdata is a symbol which shows up on the display as a bright rectangle, filling the space of an upper case alphabetic character. It may be switched on and off, as required. by a switch on the terminal or on the keypad, or by remote control from the computer. It may also be moved any. where over the display either manually by using special keys on the keypad or by remote control from the computer.

The cursor has many functions.


(a)

(b)


Basically it gives a visual indication of the position on the screen at which the next character sent by the computer will be displayed. When the computer sends a new page of information to the terminal, it first sends a code which returns the cursor, whether visible or not on the display, to the "home" position which is at the top left-hand side of the display. Thereafter, as each character is entered, the cursor is moved one character position to the right. The position of the cursor, whether this is switched on or off, is recorded by two counters, a character counter and a row counter, which maintain at all times a knowledge of the position at which the next character is to be displayed (and entered on memory). Thus we talk of the cursor as it it were a real entity, whether or not it is displayed.

By moving the cursor by means of the controls available (see below), the computer may position it to where the next character is to be entered. Thus it is not necessary to send a series of spaces where one or more blank lines are required, or where a row of characters is shorter than the full length of the line. The cursor also enables the computer to overwrite a portion of a display without having to first erase and retransmit the whole page.
The cursor may also be used at the terminal for editing purposes, e.g. when composing messages or doing calculations, or to point at a feature of the display it is desired to manipulate. In this context the cursor is a powerful communication channel between com-

Fig. 11. Block diagrams of (a) a teletext terminal and (b) a Viewdata terminal, showing r.f. (u.h.f.) connections to the television set.
puter and user which resembles a pointer (but more about this later).

Control characters in columns 0 and 1 must comply with ISO7 for line transmission and so far 15 have been allocated. Additional characters in the same columns may be allocated in future as more facilities are included.

The control characters wicn nave so far been allocated in the experimental system undergoing pilot trials are:

## Col/ Name Function

row
$0 / 1$ NUL None-used for timing purposes
0/5 ENQ Code sent by computer to .terminal to initiate automatic terminal identification
0/8 BS Back-space. Moves cursor one character position to left
$0 / 9$ HT Horizontal tab. Moves cursor one character position to right $0 / 10 \mathrm{LF} \quad$ Line feed. Moves cursor one line position down
$0 / 11$ VT Vertical tab. Moves cursor one line position up
$0 / 12 \mathrm{FF}$ Form feed. Erases screen and moves cursor to top left hand side of screen (position 1)
$0 / 13$ CR Carriage return. Moves cursor to first position on same line

Device control 2 13 DC3 Device control 3

## Combinations

 of these characters will be ${ }^{\prime}$ used to switch on tape recorders and hard copy devices remotely1/4 DC4 Device control 4. Used to switch off both tape recorder and hard copy unit
1/8 CAN Cancel. Used to delete line of character. This code is used only from terminal to computer
1/9 ESC Escape. Used to indicate to terminal that the character following is from another set of control codes (in this case the control code set 2a to 7a of colours or graphics)
1/10 IS2 Home. Returns cursor to character position 1 on screen (top left hand side)

Graphics characters. The graphics and colour control characters for Viewdata are shown in Fig. 8 columns 2a, 3a, 6a, 7a for graphics and $4 a$ and $5 a$ for the controls. For line transmission the control characters of 4 a and 5 a , are always preceded with ESC (code 1/11). On receipt of this code the terminal reverses the polarity of bit 7 from 1 to 0 , thus restoring compatibility with teletext and places the characters in store.

The graphics characters in columns $2 \mathrm{a}, 3 \mathrm{a}, 6 \mathrm{a}$ and 7 a are fully compatible with teletext and are treated in the same way when displayed. The complete set of Viewdata codes is shown in Fig. 9.

Block diagram of terminal. A block diagram of a Viewdata terminal is shown in Fig 10 (b). This shows the interconnection between the Viewdata decoder and the video amplifier of the colour tv receiver. An interface board contains the electronic switch which provides the changeover from tv reception to Viewdata. The input to the Viewdata decoder unit is, of course, the telephone line. By contrast Fig 10 (a) shows the teletext decoder connections (Wireless World, December 1975, pp. 563-566). The input to the teletext decoder is obtained from the i.f. input.

Fig 11 shows a similar set of connections where the entry to the television set for display purposes is the aerial socket of the tv receiver. In Viewdata only (b) a u.h.f. modulator has to be added, whereas for teletext (a) an additional tuner and i.f. strip must be provided. Hence the considerably greater attraction of a built-in decoder in the case of teletext.
(To be continued)

## The journal you like

Wireless World's average circulation last year was up 4,604 copies to 69,220 per month, according to the Audit Bureau of Circulations. Overseas readers, in countries from the USSR and USA to the Falklands and Seychelles, bought 21,000 of these. On average, for the past eight years 200 more readers have joined our circulation each month.


## Space and propagation

Martin Sweeting, G3YJO, of the University of Surrey's Oscar telecommand station reports that early this year one of the NiCad cells in the upper half of the Oscar 6 spacecraft (launched in 1972) "took a turn for the worse" and may fail completely; if this happens it is likely that the battery will be irretrievably damaged. He appeals for strict adherence by all amateurs to the operating schedules if Oscar 6 is to survive the year. Additional telemetry information received from the satellite would be welcome and should be sent to: UOS-AMSAT, Department of Electronic Engineering, University of Surrey, Guildford, Surrey. Incidentally, the UK FM Group (London) state that many amateurs in the Thames Valley area have been puzzled by the 144.8 MHz wideband transmissions from the UOS-AMSAT telecommand station, G4DVT, at Guildford. This station operates daily for up to 25 minutes at a time, repeating every 100 minutes between 0530 and 2300 GMT.
GB3LBH, the 10 GHz beacon station at Romford, Essex recently increased power and now uses a 200 mW Gunn oscillator on 10.1 GHz ; it is regularly received at distances up to 25 km including some obstructed paths; this beacon may be used for studies being carried out, by students at Imperial College. A 144 MHz beacon (possibly 9H3ML) may be set up in Malta. The 1.3 GHz beacon at Andover (GB3AND) with a power of 5 watts e.r.p. has been heard in Devon.
28 MHz c.w. and s.s.b. activity periods are now being run by the RSGB on the first Sunday of each month (1200-1800 GMT, 28.0 to 28.1 and 28.5 to 28.6 MHz ). A new 28 MHz beacon is expected to be set up at Lannion in Brittany, France, with the callsign F3THF on 28.227 MHz ; it also hoped that 50 MHz beacons may be established at Lannion and also at Gibraltar as part of a new series of 50 MHz transatlantic tests.

It is now thought likely that the
minimum of Sunspot Cycle 20 was reached during July 1976 with a maximum for Cycle 21 predicted around 1981.

## Licence totals

The Radio Regulatory Department of the Home Office are currently distributing (as renewals fall due) the new form of amateur licence (see February issue). Two reasons are given for the changes: "(1) To give you greater flexibility to pursue each aspect of amateur radio without having to apply to us each time for authority to do so; (2) we, in turn, expect to be able to keep within the Government's staff ceiling over the next few years while maintaining the issue of amateur licences without undue delays."

On January 1, 1977 the number of new-style Class A and B licences were: Class A 15,956; Class B 6202; total 22,158.

How the number of old-style licences built up to over 29,000 during the past few years is shown below:

|  | end- <br> $\mathbf{1 9 6 8}$ | end- <br> $\mathbf{1 9 7 1}$ | end- <br> $\mathbf{1 9 7 4}$ | endi- <br> $\mathbf{1 9 7 6}$ |
| :--- | ---: | ---: | ---: | ---: |
| Clasis A | 13.082 | 14.082 | 15.304 | 15956 |
| Class B | 1352 | 3012 | 4966 | 6.142 |
| Class A/M | 2.589 | 2.666 | 3424 | 4173 |
| Class B/M | 132 | 545 | 1549 | 2.463 |
| Class F/M | - | - | - | 23 |
| Television | 186 | 214 | 277 | 318 |
| Totals | $\mathbf{1 7 . 3 4 1}$ | 20.502 | 25.520 | 29.075 |

## Amateur TV News

Mr R. C. Hills, G3HRH, Chief Engineer (Transmitters) of the IBA, is the new President of the British Amateur Television Club. He succeeds Mr R. S. Roberts, G6NR, who recently completed his four-year term of office. BATC has recently published a new 110 -page book "A guide to amateur television" (non-members $£ 1.75$ post paid from BATC, 64 Showell Lane, Penn, Wolverhampton, Staffordshire).
P. Blakeborough, G3PYB, is constructing a vision transmitter for 1296 MHz in addition to his 100 -watt 625 -line transmissions in the 432 MHz band. Alan Morris, G4ENS, of Luton is trying to raise interest in proposals for an amateur tv beacon on 432 MHz and later a 1296 MHz repeater capable of handling tv signals.

## U.H.F. aerial gain

Des Clift, VK2AHC (formerly G3BAK) who has operated on every available band from 1.8 MHz to 10 GHz has commented in Electronics Australia on the problems of reproducing aerial designs from constructional articles, noting that the element dimensions given by different constructors for the same bands often show surprising differences. For 1296 MHz he has attempted with only moderate success to build 8 -over-8 skeleton slot array; 34 -element long Yagi; four square helix; conical reflector with dipole feed, etc.

Arrays for 5.8 and 10 GHz which can more readily be based on dishes have proved more successful.

The problem of obtaining gains (reference dipole) of above about 14 dB on 432 MHz is underlined in the results of the 10 th national antenna-gain measuring contest held in the United States last year. The leading designs were: eight times 16 -element Yagi (K2CBA) 16.1 dB ; four times 13 -element wooden-boom Yagi (K2UYH) 16dB; G3JBL-type 28-element long quad-loop Yagi (K1LOG) 15 dB ; 15 -element W0EYE-type Yagi (KlLOG) 11.8 dB . On 1296 MHz a 7 ft dish aerial (WA2FGK) registered a gain of 24.3 dB ; a G3JBL-type 28 -element long quad-loop Yagi (K2UYH) 17.IdB.

Such events indicate that many amateurs have an inflated idea of the forward gain of their aerials, possibly due to high front/back ratios.

## In Brief

The death has occurred of Austin Forsyth, OBE, G6FO, for many years editor of Short Wave Magazine. Before the war he operated from Newport, Monmouth and for a time from North Devon; more recently from Maids Morton, Buckinghamshire. . . A working party is being set up by the RSGB "to study the whole Society in depth with a particular relation to the organisation of the Society's headquarters, the organisation of Council and its committees and the inter-relation between HQ , Council and Committees". Seychelles now use the prefix S 7 , and the prefix S 8 has been allotted to Transkei. . . A mountain top in the Antarctic has been named "Cima Radioamatori" by a recent Italian expedition that kept in daily touch with northern Italy with the help of a number of Italian amateurs Endorsements for five-band operation are now made by the RSGB for the British Commonwealth Radio Transmission Award, the British Commonwealth Radio Reception Award and the DX Listeners' Century Award. . . . The ARRL National Convention for 1977 is being held (June 3-5) in Canada at the Sheraton Centre Hotel, Toronto: special get-togethers are planned for visiting British and "ex-G" amateurs. . . . Attention was drawn last September to the attractions offered by crystal ladder filters for the home construction of s.s.b. filters. Now, after extensive investigation of this type of filter, J. A. Hardcastle, G3JIR, has reported: "If a single outstanding factor were to be chosen from all the measurements which have been made, it would be that it is almost impossible not to produce a filter of some sort, if guidelines are followed. This should be sufficient to encourage even the most hesitant to try to construct their own crystal filters."

PAT HAWKER, G3VA

# On the benchor in the field. 

Model 1455. $4^{1 / 2}$ digit accuracy, stability, resolution. $£ 260$

Here is a $41 / 2$ digit DMM that won't tie youdown. It's Data Precision's Model 1455, the $41 / 2$ digit bench instrument that goes into the field with you.

The 1455 gives $\pm 0.02 \%$ reading $\pm 0.01 \%$ f.s., $\pm 1$ digit basic accuracy for 6 months. A five function multimeter with large $1 / 2^{\prime \prime}$ high, 7 segment planar display and $100 \%$ overrange, it measures $100 \mu \mathrm{~V}$ to $1000 \mathrm{VDC}, 100 \mu \mathrm{~V}$ to $500 \mathrm{VAC}, 100$ milliohms to 20 Megohms; AC and DC current 1 microamp to 2 amps, $A C$ response, 30 Hz to 50 kHz . These

are specs you'd expect from lab units costing twice as much. But the extraordinary 1455 gives you still more. With its built-in rechargeable NiCd battery, it is completely portable, meaning you can have this in-labaccuracy, anywhere yougo.

The 1455 incorporates
Tri-Phasic" Conversion Cycle and our patented Isopolar" Referencing, just two Data Precision
exclusives that enable us to offer you this kind of accuracy, flexibility and dependability for $£ 260$

For versatility and value you won't find anywhere else, carry off a Data Precision Model 1455. Or for the same specs and features in a unit designed for line use only, we offer our Model 1450 for only $£ 240$ They're botha lot of multimeter.

Farnell International Instruments Ltd Wetherby West Yorkshire LS22 4DH Telephone 09373541 Telex 557294


WW - 056 FOR FURTHER DETAILS

## When did you last buy your Ford direct from Henry?

Even if you could get a car straight off the Dagenham production line, chances are it wouldn't be the model or colour you wanted.

And the same limits on choice apply if you're buying electronic instruments and power supplies direct from the manufacturer.

If you deal direct with ITT Instrument Services though, it's a different story.

We select the best instruments from all the manufacturers' ranges

Our catalogue features the full range of Racal counter timers and the 9913 and 9915 frequency meters. It's a range that uses I.s.I. technology to bring you the ultimate in reliability combined with the features you need for your measurement requirements. They're all stocked in depth and can be with you before you can say 991
available. We stock them in depth. And we fully document them in a comprehensive catalogue available for the asking.

No account to open (if you have one with ITT Electronic Services, then you have one with us), no second bests to put up with.

Just phone, write or telex over your order.

Then sit back and admire our easy handling and remarkable turn of speed.

To:ITT Instrument Services, Edinburgh Way, Harlow, Essex. Telex 81525.
Please send me your instrument and power supply catalogue.
Name Company


## IIIT instrument services The only way to buy. Harlow(0279)29522



# Electronic rhythm unit 

# Interfacing the M252 and M253 circuits, described in the March issue 

by A. Battaiotto and G. Ronzi, SGS-Ates Application Laboratory, Agrate, Italy

So that the rhythm section may be inserted into an electronic organ, a signal must be available which indicates whether one or more keys on the organ key board have been played. This signal, which we call the key played, starts the rhythm section. When a key is played the rhythm section can be arranged to start at the beginning of the bar (touch or key operation), i.e. the playing of a key, removes the reset from the clock and from the M 252 or M 253.

Alternatively it can be arranged to start at any point in the bar (continuous or silent operation) i.e. the rhythm generator runs continuously, but its output is enabled by the "key played" signal. In continuous operation, therefore, the down-beat indicator is indispensable as it allows the first key to be played when the bar begins.

A third method (continuous free running) allows the unit to operate without playing any of the keys. This is done simply by selecting a rhythm on the push button array of the rhythm section. Neither the touch key nor the continous silent key must be on when this method is used.

Fig. 11 illustrates the insertion of the electronic rhythm section into an organ. The two parts within dashed lines are details of the rhythm section, of interest for the connections to the keyboard of the organ.

Rhythm section with 15 rhythms and 9 instruments
This rhythm section, realized with the M 252 AA , is programmed with 15 different rhythms in such a way that each rhythm can use up to a maximum of eight of the nine instruments available, Fig. 12. The 15 rhythms programmed are the waltz, jazz, waltz, tango, march, swing, foxtrot, slow rock, pop rock, shuffle, mambo, beguine, cha cha, bajon, samba and bossa nova, and can be brought in one at a time by means of the key board. The instruments available are the bassdrum, snare drum, claves, high bongo, low bongo, conga drum, long cymbals, short cymbals and maracas.

The three controls are volume, tone and tempo. In addition, a switch allows the rhythm to be started at the begin-
ning of the bar or stops the rhythm. The assembly is carried out on two printed circuits, one contains the sound generators and preamplifier, and the other contains the supply, the M 252AA, the variable clock generator and the monostable circuit for driving the downbeat lamp.
The circuit can be divided into four parts, the sound generators, the variable clock generator, the down-beat monostable and the encoder. Operation of the M 252AA has already been described in the first part, but some further details will be given toward the end of this description.

## Sound generators

The generators are designed to reproduce as faithfully as possible the sounds made by percussion instruments. They

Fig. 11. Connections for incorporating into electronic organ. Rhythm unit parts are within shaded enclosures.
can be divided into two broad groups, namely, sounds consisting of damped, sinusoidal waves, like drums, and those consisting of damped white noise, like cymbals.
In the first category we can include the bass drum, high bongo, low bongo, conga drum and the claves, for which the basic circuit is shown around the twin-T parts of Fig. 13.
This circuit is a simple twin-T oscillator with active c.m.o.s.* element kept slightly below the point of oscillation by the pre-set resistor. To obtain the effect of different frequency instruments you only have to select the right values for the capacitors. The potentiometer also regulates the length of the damping, so that longer or shorter sounds can be obtained.
The command from the M252AA is applied at points BD, HB, etc. As the M252 produces a square wave, the RC

* A discrete-component oscillator circuit is available on request.



Fig. 12. Use encoder circuit of Fig. 13 with this M252 15 -rhythm unit. (Rhythm selection details for M253 circuit will appear in part 3.) Circuit includes twin-T oscillators.

Below is show a conventional three-rail power supply circuit for rhythm generator.



Fig. 13. In c.m.o.s. encoder for use with M252 rhythm unit single-pole switches can be used with resistors if desired. (See part 3 for M253 rhythm selection.)
differentiator (e.g. $\mathrm{C}_{6}, \mathrm{R}_{7}$ ) must be introduced so that a fairly short pulse arrives at the oscillator, which should not interfere with the damping of the oscillation but should be sufficient to activate the oscillator itself. Resistors $R_{27}$, etc, keeps the input at earth in the absence of a command, otherwise it would remain floating since the outputs of the M252AA are open-drain types.

In the second category are the long cymbals, short cymbals and maracas, for which the basic circuit is shown bottom left in Fig. 13. Transistor $\mathrm{Tr}_{2}$ charges the capacitor $\mathrm{C}_{8}$ during the short command pulse. This capacitor then discharges through $\mathrm{R}_{12}$ and the base of $\mathrm{Tr}_{4}$

The white noise produced by the zener effect of the base-emitter junction of a transistor is applied at the base of $\mathrm{Tr}_{4}$. during the discharge of $\mathrm{C}_{8}$, therefore, transistor $\mathrm{Tr}_{4}$ can amplify this noise. The level of amplification, however, will follow the discharge curve of $\mathrm{C}_{8}$ and therefore a damping effect of variable length will be obtained according to the values of $\mathrm{C}_{8}$ and $\mathrm{R}_{12}$.

The inductor and the capacitor at the collector of $\mathrm{Tr}_{4}$ allow partially selective amplification to be obtained so that some harmonics can be boosted and an effect more similar to the instrument being simulated can be obtained.

Almost all the instruments used in this ryhthm section start immediately with maximum amplitude and decrease exponentially. The only exception is the maracas simulator, whose signal increa-
ses progressively and then decreases like the others. This effect was achieved by means of the integrator-differentiator circuit which allows controlled amplification of the white noise. The snare drum is obtained by adding a signal of the second type, i.e. a metellic sound, to a drum sound. Each sound starts on the positive edge of the control pulse.

## Variable clock generator*

The clock generator is realized with two c.m.o.s. gates and the tempo regulated by means of a potentiometer. When closed, the switch sets the generator in such a way that the output remains at l and at the same time the M252AA is reset. By opening this switch the bar begins i.e. the output immediately goes to 0 so generating the negative edge necessary to cause the first command pulse or pulses to be produced by the M252AA, according to the rhythm selected.

## Down-beat*

This too is made with two c.m.o.s. gates. The down-beat pulse supplied by the M252AA is too short to light a lamp. Also it occurs at the end of the bar whereas the lamp should be lit at the beginning. This monostable, Fig. 12 top, which starts on the negative edge i.e. at the beginning of the bar, operates with an auxiliary transistor in such a way that the lamp lights for a sufficient period of time to indicate the beginning of each bar.

[^3]
## Encodert

Circuit, Fig. 13, uses HBF4012A four-input NAND gates, and HBF 4001A two-input NOR gates. If simple sing-le-pole switches are to be used rather than an array of two-way switches, 15 resistors of $100 \mathrm{k} \Omega$ must be inserted as indicated.

## Rhythm section with 12 rhythms and 8 instruments

An alternative rhythm section was realized with the M253AA in which 12 different rhythms are programmed, each rhythm being able to drive simultaneously a maximum of seven out of the eight instruments available.
The 12 rhythms programmed are the tango, waltz, shuffle, march, slow rock, swing, pop rock, rumba, beguine, cha cha, samba and bossa nova. These rhythms can also be combined; two more can be selected simultaneously.

The instruments are the same as for the preceding unit with the exception of the conga. The adjustments too are equivalent, and the assembly is simply carried out on two printed circuit boards ( $£ 6$ inclusive from M. R. Sagin, 23 Keyes Road, London NW2).
The sound generators, variable clock generator and monostable for the down-beat, are the same as for the M252 rhythm section.
The keyboard has the function of connecting the snare drum or the claves to the third output of the M253AA, according to the rhythm selected.
$\uparrow$ Alternative encoder circuits are possible using mechanical switching, a diode matrix or t.t.1. gates Copies of circuits may be obtained from the editorial office.
To be concluded

## THE WARDEN REPORT

Having read your leading article "WARC talk" (December 1976) and the follow-up article "Who is warden over the Wardens" (January issue), we feel it might be informative to your readers to learn of the mobile radio industry's reaction to these two articles.

We should confirm that the EEA were given an opportunity to examine carefully the Warden report, an industry working party was set up and its view of the report was placed before the Home Office Mobile Radio Committee.
The industry was critical of many sections of the report but all companies supported, inter alia, that part of the Warden report which called for additional spectrum for land mobile services.
It should be emphasised that this report was probably the first of its kind with anything like its depth, and was a major contribution to the understanding of the many factors which affect the use of the spectrum by all mobile radio users.

Subsequently, one of our member companies has produced a report (the Pannell report) which presents a view supported in large measure by the industry and demonstrates that something like 100 MHz , is required between now and 1999. [See leader in February issue - Editor.]
It is quite understandable for a regulating department to take a rather conservative attitude but, as they are aware of the views of the users and the industry, we have confidence that the Home Office strategy at WARC will result in these views carrying considerable weight.
In conclusion, we ought to point out that your "Warden" article is misleading in three matters. Mr Warden has not, as far as we are aware, (a) completed a report on broadcasting; (b) reached the conclusion that there was "no further need for any allocation to mobile radio above what it had already got"; (c) said that "any further channels which did become available should go to the Post Office" - indeed, we understand that the Post Office were asked to go to 12.5 kHz channel spacing and to prove further need for more spectrum.

We trust this will be helpful in explaining the EEA view on this very important matter. J. W. Carlton,

Chairman, Mobile Radio Committee,
Electronic Engineering Association,
London WC2.

## CURRENT DUMPING AMPLIFIER

The recent controversy on the current dumping amplifier (December 1975 issue and subsequent letters) has not come up with any consensus as to whether it is just an elegant method of applying feedback or whether there is an element of feedforward in it. It can be shown quite easily that with an amplifier of finite open loop gain (and consequently finite feedback), the current dump trick achieves much more than feedback alone possibly could. An expression is derived below for the current dump configuration given by Mr Walker and Mr Albinson in Wireless World (Dec. 1975), but the amplifier considered has a finite open loop gain and a finite input impedance. With these constraints, and assuming an arbitrary non-linear transfer function for the current dump block, an expression can be derived wherein it can be shown that the error in the current through $Z_{4}$ is exactly compensated for by the current through $Z_{1}$ provided the conditions given in equation 4 are satisfied.

$$
\begin{equation*}
V_{01}=A\left(V_{i n}-V_{i}\right) \tag{1}
\end{equation*}
$$

$V_{1}=\left(Z_{f}| | Z_{3} \left\lvert\, Z_{i n}\left(\frac{\tilde{V_{01}}}{Z_{3}}+\frac{V_{i n}}{Z_{\text {in }}}+\frac{N\left(V_{01}\right)}{Z_{2}}\right)\right.\right.$

Fig. I


For an infinite gain op-amp, equation 4 reduces to Walker's original form. To confirm this result an amplifier was made with a variable open loop gain (A). This variation in open loop gain was obtained in an elegant manner by connecting a potentiometer across the compensating terminals of the operational amplifier used. The circuit was designed to have minimum distortion for an open loop gain of approximately 52 dB , corresponding to 20 dB of feedback. Fig. 2 shows the results which confirm that increasing feedback beyond a particular value makes the distortion figure worse. In fact with all the current dump elements removed and the same amount of feedback ( 20 dB ), the distortion measured $3.1 \%$ against the null reading of $0.4 \%$. This should remove any doubt about the effectiveness of the method, and Mr Walker and Mr Albinson of the Acoustical Manufacturing Company should be congratulated on innovating a most elegant method for removing distortion and for eliminating thermal problems associated with the output stages of high power audio amplifiers.


Fig. 2

## ADVANCED PREAMPLIFIER DESIGN

The letter from Mr Watts in your February issue and the answer from Mr Self is notable for two factors - the abrasive language of the former's criticism and the surprisingly temperate reply from the latter. Frankly, I, too, could find much to fault in the design but, of course, there are ways of expressing it, aren't there?
My main criticism of Mr Self's design is that it is over-engineered, conceived by a hi-fi enthusiast who apparently has not been too involved in the costing process when putting together the elements of a circuit. The principle of Occam's Razor is also the essence of good design technique. He has also overlooked the simple facts of life - that despite the extremes to which one may go in designing equipment of this type, the aberrations that are inherent in all programme sources available to the domestic user are likely to be far greater than those introduced by even the most modestly designed reproducing equipment.

But Mr Watts is guilty of worse errors, in dealing with pure theory, opinion, and dressing it up as fact. Let me take one example - and since he seems to invite challenges, here's another from me. If he is able to produce for me a high grade pickup cartridge capable of the sort of amplitude linearity input when correctly loaded that he insists should be observed in the equalised input stage and will deliver consistently peaks in excess of 200 mV , then there is $£ 5$ ready in my hand for any charity he cares to name.
Reg Williamson,
Norwich.

## AURAL SENSITIVITY TO PHASE

As comment on the two letters in the February issue may I summarise some comment that I have made many times on the subject of the effects of phase shift in a monaural channel?

If a wideband speech or music signal is fed into a transmission system the system design must ensure that the low frequency components and the high frequency components arrive at the output end at about the same time. Clearly there will be some loss in sound quality if the low frequency components arrive today and the high frequency components arrive tomorrow. Thus there must be a limit to the differences in the transmission time that can be allowed. The CCIR standards define the permissible differential time delays for high quality systems, typically the 5 kHz components may be delayed by around 5 milliseconds with respect to the 1 kHz reference signal before a quality change is noticeable.

If we (mistakenly) choose to express this permissible time delay as a phase shift, it is some 9000 degrees, that is, the start of the 5 kHz component can be delayed by about twenty five cycles before the shift is aurally noticeable. The wave shape at the system output then bears no relation to the waveshape at the system input.
If anybody has any evidence that time delays inside the CCIR values can result in
obvious differences in sound quality then the data should be produced as a contribution to the art. Our own work appears to show that if a skilled listener has the opportunity to listen repeatedly to a signal while the time delay is switched in and out of circuit, he will eventually come to detect a shift of about 3 milliseconds (rather than 5 milliseconds quoted above) but these observations only serve to confirm that the delay limit specified by CCIR is a reasonable choice for the ordinary situation where repeated comparison is not possible.
James Moir,
James Moir \& Associates,
Chipperfield,
Herts.

## DISTORTION

AND THE EAR
After reading D. Self's article, "Advanced preamplifier design" in your November issue, I feel obliged to comment on the general attitude to audio amplifier design taken by the majority of WW contributors. At the core of this approach is the assumption that any loss of realism, originating from amplification within the reproducing train, is a direct function of t.h.d. Consequently with each new design appears detailed analysis of t.h.d. performance but, from the user's point of view, the lack of any comparative listening test is painfully obvious.

A striking example of the ear's dissimilarity to a t.h.d. meter would be the attempted measurement of distortion from an audibly inferior preamplifier of a sinewave signal recorded on disc. Wow and tracing distortion combine to swamp the amplifier's contribution by orders of magnitude, but the amplifier's imperfections are all too obvious through the reproduction of voice or music from the same source.

If an accurate model of the human audio processing path existed, it would be possible to design with confidence circuits that introduced the theoretical minimum of audible colouration. Unfortunately, this model does not exist and any major advancement in amplifier quality can only be achieved through extensive, practical listening comparisons of all types of active devices and circuit configurations.

After experimenting for several years in this direction and through the careful analysis of designs proved to be audibly superior, the one common factor to emerge is an appreciation of the ear's uncanny ability
to detect high order distortion products under heavy masking by low order products and noise. In essence, the ear will react favourably to 1 st order distortion products in the order of one per cent, provided all higher order products are virtually non existent. Although it has been long accepted that the ear does favour colouration derived from low order products, the relative weighting ratio (for a given degree of colouration) has never been established and 1 believe has been consistently under-estimated.
If one applies this theory to high quality amplifiers, the design rules are radically altered. Bipolar transistors become virtually useless in low level stages because of the complex exponential transfer characteristic. Negative feedback (even locally applied) tends to be a disadvantage because innocuous low order distortion products are converted to lower level, but audibly more apparent, higher order ones (Ref. Scroggie) and the output impedance of devices becomes a significant source of distortion. Space allows no further elaboration but a simple example of this alternative approach is given in the form of a unity gain buffer stage. Anyone interested in conducting a comparative listening test (on a high quality stereo system) between this circuit and the standard emitter-follower may find the lack of correlation between measured t.h.d. and audible colouration interesting.
A. King,

Glenroy,
Victoria, Australia.

## LINEAR PHASE <br> LOUDSPEAKERS

As Mr Gorman pointed out in his letter in the February 1977 issue, the arguments arising from the advocacy of linear phase loudspeakers have generated much interest, heat and correspondence. May I be allowed to add to the last by enquiring of your other correspondents what importance should be attached to the position of the listener who has set up his linear phase loudspeakers in the normal stereophonic configuration?

In the diagram(overleaf) I shall assume that two linear phase loudspeakers (which I assume may be regarded as point or at most line sources) have been situated at points $A$. and $B$ of an equilateral triangle $A B C$ of side, say, 2 metres. The listener being conscientous (and also being a point receiver) situates himself at $C$. Unfortunately before he can begin to appreciate the benefits of a linear


phase configuration, a malevolent deity displaces him a small distance $\delta$ metres along the line EF to C' Trivial geometry shows that in these circumstances there is a difference in path lengths $A C^{\prime}-B C^{\prime}$ equal to

$$
\sqrt{3+(1+\delta)^{2}}-\sqrt{3+(1-\delta)^{2}} \approx \delta \text { metres. }
$$

Thus, assuming a speed of sound of, say, $330 \mathrm{~m} / \mathrm{s}$, a displacement of 10 cm will produce approximate cancellation of a steady signal of wavelength 20 cm , i.e. a frequency of 1.65 kHz , and will do funny things to the phase of signals near that frequency.

Of course the listener should not have allowed himself to be displaced from point $C$, but the malevolent deity who is also cunning provided him with two ears placed about 20 cm apart. Thus the poor listener (who, being conscientious has avoided the trap of inducing phase distortion by, say, waggling his head from side to side) is left in the position that the only way he can effectively enjoy the linear phase of the stereophonic set-up is to block-up one of his ears and locate the other at C.
N. G. Shipley.

London, EC4.

## AMPLIFIER DESIGN

There is clearly an interesting disputation in the making regarding pre-amplifiers between Messrs Watts and Self (February letters). I particulariy note that both seek upwards of 40 dB overload margin. Why? There is no point in it unless the main amplifier and the loudspeakers could also handle 40 dB overload. But in a real world what would happen? If such a sound level could be produced it is more than likely to permanently damage the ears, a fearful consequence of some such little faux pas as dropping the pickup.
Reality calis for a limitation of peak power and that limitation is best achieved by a means which minimises the resuiting and inevitable distortion. More by accident than design vaive amplifiers working in Class A had that useful property.
Mr Sundqvist (February issue) is now spelling out for us the details of i.m. distortion and it is becoming more generally apparent that transistor design needs far greater thought and attention to detail if i.m. and other distortion is to be kept at innocuous levels. In particular he is making us aware of the danger of feedback over several stages of undefined bandwidth in that a transitory condition will arise of a maximum signal at some point where feed
back has failed, for an instant, to reduce the signal to its normal working level. Several cures were suggested including a generous overload margin.

May the current vogue and justifications for large overioad margins arise from a possible subconscious reaction to hearing i.m. distortion which is then irrationally justified in terms of some supposed iarge transient output from the pickup? How in a practical world would this transient find its way on to the record, and if it could be present will not the normal mechanical constraints ensure it is never produced? Why in fact does virtually all discussion of high fidelity reproduction assume no significant defects in the recording amplifiers etc? Were this really true there are, and have long been, practical designs for near perfect reproduction amplifiers.
Be that as it may; the recordist does not, indeed he dare not, shrink back from some means of volume compression even if it be no more than simple manual control. That is his tool for avoiding the overload situation and if he has done his job properly may I ask what distressing signal, capable of upsetting a pre-amp, can come off a record via a pickup?
The truth of the situation is more likely that pre-amps are generally badly designed and, transistors being deceiving little beasts, they react in ways that are not expected. Mr Self would not have it that the first part of his pre-amp was, as Mr Watts claimed, a phase shift oscillator, but I can safely say from recent practical experience that similar arrangements are quite capable of oscillating at h.f. or l.f. and showing h.f. oscillation on part of an I.f. cycle when fed with a normal sine wave. They have in fact mutuai conductances far beyond those of vaives, and these increase more or less directly with current flow and have no clear inbuilt limiting mechanism as has a valve, which limits in most circuits just as soon as the grid becomes positive. Without limiting, a transistor may well start an h.f. oscillation; the circuit comprising inter alia stray reactances, in which its own widely variable capacitances will figure. This of course may establish a form of blocking oscillator. If the crucial reactances are within the transistor chip the designer has a fearsome problem on his hands.
Here Mr Watts chooses a policy of avoidance by using an i.c. in the no doubt well founded belief that these have been the subject of such exhaustive designing processes, so that they may be marketed as being vice free, that he needs fear no unwanted side effects. Mr Self attacks on the grounds that i.cs have greater noise, which seems to be yet another airing of the irrational oversight of the way in which noise in later stages is lost in the amplified noise from earlier stages.
However, the most intriguing feature of Mr Self's design and defence concerns the 1 n 5 capacitor from base to emitter of the input transistor. Why not to earth, if as claimed, it is an r.f. bypass? May the truth be that by some chance it is soiving some instability problem? Certainly by trying out a number of preamp designs I have learnt to reaiise RIAA stages are exceedingly prone to strange problems. But then a warning was issued by J. Linsiey Hood in the September 1971 issue of Wireless World concerning two, let alone three, transistor high gain circuits. Perhaps we do not learn and continue to fail into the same traps.
C. Streatfieid.

Poole.
Dorset.

## NORTH SEA COMMUNICATIONS

I have read with interest your report in the December 1976 issue ( p .44 ) of Mr L. Buttriss's talk to the World Offshore Oil Conference.

How easy it is to knock those who are pace setting and breaking new ground and who occasionally fall short of the standards which Mr Buttriss sets. Considering that Mr Buttriss's organisation is only following along behind others who are in the front line, as it were, I suppose he is in a very good position to develop hindsight, which as we all know is a splendid quality.

If Mr Buttriss was a little nearer the front line action he might recognise the difficulties with which the British Post Office have had to cope, not to mention systems designers like my organisation whose clients found themselves at the mercy of a takeover exercise near to Mr Buttriss.

It is always easy to generalise on the failings of others, unspecified of course, but not always the wisest policy if your livelihood depends to a large extent on the said others.
W. T. Brown,

Macclesfield,
Cheshire.

## TALKING BOOKS APPEAL

A few years ago you were good enough to publish an appeal for servicing volunteers for the British Talking Book Service for the Blind. As a result many new volunteers were enrolled.

As the service has expanded so has the need for servicing volunteers and I would ask anyone who can repair a simple tape recorder, and can spare a little time, to contact the address given below for further details.

These Talking Books mean a lot to the blind people who use them and their gratitude for the help given be servicing volunteers amply compensates for the loss of a few hours spare time.

The address to contact is: British Talking Book Service for the Blind, Nuffield Library, Mount Pleasant, Wembley, Middx. HAA 1RR. Telephone: 01-903-6666
A. J. Smale,

London N21.

## Corrections

The diagram below was inadvertently omitted from Mr Graham Nalty's letter in the February issue on the Advanced Pre-amplifier Design.
Also, the heading "Re-invention" was omitted from Mr K. H. Green's letter (top of page 60). Apologies to Mr Nalty, Mr Green and our readers.


## Stereo coder

# 1 -Choice of method/oscillator stability 

by Trevor Brook

A practical design for a high quality coder suitable as a test instrument is described. Apart from the audio filtering, inductors have been avoided and a compact board layout produced. A v.h.f. unit for servicing checks on receiver performance could also be used by demonstration showrooms to feed programmes of their own choice to stereo tuners.

Part 1 examines the stereo multiplex system and establishes tolerance limits for signal components. Channel separation is considered as this would assume increased importance if a matrix system of surround sound broadcasting were adopted. Part 2 gives construction and alignment details for the coder and Part 3 gives modifications to the Portus and Haywood decoder to provide a low distortion reference decoder.
Work on this coder started originally out of curiosity as to whether an inductorless design would be possible. Early experiments were promising and the design has been pursued to give performance of broadcast quality.
The specifications of stereo coders now in use at both national and independent local radio transmitters are given in Table 1 and most existing coders have similar figures. Particular objects of this design are to improve crosstalk at the higher audin frequencies and achieve mid-frequency distortion better than $0.05 \%$.

## Stereo signal specification

The modulating signal in the Zenith-GE pilot tone system is defined as
$0.9\left(\frac{A+B}{2}+\frac{A-B}{2} \sin 2 \pi f_{c} t+0.1 \sin \pi f_{c} t\right)$.
where $A$ is pre-emphasized left channel, $B$ is the pre-emphasized right channel, and $f_{c}$ is $38 \mathrm{kHz} .1 / 2(A+B)$ is called the sum or $M$ signal, and $1 / 2(A-B) \sin 2 \pi f_{c} t$ is called the stereo difference or S signal, and is a double sideband suppressed-carrier signal. $0.1 \sin \pi f_{c} t$ is the pilot signal at 19 kHz .

Substituting the maximum values $\mathrm{A}=+1$ and $\mathrm{B}=+1$ or -1 gives the maximum amplitude of $90 \%$ for the M
and S signals respectively. Monophonic receivers continue to produce only the M signal as audible output thus giving the system its compatibility.

## Decoding

To retrieve the stereo information involves a decoder which can take the form in Fig. 1. The reduction in channel separation if a decoder adjusted to


Fig. 1. How the stereo multiplex signal can be decoded. After de-emphasis the $A^{\prime}$ and $B^{\prime}$ outputs become left and right channels.
decode a perfect multiplex signal is presented with signals having the five following departures from ideal is shown in Fig 2:

- amplitude error between the $M$ and $S$ signals
-phase error between the M and S signals
- phase error in the pilot relative to the 38 kHz suppressed carrier. The requirement for pilot phase accuracy is substantially less than for M/S phase accuracy
-amplitude error of one sideband only of the S signal, typical of the h.f. loss
Fig. 2. Inherent crosstalk of the multiplex signal plotted against

1) Amplitude error between the $M$ and S signals
2) Phase error between the $M$ and $S$ signals
3) Error in pilot phase
4) Amplitude imbalance between the sidebands of the $S$ signal
5) Phase shift in a sideband of the $S$ signal


Table 1. Some parameters of the broadcast coders in use today.

|  | BBC | IBA |
| :--- | :---: | :---: |
| Amplitude response $\pm 0.5 \mathrm{~dB}$ | $60 \mathrm{~Hz}-10 \mathrm{kHz}$ | $50 \mathrm{~Hz}-15 \mathrm{kHz}$ |
| $\pm 1 \mathrm{~dB}$ | $40 \mathrm{~Hz}-15 \mathrm{kHz}$ | - |
| Channel separation | $100 \mathrm{~Hz}-10 \mathrm{kHz} \geqslant 40 \mathrm{~dB}$ | $400 \mathrm{~Hz}-5 \mathrm{kHz} \geqslant 48 \mathrm{~dB}$ |
| $\cdot$ | $10 \mathrm{kHz}-15 \mathrm{kHz} \geqslant 36 \mathrm{~dB}$ | $30 \mathrm{~Hz}-15 \mathrm{kHz} \geqslant 42 \mathrm{~dB}$ |
| Harmonic distortion | $0.3 \%$ at 2 dB above | $0.5 \%$ at peak level |
| $(1 \mathrm{kHz})$ | peak level |  |
| 38 kHz leakage | $<40 \mathrm{~dB}$ | $\leqslant 40 \mathrm{~dB}$ |

encountered in receivers

- phase error of one sideband only of the S signal.
For reasonably high channel separation, say better than 45 dB , the above effects may be considered as algebraically additive. It is evident that extremely stringent amplitude and phase performance requirements are set for a coder intended to give high channel separation.

Another problem in the multiplex system is distortion. Apart from the usual harmonic and intermodulation distortions, spurious beat tones can be produced in the decoded outputs. This is the result of intermodulation between the various components of the stereo signal and, though predominantly a receiver problem, could also be caused in the signal generation method or in a coder's output amplifier. Beat tone distortion is worst at the higher audio frequencies and subjectively produces an unpleasant 'splashing' sound on sibiliants, Most stereo receivers will give clearly audible low- or mid-frequency beats on the 10 and 14 kHz bursts during the BBC stereo test zone transmissions even though these tones are not at full level. On mono reception of a stereo signal the effect is not noticeable except on very poor receivers. Fig 3 shows the beat tone possibilities in both mono and stereo reception.

## Generating multiplex signals

There are two principal ways of producing the coded stereo signal. The first and almost universal are switching methods, while the second is the matrix method where the individual signal components are generated separately and then added together.

Conceptually the simplest and also a common way of switch encoding is to switch between the A and B signals with a diode ring or similar device driven by 38 kHz , Fig 4. For a square wave switching signal the following output is produced

$$
\begin{aligned}
\frac{A+B}{2} & \left.+\frac{A-B}{2} \cdot \frac{4}{\pi} \right\rvert\, \sin 2 \pi f_{c} t \\
& +\frac{1}{3} \sin 6 \pi f_{c} t+\frac{1}{5} \sin 10 \pi f_{c} t+\ldots
\end{aligned}
$$

The snag is that sidebands around odd harmonics of the switching frequency are present in the output and, more difficult, the required difference signal


Fig. 4. Basic arrangement for the switch encoding method. Switch would typically be a ring of diodes or f.e.t. switch driven by the 38 kHz square wave.


Fig. 5. Desired characteristic for the filter in the simple switch coder, Fig. 5. A linear phase response is required up to 5.3 kHz .


Fig. 6. Block diagram for the matrix coding method.
deficiences in the filter make such coders susceptible to all the forms of signal degradation listed earlier. A complete switching coder design has been published by Mack ${ }^{1}$ and the virtues of diode cross modulator circuits for applications including coding stereo extolled by the same author ${ }^{2}$.

The matrix form of coding is shown in Fig 6. A point to note is that the 38 kHz fed to the multiplier in this case is a sine wave. Another alternative would be to use a conventional switching multiplier

Fig. 7. Complete block diagram of the coder described.


Fig. 8. Thermistor-controlled oscillator with the $R 53$ bead running at $205^{\circ} \mathrm{C}$, and a resistance of 82 ohms .
fed by a square wave, filter out the difference signal from the odd harmonic components, and then feed it to the adder. With the matrix arrangement in the diagram the last three degradations can be made negligible so crosstalk performance mainly rests on achieving good gain stability and phase matching between the sum and difference signal paths.
However, some new problems arise with this form of coder. The linearity of the multiplier to audio frequencies will have an effect on beat tone distortion performance and in a practical design there is the danger of impurities on the 38 kHz producing further beat tone outputs. Common to all forms of coder is the need for a low distortion 19 kHz pilot of correct phase and good stability, and audio pre-emphasis and filtering to limit the bandwidth of $A$ and $B$ signals to 15 kHz .

## Choice of matrix method

With an instinctive loathing of inductors and poor prospects at the time of realising a sensible active filter meeting the stringent phase and amplitude -requirements while introducing negligible noise and distortion, the matrix approach looked more promising. Using the matrix principle only the first two signal degradations should be apparent and to meet a target channel separation of 55 dB implies an M/S amplitude error of less than $0.18 \%$ and an $\mathrm{M} / \mathrm{S}$ phase error better than $0.1^{\circ}$.

The block diagram of the coder is shown in Fig 7. Both 19 and 38 kHz sine waves are required in this coder and starting with a 19 kHz sine wave which is then doubled using a linear multiplier to square its input (a sine-wave squared equals a single wave of double frequency plus a d.c. term) and produce 38 kHz of correct phase involves less filtering than starting with a square wave at a higher frequency ( 38,76 or 152 kHz ) and dividing down.
If the coder is to be fed from any practical signal source other than a distortionless audio signal generator then the 15 kHz filters are essential to


Fig. 9. Oscillator with improved amplitude/temperature drift. $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ form a long-tailed pair comparator and $R_{5}, R_{6}$ equalize the signal voltages across the f.e.t. to linearize it and reduce distortion of the sine wave output.
prevent gross beat tone effects due to ultrasonic components on the audio inputs. It is desirable that rejection of frequencies of 19 kHz and above be at least 45 dB so this means that when pre-emphasis is in use, giving around 20 dB boost at 19 kHz , a filter attenuation of 65 dB is required by 19 kHz . If a :passband ripple of only 1 dB is allowed ,this implies the enormous attenuation rate of $200 \mathrm{~dB} /$ octave between 15 and 19 kHz .
Fortunately two cascaded Toko filter blocks can exceed the requirements in a very small space and at reasonable cost. The drawback of a filter with such violent attenuation so close to the passband is that there is little hope of achieving a linear phase characteristic and this is a deficiency common to all stereo coders. Part 2 includes a spectrum analyser photograph of the present filter response and a graph of measured phase shift.
The audio difference is derived and fed via the balanced modulator to the output adder while the sum signal is produced by feeding equal amounts of $A$ and $B$ directly to the output adder. The longer route of the difference signal means that it is slightiy delayed at the adder compared to the A and B components and at the higher audio frequencies this would amount to a significant phase shift between the $M$ and S components, hence the phase correctors inserted in the A and B lines to the adder.
Because the linear doubler used to produce 38 kHz is not a perfect device some leakthrough of 19 kHz may occur, particularly at extremes of the temperature range, so a 19 kHz rejector
is placed before the multiplier's carrier input. The pilot must also arrive at the output adder at the correct amplitude and phase and a small phase shift is required to equal the time delay through the doubler, amplifier, notch filter and balanced modulator. To provide balanced outputs a straightforward unity gain invertor is fed from the adder output.
Power supplies are entirely conventional, producing plus and minus 15 volts at around 100 mA . Power take off points are provided for running the clipping amplifier and v.h.f. oscillator described later.

## 19 kHz oscillator

The accepted frequency tolerance for the pilot tone is $\pm 2 \mathrm{~Hz}$ so crystal control, if not essential, is certainly desirable. As a sine wave is required anyway it seems sensible to start with a sine wave crystal oscillator. This is something which often gives circuit designers a problem but a reliable inductorless circuit is easily formed at low frequencies by building a Wien bridge oscillator around the correct frequency and then putting the crystal across the series element of the bridge. Easy starting with reliable crystal lock is the result.

The standard thermistor amplitude control method, Fig 8, proved adequate for an early prototype, but even running the bead as hot as permissible, 200 deg C , still means that its operating point is determined roughly 9 parts in 10 by the oscillation voltage and 1 part in 10 by the ambient temperature. With this circuit I measured an amplitude drift of $-0.02 \mathrm{~dB} / \mathrm{deg} \mathrm{C}$ over the range +10 to +40 deg C and distortion was below $0.05 \%$. Evidently some form of amplified control was needed to improve this drift figure tenfold and allow maintenance of good channel separation over a wide temperature range.

The circuit evolved is in Fig. 9 where an f.e.t. replaces the thermistor as the
gain control element but with linearizing components to maintain the distortion performance. Linearizing is achieved by equalizing the gate/drain and gate/source signal voltages and is done by $R_{5}$ and $R_{6}$. The f.e.t. is also only allowed to contribute a small amount of the total resistance between pin 2 of the i.c. and common, and this fraction is determined by $R_{3}$ in the source lead. Linearizing produces distortion better than $0.05 \%$ compared with around $0.4 \%$ without.

Transistors $\mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3}$ form a long tailed pair which compares the oscillator amplitude with a direct reference voltage. Resistor 8 prevents loading of the oscillator output by changes in $\mathrm{Tr}_{2}$ input impedance over each cycle. The direct error voltage feeds the f.e.t. gate after filtering $\left(\mathrm{R}_{7}, \mathrm{C}_{10}\right)$ to remove oscillator components. The two transistors are identical types and mounted together so that their two base-emitter junctions provide temperature compensation; the use of a matched pair in a single can does not seem to be justified. Stability of the d.c. reference is assured by using low temperature coefficient resistors for $\mathrm{R}_{11}$ and $R_{12}$ as well as a stabilized negative line.

Though a square wave oscillator followed by a filter could have produced similar amplitude stability simply by defining the voltage excursion of the square wave generator there is a unique advantage in the method described. Namely, the long-tailed pair comparator need not look at the oscillator output directly; it could look at the level of 38 kHz which feeds into the multiplier and thus act as a servo, taking up gain drift in the doubler, amplifier and notch filter.

Printed boards (a total of three) are available for this encoder for $£ 7.50$ inclusive from M. R. Sagin, 23 Keyes Road, London NW2.

## Appendix

Inherent crosstalk arising from deficiencies in the coded signal.
Crosstalk is expressed relative to the full level on the decoded channels when $A=B=1$ as this is the most convenient reference when making measurements.

Amplitude error between the $M$ and $S$ signals.
lgnoring the pilot signal and considering an error $\delta$ so that the composite signal becomes

$$
\frac{A+B}{2}+\frac{A-B}{2+\delta} \sin 2 f_{c} t
$$

i.e. $S$ is low in level if $\delta$ is positive.

After multiplication in the decoder, considering only the 38 kHz component of the reinserted carrier waveform
$D(t)=\left|\frac{A+B}{2}+\frac{A-B}{2+\delta} \sin 2 \pi f_{c} t\right| \sin 2 \pi f_{c} t$
Adding $1 / 4(A+B)$ to give the decoded $A$ signal, and considering only baseband components gives

$$
\frac{A+B}{4}+\frac{A-B}{2(2+\delta)}
$$

Related to peak level, $1 / 2 B$, fractional crosstalk is $\delta / 2(2+\delta)$.

Phase error between $M$ and $S$ signals. Suppose $A=0, \quad B=1 \quad$ and $B(t)=\sin 2 \pi f_{B} t$.If a delay of $\delta t$ exists on the $S$ signal. the composite signal is

$$
\frac{\sin 2 \pi f_{\mathrm{B}} t}{2}-\left(\frac{\sin 2 \pi f_{\mathrm{B}}(t+\delta t)}{2}\right) \sin 2 \pi f_{\mathrm{C}} t
$$

After decoding, adding $1 / 4(A+B)$, i.e. $1 / 4 \sin 2 \pi f_{B} t$, and neglecting non-baseband components, the decoded A signal $1_{4} \backslash \overline{\left(1-\cos 2 \pi f_{R} i t\right)^{2}+\sin ^{2} 2 \pi \bar{f}_{R^{\prime}} \bar{t}}$

$=1 / 2 \sin \pi f_{\mathrm{B}} \delta t$, so that fractional crosstalk is $\sin \pi f_{\mathrm{B}} \delta t$.

Error in pilot phase.
Suppose pilot is $0.1 \operatorname{sinf}_{c}(t+\delta t)$, so in the decoder the regenerated 38 kHz is $\sin 2 \pi f_{r}(t+\delta t) . D(t)=$

$$
\frac{A+B}{2}+\frac{A-B}{2} \sin 2 \pi f_{c} t \sin 2 \pi f_{c}(t+\delta t)
$$

Add $\quad 1 / 4(A+B)$ and neglecting non-baseband terms the decoded $A$ signal is
$\frac{A}{4}\left(1+\cos 2 \pi f_{c} \delta t\right)+\frac{B}{4}\left(1-\cos 2 \pi f_{c} \delta t\right)$.
, and fractional crosstalk is $\sin ^{2} \pi f_{c} \delta t$.
Amplitude imbalance between the sidebands of the $S$ signal.
If $A=0, B=1$ and $B(t)=\sin 2 \pi f_{B} t$ and $a$, sideband imbalance exists then the composite signal is

$$
\begin{align*}
& \frac{\sin 2 \pi f_{\mathrm{B}} t}{2}-\frac{\cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{B}}\right) t}{4} \\
& +\frac{\cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{B}}\right) t}{4+\delta} \tag{Al}
\end{align*}
$$

Considering only baseband terms

$$
D(t)=-\sin 2 \pi f_{\mathrm{B}} t\left|\frac{8+\delta}{8(4+\delta)}\right|
$$

Adding $1 / 4(A+B)$ the decoded $A$ signal is

$$
\sin 2 \pi f_{\mathrm{B}} t\left|\frac{\delta}{8(4+\delta)}\right|
$$

and fractional crosstalk is therefore

$$
\frac{\delta}{4(4+\delta)}
$$

Phase shift in the upper sideband of the S signal.
Taking equation Al but for a phase error in the $\left(f_{\mathrm{C}}+f_{\mathrm{B}}\right)$ component, signal is

$$
\begin{aligned}
\frac{\sin 2 \pi f_{\mathrm{B}} t}{2}- & \frac{\cos 2 \pi\left(f_{\mathrm{c}}-f_{\mathrm{B}}\right) t}{4} \\
& +\frac{\cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{B}}\right)(t+\delta t)}{4}
\end{aligned}
$$

$D(t)=1 / 8 \mid \sin 2 \pi f_{\mathrm{B}} t \cdot \cos 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{B}}\right) \delta t$

$$
\left.+\cos 2 \pi f_{\mathrm{B}} t \cdot \sin 2 \pi\left(f_{\mathrm{c}}+f_{\mathrm{B}}\right) \delta t\right]-\frac{\sin 2 \pi f_{\mathrm{B}} t}{8}
$$

and the decoded $A$ signal is $1 / 4 \sin \left(f_{\mathrm{c}}+f_{\mathrm{B}}\right) \delta t$, giving a fractional crosstalk of $1 / 2 \sin \left(f_{c}+f_{B}\right) \delta t$.

## References

1. Z. Mack, Stereo service generator (in German). Circuit of a switching type coder is given. Funk-Technik 1968 p.532. 2. Z. Mack, Comparison of transformerless ring-modulators and cross modulators. Radio and Electronic Engineer vol. 441974 p. 407.

# Power semiconductors-2 

## A survey of devices, technologies and applications

by Mike Sagin, Assistant editor Wireless World

Over recent years much development has taken place in the power semiconductor field. Conventional devices are getting larger, quicker and more efficient, and several new devices have been introduced to the design engineer. These semiconductors allow far more freedom in the design of a power control system provided that they are used correctly. This article covers the various types of device currently avaitable and outlines applications, together with future developments.

## Thyristors

Thyristor is the generic name for a semiconductor bistable switch which has at least four semiconductor layers. The most common type, the silicon controlled rectifier, was first introduced

Table 1
Important ratings and characteristics

| Off-state |  |
| :---: | :---: |
| $V_{O R M} \quad V_{D S M}$ | Peak repetitive and non-repettive voltages ' $V$ ' |
| $I_{\text {OAM }}$ | Peak current (mA) |
| On-state |  |
| $V_{\text {IM }}$ | On-state voltage V |
| Itiav, | Mean on-state current 'Al |
| $I_{\text {IRM }}$, $I_{\text {IOM }}$ | Repetitive and non-repetitive currents 'A) |
| $I_{\text {H }}$ | Holding current (mA) |
| Trigger |  |
|  | current (mA) |
| Reverse bias |  |
| $V_{R R M} \quad V_{R S M}$ | Peak repelltive and non-repetitive voltages ' $V$ ' |
| $I_{\text {HHM }}$ | Peak current (mA) |
| Thermal |  |
| $R_{\text {IH }}$ | Thermal resistance 'deg C/W |
| $T$ | Junction temperature 'deg Cl |
| Turn-on |  |
| $\begin{aligned} & \lg t / d t \text { on } \\ & \mathrm{d} / / \mathrm{d} t \end{aligned}$ | Turn-on time <br> Rate of rise of current. $A$, |
| Turn-off |  |
| ${ }^{\text {ta }} / / \mathrm{d} t$ off; <br> $d V / d t$ off | Turn-off time's |
|  | Rate of fall of current and |
|  | rise of reverse voltage in turn-off 'A/ s. V' s) |
| $\mathrm{d} V / \mathrm{d} t$ | Rate of re-application of forward blocking voltage |
|  | $\checkmark$ s) |

in the 1950 s and was used to replace. thyratrons and mercury-arc rectifiers. Since then it has undergone much development to produce devices which can switch 1000 A or 1000 V in one microsecond, withstand voltages up to 4 kV , handle r.m.s. currents up to 2.5 kA . and operate at frequencies up to 5 kHz . Several types of construction are now used, all of which have very definite advantages and corresponding disadvantages. Because designers have to "rob Peter to pay Paul" s.c.rs are designed for specific applications.

The basic s.c.r. as shown in Fig. 1(a) is a half way device whose bistable state depends on a positive feedback loop. When the s.c.r. is forward biased it can be switched from a high to low impedance state by making the gate positive with respect to the cathode. This action is analogous to a complementary pair of
internally connected transistors as shown in Fig. 1(b). A regenerative situation exists when the positive feedback gain exceeds unity. Under reverse bias. the s.c.r. behaves like a p-n junction rectifier. The switching characteristics of a typical reverse blocking s.c.r. are shown in Fig. 2 and the important ratings and characteristics are shown in table 1.

In general, for high operating voltages, the p-n-p-n structure must be thicker and possess a higher resistivity. Unfortunately, this increases the voltage drop, which reduces the current rating. High frequency performance is also degraded because the rate of rise in current ( $\mathrm{di} / \mathrm{d} t$ ) rating is reduced and the turn-off time increased, due to a larger stored charge in the structure. Another important factor which determines the voltage rating is the surface condition

where the p -n junction meets the silicon surface. Surface contouring or bevelling allows higher voltage operation by reducing the electric field in the depletion layer at the surface of the silicon pellet.

The allowable current through a device depends mainly on the conducting area. Silicon slices of 50 mm diameter are now used in high power s.c.rs and larger devices are being produced in the laboratory.

Switching performance has received much attention because of the $\mathrm{d} / / \mathrm{dt}$ problems which have been encountered. The turn-on process of a s.c.r. is two dimensional because the structure has an electrical resistance across the silicon wafer. Switching is initiated near to the gate electrode and the conducting area spreads outwards until a uniform current density is established. If the build-up of load current is too fast, localized "hot-spots" are created which can damage the device. This problem is most acute in the early point-gate structure, shown in Fig. 3. The area initially turned on is very small and is dependent upon the amplitude of the gate signal. An obvious progression was the centre gate, shown in Fig. 4. This type of construction is widely used in consumer and light industrial s.c.rs and allows di/dt ratings up to $100 \mathrm{~A} / \mu \mathrm{s}$ when using gate pulses of 1-2A. The next development to improve the switching performance was the amplifying gate s.c.r. - see Fig 5. This type of structure may be considered as two radial s.c.rs with a common anode connection. When a positive gate signal is applied, current flows into the $p$ region beneath the gate contact and across the p-n junction at the nearest point to the gate. This forward biases junction J 4 and current flows into a metallized region which overlays the outside edge of this junction. The gate-pulse current then re-enters the $p$ region and crosses the p-n junction J3 at the nearest point. Because the length of the auxiliary s.c.r. inner cathode edge is shorter than the main s.c.r. inner edge, the current density at J4 is higher than J3. This ensures that the auxiliary s.c.r. switches before the main section. When the auxiliary s.c.r. has switched, most of the anode current flows in the lowest impedance circuit to the cathode lead which includes the inside edge of the main s.c.r. The equivalent circuit is shown in Fig. 5(b).

Although this structure greatly improves the $\mathrm{di} / \mathrm{dt}$ ratings, further developments have produced the distributed amplifying gate s.c.r. shown in Fig. 6, and the interdigitated amplifying gate s.c.r. - Fig. 7. These are extensions of the basic amplifying gate device in which the length of the main s.c.r. cathode switching edge has been increased to reduce the spreading distance. Although this appears to be the answer to all power switching

problems, "Peter" is effectively robbed again because as the surface area of the distributed gate increases, so the main cathode area, and hence, anode current carrying area decreases.
A second rating which effects the switching performance is the $d v / d t$. Rapidly rising voltage waveforms and high junction temperature can cause
spurious triggering of an s.c.r., due to the capacitance of the $p-n$ junction and the leakage current from the gate junction. The effect is one of increased gate sensitivity. This brought about the shorted-emitter structure which uses partial shorting links between the gate and cathode junction, to produce the same effect as placing a resistor

## International Rectifier makes the most of semiconductors

... to make the most
of your circuit and equipment performance!
From a discrete diode to a complex circuit function... from minimum to maximum power where solid state electronic and electrical power conversion and control are involved, we have the experience.
Since 1947, the year the semiconductor industry was born, we've chosen to specialise in those areas where our sophistication and high technology make a big difference. When we make a product, we make the most of it. The most in technology . . . the most in performance ... the most in configurations ... and the most in reliability. So check our areas of specialisation, and keep us in mind when you begin your next design.
You too, can make the most of it with IR semiconductors.
INTERNATIONAL RECTIFIER
HURST GREEN OXTEO SURREY RH8 988 TELEX RECTIFIER OXTED $95 \angle 19$ TELEPHONE OXTED $3215 / 4231$


## POW'ER $n$. ability to do or act;

AEI Semiconductors Limited manufacture a wide range of industrial diodes and thyristors from I amp to well over $1,000 \mathrm{amps}$. AEI are acknowledged experts and have the experience to make power semiconductors for a wide range of applications. AEI's wealth of technological expertise ensures that reliability is the keyword of their product range. AEI are proud of their reliability and proud of their name. To AEI's customers this ensures that, whatever the requirement, the best device is specified and supplied.

Low Power Thyristors
Medium Power Thyristors
High Power Thyristors
Low and Medium Power Inverter Thyristors
High Power Fast Switching Thyristors A.C. Controllers

Low and Medium Power Diodes High Power Diodes
Voltage Regulator Diodes
Plastic Power Microcircuits
Thyristor and Rectifier Assemblies
BS 9300 types


The symbol of power.

AEI Semiconductors Limited<br>Carholme Road, Lincoln, England.<br>Telephone 0522-29992, Telex 56163.

Part of GEC Electrical Components Group
between the gate and cathode. The only disadvantage of this type of construction is the slightly increased firing requirements.

The turn-off time for a s.c.r. will determine the maximum operating frequency of the device. During the turn-off perind the excess minority charge must either be swept out by an electric field or must decay by recombination within the silicon before the s.c.r. will block a forward voltage. For rapid decay more recombination centres must be introduced. One method of achieving this is gold diffusion during fabrication. The introduction of gold impurities does, however, reduce the voltage and current ratings, and gate sensitivity.

Construction, The heart of a thyristor is its multi-layered pellet of alternate $p$ and n-type semiconductor material. The pellet structure may be fabricated in several ways, depending on the characteristics and complexity of the device. The most popular fabrication methods are alloy diffusion, full diffusion and planar diffusion. The first two methods use large-area $p-n-p$ wafers which are formed by gaseously diffusing p type impurities simultaneously into both faces of a thin $n$ type wafer. Where specific device characteristics are required, a second diffusion step is used to complete the all-diffused $p-n-p-n$ structure. To do this, each p-n-p wafer is selectively marked on one side and diffusion takes place through the windows in the mask. The finished wafers are then diced into individual pellets. In the manufacture of some higher power s.c.rs where only one pellet is available from the wafer, the original $p-n-p$ wafer is converted into a pellet structure before the final $n$ region is added. In this construction the alloying technique is used to fuse a gold-antimony layer into each p-n-p pellet - see Fig. 8.

Planar structure describes a type of device where all of the p-n junctions are on a single surface of the pellet. In this construction a thin layer of silicon dioxide is grown over the wafer before diffusion starts. This prevents contamination of the silicon surfaces. Because the planar construction requires more silicon per amp, the process is normally used for low current devices where many pellets can be cut from a single wafer.

Encapsulation of the s.c.r. pellet has played an essential role in the progressive increase of power ratings. All s.c.r. characteristics are temperature sensitive and provision must be made to conduct away heat generated in the silicon. The older, more traditional method is to hard solder the pellet between a pair of thermally matched plates, one of which is then soldered to a copper stud. The stud serves as one terminal and the thermal conducting path. A newer method of encapsulation for devices rated at above about 150 A is the pressure contact system. This
replaces the solder joints between the silica pellet and the plates and, in turn, relieves much of the thermally induced stress on the pellet. This system is the only practical method for encapsulating pellets of more than 1 inch in diameter. An even more recent development in pellet encapsulation is glass passivation. A thin coating of low temperature glass is fused on to the silicon chip and performs the same function as the silicon dioxide layer used in the planar diffusion process. Glass passivation is a post-diffusion process and is superior to $\mathrm{SiO}_{2}$ because it can be applied in thicker coatings, which also allow higher voltage ratings. Another advantage of glass passivation is the hermetic seal it produces which allows simple plastic packages to be used instead of the hermetic metal containers.

Future devices will no doubt have improved voltage and current ratings especially with the development of more uniformly doped silicon. As mentioned earlier, 50 mm diameter silicon is now commonly used in high current s.c.rs. Larger diameter slices are already well advanced and will shortly be used in commercial devices.

## Triacs

A bidirectional triode thyristor, commonly called the triac, is basically two
s.c.rs connected back to back. These devices are mainly used for a.c. power control and are generally restricted to lower power applications. The structure of a typical glass passivated triac is shown in Fig. 9. Seven steps are necessary in the construction of such a device and the process begins with an $n$ type high resistivity silicon wafer which has $p$ layers deeply diffused into both sides. Silicon-dioxide diffusion masks are grown, and $\mathrm{p}^{+}$regions are defined and diffused into the wafer. A second diffusion mask is grown, and $\mathrm{n}^{+}$regions are defined and diffused into the wafer. A silicon-dioxide etch mask is grown and defined. Grids and gate moats are etched into the wafer and the glass passivated layer is then applied in these grids and moats. Finally, contact areas are opened on the wafer and nickel-lead-tin solder metallization is applied. The wafer is then separated into pellets.

The triac can be triggered by either a positive or negative gate signal regardless of the voltage polarity across the main terminals of the device. The triggering mechanism and current flow within the triac is shown in Fig.10. Gate trigger polarity is always referred to terminal 1 , and the potential difference between the two terminals is such that gate current flows in the direction indicated by the dotted arrows. Because

the direction of current flow influences the gate trigger current, the gate requirements differ for each of the four modes. The operating modes in which the main current is in the same direction as the gate current require less trigger current than those in which the main current opposes the gate current.

Unlike s.c.rs, turn-odff times are not associated with triacs because of the physical structure of the device. The ability of a triac to commutate a fixed value of current is an important characteristic, which is known as the commutating $\mathrm{d} v / \mathrm{d} t$ capability of the device. In a.c. applications a triac must
switch from the conducting state to the blocking state at each zero-current point. This action is called commutation. If the triac fails to block the circuit voltage, control of the load power is lost. Commutation for resistive loads presents no special problems because the voltage and current are in phase. For inductive loads, however, the current lag causes an applied voltage, opposite to the current and equal to the peak of the a.c. line voltage, across the triac after the zero current point. The maximum rate of rise of this voltage which can be blocked without the triac reverting to the on state is the
commutating $d v / d t$ capability of the device, and is specified in volts per microsecond for the following conditions. The maximum rated on-state current $I_{\text {T/RMS }}$, the maximum case temperature for the rated value of on-state current, the maximum rated off-state voltage ( $V_{\text {DROM }}$ ) and the maximum commutating di/dt.
The addition of a series capacitor and resistor "snubber" network across the triac reduces the commutating $\mathrm{d} v / \mathrm{d} t$ of a circuit and is often used for inductive loads. The sizes of these components vary with the load but typical values are 100 ohms and $0.1 \mu \mathrm{~F}$. Table 2 shows Continued on page 91


A
Fig. 11. Asymmetrical s.c.r. junction structure.

Fig. 12. Practical circuit for an induction cooker hob. For further details see RCA application note number AN-6456.



Available from these Thomson-CSF distributors
Spenco Electronics (Phoenıx) Lid., Kelvin Industrial Estate. East Kılbride. Scotland. (035 5236311 ).
Phoenix Electronics (Portsmouth) Lid., 189-141 Havant Road. Drayton. Portsmouth. Hants. (070 1873441 )
Concorde Instrument Company, 42 Cricklewood Broadway. London NW2. (01-452 0161).
Lock Distribution, Neville Street. Middleton Road. Oldham Lancs OL9 6LP. (061 652 0431)
8arlec Ltd.. 219 London Road. East Grinstead. Sussex. (0342 24383).
Omni Components Ltd., 59 Vastern Road. Reading. Berks. (0734594834)

Thomson-CSF United Kingdom Ltd., Ringway Hse., Bell Road, Daneshill, Basingstoke RG24 0QG. Tel : 025629155

# Pinnacle hold the power of GENERAL © ELECTRIC 

## (U.S.A.)

Power Transistors
Tunnel Diodes Unijunctions Optoelectronics Rectifiers SCRs

Triacs
GE-MOV Varistors
Power Modules SCR Commutating \& Computer Grade Capacitors

Table 2
Commutating di/dt for various currents and frequencies.

| Commutating <br> di/dt <br> A/-s | Sine wave <br> Amperes r.m.s. | Operating <br> Frequency Hz |
| :---: | :---: | :---: |
| 141 | 40 | 400 |
| 88 | 25 | 400 |
| 21.1 | 40 | 60 |
| 132 | 25 | 60 |
| 17.6 | 40 | 50 |
| 11.0 | 25 | 50 |

commutating di/dt for various currents and frequencies.

## Asymmetrical silicon controlled rectifier

A recently introduced device from RCA, known as an a.s.c.r., has been specially designed to achieve high dv/dt and di/dt capabilities. A gold dopant is diffused into the a.s.c.r. pellet to achieve fast turn-off capability but, as discussed earlier, gold doping tends to increase turn-on time and decrease di/dt capability. Special techniques are used to overcome this problem. The structure of an a.s.c.r. is shown in Fig. 11. It differs from a conventional s.c.r. in that an additional n-type layer is inserted between the $\mathrm{p}^{+}$and $\mathrm{n}^{-}$regions. This new layer is doped so that it increases the forward blocking voltage of the device. The reverse blocking voltage. which is a function of the $n-1 p^{+}$ junction, is much lower than in conventional s.c.rs and is about 15 V . The $\mathrm{d} v / \mathrm{d} t$ capability of the a.s.c.r. is also increased with the introduction of a $p^{+}$ ring at the edge of the pellet.

Asymmetrical s.c.rs can be used in fast switching applications at frequencies up to 35 kHz . A recently developed circuit uses these devices in an induction cooker hob. A high-frequency generator is used to supply an alternating current to a flat coil under a working surface. When an iron or steel utensil is placed above the induction coil, high-frequency currents are induced into the pan which generates heat. A functional circuit for such a unit is shown in Fig. 12. This design offers an output of 1275 W , and a typical efficiency of $80 \%$.

## Gate turn-off s.c.r.

Gate turn-off devices (g.to.) are also four-layer, three-junction structures as shown in Fig. 13 but, unlike the s.c.r., they can be turned off by the application of a negative gate pulse. The g.t.o. can be turned on in a similar way to the conventional s.c.r. by making the gate positive with respect to the cathode. As positive current is applied to the gate. the voltage/current relationship resembles that of a forward-biased $p-n$ junction until the point is reached where regeneration takes over to switch the structure on. The g.t.o. incorporates the regenerative properties of the two-transistor model of a


Fig. 15 (a) Gate turn off s.c.r. in the on-state and, (b) during turn off. The high density filament forms a non-regenerative region.

Fig. 13. Gate turn off s.c.r. structure showing centre gate and double p base - layer.

Fig. 14. Anode current rise time versus gate drive current.


$+V_{D}$ anode
(a)

(b)
s.c.r., but the loop gain is reduced to allow turn-off control at the gate. In effect, turn-on in a g.t.o. is similar to that of a desensitized s.c.r. and, if sufficient gate drive is applied during turn-on, satisfactory performance can be achieved. The effect of increased values of gate-current on anode-current rise time for two values of on-state anode current, is shown in Fig. 14. The on-state voltage of the g.t.o. is a function of the regenerative properties of the device, so the transient on-state voltage drop can be reduced by the use of an increased gate drive

During the turn-off process, the conducting electron/hole plasma is deflected from an area close to the gate, which has the highest negative potential, to the most remote area beneath the cathode, which has the least negative potential, see Fig. 15. In the on-state the device conducts uniformly over the entire cathode area. Upon application of a negative bias to the gate, the plasma is squeezed into a high-density filament This filament is deflected into a non-regenerative three-layer section and cannot sustain itself.

The structure has a centre-gate geometry and a double-layer $p$ base

Which allows a low lateral resistance This low resistance causes a very small voltage drop from the negative gate current. The g.t.o. is surrounded by a non-regenerative section in which the final phase of the turn-off cycle takes place. Device dimensions are about $3 \times$ 3 mm and this size allows a continuous current operation up to 15 A and a forward blocking voltage of above 600 V .

Gate-drive techniques. For the best switch-on rise times a positive gate current of between 0.5 and 1 A with at least a two microsecond pulse width is recommended by the manufacturers. Also, a pulse of -70 V between the gate and cathode for the duration of the turn-off interval is advised. Fig. 16 shows gate drive systems that may be used when a negative voltage source of 70 V is not available. In circuit (a) the resistor causes unnecessary dissipation during switching and in circuit (b) an inductor is substituted to reduce the dissipation. The configuration shown in (c) is the best method of switching the g.t.o. The peak value of the reverse gate current carried by the switch in Fig. 16 is approximately half the maximum
 is opened and gate current turns the g.t.o. on. When the switch is closed the charged capacitor acts as a source of negative potential. In (b) when the switch is closed the g.t.o. is turned off by the capacitor and the extra energy stored in the inductor. In (c) when the
switch is opened the g.t.o. is turned on because of stored energy from $L_{1}$ and the increased drive provided by the stored energy in $L_{2}$. When the switch is closed the g.t.o. turns off because of the negative voltage from the capacitor.


Fig. 17. Typical d.c. switch. The capacitor and resistor form a "snubber" network.


Fig. 18. Lamp flasher circuit. The on and off times can be adjusted by the time-constant networks $R_{1} C_{1}$ and $R_{2} C_{2}$ respectively.

Fig. 19. Car ignition circuit.
anode current of the g.t.o. prior to turn off. This current lasts for about 400 ns and then decreases to a value less than 0.7 A for the rest of the turn-off interval. The switch may be an $n-p-n$ transistor or low voltage s.c.r.
Applications of the g.t.o. are mainly in d.c. circuits, and use in cars will be popular. Particular devices can operate at frequencies up to 30 kHz and Fig. 17 shows a circuit suitable for use as a d.c. switch. Fig. 18 shows a circuit breaker or lamp flasher. Diacs $\mathrm{D}_{2}$ and $\mathrm{D}_{3}$ are connected in series to provide a maximum peak negative gate voltage of $-70 V^{\prime}$ during the turn off period. The RC "snubber" network in parallel with the g.t.o., protects the device against high
$d v / d t$. The circuit in Fig. 19 illustrates a typical use in a car ignition unit. The input signal can be obtained from the mechanical distributor or from an electronic generator.
In the near future it is expected that new devices will have much lower gate turn-off voltages of around -20 V . higher current capabilities, and increased gate sensitivities. Because the g.t.o. can switch higher voltages at greater currents with a semiconductor pellet the same size as a conventional bi-polar transistor, these devices are likely to replace high power transistors in many d.c. switching applications.

To be continued.

## Continued from page 55

circuits" had gained currency). Texas were anxious to establish that what we saw at the symposium was not in fact a working device but a model, and our reporter agreed to sign an affidavit to this effect. This incident demonstrates the Americans' awareness of the possibility of British priority in integrated circuits.
Mr Dummer is author of a new book "Electronic Inventions 1745-1976" just published by Pergamon Press at $£ 4.00$. This contains mainly brief descriptions of important inventions in electronics but also has some interesting graphs showing historical trends. For example, it shows that in the 200 years from 1745 to 1945 some 106 electronic inventions originated in Europe against 66 in the same period in the USA; but in the mere 31 years from 1945 to 1976 the situation was reversed. with 32 inventions in Europe and 85 in the USA.

## Time by satellite

A digital clock controlled by a time code transmitted from a satellite has been developed by the US National Bureau of Standards (NBS). Once set by the time code the clock. which uses a simple and cheap microprocessor, continues to keep time in the presence or absence of the satellite signal. The clock was designed to use transmissions from the National Oceanic and Atmospheric Administration's meteorological satellites, which relay information from buoys. automatic weather stations. ships, aircraft and balloons. The time code used dates the information or organises its transmission into sequence.

The clock receives a 100 Hz pulse stream and time code information in 30 s data frames. "Since each time code frame differs from the previous one by only 30s there is a high degree of redundancy in this data which can be used to improve the signal to noise ratio. The microprocessor stores the received time in random access memory and continually updates it by counting the 100 Hz pulse stream." During every time code frame the ram. time is compared with the new time message for errors. The r.a.m. time is assumed to be correct in the case of error in three consecutive comparisons. On the fourth the r.a.m. is assumed wrong and is reset in the next frame.
To counteract noise in the pulse stream the microprocessor crystal oscillator is divided down to 100 Hz from 4.096 MHz and phase locked to the received pulse stream. The adjustment of the crystal frequency is accomplished with varactor diodes.

# New Products 

## Graphic transfers

P.c.b. and rub-down acid-resist graphic transfers, manufactured by E. R. Nicholls, includes space bars which enable users to lay transfers level and with the correct letter, word and line spacings. A yellow strip is first placed on to the artwork below the desired position of the wording, and a red straight edge is positioned over it. The space bar of the first character is then lined up on the visible yellow strip so that when rubbed down the character transfers to the artwork and the space bar transfers to the yellow strip. By lining up the space bars of adjacent characters. correct spacings will result. White line spacers are used in a similar way to give correct line spacings. Another important feature is that the transfers contain adhesive only on the character area and not on the surrounding area. Transfers include capitals and lower case letters and numerals in $1 / 8,1 / 4$ and $1 / 2$ inch sizes. Prices for complete kits are from $£ 1.00$. for the $1 / 8 \mathrm{in}$ set. E. R. Nicholls. 46 Lowfield Road, Stockport, Cheshire,

## WW 302

## YELLOW



## PANEL



## PANEL

## Circuit module "time-savers" for development engineers

A range of circuit modules, called Cirblocs, includes power supplies, amplifiers, timers, comparators, count displays, waveform generators, relay drivers and switching and phase control units. All of the units are either ready to use or, by simple wire links and component programming, can be set up to provide desired operating characteristics. The manufacturers, Lascar Electronics Ltd, are a new organisation formed specifically to manufacture and market modules covering the most widely used electronic circuits so that engineers can produce many different electronic systems in the shortest possible time. The managing director of Lascars pointed out that all over the world engineers are spending time hard wiring the same basic types of circuits, during the development stage of their particular system. This range, he claims, offers these engineers a means of saving time by supplying basic, ready to use, circuits, leaving the engineer to devote more time to the development work. Also, he says, fault diagnosis and repair is simplified and complex systems may be constructed without specialised electronic knowledge.

Two of the modules, a power supply and a count-display unit. are illustrated below.

The $\pm 15 \mathrm{~V}, 100 \mathrm{~mA}$ power supply is suitable for operational amplifiers, and has current, thermal shut-down and output short-circuit protection. Other features include a load regulation of $0.6 \%$, line regulation of $0.13 \%$ and an output noise voltage of 0.06 V ; all of these parameters being typical and measured at $25^{\circ} \mathrm{C}$. Five-. 12- and $24-\mathrm{V}$ power supplies are also available.

The count-display module is a fourdigit unit based on the Ferranti ZN1040E i.c. It has a 0.3 in red (or green) l.e.d. display and may be supplied with a mounting bezel and filter. If the module is to be fitted in a low-profile instrument it may be divided in two and reconnected with ribbon cable. This unit, which has a t.t.l.-compatible input and requires a 5 V supply, features up/down

counting up to 5 MHz , a reset zero, a display latch. and "unwanted zero" suppression. An add-on module is also available to convert this count-display into a digital frequency meter with ranges 0 to 9.999 kHz and 0 to 99.99 kHz .

Full details of the complete Cirbloc range, together with connection instructions and a selection of hand tools. are given in a catalogue which may be obtained from Lascars. All of these products are offered on a sameday basis, if orders are received before 4 p.m. and include no minimum order charges. Lascar Electronics Limited, P.O. Box 12. Second Avenue, Billericay, Essex CM12 9QA.
WW 301

## Duplex muting unit

Full duplex operation requires the simultaneous operation of both a transmitter and receiver. In order to avoid breakthrough from the transmitter to the receiver the antennae are often gengraphically spaced. typically 30 miles apart in land-based installations. This is obviously impossible with shipboard installations. The Duplex Muting Unit, which is placed between the receiver and the antennae eliminates breakthrough by monitoring the nature and level of the r.f. and introducing attenuation for the duration of the
potential breakthrough - imitating the ear by automatically reducing sensitivity when the owner is talking. The unit requires no modifications to existing equipment. is compatible with all receivers without affecting the "type approval" and can represent, it is claimed, a saving of up to $90^{\circ} 0$ against the costs of fitting feeders.

The frequency range of the unit is 0.1 to 30 MHz and the insertion loss is typically ldB. Callbuoy Marine Electronics Limited, 6 Somerset Road, Cwmbran, Gwent NP4 IQX.
WW 303

## Polypropylene capacitors

Capacitors in the KP72 range have polypropylene dielectrics, instead of polystyrene, and use aluminium foil as electrodes. It is claimed that these capacitors offer a considerable improvement in heat resistance compared to polystyrene capacitors. Nickel silver terminals, welded to the foil electrodes, make the capacitors suitable for r.f. applications. Capacitances range from 100 to $33,000 \mathrm{pF}$ in tolerances of $\pm 10 \%, \pm 5 \%$ and $\pm 2.5 \%$ and are available with working voltages of 63, 160 and 630 V . AEG-Telefunken UK Limited, Bath Road, Slough, Berks SLI 4AW. WW 304

## Miniature variable capacitors

Miniature trimmer capacitors in the Voltronics CP range, from ITT Components, are suitable for tuning circuits up to 5 GHz . Two basic capacitance types 2.5 and 9 pF , are available and these are tuned by sliding a shuttle from one end of the component to the other. They may be used to facilitate rough tuning of several stages before final tuning. The devices have contact resistances of 0.0050 . voltage ratings of 15 V d.c. ( 300 V d.c. max. surge) and temperature coefficients of $\pm 100$ p.p.m. $/{ }^{\circ} \mathrm{C}$. Minimum life is quoted as 1000 cycles. ITT Components Group Europe, Capacitor Division, Brixham Road, Paignton, Devon TQ4 7BE.
WW 305


WW 305

## Stereo equalizer

The EQ2 stereo equalizer has eleven bands per channel and provides full equalization from 20 Hz to 20 kHz with a cut or boost of $\pm 15 \mathrm{~dB}$ on each band. Each filter has a control which allows an $\pm 1 / 2$ octave variation of the centre frequency, and tone controls are also provided allowing very low phase distortion equalisations. Balanced inputs provide either unity gain or switched 10 dB gain. L.e.ds are provided to monitor and indicate overload. Frequency response is $\pm 0.1 \mathrm{~dB}$ from 20 Hz to 20 kHz and $\mathrm{i} . \mathrm{m}$. distortion is below $0.01 \%$ at the rated output of 2.5 V r.m.s. Macinnes Laboratories Limited, Macinnes House, Carlton Park Industrial Estate, Saxmundham, Suffolk. WW 306

## Drive/stepping motors

A series of drive and stepping motors specifically designed for floppy disc drive applications has been introduced by Eastern Air Devices. The standard l/100 h.p. a.c. drive motor has a high inertia ratio and output speeds of $1500 \mathrm{rev} / \mathrm{min}$ at 50 Hz or $1800 \mathrm{rev} / \mathrm{min}$ at 60 Hz . This unit is a permanent-split-capacitor synchronous motor with an automatic-reset thermal overload pro. tector.

The stepping motors, sizes 18 and 20 . have single or multiple-start lead screws and are available with $15^{\circ}$ step angles for 3 or 4 phase supplies. These variable
reluctance motors are totally-enclosed bi-directional devices with permanently lubricated ball bearings. Computer Controls Limited, 19 Buckingham Street, London WC2N 6EQ.
WW 307

## Rotary switch

A multi-wafer rotary switch, designated as Type 30 , has ground, silicone treated h.f. ceramic wafers for high insulation resistance. The switch, which has a roller-type index mechanism allowing central bush or two-hole mounting, is available with up to 26 shorting and I3 non-shorting positions, with or without stops. Contacts are gold flash on silver plate as standard or hard gold plating as an option, and are protected from dust and solder vapour by transparent plastic covers. Operational life is quoted as 25,000 rotations and the temperature range is -40 to $+85^{\circ} \mathrm{C}$. Radiatron Components Limited, 76 Crown Road, Twickenham, Middlesex.
WW 308

## Precision resistors

Wirewound resistors, available from G.E. Electronics Ltd. have standard tolerances of $0.1 \%$ and are rated at 0.3 W $\left(70^{\circ} \mathrm{C}\right)$. These resistors, in values from 10 ! to $1 \mathrm{M}!$, have temperature coefficients of $\pm 3$ p.p.m. over the range 0 to $85^{\circ} \mathrm{C}$ and $\pm 5$ p.p.m. over the range -55 to $145^{\circ} \mathrm{C}$. The components are also available in 0.025 and $0.01 \%$ tolerances


WW 306


WW 307
WW 308
and are manufactured and tested to MIL-R93, MIL-Std-202 and DIN40040. G.E. Electronics Limited, 182-184 Campden Hill Road, Kensington, London W8 7AS.
WW 309

## Low-cost 5MHz oscilloscope

The S61 oscilloscope is a single trace 5 MHz instrument featuring calibrated deflection factors from $5 \mathrm{mV} /$ div to $20 \mathrm{~V}^{\prime} / \mathrm{div}$ and sweep rates from I s/div to $500 \mathrm{~ms} /$ div. Simple trigger controls provide a clear, jitter-free trace at all settings and levels over the entire bandwidth it is claimed. A trigger source may be switch selected from either an internal, external, or line frequency. An external $X$ facility is provided for the X-Y display of Lissajous figures and other interactive signals. particularly useful in educational applications. The S61 has an $8 \times$ 10 cm screen and is priced at $£ 125+$ V.A.T. Electroplan Ltd, P.O. Box 19, Orchard Road, Royston, Herts.
WW 310

## General purpose multimeter

The UM11 multimeter, from Poland, has 38 ranges and offers high sensitivities coupled with high input impedances. It has nine direct voltage ranges having input impedance of $100 \mathrm{k} \Omega / \mathrm{V}$ and


WW 310
covering full scale values from 150 mV to 1500 V . Eight alternating voltage ranges, with sensitivities of $31.6 \mathrm{k} \Omega / \mathrm{V}$, cover the range 1.5 to 1500 V . Other ranges cover direct and alternating current, resistance and dBm . The meter is supplied with a leather carrying case and is priced at $£ 39.50$. Electronic Brokers Limited, 49-53 Pancras Road, London NW1 2QB.
WW 311

## Wheatstone bridge

A Wheatstone bridge, designated as type 2272, enables measurement of resistances from $0.001 \Omega$ to $1,000 \mathrm{MS}$ with an accuracy of $\pm 0.002 \%$ between 22 and $24^{\circ} \mathrm{C}$ or $\pm 0.005 \%$ between 18 and $28^{\circ} \mathrm{C}$. The load on the unknown resistor is less than 50 mW . The bridge, which is equipped with leakage current protection for improved accuracy, is supplied by a built-in power supply and has a zero-indicator having a sensitivity of $150 \mathrm{nV} / \mathrm{mm}$. Tettex AG Instruments, P.O. Box, CH 8042 Zurich, Switzerland. WW 312

## U.h.f. attenuators

Variable attenuators in the 67DR range, from AEG-Telefunken, are constant impedance units suitable for use in broadband amplifiers - for example in distribution systems having frequencies 40 to 860 MHz . The attenuators are available in three versions: 50,60 and $75 \Omega$ with attenuations from 0 to 20 dB .


WW 311.

Four mechanical versions, with vertical or horizontal mountings, are also produced for p.c. or conventional wiring boards. AEG-Telefunken UK Limited, Bath Road, Slough, Berks SLl 4AW. WW 313

## V.h.f./u.h.f. amplifiers

A series of high dynamic range, wideband linear-amplifiers, from the Mi crowave Semiconductor Corporation, operate over the range 20 to 1000 MHz . The amplifiers have outputs of about 25 to 29 dBm at the 1 dB compression point, with typical gains of 30 dB at 1 GHz . Typical noise figures are 7.5 dB and operating temperatures range from -20 to $+70^{\circ} \mathrm{C}$. Tranchant Electronıcs UK Limited, 100a High Street, Hampton, Middlesex TWqw wST.
WW 314

## Silent timers

A silent operating elapsed-time control, the Type ET from NSF Controls, is variable from 4 to 30 minutes and has a switch rating of 16 A at 240 V a.c. The unit has an eddy current brake mechanism and may be produced to customers' specifications for time cycles, mounting, shaft details and other characteristics. Switches are either s.p.s.t. or d.p.s.t. NSF Controls Ltd, Fence Houses, Houghton-le-Spring, Tyne \& Wear DH4 5RG.

## WW 315



WW312


WW 313

# Just for the record 

# Memories of the early years of recording 

by Alan D. Foster

We have already been reminded that the year 1977 marks the centenary of the invention of sound recording. To me, this prompts the very sobering thought that I can clearly remember further than half way back over this period of time.
My earliest recollection of the wonders of recorded sound was at about the age of eight. An uncle of mine had an Edison phonograph and a large number of cylinder records. There may in fact have been less than 30 of them in all, but to me at the time it was a very impressive collection. The model of phonograph he had was a fine machine, all nickel plate and shining black, lavishly decorated in gold. It had two soundboxes, one for making and another for playing records, and must have cost about $£ 10$, with records in those days running at around one shilling.
Phonographs were made in a variety of models, the cheaper ones being very simple machines, driven by a key-wound clockwork motor with a fan governor rather like a musical box. These models had the unfortunate habit of slowing down during the run of the record. "Melody in ' F '" could well finish up "Melody in ' $E$ '," and if the machine were not placed on a perfectly level table, the stylus was prone to jump a groove now and then.
I remember my uncle's bitter complaint that blank cylinders for making one's own records cost more than professionally-made ones but, of course, they could be used over and over again. The record was simply placed on the machine, and a special cutting tool would shave off a thin layer of wax, removing the previous recording. After the application of wax polish and a finish-off with a soft duster, the cylinder would gleam like new all ready to be re-used. About 20 or more recordings could be made before the record became too thin and had to be discarded. Cylinder records were fragile things, sold in flock-lined boxes to protect the relatively soft wax surface. Apart from being dropped on to the floor an untimely end could result simply by forgetfully leaving a record on the machine overnight. In the morning, there could be a gaping crack running right across the face of the record! With the usual overnight fall in room temperature the record would shrink on to the machine cylinder so tightly that it would simply burst.

Although he may have !nown a good deal about music, my uncle knew a good
deal less about technical matters. I remember him one day standing by the window, closely inspecting a record through a pocket magnifier. "I just can't understand," he said, with a very puzzled expression, "how it is possible to record so many different notes all at the same time." "After all," he reasoned, "There is only one track of vibrations on the record and only one stylus to follow them so how on earth does it work!"

The disc record with which we are familiar today dates from the beginning of this century, yet so well established was the phonograph that both cylinder and disc records co-existed for many years. Edison and other manufacturers were producing cylinder records up to the 1920s until the demand fell off completely in favour of the disc record. The big breakthrough came after 1924, with what nowadays we call electronics. This had a dramatic effect on the recording industry. Technical know-how flourished at a healthy pace and, combined with a widening knowledge of acoustics, records were produced of such quality that some still bear comparison with today's high standard.

## The heavy gang

In the late 20s, The H.M.V. Gramophone Company, as it was then, presented a demonstration of electrical recording at the premises of Rushworth \& Dreaper, a leading, long established family music house in Liverpool. The demonstration was arranged in the large, ground floor showrooms, the handsome display of grand pianos and cases of musical instruments being put aside to make room for all the paraphernalia necessary to make a record. This consisted of an amplifier rack, control panel, two recording lathes and a large supply of thick, yellow, wax recording blanks. They even brought along their own power supply in the form of dozens of large lead acid accumulators. I was surprised to see that the record cutting lathes were powered not by an electric motor or even clockwork but by a huge iron block suspended like a clock weight under the cutting lathe. This, I suppose provided the smoothest possible source of power but, amongst the other sophisticated hardware, did look a bit primitive.

The advent of electrical recording gave voice to the silent films of the day. Sound accompanying some early films was recorded on 16 in discs, running on a turntable directly coupled to the film
projector. Projectionists of the day found this period in the development of the talkies to be a very tedious one indeed. In order to maintain synchronization between sound and picture, both the film in the projector and the disc on the turntable had to be set at precise starting points. Of course, the inevitable mistake had to happen. Everything was set, the projector and turntable started together. The sub-titles came on the screen, "World Boy Scout Jamboree" followed by the usual credit titles. Meanwhile background music came from the record on the turntable. Everything seemed OK. The projectionist was himself interested in the subject to settle down to watch the film. The music slowly faded as, on the screen, Lord Baden-Powell mounted the rostrum to make the opening speech - and then it happened.

As the chief scout's lips moved there came out, not inspiring words appropriate to the occasion, but the loud sound of a dog barking! Obviously something was radically wrong, but momentarily the projectionist was transfixed by the near perfect synchronization between the movement of Baden Powell's lips and the barking of the dog - "it was uncanny," he said. The record he had put on the turntable was intended to accompany a film of the "Down on the Farm" type. In haste, he had mis-read the film code mark S.O.F. (sound-on-film) for S.O.D. (sound-ondisc). The experience, he said, haunted him for weeks although he did admit to the satisfaction of having caused as big a laugh as Laurel and Hardy. Only the cinema manager wasn't amused.

This state of affairs was fortunately short-lived and ended with ine exclusive use of the "Photophone" system. Thereafter, the sound to accompany a film was recorded photographically along the film itself.

As a result of well directed propaganda, I became the proud owner of my uncle's phonograph and what remained of his record collection. Inspired by the demonstration I had seen at Rushworth \& Dreaper, I made an electrical recording head from an $S$. G. Brown Type A earphone. The old machine was given a new lease of life. Gone was the large horn and in its place was a hefty coil speaker, mounted on a large baffle board, driven by a push-pull amplifier. There was no end to my recordings, music and variety from the radio, piano duets with a friend and even the interval signals between. programmes (who, I wonder, can remember those?). One day I found my father, glass in eye, closely studying the works of his watch. Its normally good timekeeping had gone completely crazy, he said. I remembered then I had made a record of the chimes of Big Ben which was wont to come booming out of my den at any time of day. Could the "old man" have been setting his watch to the recorded chimes? I often wondered but never asked.

Safe, tough, efficient and versatile - that's our new miniature CX iron.
Safe because it is virtually leak-free (leakage current less than $1_{1} \mathrm{~A}$ ). Earth it if you like three core lead. It is made to conform with B.S. 3456 and has a breakdown voltage of more than 4000 V .
Tough because the handle is almost unbreakable and the certmic shaft is covered by a stainless steel shaft.
Efficient because the element is situated right inside the soldering bit and the heat generated by its 17 watts is not wasted.
Versatile because the iron can be used for a wide variety of soldering jobs; with six easily interchangeable, slide-on bits, ranging from $\frac{1}{4}{ }^{\text {in }}$ right down to $\frac{3}{5^{\prime \prime} " ~}(1 \mathrm{~mm})$. It's suitable for small, miniature and micro miniature joints.

Available for $220-250$ volts or $100-120$ volts. Weight - $1 \frac{1}{2}$ oz ( 40 gram). Length $7 \frac{1}{2}^{\prime \prime}(19 \mathrm{~cm}$ ). Price - $\mathbf{8 3 . 2 0}$.fitted with standard bit $\frac{3}{32}$ " ( 2.3 mm ). Spare bits $£ 0.46 ; \varepsilon 0.72 ; £ 0.84$ exclusive of VAT.

Stacked by most of the well-known wholesalers and many retailers. Or direct from us if you are desperate.

Send for colour catalogue from:
Antex Freepost, Plymouth PL1 1BR

Model $X .25$ is a general purpose soldering iron, also wish two shafts for toughness and perfact insulation. Available for $220-250$ volts or 100-120 volts at 25 watts and priced at E3.20 exclusive of VAT.


Stand modal S.T. 3 has a chromium plated steel spring. two sponges for cleaning the bits and is priced at $\mathbf{E 1 . 4 0}$ exclusive of VAT.


A N T E $x$
Mayflower House. Plymouth. Telephone (0752) 67377/8 Telex 45296 Giro 2581030

## Forget all you've ever read about miniaturised soldering irons. This is the NEW ANUPKCX.


ヨกறOา $\forall \perp \forall \supset$ ヨヨy」 yo」 ONヨS

| Tti 7400 SERHES |  |  | New LOW Prices |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | ¢ 009 | 1740 | £011 | 7485 | E 0.85 | 74155 | £ 069 |
| 7401 | 0.09 | 7441 | 058 | 7486 | 025 | 74156 | 069 |
| 7402 | 0.10 | 7442 | 048 | 7489 | 1.45 | 74157 | 069 |
| 7403 | 010 | 7443 | 048 | 7490 | 0.32 | 74158 | 069 |
| 7404 | 013 | 74.44 | 060 | 7491 | 0.55 | 74160 | 089 |
| 1405 | 013 | 7445 | 070 | 7492 | 035 | 74162 | 089 |
| 7.406 | 022 | 74.46 | 080 | 1493 | 035 | 24163 | － 89 |
| 7407 | 022 | 7447 | 0.65 | 7494 | 0.40 | 74.64 | 105 |
| 7408 | 013 | 7448 | 060 | 7495 | 045 | 74165 | 105 |
| 7409 7410 | 013 009 | 7450 | 012 | 7496 | － 55 | 74168 | 105 |
| 7410 7411 | 009 0 0 | 7451 | 0.12 | 74100 | 0.89 | 74170 | 165 |
| 7413 | 025 | 7453 | 012 | 74107 | 023 | 74175 | 085 |
| 7414 | 022 | 7454 | 012 | 74121 | 023 | 14：80 | 080 |
| 7416 | 022 | ${ }_{7460}$ | 011 | 74127 | 037 | 74.81 | 200 |
| 7417 | 022 | 7470 | 024 | 14123 | 045 | 74．82 | 0.80 |
| 7420 | 011 | 7472 | 021 | 74145 |  | 74192 | 095 |
| 7426 | 023 | 7．4／3 | 025 | 74150 | 075 | 74193 | 095 |
| 7430 7432 | 011 | 7474 | 025 | 74151 | 059 | ${ }^{74194}$ | 085 |
| 7437 7432 | － 022 | 7475 | 035 | 14153 | 069 | 74195 | 078 |
| 74.38 | 019 | 7476 7483 | － 024 | 74154 | 105 | 74198 | 120 |
| Schotiky |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 74500 | 24 | ${ }^{714504}$ | 29 | 174520 | 29 | ${ }^{74574}$ | 29 |
| 74502 | 29 | 74508 | 35 | 174822 | 29 |  |  |
| 74503 | 24 | 74510 | 29 | 174532 | 39 |  |  |
| LOW POWER SCHOTIKY |  |  |  |  |  |  |  |
| 74LS00 | 23 | ｜14Ls20 | 23 | $174 \mathrm{LS90}$ | 1.25 | 174L5 193 | 175 |
| 74.502 | 23 | 741532 | 27 | 74．593 | 1.25 | 74LS 197 | 165 |
| 74．504 | 25 | 74LS40 | 33 | 74．595 | 210 |  |  |
| 74.508 | 27 | 74L542 | 130 | 74LS107 | 39 |  |  |
| 74.510 | 23 | 174LS74 | 39 | TALS164 | 180 |  |  |

CMOS a 000 SERIES
036
4023
cmos
014

$$
\begin{aligned}
& 4002 \\
& 4006 \\
& 4007 \\
& 4008
\end{aligned}
$$

$\qquad$

$$
\begin{aligned}
& \text { LINEARS } \\
& \text { IM300 } \\
& 301
\end{aligned}
$$

$$
\begin{aligned}
& 302 \\
& 304 \\
& 305 \\
& 307 \\
& 308 \\
& 309 \mathrm{~K} \\
& 310 \\
& 311 \\
& 320 \mathrm{k} \\
& 324 \\
& 339 \\
& 340 \mathrm{~K} \\
& \text { V M } \\
& \text { Data } \\
& \hline
\end{aligned}
$$

## TERMS：

PRICES LISTED ARE BRITISH POUNDS \＆PENCE SEND CHEQUE WITH ORDER．ACCESS CARD BANKAMERICARD，BARCLAY CARD ACCEPTED （Card \＃and expiration date requested）．TERMS OFFERED TO SCHOOLS \＆INSTITUTIONS POSTAL AND HANDLING
SHIPMENT VIA AIR MAIL
under 4.99 add 45 5．00－9．99 add 35
$\qquad$
4t man DEMA ELECTRONICS INTERNATIONAL P．O．Box 407

San Ramon，Ca． 94583 USA

## You will know about Blind Rivets



Interesting data and application notes on Blind Rivets－ yours for the asking

Blind Rivets，of course are for making permanent joints in sheets，chassis， corners．What if you need a detach－ able joint？Read on about Anchor Nuts，blind rivets with internal threads．

To fasten a lid or a panel that has got to come off，you need Anchor Nuts which are used with ordinary screws or bolts．


Anchor Nuts System J，the high strength threaded insert for sheets and sections up to $0.270^{\prime \prime} 6.86 \mathrm{~mm}$ ．


Anchor Nuts System $X$ ，the threaded insert for sheets， plates，sections of unlimited thickness．

## Anchor Nuts are placed in seconds！

It＇s quick and easy，done on the job with tools similar to riveters．You can buy a hand tool for around $£ 10$ or a

kit in a carrying case with a tool and an assortment of Anchor Nuts for about $£ 22$ ．Anchor Nuts cost around £2－£6 a hundred．


There are kits for all regular thread systems，BA，Metric， Whitworth，UNC，UNF．

Data and prices on request

## HARMSWORTH

HARMSWORTH，TOWNLEY \＆CO．LTD．
HAREHILL TODMORDEN LANCS OL14 5JY Phone TODMORDEN 2601（STD 070681 1601）

SERVICE TRADING CO



| AUTO TRANSFORMERS <br>  |
| :---: |
|  |  |

300 V.A. ISOLATING TRANSFORMER

RODENE UNISET TYPE 71 TIMER.


## RELAYS

COLOUR WHEEL PROJECTOR TYPE P150 INTACHANGE


24 VOLT D.C. SOLENOIDS


240 A.C. SOLENOID OPERATED FLUID VALVE


600 WATT DIMMER SWITCH
(4) Lash Whed fuly guaranteed by makers Wirl control

1000 walt model
2000 was
model

GEARED MOTORS
100 R.P.M. 115 lbs. ins.!


## 15 R.P.M.

gearbox 270 mm Height 135 mm Width 150 mm
Wergh: 85 Kilos BRANO NEW Price $£ 10.00$ ca

DRAYTON MOTOR
Tye ROR 230, 250v 50c Continuously rated
size 100 mm by $: 40 \mathrm{~mm}$ by 125 mm Shate
$\$ 16.50$ by 8 mm

BODINE TYPE N.C.I. GEARED MOTOR
(Type 1)
Reversible

## as new condition Iniput voltage of motor 11 with transtormer for $\mathbf{2 3 0} / \mathbf{2 4 0 v}$ A.C. inpur

Puce type $\mathbf{6 6 . 2 5}$. Post 75 or less transiormar $\mathbf{6 3} 75$.


6/9 volt D.C GOVERNED $40 \mathrm{~mm} \times 40 \mathrm{~mm}$
mm £1.00 Post Paid Two for $£ 9.65$ Post Pa
$\mathbf{2 4}$ R.P.M. 230 vot A.C. Conturnously rated M
Fulty tested $\mathbf{~} \mathbf{3} .85$ Posi 75 p.
IR.P.M. $230 / 240$ VOLT A.C. SYNCHRONOUS": Ex-equipmen thoroughly lested and guaranteed ONLY ET.50.
20R.P.M. GEARED MOTOR. $230 / 240$ volt 20 IP.m. motor $£ 1.00$
half Rev. per mour

## REVERSIBLE MOTOR 230V A.C <br> antevibration mounting bracket and capacitor o/ A saze 110 mm 95 mm Spinde $5 / 16^{\prime \prime}$ dia 20 mm long Ex equipment tested $\mathbf{f 3 . 0 0}$

REVERSIBLE MOTOR

A.C. MAINS TIMER UNIT


PROGRAMME TIMERS


Mullar to illustration
CAM model $\mathbf{5 5 . 0 0}$

| CAM model $\mathbf{6 5 . 0 0}$ |
| :--- |
| CAM model $\mathbf{6 6 . 5 0}$ |
| CAM model |
| 7.50 |

all mail orders. also callers at
57 BRIDGMAN ROAD CHISWICK;
LONDON, W4 588 Phone: 01 -995 1560 Closed Soturdoys.

SERVICE TRADING CO.
SHOWROOMS NOW OPEN AMPLE PARKING

PERSONAL CALLERS ONLY
LITTLE NEWPORT STREET LONDON. WC2H 7JJ. Tel.: 01-437.0576


WW - 064 FOR FURTHER DETAILS

## THE JAMES SCOTT INDUSTRIAL MACHOMMDMQ <br> RANGE DF EQUIPMENT

The James Scott range of Microwave equipment offers industrial users a greater choice of alternative systems in robust, industrial, cast aluminium housings, for a wide variety of applications.
The range is made up of standard sub-assemblies which can be permutated to suit individual application requirements. Here


SMALL
OBJECT COUNTERS

POSITIONING
SYSTEMS DETECTORS

VIBRATION
 SENSING

## SYSTEMS


hich
o obtain further details of any of le coded items mentioned in the ditorial or Advertisement pages f this issue, please complete one r more of the attached cards ntering the reference number(s). lour enquiries will be passed on to le manufacturers concerned and ou can expect to hear from them irect in due course. Cards posted :om abroad require a stamp. hese Service Cards are valid for ix months from the date of ublication.
'lease Use Capital Letters
f you are way down on the irculation list, you may not be etting the information you equire from the journal as oon as you shopuld. Why not tave your own copy?
o start a one year's subscription ou may apply direct to us by sing the card at the bottom of =his page. You may also apply to =he agent nearest to you, their ddress is shown below.

## OVERSEAS SUBSCRIPTION AGENTS

 otch (Austratasia) Ltd.
BO Lonsdele Streal 30 Lonsdale Street. ielbourne 3000, Victoria olgium: Agence at lessageries de la Presse, Rue de la
russels 7
 innada: Davis Circula
gency, 153 St. Clair gency, 153 St. Clair
venue West. Toronto $19 E$ intario romou Street, P.O. Box 628, Nicosia
 lovedvagtsgade 8,
Ik. 1103 Kobenhavn.

Inland: Rautakiria OY oivuvaarankuja 2,
1640 Vantaa 64 , Finland. $7 \mathrm{mbH}, 5 \mathrm{Koln} 1$ ollerstrasse 2
-Sreece: Hellenic '.O. Box 315, 245 iyngrou Avenue. Jea Smymi, Greece.

Japan: Western Publica-
tions Distribution Agency, 170 Nishi-Okubo 4-chome, Shinjuku-Ku. Tokyo 160
Lebanon : Levant Distributors Co.. P.O. Box 1181 Makdesi Street, Halim
Hanna Bldg, Beirut
Maláysia: Times Distributors Sdn. Bhd. IImes House, 390 Kim Seng Road, Singapore 9, Malaysia.

Malta: W.H. Smith Continental Ltd,

Now Zealand : Gordon \& Gotch (New Zealand) Ltd, 102 Adelaide Roed, Wellington 2

Nigeria: Daily Times of Nigetia Ltd, 3 Kakawa Streat. $P$.
Lagos.

Norway: A/S Narvesens Kioskompani, Bertrand Narvesens vel 2, Oslo 6
Portugal : Livaria Bertrand s.a. r. 1 Apartado 37. Amadora

South Africa: Contral News Agency Ltd, P.O. Box 1033, Johannesburg

Spain: Comercial Atheneum s.a. Consejo de Ciento, 130-136 Barcelona Cien
15

Sweden: Wennegien Williams A B. Fack S-104 25 Stockholm 30

Switzerland: Naville \& Cie SA, Rue Levrier 5-7, CH-1211 Geneve 1 Schmidt Agence AG, Savogelstrasse 34, 4002 Basle
U.S.A. : John Bariogs

IPC Business Press, 205 East 42nd Street, Now York, N.Y. 10017

## BUSINESS REPLY SERVICE <br> Licence No. 12045

## WIRELESS WORLD,

 READER ENQUIRY SERVICE, 429 BRIGHTON ROAD,Enquiry Service for Professional Readers

| WW | WW . . . | WW |
| :---: | :---: | :---: |
| WW. | WW. | WW. |
| WW | WW. . | Ww. |
| Ww | WW. . | Ww |
| WW | WW . | Ww |
| Ww. | WW. . | ww |
| Ww | WW. | Ww |
| WW | WW | WW |
| Ww | ww. | ww |
| WW. | ww | WW |
| Ww. | ww. | Ww |
| Ww | Ww. | ww |
| WW. | WW. | WW. |
| WW. | ww... | Ww. .\%. |
| WW. | ww. | Ww |
| WW . . . | WW... | WW . . |

SOUTH CROYDON, SURREY CR2 9PS
$\sum$ Wireless World, April 1977

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in, the space provided.
Name.

Name of Company

Address .

Telephone Number

| PUBLISHERS <br> USE ONLY |  | A/E |  |  | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Position in Company
Nature of Company/Business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
$\qquad$
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

# Wireless World: <br> Subscription Order Form 

## To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

## Subscription Manager, IPC Business Press,

Oakfield House, Perrymount Road, Haywards Heath, Sussex RH16 3DH, England

Enquiry Service for Professional Readers

| WW.... | WW.... | WW. |
| :---: | :---: | :---: |
| WW. | WW.... | WW. . |
| WW. | wiw.... | Ww. |
| ww . . . ${ }^{\text {d }}$ | Ww. . | WW. |
| Ww. | WW... : | WW. |
| WW. | WW | ww- |
| Ww. | WW.... | WW |
| WW. . | Ww.... | WW |
| WW. | ww.... | WW |
| ww. | ww | Ww |
| WW: | ww. | WW |
| ww. | wW | WW |
| ww. | WW | WW |
| WW. | Ww | WW |
| ww.... | WW | WW . . . |
| ww . . . | WW.... | WW.... |

Wireless Worild Subscription Order Form . . Wireless World, April 1977

UK śubscription rates
1 year: $£ 7.00$

## USA \& Canada subscription rates <br> 1 year: $\$ 18.20$

## Please enter my subscription to Wireless World for 1 year

I enclose remittance value. made payable to IPC BUSINESS PRESS Ltd.

Name.
Address

WIRELESS WORLD
Wireless World, April 1977
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.


Name of Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
$\qquad$

Telephone Number.

| PUBLISHERS <br> USE ONLY |  |  | A/E |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Pósition in Company.
'Nature of Company/Business
No. of employees at this establishment

VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland

Gt. Britain, Channel Islands or N. Ireland

Postage will be paid by N. Licensee

## OVERSEAS ADVERTISEMENT AGENTS

France M. D. Soubeyran, Compagnie Francaise D'Editions, Division Internationale, 40 Rue du Colisee,
'Paris 8e-Telephone : 225-77-50-
Telex: 280274

## $x^{r}$

Hungary Mrs. Edit Bajusz, Hungexpo
Advertising Agency, Budapest XIV,
Varosliget - Telephone : 225008 -
Telex: Búdapest 22:4525 INTFOIRE

Italy Sig. C. Epis, Etās-Kompass; S.p.a.-
Servizio Estero, Via Mantegna 6,
20154 Milan - Telephone 347051 -
Telex : 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10.
Roppongi; Minato-ku, Tokyo 106- z
Telephone : (03) 585-0581

United States of America Ray Barnes,
*IPC Business Press, 205 East 42nd Street,
New York, NY 10017 - Telephone:
(212) 6895961 - Telex : 421710

Mr. Jack Farley Jnr., The Farley Co.,
Suite 1548, 35 East Wacker Drive,
Chicago, Illinois 60601 - Telephone :
(312) 63074

Mr. Richard Sands, Scott, Marshall,
Sands \& Latta Inc., 5th Floor, 85 Post
Street, San Francisco, California 94104 -
Telephone : (415) 4217950 -
Telegrams: Dascottco, San Francisco,
Mr. William Marshall, Scott, Marshall,
Sands \& Latta Inc., 1830 West Eighth
Street, Los Angeles, California 90057 -
Telephone : (213) 3826346 -
Telegrams: Dascottco., Los Angeles
Mr. Jack Mentel, The Farley Co., Suite 605,
Ranna Building, Cleveland, Ohio 4415-
Telephone : (216) 6211919 .
Mr. Ray Rickles, Ray Rickles \& Co.,
P.O. Box 2008, Miami Beach, Florida

33140 -- Telephone : (305) 5327301
Mr. Jim Parks, Ray Rickles \& Co., 3.116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone : (404) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorial, Ste 119, Houston, Texas 77079 - Telephone : (713) 7838673

Canada Mr. Colin H. MacCulloch,
International Advertising Consultants Lid., 915 Carlton Tower, 2 Carlton Street,
Toronto 2 - Telephone (416) 3642269
*Also subscription agents


## ...the only speaker that could successfully come between the famous $15 \& 33$.

The Celestion Difton 22 has been added to the popular Ditton series especially for the discerning audiophile who demands large system performance, but cannot accommodate a big loudspeaker.

Utilising an 8 inch bass unitand 5 inch mid-range, specially designed and built by Celestion, plus the impressive HD 1000 dome tweeter, the Ditton 22 is a compact 3 way system capable of
delivering the sort of sound you would normally expect from a much larger loudspeaker.

You don't have to take our word for it-why not audition the Ditton 22 at your local dealer's showroom. We are sure that $\dagger$ you will hear what we mean.

## Celestion ${ }^{\underline{1}}$

Send this coupon for literature or ask your dealer for a demonstration.

Name

Address
$\qquad$


Wireless World Dolby ${ }^{\text {®in }}$ noise reducer

- Trademark of Dolby Laboratories Inc.

We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
-complete set of components for stereo processor
-regulated power supply components
-board-mounted DIN sockets and pusth-button switches
-fibreglass board designed for minimum wiring
-solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: $£ \mathbf{3 7 . 9 0}+$ VAT
Price $£ 52.00$ + VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price £2.00 + VAT *
Single channel plug-in Dolby $(1 / 2)$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Price £7.20 + VAT

Single channel board with selected feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Price £2.20 + VAT
Gold Plated edge connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Price £1.40 + VAT*
Selected FETs 60p each + VAT, 100p + VAT for two, £1.90+VAT for four
Please add VAT $121 / 2 \%$ unless marked thus*, then $8 \%$ applies
We guarantee full after-sales technical and servicing facilities on all our kıts, have you checked that these services are available from other suppliers?


## S-2020TA STEREO TUNER / AMPLIFIER KIT

## SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc.), THD less than $0.1 \%$ at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono S/N@ $1.2 \sim \mathrm{~V}$. THD $0.3 \%$. Pre-decoder 'birdy' filter.

PRICE: £53.95 + VAT

## NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.


Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting@ $0.75 u \mathrm{~V}$. Image rejection -70 dB . IF rejection - 85dB. THD typically 0.4\%.

IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

Mono £29.15 + VAT<br>With ICPL Decoder $£ 33.42+$ VAT<br>With Portus-Haywood Decoder<br>$£ 35.95+$ VAT



Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$ THD typically $0.3 \%$
Tuning range $88-104 \mathrm{MHz}$ LED sig. strength and stereo indicator

## STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC. Pre-decoder 'birdy' filter
PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection.
${ }^{\prime}$ Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than $0.1 \%$ THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Kadıo input $\mathrm{S} / \mathrm{N}$ 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: £31.95 + VAT

> ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVEINSTRUCTIONS

# HART ELECTRONICS <br> The Only Firm for Quality Audio Kits <br> J. L. Linsley-Hood High Quality Cassette Recorder 



As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have therefore spent a little more on protessional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, particularly around the very critica; input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished result is a unit designed not to normal domestic standards but to the best professional practice.

## ALL PARTS ARE POST FREE



LENCO GRV CASSETTE MECHANISM
High Quality, robust cassette transport for Linsley Hood Recorder Features fast forward fast rewind, record pause and automatic cassette ejection faciltties Fitted with ejection spring for信
$71 \times$ Complete set of parts for Master Board, includes Bias oscillator Relay, Controls, etc. £9.83 + £1 23 VAT
72x Parts for Motor Speed and Solenoid Control for Lenco CRV Deck £3.52 + 44p VAT.
$73 \times$ Complete set of parts for stereo Replay Amps and VU Meter Drive £8. $12+£ 1.02$ VAT
$74 \times$ Complete set for Stereo Record Amps £6 $74+84$ p VAT
$175 x$ Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate $3.5^{\prime \prime} \times 5^{\prime \prime}$ PCB designed so that the motor control board fits above it to save space $£ 8.79+£ 1.10$ VAT.
700 M . VU Meters Individual high quality meters with excellent ballistics and built-in illumination £8.48 + £1.06 VAT PER PAIR.

Please send $9 \times 4$ SAE for lists giving fuller details and Price breakdowns
A suitable Metalwork and Front Plate is now available

## Penylan Mill, Oswestry, Salop

## The Finest

The "S.K A" Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminium extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted
The contact assemblies are constructed of laminated bakelite, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)

GJ-SPCO: $24 p$ each GE-4 pairs : 45p each GB-2 pairs: 27p each GH-5 pairs : 57p each GC-3 pairs: 36 p each 4PS-SPCO \& 3 prs : 53p ea

We also stock kits and PCBs for the P.E. Synthesiser, P.E. Joanna (electronic piano), P.E Minisonic, and other sound synthesising and modifying projects published in Practical Electronics Send SAE for full list (Overseas send 40p)

## PHONOSONICS

DEPT. WW74, 22 HIGH STREET SIDCUP, KENT DA14 6EH

## KEYBOARDS


$4 \times 4$ STEREO AMP KIT f14.50 pqfezoo

For the expertenced constructor who wants to design his own stereo. kit includes all necessary components includeng constructors manual Plus Paır of easy to bulld 4 watt speakers in kit


35 - $-1 . C 20$. 20 WATTS STEREO AMPLIFIER KIT WITH PZ 20 POWER UNIT XIFISIIO A build- it-yourself stereo power cyynir amplifier with latest integrated circuitry. 10 W RMS per channel output, full short-circuit
 omplete with PZ20 Power Supply

## DIY SPEAKER KITS

EASY-TO-BUILD WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teaksimulate enclosures, two EMI 13" $\times 8^{\prime \prime}$
(approx.) woofers, two
tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Supplied complete with an easy-tofollow circuit diagram, and crossover components. Input 15 watts $£ 250$ mms .30 watts peak, each unit. ${ }^{2} 5^{50}$ Cabinet size $20^{\prime \prime} \times 11^{\prime \prime} \times 9^{1 / 2^{\prime \prime}} \quad$ PER PAIR (approx).

- p \& p $£ 5.50$

15-WATT KIT IN $£ 17.00 \begin{aligned} & \text { PER } \\ & \text { SIEREO }\end{aligned}$ CHASSIS FORM [3.40 p \& P PAIB When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woofer (EMI),tweeter and matching crossover. Power handling capacity 15 watts rms.
30 watts peak.

## 'COMPACT' FOR TOP VALUE

How about this for incredible booksher value from RT-VC! A pair of high efficiency units for only $£ 7.50$ - just what you need for low-power amplifiers. These infinite baftle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ (approx.) deep, and is in wood simulate
Complete with two 8" $£ 750$ (approx.) speakers for max. ${ }^{5} 5_{\text {per parr }}$ power handling of 7 watts. - $\rho \& \rho £ 170$


## $20 \times 20$ WATT STEREO AMPLIFIER




## 35-WATT DISCO AMP

Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms. 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches Independent bass and treble $\mathbf{\Sigma} \mathbf{2} 50$ controls and master volume. 2


## PORTABLE DISCO CONSOLE

## with built-in pre-amplifiers

Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-retum, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply. connects into your existing ${ }^{5} 64^{00}$ slave or external amplifier.

+ $\rho \& p £ 6.50$



## 70 \& 100 WATT DISCO AMPS

Brilliantly styled for easy disco performance! Sloping fascia, so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth-acting, vertically mounted slide controls - master volume. tape level. mic level. deck level. PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre-fade level control (PFL) lets YOU hear next disc 170 WATT before fading it in. VU meter monitors output level 70 watts rms, 140 watts peak output. All the big features as on the 70 -watt disco amplifer, but with a massive 100 watts rms 200 watts peak output power

## TOURIST IV PUSH BUTTON CAR RADIO KIT



MOTOR TOP 10 AWARD
Complete with speaker, baffle and fixing strip.The Tourist IV for the experienced constructor only. The Tourist IV has five push buttons, four medium band and one for long wave band. The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control.
The modern style tascla has been designed to blend with most car intenors and the finished radio will slot into a standard car radio aperture Size Nominal 12 voits positive or negative $\mathcal{E} \mathbf{5 0}$ earth (atitered internally) Power Ouptut 4 watts into 4 ohms


## STEREO CASSETTE DECK KIT

Again, this kit is specially designed for the experienced constructor-for mounting into his own cabinat. Features include solenoid-assisted AUTO-STCP, 3 -digit counter, record/replay PCboard,mains transformer and input $\{2 \boldsymbol{5 0}$ and output controls. ACBIAS AND ERASE. DELUXE ACCESSORY KIT Comprises of a matched pair of $\sum^{95}$ dynamic mics and two replacement slider level controls. This item post POST FREE when purchased with Cassette Deck kit

$21 E$ HIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD. LONDON, W2
Personal Shoppers EDGWARE ROAD 9am - 530 m m. Halt day Inurs ACTON. Mail Order only NoCallers

\section*{00 NOT SEND} | Acaessand |
| :--- |
| Barclaycards |
| 15 |

CARD
Just wnte your order giving your credit card number


## COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (088 384) 3221

TELETYPE Model ASR 33 with 20 mA or RS 232 interface, £ 350
NEW DATA DYNAMICS ASR 390 with RS 232 interface, E675
ASR 35 Heavy duty TELETYPE, £350.
ALSO AVAILABLE: KSR 33, KSR 35, KSR 390
TELETYPE Model ASR 28, £98
TELETYPE Model RO 28 £45
OLIVETTI Model FT 300 ASCII terminal with upper/lower case Under use $£ 325$
SAGEM Electronic RO TELEPRINTER. Modern (1969). compact units
GRI 90916 bit MINICOMPUTER with 16 K memory and some spare cards, E750
PDP 8 L with 12 K memory $£ 750$
GENERAL AUTOMATION SPC- 12 miniccmputer with 4 K memory. On 2
DIABLO Series 30 DISC unit With 12 mega byte capacity. Berween 2 and
PERTEC 1600 b

DATEK 40 c.p.s. Paper Tape Readers Brand new, E28
FLEXOWRITERS. Models SPD and F available from between £ 129 and 150. Model 2300 from £250

KCO 6-digit Counter-Timers. With useful variety of I/O. NEW. £48
COUTANT 20 V Power Suppiers. E15.
HONEYWELL Moded P112 Key-to-card punch, £50
ELECTRONIC ASSOCIATES TRIO Analogue Computer with variety of DATADISK Disc Drive with 3 cartridges. As new OEM version without PDS 1020 COMPUTER with $4 K \times 16$ memory: Tape Reader/Punch

BRPE High Speed Punch $£ 78$
ELLIOTT 500 c.p.s Reader $£ 78$
ORTHICON Tube. 3 inch, with low useage, £25
PLEASE NOTE: Prices are exclusive of VAT and carriage - Callers are

# Belling-Lee Circuit protection and indicators 



A total range of fuseholders, circuit breakers and indicator lamps by the leaders in circuit protection technology.

Types designed to comply with
European safety requirements and European low voltage directive.
Fuseholders
Panel mounting *Printed-circuit board $\bullet$ Sealed and unsealed In-line
Circuit breakers
Thermal Thermal magnetic Indicators
Neon • Filament lamp
Post Office and military approved types.
Circle 108 for further information.

Belling \& Lee Limited, Great Cambridge Road, Enfield, Middlesex
KWPS/BL174 Telephone: 01-3635393 Telex: 263265


## Barrie Electronics Ltd. <br> 3,THE MINORIES,LONDONEC3N 1BJ <br> TELEPHONE: 01-488 3316/8

## POWERTRAN ELECTRONICS <br> , AMBBENTAcoust||S

## HI-FI NEWS 75W / CHANNEL AMPLIFIER




Pack Price*
11. Fierespass printedecircuit board lor powar atpoly
12. Sat of rasistors, capacitors. sece....................................
13. sam of minctors for pewer supply . . . . . . E4.60
13. Son of niscellanators parts iaclustiap Dill atts. mains tippot mith. huse molder. Inter-connecting cabie. control 4. Solts of mo.......................... E5.35



2 aach of packs 1.7 inclastive are requirad for complate storee syatem. Total cast of indididually parchased packs . . . . . . . . . . . . . . . . . . . . . . . $£ 83.75$

In H1-F1 News there was published by Mr Linsley-Hood a series of four. articles (November, 1972-February, 1973) and a subsequent fotlow-up article (April. 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts levels The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage. positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch fitter There is a choice of four inputs, two equalized and two linear, each having has ben made justable signal level The attractive slimine unit piciured has been made practical by highly compact PC8s and a specially designed
Toroidal transformer

## FREE <br> teak case with full kits

## arreace ouv $£ 73.90$

WIRELESS WORLD FM TUNER

Published in Wireless World (May, June, August 1976) by Mr Linsley-Hood. this design. although straightforward and relatively low cost nevertheless provides a very high standard of performance To permit circuit optimization separate record and replay amplifiers are used. the latter using a discrete component front-end designed such that the noise level is below that of the tape background. Push button switches are used to provide a choice of equalization time constants, a choice of bias levels and also an option of using
an additional pre-amplifier for microphone use The mechanism used is the Goldring-Lenco CRV, a unit distinguished in its robustness and ease of operation Speed control and automatic cassette ejection are both implemented by electronic circuitry This unit which is powered by a toroidal transformer and uses metal oxide resistors throughout offers an excellent match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier

## PRICE STABILITY

Urder with confidence |rrespective of any price changes we will honour al prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded All components are brand new first grade full specification devices. All resistors (except where stated) are low noise carbon film types. All printed circuit boards are fibre-glass, drilled, roller tinned and supplied with circuit diagrams and construction layouts.
FREE CATALOGUE UK customers jusi send name and address - Overseas customers please send 5 International Reply Coupons and you will receive your catalogue by return IRMAIL
EXPORT ORDERS No VAT charged Postage charged at actual cost plus 50 p documentation and handling Please make payn ent by Bank Draft. Postal Order. International Money Order in sterling
SECURICOR DELIVERY for this optional service (U.K Mainland only) add
U.K ORDERS: Subject to $121 / 2 \%$ * surcharge for VAT. Carriage free

MAIL ORDER ONLY (*or at current rate if changed)

1. Stervo PCB [ac amps. 2 meter amps, bizis/orise osc. retay|es.35. 2. Sierte sal ol capitors, W.O. rasistors potentiomatars for abova.............. $£ 9.00$ 3. Sterroo set of semiconductors for above. . 88.90 4. Miniatere relay with socket . . .......... $£ 2.45$ circwits
 1. Function switch, knobs … ........ $£ 1.60$ 8. Oual WU meter with illuminating lamp ... £7.20 9. Toraldal traasformer with E.S. screan prim. 0-11TV. 234V. Sec. 15V . . . . . . . . . . . . 84.45 COMPLETE KITS

Preck 10. Set of capacitors, reculters, iC voliae rapulater for power suplyy [Powartran dasiga] . . E E2.s0 11. Set of miscollaseaus parts, includiaj sockats, fuse halder. fusas, interconenecting wire. otc. $\mathbf{E 2 . 5 0}$ 12. Set of matalwork including sith scretaned lecia panal, isteras screen, ilxing perts. atc. . $\mathbf{E 7 . 1 0}$ 13. Conastruction noles
 One each of packs $1-14$ inclusive are required for compete stereo cassafte dech. Tota! cost of individually purchased packs .................. 885.40

Further details of above given in our FREE CATALOGUE please note all prices vat exclusive -- DEPT. WW4

## POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NN
Indonesia Brazil Switzerland Canada Saudi Arabia New Zealarid Norway iceland Sweden


## 2 NEW TUNERS!

## WW SFMT II

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model designed to
complement the T20 and T30 amplifiers. The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptional value for money Facilities included are switchable atc. adjustable switchable muting channel selection by slider or readily adjustable pre-set push-button controls and LED tuning indication individual pack prices in our free list

## POWVERTRAN SFMT

This easy to construct tuner using our own circuit design includes a pre-aligned front end module. PLL stereo decoder. adjustable switchable muting, switchable afc and push-button channel selection As with all our full kits. all components down to the last nut and bolt are supplied
together with full constructional detats

$$
\begin{aligned}
& \text { T20 + } 20 \text { and our new } \mathbf{T} 30+30 \\
& 20 \mathrm{~W}, 30 \mathrm{~W} \text { AMPLIFIERS }
\end{aligned}
$$

Designed by Texas engineers and described tin Pracical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Torodal transformer and additional improvements the slimine $+20+20$ delivers 20 W per channel of true $\mathrm{H}_{1}-\mathrm{F}_{1}$ at exceptionally low cost The design is baseo on a single F/Glass PCB and features all the normal tacilities tound on quatity amplifiers. including scratch and rumble filters. adaptable input selector and head phones socket In a follow up article in Practical Wireless further modifications were suggested and these have bee incorporated into $130+30$ These include RF interference filters and a

T20 T30 ।
$\begin{array}{ll}4.95 & 6.80 \\ 3.20 & 3.60\end{array}$

| 3.20 | 3.60 |
| :--- | :--- |
| 4.20 | 4.80 |
|  |  |

$\begin{array}{ll}4.20 & 4.80 \\ 0.40 & 0.40 \\ 0.25 & 0.25\end{array}$
$\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}$

SPECIAL PRICES

## FOR COMPLETE KITS!

| ¢3590 |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |

## CONVERT NOW TO QUADRAPHONICS!




SQM1 - 30
KIT PRICE $£ 37.15$
Wireleas World Amplifier Designs. Full kits are not avatiable toi these projecis but component packs and PCBs are slocked for the highly regarded Bavley and $20 W$ class $A B$
Linsley Hood designs, together with an etticient regulated power supiy of design Surables for driving these amplitiers is ithe Bailey Burrows pre-amplifter and our ude range tone controls which may be erther rotary or slider operating for those Intending to get the best out of ther speakers we also offer an active filier system
described by o C Read which spilis the output of each channel trom the pre-amplifiee ito three channets each of which is ted to the appropriate speaker the its own power mplifier The Read/Texas 20 W . or any of our other kits are suitabie for these For tape eriormance stereo Stuart design Details of component packs are in our free list
30W Batey Amplifiter
8AIL Pik 1 F/GGass PCB
AIL Pk 2 Resistors. Capacitors Potentiometer set
20 W Linsley Hood Class AB
MAB Pk. 1 F/Glass PCB.
HAB Pk 2 Ressistor
HAB Pk 2 Resistor Capacitor. Potentometer se
HAB Pk 3 Semuconductor sel
$\begin{array}{ll}\text { Regulator Power Syppty } \\ \text { covs Pk } & 1 \mathrm{~F} / \mathrm{G} \text { lass PCB }\end{array}$
$\begin{array}{ll}\text { 6ovs Pk } & 2 \text { Resistor. Capacitor sel } \\ \text { GOVS Pk }\end{array}$
60VS Pk GA Torondal transformer (for use with Bailey)
60VS Pk 6B Torodal transiormer (for use with $20 \mathrm{~W}(\mathrm{H}$ )
Baley Burrows Siereo Pre-Amp
BiPA Pk 1 F/Glass PCB
GBPA Pk 2 Resistor, capacitor semiconductor set
BBPA Pk 3 R Rotary Potentiometer set .
BBPA Pk $3 S$ Slider Potentiometer set with knobs
FIT Pik 1 FYGlass PCB
FILT Pk 3 Semiconductor set
Read/Texas zOW Amp
READ Pk 2 Resistor. Capacitor set
READ Pk 3 Semiconductor sel

RRC Pk 1 Replay Amp F/Glass PCE
TROS Pk I Bras/Erase/Stallizer F/Glass PCB

## EXPORT NO PROBLEM

$£ 1.00$$\mathbf{~} 2.35$
$£ 8.70$

With 100s of tites now available no longer is there any problem over sullable software No problems with hardware either Ou new unit the SQM $1-30$ simply plugs into the tape monitor socke fow per channel A full complement of controls includin volume bass treble and balance are provided as are comprehensive switching facilities enabling the unit to be used for either front or rear chamnels by-passing the decoder for stereo-only use and exchanging left and right channels The SQ matrix decoder is based upon a single integrated cricut and was designed by CBS whilst the power and tone control sections are SOM 1-30 matches perfectly Kit price includes CBS licence fee

owners of T $2 \mathrm{D}+20$ and Texan amplifiers which have no tape montion outie.
purchasing an SQM 1.30 will be supplued on request, a free conversuon kit to fit a trope montoring, fecility to the exisunng amplititer
This makes smpte the connecion to the This makes sumple the connection to the
highly adaptable SOM 1.30 quadrophonic
decoder / rear channither

## SQ QUADRAPHONIC DECODERS

Feed 2 channels ( $200-1000 \mathrm{mv}$ as obtainable from most pre-aniphifers or amplifer
lape montor outiets) into any one of our 3 decoders and take 4 channels out with no overall signal levereduction On the logic enhanced decoders Volume Front-Back LF-RF balance LB-RB balance and Dimensioncontrols can all be implemented by simple single gang potentiometers

capacitors metal oxide resistors and fibre glass PCBs designed for edge conntis CBS licence fee
M1 Basic matrix decoder with fixed $10-40$ blend All components. PCB ..... E5.90
E17.20components PCB
PCB ..... 22.60
L3A Decoder similar to L2A but with discreet component front end with high prysis ..... Ofks for
$£ 25.90$

SEMICONDUCTORS as used in our range of quality audıo equipment.

| 2N699 | 2u. 20 | 40361 | 2040 | BD530 | 60.55 | MJE521 | ¢0.60 | TIP29C | c0. 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2N1613 | £0. 20 | 40362 | c0.45 | 8DY56 | ¢1.60 | misaub | $t 0.25$ | 11930 C | c0.60 |
| 2N2926G | ¢0. 10 | BC107 | co. 10 | BF257 | c0.40 | MPSA12 | ¢0.35 | TIP41A | 60.70 |
| 2N3055 | E0.45 | BC108 | c0.10 | 8 F 259 | 60.47 | MPSA14 | c0. 30 | TIP42A | 60.80 |
| 2 N 3442 | £1.20 | BC109 | ¢0.10 | 8FR39 | ¢0.30 | MPSA55 | c0. 25 | TIP418 | E0.75 |
| 2N3711 | ¢0. 09 | BC 109C | ¢0. 12 | BFR79 | ¢0 30 | MPSA65 | co. 35 | TIP42B | E0.00 |
| 2N39U4 | E0.17 | 8 BC 125 | ¢0.15 | EFY5 ${ }^{\text {P }}$ | ¢0. 20 | MPSA66 |  | 1 N914 | £0.07 |
| 2N3906 | ¢0. 20 | ${ }^{8 C 126}$ | ¢0.15 | BFY52 | co. 20 | MPSU05 | ¢0.50 | - N916 | $\varepsilon 0.07$ |
| 2 N 4062 | 10.11 | BC1 182 | ¢0. 10 | CA3046 | c0.70 | SBAT50a | £1.90 | 15920 | E0.10 |
| 2 N 4302 | 60.60 | BC212 | 60.12 | LP1186 | ¢6.50 | St301 | ¢1.30 |  |  |
| 2 N 5087 | ¢0.25 | 6C.182L | £0.10 | MC1310 | £2. 20 | SL3045 | ¢1. 20 | FILTE |  |
| 2N5210 | E0. 25 | $8 \mathrm{C}, 184 \mathrm{~L}$ | c0.14 | MC1351 | E1.05 | SN72741P | ¢0.40 |  |  |
| 2N5457 | ¢0.45 | $\mathrm{BC}_{8 \mathrm{C}} 12 \mathrm{~L}$ | ${ }_{\text {co. }}^{60.12}$ | MC1741CG | ¢0.65 | SN72748P | ع0.40 | St 510 ma | E1.00 E1.50 |
| 2N5459 | ${ }_{60.50}^{60.45}$ | ${ }_{8 \mathrm{BC} \times 72}$ | ¢0.14 | MFCCulu M | 20.95 11.20 | T12209 | ¢0. 20 | Sho ma |  |
| 2N5830 | ¢0. 35 | 8D529 | c0.55 | MJ491 | ¢1.45 | TIP309 | 60.45 |  |  |

Our Export Department will be pleased to advise on postal costs to any country in the world Some of the countries to which we sent kits in 1976 are shown surrounding this advertisement

## RETURN OF POST MAIL ORDER SERVICE

 B.S R. SINGLE PLAYER similar 10 above with stereo
cartridge and cueing device, large turntable $£ 13.50$ cartridge and cueing device. large turntable $£ 13.50$
B.S.R. P128 with magnetic cartidge. Balanced arm B.S.R. P128 with magnetic cartridge. Balanced arm cueing
device £23.50.
PORTABLE PLAYER CABINET
Modern design. Rexine covered.
Modern design. Rexine covered.
Vynair front grille. Chrome fittungs Vynair front grille. Chrome fittungs $\quad$ E4.50 Post 75p
Size $17 \times 15 \times 8$ in. approx.
HEAVY METAL PLINTHS
With P.V.C. Cover. Cut out for most B S R £6.50 or Garrard decks Silver grey finish.

Posi £1 50
Model "A' Size $121 / 2 \times 143 / 4 \times 71 / 21 n$.
Model "B" Size $16 \times 131 / 4 \times 71 \mathrm{C} .50$.
Extra large plinth \& cover. teak wood base.
Size $20^{\prime \prime \prime} \times 171 / 2^{\prime \prime} \times g^{\prime \prime} £ 19.50$. Callers only
COMPLETE STEREO SYSTEM
Two full size loudspeakers $133 \times 10 \times 31 / 2$ in Player unit
clips to loudspeakers making it extremely compact, overall clips to loudspeakers making it extremely compact, overall
size only $133 / 4 \times 10 \times 81 / 2 \mathrm{in} .3$ watts per channel, plays all size only $13^{3 / 4} \times 10 \times 81 / 2 \mathrm{in} .3$ watts per channel, plays all
records $33 \mathrm{r} .0 . \mathrm{m} ., 45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Separate volume and tone controls Attractive Teak tinish
240 V a.c. mains $\mathbb{£ 2 2 . 5 0}$ 240 V a.c. mains
FEW ONLY

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP TIME SWITCH
O-60 MINUTES £2.95 Post 35p Single pole wo-way Surface mounting with fixing screws. Will replace existing
wall switch to give light for return home.
garage, automatic antiburglar lights. etc. Variable knob. Turn on or off at full or intermediate settings. Brand new and tully guaranteed. $£ 22.50$

0.6 Hour version--£3.30

TEAKWOOD LOUDSPEAKER GRILLES
baffle board. Size $101 / 2 \times 7 / 1 \mathrm{~m}-\mathbf{4 5 p}$.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suttable for record players. guttars, tape playback electronic available Mono $£ 11.25$. Stereo f18. Post 45 , Specifiction available Mono. E11.25; Stereo. E18. Post 45p. Specification
10 W per channel: input 100 mV . size $91 / 2 \times 3 \times 21 \mathrm{n}$. appro S.A.E. details. Full instructions supplied. AC mains powered

E.M.I. $131 / 2 \times 8 i n$. SPEAKER SALE! With tweeter and
crossover. 10 watt.
State 3 or $B$ ohm.
As illustrated. £5.95 Ditto
15 watts.
£8.50
With tweeter and cross-
over. 20 watt.
Bass res. 25 c.p.s.
Flux $=11.000$ gauss.
8 or 15 Post 750

| Bookshelf Cabinet <br> Teak finish. For EMI $13 \times B$ speakers | $\begin{array}{r} \mathbf{£} 7.50 \\ \text { Post } £ 1.00 \end{array}$ |
| :---: | :---: |
| THE "INSTANT" BULK TAPE ERASER AND HEAD DEMAGNETISER. Sutable for cassettes, and all suzes of tape reels. A C. mains $200 / 250 \mathrm{~V}$. Leaflet S A E Will also demagnetise small <br> $£ 4.50$ |  |

BLANK ALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p ;$ $10 \times 7-£ 1.15 ; 12 \times 8$-£1.35; $14 \times 9-£ 1.50 ; 16 \times$
$6-£ 1.45 ; 16 \times 10-£ 1.70$. ANGLE ALI. $6 \times 3 / 4 \times 3 / 4 \mathrm{in}-15 p$. ALUMINIUM PANELS. $6 \times 4-17$ p; $8 \times 6-24$ p; $14 \times$ 3-25p; $10 \times .7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16$ MANY ALI BOXES IN STOCK MANY SIZES

ELAC $9 \times 5$ in HI-FI SPEAKER
$£ 3.45$ TYPE 59RM Post 35p R.C.S. LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode. \&2 95 printed circuit rectitiers and double wound $\qquad$ $£ 2.95$ transtormer Input $200 / 240 \mathrm{~V}$ a.c Output
d.c. up to 100 ess Size $3 \times 21 / 2 \times 1 \frac{1}{2}$ in Please state voltage required mA or R.C.S. POWER PACK KIT $£ 3.35$
 deal for Mike. Tape, P U, Guitar, etc Can be used with battery $3 / 4 \mathrm{in}$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gain C 1.45
For use with valve or transistor equipment.
Full instructions supplied. Detalls S.A.E.
PENDULUM MECHANISM

MAINS TRANSFORMERS ALLPS5\%
$\begin{array}{ll}250-0-250 \mathrm{~V} 70 \mathrm{~mA} .65 \mathrm{~V}, 2 \mathrm{~A} & \mathrm{E} .45 \\ 250-0.25080 \mathrm{~mA}, 63 \mathrm{~V} 35 \mathrm{~A} .6 .3 \mathrm{~V} 1 \mathrm{~A} \text { or } 5 \mathrm{~V} 2 \mathrm{~A} & £ 4.60\end{array}$
 MIDGET $220 \mathrm{~V} 45 \mathrm{~mA} 63 \mathrm{~V} 2 \mathrm{C}, \mathrm{T} ; 6.3 \mathrm{~V} 2 \mathrm{~A} \quad £ 7.00$ HEATED TRANS. $6.3 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{amp} \quad £ 1.40$ GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2 1 amp. 6. 8, 10, $, 12,16,18,20,24,30,36,40,48,60$
£4.60. 2 amp, $6,8,10,12,16,18,20,24,30,36,40$. 1 amp. 6. 8, 10, $, 8,10,12,16,18,20,24,30,36,40$,
£4.60. 2 amp,
48,60 £7. 3 amp. $6,8,10,12,16,18,20,24,30,36$. $\begin{array}{ll}40,48,60 & \text { £8.70. } 5 \text { amp. } 6,8,10,12,16,18,20,24,\end{array}$ $30,36,40,48,60 £ 11.25 .600 \mathrm{~mA} 500 \mathrm{~mA} £ 1,9 \mathrm{~V} 1 \mathrm{amp}$.
$£ 1,12 \mathrm{~V} 300 \mathrm{~mA} . £ 1,12 \mathrm{~mA} . £ 1$, $10 \mathrm{~V} .30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp}, £ 2.75,20 \mathrm{~V}$. 3 amp., £2.45, 40 V . 2 amp.. £2.95, 30 V 5 A and 34 V 2 ACT £3.45, $16 \mathrm{~V}, 2$
 $20-0-20 \mathrm{~V} 1$ amp. £2.95, $30 \mathrm{~V} 11 / 2$ amp. £2.75; 20 V . 40 V . 60 V or $20-0.20 \mathrm{~V}, 1 \mathrm{amp} . £ 3.50$.
AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W £5; 250W £6; 400W £7: 500W £8.
FULL WAVE BRIDGE CHARGER RECTIFIERS
FULL WAVE BRIDGE CHARGER RECTIFIERS.
6 or 12 V outputs, $11 / 2$ amp $40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. CHARGER TRANSFORMERS $11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp} £ 4.60$.
R.C.S

BOOKSHELF
SPEAKERS
Size $14^{1 / 2 i n} . \times 93 / 4 \mathrm{nn}, \times 6$ in 50 to $14,000 \mathrm{cps}$

## £16 pair Post $\varepsilon 1.30$ <br> KUBA-KOPENHAGEN STEREO <br> 



TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATT This Continental 4 -band radiogram chassis uses first class quality components throughout. Features. Large facia panel with 7 push buttons for medium, long. short. VHF-FM. AFC. phono. mains on-off. 4 -rotary controls, tuning, volume, tone, balance Facia
size $17 \times 4^{1 / 2}$ inches. Chassis size $17 \times 41 / 2 \times 51 / 2$ inches size $17 \times 41 / 2$ inches. Chassis size $17 \times 41 / 2 \times 51 / 2$ inches
DIN-connector sockets for tape record $/$ playback, loudspeakers. phono pick-up. external FM-AM aerrals Automatic stereo beacon light. Built-in ferrite rod aerial for medium/longwave

LOW VOLTAGE ELECTROLYTICS ${ }_{200 \mathrm{mF}} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
1000 mF 12V 17p; 25V 35p; 50 V 47p; 100 V 70 p .
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 50 \mathrm{~V}$ 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$; 50 V 65p.
2500 mF 50 V 62 p ; 3000 mF 25 V 47 p ; 50 V 65 p 3900 mF 100 V £ 1.60
5000 mF 6 V 25p; $12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$.
SHORT WAVE 100 pF air spaced gangable tuner. 95 p . TRIMMERS $10 \mathrm{pF}, 30 \mathrm{pF}, 50 \mathrm{pF}, 5 \mathrm{p} .100 \mathrm{pF}, 150 \mathrm{pF}$. 15p. CERAMIC, 1 pF to 001 mF . 5p. Silver Mica 2 to 5000 pF , 5 p .
PAPER $350 \mathrm{~V}-\mathrm{O} 17 \mathrm{p} ; 0.513 \mathrm{p} ; 1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p}: 2 \mathrm{mF}$ I 50 V $15 p ; 500 \mathrm{~V}-0.001$ to 0.05 5p; $0110 \mathrm{p} ; 0.2513 \mathrm{p} ; 04725$ p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p.
SUB-MIN MICRO SWITCH, 25p. Single pole change over
TWIN GANG, $385+385 \mathrm{pF} 50 \mathrm{p}$; 500pF standard 75 p ; 365
$+365+25+25 \mathrm{pF}$. Slow molion dive 65 p .
120pF TWIN GANG, 50p; 365pF TWIN GANG, 50p.
NEON PANEL INDICATORS 250 V Amber NEON PANEL INDICATORS 250V. Amber or red 30p.
RESISTORS. $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$ iW $20 \% 2 \mathrm{p}$; $2 \mathrm{~W}, 10 \mathrm{p} ; 10 \mathrm{l}$ to 10 M RESISTORS. $1 / 4 \mathrm{~W}, 1 / 1 / \mathrm{W}$ IW $20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 10 \mathrm{p} ; 10 \mathrm{j}$ to 10 M HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to $6 \mathrm{meg}, 12 \mathrm{p}$
Ditto $5 \%$ Preterred values 10 ohms to 10 meg . 5 p . Ditto $5 \%$ Preferred values 10 ohms to 10 meg. $.5 p$.
WIRE-WOUND RESISTORS 5 watt. 10 watt, 15 watt 10 ohms to 100 K 12 p each
TAPE OSCILLATOR COIL. Valve type, 35p
BRIDGE RECTIFIER 200 V PIV $1 / 2$ amp 50 p .
TOGGLE SWITCHES S P. 20p.D.P.ST 25p. DPD T 30p
MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS GP9 1 £1.50. GP93 £2.50.

|  | Post f1.00 <br> 30-14 $500 \mathrm{c} / \mathrm{s} .12 \mathrm{~m}$ double cone woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14.000 gauss and a total flux of 145000 Maxwells Bass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 25 W NOTE 4 or 8 or 16 ohms must be stated <br> Module kit. 30-17.000 $\mathrm{c} / \mathrm{s}$ with tweeter crossover baffle and instructions. Post $£ 160$ peach Please state 3 or 8 or 15 ohms |
| :---: | :---: |
| BAKER "BIG-SOUND" SPEAKERS. Post $£ 1.00$ each |  |
| 'Group 25' | 'Group 35' 'Group 50/15' |
|  |  |
|  | $\begin{array}{rr} 40 \mathrm{~W} \sum 13.95 & 75 \mathrm{~W} \in 26 \\ 4 \text { or } 8 \text { or } 16 \mathrm{ohm} & 8 \text { or } 16 \end{array}$ |
| BAKER LOUDSPEAKER, 12 INCH. 60 WATT. <br> GROUP 50/12, 8 OR 15 OHM HIGH POWER <br> FULL RANGE PROFESSIONAL QUALITY <br> RESPONSE 30-16000 CPS <br> $£ 20.95$ <br> MASSIVE CERAMIC MAGNET WITH <br> Post £1 60 <br> ALUMINIUM PRESENCE CENTRE DOME |  |
|  |  |
|  |  |
| TEAK VENEERED MI-FI SPEAKERS AND CABINETTS ' For 12 in or 10 in speaker $20 \times 13 \times 12 \mathrm{in}$. £ 14.50 Post £2 For $13 \times 8$ in. or 8 in speaker <br> £7.50 Post E1 <br> For $8 \times 5$ in speaker $12 \times 8 \times 6$ in <br> ¢5.80 Post 75p |  |
|  |  |
|  |  |
|  |  |

## R.C.S. 100 watt

## VALVE

## AMPLIFIER

CHASSIS


Four inputs four way mixing, master volume. treble and bass controls. Suits all speakers. This professional quality amplifier
chassis is suitable for all groups disco PA chassis is suitable for all groups, disco, P.A where high quality power is required. 5 speaker outputs. A/C mains operated. Slave

output socket. Produced by demand for a quality valve amplifier, 100 V line output to order | Suitable carrying cab £14. Price $\mathbf{£ 8 5}$ carr $£ 2.50$ |
| :--- | SPEAKER COVERING MATERIALS. Samples Large S.A.E. LOUDSPEAKER CABINET WADDING 18 in . wide 20p f

Horn Tweeters $2 \cdot 16 \mathrm{kc} / \mathrm{s}$. 1 OW 8 ohm or $15 \mathrm{ohm} £ 3.60$ Horn Tweeters $2.16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm or 15 ohm $£ 3.60$
De Luxe Horn Tweeters $3-18 \mathrm{kc} / \mathrm{s}$. 30 W . 8 ohm, $£ 7.50$. CROSSOVERS. TWO-WAY $3000 \mathrm{c/s} 3$ or 8 or 15 ohm £1.90. 3-way $950 \mathrm{cps} / 3000 \mathrm{cps}, \mathrm{C} 2.20$. LOUDSPEAKERS P.M. 3 OHM $7 \times 4 \mathrm{in}$. £1.50; $61 / 2 \mathrm{In}$. £ 1.80 ; $8 \times 5 \mathrm{in}$, E1.90; 8 in. E1.95.
SPECIAL OFFER: 80 ohm. $21 / 4 \mathrm{in}$., $23 / 4 \mathrm{in} ., 35 \mathrm{ohm}, 3 \mathrm{mn} ., 25$

 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in. dià̀neter 4 W £2.50. 10 in. diameter $5 \mathrm{~W} £ 2.95$ : 12 in . diameter $6 \mathrm{~W} £ 3.50 .3 / 8 / 15 \mathrm{ohms}$, please state PIEZO ELECTRIC HORN TWEETER. Handles up. to 100 watts. No crossover required. £10.95.
Tweeter Volume Control 15 ohms 10 W with one inch long

BAKER 150 WAT
PROFESSIONAL MIXER AMPIIFIER All purpose transistorised


Ideal for
so speec

$$
\begin{aligned}
& \text { and P.A. } 4 \text { imputs speech and music. } 4 \text { way mixing } \\
& \text { Output } 48 / 15 \text { ohms. a.c Mains Separate treble and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bass controls Master volume control } £ 68 \text {. } \\
& \text { Guaranteed Details S.AE. }
\end{aligned}
$$

## 100 WATT DISCO AMPLIFIER CHASSIS

 volume, treble, bass controls. 500 MV . or 1 volt input. $\mathbf{E} 52$Four loudspeaker outputs 4 to 16 ohm . All transistor BARGAIN 4 CHANNEL TRANSISTOR MONO MIXÉR Add musical highlights and sound effects to recordings Wilh mix Microphone, records, tape and tuner $\quad £ 5.95$ TWO STEREO CMANNEL VERSION $£ 7.50$ BARGAIN 3 WATT AMPLIFIER. 4 ransistor $\mathbf{£ 3 . 9 5}$
Push-Pull Ready Built, with volume. Treble


ALUMINIUM HEAT SINKS. Finned type bizes $61 / 2^{\prime \prime} \times 412^{\prime \prime}$ BALANCED TWIN RIRBON FEEDER 300 ohms. $5 p$ yd. JACK SOCKET Std. Open-circuit 20p, closed circuit 25p; Chrome Lead-Socket 45p. Mono or Stereo.
Phono Plugs 8p. Phono Socket 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15p. STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chassia 3 -pin 10p. 5 -pin 10p
DIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS
3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p.

## R.C.S. SOUND TO LIGHT KIT <br> Kit of parts to build a 3 channel sound to 1.000 watts per channel. $£ 14$. Post 35 p . <br> Easy to build Full instructions supplied Cabinet $£ 3$.

E.M.I. TAPE MOTORS: 240 V a.c. 1.200「pm. 4 pole Spindle $0187 \times 0$
$31 / 4 \times 21 / 2 \times 21 / 4$ n $£ 2$. Post 50 p
Collaro gram motor 120 V 75 p .


## HYBRID HIGH POWER IC AUDIO AMP. MODULES



Description
Made by the largest Hybrid Audio Amplifier Manufacturer in the world - comes in 3 popular models. These are not kits, and require a few external components, a heatsink and a power supply. Build high quality sound systems using the economical modular Sanken technique. Ideal for HI-FI systems, Stereo, tape deck, FM tuners, record players, musical instruments public address systems, A.C. servo and wide band amplifiers Each module has quasi-complementary class B output, employing flip-chip transistors, etc., in rugged, compact and light-weight packages. SANKEN $=$ COMPACT POWER

| S11010G TEN Watts | £4.76 ea. (ex VAT) |
| :---: | :---: |
| SI1020G TWENTY Watts | £8.34 ea. (ex VAT) |
| SI1050G FIFTY Watts | £16.58 ea. (ex VAT) |

All goods new, to full manufacturer's spec. No substandard parts sold. Callers welcome. Colleges. Govt. and account orders welcomed.
TERMS: Non-Account Customers Cash with Order Standard P\&P 50p. Please add VAT to overall total.

RasTRa ELECTRONICS LTD.
275-281 King Street Hammersmith London W6 9NF
Tel. 01-7483143/2960
Telex 24443

WW- 105 FOR FURTHER DETAILS


buy a case from a small range, you get a case-buy a case from a big ranger you get a solution


Instrument cases

 -


THE INETRUMENT


GABE BPAGVAMEME

## Two hooks from Wireless World

These books are of very special appeal to all concerned with designing, using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.


## BOOK 1

Basic active filters Switching circuits Waveform generators AC measurements Audio circuits

Constant-current circuits Power amplifiers Astable circuits Optoelectronics Micropowercircuits

## ORDER FORM

To: General Sales Department,
IPC Business Press Limited.
Room 11. Dorset House,
Stamford Street, London SE1 9LU
Please send me copy/copies of
Circuit Designs -- Number 1 at $£ 10.40 \mathrm{~L}$.
Circuit Designs - Number 2 at $£ 12.50 \square$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd.)


## BOOK 2

Basic logic gates
Wideband amplifers
Alarm circuits
Digital counters
Pulse modulators

C d as - signai processing C d.as-signal generation Cd as-measurement and detection
Monostable circuits
Transistor pars

## Name (please print)

Address

\section*{The SECOND-USE: Compuler Specialists Mini-Computer Exchange <br> PDP8M-ML 8K Processor <br> PDP11/34-MN 32K Processor with RX11 Speed Reader/Punch <br> PDP8I 20K Processor with Extended Arithme tic. Teletype Control. Clock, $2 \times$ TU55 DECtape

drives, PCO8 Reader/ Punch drives, PCO8 Reader/Punch, 9 -track Incremental Deck, RFO8 256 K Disk. <br> Nova 3/12 48K Processor with Teletype Co tro. Clock. Memory Managemen <br> Nova High Speed Paper Tape Reader. <br> Nova 1200 4K Processor with Teletype Control <br> RTO2 DEC Data Entry Terminal with single line 32-character display complete with control for PDP8E <br> TU60 DEC Dual Cassette Drive with control for <br> Calcomp Digital Incremental Plotters. <br> Model 563: 31" drum. 300 steps per second Model 565 12 ${ }^{\prime \prime}$ drum, 300 steps per second. Model 663 : $31^{\prime \prime}$ drum, 300 steps per second DF32 DEC 32K Disk Drive \& Control (slav drives type DS32 also available) <br> KK8E set of PDP8E series processor modules. <br> OUR STOCKS ARE CONSTANTLY CHAN. <br> GING - please phone for latest availabilities. <br>  <br> Sysiems, Peripheral Equipment \& Components for Dafa Processing <br> Keyboards <br> FRESH STOCKS <br> OF THE <br> POPULAR <br> CLARE-PENDAR <br> ASCII KEYBOARD TYPE <br> KB6 NOW TO HAND <br> 
$\square$ ELECTRONIC BROKERS LIMITED (Compiter Soles RServices Diviston) 49-53 Pancras Road, London NW1 2QB. Tel:O1-837 7781

WW-112 FOR FURTHER DETAII.S

## LYNX ELECTRONICS (London) LTD.

92 Broad Street, Chesham, Bucks. Tel (02405) 75154 VAT $8 \%$ except $\star$ which are $121 / 2 \%$

Return Post Service P\&P 30p. Overseas 90p. Matching 20p per pair New Price List 20p Prices correct at 28 th Feb. '77. ACCESS WELCOME

| REGULATORS |  | OPTO ELECTRONICS |  |  |  | CLOCK CHIPS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 723 <br> 7805 | 0.45 1 1 | OISPLAYS |  |  |  |  | IC SOCKETS |  |
| 7812 | 1.50 |  | 0.99 |  | 0.13 |  | 8 Prm | 0. 16 |
| 7815 | 1.50 | 7727 | 0.99 1.95 | 2 2 Crasen 2 Ciear | ${ }_{0}^{0.20} 0$ | MM5314 4.25 | ${ }_{16}^{14}{ }_{16} \mathrm{Pin}$ | ${ }_{0}^{0.16}$ |
| ${ }^{7818}$ | 1.35 | 728 747 | 1.95 <br> 1.80 |  |  |  | ${ }^{24}{ }^{16} \mathrm{Pm}$ | 0.18 0.45 0.80 |
| LM340.12 | ${ }_{1}^{1.35} 1$ | 750 | 1.80 |  |  | AAY -5.40070 9.95 | 40 Pin | 0.80 |
| LM340.18 | 1.35 |  |  |  |  |  |  |  |



## low cost-top quality COMPONANTS

Distributors for Plessey Siemens. A.E.G. Telefunken and Toshiba Components


| Diodes |  |  |  |
| :---: | :---: | :---: | :---: |
| Type | Price (p) | Type | Price (p) |
| BA115 | 10 | OA90 | 7 |
| BA145 | 18 | OA95 | 6 |
| BA148 | 18 | OA202 | 11 |
| BA154 | 12 | in60/0 | 91 |
| BA155 | 15 | IN914 | - 6 |
| BAX13 | 6 | In4001 | 6 |
| BAX16 | 10 | 1N4002 | 7 |
| BY126 | $1{ }^{1} 1$ | 1N4003 | 8 |
| BY127 | 12 | 1N4004 | 8 |
| BY133 | 174 | in4005 | 9 |
| BY199 | 25 | 1N4006 | 91 |
| BY206 | 17 | 1N4007 | 10 |
| BYX10 | 16 | N4148 | 41 |
| 0447 | 8 |  |  |
| Semi Conductors |  |  |  |
| Type | Price (P) | Type | Price (p) |
| AC107 | 25 | AF115 | 27 |
| AC126 | 20 | AF116 | 27 |
| AC127 | 20 | AF117 | 27 |
| AC128 | 15 | AF118 | 65 |
| AC128K | 30 | AF124 | 40 |
| AC141 | 24 | AF125 | 32 |
| AC141K | 34 | AF126 | 38 |
| ĀCl42 | 20 | ${ }_{\text {AF } 127}$ | 42 |
| AC142K | 36 | AF 139 | 45 |
| AC151 | 28 | AF178 | 69 |
| AC154 | 18 | AF 180 | 69 |
| AC155 | 18 | AF181 | 69 |
| AC156 | 28 | AF239 | 45 |
| AC176 | 22 | AF240 | 20 |
| AC176K | 34 | AL102 | ¢. 4.40 |
| AC187 | 20 | AL103 | £1.30 |
| AC187K | 36 | AU107 | £1.50 |
| AC188 | 25 | AU110 | £1.30 |
| AC188K | 38 | AU13 | ¢1.30 |
| AC193K | 36 | BC107 | 14 |
| AC194K | 35 | BC107B | 16 |
| AD140 | 69 | BC108 | 14 |
| AD142 | 75 | BC109 | 14 |
| AD143 | $\frac{65}{70}$ | BC109C | 14 |
| AD149 | 70 | BC113 | 15 |
| AD161 | 50 | BC114 | 15 |
| AD161/2 | 1.00 | BC115 | 174 |
| AD162 | 50 | BC116 | 17) |
| AF114 | 27 | BC116A | 30 |

## Semi Conductors

| Type | Price ( ${ }^{\text {P }}$ | Type | Price (p) |
| :---: | :---: | :---: | :---: |
| BC117 | 14 | BC237 | 12 |
| BC118 | 15 | BC238 | 12 |
| BCI19 | 27 | BC301 | 30 |
| BC125 | 179 | BC303 | 30 |
| BC125B | 18 | BC327 | 13 |
| Bu126 | 16 | BC328 | 13 |
| BC132 | 15 | BC337 | 12 |
| BC135 | 20 | BC338 | 12 |
| BC136 | 16 | BC546 | 13 |
| BC137 | 25 | BC547 | 12 |
| BC138 | 33 | BC548 | 12 |
| BC139 | 28 | BC549 | 13 |
| BC140 | 32 | BC550 | 14 |
| BC141 | 28 | BC557 | 13 |
| BC142 | 25 | BC558 | 12 |
| BC143 | 28 | BCY72 | 16 |
| BC147 | 10 | BD115 | 39 |
| BC147A | 11 | BD116 | 65 |
| BC147B | 11 | BD124 | 75 |
| BC148 | 10 | BD131/ |  |
| BC149 | 10 | BD233 | 43 |
| BC153 | 20 | BD132 | 45 |
| BC154 | 20 | BD133 | 45 |
| BC157 | 11 | B0135 | 29 |
| BC158 | 10 | BD136 | 30 |
| BC159 | 11 | BD137 | 30 |
| BC160 | 30 | BD138 | 33 |
| BC161 | 33 | BD139 | 37 |
| BC171 | 10 | BD140 | 39 |
| BC172 | 10 | BD144 | ¢1.99 |
| BC173 | 15 | BD160 | £1.65 |
| BC178 | 18 | BD181 | 90 |
| BC1788 | 20 | BD182 | 90 |
| BC179 | 24 | BD183 | 80 |
| BC182 | 11 | B0184 | $¢ 1.10$ |
| BC182L | 12 | 80222 | 50 |
| BC183! | 12 | BD225 | 47 |
| BC184 | 13 | BD232 | 50 |
| BC186 | 25 | B0233 | 43 |
| BC187 | 25 | B0234 | 49 |
| BC204 | 14 | BD235 | 49 |
| BC212 | 11 | BD236 | 53 |
| BC212L | 12 | BD237 | 49 |
| BC213 | 12 | BD238 | 55 |
| BC213L | 11 | BDX32 | £2.75 |
| BC214 | 13 | BDY20 | 80 |
| BC214L | 15 | BY20 | 8 |

## Semi Conductors

| Type | Price (p) | Type P | Price (p) |
| :---: | :---: | :---: | :---: |
| BF115 | 38 | BFx88 | 25 |
| BF123/ |  | BFY50 | 20 |
| 1092 | 25 | BFY51 | 30 |
| BF152 | 20 | BFY52 | 20 |
| BF158 | 20 | BFY90 | ¢1.10 |
| BF160 | 35 | BR100 | 32 |
| BF167 | 28 | BR101 | 38 |
| BF173 | 32 | BRC4443 | 80 |
| BF178 | 33 | BRY39 | 38 |
| BF 179 | 38 | BSY52 | 30 |
| BF180 | 36 | BT106 | $¢ 1.20$ |
| BF181 | 36 | BT108 | 11.50 |
| BF182 | 30 | BT116 | £1.25 |
| BF 183 | 30 | BU105/02 | 211.90 |
| BF184 | 30 | BU108 | £2.10 |
| BF185 | 30 | BU126 | £1.49 |
| BF186 | 32 | BU204, | $£ 1.80$ |
| BF194 | 10 | 8U205 | £1.67 |
| BF 195 | 10 | BU206 | ¢2. 10 |
| BF 196 | 10 | BU208/02 | $2 ¢ 2.75$ |
| BF197 | 11 | BUY69B | ¢2.50 |
| BF197A |  | BUY69A | £2.65 |
| BF597A | A 172 | E1222 | 38 |
| BF108 | 30 | MJE340/ |  |
| BF199 | 25 | BF459 | 48 |
| BF200 | 30 | MJE520 | 44 |
| BF218 | 56 | 2 N 696 | 30 |
| BF224 | 20 | 2 N 706 | 15 |
| 6F240 | 18 | 2N3053 | 20 |
| BF241 | 18 | 2N3054 | 65 |
| BF257 | 28 | 2N3055 | $\frac{60}{12}$ |
| BF258 | 30 | 2N3702 | $\frac{12}{12}$ |
| BF259 | 30 | 2N3703 | 12 |
| BF336 | 37 | 2N3704 | 10 |
| BF337 | 35 | 2N3705 | 10 |
| BF338 | 34 | 2N3706 | 10 |
| BF355 | 50 | 2N3819 | 38 |
| BF457 | 37 | 2 2N5293 | 52 |
| BF458 | 37 | 2N5294 | 52 |
| BF459 | 48 | 2N5295 | 52 |
| BFT42 | 36 | 2N5296 | 461 |
| BFT43 | 35 | 2N5297 | 52 |
| BFX29 | 29 | 2N5298/ |  |
| BFX84 | 29 | IIP31A | - 52 |
| BFX85 | 30 | 2N5496 | 53 |
| BF×86 | 28 | 0 C 71 | 29 |

Semi Conductors

| type | Price (p) | Type | Price (p) |
| :---: | :---: | :---: | :---: |
| 0 C 72 | 38 | TIP32A | 62 |
| R2008B | ¢2.10 | TIP41A | 70 |
| R20108 | ¢2. 10 | TIP42A | 75 |
| RCA16334 | 80 | IIS9: | 27 |
| RCA16335 | 80 | 2SC1172A | ¢2.73 |
| S. 2802 | 2.99 | 2SC643A | ¢1.48 |
| 5.6080 A | ¢4.90 | 4.43MHZ |  |
| TIP31A/ |  | Crystal | ¢1.10 |

## Integrated Circuits

| MC1349 | E1.02 | SN76660N | 66 |
| :--- | :--- | :--- | :--- | | ML231B | $£ 4.20$ |
| :--- | :--- |
| ML232B | $£ 4.20$ |
| SN76666N | $£ 1.10$ |
| TAA550 | 39 |




 \begin{tabular}{llll}
SN76003N \& $£ 2.45$ \& TBA480Q \& $£ 1.40$ <br>
\hline SNT

 

SN76013N \& $£ 1.65$ \& TBA520Q \& $£ 2.06$ <br>
\hline SN76013ND \& $£ 1.40$ \& TBA5300 \& $£ 1.30$ <br>
\hline

 

SN76023N \& £1.65 <br>
\hline

 SN76023ND £1.40 $\frac{\text { BAS550Q }}{\text { SN76033N }} \frac{£ 2.56}{\text { IBA560CO }} \frac{£ 2.56}{}$ SN76110N $£ 1.75$ TBA750C $\quad$ £1.43 

\hline SN76220N \& $£ 2.20$ \& TBA800 \& $£ 1.10$ <br>
\hline SN76227N \& $£ 1.65$ \& TBA920Q \& $£ 2.64$ <br>
\hline

 

SN76227N \& $£ 1.65$ <br>
\hline SN76532N \& $£ 1.60$ <br>
TBA990Q \& $£ 2.56$ <br>
\hline
\end{tabular}

 SN76650N $\quad$ £ 1.50 TDA440

## Toshiba

\section*{Type Equivalent} TA7050P CA3044 RCA £1.13 TA7051P CA3042 RCA TA7072 ${ }^{\text {P }}$ MC1351 Motorola $\frac{\text { E1.45 }}{}$ TA7074P MC1352 Motorola £1.34 TA7141AP MC1327 Motorola £1.40 TA7171P SAS560S Siemens $£ 1.65$ | TA7172P | SAS570S | Siemens | $\mathbf{\varepsilon 1 . 6 5}$ |
| :--- | ---: | :--- | :--- | :--- |
| TA7173P | TCA270 | Philips | $\varepsilon 2.20$ | | TA7173P | TCA270 | Philips | $£ 2.20$ |
| :--- | :--- | :--- | :--- |
| TA7176P | CA3065 | RCA | $£ 1.30$ |

## G D GOMBNED PREGISION COMPDNENTS LTI.

## Good people to deal with

C.P.C. Dept ERT 194-200 North Road, Preston, Lancashire, PR1 1YP. England. Phone Preston (STD 0772) 55034. Telex 677122. Cables 'Comprecom' Preston WORLD WIDE EXPORT SERVICE ask for ROBIN PRATT


| SUPER UNTESTED PAKS |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Noi Gem Goid bondrat Das / doste |  |  |
| $\begin{aligned} & u 51 \\ & u 52 \end{aligned}$ | (150 Serm OATO 81 dodede |  | ${ }^{50.50}$ |
| 054 |  | ${ }_{\substack{16132 \\ 16134}}$ | ${ }_{\text {¢0.60 }}^{50.60}$ |
| - |  | 1613 | 建 |
| ${ }_{4} 56$ | ${ }^{5} 50$ NPN Trass BCiol 8 Prasic | ${ }^{16}$ | (80.60 |
| U588 |  | 16688 161139 | ¢0.60 |
| U60. |  | ${ }^{16} 16.40$ | ${ }_{\text {¢0, }}^{50} 5$ |
| U62 |  | ${ }^{161414}$ |  |
| ${ }^{0} 664$ | (e) | ${ }^{166143}$ | ${ }^{50.50} 0$ |
| -665 |  | 166145 | ${ }_{\substack{50.60 \\ \epsilon 1,20}}$ |
| 6 |  | ${ }^{1614} 6$ | ${ }_{\text {Ef } 120}$ |
| U68 |  | 16498 | ¢0.60 |
| 470 | 83 amp SCR TO66 case |  | ¢1,20 |
|  |  |  |  |
| COMPONENT PACKS |  |  |  |
| ${ }_{\substack{\text { Panch } \\ \text { No. }}}$ |  |  |  |
| c2 | 500 Ress |  |  |
|  | 50 brecerigionhis lestors Mreed | 6166 | (60 |
|  | vaues reshors mued pe |  |  |
|  | Sece |  |  |
|  | 兂 |  |  |
| ${ }_{\text {c }}^{\text {c8 }}$ | cen sucres |  |  |
| cio ${ }_{c}^{\text {cio }}$ | ${ }^{5}$ A Assored dolis |  |  |
| $\mathrm{Cl}_{12}$ |  | $61 / 4$ | ع0.60 |
| ${ }_{C 1} 13$ | 20.8 meat Matues | 6175 <br> 16717 |  |
|  |  |  |  |
| C15. | 20 Mans side swiches ass | 16179 | ¢0.60 |
| C18 |  | 16180 ${ }_{16181}$ | \% 80.60 |
| $\begin{aligned} & c, 19 \\ & c 29 \\ & \text { 20 } \end{aligned}$ |  |  |  |
|  |  |  |  |
| ${ }_{C 2}$ | 50 Meres PVC sieexng assoried |  |  |
| C23 | 60 colaul | 61as | ¢0.60 |
| (224 | ${ }_{20}^{25}$ Presestas assored typo ad |  |  |
| SLIDER PAKS |  |  |  |
| ${ }_{\text {Pack }}^{\text {No. }}$ | aty | Order No. | Price |
|  |  |  |  |
|  |  |  | ¢0.60 |
| ( ${ }_{\text {S }}^{5}$ | (e) |  |  |

CERAMIC PAKS

| ORDERING | V.A.T |
| :---: | :---: |
|  |  |

CARBON POTENTIOMETERS


LINEAR PAKS


74 SERIES PAKS



VEROBOARD PAKS

ELECTROLYTIC PAKS


C280 CAPACITOR PAK

CARBON RESISTOR PAKS



PLUGS AND SOCKETS
plugs
CHASSIS SOCKETS

WORLD SCOOP!
SEMICONDUCTOR PACK



## BI-PAK

High quality modules for stereo, mono and other audio equipment.


## £20.45

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.
Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, logether with the Transformer $\mathbf{T 5 3 8}$
The $\$ 450$ is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

FET Input Stage

- VARI-CAP diode tuning

Switched AFC
Multi turn pre-sets

* LED Stereo Indicator

Typical Specification Sensitivity $3 \mu$ volts Stereo separation 30 db Supply required $20-30 \mathrm{v}$ at 90 Ma max

## STEREO PRE-AMPLIFIER



## PA 100 $12 / 2 \%$ OUR PRICE

 £13.75

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges onlv it is provided with a standard DIN input socket for ease of connection Full instructions supplied.
$€ 2.85$


The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner stereo tape deck etc Simple to install, capable of producing really first class results. this unit is supplied with fult instructions, black front panel knobs, main switch. use and fuse holder and universal mounting brackets enabling it to be installed in a record plinth. cabinets of your own construction or the cabinel available Ideal for the beginner or the advanced constructor who requires Hi -Fi performance with a minimum of installation difficulty (can be installed in 30 mins).

TRANSFORMER $\mathbf{E 2 . 4 5}$ plus $62 \mathrm{p} p$ \& TEAK CASE $\mathbf{E} 5.25$ plus $62 p p \& p$ AL20 5w R.M.S. £2.95 AL30 10w R.M.S. £3.25

Especially designed to a strici specification. Only the finest components have been used and the latest. solid-state circuitry incorporated in this powerful ittie enthusias

Power supply for AL20/30, PA12, SA450 etc
nout voltage 15 -20v A C Uutput voltage 22-30v D C OUR PRICE

Stabilised Power Supply Type SPM80
SPM 80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm . Transformer BMT80 Transformer BMT80
$£ 2.60+62$ p postage
 Transformer T538 £2.30


MARCONI NOISE GENERATOR TF987/1.
4 Ranges 0-5, 0.10 $0-150-30$
Due to large purchases now priced at $\mathbf{f} 15$ ea

## COMPRESSOR/VACUUM

 PUMPTwin Cylinder opposed with Integral $1 / 2$ H.P. 50 HZ Single Phase Motor Tested \& Checked 110 Volts models only $\mathbf{£ 1 5} \mathbf{e a}$
$1 / 2$ H.P. Motor $110 \mathrm{~V} £ 10$ ea.

## WE ARE BREAKING COMPUTERS

UNIVAC/HONEYWELL/ICL 1900 etc
Boards, Power Supplies, Core Stores are available
CALL AND SEE

## TEKTRONIX OSCILLOSCOPE Type 561A

Complete with 3B! Time Base \& 3AI Dual Trace Amplifier £375 each

## THE HONEYWELL KEYTAPE UNIT

MARCONITF675F WIDE RANGE PULSE GENERATOR delay. Small compact unit $\mathbf{£} 18$ ea.

## SPOOLS OF $1 / 2^{\prime \prime}$ MAG

 TAPEAPPROX. 2000ft
50p ea. P\&P $£ 1$ ea

AVO VALVE TESTER CT160
'THE SUITCASE'

## TEKTRONIX OSCILLOSCOPE Type 506

Complete with 3BI Time Base \&
9AI Dual Trace Amplifier $£ 450$ each

TEKTRONIX OSCILLOSCOPE Type 585A with type 82 plug-in. £500. RHODE \& SCHWARZ GENERATOR BN4 1022 300-1000MHZ £ 185. R\&S DIAGRAPH \& GENERATOR 3-300MHZ Very nice condition $£ 475$ RHODE \& SCHWARZ ADMITTANCE METER BN3511. As new £65. POLARAD RECEIVER Modei FIM B2 Complere 1 10GHZ £425.
TELONIC SWEEPER 2000.1 with LA-1M 2OHZ-2OKHZ £120. Other freq avalable MARCONI OSCILLATOR TF1101 20 HZ -20KHZ Nice condition. Special price $\mathbf{£ 5 0}$ MARCONI Wide Range Oscillator TF1370. Freq range 10 HZ to 10 MHZ Sine Wave
10 HZ to 100 KHZ . Square Wave High outputs up to 316 V Fantastic MARCONI Generator TF867 15 KHZ to $30 \mathrm{MHZ} \mathbf{£ 6 0}$ ea. Fantastic val MARCONI ADAPTOR TM6 113 for TF2700: TF 1313 . TFB68B $£ 20$ ea AIRMEC 4 trace scope Type 279. Large screen £120.
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} £ \mathbf{~} \mathbf{3 2 . 5 0}$ ea. AVO TRANSISTOR ANALYSER CT446 £30 ea
MARCON1 PORTABLE FREQUENCY METER TF $1026 / 11,100$ to 160 MHZ . Very fine Condition £27.50 ea
DECCA NAVIGATOR DISPLAY UNIT. Very impressive $£ 12.50$ ea
COURTENAY MAJOR Mk. 2. 250 poules. 5 outputs Can be combined - 1250 joules MARCONI SIGNAL GENERATORS. TFBO1B from £140; TF801D from £190. Usuatly MARCONI DEVIATION METER. TF791D $\mathbf{4} 75$ ea
RHODE \& SCHWARZ POWER METER. BNRD-BN $2412 / 50$ £50.
MARCONI RF POWER METER. TF 1020A/ 50 ohmn E65
HEWLETT PACKARD 11 Channel Numerical Printer $\mathbf{I} 30$.
MARCONI 20MHZ SWEEP GENERATOR. TF 1099 £45.
MARCONI DOUBLE PULSE GENERATOR. TF 1400 S wITh TM6600/S $\mathbf{£ 2 0}$.
MARCONI TRAVELLING WAVE TUBE AMPLIFIER R. 1278 E15.
I.C. TESTER bY SCHLUMBERGER. MOdel TCL 232 test 741709
I.C. TESTER by SCHLUMBERGER. Model TCL232- tests 74!, 709 etc. Dual in tines

AIRMEC Generator type 304 A . 50 KHZ to 100 MHZ E 120.
AIRMEC MODULATION METER $210 £ 130$.

TELEQUIPMENT OSCILLOSCOPE. Type S32 Very good, condition. Small. compact. sIze $7 \times 9 \times 4$ in approx. ideal for colour TV servicing Syperbly reliable. FANTASTIC

HILGER \& WATTS SPECTROMETER H1工 $\mathbf{E} 350$.
RHODE \& SCHWARZ TO KTrowalt Power Meter $£ 120$.
RHODE \& SCHWARZ Tunable Indicating Amplifier UBM $\mathbf{7 5}$
TEKTRONIX 180A Time Marker Generator $£ 60$
OUR PRICES TOO HIGH? $\neg$ THEN MAKE US AN OFFER WE CAN CONSIDER
S.E. Labs Oscilloscope type $102 \mathbf{£ 2 2 0}$.

MARCONI UHF-SHF Signal Generator Type TF 1058 £80
TEKTRONIX 181 Time Marker Generator £40.
TELONIC Sweeper 0-200MHZ £80.
HEWLETT PACKARD Oscilloscope type $175 \mathrm{DC}-50 \mathrm{MHZ}$ Double Beam $\mathbf{£ 1 8 0}$ with delay amplifier £220.
GENERAL RADIO PULSE SWEEP \& TIme Delay Generator type $1391 \mathrm{BE120}$. ROYAL INVERTORS manufactured USA 28 V DC Input Output 115 V AC $\mathbf{4 0 0} \mathrm{HZ}$ up
2 KVA . Brand new Crated $£ 12.50$ ea.

SPECTRUM ANALYSER by NELSON ROSS. Pluģin for TEKTRONIX 561/506 Osc:iloscopes $£ 225$.

SOLARTROR CD 1212 SB 40 meg £85. YB24meg twice © 120 . Many other types Evailable; OSCILLOSCOPE. CT4 36 Double beam DC-6MHZ $\mathbf{£ 9 5}$ each
*TELEPHONES. Posi Office styte 746 . Black or two-tone grey $£ 6: 50$ ea
706. Black or two-tone grey $\mathbf{£ 4 . 5 0}$ ea. P\&P 75 p ea Old black siyle $\mathbf{£ 1 . 5 0}$ ea P\&\& 75 p MODERN FANS. $4^{3 / 4} \times 4^{3 / 4} \times 1 \frac{1}{2} 2^{11} 240$ Volts Superbly quiet. 6 Blades $£ 4.50$ ea $P 8$

PAPST model 240 V available at $\mathbf{£ 7 . 5 0}$ ea. P\&P 750
PHOTOMULTIPLIER Type $931 A$ E4 ea. P\&P $75 p$ Other types available
$\star$ POTENTIOMETERS - All $5 p$ ea P\&P extra Metal bodied AB Linear PCB Mount. Brand New 10K, 100 K ganged: 250 K ganged, 100 K ganged, concentric shafts
WBEEHIVE TRIMMERS $3 / 30$ p Brand, New 10 off $\mathbf{4 0 p}$ P\&P 15 p : 100 off $\mathbf{£ 3 . 5 0} \mathbf{P \& P}$ \#BEEHIVE TRIMMERS 3/30pf Brand New 10 off $\mathbf{4 0 p}$ P\&P 15p: 100 off $\mathbf{£ 3 . 5 0} \mathbf{P \& P}$
 General guide $5 \mathrm{KV} 31 / /^{\prime \prime}$ E5 Thereatter $£ 1$ per KV P\&P 75 p
VARIACS 240 V input $0-240 \mathrm{~V}$ output 8 A £ 18 ea, 20A $\mathbf{£ 3 0}$ ea. Carr $£ 250$
VARIACS 240 V input $0-240 \mathrm{~V}$ output $8 \mathrm{~A} £ 18$ ea, $20 \mathrm{~A} £ 30$ ea. Carr $£ 250$
E.H.T. TRANSFORMERS $20 \mathrm{KV} 2 \mathrm{KVA} £ 70$ ea Many other EHT transformers and EHT E.H.T. TRANSFOR

DON'T FORGET YOUR MANUALS. S AE with requirements
TUBE type DB7'36-Replacement for Telequipment $\$ 31$ £11 ea. P\&P£ 1.50

| FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube |
| :--- |
| Type M38 at the ridiculous prite of $£ 4$ ea And also still available the CME $1220.24 \times$ |
| 15 cm at $\mathbf{£ 9}$ ea. Base connections for both tubes supplies. |

SEMICONDUCTORS
Manufacturers markings
BC147: BC158 2 N3707, BC107. BF197. BC327. 2N4403, BC172B. BC261B BC251B BC348B, 8C171A/B, 2N3055RCA 50p ea P\&P 8p
$2 N 5879$ with $2 N 58$ B1 Motorola 150 Watl Comp pair $\mathbf{£ 2}$ pr P\&P $15 p$ *Linear Amp 709 25p ea P\&P Bp

CREED 5-LEVEL COMBINED PRINTER AND PERFORATOR CRATED £35 each

CREED 5-LEVEL
PAPER TAPE READER $£ 25$ each

CREED 7B
TELEPRINTER CRATED £40 each

# SPECIAL OFFER <br> CREED 7B TELEPRINTER LATE MODEL WVITH PERFORATOR, £60 ea. FREE WITH ALL PURCHASES PLESSEY READER 

Minimum Mail Order $£ 2$. Excess postage refunded. Unless stated - please add $£ 2.50$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 12 \frac{1 / 2}{\%}$ VAT, otherwise $8 \%$ Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 a.m. to 5.30 p.m., Mon. to Sat.

## Strobes, Jachos, Meters, Generators and Telecommunications Test Equipment

E.B. import and distribute high-grade products from World-renowned British \& Overseas Manufacturers.

## NEW FUNCTION

 generators!

G430 provides Sine-wave ( $0-10 \mathrm{Vrms}$ ) and Square-wave ( $0-20 \mathrm{~V}$ p-p) from 600』2. continuously variable, via 4 -position $0-60 \mathrm{~dB}$, push-button operated step attenuator. Frequency range 1 Hz to 1 MHz .
£95
Send for details of our complete range


NEW PULSE GENERATOR Model 70 (illustrated above)
Compact, low-cost pulse and square-wave generator, featuring
P.R.F. 4 Hz to 400 kHz , gated or free-running $0 / P 10 v$ peak from 50 , also synch $0 / P$
Pulse width $1 \mu \mathrm{Sec}$ to 100 mSec .
Delay $1 \mu \mathrm{Sec}$ to 100 mSec .
Pulse mark / space inversion
TTL/CMOS HI LO gating facility


## NEW WIDE-RANGE MULTIMETER UM-11

## Features 38 -colour-coded ranges

 with high input impedance.

150 mV to
1500 V f.s.d
at $100 \mathrm{k} \Omega / \mathrm{V}$. a.c. Volts
1.5 V to 1500 V fs.d. at $31.6 \mathrm{ks} 2 / \mathrm{v}$
d.c. Current, $10 \mu \mathrm{~A}$ to 15 A a.c. Current 15 A

Other star features include mirror-scale, rugged taut band suspension, dB scale, diode and fuse protection.
Supplied complete with test-leads and



Add $8 \%$ VAT to all prices shown. details on reques

ELEGTRONIC BROKERS LIMITED (New Products Division) 49-53 Pancras Road,London NW1 2QB. Tel:O1-837 7781

[^4]

## HIEAIMD.IEAH HDTIMDIEATS ITD

## 315, 317, 364 EDGWARE ROAD, LONDON W2 TEL: 01-723 5667 \& 01-402 5580

ACCESS \& BARCLAY accepred Minimum order $£ 5$

## PAPST MOTORS


ACADEX MOTOR

SOLENOIDS 240V A.C
MAGNETIC OEVICES LTO NO
has 2OIb pull tor $50 \%$ duty. 1

## 

## RELAYS




CROUZET MOTOR

SYLVANIA SWITCH


Nixie tubes


## PROGRAMME TIMERS




SCOOP PURCHASE


## LOGIC OP/AMP POWER

 SUPPLIES| Ippe mo. | tPS 40 | SPS 5 | SPS ; | Sps 911 |
| :---: | :---: | :---: | :---: | :---: |
| Supply | Caro Ferm | fuly ancased | Fully secased | Futy encased |
| Form | log: | beylc | op.amp. | logic |
| 0/8 volis | 4.5/5.5 (3) | 4.5/6.01 [3] | 12 is | 4.5/6. $0_{1} 13 \mathrm{i}$ |
| Anps. max. | 125 | 2.4 | 0.5 [2] | 10.0 |
| Ripple 141 | 0.5 | 0.5 | 0.15 | 0.1 |
| Reguiation \%, | 0.02 | 0.02 | 0.005 | 0.02 |
| price | \$14.00 | ¢26.00 | [28.00 | ¢51.00 |
| Carip. 8 \% | 60 p | \$120 | £1.20 | £1.20 |

miniature lamps

itling Capacity 2 , 3 galis per min at 2400 rpm motodiums carboys, dian sumps and handing cnemicals, onPCB EDGE CONNECTOR

|  |
| :---: |
| PHILIPS AUDIO GENERATOR TYPE GM 2308. 0.16 kc s Attenuator 0000100003.0001 to with outpul asym \& sumi and matching impedance 5 250600 \& 1000 ohms Price $\mathbf{E 9 8 . 0 0}$ carriage $\{400$ |
| E.H hesearch laboratories INC. MODEL <br> 133A PULSE GENERATOR. Features Ulimain eat tamp rise and fall andependentiy variable 50 ov output into 50 ohms. Bither poialily Automatic overlaad prolection Synchronous Automatic overlaad prolection Synchronous galing all solid stase Full specification on request $€ 275.00$ <br> MODEL 122 GENERATOR <br> Features Rep rates to 200 MHz . Nanosecond Swichiny umes. sytichronous gating Pulsetod baseme inversion plus offset all solid stase Full specification on request $\mathbf{£ 2 9 5 . 0 0}$ |
| RHODE \& SCHWARZ <br> Difectly measures muluterminal networks 50 ! shin phrase angle with complimental y POWER SIGNAL GENERATOR TYPE SMLM high fieq FREQUENCY SYNTHESIZER TYPE XUA. 30 Hz 30 MHy wh FAEQLENCY INDICATOR TYPE FKM 15.30 MHz 30100 MHz |
| HEWLETT-PACKARD <br> AUDIO GENERATOR MODEL 206-A. Frea 20 c to 20.000 c matching impedance 50, 150, 600 ohms Price £85.00 carrage $£ 400$ |
| KAHN SSB ADAPTOR TYPE RSSB - 62 - 18 . Designed tor receivers with $455-500 \mathrm{KHz}$ if at 100 mV imaxy inpul Features electionic AFC carrer lieq diversity to combal fading 20 sce AC memory io mantain luming during severe fading indivitual carriet meters nuvishers low disiotton production demoduator $£ 65$ carnaye $£ 500$ |
| HR 23 TRIPLE DIVERSITY SSBRECEIVERS. FTEG 3.275MHz VFO at 6 Xial positions Reception of indepentent single or double side band wansceweis Full spec on applicalion $£ \mathbf{3 5 0}$ carrage $£ 3500$ RACAL RECEIVER MODEL RA117. In full warking order and restored condilion PO A <br> RA98A Adauto tor above 585 |
| PLEASE SEND STAMP WITH ENQUIRIES |




 +10 dB impedance 75100 foo! $\mathbf{£ 1 4 5}$ carnage TF 6600 SECONDARY PULIEE UNIT lor tesing

 RADIOMETER TYPE MSII' SIGNAL REDIFON SSB TRANSISTORISED TRANS CEIVER GR410. 2-16 .c. 5200250 V 4 channels
100W OCP

$\pm 30 d \mathrm{to} \mathrm{IW}$ Pice 885 carsayl 500
VIBRATION/DISPLACEMENT METER TYPE B

### 731.4 E 195.00

## SOLARTRON

DIGITAL VOLTMETER. LM1426 EM 1420 2BA

| VAT FOR TESI EQUIPMENT |  |  |
| :---: | :---: | :---: |
| $8 \%$ | PLEASE ADD | $8 \%$ |

## PLEASE NOTE ALL EQUIPMENT

overhauled mechanically and ele

## trically in our own laboralories

 F995A/1 of
## BOONTON

AM/FM SIGNAL GENERATOR TYPE 202E \& 202 H .54 .216 MH Th 2 ranges $£ 275.00$ SIGNAL GENERATOR TS 497 URS $2-5 \mathrm{Mz}$ M 13 MHz $30 \mathrm{MHz}, \quad 78 \mathrm{MHz}, \quad 180 \mathrm{MHz}$ 400 MHz . 1 IV - 1 HV E 150 carriage £3 00

CT439. CT478, CT479 UHF SIGNAL GENERA
CTA80 SIGNAL GENERATOR
TRIGGERED VACUUM SPARK GAP TYPE ZR 7512.
650.0

LOW RESISTANCE HEADPHONES TYPE CLH
AR88 0 \& LF SPARES
RF METERS
E1.50 P\&P 250
icparatus no it.
FOR EXPORT ONLY
mudithed version
Cotlina 2310
53 Transmitter
62 Tranactiver
62 Transceive

## COLOMOR

170 Gcidhawk Rd.. Londón. W. 12 Tel. 01-743 0899
Open Monday to Friday
9-12.30, 1.30-5.30 p.m


| CMOS AND |  | OTHER COMPONENT |  |  |  | Sand for Cateologue |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD4000 | 0.17 | CD4036 | 3.65 | CD4076 | 1.61 | clock chips |  |  |
| CD4001 | 0.18 | CDA037 | 1.09 | CD.40 | 0.60 | AY51202 2.89 |  | ${ }_{32}{ }^{2} .36$ |
| C0.40 | 0.17 | CO4038 | 1.24 | CD4078 | 0.24 | AY51224 3.50 | 8080 (2 45) | ${ }_{3}^{32.25}$ |
| 400 | 1.35 | CO4039 | ${ }_{1}^{3.25}$ | C0408 | ${ }^{0.24}$ | T | Mco |  |
| 400 | 0.18 |  | 1.23 | COA082 | ${ }^{0.24}$ | matcable |  |  |
|  | 1.11 | C0404 | 0.96 | CO4085 | ${ }^{0.82}$ | 20w im 1.00 | 2650 | 7.50 |
| C04009 | 0.64 | ${ }^{\text {COP4O42 }}$ | 0.96 | ( 40 | ${ }^{6.82}$ | oca |  |  |
| CO40 | ${ }^{0.64}$ | C04044 | 1.107 | C04093 | -92 | 4101 | ¢ |  |
| CO4011 | ${ }_{0}^{0.20}$ | ${ }_{C D} \mathbf{C D O 4 4}$ | 1.61 | CO4094 | 2.15 | 411 |  |  |
| CD401 | 0.64 | C04046 | 1.53 | C04095 | 1.20 | 751237 J | ISP8K 2006 |  |
| 240 | 1.16 | CO4047 | 104 | C04096 | 1.2 | 75123 | MCS 80 | 176.65 |
| CO40 | 1.16 | C04048 | 0.644 | C040 | 1.26 |  |  |  |
| a | 0.64 | CD4049 | 0.64 | CO4098 | ${ }^{1.26}$ | display | transf |  |
| CO4O17 | 1.16 | CDA050 | 0.64 | CO40 | 1.15 |  |  |  |
| CO4018 | 1.16 | C04051 | 1.97 | CO4502 | 1.43 | T14322 1.20 | 5 LTrF | 1.95 |
| COPO19 | 0.64 | C04052 | 1.07 | C045 | 180 |  |  |  |
| S402 | 1.28 | Coa033 | 183 | C045 | ${ }^{1.15}$ | Xangst | cristals |  |
| CO4021 CO4022 | 1.16 | C04054 | 1.51 | ${ }_{\text {C04515 }}$ | ${ }^{3.15}$ | $51.01{ }^{5.80}$ | 32768 kH 512 MHz | ${ }_{3.60}^{4.50}$ |
| CD4023 | 0.24 | C04056 | 1.51 | CO4516 | 1.56 | soloercon |  |  |
| CD402 | 0.89 | C04059 | 5.48 | CO4518 | 1.25 | IC Pins | Sundries |  |
| CO | 0.24 | C04060 | 1.28 | C04520 | 1.43 | ${ }^{0.50}$ | Ca3l30 |  |
| C04026 | 1.98 |  | ${ }_{0} 1.26$ | CDa532 | 1.65 | $10.000 \quad 34.00$ | 7812 WC | 0.77 |
| C0.4028 | 1.03 |  | 4.28 | CO45 | .04 |  |  |  |
| CO4029 | 1.31 | CD4068 | -2.24 | CO4556 | . ${ }^{2}$ | NEW DAT | OM SINT |  |
|  | ${ }^{0.64}$ |  | -24 | NC14522 |  |  |  |  |
| C04031 | ${ }^{2.55}$ | C03070 | 0.67 | MC1455 | 4.68 | Nol |  |  |
| 032 | 23 | C0407 | - 2.24 |  |  |  |  |  |
| CO4033 | ${ }^{1.60}$ | CO4072 | 0.24 0.24 0 |  |  | TMS5501 (Mul | ction 1 |  |
| CD4035 |  | ${ }_{\text {COL4075 }}$ |  |  |  | Controiler for BO | Datasheet | 0.75 |

Our offices are at Link Property, 209 Cowley Road, Oxford, but please do not use this as
a postal address.


SINTEL for PCBS - KITS - CASES - MPUs - BOOKS - MEMORIES ${ }^{\text {Compronents trom }}$

A FREE CATALOGUE requested by post or phone will be sent by return with details of
our range of CASES BOOKS DISPLAYS MPUS MPU KITS MEMORIES and our range of CASES BOOKS DISPLAYS MPUS MPU KITS MEMO

## MEMORIES TTL COMPATIBLE STATIC RAMS

| 9131 , |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $1024 \times 4$ bit -500 nsec Access ume - Single $5 v$ supply - 120 mA max current consumplion 22 pin DIL package |  |  |  |  |
| When wiring up a $1024 \times 8$ bit memory board. using the 9731 reduces the number of wires between memory ICs from about 100 to about id |  |  |  |  |
| Ordel as 9131 |  |  |  |  |
| 2102A 6 | 2112A4 |  | 6508 |  |
| $1024 \times 1$ bil | $256 \times 4 \mathrm{Dr}$ |  | CMOS 10 |  |
| 650 nsec | 650 nsec |  | 600 nsec |  |
| Order as | Order as |  | Order as |  |
| 2102A-6 ¢3.61 | 2112A-4 | E4.76 | 6508 | ¢8.05 |



[^5]ORDERS Add VAT at $8 \%+25 p$ p\&p Phone orders see FAST SERVICE Export orders welcome. No Val but add 10\% (Europe). $5 \%$ (Overseas) for Alr Mail p\&p For SEND YOUR SINTEL ORDER TO P.O. BOX 75C, OXFORD

Tel. 086549791

## Gtatanatatactrom Marshall's

A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, London NW2 3 ET Tel: 01-4520161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 2OD Tel: 041-3324133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel 0272 654201/2
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Please enquire for types not listed NEW 168 PAGE CATALOGUE WITH 500 NEW LINES 55p post paid (40p to callers)

Our range covers over 7,000 items. The largest selection in Britain. Top 200 ICs, TTL, CMOS \& Linears


SEND FOR OUR NEW 168 PAGE CATALOGUE WITH 500 NEW LINES
55 p post paid or 40 p to callers

POPULAR SEMICONDUCTORS (A very small selection from our vast stocks, please enquire about devices not listed.)

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 000000000000000000000000000000000 <br>  |  |  |  |  |  |
|  <br>  |  |  |  |  |  |
| 0000 WWNNN-NNNN0000000000000-10000000000000 <br>  |  |  |  |  |  |
|  |  |  |  |  |  |
| N00000-00000000000000000000000000000000000 <br>  |  |  |  |  |  |
|  <br> 00000000000000000000000000000000000000000000 <br>  |  |  |  |  |  |
|  |  |  |  |  |  |
|  $0-00000000000000000000 \stackrel{0}{2} 000000000000000000000$ <br>  |  |  |  |  |  |
|  |  |  |  | © in ig |  |

Prices correct at 8th February 1977, but please add V.A.T. Post \& Packing 30p
SEE US AT THE ALL ELECTRONIC SHOW

$\square$ EnEOTRONIS

Carriage and packing charge extra on all items uless otherwise stated

On these pages you will find just the biefest selection from the vast range which we hold in stock at any one time.

If you are seeking a specific item and it is not listed, it will pay you to ring us firat - we believe we offer the best prices and the beat service. WORLD WIDE EXPORT

Enquiries and tenders welcome from any par of the world. HOW TO REACH US

We are easy to reach, no matter whare you live. Minutes away from Kings Cross or St. Pancres main-line atations, and a bus ride from Euston; only just over half an hour from Hethrow Aipors.

## 49-53

Pancras Rd London NWl 2QB Telephone: 01-8377781

(1)


POWER SUPPLIES



## TELEPHONE

 TESTEQUIPMENT
## steter



## TRANSMISSION TEST EQUIPMENT

## $\begin{array}{llll}\text { AlRMEC/RACAL } \\ \text { Wave Analyser } 248 A & 5-300 \mathrm{MHz} & \geq 250 \text { to } £ 300\end{array}$


$\qquad$
Type 210 A Modulation Meter $2.5-300 \mathrm{MHz}$ A.M.
Range $0.100 \%$ F.M Range $010 \pm 100 \mathrm{KHz}$ in 4
Ranges




D stortuon Factor Meter TF 142 F Funcamental Frea
Range $100 \mathrm{H}_{z}-8 \mathrm{KHz}_{z}$ Dist measuring ranges $0.5 \%$
年

Artenuator 70 dB in 10 dB \& 1 dB stieps 0 O $2=75$
150 \& 600 ohms balanced or unbalanked Distortion
日ROKERELTO

Please note: All instruments offered are secondhand and tested and guaranteed 12 month's unless otherwise stated

 RADIOMETER Wave Analyser FRA 2 T3 Special version of FRA 2
with faciliteres tor intermoduation measurements and
selective selective measurements ol frequency responses Freq,
range 30 Hz to 16 KHz Incremental freq OHz to $\pm 60 \mathrm{~Hz}$ Seleertivity 3 curves with following 1 dB points
$\pm 1.25 \mathrm{~Hz} \pm \pm 12 \mathrm{~Hz}=63 \mathrm{~Hz}$ and 60 dB points $\pm 40 \mathrm{~Hz}$ Voltage range $100 \mathrm{uV}-1 \mathrm{KV}^{450}$ Auxillañy Oscillator Range 0 Hz to 16 kHz and 15 to $1.6 \mathrm{KHz} 0 / \mathrm{S}-10 \mathrm{~V}$
(EMF) continuousty variable Impedence । Kohms WANDEL A GOLTERMA Level Transmites TFPS 42 . $10 \mathrm{KHz} \mathrm{z}^{-1} 4 \mathrm{MHz}$ Generator
$0 / \mathrm{p}$ level $08 \mathrm{mV}-25 \mathrm{VFSO}$ Lowes adjustable 50 uV Synchronous tuning of generator and level meter
possible Output impedence $150,75,70.60,50$ and ohms. $\pm 25 \mathrm{KHz}$ Fine Tuning range $\quad \mathbf{C 2 5 0 . 0 0}$ Bandwidth $\{600 \mathrm{~Hz}$ and 4 KHz ) Selective measuring
range 8 V to 40 uV (lowest readable 2 V .
 comprises a generator and recelve portion and operates distorion measuring set is mainiy used 10 measure VZM2 Distortion measurng set for phase and

DIGITAL VOLTMETERS AND MULTIMETERS OYNAMCO 022 S 10 UV -2KV Max reading 39999
 to 12 Mohm .4 digit plus $20 \%$ overange Compact and
C235.00
fightweight HEWLETT PACKARD
OVM trye 3430 A 3 digli, 5 ranges 100 mV 10100 V
FS Input cesistance 10 Mohms Overioad protection


| Qigitel Mukiproter 34702A with Dipley 3a7coa. 4 difit depley. 4 rengea both AC C DC plun 6 - minge of ohms AC function corcen $\mathbf{4 S H}$ t to 100 KHz . Ohmt renges are 100ohma to 10 Mohmi F.S. LED dieplay. Now condition. A much cought after device atil in curisis production |
| :---: |
|  |  |
|  |  |
|  |  |

PHILIPS
D.M.M TYPE PM 24233 3/2 digit DC Volts $2 \mathrm{~V}-1 \mathrm{KVA}$
VOLTS $2 V-350 \mathrm{R}=200$ ohms - 200 Mrohms Accuracy $0.1 \%$ of reading Aulomatic fange switching
for all functions. Automatic polarity indicator f 140.00 D.M.M TYPE PM 2522 . $31 / 2$ digit DC Volts $0.2-1 \mathrm{KV}$
AC Voins $O .2 .600 \mathrm{AC} / \mathrm{CC}$ Current $02 \mathrm{~mA}-2 \mathrm{~A} . \mathrm{R}=$
200 ohms -20 M 200 ohms -20 M ohms Accuracy $0.1 \% \pm 0.1 \%$ of
range DC Volts full cricuit protection. LED display SIGN/ROGERS
AF Voltmeter AM 324

## SOLARTRON AC Converter LM $121930 \mathrm{mV}-300 \mathrm{~V}$ mean reading Freq range $10 \mathrm{~Hz}-10 \mathrm{KHz}$




 DMM M
VIDAR

## Integrating OV M $520=6$ ranges $10 \mathrm{mV}-1 \mathrm{KV}$ Guardect can be floated to $=500$ High measurement speeed with ultimate CM R No filrers Up to 66 faster

$\qquad$

REMEMBER . . . We also buy We are interested in providing quotetions unused Test Equipment.


# (\$7) IRATIPLS <br> 58.60 GROVE RD WINDSOR,BERKS. <br> SL4 1HS. 

 HLEINDIISGIMTEL. 54525
TOP DISCOUNTS. NEW LOW PRICES.
Full spec devices
DAlO pen $75 n$

RED LEDS ID.
ETLDS TTL

## AMATEUA CDMPDNENTS

ORCHARD WORKS. CHURCH LANE. WALLINGTON. SURREY SMG 7NF
For Semiconductors Capacitors Resistors I/C Sockets L.E.D.'s and Hi -Fi Accessories

## ELEGTBONIG DIGITAL CLOCK

## From this <br> KIT <br> - to this



A professional product for the home constructor It has been designed
by engineers using the most modern techniques and components it byll appeal both to the confirmed hobbyist and to the man who simply wants to have a go The kit contains everything except a mains lead The only tools required are a small soldering iron solder scewdriver and wire cutters

* LARGE BRIGHT GREEN DISPLAY
* ATTRACTIVE ACRYLIC CASE
* 12/24-HOUR READOUT

$$
£ 9.60
$$

METAC - Electronics \& Time Centre
67 HIGH ST., DAVENTRY, NORTHANTS
TEL. DAVENTRY 032 72) 76545
OR 3 THE NEW ARCADE, UXBRIDGE, MIDDX TEL. UXBRIDGE (0895) 56961
Cash. Cheques or Postal Orders. Barciay \& Access

WW-104 FOR FURTHER DETAILS



# FAST RESPONSE STRIP CHART RECORDERS 

Made in USSR


Basic error $25 \%$ Sensitivity. 8 mA F.S.D Response: 0.2 sec Width of each channel Single and three-pen recorders: Five-pen recorders: 50 mm

Chart speeds, selected by push buttons, 0.1-0.2-0.5-1.0 2.5-5.0-12. $5-25 \mathrm{~mm} / \mathrm{sec}$

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording: Syphon pen directly attached to moving coil frames Curvilinear co-ordinates
Equipment: Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc

H3020-1 (Single pen): 28 bmm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high .......... PRICE £108.00 H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ high PRICE £295.00

## Series H327



Polarized moving iron movements with syphon pens directly attached Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4\%. Frequency response from $D C$ to 100 Hz 2 dB

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5volts/cm Width of each recording channel. 40 mm
Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
Chart speeds 1-2-5-10-50-125-250mm/sec
Type H3271-1. Single pen: Dimensions: $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos PRICE £265.00 Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos

PRICE $£ 520.00$
Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$ PRICE £770.00.

# SPECMA LON PRGE ARRANGEMENTS FOR MSTNG OMERSEAS TRADE FATRS 

IPC Electrical-Electronic Press Ltd., the world's largest publishers of computer, electrical and electronic journals, have made special arrangements for readers wishing to visit important overseas trade fairs. The cost, in most cases, is little more than the normal air fare but includes - travel by scheduled airline from Heathrow and Manchester * first-class hotel accommodation * arrival and departure transfers 米 admission to the trade fair * services of an experienced tour manager. The current programme comprises the following tours.


## The All-Electronics Show 1977

Grosvenor House, Park Lane, London April 19-21, 1977


Visit our combined stand at the All-Electronics Show, and prove your skill as a driver-
*Enter and play the all-new racing game 'Le Mans', a challenge of speed and skill, with prizes for the winners, donated by Light Soldering Developments, C.B.M. Ltd., Siliconix Ltd. and National Semiconductor Ltd. companies exhibiting at the show.

ELECTRON / WIRELESS WORLD published by IPC Electrical \& Electronic Press Ltd.

## OUR PURCHASE FROM THE DYNAMCO FACTORY CLEARANCE SALE



Mesh P.D. Transistor Scan. Wide Bandwidth $60 \mathrm{MHZ}+6 \times 10$ $\mathrm{cm}-1 \mathrm{KV}$ EHT. X Sensitivity $15 \mathrm{~V} / \mathrm{CM}$. Y Sensitivity $6 \mathrm{~V} / \mathrm{CM}$. Standard heaters.
THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100 SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER.

At $£ 65$ each. Carriage $£ 2.50$
Numetal Shields available at $£ 2.50$

## DATA LOGGER by DYNAMCO

These are BRAND NEW not finished - DATA LOGGERS BY DYNAMCO

They are completed but for the plug-in boards. The case with hinged lid is quite superb and extremely adaptable. It contains as well as the mother board an equally superb Power Supply with the following voltages $+28 \mathrm{~V} ;+15 \mathrm{~V} ;+5 \mathrm{~V}(2.5 \mathrm{~A})-$ this supply is crowbar protected: $-5 \mathrm{~V} ;-14 \mathrm{~V} ;-20 \mathrm{~V} ;-24 \mathrm{~V},-48 \mathrm{~V}$ and other supplies including auto 110 V . This unit supplied in its original cardboard box complete with original manual must be of serious interest to the professional constructor and any one considering the construction of a micro processor system. Unit size $71_{2}^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 23^{\prime \prime}$ deep.

Price $£ \mathbf{4 5}$ each. Carriage $£ 2.50$

ALSO AVAILABLE TUBE TYPE BRIMAR D10-210GH/32
BRAND NEW at $£ 70$ ea. Carriage $£ 2.50$
SUPERB PROFESSIONAL VDU CASES, size $23^{\prime \prime} \times 16^{\prime \prime} \times 27^{\prime \prime}$ on stands. Hammer grey. BRAND NEW SCHLUMBERGER Surplus $£ 40$ each. Carriage $£ 2.50$
C.D.C. DISK DRIVES complete with electronics, power supply, etc. Fine condition with Disk Pack. $£ 100$ each. Carriage $£ 15$

## LINE PRINTERS - VARIOUS MODELS <br> £100 each. Carriage $£ 15$

MINIATURE - OXLEY PATCH PANELS - BRAND NEW

## EX DYNAMCO

$10 \times 10$ complete with pins. $£ 10$ each. P\&P 50p
EDWARDS HIGH VACUUM PUMPS
Type1SC30@ £55 each. Type ES35@ £45 each Carriage $£ 2.50$

Quantity of CABINETS - Approximately 5 ft . 6 in . and smaller. Computer types - very smart. Prices from $\mathbf{£ 4}$ to £20 dependent on size. Carr. £2.50

## VARIOUS MODELS OF PUNCHES/READERS available for your inspection PRICES FROM $£ 15$. Carriage $£ 2.50$

## APOLLO SCRIBEMASTER

PRINTED CIRCUIT BOARD MAKER £475

FRY'S ELECTROVERT WAVESOLDERING MACHINE
Type WASL 12 - Complete with Ultrasonic cleaner, Fluxwave applicator, jet blower, etc. £ 1,250

LARGE QUANTITY DYNAMCO TEST UNITS, OSCILLOSCOPE TUBES, RESISTORS, CAPACITORS, TRANSISTORS, PUNCHES, READERS, PATCH PANELS, PATCH PANEL PLUGS, ASSEMBLIES: FERRITE CORES, KNOBS, FREQUENCY COUNTERS, DVM'S, SCHLUMBERGER BATTERY PACKS, 74 HUNDRED IC BOARDS, COMPUTER PANELS, FIBREGLASS BOARD, TRANSFORMER C CORES, CITENCO REDUCTION GEARED MOTORS, AB POTENTIOMETERS VARIOUS VALUES, KEYBOARDS, TUNING CAPACITORS, TRIMMERS, SMOOTHING CAPACITORS and VARIOUS TEST EQUIPMENT including SOME UNFINISHED OSCILLOSCOPES and other ITEMS. Available for your inspection NOW.

CALL - SEE AND BE TEMPTED
VALUE ADDED TAX not included in prices - VAT at $8 \%$
Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

7/9 ARTHUR ROAD, READING, BERKS (rear Tech. College, King's Road). Tel. Reading 582605

## Why setele Westers news?

News Reviews Technical Developments
Production Methods New Products Design
Finance Share Index Management
Marketing Appointments Vacancies
Exhibitions

## Electronics Weekly

THE TECHNICAL AND BUSINESS NEWSPAPER OF ELECTRONICS AND COMMUNICATIONS

## Order your copy by using this form

Electronics Weekly, c /o Room 218, Dorset House
Stamford Street, London SE1 9LU
I wish to take out a one year subscription to Electronics Weekly
Remittance enclosed for $£ 6.00$ (U.S.A. / Canada $\$ 15.60$ )
NAME
|Please prin)
ADDRESS

(ISSUE NO. 4 NOW READY - WITH NEW SECTION ON METERS

## RELAYS-UNISELECTORS— SWITCHES

MINIATURE PLUG-IN RELAYS (Siemans/Varley) with perspex dust cover and base.
6-12-24-48v D.C. In Stock
2c/o50p: 6 make 60 p

S.T.C. MINIATURE (P.C. Mounting)
with dust cover
$2 \mathrm{c} / 0(18 / 24 \mathrm{v}) 45 \mathrm{p}$ P.P. 10p
$4 \mathrm{c} / 0(24 / 36 \mathrm{v}) 50 \mathrm{p}$ P P.
$4 \mathrm{c} / 0(36 / 48 \mathrm{v}) 75 \mathrm{p}$ P P. 10p
CLARE-ELLIOTT MINIATURE RELAYS
(Hermatically sealed) $2 \mathrm{c} / 0675 \mathrm{ohm}$
$24 v$ O.C. Coils $(22 \times 22 \times 10 \mathrm{~mm}) 75 p$ I.T.T. 240v A.C. Plug-In RELAYS with perspex cover) 10 amp contacts
2c/o65p3c/o 75p P.P 10p
REED RELAY 3 MAKE (50 $\mathbf{x} \mathbf{2 0 \times 2 0 \mathrm { mm } \text { ) } ) ~ ( 1 )}$
3500 ohm coil 24 V D.C. 50p
REED SWITCHES (1 MAKE)
Type $1(18 \times 3 \mathrm{~mm}) 12$ for $\mathbf{£ 1}$
Type $2(48 \times 5 \mathrm{~mm}) 8$ for $£ 1$
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam. £1 P.P. 20p
UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm $\mathbf{6 5 . 5 0} \mathbf{P}$ P. 50p
6 Bank Full Wipe 75 ohm E6.25 P.P. 50 p
8 Bank Full Wipe 75 ohm E7.50 PP. 50p
12 Bank Half Wipe 68 ohm $\mathbf{5 6 . 5 0}$ P.P. 60p
SMALL 12V UNISELECTORS 4 Bank 11 way E 2.50 P P 50p
D.C. SOLENOIDS $24 v$ (Cont Rated)

10 lb Pull 20 mm Stroke Size $50 \times 48 \times 42 \mathrm{~mm}$

## 75p P.P. 15p

FOOT SWITCH 'SQUARE-D" H.D.
20 A Make/ 10 A Break at $240 v$ A.C.
600v A.C./D.C. Max. E4 P.P. 75p
BURGESS MICRO SWITCHES (VCSP)
Single Pole c/o 8 for £.1PP. 10p
H.D. HONEYWELL MICRO-SWITCH (contacts $2 \mathrm{NO} / 2$
H.D. HONEYWELL MICRO-SWITCH (contacts 20 amp) $1 / 4$ turn action complete with roller actuator

E2PP. 35p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits. 50p each. Bank of 8 with mounting brackets $£ 3$
P.P. 20p

DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons 6 mm digits 75p each P P. 10p
Also in BCD
KEY SWITCHES • 1000' TYPE
$4 \mathrm{c} / 0$ each way locking 60 p P.P. 10 p
6 make each way locking 60 p P.P. 10p
Bank of $4.4 \mathrm{c} / \mathrm{o}$ each way. I biased E1.25 P P. 15p
MULTICORE CABLES
8 CORE RIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
$10 \mathrm{~m}-£ 150$ : $50 \mathrm{~m}-\mathbf{£ 6 . 5 0 : ~} 100 \mathrm{~m}$-£12.00 PP ip per
metre
5 CORE H.D. CABLE $5 \times 70 / 76$ P V.C
Black Outer P.VC.O.D. $1 / 2 \mathrm{in}$
10m-£2.50: $50 \mathrm{~m}-\mathrm{£} 12: 100 \mathrm{~m}-£ 22.50$ PP 2p per metre
6 CORE ARMOURED $6 \times 40 / 76$ P VC INS
Outer Sheath-Flexible Galvanised Tubing. OD $5 / 8 \mathrm{~m}$
10m-£3: 50 m -£14: $100 \mathrm{~m}-\mathbf{£ 2 5}$. $\mathrm{P} P$ 2p per metre 6 CORE SCREENED $6 \times 71760006 \mathrm{~mm}$
6 10m-£1.50: $50 \mathrm{~m}-£ 6.50: 100 \mathrm{~m}-£ 12.00$ P.P. 2 p per
metre
36 CORE SCREENED $36 \times 7 / 76$ ( 36 Colours)
11 mm.

## VARIOUS

E.H.T. MODULES. Input $190-260 \mathrm{v} 50 \mathrm{HZ}$ Output 137 KV . PK.@ $0.50 \mathrm{~m} / \mathrm{a}$. ( $150 \times 95 \times 70 \mathrm{~mm}$ ) £12. P.P. £ 1 AIR PRESSURE SWITCH 0-10 lb Variable
Switch Contacts 15 amp. Change-Over £1.50 P.P. 25p
MYRIA MEGOHMMETER TYPE 35A. 20-200K
MEG/OHMS 500v test. Excellent condition $£ 45$, carr £250
EQUIPMENT COLLING FANS (System Papst) Precision made. Silent running. $110 \mathrm{v} 50 \mathrm{~Hz} .120 \mathrm{~mm} \times 120 \mathrm{~mm} . £ 5$. P.P 50p.
"BLEEPTONE" AUDIO ALARMS
12v D.C 50p P.P. 10p
GEARED MOTORS 230v A.C. (Int. Rating)
110 r.p.m. E2.25 P.P. 75p
MAGNETIC COUNTERS
6 digit $48 \vee$ D.C. (Non-Reset) $92 \times 32 \times 22 \mathrm{~mm}$
New/Boxed £1 ea P.P. 15p
3 DIGIT RESET COUNTERS ( 240 V AC) Veeder-root
£1.75 PP 250
D.C. POWER SUPPLIES Input 240 V A C

TYPE 120 V D.C. at 1 amp. Fully regulated $155 \times 155 \times 75$ mm totally enclosed E5 P.P. 75p
TYPE 220 V O. C. at $500 \mathrm{~m} /$ a stabilised on open chassis 170 $\times 100 \mathrm{~mm}$ £2.50 P P. 75p
PHILIPS MOBILE RADIO P.S.U.
 $75 p$
TELEPHONE HANDSET with "Press to Speak" switch
E1.50 P.P 25p
2000 w . AUTO TRANSFORMERS. Tapped 100/125/200/225/250v New in wooden boxes $£ 15$ P P $£ 1.50$

## \section*{PLEASE ADO 8\% V.A T.} <br> J. B. PATTRICK

191/193 LONDON ROAD
ROMFORD, ESSEX RM7 9DJ ROMFORD 44473

# Wilmslow Audio 

## THE firm for speakers!

Baker Group 25. 3. 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm Baker Deluxe 8 or 15 ohm . Baker Major. 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm. Baker Superb. 8 or 15 ohm Celestion HF1300 8 or 15 ohm Celestion MH 1000 horn. 8 or celestion MH 1000 horn. 8 or 15 ohm £13.50
Coles 400 I G super tweeter .... $£ 5.90$
Coles 4001 K super tweeter .... $£ 5.90$
Decca London and $X$ over . . . . . . £38.45
Decca DK30 and X over . . . . . . . £25.25
EMI $5^{\text {" }}$ Mid range . . . . . . . . . . . . $£ 3.50$
EMI $6^{1 / 2} 2^{11} \mathrm{~d} /$ cone roll surr. 8 ohm . $£ 3.95$
EMI $8 \times 5.10$ watt. d/c. roll/s 8 ohm $£ 3.95$
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm ..... £12.50
Elac 59RM $10915 \mathrm{ohm} .59 R M 1148$ ohm
£3.50
Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s $8 \mathrm{ohm} . . . .$. . $£ 3.95$
Fane Pop 15 walt $12^{\prime \prime}$. . . . . . . . . . $£ 5.75$
Fane Pop 33T 33 watt 12" . . . . . . £9.95
Fane Pop 50 watt. $12^{\prime \prime}$. . . . . . . . £ 12.50
Fane Pop 55. 12" 60 watt ..... £16.95
Fane Pop 60 watt, $15^{\prime \prime}$. . . . . . . . £19.95
Fane Pop 70 watt 15" . . . . . . . . £21.75
Fane Pop 100 watt. $18^{\prime \prime}$. . . . . . . £33.95
Fane Crescendo 12A or B. 8 or 15 ohm
£42.95
Fane Crescendo 15. 8 or 15 ohm . £54.95
Fane Crescendo 18, 8 or 15 ohm . £75.95
Fane 807T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$. rolls/s. 8 or 15 ohm
$£ 5.40$
Fane 801T $8^{\prime \prime \prime} \mathrm{d} / \mathrm{c} \mathrm{roll/s} 8 \mathrm{ohm}$.. $£ 9.50$
Goodmans 8P 8 or 15 ohm . . . . . . £6.50
Goodmans 10P 8 or 15 ohm ..... £6.95

| Goodmans 12P 8 or 15 ohm | £16.50 |
| :---: | :---: |
| Goodmans 12P-D 8 or 15 ohm | £18.75 |
| Goodmans 12P-g 8 or 15 ohm | £17.75 |
| Goodmans Audiom 2008 ohm | £14.95 |
| Goodmans Axent 1008 ohm | £8.50 |
| Goodmans Axiom 4028 or 15 ohm | £22.00 |
| Goodmans Twinaxiom 8' 8 or | 15 ohm |
| Kef T27 | . $£ 8.50$ |
| Kef T15 | £10.75 |
| Kef Bllo | £10.95 |
| Kef B200 | £11.95 |
| Kef B139 | £24.95 |
| Kef DN8 | £2.75 |
| Kef DN12 | £7.25 |
| Kef DN13 | £4.95 |
| Richard Allan HP8B 8' 45 watt | £12.50 |
| Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s | £7.95 |
| Baker Major Module, each | £18.00 |
| Goodmans Mezzo Twinkit, pair | £51.95 |
| Goodmans DIN 20. 4 ohm, each | £15.75 |
| Helme XLK35. pair | £26.75 |
| Helme XLK40. pair | £38.50 |
| Helme XLK30. pair | £21.95 |
| Kefkit 1, pair | £59.50 |
| Kefkit III, each | £56.00 |
| Richard Allan Twinkit. each | £13.95 |
| Richard Allan Triple 8. each | £20.75 |
| Richard Allan Triple 12, each | £25.95 |
| Richard Allan Super Triple. each | £29.50 |
| Richard Allan RA8 kit. pair | £37.80 |
| Richard Allan RA82 kit, pair | £59.40 |
| Wharfedale Denton 2XP, pair | £23.25 |
| Wharfedale Linton 3XP. pair | £34.25 |
| Wharfedale Glendale 3XP kit. pair | £49.50 |

All Radford, Gauss, Castle, Jordan Watts, Eagle, Lowther, Peerless Tannoy units in stock Prices correct at 12/1/77

## ALL PRICES INCLUDE VAT

Cabinẹts wadding, Vynair, Crossovers etc. Send stamp for free 38-page booklet 'Choosing a Speaker'
FREE with all orders over $£ 10-$ Hi-Fi Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage: Speakers up to $12^{\prime \prime} 60$ p; $12^{\prime \prime} £ 1 ; 15^{\prime \prime} £ 1.75 ; 18^{\prime \prime} £ 2.50$
Kits $£ 1$ each ( $£ 2$ per pair). Tweeters \& Crossovers 33 p each.

## WILMSLOW AUDIO <br> Dept. Ww

Loudspeakers \& Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount Hi-Fi, PA, etc.: 10 Swan Street, Wilmslow, Radio, Hi-Fi, TV; Swife of Wilmslow, 5 Swan Street, Wilmslow. Tel. !Loudspeakers), Wilmslow 29599 ! $\mathrm{Hi}-\mathrm{Fi}$, etc.), Wilmslow 26213.

Access and Barclaycard orders accepted by phone

## Appointments

Advertisements accepted up to 12 noon Monday, April 4, for the May issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7.50$ per single col. centimetre (min. 3 cm ). LINE advertisements (run on): $£ 1.10$ per line, minimum three lines. BOX NUMBERS: 50p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEI 9LU.) PHONE: Eddie Farrell on 01-261 8508 Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.


UNIVERSITY
OF SOUTHAMPTON
Department of Chemistry

## INSTRUMENT

 TECHNICIANrequired to join a section carrying ou the maintenance and reparr of scientific, electronic and optical instruments
Applicants should have a technical qualification of HNC or ONC or equivalent with several years relevant experience in electronics and/or scientific instruments
The appointment will be made at grade 5 on salary scale £2889-£3367 which includes two supplements under Government pay policy)
Applications giving detaris of age qualifications and experience and the names and addresses of two referees shouid be sent to Mr D A S Copland, The University. Southampton SO9 5 NH , quoting reference 217 /T.WW

## Oxfordsire AREALEALH AUTHORIT Y (TEACHING) <br> Churchill Hospital <br> Medical Physics Technician

## Grade III (Electronics)

 $£ 2961.00-£ 3834.00+£ 312.00$To work in the Department of Radiotherapy and Oncology on the design and building of new circuits and the maintenance and updating of existing radiotherapy equipment. HNC or equivalent in electronics necessary

Enquiries to Mr R J Thorne Chief Technician. Department of Radiotherapy \& Oncology. Churchill Hospital. Oxford OX3 7LJ. Closing date 25th February. 1977

## UNIVERSITY OF ABERDEEN <br> ELECTRONICS TECHNICIAN

required for Department of Medical Physics for duties concerned mainly with the development of digital and analogue ciscuiry for protolype equipment used in clinical/research piojects and the maintenance/repair of medical electronic equipment
Applicants should hold ONC of equivalent qualification and have had previous experience in electronics.

For suitably qualified candidate salary on scale £2455-£2788 (inclu sive of supplements under Stages $1 \&$ 2 of incomes policy)
Applications giving details of age qualifications and experience should reach the Secretary. University Office. Regent Walk Aberdeen AB9 ifX by 31 st March and quote Ref No

# CALIBRATION ENGINEERS 

## MEASURE YOUR SUCCESS BY OURS

EMI's commitment to excellence in its electronic products is achieving best ever sales and creating many new opportunities for expansion and development

We depend upon very high standards of quality assurance, so we are looking for professionals who work to these standards and who have the ability to extend them still further.

The work is varied and invoives the calibration and maintenance of electronic and electro-mechanical test equipment, covering a wide range of test and measuring techniques such as optical, thermal, digital and computer
Qualified to City \& Guilds (full certificate), ONC or equivalent in electronics, candidates should have experience of fault diagnosis and current measuring techniques. Knowledge of micro-wave techniques, and/or the utilisation of automatic test equipment would be an advantage
To appreciate the satisfaction of working to EMI standards, come and see for yourself. You can also be sure that the salaries and benefits we offer - including the security of working for a highly successful organisation - reflect our awareness of the importance of your skills

For further details and an application form, please telephone or write to: Barry Page, Personnel Department, EMI Limited, 135 Blyth Road, Hayes, Middlesex Tel: 01-573 3888 ext. 639 or Record-a-Call anytime on 01-5735524

## LONDON COLLEGE OF PRINTING

Faculty of
Visual Communications
Department of Photography
Film and Television

## TELEVISION

TECHNICIAN/ ENGINEER
Applications are invited for the above post in the expanding Television Department of Photography, Film and Television

Candidates should be conversant with $1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}$ and $1^{\prime \prime}$ black and white and colour equipment and be capable of electronic maintenance. Experience in professional broadcasting would be an advantage, as well as an interest in experimental video work The successful applicant will be expected to assist in running studio productions, and video tape editing. Salary scale £3190-£4702 inclusive (ST1/2).
Application forms, returnable within 14 days, obtainable from the Senior Administrative Officer at the college.

## ITN <br> SENIOR ENGINEER - INSTALLATION PROJECTS £5,712 p.a.

An engineer is required to work as part of a newly formed team responsible for installation projects. The work will be varied and will involve a wide range of broadcast equipment. The successful applicant will have a good knowledge of broadcast and sound equipment and techniques. Current projects include the replacement of major studio sound desks, telecine sound followers, multi track recording and communication systems
A broad base of experience, gained either with a broadcaster or a manufacturer is essential.
In addition to practical experience, academic achievements will be taken into account.
Candidates should telephone the Personnel Department of Independent Television News Ltd on 01-6373144 quoting reference 3217

## Re-advertisement <br> UNIVERSITY COLLEGE OF NORTH WALES BANGOR <br> School of Physical and <br> ELECTRONICS TECHNICIAN GRADE 5

Applications are invited for the post of Electronics Technician Grade 5 in the above mentioned School. The successful applicant would be concerned with the development construction and maintenance of specialised electronic equipment for a wide range of research work and teaching in the School

Applicants should have had several years' relevant practical experience coupled with theoretical knowledge preferably to H.N.C standard or equivalent

Salary at an appropriate point on scale £2.889-£3.367 per annum

Pension Scheme
Applications (two copies), giving details of age, education and experience, rogether with the names and addresses of iwo referees should be submitted to the Assistant Registrar (Personnel), University College of North Wales, Bangor, Gwynedd LL57 2DG

# ELECTRONICDESIGN/  FERRANTI OFFERS YOU FREEDOM 

..... freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:-
Digital and analogue electronic circuitry design.
Design and application of small digital computers.
Microwave and laser techniques.
Advanced instrument design including gyroscopes of inertial quality.
Design of small mechanical structures and analysis of stress.
In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should have some design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sportand entertainment, is one of the ideal cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiable and the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications to

Staff Appointments Officer,
Ferranti Limited,
Ferry Road,
EDINBURGH, EH5 2XS.
Please quote Ref. WW/1.

# ElectronicTest Techniciansput your skills to the test! 

Here at Havant where we currently manufacture large systems we're looking for Technicians, male or female, with experience of sophisticated electronics, and the ability to diagnose and rectify malfunctions on a complex computer system.

You're probably an experienced Technician with ONC/HNC in electronics or relevant Service experience in digital equipment

Starting salaries are very competitive, together with first-class working conditions You may be expected to work on a double shift basis for which an attractive premium will be paid.

As well as a wide range of fringe benefits we also offer generous relocation expenses to this attractive part of the south coast which provides outstanding social and recreational facilities

If you feel this opportunity is suited to your ability and experience phone or write for an application form to: Marjorie Menereau, Personnel Officer, IBM United Kingdom Limited, Langstone Road, Havant, Hants. Tel: Havant 6363.
Quoting ref: WW/92838
IBM

## Polthames

School of Materials Science and Physics

## Electronics

Technician
(Grade 4)
Applications are invited for a technician for the electronics workshop who will be required to construct main ain and reparr a variety of electronic equipment for teaching and research A good understanding and a flair for electronics is needed. Candidates should have an ONC or OND or equivalent qualification and at leas seven years relevant experience
Salary scale:
£2835-£3216 including London weighting plus personal allowance (ie. $5 \%$ of gross pay: min. £2.50

Further particulars and form of application may be obtained from the Staffing Officer, Thames Polytechnic, Wellington Street, London, SE18 6PF, to whom completed applications should be returned by 22 March, 1977.

## Join the leaders in Telecine Development

Rank Cintel - a division of Rank Precision Industries - has developed the world's most sophisticated telecine machine, and is currently englaged in a vast export programme. These achievements result from concentration on technical superiority and excellence of quality, and demand the highest standards of engineering at all levels. In order to maintain and develop our technical advantages, we now have a number of progressive positions for the following specialists

## R \& D Electronic Engineers

To apply their expertise to circuit design, using analogue and digital technıques in audio, video and servos. Candidates, men or women, should have good practical experience and be qualified to at least HNC level

## Test Engineers (Broadcast Equipment)

## To test and fault-find sub-units and PCB's using test specifications

 and a traditional range of test equipment Candidates, men or women, should be qualified to T4 level and preferably will have
## some work experience in electronics testing

## Mechanical Design <br> Draughtsman

To design and develop film and tape transports and associated instruments. Candidates, men or women, should be qualified to at least HNC Mech Eng., and have a number of years' experience in designing precise and dynamic devices
All positions carry good starting salaries - with excellent prospects for career development. Working conditions and benefits are first-rate.
 Tel 09203939

## Development Engineers <br> Consumer Electronics Hastings

## Accepting that good Developmen

Engineers are in universal demand, we nevertheless believe that our vacancies here at Hastings, open to both men and women, offer attractions second to none. Such as

* Technically challenging, professionally rewarding, personally satisfying work on Advanced colour television and audioproduct design, incorporating the latest concepts in digital and integrated circuitry, microprocessors, and L.S.I. Then there's the development of Teletext, Viewdata - the list is almost endless.
* Opportunity to become involved with a successful company, which intends to accelerate its growth and build on its already high reputation for quality and innovation
* The probability of overseas travel. The certainty of a good salary, generous holidays, "big company" fringe benefits Pension and Life Assurance schemes, subsidised sporting and social facilities
* Assistance, where appropriate, in moving to this pleasant, socially attractive, healthy coastal area, where housing is available and more reasonably priced, yet the amenities of the "big city" are within easy reach

Sounds good? Then, if you have a degree or HNC , plus experience in a relevant speciality, write giving brief personal and career detalls (or phone for Application Form) to :-George Greaves, Personnel Officer, ITT Consumer Prociucts (UK) Ltd. Theaklen Drive, Hastings, E. Sussex. Tel: Hastings (0424) 437061.


INDEPENDENCE \& WORLD TRAVEL IN A CHALLENGING FIELDFOR EXPERIENCED Service \& Installation Engineers
The MEL Equipment Company Limited, the professional electronic division of the International Philips Group produce the advanced linear accelerators used in many of the major hospitals throughout the world for the treatment of cancer
The equipment is highly sophisticated and offers those involved with installation and field support the opportunity to develop skills in this innovative area


At present we are looking for self reliant, adaptable engineers who would appreciate the challenge and rewards of working on advanced medical equipment. Spending periods of up to 4 months duration overseas they would work in important medical centres installing and servicing the equipment.

Applicants will need professional qualifications of at least HNC level and a good knowledge of semi-conductor circuitry and ideally have experience of equipment such as high power radar systems. They will also need personal qualities which will enable them to deal with various senior members of organisations and act as "ambassadors" for our company.
We offer excellent progressive salaries with full expenses and allowances, an annual bonus, Pension and Life Assurance schemes and at least 4 weeks and 3 days annual holiday entitlement. Where candidates do not live in the Crawley area relocation will be necessary. Assistance will be given. moluding nomination for rented accommodation from
 Crawley New Town Commission. Crawley is an established New Town situated on the Surrey/ Sussex borders offering excellent educational and recreational facilities, including a local sports centre and swimming pool. If you would like to take this opportunity to work on vital, highly sophisticated equipment please write or telephone for an application form to Barbara Newman, Personnel Officer, M.E.L. Equipment Company Limited, Manor Royal Crawley, Sussex. Tel: 029328787.

## MEL

## 

## OXFORD INSTRUMENTS DEVELOPMENT ENGINEER

Applicants should be practical, innovatory electronics engineers with experience in r.f., and precision analogue circuit design. A knowledge of digital techniques, would be useful, but is not a prime requirement.
The successful applicant will be a key member of a small new group with multidisciplinary interests. He or she will primarily supply the electronics expertise required for the development of sophisticated new instruments, but will also be expected to become involved in other aspects of innovation. The ability to work with minimal supervision and to be self-motivated is essential.

Salary negotiable according to age and experience.
Contact Dr. Peter Hanley, telephone Oxford 41456 or write to The Oxford Instrument Co., Osney Mead, Oxford OX2 ODX, to arrange an interview.

## CABLESYSTEMS CANADIAN LIMITED <br> SYSTEMS ENGINEER

## CANADA

We have an opening in our London. Ontario, Engineering Office, for a shirt sleeves professional engineer who has a strong background in Video Engineering. A working knowledge of R.F. Transmission preferred in C.A.T.V. would be an asset. You would be a highly results orientated individual who will enjoy the challenge of making your place in a small team of engineers. Canadian Cablesystems is a company with ten C.A.T.V. Systems in Ontario with over 400,000 Subscribers
Salary will be in the range of $\$ 20.000$ per annum
If you wish to pursue this position within our organisation please send your résumé in confidence to

## G. F. Stone

9 Great Lawn. Ongar, Essex
Interviews will be held in London. England.


## ELECTRONIC DESIGN ENGINEER'S

DO YOU want to earn a better than average salary?
DO YOU want to join a go-ahead company?
DO YOU have experience in the design of audio to UHF circuitry or Assembly level programming of mini or micro processors? DO YOU like working with the minimum of supervision? YOU DO? Then apply to:

The Technical Director Burndept Electronics (ER) Lid St. Fidelis Road Erith, Kent Erith 39121

## LONDON BOROUGH LEWSHAM

TOWN CLERK \& CHIEF EXECUTIVES DEPARTMENT

## Administrative Officer (Telecommunications)

## £4836-£5142

To provide and maintain an effective integrated telecommuni cations service for all Council establishments and to ensure that the service fully meets the Council's current and antıcipated requirements
Applicants must have a wide knowledge of Post Office and commercial communication installations
Application form, returnable by 1 st April, and detailed job description from Chief Personnel Officer, Town Hall, Catford, London SE6 4RU, or telephone 01-690 7666 (24-hour Ansafone service) quoting reference CE 78 and job title.

# Radio Officers-now you can enjoy the comforts of home. 

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition,' a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with'sea-going experience, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.
Post Offifice Teleconmmunications

SOUTH COAST
Several of our clients require the following
personnel urgently, offering excellent personne urgently, offering excellent
salaries and relocation expenses where necessary
PROJECT ENGINEERS
ELECTRONIC ENGINEERS
TEST ENGINEERS AND
TECHNICIANS
QUALITY ASSURANCE ENGINEERS TECHNICAL AUTHORS SYSTEMS PROGRAMMERS Mechanical
and BUYERS
Please write or ring: CBS APPOINTMENTS 224 Old chrisich hirch Rd... Bournamouth. Bournemouth 292155 or Wimborne 4891 after 7 p.m. (7084)

## PIPCO

(S \& W SERVICES)
For Electronic Engineers, Technicians \& TV Service Engineers.

26a High Street
Touns 01-572 7363
Telex Pipco Hounslow 935413
(6552)


ELECTRONICS ENGINEER wanted. With experience in modern amplification and electronic keyboards. Hiring Deprrtment key Maurice Pakquet. Tel. 01.749 3232. (7107)

## Applications and Production Engineers

Dolby Laboratories manufacture and market professional audio noise reduction equipment which is widely used by major recording companies, recording studios and broadcasting authorities throughout the world. Established in London, the Company has enjoyed successful growth since incorporation in 1968.

Applications Engineer c. 55,000 Reporting to and working closely with the International Marketing Manager the person appointed will be involved in all aspects of sales, eg providing technical information to distributors and customers, giving demonstrations and training courses, and visiting recording studios and broadcasting organisations in the UK and abroad.

The successful applicant will be an electronics engineer who enjoys dealing with people and problems. Aged between 25 and 35 he, or she, will probably have a degree and may well have experience of recording studio or broadcasting practice. European languages would be a distinct advantage.

## Production Engineer c. $£ 4,000$

The person appointed will join a small team which provides the technical support to the production department. Working under the Production Technical Manager this section is responsible for establishing assembly and testing procedures, quality control and interfacing with sales and design engineers on product improvements and new product introductions.

The successful applicant will be an electro-mechanical engineer who enjoys using his specialist knowledge to resolve day-to-day problems as much as the more theoretical aspect of the job. He, or she, will probably have a degree and experience in electronic equipment manufacturing.

Write or telephone
Gary Holt, General Manager Dolby Laboratories Inc 346 Clapham Road, Lonoon SW9 Telephone 01-7201111


An Electronic Technician (Calibration) is required to join the general electronic facilities of the Open University. Main duties of the post are to provide a 95\% in-house calibration and maintenance Service for all measuring equipment using
mainly electronic techniques mainly electronic techniques
To assist all OU staff (academic. research.
technicians and maintenance) with electronic problems and the use of their equipment
To set up and maintan the necessary record system to operate such a service. Experience: Ten years in efectronics. Five years of which should be relevant to the above duties
Qualifications: HNC or C and G in an appropriate subject
Salary: Technician Grade 5 £2889-£3367 Holidays:
university closed days plus 7 days. plus 6 The post is within the New City of Milton Keynes
There is a university office to assist with housing The applicant may be eligible for development housing and part removal expenses from the Open Universiny Application forms and further particulars are the Personnel Manager (ET2) The Open University. PO Box 75, Walton Hall, Milton Keynes, MK7 6AL Telephone Milton Keynes 63868
Closing date for applications 31 st March
1977 1977
(7065)

## TRAINEE ELECTRONICS

EXPORT SALESMAN
Good basic knowledge and German Language required by acuve Company Interesting position with variety EMPEXION LTD.
233/243 Wimbledon Park Road S.W. 18
S. 18

Tel: Abott 01-8744362

## Transmitter Engineering SENIOR DEVELOPMENT ENGINEER DEVELOPMENT ENGINEER

Pye TVT Limited are among the world's leaders in the field of professional broadcast equipment. Expanding activities in our transmitter engineering department now create the need for more personnel to join a team working on the design and development of TV and broadcast transmitters. The more senior position involves greater responsibility and some supervision activities The successful candidates are likely to have a degree or equivalent, but more importantly should have had several years of development experience on transmitting equipment - broadcast or radar Relocation expenses to this pleasant part of East Anglia will be given in approved cases. Other benefits
 include a pleasant working environment, a good salary (with recently implemented supplement), restaurant and cafeteria service, staff shop and an active sports and social club. Please telephone or write to Mr. D. Barnicoat Personnel Officer, Pye TVT Limited, P.O. Box 41 . Coldhams Lane. Cambridge CB1 3JU Tel: Cambridge $45115 \quad 7074$

SALOP AREA HEALTH AUTHORITY
Electronic and Bio-medical Engineering Department

## TECHNICIAN IV

required for the Area Works Department based inilally at Copthorne Hospital South

Qualifications ONC/HNC Electronics
Responsibie to Area Engineer
Salary scale $\quad$ 〔 $246-\{3267 \mathrm{pa}+£ 312 \mathrm{p}$ a supplement

A technician is required for the above department to be responsible for the maintenance of medical mechanical and electronic apparatus used in the Area

The Terhnician will join a team who carry out a continuous servicing and overhauling programme to ensure that the equipment in their charge will run at the peak of its avalable efficiency at all times

Application form and job despription to be ohtained from the Area Engineer Shrewsbury Hospai. Copthorne South Mytion Oak Rona Snrewstary Salop Tel Shrewsbury 52244 Ext 3273 Comperati apphiction forms to be ruturned by 14 days after insertion date

# X-Ray Service Engineer 

(*4190 Saudi Riyals per month)

## for the <br> King Faisal Specialist Hospital and Research Centre. Riyadh, Saudi Arabia.

If you are an experienced Service Engineer, fully conversant with the most modern therapeutic and diagnostic radiology equipment, here is a unique opportunity to make a break for two years and practise your skills in one of the most modern hospital and research complexes in the world.
We urgently need an experienced Service Engineer, who will be responsible to the Chief Bio-Medical Engineer, to service and maintain a range of predominantly Philips' radiology equipment.
Newly-built, air-conditioned accommodation is provided, together with wide facilities for sport and recreation.
Two year contracts will be offered to suitably qualified applicants. Passages and accommodation will be provided for up to three dependants and there are generous leave periods.
At this time no income tax is payable in Saudi Arabia.
*Sterling exchange rate at the time of going to press
5.97 riyals to the f .

Please apply in writing or telephone:
Peter Coles,
Director of Human Resource Management (UK) HOSPITAL CORPORATION
INTERNATIONAL LTD.,
33 Cavendish Square,
London W1 M 0AA.
Tel: (01)-491 3211



ELECTRONICS TECHNICIAN IGrad* 6) required by Physiolngy Dept. for the design and construction of biophysical insirumentation of be used in moriscie in analog. digital and
per berrence in analos ding corcuitry
computer interfacing computer Interfacing crecuitry
desirable. This is a threedear grant supported post. saitry in range $£ 3.802 \times 4.435$ inc. if London Weighting. Application form from Personnel Officer Technical stall FFs) University college iondon Gower Street landon WCIE 6RT Gower Street landon wole ${ }^{6} 7106$


## LINK



## BROADCAST TELEVISION

We have several vacancies for top electronic engineers to be involved in various aspects of our organisation, which covers the design and manufacture of a full range of studio television equipment, including colour cameras and complete studio/O.B. systems. We are a young successful company supplying sophisticated equipment world wide to major broadcasting organisations.

All positions require engineers with at least two or three years. experience in an industrial/broadcasting environment and offer the chance to make your individual ability felt within an expanding company

## Systems Engineer

To be involved in all stages of project management on the design and the building of studio and mobile TV systems. Occasional world wide travel. The appointment requires someone with a knowledge of the operational side of television engineering and the ability to take charge of people and deal with problems in the field.

## Development Engineer

For this position we need someone with a thorough knowledge of the latest circuit techniques plus the ability to put theory into practice in the design of sophisticated professional electronic equipment. You should be of HND/Degree level although relevant experience could outweigh formal qualifications

## Test Engineers

This position again requires somebody with a good knowledge of current analogue and digital circuit techniques plus recent experience with broadcast television or similar equipment sufficient to enable you to integrate quickly into the team engaged in the testing of colour and monochrome cameras

Experience solely of domestic television is insufficient and we regret that at the moment we are unable to consider further applications from newly qualified engineers
We can offer satisfying work in a congenial environment. Our modern factory is in a pleasant part of rural Hampshire with easy access to London and major towns. There is a good choice of housing and special arrangements exist for those moving from the G.L.C. area
Salary offered depends on age and experience but will be above average for the right people. Fringe benefits include a pension scheme, free life and health insurance, generous holidays, staff restaurant and assistance with relocation
Please phone for an application form or write with sufficient detail of your qualifications and experience to make this unnecessary

Contact: Mic Comber - Personnel Manager - Andover (0264) 61345

## Theres only one person who can get youagood job... ...and thatis yOH.

But we've already made the right contacts.
They're yours - and we don't need to interview or to see you first.
All you have to do is to complete our special highly confidential - application form.

Then we'll simply pass on your particulars to those - and only those - companies really keen to meet a man or woman with your credentials and, aged between 20 and 45 years.

> And they'll approach you direct.

We guarantee to safeguard all your correspondence and never to get in touch with any company you specity - from among our list of clients.
Like all good ideas $\rightarrow$ ours is very simple. It's simply the best way to find a new job.
Try it and see
Phone us today for an application form or, clip the coupon for our comprehensive and confidential information pack.
Lansdowne Appointments Register. Design House, The Mall, London W55LS. Tel: 01-579 6585
(24 hour answering service)

# Interested in computers? <br> Lecture on ComputerServicing 

We are looking for Lee turers toteach the practic alities ot computer servicing

Youwill be based at our Engineereing Fraining Centre in Letchworth, Heits - the largest of its kind in Europe Here you will be given a comprehensive grounding in computertechnology ingeneral and ICLequipment il patiocular
You will be theroughly prepared to train engineers to the perint where they will be apable or mantaining computers at the optimumenorational sper ification

Ideallv, you will have an HNC orforces' training in a technic al subject. Any experienceof dignal electronks computers or instructing on these subjects, while not essential, will be useful. Fluen y in written and spoken Fiench or German would be a distinct advantage but is not essential.

We'll start you as an Assistant Lecturer on a salary of not less than $£ 3800$ a year. You'll bee encourded and expected to progress to the position or Senior Lecturer which o arries a salary in excess ol 15000 )

Relocation expenses will be considered where appropriate

For an application form, phone [ avicf Reevers on 01-7887272 extension 4150 or write to himat $\mid \mathrm{CL}, 85$ (9) Upper Richmond Road, Putnev, London SW15 2TE. Pledsec quole. merence ww 1134

## International Computers

think computers-think ICL
(7001)

## UNIVERSITY OF SURREY

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING AN ELECTRONICS ENGINEER/TECHNICIAN
is required to join the Industrial Electronics Group working on a wide range of advanced electronic design and construction projects. The post entails working with the minimum of supervision on the construction and testing of high quality prototypes and presents an opportunity for career development in instrumentation, computers and communications.

A second post exists in the Department Electronics Workshop where an ELECTRONICS ENGINEER is required to join a team designing, building and servicing a wide range of specialised electronic equipment. The successful candidate will be expected to work with a minimum of supervision and be capable of taking projects from outine design to final product
The successful candidates will be appointed in one of the Technician Grades 2 to 5 , depending on qualifications and experience. For the higher grades a minimum of 3 years relevant experience and qualifications equivalent to ONC are expected Opportunities are provided for further study leading to higher professional qualifications. There are promotion prospects to higher grades.
Salaries Technican Grade

$$
\begin{array}{ll}
2 \mathrm{~A} & £ 2152-£ 2452 \\
3 & \mathrm{E} 2455-£ 2788
\end{array}
$$

4 E2689-£3087
E2889-£3367
6 E3314-£3950
Application forms may be obtaned from the Staff Officer. University of Surrey Guildford. Surrey GU2 5XH. or Tel Guildford 71281. Ext. 452, and should be returned as soon as possible.

## SERVICE ENGINEER

L.K.B. Instruments require an additional engineer to service their range of clinical and nuclear products installed in customers premises throughout the West Country and South Wales. The applicant shouid live or be prepared to move to this area
Experience with nuclear counting equipment would be an advantage but a good general knowledge of digital electronics and a mechanical aptitude is considered essential.
The company offers a salary commensurate with experience, bonus scheme, company car, and assisted B.U.P.A. membership
Please contact for application form -

## The Service Manager

L.K.B. Instruments Limited 232 Addington Road South Croydon, Surrey

Tel: 01-6578822

UNIVERSITY OF MANCHESTER
Hester Adrian Research Centre
Anson House Pre-School Project for
Mentally Handicapped Children
A vacancy exists immediately for a

## TECHNICIAN (Grade 3)

in the above project The successful applicant will work in the pre-school facitity which is one mile from the University but
will have access 10 electronic and will have access io electronic and
mechanical workshops in the University mechanicat workshops in the University
itself a major requirement will be that the technician will be responsible for the operation of an extensive CCTV system and will undertake the editing of tapes Experience with CCTV is therefore important Subsidiary functions will involve some electronic and mechanical work ONC is essential and HNC (Electronics or Physics (or equivalent qualification) is desirable Salary Scale £2325-£2655 pa earnings supplement of $£ 130 \mathrm{p}$ a qualifications and previous experience should be addressed to Dr J Hogg. Hester Adrian Research Centre. The University Manchester M13 9PL

## VIDEO \& ELECTRONICS ENGINEER

required with experience of servicing and installation of Video and Hifi equipment for a responsible position in a new organisation in the centre of Bath. This is a challenging job for the right man, with excellent salary and promotion prospects.

Apply in writing to: Video South, 101 Eden Vale Road, Westbury, Wilts, or telephone Westbury (Wilts) 823140.
(7038)

## Aural and Visual Aids Technician <br> £3963-£4299 per annum

An experienced technician is required by the Croydon Education Service to mantain and repair a range of Audio and Video equipment including T.V. Receivers in schools.
Commencing salary in the scale will be according to qualification and experience
In an appropriate case consideratıon will be given towards assistance with removal and lodging expenses

## CROYDON

Apply in writing giving detałls of age, qualifications, present post and relevant work experience to The Superintendent, Education Service Centre, Princess Road, Croydon CRO 202 or telephone the Superintendent, Mr. A. Bevan (tel: 01-684 9:9 9 ) for further details.

# HF RADIO SYSTEMS ENGINEER 

## $£ 5,000$ to $£ 6,000$ per annum

The Cable and Wireless Group, a leader in global telecommunications has an interesting career opening at its Central London Head Office for a design engineer (male/female) of radio systems operating below 30 MHz .
Duties will include responsibility for provision of HF prediction services, propagation studies, advice on technical characteristics of antennae and modulation methods
Applicants should preferably have an acquaintance with working systems, knowledge of the ionosphere and some computer programming experience. A suitable degree in electrical engineering, professional engineering qualification or HNC would be an advantage
Excellent conditions of service are offered with commencing salary of between initially $£ 5,000$ and $£ 6,000$ per annum, depending on experience and qualifications, on progressive career scales rising to over $£ 7,000$ per annum. Generous leave and pension arrangements, Sports and Social Club, and other benefits

Application forms may be obtained from:-
Recruitment Manager,
Cable and Wireless Limited, Dept. A.443a/643 Theobalds Road, London WC1X 8RX.
(01-242 4433 ext. 211)

## Cable Wireless

## Electronics Engineers

## Cheltenham

The Scanner Division of Linotype-Paul is world renowned for the design and production of sophisticated systems used in the colour printing industry.

The Division now requires top-class electronics engineers to carry out complex testing operations during sub-assembly and final test stages.

Applicants, male or female, must have wide experience of analogue and digital circuitry, preferably gained in a test environment, and should be educated to ONC. An understanding of precision mechanical engineering and associated materials, as well as the principal processes in colour photography, would be advantageous.

We can offer top salaries and excellent conditions of employment. Assistance with relocation will be provided in appropriate cases.

Please write with career details to


Barrie Witt, Personnel Officer
Linotype-Paul Limited
Block 22. Lansdown Industrial Estate
Cheltenham, Glos.


## EXCLUSIVE OFFER

WORLD-WIDE RANGE NEVER BEFORE OFFERED philico hc-150 point to-point strip RADDO HF RECEIVERS 234 mcs . Ten Tully Single and dsersity reception on ISB. DSB. SSB with + sub-bands to

## HIGHEST QUALITY 19'

 RACK MOUNTING CABINETS 8 RACKS
## ENQUIRIES INVITED <br> FOR NEW STOCKS

NOW AVAILABLE
AUDIO AND INSTRUMENTATION. TAPE RECORDER-REPRODUCERS

| * Plessey ID33 Digital Units. 7 track 1/2 <br> - Piessey M5500 Digital Unt. 7 tracks ${ }^{12}$ <br> * Ampex FR-1100. 6 speeds. stereo ${ }^{*}$ <br> * Amper FR600. 4 speeds. 7 tracks ${ }^{12}$ <br> * D.R.I. RM1. 4 sjeeeds. 4 tracks $1 / 4$ <br> * EMI TR90 2 speeds. I track <br> * EM1 B [R1. I speed. 1 track 14 <br> * EM1 R301G 2 speeds. 2 tracks 1. <br>  <br>  <br> * Murcom CMP 100,6 speeds. 7 tracks $1 / 4.2$ 2., 1 <br> * Leevers Rich IDA-2P 2 speeds. 2 rracks I $1 \%$ <br> * Leevers Rich Console 2 track 14,2 speeds Prices of above $\mathbf{£ 7 0}$ to $\mathbf{£ 5 0 0}$ <br> Prices of above $£ 70$ to $£ 500$ |
| :---: |
|  |  |

Also Transpori Decks only avalizble

We hlave a varied assoriment of industrial and
We hlave a varied assoriment of industrial and
proquest
proquest

PLEASE ADD CARRIAGE AND V.A.T

## P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 765051

We are a major force in the business of nuclear instrumentation and wish to appoint a

## CHIEF OF TEST

to head a team of Test Engineers working on fault finding and testing of both analogue and digital circuits and systems for a wide variety of electronic equipment.

Applicants must have a proven administrative record to MOD standard and possess an inquisitive and logical attitude to problem solving. A minimum qualification of HNC is desirable but academic qualifications are less important than sound test experience and a background of Industrial Relations.

An attractive salary is offered together with excellent career prospects. Please write or telephone for further details to:

Mr. D. Moy, Q.A. Manager Nuclear controls Division GEC-ELLIOTT PROCESS INSTRUMENTS LIMITED Century Works, Conington Road Lewisham, London SE 13 7LN Tel: 01-692 1271 ext 393

## ARTICLES FOR SALE

## SOFTWARE DESIGN FOR

 MICROPROCESSORS by J. G. Webster$\begin{array}{r}\text { Price E12.70 } \\ \hline \text { INTRODUCTION TO DIGI- }\end{array}$ TAL FILTERING Bogner Price $£ 8.50$ ACTIVE-FILTER COOKBOOK by D. Lancaster Price $£ 10.00$ THE CATHODE-RAY OSCIL: LOSCOPE \& ITS USE by G. N Patchett Price $£ 3.85$ PRINCIPLES OF TRANSISTOR CIRCUITS by $S$ W Amos. Price: $£ 4.65$
110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M Marston Price $£ 3.25$
IC OP-AMP COOKBOOK by W. G. Jung. Price: £9.00 HI FI YEAR BOOK 1977. Price $£ 3.60$
VIDEOTAPE RECORDING by J. F. Robinson Price $£ 7.00$ FREQUENCY SYNTHESIZERS THEORY \& DESIGN by $V$ Mannassewitsch Price £20.00
ITL DATA BOOK by National Price £3.10

THE MODERN BOOK CO.
\& TECHINICAL BOOKo
19.21 PRAEU STREET LONDON W2 1 NP
Mont izs 4185
C.r.t. regunning plant. New and secondhand reconditioned rraining, demonstration. colour or B/W. Barretts, Mayo
don. Surey. CRO
2QP.
01684
9917

16 mm BELL HOWELL $631 \quad 750 / 100$ W lamp. separate speaker and transformer. f 150 I- VAT. Hilton's 9 West Hill. Dartford. Kent. Tel 20009

Valves radio - T.V.-Industrial Transmitting. We dispatch valves to all parts of the world by return of post. air or sea mail. 2,700 types in stock. 1930 to 1976 . Obsolete types a speciality. List 20p. Quota tion S.A.E. Open to callers Monda. to Saturday 9.30 to 5.00 Closed Wednesday 1.00. We wish to purchase all types of new and boxed valves. Cox Radio (Sussex) Led. Dept WW. The Parade. East Wit tering. Sussex PO20 SBN. West Wit tering 2023 (STD Code 024366).

Vacuum is our speciality, new and secondhand rotary pumps, dif fusion outtits, accessories. coaters etc. Silliconer rubber or varnish ou eassing equipment from EfO . $V$. N. Barrett (Sales) Ltd., 1 Mayn Road Cruydon. 01-684 9917.

RECHARGEABLE NICAD BATTERIES. 'AA' (HP7) ${ }^{\text {Cl }}$ (HP11, $26 . \quad$ SUB (HP2) £2.92. PP3 £4.98. Matching chargers respectively $£ 44 x, £ 4.4 x$ £5.24. £5 $24, £ 3.98$, all prices include VAT. Add $10 \%$ post \& package. SAE for full list. plas if wanted $50 p$ for Nickel Cadminm Power' booklet. Sandwell Plant power Lid ${ }^{1}$ Denholm Read. Sultolr Coldtiein. West Midlands B73 6PP. Tel Na H21-354 Midla
9764.

## ARTICLES FOR SALE

The
Scunaloraflesmen 20-12A Graphic Equalizer

## 



REW are proud to present the Sounderaftsmen Graphic Equalizer-undoubredly the fin st unit of its kind for both $\mathrm{H}_{1}$-Fi and professional use. Each of the stereo channels is divided inco 10 frequency bands. from 20 Hz to 20.480 Hz . Boost and cut of 12 dB is provided on each band and a gain concrol adjuscs the ourput to march any amplifier. The unit has a champagne gold anodised front panel, enclosed in an attractive wood-grained cabinet. The soundcratsmen can be used as a sophisticated cone controledabling you to highoriget frequency ments. Alcernatively it can be used to produce a near-perfect flat frequency response in any domestic conditions by compensating or eicher poor ristics or various deficiencies in Loudspeakers. Also perfeci for equalizing tape recordings. Send for full literature
Full range of Equalizers by other leading monufacturers olso in stock including Altec, JVC, BSR, MXR, Technics.

> REW Centrepoint 20-21 St Giles High Street London WC2 Tel $01-2403066 / 7$ 146 Charing Crnss Road. London WC2 Te1 $01.2403064 / 5$ Mail orders to REW House (dept WW) $10-12$ High Street Min

SPOTWELDERS new from 185 Sameside from e22:0.- Ring 01 $5407337 / 8$. Rentweld's, 14 Claren don Road. Landon S.W.19. 16518

ELECTRONIC INSTRUMENTATION If you are interested in the buying or selling of good quality use Electronic Test Instruments. ring Reading 51074. Martin Associates Hatch who will deal promptly Hatch who will
with your enquiry.

OSCILLOSCOPE 100 Mhz Cossor 410 II Almost brand new. with manual 325 Foro St London N9. 01-80 3719 (7063)

SCHLUMBERGER SIGNAL GEN ERATOR D.O. lool $0 / 25 \mathrm{mh} \%$ AM FM. offers over $\mathbf{5 7 5 0}$. Drake $R$ digital receiver same as DSR2 Am CW-SSB. $0 / 30 \mathrm{mhz}$. $£ 400$ or neat offer. Pye ou freq repeater. 450 470 mhz. £220. Pye T470.R47 U.H.F. link, unused. offers 17077

SILICON SOLAR CELLS:
10M.W £5.96 MST 12250 m PAT Wept w ind ponstake ind P.O. Box 276. 67 Clonceiter Sireel London swiy 4 Dz .

TELEPHONE ANSWERING Midchimes
TELEPHONE ANSWERING Minchinle for Salr. NeH tuen Chsuers and and Dictation Free Aceressories and gharanteed y roar. Callsaver. -

 don $\mathrm{w}^{1} \mathrm{I}$.

SOWTER TRANSFORMERS FOR SOUND RECORDING AND We are We are suppliers to many well known companues
studios and broadcasting aunorities and were
established in $1941 \quad$ Eilly deliveties Conell staviob andished in 1941 Ediliy delventies Compentive
prices Large or small quand prices large or small quantities Lfi us quo
SOWTER TYPE 3678

## A recent release

MULTITAP MICROPHONE TRANSFORMER Plimary mindings tort 600 ohm 200 ohm and 60 ohin winh secondary loadings liom 2 K onm to 10 K
onm Frequency response plus/minus $1 / 2 \mathrm{~dB} 20 \mathrm{~Hz}$ to 25 kHz Contaned in well finished Mumetal box 33 mm dameter by 22 mm high with colioul coded and ledds low dstotion DELIVERY Isma
quannities EX STOCK HIGLY COMPETITIVE quantites EX ETOCK HIGHLY CO
PRICE FULL DETAILS ON REQUEST E. A. SOWTER LTD. ansforme, Manufacturers und Designers
7 Dedham Place, Fors Street fp:wich IP4 1JP. Tol. 047352794


ATTENTION MANUFACTURERS LARGE StOCKS OF ROTARY POTS 10K LOG PC ype
5 K LIN PC type 500K LOG PC Yype SUBK LIM STD IYpe 25k LiN STO lype SK LN STD IYpe Im LOG STO type also large stocks of slider pats $\left.\begin{array}{l}\text { 10K LOG } \\ \text { 50K LOG }\end{array}\right\}$ Offers around 15p $\left.\begin{array}{l}\text { 50K LOG } \\ \text { 100k LOG }\end{array}\right\}$ dependent on quantuly 100k LOE Telephone: Poole (02013) 78989


COLOUR, UHF AND TV SPARES. NEW colour bar generator kit Mk ${ }^{3}$
aerial input type, R-Y, B-Y etc. (adds on to Manor Supplies cross hatch units) $125^{\circ}$ pp 85 p . Also Mk 4 combined colour bar genera pp 85p "Wireless World" TV Tuner pp 85 pm Wireless World Tuner Projects by D . C. and FM Tuner Projects by D. C
Read. Kits of parts available Read. Kits of parts available type. No other connections. Sync \& UHF Modulator units E11', Add-on Grey Scale kit £2.90* p/p 45p. CRT Reactivator kit for colour and mono $£ 17.48^{*}$ p/p 80p. Signal Strength Meter kit
£18*. p/p 70p. 625 TV IF Unit, for $\mathrm{Hi}-\mathrm{Fi}$ amps or tape recording $£ 6.80$
$\mathrm{p} / \mathrm{p} 65 \mathrm{p}$. Decca Colour TV p/p 65p. Decca Colour TV Thyris
tor Power Supply Unit, incl tor Power Supply Unit, incl. H.T.
L.T., etc. Incl. circuits $£ 3.80$ p/p L.T., etc. Incl. circuits $\mathbf{~} 3.80 \mathrm{p} / \mathrm{p}$
$95 \mathrm{p}, \mathrm{Bush} \mathrm{CTV} 25$ Power Supply 95p, Bush CTV 25 Power Supply
Unit, incl. H.T., L.T., etc. $£ 3.20$ Unit, incl. H.T.. L.T., etc. E3.20
p/p fl.20. Bush CTV 25 Conver. gence panel plus yoke, blue lateral
$£ 3.60 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Philips single stand convergence units complete, incl 16 convergence units complete, incl 16
controls, $£ 3.75 \quad \mathrm{p} / \mathrm{p} 75 \mathrm{p}$. Colour Scan Coils, Mullard or Plessey $£ 6$ Scan Coils, Mullard or Plessey \& 80 Plessey Converg. Yoke 82.50 p/p
55p. Mullard or Plessey Blue Laterals $75 \mathrm{p} p / \mathrm{p} 30 \mathrm{p}$. BRC 3000 type scan coils £2 p/p 80p. Bush CTV 25 scan Colls 12.50 p/p 80 p . DLAE $\begin{array}{ccccc}\mathrm{DL} 1 & 850 & \mathrm{p} / \mathrm{p} & 40 \mathrm{p} . & \text { Btmm. delay } \\ \text { H4nes } & 50 \mathrm{p} & \mathrm{p} / \mathrm{p} & 30 \mathrm{p} . & \text { Bush/Murphy }\end{array}$ CTV $25 \quad 3 \not 174$ EHT quadrupler £8.50 p/p 75p. Special offer colour triplers, $1.75 \mathrm{p} / \mathrm{p} 50 \mathrm{p}$. Philnps G8 Panels part complete. surplus/salvaged: £2.25 T Base $\mathrm{f1} \mathrm{p} / \mathrm{p} 70 \mathrm{p}$ CRT
 coder panel for spares $\mathrm{c}^{2.50 \mathrm{p} / \mathrm{p}}$ ELC 1043 £4.00 ELC $1043 / 05$ \&4.50 ELC 1043 £ 4.00 , ELC $1043 / 05$ £4.50. \&3.50. Salvaged UHF \& VHF Vari-
 trol unit $£ 1$ p/p 35 p . UHF Tuners transd. inch. slow motion drive £3.80. 4 Psn. and 6 Psn . push button transd. $£ 4.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Philips, Bush. Decca integrated UHF/VHF transd. tuners $84.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}$. Thorn 850 dual stand, time base panels
50 p . Philips 625 IF panel incl. cet. $50 \mathrm{p} . \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. VHF Turret tuners AT 7650 for KB Featherlight.
Philips 19 TG 170 GEC 2010 etc £2 50. Pye miniature incremental tuners $f 1$. Fireball tuners, Ferguson. HMV. Marconi $80 \mathrm{p} \mathrm{p} / \mathrm{p}$ all tuners 70p. Muhard Mono scan coils Ferranti, Invicta $£ 2 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$ Large selection LOPTs. FOPT's available for most popular makes MANOR Lonplies. 172 West End Lane. lers welcom. . Shop premises busor West Hampstead Bakerlon Line and British Rall). Mail Order: 64 Golders Manor Drive. London. N.W.11. Tel: $01-7948851$. V.A.T.
Please ADD $12 \frac{1}{2} \%$ TO ALL PRICES Please ADD $12 \frac{1}{2} \%$ TO ALL PRICES
(EXCEPT WHERE MARKED VAT (EXCEPT WHERE MARKED - VAT
$8 \%)$ ( 60 )

| 4000 | 0.20 | 4028 | 1.00 | 4053 | 1.04 | 4086 | 0.80 | 14163 | 1.18 | 14526 | 2.15 | 14566 | 1.67 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4001 | 0.20 | 4029 | 1.27 | 4052 | 1.29 | 4089 | 1.74 | 14174 | 1.08 | 14527 | 1.76 | 14568 | 3.15 |
| 4002 | 0.20 | 4030 | 0.50 | 4055 | 1.46 | 4093 | 0.89 | 14175 | 1.04 | 14528 | 1.22 | 14569 | 3.72 |
| 4006 | 1.31 | 4031 | 2.46 | 4056 | 1.46 | 4094 | 2.08 | 14194 | 1.17 | 14529 | 1.72 | 14572 | 0.27 |
| 4007 | 0.20 | 4032 | 1.19 | 4057 | 29.81 | 4095 | 1.16 | 14419 | 2.67 | 14530 | 0.95 | 14580 | 8.35 |
| 4008 | 1.07 | 4033 | 1.55 | 4059 | 6.20 | 4096 | 1.16 | 14490 | 6.51 | 14531 | 1.74 | 1458 1 | 4.30 |
| 4009 | 0.60 | 4034 | 2.11 | 4060 | 1.24 | 4097 | 4.13 | 14501 | 0.20 | 14532 | 1.38 | 14582 | 1.44 |
| 4010 | 0.60 | 4035 | 1.31 | 4061 | 25.60 | 4098 | 1.22 | 14502 | 1.38 | 14534 | 8.15 | 14583 | 0.84 |
| 4011 | 0.20 | 4036 | 3.09 | 4062 | 10.10 | 4099 | 2.03 | 14503 | 0.75 | 14536 | 4.00 | 14585 | 1.10 |
| 4012 | 0.20 | 4037 | 1.06 | 4063 | 1.22 | 40101 | 1.76 | 14505 | 4.38 | 14537 | 13.17 | 74.00 | 0.25 |
| 4013 | 0.60 | 4038 | 1.20 | 4066 | 0.69 | 40102 | 2.16 | 14506 | 0.57 | 14539 | 1.24 | 74 CO 2 | 0.25 |
| 4014 | 1.12 | 4039 | 3.05 | 4067 | 4.13 | 40103 | 2.16 | 14507 | 0.60 | 14541 | 1.62 | 74 CO 4 | 0.25 |
| 4015 | 1.12 | 4040 | 1.1) | 4068 | 0.24 | 40104 | 2.28 | 14508 | 3.08 | 14543 | 1.82 | 74 CO 8 | 0.25 |
| 4016 | 0.00 | 4041 | 0.93 | 4069 | 0.24 | 40107 | 0.66 | 14510 | 1.51 | 14549 | 4.10 | 74 C 10 | 0.25 |
| 4017 | 1.12 | 4042 | 0.93 | 4070 | 0.65 | 40108 | 6.18 | 14511 | 1.74 | 14552 | 10.50 | 74 C 20 | 0.25 |
| 4018 | 1.12 | 4043 | 1.12 | 4071 | 0.24 | 40109 | 2.21 | 14512 | 1.03 | 14553 | 4.85 | 74 C 30 | 0.25 |
| 4019 | 0.60 | 4044 | 1.04 | 4072 | 0.24 | 40181 | 4.30 | 14514 | 3.47 | 14554 | 1.67 | 74 C 32 | 0.25 |
| 4020 | 1.24 | 4045 | 1.56 | 4073 | 0.24 | 40182 | 1.73 | 14515 |  | 14555 | 1.01 | 74 C 42 | 184 |
| 4021 | 1.12 | 4046 | 1.48 | 4075 | 0.24 | 40194 | 2.28 | +4516 | 1.51 | 14556 | 1.01 | 74 C 48 | 2.28 |
| 4022 | 1.07 | 4047 | 1.01 | 4076 | 1.71 | 40257 | 2.26 | 145171 | 14.02 | 14557 | 4.65 | $74 C 73$ | 0.67 |
| 4023 | 0.20 | 4048 | 0.60 | 4077 | 0.65 | 4700 | 1.75 | 14518 | 1.39 | 14558 | 1.25 | 74 C 74 | 0.60 |
| 4024 | 0.87 | 4049 | 0.60 | 4078 | 0.24 | 7083 | 4.25 | 14519 | 0.57 | 14559 | 4.10 | $74 \mathrm{C9O}$ | 0.86 |
| 4025 | 0.20 | 4050 | 0.60 | 4081 | 0.24 | 14160 | 1.18 | 14520 | 1.39 | 14560 | 2.17 | $74 \mathrm{C93}$ | 0.88 |
| 4026 | ${ }^{1.92}$ | 4051 | 1.04 | 4082 | 0.24 | 14161 | 1.18 | 14521 | 2.77 | 14561 | 0.70 | $74 \mathrm{C95}$ | 1.25 |
| 4027 | 0.60 | 4052 | 1.04 | 4085 | 0.80 | 14162 | 1.18 | 14522 | 2.15 | 14562 | 5.5 | 74C926 | 7.88 |
| TERMS: Add VAT 10 all prices at $8 \%$. Postage etc $U K 25 p(+2 p=27 p)$ per order expurt $£ 2.00$ [no VAT]. Orders processed same day |  |  |  |  |  |  |  |  |  |  |  |  |  |

## GREENBANK ELECTRONICS (Dept W4W)

Tel: 091-ces was


WE INVITE ENQUIRIES from anywhere in the world. We have in tors kth $t, \frac{3}{2}$, and 1 watt, million wire wound resistors 5 and 10 wat wire wound resistors 5 and 10 million capacitors -1 million electrolytic condensers - million transistors and diodes, thousands of potentiometers, and hosts of ther components. Write phone or call at our warehouse. - Broad fields and Mayco Disposals Lid. 21 Lodge Lane, North Finchley London. N.12. 01-445 0749, $445 \quad 2713$

PROFESSIONAL TV TUBE RE. BUILDING PLANT designed and manufactured with 20 years' exper associlated supplies Ang. All Electron including - ourses, Wexstern-Whybrow Enping eering. WECO Works. Penzance, TR20 9 QT (073676) 2265 . (6542)

KERABOARD PCB 18 x 12 covered with Ultraviolet negative photo resist. Packs of five. Single sided Ell. double sided 113 . per pack. Shrubcote. Tenterden. Kent.

\section*{Venner TSA 3336 Timer Counters | MHz |
| :---: |
| $\mathbf{E 4 0}$ |
| 40 |} or wath 5 MH5 converors

Solartron CA512 Volage slanding wave ratio indicatio
Marcon $T$ Fi 1041 AV Va Philips GM6014 Valer
$\mathbf{£ 3 5}$ Siemens 30332K Level Meter Siemens 3W29K Level Oscillator Marconi TF455E Wave Analyse
Boonton 2028 Signal Generator Boonton 2028 Jignal Generator Sweep Signal Analyser $£ 200$

## HAWK SECURITY LTD.

WEST MIDLANDS, CVI 3BB (0203) 20609
(7090)

## *MANUFACTURERS* *WHOLESALERS *

WE STOCK A COMPREHENSIVE RANGE OF ELECTRICAL AND ELECTRONIC COMPONENTS. including cables and flexes AT VERY COMPETITIVE PRICES

ELECTRONIC EQUIPMENT CO.
Springtield House Tyssen Street London E8 2ND 01.2495217

SURPLUS STOCKS. High Stab Welwyn, Electrosil Resistors. Also, Quantitties Potentiometers, Wire
Wound and Carbon. Pre-sets. Plus Wound and Carbon. Pre-sets. Plus E.H.V. Wiater Cooled Capacitors.

- R.S.P. Electronics, 53 Barton Street Gloucester, GU 1PY. Tel 045223607

OSCILLOSCOPE Storage保 cluding circuit Diagrams Nice (Ndrth London). - Ring 457041

LINSLEY-HOOD 75 watt amplifiers constructed and repaired. Brand BDY56 £1.85, BD529 55p BD530 55p 2N5457 35p BFR39 25p BFR79 25p MPSA 12 45p. Interference suppres sion kit (allso reduces preamp Soise, with instructions $£ 1.35$. In clusive prices. P\&P 15 p . SAE for list. - I. G. Bowman (Dept WW) 59 Fowey Avenue. Torquay. S
Devon.

PRECISION
POLYCARBONATE CAPACITORS Afl High Stability - extremely Low Leakage

| gaov a.c. range |  |  |  | 63v O.C. RANGE Yahe laf Tol. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  | $\begin{aligned} & \text { Price } \\ & \text { each } \end{aligned}$ |  | $\pm 1^{0 / 4}+20 / 1+5^{\circ} \%$ |  |  |
|  | 1 | 0 |  | 0.018 |  |  |  |
| 0.1 | 27 | 12.7 | 68p | 0.1 | £1.28 | 75p | 50\% |
| 0.15 | 27 | 12.7 | 80 p | 0.22 | \{1.32 | 77p | 51 |
| 0.22 | 33 | 16 | 86p | 0.33 | £1.32 | 77p | 51p |
| 0.25 | 33 | 16 | 92p | 0.47 | £1.32 | 77 | 51 p |
| 0.33 | 33 | 16 | 99p | 0.68 | £1.44 | ${ }^{84}$ | 56p |
| 0.47 | 33 | 19 | ¢1.10 | 1.0 | £1.56 | 91p | 60 p |
| 0.5 | 33 | 19 | ¢1.16 | 1.5 | ¢1.74 | £1.16 | 67 p |
| 0.68 | 50.8 | 19 | £1.25 | 22 | £1.98 | ¢1.32 | 75p |
| 1.0 | 50.8 | 19 | £1.37 | 3.3 | $£ 2.40$ | £1.60 | 99p |
| 1.5 | 50.8 | 25.4 | $\underline{1.64}$ | 4.7 | 9.82 | ¢1.88 | ¢1.23 |
| 2.0 | 50.8 | 25.4 | £1.95 | 6.8 | $\underline{5} .48$ | E. 32 | ¢1.47 |
|  |  |  |  | 10 | ¢4.98 | E3.32 | \$. 01 |
|  |  |  |  | 15 | $\underline{57.14}$ | £4.76 | $\underline{2} .88$ |
|  |  |  |  | 22 | c9.66 | $\underline{6.44}$ | £.90. |



 thamsistens l.c.

| BC107/8/9 | \% | -62212/2121 | 12p | 2150055 | p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {BC1 }} 14$ | 12 | -BC213/213 | 11 p | BC71/2 |  |
| *8C147/ /9 | 10 | -BC214/2141 | 110 |  | $61 p$ |
| -8C153 | 169 | *88194/5 | 12p |  | 32 |
| BC154/7/8/9 | 12 | 日FF50/1/2 | 20p | 2 mm 14 | 1.15 |
| -8C182/1821 | 11 | N178 | 40 P | swrselimo | 11.50 |
| "EC183/1831 | 11 p | N239 | 38 p | S1778023m0 | [1.50* |
| -6C1s/IASL | 12p | -213702/4 | 119 | זenalous | 1.42* |



 cice.




SHICDM PLASTIC RECTIFIEAS-1.5 amp. wirt-ontel 0027: 100


 which 2 at $121 \% \%$

Sund S.A.E. lor suditheol ateck lisis.
MARCOTRADING (Dept P5)
Tal: whrail $464 / 465$ |STD DOA 872 )

SOLARTRON D.V.M. LM 1420-2 rack mounting, perfect working order wead only.

RECEIVERS AND AMPLIFIERS

HRD Rx5s, etc. AR88. CR100 BRT400, G209, S640, etc. etc., in stock. R. T. \& I, Electronics, Ltd. Ashville Old Hall, Ashville Rd.
London, El1. Ley'4986.

SIGNAL Generators, Oscilloscopes Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., etc. in stock. R. T \& I. Electronics Ltd. Ashville Old Hall, Ashville Rd., London. E. 11.
Ley 4986.

## TAPE RECORDING ETC

YOUR TAPES TO DISC. Mono or Slereo cubting. Vinylite Pressings,
Sleeves/labels. Top professionad quality. S.A.E. for photo leaflet DEROY Records. "Eastwood, Cove Dunbartonshire, Scotland.

ENAMELLED COPPER WIRE

| swg | 1 lb. | $40 z$. | $20 z$. |
| :---: | :---: | :---: | :---: |
| $14-19$ | 2.40 | .69 | .50 |
| 20.29 | 2.45 | .82 | .59 |
| $30-34$ | 2.60 | .89 | .64 |
| $35-40$ | 2.85 | $\mathbf{1 . 0 4}$ | .75 |
| inclusive of p\&p and VAT |  |  |  |
| SAE brings Cataiogue of copper and |  |  |  |

SAE brings Catalogue of copper and resistance wires in all coverings THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9BW (6243)

ARTRONICS LTD., for Coil Wind ng - large or small production runs. Also PC Boards Assemblies. Suppliers to P.O., M.O.D. etc. Export enquiries welcomed, 3 a Walerand Road, London SE13 7PE. Tel: 01-852 1706

BATCH Production Wiring and Assembly to sample or drawings McDeane Electricals 19B Station W.5. Tel: 01-992 8976

SMALL BATCH PRODUCTION viring, assembly to sample or drawings. Specialists in printed ourcuit assembly. Rock Electronics. 41 Silver Street, Stansted, Essex. Tel. Stansted (0279) 33018/8141006 (19

PRINTED Circuits. Ultra fast turn around. Very competitive prices Also prototypes, artwork, photo graphy, and drilling service. Kib Redhill. Surrey. Phone 68850 .
P.C.B. ARTWORK DESIGN - EaSt Anglia. Fast precise work at competitive prices. Also instrument panel designs. etc. Contact tangent Electronics, 136 Whitehall Road, Norwich, Norfolk. Tel (0603) 28015.

DESIGN, ARTWORK, development, test and production of electrical equipment. Powerline Electronics, High Street Bognor Regis, Sussex P021 1EZ. Telephone B.R. 25689.


LABELS. NAMEPLATES, FASCIAS on aluminium or plastic. Speed, delivery G.S.M. Graphic Art. Ltd., 1-5 Rectory Lane, Gus borough (02873-443), Yorks. U.K

PRINTED CIRCUIT BOARDS Quick deliveries eompetitive prices, quotations on request, roller tinnings, drilling, etc., speciality small batches, larger quantities available Wemiesons Automatics Ltd, $1-5$ Westgate, Bridington. $N$. Humberside, for the attention of Mr.
Harrison. Tel: $(0262) 4738 / 77877$. Harrison. Tel: (0262) 4738/77877.
(18

DESIGN AND DEVELOPMENT. OuT Electronics Laboratory work in most fields for customers through out the world. Including Telecommunications, $\mathrm{RF}^{\mathrm{Ma}} \mathrm{MV}$ to 1 GHz all and FXs from 1 MHz to 1 GHz al types of logic, digital and analogue systems, counters microprocessors
R.P.Vs, control telemetery and R.P.Vs, control telemetery and D.F Production facilities also available. Write or phone Mr sey Road Ashford Middlesex Ashford 53661. Ashford, Middesex

Ashior 5366 .

PRECISIOM TURNED PARTS - spa cers. pillars, shafts, etc. Large small batches. Quotations by re turn. Send for plant/service cap acity specials, no problem, Hedley Road. St Alos..ns, Herts. Phone: 65094.
(6548)

PCB ARTWORK DESIGN SERVICE. Component screens, solder resist and assembly masters. Pads Elec trical Ltd., 01-850-6516, 45 South wood Road, New Eltham SES
(7055)

CABLEFORMS PCB's Gun Wire Wrappings. Panel and Chassis Wir ing from drawings/maps supplied, parts supplied - faster turnaround - B.M.A. Electronic Assembly, Unit 6. Fen Road. Chesterton. Tel: Cam bridge 861305.

APROTOTYPE AND PRODUCTION ASSEMBLY from your drawings or sample. Peter Everard Ltd.. Strouc (Glos) 77309

EQUIPMENT WANTED
BROADFIELDS AND MAYCO DISPOSALS

21 Lodge Lane, N. Finchley London, N12 8JG $01-4452713$ $01-4450749$ $01-9587624$

WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC TRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES.
WE PAY PROMPT CASH AND CLEAR MATERIAL BY
RETURN.

## BUSINESS FOR SALE

SMALL EAST LONDON BUSINESS FOR SALE as a going concern Specialising in Public Address and similar Sound Installations direc to user. Certain amount of manu facturing. old established and highly regarded. Stalf. few in num ber, but liyal and elficient. Excel lent potential. Sale through ill health of owner. Principals only Box W/W 7089.

EXPORTER ICTHTO HISH aluality
 Thatsmaik lamme uma expmen dus tribution Box Xo. W/W 677t.

WANTED: TEST AND COMMUNICATION
 EQUIPMENT single items or quan tities, also RF plugs,
Call or phone.
170 Goldhawj Road, London, W. 12 01-743 0899
$\star$ MINICOMPUTERS
$\star$ PERIPHERALS
$\star$ INSTRUMENTATION

COMPUTER APPRECIATION Godstone (088 384) 3221

## TOP CASH AVAILABLE

## tor

new surplus Components
All details 10 :
SKYWAVE ELECTRONICS
01-560 3046

## * MINICOMPUTERS <br> $\star$ PERIPHERALS <br> * INSTRUMENTATION <br> For fastest, best CASH offer, phone <br> CHILTMEAD LTD. <br> Reading !0734) 586419

WANTED, all types of communica. tiuns receivers and test equipment. Details to R. T. \& I. Electronics Ltd., Ashville Old Hall, Ashville Rd., London, E.11. Ley 4986 . 63

SURPLUS COMPONENTS Equip. ment and Computer panels wanted for cash. Ring Southampton 772501.
(16)

WE BUY new valves, transistors and clean new components, large or small quantities. all detalls, 55 Worcester St. Wolverhampton.


WANTED: AUGUST, SEPTEMBER, OCTOBER BACK ISSUES OF WW 1976. - Write Nevile Cresdee 30 Stoke Road. Gosport. Hants with price offer.

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS. ETC.

## Spot cash

CHILTMEAD LTD.
7, 9, 11 Arthur Road
Reading, Berks.
Tel. (0734) 582605
ALL SURPLUS or used equipment wanted. Radio telephones - complete systems purchased. Ships equipment components, partly assembled chassis etc, etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited $40 / 42$ Portland Road. Worthing, Sussex.
(6594)

ELECTRONIC INSTRUMENTATION
If yotroni if you selling of good quality used electronic test good quality used Reading 51074. Martin Associates and converse with our Sheila latch who will deal promptly with your enquiry

WILL BUY ANYTHING, any quantity if price is right ring Stan Willetts, West Bromwich, 021553 0186.

9-D ELECTRONICS offer prompt settlement for your surplus com ponents. Our main field of interest is consumer electronics. Please telephone our Miss llughes, Peterhrirough (0733) 265219.

WESTREX 10A pickup cartriage. Goodmans Axion 80 speakers. PX-4. PX-25. STC 4300 B valves. Wanted urgently. - Rox WW7049.
R. F. INDUCTION HEATER about 1.5 KW . - Barrett, 1 Mayo Road. Croydon, CRO 2QP.
(6038)

## FOR CLASSIFIED ADVERTISING <br> RING EDDIE FARRELL ON 01-261 8508



## All Things are Possible

In this, Professor Laithwaite's seventh book, he again offers us a rich mixture of controversial and always thought provoking articles. In the manner that we have learned to expect, he conveys through his writings and experiments the excitement of engineering and invention, and the ways in which man in his laboured progress has so often merely mimicked nature's own engineering achievements.

The author, famous in the academic world and for numerous television appearances, presents us with two series of articles, 44 in all, which will appeal to the engineer, scientist and all interested readers equally. The price of the book is $£ 2.85$


## INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 133-146


[^6]

Bradley Services have the expertise and manufacturing capability necessary to make the most sophisticated electronic systems and electro-mechanical devices However, equally important are the facilities we have for repair and calibration. We can handle virtually any type of instrument within the frequency range $D C$ to 36 GHz - irrespective of manufacturer

We also have a Post Design Services Group which provides every type of
after-sales engineering support, from the provision of technical literature to the upgrading of complete systems.
These facilities all approved to MOD Def. Stan. 05-21, have been developed over more than 20 years and during that time we've handled practically every type of instrument in use So, if you've got a problem with some equipment, the chances are that, even if we didn't make it, we can still make it work

## Bradley Electronics

G \& E Bradley Limited Electral House, Neasden Lane London NW10 1 RR Telephone:01-4507811 Telex: 25583

## Ersin Multicorethe international solder

## Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

## Needle fine gauges



In addition to our standard range of wire diameters (10-22 swg: $3.2-0.7 \mathrm{~mm}$ ) supplied on $2 \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for.microminiature soldering applications-still with 5 Cores of flux.

## Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SA VBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5-Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 (or Military applications.


Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Solder.


Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.
$40 / 60 \mathrm{Sn} / \mathrm{Pb}$
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
15/85 Sn/Pb
Pure Tin
95/5 Sn/Sb
5/93.5/1.5 $\mathrm{Sn} / \mathrm{Pb} / \mathrm{Ag}$

| Melting Temperature |  |  |
| :---: | :---: | :---: |
| Solidus <br> ${ }^{\circ} \mathrm{C}$ | Liquidus ${ }^{\circ} \mathrm{C}$ | Specification |
| 145 | 145 | DIN 1707 |
| 179 | 179 | DIN 1707 |
| 179 | $\frac{179}{17}$ | QQ-S-57 1E |
| 183 | 183 | QQ-S-571E |
| 183 | 188 | B.S. 219 |
| 183 | 188 | QQ-S-57 1E |
| 183 | 212 | B.S. 219 |
| 183 | 212 | QQ-S-57 1E |
| 183 | 215 ) | DTD 900/4535 DIN 1707 |
| 183 | 224 | B.S. 219 |
| 183 | 234 | B.S. 219 |
| 183 | 234 | QQ-S-57 1E |
| 183 | 255 | B.S. 219 |
| 183 | 275 | B.S. 219 |
| 225 | 290 | - |
| 232 | 232 | B.S. 3252 |
| 236 | . 243 | B.S. 219 |
| 296 | 301 | B.S. 219 |

[^7]

# Even if we didn't make it, welll make it work. 

Bradley Services have the expertise and manufacturing capability necessary to make the most sophisticated electronic systems and electro-mechanical devices However, equally important are the facilities we have for repair and calibration. We can handle virtually any type of instrument within the frequency range $D C$ to 36 GHz -irrespective of manufacturer

We also have a Post Design Services Group which provides every type of
after-sales engineering support, from the provision of technical literature to the upgrading of complete systems.
These facilities all approved to MOD Def. Stan. 05-21, have been developed over more than 20 years and during that time we've handled practically every type of instrument in use. So, if you've got a problem with some equipment, the chances are that, even if we didn't make it, we can still make it work

## Bradley Electronics

G \& E Bradley Limited Electral House, Neasden Lane London NW10 1RR Telephone : 01-450 7811 Telex: 25583

## Ersin Multicorethe international solder

## Ersin Multicore 5-Core Solder

The proved superiority of ERSIN Multicore Solder for over thirty years is due to many factors. We have specialised throughout this period in the manufacture of cored solders. Consequently our research and manufacturing staff have been able to devote all their energies to the development of Multicore Solders. All alloys are of highest purity, carefully formulated and checked.

Our unsurpassed ERSIN flux is rigorously tested before and after it is incorporated in the solder wire. Our five separate cores of flux ensure flux continuity, leave only an ultra-thin layer of solder separating flux from work for instant wetting and provide a more accurate ratio of flux to solder. It is therefore possible to
use less solder and obtain greater reliability.

Our Quality Control at all stages of manufacture is guaranteed and recorded by the batch number on every reel.

## Needle fine gauges



In addition to our standard range of wire diameters ( $10-22$ swg: $3.2-0.7 \mathrm{~mm}$ ) supplied on $2 \frac{1}{2} \mathrm{~kg}$ and $\frac{1}{2} \mathrm{~kg}$ reels we also massproduce needle-fine gauges (24-34 swg: 0.56-0.23 mm) on 250 g reels for microminiature soldering applications-still with 5 Cores of flux.

## Savbit Solder

One of our most popular special ERSIN Multicore Solder alloys is SAVBIT alloy. Compared with ordinary tin/lead solders it dramatically reduces the erosion of soldering iron bits, copper wires and printed circuit conductors. It also saves costs and increases reliability. SAVBIT alloy containing 5 -Cores ERSIN 362 flux has received special Ministry approval-under DTD. 900/4535 for Military applications.


Sectioned iron-plated bit, after 40,000 simulated operations using 60/40 Solder.


Sectioned iron-plated bit, after 40,000 simulated operations using SAVBIT Solder.
$40 / 59.7 / 0.3 \mathrm{Sn} / \mathrm{Pb} / \mathrm{Sb}$
$30 / 70 \mathrm{Sn} / \mathrm{Pb}$
$20 / 80 \mathrm{Sn} / \mathrm{Pb}$
$15 / 85 \mathrm{Sn} / \mathrm{Pb}$
pure Tin
$95 / 5 \mathrm{Sn} / \mathrm{Sb}$
5/93.5/1.5 Sn/Pb/Ag

| Melting Temperature |  |  |
| :---: | :---: | :---: |
| Solidus ${ }^{\circ} \mathrm{C}$ | ${ }^{\text {Liquidus }}$ | Specification |
| 145 | 145 | DIN 1707 |
| 179 | 179 | DIN 1707 |
| 179 | 179 | QQ-S-57 1E |
| 183 | 183 | QQ-S-57 1E |
| 183 | 188 | B.S. 219 |
| 183 | 188 | QQ-S-57 1E |
| 183 | 212 | B.S. 219 |
| 183 | 212 | QQ-S-571E |
| 183 | 215 | DTD 900/4535 DIN 1707 |
| 183 | 224 | B.S. 219 |
| 183 | 234 | B.S. 219 |
| 183 | 234 | QQ-S-57 1E |
| 183 | 255 | B.S. 219 |
| 183 | 275 | B.S. 219 |
| 225 | 290 | - |
| 232 | 232 | B.S. 3252 |
| 236 | . 243 | B.S. 219 |
| 296 | 301 | B.S. 219 |



For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Tel: Hemel Hempstead 3636 Telex: 82363


[^0]:    If it's personal we can only advise a diet or joining weightwatchers. If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reets of tape up to a maximum reel size of $11 \frac{1}{2^{\prime \prime}}$ and tape width of $1!$.", quickly and efficiently within the time it takes to read this advertisement.

    The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry
    Moderately priced and available from:
    LEEVERS-RICH EQUIPMENT LIMITED INCORP. BIAS ELECTRONICS
    319 Trinity Road, Wandsworth, London SW18 3SL
    Telephone 01-8749054
    Cables: Leemag London SW18. Telex 923455 Wembley

[^1]:    Current issue price 35p, back issues (if available) 50p, at Retail and Trade Counter, Paris Garden London SE1. By post, current issue 55p, back issues (if available) 50 p , order and payment to Room 11 Dorset House, London SEI 9LU.

    Editorial \& Adsertiving offices: Dorset House. Stamford Street. London SFI 9I.U. Telephones: Editorial 012618620 : Adsertising 012618339.
    Telegrams/Telex. Wiworld Bisnespres 25137 London. Cables. "Ethaworld. London SE 1
    Subscription rates: 1 year: $£ 7.00$ UK ana overseas ( $\$ 1 \times 20$ USA and ('anada). Student rate: 1 year. E3. 50 UK and overseas (\$9.10 LSA and Canada).
    Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone $0 \mid 8373636$
    Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RH16 3DHf. Telephone 044459188 . Subscribers are requested to notify a change of address $\frac{\bar{C}}{\bar{C}}$ I.P.C. Business Press Ltd. 1977

[^2]:    *Volunteer radio engineer with the Catholic Institute for International Relations from September 1974 to December 1975 as part of the British volunteer programme.

[^3]:    * Alternative clock generator and downbeat circuits have been designed using t.t.l. h.l.I. and discrete components. Copies are available from editorial office.

[^4]:    (ThA
    SERVO AND ELEGTRONIC SALES LTD.
    Tel. LYDD 20252

    * 24 HIGH STREET, LYDD, KENT TN29 9AJ TLX 965265

[^5]:    42-269

[^6]:    
    
    

[^7]:    For full information on these and a Selector Guide to other MULTICORE products please write on your Company's letterhead direct to:
    Multicore Solders Limited, Maylands Avenue, Hemel Hempstead, Hertfordshire HP2 7EP. Tel : Hemel Hempstead 3636 Telex : 82363

