

LOW COST TESTERS

 LEVELL

PORTABLE IWSTRUMENTS

insulation tester

A logarithmic scale covering 6 decades is used to display either insulation resistance or leakage current at a fixed stabilised test voltage. The current available is limited to a maximum value of 3 mA for safety and capacitors are automatically discharged when the instrument is swiched off or to the CAL condition. The instrument operates from a 9 V internal battery.

RESISTANCE RANGES

$10 \mathrm{M} \Omega$ to $10 \mathrm{~T} \Omega\left(10^{13} \Omega\right)$ at $250 \mathrm{~V}, 500 \mathrm{~V}, 750 \mathrm{~V}$ and 1 kV .
$1 \mathrm{M} \Omega$ to $1 \mathrm{~T} \Omega$ at $25 \mathrm{~V}, 50 \mathrm{~V}$ and 100 V .
$100 \mathrm{k} \Omega$ to $100 \mathrm{G} \Omega$ at $2.5 \mathrm{~V}, 5 \mathrm{~V}$ and 10 V
$10 \mathrm{k} \Omega$ to $10 \mathrm{G} \Omega$ at 1 V
Accuracy $\pm 15 \%+800 \Omega$ on 6 decade logarithmic scale.
Accuracy of test voltages $\pm 3 \% \pm 50 \mathrm{mV}$ at scale centre
Fall of test voltages $<2 \%$ at $10 \mu \mathrm{~A}$ and $<20 \%$ at $100 \mu \mathrm{~A}$.
Short circuit current between $500 \mu \mathrm{~A}$ and 3 mA

CURRENT RANGE

100 pA to $100 \mu \mathrm{~A}$ on 6 decade logarithmic scale.
Accuracy of current measurement $\pm 15 \%$ of indicated value
Input voltage drop is approximately 20 mV at $100 \mathrm{pA}, 200 \mathrm{mV}$ at 100 nA and 400 mV at $100 \mu \mathrm{~A}$
Maximum safe continuous overload is 50 mA .

MEASUREMENT TIME

<3 s for resistance on all ranges relative to CAL position
<10 s for resistance of $10 \mathrm{G} \Omega$ across $1 \mu \mathrm{~F}$ on 50 V to 500 V .
Discharge time to 1% is 0.1 s per $\mu \mathrm{F}$ on CAL position
RECORDER OUTPUT
1 V per decade $\pm 2 \%$ with zero output at scale centre
Maximum output $\pm 3 \mathrm{~V}$. Output resistance $1 \mathrm{k} \Omega$.

TRANSISTOR TESTER

Tests bipolar transistors, diodes and zener diodes. Measures leakage down to 0.5 nA at 2 V to 150 V . Current gains are checked from $1 \mu \mathrm{~A}$ to 100 mA . Breakdown voltages up to 100 V are measured at $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and 1 mA . Collector to emitter saturation voltage is measured at $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA for $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$ ratios of $10,20,30$. The instrument is powered by a 9 V battery.
TRANSISTOR RANGES (PNP OR NPN)
${ }^{1}$ CBO ${ }^{\text {\& }}{ }^{\text {E }}$ E acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at voltages of $2 \mathrm{~V}, 5 \mathrm{~V}$. $10 \mathrm{~V}, 20 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}, 60 \mathrm{~V}, 80 \mathrm{~V}, 100 \mathrm{~V}$, 120 V , and 150 V acc. $\pm 3 \% \pm 100 \mathrm{mV}$ up to $10 \mu \mathrm{~A}$ with fall at $100 \mu \mathrm{~A}<5 \%+250 \mathrm{mV}$
BV ${ }_{\text {CBO }} \quad 10 \mathrm{~V}$ or 100 V f.s.d.acc $\pm 2 \%$ f.s.d. $\pm 1 \%$ at currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ and $1 \mathrm{~mA} \pm 20 \%$.
$I_{B}: \quad 10 n A, 100 n \mathrm{~A}, 1 \mu \mathrm{~A} \ldots 10 \mathrm{~mA}$ f.s.d. acc. $\pm 2 \%$ f.s.d. $\pm 1 \%$ at fixed I_{E} of $1 \mu A, 10 \mu A, 100 \mu \mathrm{~A}$ $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$, and 100 mA acc. $\pm 1 \%$.
$h_{\text {FE }} \quad 3$ inverse scales of 2000 to 100,400 to 30 and 100 to 10 convert I ${ }_{B}$ into $h_{F E}$ readings.
$V_{B E} \quad 1 \mathrm{Vf.s.d}$ acc. $\pm 20 \mathrm{mV}$ measured at conditions on $h_{\text {FE }}$ test.
$V_{C E}$ (sat): $\quad 1 \mathrm{Vf.s.d.acc} . \pm 20 \mathrm{mV}$ at collector currents of $1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA with $\mathrm{I} / \mathrm{C}_{\mathrm{B}}$ selected at 10,20 or 30 acc. $\pm 20 \%$.
DIODE \& ZENER DIODE RANGES
${ }^{1}$ DR
$V_{Z} \quad$ Breakdown ranges as $B V_{C B O}$ for transistors
$V_{D F}: \quad 1 \mathrm{Vf.s.d}$.acc. $\pm 20 \mathrm{mV}$ at I \quad of $1 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, $100 \mu \mathrm{~A}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 30 \mathrm{~mA}$ and 100 mA

筑 $£ 105$

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN5 5SD
Tel : 01-449 5028/440 8686

Prices are ex-works with batteries Carriage and Packing extra VAT extra in U.K. Optional extras are leather cases and mains power units. Send for data covering our range of portable instruments

Telephone, telex or write for your FREE RSVP Directory

RAPID SOUND \& VISION PARTS
Rank Radio International Limited. RSVP Service. POBox 23. Bramfield. Hertford SG142YD. Telephone:0992 50601. Telex: 81344
Remember-RSVP means Ist Class returri-of-postsenvice

NATRE complete the picture...

...with their new NAGRA E

A ditemma Nagra were suffering for some time, was how to produce a selt contained Prolessional Tape Recorder which incorporated all the qualities o their highly acclaimed Nagra 4.2, but could be marketed in the lower price heir Almost anyone can manufacture a cheaper version of awcessful product but Nagra were product but Nagra were determined not to sacrifice standards for economy Well, we are happy to announce they have achieved the perfect solution with the new NagraE
The astounding saving of around 50% has been principally achieved by the simplification of the speed stabiliser-a single operating speed of $71 / 2 \mathrm{ips}$ is provided. The tape deck and transport mechanism are closely similar to that
used on the Nagra 4 Series, which has become renowned worldwide for its reliability and pertormance
Good news, for the operator in the field is that the new model is slimmer and lighter than the 42 and comes 0 mple with a measuring probe circuit gram and some essential spares. This means that bias adjustment resulting from tape type change can be easity carried out away from base. A single microphone input is provided which can be switched to accept dynamic or condenser types
A sound level meter miay be directly connected if required.

TECHNICAL DATA

Dimensions: $13.8 \times 9.3 \times 4$ in $(351 \times 336 \times 104 \mathrm{~mm}$
Weight: $12.6 \mathrm{ibs}(5.75 \mathrm{~kg}$) with tape and batteries
Wow and flutter: $\pm 0.1 \%$
Reels: 7 in cover open, 5 in cover closed
Loudspeaker : 1.0 W
Headphones outpu both switchabie Tape/Direc
Frequency response recorded at $-20 \mathrm{~dB}: 30-15.000 \mathrm{~Hz} \pm 2 \mathrm{~dB}$
$S I N$ ratio, ASA"A": beller than 66 dB
Temperature range: $4^{\circ}-158^{\circ} \mathrm{F}\left(-30\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Build up the network you need with Barr \& Stroud Active Filter Modules

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment. Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.
BARR \& STROUD LIMITED London Office: 1 Pall Mall East. London SW1Y 5AU Tel: 01-9301541 Telex: 261877

EF40 and EF41 Universal band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz - band-pass Q up to 200 - band-stop O up to 10 . Supplementary operation in low-pass, high-pass and all-pass delay modes.

EF20 Series - high pass, response up to 1 MHz $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off, 12-13dB/octave stop=band attenuation

*EF10 Series - low pass. response down to d.c. $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off 12-36dB/octave stop-band attenuation.

F. M. TUNER MODULES BY

These modules are fully assembled, tested and guaranteed units, as featured in our tuner. Designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.

The Electronic Design Specialists

M1, M2, M3, M4, M5, AND NOW:-
M6 DIGITAL FREQUENCY METER warch fon furiter aoorirons)

* CMOS CIRCUITRY
* FULL POWER SUPPLY
* MOUNTS INSIDE TUNER
* 4 DIGIT L.E.D. DISPLAY
* NO TAMPERING WITH FRONT END REQUIRED
* MONEY BACK GUARANTEE

We are very pleased to be able to announce this new module which has been in development for over 12 months. It has been designed to suit the specific requirements of F.M. tuners, to provide accurate station identification at a glance, at a sensible price and a sensible size. The complete outfit, which is NOT a kit, consists of the transformer, logic and display module and local oscillator take-off board. This latter fits directly to our main receiver board, and requires NO direct connections or modifications to the LP 1186 front end module
If you are interested drop us a line for full details and prices of all our modules.

Correction and Diagnostic Sheets for the original article design (W.W. April/May 74) still available

33 Restrop View
Purton, WILTS SN5 9DG

Sweet sixteen

The Quad 405 is only the sixteenth product to carry the Quad name. each of which, has made a significant contribution to the development of sound reproduction and acquired a following of loyal and satisfied customers
The Quad 405 current dumping amplifier represents another step forward in amplifier technology. executed with the attention to engineering and aesthetic detail,
and manufactured with the concern
for reliability which have been
the hallmarks of Quad equipment
for twenty-five years.
For further details on current
dumping and other Quad products
write to
Dept. WW
The Acoustical Manutacturing Co
Ltd., HUNTINGDON. Cambs
PE187DB Telephone (0480)52561

QUAD

Design Council
Award 1976
for the closest approach to the original sound for twenty-five years
QUAD is a Registered Trade Mark

The main difference between our new low price multimeter and most multimeters is that ours is an AVO. Through and through. It starts with some innovations-most of them unique at the price: real overload protection, sensitivity of $20,000 \Omega / V D C$ a really useful set of ranges including AC current. If you try to measure the 240 V mains on the $75 \mu \mathrm{ADC}$ range, it's only the instrument fuse that blows. Then there's the case-really rugged enough to take the toughest knocks. And in this case beauty's more than skin deep-inside you'll find it orderly and well laid out. That means that, if servicing is ever necessary, it'il be worth doing. Because when AVO make an instrument, they make one that's worth keeping.

In short, the new AVO Model 73 is much more multimeter for your money-and that's what makes it an AVO.
uk Trade Price £33 - Vat from Distrlbutors

Avo Limited, Archcliffe Road, Dover Kent Telephone: Dover (0304) 202620
1 Thorn Measurement Control and Automation Division.

The Best of British

Where performance

 is paramount, professionals prefer Gardners...We, at Gardners, have been in the communications busi ness for many more years than we care to remember - so have our Audio Transformers. Used throughout the world by leading broadcasting and recording companies or wherever only the highest technical standards and levels of reliability are good enough our products are still preferred by professionals who know

From microphone to tape (or film), speakers or head phones, studio consoles, manpacks, amplifiers, modems, we at Gardners have tried to anticipate your needs. Miniaturisa tion (yes!) plus good performance (yes!) through to exceptional performance (of course!). Impedance changing, coupling, isolation, bridging, low anci high power, with or without D.C. Choose from our standard range of 95 models! Every one an example of sheer professionalism.

All have low loss, low distortion, low phase-shift, low pick-up, BUT wide frequency range.
A

$$
\begin{aligned}
& \text { Cat. } \\
& \text { No }
\end{aligned}
$$

7

I NTERNATIONALT DANAVOX (GT. BRITAIN) LTD. "BROADLANDS" BAGSHOT ROAD SUNNINGHILL. ASCOT, BERKS. TEL: 0990 23732/6 TELEX 84584
(2)

MEASUREMENTS BECOME

CHILD'S PLAY - WITH - TELFORD DIGITAL TEST EQUIPMENT

TC12. Frequency to better than 200 MHz
TC15. In conjunction with TC14 as readout covers $1 \mu \mathrm{H}$ to 20 H
TC14. Capacitance from 1 pF to $1 \mu \mathrm{~F}$

TELFORD COMMUNICATIONS

78B High Street, BRIDGNORTH, WV16 4DS, SALOP, ENGLAND Tel. 074-62 4082

Suppliers of digital electronic test equipment to major U.K capacitor manufacturers, and Universities, Technical Colleges, and Schools World Wide.

WW-067 FOR FURTHER DETAILS

We measure up to your standards

B900
Automatic Digital Bridge $1 \mathrm{kHz} 0.1 \%$

B224
Wide-range Audio Bridge 1592 Hz
($200 \mathrm{~Hz}-20 \mathrm{kHz}$ external)

B331
Self-balancing 0.01\% Precision Bridge

B642
Autobalance Universal Bridge 0.1\%

B421
Direct-reading Component Meter 0.25\%

Whether you check components at Goods Inwards, during production or on Final Test, Wayne Kerr has the bridge you need. For fast measurements of resistance, capacitance and inductance, or for continuous monitoring of changing values, you can select the ideal instrument from our comprehensive range.

All models-AF, RF and VHFhave a wide measurement range and are easy to use. Many have automatic readout and automatic lead compensation; most will measure components in situ.

Only part of our range is illustrated. Send in the coupon for further information.

Wilmot Breeden Electronics Ferruyraph Rendar Waynk Kerr

Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB, England Telephone: Burnham (06286) 62511 Telex: 847297

Please send me the Wayne Kerr short form catalogue

Name
Position
Company
Address

Telephone
(WW 3/77)

Wilmot Breeden Electronics Limited, 442 Bath Road, Slough, SL1 6BB. England

Z \& I AERO SERVICES LTD.
 Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF

Tel.: 7275641 Telex: 261306

Retail Branch:
85 Tottenham Court Road London W1. Tel: 5808403

MULTIMETER F4313 (Made in USSR)

SENSITIVITY
1200 V DC range $10,000 \mathrm{Q} \mathrm{N}$ Other DC ranges: $20.000 \Omega / \mathrm{V}$ 1200 AC range $6,000 \mathrm{Q} / \mathrm{V}$ 600V AC range $15.000 \Omega / \mathrm{V}$ 300V AC range: $15,000 \Omega / \mathrm{V}$ Other $A C$ ranges $20.000 \Omega / \mathrm{V}$
$\mathrm{AC} / \mathrm{DC}$ current ranges: $60-120-600 \mu \mathrm{~A}-3-12-300 \mathrm{~mA}-1.2 \cdot 6 \mathrm{~A}$
$\mathrm{AC} / \mathrm{DC}$ voltage ranges: $60-300 \mathrm{mV}$-1.2-6-30-120-300-600-1200V
Resistance ranges $300 \mathrm{Q}-10-100-1000 \mathrm{~K}$
Resistance ranges
Accuracy $1.5 \% \mathrm{DC}: 2.5 \% \mathrm{AC}$ (of full scale deflection)
Mirror scale and knife edge pointer. Taut suspension of movement Transistor amplifier is used for all $A C$ ranges thus achieving a common linear scale for both $A C$ and DC ranges
Meter is protected by a transistorised cut-out relay circuit. Range selection is achieved by clearly marked piano keys. Power source 51.5 V dry cells. Dimensions: $95 \times 225 \times 120 \mathrm{~mm}$.

PRICE £37.50 plus VAT
Packaging and postage $£ 1.10$

OSCILLOSCOPE CI-5

Made in USSR
Extremeiy simple and easy to use single beam oscilloscope. Well proved design based on standard octal valves makes servicing and maintenance straightforward and inexpensive. Because of its bandwidth of 10 MHz the instrument is suitable for general electronic applications and educational purposes where a sophisticated instrument would be both 100 expensive and delicate 3 in tube giving a 50 $\times 50 \mathrm{~mm}$ clear display. Amplitude and time base $x ~ 50 \mathrm{~mm}$ clear display. Amplitude and time base
calibrations. Sensitivity $30 \mathrm{~mm} / v$ max. Triggered and calibrations. Sensitivity 30 mm ming time base, suitable for displaying pulses free-running time base, sultable for displaying pul
from 0.1 msec to $3 \mathrm{~m} \mathrm{sec} \mathrm{A} C$ mains operation Price $£ 55.00$ ex. works, plus VAT Packing and carriage (U.K. only $£ 2.50$

A SELECTION FROM OUR LARGE STOCKS

TRANSISTORS				39	0.36	BF177	0.18	*1N4004	05
2N696	0.15	*2N3705	010	ASY26	0.25	BF 178	032	+1N4005	0.05
2N697	0.15	*2N3706	010	ASY27	0.30	BF 179	0.35	*1 N. 1006	006
2N706	0.10	*2N3707	0.10	AsY28	0.30	BF180	0.31	* 1 +1007	0.06
2N706A	0.10	*2N3708	0.10	BC107	010	BFi81	035	* Nal48	0.04
2N753	0.23	*2N3709	010	BC107A	012	BF 184	029	*1N5408	0.20
2N929	014	2N3710	010	8C1078	012	BF 185	0.30	*BY10:	0.15
2N930	014	2N3711	0.10	BC108	010	- 8 ¢ 94.	0.08	* P 105	0.15
2N1131	025	*2N3819	035	bC108a	0.12	-6F195	008	*8Y'26	010
2 N 1132	0.25	*2N390.4	020	BC108B	017	* 3 F196	0.10	*iy 127	0.13
2N1302?	017	*2N3905	0.25	BC109	0.12	* BF 197	011	* BY/30	0.10
2N1303	0.15	*2N3906	0.25	BC109A	0.12	8F200	028		0.50
2 N 1304	020	AC125	0.20	BC1098	0.12	BFx88	0.20	82×61	
2N1305	0.20	AC126	0.20	$8 \mathrm{CC109C}$	0.12	BFY50	0.19	series	0.20
2N1306	027	AC127	017	* BC 1.17	0.12	BFY51	019	BZV88	
2N1307	025	AC132	025	*BC149	0.08	BFY52	0.20	series	0.10
2 N 1308	0.25	AC176	022	* BC 158	010	*B4208	200	H0470	0.07
2N1309	0.25	AC187	020	BC 171	010	OC36	0.65	*-479	0.07
2N1613	0.17	AC188	0.18	BC178	018	OC41	0.25	H0481	0.07
2N1711	0.18	ACY21	020	+ BC 182	011	OC45	0.20	*485	007
2N2224	0.20	ACY22	014	* BC1822	010	OC70	015	-0490	0.07
2N2222A	0.20	AD 161	038	EC186	025	0 C 71	015	+0+91	0.07
2N2369A	025	AD 162	0.38	EC187	025	OC72	0.18	+0495	0.07
2N2646	0.40	A0211	+ 25	* $\mathrm{BC} \times 217$	011	OC75	015	+04200	0.07
2N2905	D. 25	AD212	1.25	BC237	011	OC76	0.18	-0a202	0.08
2N2906	0.20	AF 106	0.25	BC238	0.11	OC81	0.20	Ras310af	0.35
2N2907	0.20	AF114	0.17	BCY32	120	OC83	0.30	gas50baf	040
2N2926	0.10	AF115	0.17	вCY70	0.15	OC84	0.30		
2 N 3053	0.20	AF116	017	BCY71	020	0 C 204	0.60	TTL SE	RIES
2N3054	0.65	AF 117	017	BCY72	015	OC206	070	Russian mad	
2N3055	0.55	AF118	0.25	80115	039	OCP7 1	0.90	Specia offer	
2N339 4	017	AFI 24	0.25	8D116	059	ORP ${ }^{12}$	0.60	7400	0.09
2N3392	0.17	AFi25	0.25	B0132	0.39	*T1P30A	0.50	7401	0.09
2 N 3393	0.15	AF126	025	BD133	045			7410	0.09
2N3414	0.20	AF127	0.25	8 D 137	0.30	DIODES		7420	0.11
2N3415	0.15	AF139	0.30	BF 115	0.28	*:N914	0.05	7422	0.20
- 2 N 3702	0.10	AF178	. 0.50	BF152	0.20	-1N4001	0.04	7430	0.11
2N3703	0.10	Af180	0.50	8F 167	0.25	*1 N4002	005	7440	011
* 2 N370.4	0.10	AF181	0.50	BF173	025	- $\mathrm{N} \cdot 1003$	0.05	7450	0.11

P\&P 25p min. [U.K. only]. Please add 8\% VAT $\star 12.5 \%$
MINIMUM EXPORT ORDER £100
FULLY GUARANTEED

1976/1977 CATALOGUE AVAILABLE 30p

WW-071 FOR FURTHER DETAILS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids. Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case. Probe and internal $11 / 2$ volt standard size battery
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathbf{C}$ to $+70^{\circ} \mathrm{C}$ Price $£ 25.00$ Model "Mini-Z 2" measures from-5 ${ }^{\circ}$ C to $+105^{\circ}$ C Price $£ 25.00$ Model 'Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$. $£ 20.00$ (VAT 8\% EXTRA)
Write for turther details to
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)

Barr \& Stroud are pleased to announce a further advance in the continued development of their acclaimed EF3 Electronic Filter System. The new

BARR \& STROUD MODULAR FILTERING Now 6 Modules for the EF3

EF3-01 High Pass Cith-off frequency variable fiom 0.01 Hz to 10 kHz

EF3-02 Low Pass
Cut-off fiequency valiable fiom 0.01 Hz 1010 kHz

EF3-03 HighPass

Write for technical literature giving full specifications.

Barr \& Stroud Limited
1 Pall Mall East, London SW1 Y 5AU Telephone 01-9301541 Telex 261877.
modules 05 and 06 so extend the capabilities of the system that it could well meet all your filtering requirements.

EF3-04 LowPass Cul-off frequency varable from 0.1 Hz

EF3-05 High Pass Cut-off frequency variable from 1 Hz 101 MHz

EF3-06 Low Pass Cut-off frequency variable from 1 Hz to 1 MHz

New low cost microcomputer for learning the 'how' of microprocessors...

回
For instant information, please contact
limrose electronics limited
241-243 Manchester Road, Northwich, CW9 7NE
Tel. $060641676 / 7$

Now, there is a new Microcomputer to provide "hands on" experience to master and apply microprocessors - the Limrose MPT8080

It comes ready to use. Nothing else to buy, debug or assemble. Just plug it in and you have a powerful microcomputer ready to use No need for a Teletype, but if you have one it can be hooked on using a plug-in card.

The comprehensive instruction manual is so straight-forward that even a person with limited technical knowledge can rapidly learn how microprocessors work.

The Microtutor MPT 8080 is not just a leaining module - it's a full 8-bit, parallel microcomputer with an $8080 \mathrm{CPU}, 1 \mathrm{~K}$ RAM and various input and output ports. It can be single-stepped or run continuously to facilitate a thorough understanding of hardware/software interaction and programming of microprocessors.

The MPT 8080 can also be used as a prototyping computer and exponded with additional memory and poits.

Type 222A - the ruggedized monitor for those really demanding situations - extremes of weather, temperature, vibration and frequent change of site.
Standard KGM monitors range from $12^{\prime \prime}-24^{\prime \prime}$. Our long
 experience of CCTV enables us to meet almost any special requirement.
VDU's - visual display units have also been supplied in large numbers to suit customers' requirements. Tell us your needs and we will gladly quote.
Send for your data sheets on the full range of CCTV monitors and cameras designed and manufactured by KGM. KGM also supply an extensive range of ancillaries and distribution units.

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz .
High performance instruments measuring frequency, period, time. freq./ratio and calibrated outpul facility. Fast delivery. Specials by treq. /ratio at
arrangement.

Sensitivity 10 mV . Stability 5 parts 10 . ${ }^{\text {I" }}$ Resolution ± 1 Count

301 M	32MHz 5 Digit £95	401A	32MHz 6 Digit £132
501	32MHz 8 Digit £188	7014	80 MHz 8 Digit £ $£ 205$
801A/M	400 MHz 8 Digit £305	901 M	520 MHz 8 Digit £ $£ 375$
801B/M	250 MHz 8 Digit $£ 274$	1001M	1.2 GHz 8 Digit £670
	versions plus £12	Memo suffix	ns available il not f25 extra

Type $1030 \mathrm{0f} /$ Air Standard $£ 95$
All prices exclusive of V.A.T.
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depts.. Crystal Manutacturers and Electronic Laboratories world-wide

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energiziny current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.
+

Hybrid Relays AZ1435... 1441 AZ 1435 Voltage monitor ($9 \ldots 30 \mathrm{~V}$) AZ 1436 Pick-up retarder (1... 30 s) AZ 1437 Drop-out retarder ($1 \ldots 30 \mathrm{~s}$) AZ 1438 Pulse time limiter
($50 \ldots 1500 \mathrm{~ms}$)
AZ 1439 Pulse shaper (monoflop) (50.1500 ms)
AZ 1440 Pulse generator (multiflop) AZ 1440 Pu
$(0.1 \ldots 30 \mathrm{~s})$
(0.1...30 s)
AZ 1441 Pul

AZ 1441 Pulse-operated relay (flip-flop)
$(24 \vee+10 \%-15 \%$.
approx. $\mathbf{3 0} \mathrm{mA}$ max.)

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK Division
Brember Road
Harrow Middx. HA2 8AS. Tel. (01) 4220061
A member of the worldwide ZETHLER electrical engineering y wup. est. 18%

One more request item. We met it with a neat little transformer. Now, in two versions, it joins the list of useful Whiteley products, and everyone involved in communications system design will be interested in the protection they provide. Inserted in voice band circuits, they effectively isolate equipment from the hazards of adjacent high voltage power circuits on the 'line' side. High isolation leve! between line and equipment windings gives protection against voltage surges, lightning strikes and fault condit ions. One version is designed for 17 Hz signalling circuits, the other with several voltage ratios also suits a 50 Hz ringing circuit. All are Post Office and C.E.G.B. approved, and the second version is also approved with extra protection diodes added. Requests for data sheets welcome. Or if you want to request a product spec of your own - we're always interested!
Surprising how often you'll find Whiteley
makeit.
Whiteley Electrical Radio Co. Ltd Mansfieid, Notts NG18 5RW, England. Tel: 062324762.

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet $30,300 \& 1200$ (30 and 120 cps) Teleterm 1132 and 1200 series (portable/fixed 30 cps) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance
* Other types and models available
* Refurbished units also available
\star Short and long period rentals
* Minicomputer interfaces * Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables rahno Tring Telex 82362
A/B Batelcom Tring

WW-024 FOR FURTHER DETAILS

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery Other Ranges and special scales can be made to order.

Full Information from:

Hi-Fi Systems that GROW with you

MAGNUM III System as well as the features illustrated, has 20 W rm.s. per channel (you could have 40), with typical distortion of only 0.07%. The magnetic input has $>70 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ ratio (Ref. 3 mV) and an overload margin of 43 dB .

WW - 097 FOR FURTHER DETAILS
nombrex

MODEL 41

R.F.SIGNAL GENERATOR

Price $£ 54.85$

- $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.
plus v.a.t.
* 8 clear scales - Total length 130 mm
* Spin-Wheel Slow Motion Drive $11-1$ ratio.
* Overall Accuracy - $2 \frac{1}{2} \%$
* Modulation, Variable depth and frequency
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator
* Powered by 9 v Battery

Trade and Export enquiries welcome
Send for full technical leaflets
Post and Packing $£ 1.00$ extra
nOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON, TQ12 1 NE

Tel. Nowton Abbot 68297
WW-080 FOR FURTHER DETAILS

THRULINE WATTMETER
$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say.

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

plus 80p packing and surtace post anywhere in the world
Payments may be made in foreign currencies
Quantity discounts available on reques: VAT zero rated

Also available -- a more elementary course assuming no prior knowledge except simple arithmetıc
Digital Computer Logic and Electronics
In 4 volumes

Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

$£ 4.20$

plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9.70$, plus 80p P. \& P

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

댄ㅁ를

TRANSDUCER and RECORDER AMPLIFIERS and SYSTEMS

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard 19" crates small size-low weight-realistic prices.

Fylde Electronic Laboratories Limited.

- Easiest and quickest way of punching holes in sheet metal (up to 1.625 mm)
- Simple operation
- 100\% British
- Burr-free holes no jagged edges
- 57 Metric and Linear sizes (Lists on application)
Used all over the world by Government services Atomic, Military, Naval, Air, G.P.O and Ministry of Works; Radio, Motor and Industrial manufacturers, Plumbing and Sheet Metal Trades, Garages, etc
"QMAX" (ELECTRONICS)LTD 44 PENTON STREET.LONDON N19QA TEl:01.2782500

The new Maplin Catalogue is no ordinary catalogue...

 Find out about our major electronics projects you can build. Our catalogue our many choose one of booklets giving feats and structional detain full con. exciting projectals of such graphic projects as a stereo graphic equaliser or an cated pic piano a sophisti cated electronic organ. our advanced synthesisers and many more

Catalogue includes a very wide range of components: hundreds of different capacitors; resistors; transistors; l.C.s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY MANY MORE, Component section includes a wide range chotes Component secs ready-wound coils and cores of coils. poicrohenries to Henries, ple Denco coils and

SENO THIS COUPONFORYOURCOPY OF OUR CATALDGJE ON APPROVAL! Price 50 -
Please rush me a copy of your brand new $1977 / 78$ satisfied
1 am completely satisays Please rush me a copy post. Only if 1 am 50 p within 14 days
catalogue by return of pony will I send 50 we the catalogue to catalogue by returery penny, will I may return the cata that I of receipt. If I am not satistied, intigation. I understans withoult I you within purchase anything from need not purchas it.

Dur bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy).

The, ${ }^{\mathrm{nen}}$ British Plot !

Bringing further versatility to the range of low cost Chart Recorders and XYt Plotters.
Designed and manufactured in the U.K. at our Southampton plant:

1 RADFORD
 HIGH PERFORMANCE AMPLIFIERS

for the enthusiast and professional

ZD22 Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and two tape machines, providing comprehensive recording and reproducing facilities. Sensitivities: Disc 1 mV , and Auxilliaries 50 mV . for 1 V ouiput. Exceptional signal/noise ratio. Output at clip level 18 V r.m.s.

2D50 Power Amplifier

A stereo power amplifier of all aluminium construction. Output of 110 watts per channel into 4 ohms and 70 watts into 4 ohms at typically less than 0.002% distortion

ZD100 Power Amplifier

A stereo power amplifier of all aluminium construction with high thermal mass and designed for continuous operation at high output level. Provides 150 watts per channel into 4 ohms and 90 watts per channel into 8 ohms at virtually zero distortion.

ZD200 Power Amplifier

Characteristics as ZD 100 amplifier but provides an output of 250 watts per channel into 4 ohms and 150 watts pêr channel into 8 ohms

HD250 Stereo Integrated Amplifier

Uses ZD22 pre-amplifier with a power amplifier having a power output in excess of 50 W per channel into $4-8$ ohms. Distortion. less than 0.02\% a rated power, typically less than 0.01%. True complementary symmetry qutput. Headphone output. Inputs: Disc, tuner, and two tape machines Sensitivities: Disc 1 mV . Auxilliaries 50 mV for 20 W output

Full descriptive leaflets available from
RADFORD ELECTRONICS LTD.
Audio Diviaion
Ashton Vale Road, Bristol, Ávon BS3 2HZ. Tel: 0272-662301

No other cleaner has all these advantages:-

1. Only 100% pure natural diamond grains are utilised.
2. Blades are treated with hard chrome to reinforce the setting of the diamond grains, to ohviate loosening or breakaway during use. This process also prevents clogging ot the diamonded surface by residues resulting from use
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the sufface This eliminates all excessive scratching during use.
4. All dianiond grains are rigidiy calibrated to ensure a perfectly uniform grain size ol either 200. 300 or 400
5. The chrome gives a very weak co efficient of friction and the rigidity of the nylon handle is calculated to permit proper utlisation and yet pliant enough to avoid undue pressures on highly delicate relays.

- Grain size 200. thickness $55 / 100 \mathrm{~mm}$. both faces diamonded. For quick cleaning of industria relays and switching equipment, etc
Grain size 300 . thickness $55 / 100 \mathrm{~mm}$, both faces diamonded. For smaller equipments, like Gelephone relays. Computer relays, etc
contacts. Two close contacts facing eache face diamonded For sensitive relays and tiny face of the spatula is abrasive.

Sole Distributors for the United Kingdom

 SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As supplied to the M.O.D., U.K.A.E.A., C.E.G.B. British Rail and other Public Authoritios: also major industrial and electronic users throughout the United Kingdom.
INTRODUCING INTERLAB

type MP51 low cost PULSE GENERATOR

a new model in Ll's INTERLAB ${ }^{\circledR}$ series of versatile, economical, instruments for laboratory, test and education

TYPE MP51 PULSE GENERATOR
PRF $5 \mathrm{~Hz}-5 \mathrm{MHz}$ 國 External trigger
Delay $100 \mathrm{~ns}-100 \mathrm{~ms}$ Manual one-shot
Width $100 \mathrm{~ns}-100 \mathrm{~ms}$ (TTL compatible
Mixing input for double/multi-pulse
(price - only $£ 60$ ex works (plus VAT)

Also available in the INTERLAB ${ }^{\circledR}$ series:
TYPE SQ10 SINE/SQUARE OSCILLATOR

TYPE D10 AF DISTORTION METER

series from

Hoddesdon Herts EN11 9DX
Telephone 67161 Telex 22724
A Claude Lyons Company
WW-008 FOR FURTHER DETAILS

WW-056 FOR FURTHER DETAILS

A. D. BAYLISS \& SON LTD. Behind this name there's a lot of real POWER!
 Illustrated right is a TITAN DRILL
 Mounted in a multi-purpose stand This drill is a powerful tool running on 12 vDC at approx 9000 rpm with a torque of 350 grm cm Chuck capacity $3.00 \mathrm{~m} / \mathrm{m}$.
 The mult-purpose stand is robustly constructed of steel and aluminium The base and bracket are finished in hammer blue.
 Also avaliable for use in the stand is the RELIANT DRILI which is a smaller version of the Titan Approx speed 9000 rpm 12 vDC , torque $35 \mathrm{grm} . \mathrm{cm}$ Capacity $24 \mathrm{~m} / \mathrm{m}$
 TITAN DRILL \& STAND
 RELIANTANTILILL \& STAND
 reliant drill only
 TITAN MINI KIT DRILL
 RELIANT MINI KIT DRILL
 $E 19.50$
 Plus 20 toois

 TRANSFORMER UNIT
 $+8 \%$ VAI $=59.23+75 \mathrm{P}$ P\&P
 Those are examples of the extensive range of power tools designed to meet the needs of development engineers laboratory workers, model makers and others requiring small precision To back up the power tools: Expo offer a comprehensive selection of Drills. Grinding Points and other tools
 SEND STAMP for full details to main distributors

A. D. BAYLISS \& SON LTD., Pfera Works, Redmarley, Glos GL19 3JU

Stockists Richards Electric, Worcester and Gloucester; Hoopers of Ledbury; Hobbs of Ledbury; D\&D Models. Hereford Bertella. Gloucester

WW -094 FOR FURTHER DETAILS

ITAM 805 (8TRACK) MASTER RECORDER
 tronics using plug in PCB's through out. Separate sync and replay amps give $\begin{aligned} & \text { identical } \\ & \text { levels. Switchable }\end{aligned}$ VU's with siow decay with slow decay Individua oscillator for each
channel. Dolby A switching facility Comprehensive facilities include sync on all chan
nels servo con trolled capstan modularelectron ics variable speed (optional). relaysolenoid operation compact presenta compact presenta tion for easy porta-
bility.
$£ 1790$ + VAT Full console optional extra
Compatıble 8-output Mixer available $\mathbf{£ 1 2 6 0 ~ + ~ V A T ~}$

OTARI DP-4050
CASSETTE COPIER

THESE ITEMS ARE INDUSTRIAL PRODUCTS AND SUBJECT TO 8\% VAT

Industrial Tape Applications

Everyone just says...

Good job we know what

 they meanThe MK. 3 Selectest has every facility you need built into it accuracy. sensitivity and robustness
The case is made of wipe-clean, tough, light weight melanine. Terminals accept 4 mm push-in plugs on the front panel enabling the Selectest to be used horizontally or vertically
The scale incorporates an inset mimior and knife edge pointer

SALFORD ELECTRICAL INSTRUMENTS LIMITED

Peel Works. Barton Lane, Eccles. Manchester M30 OHL Telephone 061-7895081 Telex 667711
A member company of GEC Electucal Componients Lid.

The world's most famous company in communication, the Nippon Electric Company Ltd., Tokyo, has developed the famous NED CQ radio amateur gears, being with regard to design, quality, reliability and price real pace-setters for today's communicators
First in history of amateur radio, such a big and famous company with more than 80 years of experience in construction of communication facilities, made its experience available to radio amateurs around the
world
The NEC, which has declared microwave space communication to its speciality, knows perfectly which attributes equipments must have for becoming bestsellers
Today we present

NEC Co 110 E DIGITAL

allband HF, 300 wattstransceiver $160 / 80 / 40 / 20 / 15 / 11$ 10A / 10B/10C / 10D / WWV, modes FSK, USB. LSB, CW. AM with separate 8 pole X-tal lattice filters for each mode fitted Further features: Side tone at CW, VOX (automatic transmit-receive by talking into microphone), 11 meter CB band, all channels easily selectable through digital counter, excellent receiver sensitivity at extreme crossmodulation security by application for the 7360 low noise beam, deflection mixer tube
This feature alone makes of the NEC CO 110 E a toprider. Fixed channel communication on 22 channels is possible. A 60 page manual and a high quality dynamic microphone are supplied with the transceiver. Speaker, AC $100-235$ volts and DC 13.5 volts powe) supplies are built in of course

NEC CQ 301

allband HF, 3KW, linear amplifier, 160/80/40/20/15/11/ 10 meter, for modern amateur communication. Two EIMAC 3-500 2 triodes, in zero bias grounded grid application guarantee long trouble free communication. The NEC CQ 301 can be driven by our CO 110 E or other exciters capable of about $50-100$ watts of drive. AC power supply 100-235 volts is built in of course
RETAILERS: Do not hesitate to accept our offer. Join us in selling these bestsellers

Sole distributor in Europe
CEC Corp, Via Valdani 1 - CH 6830 CHIASSO-SWITZERLAND Phone: (091) 4426 51. Telex: 79959 CH

HIGH POWER DC-COUPLED AMPLIFIER
 * UP TO 500 WATTS RMS FROM ONE CHANNEL
 * DC-COUPLED THROUGHOUT
 * OPERATES INTO LOADS AS LOW AS 1 OHM
 * FULLY PROTECTED AGAINST SHORT CCT. MISMATCH, ETC.

\author{

* 3 YEAR WARRANTY ON PARTS AND LABOUR
}

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over 20.000 Hz . The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Other models in the range: D $60-60$ watts per channel

Power Bandwidth
Power at clip point (1 chan) Phase Response Harmonic Distortion Intermod. Distortion Damping Factor Hum \& Noise ($20-20 \mathrm{kHz}$)
DC. 20 kHz " 150 watts + 1 db . Odb 500 watts rms into 2.5 ohms
$+0-15 D C$ to 20 kHz 1 watt 8Ω Below 0.05\% DC in 20kHz
Below 0.05\% 0.01 watt to 150 watts Greater than 200 DC to 1 ktiz at $8 / 2$ At least 110 db below 150 watts

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions

19" Rackmount. 7" High. 93." Deep
8 volts per microsecond
1 ohm to infinity
175 V for 150 watts into 80
10 K ohms to 100 K ohms
Short mismatch \& open cct protection
120.256 V .50 .400 Hz

Other models available from 100 watts to 3000 watts

MAGINNES LABORATORIES LTD.
Macinnes House, Carlton Park Indistrial Estate Saxmundham, Suffolk IP172NL. Tel: (0728) 22622615

MACINNES FRANCE 45 Rue Fessart Paris 75019 . France Thel-203-30-01

WW-042 FOR FURTHER DETAILS

JES AUDIO INSTRUMENTATION

$\begin{array}{cccc} 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	Illustrated the Si452 Distortion Measuring Unit-low cost distortion measurement down to 01\% £ 48.00
Si451 £60.00	Si453 £60.00
Comprehensive Millivoltmeter	Low distortion Oscillator
350μ Volts 20 ranges	sine - square - RIAA

J. E. SUGDEN \& CD. LTD. Tel. Cleckheaton (0274) 872501 CARR STREET, CLECKHEATON, W. YORKSHIRE B 19 5LA WW-025 FOR FURTHER DETAILS

Audio versatility by TIIEEI

The Tweed Twin-100 Monitor Power Amplifier - designed for a high peak output capability, this robust amplifier delivers 100 watts per channel into 8 ohms. Full performance specification on request.

If you require superb quality, top performance, proven reliability and electronics designed with music in mind, write or phone

TWEED RUDIO

Specialists in Audio Control Equipment for the Broadcast and Sound Recording Industries

1RADFORD
AUDIO LABORATORY INSTRUMENTS

A continuously variable-frequency laboratory oscillator with a range $10 \mathrm{~Hz}-1.00 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time
LDO3.B Low Distortion Oscillator, balanced output.
A LDO3 but fitted with an output amplifier and screened balanced transformer providing a 600 ohm floating / balanced output, and 150 ohms unbalanced output
DMS3 Distortion Measuring Set (IIlustrated)
Measures total harmonic distortion down to 0.001% speedily and accurately. Direct reading from calibrated meter
HSV1 High Sensitivity Voltmeter
An accurate voltmeter with 16 ranges. $10 \mu \mathrm{~V}-300 \mathrm{~V}$ f.s.d. Average responding.
HSV2 High Sensitivity Volmeter
As HSV1 but true rms. reading.
ANM1 Audio Noisemeter
An accurate voltmeter and noisemeter with 16 ranges, $10 \mu \mathrm{~V}$-300V f.s.d Fitted weighting characteristics Wide band, DIN Audio Band, IEC/DIN Curve ' A ', and $C C \mid R$. Average responding
ANM2 Audio Noisemeter
As ANM 1 but truerm.m. reading
ANF1 Audio Noisefilter
An active filter to CCIR weighting characteristic for use with external voltmeter. (Ref. Dolby Laboratories Inc.. Bulletin No. 43, Mar. 76)
ull descriptive leaflets available from RADFORD ELECTRONICS LTD. Laboratory Instruments Division Ashton Vale Road, Bristol, Avon BS3 2HZ

643 FUNCTION GENERATOR sINE, sQUARE + THIANGLE 0.01 10 1 MHz
 $10 \mathrm{VPP} \pm 5 \mathrm{~V}$ DO OFFSET 50n OUTPUT IMPEDANGE 1000: VEO RANGE

643 Function Generator
$£ 95+£ 2$ P\&P WW. 015
Other products include
643A Function Generator
£79 WW. 016
745 Counter Timer £88 WW. 017
744 Counter Timer
£79 WW 018
631 Filter Oscillator
£98 WW.019
Delivery is normally ex-stock - refephone for contirmation
Prices correct at time of going to oress, subiect to change without notice
OMB, Electronics, Riversidé, Eynsford, Kent. Tel. 0322863567

Ecicron For Quality and Peliability

Edicron Limited
Redan House 1 Redan Place
London W2 4SA
Tel: 01-7270101
Telex: 265531
Cables:Edicron London W2

Resistors and Capacitors

ambit international .n.t.
The Wireless Specialists for components \& modules.
EF5800, $7030 \& 91196-.9 \mathrm{uV} / 30 \mathrm{~dB}$ S/N., $0.2 \% \mathrm{THID}$ Our top three FM tunermodules. (EF5800 shown with can off).

From left to right, the EF5800 6 circuit varicap FM tunerhead with the 7030 linear phase IF and the 91196 PLL stereo decoder with integral 55 kHz 'birdy' filter. The system provides afc muting, meter drives, agc, auto stereo switch, \& a specification that exceeds broadcast requirements. Now available with a new EF5801 tunerhead, with FET buffered oscillator output for synthesiser/frequency readout facilities.
EF5801.f17.45; EF5800.f14.00; 7030.f10.95; 91196..f12.99
Complete FM tuner hits/systems (Carriare f 3 extra.)
The Mark 8 Signalmaster - by Larsholt Electronics
This tuner is based on the popular 7252 tunerset, and provides an incomparable combination of style and performance that can be built by even the relatively inexperienced constructor. Complete kit....£85.00; matching $25+25 \mathrm{~W}$ amplifier... $£ 79.00$.
International Mark 2 Tuner kits:
Complete tuner kit, based around the 7253 tunerset, $£ 65.00$ Or just the chassis, cabinet, heavey aluminium front panel for your own choice of modules- see our new info. leaflet on the International Tuner. (SAE please)
NEW NEW NEW NEW NEW NEW NEW NEW BIONIC FERRET METAL LOCATOR
Ambit has designed a new approach to cost effective sensitive metal locators, and now we proudly present the first of the family of 'Bionic Ferrets'. Details OA, but we can say it will detect a 10 p piece at $8-10$ inches. Coupled with low power consumption and many innovations, this is the first radically advanced detector that can be made from a kit. $£ 37.99$

Radio module selection: (Prices for kits in our catalogue \& PL) EF5800 Ambit 6stage varicap $88-108 \mathrm{MHz}$ tunerhead $£ 14.00$ EF5600 TOKO 5 stage varicap £12.95 EC3302 TOKO 3 stage varicap £7.50 7020 Dual ceramic filter FM IF system modute E6.95 92310 MPX decoder, with stereo filter and preamp £6.95 93090 MPX decoder with CA3090AQ + filter stage £7.35 91197 MW/LW varicap AM tuner module £11.35 771 New 'Oft-Air' UHF varicap TV sound tunermodule New 'Oft-Air UHF varicap TV sound tunemodule
with mute,
AFC, dual conversion, PSU
$£ 27.00$ $9014 \mathrm{MW} / \mathrm{LW} /$ Stereo FM tuner chassis. Mech, tuned £26.00 Components: ICs, coils, filters, trimmers diode law pots etc. HA1137W/3089E FM IF 1.94 TOKO AM IFTS: TBA 120 FM IF and demodo. $75 \quad 455 / 470 \mathrm{KHz}$ types MC1350 FM IF preamp $0.97 \quad 10.7 \mathrm{MHz}$ types $\begin{array}{lll}\text { SN76660N FM IF and det. } 0.75 & 10 \mathrm{~mm} \text { square, with int } & 0.30 \\ 0.33\end{array}$ MCl $310 / 4400$ PLL MPX $220 \quad 455 \mathrm{kHz} \mathrm{Mechanical} \mathrm{fitt} \mathrm{cap}$. $\begin{array}{llll}\text { CA } 3090 A Q P L L M P X & 2.25 & 455 \mathrm{kHz} \text { Mechanical filters }\end{array}$ $\begin{array}{lll}\text { HA1 } 196 \text { PLL MPX } & 4.20 & 455 \mathrm{kHz} \text { ceramic IF filter }\end{array}$ UA720 AM radio system $1.40 \quad 6$ or 8 kHz bandwidth CFTO. 55 TBA651 AM radio system 1.81 SFD455 (Murata) 0.75 HA1197 AM radio system $1.40 \quad 455 \mathrm{kHz}$ duat ceramic CF $\times 1.80$ LM1496 balanced mixer $\quad 1.25 \quad 10.7 \mathrm{MHz}$ filters for WBFM 11 C 90600 MHz decade ctr $14.00 \quad 3132 \mathrm{~A} 6$ pole lin phase LM380N2W Audio mp 1.003125 N 4 pole lin phase LM381Naudio preamp st. 1.81 CFS ceramic filters TCA940 10 W audio amp 1.80 Pilot tone (MPX) fitters: TE723 voltage reg IC 1.80 . BLR 3107 N stereo TDA141212v600mA reg 0.95 * BLR2007N 78 M 2020 V 500 mA 1.20* BLR3152/mono $\quad 1.95$ TAA550B varicap regulatoro. 50* BLR 3172 N tape bias trap NE560/1/2B PLL ICs $3.50^{*} 85$ or 100 KHz pole with
0.97 ICL8038CC function gen 4.50 * various chokes etc. see price list
22 turn 100 k diode taw trimpots, with integral knod 40 p
32 p 270° rotary 100 k diode law tuning pot解 _post/packing 22p per order - except where indicated General: All prices shown here exclude VAT, which is generally $12 \frac{1}{2} \%$. (Except where marked*). The latest price leaflet is available FOC with an SAE. Please send a (large) SAE with any enquiries. Full catalogue still 40p.

[^0]
EIMEOAFD

Stop Ruining Your l.C.'s And Wasting Time Soldering
Plug Into The Revolutionary New BIMBOARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket Has Over 500 Individual Sockets

And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

Only $\{9.72$ (cheque with order) Including VAT and P.P. Special Quantity Discounts Available For Radio Clubs, Retail Outlets, Distributors
$=-5=$ INOUSTRIAL MOULDINGS ITD
Higgs industrial Estate, 2 Herne Hill Road, London. SE24 OAU, England Telephone 01-737 2383 Telex 919693

ELECTRONORGTECHNICA

carbon film RESISTORS

$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK

Minimum export order E100
Contact John Gingell

AERO SERVICES LTD.
44A Westbourne Grove
London W2 5SF
TEL: 01-7275641 TELEX 261306
WW-053 FOR FURTHER DETAILS

WW - 038 FOR FURTHER DETAILS

FOR HOME CONSTRUCTOR TT-Dec Breadboard

TT-Dec, The New Versatile breadboard for integrated circuits which require a considerable amount of discrete circuitry Buy now and receive a Free I.C. Blob Board. Worth 36p.

Design and build circuits directly onto the TT-Dec; plug components in and out; Re-use components; No soldering TT-Dec's have 416 contact points, 216 Dil holders, a facility for 4.10 lead T051.C.'s, 2 corr ponent support brackets, 10 double ended leads and step by step instructions of exciting I.C. projects to buitd. Contacts are linked electrically in rows with 5 mm gaps, enabling short lead devices to be inserted directly into the contacts Special price $£ 7.26+(64$ p for post and V.A.T.) + FREE I.C. Blob Board

PB

P.B. Electronics (Scotland) Ltd.

57 High Street, Saffron Walden, Essex

WW-033 FOR FURTHER DETAILS

Crimsan Elektrik

MINIMUM TID POWER AMPLIFIER MODULES we belleve our modules are unequalled in sound quality, overall performance \& value for money

WW-041 FOR FURTHER DETAILS
INSTANT SINAD MEASUREMENTS

with the

The SINADDER is a specialized distortion meter for Sinad Measurements. Just connect it to the audio output and read SINAD directly. No adjustments to make. Automatic circuitry does the level setting for you
£120 + p. \&p. \& VAT
LYONS INSTRUMENTS
Hoddesdon Herts EN11 9DX Tel: 67161 Telex 22724 A Claude Lyons Company

Howtodouble youroutput
 $\sqrt{4}$

 £149.30
 \& P \& P
 S10

without losing all your bench space. The overall size of the S10 solated twin power supply is only $20.5 \mathrm{~cm} \times 20 \mathrm{~cm} \times 17.5 \mathrm{~cm}$ high. Each half of the $S 10$ is capable of supplying $0-30$ volts at 2 amps with line regulation much better than 0.01% and an output resistance less than 0.005 ohms. A coarse control provides 5 volt steps and a fine control $0-5$ volts giving very accurate setting. Total ripple and noise is less than 300 microvolts r.m.s.
Send your Order now to Linstead Manufacturing Co. Lid., Roslyn Road, London N15 5JB.

WW—092 FOR FURTHER DETAILS

The All-Electronics Show Grosvenor House, Park Lane, London, W. 1. 19th-21st April

We're name dropping!

Advance Micro Devices AMP of Great Britain Lto Arcolectric Switches Ltd Avdel Lidd
Avo Lid
Belix Company Ltd Bell \& Howell Ltd Berg Electronics Ltd C. Brandauer \& Co Brandenturg Ltd Britec Flesta Lid British Central Electrical Co Bryans Southern Instrumen Cliffolm Lid Cliffoalm Ltd Comark Electronics Lid Compstock Ltd Consort Power Sales Coutant Electronics Ltd ramer Components Crow of Reading Ltc Data Laboratories Ltd Datron Electronics Lid Davu Wire \& Cables Ltd Diamond H Controls Lto Digital Oevices Ltd Dymar Electronics Lid Electron
Electronic Engineering Electronic Equipment News Electronics Industry Electronic Visuals Ltd ENI Power Systems Lid Erie Electronics Ltd European Electronic Contact Exel Electronics Ltd Farnell Instruments Lid Ferranti Connectors Ferranti Semiconductors Fieldtech Ltd Fluke International Corp

T. Foxall \& Sons Lid

 GEC Semiconductors Lid GeminiGiltech Components Lto W. L. Gore \& Associates Lto Gould Advance Ltd Hartley Measurements Havant Instruments Ltd Highland Electronics Ltd Hunting Hivolt Lid Icthus Instruments Lid Imhof Bedco Ltd Intel Group of Companies Intime Electronics Ltd ITT Component Group ITT Electronic Services Journal of ATE Kemo Ltd KGM Electronics Ltd Labhire Ltd Labhire Ltd Lan Electronics Lid F.C. Lane Electronics Lto Lascar Electronics Lawtronics Ltd Lemo U.K. Ltd Littelfuse (GB) Ltd Littex

Lipa \& Isostat (GB) Lid

 J.J. LJoyd Instruments Lto Malden Electronics Molex LidNew Electronics Nortronic Associates Normalair Garrett Oakleigh Engineering Oxford Electron

Philcom Electronics Ltd Phoenix Electronics Ltd innacie Electronics Ltd Plastronics Lid Plessey Aerospace Plessey Semiconductors Plessey Traffic \& Instrumentatio Powertion Ltd Practical Electronics Pye Unicam Ltd Raytheon Semiconductors Reading Windings Lid Redpoint Ltd Ritro Electronics Lid Ross Courtney Roxburgh Electronics R.S. Components Lid S.A.S.C.O

Semiconductor Special ists Setab Electronics Siliconix Ltd Sprague Electric H.W. Sullivan Lid Symot lid Synchro Services Tektronix UK K Teledyne Semiconducto Telequipment Telequipmen Texas instruments Toko U.K. Lto Unimatic Engineering Ltd Variohm Components Vero Electronics Walter Logan \& Co Lida Wavelek Weir Electronics Ltd Zettler U.K

You'll come?

SUPERB LIQUID CRYSTAL DISPLAY WATCHES FROM

NATIONAL

 SEMICONDUCTORFive function LCDs with backlight at lowest prices ever from $£ 23.90$

DAC5 WS Chrome plated DAC5 YS Gold plated
DAC5 WB Chrome
DAC YB Gold
 £25.90 On matching £29.90 $\} \begin{aligned} & \text { adjustable } \\ & \text { bracelet }\end{aligned}$
DAB5 WB Stainless steel case and bracelet $\quad \mathbf{E 3 5 . 5 0}$ DAB5 YB Gold plated
$£ 39.50$

FAIRCHILD TIMEBAND LCDs

TC411 Chrome £28.90; TC410 Gold $\mathbf{£ 3 1 . 9 0}$ on leather strap: TC413 Chrome £33.90; TC412 Gold $\mathbf{£ 3 6 . 9 0}$ with matching bracelet (illustrated)

CASIO CASIOTRON X-1 probably THE BEST WATCH IN THE WORLD, R.R.P. £129.95. OUR PRICE £98.50. Full range of CASIO LCDs from $£ 44,50$.

IBICO. The full range of these quality Swiss LCDs from $£ 42.50$. LADIES' Electronic watches from $£ 19.95$.

SEND $10 p$ for our CATALOGUE. Probably the widest range of electronic watches in Brizain at the LOWEST PRICES Prices include VAT at 8% and P\&P. Free battery/s. No quibble one-year guarantee
Access and Barclaycards welcome

TEMPPUS
 Talk of the town

19/21 Fitzroy Street, Cambridge CB1 1EH Telephone: (0223) 312866

For those who appreciate Quality...

 a complete electronic kit The Forgestone 400 high quality colour television receiver SUPERB PICTURE QUALITY TOGETHER WITH PROVEN RELIABILITY- 9 integrated circuits
- Thick film resistor units
- Ready-built and aligned IF module
- Glass epoxy printed circuit panels
- High quality components - LT supply regulator

The isolated chassis makes the receiver ideal for the addition of Teletext decoders, remote controls etc. Please send stamp for further details of these quality products.
Forgestone Colour Developments Limited Ketteringham, Wymondham, Norfolk, NR 18 9RY, UK Telephone Norwich 810453 (STD 0603) MAIL ORDER - Barclaycard \& Access accepted

- Fully isolated power supply
- Plugs and sockets for easy panel removal
- Each module kit available separately
Full techn
Full technical construction manual

Uniquefull-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full- size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\% VAT, P\&P). And for that, you get not only a high calibre calculator, but the fascination of building it yourself.

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a \% key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys
2. and hold it to the right to use the functions to the right above the keys.

Dimensions: $113 / 16^{\circ}(46 \mathrm{~mm})$ wide $1 \% 6^{\prime \prime}(37 \mathrm{~mm})$ deep Weight: less than $10 z(28 \mathrm{~g})$.

The display uses 8 full-size red $L E D$ digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

If you use oscilloscopes, you should know about the D 67 A , one of the newest in a strong cast of stal performers from 'l'elequipment.
Superbly engineered, clegantly styled, this robust and compact oscilloscope captures the spotlight with its $25 \mathrm{MII} \%$ handwidth, its dual trace dual time base versatility and an extensive repertoire which includes delayed and mixed sweep routines. Sensitive, (up to $1 \mathrm{mV} /$ div) yet without a trace of temperament, due to F.E.T input circuitry. High speed presentation, (up to fons/div) with excellent timing ($\pm 3^{\prime \prime}$, to $\pm 5^{\circ} \%$) -a blending of talent and technical expertise that could come only from a T'elequipment production

You will applaud it on performance and encore it on price. Secure your front row seat today, ask us for a brochure and a demonstration.
'Tektromix U.K. Limited,
P.O. Box 69, Beaverton House, Harpenden, Herts.

Tel:Harpenden 631+1 Telex:25559

TELEQUIPMENT \ll

Capable~that's our scope

wireless world

Electronics, Television, Radio, Audio
 MARCH 1977 Vol 83 No 1495

Contents

31 The consciousness industry
32 Electronic rhythm unit by A. Battaiotto and G. Ronzi
37 News of the month
UK to consult on frequency allocations
Miniature television set
Government support for electronics industry
41 Circuit ideas
Octal display for microprocessors
Semiconductor tester
Linear voltage controlled amplifier
43 H.F. predictions
44 Interference from amateur stations by I. Jackson
48 EEC data-processing cash
49 Television pattern generator by R. A. Owen and D. Brenkley
52 Viewdata - 2 by S. Fedida
55 Logic design - 3 by B. Holdsworth and L. Zissos
59 Letters to the editor
Advanced pre-amplifier design
Circular insert generator
Industry to study Citizens' Band
62 Can oscillators be "common"? by "Cathode Ray"
64 Identifying European television - $\mathbf{2}$ by G. Smith and K. Hamer
67 Weather satellite facsimile machine -4 by G. R. Kennedy
69 Special-purpose amplifiers - Circards $\mathbf{3 3}$ by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams

73 Mobile radio communication - $\mathbf{3}$ by D. A. S. Drybrough
77 Wireless World index, binding and p.c. boards
78 World of amateur radio
79 New products
122 APPOINTMENTS VACANT
136 INDEX TO ADVERTISERS

[^1]

Front cover shows the interior of a Mullard scanning coil assembly for a colour television tube. Photographer Paul Brierley

IN OUR NEXT ISSUE

Sensitive metal detector constructional design using beat frequency oscillator principle but with beat oscillator frequency mixed with 5 th harmonic of search oscillator frequency.

Power semiconductor survey on construction and characteristics of transistors, thyristors, power Darlingtons and f.e.ts and related devices with applications and circuits

Stereo coder. Inṡtrument providing a signal for testing stereo receivers and tuners or distributing programmes in showroums, etc. The design uses no inductors, thus simplifying construction.
ibpa
ABC -ivorino

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly contirmed. The product range is very. very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited
Electron House,
Cray Avenue. St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27098
Telex: 896141

wireless world

Editor:
TOM IVALL, M.I.E.R.E.

Deputy Editor:
Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc
Phone 01-261844:3

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc. G8KYY
Phone $01-2618043$
JOHN DWYER
Phone 01-261 8620

Production:

D. R. BRAY

Advertisement Controller:
G. BENTON ROWELI.

Advertisements:

PHILIP NOSSEL (Manager)
Phone 01-261 8622

LEO KEMBERY
Phone 01-2618515

OWEN BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

[^2]Publishing Director:
GORDON HENDERSON

The consciousness industry

James Hillier, an executive vice-president and senior scientist of RCA, recently warned "Every individual today is suffering from an information overload. We have more information than we can absorb . . " If an important member of a large corporation that lives by processing and selling information can admit this publicly it must be serious. No doubt Mr Hillier's main concern is the effect of such saturation on his business. But there is another aspect of this saturation which deeply concerns us all: its effect on our consciousness and, by introjection, on the very nature of our being.

For information is not just an extraneous thing. As Norbert Wiener once pointed out, information is "the content of what is exchanged with the outer world as we adjust to it, and make our adjustment felt upon it." Similarly, the anthropologist Gregory Bateson has postulated that what we call "mind" is the process of information transfer within closed loops, not only those circuits which are completed within the brain or brain-plus-body but those which extend through the larger system of man-plus-environment. Nowadays electronics technology is increasingly involved in this man/world exchange process. Beyond the telephone and broadcasting one can see a whole host of new systems becoming part of our environment: teletext and Viewdata (see this issue), radio paging, video telephones, conference television, programmed learning, electronic transmission of mail and newspapers, selection of goods and services by two-way cable television, and personal communication through satellites and wrist radio sets. All these systems introduce special constraints into the exchange process - of time, space, power, bandwith and so on - and in using them we have to submit to the disciplines imposed by these contraints. Together with the well known mass media they form what has been described as "the consciousness industry."

There are two things we must watch. The first is who controls the consciousness industry - whether the state, business monopolies or a middle-class elite with assumptions of superiority - and for what purposes. The second is how this industry is modifying our central beliefs of what a human being should be. What sort of people is the consciousness industry manufacturing to satisfy the wishes of its masters? There are some interests, for example, that would wish to create man in the image of the ideal consumer.

It is true that the new two-way information systems, such as public information retrieval and "access" programmes on radio and $t v$, seem to give the individual a greater sense of autonomy and free will, but in the end what a person can select or say is restricted to a certain range or context by those who edit or control the systems.

The ecological movement has been successful in showing us that man cannot go on ravaging the biosphere without in the end impoverishing himself. We may soon have another movement to teach us that man cannot go on making himself even more of a slave to deterministic systems - from clocks and machines in the 19th century to information mills in the 20 th - without impoverishing his own humanity.

Electronic rhythm unit

Up to 15 programmable rhythms for electronic organs

by A. Battaiotto and G. Ronzi SGS-Ates Application Laboratory, Agrate, Italy

Two m.o.s. integrated circuits designed to drive eight electronic musical instruments according to a programmed rhythm are described. With these i.cs, a rhythm section based on simulated percussion instruments can be incorporated into an electronic organ. Type M252 has 15 programmable rhythms. A general introduction to the rhythm generator is followed by device details and their principal electrical characteristics. A second article deals with the application of the devices and gives circuitry for inclusion of a rhythm section in an electronic organ.
The description rhythm generator is used to refer to a system which generates trigger or excitation pulses for oscillators, whose amplified, damped outputs simulate the acoustic sensation of the musical instruments in the rhythm section. The rhythm generator is not itself a source of sounds, but only a means of timing the switch-on of the oscillator circuits which constitute the sources.
To realize such a system each cycle of the complete rhythm must be divided into a number of "elementary times" using a counting technique. A fixed memory then determines whether or not a given instrument should be triggered during each of these elementary times. The elementary times or counter states, which constitute the smallest subdivisions of the rhythm can be grouped into bars or measures, usually $1,2,3$ or 4 . Within the complete rhythm, each of these bars can be programmed differently

Each bar, then, consists of n elementary times in which the beats of each instrument will be programmed to occur. In musical notation the length of these beats is described as a fraction of a known reference period see Fig. 1. When the sum of the beats in any bar comes to $4 / 4$, the rhythm is described as $4 / 4$.
The number of elementary times in the bar fixes the minimum duration of each beat; in other words, the greater the number the elementary times the shorter will be the minimum length of
the beats and the richer the resulting rhythm. For example, a $4 / 4$ rhythm programmed in four bars over 32 elementary times, i.e. eight per bar, can only use musical beats of length $1,1 / 2$, $1 / 4$ or $1 / 8$ and not of $1 / 16,1 / 32,1 / 64$. If the same rhythm is programmed in two bars of 16 elementary times each, musical beats of length $1,1 / 2,1 / 4,1 / 8$ and $1 / 16$ can be used, $1 / 32$ and $1 / 64$ being still excluded. The basis of such a rhythm generator is illustrated by the block diagranı of Fig. 2.

Table 1. Count requirement
1st case: Rhythm 4/4
Minimum duration of each beat $1 / 16$
Number of bars per rhythm 2
Count is 16 elementary times $\times 2$ bars $=32$

2nd case: Rhythm 3/4
Minimum duration of each beat $1 / 16$
Number of bars per thythm 2
Count is $16 \times 3 / 4 \times 2=24$.
3rd case: Rhythm 5/4
Minimum duration of each beat $1 / 16$
Number of bars per rhythm 1
Count is $16 \times 5 / 4 \times 1=20$

Fig. 1. Division of the rhythm into elementary times and bars.

Fig. 2. Block diagram of a trigger generation system for the oscillator circuits.

Counter

The counter must be able to count the number of elementary times corresponding to rhythms of $3 / 4,4 / 4$ and $5 / 4$. This means that the counter must stop and reset to its initial position (to repeat the rhythm) after a certain number of counts which depends on the selected rhythm.

Two characteristics of the rhythm determine the count requirement i.e. the minimum beat of the rhythm, and the number of bars in the complete rhythm Table 1

Making a practical rhythm generator

The system described in principle above can be realized with integrated circuits or discrete devices, illustrated in Fig. 3. If i.cs are used the counter can be produced in t.t.l. although due to the large amount of storage required, the memory will almost certainly have to be in m.o.s. Using a 4096-bit memory such as the M240, organized in 512 words of 8 bits, it is possible to program 16 rhythms selected by lines A5, A6, A7 and A8, each consisting of 32 elementary times (the counter drives lines A0, Al, A2, A3 and A4). As the r.o.m. outputs are not of the reset-to-zero type they must be reset by an external clock before being applied to the instrument oscillators. If the generator were to be built with discrete components both the memory and the count decoder could be realized with a diode matrix. The return to zero of the outputs can be achieved by resetting the decoder. But such a system would lead to the use of a very large number of diodes. As a result the reliability would be poor and the assembly cost very high.

The ideal rhythm generator

The characteristics of an ideal rhythm generator can be summarized in the following points.

1 The entire system described above would be contained in a single device thereby achieving maximum reliability in the minimum space. The labour required for assembly is also reduced.
2. The counter should have the highest count possible. For a rhythm containing a fixed number of bars this means that the rhythm can be subdivided into shorter beats and will consequently be musically more interesting. Similarly for a given number of elementary times the rhythm can be madeup of a greater number of bars, possibly different, resulting in a more interesting musical effect.
3. The system should provide a large number of rhythms. Here it is necessary to make a distinction between rhythms which can be superimposed and those which cannot, as the concept of superimposition is closely linked to the number of available rhythms. Two rhythms are said to be superimposed
when, selecting both simultaneously at the system input, the output commands for each instrument correspond to a combination of the commands that would have been produced by the rhythms selected separately, see Figs 4 \& 5. Technically, rhythms can only be superimposed if they are selected by means of separate lines and not by a coding technique. Superimposition, therefore, involves a greater number of input pins (one for each rhythm), but does not call for a very high number of rhythms because the organist can choose any combination of those available.

Fig. 3. System realized with i.cs (right) and with discrete devices (below).

Fig. 4. Instrument trigger for combination of two rhythms.

Rhythms

Fig. 5. Rhythms superimposed and not. At (a) 12 rhythms are available in combination, at (b) 2r rhythms not available in combination

Rhythms

(b)

In general, 12 is a sufficient number of rhythms if they can be superimposed, but there have to be more if superimposition is not possible, usually 15 or 16 .
4. The system must have a large number of outputs (instruments). The number of instruments programmed for each rhythm will generally vary between 3 and 6. Eight represents a maximum number which is rarely used.
5. The system must be programmable in any time, $3 / 4,4 / 4,5 / 4,6 / 8$. It must therefore be possible to intervene at the mask programming stage, on the reset of the elementary time counter for each rhythm.
6. The system must produce no spikes on the memory outputs caused by successive decoded counter states. This creates undesired triggering of the instrument oscillators.
7. The system must provide the possibility of externally resetting the elementary time counter, so that it restarts from the first elementary time of the first beat. This enables key or touch operation in which the rhythm generator remains reset until at least one key is played.
8. The system should supply a downbeat output signal corresponding to the first elementary time of the first beat of each rhythm. This signal allows synchronization between the organist and the device's internal counter.
9. The system must be realized with a static form of logic designed for the low frequency operation of a rhythm generator $(20 \mathrm{~Hz})$.

Table 2: Rhythm selections
The following binary code must be generated to select each rhythm (logic positive)

Rhythm	8	4	2	1		
1	1	1	1	0	Waltz	$3 / 4$
2	1	1	0	1	Jazz Waltz	$3 / 4$
3	1	1	0	0	Tango	$2 / 4$
4	1	0	1	1	March	$2 / 4$
5	1	0	1	0	Swing	4/4
6	1	0	0	1	Foxtrot	$4 / 4$
7	1	0	0	0	Slow Rock	$6 / 8$
8	0	1	1	1	Rock Pop	$4 / 4$
9	0	1	1	0	Shuffle	$2 / 4$
10	0	1	0	1	Mambo	4/4
11	0	1	0	0	Begurne	4/4
12	0	0	1	1	Cha Cha	4/4
13	0	0	1	0	Bajon	4/4
14	0	0	0	1	Samba	4/4
15	0	0	0	0	Bossa Nova	4/4
No selected rhythm	1	1	1	1		

10. The system must be input compatible with t.t.l. and d.t.l. level signals so that it can be interfaced with an oscillator realized with such devices.
11. The system must have low dissipation - 150 to 300 mW
12. The system must have a single standardized supply.
Points 2, 3 and 4 together create a single requirement, namely that the system must have a maximum memory capacity in terms of the number of bits. The maximum number of bits is limited by the die-size of the device which in turn is determined by the cost of the device itself.
Once the memory capacity has been established by economic factors, it follows that a compromise between the
number of rhythms, the number of instruments and the number of elementary times will be made. An effective solution is

- a maximum of 32 elementary times
-8 instruments
-15 rhythms
with a memory capacity of 3840 bits ($32 \times 8 \times 15$).

The SGS-ATES solution

Rhythm generators type M253 and M252 fulfil all the requirements of the ideal system, see Fig. 6.

- The M 253 has:
- 12 rhythms which can be superimposed
-3 instruments for $3 / 4$ or $4 / 4$ tme or 7 instruments for any time
- a maximum of 32 elementary times
- external reset

- down-beat output
- internal anti-spike circuit
- single supply
- low dissipation, typically 100 mW
- pin-to-pin compatible with the M250
- directly coupled
- 24-pin plastic or ceramic package
- The M 252 has:
- 15 rhythms which cannot be superimposed
-8 instruments for $3 / 4$ or $4 / 4$ time or 7 instruments for any time
- maximum of 32 elementary times
- external reset
- down-beat output
- internal anti-spike circuit
- single supply
- low dissipation, typically 100 mW
- can be directly interfaced (input) with t.t.l, d.t.l.
- directly coupled
- 16-pin plastic or ceramic package. Both of these devices are derived from the same chip which, during the processing stages, is provided with the memory pattern specified by the customer and the ancillary functions that distinguish the particular system.

How the M 253 works

The phase generator uses the incoming clock signal to produce the two non-over-lapping phases at regenerated levels which are required for driving the following divider.

This divider has to create a reset signal for the return to zero of the outputs. Width of this pulse is independent of the duty cycle of the incoming clock. The divider's outputs also serve as timing signals for the first stage of the five-stage counter, which uses master-slave static flip-flops.

The counter states are decoded to drive the rows of the memory matrix. The columns of the matrix are divided into 12 groups of 8 , representing the 12 rhythms and the 8 instruments. One particular state, the 24 th is decoded, logically combined with the rhythms in $3 / 4$ time and is used as the counter's

External
clock
$4 / 4$ time down beat

3/4 time down beat

Fig. 7. Down-beat timing and duration.

Fig. 8. Use of the down-beat signal.
internal reset for rhythms programmed in this time. This device is therefore suitable for programming any rhythm in $4 / 4$ time over 32 elementary times or in $3 / 4$ time over 24 elementary times. This means that when a rhythm is programmed over a single bar the intervals can be as short as $1 / 32$ allowing great musical flexibility.

The counter can also be reset by an external signal which, when driven

Fig. 9. Timing waveforms.
directly by an output of the M253 itself, sacrificing one instrument, can be used to reset the counter to any position for times other than $3 / 4$ or $4 / 4$. If, for example, we want to reset at the state n for a rhythm X, a beat must be programmed at the elementary time n +1 at the output of the rhythm to be used as reset. This output, connected at the input of the external reset, immediately zeroes the counter and therefore causes the disappearance of the reset signal; other than the $n+1$ beat there should be no program on the output used as the reset.

The columns of the matrix are Bit sequence

Clock
input

External
reset

Output
signal

External instrument

Down-beat

enabled, singly or in groups (the rhythms can be superimposed) via the buffer according to the rhythm or rhythms selected. The presence of one rhythm, therefore, does not exclude the possibility of another rhythm being selected contemporarily, and the result on the output of each instrument for each rhythm is the sum of the beats of the single rhythms, see Fig. 4. One particular case is when the rhythms are selected contemporarily with a different matrix, eg a $3 / 4$ or $4 / 4$ rhythm. In this case the count cycle will correspond to the rhythm with the lowest number of elementary times, in the example the cycle will be of 24 elementary times.
The delayed, decoded signal from the 24 th state ($3 / 4$ rhythms) and the 32 nd (4/4 rhythms) are used as down-beat signals, i.e. as starting signals to indicate the first beat of the first bar, see Fig. 7. This signal, whose usefulness will be seen in the application section, was brought out to a pin already used for an input signal - the external reset signal - since no supplementary pin was available in the package used. In reality, the presence of an external reset signal is compatible with a down-beat signal although the reverse is not true as a down-beat signal must not have the effect of an external reset. This can be achieved by using a diode to separate the two signals as shown in Fig. 8.
For rhythms other than $3 / 4$ or $4 / 4$ the pulse present at the output connected to the external reset can be used to trigger a monostable circuit, whose output will be the down-beat signal. When no rhythm is selected the down-beat signal is present and the counter counts to 32 .

Operation of the M252

The phase generator, the counter, the matrix, the output and reset logic, and the 24th state decoder for the reset in $3 / 4$ time, operate in the same way as in the M253. The difference is in the rhythm command inputs, which are in binary logic using the code shown in Table 2. Given that it is impossible to select two different codes at the same time, it follows that it will be impossible to superimpose these rhythms.

One code word has been used to indicate "no rhythm selected." In this state, there are no instrument output signals, the down-beat signal is present and the counter counts to 32 .

For the dynamic characteristics note that a duty cycle of 50% is not required for the clock signal. The width of the "mark" of the clock waveform need only be as great as the width of the down-beat impuise internally generated.

Supplies and absolute maximum ratings

All the supplies and levels shown in Tables 3 and 4 are expressed as a function of $V_{S S}$. As $V_{S S}$ can have any value. various power supply formats can be used, e.g. $V_{e i t}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}} 17 \mathrm{~V}$;

Table 3: Static electrical characteristics (positive togic, $V_{G G}-11.4$ to $-126 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}} 4.75$ to 5.25 V
$\mathrm{T}_{\text {amb }} \mathrm{O}$ to 70 C unless otherwise specified)

Quantity	Test conditions	Min.	Typ.	Max.	Unit
Clock input					
$V_{I H}$ Clock high voltage $V_{\text {IL }}$ Clock low voltage		$\begin{aligned} & V_{S S}-1.5 \\ & V_{G G} \end{aligned}$		$\begin{gathered} v_{S S} \\ V_{S S}-41 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
Data inputs ($\overline{\mathrm{N} 1} \quad \overline{\mid \bar{N} 12})$					
$V_{I H}$ Input high voltage $V_{\text {IL }}$ Input low voliage $I_{\text {LI }}$ Input leakage current	$V_{1}=V_{S S}-10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{amb}}^{-}=25 \mathrm{C}$	$\begin{aligned} & v_{S S}-1.5 \\ & v_{G G} \end{aligned}$		$\begin{array}{r} v_{s s} \\ v_{s s}-41 \\ 10 \end{array}$	V V $u \mathrm{~A}$
External reset					
$V_{\text {IH }}$ Input high voltage $V_{\text {IL }}$ input low voltage $\mathrm{R}_{\text {IN }}$ Internal resistance to V_{GG}	$V_{0}=V_{S S}-5 V$	$\begin{aligned} & V_{S S}-15 \\ & V_{G G} \\ & 400 \end{aligned}$	600	$V_{S S}$ $V_{S S}-41$	V V $k \Omega$

Data outputs

$R_{O N}$	Output resistance	$V_{0}=V_{S S}-1$ to $V_{S S}$	250	500	Ω
$V_{O H}$	Output high voltaqe	$I_{L}=1 \mathrm{~mA}$	$V_{S S}-0.5$	$V_{S S}$	V
$I_{L O}$	Output leakage current	$V=V_{I H} V_{O}=V_{S S}-10 V T_{a m b}=25 \mathrm{C}$	10	4 A	

Consumption

$I_{G G}$ Supply current	$T_{a m b}=25 \mathrm{C}$	7	15	mA

Table 4. Dynamic electrical characteristics (positive logic, $V_{G G} . V_{S S}-16$ to -18 V . $F_{\text {amb }} 0$ 70 C unless otherwise specified)

Quantity	Min	Max	Unit
Clock input			
clock repetition rate	0	100	kHz
$t_{\text {pw }}$ pulse width	5		$u \mathrm{~s}$
t_{t} rise time		100	$u \mathrm{~s}$
t_{1} fall time		100	$u \mathrm{~s}$

External reset
$\mathrm{t}_{\text {pw }}$ pulse width

Measured at 50% of the swing
Measured between 10% and 90% of the swing

Table 5. Absolute maximum ratings

$V_{\text {GG }}$	Source supply voltage	-20 to 0.3 V
V^{\prime}	Input voltage	-20 to 0.3 V
I_{0}	Output current (at any pin)	3 mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature	-65 to $150^{\circ} \mathrm{C}$
$T_{o p}$	Operating temperature	0 to $70^{\circ} \mathrm{C}$
This voltage is with respect to $V_{S S}$		pin voltage

Fig. 10. Positive overshoot.
$\mathrm{V}_{\mathrm{GG}}-12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{SS}}+5 \mathrm{~V}$, and so on as long as $V_{\mathrm{SS}}-V_{\mathrm{GG}}=17 \pm 1 \mathrm{~V}$. This makes it very simple to solve the problem of interfacing with input and output devices. The user, however, must always respect the limits imposed by the absolute maximum ratings, Table 5 . These voltages, temperatures or currents are values which must never be exceeded, not even momentarily, as the device can be permanently damaged should this occur.
It is of particular importance that a check is kept on the positive overshoot at all the pins with respect to $\mathrm{V}_{\text {SS }}$ (see Fig. 10). If the positive overshoot, which, on the oscilloscope will always appear limited to one V_{BE} when measured on an in-circuit device, exceeds the values quoted in the absolute maximum ratings it causes a parasitic which discharges the surrounding negative nodes, causing incorrect circuit operation. More seriously, a fixed positive level more than 300 mV above V_{SS} will probably damage the circuit.
(To be continued)

Low-noise, low-cost cassette deck

Several readers have found that the erase and bias oscillator in this design (May, June and August issues, 1976) can be reluctant to work. The cure is to reduce the value of C_{21} in Fig. 5 of the May 1976 issue from $2.2 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$.

UK to consult

 on frequenciesThe Home Secretary has invited comment on frequency allocations for the 1979 World Administrative Radio Conference. In a Commons written reply on January 26 he said: "We have already undertaken a substantial measure of consultation with both users and manufacturers of radio equipment during the preliminary phase of our work for the conference; but at this stage, before the United Kingdom's proposals for the conference are formulated, we think a rather wider programme of consultation is desirable. .. In the circumstances we consider it right to make every effort to ensure that any whose interests may be affected should have an opportunity to state their views before our decisions are made. Those known to have an interest will be specifically invited to comment; but comments will be welcomed from any members of the public. They should be in writing and should reach the Home Office Radio Regulatory Department, Waterloo Bridge House, Waterloo Road, London SEl 8UA by 30th April 1977."

The announcement follows meetings between the Home Office and the electronics industry, themselves partly a result of an editorial and other articles in Wireless World, revealing parts of still secret Home Office reports on matters to come before the 1979 WARC. and calling for greater consultation.

Tiny tv: now
 you see it

After years of rumour and many confident predictions that "next year" would see the launch. Ciive Sinclair showed his 2 in television receiver to a large collection of professional cynics the press - on Monday, January 10.

Let it be said at once that the Microvision is a remarkable piece of design. Most of the components, including three of the five integrated circuits and the tube, were developed
for the receiver, which measures 6×4 $\times 1^{1 / 2 i n}$. It is most certainly not a toy with a $£ 200$ price tag it is certainly free of that connotation - since most of the design compromises appear to have been made with low power consumption in mind.
The tube was developed by AEG Telefunken, who based their development on a design by A. V. de V. Krause (Wireless World, July 1974, p.259). The screen diagonal is 2 in , and the tube length about 4.5 in . Electrostatic deflection is used to reduce power consumption. The e.h.t is about 2 kV , derived from an oscillator which provides barely acceptable brightness. (We were not able to look at the picture out of doors because the Sinclair staff seemed so nervous that some acquisitive scribe might make off with the set that we weren't allowed to hold it, let along go outside with it.) Sinclair were unsure of the heater power - at one time the Krause tube consumed 30 mW - but that of a similar AEG Telefunken tube advertised in German and Danish magazines is quoted as being 35 mW .

Sinclair's notion that the receiver could be of use to travelling businessmen is supported by the flexibility of tuning and standards. The own-design bipolar tuners cover Bands I, III, IV and V with the aid of $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diode switching and varicap-diode tuning. Line standards of 625 and 525 at field rates of 50 or 60 Hz are provided, with i.f. selection of $4.5,5.5$ or 6 MHz . Tuner sensitivity, assisted by separate, folding v.h.f. and u.h.f. aerials, was good enough to give a reasonable picture in the steel-framed Savoy Hotel. Gated a.g.c. and a.f.c. are included, as is flywheel sync.
Sinclair decided to use two SGS i.cs for sound i.f. and 50 mW audio output. but vision functions are performed by

Sinclair's Microvision. Sinclair say the final assembly "requires only the connection of four printed circuit boards, insertion and comnection of the tube. and housing the whole in a three-piece black steel case." The circuit uses 300 transistors. The heater needs 15 s to warm up as a contribution to its low power consumption.
three chips designed by Sinclair and a further 20 transistors. Attention to power-saving in the design has yielded a truly amazing consumption of 750 mW from 4.8 V . Four 1.2 V rechargeable cells are used. These last four hours but an external a.c. adaptor will charge them and run the set as well. A 40 -hour battery pack can be used, as can a car battery, which will also charge the internal cells.

It may be said that the size of the picture is ton small for comfortable viewing. It is little bigger than a 35 mm slide, which is usually projected or seen through a magnifier. Sinclair say that 2 in was selected after tests with many people and point out that 2 in at a viewing distance of a foot - the distance, they say, at which most people read a paperback book - is equivalent to a 24 in screen 12 feet away, provided that the spot size is reduced to enable the resolution of the big picture to be retained, which they claim to have done
However, the angle subtended at the eve is not the only important measurement. Normally two ey'es will be used, and the way they converge, together with apparent size, is part of the process which gives the viewer an appreciation of distance. The brain will recognise a big picture, placed farther away than a small picture, as being bigger than the small one and will automatically assume that the bigger one is more detailed, even though it may not be. C. Burns, in an article in Wireless World in January 1953, pointed out that a magnifying lens not only increases the subtended angle but makes the screen look farther away, thereby adding to the apparent increase in size. Sinclair have probably considered the use of a lens, but if so they made no mention of one as an accessory

The scepticism which has arisen as a result of the previous frequency of false alarms about the Sinclair set's imminent appearance in the shops was compounded by the secrecy which still surrounds its production. At the Savoy press conference on January 10, Clive Sinclair said that they first started the project 14 years ago and had produced

several complete receivers in that time "but they all lacked something and we wanted to do it properly. We have spent $£^{1} / 2$ million of our own monev to do this in research and development'. Yet the National Enterprise Board, which last November took a 43% stake in Sinclair, worth an injection of another $£ 650,000$, on the basis of a three-year profit forecast on the Microvision, have not. Sinclair says, committed the company to any production schedule. He would not say when production would start, how many staff would be making them, or what the initial number made would be, yet he insisted that the sets would be in the shops "next month". Who would be stocking the set? He couldn't say: "We haven't invited any orders because we haven't shown before." He would show it to the trade first. "Existing customers are interested in taking sets," he said. (Lasky's have since confirmed that they have ordered an unspecified number of sets for delivery when they become available, An order for the sets has been outstanding for some time.)

Although he asserted that "To the best of our knowledge nobody else is even remotely close to doing what we are doing," Sinclair added during questions that to give a production figure "would be valuable information for our competitors." What competitors? "Any that care to come along." They had had pilot models for some time, he said, and had been conducting field trials in various parts of the world since last August. There were "dozens of sets in existence," he said. But since they
would not be able to supply the demand until the middle of the year anv of the $£^{1 / 4}$ million of advertising they planned would not be spent till then. Later he said he didn't know what the volume of production would be because "we don't yet have it as a viable product".

In one or two years' time they would produce a single-standard, lower-priced model for the mass market, but the main aim was to reach the prestige, executive market, particularly in the US. Most of the current sets would be exported and it would eventually account for half Sinclair's turnover. "The market is comparable with the market for pocket calculators, about 50 million units a year; comparable bearing in mind that it's a more expensive item." He had "no clear idea" what the simpler sets would cost.

In his opening remarks Sinclair said, "We have no plans for colour. It is technologically possible but would add greatly to the cost and we can't see any justification for such an increase." When asked later how much a colour set wouid cost he said, "We can't put a figure on a colour system." Most of the cost would be in the tube: "We haven't looked at this in great detail. The use of a shadow mask tube would be impossible on such a small screen so it would have to be non-standard."

The price of the black and white set has been fixed at $£ 175$ plus VAT. Sinclair says there is no prospect of a reduction: "Firstly because it is such a complicated product and, secondly, we have a monopoly."

Home and small business computers

According to a summary of a $\$ 950$ report by Venture development corporation, 24,164 computers will be bought for home use in the US this year. The market will increase annually by over a third up to 1981 . Over 70% of the hobbyist owners used them for games. The study was conducted over seven months, and was compiled by asking questions of users, makers, retail stores and hobby groups in the United States.

Most of the sales in the five-year period will be of mainframes. The income to computer stores, from whom hobbyists get 61.6% of their equipment, will increase annually by 46.3%, representing unit increases of 47.8%. Mainframe revenues will increase by 42.5% annually, while software, main memory, peripheral and other products will increase only 35.1%. Software will show the biggest increase of those groups, an average 81% up to 1981 . The summary does not give a value for any of these figures.

Creative Strategies Inc has produced another report, on the small business market. In 1972 deliveries to this market were worth $\$ 794$ million in the US.

Three years latel line ngure was nearly double at $\$ 1.4$ billion. By 1980 , they say, it will be worth $\$ 2.2$ billion. The figures for units shipped in those years are $20,300,38,000$, and about 75,000 .

Confirming EEC views of our own position, Creative Strategies say that although IBM, Burroughs and NCR have a large share of the market, their study shows that market is far from "sewed up". "The most explosive action in the small business computer industry is coming from minicomputer-based systems."

Creative Strategies seem to have the same view of the market as the EEC. Although the market is dominated by IBM, Burroughs and NCR, there are about 100 makers in the fray, including system houses. It will take about three years for the market to sort itself out: "The most explosive action in the small business computer industry is coming from minicomputer-based systems and this segment has attracted most of the participants

In 1975. 8,500 minicomputer-based systems were shipped and in 1976, 16,000 are expected to be shipped." By 1980, they say, the figure will be 46,000 .

Tiny transceivers and satellites

A ten-dollar wrist radio using l.s.i techniques could be used for personal communications within ten years, according to reports from the United States. Communications News reported in September that the National Space Institute predicted "within ten years a new generation of communications satellites could provide the public with highly-reliable interference-free personal communications via a wrist radio which could be used for pleasure, business, emergency situations, rescue, health monitoring." The NSI's executive director, Charles Hewitt said, "With adequate public interest and support, such a satellite system could be developed to service millions of people with the ability to talk directly to each other from wherever they are on land and sea, or enter the telephone networks through the microphone on their wrist radio for a new era in communication flexibility." These radios could use the same techniques now used in digital watches and, if produced in large enough numbers, could sell for less than \$10 each.

The NSI is a non-profit-making educational and scientific body chaired by Wernher von Braun, who was in charge of the Apollo space programme. Its function is to communicate the benefits of the US space programme to the American public.

In a speech to the Conference on Satellite Communication and Public Service on December 9, NASA administrator James Fletcher said: "Studies have been made of a personal communications system which involves direct broadcast from a "wrist watch radio" to a high-capacity, multibeam satellite for retransmission to ground communications centrals. The satellite might be 150 feet in diameter with the capacity of handling up to 25,000 switched channels. The ground transmitter could be small and low power,' perhaps $1 / 25 \mathrm{~mW}$. With large scale integrated circuit techniques, the ground transmitter need not cost much more than $\$ 10$." Such a system would allow the growth of a large number of ground stations, making space technology available to the man in the street. The basis of the technique was to put large aerials on high power transmitters in space, allowing a reduction in the size of the equipment needed below.

The Federal Communications Commission, according to a report in The Times , approved in January a new satellite communications service for business use. The service, first put forward in 1971, will cost an estimated $\$ 406.9$ million ($£ 239 \mathrm{~m}$) and will start in 1986. The proposal was opposed by AT\&T and Western Union.

Cash aid to electronics industry

£20 million has been provided under section 8 of the 1972 Industry Act for "a scheme of selective assistance for the electronic components industry". If the industry response to the scheme warrants it, said a Department of Industry statement, the amount may be increased.
The scheme is to encourage UK based firms in the radio and electronic components industry to increase their efficiency. "It is designed to promote the design. development and production launching of new products and production technologies, the restructuring of a company or group of companies ... and independent studies by consultants to identify opportunities for improving efficiency of a company or merged companies

The money is for up to a quarter of the total eligible cost of a new project (or half with a royalty agreement). Eligible projects are those where costs are $£ 50,000$ or more. Loans for up to half the project cost will also be available in the case of restructuring.
Besides these, 20% will be available for new equipment, plant and machinery; 15% for new buildings, extension or modification to buildings.
In all cases, says the DI, "The Department would have to be satisfied that the company had the capability to carry out the propositions to a successful commercial conclusion." Applications must be in by July next year.

The announcement, made on January 24 , follows an active campaign by sections of the electronics industry for cash aid, notably Mr Jack Akerman of Mullard. He has pointed out, in an article in Electronics and Power in September, that the components sector alone employs 125,000 people and has a turnover of $£ 650$ million.
The Electronics Components Board has issued a statement welcoming the scheme "as a most important step towards strengthening the capacity of the British electronic components industry and as a clear demonstration of its importance to the economy Many proposals by companies have already been submitted to enable the scheme to get off to a good start without any delay."

New computerised sound mixer

Air Studios in Oxford Street, London, have installed the first Neve computerised mixing console to go into production. The system was demonstrated last March and had been described by Neve managing director Derek Tilsley at an American digital audio techniques conference in April, 1975.

NECAM, as it is called, consists of a sound mixing console, a 3M 24 -track

The Comsat General terminal in the radio room of the QE2. The terminal links the world's Telex and telephone system with the ship via the Marisat communications satellite chain. The equipment was supplied by STC subsidiary International Marine Radio Company.
tape machine (in Air's case), Computer Automation LSI220 mini-computer, floppy disc store, code reader, display and control panels, transport and control interfaces. An SMPTE time code is recorded on to one track of the multitrack tape, and it is this which enables the engineer to refer to and update any section of the tape. Various takes may be stored and reassembled into a final take by manipulating data through a keypad on the mixing console.
An 8kbyte core store houses the Neve programme and transient data, and is supplemented by two floppy discs. The left-hand disc stores "scratch pad" information and the right-hand disc stores permanent information. It is the latter that the producer takes away along with the master tape. Neve technical director Martin Jones said: "In testing we pile in the data and fill the disc in the equivalent of a couple of takes, but in normal studio use there is more than enough room to store the mixing of a whole l.p. side."
As well as storing mixing information the tape can be labelled in up to 999 places, he said, so that if the engineer wants to identify a particular place on the tape he can give it a number by operating the keypad and later instruct the tape to go to that place. There are other systems which do this, such as the 3M Selectake, but less automated studios may have to identify the beginning and end of different sections of music by inserting strips of paper into the tape reel as it turns.

The installation of the system meant closing studio three for a month. Air, part of the Chrysalis group, has a consistent record of investment in new equipment and, as studio manager Dave Harries put it, "It's better than giving it
to Healey." Neve too have persevered with the development of NECAM even though the economic health of the world, the nation and the recording industry have deteriorated steadily since they first gave serious thought to the project three years ago. During that time their holding company, Energy Services and Electronics, have been forced to contract from a fast-expanding electronics group in the days when, as Bonochord, its takeover of Neve provided the company with badlyneeded capital, to just two companies, Neve and Livingston Hire.

The market for NECAM may justify the investment. EMI are installing a system at Abbey Road and another is going to De Lane Lea/CTS Studios at Wembley. The use of the SMPTE code makes the system well suited to its use in film and television studios, a market that Neve have done well in over the years with conventional equipment. Neve still appear to do well abroad, and say they have orders in Brunei, Nigeria and South Africa.

Teletext on sale

A teletext add-on adaptor first demonstrated as a prototype at the Home Electronics and Domestic Appliance Exhibition in Birmingham last May is now on sale, "in Harrods" among other places. It is made by Labgear, a Pye subsidiary, who say it was first despatched to customers before Christmas. At first they are making 200 a month but the managing director, Mr S . R. R. Kharbanda, said in a statement that the number would increase as the year went on. The adaptor connects with the aerial socket on a receiver.
The British Electrotechnical Approvals Board (BEAB) has tested and approved the first commercial colour tv set with an integral teletext decoder, the Rank Bush 22 inch BC6333 receiver. BEAB says the set has passed British Safety Standard BS415. Rank say the set is not available to the public yet, though some have been despatched to the trade and broadcasting organisations for appraisal.

The export prospect for both these units is an interesting one: Labgear say in their statement that they have been invited "overseas" to demonstrate the adaptor. Although the European countries have carried out a great deal of work on their own systems Sweden for example developed an "Extratext" system which would take into account certain language difficulties which exist there - most of them seem quietly to have dropped their own systems in favour of the British teletext. At a CCIR meeting to discuss various systems in Geneva last year only one other system was advanced besides the British one.

The odd country out, predictably was France. "They're doing another SE-

CAM," muttered one source. Their system is called Antiope, after two Greek mythological figures. Sweden is now using the British system and the Germans and the Dutch are appraising it. Perhaps the only difficulties in the way of its adoption might be those which would accompany the adoption of any system, namely the objections of newspaper proprietors and others unsure of the effect of teletext on their own industries.

NASA in 1977

Of NASA's 23 spacecraft launches scheduled for 1977, 17 will be for paying customers other than NASA. They include NATO, Indonesia, European Space Agency, National Oceanic and Atmospheric Administration, COMSAT Corporation, US Navy, Japan. Italy, RCA and the United Kingdom. In 1976 the number of launches was 16 , four of which were NASA launches. The UK launch, the UK-6 high energy physics and astronomy satellite, is tentatively scheduled for October from Wallops Flight Centre, Virginia. The launch vehicle will be a Scout rocket.

The first launch of the year, at the end of January, is a NATO communications satellite, but NASA say the emphasis this year is on applications satellites 'for the direct benefit of people on earth." 17 of the launches are in the communications, geodetic, environmental, navigation, meteorological or earth resources fields.

'Send no money!'-FCC

The Federal Communications Commission in Washington has stopped the collection of fees for licences from January 1. On December 16 the District of Columbia appeal court released a verdict on four actions taken by the National Cable Television Association, the Electronic Industries Association, the National Association of Broadcasters and Capifal Cities Communications Inc, all of whom had appealed against the fees they were charged. The court directed the FCC to justify each fee assessment and to calculate "the cost basis for each fee". The Commission has therefore suspended all fees and will study the "legal and administrative implications of refunding fees in order to determine the extent and nature of any refunds that might be necessary." They would make any necessary refunds "as soon as possible."
The decisions mean that the FCC's authority to assess any fees is in doubt. The Commission says it had urged the congress to pass legislation clearing the matter up when it had adopted its 1975 scale of fees but nothing had been done.
On December 30 the FCC issued a notice urging the public not to send money, particularly for c.b. licences,
though the court's decision also affects fees from tv stations and telephone companies. But the FCC also warned that purchasers of c.b. equipment must send in licence applications since operation without a licence was illegal. At the end of the year about 7.8 million people (1.8 million more than we forecast in our article on citizens' band in January) held c.b. licences, and applications were coming in at 400.000 a month.

Any cheques coming in after the beginning of 1977 would be destroyed, said the Commission. Postal orders and cashiers' cheques would be returned but there would be a delay. It is not yet clear what will happen to fees sent in before then.
Some sources in the UK have attributed the refusal of the FCC to collect c.b. fees as a sign of the chaos resulting from the large number of applications. There seems no basis for this interpretation.

Canadian satellite broadcasts television

In spite of early power supply difficulties (August 1976 issue) the Cana-dian-American Communications Technology Satellite "Hermes" is now successfully demonstrating direct broadcasting of television programmes at 12 GHz to home-type installations in Montreal, Ottawa and Toronto. Ground aerials of $60 \mathrm{~cm}, 1 \mathrm{~m} 1.2 \mathrm{~m}, 1.6 \mathrm{~m}$ and 2 m diameter are being used. According to a report by C. A. Siocos in the $A B U$ Technical Review for January 1977, the satellite's effective isotropic radiated power achieved is 59 dBW . Representative values for weighted single-to-noise ratio are 47 dB with the 2 m receiving station, which has a noise figure of 6.5 dB , and 40 dB with the 60 cm station which has a noise figure of 4.5 dB . "Other transmission impairments are very small and ... there are no ghost reflections received in any of the sites." Fading due to rain is short-lived. "Observed fadings ... resulted in a visible increase of noise (more so with the smaller antennas) but no interruptions, except for some five minutes."
Earlier the CTS was demonstrated as an outside broadcast relay station (Bromont. Quebec,-to-CTS-to-Montreal) during the 1976 Olympic Games. Also, in a co-operative Canadian-American experiment, engineering classes at Stanford University, California have been televised to Carleton University 2,500 miles away in Ottawa and vice vers. In this experiment a NASA developed technique called real-time digital video signal compression was used to reduce transmission bandwidth and power requirements. NASA say that ". . . initial student response has been favourable". Broadcasting by satellite to schools is considered a possibility.

The year's Commons c.b.

In a written answer on October 19 Mr John R. Rathbone, the Conservative member for Lewes, asked the Secretary of State for the Home Department "whether he will review his policy regarding establishment of a v.h.f. citizens' radio band and if he will make a statement."

Mr Brynmor John (Lab, Pontypridd), a Home Office Minister, replied for the Home Secretary: "No".
On October 21. under the heading "Walkie-talkie equipment", former BBC and ITV producer Phillip Whitehead (Lab, Derby North) asked: "Is my honourable friend aware of the great concern that exists about the amount of interference caused in the 27 and 28 MHz band by illegal walkie-talkie equipment? Is it not absurd that the Home Office, which has a responsibility here, will not impound such equipment or ban its importation when by definition it can only be used illegally? Can we not take some action now instead of waiting for the formation of policy on a citizens' waveband?"

Mr John: "I share my honourable friend's concern about the use of walkie-talkie equipment, and particularly about the interference with equipment sustems which are located on this frequency, many of which systems are performing a useful function. But it would be wrong to legislate piecemeal when in 1979 there will be a world administrative radio conference which may well put forward many more general recommendations which will need legislation to gather them all together, and that many be a more appropriate time to act."

Mr Rathbone: "Will the minister explain why he gave such a peremptory "no" to my question for written answer a few days ago, seeking the establishment of a citizens' band on v.h.f.? Is he aware that the establishment of such a band would meet exactly the exigencies of the problem which the honourable member for Derby North (Mr Whitehead) raised? It would have the additional advantage of raising money for the government and an even greater advantage to citizens wishing to use such a band in being able to do so."

Mr John: "I gave a peremptory answer "no" because the honourable member asked. as I recalled, whether it was the government's intention to set up such a citizens' band. Our answer is still "no" but I shall consider these matters, and if the honourable meniber has further representations to make to me perhaps he will do so."

In another answer on the same day Mr Whitehead was told that in 1974 there had been ten prosecutions for the illegal use of walkie-talkies. In 1975 the figure was four.

Circuit Ideas

Two terminal circuit breaker

The unit functions by sensing a load current across the base-emitter junction of the output transistor (voltage sensing requires a third terminal) Resistors R_{1} and R_{2} control the off and on times respectively provided $V_{c c}$ and $I_{\text {load }}$ do not change. The capacitor undergoes a small amount of reverse bias (-0.7 V). Good tantalum capacitors will stand this and, unofficially, so will most electrolytics with voltage ratings above 16 V
M. Faulkner.

New South Wales
Australia.

Octal display for microprocessors

The function of this circuit is to display an eight-bit data word in conventional octal form. This is useful in microprocessor prototyping, where it is usual to use the octal representation. Digit and data selection is effected by a three state counter built around synchronously

2×7401
operated JK flip-flops. The two or three bits appropriate to each display are steered to the seven segment decoder by wired AND open-collector gates, and inverters. A segment current

Simple ring oscillator

This i.c. oscillator can be disabled by applying a 0 at either input, and will be retriggered when the low input is returned to a logic 1. Although under normal operation there are only two outputs, when the oscillator is disabled only one pair of outputs undergoes a further transition before oscillation stops. Therefore this circuit is suitable for applications where it is necessary to have control of the stop and start point in the duty cycle.
A. R. Ward,

Bassett.
Southampron.
 of about 3 mA was found adequate for most lighting conditions, with a multiplexing oscillator frequency of approximately 2 kHz .
Dr R. D. Mount. Romsey, Hants

SN7447
$+\begin{array}{r}0 \\ +5 \mathrm{~V}\end{array}$

SN7473

A.c. line sensor

A line sensor is used to protect delicate equipment from sustained over-voltage This circuit will disconnect the supply if it exceeds a pre-set level.

Transistor Tr_{2} senses the input, which can be varied by R_{16}, and turns on if the base voltage exceeds $V_{b e}+7.5 \mathrm{~V}$. When this occurs the opto-coupler IC
conducts and switches Tr_{1} on. Positive feedback produces a fast switching action and the circuit remains on until the alternating voltage falls below the pre-set level. The output pulse is shaped by IC_{3} and used to trigger the monostable IC_{2}. As long as the time constant $\mathrm{C}_{1} \mathrm{R}_{11}$ is longer than the duration of the pulse, pin 6 is high so the relay is
activated which disconnects the alternating supply. When the a.c. falls below the pre-set level the monostable reverts to the stable state and switches on the supply.
F. E. George,

Colfege of Arts, Science and
Technology,
Jamaica.

Germanium diode for regulator protection

Power regulator protection is a perennial problem and this circuit offers a simple and economical solution. Under normal conditions, D_{1} is reverse biased by the voltage across R_{6} and does not affect the regulator operation. When the output is shorted, however, D_{1} turns on and draws current through R_{1} which removes the reference voltage across the zener diode. Because D_{1} is a germanium type, Tr_{1} is held off which also turns Tr_{3} and Tr_{4} off. When the short is removed, the circuit recovers and resumes normal operation.
D. E. O'N. W'addington,

St Albans,
Herts.

Op-amp integrator

Two 741 op-amps can be combined as shown to produce a circuit with a selected input resistance of 2×10^{8} ohms and a drift time, 0 to 10 V , of 90 min. Resistor R_{3} is equal to $R_{1} R_{2} / R_{\text {in }}-\left(R_{1}+R_{2}\right)$ where $R_{i n}$ is the required input resistance. For the values shown $R_{\text {in }}$ is $10^{7} \Omega$.
N. G. Boreham,

Teignmouth,
Devon.

Semiconductor tester

This circuit tests transistors and diodes for polarity, and short/open circuits in one measurement. The same tests using a multimeter would require at least four operations.

A three-phase waveform is derived from the low-frequency ring-of-three oscillator, and applied to the device under test via the l.e.d.s. The oscillator waveform enables each pair of device terminals to be forward, reverse and unbiased for one third of a cycle. Current flowing into the device will turn the appropriate red l.e.d. on and current flowing out will turn on the green l.e.d. Thus, the position of the
base lead and the polarity of a transistor may be deduced.

Voltage drop across the l.e.ds and device under test is typically 4.5 V . A t.t.l. "l" will not source current at this voltage, so $270 \leq$ resistors have been added to source and limit the diode current. Frequency of operation, defined by the CR network, is not critical, but the resistor should not exceed $1 \mathrm{k} \Omega$ for reliable operation. Oscillator frequency with the values shown is about 2 kHz .
N. E. Thomas,

Balham,
London.

Linear v.c.a.

This circuit is based on dual matched f.e.ts. and can be used in applications such as linear voltage-controlled amplifiers and two-quadrant multipliers. The resistance of the f.e.t. in the feedback loop is adjusted automatically to source the current demanded by $V_{i n}$. This resistance, and therefore the resistance
of the other f.e.t., varies inversely with input voltage. The gain of the amplifier stage is given by $R_{L} / V_{\text {ref }} R \times V_{\text {tn }}$ and is variable over about 80 dB .
B. Turner \& J. Custo, Tewkesbury, Glos.

HF predictions

Solar and magnetic activity 1976 from data supplied by the Royal Greenwich Observatory

	A	B	C	D	E	F
Jan	14	26	9	18	6	0
Feb	18	29	3	11	8	0
Mar	21	34	17	27	6	1
Apr	14	28	16	27	2	0
May	14	34	11	26	6	1
Jun	9	32	11	27	9	4
Jul	11	31	2	31	24	2
Aug	8	34	16	26	1	1
Sep	12	27	13	22	4	7
Oct	10	34	20	19	3	6
Nov	5	14	3	15	10	2
Dec	7	36	14	21	5	5

A, magnetically disturbed days. B, C. highest and mean of daily sunspot numbers. D, number of days that observations possible. E, number of observed days having zero sunspots. F, new cycle spots.
There were 5 large sunspots and only one solar flare during the year.

Interference from amateur stations

An investigation by the Radio Society of Great Britain

by I. Jackson G30HX

This report, released in 1976 , describes a survey carried out by the Radio Society of Great Britain which investigated interferences caused by radio amateurs. The survey was based on questionnaires (see pages 45 and 46) answered by more than a thousand licensed RSGB members. The report also discusses the results of the survey and the recommendations and conclusions made by the society.

Each year the Home Office issue figures about the number of cases of interference to television and radio reception. Various sources of interference are identified, among which are amateur radio transmitters. For several years recorded cases of television interference (t.v.i.) have fluctuated, but have averaged about 1,000 (with a sudden drop of 30 per cent in 1974). These figures represent only those cases dealt with by Home Office officials and no indication is given as to the technical reasons for such interference, neither is any estimation made of the number of cases of interference which never come to the attention of the Home Office.

For a long time it has been obvious in amateur circles that a major cause of interference is the inadequate immunity of domestic electronic entertainment equipment to the strong r.f. fields near amateur radio stations. The expression "electromagnetic compatibility" (e.m.c.) is used to describe the susceptibility of this equipment to such interference.

When interference is cause to television, radio and hi-fi installations with low e.m.c., the cure is not a question of the suppression of radiation on unwanted frequencies by the amateur. Usually the affected equipment must be altered in some way. Amateur equipment, while not completely blameless, has become much less of a cause of interference for the traditional reasons, such as harmonic radiation.

For several years the RSGB Interference Committee has been making approaches to the British Radio Equipment Manufacturers' Association
(BREMA) to try to induce a more realistic attitude to the concepts of television, radio and hi-fi design so that e.m.c. might be improved. So far the response has been disappointing. While it might be considered unfair to say that there has been downright resistance to any proposals made, arguments against them indicate that the true interference situation is not appreciated. Despite technical evidence, it is often considered that the amateur is still the real culprit.
Another reason for not making any improvements in domestic equipment design is that the number of cases of interference which occur, when compared with yearly sales, are not considered sufficient to warrant such action. It is felt that it is uneconomical to increase the e.m.c. of all equipment when only a small proportion of it is likely to be used in the inhospitable environs of an amateur radio station. It is thought that it is better to treat on an individual basis those cases of interference which do occur. While this may seem to be a perfectly reasonable compromise solution, it is the experience of the RSGB Interference Committee that such pious intentions sometimes seem to take a lot of putting into practice. In any case, curing interference after it has occurred does not prevent amicable neighbourly relations from becoming strained as a

Table 1. Total number of amateurs who answered the questionnaire (see questions 1 and 6 of section 1).

Class	Non-wired	Wired	Total
A	765	64	829
B	228	22	250
A + B	132	10	142
Total	1125	96	1221

Table 2. Answers to question 2 section 1 - number of years licence held at present location

Class	Total Years	Average period
	6676	8.05
A	804	3.22
A + B	501	353
ALL	7981	6.54

result of the inconvenience and misunderstandings which often arise. The social consequences of interference are numerous and far-reaching.

It would be foolish to argue that amateurs never cause interference in the technical sense. One of the principle reasons for this survey is to try to apportion the blame for such interference, and to make an assessment of the true number of cases which occur each year. In addition, questions are asked to find out the amateur's attitude to interference and its effect on his operating habits. This is likely to influence band occupancy, not only during "sensitive hours" but also at other times of day.

The ideas behind the questions

The questions in the Interference Survey were framed so that the answers would be in a form most useful to the Interference Committee. Other surveys containing more or fewer questions were considered, but it was felt that the survey chosen was a reasonable compromise between the need to obtain detailed information and the possibility of reducing the number of returns because the questions were too complicated or lengthy.

Despite careful working, some questions yielded answers which indicated that some amateurs were confused. However. suitable corrections have been made where it is obvious that misinterpretation has occurred.
The questions were asked for the following reasons:
In section 1 the class of licence was asked for in case there was a marked difference in the answers given by the two classes.
The time at the present location was required for various reasons. One was to avoid stretching memories too far. It was felt that this was preferable to asking for periods such as "the last five years". "since you received your licence", etc. To have stipulated limited time periods would have biased the survey towards the newly licensed amateurs.
Question 3 was asked to assess the emotional attitude of the amateur to interference. It was intended that he

RSGB Interference Survey

 INTERFERENCE TO TELEVISION, RADIO, AND AUDIO EQUIPMENT

 INTERFERENCE TO TELEVISION, RADIO, AND AUDIO EQUIPMENT}

SECTION 1-GENERAL

1. Indicate with a tick the class of licence you hold. If you now hold a Class A but have held a Class B then tick both squares.

2. For how many years have you held a licence at your present location? \square
3. How severely do you fee/ worried by interference problems? For example, do you restrict your operation in any way because you cause interference, or think that you might do so? Do you avoid certain fre quencies or certain times of the day? Do you transmit knowing full well that interference is being caused? Just how do you feel? Indicate by using a number on/y as follows: 0-not at all worried; 1-slightly worried; 2-moderately worried; 3-severely worried.
4. Are there any bands (which your transmitting equipment covers) on which you are unable to operate without restrictions, voluntary or enforced, because of known interference problems? These restrictions could be, for example, on time, transmitting mode, power, beam heading etc. Please tick the relevant boxes.

1.8 MHZ	3.5 MHZ	7 MHZ	14 MHZ	21 MHZ	28 MHZ	70 MHZ	144 MHZ	432 MHZ	296 MHz upwards

5. Are there any bands (which your transmitting equipment covers) on which you have not made a determined effort to operate, because you believe that interference problems will arise? Please tick the relevant boxes.

1.8 MHz	3.5 MHz	7 MHz	14 MHz	21 MHz	28 MHz	70 MHz	144 MHz	432 MHz	$\begin{gathered} 1296 \mathrm{MHz} \\ \text { unwards } \end{gathered}$

6. State the tv channel numbers normally received in your area. If you do not know the channel numbers please state the name(s) of the transmitting station(s). If "wired" $t v$ is used please tick the relevant box

$\checkmark \mathrm{HF}$					wired
BBC1			ITV		

SECTION 2-TELEVISION INTERFERENCE

This section covers interference caused to tv sets only, where interference affects vision and/or sound.

1. How many tv sets have suffered from interference due to the operation of your amateur radio station (either when transmitting or receiving)? Indicate the number of sets affected, not the number of separate complaints. Include your own tv set if applicable.

2. (a) How many of the tv sets in Question 1 suffered from interference when tuned to a broadcast transmission in VHF Band 1 ? (See note below)

(b) How many of the tv sets in Question 1 suffered from interference when tuned to a broadcast trans mission in VHF Band 3 ? (See note below).
(c) How many of the tv sets in Question 1 suffered from interference when tuned to a broadcast transmission in UHF Bands 4 or 5 ? (See note below)

3. In how many cases of interference to tv sets in Question 1 were the Post Office called in to investigate? Indicate the number of sets, not the number of visits made to carrv out tests etc

4. How many of the tv sets in Question 1 were cured of interference without the Post Office being called in to investigate?
5. How many of the tv sets in Question 1 were cured of interference by modifications to your station? Modifications include fitting of filters, screening, re-positioning aerials etc, but do not include a change of modulation mode or transmitted power. \square
6. How many of the tv sets in Question 1 were cured of interference by modifications to the tvinstallation ? Modifications include fitting of filters, screening, re-positioning aerials, repairing faulty joints etc

7. How many of the tv sets in Question 1 were cured of interference by the fitting of external devices to the tv set (eg aerial or mains filters, "braid-breakers", transformers, stubs, traps, earthing braid etc) ?

Note (Question 2) : In the UK the VHF Bands 1 and 3 are used for 405 -line transmissions. Band 1 (Channels 1 to 5) is always BBC1, Band 3 (Channels 6 to 13) is usually ITV, but in certain areas it may carry BBC1 transmissions also. UHF Bands 4 and 5 (Channels 21 to 68) are used for 625 -line transmissions (including colour) for all programmes (BBC1, BBC2 and ITV).

SECTION 3-RADIO INTERFERENCE

This section covers interference caused to radio sets only. This includes radio tuners fitted to hi-fi systems, radiograms etc.

1. How many radio sets have suffered from interference due to the operation of your station (either when transmitting or receiving) ? Indicate the number of sets affected, not the number of separate complaints. Include your own radip set if applicable.
2. (a) How many of the radio sets in Question 1 suffered from interference when tuned to a broadcast transmission on the long and/or medium wavebands?

(b) How many of the radio sets in Question 1 suffered from interference when turied to a broadcast transmission on vhf/fm (Band 2) ?

3. In how many cases of interference to radio sets in Question 1 were the Post Office called in to investigate? Indicate the number of sets, not the number of visits made to carry out tests etc.

4. How many of the radio sets in Question 1 were cured of interference without the Post Office being called in to investigate?

5. How many of the radio sets in Question 1 were cured of interference by modifications to your station? Modifications include fitting of filters, screening, re-positioning aerials etc, but do not include a change of modulation mode or transmitted power.

6. How many of the radio sets in Question 1 were cured of interference by modifications to the radio installation? Modifications include fitting of filters, screening, re-positioning aerials, repairing faulty joints etc.

7. How many of the radio sets in Question 1 were cured of interference by the fitting of external devices to the radio set (eg aerial or mains filters, "braid-breakers", transformers, stubs, traps, earthing braid etc) ?

SECTION 4-AUDIO INTERFERENCE

This section covers interference caused to all types of audio equipment such as hi-fi systems, record players, tape recorders, public address systems, electronic organs etc. Note that this section does not include the audio sections of television or radio receivers.

1. How many audio installations have suffered from interference due to the operation of your station (either when transmitting or receiving) ? Indicate the number of installations affected, not the number of separate complaints. Include your own audio installation if applicable.
2. In how many cases of interference to audio installations in Question 1 were the Post Office called in to investigate? Indicate the number of installations, not the number of visits made to carry out tests etc.

How many of the audio installations in Question 1 were cured of interference without the Post Office being called in to investigate?

4. How many of the audio installations in Question 1 were cured of interference by modifications to your station? Modifications include fitting of filters, screening, re-positioning of aerials etc, but do not include a change of modulation mode or transmitted power.
5. How many of the audio installations in Question 1 were cured of interference by modifications to the audio installation? Modifications include fitting of filters, screening, re-positioning of interconnecting leads, repairing faulty joints etc.
6. How many of the audio installations in Question 1 were cured of interference by the fitting of external devices to the audio installation (eg filters on mains, loudspeaker or other interconnecting leads etc) ?

Table 3. Answers to question 3, section 1 - feetings of amateurs worried by interference problems

Class	Not worried	Slightly worried	Moderately worried	Severely worried	Average "feel"
A	24.61	37.88	26.73	10.25	1.22
B	32.8	32.00	21.2	9.2	1.02
A + B	21.83	35.92	27.46	10.56	1.23
ALL	25.96	36.45	2575	10.07	1.18

Table 4. Answers to question 4. section 1 - Bands "unworkable" due to interference

Class	A		B		" $A+B$ "		All	
Band (MHz)	Cases	$\%$	Cases	\%	Cases	\%	Cases	\%
1.8	43	5.19			6	4.23	49	505
3.5	169	20.39			22	1559	191	19.67
7	113	13.63			16	11.27	129	13.29
14	176	21.23			30	21.13	206	21.22
21	200	24.13			29	20.42	229	23.59
28	169	20.39			25	17.61	194	19.98
70	61	7.36			9	6.30	70	7.21
144	78	9.41	78	31.2	29	20.42	185	1515
432	13	1.57	24	9.6	4	2.82	41	3.36
1296	6	0.70	3	1.2	1	0.70	10	0.82

Table 5. Answers to questions 5ection 1 - Bands avoided by amateurs because of interference problems

Class	A		B		" $A+B$ "		$A L L$	
Band (MHz)	Cases	\%	Cases	\%	Cases	\%	Cases	\%
1.8	18	2.17			4	2.82	22	2.27
35	63	760			10	7.04	73	7.52
7	43	5.10			7	4.90	50	5.15
14	79	9.50			10	7.04	89	9.17
21	113	13.63			14	9.86	127	13.08
28	95	11.46			10	704	105	108.1
70	40	4.83			13	9.15	53	5.46
144	23	2.77	11	4.4	5	352	39	319
432	7	0.84	13	5.2	4	2.82	24	197
1296	2	0.24	3	1.2	1	070	6	0.49

Table 6. Television interference - results for section 2, bold tigures are the average number of cases (tvsets) per amateur

	Class	A		B		" $A+B^{\prime \prime}$		ALL	
Questiori	Interference	Cases	\%	Cases	\%	Cases	\%	Cases	\%
1	Total number of sets	2257	2.72	576	2.3	401	2.83	3234	2.65
2a	To sets in v.h.f Band 1	1018	45.10	103	17.88	95	23.69	1216	37.6
2b	To sets in v.h.f. Band 3	584	25.88	134	23.26	85	21.19	803	24.83
2c	To sets in uhif Bands	1208	53.52	378	65.63	275	68.58	1861	57.54
3	Cases seen by Post Office	682	30.22	180	37. 25	113	28.18	975	3015
4	Cases cured by amateur - not seen by P.O.	1044	46.26	265	4601	184	45.89	1493	4617
5	Cases cured by mods to station	214	9.48	49	851	25	6.23	288	891
6	Cases cured by mods to tv set	1293	57.29	332	57.64	244	60.85	1869	57.97
7	Cases cured by external mods to tv set	1211	53.66	270	4688	215	53.62	1696	52.44
	Not.vi.	133	16.04	60	2400	19	13.38	212	17.36

Table 7. Radio interference - results for section 3 . bold figures are the average number of cases (radio sets) per amateur

	Class	A		B		' $A+B$ "		$A L L$	
Ouestion	Interferance	Cases	\%	Cases	$\%$	Cases	\%	Cases	\%
	Total number of sets	728	0.88	171	0.68	147	1.04	1046	0.86
2a	Sets on I.w. and/or m.w.	423	5810	60	35.09	85	57.82	568	54.30
2b	Sets on v.h.f. fm	347	4766	119	69.59	82	5578	548	52.39
3	Cases seen by Post Office	104	14.29	24	14.04	15	10.20	143	13.67
4	Cases cured by amateur - not seen by P.O.	193	26.51	60	35.09	37	25.17	290	27.72
5	Cases cured by mods to station	36	495	11	6.43	4	2.72	51	4.88
6	Cases cured by mods to radio set	195	2679	60	35.09	37	25.17	292	2792
7	Cases cured by external mods to radio set	98	1346	20	11.69	16	10.88	134	12.81
	No b.c.i.	458	55.24	159	63.6	62	4366	679	55.61

should express his feelings, regardless of any actual incidence of interference.

Question 4 was included to find out if any bands (on which the amateur really wanted to operate) were particularly troublesome.
Some amateurs never even try to use certain bands because of fears of interference. Question 5 was required to find out whether the traditionally troublesome bands deserved their reputation (as indicated by the answers to question 4).
Question 6 was asked with the intention of establishing any connection between the tv channels received and operating problems. Wired tv (c.a.t.v., m.a.t.v.). which has no official protection against amateur interference, was included for completeness and to find out if it posed extra problems. No attempt was made to find out the wired tv frequencies, which could be quite different from those received locally "off-air"
Section 2 was worded to be as compatible as possible with sections 3 and 4. A lot had to be left to the discretion of the amateur; for example, the number of cures was asked for. In some cases a "cure" may be effective

Notes on the tabulated results

Most of the figures recorded in the tables are self-explanatory. However, as most of the results are expressed as averages or percentages, the following notes wili make it clear how these were arrived at

Section 1.
Q2. The average period of operation is the total number of years recorded in 1.2 divided by the total of survey forms returned
Q3 The average "feeling" is the sum of the numbers recorded in 1.3 divided by the total returns. The percentage of amateurs with a particular feeling is the number recording that feeling divided by the total returns. O4 \& O5. The percentage of amateurs with restrictions on or avoiding a particular band is the total recording that band divided by the total returns. As Class B licencees cannot use the bands below 144 MHz , when relevant, the percentages of questions 4 and 5 in section 1 are calculated using a total of 1125 amateurs (i.e. the number of Class B licencees are deducted)

Section 2.

Q1. The average number of iv sets suffering t.v.i. from each amateur is the total of answers in question 2.1 divided by the total of returns. Q2 to 07 The percentages are the totals of answers to the appropriate question divided by the total of answers to 2.1

Sections 3 and 4.

The averages and percentages calculated for these sections are calculated on the same basis as for section 2

It must be pointed out that although many of these results are calculated to two decimal places this does not imply that they are accurate to this degree. It merely facilitates the subsequent rounding-off of figures as necessary

Table 8. Audio interference - results for section 4, bold figures are the average number of cases (installations) per amateur

	Class	A		B		A $A+{ }^{\prime \prime}$		ALL	
Question	Interference	Cases	\%	Cases	\%	Cases	\%	Cases	\%
1	Total number of installations	1026	1.24	264	1.06	230	1.62	1520	1.24
2	Cases seen by P.O	139	1355	34	1288	28	12.17	201	13.22
3	Cases cured by amateur not seen by $\mathrm{P} O$	324	3158	92	3485	83	3609	499	32.83
4	Cases cured by mods to station	33	3.22	26	985	4	1.74	63	4.14
5	Cured by mods to installation	353	3441	75	28.41	72	3130	500	32.89
6	Cured by external mods to installations	210	2047	30	11.36	36	1565	276	1816
	Noaft	273	3293	97	388	32	22.54	402	3293
	Not.v.t., b.c.t or a.f.i.	63	7.6	35	14.0	9	6.4	107	8.76

only on some tv channels or for some amateur bands.

The number of tv sets affected was asked for in preference to the number of complaints received. It was felt that this would give more realistic answers. Most of the cases recorded by the Home Office are probably "one set - one complaint", especially if the time period is short.

Question 2 is intended to amplify question 1. It was thought that in most cases the amateur would remember if $\mathrm{BBC} 1, \mathrm{BBC} 2$ or ITV was affected, or which line standard - hence the note at the end of the question.
It was realised that the amateur might not know all the facts of the cases of t.v.i. The Home Office do not always disclose who or what is suffering interference. In some circumstances (e.g., in cases of multiple t.v.i.) the number given in the reply to question 3 may be lower than the true value. It is also possible that, over a period of time, one set could be responsible for several cases being recorded by the Home Office. As a result. it is possible that the number of cases recorded by the Home Office and those reported in question 3 may not agree exactly.
In question 4 the judgment of the amateur is relied upon for what he calls a "cure". However, it enables a ratio of "amateur cures" to the number of times the Home Office is involved to be calculated. Of course, these two events are not totally of the same character as the Home Office may not always effect a cure. In consequence, this ratio does not exaggerate the amateur role in curing t.v.i.

Question 5 tries to discover how often the amateur station is technically responsible for causing t.v.i. "Repositioning of aerials" is included as a modification, but this does not imply that a badly sited transmitting aerial is really a technical fault. However, the RSGB Interference Committee recommends that amateurs should consider the possibility of reducing field strengths by attention to aerial position or design. A change of modulation mode is excluded as this is considered to be avoiding t .v.i. rather than curing it.
When interference is cured by modifying the affected tv installation it is
reasonable to conclude that in most cases the amateur is not to blame. In question 6 it is intended that any modification (including those in question 7) should be counted.
Question 7 specifically limits modifications to the usual amateur methods of adding external filters, etc. It was considered important to find out what proportion of the cures of question 6 were achieved without having to resort to difficult modifications, such as internal modifications to the tv set. The Interference Committee recommend against tampering inside neighbours' equipment.
Sections 3 and 4 were worded similarly to section 2 and were chosen for similar reasons.

(To be continued)

Part 2 of this article will discuss the survey results, as tabulated, suggesting possible reasons for the figures obtained.

Editor's note

QST, the official journal of the American Radio Relay League (ARRL), reported in their November 1976 issue: "In the United States, with the recent increase in popularity of $\mathrm{c} . \mathrm{b}$. radio and a commensurate increase in the number of privately owned transmitters, the FCC is now receiving interference complaints at a rate o! over 100.000 a year. Of the complaints of interference to home-entertainment devices, only seven per cent involve amateur radio operators. Further analysis shows that of these cemplaints, almost 90 per cent would not ha ce occurred at all if the manufacturers of the home-entertainment devices had provided adequate filtering or shielding in their, products. These statistics suffer a severe limitation in that they record only reported cases of interference. . . . It is clear that even though amateurs are involved in only a small percentage of all reported interference cases, the overall effect on amateur radio operation is unknown "

EEC DATA-PROCESSING CASH

The EEC Commission is making available 103 million units of account (about $£ 43$ million) to help the data-processing industry. The money will go to "joint developments and new products in many areas mainly related to distributed computers," according to Christopher Layton, director for technology in the Commission's DirectorateGeneral for Industrial Policy in Brussels, "or new products in the field of peripherals, terminals, etc." Between 20 and 50% of the cost of collaborative projects would be provided as long as they involved at least three member states. Any new application so funded would involve repayment if successful.

The Commission is concentrating on making stronger the mini- and microcomputer sectors, where large foreign competitors have not yet gained a foothold. Similar proposals to strengthen the telecommunications and electronic component sectors will follow later. The present scheme, a four-year programme, should be in operation by 1978, say the Commission. They are anxious that the European industry should adopt common standards, that the member states should become more aware of one another's products, that public buying in the member states, about 30% of all purchases, should be directed towards helping the native European industry, that agreement should be reached about the privacy of computer data, particularly that crossing frontiers, and that a European users' association be set up.
Previous public support for the data-processing industry has been given on a national basis. In 1971-75 member states spent about $£ 76$ million a year. "This enabled the European-based industry to survive but, unless co-ordinated in future, the nationalist bias, the Commission believes, could prove dangerous." Manufacturers have found it difficult to obtain a Europe-wide return on their investments, have been unable to find the resources to attack all sectors of the market, and have wasted the resources they can find in duplicated effort. This is why the Commission's financial help is for collaborative projects put forward by users of at least three member states or industrial companies from at least two.

Earlier attempts to persuade the three largest European computer firms to co-operate in developing and marketing a common range of computers, the Unidata project, have failed, and support for creating a community leasing fund along Japanese lines, managed by the European Investment Bank and provided with an initial 100 million units of account ($£ 40$ million) has not met enough support to be included in the four-year programme.

Television pattern generator

Simple design providing crosshatch/dot matrix, colour bars and grey scale

by R. A. Owen, M.Sc. and D. Brenkley, B.Sc., University of Essex

The unit generates the waveforms corresponding to the standard test patterns using inexpensive, readily available, t.t.l. integrated circuits. Line synchronization is necessary, ideally using line blanking pulses, and output buffering circuitry may be needed, depending on the required amplitude, d.c. level and isolation of the output signal(s). Component values are for use with the 625 -line system.

Waveforms

'The crosshatch/dot-matrix waveform is composed of two sets of pulses, producing the vertical and horizontal components of the pattern. The vertical component pulses are some 200 ns wide and of period approximately $3 \mu \mathrm{~s}$, while the $52 \mu \mathrm{~s}$ horizontal component pulses
recur every twenty-five lines. The colour-bar waveforms are square-wave pulses providing the separate RGB drives and weighted summing of these three drive signals forms the grey scale waveform. Gating during the line blanking period ensures that the pulse sets exist only during the active line time, preventing serious

Fig. 1. Main circuit diagram. The output inverters are a 7406, the other inverters a 7404, the three-input gates part of a 7400, two-input gates are two 7400 s and the Schmitt two-input gates are a 74132 . The link in the second 7490 reset line is in place of the circuit of Fig. 4.
foldover. Provision is made for adjustment of the vertical line/bar spacing of the patterns.

Input pulse shaper

In the circuit diagram of Fig. $1, \mathrm{R}_{1}, \mathrm{C}_{1}, \mathrm{D}_{1}$ limit the amplitude of the negativegoing line input pulses applied to the two-input schmitt-trigger NAND gate, whose input/output hysteresis helps to provide jitter-free operation with slow rise-time inputs. The cleaned-up pulses then provide synchronization and gating.

Crosshatch

A second two-input schmitt-trigger NAND gate serves as a gated RC astable multivibrator, in which R_{3} alters the frequency of oscillation. The output

waveform, a rectangular pulse train of $2: 1$ duty cycle, is differentiated by $\mathrm{C}_{3}, \mathrm{R}_{4}$ and shaped by a schmitt-trigger NAND gate. The internal input diode of the NAND gate limits the negative excursion of the differentiated waveform. The width of the negative-going output pulses for the vertical cross hatch component are related to the time constant $\mathrm{C}_{3}, \mathrm{R}_{4}$. To reduce pick-up, the differentiated output is gated off in the colour bar mode. For the horizontal component of the crosshatch, the two 7490 decade counters function as a divide-by- 25 counter, as in Fig. 2(a) the reset functions being inhibited. The negative-going pulses of one active line length ($52 \mu \mathrm{~s}$) are fed from a three-input NAND gate to the output gating circuitry.

Essentially, an OR type function is employed for crosshatch and an AND type function for dot matrix in the output circuitry, with a switchable interchange between the two.

Colour bar/grey scale

$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{C}_{4}$ and the associated schmitttrigger NAND gate form the colour bar astable oscillator. R_{6} alters the oscillation frequency, and when optimally adjusted produces an oscillation period of $6.5 \mu \mathrm{~s}$. Subsequent division by 2,4 and 8 produces inverted drive waveforms, available at the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ outputs of the second 7490 counter, which are inverted to provide positive-going video signals. Buffer circuitry may be added externally if the t.t.l. outputs are incompatible. Weighted summing of the drive signals, as in Fig. 2(b) provides the eight-level grey scale in Fig. 2(c), sequentially from peak white to black. A simple resistor summing network can be used as a compromise as in Fig. 2(d). Summing resistors are selected to give a 100% amplitude, 100% saturation waveform, the amplifier output being a grey scale of about 1 Vp -p.

Gating

In the crosshatch mode, the three-stage binary counters of the 7490's in Fig. 1, for which the count cycle length is divided by five, are used and the resets are inhibited.

In the colour bar mode, the second 7490 functions as a 0 to 7 counter with the appropriate external gating, set to a count of nine in the line blanking period. The Q_{D} output of the first 7490 assumes a static logical 0 in this mode, since the counter is reset every line. The colour bar oscillator is gated off by the line blanking pulses or by the output of a NAND gate structure responding to a logical 111 presented from the outputs $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$ of the second 7490 (corresponding to a count of seven). So, the second 7490 counts, generating the bar waveforms, to 0111, inhibiting the oscillator. The line blanking pulse then continues to gate off the oscillator and sets the counter outputs to a logical 1001 (a count of nine). By virtue of the

Fig. 2(a). The configuration of 7490 s required to divide by 25 . The summing circuit for the grey scale is shown at (b) and the waveforms involved at (c). The simple resistor network at (d) can be used as a compromise.

INVERT - AND nature of the open collector outputs, Q_{D} maintains black level during the line blanking period. On completion of the blanking pulse, the counter and oscillator are enabled and the colour bar oscillator follows rapidly with a negative-going edge, which effects a count increment to 0000 .

After completion of a blanking pulse, the difference in propagation delays,

Fig. 3. Suggested circuit to connect the generator to a Bush CTV 184S is at (a), with a means of obtaining the negative-going flyback pulses shown in (b). If a direct connexion is not available, 3-4 turns of very well-insulated cable near the line output transformer should suffice.

Fig. 4. Differentiating circuit, which may be needed to avoid blanks at the beginning of the line scan.

between the counter being enabled and the colour bar oscillator providing the first negative-going edge is some 20 ns . If tolerances in propagation delays cause a black bar to be produced first in the line scan, then a differentiating network shown in Fig. 4, can be interposed between R_{92} of the second 7490 and the blanking pulse line. This ensures that the counter is enabled before the end of the blanking pulse. The output gating is removed and peak white is the first bar. The count cycle is repeated.

In using open-collector gates, highvoltage output types, such as the 7406 , provide a measure of protection against overvoltage. The inputs of gates requiring a static logical 1 are connected via $1 \mathrm{k} \Omega$ resistors to +5 V , to protect their inputs from supply transients.

Additional circuitry and interfacing

Because of the wide range of conditions and applications, no one interface or buffer circuit is sufficient for general application. An example of connection to a single standard set type CTV 184 S is shown in Fig. 3(a): further interfaces were discussed in Wireless World, May 1976, pp.64-67.

Construction and test

A prototype was constructed using Veroboard, and with minimal lead lengths no spurious operation was found. A double-sided printed circuit board was later used, with few wired linkages.

The +5 V supply should be well decoupled close to the integrated circuit packages. R_{1}, C_{1} must be adjusted in accordance with the amplitude of the available source of line-blanking/flyback pulses, ensuring that D_{1} operates within its ratings. For example, with blanking/flyback pulses of -80 V amplitude, R_{1}, C_{1} were chosen to be $10-k \Omega 0.1-\mu \mathrm{F}$. The hex buffer output collector resistors are connected via a link to +5 V , provision thereby being made for a secondary supply to be used Assuming that a suitable +5 V supply and output circuitry have been added, then the output signal(s) may be fed into the relevant positive-going amplifier stage(s). Preset resistor, R_{3}, is adjusted for a suitable number of vertical lines in the crosshatch pattern and preset, R_{f}, such that the eight bar pattern accurately fits the screen. The control range of R_{6} allows a compressed grey scale or expanded partial grey scale to be produced at the extremes.

A printed board for this design will be made available by Mike Sagin, one of our assistant editors. A note will be published when it is ready - Editor.

Viewdata

2 -- Applications of the system

by S. Fedida, B.Sc.(Eng.), M.Sc., F.I.E.E., A.C.G.I
Post Office Research Centre

Before dealing with the possible applications of Viewdata I will conclude the discussion started last month (February issue) on the problem of ensuring adequate communication between the user and the computer - what 1 have called the computer dialogue.

While the index principle is clearly adequate for the information service as such, a fuller dialogue is needed to cater for the very wide range of services provided by Viewdata, in particular a message facility, calculation and games facilities and a range of interactive services such as requests for advertising literature or other documentation and bookings of holidays and hotels.

The design of the computer dialogue is very important. Information put out by the computer to guide the user must be simple to understand, it must not be ambiguous and must not appear to demand more than one reply at a time. Furthermore the action to be taken by the user following the display of a frame of information must be clearly indicated, i.e. the prompt must always be inserted to ensure that the user does not lack guidance regarding the next step.

An example of part of a dialogue in the message service is shown in Fig. 1. It gives the flavour of the requirement and indicates some of the pitfalls.

A third aspect of the communications arrangements between user and computer concerns the general purpose set of non-indexed or dialogue instructions which may be needed by the user in the course of a session. The object of these instructions, which are only five in number, is to assist the user to recover from errors real or imagined and thus enable him to maintain control of the situation whatever happens.

The set of instructions selected for Viewdata for recovery from errors and more generally for coping with unforeseen problems is as follows:

1. To return to the top of the selection tree: *=
This instruction is mainly used at the completion of one enquiry, when it is desired to start a new one. Alternatively if the user finds himself perhaps on the wrong track, or

Office version of a Viewdata terminal, known as Viewdataphone. Note the integral keypad and telephone handset.
cannot interpret the dialogue, he uses this to make a fresh start. In other words, it provides a fall back option for all unexpected situations.
2. To recall the previous page: *01

The purpose of this instruction is to enable the user to check the contents of the previous page. in case of miskeying errors, real or imaginary
3. To recall the current page: "00

The purpose of this instruction is to cause the computer to retransmit the current page, in case some of the information has been corrupted. Interestingly enough, little evidence has been seen so far of serious data corruption during transmission.
4. To jump to a known page (number N): "N=
The purpose of this instruction is to enable the user to jump straight to the required page, if he knows its number, thus by-passing the step by step approach.
5. To correct a miskeying error: " If an entry is in error it may be erased by keying ** and a fresh start made

These instructions are normally engraved on the keypad associated with Viewdata, thus providing a constant reminder of what action is needed to cope with the unforeseen

Applications of Viewdata

The range of applications of Viewdata is theoretically unlimited. In practice it will be determined primarily by the market - what users want and what they are prepared to pay for. There are six distinct service areas, each with its own specific requirements and each using the interactive capability of the system to some degree:

- general information services
- message communications
- education
- calculation
- personal services
- in-house and private systems.

Information. The largest area capable of immediate development is the information service area. It has a number of subdivisions, with differing characteristics and treatments, e.g.: topical information; reference information, divided into general and professional; classified advertisements; and shopping aids.

The range of topical information itself covers a number of different items, such as news, sports results and weather information, each item in turn comprising a very wide spectrum such as local news, national and international events, business news, items of interest
to the domestic viewer, to the business viewer, etc. This section of the information data base is the one most closely related to that of teletext. The major difference is that whereas in teletext the information is more likely to be in abbreviated or headline form because of the obvious limitation of the restricted total amount of information available, in Viewdata the information is in much more detailed form and of course has a considerably greater scope and variety.
Reference information is a large field which could cover items such as train and bus time tables, and perhaps air time tables, telephone directories and "Yellow pages" of local and national interest. It could also cover information on leisure activities such as games, hobbies and sports, do-it-yourself and gardening information, recipes and holiday and tourist information. Other topics of interest could be money matters and savings, tax information, jobs and careers information, and a wealth of specialist reference information for the businessman and professional user.

Classified advertisements are potentially a very important sector of the
information spectrum, since, given adequate coverage, classified advertisements may be available in everybody's home at the touch of a button when required, with an immediacy unrivalled by any other medium. By the same token items no longer available may be removed instantly from the data base, thus avoiding unnecessary enquiries and potential frustration. A major benefit of the classified advertisement is that it could provide a useful revenue which, as in the case of newspapers, could be used to counterbalance a proportion of the expenses.

The interactive capability of Viewdata adds an important dimension to the scope of the information services. It could be used, for example, to request further details about a product advertised or discussed, and in certain cases to actually place a purchase order. Potentially it is possible to do this without the need to place an additional telephone call.

Message communication. Viewdata is clearly not only an information medium, but also a message communication medium, indeed a "store and
forward" system, for use by the general public. The message, once entered in the computer, would be transmitted as soon as communication to the intended recipient can be established

The simple message facility so far experimented with provides a number of options. In the simplest option the user may select one or more out of a number of standard messages, mainly greetings messages, but clearly many others are possible. After message selection the user needs to supply the Viewdata number of the intended addresses. Thereafter the action of the system is entirely automatic

The message is now automatically routed to the local Viewdata computer which places a telephone call to the addressee. If the telephone number is engaged the computer tries again; the number of tries may be specified by the sender. If the number is not engaged but no reply is obtained to the call, after a short ringing interval, a red light fitted to the Viewdata receiver is switched on to indicate that "somebody has called." Indeed arrangements may be made for the local computer to attempt a call several times, and for the visual indica-

Fig. 1. Example of part of a dialogue in the message services provided by Viewdata.

Fig. 3. Example of facilities offered by the caiculator service.

Fig. 2. A maze game which can be played through the system: two mazes of differing complexity.
tor on the Viewdata set to give a count of the unanswered calls.

When the call is answered, the computer places a high pitched tone on the line (1300 Hz), which indicates to the user that the Viewdata computer is calling. Pushing the data bution on the telephone set causes the computer to send the message frame preceded by introductory frames to ascertain user number, etc.

A similar procedure applies when the addressee, on returning to his Viewdata set, finds the "somebody has called" light on. On dialling Viewdata and after entering his user number the message is delivered.

Another message option provides the user with the facility of inserting in the standard text one or more words, numeric or alphantmeric, e.g. times of arrival in a "l shall be arriving on the
. . train" message.
Finally, users who have the alphabetic keypad may be able to compose their own messages.

All these message options use the same method of delivery illustrated above and all provide the facility for sending one or more messages to one or more addressees, in a single transaction, thus saving the user a very considerable amount of time, particularly when the same message has to be sent to several people.

A simple extension of the message facility is the interconnection with telex! Viewdata benefits in the enhancement of its communication facilities by its interconnection with an extensive telex network with an international coverage. Telex benefits in three ways: it acquires a powerful store and forward capability; it acquires an additional number of customers, not normally on the telex network; and it could relieve congestion in the telex room at peak hours by repeating a telex message direct to an executive's Viewdataphone on his desk.

A further potential extension of the Viewdata message service is in the case of business mail. This could provide a useful load to the Viewdata computer network, during the night, for example, when its facilities are mostly unused.

Finally because Viewdata displays messages visually on the domestic ty receiver, it could provide a cheap and convenient way for deaf people to communicate at a distance, among themselves and with other people.

Education. Viewdata may be applied to the education field in three areas. The first is the conventional information services providing details of educational facilities, e.g. what courses are available and where, details of qualifications required, and who to apply to. This service could be structured under a number of different headings, such as subject titles and local facilities, and the usual method of access would be applied.

The other areas are the more exciting
possibilities of using Viewdata to assist in the learning process. Many attempts have been made recently, particularly in the United States, to introduce this system of learning (computer assisted learning), which has many obvious advantages. It could relieve very considerably the day to day pressure on teachers and lecturers, who would then be able to devote more of their time to the individual requirements and difficulties of their pupils. The potential of this education medium for home-learning is also of great importance.

Unlike conventional methods of learning, Viewdata, by taking advantage of int eractive working, can provide the student with assistance when required and a method of self-monitoring and self-testing which could greatly increase the speed of learning and provide the necessary intellectual stimulus to the student.

Viewdata in education could also be invaluable to parents in enabling them to follow the educational progress of their children and thus possibly enable them to help and encourage them nore effectively

A related aspect of education is the games facility where again the interactive capability of the computer is called for. The field for educational games is vast and so far two programmes have been experimented with One is MOO, which is an exercise in logical thinking, wherein the user has to guess a four digit number selected at random by the computer. The guessing or deduction is made as a result of clues given by the computer in response to a "guess". The other is a maze game, increasing in complexity from the very simple to the more complex, which is a good example of pattern recognition (see Fig. 2).

Calculations. The primary purpose of Viewdata is not to provide a calculations service, but as illustrated earlier an information and message service. Nevertheless the availability of a number of distributed computers a local call distance away suggests that for very little extra cost a useful calculation service could be provided to students, small businesses and indeed all who might need its fairly limited but potentially very useful facilities.

Little would be gained if the calculator facilities were limited to those provided by the small mass-produced calculators. Such a service would be hopelessly uncompetitive. Neither would a great deal be gained by providing the sophisticated facilities of the now well established computer bureaux. The professional user 'of extensive computational facilities is already well catered for.

Rather it is intended to fill the gap between the two, some of which is at present covered by the more expensive hand or desk calculator. Unlike these more complex and powerful machines. however, the Viewdata approach is to
eschew all manuals and complicated instructions and so to organise the dialogue that users may, without any specialised training whatever, carry out the calculations they desire. Instructions for entering requirements are given by the system as and when they are needed and the dialogue is so arranged that errors may be caught quite simply as they occur (Fig. 3).

An additional feature of the calculation programme is a curve or histogram plotting facility related to the computations carried out.

Personal services. We have seen that Viewdata users are able to enter information into the system for example for message purposes. This clearly could be extended by arranging that this information is only accessible to the user or to one or more other persons nominated by him.

We now enter a fairly sensitive area of security (or privacy) of information. Much study will need to be done to ensure that information thus entered is indeed reasonably well protected. Initially, however, the studies are concentrated on information which, in the individual's opinion is not too sensitive. A user may enter perhaps reminders to himself of meetings, dates, telephone numbers, data for his own private use and the like. A typical one may be a reminder to send flowers to the wife on her birthday! Even in such fairly innocuous cases, passwords are provided to ensure that accidental disclosure of private information does not occur.

In house and private data banks. An extension of the personal information service is the use of the Viewdata network to store and provide access to information of interest to closed user groups on certain specific topics, e.g. employees of a business house. Also a minimum degree of privacy will need to be provided, although absolute privacy is not an objective of the system, at least in the initial stages.

In the case of closed user groups, information and data might be collected for the benefit of groups having similar interests. For example the source of supply of certain commodities used in certain categories of business, e.g. building supplies with current prices, availability etc.

Clearly the range of potential services of this nature is open ended. Development will no doubt take place in this area as the capability of this new medium becomes apparent through usage and experimentation.
The next article will deal with the operation of the Viewdata system in detail

Reference

I. S. Fedida - Development of Computerbased Information Media for the General Public. Paper presented at 2nd Internationa Symposium on Subscriber Loops and Services 3-7 May, 1976. The Institution of Electrical Engineers. London.

Event-driven circuits

by B. Holdsworth* and D. Zissos \dagger

A four-step procedure based on the sequential equations, for the design and implementation of event-driven logic circuits is described in this article. Realistic circuit constraints are automatically taken into account by the design process.

The principal factors to be considered in the design of event-driven circuits are: - Circuit reliability. The circuit must operate correctly and reliably.

- Gate fan-in and fan-out restrictions. These must be observed.
- Speed tolerances. Gate speed tolerances of $\pm 33^{1 / 3}$ per cent are automatically accommodated by the design process used.

Generally speaking, the solutions obtained do not necessarily use a minimum number of gates, but the design requires minimum effort. The design steps are easy to apply and require no specialist knowledge.

State diagrams

State diagrams can be used to describe both the external and internal operations of event-driven sequential circuits. In a state diagram, states can be represented by squares, rectangles or circles and lines linking the states represent transitions between states. The direction of a transition is indicated by an arrow pointing in the direction of the destination state, and the signal condition that initiates the transition is indicated by its Boolean function inserted either above or below the line. For example the part of a state diagram shown in Fig. I indicates that the circuit moves from state S_{i} to S_{1} when $X Y=1$, i.e. when $\mathrm{X}=\mathrm{l}$ and $\mathrm{Y}=0$.

The external and internal-state diagrams of a circuit ill which the activation of a switch X in Fig. 2(a) operates, in turn, two lights L_{1} and L_{2} are shown in Figs. 2(b) and 2c) respectively. Variables X_{n} and X_{n+1} are used to indicate the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ activation of the switch. The external-state diagram closely resembles a flow chart, which can be drawn with very little
regard to circuit implementation.
There are no hard-and-fast rules for developing internal-state diagrams. Since such diagrams describe the internal operation of a circuit, the designer usually makes arbitrary choices depending on past experience, his understanding of the problem and availability of components, which can lead to different but equivalent results.

The following example is used to illustrate typical variations in the internal-state diagrams of the relatively simple light circuit shown in Fig. 3(a). The function of the circuit is to turn $\operatorname{lamp} L_{1}$ on when the two switches X and Y are made in that order, and lamp L_{2} on when the switches are made in the reverse order. Two different but correct versions of the internal operation of the circuit are shown in Figs. 3(b) and 3 (c).

Most persons attempting this problem would probably derive inter-nal-state diagram 3(b) which uses five internal states. State S_{1} is used to record that switch X has been made and state S_{3} that switch Y only has been made. In both cases there is no change in the circuit output, although clearly there is a change in the internal-state of the circuit. Very few designers, if any, would arrive at Fig. 3(c) the first time round.

As might be expected the circuit
implementation of the state diagram of Fig. 3(c) is the simplest. This state diagram can be obtained by constructing a state table from the state diagram shown in Fig. 3(b), the state table then being reduced by the application of Caldwell's merger procedure. This technique will be described later in this article.

State variables

Each state of an event-driven logic circuit is defined by a unique combination of logic signals called state variables or secondary signals. Clearly one state variable A, defines two states, one by $A=0$ and the other by $A=1$. Two state variable define four circuit states each state corresponding to a combination of their values, i.e. $00,01,11$, and 10 . In general, n variables will define 2^{n} circuit states. As an example of state allocation, the states S_{0}, S_{1}, S_{2} and S_{3} in Fig. 2(c) can be defined by the state variables $\mathrm{AB}=00,01,11,10$. In allocating state variables to states in event-driven circuits it is necessary to ensure that each circuit transition involves a change in the value of a single variable only. The reasons for

[^3]Fig. 1. Elements of a state diagram.

Fig. 2. Internal and external state
 diagrams of a logic circuit.

(c)

Fig. 3. Internal state diagrams of a two-switch logic circuit.

Fig. 4. Race-free diagrams for two and three variables.
doing this is to ensure that races between state variables or secondary signals are automatically avoided.

A race-free assignment of states can be achieved with the aid of a race-free diagram. This is a two-deminsional diagram containing 2^{n} coded nodes, where all nodes whose codes differ in one variable only are joined by interrupted lines. Hence, races between secondary signals are automatically avoided if each circuit transition lies on a race-free line. Race-free diagrams for two and three variables are shown in Fig. 4.

Dummy states

There are certain patterns of internal-state diagrams that cannot be assigned race-free codes. Such a pattern is shown in Fig. 5(a). If the state codes for S_{0}, S_{1}, and S_{2} are $A B=00,01$, and 11 respectively the direct transition from state S_{2} to S_{0} cannot be implemented as this would involve the simultaneous change of two variables. In this case the link between S_{2} and S_{0} can be turned into a race-free link by interposing a

(a)

(b)

Fig. 5. Use of a dummy state $\left(S_{3}\right)$ avoids simultaneous two-variable change from S_{2} to S_{0}
fourth state S_{3} between S_{2} and S_{0}, coded $A=1$ and $B=0$. This is called a dummy state and replaces line $S_{2}-S_{0}$ with race-free links $S_{2}-S_{3}$ and $S_{3}-S_{0}$, as shown in Fig. 5(b). The $S_{3}-S_{0}$ transition is unconditional and once the circuit assumes state S_{3} it moves automatically to S_{0}. In terms of state variables this ensures that signal B is turned off first and this automatically turns signal A off.

Unused states.

If the number of states to be implemented is N, where $2^{\mathrm{n}-1}<\mathrm{N}<2^{\mathrm{n}}$, there will be $2^{n}-N$ unused or redundant states. For example, in the case of the three-state diagram shown in Fig. 5(a) there will be one unused state. It can never be assumed in practice that a circuit will not move into an unused state either when switching the circuit on or due to the interference of a noise signal. For example, when in state $S_{0}=00$, a noise signal may turn A on and the circuit enters the unused state $S_{3}=10$. The circuit may be operating in conjunction with other circuits and moving into state $\mathrm{S}_{3}=10$ may result in the incorrect behaviour of the overall system.
The designer is therefore strongly advised to take such a possibility into account at the design level and take the necessary action. For example, if the misoperation of the above circuit can result in the jamming of a production

(b)

Fig. 6. State-table reduction.
(a)

(b)
\(\left.\begin{array}{|c|c|c|c|}\hline S^{t} \& R^{t} \& Q^{t} \& Q^{t+\delta t}

\hline 1 \& 0 \& 0 \& 0

2 \& 0 \& 0 \& 1

3 \& 0 \& 1 \& 0

4 \& 0 \& 1 \& 1

5 \& 1 \& 0 \& 0

6 \& 1 \& 0 \& 1

7 \& 1 \& 1 \& 0

8 \& 1 \& 1 \& 1\end{array}\right\}\)| Forbidden |
| :---: |

Fig. 7. SR flip-flop and its truth table.

Fig. 8. Implementation of the NAND sequential equation for S and R primary signals.

Fig. 9. Determination of turn-on and turn-off sets.

Fig. 11. Three-lamp circuit and its state diagram.

Fig. 12. Elimination of races between secondary signals.

Fig. 13. Races between primary and secondary signals.
line, a possible action would be to use the signal $\overline{\mathrm{B}}$, which defines the unused state, to turn off all machines and raise an alarm.

Frequently, such states are referred to as "don't-care" states. Boolean expressions defining the "don't care" conditions are used as optional products to reduce the circuit equations and hence the complexity of the circuit. This is based on the assumption that a "don't care" condition does not arise in practice, which is only valid for normal operation. Since one cannot exclude the possibility of circuit misoperation, the designer is strongly advised not to leave undefined the response of the circuit under such conditions. In other words

Fig. 10. Implementation of NAND sequential equations for turn-on and turn-off sets obtained from state diagram of, for example, Fig. 9.
the designer "cares" about all circuit conditions.

Summarizing, no state diagram containing other than 2^{n} states should be implemented. Referring to the light circuit of Fig. 3, only the state diagram in Fig. 3(c) can be implemented. The implementation of the state diagrams in Fig. 3(b) would require the addition of three states. Additionally the reader is strongly advised against the mathematically convenient use of "don't care" states for circuit simplification.

State tables

The design restriction of always implementing 2^{n} states can be met either by introducing dummy states or by reducing the number of internal states. State reduction is carried out by using Caldwell's merging procedure which is based on the state table. Such a table has a row for every state of the circuit and a column for every combination of the input signals. The rows and columns are headed by labels representing the corresponding states and inputs. In each cell the circuit destination is entered, i.e. the next state assumed by the circuit when it is in a state corresponding to the row heading, and it receives input signals defined by the column heading. If the designer does not wish to specify the next state the entry in the appropriate cell is left blank. A second entry is made in each cell which specifies the circuit output,

(a)

(b)

	00	01	11	10
So	$\underbrace{S_{0}}_{\substack{g=1 r=0 \\ b=0}}$	$\frac{S_{0}}{100}$	$\begin{aligned} & \not \phi_{1} S_{2} \\ & 010 \end{aligned}$	$\begin{gathered} S_{1} \\ 011 \end{gathered}$
S_{1}	$\begin{gathered} S_{0} \\ 100 \end{gathered}$	$\begin{gathered} S_{0} \\ 100 \end{gathered}$	$\begin{gathered} S_{2} \\ 010 \end{gathered}$	$\frac{(5)}{\left(S_{1}\right)}$
S_{2}	$\begin{gathered} S_{3} \\ 101 \end{gathered}$	$\begin{gathered} \$_{3} S_{0} \\ 100 \end{gathered}$	S_{2}	$\underbrace{}_{0}$
S_{3}	$\frac{\left(S_{3}\right)}{101}$	$\begin{gathered} S_{0} \\ 100 \end{gathered}$	$\begin{gathered} S_{2} \\ 010 \end{gathered}$	$\begin{gathered} S_{2} \\ 010 \end{gathered}$

(c)
(d)

¢	00	01	11	10
	S ${ }^{01}$	(S01	S_{23}	(O_{01}
	$9=1$ $b=0$	100	010	011
S_{23}	(S23)	S01	(S_{23}	(2_{23}
	101	100	010	010

(f)

Fig. 14. Function to be realized in Example I is at (a) and its state diagram is at (b), while the state table is shown in (c) and in merged form at (d). Initial state diagram based on (d) is shown at (e) and realization of the circuit is (f).
unless it is a blank cell. If the circuit destination is the same as its current state, the circuit is stable and the entry is encircled. The state table corresponding to Fig. 3(b) is shown in Fig. 6(a).

State reduction

The process of combining the rows of a state table is made in accordance with Caldwell's merging rules.

Two rows may be merged if the state numbers and the circuit outputs appearing in corresponding columns of each row are alike, or if the entry in one or both of the rows is blank.

When circled and uncircled entries of the same state number are to be combined, the resulting entry is circled. Thus the two rows

$$
\begin{array}{lllll}
& 3 & (5) & & \\
& 3 & 5 & 6 & 8 \\
\text { combine into } & 3 & (5) & 6 & (8)
\end{array}
$$

A change of state from 5 to 8 now involves a change of the input state only.

When a row S_{m} is combined with row
S_{n} the new row is marked $S_{m n}$.
Examination of Fig. 6(a) indicates that rows $\mathrm{S}_{0}, \mathrm{~S}_{1}$, and S_{2} can be merged to give a new row S_{012} and also that rows S_{3} and S_{4} can be merged to give a new row S_{34}. The reduced state table is shown in Fig. 6(b) with its corresponding state diagram in Fig. 6(c), and this is identical to the state diagram of Fig. 3(c).

Sequential equations

The sequential equations, allow a state diagram to be translated directly into a circuit, as a consequence, lead to a much simpler solution of event-driven circuit problems. These equations can be obtained directly from a consideration of the logical behaviour of an SR flip-flop.

The SR flip-flop is shown symbolically in Fig. 7(a), the set and reset inputs being labelled S and R respectively, whilst the complementary outputs are labelled Q and $\overline{\mathrm{Q}}$. The truth table for the flip-flop is shown in Fig. 7(b).

In the first three columns of this table, all combinations of the present states of S, R, and Q , i.e. their states at time t, are tabulated. In the fourth column the next state of the flip-flop, i.e. its state at time $t+\delta t$, is tabulated.

Examination of this table shows that a change of flip-flop state occurs in rows 4 and 5 only. In row 4 the flip-flop is being reset, i.e. its state is being changed
from 1 to 0 , by the application of inputs $S=0$ and $R=1$. In row 5 the flip-flop is being set, i.e. its state is being changed from 0 to 1 , by the application of inputs $\mathrm{S}=1$ and $\mathrm{R}=0$. The reader should also notice that with this type of flip-flop it is inadmissible for S and R both to be logical 1 simultaneously. This restriction can be expressed algebraically as $\mathrm{SR}=0$.

One form of the sequential equations is obtained by taking the logical sum of the combinations in the truth table for which $Q^{t+\delta t}=1$ and adding in the product $\mathrm{SR}=0$. This does not affect the value of $\mathrm{Q}^{t+8 t}$ but leads to a simpler equation for it.
Hence:
$\mathrm{Q}^{t+\delta t}=(\overline{\mathrm{S}} \overline{\mathrm{R}} \mathrm{Q}+\mathrm{S} \overline{\mathrm{R}} \overline{\mathrm{Q}}+\mathrm{S} \overline{\mathrm{R}} \mathrm{Q}+\mathrm{SR})^{\mathrm{t}}$.
Minimizing:
$\mathrm{Q}^{\mathrm{t}+\mathrm{\delta t}}=(\mathrm{S}+\overline{\mathrm{R}} \mathrm{Q})^{\mathrm{t}}$.
The second form of the sequential equations is obtained by excluding the product $S R$ from the equation for $\mathrm{Q}^{1+\delta \mathrm{t}}$ so that
$\mathrm{Q}^{t+\delta t}=(\overline{\mathrm{S}} \overline{\mathrm{R}} \mathrm{Q}+\mathrm{S} \overline{\mathrm{R}} \overline{\mathrm{Q}}+\mathrm{S} \overline{\mathrm{R}} \mathrm{Q})^{\mathrm{t}}$.
Minimizing: $\mathrm{Q}^{\mathrm{t}+\delta \mathrm{t}}=[(\mathrm{S}+\mathrm{Q}) \overline{\mathrm{R}}]^{\mathrm{t}}$.
Time is inferred in these equations and they are written

$$
\mathrm{Q}=\mathrm{S}+\overline{\mathrm{R}} \mathrm{Q}
$$

and $\quad \mathrm{Q}=(\mathrm{S}+\mathrm{Q}) \overline{\mathrm{R}}$
where S is referred to as the turn-on set of Q and R is referred to as the turn-off set of Q.

The most general form of the equa－ tions is：

$$
\mathrm{Q}=\text { V turn-on sets of } \mathrm{Q}+
$$

$Q(\searrow$ turn－off sets of $Q)$
and $\mathrm{Q}=($（シ turn－on sets of $\mathrm{Q}+\mathrm{Q})$
（ごturn－off sets of Q）
The first of these two equations is used when the design is to be implemented with NAND gates and the second equation when NORs are to be used．
The implementation of the NAND sequential equation，$Q=S+\bar{R} Q$ ，is shown in Fig．8．In this circuit S and R， the turn－on and turn－off signals respec－ tively，are the primary signals，whilst Q is the secondary signals which is turned
either on or off by the primary signals． When designing an event－driven logic circuit the turn－on and turn－off sets are derived directly from the state diagram； for example，by reference to Fig． 9.

Turn－on set of $A=B \bar{X}$
Turn－off set of $A=\bar{B} \bar{X}$
Turn－on set of $B=\bar{A} X$
Turn－off set of $B=A X$
Substituting these values in the NAND equations

$$
\begin{aligned}
& A=B \bar{X}+A(B+X) \\
& B=\bar{A} X+B(\bar{A}+\bar{X})
\end{aligned}
$$

and the implementation of these equa－ tions is shown in Fig． 10.

Causes of misoperation

Circuit misoperation is said to occur when a circuit assumes an internal state other than the one intended．For example，if on leaving state S_{1} in Fig．11， with $\mathrm{X}=1$ and $\mathrm{Y}=1$ it assumes a state other than S_{2} ，circuit misoperation occurs．Excluding component failure， the causes of circuit misoperation in event－driven circuits are races between primary signals，secondary signals or both．The above three causes will be examined in turn and solutions sug－ gested in the next article．

CIRCULAR INSERT

 GENERATORI read the article by D．E．Burgess in your January issue，entitled＂Circular insert generator for television＂with interest but feel that the use of two multiplier／divider circuits is rather extravagant．
The circuit of Fig．I outlines a cheaper and simpler solution，eliminating the multipliers and using a single rather than a dual comparator．The circuit generates the functions $(x-a)^{2}$ and $(y-b)^{2}$ by integrating the sawtooth waveforms of the original design and d．c．－restoring the resultant parabolae to prevent the shape of the circle varying as its position is adjusted．The
parabolae are added and compared to a constant giving the circular area $(x-a)^{2}+(y-b)^{2} \leqslant c^{2}$ ．

There is a possible disadvantage in that the field rate d．c．－restorer will cause slight lag on the action of the Y shift control．In most applications this would not be serious

I also note that the video input signals are d．c．－coupled．Unless the black levels of both have been fixed（e．g．by clamping）immedia－ tely prior to the unit the black level of the circular insert will be uncontrollable and will depend on the average levels of the two input signals．This problem is commonly found on inexpensive commercial units and is extre－ mely frustrating when producing tv pro－ grammes．

J．Borin，

Student Television of Imperial College，
London，SW7．

described, to be used as a guide for potential users
Could I point out an omission from the circuit diagram, as published? The junction of R_{15}, R_{45} and R_{46} should be connected to earth

Mr Canning's article in the December issue of Wireless World draws attention to one of the more scandalous aspects of modern scientific-engineering but I wonder why he limits his comments to the resuscitation of forgotten ideas? Many have innocently made reputations and money from re-invention right alongside the originals.

Perhaps the best example of this is the super cathode-follower which, worldwide, operates happily in the same equipment as its prototype the stabilized power supply.

But we are all fallible and Mr Canning falls into his own trap of non-recognition when he talks of two-terminal negative-resistance tube oscillators. A basic proposition of oscillator theory is that any frequency-selective device can oscillate when its losses are zero. Electronic oscillators consist of a frequency-selective circuit (which, in practical form, has losses) and an active device which provides an effective negative resistance to cancel those losses. The circuit configuration is irrelevant to an oscillator except that, in the completed device, it determines the desired performance characteristics.
K. H. Green,

Tintagel,
Cornwall.

SHORTWAVE BAND CONGESTION

In his article "Congestion in the shortwave bands" in your November 1976 issue Mr Vastenhoud has forgotten to mention the United Kingdom. The BBC External Services have been using "out of band" broadcasting frequencies such as $15.070 \mathrm{MHz}, 12.095 \mathrm{MHz}$ and 9.410 MHz for a long time.
G. Davydov (ex UlVB),

Moscow,
USSR.
The BBC confirms that, because of overcrowding in the international short-wave bands. External Services has, for many years, used a number of frequencies which are outside the agreed band limits. The frequencies have been used with the agreement of the UK regulatory authority for English and foreign language transmissions - Ed.

THE INVENTORS

As a postscript to your very interesting article, "The inventors" (August, 1976), it might interest you to know that Great Britain lost another invention, which not only now has a yearly turnover of approximately $\$ 1,000 \mathrm{~m}$ (it was already $\$ 500 \mathrm{~m}$ in 1967), but which Britain could have had for nothing. I refer to inertial navigation.,

After conceiving the "U-Plane" - a submarine craft which could outmanoeuvre and outspeed all existing ships or submarines during the mid-thirties, I was searching for a means of automatic position indication which was not only independent of radio, but also jam-proof, and found it in the principle
now known as Inertial Navigation-"IN" for short.

When World War 2 was approaching, I decided to offer the design to the Government. I was at the time in Palestine, and discussed the matter with Mr M. Offner, the engineer in charge of the Palestine Broadcasting Service, who agreed with my thoughts, that this was too revolutionary to offer as such, might fall into the wrong hands, or be not appreciated. I therefore decided, as a trial balloon, to first offer a similar position indication by means of a light point on a moving transparent map (other versions had crossed light lines on a transparent map which changed automatically when the indicated position reached its sides), but instead of "IN" used radio as the input and thus was more conventional, the intention being, to update it to the "IN" version when in England, and when sure its military value would be appreciated.

Thus, in 1939, when employed by the Meteorological Service, I submitted the design to the Director of Civil Aviation, Mr D. W. Gumbley, who decided to pass it on to London. While waiting for a reply, I constructed a simplified "IN" system for eventual demonstration purposes.
A quarter year later, my boss, the Director of C.A., received a letter from Marconi's in London, stating that they were not interested in the invention, as the need to make the light sources moveable for adjustment under a map when changing station and/or map would render the whole apparatus too elaborate and expensive. I was never given a chance to reply and point out that maps could in fact be projected without this need; and, furthermore, had indicated other solutions. I was not even considered worthy of a direct reply, nor of course was I invited to London.

I therefore concluded, that most people will rather die, live in misery, or see their cities destroyed, than make a rational assessment of advanced technology when presented by an individual person and give credit where it is due.
H. Lipschutz,

Rhoose,
Glamorgan.

ADVANCED PREAMPLIFIER DESIGN

The advanced preamplifier design featured in the November 1976 issue showed many useful design techniques for reducing distortion. However, the use of capacitors in the feedback loops for equalization and tone control must introduce some measure of transient distortion and I wonder if Mr Self has made any evaluation of this distortion.
I have recently compared some RIAA stage designs by listening tests and I have observed that taking the treble de-emphasis out of the feedback look and substituting a passive network gives a better sound quality in terms of definition of voices in choral works for example, and better stability and location of stereo images.

It is necessary, in making such comparisons to have high quality equipment and I used power amplifier modules designed by Crimson Electrik (designed for low transient distortion and comparing very favourably with some better-known commercial designs), an Empire 2000 E III cartridge and Monitor Audio MA3 loudspeakers.

I have since designed and built the preamp shown here. I have not been able to test whether taking the bass equalization out of the feedback loop makes any further improvement, though I would expect it to be less of an improvement than initially taking the treble equalization out of the feedback. This design does have the drawback that the overload margin is reduced, but the overall sound quality is certainly better than conventional RIAA stages.

I feel that this is an area of design which merits further attention and it is my impression that hardly anyone who designs amplifiers is aware of it.
Graham Nalty,
Borrowash,
Derby.

Mr Self replies:

I cannot see why Mr Nalty feels that the use of capacitors in equalization and tone-control feedback loops should generate transient distortion. While it is now largely accepted that an amplifier with a poor open-loop bandwidth and a low slew rate will generate transient intermodulation distortion when presented with high-frequency signals of large amplitude, despite the fact that a high negative-feedback factor has apparently greatly improved its performance, this shortcoming is due to the open-loop characteristics of the amplifier itself, and not the feedback network.

I am puzzled as to why Mr Nalty feels that executing the RIAA treble roll-off outside the negative-feedback loop gives superior subjective sound quality, since if the timeconstant is correctly chosen the amplitude/frequency and phase/frequency responses will be identical in both cases. Furthermore, as he admits, the overload margin at high frequencies is greatly reduced (for example by about 12 dB at 10 kHz) and since the highest recorded velocities tend to occur at these frequencies, overloading of the stage becomes very much more likely, with an inevitable deterioration of quality. Another drawback is that the first amplifying stage now handles a signal with a much greater high frequency content. Hence the harmonic distortion is likely to be higher, and unless the maximum slew rate is very high, any transient distortion will be a great deal worse.

I can see no benefit in using a passive bass-boost configuration; one inevitable result will be a severe reduction in the overload margin available at mid-frequencies.

LOGIC DESIGN

The method of Boolean reduction presented by Holdsworth and Zissos is needlessly complex at one point (Wireless World, Jan. 1977). This complexity originates in an insufficiently general "race hazard" rule. I should like to offer a simpler method.
A tautology is any function that receives the value true (1) whatever values are assigned to its component variables. $A+\bar{A}+B$ is a tautology, as is $A B+\bar{A} B+A \bar{B}$ $+\bar{A} \bar{B}$, since whatever we assign to A and B at least one term in the "sum" (disjunction) is true, and so the whole sum is.

Two rules are used which I term introduction and elimination. The elimination rule is just redundancy: "If a term in a sum is part of another term, eliminate the
larger." Introduction is based on the following theorem: Let the sum $A_{1}+\ldots+A_{n}$ be a tautology. Then the sum $A_{1} B_{1}+\ldots+A_{n} B_{n}$ is equivalent to the sum $A_{1} B_{1}+\ldots+A_{n} B_{n}+$ $B_{1} \ldots B_{r}$
Proof. If the first sum is true then some term $A_{2} \mathbf{B}_{1}$ is true, and this term occurring in the second sum, that is true too. If the second sum is true then if (i) some term $A_{1} B_{1}$ is true this occurs in the first sum which is therefore true. If (ii) the term $B_{1} \ldots B_{n}$ is true then each B_{1} must be true. Since $A_{1}+\ldots+A_{n}$ is a tautology some A_{1} must be true. Hence $A_{1} B_{1}$ is true and so the first sum is true. The two sums thus always have the same value and are equivalent.

The two rules may be applied mechanically as follows: (1) Locate a largest tautology. (2) Introduce the resulting term ("optional product"). (3) Eliminate original terms using the introduced term. To illustrate with the example given: Reduce: (1) $A+\bar{A} B+B C$ $+\bar{A} \bar{B} D$. The largest tautology is $A+\bar{A}+B C-$ $+\bar{A} \bar{B} D$. So introduction gives (1) = (2). (2) $A+\bar{A} B+B C+\bar{A} \bar{B} D+B$ and then elimination of terms containing B gives (2) $=(3)$. (3) $A+\bar{A} \bar{B} D+B$. A largest tautology is $A+\bar{A}+B$. So introduction gives (3) = (4). (4) $A+\bar{A} \bar{B} D+B+\bar{B} D$ and then elimination of terms containing $\bar{B} D$ gives (4) $=(5)$. (5) $A+B+\bar{B} D$. The largest tautology here is $A+B+\bar{B}$ so introduction gives (5) $=(6)$. (6) $A+B+\bar{B} D+D$ and then elimination of terms containing D gives (6) $=(7)$. (7) $A+B+D$

There is thus no need for the concepts of "parent-product" and "non-parent product," nor indeed for any theorems. Rules are emphasised, since transformations are the only concern and we achieve this emphasis by relying exclusively on truth tables (the theorem is of course a statement about these).
Peter Mott,
Department of Philosophy,
University of Lancaster.

WAS BAIRD FOOLING THE PUBLIC

F. H. Haynes comments at length on J. L. Baird on page 52 of the December, 1976 issue. Mr Haynes states that Baird's April 1925 television equipment, used 'at Selfridge's store in London, was not synchronized and did not have a light sensitive cell. How could Mr Haynes possibly know of these details if the equipment was completely "boxed in"? Baird is also accused of not giving out details on his recently-patented apparatus; he obviously couldn't divulge this information for the simple and obvious reason that he would not have been granted patents for previously having disclosed the same information. Of course, Mr Haynes is quite wrong in both of his statements. Baird's equipment was seen "unboxed" at Selfridges and some details were reported'. In reference l the photograph is of Baird's equipment at 22 Frith Street, not Selfridges. Various other people reported on Baird's equipment at this period ${ }^{2}, 3$ and !. References 1 to 4 all state quite clearly that the equipment was synchronized and used light-sensitive cells, Mr Haynes will see a photograph of Baird's synchronized, eight-line receiver at 22 Frith Street, March 1925, in a recent article of my own in New Scientist : Reference 4 gives details of Baird's phasing arrangements, his provisional patent for which dates to 1924 , which indicates that he was capable of phase control of the image in April 1925. Reterences
from late 1926 onwards indicate that the British government had requested that Baird disclose no details of his photocell, since he had just given demonstrations of long range infra-red and reflected radio-wave location of objects to the armed services of several countries. Any person wishing more information from Baird could have read his patents or made suitable business arrangements to purchase the same, i.e. normal business procedure. Since all the television pioneers were very secretive, it is unfair to single out Baird.

Mr Haynes' comment on Dr Burn's letter of October, 1976, that to cite experienced senior officials (who all praised Baird's efforts) is not appropriate, is a nonsense. If Baird was "fooling the public", how can Mr Haynes explain Baird's long friendships with Sir J. A. Fleming (diode valve inventor and scientific adviser to Marconi's), Sir Oliver Lodge (radio pioneer before Marconi, scientific adviser to Marconi's), Sir Edward Appleton (Nobel Prize winner, pioneer of modern radar), George Bernard Shaw, A. Russell (President of I.E.E.), Professor W. Bragg (President, Royal Institution) and many others who had reputations to preserve. As Mr Haynes says, so much was published (true) yet so little is known of essentials (not true), that one must find and read the published information before passing any comments.

Regarding Vector's comments on Baird, in the December 1976 issue, the following points should be noted. Baird was engaged in television and sound film research from 1912. His commercial exploits were to raise money for his experiments. Regarding diamond manufacture, Baird in fact was copying Sir Charles Parsons' many experiments in which he was occasionally helped by A. A. Campbell Swinton. In trying to make diamonds in Glasgow, Baird displayed a higher level of intelligence than Swinton who was actively destroying diamonds ? Concerning Baird's Trinidad jam factory, this was no abysmal failure as was suggested. After trial and error, Baird produced mosquito-free jam, returning to London in September 1920 to establish trade outlets for the factory. From private letters of Baird it transpires that his factory manager absconded to America with all of Baird's money, leaving him destitute and broken hearted in London, hence the exploits with Barrd's "Speedy Cleaner" to raise more money. Baird was also no "unqualified crank'; his Associateship of the Royal Technical College in Glasgow (the world's first technical college and technical university) was an excellent technical qualification for its day and with Baird's final track record of achievement he was most certainly no "crank". He was "unqualified" in television engineering I agree, but perhaps Vector could inform me of anyone who was so qualified in 1924/25?
In surveying the comments on Baird to date in Wireless World, excluding Dr Burn's letter which I thoroughly enjoyed for its objectiveness and immaculate referencing of the facts. it could yet prove to be the case that it is not Baird who "is on trial" but anyone who comments on J. L. Baird and has not first checked their facts.
P. Waddell,

East Kilbride,
Glasgow.
This correspondence is now closed.-Editor.

1. Bird, P. R. "Wireless Television, a Review of the Baird System", Popular Wireless and Wireless Review, May 23, 1925 P662-623. 2. Russell, A. Nature, 115 No 2892, April 4, 1925, P305.
2. Baird, J. L. "Wireless Television", Engineering, CXIX, 1 May 29, 1925, P661/2.
3. Dinsdale, A. "The Problem of Synchronisation in Television". Radio News (USA), January 1928, P750-1
4. Waddell, P. "Seeing by Wireless". New Scientist, 72, 1026. November 11, 1976, P342-4
5. Kaempfert, W. "How Baird sees Through Space by Radio". New York Times, Sunday, March 6, 1927, PXX-5.
6. Parsons, C. A. and Campbell-Swinton, A. A. "The Conversion of Diamond into Coke in High Vacuum by Kathode Rays". Proc. Royal Soc. A, 80. 1908, Pl84.

ADVANCED RADIO MONITORING

In the article Advanced Radio Monitoring in your November 1976 issue reference was made to computer-controlled receivers From inquiries we have received it appears that confusion has arisen in the minds of some of your readers concerning the manufacture of these receivers.

To clarify the situation, I would like to emphasise that these are RA1780 series receivers, manufactured by Racal Commun ications Limited of Bracknell.
E. A. Carey,

The Racal Electronics Group,
Wokingham,
Berks.
CITIZENS' BAND IN THE UK?

We read with interest your editorial and the article by Mr Dwyer on the question of a Citizens' band in the UK in the future
We feel it might be of interest to you to know that the EEA have recently set up a working party on Citizens' band with the object of making an industry recommendation on the introduction of such a service. This will involve a careful study of the present use in other countries of equipment operating in the 27 MHz band and the advantages to be gained by employing a higher frequency part of the spectrum.

The industry is anxious to see that any introduction of such a service should be undertaken with due regard to the needs of the citizen, the effect upon other users of the spectrum, and the implementation of a "sensible" degree of control by the Home Office.
M. S. Ollivant,

Director,
Electronic Engineering Association.

WAVEFORMS IN QUADRATURE

The issue of Wireless World for December 1976, p.43, Fig. 2 contains a circuit to produce wave forms in quadrature. This circuit suffers from lead/lag ambiguity. This can be prevented if the D input to one of the flip-flops is connected not to its own \bar{Q} output but to the $\overline{\mathrm{Q}}$ output of the other flip-flop. C. Rashbass,

Institute of Psychiatry,
Denmark Hill,
London.

Can oscillators be '"common'’?

Does it make sense to classify them in the same way as amplifier circuits?

by "Cathode Ray"

I want to make clear from the start that the above title has no reference to social status. If it hadn't been abbreviated it would have been too long for a title - in the electronic though perhaps not in the theatrical world. In full it would have had to be something like this: You know how one of the first things you learn about transistor circuits (and used - to learn about valve circuits) is that they come in three kinds, commonemitter, common-base and commoncollector (common cathode, commongrid and common-anode)? Well, does it make sense to classify oscillator circuits in this way?

So much for the title. Before going on to the subject itself, may I first be allowed to dispose of those who talk about "grounded-base", etc, Genuine Americans are entitled to use the word "grounded" because what we call "earth" they have always called "ground." So fair enough. But to accept "earth" like a true Briton and yet to say "grounded" instead of "earthed" is just silly. Much more important than this nationalistic consideration, however, is the fact that both "grounded" and "earthed" and any other words there may be that mean the same thing are wrong in this particular context, because earthing has nothing necessarily to do with it.

The context referred to is amplification. Every amplifier has (in principle), a pair of input terminals and a pair of output terminals. That makes four terminals altogether. So if the amplifier is drawn as a box, we get Fig. 1. Let us suppose that this amplifier has only one stage, or that it is a single stage of a larger amplifier. Then the essential thing that the box contains is a transistor (or a valve), which has three terminals, so is known as a triode. Therefore one of the three terminals must be connected to both input and output. In a word, it is common to both input and output. Obviously it mustn't be common to both input or to both output terminals, because that would short-circuit them. Another point: the triode's common terminal is still effec-

Fig. 1. Any amplifier has a pair of input terminals and a pair of output terminals, even if they consist only of positions on the wiring.
tively common even when there is a constant potential between it and the input or output or both. For example, Fig. 2 (a) shows a perfectly typical amplifier stage. If you take away all the components that are required simply to maintain the electrodes at the correct steady potentials for proper working, you are left with (b). This is a signalsonly circuit diagram, which helps us to see that the lower input and output terminals are connected to one another and to the emitter, so it is a commonemitter circuit. Even in the form of Fig 2 (a) it is not very hard to identify as a common-emitter circuit, especially if the component values are given, because the capacitance of C would be

Fig. 2 (a) is a typical complete circuit diagram of a one-stage amplifier, and (b) shows the same circuit after all components concemed only with d.c. have been removed.
large enough to tell us that it is practically a short-circuit to signals.
This amplifier stage might well be part of some small portable equipment in which case there would be no earth connection and the term "earthed (or "grounded") would be altogether inappropriate. 'It is true that if the circuit was earthed anywhere it would most likely be at the common input/output point. But it would make no difference in principle if somebody decided, just to be different or for some better reason, to earth the collector. It would still be a common-emitter circuit. One would be perfectly correct, but exceedingly misleading, to describe it as an earthedcollector circuit.
Common, then; not earthed or grounded.
What about oscillators? Perhaps the clearest way of explaining them to people who already know what amplifiers are is to tell them to tap off a fraction of an amplifier output, equal to the input, and arrange the circuit so that this reduced output is exactly in phase with the input. It is then a perfect copy of the input and can be substituted for it, giving a circuit that generates its own signal continuously; in a word, an oscillator. This conversion is shown in Fig. 3. Usually the magnitude and phase of the output fed back will be correct at only one frequency; that, then, will be the frequency of oscillation.
The only snag I can think of about this neat introduction to oscillators is that on the basis of what has gone

before it is almost bound to lead one to suppose that if (for example) the amplifier is of the common-emitter variety the resulting oscillator will also be common-emitter. But this is a fallacy.

Why? Fig. 3 presumably has one input and one output terminal common, and if they are connected to the emitter then surely it is a common-emitter oscillator circuit?

The three different configurations work as amplifiers in different ways: the common-emitter gives both voltage and current gain, with phase inversion; the common-base gives voltage gain and current loss, without phase inversion; and the common-collector gives voltage loss and current gain, also without phase inversion. Surely one can tell which is which in an oscillator as well as an amplifier?

Plausible, but it won't stand examination. We have been making too many assumptions about the parts of the circuit needed to make the output equal to the input in magnitude and phase. We shall have to draw the whole circuit, including what is inside the box in Fig. 3. But, as we saw in Fig. 2, there is no need to include the d.c. feeds which just confuse us when we are concerned only with signals. Fig, 4 shows the bestknown of all oscillator circuits, the Hartley. Which is the common electrode?

After a pause for deep thought, the verdict must be that of the Dodo at the end of the caucus race: all have won, so all must have prizes.

Having so far had in mind chiefly the popular common-emitter configuration, we may perhaps try to get Fig. 4 into the Fig. 3 form in such a way as to show that it is a common-emitter circuit. Very well, then; Fig. 5 is exactly the same

(b)

Fig. 3 (a) is the same as Fig. I plus a device for making the final output signal equal in magnitude and phase to the input. So this output can be substituted for the input signal generator, as at (b) to make an oscillator
circuit as Fig. 4, and it is clearly a common-emitter circuit.

But before the common-emitter supporters cheer themselves hoarse let them take a look at Fig. 6. This too is exactly the same circuit as Fig. 4 (and Fig. 5) and it is clearly a common-collector circuit. Similarly the same circuit can be drawn as in Fig. 7, proving that it

Fig. 4. The familiar Hartley oscillator circuit in the signals-only form.

Fig. 5. The same circuit as Fig. 4, redrawn in the form of Fig. 3 (b) to look like a common-emitter circuit.

Fig. 6. Looks like a common-collector circuit, but is actually identical with Figs. 4 and 5.

tig. 7 Again the same as Figs. 4. 5 and 6 . though looking like a common-base circuit.
is a common-base circuit. But in case common-base enthusiasts try to get one up on the others by pointing out that Fig. 7 is the only one that really looks like Fig. 3, we must tell them that Fig. 3 could have been drawn to favour either of the other two.

So, going back to Fig. 4, we can say that any of the three electrodes has just as much and just as little right to be called the common one as either of the others. In other words, the question as to which of the three this oscillator circuit is should not be asked, for it has no useful meaning. And that this is true of the Hartley circuit can be shown to be true of any other oscillator circuit. Showing this is more difficult for the RC oscillator, but it can be done.

Before we leave the subject let us look again at Fig. 4, and regarding each electrode in turn as the common one see how the circuit fulfils the conditions required by that configuration. First the emitter. The common-emitter amplifier circuit is the only one of the three that inverts the phase, so as an oscillator circuit it must include means for inverting it again. Fig. 4 (and Fig. 5) show how the tuning coil serves as an auto-transformer to do just that. If the transistor gives a considerable voltage gain, as it can well do in the commonemitter configuration, the correct tapping point is quite near the base end of the coil. But even if it were used at such a high frequency that there was no voltage gain at all, the output being no more than equal to the input, it could still be made to work as an oscillator by tapping at the centre of the coil.

Next the common-collector. This gives a voltage loss and no phase inversion, and Fig. 4 (and Fig. 6) show that the coil now appears as a voltage step-up autotransformer with no phase inversion. Lastly, if Fig. 4 (and Fig. 7) are regarded as common-base circuits, we see that the coil is again a noninverting autotransformer, but this time with a step-down in proportion to the' voltage gain, thus compensating for the current loss in a common-base amplifier.

Was S. W. Amos therefore wrong in stating* that one of the two essential requirements of an oscillator was signal inversion? Not if one looks at the maintaining amplifier part of the complete oscillator circuit as a commonemitter type as he did and was entitled to do. But he or we are entitled alternatively to look at the same complete oscillator circuit from a different point of view, embodying a common-base or common-collector amplifier, in which cases inversion is not a requirement.

So it is all a matter of point of view. And different points of view make no difference to the actual oscillator circuit or its working.
""Antiphase or 180° phase shift?", WW, .June 1976, p. 47.

Identifying European television - 2

A further selection of test cards and identification captions

by G. Smith and K. Hamer

The reception of European television signals is generally dependent upon the prevailing weather conditions. One of the best methods is reception by sporadic E between mid-May and late August when the earth's E layer is ionized by the sun. This ionized layer refracts television signals back to earth and the duration of reception can range from a few minutes to several hours.
If a British television receiver is used, simple modifications are necessary. The vision detector diode should be reversed because the British system "A" has positive vision modulation and the receiver must be adapted for negativegoing signals. A reduction in cathode bias on the video amplifier is necessary as a result of this. The line oscillator may run up from 405 to 625 lines without further modification, but it may be necessary to reduce the value of the series resistor to the line hold control. If any modifications are undertaken it must be remembered that the chassis is live. These modifications are not necessary if the signals are received on u.h.f.

Sporadic "E" signals can also be fed through a v.h.f./u.h.f. converter which enables an unmodified u.h.f. receiver to be used.

There is another method of signal propagation which affects u.h.f. and band III transmissions from Europe. This is known as Tropospheric Propagation. The troposphere extends from the Earth's surface to about 20,000 feet. If an anticyclonic system develops, also called a high-pressure system, and remains centred over Scandinavia for a few days, it is likely that enhanced u.h.f. reception will occur provided that a cold front stretching from Norway to England is present. The cold front will cause a temperature inversion to take place which will tend to duct the signals. Unlike Sporadic "E", Tropospheric Propagation does not occur annually but can be a source of reception at any time. Normally, distances involved during tropospheric conditions are shorter than for Sp.E, usually up to 1000 miles. During good conditions, transmissions can be received in colour

except for France, Monaco and certain eastern European services which use SECAM

A typical weather chart for enhanced tropospheric reception is shown with the pressure indicated in millibars. The extent of the high-pressure system is shown by the isobars which indicate equal points of pressure Line AA shows the cold front.

Algeria RTA (B) - The EBU bar is used by many members 'of the European Broadcasting Union.

West Germany DBP (G) PAL colour - An electronically generated test card.

West Germany A.R.D. (B, G) PAL colour - Bayerischer Rundfunk operate three high-powered Band I transmitters.

Bulgaria B.T. (D) - Test card "G" as radiated from B.T's low-powered transmitters. This is an off-air photograph.

East Germany DDR-F (B, G) SECAM colour - There are several different identifications used with this electronic test card.

Eire RTE (A, I) PAL colour - Radio Telefis Eireann now use the Philips PM5544 electronic test card.

Libya PRB (B) - This type of test card is usually referred to as being an "ORTF-type" after the name of the old French service which first introduced it.

West Germany DBP (G) PAL colour - The DBP transmit identification captions, or "Senderdias", at regular intervals during test transmissions.

Eire RTE (A, I) PAL colour - Identification caption as used by Radio Telefis Eireann.

East Germany (B, G) - Radio programmes are relayed with this electronic test card

East Germany DDR-E (B, G) SECAM colour - The clock caption as used by Deutscher Fernsehfunk.

Jordan JTC (B) - The Jordan Television Corporation operates a 100 kW transmitter in Band I which has been received in the U.K

Luxembourg RTL (L) PAL (Band III) \& SECAM (u.h.f.) colour - Radio-Tele-Luxembourg also uses the FUBK electronic test card with the identification "ECOUTEZ RTL."

East Germany DDR-F (B, G) SECAM colour-The Second Network on u.h.f. is occasionally received in the United Kingdom.

Weather-satellite picture facsimile machine - 4

Setting up procedures and operation

by G. R. Kennedy

Setting up procedures for the weathersatellite picture facsimile machine are as follows:

The v.c.o. and the input level to the clock-rate detector are set to obtain a steady clock rate from the satellite signal with full picture modulation.

Motor drive (Fig. 12). C_{27} is set as previously explained. S_{4} is left open and a d.c. ammeter, on the 400 mA , or 1 A range, is placed across it. $R V_{11}$ is increased so that 200 V r.m.s. is obtained across the motor. The drive at C_{24} is then removed and $R V_{11}$ is backed off until the standing current on the meter is not more than 50% of that with drive applied.
Sample pulse generator (Fig. 8). A satellite signal is fed into the machine and a few cycles of the demodulated signal monitored on one beam of an oscilloscope. This is triggered from the clock rate signal. The sample pulse is then applied to the second beam of the oscilloscope and RV_{9} is adjusted to give a pulse width of approximately 2% of the demodulated subcarrier period. RV_{8} is adjusted so that each sample pulse coincides with each positive peak of the signal. Note that if the phase-lockloop v.c.o. is adjusted the phase of the clock signal will alter and RV_{8} will have to be reset.
Signal detector and light source driver (Fig. 7). First set RV_{7} to maximum. Set RV_{5} (the brightness preset) to minimum, i.e. the wiper to the R_{23} end. This is the normal running setting of RV_{5} and it will only need altering for special purpose pictures. $R V_{6}$ is adjusted to give a peak-white to peak-black excursion of 36 to 40 V at Tr_{8} base $/ \mathrm{Tr}_{7}$ collector. Reduce RV_{7} while monitoring Tr_{9} emitter waveform across R_{37} with the input subcarrier signal on the second beam, until distortion and drop-out of long white sections occurs. Then increase RV_{7} slightiy to remedy this.
Strobe generator (Fig. 14). An accurate oscilloscope or a digital time/frequency meter are the best instruments to use, if available, to set up the strobe generator. Trigger the start of the oscilloscope timebase or the digital counter from the negative leading edge of the 0.8 Hz input puise into C_{34}. Set $\mathrm{S}_{3 b}$ to $1 / 5$ th line division. Adjust $R V_{15}$ to give the trailing
(positive going) edge of the pulse at IC_{22} pin 1 (\bar{Q} output) 250 ms after the start Switch to $1 / 4$ line and adjust RV_{14} for a pulse length of 312.5 ms . Switch to $1 / 3$ rd line and adjust $R V_{13}$ for a pulse length of 416.6 ms . These pulses set the writing period for SR pictures; they are exactly as long as one drum revolution. If set too short, the picture will be too narrow, and if too long. overlap and double imaging will occur. If accurate equipment is not available, the strobe pulses may be viewed together on an oscilloscope and the appropriate pot ($\mathrm{RV}_{13}-\mathrm{RV}_{15}$) adjusted for coincidence.
Drum position sensor. Mark the drum with white painted lines or similar to indicate precisely the position of the sticky tape which holds the paper around the drum, so that the strip can be freshly applied when required to exactly the same place. It is assumed
that the picture wrap-around - and hence the edge - will be halfway across the strip. Temporarily, stick a small piece of "rubber magnet" to the edge of the drum near the position sensor (tape head) with a small piece of the sticky tape. Rotate the drum in the normal direction and print a rough picture sufficient to show the picture borders. Mark the correct magnet position and cement it firmly in place. The process can be speeded a little by monitoring the picture and the drum pulse on an oscilloscope, but before cementing the magnet a picture should be printed so that the borders are in exactly the right position. Adjust RV ${ }_{12}$ (Fig. 13) to give sufficient pulse height for Z-modulating the bean of an oscilloscope. If double pulses are produced, the sensor is too near the drum magnet and must be moved slightly further away.

ATS-3 satellite picture, 2nd March 1975 at $09.00 z$. Computer processed infra-red data from NOAA-4 satellite, showing South America and the U.S.A. The dark marks in the edge band indicate that the recewed signal was marginal and that picture data was being lost as the satellite rotated. Note the cloud wpical of the hot jungle around the Amazon Basin.

Picture slip oscillator (Fig. 11). Monitor the picture line signal at the input or at the crater-tube monitor socket and trigger the oscilloscope from the drum rotation pulse. Switch the picture slip switch on and adjust RV_{10} to give a slip rate which is comfortable for setting the edge position, but not too slow. A good starting rate is a slip of one line in five seconds.

Picture contrast adjustment (Fig. 7). Initially RV_{6} should be set for 5 mA crater tube current on the meter with a peak white signal, and the contrast potentiometer preceeding the expander should be adjusted to give 35 mA or so (dark grey). When the satellite signal is to be printed these controls should be balanced against each other to give an undistorted demodulated signal at the crater-tube monitor socket, with peak black and white just beginning to clip. For special emphasis of, say, cloud or land the balance between expander input and total crater-tube excursion can be varied. These settings can be critical, and multi-turn pots with turns-counting dials should be used and the settings noted. Once a standardized level of reception and/or recording is carried out, printing of the pictures should not require much adjustment of the contrast and gain controls, and familiarity will lead to consistent results.

Routine operation

The machine does not run hot and should not need a warm-up period. For normal pictures the expander will be set at a minimum (direct) for APT and WEFAX and at a maximum for $S R$ pictures. Set up the machine in a dark room with a red safe light and developing dishes etc, to hand. Remember to keep the machine, which runs at mains voltages, away from any liquids. Ensure that the machine is well earthed with its
mains lead in good condition and do not operate with wet hands.

Set the traverse to the start position and place the paper on to the roller by wrapping it tightly around the drum and sticking both ends to the strip of tape. Start the drum and then switch on and monitor the signal using a one beam oscilloscope. To do this the drum pulse is applied to the Z-axis of the oscilloscope to give a bright blip on the trace. The picture slip switch is then operated until the edge of the picture line and blip coincide. Switch on the crater tube and traverse so that a picture is produced. At the end, switch off the crater tube, peel off the paper and develop the picture.

Should it be necessary to produce reversed pictures, such as transparencies, the drum motor connections can be reversed and the drum will rotate in the opposite direction giving pictures transposed left to right.

Scanning radiometer pictures

If $S R$ pictures are to be printed the second beam of the oscilloscope must show the SR strobe pulse and the phase lock loop must be slipped until the correct portion of the SR line (VIS or $I R$) is in the strobe period. Edge setting can be carried out before or after this since the process is independent of the relative phase relationship of clock and picture.

If the whole width of the IR or VIS channel is to be printed, the line division switch should be set to $1 / 3$ rd line. The resultant picture will show 'milk-bottle' distortion due to the rotation of the satellite scanning radiometer, and the scene at the left and right hand edges will be distorted and will appear to run off to infinity. However, the pictures obtained will have close line spacings and will appear to be of reasonable contrast. Also, with the drum dimensions given, a complete NOAA-4 pass

ESSA-8 satellite picture, 3rd May 1975, revolution 29247. This picture was produced when the satellite optics were already mis-aligned and five months before the satellite finally failed. It is a tv-type APT visible-light image and shows Italy in the centre of the picture.
(for example) can be produced on the one print. At the other extreme, if $1 / 5$ th line division is selected, the picture can be arranged so that only the relatively non-distorted part is shown. In this case the line spacing is very wide, being four times wider for example than that for the APT of ESSA-8 at the same expansion, since the lines are strobed (switched on) one in every five of the corresponding ESSA-8 lines. Due to the newsprint effect, no matter how black the inscribed line, the overall effect is of a grey and white as opposed to 'soot and whitewash'. Generally, the $1 / 5$ th line SR pictures are rather insipid viewed close-to, and are only really useful for viewing from a distance, such as in lecturing. SR pictures on v.h.f. are essentially low definition, with a subpoint discrimination not finer than 7.4 km . With a real-time scan of only 48 revolutions per minute, the $1 / 3$ rd line division pictures probably give the best all round results for meteorological work.

Further developments

As the machine stands, operator skill is required to set the picture edge and to select the required $S R$ portion to be printed. Since a clock signal is available and the operations are signal time dependent, it should be possible to make the major part of the picture writing process automatic. The setting of picture contrast could no doubt be done with a type of a.g.c. system, but is probably best left for operator control.

The SR signal strobing and the traverse movement could be co-ordinated and improved by using a stepping motor for traverse drive. In this case, reset could be effected by applying a high frequency reversed phase supply to the motor.

Applications

The machine may be used for the production of routine cloud cover pictures from the satellites mentioned earlier. As the input is a demodulated signal, the original radio frequency is immaterial and the WEFAX transmissions from the S-band SMS/GOES satellites can be printed ${ }^{12}$. The ATS and SMS/GOES TBUS prediction messages, which comprise orbital parameters in words and figures, can be produced as well as Mercator and polar projection world maps.
Lastly, the machine can be used to produce pictures and written data from any source providing it can be amplitude modulated on to a 2.4 kHz carrier and presented to the machine in real time or from a tape recording.

Editor's note. Following articles will describe modifications to the basic design of the weather-satellite facsimile machine so that it may be used specifically for meteorological purposes. The modifications will enable both weather satellite and radio facsimile broadcasts to be printed.

Special-purpose amplifiers

Using norators and nullators to classify the balanced, push-pull and bridge amplifiers described in set 33 of Circards

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams, Paisley College of Technology

1. For an operational amplifier, as $A \rightarrow \infty$ then $v i \rightarrow 0$ for any finite v_{0}. One terminal of the output port is common to the supply.

2. Two one-ports have been proposed: the nullator having siultaneously zero voltage and current; the norator sustaining arbitrary voltage and current. Neither has a real separate existence.

3. Infinite gain operational amplifier can be represented by a nullor the combination of a nullator and a norator.

4. High-gain transistor can also be represented by a nullor; the constraint is a common point between nullator and norator.

It might seem that amplifiers are too familiar to need further investigation. Straightforward amplifier design is well understood; the budding circuit designer happily gurgles 'voltage follower almost in the same breath as he (or in this enlightened age, she) first says 'Dada'. Feedback configurations follow naturally on from the 'four-times tables', soon to be abandoned in favour of programmable calculators anyway.

But one area with unquestioned answers as well as unanswered questions is that of special-purpose amplifiers. An inadequate description, this, to cover a multiplicity of functions. When the inputs and outputs are in voltage form no problem arises; if either or both are currents, if either or both are floating balanced or differential the problems start. If more than one of these conditions are imposed the solutions become even more devious. To steer a way through these problems, we offer a technique we have found helpful in the accompanying diagrams. It has been widely used in active filter design, but is surprisingly useful in relating these often confusing alternatives. As to the practical solutions, Set 33 of Circards contains some standard circuits re-evaluated, recently published ideas, and some suggestions of our own.

Topics in set 33

Differential amplifiers
Differential input/single-ended output amplifiers
Differential input/balanced output
Current amplifiers
Floating amplifier/increasing c.m.r.r.

Bridge amplifiers
Broken/floating bridge
Offset/drift cancellation
Feedforward/feedback compensation
Lowdrift wideband amplifiers

5. Nullator and norator in series sustain arbitrary voltage while drawing no current; the parallel combination has the opposite characteristics. They are equivalent to an open-circuit and a short circuit respectively.

6. Voltage follower is equivalent to a nullor with no additional resistors. An emitter follower is a less accurate approximation in that the input current may be significant.

7(a). Dual of the voltage follower, the current follower, requires a norator with no ground connection.
7(b). Common-base stage approximates to this ideal of unity current-gain with negligible input voltage and very high output impedance.

10. This leads to simple and obvious conclusion - one which may even be correct! For a voltage-current or transconductance circuit of this form source nullor and load are in series around a loop. Only one point can be grounded. If the nullor is so constrained then either the load or the source must be ungrounded.

12. Nullor form of the circuit. While Figs $10 \& 11$ have visual similarity, each redrawing can reveal new modifications even though (or perhaps because) the new form in unfamiliar. Figs 9 and 12 are related in the same way but are more difficult to relate visually.
8. Usual circuit for converting an input voltage into a proprtional output current, again has a floating load.
9. Drawing the circuit in nullor form and shifting the ground point to the other side of the norator leads to an unfamiliar form of the circuit.

$$
v=v_{1}-v_{2}
$$

11. Novel way of injecting a voltage across a resistor so as to define the current in a grounded load. This is indicative of the flexibility of the bridge of resistors in its many forms.

12. When two or more amplifiers are used, the inputs may be in a single-ended, balanced or differential form. Similarly the output may be single-ended voltage or current, push-pull etc. Nullors are just one of a number of techniques for devising new variants and of understanding the inter-relationships of known circuits.

Issue no. 35 will be the last in the present series of Circards, the final two sets covering analogue gate circuits. A wide range of subjects in electronics communication and control have now been covered in Circards by Peter Williams and colleagues Jack Carruthers, John Evans and Joe Kinsler (all of Paisley College of Technology) who have selected hundreds of circuits - sifted out of many thousands - tested them and presented the results, together with circuit modifications, in Circards.

The first 20 sets of the award-winning scheme are now reprinted in book form, though some individual sets are still available, together with background articles and additional circuitry (Circuit Designs $1 \& 2$).
The books are obtainable through booksellers or, in case of difficulty, from IPC Electrical-Electronic Press Ltd, General Sales Dept (Room 11), Dorset House, Stamford Street, London SEl 9LU, for $£ 10.40$ vol. 1 and £12.50 vol. 2 post included, from which individual sets can also be obtained for $£ 2$ post included.

Circard subjects

active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, etc.)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifiers - signal processing

17 c.d.as - signal generation
18 c.d.as - measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators
23 reference circuits
24 voltage regulators
25 RC oscillators-1
26 RC oscillators-2
27 linear c.m.o.s.-1
28 linear c.m.o.s.-2
29 analogue multipliers
30 non-linear functions
31 digital multiplers
32 transistor arrays
33* special-purpose amplifiers
34* analogue gate applications - 1
35* analogue gate applications -2

* available shortly

Our Radio/TV Programme

If you service radio or television receivers, Avo has Signal Generators to meet your requirements. Pride of place goes to the new HF136 which goes one step further than the widely used HF135 (an AM Signal Generator which gives coverage up to 240 MHz and $30 \% \mathrm{am}$ at 1 kHz).
The Avo HF136 combines an AM Generator and FM Generator in one case. Covering $4-120 \mathrm{MHz}$, it has a choice of outputs $\mathrm{cw}, \mathrm{am}, \mathrm{fm}$, or sweep +cw , or sweep + am and also 400 Hz for modulation or as an af signal for servicing audio stages.
One of these units, incorporated into your re-equipment programme, could increase your throughput and optimise the use of your skilled manpower.
If you would like to know more about our AM and AM/FM Signal Generators, get in touch.
We will gladly put you in the picture.

Avo Limited,
Archliffe Road, Dover, Kent. CT17 9EN.
Tel: 0304202620

Mobile radio communication - 3

Range, interference and a comparison of a.m. and f.m. systems

by D. A. S. Drybrough, B.Sc., M.I.E.E., Drybrough Communication Services Ltd

The following factors govern the range of effective communication between two stations in the v.h.f. and u.h.f. mobile services.

Frequency. The frequency affects the propagation loss between aerials, transmission-line losses, receiver noise factor, ambient noise and interference, the effect of movement and of mistuning. An increase in operating frequency increases the losses, the noise factor and the effects of movement and mistuning but decreases noise and interference.

Modulation. The type of modulation has an effect on the signal/noise ratio at the input to the receiver for the required communication quality. Theoretical studies of the relationship between the commonly used modulation types, a.m. and f.m., show the latter to have a good margin of superiority over the former for all but very low signal/noise ratios. Field trials have not entirely confirmed such a clearcut advantage, probably due to the different behaviour of the two types of modulated signals when they fluctuate at low average levels. This discussion is limited to amplitude modulation and frequency modulation, using speech or sinewave modulating signals.

Depth of modulation. For a sinewave signal, it is easy to define a 100% modulation level in an a.m. system or to set an agreed maximum deviation in an f.m. system. Modulation depth for speech, with its high and indeterminate peak/mean ratio, is not so easy to set but, by experiment and experience, it has been found that peaks can be clipped or compressed to within 6 dB of the mean without excessive distortion or loss of naturalness in the voice. A.g.c. circuits can be used to keep the mean level of speech from all operators constant to within a few decibels at the transmitter modulator stage. Excessive distortion in the audio circuits of transmitters and receivers degrades intelligibility and, hence, the communication range.

Effective radiated power. Systems models asstime, in most cases, that

Low-power a.m. mobile unit (GEC-Marconi)
half-wavelength dipoles are used as aerials. It is possible to concentrate more power in a given direction by using a directional aerial or, when omnidirectional propagation is esseritial, by stacking aerials to reduce the vertical beamwidth of the aerial. Such gains over a dipole must be taken into account when calculating the effective radiated power. Although r.f. losses in aerial elements are low, feeder. filter and changeover relays reduce the effective radiated power (e.r.p). Typical values in the mobile services are 25 W for high-power mobile and base stations, 5 W for low-power sets and 0.5 W for portables.

Effective transmitting-aerial height. This parameter is a difficult one to settle in any given location because it depends to a large extent on the path profile between the transmitting and receiving aerials as well as the height above local ground level. CCIR recommend that this height be taken as that above the average height of the ground along the path towards the receiver between 3 and 15 km from the transmitting aerial.

Propagation Ioss. CCIR give curves for field strengths for a radiated power of 1 kW and various aerial heights and paths, and from these the propagation
loss can be calculated. These curves are drawn for 50% of locations and varying time percentages. Corrections are given for path roughness and for different percentages of locations. Height/gain corrections are also discussed by CCIR. These curves are averages and should not be relied on for high accuracies, especially when ground constants differ from the average values they assume.

Effective receiving aerial height. CCIR recommend that this be taken as the actual height above local ground.

Receiving-aerial gain. As with the transmitting aerial, the receiving aerial can be more directional than a dipole. If this directivity is in the vertical plane, it may also result in higher noise pickup. The usual quarter-wavelength whip for 'low' band v.h.f. mobiles has a small loss compared with a half-wavelength dipole, but aerials with gain relative to a dipole may be used for the higher frequencies.

Receiver sensitivity. CCIR recommended a minimum ratio of 15 dB as output signal/noise ratio, measured by means of a volume-unit (v.u.) meter, for a speech signal set to give an average modulation depth (amplitude modulation) of 6 dB below peak at the source transmitter. The signal/noise ratio for 100% modulation is thus 21 dB . For a.m. receivers this is the i.f. signal/noise ratio required at the detector. For
frequency modulation, the required i.f. signal/noise ratio depends on the relative bandwidths of the i.f. and a.f. sections and, for low ratios, on the peak deviation also when, as is necessary, so great an allowance has to be made for frequency inaccuracies due to temperature changes and mistuning that the deviation does not fill the whole channel. For 25 kHz channels the average crystal filter in the i.f. stages has a bandwidth of about $\pm 8 \mathrm{kHz}$ and the peak deviation is $\pm 5 \mathrm{kHz}$, with an audio bandwidth of about 2800 Hz . For 12.5 kHz channels, the figures are ± 3.75 $\mathrm{kHz}, \pm 2.5 \mathrm{kHz}$ and about 2400 Hz , respectively. No correction for unused bandwidth is necessary above an output signal/noise ratio of about 20 dB for these figures (a.m. and f.m.). The input signal/noise ratio is determined by the level of the wanted signal field around the aerial, the aerial gain, the losses between the aerial and the receiver, the noise factor of the receiver and the ambient noise and interference picked up by the aerial within the passband and spurious response bands of the receiver. Good mobile receivers of recent design have noise factors of about 2.5 (4 dB) and losses between aerial and set as low as $1-2 \mathrm{~dB}$, usually rising with frequency.

Ambient noise varies widely and has not been quantified recently for all conditions of service of mobile radio units. -Generally, it reduces with increasing frequency and is almost negligible at u.h.f. There may be several paths between transmitting and receiving aerials and losses and phase angles in each path may change as the mobile changes position and therefore the resultant signal to the receiver input also varies. Such changes are large in urban areas where no direct line-ofsight path exists. The effect of large obstructions is not allowed for in CCIR data but smaller irregularities are covered by alteration of a terrain factor. Losses caused by large obstructions can be estimated using a parameter related to their height in wavelengths above an unobstructed datum. In a.m. sets, the output signal/noise ratio follows closely the fluctuations in input signal level but, in f.m. sets, there is a threshold below which the output signal/noise ratio deteriorates rapidly, more rapidly as the deviation ratio* increases. The average output signal/noise ratio therefore falls below that for a notional average in the absence of fluctuation at these low levels, and degradations of some 8 dB for 25 kHz u.h.f. channels and 4 dB for 12.5 kHz v.h.f. channels may be caused by this effect.

Effect of tuning inaccuracies. A.m. systems are more tolerant to detuning than f.m. systems in which the result is harmonic distortion rather than the amplitude distortion of the a.m. systems. Noise also increases more rapidly with detuning in f.m. systems because

Table 3. Typical ranges in mobile radio systems

Band	Receiver noise figure. did	Mobileagrialgain. dB	Range in kilometras for ambient noise								
			low			medium			high		
			a.m.	1.m.	$\begin{gathered} \text { f.m. with } \\ \text { flutter } \end{gathered}$	2.m.	1.m.	$\begin{array}{\|c} \text { f.m. with } \\ \text { ilutter } \end{array}$	a.m.	I.m.	f.m. with Itutter
Low	5	-	3755		45	33	46	39	20	30.5	25
$\checkmark \mathrm{h} . \mathrm{f}$.	12	-	36	52	43	32	45	38	19.5	30	25
Mid	5	-	38	53	34	31.5	44	26.5	23	34	19.5
$\checkmark \mathrm{h} . \mathrm{f}$	12	-	34	49	29.5	30	42	25.5	22.5	33	19
High	5	-	39	60	34	33	47	27.5	24	35	19.5
vhf	12	-	32	46	27	30	42	24.5	23.5	34.5	19
	5	3	45	68	37	37	54	31.5	27	39	22.5
	12	3	36	53	31	33	48	28	28	38	22
u.h.f.	5	-	26	41.5	29	24	38	28	17.5	29	20
	12	-	19	32	21.5	18	30.5	20.5	16	28	18.5
	5	6.	33	53	38	32	49.5	35	24	38	26.5
	12	6	26	42	29	25	39.5	28.5	22	35	25

Note: Flutter allowances are -4 dB for v.h.f. and -8 dB for u.h.f.
of the resulting asymmetry of the noise sidebands with respect to the centre frequency of the i.f. and discriminator circuits.

Using the CCIR data and assigning typical figures to the various parameters, typical ranges when using the four main frequency bands are given in Table 3. Ranges with and without the flutter allowance discussed above are shown and the most likely conditions for urban systems are shown in bold type. Results are given for a.m. in the u.h.f. band although this type of modulation is not used in that band.

The beneficial effect of aerials with gain at the mobile for the higher bands is evident. The small effect of a substantial degradation in noise figure in mobile low-band receivers can also be seen. If the flutter allowances are not applied, the ranges for f.m. are considerably greater than for a.m. but the flutter allowance brings them more towards equality, in line with field results.

Interference problems

All present-day mobile radio transmitters, using crystals as frequency-determining elements, are constrained by the availability of crystals and the need to avoid large power gains at the output frequency to use multiplying stages to obtain the final frequency from a lower crystal frequency. A wide range of harmonics of that crystal frequency are generated and all but the wanted one have to be filtered out before the signal reaches the aerial. The limit specified in the UK is $2.5 \mu \mathrm{~W}$ (11.2 mV across 50 ohms) which is about 70 dB below the wanted output level in a high power set. Even this level of unwanted harmonics, if fed to a resonant aerial, could cause trouble to, or open the mute of, a receiver at a distance of up to about 3 km .

In other types of transmitter using synthesizer drive, spurious emissions and noise can be derived from the side
chains or frequency-correcting and stabilising circuits. Noise or signals on supply lines may also modulate the wanted output and good filtering is again necessary. Other unwanted signals can be produced in the output stages of transmitters, spaced at multiples of the spacings between the various signals present. Such spurious signals are especially likely in multiple transmitter installations and can severely restrict the choice of operating frequency for new additions.

As mixing is a feature of all receivers used at present in mobile radio services, the existence of spurious responses is unavoidable. Other unwanted outputs can be produced in a receiver which is overloaded or has insufficient selectivity. Receivers can generate interfering signals at harmonics of the crystal frequency and also at the i.f. Spurious responses can be reduced in number by using the highest practicable injection frequency for the first and only mixer using more than one mixer adds to their number. The required spurious response ratio with respect to the wanted signal is about 70dB and this can be attained with relatively inexpensive and efficient r.f. tuned circuits for r.f. to i.f. ratios up to about 25 . There is therefore a case for a higher i.f. than the conventional 10.7 MHz for the u.h.f. band or for the use of double superhets with a much higher first i.f.

Reductions in the overload spurious responses, intermodulation, cross modulation and blocking, are difficult to achieve as they depend on the linearity of the r.f. amplifier and mixer stages unless extremely selective circuits, such as crystal filters, are fitted in the r.f. section. Co-channel signals also cause a great deal of interference and are more likely to cause difficulties in data systems than in those employing speech when they can, to some extent, be ignored. In a.m. receivers, a protection ratio of about 17 dB for interfering a.m. signals and 8 to 17 dB for f.m.
signals may be necessary for good reception while in f.m. receivers the ratios may be about 10 dB and 8 dB respectively.

Noise can be generated in transmitters, where it appears as sidebands accompanying the carrier. Noise generated in the crystal stage or subsequent phase modulator in f.m. sets is usually preponderant because of the high following power gain but other sources may be the power lines or the audio circuits which can pick up hum or converter noise. External devices, such as the ignition system, regulator, horn, windscreen wiper and even brakes originate unwanted noise and can usually be made innocuous by suitable decoupling, screening or earthing. In duplex systems, any poor electrical contact between sizable metal parts will produce noise when the transmitter is in use and extensive bonding of all such parts is advisable. In receivers, noise originates mainly in the input stage and aerial, though some may again be fed into audio circuits from noisy supply lines or be picked up by direct radiation from the noisy devices listed above. External noise, not originating in the set or vehicle, is picked up by the aerial and varies widely with frequency and location. Some American measurements of the effects of noise and flutter, in terms of the increase in signal level necessary to restore a specified communication quality, are given in Table 4. The degradations tend to a minimum at 470 MHz and above showing the reduction of ignition noise with frequency and the residual allowance for flutter.

Avoiding interference

When only a few stations are sparsely scattered over a given area the main precautions to be taken in choosing frequencies and setting up stations are the avoidance of spurious emission or response frequencies and the reduction of noise. In single frequency systems it may not be possible to operate transmitters and receivers from the same site when more than one channel is involved and they may have to be spaced apart by a few kilometres. Frequency selection becomes more and more difficult as the numbers of closely-sited stations increase because the numbers of third fifth and higher odd-order intermodulation frequencies increase rapidly with the numbers of stations in volved.

If one base station transmitter is shared by a number of small users the channel can be more fully used and fewer base stations are then needed in a given area. This has the obvious limitation that one channel is incapable of serving more than about 60 mobile units using normal procedures. In shared systems, each group of mobile units is selectively-called, individually or as a group, and time limitations are set for base station transmissions to ensure fair sharing of air time.

Where the source of an interfering

Table 4. Degradation of mobile signals by noise and flutter

Signal increase necessary to restore communication quality (dB above $0.7 \mu \mathrm{~V}$).

Band	Grade	Mobile stationary in noisy area	Mobile moving in noisy area	Mobile moving in low noise
Low	4	25	18.5	11.5
Mid	4	21	15.5	11
High	4	17.5	13.5	10.6
U.h.f.	4	11	10.5	10
Low	5	18	15	8
Mid	5	13	11.5	7
High	5	10	9	6.5
Uh.f.	5	6.5	5.5	5.5

Notes: Grade 4 is for noticeable interference, Grade 5 is for annoying interference.
signal is known, a direction aerial can be fitted as a base station with a null in that critical direction. Such minima are usually sharper than the maxima and so the sacrifice of coverage in the direction of the unwanted signal can be small. Conversely, the gain aerial can be used to override an unwanted signal at a mobile from a transmitter located outside the normal coverage area hut this method should be used with caution to avoid increasing interference in the neighbouring area.

When sufficient frequency spacing exists between the wanted and the interfering signals, filters can be used to give additional selectivity. Bandpass filters, based on cavity resonators or similar devices offering very high working Q factors, will yield losses of about 30 dB at 2% off centre frequency with an insertion loss of about 1 dB More complex filters, designed accord ing to conventional techniques, can be

Fig. 6. Typical integrated sideband plot for an a.m. transmitter.
built up from such elements for both bandpass and band-stop functions. In all cases, attention is required to the effect of temperature changes to avoid tuning drifts.

Comparison of modulation systems

Amplitude modulation has stood the test of time in the UK as a system of modulation which gives good practical results. The process of modulation and detection are readily visualized by servicemen and can be checked with an oscilloscope when desired, making for simple servicing. The use of peak limiters in transmitters has increased the mean level of speech modulation, giving longer ranges or improved signal/noise ratios. Some tailoring of the responses or microphones and audio amplifiers has cut out unnecessary bass, without entirely removing individuality from the operator's voice.

Frequency modulation is still used exclusively in some services and is coming into increasing use in the land-mobile services, owing partly to its exclusive adoption in the u.h.f. band. The usual modulation characteristic is neither pure frequency modulation nor pure phase modulation, but a hybrid whose proportions vary with the degree of limiting imposed in the transmitter audio circuits. In theory, the present 12.5 kHz channel widths are inadequate for faithful transmission of frequency modulation with the full permitted deviation of $\pm 2.5 \mathrm{kHz}$, but the distortion in properly tuned sets resulting from any loss in sidebands has been found, in practice, to be small. Frequency modulation has a considerably wider spread of significant sidebands than amplitude modulation when modulated by a sinewave but, for speech modulation, set to the same peak, the sideband levels are lower for both types of modulation and distortion adds to both, so that the difference between the two is less marked, as shown in Figs. 6 and 7.

In f.m. receivers, an improvement is obtained in output signal/noise ratio above a certain threshold input signal level when compared with an equivalent a.m. receiver but, in practice, flutter and man-made noise mask this effect in mobile service. In point-to-point links, the superior signal/noise ratio in f.m. systems, operating at the higher and more constant signal levels and in the wider channels generally available, makes frequency modulation the usual choice. Fig. 8 shows a typical low-power f.m. mobile unit,

Noise limiters have been developed effective in reducing the nuisance value of impulsive noise in mobiles. In f.m. sets, the width of the i.f. passband limits the height of impulses passed to the audio amplifier after demodulation, but, as the i.f. bandwidth must include some allowance for drift in frequency, these impluse peaks can exceed the peak of the wanted modulation envelope, whereas, for a.m. sets, the peak limiter can be set to clip down to 50% modulation or less without distortion of speech. F.m. limiting is therefore not as effective as a.m. limiting, and suffers more from mistuning. So far, attempts to design an f.m. limiter on the same basis as the a.m. type have not yet yielded sufficient improvement to merit their inclusion in standard mobiles.
F.m. transmitters make better use of an available r.f. output device than an a.m. transmitter. In the last-mentioned,

Fig. 7. Typical integrated sideband plot for an f.m. transmitter.
allowance must be made for the upward swing of the modulating voltage and the increased power dissipation under modulated conditions, whereas the f.m. output stage works permanently under steady carrier conditions. The difference in the low-power transmitters used

Fig. 8. Block diagram of typical lowpower f.m. mobile transceiver.
in the mobile radio services is not very significant however, being less than 2.5 dB in most cases. Power conversion efficiency is also slightly better for f.m. transmitters in this power range, the need for more multipliers or modulators off-setting the absence of the high-level modulator stage. Care is necessary in the design of the supply circuits to the modulated stages in an a.m. transmitter, to ensure that parasitic oscillations cannot occur at any point in the modulation cycle owing to parametric effects in the collector capacitances.

Single sideband (s.s.b.) operation has been largely ignored in the UK for mobile radio in the v.h.f. and u.h.f. bands, although its use has grown very rapidly in similar bands used by radio amateurs. Reports of trials in the USA in the 1960s were not encouraging and, in particular, revealed poor performance in s.s.b. receivers in the presence of even modest levels of impulsive noise. More recently, it has become apparent that one of the possible advantages of single sideband, that of narrower bandwidth, is not as real as might be supposed, because of the limited rejection of the unwanted sideband achieved in practical transmitters, especially when modulated by speech. Rejections of $40-50 \mathrm{~dB}$ are not adequate to free the adjacent channel for use in the same location, and so the number of available channels would not increase in proportion to the nominal reduction in occupied bandwidth. Nevertheless, channel famine may have grown to such an extent that s.s.b. will have to be reconsidered.

In recent years double-sideband sup-pressed-carrier (d.s.b.s.c.) and doublesideband diminished-carrier (d.s.b.d.c.) systems have been investigated in depth by the University of Swansea on behalf of the UK Home Office in pursuit of a system which would allow area coverage in narrower channels than the present 25 kHz ones, and which would increase the range of the power-conversion efficiency of portable sets. Theoretical and bench studies showed that the original idea of using d.s.b.s.c. was not very practicable, because of difficulties in reinserting the carrier, especially when two signals of comparable strength were being received, and in providing effective a.g.c. It was found that a diminished carrier, set about 16 dB below the equivalent a.m. carrier, would greatly reduce these problems without losing the benefits of beat reduction and transmitter d.c.-to-r.f. efficiency coupled to a degree of secrecy, achieved in the d.s.b.s.c. system.

Double side-band diminished-carrier was preferred to s.s.b., despite its apparent increase in occupied bandwidth, because it did not suffer to the same degree from impulsive noise, being a balanced system, or from a.g.c. problems in receivers, and it can be introduced into an a.m. system with fewer changeover difficulties. Receivers are phase-locked to trans $\boldsymbol{\eta}$ itters, reducing the overall frequency drift to that of the base transmitter, which can be made very stable at little expense. The required channel width can be reduced to about $25 / 3$, or 8.33 kHz . It is expected that d.s.b.d.c. systems will accept data signals readily, but full confirmation of this and other aspects await the results of a large-scale field trial now in progress.
Whereas this system may be suitable for the police and fire service, with their special problems of wide-area coverage
with centralised control, the advantages do not seem to outweigh the disadvantages of initial higher costs and integration difficulties for established commercial systems using amplitude modulation or frequency modulation. In particular, the cautious claim that the channel width could be reduced to 8.3 kHz would not be very attractive in the v.h.f. bands, where channel widths are already 12.5 kHz and the next division in the same tradition as previous splits would be to 6.25 kHz . Such a channel width might be usable by a.m. d.s.b. systems, using phase-locking techniques and the referencing of mobile transmitters to the base station frequency to remove all differential drift, but the chances of a competitive f.m. system seem to be bleak, although the same was once said of the 12.5 kHz system now in general and successful use.
At present, there are no practical alternative systems on offer in which direct speech modulation is replaced by some form of speech coding. It is possible that some such arrangement can be devised which will still further compress the bandwidth required for intelligible speech or which will multiplex many conversations into one channel of present width, allowing present frequency allocations to remain untouched.
The successive reductions in bandwidths over the years have resulted in a worsening in the quality of communication in individual systems, and this has generated a certain amount of dissatisfaction in users taking over new equipment, operating in narrower channels, after having experienced using wider channels. The overall problem, however, is still one of accommodating the large number of users in a limited radio spectrum and so, as in many other fields, quality of communication has to be sacrificed to some degree for quantity.

Testing and test equipment

Normal routine testing in the field is usually carried out using simple, specialized meters to check important voltages and currents, discriminator operation, when relevant r.f. output and similar parameters. In these days of integrated circuits, first-line servicing can be carried out by interchanging plug-in boards and so a full set of test equipment is needed only at the base workshop. Such equipment must, however, be of a high standard if full scale tests are to yield results related to the performance of the set rather than to the test gear itself.

When the number of sets to be serviced is high, automatic test equipment is sometimes used. Special jigs are necessary to connect the equipment to the sets unless, as is becoming a feature in some sets, a special connector is provided externally for this purpose.

Acceptance testing is carried out by the licensing authority on prototype
units, representative of the subsequent production run. These tests are very exhaustive and are carried out over a range of temperature and supply voltage and demand test gear of a very high standard, especially in respect of adjacent channel noise and frequency stability.
*deviation ratio $=$ ratio between half the i.f. bandwidth and the a.f. bandwidth.

Printed-circuit boards

An increasing number of construction designs published in Wireless World require the use of printed-circuit boards. Since we are not entirely a constructors' journal, we have not made official arrangements for the supply of boards for our designs. However, we do realize that this leaves many would-be constructors in difficulties and one member of our staff, Mike Sagin, has felt so strongly about this that, entirely independently he has arranged a supply of certain boards himself. To assist him in this work, which is considerable, we would now ask that all enquiries should be sent to this office marked "PCB", whereupon they will be passed to him immediately.

WW index and binding

The Wireless World index for Volume 82 (1976) has been published separately and is now available, price 50 p including postage, from the General Sales Department, IPC Electrical-Electronic Press Ltd, Room 11. Dorset House, Stamford Street, London SE1 GLU.

Binding. Volumes of Wireless World including the appropriate index can be bound by our publishers. Send the copies to Press Binders Ltd, 4-4a lliffe Yard, Crampton Street, Walworth, London SE17, with your name and address enclosed. Confirm your order and send it with the remittance ($£ 6.05$ including index for each volume) to the General Sales Department, IPC Electrical-Electronic Press Ltd, Room 11. Dorset House, Stamford Street, London SE1 9LU.

In both cases, cheques should be made payable to IPC Business Press Ltd.

World of Amateur Radio

US prepares for 1979 WARC

Although the United States, like all other countries, will have only one vote at the 1979 World Administrative Radio Conference which may (or may not) rewrite the entire ITU Table of Frequency Allocations, there is tittle doubt that the proposals of the US delegation will carry considerable weight. Some idea of the attitudes likely to be taken by US delegates on allocations for amateur radio has been revealed recently, although these may not prove to be the final proposals.

Two entirely new allocations for amateurs are suggested: a low-frequency band of 160 to 190 kHz (the United States has no "long-wave" broadcasting); and a u.h.f. band from 902 to 938 MHz .

No entirely new bands are suggested for h.f. (this will disappoint those seeking support for new bands at 10.1, 18.1 and 24 MHz) but existing bands would be extended downwards to: 1750 kHz (instead of 1800 kHz); 6950 kHz (instead of 7000 kHz); 13.950 kHz (instead of $14,000 \mathrm{kHz}$) ; and $20,700 \mathrm{kHz}$ (instead of 21,000) but the following frequencies would be lost to amateurs: 1920 to 2000 kHz and 21,200 ro 21,450 kHz . The 220 MHz band of Region 2 would be shared with "land mobile" thus opening the way to its use also for Class E Citizens' Band operation.

Miniaturizing h.f. beams

With so many British amateurs now using factory-built transmitters, receivers and transceivers, one of the remaining areas where a good deal of individual experimentation and home projects continue is that of aerials, where the home product still vies in popularity with the commercial triband yagi beams and multiband verticals. At h.f. few amateurs are in a position to put up beam arrays for bands below 14 MHz and even on 14 MHz the full-sized arrays based on elements up to 34 ft long are often too large to fit the average surburban garden or the urban rooftop.

Several years ago Leslie Moxon, G6XN, showed that for h.f. operation most amateurs come firmly up against a
"gain barrier" of about 6 dB (reference dipole), even assuming a three-element yagi or two-element cubical quad, correctly adjusted for optimum performance.

Over many years amateurs have tried to reduce the size, or at least the turning radius of h.f. beams, though most "mini-beam" designs have proved of limited value and not easy to reproduce successfully. Most amateurs thus believe that "mini-beams" are at best a compromise that leaves much to be desired in terms of gain or operational bandwidth or both. Many designs have depended on loading coils which, with a low radiation resistance, are lossy components.

A few years ago a design for an easy-to-construct triband "X" beam using wire elements with a turning radius of 12 ft was evolved by Fred Caton, VK2ABQ (formerly G30NC), and more recently he has shown that this can be miniaturised for an 8 ft turning radius. Forward gain is about 3 dB .
Leslie Moxon, G6XN, believes strongly that miniature beams could become competitive with full-sized units and should be capable of achieving 4 dB gain (plus in many cases additional "height gain" since their size and weight should allow them to be raised higher than full-size units without undue difficulty). He has in fact recently been developing a modified form of the VK2ABQ " X " beam using neutralising capacitors to achieve correct balance of currents and phasing in the two elements, and preliminary results are highly promising.

The development of compact highperformance mini-beams that could be built and erected quite easily would represent an important incentive for h.f. long-distance operation among the considerable number of amateurs who are at present discouraged by feeling that they have little hope of consistent success when competing for $d x$ contacts with stations using full-sized arrays.

Secret listening

Looking through the newsletter of the Derby and District Amateur Radio Society, I see that Tom Douglas, G3BA, recently talked to the society about how, during the 1939-45 war he built and concealed radio receivers while in a Japanese prisoner-of-war camp.

One of the few detailed accounts of such activities by radio amateurs that have been comnitted to paper is that of Herb Dixon, ZL2BO, who as a lieutenant in the RNZNVR was taken prisoner in Hong Kong. He played a leading role in the construction and operation of three h.f. receivers which successfully picked up news broadcasts from Britain until September 1943.
In one camp a derelict Austin 7 provided wire, nuts and bolts, and the rim of the horn formed part of a vernier tuning dial; headphones were constructed; flux obtained from pine-gum;
solder scrounged from tag boards of defunct power equipment; fellow prisoners contributed more than 300 precious torch batteries. Valves were located in and smuggled out of a prison operating theatre (an unwitting PoW who complained of a pain lost a perfectly sound appendix but brought out three valves in his bandages)

In one camp the receiver was hidden in a watertight container in a lavatory cistern; at North Point a hole was dug under a hut under cover provided by the Canadian Brass Band.

Unfortunately on September 21, 1943, after a four-hour search a receiver was discovered and Herb Dixon was one of nine officers interrogated and sentenced to long terms of imprisonment (of which he served two) under extremely harsh conditions. The set was regarded by the Japanese as a "museum piece" though it is not known if any of these receivers survived the war (as did some of those made in German camps).

Here and there

The latest Home Office statistics on interference complaints (1975) show a further decrease of 8.5% compared with 1974, with those relating to television down by 13%. Amateur transmitters accounted for 785 of the 40,000 or so complaints, the lowest figure for many years: 1969, 1442; 1970, 1161; 1971, 1027; 1972, 1242; 1973, 1169; 1974, 886. Most amateurs however accept that the official statistics represent only part of the tvi problem as many cases of interference are dealt with by the amateurs without involving Post Office investigation.

Many amateurs will greatly regret the death of Bob Palmer, G5PP, for long an ardent member - and former president - of the Midland Amateur Radio Society. He was a well-known Coventry amateur with great interest in 1.8 MHz operation, in construction, and in the organization of mobile rallies.

BARTG reports that plans are being formulated for an r.t.t.y.-only repeater in the UK, although nuch work remains to be done; it is also hoped to add r.t.t.y. identification signals to the new 23 cm beacon at Andover, Hampshire ($1296.87 \mathrm{MHz}, 5$ watts e.r.p.) which is now operational.

Leslie Fraser, GM3GNX (37 Witchiil Road, Fraserburgh, Aberdeen), is seeking support for a Braille magazine for visually handicapped amateurs. The callsign G5LK for long held by a well-known blind amateur, the late Leslie Knight, has been re-issued to the Reigate Amateur Transmitting Society to perpetuate his memory.

At November 30, 1976 some 22,450 people held Home Office amateur licences. A revival of interest in 144 MHz amplitude modulation has been reported: for several years this mode has been fast losing support in favour of $n . b$.f.m. and s.s.b.

PATHAWKER, G3VA

new Products

Monitoring system

A surveillance and monitoring system, from Eddystone Radio Ltd, consists of the 1990R v.h.f./u.h.f. communications receiver and the EP961 Mk IIB panoramic receiver mounted in one compact cabinet. The system allows both visual and aural examination of signals in the range 25 to 500 MHz . The 1990R receiver is capable of identifying and locking on to a signal with an accuracy of 100 Hz . A range of omnidirectional discone aerials, suitable for use with the system, is also available. Eddystone Radio Limited, Alvechurch Road, Birmingham B31 3PP.
WW 401 for further details

$\overline{\mathbf{W}} \overline{\mathbf{W}} \mathbf{4 0 2}$

Filters to users' specifications

A range of filters, available to users' specifications from lexor Electronics Ltd, extends from sub-audio frequencies to over 20 MHz . the range includes passive inductor capacitor networks, active filters and high discrimination quartz filters, hasing high pass, low pass, bandpass or bandstop characteristics. These include high and low pass filters with Butterworth, Tchebycheff or elliptical characteristics, and filters having shap $f \mathrm{~d}$ pass and stop bands. Lexor Electronira Limited. 25/31 Allesley Old Road, Corontry CV5 8BW.
WW 402 for further details

Audio power meter

An audio-output power meter, from Genrad, is suitable for load impedances, from 0.6Ω to $32 \mathrm{k} \Omega$. The ($; \mathrm{R} 1840$ uses true r.m.s. techniques and is able to measure power as a function of frequency and impedance, from 0.1 mW to 20 W , in the range 20 Hz to 20 kHz . Using this instrument the output impedance of a device can be measured by simply plotting for maximum output. True rims is readable with as much as $20^{\circ} 0$ second and third harmonic present. Accuracy is within 1 dB between 30 Hz and 10 kHz and is better than 0.5 dB between 50 Hz
and 6 kHz . Newstech Communications Limited, $22 / 24$ Bell Street, Henley-onThames, Oxfordshire, RG9 2BG.
WW 403 for further details

20 MHz pulse generator

A pulse generator, designed primarily for use with t.t.l. circuits, gives a maximum of 5 V output into a 50 S load, with a $40 \mathrm{~mA} \sin \mathrm{k}$ capacity. The instrument, called the Systron Donner model 99, has a variable repetition rate from 2 Hz to 20 MHz and variable pulse width from 20 ns to 200 ms , both in seven overlapping ranges. This unit is available ex-stock at a cost of $£ 235$ from Electroplan Limited, P.O. Box 19, Orchard Road, Royston, Herts SG85HH. WW 404 for further details

Transmission/noise tester

The TTI 1110 A is a transmission and noise test set with a built-in tunable oscillator. It is designed for measuring signal transmission level, frequency, metallic noise, notched noise and noise to ground. 「win digital displays allow simultaneous measurement of the level and frequency of an incoming test tone. Separate transmission and receiver circuits allow the instrument to send test tones while it is measuring various

WW 403

received parameters. Other features include a 1010 Hz notch filter an 80 dB dynamic range, 100 dB longtitudinal balance and switch-selectable noise weighting networks. Wandel and Goltermann (UK) Limited, 40-48 High Street, Acton, London W3

WW 405 for further details

Miniature relays

Miniature two-pole power relays, designated in the MGP(FEME) series, have been uprated to offer 8 A contact capacities and maximum switching voltages of 360 V . Nominal operating times are 10 ms and nominal release times are 5 ms . Other features include 5 mm minimum spacing between pins, large contact areas and long life. Quiller Components Limited, Cardigan House, Wilton, Bournemouth, Dorest BH9 lAU.
WW 406 for further details

Dual h.v. supply

A dual high-voltage power supply, the N1414, has been added to the NIM range of nuclear instrumentation modules. This unit is designed for supplying pre-amplifiers in multiple arrays of proportional counters. Each output is variable by 2000 V in the range 0 to 2.8 kV d.c., and each voltage is pre-set by the manufacturer to customer requirements. The unit is compatible with

WW 405

WW 406

CAMAC data-handling equipment. Brandenburg Limited, Nuclear Engineering Division, 939 London Road, Thornton Heath, Surrey CR4 6JE.
WW 407 for further details

U.h.f. pre-amplifiers

Three low noise, high gain u.h.f. television pre-amplifiers, designated in the CM6051 series, are available from Labgear Ltd for frequency groups A $(470-581 \mathrm{MHz}), \mathrm{B}(615-717 \mathrm{MHz})$, and $\mathrm{C} / \mathrm{D}(695-860 \mathrm{MHz})$. This series offers higher reliability than the CM6000 series which it replaces. The amplifiers, which are in weatherproof plastic cases, measure $45 \times 85 \times 120 \mathrm{~mm}$ and have gains of 16,14 and 12 dB respectively. Other characteristics include typical noise figures of 5 dB , maximum outputs of $28 \mathrm{~dB}(\mathrm{mV})$ and input/output impedences of 75Q. Labgear Limited, Abbey Walk, Cambridge CB1 2RQ.
WW 408 for further details

Instrumentation recorder

The DA1432-4 analogue cassette recorder provides four separate channels, each of which may be operated in the direct mode in the range 50 Hz to 8 kHz and in the f.m. mode from 0 to 1.25 kHz . Each channel has a choice of three carrier filter cut-off frequencies on f.m. and switched record sensitivity covering the range 0.1 to 10 V . A choice
of f.m. carrier frequencies corresponding to I.R.I.G. operation is also provided. Other facilities include monitoring, "voice interrupt" and low-frequency noise compensation on f.m. Price is £1200. Data Acquisition Limited, Brookfield House, Hopes Carr, Stockport, Cheshire SK1 3BQ.
WW 409 for further details

Laser modulator

The model 401 modulator, which is claimed to be suitable for use with a He-Ne laser, is supplied complete with an ultrasonic cell, modulation and driver electronics and a power supply, all housed in one compact unit. Details for five basic experiments are also included in the package, enabling functions such as laser beam intensity, frequency modulation, laser beam steering, acoustic imaging and velocity measurements and r.f. spectrum analysis to be observed. Microwave and Electronics Division, REL Equipment \& Components Limited, Croft House, Bancroft, Hitchin, Hertfordshire.
WW 410 for further details

Paper take-up unit

A paper take-up unit, called the P 99 , is intended for use with miniature drum print heads. This unit has been designed as an ancillary to the Roxburgh MP11

WW 408

WW 409
drum to rewind paper as it is printed. It can also be used with any printing device having a paper width of 58 mm . The unit, which operates from a 6.5 V d.c. supply at 500 mA , has a minimum operating torque of 70 gcm . It has a capacity of 100 mm diameter. Roxburgh Electronics Ltd, 22 Winchelsea Road, Rye, Sussex.
WW 411 for further details

Microwave signal source

Three klystron sources, types PCLL, PCLS and PCLX, cover the frequency ranges 0.8 to $3.0 \mathrm{GHz}, 1.5$ to 5.0 GHz and 4 to 12 GHz respectively. Each source has a plug-in klystron in a tunable coaxial cavity and solid state modulators and power supplies. The internal reflector and resonator voltages are automatically tracked to apply the correct potentials to the klystron at any frequency in the range. Readings on the frequency dial are accurate to 1% and the minimum outputs are 10,5 and 2 mW respectively. Flann Microwave Instruments Limited, Dunmere Road, Bodmin, Cornwall PL31 2QL.

WW 412 for futher details

Auto-ranging counter

The model 8837, from Malden Electronics, is claimed to be the first all-British fully automatic counter. It is a sevendigit instrument capable of measuring frequencies between 10 Hz and 250 MHz , and accepting sine, square or pulse

WW 411

WW 412

input waveforms having amplitudes from 10 mV to 30 V (from 10 Hz to 2000 MHz). At 300 MHz an input of about 100 mV is required. The instrument accuracy depends upon the choice of crystal unit selected. The standard model uses a 1 MHz crystal having a stability of $\pm 55 \mathrm{ppm}$, but models are also available using 10 MHz temperature-compensated crystals or oven-controlled oscillators. Price is £250. Malden Electronics Limited, Malden House, 579 Kingston Road, Raynes Park SW20 8SD.
WW 413 for further details

120 to $420^{\circ} \mathrm{C}$ soldering
 Variable temperature control is accura-

 tely maintained in a new soldering unit from Adcola by using a proportional contral technique.As more and more semiconductor manufacturers recommend a soldering temperature of $280^{\circ} \mathrm{C}$, Adcola were faced with the possibility of reducing power input to their thermally-balanced irons to reduce bit temperature, which would have meant that fewer joints could be made. Instead they chose a thermocouple sensor, to BSI829, positioned at the rear of the soldering bit and, through a comparator, zero-vollage switching and triac circuitry, which provides proportional control of the heater to within $\pm 2 \%$ of the chosen temperature.

Adcola say the effective power can be increased with this technique, but in practice power increase is limited to 100% because of limitations of the insulating materials. Heating time from 24 to $420^{\circ} \mathrm{C}$ is less than two minutes and the Noryl handle is virtually cold to the touch during idling.

Safety features, designed to meet world wide standards (Adcola sells 50% of its production overseas), include an earthing system to give maximum safety against leakage currents and to allow "earthing" to associated equipment via a jack socket. The silicone rubber lead is burnproof to at least $420^{\circ} \mathrm{C}$. Supply to the iron is 24 V , from a toroidal transformer. Adcola Products Ltd, Gauden Road, London SW4.

WW 414 for further details

Noise cancelling microphone

Two microphones, models 3500 and 4500 from Selsound, utilize the characteristics and high magnetic energy of recently-available rare earth materials to achieve small size and good sensitivity. The devices are pressure-gradient, moving-coil transducers which are claimed to be able to discriminate between speech in close proximity and very high levels of environmental noise, even approaching the pain threshold. The largest, type 3500 , is 16.5 mm diameter by 11 mm deep and weighs 7.5 g . Both devices have impedances of

WW 413
300Ω and hypercardioid polar responses, Frequency responses are substantially flat from 300 to 3500 Hz for the model 3500 and 300 to 5000 Hz for the model 4500. Sensitivities with respect to 1 V for a pressure of $0.1 \mathrm{~N} / \mathrm{m}^{2}$ are -89 and -94 dB respectively. Selsound, Victory Close, Industrial Estate, Chandlers Ford, Hants
WW 415 for further details

R.f.i. filters

Filters in a range made by Axel Electronics Incorporated are specifically designed to exhibit high attenuation under full load conditions, in the frequency range 14 kHz to 10 GHz . The filters meet all environmental requirements of MIL-F-15733. For the reduction of current spikes in power supplies, Axel produce filters designed to give high current attenuation at the third harmonic of the power line frequency and above, to meet MIL-Std-461/1-4. IVN Components Limited, Bermuda Road. Nuneaton CV10 7QG.
WW 416 for further details

Keyboard switch

The RSM 82 series is a range of low profile keyboard switches which utilize reed switches for reliability. Single pole and double pole switches are available, with or without latching, and an illuminated version may also be obtained. Each unit is designed for p.c.b. mounting and is 0.7 in high from the top of the plunger to the base. A large range of button tops, space bars and mechanisms is also available. FR Electronics, Wimborne, Dorset, BH21 2B.J
WW 417 for further details

Three-core wire stripper

The Rush model RW3 wire stripper is a hand-operated, bench-mounted machine designed to strip the inner conductor and outer sheath insulations of a three-core mains cable in one operation. This tool, made by Eraser International, may be easily adjusted for different strip lengths and cable sizes. Eraser International Ltd, $2 / 3$ Hampton Court Parade, East Molesey, Surrev
WW 418 for further details

Broadband amplifier

The Model lWl000 is a broadband r.f. amplifier suitable for r.f. measurement and research applications. This unit, made by Amplifier Research, gives a linear 1 W output for an input of 1 mW (wer the frequency range 1 MHz to 1 GHz . The amplifier is untuned and unconditionally stable and will work into any phase or magnitude of load impedance without damage. Texscan Instruments Ltd, l North Bridge Road. Perkhamsted, Herts.
WW 419 for further details

Solid State Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Detector diode

The DC1550 is a low-barrier-height silicon Schottky detector-diode intended for zero bias operation as a detector in broadband levelling systems up to 18 GHz . It can also be used as an effective replacement for the germanium point contact diode. The tangential sensitivity is -47 dBm , the video impedance is $40 \mathrm{k} \Omega$ and the detection efficiency at -10 dBm is 150 mV . Continuous wave power is rated at 250 mW
WW 420 AEI Semiconductors

Microprocessor series

The 6500 series of microprocessors extends the 6800 series of eight-bit microprocessors to include high frequency devices. Type 6502 is the basic unit; this operates at 1 MHz and is capable of working up to 65 k -bytes. Price for one-off is $£ 17.50 .4 \mathrm{MHz}$ and 8 MHz units are also available. WW 421

Aardalect

D.c.-d.c. inverter

The AE1012/AA4580, from Astec, is a small-size, low-cost d.c.-d.c. inverter. It is designed for an input of $+5 \mathrm{~V} \pm 10 \%$, from a t.t.l. supply for example, and gives an output of $+12 \mathrm{~V} \pm 5 \%$ for loads up to 20 mA . This unit measures 29×13 $\times 7 \mathrm{~mm}$ and, for small quantities, is priced at $£ 2.29$.
WW 422
GDS

Sample-hold amplifier

A high performance sample-hold amplifier, designated as SH703, is claimed to meet the requirements for speed and accuracy of nearly all 12-bit data acquisition systems. The unit consists of an op-ainp, a low-leakage analogue switch and a mo.s.f.e.t. unitygain amplifier. An external holding capacitor is required to match the characteristics to the user's application. The amplifier, which can be used for either inverting or non-inverting, has acquisition and settling times of $4 \mu s$, a droop rate of $50 \mathrm{mV} / \mathrm{s}$ (max), an aperture time of 50 ns and a signal range of $\pm 10 \mathrm{~V}$.
WW 423
Hybrid Systems

Power transistors

Three pairs of $n-p-n$ silicon power transistors, designated $2 N 6542$ to 2 N6547, are continuously rated at 5,8 and 15 A . Each pair has a sustaining $V_{\text {CEO }}$ of either 300 or 400 V d.c. (at $25^{\circ} \mathrm{C}$) and d.c. current gains of more than 60 The devices, in TO-3 packages, are suitable for high speed switching in inductive circuits, where fall times may be lower than 800 ns . Power dissipation figures for the three pairs are 100,125 and 175 W .
WW 424
Jermyn

Priority encoders

Two eight-line-to-three-line priority encoders are available from Advanced Micro Devices Incorporated. The AM25LS148 is a 16 -pin device which performs priority decoding from eight inputs and provides a binary weighted code of the priority order of the inputs. The AM25LS2513, in a 20 -pin package, is a gated three-state output version of the above and is suitable for priority interrupt systems. Both of the lowpower Shottky devices have been processed to MIL-STD-883 requirements.
WW 425
AMD

C.m.o.s. circuits

Seventeen digital i.cs have been added to the standard CD4000 range from RCA. The devices have quiescent currents specified to 20 V , maximum leakage currents of $1 \mu \mathrm{~A}$ at $20 \mathrm{~V}, 1 \mathrm{~V}$ noise margin, standardized symmetrical output characteristics and 5,10 and 15 V parametric ratings. This range includes a shift register, a synchronous downcounter, a buffer driver, an arithmetic logic unit and a "look-ahead" carry generator. In addition there are pre-settable counters, registers, buffers, multiplexers, a dual 4-bit latch and a hex Schmitt trigger inverter.
WW 426
RCA

Suppliers

AEI Semiconductors Ltd, Carholme Road, Lincoln LN 1 1SG.
Aardalect Electronics Ltd, Suite E, Georgian House, Trinity Street, Dorchester, Dorset.
Advanced Micro Devices Inc., 901 Thompson Place. Sunnyvale, California, 94086, U.S.A.
GDS Sales Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Berks.
Hybrid (Component) Systems U.K. Ltd, 12a Park Street, Camberley, Surrey.
Jermyn Distribution, Sevenoaks, Kent.
RCA Solid State-Europe, Sunbury-on-Thames, Middlesex TW16 7HW.

HEF
 gaina กew bimension

KEF engineers today are working with radically new techniques. Their computer-based analysis gives them a deeper insight, a more precise three-dimensional vision of speaker performance than was previously possible. They knew that KEF drive units, with their advanced laminated diaphragms, offered a high level of performance. So research looked even harder at the equally vital dividing networks, at cabinet construction and power handling capability. Yesterday's 'try it and see' methods were too imprecise but the new KEF techniques revealed more. Enclosure materials were studied by impulse response, and network designs refined to get precisely the right response shape from each drive unit.
Applied to your speaker needs, the KEF programme has created three important new systems. You will be getting to know them well - Corelli, Calinda and Cantata. A 2 way shelf-mounting system, 3 way reflex free-standing enclosure and larger 3 way system handling 150 watts. All three have the new computer-designed filter circuits. You can clearly hear the difference - better transient response. lower coloration. All three have redesigned cabinets, weighty with high-density internal damping laminations. All three handle today's power amplifier outputs with confidence and lower distortion. New speakers from KEF always make headlines. Watch for the reviews.

Result:three new speakers, Corelli, Calinda, Cantata.

15
 240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier idealiy suted for all applications All common input functions (mag Cartulge, tuner etc) are catered for internally the desired function is achieved either by a mult-way switch or direct connection to the appropriate pins. The internal volume and tone cricuits ILP power amplifiers and external potentiometers (not included) The HY5 is compatible with al Supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack -- Mufti-function equalization - Low noise -- Low distortion - High overload - two simply combmed for stereo
APPLICATIONS: HI-FI -- Mixers -- Disco -- Gutar and Organ -- Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV . Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$ input impedance $47 \mathrm{k!}$) at 1 kHz
OUTPUTS Tape 100 mV . Main output 500 mV R M S
ACTIVE TONE CONTROLS Treble . 22 dB at 10 kHz Bass \rightarrow at $100 \mathrm{~Hz}_{z}$
DISTORTION 014 at 1 kHz . Signal/ Noise Ratıo 68dB
Price $\mathbf{£ 4} 75+59$ VAT
Price £4.75 + 59p VAT P\&P free
HY5 mounting board B1 $48 p+6 p$
HY30
15 Watts into 8Ω
The HY 30 is an exciting New kit from I LP if features a virtually indestructible I C with short circuit and therma protection withe kit consists of C C heatsink PC board 4 resistors 6 capacitors ideally suited to the beginner in audio who wishes to use the most up-to-date technology avallable FEATURES: Complete kit Low Distortion - Short Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Gutar practice amplifier -- Test amplifier - Alidic SPECIFICATIONS
OUTPUT POWER 15 W RM S into 8Q DISTORTION O 1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz} .16 \mathrm{kHz}-3 \mathrm{CB}$
Price $£ 4.75+59 \mathrm{p}$ VAT P\&P Free
HY50
25 Watts into 8Ω
The HY50 leads I LP s total integration approach to power amplifier design The amplifier features an integral heatsink logether with the simplicity of no external components During the past three years the amplitier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distoftion
FEATURES: Low Distoftion - Integral Heatsink - Only five connections -- 7 Amp output transistors APPLICATIONS: Ments SPECIFICATIONS: INP OUTPUT POWER 25 W RMS in 89 LOAD MPEDANCE 4.16!2 DISTORTION 004% al 25 W at SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{H}_{2}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE + 25 V SIZE 1055025 mm
Price $\mathbf{6 6 . 2 0 + 7 7 p}$ VAT P\&P free.
HY120
60 Watts into 8Ω
The HY120 is the baby of ILP s new high power range designed 10 mee: the most exacting requirements including load lwe and thermal protection this amplifier sets a new standard in modular FEATURES: Very low distortion - Integra Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS: Hi-F1 -- High quality disco - Public address - Monitor aniplifier - Gutar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS Into 8:2 LOAD IMPEDANCE 4-16!2 DISTORTION 004% at 60 W at SIGNAL/NOISE RATIO 90 dB FREQUENCY RESPONSE $10 \mathrm{H}_{z}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE 35 V
Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 14.40+£ 1.16$ VAT P\&P free.
HY200
120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the mos rugged condtions such as disco or group while still retaining true HI-FI pertormance FEATURES: Thermai shutdown - Very low distortion - Loadiline protection - Integral Heatsink No external components APPLICATIONS: Hi-Fi - Disco - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS Into 8:) IOAD IMPEDANCE 4-16! DISTORTION O 05% at 100 W at 1 kHz
SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{H}_{2} .45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
HY400
240 Watts into 4Ω
The HY400 is I L.P s "Big Daddy" of the range producing 240 W into 4 l ! It has been designed for high power disco or public address applications it the amplitier is to be used at continuous high power levels a conling fan is tecommended The amplifier meludes all the quat:ties of the rest of the family to tead the market as a true high power hi-fiflelity power module
FEATURES: Thermat shutdown - Very low distortion - Load line protection - No external
APPLICATION
APPLICATIONS: Public address - Disco - Power slave -- Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS Into 4:) LOAD IMPEDANCE 4.16!) DISTORTION 01% a: 240 W at SIGNAL NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPIY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $117 \times 100 \times 85 \mathrm{~mm}$ Price $£ 29.25$ + £2.34 VAT P\&P free.

POWER
SUPPLIES

Available

 Ex-stock

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218
Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

NEW! Sine-square oscillators

- 10 Hz to 1 MHz
- Up to 12 V p-p
- 3W into 3_{Ω} - LFP1
- Low audio distortion
- Low bounce
- Mains/battery operation, meter
and TTL output - LFM4

Flimell

farnell instruments limited
SANDBECK WAY, WETHERBY, WEST YORKSHIRE LS 22 4DH TELEPHONE 0937-3541 TELEX 557294

Put new life into your equalising....

With the Trident Parametric.

THE TRIDENT MODEL CB9066 PARAMETRIC EQUALISER/FILTER is a comprehensive equaliser offering the user a degree of flexibility in tone correction hitherto unavailable. The five sections of the Equaliser can be used simultaneously. Silent switch operation enables the facility to be used during critical applications such as Disc Mastering Re-Mixing etc

FEATURES:

\& Low. Mid and High range, continuously variable control of Frequency, Amplitude and O .

* Separate High-Pass and Low-Pass Filters with continuously variable control of Cut-off frequency and slope
* Silent IN /OUT switching of ranges and system
* Automatic compensation for sharp and broad O settings adjusts for apparent loss of loudness in sharp O modes
* Compact 19 in $\times 13 / 4$ in \times in rack mountable
* Built-in Power Supply

United States Agents:

 East Coast:Audiotechniques Inc.
142 Hamilton Avenue, Stamford, Conn. 06902 Tel. (203) 3592312
Contact: Adam Howell.

West Coast:
Studio Maintenance Service
2444 Wilshire Blvd., Suite 214, Santa Monica Ca. 90403
Tel. (213) 9905855
Contact: David Michaels

The Finest

The "S.K.A." Plastic Keyboard was developed by Kimber Allen Ltd in co-operation with a Swedish company and the manufacturers state that in their opinion it is the finest moulded plastic keyboard made and is not to be confused with cheaper keyboards available.
The keys are moulded in Acrylic plastic, a material chosen for its hard wearing properties and ideal feel to the touch. They are moulded in two parts, the key face, which has to be perfect in appearance and finish, and the action, which has to be strong and carry the mechanism. The strong section of aluminıum extrusion upon which they are mounted is specially designed to take all the pressures of playing. Springs, felts, and contact actuators are supplied ready-fitted
The contact assemblies are constructed of laminated bakelıte, thus giving smooth slot walls and completely free movement of the gold-clad contact wires. Types available as follows (Contact pairs normally open)
$\begin{array}{lll}\text { GJ-SPCO: } & 24 p \text { each } & \text { GE-4 pairs : } 45 p \text { each } \\ \text { GB-2 pairs: } & 27 p \text { each } & \text { GH-5 pairs : } 57 \mathrm{p} \text { each }\end{array}$ GC-3 pairs: 36p each 4PS-SPCO \& 3 prs: 53p ea

We also stock kits and PCBs for the P E Synthesiser. P.E. Joanna (electronic piano), P.E Minisonic, and other sound synthesising and modifying projects published in Practical Electronics. Send SAE for full list (Overseas send 40p)

PHONOSONICS

DEPT. WW73, 22 HIGH STREET SIDCUP, KENT DA14 6EH

KEYBOARDS

\& CONTACTS

U.K. POST \& HANDLING:
 Keyboards: $£ 1.50$ each Contacts:

Orders under £15.00: 25p Orders over £15.00: 50p

37 Note C-C Keyboard : £24.85
49 Note C-C Keyboard : £29.50
61 Note C-C Keyboard : £ 34.50

VAT: Add $121 / 2 \%$ to final toral on all U.K. orders EXPORT ORDERS ARE WELCOME but please see our price list for Export Postage Rates. N.B. EIRE, CHANNELISLES \&
B.F.P.O. classify as Export.
mail order and c.w.o. only - sorby but no callers please
Prices are correct at time of Press, E. \& O.E. Delivery subject to availability

RADFORD HD250
High Definition Stereo Amplifier

A new standard
for sound reproduction in
the home! We believe that no other
amplifier in the world can match the overall specification of the HD250.

Rated power output: 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel into 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inheremt circuit noise.)
Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at $1 \mathbf{K h z}$)

Hum and noise: Disc. -83 dBV measured flat with noise band width 23 Khz (ref 5 mV): -88 dBV " A " weighted (ref. 5 mv)

Line - 85 dB V measured flat (ref 100v)
Hear the HD250 at

SWVIFT OF WILMSLOW

Dept. WW, 5 Swan Street. Wilmslow, Cheshire (Tel: 26213)
Mail Order and Personal Export enquiries: Wilmslow Audio, Swan Works, Bank Square, Wilmslow (Tel. 29599)
Now available ZD 100 power amplifier and ZD22 pre-amplifier
WW-026 FOR FURTHER DETAILS

DEMA ELECTRONICS INTERNATIONAL ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER ACCESS CARD BANKAMERICARD, BARCLAY CARD ACCEPTED (Card \# and expiration date requested). TERMS CFFERED TO SCHOOLS \& INSTITUTIONS.

POSTAL AND HANDLING CHARGES SHIPMENT VIA AIR MAIL		
under 4.99	add 45	£ 10 and over
5.00-9 99	add 35	No Char

DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL

AMPLIFIER MODULES 25-100 W rms FROM TAMBA ELECTRONICS

LOW COST QUALITY POWER AMPLIFIER MODULES, POWER SUPPLIES \& MIXERS FOR HI-FI, DISCO, P.A GROUP \& CLUB APPLICATIONS

TAM1000 100 watts rms into 4 ohms, 65 v supply $€ 9.80$
TAM500 50 watts rms into 4 ohms, 45 v supply $£ 7.50$
TAM250 25 watts rms into 8 ohms, 45 v supply $£ 4.75$

```
20-20,000HZ }\pm1\textrm{dB
    SILICON CIRCUITRY
    THROUGHOUT
    High sensitivity ( }100\textrm{mV}40\textrm{K}\mathrm{ )
    Low distortion ftypically
    0.1%)
    3in.)
    Four simple connections
```

 Four simple conne
 Glass fibre P. C. B.

MODULAR MIXER PRE-AMP £6.50

- 60 mm slider volume
\square Modular style anodised aluminium facia
\square Full range bass \& treble controls
$\square \quad$ Built-in supply smoothing
\square Operates from main supply
\square Form up to 10 channel
$\square \begin{aligned} & \text { Systems } \\ & \text { Accepts a wide variety of }\end{aligned}$
$\square \begin{gathered}\text { Accepts } \\ \text { imputs }\end{gathered}$
ADD 8\% VAT TO ALL PRICES except TAM 250 \& Mixer Modules Access \& Barclaycard accepted Write or telephone (0 1) 6840098 (121/2\%)

Callers welcome COD 60p extra

TAMBA ELECTRONICS

Bensham Manor, Road Passage, Bensham Manor Road, Thornton
Heath, Surrey.

The XA-TT-I, TTL compatible Quartz Crystal Oscillator Module is designed for high accuracy applications such as time bases. clock generators and counter timers. All modules have a built in trim facility and operate over the voltage range 4-12 volts DC, standard range is 4 to 15 MHz , supply current 10 mA max at 5 volts. Temperature coefficient less than $0.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Fan out of 10 standard TTL loads.

르N (EUROPE) ELECTRONICS LTD

GRAPHIC HOUSE PANGBOURNE, BERKS

Telephone: 073574611 Telex 847544
 Distributors for Plessey • Remo

Valves				Semi Conductors				
Type	Price (p)							
DY87	43	PCF802	52	AF126	38	BC214L	15	
DY802	43	PCL82	54	AF127	38	BC237	11	
ECC82	44	PCL84	55	AF139	39	BC238	11	
EF80	34	PCL85	57	AF178	69	BC301	30	
EF183	39	PCL86	52	AF180	69	BC303	30	
EF184	39	PFL200	65	AF181	59	BC327	13	
EH90	40	PL36	63	AFF239	45	BC328	13	
PC86	58	PL84	30	AF240	20	BC337	12	
PC88	58	PL504	90	AL102	£1.40	BC338	12	
PC900	30	PL508	85	AL103	£1.30	BC546	13	
PCC89	46	PL509	¢135	AU107	£1.35	BC547	12	
PCC189	47	PY88	43	AU110	$£ 1.20$	BC548	12	
PCF8G	41	PY500A	$\underline{1} 25$	AU113	¢1.05	BC549	13	
PCF86	44	PY800	47	BC107	10	BC550	14	
PCFB01	46			BC107B	15	BC557	13	
Integrated Circuits				BC108	10	BC558	12	
				BC109	12	BCY72	16	
				BC109C	14	80115	39	
Type P	Price (p)	Type P	Price (p)	BC113	15	80116	59	
MC1351P	70	TA 7072P	¢1.53	BC114	17	-0124	75	
ML 2318	¢4.20	TA 7074P	£1. 34	BC115	171	80131	35	
(Equiv. ETTR6016)		TA7124P	73	BC116	$17 \frac{1}{2}$	BD132	39	
ML 232B	£4.20	TA7141AP	11.40	BC116A	25	BD133	45	
SL 414A	£1.68	TA 7171P	¢1.65	BC117	14	80135	29	
SL 415A	£2.20	TA 7172P	£1.65	BC118	15	B0136	30	
SL 1310	¢1.54	TA 7173P	£2.20	BC119	27	80137	30	
SL 3046	73	TA 7176P	$\underline{¢ 1.30}$	BC125	$17 \frac{18}{18}$	BD138	33	
SL 76544	£1.50	ṪAA550	32	BC125B	18	BD139	37	
SN76003N	£2.35	TAA 570	$\underline{1} 1.30$	BC126	15	BD140	39	
SN76013N	£1.43	TAA 661 B	81	BC132	15	BD144	£1.99	
SN76013ND	1 ¢ 1.25	TAA700	£2.56	BC135	15	BD160	£1.65	
SN76023N	£1.43	TBA120S	£1.14	BC136	16	BD181	89	
SN76023ND	0 ¢120	TBA120AS	60	BC137	20	B0182	90	
SN76033N	$\underline{1} 2.15$	TBA120SQ	$£ 1.00$	BC138	30	B0183	80	
SN76110N	£1.75	tBA4800	11.40	BC139	28	B0184	$£ 1.10$	
SN76226N	£ 2.20	TBA520Q	£2.06	BC140	32	B0222	47	
SN76227N	£1.45	TBA530Q	E1.30.	BC141	28	B0225	47	
SN76532N	£1.45	TBA540Q	£2.00	BC142	20	B0232	50	
SN76533N	¢1.50	TBA550Q	£2.56	BC143	25	B0233	43	
SN76544N	£1.70	TBA560CQ	£2.56	BC147	8	BD234	49	
SN76650N	£1.15	TBA750Q	£1.43	BC147A	11	B0235	49	
SN76660N	60	TBA800	$\underline{1.10}$	BC148	9	80236	53	
SN76666N	90	TBA920Q	£2.64	BC149	10	80237	49	
	$£ 1.13$	TBA990Q	£2.56	BC153	20	BD238	55	
TA 705!P	£1.45	TCA2700	¢2.64	BC154	20	BDX32	$£ 2.40$	
		TCA 800	£4.60	BC157	11	BDY20	80	
	Semi Conductors				BC158	10	BF 115	38
					BC159	11	BF152	20
					BC160	30	BF158	20
Type P		Type	Price (p)	BC161	33	BF160	35	
AC107	25	AC188	18	BC171	10	BF167	24	
AC126	24	AC188K	35	BC172	10	BF 173	25	
AC127	20	AC193K	$\frac{36}{35}$	BC173	15	BF178	33	
AC128	15	AC194K	35	BC178	18	BF179	38	
AC128K	24	AD140	65	BC1788	20	BF180	31	
AC141	24	AD142	62	BC179	22	BF 181	35	
AC141K	28	AD143	65	BC182	11	BF182	30	
AC142	18	AD149	65	BC182L	12	BF 183	30	
AC142K	31	AD161	47	BC183L	12	BF184	29	
AC151	28	AD161/2PR	R 11.00	BC184	12	BF 185	30	
AC154	18	AD162	38	BC186	25	- 6186	26	
AC155	18	AF114	25	BC187	25	BF194	8	
AC156	28	AF115	22	BC204	14	BF195	8	
AC176	22	AFI16	22	BC212	11	BF196	10	
AC 176K	34	AFI17	20	BC212L	11	BF197	11	
AC187	20	AF118	52	BC213	11	BF 198	23	
AC187K	33	$\frac{\text { AF124 }}{\text { AF } 125}$	38	BC213L	11	BF199	25	
	\bigcirc	AF125	27	BC214	13	BF200	28	

Iow cost top guality COMPONENTS
 - Siemens • A.E.G. Telefunken Teleng and Toshiba Components

Type	Price (p)	Type	Price (p)
BF218	40	BU205	£1.67
BF224	20	8U206	1.95
BF240	17	BU208	£2. 20
BF241	17	BU208/02	$2 £ 2.75$
BF257	28	BUY69B	£2.50
BF258	26	BUY69A	£2.65
BF259	30	E1222	38
BF336	37	MIE340	45
BF337	35	MIE520	44
BF338	34	2N696	30
BF355	50	2N706	15
BF457	37	2N3053	20
BF458	37	2N3054	65
BF459	38	2N3055	55
BFT42	35	2N3702	12
BFT43	35	2N3703	12
BFX29	29	2N3704	10
EFX84	29	2N3705	10
$\overline{\mathrm{BF} \times 85}$	30	2N3706	10
BFX86	28	2N3819	38
BFX88	25	2N5296	40
BFY50	19	2N5496	53
BFY51	19	0C71	29
BFY52	20	OC72	29
BFY90	1.10	R2008B	£1.90
BR100	32	R20108	£1.90
ER101	38	RCA16334	80
BRC4443	80	RCA16335	580
BRY39	38	S2802	£2.99
BSY52	30	S6080 A	
BT106	$\uparrow 1.20$		£4.90
BT108	£1.50	TIP31A	52
BT116	¢1.25	TIP32A	62
Bu105/02	¢1.60	IIP41A	60
BU108	$£ 1.80$	T1P42A	75
BU126	$\uparrow 1.49$	TIS91	27
BU204	¢1.80		
Diodes			
Type BA115	$\begin{gathered} \text { Price (p) } \\ \hline \end{gathered}$		Price (p)
BA145	16		7
BA148	16	OA95	5
BA154/201	12	OA202	8
BA155	15	IN914	$\overline{6}$
BAX13	6	IN4001	4
BAX16	6	IN4002	5
BY126	11	iN4003	5
BY127	10	in4004	5
BY199	25	IN4005	5
BY206	17	iN4006	6
BYX10	14	1N4007	6
OA47	8	IN4148	4

$\star 20$ p or less. Minimum 5 items

EHT Multipliers	STRIBUTORS
	SCOTLAND
In 3000/3600 0107 Es	
rn 900000000	
	N.IRELAND
Crc 1.5	
$\begin{array}{cc}68 & 0117 \\ 01180\end{array}$	
55000001198	LANCASHIRE
691/993 731	
	Moorside Electrical Co.,70 Moorside Avenue,SmithlllsBolton. Tel. 020440918
Sill	
New Mono Tubes (10)	WEST YORKSHIRE Briden ComponentsBreartion StreetManningham Lane Bradiford\qquad
Screen Type Equivalent Pr $12^{\prime \prime}$ Toshiba TMT $31 / 101$ E2117A A31/250W £17	
退	
A50. 120WR CME 2013	MSIDE.OHESHIRE SALOP
New Colour Tubes (90)	
Screen Trpe Equalvest price	
	WALES
Aerial Accessories	
Sus	WEST MIDLANDS
errees with varableech cis.95	Geetavision 85 Far Gosford Street Coventry Tel. Coventry 56476-503598

EAST MIDLANDS

Belvair TV \& Audio Components. 66 Mill St., Melton Mowbray Leicestershire LE: 13 IAZ Tel. 06645666

CAMBS. BEDS. HERTS
Cambridge Electronic
Components
236 High Street
Cottenham Cambridge
Tel. 095450292

Cottenham Cambridg EAST ANGLIA

Morwich Electronic Components 16 Denbigh Road,
Norwich. NR2 3AA
Tel. 060328625
S.LONDON\&S EAST

Paul Electrical Ltd.
250/252 Grand Drive,
Raynes Park.
Tel. 015426546
DORSET HANTS, 10 W
Double D. Distributors,
16 Highfield Road,
Bournemouth BH9 2SG
Tel. 0202519562

SOUTH WEST

D. B. Components,

1 Devonshire Street,
Greenbank, Plymouth, Devon Tel. (0752) 24369

*PRICE

Highly competitive

* QUALITY

Leading manufacturers

* RELIABILITY

Fast efficient service

HI

Good people to deal with

COMBINED PRECISION
COMPONENTS LTD.
C.P.C., Dept. EET $194-200$ NORTH ROAO. PRESTON, LANCASHIRE. ENGLAND Phone: Preston (STO 0772) 55034. Telex 677122
WORLD WIDE EXPORT SERVICE ask for ROBIN PRATT New price list 11276

30×30 WATT AMPLIFIER KIT

Specially designed by RT-VC for the experienced constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier Chassis is ready punched; drilled and formed Cabinet is finished in teak veneer. Black fascia and easy-to-handle aluminium knobs.

STEREO CASSETTE DECK KIT

Again, this kit is specially designed for the experienced constructor - for mounting into his own cabinet Features include solenoid-assisted AUTO-STOP,

3-digit counter, record/replay PC board
${ }^{5} 32^{20}$ mains transformer and input and 35 output controls. AC BIAS AND ERASE

DELUXE ACCESSOAY KIT

 Comprises of a matched pair of dynamic mics. £ 395 and two replacement slider level controls. P\& P $+p \& p$ FREE WHEN PURCHASED TOGETHER

DIY SPEAKER KITS

EASY-TO-BUILD WITH ENCLOSURE
Specially designed by RT-VC for cost-conscious hi-fi enthusiasts, these kits incorporate two teaksimulate enclosures. two EMI $13^{\prime \prime} \times 8^{\prime \prime}$
(approx.) woofers, two tweeters and a pair of matching cross overs. Easily constructed, using afew basic tools. Supplied complete with an easy-tofollow circuit diagram, and crossover components. Input 15 watts ms .30 watts peak, each unit. Cabinet size $20^{\prime \prime} \times 11^{\prime \prime} \times 9^{1 / /^{\prime \prime}}$ 2550 (approx)
p\& 0 ¢5 50

'COMPACT' FOR TOP VALUE

How about this for incredible bookshelf value from RT-VC! A pair of high efficiency units for only $£ 7.50$ - just what you need for low-power ampilifers. These infinite baftle enclosures come to you ready mitred and professionally finished. Each cabinet measures $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ (approx.) deep, and is in wood simulate Complete with two 8 " ${ }^{8}{ }^{500}$ (approx.) speakers for max.
power handling of 7 watts. $-\mathrm{p} \& \mathrm{p} \mathrm{p} \uparrow \mathrm{par} 70$

15-WATT KITIN ${ }^{8} 8{ }^{50}$ 50 PER SET $+p \& p$ CHASSIS FORM
 f170

20×20 WATT STEREO AMPLIFIER

事. 0.0 .0 .0

Superb Viscount IV unit in leak-finished cabinet. Silver fascia with aluminium rotary controls and pusributtons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary Rear panel features two mains outlets, DIN speaker and input sockets, plus fuse $20+20$ watts rms. $40+40$ watts peak.

HOWTOUGASAVA

SYSTEM 1B For only 980 , you get the $20+20$ watt Viscount IV amplifier, a pair of our 12-watt-rms Duo Type Ilb matched speakers: a BSR MP 60 type deck complete with magnetic cartidge, de luxe plinth $£ \mathbf{8 0}^{00}$ and cover

SYSTEM 2 Comprising our $20+20$ watt Viscount IV amplifier: a pair of our large Duo Type III matching speakers which handle 20 watts rms each. and a BSR MP 60 type deck with magnetic cartridge, ${ }^{\mathbf{9}} \mathbf{2}^{00}$ de luxe plinth and cover ${ }_{93} 2^{00}$

SPEAKERS Two models-Duo llb teak veneer, 12 watts rms, 24 watts peak, $18^{1} / 2^{\prime \prime} \times 13^{1} / 2^{\prime \prime} \times 7$ 7 $6^{\prime \prime}$ approx. £34
 de luxe plinth £2400

 PYE STEREO GRAM CHASSIS

When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size $13^{\prime \prime} \times 8^{\prime}$ (approx.)woofer, (EMI) tweeter and matching crossover. Power nanding capacity 15 watts rms. 30 watts peak.

DECCA 20 WATTS STEREO SPEAKER

 This matching loudspeaker system is hand-made, as only Decca know how, built to a specification, not down to a price. The kit comprises of two $8^{\prime \prime}$ diameter approx. base drive unit, with heavy die cast chassis laminated cones with rolled PVC surrounds Two $3^{1 / 2} z^{\prime \prime}$ diameter approx. domed tweeters complete with crossover networks.

Our price per stereo pair
$\varepsilon 3000$ p \& D $£ 4.00$

TURNTABLE Popular BSR

MP 60 type, complete with magnetic cartridge, diamond stylus, and

Complete ready to install Wave bands L, M, £ 35.00 VHF STEREO. VHF MONO Controls for tuning

CAR RADIO KIT

TOP 10 AWARD

Complete with speaker, baffle and fixing strip. The Tourist IV tor the experienced cunstructor only. The Tourist IV has five push buttons, fourm edium band and one for long wave band. The tuning scale is illuminated and attractive small aluminium control knobs are used for manual tuning and volume control. The modern style fascia has been desigried to blend with most car interiors and the tinisted radio will slot into a standard car radio aperture. Size approx $7 \times 2 \times 4$ Power Supply
 Nominal 12 valts positive of nlegative earth (alte
internally) Power Ouptut 4 walts into 4 onms.

FANTASTIC SAVING WITH PZ 20 POWER UNIT
A build- it-yourself stereo power amplifier with latest integrated circuitry. 10W RMS per channel output, full short-circuit and overheat protection.
Complete wit
$\mathcal{4} 95$ PRICE
PZ2O Fower Supply
UIST £14.50

35-WATT DISCO AMP

Here's the mono unit you need to start off with. Gives you a good solid 35 watts rms, 70 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches independent bass and treble $£ 2750$

PORTABLE DISCO CONSOLE

with built-in pre-amplifiers
Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-return, single-play professional series record decks. Plus all the controls and features you need to give fabulous disco performances. Simply

E5500 connects into your existing
$p \& \rho £ 6.50$

70 \& 100 WATT DISCO AMPS

Brilliantly styled for easy disco performance! Sloping fascia. so that you can use the controls without fuss or bother. Brushed aluminium fascia and rotary controls. Five smooth acting, vertically mounted slide controls - master volume, tape level, mic level, deck level, PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre-fade level control (PFL) lets YOU hear next disc 170 WATT before fading it in. VU meter monitors output level 70 watts rms, 140 watts peak output. All the big features as on the 70 -watt disco amplifier, but with a massive 100 watts rms 200 watts peak output power.

+p\&p§3.00
IOO WATT
65^{50}

BSR T145

 8-TRACK CARTRIDGE PLAYER MECHANISM Requires some attention. Complete with built in pre-amp, A.C. 240 V
${ }^{5} 6^{95}$
p\&p§150

ALLPRICES INC.VAT. AT $12 \frac{1}{2} \%$ All items subject to availability Pilice correct ar We are unable to show all our oroducts. So please Send stamped addressed envelope tor our

Minimum order on
Access and
Access and
DO NOT SEND CARD
Just write your order
giving your credit fully descnptive catalogue and any further information

21 EHIGH STREET, ACTON, LONDON W3 6NG 323 EDGWARE ROAD, LONDON W2
Personal Shoppers EDGWARE ROAD 9.30 am- 5.30 pm . Half day Thurs. ACTON: Mail Order only. No callers

WW-032 FOR FURTHER DETAILS

Wilkinsons rears "rantag
 Single equip
 PMENT
 B.P.O. TYPE 2 UNISELECTOR 10 Bank 5 Pole 50 Way all non bridging wipe's. 50 yolis $£ 10$ each
 L. WILKINSON (CROYDON) LTD., LONGLEY HOUSE. LONGLEY ROAD. CROYDON, CRO 3LH
 WW-078 FOR FURTHER IDETAILS

INJECTION AND COMPRESSION MOULDING TO YOUR REQUIREMENTS ALSO INDELIBLE PRINTING OF G.R.P. ALUMINIUM AND COATED PANELS
GLASS FIBRE CASES. D.M.C. OR S.M.C. GREY, BUT OTHER COLOURS BY ARRANGEMENT.

SIZES	BOX	WITH
$8^{\prime \prime} \times 5^{1 / 2^{\prime \prime}} \times 5^{\prime \prime}$	$£ 194$	ADDITION
$9^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$	$£ 130$	E2 71
$6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$	$£ 1.10$	$£ 2.07$
$5^{\prime \prime} \times 3^{\prime \prime} \times 11 / 2^{\prime \prime}$	$£ 0.51$	$£ 196$
$4^{\prime \prime} \times 4^{\prime \prime} \times 11 / 2^{\prime \prime}$	$£ 0.54$	

WITH FRONT PANEL, INSIDE PANEL BOTH ALUMINIUM) AND 4 RUBBER FEET
trade prices on request
Polythene Bags to your requirement, Dept. DP
THOMAS MAUGHAN \& ASSOCIATES
(DEPT. AW)
CLARENCE MILL, BOLLINGTON. NR. MACCLESFIELD. CHESHIRE
Tel: BOLLINGTON 74294

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories inc.
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
--complete set of components for stereo processor
--regulated power supply components
--board-mounted DIN sockets and push-buttón switches
--fibreglass board designed for minimum wiring
--solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: £37.90 + VAT

Also available ready built and tested

Price £52.00 + VAT
Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ 2.00+V A T *$
Single channel plug-in Dolby PROCESSOR BUARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Single channel board with selected fet
Price $£ 7.20+$ VAT

Gold plated edge connector.
Price $\mathbf{£ 2 . 2 0 + V A T}$

Selected FET's. 60p each + VAT, $\mathbf{1 0 0 p}+$ VAT for two, $\mathbf{£ 1 . 9 0 + V A T}$ for four
Please add VAT $121 / 2 \%$ unless marked thus*, then 8% applies
We guarantee full after-sales technical and servicing facilities on all our kits, have you checked that these services are available from other suppliers?

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses 3302 FET module requiring no RF alignment, ceramic IF,I INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range' $88-104 \mathrm{MHz}$. 30 dB mono S / N @ $1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter.

PRICE: £53.95 + VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection-85dB. THD typically 0.4%
IC stabilized $\overline{\text { PSU }}$ and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec with tuners costing twice the price

Mono £29.15 + VAT
With ICPL Decoder $£ 33.42$ +VAT With Portus-Haywood Decoder $£ 35.95$ + VAT

Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter

PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers,
switches, sockets and fuses are used for ease of assembly and to minimize wiring
Power 'on/off' FET transient protection. Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In/Out facility, (for noise reduction unit, etc.). Toroidal mains transformer.

PRICE: £31.95 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

BUY A CASE FROM A SMALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION

CHI INETRLNAENT

Get a great deal fram Marshalls

A. Marshall (London) Ltd Dept: WW

40-42 Cricklewood Broadway, London NW2 3ET Tel: 01-4520161/2 Telex 21492
\& 85 West Regent St Glasgow G2 20D Tel. 041-3324133 \& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: 0272 654201 /2
Call in and see us 9-5 30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome Please enquire for types not liste NEW 168 PAGE CATALOGUE WITH 500 NEW LINES 55p post paid (40p to callers)

Our range covers over 7,000 items. The largest selection in Britain. Top 200 ICs, TTL, CMOS \& Linears
 SEND FÖR OUR NEW 168 PAGE CATALOGUE WITH 500 NEW LINES
55 p post paid or 40 p to callers

POPULAR SEMICONDUĆTORS (A very small selection from our vast stocks, please enquire about devices not listed.)

AMATEUR CDMPDNENTS

ORCHARD WORKS, CHURCH LANE, WALLLNGTON, SURREY SMG 7NF
MAIL ORDER DIVISION OF SEMICONDUCTOR SUPPLIES ICROYDON) LTD,
For Semiconductors Capacitors Resistors I/C Sockets L.E.D.'s and Hi - Fi Accessories
CMOS
4000

 $\begin{array}{ll}4519 & 21 \\ 4520 & 120 \\ 4521 & 200 \\ 4522 & 200 \\ 4526 & 200 \\ 4527 & 155\end{array}$

LYNX ELECTRONICS (LONDON) LTD.

DIGITAL	ISPLAYS $\underset{\substack{99 \mathrm{p} \\ 9.85}}{\substack{9.85}}$	\& LEDs	1:80	(tars	, te onl		(ion										
SPECIAL OFFERS		clock chips MM5314 MM5316 															
TTL 74 SERIES PLASTIC																	
$\begin{aligned} & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$																	
$\begin{aligned} & 0.51 \\ & 0.51 \\ & 0.18 \end{aligned}$																	
$\begin{aligned} & 0.018 \\ & 0.18 \\ & 0.18 \end{aligned}$																	
0.16																	
[14,																	
LINEAR ics	T0-3 Transistor mounting kits 50 kits for 65 p																
		$\begin{aligned} & \text { a.38 } \\ & 0.38 \\ & 0.35 \\ & 0.85 \\ & 0.55 . \\ & 0.50 \end{aligned}$															
Ne5655																	
92 BROAD STREET, CHESHAM. BUCKS. TeI. [02405] 75154 VAT - Please add 8% except items marked " which are $121 / 2 \%$ P\& P 20p. Overseas 80p ACCESS WELCOME																	

WW - 063 FOR FURTHER DETAILS

Moda)	Mosturaments		$\begin{aligned} & \text { Sems. nvily } \\ & \text { Pink Notow w } \\ & \text { at ind -99 da } \end{aligned}$	Pew it Hending 	Sugoesad amp Wathe RMS		$\underset{\substack{\text { Frunuency } \\ \text { Response }}}{ }$
	Contumeres	incten			Min	Max	
Dtrson 11	35 $\cdot 20 \times 25$		93	25 w	15	30	35 H-28 fHz
streat 15	$53 \times 29 * 23$	21-93*91	42	30 w	10	30	30 N - 15 smz
oneom 3	61:35:26	24*14*104	55	40 w	20	50	$40 \mathrm{~Hz}-28 \mathrm{kHz}$
Dimen 4	76 $\times 37 \times 25$	$30 \times 146 \times 10$	40	$4 *$	20	50	$30 \mathrm{H}_{2}-40 \mathrm{CH} \mathrm{H}_{2}$
mimam 28	$81 \times 36 \times 28$	$32 \times 14 \times 11$	$2 \cdot 1$	60 w	15	60	$20 \mathrm{~Hz}-40 \mathrm{KHz}$
Binton es	$100 \times 38 \times 29$	$40 \times 15 \times 116$	4*	Bow	20	80	$18 \mathrm{Mz}-20 \mathrm{KMz}$
UL*	29.41 $\times 22$	113 * 16. 88	13**	40%	20	40	$35 \mathrm{~Hz}-28 \mathrm{KHz}$
UL 6	58 * 28 - 23	23 * 11×91	8.4	50 w	15	50	$30 \mathrm{~Hz}-28 \mathrm{KHz}$
UL 10	67 $\times 31$ - 者	$253 \times 124 \times 15$	18.\%	100%	25	100	$20 \mathrm{~Hz}-\mathrm{CCHHz}$

Celestion 5

Send this coupon for literature or ask your
dealer for a demonstration. I am interested in
large, medium, small speakers.
Name
Address
Rola Celestion Lid. Ditton Works. Foxhall Road. Ipswich, Sulfolk 1P3 8/P
Telephone: Ipswich (0473) 73131 Cables Voicecoil tpswich Telex 94365
the sound to be experienced!

DATEST 1: THE NEW TIME SAVER

Automatic device tester and identifier

DATEST 1 saves valuable repair time by automatically testing diodes, transistors, and all types of FETs, both in and

To carry out a test simply connect the device and switch on If the display flashes its "No Go". If you get a steady pattern it's
Go No prior knowledge is required of device polarity or whether it is bipolar or FET.
On the contrary, the clear six-LZU display telis you at a glance the polanty ot the device (NPN. PNP N-channel P-channel) and for out-of-circuit tests whether it is bipolar, depletion FET $^{\prime}$, or enhancement FET
If you then fhick the test current switch you can instantly place limits on current gain. leakage current, and FET parameters, Finally if you need to you can even plug in a multimeter and actually measure some of them
 display when battery voitage has dropped to too low a value
OATEST 1 is avalable now and comes complete with battery easy-to-use probes for in-circuit tests, and detailed handbook

Professional Performance at Popular Prices!

U. S. A. : Otari Corporation, 981 Industrial Road, San Carlos, California 94070, Phone: 415 593-1648
-Canada : Noresco Manifacturing Co., Ltd., 100 Floral Parkway, Toront, Ontario M6L2C5 Phone (416) 249-7316 U. K. C. E. Hammond \& Co., Ltd. 105/109 Oyster Lane, Byfleet, Surrey KT 14 7LA. Phone: Byfleet 41131
-France : Reditec 62-66, Rue Louis Ampère(Zone Industrielle des Chanoux), 93360 Neuilly.Plaisance, Phone: $935-9786$

- Belgium: Trans European Music S. A. Koeivijverstraat 105, 1710 Dilbeek. Phone: (02) 5691823
- Netherlands: Selectronic B. V. Siuisplein 3-4, Ouderkerk aan de Amstel, Postbus 28, Phone: 02963/4838/4966
- Australia: Klarion Enterprises (Pty.) Ltd. Regent House, 63 Kingsway, South Melbourne, 3205, Phone: 613801
- Singapore : Otari Electric Co., Ltd., Singapore Representative Office, 2701-A 27th Floor, International Plaza, Anson Road, Singapore (2)

FAST RESPONSE STRIP CHART RECORDERS
 Made in USSR

Series H3020

Basic error 2.5% Sensitivity 8 mA F.S D Response 0.2 sec Width of each channe Single and three-pen recorders Five-pen recorders

80 mm
50 mm

Chart speeds, selected by push buttons 0.1-0.2-0.5-1.0. 2.5-5.0-12.5.25 mm/sec.

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames Curvilinear co-ordinates
Equipment Marker pen, timer pen, paper footage indicator, 10 rolls of paper, connectors, etc

H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ PRICE £108.00 H3020-3 (Three pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$ high PRICE £160.00 H3020-5 (Five pen): 475 mm wide $\times 384 \mathrm{~mm}$ deep $\times 185 \mathrm{~mm}$ PRICE £295.00

Series H327

Polarized moving iron movements with syphon pens directly attached Built-in solid state amplifier (one per channel) provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic error 4\% Frequency response from DC to 100 Hz 2 dB

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5 volts/cm Width of each recording channel 40 mm
Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
Chart speeds $1-2-5-10-50-125-250 \mathrm{~mm} / \mathrm{sec}$
Type H3271-1. Single pen: Dimensions $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos PRICE E265.00 Type H327-3. Three pen: Dimensions $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos PRICE E5 20.00 Type H327-5. Five pen. Dimensions $425 \times 385 \times 165 \mathrm{~mm}$. Weight 25 kilos

PRICE £770.00.

Note Prices are exclusive of VAT
Available for immediate delivery

Z \& I AERO SERVICES LTD.
 44A WESTBOURNE GROVE, LONDON W2 5SF

Tel. 01-7275641
Telex: 261306
WW-066 FOR FURTHER DETALLS

POWERTRAN ELECTRONICS
 HI-FI NEWS 75W /CHANNEL AMPLIFIER

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November, 1972-February. 1973) and a subsequent follow-up
article (Aprit 1974) on a design for an ampliter of exceptional article (Aprlt 1974) on a design for an amplifier of exceptional
performance which has as its principal feature an ability to supply from a performance which has as its principal feature an ability to supply from a
divect coupled fully protected output stage. power in excess of 75 watts direct coupled fully yrotected output stage. power in excess of
whilst maintaining distortion at less than 000% even at very low power levels. The power amplifier is complemented by a pre-a mplifier based on a disclete component operational amplifier referred to as the Liniac which is
employed in the two most criticat points of the system. namely the equalization stage and tone control stage positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual teatures of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter There is a choce of four inputs, wo equalized and two linear, each having independently adjustabie signal levet. The attractive stimline unit pictured

Indonesia Brazil Switzerland Canada Saudi Arabia New Zealarid Norway Iceland Sweden

EXPORT ORDERS No VAT charged. Postage charged at actuat cost plus 50 p
packin International Money Order in sterting
SECURICOR DELIVERY For this optional service (U.K Mainland only) add
t2. 50 NADRS per kit
$121 / 2 \%$ * surcharge for VAT. Carriage free
MAIL ORDER ONLY (tor at current rate if changed)

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NN

Price
Slereo PCB laccommodates 2 tep. amps. 2 rec. amps. 2 meter amps. bias/erase ose. relay|E3.35 Sterea sel of capilors. M.O. resistors. potentiometers for above Slerea set of semiconductors for above. $\left.\quad \begin{array}{c}\text { ©9.80 } \\ \mathbf{E 8 . 9 0}\end{array}\right)$ 4. Miniature relay wilh sockel
5. PCB. all componenis for $£ 2.45$ circuits $£ 3.20$ 6. Goldring Lenco mechanism as specified. E21.95 Function swilch. knobs
. Dual WU meler with illuminaling lamp $£ 720$ Toroidal transformer with E.S. screen prim.
$0-117 \mathrm{~V} .234 \mathrm{~V} . \operatorname{Sec} .15 \mathrm{~V}$

SPECIAL PRICE FOR

 COMPLETE KITSPack \qquad Set of capacitors. rectifiers. I.C. valage regulator Sel of miscellaneous parts, incluting sackets $£ 2.80$ holder, tuses, interconnecting wire, elc. E2.50 Set of metalwork including silk screened tacia panel. internat screen, tixing parts, atc. . E7.10 Consiruction rotes $\mathbf{8 0 . 2 5}$ 14. Teak cabinet $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots 69.85$ One each of packs $1-14$ inclusive are required for compete stereo cassefte deck. Total cost of individuatly pur-

£81.35

Further details of above given in our FREE LIST
DEPT. WW3

Published in Wireless World (May, June, August 1976) by Mr Linsley-Hood. this design, although straightforward and relatively low cost nevertheless separate record and replay amplifiers are used the latter using a discrete component front-end designed such that the noise level is below that of the equalization time constants, a choice of bias levels and also an a choice ol an additinal constants, a choice of bias levels and also an option of using Goldring-Lenco CRV unit distinguished in its robustness and ease of operation Speed control and automatic cassette ejection are both transformer and uses metal oxide resistors throughout offers an excellent match for the Wireless World Tuner and the Linsley-Hood 75 Watt Amplifier

PRICE STABILITY

Order with confidence! Irrespective of any price changes we will honour all prices in this advertisement for two months from issue date provided that this advertisement is quoted with your order. E\&OE VAT rate changes excluded. All components are brand new first grade full specification devices. All resistors (except where stated) are low noise carbon film types All printed circuit boards are fibre-glass drilled, roller tinned and supplied with circuit diagrams and construction layouts

AUDIO KIT SUPPLIERS TO THE WORLD

$\mathbf{T} \mathbf{2 0}+\mathbf{2 0}$ and our new $\mathbf{T} \mathbf{3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroldal transformer and additionaly improvements, the slimline $20+20$ delivers 20 W per channel of true Hi-Flat exceptionaly low The design is based on a single Glass CB and reatures all selector and heäd phones socket in a amplifiers. Including scractical Wireless further modifications were suggested and these have been. incorporated into the T30 +30 These include RF interference tifters and a tape monitor facility

Pack	T20	T30
B. Toroidal transtorner - 240 V prim.		
e.s. screen	4.95	6.80
9. Foreglass PCB	3.20	3.60
10. Set of metalwork. fiximy parts	4.20	4.80
11. Sel of cables. mains lead ...	0.40	0.40
12. Handbook \|ree with complete kit).	0.25	0.25
13 Teak catinet $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8{ }^{\prime \prime}$	4.50	4.50

SPECIAL PRICES
 FOR COMPLETE KITS!

${ }_{\text {KIT PRicE only }}^{\text {T2O }}$ £31.10
T30 + 30
${ }^{\text {Kit PaicE only }} £ 35.90$
2 NEW TUNERS!
WW SFMT II
Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model. designed to
complement the T20 and T30 amplofiers The frequency meter of the more advanced model has been omitted and the mechanics simplified however the circuitry is identical and this new kit offers most exceptional value for money. Facilities included are switchable afc, adjustable, switchable muting, channel selection by slider or readily adjustable pre-set push-bution controls and LED tuning indication Individual pack prices in our free list

POWERTRAN SFMT

This easy to construct tuner using our own circuit design includes a pre-aligned tront end module, PLL stereo decoder, adjustable, switchable muting. switchable atc and push-button channel selection As with all our together with full constructional details

KIT PRICE
 $£ 45.50$

SQM1 - 30
KIT PRICE $£ \mathbf{3 7 . 1 5}$
Wirolase World Anyplifier Dosigns. Full kits are not avatable for these projecis but Component packs and PCBs are stocked for the highly regarded Bailey and 20 W class AB
Linsley Hood designs, together with an efficient regulated power supply of our own design Sutable for driving these amplitiers is the Bailey Burrows pre-amplifier and our mde range tone controls which may be either rotary or slider operating for those intending to get the best out of ither speakers we also offier an active filter system. described by O C Read, which splts the output of each channel from the pre-amplifier
into three channels each of which is ted to the appropriate speaker by its own power amplifier The Read/Texas 20 W or any of our other kirs are suitable for these For tape systems a set of three PCBs have been prepared lor the integrated cricuit based. high $30 W$ Balley Amplitier
BAIL Pk 1 F/Glass PCB

$20 W$ Linsley Hood Class AB
LHAB Pk 1 F/Glass PCB.
LHAB Pk 2 Resistor CP
LHAB Pk, 3 Semiconductor set Potentiometer set
Regulator Power Sypply
60 VS Pk, 1 F/Glass PCB
60VS Pk. 2 Resistor. Capacitor set
60VS Pk
3
60 VS Pk 6 Torodal transiormer (for use with Bailey)
6OVS Pk 6 B Toroval transtormer (tor use with 20 W LH)
Balley Burrows Stereo Pre-Am
BaPA Pk IF/Glass PCB
BBPA Pk. 2 Resistor, capacior semiconductor set
BBPA Pk 3R Rotary Potentiometer set
Factive Filter 1 Glass PCB
FiLT Pk 2 Resistor. Capacitor set (metal oxide 2%. polystyrene $21 / 2 \%$)
FILT Pk 3 Semiconductor set
2 off Pks 123 rad for ster
Read/ /exas cun Amp
READ Pik. 2 Resistor. Capacitor sel
READ Pk. 3 Semiconductor set
Thas. 'ove recorger 1 Replay Amp F/Glass PC6
TRRC Pk 1 Record Amp F/Glass PCB
TROS Pk 1 Bias/Erase /Stalilizer F/Glass PCB
HOS 4 /

EXPORT NO PROBLEM

SEMICONDUCTORS as used in our range of quality audio equipment.

2N699	¢0.20	40361	co.al	BD529	co.s5	MJES 51	¢0.60	TIP29C	¢0.55
2N1613	¢0.20	40362	c0.45	B0530	¢0. 55	MPSAOS	¢0.25	TIP30C	¢0.60
2N1711	¢0.25	BC107	co. 10	BDY56	¢1.60	MPSA12	c0. 35	TIP414	¢0.70
2 N 2926 G	¢0.10	BC108	¢0.10	8F257	£0.40	MPSA14	E0.30	TIP42A	c0.80
2 N 3055	¢0.45	BC109	c0.10	8F259	¢0.47	MPSA5R	E0. 25	TIP418	¢0.75
2N3442	$\underline{1.20}$	BC 109C	c0.12	8FR39	¢0.30	MrSAb5	E0.35	TIP428	ع0.90
2N3711	¢0.09	8 CC 125	60.15	BFR79	co 30	MPSA66	¢0.40,	1 N 914	$\underline{6.07}$
2N3904	¢0.17	BC 126	c0.15	BFY51	¢0.20	MPSU05	c0.50'	iN916	¢0.07
2N3906	$\underline{60.20}$	8Ci82	c0.10	8FY52	¢0.20	MPSU55	c0.50	.15920	¢0.10
2N4062	¢0.11	BC212	c0. 12	CA3046	¢0.70	SBA750A	£1.90		
2 N 4302	¢0.60	BC182K	¢0.10	LP1186	¢6.50	St301	£1.30		
2N5087	c0. 25	BC21<n	co.12	MC1310	¢2.20	SL3045	¢1.20	Filters	
2N5210	¢0.25	BCl182L	c0.10	MC1351	£1.05	SN72741P	¢0.40	FM4	E1.00
2N5457	$\underline{60.45}$	BC184L	c0. 11	MC1741CG	¢0.65	SN72748P	¢0.40	SFG10 7MA	E1.50
2N5459	¢0.45	BC212L	c0.12	MFC4010	¢0.95	TIL209	c0.20		
2 N 5461	${ }^{60.50}$	BC214.	¢0.14	MJ481	E1. 20	TIP29A	¢0.40		
2N5830	60.35	$\mathrm{BC}^{\text {Y } 72}$	c0.13	MJ491	E1.45	TIP30A	¢0.45		

Our Export Department will be pleased to advise on postal costs to anv country in the world. Some of the countries to which we sent kits in 1976 are shown surrounding this advertisement

Tunisia Germany Nauru Hong Kong Australia Eire Gambia Denmark France Muscat \& Oman

8 DECADE RESISTANCE BOX

* Colour coded digits, Ω yellow, $K \Omega$ white, $M \Omega$ red

TIME ELECTRONICS LTD.
Botany Industrial Estate Tonbridge, Kent
Tel. Tonbridge (0732) 355993
WW-023 FOR FURTHER DETAILS

- PCB DESIGN SERVICE

All types of Artwork
 Assembly \& Drilling drawings Component Identity screens Solder resist masters

Multilayer
PADS Electrical Ltd

45 SOUTHWOOD RD. NEW ELTHAM, LOND
TEL. $01885 \quad 6516$

The best sounding universal tone arm PROFESSIONAL LABORATORY
Silicone Damped Pick-up Arm

most impressed with its performance
Micro-Acoustics Corp., U.S.A Works exceptionally well with our cartridge' Win Labs., U.S.A 'my Shure $V 15 / 3$ has never sounded better, superb arm speakers suddenly in phase C. Tchalekian. Canada using Sonus Blue Label the sound was best of all by a very wide margin over the finest other arms tried R. S. Golombeck, U.S.A finest tonearm to date with ADC XLM Mk 2 \& SUPEX MMC World's best tonearm, makes a Decca track (that ought to be enough)

Audiogram, U.S.A
'JVC X-1 fitted at last someone has designed a pick-up arm complementary to the best cartridge available
B. B. Collyer, London 'more listening pleasure than with any other tone arm used Stanton 681 eee ADC 26 \& Fidelity Research

Au Chu Chung, Singapore
Leaflet on request
MAYWARE LTD. (Dept. WW3)
15 Heather Walk, Edgware, Middlesex HA8 9TS, England WW - 082 FOR FURTHER DETAILS

A FREE CATALOGUE requested by post or phone, will be sent by return giving full details of our range of CASES CHIPS - DISPLAYS O MPUs O MPU KITS

USEFUL PAMTED CIRCUIT BOARDS

order as $\begin{aligned} & \text { Description } \\ & \text { COUNTER PCB SETS }\end{aligned}$ COUNTER PCB SETS Sens of PCBS to hold d spays and all the iCs to building a 6 digin 4 digt or 2 digit COUNTER MOOULE WWTH LATCH USING TTL The PCBS hod one each pee digit of TIL 32174477475 and 7490 as well as Rs and Cs Each set consists ot one vertical PCB IIL321 74477475 and 7490 as well as Ris and Cs Each set consists of one vertical PCE which holds the displays and is fastened to a horizontal board which hoids the remaining components (plea se order components separately)

 COUNTER KIT

MEMORIES

NEW

4K STATIC RAM

Our offices are at Link Property, 209 Cowley Road, Oxford. but please do not use this as
postal address
VAT but add 10% (Europe) 15% (Overseas) for AII Mal p 8 PST SERVICE Export orders welcome VAT but add
cortact us firsi

SEND YOUR
ORDER TO

SINTEL

PO BOX 75C. OXFORD Tel. 086549791

CMOS AND OTHER COMPONENTS
Coto

AY51202	2.89
AY51224	3.50
MK50253	5.60
FLAT CABLE	
20 w 1 m	1.00
Omfor	8.00
verocases	
751410 J	3.36
7514110	3.77
751237」	2.15
7512380	3.00
751239 K	3.58
DISPLAYS	
FNO 500	1.02
TIL321	1.30
T1L322	1.20
XAN652	2.45
XAN654	2.45
5 LTO	5.80
SOLDERCON IC PINS	
100	0.50
1000	4.00
000	34.00

MPUs $\begin{array}{cc}\text { M6100CCOL } & \mathbf{4 5 . 3 6} \\ 8080(2 L S) & \mathbf{3 2 . 2 5} \\ \text { MC6800 } & 33.8\end{array}$ $8080(2 \mathrm{LS})$
MC6800
SC/MP 33.87
SC/MP
SPA 500
meu kits
MPU KITS $\mathbf{6 2 7 . 5 0}$
137.00 MEKE8ONO
NTRO KIT
SP8K/200E

S3.5 | MCS 80 | |
| :--- | :--- |
| 176.65 | | TRANSFORMERS chraf CRYSTALS 32768 kHz

512 MHz SUNDRIES CA3:30
$-A 741$
ACA

NEW DATA FROM SINTEL
 MS 8080 Microprocessor Datasheet $\begin{array}{r}3.50 \\ 0.75\end{array}$

	56 сск	
CRYSTAL CONTROLLED 6 digit Car CLOCK WITH INDEPENDENT JOURNEY TIMER. Shows fime or elapsed time in hrs mins secs Runs off car 12 v supply - Nine push buttons for Siart-Siop-Reset selecting display to show time or etapsed time - All controls functional itrespective of display mode - Kit complete wath case. Order as CCK.		
	ACK (ALARM). Drders as ACK + BBK + XTK Without crystal control and batery backup (Can be added) Order as ACK	¢ 63.58
	GCK clock kit. Order as GCK + GBBK + XTK Without crystal conkrol and battery backup	¢19.65
	Order as GCK THE SINTEL CAR CLOCK KIT Order as AUT-ck	¢ 14.40 $¢ 17.85$
	Without case Order as AUT-MODULE KIT	¢16.45
SOHz CRystal timebase kit Order bs Xtk e6.28		

FAST SERVICE. We guarantee that Telephone Orders for goods in stock, received by 4.15 p.m. (Mon.-Fri.) will be despatched on the same day by 1st Class Post (some heavy items by pancel post) and our stocking is good. Prbate customimum order value of E5. Official orders, no minimum.

Strobes, Tachos, Meters, Generators and Telecommunications Test Equipment
E.B. import and distribute high-grade products from World-renowned British \& Overseas Manufacturers.

NEW FUNCTION GENERATORS!

G430 provides Sine-wave ($0-10 \mathrm{Vrms}$) and Square-wave ($0-20 \mathrm{~V} \mathrm{p}-\mathrm{p}$) from 600s, continuously variable, via 4 -position $0-60 \mathrm{~dB}$, push-button operated step attenuator. Frequency range 1 HZ to MHz .

Send for
details of our complete range

NEW PULSE GENERATOR Model 70 (illustrated above)
Compact, Iow-cost pulse and square-wave generator featuring
P.R.F. 4 Hz to 400 kHz , gated or free-running O/P 10 v p aak from 50, also synch. O/P. Pulse widtr $1 \mu \mathrm{Sec}$ to 100 mSec Delay $1 \mu \mathrm{Sec}$ to 100 mSec . Pulse mark / space inversion. TTL/CMOS HI LO gating facility

NEW WIDE-RANGE MULTIMETER UM-11

Features 38 -colour-coded ranges

 with high input impedance

150 mV to
1500 V f.s.d
at $100 \mathrm{k} \Omega / \mathrm{V}$. a.c. Volts
1.5 V to 1500 V f.s.d. at $31.6 \mathrm{k} \Omega / \mathrm{v}$. d.c Current, $10 \mu \mathrm{~A}$ to 15 A a c. Current. 15 A .
Other star features include mirror-scale rugged taut band suspension, dB scale, diode and fuse protection.
Supplied complete with test-leads and leather carrying
$£ 39.50$ case
 I=AE

THE DPEN DOQR TO EUALTY

ISSUE NO. 4 NOW READY - WITH NEW SECTION ON METERS
This catalogue - Electrovalue Catalogue No. 8 (Issue 4, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The company's own computer is programmed to expedite delivery and maintain customer satisfaction Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted

+ FREE POSTAGE on all C.W.O mail orders over $£ 2.00$ list value
(excluding V.A.T.) in U.K. If under, add $15 p$ handling charge.
Catalogue

Two hooks from Wireless World

These books are of very special appeal to all concerned with designing using and understanding electronic circuits. They comprise information previously included in Wireless World's highly successful

Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. Each of these magazine-size hard cover books contains ten sets of Circards plus additional circuits and explanatory introduction.

BOOK 1

Basic active filters Switching circuits Waveform generators AC measurements Audio circuits

Constant-current circuits Power amplifers Astable circuits Optoelectronics Micropower circuits

BOOK 2

Basıc logic gates Wideband amplifiers Alarm circuits Digital counters Pulse modulators

C d as - signal processing C das-signal generation Cd as - measurement and detection
Monostable circuits
Transistor pairs

ORDERFORM

To: General Sales Department.
IPC Business Press Limited.
Room 11. Dorset House.
Stamford Street, London SE1 9 LU
Please send me....copy/copies of
Circuit Designs - Number 1 at E 10.40
Circuit Designs - Number 2 at $£ 1250 \square$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd:)

Name (please print)
Address

INTRODUCTORY
 MONEY-SAVING OFFER
 BUY THE SS. 1100
 100 W.R.M.S.
 POWER AMP
 WITH THE NEW
 SS. 370 POWER
 SUPPLY AND SAVE $£ 1.95$

Using a 70 volt supply, the SS 1100 delivers 100 watts R.M.S inio 4 ohms for an input sensitivity of
500 mV firequency response -10 Hz to 50 KHz $\pm 1 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio better than 75 dB , distortion typically 09% at half power Size $5^{\prime \prime} \times 31^{\prime \prime}{ }^{\prime \prime} \times$ NOW WE INTRODUCE SS. 370 . OUR NEW POWER SUPPLY - IDEAL FOR THE SS. 1100. The SS 370 includes low voltage take-off point to pre-amp tuner, etc

STIRLING SOUND POWER AMPLIFIERS

FROM 5 TO 40 WATTS
SS. 105
5 watts R.M S into 4 ohms using 12 V supply. Ideal for use in in-car entertainment Size $-89 \times 51 \times 19 \mathrm{~mm}$.
S. 110

Similar in size and desion to SS 105
QV module delivers 10 watrs R M S . into QV module delivers 10 watts R M.S. into
4 ohms using a 24 V supoly e g SS 324 of great use in domestic applications

SS. 120
Using a 34 volt supply, such as SS 334 . this amplifier will deliver 20 watts into a 4 ohm load. Same dimensions as above, Power supplies ordered with above carry FOR POWER SUPPLY UNITS SEE BELOW

STIRLING SOUND PRE-AMP/TONE CONTROL UNITS UNIT ONE
Combined pie-amp with acrive tone contiol on 101016 V supply Trebie ± 15 d8 at
10 KHz 等 10 KHz Bass -15 of at 30 Hz Stereo
$\mathbf{S S} .100$
Active ton

SS. 102 STEREO PRE-AMP
R LAA corrected for mag

STIRLING SOUND POWER SUPPLY UNITS

COMPLETE WITH TRANSFORMERS and $13-16 \mathrm{~V}$ take-off points except SS 312 Add $50 \mathrm{p} p / \mathrm{p}$ for any model except SS $370-\mathrm{E} 1$ ALL AT 8% VAT
SS. 312 12V/1A£3.75; SS. 318 18V/IA£4.15; SS. 324 24V/IA £4.60; SS. 334 STABILISING UNIT $10-50 \mathrm{~V}$ adustable for SS. $\mathbf{3 5 0} 50 \mathrm{~V} / 2 \mathrm{~A}$ £6.75; $\mathbf{S S . 3 0 0 .}$ circuit proof ($\mathrm{p} / \mathrm{p} 35 \mathrm{p}$) £3.25; SS.310/50. STABILISED POWER SUPPLY, varable from 10 to $50 \mathrm{~V} / 2 \mathrm{~A}$ with anti-short protection $£ 11.95$

THE BUILTIN QV FACTOR is the symbol of Stirling SOUnd's guarantee of Quality and Valu
which gives you today's best buys all round. If is YOUR GUARANTEE OF SATISFACTION. TO ORDER add 35 p for p p for mall orders uniess stater otherwise VAT adt \rightarrow 居
Cthimy Eound
Dept WW 3 member of the BI-PRE-PAK GROUP OF COMPANIES Dept. WW 3, 220-224 WVEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 90
Phone: Southend (0702) 46344 . PERSONAL CALLERS WELCOME

SS. 140°
Mk. 3 version complete with output capacitor and hearsink-type bracket Pelivers 40 watts R.M. S into 4 ohms roma 45 volt supply such as the SS. 345
SS. 107
Pre amp for ceramic carridges etc passive
tone controt circuit shown lin data suplied
£ 1.60
RIAA corrected for mp

Promp with active
tone control circuita
S. 1100 POWER AMP £9.45

SS. 370 70V/2A
POWER SUPPLY £12.50 Ordered together with iarge heat
sink (total normal cost $£ 22.95$)
£21.00*
POSTAGE - Add E1 00 for

WW-109 FOR FURTHER DEIAILS

STEREO DISC AMPLIFIER 2

Magnetic cartridge to balanced tines with the highest quality Mains power
distortion and continued attention to cartidge impedance inte
FOR BROADCASTING DISC MONITORING AND RIANSFER
The square wave distortion figure * is a revealing guide to performance on assymetrical signals and transient intermoduiation cistortion
\star^{\top} Holman "New Factors in Phonograph Preamplitier Design" JAES Vol. 24 No 4

Distortion
Outpu: OdBV. $7 \quad 30 \mathrm{~Hz}-20 \mathrm{KHz}$ beiov noise
$\begin{array}{ll}\text { Output }+20 \mathrm{dBV} 7 . & 3 \mathrm{KHz}-88 \mathrm{~dB} \mathrm{O} 00 \mathrm{KH} \%-30 \mathrm{~Hz}-20 \mathrm{KHz} 82 \mathrm{~dB} .0008 \%\end{array}$
Intermodutation distortion $50 \mathrm{~Hz}+7 \mathrm{KHz} 41$
Output $+10 \mathrm{dBV} 7 \quad 90 \mathrm{~dB}, 0.003 \%$ limit of measurement
Square wave distortion. Pre-emphasısed 1 KHz squäre wave input 600 mV pk.pk Even harmonic generation -70dB any harmoric
Cartridge impedance interaction on frequency response.
High inductance cartidge Less than 02 d h
Low frequency response
$\begin{array}{ll}18 \mathrm{~dB} / \text { octave } & -3 \mathrm{~dB} / 24 \mathrm{~Hz}_{7} \\ \text { Group delay relative to } 1 \mathrm{KHz} & -15 \mathrm{~ms}\end{array}$
Group delay relative to $1 \mathrm{KHz}-15 \mathrm{~ms}$ @ 30 Hz
Noise
$\begin{array}{ll}\text { Short circuit input } & -7 \mathrm{CdBV} .7{ }^{\circ} \\ \text { Cartidge source. } 100 \mathrm{mH} & -67 \mathrm{dBV} .7\end{array} \quad 20 \dashv y$
SURREY ELECTRONICS
The Forge, Luckz Green, Cranleigh, Surrey GU6 7BG (STD 04866) 5997

TELERADIO SPECIALISTS IN DESIGVS by John Linsley Hood Example VERY LOW DISTORTIGN AUDIO OSCILLATOR
An ideal instrument for checking Hi-FI Amps

SINE AND
SQUARE WAVE

REF AO 113

Kit Price $£ 18$
Made £22. Tax 8%
Also available. THD Analyser FM Sig. Gen. AC Millivoltmeter. P.S.U Frequency Meter, etc In addition we have amplifier designs by Blomley. Linsley Hood, Baitey, Mullard, etc

Send S A E (f'scap) for comprehensive lists

TELERADIO ELECTRONICS

325 Fore Street, Edmonton, London, N9 OPE
Telephone: 01-807 3719
Closed Thursdays

RETURN OF POST MAIL ORDER SERVICE

R.C.S. "MINOR'" 10 watt AMPLIFIER KIT This kit is sutiable for record players, guitars, tape playback, electronic instruments or small PA. Systems. Two versions
avalable Mono, $£ 11,25$; Stereo, $£ 18$. Post 45 p Specification avalable Mono, £11.25; Stereo, £18. Post 45p Specification
10 W per channel, input 100 mV . size $91 / 2 \times 3 \times 2 \mathrm{in}$ approx SAE details Full instructions supplied AC mains powered.

VOLUME CONTROLS $5 k \cap$ to $2 M \Omega$ LOG or LIN L/S 25p. D.P. 40p. STEREO L/S 65p. D.P 85p. Edge 5K S P Transistor 30p.	80 Ohm Coax 8 p yd STANDARD TYPE VHF FRINGE LOW LOSS 15 p yd. Ideal 625 and colour PLUGS 10p. SOCKETS 10p. LINE SOCKETS 18p. OUTLET BOXES 50p.
ELAC HI-FI SPEA 8 in . TWIN CONE Dual cone plasticised roll surr ceramic magnet 50.16.000 resonance $55 \mathrm{c} / \mathrm{s} 8 \mathrm{ohm}$ imp watts music power $£ 3.95$	

E.M.I. $131 / 2 \times 8 \mathrm{Bin}$. SPEAKER SALE!
With tweeter and
crossover 10 watt
State 3 or 8 ohm
As Illustrated

BLANK ALUMINIUM CHASSIS. $6 \times 4-70 p ; 8 \times 6-90 p ;$
 ALUMINIUM PANELS. $6 \times 4-17 p ; 8^{-} \times 6-24 p ; 14 \times$
$3-25 p ; 10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p ; 16 \times$ 3-25p; $10 \times 7-35 p ; 12 \times 8-43 p ; 12 \times 5-30 p$
$6-43 p ; 14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p$ MANY AUI BOXES IN STOCK MANY SIZES

All parts and instructions with Zener diode, printe and 2.95 transformer. Input $200 / 240 \mathrm{Vac}$. Output
2.95 voltages avalable. 6 or 7.5 or 9 or 12 V d.c up to 100 mA or less Size $3 \times 21 / 2 \times 1 / 2 m$ Please state voltage required.
 circult boarc and assembly instructions. 12 VOLT 3 COmA KIT. E3.15. 9 VOLT 1 AMP KIT. $£ 3.35$. R.C.S.GENERAL PURPOSE TRANSISTOR deal for Mire, Tape, $\mathrm{P} U$.. Guitar, etc Can be used with battery $3 / 40$. Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}$ gain
For use with valve or transistor equipment
E1.45 ull instructions supplied Detals S A E E1.4.5

GENERAL PURPOSE LOW VOLTAGE Tapped outputs at 2 £4.60. 2 amp, 6. 8. 10. 12. 16, 18. 20. 24. 30, 36, 40 . $48,60 £ 7.3 \mathrm{amp} .6 .8,10.12,16,18.20,24,30.36$. $40.48,60 £ 8.70 .5 \mathrm{amp} 6,8,10,12.16,18.20 .24$. 30. $36.40 .48,60$ £ 11.25 . 6 O6V $500 \mathrm{~mA} £ 1$, 9 V 1 amp £1, $12 \mathrm{~V} 300 \mathrm{~mA}, \ldots 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}, \mathrm{E} 1$, $10 \mathrm{~V}, \mathbf{3 0 V}, 40 \mathrm{~V} .2 \mathrm{amp} . £ 2.75,20 \mathrm{~V}, 3 \mathrm{amp}, \mathrm{E2.45}, 40 \mathrm{~V}$. 2 amp., $£ 2.95,30 \mathrm{~V} 5 \mathrm{~A}$ and 34 V 2 ACT £3.45, 16 V , $1 / 2$ amp. $£ 1,16 \mathrm{~V}, 2 \mathrm{amp}$ £2.20, $0.5,10.16 \mathrm{~V}, 1 / 2 \mathrm{mp}$ £1.95, 2 CV $1 / 2 \mathrm{amp}$. £1.75, $20 \mathrm{~V}, 1 \mathrm{amp}$. e $2.20,20 \mathrm{~V} 3$ amp. £2.50, 20-0.20V 1 amp.. £2.95, $30 \mathrm{~V} 11 / 2 \mathrm{amp}$. £2.75; 20 VV .40 V .60 V or $20-\mathrm{O}-20 \mathrm{~V}$. 1 amp . $\mathbf{£ 3 . 5 0}$. AUTO TRANSFORMERS, 115 V to 230 V or 230 V to 115 V 150W £5; 250W £6; 400W £7; 500W £8. FULL WAVE BRIDGE CHARGER RECTIFIERS 6 or 12 V outputs, $11 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}$. CHARGER TRANSFORMERS $11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp}$. $£ 4.60$. 12V. 11/2A HALF WAVE Selenium Recuifier. 25p.

R.C.S.
 SPEAKERS

Size $141 / 2 \pi n . \times 91 / 4 n, x$
6in Respon:ee 50 to
14.000 cps 8 watts rms
£ 16 pair Post £1.30

KUBA-KOPENHAGEN STEREO

TUNER-AMPLIFIER CHASSIS AM-FM $5+5$ WATI This Continental 4 -band radiogram chassis uses first class quality
components throughout. Features Large tacia panel with 7 push buttons for medium, long. short VHF.FM. AFC. phono mains on-off 4-rotatry controls, tunning, volume, tone. balance Facia size $17 \times 4^{1 / 2}$ inches Chassis size $17 \times 41 / \times 51 / 2$ inches
DIN-connetir sockets for rape record $/$ playback. Ioudspeakers. DiN-connecter sockets for rape record/ playback. Ioudspeake phono pick-up. external FM-AM aerials Automatic stereo
beacon light Buil-in ferrite rod aerial
beacon light Bult-in ferrite rod aerial
for medium longwave A.C 240 V
Above speakerrs are suitable $£ \mathbf{~ 3} \mathbf{3 . 5 0}$ Post $£ 1.50$
LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,3050,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$1.2,4,5,8,16,25,3050,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p}$.
5000mF $12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{p} 25 \mathrm{~V}$ 3p; $50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
1000 mF
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} \mathrm{42p} ; 50 \mathrm{~V} 57 \mathrm{p}$.
$250 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p}, 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 65 \mathrm{p}$. $5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p} ; 25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p}$; 50 V 95 p. SHORT WAWE 100 DF air spaced gangable tuner. 95 p. TRIMMERS 10 pF, 30pF, 50pF, 5p. 100pF, 150pF, 15p.
 15p; $500 \mathrm{~V}-0.00$ to 005 5p; 0 , 10p; 02513 p; 047 25p. MICRO SWITCH SINGLE POLE CHANGEOVER 20p.
SUB-MIN MIICRO SWITCH, 25p. Single pole change over
TWIN GANG $385+385 \mathrm{pF} 50 \mathrm{p}$; 500 pF standard 75 p; 36
TWIN GANG, $385+385 \mathrm{pF} 50 \mathrm{p}$; 500 pF standard $75 \mathrm{p} ; 365$ $+365+25+25$ pF, Slow motion drive 65p.
120 pF TWIN GANG, 50 p; 365 pF TWIN GA
120 pF TWIN GANG, 50p; 365 DF TWIN GANG, 50p.
NEON PANEL INOICATORS 250 V Amber
NEON PANEL INDICATORS 250 V . Amber or red 30p.
RESISTORS. $1 / 4 \mathrm{~W}$ 1/2W, $1 \mathrm{~W}, 20 \%$ 2p; 2W. 10p; 102 to 10 M
HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \% 10$ ohms to 6 meg 12 p. Dito 5\% Preferred values 10 ohms to 10 meg. 5 . 12 . Dith 5% Preferred values 10 ohms to 10 meg. $5 p$.
WIRE-WOUMD RESISTORS 5 walt, 10 watt. 15 watt. 10 ohms to 100 k 12 p each
TAG STRIP 28 .way 12 p .
TAPE OSCILLATOR COIL. Valve type, 35p
BRIDGE RECTIFIER 200 V PIV $1 / 2 \mathrm{amp} 50 \mathrm{p}$.
TOGGLE SWITCHES S.P. 20p. D.P.S.T 25p. D.P.D.T. 30p. MANY OTHER TOGGLES IN STOCK
PICK-UP CARTRIDGES ACOS GP91
PICK-UP CARTRIDGES ACOS GP91 £1.50. GP93 £2.50.

	MAJOR 12" £14.95 Post 100 $30-14500 \mathrm{c} / \mathrm{s} .12 \mathrm{in}$. double cone woofer and tweeter cone together with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145000 Maxwells. Bass resonance $40 \mathrm{c} / \mathrm{s}$ Rated 25W NOTE 3 or 8 or 15 ohms must be stated Module kit $30-17.000 \mathrm{c} / \mathrm{s}$ with tweeter crossover, t\& and instructions 8.95 and instructions Post $£ 160 \mathrm{p}$ each

BAKER "BIG-SOUND" SPEAKERS. Post $£ 100$ each
'Group 25' \quad Group 35' \quad Group 50/15'

BAKER LOUDSPEAKĒR, 12 INCH. $\overline{60}$ WATT̄
GROUP 50/12, 8 OR 15 OHM HIGH POWER FULL RANGE PROFESSIONAL QUALITY
£20.95 $30-16.000 \mathrm{CPS}$
MASSIVE CERAMIC MAGNET WITH
ALUMINIUM PRESENCE CENTRE DOME
TEAK VENEERED HI-FI SPEAKERS AND CABINETS
 $\begin{array}{lr}\text { For } 13 \times 8 \text { in or } 8 \text { in speaker } & \mathbf{£ 7 . 5 0} \text { Post } £ 1 \\ \text { For } 8 \times 5 \text { in speaker } 12 \times 8 \times 6 \text { in } & \mathbf{5 . 8 0} \text { Post } 75 p\end{array}$

R.C.S. 100 watt

VALVE
AMPLIFIER

CHASSIS

Four inputs four way mixing, master volume. treble and bass controls Surts all speakers This professional quality amplifier chassis is suitable for all groups, disco, P.A., where high quality
power is required. 5 speaker outputs. A/C manns operated. Slave output socket Produced by demand for a quality valve amplifier 100 V line output to order
Suitable carrying cab $£ 14$. Price $£ 85 \begin{aligned} & \text { Send for leaflet. } \\ & \text { carr. } £ 2.50\end{aligned}$. SPEAKER COVERING MATERIALS. Samples Large S.A.E LOUDSPEAKER CABINET WADDING 18 in . Wide 20p
Horn Tweeters $2-16 \mathrm{kc} / \mathrm{s}$, 10 W 8 ohm or 15 ohm $£ 3.60$ De Luxe Horn Tweeters $3.18 \mathrm{kc} / \mathrm{s}$, $30 \mathrm{~W}, 8 \mathrm{ohm}, £ 7.50$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3 -way $950 \mathrm{cps} / 3000 \mathrm{cps}, \mathbf{£ 2 . 2 0}$.
LOUDSPEAKERS P.M. 3 OHM 7×4 in £1.50; $61 / 2 \mathrm{In}$. £1.80; 8×5 in £1.90; 8 in. £1.95.
SPECIAL OFFER: 80 ohm $21 / 4 \mathrm{in}, 23 / 4 \mathrm{in}, 35 \mathrm{ohm}$. $3 \mathrm{in}, 25$

PHILIPS LOUDSPEAKER, Bin 4 da $£ 1.25$ each. 419 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8 in . diameter $4 \mathrm{~W} £ 2.50$. 10 in diameter $5 \mathrm{~W} £ 2.95$; 12 in diameter $6 \mathrm{~W} £ \mathbf{~} \mathbf{3 . 5 0}$. $3 / 8 / 15 \mathrm{ohms}$, please state PIEZO ELECTRIC HORN TWEETER. Handles up to 100 watts. No crossover required. £10.95.
Tweeter Volume Control 15 ohms 10W with one inch long threaded bush for wood panel mounting $1 / 4 i n$, spindle. 65 p. BAKER 150 WATT PROFESSIONAL MIXER AMPLIFIER All purpose transistorised
Ideal for Groups, Disco
Ideal for Groups, Disco
and P.A 4 inputs
 Output antrols. Masterve ac Mains Guaranteed Detalls S.A E NEW MODEL MAJOR - 50 watt. 4 inpu 2 vol Treble and bass Ideal disco

amplifie

100 WATT DISCO ${ }^{\text {AMMPLIFIER CHASSIS }}$ volume, treble, bass controls 500 MV or 1 volt input. $£ 52$
Four loudspeaker outputs 4 to 16 ohm All transistor
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER Add musical highlights and sound effects to recordings Will mix Microphone, records, tape and tuner
with separate controls into single output 9 V
$\mathbf{5} .95$

TWO STEREO CHANNEL VERSION $£ 7.50$

 BARGAIN 3 WATT AMPLIFIER. 4 TransistorPush-Pull Ready Buit with volume Treble $\mathbf{£ 3 . 9 5}$ and bass controls 18 volt dc Mains Power Pack $£ 3.45$
BALANCED TWIN RIBBON FEEDER 300 ohms. $5 p$ yd. Chro Socket Std. 45p. Mono or Stereo.
Phono Pluge 8p. Phono Socket 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25p; 3.5mm 15p STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS Chassie 3-pin 10p. 5-pin 10p
DIN SOCKETS FREE 3-pin 25p; 5-pin 25p. DIN PLUGS 3-pin 25p; 5-pin 25p. VALVE HOLDERS, 10p; CANS 10p.

E.M.I. TAPE MOTORS. 240 V a.c 1.200
 Collaro gram motor 120 V 75 p.
E.M I gram motor 240 V € 1.25 .
mand
available as: - True VU METERS
DC MICROAMMETERS AC \& DC VOLTMETERS AC \& DC MILLIAMMETERS AC \& DC AMMETERS
SERVO AUTOTESTERS:-A range
of four types of instrument
to measure auto/mobile currents and voltages dwell angle engine speed, etc

SERVO AND ELECTRONIC SALES LTD.

Tel. LYDD 20252 24 HIGH STREET, LYDD, KENT TN29 9AJ TLX 965265

[^4]
\square ELICTRONIC BROKERS LIMITED (Compitior Siles aSenvees Ditani) 49-53Pancras Road, London NW1 2QB. Tel:O1-837 7781

Britain's biggest and best-known exhibition of home entertainment, audio and hiffi.

- UNIQUE - for reputation and scope. This is our 23 rd year, and no other fair offers such a comprehensive showcase for home electronic entertainment, plus the traditional appeal to audio and hi-fi specialists.
- LONDON'S OLYMPIA - the industry's favoured location, where the people and the money are ... and the only venue with the size, scope and facilities for this great trade and public festival.
* SEPTEMBER 12 to 18,1977 - the preferred preChristmas selling-time period... and opening with a day and a half for the trade only.
- BACKED by major IPC specialist, trade and consumer publications, commanding a combined readership of $1,750,000$.
- ORGANISED by the IPC Business Press specialist exhibition company, with a remarkable record and reputation for handling specialist fairs.

MARCONI NOISE GENERATOR TF987/1.
 4 Ranges $0-5 ; 0-10: 0-15,0-30$ Due to iarge purchases now priced at $£ 15$ aa.

COMPRESSOR/VACUUM PUMP

Twin Cylinder opposed with Integral $1 / 2 \mathrm{H} . \mathrm{P}$ 220 / 110 V 50 HZ Single Phase Motor Tested $\&$ Checked £ 17.50 ea.
110 Voits only $\mathbf{E 1 5}$ ea.
1/2 H.P. Motor 240 V £ 12 ea
1/2 HP Motor 110 V £ 10 ea.

MARCONI TF675F WIDE

RANGE PULSE GENERATOR
+1 - variable outputs up to 50 V Optional delay. Smal

PRECISION EX-MINISTRY

SIGNAL GENERATOR

type 62 by DECCA 95 to 160 MHZ . Two front panel switches connected to a motor driven system for rapid
frequency change due to dial length fcan also be operated manually) Precision attenuator system internal/Externai AM Modutation Carrier level meter \& \%Modulation meter. 1 MHZ \& 10 MHZ Crystal Markers Provision for external crystal as marker. This equipment was used for aligning service type Aircraft receivers etc. Complete with leads etc Standard 240 V ONLY $£ 15$
each. each.

WE ARE BREAKING COMPUTERS

UNIVAC / HONEYWELL/ICL 1900 etc.
Boards, Power Supplies, Core Stores are available
CALL AND SEE

$¢ 85$ CREED 8 Level READER
 £140 CREED 8 Level PUNCH

$£ 35$
tems constantly changing - Phone or cald

THE HONEYWELL KEYTAPE UNIT

is a mult channel Keyboard to Magnetic Tape System recording Keyboard entered
a form easily usable as a computer input/output and verifier. 240 Volt operation
From the simple to understand electro mecnanical / vacuum system to the +15
+5 Power Supply and hinged wire wrapped make ail the Honeywell Keytajes on offer very fine value.

Honeywell Keytape Unit, checked, tested with Manual, $£ 215$ ea
As above but less data boards. Tested forward / backward tape movement and control, etc. Data entry / exit via read / write boards £ 105 ea.
Exactly as above but less keyboard and table $£ 80$ ea
Alt units carriage paid
KEYBOARDS also avaliable at $£ \mathbf{2 0}$ each. Carr $£ 2.50$

SPOOLS OF $1 / 2^{\prime \prime}$ MAG
TAPE
APPROX. 2000ft
50p ea. $P_{\&} P_{i} 1$ ea

AVO VALVE TESTER CT160

'THE SUITCASE
Size approx. $15^{\prime \prime}$ wide x $1^{\prime \prime}$ nigh $\times 11^{\prime \prime}$ deep
Limited quantity $\mathbf{£ 2 5}$ each.

TEKTRONIX OSCILLOSCOPE Type 585A with type 82 plug-in $\mathbf{5} 500$
RHODE \& SCHWARZ POLYSCOPE SWO8: $£ 425$.
RHODE \& SCHWARZ GENERATOR BN4 1022 300-1000 MHZ $£ 185$
R\&S DIAGRAPH \& GENERATOR 3-300MHZ. Very nice condition $£ 475$
RHODE \& SCHWARZ ADMITTANCE METER BN 3511 As new $\mathbf{£ 6 5}$.
POLARAD RECEIVER Model FIM-B2. Complete $1.10 \mathrm{GHZ} \mathbf{E 4 2 5}$.
TELONIC SWEEPER 2000.1 with LA- $1 \mathrm{M} \cdot 20 \mathrm{HZ} 20 \mathrm{KHZ} £ 120$. Other freq avalable MARCONI OSCILLATOR TFI $10120 \mathrm{HZ}-20 \mathrm{KHZ}$ Nice condition. Special price $£ 50$.
MARCONI Wide Range Oscillator TF1 370 Freq MARCONI Wide Range Oscillator TF1370 Freq range 10 HZ so 10 MHZ Sine Wave
10 HZ to 100 KHZ Square Wave High outputs 10 HZ to 100 KHZ Square Wave High outputs up to 316 V . Faritastic value at $\mathbf{£ 9 0}$ ea
MARCONI Generator TFB67. 15 KHZ to $30 \mathrm{MHZ} £ 60$ ea MARCONI ADAPTOR TM6113 for TF 2700 TF 1313 ea

COLLINS RECEIVER UNITS with be screen $\mathbf{£ 1 2 0}$.
information - ex-Ministry. Type IPIOULR $£ 35$ ea 90 MHZ to 10 GHZ No power unit, no
MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on
diectly calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} £ 32.50 \mathrm{ea}$.
AVO TRANSISTOR ANALYSER CT $\mathbf{4 4 6} £ \mathbf{3 0}$ ea
AVO TRANSISTOR ANALYSER CT446 £30 ea
MARCONI PORTABLE FREQUENCY METER
MARCONI PORTABLE FREQUENCY METER TF $1026 / 11,100$ to $/ 60 \mathrm{MHZ}$ Very fine condition $£ 27.50$ ea
DECCA NAVIGATOR DISPLAY UNIT. Very impressive. $\mathbf{E 1 2 . 5 0}$ ea
COURTENAY MAJOR Mk. 2. 250 foules. 5 outputs Can be combined - 1250 joules. MARCONI SIGNAL GENERATORS. TF801B from £140; TF801D from £190. Usually available ex stock
MARCONI DEVIATION METER. TF $791 \mathrm{D} \boldsymbol{\mathrm { E }} 75$ ea
RHODE \& SCHWARZ POWER METER. BNRD-BN $2412 / 50$ £ 50 .
MARCONI RF POWER METER. TF 1020A/1 50 ohmn $\mathbf{E 6 5}$.
HEWLETT PACKARD 11 Channel Numerical Primer $£ 30$.
MARCONI 2OMHZ SWEEP GENERATOR
MARCONI 2OMHZ SWEEP GENERATOR. TF 1099 £45.
MARCONI DOUBLE PULSE GENERATOR TF 1400 s .
MARCONI DOUBLE PULSE GENERATOR. TF1400S with TM6600/S $£ \mathbf{2 0}$.
MARCONI TRAVELLING WAVE TUBE AMPLIFIER. TF 1278 £ 15.
RACAL Frequency Generator MA 250 Any multiple of 100 HZ from 1.6 MHZ to 31.6 MHZ
IV RMS: 50 ohm
MARCONI UNIVERSAL BRIDGE. TF868 $£ 85$ ea
AIRMEC Generator type 304 A 50 KHZ to 100 MHZ £ 120.
AIRMEC MODULATION METER $210 £ 130$.
SOLARTRON Oscillator CO546 25 HZ 10500 KHZ Constant ampitude Very reliable Highly recommended. In good condition $£ 18$ ea
PETROLGENERATOR
PETROLGENERATOR. $115 / 230 \mathrm{~V} 60 \mathrm{HZ}$ 10KWatt Standby rating. Fine condition $£ 350$.

TELEQUIPMENT OSCILLOSCOPE. Type 532 . Very good condition. Small, compact, SIze $7 \times 9 \times 14$ in approx. Ideal for colour TV servicing. Superbly reliable FANTASTIC VALUE at $£ 85 \mathrm{ea}$

HILGER \& WATTS SPECTROMETER H 1170 £ $£ 50$.
OUR PRICES TOO HIGH? - THEN MAKE US AN OFFER WE CAN CONSIDER

MARCONI AM/FM SIGNAL GENERATOR tYpe TF995A/3S £260.
HEATHKIT CURVE TRACER £45.
RHODE \& SCHWARZ 10 Kilowatt Power Meter $£ 120$.
RHODE \& SCHWARZ Tunable Indicating Amplifier UBM $£ 75$
TEKTRONIX 804 TIme Marker Generator $\mathbf{£ 6 0}$.
S.E. Labs Oscilioscope type type 561 with plug-ins $\mathbf{£ 3 7 5}$

MARCONI UHF-SHF Signal Generator Type TF $1058 \mathbf{£ 8 0}$
TEKTR ONIX 181 Time Marker Generaior $£ 40$.
TELONIC Sweper $0-200 \mathrm{MHZ} \mathbf{8 B O}$
TELONIC SWeeper O-200MHZ £80.
HEWLETT PACKARD Oscilloscope type $175 \mathrm{DC}-50 \mathrm{MHZ}$ Double Beam $£ 1 \mathbf{8 0}$ with delay
amphifier $£ 220$.
amphifier $£ 220$.
GENERAL RADIO PULSE SWEEP \& Time Delay Generator sype $13918 \mathbf{E 1 2 0}$
ROYAL INVERTORS manulactured USA. 28 V OC Input Outpu: 115 V AC 400 HZ up to
2 KVA Brand new. Crated $£ 12.50$ ea.
EDWARD VACUUM PUMPS type 1SC30A Only $\mathbf{8} 80$ each.
SOLARTRON CD1212 SB 40 meg £85. DB24meg twice f120 Many
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC-6MHZ $£ 95$ each
\#TELEPHONES. PoSt Office styte 746 . Black or two-tone grey $\mathbf{£ 6 . 5 0}$ ea Modern style 706. Black or twotone grey $£ 4.50$ ea P\&P 75 p ea Old black style $£ 1.50$ ea P\&P 75 p . TELEPHONE EXCHANGES. eg 15 -way automatic (exchange only) from $£ 95$.
 PAP.
PAPST model 240 V avalable at $£ 7.50$ aa. P\&P $75 p$
PHOTOMULTIPLIER Type $931 \mathrm{~A} £ 4$ ea P\&P $75 p$. Other types avaitabie
*POTENTIOMETERS - All 5p ea P\&P extra Metal bodied AB Linear PCB Mount Brand
New. 10K, 100 K ganged; 250 K ganged, 100 K ganged concentric shats

E.H.T. TRANSFORMERS $20 \mathrm{KV} 2 \mathrm{KVA} £ 70$ ea Many other EHT :ransformers and EHT Capacitors avalable
TUBE type DB7/36. Replacement for Telequipment $\$ 31 £ 11$ ea. P\&P \& 150
FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube Type M 38 at the ridiculous price of $\mathbf{£ 4}$ ea And atso still available the CME1220. $24 \times$
15 cm at $\mathbf{£ 9}$ ea Base connections for

SEMICONDUCTORS
 BC348B, BC171A/B 2N3055RCA 50p ea P\&P 8p 2N5879 with 2 N 5881 Motorola 150 Watt Comp par $£ 2$ pr P\&P $15 p$
*Linear Amp 709 25p ea P\&P 8 p

CREED 5-LEVEL COMBINED PRINTER AND PERFORATOR CRATED £35 each

CREED 5-LEVEL
 PAPER TAPE READER $£ 25$ each

 CREED 7B

 CREED 7B

 TELEPRINTER CRATED £40 each

 TELEPRINTER CRATED £40 each}

SPECIAL OFFER

CREED 7 B TELEPRINTER LATE MODEL WITH PERFORATOR, £60 ea. FREE WITH ALL PURCHASES PLESSEY READER
Minimum Mail Order $£ 2$. Excess postage refunded Unless stated - please add $£ 2.50$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

EIEGIMI.TEGH

himidienis lit
315, 317,364 EDGWARE ROAD, LONDON W2 TEL: 01-723 5667 \& 01-402 5580

Shops and mall order dept (mall to 364) open 9 to 6 Mon. to Sat inc
Prices include VAT Carr. / p \& p quoted U.K. only
ACCESS \& BARCLAY accepted. Minmum order $\mathbf{L 5}$ otherwise C.W.O. For credit on approved account

MEM LIMIT SWITCH

when compressed Very robust for tireles

SYLVANIA SWITCH

PAPST MOTORS
Noredior the radvanced desion and superb construction
roiaring diecast outer booty acis as tilywheel and
eliminates wow and flutter 50 HZ A C operation
Capacitor start.
ODEL HSKZ 32 80-6/12.220V Dual Speed rape deck

 MODEL $03265-4$ - and voliage $125 / 220 \mathrm{~V}$ Size spindie $\varepsilon 12.50$ plus p \& P p. $£ 110$ MODEL HSZ $2025-2.42 \mathrm{~V}$ A magniticent small moto
Size $1 \% / \mathrm{n}$ dia. $\times 2 \% / \mathrm{n}$ pius $11 / 16 \mathrm{in}$. long $\times 5 / 32 \mathrm{in}$ dia spindie $\mathbf{5 5} .95$ plus D \& $D .45$ p

CROUZET MOTOR

PROGRAMME TIMERS
Magnetic Devices Lto Synchronous 230 V 50 Hz moto
geared down to 1 tev per 8 hours Drives shaft mounting

 swiecning on and off radios and lights as ourgiat ideat fon
 ${ }_{\text {of }} \&^{p} p$ or more $\mathrm{E}, 50$ asch plus $70 \mathrm{p} p$ \& p. per pack
Midgley Harmer tid 200/250V
geared down to $7 / 2, \mathrm{p} \mathrm{m}$ All dimensions $21 / \mathrm{a}^{\prime \prime}$ m1.50 each plus $25 p$ p
$\& \quad p$ pel pack of

RELAYS

JABSCO

LOGIC/OP-AMP POWER SUPPLIES

Type Mo.	CPS 40	SPS 5	SPS ;	SPS 911
Suppiy	Card form	Fully ancasad	Fuly ancased	Fully encised
Form	topic	topic	ap amp.	sopic
0/p volis	4.5/5.5 [3]	4.5/6.0] [3]	12:18	4.5/6.0 \|3i]
	1.25	2.15	0.512	10.0
Ph-Ph rippie				
$m / 4$	0.5	0.5	0.15	0.1
月rgulator ':	0.02	0.02	0005	002
Price	E14.80)	¢2600	¢28.00	¢51.00
	60 p	£1.20	\{1. 20	£1.20

MINIATURE LAMPS

$\begin{aligned} & \text { 「ype } \\ & A^{\text {A }} \end{aligned}$	Sue		Sue		
	(Dia)	Voh/Curr	Type	(Dia.)	Voh/Curr
	3MM	5.6 V 60 MA	D	3 MM	2.5 V 360 MA
	4 MM	4V 250 MA			5.660 MA
		5 V 60 mA	E	4 MM	6 V 200 MA
		12 V 40 MA			6.3200 MA
		12 V 100 MA			14 V 40 MA
		14V 75 MA	F	4MM	2.7 V 60 MA
		28 V 40 MA			12 V 160 MA
c	5 MM	28 V 40 MA			14 V 80 MA
G		Small teiephone ack type 6 or 24 V			

TRANSFORMERS

 Auto 1 Kva tapped $100-250 \mathrm{~V}$ in steps of 25 V pius $8 \mathrm{~V} / \mathrm{se}$
 Mmailufe power supply for models rados. etc. Price $£ 1.50$
each plus $20 p$ \& 0 otf 11 each plus $45 p p .8 p$

BENDIX MAGNETIC CLUTCH

HART ELECTRONICS
 The Only Firm for Quality Audio Kits
 J. L. Linsley-Hood High Quality Cassette Recorder

As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have theretore spent a little more on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages also come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished result is a unit designed not to normal domestic standards but to the best professional practice.

ALL PARTS ARE POST FREE

LENCO CRV CASSETTE MECHANISM
High Quality robust cassette transport for Linsley Hood Recorder. Features fast forward, ast rewind tecord pause and automatic cassette ejection faciltites fitted with Record/Play and Erase Heads and supplied complete with Data and extra cassette
ejection spring for above horizontal use Ex-stock $£ 19.10+\xi 238$ VAT
$71 x$ Complete set of parts for Master Board, includes Bias oscillator Relay, Controls, etc $£ 983+£ 1.23 \mathrm{VAT}$
72x Parts for Motor Speed and Solenoid Control for Lenco CRV Deck E3.52 + 44p VAT
$73 \times$ Complete set of parts for stereo Replay Amps and VU Mete Drive £8. $12+£ 102$ VAT
$74 x$ Complete set for Stereo Record Amps. E6.74 + 84p VAT $75 x$ Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate $35^{\prime \prime} \times 5^{\prime \prime}$ PCB designed so that the motor control board fits above it to save space $£ 8.79+£ 1.10$ VAT
700 M VU Meters Individual high quality meters with excellent ballistics and built-in illumination $£ 848+£ 1.06$ VAT PER rAlR.

Please send 9×4 SAE for lists giving fuller details and Price breakdowns
A suitable Metalwork and Front Plate is now available
Penylan Mill, Oswestry, Salop
Personal callers are always welcome, but please note we are closed all day Saturday

SIGNAL SOURCES

WRITE NOW...
for a FREE copy of our latest Test Equipment Catalog ae. Jease apply on headed paper

FLUKE
Industrial Counter Totaisel $19+1 / \mathrm{A}$ Freq Measure.
men 5 Hz .40 MHz 40 mV sensitivity Totalise
measurement to 999999 units Preseltable display
RPM measurement

49-53 Pancras Road London NW1 208
Tol: 01-837 7781

FROM E.S.E.

A full frequency range graphic equaliser YOU can aford!
Fớ JUST $£ 38.85$ plus VAT Condensed Technical Spec You can tune out all unwanted Max. output: terminated to 600Ω noises at seven different fre- $\begin{gathered}10 \mathrm{~dB}>1.6 \text { volts R.M.S. }\end{gathered}$ quencies!
Bring all your recordings, P.A., discos, lead guitar, bass guitar, organ, anything amplified to life at the touch of a slider!!
 noises - just clear, true sound ! Frequencies from 60 Hz to 10 kHz ! Cut or boost each frequency by maximum of 15 dB ! Hi and lo gain inputs.
Powered by just two PP3 batteries which last for ages. Or mains powered unit available. $£ 4995$ plus VAT.

Signal to noise ratio: input terminated with 47 K resistor. All filters at max. better shan -70 dB . Frequency response: All filters at central better than $\pm 2 \mathrm{~dB}$.

$$
\begin{aligned}
& \text { Filter ranges: Max. } \pm 15 \text { dB at } 60 \\
& 180,480 \mathrm{~Hz} 1.2 .4,5 \text { and } 10 \mathrm{kHz} .
\end{aligned}
$$

$$
\text { To: E.S. Electronics, } 2 \text { Upper }
$$ Fant Road, Maidstone, Kent. Please send me $\square 1$. $\square^{2,} \square^{3}, \square 4, \square 5$ cheque or postal order for f having added El .50 for p. \& ρ. on each tem ordered and V.A.T. 1 understand that two batteries are included.

Name
Try it and you'll buy it - it will change your concept of sound. Trade enquiries welcomed.

HILOMAST SYSTEMS
 PNEUMATIC TELESCOPIC MASTS

Specialists in design and manufacture of pneumatic and winch operated telescopic masts and towers. Vehicle, field and wall mountings available. Many standard models ex-stock.

CLARBROOK Eng.Co.Ltd.

JUTSUMS LANE ROMFORD-RM7 OER ENGLAND Tel. Romford 65173

WW - 098 FOR FURTHER DETAIIS

PROXIMITY SENSOR

TYPE EP45
aNIMAL VEGETABLE OR MINERAL
A new type of delectric detector which is not limited to metals will detect movement of most materials at considerable distances, Variable sensitivity, will detect humans and animals easily up to six feet away and provides a T. T.L. compatible output pulse of adjustable midth. Will count up to 5000 objects per
minute.

Applications include security devices, process control and counting, automatic aiarm and hazard warning systems vehicle security, detection of humans and animals. etc Power supply requiremants 12.15 volts at 30 mA

PhYSICAL \& ELECTRONIC LABORATORIES LTD.
MANUFACTURERS OFPRECISION ELECTRONIC EQUIPMENT

The Teletext decoder you don't have to modify your set for!

modification whatsoever! You just plug the decoder's output into your aerial socket. Our Teletext decoder has its own mains power supply, works with any 625 -line receiver, monochrome or colour, and to make assembly particularly easy, the design uses four p.c.b.s which plug in to a main 'mother' board. Also, to simplify alignment, the very latest receiver techniques are used in the i.f. strip. All p.c.b.s will be made available through Television magazine's Reader's P.C.B. Service.
Part 1 of the Teletext decoder is in our March issue on sale now. It covers fundamentals and power supply details. Part 2 in the April issue begins the logic section.
Take up the March issue out now

QUADRAPHONIC KIT MODULES

The following modules, currently being described in Wireless World, are offered, Each kit comprises of glass fibre CBs and Components Each module function into which the boards may be plugged.

> DEMODULATOR £35 + VAT (£4.38)
> VARIOMATRIX DECODER SYNTHESIZER
£31 + VAT [£3.88)
OS. QS Variomatrix and QS Synthesizer are registered trade marks of SANSUI ELECTRIC COMPANY LIMITED OF JAPAN

DEGUDER (Type L3A) $\mathbf{~ 2 5 . 5 0 ~ + ~ V A T ~ (E 3 . 1 9) ~}$
 Variable Blend + Wave Matching Logic) SO is the registered trade mark of CBS INC

MASTER SWITCH KIT eq.50 + vat (E1.06)
Add $k 1$ postage packing and insurance per
add $\ddagger 320$ per kit to cover airmail postage
or enquiries please send S.A.E to
COMPCOR
COM COR ELECTRONICS LIMITED
9 DELL WAY, LONDON WI 8.JH
or telephone 01-998 8221 on weekdays between 7.30 p.m. and $10 \mathrm{p} . \mathrm{m}$. only
WW -106 FOR FURTHER DETAILS

HGGH-SENSTINTY

The Hi-Fi Year Book is more than just a handy reference. It is a sensitive instrument enabling you to pinpoint and track down the finest Hi -Ti items on the market. There are 500 pages of products. photos and expert articles to help you in your choice. Separate illustrated sections cover every major category of equipment-telling you what each item does, what it costs, who makes it and where to buy it. What s more, there are authoritative articles on the latest developments and how to apply them. Order your copy today, before it sells out ... and you'll be tuned in to the finest in Hi-Fi all through 1977!

HI Fl YEAR BOOK 1977

Available direct from the publishers @ £340 inclusive or from leading booksellers and newsagents price $£ 3.00$

ORDER FORM

ToIPC Business Press Ltd., Room 11 Dorset House. Stamford Street. London SE 1 GL

Please send me.........copy/copies of Hi-Fi Year Book 1977 @ £3.40 a copy inclusive, remittance enclosed.
Cheque P.O. should be made payable to IPC Business Press Lid.

Name
(please print)
Address
\square

Wilmslow Audio THE firm for speakers!

Baker Group 25, 3. 8, or 15 ohm Baker Group 35, 3. 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3, 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion MH 1000 horn. 8 or 15 ohm Coles 4001 G super tweeter Coles 4001 G super tweeter
Coles 4001 K super tweeter Coles 4001 K super tweet
Decca London and X over
Decca DK30 and X over
EMI $5^{\prime \prime}$ Mid range
EMI $61 / 2^{\prime \prime} d /$ cone roll surr. 8 ohm EMI $8 \times 5,10$ watt, $d / c, r o l l / s ~ 8 ~ o h m ~$ EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Bass 8 ohm Elac $61^{\prime \prime}$ d Elac $61 / \mathrm{m}^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Fane Pop 33 watt 33 wat
Fane Pop 50 watt $12^{\prime \prime}$
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, 12" 60 watt
Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt. $18^{\prime \prime}$
Fane Crescendo 12A or B. 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm Fane Crescendo 18,8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls/s, 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c} \mathrm{roll} / \mathrm{s} 8 \mathrm{ohm}$ Goodmans 8P 8 of 15 ohm Goodmans 10P 8 or 15 ohm Goodmans $12 \mathrm{P}-\mathrm{D} 8$ or 15 ohm Goodmans 12P-D 8 or 15 ohm Goodmans 1 Goodmans Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8" 8 or 15 ohm Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef DN 12
Kef DN 12
Kef DN 13
Richard Allan HP8B 8" 45 wat Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s Baker Major Module, each Goodmans Mezzo Twinkit, pair Goodmans DIN 20, 4 ohm, each Helme XLK35, pair Helme XLK40, pair Helme XLK30, pair
Kefkit 1, pair
Kefkit III, each
Richard Allan Twinkit, each Richard Allan Triple 8, each Richard Allan Triple 12, each Richard Allan Super Triple, each Richard Allan RA8 kit, pair Richard Allan RA82 kit, pai Wharfedale Denton $2 \times P$, pair Wharfedale Linton $3 \times P$, pair Wharfedale Glendale $3 \times P$ kit pair Wharfedale Glendale $3 \times P$ kit. pair Il Radford, Gauss, Castle. Jordan Watts,

$£ 13.00$

£14.50
$£ 14.50$
$£ 17.50$
$£ 17.50$
$£ 15.00$
$£ 15.00$
$£ 12.50$
$£ 12.50$
$£ 22.50$
$£ 22.50$
$£ 7.50$
$£ 7.50$
$£ 13.50$
$£ 5.90$
$£ 5.90$
$\begin{array}{r}£ 5.90 \\ \text { £ } \\ \hline\end{array}$
$£ 38.45$
$£ 25.25$
$£ 25.25$
$£ 3.50$
$£ 3.95$
$€ 3.95$
$£ 3.95$
$£ 12.50$

Lowther. Peerless Tannoy units in stock
Prices correct at $12 / 1 / 77$
ALL PRICES INCLUDE VAT
Cabinets wadding, Vynair, Crossovers etc Send stamp for free 38 page booklet Choosing a Speaker
FREE with all orders over $£ 10-$ Hi-Fi Loudspeaker Enclosures Book
All units are guaranteed new and perfect Prompt despatch
Carriage Speakers up to $12^{\prime \prime} 60 \mathrm{p} .12^{\prime \prime} \mathrm{E} 1 \mathrm{~F}^{\prime \prime} 15^{\prime \prime}$ 1.75. $18^{\prime \prime}$ £2.50. Kits E 1 each (22 per pair)

WILMSLOW AUDIO

Dept. WW

Loudspeakers 8 Export Dept: Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Discount Hi-Fi, PA etc. 10 Swan Street, Wilmslow. Radio, Hi-Fi, TV: Swift of Wilmslew, 5 Swan Street, Wilmslow. Tel. (Loudspeakers) Wilmslow 29599, (Hi-Fi, etc.) Wilmsiow 26213
Access and Barclaycard arders accepted by
phone.

You will know about Blind Rivets

Interesting data and application notes on Blind Rivets-yours for the asking.

Blind Rivets, of course are for making permanent joints in sheets, chassis, corners. What if you need a detachable ioint? Read on about Anchor Nuts, blind rivets with internal threads.

To fasten a lid or a panel that has got to come off, you need Anchor Nuts which ara used with ordinary screws or bolts.

Anchor Nuts System J, the high strength threadad insert for sheets and sections up to $0.270^{\prime \prime} 6.86 \mathrm{~mm}$

Anchor Nuts System X, the threaded insert for sheets, plates, sections of unlimited thickness.

Anchor Nuts are placed in seconds!
It's quick end easy, done on the job with tools similar to riveters. You can buy a hand tool for around f 10 or a

kit in a carrying case with a tool and an assortment of Anchor Nuts for about £22. Anchor Nuts cost around £2-f. 6 a hundred.

There are kits for all regular thread systems, BA, Metric, Whitworth, UNC, UNF
Data and prices on request.
HARMSWORTH
HARMSWORTH, TOWNLEY \& COLTD
HAREHILL TODMORDEN LANCS OL 145 JY Phone TODMORDEN 2601 (STD 070681 2601)

RELAYS-UNISELECTORS-

SWITCHES

MINIATURE PLUG-IN RELAYS (Siemans/Varley)
with perspex dust cover and base
6-12-24-48v D.C. In Stock
2 c/o 50p: 6 make 60p
4 c/o 75p: P\& P 10p
S.T.C. MINIATURE (P.C. Mounting)
$2 \mathrm{c} / 0(18 / 24 v) 45 \mathrm{p}$ P.P. 10p

CLARE-ELLIOTT MINIATURE RELAYS
(Hermatically sealed) $2 \mathrm{c} / \mathrm{o} 675 \mathrm{ohm}$
$24 v$ D.C. Coils $(22 \times 22 \times 10 \mathrm{~mm}) 75 p$
I.T.T. 240 v A.C. Plug-In RELAYS
(with perspex cover) 10 amp contacts
2c/o65p3c/o75pP.P 10p
REED RELAY 3 MAKE ($50 \times 20 \times 20 \mathrm{~mm}$)
3500 ohm coil 24 V D.C. 50p
REED SWITCHES (1 MAKE)
Type $:(18 \times 3 \mathrm{~mm}) 12$ for $\mathbf{£ 1}$
Type $2(48 \times 5 \mathrm{~mm}) 8$ for $£ 1$
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam. £ 1 P.P. 20p
UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm $£ 5.50$ P P. 50p 8 Bank Full Wipe 75 ohm £6.25 P.P. 50p
12 Bank Half Wipe 68 ohm E6.50 P.P. 60p SMALL 12 V UNISELECTORS 4 Bank 11 way E2.50 P.P 50p
D.C. SOLENOIDS $24 v$ (Cont. Raied)

10 lb Pull 20 mm Stroke Size $50 \times 48 \times 42 \mathrm{~mm}$
FOOT SWITCH "SQUARE-D" H.D.
20 A Make/10A Break at $240 \mathrm{VA} . \mathrm{C}$
600 V C $/ \mathrm{D} . \mathrm{C}$ Max $£ 4 \mathrm{P} . \mathrm{F} 75 \mathrm{p}$
BURGESS MICRO SWITCHES (VCSP)
Single Pole c/o 8 for $£ 1$ P.P. 10p
H.D. HONEYWELL MICRO-SWITCH (contacts 2 N.O/

NC 20 amp$)^{1 / 4}$ turn action complete with roller actuator
E2PP 35p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits. 50p each. Bank of 8 with mounting brackets $\mathbf{£ 3}$ PP 20p
DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons 6 mm digits 75 p each PP 10p
Also in B.C.D
KEY SWIT CHES ' 1000 ' TYPE
$4 \mathrm{c} / \mathrm{o}$ each way locking 60p P.P. 10p
6 make each way locking 60 P.P.P. 10p
Bank of 4.4 c /o each way. 1 biased $£ 1.25$ P. P. 15p

MULTICORE CABLES

8 CORE RIBBON (RAINBOW) CABLE
$8 \times 14 / 76$ Forming $1 / 2$ in wide strip
10m-£150:50m-f6.50:
merre
5 CORE H.D. CABLE $5 \times 70 / 76$ P.V.C
Black Outer P.V.C. O.D $1 / 2$ in
$10 \mathrm{~m}-£ 2.50 ; 50 \mathrm{~m}-£ 12: 100 \mathrm{~m}-£ 22.50$ P.P 2 p per
mere
6 CORE ARMOURED $6 \times 40 / 76$ PV.C INS
Outer Sheath-Flexible Galvanised Tubing O.D S/8in CORE SCREENED: $100 \mathrm{~m}-£ 25$. PP 2p per metre 10m-£1.50: $50 \mathrm{~m}-\mathbf{£ 6 . 5 0 : ~} 100 \mathrm{~m}-£ 12.00$ P.P. $2 p$ per metre
36 CORE SCREENED $36 \times 7 / 76$ (36 colours) O.D
$11 \mathrm{~m}, \mathrm{~m}$
$10 \mathrm{~m}-£ 3: 50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-£ 25$ P.P 2p per metre

VARIOUS

E.H.T. MODULES Inpui 190-260v 50 HZ Output $13-7 \mathrm{Kv}$ PK@ $0.50 \mathrm{~m} / \mathrm{a} \cdot(150 \times 95 \times 70 \mathrm{~mm}) £ 12$. P.P. £ 1
AIR PRESSURE SWITCH $0-10$ ib variable
Switch Contacts 15 amp . Change-Over $£ 1.50$ P.P. 25p MYRIA MEGOHMMETER TYPE 35A. 20-200K MEG/OHMS 500 v test. Excellent condition. £45, carr EQUI
EquIpment COLLING FANS (System Papst). Precision

"BLEEPTONE" AUDIO ALARMS
BLEEPTONE AUDIO
$12 V D C$ 50p P.P 10p
GEARED MOTORS $230 v$ A.C. (Int Rating)
110 rp m. E2.25 P.P. 75p
MAGNETIC COUNTERS
6 digit $48 v$ D. C (Non-Reset) $92 \times 32 \times 22 \mathrm{~m} . \mathrm{m}$
New/Boxed \& 1 ea P.P $\mathbf{1 5 p}$
$\mathbf{3}$.
3 DIGIT RESET COUN
31.75 PP 25p
D.C. POWER SUPPLIES Input 240 V A C

TYPE 1 20v D.C. at 1 amp. Fully regulated $155 \times 155 \times 75$ mm totally enclosed $£ 5$ P.P. 75p
TYPE 220 vD C. at $500 \mathrm{~m} /$ a stabilised on open chassis 170 $\times 100 \mathrm{~mm}$ £2.50 P. 75 p
PHILIPS MOBILE RADIO P.S.U
Input
$75 p$
TELEPHONE HANDSET with "Press to Speak" switch £1.50 P.P. $\mathbf{2 5}^{5}$
2000 W. AUTO TRANSFORMERS. Tapped P.P $£ 1.50$

J. B. PATTRICK
191/193 LONDON ROAD
ROMFORD, ESSEX RM7 9DJ ROMFORD 44473

Appointments

Advertisements accepted up to 12 noon Monday, February 28 , for the April issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre (min. 3 cm) LINE advertisements (run on): $£ 1$ per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

ELECTRONICS + AIRCRAFT

= CHALLENGING WORK ON ADVANCED SYSTEMS

There are opportunities at our Aircraft Design, Development and Assembly Plant at Woodford, on the rural fringe of North Cheshire, to expand existing teams of men and women working on Avionics design and development on major aircraft programmes. A wide range of qualifications and experience can be integrated into our requirements, from recently qualified technicians and graduates to experienced engineers.

Digital computer systems experience, hardware and or software would be particularly valuable but the extent of our interest in candidates with radio. radar, navigation flight control, acoustics, electrical systems, E.M.C. or mathematical modelling experience, illustrates the variety of opportunities availabie.
for further details and an application form, please write, giving brief personal and career information to
J. Lewis,

Personnel \& Industrial Relations Manager, Hawker Siddeley Aviation Limited.
Woodford,
Stockport.
Cheshire SK710R.

ThePolytechnic of NorthLondon

Department of Electronic and Communications Engineering

LABORATORY TECHNICIAN (Grade V)

Applications are invited for the appointment of a l.aboratory Technician Grade V.
The work involves the operation and maintenance of High Grade test equipment in a Microwave and Radar Engineering Laboratory together with the general responsibitity for the efficient running of the day-to-day requirements for students' experiments and project work, and inciudes participation in Research work.
Normal background experience required is at least 8 years.
Education to ONC or OND level in appropriate subjects
Salary scale: $£ 2,751-£ 3,207$ plus $£ 465$ London Weighting and 5% earnings supplement.
Application form obtainable from the Establishment Officer, The Polytechnic of North London, Holloway Road, London, N78DB. Telephone: 01-607 2789, extension 2019.
Further details from Mr. S. A. Elliott, extension 2176.

GRANADA TELEVISION LIMITED

ELECTRONIC ENGINEERS

We are looking for young experienced electronic engineers to fill a number of interesting jobs at our Manchester studios. The duties cover the operation and maintenance of the whole range of broadcast electronics, including television cameras, videotape recorders, telecine projectors and video switching, distribution and display equipment. The kind of people we need will probably have a formal qualification in electronics engineering but more important, will have an understanding of basic electronics and colour television principles arising from their genuine interest in the medium. They must be fit, with normal colour vision and prepared to work irregular hours including weekends
Salary whilst training $£ 3,310$ increasing to $£ 3,581$ after one year and by annual increments to $£ 4,669$ after 5 years. Four weeks leave, pension and free life assurance
Write with full details of education and experience to:
Robert Connell
GRANADA TELEVISION LIMITED Quay Street MANCHESTER M60 9EA

SENIOR SYSTEMS ENGINEERS \& LOGIC DESIGNERS ELECTRONIC ENGINEERS INTERMEDIATE/JUNIOR LOGIC DESIGNERS

GEC Computers Ltd., Europe's largest and most experienced company specialising in real-time computer applications has vacancies for the above in their engineering hardware development department.
Applications for the senior systems engineer and logic designer vacancies must have a relevant degree or equivalent qualification and have had several years' experience in the computer field including complex digital equipment. They must have the ability to understand sophisticated central processor design under development and be able to play a significant and creative part in that design.
Electronic engineers are required for the design and development of computer memories, power supply units, displays, processors and peripheral equipment. Applicants must have a relevant degree or similar qualification e.g. HND, and a minimum of 1-2 years' practical experience.
Junior Logic designers are required to work on either the development of computers and associated equipment or the design and development of special purpose test equipment. Applicants must have a relevant degree or suitable qualification e.g. HNC ET5, etc., and have had some practical experience of digital design. Simple programming experience would also be an advantage although this is not essential.
Specialist training will be given for all of the above positions and there is a company training scheme for junior staff.
These positions attract competitive starting salaries iand career progression is based on ability and performance. There is a contributory pension schemie and other fringe benefits normally associated with a large organisation.

Those interested should apply in writing or telephone to Mr. D. F. Watts, Personnel Department, GEC Computers Ltd., Elstree Way, Borehamwood, Herts. Tel: 01-953 2030, ext. 3697.

TEST GEAR MAINTENANCE ENGINEERS

The EMI M.O.D. Factory at Springfield Road has vacancies for Test Gear Maintenance Engineers who are required to carry out routine checks on standard and specialised equipment. The work also involves fault finding and repair of a wide variety of test equipment, and the construction of test equipment
Applicants must have experience of servicing electronic equipment, e.g. radio and TV.

Please write to or telephone Richard Black, EMI Limited, Springfield Road Works, Hayes, Middlesex. Telephone 01-573 2701.
(7036)

University of Cambridge Scott Polar Research Institute TECHNICAL ASSISTANT

A vacancy exists in the S.P.R.I. for an experienced Technician to join an aclive research group anpaged in
sludies of the Astarctic Ice Sheel using 10 w Irequency sludies of the anarctic Ice Shaei using 10W Irequency hacilities. While the skills sought are primarity in Electronics. adaptability is imporianl and knowledge of dark room work and machining would be an advantage Field work is also involved and typically occupits two months a vear. The appointment lasts until July 1979 and is al University grade R6 with a suiary range of
£2695- $£ 3087$ per amnum. A shorior appointaent without feld work commitment may alternativaly be available at the same salary leval.
Applications anclosing curriculum vitae and names of Applicalions anclosing curriculum vilae and names of
two referees. should be sent to: The Diractor. Scoll Polar Aesearch hinstilute. Cambridge CB2 1ER.
(2057)

PIPCO

(S \& W SERVICES)
For Electronic Engineers. Technicians \& TV Service Engineers.

26a High Street
Hounslow, Middx.
Tel: 01-572 7363
(6552)

Cable and Wireless Limited, leaders in global telecommunications, are expanding their overseas interests, and are currently seeking the following staff for their Headquarters in Central London:

WIDEBAND RADIO ASSISTANTPROJECTENGINEER

To write specifications and tenders, evaluate and test UHF/SHF/Microwave/ Tropuspheric Scatter Systems and produce cost estimates and detailed engineering plans, including discussions with clients. Possession of HNC, C\&G or higher qualification would be an advantage: age 25 plus.

FREQUENCY PLANNING AND CO-ORDINATION ASSISTANT ENGINEER

To plan, obtain and ensure correct usage of frequency assignments for the Group's earth stations, HF narrow band VHF and UHF operations and consultancies in the Fixed and Mobile Services. This will include planning, and the maintenance of international records. Educated to a minimum of HNC standard: age 25 plus.
Excellent conditions of service are offered with commencing salaries between $£ 4,206$ and $£ 5,000$ per annum, depending on experience and qualifications, on progressive career scales rising to over $£ 7.000$ per annum. Please write or telephone for an application form to.

The Recruitment Manager, Ref. A490/628,
Cable and Wireless Ltd.,
Theobalds Road, London WC†X 8RX. Tel: 01-242 4433 ext. 211.

ELECTRONCDESICN/ DEVELOPMENTENGNEERS FERRANTI OFFERS YOUFREEDOM

..... freedom to create. Over the years leading design and development engineers have been attracted to Ferranti by our reputation for truly innovative engineering and together they have formed specialised teams involved on a variety of sophisticated projects related to the Tornado, Sea Harrier, Jaguar, Nimrod 2 and other front line aircraft.

We now require additional engineers to join these teams engaged on the creative work of designing and developing airborne radar, laser and inertial navigation systems and their associated test equipment.

Engineers are required in the following technical fields:-
Digital and analogue electronic circuitry design.
Design and application of small digital computers.
Microwave and laser techniques.
Advanced instrument design including gyroscopes of inertial quality.
Design of small mechanical structures and analysis of stress.
In addition to the above we have vacancies for production engineers with either electrical or mechanical backgrounds in these fields.

Applicants should have some design/development experience to offer in avionics and a desire to expand their experience to project leader level.

Edinburgh, with its outstanding facilities for education, housing, sport and entertainment, is one of the ideai cities in Europe in which to live, work and bring up a family. And to make moving here easier, we pay realistic relocation expenses. Salaries are negotiable and the Company operates a contributory pension and life assurance scheme.

Apply in writing, with full details of experience and qualifications to

Staff Appointments Officer,
Ferranti Limited,
Ferry Road,
EDINBURGH, EH5 2XS.
Please quote Ref. WW/1.

Interested in computers?

 Lecture on

 Lecture on ComputerServicing

 ComputerServicing}

We are looking for Lecturers to teach the practicalities of computer servicing.

You will be based at our Engineering Iraining Centre in letchworth, Herts - the largest of its kind in Europe. Here you will be given a comprehensive grounding in computer technology in general and ICL equipment in particular.

Youwill be thoroughly prepared to train engineers to the point where they will he capable of maintaining computers at the optimum operational specitication.

Ideally, you will have an HNC or Forces' training in a technical subject. Any experience of digital electronics, computers or instructing on these subjects, while not essential, will be useful. Huency in written and spoken French or German would be a distinct advantage but is not essential.

We'll start you as an Assistant I. ecturer on a salary of not less than $£ 3800$ a year. You'li be encouraged and expected to progress to the position of Senior Lecturer which carries a salary in excess of $£ 5000$.

Relocation expenses will be considered where appropriate

For an application form, phone David Reeves on 01-7887272 extension 4750 , or write to him at ICL, 85/91 Upper RichmondRoad, Pumey, London SW15 2TE. Please quote rejerence ww 1134 International Computers
think computers-think ICL

UNIVERSITY OF SURREY

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

AN ELECTRONICS ENGINEER/TECHNICIAN

is required to join the Industrial Electronics Group working on a wide range of advanced electronic design and construction projects. The post entails working with the minimum of supervision on the construction and testing of high quality prototypes and presents an opportunity for career development in instrumentation, computers and communications.
A second post exists in the Department's Electronics Workshop where an ELECTRONICS ENGINEER is required to join a team designing, building and servicing a wide range of specialised electronic equipment. The successful candidate will be expected to wark with a minimum of supervision and be capable of taking projects from outline design to tinal product.
The successful candidates will be appointed in one of the Technician Grades 2 to 5 , depending on qualifications and experience. For the higher grades a minimum of 3 years relevant experience and qualifications equivaient to ONC are expected. Opportunities are provided for further study leading to higher protessional qualifications. There are promotion prospects to higher grades. Salaries Technican Grade

2 A	$£ 2152-£ 2452$
3	$£ 2455-£ 2788$

$\begin{array}{ll}4 & £ 2689-£ 3087 \\ 5 & £ 2889-£ 3367\end{array}$
6 £ £314-£3950
Application forms may be obtained from the Staff Officer, University of Surrey Guildford Surrey GU2 $5 \times H$ or Tel Guildford 71281, Ext. 452, and should be returned as soon as possible

SERVICE ENGINEER

L.K.B. Instruments require an additional engineer to service their range of clinical and nuclear products installed in customers premises throughout the West Country and South Wales. The applicant should live or be prepared to move to this area
Experience with nuclear counting equipment would be an advantage but a good general knowledge of digital electronics and a mechanical aptitude is considered essential.
The company offers a salary commensurate with experience, bonus scheme, company car, and assisted B U.P.A membership
Please contact for application form -
The Service Manager
L.K.B. Instruments Limited

232 Addington Road South Croydon, Surrey

Tel: 01-6578822

UNIVERSITY OF MANCHESTER
Hester Adrian Research Centre
Hester Adrian Research Centre
Anson House Pre-Schood Project for
Mentally Handicapped Chidren
TECHNNCIAN (Grade 3)

in the above project

 applicant will work in the pre-school facility which is one mile from the University, but will have access to electronic and mechanical workshops in the University itself. A major requirement will be that the technician wili be responsible tor the operation of an extensive CCTV system and will undertake the editing of tapesExperience with CCTV is therefore imporExperience with functions will involve some tant. Subsidiary functions will involve some
electronic and mechanical work. ONC is electronic and mechat (Electronics or Physics) (or equivalent qualification) is desirable Sor equivalent qualincation) is desirable
Salary Scale $£ 2325 . £ 2655 \mathrm{p}$ a. plus earnings supplement of $£ 130 p$ a Applications with full details of age, qualifications and previous experience should be addressed io Dr J Hogg, Hester Adrian Research Cen
Manchester M 13 9PL

VIDEO \& ELECTRONICS ENGINEER

required with experience of servicing and installation of Video and Hifi equipment for a responsible position in a new organisation in the centre of Bath. This is a challenging job for the right man, with excellent salary and promotion prospects.

Apply in writing to: Video South, 101 Eden Vale Road, Westbury, Wilts, or telephone Westbury (Wilts) 823140
(7038)

Aural and Visual Aids Technician

£3963-£4299 per annum

An experienced technician is required by the Croydon Education Service to maintain and repair a range of Audio and Video equipment including T.V. Receivers in schools
Commencing salary in the scale will be according to qualification and experience

In an appropriate case consideration will be given towards assistance with removal and lodging expenses

CROYDON

Apply in writing giving details of age, qualifications present post and relevant work experience to The Superintendent, Education Service Centre, Princess Road, Croydon CRO $20 Z$ or telephone the Superintendent, Mr. A. Bevan (tel: 01-684 9393) for further details.

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$ according to age. In addition, a supplement of $£ 312$
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experier, ce, write to: ETE Maritime Radio Services Division (L690), ET 17.1.1.2., Room 643, Union House, St. Martins-le-Grand, London EC1A 1AR.
Post Offifice Telecommunications

Senior Audio Visual Engineer

London Airport

C. $£ 4,000$ p.a.

An opportunity exists for an Audio Visual Engmeer to fill a senior position in the Heathrow Conference Complex

The successful applicant will have experience in the operation and maintenance of CCTV and colour studio equipment including broadcast cameras and 1" helical scan VTR and will also possess both the ability and the willingness to train less experienced engineers

This is a small, highly skilled team whose responsibility it is to present the most sophisticated conferences in the United Kingdom.

Please apply with brief personal and career details to the Personnel Dep: The Heathrow Hotel, Bath Road, Heathrow Hounslow, Middlesex. TWG 2AQ, or telephone 01-8976363/2419 for an application form. 7002)

The Heathrow Hotel

The only hotelon London Airport.

RADIO TECHNICIANS

Government Communications Headquarters has vacancies for Radio Technicians Applicants should be 19 or over
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear
Duties cover highly skilled Telecommunications/electronic work indluding the construction, installation maintenance and testing of radio and radar telecommunications equipment and advanced computer an analytic machinery
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualification
Salary scale from $£ 2,230$ at 19 to $£ 2,905$ at 25 (highest pay on entry), rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3.780$ with a few posts carrying still higher salaries. Pay supplement of $£ 31320$ per annum
Annual Leave allowance is 4 weeks rising to 6 weeks after 27 years service
Opportunities for service overseas
Candidates must be UK residents

Further particulars and Application forms available from
Recruitment Officer
Government Communications Headquarters
Oakley, Priors Road
CHELTENHAM, GIos GL52 5AJ
Tel. Cheltenham 21491 Ext. 2270
(STD 0242-21401)

SCOTTISH HOME AND HEALTH DEPARTMENT

WIRELESS TECHNICIAN

 Health Department.Location:
Qualifications:
Candidates must hold an Ordinary National Certificate in Electronic or Electrical Engineering or a City and Guilds of London Institute Certificate in an appropriate subject or a qualification of a higher or equivalent standard
\section*{Experience:}
3 years' appropriate experience.
Starting Salary:
$£ 2.010$ (age 17) to $£ 2.905$ (age 25 or over), scale maximum $£ 3,385$
In addition a supplement of $£ 313.20$ per annum is payable for staff aged 18 or over ($£ 261.00$ per annum for staft aged 17). Applicants should have sound theoretical and aged practical knowledge of Radio Eng Communications equipment in HF. VHF and UHF The work involves installation and maintenance o equipment located at considerable distance from
equipment located at considerable distance from headquarters. A clean, current driving licence and ability to drive private and commercial vehicles are essential
Appointment is unestablished initially but there is prospect of an established (ie permanent) appointment after 1 year's satisfactory service

Application forms and further information are obtainable from Scottish Office Personnel Division, Room 105, 22 / 25 Queen Street. Edinburgh, EH2 1LY (quote ref: $\mathrm{PM}(\mathrm{PTS}$)2/1/77)(031-556 9222, Ext 727).

Electronic Engineer

Sonarmarine - a member of the BP Group - is a new survey company situated near London Airport whose business is surveying for the offshore oil industry

The company is looking for an Electronic Engineer, qualified to HNC standard or equivalent, to be responsible to the Equipment Maintenance Supervisor for marine survey equipment

Candidates must have considerable practical experience and the ability to work down to component level on a wide variety of digital and analogue equipment used in marine surveys

Salary is dependent on experience and the company has a non-contributory pension scheme. Please write enclosing a c.v to The Manager, Central Recruitment, Britannic House, Moor Lane, London, EC2Y $9 B U$

Your experience could open the door to a range of interesting and rewarding opportunities in the Design, Production or Service departments of a Company whose products complement the most advanced modern electronic techniques.

For more information apply in confidence to :- John Prodger, MARCONI INSTRUMENTS LIMITED Longacres, St. Albans, Herts. Tel: St. Albans 59292
A GEC-Marconi Electronics Company

UNIVERSITY OF THE WEST INDIES JAMAICA

SENIOR LABORATORY TECHNOLOGIST

Technologistivts for a Senior Laboratory Technologist at the Electronics Laboratory
the University of the West Indies, Mona

The successtul applicant will be required to repair and mantain a variety of electro-mechanical and electro optical instruments
He/she will also be required to provide technical support to two Electronic Engintechnical support to two Electronic Enginof Electronic instrumentation

Qualifications: Candidates must have a full Technological Certificate. (HNC City and
Gullds or equivalent) and al least five years Guilds or equivalent) and at least five years
experience in bench fitting and sma! experience in bench fitting and small
instrument making instrument making

Salary Scale: J\$6000-9372 per annum (E1 sterling $=J 153$)

Benefits include generous Superannuation Scheme subsidised medical attention and 10% Marrage allowance for male martied employees
Applications should be addressed to the Personnel Otficer. Registry. University of the West Indies Mona, Kingston 7 Jamaica,
West Indies, giving detals of present qualifications and experience together with the names of two referees acquainted with the candidates technical comperence
17003)

Industrial Tape Applications require ELECTRONIC

ELECTRO MECHANICAL ENGINEER
for design and development of equipment relating to the recording industry An applicant who will be required to see propects right through to production

Please phone

Loudspeaker Technician/ Engineer

Tannoy Products Limited, the international name in the

 field of audio electronics, are looking for an enthusiastic Technician / Engineer to join their Hi-Fi Laboratory at Tylers Green, High Wycombe, Bucks The successful candidate will be responsible for the construction of experimental and prototype loudspeaker assemblies working with a dedicated design and development team under minimum supervisionCandidates should have a self-motivated practical approach with attention to detail and possess some knowledge of modern materials, adhesives and current process technology. Experience with loudspeaker drivers and systems is desirable together with an understanding of their performance assessment
Salary will be up to $£ 4,000$ per annum Generous benefits include assistance with relocation expenses where appropriate, and 4 weeks holiday. The company has recently moved its Design and Development Laboratories to a pleasant rural area and offers excellent conditions of employment.
For further details and application form, please contact the Personnel Manager, Mrs. D Jennery, or the Chief Engineer. Alex Garner at Tannoy Products Limited St John's Road, Tylers Green. High Wycombe, Bucks Tel Penn 5221

MEDIA ELECTRONIC HOLDINGS LIMITED MERCURY MOBILES

PROJECT ENGINEER

Mercury Mobiles require project engineers for their television systems group. The work involves TV system design, implementation and commissioning. possibly on customers premises, of broadcast $O B$ vehicles and studios
Prospective candidates should have a formal engineering qualification and experience of broadcast television engineering. Overseas travel, occasionally for extended periods, could be involved
Replies in writing to
Mr. J. M. Gibson Engineering Manager Mercury Mobiles
Woodland Ind. Estate
Eden Vale Road
Westbury, Wilts
(7047)

TELEVISION

and Film Unit to be a member of a tean operaing and maintaining television equip VTR and Teieciné work an advantage Salary scale £2889-£3367 Ret 65/C Application forms trom

Assistant Secretary Personnel Office
University of Birmingham University of Birmingham
PO Box 363 Birmingham 815

Appointments

SWANSEA

 SOUND LTD.invite applications for
AUDIO
MAINTENANCE ENGINEER
with a wide knowledge of professional broadcast and studio equipment

Applications in writing to
Stan Horobin Chief Engineer Swan Sound Ltd. Victoria Road Gowerton Swansea

(CA CAPITAL

AProllinginis 1 TD.

FIELD SERVICE ENGINEERS

 (ELECTRONICS) If you re not earning, over £3,500 p.a. plus a car - then you had better contact us!

SOUTH COAST

Several of our clients require the following personnel urgently offering excellen
salaries and relocation expenses where necessary.
PRONECT ENGINEERS ELECTRONICENGINEERS
TEST ENGINEERS AND
TECHNICIANS
QUALITY ASSURANCE ENGINEERS TECHNICAL AUTHORS SYTEMS PROGRAMMERS Mechanical and BUYERS
Please write or ring: CBS APPOINTMENTS 224 Old Christchurch Re., Bournamputh. Bournembuth 292155 or Wimborne 4891 atier 7 p.m.

BBC Engineering, Designs Department, requires Technicians for Central London Laboratories
Duties include assisting Engineers with the development, construction and testing of sound and television broadcasting equipment.
The successful candidates will probably be in their twenties and have a keen interest in, and at least two years practical experience of, electronics. They will have at least ONC or City and Guilds Part II or equivalent.
Salary according to qualifications and experience in the range $£ 2784$ - $£ 3318$ rising to a maximum of $£ 3696$ per annum (plus from $£ 10.86$ to $£ 17.38$ per month Pay Supplement according to earnings under current Incomes Policy).
Good opportunities for promotion.
Pensionable posts. Good restaurant and Club facilities. Write for application form to Engineering Recruitment Officer, BBC. Broadcasting House, London W1A 1AA, quoting reference number 77.E. $4005 / \mathrm{WW}$ and enclosing a self addressed envelope at least $9^{\prime \prime} \times 4$."

BBC

ITN VISION ENGINEER

A vacancy exists in the Vision MaintenanceDepartment of our West End Studios for an engineer to work on a wide range of broadcasting equipment including Vision Mixers, Computers, Digital Character Generators, as well as conventional Colour Coding, Decoding and Distribution systems.
We hope to recruit someone aged around 30 with wide relevant experience and qualifications to HNC level but, failing such an applicant, we are prepared to consider those with lesser qualifications for engagement at trainee level.

For further information, please apply to the Personnel Department of Independent Television News Ltd. on 01-6373144.

AUDIO ELECTRONICS ENGINEER

A vacancy exists for a junior technican working with a young team in a London-based professional recording studio
Duties will include assisting in the service and maintenance of complex audio equipment, and the design and construction of electronic devices
The position includes possibility of European travel

For further details and application form, please apply to Peter Smith, LA MAISON ROUGE, 388 Oxford Street, London, W.1. Telephone: 01-408 2075
(7039)

CHARING CROSS

HOSPITAL
MEDICAL SCHOOL

ELECTRONICS TECHNICIAN

required in the Department of Physiology for the construction and maintenance of electronic equipment. The successful
applicant will have the opportunity to assist in the neurophysiological research project. Applicants should hold HNC or equivalent Applicants should hold $H N C$ or equivalent
Salary on scale $£ 2,823-£ 4,050$ plus $£ 354$ Salary on scale $£ 2,823-£ 4,050$ plus $£ 354$
London Weighting Allowance. Further details and application forms obtainable from the Secretary, Charing Cross Hospital Medical School, The Reynolds Building. St Dunstan's Road London W6 8RP. quoting ref 014 . Closing date March 7th
(7045)

CaPITAL APDTS. LEi FREE LISTS
 Design/Development
 and Test Jobs.
 Permanent and
 Contract To $£ 6,000$
 To £6,000

SENIOR ENGINEER. We speciallise in marine electronics and need skilful engineer with wide ranging practical electronic experience, to install and service SSB MF/HF and VHF R/T, Radar, Autopilots etc on yachts and commercial vessels Proven ability to organise and work on own initiative is essential as work away from home is in volved. The position lis based in Central London. Salary negotiable Company car. Telesonic Marine Limited 243 Euston Road. London NW1. 01-387 7467/8. (7017)

MAINTENANCE ENGINEER to work within West London film dubbing complex duties include construc tion and installation of all types of recording equipment Box No W/W 7014

SCANNING THE ADVERTS to see what's going? If you are, we could be offering the best opportunity you've seen yet. We need a technically knowledgeable person who has a Hair for writing, to train as assistant editor for one of our tant editors can progress rapidly tant editors can progress rapidly
to editors in our organisation. The to editors in our organisation. The
post will probably most appeal to post will probably most appeal to tomer liaison department of a hi-fi orientated company but could be equally suitable to someone finish. ing a course or involved in retailing. - Write to Hugh Johnstone Haymarket Publishing Ltd.. 54-62 Regent Street, London WI.
(7050)

Iran
 Telecommunications

OSCO - The Oil Service Company of Iran, a Consortium of International Oil Companies engaged in the exploration and production of oil and gas for the National Iranian Oil Company have the following vacancies

Head Telecommunications Special Projects

(US \$30,000 per annum nett)

Responsible for the planning, co-ordinating and management of the telecommunication projects which include:- microwave, UHF, VHF and HF radio systems, trunk line and cable carrier systems, telegraph networks, telephone exchanges and local telephone line distribution.

Candidates should be graduates in Electronics/ Telecommunications and have at least 10 to 12 years experience in telecommunication engineering and administration with at least 5 years at supervisory level.

Head Telecommunications Services

(US \$25,000 per annum nett)

Responsible for all-over supervision and control of the drilling radio operation, maintenance of exchange and line, trunk telephone/telegraph network and all radio and electronic systems throughout the area of operations.

Candidates should be graduates in Electronics/ Telecommunications with at least 10 years experience in all telecommunication engineering aspects including administration with at least 5 years at supervisory level Must additionally have experience relating to radio band/frequency and a good background of radio, exchange and line maintenance.

Both appointments will be located in Ahwaz in South-West Iran and the tour of duty will be for two years with a possibility of extension.

In addition to a generous salary free of local Income Tax, the following benefits will apply:

1. Married accommodation available after short initial period of single status.
2. Free medical attention in Iran for staff and families
3. Home leave earned at the rate of 4 days per month of foreign service.
4. Primary schooling available locally.
5. Financial assistance towards boarding school costs.
6. Additional school children's passages for children at boarding school in the country of origin.
7. Substantial terminal bonus on satisfactory completion of contract.
Iranian applicants will be considered under the regulations existing for the employment of Iranian staff.

Please forward full details of experience and qualifications to Brian Doyle, Selection Consultant, Ref. 8381/WW,
Whites Recruitment Limited,
72 Fleet Street, London EC4Y 1JS.

THE FASTEST GROWING AIRLINE IN THE MIDDLE EAST

Saudia, the airline of the Kingdom of Saudi Arabia, isseching, as patit of a planned programme of expansion, two thoroughly expericned technicians, aged under 45 , to sustain the existing level of operations and also to work on new communications equipment which is currently being insialled.

SENIOR TELEPRINTER TECHNICIAN

 Starting salary c. $£ 7,600$ (income tax free)Duties will include

- routine and complex maintenance and repar of teleprinter cquipment
- the installation of circuiry and teleprinter machines
- conducting periodiciesis to check the quality of the tekeprinter circuity
- routine prevemative maintenanceonequipment andmachinery - the maintenance of service records for equipment in use
- maimenance and revision of technical manuals

Applicants should hold a centificate of traming in the field of teleprinter/system mainenance and have 3-5 years practical experience. (Please quotereterence A-503-762 when applying for this job).

SENIOR RADIO TECHNICIAN Starting salary c. $£ 7,600$ (income tax free)

Duties will include

- routine maintenance and troubleshootingon radio cquipmentc. UHF/VHI/HF mobile communications equipment, public address systems, cte.
- work on communications system installations including antemas, lecder lines, power lines and cables
- the maintemance of technical fourmals
- heeping up-to-date regarding statc of the ali procedures in electronies maimenance
- field trips
- themaine nanceof servicetcoods on equipnemtand logs of the utilisation of sparc parts
- participation in on-iob training of Saudi National employees Applicantes should hat completed arade school course or have equivalen experience. 3-5 yoars experience of electronics equipment servicing is essential. (Pleasequote reference A-50--762 when applying for this iob).

These jobs, which are for a 2 year (renerable) comeace period. are based in Jeddah. Saudia offer cxecellent (income tax free) salaries together whit free unfurnished accommodation tor you and your families, free and reduced ar tichers. 40 days leate per annum and a re-location allowance.

Pleasewrite, with full personal and areer details, ortelephone for an application form, quoting the appropriate reference, o:

Miss Connie Mulshan,
Saudia's U.K. Personnel Representative,
Saudi Arabian Airlines,
Koom 216, 93, Regent Street,
London W. I. Tel: 01-4391661.
Closing dute for completed applications 2trh Janumery 1977.

ज

flamimidrawe inatrinalis Ilic

L31 2aL Tel:-Bdadmin 10208) 316

DESIGN ENGINEER

required with frequency processing experience to work on stimulating new project 10 MHz to 1 GHz frequency band Applicants must be conversant with new techniques

DRAUGHTSMAN/WOMAN

required with a sound mechanical engineering background, preferably related to small electro-mechanical devices

Extremely good working conditions in an ideal environment, four-day (36-hour) week. Pension Fund Salary negotiable

Send full résumé to

FMI LTD.
Dunmere Road, Bodmin, Cornwall

> YOUNG ELECTRONICS TECHNIC ANS required for assembly and testing work on Electronic equip ment, very varied work. Qualifica tions ONC or CNG (or studying) or ex apprentice or similar desirable Excellent opportunity for right per on with a small expanding com pany. Application forms from Young Electronics Ltd., 184 Roya $\underset{01-267}{ }{ }_{0}$ Street, London NW1. $\underset{\text { (} 8796}{\text { Tel }}$

> GREAT JOB OPPORTUNITY, A SE cure, interesting career in return for enthusiasm and hard work as production studios at one of Lon don's leading multi-media audio visual companies. You'd work on conferences exhibitions, installations and repairs. Current driving icence essential. Full personal de tails please by letter to: Technical Manager, Communications Centre 39 Long Acre, Covent Garden London WC2E 9JT. (3187)

ARTICLES FOR SALE

60 KHz MSF Rugby Receiver BCD TIME OF DAY OUTPUT. High per formance, phase locked loop radio receiver. 5 V operation with 1 second LED indication. Kit com plete with tuned ferrite rod aerial VAT). Assembled circuit and cased wo version also available send up version also available. Send for $)$ details Toolex. Sherborne
(21)

[^5] don Road, London S.W.19. (6518
C.R.T. REGUNNING PLANT. Neu and secondhand reconditioned raining, demonstration colour o don, Surey. CRO 2QP. 01-684 9917

16 mm BELL HOWELL 631 750/100 W lamp, separate speaker and transformer. $£ 150$ + VAT. Hilton's 9 West Hill, Dartford, Kent. Tel:
20009 (WW15)

VALVES RADIO

Transmitting we di.V.-Industrial Transmitting. We dispatch valves to all parts of the world by return
of post. air or sea mail, 2,700 types in stock 1930 to 1976 Obsolete types a speciality. List 20p. Quota types a speciality. List 20p. Quota to Saturday 9.30 to 5.00 . Closed Wednesday 1.00. We wish to pur chase all types of new and boxed valves. Cox Radio (Sussex) Ltd. Dept WW, The Parade, East Wit tering, Sussex PO20 SBN. West
tering 2023 (STD Code 024366).
(5392)
 aerial input type, R-Y B-Y etc.

AATICLES FOR SALE

COLOUR, UHF AND TV SPARES. NEW colour bar generator kit Mk 3

SOFTWARE

 DESIGN FOR MICROPROCESSORS by J. G. Webster
INTRODUCTION TO DIGI-

 TAL FILTERING Bogner. Price $£ 8.50$ ACTIVE-FILTER COOKBOOK by D Lancaster Price $£ 10.00$ THE CATHODE-RAY OSCIL LOSCOPE \& ITS USE by G N Patchett Price: $£ 3.85$ PRINCIPLES OF TRANSIS TOR CIRCUITS bAmos. Price: $£ 4.65$
110 ELECTRONIC ALARM PROJECTS FOR THE HOME CONSTRUCTOR by R. M. Marston. Price $£ 3.25$
IC OP-AMP COOKBOOK by W G Jung. Price: $£ 9.00$ HI FI YEAR BOOK 1977 Price $£ 3.60$
VIDEOTAPE RECORDING by FREQUENCY Price E7.00 SIZERS THEORY \& DESIGN

£20.00

ITL DATA BOOK by National Price £3.10

THE MODERN BOOK CO.

$$
\begin{aligned}
& \text { ECIALISTS IN SCIEN } \\
& \text { \& TECHNICAL BOOKS }
\end{aligned}
$$ 19-21 PRAED STREET LONDON W2 INP

$$
\text { Hone Sas } 1 \text { Pos }
$$

STANDARD CRYSTAL UNITS

STA		
$2097152 \mathrm{MHz} \mathrm{¢3.05}$	6	
$27680 \mathrm{MHz} \mathbf{¢ 2 . 7 0 ~ e a c h ~}$	838860 MH M	
194304 MHz £2.70		
each		
TV. MPU OLC	$4433619 \mathrm{MHz} \mathrm{E1}$	
	each $184320 \mathrm{MHz}_{\mathrm{E}} \mathrm{E} .70$	
FERENCE		
${ }_{1} 00.0 \mathrm{KHz}$ E2.75 each		
$20 \mathrm{MHz} £ 1.60$ each		
VAT exira. OEM and trade enquiries invited Bulk price discounts up to 75%		
INTERFACE QUARTZ DEVICES LTD.		
Market Street. Crewkerne, Somerset Tel. (046031) 4433. Telex 46283		

EXCLUSIVE OFFER

WORLD-WIDE RANGE
NEVER BEFORE OFFERED PHILCO HC-150 POINT-TO-POINT STRIP RADIO HF RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{Cs}$ Ten fully Single and diversity feception or ISB. DSB SSB with 4 sub-bands to each channel Full details and prices on application

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS
ENQUIRIES INVITED
FOR NEW STOCKS FOR NEW STOCKS

AUDIO AND INSTRUMENTATION.

 TAPE RECORDER-REPRODUCERS

* Racal RA. 63 SSB Adaplors new
* Racal RA. 237 L. W Converters new
* 19 'Blank Rack Paneis 7in high new - Apeco Dial a Copy Photo Copier Elec
- Porlable Mains Battey Hospual Ligt1
400 Channel Pulse Herght Spectrum

We have a vatied assoriment of industrial andi protessionai Cathode Ray Tubes avaltabe Lisi on Cequt

PLEASE ADD CARRIAGE AND

P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH (0202) 76505

 ± 2.92, PP ' C ' $£ 4.89$. Matching char gers respectively $£ 4.48$, £4.48 £5.24 Add 1.0% post \& package SAE for full list. plus if wanted 35 p for full list plus if wanted 35 p for Sandwell Plant Ltd Road Suttor Coldfield west Mid ands, B73 6PP Tel No 02135 צ764.

OSCILLOSCOPE storage type DM64G (Telequipment) for 5450 plus V.A.T. Used few weeks only Telephone: 01.478 1197. $\quad(7016)$

FOR SALE - Bound Volumes 19541964 inclusive. also 1965/6 un bound. Offers please ring 5678913.

INTEL SDK-80 microcomputer evaluation system ready built with a full 1 K of RAM and complete supply units. Bargain at £210 Compatible ASR 33 teletype also available. Ring: Tunbridge Wells
(0892) 31812 (7020)

LINSLEY-HOOD 75 watt amplifiers construcied and repaired. Brand new guaranteed spares by return
BDY 56 f1.85, BD529 55 p , BD530 55 p . 1 N $40025 \mathrm{p}, \mathrm{BC} 109 \mathrm{C} 12 \mathrm{p}, \mathrm{BC} 184 \mathrm{~L} 11 \mathrm{p}$, $2 N 545945 \mathrm{p}$. Interference suppression kit (also reduces preamp
noise) with instructions 1135 inclusive prices. P\&P 15p. List free. clusive prices. P\&P 15p. List iree.

- L. G. Bowman (Dept WW). 59 Fowey Avenue Torquas S Devon

FOR SALE. Wireless World 1934 to raul's Road Birmingham 12
V.C.Rs NEED V.Q.Rs. Are you dis appointed with the playback qual ity of your Video Cassette Recorder. Scientronic's Viden Quality Recoverer removes the fuss and restores lost focus. The V.Q.R. is
an casily installed unit which fits an casily installed unit which fits inside your V.C.R. and gives amazing results. Price Elo includes full instructions Full money back guarantee. S.A.E for further details to Scientronics, 40 High St . somersham. Huntingdon Cambs. PE17 3JA or telephone (Ramsey)

SOWTER TRANSFORMERS

OR SOUND RECORDING AND
REPRODUCING EOUIPMENT

prices. Large or small quantities. Let us quote SOWTER TYPE 3678 A recent retease MULTITAP MICRPHONE TRANSFORMER Pfimary windings for 600 ohm. 200 ohm and 60 ohm with Secondary loadings from 2 K ohm to 10 K ohm Frequency response plus/minus $1 / 2 \mathrm{~dB} 20 \mathrm{~Hz}$ to 25 KHz Contained in well finushed Mumetai box 33 mm diameter by 22 mm high. with colour coded and leads low distortion OELIVERY ismalt quantites) EX-STOCK. MIGHLY COMPETITIVE PRICE FUIL DETAILS ON REQUEST E. A. SOWTER LTD. Transtormer Manufacturers and Designers 7 Dedhem Place, Fore Sireet		

TTL: $740015 \mathrm{p}, 740418 \mathrm{p}, \quad 7413 \quad 34 \mathrm{p}$, $\begin{array}{lllllll}7420 & 16 \mathrm{p}, & 7473 & 32 \mathrm{p}, & 7475 & 47 \mathrm{p}, & 7485\end{array}$ 74116 120p, $74121 \quad 32 \mathrm{p}, 74154$ 150p $\begin{array}{llllll}74164 & 120 \mathrm{p}, & 74166 & 126 \mathrm{p}, & 74180 & 100 \mathrm{p}, \\ 74153\end{array}$ 74193 120p. C.W.O. Incl. VAT \& P.p. Electronic Engineering Ser
vices. Cambridge St , Rotherham, S. Yorks. Tel. 63739 .

CAPACITORS, mixed bags of electrolytics, approximately 500 un tested for $£ 1$. Mullard metallised polyester, mixed bags of $501 \mu \mathrm{~F}$
and $2.2 \mu \mathrm{~F}$ imperfections so $£ 1$. Add 40 p P\&P 10 all orders. R. Wardle. 3 Erp.

ELECTRONIC INSTRUMENTATION. If you are interested in the buying or selling of good quality used Reading 51074, Martin Associates and converse with our Sheila Hatch who will deal promptly with your enquiry.

PROFESSIONAL TV TUBE REBUILDING PLANT designed and manufactured with 20 years' exper. ence of tube rebuilding. Altso ali associvated supplies including Electron guns. Regular traiming courses. Western-Whybrow Engineering, WEOO Works, 'Penzance, TR20 9QT (073676) 2265. (6542)
KERABOARD PCB 18×12 covered with Ultraviolet negative photo resist. Packs of five. Single sided fll, double sided 113 , per pack. Shrubcote Tenterden Kent. 82

ARTICLES WANTED

MINICOMPUTERS
 PERIPHERALS
 INSTRUMENTATION

COMPUTER APPRECIATION Godutone (088 384) 3221

EQUIPMENT WANTED

BROADFIELDS AND MAYCO DISPOSALS

21 Lodge Lane, N. Finchley Telephone: Telephone:
$01-4450749$ 01-445 2713

WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC. TRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN.

WANTED radio communication
equipment. Large or small quan. tities, best prices offered. Telephone
Cambridge $(0223) 860555$ or 50668 .

Msc Course in Electrical Engineering

Specialisation in any one of the following
Electrical Machines and Power Electronics Electrical Machines
Communications Systems.
Electronic Instrumentation
Control Engineering \& Digital Electronic Systems Design of pulse and Digital Circuits and Systems.
The course, which commences in October 1977 may be taken on a Full-Time, Part-Time, Sandwich or Block Release basis, and is open to applicants who will have graduated in Science or Engineering, or will hold equivalent qualifications by that date. The Science Research Council have accepted the Course as suitable for the tenure of its Advanced Course Studentships. A Diploma Course, in some of the above topics or in Power Systems, is also open to applicants with the above, or slightly lower qualifications.

Research in Electrical Engineering

Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M. Phil. or Ph.D. in any of the above topics or in Electro heat
Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref. MSc). The University of Aston in Birmingham B4 7ET

THE UNVERSITY OF ASTON IN BIRMNGHAM

COURSES

RADIO and Radar M.P.T. and C.G.L.I. Courses. Write: Principal, Nautical College, Fleetwond, FY7 8 JZ .

If you're setting up a minirecording studio. building a P.A. system, or even just looking for a microphone or a reel of tape, this catalogue is an absolute mustlit contains the most comprehonsive range of Microphones, Mixers, Multi-Channel Tape Recorders, Amplifiers,
P.A. Speakers, Echo Units, Equalisers. Noise Reducers, otc. rom leading manufacturers uch as AKG, Amcron. Allen \& Heath, Bose. Teac, JBL, HH, Quad Revox, Tannoy, etc. OUR PROFESSIONALTRADE PRICES ARE THE LOWESTINTHEUK
Send large SAE for your free copy now to: Dept. WW, REW Professional Audio, 10-12 High Street, Colliers Wood. London SW19.
West End Showrooms:
146 Charing Cross Road, London WC2. Tel: 01-240 3064/5.

LABELS NAMEPLATES, FASCIAS on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts Ltd. $1-5$ Rectory Lane, Guisborough (02873-4443). Yorks, U.K.

Books

"VINTAGE CRYSTAL SETS, 1922 1927''. Just published by Wireless Worid, contains 128 pages. Chap ters on the first days of broadcasting. The Crystal set vintage wire less Trademarks. Also catalogine sections listing and describing crystal serices in f:s:d A book for original prices those interested in nostalgia. Available from main nostalgia. Avaitable from phops or direct from us. please send $£ 2.80$ inclusive to IPC Business Press Lid., Room 11 Dorset House, Stamford Street, London SE1 9LU.
(8125)

RECEIVERS AND AMPLIFIERS

HRO RXjs, etc. AR88. CR100 BRT400, G209, S640, etc. etc. in stuch. R. T. \& I. Electronics. Ltd. London, E11. Ley 4986 .

SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters Frequency Meters, Multi-range Meters etc. etc. in stock. R. T \& I. Electronics Ltd. Ashville old Hall, Ashville Rd., London. E. 11 Ley 4986.

CAPACITY AVAILABLE

ENAMELLED COPPER WIRE

swg	1	lb	407
14.19	$\mathbf{2 . 4 0}$.69	$\mathbf{2 0 z}$
20.29	$\mathbf{2 . 4 5}$.82	.59
30.34	$\mathbf{2 . 6 0}$.89	$\mathbf{6 4}$
$35-40$	$\mathbf{2 . 8 5}$	$\mathbf{1 . 0 4}$. $\mathbf{7 5}$
inclusive of $p \& p$ and $\overline{\text { VAT }}$			

SAE brings Catalogue of copper and esistance wires in all coverings THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 9BW

AIRTRONICS LTD., for Coil Winding - large or small production runs. Also $P C$ Boards Assemblies. Sort enquiries welcomed Walerand Road, London SE13 7PE. Tel: 01-852 1706 .

PRINTED Circuits. Ultra fast turn around. Very competitive prices Also prototypes, artwork, photo graphy, and drilling service. Kib more Circuits, 120 Garlands Road Redhill, Surrey. Phone 68850
(6739)

SMALL BATCH PRODUCTION

 wiring, assembly to sample or drawings. Specialists in printed circuit assembly. Rock Electronics, 41 Silver Street, Stansted, Essex. Tel. Stansted (0279) 33018/814006.DESIGN AND DEVELOPMENT. OuT Electronics Laboratory work in most fields for customers throughmunications, RF, TV Links, TX municationts, RF, TV Links, TX and RXs from 1 MHz to 1 GHz all types of logic, digital and analogue
systems. counters microprocessors systems. counters microprocessors
R.P.Vs, control. telemetery and D.F. production facilities also available. Write or phone Mr. Falkner, R.C.S. Electronics, 6 Woisey Ruad, Ashford, Middlesex. Ashford 53661. 17021
P.C.B. ARTWORK DESIGN - EaSt Anglia. Fast. precise work at com Anglia. Fast precise work at com-
petitive prices. Also instrument petitive prices. Also instrument panel designs, etc. Contact tangent Norwich. Norfolk. Tel (0603) 28015

PRINTED CIRCUIT BOARDS Quick deliveries. competitive prices, Quick deliveries competitive prices quings, drilling, etc. speciality small batches, larger quantities availlable Jamiesons Automatics Ltd, $1-5$ Westgate, Bridlington. N. Humber side, for the attention of Mr J Harrison. Tel: (0262) 4738/77877. (18

BATCH Production Wiring and As sembly to sample or drawings McDeane Electricals 19B Station Parade, Ealing Common, London W.5. Tel: 01-992 8976

DESIGN, ARTWORK, development test and production of electrical equipment. Powerline Electronics High Street Bognor Regis, Sussex PO21 1EZ. Telephone B.R. 25689. (7062

PRECISION TURNED PARTS - spacers, pillars, shafts, etc. Large/ small batches. Quotations by return. Send for plant/service capacity Specials, no problem. Drury
Bros. Unit 6, Hedley Road St Albans, Herts. Phone: 65094.
(6548)

BUSINESS OPPORTUNITIES

EXPORTER requires high quallty turntables, pick-up arms, cartridges and amplifiers for orm trademark, home and export dis. tribution. Box No. W/W 6774.

ARTICLES WANTED

MINICOMPUTERS
 * PERIPHERALS
 * INSTRUMENTATION

For fastest, best CASH offer, phone
COMPUTER APPRECIATION Godstone (088 384) 3221

> WANTED: TEST AND COMMUNICATION CMMR
> Call or phone
> 170 Goldhawj Road, London, W. 12 01-743 0899

wANTED, all types of communica ions receivers and test equipment Details to R. T, \& I. Electronics Ltd, Ashville Old Hall Ashville Rd,' London, E.11. Ley 4986.
SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Ring Southampton 772501 .

WE BUY new valves transistors and clean new components, large and cman new components, large quotations by return. - Walton's, 55 Worcester St. Wolverhampton.
R. F. INDUCTION HEATER about .5KW. - Barrett, 1 Mayo Road Croydon, CRO 2QP. (6038)

ALL SURPLUS or used equipment wanted. Radio telephones - complete systems purchased. Ships equipment and small boat radio's - components, partly assembled chassis etc, etc. Established 20 years. For prompt attention contact Mr Grout at Worthing 34897. GWM Radio Limited 40/42 Portland Road, Worthing, Sussex.

WANTED!
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with precious metal content

TRANSISTORS \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS

THE COMMERCIAL SMELTING \&
REFINING Co. Ltd. 171 FARRINGDON ROAD LONDON, ECIR 3AL Tel: 01-837 1475
Gables: COMSMELT. EC1 (7005) Works: FLECKMEY, Mr. LECESTER ${ }^{\text {(7005) }}$

ELECTRONIC INSTRUMENTATION If you are interested in the buying or selling of good quality used Reading 51074. Martin Associates and converse with our Sheila Hatch. who will deal promptly with your enquiry
WILL BUY ANYTHING, any quantity if price is right ring Stan 186. West Bromwich, 02155 0186.

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest is consumer electronics. Please borough (0733) 265219 . (22

WESTREX 10A pickup cartridge, Goodmans Axion 80 speakers, PX-4, PX-25, STC 4300 B valves. Wanted urgently. - Box WW7049

CLASSIFIED ADVERTISEMENTS

Use this Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU

PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate 81p PER LINE Average seven words per line Minimum THREE lines
- Name and address to be included in charge if used in advertisement.

ADDRESS

- Box No Allow two words plus 45 p
- Cheques, etc , payable to "Wireless World" and crossed \& CO .

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 123-135

Acoustical MFG Co. Lid
AEL Crystals Ltd.
Amateur Components
Ambit International.
Aspen Electronics Ltd
Aspen Elec
Audio Fair
Audix Ltd

Barr \& Stroud Ltd
d......

Barrie Electronics Ltd.
Bayliss, A. D. \& Sons Ltd.
Bentley Acoustic Corp. Lid
Bi-Pak Semiconductors Ltd
Boss Industrial Mouldings Ltd
Brenell Engineering
Buil, J.

Cambridge Learning

CEC Corporation
Chiltmead Ltd
Clarbrook Eng. Co. Ltd
Click Shelving Ltd.
Click Shelving
Colomor (Electronics) Ltd
Combined Precision Components Ltd
Combined Precision
Compcor Electron
Crimson Elektrik
Crofton Electronics Ltd
Danavox (Gt. Britain) Ltd
Datong Electronics Ltd.
Declon Ltd
Dema Electronics International
ECM (Europe) Ltd
PAGE

Edicron Ltd.
Electronic Brokers Ltd 10911411110 Electropian Ltd.
Electro-Tech Components Lid.
Electrovalue Ltd.
ES Electronics
Farnell Instruments Ltd
Fitch Tape Mechanisms Ltd
Forgestone Colour Developments Lid
Future Film Developments
Fylde Electronic Comps. Lid.

Hall Electrics Ltd.
Harmsworth Townley \& Co. Ltd Harris Electronics (London) Ltd. Hart Electronics Hayden Laboratories Ltd.
lcon Designs.
ILP Electronics Itd
Industrial Tape Applications
Integrex Lid..

KEF Electronics Led.
KGM Electronics Ltd.
Kramer \& Co.

Ledon Instruments Lid
Levell Electronics Ltd.
Light Soldering Developments Lid
Limrose Electronics Ltd
Linstead MFG Co. Ltd
Lloyd J. J. Instruments Ltd.
Lyons Instruments
Lynx (Electronics) London Lid.

MacInnes Laboratories Ltd
Mayware Ltd.
McLennan Servo Supplies Ltd
Maplin Electronic Supplies
Maplin Electronic Supplies
Marconi Instruments Ltd.
Marshall, A. \& Sons (London) Ltd
Maughan, Thos \& Associates Ltd
Multicore Solders Lid
Nombrex (1969) Lid

OMB Electronics
Otari Corp.

PADS Electrical
Paltrick J. B
PB Electronics Scotland Ltd.
Phonosonics
Physical \& Electronic Labs Ltd
Physical \& Electronic
Powertran Electronics
Precision Petite Ltd.
Purnell.

PAGE
$\begin{array}{r}30 \\ \hline 122\end{array}$
122
10.14

Loose insert

16

PAGE

Radio Component Specialists

Rank Radio International

R.C.S. Electronics

Rola Celestion Lid

RTVC

Salford Electrical Insts
Scopex Instruments Lid.
Service Trading Co
Servo \& Electronics Sales Lid 106
Shure Electronics Ltd..
Sinclair Insiruments Ltd
Sintel..
SME Ltd
over 111
$\ldots \quad 27$

Special Products Ltd
Strumech Engineering Ltd
Stirling Sound (Bi-Pre-Pak Ltd.)
Sugden, J. E. \& Co. Ltd
Surrey Electronics Ltd.
Swanley Electronics Ltd.
Swift of Wilmslow.

Tamba Electronics

88

Teleprinter Equipment Ltd.................................... 14
Teleradio Hi Fi
Television
Telford Communications
Tempus
The All Electric Show
Time Electronics
Trampus Electronics
Trident Audio Developinents Lid
Tweed Audio Electronics.

Varradio Ltd

West Hyde Developments Ltd.

Whiteley Electrical Co. Ltd
Wilkinson L. (Croydon) Ltd.
Wilmot Breeden Electronics Ltd 91
Wilmslow Audio .. 122

Gardners Transformers
Greenwood Electronics Ltd
Z. \& 1. Aero Services Ltd. Zettler (UK) Division
$10.24,103$

New!

Anti-Feedback \& Equalization

Never before has a microphone put such absolute sound control into the palm of your hand. With Shure's new revolutionary PE5EQ E-Qualidyne Microphone, you simply preset any of four frequency switches on the microphone to minimize your Number One enemy-feedback. You can also select -on the spot-any one of 16 frequency response variations to tailor your performance to ANY stage: Sweeten the strings . . . enhance the better qualities of your voice . . . or eliminate close-up "boominess." Ideal where a single type of microphone will be used for different applications in the same act. Only the E-Qualidyne can offer such hand-held versatility. And only Shure has it!

Shure Electronics Limited Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

Multicorethe complete answer for printed circuit soldering.

Most printed circuit soldering problems can be avoided by using quality products and seeking quality advice. Naturally, we suggest ours. First, let's talk about quality products.

Extrusol and Multipure.

EXTRUSOL Extruded Bars and MULTI-PURE Cast Bars are made from specially processed ultra high purity solder. EXTRUSOL bars and pellets are protected by plastic film from the moment they are made to the moment they are used. And MULTI-PURE bars are probably the smoothest and brightest solder bars you will ever see.

Ersin Multicore Savbit.

This cored solder has countless uses. For instance, it avoids erosion of copper plating and wires as well as prolonging the life of soldering iron bits.

For full information on these or any other Multicore products, please write on your company's letterhead direct to: Multicore Solders Limited, Maylands Avenue. Hemel Hempstead, Hertfordshire HP2 7EP. Tel:Hemel Hempstead 3636.Telex: 82363.

[^0]: 37 High Street, Brentwood, Essex. CM144RH.
 TELEPHONE (0277) 216029 -after 3 pm if possible please.

[^1]: Current issue price 35 p, back issues (if avalable) 50 p , at Retail and Trade Counter, Paris Garden, London SEI. By post. current issue 55 p, back issues (if available) 50 p , order and payment to Room 11, Dorset House, London SEl 9LU
 Editorial \& Advertising offices: Dorset House. Stamtord Street. Loidon SEI 9LU Telephones: Editorial 012618620 : Advertising $01-2618339$.
 Telegrams/Telex. Wiworld Bisnespres 251.37 London. Cables. "Ethaworld. London SEI."
 Subscription rates: 1 year $\mathfrak{L 7 . 0 0}$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year $\mathfrak{e} 3.50$ UK and overseas (\$9 io USA and Canada).
 Distritution: 40 Bowling Green Lane. London ECIR ONF. Telephone 01-8.37 3636
 Subscriptions: Oakfield House. Perrymount Rd. Haywards Heath. Sussex RH16 3DH. Telephone 044459188 . Subscribers are requested to notify a change of address. C, I.P.C. Business Press Ltd, 1977

[^2]: JOHN GIBBON (Make-up and copy)
 Phone 01.2618353

[^3]: - Chelsea College, University of London \dagger Dept of Computing Science, University of Calgary, Canada

[^4]:

 ## THE MULTIMETER TO MAKE YOUR TESTER OBSOLETE!

 The fabulous LCD900 incorporates a liquid crystal display only of the range to which the meter is switched
 7 DC voltage ranges $\pm 1-1000 \mathrm{~V}$ at $50 \mathrm{~K} \Omega / \mathrm{V}$
 5 AC voltage ranges $10 \cdot 1000 \mathrm{~V}$ at $10 \mathrm{~K} \Omega / \mathrm{V}$
 4 DC current ranges 0. $3-300 \mathrm{~mA}$

 1 AC current range 3 A
 PRICE
 4 resistance ranges $1 \mathrm{~K}-1000 \mathrm{~K}$
 £58.25
 Basic movement $17.5 \mu \mathrm{~A} \quad(+£ 1$ P\&P) exc. VAT

 Also shortly available the VS-100 ultra-safe industrial tester.
 For full details on these and 24 other standard instruments in the SАПШД range contact

 ## QUALITY ELECTRONICS LTD.
 24 High Street, Lydd, Kent TN29 9AJ

 Tel. Lydd (0679) 20252, TLX 965265[^5]: SPOTWELOERS new from 185 Sameside from E220. - Ring 01^{0} 540 7337./8. Rentweld's, 14 Claren

