

Power from the sun

 Load lines

If you are looking for the most efficient testing solutions for your Pulse Code Modulation system, come to the people with the most experience - mi. Over 4000 PCM systems have been installed by the U.K. Post Office using our PCM test equipment which meets all relevant CCITT Recommendations.
During this period, we have evolved many solutions to PCM test problems including in-service measurement of digital error rate, simulation of cable sections during installation
of digital line systems, audio-to-audio performance testing and regenerator fault location. In-service measurement capability means no loss of revenue through loss of traffic. And you get further substantial savings with mi equipment - the capital cost-saving can be as great as 50% against competitive equipment giving equivalent performance. The mi name is, of course, a guarantee of quality recognised throughout the world.

Full information by return.

mi:THE PCM TESTERS

FREQUENCY	0.2 Hz to 1.22 MHz on four decade controls.
ACCURACY	$\begin{aligned} & \pm 0.02 \mathrm{~Hz} \text { below } 6 \mathrm{~Hz} \text {. } \\ & \pm 0.3 \% \text { from } 6 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \text {. } \\ & \pm 10 \% \text { from } 100 \mathrm{kHz} \text { to } 300 \mathrm{kHz} \text {. } \\ & \pm 3 \% \text { above } 300 \mathrm{kHz} \text {. } \end{aligned}$
SINE OUTPUT	5 V r.m.s. down to 30 VV with $\mathrm{Rs}=600 \Omega$
DISTORTION	$<0.15 \%$ from 15 Hz to 15 kHz $<05 \%$ at 15 Hz and 150 kHz .
METER SCALES	2 Expanded voltage $\&-2 /+4 \mathrm{dBm}$.
SIZE \& WEIGHT	$260 \mathrm{~mm} \times 190 \mathrm{~mm} \times 180 \mathrm{~mm} .56 \mathrm{~kg}$
TG66B	TG66A
Battery mode	Mains \& battery model

LEVELL ELECTRONICS LTD.
Moxon Street, High Barnet, Herts. EN 5 5SD
Tel. 01-449 5028/440 8686

FREQUENCY
ACCURACY
SINE OUTPUT DISTORTION

SQUARE OUTPUT
SYNC OUTPUT
METER SCALES
SIZE \& WEIGHT

3 Hz to 300 kHz in 5 decade ranges.
$\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$ $<0.2 \%$ from 50 Hz to 50 kHz
2.5 V peak down to $<200 \mu \mathrm{~V}$
2.5 V r.m.s. sine
$0 / 2.5 \mathrm{~V} \&-10 /+10 \mathrm{~dB}$ on TG 152 DM
$260 \mathrm{~mm} \times 130 \mathrm{~mm} \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg}$

How every hi-fidealer can increase his sales and improve his service

The Ferrograph RTS 2 is a complete. single-unit audio analyzer. Used by leading manufacturers and dealers throughout the world. it is the only single equipment available that can run exhaustive checks on hi-fiincluding amplifiers, tape recorders equalisers and mixers-making it an invaluable aid to sales and service.

Increase your sales!

By using the RTS 2 in your hi-fi store your salesman can quickly prove to customers that the hi-fi system he is demonstrating is as good as it sounds. In a matter of seconds. up to ten different tests can be carried out. using just one pair of leads. (The push-button operation is so simple. even
unskilled staff can make accurate measurements.)

Result? The customer is reassured. confident he is getting value for money. So you sell more. more easily.

Improve your service!

But the RTS 2 is much more than a cost-effective sales aid. Used in your service department. it quickly identifies faults. making your after-sales back-up more efficient. And more profitable. You don't need a variety of incompatible test gear-so there are fewer
connections. no hum-loops. no
time-consuming frustrations. All of which means you save money.

The RTS 2 is an unbeatabie cemonstrator. It's so simple! And as test equipment. there's nothing faster.

Photograph by courtesy of Sewards in Reading.

Ferrograph RTS 2

the complete, single-unit audio test set.

Wilmot Breeden Electronics
 Ferrograph Rendar Wayne Kerr

[^0]Name
Address
Company
Tel. No.

Wilmot Breeden Electronics Limited.
Durban Road. South Bersted.
Bognor Regis. West Sussex. PO22 9RL
Telephone Bognor Regis 25811
(STD Code 02433)

ISOPHON

How do you advertise a Horn Tweeter?

We had thought of showing a picture

 of a French Horn-aesthetically more pleasing than a Horn Tweeter-but instead decided just to proudly include a photograph of our NEW HORN TWEETER

We are excited about this new addition to the product line and feel sure that you will be too, when you examine the specification and listen to the sound.
We are confident it will not be long before this Horn Tweeter joins our other successful products like the Dome Tweeters KK7, KK8 and KK10. There are, of course, many other drive units to choose from in the isophon range including bass units, dome midrange units and assembly kits.

Why not send for the Isophon catalogue containing 28 pages of useful information which we will be happy to send you, free of charge, on receipt of the cut-out coupon.
 NO BREAK POWER SUPPLIES NEW 2000 SERIES - FOURTH GENERATION 1KVA TO 200KVA 24 HOURS WORLDWIDE SERVICE 2 YEARS' GUARANTEE AVAILABLE BRITISH MADE

VISIT US AT HASTINGS AND SEE OUR STATIC INVERTER CENTRE

TYPICAL TRANSIHACK
NO-BREAK POWER SUPPLY AS DELIVERED TO C.E.G.B.

TYPICAL
TRANSIPACK U.P.S.
FOR COMPUTER
APPLICATIONS

INDUSTRIAL INSTRUMENTS LIMITED
transipack ${ }^{\circ}$

Sales and Laboratones
Stanley road
BROMLEY BR 2 gJF
KENT, ENGLAND
Tolephone: $014609861 / 5$
Tolegrams: TRANSIPACK, BROMLEY
Factory
Factory
THEAKLEN DRIVE
THEAKLEN DRIVE
PONSWOOD INDUSTRIAL ESTATE
hastingis. susséx, engiánd
Telephone: Hastinge 427344

Surprise. The best industrial cathode ray tubes don't come from Japan, Germany, America orHong Kong,

And go to most places in the world.
Which is what you would expect from the manuifacturer of Brimar
industrial cathode ray tubes - the largest in the U.K.
Range: 1 to 5 -inch single gun, instrument tubes, 5 -inch double-gun oscilloscope tube,
flying spot scanners, 19 radar tubes, 34 data display and monitor
tubes from $5 \frac{1}{2}$ to 24 -inches, all made to the highest quality standards with a personalised sales and technical advice service to match.
Our catalogue is over 1 inch thick - ask for it.* Thorn Radio Valves \& Tubes Limited,
Mollison Avenue, Brimsdown, Enfield, Middlesex, EN3 7NS.
Telephone: 01-804 1201.

Heworids towescosi Fibe Opic ficoidea

Introduced to meet the demand for a simple, high quality, FOR for those who do not require full recording oscilloscope capabilities; the FOR-7 has a rectangular CRT which provides strip chart, X-Y plot and single frame recording on low cost paper.
WIDEBAND BRILLIANCE MODULATION -for video imaging with good grey scale
HIGH FREQUENCY DEFLECTION AMPLIFIERS -for trace recording with faithful transient response
VARIABLE SENSITIVITY AND POLARITY REVERSAL -for easy interfacing with displays and systems

BENCH, RACK OR BUILD-IN VERSIONS -for general purpose laboratory or OEM applications

For further information or a demonstration of the FOR-7 or any other Medelec unit please contact:
MEDELEC LIMITED. Woking . Surrey GU22 9JU
Tel: Woking (048 62) 70331 Telegrams: Medelec Woking

4- 0 - \rightarrow (4)

WW 061 - FOR FURTHER DETAILS

Hatfield's versatile Test Team
 Well established instruments from the Hatfield range include:

MOS: from Europe with authority

MOS technology, as everyone knows, is originally American. But here in Europe we at SGS-ATES have right from the beginning given it an industrial application which has helped us to achieve and maintain leadership in this field.

Let's highlight the main steps in a decade of progress.
1966 - setting-up of the MOS department
1968 - the first MOS calculator designed in Europe (10 chips)
1969-technological innovation with the Planox process
1971-design of a multichip calculator system organised like the microprocessors we know today
1972 - a 2-chip calculator with printout
1973-the first rhythm generator for electronic organs
1974 - the M38 8-bit microprocessor, a 4 k ROM and a 1 k RAM
1975 - new LSI circuits for musical instruments and a 30 channel remote control system for TV (M1024, M1025), the first results of a large undertaking by the company in this sector.

That is the history to date of our achievements in the MOS field. That is, in fact, the history of MOS in Europe.

And now a 4k RAM

The M340, a 1×4096-bit dynamic random access memory, as fast as any in the world: 200 ns max access time, 400 ns max cycle time.

It is produced with N -channel high-voltage technology and mounted in a 22-pin package.

Soon to be offered in a 16 -pin version (M341).

And that's why

SGS-ATES (UNITED KINGDOM) LTD,

DECADE BOXES
"Junior"Series-Resistance- $\mathrm{h} \%$

	Decades	Uhms Range
$J 1$	5	0- 1.111,100
J2	5	$0-1 \overline{11.110}$
J3	4	$0-\quad 111.100$
J4	4	$0-\quad 11.110$
J5	3	$0-11.100$
J6	3	$0-11.110$
J60	6	0- 1.111,110
J70	7	0-11.111,110
"Junior' Series-Capacitance-1\%		
	Decades	pF Range
JC 1	3	100-. 111.000
JC2	$2+\mathrm{var}$	30- 19.140
"Point One" Series-Resistance-0.1\%		
	Decades	Ohms Range
R3	4	0 - $^{-1} 1.111$
R4	4	O- 11.110
R5	4	$0-111.110$
;R7	5	$0-1.111 .100$
R9	5	$0-111.110$
R10	5	$0-11.111$
R11	5	0-11,111,000
R20	6	O- 11.111. 110
R21	6	O- 111.111
'R22	6	$0-11111$.
R30	7	0-11.111.110
R31	7	$0-1.111 .111$
R32	7	O- 111.111.1
R41	8	0-11.111.111
R42	8	$0-1.111 .111 .1$
"Hundred' Series-Resistance-0.03\%		
	Decades.	Unms manye
R400	4	O- 111.100
R401	4	O- 11.110
R402	4	0- 1,111
R403	4	0- 111.1
R600	6	0-11,111.100
R601	6	$0-1,111.110$
R602	6	$0-111.111$
R603	6	O- 11.111.1
R701	7	0-11,111,110
R702	7	0-- 1,111,119
R703	7	$0-111.1111$
R802	8	$0-11,111,111$

$3009+$ SL120

This turntable by 'Technics offers the mechanical excellence

Ideally suited to our precision pick-up arms,
its use is detailed in information sheet No. 15,
a copy of which will be sent zo you on request.

Write to Dept 0638A • SME Limited • Steyning • Sussex • England

The best pick-up arm in the world
ww 064 - FOR FURTHER DETAILS

"He's asking fora reed relay assembly with a 30kV isolated coil"

People ofter bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'normally open' or 'changeover' contacts. Around them, a coil operating from 8, 12,24 or 50 V supply, 30 kV isolated from the contacts. The whole unit mounting on a $0.25^{\prime \prime}$ insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.
 manufacturing
your electrical
and electronic
requirements.

Whiteley
 Whiteley Electrical Radio Co. Ltd.

Mansfield, Notts NG18 5RW, England. Tel: 062324762.
WW 065 - FOR FURTHER DETAILS

Over 50,000 cusfomers REGULARLY SERVICED

DORAM'S NEW CATALOGUE HAS BEEN SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS \& HI. FI ENTHUSIAST.

DORAMS SERVICE ALSO INCLUDES -

MANY PRICE REDUCTIONS QUANTITY DISCOUNTS ON CAPACITOR, RESISTOR OR SEMICONDUCTOR ORDERS

FREE - UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE

ALL ORDERS SENT BY RETURN-OF. POST
nO QUIBBLE REPLACEMENT PART SERVICE

* POST \& PACKING FREE FOR ORDERS OVER $£ 1$ (Only applies for Great Britain N.Ireland and B.F.P.O. Nos.- Overseas orders F.O.B.)

SEND FOR YOUR NEW CATALOGUE

 AND/OR KIT BROCHURE NOW!
NiN catalogue

1 DORAM ELECTRONICS LTD. P. O. Box TR8,

Leeds, LS12 2UF.

I enclose \qquad Please send me by return my new catalogue and/or kit brochure. (Over seas orders except for N.Ireland please add 30p for post and packing surface only.

PLEASE PRINT BLOCK CAPITALS
NAME:
ADDRESS \qquad
\qquad

WW - 03I FOR FURTHER DETAILS

Used by Government services and most industries Wholesale and Export enquiries to

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components	Our product range comprises: Low profile (flatform) Timing Miniature Low contact capacity Hermetically sealed Stepping Mains switching Latching Contact stacks Solenoids
	Miniature Relays AZ 420 ... 439 International standard relay 2,4 , or 6 change-overs Plug-in type saves maintenance costs Coll voltages: 1.2 to 180 Volts D.C. 6 to 240 Volts A.C Life expectancy to 100 million operations Balanced spring-held armature allows operation in any mounting position. Relay extends only $3 / 4$ " from PC board when used with right-angle socket

We resolve your switching problems rapidly and experty. Please contact us for further details

Zettler UK Division
Brember Road
Harrow, Middx. HA2 8AS. Tel (01) 4220061
A member of the worldwide ZETTLER electrical engineering group, est 1877

Build up the network you need with Barr \& Stroud Active Filter Modules

For maximum flexibility, the EF Series Active Filter Modules* are well worth your consideration. They give Bessel, Butterworth or Chebyshev responses, high-pass, low-pass, band-pass or band-stop filtering, are solid-state, compact and fully encapsulated. They are equally suitable for general laboratory functions or incorporation into standard equipment Your own external components are used for tuning and response selection. Complete details are in pamphlets 1700 and 1732 ; ask for your copies today.

BARR \& STROUD LIMITED London Office: 1 Pall Mall East London SW1Y 5AU Tel: 01-930 1541 Telex: 261877
BARP AND
GIRAOMD
Glasgow and London

EF10 Series - low pass. response down to d.c. $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off. 12-36dB/octave stop-band attenuation.

EF20 Series - high pass response up to 1 MHz , $1 \mathrm{~Hz}-30 \mathrm{kHz}$ cut-off, 12-13dB/octave stcp-band attenuation.

EF40 and EF41 Universal band-pass and band-stop with centre frequencies 0.1 Hz to 10 kHz - band-pass Q up to 200 - band-stop 0 up to 10 . Supplementary operation in low-pass, high-pass and all-pass delay modes.

WW-094 FOR FURTHER DETAILS

Do you really need a synthesiser?

The Eddystone 1830 series of general purpose HF/MF communication receivers is widely used in marine, militarv. police, broadcasting and other professional applications. Using the optional crystal control facility, stability is almost up to synthesiser standard - at a fraction of the cost !

Economy, simplicity and reliability are characteristics of the 1830 series. Continuous coverage is provided from 120 kHz to 30 MHz in Θ ranges, with reception facilities for $\mathrm{CW}, \mathrm{MCW}$ and $A M$ signals. Variants are available providing $\$ S B$ reception, modified coverage, and 50 -channel crystal capability

Eddystone Radio Limited
Member of Marconi Communication Systems Limited

Alvechurch Road, Birmingham B31 3PP, England
Telephone : 021-475 2231 Telex : 337081
A GEC-Marconi Electronics Company

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
'Desigñ of Digital Systems.

$£ 6.20$

plus 80 p packing and surtace post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request.
VAT zero rated.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics
in 4 volumes

Basıc Computer Logic

2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
$£ 4.20$
plus 80p P. \& P.
Offer Order both courses for the bargain price $£ 9.70$, plus 80 p P. \& P.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

nombrex

MODEL 41
R.F.SIGNAL GENERATOR

Price £54.85

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals.

PLUS V.A.T.

- 8 clear scales - Total length 130 mm .
* Spin-Wheel Slow Motion Drive 11 - 1 ratio
* Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation, Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator
* Powered by 9V Battery

Trade and Export enquirtes welcome
Send for full technical leaflets.
Post and Packing Él OO extra
NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON, TQ12 INE

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937

EIMEOARO

Stop Ruining Your I.C.'s And Wasting Time Soldering Plug Into The Revolutionary New BIMEDARD
The Only Professional Quality Breadboard That Accepts All DIL Packages With 6 To 40 Pins Incorporates Bus Strips For Vcc And Ground Includes A Component Support Bracket

Has Over 500 Individual Sockets
And Allows You To Use And Re-Use IC's, Transistors, LED's, 7 Segment Displays, Diodes, Resistors, Capacitors

 Special Quantity Discounts Available For
Radio Clubs, Retail Outlets, Distributors
EOSS INOUSTRIAL MOUIDNASS IID
Higgs Industrial Estate, 2 Herne Hill Road, London, SE24 OAU, England Telephone 01-737 2383

Test Equịment

Multimeters

The Eagle range of multimeters covers every possible need of the electrical or electronic engineer. They cost from about $£ 6$ to $£ 58$ (inc V.A.T.). There's at least one which suits your job precisely.
We have a lot of other test equipment too. Send the coupon and we'll send you our complete catalogue.

66 where can I get a Universal Bridge that's good enough for the labs,simple to use and tough enough for the shop floor and doesn't cost a fortune? \int

"Here"- AVO's Universal Bridge B150 Mk. 3 gives you measurement of resistance, capacitance, inductance accurate to 1%, can be used anywhere, it's battery powered. And anyone can use it, connections are simple and readings easy to take - with no calculations thanks to the mechanical ir-line digital display and interlockıng units selector.

The B150Mk. 3-for use in production, quality control, development labs - even at goods inwards. Tough metal cabinet, and the AVO guarantee of reliability, serviceability and accuracy, all at a price that's a pleasant surprise From good distributors everywhere.

Ring us for the name of your nearest stockist or for fuller details of AVO's Universal Bridge B150 Mk. 3 .

Avo Limited, Archcliffe Road,
Dover, Kent. CT17 9EN.
Tel: 0304202620 Telex: 96283.

WW- 013 FOR FURTHER DETAILS

BULK ERASURE PROBLEMS?

LR71
LR 70
MAX REEL SIZE 11 1/2"
 six way Sense

J(1) gosseves (a) SOLVES BUFFER STOCK PROBLEMS.

saves time.

SIMPLIFIES ORDERING.

Somake United-CarrSupplies yourSINGLE SOURCE for:-

 If it's to do with tape, then why not consider the LR70/71 bulk tape erasers. They are simple to operate and will erase cassettes, cartridges and reels of tape up to a maximum reel size of $11 \frac{1 / 2^{\prime \prime}}{}$ and tape width of $1^{\prime \prime}$, quickly and efficiently within the time it takes to read this advertisement.The LR70/71 bulk erasers are currently used in Broadcast Companies, Recording Studios, Government Departments, Educational Establishments and the Computer Industry.
Moderately priced and available from.
LEEVERS-RICH EQUIPMENT LIMITED INCORP. BIAS ELECTRONICS
319 Trinity Road, Wandsworth, London SW18 3SL Telephone 01-8749054
Cables: Leemag London SW18. Telex 923455 Wembley

CINEM Electronic Components

Some examples: - Barrier terminal strips. Printed circuit board edge connectors. D Subminiatures. Multi way plugs and sockets. Audio sockets.
United-Carr Supplies Ltd.,
112 Station Road, Ilkeston, Derbyshire, DE7 5LF
Tel: :Ikeston 328711 (STD 0602 328711) Telex 377117

[^1]
Lean to useamicronrocessor:

Low cost, battery operated Intercept Jr. Tutorial System irstructs you on todays most advanced LSI sericonductor devices, then serves double duty as an operating solid-state computer!

Leam micronrocessors in hours.

With its detailed Owner's Handbook, Intercept Jr. teaches you basics of microprocessors, Zandom Access Memories (RAMs), Read Only Memories (ROMs) and input/ output interfacing, all in less than 8 hours.

Gontains everything you need.

Inte cept Jr. is a complete all-CMOS computer on a 10 - by 12 -inch board. Contairs batteries, entry keyboard, 8 -digit LED display, RAM and ROM memory ... all controled by an Intersil IM6100 12-bit CMOS microprosessor.

Aminexnensive teaching computer.

For $£ 196.39$ you get both the handbook and the computer, plus provisions for expansion with 1024 words of additional memory, from 256 to 2048 words of added program, and input/output interfacing with terminals.

Intersil i

Intercept Jnr:

is available off the shelf from Intersil's distribu:ors.
Plug-in Expansion Modules available RAM Module with 1024 words of added non-volatile memory
£96.51
P/ROM Module with sockets for 256
to 2048 words of prog em
$£ 49.69$
I/0 Module for interfacing TTY
Keyboard/reader and כrinter/punch
$£ 54.38$

Coupon send this coufon for the latest brochure on Intercept Jnr. to
Intersil Inc. 8 Tessa Foad Richfield Trading Estate Reading Berks Tel $0 \neq 34595011$ Telex 847227 or Intersil's UK Distri Jutors
Rapid Recall Ltd 9Betterton Street Drury Lane London WC2H 9BS Tel 01-3796741 Te ex 28752
TranchartElectronics (UK.) Ltd Tranchant House 100a High Street Hampton Middlesex TW12 2ST Tel 01-9790123 Tele× 929515

Why scrap good mono cameras?

EEVistillmaking image orthicons.

Why change equipment which has many more years of useful life ahead?

EEV is still making image orthicons in very large numbers. And we're constantly developing them with improved performance.

So you can be sure of continuity of supply of highquality $3^{\prime \prime}$ and $4 \frac{1}{2}^{\prime \prime}$ tubes.

Our prices are competitive. Our service backup is worldwide. All the knowhow and skill of 24 years production goes into every EEV image orthicon.

Our tubes are all you need - to keep on getting good pictures, colour or black and white, from older generation cameras.

Write for data and prices. If you have a specific. requirement, contact your local EEV agent or call Camera Tube Sales at Chelmsford, England.

EEVand M-OV know how.

INTRODUCING NTERLAB

type MP51 low cost PULSE GENERATOR

a new model in LI's INTERLAB ${ }^{\circledR}$ series of versatile, economical, instruments for laboratory, test and education

TYPE MP51 PULSE GENERATOR

PRF $5 \mathrm{~Hz}-5 \mathrm{MHz}$	External trigger
Delay $100 \mathrm{~ns}-100 \mathrm{~ms}$	
Width $100 \mathrm{~ns}-100 \mathrm{~ms}$	
Manual one-shot	
Mixing input for double/multi-pulse	
Price - only $£ 55$ ex works (plus VAT)	

Also available in the INTERLAB ${ }^{\circledR}$ series:
TYPE SQ10 SINE/SQUARE OSCILLATOR

TYPE D10 AF DISTORTION METER

NTERLAB

series from

Hoddesdon Herts EN11 9DX
Telephone 67161 Telex 22724
A Claude Lyons Company
wwo07 FOR FURTHER DETAILS
breadboard powersourcee

The Farnell Triple Output Power Supply-TOPSis an ideal utility power source for 'breadboarding' IC and Op. Amp circuitry.

- 5V, 1 A and $15-0-15 \mathrm{~V}, 200 \mathrm{~mA}$	LED indication of overload
Adjustable outputs	Low cost, good performance
Output protection	Ideal utility IC/Op. Amp
power source for bench use	

For details contact

FARNELL INSTRUMENTS LIMITED • SANDBECK WAY WETHERBY • WEST YORKSHIRE, LS22 4DH TELEPHONE 09373541 or $01-8647433$ - TELEX 557294

WW-076 FOR FURTHER DETAILS

ELECTRONIC
 INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals. Liquids. Machinery, etc.. etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case. Probe and internal 11/2 volt standard size battery
Model "Mini-Z $1^{\prime \prime}$ measures from- $40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Model "Mini-Z $2^{\prime \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Model "Mini-on Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$
PRICE E20.00 each [VAT 8\% EXTRA]
Write for turther details to
HARRIS ELECTRONICS (LONDON),
138 GRAY'S INN ROAD, LONDON. WC1X 8AX ('Phone 01-837 7937)

Is there o mixing system versotile enough for YourFuture Requirements?

The milars PR. toto/modular concept offers:

Mainframe expansion in sections of six modules capacity at any future time, allowing a larger proportion of the budget to be used for modules instead of unoccupied mainframe.

This gives a cost effective solution with no compromise engineering, and a performance specification to meet critical live sound, recording and broadcast requirements.

The complete range of 21 standard modules are available from stock, together with assembled main frames in various standard formats.

mIIRES

AEL 3030

The AEL 3030 is a compact, fully solid-state 150 watt PEP output Transmitter-Receiver covering 2.16 MHz on 4 or 6 channels.
Rugged construction for today's tough environments. Easily accessible for simple maintenance.
Ten plug-in modules give maxımum insurance against loss of service.
The advanced technology used in the AEL 3030 provides unmatched efficiency in point to point or mobile communication, minimises size and cost and maximises reliability!
DESIGNED FQR RELIABILITY

For further information and colour brochure write to:

D GATWICK HOUSE HORI-EY, SURREY, ENGLAND TELEPHONE HORLEY (02934) 5353
 Telex 87116 (Aerocon Horley) Cables Aerocon Telex Horlev

WW - 030 FOR FURTHER DETAILS
 no fiddle
 carbon film RESISTORS

With the AVO TT 169 in-circuit transistor tester. Co/No Co tests almost any transistor, diode or thyristor without de-soldering, without damage. Find out how it can save you time, save you money.
You'll find the price is no fiddle either. Contact your local wholesaler, or us:

WW-059 FOR FURTHER DETAILS
$1 / 8$ and $1 / 4 w 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK
£4.51 PER 1,000
PLUS
of one value va.t
Contact John Gingell
AERO SERVICES LTD.
\& $\quad \begin{aligned} & \text { ALA Westbourne Grove } \\ & \text { London } W 25 S F \\ & \text { TEL } 01-7275641\end{aligned}$
TELEX 261306.

JES AUDIO INSTRUMENTATION

Illustrated the Si453 Audio Oscillator

SPECIAL FEATURES:

* very low distortion content-less than 0.03\%
\star an output contorming to RIAA recording characteristic
* battery operation for no ripple or hum loop
* square wave oulput of fast rise time $£ 60.00$
also available

Si451 Millivohmeter

* 20 ranges also with variable control permitting easy reading of relative frequency response

Si452 Distortion Measuring Unit

* Low cost distortion measurement down to 0.01% with comprehensive facilities including L.F. cut switch. etc ALL PRICES PLUS VAT

Till then we will continue to serve you with the most extensive range of tube types as we did during the last 20 years.

Whether you look for receiving - transmitting - or special purpose tubes, we probably have it - right from the shelf.

We care for quality, quick service and - last not least - for a competitive pricing. It is good to have our new price list ERS-19. Please try us, we are standing by.

Export through Dr. Hans Bürklin
Postfach 200440
Schillerstr. 40

a good sound a good address when it comes to radio tubes

F. M. TUNER MODULES BY

These modules are fully assembled, tested and guaranteed units, as featured in our tuner designed by experts in integrated circuit technology and applications, they represent the finest available modules, ideal for incorporation into top quality home built systems.

M1 MAIN TUNER MODULE

including ten turn manual tuning pot

M2 STEREO DECODER

including L.E.D. indicator
M3 PUSH BUTTON PRE-SELECT UNIT
six channel \& provision for manual tune

The Electronic Design Specialists

M4 REGULATED POWVR SUPPLY

20v. 100 mA output, 240 v input
M5 TOUCH TUNE PRE-SELECT UNIT
A touch switched replacement for M3
£17.54

Fully illustrated leaflets describing the above modules are available for the asking
A booklet is available for 50 p (post free U.K.) Fully describing the completely updated tuner. Prices subject to 12.5% VAT and revision on 1 st Nov.

All items (except M5) are available in kit form, or as individual J.C.s, P.C.B.s, etc

Full metalwork and teak cabinet is also available to complete the finest tuner on the market today.

WATCH FOR FURTHER ADDITIONS TO OUR RANGE

Write for full lists today

To:

33 Restrop View
Purton, WILTS SN5 9DG

AMCRON POWER AMPLIFIERS

The AMCRON range of DC-coupled power amplifiers are used by Government, and University, Research Departments as well as by Industry for a variety of applications ranging from Shaker, and Vibrator driving, to driving both $A C$ and $D C$ Motors, providing variable frequency power supply, or high voltage material testing. All models are DC-coupled throughout, with Intermodulation, and Harmonic Distortion below 0.05\%, damping factor of at least 400 from $D C$ to 1 kHz , and the ability to operate into load impedances from 1 ohm to infinity even into highly reactive loads

M600
750 watts into 8 ohms
1,350 watts into 4 ohms
DC to $20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db}$
$+0^{\prime}-15^{\prime}$ DC - 20 kHz
$16 \mathrm{~V} / \mathrm{usecond}$
120 db below 600 Watts
$19^{\prime \prime}$ std rack, $8^{3 / 4^{\prime \prime}}$ H. $161^{1 / 2^{\prime \prime}}$ Deep

DC 300A

500 watts rms into 25 ohms i: chan) 200 watts into 2.5 ohms (1 chan) $D C-20 \mathrm{kHz}+1 \mathrm{db}-0 \mathrm{db} \quad \mathrm{DC}-20 \mathrm{kHz}+1 \mathrm{db},-0 \mathrm{db}$ $+0,-15^{\prime} \mathrm{DC}$ to $20 \mathrm{kHz}+0^{\prime},-15^{\prime} \mathrm{DC}$ to 20 kHz 8 volts per microsecond At least 110 db below 150 watts 19" Rackmount, $7^{\prime \prime}$ High. 93/4' Deep

D150A 6 volts per microsecond At least 115 db below 90 watts $19^{\prime \prime}$ Rackmount. $5^{1 / 4^{\prime \prime}} \mathrm{H}, 8^{3 / 4^{\prime \prime}} \mathrm{D}$

EXPO DRILLS

Illustrate.
A TITAN DRILL mounted in a MULTI PURPOSE STAND This drill is a powerful tool running on $12 v \mathrm{DC}$ at approx. 9000 rpm with a torque of 350 grm . gm. Chuck capacity $3.00 \mathrm{~m} / \mathrm{m}$.
The multi-purpose stand is robustly constructed of steel and aluminium. The base and bracket are finished in hammer blue.
Also available for use in the stand is the RELIANT DRILL which is a smaller version of the Titan. Approx. speed 9000 $\mathrm{rpm}, 12 \mathrm{v}$ DC, torque $35 \mathrm{grm} . \mathrm{cm}$. Capacity $2.4 \mathrm{~m} / \mathrm{m}$.

TITAN DRILL.

ONLY Cat No. 175

$\mathbf{£ 9 . 6 1 + 3 5 p p \& p \text { inc. VAT }}$
RELIANT DRILL
ONLY Cat. No. 0150

MULTI-PURPOSE STAND
ONLY Cat. No. 0200
$£ 11.44+75 p p \& p$ inc. VAT

ADAPTOR COLLAR

 FOR RELIANT DRILL
Cat. No. 0201

These are only two examples of the extensive range of power tools designed to meet the needs of development engineers, laboratory workers, model makers and others requiring small precision production aids.
To back up the power tools Expoo offer a comprehensive selection of Drills. Grinding
 Points and other tools.
SEND S.A.E. (foolscap) for full details to main distributors:

A. D. BAYLISS \& SON LTD.

Pfera Works, Redmarley, Glos GL19 3JU
Tel: Bromesberrow (STD 053 181) 273 and 364
Soockists Richards Electric. Worcester and Gloucester. Hoopers of Ledbury Hobbs of Ledbury D\&D Models Heretord

WW - 069 FOR FURTHER DETAILS

ESPCapacitance measuring

 capacitance bridge $\mathbf{£ 1 8 5 . 0 0}$ + V.A.T.

ESP 200 A 1 pF to $50 \mu \mathrm{~F}$

Wide scale laboratory model $£ 82.00$ + V.A.T.

Electronic Services and Products Limited
Cross Lane, Braunston, Near Daventry, Northamptonshire NN 11 7HH Telephone: Rugby (0788) 890672

A complete range of British-made instruments designed to simplify capacitance measuring

- Accurate and sensitive
- Requires no manual balancing
- Takes less than a second to measure a capacitor
- Updates changes in capacitance automatically
- Wide range of applications

Send for technical literature and free booklet: "Modern methods of capacitance measuring"
Suppliers to: Ministry of Defence, Post Office, B.B.C. Government departments and Electronic Laboratories world-wide.

Series 7 Amplifier Equipment -sound investment

Since Grampian introduced the Series 7 range in 1971 hundreds of satisfied customers all over the world have found it to be a sound investment. The high technical specification has set a new standard in engineering and reliability and the modular construction offers the most comprehensive and flexible system available.
Series 7 - Sound investment

GRAMPIAN REPRODUCERS LTD

Hanworth Trading Estate, Feltham, Middx.
TEL: 01-8949141

WW-074 FOR FURTHER DETAILS

 band with a fast setting time.
LDO3.B Low Distortion Oscillator, balanced output.
A 1003 but fitted with an output amplifier and screened balanced transformer providing a 600 ohm floating / balanced output, and 150 ohms unbalanced output.
DMS3 Distortion Measuring Set (Illustrated)
Measures total harmonic distortion down to 0.001% speedily and accurately. Direct reading from calibrated meter
HSV1 High Sensitivity Voltmeter
An accurate voltmeter with 16 ranges, $10 \mu \mathrm{~V}-300 \mathrm{~V}$ t.s.d. Average responding.
HSV2 High Sensitivity Volimeter
As HSV1 but true r.m.s. reading
ANM1 Audio Noisemeter
An accurate voltmeter and noisemeter with 16 ranges, $10 \mu \mathrm{~V}-300 \mathrm{~V}$ ts d Fitted weighting characteristics. Wide band, DIN Audio Band. IEC/DIN Curve A. and CCIR. Average responding
ANM2 Audio Noisemeter
As ANM 1 but true r.m.s reading
ANF1 Audio Noisefilter
An active filter to CCIR weighting characteristic for use with externa voltmeter (Ref. Dolby Laboratories Inc. Bulletin No 43. Mar 76)
ull descriptive leaflets available from
RADFORD ELECTRONICS LTD.
Laboratory Instruments Division
Ashton Vale Road, Bristol, Avon BS3 2HZ Tel. 0272662301
WW - 081 FOK FURTHER DETAILS

ANAMDMENEMON IUSODERING

Iso-Tip Cordless Soldering Iron

Ideal for factory, field servicıng, laboratory or home, the Iso-Tip Cordless offers a great advance in soldering. It is completely portable, heats in 5 seconds and recharges automatically in its own stand.

The Iso-Tip is powered by long -life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$ Tips are available in five different sizes ranging from Micro to Heavy Duty to rneet all soldering requirements.

Greenwood Electronics
Portman Rd, Reading RG3 1NE, England Telephone: Read!ıg (0734) 595844. Telex: 848659 .

O円ी ${ }^{\circ}$ innternational WIRELESS SPECIALISTS

$\square 0000000000$

1-10000000000

fm tuner number two

The new FM Tuner from Ambit
1.2 uV for 30 dB SN, adjustable output voltage, ultrasonic suppression better than 79 dB . 6 presets, geared manual drive. Double IC stabilizers. Supplied with prealigned Larsholt RF/IF and decoder module. Complete with black woodgrain cabinet, and, solid aluminium front panel
Kit $£ 65.00$ ($£ 73.13 \mathrm{inc}$. VAT)
Built and tested £84.00 ($£ 94.50 \mathrm{inc}$. VAT)
modules for rf, if, mpx:
audio and general components
NEW 7020 Dual ceramic filters, 2 stage preamp into the improved CA3089E (HA1 137 W), with mute, AFC to suit ANY varactor tunerhead, meter output and edge terminations. Kit $£ 5.25$ Built $£ 6.65$
NEW
92310 The MC1310 mpx decoder, with iwin audio. preamps, and BLR 3107 ultrasonic block filter Kit $£ 5.35$ Buili $£ 6.65$
NEW 71197 A new caricap tuner tor $\mathrm{MW} / \mathrm{LW}$, with ceramic filter, 80 dB AGC. low noise and distortion.
Kit with ferrite rod£9.65 Built £11.35
NEW 5800 The state of the art in FM tunerheads, 6 double varicap tuned circuits, 2 MOSFET AGC controliable RF stages, double tuned IF output stage
Kit T.B.A. Built $£ 14.00$
A stereo power amp with the TDA2020
15 W RMS 0.1% THD IC from SGS
E7.85 (Special extruded heatsinks 75 peach)

TOKO COILS, FILTERS, TUNERS FOR AM/FM AND MPX.
Full details of standard types in hists
$\begin{array}{lllll}10 \mathrm{~mm} \text { IFTs for } 455-470 \mathrm{kHz} & 30 \mathrm{p} & \text { Linear Phase filter for } 10.7 \mathrm{MHz} & 2.25\end{array}$ $\begin{array}{llll}10 \mathrm{~mm} \text { IFTS for } 10.7 \mathrm{MHz} & 32 \mathrm{p} & \text { MF H4 1/71T mechanicals for } 455 & 1.65 \\ \text { Ceramic filters for } 10.7 \mathrm{MHz} & 50 \mathrm{p} & \text { SFD470 new Murata ceramic black } & 0.75\end{array}$ $\begin{array}{llll}\text { Ceramic filters for } 10.7 \mathrm{MHz} & 50 \mathrm{p} & \text { SFD470 new Murata ceramic black } & 0.75 \\ \text { Ceramic filters for } 6.0 \mathrm{MHz} & 800 & \text { BLR } 310719 / 38 \mathrm{kHzz} \text { notch (stereo) } & 1.60\end{array}$ Cerac 455 kHz ivpe CFX 104 1,50 Variable chokes 11,23 \& $36 \mathrm{mH} \quad 0.33$ CFT455B/C CFT470C ceramic 550 EC3302 low cost varicap FM turier 5.50 CFU050D 470 kHz ceramic 65 p EF560u 5 stage varicap FM head 12.50
Send an SAE for a free price list and stock list. There is a new Larsholt
Signalmaster FM tuner and more details on our range of wireless products. PP 22p per order, VAT is generally at $12 \frac{1}{2} \%$ - and the min. CWO charge is $£ 1$. Min. invoice $£ 7.50$, Catalogue 40 . (* 8% VAT).
37 HIGH STREET,
BRENTWOOD, ESSEX.
CMI44RH
tel 216029

Industrial Tape Applications

5 Pratt Street, London NW1 OAE
Telephone: $01-485 \mathbf{6 1 6 2}$. Telex: 21879
WW-078 FOR FURTHER DETAILS

WW - 023 FOR FURTHER DETAILS

The mixer which carries on

 When others are carried outThe Trident Fleximix System isn't just another portable mixer which has to be discarded as your requirements grow. Fleximix is a carefully thought out expandable mixer which will meet your needs now and in the future. Any time you decide you need more channels you simply slot-in additional modules; if you run out of slots, just add another mainframe. Modules may be placed in
 any sequence you like. No factory rework is required and no rewiring necessary.
Fleximix is designed for high quality Public Address, Bands, Budget Studios and Theatre applications and many of its features are normally only to be found on expensive studio consoles.
For at little as $£ 2,075$ (excluding VAT) you can start with a 10 input 2 group output format and subsequently build it up to a system with 10 mixed outputs, any number of input channels and 24 track monitoring. Additional mainframes may be either rigidly or flexibly coupled to the original system. Flight cases are available to accommodate any format.
If you're looking for a new mixer you've just found it! Write for details to:

TRIDENT AUDIO DEVELOPMENTS LTD.

Sales Office: 4-10 North Road
London N7 9HN
Tel. 01-609 0087
Telex. Tritape 264773

Factory Address: Shepperton Studios Squiresbridge Road Shepperton, Middx. Tel. Chertsey (09328) 60241

	$\begin{array}{ll} \text { JPS } & \text { price } \\ 60 & \text { (£.18.75) } \end{array}$	$\begin{aligned} & \text { JPS } \sum_{10} \text { price } \\ & 1(£ 23.50) \end{aligned}$	$\begin{array}{ll} \text { JPS } & \text { price } \\ 150 & (£ 29.65) \end{array}$
Power Output	70watts RMS 7.6 ohms	110 watts RMS 7.5 ohms	170 watts RMS $7.50 h m s$ 10.30 kHz .0 .50 B
Frequ. Response	$10.30 \mathrm{kHz}-0.5 \mathrm{~dB}$	$10-30 \mathrm{kHz}-0.5 \mathrm{~d} 8$	$10-30 \mathrm{kHz}=0.5 \mathrm{~dB}$
Slewing Rate	7.3V per microsec.	8 V per microsec.	B. 4 V per microsec
T.H.D.	0.05\% © 1 kHz	0.05\% @ 1 kHz	0.05\% @ 1 kHz
Damping Factor	200	400	400
Hum \& Noise	115 dB below 70 watt		115 ds below 170
Input Sensitivity	$0 \mathrm{dBl}(0.775 \mathrm{~V}) 70$	$0 \mathrm{~dB}(0.775 \mathrm{~V}) 110$	$\begin{gathered} \text { OdB }(0.775 \mathrm{~V}) 170 \\ \text { wats } \end{gathered}$
Input Impedance	47k	47k	47k
Power Requirement \pm. 35 Volis		445 Volts	± 56 Volts
Dverall Dimens.	$\begin{aligned} & 5.8^{\prime \prime} \text { Long } \times 3^{\prime \prime} \\ & \text { Wide } \times 1^{\prime \prime} \mathrm{High} . \end{aligned}$	$5.8^{\prime \prime}$ Long $\times 3^{\prime \prime}$ Wide $\times 1^{\prime \prime} \mathrm{High}$	
For Industrial usage the frequency response of the amplifiers can be extended down to $D C+0 d B-0.2 d B$ Input Impedance $\&$ Sensitivity can be modified to suit particular requirements.			
POWER SUPPLIES		PS60 powers 1 JPS60 price £ 12.30	
PS 100 powers 1 JPS 100 price £ 14.10 PS 150 powers 1 JPS 150 price $£ 17.48$ All Prices Are		PS 100/2 powers 2 JPS 100 price $£ 18.65$ PS150/2 powers 2 JPS150 price $£ 23.43$ Subject To B\% VAT	
BELMONT HOUSE - STEELE ROAD PARK ROYAL - LONDON NW 10 7AR TELEPHONE 01-961 1274			

TAMAR ELECTRONICS, P.O. BOX 17, PLYMOUTH WW 011 FOR FURTHER DETAILS

MADEINBRITAIN?

You could be forgiven for being surprised.

After all, the market is flooded with Japanese equipment.

But now, for the first time, a tape deck, with full solenoid transport function is available from a British manufacturer.

It's the MK 7S from Brenell.
A sturdy machine of studio quality, that includes features like front panel bias accessibility and dual standard equalisation.

It can be seen and heard at our demo studio. Pembroke House, Campsbourne Road, Hornsey, London N8.

Or for more information call Andrew Stirling 3403291

Also available - a complete range of multi-channel recorders, to customers own specifications.

hrenell

WW 072 - FOR FURTHER DETAILS

2D22 Stereo Pre-amplifier Control Unit
A stereo pre-amplifier of virtually zero distortion. Inputs for disc, tuner, and two tape machines, providing compreherisive recording and reproducing facilities. Sensitivities. Disc 1 mV . and Auxilliaries 50 mV . for 1 V output Exceptional signal/noise ratio. Output at clip level 18 V r.m.s.

2050 Power Amplifier

A stereo power amplifier of all aluminium construction Output of 110 watts per channel into 4 ohms and 70 watts into 40 hms at typically less than 0.002% distortion

2D100 Power Amplifier

A stereo power amplifier of all aluminium construction with high thermal mass and designed for continuous operation at high output level. Provides 150 watts per channel intc 4 ohms and 90 watts per channel into 8 ohms at virtually zero distortion

ZD200 Power Amplifier

Characteristics as ZD100 amplifier but provides an output of 250 watts per channel into 4 ohms and 150 watts per channel into 8 ohms

HD250 Sterbo Integrated Amplifier

Uses ZD22 pre-amplifier with a power amplifier having a power output in excess of 50 W per channel into $4-8$ ohms. Distortion less than 0.02% at rated power, typically less than 0.01%. True complementary symmetry output. Headphone output Inputs. Disc, tuner, and two tape machines Sensitivities. Disc 1 mV . Auxilliaries 50 mV for 20 W output
Full descriptive leaflets available from
RADFORD ELECTRONICS LTD
Audio Division
Ashton Vale Road, Bristol, Avon BS3 2HZ. Tel: 0272-662301

FREQUENCY COUNTERS

Higher performance instruments from $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . measuring frequency, period, time. freq./ratio and calibrated oulput facility. Fast delivery.
A selection of our products will be displayed at the MIPEL Exhibition in Budapest on the stand of Avionic Systems (Heathrow) Lid.

Sensitivity 10 mV . Stability 5 parts $10{ }^{10}$

301M 32MHz 5 Digit £82 ${ }^{2} 401 \quad 32 \mathrm{MHz} 6$ Digit 121 | 301 | $32 M H z$ | Digit $£ 178$ | 701 A |
| :--- | :--- | :--- | :--- |
| 501 | 80 MHz 8 Digit $£ 195$ | | | 801A/M 300MHz 8 Digit £305 901M 520 MHz 8 Digit £375 $801 \mathrm{~B} / \mathrm{M} \quad 250 \mathrm{MHz} 8$ Digit £262 $1001 \mathrm{M} \quad$ I.2GHz 8 Digit £670

Start/Stop versions plus $£ 12$ Memory versions available if not suffixed M £25 extra
Type 101 1MHz 100KHz 10 KHz Crystal Standard $£ 85$ Type 103 Oft/Air Standard £85
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Crystal
Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS

6 WOLSEY ROAD, ASHFORU MIDDX. TW15 2RB Telephone: Ashford (Code 69) 53661 / 2

No other cleaner has all these advantages:-
.1. Only 100% pure. natural dia mond granss are uttised
2. Blades are treated with hard chrome to reinforce the setting of the damond grans. to bviate loosening or break way durig use This process also prevents clogging of the diamonded surface by residues resulting from use.
3. All diamonded blades are rectified to ensure an absolutely smooth surface by eliminating diamond grains which may rise above the surface This eliminates all excessive scratching during use.
4. All diamond grains are rigrdly calibrated to ensure a perfectiv uniform grain size of either 200. 300 or 400
5. The chrome gives a very weak co.efficient of friction and the rigidity of the nylon handle is calculated to permit proper utilisation and yet plant enough to avoid undue pressures on highly delicate relays.

- Gran size 200 . thickness $55 / 100 \mathrm{~mm}$., both faces diamonded. For quick cleanning of industrial relays and switching equipment. etc.
- Grain size 300 , thickness $55 / 100 \mathrm{~mm}$.. both faces dlamonded. For smaller equipments. like teiephone relays. computer relars. eic.
- Grain size 400 , thickness $25 / 100 \mathrm{~mm}$.. one face damonded. For sensitive relays and tiny contacts. Two close contacis facing each other can be indvidually cleaned. because only one face of the spatula is abrasive.

Sole Distributors for the United Kingdom SPECIAL PRODUCTS (DISTRIBUTORS) LTD 81 Piccadilly, London W1V OHL. Phone: 01-629 9556 As suppliad to the M.O.D., U.K.A.E.A.I C.E.G.B. British Rail and other Public Authoritios: also major industrial and electronic users throughout the Unitod Kingdom.

WW-073 FOR FURTHER DETAILS

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet $30,300 \& 1200$ (30 and 120 cps)
Teleterm 1132 and 1200 series (portable / fixed 30 cps) with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)

* Spares, repairs, overhauls and maintenance \star Other types and models available
* Refurbished units also available
\star Short and long period rentals
* Minicomputer interfaces
* Quantity discounts * Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011 Cables RAHNO Tring Telex 82362
A/B Batelcom Tring

The proof is in the listening

A wide dispersion Hi-Fi loudspeaker system designed to deliver the maximum performance possible from a speaker system of average price (f 60 M.R.P.
V.A.T., per pair), the RA8 achieves its goal without any serious loss in sensitivity. Capable of handling up to 30 watts R.M.S. per channel rating, the RA8 is attractively finished in Teak or Walnut veneer.
Dimensions:- $395 \times 266 \times 247 \mathrm{~mm}\left(15 \frac{1}{2}{ }^{\prime \prime} \times 10 \frac{1}{2}{ }^{\prime \prime} \times 9 \frac{3}{4}{ }^{\prime \prime}\right)$

Richanclolllinn

Please send me further information on the RA8 and RA range of speakers, plus a list of Richard Allan stockists in my area.
Name
Address

Richard Allan Radio Ltd.,
Bradford Road. Goncisal. Cleckneaton. BD19 4AZ Yoikshire. England

[^2]
SINE WAVE OSCILLATOR

FROM THIS

S-DeC MAKE THIS

.

Simplify circuit design Use S-DeC Sockets in plastic block are connected in pre-arranged pattern To build circuit. simply plug in components Afterwards, unplug components ready to build more circuits Use same components again and again
Every S-DeC comes complete with step-by-step instructions. free control panel, and booklet with nine circuits you can build Sine wave oscillator. radio receiver, binary counter. VHF radio microphone -- they're all easy with S-DeC (see free booklet for circuits and instructions)
Send cheque/PO now and start designing the easy way, with S-DeC. Each S-DeC costs only £1.98 plus 37 p post. packaģing and VAT

P.B. Electronics (Scotland) Limited

57 High Street, Saffron Walden, Essex, CB10 1AA Telephone: Saffron Walden (0799) 22876

uk representative for Bird electronic

aspen electronics limited

2 KILDARE CLOSE EASTCOTE MIDDLESEX HA4 9UW Tel 018681188

Telex 8812727

TPA 50-D Specification

Power Output	100 watts rms into 4 ohms 65 watts rms into 15 ohms
Freq Response	$\pm 0.1 \mathrm{~dB} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. -1 dB at 150 KHz
Total harmonič distortion	Less than 0.04% at all levels up to 50 watts rms into 15 ohms
Input sensitivity	OdBm
Noise	-100dB
Rise time	2 u seconds
Price	£77 plus V.A.T.
100 V Line (C.T.	balanced inputs available.
For full technica	rmation contact:

H|HELECTRONIC
CAMBRIDGE ROAD, MILTON, CAMBS
TELEPHONE CAMBRIDGE 65945/6/7
WW-051 FOR FURTHER DETAILS

PRECISION PETITE LTD.

119A HIGH STREET, TEDDINGTON, MIDDX TEL. 01-977 0878

Now with the

-NEW MK. IIDRILL•

10,000 r.p.m. . 120 cmg

"MORE POWER MORE TORQUE"

$12 v .-14 v . D C$
DRILL ONLY £8.79
(p\&p 35p)
STAND £4.40 (p\&p 35p)
Incl. VAT
(Together 50p p\&p SAE for illustrated
 leaflet and order form

HEPWORTH ELECTRONICS

Worcester Road, Kidderminster, Worcs

Direct Mail: Tel. 0562-2212
Contact Mrs Moore

The original concept in breadboarding
Solderless long life contacts
Takes up to $\mathbf{4 0}$ pin D.I.P.'s, just push in

THE FIRST - THE BEST - THE ONLY SK10 Socket £13.33

- includes VAT, Postage \& Packing -

WV - 027 FOR FURTHER DETAILS

WW-039 FOR FURTHER DETAILS

The easy to use, easy to buy, general purpose scope~ the DG1a

D61adualtrace Lightweight Oscilloscope

The to Milz 'scope that makes others seem expensive at any price!
It took years of leclegnipment experience and intensive design effort to arrive at that migue combination of effortess higher performanec and remarkable low cost which makes the I) ona so outstanding for general purpose dutics in the laborators, the edastoom and the 'IS service department
Who else offers an oscilloseope with f wo romb rertical chamels with a full rollltz hamed width, Plat simmanatically switched, chopped walternate display modes, Ples amomatically switeled 'T' lime or fied triggering, Pl I'S: An s. 10 cm display driven at $3.5 \mathrm{~F}^{2}$ and the chorice of single irater, dual trate on S - Y presemtation?
And who witl send you full details on reyuest? Who else but t'elequipuent
'JCktronix 1 K. Limitcol.

TelequipmenT
<>
Versatile \sim that's our scope

wireless world

Electronics, Television, Radio, Audio

Contents

```
3 7 ~ B u s i n e s s ~ i s ~ b u s i n e s s
3 8 ~ D i g i t a l ~ w r i s t w a t c h ~ - ~ 1 ~ b y ~ P . ~ A . ~ B i r n i e ~
4 2 ~ H . ~ F . ~ p r e d i c t i o n s
4 3 \text { News of the month}
    Dolby and Capital, at last
    High-level compiler for microprocessors
    Smaller, more effective C.E.I.
4 7 \text { Use your pocket calculator as a digital filter by V. J. Rees}
4 9 ~ L i t e r a t u r e ~ r e c e i v e d
50 Electric power from the sun by G. L. Lawrence
5 5 ~ N T S C ~ s i m u l a t o r ~ b y ~ R . ~ C . ~ W h i t e h e a d ~
56 Letters to the editor
    Future of television
    Communication theory
    Was Baird fooling the public?
59 Electronic systems - 5 by R. Ashmore
6 1 \text { Thévénin, Norton and dependent sources by H. E. Stockman}
6 2 ~ A n n o u n c e m e n t s
6 5 \text { Variable pre-emphasis in f.m. broadcasting by L. Lewis}
6 7 \text { Projection television - 2 by Angus Robertson}
7 3 \text { Self-setting time code clock - 3 by N. C. Helsby}
74 Circuit ideas
        Low voltage audio amplifier
7 7 \text { Distortion levels in r.f. clipping by D. A. Tong}
81 Sixty years ago
82 World of amateur radio
83 Characteristics and load lines - 3 by S. W. Amos
8 6 ~ B o o k s ~ r e c e i v e d ~
8 9 ~ N e w ~ p r o d u c t s
92 Real and imaginary by "Vector"
130 APPOINTMENTS VACANT
144 INDEX TO ADVERTISERS
``` Editorial \& Adsertining offices: Dorse Houre. Stambord Street. London SEJ YL.U. Telephones: Editorial 01 261 8620: Advertising 01 2618339.
Telegrams/Telex, Wiworld Bisnespres 251.37 London. Cables. "Ethaworld. London SEI."
Subscription rates: 1 year: \(\mathfrak{E} 7.00\) UK and overseas (\(\$ 18.20\) USA and (anada). Student rate: 1 year, € 3.50 UK and overseas (\(\$ 9.10\) USA and (anada).
Distribution: 40 Bowling Green Lane. London ECIR ONE. Telephone 0I 8373636 .
Subscriptions: Oakfield House. Perrymount R'd. Haywards Heath. Suses RHIG 3DH. Telephone 044459188 . Subscribers are requested to notify a change of address

Front cover shows a modular solar energy unit developed and photographed by the RCA Corporation in their Princeton, New Jersey laboratories.

\section*{IN OUR NEXT ISSUE}

\section*{Advanced preamplifier} design with noise gating, undetectable distortion, high overload margin and accurate equalization.

Optical fibre communication. Part one of this twopart article covers the status of fibre systems and gives design considerations for a large-scale field demonstration. Part two will describe equipment requirements.

Mobile radio systems in the v.h.f. and u.h.f. bands are surveyed, with parṭicular attention to equipment for land mobile use. Problems of frequency selection, interference and noise are discussed, modulation modes are compared and reliability is examined.

\section*{EEV marine magnetrons?}
+ + + EEL MAGNETRONS FOR MARINE RADAR STOP.
EXPANSION COMPLETE STOP ALL TYPES NOW AVAILABLE STOP FOR EX STOCK DELIVERIES

\author{
ORDER NOW. ENELECTICO
}

\section*{Yes.}

To meet increasing worldwide demand, we've stepped up production of EEV marine magnetrons.

Now you can order all EEV types and be sure of getting them from stock.

You'll be sure, too, of getting the world's best tubes. EEV's unique metal/ceramic magnetrons can last \(60 \%\) longer

than other makers' glass types.
Get the best. Fast.EEV/MI-OV magnetrons, modulator tubes, duplexer devices, CRTs - in fact, all the tubes you need for marine radar.

From EEV/M-OV
international stockists everywhere. Or if you'd like our equivalents list, contact Chelmsford.

\section*{EEVand M-OV know how.}

\title{
wireless world
}

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435

Technical Editor:
GEOFFREY SHORTER, B.Sc. Phone 01-261 8443

Assistant Editors:
MIKE SAGIN
Phone 01-261 8429
RAY ASHMORE, B.Sc., G8K YY
Phone 01-261 8043

\section*{Production:}
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

NIGEL LITTERICK
Phone 01-261 8037
LEO KEMBERY
Phone 01-261 8515
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-261 8353

Publishing Director: GORDON HENDERSON

\section*{Business is business}

To the ordinary observer it seems that in business anything goes as long as both parties agree about a transaction and are satisfied with it. It is even possible to have fair trading in an illegal commodity. But when the transaction crosses a national frontier other interests are affected, notably the economic and perhaps the military security of the countries concerned. Hence the recent calls in Britain for import controls on consumer electronics goods (reported in the August and September issues). Referring to Japanese competition in colour television sets, Mr Edward Lyon, the M.P. for Bradford West, said in the House of Commons recently "It is quite clear that we are facing unethical business practices with the long-range objective of destroying sectors of Western European industry."

Unfortunately there are no real ethics in business, beyond the basic agreement mentioned above, and the practice of knocking out a sector of somebody else's industry, whether at home or abroad, is an accepted part of business activity. As for the accusations of dumping, made against the Japanese now and the Americans earlier (on integrated circuits), it must be remembered that there are people in one's own country who are buying the dumped goods and that they are just as much to blame, for conniving in the practice, as the sellers in another country.

Leaving aside questions of right or wrong, it seems inevitable that protectionism must be applied, as it is, indeed, by nations all over the world. In itself it has become a part of business. There seems to be several types of protectionism in use. First of all there is the direct process of controlling imports to keep them at levels which are safe for one's own industry. Secondly there is export protectionism, such as the Americans are thinking of applying to "mechanisms that transfer key know-how" of strategic value to the Soviet Union. Thirdly there is a protectionism directed against foreign technological systems, for example in the discrimination applied in America against the Decca Navigator system to protect US electronics industry interests.

In Britain protectionism alone is not enough to get us out of trouble. If the government is to be called in to intervene in business affairs it should also be to support particular sectors of industry which are worth supporting because they have considerable export potential. This must be done selectively because, as a small nation, we have insufficient resources to be experts at making and selling everything. It is good to see that certain types of electronic products have been chosen for long-term economic planning by the National Economic Development Council as part of the government's "new industrial strategy" introduced last year.

\section*{Digital wristwatch}

\title{
Single i.c. design using a liquid crystal display - 1
}
by. P. A. Birnie

A dramatic increase in the availability of digital wrist watches over the past year has not been reflected in the build-it-yourself market, and only one well known (l.e.d. display) kit is currently available. This design uses one i.c. and, as shown in Fig. 1, represents a minimum component design as used in mass-produced devices. The watch uses a \(31 / 2\)-digit liquid crystal display (l.c.d.) operating in a 12 hour mode. A \(32,768 \mathrm{~Hz}\) quartz crystal offers a stability, after initial ageing of about four weeks, of better than a minute per year and, with careful adjustment, a few seconds per year. Power is supplied by mercury cells which give at least a year of continuous operation.

In the functional diagram of Fig. 2 the: crystal uses an amplifier and integral feedback resistor in the i.c. to form, in conjunction with the fixed capacitor and trimmer, a stable frequency source for the watch. A field-effect l.c.d. is connected to 22 -segment outputs and one back-plane or common output. Setting of the time is achieved by two single-pole switches. The terminal marked test-in allows high-speed operation of the device. Another terminal marked DDC is designed to drive a d.c. to d.c. converter for generating up to 6 V . for the display. In this design two cells are used instead of the last-mentioned. output because it is more economical in space and cost. Those wishing to experiment with the converter can use a circuit similar to Fig. 3 which is designed to generate a 6 V d.c. supply across the 20 nF capacitor. This voltage must not exceed the 6 V maximum for any input on the TA6478.

Multiplexing of the display is not possible because all of the segments have one common back plane connection. The l.c.d. consists of two pieces of glass sandwiching a thin chemical layer as shown in Fig. 4(a). This layer can be made opaque when an electric field is applied across it. Digit segments are deposited on the inner face of the front piece of glass using a virtually transparent conducting material. The inner face of the rear piece of glass has an overall back plane covering of the same material. A piece of highly reflective tape is fixed to the rear of the device which is less than 2 mm thick. To reduce degradation of the cell an alternating voltage is used to drive the segments as shown in 'Fig. 4(b). A square wave of about 30 Hz is directly applied to the back piane and the segments are connected to the outputs of exclusive-OR

This design allows a \(31 / 2\)-digit watch to be built for under \(£ 25\) by using a minimum of components. The use of a p.c.b. and conductive plastic sockets eliminates much of the tedious wiring normally associated with d.i.y. watches. If the module is housed in the case detailed the result is a slim and compact timepiece measuring 40 \(\times 28 \times 8 \mathrm{~mm}\).
gates. Fig. 5 shows the square wave applied to the back plane, the \(180^{\circ}\) out-of-phase waveform applied to segment a, which turns it on, and the in phase waveform applied to segment \(b\), which turns it off. The actual waveforms applied to the display are shown in Fig. 6. Note that the alternating voltage effectively doubles the supply
which greatly increases the contrast ratio. Current consumption of the display is about 3000 nA under normal operating conditions.
Operation of the oscillator can be explained by reference to Fig. 7. Within the TA6478 a pair of complementary m.o.s. transistors form a simple inverter, and the trimmer capacitor allows a frequency change as shown in Fig. 8. The crystal is designed specifically for miniature time keeping applications and operates in the length-width mode of vibration. Mechanical characteristics of the crystal are carefully optimized to reduce ageing effects but, as Fig. 9 shows, a certain amount of drift occurs predominantly over the first six to eight weeks.
The batteries used in this design are not conventional watch types. Instead, two RM312H mercury cells are used which are cheaper and more readily available. As the voltage drops at the end of the cell life the oscillator will cease driving the colon correctly. At this point the cells should be replaced immediately because a direct voltage is being applied to the display.

\section*{Mounting and interconnections}

Overall size of the TA6478 necessitates the use of a printed circuit board and an enlarged layout is shown in Fig. 10. Three large areas on the right of the board allow supply connections, and an additional \(V_{D D}\) pad on the left terminates the earth sides of the two capacitors. This pad also provides an earth screen for the oscillator terminals. Two small rectangular pads from \(S_{1}\) and \(S_{2}\) allow flying leads to be connected to the

Fig. I. Block diagram of circuit using two conventional mercury cells.

Fig. 2. Functional diagram of the TA6478. The DDC output can be used to generate up to 6 V for the display.

Fig. 3. Converter suitable for use with the DDC output.

Fig. 4(a). Cross section of a l.c.d. cell; (b) method of producing the in and out of phase signals for the segments.
setting switches. Two pads on the left of the board connect to the oscillator terminals and allow mounting of the crystal, and ends of the capacitors. Attachment of the TA6478 to the board is made relatively easy by using the following method.

Spread a thin layer of Multicore Solders type XM27330 cream over the i.c. pads and place the i.c. in position. Secure a piece of aluminium at least 6 in square in the horizontal position and place the board in the middle. Precisely line up the i.c. on the board and then heat the underside of the metal plate with a gas blow torch. At \(179^{\circ} \mathrm{C}\) the paste becomes liquid and at this point raise the temperature very slowly until the liquid turns to solder which will flow over the tinned pads. After a few seconds remove the heat and leave the board to cool. If all of the pins have not been soldered correctly, the process can be repeated. Remove surplus flux and paste using cellulose thinners. Normal c.m.o.s. handling practice should still be adopted even with the i.c. mounted on the board.

The crystal is mounted as shown in Fig, 10, taking care to insulate it from the board and the i.c. Crop the trimmer capacitor leads and mount it in place making sure that the lead which is electrically connected to the =djusting screw is soldered to the \(V_{D D}\) pad. Finally mount the fixed capacitor in place.

\section*{Initial testing}

Testing can be carried out by using fine flexible wires. Make connections to the

Fig. 5. Signal applied to the backplane with the in and out of phase signals for turning segments on and off.

pin
21

Fig. 6. Actual signals applied to the display.

Fig. 7. Integral m.o.s. transistor inverter of the TA6478.

Fig. 8. Change in frequency for change in trimmer capacitor value.

Fig. 9. Ageing effects of the crystal. Most of the drifting occurs within the first 6 weeks of operation.
battery terminals \(V_{D D}, V_{S S}, V_{E E}\), the display common and colon, and also the DDC point if an oscilloscope is to be used. Connect two 1.5 V dry cells as shown in Fig. 1, with a \(0-50 \mu \mathrm{~A}\) ammeter in series with the \(V_{D D}-V_{S S}\) supply. This cell should supply between 3 and \(5 \mu \mathrm{~A}\), readings outside this range indicate a circuit fault. If an oscilloscope is. available check the DDC waveform shown in Fig. 3. If an accurate method of measuring frequency is available adjust the trimmer to give exactly 256 Hz .

Testing without an oscilloscope is performed by using the display to indicate correct outputs at display common and colon terminals. Fig. 11 shows the display connections from the front of the device. Using two flying leads from common and colon, a display of a segment should occur when the wires are lightly touched onto the display contacts. Because each segment has a resistance of several hundred megohms, it is virtually impossible to electrically damage either display or driver, but it is easy to physically damage the contact areas on the display. If a weak display appears, the oscillator is not running and a direct voltage is being applied to the terminals. This can be checked with a voltmeter which will give no d.c. reading when the basic module is functional and about 3 V if it is faulty.

A further test uses a pulse generator to inject a 32 kHz square wave of 1.4 V pk-pk (reference to \(V_{D D}\)) into osc in, after removing the quartz crystal. If, on repeating the previous tests, correct results are obtained then it is almost certain that the crystal is faulty or has been incorrectly connected. If the tests still do not result in the correct display conditions, the i.c. has been incorrectly connected or damaged during assembly.

\section*{Display mount}

When the display is on top of the p.c.b. module, the i.c. output directly aligns with the display inputs. Connection is made by two small printed wiring boards and a conductive rubber material. The rubber is necessary because the contact material of liquid crystal displays is not suitable for soldering, and it allows easy replacement of the display. An end view of the basic module and display mount is shown in Fig. 12. The two display mounts are small printed wiring boards with twelve tracks 29 "thou" wide and spaced 29 "thou" apart. The two small boards are aligned with the basic module so that twelve tracks on each are directly aligned with the corresponding tracks on the module.

After ensuring that the display fits into the mount, the boards are glued, using Araldite, onto the module. Interconnection is achieved by soldering fine wires between the relevant pads. To

Fig. 10. Enlarged layout of the printed circuit board.

Fig. 11. Display connections from the front of the device. Normally the display is blank; if it is breathed on and examined under a strong light, the segments can be identified.

Fig. 12. End view of printed circuit module and display. The display-mounts are small p.c.bs as shown in Fig. 13
avoid solder spreading onto the display contacts, it is essential to mask these areas with adhesive tape before soldering. Fig. 13 shows how this is done and also gives dimensions for the two mounts. It is also essential to use tinned copper wire of very small diameter such as 0.1 mm . All connections are straightforward except the one labelled \(\mathrm{d}_{2} \mathrm{a}_{2}\) in Fig. 10 which drives two display segments rather than one. From the \(\mathrm{d}_{2} \mathrm{a}_{2}\) output on the module a wire connects directly up the side of the display mount to segment \(\mathrm{a}_{2}\) and another wire is taken over the surface of the integrated circuit, using the spare pad between outputs \(\mathrm{c}_{2}\) and \(\mathrm{e}_{2}\), and then up the side of the display mount to segment \(d_{2}\). If this wire is kept taut there is no danger of a short to other pads. Although it is possible to connect the display by placing it on top of the display mount pads, conductive rubber is necessary to take up irregularities. Small pieces of conductive foam, as used to protect c.m.o.s. devices, may be glued to the solder connection on each displaymount pad using contact adhesive. The adhesive must be kept away from the display contacts. A better solution, however, is to use a material called Cho-Nector which is designed for this application and has unique conductive properties best explained by reference to Fig. 14. The material contains carefully controlled conductive areas which have a maximum dimension of not greater than \(60 \%\) of the material thickness. When contacts are placed on opposite surfaces the overlap of conductive areas forms a connection. Provided the contact separation across the surface of the material is greater than the specified minimum, resistance between contacts on the same surface is greater than \(10^{9}\) ohms. In practice, material of 10 "thou" is used which permits contact spacings down to 12 "thou" and a minimum area of 12 "thou" square. Two strips \(3 \times 24 \mathrm{~mm}\) are secured to the display mount by a spot of adhesive. The Cho-Nector should not be contaminated with grease or sweat. The pads can be cleaned but should not be treated with an abrasive substance. The Cho-Nector can also be treated with an alcohol based cleaner but petroleum or chlorinated solvents will damage the material.

\section*{Testing the assembled module}

The completed module should be tested to ensure that all ségments operate correctly, and trimmed for initial adjustment. Connect flexible wires to the two \(V_{D D}\) pads, \(V_{S S}, V_{\text {EE }}\) and \(S_{1}, S_{2}\) pads. Using two 1.5 V cells connect the supplies. Connect wires from \(S_{1}\) and \(S_{2}\) via single pole switches to \(V_{D D}\). Place the display in the mount, ensuring correct orientation. If the viewing surface is breathed on and examined under a strong light the orientation can be checked. If a correct display is not obtained two possibilities exist. Either

Fig. 14. Operation of the Cho-Nector. Conductive areas in the rubber make contacts through the thickness of the material but not across the surface provided the contacts are far enough apart.
the display is not aligned with the mount in which case move it from side to side until the display is correct, or the integrated circuit is in an incorrect display condition. This can be remedied by carrying out a time-setting sequence as in the table. When a correct display is achieved, two scraps of perspex should be glued in the mount to prevent side movement of the display. Using scraps of plastic or perspex, construct a temporary clamp to hold the module together for a few days while the trimmer is adjusted with the help of the GPO clock.

To be continued

\section*{Time setting sequence}
\begin{tabular}{|c|c|c|c|}
\hline & ate witch \(S_{1}\) & \(\mathrm{S}_{2}\) & Function after switch closure \\
\hline Flashing & open & open & normal operation \\
\hline Flashing & open & closed & hours change at 1 Hz rate while \(\mathrm{S}_{2}\) closed \\
\hline Flashing & momentarily closed & open & seconds reset. \(S_{2}\) now controls minutes-set \\
\hline Continuously on & open & closed & minutes change at 1 Hz rate while \(\mathrm{S}_{2}\) closed, hours not affected \\
\hline Continuously on & open & open & set time held \\
\hline Continuously on & momentarily closed & open & normal operation \\
\hline
\end{tabular}

\section*{Parts list}

Integrated circuit TA6478 (RCA)
Display 3308 (Hamlin Electronics Ltd)
Crystal \(32,768 \mathrm{~Hz}\) subminiature type
(Sintel, 53 Aston Street, Oxford)
Trimmer CT-5, 5-30pF (Pulsar Developments Ltd.
Fixed capacitor 10 pF
Mercury cells RM312H (two off)
Three p.c.b.s (see text)
Display connector two off \(3 \times 24 \mathrm{~mm}\) pieces of 12 thou thick
Cho-Nector conducting sheet (Steatite Insulations, Hagley House, Hagley Road, Birmingham B16 8G'V)

We understand that Pulsar Developments Ltd, Spracklen House. Dukes Place, Marlow, Bucks, are organizing a kit of parts for a digital watch based on the published design.

HF predictions
Ionospheric, as distinct from solar, indices are used for predicting characteristics of the ionosphere which determine path MUF. Most important of these are the monthly median values of vertical-incidence critical frequency of the \(E\) and \(F\) layers and the MUF/distance factor of the F layer.

Variations of any index with time shows three components, a regular component of about eleven year period, a component with a period of about a year which appears over the few years of a maximum in the eleven year cycle and an erratic fluctuation component due to rapid changes in solar activity which cannot be resolved by a monthly mean index.

\section*{Dolby and Capital, at last}

The IBA and the Home Office have authorised Capital and BRMB commercial radio stations to go ahead with experimental broadcasts using Dolby and variable pre-emphasis, but even if the tests are overwhelmingly successful the use of the techniques may never become permanent.

It emerged during a press conference held at Capital's headquarters in Euston Tower, London, on July 29 to announce the experiment that the IBA were keen to tell the public that the experiments would be held and to encourage the public to write to them at the engineering information service at Crawley Court, Winchester to say whether the techniques were effective and whether there were any ill-effects. Tests carried out in other countries, notably Germany, had been carried out un-
announced, and both the IBA and Capital, after two years of private tests, had intended earlier in the year to carry out unannounced broadcast tests in the UK. Capital chief engineer Gerry O'Reilly had approached the IBA with the proposal for lengthy announced and unannounced tests.
After discussions between the IBA and the Home Office, however, the present proposal emerged: from October I to 14 all Capital transmissions will be Dolby B encoded, and from October 19 to November 1 they will be passed through a prototype variable pre-emphasis system made by Audio and Design Ltd. Other stations were also invited by the IBA to participate in the experiment and BRMB, the Birmingham commercial station, responded. The BRMB experiment will take place on the same dates but the variable pre-emphasis broadcasts will come first.
Answering questions from journalists as to why there would be no unannounced "control" experiment, Mr James Slater of the IBA said: "We don't really know what a satisfactory response would be. We just want to get the information in. The experiment is regulated by the Home Office, and it is not even guaranteed that if it proved successful that we would use it."

Although the IBA are not admitting to having wanted unannounced tests, it is clear that they had to change their minds. No-one would say who had decided that Capital should accept "a modified form of tests", or to whom the information obtained from them would have to be submitted for a final decision. No-one from the Home Office was present to answer questions, but the IBA's statement says the IBA would have to seek Home Office approval for the permanent use of either system.

Garrard have designed and patented this cyctical turntuble mechanism. used in the new G55 series, to providc an integrated unit independent of the drive assembly. It is driven by a fleximbe belt connected to the turntable and is capable of functions from the fully automatic playing of one record (six on American models) to manual over-ride for individual record track selection. The moulded plastics mechanism is highly du able, needs little maintenance and is quieter than earlier ones. suy Garrard.

Both the Dolby and the A\&D system will allow a 2 dB improvement in signal to noise ratio on conventional receivers, say the IBA, more if the Dolby signal is decoded on reception. The increased high frequency content of broadcast material since the \(50 \mu \mathrm{~s}\) time constant was adopted 20 years ago has meant a compression of the rest of the spectrum. Both systems modify the pre-emphasis characteristics to improve matching with programme material, reducing the need for the 2 dB guard band currently allowed when lining up the transmitters.

The Dolby B system has frequently been described elsewhere, but the Audio \& Design system (see article in this issue) is so new that only one unit is available for the experiments, hence the alternate dates between Capital and BRMB.

\section*{Electronics industry progress}

At 613,000 , deliveries of British and foreign colour TV sets for the six months to the end of June have fallen by a quarter compared with last year, according to figures issued by the British Radio Equipment Manufacturers' Association, but exports of colour tvs in the same period were up \(£ 8.8\) million to \(£ 20.4\) million. Monochrome deliveries were up \(10 \%\) to 490,000 . Deliveries of audio stereo systems fell \(24 \%\) during the six months to 259,000 , and radio sets fell \(18 \%\) to 1,853,00.

Mr Jack Akerman, managing director of Mullard has at last said, in an interview with The Times, that he wants government aid for the British electronics industry. In a previous encounter with Wireless World he had said that earlier remarks he had made about wanting government money as well as import controls had been mistaken, but he told The Times at the beginning of August that the industry should have \(£ 100\) million each year for the next ten years. Akerman now seems to be turning his undoubted gifts for proselytising to the whole of the electronics industry rather than just that small sector of it involved in television manufacture. Though unavailable for comment, Mr Akerman is said to be taking his example from other governments, notably those in Germany and Japan, who are assisting their industries. At a meeting on August 10 between management and unions in the industry and Mr Edmund Dell, Secretary of State for Trade, the industry was assured by Mr Dell that the Japanese had assured him there would be no sudden increase in colour tv imports for the rest of the year. The importing of monochrome sets, a more sensitive issue, was still being discussed.

In March, when manufacturers first became seriously concerned about the importing of colour tv tubes and sets, Whitehall also expressed an interest in the audio industry, and the manufacturers were asked to submit a report. The civil servants take the view that British audio is in much the same state as the motor cycle industry was before 'it was destroyed by foreign competition. The industry's report was not submitted until the end of July, however, and more delays may be expected before the Department of Industry takes any action since not all the information Whitehall needed had been submitted.
After a BBC TV news story on the representations by the British manufacturers, Lasky's managing director Derek Smith issued a statement in which he said that Japanese products "sell principally because of their high quality, reliability and technical leadership." Many products they wanted to sell were no longer made in the UK, such as cassette recorders and decks. On the call for import controls he said that if the government were to reconsider their opposition to import controls he would strongly argue that controls should only be on specific products and not just a blanket attack. on anything Japanese ". We have no. evidence that the hi fi we buy from Japan is being sold to us at dumped prices."

\section*{Cabled sound}

After the generally admitted failure of the cable television experiment the Home Office has said it is prepared to licence up to six experimental local cable radio stations in the period to July 31, 1979. In reply to a question from Mr Eric Moonman, Labour MP for Basildon, Mr Brynmor John, Minister of State at the Home Office, said that the issue of the experimental licences would be conditional on the form and content of the programmes, the need to pay a licence fee to the Home Office to cover expenses in setting up and supervising the experiments, and the need for applicants to consult the local community in the area to be served about the operation of the service. The Home Office said in a statement that the Annan Committee, which will report next spring, had been consulted and had said it would welcome the experiments.

Experimental cable television stations were licensed in January 1972, and five were set up at Bristol, Greenwich, Sheffield, Swindon and Wellingborough. Only the Greenwich and Swindon experiments are operating, though another experiment is due to start in Milton Keynes later this year.
Advertising was allowed on the stations from February last year after a recommendation by the Annan Committee, but Bristol, opened in May 1973
and the largest of the five, closed in March last year. Wellingborough shut around the same time and Sheffield, potentially the largest station, closed on December 31, having started to take ads from September 1.

At a meeting held on July 21, Swindon Viewpoint, who operate the Swindon cable tv experiment, said their service could continue definitely for three more years until the licence expired in July 1979. "Though the target has not yet been fully reached," they said in a statement, "it was felt that some applications still outstanding and more local contributions would soon close the gap."
Swindon Viewpoint needs \(\mathbf{1 6 0 , 0 0 0}\) a year to continue the service. The local authority provides \(£ 2,000\), the Arts Council \(£ 3,000\), but local industry \(£ 15,730\). EMI is providing \(£ 15,000\) in the first three months of the year as well as offering equipment, vehicles and tape stock worth \(£ 72,000\) as a gift if Swindon can raise the rest of the money. EMI acquired the cable television equipment interests of Thorn Automation in June, 1973. A proposed increase in Home Office licence fees of \(£ 1,500\) was scrapped after intervention of Swindon's MP, Mr David Stoddart.

Commenting on the Home Office decision to allow cable radio experiments the assistant secretary of the Cable Television Association, Mr Anthony Brittain, told Wireless World: "Naturally the cable companies welcome any move capable of extending what can be done on cable and showing its capabilities." Any further commitment to cable radio, however, would have to be made by individual companies and it was not for the Association to comment, he said. We understand that Swindon Viewpoint and others have already applied for licences.

\section*{High-level compiler for microprocessors}

GEC Semiconductors claim to have developed the first commercially available high-level language compiler to run resident on a microprocessor. The RCC80 which compiles Coral 66, the first major government and defence approved real-time computing language, was developed for Intel's 8080A microprocessors and may be run on an MDS800 development system. In addition to the standard features of the Coral 66 language, the compiler includes functions. necessary for microprocessor work and options such as recursion and bit manipulation that are not always available on much larger machines. The compiler package is available ex-stock for \(£ 1,500\) and consists of a 2002-block floppy disc, a programming manual and an operator's manual. Hardware required includes a micro-computer development system, 48 k of r.a.m., a floppy disc system and
console and output devices. GEC claim that the Post Office, which already runs a Coral switching system, is among several prospective customers who have shown interest in the compiler.

\section*{Depolarising investigation}

Intelsat will begin a 12 -month investi-gation into the depolarising effects of rainfall on communications satellites this winter. They have awarded a \(\$ 34,284\) dollar contract to Canadian telecommunications carrier Teleglobe Canada. Heavy rainfall causes a reduction in polarisation purity between orthogonally polarized microwave signals and impairs the ability of a communications system to re-use frequencies. The object is to design systems which minimise the effect, and to measure it on the 4 GHz down link and the 6 GHz up link and the correlation between the two at the Mill Village 1 earth station, Nova Scotia. Intelsat are sponsoring a series of projects on depolarisation around the world.

\section*{PO waveguide network}

A new waveguide system capable of carrying up to half a million simultaneous two-way telephone conversations or 150 television circuits may be installed between Britain's principal towns and cities. The Post Office estimate that the system, in the form of two inch pipes buried four feet underground, would be \(£ 25\) million cheaper than alternatives using existing techniques or fibre optics. The Post Office has already spent \(£ 3\) million in developing the system and, with BICC Research \& Engineering, has set up a waveguide manufacturing unit in Alperton, Middlesex. BICC have installed a trial length of 14.2 km between Martlesham and Wickham Market in Suffolk.
The waveguide consists of a hollow tube 50 mm in diameter of helically wound fine copper wire encased in a glass fibre reinforced jacket incorporating a dielectric. The whole is then wrapped in aluminium foil to exclude oil or water and coated in a protective finish.

The use of a lightweight waveguide instead of the more conventional steel types was recommended in a report by Plessey and BICC commissioned by the Post Office in 1970 to survey various waveguide designs, their performance and economics. In the early 60s British Telecommunications Ltd, jointly owned by the two companies, had made a test length of a waveguide developed by Bell Laboratories, but the BPO's interest was stimulated by the improvement in high frequency solid state devices and the need to plan for future growth in telecommunications traffic.

Indonesian
engineers look at solar cells to power the "Palapa" communications satelite at El Segundo, California, where the satellite was built by Hughes Aircraft. Palapa began its telephone, television, radio and data service to 130 million Indonesians on August 17 after being launched from Cape Canavaral during the US bicentenary week. It is in synchronous orbit \(35,000 \mathrm{~km}\) above the equator at \(83^{\circ} \mathrm{E}\) long. over the Indian Ocean. Indonesia's 5,000 populated islands of a total of 13,000 stretch over 5,000 km.

\section*{New laser video pickup}

A semiconductor laser pickup one twentieth of the volume of conventional optical videodisc pickups has been developed by Hitachi. The pickup uses a semiconductor laser source instead of the conventional helium neon source, which needs a bulky optical system. In addition, Hitachi say they have simplified the optical system by bringing the laser beams for the servo and video signals into one axis. Tests carried out with the pickup at 0.5 mW output power produced images with a 40 dB signal to noise ratio, they say. The pickup is compatible with the conventional HeNe laser pickup.

\section*{Motoring news}

A group has been set up to study the case for a public experiment of the BBC's proposal for broadcast traffic information, demonstrated to the press in mid-March. The group, which will also study "the role of area broadcasting in driver information systems," has been set up by representatives of the Association of Chief Police Officers, the BBC and the Transport and Road Research Laboratory, and follows a seminar held by the TRRL and the BBC at the end of July. The seminar was attended by about 40 delegates from the IBA, the Home Office, the Department of the Environment, police, motoring organisations and radio manufacturers.

The BBC, having departed from the EBU's view that such a service ought to
be on v.h.f., are particularly anxious to win the police over to their system. The police, for their part, were concerned that the BBC'system, described in May Wireless World, only gave information every eight minutes. They were assured that the interval could be shortened. The IBA are sceptical of the value of the scheme, which they do not regard as providing much more than is already available on local radio, with the additional disadvantage that it ties up a whole UK medium wave channel. The BBC's use of the word "area" instead of "local" may be a reflection of this criticism. On the other hand, unlike the EBU continental motoring network, the BBC motoring announcements can be heard on a cheaper radio, and unlike some TRRL proposals for using radiating loops on motorways, they can be heard by the motorist before he reaches the motorway or even leaves his garage.

\section*{Measuring pollution}

The Water Pollution Research Laboratory has developed an instrument which records the dissolved organic content in water. The organic pollution monitor, as it is called, is designed for use in sewerage treatment plants as a continuous automatic monitoring instrument, but can test samples in the laboratory. Tinsley, who make it, say the device is based on the principle that the absorption of ultraviolet light at an appropriate wavelength can be correlated with the organic carbon content of both river water and effluents. There is a relationship between ultraviolet
absorption and the chemical and biological oxygen demands of samples of sewage at various stages of treatment. "There seems no immediate prospect of an automatic equivalent of the biological oxygen demand test, and automatic measurement of the permanganate value or chemical oxygen demand involves elaborate wet chemical procedures entailing reagent supply and waste disposal problems." The monitor overcomes these difficulties by recording the dissolved organic content, which is related to both these quantities.
Marconi have developed a similar device for measuring fog thickness consisting of an optical transmitter receiver unit and a reflector unit mounted facing each other. The light source is an electronically modulated l.e.d. and the reflector returns radiation to the transmitting lens which focuses it on to a silicon photodiode. The receiver has a phase sensitive detector, say Marconi, to provide good analogue signal to noise ratio. Analogue signals are converted to digital form for visual readout. The instrument is self calibrated to take account of contamination and component drift. The Royal Aircraft establishment will use the instrument, say Marconi, to measure the vertical profile of visibility from a balloon raised and lowered from 1000 ft . The MET1 transmissometer was developed for use on airfields, motorways, ships and in ports, industrial areas, tunnels and underpasses or any area where there is smoke or dust.
A portable device now marketed by Carboeglen, the RDM-101, measures atmospheric dust particle levels by measuring the radiation from a 100 microcurie beta source which is absorbed by dust particles collected on an impactor. The device is battery operated and gives a digital readout of the dust concentrations in \(\mathrm{mg} / \mathrm{m}\). If the sampling interval, some minutes, is altered different sensitivity ranges from the factory preset range can be obtained.

\section*{Electronic organ pioneer}

Leslie Bourn, joint patentor of the first electronic organ and builder of the first organ in the Royal Festival Hall, has died at the age of 77 . He took an idea for an electronic organ to John Compton, and in 1927 joined the Compton Organ Company, filing joint patents for the first electronic organ in the 1930s. At the time of his death on June 1 he was building an organ for one of his grandsons. "His friends and colleagues," writes Laurie Fincham, "remember him as an inventive man with a fine grasp of the fundamentals of electricity, and he was both an amiable and stimulating colleague."

\title{
On the way to a smaller, more effective CEI
}

It is possible to say, with as much accuracy as such assertions usually command, that the two year dispute over the future and composition of the Council of Engineering Institutions has passed over the heads of many professional engineers. As the outgoing president of the Institution of Electrical Engineers, Mr R. J. Clayton, told Wireless World in a recent interview, "About a third of the engineers I know who join the Institution do so because they think it worth joining, and the rest join so that they can keep up with developments in their own field."

Depending on your point of view, the argument can be viewed as another excrescence of the Middle Class Revolt, or a sign of insecurity among an important and productive group that sees its standing in the community, not least as measured by the amount the community seems prepared to pay it, falling ever lower. A CEI survey published last year showed that the real income of Britain's 250,000 chartered engineers had fallen by more than \(7 \%\) in two years. Some older engineers were worse off now than nine years ago. The survey also reflected growing concern shared by the Government, the CBI and the Science Research Council about the lack of new entrants into the profession. Low recruitment, it has been said, is another sign of the falling status that the professional engineer enjoys.

While many engineers don't think about status - Mr Clayton confessed that he wasn't altogether sure what it meant - the one-third of activists seem concerned enough about raising it to want their collective voice heard where they think it matters: in Whitehall and Westminster. Originally this was one of the tasks entrusted to the CEI when it was formed in 1965, replacing the Engineering Institutions' Joint Council set up by the Mechanical, Civil and Electrical Institutions, the Big Three, in 1962.

Linked with this, and ostensibly even more important, was the CEI's duty to establish a common, and high, standard of entry into the engineering profession. Thus the title "chartered engineer" was created in 1965, but it was not until January 1, 1974 that a degree or its equivalent became the required academic standard.
But in the minds of those worried about such things, the larger failure of the CEI has been that the official and public idea of engineers does not measure up to the engineers' idea of themselves. At an IEE meeting in January last year Mr A. G. Milne, past president, succinctly explained: "I do not wish to deny or denigrate the
success of the CEI in establishing, albeit late in the day, a reasonable standard of academic qualification, but we must recognise that the founders of the organisation were looking for much more than that. One of the main functions hoped for was, to use a trite phrase, that it should become the 'voice of the profession.' It was hoped that it would become the body to which Government could turn for ready and reliable advice, and which could focus the attention of the public generally upon the existence and achievements of professional engineers, and so create a better understanding of the contributions which they make to civilised living. Regrettably, the CEI has failed to make any significant progress in this direction."

Another source of irritation was that the CEI was looked on as something of an exclusive club. Of the forty or more institutions and societies which represented engineers only 15 were in the CEI. Engineers who were quite well qualified for the title "chartered engineer" could not use it unless members of one of the 15 , a kind of engineering closed shop.

Each of the 15 had three members on the CEI board of 48 . None of them felt empowered to act without consulting the institution which had delegated him and his two colleagues, and this federal structure was blamed for much of the failure of the CEI. What was needed, argued the militants, was a body which could act for engineers without reference to the institutions. Thus the board should be elected directly by the engineers themselves, whose representatives could then act without fear of retribution by the institutions.
This seems, on the face of it, an attractive argument, yet if the Big Three had felt two years ago that they already had greater influence in the affairs of the CEI than the others there might have been no attempt to reform the council. The IEE vice-president Professor Rawcliffe was perhaps more explicit at the January 1975 IEE meeting than some of his colleagues might have wished: " \(65 \%\) of the corporate membership of the CEI is in three major institutions (Civil, Mechanical and Electrical) and everyone knows that these institutions are higher in average status and standard than most of the others. But action is inhibited by the structure and bureaucracy of the CEI. In my view the proper first remedy for our troubles is that the three major institutions should insist that there should be some form of proportional representation in the CEI, so that they are not frustrated by smaller institutions."

The smaller institutions protested that the effect of this would have been to increase representation of the Big Three on the CEI board at their expense. With pressure at Westminster and in Whitehall growing for a public inquiry into the engineering profession, a CEI meeting on July 24, 1975 agreed, with the Big Three institutions predictably dissenting, on a compromise proposal whereby one representative would be elected for three years by the chartered engineers of each member institution. Individual chartered engineers could become members of the CEI provided they were members of an institution affiliated to the CEI.
In a statement issued in September the then IEE president, James Merriman, said the election proposal "would not, in our view, dissociate the CEI from the overriding influence of the institutions . . . In these circumstances our council thought the only proper course was to give notice of resignation." The IEE said it would leave at the end of 1976. They were joined in November by the mechanical engineers, though the mechanicals did not go so far as to give notice. It is difficult to compute membership figures because of cross-membership among the institutions, but had these two carried out their threat the CEI might have lost roughly half its 170,000 chartered engineers.

By January, 1976 however, things looked hopeful enough for the electricals and mechanicals to submit a joint proposal to the CEI chairman, Tony Dummett. They suggested that the TUC and the CBI should be represented as lay members of a reformed CEI, and that mémbership should also be open to non-chartered institutions which met certain standards, provided their chartered engineer membership was large enough. The CEI differed from the I Mech E and the IEE on these matters at an informal meeting in-May, but otherwise there was substantial agreement.

Mr Clayton said he was not adamant about who the lay members should be: "Nobody has said that I must have what I asked for." He merely feels that the CEI should include "a couple of men who are not engineers who can give the outside world's opinion of engineers."
After a more formal meeting of the board in July, 1976, it emerged that outsiders might be invited from the legal profession, from engineers in the services or from the United Kingdom Association of Professional Engineers. As to non-chartered membership, the CEI felt that the joint proposal would have made the new board as cumbersome as before, but agreement was reached that there should be one representative from each institution, plus a number of individual members, up to two per institution, elected nationally by the single transferable

Continued on page 72.

\section*{Digital filter design}

\title{
Programming a microprocessor to act as a digital filter
}

\author{
by V. J. Rees, M.B.E., M.A., B.Sc., D.U.S., Army School of Signals
}

This article has three aims. The first is to answer in simple terms the question, "What is a digital filter and why use it in place of a classical filter?". The second is to show one way in which filters can be designed; the process is unfortunately rather mathematical, but even if you do not wish to follow the mathematics in detail you should grasp fairly quickly the philosophy behind it. The third aim is to show that digital filters actually do what is expected of them; a low pass filter is designed, a triangular wave of voltage applied, and the output is seen to be what one would expect from the equivalent classical filter.

Filters are a very necessary part of communications, and have been with us for a long time. They started out as LC circuits, heavy and bulky at low frequencies; some then graduated to active types, where the inductors were discarded and replaced by integrated circuits. But they still had their limitations in modern communications systems. For one thing they were not very flexible; a different set of hardware was required for each filter and if the characteristics required changing a lot of soldering had to be done. For another communications is going "all digital"; no longer is an attempt made to preserve the electrical analogue of a signal from microphone to speaker. A few samples per second of the microphone waveform are taken and we are content to send these samples, in binary form, off down the communications link.

The recipient is left with the job of reconstituting the original signal from the samples. Typical of such systems is pulse code modulation; its advantages

Fig. 1. Analogue filter.
are well known to communications engineers. In retrospect we are doing no more than the man who is asked to plot a graph. He will ask for a number of numerical samples from the information available so that he can plot these as points on a graph; provided he is given enough samples he can interpolate between the points and produce his own continuous function. Signals down a communications link will therefore be at only 2 levels, a 1 or a 0 , representing binary numbers. This is the second reason why classical filters are not entirely happy, they are required to work in a strange world of 1 s and 0 s .
Two reasons have been given for considering ordinary filters unsatisfactory: their inflexibility and their dislike of a digital signal processing environment. Something which is quite happy with digits and can respond rapidly to change is the digital computer. The question now arising is whether a computer could be placed in a communications link so that it accepted samples of a signal, processed them in real time by instructions from its software, and sent them on their way "filtered." If this can be done, and it can, the process being called digital filtering, the two objections to classical filtering are
overcome. Changing the frequency response of the filter is merely a matter of changing the programme; no soldering required. And of course it is happy in a digital environment, always provided. it can process the sample fast enough to work in real time; the sampling theorem says we must have at least two samples per cycle of the highest frequency we transmit, say 6 k samples per second for speech.
To fix our ideas on digital filters consider Fig. 1 and Fig. 2. Fig. 1 shows the classical concett of a filter; a continuously varying input signal is processed so that the voltage/time waveform of the output is different. The relation between output and input is usually expressed as a transfer function \(G_{t t}\); in Fig. 1 the Laplace transform of this function is shown. Transforms will be needed later to explain how digital filters are designed. Fig. 2 shows how a digital filter could be used to replace the classical filter. Note the requirement of some form of sampler and analogue to digital converter to produce the digital samples for the computer to work on, and the need to convert these samples back to an analogue waveform. Remember we are now working on the "points in a graph" concept.

Digital filters would have their limitations if every receiver requiring a filter had connected to it a large and expensive computer, though in some static systems the time sharing capability of the computer might make it an economic proposition if it replaced several filters. However the arrival of the microprocessor has changed all that. This is, essentially, a cheap, single chip processor programmed by an

Fig. 2. Basic functions of a digital filter.
r.o.m.; it will be found within equipments fulfilling a number of functions, and used in this way the digital filter becomes an economic proposition, with of course the added advantage of changing filter characteristics simply by changing the r.o.m.

One can go a stage further, and visualise the filter becoming adaptive, that is to say looking continuously at the input signal and noise (or interferenc \(\epsilon\)) and adjusting the filter characteristics (programme) so as to optimise the output signal to noise ratio. Perhaps the problenis of electromagnetic compatibility and jamming will then assume another dimension. Certainly the future digital filter in micro-processor form looks exciting.

\section*{Digital filter design}

Before proceeding to the detailed design of digital filters, a look at the problem in broader terms might help. If a computer programme is to act as a filter it must ask for a sample, process it, and send it on its way. Clearly filtering cannot be achieved without the process involving reference to previous samples; for example, a low pass filter must ensure that the rate at which sample amplitudes change is not too great to exceed the cut off frequency of the filter. Therefore the programme must hold previous samples for comparison with new samples, and we shall be looking for a predemme which does this. Fig. 4 is just such a circuit and is capable of being written in computer programme form as is shown in Fig. 5. The circuit takes a sample and adds it to the sum of all the previous samples multiplied by a constant related to the filter characteristic (a) and the sampling rate (\(1 / \tau\)); it is in fact a digital low pass filter. Fig. 4 is the heart of digital filtering. In the next section will be shown in detail how to obtain this algcrithm relating input and output samples. If we accept that this can be done, filter contruction has been reduced to writing the correct algorithm to represent the filter characteristics, leaving the hardware design to the computer or better still the microprocessor designer. Of one thing you may be sure; you will be seeing a lot more of digital filters now microprocessors are with us.

And now to show that Fig. 4 is a digital filter. This is where problems arise. An elementary knowledge of Laplace transforms and impulse functions must be assumed; furthermore the modulation process involved in sampling a waveform should also be understood. You will be pleased to hear that the concept of \(Z\) transforms has been avoided.
Even if you do not follow through the mathematics, but are prepared to accept Fig. 4, the section starting "Verification of the programme" should be intelligible, and the detailed working of a low pass digital filter understood from the worked example.

Fig. 3. Low pass filter.

Fig. 4. Equivalent digital filter.

Fig. 5. Digital filter programme.

\section*{Obtaining an algorithm}

Consider the transfer function of an analogue filter; in Laplace notation this is given by:
\[
G_{(s)}=\frac{V_{O(s)}}{V_{I(s)}}
\]

Now if \(V_{I(t)}\) is an impulse function at time \(t=0, V_{I(s)}=1\), and
\[
\mathrm{G}_{(\mathrm{s})}=V_{\mathrm{O}(\mathrm{~s})}
\]

Thus the problem of determining \(G_{(s)}\) can be reduced to obtaining the output of the filter when the input is an impulse. This is of course "old hat" for analogue filter designers. How does it help with the design of digital filters? The argument, which is fundamental to obtaining the algorithm, is as follows:
"In digital filtering the inputs to the filter are weighted impulse functions (actually coded in binary). Furthermore, output from the filter is only provided at the sampling times. Therefore we have constructed the digital equivalent of an analogue filter if they have identical outputs at the sampling times when an impluse function is used as an input."
An example being easier to under-
stand than generalisations, consider the design of a digital filter to replace the simple analogue low pass filter of Fig. 3. \(G_{(s)}\) can be written down by inspection, which is also \(V_{(\{)}\)for an impulse input at time \(t=0 ; V_{\left.Q_{s}\right)}\) can be converted to \(V_{Q_{(t)}}\) by inspection. Since we are only inter-• ested in \(V_{O(t)}\) at the sampling times, by obtaining this, the output of the equivalent digital filter will be obtained. Proceeding on these lines we obtain:
\[
G_{(s)}=\frac{\frac{1}{s C}}{R+\frac{1}{s C}}=\frac{1}{1+s C R}=\frac{a}{a+s}
\]
where \(a=\frac{1}{\mathrm{CR}}\)
\[
=2 \pi\binom{\text { upper } 3 \mathrm{~dB} \text { frequency }}{\text { of filter }}
\]

Solving \(G_{(s)}\), by inspection, for an impulse input, we have:
\[
G_{(t)}=V_{O(t)}=a e^{-a t}
\]

Now we are only interested in \(V_{0(t)}\) at the sampling intervals \(0, \tau, 2 \tau\) etc. Thus \(V_{Q(t)}\) will be:
\[
\begin{gathered}
a \text { volts at } t=0 \\
a e^{-a \tau} \text { volts at } t=\tau \\
a e^{-2 a \tau} \text { volts at } t=2 \tau \\
\text { etc }
\end{gathered}
\]

Turning these output samples \(V_{O_{(t)}}\) into \(V_{(s)}\) will give us \(G_{(s)}\) of the identical digital filter. Using the transformation
\[
\mathcal{L}\{\delta(t-\tau)\}=e^{-s \tau}
\]
we have:
\(\mathrm{G}_{(s)}=a+a e^{-a_{T}} e^{-s \tau}+a e^{-2 \alpha \tau} e^{-2 s \tau}+\) etc.
This is a geometric progression of ratio \(e^{-a_{T}} e^{-s_{T}}\), and the sum is given by:
\[
\mathrm{G}_{(s)}=\frac{a\left\{1-\left(e^{-a T} e^{-s T}\right)^{n}\right\}}{1-e^{-a T} e^{-s T}}=\frac{a}{1-e^{-a T} e^{-s T}}
\]

Thus we have obtained an algorithm, in the \(s\) plane, for our digital low pass filter. The problem remaining is to write it in such a form that it is clearly amenable to programming.

\section*{The computer programme}

We have:
\[
G_{(s)}=\frac{V_{O(s)}}{V_{I(s),}}=\frac{a}{i-e^{-a T} e^{-s \tau}}
\]
i.e. \(V_{O(s)}\left(1-e^{-a \tau} e^{-s \tau}\right)=a V_{I(s)}\)
or \(\quad V_{O(s)}=a V_{l(s)}+e^{-a \tau}\left(V_{O(s)} e^{-s \tau}\right)\)
Remembering that \(V_{I}\) and \(V_{0}\) are impulses and that
\(\mathcal{L}\left\{V_{O(t)} \delta(t-\tau)\right\}=V_{O(s)} e^{-s \tau}\) it should be clear that Fig. 4 has the above relation between \(V_{O(s)}\) and \(V_{I(s)}\) and is therefore the required digital filter. There is no need to build this filter as the relation' between \(V_{o(t)}\) and \(V_{I(t)}\) can be written as software for a computer. The simple programme for this filter is shown in Fig. 5. This would of course normally be run in real time, with the sampling rate determined by parameters outside the control of the filter. Intuitively it can be seen that filtering is achieved by comparing one sample with a modified version of the previous output, a process similar to delta modulation; it is ironing out the rapid changes which would be outside the filter bandwidth.

\section*{Verification of the programme}

Confidence in the ability of digital filters to fulfil their purpose can best be obtained by specifying a function \(V_{l(t)}\) and obtaining the corresponding \(V_{o(t)}\). The programme is so simple that this can be carried out (not in real time!) by the following process:
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Time \\
(ms)
\end{tabular} & \[
\begin{aligned}
& v_{\text {in }} \\
& \text { (volts) }
\end{aligned}
\] & \[
\begin{aligned}
& a_{\tau} V_{\text {th }} \\
& (\text { volts })
\end{aligned}
\] & \[
\begin{aligned}
& e^{-a r}{ }_{a_{V} V^{\prime}} \\
& \text { (volts) }
\end{aligned}
\] & \[
\begin{aligned}
& V_{\text {out }} \\
& \text { (volts) }
\end{aligned}
\] \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 2 & 0.72 & 0 & 0.72 \\
\hline 2 & 4 & 144 & 0500 & 194 \\
\hline 3 & 6 & 2.16 & 1.355 & 352 \\
\hline 4 & 8 & 2.88 & 2453 & 5.33 \\
\hline 5 & 10 & 360 & 3721 & 7.32 \\
\hline 6 & 8 & 2.88 & 5.108 & 799 \\
\hline 7 & 6 & 2.16 & 5.573 & 7.73 \\
\hline 8 & 4 & 144 & 5395 & 684 \\
\hline 9 & 2 & 072 & 4.769 & 5.49 \\
\hline 10 & 0 & 0 & 3830 & 3.83 \\
\hline 11 & -2 & -0 72 & 2.672 & 1.95 \\
\hline 12 & -4 & -144 & 1362 & -0 08 \\
\hline 13 & -6 & -2.16 & -0.056 & -2.22 \\
\hline 14 & -8 & \(-2.88\) & \(-1.546\) & -4.43 \\
\hline 15 & -10 & \(-3.6\) & -3.088 & -6.69 \\
\hline 16 & -8 & -2.88 & -4.666 & \(-755\) \\
\hline 17 & -6 & -2.16 & -5.265 & -7.42 \\
\hline 18 & -4 & \(-1.44\) & -5.186 & -6.62 \\
\hline 19 & -2 & -0 72 & -4619 & -5 34 \\
\hline 20 & 0 & 0 & -3.725 & -373 \\
\hline 21 & 2 & 0.72 & -2.599 & -1.88 \\
\hline 22 & 4 & 1.44 & -1311 & 013 \\
\hline 23 & 6 & 2.16 & 0090 & 2.25 \\
\hline 24 & 8 & 2.88 & 1570 & 445 \\
\hline 25 & 10 & 360 & 3.105 & 670 \\
\hline 26 & 8 & 288 & 4678 & 756 \\
\hline 27 & 6 & 2.16 & 5.273 & 743 \\
\hline
\end{tabular}

symmetrical triangular voltage
\(V_{I(t)}\) fundamental frequency \(50 \mathrm{~Hz}_{z}\) amplitude \(\pm 10 \mathrm{~V}\)
\(\tau \quad 20\) samples per cycle
\(\tau\) giving \(\tau=10^{-3} \mathrm{sec}\).
\(a \tau=0.36 \quad e^{-a \tau}=0.6977\)
Fig. 6. Filter and input parameters.

Fig. 7. Input/output signals for low pass digital filter.
(a) Draw a graph of the analogue waveform \(V_{l(t)}\) which you wish to filter
(b) Decide on a sampling rate, i.e. determine \(\tau\), and obtain from your graph \(V_{l(t)}\) at the sampling times \(0, \tau, 2 \tau\) etc.
(c) Decide on the filter 3 dB frequency; this determines the product \(C R\) and \(a\). If you know nothing about the spectrum of a sampled waveform you will need to do some further reading to understand the limitations set on the relative values of filter bandwidth, sampling rate and input signal bandwidth.
(d) Put your weighted impulse functions (samples) through the programme manually to obtain \(V_{o(t)}\) at the sampling times.
(e) Multiply the output samples by \(\tau\), plot them on the same axes as the input and interpolate between them by hand to obtain the analogue output signal. In practice, interpolation would probably be achieved with a sample and hold circuit. The requirement to multply by \(\tau\) needs justifying. Without doing this the shape of the output version would be correct, but the amplitude too large. It is necessary to multiply by \(\tau\) because in sampling the input signal, much of the sampled spectrum lies outside the filter bandwidth, and an adjustment must be made for this, which can be shown to amount to multiplying by \(\tau\). However, in practice absolute values of output are not important; gain can be built into the system.
(f) Ask yourself whether the output you have obtained is what you would expect from the filter. This check can be carried out either by considering the Fourier series for the input, or in the case of pulse inputs by considering the application of "step functions" to RC circuits.

The above process has been tried by the author for different forms of input signal. A worked example, the results of applying the triangular wave of Fig. 6 is shown in the table and Fig. 7. The 3dB frequency of the filter and the repetition frequency of the triangular wave have been chosen so that one would expect
the output to be almost entirely the fundamental compoment of the Fourier series, and this is seen to be so. It is suggested that serious readers of this paper try a square wave input (check the output by "step function" approach), and also produce the algorithm and programme for a simple CR high pass filter.

\section*{Literafure Received}

Microprocessor Series 8000 users' manual is now available. The manual gives a general description of the 8000 family, details of the hardware available, and assistance with interfacing and programming. The users' manual costs \(\mathbf{E} 5\) from General Instrument Microelectronics Ltd, 57-61 Mortimer St, London WIN 7TD.

Procedures under the Health \& Safety at Work Act are outlined in a short leaflet, "Regulations, Approved Codes of Practice \& Guidance Literature," available free from local offices of HM Factory Inspectorate. HM Inspectorate of Mines \& Quarries and HM Alkali Inspectorate.

Wire-wrap boards, designed for microprocessor chip sets, are described in a brochure from Nimrod Electronics Ltd, 85 High Street, Billingshurst, West Sussex .

Harris operational amplifiers, a-to-d converters and associated devices, memories, and digital i.cs are briefly described in a short catalogue, distributed by Memec Ltd, The Firs, Whitchurch, Aylesbury, Bucks

Intersil tell us that they have published a guide to their range of discrete semiconductors, which contains application guidance and a cross-indexed iist of devices. Intersil Inc.. 8 Tessa Road, Richfield Trading Estate, Reading, Berks.

A book entitled "Thick-film Conductor Survey" is now obtainable from the Electrical Research Association. The book seeks to rationalize the huge amount of commercial data and presents information on formulation, characteristics, product lists, detailed data in various categories of characteristics, prices and souces. The material presented is international and is claimed to be independent. The 200 -page book costs \(£ 45\) (\(£ 41\) to Association members) and is available from ERA at Cleeve Road, Leatherhead, Surrey KT22 75A.

\title{
Electric power from the sun
}

\title{
One answer to the energy problem
}

\author{
by L. George Lawrence, Sc. D. Ecola Institute, California
}

Proposals to harness the power of the sun have enjoyed a long and continuous history. It is only in recent years, however, that advances in high-energy electronics and power engineering have brought tentative ideas into the hardware stage. In this article a profile is drawn on what has been and can be done in this critical field.

\section*{The sun}

Solar radiation is so plentiful that energy arriving on only \(0.5 \%\) of the land mass of the United States, for example, is more than the total energy requirement of that country projected to the year 2000. Today, as oil supplies approach depletion and arguments against the use of nuclear power and its massive waste problems increase, hopes are high - literally - for tapping the sun's abundance.
Technically, as summarized in Table 1 , the sun presents itself as a thermonuclear proton-proton reactor capable of delivering \(38 \times 10^{22} \mathrm{~kW}\) at a continuous rate. Most of the star's high-quality energy is wasted in space. The total radiation continuously intercepted by our planet amounts to \(173 \times 10^{12} \mathrm{~kW}\), or \(232{ }^{12} \mathrm{hp}\). The mean power or solar constant available for engineering use is \(1.395 \mathrm{~kW} / \mathrm{m}^{2}\). This is light energy; radio energy is not as intense or dominant. However, it was the latter type of energy that stimulated scientific hypotheses.

In 1893, shortly after Heinrich Hertz's discovery of radio waves, it was assumed that the sun's corona could emit this type of radiation and, pending development of suitable converters, the energy could be distributed via domestic power lines. It was foreseen that Edison batteries would be employed to store energy for night-time use.

Fundamentally, there is nothing wrong with the elegant simplicity of this scheme. Such techniques might be in fashion within the realm of postulated galactic super-civilisations (Von Däniken's "gods," et alia) who have to control and modify power outputs and spectra of selected stars. Unfortunately, our mundane situation offers little knowledge beyond the fact that wavelengths longer than 50 cm are tremendously weakened by ionized gases of our local star's atmosphere. Only those
from the sun's corona can escape into space, to be detected by terrestrial radiotelescopes. In addition, only those solar radio waves featuring wavelengths between 1 and 15 cm are capable of penetrating the Earth's "admittance window' in the atmosphere. However, with solar dynamics being imperfectly understood, it is likely that major phenomena have been overlooked.

Thus, because of the enormous benefits that would result from direct high-power radio wave interceptions from the sun, electromagnetic and other properties arè carefully re-examined.

The search for special energy-generating and deep-space power transfer mechanisms is reflected in the solar magnetogram, a magnetic map showing' the location, field intensity, and polarities of magnetic fields for a given day.

Extended magnetic areas on the sun's sphere are typically bipolar and usually produce sunspots plus other solar activities. A powerful ultrasonic phenomenon was discovered recently, its
waves ebbing back and forth at extremely high energy levels. Drs Schatzman, Ulmschneider and Kopp, among others, have considered acoustic waves to be of primary importance as heating agents for the solar corona. Better insight was provided by the NOAA Space Environment Laboratory (Boulder, Colorado), where Dr C. Sawyer employed time-lapse filter photography to measure the frequencies, or periods, of the "galloping" wave motions in the sun's chromosphere (atmosphere). Through joint research with Dr Sara Smith-Martin of Lockheed's solar observatory, it was determined that chromospheric wave crests advance at about \(96 \mathrm{~km} / \mathrm{s}\) and that a wave crest recurs in a given place about every 5 minutes.
However, contemporary solar models - and observations - cannot explain the sun's pulsation cycle of 2 hours 40 minutes. Where too are the "neutrinos" - the massless, chargeless particles which must exist to tally with accepted

\section*{TABLE 1: Characteristics of the sun}
\begin{tabular}{|c|c|}
\hline Type. & Dwarf star, spectral type G2 \\
\hline Absolute bolometric magnitude: & +4.7 \\
\hline Apparent visual magnitude: & \(-26.9\) \\
\hline Energy mechanism: & Thermonuclear proton-proton reaction \\
\hline Magnetic field strength. & 1 to 2 gauss \\
\hline Conversion rate: & \(4.2 \times 10^{6}\) tons of mass/second into energy \\
\hline Density: & 0.26 (Density of the Earth is 1) \\
\hline Mass. & 333.400 times mass of Earth of \(1.99 \times 10^{30} \mathrm{~kg}\). \\
\hline Distance from Earth. & \(149.6 \times 10^{66} \mathrm{~km}\). \\
\hline Total radiation released constantly. & \(38 \times 10^{22} \mathrm{~kW}\) \\
\hline Radiation incident upon Earth's outer atmosphere & \(137 \times 10^{12} \mathrm{~kW}\) \\
\hline Radiation incident upon Earth's surface. & \(85 \times 10^{12} \mathrm{~kW}\) \\
\hline Solar radiation constant. & \(1.395 \mathrm{~kW} / \mathrm{m}^{2}\) on Earth's surface \\
\hline Total radiation continuously intercepted by Earth: & \(173 \times 10^{12} \mathrm{~kW}\) or \(232 \times 10^{12} \mathrm{hp}\). \\
\hline
\end{tabular}
theories on the sun's nuclear-fusion process? To that end Dr Raymond Davis, Jr. from Brookhaven National Laboratory and Dr John N. Bahcall from Princeton University mounted a three-year search for solar neutrinos using a detector buried deep in a goldmine in Lead, South Dakota. The team recently announced that fewer of the particles "than is consistent with standard ideas of stellar evolution" have been discovered.
Thus, a new question disturbs the scientific community: Is the sun controlled by - or acquiring the properties of -a "black hole"? The concept of the black hole, as the final stage of aging stars, was developed theoretically in the late 1960 s by Dr John Wheller of Princeton, among others. According to the theory, the black hole is produced by the gravitational collapse of a dying star, and is so dense that a spoonful of material from its center would weigh over 1000 million tons. The hole's gravitational pull permits neither matter or radiation to escape, yet attracting matter as if it were a cosmic garbage disposal. In terms of solar-energy engineering, one fascinating question is, of course, whether black holes could be utilized as electromagnetic "energy sinks" for the purpose of planetary power generation, perhaps in a bipolar, electrostatic sense.

Today, unfortunately, the immensity of such dynamics and possibilities remains ill-defined. Magnetic mapping of the sun's features is but one diagnostic aid for solving the riddle of solarpower transmission over astronomical distances. Practical results can be expected from photovoltaic or option-al-wave devices - solar cells currently in use.

\section*{Solar cells}

Recent improvements in solar-cell fabrication have stimulated novel proposals for utilizing solar energy on a large scale. New and unfamiliar manufacturing techniques are not required, since photovoltaic cells were among the first semiconductor devices to be developed. Most noteworthy is the fact that efficiencies of up to 21 percent have been achieved, with higher power-output rates feasible in the near future.
Of particular interest are the AlGaAs type cells developed by Varian Associates in Palo Alto, California. According to the firm the starting material for their high-efficiency cells (21\%) is a wafer of bulk \(\mathrm{n}^{+}\)type GaAs, on which a liquid epitaxial layer of n-type material is grown. The latter has a longer hole diffusion length than bulk material. The \(\mathrm{n}^{+} \mathrm{n}\) junction provides some carrier refinement, again increasing efficiency. An AlGaAs layer is grown on top of this layer and doped with a p-type source such as zinc, which diffuses a small distance into the n-type GaAs layer during the AlGaAs growth - thereby producing the p-n junction across which the photovoltage appears.

Fig. 1. Test rig for high-efficiency (21\%) solar cells showing the optical light concentrator (mirror at centre-right) which concentrates sunlight 1000 times, GaAs cells, mount and cooling fins (above mirror) and the meter panel for power monitoring.

Fig. 2. Sunpak solar energy collector. Light entering the optical tube-like collectors heat a fluid which by heat transfer can provide electrical energy from thermo-electric cells, low-pressure steam turbine and generator plants, or other energy converters. High vacuum interfaces provide thermal insulation.

According to R. L. Moon, one of the project engineers, the p-GaAs, p-AlGaAs heterojunction "confines" the electrons generated in the p-GaAs layer. This restriction results in a low velocity surface recombination and greatly increases the efficiency over what is normally possible with a "straight" GaAs solar cell. The aforementioned layer is a window for photons that have energies below the AlGaAs band gap.
The development of the 21-percent solar cell, which brought Varian Associates into a leading position in the American stock market, breaks away from conventions in other ways too. Rather than using a customary flat-
panel array for grouping cells together, the firm uses a sunlight concentrator or mirror to increase light on cells by as much as 1,000 times. Fig. 1 shows the test rig which has a mount with cooling fins and a package where the solar cell's power is metered. With this rig efficiencies as high as \(23 \%\) can be achieved using simple concentrators. A 10MW power plant constructed of these cells would require only \(80 \mathrm{~m}^{2}\) of gallium arsenide. Using an equivalent system comprised of silicon cells with \(12 \%\) efficiency would require an array covering 24.5 acres. It is prudent, however, to contrast cell efficiencies against costs and the availability of raw materials: gallium is nearly as abundant as lead, and silicon is nearly as abundant as sand. Both materials require complex refining processes and assembly operations, which determine costs per kWh to the end-user of solar power plants.

At present it is safe to assume that solar cells of the GaAs type will be used in initial power plants of the groundmounted or terrestrial type. However, a given installation must have an additional means of storing energy for night-time operations. Electrochemical energy storage of the battery type is one possibility, but batteries of ample capacity and the ability to withstand heavy charging and discharging cycles have yet to be developed. Other more adventurous energy-storage schemes include huge flywheels coupled to motor-generator sets and hydrostorage involving lakes and turbines. Probably the most attractive proposal is that of converting surplus electrical energy into hydrogen, which could be reconverted to electricity in fuel cells Unfortunately the problems of storing gaseous hydrogen and securing a source of inexpensive, long-lasting catalysts for fuel cells have not yet been solved.

Some of the above and other problems have directed attention to special heat exchangers combined with thermoelectric cells or energy-extraction devices. Thin, flat, glass-covered basins and glass tubes, filled with heat transfer fluids such as water or ethylene glycol, hold a special position in the solar energy sector - mainly due to their commercial attractiveness. Because heat stored in liquids can easily be circulated through conventional radiators installed in homes of factories, demands for electrical power are reduced to the small amount required for re-circulation pumps and blower motors. The same applies where the sun's energy is applied to coolants used for interior air conditioning.

Advanced solar energy collectors of the above type are exemplified by the Sunpak system, developed by OwensIllinois. The unit, shown in Fig. 2, consists of a series of 24 glass tubes featuring special optical characteristics for maximum efficiency. Fig. 3 details the coaxially arranged interior parts.

Fig 3. Construction of Sunpak solar glass absorber tube. Two inner tubes provide a heat-exchanger facility. Light from the sun heats the fluid; this heat is retained by the vacuum, acting as a thermal insulator, contained by the outer tube.

Using a heat transfer fluid, the tubes maintain excellent thermal insulation due to a high-vacuum interface \(\left(10^{-4}\right.\) torr). The tubes' round shape permits a better light-ray interception angle than can be obtained with basins, and is two to three times better than that of flat-plate solar energy collectors. A Sunpak can raise the temperature of the heat transfer fluid to \(240^{\circ} \mathrm{F}\), or \(28^{\circ} \mathrm{F}\) above the boiling point of water. Here, as in related situations, the hot working fluid may be fed through heat exchangers, or low-pressure steam can be generated for operating piston - or turbine - type power plants. The required vacuum levels can be provided by conventional re-condensation schemes.

\section*{Gigawatt systems}

By the year 1980 the world's annual consumption of electrical energy will have climbed to \(6.5 \times 12^{12} \mathrm{kWh}\). A consumption rate of 20 to \(30 \times 12^{12} \mathrm{kWh}\) is projected for the year 2000. Clearly, unless living standards of the highly industralized nations are dramatically reduced, the power needs cannot be met by generating systems of conventional design. The small supply of oil left must be set aside for the production of petro-chemicals, without which no synthetic materials and other basic chemicals can be produced.

Perhaps the most ambitious proposal for drawing electric power from the sun is that of the orbiting power satellite, "Powersat" for short. It is proposed that powersat be placed in a geostationary orbit \(35,786 \mathrm{~km}\) above the Earth where it is feasible to generate approximately \(13,500 \mathrm{MW}\) of electricity from incident solar energy. This energy would then be transmitted to Earth by a phase-coherent microwave beam, where it would be received and re-converted into electricity by suitably equipped antennae farms. Fig. 4 depicts the powersat system evolved by the Boeing Aerospace Corporation. Here, an array of solar energy collectors covering \(57.3 \mathrm{~km}^{2}\) would be kept in constant

Fig. 4. Solar power satellite proposed by Boeing Aerospace Corporation is designed to transmit a collected solar power of 13.5 GW via microwave beam to Earth.

Fig. 5. Diagrammatic representation of the Powersat concept, capable of providing energy from the sun 24 hours per day.
sunlight to generate constant power. The Earth's rotation and night (or shadow) state would not interfere. Fig. 5 shows the operational concept.

Allowing for system losses of 3.5 GW , \(10,000 \mathrm{MW}\) of power would be delivered to the terrestrial distribution network as useful power. The system is considered safe to biological organisms on Earth because of precautionary measures at the power receiving end. If, as per Fig. 6, a number of radiation spill detectors detect anomalous radiation outside of the assigned beam channel, control transmitters would beam a shut-off signal to the powersat. In addition, the powersat's synchronous position and/or angle of radiation incidence can be corrected by metering
the microwave energy arriving at the rectifying diode panels. The possibility of the powersat cutting a "swath of death" across Earth is very remote because the ground receiving system has full control over the orbiting system.

Technically, two candidates for the powersat's electric generating system have emerged: (1) systems using photovoltaic devices, (2) systems using thermal concentrator/heat engines.

In space, a concentration ratio of 2 is about the maximum that can be used with AlGaAs solar cells without cooling them and therefore the size of cell arrays must be increased accordingly.

Heat engines for powersat use are far more complex than photovoltaic
devices, but their high development make them suitable for in-space applications. The most attractive closed-cycle designs are the Rankine (liquid/vapour) and Brayton (gas) turbo-machines. The Brayton cycle offers some advantages in that it does not require two-phase devices such as boilers and condensers which must operate under zero-gravity conditions. The reliable simplicity of the Brayton cycle is shown in Fig. 7. Using standard formulae, we find that a heat engine producing 100 MW of electricity, at \(96 \%\) alternator efficiency, \(40 \%\) thermal cycle efficiency and radiator temperature of \(360^{\circ} \mathrm{K}\left(188^{\circ} \mathrm{F}\right.\)), needs about \(1 \mathrm{~km}^{2}\) of radiator. In this design it is assumed that the powersat's solar panels act as optical light-wave reflectors focused upon the engine's heater cavity.
However generated, the electricity will be beamed to Earth in the form of microwave energy using klystron (or similar) travelling-wave amplifiers. Designs close to \(90 \%\) efficiency are close
to realization. A leading worker in this field, Peter E. Glaser, envisages a wavelength of 10 cm for energy transmissions to Earth. A dish antenna about 2 km in diameter could handle \(2.5 \times\) \(10^{7} \mathrm{~kW}\) and would irradiate a region about 3 km diameter, the latter being the effective size of the antennae farm or receiving station on Earth, with a power density of less than \(1 \mathrm{~W} / \mathrm{cm}^{2}\). Choice of the 10 cm wavelength would minimizeif not eliminate - atmospheric absorption. Since passing microwaves through the planet's upper atmosphere produces a voltage gradient of less than \(100 \mathrm{~V} / \mathrm{cm}\), it is unlikely that the atmosphere would be ionized.
'Taken together, the various engineering groups share the conviction that a powersat could be realized with present-day technologies. Impetus will be added once reusable space şhuttles have been developed, plus special shuttles for transporting and/or providing living quarters for personnel.

Another breakthrough is expected

Fig. 6. Powersat ground receiving system or "antennae farm" designed to collect energy from a space-borne Powersat. Diode panels rectify the microwave energy and backflow diodes safeguard the current busbar. In the event of dangerous off-target radiation, spill detectors initiate Powersat's shut-off via control transmitters.

Fig. 7. Proposed Powersat generating system based on a closed Brayton cycle (see text).

Fig. 8. Thermoelectric feedback diode for microwave rectification. Thermo-substrate is energized by feedback loop (\(R_{L}\) is the exciter load, see text).
from the semiconductor sector, pertaining to hyper-efficient microwave power receiving diodes, see Fig. 8. These development diodes are of the thermoelectric type: a part of the rectified microwave energy (d.c.) is fed back into a thermo-substrate cooling the diode's point-contact region and enhancing conductance. Ideally, if feedback could invoke low temperatures at cryogenic levels \(\left(0^{\circ} \mathrm{K}\right.\) or \(-273.16^{\circ} \mathrm{C}\)), the device would provide zero electrical resistance during microwave half-cycles and maximum power transfer.

The diode lattices, which are still in their patent pending stages, are expected to feature exceptionally wide bandwidths. Other improvements seal with mounting and admittance apertures.

\section*{Organic solar energy converters}

The search for high-efficiency energy converters has directed attention towards organic semiconductors, including those innate to living biological systems. Nine primary processes are under investigation: electro-nuclear mechanics of photosynthesis, formation of free radicals, Hall-mode stream patterns, electron transfer, intramolecular rearrangement, photoionization, photoisomerization, carbon-carbon bonds supporting electron conduction, and photophysical processes involving electro-biological effects such as phosphorescence, fluorescence, and the like. Examples of hyper-efficient organic semiconductors are found in nerve complexes, brains, and other biological matter.

Much hope is based upon the "Hill reaction", named after the British biochemist Robin Hill who, in 1937, discovered that chloroplasts in green plant cells evolve oxygen from water when exposed to light rays in the presence of selected ferric compounds. When water is placed under ultra violet light, hydrogen and oxygen are separated, giving rise to the formation of free basic-element atoms and the transfer of electrons. Solar energy acts as a "pump", with certain end-effects resembling the quantum-mechanical processes found in c.w. laser systems.
Because of the promise of large-scale
electric power production from living systems, some special attention has been directed at the electrophysiological properties of large plants, including trees and other species.

Fig. 9, for example, depicts an experiment on a yucca, a hardy specimen that is common to the Mojave Desert in Southern California. The test set-up was designed to ascertain an electron-flow law under varying intensities of solar illumination (day-night cycles), magneto-biological effects, psychogalvanic sensitivities to environmental stress, and changes in electricity production following electron replenishment from artificial current sources (batteries). Other experimental series are augmented by weak radio-frequency fields applied to plant organs to investigate changes in current densities. Special catalysts may also be used.

The purpose of these and related experiments is to increase current flow to usable levels: At present, typical power outputs of plants are in the low milliwatt range - barely sufficient to operate a small transistor radio. However, the promise is there.

\section*{High-energy power transmission}

Technically, the achievement of obtaining large amounts of electricity from the sun cannot stand alone. The availability of solar power would require low-loss terrestrial distribution systems in order to insure quality service and adequate returns on the massive financial investment required to achieve this aim.

Planners are considering using transmission cables insulated with compressed gas, cryoresistive transmission lines (cables cooled to the temperature of liquid nitrogen), and deep-cooled cables having super-conductive properties. Existing overhead lines may be augmented where international service grids are involved. The advantages of cables are that heat dissipation can either be reduced (as in the case of compressed gas cables), or effectively controlled (as in cases of cryoresistive and superconducting cables). Even with improved cooling, oil-filled cables will probably have only twice their present capacity. Unfortunately the immediate disadvantage of cooled long-distance cables are the high power requirements for refrigeration. Typically, a refrigeration station would use about 9.5 watts of power to pump 1 watt of heat away from a cable of conventional design.

However, progress in superconductivity has now taken a big leap forward with the development of a new superconducting cable by the US Naval Research Laboratory (NRL). The highest critical current density yet observed in superconducting material was demonstrated using vanadium-gallium (\(\mathrm{V}_{3} \mathrm{Ga}\)) composite wire. At \(4.2^{\circ} \mathrm{K}\), the \(\mathrm{V}_{3} \mathrm{Ga}\)-composition has shown a current density of \(10^{6} \mathrm{~A} / \mathrm{cm}^{2}\) in a transverse magnetic field of 100 kG . This density is about 40 per cent greater than any

Fig. 9. Experiment for obtaining electrical energy from living plants. This test, on a yucca plant, was designed to study the electron flow within the plant under varying light intensities.
previously reported. The improvement resulted from raising the percentage of gallium in the alloys used to form the superconductor. Increasing this percentage increased the growth rate for the superconducing thin film, which forms between the two components of the wire, resulting in smaller grain size and higher critical current densities. NRL plans to develop 19 -filament and 361 -filament cables of the \(\mathrm{V}_{3} \mathrm{Ga}\) type, with ever better efficiences expected in the near future.
Tentatively, it is expected that no more than one refrigeration station will be needed for every 11 km of high-efficiency superconducting cable. Of course the high cost of these very expensive service systems will be avoided if solar power plants, including suitable energy storage facilities, can be installed - at low cost - for individual communities.

Physical limits of sun power
For all terrestrial engineering purposes, the sun can be regarded as an infinite power source. Technically, the innate limits confronting our ability to draw maximum power from the star decrease in proportion to our developing knowledge in solar-energy engineering. For example: The solar radiation constant is \(1.395 \mathrm{~kW} / \mathrm{m}^{2}\) on the Earth's surface. Assuming an overall solar-energy converter efficiency of \(50 \%\), approximately 700 watts of usable power per square metre of collector area could be generated by a ground-based system. Therefore multiples are algebraic ones: for example, \(10,000 \mathrm{~m}^{2}\) of effective collector area would render 7000 kW of electricity, and so on. Optical concentrators could multiply this further.

Clearly, future problems will be in obtaining better converter efficiencies and a sensible system of land management, i.e. the setting aside of "sunshine regions" - such as deserts with minor overcast profiles and low precipitation - for power generation and network distribution systems. Peripheral problems can be solved as well. Alkaline water, for example, which one frequently finds in deserts but is unsuitable for direct domestic consumption, can be electrically distilled. Good water of pH 7.0 can also be used for on-site agricultural purposes and later for growing structural timber. Further, the new abundance of electrical energy would permit mining of bauxite from low-yield regions and manufacture of aluminum cables and parts for power-grid systems.
In short, limits are set only by the creative imagination and the degree of farsightedness of executive planners.

\section*{Legal aspects of solar power}

Who has the legal rights to energy from the sun? As history demonstrates, asserting property rights to the sky is nothing new. Even with solar energy in its development stages, battles will not be theoretical ones while tall office buildings rise to overshadow smaller neighbours, thereby keeping sunlight from rooftop solar energy collectors.
There is a "doctrine of ancient lights" (and rights!), but what has served in past centuries might be unworkable in the era of solar power.
Solar power is a young field, legally ill-defined. It would be prudent to suggest, perhaps, that impartial "solar energy masters" be appointed by courts. Thus, energy disputes can be handled in a manner similar to that of "water masters" in water rights cases.

\section*{Summary}

Earth's ecological capabilities and supply of raw materials are adequate for supporting 600 million people comfortably, but not the current census of 3,800 million individuals. Whether or not our civilization will continue to develop depends upon our ability to secure alternate energy sources. Solar energy is one answer. Drawing power from the sun is less of a technological gamble than landing men on the moon or searching for life on Mars.

Further reading
Hallacy, D. S. Jr. "The Coming Age of Solar Energy", Harper \& Row, New York London, Rev. Ed., 1973.
Rau, H. "Solar Energy", Macmillan, New York - London, 1964.
Woodcock, G. R. and Gregory D. L. "Derivation of a Total Satellite Energy System,, Boeing Aerospace, AIAA Paper 75-640, AIAA/AAS Conf. Solar Energy for Earth Conformance, April 24, 1975, University of California at Los Angeles, U.S.A.
Gutman, F. and Lyons, L. E. "Organic Semiconductors", Wiley, New York, 1967.

\title{
NTSC simulator
}

\title{
Simple design suitable for teaching
}

\author{
by Roy C. Whitehead, M.I.E.E.
}

禾

This design can be used to demonstrate the basic character of the original N.T.S.C. colour TV system and its main limitation. The modulator circuit is shown in Fig. 1. Three generator symbols shown in Figs. 1 and 2 represent the three outputs from one generator (variable phase oscillator). The frequency used is \(1590 \mathrm{~Hz}, \omega=10000\), and all amplitudes are set to maximum. Two potentials in quadrature are produced across \(C_{1}\) and \(R_{1}\) to represent the \(U\) and \(V\) components of the N.T.S.C. subcarrier. Because the generator outputs are unbalanced it is necessary to introduce transformers \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\) to produce balanced operation. The addition of the potentiometers results in the secondary circuits taking the form of bridges.

When the sliders of these potentiometers are at their midpoints the bridges are balanced, corresponding to a picture signal of zero saturation. The outputs of \(R_{2}\) and \(R_{3}\) represent the \(U\) and \(V\) signals respectively and are displayed by the double-beam oscilloscope which must have its timebase triggered directly from the generator. Ideally, the addition of these two signals should be displayed by the balanced-input oscilloscope, c.r.o.2, but in fact the instrument displays their difference. This oscilloscope also needs to have its timebase triggered directly from the generator.
A circuit for the two synchronous detectors is shown in Fig. 2. Input from the modulator is connected to the two detector circuits via transformers \(\mathrm{T}_{3}\) and \(T_{4}\). The two reference inputs to the detectors are provided by the zero phase and \(+90^{\circ}\) outputs of the generator, and the two signals are displayed finally by two \(100-0-100\) microammeters. Phase control of the generator can be set so that operation of \(\mathrm{R}_{2}\) causes corresponding deflections of \(M_{1}\), and operation of \(R_{3}\) causes deflections of \(M_{2}\). This represents ideal N.T.S.C. performance.

Deliberate misadjustment of the phase control demonstrates cross-colour, i.e. mutual contaminations of \(U\) and \(V\) which occurs when the reference
oscillator of a colour receiver is not correctly phased to the colour burst.

If an \(X-Y\) display unit is available, or
Fig. 1. Modulator unit. The transformers (\(R S\) Components TT/6) are used to provide a balanced output.
an oscilliscope which is suitable for Lissajous displays, a modified detector. circuit may be used. With the timebase of the oscilloscope switched off, and with both inputs set to zero, the spot is centred and the unit takes on the functions of a vectorscope.

Fig. 2. Synchronous detectors.

\section*{THE FUTURE OF TELEVISION}

Britain was the first in the field with commercial television and after the war the original television market soon showed signs of saturating. The industry was re-vitalised by the introduction of the 625 -line service and the opening up of the higher-frequency transmission bands. When the market was again saturating, the industry was re-invigorated by the introduction of colour. It will not be many years before the market for colour receivers is also saturated, especially through the mechanism of rental of receivers. We now have Teletext just coming on the market and various systems for recording/replaying on tape or disc for home use; but I do not think these are sufficient to keep the industry going at full strength for very long. Following the sequence basic television, higher definition, colour, the logical next step would be 3-D television.

Quite a number of methods are known for producing a 3-D picture, e.g. in the cinema; and most of these have been tried for television in the laboratory and discarded. There remains the use of the hologram. This is the most perfect method of recording a 3-D image, but television engineers have recoiled in horror on seeing the bandwidth requirement calculated as several gigahertz. The subsequent suggestion \({ }^{2}\) of a possible reduction by a factor of 4 did not significantly change the situation. The trouble with holography is that it is too sensitive. It will inherently record distance to an accuracy of better than a thousandth of a millimetre, whereas an accuracy of one millimetre in depth would be quite adequate for most TV scenes. I do not believe it is beyond the wit of man to find a means of discarding the unwanted excess of accuracy in such a way as to reduce the bandwidth required.

I remember reading in a popular book on radio which was published in the 1920s something like this: "The problems surrounding television are as thick as snowflakes round the North Pole, but they will be solved eventually." They were solved in less than 20 years. The report of the Television Committee 1943 (under the chairmanship of Lord Hankey) recomemmended that the restoration of the pre-war television service should be followed by an improved system "possibly incorporating colour and stereoscopic effects". We now have the colour, and it is only a matter of time before 3-D is
introduced. But the question is where? Will it be, perhaps, in Japan' or will it be in Britain? D. A. Bell,

Electronic Engineering Department, University of Hull.

\section*{References}
1. E. N. Leith, J. Upatnieks, B. P. Hildebrand and K Haines, Journ. S.M.P.T.E., 74, 893-896, Oct. 1965.
2. L. H. Enloe, W. C. Japes, Jr., and C. R Rubinstein, B.S.T.J., 47, 1875-1882, Nov. 1968.
3. Takanori Okoshi and Kazuo Hotate, Electronics and Communications in Japan, 57-C, 102-109, 1974

\section*{COMMUNICATION THEORY}

I would like to comment on the reference to Shannon's theory of information which Professor Bell makes in his article in Wireless World, April 1976. This, incidentally, is possibly the first occasion that any explanation of this famous theory' has been presented in the pages of Wireless World.

It is ironic that the fundamental basis of the communication process actually appears as a rather vague branch of mathematics having a very remote practical application The conclusions arrived at by Shannon's theory are not to be challenged, but what think should be open to question is the manner in a certain aspect of the theory is presented by many authors, including Professor Bell, and, originally, by Shannon himself.

I am concerned with the derivation of the expression
\[
-\sum_{i=1}^{i=N} p_{i} \log p_{i}
\]

This expression, states Professor Bell, can be shown mathematically to be the only satisfactory measure of the uncertainty relating to a finite group of probabilities. The idea behind such a demonstration is that information is some quantity which reduces uncertainty and that the above function can be shown to have certain mathematical properties which, it is asserted, one can intuitively expect. This approach was originated by Shannon and has been elaborately pursued by many writers since. It is, however, meaningless because it seeks to define a measure of information in complete isolation from any physical consideration and without any indication, initially, of the true purpose of such a measure. This, 1 feel, is one of the factors which contribute to the difficulty of the theory of information.
A simple example can be shown to reveal the purpose and philosophy of the theory of information. Consider the process of encoding the output of a discrete source of information into a discrete noiseless channel. The discrete source is specified by the group of source symbol probabilities, \(p\). The discrete noiseless channel is capable of transmitting any one of a number, \(B\), channel symbols per second. We now, ask the question, what is the greatest rate at which the source symbols can be unambiguously encoded into the channel symbols and what is the relationship between this rate and the group of probabilities \(p_{i}\) ? This is equivalent to asking what is the optimum of a process subjected to two sets of constraints, a probabilistic set and a deterministic set. Because of the probabilistic constraints an
optimum condition can be realised only by an indefinitely large sample of the process. The answer to our question, therefore, is to be found by the application of an important statistical concept, namely, the law of large numbers. This law is, in fact, the central principle of Shannon's information theory and requires a knowledge of statistics very little beyond 'A' level in order to understand it. An application of the law in this case will give the answer to our question as \(\mathrm{C} / \mathrm{H}\) source symbols per second, where \(C=\log B\) and
\[
H=-\sum_{i=1}^{i=N} p_{i} \log p_{i}
\]
\(H\) is a function of the source symbol probabilities only and measures an attribute of the source which can be called appropriately the "average information rate" and C can be called the "channel capacity." If the base of all the logarithms is chosen to be 2 then \(H\) is expressed in bits per source symbol and \(C\) in bits per second.
Deriving the above expression for \(H\) in this manner means that we can abandon the approach whereby the formula is quoted from the start, then shown to have certain mathematical properties and then given the name "entropy". The concept of entropy was first introduced in 1851 by Rankine (of ideal steam cycle fame) who called it the "thermodynamic function". The concept was extended by Clausius who coined the name entropy and a Professor Perry suggested that the unit should be called the "rank", in honour of Rankine \({ }^{2}\). As Professor Bell says, the exact relationship between different applications of entropy need not concern us here. I would agree with this and say also that entropy is of historical importance only in the present context and the use of the term should be avoided. There is, of course, a valid analogy between thermodynamic entropy and average information rate but this is of esoteric interest only.
Colin Hackney,
University of Salford.

\section*{References}
1. Shannon C. E., "A Mathematical Theory of Communication," Bell System Technical Journal, Vol. 27, 1948
2. Wrangham D. A., "The Theory and Practice of Heat Engines," Cambridge University Press, 1942.

Professor Bell replies:
Since I was primarily concerned with communication I had (perhaps wrongly) refrained from discussing at great depth the measure of information, which is a more complicated subject than Dr Hackney suggests. The entropy formula for information enters into communication in two ways. Dr Hackney refers to one of them, the coding of the output of an information source to suit the characteristics of a discrete noiseless channel. Since channels are never noiseless in practice, one tends not to give too much importance to this application, though it is the theoretical background of schemes of "bandwidth compression" and these are finding some practical application in telemetry from space vehicles and in specialised forms of television such as Viewphone. But so long as the communication engineer is setting out to provide a channel to carry any signal within the bounds of a fixed information rate he cannot rely on source-to-channel coding. The other application is to the noisy channel, leading to Shannon's channel-capacity theorem.

The derivation of the entropy formula does
not depend on any intuitive expectation as regards its mathematical form, and I have from time to time challenged critics to produce any other formula. One is tempted at first to think of "information" as an "instruction to act", since one does not know. whether information has been received unless the recipient reacts in some way. But then he (she) may put the information into store so one then modifies this to "potential action." Next one has to consider what is called in common parlance the reliability of the information, or in technical terminology the signal-to noise ratio of the received signal. As the daily press would say, does it come from a reliable source? The information in a railway timetable is usually considered to be fairly reliable: one is surprised if an inter-city train does not appear at or about the advertised time. But consider the uncertainties of the financial prospect. After collecting all the available evidence including beliefs about psychological factors - a financial expert will assign probabilities to the pound sterling being worth various values, say at 10 per cent steps between \(\$ 1.50\) and \(\$ 2.00\), in six months' time. But this is just formulating a set of probabilities which can be put in the formula \(-\Sigma p_{i} \log p_{i}\). But of course the said financier may well have formulated at least qualitatively many other probabilities: whether a certain friend will arrive for a visit at the weekend, how good a crop his apple trees will have this year, whether his first-born will get a university place next October ... The point of bringing in all these non-scientific examples is to suggest that a person's "world picture" consists very largely of a set of probabilities. It follows that information is that which changes a person's world picture. (ls this intuitive or axiomatic?) The second consequence is that one must always specify which probabilities are changed by a signal; and information (like entropy in thermodynamics) is always measured as a difference, not as an absolute value - one takes the difference between the information at the receiving end after a signal and that which was there before.

The exact mathematical form of the entropy measure, however, has nothing to do with the above. My authority for saying that it is the only possible form is A. Feinstein who gives the mathematical proof in his book "Foundations of Information Theory." The assumptions are that information is some function of probabilities, that the measure is symmetrical in all the probabilities involved, and that it can take account of the result of sub-dividing a probability into component part probabilities. Given these basic assumptions, the entropy formula follows.
l am not sure where abstract scientific theory ends and the esoteric begins, but of course the relation between information and thermodynamic entropy can also be pursued through the "Maxwell demon" type of argument. But this is a large topic, and an outline of the arguments with references to the original papers can be found elsewhere \({ }^{2}\).

There are cases in which Shannon's entropy measure is inappropriate, but I am not sure that what is being measured is information. The classic example is R. A. Fisher's use of the inverse of the variance of an experimental result which is inherently liable to statistical uncertainty, on the ground that this can be related to the financial value of the result. There is also the question of structure and complexity in a pattern, but in relation to artistic patterns my comments will appear in another journal. \({ }^{3}\). D. A. Bell

References
1. A. Feinstein, Foundations of Information Theory, McGraw Hill, 1958.
2. D: A. Bell, Information Theory and its Engineering Applications, Pitman, 4th edn. 1972.
3. D. A. Bell, Information and Pattern, Kybernetes (publication pending).

\section*{PHASE IN THE EAR}

I have followed the discussion regarding the importance of phase in sound reproduction with some feelings of regret that so much energy has been expended in the seeking of adequate explanations without a full knowledge of the facts. The main consideration has been the "interface" between the electrically driven transducer and the air. But there is another "interface" that is of equal importance and is indeed the final arbiter. This is the mechanism in the ear, a mechanism which converts sound waves to electrical nerve impulses. In the article "Acoustics" in Grove's Dictionary of Music (vol 1, page 33) it is stated that there are some 24,000 transverse fibres in the basilar membrane of the ear, and each one has its own natural frequency, and responding only to that frequency. If this be the case, the ear is an analyser of sound and no question of phase difference can arise. And incidentally harmonics are separated, the ones from the others, and distortion harmonics beyond audibility have no meaning except when intermodulation occurs.

And so everything seems satisfactorily explained until we find elsewhere in Grove's (vol. 6, page 349) that a 32 ft organ tone can be obtained by sounding the second and third harmonics, 16 ft and 1023 ft pipes, the so-called Tartini effect. The development of beats in electrical engineering usually implies a' multiplication or addition but it is rather hard to imagine either of these occurring in the ear. Incidentally, there is probably another "interface" in the connection between the ear nerves and the brain, functioning in much the same way as the reversal of direction that occurs between the eyeball and the sight area of the brain.
All this seems to point to the need for a closer understanding between engineers and physiologists.
Eric Neate,
Callington,
Cornwall.

THE INVENTORS

I have, with fits of exception, given up trying to get "error takeoff" into production. After all, what is perfection compared to the healthy grating sound of Class B!
But I do get a certain pleasure from the sheer delight of the system and recently made a step forward in my understanding which makes it much easier for me to design it. However, what I would like to hear from the National Research and Development Council (NRDC) who effectively rejected my idea is:
1. Do they recognise that we in Britain now have a chance to recapture the hi-fi amplifier market with amplifiers of perfect
performance (not to mention other applications)?
2. Do they actually believe it works (my impression is of a lack of technical understanding, I may be wrong). I would be happy to demonstrate it to them.
3. Why, considering some of the things they have supported, will they not support a basic advance in understanding and application which "error takeoff" represents?
As for "industry," their attitude was "this is perpetual motion" in content although not' in words or "yes, it works but we are happy with what we have got".
In my considered opinion the affairs of the "private inventor" should, in the long-term, be removed from the NRDC.
A. M. Sandman,

London NW3.
Editor's note: For an explanation of "error take-off", see Mr Sandman's article "Reducing amplifier distortion", Wireless World, October 1974 issue.

\section*{WIRELESS PIONEERS}

The Society of Wireless Pioneers is interested in hearing from former or present wireless telegraph operators who have served or are serving ashore or afloat in the Merchant Service, the Post Office wireless telegraph service, or any branch of the military service. The Society of Wireless Pioneers is a non-profit organisation dedicated to wireless telegraph operators. Interested persons might write to: Mr John A. Edwards, G4BVA, SOWP Director, Great Britain, 81 Hunter Avenue, Brentwood, Essex, England.
H. J. Scott,

San Leandro,
Calif., USA

\section*{WAS BAIRD FOOLING THE PUBLIC?}

In your April issue Mr F. H. Haynes stated: "It should be appreciated that Baird never successfully demonstrated television. Being without a method of synchronization over a distance, there could be no such event." Later in his letter he wrote (apropos Baird's endeavours to develop commercially his system of television), " . . . and to that end demonstrations had to be conjured and reports by staff contributors commissioned for publication."

These statements and others which Mr Haynes made, apparently in complete ignorance of the historical facts which are readily available to researchers, are so misleading and denigrating to the memory of Baird that it is most important that a factual rebuff be, given to your correspondent's remarks.
Baird's numerous demonstrations of low definition television were given not only to newspaper correspondents and the general public but also to a number of notable scientists, Members of Parliament, engineers and administrators of the British Broadcasting Corporation and the General Post Office, et al.
Professor Sir Ambrose Fleming, Professor Taylor Jones, and Dr Alexander Russell all
reported on Baird's experiments during the 1926-1928 period and their observations may be read in the appropriate volumes of Nature and the Television magazine. Additionally the opinions of Colonel A. S. Angwin, (former assistant engineer-in-chief, GPO) and Sir Noel Ashbridge, (former chief engineer, BBC), on the progress of Baird's work to 1936 are recorded in the archive collections of the BBC and GPO. Many other sources of information could, of course, be cited.
A few short extracts from these accounts will show that there was no need for Baird to "conjure" successful demonstrations of television.

In July 1926 Dr Alexander Russell' wrote that he was "agreeably surprised" to find that Baird had "made great progress in solving the (television) problem." Later in September 1926 Radio News (of the USA) sent a reporter to investigate Baird's claims: "Mr Baird has definitely and indisputably given a demonstration of real television. ... It is the first time in history that this has been done in any part of the world." Professor E. Taylor Jones, \({ }^{2}\) (of the University of Glasgow), in commenting on the London-Glasgow television transmission of May 1927 observed: "The image was perfectly steady in position, was remarkably free from distortion, and showed no sign of the 'streakiness' which was, I believe, in evidence in the earlier experiments." Approximately one year later (July 1928) Sir Ambrose Fleming' had the opportunity of "seeing in practical operation in Mr Baird's laboratory a very striking advance in the apparatus for television which (had) been recently made by Mr Baird."
Mr Haynes' ill-founded comments on synchronizing may be assessed by noting that The Times' correspondent found that: "By means of a Baird televisor and a little adjustment of the two knobs which respectively control the synchronization and the 'framing' of the picture the rapidly swirling pattern was resolved into a steady head and shoulders image of the speaker." This televisor was reviewed by Wireless World in its 12th March 1930 issue. The reviewer found that if the single LS5A valve, which gave an output of 1.5 W (sic) was replaced by an LS6A valve, (rated output 5 W), the process of synchronizing became easier. "For quite long intervals the picture remained steady. . These statements may be compared with Mr Haynes' observation that: "With a monitored signal input (Big Ben clock face) and in an equipped laboratory where auxiliary gear, by way of a heavy duty synchronising and vision amplifier was to hand, the Baird televisor was shown to be a failure in fulfilling its intended purpose."
The first public low definition television service in the United Kingdom commenced broadcasting at 11.00 p.m. on 22 nd August 1932. D. C. Birkinshaw,' (the BBC's television research engineer at that time), reported that "everything went off without a hitch of any sort, either technically or in the programme," on the opening night. Both he and Eustace Robb (the studio producer) made detailed improvements to the quality of the 30 -line transmissions. The start of the service followed some "initiative" by W. Gladstone Murray (the BBC's assistant controller, information) and N. Ashbridge. After visiting the Baird laboratories on 12th October 1931 the BBC's chief engineer wrote a memorandum' in which he mentioned that the picture he had seen, reproduced by means of a mirror drum/Kerr cell type of receiver "was easily the best television which I have seen so far
"It was quite easy to recognise the persons even after seeing them once and
there was no difficulty following \(\bar{f}\) acial expressions."
The 30 -line service was operational until 10th August 1935. During its existence the Television Committee, (under the Chairmanship of Lord Selsdon), was established, (the first meeting was held on 29th May. 1934), and subsequently it considered, inter alia, the discontinuance of the low definition television broadcasts.
When the report of the Committee was published it recommended, paragraph 34, that "the existing low definition broadcasts be maintained, if practicable, for the present." The Committee had been "rather impressed not by the number of protests but by the fact that they did appear to exist." These came not from Baird who felt the 30 -line transmissions had "no commercial value" but from a number of different sources including Messrs Ferranti Ltd., et al. Mr V. Z. de Ferranti told Lord Selsdon: ". . . I was amazed that it was so good considering the limitations. ..." "If you could let us (the people in the North) have it . . I would like it very much."
- Mr Haynes states in his letter - regarding the 30 -line service: "No radio enthusiast was fooled. Radio Societies, then much attended, were amused." But an examination of the documentary evidence presented to Lord Selsdon's committee will show that it was the representations of many radio enthusiasts, the Television Society, certain industries, (large and small), which prevailed upon Lord Selsdon and his committee to extend the life of the 30 -line service. A survey carried out by the Television Society in 1934 showed that \(93 \%\) of the respondents wanted the 30 -line transmission extended.
Additionally Mr Haynes commented: "Wireless World, always ready to pursue and report, remained silent": about what? 30 -line television? During the formative period of the low definition experimental television service, 1927-1930, Wireless World published 50 contributions on television, including 9 editorials, 38 letters from subscribers and 3 equipment reports!

Mr Haynes mentioned, (second paragraph): "This was the time of early talking films and picture telegraphy when the stable photocell and bright recording lamp were both readily available. Baird claimed to use visual purple as the light sensitive material." I have not come across this claim and would be pleased if Mr Haynes could quote his primary source. Baird had a notion (circa 1925) about using visual purple in an experimental cell but nothing came of this. He certainly utilised selenium cells in 1925 but by 1928 was employing gas-filled potassium photo-emissive cells.

Another statement which Mr Haynes made - "Proper electrical circuits for conveying the light values were not to be found in the various Baird set-ups" - is untrue. Indeed Mr Haynes' ietter abounds with untruths designed to show Baird in a poor light. How any inventor could demonstrate, over a span of many years, the transmission and reception of images to leading scientists and engineers of the day and not use proper electrical circuits must surely be a mystery. Of course there is no mystery. A detailed description of the apparatus used by Baird in 1928 to demonstrate colour television was published in the Journal of the Royal Society of Arts and an account of the Baird 1930 television transmitter was given by T. H. Bridewater in Wireless World (3rd December 1930). Later, from 1932, responsibility for the 30 -line transmission was accepted by the BBC (in
co-operation with Baird's engineers).
It is unfortunate that Mr Haynes prima. facie should have taken so little care with his letter. The writing of history is best left to those who are prepared to consult primary source documents - unpublished and published.
R. W. Burns,

Dept of Electrical and Electronic Engg.
Engg.
Trent Polytechnic,
Nottingham.

\section*{References}

1 A.R.: "Television," Nature, Vol. 118, No. 2957, 3rd July 1926, pp.18-19.
2 Taylor Jones, Prof. E.: "Television" Nature, Vol.' 119, No. 3007, 18th June 1927, p. 896.
3 Fleming, Sir A.: Television Magazine, July 1928.
4 Birkinshaw, D.C.: Memorandum to Kirke, H.L., 25th August 1932, file T.13, BNC, WAC.
5 Ashbridge, N.: Report to Reith, Sir J., 10th October 1931, file T23, BBC, WAC.
6 Report of the Television Committee, Cmd. 4793, 1935, HMSO.
7 Wilson, J.C.: "Trichromatic reproduction in television" Journal of the Royal Society of Arts, Vol. 82, No. 4258, 29th June 1934, p. 842.

\section*{CITIZENS' BAND}

I am. a holder of a Class B Amateur Radio licence and if no other place could be found for a Citizen's Band, I would not feel "cheated" if segments of the amateur bands were allocated for this use. I am sure this would bring screams of protest from other amateurs, but if this could help us save the life of a mountain climber, small boat owner, hiker or rustic, this would surely justify the action. I shall not presume to draft licence conditions and regulations but surely no-one could object to the introduction of a Citizen's Band strictly limited and controlled in the first instance to people engaged in dangerous activities such as the aforementioned.

This may even lead to amateurs taking a long hard look at themselves and operating methods. We may even notice that we are no more than sophisticated CB'ers ourselves (I apologise to the few exceptions).
. I hope this letter does not offend too many amateurs.
Malcolm G. Black,
Handsworth Wood,
Birmingham.

\section*{EQUAL-TEMPERED PITCHES - CORRECTION}

We apologize to readers that the end of a letter on generating equal tempered pitches was accidentally omitted from page 78 of the September issue. This reads as follows.
The biggest error is for \(F\), but this is not sufficient to give the impression (with the other frequencies) of the scale gravitating towards a key - as would probably be the case with the smaller divisors in the first example given in the article.
Sven F. Weber,
Stronsay,
Orkney.
(Former Professor, Royal Academy of Music).

\title{
Electronic systems - 5
}

\title{
Reception and demodulation
}

\author{
by R. Ashmore Assistant Editor, Wireless World
}

Electronic systems 3 and 4 discussed the various techniques, advantages and disadvantages of both amplitude and frequency modulation of carrier signals. This section will describe some of the methods of receiving and demodulating amplitude-modulated carrier waves.

\section*{Station selection}

To receive a particular broadcast from amongst the many different transmissions within the radio broadcast bands it is necessary to have a receiver tuned to the carrier frequency of the desired transmitter. In order to achieve optimum reception of this transmitted signal the bandwidth of the receiver must match that of the transmitter. If the bandwidth of the receiver is too wide the demodulated signal will contain undesirable interference from the adjacent channels. Reducing the receiver bandwidth will decrease the adjacent-channel interference but will restrict the reception of the high frequency components of the wanted station. The solution is that a compromise has to be made between the two above conditions, the term "selectivity" being introduced to describe the success of the receiver in rejecting the adjacent channels.

To demodulate a transmitted signal successfully the demodulator must be provided with an input signal of sufficient amplitude and therefore it is necessary to provide radio frequency amplification prior to demodulation in order to receive weak or distant transmissions.

The crystal set, which is the simplest form of a radio receiver, is constructed from a parallel tuned circuit and a crystal detector or demodulator. The crystal has semiconducting properties similar to the semiconductor diode which has since replaced it. This

This series of articles is based on a proposed Advanced Level course for schoots and is prepared in consultation with Professor G. B. B. Chaplin. University of Essex. The next article will deal with more complex systems of reception and demodulation and will include the \(f\).m. receiver.
receiver does not need power from batteries or the mains supply because the power required to drive the earpiece is derived from the electrical signals induced in the aerial, consequently it is desirable to operate the set with a long aerial and a good earth connection. Voltages will be induced in the aerial due to the presence of signals from all

Fig. 1. Tuning circuit, shown connected between aerial and earth, consisting of an inductor in parallel with \(\dot{a}\) variable capacitor.

(b)

Fig. 2. Graphs of reactance against frequency for (a) capacitor and (b) inductor.
transmitting stations, therefore a circuit is needed which will single out (tune to) the desired frequency - a circuit which will do this is called a tuned circuit.

The tuned circuit used in a crystal set is an inductor connected in parallel with a variable capacitor, see Fig. 1. Let us now consider how this simple arrangement can single out a particular broadcast from a complex and full radio spectrum. Fig. 2 shows the plots of reactance against frequency for both the inductor and the capacitor. The equations for these impedances, for a capacitor \(C\) and an inductance \(L\) at a frequency f, are

Capacitor: Impedance \(=\frac{1}{2 \pi f c}\)
Inductor: Impedance \(=2 \pi f L\)
For a given inductor/capacitor pair there will be a frequency at which the impedance of both components will be the same.
\[
\begin{array}{ll}
\text { i.e. when: } & \frac{1}{2 \pi f C}=2 \pi f L \\
\text { therefore: } & f=\frac{1}{2 \pi \sqrt{L C}}
\end{array}
\]

At this frequency the parallel tuned circuit, made from the components \(L\) and \(C\), are said to be in resonance and are tuned to the frequency \(f\). The frequency response of the parallel tuned circuit described above is given in Fig. 3.

Fig. 3. Frequency response of the tuned circuit shown in Fig. 1, when tuned to station C. Ideally the response required would be a rectangular one with maximum amplitude within the bandwidth of C and zero amplitude at frequencies above and below \(C\), so that all of the frequencies within channel C could be received with no interference from the adjacent stations.

The blocked frequency markings represent the channels allocated to a number of different transmitting stations. It can be seen that, for the conditions shown in Fig. 3, the tuned circuit would have very little response from stations A or E, some response from stations B and D, but the most response from station C. Although the circuit is capable of rejecting all stations whose carrier frequency is below that of \(B\) and above that of \(D\), it has a poor selectivity, due to only partial rejection of the adjacent stations. The response from stations B and D is considered as adjacent-channel interference when attempting to receive station \(C\) only.

If the value of the capacitor is changed, the frequency at which the impedances of the inductor and the capacitor are equal will also change, hence the resonant frequency will be different. Reducing the value of the capacitor will increase the resonant frequency, conversely increasing the value of the capacitor will decrease the resonant frequency. The variable capacitor allows the resonant frequency of the tuned circuit to be altered so that it is coincident with any particular transmitted carrier frequency, thus allowing any chosen broadcast to be received.

\section*{Demodulation}

Demodulation is the process of recovering the information, impressed on the carrier wave, from the composite transmitted signal developed across the tuned circuit which, see diagram referring to point X in Fig. 4, is of the same form as the output of the modulator in the transmitter.

The average d.c. value of the waveform, over a complete cycle of the modulated carrier signal, is zero, and it is therefore necessary to remove all the negative going, or positive going, voltages in order to recover the modulating signal. This is achieved using a device such as a diode which will pass current in one direction only. Fig. 4 shows a circuit which achieves this result.
The signal at \(Y\) is a rectified version of the signal at X .
Since the signal at X has a mean d.c. level it is now only necessary to remove the remaining carrier components and the information which was transmitted will have been recovered. This is done by using a capacitor to filter out the high frequency components of the carrier signal. Because a capacitor has the property that its impedance decreases as frequency increases, selection of a suitable value of capacitance will ensure that it has a relatively low impedance to the high-frequency carrier signal and a relatively high impedance to the much lower frequency modulation signal. So that the broadcast stations can be heard, the load resistor is replaced by a pair of high impedance headphones which convert

Fig. 4. Demodulating circuit. Signal at point \(X\) is of the same form as the output of the modulator in the transmitter - it is a modulated carrier signal. In order to recover the modulating signal it is necessary to rectify the carrier signal to remove all of the negative going, or positive going, voltages to obtain an average d.c. level. Resulting rectifled signal is shown at point \(Y\).

Fig. 5. Crystal set showing typical component values and the conditions for estimating a value for C. First condition says that the value of C should be such that its impedance is high, at the modulating frequency (in this case 100 Hz), compared to the impedance of the headphones (in this case \(2 k \Omega\)). Second condition says that the value of \(C\) should be such that its impedance at the carrier frequency (in this case 200 kHz) should be low compared to the impedance of the headphones.
the tiny electrical currents into audible sound waves.

A suitable capacitor value may be chosen relative to the impedance of the headphones; it must have a lower impedance than the headphones at the carrier frequency and a high impedance at the frequency of the modulating signal. This is summarised in the equation given below.

The impedance of the capacitor \(C\) at a frequency \(f\) is:
\[
\text { Impedance }=\frac{1}{2 \pi f C}
\]

Let the carrier frequency be \(f_{\mathrm{c}}\), the modulation frequency be \(f_{\mathrm{m}}\) and the impedance of the headphones be \(R\), then
\[
\frac{1}{2 \pi f_{c} C} \ll R \ll \frac{1}{2 \pi f_{m} C}
\]

Fig. 5 shows the complete circuit of the crystal set with typical component values. In order to comply with the above conditions the value of capacitor C has been chosen as \(0.1 \mu \mathrm{~F}\), see conditions formulated in Fig. 5.
A receiver of this kind will drive a pair of headphones, if the aerial and earth are sufficient, but it is unlikely that it will provide enough output to drive a loudspeaker; it is also lacking in sensitivity and selectivity. The next article will describe receivers which are designed to improve these characteristics.

\section*{Further reading}

Obtainable from Mr R. A. Smith, Department of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, Essex, are the teaching texts for the electronic system pilot A-level course.

\section*{Correction}

It has been pointed out to us that in Part 4 of "Electronic Systems" (July issue), Fig. 3 and the associated text give the impression that 9 kHz channels are used all over the world in the l.f. and m.f. bands. In fact, 9 kHz is used only in ITU Region 1 and the position in the Far East, Australia and Canada is that 10 kHz channels are used. Fig. 3 also suggests, incorrectly, that adjacent channels are allotted on an inter-continental basis. Apologies to readers for these errors.

\title{
Thévenin, Norton and dependent sources
}

\title{
Single theorem, replacing Thévenin's and Norton's, is valid for dependent sources
}

\author{
by Harry E. Stockman
}

\begin{abstract}
The importance of dependent function sources in network theory has increased with rapid development in semiconductor devices. This theorem holds for dependent sources because the ratio between open-port voltage and closed-port current is derived, by looking away from the network, rather than into it.
\end{abstract}

Wireless World was the first journal to publish a single formulation for Thevenin's and Norton's theorems; a formulation which was not much longer than that used for each individual theorem. \({ }^{1}\) Either the Thévenin equivalent generator or the Norton equivalent generator can be drawn from one and the same theorem formulation. Like the original formulations, this one was valid only for independent sources.
During the past ten years, thanks to the rapid progress of semiconductor devices, the importance of dependent function sources in network theory has increased very much. While the Thévenin and Norton theorems by themselves are invalid for dependent sources, the combination of the two is valid for dependent sources. This is because of the different manner in which the generator immittance is obtained. In the combination theorem, to be discussed below, we do not look from the port into the network, to passivate it by removing the sources. On the contrary, we look the other way through the port, away from the network, securing the ratio between the open-port voltage and the closed-port current, or the inverse of this ratio, depending on whether we want an impedance or an admittance. The technique involved is simple and direct, and deserves a more widespread use than it has had so far.

The distinction is made clear by Fig. 1, where only Thévenin's theorem is discussed since the Norton theorem approach is similar. Fig. 1(a) shows the result of formally applying the classical Thévenin theorem to a linear network, in which no dependent sources are allowed. Fig. l(b) shows how the generator impedance is determined when the combination theorem, formulated below, is used. In this case both independent and dependent sources are allowed in the original network. This means primary sources, or independent

\begin{abstract}
Thévenin and Norton theorems Thévenin's theorem says the current in any impedance, \(\mathrm{Z}_{\mathrm{L}}\), connected to two terminals of a linear network consisting of any number of impedances and generators (or voltage sources) is the same as though \(\mathrm{Z}_{\mathrm{L}}\) were connected to a simple generator, whose generated voltage is the open-circuited voltage at the terminals and whose impedance is the impedance of the network looking back from the terminals, with all generators replaced by impedances equal to the internal impedances of these generators.
Norton's theorem says the current in any impedance \(Z_{R}\), connected to two terminals of a network, is the same as though \(Z_{R}\) were connected to a constant current generator whose generated current is equal to the current which flows through the two terminals when these terminals are short-circuited, the constant-current generator being in shunt with an impedance equal to the impedance of the network looking back from the terminals in question.
\end{abstract}

Fig \(l(a)\). Thévenin generator for independent sources. (b) Thévenin generator for both independent and dependent sources.
function sources, or dependent function sources. The author prefers the following specific formulation of this theorem, referring to it as the Thévenin-Norton function source theorem:

For any linear network with mixed independent and dependent sources and an accessible port, there exists an equivalent generator consisting of the impedance representing the ratio of the open-port voltage and the closed-port current, having either the open-port voltage in series or the closed-port current in parallel.
Being universal to its nature, this theorem may be used as an alternative to the classical Thévenin theorem and the classical Norton theorem.
The example given by Fig. 2 may clarify how the theorem is applied. While symbolic notation is used, Laplace transform notation applies equally well. For open-port AB with \((g+G)=1 / k\), we find
\[
\mathbf{E}^{*}=g k V_{1}(1-b) .
\]

For closed port AB,

where \(X=\bar{\omega} L\). The Thévenin generator then consists of the voltage source \(\mathbf{E}\) in series with the impedance \(\mathbf{Z}^{*}=\mathbf{E}^{*} / \mathbf{I}^{*}=\mathbf{Z}\).
Two things are of particular interest here. One is that in more complicated problems we have to do a lot of

computation to derive the equivalent generator. The other one is that in many problems, particularly problems involving feedback, the early part of the solution produces the transfer function, such as \(\mathbf{V}_{2} / V_{1}\) in this example. In fact some problems begin with a transfer function, and later in the problem solution we need to construct a Thevenin or Norton equivalent generator. In such a case there exists a theorem, the equivalent generator theorem, that will directly read out the Thévenin or Norton equivalent generator from the proper transfer function, eliminating need of computation. The simple application of this theorem is described in a recent publication, \({ }^{2}\) but can be explained in a few words.

Using the example in Fig. 2, we have for \(\mathbf{Z}=1 / \mathbf{Y}\),
\[
\frac{\mathbf{V}_{2}}{V_{1}}=\frac{g k(1-b) \mathbf{Y}}{\mathbf{Y}+G_{\mathrm{I}} .}
\]

This transfer function directly gives \(V_{2}=\mathbf{E} *\) for \(G_{\mathrm{L}}=0\), and the equivalent generator admittance is the sum of all denominator terms, excepting the load admittance term \(G_{L}\). For a current-driven system, the immittance read off in this matter pertains to an open input. This is the total theorem and it means that each time we have available the transfer function, we can directly read off from it either the Thévenin equivalent generator or the Norton equivalent generator. Particularly, we have at a glance the system output immittance, and there is no need to do what is conventionally done; either that we go back to the network and apply the component combination method, which will fail us, anyhow, if dependent sources are present, or apply a voltage to the output port and calculate the ensuing current. This theorem replaces such techniques; however, it does require that the proper transfer function is known.
The formulation of the equivalent generator theorem is as follows:
For any linear network with mixed independent and dependent sources and an accessible port, there exists an equivalent generator with an immittance equal to the sum of all the immittance terms except the load immittance term in the denominator of the proper transfer function, having either the open-port voltage in series or the closed-port current in parallel.

Fig. 2. Circuit used to illustrate application of theorems.

The output quantity can be current or voltage and the input .quantity can be current or voltage; this choice deciding the immittance. Like the previous theorem, this one also holds for the Laplace transform, the concept of immittance restricting the use to the periodic steady state. Like the previous theorem, this one also provides an alternative to the classical Thévenin theorem and the classical Norton theorem, provided of course that the transfer function is known or is derived.

\section*{References}
I. Stockman, H. E. Thévenin and Norton, Wireless World vol. 70, 1964, pp.295/6.
2. Stockman, H.E. Steinmetz' Symbolic Method, History, Worked Problems, 1974, SER Co., Box 78, Arlington, Mass. 02174, USA.

\section*{Anmouncements}

\section*{Courses for radio amateurs}

Enrolment for a course run by the Bury Radio Society took place at the Mosses Youth and Community Centre. Cecil Street, at 8 pm on August 31 and September 7. The course begins on September 21.
Walsall College of Technology's course begins on September 20 at St Paul's Street.
North and West Farnborough Further Education Centre begin a course on September 30 at 7.30 p.m. at the Cove School, St John's Road. A morse proficiency course begins at Oak Farm School, Chaucer Road, on September 27.

Bridgenorth College of Further Education's course will be held on Monday evenings from September 20. Openshaw Technical College will begin their radio amateur's course at 6.45 pm on September 21 .

The Society of Electronic and Radio Technicians are holding a residential symposium on microprocessors at Work at Sussex University from September 26 to 29.

The North East London Polytechnic is holding a 12 week integrated circuit design workshop from Wednesday November 17. Part one, comprising five weekly meetings beginning at \(1.15 \mathrm{p} . \mathrm{m}\)., will include applications of transistor arrays, op. amps and parameter measurements, and part two will begin on January 12, including seven meetings on such subjects as comparators, timers, c.m.o.s., phase locked loops and muitipliers. Both parts will be held at the Barking Precinct.

Cahse-Foster, Suffolk Circuits of Lady Lane Industrial Estate near Ipswich. has been appointed sole UK agent for microwave printed-circuit laminates. The laminates known as Di-Clad are available in two forms. The 522 laminate with a dissipation factor of 0.001 at \(1 \mathrm{MH} \angle\) and 0.0025 at the X-band with a dielectric constant of 2.5 Laminate 527 has the same dielectric constant but
has a dissipation factor of 0.0019 at X-band.
Rank Audio Visual, who recently closed the Leak electronics factory at Bradford because of losses over the last four years, took 40 dealers to Hawaii for a week, starting on July 14, for the annual sales conference. The programme included a flight round the islands, a cruise in a catarmaran and shows at the Hilton, where they were staying.

EMI's medical electronics group is moving its headquarters to Windsor House, a \(£ 2\) million, 9 storey, \(40,000 \mathrm{sq} \mathrm{ft}\) office block at Slough. By the end of the year 200 staff will be installed, rising to 260 in 1977. Most of the leased block will be taken up by EMI Medical's sales and service division, which is moving from Hayes along with 100 staff. 150 clerical, engineering and sales jobs will be filled locally. Manufacturing for the medical electronics group will continue at Hayes, Radlett, Feltham, Fimley, Wells and Windsor.

\section*{IFPI celebration}

Next year 560 record companies in 60 countries will take part in an international programme of events to celebrate the centenary of the invention and manufacture of the gramophone. The programme, organised by the International Federation of the Producers of Phonograms and Videograms (IFPI), will be co-ordinated by Mr Denis Comper

A one term course on digital techniques in audio engineering will be held on Thursday evenings at 6.30 pm at the North London Polytechnic from October 28. Other courses run by the NLP's department of electronic and communications engineering include that on sound studios and recording, which begins on the same date and continues to June, 1977.

South London College is holding a series of nine lectures on teletext systems beginning on October 12. They will be presented by Wireless World deputy editor Philip Darrington and specialists from the BBC, ITCA, Decca and the Post Office. Another short course at SRC, Norwood, will be on integrated circuits, beginning October 14.

On October 4 and 5 the City University' London, will hold an introductory course on microprocessors. Reduced fees accepted if paid before September 24. Another series of short courses, on microelectronics, is being held by Middlesex Polytechnic, Enfield, on thick film hybrids, m.o.s. devices and circuits, microelectronics, basic thick film technology, and semiconductor devices and technology on various dates.

Contracts for phase one of the Post Office \(120 \mathrm{Mbit} / \mathrm{s}\) digital network have been awarded to GEC telecommunications. They will build equipment to multiplex signals from 5630 -channel p.c.m. equipments to a \(120 \mathrm{Mbit} / \mathrm{s}\) digital signal equivalent to 1,680 speech circuits. The contract comes after GEC did a feasibility study, in 1970, and a trial system was installed for the Post Office in late 1972 between Portsmouth and Southampton.

The Post Office are extending their fast machine sorting programme over the next 18 months and have awarded nine contracts together worth over \(£ 4\) million for electronic coding and sorting machines. Sperry Gyroscope get two worth Elm. Frazer-Nash get three worth \(£ 1.4\) million. GEC Mechanical Handling receive two contracts worth \(£ 1\) million. Plessey get one worth \(£ 600.000\) and ITT Components get a contract worth \(£ 100,000\). Delivery should begin early in 1977, say the BPO.

\section*{Questionnaire winners}

Some issues of August W'irtless Whorld contained a questionnaire in which prizes were offered for winning numbers. The numbers and their prizes are 33284 \& 32314 (iould Adrance digital voltmeter; 23013 Texas Scientific pocket calculator; 22618. 11702, 11893 \& 17347 win Wahl rechargeable soldering irons. Winners will be notified in due course.

\section*{CV3 Colour Projection Television has the flexibility you require SUPERSCREEN}

Ceiling (as well as floor) projector maunting

Wide viewing angles give up to \(50 \%\) more viewing space than can be obtrained with a curved screen

Rear (as well as front) projection capability

Variable picłure sizes

An optional motorised rollable screen makes space for other activities

\(\square\) The big \(8^{\prime} \times \delta^{\prime \prime}\) screen is ideal for audiences up to 300
\(\square\) The price is campetitive with all other comparable equipment available on the market
The ser is easylto maintain and adjust
The 3 projection tubes generate in
excess of 200 lumens highlight
brightness with ketfer than 500 lines
resolution
\(\square\) Power Input: \(220-240 \mathrm{v} / 50 \mathrm{~Hz}\)
250 watts
Exfernal Video Input: PAL or SECAM

The CV3 Superscreen is available for purchase or rental
For further information and presentation please phone, telex or write to the sole distributors:
Speywood Communications Limited, 26 Northfield Industrial Estate
Beresford Avenue, Wembley, Middlesex. 01-903 3381. Telex 377138

INSULATE THAT CHASSIS, OR COMPONENT,
THE EASY WAY BY MOUNTING WITH
TRANSIPILLARS
FOR
STRENGTH

INJECTION MOULDED NYLON PILLARS WITH inserts moulded in for super strength

\section*{TRANSIPILLARS}

ARE
STRONGER THAN ANY SIMILAR DEVICES HAVING MECHANICALLY ASSEMBLED INSERTS

SIZES FROM 6BA \(1 / 2^{\prime \prime}\) LONG TO OBA \(23 / 4^{\prime \prime}\) LONG
METRIC EQUIVALENTS ALSO AVAILABLE
MIXED TERMINATIONS
(E.G. 2BA ONE END, 4BA AT OTHER END) AND LENGTHS MADE TO USERS' REQUIREMENTS

DETAILS, PRICES'AND SAMPLES FROM

\title{
Variable pre-emphasis broadcasting
}

\section*{One scheme used in October IBA tests}

\author{
by Len Lewis, Audio \& Design (Recording) Ltd
}

S̄ince early f.m. broadcasting days much effort has been expended on attempts to improve the relatively poor signal-to-noise ratio inherent in transmitted signals. Early research soon established that the higher frequency elements of noise were subjectively most objectionable and thus worthy of greater investigation. Further, this hiss was unavoidably aggravated by the transmission process itself.
Fig. 1 demonstrates how energy distribution throughout the audio spectrum would have looked to those early researchers, for typical broadcast material of the time. Notice, particularly, how for both programme types there is a marked fall off in sound energy characteristic as frequency increases. Relating this to the known properties of hiss it was concluded that, by boosting or pre-emphasizing the higher frequencies where hiss occurs just prior to transmission and then de-emphasizing them on reception, a useful degree of noise attenuation would occur. Because higher frequency programme content was generally of a lower level such pre-emphasis was not likely to have any noticeable side effects. Consequently a standard pre-emphasis curve of \(50 \mu \mathrm{~s}\) time constant was arrived at collectively for Europe (against \(75 \mu \mathrm{~s}\) in America) by its broadcasting authorities and a complementary de-emphasis curve defined for incorporation, as standard, into receivers.
The curve, Fig. 2, has a 3 dB boost at 3.18 kHz rising to 10 dB at 10 kHz and Fig. l shows the effect on spectral distribu. tion.

Unfortunately assumptions based on the falling h.f. characteristic of sound no longer hold true; with some types of modern sound balancing techniques, considerably higher levels can be presented for transmission. Instruments producing very high-pitched sounds are unnaturally emphasized, a condition commonly aggravated by the use of compressors, which tend to boost the

Variable pre-emphasis is a technique whereby the pre-emphasis curve used in f.m. broadcasting is varied according to programme content. The aim is to prevent transmitter over-deviation by high level, high frequency signals while not unnecessarily attentuating low and mid-frequency components. No modification of receiving apparatus is required as the device is active on momentary peaks only and for less than \(10 \%\) of the time. It can improve signal-to-noise ratio by at least 6dB to give increased transmitter range.

Fig. 1. Energy distribution in the audio spectrum, showing the effect of the \(50 \mu \mathrm{~s}\) pre-emphasis curve.

Fig. 2. The established \(50 \mu \mathrm{~s}\) pre-emphasis curve.
average sound level anyway. This shift in emphasis, when modified by the \(50 \mu \mathrm{~s}\) pre-emphasis curve and presented for transmission, gives rise to an undesirable characteristic whereby, to prevent over-deviation of the transmitter by unnaturally emphasized h.f. signals, the whole signal is momentarily attenuated by the action of gain reduction at the transmitter limiter. In this way, low and mid-frequency programme components of subjectively major importance are attenuated to accommodate the higher frequencies. This significant change in spectral energy distribution now demonstrates that the \(50 \mu\) s pre-emphasis curve solution has clearly developed a serious, objectionable side-effect which warrants further investigation.

Obviously the simplest solution would be to reduce the overall level of programme presented to the transmitter to a point where limiting due to pre-emphasized h.f. content does not occur. This would, however, as with removing the \(50 \mu \mathrm{~s}\) curve at the transmitter altogether, give rise to an unacceptable deterioration in the overall signal-to-noise ratio. A far better solution would be to arrange pre-emphasis in such a way that dynamically, according to programme content, the \(50 \mu \mathrm{~s}\) curve only be reduced, as appropriate, avoiding over-deviation of the transmitter and unnecessary attentuation of important low and mid-frequency programme elements. Further benefits can be identified, notably that receiving equipment would require no modification to receive these signals and that higher levels could safely be presented for transmission, thus improving signal-to-noise ratio whilst retaining a high fidelity characteristic regarding the original sound source.

Through work carried out over the last three years into selective limiting, that is, limiting of one section of the audio band without affecting any other and experimentation in co-operation with IBA engineers, Audio \& Design (Recording) Ltd has produced such a
system. Termed variable pre-emphasis, its characteristic is to establish and then limit only (hence vary) a standard \(50 \mu \mathrm{~s}\) pre-emphasis curve.

Fig. 3 shows how \(R_{1} C_{1}\), forming a \(50 \mu \mathrm{~s}\) time constant and \(\mathrm{R}_{2}\), acting as a "stopper" resistor, create the pre-emphasis curve. To obtain variable preemphasis it is necessary to split off the pre-emphasis from the main signal path and process it separately. The pre-emphasis signal is passed first through a limiter, Fig. 4, and then, optionally, through a diode clipper whose threshold is set approximately 1 dB above the limit threshold to disallow over-shoot As gain must be introduced for low distortion at this stage, a simultaneous input/output attenuator is employed, both to restore unity gain and to set the threshold of the system. The processed pre-emphasis signal is then added to the main signal, so producing a variable pre-emphașis signal.

Similar to the variable emphasis system of transmissions used by the BBC on their p.c.m. links, variable pre-emphasis offers many advantages to broadcasters. Being a single-ended processor, variable pre-emphasis requires no complex complementary decoding circuit or signal path modifi-
cation to be made to receiving apparatus (the vast majority of f.m. receivers currently in use in the UK are incapable of modification anyway) to continue receiving high fidelity signals, the primary objective of f.m. stereo broadcasting. Tests have shown that at least 6 dB increased modulation of the transmitter can be achieved, thus effecting a proportional improvement in signal-to-noise ratio and transmitter range yet requiring no increase in power consumption. In addition, the system is active for less than \(10 \%\) of the time because limiting occurs at high level on high frequency content only, whereas in complementary encode/decode situations signal modification is typically operative \(90 \%\) of the time.

This is important when considering any system's effect on transient performance, and of even greater significance to those listeners who possess receivers that could not be modified to decode. No part of the current transmission chain is made obsolete as a simple addition to the programme chain is all that is required to commence variable pre-emphasized transmissions. In addition to not substantially: affecting the high fidelity content of broadcast programmes today, variable pre-emphasis

On-air tests being carried out by the IBA during October (see News, . page 42). involve two techniques to improve signal-to-noise ratio and hence reduce background hiss for a given signal strength and receiver performance. The techniques, Dolby \(B\) encoding described on page 237 of the July 1974 issue, and the variable pre-emphasis, described briefly in these pages, have some effects on audio quality and the IBA hope to determine within statistical limits how noticeable they are. (In the tests, the variable pre-emphasis scheme will be used to provide only a 2 dB signal-to-noise ratio improvement.) Test results will be carefully assessed before the IBA decides whether to seek Home Office approval for the use of either system. Observations on technical quality should be sent to Reception Tests, Engineering Information Service, IBA, Crawley Court. Winchester, Hampshire SO21 20A.
gives broadcasters an open-ended system that could take advantage of future technical developments, without being made obsolete by them or tying broadcasters and listeners alike down to specifically encoded, thus unmodifiable, signals.

Fig. 3 (a) Method of obtaining the theoretical \(50 \mu \mathrm{~s}\) pre-emphasis of (b).

Fig. 4 (a). Variable pre-emphasis circuit and (b) the curves obtained.

\title{
Projection television-2
}

\section*{Refractive projectors}

\author{
by Angus Robertson
}

The simplest form of television projection is to project the raster of an ordinary c.r.t. onto a screen using a lens. Light output depends upon the accelerating voltage and the efficiency and aperture of the projection lens; wideaperture glass lenses are extremely expensive. There are two groups of refractive projectors, which are dealt with separately.

\section*{Trinitron projectors}

Sony. The principle of the Sony VPP-2000, seen in Fig. 14, is shown diagrammatically in Fig. 15. A special 33 cm Trinitron colour c.r.t. is used as the source, the light from which is directed, via a mirror, through the projection lens, with six elements, a focal length of 29 cm , a diameter of 12.5 cm and aperture \(\mathrm{f} / 2\). A high-gain, solid screen, 1.02 m by 0.76 m , is used to obtain a quoted 34 nits (\(\mathrm{cd} / \mathrm{m}^{\prime}\)) luminance and, working backwards from this, the calculated light output is 10 lumens. Price is \(£ 1,500\). Sony also produce a self-contained projection system, the KP-4000, whose principle is illustrated in Fig. 16. A Trinitron tube projects onto an internal 81 cm by 61 cm high-gain screen with a brightness of about 34 nits. Although not presently available in the UK, price in the States is similar to the VPP-2000. The VPK-1200E uses three 33 m single colour tubes to project a 1.8 m by 2.4 m picture onto a high gain screen. Light output is about 200 lumens. Only two lenses are used; the outputs of the red and blue tubes are combined by a dichroic mirror. Lenses are \(f / 2\) with 30 cm focal lengths. Price is expected to be around \(£ 16,000\).

Muntz/Markoff Theatre Vision Inc. and Tele-Theatre (Fig. 17) both manufacture refractive projectors using a Trinitron colour tube and a separate 1.02 m by 0.76 m high gain screen. Tele-Theatre price is \(£ 1,000\).

Shannon Communications Inc. has developed a 30 cm diameter lens system moulded from acrylics. It fits in front of a Trinitron tube and unlike the previous systems is focusable. Unfortunately little experience exists in the moulding of lenses of this diameter and the British company who were originally going to

Fig. 14. Sony VPP-2000 uses a Trinitron source

Fig. 15. Principle of the Sony VPP-2000
manufacture the acrylic lenses now feel unable to guarantee production. Whether the Shannon projector will be marketed in the near future now remains to be seen.

The problem with the manufacture of acrylic lenses is still to be solved. Lenses may be ground down from a solid blank which is an expensive process. Alternatively they may be hot moulded from acrylics. However when using this process to mould large diameter lenses (30 cm), problems with expansion and cooling make accuracy extremely difficult. Until these snags are overcome, Mullard are going to try polishing lenses hot moulded to obtain greater accuracy.

The basic difficulty encountered with the previous refractive projectors is that the smallest colour tube available is the 33 cm Trinitron. This uses an aperture grill and vertical stripes of coloured phosphor on the screen. About 400 groups of stripes are deposited across the screen and as mentioned earlier, this limits the resolution to 280 lines. It is not presently feasible to manufacture a colour tube of smaller dimensions because of the difficulties of maintaining sufficient resolution. Thus projector manufacturers are stuck with the problems of large diameter, wide-aparture lenses. There difficulties are not so prevalent when separate high-intensity, single-colour tubes are used. Shadow mask tubes may of course be used instead of the Trinitron tube.

\section*{Aeronutronic Ford}

The refractive principle used by these projectors is perhaps the simplest to explain, but requires highly specialised techniques to obtain sufficiently high light outputs.

A 175 mm c.r.t. is used as a basis for the projectors, shown in Fig. 18. The standard tube uses a glass faceplate with an active area of 10 cm by 12.5 cm ; accelerating voltage used is 60 kV with a very high beam current. To obtain a higher light output a sapphire faceplace may be used, which has a much higher thermal conductivity than glass, allowing power dissipation of up to 40 W (six to seven times that of glass) from the faceplate. Such a large plate is bonded to the tube by an exclusive process that compensates for varying thermal stresses between the glass tube and sapphire faceplate.

The projectors are fully refractive using nine element lenses with a speed of \(f / 0.87\). Analogue circuits are used for coarse colour registration with a digital correction system using semiconductor storage to obtain an accuracy of half a picture element over the entire screen, not just the centre. To combine the outputs of the three colour tubes, two of which are not normal to the screen, the Scheimphlug condition is used where the plane of the screen, plane of the c.r.t. and plane perpendicular to the axis of the lens, intersect at a common line to preserve focus at expense of distortion

Fig. 16. Self-contained version of the Sony VPP-2000, the KP4000

Fig. 17. Tele-Theatre refracting projector

Fig. 18. Refractive projector from Aeronutronic Ford
(which can be corrected at the same time as the convergence errors).

Surprising compactness is obtained with these projectors; a single c.r.t. unit is 76 cm high, 40 cm wide and 106 cm 'deep. Three units mounted vertically are used for colour and two colour units mounted side by side for high-power colour projection.

The ATP-1000 is a monochrome projector with a light output of 280 lumens using a glass-faceplate c.r.t. Resolution is 1,000 lines and contrast ratio 1:8. Price is \(\$ 35,000\) to \(\$ 70,000\). The ATP-3000 projects a 1,000 lumen colour picture, which is sufficient for a 2.7 m by 3.6 m picture. Price is \(\$ 200,000\) to \(\$ 400,000\). Finally the ATP-6000, shown in Fig. 19, is basically two ATP- 3000 units providing 2,000 lumens with a 1,000 line horizontal resolution. Price is \(\$ 400,000\) to \(\$ 500,000\).
Advent has just introduced a refractive projector in the USA, fig 19a, which is effectively a baby version of the Aeronutronic Ford projectors. The Videobeam 750 uses three 12.5 cm diameter c.r.t.s focused onto \(\mathrm{a}^{\prime} \mathrm{i} .55 \mathrm{~m} \times 1.15 \mathrm{~m}\) high gain screen using three 12.5 cm refractive acrylic lenses. Price is presently \(\$ 2,495\) and introduction is expected in the UK during 1977.

\section*{Eidophor light valve}

The Eidophor is a projector which, by means of a high-intensity light source and an oil layer influenced by the video signal, can project a black-and-white or coloured image by way of light valves.

The principle of the Eidophor is sketched in Fig. 20. The light source is a high-pressure xenon lamp which uniformly illuminates an aperture and is projected onto mirror bars with the aid of a condenser lens. The aperture image is reflected from the bars onto the concave mirror within the tube envelope. This arrangement of mirror bars is called a "dark field" projection system and ensures that no light can fall on the picture screen in spite of the concave mirror being intensely illuminated by the xenon lamp.

An oil layer 0.1 mm thick is applied to the concave mirror and as long as its surface is completely smooth, the reflected light is not deflected and the picture screen remains dark.

However if this oil layer is deformed, part of the light is slightly deflected from its normal path and will pass between the mirror bars. This deflected light is focused by the projection lens onto the screen, the brightness increasing with increasing deformation of the oil layer.

The deformations are caused by an electron beam which exerts electrostatic forces on the oil and causes deformation. The electron spot size on the oil is chosen so that the resultant lines touch each other, distributing the charge evenly over the entire scanned area (72 mm by 54 mm): consequently the layer remains smooth. However, if the electron spot size is reduced, the lines no longer touch and the charge distribution assumes a line structure because the interline spacing carries no charge. This causes deformation of the surface and the smaller the spot, the larger the deformation. Thus, light reflected from the oil layer on the concave mirror is deflected past the

Fig. 19. Colour projector using the principle of Fig. 18

Fig. 20. Principle of the Eidophor. The lower ray is reflected between the mirror bars by the deformed oil layer

Fig. 19(a). Advent Videobeam colour projector - essentially a smaller version of half the Fig. 19 type
mirror bars and onto the screen. By continuously varying the spot size, a full brightness range may be obtained.

The nonconductive oil is made partially conductive and this, combined with the surface tension of the oil provides for the oil to be smoothed after each field in readiness for new deformations. The great advantage of this technique is that the light source intensity is independent of the electrical power of the electron beam. Another feature inherent in the dark field technique is the contrast ratio of \(1: 100\).
A colour Eidophor is arranged as shown in Fig. 21. The light from a single xenon source is split, using dichroic mirrors, into red, green and blue light each beam being separately treated in a similar tube to the monochrome projector.

The EP8 monochrome Eidophor projector has an output of 4,000 lumens from a 2.5 kW lamp. Maximum picture size is about 12 m by 9 m . A wide range of lenses are available for varying projection distances. Price is 250,000 Swiss Francs. A new range of monochrome projectors will soon be available. The 5170 in Fig. 22 is a colour projector with 3,000 lumen output. Resolution is 800 lines in the picture centre, registration accuracy being \(0.1 \%\) in a circle \(80 \%\) of picture height. Price is 600,000 Swiss Francs. Finally the 5171 is a high intensity colour Eidophor which has a 7,000 lumen output with a 4.8 kW lamp. Maximum picture size is 18 m by 13.5 m . Seven different lenses are available. This unit, the highest-powered TV projector available, costs 690,000 Swiss Francs.

\section*{Westinghouse mirror matrix}

This is a reflective light valve which uses a matrix of mirrors built into a vidicon camera tube.
The light-reflecting Schlieren system employed is shown in Fig. 23, where the light valve is seen to be the faceplate in

Fig. 22. Gretag 5170 colour Eidophor. Control circuitry is in separate console on right

Fig. 21. Optical system of the colour Eidophor
an otherwise conventional sealed-off vidicon tube which uses standard focusing and deflection components. The target is fabricated from monocrystalline silicon-on-sapphire substrates, using high yield semiconductor techniques. It is composed of a dense matrix (25.5 elements \(/ \mathrm{mm}\)) of aluminised silicon dioxide membranes (about \(3,000 \AA\) thickness) supported centrally on small silicon posts \(4-5 \mu \mathrm{~m}\) in height above the transport sapphire. faceplate. These flat, stress-free oxide membranes can be deflected electrostatically by up to \(4^{\circ}\) when addressed with the electron beam. Thus, because light scattered by activated mirror elements is directed around the central stop in Fig. 23, an intensity-modulated display of the deposited charge pattern on the mirror matrix is produced on the screen.
Mechanical and optical considerations have led to a special four-leaf geometry of the mirror elements in Fig. 24 , enabling operation at a voltage level of only 175 V) and an optical gating efficiency of about \(50 \%\) to be achieved. The latter stems from the fact that light from activated mirror elements is spatially separated from the fixed diffraction background produced by the segmented target structure. Since the modulated light is effectively directed away from the optical axis of the Schlieren projection system, high screen brightness and high contrast are provided simultaneously by use of a central, cross-shaped Schlieren stop.
The mirror matrix is fabricated using chemically-inert, low vapour-pressure materials, so its inclusion within the sealed-off vidicon envelope shows no detrimental effects on tube life. In addition, the electrical insulation properties of the mirror matrix structure give long storage times for the charge pattern and its low thermal impedance suggests its suitability for high lightlevel flux handling capabilities.
At present, the write and erase time of \(1 / 30\) s is such that real-time video cannot be projected, but the storage time inherent in the tube (many hours) makes the projector very suitable for single frame display such as might be used for computer displays, Travel indicators and such applications. A 1.3 m \(\times \mathrm{lm}\) screen was used with the prototype projector, which exhibited a 400 -line resolution and \(15: 1\) contrast ratio, with full grey scale. Total gated light output was about 90 lumens using a l50W xenon lamp and \(\mathrm{f} / 3.5\) lens. Substantially higher luminous flux outputs can be expected with a larger light source and improved optics. A limiting resolution of 600 lines has been

Fig. 23. Reflective type of light valve used in the Westinghouse mirror-matrix system
achieved using a 750,000 element array with fewer than 30 defective elements in a 50 mm sealed tube. Price is expected to be between \(\$ 2,500\) and \(\$ 3,500\).

\section*{General Dynamics}

A projection system similar to that of the Schmidt type is used by General Dynamics. The techniques uses a correction lens mounted between the c.r.t. and spherical mirror. Although providing better optical correction than the standard Schmidt, the large physical size and cost of the lens have prevented its wide use.

\section*{Lasers}

Various attempts have been made to construct a projector using lasers as the light source. Although it is reasonably simple to modulate the laser light,

(a)
scanning must be mechanical, using mirrors or prisms rotating at high speeds. However since the light path is very complex, efficiency is very low and this coupled with mechanical problems has frustrated development.

\section*{IBM deformographic}

This uses a light valve containing a deformable target. Fig. 25 shows the principle of operation of the deformable storage display tube (d.s.d.t.) which uses a Schlieren optical system to convert the deformations of an optical surface into visual imaging points.

The heart of the d.s.d.t. is a dielectric membrane (target) which consists of an electronically-controllable storage substrate, a deformable material layer and a reflective layer. The target is mounted in the tube envelope so that the storage substrate faces the electron gun chamber of the tube. Deformations, created in the deformable material as a result of negative electrostatic charges deposited by the write gun of the d.s.d.t., are converted into a visual image by the off-axis Schlieren optical system. Since the substrate is a good insulator, it

Fig. 24. Mirror-matrix light valve. Cross-section of one element is shown at (b)

(b)

provides long-term image storage. Also, because of its secondary emission characteristic, the effective polarity of the deposited charge may be varied as a function of electron beam energy. Thus a deposited charge can be written and erased in a controlled manner by appropriately directed electron beams of selected energies.

Since the deformable material is isolated from the electron gun chamber, cathode poisoning is eliminated. By employing an elastomer as the deformable material, a simple mechanical restoring force provides the actual erase function once the deforming charge is removed. An additional advantage is the placing of the reflective layer on the deformable material, which allows an efficient reflective optical system to be employed instead of a complex transmissive system. Two electron guns are used mounted in the tube's rear. The write gun provides a magnetically deflected pencil beam while the erase gun is designed to cover the entire substrate with its electron beam cloud. Electronic control of these guns with time sequencing provides for such facilities as storage, variable persistance, selective erase, coloured images and optical processing.

Storage is achieved by sequentially writing and erasing. A single writing operation places information on the target where it is stored until neutralized by the erase gun up to several minutes later. Variable persistance is arranged by simultaneous operation of write and erase guns, the degree of persistence being controllable by varying the erase current. Selective erase may be arranged by altering the potential of the writing gun to produce a directional erase beam. Although theoretically possible, deflection problems with two different beam potentials could cause problems.

Coloured data may be displayed by exploiting the Schlieren plane effect. Fig. 26 shows two methods of producing coloured symbolic data. The top portion shows two E's generated from horizontal and vertical strokes. Because of the optical pattern created as a result of the stroke patterns, and crossed configuration separates the two characters into different colours at the image plane. The lower characters show colour generation by controlling depth of deformation. The lightly drawn character limits the reflective pattern to the inner annular filter ring while a heavily written character causes a large share of the reflected light to fall on the outer filter. The relative sizes of the characters shown in Fig. 26 are significant since the coloured characters made from directional strokes must be larger than black and white characters. Var-: ious other filter arrangements may be

Fig. 25. System by IBM using a reflective, deforming surface - similar in some respects to that of Fig. 23

Fig. 26. Production of coloured symbols by crossed filters and symbols made up of vertical or horizontal lines is at (a), while (b) shows the method using differing degrees of deformation to include varying amounts of dissimilar filters
used in the Schlieren plant to enhance or interrogate the displayed tube.
Presently, a 150 W xenon lamp is used as the light source and this provides a light output of between 300 and 500 lumens. Up to four different colours may be displayed, with a contrast ratio of \(40: 1\). Rear-projected display systems suitable for computer generated
alphanumerics and graphics projected on a 1.5 m square screen are now available for purchase from IBM. Projectors are constructed individually by hand and cost around \(\$ 200,000\) but this will be reduced to about \(\$ 28,000\) when production starts.

Prices quoted in sterling indicate that the equipment is imported into the UK while those quoted in dollars would have to be purchased from the USA with all the additional costs that are incurred (freight, taxes etc).

I should like to thank the following people from both Europe and the USA who have provided the information necessary to write this article. Dr G. Baenziger, Gretag AG; Jacques Donjon,

LEP; Vincent Donohoe, Speywood Communications Ltd; Patrick Gamuti, Projection Systems Inc; William Good, General Electric; Tom Holzel, Ideal Image Inc; John Huggett, Crown Cassette Communications Ltd; Alexander Jacobson, Hughes Research Laboratories; Harvey Nathanson, Westinghouse Research Laboratories; Michael Spooner, Redifon Flight Simulation; Jerrett Stafford, Aeronutronic Ford; Ronaild Freeman, IBM.

\section*{Makers and importers}

Advent: Crown Cassette Communications Ltd, 3 Soho Street, London, W1.
Aeronutronic Ford, 3939 Fabian Way, Palo Alto, California, USA.
Eidophor: Televictor Ltd, Channing House, Wargrave, Berks.
General Electric Co, Building 6, Electronics 'Park, Syracuse, New York.
IBM Corp, Department 102B, Building L91, Awego, State of New York 13827.
Ikegami: Dixon's Technical Ltd, 3 Soho Square, London, WI.
Image Magnification: REW Audio Visual Ltd, 10-12 High Street, Colliers Wood, London SW19.
Kalart Victor: British Films Ltd, 260 Balham High Street, London SW17.
Projection Systems: Speywood Communications Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.
Pye TVT Ltd, PO Box 41. Coldhams Lane, Cambridge.
Sony (UK) Ltd, 134 Regent Street, London Wl.
Tele Theatre: Speywood Communications Ltd, Northfield Industrial Estate, Beresford Avenue, Wembley, Middlesex.
Westinghouse Electric Corp, R. and D. Centre, Beulah Road, Pittsburgh, Pennsylvania 15355.

\section*{News of the month}

Continued from page 46
vote. Members of the executive and chairmen of standing committees woun normally be appointed from among board members.

Mr Clayton said the July meeting had been "as satisfactory if not more so than we could have hoped for.". They had reached sufficient agreement on the redrafting of the charter and bylaws to be able to recommend to a meeting of the IEE council in Sheffield on September 9 that the resignation be rescinded. This, he hoped, would happen by a special resolution at a CEI meeting on September 22. "We shall then have the things that we need: a clear definition of the role of the CEI, direct elections of members of the CEI by the membership, and the possibility that those who are not members of chartered institutions can be represented on the CEI." The only qualification for affiliation to the CEI on the part of unchartered institutions, he said, was that an institution had enough people in it who were likely to become members. This would not make the board membership of the CEI unwieldly again because he could only think of one or
two institutions that would want to come in.
"The first role of the CEI is to endorse acadamic examinations which a man must take before he can call himself a chartered engineer. It is also up to the CEI to establish a code of professional conduct and enforce it." Speaking of the comparative jurisdiction of the CEI with the individual institutions he said: "It can speak for the engineering profession as a whole in matters that affect the engineering profession as a whole, but there aren't all that many such matters, and that doesn't prevent each institution speaking individually.
"The CEI represents chartered engineers, not institutions," he asserted, and while he agreed that the name no longer reflected what the CEI was about, he said he could think of many bodies known by their acronym whose full name no longer reflected their function. "The existence of the CEI shows that a lot of people who are working in the same field can on matters of common interest represent a viewpoint together. We can do something useful in the CEI but it's not going to be transformed overnight."
As his year of office, one of the stormiest in the IEE's 105 years, closed,

Mr Clayton said he recalled two things more vividly than the CEI battle. One was the inter-relationship between engineering and physics, "and our relationship with the mechanical engineers. We are two very close institutions and our links are getting closer all the time." Was the rumoured merger between the two a possibility? "All things are possible."

\section*{Microprocessor predictions}

AMI Microsystems predict that sales of m.o.s.i.cs which provide memories for microprocessors will increase by \(113 \%\) over the next \(21 / 2\) years. The growth will extend, they say, into an increasing range of data processing, industrial and consumer products. Microprocessor sales are expected to increase by nearly half during the period, but US manufacturers are expected to get more than \(80 \%\) of worldwide sales, which will increase, according to AMI's director of research, from last year's \(\$ 64\) million to \(\$ 300\) million in 1979 . Ancillary memory sales will rise from \(\$ 11\) million to \(\$ 190\) million.

\title{
Self-setting time code clock
}

\section*{3-Alignment procedure}

\author{
by N. C. Helsby, M.A., University of Essex
}

On completion, align the clock as follows.

Short the receiver input and adjust \(\mathrm{R}_{3}\) to give 4.3 V at TPl. Remove the short and a signal should appear as soon as the a.g.c. has reduced the gain to the correct value. A voltmeter connected to the output of \(\mathrm{IC}_{3}\) will indicate signal strength by monitoring the a.g.c. amplifier output.

Adjust the aerial and \(T_{1}\) tuning controls for maximum reading at this point, taking into account the slow response of the a.g.c. Note that the a.g.c. reference may be checked at the junction of \(R_{2}-R_{3}\) and should be about 2.9 V . Similarly, the junction of \(\mathrm{R}_{1}-\mathrm{R}_{2}\) should be at about 3.6 V . If the 5 V supply is slightly high these values will be increased and the 4.3 V should be raised accordingly.

Connect an audio amplifier to TP1, via a suitable capacitor, to check the overall noise level. Audible bleeps during the break in carrier may be heard using the tone generator.

In the decoder circuit, break the link on pin 4 of \(\mathrm{IC}_{10}\) so that the timer runs continuously. If a timer/counter is available connect it to pin 3 of \(\mathrm{IC}_{10}\), and adjust \(\mathrm{R}_{10}\) to give a period of 10 ms . Alternatively, the output at pin 3 may be compared with 100 Hz ripple on the power supply by adding the two signals and adjusting \(R_{10}\) for zero beats using an audio amplifier as shown in Fig. 16.

The code recognition circuitry may be set up using an audio oscillator and a pair of headphones. The oscillator is required to give a rectangular-wave output of about 4 V pk to pk at 25 Hz . The output should go from zero to +4 V ; if it does not it may be restored by means of a diode and capacitor. Disconnect the receiver from the decoder and connect the audio generator as shown in Fig. 17. Connect a link from the collector of \(\mathrm{Tr}_{3}\) to the base of \(\mathrm{Tr}_{5}\) so that the two collector resistors are shorted. Connect an audio amplifier or headphones to pin 8 of \(\mathrm{IC}_{6 \mathrm{~b}}\) via a \(10 \mathrm{k} \Omega\) resistor. Starting with \(\mathrm{R}_{8}\), adjust until the 25 Hz output at pin 8 just ceases. Disconnect the link between \(\mathrm{Tr}_{3}\) and \(\mathrm{Tr}_{5}\), and with the same input signal, adjust \(R_{7}\) so that the audio output just returns. This is the correct position for \(R_{7}\) and, if an oscilloscope is available, the output at pin 8 should be high for 12 ms under these conditions. If an oscilloscope is

Fig. 16. Zero beat method of adjusting \(R_{10}\) avoids use of timer/counter.

Fig. 17. D.C. restoration components ensure \(0-4 V\) input to code recognition circuitry.

Fig. 18. Adjust \(R_{7}\) and \(R_{8}\) to give lower two waveforms, given test signal as shown.

Fig. 19. Resistor \(R_{11}\) is adjusted for coincidence of positive and negativegoing edges.

Waveforms on pin 8, \(I C_{6 b}\) for correct setting of \(R_{7}\) and on pin 6,IC \(C_{7}\) for a correctly-set \(R_{10}\).
available continue to feed in the 25 Hz test signal and set \(\mathrm{R}_{10}\) to give a positive pulse length on pin \(6 \mathrm{IC}_{7}\) of 27 ms . If an oscilloscope is not available, adjust \(\mathrm{R}_{10}\) to give the longest available pulse length. Disconnect the signal generator and connect the receiver output to the input of the decoder board. Decoding should proceed at each minute. To optimize the noise immunity, in the case where \(R_{10}\) was set, progressively advance it until decoding at the minute ceases, and then return it by a reasonable margin. The 25 Hz oscillator continuously applied does not cause the decoder to trigger its clock, but it does so once each time it is switched to the input of the decoder.

As an alternative to the above procedure a test generator which gives the
same waveform as the start of the time code may be constructed from monostables or standard test equipment. This waveform is applied at 500 ms intervals and \(R_{7}, R_{8}\) adjusted to give the waveform shown in Fig. 18 at pin 9 of \(\mathrm{IC}_{6 \mathrm{~b}}\). The previous method using a 25 Hz generator gives similar results. The timings shown allow for a margin of error in the transmitted code and the waveform shown will trigger the decoder clock every 500 ms .

For the seconds counter and parity checker, remove the input seconds pulses by shorting the receiver aerial. Disconnect the link between \(R_{13}\) and pin 2 of \(\mathrm{IC}_{16}\) and measure the voltage on pin 2 which should be around 3.5 V . Apply the voltmeter between \(R_{13}\) and ground and adjust \(R_{12}\) to the same value as on pin 2. Reconnect the link and remove the short-circuit across the receiver aerial. Find the exremes of \(\mathrm{R}_{18}\) at which the p.l.l. loses lock, as indicated by the out-of-lock l.e.d., and note the positions. Set \(\mathrm{R}_{18}\) midway between these positions. (When lock is lost the indicator flashes on and off as the c.c.o. comes in and out of phase with the input signal). This adjustment must be made very slowly due to the long time constants involved. Adjust \(\mathrm{R}_{11}\) so that the negative-going
edge on the collector of \(\mathrm{Tr}_{8}\) is coincident with the positive-going edge of the received seconds pulses as shown in Fig. 19 (available on the edge of the seconds counting board). By mixing these signals through an audio amplifier, the exact coincidence point may be heard. This completes the alignment of the time code clock.

\section*{Printed circuit boards}

Wireless World has arranged a supply of glass fibre boards for the time code clock. The p.c.bs are available as a set which comprises three double-sided and two single-sided boards for the receiver. GMT/BST converter, decọder, seconds counter, and display. The boards mount on top of each other (see photo) to form a compact module which can be housed in a case approximately \(8 \times 5 \times 3 \mathrm{in}\). The set of boards is priced at \(£ 13.50\) inclusive or E11.00 undrilled.

A set of special components is also available which comprises an aerial assembly, receiver coil assembly (LA4145), N5596K multiplier, MPS HO5 transistor, two \(1.5 \mathrm{k} \Omega\) metal-film resistors. and the NE567 tone decoder. This set is priced at \(£ 7.50\) inclusive.

Available from M. R. Sagin at 11 Villiers Road, London NW2.

\section*{Low voltage audio amplifier}

This d.c. coupled amplifier does not include over all feed-back and is suitable for low supply voltage applications such as in-car entertainment. With a regulated 9 V supply the circuit provides high quality sound at ample volume.

The double d.c. coupled push-pull emitter follower stages \(\mathrm{Tr}_{3}, 4,5,6\) provide base-emitter temperature corrected bias, as well as a low output impedance. Output bias current is adjusted with the \(27 \Omega\) resistor. On positive transitions \(\mathrm{Tr}_{4}\) and \(\mathrm{Tr}_{8}\) are driven on, while \(\mathrm{Tr}_{3}\) and \(\mathrm{Tr}_{5}\) are cut off.

Capacitor \(\mathrm{C}_{2}\) couples the emitter of \(\mathrm{Tr}_{4}\) to the base of \(\mathrm{Tr}_{6}\) via \(\mathrm{C}_{3}\), so \(\mathrm{Tr}_{6}\) is driven hard on from the low impedance source of \(\mathrm{Tr}_{4}\). On negative transitions \(\mathrm{Tr}_{3}\) and \(\mathrm{Tr}_{5}\) are on, while \(\mathrm{Tr}_{4}\) and \(\mathrm{Tr}_{6}\) are off. Again, \(\mathrm{C}_{2}\) couples \(\mathrm{Tr}_{3}\) emitter to \(\mathrm{Tr}_{5}\) base. Thus, a symmetrical low output impedance is achieved on positive and negative transitions of an audio waveform. Driver transistor \(\mathrm{Tr}_{2}\) is designed to provide a temperature compensated bias and a maximum symmetrical voltage swing to the output stages.

Collector voltage of \(\mathrm{Tr}_{2}\) is set at approximately 5 V d.c. so the emitter swing has to be contained within zero and one volt d.c. This means a low value for the emitter resistor and, therefore, a sensitivity to temperature variations. Temperature compensation is provided by a symmetrically biased transistor \(\mathrm{Tr}_{1}\), using collector to base negative feedback.
G. Kalanit,

New Malden,
Surrey.

\section*{Does your present radio test equipment measure up to this?}

\section*{The Solartron Schlumberger 4010A/4011}

Time was when radio testing meant a clutter of space-consuming instruments, complex inter-connections, and out-of-phase calibrations.

We've changed all that. We've built a complete range of radio test equipment into a single compact unit - the Solartron/Schlumberger Manual Radio Test Set. It comes in two models: 4010A and 4011 .

Features include a synthesizer covering the range 0.01 to 480 MHz , depending on model, with decade manual and remote control facilities; FM, ФM, and AM modulation; frequency counter; RF power meter; AF millivoltmeter; AF generator; and a distortion meter and filter for noise weighting

The Solartron/Schlumberger 4010A/4011. The compact unit that measures everything in manual radio testing. Simply. Reliably. Quickly.

SOLARTRON

\section*{Schlumberger}

The SolartronElectronic Group Ltd., Farnborough, Hants. England.

Telephone:(0252)44433. Telex:858245.

\title{
Our instruments are fastand reliable.
} like the oistributors that back them.

Our Appointed Distributors have been ordering instrumentsa vear ahead on your behalf.
This means they can deliver your order quicker than any other source. They can help you choose the right instrument, too.
Here's where to contact them:
LONDON AREA
London
Edmundson Electric Ltd Tel: 01-891 1331
ERD (South East) Ltd
Tel:01-9285620
Lugton \& Co. Ltd. Tel::01-3488247
R.T.\&I.Electronics Ltd

Tel:01-539 4986
ITT Distributors Ltd.
Tel:01-8036522
Harlow
ITT Instrument Services
Tel: 027926811
Welwyn Garden City
Ellistons(Welwyn) Ltd
Tel:07073 26344
MIDLANDS
Coventry
Mercia Electronics Ltd
Tel: 020324091

\section*{Birmingham}

ITT Distributors Ltd.
Tel:021-2365030
ERD(Midlands) Ltd. Tel:021-2365060 Northampton
E.M.F.(Electrical) Ltd. 'Tel: 060421711 Norwich
Newey \& Evre Ltd. Tel: 060349341 Nottingham
Newey \& Evre Ltd. Tel: 0602866531
NORTHERNIRELAND
Belfast
Eirco Ltd. Tel:023242911
NORTHEAST
Hull
Edmundson Electric Ltd
Tel:0482 20691
Leeds
Farnell Electronic Components.Ltd.
Tel:0532 636311
wetherby
Farnell International Instruments Ltd Tel:09373541
- Newcastleupon Tyne
J. Gledson \& Co. Ltd. Tel:0632860955 NORTH WEST AND N. WALES
Salford
Hirst lbbetson \& Taylor Ltd
Tel: 061-833 9711
J. Walton (Electrical) Ltd

Tel:061-872 4224

\section*{SCOTLAND}

Glasgow
ERD(Scotland) Ltd. Tel:041-6477141
Dundee
Wood \& Cairns Ltd. Tel: 038222051
SOUTH WESTANDS. WALES Bristol
Black Arrow (Electronics) Ltd Tel: 0454315824
Cardiff
Newey\& EyreLtd. Tel: 022245831
Bath
ERD (South West) Ltd. Tel:022563281
You may buv our instruments
through your usual wholesaler.
althoughnemay
notbean Appointed Distributor.

\title{
Theoretical intermodulation distortion levels from clipping a two-tone s.s.b. signal
}

\author{
by D. A. Tong, B.Sc. Ph.D. Datong Electronics Ltd
}

\begin{abstract}
Speech clipping at r.f. is now a well known and accepted method of increasing effective transmitter power. So far little experimental work has been done to determine the levels of intermodulation distortion generated by r.f. clipping. This study attempts to find the magnitude of distortion that can be expected when ideal clipping is applied. The analysis shows that quite high i.d. occurs with a two-equal-tone signal even for small amounts of clipping but, probably due to the waveform, this is not so objectionable when listening to speech.
\end{abstract}

In the use of a.m. and f.m. transmitters a.f. speech clipping has been widely used to raise the average-to-peak amplitude ratio of the speech waveform. Disadvantages of this technique are a high level of distortion, and the incompatibility with s.s.b. transmitters which are now the most common kind in use. If, however, the clipping is performed, at r.f. on a s.s.b. signal most of the distortion is eliminated and there is no incompatibility with s.s.b. transmitters. Radio frequency clipping by 15 to 20 dB can increase effective peak power by a factor of ten.
An add-on r.f. clipper can be placed in series with the transmitter microphone lead because the device generates its own s.s.b., clips it and demodulates it back to a.f. A single audio frequency sine wave, when processed in such a way, is reproduced as a sine wave with, assuming an ideal system, zero distortion, no matter what the degree of clipping. If the same signal is subjected to direct clipping it approaches a square wave and a set of odd harmonics is generated. If the wanted frequency is at the low end of the speech band, many of the harmonics are also in the speech bandwidth and cannot be filtered out. When several sine waves are simultaneously fed into a clipper the situation is more complex because a range of sum and difference products between various harmonics are generated.
The calculation which follows was undertaken in an attempt to find out how much distortion can be expected with ideal r.f. clipping applied to a typical two-tone s.s.b. test signal. Although a general calculation for the intermodulation produced by simultaneously clipping sine waves of varying amplitude would be complex, the special case of two equal-amplitude sine waves is more easily solved. The analysis shows that quite high intermo-
dulation distortion occurs, even for small amounts of clipping. This is certainly not a condemnation of r.f. clipping for speech transmissions, but a point against in-band distortion, produced from a two-tone test signal, being used as an important parameter for characterizing a transmitter used for speech communications.

\section*{Calculation}

A two-tone test signal can be regarded as a double sideband suppressed carrier signal produced by multiplying together two hypothetical signals. The test signal is defined as
\[
\begin{equation*}
f(t)=A_{0} \cos \omega_{1} t+A_{0} \cos \omega_{2} t \tag{1}
\end{equation*}
\]

Fig. l. (a) Modulating waveform, \(f_{m}(t)\), which, when multiplied by cos (\(\left(\omega_{1}+\omega_{2}\right)\) i2) gives the two-tone test signal \(f(t)\). (b) Two-tone test signal \(f(t)\). Note its peak amplitude is twice that of the waveform in (a). The phase of the waveform with period \(4 \pi /\left(\omega_{1}+\omega_{2}\right)\) is shifted by \(\pi\) radians (\(180^{\circ}\)) in each successive section of the envelope. In both (a) and (b) the effect of amplitude limitation is shown by the dotted line.
i.e. the sum of two signals. This can be written in the product form as
\(f(t)=2 A_{0} \cos \left(\omega_{1}+\omega_{2} / 2\right) t \cdot \cos (\Delta \omega / 2) t(2)\) where \(\Delta_{\omega}=\omega_{1}-\omega_{2}\). This second equation shows why the peak amplitude of the two-tone signal is twice that of each separate tone. It also shows that the envelope of the r.f. component, at angular frequency \(\omega+\omega_{2} / 2\) is amplitude modulated by a low frequency waveform which is equal to half the difference of the two original tones. The waveforms \(f(t)\) and \(2 A_{0} \cos (\Delta \omega / 2) t\) are shown in Fig. 1.
Because the envelope shape of \(f(t)\) is directly related to that of the modulating waveform \(2 A \cos \Delta \omega t / 2\), any amplitude limiting of the composite signal \(f(t)\) can be regarded as due to similar limiting of the modulating waveform. This is indicated by the dotted lines in Fig. 1.

To predict the effects of r.f. clipping on a two-tone signal, one can first calculate the Fourier components representing a clipped cosine-wave, and then consider the effect of modulating. \(\cos \left(\omega_{1}+\omega_{2} / 2\right) t\) separately by each of these components. The results of each: modulation process, i.e. each multiplication, can then be added together to give the final frequency spectrum.

Any complex modulating signal \(f_{m}(t)\) with a fundamental frequency of \(J_{\omega} / 2\) can be represented as the following general Fourier series 1 ,
\(f_{m}^{\prime}(t)=a_{0}+a_{1} \sin \Delta \omega t / 2+a_{2} \sin 2 . \Delta \omega \cdot t / 2+\). etc.
\(+b_{1} \cos \Delta \omega t / 2+b_{2} \sin 2 . \Delta \omega . t / 2+\ldots\) etc.
This expansion simplifies if there is no d.c. component in the waveform, and the clipping is symmetrical. Under these conditions only the odd cosine terms are left
\(f_{m}(t)=b_{1} \cos \Delta \omega \cdot t / 2+b_{3} \cos 3 . \Delta \omega \cdot t / 2+\) \(b_{5} \cos 5.1 \omega . t /+\). . etc.
This is why every effort should be made, in any a.f. or r.f. process to achieve.

Fig. 2. Frequency components of the clipped waveform in Fig. 1(b). Note that there is no component with frequency \(\left(\omega_{1}+\omega_{2}\right) / 2\) despite the cyclic variation at this frequency in \(f(t)\).

Fig. 3(a). Function \(f_{m}(t)\) used in the calculation of intermodulation levels (full line). Between \(t_{1}\) and \(t_{2}, t_{3}\) and \(t_{4}\) it is an undistorted section of the waveform \(A_{0} \cos \Delta \omega\) t. Elsewhere the latter has been attenuated to an extent dependent on the value of \(\alpha\). The full
line is the waveform expected when feeding a cosine into the circuit of Fig 3(b) which is an equivalent circuit of a practical diode clipper. Diodes \(D_{1}\) and \({ }^{-} D_{2}\) are assumed to have infinite reverse resistance, zero forward resistance, and zero offset voltage. The input signal comes from a source of zero. internal resistance and the output is fed into an infinitely high load resistance. The parameter \(\alpha\) is equal to \(R_{2} /\left(R_{1}+R_{2}\right)\). The input \(A_{0} \cos \Delta \omega t\), is an imaginary signal. In a real situation the clipper would have the same circuit except that the battery voltages would be \(2 A\).

(a)

(b)
symmetrical clipping. When each of these modulating components are used separately in equation (2), and the results are added to give the complete expansion for \(f(t)\), the result is
\[
\begin{aligned}
& f(t)=A b_{1} \cos \omega_{1} t+A b_{1} \cos \omega_{2} t \\
& +A b_{3} \cos \left(\omega_{1}+\Delta \omega\right) t+A b_{3} \cos \left(\omega_{2}-\Delta \omega\right){ }_{2} \\
& +A b_{5} \cos \left(\omega_{1}+2 \Delta \omega\right) t+A b_{5} \cos \\
& \left(\omega_{2}-2 \Delta \omega\right) t \\
& +A b_{1+2 n} \cos \left(\omega_{1}+n \Delta \omega\right) t+A b_{1+2 n} \cos \\
& \left(\omega_{2}+n \Delta \omega\right) t .
\end{aligned}
\]

The line spectrum corresponding to this expression is shown in Fig. 2. and the peak amplitude of each frequency component is shown above the corresponding spectral line.

Before discussing the actual magnitudes of \(b_{1}, b_{3}\) etc., it is worth making; few points about Fig. 1 and 2. The higheer. the subscript, i.e. the higher the harmonic of \(f_{m}(t)\) responsible for the particular component, the weaker the resulting component. Out of the unwanted intermodulation products, attention will be concentrated on the components at \(\omega_{1}+\Delta \omega\) and \(\omega_{2}-\Delta \omega\). These are the largest and also the closest in frequency to the desired signals and therefore the least likely to be filtered out. Fig. 1(b) is slightly misleading because the dotted lines, which represent the peak-to-peak amplitude after clipping, suggest that the waveform at frequency \(\left(\omega_{1}+\omega_{2}\right)_{i=2}^{\prime 2}\) will be clipped. In fact, if this waveform is modulated by the clipped version of \(f_{m}(t)\) shown in Fig. 1(a), i.e. a cosine wave of original amplitude \(A_{o}\) clipped to a peak amplitude of \(A\), the sine shape of the high frequency waveform will be retained. This treatment therefore applies only to the case where-clipping is achieved by an ideal r.f. compressor with threshold at \(A\) and with a long time constant compared to \(4 \pi /\left(\omega_{1}+\omega_{2}\right)\) but negligible compared to \(4 \pi /\left(\omega_{1}-\omega_{2}\right)\). Nothing is said about the spectral components which will appear centred on harmonics of \(\left(\omega_{1}+\omega_{2}\right) / 2\), but, because these are always discarded by subsequent filtering, this is not important. One assumes that for components centred on \(\left(\omega_{1}+\omega_{2}\right) / 2\), there will be negligible difference between true clipping and the hypothetical r.f. compressor mentioned above. The same assumption is also implicit in Kahn's treatment of hard clippers [2].
The magnitudes of coefficients \(b_{1}\) and \(b_{3}\) can be derived using Fourier analysis for the waveform shown by the full line in Fig. 3(a). An ideal limiter or clipper (\(R_{2}\) in Fig. 3 (b) equal to zero) allows no increase in input waveform amplitude after it has reached a certain threshold as shown by \(A\) in Fig. 3(a). Practical clippers approach this condition and therefore, the calculation has been carried out for the general case, The two results are
\[
b_{1}=A\left[\frac{2}{\pi}(1-\alpha)\left(1-x^{2}\right)^{1 / 2}+\right.
\]
\[
\begin{align*}
& \left.\frac{1}{x}\left(1-(1-\alpha) \frac{2}{\pi} \cos ^{-1} x\right)\right] \tag{4}\\
& b 3=\frac{4 A}{3 \pi}(1-\alpha)\left(1-x^{2}\right)^{3 / 2} \tag{5}
\end{align*}
\]
where \(x=A / A_{o}\) and \(\alpha\) is the gain of the clipper, see Fig. 3(a). It should be noted that in two-tone testing it is normal to measure the amplitude of the strongest intermodulation product relative to the product of the desired component. The intermodulation level in decibels will therefore be equal to
\[
\begin{equation*}
I P_{\max }=20 \log _{10} b_{1} / b_{3} \tag{6}
\end{equation*}
\]
where \(b_{1}\) and \(b_{3}\) are given by equations (4) and (5). In the case of infinite clipping with an ideal clipper, \(\alpha\) and \(A / A_{o}\) are both zero. It can be shown that \(b_{3}\) becomes \(-4 A / 3 \pi\) and \(b_{1}\) becomes \(4 A / \pi\). For infinite clipping therefore, \(b_{1} / b_{3}\) is 3 . The minus sign is neglected because it merely implies a phase shift of \(\pi\) radians in the \(\cos 3 \Delta \omega t / 2\) term relative to the \(\cos \Delta \omega t / 2\) term. This result provides a check on the calculation because the waveform \(f_{m}(t)\) is now a symmetrical square wave and the expansion for this is well known [1]. It also gives a useful result because the worst intermodulation product ca:sed by infinite clipping of a two-tone signal will be at a level of -9.5 dB relative to one of the wanted signals. In this special case it is easily shown that \(b_{m}\) is \(4 A / m \pi\), therefore the level of every intermodulation product can be derived, see Fịg. 6.
A second check on the results can be obtained by making \(A=A_{0}\) and \(\Delta t=0\). It is found that \(b_{1}=A_{o}\) and \(b_{3}=0\) as expected because this is the case for no clipping. It was noted that with infinite clipping, \(b_{1}\) is equal to \(4 A / \pi\). This amplitude is greater than the clipping threshold. If in addition \(\alpha\) is non-zero, as in practical clippers, the wanted output will vary with the input amplitude even when the input is above the clipper threshold \(A\). The degree of clipping in any situation is expressed as
\[
\begin{equation*}
B(\mathrm{~dB})=20 \log _{10}\left(A_{0} / b_{1}\right) \tag{7}
\end{equation*}
\]
and \(B\) represents the ratio of one wanted output to one of the inputs.
For a given degree of clipping it is useful to know how much the wanted output component has increased above the clipping level. This enables a.l.c. systems and other circuits following the clipper to be designed properly. The parameter is defined as
\[
\begin{equation*}
C(d B)=20 \log _{10} b_{1} / A . \tag{8}
\end{equation*}
\]

In a practical system \(B\) and \(C\) are the important parameters from a performance point of view. From the design aspect \(A\) is important and it is worth noting that \(B+C=-20 \log _{10} x\) where \(x=A / A_{0}\) as before

Fig. 4. The upper curves show the value of \(I P_{\text {max }}\) defined by equation (6), relative to one of the wanted tones in the clipper output as a function of clipping level. defined by equation (7). The lower curves show the corresponding variations in the level of the desired output signal. defined by equation (8).

Fig. 5. Analysis of the instantaneous amplitude of phrases of speech spoken without pauses (taken from reference 5).

\section*{Numerical results}

So that the expressions developed so far can be more easily used, the parameters \(I P_{\max }, B\) and \(C\) as defined by equations (4) to (8) have been evaluated for \(a_{1}\) range of clipping levels and for various values of \(\alpha\) using a calculator. The results are collected in Fig. 4 and 7. A most striking feature of these graphs is the high level of intermodulation distortion predicted for even small amounts of clipping. With an ideal clipper (\(\alpha=0\)) the amount of intermodulation produced, when one half of the r.f. signal is clipped, is obtained by putting \(A / A_{0}=0.5\) in equation (9). This gives \(B+C=+6 \mathrm{~dB}\). From the graph, \(B\) and \(C\) will then be 4.3 and 1.7 respectively and \(I P_{\max }\) will be close to -13 dB . Note that the clipping level as defined in equation (7) will be 4.3 dB and not 6 dB . This situation is hardly improved by using a non-zero value of a. Although the \(I P_{\max }\) curves for nonzero \(\alpha\) bend over at high clipping levels to give an apparent improvement in i.p.
levels, the curve for the level of wanted output rises steeply at the same time. This apparent improvement is therefore at the expense of large changes in output level. The explanation is, at high clipping levels with non-zero \(\alpha\), the distance between the levels \(A\) and \(A(1-\alpha)+\alpha A_{0}\), in Fig. 3, has become so large relative to \(A\), the latter has become negligible. The obvious steepness of the intermodulation curve at low clipping levels is a reflection of the flatness of the cosine function around the peaks. In this region a small increase in clipping level produces a large increase in the function affected by the clipper. For example, with only 1 dB of clipping, Fig. 4 shows that \(B=C=1\) and hence \(A / A_{a}=0.794\). But \(\cos\) \(2 \pi \Delta t / T=A / A_{o}\), and therefore \(\Delta t / T=0.104\). This means that the flat sections of the clipped waveform in Fig. 3 account for as much as \(41.6 \%\) of the total period \(T\). The corresponding value for \(I P_{\text {max }}\) is -20.8 dB . As clipping increases, the discontinuities in the
clipped waveform travel down ever steepening parts of the cosine function and the additional effect on i.p. level :diminishes. At a clipping level of 10 dB , \(84 \%\) of the waveform in Fig. 3 is flat and the intermodulation level is \(-10 . \dot{4} \mathrm{~dB}\), which is only 0.9 dB better than the ultimate value when the whole waveform is flat. Corresponding values for 3 , 5 and 20 dB of clipping are \(60 \%\) and \(-14.5 \mathrm{~dB}, 69 \%\) and \(-12.2 \mathrm{~dB}, 95 \%\) and -9.6 dB . It is striking that from only 3 dB of clipping to infinite clipping, the third order intermodulation products change by only 5 dB .

The percentage of a two-tone signal which has been flattened by clipping is easily measured using an oscilloscope. This parameter, called \(y\), has been plotted against third order intermodulation level in Fig. 7 so that an upper limit for the intermodulation caused by flat-topping in a transmitter can be more easily estimated. Also shown is one quadrant of the cosine curve \(x=\cos (\pi / 2 . \dot{y})\) which illustrates the comments made about the flatness around \(y=0\). It also allows the ratio of clipper threshold to input amplitude, \(x\), to be quickly related to \(y\), and hence IP \({ }_{\text {max }}\). It seems clear from these curves that a small amount of flat-topping in a transmitter will cause a lot of interference in adjacent channels if the transmitter is being driven by a two-equaltone test signal. A similar point has also been made by L. A. Moxon (G6XN) in his' recent review of r.f. speech clipping [8].

Unfortunately there seems to be a shortage of experimental data with which to compare the results of the calculation. Data points taken from the only sources located have been super'imposed on the graph in Fig. 7. W. Sabin's (WO1YH) measurements agree well with the theoretical curve but are. restricted to 10 and 20 dB of clipping. P . E. Chadwick (G3RZP) measured intermodulation products as a function of the parameter \(y\) [10] but he does not \({ }_{1}\) state whether his i.ps. are third order or the sum of all intermodulation products. The four values quoted seem fairly consistent but, compared with the theoretical curve they appear to underestimate the distortion as the clipping increases. The four points supplied by \(P\). J. Horwood (G3FRB) do not agree with the theoretical curve or Sabin's data. It - would have been useful if the two test-tone frequencies had been quoted, (those used by Sabin were 600 Hz and 1 kHz) because the low intermodulation level quoted for 10 dB of clipping raises the suspicion that the intermodulation products were being reduced by the. post-clipper filter.

At 20 dB of clipping the present calculation and the data quoted indicate the i.p. level is substantial and would be objectionable if one were listening to a two-tone test signal. When listening to speech the i.p. is not so objectionable; this is probably due to the nature of the waveform. The graph in Fig. 5 shows

Fig. 6. Frequency spectrum of an infinitely clipped two-tone s.s.b. signal. The high levels of unwanted components (all except those with frequency \(\omega_{2}\) or \(\omega_{1}\)) show the need for a narrow band filter after a r.f. clipper. The spectrum is symmetrical about \(\omega_{2}+\omega_{1} / 2\) but only frequencies greater than this are shown.

Fig. 7. Data in Fig. 4. is shown replotted to illustrate how the level of third order. intermodulation products varies with \(y\). The relationship between \(y\) and \(x\) is also plotted which is merely one quadrant of a cosine curve. Also plotted are some published experimental data for third order intermodulation levels.

the percentage of total observational time during which the instantaneous amplitude of speech waveforms exceeds a given percentage of the peak level (reference 4). The \(33 \%\) level is exceeded for only \(14 \%\) of the time. If, therefore, the speech clipping begins at the \(33 \%\) level (i.e. \(A / A_{o}=0.33\)), up to about 8 dBs of clipping will occur, but only for a fraction of the total time. It seems quite reasonable therefore that neither r.f. nor a.f. clipping to this extent will cause much subjective deterioration of the speech, and this is what is observed in practice.

Because the remaining \(86 \%\) of the speech has been raised in level by 9.5 dBs a large increase in talk power is achieved. Although this applies equally well to a.f. or r.f. clipping, the audible difference is less pronounced for the latter at high clipping levels because fewer distortion products are produced. For example, many pairs of frequencies in a speech waveform will have intermodulation products that fall outside the subsequent filter's pass-band. These two frequencies will appear undistorted whereas distortion products would still arise if a.f. clipping were used. Perhaps a more important point is that the level of intermodulation products produced when two tones are clipped at r.f. will reduce when their unclipped levels become unequal. In the limiting case of a single tone, no distortion is produced by an r.f. clipper. This is in direct contrast to audio clipping, where even a single tone would produce a series of odd harmonics which waste transmitter power.

Farkas and Gschwindt [5] have shown theoretically and empirically that for 20 dB of clipping, the output power from an audio clipper is 1.66 times that from a r.f. clipper. This extra \(66 \%\) of power is wasted so far as wanted information is concerned. Furthermore, the extra power is being used to transmit interference within the information bandwidth and therefore, compared with r.f., a.f. clipping contains a built-in jammer which has \(66 \%\) of the strength of a r.f. clipped signal.

\section*{Conclusion}

In testing linear amplifiers for non-linearity at any frequency, a two-tone test input is widely used because of the relatively high levels of intermodulation products (compared to harmonics from a single tone of the same amplitude in the same situation) produced by a given degree of non-linearity [6]. Considering the extreme deviations from linear amplification produced by any form of clipper or amplitude limiter, the levels of intermodulation products calculated in Fig. 4 seem plausible. One feels, however, that maybe some other factor made the distortions figures, quoted in reference 3 , so low.

For reasons noted already the two-equal-tone test signal is not suited for testing in-band distortion in a speech transmitter using a clipper. The result is
too pessimistic when compared with the audible deterioration. On the other hand, when testing for out-of-band interference in a s.s.b. system using r.f. clipping, a two-tone signal is valuable because it represents a worst-case situation, which is what adjacent channel users are interested in. The present calculation could easily be carried further to evaluate the amplitudes of higher intermodulation products more likely to be outside the information bandwidths defined by the post-clipping filter. It is probably safer to assume the worst-case situation of infinite clipping where the amplitudes of intermodulation products produced by the two-equal-tone input are given by \(b_{m}=|(4 A / m \pi)|\). These components are plotted in terms of decibels below the wanted output in Fig. 6. A similar diagram appears in reference 7. The high level in adjacent channel regions. shows why the filter following an r.f. clipper has to do more than remove harmonics at \(2 f, 3 f\), etc., where \(f\) is the carrier frequency, as has been implied in at least one publication. With a speech input Fig. 6 would appear more as a continuous spectrum. This figure emphasises the recommendation that the post-clipper filter should be of comparable specification to the original sideband selection filter. Such a filter also helps to reduce the carrier and unwanted sidebands to their original pre-clipping level.

\section*{Crossover distortion}

The solid line in Fig. 3(a) can also be regarded as an exaggerated output from a class \(B\) audio amplifier suffering from cross-over distortion and where the input signal is a single sinusoid. The same calculation can therefore be used for determining the amplitudes of the harmonics produced by such an amplifier. Similarly the curves given in Fig. 4 for low values of \(\alpha\) can be interpreted as giving the amplitude of the strongest inter-modulation product produced by a class B r.f. power amplifier with an arbitrary amount of cross-over distortion when fed with a two-equal-tone test signal. This treatment cannot be used to calculate the intermodulation products for a two-tone audio-frequency signal subjected to clipping or cross-over distortion for reasons given earlier. Qualitatively, however, the result of clipping such a signal will be a series of overlapping sets of products as in Fig. 2, with each set centred on a multiple of \(\left(\omega_{1}+\omega_{2}\right) / 2\). Thus, the total number of unwanted products within the information bandwidth will be much larger than if the compression of dynamic range is carried out by heterodyning to r.f., clipping, filtering harmonics, and heterodyning the result back to a.f.

\section*{References}
1. Higher Mathematics, J. W. Mellor, Dover Publications Inc., 1954.
2. L. R. Kahn, "Analysis of a limiter as a
variable-gain device", Electrical Engineering, 72, pp 1106-1109, 1953.
3. P. J. Horwood, "A clipper and filter for transistorised SSB exciters", Radio Communication, 48, pp 88-89, February 1972. 4. P. F. Raven, "The use of double sideband suppressed carrier modulation for portable VHF radio telephones", I.E.E. Conference Publication No. 64, Signal Processing Methods for Radiotelephony, 1970, pp43-46.
5. B. Farkas, R. A. Gschwindt, "An investigation on dynamic compression for the transmission of speech", I.E.E. Conference Publication No. 64, Signal Processing for Radiotelephony, 1970, pp97-101.
6. H. M. Nodelman and F. W. Smith, Mathematics for Electronics, McGraw-Hill Book Co. Inc., 1956, chapter 10.
7. J. Daguet and K. Gilabert, "La parole a niveau constant dans les emetteurs a bands laterale unique", L'Onde Electrique, XLI, No. 410, pp498-509, 1961.
8. L. A. Moxon, "Performance of r.f. speech clippers", Ham Radio, pp26-33, November 1972.
9. W. Sabin, "R.f. clippers for S.S.B.", QST, ppl3-18, July 1967.
10. P. E. Chadwick, "Technical Topics", Radio Communication, 48, pp457, July 1972.

\section*{Sixty Years Ago}

Our occasional "L̈etter from America" was a feature of the journals as long ago as sixty years. The Letter in the October 1916 issue incidentally written by David Sarnoff who later became chairman of RCA - includes among other things the small drama of a stolen crystal detector:
"The operator in charge of a wireless station installed on a vessel left his cabin for a few minutes, during which time an unscrupulous person entered the radio cabin and purloined the crystal detector from the tuner, as well as the spare crystal detectors which were lying in a box on the operating table. The ingenuity of this particular operator was not all that could be desired, and as a result the vessel was unable to receive wireless signals for a period of two and a half days."

The report then goes on to quote The Electrical World:
"A condition in which the operation of a wireless telegraph outfit must be entirely suspended on account of the lack of a spare bit of carborundum is not healthy. That it can exist reflects no credit upon either the operator himself, the company which trained and employed him, or the naval examiners who granted his licence certificate. This is quite over and above that part of the responsibility of the operator to construct a temporary detector of at least enough sensitiveness and reliability to keep the ship radio in operation.
". . . Had the operator, who was forced to sit idly by his dead receiver because the crystal had been stolen, known a little of what expedients were made use of in the early years of wireless telegraphy there would have been no failure to protect his ship by radio service. Two needles and a pencil, a knife-blade and a broken incandescent lamp, a piece of dry-cell carbon and an iron wire any of these could be used as a microphonic detector which would take the place of the crystal and receive signals from fifty to one hundred miles."

\section*{Suppressing d.s.b.?}

The Radio Regulatory Division of the Home Office has gained a favourable reputation in its attitude towards amateur licence matters. It is therefore all the more inexplicable that it is withdrawing from British amateurs the right to use double-sideband sup-pressed-carrier (d.s.b.s.c.) modulation. In seeming direct contradiction to the international definition of the amateur service as a service of "self-training and technical investigations" the authorities are attempting to kill any further investigation into a modulation system for which it has itself provided funds for university research and which some engineers have endorsed as potentially more effective for amateur communication than s.s.b.
The reasons put forward by the Home Office for this strange banning of a system that has been permitted for many years are so extraordinary that they can be based only on a misunderstanding of d.s.b.s.c.

In the first place it claims that the mode is not specifically authorised by international radio regulations. But then this applies equally to other modes permitted to radio amateurs and certainly does not worry licensing authorities in other countries. If the Home Office is to ban systems on such grounds how can amateurs make technical investigations into experimental systems?
In what appears to be its key reason, the Home Office claims that d.s.b.s.c. is difficult to monitor without special equipment. This is simply not true: d.s.b.s.c. is fully compatible with s.s.b. and can be effectively received on any set that has sufficient selectivity and stability to receive s.s.b., the d.s.b.s.c. being converted to s.s.b. within the receiver. This misconception can be, based on the fact that to take full advantage of the potential of d.s.b.s.c. the injection oscillator frequency should be locked in phase to the suppressed carrier to permit such techniques as binaural synchronous demodulation (which modern components are making far more possible than
hitherto). With such demodulation, d.s.b.s.c. offers a theoretical advantage of 6 dB over s.s.b.

As a third reason, the Home Office claims that no undue hardship would be placed on amateurs by the recall of this facility. This must mean that relatively few amateurs currently use d.s.b.s.c. (but then only a few transmit high-definition tv) and that since Japanese equipments do not feature d.s.b.s.c. very few amateurs can claim to have bought a manufactured d.s.b.s.c. transmitter recently. So much for encouraging home construction as a form of selftraining!

As long ago as 1959, J. P. Costas delivered a mathematical broadside at the widely held belief that because d.s.b.s.c. needs more bandwidth than s.s.b. fewer d.s.b.s.c. stations could operate effectively in a restricted band. He showed clearly that this is true only where all frequencies are channelised, since d.s.b.s.c. signals are potentially much less vulnerable to interference than s.s.b. transmissions.

More recently, Home Office sponsored research under Professor Gosling at Swansea and Bath universities has underlined the value of d.s.b. with diminished carrier for mobile and .hand-held v.h.f. equipments.
There is little doubt that d.s.b.s.c. is a fully compatible, effective, economical and (potentially) the most efficient of all amplitude modulation systems, at a stage where, with further development, fully synchronous demodulation may be easily implemented. We urge the Home Office to think again - and to. rescind a decision that runs contrary to the best interests of amateur radio.

\section*{From all quarters}

A band plan for 70 MHz has been proposed by the RSGB v.h.f. committee as follows: 70.05 to 70.15 c.w. only; 70.02 s.s.b. calling frequency; 70.26 national mobile/net calling/working frequency; 70.475 f.m. channel; 70.5 f.m. calling; 70.525 f.m. channel; 70.56 r.t.t.y. calling frequency; 70.675 yo 70.7 MHz beacons.
Diana Hughes, G4EZI, is organising a regular net for British " yl " (young lady) operators on 3705 kHz on Saturday mornings at 11 a.m. local time. Heard on 3.5 MHz c.w. recently - Margaret Mills, G3ACC, who in the immediate post-war years was one of the best known "yl" operators in South London. After 13 years off the air she now operates from South Devon.
With several amateurs now having worked more than 100 different countries on 1.8 MHz , Stewart Perry, WIBB, recommends the following hints to those hoping to work long-distance stations on the band during the coming season: (1) set clocks carefully and call CQ only during the first \(2^{1 / 2}\) minutes of any 5 minute period; (2) do not keep working the same rare stations; (3) when closing a contact with a rare station give his frequency so that others
can find him; (4) do not have long contacts on or near the "dx" frequencies; (5) keep dx contacts short; (6) keep CQ calls short.

The ARRL recently checked the intermodulation distortion two-tone dynamic range; blocking above noise floor; and noise floor of a number of current American and Japanese communications receivers. Receivers with the best dynamic range were the home-made sets. Compared with such, figures as \(95 \mathrm{~dB} ; 123 \mathrm{~dB}\) and -141 dBm . for good amateur designs, commercially . manufactured sets for the amateur market were mostly in the ranges: 88 down to \(59 \mathrm{~dB} ; 116\) down to about 97 dB ; and -135 to -141 dBm . ARRL did not identify the factory-built designs

An editorial in QST by Richard Baldwin, WIRU, general manager of ARRL, has urged American amateurs to make more use of the u.h.f. bands to take pressure off the 144, 220 and 420 MHz and to emphasise the need to retain bands of 1215 MHz and above.

Recent successes on 10 GHz have included a first England to Belgium two-way contact (G4ALN to ON6TS/P), and on 2.3 GHz a contact between G3LQR and OZ9OR in Denmark appears to be a new world record.

\section*{Radcomex}

Looking around the Radio Communications Exhibition at Alexandra Palace, a stranger might have supposed that British amateurs are firmly dedicated to building their own equipment. Indeed the trade provided a display that showed that it is still possible to find in the UK high-grade transmitting variable capacitors and inductors and surplus low-price quartz crystals in good quantities. That so many suppliers of packaged equipments preferred to stay away (even though many had booked stand space) says much for the power of their trade association, if little for any sense of service to their south-of-England customers. But such boycotting could misfire; amateurs might find they actually derive more interest from supporting component firms than the black-box suppliers.

\section*{In brief}

Among a party of 30 miners from Donetsk, USSR, who visited the "twin city" of Sheffield recently was Leo Vailenko, UT5AA, president of the Donetsk Radio Society . . . A reminder that many courses for the Radio Amateurs Examination are just starting at evening class centres and by local radio societies. Classes include those at Aberdeen, Barry, Bath, Beckenham, Blackburn, Broadstairs, Bury, Canterbury, Chelmsford, Chesterfield, Eastbourne, Farnborough, London, Mansfield, Oldham, Portsmouth, Rolleston, Strood, Walsall, Weybridge (if in any doubt make local enquiries).

PAT HAWKER, G3VA

\title{
Characteristics and load lines
}

\section*{3 - Linear load lines}

\author{
by S. W. Amos, B.Sc., M.I.E.E.
}

The fundamental law on which electronics is based is that of Georg Ohm which states that, subject to certain conditions, the current in a conductor is directly proportional to the voltage applied to it. Thus if the current in a conductor is plotted against the voltage applied to it, a graph such as that of Fig. 1 is obtained. The significant feature of the curve is that it is linear and passes through the origin. The slope of the straight line is a measure of the resistance of the conductor. If the line has a very small slope as for OA in Fig. 2 this indicates that high voltages give rise to small currents, a property of a high resistance. For curve OB, on the other hand, low voltages give rise to high currents and this is a property of a low resistance. As a generalisation, therefore, we can say that the more nearly horizontal the curve is, the higher is the value of resistance it represents and the more nearly vertical the curve is the lower is the value of resistance it represents. The voltage axis itself can be taken as the curve for an infinite resistance (an open circuit) and the current axis as the curve for zero resistance (a short circuit). Mathematically the slope of the curve is equal to \(1 /\) (resistance).

Consider a simple circuit consisting of two resistors connected in series across a battery as shown in Fig. 3. The lower end of \(R_{1}\) is connected to a point of zero potential and the upper end \(A\) has a potential which increases in direct proportion to the current in \(\mathrm{R}_{1}\). By plotting the potential at A against the current we obtain a graph similar to that of Fig. 1. It is given in Fig. 4 and here the axes are calibrated so that the value of \(R_{1}\) can be calculated. Fig. 4 shows that when the voltage across \(R_{1}\) is 10 , the current is 1 mA so that \(R_{1}\) must be 10 kilohms.

Now consider \(R_{2}\). The upper end \(B\) of this resistor has a fixed potential of 24 V and the lower end A has a potential which decreases as the current through \(\mathrm{R}_{2}\) increases, the extent of the decrease being directly proportional to the current. If the potential at \(A\) is plotted against the current through \(\mathrm{R}_{2}\) we obtain the curve shown in Fig. 5. It is again similar to Fig. 1 but is laterally
reversed compared with it. From Fig. 5 we can see that when the voltage across \(R_{2}\) is 10 , the current in it is 0.5 mA , which gives the value of \(\mathrm{R}_{2}\) as 20 kilohms.

Fig. 1. Linear current-voltage relationship for a conductor.

Fig. 3. A simple circuit of two resistors connected in series across a battery.

Fig. 5. Current-voltage relationship for \(R_{2}\) in Fig. 3.

By combining Figs. 4 and 5 we obtain Fig. 6, the interesting feature of which is that the two straight lines meet at the point \(P\). This diagram is useful because

Fig. 2. Current-voltage relationships for low-resistance and high-resistance conductors.

Fig. 4. Current-voltage relationship set for \(R_{1}\) in Fig. 3.

Fig. 6. Figs 4 and 5 combined.

Fig. 7. The circuit of Fig. 3 in which \(R_{1}\) has been replaced by a bipolar transistor.

Fig. 8. A repeat of Fig. 6 in which AP is replaced by the \(I_{d}-V_{d}\) characteristic of a field-effect transistor.
it represents the voltages and currents in the circuit of Fig. 3. For example point \(P\) corresponds to a voltage of 8 and this is the potential at point \(A\) in the circuit if, as assumed, \(\mathrm{R}_{1}\) is 10 kilohms and \(\mathrm{R}_{2} 20\) kilohms. Simple theory easily confirms that this is correct: treating \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) as potential divider we have that the voltage at \(A\) is given by \(24 R_{1} /\left(R_{1}+R_{2}\right)\) \(=24 \times 1 / 3=8\). Fig. 6 also shows that point P corresponds to a current of 0.8 mA and this is the current in the two
resistors. Again simple theory confirms this: the current is given by \(24 /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)=24 /\left(30 \times 10^{3}\right)=0.8 \mathrm{~mA}\).

Fig. 6 is useful in predicting the changes which occur in the circuit if a resistance value is changed. For example if \(R_{1}\) is increased in value, the slope of line OP decreases and \(P\) moves to the right and downward, indicating an increase in the potential at A and a decrease in current through the resistors. On the other hand if \(\mathrm{R}_{2}\) is increased, the slope of PB decreases, causing \(P\) to move downwards and to the left, corresponding to a decrease in the voltage at \(A\) and a decrease in current. Similar arguments can be used to show the effects in the circuit of decreasing \(R_{1}\) and \(R_{2}\).

\section*{RC-coupled loads}

It is unlikely, of course, that anyone would use a graphical construction such as that of Fig. 6 to determine the voltages and current in a circuit as simple as that of Fig. 3: calculation using Ohm's law is simpler and quicker. But the principle of Fig. 6 is useful for solving problems where \(R_{1}\) is not a linear resistor but a non-linear active device (e.g. a transistor) and \(R_{2}\) is its load resistor as shown in Fig. 7. To illustrate this let us replace the straight line OP by the output characteristic of a field-effect transistor. This gives Fig. 8.

AP is the drain current - drain voltage characteristic for the transistor (for zero gate voltage) and BP is the load line with a slope corresponding to a resistance of 1.5 kilohms. The two curves intersect at \(P\), showing that the drain voltage is just over 10 V and that the current in transistor and resistor is 9.5 mA . Because of the non-linearity of the transistor characteristic it would be difficult to calculate these values and
this illustrates the usefulness of the graphical method.
It is important to realise that the load line BP defines the relationship between the current in the resistor and the voltage across it. This is a property of \(\mathrm{R}_{2}\) and is unaffected by conditions within the transistor. Similarly AP defines the current-voltage relationship for the transistor and this is independent of the load resistor. By plotting both curves on the same graph their points of intersection can give useful information about circuits in which the two devices are connected in series.
Fig. 8 applies when the gate of the transistor is held constant at zero volts. By using other values of input bias it is, of course, possible to obtain other output characteristics although their general shape remains the same. Fig. 9 illustrates a family of output characteristics (this time for a bipolar transistor). and superimposed on them is a load line for a resistance of 1 kilohm. If \(I_{b}=60 \mu \mathrm{~A}\) the intersection of the load line with the characteristic is at P where \(V_{c}=1.3 \mathrm{~V}\), and \(I_{c}=8.6 \mathrm{~mA}\). By changing the bias current to \(50 \mu \mathrm{~A}\) the intersection moves to Q where \(V_{c}=3 \mathrm{~V}\) and \(I_{c}=7 \mathrm{~mA}\). By: suitable choice of \(I_{b}\), in fact, the intersection can be moved to any desired point on the load line. If \(I_{b}\) is controlled by a signal then the point of intersection (usually called the operating point) moves up and down the load lines in sympathy with the signal.
If the input bias exceeds about \(60 \mu \mathrm{~A}\) the operating point is confined to the area above \(P\) in which there is very little voltage drop across the transistor and the collector current is around 8 mA . Under such conditions the transistor is said to be saturated, bottomed or simply "on". On the other hand if the base current is less than \(10 \mu \mathrm{~A}\) (or is reversed in direction) the operating point is confined to the area around \(B\) where

Fig. 11. Essential features of a current amplifier.
there is very little collector current and very little voltage drop across the load resistor. In this state the transistor is said to be cut off or simply "off". In digital equipment the transistors are always in the "on" or "off" state: in fact they are used as switches and the transition from one state to the other is as rapid as possible, causing the operating point to traverse the load line at very high speed.

The region between \(P\) and \(B\) which is of little concern to the designer of digital equipment is of great interest to the designer of analogue equipment. This is the region used in linear amplification and the way in which it occurs is illustrated in Fig. 10. This shows a sinusoidal input signal which swings the base current between the limits of \(10 \mu \mathrm{~A}\) and \(50 \mu \mathrm{~A}\) (a peak value of \(20 \mu \mathrm{~A}\)). Under the stimulus of this input signal the operating point moves up and down the load line between the limits of \(P\) and \(R\). This causes the collector current to swing between the limits of 3.4 mA and 0.8 mA . This corresponds to a peak value of 1.3 mA and shows that the transistor is
giving a current gain of 65 . The collector voltage also swings and its limits are 1.2 V and 7.2 V (a peak output of 3.0 V).

The input signal is in fact a peak signal of \(20 \mu \mathrm{~A}\) superimposed on a steady bias of \(30 \mu \mathrm{~A}\). Thus in the absence of an input signal the bias is present alone and the operating point is at Q , known as the quiescent point.

Linearity of the input-output characteristic depends on the uniformity of the intercepts made on the load line by the transistor characteristics and an account of this was given by Part 1 of this series.

\section*{Current amplifier}

Bipolar transistors are commonly used as current amplifiers and if a basic circuit such as that of Fig. 7 is used for this purpose it normally feeds into a very low resistance \(R_{3}\) as suggested in Fig. 11: the terminating resistance could well be the input resistance of another bipolar transistor. The low-value resistor is isolated from the first transistor by a series capacitor \(\mathrm{C}_{1}\). Thus d.c. conditions in the circuit are unchanged and the load line for \(R_{2}\) is still as indicated in Fig. 10, with the operating point at Q. As soon as an alternating signal is applied to the base of the transistor, however, conditions change because the effective load resistance is now that of \(R_{2}\) and \(R_{3}\) in parallel. It is assumed that the reactance of \(C_{1}\) is negligible compared with \(R_{3}\) at the frequency of the applied signal. The effective load resistance is now \(R_{2} R_{3} /\left(R_{2}+R_{3}\right)\) which is smaller than \(R_{2}\) and thus the load line which applies to a.c. (signal) conditions has a greater slope than the d.c. load line. If \(\mathrm{R}_{2}\) has a slope corresponding to 2.25 kilohms (as for Fig. 10) and if \(R_{3}\) is assumed to be a linear resistance of 1 kilohm, then the effective load resis-

Fig. 12. EF is the effective (a.c.) load line for the current amplifier of Fig. 11.
tance is composed of 2.25 kilohms and 1 kilohm in parallel, i.e. approximately 700 ohms. The a.c. load line EF in Fig. 12 is drawn with a slope corresponding to 700 ohms. The input signal shown is of \(20 \mu \mathrm{~A}\) peak value as in Fig. 10 but because EF is more nearly vertical than PR the output current in Fig. 12 is greater than in Fig. 10: it swings in fact between 3.7 mA and 0.7 mA , a peak value of 1.5 mA corresponding to a current gain of 75 . The output voltage is however smaller, swinging between 3.5 V and 5.5 V , a peak value of 1 V . By making EF vertical the output current could be increased further still, bringing it to a maximum, the current gain then being equal to \(h_{\mathrm{fe}}\) for the transistor. To make EF vertical the external load resistance \(R_{3}\) must be zero, i.e. a short circuit. If EF is vertical the output voltage is of course zero.

\section*{Voltage amplifier}

Fig. 12 shows how the shunting effect of \(\mathrm{R}_{3}\) curtails the voltage output from the transistor and it is clear that if the greatest output voltage swing is required \(R_{2}\) must not be appreciably shunted. by \(R_{3}\). Thus \(R_{3}\) must be large compared with \(R_{2}\) so that the parallel resistance of \(R_{2}\) and \(R_{3}\) is not significantly less than \(\mathrm{R}_{2}\). In these circumstances the a.c. load line is almost coincident with the d.c. load line and Fig. 10 can be taken as the diagram for a practical amplifier.
The knee of the \(I_{c}-V_{c}\) characteristics occurs at a very small collector voltage and it is thus possible by suitable choice of load resistance and base bias to obtain an output-voltage swing nearly equal to half the supply voltage \(V_{\mathrm{cc}}\). The quiescent point should be at the centre of the load line and thus the quiescent (no-signal) collector current corresponds to a quiescent collector voltage of \(V_{\mathrm{cc}} / 2\). Thus we have the simple relationship
\[
\text { quiescent } I_{c}=\frac{V_{c c}}{2 R_{2}}
\]

Thus if we have a supply voltage of 9 and we require a mean value of \(I_{c}\) of 1 mA the \(\mathrm{R}_{2}\) should be 4.5 kilohms. The required value of \(I_{c}\) is achieved by adjustment of base bias current and in a practical circuit some means of ensuring that the mean current remains at 1 mA in spite of spreads of transistor parameters and variations in temperature is desirable.

\section*{Transformer-coupled loads}
A.C. and d.c. load lines. A transistor with a direct-coupled load as represented in Fig. 10 is capable of a good voltage output and a good current output simultaneously: in other words it can supply appreciable power. Nevertheless the power output is limited by the fact that the collector voltage swing cannot exceed 'half the supply voltage. This limitation disappears if the load resistance is connected to the collector circuit via a transformer as indicated in

Fig. 13. A transistor amplifier with a transformer-coupled load.

Fig. 14. \(I_{c}-V_{c}\) characteristics for a power transistor and a suitable load line.

Fig: 13 because in such a circuit the collector voltage can swing above andbelow the supply voltage.

The operating conditions for a trans-former-coupled load can be represented by d.c. and a.c. load lines. First consider the d.c. conditions. The resistance of the primary winding of the transformer is the only effective load for the transistor for d.c. and this is usuailly very small. Thus if we construct a load line for the primary resistance it will be almost a vertical line connecting the supply voltage \(A\) to the quiescent point \(Q\) as shown in Fig. 14. In power amplifiers it is normal, however, to assume the d.c. load line \(A Q\) to be vertical and to omit it, \(Q\) being located vertically above \(A\).

When an alternating signal is applied to the base of the transistor the collector current varies in sympathy. and generates a corresponding voltage across the transformer primary winding. By plotting this voltage against the collector current we can obtain the a.c. load line for the amplifier. Its slope depends on the effective resistance at the terminals of the transformer primary winding and this is given by \(n^{2} R\) where \(n: l\) is the turns ratio of the transformer and \(R\) is the load resistance connected to the secondary winding. By choice of \(n\) and \(R\) the effective primary resistance can be made almost any desired value, but it is usually much greater than the d.c. load resistance. This contrasts with the capacitancecoupled circuit (Fig. 11) where the a.c. load resistance is inevitably less than the d.c. load resistance.

Output power. For an output stage the position of the quiescent point and the slope of the a.c. load line are chosen to give the maximum output power consistent with an acceptable degree of distortion. There are, however, practical limitations to be observed: for example there is a maximum value of \(I_{c}\) which must not be exceeded. There is also a maximum value of \(V_{c}\) which must not
be exceeded and a maximum value of collector dissipation.

As an example Fig. 14 gives the \(I_{c} \vdots V_{c}\) characteristics for a silicon power transistor. For the particular type of heat sink used the maximum safe collector dissipation is 22.5 W and the curve (a hyperbola) for this value of dissipation is shown as a dotted line. The load line must not cross this curve but it may touch it, and a suitable load line is given by PR: it corresponds to a load resistance of approximately 46 ohms. A transformer-coupled load is assumed and 46 ohms is the effective resistance at the transformer primary winding. The base bias is 50 mA and the input signal swings the base current between 20 mA and 80 mA , giving the following maximum and minimum values of \(I_{c}\) and \(V_{c}\) :
\[
\begin{array}{cc}
I_{\max }=1.22 \mathrm{~A} & V_{\max }=54 \mathrm{~V} \\
I_{\min } & =0.24 \mathrm{~A}
\end{array} V_{\min }=8 \mathrm{~V}
\]

The peak output voltage swing is thus (\(54-8\))/2, i.e. 23 V and the peak output current swing is (1.22-0.24)/2 i.e. 0.49 A . The power output is thus
\(1 / 2 \times 23 \times 0.49=5.6 \mathrm{~W}\)
(To be continued)

Liquid Crystals for Electronic Devices by Edward L. Williams. According to the forward, this publication serves two purposes - it supplies detailed technical information, and can be used as a guide to the U.S. patent literature in this field. Chapters cover cholestric compounds and applications, nematic compounds, nematic and smectic liquid crystal display systems and devices. The chemistry of liquid crystal compounds is discussed in some detail and the chemical structures of compounds are illustrated throughout the text. Price \(\$ 36\). Pp. 263. Noyes Data Corporation, Publicity Department, Mill Road at Grand Avenue, Park Ridge, N.J.07656, U.S.A.

Modern Communication Systems by R.F.W. Coates is intended to cover a two-year course on communication system engineering at B.Sc level. The first chapter concentrates on the use of Fourier methods in the analysis and processing of waveforms. Following chapters are concerned with methods of modulating a sinusoidal carrier. Final sections cover digital techniques such as pulse code modulation and coding for error protection. Although the text omits descriptions of differential pulse code modulation and delta modulation the general digital methods are covered in detail. Price \(£ 9.95\) and \(£ 5.95\) (paperback). Pp.292. Macmillan, 4 Little Essex Street, London WC2R 3LF.

Delta Modulation Systems by R. Steele. Delta modulation has "been around" since 1946, and the original systems had an ability to encode continuous signals, such as speech and television, into binary signals and to: subsequently decode them, but these early; systems had some serious disadvantages. Although the present generation of systems have greatly improved performance, this improvement has arrived too late for some speech networks where, due to investment, p.c.m. will be used. The author believes that delta modulation systems, however, have a role to play in local subscriber networks.
Chaper one describes the characteristics and parameters of linear delta modulation with a minimum of mathematical analysis. Chapter two considers an improvement to the system which requires the presence of a: predicator, and continues with a description: of exponential delta modulation. Following: sections discuss slope overload noise in linear d.m. systems, transmission errors in linear systems, asynchronous systems, and syllabically companded delta modulation. The book concludes with sections on delta and pulse code modulation, encoders with multi-level quantizers, d.m. digital filters and instrumentation using d.m. Price \(£ 10\). Pp. 379. Pentech Press, 4 Graham Lodge, Graham Road, London N.W.4.

The UK Post Office and National Computing Centre Ltd have jointly produced the Handbook of data communications. Hased on the P.O. data communications courses, the publication is intended for students although it should be of value to systems engineers, programmers and analysts. Initial chapters describe the origins and nature of data communication, telephone and telex systems, transmission and modulating systems, data terminals, line control and interfaces. Subsequent chapters cover data errors, concentrators, multiplexers, and final chapters describe data transmission services in the UK and internal communications. The book is well illustrated with diagrams, graphs, tabular information and photographs of equipment. A glossary is also provided which gives understandable definitions of technical terms. Price \(£ 8.50\), pp. 395. NCC Publications, Oxford Road, Manchester M1 7 ED .

\section*{Correction}

In the September article by Jack Dinsdale on the Indian Satellite, the area of the Indian sub-continent was a little exaggerated. It should be 1.269 million square miles, whereas we (not Mr Dinsdale) added to India's problems by saying that the area is \(1,269 \mathrm{M}\) square miles.

\section*{Complete the couponand wéll sendyou our complete, new catalogue.}

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

Clip the coupon now (enclosing a 10 p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from. there really is something for everyone.

Including our full range of test equipment, amateur radio gear, hi-fi equipment and many general interest kits.

And, if you happen to be in 1 ondon or Gloucester; call in and see us. The I ondon Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited. Dept.WW-106 Bristol Road. Gloucester. (il, 26 EE , Tel: Gloucester (045) 29451.

A range of communications amplifiers having power

\section*{TWendern'range medularannplitiers} ratings from 15 to 200 watts, plug-in input facilities ensure individual requirements can be provided.

Station Road, Wenden Safiron Walden Essex CB11 4LG Saffron Walden (0799) 40888

\section*{Encix}

\section*{Automatic Response Plotting System}

By coupling audio analysis plug-in modules to Hewlett-Packard's X-Y plotter, Urei offer automatic frequency response recording, with automatic rate sensing and control, ensuring accurate tracing without the necessity of slow sweep rates
Suitable for hard copy records of tape machine responses, telephone lines, acoustics, speakers, microphones-Urei Model 200 will resolve to 0.05 dB and has a range up to and beyond 60 dB . Choice of calibrated sweep and calibrated frequencies, accuracy is to \(\pm 0.3 \%\) full scale. Automatic or manual frequency control, range 20 Hz to 20 KHz .

Full descriptive literature is available on request.

UNITED RECORDING ELECTRONICS INDUSTRIES

\section*{F.W.O.Bauch Limited}

49 Theobald Street, Boreham Wood,
Herts WD6 4RZ Tel : 01-953 0091 Telex: 27502

\section*{New Products}

\section*{Low-cost indicator meters}

Low-cost miniature indicator meters, available with full scales of \(0-500 \mu \mathrm{~A}\) or \(0-180 \mu \mathrm{~A}\), have been introduced by Perdix Components Limited. Styles of mounting allow flat or edgewise presentation and the units, which may be illuminated from the rear, are moulded in transparent plastic, their robust construction allowing use in portable equipments without extra protection. The meter movement has a sinusoidal-ly-distributed air gap giving a scale suppression at the end to guard against overload conditions. Prices range from 80 p to \(£ 1.00\) depending upon the , quantity and specification required. ' Perdix Components Ltd, 98 Crofton Park Road, London S.E.4.
WW 301 for further details

\section*{Fast-recharge soldering iron}

The Quick-charge cordless soldering iron incorporates nickel cadmium batteries to provide very fast recharging: it is claimed that completely dead battery cells can be brought to the full charge state in about 4 hours. In use this iron can be continually charged through its stand and, after pressing the on/off operating button, solder heat can be reached in 5 seconds. Up to 125 joints can be made from fully charged batteries. To eliminate electrical leakage the soldering tips, which are available in five sizes, are isolated. The iron gives a performance equivalent to up 50 W with a \(700^{\circ} \mathrm{F}\) tip temperature. Optional extras include a built-in light case and automobile charger/plug assembly. Greenwood Electronics, Portman Road, Reading, Berks RG3 INE.
WW 302 for further details

\section*{Synthesized signal generator}

A digital signal generator, from Marconi Instruments Ltd, provides c.w., a.m. and f.m. outputs over the frequency range 50 kHz to 520 MHz . All of the operating functions, including carrier frequency, output level and modulation, may be controlled manually or remotely by applying programmed parallel binary-coded-decimal commands. Features of the generator are its high output level (2 volts into \(50 \Omega\) for c.w. and f.m. signals), accurate output level setting switchable for up to 145.9 dB attenuation in 0.1 dB

WW 302
steps (accurate to \(\pm 1 \mathrm{~dB}\) overall), and good noise performance - for example, at least \(130 \mathrm{~dB} / \mathrm{Hz}\) below carrier level at 20 kHz offset for s.s.b. Other features include a choice of a.m. depths from 0 to \(99 \%\) in \(1 \%\) steps and f.m. deviation from 0 to 299 kHz in 3 ranges. An oscillator provides switch-selectable modulation frequencies ranging from 20 Hz to 99 kHz . Marconi Instruments Ltd, St. Albans, Herts, AL4 0JN.
WW 303 for further details

\section*{Low cost printer}

The Olivetti NIP-18 is a non-impact printer which, it is claimed, is suitable for alphanumeric print-out applications where previously cost, size, weight and noise ruled out equipment of this type. This printer, which is small, silent and capable of printing a full 64 character sub-set, is available in two versions; the first, costing less than \(£ 60\), is a print head type complete with motor; the second is an o.e.m. version complete with b.c.d. character generator, computer interface and paper holder etc., costing less than \(£ 200\). Dot-matrix serial printing on electrosensitive paper is by a 7 -electrode mobile head which prints numerals, letters of the alphabet and symbols to a maximum of 253 mm -high characters per line at a speed of 2 lines per second. The NIP-18 measures \(175 \times\) \(45 \times 80 \mathrm{~mm}\). Radiatron Instruments Ltd, Crown Road, Twickenham, Middlesex TWl 3ET.
WW 304 for further details

WW 303

WW 304

\section*{Squelch filter}

The FB-239 is a low-power sub-audio active filter suitable for use as a squelch filter and tone encoder in portable and mobile communications equipment. This filter can be externally programmed with 2 resistors to cover all sub-audible frequencies and required Q-values, has a current drain of less than \(300 \mu \mathrm{~A}\), and is available in a metal hermetic 14 -pin d.i.l. package or a 9 -pin edge-mounted plastic package. Suvicon Ltd, Westminster House, 188-190 Stratford Road, Shirley, Solihull B90 3AQ.
WW \(\mathbf{3 0 5}\) for further details

\section*{Electro-optic transmission system}

A compact electro-optic transmission system consisting of transmitter and receiver modules, optical couplers and electrical connectors, has been produced by Belling-Lee. The Fibretran system, as it is called, is capable of handling digital, analogue and television signals in a frequency range from 20 Hz to 10 MHz and will operate with light-guide cables up to 100 m long. The receiver provides a composite output with a signal-to-noise ratio better than 40 dB . Systems are available for mains or low voltage operation and are suitable for hazard areas and areas where security of transmission, isolation and freedom from interference are required. Belling and Lee Limited, Great Cambridge Road, Enfield, Middlesex EN1 3RY.
WW 306 for further details

\section*{Wow and flutter meter}

The Leader LFM39 meter is designed for accurate, simple and rapid determination of wow and flutter and drift
characteristics of tape recorders, gramophones and other playback/recording apparatus. These measurements can be made simultaneously. Weighted characteristics, in accordance with DIN, CCIR and JIS specifications, and wow and flutter are indicated on the meter in terms of effective percentage values to JIS specifications. In addition to the weighted measurements the centre frequency of 3.15 kHz may also be measured in accordance with DIN specifications. Five full-scale ranges, \(0.03,0.1,0.3,1\), and \(3 \%\) are available. C. E. Hammond \& Co. Ltd, Aveley/Cybervox, Chertsey Road, Byfleet, Surrey KT14 7LA.
WW 307 for further details

\section*{Miniature filament lamps}

A range of miniature filament lamps, from IMO Electronics Ltd, includes radial and axial lead, bi-pin, grooved, screw and flanged base types. Supply voltages and currents range from 1.15 to 28 V d.c. and from 15 to \(320 \mathrm{~mA} \pm 10 \%\) respectively. These lamps are selected and aged to provide long life and consistency of brightness. IMO Electronics Ltd, 349 Edgware Road, London W2 1BS.
WW 308 for further details

\section*{Dual-trace 50 MHz oscilloscope}

A portable 50 MHz dual-trace oscilloscope, designated OS3300B, is intended for general purpose applications. The instrument, from Gould Advance, has a sensitivity of \(1 \mathrm{mV} / \mathrm{cm}\) (max) from 0 to 10 MHz , a \(10 \mathrm{~ns} / \mathrm{cm}\) (max) timebase and an e.h.t. of 13 kV , making it suitable for displaying fast transients. In addition, triggering facilities are incorporated to ensure a stable trace on both channels, irrespective of frequency or waveform,
and delayed-sweep and mixed-sweep timebase facilities allow detailed examination of complex waveforms and pulse trains. The oscilloscope has an 8 \(\times 10 \mathrm{~cm}\) rectangular-faced tube, measures \(18 \times 29 \times 45 \mathrm{~cm}\) and weighs 12.7 kg . Gould Advance Ltd, Roebuck Road, Hainault, Essex.
WW 309 for further details

\section*{Teletext adaptor}

The Labgear teletext adaptor, unlike receivers with built-in Ceefax and Oracle decoders, is an external "add-on" unit which may be fitted between the aerial and a standard 625 -line colour (PAL) or black-and-white television receiver. Normal picture facilities are retained with the adaptor in circuit. This unit, type CM7026, can provide colour displays for all normal teletext facilities and may be used in specialised applications where pages of interest are required "piped" simultaneously to a number of receivers located throughout a building from a single adaptor, for example as in stock exchanges, bookmakers or education establishments. Labgear Ltd, Abbey Walk, Cambridge CBl \(1 R Q\).
WW 310 for further details

\section*{Tape-tension gauge}

Low-cost tape-tension gauges, in the Tentelometer range, are designed for use on most makes of video and audio magnetic-tape transports and are suitable for tape widths from \(1 / 8\) to 1 inch as standard, and 2 inches as special, or for applications requiring a damped response or small physical dimensions. These gauges, which use high-quality meter movements and three offset prongs through which the tape travels,

WW 307

are claimed to be as accurate as more expensive electronic gauges. Static or dýnamic responses may be measured with these gauges to diagnose faults leading to horizontal instability on video systems or wow-and-flutter on audio systems. Individual models cover tension ranges of 0 to \(5 \mathrm{oz}(140 \mathrm{gm}), 0\) to \(12 \mathrm{oz}(340 \mathrm{gm})\) and 0 to \(20 \mathrm{oz}(600 \mathrm{gm})\). Crow of Reading, P.O. Box 36, Reading RE1 2NB.
WW 311 for further details

\section*{Accumulators}

Two 2 -volt cells, one of 5 Ah capacity and the other of 10 Ah capacity, have been produced by Varley Dry Accumulators. The cells, which are made by building up the plates and separators under compression to form a porous block, are claimed to be spillproof, highly resistant to shock and vibration and capable of supplying discharge currents of up to approximately 30A (10Ah cell). Push-on contacts are provided with these cells. Varley Dry Accumulators Ltd, Alfreds Way, Barking, Essex IGl1 0TB.
WW 312 for further details.

\section*{Strip-line attenuators}

Strip-line pill-shape and chip attenuators, made by Pyrofilm of New Jersey, are now available in the UK. Ground plane spacing for the attenuators is only \(1 / 8\) in and they can be used over the frequency band zero to 12 GHz with a maximum v.s.w.r. of 1.25 up to 4 GHz . Values available are 3, 6, 10 and 20 dB at an accuracy of \(\pm 0.5 \mathrm{~dB}\) at 1 GHz , or \(5 \%\). Aspen Electronics Ltd, 2 Kildare Close, Eastcote, Middlesex HA4 9UW. WW 313 for further details

\section*{\(\mathbf{R}\) and \(\mathbf{C}\) decade units}

Pocket-sized resistance and capacitance substitution units are now available from Electronic Services and Products Ltd, who have been appointed the sole UK agents. The Mini- \(\Omega\)-decade unit, \(10 \times 25 \times 3 \mathrm{~cm}\), provides \(1 / 2 \mathrm{~W} 1 \%\) accuracy resistors ranging from \(1 \Omega\) to \(10 \mathrm{M} \Omega\) and the Mini-C-decade unit, measuring \(10 \times 15 \times 4 \mathrm{~cm}\), has a capacitance range from 100 pF to \(11 \mu \mathrm{~F}\) with a \(5 \%\) accuracy. Both units are housed ir aluminium cases. Electronic Services and Products Ltd, Cross Lane, Braunston, Daventry, Northants NN11 7HH.
WW 314 for further details

\section*{Frequency counter}

Telford Communications frequency meter, model TC12, has a frequency stability of \(0.005 \%\) between 0 and \(60^{\circ} \mathrm{C}\), and not \(0.05 \%\) as mentioned in our September issue, page 92. This unit is priced at \(£ 140.40\) inclusive of v.a.t. (crystal oven and l.e.d. displays to order). Readers may have noticed the error in the advertisement in that issue, fór which we apologise. WW 315 for further details

\section*{Solid State Devices}

\section*{Microwave coax detectors}

Two miniature microwave-detectors, from Hewlett Packard, are coaxial diode modules designed for measurement applications. The detectors are pack-

WW 314
aged for rugged environments and can be replaced in the field. One detector, the 33330 B , covers the range 0.01 to 18 GHz , has a flat response of \(\pm 0.3 \mathrm{~dB}\) to 12.4 GHz and \(\pm 0.6 \mathrm{~dB}\) to 18 GHz and a s.w.r. of less than 1.5 . The 33330 C has the same specifications up to 18 GHz but its response from 18 to 26.5 GHz follows a 4 dB slope within \(\pm 1 \mathrm{~dB}\) and the s.w.r. is no greater than 2.

At the input of each of the above detectors is an APC3.5 precision connector which is compatible with SMAseries hardware and is claimed to be capable of reliable reconnection even after 1000 connections.
WW 316 for further details

\section*{Schottky l.s.i. devices}

The AM2901 and the AM2909 are low-power Schottky l.s.i. devices from Raytheon Semiconductor. Each device in the AM2900 series has a 100 ns cycle time and is fully compatible with the AMD series.

The AM2901, which is a 4 -bit slice c.p.u. that is expandable in 4 -bit increments, consists of a 16 -word by 4 -bit two-part r.a.m., a high-speed arithmetic logic unit with 8 functions and associated shifting, decoding and multiplexing circuitry. A 9 -bit instruction word is organized into three groups of 3-bits each and selects the source operators, the logic function and the destination register. The device has 3 -state outputs and provides various status flag outputs from the logic unit.

The AM2909 is a 4-bit expandable address controller intended for sequencing through a series of instructions contained in r.o.m. or p.r.o.m. The , present address can be taken from the address register, direct data inputs, a four-word deep stack or from the programme counter. Each of the four 3 -state outputs can be ORed with an external input and a separate line can force all of the outputs to zeros.
WW 317 for further details

\section*{C.m.o.s. analogue switches}

A family of monolithic c.m.o.s. analogue switches, from Analog Devices Ltd, eliminates s.c.r. latching phenomena by dielectric isolation and provides overvoltage protection for analogué inputs up to \(\pm 25 \mathrm{~V}\) greater than the power supply voltages by switching in a series \(1 \mathrm{k} \Omega\) resistor. Automatic removal of this resistance allows the switch to operate normally and exhibit a low on-resistance. Types AD7510DI and AD7511DI have inverter logic inputs and are quad independent s.p.d.t. switches and type AD7512DI is a dual s.p.d.t. switch. Each type features an on-resistance of \(75 \Omega\), a low leakage current of 400 pA , a switching speed of 350 ns , a low power dissipation of 3 mW and t.t.l./c.m.o.s. interfacing.
WW 318 for further details

\section*{OUR RESPONSIBILITY}

AS I write, the time of the end-ofterm school report is upon us; that moment of truth when a battered envelope is resurrected from Junior's satchel and torn open to reveal the candid comments of those who labour mightily towards the education of our young.
We deal with our erring offspring according to our several lights; ranging from the eyeball-to-eyeball frank exchange of views to the more direct slipper-on-the-posterior approach and thereby we assuage to some extent our injured pride at having begotten such dullards. But when we ourselves arrive at our own end-of-term and the gold watch for long service has been presented, what, I wonder, will our own report be like? I don't mean the deputy-manager's laudatory little speech as the timepiece is handed over. All of us who, as subscribers, have been invited to these macabre little ceremonies, know the poetic licence, that can be taken on these occasions. No I mean the report which is written only in our own consciences.
Who can say? For, being individuals, we have differing standards. All of us, from primary school onwards, are conditioned to the unwritten law that material gain is the metre-stick of success and those who have never thrown off those particular blinkers will consider their report written in terms of their bank balance.

Others may rest content in the contemplation of a lifetime spent in honest effort at whatever tasks have been set them. But I know of a growing number - many far from retiring age - who, possessed of social consciences, are expressing disquiet at the uses to which the equipments they handle are being put.

Guglielmo Marconi, towards the end of his life, put his finger exactly on the pulse when he asked "Have I done the world good or have I added a menace?" For wireless, which had begun life as a
saviour of life at sea, had, even by the 1930s, diversified into many other channels of application, notably in terms of warfare. Marconi, even at that time, could see that the whole thing was getting out of hand.
Today the use of electronics for lethal purposes has increased by several orders of magnitude. Seven countries are now thought to possess a nuclear capability in their own right, while many more have nuclear warheads supplied to them. There are other even more terrible weapons, lying under their security wraps against the day, the whole brood being contained in the generic title ABC (Atomic, Biological and Chemical). All of them depend on electronics in their delivery systems at least and we may have been involved in their manufacture unwittingly, for the ultimate purpose of such black boxes is not noised abroad.
The problem of engineering conscience can become acute in areas of manufacture where the bulk of the company's contracts are for military equipment - radars, gun-laying devices, complete weapon-control systems and so on. The obvious argument is that anyone who feels guiity at working on such devices has no business to be there anyway. But the issue is by no means as simple as that; he may, for instance, have been transferred from some innocuous area within a company to one where military work is performed.

Again, a man may have joined the company at a period when he had no scruples about the nature of the work. Then, maybe many years later, something happens - a religious experience perhaps, but not necessarily so - to alter his outlook radically. By this time he has probably acquired a wife, children, a mortgage, a car and sundry h.p. commitments. Jobs are not so easily come by and, if he is over forty, virtually impossible to obtain. So where does his duty lie? Towards his family? Or towards his convictions? It is not for us to pass judgement on whether he should bring his family to poverty and preserve his moral integrity or continue at his work and try to stifle his conscience. Whichever decision he takes he will involve acute mental stress and probably a breakdown.
But the majority of us somehow continue to live with the situation, probably because everyday problems keep us so occupied that we have no time to think of anything else. Or if we do, we console ourselves with the thought that the "Other Side" (whoever they might be) are turning out weapons, so it is our duty to do likewise. Certainly we would not dream of pressing the button to send thousands of men, women and children to smithereens, but then, we're sitting in a factory or peaceful research lab. assembling or redesigning a black box, so we don't have to.

Some of us may not even think as far as that. To many, research, in particular, is a game of wits. You are presented with a technical problem. which, at first thought, seems impossible of solution. You exercise all your ingenuity and sometimes you win and sometimes you don't. The ultimate purpose of whatever you're trying to design is of minor consequence. It's whether you bring it off or not that counts. The situation in both instances is analogous to a domestic vignette. Relatively few of us would eat steak if we had to split open a steer and watch its life's blood pouring down a drain. By the same token a lot of us would become queasy about those clever little black boxes we hatch up if we were forcibly taken to view at first hand the carnage and to smell the stench which are the logical end products of a weapon-delivery system.

There is a growing conviction that scientists, physicists and engineers must bear full responsibility for their actions and for the devices they perpetrate. Which is as it should be, for the electronic engineering profession is one of the world's greatest forces for good as well as evil. The recent landing on Mars is an example of electronicis at its best; the \(A B C\) weapons an example of it at its worst. Probably the circuitry used in both cases is not all that dissimilar; the problem, perhaps not yet fully grasped, is that technology represents the ultimate in anarchy for there is. nothing or no-one at its head to say "yea" in the one instance and "nay" in the other.
Some years ago now the world screamed in horror at the drug Thalidomide being put on the market without adequate investigation into its possible side effects. The outcome was horrible enough in all conscience. Yet, daily, new electronic devices are introduced which, although innocuous in themselves, can form an integral part of mechanisms for world annihilation, against which the Thalidomide disaster seems insignificant.

So what is to be done? I'll throw that to the meeting while I duck out, leaving you with one or two tentative thoughts. One is that the modern world is completely and utterly dependent upon electronics for its functioning and an international federation of electronics engineers would exercise considerable authority. Unfortunately, no such world brotherhood exists and it seems unlikely that it ever will. The other thought is that the United Nations, and particularly the USSR and the USA. have spent years haggling over which categories of weapons should be banned and which should not. It seems to me if they would prohibit the use of electronic circuitry in all ABC weapons svstems the matter would solve itself. for without these the whole arsenal would be just so much ironmongery. Life could be much simpler and, no doubt, considerably longer.

\title{
DearWirelessWorld Reader. \\ It is with great pleasure that I offer, for the first time in Great Britain, this selection of high
} quality test and circuit-building equipment. Continental Specialities has earned a high reputation in USA, and our goods are bought again and again, not only all over the States, but also in Canada, Australia and many other countries.

The reason for our success is simple. All our equipment is carefully designed to make life easy for the user, and then manufactured to a very high standard, to satisfy both the professional engineer and the enthusiastic hiobbyist.

And at today's prices, we think the value is unbeatable.

\section*{QT Sockets}

Circuit-building and testing at its easiest! Forget the soldering-iron: with these sockets and bus-strips you won't need it. Each socket is made up of rows of 5 contacts, connected transversely at the back. and each bus strip has two rows of contacts, connected lengthways. You can plug in and out almost any component you can think of; DIL 1Cs (6-40 leads). TO5s. discretes with any lead diameter from .015 to .032 inch. Component interconnections are made with standard solid insulated wire. The contacts are solid Silver-Nickel alloy, with contact resistance only 0.4 milliohns, spaced at standard 0.1 inch pitch. The bodies are made of high-temperature plastic (so if you do decide to solder the heat won't hurt it); the reverse side, with the connecting strips, is covered by a peelable, tough vinyl insulation, and each socket unit has a snap-lock mechanism for easy mating to its neighbour.

\begin{tabular}{lll}
Type & Price & L.ength \\
QT59S & 8.00 & \(6.5^{\prime \prime}\) \\
QT59PB & 1.60 & \(6.5{ }^{\prime \prime}\) \\
QT47S & 6.40 & \(53^{\prime \prime}\) \\
QT47B & 1.45 & \(5.3^{\prime \prime}\) \\
QT35S & 5.50 & \(1.1^{\prime \prime}\) \\
QT35B & 1.30 & \(4.1^{\prime \prime}\)
\end{tabular}

\section*{Proto Boards}

Another great idea for easy circuit building, based on the QT socket and bus strip concept. These Proto Boards come as complete kits, which you assemble in a few minutes, ready for immediate use. PB36. £10.45. includes one QT47S socket and two QT47B bus strips, four 5 -way building posts. a base-plate with nubber feet and all the necessary assembly. hardware PB100, £13.20, gives you two QT35S sockets, one QT35 Strip, two binding posts, base plate and assembly hardware. Try the QT and Proto. Board system once and you'll never want to be without it.

A really low cost. circuit powered logic probe. Hardly bigger than a fountain pen. but anazingly versatile. It shows logic-state high. low or inoperative for any node of a TTL, HTL or CMOS device. \(100 \mathrm{~K} \Omega\) input impedance). It detects and displays pulses as narrow as 50 nanosec, and level transitions (both + ve and -ve) at frequencies up to 10 MHz , or even higher. (The pulse LED blinks continually 3 times a second for all input frequencies over 3 Hz). And you can switch to memory, to store and display (until reset) single pulses, transitions or transients. LP1 works on any power supply, \(5 \cdot 15 \mathrm{~V}\), and has good input and output protection. Price \(£ 28.60\)

\section*{Proto Clip}

Another brilliant time-and-trouble saving device. Slip one of these 14. 16. 24 or 40 pin clips over a DIL 1 C in situ, and you can trace signals. mject signals or even wire othercircuits intoexisting boards. The low-resistance Nickel-Silver contacts are on a narrow throat to fit over the most densely-packed ICs. And look at these prices:
PC14-£2.80 PC16-£3.10 PC24-£5.50 PC40-£8.90
They're the lowest cost IC test-clips on the market! (UK Patent Pending No. 33948/75).

\section*{How to Order}

It's easy. Give us your name and full postal address. in block capitals. Clearly state the type-number.and quantity ordered for each item. Send ordinary UK bank cheque or international money order (from any post office) made out in UK currency. Goods will be despatched air mail. direct from factory; allod \(\cdot 2 \cdot 3\) weeks from posting your order. (All prices shown are in L'K Pounds Sterling).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Type & SPrice & QTY & total & Type & CPrice & QTY & Total. \\
\hline (2T59 & (\%.0) & & £ & Plbet & 10.45 & & £ \\
\hline (1T59K & 1.60) & & ¢ & Pb-L(0) & 13.20 & & £ \\
\hline (2T475 & 6.40 & & \(\mathfrak{E}\). & PC-14 & 2.40 & & £ \\
\hline QT17B & 1.45 & & \(\mathfrak{1}\) & PC. 16 & 3.10 & & ¢ \\
\hline (0755 & 3.50 & & £ & PC:24 & 5.54 & & £ \\
\hline Q7:53 & 1310 & & \(\mathfrak{1}\) & PC.40 & +. 51 & & \(\mathfrak{1}\) \\
\hline & & & & I.P. 1 & 28.601 & & £ \\
\hline
\end{tabular}

Nimk
Addres:

Dealer enquiries invited. Note. Any UK taxes or duties chargeable are solely the responsibility of the buyer.

That's all for this month. But we'll send a catalogue full of good things to everyone writing to us, or you can use the enquiry service. Best wishes, and happy circuit-building!

Yours sincerely,

BUILD IT YOURSELF... IN STAGES

Get started with a 49 note instrument features tremulant and reverberation. Ideal to learn on. Leatlet MES 5I. Price \(15 p\) gives full details to build this complete instrument.
Extend the range of MES 51 by adding another keyboard and several new tone colours. Leaflet MES 52 . Price 15 palso shows how to use 61 note keyboards.

Fully controllable attack and delay conitrots fnormally found only on the most expensive organsl. up to seven footages on each keyboard, up to 70 controis including drawbars, and a 13 note pedalboard. make up the additions described in the step-by-step 32 page instruction leaflet MES 53. Price 35p.

Belt drive rurntables
* Monitor facilities (Headphones and VU meter)
* Sound operated light show - plus many other advantages.

Full details in Sept. IOct editions of this magazine
Send for our leaflet MES 41, giving full details for construction. Price 20p. Soon you'll be the Deejay everyone wants at their party!

We slock all the parts for this brilliantly designed synthesiser. including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the EII International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet now available price \(£ 1.50\). or send SAE for specification.

A really superior high quality stereo graphic equalizer featuring 9 octaves per channel. We stock ail the parts [except woodwork] including the metaiwork drilled and printed. 15p brings you a reprint of the article.

This is a fully constructed and tested electronic clock module as illustrated. Data sheet supplied. Simple to connect to alarm and your battery/mains radio. Smart case available shortly. Data sheet available separately. Please send SAE.
* Bright 4 Digit 0.5" Display
* Flashing Colon (1 Hz)
* Switch for Display Seconds
* Alarm Set Indicator
- P.M. Indicator
* Power Failure Indicator
* Sleep Timer
* Snooze Timer
* Ime can be set accurately to
- within one second
* Leading Zero Blanking

SIMPLE ALARM KIT - £9.38 ALARM CLOCK KIT - £10.99 ALARM CLOCK \& RADIO CONTOLLER KIT - £11.51
SMART̈ PLASTIC CASE with fully punched chassis - \(£ 2.49\) Please send SAE for oup Clock data sheet

PUBLICATION DATE OCT.28. I97E ON APPROVAL
```

All new Completely re-written Hundreds of new lines
LOTs of exciting new projects to build - PRICE 50p
SEND NO MONEY NOW. Overseas send \& International reply coupons

```


Please rush me a copy of your brand new 1977/78 catalogue the instant it is printed (Oct 28th, 1976) Only if I am completely satisfied that it is worth every penny will I send 50 p within 14 days of recerpt If I am not satisfied I may return the catalogue to you within 14 days without obligation I understand that I need not purchase anything from your catalogue should I choose to keep it.

NAME
ADRESS

\title{
The potentiometer with greater potential \\ The new DC Potentiometer Model T7100 is, without
} doubt, an exceptional piece of laboratory equipment. What makes itso, is its high accuracy over its six decades of measurement available at the same time.Dial 1 offers an accuracy of \(+10.001 \%\) \(+0.1 \mu \mathrm{~V}):\) Dial \(2+(0.001 \%+0.1 \mu \mathrm{~V})\) and Dials \(3-6\) \(+0.1 \mu \mathrm{~V}\).
This 'triple pot'offers not only exceptionallong term accuracy and stability, but also a built-in self calibration check. Added to this, wound components have been replaced by resistors printed on a heat sink substrate-so there is virtually no source of drift or thermal emfs. The T7100 is as good as it looks.lt's worth finding out more about. Get in touch with us today for the full facts.

\section*{Sullivan}
H.W.Sullivan Limited,

Archcliffe Road, Dover, Kent,CT179EN
Tel: 0304202620 Telex: 96283
\(\frac{1}{r \text { ruatu }}\) Thorn Measurement Control and Automation Division
WW-095 FOR FURTHER DETAILS

WW - 092 FOR FURTHER DETAILS
 WW - 091 FOR FURTHER DETAILS

\section*{SERVICE TRADING CO}

RELAYS
SIEMENS PLESSEY,
MINIATURE RELAYS
\(\frac{1}{7} \frac{12}{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 2 & 3 & 4 & 1 & 2 & 3 & 4 \\
\hline 52 & 4-8 & \(20 / 0\) & \(85 p\). & 700 & 12-24 & 2010 & 85p \\
\hline 58 & 5-9 & \(6 \mathrm{c} / 0\) & \(95 p\). & 700 & 16-24 & \(4 \mathrm{c} / 0\) & \(95 p^{\circ}\) \\
\hline 185 & 8-12 & 6 M & \(85 p\). & 1250 & 18-36 & 2 co & \(85 p^{\circ}\) \\
\hline 230 & 9-18 & \(2 \mathrm{c} / \mathrm{oHD}\) & 95p. & 2500 & 36-45 & 6 M & \(85 p^{\circ}\) \\
\hline 430 & 9-24 & 2c/o & 85p. & 2500 & 31-43 & \(2 \mathrm{c} / \mathrm{OHO}\) & \\
\hline 430 & 15-24 & \(4 \mathrm{c} / 0\) & 95p \({ }^{\text {P }}\) & & & & 85p. \\
\hline 600 & 10-20 & 6 M & 95p \({ }^{\text {¢ }}\) & 15k & 85-110 & 6 M & \(85 p\) \\
\hline & & & & 5800 & 33-72 & \(2 \mathrm{c} / 0\) & \(85{ }^{\circ}\) \\
\hline \multicolumn{8}{|l|}{(1) Coil ohms. (2) Working of. volts: (3) Contacts (4) Price} \\
\hline
\end{tabular}

OPF TYPERELAYS
6 VOLTD.C.
9 VOLI D.C. RELAY
9/12 VOLT D.C. RELAY

100 VOLT A.C.
ENCLOSED TYPE RELAYS
6 VOLT A.C. \(3 c / 085 p\). Post \(15 p\)
24V D.C. \(3 c / 05_{5}\). Post 200 Base \(15 p\).
24 VOLT A.C. Post \(20^{\circ}\) Easse 150 extiacts 65
55 VOLT A.C
230 VOLT A.C. RELAY
\(220 / 240\) VOLT A.C. RELAY
ARROW 230/240V AC
CLARE-ELLIOTT Type RP 7641 G8 WAMY OTMERS FROM STOCK, PHOWE FOR DETAILS

230-250 VOLT A.C. SOLENOID

SOLENOID HEAVY DUTY MODEL \(230 / 2500\) A.C.
E2.50. Post 50

\section*{24 VOLT D.C. SOLENOIDS}

ABSOLUTE BARGAIN.
240 A.C. SOLENOID OPERATED FLUID VALVE

600 WATT DIMMER SWITCH
(1)

all mail orders. also callers at
57 BRIDGMAN ROAD. CHISWICK, LONDON, W4 5BB. Phone: 01.9951560 Closed Soturdays.

VARIABLE VOLTAGE TRANSFORMERS NPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260v. A.C. BRAND NEW. All types. 200W (1 Amp) fitted A/C 0.5 KVA (Max. \(21 / 2 \mathrm{Amp}\)) 1 KVA (Max. 5 Amp) 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp)
4 KVA (Max. 20 Amp)
\(\begin{array}{r}£ 11.50 \\ £ 11.50 \\ \hline 1800\end{array}\)
\(£ 11.50\)
\(£ 18.00\)
\(\mathbf{5} 30.00\)
\(£ 18.00\)
\(£ 30.00\)
\(£ 38.00\)
560.00
LT TRANSFORMERS
\(\qquad\)
E8.70 Post 1100
10.90 Post 1.00
£9.80 Post \(£ 100\)
f 10.30 Post 100
\(\mathbf{6 1 0 . 3 0}\) Post E1.00
\(\mathbf{6 1 1 . 8 0}\) Post if 100

\section*{AUTO TRANSFORMERS}

At 75 watt \(£ 3.00\) Post 40 p. 150 watt \(\mathbf{£ 4 . 3 0 \text { Post } 5 0 p 3 0 0}\) watt \(£ 6.20\). Post 60 p. 500 watt \(£ 9.20\) Post 75 p. 1000 watt £13.50 Post 90 p
RING TRANSFORMERS

curfent Transt

number of turns through the centre opening
@ \(121 / 2\) Amp. 4 V @ 25 Amp or 2 V © output
RT 2 KVA
R
5

\section*{STHOEE STHOEE STBOEE}
\(\star\) HY-LIGHT STROBE Mk. IV
 greater than many (so called 4 Joule) strobes. Price \(£ 15.40\). Post
* \(75 p\)
Specially designed casa and reflector for Hy-light \(\mathbf{£ 8 . 2 5}\). Post

XENON FLASH GUN TUBES

* ULTRA VIOLET BLACK LIGHT
* FLUORESCENT TUBES

+ BIG BLACK LIGHT

\section*{TRIAC}

COLOUR WHEEL PROJECTOR TYPE P150 INTACHANGE

INSULATION TESTERS (NEW) suitable for bench or flield work constant speead clutch. Size L .8 in , W 4 in H. 6 in... weight 6 tb.
\(\mathbf{5 0 0}\) VOLTS 500 megohms
\(\mathbf{E 4 0 . 0 0}\) ¢48.00

\section*{GEARED MOTORS}

100 R.P.M. 115 Ibs. ins.

Type SO48 15 r.p.m. 80 ib ins R.P.M.
earbox 270 mm . Herght 135 mm . Width 150 mm vill C Length inc: Weight 8.5 Kitos. BRANO NEW. Price E10.00, carr. E1.00
Suitabie transformer for use on \(220 / 240\) volt AC ©3.e5. Post 50 p

\section*{60 R.P.M. REVERSIBLE}
otor Mig gh 5 mm Whign 725 grams E8.50. Post 50p.

BODINE TYPE N.C.I.
GEARED MOTOR
(TYpe
Reveraibe
2) \(28 \mathrm{f} . \mathrm{p} . \mathrm{m}\)

hip 50 arcle 28 amp The abo made USSA motors are offered in as new conky. Input voltage of
motor 115 V A.C. Supplied complete with trantormer for \(\mathbf{2 3 0} / 240 \mathrm{v}\)
(Type 3) 71 r.p.m. 230 Volt A.C
6/9 VOLT D.C. GOVERNED

\section*{\(40 \mathrm{~mm} \times \mathrm{n} \times 40 \mathrm{~mm}\)
E .65 Post Paid}

24 R.P.M
Continuouly raled Mig Mycalex Exequip. Fully tested

1 R.P.M.
\(230 / 240\) VOLT A.C. SYNCHRONOUS!!
20 r.p.m. GEARED MOTOR
REVERSIBLE MOTOR \(230 V\) A.C

ROTARY VACUUM AIR COMPRESSOR

\section*{A.C. MAINS}

TIMER UNIT
Anractive satin copper finish. Size \(135 \mathrm{~mm} \times 130\)

PROGRAMME TIMERS

\section*{SERVICE TRADING CO.}

\title{
15-240 Watts!
}

\section*{HY5}

Preamplifier
\begin{tabular}{|c|}
\hline The HYS is a mono hybrid amplifier ideally sunted for all applications All common input tunctions (niag Cartridge zuner etc) are catered for internally the desired function is achieved etther by a mult-way switch or direct cornection to the approprate pirs the internal volume and tone creuls merely require connecting to external potentiometers (not included) The HY5 is tompatible: with all ILP powe amplifiers and power supplies To ease construction and mounling a P C connector is supplied with each pre amplitier \\
\hline FEATURES: Complete pre-amplifier in single pack - Mulifunction equatization - Low nose - Low distortion - High overload - Two simply combined for stereo \\
\hline APPLICATIONS: HI-F1 - Mixers - Disco - Guitar and Organ - Public address SPECIFICATIONS: \\
\hline INPUTS Magnetic Pick-up 3mV Ceramic Prck-up 30 mV Tuner 100 mV . Microphone 10 mV \\
\hline Auxiliary 3.100 mV input impedance 47 kl) at 1 kHz \\
\hline OUTPUTS Tape 100 mV . Main outpu: 500 mV R M S \\
\hline ACTIVE TONE CONTROLS preble - 12 dB at 10 kHz Bass - at 100 Hz \\
\hline DISIORTION O \(1 \%\) at 1 kHz Signal Norse Ratio 68d8 \\
\hline OVERLOAD 38dB on Magnetic Pick-up Supply voltage - 16.50 V \\
\hline \\
\hline
\end{tabular}

HY30
15 Watts into \(8 \Omega\)

Available
June'76

HY50
25 Watts inio \(8 \Omega\)
integral heaisink together with the stmplicity of no external components During the past three years the amplifier has been refined'to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink -- Only five connections - 7 Amp output reansistors - No external components

APPLICATIONS: Medium Power H.FI systems
SPECIFICATIONS: INPUT SENSITVITY 500
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS Into 8!? LOAD IMPEDANCE 4.16! DISTORTION \(004 \%\) al 25 W at
SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE \(10 \mathrm{H}_{2}-45 \mathrm{kHz}-3 \mathrm{~dB}\)
SUPPLY VOLTAGE 25V SIZE 1055025 mm
Price \(\mathbf{£ 6 . 2 0 + 7 7 p}\) VAT P\& \(\mathbf{F}_{1} P\) free.

HY120
60 Watts into \(8 \Omega\)

HY200
120 Watts into \(8 \Omega\)
rugged cond now improved to give an outh as of 20 Wairs has been designed to
rugged conditions such as disco or group while still retaining true Hi-Fi performance
FEf.TURES: Thernal shutdown - Verylow distortion - Load line protection - Integral heats
No external components
APPLICATIONS: HI-Fi DISCO - Monitor -- Power slave - Industrial - Public Address
APPLICATIONS: \(\mathrm{H}_{1}\)-F - Disco - Monitor -- Power slave - Industrial - Public Address
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
1 kHz . SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE 10 Hz .45 kHz - 3 dB SUPPLY VOLTAGE SIZE 11410085 mm
Price \(£ 21.20+\mathrm{f} 1.70\) VAT P\&P free.

\section*{HY400}

240 Watts into \(4 \Omega\)
The HY400 is ILP s Big Daddy of the range producing 240W imo 4? It has been designed to high power disco or public address applications, If the amplifier is to be used, al continuous high power
leveis a cooling fan is recommended The amplitier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown - Very low disiortion - Load line protection - No externa
APPLICATIONS: Public address - Disco - Power slave - Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS Into 4.2 LOAD IMPEDANCE 4-16!2 DISTORTION \(01 \%\) at 240 W a
 INPUT SENSI TIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 29.25+£ 2.34\) VAT P\& Pree.
The HY120 is the batiy of II P s new high power range designed to meet the most fxacting (jesign FEATURES: Very low distortion - Integral heatsink - Load line protection -- Ihermal protection Five connections - No external components Organ
INPUT SENSITIVITY 500mV
OUTPUT POWER 6OW RMS Into 8!! LOAD IMPEDANCE 4-16!! DISTORTION \(004 \%\) al GOW a SIGNAL NOISE RATIO 9OdB FREQUENCY RESPONSE \(10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~d} 8\) SUPPLY VGLTAGE SIZE 1145085 mm
Price \(\mathrm{f} 14.40+£ 1.16\) VAT P\& P free

\author{
POWER SUPPLIES
}

SSU 80 surabie for two HY 200 s ar one HY 400 £2 1.00 plus \(t\) ' 98 VAT \(P\) - \(p\) free

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\) Account number
Name \& Address
Signature

Time and again we are asked for reprints of Wireless World constructional projects: tape, disc, radio, amplifiers, speakers, headphones. Demand continues long after copies are out of print. To meet the situation we have collected fifteen of the most sought after designs and put them in one inexpensive book. And we've updated specifications where necessary to include new components which have become available. A complete range of instruments is presented, from the Stuart tape recorder and Nelson-Jones f.m. tuner, through the Bailey, Blomley and Linsley Hood amplifiers, to the Bailey and Baxandall loudspeakers - some of which have been accepted as standard in the industry.

\section*{highfidelity designs}
fi from newsagents and bookshops or \(£ 1.35\) (inclusive) by post from the publishers.

\section*{A book from}

WirelessWorld

\section*{RETURN OF POST MAIL ORDER SERVICE}

BSR HI-FI AUTOCHANGER STEREO AND MONO Plays \(12^{\prime \prime} .10^{\prime \prime}\) or \(7^{\prime \prime \prime}\) records. Auto or
Manual. A high quality unit backed by BSR reliability \({ }^{\text {with }}\)
guarantee. A.C. \(200 / 250 \mathrm{~V}\) Size \(131 / 2-11 / 4\) in. 3 speeds Above motor board \(33 / 4 \mathrm{in}\).
Below motor board \(21 / 2 \mathrm{in}\). with STEREO and MONO CARTRIDGE
\(£ 10.25\) Post 75p B.S.R. SINGLE PLAYER similar PORTABLE PLAYER CABIÑET
Modern design. Rexine covered.
Vynar front grille. Chrome fittings \(\mathbb{£ 4 . 5 0}\) post 50 p
Size \(17 \times 15 \times 8\) in aporox. Motor board cut for BSR or Garrard deck

\section*{HEAVY METAL PLINTHS}
\(\begin{array}{lll}\text { or Garrard decks. Silver grey finish } & \\ \text { Model "A' Size } 121 / 2 \times 143 / 4 \times 71 / 2 \text { in. } & \mathbf{£ 5 . 5 0} \\ \text { Model '"B' Size } 16 \times 13^{3 / 4} \times 7 \mathrm{in} . \mathbf{£ 6 . 9 5} \text {. } & \text { Pos } 175 \mathrm{p} .\end{array}\)
CÖMPLETE STEREO SYSTĖM
clips to loudspeakers making it extremely compact, overall size only \(133 / 4 \times 10 \times 81 / 2 \mathrm{in}\). 3 watts per channel, plays all controls. Atractive teak finish. \(£ 22.50\) 240 V a.c. mains.
£22.50

SPECIAL OFFER!
SMITH'S CLOCKWORK 15 AMP TIME SWITCH
\(0-60\) MINUTES \(£ 2.95\) Post 35 p
Single pole two-way. Surface mounting wall switch to give light for return home, garage, automatic anth-burglar lights. etc ntermediate settings. Brand new and fully guaranteed \(\qquad\)
baftle board. Size \(101 / 2 \times 7 \% / 1 n-45 p\)
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is surtable for record players, guitars. tape playback. available: Mono f11.25: Small P.A. Systems tow per channel; input 100 mv ; size \(91 / 2 \times 3 \times 2 \mathrm{in}\) approx S.A.E. details. Full instructions supplied. AC mains powered.

\section*{VOLUME CONTROLS}
/S 25p. D.P. 40p STEREO L./S 55p. O.P. 75p

\section*{ELAC HI-FI SPEAKER}

8in. TWIN CONE
800hm Coax 8pyd. SAANDARD TPPE VHF
FRINGE LOW LOSS \(\underset{\substack{\text { FRINGE LOW LOSS } \\ \text { Ideal } 625 \\ \text { and colour }}}{ }\) PIUGS 10p. SOCCETS 10p. LINE SOCKETS 18p. OUTLET BOXES 50p

Dual cone plasticised roll surround Large ceramic magncis 8 chm 10 watrs. music power. \(£ 3.95\) Post

E.M.I. \(131 / 2 \times 8\) in. SPEAKER SALE!

With tweeter and
crossover 10 watt
Bass Wooter
15 watts.
crossover 10 watt
State 3 or 8 ohm
8 or 15 ohm
\(£ 5.25\) £6.95
With tweeter and
Bass res 25 cps
Flux \(=11.000\) gass
\(£ 8.95\)
8 or 15 ohm 20 to \(20.000 \mathrm{c} . \mathrm{ps}\)
Bookshelf Cabinet
\(£ 6.95\)

BLANK ALUMINIÜM CHASSIS. \(6 \times 4-70 p ; 8 \times 6--90 p\); \(10 \times 7-£ 1.15 ; 12 \times 8-\mathbf{£ 1 . 3 5 ; 1 4 \times 9 - £ 1 . 5 0 ; 1 6 \times 1}\) \(16 \times 10-£ 1.70\). ALUNINIUM PANELS. \(6 \times 4-17 p ; 8 \times 6-24 p ; 14\) \(5-43 p ; 14 \times 9-52 \mathrm{p} ; 12 \times 12-68 \mathrm{p} ; 16 \times 10-75 \mathrm{p}\).

ELAC \(9 \times 5\) in HI-F SPEAKER
\(£ 3.45\)
TYPE 59RM
Post \(35 p\)
\(x * * * * * * * * * * * * * * * *\) RCS LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener doode. printed \(\mathbb{2 1 0 5}\) transformer. Input \(200 / 240 \mathrm{~V}\) a.c Output Post 45p voltages available, 6 or 7.5 or 9 or 12 V d.c. up to 100 mA o less. Size \(3 \times 2 \frac{1}{2} \times 1 / 2 m\). Please state voltage required.
RCS POWER PACK KIT
\(£ 3.35\) 12 VOLT, 750 mA . Complete with printed Post 30p circuit board and assembly instructions.
12 VOLT 300 mA KIT. \(£ 3.15\). 9 VOLT 1 AMP KIT, \(£ 3.35\). R.C.S. GENERAL PURPOSE TRANSISTOR PREAMPLTFER- BRITISH MADE Ideail for Mike, Tape, \(\overline{\mathrm{P}}\). U. Guitar, etc Can be used with Batery \(9-12 \mathrm{~V}\) or H T. line 200-300 \(\mathrm{dc}\). . operation. Stz
\(3 / \mathrm{mm}\). Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}\) gain \(3 / 4 \mathrm{mn}\). Response \(25 \mathrm{c} / \mathrm{s}\) to \(25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}\) gain
£1.45

\section*{PENDULUM MECHANISM}
battery, fully adjustable swing and speed ideal displays
teaching etectro magnetism or for
metronome, strobe, etc.

\section*{MAINS TRANSFORMERS}

Posio
\(250-0-250 \mathrm{BOmA}, 6.3 \mathrm{~V} 3.5 A, 63 V 1 \mathrm{~A}\) or \(5 \mathrm{~V} 2 \mathrm{~A}, \mathrm{£4.60}\) 3000300V 120 mA 6 3V \(4 \mathrm{ACT} \cdot 6 \mathrm{~V} 2 \mathrm{~A}\)
 HEATED TRANS. \(6.3 \mathrm{~V} 1 / 2\) amp \(\mathrm{E1} ; 3 \mathrm{amp}\) HEATED TRANS. \(6.3 \mathrm{~V} 1 / 2 \mathrm{amp} £ 1 ; 3 \mathrm{amp}\). \(£ 1.40\)
GENERAL PURPOSE LOW VOLTAGE. Tapped ouputs at 2 amp. 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 25 and \(30 \mathrm{~V} £ 4.60\). \begin{tabular}{l}
1 amp. \(6,8,10,12,16,18,20,24,30,36,40,48,60\) \\
c4.60. 2 amp. \(6,8,10,12,16,18,20,24,30,36,40\), \\
\(48,60 ~\) \\
\hline
\end{tabular} 48,60 £7.00. 3 amp. \(6,8,10,12,16,18,20,24,30\),
36, \(40,48,60\) £8.70. 5 amp. \(6,8,10,12,16,18,20\), 36. \(40,48,60\) £8.70. \(5 \mathrm{amp} .6,8,10,12,16,18,20\)
\(24,30,36,40,48,60 £ 11.25,6.06 \mathrm{~V} 500 \mathrm{~mA} £ 1,9 \mathrm{~V}\), amp. £1, 12 V 300 mA . \(£ 1,12 \mathrm{~V} 500 \mathrm{~mA}, £ 1,12 \mathrm{~V} 750 \mathrm{~mA}\) \(\mathrm{£}, 10 \mathrm{~V}, 30 \mathrm{~V}, 40 \mathrm{~V}, 2 \mathrm{amp} . \mathrm{£2.75}, 20 \mathrm{~V}, 3 \mathrm{amp}, £ 2.45\),
\(40 \mathrm{~V}, 2 \mathrm{amp}, ~\)
\(22.95,30 \mathrm{~V} 5 \mathrm{~A}\) and \(34 \mathrm{~V} 2 \mathrm{ACT} £ 3.45,16 \mathrm{~V}\)
 20V \(3 \mathrm{amp} . £ 2.50,20-0-20 \mathrm{~V} 1 \mathrm{amp}\) £2.95, \(30 \mathrm{~V} 11 / 2\) amp. €2.75. \(20 \mathrm{v} .40 \mathrm{v} .60 \mathrm{v}, 1 \mathrm{~A}, \mathrm{E} 3.50\)
AUTO TRANSFORMERS. 115 V to 230 V or 230 V to 115 V 150W £5; 250W £6; 400W £7; 500W £8.
FULL WAVE BRIDGE CHARGER RECTIFIER
6 or 12 V outputs. \(1 / 2 \mathrm{amp} 40 \mathrm{p} ; 2 \mathrm{amp} 55 \mathrm{p} ; 4 \mathrm{amp} 85 \mathrm{p}\). CHARGER TRANSFORMERS \(11 / 2 \mathrm{amp} £ 2.75 ; 4 \mathrm{amp}\). \(£ 4.60\).

\section*{R.c.s.}

ROSEWOOD SPEAKERS
\(51 / 2 \mathrm{in}\). Response 50 to
14.000 cps 8 watts rms

E12 pair Post 75p.
KUBA - KOPENHAGEN

\section*{STEREO}

TUNER-AMPLIFIER CHASSIS AM-FM \(5+5\) WATT This Continental 4 -band radiogram chassis uses first class quality components throughout Features Large facia panel with 7 push
buttons for medium, long, short. VHF-FM. AFC, phono, mann butions for medium, long, short. VHF-FM. AFC, phono, main size \(17 \times 41 / 2\) inches. Chassis size \(17 \times 41 / 2 \times 51 / 2\) inches OIN-connector sockets for tape record/playback, loudspeakers phono pick-up, external FM.AM aerials. Automatic stereo beacon light. Built-is ferrite rod aerial for medium/ \(£ 38.50\)
longwave. A.C. 240 V . mains. Circuit supplied.

\section*{LOW VOLTAGE ELECTROLYTICS}
\(1,2,4.5,8,16,25,30,50,100,200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}\).
\(500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p}: 25 \mathrm{~V} 20 \mathrm{p}-50 \mathrm{~V} 30 \mathrm{p}\). \(1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} \mathrm{35p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}\). 2000 mF 6 V 25p; 25V 42p; 50 V 57p
2500 mF 50 V 62p; 3000mF 25 V 47p; 50 V 65p.
\(5000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 12 \mathrm{~V} 42 \mathrm{p}\); \(25 \mathrm{~V} 75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} ; 50 \mathrm{~V} 95 \mathrm{p}\). SHORT WAVE 100 pF air spaced gangable tuner. 95p. TRIMMERS 10 pF . \(30 \mathrm{pF}, 50 \mathrm{pF}\). 5p. \(100 \mathrm{pF}, 150 \mathrm{pF}\). 15 p . CERAMIC, 1 pF to 0.01 mF . 5p. Silver Mica 2 to 5000 pF . 5 p . PAPER 350V-0.1 7p; 0.5 13p; \(1 \mathrm{mF} 150 \mathrm{~V} 15 \mathrm{p} ; 2 \mathrm{mF} 150 \mathrm{~V}\) 15p; \(500 \mathrm{~V}-0.001\) to 0.055 ; ; 0.1 10p; 0.25 13p; 04725 SUB-MIN MICRO SWITCH, 25p. SINGEO 20p. SWB-MIN MICRO SWITCH, \(\mathbf{2 5 p}\). Single pole change over \(365+365+25+25 \mathrm{pF}\) Slow motion drive \(65 p\) 120 pF TWIN GANG, 50p; 365pF TWIN GANG, 50p. NEON PANEL INDICATORS 250 V . Amber or red 30p.啇ESISTORS. \(1 / 1 / \mathrm{W}, 1 / 2 \mathrm{~W} .1 \mathrm{~W} .20 \% 2 \mathrm{p} ; 2 \mathrm{~W}, 10 \mathrm{p} ; 100\) to 10 M HIGH STABILITY. \(1 / 2 \mathrm{~W} 2 \% 10\) ohms to 6 meg 12 p . Dito \(5 \%\) Preferred values 10 ohms to 10 meg .5 p .
WIRE-WOUND RESISTORS 5 watt. 10 watt .15 watt. 10 ohms to 100K 12 p each
TAPE OSCILLATOR COIL. Valve type. \(\mathbf{3 5 p}\)
BRIDGE RECTIFIER 200V PIV \(1 / 2 \mathrm{amp}\) 50p.
TOGGLE SWITCHES S.P 20p. DPS.T 25p. D P O T \(\mathbf{3 0 p}\).

BAKER MAJOR \(12^{\prime \prime \prime}\) £10.35 \(30-14.500 \mathrm{c} / \mathrm{s}, 12 \mathrm{in}\). double cone. wooter and tweeter cone together
with a BAKER ceramic magnet assembly having a flux density of 14,000 gauss and a total flux of 145,000 Maxwells. Bass resonance' \(40 \mathrm{c} / \mathrm{s}\). Rated 25 W . NOTE 3 or B or 15 ohms must be stated.
Module kit. 30-17,000
£13
and instructions. Post 60 each Please state 3 or 8 or 15 ohms.
BAKER "BIG-SOUND" SPEAKERS. Post 50p each
\(\begin{array}{lll}\text { 'Group 25' } & \text { 'Group 35' } & \text { 'Group } \\ 2 \text { in } & \text { 50/15' }\end{array}\)
30W £8.95 40w £10.50 1 in \(\mathbf{5 0}\). \(£ 19.50\)
BAKER LOUDSPEAKER, 121 N .60 WATT GROUP 50/12, 8 OR 15 OHM HIGH POWER
FULL RANGE PROFESSIONAL QUALITY. £14.50 30-16.000 CPS

ERAMIC MAGNET
WITH ALUMINIUM PRESENCE CENTRE DOME
TEAK VENEERED HI-FI SPEAKERS AND CABINETS
For 12 in . or 10 in speaker \(20 \times 13 \times 12 \mathrm{n}\). £12.50 Post 95 p
For \(13 \times 8 \mathrm{in}\). or 8 in speaker. . . . 6.95 Post 75 p
For \(8 \times 5\) in. speaker \(12 \times 8 \times 6\) in. . . . \(£ 4.95\) Post 50 p
LOUDSPEAKER CABMET WADDING 18 in . wide . . 20p h .
R.C.S. 100 watt

VALVE
AMPLIFIER CHASSIS

Four inputs. Four way mixing. master volume, treble and bass controls. Suits all speakers This professional quality âmplifier chassis is suitable for all groups, disco, PA . where high quality
power is required. 5 speaker outputs. A/C mains operated. Slave power is required. 5 speaker outputs. A/C mains operated. Slave amplifier. 100 V I ine output to order. Sulable carrying cab \(\mathbf{£ 1 4}\). Price \(£ 85\) carr. \(£ 2.50\)
SPEAKER COVERING MATERIALS. Samples Large S.A.E.
Horn Tweeters \(2.16 \mathrm{kc} / 5\). 10W B ohm or \(15 \mathrm{ohm} £ 3.60\) De Luxe Horn Tweeters \(3.18 \mathrm{kc} / \mathrm{s}, 30 \mathrm{~W}, 8\) ohm, \(£ 7.50\).
CROSSOVERS. TWO-WAY \(3000 \mathrm{c} / \mathrm{s} 3\) or 8 or 15 ohm £1.90. 3 way \(950 \mathrm{cps} / 3000 \mathrm{cps}, ~ £ 2.20\).
COUDSPEAKERS P.M. 3 OHMS. \(7 \times 4 \mathrm{in}\). £1.50; \(61 / 2 \mathrm{in}\)
£1.80; \(8 \times 5\) in., £1.90; \(8 \mathrm{in}, € 1.95\)
SPECIAL OFFER: \(80 \mathrm{ohm} 21 / 4 \mathrm{Hn}, 2^{3 / 2 \mathrm{in} ., 35 \mathrm{ohm} .3 \mathrm{in} ., 25}\)

 RICHARD ALLAN TWIN CONE LOUDSPEAKERS 8in. dameter \(4 W £ 2.50 .10 \mathrm{in}\). diameter \(5 \mathrm{~W} £ 2.95\);
12 in diameter \(6 \mathrm{~W} £ 3.50 .3 / 8 / 15\) ohms, please state 12 n diameter 6 W £3.50. \(3 / 8\); 5 ohms. please state. VALVE OUTPUT TRANS. 40p; MI
Mike trans mu metal 100 f 1.25.

Loudspeaker Volume Control 15 ohms 10 W with one inch long hreaded bush for wood panel mounting. \(1 / 4\) in spindle. 65 p.

All purpose transistorised
deal for Groups. Disco
 Output \(4 \mathrm{~B} / 15\) ohms. a.c. Mains. Separate treble and bass controls. Master volume control. £ \(\mathbf{6 8}\) £ 100 Carr.
Guaranteed Details S A.E
NEW MODEL MAJOR-50 watt, 4 input E49.95
Treble and bass. Ideal disco amplifier
100. WATT DISCCO AMPLIFIER COAASŚIS

Four loudspeaker outputs 4 to 16 ohm . All transistor. £52
BARGAIN 4 CHANNEL TRANSISTOR MÖNO MIXER
Add musical highlights and sound effects to recordings. Will mix Microphone, records, tape and tuner
with separate controls into single output. 9 V \(\mathbb{£ . 2 0}\) TWO STEREO CHANNEL VERSION \(£ 6.85\)
BARGAIN 3 WATT AMPLIFIER. 4 Trans
Push-Pull Ready Built, with volume. Treble \(£ 3.95\) and bass controls 18 volt d.c Mains Power Pack \(£ 3.45\) BALANCED TWIN RIBBON FEEDER 300 ohms. 7p yd. JACK SOCKET Std. open-circuit 20p, closed circuit 25p; Chrome Lead-Socket 45p. Mono or Stereo.
hono Plugs 8p. Phono Socker 8p.
JACK PLUGS Std. Chrome 30p; Plastic 25 p; \(3.5 \mathrm{~mm} 15 p\) STEREO JACK PLUG 30p. SOCKET 25p.
IN SOCKETS Chassis 3-pin 10p. 5-pin 10p
IN SOCKETS FREE 3 -pin 25p; 5-pin 25p. DIN PLUGS
-pin 25p; 5 pin 25p. VALVE HOLDERS, \(10 p\); CANS \(10 p\)
R.C.S. SOUND TOLIGHT KIT

Kit of parts to build a 3 channel sound to light unit
- 1,000 watts per channel £12.50. Post 35 p
- Easy to build Full instructions supplied Cabinet £3.

E.M.I. TAPE MOTORS. 120 V a c., 1,200 r.pm 4 pole Spindle \(0.187 \times 0.75\)
Size \(31 / 4 \times 21 / 2 \times 21 / 4 \in 1\). Post 40 . Size \(31 / 4 \times 21 / 2 \times 21 / 4, ~ £ 1\). Post 40
Collaro gram motor 120 V 75 .

\section*{LYNX ELECTRONICS (LONDON) LTD.}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ACli \({ }^{\text {a }}\) & \(0.15{ }^{-}\) & вСЗ301 & 0.32 & \({ }^{8 Y 206}\) & \(0.15{ }^{\text { }}\) & inato \({ }^{\text {a }}\) & \({ }^{0.005}\) \\
\hline AC127 & 0.16 & \({ }^{8 C 323}\) & 0.60 & \({ }^{\text {Br20 }}\) & \(0.20^{\circ}\) & 1N4004 & \(0.07{ }^{\circ}\) \\
\hline AC128 & 0.13 & \({ }_{\text {BC3 }} 327\) & \(0.18^{-}\) & BY \(\times 36.300\) & 0.12. & 1 N 4005 & \({ }^{0.008}\) \\
\hline AC128K & 0.25 & \({ }^{\text {BC328 }}\) & 0.16 & BYx 36.600 & \(0.15{ }^{\text {a }}\) & 1 14006 & 0.09 . \\
\hline \({ }^{\text {ACl }} 141\) & 0.18 & \({ }^{\text {BCC33 }}\) & \({ }^{0.17 \%}\) & BY3 36.900 & 0.18* & 1 1N4007 & \(0.10^{\circ}\) \\
\hline & 0.28 & BC338 & \(0.17^{\circ}\) & BY \(\times 36.120\) & 0.21 & 2N696 & 0.14 \\
\hline AC142 & 0.18 & \({ }_{\text {BCr70 }}\) & 0.12 & BY 388.300 & 0.50 & '2N697 & 0.12 \\
\hline AC142k & 0.28 & \({ }_{8 C 71}\) & 0.18 & Br \(\times 38.600\) & 0.55 & \({ }^{2 N 706}\) & 0.10 \\
\hline AC176 & 0.18 & \(\mathrm{BCY}^{\text {che }}\) & 0.12 & Ar338.900 & 0.60 & \({ }^{2 N 929}\) & 0.14 \\
\hline AC176\% & 0.25 & 8 D 115 & 0.55 & \({ }^{\text {Bra }} 383.120\) & 0.65 & \({ }^{2} \mathrm{Na30}\) & 0.14 \\
\hline \({ }_{\text {ACl }}{ }^{\text {cl }} 1\) & 0.18 & BD131 & 0.36 & 8ZX61 Ser & & 2 N 1131 & 0.15 \\
\hline AC187k & 0.25 & 80132 & 0.40 & 2eners & 0.20 & 2 N 1132 & 0.16 \\
\hline AC188 & 0.18 & \({ }^{\text {B0, }} 135\) & \({ }^{0.36}\) & \(88 \times 83\) or & x88 & \({ }^{2} \mathrm{~N} 13304\) & 0.20 \\
\hline AC188K & 0.25 & 80136 & 0.39 & Seres & & 2 N 1305 & 0.20 \\
\hline AD140 & 0.50 & \({ }_{8}^{80137}\) & 0.40 & & 0.11 & \({ }^{2} \mathbf{N 1 7 1 9}\) & \({ }^{0.18}\) \\
\hline \({ }_{\text {ADO }}{ }^{\text {AOP }} 43\) & 0.50 & 80138
80139 & \({ }^{0.488}\) & C106A
C106B & 0.4.40 & 2N2102
2N2369 & 0.44 \\
\hline ADOL43 & - 0.45 & 88181 & \({ }_{0.86}\) & C1060 & - 0.50 & \(\xrightarrow{2 N 2369}\) & 0.14
0.14 \\
\hline AD161 & 0.35 & \({ }^{80182}\) & 0.92 & \({ }^{\text {c10 }} 106\) & 0.35 & 2 N 2484 & 0.16 \\
\hline AD162 & 0.35 & \({ }^{80183}\) & \({ }_{0}^{0.97}\) & CRS 1105 & 0.25 & \({ }_{2} 2\) N2646 & 0.50 \\
\hline Al102 & 0.95 & \({ }^{802232}\) & \({ }^{0.60}{ }^{0.48}\) & Crsilio & \({ }^{0.25}\) & \({ }_{\text {2 }}\) & \({ }_{\text {a }}^{0.18}\) \\
\hline \({ }_{\substack{\text { All } \\ \text { AF114 }}}\) & 0.93
0.20 & 80233 & \({ }^{0.45}{ }^{0.55}\) & CRS \(1 / 20\)
CRSI/40 & - 0.40 & 2N2905A & - 0.22. \\
\hline AFt15 & 0.20 & BD238 & \(0.60^{\circ}\) & Cas 1/60 & 0.65 & 2 N 29260 & 0.09 - \\
\hline Af116 & 0.20 & \({ }^{80184}\) & 1.20 & Crs3.05 & 0.34 & 2N29267 & 0.09 \\
\hline Af117 & 0.20 & & 0.80 & Cas3.10 & 0.45 & \({ }_{2}{ }^{\text {N299266 }}\) & \(0.10^{\circ}\) \\
\hline Af118 & 0.50 & B0738 & 0.60 & CRS3320 & 0.50 & \({ }^{2} \mathbf{N} 3053\) & 0.15 \\
\hline AF139 & 0.33 & \({ }_{\text {BOY60 }}\) & \({ }_{0.85}^{0.60}\) & CRS33.40 & 0.85 & 2N3054 & 0.40
0.50 \\
\hline \({ }_{\text {efer }}^{\text {AF } 239}\) & - \(\begin{aligned} & 0.37 \\ & 0.14 \\ & 0.15\end{aligned}\) & \({ }_{\text {corer }}^{\text {Bor6 }}\) & \({ }_{0}^{0.65}\) & \({ }_{\text {M }}\) & 0.85 & - \({ }_{\text {2N3055 }}\) & 0.50
0.55 \\
\hline \({ }_{\text {BC1 }} 1078\) & 0.16 & BF178 & 0.28 & M J 481 & 1.05 & 2 N 3442 & 1.20 \\
\hline BC108 & 0.13 & 85179 & 0.30 & M M \({ }^{\text {a }}\) 90 & 0.90 & \({ }^{2} \mathbf{N 3 5 2 5}\) & 0.75 \\
\hline \({ }_{8 C 109}\) & 0.14 & BE194 & \({ }^{0.10} 0^{\circ}\) & M M 4931 & 1.15. & \(2 N 3570\)

2 & \({ }^{0.80}\). \\
\hline BC109C & 0.16 & \({ }^{8 F} 195\) & 0.10 & MME330 & \(0.40^{\circ}\) & \({ }^{2} \times 3702\) & \({ }^{0.10}\) \\
\hline \({ }_{8}^{8 C 117}\) & - \({ }^{0.19}{ }^{\text {a }}\). & -8F196 & \({ }_{\text {a }}^{0.12}\) & & -0.60 & 2N3703 & - \\
\hline \({ }_{\text {BCl26 }}\) & \({ }_{0.20}^{0.18}\) & 8F224J & 0.18 . & MJE521 & 0.55 & 2N3705 & \(0.10^{*}\) \\
\hline \({ }_{8 C 141}\) & 0.28 & 8F244 & \(0.17^{\circ}\) & OAS & 0.50 & 2 N 3706 & \(0.10^{\text {- }}\) \\
\hline \({ }^{\text {BC142 }}\) & 0.23 & \({ }^{85257}\) & \({ }^{0.30^{\circ}}\) & \({ }_{0} 0930\) & 0.08 & \({ }^{2} \mathbf{N 3 7 0 7}\) & \(0.10^{\circ}\) \\
\hline \({ }^{\text {BCO }} 143\) & 0.23 & \({ }^{8 F 5258}\) & \({ }^{0.35}\) & O491 & 0.08 & \({ }^{2} \mathbf{N} 3714\) & 1.05 \\
\hline ¢ \({ }_{\text {BC144 }}\) & \({ }^{0.30} 0\). & \({ }_{\text {EFW60 }}^{\text {er3 }}\) & \({ }_{0.17}^{0.32}\) & \({ }_{\text {OC4 }}\) & 0.15 & 2N3745
2 N 3716 & 1.25 \\
\hline \({ }_{8 C 148}\) & \({ }_{0}^{0.09}{ }^{0.09}\). & \({ }_{86 \times \times 29}\) & 0.26 & \(\bigcirc \mathrm{C} 44\) & 0.12 & 2 N3771 & 1.60 \\
\hline \({ }_{\text {BC149 }}\) & \({ }_{0}^{0.09}\). & \(8 \times \times 30\) & 0.30 & \(\bigcirc \mathrm{C} 45\) & 0.10 & 2 N3772 & 1.60 \\
\hline \({ }_{8 C 152}\) & \({ }^{0.25}\) & brf84 & 0.23 & 0 C 70 & 0.10 & 2 2N3773 & 2.10. \\
\hline -8C153 & \({ }^{0.18 .}\) & Brx \(\times 85\)
\(86 \times 88\) & 0.25
0.20 & OC71
OC72 & 0.10
0.22 & - & \({ }_{0}^{0.16} 0\). \\
\hline \({ }_{8 \text { BC158 }}\) & 0.09 & bery 5 & 0.20 & \(\bigcirc{ }^{\circ} \mathrm{C84}\) & 0.14 & .2N3906 & \(0.16{ }^{\text {. }}\) \\
\hline 8 8159 & 0.09 & -bry51 & 0.18 & Sc40a & 0.73 & 2N4124 & 0.14. \\
\hline \({ }_{8 C 161}^{8 C 1}\) & \({ }^{0.32}\) & \({ }_{\text {BFY64 }}\) & 0.19
0.35 & SC408 & - \(\begin{aligned} & 0.81 \\ & 0.98 \\ & 0.88\end{aligned}\) & - & \({ }_{\substack{0.120}}^{0.120}\) \\
\hline \({ }_{8 C 1688}^{8 C 161}\) & - & ber990 & 0.65 & \({ }_{\text {SC4OF }}\) & 0.65 & \({ }_{2 \text { N4970 }}\) & 0.35 \\
\hline BC182 & \(0.1{ }^{\text {- }}\) & BR100 & 0.20 & SC41A & 0.65 & 2N4871 & 0.35 \\
\hline \({ }_{8 \mathrm{BC} 1821}\) & 0.11* & 8RY39 & 0.40 & \({ }_{5}^{5 C 418}\) & 0.70 & 2 N 4919 & 0.70. \\
\hline & \({ }^{0.10^{\circ}}\) & 8Sx19 & \({ }_{0}^{0.16}\) & SCS10 & -0.85 & 2N4920 & \({ }_{0}^{0.58 .}\) \\
\hline 8 BC 184 & \({ }_{0} 0.11\). & 85x21 & 0.20 & & 0.20 & 2 N 4923 & \({ }_{0}^{0.64 .}\) \\
\hline & 0.11 & BSY954 & 0.12 & TIP29A & 0.44 & 2 N 5060 & 0.20 \\
\hline & 0.12: & \({ }^{81106}\) & \({ }^{1.00}\) & \(T_{T 1 P 318}\) & - 0.52 & 2 N5061 & \({ }^{0.25}\) \\
\hline \({ }_{\substack{\text { BC2 } \\ 8 \mathrm{CC2} 212}}\) & \({ }^{0.11 .}\) & \({ }_{81108}\) & 1.60 & TTP32A & \({ }_{0.64}\) & \({ }_{2}^{2 N 5062}\) & (0.27. \\
\hline BC213 & 0.12 & B1109 & 1.00 & \(\mathrm{TTP3}^{4}\) & 1.05 & \(2 \mathrm{NS496}\) & 0.65 \\
\hline \({ }_{\text {BC2 }}^{\text {BC2 }}\) (134 & 0.12. & \(8{ }_{8}^{8116}\) & \({ }_{1}^{1.00}\) & TTP41A & \({ }^{0.68}\) & & \\
\hline & - 0.14 - & -8vios & & 1 N 2069 & 0.14 & & \\
\hline \(\frac{9 C 237}{\text { BC238 }}\) & 2.16: & \({ }_{0}^{02}\) & \({ }^{1.90}\) & 1 N 2000 & \({ }^{0.16 .}\) & & \\
\hline BC238
\(.8 C 300\) & - 0.34 & & 1.60 & (1N4002 & 0.05 & & \\
\hline
\end{tabular}

\title{
SINTEL for MEMORIES-GMOS-DISPLAYS-MPUS-BOOKS Comenempitem
}

FAST SERVICE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline CMO & & \({ }^{\text {c }} 04026\) & 1.79 & CO405 & 0.97 & C04085 & 0.74 & CLock chips \\
\hline & & CO402 & 0.55 & CO4052 & 0.9 & C04086 & 0.7 & AY51202 2.89 \\
\hline CO4000 & 0.16 & CO4028 & 0.89 & CO4053 & 0.97 & CO4089 & 1.61 & AY51224 3.50 \\
\hline \({ }^{\text {COLOOO}}\) & 0.16 & \({ }^{\text {co4029 }}\) & \({ }^{1.15}\) & CO4054 & 1.20 & \({ }^{\text {co4093 }}\) & 0.89 & MK502505.500 \\
\hline CD4002 & 0.16 & C04030 & 0.56 & CD4055 & 1.37 & C04094 & 1.94 & MK50253 5.60 \\
\hline CD4006 & 1.22 & CO4031 & 2.24 & C04056 & 1.37 & CO4095 & 1.09 & \\
\hline CO4007 & 0.17 & C04032 & 1.11 & CO4057 & 27.95 & C04096 & 1.09 & \\
\hline CO4008 & \({ }^{0.95}\) & \({ }^{\text {co4033 }}\) & \({ }^{1.45}\) & CO4059 & \({ }^{4.96}\) & C04097 & \({ }^{3.87}\) & flat cable \\
\hline & & \({ }_{\text {c } 04035}\) & & C04062 & & C04502 & & lor 8.00 \\
\hline & 0.17 & \(\bigcirc 04036\) & 3.18 & CO4063 & 1.14 & CO4510 & 1.41 & \\
\hline CO4012 & 0.17 & C04037 & 0.99 & CD4066 & 0.64 & CO4511 & 1.62 & \\
\hline CO40 & 0.58 & C04038 & 1.22 & C04067 & & CDS514 & 2.85 & verocases \\
\hline CO401 & \({ }^{1.05}\) & \({ }^{\text {CO4039 }}\) & \({ }^{3.09}\) & CO4068 & 0.22 & CO4515 & 3.25 & \(751410 J 2.64\) \\
\hline CO4015 & 1.05 & CO4040 & 1.11 & \({ }^{\text {cos }} 0669\) & & CD4516 & & 751411 D 3.04 \\
\hline CO4016
C04017 & 0.55
0.99 & & 0.87
0.87 & CO40 & - 0.22 & COA520 & & 7J 1.72 \\
\hline CD4018 & 0.99 & C04043 & 1.05 & C04072 & 0.22 & CO4527 & & 512380 2.15 \\
\hline CD4019 & \({ }^{0.56}\) & \({ }^{\text {co4044 }}\) & 0.97 & \(\mathrm{CO}_{2} 0\) & 0.22 & C04532 & 50 & \\
\hline C04020 & +1.16 & (004045 & 1.45 & C04075 & \({ }_{\text {i. }}^{\substack{0.22}}\) & CDA555 & \({ }^{0.94}\) & SUNDRY \\
\hline CD4022 & 1.00 & CD4047 & 0.94 & C04077 & 0.60 & MC14528 & & \(\begin{array}{ll}\text { CA3130 } & \text { 1.14 } \\ \text { UA } 741 \\ 0.35\end{array}\) \\
\hline CD4023 & 0.17
0.81
0.81 & CO4048 & 0.58
0.55
0.55 & & \({ }^{0.22}\) & \({ }^{\text {MC1455 }}\) & & (RCA B DIL) \\
\hline CO4024 & 0.17 & (\({ }^{\text {C04049 }}\) & - 0.55 & C04081 & 0.22 & -M6508 & & 78.12WC 0 \\
\hline \multicolumn{9}{|l|}{BOOKS and Oatasheets (do not add an} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{ITL Pronil Card index Set of cards with pin outs (top and bottom views) of Ti TTL range and}} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{many other Tlic's}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{(neor}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|r|}{} \\
\hline \multicolumn{9}{|c|}{SHEETS on Microprocessors} \\
\hline \multicolumn{3}{|c|}{} & \[
\begin{aligned}
& 60.75 \\
& 60.75
\end{aligned}
\] & \multicolumn{4}{|l|}{\begin{tabular}{l}
RCA 18028 -bil CMOS \\
Zilog Z80 (enhanced 8080)
\end{tabular}} & ¢0.75 \\
\hline \multicolumn{9}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
DISPLAYS \\
Thase Jumbo LEO displays take no more current than 0.3 \\
 \\
586/699. etc)
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
fnosoocc \\
Red \(05^{\prime \prime} \mathbf{c 1 . 0 2}\)
\end{tabular}} & \multicolumn{2}{|l|}{Red \(05^{\prime \prime}\) LED s
TIL321CA E1.30} & & \multicolumn{3}{|l|}{Green 0.6" LED's XAN652 CA
XAN654 C.
Xi.75} \\
\hline
\end{tabular}

ADO VAT ar \(8 \%\). 25.p p\& on all orders
Access and Barclaycard orders very welcome. writen or or phoned (iy) phone min. \& 5)
SINTEL
53c ASTON STREET, DXFORD
Tel. 086549791

MULTIMETER F4313 (Made in USSR)

002
\(-\)

\section*{KITS}
of one pulsTAL TIMEBASE KIT: provides an extremely stabie outpu of one pulse evary 20 msec . Uses May be added to alt types of digital
clocks to mprove accuracy to within a few seconds a month if Used with battery back-up also makes clocks power-out or 5 witch off proof e
Replacing 50 Hz signal on battery-powered equipment Providing film synchronisation Monitoring or improving turntable speed. Order as
E6.2
KTK digital clock kits with crystal conthol a battery back-up

ACK

These two kkits incarporate our Crystal Timebase \(K\) it (XTK). together with components for
battery back-up. Ait components. plus a PP 3 -lype battery. If neatly in the clock cases Accurate to whin a few seconds a month if mains power is disconnected (through a power
cut, accidental switching off or moving clock) the elocks will still keep perfect time. While on cut, accidental switching off or moving clock) the elo
back-up, the displays are off to conserve batiery life ATTRACTIVE 6-DIGIT ALARM CLOCK: Uses Red \(0.5^{\prime \prime}\) displays Features bleen alarm,
Touch switch snooze conirol and automatic intensity controi Alarm remains fully operational while clock is on back-ap. Complete kit incluang tase Order as ACK + XIK + BBK
Kit also avallable less crystal control and back-up Order as ACK SLIM GREN CLOCK. Altractive 4-d.gin Mantelplece Clock w

\section*{VALVE MAIL ORDER CO． \\ Climax House， 159 Fallsbrook Rd．，Streatham London SW1 6 6ED Tel：01－677 2424 Telex： 946708}

TRANSISTTORS

VAT to be added VALVES \＆PLASTIC TRANSISTORS \(121 / 2 \%\) INTEGRATED
CIRCUITS 8\％AND METAL CAN TRANSISTORS 8\％
me of Businesw：

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{5}{|l|}{} \\
\hline \[
\begin{gathered}
30000 \\
\text { JOWXZ } \\
\text { 亿w }
\end{gathered}
\] & \multicolumn{2}{|l|}{} & & & \(\pi\) momm がんんでてZ ゴちーッー。 & \\
\hline & & \multicolumn{5}{|l|}{\begin{tabular}{l}
00000000000000000000800000000000000 I 0080 \\
 － \\
 \\

\end{tabular}} \\
\hline
\end{tabular}

\section*{THIS MONTH＇S}
－OSCILLOSCOPE TUBES
TYPE DG 7－5，VCR 139A，CV 1526
Price £8．00 P\＆P 50p add VAT 8\％
SPECIAL OFFER

\section*{SPECIAL ANNOUNCEMENT}

We are adding a further 800 new items to our stock list of components. Watch for our advertisement in next month's issue! Better still, write NOW for our NEW 1976 Catalogue. It shows our complete range of Electronic Components, Semiconductors, Audio Modules, Hi-Fi Accessories, etc., in fact, everything for the electronic enthusiast. AND ALL AT UNBEATABLE BARGAIN PRICES!

Order your copy NOW Only 50p plus 15p postage

P.O. BOX 6, WARE, HERTS.

RADFORD HD250
High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Reted power output 50 watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven.

Maximum power output: 90 watts av. per channel in to 5 ohms.
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)
Distortion, power amplifier: Typically \(0.006 \%\) at 25 watts, less than \(\mathbf{0 . 0 2 \%}\) at rated output (Typically \(0.01 \%\) at 1 Khz)
Hum and noise: Disc.-83dBV measured flat with noise band width 23 Khx (ref 5 mV): -88 dBV " \(A\) " weighted (ref. 5 mv)

Line -85 dBV measured flat (ref 100 v)
88d BV "A" weighted (ref 100 v)
Hear the HD250 at

\section*{SWIFT OF WVILMSLOW}

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Wilmslow Audio. Swan Works, Bank Squa:e. Wilmslow (Tel. 79599)
Also in stock: All Radford speaker drive units and crossovers, ZD22 preamp, Low
Distortion oscillator LD03 and Distortion Messuring set DMS3

\section*{TRANSFORMERS}

ALL EX-STOCK - SAME-DAY DESPATCH MAINS ISOLATING VAT 8\%
PRI \(120 / 240 \mathrm{~V}\) SEC \(120 / 240 \mathrm{~V}\)
Centre Tapped and Screened

Further details on request．For \(110 / 250 \mathrm{v}\) a．c．operation \(£ 325.00\)
－MEGGER（Record）： 500 volts \(£ 20.00 £ 1.00\) post
GMEGGER（Evershed Vignoles）： 250 volts \(£ 17.50 £ 1.00\) post
ER216 Receiver MANUAL（photostat copy）：\(£ 1.50\) inc．post
ERACAL İS．B．ADAPTOR RA－95A：£65．Carr．£2
MUIRHEAD ATTENUATORS： 75 ohms \(0-8 \widetilde{\mathrm{M}} / \mathrm{s} 3 \mathrm{~V}\) MAK \(\overrightarrow{3}\) ranges \(0-5,0-25\) － \(0-50\) DB E3．00 +75 p post
ECREED MODEL 75 TELEPRINTER：Receiver only £30．00．Carr．£3．
EDDVYSTONE TELEPRINTER ADAPTOR TYPE 937：£45．Carr．£1．
튼 BARFIELD ELECTRIC FURNACE MODEL CCI．22X：With ether Eindicating temperature controllers Model \(990.0-1400^{\circ}\) C．£ 250 ．Carr．£5
＝CAPACITOR： \(10 \mathrm{mfd} 20 \overline{\mathrm{~K}} \mathrm{v}\) working． \(\mathbf{£ 3 5 . 0 0}\) each．Carr．\(£ 5.00\)
－POWER UNIT TYPE 234：200－250va．c．input，250－0－250v d．c．＠100mA and 6．3v
－＠ 4 amps output． 87.50 each．Carr．\(£ 200\)
EREDIFON TELEPRINTER RELAY UNIT No．12；ZA－41196 and power supply － \(200-250 \mathrm{~V}\) a．c．Polarised relay type 3 SEITR． \(80-0 \mathrm{~V}\) ． 25 mA ．Two stabilised valves CV 286 ．Centre Zero Meter \(10-0-10\) ．Size 8 in ． x 8 in x 8 in ．New condition．£101 Carr． \(75 n\)
SOLARTRON PULSE GENERATOR TYPE G1101－2：£75．00 each．Carr．£2．00．
ETELEPRINTER TYPE 7B：Pageprinter 24 V d．c．power supply，speed 50 bauds per Emin．second hand cond．（excellent order）no parts broken．\(£ 20\) each．Carriage \(£ 3\) ． EAUTO TRANSFORMER： \(230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000\) watts．Mounted in strong steel case ＂ \(5^{\prime \prime} \times 61_{2}^{\prime \prime} \times 7^{\prime \prime}\) ．Bitumen impregnated．£12．00．Carr．£1．50．
CRYSTAL TEST SET TYPE 193：used for checking crystals in freq．range \(\mathbf{3 0 0 0}-10,000 \mathrm{KHz}\) ．Mains 230 V 50 Hz ．Measures crystal current under oscillatory ＝conditions and the equivalent resistance．Cry
ESOLARTRON VARIABLE POWER UNIT S．R．S． \(1535: 0-500\) volts at 100 mA and E 6.3 volts C．T． 3 amps d．c． \(110 / 250\) volts a．c．input．\(£ 18.50\) ．Carr．\(£ 1.50\)
E CATHODE RAY TUBES． \(5^{\prime \prime}\) screen，type CV－1536．£4．00＋£I．00 post．Type E 95 J 20 square face \(5^{\prime \prime} \times 3^{\prime \prime} £ 7.50+£ 1.00\) post．
EPULSE GENERATOR PG21：Pulse width variable 15 nS to 200 msec in 7 ranges． EDelay variable 40 nS to 200 msec with respect to sync pulse output in 7 ranges EJitter less than \(.1 \%\) ．Repetition rate 1 Hz to 10 MHz in 7 decade ranges． 20 MHz Eavailable in double pulse mode．Pulse mode：normal，square wave and double Epulse． 240 v a．c．As new condition．£125．00．Carr．£2．00．
＝CLASS＇D＇WĀVEMETER NO．1：Cirystal controlled heterodyne frequency Emeter covering \(2-8 \mathrm{MHz}\) ．Power supply 6 V d．c．Good secondhand condition E E8．50．Carr．£1．50．

\section*{EE Ell U．K．orders subject to Value Added Tax}

PRECISION PHASE DETECTOR TYPE 205：Freq． \(0 . \mathrm{I}-15 \mathrm{MHz}\) in 5 Variable time delay microseconds \(0-0.1 \mathrm{c}, 115 \mathrm{~V}\) input．\(£ 55\) each．Carr．\(£ 1\) ． RING TOROIDAL DUST CORES：Size \(21 / 2^{\prime \prime}\) outside \(13 / 4\) inside \(5 / 16^{\prime \prime}\)＋hick．Box of two \(\mathbf{£ 1 . 0 0}\) ．Post 30p MUIRHEAD PHASEMETER TYPE D729：A．M．£95．00．Cärr．\(£ 3.00\) ． CT． \(42 \overline{0}\) SIGNAL GENERATOR： \(200-8000 \mathrm{c} / \mathrm{s}\) Variable tuning．Two fixed frequencies 9000 and 10,000 ．Internal calibrator \(100 \& 500 \mathrm{c} / \mathrm{s}\) ．\(£ 75\) each carr．\(£ 2\) ． NOISE GENERATOR TF－IIO6；Frequency 1 to \(200 \mathrm{Mc} / \mathrm{s}\) Direct noise facto calibration．Output impedance 70 ohms \(£ 65\) each．Carr．\(£ 1.50\) ． MW̄－59 UNNIVERSAL KLYSTRON POWER SUPPLY：£85．Carr．£3． TF－1278 TRAVELIING TUBE WAVE AMPLIFIER：£125．Carr．£2 BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk．3： 2 millivolts－2 volts， anges．£30．Carr．£1．
CAWKELL REMSCOPE TYPE 741 ：Memory scope，＇as new＇cond．£150．00． MANSON SYNTHESISER Q115－URC： \(2-30 \mathrm{mc} / \mathrm{s}\) ．£175．00． FIREPROOF TELEPHONES：\(£ 25.00\) each，carr．\(£ 1.50\).
POWER UNIT： \(110 / \overline{230}\) volts a．c．input． 28 volts d．c．at 40 amps output．\(£ 30.00\) each，carr，£3．00．
BACKWARD WAVE OSCILLATOR TYPE SE－125： 6.3 heater， 105 V Anode ．9mA．Mnfr．Watkins \＆Johnson．\(£ 85\) each．Carr．£1
X－BAND MODULATOR CALIBRATOR TYPE MC－420－X：Mnfr．James Scot I25 each Carr．£1
SMOOTHING UNIT（for the above）：\(£ 10.00\) each，carr．\(£ 2.00\)
ROTARY INVERTERS：TYPE PE．218E－input \(24-28 \overline{\mathrm{~V}} \mathrm{~d} . \mathrm{c} ., 80 \mathrm{Amps} .4,800 \mathrm{rpm}\) Output 115 V a．c． 13 Amp \(400 \mathrm{c} / \mathrm{s}\) ．IPh．P．F．9．\(£ 20.00\) each C．arr．\(£ 2.50\).
FREQUENCY METER BC－221： \(125-20,000 . \mathrm{Kc} / \mathrm{s}\) complete with original calibration charts．Checked out，working order．\(£ 21.00+£ 1.50\) carr． RECTIFIER UNIT：200－250v a．c．input， 24 v d．c．＠ 26 amps output continuous rating．\(£ 35.00\) each．Carr．\(£ 5,00\) ．
EVERSHED SAFETY OHM．METER：Max 10 Ma ．Test pressure 30v．Complete n leather case．\(£ 25.00\) each，post \(£ 1.00\) ．
FYLDE AMPLIFIERS TYPE 154 BDM：Rack mounted 3 y d．c．and power supply FE．500．TP．£65．00，carr．£2．00．
AÜTOMATIC VOLTAGE STABILIZËRS：Input \(207-242 \mathrm{v}\) a．c．Output 230 v a．c． at \(2.80 \mathrm{amps} . £ 17.50\) ，carriage \(£ 1.50\) ．

ANTENNA MAST 36ft．：Aluminium，diameter at base \(3^{\prime \prime}\) tapering to \(2^{\prime \prime}\) at top complete with red hazard lights，stays，guys，etc．Normally used with direction ت̈nding equipment．Approx．weight 3cwt．\(£ 95.00\) each，carriage rates on request With rotating Antenna suitable for \(200-400 \mathrm{mHz}, £ 15.00\) extra．
BURGLAR ALARM BELL： \(6-8 v\) v．d．c．\(£ 3.00\) ，\(£ 1.00\) post．

\title{
Gtatanatated them Marshall＇s
}

A．Marshall（London）Ltd Dept：WW
40－42 Cricklewood Broadway，London NW2 3ET
Tel：01－452 0161／2 Telex： 21492
\＆ 85 West Regent St Glasgow G2 2QD Tel：041－3324133
\＆ 1 Straits Parade Fishponds Bristol BS 16 2LX Tel： 0272 654201 ／ 2
\＆ 27 Rue Danton Issy Les Moulineaux Paris 92
Call in and see us 9－5．30 Mon－Fri 9－5．00 Sat
Trade and export enquiries welcome
New Catalogue price 40p（30p to callers）

\section*{OUR RANGE COVERS OVER 7，000 ITEMS THE LARGEST SELECTION IN BRITAIN TŌP 200 IC＇S，TTL，CMOS \＆LINEARS}

\author{

}

LONDON，GLASGOW，PARIS AND BRISTOL IT＇S OUR SERVICE THAT MAKES US GROW

\section*{POPULAR SEMICONDUCTORS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\(02080000000000000-0010000000000-0000000000000\) デ} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\(00000000000000000000000000000000000000-00008\) \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{朁} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\(00090003090000000000-00000000 n N M-00000000000\) \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
\(00-00 \mathrm{wn-H} 000000 \mathrm{N0000000-0000011-1-0000000000}\) \\

\end{tabular}} \\
\hline & 으웅 fot \\
\hline
\end{tabular}

\footnotetext{
Prices correct at 1st September，1976，but please add V．A．T．Post \＆Packing 30p
}
\begin{tabular}{|c|c|}
\hline Cambridge Scientific \(£ 11.45\). Oxford 300 £13.30. Programmable Scientific with free mains unt £24.95. Mains unit for alt other models £ 3.20 . & FM tuner £13.25. Q16 £9.50. PZ5 £4.95. PZ6 £8.70. Z40£5.75. Stereo 80 £11.95. Project 8050£18.95. \\
\hline \begin{tabular}{l}
JC40 AMPLIFIER \\
New integrated circuit 20W amplifier chip with pcb and data \(£ 3.95\). \\
MAINS TRANSFORMERS \\
\(6.0-6 \mathrm{~V} 100 \mathrm{~mA} 95 \mathrm{p} .9 .0 .9 \mathrm{~V} \quad 100 \mathrm{~mA}\)
\end{tabular} & \begin{tabular}{l}
SINCLAIR IC20 \\
IC20 10W +10 W stereo amp kit with printed circuit \(£ 4.95\). PZ20 Power supply for above £3.95. VP20 Control and preamp kit £7.95. SP20 10W 4 Ohm speaker for IC20 £2.95. CS20 \(11 \times 6 \times 3 \mathrm{in}\). case for 1 C 20 £ 2.95 *
\end{tabular} \\
\hline \[
\begin{aligned}
& 20 / 24 / 30 \mathrm{~V} 1 \mathrm{~A} \mathrm{E} .60 \text {. } 0 / 12 / 15 \\
& 20 / 24 / 30 \mathrm{~V} 2 \mathrm{E} £ 4.95
\end{aligned}
\] & \multirow[t]{3}{*}{\begin{tabular}{l}
JC12 AMPLIFIER. \\
6W IC audio amp with free data and printed circuit f. 1.95 苗. \\
DELUXE KIT FOR JC12 \\
Volume and tone controls and extra parts for the pcb. Mono £2.33. Stereo £4.95. JC12 POWER KIT Supplies 25V IAmp E3.55. JC12 PREAMP KITS \\
Type 1 for magnetic pickups, mics and tuners Mono £1.50. Stereo £3.00. Type 2 for ceramic or crystal pickups. Mono 88p. Stereo £1.76. \\
SEND SAE FOR FREE LEAFLET
\end{tabular}} \\
\hline \begin{tabular}{l}
FERRANTI ZN4 14 \\
IC radio chip \(£ 1.44\). Extra parts and pcb for radio \(£ 3.65\). Case \(90 p\). Send sae for free leaflet
\end{tabular} & \\
\hline \begin{tabular}{l}
BATTERY ELIMINATORS \\
STABILIZED POWER UNITS \\
Millenia series Switched 1 to 30 V in 0 IV steps. 1A output: Kit \(£ 11.45\). Kit + case \(£ 14.40\). Bult \(£ 18.40\). \\
2 A output. Kit \(£ 13.95\). Kit + case £16.90. Built £20.95.
\end{tabular} & \\
\hline \begin{tabular}{l}
Switched output of \(3.4 \frac{1}{2} \quad 6 \quad 71 / 2\). \\
9. 12 V at 500 mA \\
£5.20. \\
3.WAY MODEL \\
Switclied output of \(6 / 71 / 2 / 9 \mathrm{~V}\) with 4 -way multijack connector
\end{tabular} & \begin{tabular}{l}
S-DECS AND T-DECS* \\
S- DeC E2.24 \\
T-DeC £4.05 \\
u-DeCA \(£ 4.45\) \\
u- DeCB \(£ 7.85\) \\
16 dil IC carriers \\
with sockets \(£ 2.21\)
\end{tabular} \\
\hline \begin{tabular}{l}
RADIO MODELS \\
50 mA with press-stud battery connectors for radios etc. \(6 \mathrm{~V} \mathbf{£ 3 . 4 5}\). \(9 \mathrm{~V} £ \mathbf{£ 3 . 2 5}\). \(41 / 2+41 / 2 \mathrm{~V}\) £4.45. \(6+6 \mathrm{~V}\) £4.45. \(9+9 \mathrm{~V}\) £4.45. Also 9V 300mA £3.95.
\end{tabular} & \begin{tabular}{l}
BATTERY ELIMINATOR KITS \\
Send sae for free leaflet on range. 100 mA radio type: with press stud terminals \(41 / 2 \mathrm{~V}, 6 \mathrm{~V}\) or 9 V £1.95. 100 mA double radio type: with press
\end{tabular} \\
\hline \begin{tabular}{l}
CASSETTE MAINS UNITS \\
\(71 / 2 \vee\) output with 5 pin DIN plug. 50 mA model \(£ 3.45\). 300 mA model \(£ 3.95\).
\end{tabular} & \begin{tabular}{l}
stud terminals \(41 / 2+41 / 2 \cdot 6+6\) or \(9+9 \mathrm{~V}\) £2.60. \\
100mA cassette type: \(71 / 2 \mathrm{~V}\) din plug \\
£1.95.
\end{tabular} \\
\hline Input : 2V DC Output 6, \(7 \frac{1}{2}, ~ 9 V\) DC 1 A regulated \(£ 4.75\) *. & Stabilized 8-way types: transistor stabilized to give low hum. 3/4 \(1 / 2 / 6 /\) \(71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}\) model \\
\hline \begin{tabular}{l}
PRINTED CIRCUIT KIT * \\
Make your own printed circuits Contains etching dish. 100 sq ins of copper ciad board. 1 lb ferric chloride, etch resist pen. drill bit and laminate cutter \(£ 3.95\).
\end{tabular} & \begin{tabular}{l}
£3.15. 1 Amp model £4.65. \\
Heavy duty 13-way types: \(41 / 2 / 6 / 7\) \\
\(81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28\) \\
\(34 / 42 \mathrm{~V}\) 1A£4.40. 2A £6.95. \\
Gar converter kit: Input 12 V DC. Output \\
\(6 / 71 / 2 / \mathrm{gV}\) DC 1 A regulated E 2.95 .
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
SWANLEY ELECTRONICS \\
DEPT. WW, PO BOX 68. SWANLEY, KENT BR8 8 TQ \\
ders under \(£ 2\). otherwise free Prices include VAT (Overseas customers \(7 \%\) on items marked \(k\). otherwise \(11 \%\)) Oificial orders welcome
\end{tabular}} \\
\hline
\end{tabular}

\section*{INAIIIPLS \\ 58-60 Grove Road, Windsor, Berks, SL4
Tel: 54525 . For Industrial. Trade \& Export \\ LOW PRICES. FAST SERVICE \\ Add \(8 \%\) to prices marked * Add \(121 / 2 \%\) VAT to all other prices. or} as current VA.T. legislation Send C.W.O. except Government Dept., etc. Post and packing \(20 \mathrm{p} U \mathrm{k}\)
Barclay Card and Access by post or \(\mathbf{L} 5 \mathrm{~min}\). by telephone. List free All full spec. Money back if not satistied an spec devices. Normally 24 hour turnround on stock items.

\section*{CatronicS HAVE MOVED!}
our Mail Order and Administration departments as wall as the Showroom movern \\ \section*{NOW OPEN \\ \section*{NOW OPEN \\ showroom devoted exclusively to \\ CO, GQ, CO, \\ ALL RADIO amateuns}

\section*{Amateur Radio \& Electronics}
 en the country. With the combined resources of two of the begt known names in the businese we are sbie to provide. under one rook. Open MON. FRI. 9 am- E pm. SAT. MORN. TELETEXT
DECODER
Our kit contains all the printed circuit boards and components necessary to build the complete decoder. The fower supply and video switching circuitry are normally installed separate cabinet positioried on top of the television. PRICES ARE AS FOLLOWS: Set of 5 PCBs (incl. PSU \& Video Switching) \(£ 17.60+\) VAT \(=£ 19.80\) Component Kit (incl. PCBs)
Add-on Unit for Lower Case: PCB only
Component Kit (incl. PCB)
Cabinet \(\mathbf{2 . 1 0 + V A T}=£ 2.36\)
\(12.40+\) VAT \(=£ 13.50\) \(£ 12.00+\mathrm{VAT}=£ 13.50\)
Post \& Pkg:-PCBs are post tree but add \(£ 1\) for component kit and \(5 \overline{0}\) p for cabinét Components are also available separately with
Special Prices for Semiconductor kits. SAE for price list TEXAS X887 CHARACTER GENERATOR, £21.06; 2513, \(29.18 ; 2102,32.70\). haso prices include Var. Adr \(20 p\) PA
Dept. 620, CATRONICS LTD., COMMUNICATIONS HOUSE 20 WALLINGTON SQUARE, WALLINGTON, SURREY SM6 8RG TEL. 01-6696700
WW-620 FOR FURTHER DETAILS

\section*{Cocimsan Elaktrik MINIMUW TID POWER AMPLIFIER MODULES THE ONLY tRUE hi-fi modules available}
\begin{tabular}{|c|c|c|c|c|}
\hline Tio is minimised by the use of dominant ta compensation from the widetband class & CE 60 & 60 W.rm.s/8r & £14.55 & \\
\hline iver to the feedback point.ultra-limear. & C E 100 & \(100 \mathrm{Wrms} / 4\) & £17.55 & \\
\hline nity gain. lasl triples are employed in the stput stage for fow distorlion and last & & & & \\
\hline slewing. white a two transisto, voltage ompli- & fr & se & 35kH & \\
\hline fier with current source toad provides the gain. Shunt and series Zobel retworks are & Sett & \[
\mathrm{me}:<15 \mu \mathrm{~s}, 8
\] & \(\mu\) f; & \\
\hline uthesed to acheve impeccable reat & Signa & olse ratio & & \\
\hline d & Sensit & \(y 250 \mathrm{mv}\). & 56 kn & \\
\hline Send ch & No obs & veable slew - rat & limiti & \\
\hline CRIMSON ELEKTRIX & fully pr & ected - load lin & sensing & \\
\hline l4 STATIGN ROAD & D.C. cou & led, suitable for & \(\pm 15.10\) & \\
\hline ems. welcome. RAJBY & Small s & - - on y \(80 \times 120\) & 25 mm . & \\
\hline tel 0533-38621t LEICESTER & Fully te & d and guarante & & \\
\hline
\end{tabular}

WW - 055 FOR FURTHER DETAILS

Audio Connectors
3roadcast pattern jackfields, jackcords, plugs and jacks
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut

Hirschmann Banana plugs and test probes XLR compatible in-line attenuators and eversers.
ow cost slider faders by Ru
Future Film Developments Ltd.
90 Wardour Street
London WIV 3LE
01-437 1892/3

DIVERSITY SWITCH TYPE MA1688 Solid siat DIVERSITY SWITCH TYPE MAIG88. Solid Slate
E45.00.
REDIFON SSB TRANSMITTER/RECEIVER TYPE E45.OO.
REDIFON SSB TRANSMITTER/RECEIVE
GR410. Full paricuiars and price on request
SRLI GR410. Full paniculars and price on request
SOLOTRON REGULATED PSU MODEL SRS 152 0170 DC to \(200 \mathrm{~mA} .160 .340 \mathrm{v} 330-500 \mathrm{v}\) and 4 C 6.3v \(5 \mathrm{amp} £ 35.00\). Carriage \(£ 5.00\)

RACAL RECEIVERS MODELS. RAIT. in tully working and tuned condtion. Pr
application RA98A AOAPTOR E85.00. application RAGQEACY COUNTER SA 550
RACAL FREQUENCY RACAL FREQUENCY COUNTER SA 550 .
Measures freq up to 100 MHz , also period and Measurs feg
time \(£ 135.00\) carrage 5400
5248 FREOUENCY COUN 5248 FREOUENCY COUNTER. Measures basicaly to 10 MHz , Display on
decitels. PDA

PHILIPS AUDIO GENERATOR TYPE GM 2308 \(0.16 \mathrm{kc} / \mathrm{s}\) Attenuator 00001.000030001 to with output asym \(\&\) sum and matching impedance 5 ,
\(250.600 \& 1.000\) ohms Price \(£ 120.00\) carriage 250
i4
FRR
2n
FERRANTI SWEEP GENERATOR LF MK 2.0 .2 to 20 cps Band sweep i 5 . 10.15 M
\(10-220 \mathrm{MHz}\) f55.00 carriage is 00

\section*{BOONTON}

AM/FM SIGNAL GENERATOR. AM/FM SIGNAL GENERATOR.
TYPE 202 E \& \(202 \mathrm{H} .54-216 \mathrm{MHz}\) in 2 ranges \(£ 275.00\) SIGNAL GENERATOR TS 497 /URS \(2-5 \mathrm{Mz}, \quad 13 \mathrm{MHz}\) \(30 \mathrm{MHz}, \quad 78 \mathrm{MHz} \quad 180 \mathrm{MHz}\) \(400 \mathrm{MHz} \quad 0 \quad 1 \mathrm{v} \cdot 1 \mu \mathrm{v} \mathbf{£ 1 5 0}\) carriage £300

\section*{Open Monday to Friday \\ 9-12.30, 1.30-5.30 p.m.}

BRUEL \& KJOER RANDOM NOISE GENERATOR
TYPE 1402 . FTeq resp \(20.20000 \mathrm{c} / \mathrm{s}\), tume canstant 0515 S 15 sec Matching imped 6.60600
6,000 ohms and atrenualor 6.000 ohms and antenuator 004012.04 .124
4000 output level 1 to 10 Price \(£ 155.00\) carrage 4000 output level 1010 Price \(\mathbf{£ 1 5 5 . 0 0}\) carriage
i300
TRIGGERED Vacuum SPARK GaP TYPE 2R 7512. Capable of swiching 15.000 |oules at 45 KV LOW RESISTANCE HEADPHONES TYPE CLR E2.50. 40p postage VAT \(25 \%\)
CINTEL TYPE 1873 SQUARE WAVE \& PULSE GENERATOR. Freq \(5 \mathrm{C} / \mathrm{s}\) to 250 KHz Pulse 05 sec
\(03 \sim 3\) Oulput to 50 fov 1000 l \& to 5 v for 100 n
O 3u 3. Output to 50 V for 1000 n \& to 5 v for 100 n
POA
RADIOMETER TYPE MS 111 SIGNAL GENERA. TOR. High quality Oanish production \(10 \mathrm{KHz}-110 \mathrm{MHz}\) C200 carriage 1.500
 AVO NOISE GENERATOR CT 410 £ 30 carriage BRIDGE IMPEDANCE NO
EDISWAN STABILIZED POWER UNITS. TO 100 V 50 MA Type R 1280 to \(300 \mathrm{~V} \cdot 150 \mathrm{MA}\) and 300 c 75 mA
TEKTRONIX OSCILLOSCOPES 535, 545 \& 5454 With plug in units \(\mathrm{CA}(33 \mathrm{MHz}\) double beam)
\(G(20 \mathrm{MHz}\) differental \(50 \mathrm{mV}-20 \mathrm{v}\)) and D (high gan differential \(1 \mathrm{MV} \cdot 50 \mathrm{vy}\)

\section*{TECHNICAL MATERIAL CORP EXCITER/, TRANSMITTER MODE SELECTOR. Freq
2.32MHZ MD and 10 crystal positions vernier tuning USB. LSE var carrier insertion elc \(\mathbf{£ 2 0 0}\) carilage fil
FSK EXCITER
 continued frequency shith up to 600 Hz sw ithed
frey correcton Modes FAX FS MSC CW
f50 E50.00 carriage ES 00
AMPLIFIER UNIT AMPLIFIER UNIT TYPE 1430 Dynatron Production Pulse amplifier with control
Ditferential and integration time constant
008 sto 8 As Amenuation to 20 db \(\mathrm{PO} A\)
 discriminator all meler reads channel width
theshold evel \(P O A\)}

AHOOE \& SCHWARZ. 2-9 DIAGRAPH TYPE
ZDU \(\mathbf{3 0 - 4 2 0 \mathrm { MHz }} 50\) :) Directly measures 2DU 30-420MHz 50:) Drectly measures
multherminal net-works phrase sinft phase angie with complimentary POWER SIGNAL
GENERATOR TYPE SMLM high freq resolution. Internal external mos up \(103 v\) out ETSO.
EREQUENCY SYNTHESIZER TYPE FREQUENCY SYNTHESIZER TYPE XUA.
\(3 O H Z .30 M H Z\) With FREQUENCY INDICATOR
 SIGNAL GENERATOR NO \(16.8 \mathrm{~cm}-11 \mathrm{~cm} 685\) carriage 4 GO
SIGNAL GENERATOR NO 13.20 MHz -80 MHz. AM FM CW 1 -V. 1 V E 65 carrage t 4 DO
KAHN SSB ADAPTOR TYPE RSSE - \(62-18\).
Designed for recevers with 455.500 KHz IF al 100 mV Designeds or receivers with \(455-500 \mathrm{KH}\).
(max) input Features electronic AFC (Mnax) input Features electronic AFC camint fea
diversity to combat fading 20 sce R C memory to maintain tuning durng severe fading Individuaic cartion
meters nuvishers 10 W distortion production merers nutur \(£ 65\) carrage \(£ 500\)
dem TF \(\mathbf{8 0 1 B / 2 . ~ S p e c ~ a s ~ f o r ~} 801 \mathrm{D}\) but minor
difterences Few only left \(\mathbf{f 1 2 0} \mathbf{1 2 0}\) carrage E 500

BEST PRICES PAIO FOR TEST ANO COMMUNICATION EQUIPMENT. Single items or quantities. Priyate or Industrial.

 50 ? output impedance internal modulation at 1 KHz at up to \(90 \%\) depth also external sine and pulse
modulation Bult in 5 MHz Crystal calibrato Separate modulation Bult in
Pf and
ard
mod meters POA TF 1066 SIGNAL GENERATOR. Frea 10470 MHz with attenualor EMF front 50 ? sq quare. - 6 dB Price on

\section*{application
IF
1060}

TF 1060 SIGNAL GENERATOR 450 MHz to
1200 MHz with allenuator Outpu: for 0 I \(V\) to \(4 V\) 1200 MHz with allenuator Outpu: for 0 i V to
CW Int A M \& Ext Pulse \(£ 200.00 \mathrm{carrage}: 500\) TF 1041 B VALVE MULTIMETER. General purpose measuring DC voltage from 300 mV to 1000 V AC
voltage from 300 mV to 300 V at up to 1000 MH and voltage from 300 mV to 300 V at up to 1000 MH and
resistance up to 500 Mohms ptice f 65 carriage 1300 TF 1370 R.C. OSCILLATOR FOR SQUARE \& SINE WaVE. Freq -316 V rms. \(10 \mathrm{~Hz}-1 \mathrm{MHz}\) square wave
 cartrage EMI OSCILLOSCOPE WM8 AC/DC to 15 mc
Time base 015 Msec 15 Msec £40 carnage E 500 Time base \(015 \mathrm{Msec} 15 \mathrm{Msec} £ 40\) carriage i5 00 HR 23 TRIPLE DIVERSITY SSB RECEIVERS. Freq independent single or double side band transceivers mull spec on application \(£ 350\) carnage 23500 TF 985A/1 VIDEO OSCILLATOR. O. 30 KHz 5 MHz 1 Mv 31 6v 685 cartage it 00
¿300
TF 1400 S DOUBLE PULSE GENERATOR WITH TM 6600 SECONDARY PULSE UNIT lor lesting
radad nucleonics scopes counters. fiters, etc E175 radad nucleonice
carrage \(E 500\)

\section*{500/250 MEDIUM WAVE BROADCAST \\ TRANSMITT
On application}

\section*{VAT FOR TEST EQUIPMENT}
\(\qquad\)
PLEASE SEND STAMP WITH ENQUIRIES COLOMOR 170 Goldhawk Rd. London W. 12 (Electronics ito.) Tel. 01-7430899

\title{
HART ELECTRONICS \\ The Only Firm for Quality Audio Kits J. L. Linsley-Hood High Quality Cassette Recorder
}

As these circuits in recent issues of "Wireless World" are capable of such an excellent performance we feel that it is not sensible to sacrifice this potential by designing a kit down to a price. We have theretore spent a little more on professional hardware allowing us to design a very advanced modular system. This enables a more satisfactory electrical layout to be achieved, particularly around the very critical input areas of the replay preamps. These are totally stable with this layout and require no extra stabilising components. Many other advantages aiso come from this system which has separate record and replay amps for each channel plugging in to a master board with gold plated sockets. The most obvious is the reduction of crosstalk and interaction which could cause trouble on a single plane board, with our modular system the layout is compact but there is no component crowding. Testing is very easy with separate identical modules and building with the aid of our component-by-component instructions is childishly simple, but the finished result is a unit designed not to normal domestic standards but to the best professional practice.

EnCo CRV CASSETTE MECHANISM
High Quality, robust cassette transport for Linsley Hood Recorder. Features fast forward. tast rewind, record, pause and automatic cassette ejectuon facilities Fitted with Record/Play and Erase Heads and supplied complete with Data and extra cassette ejection spring fo
\(71 \times\) Complete set of parts for Master Board, includes Bias oscillator. Relay. Controls etc. \(£ 9.83+£ 1.23\) VAT
\(72 \times\) Parts for Motor Speed and Solenoid Control for Lenco CRV Deck. £3.52 + 44p VAT
73x Complete set of parts for stereo Replay Amps and VU Meter Drive. \(£ 8.02+£ 1\) VAT
\(74 x\) Complete set for Stereo Record Amps E6. \(64+83\) p VAT
\(75 x\) Complete set of parts for Stabilised Power Supply including special Low Hum field Mains Transformer. This unit is a separate \(3.5^{\prime \prime} \times 5^{\prime \prime}\) PCB designed so that the motor control board fits above it to save space \(£ 8.29+£ 103\) VAT
700 M . VU Meters Individual high quality meters with excellent
ballistics and built-in illumination. \(\mathbf{E} 6.48+81 p\) VAT PER PAIR

\section*{ALL PARTS ARE POST FREE}

Please send \(9 \times 4\) SAE for lists giving fuller details and Price breakdowns.
A suitable Metalwork and Front Plate will be available soon

\section*{Understand electronics.}

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit Course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

FOR EX STOCK DELIVERY OF:

\section*{B.P.O. COMPONENTS}

Manufacturers' Trade/Export enquiries only, quoting BPO and/or Manufacturers' Reference numbers

TELEPHONE \& WIRELESS COMPONENTS LTD.
147 The Broadway, London, NW9 7EA
Tel: 01-203 2814
Cables: Telwireco London NW9

\section*{Distributors for Siemens}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Valves} & \multicolumn{4}{|l|}{Semi Conductors} \\
\hline Type Price & Price (p) & Type P & Price (p) & Type P & Price (p) & Type & Price (p) \\
\hline DY87 & 43 & PCF802 & 52 & AD142 & 62 & BC148 & 9 \\
\hline DY802 & 43 & PCL82 & 54 & AD143 & 65 & BC149 & 10 \\
\hline ECC82 & 44 & PCL84 & 55 & AD149 & 65 & BC153 & 20 \\
\hline EF80 & 34 & PCL85 & 57 & AD161 & 47 & BC154 & 20 \\
\hline EF183 & 39 & PCL86 & 52 & AD161/2PR & R \(£ 1.00\) & BC157 & 11 \\
\hline EFF184 & 39 & PFL200 & 65 & AD162 & 38 & BC158 & 10 \\
\hline EH90 & 40 & PL36 & 63 & AF114 & 25 & BC159 & 11 \\
\hline PC86 & 58 & PL84 & 30 & AF115 & 22 & BC160 & 30 \\
\hline PC88 & 58 & PL504 & 90 & AF116 & 22 & BC161 & 33 \\
\hline PC900 & 30 & PL508 & 85 & AF117 & 20 & BC171 & 10 \\
\hline PCC89 & 46 & Pl509 & ¢1.35 & AF118 & 52 & BC172 & 10 \\
\hline PCC189 & 47 & PY88 & 43 & AF124 & 38 & BC173 & 15 \\
\hline PCF80 & 41 & PY500A & ¢1.25 & AF125 & 27 & BC178 & 18 \\
\hline PCF86 & 44 & PY800 & 47 & AF126 & 38 & BC178B & 20 \\
\hline PCF 801 & 46 & & & AF127 & 25 & BC179 & 22 \\
\hline & & & & AF139 & 39 & BC182 & 11 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Integrated Circuits}} & AF178 & 69 & BC182L & 12 \\
\hline & & & & AF180 & 69 & BC183L & 12 \\
\hline & & & & AF181 & 69 & BC184 & 12 \\
\hline Type P & Price (p) & Type & Price (p) & AF239 & 45 & BC186 & 25 \\
\hline ETTR6016 & £2.00 & SN76666N & 90 & AF240 & 20 & BC187 & 25 \\
\hline MC1351P & 70 & TA7124P & 73 & AL102 & ¢1.40 & BC204 & 14 \\
\hline SAS560S & \(¢ 1.65\) & TA7141AP & 1.140 & AL103 & 1.30 & BC212 & 11 \\
\hline SAS570S & \(¢ 1.65\) & TAA550 & 32 & AU107 & ¢1.35 & BC212L & 11 \\
\hline SN76003N & N \(¢ 2.35\) & TAA700 & \(£ 3.80\) & AU110 & 1.120 & BC213 & 11 \\
\hline SN76013N & V £1.43 & TBA120AS & 60 & AU113 & \(¢ 1.05\) & BC213L & 11 \\
\hline SN76013ND & 1 D £1.25 & TBA120SO & ¢1.00 & BC107 & 10 & BC214 & 13 \\
\hline SN76023N & 1 ¢ 1.43 & tBA480a & ¢1.40 & BC107B & 15 & BC214L & 15 \\
\hline SN76023ND & ND £1.20 & TBA520a & \(\underline{1.75}\) & BC108 & 10 & BC237 & 11 \\
\hline SN76033N & N \(£ 2.15\) & TBA530a & ¢1.75 & BC109 & 12 & BC238 & 11 \\
\hline SN76110N & N £1.75 & TBA540Q & C1.25 & BC109C & 14 & BC301 & 30 \\
\hline SN76226N & N £2. 20 & TBA550Q & ¢2.30 & BC113 & 15 & BC303 & 30 \\
\hline SN76227N & N £ 1.45 & TBA560Ca & ¢ \(¢ 2.40\) & BC114 & 15 & BC327 & 13 \\
\hline SN76532N & N ¢1.45 & TBA800 & ¢1:10 & BC115 & \(17 \frac{1}{17}\) & BC328 & 13 \\
\hline SN76533N & N ¢1.50 & TBA920Q & \(£ 2.90\) & BC116 & \(17 \frac{1}{25}\) & BC337 & 12 \\
\hline SN76544N & \(\mathrm{N} \quad 11.70\) & TBA9900 & \(£ 2.50\) & BC116A & 25 & BC338 & 12 \\
\hline SN76559N & N 11.15 & tca270a & £2.90 & BC117 & 14 & BC546 & 13 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SN76560N 60}} & BC118 & 15 & BC547 & 12 \\
\hline & & & & BC119 & 27 & BC548 & 12 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Semi Conductors}} & BC125 & \(17 \frac{1}{18}\) & BC549 & 13 \\
\hline & & & & BC125B & 18 & BC550 & 14 \\
\hline & & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Type Price (p)}} & BC126 & 15 & BC556 & 14 \\
\hline \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{Price (p)} & & & BC132 & 15 & BC557 & 13 \\
\hline & & & & BC135 & 15 & BC558 & 12 \\
\hline AC107 & 25 & AC155 & 18 & BC136 & 16 & BC559 & 14 \\
\hline AC126 & 24 & AC156 & 28 & BC137 & 20 & BCY72 & 16 \\
\hline AC127 & 20 & AC176 & 22 & BC138 & 30 & BD115 & 39 \\
\hline AC128 & 15 & AC176K & 34 & BC139 & 28 & BD116 & 59 \\
\hline AC128K & 24 & AC187 & 20 & BC140 & 32 & BD124 & 75 \\
\hline \multirow[t]{2}{*}{AC141K} & 24 & AC187K & 35 & BC141 & 28 & BD131 & 35 \\
\hline & 28 & AC188 & 18 & BC142 & 20 & BD132 & 39 \\
\hline AC142 & 31 & AC188K & 30 & BC143 & 25 & BD133 & 45 \\
\hline \multirow[t]{2}{*}{\(\frac{\overline{A C 142 K}}{\text { AC151 }}\)} & 31 & AC193K & 36 & \(\overline{\text { BC147 }}\) & 8 & BD135 & 29 \\
\hline & 28 & AC194K & 35 & BC147A & 11 & BD136 & 30 \\
\hline \(\overline{A C 154}\) & 18 & AD140 & 65 & & & & \\
\hline
\end{tabular}

TERMS: PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER. ACCESS CARD, BANKAMERICARD, BARCLAY CARD ACCEPTED. (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS
POSTAL AND HANDLING CHARGES
SHIPMENT VIA AIR MAIL
SHIPMENT VIA AIR MAIL
under 4.99 add 45
5.00-9.99 add 35 No Charge

DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL
*Our rapidly growing number of Area Distributors will provide you with a fast and efficient local service. See rlght hand columns for name and address.
※Prices subject to \(12 \frac{1}{2} \%\) V.A.T.
*C.P.C. Price - Quality - Service

\title{
Iow cost topquality COMPONFNTS
}

\section*{- A.E.G. Telefunken and Toshiba Components}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Semi Conductors} \\
\hline Type Price (p) & Type Price (p) \\
\hline & \(\frac{\text { Efas }}{\text { Efase }}\) \\
\hline \({ }^{80139}\) - \({ }^{37}\) & Er459 \\
\hline 144 & \({ }^{\text {erfaz }}\) \\
\hline B0146
80160
E1.65 & \(\frac{18}{\text { Efrx29 }}\) \\
\hline \({ }^{80181}{ }_{80}\) & Ex<84 \\
\hline \({ }^{80188}\) & 8x885 \\
\hline \({ }^{80184}\) & Efr888 \\
\hline & ersso \\
\hline \({ }^{10225}\) & drys \\
\hline \({ }^{80233}\) & \({ }^{\text {Bry } 90}\) \\
\hline 802 & Br100 \\
\hline \({ }_{\text {boren }}\) & \\
\hline \({ }_{802}\) & \({ }_{\text {8RP39 }}{ }^{\text {8R8 }}\) \\
\hline & \\
\hline & \\
\hline & \\
\hline Efise & 81108 \({ }^{\text {cil }}\) \\
\hline BEF160 & 8U126 \\
\hline & \\
\hline \({ }_{\text {chem }}^{\text {Ef13 }}\) & (10206 \\
\hline BF119 & 81208 \\
\hline & \({ }^{\text {B20880 }}\) \\
\hline Bri 182 & Burrsa \\
\hline EFF183 & E1222 \\
\hline Bfi84 & Westio \\
\hline Efibs & 2n696 \\
\hline BFI 194 & 2N06 \\
\hline EFF195 & 2 23053 \\
\hline Effict & 2,30 \\
\hline Ber 198 & 23372 \\
\hline & 2037 \\
\hline EF200 & \(2 \mathrm{N3704}\) \\
\hline 8F218 & 2n3705 \\
\hline 8.224 & N338 \\
\hline derent & \\
\hline 8F257 & \\
\hline der 288 & \\
\hline & \\
\hline & (R20088 \\
\hline & \\
\hline
\end{tabular}

\section*{Diodes}
\begin{tabular}{|c|c|c|c|}
\hline Type & Price (p) & Type Pris & Price (p) \\
\hline BA115 & 9 & 0A47 & 8 \\
\hline BA145 & 16 & OA90 & 6 \\
\hline BA148 & 16 & 0A95 & \(5 \frac{1}{2}\) \\
\hline BA154/201 & 12 & OA202 & 8 \\
\hline BA155 & 15 & IN60/DA91 & \(1 \quad 7\) \\
\hline BAX13 & 6 & IN914 & 6 \\
\hline BAX16 & 6 & IN4001 & 4 \\
\hline BY126 & 11 & IN4002 & 5 \\
\hline BY127 & 10 & IN4003 & 5 \\
\hline BY199 & 25 & IN4004 & 5 \\
\hline BY206 & 17 & IN4005 & 5 \\
\hline BY238 & 25 & IN4007 & 6 \\
\hline BYX10 & 14 & IN4148 & 4 \\
\hline \multicolumn{4}{|l|}{\(\star 20\) p or less. Minimum 5 items} \\
\hline \multicolumn{4}{|l|}{CHT Mutinigus} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type & Chassis & Price \\
\hline 2DAK & 1500 (17' \(\times 19^{\prime \prime}\)) & £1.85 \\
\hline 2TQ & 950 MK 21400 & £2.05 \\
\hline 2TAK & 1500 (23' \(\times 24^{\prime \prime}\)) & £2.05 \\
\hline 11TAQ & ITT CVC 1. 2 \& 3 & £5.10 \\
\hline ITN & GEC Sobell & ¢4.50 \\
\hline IITAZ & GEC 2110 & ¢ 4.50 \\
\hline IITAM & Philips G8 & ¢4.50 \\
\hline IITBD & Philips 550 & £4.65 \\
\hline 3TCW & Pye 691/693 & \(¢ 3.49\) \\
\hline ITH & Decca 30 Series & £4.60 \\
\hline 3TCU & Thorn 3000/3500 & £5.00 \\
\hline 11 HAA & Thorn 8000 & £1.99 \\
\hline 11HAB & Thorn 8500 & £4.31 \\
\hline IITCP & Bush 823 & £5.50 \\
\hline TVKI & Korting & £4.39 \\
\hline
\end{tabular}

\section*{New B \& W Tubes}

\section*{screen}
\(\left.\begin{array}{llll}\begin{array}{l}\text { Size }\end{array} & \begin{array}{l}\text { Type } \\ \text { Toshiba }\end{array} & \text { E2117A }\end{array} \quad \begin{array}{r}\text { Price } \\ \text { £17.75 }\end{array}\right)\)

\section*{Distributors}

\section*{WEST MIDLANDS \\ Geetavision \\ 116 The Park Paling, \\ Cheylesmore, \\ Coventry CV3 5LL \\ Tel. Coventry 56476-503598 \\ EAST ANGLIA \\ Norwich Electronic Components 16 Denbigh Road Norwich. NR2 3AA Tel. 060328625}

LONDON
8 SOUTH EAST

\author{
Paul Electrical Ltd., 250/252 Grand Drive, Raynes Park, \\ London. SW 20 \\ Tel. 015426546
}

\section*{DORSET}

HANTS, ISLE OF WIGHT

\section*{N.IRELAND}

Electronic Sales
(Ulster) Limited,
4 Tates Ave., Lisburn Road,
Belfast BT9 7BY
Tel. Belfast (0232) 668718

\section*{LANCASHIRE}

Moorside Electrical Co 70 Moorside Avenue. Smithills
Bolton. Tel. 020440918

\section*{MERSEYSIDE, CHESHIRE \\ SALOP, STAFFS.}

Ribble Electronics,
Rear 331 Squires Gate Lane, Blackpool FY4 3RG
Tel. Blackpool 025343612

\section*{WALES}

Swansea Aerlal Co. Lts. Slioh Road,
Landore,
Swansea SA1 2NT
Tel. Swansea 50393/54836

Double D. Oistributors
16 Highfield Road, Bournemouth BH9' 25 S Bournemouth BH9
Tel. 0202519562

\section*{SOUTH WEST}
D. B. Components, 1 Devonshire Street. Greenbank, Plymouth, Devon Tel. (0752) 24369

\section*{Distributors are} still required for the following areas-
1 Yorkshire West \& North Humberside Area
2 Yorkshire South Nottingham, Lincoln
3 Leicester, Northants Warwickshire
4 North East
5 Somerset, Avon
Gloucester, Wilts.
6 Oxford, Berkshire
Buckinghamshire
7 Bedfordshire, Herts

Good people to deal with

C.P.C., Dept. W. 194.200 NORTH ROAD PRESTON, LANCASHIRE, ENGLAND Phone: Preston (STD 0772) 55034. Telex E77122
AROUND THE WORLD EXPORT SERVICE- ask for Rotin Pratt New price list 1.10 .76

\section*{Wireless World Dolby \({ }^{\text {non}}\) noise reducer \\ Trademark of Doiby Laboratones inc.}

We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring
- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decodıng Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-heaa machines

The kit includes
-complete set of components for stereo processor
-regulated power supply components
-board-mounted DIN sockets and push-button switches
-fibreglass board designed tor minimum wiring
-solid manogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts
PRICE: \(£ 37.90\) + VAT
Also available ready built and tested
Price \(£ 52.00+V A T\)
Calibration tapes are avaılable tor open-reel use and for cassette (specify which)
Price \(\mathbf{£ 2 . 0 0}+\) VAT *
Single channel plug-in Dolby \({ }^{(T)}\) PROCESSOR BOARDS \((92 \times 87 \mathrm{~mm})\) with gold plated contacts are available with all components

Price \(£ \mathbf{7 . 2 0}+\mathrm{VAT}\)
Single channel board with selected fet
Price £2.20 + VAT
Gold plated edge connector
Price £1.40 + VAT*
Selected FET's. 60p each + VAT, 100p + VAT for two, \(\mathbf{£ 1 . 9 0 + V A T}\) for four
Please add VAT at \(121 / 2 \%\) unless marked thus*, when \(8 \%\) applies We guarantee full after-sales technical and servicing facilities on all our kits

\(\rightarrow\) master charge Trintion cat

\section*{S-2020TA STEREO TUNER / AMPLIFIER KIT}

\section*{SOLID MAHOGANY CABINET}

A high-quality push-button FM Varicap Stereo Tuner combined with a 24W r.m.s. per channel Stereo Amplifier.

Brief Spec. Amplifier: Low field Toroidal transformer, Mag. input, Tape In / Out facility (for noise reduction unit, etc), THD less than \(0.1 \%\) at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range \(88-104 \mathrm{MHz} .30 \mathrm{~dB}\) mono \(\mathrm{S} / \mathrm{N} @\) \(1.8 \mu \mathrm{~V}\).THD typ. \(0.4 \%\)

PRICE: £53.95 + VAT

\section*{NELSON-JONES STEREO FM TUNER KIT}

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter / dual IC IF amp.

Brief Spec. Tuning range \(88-104 \mathrm{MHz} .20 \mathrm{~dB}\) mono quieting @ \(0.75 \mu \mathrm{~V}\). Image rejection - 70 dB . IF rejection--85dB. THD typically \(0.4 \%\)
IC stabilized PSU and LED tunina indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price

Mono £29.15 + VAT
With ICPL Decoder \(£ 33.42\) +VAT With Portus-Haywood Decoder
\(£ 35.95\) +VAT

Sens. 30dB S/N mono @ \(1.8 \mu \mathrm{~V}\) THD typically \(0.4 \%\)
Tuning range \(88-104 \mathrm{MHz}\)
LED sig. strength and stereo indicator

\section*{STEREO MODULE TUNER KIT}

A low-cost Stereo Tuner based on the Mullard LP1 186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC

PRICE: Mono £26.85 + VAT
Stereo £29.95 + VAT

\section*{S-2020A AMPLIFIER KIT}

Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Type Spec. \(24+24 \mathrm{~W}\) r.m.s into 8 -ohm load at less than \(0.1 \%\) THD. Mag. PU input \(\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}\). Radio input \(\mathrm{S} / \mathrm{N}\) 72 dB . Headphone output. Tape In/Out facility (for nolse reduction unit, etc.). Toroidal mains transformer

PRICE: \(£ 31.95\) +VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS
'PHASE-LOCKED IC DECODER KIT
PUSH-BUTTON UNIT
\(£ 4.47\) +VAT
\(£ 4.50+V A T\)

With the precision of the Jackson G10 Gearbox, you get ten turns of input equalling one effective turn of output. This makes the G10 ideal for decima presentation for analog control. The Gear Box itself is packaged within 70 mm by 35 mm by 19 mm . The output shaft drive torque is greater than 700 gm cms . Input shaft diameters are 6 mm . All the gears are fully anti-backlash loaded. The Jackson G10, the compact, versatile gearbox.
All Jackson Products are backed by 50 years' experience in the communications field. Highly skilled men, and Jackson Brothers' good name.

\section*{Write for further information to \\ JACKSON BROTHERS (LONDON) LIMITED}

Kingsway, Waddon, Croydon CR9 4DG
Tel: 01-681 2754/7 Telex 946849 U.S. Office: Swedgal Electronics Inc. 258 Broadway, New York, N.Y. 10007 B.S. 9000 Approved. DEF STAN 05-21.

WW - 029 FOR FURTHER DETAILS

Celestion \(\boxed{ }\)

the sound to be experienced!

Suppliers of a wide range of electronic components around the World - electronic tubes, radio valves, capacitors, resistors and semi-conductors.
Test instruments also a speciality. Requests for quotations dealt with promptly

Write to:
TWELVE COUNTIES ELECTRONICS LTD.
Export Division, 46 Treen Avenue, London SW13. Or cable: TWELVCOUNT, London SW1.

\section*{\(20 \times 20\) Watt STEREO AMPLIFIER}

Superb Viscount IV unit in teak-finished cabinet. Black fascia with aluminium rotary controls and pushbuttons, red mains indicator and stereo jack socket. Function switch for mic, magnetic and crystal pick-ups, tape, tuner, and auxiliary. Rear panel features two mains outlets, DIN speaker and input sockets,
plus fuse. \(20+20\) watts rms, \(40+40\) watts peak.

\section*{HOW YOUCANSAIVB 2990}

\section*{SYSTEM 1B}

For only \(£ 80\), you get the \(20+20\) watt Viscount IV amplifier; a pair of our 12-wattrms Duo Type Ilb matched speakers; a BSR MP 60 type deck complete with magnetic cartridge,
de luxe plinth and cover.

\section*{SYSTEM 2}

Comprising our \(20+20\) watt Viscỏunt IV amplifier; a pair of our large Duo Type III matching speakers which handle 20 watts rms each; and a BSR MP 60 type deck with magnetic cartridge,
de luxe plinth and cover
Eg200

Carriage surcharge to Scotland: System \(1 \mathrm{~b} £ 2.50\), System \(2 £ 5\)

\section*{x 30 AMPLIFIER KIT}

Specially designed by RT-VC for the experience constructor, this kit comes complete in every detail. Same facilities as Viscount IV amplifier. Chassis is ready punched, drilled and formed. Cabinet is finished in teak veneer. Black fascia and easy-to-handle aluminium knobs. Output \(30+30\) watts rms, \(60+60\) peak.
£2900
+ p \& p.f2. 10

SPEAKERS Two mocels- Duo lib teak veneer, 12 watts rms, 24 watts peak

TURNTABLE Popular BSR MP with magnetic cartridge, diamond stylus, and de luxe plinth and cover £2400 \(+p \& p £ 3.50\) NGIUTE

STEREO CASSETTE DECK KIT
Again, this kit is specially designed for the experienced constructor - for mounting into his own caoinet.

DELUXE ACCESSORY KIT Camprises of t amethet piair of tomumic mics. \({ }^{\text {and }}\) mw rapalcamenat sider lovel control.
 hBOVE TEM Features include solenoid assisted AUTO-STOP, 3-digit counter, record/replay PC board, mains transformer and input and output \(£ 3250\)

TURNTABLES BY BSR STEREO AMPLIFIER KIT
Big value from RT-VC! Two units COMPLETE WITH PLINTHS. First, the popular. MP 60 type semi-professional deck. \(£ \mathbf{7 5 0}+p \& p . £ 2.50\)
Second, the lower-cost C141 automatic unit, fitted with a stereo ceramic cattridge \&1195 \(£ \mathrm{E} 2.55 \mathrm{p}\).
Both units have plinths finished in superb teak veneer. Either way, you're on toa bargain trom RT-VC.

Build up a 4 -watts rms per channel stereo amplifier with Unisound MK2 modules For only \(£ 9.95\)
 you get pre-amp, power amp, and all the control panel paits. Features include IC power chips for low distartion For the experienced constructor anly.

\section*{DIY STEREO SYSTEM}

COMPLETE WITH SPEAKERS
Here's real value in DIY! Comprises ready-built amplifier module, 3-speed Garrard auto-return deck, and teak-veneer simulate cabinets with clear plastic top. Easily built by hobbyists.

\section*{E}

35-WATT DISCO AMP
Here's the mono unit you need to start off with. Gives you a good solid 35 walts rms, 70 watts peak output. Big leatures include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted: with integral push-pull switches. Independent bass and treble controls and master volume \(\mathbf{\Sigma 2 7 5 0}+0\)

\section*{70 and 100 WATT DISCO AMPLIFIERS}

Britlian:ly styled for easy disco pertormancel Sloping fascia, so that you can use the conirols without fus
or bother. Brusheta alumini um fascia and rotary conrols five smoont acting, venically mounted slide controls master volume, rape level, mic level, deck kevel. graduated dhation fath in
graduated change from fecort
deck No 1 io No. 2 or vice. \(\mathbf{E 4 0 0}\)
versa. Pre-lade level control IPFLL leis YOU hear next disc
belore fading I in VU meler monitors ourput level 70
walls ims. 140 walls peak
output All the tug featires as
on hin 70 . wall disco
amplifier but with a massive
E500
100 waltis mis 200 watis
100 watts rnss, 200 watis

ELECTROLYTIC CAPACITORS AT

\section*{BARGAIN PRICES}

PACK 1. Containimo 30 mixed Electrontict vavas trom
4.7 mifd to 47 madd. Miaimum 16 volt workiag.
\({ }^{55} 5 \mathrm{p}+20 \mathrm{p} \mathrm{p}_{\mathrm{p}}\).
PACK 2 Containity 17 mixel Elisctratyic values from
100 mith 102200 end. Mailinum 18 volt warkim. Majority
\(545 p+20 p \mathrm{p} 8 \mathrm{p}\).

\section*{ALL PRICES INC.VAT}
at Curment rates
GOODS NOT DESPATC.HED OUT
All items subject to availability Price correct at ist September 197.6 and

For further information, please send stamped addressed envelope with built-in pre-amplifiers Here's the big-value portable disco console from RT-VC! It features a pair of BSR MP 60 type auto-return, single-play professional series record decks. Plus all the controls and teatures you need to give fabulous disco performances. Simply
£5500 connects into your existing \(+p \& p\). £6.50 slave or external amplifier.
tascia, so that you can use the controls withour fuss

EASY-TO-BUILD, WITH ENCLOSURE Specially designed by RT-VS for cost-conscious hi-fi enthusiasts, these kits incorporate two teak-simulate enclosures, two EMI \(13^{\prime \prime} \times 8^{\prime \prime}\) (approx.) wooters, two \(31 / 4^{\prime \prime}\) (approx.) tweeters and a pair of matching crossovers. Easily constructed, using a few basic tools. Sufplied complete with an easy-10-follow circuit diaṭram, and crossover components. Input 15 watts rms, 30 watts peak,

\section*{15-WATT KIT IN CHASSIS FORM \\ }

When you are looking for a good speaker, why not build your own from this kit. It's the unit which we supply with the above enclosures. Size \(13^{\prime \prime} \times 8^{\prime \prime}\) (approx.) EMi woofer, \(3^{1 / 1 / 4^{\prime \prime}}\) (approx.) tweeter, and matching crossover. Power handling capacity \(£ 750+p\) \& \(p\) 15 watts rms, 30 watts peak. PER SET

\section*{20-WATT HI-FI KIT IN CHASSIS FORM}

\section*{'COMPACT}

\section*{FOR TOP VALUE}

\section*{How about this for incredible} bookshelf value from RT-VC! A palr of high efticiency units for only \(£ £ 7.50\) - just what you need for low-power amplifiers. These infinite baffle enclosures come to you ready mitred and professionally finished. Each cabinet measufes \(12^{\prime \prime} \times 9^{\prime \prime} \times 5\) (approx.) déep, and is finished in simulated teak. Complete with two \(8^{\prime \prime}\) (approx.) speakers for max. power \(£ 750\) handling of 7 watts.
per pair
For extra power, choose this super RT-VC kit! EMI \(13^{\prime \prime} \times 8^{\prime \prime}\) (approx.) triple-laminate-coned woofer with massive \(5^{\prime \prime}\) (approx.) magnet, plus \(5^{\prime \prime}\) (approx.) mid-range unit with concentric \(2^{\prime \prime}\) parasitic tweeter and \(2^{3 / 3} 4^{\prime \prime}\) (approx.) magnet

21E HIGH STREET, ACTON, LONDON W3 6NG 32 EDGWARE ROAD, LONDON W2 Personal Shoppers EDGWARE HOAD: 9 a.m. -5.36 pm .
Haff day Thurs.
ACTON: 9.30.m.-5p.m. Closed all day Wed.

Minimum order on Access and Barclaycards \(£ 15\)
DD NOT SEND CARD bust write rour order giving
 A full kit has been prepared for this excellent new design. The above illustration is of Mr. Linsley-Hood's own unit but the Powertran kit is, though not identical, very similar and of course in the same cabinet (that used for the outstandingly successful 75W Linsley-Hood Amplifier design).

> Pack

Storen PCB factommodates 2 rep, umps. 2 Price "Pack
Price
 2. Steren set of captiors. m.O. rosisters. 11 puteationaters ler altwe............ 59.80
 4. Merataran rolay with socket.
5. PCB, oll cemponants for sitionoid. speed conatrol 13
circuts ……............... 53.20 I4
 8. Dual vi meter with illumincting lamp \(\mathbf{\Sigma 7 . 2 0}\) E7.20 requited for compete stereo casseftt Torpifal transiormer wib e.S. screen prim. chasad packs 0.117T, 234y, sac. 15y .

\section*{SPEC̄IAL PRICE FOR} COMPLETE KITS
£78.50
Further details of above given in our FREE LIST
r/and Portugal Mozambique Belgium Sumatra
Designed in response to demand for a tunerato complement the world-wide The Wireless World published original circuit has been developed further for inclusion into this outstanding slimline unit and features a pre-aligned front mor whe ex be controlled either continuously or by push but re-selection Frequencies are indicated by a frequency meter and shimg LED ndicators, trached to each channel selector pre-set The PLL stereo decoder orpal mastorer and integred regulator For long term stablity metal oxide resistors are used throughout

\section*{NEW KIT! LINSLEY-HOOD CASSETTE DECK}

Thek
 sed ol mel in mern Sot of mote oxity rusiturs. mornistor, cepactiors cormal presef fir monutiny en pack 1.... E4.30

 wection cormaic filter Fitregass printed circuit hoarl for sterce. Es.50.
ct al \(\quad\) £ 1.10
6. Ser of mal oxine razizers. capaciors. cerma

T Set of trasisters LED, integrated circuil ior
8. Set of components for chamel sulector \(\mathbf{E 2 . 9 0}\) modele including fiereplass printed circult board. push-button switches, knobs. LEDS. presel adjustors. ole. .

In Hi.FI News there was published by Mr. Linsley.Hood a series of four articles (November, 1972-February. 1973) and a subsequent follow-up rticte (Aprit, 1974) on a design for an amplifier of exceptional periormance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts hist mainanng distorion at less han o. by even arplifier based iscrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system. namely the qualization stage and tone control stage, positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition equencies of the tone controls and the variable slope of the scratch filter here is a choice of four inputs, two equalized and two linear. each having dependently adjustable signal level. The attractive slimline unit pictured Torodan made practical by highly compact PCBs and a specially designed Toroidal transformer

\title{
FREE tex cese witreuukrs \\ wreace onve \(£ 73.90\)
}

WIRELESS WOŔLD FM TUNER

\(\mathrm{T} 20+20\) and our new \(\mathrm{T} 30+30\)
\(20 \mathrm{~W}, 30 \mathrm{~W}\) AMPLIFIERS
Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success Now developed further in our laboratories to include a Toroidal traneformer and additional The design is based on a single \(\dot{F} / G \neq a s s\) PCH and features all the normal facilities found on quality amplifers, including scratch and rumble filters, adaptable input selector and heǎd phones socket. In a follow up anticle in Pracucal Wireless further modifications were suggested and these have been incorporated into the \(T 30+30\). These include RF interference filters and a tape monitor facility Power output of this new model is 30W per channel
\begin{tabular}{|c|c|c|}
\hline Prack & T20 & \\
\hline 1. Set of low molite reatiort & 1.40 & 1.50 \\
\hline 2 Set of small capactits & 2.20 & 2.80 \\
\hline 3. Sel of power supply capactiors & 1.90 & 2.30 \\
\hline 4. Sat of materolmmeome parts & 3.20 & 3.20 \\
\hline 5. Sat of allide. mains. P.8. swtiches & 1.20 & 1.20 \\
\hline 6. Set of pats. solector witch & 2.80 & 2.8 \\
\hline
\end{tabular}
| Pack

\section*{8. Tarroidal transtorner \(\mathbf{- 2 4 0 V}\) prim.} 8.s. scresen.
10. Set of meta|work. fixing parts
1. Set of cablass. mazins haad 2. Handbook [liree with camplate kit]

T20 T30 ,
\(4.95 \quad 6.80\)
\(3.20 \quad 3.60\)
\(4.204 .80^{\prime}\)
\(\begin{array}{ll}0.40 & 0.40 \\ 0.25 & 0.25\end{array}\)
\(\begin{array}{ll}0.25 & 0.25 \\ 4.50 & 4.50\end{array}\)

\section*{2 NEW TUNERS!}

\section*{WW SFMT II}

Following the success of our Wireless World FM Tuner kit we are now pleased to intioduce our new cost reduced model, designed to complement the T20 and T30 amplifiers The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptional switchable muting, channel selection by slider or readily adjustable pre-set push-button controls and LED tuning indication Individual pack prices in our tree list.

POWERTRAN SFMT
This easy io construct tuner using our own circuit design includes sIT PRICE
pre-eligned front end module. PLL stereo decoder. adjustable, switch able mutng. switchable atc and push-butition channel selection As with all our full kits, all components down to the last nut and bolt are supplied
together with full constructional detalls

CONVERT NOW TO QUADRAPHONICS!

Wirelose World Ampllier Deaigins. Full kits are no: avairable for these projects but
component packs and PCBs are stocked tor the highly regarded Bailey and 20 Welass AB Linsiey Hood destgrs, together with an efficient regulated power supply of clars AB
 corcuit board. for the stereo version of it features 6 inputs. scratich and rumble filters and
wide range tone controls which may be elther rotary or slider operating For those intending to get the best out of their speakers. we also offer an active filter system,
described by into three chancespad, which splits the output of each channel from the pre-amplifiet
 performance stereo Sitee PCBs have been prepared lor the integrated circuit based, high 30W Balloy Amplifier
BAIL Pk 1 F/Glass PCB
BAll Pk. 2 Resistors, Capacitors. Potentiometer s
\(20 W\) Linsiey Hocod Cless \(A B\)
\({ }^{1} \mathrm{HAB}\) Pk. 1 F/Glass \(P C B\).
LHAB Pk 2 Resistior, Capacitoi, Potentiometer set
LHAB Pk 3 Semiconductor set
Regulator Power Sypply
60 PS Pk. 1 FGlass PCB
6OVS Pk. 2 Resisior. Capacitor ser
6OVS Pk. 3 Semiconductor set
6OVS Pk. 3 Semiconductor set (tor ise with Bailey)
60 VS Pk. BE Toroodal transtormer (for use with Bailey)
Balley Burrows Sierea Pro-Amp
BBPA Pk \(F / \mathrm{F} / \mathrm{Gass}\) PCB

BPPA Pk 3R Rotary, Potentiometer set
BBPA Pk. 3S Slider Potentiometer set with knobs
Active Filter
-ACIVE Filter
FITT Pk. 1 F/Gass PCB
FILT PK. 2 Resistor, Capacitor sei (metal oxide 2\%, polystyrene \(2 v_{2} \%\))
FILT Pk 3 Semiconductor ser
2 off Pks 1.2 .3 rad for sere
2 off Pks 1.2.3 rad for stereo sctive filter system
Reed/Texas 2OW Amp
REAO Pk. 1 F/Glass PCB
READ Pk. 2 Ressistor, Capacitor set
READ Pk. 3 Semiconductor set
6 off oks 1.2.3 reauired tor stereo active filter system
Stuart Tape Recorder
TRRP \(P_{k} 1\) Replay Amp F/Glass PCB
TRRC Pk 1 Record Ámp F/Glass PCB
TROS Pk 1 Bias/Erase/Stalilizer F/Glass PCB
EXPORT NO PROBLEM
\(£ 1.00\)
\(£ 2.35\)
\(£ 4.70\)
\begin{tabular}{l}
\\
\\
\\
\hline 1.205
\end{tabular}
8.20
6.35
c0.85
\begin{tabular}{l}
60.85 \\
62.20 \\
\\
\hline
\end{tabular}
62.20
E8.10
\(\mathbf{E 8 . 8 0}\)

E8.80
E7.25
E2.80
\begin{tabular}{c}
E8.70 \\
E2.85 \\
E. \\
\hline
\end{tabular}
E2.85
E3.10
\(\varepsilon 1.40\)
\(E 4.20\)
54.20
\(\mathbf{E 2 . 2 5}\)
\(£ 1.00\)
\(£ 1.20\)
\(\varepsilon 1.20\)
E2.30
c2.30
\(£ 1.30\)
\(£ 1.70\)
\(\varepsilon 1.70\)
\(£ 1.20\)

With 100s of titles now available no longer is there any problem over suitable software. No problems with hardware either. Our new unit the SQM \(1-30\) simply plugs into the tape monitor socket 30W per channel. A full complement of controls including volume, bass, treble and balance are provided as are comprehensive switching facilities enabling the unit to be used comprehensive switching facitities enabling the unit to be used
for either front or rear channels, by-passing the decoder for stereo-only use and exchanging left and right channels. The SQ matrix decoder is based upon a single integrated circuit and was designed by CBS whilst the power and tone control sections are identical to those used in our \(T 30+30\) amplifier which the SQM1-30 matches perfectly Kit price includes CBS licence fee

\section*{SQ QUADRAPHONIC DECODERS}
tade monitor outlets) into anv one of our 3 decoders and take 4 cnanness out with no overall signal leve eduction. On the logic enhanced decoders Volume, Front-Back. LF-RF balance. LB-RB balance and Dimension controls can all be implemented by simple single gang potentiometers.
These state-of-the-art circuits used under hicence from CBS are offered in kits of superior quality with close tolerance
capacitors, metal oxide resistors and fibre-glass PCBS designed for edge connector insertion. All kit prices include capacitors, metal oxide resistors and fibre-glass PCBs designed for edge connector insertion. All kit prices include M1. Basic matrix decoder with fixed 10.40 blend All components. PCB

2A. More advanced full logic decoder with "variable blend" for increased front back separation. All components. PCB increased frequency response. All components (carbon film resistors). PCB Also available with M.O. resistors, cermet pre-set - add
SEMICONDUCTORS as used in our range of quality audio equipment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2N699 & ¢0.20. & 40361 & c0.40' & BD529 & E0.55 & MJE5231 & 60.60 & TIP390 & & \\
\hline 2 N 1613 & ¢0.20 & 40362 & ¢0.45 & BD530 & c0.55 & MPSAO5 & 60. 25 & Tip300 & & \({ }_{80}^{60.58}\) \\
\hline 2N1711 & 60.25 & BC 107 & c0.10 & BDY56 & £1.60 & MPSA1: & c0.35 & TPP41A & & \({ }_{60}\) \\
\hline 2N2926G & £0.10 & [BC. 108 & c0.10 & 8F257 & 60.40 & MPSA14 & \({ }_{60.30}\) & & & ¢0. 20 \\
\hline . 2 N3055 & c0.45 & ; 8 Cl 109 & \(\underline{60.10}\) & . FF 259 & ¢0.47. & MPSA55 & ¢0.25 & TIP418 & & \({ }_{80.75}\) \\
\hline 2N3442 & £1.20 & \(8 \mathrm{BC109C}\) & c0.12 & BFR39 & c0.30 & MPSA65 & \({ }^{6} 0.35\) & TIP428 & & 60.90 \\
\hline 2 N 3711 & ¢0.09 & BC125 & c0.15 & BFR79 & ¢0.30 & MPSA66 & 60.40 & 1 N 914 & & 60.07 \\
\hline \({ }_{2} \mathrm{~N} 3904\) & ¢0.17 & BC126 & c0.15 & BFY5i & \(\underline{60.20}\) & MPSU05 & c0.50 & 1N916 & & E0.07 \\
\hline 2N3906 & ¢0. 20 & . \(\mathrm{BC}^{182}\) & 60.10 & BFY52 & co.20 & MPSU55 & co. 50 & 15920 & & 60.10 \\
\hline 2 N 4062 & ¢0.11 & BC212 & c0.12 & CA3046 & ¢0.70 & SBA750A & E1.00 & & & E0.10 \\
\hline 2 N 4302 & ¢0.60 & 8C182K & ¢0.10 & LP1186 & ce.so & SL301 & E1.30. & & & \\
\hline 2 N 5087 & \({ }_{60.25}\) & BC2 12 K & £0.12 & MCi310 & c2. 20 & SL3045 & \$1.20' & & Ftiters & \\
\hline 2N5210 & ¢0.25. & BC182L & E0.10 & MC1351 & c1.05 & SN72741P & c0.40 & FM4 & & \\
\hline 2N5457 & \({ }^{60.45}\) & \({ }^{8 C 184 L}\) & E0.11 & MC1741CG & \({ }^{2} 0.85\) & SN72748P & £0.40. & SFG 10 & 7 MA & E1.50 \\
\hline 2N5459
2N5461 & ¢0.45 & BC212L & E0.12 & MFC4010 & \(\underline{60.95}\) & Tll209 & E0.20 & & & \\
\hline 2N5830 & \(\mathrm{ck}^{60.35}\) & \({ }_{\text {BCY }}{ }^{\text {BC2 }}\) & c0.14 & MJ48 \({ }^{\text {M }}\) & ¢1.20 & T1P29a & 20.40 & & & \\
\hline
\end{tabular}

Our Export Department will be pleased to advise on postal costs to any country in the world. Some of the countries to which we sent kits in 1975 are shown surrounding this advertisement.

Kenya France St. Martin, Java New Zealand Borneo South Africa Denmark Nigeria Anguilla fir \({ }^{\text {ro }}\)

\section*{STEPHENS ELECTRONICS}

TELEPHONE 044-282 3389
MAIL ORDER DEPT. W/W1, AKEMAN STREET, TRING, HERTS.

TERMS: Cash with order only.
Cheques and Postal Orders made payable to Stephens Electronics

\section*{NOW-just when you/neéd it most!}

\section*{BI-PRE PAK'S ONCE-IN-A LIFETIME}

\section*{MANY ITEMS AT'HALF PRICE AND LESS PAKS! PAKS!! PAKS!!! \(\begin{gathered}\text { Down tom } \\ \text { gop to } \\ \text { 30p } \\ \text { ach }\end{gathered}\)}

\begin{tabular}{|c|c|}
\hline Pado No & Conrenta \\
\hline TP10 & 2 Light dependent resistors. 400 ohms tight, 1 megohm dark \(1 /\) al \(^{\prime \prime}\) dia \\
\hline TP11 & 10 Transistors XB102 \& XBI 12 equiv to \(A C 126\) AC156. OC81/2. OC72, etc. \\
\hline TP13 & \(50 \mathrm{CP71}\) Light sensitive uansistors \\
\hline TP14 & 20 oc71 germanium PNP audio pre amp ransistor. black glass ityee \\
\hline rP15 & 20 OC8! germanium PNP audio output transistor: whits
giass tyoe \\
\hline TP17 & 201 wetr zener diodes, mixed voltages. 6.8 to 43 volts \\
\hline TP20 & 10 Mullard OC45 rransistiors. I.F. amp PNP germanium \\
\hline TP21 & 30 Short lead (\(/ 44^{" 1}\) approx) transistors. NPN siticon planar types Ex radio manufacturer. all good but production line changes \\
\hline TP22 & 6 Integrated cifcuits. 4 gates BMC962 and 2 flip flops BMC945 \\
\hline TP27 & 5 Germanium PNP nigh frequency transistors. unmarked similar to OC170/971. AF115/6/73 lead TO-1 \\
\hline TP28 & 5 2N918 UHF/VHF silicon transistors. NPN 4 sead TO. 18 uncoded. \\
\hline tP36 & \\
\hline TP38 & 8 Integrated circuits. DTL deta supplied. Mixed rypes flipflops \\
\hline TP40 & 15 Transistors. these are brand new manufacturers. surplus items \\
\hline
\end{tabular}
- UNTESTED PAKS - all at 30p each

UT2 150 Germanium diodes. minatuve glass type' UT3

UT4
UT5
uts
UT7
100 Silicon diodes miniature glass trpe. similar to
100 Silrcon diodes. miniarare glass type. simitar to
40 Zener diodes. 250 mW OAZ2 240 range. average \(50 \%\) good \({ }^{\circ}\)
25 Zener diodes. 30 Stlicon recififers. 750 mA BY 100 type top hat. mixed voltages.
UT10 \(\quad 15\) Power transistors. PNP germanium and NPN stilicon. mossiv To- 3 but some plastic and some marked
UT11 300447 gold bonded diodes. polarily marked.
UT12 102 N 3819 10-channel FET's plasicic case type. UT13 \(\quad 15\) integrated dircuits, exporimentiers pake. dual in line. 10 5. TTLL. OTT.L marked and unmerked. some deftritely
good but old types - COMPONENT PAKS - all at 30p each 200 Resisitors. mixed types and watrages. uncluding. Histabitity, Approk, no. counted by weight.
5 Earronones. single
Iow imperance. less plugs, for r CP7
CP8
```

CP12

```

\({ }^{500} 10\) Heed relay inserts,, ", long \({ }^{2} /{ }^{\prime \prime}\) " die. These will operate

CP13
10 Magners of various sizes for operating reedswitches in
PAK CP12 Ideal tor burgar alains on doors and

include slave porot tiash unit, buralar alarm, olt.
3 Miro switches 1 pole change over, standard model
CP21 \(1 \omega^{200} \times \%^{\prime \prime}\)
pieces.
4
swiches. minature push to make single pole
\begin{tabular}{|ll|}
\hline BUMPER I.C. PACK \\
50 C.s at \\
\hline
\end{tabular}
|FIRST EVER! QUARTZ CRYSTAL PAK

dismantiled
fraquencus.

\section*{MISCELLANEOUS-YOUR CHANCE TO SAVE POUNDS}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{printed Circuit panels (Ex Equipmenl)} & UHF TUNER UNITS & \multirow[t]{2}{*}{HIGH VOLTAGE (IIKV) DIODES 5 for 50 p} \\
\hline El4 Ex cash reajisere boad & & We have son thousias of & \\
\hline & vazo & & \\
\hline & & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SUNDRY POST OFFICE [G.P.O.] & A FASCINATING \& UNUSUAL OFFER VARIABLE PRE-SET VOICE DECODERS \\
\hline EX G.P.O. velephone dials, as used in 700 and 300 iype
phones. Complete EX G.P.O. telephone handsers with lead. black. (Additional \(P\) Ex \(\operatorname{enf}_{250}\) & \\
\hline
\end{tabular}

EX G.P.O. buzzers, \(12 / 24\) volt operation, clean condition \(\mathbf{2 0 p}_{p}\) EX G.P.O. puinh button key witchem, 2 pole change over Brand new

\section*{INSTRUMENT CASES}

Beautifully finished in stove enamelled grey crackle, in heavy gauge aluminium with internal racking and heavy gauge paneis supplies. oscilloscopes. metered instruments. etc. BRAND NEW AND BOXED

SIZE "A" \(14^{\prime \prime} \times 15^{\prime \prime} \times 6^{\prime \prime}\) deep \(£ 5.50+\) additional 75 p for \(P / P\)
SIZE "B" \(17^{\prime \prime} \times 16^{\prime \prime} \times 12^{\prime \prime}\) deep \(£ 6.50+\) additional \(£ 1\) for \(P / P\)

ORDER WITHOUT DELAY-OFFERS CANNOT BE REPEATED - CALLERS WELCOME

\begin{tabular}{|c|c|c|c|}
\hline 10 NELMES WAY HORNCHURCH ESSEX RM11 202 HORNCHURCH 45167 & \begin{tabular}{l}
F.M. FRONT END \\
Geared tuning. AFC. \\
\(88 / 108 \mathrm{MHz}\). A.M. \\
GANGS FITTED. Full circuit diagram and conn. details supplied. £3.50, p.p. 25 p. OUTPUT METER \\
\(500 \mu\) a \(11 / 2 \times 11 / 2\) clear plastuc type, ع1.30.
\end{tabular} & \begin{tabular}{l}
HIGH CAPACITY ELECTROLYTICS \\
\(250 \mathrm{mfd} / 63\) volt 20p p.p. 8p \\
\(1.000 \mathrm{mfd} / 100\) volt 70 p p.p. 25p \\
\(2,200 \mathrm{mfd} / 100\) volt 90 p p.p. 25 p \\
\(4,700 \mathrm{mfd} / 25\) volt 65 p p.p. 20 p \\
\(6,800 \mathrm{mfd} / 16\) volt 50 p p.p. 15 p \\
\(10.000 \mathrm{mfd} / 25\) volt 75 p p.p. 25 p \\
\(25.000 \mathrm{mfd} / 40\) volt \(£ 1.25\) p.p. 30 p \\
\(47.000 \mathrm{mfd} / 40\) volt \(\mathbf{£ 2 . 0 0}\) p.p. 50 p
\end{tabular} & \begin{tabular}{l}
TRANSFORMERS \\
H.T. TRANSFORMERS Prim. \(110 / 240 \mathrm{v}\). Sec. \(400 \mathrm{v} .100 \mathrm{M} / \mathrm{A}\). E3, p.p. 65p. \\
L.T. TRANSFORMER Prim. 240 v . Sec. 27-0-27 at \(800 \mathrm{M} / \mathrm{A}\) \\
£2.35, p.p. 50p. \\
L.T. TRANSFORMER. Prim. \\
\(110 / 240 \mathrm{v}\). Sec. 50 v at 10 amp . £10, p.p. £1. 50.
\end{tabular} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
CIRCUIT BOARD \\
P.C.B. 1/16 1 oz, COPPER. FORMICA \\
Dim. \(8.4 \times 7.7\) in 3 pcs. \(80 p\). Dim. \(9.4 \times 8.1\) in 3 pcs . 90p. Dim. \(10.1 \times 7.9\) in 3 pcs. \(\mathbf{£ 1 . 0 0}\). Dim. \(13.1 \times 9.4\) in 3 pcs. \(\mathbf{£ 1 . 2 0}\) Dim. \(17.0 \times 9.0\) in 2 pcs. \(£ 1,20\). P.P. 35p on each pack.
\end{tabular}} & AM/FM TUNING & \[
160.000 \mathrm{mfd} / 10 \text { volt } £ 2.00 \text { p.p. } 50 \mathrm{p}
\] & L.t. TRANSFORMER. Prim. 240 Sec. 18 v at 1.5 amp and 12 v at 1 am \\
\hline & \begin{tabular}{l}
125-0.125 \(\mu\) a Edgewise, \(11 / 2 \times 1 / 2\) £1.10. \\
SIGNAL STRENGTH METER
\end{tabular} & \begin{tabular}{l}
BULK COMPONENTS OFFER \\
Resistors/Capacitors 600 new com ponents. £2.75, p.p. 36p. \\
Trial order 100 pcs, 75 p, p.p. 20p.
\end{tabular} & \begin{tabular}{l}
£2.25, p.p. 65p. \\
L.T. TRANSFORMER. Prim. 240 v . Sec. 18 v . 1 amp . £1.10, p.p. 35 p . L.t. TRANSFORMER. Prim. \(110 / 240 \mathrm{v}\). Sec. \(23 / 24 / 25 \mathrm{v}\) at 10
\end{tabular} \\
\hline & & SMITHS GEARED M 240V AC & amps. TRANSFORMER. P. Prim. \\
\hline \begin{tabular}{l}
BARGAIN PACK \\
10 pcs. \(10.1 \times 7.9\) in. (Formica) plus free \(1 / 2 \mathrm{lb}\) etching Xtals. \(£ 3.30\). \\
FIBRE GLASS P.C.B. \\
Dim. \(6 \times 6\) in, 55p each.
\end{tabular} & & \begin{tabular}{ll}
& \\
3 rev. per min. & £1.50 p.p. 25p \\
4 rev. per min. & £1.50 p.p. 25p \\
6 rev. per min. & £1.50 p.p. 25p \\
2 rev. per hr. & £1.50 p. . 25 p \\
6 rev. per hr. & £1.50 p.p. 25 p \\
\hline
\end{tabular} & \begin{tabular}{l}
\(110 / 240 \mathrm{v}\). Sec. \(20 / 21 / 22 \mathrm{c}\). at 8 amp. \\
E6, p.p.£1 L. T . \\
TRANSFORMER. \(110 / 240 \mathrm{v}\). Sec. \(0 / 24 / 40 \mathrm{v}\). Prim amp. (Shrouded). E1.95, p.p. 50p L.T. TRANSFORMER. Prim.
\end{tabular} \\
\hline \begin{tabular}{l}
Dim. \(12 \times 6\) in. 85 peach. \\
Dim. \(12 \times 12\) in, \(\mathbf{E 1 . 4 0 \text { each. }}\)
\end{tabular} & 3 GANG TUNI & RELAYS SIEMANS & \begin{tabular}{l}
\(200 / 250 \mathrm{c}\). Sec. \(20 / 40 / 60 \mathrm{v}\). at 2 amp. (Shrouded). \\
£3, p.p. 70p.
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
FIBRE GLASS P.C.B. \\
DOUBLE SIDED \\
Dim. \(6 \times 6\) in, 45p each. \\
Dim. \(12 \times 6\) in, 70p each. \\
P:P. 15p \\
Dim. \(12 \times 12\) in, \(\mathbf{£ 1 . 3 0}\) each.
\end{tabular}} & & 6v. \(4 \mathrm{c} / \mathrm{o} .65 \mathrm{p} .24 \mathrm{v} .2 \mathrm{c} / \mathrm{o}, 50 \mathrm{p} .24 \mathrm{v}\) & 200/250v. Sec. 18 v . at 27 amp .40 v . \\
\hline & S.T.C. CRYSTAL FILTERS (10.7MHz) 445-LQU-901A & M & \begin{tabular}{l}
at 9.8 amp .40 v . at 3.6 amp .52 v . at 1 amp 25 v at 3.7 amp . \\
£17.50, p.p. \(£ 2.50\)
\end{tabular} \\
\hline ETCH RĖSIST PENS (55p, P.P. 5p). & U-901B \({ }^{\text {en }}\) (25 & (\(1 \times 11 / 4 \times 1 / 2\)) 24 v . \(4 \mathrm{c} / \mathrm{o} .35 \mathrm{p}\) & L.t. TRANSFORMER. Prim. 240v Sec. 20 v . at 2.5 amp . £2, p.p. 65 p \\
\hline & £4.00, p.p. 20p. & & L.T. TRANSFORMER ("C" CORE). \\
\hline \(6 \times 6\) in, 75p ea. (Fibre glass). BLUE P.C.B. IN゙ & & tacts. 80p & \(200 / 240 \mathrm{v}\). Secs. 1-3-8-9c. All at 1.5 amp. 50 v . at 1 amp . \(\mathbf{E 2 . 5 0}, \mathrm{p} . \mathrm{p}\).50 p . \\
\hline \begin{tabular}{l}
BLUE P.C.C. IN̈ \\
Etch resist use with any pen. Much cheaper than ready loaded pens. 50 c.c., 55 p, p.p. 10 p.
\end{tabular} & (Type BLY 38), 3 watt output at 100-500 Mhz, E2.25, p.p. 10p. & \begin{tabular}{l}
base, p.p. 20p. \\
MiNiATURE REED RELAY \\
(\(1 \times 1 / 4\)), \(12 \mathrm{v}, 1 \mathrm{c} / \mathrm{o}\), 50p,
\end{tabular} & \\
\hline \begin{tabular}{l}
FERRIC CHLORIDE ETCHI XTALS \\
1/b-1 litre pack, 70 p, p.p. 35p. \\
\(51 b-5\) litre pack, \(\mathbf{E 2 . 2 0 ,}\) p.p. 65p.
\end{tabular} & \begin{tabular}{l}
PANEL METERS \\
23/8 in \(\times 1 \%\) S 500 mA S \(150 \mu \mathrm{~A} \$ 91 \mathrm{Amp}\)
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { S-DECS AND } \\
& \text { T-DECS }
\end{aligned}
\] \\
S-DEC \(£ 1.90\)
\end{tabular} & 200" 240 v . Secs. \(1-3-9-27 \mathrm{v}\). All at 10
amp.
LT.50, p. p. £1.50.
LRANSFORMER ("C. CORE).
\(200 / 240 \mathrm{v}\). Secs. \(1-3-9-20 \mathrm{v}\). All at 4 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PRINTED CIRCUIT KIT \\
The no-frills-all-value kit containing 4 pcs \(8 \times 7\) Formica laminate. 1 pce \(6 \times 6\)
\end{tabular}} & S2 \(100 \mu \mathrm{~A}\) S \(10 \mathrm{50v}\) & A & \begin{tabular}{l}
amp. \\
£5.50, p.p. 75 p
\end{tabular} \\
\hline & S3 \(500 \mu \mathrm{~A}\) & ¢4.20 & \begin{tabular}{l}
L.T. TRANSFORMER ("C" CORE). \\
\(120 / 120 \mathrm{v}\). Sec. 1-3-9-9v. All at 10
\end{tabular} \\
\hline Fibre glass laminate, 1 lb Etching & S4 \(1 \mathrm{~mA} \mathrm{S12} 50 / 0\)
S5 10 mA S 13100 & DEC B . & amp \({ }_{\text {L.T. }}\) ¢6.50, p.p. £1.50. \\
\hline Crystals, 50 c.c. Resist ink with instructions \(£ 2.40\), p.p. 650. & & & \(110 / 240 \mathrm{v}\). Secs. \(1-3-9 \mathrm{v}\) (10 amp. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
BARGAIN PACK FIBRE GLLASS P.C.B. \\
200 sa in all usable pieces, \(\mathbf{£ 1 . 4 0}\).
\end{tabular}} & S7 100 mA All at \(\mathbf{E 3 . 7 5}\), p.p. \(15 p\) & & \[
\begin{aligned}
& 50 \mathrm{v} .750 \mathrm{M} / \mathrm{A} \\
& \text { £6.50, p. . } £ 150 \\
& \hline
\end{aligned}
\] \\
\hline & PANEL & 5 amp 400 P.I.V. 40p & OR \\
\hline \begin{tabular}{l}
EDGE CONNECTORS. 54 WAY. \\
1 Spacing \\
Vero size, eic. Can be cut to any length. 65p, p.p. 10p. Side guides to suit \(\rightarrow\) above, 15p each
\end{tabular} & \begin{tabular}{l}
\(41 / 2\) in \(\times 31 / 4 \mathrm{~L} 3200 \mu \mathrm{~A}\) \\
L1 \(50 \mu \mathrm{~A}\) L4 \(500 \mu \mathrm{~A}\) \\
L2 \(100 \mu \mathrm{~A}-\mathrm{All}\) at \(\mathbf{£ 5}\)
\end{tabular} & \begin{tabular}{l}
POWER UNIT \(20 V\) D.C. \\
500 MA rectified and smoothed by 1250 Mfd . cap and OC25 Trans. circuit, £2.50, p.p. 55p
\end{tabular} & ype used in quality cord decks and tape corders suitable for tractor fans, heaters, c. \\
\hline \multirow[t]{4}{*}{TELEPHONE
DIALS
(new), E1.25, p.p
\(25 p\)
EXTENSION
TELEPHONES
(Type 7O6). Various colours E5.25.
p.p. 75 p .} & \begin{tabular}{l}
COUNTERS \\
4 digit (non reset) 24 v
\end{tabular} & POWER UNIT OUTPUT \(17 \frac{1}{2} \mathrm{~V}\) RECTIFIED. UNSMOOTHED, £2.00, p.p. 50 p. & stack, £1.25. p.p. on both 30p. \\
\hline & & OVERLOAD CUT OUTS & \\
\hline & \begin{tabular}{l}
5 digit (non reset), 24 \\
£1.50, p.p. 20p.
\end{tabular} & Panel mou amp. 55p & \[
\begin{aligned}
& \text { equipment } 1360 \text { r.p.m., size } 3^{3 / 4} \times 3^{3 / 4} \\
& \times 3^{1 / 2}, £ 2.25 \text {, p.p. } 50 \text { p. }
\end{aligned}
\] \\
\hline & & H.D. ALARM BELL & \multirow[t]{4}{*}{\begin{tabular}{l}
MULTICORE CABLE \\
6-core (6 colours) 14/0076 Screened P.V.C 30p per yard 100 yds. at £16.50. p.p. 2p a yard. 7-core (7 colours), \(7 / 22 \mathrm{~mm}\). Screened P.V.C 30p per yard, 100 yards \(\mathbf{£ 1 6 . 5 0}\). P.P. 4 p per yard.
\end{tabular}} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
miniature uniselector \\
12 volt 11 -way, 4 bank (3 non-bridging. 1 homing), £2.50, p.p. 35p. 24 voit 11 -way, 6 bank (5 non-bridging, 1 bridging). £2.00, p.p. 35 p.
\end{tabular}} & 6 & 6in. Dome \(6 / 8 \mathrm{v}\). d.c. Heavy cas housing for exterior/interior use £3.75, p.p. £1 & \\
\hline & 6 & \multirow[t]{3}{*}{\begin{tabular}{l}
1,000 TYPE KEY SWITCHES \\
Single \(2 \times 6\) make locking centre off, 60p. p.p 10 p \\
BANK of \(4-2 \times 4 \mathrm{c} / \mathrm{o}\) ea switch (one bias
\[
\text { £1.30, p.p. } 25 \text { p. }
\]
\end{tabular}} & \\
\hline & BULK COMPONENTS OFFER & & \\
\hline \begin{tabular}{l}
UNISELECTORS \\
(new), 25 -way half wipe 12 bank (non-bridging), 68ohms, £6.50, p.p. '50p.
\end{tabular} & \begin{tabular}{l}
Resistors/Capacitors 600 new components, £2.75, p.p. 40p. \\
Trial order 100 pcs. 75p, p.p. 20p
\end{tabular} & & ORDER ONLY: CALLERS BY APPOINTMENT \\
\hline
\end{tabular}

\section*{COMPUTER APPRECIATION}

\section*{86 High Street, Bletchingley, Surrey RH1 4PA. Tel: Godstone (088 384) 3221}

ASR \(\mathbf{3 3}\) TELETYPES, \(\mathbf{£} \mathbf{3 2 5 . 0 0}\) (some still below \(£ 300\))
ASR 35 Heavy Duty Teletypes, £350.00
TELETYPE BRPE 110 High Speed Paper Tape Punch, £78.00 ICL Model 2640 High Speed Paper Tape Readers, \(£ 78.00\) COSSOR Model DIDS 401 VDU, \(£ 85.00\)
PDP8L MINICOMPUTER with 4 K memory and TTY interface E650.00
AMPEX Model RF-1 82K-Bit Core Memory with all (I.C.) logic and 240 V supplies contained in a single 5 in . rack panel, \(£ 79.00\).
ITEL Model 841 Paper Tape Golfball Typewriter in as-new condition, £295.00
DATEK Model 40 Paper Tape Readers operating mechanically
(not brush) up to 40 c.p.s., £28.00.

EKCO Model 51836 digit counter-timers. A very versatile instrument. NEW, £48.00 (or £38 untested)
PRINTEC Model 100 High Speed Printer with TTL interface. A compact unit with an estimated usage well below 100 hours, £298.00
HONEYWELL Model P112 printing card key-punches. \(£ 85.00\) each or \(£ 100.00\) for two
HONEYWELL 16K \(\times 8\) Core Memory (2 microsecond) with all logic, ett., \(£ 85.00\)
HONEYWELL Card Sorter, \(£ 95.00\)
SOLARTRON Model CD1440 double team Oscilloscope, E110.00
PERTEC Model 6640 9-track NRZ Mag. Tape Unit, £475.00

\section*{Forall whowantto knowabout electroniccircuits}

Here's a book of very special appeal to all concerned with designing, using or understanding electronic circuits. It comprises information previously included in the first ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges. circuit limitations, modifications, performance data and graphs. Each of the ten sets - including additional circuits - in this magazine size hard cover book has been updated where necessary, and is preceded by an explanatory introduction. Circuit designs (I) is the first collection of its kind.

Circuits covered are:
Basic active filters
Switching circuits
Waveform generator's
AC measurements
Audio circuits
Constant-current circuits
Power amplifiers
Astable circuits
Optoelectronics
Micropower circuits

\section*{A new book fromWirelessWorld}

ORDER FORM
To: General Sales Department,
IPC Business Press Limited,
Room II. Dorset House,
Stamford Street, London SEI GLU.
Please send me copy/copies of Circuit Designs - Number I at \(£ 10.40\) each inclusive. I enclose remittance value \(E\). (cheques payable to IPC Business Press Ltd.)

NAME (please print)
ADDRESS

Company registered in England and a subsidiary of Reed International Limited Registered No 677128 Regd. office Dorset House, Stamford Street, London SEI 9LU.

\section*{SIGNAL SOURCES}

\section*{ADVANCE \\ Chtrigione mave Geneataror SG21} AIMMEC

GENERAL RADIO
Unit Oscilator 1209 C . Freq. \(250-920 \mathrm{MHz}\). Accuracy
\(1 \%\). Drit, \(0.2 \%\). \(0 /\) pun to 500 hms \(=150 \mathrm{~mW}\) sudolie
 of 200 mW across band
MEWLETT PACKARD
F.M./A.M. Signat Generator 202H F M. A.M. C.W. कt
pulse coverage 54 to 216 MHz A.F o/p \(0.1 \mu\) V. 0.2 V

 S.M.F. Signal Generator \(618 \mathrm{C} \quad 2 \cdot 8 \cdot 7.6 \mathrm{GHz} \quad \pm 1 \%\)
SOohms
EESO F.M./A.M. Srgnal Genarator TF 995A/3S. Miristry
Hype No CT402 1.5 MHz -220MHz. R.F. o/P \(2 \mu \mathrm{~V}\)-200mV, Internal \& External Mod. Facditites. \(\mathbf{E} \mathbf{V}\), \(\begin{array}{ll}\text { good condition } \\ \text { F.M. A.M. Signal Generator TF } 995 A / 5 & 1,5-220 \mathrm{MH} \\ \text { in } 5 \text { bands. } 0.1 \mu \mathrm{~V}-200 \mathrm{mV} \text {. F.M. up to } & \text { E } 120 \mathrm{KHz} \text { from }\end{array}\)

 Distortion (1) on internal F.M. \(\pm 25 \mathrm{~Hz}\). 2 (2) on internaf
A.M. \(6 \%\) at \(30 \% \mathrm{mod}\). E 300 to 8450

 V.S.W.R. 1.2 or less

 R.C. Osciltator TF1101. Frequency range
20HZ-200KHZ. Output: Direct into \(60000-20 \mathrm{~V}\) variable. Attenuator \(0-6 d \mathrm{~dB}\) in 100 B steps. Impedance:
600 D Distortion Via 1 KHz Filter less than \(0.1 \%\). Drect or vis Arenuator Less than \(0.5 \%\). \(50 \mathrm{~Hz}-20 \mathrm{KHz}\) Hz
Less than \(1 \% 20 \mathrm{~Hz}-200 \mathrm{KHz}\). U.H.F \& S. F. Signal
 FM/AM Signal Generator TT937/1. CT320
35 KHz -18.3MHz. As seen condilion 35KHz-18.3MHz. As seen condlion
Portable Receiver Tester TF8B8/3 Freq

 U.H. F. F.M. Signal Generator TF 2012.400 .520 MHz , mesurements. Price new ca \(£ 1,300\) - OUR PRICE

\section*{mulfhead}
 Decade Oscilator O890A 1 Hz -11.2KH
NEUWIRTH (WEST GERMANY)
VHF Signal Generator MS4/U. Freq. Range 9.6 MHz to
230 MHz . Turret Osc. for oach band. Accuracy \(1.2 \%\) O/P \(30 \mathrm{mV}-1 \mu \mathrm{~V}\). Freq. Dev \(1 \mathrm{KHz}-100 \mathrm{KHz}\) Amp
Mod \(0.100 \%\). 175.00 RHODE E SCHWARTZ
S.H.F. Gererator SMCE-BN \(41042 \quad 1700-5000 \mathrm{MHZ}\) HEWLETT PACKARD
Audio Signal Generator 206A \(20 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \%\) accuracy. Distorio
RADIOMETER
Suereo stgnat generator SMG1C. Full spec. on reques1. AM FMM Generaior Type MS 2 IG
WAYWE KERR
 VIdeo Oscillator 0.220 .10 KH
\(\begin{array}{ll}\text { U.H.F.F Power Oscillator } \\ \text { Ocsilatrs } \\ \text { Type LO-4 } & 4.41 \mathrm{MHz} \\ \text { Type } & 40.40 \\ 40.108 \mathrm{MHz}\end{array}\)
\(\begin{array}{ll}\text { Trpe LO. } \\ \text { Type } 0.40 & 40.108 \mathrm{MHz} \\ \text { Type LO } 170 \sim 170-330 \mathrm{MHz}\end{array}\)
Yype LO-610 \(610-960 \mathrm{MHz}\)

\section*{RECORDERS}
áciond
AECORO
OOMA Moverme

\section*{MULTIMETERS}

Avo

\section*{OSCILLOSCOPES}

\section*{TARCONITV. Scope If 22eOA/1 c/w TV Dity plug :OLARTRON}

Electronic Broker's Ltd. are one of the leading electronic instrumantation companies in the UK, providing a full range of sarvices to Universities, Industry, Colleges and Covermmants both ot home and oversees.

We have the largest stocks of secendhand teet equipmant in Europe as well as a selected range of now products. Thass are on digplay at ar London showrooms where customers can examine the equipment of their choice and see it working.

Electronic Brokers Ltd: have fully aquipped workshops on the premises to test and report on the majority of equipment we sell.

SEE US AT THE
ELECTRONIC INSTRUMENTS EXHIBITION

LONDON - Bloumsbury Centre 21-23 September 1976

REMEMBER - THE WOFLD'S LEADING INSTRUMENTS ARE ON EXHIBITION ALL YEAR ROUND AT ELECTRONIC BROKERS

\section*{Portable transistorised CD 1642 . Dual trace. \(\mathrm{DC}-\)
\(15 \mathrm{MHz} 10 \mathrm{mV} / \mathrm{cm}\). Sensitivity triggering to 25 MHz

 Only. 90 day
HEATHKIT \\ \(10-12 \mu\) Scope Single Beam \(50 \mathrm{MV} / \mathrm{cm} A C\) coupled
\(B / W 4.5 \mathrm{MHz} 5^{\prime \prime}\) Tube. Assembled Returbished 90 day Warranty Our price
HEWLETT PACKARD \\ TEKTRONIX-SONY \\ 323 Single Channel, sold state, portable batuery or
mains \(1 \mathrm{mV} / \mathrm{OLV}^{2}\) to \(20 \mathrm{O} / \mathrm{OIV} 4 \mathrm{MHz}\) weighing ca. 7 ILS \\ TEKTRONIX \\ \begin{tabular}{|c|c|}
\hline Sampling Scope \(661 \mathrm{c} / \mathrm{w}\) plug ins & \(\mathrm{E}_{4}\) \\
\hline \(545 \mathrm{c} / \mathrm{w}\) C.A. Plugin & ¢27 \\
\hline
\end{tabular} TV Wavetorm Monitor 525 Freq. response Flat
within \(1 \%\) between 60 Hz \& 5 MHz . Low Pass Passe within \(1 \%\) between 60 Hz \& 5 MHz. Low Pass - Passes
stair steps, eliminates H.F. High Pass - Passes H. F stair steps, Eliminates H.F. High Pass - Passes H.F.
eliminates stair stops. \(\operatorname{RE}\) - moest IRE slandards for ievel measurements. Sensitivity - Defliection factor of
the vertical amplifier is \(0.015 \mathrm{~V} / \mathrm{cm}\). Vert Anen - \(1-\mathrm{z}\) the vertical amplifier is \(0.015 V /\) Cm. Vert. Anen. \(-1-x\)
\(2-x, 5-x\). Kered Clamp-type DC. Restorer Gain stobility
 DC to 5 MHz Scope 515 A Bandwidth DC-15MHzz,
Risetime 24 NS . \(50 \mathrm{mV} / \mathrm{cm}-20 \mathrm{~V} / \mathrm{cm}\). Timebase
\(0.2 \mu / \mathrm{cm}-2 \mathrm{~S} / \mathrm{cm}\)
E150
 \(\mathrm{B} /\) width. Sweep Delay. C 875 . Other plug ins available 80 and 86
475 Oscil \\ 475 Oscilloscope 200 MHz O/trace. Transistorised.
\(2 \mathrm{mV} / \mathrm{OIV}\). \(8 \times Y\) Ocm Oisplay. SUPERB CONOITION
 Trace
delay Transistor Curve Tracer 575. Displays curves of NPN \&
PNP PNP transistors \& dynamic characteristics of a wide
range of semmiconductor devices Dual Beam Scope 5512 vertical defiection systems. Accopts Amp. Spect. analyser. Sampling and special purpose Plug-Ins.
plugins required \\ \\ \begin{tabular}{l}
Cosson \\
35 MHz Plug-In Scope Type \(3100.5 \mathrm{mV} / \mathrm{cm}\) \\
\hline
\end{tabular} 35 MHz PIug-in Scope Tye
sensitivity Calibrated swoep delay Gated Trigger \(8 \times\)
10cm dishlay. BRANO NEW CONOITION. E34.00

 \\ \\ POWER SUPPLIES}

\section*{apt electronics}
620.00
620.00
\(E 15.00\)
\(\begin{array}{ll}\text { SIGN ELECTRONICS } & \\ 5 \text { Only A.F Millowoltmeter AM } 324 & \text { E40 each } \\ \text { O Only OF M OM } 344 \mathrm{~A} & \\ \text { E80 each }\end{array}\) HEWLETT PACKARD 4 oniv XC Vacuum Tube Voltmeter 412 A
MARCDNIINSTS 450 each E1t0 each MARCONI INSTS.
4 Only FAC Oscillator 660 each 3 Only Attenuator TF 1073A/25. E60 each TEKTFONIX
6 Only TC Waveform Monitor 525 E105 each
\(\qquad\)

\section*{mbove offers close 25 October, 1976}

\section*{BRIDGES}

\section*{SULLENAN}

Contad Resısta
\(=2 \%=\) rea. \(1 K\)
WA
Radio \(=\) reg. Bridge 860
V.H.F Admitrance Bridge B70

\section*{POWER METERS}
\({ }^{\text {BIRO }}\) used hy USA
MARCONI MARCON1 R.F Fower Meter TF
RF Fower Meter TF
TF otms. DC. 500 M

ICL Pover Supphes (ex-computer)

\section*{AISCELLANEOUS BARGAINS}
\begin{tabular}{l}
RF \\
A. \\
10 W \\
Power Meter TF \\
\hline
\end{tabular}
 II

\section*{TELEPHONE TEST EQUIPMENT}

SIEMENS
Level Meter 3D 3320.3 .1200 KHz
Level Merer 3D \(335 \quad 10 \mathrm{KHz}-17 \mathrm{MHz}\) Level Oscillator \(3 W 290.3 .1200 \mathrm{KHz}\) Level oscillator 3W518 evet Transmineer TFPS 4210 KHz 14 MHz Wandel \& Golterman VZM 2. Distortion measuring sel

\section*{SWEEP GENERATORS}
hewlett packard
Sweep Oscillator 6920 2-4GHz. Sweeps from start
to stop |feq.
SPECIAL OFFER \(\mathbf{E 3 0 0}\) Sweepcillator 693848 BGHz SPECIAL OFFER \(£ 325\)
 1. 1.11MHz High 1-M MERROLD
JE Sweep Signal Generator 9008 Central Freqs.
500 KHz - 1200 MHz Sweep wioths narrow as 10 KHz 10 \(\begin{array}{lll}\text { M.E.S.L. } \text { wide } 50 o h m s ~ o / p ~ i m p e d a n c e ~ & \text { E400 } \\ \text { Swept Signal Source MH883 } 7-12.5 \mathrm{GHz} \ldots & \text { E480 }\end{array}\)

\title{
ELEGTRONIC
}

 unsurpassed guide to competitive buying

Manm Pasce brings your products and services to the notice of potential buyers throughout the world.

■חMMPASE.K. lists products and services in detail33,000 separate listings and essential business data on 28,000 U.K. companies.

HイロMM PASE helps you find new markets. Over 100,000 named key executives are listed in Kompass U.K.
 on over 185,000 companies in the E.E.C.
 16 countries of the world, all featuring the unique classification system in English, French, German, Italian and Spanish

\section*{MGMPASES}

Kompass Publishers Limited
RAC House
Lansdowne Road
Croydon
CR9 2HE
Telephone: 01-686 2262

BUY A CASE FROM A SMALL RANGE，YOU GET A CASE－BUY A CASE FROM A BIG RANGE，YOU GET A SOLUTION
 MilliOS \(\square \longrightarrow\)
 th rack or half－width assembled in special polysiyrene pack for safe poslage

THE INE M－LHNABNT
 OVER 250 DIFFERENT
CASES IN STOCK－SIZE RANGE
OVER SOOD：1 IN VOLUME

Send for

WW－008 FOR FURTHER DETAILS

\section*{Become a radio amateur．}

12 CHANNEL STEREO MIXING CONSOLE

\section*{ \\ Distortion better than ． \(05 \%\) typically \(.01 \%\) \\ Overhead level at 22 dBm all outputs buffered \(£ 250\) Retail \\ 12 Channel Export Model \\ 16 Channel Mixing Console \\ 8 Channel Stereo Mixer}

For further details telephone （0223） 66559

French＇s Mill，French＇s Road，Cambridge（0223） 66559

Brochure，without ob igation to
BRITISH NATIONAL RADIO \＆ELECTRONICS SCHOOL
P．O．Box 156，Jersey，Channel Islands
－NAME

\section*{5V REGULATED POWER SUPPLY}

\section*{Lambda Model LTS－DB－5－OV}

These are brand new units，complete in original packing，supplied with Instruction Manual and being offered at a fraction of their original cost． Brief Specification：Input Voltage： \(105-132 \mathrm{~V} 60 \mathrm{~Hz}\) \＆ \(187-265 \mathrm{~V} 5 \mathrm{~Hz}\) ．Line Regulation： \(0.02 \%\) for any load．Ripple \＆Noise： 1.5 mV RMS with either + ve or－ve terminal grounded．Output Voltage： \(5 \mathrm{~V} 1 \%\) ．Load Regulation \(0.15 \%\) for any load．Output Current：12A＠ \(40^{\circ} \mathrm{C}\) ．Overload Protection Thermal，also automatic electronic current limiting circuit．Size \(101 / 2 \times 7 \frac{1}{2} \times 5\)
PRICE：\(£ 21.00\) each．Carriage \(£ 1\) 20．VAT Extra．
Send SAE \(\left(9 \times 4^{\prime \prime}\right)\) for our 44 －page catalogue of electronic components．JUST ARRIVED：Large quantity of REDIFON Telecommunications Equipment

\section*{GREENWELD}

443 Milbrock Road Southamptom
Sロ1 ロHX Tel：（ロ7ロЗ）フプロロ1

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

International Exhibition of Data Processing, Communication and Office Organisation SICOB Paris, September 23-October 1, 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price \(£ 86.50\), extra nights as required.

Hifi International Exhibition and Festival Dusseldorf - September 24-29, 1976. 2 nights at the first-class Quality Inn Hotel. - Ratingen (8 km from the Fair Ground). Fully inclusive price - £99.90.

International Industrial Electronics Trade Fair FAIREX - Amsterdam, October 18-20, 1976 Two nights at the first-class American Hotel Fully inclusive price \(£ 89.00\), \(\square\)

International Trade Fair for Production in the Electronics Industry - ELECTRONICA Munich, November 25-December 1, 1976. Two nights at the first-class Hotel Der Konigshof. Fully inclusive price \(£ 118.00\), extra nights as required

Please send details of the tours indicated above.

\section*{THE HONEYWELL KEYTAPE UNIT}
is a multi-channel Keyboard to Magnetic Tape System recording Keyboard entered data on \(1 / 2^{\prime \prime}\) tape in 80 or 120 character records in a form easily usable as a computer input/output and verifier. 240 Volt operation.

As above but less data boards. Tested forward/backward tape movement and control, etc Data entry/exit via read/write boards. £105 ea.
Exactly as above but less keyboard and table. \(\mathbf{£ 8 0}\) ea
All units carriage paid.
KEYBOARDS as pictured also available at \(£ 25\) each. Carr. \(£ 2.50\)
ALWAYS SOME LOW COST PERIPHERALS - PUNCHES, READERS, PRINTERS ETC.

\section*{AVO RF SIGNAL}

GENEAATOR
Frequency range 2 to
250 MHz AM Sine/Square 250 MHz AM Sine/Square
Modulation. High level Modulation. High level
force output. Attenuator Complete with accessories Complete with accessories
Superb black anodised front panet, large white dial with black lettering. Suitcase style. Size \(15 \times 10 \times 9^{\prime \prime}\)
MARCONI PORTABLE
FREQUENCY METER
TF \(1026 / 11\) 100 to
160 MHz Very fine condi-
fon.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
THE LATE MODEL MARCONI OSCILLATOR \\
TF855A/I \\
in superb condition covering 25 HZ to 12 MHZ sine wave in 3 ranges and 50 HZ to 150 KHZ square wave High output 31.6 V Meter scaled in volts and dbs
\end{tabular} & ALL ITEMS E22.50 вa. SPECIAL OFFER - pick 3 different items of the 5 for \(E 60\). Carriage \(\mathfrak{E} 250\) each or \(\mathfrak{£} 5\) for 3 & \begin{tabular}{l}
SOLARTRON AC MILLIVOLT METER VF252 \\
1.5MV to 150 V full scale in 10 ranges. \(6^{\prime \prime}\) meter \(\pm 1 \%\) Good Condition.
\end{tabular} & \begin{tabular}{l}
ayo valve \\
TESTED CT160 \\
The Suitcase Size approx. \(15^{\prime \prime}\) wide \(\times 10^{\prime \prime}\) high \(\times 11^{\prime \prime}\) deep.
\end{tabular} \\
\hline
\end{tabular}

\section*{R.F. WATTMETER TS118A BIRD ELECTRONIC CORPORATION}

FREQ. RANGE 20 MHZ TO 1400 MHZ . POWER 2 WATTS TO 300 WATTS 4 RANGES IMPEDANCE 50 OHMS. Designed also to be used as a Dummy Load. Small portable instrument. In Superb Condition supplied in transit case with MANUAL AND SPARES.

Four COSSOR VDUs model 401-2A/C2 with Control Unit. \(£ 750\).

PAPER TAPE STATION Model 2601/1 with Elliott 250/203 and Teletype Punch TCB110. £325.

TELETYPE 35R0 in Standard Upright Case at \(£ 215\) ea. Special Offer of a FREE Brand New Ultra Modern Electronic Keyboard with first TEN Purchasers.

ICL 2102 READER, £250.

ICL 2801/2 Disk Drives Four available at \(£ 175\) each or all four for £600. Including control.

Alpha-Numerical KEYBOARD. Small, compact, by GE (Bull). Holrith output with circuit, \(£ 15\) ea. Carr. £2.50.

Rebuildable KEYBOARDS as previously advertised still available at \(£ 6\) ea Carr \(£ 2.50\).
nall portable instrument. In Su
\(£ 75\) each

\section*{FORHICH YOLIARE SUPPIIIS,SAYERIE}

When you talk about designing and packaging miniature low current high voltage power supplies and voltage multipliers, the name Erie should come first. What other manufacturer of these sophisticated devices has its own in-house capacitor and rectifier technology? From very low input voltages, Eric can produce up to 50000 volts
output.
When size and weight are at a premium and reliable performance is essential let Erie Technological Products of Canada design and build your high voltage power supplies and voltage multipliers.
For the latest information on "state of the art" power supplies and multipliers contact:-
ERIE ELECTRONICS LIMITED
South Denes, Great Yarmouth, Norfolk.
Tel: 0493 56r22 Telex: 9742 I

WW - 068 FOR FURTHER DETAILS

TELERADIO SPECIALISTS IN DESIGNS by John Linsley Hood
Example: 25 to 75 watt. Very Low Distortion HIGH FIDELITY
STEREO AMPLIFIER. D.C. Coupled T.H.D. hardly measurable.

Send Stamped Addressed Envelope for FREE Catalogue of over

\section*{AMATEUH CDMPONENTS \\ ORCHARD WORKS, GHURCH LANE, WALLINGTON, SURREY SMG 7NF}

Supplied as a kit of parts or in ready assembled module form Also avallable: Phase Locked Loop; F.M. Tuner; Millivoltmeter Audio Signal Generator; T.H. Distortion Analyser: F.M. Signal Generator/Wobbulator. Send SAE for comprehensive illustrated lists and up-to-date-prices INCLUDING BROMLEY AND BAILEY DESIGNS

\section*{TELERADIO ELECTRONICS}

325 Fore Street, Edmonton, London, N. 9 Telephone: 01-807 3719

\title{
The SECOND-USER Compuler Specialists
}

\section*{Vini-Computer Exchange}

JUST RECEIVED - SUPERB, hardly used PDPAE SYSTEM ON VIEW IN OUR SHOW. ROOM NOW AND AVAILABLE FOR IMME
DIATE DELIVERY.
POP8E 24 K Processor compiete
with CIPHER X100 9:rack 800
Mane
with CIPHER X100 9'track 800
bp. Magnetic. Tape Urit and
control. plus ASR33 Tefetype
Mounted in double 5 ht rack
Mounted in double 511 rack
cabiner complete with AC power
distribution unit Price E4.750
distribution unit Price \(\mathbf{E 4 , 7 5 0}\)
(including full technicat docu-
mentation and diagnostic tapes)
PDPSI Rack-mounted BK Processor with Teletype contiol module PDP11/20 20K Processor with Dual DECtape and Control. 64 K
Oisk Drive and Conirol. Real Time Clock. Line Printer Disk Drive and Control. Real Time Clock. Line Pinter
Nova 840 Rack-mounted 24 K System complete with 128 K
Novadist VDU and Real Time Clock Novedise VDU
DEC Moctules:
DEC MOCulee: \(\mathrm{DC11-AC}\) OC IVA, DLIIE KOBE KL8E, KETIF. KW11. MC8E
\(\mathrm{DC1} 1 . \mathrm{AC}\). OC 11. OA,
MCBEJ. MMIIF. MRBE
PDP8, PDP81 - many spares in stock
HEWLETT PACKARD 9830A Programmable Calculator
DEC Power Supplies 728A \(+10 / 150 \mathrm{~V} 50 \mathrm{~Hz}\)
TERMINALS - LARGE STOCKS AVAILABLE
ASR 33 Teletype from \(£ 445.00\)
KSR 33 Teletype from \(£ 250.00\)
KSR33 Teletype from \(£ 250.00\)
ASR35 Telerype from \(£ 750.00\)
ASR35 Telelype from \(£ 750.00\)
IBM73 I/O Golfball Typewriter from \(£ 275.00\)
SPECIAL OFFER
Cossor OIOS 401.2 Visual Disptay Units i 3 lines \(\times 40\) characiers
\(\left(81 / 2 \times 4^{1 / 2 / 2}\right.\) screen) 64 character repertoire with delachable ASCII
keyboard. (Control device required.)

Sysiems, Peripheral Equipment \& Components for Dafa Processing
Keyboarcs
NEW
STOCKS
OF
CLARE-
PENDAR
KEYBOARDS JUST
RECEIVED
ASCll Coded TTL-combatible 4 bank alphanumeric reedi-swich keyboards with ROM encoder chip. strobed output, two-key rollover and debounce Siandard 7-bit ASCII code
complete with circuil dagrams and code chart

DEC DF32 Disk Drive \& Control
DEC RK11/RKO5 Disk Drive \& Conirol
DEC TU60 Oual Cassetie Drive \& Contiol
DEC TU60 Oual Cassetie Drive \& Control
DEC RTO2 Data Entry Terminat with single-line display
DEC RTO2 Data Enty Terminar win single-line display
ICL 28028 Meo Disk Orve \((=C O C 9450\))
MINIATURE MATRIX PROGRAMME BOARDS: Brand new \(x\) Matrix boards with 3 mm , grating \(12 \times 10\) positic
\& 00 . \(3 \times 10\) positions \(\left(13 / 4^{\prime \prime} \times 1^{\prime \prime}\right) E 400\) P\&P 40 D

MAGNETIC TAPES. Manulaciurers surplus stocks brand new in
Orginal sealed packing. \(1 h^{\prime \prime} \times 2400^{\prime} \& 4.00\) per reel, \(3 / 4 / \times 2400^{\prime} 14.50\) orignat soaled packing
per reel PBAP extra
argain Price: \(£ 145.00\) 49-53 Pancras Road, London NW1 2QB. Tel:Q1-837 7781

SPECIAL RESISTOR KITS (CAARBON FILM \(5 \%\)) (Prices include post \& packing
 \(220 \mathrm{hms}-1 \mathrm{M}_{\mathrm{a}}\) a total or 570 E5. 29 net \(25 \mathrm{E} 12 \mathrm{\%} / \mathrm{WW}\) or \(1 / 2 \mathrm{~W}\) KIT 25 of each E12 value. 22

\section*{SPECIAL CAPACITOR KITS}

\section*{280 Kil -PC M Men} 0.047 .0 .1 T .224 .4 .2010 .47 .1 f 51.98 ne

C296 Kit-Tutular polyester 400 v 5 ol each value \(0.01 \quad 0.022 \quad 0.047 .0\)
0.221F. \(2010.47 \mathrm{LL} E 2.67 \mathrm{net}\).

Ceramic Kil-spuare olaque 50 V 5 of eact value 22. 33. 47. 100. 220, 330.

250y Poper Kil- Tubular melal case. 3 of each value d.05. 0.1. 0.25 . \(0.51, f \times 1.41\) ne
\(500 V\) Paper Kii-Tubular metal case. 3 of each value \(0.025,0.05\). 0.1 \(0.025 .0 .54 \mathrm{~F}[1.41 \mathrm{ne}\) !
ionov Praper Kit-Tabular metal case, 3 ol each valve 0.01 . 0.025 .0 .05 ,
0.1

he- \(10-350\) in 2 ranges,
Sire- \(115 \times 215 \times 90 \mathrm{~mm}\)
Complete with steel carrying case, tes
trads and battery PFICE \(\mathbf{E 1 2 . 1 0}\) net P\&P 75p

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
MULTIMETER U4324 \\
34 Ranges High sensitivily
\end{tabular} & \\
\hline \(20.000 \%\) Volt & \\
\hline \(\mathrm{Vdc}-0.6-1200 \mathrm{~V}\) in 9 ranges & \\
\hline Vac -3-900V in 8 ranges & \\
\hline ldic-0 06-3A in 6 ranges & \\
\hline lac--0 3-3A in 5 ranges & \\
\hline Resislance - 25 ! - 5 malis in 5 ranges & \\
\hline Accuracy-dc and \(\mathrm{A}-21 / 2 \%\) of F S D & \\
\hline & \\
\hline & \\
\hline spare diode, and battery & \\
\hline PRICE \(£ 11.72\) net P8P 75 p & 4332 \\
\hline
\end{tabular}
(WW) LEIGHION ELECTRONICS CENTRE, 59
NORTH STREET, LEIGHTON BUZZARD, LU7 TEG
NORTH STREET, LEIGHTON BUZZARD,
Tel Leightonn Buzzarc 2316 (Std code 05253)

\section*{RELAYS-UNISELECTORSSWITCHES \\ MINATURE PLUG IN RELAYS (Sionans/Varley)}
with perspex dust cover and base
2 c/0 50p: 6 make 60 p
\(4 \mathrm{c} / 075 \mathrm{p}\) : P \& P 10 p
S.T.C. MINIATURE (P.C. Mounting)
\(2 \mathrm{c} / 0(18 / 24 \mathrm{v})\) 45p P.P. 10p
\(4 \mathrm{c} / 0(24 / 36 \mathrm{v})\) 50p P.P. 10p
\(6 \mathrm{c} / 0(36 / 48 \mathrm{v}) 75 \mathrm{p}\) P.P. 10 p
CLARE-ELLIOTT MINIATURE RELAYS
(Hermatically sealed) \(2 \mathrm{c} / 0675 \mathrm{ohm}\)
\(24 v\) D.C. Coils \((22 \times 22 \times 10 \mathrm{~mm}) \mathbf{2 5 p}\)
I.T.T. 240v A.C. Plug-In RELAYS
(with perspex cover) 10 amp contacts
2 c/o65p 3 c/o 75p P.P. 10p
mains (230v A.C.) RELAYS OPEN TYPE
Chassis mounting (\(60 \times 60 \times 35 \mathrm{~mm}\))
\(2 \mathrm{c} / 05 \mathrm{amp}\) contacts 60p P.P. 10p
REED RELAY \(\mathbf{3}\) MAKE (\(50 \times \mathbf{2 0 \times 2 0 m m}\)
3500 ohm coil \(24 v\) D.C 50p
REED SWITCHES (1 MAKE)
Type \(2(48 \times 5 \mathrm{~mm}) 8\) for \(\mathbf{c 1}\)
G.E.C. RATCHET RELAYS

310 ohm Red or Blue Cam. E1 P.P. 20p UNISELECTORS 25 WAY
5 Bank Full Wipe 75 ohm e5.50 PP. 50p
6 Bank Full Wipe 75 ohm £6.25 P.P. 50p
12 Bank Half Wipe 68 ohm E6.50 P.P. 60p
CLARE TYPE 11 UNISELECTOR (Ex Equipment)
6 Bank 10 way 100 ohm £2.50 P.P. 25p
D.C. SOLENOIDS \(24 v\) (Cont. Rated)
ioib Pull 20 mm Stroke. Size \(50 \times 48 \times 42 \mathrm{~mm}\) 75p P.P 15p
FOOT SWITCH "SQUARE-D" H.D
20 A Make / 10 A Break at 240 V A. C
600 A C /D.C. Max \& \(\mathrm{P} . \mathrm{P} .75 \mathrm{p}\)
GURGESS MICRO SWITCHES (VCSP)
Single Pole c/o 8 for E1P.P. 10p
DECADE (THUMBWHEEL) SWITCHES
6 mm Digits. 50 peach. Bank of 8 with mounting brackets \(£ 3\)
PP 20p
DECADE INDICATOR SWITCHES with plus \& minus
Push Buttons. 6 mm digits \(\mathbf{7 5 p}\) each P.P. 10p
KEY SWITCHES ' 1000 ' TYPE
\(4 \mathrm{c} / 0\) each way locking 60p P. P. 10 p 6 make each way locking 60 p P P. P. 10p

\section*{mULTICORE CABLES}

8 CORE RIBBON (RAINBOW) CABLE
\(8 \times 14 / 76\) Forming \(1 / 2\) in wide strip metre
5 COREM.D.CABLE \(5 \times 70 / 76\) PVC
Black Outer P.V.C. O.DE \(1 / 2\) in
\(10 \mathrm{~m}-\mathrm{E2.50}: 50 \mathrm{~m}-£ 12\) : \(100 \mathrm{~m}-£ 22.50\) P.P. 2 p per
6 CORE ARMDURED \(6 \times 40 / 76\) P.V.C. INS
Outer Sheath-Flexible Galvanised Tubing. O.D 5/8 in \(10 \mathrm{~m}-£ \mathbf{3}\) : \(50 \mathrm{~m}-£ 14: 100 \mathrm{~m}-£ 25\). P.P. \(2 p\) permetre
6 CORE SCREENED \(6 \times 7 / 760\) D. \(6 \mathrm{~m} . \mathrm{m}\) 10m-E1.50: \(50 \mathrm{~m}-\mathbf{E 6 . 5 0}: 100 \mathrm{~m}-\mathrm{E} 12.00\) P.P. 2 p pe metre
36 CORE SCREENED \(36 \times 7 / 76\) (36 colours) O.D 10m-£3: 50 m -£14: 100 m -€ 25 P.P. 2 p per metre 40 CORE SCREENEO (10 colours Various Combinations) \(40 \times 7 / 76\) PV.C. O.D. \(15 \mathrm{~m} . \mathrm{m}\)

100m-f30 P.P. 2 p per metre
AIR PRESSURE SWITCH 0.10 lb Variatle Switch Contacts 15 amp . Change-Over £1.50 P.P. 25p
DEAC CELLS 12v at 225 mAH
with charging unit. £3 P.P. 50p
H.D. THYRISTORS 65 amp 100 P.I.V.

On deep finned heat sink. £2 \({ }^{\circ}\) OP P. 50
"BLEEPTONE" AUDIO A: AS
12vDC. 50p P.F. 10p
GEARED MOTORS 230va.c. (Int Rating)
110 r.p.m. £2.25 P.P. 75p
MAGNETIC COUNTERS
6 digit 48v D C. (Non-Reset)
New/Boxed E1 ea P.P. 15p
NUMICATORS 0.9 H.
light conducied from individual 12 (Poin
Character size \(20 \times 10 \mathrm{~mm}\) overall size \(25 \times 0 \times\) display £1.50 P.P 25p
D.C. POWER SUPPLIES Input \(240 v\) A C

TYPE 120 v D.C at 1 amp. Fully regulated \(155 \times 155 \times 75\)
mm totally enclosed \(\mathbf{E 5}\) P. P. 75p
TYPE 2 20v D. C. as \(500 \mathrm{~m} /\) a stabilised on open chassis 170 \(\times 100 \mathrm{~mm}\) £2.50 P.P. 75p
AMPLIFIED TELEPHDNE HANDSET with buill in volume control Ideal to
\(\mathbf{E 1 . 5 0} \mathrm{P}\). 25p
TELEPHONE HANDSET with "Press to Speak" switch E1.50 P.P 25p

\section*{J. B. PATTRICK \\ 191/193 LONDON ROAD ROMFORD, ESSEX \\ RM7 9DJ \\ ROMFORD 44473}

\section*{Wilmslow Audio \\ THE firm for speakers!}

Baker Group 25, 3, 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Saker Major, 3.8 or 15 ohm Baker Regent, 8 or 15 ohm Baker Superb 8 or 15 ohm Celestion HF 13008 or 15 ohm Celestion MH 1000 horn, 8 or 15 ohm
Decca London and \(X\) over
Decca DK30 and X over
EMI \(5^{\prime \prime}\) Mid range
EMI \(61 / 2^{\prime \prime} \mathrm{d} /\) cone roll surr 8 ohm
EMI \(8 \times 5.10\) watt, \(\mathrm{d} / \mathrm{c}\). roll/s 8 ohm
EMI \(14^{\prime \prime} \times 9^{\prime \prime}\) Bass 8 ohm

Elac 59RM 10915 ohm. 59RM 1148 ohm £3.38
Elac \(61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll/s 8 ohm
Fane Pop 15 watt \(12^{\prime \prime}\)
Fane Pop 33T 33 watt 12
Fane Poo 50 watt, \(12^{\prime}\)
Fane Pop 55, \(12^{\prime \prime} 60\) watt
Fane Pop 60 watt. 15'
Fane Poo 70 watt 15
Fane Poo 100 watt. 18
Fane Crescendo 12 A or 8 or 15 ohm Fane Crescendo 15.8 or 15 ohm Fane Crescendo 15. 8 or 15 om
'Fane Crescendo 18 or 15 ohm
'Fane Crescendo 188 or 15 ohm
Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) rolls \(/ \mathrm{s} 8\) or 15 ohm
'Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{crolls}\) orm
Fane \(807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) rolls/s. 8 or
Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll! \(/ \mathrm{s} 8 \mathrm{ohm}\)
Fane \(801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}\) roll!s 8 oh
Goodmans 8 P 8 or 15 ohm
Goodmans 1098 or 15 ohm
Goodmans 12 P 8 or 15 ohm
Goodmans 12 P-D 8 or 15 phms Goodmans 12P-G 8 or 15 hms
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom \(8^{\prime \prime} 8\) or 15 ohm
Goodmans Twinaxiom 10" 8 or 15 ohm
Kef T27
Kef T15
Kef B110
Kef B200
Kef Bi 39
Kef DN8
Kef DN 12
Kef ON 13
Richard Allan HP8B 8" 45 watt
Richard Allan CG8T 8'' d/c roll/s
STC 4001 G super iweeter
STC 4001 K super tweeter
Baker Maior Module, each
Goodmans Mezzo TIN 20. 4 ohm, each
Goodmans DIN 20.
Helme XLK K35, pair
Helme XLK40, pair
Helme XLK40, pair
Heime XLK30, pair
Kefkit 1 pair
Kefkit III, each
Richard Allan Twinkıt, each
Richard Allan Triple 8. each
Richard Allan Triple each
Richard Alian Super Triple, each
Richard Allan RA8 kit pais
Richard Allan RA82 kit pair
Wharfedate Linton \(2 \mathrm{kıt}\) (paır) Wharfedale Glendale 3 XP kıt. pa
\(£ 9.00\)
\(£ 10.75\)
\(£ 10.75\)
\(£ 12.38\)
\(£ 12.38\)
\(£ 10.69\)

\section*{\(£ 9.00\)}
£ 16.31
\(£ 6.98\)
\(£ 13.50\)
\(£ 13.50\)
\(£ 36.90\)
E 24.70
E3.15
£3.93
\(£ 11.92\)
£3.83
\(£ 5.50\)
\(£ 12.50\)
\(£ 15.50\)
\(£ 17.95\)
\(£ 18.75\)
\(£ 27.95\)
\(£ 37.95\)
\(£ 37.95\)
\(£ 49.95\)
\(£ 67.95\)

\section*{£5.18}
£8.96
£ 6.20
\(£ 6.50\)
E14:95
£16.95
£ 16.50
\(£ 13.46\)
\(£ 7.60\)
\(£ 19.80\)
£19.80
E9.50
E9.86
£ 5.18
\(E 5.18\)
\(E 6.25\)
\(£ 6.25\)
\(E 6.75\)
\(£ 6.75\)
\(£ 7.85\)
\(\begin{array}{r}£ 7.85 \\ \hline 15.08\end{array}\)
\(£ 15.08\)
\(£ 2.08\)
\(£ 2.08\)
\(£ 5.39\)
£4.05
\(£ 11.93\)
£7.65
\(£ 5.90\)
\(£ 5.90\)
£13.28
£46.50
E 13.28
\(£ 13.28\)
\(£ 26.75\)
\(£ 26.75\)
\(£ 38.50\)
£38.50
\(£ 21.95\)
\(£ 51.00\)
\(£ 51.00\)
\(£ 46.00\)
\(£ 13.46\)
\(£ 20.25\)
\(£ 25.16\)
\(£ 29.25\)
\(£ 37.80\)
\(\mathbf{£} 59.40\)
\(£ 21.50\)
\(£ 47.70\) Wharfedale Dovedale 3 kit, pair \(£ 59.40\)

Radiord Gauss Castle. Jordan Watts Eagle
Prices correct at \(16 / 8 / 76\)
ALL PRICES INCLUDE VAT
Cabinets wadding Vynair. Crossovers etc Serd stamp for free bookiet Choosing a Speake FREE with all orders over \(£ 10\) - Hifi Loudspeaker Enclosures Book
All units are guaranteed new and perfect
arriage Speakers 55 pesbaticm
each, tweeters and crossovers 33p each kits

\section*{WILMSLOW AUDIO}

Loudspeakers \& Export Dept: Swan Works Bank Square, Wilmslow, Cheshire SK9 1 HF Discount HiFi, PA etc: 10 Swan Street Wilmslow. Radio, Hi-Fi, TV: Swift of Wilms low, 5 Swan Street, Wilmslow. Tel. (Loud speakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213.
Access and Barclaycard orders accepted by phone.

\title{
Appointments
}

Advertisements accepted up to 12 noon Monday, October 4, for the November issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: £6.50 per single col. centimetre (min. 3 cm) LINE advertisements (run on): \(£ 1\) per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEl 9LU.) PHONE: Owen Bailey on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T

UNIVERSITY OF EAST ANGLIA NORWICH

\section*{TECHNICIAN}
required in the Music Centre from 1 October or as soon after that date as possible The
successful applicant will assist the Sound Engineer in the Opit will assist the Sound of the sound-recording and electronic music equipment which includes a Synthi 100 synthesiser and professional quality mixers and tape recorders. Some experience with

Salary on the scale \(£ 2559-2940\) per annum.

Applications, giving details of age and experience, and the names of two referees. Should reach the Dean. School of Fine Arts and Music, University of East Anglia,
University Plain. Norwich NR4 7TJ by 24 September, 1976

\section*{UNIVERSITY OF GLASGOW DEPARTMENT OF CHEMISTRY}

\section*{ELECTRONICS TECHNICIAN}

\section*{Grade 7}

To supervise a Departmental Workshop and to be responsible for the design, development and construction of prototype electronic equipment for chemical applications and the maintenance of existing equipment
Applicants should hold a HNC or degree in Electronics, or an equivalent qualification and should have several years' subsequent experience in both digital and analogue electronics.
Salary \(£ 3,666-£ 4,122\) per annum
Apply in writing, giving full details, together with the names of two referees, to Dr. J. M. Winfield, Department of Chemistry, University of Glasgow, Glasgow G 12800 .

UNIVERSITY OF LEICESTER
Department of Astronomy Applications are invited for the post of

\section*{ELECTRONICS TECHNICIAN}
with experience in the development of anaiogue and digital electronic circuits. The appointment will be for two years initially from 1 October, 1976, with a commencing salary of \(£ 2,751\) a year. Applications to Dr. D. J. Adams Department of Astronomy
University of Leicester. Leicester, LE1 7RH, giving details of previous experience and the names of two referees.

ELECTRONIC ENGINEERS AND TECHNICIANS
are required by a progressive company part of a larger Engineering Group engaged in the manufacture and maintenance of Miniature Closed Circuit T.V. Systems for the power Industry and other Government bodies in the U.K. The Company also has a rapidly expanding export market. We therefore require the following to join our existing team:-
1. An electronics engineer who, although will be theoretically competent, must have a practical flair to enable him / her to maintain the production of a highly varied and interesting product line.
2. An electronics technician to work with the above.
3. A mobile electronics technician to repair our own and customers' equipment on site, a proportion of bench work is envisaged. A car or generous vehicle allowance is offered with this position.
4. A prototype wireman/wirewoman capable of the highest standards of wiring. He or she must also be self-motivating.
The salaries offered for the above positions are excellent and we would consider that they would not be a limiting factor to the right applicant. The company also operates a non-contributory pension scheme. Consideration would also be given to relocation expenses if required.
Apply in writing giving details of experience and qualifications to date to:-

> A. K. SEFTON, Director

SEER T.V. LIMITED
Westminster House, High Street
Old Woking, Surrey GU22 9LF

\section*{DATEK SYSTEMS LTD.}

A leading company in the phototypesetting industry has the following vacancies:

\section*{SERVICE ENGINEER}
to handle in-house repairs and field service in the U.K. and Europe. In the field the engineer would give support and act as adviser to our agents' own service engineers.
Digital I.C. experience is essential and printing industry or computer peripheral experience would be valuable.
A clean driving licence is essential. Salary up to £4,000.

\section*{DEVELOPMENT ENGINEER}
to design and develop new computer peripherals. Several years' digital design experience is essential and knowledge of software or microprocessors would be an asset. The right person will probably have HNC or a degree but adequate experience could be satisfactory. Salary up to \(£ 4,500\).
Company benefits include four weeks' holiday, sickness and pension schemes.

Phone or write for application form to:
Miss Bux
Datak Systems Ltd. 849 Harrow Road Wembley, Middx.
Tel. 01-9040061

\title{
Looking
}
for

\section*{a} new job?

\section*{Perhaps we can help!}

> We have regular contact with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.
> We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

\section*{TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent} Tunbridge Wells (0892) 39388

TJB Electrotechnical Personnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME
ADDRESS

\title{
Radio Officers-now you can enjoy the comforts of home.
}

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you, but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are \(£ 2905\) rising to \(£ 3704\) after three years service. Between 19 and 24 , the starting salary varies from \(£ 2234\) to \(£ 2627\) according to age. In addition, a supplement of \(£ 312\)
p.a. is payable. You'll also receive an allowance for shift duties which at the maximum of the scale averages \(£ 900\) a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have a few vacancies at some of our coastal radio stations, so if you're 19 or over, preferably with sea-going experience, write to:
ETE Maritime Radio Services Division (L690),
ET 17.1.1.2., Room 643, Union House,
St. Martins-le-Grand, London EC1A 1AR.
Post Offifice Tellecommunications

Silver Line is adding nearly \(1 / 2\) million tons \(d w\) to its existing, modern fleet of VLCCs. OBOs, bulk carriers and chemical tankers operatıng in numerous different trades This means excellent career opportunities for all ranks with a company which, as part of a major international shipping group. nevertheless maintains a traditionally personal approach to crew matters

Voyages. subject to the trade. are up to four and a half months' duration and leave (taken as leave) is better than average. There are significant additional benefits for contract officers in terms of salary. pension scheme. BUPA. family travel concessions, and baggage insurance.

For further detalls contact Jim Moxley etther by phone (01-3530262) reversing the charges. or by completing and sending in the coupon.

\section*{Technical Authors}

\section*{Design/Development}

Opportunities exist for electronic and mechanical engineers with qualifications ranging from HND to Honours degree to join our design teams involved in airborne radars, laser range finding and target seeking equipments, inertial navigation systems and their associated test gear.

\section*{Test And Support}

To support our design teams we need engineers with qualifications from C \& G to HNC, preferably with Test and Quality Assurance experience.

They will become involved in a range of work covering automatic test equipment, fault diagnosis and building special-to-type test equipment.

Development across all our projects requires parallel expansion in our Technical Publications Group. Experienced technical authors will find the close association with project design particularly stimulating and for engineers keen to embark on such a career this is an opportunity to train in one of the most authoritative technical writing teams in the country.

Salaries are negotiable. The Company operates a contributory pension and life assurance scheme and incoming employees will qualify for housing under the Scottish Special Housing Association scheme.

Apply in writing, quoting reference WW/1, with particulars of qualifications and experience to:

Staff Appointments Officer,
Ferranti Limited, Ferry Road, Edinburgh EH5 2XS.

\section*{Appointments}

\section*{MECHANICAL ENGINEER}

This appointment is for a mechanical engineer preferably who has
epartment：to
of medical be responsible for the maintenance of medical．
mechanical sid electronic apparatus used in the Ares．The technician will foin a tasum who carry out a continuous servicing and overhs uling programme to ensure that the equipment in their charge will
the peak of its available etriciency si all times． Salary \(£ 2346\) p．e．rising to \(£ 3267\) p．a．（plus \(£ 6.00\) per week supplement） Application form and job description to be obtained from．
Area Engineer．Shrewsbury Hospital，Copthorn South，Mytton Oak Road，Sh
Shrewsbury 52244 Ext 3273
Completed selice Ext 3273 ．
as possibie． design and production experience in the consumer manufacturing industry，and who has woodworking knowledge of cabinet engineering．The successful applicant will be expected to act largely on his own initiative in engineering／production liaison

\section*{TECHNICIAN} and to make rapid decisions on the consequent mechanical situation

These appointments will be based at Bishop Auckland which is a pleasant rural town in attractive countryside where there is a wide choice of places to live．Assistance with re－location will be given if appropriate．Ability，tact，and especially a desire to get involved to promote team spirit and production efficiency are essential requirements for these positions．

Formal qualifications，whilst desirable，are not essential where
Experienced in audio－frequency elec tronics and recording techniques required for small and friendiy post graduate University Department of Applied Linguistics．Grade 4 き3024－£3405 pa incl．London Weighting）
Apply．stating age，qualifications and experience，to
Administrative Assistan （WW 14／9），Birkbeck College Malet Street，London WC1E 7HX， or phone for application form：01．580 6622，ext． 271

6154）

\section*{MEDICAL PHYSICS TECHNICIAN IV}

Pleáse apply in confidence to
Mr．J．Davison
Rediffusion Consumer Electronics Ltd
St．Helens Auckland
Bishop Auckland
County Durhàm DL． 14 9AL
With O．N．C or equivalent qualification in electronics or electronic engineering for the electronics section of the Medical Physics Department at the Manchester Royal Infirmary：As one of a team of six，he／she will repair and maintain a wide range of electronic and electro－medical hospital equipment，and will also assist in
development work．

Salary range：\(£ 2,346 \cdot £ 3,267+£ 312\) supplement．Applications，giving a sum－ tions and the names and addresses of two referees．should be sent by 6 th September to the Assistant Administrator（Medical Area）．Manchester Royal Infirmary．Man． chester M13 9WL

\title{
Famintis
}

\author{
Starting Salary \(£ 5,000\)
}

Reuters，the world news organisation，employsthe mostsophisticated communications，data processing and retrieval systems，including telegraphic and video peripherals，to supply news and information services to the media and business communities．
Technical expansion within the company has created a vacancy in the Lond on Training Centre fortechnical instructors with a sound electronics packground and experience gained in the computer industry．
Successful candidates will have good communicative and organising abilities and must be able to apply themselves with initiative to the preparation and
presentation of technical courses to company staff． Experience in maintenance of PDPIIComputers is also highly desirable
Previous teaching experience and the ability to speak German or French would be an advantage．
Please telephone 01－3537329 124 hour answering servicel for an application form，or write to：

Rocruitment Exectitive， REUTERS，
85 Fleet Street，London EC4P 4 AJ．
England．
品品：
PF
FGITERE

Your experience could open the door to a renge of interesting and rewarding opportunit es in the Design, Production or Service departments of a Company whose proJucts complement the most advanced modern electronic techniquəs.

For more information apply in confidence to :- John Prodger,
MARCONI INSTRUMENTS LIMITED
Longacres, St. Albans, Herts. Tel : St. Albans 592:52
A GEC-Marconi Electronics Company

\section*{URGENTLY REQUIRED TRANSMITTER ENGINEERS SHORT WAVE MEDIUM WAVE LOW AND HIGH POWER}

We have immediate vacancies on overseas projects

\section*{- AFRICA AND MIDDLE AND FAR EAST -}

You are invited to phone Tony Owers for more information and we are especially anxious to acquire staff on a permanent basis operating from the United Kingdom.

Phone: Tony Owers, 01-5738333

\section*{PERSONNEL \& ELECTRONICS LTD.}

\title{
Interested in computers? Lecture on ComputerServicing
}

We are looking for Lecturers to teach the practicalities of computer servicing.

Youwill be based at our Engineering Traming Centre int etchworth. Herts - the largest of it hind in turope. Hereyou will be given a comprehensive grounding in computer technology in general and ICL equipment in particular.
fou will be thoroughly prepared to train engineers to the point where they will be capable est maintaining computers at the optimum operational speritication.
Idealls vou will have an HNC or fores' trainingina technic al subject. Any eyperience of digital evectronics. compulers of instructing on these'subjects, while not essential, will be uselul
We'll stat youds an Assistant Lecturer on a salary on not less than 13800 a year. You'th be encouraged and expected to progress to the position oi Senior Lecturer which carries a salary ine exess ot 15000 .

Resocation expenses will be consideredivhere appropriate.

For an application iorm writelo AE Jurne
\(1 \mathrm{CL}, 85\) Gi Upper RichmondRond, Putary London SIV15 2TE. Plamedure raverncolvWIO84.

\section*{International Computers}

\section*{- 0 目元 Opportunities in the ELECTRONICS FIELD}

We have selected from many vacancies those which offer ex ceptional career prospects and job interest If you have experi ence in design, test, sales or service and wish to progress your career, please telephone Mike Gernat B. Sc. who is advising on these opportunities
E.M.A. Management Personnel Lid Burne House, 88/89 High Holborn London WC1V 6LR

01-242 7773

\section*{[G]}

CAPITAL
APPONTMENTS LTD.

\section*{JOB HUNTING?}

We have more vacancies for DESIGN, DEV.. TEST AND FIELD SERVICE ENG than ever before. All areas and applications. Salaries to
£5,000
34 Parcy Street, London, W1 \(01-6369659\) (day) or 550 as36 (evg.)

\footnotetext{
MARINE ELECTRONICS TECHNI Africa. Thorough experience in ser Africa. Thorough experience in servounders, VHF, HF and SSi8 Radiosounders, VHF, HF and SSi8 Radioing position with excellent salary ing position with excellent salary Modern Workshop and good work
ing conditions. Applications to: RADIO ELECTRONIC. P.O. Box 670 Walvis Bay 9190 South West Africa
}

\section*{Botswana} Broadcast Engineer
Responsible to the Director of Broadcasting for running the Engineering/Technical Division, he will help prepare annual estimates, approve new designs and be responsible for equipment standardisation, operational methods and general organization. He will order, install and maintain equipment, including PA systems for all national events, and will cover outside broadcasts. He will also help organise staff training.
Candidates must have an engineering degree, C \& G Technicians' Certificate in Telecomms, HNC or an engineering diploma, plus 5 years' relevant experience Starting salary is in a scale equal to \(£ 5770-£ 7180\) pa, which includes a substantial and normally tax-free allowance paid under Britain's overseas aid programme. Basic salary attracts a \(25 \%\) tax-free gratuity. Length of tour \(21 / 2\) years initially.
Other benefits include free passages, generous paid leave, children's holiday visit passages and education allowances, subsidised housing, appointment grant and interest-free car loan.
For full details and application form write to

Appointments Division, 4 Millbank, London SW1P 3JD quoting reference MT/809/WD

UNIVERSITY OF LEEDS. Electronics Technician 1 Grade 3 required in the Department of Physiology. The person appointed would be responsible, under the Head of the Eepartment and the Departmental Electronics Engineer, for the con-
struction, modification and matitenance of electronic equipment associated with research and teaching of biological studies. Must be capable of working from prectise instructions, circuit diagnams, sketches and manuals. Applicant should hold O.N.C. or equivalent qualifications in relevant subjects. Salary is on the scale of \(£ 2,325\) £2.655. Applications stating auge, quallifications and full experience. together with the names and addresses of two referees should be addressed to Mr. E. French Department phyil Department of Physlology Medical Multipurpose Building, Moun Preston Street, Leeds LS2 9NQ.
(6146)

TECHNICIAN required for our radio repair workshop in Wialvis Bay, South West Africa, Must have thorough experience in service and repair of radlio and audio equipment. Good working condithions and igenerous salary. Applications to: RADIO ELECTRONIC P.O. BoX 670 , Walvis Bay. 9190, South West Africa.

to help develop and maintain Neurological Prostheses (i.e. electronic therapeutic systems, parts of which are surgically implanted). The work is carried out both in the laboratory and in patients homes. The successful applicant will have initiative, an enthusiasm for electronics and an ability 10 get on with people. Any specialised training necessary will be given.
Candidates should possess an HNC or University degree or City and Guilds Fulf Technological Certificate in a relevant subject. Salary on a scale rising to \(£ 3738\) p.a.

Apply in writing to The Director, MRC Neurological Prostheses Unit, Institute of Psychiatry, De Crespingy Park, London SE5, maring the envelope M.T.

\section*{137 \\ }

\section*{B. br petroleum development limited FORTIES FIELD}

\section*{TEIECOMMUNICATIONS IECHNICIANS}

Our telecommunications are vital in maintaining contact with Offshore operations. We require top-calibre Technicians to be responsible for the installation maintenance of all these systems (VHF and HF) and multiplex and telephone switching equipment for the Forties Field Project. Most of the equipment is on our four Forties Field platforms with the main terminals at Dyce. Both onshore and offshore based appointments are available. Onshore staff will be required to spend some periods working offshore.
Candidates must hold an ONC or equivalent and have at least 5 years' practical experience. Experience of data transmission and Post Office landline working would be an advantage.
Attractive salaries will be paid plus generous allowances while working offshore. The posts are permanent and pensionable. Candidates selected must live or be prepared to move into the Aberdeen area.

Please write with full details, age, qualifications, experience, etc., to: Forties Recruitment BP Petroleum Development Limited Farburn Industrial Estate DYCE, Aberdeen AB2 OPB

\section*{DIGITAL CLOCK CHIP, AY-5-1224} with data and circuit alagram £3.66 plus vat. Jumbo ' Led uigits (16mni high) type econoniy DL/4, only 2.04 each plus VAT. posi free. Greenbank Electronics. yi New Chester Road, Wirral, Merseyside L62 5AG.

\section*{C.R.T. REGUNNING PLANT. New and secondhand reconditioned B/W. Barretts. Mayo Rnad Croydon} Surrey. CRO 2QP.

\footnotetext{
VACUUM is our speciallty, new and secondhand rotary pumps. diffuston outfits, accessories, coriters ete. Silicone rubber or varnish out gassing equipment from \(£ 40\). V.N. Barrett (Sales) Ltd.; 1 Mayo Road. Croydon. 01-684 \(991 \%\)
}

Best choice for used TV Worldwide exporters of colour and mono TV. Unlimited supplies.

Midland TV Trade \& Retail Services.
Worcester Road, Kidderminster, England Worcester Road, Kidderminstef, England
Tel: Kidderminster 61907 or 67390 .

\section*{METAL FILM RESISTORS}
0.25 watt \(100 \mathrm{ppm} 2 \%\) values from 12 to 910 k ohms. 380 K pieces total. Offers invited for all or part of surplus stock

Thomson CSF (UK) Lid.
Tel. Basingstoke 29155 (6169)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{ENAMELLED COPPER WIRE} \\
\hline swg & 1/b reel & 1/2/b reel \\
\hline 10 to 19 & ¢2.95 & £1.60 \\
\hline 20 to 29 & ¢3.15 & £1.80 \\
\hline 30 to 34 & £3.45 & ¢1.90 \\
\hline 35 to 40 & £3.65 & ¢2.10 \\
\hline \multicolumn{3}{|l|}{All the above prices are inclusive of postage and packing in UK} \\
\hline \multicolumn{3}{|c|}{COPPER SUPPLIES} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
102 Parrswood Road, Withington, \\
Manchester 20
\end{tabular}} \\
\hline \multicolumn{3}{|c|}{Telephone 061-4458753} \\
\hline
\end{tabular}

16MM B \& H 631 Sound projectors c/w speaker and transformers \(£ 135\) ford -T. 20009. 9 West Hill, Dart-

60 KHz MSF Rugby Receiver. BCD TIME OF DAY OUTPUT. High performance, phase locked loop radio receiver. 5 V operation with 1
second LED indication. Kit com. second LEED indication. Kit com t14.08 (Including prostage and VAT). Assembied circuit and casedup version also available. Send for detalus Toolex, Sherborne (4359), Dorset.

YOUR TAPES TO DISC. MONO or SoUn TAPES TO DISC. Mond or Stereo Cutting. Vinylite Pressings,
Sleeves/labels. Top professional queevels/labes. Top professiona quality. S.A.E. for photo leaflet
DEROY
Records Cove Dunbartonshtre, Scotland

\section*{Appointments}

\title{
ELECTRICAL/ \\ ELECTRONICS ENGINEERS
}

\section*{a consultancy/managerial/designer role}

The Government Communications Headquarters has a constant demand for specialised complex equipment and systems designed by its own engineers, as well as readily available commercial equipment

The successful candidates will undertake engineering project officer duties Those will include interpreting non-technical briefs; advising clients on the best method of approach; preparing specifications and designs; costing; and managing projects right through to implementation.

Currently there are vacancies in the following fields: Radio Communication Systems across the range from VLF to microwaves and millimetric bands; Line and Data Communication Systems including computer application, and Main Computer Systems together with a wide range of peripherals

Candidates must have a degree in electrical or electronic engineering or be academically qualified for corporate membership of the IEE or IERE. They must have general appreciation of project officer responsibilities and had at least 2 years appropriate training and experience.

Starting salary between \(£ 3760\) and \(£ 5030\), depending on qualifications and experience. Prospects of promotion. Non-contributory pension scheme

\section*{GCHQ}

For further details and application form (to be returned by 7 October 1976) write to Civil Service Commission, Alencon Link, Basingstoke, Hants RG21 1JB, or telephone

\section*{CA GAPITAL appointuents lto. FIELD SERVICE ENGINEERS (ELECTRONICS) f you're not earning over E3.500 p.a. plus a car - then you had better contact us \\ 34 Percy Streat, London, w. 1 \(6500836^{\circ}\) (day) 5500836 (ovening)}

\section*{VERSATILE} ELECTRONICS ENGINEER required for small vigorous electronics camosinv in hertordamire. Alasponsibilitita will incluta projact development tiom conception to pre-praduction prototypi. Expartisa in high quality groiotype wiring. anfinatariag workstop practice. and PCE dosign will be at adractage. Salary nepoctiable accordiag to ability and expariance. Enthusiastic sad ienavativa anginears are invitod to aubsit applications which should include age. quillticatinas and previous mployment. logether with the

RADIO TELEPHONE Service Engineer wanted for work-shops in South London. Must be reliable and ex perienced with Pye, GEC, and Neg 680-1010 (5329) Neg. 680-1010

ELECTRONICS DESIGNER. We aT ELECTRONICS a smandon. We require a designer to join our young elecitronics team working on professional equipment \(\mathrm{He} / \mathrm{she}\) will design new circuitry and update present equipment in the digital, analogue and audio fiedds. Some experience in similar areas is essential. The Company operates a profit sharing scheme Telephone Mr Hamill on 01-542 1.171 for an application form

\section*{Radio Technician}

Our Overseas Division has a vacancy for a Radio Technician at Heathrow Airport London

Applicants should have a sound basic knowledge of adio theory, experience in STORNO /MOTOR ROLLER VHF and UHF ground radio communications equip ment. In addition, applicants must be willing to work shifts, have a current driving licence and preferably have passed a final certificate City \& Guilds

Salary including London Weighting, Earnings Supplement and shift allowance is \(£ 69.58\) per 40 -hour week Other benefits include an excellent contributory pension scheme and first-class sports and social facilities.

Please write giving details, quoting reference 620 /WW/MT to: Manager Selection Services, British Airways Overseas Division, PO Box 10 Heathrow Airport (London), Hounslow, Middlesex TW6 2JA. Or telephone: 01-897 5329/5602, 9.0 a.m. to \(5.0 \mathrm{p} . \mathrm{m}\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Crystal \\
ACCURATE L- RELIABLE
\(\qquad\) \\
Private enquiries. send \(13 p\) in stamps for brochure
\end{tabular} & \multirow[t]{4}{*}{\begin{tabular}{l}
SOWTER \\
TRANSFORMERS \\
FOR SOUNO RECORDING AMO REPROOUCIMG \\
EQUIPMEWT \\
We are supplows to many wellitmem campanias. stadits and \\
 \\
 mele. \\
aratent ratiense \\
SOWTEA IYPE 3678 \\
MUL TITAP MICROPHOME
IRAHSFORMER \\
Prinary mading fick 600 otm 200 ohm and 60 ohm wall \\
 \\
 \\
 \\
 Request. \\
E. A. SOWTER LTD. \\
7 Dedhem Piece, Fort Street \\
Ipawich IP4 1JP. Tet. 0473527946042
\end{tabular}} \\
\hline THE OUARTZ CRYSTAL CO.LTD. & \\
\hline & \\
\hline MULLARD High-Speed valve tester on trolley. Perfect working order Tests hundreds of valve types. \(£ 20\). & \\
\hline
\end{tabular}

\section*{SOLARTRON CD1400 Double Beam} Oscilloscopes plug in Hodules CX1441 and CX1444. Excellent working order, Best offer secures Box No W W 6176

\section*{VALVES RADIO TV TRANSMIT-} TING INDUSTRIAL 1938 to 1975 many obsolete types. list 20p s.a.e for quotation. Postal export ser vice. We wish to buy all types of valves new and boxed. Wholesalers, Dealers, etc, stocks purchased. Cox Radio (Sussex) Ltd., The Parade East Wittering, Sussex West Wittering 2023. (5392)
A. C. (MODULES) LTD., Holders of quality "Perspects" acrylic covers for use of electronic, turntables housings and plints. Small on medium runs considered overseas enquiries invited. - 10 Parade Mews, West Norwood London SE27 9AX Tel. 01-674 5326. Mr Crampton. (6172)

\section*{BIOMEDICAL ELECTRONICS DEVEOPMENT Engineer}

Pfizer Central Research located at Sandwich on the Kent coast comprises some 480 scientists and supporting staff researching and developing novel compounds for use in the human medicinal and veterinary fields.

We now need an additional electronics engineer to: -
a) design develop and construct a wide range of prototype equipment to assist our research efforts.
b) Maintain, and further develop, our existing electronic equipment
c) Assist in the development of hardware/ software for on line data acquisition and analysis
The successful applicant, male or female, will be a graduate or HNC in electronic engineering in the early/middle twenties age range who has an interest in the application of computing

Our well-equipped laboratories are housed in the recently opened E2.6 million Research Block extension. Conditions of employment include flexible working hours, four weeks holiday, pension, death benefit, salary continuance scheme, bonus, etc. Financial assistance with relocation expenses is given where appropriate

\section*{Pfizer}

Applications giving brief details of age, qualifications and experience should be addressed to:-
G. Marshall

Personnel Officer
Pfizer Central Research
Sandwich
Kent

\section*{ARTICLES FOR SALE}

\footnotetext{
FOR SALE. Miscellaneous elec. tronce equipmenti Obsolete due to introduction of new instruments
N . Brooker, Foxboro-Yoxall Ltd. Nedhill. Surrey, England RH1 2HL Redhill 65000.
}

TELETYPE 15. Absolutely as new, crated, transmitter. receiver, perforator with cover Six complete
teleprinters. will export offers. teleprinters. will export offers.
Send to N . Birkett, Sunnybank. Feock Truro. 0872-862575. (6148)

CAPACITORS, mixed bags of elec. trolytics, approximately 500 untested for fi. Mullard metallised polyester, mixed bags of 50 . \(1 \mu \mathrm{~F}\) and \(2.2 \mu \mathrm{~F}\) (250 V d.c.). cosmetic imperfeations so fi Add 40p P\&P ingham Road. SW15 1BE. (6170)

LINSLEY-HOOD 75 WATT AMPLIFIER SPARES. BDY56 £2.05, BD529 55p. BD 530550 , 2 N 5457 35p 2N5459
 BFR39 25p. BFR79 25p IS920 5p. 1N 4002 5p. Power amp update kit f9.80. Interference suppression kit instructions \(£ 1.35\). Inclusive prices. P\&P 15 p . All components brand new guaranteed and despatched promptly. SAE for list I G. Bowman (Dept. WW), 59 Fowey Ave. Torquay, South Devon.

THE FASTEST" GROWING AIRIINE IN THE MIDDLLE EAST

\section*{SENIOR RADIO TECHNICIAN Starting salary c. \(£ 7,600\) (tax free)}

Saudia, the airline of the Kingdem of Saudi Arabia, is seeking - as part of a planned programme of expansion - a thoroughly experienced Sentor Radio Itechncianto sustain the existing levelofoperations and alsoto work on new communications equipment which is currentle beine installed.

Duties will include
- routine mainrenance and troubleshooting on radiocyuipment - creg. LHF/VHP mobile communicationsequipment, pubtic address systems, cte
- work on communications sustem installations including anternas, feceler lines, power lines and cables
- the maintenance of technical journals
- keeping up-to-date regardingstate of the art procedures in clectronics maintenance - ficld trips
- the maintenance of service records onequipment and logs of the utilisation of spare parts - participation in on--job training of Saudi National emplosecs.

Applicants, whor should be aged under 45, should have completed a trade school course or have equivalent in experience. Threc to five sears experience of electronics cquipment serviciny is essential.

This job, which is for a 2 year (renewable) contract period, is based in Jeddah and offers a starting salaryof a round \(\ell, 7,600\) p.a. (income tax free) plus frec unfurnished accommodation for you and your famils. Saudia provide a generous re-location allowance, freceand reduced air tictiets and fo calendar davs leave perannum.

Please write, in contidence, enclesing full persemal and cafecredetails, and yuenting jub title and reference \(\begin{gathered}-50+7(), \text { to: }\end{gathered}\)
Miss C. Mulshaw,
Saudia's U.K. Personnel Representative, c/o Gordon Procter \& Partners, 50, Hans Crescent,
Knightsbridge, London SWIX oNA.
(C.1using date for applications: 30 th Seprember, 1976).

COLOUR, UHF AND TV SPARES. Lists on request. "Wireless World" by D. C. Read. Kits of parts avail. by D. C. Read. Kits of parts avail-
aode. JAPANESE SOLID STATE adle JAPANESE SOLID STATE menter. Includes IF IF Decoder, menter. Includes IF, Decoder, CDA, Incl. circuit. Brand new. f20 p/p. incl. 50 . New Cross Hatch kit, Aerial input type. No other con
nections. Battery operated port able. Incl. Sync \& UHF Modulator \(\begin{array}{ccc}\text { unats } & \text { £11* Add-on Grey Scale kit, } \\ \text { £2.90 } & \text { p/p } & \text { 45p. CRT }\end{array}\) £2.90* p/p 45p. CRT Reactivator \(\mathrm{p} / \mathrm{p}\) 80p. Signal Strength Meter kit
 Hi-Fi amps or tape recording 66.80 p/p 65p. Decca Colour TV Thyris tor Power Supply Unit, incl. H.T. L.T., etc. Incl. circuits \(£ 3.80 \mathrm{p} / \mathrm{p}\)
\(95 p\). Bush CTV 25 Power Supply Unit, inch. H.T., L.T., etc. e3.20 p/p \(£ 1.20\). Bush CTV 25 Convergence panel plus yoke, blue lateral
\(\mathbf{8 3 . 6 0} \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Philips single stand convergence units complete, incl 16 convergence units complete, incl 16
controls, \(£ 3.75 \mathrm{p} / \mathrm{p} 75 \mathrm{p}\). Colour controls, \(£ 3.75\) p/p \({ }^{75}\) p. Colour
Scan Coils, Mullard or Piessey £6 \(\mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Mullard AT1023/05 or plessey Converg. Yoke e2.50 p/p 55p. Mullard or Plessey Blue Lat-
erals 75 p p/p 30 p . BRC 3000 type scan coils \(£ 2\) p/p 80p. Bush CTV 25 Scan Coils \(£ 2.50\) p/p 80 p . Dellay Liness: DL20 83.50 DL40 \(£ 1.50\) DL1E,
DL1 \(85 p\) p/p \(40 \mathrm{p} . \quad\) Lum. delay \(\begin{array}{lllll}\text { lines } & 50 \mathrm{p} & \mathrm{p} / \mathrm{p} & 30 \mathrm{p} . & \text { Bush/Murphy } \\ \text { CTV } & 25 & 3 / 174 & \text { EHT } & \text { quadrupler }\end{array}\) \(\begin{array}{llll}\text { CTV } & 25 & 3 / 174 \text { EHT quadrupler } \\ \text { £8. } 50 & \text { p/p } & 75 \mathrm{p} \text {. Special offer colour }\end{array}\) triplers, ITT TH25 1TH £2 GEC 2040 £1.75 p/p 50p. Philups G8 Panels, part complete, Surplus/salvaged: £2.25, T. Base \(£ 1 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). CRT
 Base 75 p p/p 30 p . GEC 2040 De-
coder panel for spares \(£ 3.50 \mathrm{p} / \mathrm{p}\) coder panel for spares \({ }^{2} 3.50 \mathrm{p} / \mathrm{p}\)
70p. VARICAP TUNERS. UHF:
 \(\begin{array}{llll}\text { ELC } \\ \text { VHF: } \\ & \text { ELC } \\ 1043 & \text { £4.20, ELC } & \text { E5.50, Philips VHF }\end{array}\) £3.60. SLlvaged UHF \& VHF Vari caps \(61.50 \mathrm{p} / \mathrm{p} 35 \mathrm{p}\) SPECIAL OFFER: RBM 6 psn. Varicap control unit \(£ 1 \mathrm{p} / \mathrm{p}\) 35p. UHF Tuners transd. incl. slow motion drive £3.80. 4 Psn . and 6 PSn , push button transd. \(£ 4.40 \mathrm{p} / \mathrm{p} 70 \mathrm{p}\). Philips Bush Decca integrated UHF/VHF transd. tuners \(54.50 \mathrm{p} / \mathrm{p} 80 \mathrm{p}\). Thorn 850 dual stand, time base panels
50 p . Philips 625 lF panel incl. cet. 50 p . Philips 625 IF panel incl. cet. 50p. p/p 65 p . VHF Turret tuners AT 7850 for KB Featherlight,
Philips \(19 \mathrm{TG170}\) GEC 2010 etc Philips pye mindature ineremental £2.50. Pye miniature incremental tuners \({ }^{61,}\) Fireball tuners, Fergu-
son, HMV, Marcont \(80 p \mathrm{p} / \mathrm{p}\) all tunson, HMV, Marcont 80p p/p all tuners \(70 p\) Mullard Mono scan coils
for Philips, Stelli, Pye, Ekco. for Philips, Stellia, Pye, Ekco. Felection LOPTs, FOPTs avallable for most popular makes MANOR SUPPLIES, 172 West End Lane, London, N.W.6. Shop premises. Callers welcome. (Nos. 28, 159 buses or West Hampstead-Bakerloo Line and British Rall), Mail Order: 4 Golders Manor Drive, London. N.W.11. Tel: 01-794 8751. V.A.T Please ADD \(123 \%\) TO ALL PRICES (EXCEPT WHERE MARKED * VAT
\(8 \%\)).

Linsley-Hood 75 watt amplifier spares. BDY56 £1.65, BD529 55中. BD530 55p, 2N5457 35p, 2N5459
 BFR39 25p, BFR79 25p, 1S920 '5p. reduces preamp noise). with instrustions \(£ 1.35\). Power amp update kit 88.40. Inclusive prices. P\&P 10p. All components brand new. guaranteed and despatched promptly. SAE for list. Construction and repair work undertaken. I. G Bowman rDept WW), 59 Fowey Avenue, Torquay, S. Devon.

LARGE SELECTION OF SURPLUS ELECTRONIC COMPONENTS, speakens, cabinet hardware, etc. from: C.S.R. Ltd., Dawkins Road. from: C.S.R. Lomworthy. Poole Dorset. Tel. 0201378989.

MULLARD Capacitors type c280 and c281. mixed values from \(0.1 \mu \mathrm{f}\) to \(1.5 \mu \mathrm{f}\). Price - 100 , \(£ 1.50 ;\) Pr, \({ }^{1,000}\) Electronic Mailorder Litd. 62 Bridge Sitreet, Ramsbottom, Bury. Bridge Sitreet, Ramsibottom,
Lancs.
\((60174)\)

\section*{EXCLUSIVE OFFER}

\section*{HIGHEST QUALITY \(19^{\prime \prime}\)}

RACK MOUNTING CABINETS \& RACKS ENQUIRIES INVITED FOR NEW STOCK

AUDIO AND INSTRUMENTATIONTAPE RECORDER-REPRODUCERS
* Plessey ID33 Digital Units, 7 track

Ampex FR-1100, 6 speeds, sterack
*Ampex FR 600,4 speeds. 7 tracks \(1 / \mathrm{s}^{\prime \prime}\)
* Ampex FRG00, 4 speeds, 14 tracks
- EMI TR992 2 speeds. 1 track \({ }^{1} z^{\prime \prime}\)

EMG R \(301 G, 1\). 2 speed, 2 track, 2 tracks \(1 / 4\)
- EMI RE321 \(1 / "^{\prime \prime} 73^{\prime \prime}\) " 1 track

Mincom CMP. 100.6 speeds. 7 tracks \(1 / 4.1 / 2,1\)
Prices of above \(\mathbf{£ 7 0}\) to \(£ 400\)
Also Transport Decks only available

Racal RA-63 SSB Adaptors, new
Racal RA-237 L-W Converters. ne M' Blank Rack Paness \(8 *\) in hight new
Apeco Dial a Copy Photo Copier Electro Portable Mains Battery Hospital Lights Analysers.

\section*{We have a varied assortment of industrial and
professional Cathode Ray Tubes available. List on profession
request.}

\section*{COMPUTER HARDWARE}

LINE PRINTER, High speed 1000 lines c.p.m
* TAPE READER, High-speed 5/8 track 800 c.p.m.
CARD READER \(80 \mathrm{col} .600 \mathrm{c} . \mathrm{p} . \mathrm{m}\).
PLEASE ADD CARRIAGE AND V.A.T. P. HARRIS

ORGANFORD-DORSET BH166BR
BOURNEMOUTH (0202) 765051 (6054)

PRECISION
POLYCARBONATE CAPACITORS
All High Slability - extremely Low Leakage
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{440V A.C. RAMGE Value Dimen[uF sions \(\{\mathrm{mm}\)]}} & \multirow{3}{*}{Price each} & \multicolumn{4}{|l|}{63Y D.C. RANGE Value [uF \(4 x\)} \\
\hline & & & & & \(\pm 1 \%\) & & \\
\hline & 1 & 0 & & 0.018 & & & \\
\hline 0.1 & 27 & 12.7 & 68p & 0.1 & ¢. & & p \\
\hline 0.15 & 27 & 12.7 & 80p & 0.22 & & & \\
\hline 0.22 & 33 & 16 & 86p & 0.33 & \{1.32 & 77p & 51p \\
\hline 0.25 & 33 & 16 & 92p & 0.47 & & & \\
\hline 0.33 & 33 & 16 & \(99 p\) & 0.68 & E1.44 & 84 p & 56 p \\
\hline 0.47 & 33 & 19 & E1.10 & 1.0 & £1.56 & 91p & 609 \\
\hline 0.5 & 33 & 19 & E1.16 & 1.5 & £1.74 & £1.16 & 67p \\
\hline 0.68 & 50.8 & 19 & E1.25 & 2.2 & ¢1.98 & £1.32 & 75p \\
\hline 1.0 & 50.8 & 19 & £1.37 & 3.3 & £2.40 & £1.60 & 99p \\
\hline 1.5 & 50.8 & 25.4 & E1.64 & 4.7 & £2.82 & £1.88 & £1.23 \\
\hline 2.0 & 50.8 & 25.4 & £1.95 & 6.8 & £3.48 & £3.32 & £1.47 \\
\hline & & & & 10 & ¢4.98 & £3.32 & £2.01 \\
\hline & & & & 15 & £7.14 & ¢4.76 & £2.88 \\
\hline & & & & 22 & \(\underline{9.6}\) & £6.44 & £390 \\
\hline
\end{tabular}

\section*{TRAMSISTORS 1.C.'s}

 65 F . 50 tor £3.12. Special OfFER 100 zeners (may be mixeve tor \(65 p .50\)
66.00.

BRIOGE RECTIFIERS-2h: mmp: 200V 40p; 350V 45p: 600v 55p.
 100x: z200k: faok: Im: 2 mb : 5 m .
pegase and zop post ano pacximg ow all oroens. Expont-ano cist
Of SEA/MRMNLL Add \(\mathrm{s}^{\circ}\). VAT io all itms axcept lhose marked with
Send S.A.E. for additionsi slock lists
Waste price lisis wailatie to tons lide companiss.
MARCO TRADING (Dept P5 School. Edslasion. Wem (Shropstire

Wholesalers and other large users of consumer electronic components are invited to send for our monthly list of special offers. We stock semi-conductors, ic s, capacitors, resistors, etc Export enquiries welcome
P.O. BOX 4, WISBECH, CAMBS.
Telephone: 09454188

\section*{R.C.A. \\ INTEGRATED CIRCUITS}

Price: \(£ 5.00\)

\section*{THYRISTOR AND RECTIFIER MANUAL \\ Price: \(£ 3.50\)}

TiL DATA BOOK
by National MEMÓRY DATA BOOK
by National Price: £3.00
PRACTICAL SOLID STATE D.C SUPPLIES
by T. D. Towers Price: £5.90 ARRL ELECTRONICS DATA BOOK

Price: \(£ 3.10\)

\section*{MICROPROCESSORS}
by Martin Healey Price: \(£ 6.80\) LINEAR IC PRINCÏPLES
by E. M. Noll Price: \(£ 5.80\) SEMICONDUCTOR CIRCUIT ELEMENTS
by T. D. Towers Price: \(£ 6.00\) BASIC MATHEMATICS FOR ELECTRONICS
by Cooke \& Adams Price: £10.30 REFERENCE DATA FOR RADIO ENGINEERS

Price: \(£ 20.00\)
* PRICES INCLUDE POSTAGE *

THE MODERN BOOK CO
SPECIALISTS IN SCIENTIFIC
19-21 PRAED STREET
LONDON W2 1NP
Phone 7234185
Closed Sat. 1 p.m. (44)
IBM GOLFBALL \(7351 / 0\)
TYPEWRITERS
Coding similar to EBCDIC Will accept normal of sprocketed paper Supplied in working order with
photocopy of IBM interface manual Each machine
serviced and tested. \(£ 100+8 \%\) VAT. photocopy ond tested. As above but modified to rake office range of
golfball (1O putch) \(\mathrm{E} 125+8 \%\) VAI (inc New golthall
Goltball.
UK
Overseas arr freight or surfice at cost Overseas air ireight or surface at cost
Typwriter orders only. To Keytronics. Saul
Lodge, Sal, Gioucestershire. Tol. Saut (045-274)

 \(10.000 \mu 16 \mathrm{v} 50 \mathrm{p}(18 \mathrm{p})\)
\(2000 \mathrm{k} \mathrm{v}^{2} 38 \mathrm{p}(14 \mathrm{p})\)
\((1550)\).
\(40 \mu 275\) RMS motor star \(50 \mathrm{p}(20 \mathrm{p})\).
+ SMALL ELECTROLVTICE
\(2.2 \mu 10 \mathrm{v}, 10 \mu 33 \mathrm{v}, 50 \mu 40 \mathrm{v} 100 \mu 40 \mathrm{v} .100 \mu 6 \mathrm{v}\),
\(64 \mu 10 \mathrm{v}, 300 \mu 10 \mathrm{v}, 200 \mu 10 \mathrm{v} .12\) for 4.5 p (12 p). + PIHER PRESENTS 100 W
\(220.470 .1 \mathrm{~K}, 447,10 \mathrm{~K}, 100 \mathrm{~K}\) \(220.470 .1 \mathrm{~K}, 447\), \(10 \mathrm{~K}, 100 \mathrm{~K}, 220 \mathrm{~K}, 12 \mathrm{lor} 50 \mathrm{p}\)
\(12 \mathrm{p})\) TRANSFORMERS
 (60p)
Variou
Humbidity switches 80p (13p)
ontacts 80p (13p) 3M PLASTIC MAGNETIC STRIP 3" WIDE +250 Mixed capacitors OH LAMPS

12 v 55 w
12 w
250 w
500 w 60p \((10 p)\)
c.
E2. \(50(100 \mathrm{p})\)
\((13 \mathrm{p})\) Lught acivated SCR L9F 50v \(16 A 35 p\) (10p)
\(F \times 2243\) Por core Ex S
\[
70 p(32 p)
\]
+ Ge Drodes GEX 100 E15/1000 e2.50/100
(25p)
TEXAS CALCULATOR KEYBOARDS PC TYPE NEW
75p (10p)
NO BUTTONS
PAPST FANS (or similar) ex. eqpt. Reconditioned
\(41 / 2 \times 4 / 2 \times 2 \mathrm{~mm} 100 \mathrm{cf} \mathrm{m} \quad 50 / 60 \mathrm{c} / \mathrm{s} \mathrm{E3.60}\) \(41 / 2 \times 4 \mathrm{Na}\)
(65 p).
+ Reed

\section*{KEYTRONICS}

Shop open Monday to Saturday
9.30 a.m. - 2 p.m.

332 LEY STREET, ILFORD ESSEX. 01-553 1863

ThePolytechnic of NorthLondon

DEPARTMENT OF PHȲSICS
B.Sc. (Hons.) THE PHYSICS AND TECHNOLOGY OF ELECTRONICS
A sandwich course offering specialisation in Microwave Physics, or Theory and Practice of Computers, or Electrical Processes in Gases and Associated Spectroscopy.
HNC IN ÁPPLIED PHYSICS 2-year day-release course with special

\section*{CERTIFICATE OF}

SUPPLEMENTARY STUDY 3 one-term day-release courses (Further Electronics, Nuclear Radiation and Counting Techniques. Experimental Ato
mic Spectroscopy.
M.Sc. THE PHYSICAL B \(\overline{A S I S}\)

OF ELECTRONICS
This course is available as a full-time. part-time or an evening only course for graduates in Physics. Elec
ing and allied disciplines.
Specialisation is offered in Semiconductor Physics and Devices, Plasma and Laser Physics, Electromagnetic Waves and Communication Theory.
Details of these courses from:
The Head of the Physics Dept.
(Ref. WW4)
THE POLYTECHNIC OF NORTH -LONDON
Holloway Road, London N7 8DB
(Tel. 01-607 6767, Ext 305)
(Tel. 01-607 6767, Ext. 305)

RAOIO and Radar. M.P.T. and C.G.L.I. Courses. Write: Princlpal, Nautical College, Fleetwood, fy7
8 JZ .

\section*{EDUCATIONAL}

\section*{ÍNTERTEXT GROUP}

INTERNATIONAL CORRESPONDENCE SCHOOLS (ICS)
* SCHOOL OF ACCOUN. TANCY (SOA)
- INSTITUTE OF DOMESTIC ARTS (IDA)

Ian Ramsden
Intertext House
Stewarts Road, London S.W. 8 01-622 9911

\section*{SERVICES}

\section*{PRINTED CIRCUITS} and HARDWARE
Readily avalable supples of Constructors
hardware Alumnnum sheet and sections hardware Alumnium sheet and sections
Printed circuit board top quality for individual or published designs
Prompt service
Send 15 p for catalogue

\section*{RAMAR CONSTRUCTOR} SERVICES
Masons Road. Stratford-on-Avon Warwicks. Tel: 4879

\section*{AUDIOMASTER}

BACKGROUNO programes service, sales. Tap programmes. Stow Suildford 4801

LABELS. MAMEPLATES, FASCIAS dellivery G.S.M. Graphic Speedy Ltd., 1-5 Rectory Lane, Guls. borough (02873-4443). Yorks, U.K.

REPAIRS TO ELELTRONIC INSTRU MENTS. 'Scopes, Signal Generators Digitals. etc. Esitimates given free ment sales contact Altron. 10 Bromiley Drive. Leigh. Lancs. Tedt: l.eigh 78624 .

\section*{EVENING COURSE IN TELEVISION ENGINEERING}

The Polytechnic of Central London, 115 New Cavendish Street, London W1, will run a course in television engineering starting September 29, 1976 for 30 weeks on Wednesday evenings, 6.00-9.00 p.m. The course is recognised for A3 endorsement. Fee £8. Tel: 4865811 , ext. 6241.
(6182)

RADIO AMATEURS EXAMINATION City \& Guilds
Pass this important examination, and obtain your G8 licence, with an RRC Home Study Course
For details of this, and other courses (GCE, Professional Examinatıons etc). write or phone

THE RAPID RESULTS COLLEGE
Dept. JWI. Tuition Hous
Tel \(01-9477272\) (Careers Advisory
Service), or for a prospectus only ring
\(01-946 \quad 1102\) (24-hr. recording
service)
(6040)

\section*{EQUIPMENT, WANTED}

BROADFIELDS AND MAYCO DISPOSALS

21 Lodge Lane, N. Finchley London, N12 8 JJG
Telephone: \(01-4452713\)
\(01-4450749\)
01.4452713

01-958 7624
WE ARE INTERESTED IN PURCHASING ALL KINDS OF RADIO, T.V. AND ELEC. TRONIC COMPONENTS AND EQUIPMENT IN BULK QUANTITIES
WE PAY PROMPT CASH AND CLEAR MATERIAL BY RETURN. (46)
R. F. INDUCTION HEATER about Croydon CRO 20P. 1.5 KW . \({ }^{\text {Cayo }}\) Road,

RECEIVERS AND AMPLIFIERS.
HRO Rx5s, etc. AR88. CR100, BRT400
Stock. R. \(R\). \& \&
\&
 Ashvile Old Hall, Ashville Rd.
London, E11. Ley 4986 .
SIGNAL Generators, Oscilloscopes, Output Meters, Wave Voltmeters, Frequency Meters, Multi-range Meters etc., etc. in stock R. T. \& I. Electronics Lid. Ashville old Hall, Ashville Rd., London. E.11.
Ley 4986 .

* MINICOMPUTERS \(\star\) PERIPHERALS * INSTRUMENTATION

\section*{COMPUTER APPRECIATION} Godetone (088 384) 3221

B-D ELECTRONICS offer prompt ponents. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Petertelephone our Miss Hughes, Peter
borough (0733) 265219

WANTED, all types of communicatons recelvers and test equipment Details to R. \(\mathrm{T}_{1} \&{ }^{\text {\& }}\). Electronics
Lid., Ashville Old Hall Ashville Lid., Ashville Old Hall, Ashville
Rd., London, E.11. Ley 4986 . 63
SURPLUS COMPONENTS, Equipment and Computer paneis wanted for cash. Ring Southampton 772501

WANTED, surplus or slightly useu duty type 2 or equivalent heavy banks. Tel: 0481 57554.

B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest is consumer electronics. Please telephone our Miss Hughes, Sandy (0767) 81616. \(\qquad\)
\((22\)

\section*{SITUATIONS WANTED}

BRILLIANT YOUNG TC/Rad/hil-fi workshop manager seeks responsible posit in/near London. Full dettails to Box WW\&150.
all types of scrap and REDUNDANT ELECTRONIC \& COMPUTER MATERIALS
with preclous metal content

\section*{TRANSISTORS} \& PRINTED CIRCUIT BOARDS TO COMPLETE COMPUTERS
The COMMERCIAL SHELTING \&
REFINING Co. Ltd.
171 farrimgoon road LOMDON ECIR 3AL Tel. 01-837 1475.
Cables: COMSMELT, EG
Works: FECKNEY. rr. LEICESTE (6050)

WE BUY new valves, transistors and clean new components, large or small quantities all details quotations by return. - Walton's,
55 Worcester St. Wolverhampton.

YOUNG MAN requires work in re cording business. Quick to learn. Telephone Slamford 740285 Malcom . Pilsgate Grange, Stamford Malcom.
Plisgate Grange, Stamford, Lincs.
\((6185)\)

\section*{CAPACITY AVAILABLE}

PRINTED CIRCUIT BOARDS Quick deliveries, competitive prices, quotations on request, rolier tin. ning, drilling, etc., speciality small batches, larger quantities available Jamiesons Automatics Ltd, 1-5 Westgate, Bridlington. N. Humber side for the attention of Mr. J
Harrison. Tel:
\((0262) 4738 / 77877\).

FRINTED CIRCUIT BOAROS High quality, fast deliveries. Phototechniques, 11 Old Witney Road, Eynsham, Oxford. Tel. Oxford (0865) 880645 .
CAPACITY available to the Elec tronic Industry. Preciston turned parts, engraving, mdlong and grinding both in metals and plastics. Limited capacity available on Mathey SP33 jig borer. Write for Insts of full plant capacity to C.B. Industrial Engineering Ltd.: 9857057 .

BATCH Production Wiring and As sembly to sample or drawings Deane Electricals. 19B Station Parade, Ealing Common, London, W.5. Tel: 01-992 8976. (23)

DESIGN, development, repair, test and small production of electronic equipment. Specialist in production YOUNG ELECTRONICS LTD. 184 Royal College Street London NWI 9NN. 01-267 0201.

\section*{VALVES WANTED}

VALVES. Good prices. Types CV2797, CV2798, CV2792, CV2130, CV2131 \(\stackrel{4}{(5522}\)

\section*{WANTED}

C \& G LI. Advanced communication radio. Recent complete course study material with model answers. Reasonahle price paid. Box numher WW6186.

AIRTRONICS LTD., for Coil Wind ing - large or small production runs. Also PC Boards Assemblies Suppliers to P.O., M.O.D. etc. Ex. port enquiries welcomed 3a Walerand Road, London SE13้ 7PE.
Tel: 01-852 1706. Tel: 01-852 1706.
FINE SPOT WELOING, coll winding spldering, mechanical and electrical assembly, light sheet metal and presswork. Contact Webson (Manchester) Ltd., Shentonfield Road, Sharston, Industrial

COIL WINDING and transformer Manufacturer. Quick dransformer competitive prices. Raven Trans formers Ltd. 587 High Road. Ley ton, E10. 01-556 9467 . (6028)

RESEARCH. DESIGN \& DEVELOP. MENT. We are expanding our Electronics Laboratory and can offer rapid results in all electronic repartments. We have 15 years exderience working for the Govern ment and industry generally. Give nur Technical Director, E, A. Falk ner a ring on Ashford (69) 53681-2
6 Wolsey Road TWolsey Road, Ashford, Middlesex.
TW16 2 RB. TW16 2 RB.
(6104)

SMALL BATCH PROOUCTION WIRING, assembly to sample or draw assembly. Rock Electronics circuit Silver Street, Stansted Essex. T Stansted (0279) 33018/814006

\section*{Books}
"YINTAGE CRYSTAL SETS. 1922. 1927' Just published by Wireless Wors, contains 128 pages. Chap ing. The Crystal Set. Vintage Wireless Trademarks. Also catalogue sections listing and describing crystal sets together with their oripinal prices in f:s:d. A book for the collector or those interested in nostalgia. Available from main bokshops or direct from us. Please send \(£ 2.80\) inclusive to \(1 P \mathrm{C}\) Business Press Ltd.., Room 11 Dorset House, Stamford Street, London.
SE1 9LU.
(6125)

\author{
A. \& S.T.V. COMPONENTS \\ 8 Cavendish Crescent, Deacons Hill Road Elstree, Herts. \\ Tel. 01-953 9724 or 01-207 0520
}

Opening shortly Trade Counter at 3 High Street. Elstree where there will be a MAD MAD sale incl. Valves. TV Panel Boards, L.O.P.T.S., Tuners, Droppers. Condensers. Telescopic aerıals, Cabinets and a host of other components and accessories

TRANSISTORS \& I.C.'s

\author{
\(\begin{array}{llll}A C & 127 & 16 p \\ A C & 12 B & 16 p\end{array}\) \\ AC 12B 16p \\ \(\begin{array}{ll}\text { AC } & 18813 \mathrm{p} \\ \text { AD } \\ 149 & 47 \mathrm{p}\end{array}\) \\ \(\begin{array}{ll}\text { AD } & 149 \text { 47p } \\ \text { AD } & 16140 \mathrm{p}\end{array}\) \\ AD 162 40p \\ \(\begin{array}{ll}A D & 162 \text { 40p } \\ \text { AD } & 139 \text { 33p }\end{array}\) \\ \(\begin{array}{ll}\text { AF } & 139 \text { 33p } \\ \text { AF } & 178 \text { 48p }\end{array}\) \\ AF 239 48p \\ \\ ALL GOODS BRANDED OF HIGH QUALITY AND NEW
}

Please add \(121 / 2 \%\) for V.A.T. Minimum order \(£ 3.00\). Under \(£ 10.00\) please add 25 p P.\& P. Terms of business C.W.O.

\section*{CLASSIFIED ADVERTISEMENTS} Use this Form for your Sales and Wants

\author{
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
}

\section*{PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW}
- Rate. 81p PER LINE. Average seven words per une Minimum THREE lines.
- Name and address to be included in charge if used in advertisement.
- \(80 x\) No. Allow iwo words plus 45 p
- Cheques. etc. . payable to "Wireless World" and crossed \& Co.

NAME.
ADDRESS \(\qquad\)

\section*{HI FI YEAR \\ воок}

In the search for

\section*{quality it helps to know where to look.}

When you're looking for the best in Hi Fi , there's one sure way of finding it: Hi Fi Year Book 1977, with 500 pages of products, photos and invaluable articles that will help you in your choice. It tells you everything you need to know with separate illustrated sections for every major category of equipment - what it does, what it costs, who makes it, and where you buy it. Plus a host of articles on the latest Hi Fi developments and their application.
So if you want information like you want Hi Fi - order your copy right away.

\section*{HI FI YEAR \\ BOOK 1977}

Available direct from the publishers @ £3.40 inclusive or from leading booksellers and newsagents price \(£ 3.00\).

\section*{INDEX TO ADVERTISERS}

Appointments Vacant Advertisements appear on pages 130-142

\footnotetext{
Printed in Great Britain by QB Lid.. Sheepen Road. Colchester and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD. Dorset House. Stamford St.. London. SEI 9 LU telephone \(01-2618000\). Wireless World can be obtained abroad from the following: AUSTRALIA and NEW ZEALAND: Gordon \& Gotch Ltd. INDIA: A. H. Wheeler \& Co. CANADA: The Wm. Dawson Subscription Service, Ltd. Gordon \& Gotch Ltd. SOUTH AFRICA. Central News Agency Ltd.: William Dawson \& Sons (S.A.) Led. UNITED STATES: Eastern News
Distributors Inc., 155 West 15 th Street, New York, N.W. 10011 .
}

New!
Anti-Feedback \& Equalization
On the microphone!

Never before has a microphone put such absolute sound control into the palm of your hand. With Shure's new revolutionary PE5EQ E-Qualidyne Microphone, you simply preset any of four frequency switches on the microphone to minimize your Number One enemy-feedback. You can also select -on the spot-any one of 16 frequency response variations to tailor your performance to ANY stage: Sweeten the strings ... enhance the better qualities of your voice ... or eliminate close-up "boominess." Ideal where a single type of microphone will be used for different applications in the same act. Only the E-Qualidyne can offer such hand-held versatility. And only Shure has it!

Shure Electronics Limited
Eccleston Road, Maidstone ME15 6AU
Telephone: Maidstone (0622) 59881

\title{
Multicore SolderCreamsare oxide free!
}

Multicore's newest solder creams are designed specifically for hybrid microcircuits P.C.B's and critical component joints. Unlike ordinary creams which suffer from the problem of oxide around each atomised solder powder particle - they're completely oxide-free. The advantage is faster soldering with clear flux residues and no solder globules.

The new range can be made in any quantity and with a very wide variety of soft solder alloys, fluxes, particle sizes and viscosities, They're suitable for screen printing, stencilling or application by automatic precision dispensers. Add to that the speed, simplicity, reliability and low application cost of solder creams in many operations and you have a product that takes the art of soldering one step further.

Multicore's solder cream can often be used instead of solder preforms. No tool costs are involved and inventories of individual shapes are avoided. The cream can often be applied more quickly and has more uniform flux content than preforms. But for those assemblies where preforms are preferred...

\section*{...don't forget Multicore preforms}

These precision-made solder preforms come in virtually any size and shape. Rings, washers, dises, pellets and lengths of solder tape in most soft-solder alloys, with or without flux cores, are easily placed between the parts to be soldered.

Whether cream or preforms are used, just raise the temperature of the metal surfaces to around \(50^{\circ} \mathrm{C}\) above the melting temperature of the solder. The solder cream or preform does the rest. Heating techniques can include gas flame, hot plate, oven conveyor, induction coils, resistance/electrode soldering, hot
 gas and infra-red.

Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.```

[^0]: - Send me more information about the RTS 2 audio test set.

 I would like a demonstration. Phone me to arrange an appointment.

[^1]: WW-036 FOR FURTHER DETAILS

[^2]: Telephone Cleckheaton 872442

