

How long does it take for you to make a series of modulation tests with the meter you are using? The M.I. TF 2304 Automatic Modulation Meter eliminates at least five manual operations for each test and even more per test when a series of measurements is to be made. That can save you hours in a production day.

When connested to a transmitter, the TF 2304 automatically tunes to the carrier frequency and automatically sets the level, all within a few seconds. Exceptionally efficient screening and a very low distortion mixer ensure locking to the wanted signal. It is only necessary to select the required mode and range and the meter will read either deviation or \% depth. L.E.D. lamps indicate if the signal level is too high or low and a push-button inserts a 20 dB attenuator to extend the maximum input level to I watt.

The basic frequency range is $25-1000 \mathrm{MHz}$ and there are \& peak deviation ranges covering 1.5 kHz f.s.d. to 150 kHz f.s.d. and a.m. depth ranges of 30% and 100% f.s.d. all with a modulation frequency range of 50 Hz to 9 kHz . Modulation symmetry can be checked by push-button selection of positive or negative deviation and peak or trough amplitude.

The accuracy of modulation measurement is $\pm 3 \%$ of full scale so transmitter deviation can now be set close to the permitted maximum with a consequent increase in efficiency.

The TF 2304 can be operated either from mains or internal rechargeable battery. It's small and light and there's a comprehensive range of accessories including a carrying case.

The price will pleasantly surprise you. Ask for full details.

MARCONI INSTRUMENTS LIMITED,

120 BASIC RANGES

$A C V, I \& d B$
DC V, $1 \&$ NULL
RESISTANCE
LEAKAGE at 3 V
VOLT DROP of 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{~dB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500_{\mathrm{p}} \mathrm{A}$ Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $R=100 \mathrm{M} \Omega$ on volts.
$150 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polarity reversible. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V} \& 500 \mathrm{pA}$. Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ranges have centre zero lin/log scale covering ± 4 decades. $0.2 \Omega / 10 \mathrm{G} \Omega$ in 7 ranges, polarity reversible. Low test voltage for solid state circuits. Uses 3 V source with current ranges to test capacitors, diodes and resistance up to $100 \mathrm{G} \Omega$. Uses 10 mA source with voltage ranges to test diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
HIGH VOLTS
HIGH CURRENT
TEMPERATURE
$0.5 \mathrm{~V} / 500 \mathrm{~V}$ fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 20+\mathrm{VAT}$.
$1.5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $A C / D C$, using HV Probe. Price $£ 14$ + VAT.
$1.5 A / 50 \mathrm{fsd}, \mathrm{AC} / \mathrm{DC}$, using Current Shunt. Price $£ 14$ + VAT.
$-150^{\circ} \mathrm{C} /+500^{\circ} \mathrm{C}$ fsd in 7 ranges using Temperature Probe. Price $£ 36+$ VAT

The instrument operates from a 9 volt battery, life 1000 hrs ., or, $A C$ mains when optional Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is 1.75 kg . Meter scale length is 140 mm . Leather case is available at $\mathfrak{E}^{2} 12+$ VAT.

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated circuits - and the speediest service specify Haltron. It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wide. And Haltron export expertise will surely meet your requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited,
Electron House.
Cray Avenue. St. Mary Cray.
Orpington, Kent BR5 30J.
Telephone: Orpington 27099
Telex: 896141

Teonex are better known abroad... because we don't sell in the U.K.

Electronic valves (a really comprehensive range), semi-conductors (a wide variety), integrated circuits.
Teonex offers more than 4,000 devices.
They are competitively priced and they are superlative in performance, because the company imposes strict quality control. Teonex concentrates entirely on export and now operates in more than 70 countries, on Government or private contract. All popular types in the Teonex range are nearly
always available for immediate delivery.
Write now for technical specifications and prices to Teonex Limited, 2a Westbourne Grove Mews, London W11 2RY, England.
Cables: Tosuply London W11. Telex: 262256

thepanorvershillity
 The AVO EAll3 steps forward from the AVOMETER range to take a well deserved bow

The AVOMETER range for Electronics.

EA113 does everything a major multimeter will do, but it does it with a high input impedance of $1 \mathrm{M} \Omega N$ (dc voltage ranges), a 100 kHz capability, centre zero facility, single switch range selection, overload protection and other refinements, all for a UK Trade Price of well under $£ 120$. EA113 is, of course, an Electronic multimeter.

The range of measurement and accuracy are outstanding too. Voltage from $100 \mu \mathrm{~V}$ to 1 kV ($\pm 1.25 \%$): Current from $0.01 \mu \mathrm{~A}$ to $3 \mathrm{~A}(\pm 1.25 \%)$: Resitance from 1Ω to 100MS.

Yes, digital instruments also have high impedances - Avo offer the DA114 - but when it comes to all-round versatility in the laboratory and
maintenance workshop, with many peaking adjustments to make, you can't beat analogue display. As a final bonus, the EA113 brings you two valuable time-savers. No électrical zero setting, and internal batteries which are rated to run for 10 months of continuous round the-clock operation.

Choose your next multimeter from the British-built AVOMETER range and ring your Distributor for price and delivery.
 $\widehat{\text { THORN }}$ Thorn Measurement Control and Automation Diwision

New Faces

Born to be stars!

The communications industry has voted top spot to every Dymar ilistrument since the first in 1965.

Now meet two newcomers
Type 2041 AF signal generator. Frequency range 3 Hz to $300 \mathrm{kt}-\mathrm{z}$. Maxımum output 3 W into 3 ohims. A combination to cover the field from audio applications to vibration airalysis. Calibrated and stepped 600 ohmis attenuator gives adjustable output levels from 1 mV to 3 V isd) Auxillary output from oscillator for accurate frequency monitoring. Type 2081 RF power meters. 2081/30 resolves 1 mW to $30 \mathrm{~W} 2081 / 100$ covers 2 mW to 100 W . Bandwidth-DC to beyond 500 mHz And that covers most communications transmitters-hand portable. mobile or base-operating in HF.VHF and UHF.Built-in
extras. RF sampling and fast response peaking Of course both operate from mams supply or internal rechargeable batteries-conterring the famous Dymar go-anywhere quality.

And both will undoubtedly receive the recog. nition heard everywhere. 'Check it on the Dymar.' Ask Dymar for detalls or use the Reader Reply Service

DTMAR

the name in radiotelephones
Dymar E. \therefore orn \because Limted Colomal War Rutdett Roadt Watuor H_{w} io WDL ilA England Te eptrone Wd"ord 573? It er ajo Cal his Dyrat Wa: oru

Good, better, best...

 All things are a matter of compromise and superlatives must takeaccount of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only.
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only.
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only.
specialisation permits. All things are a matter of compromise and superlatives must take
account of it. Few will dispute the slogan under which our
precision pick-up arms are sold. In this context 'best' is not only
a reference to quality in design and manufacture, but extends to
service which we believe is unequalled.
Every week we send out hundreds of letters providing detailed
advice and answering customers' queries in a way that only
specialisation permits. specialisation permits.
Spares are despatched promptly to all parts of the world, usually the same day, and a recently introduced exchange service provides new arms for old on very attractive terms.
Because of these things demand sometimes exceeds supply but delivery is yet another matter in which we should be able to help if you write to

SME Limited • Steyning • Sussex England

The best pick-up arm in the world

Better Performance than any Graphic Equaliser on the market BUVERMISH (8)
 Summerfield Kidderminster DY11 7 RE Tel Kidderminster 64027

WW - 005 FOR FURTHER DETAILS

Design Council Award 1976

QUAD 405

Once again". Ouad's ability to comtinz outstanding technical development ε rd good desigy las won a Design Cou c I Award.
Once again the designis all our own work. and vje are ustifiably p-oud of it.

For firther details of the QUAD 405 curre it dumping amp iiar and othee JUAD products w-ite to: Dex. WW The scoust cal Manufecturing Co. Lid Hunt ngden. Cambs, PE187DB. Telephore C480) 52531

OUAD

for the closest approach to the original sound for twenty-five years

CU\&C is a Regisared Trade Marr

* The previous Award was for the Quad 33 control unit (seen here with the Quad 405)

Wayne Kerr's top-selling bridge

Meets modern requirements. Is accurate to 0.1\%.
Is self-balancing. Has 2,3 and 4-terminal connections. Continuous readout of real and quadrature terms. Overall range 10 micro-ohms to 100 gigohms, 0.001 pF to 10 farads, 1 nanohenry to 10 megahenrys and 10 picomhos to 100 kilomhos. Built-in source/detector $(1592 \mathrm{~Hz})$ Connectors for $200 \mathrm{~Hz}-20 \mathrm{kHz}$ manual operation
Comparator facilities. Analog outputs
Adjustable sensitivity. Ask for B642
Data Sheet

WAYNE KERR
 A member of the Wilmot Breeden group

For more information phone Bognor (02433) 25811. or write to: Wayne Kerr. Durban Road. Bognor Regis. Sussex P022 9RL

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery. Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$

WW - 013 FOR FURTHER DETAILS

INTERNATIONAL DANAVOX (GT. BRITAIN) LTD. "BROADLANDS" BAGSHOT ROAD. SUNNINGHILL, ASCOT, BERKS. TEL: 0990 23732/6: TELEX: 84584

Qfresearchana"on components and accessories for dictating machines, tele-communications, hearing aids and electroacoustic equipment etc."

WW-0.5 FOR FURTHER DETAILS

Atrenuate with Hectiodel
 Now with the latest additions to the range, you can select for ALL your needs from the 1 following:

WW - 033 FOR FURTHER DETAILS

FREQUENCY COUNTERS

HIGHER PERFORMANCE INSTRUMENTS FROM $1 / 10 \mathrm{~Hz}$ to 1.2 GHz . MEASURING FREQUENCY, PERIOD, TIME, FREQ. IRATIO AND CALIBRATED OUTPUT FACILITY. FAST DELIVERY.

CRYSTAL OVEN OPERATNG MANUAL
Sensitivity 10 mV Stability 5 parts 10^{10}

301 M	32MHz 5 Digit £82	401	32 MH	Hz 6 Digit £ 121
501	32 MHz 8 Digit £ 178	701A	80MH	Hz 8 Digit £195
801A/M	300MHz 8 Digit £305	901M	520 MH	Mzz 8 Digit £375
8018/M	250MHz 8 Digit £262	1001M	1.2 GH	Hz 8 Digit £670
Start/Stop versions plus £12		Memory versions available if nol suffixed M £25 extra		

Type 101 IMHz 100 KHz 10 KHz Crystal Standard $£ 85$ Type 103 Off/Air Standard £85
SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Dept., Crystal Manufacturers and Electronic Laboratories world-wide

R.C.S. ELECTRONICS NATIONAL WORKS, BATH ROAD HOUNSLOW, MIDDX. TW4 7EE Telephone: 01-572 0933/4

nombrex

MODEL 41
 R.F.SIGNAL GENERATOR
 Price $£ 54.85$

* $150 \mathrm{KHz}-220 \mathrm{MHz}$ on fundamentals
* 8 clear sciales - Total length 130 mm .
* Spin-Wheel Slow Motion Drive 11-1 ratio
* Overall Accuracy - $2 \frac{1}{2} \%$.
* Modulation. Variable depth and frequency.
* Internal Crystal Oscillator providing calibration checks throughout all ranges.
* Mechanical scale adjustment for accurate alignment against internal 1 MHz crystal oscillator.
* Powered by 9V Battery.

Trade and Export enquiries welcome
Send for full technical leaflets.
Post and Packing E1.00 extra
NOMBREX LTD., POUND PLACE, WOLBOROUGH STREET, NEWTON ABBOT, DEVON, TA12 1 NE Tel. Newton Abbot 68297

ANEMDIMENSTOU IISODEVIVG

Iso-Tip Cordless Soldering Iron
 Ideal for factory, field servicing,

 laboratory or home, the Iso-Tip Cordless offers a great advance in soldering, It is completely portable, heats in 5 seconds and recharges automatically in its own stand.The Iso.Tip is powered by long. life nickel cadmium batteries giving tip performance up to 50 watts with a temperature of $370^{\circ} \mathrm{C}$. Tips are available in five different sizes ranging from Micro to Heavy Duty to meet all soldering requirements

Greenwood Electronics

Portman Rd, Reading RG3 INE, England Telephone: Reading (0734) 595844 Telex: 848659

WW-037 FOR FURTHER DETAILS

SUBMINIATURE
 Metal Film Resistors * Resistance Range 10Ω to $150 \mathrm{~K} \Omega$
 * Tolerance from $\pm 1 \%$
 * Nominal Watage â $70^{\circ} \mathrm{C}$ up to $50 \mathrm{~K} \Omega 125 \mathrm{~mW}$
 * Prices from 9.06p each 100 rate
 * Temperature Coefficients from 50ppM * Size 4.1 mm long 1.8 mm diameter

Erg Compinitatis

Telephone: 0582-62241
Luton Road, Dunstable, Bedfordshre, LU5 4LJ England

745 COUNTER TIMER
Measures frequency, period, time and totalises 32 MHz frequency range (DC coupled) 5 -digit . $3^{\prime \prime}$ LED display
6 Gate times/Time units, 10μ s to 1 S in decades Sensitive, protected FET input

744 COUNTER TIMER
$£ 79+£ 2.00$ p. \& p + VAT
Measures frequency, period and time
30 MHz frequency range ($D C$ coupled) 5 -digit, long-life incandescent display Sensitive, protected FET input

£86 + £2.00 p. \&p. + VAT
Accurate, digital frequency setting $.01 \mathrm{~Hz}-1 \mathrm{MHz}$
Wide range external control of frequency Wide range external control of frequency
Triangle, Squarewave and Low Distortion Sinewave outputs
$50 \Omega+$ simultaneous outputs DC offset

Delivery is normally ex-stock-telephone for confirmation
Prices correct at time of going to press, subject to change without notice
OMB ELECTRONICS
Riverside, Eynsford, Kent DA4 0AE Tel. Farningham (0322) 863567

WW - 028 FOR FURTHER DETAILS

WW-043 FOR FURTHER DETAILS

- P.A. SYSTEMS FOR AIRPORT. HOTEL, FACTORY.
- theatre and lecture theatre audio systems
- AUDIO MIXING EQUIPMENT
- SIMULTANEOUS TRANSLATION SYSTEMS
- RADIO AND T.V. BROADCAST SOUND CONTROL EQUIPMENT
- MARINE INTERCOMMUNICATION AND ENTERTAINMENT EQUIPMENT
- System design, manufacture and installation

AUDIX LIMITED
Wendon, Saffron Walden, Easex CB11 4Ls
TEL. Saffron Waldon (0799) 40888: TELEX: 817444

Jointhe Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4} 4^{\prime \prime}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

$£ 5.95$
plus 50 p packing and surface post anywhere in the world.
Payments may be made in foreign currencies. Quantity discounts available on request. VAT zero rated.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

BRENELL ENGINEERING CO LTD
231-5 Liverpool Road. London N1 1LY. Tel: 01-607-8271

reliable high performance \& practical controls. individually powered modulesmains or dc option single cases and up to 17 modules in standard $19^{\prime \prime}$ crates small size-low weight-realistic prices.

49/51 Fylde Road Preston PR1 2XQ
Telephone 077257560

Fylde Electronic Laboratories Limited.
Guest.The name for the world's finest components.
and
products are available fast and with on-the-spot service.

A copy of the new Short
Form Brochure is available on Form Brochure is available on
request.䍖

See us on Stand 5706 Hall 5
at the I.E.A. Exhibition.

[^0]
transformers

mains, audio, microphone, ferrite core and other wound components

A wide range of transformers manufactured in production quantities to customers individual requirements

Prompt Prototype
Service available

MICROPHONE TRANSFORMER IN MUMETAL CAN

TRANSFORMER
WITH UNIVERSAL END FRAMES AND turret lug connections

Drake Transformers Limited
Telephone:
Billericay 51155
TRANSFORMER WITH
TWO HOLE CLAMP AND SOLDER TAG CONNECTIONS

Kennel Lane,
Billericay, Essex.

WW - 014 FOR FURTHER DETAILS

GRAMPIAN REPRODUCERS LTD. hanworth thading estate feltham, midolesex telephone 01-89499141

ELECTRONIC INDUSTRIAL THERMOMETER

the modern way to measure temperature
A Thermometer designed to operate, as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Probe and internal $11 / 2$ volt standard size battery.
Model '"Mini-Z $1^{1 "}$ measures from-40 C to $+70^{\circ} \mathrm{C}$
Model "Mini-Z $2^{\prime \prime}$ measures from-5 ${ }^{\circ} \mathrm{C}$ to $+105^{\circ}$. C
Model "Mini-on Hi"' measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ PRICE $£ 20.00$ each [VAT 8\% EXTRA]
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON. WC1X 8AX
('Phone 01-837 7937)
WW-035 FOR FURTHER DETAILS

1P RADFORD

AUDIO HIGH

SENSITIVITY VOLTMETERS AND NOISEMETERS

HSV1	Audio Voltmeter. Average reading	£125.00
HSV2	Audio Voltmeter. True r.m.s. reading	£175.00
ANM1	Audio Noisemeter. Average reading	£150.00
ANM2	Audio Noisemeter. True r.m.s. reading	£200.00

Four instruments are now available for the measurement of audio frequency signals including noise. They are derived from a basic battery operated voltmeter design having 16 measurement ranges from $10 \mu \mathrm{~V}$ for full scale meter deflection to 300 V f.s.d. The Voltmeter has a high input impedance and low inherent noise. It is fitted with a high grade meter having a 5 " mirror scale of excellent linearity, calibrated in volts and dBv.

The Audio Voltmeter (HSV1) becomes an Audio Noisemeter (ANM 1) by the inclusion of frequency contouring networks having characteristics recommended by international organisations concerned with specifications and measurement standards as being suitable for the quantitative measurement of the subjectiye effect of noise in audio systems. The HSV1 and AMN1 instruments respond to the average or mean value of the waveform being measured and are calibrated in r.m.s. values on a sine wave

In the HSV2 and ANM2 instruments an r.m.s. to d.c. converter module is incorporated which provides a true r.m.s. reading on waveforms with a crest factor in excess of 10 . These instruments are also provided with an additional output socket giving 1.00 V d.c. output corresponding to 1.00 V at nominal full scale meter deflection to operate a chart recorder or d.c: digital voltmeter.

All the instruments are fitted with a socket to enable an external network of any weighting characteristic to be introduced in the measuring circuit. This extends the use of the instruments to vibration and acoustical measurement as well as to the measurement of gramophone turntable rumble, f.m. receiver noise, etc.

Brief Specification covering all instruments:
Frequency response as

Voltmeter:
Input impedance
Attenuator accuracy
Meter scale linearity.
Waveform error in true r.m.s instruments:
Noisemeter included weighting characteristics:

Size

4 Hz to $500 \mathrm{kHz} ., \pm 0.5 \mathrm{~dB}$
1 M ohin shunter by 30 pF 0.25\%

1\%. Typically better than 0.5\%
$\pm 1 \%$ for crest factor 10
WIDE BAND (flat response voltmeter)
DIN 'AUDIO BAND
IEC/DIN 'CURVE A
CCIR
$11^{1 / 4^{\prime \prime}} \times 7 \frac{1 / 4^{\prime \prime}}{} \times 8^{1 / 2^{\prime \prime}}$ deep overall ($26 \times 18.5 \times 22 \mathrm{~cm}$)

Please write or phone for descriptive leaflet giving details of the design and full performance characteristics of the above instruments, together with a reprint copy of Dolby Laboratories Inc. Engineering Field Bulletin No. 19/2-'Noise Measurement on Consumer Equipment'

RADFORD LABORATORY INSTRUMENTS LTD.
Ashton Vale Road, Bristol, BS3 2 HZ
Telephone 0272662301

UEROWIRE. GET THE CONDECTION

- A new and ideal wiring system for proto types, Breadboards, and limited production. - Achieves a permanent interconnection of components, at high speed, on a very high density.
- Based on the use of Verowire(R) wiring pen with unique spring wire clamp for wire retention, advancement and retraction.
- Moulded wiring combs fitted to board route the wire from point to point neatly holding and stabilising the wiring layout.
\square By using a specially designed tool, I.C. legs are deformed and positively held in the board enabling the wire to be easily wrapped around them.
- Using a self-fluxing polyurethane coated wire, no pre-stripping is required. Connec tions are completed by soldering, melting the insulation and at the same time making a permanent soldered joint.
- A complete introductory Verowire kit is available consisting of a wiring pen, spools of wire, terminal pins and all tools neces sary. You only require a temperature controlled soldering iron to Verowire a board. A sample board from the Vero high density O.I.P. board range is also included in the introductory kit.

Available world wide through 3 subsidiary companies and 25 agents.

Vero Electronics Ltd.
Industrial Estate, Chandler's Ford, Eastleigh, Hampshire SO5 3ZR. Telephone: Chandler's Ford 2956 Telex: 47551

WW - 108 FOR FURTHER DETAILS

WW-072 FOR FURTHER DETAILS

Your choice of Live SocketsInstantly!

A Lexor DIS-BOARD gives you up to 6 sockets from one power outle! Portable or permanent fixing. compact units, wit atety neon. Over h. 000 socke combinations available from stock. All

Brochure from
LEXOR DIS-BOARDS LIMITED
Allesley Old Road: Coventry,
Telephone 72614 or 72207

WW-051 FOR FURTHER DETAILS

MINIATURE DRILLS
 from $£ 5.00$ (inc. V.a.t. and P.\&p.)

12v. D.C. DRILLS WITH SPEEDS UP TO 9000 R.P.M.

> TITAN - 350 GRM. CM. TORQUE CHUCK CAPACITY - 3.00 mm. RELIANT - 35 GRM. CM. TORQUE CHUCK CAPACITY - 2.4 mm.

PRICES incl. V.A.T. at $\mathbf{8 \%}$. Multipurpose Stand - $\varepsilon 9.96+67 \mathrm{p} . \& \mathrm{P}$.
Titan Maior Drill Kit - E43.35 + 94 P P.\&P. (Titan Drill, 40 Tools, Stand, 12V. Rect. Unit). Reliant Major Drill Kit $-£ 39.17+94$ p P.\&P. (Reliant Drill, 40 Tools, Stand, 12 V . Rect. Unit) Titan Mini Drill Kit - $£ 14.72+45$ P P.\&P. (Titan Drill and 20 Tools)

Reliant Mini Drill Kit $-£ 10.40+23$ P P. \&PP. Reliant Drill and
Titan Drill $-£ 9.01+45 \mathrm{p}$ P.\& P. Fieliant Drill $-£ 4.80+20$ p P. P.
Send Foolscap S.A.E. for full details.
MAIN DISTRIBUTORS: A. D. BAYLISS \& SON LTD., PFERA WORKS, REDMARLEY, GLOS. GLI9 3JU
TEL. BROMESBERROW (STD 053 181) 273 \& 364
STOCKISTS - Richards Electrics of Gloucester and Worcester Hoopers of Ledbury

We at Icon Design can justly claim to have originated many ideas now becoming standard; the single lamp tuning indicator and a moving coil frequency meter for example. We were also one of the first to use push button pre-select with separate manual tuning.

Our quality and service are still second to none

We are now pleased to announce a

TOUCH TUNE PRE-SELECT UNIT for our tuner

This is a separate unit, powered from the normal tuner supply, and designed as an alternative to the existing push button unit (K9a). It provides six pre-select channels while maintaining the manual control and frequency meter circuits. The pre-set pots (20 turn cermet types, of course) are accessible from the underside of the tuner without removing the cabinet, being mounted between the chassis and the front panel. The channel selected is indicated by L.E.D. lamps incorporated in the touch buttons, which replace the manual buttons without modification to chassis or front panel.
We regret that a photograph was not available at the time of printing, and invite requests for full details and prices by return of post

STEREO BOARD K $5-7$
KIT $£ 5.36$ BUILT £6.36

SEPARATE ITEMS (inc. in kits)

P.C.B. for main board	$\mathbf{£ 1 . 9 5}$
P.C.B. for stereo	$\mathbf{£ 0 . 9 5}$
PC.B. for selector	$\mathbf{£ 0 . 9 5}$
PC.B. for power supply	$\mathbf{£ 0 . 9 5}$
MC.1310 or equiv.	$\mathbf{£ 1 . 9 5}$
TBA750B	$\mathbf{£ 1 . 5 5}$
SL301B	$\mathbf{£ 1 . 1 0}$
SL3046	$\mathbf{£ 0 . 8 5}$
TBA625C (reg) \& heat sk	$\mathbf{£ 1 . 1 5}$
LP1186 front end	$\mathbf{£ 5 . 9 5}$
Filter SFG 10.7MA	$\mathbf{£ 1 . 5 5}$
Coil. (assembled \& adjusted)	$\mathbf{£ 0 . 5 0}$
Ten turn tuning pot	$\mathbf{£ 3 . 0 0}$
Front panel	$\mathbf{£ 1 . 7 5}$
Teak cabinet	$\mathbf{£ 7 . 7 5}$
Meter (scaled io5 or 108 MHz	$\mathbf{£ 8 . 8 5}$
Scale only (state which)	$\mathbf{£ 0 . 3 0}$

All kits guaranteed to work or free repair!

FULL TUNER KIT £85.00 COMPLETED TUNER £92.50

33 Restrop View Purton, WILTS SN5 9DG

Our family of low-cost computer educational aids is now larger than ever.

In addition to our popular Logic Tutors, we now have a fairly large selection of 1.C.Patchboards, an Analog Tutor, a Digital Arithmetic Tutor and a unique Microprocessor Educational Kit.

You ought to get details.
LIMROSE ELECTRONICS LIMITED, 241-243 Manchester Road, Northwich, Cheshire, CW9 7NE. Tel. 060641696 and 41697

WW - 102 FOR FURTHER DETAILS

DATA AND COMMUNICATIONS TERMINALS

Teletype 28, 32, 33, 35, 40
TermiNet $30,300 \& 1200(30$ and 120 cps$)$ Teleterm 1030 \& 1132 (portable 30 cps with integral coupler and RS 232C)
Other page printers (by Siemens, ITT Creed, etc.)
TermiNet 120 line printer
\star Spares, repairs, overhauls and maintenance

* Other types and models available
* Refurbished units also available
\star Short and long period rentals \star Minicomputer interfaces
* Quantity discounts \star Immediate delivery

TELEPRINTER EQUIPMENT LTD. 70-80 AKEMAN STREET, TRING, HERTS., U.K.

Telephone 0442-82-4011
Cables RAHMO Tring
Telex 82362
A/B Batelcom Tring

TPA 50-D Specification
$\begin{array}{ll}\text { Power Output } & 100 \text { watts rms into } 4 \text { ohms } \\ & 65 \text { watts rms into } 15 \text { ohms } \\ \text { Freq Response } & \pm_{0} 1.1 \mathrm{~dB} 20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \text { into }\end{array}$ $\pm_{0.1 \mathrm{~dB}} 20 \mathrm{~Hz}$ to 20 KHz into 15 ohms. 1 ddB at 150 KHz
Total harmonic
distortion
Input sensitivity
Noise
Rise time
Price
£77 plus V.A.T
Line (C.T.) and balanced inputs available.
For full technical information contact:
H|HELECTRONIC

CAMBRIDGE ROAD, MILTON, CAMBS

TELEPHONE CAMBRIDGE 65945/6/7

PROFESSIONAL - FREQUENCY COUNTERS BY HOYMITZ

Up-to-the-minute design. All five of our range of frequency-period-ratio counters are directly gated. For best resolution - FAST.
Stability. Electronic controlled crystal oven 3 parts 10^{*}
Bright. .63" character height display. (All Nine)
CHOICE. Filament or LED with Polaroid Filter.
All counters have suppressed leading zeros and auto decimal point positioning for easy positive readings. The memory is also standard.

Suffix F- Filament
Suffix L- LED

Type D6100L Type DG100F Sensitivity 10 mV Fraquency 100 Mhz PRICE $£ 199.00$	Type 86400L Type DG400F PRICE $£ 349.00$ Sensitivity AMP 1.0C-150 Mhz. 10 mV Sensitivity AMP' $2.40 \mathrm{Mhz}-400 \mathrm{Mhz}$. 10 mV
	$\begin{aligned} & \text { Type DG500L, } \\ & \text { Type DG500F } \end{aligned} \quad \text { PAICE } £ 475.00$
Type DG32L Type DG32F [8 digit only]	Sensitivity AMP 1.0C-150 Mhz. 10 mV Sensitivity AMP $2.40 \mathrm{Mhz}-500 \mathrm{Mhz}$. 10 mV
Sensitivity 10 mV Frequency 32 Mhz PRICE £169.00	SPECIALS TO ORDER Telephone Today 0642-43124 Telex No. 587238
Type DG700L Type DG700F	Hoymitz Electronics Ltd. 7-9 Albert Terrace, Middlesbrough Cleveland, TS 1 3PA, England
Sensitivity AMP $1.0 C-200 \mathrm{Mhz}$. 10 mV . PRICE $£ 569.00$ Sensitivity AMP 2.40-700 Mhz. 10 mV	

Prices exclusive of VAT

Gardners TheBest of British

Based on ambient $20^{\circ} \mathrm{C}, 100 \mathrm{sq}$. in heatsin - modules facilitating polarity changes Additional designs are fully described in GT.21B.
AC Input - Minimod Series

- P.C. mounting interchangeable with most American types
- Linear stabilization
- Foldback current limiting
- Wide temperature range
- Modules available for U.K. (210-250v), European (200-

240 v) and American (106-121v) requirements

- Supply Frequency $50-400 \mathrm{~Hz}$

TVpe	OUTPUT		Short Circuit CurrentmA (Typical)	\% Regulation line \& ioad (Typical)
number	Voltage*	Amps	0.5	370
PUO1	5	5	1.0	770
PU02	5	37	0.3	
PU03	$15-0.15$	0.10	84	0.5
PUQ4	$15-0.15$	0.20	45	0.1
PUO5	$12.0-12$	0.12	120	0.1
PU06	$12-0-12$	0.24	50	0.1
PU11	$18-0.18$	0.15	37	0.1
PU10	15	0.10	45	0.1
PU12	12	0.10	23	0.1
PU13	18	0.065		0.1

Nickel-Cadmium Cell Charger Units
Constant current outputs permitting up to 10 cells to be charged in series. DC INPUT - NV7304 AC INPUT - PUO7
ALL UNITS DESCRIBED ARE NORMALLY AVAILABLE FROM STOCK. SPECIAL DESIGN SERVICE, CUSTOM BUILT UNITS FOR APPLICATIONS REQUIRING
DIFFERENT SPECIFICATIONS ARE PRODUCED AS PART OF OUR STANDARD SERVICE. TRY US FIRST.

Gardners
Gardners Transformers Limited Christchurch - Dorset BH23 3PN Telephone. 0201-5-2284 Telex 41276 Gardners $\times \mathrm{CH}$
Approved manufacturers of electronic transformers, modular power supplies, inverters and converters to Defence Standard 05-21 WW-070 FOR FURTHER DETAILS
 soldering equipment has beer built on our precision products, so we have taken extreme care to see that our new ORYX Super 30 iron at, dare we repeat it, only £2.95, is going to be the best at its price.

* plus VAT at 8%

Greenwood Electronics

Greenwood Electronics. Portman Road. Reading. RG3 1NE Telephone: 0734-595844. Telex 848659

WW - 012 FOR FURTHER DETAILS

Switching problems? Rely on Zettler.

Producing 30 basic types of relay and 15.000 variants with regard to contact stacks, terminals, energizing current and contact material, Zettler is among the largest manufacturers of electro-mechanical components.

Our product range

 comprisesLow profile (flatform) Timing - Miniature Low contact capacity. Herme tically sealed - Stepping Mains switching Latching Contact stacks Solenoids

We resolve your switching problems rapidly and expertly. Please contact us for further details.

Zettler UK Division
Brember Road, Harrow, Middx
HA2 8AS. Tel. (01) 4220061
Please look us up at
IFSSEC 76. London 26-30 April. 1976. Stand No. 26 IEA-Electrex 76 Birmingham. 3.7 May. 1976 Stand No. 4318

WW-004 FOR FURTHER DETAILS

WW-046 FOR FURTHER DETAILS

ANADEX CF-700
 1 GHz COUNTER FOR £475

Features include:-
$\star 1 \mathrm{GHz}$ count rate with 1 Hz resolution

* 30 mv sensitivity with high overload capa-
bility
* 8 digit 'SPERRY' display

Also: Model CF-710 giving 0.001 Hz resolution up to 10 k Hz

aspen

electronics limited
18a HIGH STREET, NORTHWOOD, MIDDX HA61BN
TELEPHONE NORTHWOOD 27688

WW-041 FOR FURTHER DETAILS

$$
\begin{aligned}
& \text { gearboxes and } \\
& \text { control systems }
\end{aligned}
$$

Increased output capability fromtour new factory enables us to offer our MP range of regulated static inverters "off-the-shelf"

Our Type MP range is designed for use wherever DC voltage is to be converted into a regulated $A C$ supply.

All models are designed to meet the most severe environmental requirements and highest reliability standards giving a stabilized, sinusoidal output voltage and protection against overload, shortcircuit and wrong polarity.

If you have an Inverter requirement the chances are that we can satisfy it from stock, so why not contact us now.

We can also supply larger Inverters and no break systems up to 180 KVA .

Avel-

 off-the-shelf' ability!... for Static InvertersStabilized Sine Wave
Inverters with 200VA or
500 VA rating.
Nominal Inputs: $24,32,48,110$ and 220 V DC
Nominal Outputs : $110-125 \mathrm{v}$ and $220-250 \mathrm{v} 50$
or 60 Hz
Output Waveform : Low distartion Sine Wave
Facilities for external synchronization
and parallel connection of Inverters.
R.F.I. Suppression.

South Ockendon, Essex. RM155TD
Tel : South Ockendon 3444 Telex 897906

Stand No. 5432

IEA ELECTREX International Electrical Electronic and E Instrument Exhibition. National Exhibition Centre. Birmingham 3.7 May 1976

Were going to HIEA $/ 6$

...SEE YOU THERE!

AND YOU CAN SEE \& HEAR ALLTHESE BRAND NAMES ON DISPLAY \& DEMONSTRATION

And by opening day there will be even more THERES MORE TO SEE \& HEAR AT HIGH FIDELTY'76 the only true Hi-Fi exhibition this spring

AT THE

 HEATHROWHOTEL LONDON AIRPORTFFREE PARKING - special area long term
exhibition.
FFREE TRANSPORT - contow West
FFREE ADMISSION CATALOGUE FFREE EXHIBITION CATALOGUE FINFORMAL RELAXED ATMOSPHERE NINFORMAL RELAXED ATMOSPHERE

"He's asking fora reed relay assembly with a 30kV isolated coil"

People often bring their need to us. They know the Whiteley speciality. Being helpful! And the item that started life as a customer request, joins the Whiteley product list, ready to help other designers over a problem. You, perhaps? Consider a neat relay assembly - one or two dry reed switches with a rating of 25 W , housed in a mounting tube, with either 'norinally open' or 'changeover' contacts. Around them, a coil operating from 8, 12,24 or 50 V supply. 30 kV isolated from the contacts. The whole unit mounting on a $0.25^{\prime \prime}$ insulating plate with a couple of 3 way tag strips. If you're interested, ask for a data sheet. But more, keep Whiteley in mind as the people who make useful things.

...manufacturing your electrical and electronic requirements.

Whiteley

Mansfield, Notts NG18 5RW, England. Tel: 062324762.
See us on STAND 5247 I.E.A. Exhibition
WW 088 - FOR FURTHER DETAILS

GIANT KILLER!

SCene advanced scientific The SCGO is the most advanced scientific and
statistical calculator in its price range.

OPERATING FEATURES:

- Algebraic mode entry \dagger Two nested parentheses
levels Number entry to floating punt af scinalic levels Number entry to floating point of screnufic
notation - Automatic selection of correct for result display' (scientific or floating point)
todigl manussan to-dggt mantissa, 2 digit exponent e Sign selection
and display (Mantissa and exponent)
Full chan calculation with any function sequence Three user addressable memones "Protected", memory group includes - Sum memory - Sum-of-squares memory includes - Sum me

REALTONE SC 60@E46 + VATE3.68

FUNCTIONAL FEATURES

- Basic arithmetic $1+$
- Ting functions (sin co
(sin cos tan
- Logarithinis $(1 n \log)$
- Anti-loys $\left(e^{\prime} 10 \%\right.$

Exponentiation (v)
Combinatorial functions in' $\left\langle k^{\prime}(N)\right.$
Normal distribution function ${ }^{(\operatorname{Pr}(x))}$ Gamma function (τ x)) Binomial coefficients

- Combinations
-Group operations
 Factor reversal control (STO RCL XM) Degree Radian selection Trig or Inverse t Tr - Automatic e, For detection and display Arihmeace mean standard deviation a variance a square roots of the sum
- Normal probability function - Factorial

Accessories include Ni Cd rechargeable batteries rechargeable in 5 hrs: AC
adaptor charger leatherette carry ca be adaptor charger leatherette carry case instructions One year parts and labour C60.10 Al s
SC60.10.-Also available in the SC60 10 which has 12 operator-accessible sum-of-squares memoery, and index memory The additional 9 auxiliary store recall constants, the extra sufficient memory storage for up to ten intermediate results or ten processing of the variables. $\mathbf{E 4 . 8 2}$ (inc. VAT) + packing 60 variables for repeated We repair most makes of calculator S.A.E. for quotations and de
range. Texas SR 52 at $£ 250$. SR 56 at E86. C WO
KRAMER \& CO., 9 October Place, Holders Hill Road, London, NW4 1EJ Ter. 01-203 2473. Telex 888941 attention KRAMER

WW - 042 FOR FURTHER DETAILS

Meets in every respect all current specifications for measurement of Wow, Flutter and Drift on Optical and Magnetic sound recording/reproduction \ldots equipment using film, tape or disc High accuracy with crystal controlled oscillator Simple to use accepts wide range of input signals with no manual tuning or adjustment

Two models available:
Type 1742 'A' BS 4847 : 1972 DIN 45507
CCIR 409-2 Specifications Type 1742 'B' RS 1988: 1953 Rank Gale Specifications Mrs B, Nodwell
Rank Film Equipment, P() Box 70
Great West Road, Brent ford Middlesex TW8 9 HR $\square=-$
\qquad _
-
\qquad
\qquad

RANK FILM
EQUIPMENT
 1742 .
都

HEPWORTH ELECTRONICS

Worcester Road, Kidderminster Tel. 05622212 or 3
for
Quick, Clean, Low Cost, No Waste Breadboarding

THE SK10 Socket

or its little brother the SK50 Socket. SK50 Costs £6.95, the SK10 Costs £12.07.
VAT and Postage extra or from London and South East Distributors

ASPEN ELECTRONICS
18A High Street, Northwood, Middlesex
Tel. 27688
WW-032 FOR FURTHER DETAILS

Hard-to-find tubes and semiconductors are normally included in our quotations. We try to give a complete answer.
AEL GATWICK HOUSE HORLEY SURREY RH6 9SU Telex 87116 Cables Aerocon Telex Horley Telephone Horley 5353

WW-044 FOR FURTHER DETAILS

J E S AUDIO INSTRUMENTATION

Where to obtain a low-cost device to use as a linear output stage for mobile and marine radio under SSB conditions.

Solution

M-OV long-life beam tetrodes. A single TT21/22 gives 100 W PEP at 1200 V H.T. and one TT100 delivers 180W PEP at 850V H.T.

EEVand M-OV know how.

Lap 80

THE N - O VALVE CO LTD, Hammersmith, London, England W6 TPE $\mathcal{G C}$ Tel: 01-603 3431. Talex: 23435. Grams: Thermionic London S\&C E WW- 885 FOR FURTHER DETAILS

D.M.W.
 D.M.W. ASSOCIATES (ELECTRONICS) LIMITED

Time code generators' translators, tape search systems with manual or computer control

High-power wideband linear amplifiers

A comprehensive range of airborne and ground-based time code generators, translators and tape search units. The equipment is used in conjunction with instrumentation-type magnetic tape recorders for efficient data acquisition and analysis systems. Both manually operated equipment and fully computer-controlled systems are available. The computer-controlled systems are offered with the supply, installation and commissioning of the systems, including checkout software and other ancillaries. Computer interface units are available. A design service for special time code applications is also available.

A comprehensive range of wideband linear amplifier systems, which cover the frequency range from 2 to 60 MHz . A wide range of power outputs is available by suitable combination of ancillaries, such as automatic aerial matching units, hybrid couplers for power splitting and combining, sub-octave high-power switched filters, modulators etc, is available. The company also offers a development service for the design and manufacture of special systems.

DMW Associates (Electronics) Ltd 6-8 Morris Road
Royal Oak Industrial Estate
Daventry, Northamptonshire
Great Britain, NN 11 5PD
Telephone: Daventry (032 72) 71472

HIGH SPEED VIDEO ANALOGUE TO DIGITAL AND DIGITAL TO ANALOGUE CONVERTERS AND SYSTEMS.

VIDEO INSERTION UNITS

STAND 160 COMmUNICATIONS The third in a series of international expositions METROPOLE CONVENTION CERTRE
ERIOHTON, EMCLAND
E 11011 JUNE 1975
Organised by Tony Davios Communications Lumited

> RESEARCH AND DEVELOPMENT FACILITIES COVERING A WIDE RANGE OF TECHNOLOGY

BE FAIR TO YOUR MUSIC
Reproduction of sound and its acceptability is dependent on a combination of physical parameters not yet fully explored. We believe that only a compatible combination of specifications will enable a system to
reproduce music. We have taken care that the NAC 12 and NAP 160 pre and power amplifier will do so faithfully, while accepting the output of any pickup cartridge and driving any loudspeaker

Naim Audio Ltd. 11 Salt Lane, Salisbury, Wilts. Tel: (0722) 3746

PRECISION PETITE LTD.

119 A HIGH STREET, TEDDINGTON, MIDDX. TEL. 01-977 0878

Now with the:

- NEW MK. II DRILL•

10,000 r.p.m., 120 cmg.

"MORE POWER MORE TORQUE"

$12 v .-14 v$. DC
DRILL ONLY £8.00
(P.P. 35p)

STAND £ 3.76
(P.P. 35p)

Incl VAT
(Together 50p P.P.)
SAE for illustrated leaflet and order form

COIL WINDING

Manufacturers of all wound components including transformers, chokes, stators and armatures.
Prototype and design service available.
Electric Windings' factories are equipped to handle large or small volume production. Vacuum impregnation plants provide varnish impregnation for all temperature requirements.

ELECTRIC WINDINGS (LONDON) LTD. (Dept. WW) Avenue Works, Gallows Corner Romford, ESSEXRM3 OAJ

Ingrebourne 46677
WW - 023 FOR FURTHER DETAILS

ELECTRONORGTECHNICA

carbon film

RESISTORS
$1 / 8$ and $1 / 4 \mathrm{w} 70^{\circ} \mathrm{C} 5 \%$ tol. E. 12 EX-STOCK
C450 PER 1,000
PLUS
OF ONE VALUE V.AT.

Contact John Gingell

 wire and cable from 38-10AWG. - Solid or stranded.

Features include:
33 self adjusting cutting knives penetrate and remove insula tion without nicking the wire.
Depth Control adjusts for different insulation thicknesses.
Wire cutter with transparent finger guard snips cable clean. Lightweight moulded nylon body reinforced with fibreglass, reduces fatigue in continuous operations. Packed in contoured plastic case. Individually cartoned
No. 70286. Metric wire plier Crimpsterminals, cuts and measures bolts, cuts and strips wire. Combines the most used cable operations in a single tool

Distributed by
Special Products Distributors Limited 81 Piccadilly, London W1V OHL Tel. No. 01-629 9556
Cables: Speciprod London W1
WW-062 FOR FURTHER DETAILS

WW - 011 FOR FURTHER DETAIIS

EXCLUSIVE - WORLDBEATING
 DIGITAL ALARM CLOCK KIT»

CWO, PULSE ELECTRONICS, DEPT. WW11, 202 SHEFFORD RD., CLIFTON, SHEFFORD, BEDS.

TEAK Case 70p extra

 Built-in Alarm
Photo cell controlled brightness (AM / PM Indicator - Giant 0.5" LED Display

- 12 hr . mode
- Mains failure ind
- Tilt Snooze Sw
- 9 min . Snooze

- No knowledge of

 electronics to build kit
MODERN METHODS OF CAPACITANCE MEASURING

A complete range of British-made instruments designed to simplify capacitance measuring

Very accurate and sensitive these instruments require no manual balancing and take less than a second to measure a capacitor. To get the full story send now for brochures and a free copy of our booklet 'Modern Methods of Capacitance Measuring'. Better still, phone now for a demonstration VISIT OUR STAND NO. 5822, IEA EXHIBITION, BIRMINGHAM, 3rd - 7th MAY SUPPLIERS TO: Ministry of Defence, G.P.O., B.B.C., Government Depts. and Electronic Laboratories world-wide

ESP

ELECTRONIC SERVICES AND PRODUCTS LIMITED. CROSS LANE, BRAUNSTON, Nr. DAVENTRY. NORTHANTS. ENGLAND. Tel: RUGBY 890672.

WW-105 FOR FURTHER DETAILS

GRYSLON ELECTRONICS LTD.

for
ALL SOUND \& COMMUNICATION EQUIPMENT

SOUND MIXERS
CUE SYSTEMS
TALK-BACK ALL ANCILLARY EQUIPMENT

100 WATT POWER AMPLIFIER

FREE STANDING OR RACK MOUNTING

FULL PROTECTION CIRCUITS
SEND OR TELEPHONE FOR DETAILS

CRYSLON ELECTRONIC LTD
SYDENHAM INDUSTRIAL ESTATE LEAMINGTON SPA, WARWICKSHIRE Tel. 37628

OUR NEW XL2000 dpm . . .

for second to none applications

- True automatic polarity full $4 \frac{1}{2}$ digit display with basic 0.01% accuracy
- $0.55^{\prime \prime}$ Beckman or $0.43^{\prime \prime}$ led display.
- Automatic zeroing feature. Low power consumpton
Optio-isolated and fully screened analogue circuits.
- A proven design using the latest techniques and components make the XL2000 suitable for use in most process control, test, calibration and automatic monitoring applications.
Send now for full details.

exel electionics limuted
wolle ton toad, branksome
poole BH12 ILR
the panel meler people
telephone: bournemrouth |02023 166166.||× 411143

WW - 093 FOR FURTHER DETAILS

ATTENTION

OVERSEAS BUYERS!

We undertake many export contracts for supplying electrical and electronic goods.
Send your enquiry to:

BURMEL INTERNATIONAL
21 Marloes Roard London W8 6LG
Telephone 01-373 1257. Cables Burmel London W8

Audio Connectors

Broadcast'pattern jackfields, jackcords, plugs and jacks.
Quick disconnect microphone connectors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmann Bairaria plugs and test probes XLR compatible in-line attenuators and reversers.
Low cost slider faders by Ruf
Future Film Developments Ltd.
90 Wardour Street
London W1V 3LE
01-437 1892/3

CONSERVES YOUR CASH. No need to lock up capital in slow moving stocks.
SAVES TIME. Parts usually despatched by return. Orders phoned before midday are often on the way same day
A PROTOTYPE SERVICE. Invaluable when assorted alternative experimental parts are required.
SOLVES BUFFER STOCK PROBLEMS. Eliminates need for heavy stock holding. Our stocks are at your immediate disposal.
SIMPLIFIES ORDERING. One transaction for a variety of parts saves bookkeeping and paper work.
NO ORDER TOO SMALL. Every enquiry is of equal importance and dealt with expeditiously.

Obviously Single Source Service can solve a lot of your day to day problems. As the first step get the relevant U-C S catalogue, which illustrates and describes hundreds of parts any of which you may want at any moment. Write, or better still phone 0602328711.

So make United-Carr Supplies your SINGLE SOURCE for:-

> It makes sense to use the United-Carr Supply Service when you require smallerormixed quantities ofany of thefollowing:-

CINCH

Barrier terminal strips Fanning strips. Marker strips.
Printed circuit board edge connectors.
D Subminiatures.
Multi way plugs and sockets.

DOT

Electrical Components. Single and double pole rocker switches
Mains and low voltage indicator lights.
Plunger switches.
Mains connector blocks.
Automotive lamp holders. Push on terminations.
Fuse holders.
Audio sockets. Group boards. Valve holders.
Fuse holders.
Battery connectors.

FT

Edge clips.
Cable clips.
Cover plates
Turnbuckles.
Knob clips.

Industrial Fastenings.
Tee nuts.
DOT LOC single thread lock nuts.
Lift the Dot fastenings.
Turnbuttons.
Plugs and grommets.
Metal and plastic components.
Press studs.

Separate catalogues are available for:-
Electronic Components, ElectricalComponents \& Industrial Fasteners.

Write or phone for your free copy. stating possible requirements.

wireless world

Electronics, Television, Radio, Audio

MAY 1976 Vol 82 No 1485

Contents

35 Plain words to the word-bound
36 Low-noise, low-cost cassette deck by J. L. Linsley Hood
41 News of the month
Traffic broadcasting demonstrated
Programmable record playing
45 Some factors in loudspeaker quality by H. D. Harwood
57 The "walltenna" by Ray Schemel and Dennis Brown
60 Letters to the editor
Citizens Band for the UK?
Phase and sound quality
Induced e.m.f.
64 Wireless World Teletext decoder - 7 by J. F. Daniels
69 E.h.t. staircase generator for colour receivers by A. W. Lee
70 Instruments, electronics and automation - IEA preview
73 Communication theory - 2 by D. A. Bell
76 Festival of sound
78 Circuit ideas
Digital sample and hold
Pan-routing switch
81 Diode model of the m.o.s.f.e.t. - 2 by B. L. Hart
83 High performance voltage regulator by K. W. Mitchell
84 Announcements. Sixty years ago
89 Audio at Zurich
90 Railways use p.c.m. Literature received
91 Circards 30: non-linear functions by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams
92 H.F. predictions
93 Space news
94 World of amateur radio
95 New products
139 APPOINTMENTS VACANT
152 INDEX TO ADVERTISERS

Price 35p (Back numbers 50p, trqm koom 11, Dorset House, Stamford Street. London SE1 9LU.)
Editorial \& Advertising offices: Dorsel House, Stamford Street, London SE1 9LU
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables. "Ethaworld, London SE1."
Subscription rates: 1 year: $£ 7.00$ UK and overseas ($\$ 18.20$ USA and Canada). Student rate: 1 year̈, £3.50 UK and overseas ($\$ 9.10$ USA and Canada).
Distribution: 40 Bowling Green Lane, London ECIR ONE. Telephone $01-8373636$.
Subscriptions: Oakfield House, Perrymount Rd. Havwards Heath, Sussex RH16 3DH. Telephone 044453281 . Subscribers are requested to notity a cnange of address.
C) 1PC Business Press Ltd, 1976

Front cover design is based on a multiple-exposure photograph of the low-noise, low-cost cassette deck described in this issue.

IN OUR NEXT ISSUE

Intelligent beings in other solar systems? If they exist we may be able to communicate with them by radio. An article on the engineering aspects of sig nalling across stellar distances.

CD-4 demodulator. Design using QSI integrated circuit forms part of QS/SQ/CD-4 decoder unit to be described.

Antiphase or 180° phase shift - what is the difference? A discussion of common misunderstandings.

SIXTY-SIXTH YEAR OF PUBLICATION

ibpa

ABC
능․

We tailorTWTs fast at EEV

EEVand M-OV know how.

wireless world

Editor:
TOM IVALL, M.I.E.R.E

Deputy Editor:

PHILIP DARRINGTÓN
Phone 01-261 8435

Technical Editor:

GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc
Phone 01-261 8620°
MIKESAGIN
Phone 01-261 8429

Production:
D. R. BRAY

Advertisements:
G. BENTON ROWELL (Manager)

KEVIN BURNAL
Phone 01-261 8515

NIGEL LITTERICK
Phone 01-261 8037
O. BAILEY (Classified Advertisements) Phone 01-261 8508 or 01-261 8423

JOHN GIBBON (Make-up and copy) Phone 01-26I 8353

IPC Electrical-Electronic Press Ltd Publisher: Gordon Henderson

Plain words to the word-bound

The English language may not survive. It becomes compressed into a smaller working space with every advance in science, engineering and the arts. Just before it disappears, someone may possibly be heard to mutter "destructive, superfluous augmentation" or perhaps, being the last plain English speaker, "What does it all mean?"
It sometimes appears to technical journalists, exposed as they are to the full force of technical gobbledygook on all sides, that jargon is used in preference to plain words because it sounds more esoteric. It also saves the writer the trouble of finding the ordinary word which would be understood by people who are not, perhaps, familiar with the subject and may be thus admitted to to the circle of cognoscenti. For example, is the instruction "For store access, input 'initiate' command. Interrogation complete will indicate" easier to take in than "To obtain data, push 'start' button. Light will flash when finished"? We think not. Things have now reached the point where public relations firms not only issue "hand-outs" to describe their clients' products, but hand-outs to explain their hand-outs.

It is easy to accuse the Americans of debasing the English language, but the . British manage to do that very well themselves. Admittedly, the Americans do come up with some grotesque phrases, such as "as of this point in time . .." and "It is GO". They have even coined such mutants as "to merchandize" and "to pressure" and many other noun-verbs - but most are understandable, if absurd.

Our main complaint is against the making of new, jargon words from standard ones when the intended meaning is the same. To reference an amplifier output to its input is no different from the ordinary process, in which one refers to it. To input is the same as to put in and to access is no improvement on to take out. It may be said that the words are not misleading, merely unnecessary; but what of "random-access memory", which implies that a read-only memory is not equally accessible in a random way?

Self-importance is not the only spur to "jargonization"; laziness is often responsible for writing that is hard to understand. It is easy to see why someone should write "l.s.i. r.o.m. i.c."; the words would take too long to write and use up too much space. But if this is true perhaps the words ought to be replaced by better ones, or redundant ones left out.

There is no excuse for attempts to confuse the uninitiated readers by special 'language when plain words can be used (sometimes of course they can't; one 'would be hard put to it to write "staphylococcal peri-onychial whitlow" in economical standard English). Communication is essential if people are to be educated and jargon is a formidable barrier against this. It is probably too late for this journal to do any more than record its dismay, but if we can persuade a few writers not to talk of decoupling an emitter to earth or of a power unit supplying d.c. current. we will have helped a bit.

For some years the author had contemplated the possibilities for the provision of music of reasonable technical quality, by way of headphones, while away from home on camping holidays - which were normally taken in scenically attractive but physically remote parts of the countryside. Of the available alternatives, the use of previously recorded tape cassettes seemed the most satisfactory, but it is unlikely that further action would have been taken on this matter but for the current availability at an attractive price of good-quality cassette mechanisms made under Staar patents by Garrard and Goldring-Lenco.
It must be explained, at the outset, that the intention was not to provide an instrument which would equal or exceed that of expensive and carefully engineered "transcription" cassette recorders, but rather i" evolve a straightforward and relatively inexpensive circuit arrangement which would nevertheless provide a standard of performance which would be acceptable in the context of existing, high quality, audio equipment. In the event, the performance of the prototype has substantially exceeded expectations, and has led to a major revision of the author's opinion of the performance obtainable from this medium.
In particular, it would appear that, with good system design and appropriate attention paid to recording and bias levels in a direct recording made

High-quality design for mains/battery use

by J. L. Linsley Hood

from a good quality 1.p. disc onto a reasonable quality ferric-oxide cassette tape, the major component of noise on replay is likely to be the surface noise on the original disc. Also, the differences between the source material and the cassette transcript can be sufficiently small that they are not readily apparent, even on A-B comparison.

Basic circuit

The general layout of the system adopted is shown in Fig. 1. The d.c power supply unit has two outputs one of about $12-14 \mathrm{~V}$ at $200-400 \mathrm{~mA}$ to feed the d.c. drive motor which operates the cassette feed, and which has its own speed control system incorporated by the manufacturers, in the case of the Garrard CT4 used in the prototype and one having a well-smothed and electronically stabilized output preset to a nominal 13.5 V , which feeds either the replay or record amplifiers. Between
these two lines there are two changeover switchics, to the centre point of which can be connected a $12-14 \mathrm{~V}$ d.c. supply, so that the system can also be operated from batteries.

The changeover switch in the amplifier supply line is a small microswitch, not supplied with the cassette mechanism but operated by a protruding tag on the side of the record push button on the mechanism. To make a recording, this is depressed before the cassette is inserted, when a mechanical interlock retains the button in the inward position. When the d.c. supply is connected to the record amplifier panel, it also energises a 12 V , three-pole change-over relay connected in parallel with it. This relay transfers the connections from the combined replay-record heads from the input to the replay amplifier to the output of the record amplifier. Under normal replay conditions, neither the relay nor the record amplifier panel are energized. The bias/erase oscillator is mounted at the output end of the record amplifier and is supplied with power when this panel is energized. By using separate record and replay amplifiers some additional component cost is incurred, but the internal switching is greatly simplified.

Replay amplifier

The use of the extremely low tape speed of the Philips cassette design, coupled with the small head gaps necessary for good high frequency response, and the

relatively low coil inductance required for adequate recording and bias current, lead to a very low output voltage from the cassette replay heads. In the stereo configuration this means a 0 VU (normal maximum record level) output of some $800-1000 \mu \mathrm{~V}$, and actual signal levels down to a few tens of microvolts. Under these circumstances, it is imperative that great care is taken, both in the design of the input amplifier circuit and in the layout of the wiring from the heads to this, to prevent obtrusive noise or hum. The use of a d.c. tape motor greatly reduces hum originating in the motor, but the mains transformer in the power supply should have a low external mains field and should be as far away as possible from the replay amplifier input wiring and replay heads.

In the prototype, as the mains transformer which had been obtained was not very well designed from the point of its external 50 Hz field, a home-made Mumetal shroud was fashioned from a

Fig. 1. System diagram showing record/replay switching and battery/mains selection. Motor stabilization circuitry is provided by the makers of the mechanism.
surplus c.r.t. screen to enclose it and this completely solved the problem.

The input circuit of the replay amplifier is shown in Fig. 2: the amplifier is optimized for the minimum practicable noise voltage, to which the major contributory factors are Johnson noise, due to thermal agitation in the input circuit and input device base diffusion impedances (minimized by making the input impedance as low as practicable and by the correct choice of input devices - epitaxial-base silicon bipolar transistors are preferred); "Shot" noise, which is proportional to both current and bandwidth; "excess" or " l / f " noise,

Fig. 2. Relay amplifier.
due to imperfections in the crystal lattice and proportional to device current and root bandwidth and inversely proportional to root frequency; collector-base leakage current noise, which is influenced both by working temperature and collector-base voltage; and finally surface recombination noise in the base region. Where these are approximately calculable, the equations shown below are appropriate.
Johnson (thermal) noise' $V=\sqrt{4 K T R \Delta f}$ Shot noise $\quad i=\sqrt{2 q I_{\mathrm{DC}} \Delta f}$ Modulation ($1 / f$) noise $\quad V_{m}=\frac{\sqrt{\frac{\left.J I^{2}\right\rfloor f}{f}}}{f}$ where $\Delta \dot{f}$ is the bandwidth (Hz) $K=1.38 \times 10^{-23}, T$ the temperature (K), q the electronic charge (1.59×10^{-19} coulombs), f the frequency and R the input impedance.
In practical terms, this means using a silicon bipolar epitaxial-base transistor as the input device, which should be of $p-n-p$ form to take advantage of the

better surface recombination noise characteristics of the n-type base material, at an appropriately low col-lector-to-emitter voltage, say 3 to 4 V , with as low a collector current as is permissible and a base circuit impedance giving a suitable compromise between Johnson noise and device noise figure requirements. In the case of the Texas Instruments BC214LC, the optimum collector current and base circuit impedances are $10 \mu \mathrm{~A}$ and about 800 ohms. This gave, on the prototypes of this amplifier, a measured noise referred to the input of some $0.2 \mu \mathrm{~V}$ which is only slightly above the predicted Johnson noise value for the known input impedance and equalized bandwidth. In practice, the input noise introduced by this stage is sufficiently less than that of the tape background for it to be unimportant as a contribution to the overall system noise figure.
In the second stage of this amplifier, where the replay equalization (frequency/amplitude response shaping) is performed, a good-quality integrated operational amplifier "gain block" is employed, as in all the other gain stages of the system. The unit chosen is the Motorola MC1741CG, which is a fairly standard 741 but in an 8 -pin TO39 metal-can encapsulation, and is, in the authors experience with these devices, much to be preferred on grounds of reliability. Two equalizing characteristics are provided, having $70 \mu \mathrm{~s}$ and $120 \mu \mathrm{~s}$ upper time-constants. Of these, the former is the internationally agreed standard for chrome tape, and the latter is the normal standard for ferric types.

The output from this amplifier, about 0.4 volts r.m.s., at 0 VU and 660 Hz , is taken to the output socket, and the VU meter through an isolating silicon diode. A similar isolating diode on the output of the record amplifier circuit allows the VU meters to be used both on -record and replay settings, which is

useful for assessing tape output characteristics, and the recording levels of recorded cassettes.

The two replay characteristics are shown in Fig. 3, and are determined by the switched values of $\mathrm{R}_{10,12}$ and $\mathrm{C}_{6,8}$. Some additional treble lift to compensate for head limitations is given by R_{9}, C_{5} and gives rise to the part of the curve indicated in Fig. 3.

Although the author has some personal reservations about the use of series feedback configurations in the case of magnetic pick-up input equalization arrangements, where at the upper end of the recorded frequency range it is possible to generate relatively large pickup output voltages with consequent risk of distortion due to common-mode failure, in the case of cassette replay heads the likely output vol'ages are so small in relation to the input device $C_{b e}$ voltage that this is a negligible problem. Also, to design for the lowest practicable noise level, series feedback configurations remain the simplest form to implement, although in higher-speed, higher-output recorder systems it could be worthwhile to introduce feedback, around an inverting amplifier, at a low impedance at the earthy end of the playback coils.

To avoid replay head magnetization problems due to switch-on current surges through the replay coil windings on the charging of an input series capacitor, the replay coil is connected between the input reference voltage source and the base of the input transistor, so that the total current flow through this is limited to the base current of this device - about $0.1 \mu \mathrm{~A}$. (Head magnetization is less of a problem on record due to the demagnetizing effect of the fairly large bias voltage applied to it during recording. It is, however, important that the time constant of the record output circuit should be shorter than that of the decay of bias voltage, which is ensured by the use of fairly substantial capacitor values on the record amplifier positive supply line.)
The measured total harmonic distortion of the replay amplifier, input to output, at up to IV r.m.s. output, is less than 0.01%, and a very high degree of

Fig. 3. The two replay characteristics, with different values of R_{g}

Record amplifier

Since the design value of input sensitivity for this amplifier is not very high 50 mV r.m.s. input at 1 kHz for a 0 VU record level - great care to obtain a high signal-to-noise ratio is unnecessary (the difference in recorded noise obtained by replacing the input MC1741CG with a very low noise circuit such as that used in the replay amplifier is only of the order of 0.75 dB). A simple amplifier design based on a pair of these operational amplifiers is therefore entirely adequate, and confers a number of minor advantages in addition to those of simplicity and economy of component cost.
To avoid the necessity for winding coils for the generation of the required peaky record characteristic (desirable to offset shortcomings in the head performance, tape and recording characteristics at the upper end of the recording range) an active RC circuit arrangement is employed. This is shown in the circuit diagram of Fig. 4, and consists of the network $\mathrm{R}_{16}, \mathrm{R}_{17}, \mathrm{C}_{12}, \mathrm{C}_{13}$ in conjunction with $\mathrm{R}_{19} / \mathrm{VR}_{2}$ and C_{15}. The recording characteristics obtainable from this are shown in Fig. 5, for various component values, which may be of use if it is desired to use different record heads to those supplied with the Garrard CT4. The magnitude of the pre-emphasis hump in the $13-15 \mathrm{kHz}$ region is determined by the setting of VR_{2} (a preset component on the circuit board), while the basic recording treble

lift time constants are determined by C_{12} and C_{15}.
Changeover from the basic $70 \mu \mathrm{~s}$ recording characteristic to the $120 \mu \mathrm{~s}$ one is by switching C_{18} into circuit. The new cassette-standard bass pre-emphasis at $3180 \mu \mathrm{~s}$ is provided by $\mathrm{C}_{17}, \mathrm{R}_{27}$. A $39 \mathrm{k} \Omega$ swamping resistor is interposed between the output of the record amplifier and the head, to approximate to a constant-current recording condition. Since the impedance of the head at the upper end of the frequency range of the recorder is less than $10 \mathrm{k} \Omega$, the loss of h.f. due to this is small, and readily compensated for in the equalizing circuitry. With this value of output swamp resistor, attenuation of the bias voltage by the low output impedance of the 1741 is sufficient to eliminate the need for any additional bias-trap circuit, while allowing record amplifier circuit outputs of up to +3 VU with less than 0.02% t.h.d. at 1 kHz .
With the recording heads used in the prototype, a 0 VU record level at 660 Hz , chosen to avoid regions in which pre-emphasis characteristics would influence the result, corresponded to 2.25 Vr .m.s. at the output of the recording amplifier. Since the output magnetic flux characteristics of the heads were not specified, this level was chosen arbitrarily as the one at which a third-harmonic distortion level of approximately 1% was given at 660 Hz on a good quality (BASF Super LH C90) ferric tape. This gives a +3 VU setting of 3.1V r.m.s., which is below the amplifier clipping level on 13 V supply line voltage.
The output of the record amplifier is taken to the VU meter circuit through a silicon diode, but since the record

Fig. 4. Recording amplifier.
output is higher than that of the replay, an attenuator is included in this circuit to bring the two outputs to equality. The $47 \mathrm{k} \Omega$ resistor to the zero-volt line serves to provide a forward current to bias the diodes into conduction. Switching between record and replay in the VU meter circuit is automatic since only the circuit in use has an output

Fig. 5. Recording characteristics with variations in C_{15} and C_{12} The peak heights are adjustable by $V R_{3}$ (b) being the compromise adjustment and (c) the setting for optimum square wave
reproduction.
above the zero-volt level, the other one being disconnected from the supply line. Unwanted signal transfer through this diode feed network is of a very low order magnitude.

VU meter

This is a straightforward precision millivoltmeter of conventional type, in which the meter rectifier bridge is connected in the feedback loop of an operational amplifier as shown in Fig. 6. Although this is a more elaborate arrangement than most conventional VU meter systems, the cost of the operational amplifiers and the associat. ed germanium diode rectifiers is small in comparison with even a modest twin

Fig. 6. VU meter circuit.

Fig. 7. Erase and bias oscillator, with continuous variation of bias level. Provision is made on the p.c.b. for the level to be switched.

VU meter, and the arrangement has much in its favour in a very linear a.c.-to-d.c. conversion, flat frequency/ amplitude response, high input impedance, and short output voltage rise time due to the low output impedance of the amplifier. This latter feature is of particular value in tape recording, where the signal level meter should ideally have zero inertia so that it can follow the modulation of the signal without missing short-duration peak levels.

Bias and erase oscillator

A fairly common and irritating feature of inexpensive cassette recorders is their inability to erase fully an existing programme on a tape, when a further recording is being made on top of this. For satisfactory erasure of ferric and ferrichrome tapes, at least 20 V r.m.s. should be supplied to the erase coil, and for chrome tapes a value as high as 25 V may be required with typical cassette
erase heads. To obtain voltages as high as this with low-voltage lines, it is customary to use a push-pull oscillator' driving a step-up transformer, but some care is necessary to avoid harmonic distortion which can impair the recorded signal quality and s / n ratio.

A simpler method, which avoids many complications, is to use the erase head as the coil in a self-oscillating circuit, and employ the Q-multiplication of the tuned circuit around the erase coil both to provide the necessary voltage swing and also to improve the purity of the waveform. The circuit shown in Fig. 7 is a modified Colpitts, and provides an output of $25-33 \mathrm{~V}$ r.m.s. at the required erase frequency $(50 \mathrm{kHz})$, with supply voltages in the range 12-14 volts and with a waveform distortion of less than 1%, even when loaded with the bias circuitry. The current consumption is, however, of the order of 100 mA , giving a transistor dissipation of about 0.7 W . The Motorola MPS-U05 is particularly suitable, but other high-
gain, high-transition-frequency 1 W devices are quite suitable since the circuit is not particularly critical of component values or types, except in so far that these may modify the operating frequency, which should be within the range $50 \mathrm{kHz} \pm 5 \%$.
'The h.f. bias waveform is also derived from the erase coil, by way of a resistor-capacitor chain, $\mathrm{VR}_{3}, \mathrm{R}_{28}, \mathrm{C}_{20}$, to each record head output (VR_{3} is twingang). Since the purity of the bias waveform at the recording head is the design requirement, it is tempting to use a value of series capacitor (C_{20}) which will be series resonant with the record coil at the bias frequency, as is fairly standard commercial practice. However, on reflection, confirmed by measurement, it is better to use a larger value of C_{20}, and take advantage of the integrating characteristics of the series network to attenuate higher order distortion components in the bias waveform, as seen at the head.

The bias voltage required across the record coil is dependent on the tape used but, as a guide, should be in the region $5-7 \mathrm{~V}$ r.m.s., with the CT4 heads. The signal level, for reference, at this point, is only about 50 mV .

(To be continued)

Garrard Engineering Ltd now tell us that production of the CT4 mechanism is to stop in June. As mentioned in the article, however, Goldring Ltd also market a unit made under the Staar patents and this will continue to be available for some years. The type number is CRV and one difference between the two is that the CRV does not incorporate motor speed stabilization. An easy way to overcome this is to use the SGS-Ates TCA910 regulator i.c. on a small p.c.b., the design of which we will publish in the next article.

Wireless World has arranged a supply of stereo glass fibre p.c.bs for this design. The boards measure about 9 in $\times 33 / 4$ in and accommodate the changeover relay as well as two pre-set potentiometers per channel for. switchable bias settings. One-off price is $£ 4.50$ inclusive from M. R. Sagin, 11 Villiers Road, London NW2.

Automation in broadcasting

In addition to the International Broadcasting Convention being held in London, September $20-24$, there is to be an infernational conference on automation in sound and video broadcasting and transmission networks held in Paris, October 19-21. Papers are still being invited and anyone wishing to contribute is asked to contact Mr B. Sewter, IBA Engineering Headquarters, Crawley Court, Winchester, Hampshire (Tel: Winchester 822477).

Traffic broadcasting demonstrated

The BBC has demonstrated the technical feasibility of its proposed m.f. single-frequency road traffic information broadcasting service to UK Government officials, police, motoring and freight organizations and receiver manufacturers. It is a "dedicated" system (separate from the existing sound broadcasting networks) with many low-power m.f. transmitters one for each local traffic area. Using as it does only one frequency, it avoids mutual interference by time division multiplex working (for principle, see January News, p.36, and May 1973 issue).
The demonstration was based on two 250-watt RCA transmitters working on 593 kHz , one at Brookmans Park, Herts, and the other at Tatsfield, Surrey, representing two adjacent local service areas in, say, an 80 -station national network. Guests were taken on a trip round the north-west London suburbs in a coach fitted with a special t.r.f. receiver for the service and an ordinary car radio and cassette player. At regular intervals formal announcements (representing real traffic bulletins) from the transmitters were heard on a loudspeaker. At different parts of the route, a switch on the special t.r.f. receiver was operated automatically by signal level so that the passengers heard either the nearest ("local") transmitter or both ("local and adjacent") transmitters. Also, when the car radio or cassette programme was on continuously it was automatically interrupted when a traffic transmission occurred, ensuring that the traffic bulletins were heard. This was done, and the traffic t.r.f. receiver switched on and off, by a burst of tone transmitted before and after each bulletin which operated a decoder in the t.r.f. receiver.
The next step is for the BBC to run a full field trial using real traffic bulletins in a given district. Meanwhile the European Broadcasting Union's working party studying traffic information broadcasting has said that the v.h.f.
scheme using existing sound broadcästing stations, operating in W. Germany, Austria and Switzerland (and to be tried in the Netherlands), provides a short-term answer but that a "dedicated" m.f. network as proposed by the BBC would be preferable in the long term.

Programmable record playing

To believe the BSR publicity machine, the ACD Accutrac is not only the greatest thing since sliced bread, it's supposed to rank alongside the invention of the gramophone and claims to be
the first innovation in record reproduction since the 1.p. was introduced over 30 years ago." Despite this classic overstatement, the Accutrac 4000 is certainly a novel machine, with its use of an m.o.s. chip to enable the sequence of playing tracks on an l.p. disc to be programmed at will.
Track identification is achieved with the pickup, a development from ADC's XLM cartridge, which houses an infrared source and detector responding to energy reflected from the smooth surface between bands. Band selection can be determined by a remote control unit which duplicates the push-button functions on the turntable assembly. Functions provided are clear, play, reject, cue and repeat, together with the choice of any sequence of up to 24 selections from the 13 track-selection buttons. The remote unit contains m.o.s. circuitry, whose consumption is so low that the battery is permanently connected, that sends binary-coded
ultrasonic pulses at around 40 kHz to a receiver which may be positioned remotely from the player.
Two motors are used in the player, a brushless d.c. direct-drive mechanism for the platter and a servo-controlled motor for operating the pickup arm, the drive being disconnected when the stylus plays a groove.
Because the controls are situated outside the lid, it can be closed as soon as a record is placed on the turntable; and the automatic feature means that the pickup arm need never be handled.
BSR, who own ADC, now produce 65% of the world's record players and changers from the U.K. at a rate of 240,000 per week. Bulk of this goes to the U.S.A. and BSR claim they now have over 50% of the Japanese market. BSR aim to produce 5000 Accutrac units per week by September, the U.S.A., Japan and Germany being the main targets, Three models will be in production, the 4000 unit costing around $£ 300$, including v.a.t. and excluding power amplifier.

Computer-assisted mixing system

With the rapid growth of multi-track recording - as many as 24 tracks being common these days - it is becoming almost impossible for the sound engineer to remember the steps he is taking during the mixdown process. After years of consultation with broadcasters, film and recording studios around the world, Rupert Neve \& Company Ltd have produced NECAM, the first British computer-assisted mixing system.

Launched in March, the system eliminates the dull and repetitive tasks associated with multi-track recording equipment while retaining the artistic expression of the sound engineer.

NECAM reduces the real-time problem by enabling the engineer to interrupt a "take", recycle over short segments, or even operate at half tape speed, allowing the computer to "look after the joins". Many take attempts may be stored, recalled, and updated at will. The faders are servo driven and touch sensitive, providing both control and indication. A small keyboard provides fingertip control of all the functions so that segments of many take attempts may be assembled into a new take simply by computer data handling, a display at all times indicating what is happening. Although the decision functions of NECAM are stored as software in the computer memory, a floppy disc store provides a permanent record of all the takes. The system uses the internationally accepted SMPTE edit code for fixing tape transport locations.

Communications at the National Theatre

During the past three years complex audio and visual communication systems have been installed in the first two of the three theatres which form the New National Theatre at The South Bank, London. The two theatres are the 890 -seat conventionally shaped Lyttleton Theatre which will concentrate on living writers' productions and the 1,160-seat Olivier Theatre which will be used for classical plays.

Basically the installations consist of a telephone exchange, ring intercom, paging systems (including radio paging), closed circuit and off-air television.

Each stage manager's desk has the following facilities: low voltage effects and telephone ringing circuits; cue lights system; talkback; control of show relay and house lights; Post Office and internal telephones; two-channel c.c.t.v. monitor; stop watch, desk and script lights. The desks can be plugged into at least four different positions in each theatre. In addition each theatre has an inductive loop system available for "hearing aid" simultaneous translation. The last-mentioned can also be used in conjunction with the ring intercom system for technicians. The two theatres (the smaller Cottesloe studio theatre will be equipped in time for the official opening in June or July) have a comprehensive c.c.t.v. system providing show relay sound and vision in the many foyer areas, control rooms and offices in the building.

Japanese award for Britain

One of Britain's leading hi-fi loudspeaker manufacturers has won the Grand Prix award in the overseas products category of the 5th Japanese Stereo Components Grand Prix Contest. This is considered to be of high prestige value by Celestion who won it, particularly as the award, which is given to only one product in the entire hi-fi field each year, was gained in the face of competition from American, Scandinavian and German products.

A further award for a British product was received by Quad's 405 amplifier. The award is the "Decibel d'Honneur" made by the French audio journal Revue du Son and was presented for "unquestionable excellence of performance". What might be called a relative honour.

This electrical link-up was carried out under water to demonstrate that a new connector now in production at Hughes Microelectronics Ltd's Glenrothes factory really does keep out the moisture, particularly important for airborne electronic equipment where rapid altitude variations are a major cause of seal failure through moisture intrusion.

Flight warning system proved

A new aircraft safety system, GPWS (Ground Proximity Warning System), which should help to reduce the number of aircraft crashes into high ground and during airfield approaches on landing, was demonstrated during February. The demonstration, on an HS748 from the Royal Aircraft Establishment at Bedford, included a full test of GPWS against the Civil، Aviation Authority's operating specifications. (These are curves of flight variables plotted against rate of change of height above terrain for alt the varying flight modes.) Analysis of aircraft accident statistics: has apparently shown that, of the 743 passenger deaths in 1975, a total of 510 were caused by situations which could have been avoided if GPWS had been in use.

The new device, developed by Plessey Aerospace at Titchfield, Hampshire, gives the pilot a verbal warning by means of a synthesized voice to "pull up" or "climb" when the aircraft is approaching a dangerous situation. Heart of the system is a small computer known as Miproc produced by Plessey Microsystems. This is claimed to have advantages over analogue systems, such as those developed in the USA, including accuracy of control, rapid re-programming capability to meet minor specification changes, and ease of maintenance. Currently, ground proximity warning systems receive information from the radar/radio altimeter, landing gear, flap selectors, ILS glidescope/localiser receivers and the baro-. metric altimeter or air data computer.

Package radio stations

Complete national radio networks are now available in standardized modules. In March, Pye TVT Ltd, of Cambridge, launched a range of sound broadcasting units designed for national, regional and local stations. A unit consists of standard buildings fitted with studio furnishings and modular equipment to suit varying requirements. Expansion from one type of station to another is carried out simply and economically by the addition of further standard buildings and equipment. The range includes transportable and mobile stations for isolated areas and outside broadcast networks. Inter Engineering BV of Eindhoven are to handle all civil, architectural and acoustic design in addition to power and supply services. This range of equipment and services is intended, in the main, for the overseas market and it is claimed that everything needed to establish a working network is included.

Follow the 'Philips plus' way to prosperity

Make sure that your workshop is the most efficiently
equipped and that your service engineer's home visits are the fastest and most effective. Get these Philips instruments now. You won't find better value for money.

PM5501 PAL TV

Pattern Generator Price $\mathbf{f 1 4 9}$

Extremely light, portable instrument for service in customers' home. 5 different test patterns for colour and black/white installation and service. RF output signal switchable: VHF Band III and UHF Band IV. I kHz tone for sound performance checks.

PM5509 PAL TV Pattern
 Generator
 Price $£ 350$

The ultimate in pattern generators Full IF coverage; band I, II I, IV and V. Electronic tuning with 5 preset channels. Io test patterns (colour and black/white). Adjustable chroma/burst and HF-amplitude. Special sync, video and VCR outputs.

NEW

PM6456 FM Stereo Generator Price $\mathbf{f 1 9 2}$

Complete stereo signal. L \& R signal. Internal L.F. modulation: $1 \& 5 \mathrm{kHz}$. External stereo modulation possibility. X-tal controlled pilot. Adjustable multiplex signal.

PM5324 HF Generator Frequency range 100 kHz i 10 MHz . X-tal calibration. Special band spread ranges. High frequency stability. Electronically stabilised output max. 50 mVrms in 75 12. Facilities for internal and external AM and FM modulation.

PM5334 TV Sweep Generator Price $£ 399$

8 frequency ranges, 3 MHz 860 MHz . Sweep width continuously adjustable over selected range. Sweep frequency adjustable, $8-50 \mathrm{~Hz}$. One variable and 3 fixed markers. Signal frequency is accurate and thermally stable. Stabilised output into 75 s load.

PM2503 Electronic Multimeter Price $\mathbf{f 6} 9$

AC/DC voltage ranges $100 \mathrm{mV}-\mathrm{r} \mathrm{kV}$. $\mathrm{AC} / \mathrm{DC}$ current ranges i $\mu \mathrm{A}-\mathrm{I} \mathrm{A}$. Resistance ranges $100 \mathrm{~S} 2-10 \mathrm{M} \mathrm{s}$. $2-3^{\prime \prime}$, accuracy on all ranges. Resistance measurements: unique linear scale. No zero adjustment necessary. Automatic polarity indicator.
PM2412 General Purpose Multimeter Price $\mathbf{£ 4 8}$ DC voltage $300 \mathrm{mV}-1000 \mathrm{~V}$. AC voltage $3 \mathrm{~V}-600 \mathrm{~V}$. DC current $10 \mathrm{~mA}-6 \mathrm{~A}$. AC current $100 \mathrm{~mA}-6 \mathrm{~A}$.
(all values f.s.d.)
Resistance I S2 т Io M S. Tautband 40,000 ת/V. suspension-type meter.

NEW

PM2513 Low Cost Digital Multimeter Price $£ 95$
DC. voltage ranges $0.2-1000 \mathrm{~V}$. AC voltage ranges $0.2-600 \mathrm{~V}$. $\mathrm{AC} / \mathrm{DC}$ current ranges $0.2 \mathrm{~mA}-2 \mathrm{~A}$. Resistance ranges 200 S -2 M s. Full circuit protection. Provision for temperature measurements, -60° to : 200 C .

PM3225 and PM3226 15 MHz oscilloscopes

Comprehensive triggering facilities (Auto, AC, DC and TV) Large $8 \times$ io div. screen Sensitivity $2 \mathrm{mV} / \mathrm{div}$ Ergonepmic styling and lightweight construction

NEW

Single trace: PM3225. Price $£ 210$
Dual trace: PM3226. Price $£ 290$
The Philips Plus is the quality of design, specification and appearance - particularly in terms of human engineering - of every instrument. A total test and measuring range capability, which includes'scopes, meters, counters, pulse generators, power supplies, recorders and generators. The ability to supply all the recorders and generators. The abil
user's needs from a single
For prompt delivery of any of these instruments, send us your cheque, If you require further information, there is a new 16 page illustrated brochure packed with facts which we would be delighted to send you. Please use the reader reply service, write or telephone to
 Pye Unicam Ltd
Philips Electronic Instruments Dept. York Street Cambridge England CBi 2PX Tel: Cambridge (0223) 58866 Telex: 81733I

Wéve joined Chiristopher Wren in the dome business...

... as users of our Dome Tweeters will aiready know

ISOPHON are a company who have been manufacturing loudspeakers for over fifty years and are internationally known and respected for quality and reliability. They offer a wide range of tweeters, mid-range and bass units.

Owing to shortage of space we are only able to draw your attention to just two of the models currently being manufactured by Isophon

The KK8
A dome tweeter, well known for its performance and reliability, and chosen by many loudspeaker
manufacturers. Two models are available, one up to 50 watts and the other up to 80 watts RMS Power Rating. Frequency range from 800 to over $20,000 \mathrm{~Hz}$.

The PSL 245/60
A new $10^{\prime \prime}$ circular loudspeaker, offering up to 60 watts RMS Power Rating.

Our 28 page colour catalogue will give you details of the extremely wide choice of loudspeakers that are available from Isophon.

For your free copy of the catalcgue, pleasa

Hayden Laboratories Limited Hayden House, Churchfield Road Chalfont St. Peter, Bucks. SL9 9EW Tel: Gerrards Cross (028 13) 88447

Some factors in loudspeaker quality

by H. D. Harwood

BBC Research Department

Abstract

Some of the factors in loudspeaker design have been dealt with in the technical press many times but there are others which have received comparatively little attention, at any. rate quantitatively. In this article it is proposed to deal with a few of the latter and to add some subjective data which is new.

In the presentation of this material it is intended to follow the frequency scale, that is to start at the bass and work upwards.

Bass response

(a) Effect of surround stiffness. A loudspeaker is essentially a band pass device and it is well known that in a closed type of cabinet the lower cut-off frequency is set by the resonance frequency of the unit in the cabinet.

In an endeavour to obtain as extended a bass response as possible, various devices have been tried. One such is to increase the mass of the cone, but this carries with it the penalty of reduced output. Another device has been to make the combined stiffness of the spider and surround as low as possible thus allowing the cabinet volume to be the deciding factor in the effective resonance frequency'. The argument has been that the air stiffness is more linear than that of the spider/surround combination and that by making it the dominant factor, distortion at high sound levels is reduced ${ }^{1,2.3}$. This can be true at high sound levels but it will be shown here that this form of design can actually lead to increased distortion at low and medium sound levels.

Among the many functions the surround is called upon to fulfil is that of sealing the cone to the cabinet. When the cone moves backwards into the cabinet it creates a back pressure in it and this in turn attempts to drive the surround outwards, i.e. in the opposite direction to the movement of the cone. If the mechanical impedance of the surround has been made low this inverse surround excursion may be quite appreciable. Furthermore, the stiffness of most surrounds is not very linear for finite amplitudes, so that in practice under these conditions they may execute essentially a square wave and so generate a number of the higher harmonics together with the corresponding objectionable intermodulation products. It will immediately be seen that this effect is greatest at low and medium levels; at high levels the cone will drag the surrourpd with it and
the effect will be less in proportion. The worst surrounds will be those whose linearity ends abruptly, for example any type containing cloth as a reinforcing material, whereas if the surround is perfectly linear the only effect will be an appreciable loss in effective radiating area.

It will be realised that this effect also takes place in a vented cabinet where, at the vent resonance frequency, the sound pressures acting on the cone and surround will be correspondingly greater than in a closed cabinet. The only way of reducing the effect is to make the mechanical impedance of the surround high and the area low. It would be convenient to have data to show how serious the effect can be in practice but it would be difficult in a closed cabinet to prove that it was not due to the other usual forms of non-linearity, and because of awareness of this defect, this type of unit has always been avoided in the BBC. What can be done is the other extreme, to show that in a unit with a surround of high mechanical impedance the effect can be held within reasonable bounds. To make the illus-

Fig. 1. Non-linearity distortion produced by loudspeaker unit surround at low sound levels in a vented cabinet: (a) fundamental, (b) 3rd harmonic.

tration clearer a vented cabinet has been chosen so that the effect is local and easily distinguishable. Fig. I shows the acoustic output from an 8 in unit having a free air resonance frequency of no less than 65 Hz , with the microphone near the surround ${ }^{4}$. Curve (a) shows the fundamental together with the expected dip at the vent resonance frequency, whereas curve (b) shows the third harmonic distortion rising to a peak of 10 dB at the same frequency i.e. where the excursion of the cone is least but the back pressure is greatest. Because these curves were taken at a fairly low level the distortion at other frequencies is low, and if the total output from the unit plus vent is assumed to be uniform at the 200 Hz level, the distortion due to the surround is not greater than about 2%. It should be stressed that this distortion"is from a "good" surround those of lower mechanical impedance would be much worse. Also for a vented cabinet design at high sound levels, the curve of the third harmonic will reverse and show an increase at the adjacent frequencies leading to a dip at the vent resonance frequency.
(b) Effect of total magnetic flux. The effect of total flux on the sound output will now be considered. It is well known that if the design parameters are adjusted correctly a bass response curve like that shown schematically in Fig. 2 curve (a) is obtained. Now if it becomes necessary to increase the flux by a factor of two, curve (b) is produced. In the mass controlled and stiffness controlled areas, where the motional impedance is low, a rise in output of 6 dB is produced for the same input voltage. On the other hand in the region of resonance where the motional impedance predominates, this impedance increases by four times with a corresponding decrease in driving current, and a quarter the current in a field of twice the flux gives a loss of 6 dB . There is therefore a relative loss of 12 dB and this has to be corrected by equalization.

Now there is another way of arriving at the desired equalization. This is to attach an accelerometer to the voice
coil tormer and connect the output of the accelerometer to a feedback network, and for a closed cabinet this can be made to give the same result. But there is no magic about feedback and it does not change the efficiency of the unit; in essence the same operation as before is being performed, that is, equalization is being applied.

Incidentally although motional feedback is now becoming popular it is salutory to remember that in fact the idea is quite old. ${ }^{5}$ The earliest reference known to the author is to a patent taken out by P. Voigt in January 1924. It may surprise many people who thought that negative feedback came in with Black and Nyquist ten years later, to realise that the principles and advantages of feedback were appreciated so long ago, and that they were applied to so intractable a subject as loudspeakers. There have been at least two other patents on motional feedback, one by A. Sykes in 1926 and one by M. Trouton in 1928, before the Black and Nyquist papers.
Now to return to our subject. Another method available to help the bass response is to use a vented cabinet design. This is well-known and the provision of a high acoustic load at the rear of the cone reduces the motional impedance considerably and allows a greater driving current to flow, thus improving the matching. The mechanical circuit diagram is shown in Fig. 3; the series circuit represents the loudspeaker unit and the parallel circuit the vented cabinet. Now a very simple relationship holds provided only that the impedance of the parallel circuit is high enough at resonance to swamp the remainder. Taking the series circuit first, well above resonance the circuit is mass controlled and all of the open circuit force will be applied to the cone mass which will move with a corresponding velocity. On the other hand when the impedance of the parallel circuit is dominant all the open circuit force will appear across it and in particular across the vent mass which again will move with a corresponding velocity. If then the two masses are equal we get the same output at the vent resonance frequency as in the mass controlled region of the cone. If in order to use a smaller cabinet the mass of the vent is made to be twice that of the cone, then the output at the vent resonance will be down by 6 dB , and for three times the mass by 10 dB . Note that nothing has been said about the two resonance frequencies.
Novak pointed out that for the particular condition where the resonance frequencies of the two circuits are equal, the relative outputs depended on the ratios of the two capacitances. Of course this follows immediately as a special case; the masses are obviously the pertinent factors. The question of ripple in the frequency response must not be overlooked of course, but the relationship is very useful when first

Fig. 2. Schematic curves of effect of flux on axial frequency response of a loudspeaker unit in a closed cabinet: (a) normal flux, (b) twice the flux.
estimating values.
Now the question arises again as to what to do if the output at the vent resonance frequency is below that in mid-band; once again equalisation is necessary.

Well what is wrong with this equalization? The answer is nothing, provided the implication is appreciated. This is that if it is desired to provide uniform sound pressure down to the cut off frequency, where 12 dB of equalization was used, then 12 dB more power input must be provided with all it implies, or else some distortion will be produced. If therefore it is intended to use a 50 -watt amplifier for mid-band purposes then no less than 800 W must be available at the bass; in addition the unit has to be capable of accepting this input without damage.
Fortunately if the input is restricted to programme the position is not quite as bad. When a high-quality monitoring loudspeaker was being designed ${ }^{6}$ the relationship between peak programme level overall and the peak programme level in various octave bands in the middle and bass was examined, having the latter particularly in mind. Pro-

Fig. 3. Mechanical circuit diagram of a loudspeaker unit in a vented cabinet.

grammes known to have a heavy bass section were selected from classical music, pop and organ and it was found that the latter was the most demanding from this aspect. Fig. 4 shows the results of the tests. The one point at 70 Hz was a solitary note from a pop group, which on the basis of statistics was ignored. It can be seen that at, say 50 Hz the peak output is some way below the rest. Corresponding equalization can therefore be applied without demanding any extra power rating for the amplifier, but for any values of equalization above this figure the laws of nature demand a corresponding increase in available power. This aspect appears to have often been overlooked in the past.

Mid-band frequencies

Now let us go slightly higher up the frequency scale and consider the midband region.
It is well known that units become more directional as frequency increases and that to avoid excessive directional problems at least a two-unit system is normally used. If the axial frequency response curve is equalized to be flat then it is well known that the off axis curves, say, at 60° in the horizontal plane will look like the curve in Fig. 5. The off axis response is by no means uniform and on the basis of subjective tests this is undesirable, and the question arises as to what can be done about it. One simple answer is to use a three unit system, but of course, this is expensive. A cheaper solution was suggested by Chapman and Trier ${ }^{7}$ in 1947, that is, of placing a slot over the offending unit. The idea was that sound should radiate from the slot and if the slot axis were vertical then a much better spread of sound would be obtained in the horizontal plane. It looks so simple but in practice there are a number of difficulties.
Firstly the mass of air in the slot is in series with that of the cone and will reduce the efficiency accordingly. Secondly this air mass will resonate with the stiffness of the air behind the slot and in front of the cone, and a local increase in sound output will be pro-
duced. Thirdly above this frequency the acoustic circuit will act as a single-section low-pass filter and the output will be severely reduced. The magnitude and frequency of these various effects will depend, among others, on the width of the slot, and successful design depends on achieving an optimum result for any one unit. One rather unexpected result is that in addition to an improvement in the horizontal directivity there is also a small improvement in the vertical plane.

The directivity in the horizontal plane would appear to be a simple function of the slot width but in the process of carrying out various designs the author has found that this is not so. Finally in the design ${ }^{6}$ of the BBC LS5/5 loudspeaker it was decided to investigate the problem a little more closely. A 12in bass unit was being used with two possible alternative designs, one with the bass unit crossing over at 400 Hz , the other with a crossover at 1500 Hz . For the latter it appeared that a slit of 100 mm would give adequate directivity. Now it is a little difficult to estimate just what the radiation pattern from the slit will be. For example is the slit to be regarded as a line source, or as a piston in an infinite plane, or alternatively as a piston in the end of a cylinder, all possibilities for which the radiation pattern is known and for which the radiation, at say 60° relative to that on the axis, can be calculated from formulae of varying degrees of complexity. If all these assumptions are valid it would be expected that the answers would be similar, at least for small ratios of slit width to wavelength, and indeed this is so as shown in Fig. 6. It can be seen that for small values of d / λ the curves (a), (b) and (c) agree quite well, and for the value of d / λ of 0.3 chosen, the 60° response should be within about one to two dB of that on axis. In practice this was by no means obtained; curve(d) shows the measured results and the discrepancy is gross. The question arose as to whether the slit was uniformly "illuminated", and going to an extreme, if all the sound were concentrated at the two edges the radiation pattern would obviously be different, and calculation gives curve (e) which is in better agreement with curve (d). However a quick test with a probe microphone showed that this energy distribution was not followed, in fact the sound
pressure at the centre was slightly higher than that at the edges. In desperation the problem was then worked backwards and the apparent width of the source calculated; it turned out to be exactly the width of the cabinet for values of d / λ up to 0.7 ; the points are plotted as (f). It is now clear what is happening; the slit is indeed working as expected but because of this, sound energy flows along the front of the cabinet until it meets the discontinuity at the edges and is then re-radiated. The obvious moral is, to make the front of the cabinet as narrow as possible. As pointed out elsewhere ${ }^{8}$ by the author this solution has other advantages from the aspect of structural resonances in the cabinet walls.

Above the frequency quoted, the slit tends to radiate on its own as shown by curve (d) approaching the calculated curves, but only for a short while, it then becomes more directional again. Neither is this the end. In the loudspeaker design mentioned the same slit width is used over the bass and middle frequency units in, of course, the same width cabinet. It might therefore reasonably be expected that the directivities of the two sources would be the same, but they are not. The radiation from the 8 in middle frequency unit has a wider beam than that from the 12 in bass unit. Time has not permitted the problem to be investigated further but it is clear that in practice the performance of slits is not as simple as would appear at first sight.

High frequencies

Let us continue this question of directivity but now include the high frequences. It has often been suggested in the literature that the variation of the spherical response with frequency is the most important feature of a loudspeaker. Methods of measuring this include the use of a reverberation chamber, measuring the polar response at various angles and frequencies in a

Fig. 4. Peak spectrum (octave bands) of middle and bass for various types of programme.
Fig. 5. Schematic frequency response of two unit loudspeaker; on axis and at 60° in horizontal plane.
free field room and calculating the result, and finally a method developed at the BBC by Gee ${ }^{9}$ which uses an integrating meter to give a direct answer at any frequency or band of frequencies. The first method is limited in that it requires a room much larger than one to ISO standards to ensure adequate diffusion at the bass. The second method is rigorous if sufficient measurements are taken and if the free field room is adequately large ${ }^{10}$, by no means always the case. It is however extremely laborious and time consuming, and is rarely used. The third method also relies on an adequate size free field room but is quite rapid. It has moreover the advantage over the first method that it is possible to weight sound coming from differing directions, e.g. sound from the front hemisphere relative to that from the rear.

This raises the whole question of what we are trying to measure and why. In the $B B C$ the spherical response of a number of lou'dspeakers has been measured and efforts made to correlate it with sound quality in a live room. but with very little result.

When for example we listen in a room of normal reverberation time to a rather directional loudspeaker on its axis, it is common experience that the sound quality does not change drastically when in the near or reverberant sound field. On the other hand if we were really listening simply to the soundpressure at these two points then the direct response and the spherical response would indeed be the determining factors. Furthermore a'similar factor must be involved in the fact that with such a loudspeaker in a live room the directional properties are clearly audible even when listening well into the reverberant field.

These experiences indicate clearly that the spherical response is not the predominating factor in determining sound quality under live listening conditions and to check this a formal experiment was carried out at BBC Research Department. A monitoring loudspeaker was taken having three units and representing as omnidirectional a device as was possessed at the time, and for comparison an 8 in wide range unit representing as directional a device as was likely to be met. Listening on axis in a free field room and using

speech and a team of experienced observers, the two were equalized by ear to sound as closely similar as possible. They were then transferred to a listening room well away from the walls; the room had a reverberation time of about 0.4 s , and the loudspeakers were again compared, listening on the axis. The results in the two conditions were almost identical within the experimental error, although a small change towards the known spherical performance could be discerned but not guaranteed. The conclusion therefore was that it is essentially the direct sound which determines the sound quality and not the spherical response. The measurement of frequency response at various angles in a free-field room is therefore a much better indication of performance than the spherical response even when listening in the reverberant field, and this has been confirmed by careful listening tests many times since.
The question still arises however as to what is the optimum delivery and here a look at history is useful.
At one end of the scale, a loudspeaker developed by Harz and Kosters of NWDR ${ }^{11}$ in 1957 used a bass unit facing upwards, and a middle and high requency cluster of no less than 32 units mounted on the surface of a sphere. This resulted in a very close approximation to an omnidirectional loudspeaker and gave a pleasant spacious image on orchestra. However, when an announcer spoke it sounded as if his mouth were six feet wide.
This design has been followed by another German design much more modest in outlook in which units are only mounted in the sides and front, none in the rear; in this design even the side facing units can be switched off leaving only the front ones, so it looks as though our experience was that of others too.
In the BBC we have gradually progressed from the opposite direction. The first loudspeakers were single cone wide-range devices which were very directional in the treble, and subsequent multi-unit designs have all tended to increase the angle of radiation at high frequencies and this has been approved by users. Of course over the years stereo has been introduced and this has involved other factors. For the last high quality loudspeaker designed in Re search Dept. there were some vague suggestions that the angle of radiation might be too wide for stereo. Fig. 7 shows the axial and off-axis curves for the loudspeaker concerned. (For this discussion the bass cut should be ignored, and is due to the fact that the free interior volume of the cabinet is only $1 / 6 \mathrm{cu} . \mathrm{ft}$.) It may well be therefore that any loudspeakers more omnidirectional than this will fail to provide first-quality stereo. In this discussion it has been assumed, of course, that a sharp stereo image is regarded as
essential; these comments are not applicable where the stereo image is made rather diffuse over the whole seating area.
The next point to be discussed is the question of optimum axial frequency response. This question is not concerned with how wide a frequency range should be covered, but what shape the response curve should be. First of all the underlying assumption must be clearly stated. This is that both the microphone and all associated amplifiers have a uniform, frequency response. The usual conclusion is that the loudspeaker should also have a uniform axial frequency response but this is precisely what is being challenged. Not even in stereo reproduction are the sound wave-fronts produced in a listening room similar to those heard in the studio or concert hall and it therefore seems clear that if by "bending" the axial response curve of the loudspeaker a more realistic psychological impression is obtained, then this is entirely justified. Thus, for example, if a uniform output is maintained at all frequencies an orchestra sounds extremely close.

This condition is quite unnatural and a much better sense of perspective is obtained if a slight dip in the 1 to 3 kHz region is applied. About 2 dB is sufficient to provide the more distant perspective without destroying the sound quality. It may well be that as techniques progress other such tricks will follow. All that is intended at this stage is to get away from the rigid idea that a uniform axial response is necessarily the best.

So far general trends have been discussed and it has been assumed that perfect units were available. As all designers know this is far from the truth and the question arises as to how far departures from the ideal can be made without perceptibly degrading the sound quality. This is also important' from the aspect of listening in rooms which after all is where most listening is done. It has been shown that it is the direct sound from a loudspeaker that is predominant, but of course if a loudspeaker is close to a wall, then the near images may form part of the "direct" sound and will produce irregularities in response.

The loudspeaker can be regarded for this purpose as a two channel device with the two channels in parallel. To start with let us examine the case where the main channel has a uniform 'response and the other has a resonant circuit of variable Q (narrower than a critical band) whose output at resonance adds to that of the main channel and whose amplitude relative to it can be varied. The varying degrees of audibility at different frequencies and for differing Q has been established for pink noise in the form of the relative levels for the peak of the resonance and in the main channel. Now for loudness the energy in the critical band is
summed and it appears as though this relation roughly holds too for degrees of colouration. Only roughly, for the actual law varies with the degree of colouration itself as shown in Fig. 8. It will be seen from this figure that there is a regular variation in the law with the degree of perception. The law for the "just perceptible" condition is close to the power law and the curve marked "definitely perceptible" is at about the limit of perceptibility for programme and is therefore the one we are most interested in. Note that the horizontal axis is not Q but reverberation time and that the vertical axis is dilution. This variation in law with perceptibility is in accordance with the findings of Kryter and Pearsons ${ }^{12}$ in relation to the noisiness of a tone in noise and they also show that as the ratio of tone increases the noisiness increases faster than the total r.m.s. value of the critical band concerned. The general slope shown in the figure is confirmed in subsequent work by Moulana. The height of the corresponding irregularity in frequency response is shown in Fig. 9 for the "definitely perceptible" condition.

When narrow peaks are subtracted from the main channel, conditions are very different. Whereas for additive peaks the just perceptible condition was approached, as the amplitude was reduced, slowly and rather indefinitely, for the subtractive condition the colouration suddenly disappeared and it was immediately evident that a cancellation was taking place. This effect was, as would be expected, shown up in the standard deviation of the results; in one case the test team even returned the ultimate of zero spread. The implication of this effect is extremely important as it shows clearly that the subjects were in fact listening to the steady state condition; for it is evident that the time function could not be cancelled in this way. This is a very important distinction, as much earlier unpublished work by the author and supported by other unpublished work also at the BBC by Gilford ${ }^{13}$ has shown an anomaly, namely that under certain conditions, which are not at all clear, the law of dilution with Q for a given perceptibility can go in precisely the opposite direction, that is the higher the Q the more obvious is the colouration. It seems highly likely that in these latter conditions it is the time function which is being observed.
Fig. 10 shows the height of an irregularity for a subtractive peak for the "definitely perceptible" condition which again closely corresponds with the "just perceptible" condition for programme. The curve is very different from the additive condition and the results are more nearly like the audibility of tone in wide band noise. In both cases given here dilution appears to be the fundamental factor rather

Britain's first linear phase loudspeaker system
 B8W DM6

The first dynamic loudspeaker in the world to out-perform full range electrostatic designs on measured transient performance

Response to $\sin ^{2}$ pulse of 0.33 ms half-amplitude duration

How do we justify
this claim?
Let these oscillograms speak for themselves:

Wave form of bass drum and cymbal

Output from amplifier

Output from measurement microphone 3 m from DM6

B\&W Loudspeakers

than height of irregularity and the unfortunate conclusion is arrived at that even for the steady state condition the audibility of a narrow peak cannot be assessed unless the relative polarity is also known.

Now the question arises as to what happens outside the critical bandwidth. The loudness function is known to be different and this might also apply to colouration. The audibility of a resonant circuit with a Q of about 3, i.e. roughly $1 / 3$ octave wide was examined for various frequencies of resonance using programme designed to be critical over the frequency band being tested. The results are given in Fig. 11 which shows the height of the peak for the just perceptible condition. During these tests, after first identifying the frequency of colouration, the subject was permitted to switch the resonance in and out of the circuit and to reduce the height of the peak until it was only just audible. Under these conditions the height of the peak is roughly independent of frequency except at the bass. Here we are, of course, inside the critical bandwidth, but this does not seem to be the essential factor, as experiments with octave bandwidth circuits show a similar shape curve. The standard error for the points in this curve is roughly $1 / 2 \mathrm{~dB}$.

If two contiguous circuits are used to form a plateau of twice the bandwidth, centred around a mid-band frequency, a "just perceptible height of 2.6 dB is ubtained and if the bandwidth is doubled again using four contiguous peaks a just perceptible height of 1.8 dB is obtained. It is clear that some form of summation is taking place and extrapolation suggests a ninimum audible level for wide band signal of about 1 dB . However it is equally clear that, from the point of view of sound quality, this summation does not proceed indefinitely as it does with loudness. To take an extreme example if the entire range is raised by 10 dB there is a large change in loudness but, by definition, none in sound quality. Furthermore if the entire spectrum except for the lowest $1 / 3$ octave were raised the effect would not be described as an excess in most of the range but as a deficiency in the bass. One point to be noted was that even with the wide pleateau used, i.e. $11 / 3$ octaves wide, only one frequency of colouration was heard.

It has been seen that some form of summation is taking place over quite a wide frequency band and it is therefore pertinent to enquire how far apart two peaks must be before they are audible as separate entities.

For this test the same resonant peaks with a Q of 3 were used as before. The observer was instructed to increase the height of the peak at the reference frequency until the colouration was clearly audible. Successive peaks were then raised and lowered at one third octave intervals, to a height deemed by
Table 1

Ref frequency (Hz)	125	250	500	1 k	2 k	4 k
Minimum distance apart of peaks, in octaves	1.5	1.3	1.3	1.1	1.1	1.0
Standard error of mean, in octaves	0.08	0.11	0.11	0.13	0.08	zero

the observer to give maximum discrimination, until the frequencies of colouration of the two peaks were separately discernible; once again programme was used appropriate to the frequency range being covered. The results were quite astonishing; the mean values for the team of observers are given in Table 1.

The variation with trequency is interesting and may be due to the nature of programme spectrum. It will be appreciated that as the frequency increases the detailed structure of the spectrum becomes more and more random until at high frequencies it is not far removed from modulated random noise. The figure of one octave obtained in this part of the spectrum approaches the corresponding value which is obtained using pink noise as a source, instead of programme.
The remarkable result in Table 1 may possibly be the key to a number of previously unexplained phenomena. For example does it indicate why the irregularities in the sound field of a live room are not separately audible?
However, one conclusion is clear; if the loudspeaker contains a number of low Q resonances spaced closer together than one octave and covering the whole frequency range they should be inaudible. When a test was actually made of a series of peaks at intervals of $2 / 3$ rd octave at a level of 6 dB above the base line, using a critical material such as speech it was found that they were in fact inaudible even on an A/B test. The conclusion is therefore correct, and the frequency response of such a characteristic is shown in Fig. 12.
If however the peaks are increased to a level of say 15 dB , the sound becomes extremely coloured and it is evident from the character of the sound that a regular series is being heard. (The comment about irregularities in a room must include, therefore, the proviso that the frequency spacing is also irregular.) It should be noted however that the series being used is a logarithmic one not an arithmetic one and that the bandwidth of each peak is also a logarithmic function; however the ear still detects it as a regular series. The question therefore arises as to what constitutes a regular series, regular on what scale? Examples of series in. loudspeakers include mis-terminated horns, a loudspeaker spaced away from one wall, a folded corner horn and a labyrinth.
If a frequency characteristic is listened to which is uniform up to 1 kHz followed by the logarithmic series mentioned above, somewhat imitating a
horn, the "fundamental" heard is clearly the lowest peak, in spite of the $2 / 3$ octave spacing. It will be noticed however that the upper terms of the series are relatively inaudible and this prompts the question as to how many terms of a series are necessary to give this peculiar sound quality; experiment gives the answer of only three or four terms. If however the low and of the frequency scale has this series starting at 40 Hz finishing at 500 Hz and of uniform response thereafter, the position is now reversed. The most prominent colouration is at 500 Hz and the lower, so to speak "fundamental," frequencies are relatively inaudible. What then constitutes the "fundamental" of the series? Now let us go further, if a complete series starting at 40 Hz and finishing at 20 kHz is listened to, using pink noise for convenience, it is found that on a high quality loudspeaker the main colouration is in the 600 to 800 Hz region, no less than 15 times the "fundamental"!

Now how is a series detected? One obvious answer is by means of a scanning technique, and it would appear from the examples quoted above as if the scanning may work in both directions, from the bass upwards in frequency and from the treble down e.g. a triangular wave form. It follows that if there is a scanning mechanism, there also exists a corresponding time series, and it might be expected that this also would give rise to peculiar effects, and this is found to be correct. To take a well known example; if a person claps his hands under a bridge with the arches, say, 100 ft apart, a series of pulses with a repetition frequency of about 10 Hz is produced, nearly an octave below the lowest frequency we can hear. But what in fact is heard is a noise like a "twang," with a spectrum centred around, say, 1500 Hz ; no less than 150 times the fundamental! Nor is this an isolated example. In one studio in the BBC, under certain conditions the sound quality could, before remedial action was taken, become very hard. Reverberation time measurements give no clue to this effect at all. On one occasion however the audience balcony, which was rarely used, was entered, and on clapping, a flutter of less than 10 Hz frequency was heard, and the connection was appreciated. That studio was being modelled ${ }^{14}$ at the time and measures were taken to remove the flutter in the model. When corresponding modifications were carried out in the real studio the hard quality disappeared.

As a final example, in a sound control

Fig. 6
ratio $\frac{d}{\lambda}$ of slit-width to wavelength

Fig. 7

Fig. 8
reverberation time, s

Fig. 10

Fig. 11

Fig. 12

Fig. 13

room attached to one of the television studios a loudspeaker was suspended near a corner, and complaints were made of the sound quality. It was clear from a visit that the quality was indeed very peculiar and "tunnelly"; moreover, it varied considerably throughout the room. To check that it was not caused by the loudspeaker itself, this was lowered to the floor and it was shown that there the sound quality was quite satisfactory. A frequency response curve was taken with the loudspeaker back in place, taking precautions to eliminate as much of the reverberant field as possible. This curve showed definite evidence of a series. The loudspeaker was then lowered 35 cm to try and break the series and a further measured curve showed that this had been successful. Under these conditions the sound quality was completely satisfactory and also now reasonably uniform through the room. ${ }^{15}$

To sum up, it is not at all clear how to define a series; it appears that it can be regular in hertz or octaves, but what about mels, and how regular is regular? Clearly however series should be avoided at all costs as there are no means of knowing in what part of the spectrum the subjective effect will occur.

Dips

It is now necessary to consider the effects of dips in the response curve on their own. It would be expected from perturbation theory that unless the hearing system is highly non-linear the magnitudes of dips would be similar to that of peaks, for the just perceptible conditions. Experiments were carried

Fig. 6. Directivity of a slit; response at 60° relative to that on axis.
Fig. 7. Frequency response of a miniature loudspeaker at various angles to axis.
Fig. 8. Variation of law of addition with subjective degree of colouration.
Fig. 9. Height of irregularities due to additive peaks for a definitely perceptible condition, using pink noise.
Fig. 10. Height of irregularities due to substractive peaks for definitely perceptible condition, using pink noise.
Fig. 11. Height of irregularities due to additive peaks having $a \mathrm{Q}$ of 3 when listened to one at a time; for just audible condition, using critical programme.
Fig. 12. Response curve showing nature of inaudible irregularities when listened to together.
Fig. 13. Height of irregularities due to dips in response for $a Q$ of 3 when listened to one at a time. for just audible condition, using critical programme; curve of Fig. 11 added for comparison.
Fig. 14. Frequency response of transmission chain used by Prof. Hill.
out to determine the just perceptible values for Qs of 3 as for peaks, except that the in/out switch was not used; the reason for this will be discussed later. The results are given in Fig. 13 together with the corresponding values for peaks. It will be seen that the two sets of values are closely similar, such differences as there are being in the direction that general experience would indicate. The depth for two contiguous dips forming a trough in the midband was 3.8 dB , and for four contiguous dips was 2.5 dB , again both slightly greater values than for the corresponding plateaux.

However, when the experiments with the four continguous dips were being carried out a further effect was noticed which had not been observed before. Particularly when the trough was clearly audible, in addition to the effect of the dip, the high frequency recovery to normal level was also clearly audible. Experiments to determine the narrowest trough for which this effect was noticeable gave a result of $11 / 3$ octaves exactly the same value as obtained for the minimum distance apart of two peaks for this part of the spectrum. The question arises as to whether this mythical scanning mechanism is again responsible, having the slow decay time we have postulated, a certain bandwidth for the trough being necessary before the fall is great enough to be audible. Furthermore a fast rise time was also suggested and under these conditions it is not surprising that two peaks should give the same separation as a trough.

Now this matter can be taken a little further; if the upper recovery in frequency response of the trough is removed completely so that instead of having a trough there is merely a step, it might be expected that the decay of the scanning mechanism should still register, and it does. Under these conditions the audibility of the spectrum near the step is definitely reduced whilst that somewhat higher in frequency appears to stand out in excess. This latter effect is not a new discovery, it hás been known for at least 30 years and was a common feature in early single unit loudspeakers where it was known by the delightfully descriptive name of "disembodied top" as the upper end of the spectrum appeared to be separated from the main body by a gap.

Now narrow crevasses must be examined. It has often been stated that narrow crevasses are inaudible but it depends on the exact frequency of the dip. For example if it falls on the fundamental of a musical instrument the result can be disastrous. However, Professor Hill, formerly of the BBC Research Department, has shown ${ }^{16}$ that if the frequency of the crevasse is offiset by about a quarter tone from a fundaniental, a narrow crevasse can indeed be almost inaudible. Figure 14 shows one extreme example he tested. The high frequency cut off of 6 kHz was
imposed for other reasons, and the frequencies of the crevasses are not simple multiples of one another. This appalling looking response was tested on subjects using as test material, male speech, piano music and dance music. The subjective mean grading in each case, where one unit represented "slightly worse than the standard" which also had a 6 kHz cut off, was 0.6 for speech, 0.8 for music and an improvement of 0.3 for dance music; obviously the overall effect was quite small.

A/B testing

Now the alarming fact is that A / B testing may under certain circumstances give rise to completely wrong results when comparing the sound quality of two loudspeakers. If pink noise is used as a convenient source, and a deep narrow crevasse produced in it, it has been shown that the effect will be almost inaudible. If this is listened to for, say, half a minute as if programme were being used to judge a loudspeaker, and then the crevasse is switched out so that a uniform spectrum is produced, the ear will hear a strong colouration at the frequency of the crevasse. It seems that there are two mechanisms at work; the conscious one ignores the crevasse but the subconscious one detects it clearly. When the uniform condition is suddenly heard the subconscious mechanism comes forward and points out that there is now a considerable amount more sound energy at the frequency of the crevasse, and as that condition had been accepted as satisfactory the only conclusion to be reached is that there is now an excess in this region and that the sound must now be highly coloured. Transferring this to loudspeakers it is implied that if one with a crevasse is first listened to then it will probably appear that one with a uniform response is coloured.

Conclusions

There is a real danger of making loudspeaker unit surrounds too compliant as this can give rise to non-linearity distortion of high orders at quite low levels.

Equalization at the bass under whatever name it is called must be applied with full regard for associated power requirements or distortion may occur.

To obtain uniform response at various angles in the mid-band region a narrow-fronted cabinet is called for. Slits can be very useful but their action is obviously considerably more complex than appears at first sight.

The sound quality of a loudspeaker is determined much more by the direct response at any given angle than by the spherical integrated response, and at any rate for stereophonic purposes there may well be a degree of omnidirectionality beyond which it is inadvisable to go.

A plea is made for non-uniform axial frequency response insofar as it assists greatest realism overall.

Additive narrow peaks in response appear to add up on a roughly r.m.s. basis but subtractive ones appear to obey a different law. Dilution of the peaks relative to the main channel appears to be the fundamental factor rather than height of irregularity. Wider peaks of the same relative polarity add upon a rather different basis and the frequency discrimination for colourations is astonishingly poor.
Series are not yet fully understood, but the indications are that they should be avoided at all costs.

Dips in response appear to have little or no effect on contiguous peaks either inside the critical band or outside it.

Isolated dips obey similar laws to peaks, and narrow crevasses can be inaudible if they avoid fundamentals.

A/B tests of sound quality are found to have pitfalls and appropriate measures should be taken where necessary as have been indicated.

In a number of these phenomena there is a suggestion that a scanning mechanism may be at work and that it may operate in both directions, i.e. from the bass up and from the treble zone. This could also account for the fact that if a step in the response curve is produced the corner of the step is always audible whether the step is up or down. This suggestion immediately raises the questions of what is the scanning repetition rate, is the scanning linear and if so on what scale, hertz, octaves or mels, and what are the rise and decay times?

Finally it should be appreciated that only a few of the effects which go to make up sound quality have been mentioned but all these effects appear to be used simultaneously.

The views expressed here are based on experience within the BBC. Some of the conclusions are drawn from limited evidence and not all engineers within the BBC would necessarily agree with all of them. It spite of all that has been said, in the final decision, a good loudspeaker remains a matter of personal choice. However, experiment and analysis help us to make this choice.

Thanks to my colleagues for bearing so patiently in the experiments and to the Director of Engineering of the BBC for permission to publish.

References

1. Villchur E. M., Revolutionary loudspeaker and enclosure, Audio Vol. 38, No. 10, p25, October 1954 2. Avedon R. C., More on the airspring and the ultra compact loudspeaker, Audio, June 1960, p. 22. Avedon R. C. et al., Design of the wide range ultra compact Regal Speaker system, Audio, March, 1959, p. 22.
2. Harwood H. D., Non-linearity of air in loudspeaker cabinets, Wireless World, November 1974. p. 459.
3. Harwood H. D., Apparatus for measurement of non-linear distortion as a continuous function of frequency, BBC Engineering Division Monograph No. 49, July 1963.
4. Harwood H. D., Motional feedback in loudspeakers, Wireless World, March 1974, Vol. 80, No. 1459, p. 51.
5. Harwood H. D., New BBC Monitoring loudspeaker, Wireless World, March, April, May 1968. 7. Chapman R. and Trier R. H., British Patent No. 659063, 1947.
6. Harwood H. D. and Mathews R., The mechanical design of loudspeaker cabinets, Paper presented at 50th AES Convention, L.ondon, March 1975.
7. Gee A., An automatic integrator for determining the mean spherical response of loudspeakers and microphones, BBC Engineering Division Monograph No. 8, August 1956.
8. Harwood H. D. et al., The acoustic design and performance of a new free field sound measurement room, BBC Engineering Division Monograph No. 59 September 1965.
9. Harz H. and Kosters H., Ein neuer Gesichtspunkt für die Entwicklung von Lautsprechern, Tech Hausmitteilungen des NWDR 1951, 3, p. 205.
10. Kryter K. D. and Pearsons K. S., Judged noisiness of a band of random noise containing an audible pure tone, JASA, 38, ppl06-112, 1965.
11. Gilford C. L. S. and Jones D. K., The subjective significance of secondary reverberation. BBC Research Dept. Report No. PH-14, 1957/58.
12. Harwood H. D. and Burd A. N., Acoustic scaling of studios and concert halls, Acustica, June 1973 Vol. 28, p. 330.
13. Harwood H. D. and Gilford C. L. S., Monitoring loudspeaker quality is television sound control rooms, BBC Engineering Division Monograph No. 78, September 1969, Pt. Il. Also Harwood H. D., Speakers in corners, Wireless World, April 1970 , p. 162.
14. Hill P. C. J., Simultaneous subliminal signalling in conventional sound circuits: a feasibility study. BBC Research Dept. Report No. 1971/1 (EL-48).

The following list of manufacturers and their addresses is not a definitive guide to producers of high quality loudspeakers but is provided by Wireless World as a help to readers.

Manufacturers

Acoustical Manufacturing Co. Ltd, St. Peter's Road, Huntingdon, PE 18 7DB. Acoustic Research International, High St., Houghton Regis, Beds. LL15 5QJ. Altec Sound Products Ltd, 17 Park Place, Stevenage, Herts.
Bang \& Olufsen (UK) Ltd, Eastbrook Road, Gloucester GL4 7DE.
Bose (UK) Ltd, Milton Regis, Sittingbourne, Kent.
B \& W Electronics, Meadow Road, Worthing, Sussex, BN13 1QA.
Cambridge Audio Ltd, Lamb House, Church Street, London W4 2PB.
Cerwin Vega (UK), 281 Balmoral Drive, Hayes, Middx.
Celestion, Ditton Works, Foxhall Road, Ipswich, Suffolk IP3 8JP.
Chartwell Electro Acoustics Ltd, Alric Avenue, London N.W. 10 .
Eagle International, Heather Park Drive, Wembley, Middlesex HA0 ISU.
Gale Electronics \& Design Ltd, 39 Upper Brook Street, London WIY IPE.
Goodmans Loudspeakers Ltd, Downley Road, Havant, Hampshire PO9 2NL.
Griffin, H. K. \& Co. (Electronics), Siddons Factory Estate, Howard Street, West Bromwich, Staffs.
Gulton Europe Ltd, The Hyde, Brighton, Sussex BN2 4JU.
Hayden Laboratories Ltd, Hayden House, 17 Chesham Road, Amersham, Bucks HP6 5AG.

Hitachi Sales (UK) Ltd, Hitachi House, Station Road, Hayes, Middx. UB3 4DR.
IMF Electronics Ltd, Westbourne Street, High Wycombe, Bucks.
Jordan-Watts Ltd, Benlow Works, Silverdale Road, Hayes, Middlesex UB3 3BW.
KEF Electronics Ltd, Tovil, Maidstone, Kent ME156QP.
Lansing, James B., C. E. Hammond \& Co. Ltd, Lamb House, Church Street, London W4 2PB.
Leak, Rank Radio International Ltd, P.O. Box 596, Power Road, Chiswick, London W4 5PW.
Lecson Audio Ltd, Burrel Road, St. Ives, Hunts PE17 4LE.
Lowther Acoustics Ltd, St. Mark's Road, Bromley, Kent BR2 9HQ.
Macinnes Laboratories Ltd, Stonnam, Stowmarket, Suffolk, 1P14 5LB.
Marantz, Pyser Ltd, Fircroft Way, Edenbridge, Kent TN8 6HA.
Millbank Electronics Group, Bellbrook Estate, Uckfield, Sussex, TN22 1PS.
Monitor Audio, 347 Cherry Hinton Road, Cambridge CB1 4DJ.
Mordaunt-Short Ltd, Durford Mill, Petersfield, Hampshire, GU31 5BB.
Nordmende, H. Vesshof \& Co. Ltd, Unit 4, Blackwater Way, Ash Road, Aldershot, Hants GU12 4DL.
Omal Group Ltd, Omal House, North Circular Road, London NW 10 7UF
Philips Electrical Ltd, Century House, Shaftesbury Av., London WC2H 8AS.
Photax (London) Ltd, Hampden Park, Eastbourne, Sussex.
Pioneer, Shriro (UK) Ltd, Shriro House, The Ridgeway, Iver, Bucks SL0 9JL.
Quad, Acoustical Manufacturing Co. Ltd, St. Peter's Road, Huntingdon, PE18 7DB.
Quasar, Quasar Division, Precision Centre, Heather Park Drive, Wembley, HA0 1SU.
Radford Audio Ltd, Ashton Vale Road; Bristol, BS3 2HZ.
Rank Audio Products Ltd, P.O. Box 70, Brentford, Middx.
Regent Acoustics, Carrington House, 130 Regent Street, London W1R 6BR.
Sansui, Vernitron Ltd, Thornhill, Southampton SO9 5QF.
SMC, Monitor Distribution Co. Ltd, 76 Bedford Road, Kempston, Beds, MK42 8BB.
Sonab Ltd, P.O. Box 4, Oldfield Road, Hampton, Middlesex, TW 12 2HN.
Spendor Audio Systems Ltd, Unit 12, Station Road Industrial Estate, Hailsham, Sussex.
Stereostage, Nucleus, 22 Hyde Green, Marlow, Bucks.
Studio Craft, Acoustico Enterprises Ltd, Unit 7, Space Waye, North Feltham Trading Estate, Feltham, Middlesex, TW140TZ.
Tannoy Products Ltd, Norwood Road, West Norwood, London SE27 9AB.
Telefunken, AEG Telefunken (UK) Ltd, Bath Road, Slough, Bucks.
Yamaha, Natural Sound Systems Ltd, Strathcona Road, North Wembley, HA9 8QL.

It's all in your hands now.

These essential music-making tools let you get in, around, and tehind your music. One part, one track at a time. Then when all the elements are the best they can be, you blend them together and generate the finished product A process that involves your innermost sensitivities and perceptions. A personal statement.

The 3340 has undoubtedly helped more people make more demos and masters than any other tape recorcer. Our new model. A-334CS, has extended high end frequency response in the sync mode, pus manual cueing. The Model 2 is about the best value going in small mixers -6-in, 4 -out with full panning and multiple patch points. Plug in a few high quality TEAC ME-Series electret condenser mics, and you could be quite literally in business When you have the right tools, the work is more productive

TEAC

The leader. Always has been
Forfurther detalls surite to
TTELEDYNe
ACOUSTIC RESEARCH
HIGH STREET. HO.JGHYON REGIS
DUNSTABLE, BED-ORDSHIRE, LUS 503 , ENGLANO
TELEPHONE DUNSTABLE (O582) 603151 TELEX ARUKINT OBLE 825467 CABLES: ARUKINT DBLE

YOU’VE NEVER HEARD ANYTHING LIKE THIS BEFORE.

Our sensational new Stereo
Cassette Deck combines, the designing expertise of both Japra:i and Italy. Mario Bellini designced the outside so the deck can sit at 45° You can place it high or low on your shelving and still easily see the meters and controls. Yamaha designed the inside for superb sound. And you'll find it irresistib
Uniqu

46dB meters with peak level L.E.D.'s that flash green at-3 peak level and flash red at +3 level. And listen to al the other
things it has: a Memory. A Limiter so you don't over-record. Dolby ${ }^{\text {w }}$ noise reduction. Switchable bias and equalisation for chrome, ferric and ferrichrome tape. Pitch Control and full mike-line mixins facilities.

It also has a headphone outlet. Inputs for two microphones. And it's portable with a built-in mains fonem. You can own meond sou ic out by putting the deek into the record mode, and
connecting it to a simple time switch.
When Martin Colloms measured the TC 800GL , he got figures of 0.06% din wow and flutter and $64 d B$ weighted signal to noise ratio. From this he concluded: "performance equals, and in some respects exceeds, the highest standards currently available.'(Hi Fi News.July 1975.)

For move digtails wrjte or thlomme Natural Sound Systems Ltd, Strathcona Road, Wembley, Middx. 01-904 0141.

YOU'VE NEVER SEEN ANYTHING LIKE THIS BEFORE.

The "walltenna"

Foil antenna array hidden by wallpaper

by Ray Schemel and Dennis Brown

For f.m. stereo, long-distance TV, or improving reception in marginal areas, one's first temptation is to install the largest and most elaborate fishbones, wire mesh reflectors, and other pieces of aluminium-mongery at the highest and most eye-offending part of a house. It is odd, but more time, effort, and money is expended on extracting the last decibel of gain from an antenna than almost any other part of the receiver chain. After six months' exposure to the weather, those precious decibels may well have been lost and the extra signal level might better have been obtained, for example, by paying attention to the antenna matching. In fact an excellent location for an antenna could well be in the same room as the receiver - it goes without saying that the room should have walls of paper and be in the attic! The antenna structure is not exposed to the elements, water cannot enter the feeder, féeder losses are minimized, and the appearance of our towns and villages would be much improved.
The "walltenna" was conceived as a method of receiving the Wrotham and Norwich f.m. transmitters at a location near the coast of Holland at distances of 180 and 135 miles respectively. At this range the transmitters are well below the normal horizon, but a weak signal is almost always present. Signals from the "walltenna" fluctuate over a wide range, and in good weather conditions, presumably when sufficient refraction or ducting takes place, stereo reception is perfectly possible. Estimates of quality tend to be very subjective, but the signal is well above a significant degree of quieting for a high proportion of the time, although not necessarily of entertainment value because of the rapid fading. The estimates are quoted, not because this article is about f.m. reception, but to give some idea about the pick-up properties of the finished antenna.
The basic principle behind the antenna is simple. Why not make a large array essentially two dimensional, and then hide this behind wallpaper or some other decorative medium? The large size of the array would compensate for the losses of the walls, and the bother of
mounting antennas on the roof would be avoided. Various alternative schemes were considered, including multi-element Yagi and rhombic arrays on the ceilings and floors, but the arrangement described here was found to be the most suitable because it was not overly directional in the horizontal plane.

It consists of a vertical array of dipoles mounted broadside to the direction of propagation; the greater the number of dipoles, the greater the signal pick up. It is often overlooked that the signal power extracted from a given field strength is broadly independent of the wavelength, being only a function of the area of the antenna. An elaborate 20 -element beam used for u.h.f. TV probably picks up less power than a piece of wire connected to a mediumwave radio. To increase the power available one has no real alternative but

Fig. 1. Series impedance of 1.5 metre dipole mounted on a wall (measured values).
to use the largest capture area practicable.

A dipole in free space is resonant when it is almost one half wavelength long. It then has a gain of about 2.2 dB relative to isotropic. As the length is increased, the familiar figure-of-8 polar diagram narrows, and when the dipole is a full wavelength long and is centre fed, the gain increases by a further 1.8 dB . Of more importance is that the antenna is inherently a good radiator (or receiver) as the length increases beyond a half wavelength.

Four such dipoles, suitably phased, could give a gain of up to 10 dB , and if one were fortunate enough to be able to place a plane wire mesh reflector behind the dipoles, the gain could go as high as 16 dB , not allowing for mutual coupling losses. A reflector is scarcely possible in a living room, but even so, a gain of up to 10 dB is quite promising. Four dipoles fit nicely into an average height of living room, and so this particular design was adopted. In practice the gain will depend on the wall characteristics.
The situation when dipoles are placed adjacent to a lossy wall is complicated in that the impedance and the resonant frequencies are markedly altered. The resonant frequency is always decreased, and the radiation resistance is also altered for a given electrical length. In addition, radio waves must penetrate what amounts to a lossy dielectric. Reflection and refraction occur at each wall-air interface and attenuation occurs in passing through the brickwork. Complicated conduction and displacement currents are set up in the wall. In spite of this, the signal pick up properties of the antenna are not necessarily degraded provided that full account is taken of the changed impedance of the dipole. Fig. 1 shows the impedance of a $1 / 2$-metre dipole mounted on an 18 -in thick breeze block and

brick wall. The antenna was made of $11 / 2$-in wide aluminium foil taken from a capacitor, and would normally be resonant at about 97 MHz in free space. Notice that the half-wave resonance has shifted to 62 MHz and the full-wave resonance occurs at 115 MHz . An alternative measurement is shown in Fig. 2, where the frequency is held constant at 92 MHz and the length of the dipole is varied. In this case the dipole was placed along an 18 -in thick reinforced concrete beam; notice again the length at which the half and full-wave resonances occur.

Most Wireless World readers will not have the facilities for measuring antenna impedances, which in any case vary in a complex manner with frequency and with the type of wall. Fortunately, it is not necessary. An antenna does not have to be resonant, and neither does it have to be any particular length. Provided that it is long electrically, i.e., greater than, say, one half wavelength, and that some suitable impedance matching to the receiver is performed, it will exhibit reasonable pick up properties. A good rule of thumb is to make an antenna a full wave-length long. It

Fig. 2. Series impedance of a dipole mounted on a wall at 92 MHz (measured values).
then yields useful gain and is not too directional or large in size. For average brick walls this corresponds to it being about one half wavelength long in free space.

Constructional details

The configuration of four verticallystacked dipoles referred to earlier will be found the most convenient for an average eight-foot living room. Details of this are shown in Fig. 3(a), and its construction is largely self-explanatory except for the feeders. Figs. 3(b) \& (c) show other arrangements which may be found more suitable, and in these cases the general rules for combining any number of elements are as follows:

Fig. 3. Four vertically-stacked dipoles (a) most convenient for average living rooms; alternatives are (b) and (c). Electrical lengths of feeders shown.

- When $n / 2$ wavelengths of feeder are terminated in an impedance Z_{r}, the input impedance of the feeder is also Z_{r}. The signal is shifted in phase by $180 n$ degrees. Usually $n=1$.
- Balanced feeders can always be reversed to give a fixed phase shift of 180 degrees.
- When $(n / 2+1 / 4)$ wavelengths of feeder are terminated in an impedance Z_{r}, the input impedance of the feeder is Z_{0}^{2} / Z_{r}, where Z_{o} is the characteristic impedance. Usually $n=0$.
- When dipole elements are not mounted above one another, there is a relative phase shift caused by the difference in time of arrival of the received signal. The phase difference is $360 D \sin \theta$, where D is the antenna spacing in wavelengths and θ is the angle of arrival relative to the line joining the elements.
- The phase difference of two groups of dipole elements may be compensated for by using unequal feeder lengths, provided that the sum length of both feeders is $n / 2$ wavelengths.
- The electrical length of feeders is longer than their physical length. Because of this, the phase shift is $360 / v$ degrees per wavelength of feeder, where v is the velocity factor.
- Dipoles should be spaced no closer than a quarter of a free-space wavelength apart, otherwise mutual coupling effects reduce the potential signal pick up.

An excellent material for the antenna is the foil from large paper or electrolytic condensers. Aluminium baking foil or one of the proprietary aluniiniumbacked wallpapers can also be used. The width is not critical, but to make the antenna reasonably wide band, it should be 2 in or more. After cutting the foil it may be pasted directly onto the wall, leaving a small amount free at the centre for making connection to the feeders.

Feeders present a small problem if they are to be invisible. A surprisingly

(c)

Iow-loss feeder suitable tor the purpose of v.h.f. can be made from aluminium foil and ordinary newspaper. Lay a long strip of aluminium foil on a flat surface and tape down the ends. Then paste a similar width of newspaper onto the foil. When it is dry, lay two lengths of thin wire, say 36 to 40 s.w.g., along the middle of the newspaper about 0.25 in apart, and tape down the ends. Finally, paste a second strip of newspaper on top to hold the wires in position. Alternatively, those who are a little more adventurous could try dispensing with the top layer of newspaper and instead building up the feeder directly on the wall.

A feeder made in this way had a velocity factor of 0.5 and an impedance of 170 ohms, but these figures will be dependent on the dielectric constant of the paper used. For short runs of feeder, say up to one wavelength, the approximations involved are not likely to give significant effects, but to remove the uncertainty connected with the velocity factor it is hoped that a manufacturer will be found to produce a standard type of strip line. There are other alternatives: ordinary screened balanced 75 -ohm feeder can be channelled into the wall, or unscreened twin feeder can be placed in plastic conduit.

Connect feeders to the antennas by bending over the aluminium foil, pressing down firmly over the join and then folding a second time at 45° to the first, and finally placing adhesive tape over the join to hold the foil in position.

The special feeder described above is only required down to the skirting board, and for convenience it should be made an integral number of quarter wavelengths long if possible. At the skirting board it should be matched into ordinary coaxial cable or a balanced feeder.

The impedance matching makes use of a pi network and a balun as shown in Fig. 4 (the balun is not required if the receiver has a balanced input). To obtain the maximum range of adjustment, inductance L_{1} should be wound on a former that accepts brass and ferrite slugs. Also, some obstinate antennas may still need additional encouragement to match, in which case an extra quarter wavelength of feeder can be inserted on the receiver side to give a further impedance transformation. The pi network could, with advantage, be placed on the unbalanced side of the balun as it makes the two adjustable capacitors earthy on one side. However, $3-30 \mathrm{pF}$ trimmers are easy to obtain whereas ones four times this value are not, and the balun always works at the correct impedance level.

Baluns are available but you may wish to make your own. A satisfactory balun can be made by winding 10 turns of bifilar wire onto a coil former, about $1 / 4$ in diameter with a ferrite slug. The two windings are then placed in series as shown in Fig. 4.

Fig. 4. Impedance matčhing unit (a) requires a balun (b) for receivers with unbalanced input circuits. L_{1} is 5 to 10 turns on a 0.25 in dia. former about 0.3 in long. L_{2} is 10 turns of close-wound bifilar wire on 0.25 in dia. former wire gauge can be around $28-30$ s.w.g.

Measurements and setting up

Before constructing the "walltenna", make a folded dipole as shown in Fig. 5, remembering to include a balun. This is most important, as unscreened twin feeders can pick up appreciable amounts of signal which may upset measurements. If the receiver normally operates with a balanced input it is well worth using a twin screened feeder to overcome the pick up problem, or even considering the use of two baluns and ordinary coaxial cable. The temporary antenna should be moved to different points on the wall to find the best positions, and these should be used for the finished dipole elements.

After the antenna is finished, the pi network will require adjusting for maximum signal transfer. To do this a meter is really required, perhaps placed on the a.g.c. line of the receiver, but an acceptable alternative is to use a weaker station and to tune for minimum noise on stereo. First adjust C_{2},

Fig. 5. Temporary antenna is used to find best position on wall.
then L_{1}, and finally C_{1}. Remember that C_{2} and C_{1} are live as far as the signal is concerned and must not be touched, as opposed to adjusting, when measuring.

If the antenna of Fig. 3(c) is being used, the tapping point along the feeder must first be optimized. This can be done by calculation; the displacement from the centre point away from the dipole nearest the transmitter is $1 / 2 D v \sin \theta$ as per the points made earlier. Alternatively, a temporary sliding connection can be made along the feeder and then this is adjusted together with the pi network.

Follow the above procedure before wallpapering, because, in spite of its simplicity, difficulties which cannot be rectified afterwards may occur. In principle, every element added to those existing should increase the total signal, after an impedance adjustment has been carried out. In practice it may be found that adding further elements gives no increase or even a decrease in signal, and better results are obtained by reversing the feeder connections. Such effects need not be unexpected. They result from differences in the pick up capabilities of each array element and the variable impedance of the wall. In these cases it is simply a question of cut and try methods, and if all eise fails, of experimenting with fresh positions.

The "walltenna" principle is applicable to a wide variety of antennas and it is hoped to be able to give constructional details for u.h.f. TV at a later date.

CITIZENS' BAND

 IN THE ŪK?Recent discussion in your correspondence columns over the merits of a Citizens' Band in the UK are, I fear, of mere academic interest. I am prepared to bet anyone that the chance of the introduction of Citizens' Band facilities in this country have about as much hope as a snowflake in hell.
Why, it may be asked, do I take such a gloomy view of its chances? Well, the cards are well stacked against it because there are too many vested interests that oppose it and will oppose it vigorously, using all the spurious technical arguments that can be dreamed up. Let me take just two. Contrary to any opinions otherwise, in the UK the airspace is owned by the Government and its agencies - and for a start, I cannot see the PO agreeing to anything that would take away its monopoly of communications. The radio amateurs will oppose it violently, since they will see it as a threat to them, taking away "their" precious rights to a share of the airspace. For my part - and there must be many others, the usefulness of a Citizens' Band is beyond question; and it could be a valuable fillip to the radio industry in this country, who could gear themselves to meet the inevitable heavy demand for equipment to a tightly controlled specification - which indeed, it would have to be.
But alas, it will never be. The only area for vox populi to have any effect is through one's parliamentary representative. I failed in my particular search for a champion for the cause. He never ever understood the arguments I gave him and took as gospel the bland technical arguments fed back to him by the Home Office. Still, some technically minded M.P. may read this and do something about it - but don't put your money down yet.
Reg Williamson,
Norwich.

I have noted with interest the recent correspondence regarding the possibilities of a Citizens' Band in the UK. I wholeheartedly agree with Mr Webber's comments, and wish to add that if, as the gentlemen from the Home Office frequently say "any form of CB in the UK would soon get out of hand and lead to chaos, regarding the infringing of the conditions of ones licence, including the allowed power, the gain of the antenna, etc.,"
it would be relatively easy and not too costly to detect infringements, summon, and finally revoke an operator's licence, so clearing the band of any bootleg operators.
Finally, to answer the Home Office's probable remark regarding the above opinion, it most definitely is not costly to track an illegal operator down, as costs are awarded in court in the majority of cases; this is drawn from rather unfortunate past experiences.

I would very much like to contact anyone interested in forming a CB Association whose responsibility it would be to look into all the possibilities of the setting up of licenced $C B$ in the UK. Please write, enclosing an s.a.e.
P. Jenkins,

30 Gainsborough Road,
North Finchley,
London NI 2 8AG.

News of the Month in the March issue makes mention of the Home Office's reluctance to license Citizens' Band radio in the UK. It should not take the Home Secretary more than five minutes to make up his mind.
If a schoolboy can pay $£ 1$ and then blaze away for five years on 27 MHz at his toy aeroplane, on the edge of an airfield or a city playground, with a black-box transmitter made in Hong Kong and bought by his auntie in a toyshop, why cannot remotely sited citizens be given facilities to call assistance when in dire need?
The farmhouse in which I live is connected to civilisation by mile-long farm road at l400ft altitude and two thin telephone wires, on poles, over the fields and hills for miles. Most winters we are snowed in for days and weeks, then come the floods. Even if the doctor, ambulanceman or vet could not get through, at least we could, with radio, get advice, or neighbour's help. (Try feeding 200 beasts and digging sheep out, with one's helpmate ill in bed.) This story could be repeated right through the South-West, Wales, Yorkshire and the North.

The Home Secretary need not worry about television interference with neighbours over the horizon and, as for his frequency allocation worry, I could set my communication receiver on any one of a hundred channels and not hear more than static from one year to the next.
All we would need is a frequency modified trawler-band transmitter-receiver. The depressed radio industry would like that.
R. J. Leeves,

Simonsbath
Somerset.

I have followed, with increasing anxiety, the correspondence in your columns concerning the possible opening of 27 MHz as a Citizens' Band.

Whilst I am not against a Citizens' Band in principle, it would be the height of folly to put it on 27 MHz . This band is already occupied, and very busily too, by radio-control model enthusiasts. Even though CB equipment is illegal in this country, there is enough of it in use to cause considerable aggravation to the modelling fraternity. I have lost at least one model, representing several months' hard work, not to mention a fair bit of hard cash because of this kind of interference. Even aside from the financial side of it, the dangers must be apparent to all. A model aeroplane sent out of control in this manner would be bad enough, but of recent years radio control helicopters have become practical propositions.

The thought of a model 'copter weighing some 11 lb , powered by a $1 / 1 / 2 \mathrm{~h} . \mathrm{p}$. motor, rotor diameter 5 ft , tip speed of rotors 250 m.p.h. chasing me round my local flying site in response to "smokey bear" messages is almost enough to make me give it up! Normally this sort of model can be operated in complete safety because (a) modern digital R-C gear is virtually 100% reliable, and (b; 27 MHz is a very clear frequency. CB on 27 MHz would end all that!
Countries that operate CB on 27 MHz appear to appreciate this difficulty, and move model control elsewhere, usually around 72 MHz , but tentative enquiries have shown that this is not possible in England. However if the CB was put on some frequency other than 27 MHz this could have considerable benefits for our domestic manufacturers. The Japanese would be unable to swamp the market with their enormous stocks of 27 MHz gear. Who knows, they might even decide that such a small market is not worth retooling for, and leave the field open for our own manufacturers. How about using one of the Band 1 or Band 3 television channels for CB when 405 line television finally dies? P. Christy,

South Harrow,
Middlesex.

In New Zealand, CB radio is restricted to seven channels and an output power of one watt maximum. When I left New Zealand there were somewhere near forty thousand people on the bands, and the only time it does get a bit confusing is when the "skip" season is on during the summer months. We have a calling channel which we call 4 , and when the contact is made we shift to another channel. If there is any trouble the local radio inspector locates and jumps on whoever is causing it. Every operator pays a licence fee and is issued with a callsign which he or she retains until cancelled.
I use my CB sets car-mobile, hand-held, and back-pack mobile, and there are also a few people who use CB as a marine mobile. We have sports clubs and small businesses also on the band. The reason that I take a set back-pack mobile is because it is a fully mobile unit, especially in a part of the world which is prone to earthquakes, etc. I can be on the road with the civil defence organisation.
$C B$ is really an ideal system for the average man in the street who cannot afford to go into the world of amateur radio.
P. H. Inwood,

Hungerford,

Berks.

I have noted the comments in your journal and the current wave of speculation about Citizens' Band in the UK. As one of the many thousands of licensed users of 27 MHz equipment whose interests would most certainly be threatened by CB operation, I would appreciate the opportunity to register a protest and to comment on the situation.

First, it is estimated that there are between 70 and 80,000 users of 27 MHz equipment in the UK; admittedly they are not all licensed but at least the equipment itself is legitimate., In round figures this total accounts for about $£ 9,000,000$ worth of gear in regular use. The bulk of the equipment is not compatible with the operation of CB systems; in fact there would be a direct conflict on the 27 MHz band.
Any proposal to establish CB on, or adjacent to, this band shows a total and
blatant disregard for existing, legitimate users and their investment in equipment. Even in these days of selfish commercialism the proposals show an appalling lack of sensibility.

It is the same thoughtlessness, coupled with a disregard for discipline, that has made $C B$ operators the menace they are in other countries. They have brought upon themselves the present round of threats, restrictions and, in one case, a clamp-down on operation. This situation, along with the now reported saturation of the Japanese home market, gives an additional incentive to the establishment of a CB in this country. The current market "stimulation" exercise (for that's what in truth it is) together with the pressure on the Home Office for a Citizens' Band looks very like an attempt to open up the UK as a dump for more foreign-made equipment; or a remarkable coincidence of events.

So far the Home Office had tended to resist the current exhortions. May its officials continue to show their wisdom. They have noted for themselves the reasons for the clamp-down on CB operations in Holland.

They will not have been as impressed as Mr J. R. Brinkley (March issue, p61/62) with its progress in the States either. Let me quote from the report: "F.C.C. says that the violation of CB rules is rampant and the band is chaotic. In 1975 it received 31,000 complaints, 55% about radio interference from CB operators."

The Home Office is obviously hard pressed now to execute its statutory duties. To think it had a cat-in-hell's chance of containing a $C B$ on any frequency in the UK is just being totally naive.

Sir, it has already been sufficiently demonstrated in several countries that Citizens' Band brings little but conflict and trouble. At the best it is an abused public toy - my advice is that we keep this cancer out of the radio frequency spectrum in the UK.

D. L. Martin,

Newthorpe,
Nottingham.

PHASE AND SOUND QUALITY

James Moir tossed off a few words at the end of his most informative article about phase and sound quality (March issue) by saying that phase was of considerable importance in a two-channel system, and I would venture to suggest any multi-channel system.
To have shown, as he did, gross differences in a waveform as between points a few inches apart, is also to show that two sounds from two speakers, while deriving from electrically identical inputs, will as like as not have two grossly different sound waveforms at the listening point. This poses the very interesting question as yet unanswered - how do the ears' work and what is the real value of stereo?

But one ought to look back further and consider whether the two channels of a stereo system can even provide electrically identical signals. Does not practical equipment contain large numbers of components with 20% tolerances and many sources of phase shift including deliberately introduced tone controls? Thus by Mr Moir's comment one may wonder if there are many equipments capable of producing theoretically
correct audio outputs at the speaker cone, i.e. before the room adds its distortion of the waveform.
Since more reproduction stems from records one may even consider - it seems to be rarely if ever tested - whether records and pickups do reproduce each channel in correct phase relationships. In fact I suspect there is evidence to show that they do not. As Mr Moir points out, varying phase shifts can produce peak amplitude changes, and in fact there is nothing surprising about this or the thought that the process applies to the interaction of the two channels of a stereo record when the outputs of a stereo pickup are electricaly combined and applied to a single channel amplifier. My comment is that some stereo records suffer, when so reproduced, from intermittent low frequency effects which are not rumble and are not in my experience to be found on mono records.

It would be interesting if somebody could unravel the further significance of phase in multi-channel reproduction before we are again taken for a ride on the bandwaggon of alleged technical obsolescence. In view of the enormous quantity of recorded material at present available it would surely be of enormous public benefit to show how this can be reproduced to yield the most pleasing results. Even the makers of mono records and stereo equipment combine in saying two loudspeakers sound better than one - rather odd in view of the modern doubts about the effect of phase!
C. Streatfield,

Poole,
Dorset.

In the never-ceasing game called Higher Fidelity, we are now about to be deluged with facts and not-so-audible figures about linear phase equipment.

John Bowers, in his letter (February issue) declares that his company has spent two and a half years and some $£ 75,000$ developing a linear-phase loudspeaker. We may safely presume that part of this sum was for sophisticated measuring equipment. And may we also presume that these lengthy tests were made in the usual anechoic chamber? The point seems to be that unless you have a very good pair of ears (worth at least $£ 75,000$) plus digitally encoded material, a linear-phase amplifier and linear-phase speakers you can't be expected to hear the difference. Michael Gerzon (letters, March issue) goes even further - phase distortions can't be appreciated until you get yourself sophisticated electronics-including microphones. Just imagine the horrors that the BBC have been perpetrating with their mixer desks, their seedy Post Office lines and even their transmitters! They've been pulling the wool over our ears for years - and nobody suspected it!
It was fortunate that the March edition of your journal contained some realism. We have, rightly, been increasingly aware of greater fidelity to the original sound source, and this includes "surround sound" and ambisonics in addition to the four channel gang - because we do not hear direct sounds only, but reflected sounds as well. The concert hall is a mass of direct sounds and indirect sounds; nobody has yet complained of sitting in an out of phase seat to my knowledge. As J. Moir stated in his paper "Phase and sound quality": "Sounds arrive at every point in an auditorium by direct transmission ... and also by a magnitude of indirect paths that include multiple reflec-
tions (and so) arrive delayed in time, and in consequence, with their phases radically changed."

Again, in that same issue, P. L. Taylor states, with some conviction in his letter: "the consensus of opinion among my colleagues is that the tonal quality of sound depends solely on the amplitudes of the harmonic. components and not on the phases." I hope my name may be added to that list, because, although I do not listen to my stereo in concert hall acoustics, neither do I listen in an anechoic chamber. I have listened to "conventional" speakers and linear phase (including B \& W DM6s) and I believe I'm still happy with what I have already. I may be out of phase with the boffins - but I'm still solvent!
J. C. Nuttall,

Worthing,
Sussex.

During the second world war a popular wireless magazine (not Wireless World) published a reader's letter describing a circuit claimed to slow down the reception of broadcast news bulletins, enabling the text to be taken down at dictation speed. Having regarded the original letter as a leg-pull, I recall observing with increasing incredulity the ensuing correspondence from readers reporting success with the circuit, and in some cases claiming improved performance resulting from their own modifications to it. The series ended with a sheepish editorial note closing the correspondence and I was left to reflect on the ability of the human ear to detect what it is predisposed to hear.
I find myself with similar feelings after reading some recent contributions on the audibility of phase non-linearity in loudspeaker systems - not least that of $\mathbf{M r}$ Michael Gerzon, whose letter claims a detectable difference on reversing the phase of a monaural signal in a high-quality system. $\mathrm{Mr} \mathrm{H}. \mathrm{D}. \mathrm{Harwood's} \mathrm{temperate} \mathrm{reply} \mathrm{to} \mathrm{this'}$ letter is a model of the polite patience demanded from an employee of a state organisation addressing a member of the public! The audible effect of a phase response having various forms of non-linearity with frequency is certainly a debatable topic, but the audibility of a total phase reversal is surely ludicrous. To be charitable to Mr Gerzon, if he is not attempting to pull the editorial leg, one might assume that his phase reversal experiment introduced an associated effect resulting in a detectable change of quality; otherwise I am back to reflecting on the ability of the ear to detect what it is predisposed to hear.

More seriously, the published experimental evidence suggests the postulate that the human auditory system responds to the energy content of each frequency component of a complex recurrent waveform Amplitude changes of any component (which affect the waveshape) are thus readily detectable, while phase-angle changes of any component (which also affect the waveshape) have no effect. It would be interesting to have the comment of a specialist in the physiology of human hearing on this suggestion.

If that were so it would resolve the issue for recurrent waveforms, but still leave open the question of audible effects of phase nonlinearity on the true transient, that is a single impulse or the leading edge or trailing edge of a wave-train, as distinct from the recurrent edges of a 1 kHz square-wave as used for demonstration by Mr James Moir. It is
significant that Mr Moir quotes reports indicating phase non-linearity to be audibly more perceptible with speech material than with music. Speech contains far more discontinuities and explosive consonant. sounds than does a typical music programme and would thus be more susceptible to leading-edge and trailing-edge degradation. With music the audible effects would be confined to the attack and decay of indivi-dually-sounded notes or percussion - effects which might well combine to degrade the reproduction of certain classes of programme material more than others.
J. H. Haslett,

Haywards Heath,
Sussex.

HIGH-QUALITY F.M. TUNER

Having relied upon Dr K. R. Sturley's excellent design of an f.m. receiver, which was published as an Electronic Engineering monograph as far back as 1942, I am somewhat disillusioned with the performance of the high-quality f.m. tuner described by Mr J. B. Dance in the March issue of Wireless World. I wonder how many readers have encountered difficulties.

In the first place, I would question the design of the power supply, in particular the value of the reservoir capacity. The ripple on the output of the TBA625B regulator is about 1.5 mV r.m.s. and this gives rise to an audible hum at 100 Hz . I found that the performance of the regulator followed expectations based on the information in the SGS data sheet. The device's supply voltage regulation, that is the ratio of the input/output ripple, is typically 46 dB . I increased the value of C_{13} from $250 \mu \mathrm{~F}$ to $1250 \mu \mathrm{~F}$ and reduced the output ripple to $125 \mu \mathrm{~V}$ r.m.s., whereupon the hum disappeared.

Turning to the Signetics NE563 phaselocked demodulator, I have to admit that I had instability with the first lay-out that I attempted, but soon overcame this difficulty by constructing the circuit to the p.c.b. lay-out which the manufacturer very kindly supplied. I decided not to use the printed wiring, but arranged the physical disposition of the components on a piece of Vero board so that they were in identical positions to those on the p.c.b. The signal from the i.c. is taken from the mono output and fed directly into the pre-amplifier of a mono reproducer.
I have two observations to make regarding the performance of the NE563. Firstly, judged subjectively the distortion is slightly more perceptible than with Dr Sturley's receiver and secondly, the hiss, or white noise, is noticeably worse. For example, with the volume set at concert level the quiet passages of "Nimrod" in Elgar's Enigma Variations are comparable with the hiss power. With the valve receiver the hiss is imperceptible. Signetics make no claim for the signal-plus-noise to noise ratio on their otherwise very comprehensive specification for the NE563. They did advise me, however, of possible cross-over distortion in the phase-detector and suggested a remedial procedure, but I have had no cause to implement this advice.
To sum up, I believe that the performance of Mr Dance's receiver would probably satisfy a large number of readers. For other
than orchestral music, which has a large dynamic range, the residual noise would remain un-noticed, but for the ultimate in s / n ratio, paradoxically, my twenty-year old valve receiver still remains supreme. It only goes to show that a good job Dr Sturley made of his design.
J. M. Reid,

Shepperton.

Mr Dance replies:

I understand that there is a mis-print in the TBA625B data sheet; it seems that the typical ripple rejection should be quoted as 54 dB . I measured the ripple on my receiver positive line as $630 \mu \mathrm{~V}$ r.m.s. with a digital meter when using a capacitor for C_{13} with a marked value of $250 \mu \mathrm{~F}$. If, as Mr Reid states, an increase in the value of this capacitor by a factor of five results in a decrease in the 100 Hz ripple by a factor of twelve, this suggests his $250 \mu \mathrm{~F}$ capacitor is low in value or his $1250 \mu \mathrm{~F}$ high. Variations in the regulator ripple rejection and actual capacitor values can give variations in the ripple level of up to about 20 dB . This is no real problem, since if audible hum occurs due to ripple on the Varicap line, one merely increases the value of C_{13}.
I have heard from two readers who have experienced instability in the receiver owing to the use of circuit boards with copper strips. Clearly the use of parallel strips of copper is inappropriate with a high gain device at the frequencies concerned even if the strips are quite short. I employed a "Lektrokit" board of the type into which one inserts metal pins; a miniature co-axial lead was used to pass the signal from the front-end to the 563 and no instability was found. Although this type of construction is not the neatest, it has the advantages that stray capacitance is minimised and one can easily add extra components.
Mr Reid is not correct in his implication that Signetics have not published ($s+n$)/n data for the 563 . In the preliminary data sheet a nominal value of 70 dB was quoted. The subsequent data sheet presents the $(s+n) / n$ data graphically, the value being 65 dB for input levels above about $800 \mu \mathrm{~V}$ r.m.s. if a low-pass filter is used at the output (such as the de-emphasis filter in the monaural output). As stated in the "Letters" column of the July 1975 issue, the bandwidth and noise can be reduced somewhat by reducing the value of R_{6} of Fig. 1, but the 65 dB figure reported by Signetics was obtained with the wide-band, $22 \mathrm{k} \Omega$ value.
Unfortunately it is not possible to determine the origin of the noise from the information given by Mr Reid. If Dr Sturley's receiver was designed in 1942 before stereo was available, it may have had a relatively narrow i.f. bandwidth and this would reduce the effect of any noise coming from the aerial or from the front-end. If the signal provided by the aerial is inadequate, a wide-band i.f. unit for stereo reception may produce more noise at its output than an earlier type of valve receiver. It would be interesting to take an i.f. signal from Mr Reid's valve receiver and feed it to the 563 before blaming the noise level on the 563 circuit. The noise at the output of the 563 varies somewhat from one device to another, whilst one might expect that noise and distortion could be greatly increased by any significant amount of spurious coupling.
The 563 device has been temporarily withdrawn from the Signetics/Philips product list as from December 1975, but it is understood that some retailers still have the device in stock. The manufacturers intend to
re-introduce it again when they have made some changes in their production processes. In my view, it is no mean achievement to produce a complex chip which provides f.m. detection of broadcast quality without the use of any inductors.
Brian Dance,
Alcester,
Warwickshire.

THERMISTOR AND THERMOCOUPLE ACTION

Mr Budd, in his article on thermistors and thermocouples, seems to have solved a problem which has faced engineers for many years - that of having to run thermocouple leads in expensive compensating cable. Closer examination of his circuit, Figure 10 , reveals, however, that he has all three junctions at the same temperature, which he shows quite correctly in Figure 8, will give an output of zero.
Perhaps Mr Budd is a little out of touch with the industrial use of thermocouples as I cannot agree that they have been neglected in favour of thermistors. I believe that the thermocouple is still by far the most widely used temperature measuring element and it certainly lends itself much more readily to fail-safe type circuits than do any of the resistive devices.
M. McAlevey,

King's Lynn,
Norfolk.
Mr Budd replies:
The point that Mr McAlevey makes is quite correct and I apologise for the error. Of course, as he says, the situation of Fig. 10 reduces to that of Fig. 8 if the "additional" junctions are at the same temperature as the main sensing junction and the output will then be zero.
Regarding the question of whether or not the thermocouple has been neglected in favour of the thermistor; judging from his letter Mr McAlevey has had far more industrial experience than myself and so I would not presume to argue with what he says. Nonetheless, I feel that, from the constructor's point of view, the thermocouple could be used much more widely and with advantage.
C. Budd,

21 Rushes road,
Petersfield,
Hants, GU32 3BW.

OUR DAILY BREAD

Your citing, in your March leader, of a contemporary's designation of degrees in technology as "passports to poverty" raises the even wider issue of the cost of being a professional of any kind. As a teacher and research unit leader in a polytechnic, I have in recent years seen this trend for the better technician/technologist to acquire some of that magic (?) aura of the teacher that has put the latter in his present situation as a man who is blandly told by his paymasters: "But you enjoy your work, so you shouldn't expect to be paid highly".

Twice, recently, we have had to advertise,
in your columns and elsewhere, for an electronics engineer to work in my own unit; the second advert was necessitated by the first appointee's emigrating after a two/three-year stint with us, which he greatly regretted terminating, and for purely financial reasons.

In both cases, our advertisements contained offers of design opportunities, not because we were seeking to get better men than we were paying for, but because I and my colleagues believe that a job without such opportunities has no real appeal. Both appointees welcomed this aspect, both were aware of being in a sense exploited thereby, but both accepted that to work as a colleague in a team and not as a serviceman for a team is worth some financial sacrifice, as long as it can be afforded.

I am not sure where our world goes from here. Research is, of course, an expensive mistress for all those involved in her upkeep, and when it is in an academic institution where funds are low and cost-benefit relationship may be hard to demonstrate, one has to be thankful for whatever crumbs of finance can be garnered to gain her favours with. Maybe the cachet of "white-collared intellectual" by which you designate us, has to be paid for in this way. Maybe we should be glad of the chance to go on serving man instead of Mammon, as so many sections of society now do!
W. B. Broughton

The Athenaeum
London, S.W. 1

ELECTRODYNAMICALLY INDUCED e.m.f.

The question posed by Messrs Taylor and Todd in the July letters column asked "Can an induced e.m.f. be measured in a loop moving through a constant flux density if parts of the loop (e.g. the meter leads) are screened with a high permeability material?"
The basic circuit for an unscreened loop is as Fig. 1. If, by any mechanism, the quantity of flux threading the loop is changing, then a high impedence voltmeter would measure an e.m.f. Evolts numerically equal to $\mathrm{d} \Phi / \mathrm{dt}$ (Φ is in webers). If the loop moves through a constant flux density B, then $E=0$ since $\mathrm{d} \Phi / \mathrm{d} t=0$. (The movement assumed is translational not rotational.)
If we now screen the leads of the meter (Fig 2) but otherwise keep the loop dimensions the same, the same total flux Φ links the wire/meter leads loop ABCD, and if this flux changes, $E=d \phi d t$ as for Fig. 1. The metal screen (whether high permeability or not) does not affect the flux linking the loop and hence has no effect on the circuit voltages. Therefore a system such as Fig. 2 moving en bloc through a constant flux density will give no measured e.m.f. (and no circuit currents either), irrespective of the presence of screening since $d \Phi / d t$ for the loop is zero.
This example illustrates the use of the "flux linking" concept, which is more basic and more valuable than the concept of "flux cutting". If "flux cutting" were in voked one might argue that in Fig. 2 A-B sees an e.m.f. generated by movement through a region of flux density B, but C-I) is screened. The fallacy in this argument is not difficult to unravel if it is appreciated that flux cutting is a special case of flux linking and implies assumptions about the remainder of the circuit. Flux linking is the more fundamental
and should be used in all "difficult" problems, and will generally yield the correct answer.
A small point about the effectiveness of screening is worth stating. The screening provided by braided copper, solid copper and aluminium tube, or solid high permeability tube, does not differ in principle, only in relative effectiveness. The screening is a function of conductivity, permeability and thickness of the material; hence for most purposes (particularly r.f.) the high conductivity of Cu and Al makes for effective screening, although μ_{r} for both metals is only 1.

Basic unscreened loop.

Similar loop with scireened leads.

\checkmark will only be zero when Φ attempts to change if S_{1} is closed, thus allowing the screen to carry a circulating current which opposes the change in Φ and so reduces the $d \Phi / d t$.

V will be small for fast B changes for an unbonded screening tube since skin effect prevents currents and flux penetrating the tube, hence within the tube $d \Phi / d t \rightarrow 0$.

Interesting practical demonstrations of many of the problems of flux linking and induced voltages have been obtained in the course of a research programme being undertaken at the UKAEA Culham Laboratory. The research programme is concerned with the effects of lightning on aircraft, one aspect of which is the problem of lightning currents causing voltage transients on internal wiring in the aircraft. The mechanisms of induced voltage generation are being investigated theoretically, computationally and experimentally and good agreement between theoretical prediction and experimental measured results has been achieved. Among other experimental investigations, the usefulness of screening has been investigated and some simple generalisations may be stated: For screening to be at all effective in preventing voltages due to magnetic flux changes either (a) the screen must be able to carry net current longitudinally, or (b) both wires of the loop must be inside the screen. These points are illustrated in Figs. 3 and 4.
The importance of effective screening stems from aircraft design trends. These trends are: (a) the use of solid-state avionics systems which could be more susceptible to transients, and (b) the increased transparency to magnetic flux of the aircraft wings and fuselage owing to the use or non-conducting materials (glass fibre etc.).

The loop e.m.f. effects described above do not say however that electric fields are not produced by motion at a speed \bar{V} through a magnetic field \bar{B} (\bar{V} and \bar{B} are vectors). In fact an electric field E is produced equal to the vectorial cross product of \bar{V} and \bar{B}. Magnetic deflection of electron beams (as in a c.r.t.) relies on this effect; the motion of the electron in the magnetic field produces a transverse electric field ($\bar{V} \times \bar{B}$) and the electric field acts on the electron to deflect it. B. J. C. Burrows,

Culham Laboratory,
Oxfordshire.

Objections in principle are invited on a proposed airborne ground-speed indicator based on $E^{\prime}=v \times B$. If B is the field of magnetised rocks on a flat earth surface, then v is the unambiguous speed of the aircraft relative to those rocks. This would be a useful adjunct to the air-speed indicator, which needs correction for wind.

However, if the magnetised rocks are in layers under the curved surface of a spinning earth, each layer has a different linear component of velocity relative to the aircraft

Some trials of the suggested rotating dipole have been made. (G. S. Watt "A Phase-locked Loop Amplifier System," Diploma Thesis, Electronic Engineering Department, University of Hull.) The dipole has an active conductor with amplifier input connected to the centre through slip rings; the tips of the dipole are loaded by capacitor plates, which project along the axis of rotation at the side opposite to the slip rings

Responses are detected to movement of the apparatus in the non-uniform magnetic field of a laboratory. But an objection te) this version is that the active conductor and the asymmetrical capacitor form a loop, which confers sensitivity to d中/it.

A new attack on the problem might have a non-rotating active conductor, which transfers charge into the rotating capacitor plates by making brief central contact.
D. Midgley,

University of Hull.

Wireless World Teletext decoder

7 - Construction and interfacing with the television receiver

by J. F. Daniels

Construction techniques

Many different methods of construction are possible because the circuit is fairly non-critical in terms of i.c. layout. High-frequency decoupling should be used on the power supply rails, and about one $0.047 \mu \mathrm{~F}$ capacitor for every ten i.cs should be adequate. Extra decoupling should be employed close to the two clock oscillators and also on the plus and minus five volt rails close to IC_{81}, the dual difference amplifier.

For those constructors who intend to use the p.c. boards available from Catronics Ltd, the following hints on construction may be useful. The first thing to do is to make up the through connection holes using tinned copper wire. As there are a great many of these to do, the following method will probably be found to be the quickest. Support the board, component side down, about $1 / 4 i n$ above a flat surface. Take a long length of suitable tinned-copper wire and push it through a hole that requires connecting through until it rests on the surface under the board. Solder it on the upper surface of the board and cut off with side cutters. Continue by soldering all the wires on the same side of the board, and then turn it over and solder the other side. The underside of the board is done first because it is easier to differentiate between connecting holes and i.c. holes on this side. Holes for capacitors and resistors are distinguished by the fact that they have larger "roundels".

After the connecting process has been carried out on the two digital boards, the i.c.s. may be mounted, and care should be taken here to ensure that no pins are left unsoldered. Only some pins require soldering on the upper surface of the boards and these are indicated by roundels. Where space permits these roundels have extra tabs to increase the soldering area. Great care should be taken when soldering the m.o.s. random-access memories on board one, and similarly the read-only memory on board two. Although all the inputs are protected to a certain extent against static charges, care should be taken to ensure that the soldering iron tip is adequately earthed. The printedcircuit boards have been designed in such a way that i.c. holders may be used for the m.o.s. devices to avoid soldering on the top surface of the board and this
is probably the safest, if slightly more expensive solution.

Capacitors, resistors and preset potentiometers can then be added. Some of these components may require soldering on both sides of the board and the best rule to follow is: wherever there is a roundel, solder it!
When both of the digital boards have been completed they should be joined together by wire links along the rear edge of the boards. These links are best made from lengths of insulated stranded wire, each one being about two inches long. This enables the boards to be "opened out" if access is required to the i.cs on the lower board. At this stage the four power supply leads may be connected to the lower board. (Note that the two leads for the -5 and -12 volt supplies only go to the lower board, and no links are used to the upper digital board at this point.)
The analogue board may now be constructed. This is only a single sided board and a number of wire links are required as shown on the layout diagram. The analogue board is intended to be mounted above the upper digital board at the right hand end. Three wire links are needed at the upper (short) edge to the lower digital board, for the plus 5 , minus 5 and 0 volt rails, and five more links at the top end of the right hand edge are connected to adjacent pads on the uppermost digital board. These links to the analogue board should be long enough to allow removal of this board, to allow "unfolding" of the two digital boards.
Connections to all the decoder function switches are made to the righthand edge of the lower digital board and this board projects further than the other boards at this end to facilitate connection of the leads. The suggested method of connecting the function switches as shown in Fig. 5 (April).
If lower-case characters are being included in the decoder the extra board should be made up in a similar way to the two larger boards. The extra board is intended to be mounted above the upper digital board at the left-hand end, opposite the analogue board. Wires should then be connected from this board to the underside of the lower digital board. It is advisable, however, to get the decoder working and lined up before adding the lower case board, as
any faults will be located more easily if the lower case board is not present.

Video switching and interface

This board is mounted in the TV receiver and must be capable of switching the red, green and blue outputs of the Teletext decoder into the receiver in place of the TV picture. Before describing some typical receiver and video switching circuits, it would be as well to examine the problems which will arise, and describe ways of overcoming them.

Let us assume that we have an "idea!" receiver which we wish to modify. This receiver will have three identical video amplifiers for the red, green and blue signals and the amplifiers will have capacitor-coupled inputs, i.e., the amplifier will be internally biased and clamping of the three signals will take place at the c.r.t. cathode. The amplifiers will require an input of about 4 V $\mathrm{pk}-\mathrm{pk}$ and have a flat amplitude frequency response up to at least 5.5 MHz .

If a receiver with this type of amplifier were being modified, a simple method would be to use a three-pole changeover relay to disconnect the amplifier inputs from the red, green and blue picture information and connect the outputs of the Teletext decoder. Although this method would produce a perfectly acceptable Teletext display, it would have the disadvantage that newsflashes and subtitles could not be shown in boxes, as intended.
In order to display boxed information, the video switches must operate very rapidly, preferably with a switching time of less than about 300 ns . This, however, is not the complete answer, because if switching is attempted between the decoder output and capa-citor-coupled or "floating" picture information, the background brightness and colour of the display box will change, depending upon the average level of each of the three picture waveforms. This can be overcome fairly easily by clamping the three TV waveforms and the three Teletext output waveforms to the same potential prior to switching. The output of the video switches can then be capacitor-coupled into the output amplifiers as before.
Figure 1 shows a basic video switching circuit, and this will be described initially. Alterations to the basic circuit
will then be considered in conjunction with different TV receiver designs. The actual switching elements are contained in $\mathrm{IC}_{1,2}$, and these are c.m.o.s. CD4016 analogue switches, each with its own control input. When the control input is at the 0 level, the input and output terminals are effectively openi circuited, and when at a l level, the input and output terminals represent a resistance of approximately 300 ohms. The device will pass frequencies up to about 10 MHz , which is ideal for our purpose, and as long as a fairly high supply voltage is used, it is quite linear in operation. The slight disadvantage is that, being an m.o.s. device, the switch time is not particularly fast, and this can cause slightly coloured edges on the inserted box. However the advantages of simplicity and cheapness outweigh this slight disadvantage.
The typical switch arrangement shown in Fig. 1 uses two CD4016 i.cs. The control inputs are fed from the outputs of two high-voltage open-col-
lector t.t.I. gates, because correct operation of the switches requires that the control-input voltage. must approach the supply voltage. The input from the decoder function switches is normally held at 0 by a 470Ω resistor, ensuring that the switches are left in the TV position if the decoder is not connected to the switch board. Resistors $R_{4,5 \%}$ are chosen to reduce the amplitude of the Teletext signals to the same as that of the TV signals, and capacitors $C_{4,5 \times 6}$ may be added to boost the h.f. response if this is found to be necessary. (Because of the high frequency components contained in the verticals of the alphanumeric characters, some commercial receivers may not have a sufficiently good h.f. response to display them adequately. Later in this article a simple modification to the Teletext circuit will be described which reduces the h.f. requirement of the video amplifiers by

Fig. 1 The basic video switching circuit.
effectively increasing the width of character verticals.)
The three capacitor-coupled video signals are clamped to the potential which is set by $R_{1}, V R_{1}$ and R_{3}. Similar, the Teletext signals are clamped to a voltage set by R_{7}, R_{8} and $V R_{2}$. In this particular arrangement the actual clamp voltage is arbitrary but would probably be best set to about 3 V . Two separate potentiometers are used so that the black level of the Teletext: signals can be varied independently of the picture brightness, and thus the background brightness of the inserted box may be adjusted. The reason for not clamping to 0 volts is that the c.m.o.s. switches are not particularly linear when the input signal approaches the extremities of the supply voltage, and raising the potential of the signals ensures linear operation of the switches. After the video switches, capacitors C_{1}, ${ }_{2}, 3$ remove the d.c. component of the waveforms before they are fed into the receiver video output amplifiers. (It

Fig. 2 Video output circuitry of the Bush CTV182S, CTV184S and CTV187CS.

Fig. 3 The BRC 8000 shown above, while
below is the Philips G8 video output.

should be noted that the polarity of these and the input electrolytics will depend on the individual receiver design and may. not be as shown.) Figure 1 shows a fourth pair of switches which are not required when modifying a receiver of the type described. They are useful, however, when modifying a set which has colour-difference amplifiers ($\mathrm{R}-\mathrm{Y}, \mathrm{G}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$), as they can be used to switch off the luminance signal, which would otherwise be present while watching the Teletext display.

Figure 2 shows the circuit of one of three identical output amplifiers used in Bush models CTV182S, 184S, 187S, 192, 194, 196, 197C, 199 and 1026. For sets which have output amplifiers of this type, i.e., capacitor-coupled, positivegoing R, G and B video inputs of less than about 5 volts peak to peak, the circuit just described will be adequate. Other receivers using similar amplifiers are: Murphy CV1916S, 1917, 2211S, 2212, 2213, 2610, 2611 and CT2516CS; Alba CS1919; Decca CS1910, 2211, 2213, 2611; ITT/KB CK600, CK500, CK701, CK822, CVC5, Colourscope 20 and Studio 100, and probably quite a few others.

Next will look at some receivers which differ from those just described by virtue of the fact that the output amplifiers are directly-coupled. The amplifiers still carry the R, G and B signals, but instead of being clamped at the tube cathodes, the signals are clamped earlier in the circuit and directly-coupled from this point through to the tube cathodes. Two circuits are shown in Figure 3; the first is a type used in the BRC8000 chassis, which is used by a number of different manufacturers, and the second is a circuit using Mullard i.cs used in the Philips G8 chassis, which is also quite widely used.

Because these sets have directlycoupled amplifiers, the easiest course of action is to remove the capacitor coupling in the original video switch circuit (remove $\mathrm{C}_{1}, 2,3$) and this means that in the TV mode the only change in operating conditions will be the addition of the effective resistance of the c.m.o.s. switch, about 300Ω, which will almost certainly be negligible. Since the TV signal is effectively clamped at this point in the circuit, we no longer require $\mathrm{Tr}_{1}, \mathrm{Tr}_{3}$ and Tr_{5}. The Teletext input circuitry can remain unchanged and VR_{2} should be adjusted to make the Teletext signal black level about the same as that of the TV signal at this point. $V R_{2}$ effectively forms a Teletext brightness control.

It should be noticed that three $10 \mathrm{k} \Omega$ resistors are required on the output pins of the matrix i.c. in the BRC 8000 circuit. These resistors form the emitter load for the output transistors in the i.c. when Teletext is selected, to prevent the signal voltage at this point rising towards the positive supply rail and upsetting the operation of the c.m.o.s. switches. (The input signals to the
c.m.o.s. switches must not de allowed to go outside the limits of the supply voltage to the i.c., as incorrect operation will result, with possible breakthrough on switches which are supposed to be in the off condition.)

Other receivers using the BRC8000 chassis are the Ferguson 3712 , Alba 8000 and Marconiphone 4712 to name a few. Similar output stages are also used in Decca models CS2030, 2230, 2630 and 2631.

The three types of output stage just described cover the majority of the more modern British-made sets. However, there are still many older types of receiver giving good service and it was the tendency until fairly recently to drive the grids of the TV tube with colour-difference, valve video output stages. (All the circuits so far described feed the cathodes of the tube with the red, green and blue signals.)

This older type of circuit had three identical valve output stages, each one usually consisting of a triode-pentode valve of the PCL84 type. The pentode section was used to drive the tube grids with either the R-Y, G-Y or B-Y signals, and the triode section was used to clamp this signal at the tube base. The cathodes of the tube were effectively joined (sometimes potentiometers were used to vary the amount of drive to each cathode), and fed with the luminance output signal from a separate pentode valve.

A typical circuit used in the Pye CT70 series chassis is in Fig. 4. All three output stages are identical, and they are fed from three transistors, two of which are used as R-Y and B-Y amplifiers, the third being used to derive a a $G-Y$ signal from the other two. Although it might be possible to drive the basis of these transistors, the three circuits are not identical at this point and trouble might be experienced with the green channel. The best place to feed the signal in is almost certainly at the grid of the pentode valve as shown in the diagram. The only disadvantage of feeding in here is that the Teletext signal must be negative-going at this point to produce the correct display.

There is no reason whysthe Teletext signals should not simply be inverted, using three ordinary t.t.l. inverters, prior to the attenuating resistors R_{4}, R_{5} and R_{6}. The six capacitor-coupled signals can then be clamped using $\operatorname{Tr}_{1.6}$ as before, but the clamp potentials should be greater than before, at about 6 V , as the signals are now negativegoing at this point. Capacitors C_{1}, C_{2} and C_{3} should be used to couple the switch outputs as before, and these capacitors can be considerably smaller than before as they are feeding valve grids. The Teletext tisplay will now appear on the screen, but it will be superimposed on a black and white TV picture because the luminance signal is still connected to the tube cathodes. Some means must be found of switching off the luminance signal and for this
purpose we can use the two remaining c.m.o.s. switches. By connecting them as shown in Figure 1 it is possible to insert the switch in series with the luminance chain at some suitable low-voltage point. $V R_{3}$ may be used to adjust the d.c. conditions during switching to keep the black-level correct.

Other sets using this type of output stage are as follows: Bush CTV25 and CTV167; Murphy CV2510 and CV2511; Baird 700 series and 710 series; Decca CTV25; Pye CT79, CT152 and CT153; Dynatron CTV1, CTV1CH and CTV2; Ekco CT102 and CTl04; Ferranti CT1166 and 1167; Invicta CT7050; GEC 2040, 2041, 2073, 2100, 2103 and 2107.
Before leaving the subject of modifying TV receivers, the $\mathrm{BRC} 2000-3000$ series of receivers, which do not really fall into any of the previous categories, should be examined. Figure 5 shows a video amplifier used in the earlier 2000 -series chassis, but the later 3000 and 3500 -series used a configuration very similar to this and for our purposes can be considered the same. The three video amplifiers are basically identical, with one important difference. The R-Y and $B-Y$ circuits are both as shown in the diagram, but the input capacitor of the G-Y amplifier is connected to the +30 V rail, effectively earthing this point to a.c. and turning the first transistor into a common-base stage. The emitter of this transistor is fed with different amounts of $R-Y$ and $B-Y$ signals to form the G-Y signal.
The best approach to modifying this type of receiver is to treat the three amplifiers as identical capacitorcoupled amplifiers and put the three video switches in the base circuit of the input transistors. Extra capacitors should be used in series with the inputs to the video switches, since the colourdifference signals are close to the 30 V rail at this point and outside the range of the 15 V supply rail permissible for the c.m.o.s. switches. The luminance chain must also be broken before it feeds the bases of the output transistors and this can most easily be done at the input to the luminance emitter follower (not shown in the diagram). As it stands, this circuit will then produce reasonably acceptable results although, because a certain proportion of the red and blue signal is still being fed into the G-Y amplifier, the green Teletext display appears rather too bright in relation to the red and blue signals. The solution to this problem is to use two extra c.m.o.s. switches, one in the $R-Y$ feed to the $G-Y$ amplifier and the other in the $B-Y$ feed to this amplifier. These switches should be wired so that they are in the open-circuit condition during the Teletext mode of operation. Resistors $R_{4}, 5,6$ on the switching board will need to be about $10 \mathrm{k} \Omega$ for this type of receiver, and $\mathrm{C}_{4}, 5,6$ about $10-15 \mathrm{pF}$.

The $12-15$ volts required for the c.m.o.s. switches can easily be obtained from the video amplifier power rail in CT70/71.

the TV set, using a simple zener diode stabiliser if the rail is higher than 15 V . Most sets have a supply of between 12 V and 30 V and the current drawn by the switching circuit is minimal.

This concludes the description of colour-receiver output stage modifications, but there remains the problem of obtaining a suitable video signal from the set to feed into the Teletext decoder.

There should be no serious problems here, but since the signal that is fed into the decoder will determine whether or not it operates correctly, it is rather important to get this bit right. The signal into the decoder should be a positive-going video signal of between about 1 V and 5 V peak to peak, not limited in frequency by chrominance, or
other filters. The signal should preferably be taken from a low-impedance point in the circuit, to reduce any losses in the coaxial cable feeding the signal to the decoder. A large number of modern receivers employ i.c. synchronous demodulators of the MC1330 type; these are ideal, providing around 2 V of positive-going video output signal. Some older sets such as the BRC 3000 series employ separate luminance and chrominance detectors and in this type of receiver the luminance detector output should be used. This is not normally restricted in bandwith sufficiently to upset the operation of the decoder. If a suitable positive-going video signal does not exist, then a small transistor invertor may be needed.

To round off the series of articles, the final part will include a description of setting-up the decoder and a suggestion for reducing the effects of restricted bandwidth in the television receiver. We also hope, at a later date, to publish a modification to allow a new, combined upper- and lower-case character generator to be used. In addition, we will try to include information on modification to the circuit to enable it to be used with the Post Office Viewdata service.
Lack of space will prevent the publication of printed-circuit board layout and component disposition, but we have them at this office and will send copies to anyone who cares to write and ask for them. Please send a large, stamped and addressed envelope.

E.h.t. staircase generator for colour receivers

New line-output transformer needs no h.v. capacitors

by A. W. Lee, M.I.E.E.
General Instrument (UK), Ltd.

In the 1930s Blumlein pioneered the flyback transformer with its energy-recovery circuit, since which time the continuous pressure on television set designers to reduce costs and improve performance have resulted in only a few major changes. Ferrite cores have been introduced, as have winding techniques to make harmonic tuning possible, and transistors capable of withstanding reverse collector-emitter pulses of more than 1000 volts'are obtainable.
With the coming of mass colour-television reception, came the need to increase the display-tube anode voltage and beam current. In Europe, voltage multipliers, fed with a comparatively low pulse voltage obtained from the line output transformer, became accepted as the normal way to obtain a d.c. output of 25 kV from the $6-7 \mathrm{kV}$ pulse voltage.
In the second half of 1975 a new component from both European and Japanese component suppliers started to reach set-makers. This is a line output transformer which not only generates the horizontal deflection current, but also the direct voltages required by the display tube focus and anode electrodes without using any additional high-voltage capacitors.

There is very little new in the techniques used in the assembly of this component. It is a combined line output transformer and a voltage multiplier. It uses, as already stated, no additional high-voltage capacitors, but it does have diodes which are connected between its secondary windings, as shown in Fig. 1. These secondaries start at the same side, are wound in the same direction around the same core on top of each other and have the same

Fig. 1. Connexions of secondary coils and diodes.
number of turns. The flyback pulse voltage generated per turn depends on the magnetic flux changes which occur in the core and is, therefore, the same for all turns. Thus, the pulse voltage generated in a turn of an upper secondary is the same as that in a turn of the lower secondary upon which it sits. The pulse voltages generated between such turns, and therefore along the whole width of the paired secondaries, are virtually zero.
The use of wide, single-layer, windings keeps the self capacitance between each pair of secondaries high. By connecting the finish of a lower secondary to the start of the secondary immediately above it, via a diode, the lower coil charges the self capacitance C_{s}, which exists between the two windings, to the peak flyback voltage of the lower secondary. The upper secondary, therefore, sits on a direct voltage level set by the peak voltage generated in the lower secondary. Figure 2 shows

Fig. 2. The formation of a d.c. staircase.

that a voltage staircase is built up, the number of steps being set by the number of secondaries and diodes. This. technique means that a direct output voltage can be obtained, which is a multiple of any one secondary winding peak pulse voltage. If there are only four secondaries and diodes, each with a peak flyback voltage of between 6 and 7 kV , an output voltage of 25 kV can be obtained.
The reliability of the new components is yet to be determined. Set makers are currently evaluating samples, with particular reference to faults which could be caused by encapsulation and the handling of fine wire. The diodes are internal and cannot be changed.

TV Sound Operations by Glyn Alkin. This book is concerned with the art and practice of television sound operation, and is intended for the guidance of people involved in all types of audi-visual systems. The text is divided into sections covering a general introduction to the sound medium, types of microphone, methods of applying microphones in various circumstances, hardware following the microphone, methods of tackling speech and music, and, finally, peripheral equipment. Price $£ 2.25$. Pp. 176 . Focal Press Ltd, 31 Fitzroy Square, London WI.

The Story of Radio by W. M. Dalton. This story is divided into three books, called How radio began, Everyone an amateur, and The world starts to listen. The first volume deals with the history of radio up to the first War. The second volume is devoted to the pioneers of radio. These amateurs, many of them-ex-servicemen, compelled governments to provide public broadcasting services and developed the long distance, low-power short wave communication as we know it today. The final volume continues with the development of radio in an era when people started to listen to BBC transmissions, and the quality of sound broadcasts was being improved. Price $£ 4.50$ per volume. Pp.160, 168 and 168. Adam Hilger Ltd, Rank Precision Industries, 29 King Street, London WC2E 8 JH .

Instruments, Electronics and Automation

IEA exhibition at the new National Exhibition Centre

Aerial view of the National Exhibition Centre and its environs. On the left is the adjacent specially built railway station.

For the first time the IEA Exhibition is to be held at the new National Exhibition Centre, Birmingham, and as it is the first time, this preview contains details of how to get there and what to expect. The show will take place from May 3 to 7,1976 , opening times being 10.00 to 18.00. On display will be a vast range of electronic equipment, systems and basic components. The length of the exhibitors' list on page 72 gives an indication of company participation in the show, many firms coming from overseas. Entrance price to the 11 th IEA exhibition (which also includes admittance to Electrex '76, the 18th International Electrical Exhibition, combined this year with the IEA show) is $£ 1.00$.

The accompanying road map and list of train times should provide visitors with a guide to the travel services available for reaching the exhibition centre.

Viewdata and Teletext

A special demonstration at the show will be on the Wireless World stand which is shared with Electronics Week$l y$. This is a demonstration of Teletext, and, possibly, the Post Office's Viewdata system of transmitting pages of written information for reception on a domestic TV set. Teletext information is broadcast along with the normal television programme signal whereas Viewdata is transmitted over the existing domestic telephone line (see "Viewdata on trial soon". November 1975, p.532). A full public service of Viewdata could start in 1978-9, say the Post Office. if present trials show that it is a commercially viable system.

\neq Your train services

London Euston to Birmingham International

Sundays \dagger
07.40 then 10 and 40 minutes past each hour until 11.40 then 40 minutes past each hour until 21.40 .

Weekdays

07.4008 .10 (a) 08.40 then 10 and 40 minutes past each hour until 14.10 then at 15.10 16.1017 .20 (a) 18.1019 .10 (a) 19.4020 .4021 .4023 .1000 .10

Birmingham International to London Euston*

Sundays \dagger
08.28 then 28 minutes past each hour until 13.28 then 58 and 28 minutes past each hour until 19.28 then at 19.5920 .59 .

Weekdays

07.2808 .2809 .2810 .0410 .28 then 28 minutes past each hour until 14.28 then 58 and 28 minutes past each hour until 15.58 then at 10.1320 .5922 .01

Journey time approximately $\mathbf{1}$ hour $\mathbf{2 0}$ minutes

Notes

*There may be some slight variations in the final timings
\dagger Sunday morning and early afternoon journey time approximately 1 hour 45 mins .
(a) Saturdays excepted.

New Products at the show

Gould Advance instruments on show include new products in the oscilloscope, digital multimeter, signal generator, timer-counter and chart recorder ranges produced by the company. Oscilloscopes include the recently launched OS 4000 digital storage 'scope which combines a conventional 10 MHz performance with a digital memory system capable of storing signals up to 450 kHz , together with the new 4001 "hard-copy" output module.

First showing will be made of AvelLindberg's system 520 static no-break power supply system which can provide up to 45 kVA of emergency power if the mains supply fails. The equipment automatically senses an a.c. mains failure and by means of a solid-state static switch changes over the supply source instantaneously and draws power from a d.c. battery bank.

The Computer and Instrumentation Division of Westinghouse will be displaying the following new items: the Veritrak 75 range of process control instrumentation; the model 215 Oxygen Sentinel; model 2570 process control computer packages; and the New World computer numerical control systems, together with the series 100 solid-state numerical control units which are for sequencing and motion control of a range of machine tools.
Hinchley Engineering double bobbin transformers now include ratings from IVA to 150VA - which has enabled them to provide class II designs meeting the requirements of the Consumer Protection Act. Portable transformers of "all-insulated" construction (up to 1500 VA) are being shown for the first time. These will be available with a range of socket outlets to BS196, BS4343 and also BS1363.

Four-channel recording oscilloscope, the FOR-4 produced by Medelec, can be used as a strip chart recorder, an X-Y plotter or as an alternative to a conventional oscilloscope. A modified version to be shown for the first time includes an automatic repriming circuit which operates in the single shot mode to allow the recording of random transients.

Included in the range of Watanabe recorders are: the new Microservo single pen recorder; the improved Mk III Linearcorder and Miniwriter, 1 to 12-pen, fast response recorders; the $A 3$ size $X-Y$ recorder, supplementing the A4 size high speed recorders which have a writing speed up to $100 \mathrm{~cm} / \mathrm{s}$; the model. WX625 digital drum plother and WX511 digital flat bed plotter, both designed for use with computers to produce fast recordings of graphs, designs. maps, etc; also the standard range of Multicorder ana Servocorder multi-pen potentiometric recorders.

Custom designed resistor networks may be either laser or air abrasive trimmed. The picture on the left shows RIFA equipment for laser trimming.

List of exhibitors
'A.R.O. Machinery Co.
Adcola Products
'AEI Semiconductors
AGA Infrared Systems
Aktiebolaget Rifa
Alcon Instruments
Allotrope
Alma Components
Ampex GB ${ }^{\prime}$
Amphenol
Anacon (Instruments)
Analysis Automation
Analytical Devl. Co.
Anderman \& Ryder
Anglo Weld Equip.
Anopoint
Appliance Components
Arca Controls
Arcolectric Switches
ARI Industries
Arkon Instruments
Arrow-Hart (Europe)
Astralux Dynamics
Aughton Automation
Austen, Charles, Pumps
Automated Quality, Lathe Parts
Automatic Oil Tools
Avdel
Avel-Lindberg
Avery, W. \& T.
Avo
B.H.S. Electronics (Sales)

Bafco
Bahco Tools
Bailey Stamp \& Sons
Barr \& Stroud
Batley Valve Co.
Bauch, F.W.O.
Belix Co.
Bell \& Howell
'Berger Lahr
B \& K Laboratories
Blakeborough, J., \& Sons
(Bopla) Bundaplast
Bowthorpe
Bristol Automation
British Brown-Boveri
British Central Electrical Co.
British Physical Laboratories Buchanan Electrical Products
Budenberg Gauge Co.
Burgess Micro Switch Co.
Burr-Brown International
Calex Electronics
Cambion Electronic Products
Carlo Gavazzi (UK)
Cassinelli \& Co.
Cetronic
Chemical \& Thermal Controls
Chessell
Chinaglia UK
Circuit Automation
Clare, C.P. Electronics
Clarke-Hess Communications
Colstar
Com Dev
Consolidated Products
Continental Disc Corporation
Controls and Automations
Coutant Electronics
CRC Equipment
Critchley Brothers
Crump, A.E. Spectronics
CSM (Engineering)
Custom Component Switches
Custom Synthetics
D.G. Controls

Data General
Data I/O UK
Data Technology Corp
Datron Electronics
Daturr
Datwyler AG
DB Products Inc.
Delta Controls
Derby Automation Consultants
Digital Equipment Corporation Digitron
Dowty Hydraulic Units
Dunegan-Endevco

Dynamco (AOT)
Dyson Diecastings
E.L.D.R.E.

E \& D Manufacturing
Educational Measurements
Electrical Contracts
Electro-Craft Corporation
Electrohome
Elektromodul
Electronic Flo-Meters
Electronic Instruments
Electronic Services \& Products
Elgenco
Emerson \& Cuming (UK)
Endevco
Endress \& Hauser (UK)
English Glass Co.
Engineering Suppliers Associates
Environmental Equipments
Erma
ESPA
Evans, F.W.
Evershed \& Vignoles
F.W. Components

Fabrique Nationale de Ressorts
Farnell Instruments
Feedback Instruments
Ferranti
Ferrograph
Filhol, S.J.
Foreign Trade Company Metronex
Formby, John \& Co.
Foster Cambridge
Foster Transformers
Fothergill \& Harvey
Foxall, T. \& Sons
Foxboro-Yoxall
Frequency Devices
Frost, N.T.
Furnace Instruments
Eduard Fussinger
Future Film Developments
Gam Rad
Gauges-Bourdon (GB)
Gay-Misuratori Elettronici
GEC
General Automation
General Radio Co. (UK)
Goldring
Gore. W.L. \& Associates
Gresham Lion
Grundig (GB)
Guest International
Guildline Instruments
H.I.D.B.

Handy \& Harman Tube Co.
Hartmann and Braun (UK)
Hawnt Electronics
Healey Meters
Heat Trace
Hellermann Electric
Hengstler G.B.
Hepworth Electronics
Hepworth Group
Herga Electric
HES Electronics
Hinchley Engineering Co.
Hitachi Electronic Components (UK)
Hoke International
Howaldtswerke Deutsche Werft AG
Hunter Equipment Sales
Hutson Industries
Hybrid (Component) Systems UK
Hymatic Industrial Controls

I.E.R.C.

Imhof-Bedco
IMO Precision Controls
Industrial Pyrometer Co.
Inovan-Stroebe KG
Insa Divison. Sen Electronique
Insten
Institut Dr. Ing Reinhard Straumann
Instrument Links
Insuloid Manufacturing
Interelectric
Interlevel Control
International Instruments
International Rectifier
Introl

ITT Controls
ITT Instrument Services
Ivo Counters
Kager
KDG Instruments
Keighley Instruments
kelor
Kempston Electrical Co.
Kent, George
Kerry Ultrasonics
Keyswitch Relays
Kirsten, G. \& A.
Klaus Schaefer
Klippon Electricals
Kogyo, Rikadenki, Co.
Kovo Foreign Trade Corp.
Krohn Hite Corp

Laaser U. Co. Nachf
Landis \& Gyr
Lan-Electronics
Lectromec Controls
Leeds and Northrup
Lee Engineering
Lemosa S.A.
Lemo (UK)
Licon Electronics
Lindstore. F.E.
Litre Meter
Littex
Lloyd, J.J. Instruments
LNR Communications
Londex
London Instrument Repair Centre
Lucas Electrical
Lyohs, Claude

Magnetic Polymers
Marconi
Markem
Markovits, I.
McMurdo Instrument Co.
Measurement Technology
Medelec
Meko Instrument
Mentor Electronic
Mentor Inc.
Metronic $A G$
Meyer, Wm. A.
Micanite \& Insulators Co
Micro Computer Systems
Micro Consultants
Mid-West Instrument
Millivac Instruments
Mine Safety Appliances Co.
Miteq
Mitsui Machinery Sales (IK)
Monroe Calculator Co.
Mullard
Multi-Contacts
N.V. CRC Chemicals Europe

National-Standard Co.
Neff Instrument Corp.
Negretti \& Zambra
Newport Instruments
NF Circuit Block Co.
NH Research
Non Linear Filters
Nova Electric Manufacturing Co.
NRDC
Nuclear Chicago Division
Ormiston, P. \& Sons
Osram (GEC)
P.S.I.

Parmeko
Parsonage. W.F. \& Co.
Pearl, A.B. Mikrofonlaboratorium
Pepperl \& Fuchs (GB)
Perkins, E. \& Co.
Phenix Electronics
Plasmoulds
Platon, F.A.
Portescap (UK)
Precision Relays
Prefag
Printed Motors
Proper Equipment
Pye of Cambridge

Racal Instruments
Radio Resistor
Ralcon EMC
Ramseyer
Record Electrical Co.
Redpoint Associates
Rendar Instruments
Rhodes, B. \& Son
Riam S.A.
RKB Precision Products
Rojon Technical Services
Rosemount Engineering Co.
Rothwell (AOT)
Rothwell Valve Company (AOT)
Roxburgh Electronics
Ryaland Pumps
S.E.B.S.
S.E.C.M.E.

Saft (UK)
Sangamo Weston Controls
Schroff KG
Scopex Instruments
Semiconductor Specialists UK
Sensors and Systems
Sescom
Shackleton Systems Drives
Siegert Widerstandsbau KG
Sifam
Sigma Instruments
Signal-Anlagen Peter Brockskes K.G.
SIMA
Sirco Controls
Smith, A.O., Meter Systems UK
Sonicstore
Souriau
Stafford King (Engraving)
Stanley Palmer, G.A.
Steatite Insulations
Sturge Automation
Sullivan, H.W.
Superior Electric B.V.
Swiss Instruments \& Components
Symonds, R.H.
Symot
Syntest Corporation
Synton
T.E.C.O.
T.E.M. Sales

Taylor Electrical Instruments
TCS Eurotherm
TEC
Tektronix UK
Telefonbau und normalzeit
Teradyne Components
Thermo Electric International
Thomson-CSF
Thorn
Topper Cases
Transmission Lines
Transmitton
Treston OY
Trident Engineering
Trimm
Triskelion
Trump-Ross Industrial Controls
Unicell
Unimatic Engineers ${ }^{\text {• }}$
Unit Controls

Varta (GB)
Vectron Laboratories
Vero Electronics
Volkseigner Aussenhandelsbetrieb
W. Controls

Walsall Electrical Co.
Wandel \& Goltermann
Watson's Anodising
Wayne Kerr Co.
Weller Electric
West Hyde Developments
Westinghouse Electric
Weyfringe
Whiteley Electrical Radio Co.
Widney Dorlec
Wika Pressure Gauges (UK)
Wilmgtt Breeden Electronics
Wireless World
Zettler UK Division
Zorn KG
\square

s
\qquad
$+$
Racal instrumen

\qquad

Communication theory

2-Redundancy and the exchange rate

by D. A. Bell,

University of Hull

In the April issue we considered the finite nature of selective information, moved on to an entropy measure of information in the presence of uncertainty and cited Shannon's formula for the communication capacity of a noisy channel. But we omitted any mention of redundancy, which is perhaps the most difficult concept in communication theory. The dictionary account of "redundant" is

> "Superfluous (freq. of workers in industry), excessive, pleonastic; copious, luxuriant, full."

In a single, more colloquial phrase it means "More than the minimum necessary to do the job." But first one must ask what job is to be done in what conditions. Secondly although one may regard something superfluous or excessive as wasteful, one may sometimes feel inclined to pay a little extra for something which is copious, luxuriant or full; so has redundancy anything positive to offer in communication theory?

In answer to the first question, the job is to communicate information in the presence of noise. If the information is originally in discrete form, such as numbers or written characters, the minimum number of digits which will represent it unambiguously can be obtained from formula (7) in the April issue and if more digits or characters are employed than this the extra ones are redundant. For example, we think of an average English word as being made up of 5 letters from a 26 letter alphabet. Applying the formula we get $5 \times$ $\log _{2} 26=23.5$ bits. But it seemed in part 1 that an average English word could also be identified by 4 decimal digits plus one binary symbol, giving $I=4 \quad \log _{2}$ $10+1=14.3$ bits. Finally we said that by repeated binary division of the dictionary any word could be represented by not more than 16 binary digits. Any form other than the direct use of binary decisions thus requires more bits, in other words it introduces some redundancy.

But before condemning redundancy

Fig. 1. Required signal/̈noise rātio, P / N, as a function of bandwidth utilisation: C/W = bits/s per hertz of bandwidth.
as wasteful, consider the possible effects of noise. If due to noise a signal transmitted as 509 R 4 (in our dictionary code April issue) were received as 508 R 4 the end result would be the world "gemmule" instead of "generation", which would make the phrase meaningless. On the other hand the result of changing one letter in "generation" say to "generption" would probably appear as a mis-spelling for which the recipient could guess the appropriate substitution. The redundancy in the spelling of English words has then served a useful purpose in making it possible to correct errors. If we are handling a passage in English language, as distinct from isolated English words, the context also helps. Experiments have shown* that in a passage in English about half the letters can be deleted before it becomes impossible to guess what the words were.

Words have to be pronounceable, which eliminates a large number of combinations. As a simple example, there are $26^{3}=17.576$ different combinations of three letters; but if we require one of the three to be a vowel

[^1]the number comes down to $5 \times$ $26^{2}=3,800$ and we should have to include some combinations of four letters to cover as many as 17,576 words. Thus the exclusion of some combinations leads to an increase in average length of words which we recognize as redundancy. If conditions for spoken communication are very bad one may need to add further redundancy by spelling on a basis such as "A for apple, B for baker . . ." Years ago, when telephone lines were not always good, a! telephone directory contained a list of such alphabet words headed "Aids to clarity of speech." What was meant, of course, was "aids to overcoming lack of clarity in speech."
So we see that redundancy has value in making it possible to detect or correct errors which may be caused by noise in the commurication of information. The redundancy in English words is spread in rather an irregular way, so that it does not give the greatest possible error-protection in return for the extra length of signal involved. Over the last. couple of decades a great deal of effort ${ }^{\circ}$ kas been put into the design of codes for binary signals to allow the detection or correction of errors automatically. The redundancy of English words is normally utilised by a human operator at the receiving end of the channel, who mentally compares the received "word" with what he "knows to be right." A computer replacing the human operator would have to search the dictionary every time to find the nearest match of what it had received to an English word, and this would be a very slow and cumbersome business. The simplest error-detecting code for mechanised telegraphic use is the Van Duuren code, which represents each letter by a combination of seven binary digits instead of five. With the two extra digits providing redundancy one uses only the 35 combinations of the seven digits (out of a possible 128) which contain 3 mark and 4 space digits. Any single error (and in fact any odd number of errors) will upset the count of 3 mark digits and so will be detected, as will some combinations of multiplé errors.

Among the more complicated and powerful codes are the Hamming codes for correcting single errors, the BCH codes which can be designed for correcting any number of errors and various others which have special properties for special purposes. The' common feature of all of them, however, is that they employ more digits than would be necessary if one did not need error-protection. The increased number of digits is usually described as increasing the length of the signal, but this can be taken in two ways. If the bandwidth of the channel, and therefore the digit rate, is left unchanged, the larger number of digits will occupy a longer time; but if the digits are sent at a faster rate, so that the longer string of digits is sent in the same time, the channel will have to be increased in bandwidth. Either way the product TW will have been increased by the redundancy. One has to be careful, since increasing the bandwidth usually increases the noise; and unless the signalling power is increased in proportion, the capacity of the channel will be reduced through the P / N factor. It is simplest to assume that the signalling power is increased with the bandwidth to keep P / N constant. The signalling energy (power \times time) is then increased in exactly the same ratio whether one allows T or W to increase to accommodate the redundancy.
When dealing with analogue signals there is no obvious datum from which to measure redundancy. One can only say that an increase in TW (or in P / N) for the communication of nominally the same information must represent an increase in redundancy. It is implied that if $T W$ is to be increased then P / N is to be kept constant, or vice versa. Indeed one of the major consequences of Shannon's mathematical theory of communication is that signal-to-noise ratio can be traded against bandwidth, though in practice the terms of trade are rather one-sided. The channel-capacity formula

$$
\begin{equation*}
C \leqslant W \log _{2}(1+P / N) \text { bits } / \mathrm{s} \tag{1}
\end{equation*}
$$

tells us that for a given communication rate C we can vary W and P / N to any extent we like provided we keep the product of W and $\log (1+P / N)$ constant. It is now seen to be untrue that the minimum bandwidth of a channel is fixed by the highest Fourier component at the input to the system: W can be made arbitrarily small provided we are willing to pay the price in increased P / N, but the price many be high. On transforming (1) to give a direct expression for P / N, instead of the logarithm of $1+P / N$, we find

$$
\begin{equation*}
P / N \geqslant 2^{C / w}-1 \tag{9}
\end{equation*}
$$

Now C C W W is the communication rate in bits per second divided by the bandwidth in hertz, which is the number of bits per cycle. It could
therefore be called the specific communication rate in bits/second per unit bandwidth.
Fig. 1 is a graph of P / N against C / W and shows that if we want to communicate at a rate of more than about two bits per cycle the signal-to-noise ratio required increases rapidly. It might be asked whether we should not plot P / N in decibels, whereupon the graph would approximate to a straight line for large values and the values of P / N in a range up to 13 dB do not seem particularly high. In answer to the second point, it must be remembered that this graph represents the maximum performance which could be achieved with ideal coding, and any fairly simple practical system may need as much as 20 dB better signal-to-noise ratio. The best reply to the first point is the comment of a radio engineer that decibels improvement in signal-to-noise ratio which are obtained by increasing transmitter power are "gold-plated decibels." An improvement of 10 dB or 20 dB may not sound impossible from the point of view of a receiver, but increasing the power of a radio transmitter from 1 kW to 10 kW or 100 kW is not to be undertaken lightly. In some cable communication systems it is even more difficult to increase the input signalling power because of such limits as the insulation strength of the cable or the power-handling capacity of repeaters using solidstate devices.

However, Fig. 1 does not tell the whole story. In most systems the noise power increases in proportion to the bandwidth but Fig. 1 relates overall signal-to-noise ratio to channel utilisation in bits per hertz. A different picture results from relating signalling power to bandwidth at constant communication rate, and it is this which is relevant to considering bandwiath expansion or contraction schemes. The modified formula is derived in the Appendix and Fig. 2 is a graph showing change of

Fig. 2. Actual noise power is usually proportional to bandwidth. $N_{0}=$ noise power per hertz; $W_{0}=$ bandwidth needed for communicating C bits/s by binary signalling. With bandwidth W and rate C the relative bandwidth is represented by $2 \mathrm{~W} / \mathrm{C}$.
necessary signalling power with change of bandwidth relative to binary signalling. This is, of course, considering only random channel noise and ignoring any effects such as quantizing noise which may be involved in any coding of signals for change in bandwidth.

It is clear from Fig. 2 why systems involving bandwidth expansion (for example f.m.) have been popular but there has been little genuine use of bandwidth compression. There was an early attempt to use f.m. with a very narrow frequency swing, with the mistaken idea that the bandwidth occupied would be limited to the narrow swing, regardless of the modulating frequencies. This was shown mathematically to be incorrect, as can easily be deduced in a non-rigorous way as follows. Any practically realisable \dagger waveform which repeats at regular intervals can be represented by a Fourier series consisting of \dot{a} fundamental frequency corresponding to the repetition rate and harmonics of that frequency. A wave modulated in frequency by a modulating frequency of n hertz repeats every $1 / n$ seconds (neglecting the minor effect of carrier phase if the carrier frequency is not an exact harmonic of n); therefore all Fourier components must be multiples of n and the first sidebands must be distant from the carrier by amount n. The minimum bandwidth occupied is thus determined by the modulating frequency, and the actual bandwidth may be more if other sidebands are present in appreciable magnitude. We know, in fact, that the amplitudes of carrier and lst, 2nd . . . sidebands are proportional to Bessel functions $J_{0}(x), J_{1}(x), J_{2}(x) \ldots$ where x is the ratio of frequency swing to modulating frequency. Thus the first idea of using f.m., for reduction of bandwidth, was. erroneous.

Then Armstrong introduced wideband f.m. as a means of improving the received signal-to-noise ratio, but again on a fallacious argument, namely that noise consisted of changes in amplitude and could therefore be rejected by a limiter in a system using phase or frequency modulation. In fact the combination of a noise voltage with a signal voltage will change the phase as well as the amplitude in the resultant and the phase change due to the noise cannot be removed by a limiter. The explanation of the noise advantage of f.m. which is usually given is that its demodulation is a non-linear process; and this accounts correctly for all the facets of f.m. performance. It is, however, legitimate to point out that f.m. provides a form of redundancy, in that modulation by a single tone may produce several significant pairs of

[^2]sidebands, whereas a.m. would produce only one pair. Since it also produces an increase in bandwidth for the same rate of communication (however the latter may be defined in the case of speech or music), it represents a move to the right on the graph of Fig. 2 so that the expansion in bandwidth should make it possible to reduce transmitter power.

Another aspect of redundancy, and one much nearer to the every day use of the word, comes into play when one asks whether all the detail of a message is really necessary. Phoneticians reckon that there are only 38 distinct speech sounds or phonemes in European languages. The codes for the phonemes could be transmitted through a much narrower band than the full range of voice frequencies and a device for transmitting speech on this narrowband basis is called a vocoder. It has the disadvantage that the reconstructed speech is very flat and impersonal and therefore it has never been put to much use. But it does raise the question whether in speech communication one wants only intelligibility of words or also shades of meaning conveyed by intonation and the details of voice sounds which are individual to each speaker**. This is a case for the customer, not the engineer, to decide what is redundant; and the customer's view is that nothing is redundant in a telephone conversation.
However, there are times when the engineer makes compromises which reduce the transmission of information without the customer being aware of it; and television naturally has the best examples of this sleight of hand. First of all there is interlaced scanning. The eye notices changes in the brightness of large areas as flicker if the changes occur at 25 per second, yet it cannot take in picture details in less than $1 / 25$ th second. So if the picture were scanned at 50 times per second half the information would not be taken in by the eye and to that extent would be redundant.
The scanning frequency is also related to the reproduction of motion in the picture, and a closer look at the structure of the video signal provides half the explanation of the miracle of colour television. (I call it a miracle, because if there were no redundancy in the system the transmission of the information needed to construct a colour picture of the same definition as a monochrome picture would need three times the bandwidth - yet colour pictures are being transmitted in the same bandwidth as monochrome.) A picture devoid of motion would produce a periodically repeating waveform consisting of harmonics of the picture frequency, though there is usually so little difference between odd and even

In some military radiotelephone systems it is considered essentual to provide enough handwidth for a speaker to be immediately recognized as a particular person (e.g. Captain Smith or Lieutenant Brown). - Ed.

Fig. 3. Part of the spectrum of a typical television signal, showing the $\mathrm{n}^{\text {th }}$ and $(\mathrm{n}+1)^{\text {in }}$ harmonics of line frequency. Each of these is accompanied by "sidebands" corresponding to field frequency and these overlap halfway between line harmonics.
lines that only harmonics of the field frequency are significant; and the separation of lines by synchronising pulses means that the harmonics which coincide with harmonics of the line frequency are much stronger. In fact it appears as though the spectrum consisted of line harmonics, each accompanied by its own sidebands spaced at field frequency. As shown in Fig. 3, these sidebands decrease in amplitude with dist: ce from the line harmonic; and although the separation within each group is the field frequency, the groups associated with neighbouring line harmonics interleave, showing that all harmonics of the picture frequency are present. If, as commonly happens, movement affects only a mirior part of the picture, the intensity of the spectral components between the lines is small. But if a spectrum consists only of narrow lines most of it is empty and it is very tempting to try to put something in between.
The second criticism of the television spectrum, from the point of view of communication theory, is that it is not flat across the bandwidth occupied. Taken on the average for any reasonable waveforms, the amplitudes of the Fourier components are inversely proportional to their harmonic order, so that the video spectrum of a television signal almost always has an approximately inverse-frequency shape. This is obviously inefficient, because it means that if the signal-tonoise ratio is just sufficient at the top end of the band it will be much greater than necessary at the bottom. In the days of monochrome television this seemed to call for a top boost before transmission and a corresponding cut in the receiver, but this was never done. I believe the difficulty is that while theory can say "Taken on the average for any reasonable waveforms ..." the
television engineer must be prepared to handle the exceptional waveforms which produce strong high-frequency components, even though they occupy only a minute fraction of the programme time. Experience with the very modest amount of top boost which is normally employed in f.m. sound broadcasting (pre-emphasis) has shown that it very readily brings the danger of over-modulation.

However, tnis weakness of the monochrome spectrum has also been exploited in the transmission of colour pictures, since the colour information is placed near the top of the video band and with a subcarrier placed exactly half-way between line harmonics. The use of a subcarrier which is doubly modulated (with I and Q components) is an ineresting variant on the Ny -quist-Gabor theorem that one can transmit two independent signal elements per unit of time-bandwidth. If one identifies sine waves of different frequencies by counting cycles over a time T the number of possible different frequencies within a band W is $W T$. But it is possible to distinguish between sine and cosine waves; so, when using both, the number of distinguishable signals is $2 W T$. If you think about superimposing sine and cosine carriers, both independently amplitude-modulated, you will see that it comes to the same thing as modulating a single carrier simultaneously in both amplitude and phase, which is what one first thinks of as double modulation of a single carrier.

The rest of the trick of colour television depends on the engineer deciding that some of the colour information is redundant because the eye would not respond to it. The eye has maximum acuity for changes in brightness but less for changes in colour, so the high frequencies in the colour signal are redundant. The brightness or luminance signal must therefore be transmitted with full bandwidth, exactly as for a monochrome picture; while the colour information is transmitted with reduced bandwidth which confines it to that part of the spectrum which is left comparatively empty in the monochrome signal.

There is also a great deal of redundancy in television signals due to correlation between different areas of the picture. This has been known for many years, but it has not been practicable to make use of it until the recent developments in digital techniques which look like revolutionising all forms of communication. But that is the subject for a future article.
To summarise, an absolute measure of redundancy can only be obtained by comparing the communication rate which is actually achieved with the channel capacity which is calculated as a function of T, W and P / N. But more often a change in relative redundancy is thought of as a change in the TW product for a given amount of information, with P / N as an independent variable. It is in this sense that an increase in redundancy can be used to give protection against noise, as in the use of error-correcting codes in digital transmission or wideband f.m. for analogue transmission.

Appendix

If W is changed by a factor x, then N is also changed by a factor x and both can be expressed in terms of their standard or normalised values and x. It is usual to normalise N to noise per unit bandwidth, so that $N=W N_{0}$. Remembering that we want to work in terms of a constant communication rate it is convenient to take W_{o}, the normalised value of bandwidth, as that bandwidth which would accommodate C by binary signalling at the Nyquist rate. The noise power in this band, which is $N_{0} W_{0}$, is taken as the reference value for signal power. We now re-write formula (9) as

$$
\begin{equation*}
\frac{P}{N_{o} W} \geqslant 2^{\text {(H) }}-1 \tag{i}
\end{equation*}
$$

Next put $W=x W_{0}$ and $W_{0}=C / 2$ so that $C / W=2 / x$.
Formula (i) then becomes

$$
\begin{equation*}
\frac{P}{N_{0} W} \geqslant x\left(2^{2 / x}-1\right) \tag{ii}
\end{equation*}
$$

In this formula x is the factor of bandwidth expansion or contraction relative to binary signalling and with the equality sign this is plotted in Fig. 2.
(Next article: the digital revolution)

Addendum

Part 1 of "Communication theory" in the April issue should have included a footnote on p.44. middle column. referring to the quotation from Francis Bacon. The footnote should read: This was brought to the author's attention by a letter in Computer Bulletin, March 1968, by M. G. Farringdon.

Festival of sound

Seen and heard at the Festival International du Son, Paris, March 8-14

The most striking impression received from the Festival du Son was that the French audio market is far from being in a state of depression - if one judged from the attendance during the first two days and the remarkable range of new products on display. The Festival du Son is not really a show of equipment, although this does form a major part. The core of this six-day event was sound, not just reproduced sound but real, live sound, and this very strong influence made itself felt even in some of the demonstrations arranged by some equipment manufacturers.

This year, the Festival was held in the impressive exhibition, hotel and shopping complex of the Centre International de Paris at Porte Maillot in the 17th arrondissement. This modern, pur-pose-built structure consists of a ,three-floor exhibition area, divided into a number of rooms of varying size, coupled to a large hotel at the rear and an indoor shopping precinct in several levels of basement beneath. If one can resist the temptation of sightseeing in Paris, there is therefore no necessity to leave the area during the entire visit to the show!

Loudspeakers. With the topic of "linear phase" loudspeakers still current in the pages of this journal, it may be apposite to remark that models with staggered front baffles were to be seen everywhere in the exhibition. The French firm Elipson, who were well known for their curious spherical design of loudspeaker, have added several rather more conventional cabinets to their range, all of which have a staggering of the units, presumably to correct for the time delay effects accompanying the normal arrangements of drive units in a loudspeaker. Technics showed additions to their range of loudspeakers with two systems labelled "linear phase", the models SB3000 and SB5000. The lastmentioned is illustrated, and consists of a bass reflex cabinet in which is mounted a 25 cm woofer, surmounted by a 6 cm dome tweeter loaded by a separate infinite baffle enclosure.
A particularly interesting extension to the principle of the motional feed. back loudspeaker was demonstrated by

KM Servo Sound. Two models were on show, the KM30, which contained two drive units and an integral 30 W amplifier. and the KM50, also having two drive units but with an amplifier rated at 50 W . The real novelty of these designs lay in the application of the motional feedback loop to a passive piston, which loaded the port of the bass cabinet, as well as to the bass radiator itself. The manufacturers claimed that up to 20 times normal efficiency was obtained between 35 Hz and 60 Hz in the former enclosure, with a similar improvement obtained between 30 Hz and 60 Hz in the larger KM50. The KM50 was accompanied by an extra unit which, to quote the manufacturers, ". . . from the gathered stereophonic signals, supplies the information on the acoustical reflection characteristics of the listening room." It would seem the KM Processor PR5/6 is a device which enhances the ambience information contained in the original recording.

One particular demonstration was noted as a real return to what the subject of high fidelity is all about. It was found in the Esart room, where that (French) company had arranged for a

Technics type SB5000 loudspeaker system.

jazz quartet to play a selection of musical items live, in conjunction with a recorded version reproduced by a bank of their loudspeakers. This difficult exercise was made more impressive by certain solo passages being taken up by the loudspeakers and counterpointed by the live instrument. The results must have gone a long way to convincing the audience that Esart were producing extremely realistic sounds from their loudspeakers.

Electronic equipment. Impressive though the new loudspeakers were, they were somewhat overshadowed by the electronic equipment appearing at the Festival. In some instances, such as the KM loudspeakers, there was an inseparable interface, and this was also to be seen in a curious piece of modern art called "les structures lumineuses" originating from a company called Cyberson. This consisted of large metal and plastic panels concealing a loudspeaker and variable-colour light sources. Used in conjunction with a level and frequency sensitive switching circuit, the displays showed pulsating light patterns related to the composition of the sound signal being reproduced by the loudspeaker. The principles are well known and are frequently used in disc-jockey shows. The novelty appeared to be in the incorporation of the ideas into a single display which could be mounted on a wall as an item of art décoratif.
Several amplifiers using valves were noted, and there were others with numerical indication of mean output signal power on liquid crystal and l.e.d. displays. Observing the trend towards higher output powers in amplifiers (e.g. up to 400 W per channel), the Festival organizers commented, memorably, "La course aux watts continue".
Also on show was the new Thorens TD126 turntable, featuring a semi-au-

Akai type GXC-570D stereo cassette deck.
tomatic pickup arm (automatic stop and lift) and a choice of $33^{1 / 3}, 45$ or 78 r.p.m. speeds. The suspension of the platter and arm is a completely new design, as is the arm itself.

Bang \& Olufsen showed yet another example of brilliant cabinet styling in their new Beomaster 1900 tuner-amplifier. The f.m. tuner offers a choice of five pre-set stations, selected by touch sensitive pads, or continuous tuning by a concealed control under a plate on the top panel. Touch sensitive controls are used to raise or lower the volume level and also to switch to the various alternative inputs. The power output rating of the tuner-amplifier was specified as 30 W into 4Ω.

On show were two of the latest products from Nakamichi. These were

Toshiba a.m./f.m. tuner, type ST220

the model 600 cassette deck, a high quality machine based on an inclined plane front panel design, and the model 610 mixing console. The last-mentioned has similar dimensions to the cassette deck and is obviously intended to be used in conjunction with it. Three stereo inputs, "line", "phono" and "micro" (for moving coil cartridges) are offered, together with two outputs to "line" and to cassette recorder.

The cassette recorder is designed to be used in conjunction with two types of tape, the controls being labelled with the mysterious letters SX and EX. Since the specified frequency response is 40 Hz to $18 \mathrm{kHz}, \pm 3 \mathrm{~dB}$, some explanation regarding the tapes seemed to be necessary. In a separate announcement, Nakamichi explained the basis of the new tapes and, although not directly stated, it would appear that the EX tape corresponds to Maxell UD-XL and the SX tape to the TDK Super-Avilyn. Both of these tapes utilise cobalt in one form or another and were introduced in the UK during the past year.

Headphones on show included the Koss Phase $2+2$, which provide four transducers, for stereo and quadraphonic reproduction, together with a pocket-calculator type of keyboard for selecting different combinations of these and of phase relationships between them. Altogether 127 modes of listening are claimed to be available.

One thing that can be said in conclusion is that the French seem to have arrived at exactly the right formula for attracting the public. If this is due in large part to the co-operation of the broadcasting organisations and the musicians, who were present in strength, then this can only be a lesson for the organisers of our own audio shows.
B.L.

Circuit Ideas

Digital sample and hold

To hold a sampled voltage for long' periods, a process of digital approximation provides negligible drift. This circuit is t.t.l.-compatible and provides an analogue-to-digital conversion facility.

The basic element is an 8-bit binary counter using two cascaded 7493 s . This provides 256 discrete voltage levels from the op-amp A_{2}. The input voltage provides a varying reference voltage to comparator A_{1}.

Applying a 0 at the reset input clears the counter for a period determined by the monostable. The counter now provides a staircase waveform, via A_{2}, to A_{1}. When the staircase is equal or

High-speed picoammeter

This highly stable picoammeter takes advantage of a chopper-stabilized operational amplifier, the Valvo CSA 70, and enables accurate measurements to be made which are stable over a wide time period. The requirement for an extremely high feedback resistance is accomplished by the voltage divider R_{1}, R_{2} incorporated in the feedback loop. For the circuit shown;

$$
V_{a}=-I \frac{A R_{r}}{1+R_{2} / R_{1}+A}\left\lceil 1-\exp \frac{-t}{\tau}\right\rceil
$$

where the amplifier gain A is $-V_{a} / V_{1}$, and the time-constant, τ, is given by

$$
\frac{R_{r}\left(C_{1}+C_{2}\right)}{1+R_{2} / R_{1}+A}
$$

Under the assumption that $R_{r} C_{1}$ and C_{2} are of the same order, it is approximately 1/A: Components values for the circuit are: $R_{r}{ }^{\prime}=1 \mathrm{M} \Omega, R_{2}=1 \mathrm{M} \Omega, R_{1}=$

10Ω thus $R_{r}=10^{11} \Omega, C_{1}=C_{2}=C_{3}=$ $0.1 \mu \mathrm{~F}$.
Kamil Kraus,
Rokycany,
Czechoslovakia.
greater than $V_{\text {in }}$ the comparator goes high and disables the counter clock. The count is held and a sample voltage appears at the output. The reset state has to have a period greater than the sum of the monostable period and 256 clock periods. The speed of the clock is limited by the response of the op amps.

Greater accuracy may be obtained by cascading more counters, but at the risk of increasing the period between voltage transitions at the output. Digital conversion is available directly at the outputs of the counters.
N. Macdonald, Northampton.

Single balanced mixer

Most i.cs that can be used as balanced mixers have poorly defined conversion gains and are prone to carrier balance variations caused by drift. The CA3080 transconductance amplifier can be used as a precise low frequency single balanced mixer with inherent carrier balance and with an accurately defined conversion gain.

In the circuit shown the oscillator frequency is halved by the binary divider to give a carrier waveform with an accurate mark/space ratio of unity. This is used to switch the amplifier on, as a unity gain voltage follower, and off. The output capacitor provides frequency compensation but limits the frequency at which the carrier can switch the mixer without degrading the performance. The conversion loss is 4 dB .
R. J. Harris, G30TK,

Binegar,
Bath.

Pan-routing switch

This routing switch was designed to facilitate panning between any two output groups on a multichannel fouroutput group audio mixer. By pressing any two switches in a square formation a graphical indication is produced of the six panning combinations. By pressing three, or even four, a further five combinations can be obtained. To give visual indication of these pan-paths the circuit can be duplicated to switch suitable l.e.ds as shown. This eliminates the need for joystick controls used in quadraphonic mixdown. It should be remembered that for normal routing the balance should be set to normal.
Q. A. Rice,

Mitcham,
Surrey.

switch

Low frequency a.c. amplifier

This circuit is designed to amplify a.c. down to low frequencies in the presence of large d.c. input offsets. The main amplifier has a gain of 101 while the NE536T has a d.c. gain of unity and forms part of a low-pass Sallen \& Key network. This applies the d.c. input offset as a common-mode voltage to the inverting input of the main amplifier.

For direct currents the 540L has unity gain, and for alternating currents the gain rises to $1+R_{3} / R_{4}$. The corner frequency is defined as $1 /\left(2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}\right)$ so with $R_{1}=R_{2}=$ $1 \mathrm{MO}, \mathrm{C}_{1}=\mathrm{C}_{2}=0.68 \mu \mathrm{~F}$ it is about 250 kHz . Because of these high resistors the main amplifier should have a f.e.t. input to reduce input-offset current effects. This amplifier should also be provided with zero offset compensation as its output will be amplified 100 times. Capacitor C_{3} is sometimes needed to ensure high frequency stability.
A. Royston,

Durhan.

Low-frequency triangle wave generator

A simple low-frequency triangle wave generator may be designed around a pair of operational amplifiers. The passive components form a bridge; IC_{2} is the active element in the integrator $C_{1} R_{3}$, and $I C_{1}$ is a level detector with positive feedback, its output switching between positive and negative limits as the bridge passes through the balanced condition. Resistors R_{1} and R_{2} define peak output voltage as a function of amplifier IC_{1} output.
In practice, the amplifier output has not been symmetrical. For more precise
applications the output of IC_{1} may be clamped by two, back-to-back zener diodes either via a limiting resistor or by making use of the amplifier's con-stant-current output characteristic. The upper frequency limit may be set by the slewing rate of IC_{1}, and its effect on the linearity of the generated triangle. For an output voltage linearity of better than $\pm 5 \%$ an upper frequency of about 3 kHz is suggested, and for linearity of $\pm 1 \%$, an upper limit of 600 Hz .
A. Bishop,

London NW8.

$$
\begin{aligned}
\text { re:cmmended limit values:- } & R_{1} \leqslant 0 \cdot 8 R_{2} \\
& R_{2} / R_{3} \geqslant 10 \mathrm{k} \\
& R_{3} \leqslant 30 \mathrm{k}
\end{aligned}
$$

Adjustable voltageswitching regulator

Voltage regulators such as the LM109 and 7805 may be arranged in a simple circuit to provide an output voltage higher than the rated output of the i.c. The circuit shows an arrangement for combining two circuits to provide an adjustable voltage-switching regulator. A voltage pedestal is developed across R, and R_{3}, which is added to the normal regulated output voltage of the i.c. The new output is adjusted by varying the ratio of R_{4} to $R_{2}+R_{3}$. Positive feedback is also provided through the potential divider R_{1} and K_{3} into the regulators' pedestal circuit. This feedback allows sivitching of the i.c. and transistor. V. R. Krause,

Johannesburg,
South Africa.

Diode model of the m.o.s.f.e.t - 2

Conclusion of an insight into device operation

By B. L. Hart

North East London Polytechnic

Considering a horizontal section taken along a plane defined by the line AA^{\prime} in Fig. 9, at a level down the side-walls of the S and D diffusion well removed from the region where a channel can exist, shows that this part (at least) of the structure constitutes a lateral n.p.n. b.j.t. Its symmetrical nature is indicated, here, by two arrows on the otherwise conventional b.j.t. symbol. Irrespective of any field-effect action at the substrate surface, normal b.j.t. action is possible, viz, the injection of minority carriers from S into the substrate and their collection at D (or vice-versa), but the length of the base region in compa-1 rison with the diffusion length means that the coupling between the emitterbase and collector-base diodes is very small. In most applications this n.p.n. transistor is regarded as a nuisance - a parasitic element - and the effects of its existence are minimized by ensuring that it is always cut-off. ($V_{B S}>0$, $V_{B G}>0$). Because of its long basewidth the transistor can then be represented as two diodes in series opposition, as mentioned earlier in the section on, m.o.s.f.e.t. operation, and minority carriers play no significant role in normal unipolar device operation.
A point to bear in mind, when arranging for the lateral n.p.n. to be cut-off, is that V_{T} is somewhat dependent on $V_{B S}$. This is because of modulation in width of the induced p.n. junction depletion layer. The details need not concern us here. Suffice it to say that for $\left|V_{B S}\right|>0.8 \mathrm{~V}$,

$$
\begin{equation*}
V_{T} \approx V_{T O}+K \sqrt{ }\left|V_{B S}\right| \tag{6}
\end{equation*}
$$

where $V_{T O}$ is that V_{T} for which $V_{B S}=0$, and K (typically about 0.5) is constant for a given device type. In passing, it is worth noting that by arranging for $V_{B S}<0$, b.j.t. action can be exploited (in signal mixing circuits) though the common-emitter d.c. current gain of the laterial device is less than unity, normally, because of the comparatively large values of L used in m.o.s.f.e.t. design: this hybrid-mode operation of the m.o.s.f.e.t. is dealt with elsewhere ${ }^{6}$. .
The bulk resistances of the S and D diffusions can be allowed for by including resistances $r_{S x}, r_{D x}$, in our final d.c.

Fig. 9. Showing the existence of an inherent lateral n.p.n. transistor
model (Fig. 9), which has been used in computer-aided design ${ }^{7}$. It would be a very unusual circuit problem which required the use of the complete model. A reduced form is usually sufficient in any given problem. Thus $r_{S x}, r_{D x}$ can nearly always be ignored because they are usually some two orders of magnitude less than the resistance offered by the intrinsic active device in any of its operating modes.

Determining model parameters

Ignoring $r_{S x}, r_{D x}$, the model is completely defined once the conductance coefficient λ, and the threshold voltage, V_{T}, are determined. Reference to Fig. 8 will show that strapping G and D together automatically guarantees $V_{D G}>0$ with the result that $I_{R}=0$, operation is in the pinch-off mode, and $I_{D S}=\lambda\left[V_{G S}-V_{T}\right]^{2}$.

Thus a useful practical arrangement for parameter evaluation is shown in Fig. 10. When the switch, Sw , is at ' A ' the digital voltmeter monitors $V_{G S}$ for values of R_{S} and V suitable for the current level desired: at ' B ' the p.d. across current-monitoring resistor R_{D} (conveniently $1 \mathrm{k} \Omega$, or $10 \mathrm{k} \Omega$, etc) gives the actual operating $I_{D S}$. A plot of $\sqrt{ } I_{D S}$ against $V_{G S}$ yields a straight line of slope $\sqrt{ } \lambda$ and the extrapolated intercept on the $V_{G S}$ axis gives the value of V_{T} to be used in our model. (This is not the Threshold Voltage given by manufacturers. The latter, for measurement convenience, specify V_{T} as that $V_{G S}$ for which $I_{D S}$ is a low value, typically $10 \mu \mathrm{~A}$.)

Fig. 10. Test circuit for determination of model parameters

Fig. 11 shows such a plot for one n-channel device of a CD4007 array to which later photographs and measurements refer. For testing a large number of devices repeated plotting can be a laborious process and an automatic. display technique such as that described by Storm^{8} is preferable. It permits a rapid assessment of the effect of substrate bias and temperature variation. Basically, increased temperature, T, implies: decreased electron mobility leading to a decrease in λ with T; a change in V_{T} of a few $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ due, mainly, to contact potential changes.
One implication of the model shows up well with a swept display - the electrical symmetry. Fig 12(a), obtained. by double exposure of the curve tracer film, shows a plot of $I_{D S}$ against $V_{G S}$ for
$V_{D G}=0$ for the device in the forward. connection and inverted connection (S and D interchanged), the potential difference between the substrate and the region functioning as source being maintained at zero in both cases.

The basically similar shape and location of the two curves reflects the symmetrical geometrical design of the device. Such small differences as are apparent can be explained by slight differences between the substrate doping levels in the vicinity of S and D. (it must be remembered that the measurements refer to points well in the pinch-off region not at the edge of pinch-off). Further observations showed the $I_{D S}, V_{D S}$ curves to be identical over the major part of the pre-pinch-off region.
Fig. 12(b) shows the effect of nonzero $V_{B S}$ on the transfer characteristic and permits the estimate of K in equation (5).

Summary and conclusions

This article has attempted to clear up some of the difficuities encountered in an initial study of m.o.s.f.e.ts, and to introduce the Gibson-Wedlock squarelaw diode model which gives more insight into device d.c. operation than the usual purely mathematical description. The model is most accurate when the channel stretches the whole way from source to drain; this mode of operation encompasses a large number of applications.
Two final points: by the addition of appropriate capacitances the model can be adapted to cope with dynamic behaviour; an n-channel enhancement mode m.o.s.f.e.t. has been considered

Fig. 12. (a) Superimposed transconductance traces for: (i) $V_{D G}=0 ; V_{B S}=0$; (ii) $V_{G S}=0, V_{B G}=0$ (b) Device in forward connection with $V_{B S}=0$ (left) and $V_{B S}=-12 V$ (right) Scales for both photographs: vertical $0.2 \mathrm{~mA} / \mathrm{cm}$, horizontal $1 \mathrm{~V} / \mathrm{cm}$

Fig. 11. Measured characteristics of an n-channel m.o.s.f.e.t. on CD4007A $(R C A)$ c.o.s.m.o.s. chip: $V_{B S}=0$

Control and Instrumentation goes regional

The organizers of the Control and Instrumentation series of exhibitions beid in London every other vear since 1971 announce details of a long-term exhihition programme in which low-cost respomat events will alternate with the london show. The first regional event. Control ind instrumentation - North East 1976 . will be held at the Newcastle Centre Hotel. Newartle upon Tyne. on October 13 and 14, 1976. Further information may be obtained from Holdsworth Smith Led. 39 Victoria Street, London SWl.
throughout but the model can also handle other device types. Thus, reversing the battery in the gate lead of Fig. 7 (c) gives the model of an n -channel depletion-mode device.

Appendix

Simple derivation of basic m.o.s.f.e.t. d.c. equation. For drift-controlled carrier transport the current density $\mathrm{J}(x)$ is the product of carrier density, $\sigma(x)$, and carrier velocity $\mathrm{v}(x)$,

Thus, $\quad J(x)=\sigma(x) v(x)=I(x) / W$ (Al)
where, $\mathrm{I}(x)=$ channel current
Now, from equation (1) of the text,
$\sigma(x)=-C_{0}\left\{V_{G S}-V_{T}-V(x)\right\}$
Also for electron transport,
$\mathrm{v}(\mathrm{x})=-\mu_{\mathrm{e}} \mathrm{E}(x)=\mu_{\mathrm{e}}\{\mathrm{dV}(x) / \mathrm{d} x\}$
where, $\mathrm{E}(x)=x$-directed field in the channel
Combining (A1), (A2) and (A3),
$I(x)=\mu_{e}\left[-C_{0}\left\{V_{G S}-V_{T}-V(x)\right\}\right]$

$$
\begin{equation*}
[\mathrm{dV}(x) / \mathrm{d} x] \tag{A4}
\end{equation*}
$$

or $\int_{0}^{1} \cdot \mathrm{I}(x) \mathrm{d} x=-\mu_{\mathrm{p}} \mathrm{C}_{0} \int_{0}^{v D S}$

$$
\begin{equation*}
\left\{V_{G S}-V_{T}-V(x)\right\} d V(x) \tag{A5}
\end{equation*}
$$

$\left\{V_{G S}-V_{T}-V(x)\right\} \mathrm{dV}(x)$
By virtue of current continuity, $-I(x)$ $=$ constant $=I_{D S}=$ (conventional) current flow into D.
Hence, integrating each side of (A5) and substituting the basic parallel plate capacitor relationship for C_{0} i.e. C_{0}
$=\left(\epsilon \epsilon_{o x} / t_{o x}\right)$ gives,
$I_{D S}=\left[\bar{\mu}_{e} \in \epsilon_{o x} / 2 L t_{o x}\right]\left[2 V_{D S}\right.$
$\left.\left(V_{G S}-V_{T}\right)-V_{D S}{ }^{2}\right]$
Equation (A6) contains equations (2) and (3) of the text.

References

6. Hart, B. L. and Barker R. W. J., "Firstorder theory of MOSFET hybrid mode operation" (Awaiting publication; International Journal of Electronics).
7. Hamilton A. W., "A new model of the insulated gate field effect transistor for use in computer-aided design" Proc. 15 th Mid-west symposium on Circuit Theory, U.S.A., 1973.
8. Storm, H. F., "MOS-FET Analyzer" IEEE Transactions on Instrumentation and Measurement. Feb. 1970, pp 2-5. Sw. Smith Led. 39 Victoria Street, London

High performance voltage regulator

A new simple and practical technique

by K. W. Mitchell, B.Sc.

The Royal Victoria Infirmary

Abstract

Design criteria for linear voltage regulators and the factors affecting the performance of these circuits are discussed. A relatively simple and cheap circuit is given which uses only three transistors and a reference element. It features improved performance over that achieved by monolithic i.c. regulators and comparable performance to the latest combined discrete and monolithic circuits.

In conventional transistor voltage regulators (Fig. l) a reference voltage, which is obtained from an unregulated, smoothed input, is compared with a feedback signal derived from the regulated output. The error signal produced is amplified and drives a bipolar transistor which in turn feeds the powerpass transistor. Such designs have inherent limitations in that a.c. ripple is imposed upon the reference voltage and is fed-through to the regulated output; and also fluctuations in supply. current to the reference element, due to transformer regulation and line variations, cause variations in the magnitude of the reference, usually tens of millivolts, which are fed through to the output.

In order to minimize these quantities the reference element must be driven from the regulated output voltage. This solution in itself poses a significant problem, i.e. with reference and feedback elements being driven by the output voltage provision must be made to initially start the regulator after switch on, or the output voltage will not rise.

In Fig. 2 a general design of feedback controlled regulator is shown. This has improved performance over the first design, but resistor R is necessary to :start the regulator and also feed Tr_{1} and ${ }^{\prime} \mathrm{Tr}_{2}$. Some ripple feedthrough from the input through R will be present, and line variations will vary the current passing through Tr_{2}. The performance is limited therefore by the necessary inclusion of R. This should be replaced ideally by a constant current source, to reduce the above effects, but this means at least two extra active devices, thus increasing cost and complexity.

In Fig. 3 a further improvement is shown. Transistor Tr_{1} is changed to a p.n.p. device. This now introduces extra gain into the circuit with appropriate inversion of the reference and feedback

Fig. 1. Conventional transistor voltage regulator.

Fig. 2. General design of a feedback controlled regulator.

Fig. 3. Further improvement to introduce extra gain and improve line and load current regulation.
voltages to the output. Line and load current regulation is improved but once again a resistor, R , must be included to provide the necessary current drive to Tr_{2} and thus facilitate "starting". This circuit is representative of present techniques and has one possible drawback in that IC_{1} must be able to operate from a single supply rail. Care must also be taken in the choice of the zener reference potential V_{z}, in that this must lie within the common mode voltage input range of the operational amplifier for the circuit to function satisfactorily.

A circuit having similar performance to that shown in Fig. 3 but which is much cheaper to build is shown in Fig. 4. - The circuit is completely feedback controlled and the output voltage given by.

$$
V_{\text {out }}=V_{z D}+V_{B E}
$$

Any load connected to the output tends to make it fall, and this drop is transmitted to the base of common emitter amplifier Tr_{1}. Thus the collector of Tr_{1} will rise, Tr_{2} will conduct harder and the current drive to Tr_{3} will increase. The result of this is that the collector of the series transistor Tr_{3} will tend to rise and the circuit regulates. Capacitor C_{1} is included to reduce r.f. noise on the output and also to prevent high frequency oscillations under load. If very high gain transistors are used, oscillation may still occur, but this can be prevented by decoupling the collector of Tr_{1} with a capacitor value of $0.1 \mu \mathrm{~F}$. This will limit the high frequency response of the regulator and the value of the capacitor should be selected as that required just to prevent oscillation under maximum load.
When the regulator is switched on Tr_{2} is driven hard via R_{1} and a large pulse current of approximately 50 mA is driven through the emitter-base diode of Tr_{3}, transistor Tr_{2} and R_{2}. This only occurs at switch on and ceases as soon
as D conducts, hence driving Tr_{1} and stabilizing the feedback loop.

A practical design is shown in Fig. 5. This circuit can supply 1 A at 5 V . It uses two low cost, high gain transistors, type BC 109 , and a plastic series transistor, T1P 32A, although many types have been tried with the circuit still working satisfactorily. Extra ripple rejection is achieved by the inclusion of $C_{2}(100 \mu \mathrm{~F})$ which introduces more a.c. feedback into the loop. Foldback short-circuit protection is included by introducing Tr_{4} and associated drive resistors. Foldback occurs at a value of current given by

$$
I_{\max } \approx 0.6 / \mathrm{R}
$$

When $I_{\max }$ is reached, Tr_{4} begins to conduct thus making Tr_{1} conduct harder. The drive to Tr_{2}^{*} reduces, and hence Tr_{3} begins to switch off. The output begins to fall, and this drives Tr_{4} harder through the $15 \mathrm{k} \Omega$ feedback resistor. When Tr_{1} is saturated, Tr_{2} and Tr_{3} are switched "off" and hence output voltage and current will be virtually zero. The foldback characteristic is programmable depending on the magnitude of the feedback resistor.

The performance of the circuit is as follows:

$$
\begin{array}{lr}
\text { Load regulation } & 0.01 \% \\
\text { Line regulation } & 0.05 \% \\
\text { Ripple rejection } & 0.1 \% \\
\text { Output ripple and noise } & 1 \mathrm{mV} \\
\text { Speed (i.e. time to respond to } & \\
\text { a } 500 \mathrm{~mA} \text { pulse) } & 10 \mu \mathrm{~s} \\
V_{\text {in }}-V_{\text {out }} \text { (at lA load) } & 0.5 \mathrm{~V}
\end{array}
$$

Fig. 4. Similar circuit to that in Fig. 3, but cheaper to build.

Fig. 5. Practical design of the regulator circuit.

It can be seen from the above table that the regulator will work with a very small input-output differential voltage. This obviously improves the efficiency of the unit and reduces the effect of transformer regulation. It also means that Tr_{3} does not dissipate much power, and therefore it can be mounted on a small heat sink capable of dissipating two to three watts.

The temperature coefficient of output voltage drift can also be minimized by selecting a suitable zener reference current so that the temperature drift of zener voltage is compensated by the $V_{B E}$ temperature drift of Tr_{1}. (These two devices should be mounted in close thermal contact if optimum performance is desired.)

It is suggested that if the regulator is driving a logic circuit and is separated from it by a long lead length, remote sensing should be adopted ie. points X and Y should be directly attached to the load via separate wires.

I have found the design to be very flexible and have constructed various circuits to give up to 2 A at 40 V , all circuits being equally satisfactory. However, if currents in excess of 2A are required Tr_{3} should be replaced by. a Darlington pair in the usual series pass mode to give extra current gain.

AMATMAB

General Radio Company (UK) Ltd has changed its name to GenRad Ltd, Bourne End, Bucks. The change, which reflects similar changes by all GR companies throughout the world, has been brought about to avoid future possible misinterpretation of their role in the international electronics industry.

Intersil Inc. have appointed the London based microprocessor and memory specialist distributors Rapid Recall Ltd. 9 Betterton Street, Drury Lane, London WC2H 9BS as their franchised distributors.

Redifon Telecommunications Ltd. Broomhill road, Wandsworth, London SW18 4JQ, has secured a $£ 200,000$ contract with the Ministry of Defence, Malaysia, for the supply and instaliation of their solid-state 643/CJP naval communication stations on board warships of the Royal Malaysian Navy.

Hoeschst U.K. have appointed Kent Insulations Ltd as main UK distrbutor for their Hostaphan polyester film, which is used by the electrical industry in the manufacture of transformers. electric motors and cables.

Impectron Ltd, 23-31 King Street. London W3 9LH, a member of the Barlow Group, have been appointed by Fairchild Semiconductor Ltd as sales representative for the UK consumer market.

AMI Microsystems Ltd have appointed Apex Components Ltd, 396 Bath Road, Slough, Berkshire, as distributor for the AMI range of m.o.s./l.s.i. digital integrated circuits.

Sixty Years Ago

The battles of electronics today are well known. We refer to the actions and counter-actions taking place in the design of defence and espionage electronics. Missiles are confused by anti-missile devices, which in turn are counteracted by jamming devices. Telephone systems are bugged, and in turn bugging devices are jammed. The story continues. From an article in the issue of Wireless World May 1916 we can see that this has been a long and lingering battle:
"Wireless plays an important part in every operation at sea, and this fact recently received a most striking illustration on the occasion of the battle between the Alcantara and the Greif. It will be remembered that the Alcantara was a converted liner taken over from the Royal Mail Steam Packet Co. and fitted out as an auxiliary cruiser. Her wireless apparatus, unless it had been replaced by fresh fittings since her conversion, was only of that power which was settled by the Berne Convention as not to be exceeded by merchant vessels. German ships notoriously evade these regulations, and it is quite plain that the apparatus employed on the Greif was of a far more powerful nature than that of the English vessel. As soon as the concealed enemy disclosed her true character and started to jam the signals of the Alcantara, she cut the latter's wave-length with remarkable readiness, so that a stubborn action was fought between the wireless rooms as well as between the guns. With regard to the latter, the weight of metal appears to have been on the side of the Germans, but the superiority in gunnery combined with more skilful seamanship, enabled the British to outclass and overcome the enemy."

Now from EMIthe future cable television

Now from EMI, hybrid VHF/UHF systems, combining all the proven advantages of our VHF trunk equipment - long reach, low distortion, high channel capacity - with those of UHF distribution.

And EMI's hybrid is the system to install now, whether as a new project or to update an existing VHF system, because it ensures complete compatability whatever the future trends in receiver design.

The key to the system is our new RE 1037*, a unique VHF/UHF distribution converter utilising remote generation of the master oscillator at the head end location. Up to seven VHF trunk channels can be converted into the UHF bands for local distribution together with unconverted VHF channels.

Then there's the ME 670, an ultra wideband distribution amplifier covering the range $40-860 \mathrm{MHz}$ and incorporating its own line or mains power supply, also covering the same range are the new RE 1022 Subscriber Tap and RE 1032 Splitter.

These are just some of the new developments you can expect from EMI, who cover virtually every requirement for VHF and UHF distribution networks. We have unriválled technological and design resources and the most efficient and comprehensive service facilities in the business.

So when you're planning for cable television contact EMI, the specialists.
*The RE 1037 is manufactured by EMI under licence from the British Post Office.

EMI Sound \& Vision Equipment Ltd.,
252 Blyth Road, Hayes, Middlesex, England.
Tel:01-573 3888. Telex: 25145. Cables: EMISOUND.
A member of the EMI Group of Companies.
International leaders in music, electronies and leisure.

The Black Watch kit £14.95!

* Practical-easily built by anyone in an evening's straightforward assembly.
* Complete-right down to strap and batteries.
* Guaranteed. A correctlyassembled watch is guaranteed for a year. Itworks as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day-but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

Touch and tell

Press here for hours and minutes..

here for minutes and seconds.

The specialist features of the Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainlesssteel bracelet available as extrasee order form.)

Large, bright, red display-easily read at night. Touch-and-see caseno unprofessional buttons.

Batteries easily replaced at home.

Runs on two hearing-aid batteries (supplied). Easily re-set using special button-no expensive jeweller's service.

The Black Watch-using the unique Sinclair-designed state-of-the-art IC.

The chip...
The heart of the Black Watch is a unique IC designed by Sinclair and custorn-built for them using state-of-the-art technologyintegrated injection logic.
This chip of silicon measures only $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ and contains over 2000 transistors. The circuit includes
a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits.
... and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from $32,768 \mathrm{~Hz}$ to 1 Hz . This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7 -segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital

Take advantage of this no-risks, money-back offer today!

The Sinclair Black Watch is fully guaranteed. Return your kit in original condition within 10 days and we'll refund your money without question. All parts are tested and checked before despatch-and correctlyassembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it-today!
Price in kit form: $£ 14.95$ (inc. black strap, VAT, $p \& p$).
Price in built form: $£ 24.95$ (inc. black strap, VAT, p\&p).

Sinclair Radionics Ltd,
 London Road, St lves,

Huntingdon, Cambs., PE17 4HJ.
Tel: St lves (0480) 64646.
Reg. no: 699483 England. VAT Reg. no: 213817088.
To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR. Please sendme

Total £
(qty) Sinclair Black Watch kit(s) at $£ 14.95$ (inc. black strap. VAT, P\&p)
(qty) Sinclair Black Watch(es)
built at $£ 24.95$ (inc: black strap, VAT, p\&p).
(qty) black stainless-steel
bracelet(s) at $£ 2.00$
(inc.VAT, p\&p).
Name (please print)

Address
\qquad
Signature
WW/5
FREEPOST-no stamp required.

* Delete as required

For the musician who wants the best in recording.

10 XD - Our Studio Class, 15 IPS, Cross Field, Dolby B Recorder. At 15 IPS, the advantage of Tandberg Cross Field recording and the Dolby B Noise Reduction System must be heard to be believed. You don't have to be a perfectionist to appreciate this quality, but it may make you into one.

1. $10^{1 / 2 \prime \prime}$ spool capacity, 3 speeds and remote control.
2. A, B Monitoring with easy editing facility.
3. Sound on Sound, add-a-track, echo, mixing, etc.
4. Peak level record/playback meters
5. Balanced microphone inputs.
6. Superb logic control circuits.
7. Electronic servo controlled speed regulation.

See the 10XD and other Tandberg recording equipment at REW's new professional department.

Brief notes from the 53rd Audio Engineering Society Convention, March 2-5

Each year. the Europedn and Eritwh Sections of the Audio Engineering Society hold a convention in one of the European cities. This year the event was held at Zurich and consisted of an exhibition. commercial demonstrations and a papers session.

The Acoustic Research demonstration was of particular interest, though of indeterminate value. It arose from an interest in recreating the original concert hall. ambience and cọnsisted of a 16 -channel delay line in which the delay for each channel was independently programmable. The output of the delay lines fed 16 power amplifiers and 16 loudspeakers. The loudspeakers were disposed around the walls of the room, in a carefully spaced array that included height as well. Thus each vertical array of three loudspeakers was arranged on a series of separating columns with the lowest speaker near the floor, the next at about ear height and the top one at about ten feet. The chain was driven from a stereo signal which also fed the main stereo pair of loudspeakers in the front.
From computer analysed data, obtained from recording the impulse response of some famous halls, it was possible to programme the delay lines to simulate the pattern of early reflections, existing in that concert hall. It was stated that the experimental apparatus was at an early stage in its development and perhaps that explained the unconvincing results heard.
The exhibition contained a number of new products, among them a digital frequency analyser from Bruel and Kjaer, offering actave or $1 / 3$ octave real-time analysis, together with an independent memory to store a second spectrum for comparison. Studer showed the long-awaited Unisette broadcast cassette recorder. Using a special cassette loaded with $1 / 4$-in tape, this offers a source for inserts of up to 30 minutes of programme, together with an extremely fast rewind time.
A particularly interesting paper was presented by Fritz Winckel entitled 'A quick test method for the diagnosis of speakers' and singers' voices under stress'.
Dr Winckel noted that with an increasing number of untrained voices
appearing professtunally in pop-group: there had also been an increase in the number of cases of lost voices. It was felt that voice training must offer some way of increasing the efficiency of the sound producing process and so research was commenced using highly trained voices and also including an analysis of the listening process. Tests were concentrated at first around the value of the singing formant which, at about 3 kHz , appears to coincide with an outer ear canal resonance occurring at about 2.8 kHz . Tests made at the 1975 Berlin Funkausstellung using several thousand visitors as test subjects showed that the piercing or penetrating power of the voice appeared to reside in the 3 kHz region and the more energy: concentrated there, the better the voice appeared to carry.
Vibrato, which is well-developed in professional singers. also seemed to be a method used to raise the efficiency of sound production and further tests confirmed this thought. The author concluded by describing a simple metering device which could quickly analyse an artist's voice and give an immediate indication of the degree of efficiency and thus, presumably, the likelihood of serious strain occurring.
Two papers. one from Matti Otala. the other from T. Jelsing of Bang \& Olufsen. summarised different aspects of transient intermodulation distortoon in amplifiers. Otala's paper was largely concerned with discussing the various forms of test signal which might be suitable for obtaining a quantitative analysis of t.i.d. whilst Jelsing's paper discussed the design criteria which ensured its elimination.
Jelsing demonstrated mathematically that the origin of t.i.d, was non-linear limiting in early stages of power amplifier - before the final stage has run into a limiting situation itself. The simple design rule was thus to ensure that the output stage limited before any other stage of the amplifier. He also demonstrated that an amplifier which suffered from t.i.d. could be improved by the simple addition of a band-pass filter designed to limit the frequency range of the input signals. Jeising pointed out the futility of trying to measure the value of t.i.d. when it was
so casy to chmmate and proposed instead a simple method of testing to establish an amplifier's freedom from t.i.d.

If the test proved negative, it unfortunately did not automatically prove that t.i.d. was present - just that it was likely. The test was conducted as follows: a low-frequency sine wave is fed to the amplifier input and the amplitude increased to a level just below output stage limiting. With no other change being made, the signal frequency is swept over the full bandwidth of the amplifier, while plotting the harmonic distortion in the output.
An amplifier can be regarded as being free from t.i.a. if there is no sharp increase in distortion at frequencies up to the -3dib pomt of the amplifier. Telsing added that the sine wave signa! used was quite satisfactory for testing the amplifier's response to a step input, since if limiting did not occur for the sine wave, it equatly could not occur for the step signal input.
A paper soucht a solution to the will-known problem with the conventional four-corner array of loudspeakers for "quadraphonic" reproduction, that it is impossible to obtain a satisfactory phantom image ammediately to the left or rught of the listener when using pair-wise mixed matertal.

The authors. Thelle and Plenge. sought a loudspeaker arrangement that solved this problem. Extensive experiments left them with only one solution, and that was to use six loudspeakers, the extra set being located at the sides. These loudspeakers were to be fed with a sugnal derived from an additional matrix decoding of the left side anci right stle signals.

Ted Trendeli of EMI Research Laboratories dealt with the problems of tracing distortion correction. He argued that the origins of this form of distortion lay in the inability of the replay stylus to accurately follow the modulations cut in the record groove by a chisel shaped stylus.
The paper demonstrated that the distortions arising from this error on playback could be precisely calculated and then compensated for by introducing an opposing distortion in the recorded signal. He pointed out that the
success of the original experiments had been encouraging, but that the correction was based on a single type of replay stylus shape and that as yet it was still not known how much deterioration would occur as a result of using other forms of stylus shape
Another paper was concerned with the design of modern, low inertia pickup arms, and was presented by Peter Rother of Thorens. This must stand as a definitive explanation of the criteria of good tone arm design and is a model of clarity. One of the main features of the introductory paragraphs is a plea to cartridge manufacturers to consider more carefully the relationships between stylus compliance, cartridge mass and the practicable values of effective mass for the modern pickup arm.
He suggested that effective masses for modern arms can now be realised in the region of 5 gm , but even with this very low mass, a consideration of the compliance and masses of several popular high quality cartridges showed that an ideal low-frequency resonance of 10 Hz for the pickup arm and cartridge combination was impossible to realise with at least two of the examples selected.
P. J. Bloom of University College, Cardiff, investigated the phenomena associated with localization in height. Prior work had indicated that a principal factor was the spectral modification found in the pinna. Bloom's work led him to discover that there is a distinct interaction between the pinna and the incident signal, resulting in marked filtering effects above 4 kHz . The effect was to produce a "suck-out" in the frequency response of the perception thresholds of the ear.
From this Bloom produced a hypothesis "That a signal produced from a stationary source and having only its spectrum altered in accordance with data carried sufficient information to elicit the impressions of diverse source elevations. Furthermore these impressions should correlate with each subject's own pinna transformatións." An experiment was set up to determine a quantitative relationship between the phantom elevation of a signal presented on a level with one or other ear and the location of the notch frequency which evoked it. The noise band, with notch, was fed to a loudspeaker located in an anechoic chamber and the subject seated to one side of the loudspeaker in darkness. A second transducer could be located at any :angle between -6° and $+45^{\circ}$ in a vertical plane at the side of the listener. The frequency of the notch in the noise rignal could be adjusted to move the phantom source to a location similar to that of the real source. Results of the test showed a close correlation between the frequency of the notch and the vertical elevation of the phantom signal.

Bloom concluded that it was possible to produce the sensation of elevation in a noise signal simply by the introduction of a notch in the spectrum of the signal. The auditory system decoded that signal as if the shaping of the signal had occured naturally. An effective demonstration of such a phantom signal was given in the lecture theatre, with about 75% of the audience experiencing the sensation of a phantom signal moving up and down.

A surprising paper, at least to this author, was presented by J. J. Geluk of Radio Nederland who discussed the advantages of enhancing the diffusivity of the sound field in the living room. He argued that the previous circuits adopted for this purpose, notably the Hatler and Gerzon types, suffered from the disadvantage of direct connection with existing stereo equipment, a possible reduction in frontal localization, and that the overall effect is seldom accompanied by an improvement in acoustic quality.

Dr Geluk's proposal is to pick up the output of the front two loudspeakers with microphones, add electrical delay and, if desired, some reverberation and feed this to two rear loudspeakers to be radiated at equal power to the front pair, but toward the ceiling.

Two papers dealing with loudspeakers are selected. The first, by S. K. Pramanik of Bang \& Olufsen, was a proposal for describing the terminal characteristics of the loudspeaker-amplifier interface. In essence, the suggestion is to describe amplifier outputs, not in terms of watts, but in volts across a specific minimum load. It would then be a simple matter to express the load characteristics in terms of the maximum voltage required to drive the load, together with the minimum resistance over the operating bandwidth. This would suggest a $20 \mathrm{~V}, 4 \Omega$ amplifier, say, being suitable to drive a loudspeaker requiring 20 V and having a minimum resistance of 4Ω over its operating range.

The other paper, onginated from the Victor Company of Japan, represented a repeat and extension of a paper previously read at the $52 n d$ Convention entitled "A technique for observing loudspeaker wavefront propagation." A loudspeaker drive unit was fed with a series of pulses and the acoustic output measured by a microphone at various points on an imaginary plane in front of the drive units. The results are stored and on completion of the test, the pattern of instantaneous sound pressure distribution displayed on an oscilloscope at a speed which makes the progression of sound field easily observed. The tests had been extended to demonstrate the sound pressure field from two drive units, coupled with either minimum phase or non-minimum phase networks, and showed the rapid reconstitution of the original signal in the case of the former example. BL.

Railways use p.c.m.
A commercial 30 -channel pulse-code modulation system to go into service with British Rail has been handed over by GEC Telecommunications Ltd. The system connects New Street Station in Birmingham with Birmingham International, the new main-line station built at the National Exhibition Centre (see IEA preview, this issue). The system operates in the proximity of the 250 kV overhead electrification, so engineers have had to overcome the interference problems created by this environment. The equipment suppliers will also be training British Rail staff in digital transmission techniques. The 30 -channel p.c.m. railway contracts also include a system between Didcot and Reading in the Western Region - part of a re-signalling scheme associated with the new 125 m.p.h. high speed trains - and a system for the East Coast re-signalling scheme in the Scottish Region. This last-mentioned (to connect Edinburgh with Drem, Dunbar, Grantshouse and Tweedsmouth) will include a standby line system which will be switched in automatically if the working line system fails. The equipment enables 30 high-quality speech channels carrying telephony and data signals to be put on two pairs in an ordinary telephone cable which would normally carry only two circuits. In the New Street to Birmingham International system, special units have been designed and supplied to British Rail to enable remote subscribers to operate. over the p.c.m. system directly into a central automatic exchange.

Literafure Received

The second edition of a book on memories, published by Intel. is now available. It is entitled "Memory Design Handbook" and its three sections are concerned with the background to memory devices. memory components of various types system design data, and interface and refresher circuit design. Intel Corporation (UK) Ltd. Broadfield House. 4 Between Towns Road, Cowley: Oxford OX4 3NB.
W.W. 405

Packaged amplifiers and systems are tully described in Burr-Brown's new catalogue, which lists devices for data acquisition, conversion, isolation and instrumentation, operational ampli fiers and linear devices for multiplication, division, etc. Burr-Brown International Ltd, Permanent House, 17 Exchange Road, Watford WDI 7EB.

Earti-leakage circuit breakers with a trip sensitivity of 30 mA are made by Groveland Electronics and a leaflet is available. Load contacts have a short-circuit capability of 1500 A and the unit cannot be held on in a fault condition. The firm is at 5/6 Hale Wharf, Ferry Lane, Tottenham, London N17.

WW412

Introducing non-linear circuits

Logarithmic, power and r.m.s. laws

by J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams

Paisley College of Technology

A growing need for a variety of mathematical function generations has led to a variety of circuit solutions. The problems range from the use of resolvers in servo systems in which sine/cosine function generation is needed, to the measurement of the true r.m.s. value of non-sinusoidal waveforms.

If we restrict ourselves to one or two variables, then Fig. 1 shows a sample of the functions that might occur in practical systems - either because the output of a system is required in some particular form such as a decibel representation of a voltage gain, or to correct for some non-linear property of a transducer. Few of these functions can be obtained directly from existing devices and circuits unless limited accuracy is acceptable. For example, the field-effect transistor has a squarelaw term in its $\mathrm{I}_{\mathrm{D}} / \mathrm{V}_{\mathrm{GS}}$ characteristic and this has been exploited to provide such functions as X_{2} and $X Y$.

However, the circuits have been tairly complex, have resulted in significant departure from the ideal law or have drifted badly with change in temperature and/or supply.
Some of these functions can be obtained by indirect means such as the parametric techniques of Hall-effect devices or varactor diodes. Others can be obtained via modulation processes as in the multiplier/divider circuits of Circards Set 29. The most valuable tool available to the designer in this area is the transistor, not because of its amplifying properties, but because the $\mathrm{I}_{\mathrm{C}} / \mathrm{V}_{\text {be }}$ characteristic follows a particular non-linear law precisely and over a wide range of currents.
In its simplest form that law can be written as: $I_{C}=k \exp V_{b e}$. This hides a number of inconvenient factors such as its dependence on temperature, but is an accurate representation of the shape of the characteristic. As indicated in the previous article this is the basis of logarithmic amplifiers in which the output voltage is a logarithmic function of the input voltage.
From the basic properties of logarithms various power-law operations can be implemented.

one variable	two variables
X^{2}	$X Y$
\sqrt{X}	$\frac{X}{Y}$
$1 / X$	$\frac{X^{2}}{Y}$
$a X^{2}+b X+c$	$\sqrt{X^{2}+Y^{2}}$
$\log _{e} X$	$\sqrt{X^{2} Y^{2}}$
e^{x}	
$\cos X$	
$\sin X$	

Fig. 1. Common functions that can be obtained by passing X, Y through circuits with corresponding transfer functions.

Fig. 2. Logarithmic circuits are based on natural logarithms rather than $\log _{10}$ because of the way diode / transistor characteristics are expressed.

Fig. 3. Circuit produces an output that, after filtering and passing through a square-rooting circuit, would give the vector difference between two input variables. More elegant solutions are available using feedback / feedforward.

Let $V_{\mathrm{a}}=K \log _{\mathrm{e}} V_{1}$ and $V_{\mathrm{b}}=K \log _{\mathrm{e}} V_{2}$.
Then $V_{\mathrm{a}}+V_{\mathrm{b}}=K \log _{\mathrm{e}}\left(V_{1} V_{2}\right) \quad 1$
$V_{\mathrm{a}}-V_{\mathrm{b}}=K \log _{\mathrm{e}}\left(V_{1} / V_{2}\right) \quad 2$
$n V_{\mathrm{a}}=n K \log _{\mathrm{e}} V_{\mathrm{l}}=K \log _{\mathrm{e}}\left(V_{1}{ }^{n}\right)$
2
3
Thus adding, subtracting or amplifying the input variables all of which are within the scope of normal linear circuit design, result in outputs that involve the product, ratio or powers of those variables. The remaining problem is that the output is still a logarithmic function; if it is succeeded by an antilog circuit then the process is completed. A typical configuration is shown in Fig. 2.

A second family of circuits makes use of existing functional blocks such as the multiplier ($X Y$) or the multiplier/divider ($X Y / Z$). Using various feedback and feedforward configurations, a number of the other functions such as square, square root and division can be performed. As an example, consider the circuit of ${ }^{\text {© Fig. 3. It illustrates how }}$ complex functions can be built uppiecemeal. With care and ingenuity elegant and efficient solutions to such problems can be found using various interconnections to remove the need for additional functional blocks.

A group of four transistors in which the base-emitter voltages have a relationship of the form $V_{1}+V_{2}=V_{3}+V_{4}$ must result in a corresponding collector current relationship $I_{1} I_{2}=I_{3} I_{4}$ once the log characteristics are taken account of (see previous article). This leads directly to the implementation of a multiplier by making, say, I_{2} constant and forcing I_{3}, I. to be proportional to the two input variables. Other interconnections of these transistors can yield functions such as square, vector sum, and division.

Some novel solutions demand devices not readily available to the average user - devices developed by manufacturers for use in their own instruments.

One such that shows an old idea brought very firmly up-to-date is given in Fig. 4. It uses what is effectively a balanced bridge to determine the true r.m.s. value of an input voltage. If two identical transistors are separately heated by equal resistors then they will remain in balance only if the flow of

heat to each is equal. Any unbalance is amplified by the operational amplifier forcing the direct output voltage to deliver the same power to the righthand resistor as the input delivers to the other. Hence the r.m.s. values of the two voltages are equal. A neat idea, though one that requires a very carefully constructed chip if the sensing transistors are each to respond to only one of the heat sources.
A severe problem in many of these ideas is that of identifying and neutralizing the error sources. Because of the ron-linear equations involved, the relative errors are different at all parts of the range. Manufacturers of modules and i.cs directed at these applications devote a great deal of effort to this topic, and readers would be well-advised to consult them if high-precision functions are needed.
Circuits based on these principles are described in Set 30 of Circards, under the following headings:
Root-law array
Vollage divider circuit
Ramp-sinewave converter
R.m.s.-d.c. converter

Delta-sigma converter
Cube-law generator
Logarithmic amplifier
Resolvers
Applications of is multipliers
Computation of $\left(x^{2}+y^{2}\right)^{1 / 2}$

How to get Circards

Order a subscription by sending $£ 18$ for a series of ten sets to:

Circards
1PC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 2.00$, postage included (all countries). Make cheques payable to IPC Business Press Ltd.

Fig. 4. Two identical transistors are heated separately by resistors supplied from an unknown input voltage and the output of an op-amp. High gain forces the transistors into balance by increasing V_{0} until the power it supplies matches that delivered by $V_{r, m, s}$.

Topics covered so far in Circards are: 1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measurement
5 audio circuits (equalizers, etc.)
6 constant-current circuits
7 power amplifiers (classes A, B, C, D).
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital counters
15 pulse modulators
16 current-differencing amplifierssignal processing
17 c.d.as - signal generation
18 c.d.as - measurement and detection
19 monostable circuits
20 transistor pairs
21 voltage to frequency converters
22 amplitude modulators
23 reference circuits
24 voltage regulators
25 RC oscillators-1
26 RC oscillators-2
27 Linear c.m.o.s.-1
28 Linear c.m.o.s.-2
29 Analogue multipliers
30 Non-linear circuits

HF predictions

H.F. predictions have two basic sources of error. First, that arising from the associated forecast of solar activity and secondly that arising from the methods used to determine monthly median values of HPF, FOT and LUF for a given level of solar activity. Measurement of these parameters would constitute in statistical terms a single trial with a fairly small sample, so there will inevitably be some deviation from predicted values. Additional trials to determine prediction accuracy could only be made in the same month of following years, by which time solar activity may have changed considerably. The problems are therefore treated statistically. with the outcome in simple terms that prediction error is unlikely to be greater than $\pm 5 \%$ when the effects of solar and magnetic disturbance are removed.

Maritime satellite to aid shipping

The world's first commercial maritime communications satellite, designed to provide instant ship-to-shore communications for merchant vessels and American naval forces was launched by NASA from Cape Canaveral, Florida on February 19. The satellite, called Marisat, is the first in a new series of synchronous orbit communication satellites designed to relay high quality voice, telex, facsimile and other data over the Atlantic and Pacific oceans for the international maritime industry. A second Marisat, scheduled for launch in May, will be stationed over the Pacific.
Ship-to-shore communications serving vessels over thousands of square miles of ocean have until now relied primarily on h.f. radio transmissions,
which are subject to fading and atmospheric interference, while delays of 4 to 24 hours in the delivery of messages are common. The new satellite is designed to operate in three frequency bands. These are u.h.f. for the US Navy, L-band for merchant vessels and offshore platforms and C-band between shore stations and the satellite. (An earlier maritime satellite navigation system, using the Transit non-synchronous satellites, was described in our February 1975 issue, pp. 52-57).

UK researchers celebrate

Ten years of research at the Mullard Space Science Laboratory were celebrated during March by a retrospective exhibition at University College, Lon-

Marisat, built by Hughes Aircraft Company in California (see news item). Technicians are adjusting a theodolite to determine horizontal and vertical alignment.
don. The research group, which today makes up a UCL laboratory at Holmbury St. Mary, Surrey, grew up under Professor R. L. F. Boyd at University College over the ten years 1956 to 1966 before its move to the MSSL in 1966. Its growth became rapid with the start of the collaborative US/UK Ariel l satellite project in 1960, and work on this historic undertaking opened the way to participation-in a large number of space projects being planned then by the US National Aeronautics and Space Administration and somewhat later by the European Space Organisation, now the European Space Agency.

Attention of the laboratory has recently turned to studies of the magnetosphere and of magnetosphericionospheric interactions.

With three X-ray astronomy instru ments in orbit, data can be expected to flow to the laboratory for at least another eighteen months, but the analysis and exploitation of the results will go on even longer. In 1977, two new satellite projects on which the laboratory is currently expending much effort, the ESA geo-stationary satellite Geos and the UK X-ray astronomy satellite UK-6 will mature. Geos will supply data on low-energy particle fluxes taken on a field line intersecting the Kiruna rocket range, related low-altitude measurements being made from rockets as part of a high latitude rocket campaign there. UK-6 will permit study of chosen X-ray sources at lower energies than before, using detectors with windows of a material so thin that gas systems have to be provided to replace the constant diffusive loss of counter gas.

Two further major projects now in hand will result in satellite launches in subsequent years. The NASA "solar maximum mission" will carry two instruments, built jointly by Lockheed's Palo Alto Laboratories, the astrophysics research division of the Appleton Laboratory and the MSSL, for making X-ray measurements of the solar corona that meet the demanding requirements of spatial, spectral and time resolution. The ESA Exosat spacecraft will carry two X-ray observing systems for which MSSL will provide the detectors, one being a position-sensitive detector. This provides positional information so that an X-ray image created by the newlyavailable focusing X-ray optical systems can be realized electronically and transmitted from satellite or rocket to ground station. A similar system, but which uses a larger X-ray reflector than hitherto, will be flown jointly by the Lockheed and MSSL groups on an Aries rocket. This payload will be one metre in diameter, as compared with the 40 cm Skylark payload diameter, and will represent the kind of instrument package that in the 1980 s will be carried into orbit by the Shuttle vehicle. Shuttle and the use of Spacelab will gradually become very important in the work programme of the MSSL over the next ten years.

Vanishing ionosphere?

The recent public debate on the possible effects of aerosols containing fluorocarbons on the protective ozone content of the upper atmosphere has caused William W. Lamb, W8BJ, to speculate whetiner. long before we may be affected as human beings, we could conceivably suffer loss of h.f. long-distance transmissions. Another amateur has suggested that one solution might be to go back to "ozone creating" spark transmission!

During the remarkable Sporadic-E opening of June 1, 1975 the amateur station 9H1CD on Malta was able to contact OZ10F in Denmark, a distance of 2400 km , and just failed to contact a station in Finland. Both paths represent exceptional distances for Sporadic E propagation, although transatlantic contacts on 28 MHz seen to indicate that double-hop Sporadic-E contacts are occasionally possible.

Modes and band-plans

For several years there have been efforts to persuade the Home Office that the amateur licence should include facilities for fascimile transmissions using the A4 and F4 modes. It has now been announced that such transmissions can be made by licensed amateurs in the $3.5,7,14,21,28$ and 144 MHz bands provided that the bandwidth does not exceed 6 kHz . No special application need be made.

The RSGB Repeater Working Group has proposed channel frequencies in the 432 MHz band as a basis for orderly, planned n.b.f.m. operation, and it is hoped that equipment suppliers and crystal retailers will co-operate in developing this band-plan.. Channel RB2 2433.05 MHz output and 434.65 MHz input repeaters; Channel RB4, 433.10 MHz output and 434.70 MHz input repeaters; Channel RB6, 433.15 MHz output and 434.75 MHz input repeaters; Channel SU8, 433.20 MHz simplex channel; Channel RB10, 433.25 MHz output and 434.85 MHz input repeaters;

Channel SU12, 433.30 MHz simplex channel; Channel RB14, 433.35 MHz output and 434.95 MHz input repeaters; Channel SU16, 433.40 MHz simplex chamnel; Channel SUl8, 433.45 MHz simplex channel; Channel SU20, 433.50 MHz calling channel.

The Raynet amateur emergency network, in agreement with other RSGB committees, has proposed that $144.8,144.825,144.850$ and 144.875 MHz should be classified as emergency channels and is appealing to other amateurs not to use these channels for normal contacts.

Under a reciprocal licence agreement with the Republic of Cyprus, holders of Class A licences can now obtain exa-mination-free licences in Cyprus. Those with Class B licences have to take a 12 w.p.m. Morse test.

Frank Hennig presents

Frank Hennig, G3GSW, a well-known freelance broadcaster (for some years he recorded the weekly gardening chats with the late Fred Streeter), has become the presenter of the BBC's "World Radio Club" where he joins Henry Hatch, G2CBB. During the war, Frank Hennig was a member of Royal Signals and during 1944-45 commanded a No. 10 microwave equipment signals unit in Normandy, Belgium and Holland, and later occasionally operated the club station VSlBU in Singapore. He is currently active on h.f. with a transceiver and four-band ground-plane aerial.
Listeners in the USA, Central and South America will benefit from the opening shortly of the joint BBCDeutschewelle Carribean relay station on Antigua equipped with four 250 kW transmitters. Programmes will be relayed from Europe either by direct re-broadcast, by special s.s.b. point-topoint link, or via ocean cable circuits. The associated receiving station is equipped with two rhombic aerials but is not expected to employ diversity techniques.

Here and there

The next reunion of the Radio Amateur Old Timers' Association will be held on Saturday, May 1 (not May 8 as originally announced) at the Cora Hotel, Upper Woburn Place, London WCl. Membership details of RAOTA, open to amateurs who have held their licences for 25 years, are available from Miss May Gadsden, 79 New River Crescent, London N13 5RQ.

The Southampton University Radio Club (G3KMI) celebrates its 21 st anniversary in September and the present committee is planning a special reunion. Former members of the club are invited to contact the Secretary, Southampton

University Radio Club, Students Union, The University, Highfield, Southamptom So 03 NNil , for further details.

Luri Wallace of Coslany who while a Member of Parliament took considerabie interest in amateur radio licence matters and whose son is an active amateur is to be RSGB president 1977.
'At the present time the only countrics where amateur radio is completely prohibited are those associated with China - and even there, I understand. there is some hope of a change in the not tou distant future" - Dr John Allaway, RSGB president, said recently.

The RAF Gibraltar Amateur Radio Society (ZB2A) is celebrating its 30 th anniversary by a special burst of on-air activity from May 25 to June 1 when it is hoped to contact many of those who have served on The Rock.

In the first six months of its current financial year, the RSGB had a financial deficit of about $\mathbf{E 7 , 0 0 0}$. It is currently comsiderng buying an IBM32 minicomprater to improve handling of the memiership records. The Society recently reiceived a legacy of over $£ 4,000$ from the estate of Mrs Sherley-Price, widow of the former G8SP.

The problems underlining enforcement of Citizen Band regulations in the United States are indicated in a recent rejort of the US General Accounting Office. This supports FCC suggestions that additional legislation is needed to assess fines against unlicensed operators and to make it a crime to "kill, assault or intimidate" FCC personnel making station checks. FCC has reported that its enforcement agents are increasingly being subjected to vocal and physical abuse but that at present when violence occurs the only recourse is through local and state courts. There have been instances of Post Office inspectors investigating "pirate operation" in the UK being threatened with physical violence.

In brief

Membership of the G-QRP-Club, devoted to low power radio communication, has increased to 195 members (George Dobbs, G3RJV, 8 Redgates Court, Calverton, Nottingham, NG14 6LR for details) . . . Following the earthquake in Guatamala on February 4 an amateur radio emergency link was quickly established through TR9LW and TG9GF to the United States on $14,325 \mathrm{kHz}$ and provided communications for the stricken area for several weeks, winning Red Cross praise . . . A survey made by J. H. Brazzill, G3WP, a sub-manager of the RSGB QSL Bureau showed that of 3055 QSL cards received by him recently, only 1696 were collected by amateurs ... An American amateur is reported to have copied Morse code at 80 w.p.m. . . . The satellite OSCAR 6 is now available for use during descending orbits on Saturday mornings.

PAT HAWKER, G3VA

New Products

Phase-controlled soldering iron

The ORYX super 30 iron is a general purpose tool which offers phase control circuitry incorporated in the handle. This circuit limits the power and therefore the temperature of the iron, which in turn extends the life of the element. The handle also has a mains neon. A range of ten bit sizes is available for the iron which is rated at 27 W and has a tip operating temperature of $365^{\circ} \mathrm{C}$. The unit is priced at $£ 2.95+$ v.a.t. and is available from Greenwood Electronics, Portman Road, Reading. RG3 INE.
WW 301 for further details

Instructional electromagnetics set

A system known as LoSAID includes magnets, coils, slip rings and commutators which can be rotated slowly to

WW 302 for further details
produce outputs for a three channel pen recorder which is also in the set. Using this system, low frequency electromagnetics can be studied, from a simple moving coil meter to motors, attenuators, generators, 3 phase supplies, synchronous motors and positional servo systems. The complete set is housed in a wooden cabinet and is available from Educational Measurements Ltd, Brook Avenue, Warsash, Southampton, SO3 6HP.
WW 302 for further details

Thin film strain gauge

The series C cantileverstrain gauge has a thin film device deposited onto the cantilever surface using a radio frequency sputtering technique. This is claimed to provide a strong bond without using adhesives. The sensing element comprises a Wheatstone bridge circuit in which two of the elements are active. Alma Components Ltd, Park Road, Diss, Norfolk IP22 3AY.
WW 303 for further details

Power dividers

A series of four-way power dividers which are claimed to be capable of withstanding rigorous environments has been introduced by Merrimac Industries. The PDF-4E series of power dividers provides broadband coverage over the frequency range of 50 kHz to 500 MHz . These "flat pack" devices were designed for mounting on stripline and printed circuit boards, particularly in situations where high-density packaging is required. The model PDF-4E-50 is representative of the series and covers

WW 301 for further details
the 2 to 100 MHz range, with -6 dB coupling and 30 dB isolation. Other characteristics of this model include: amplitude balance 0.2 dB , phase balance 1°, insertion loss 1 dB , impedance 50Ω, v.s.w.r. 1.3:1, and power IW with matched loads. Merrimac Industries, Inc., 41 Fairfield Place, West Caldwell, N.J. 07006, U.S.A.

WW 304 for further details

Frequency counter

A 1.2 GHz frequency counter has been added by R.C.S. to their range of instruments for laboratory use. The instrument uses a silicon-on-sapphire thin-film hybrid input amplifier and has a sensitivity better than 10 mV over its range from 4 Hz to 1.2 GHz . An automatic decimal point facility is provided. The R.C.S. 1001 counter has a shortterm stability of 5 parts in 10^{10}. The directly-gated range of this instrument is 4 Hz to 80 MHz at an input impedance of $1 \mathrm{M} \Omega$ in parallel with 20 pF . Two scaler inputs are provided, $80-150 \mathrm{MHz}$ and $120 \mathrm{MHz}-1.2 \mathrm{GHz}$ with an input impedance of 50Ω. R.C.S. Electronics, National Works, Bath Road, Hounslow, Middlesex TW4 7EE.

WW 305 for further details

Plotting system

The Gould Plotmaster, designed to run in conjunction with an IBM $360 / 370$ computer, is available from Nanotek Ltd. The system, which has a highspeed electrostatic printer/plotter, can generate alphanumeric information at speeds of up to 3000 lines per minute as well as displaying engineering, scienti-

WW 304 for further details

ific or business information in graphical form.

A feature of the Plotmaster system is its intended ease of use in business applications where it can be incorporated into existing systems. A business graphics package known as DISPLAY is used to generate line, bar and pie charts. Because DISPLAY has the ability to recover from input coding errors and produce an acceptable chart, reprogramming is minimized. A PLOT graphics package can generate background grids, variable line weights, automatic stripping, text annotation and erasure of previously programmed line segments. Gould Advance Ltd, Raynham Road, Bishop's Stortford, Hertfordshire.
WW 306 for further details

Wire bundle mount

Panduit Ltd has announced an inexpensive aluminium mounting base for harnessing cable ties. The mount, which is available with or without adhesive backing, can be screw mounted if necessary and measures 1.0×0.5 in providing an effective means for securing bundles to flat metal or non-porous surfaces. Panuit Ltd, Sittingbourne Industrial Park, Unit 22a, Crown Quay Lane, Sittingbourne, Kent.
WW 307 for further details

Chip inductors

Aladdin Components have announced a family of chip inductors for use in the hybrid and thick film circuits. Series FC fixed-value inductors are shielded and have welded internal connexions capable of withstanding reflow solder temperatures. Moulded in a case 3.05×3.18 $\times 3.81 \mathrm{~mm}$, the inductors are suitable for resonant circuits and decoupling and are available in the range $0.01 \mu \mathrm{H}$ to lmH . Type VC tunable inductors also

WW 307 for further details
incórporate internally-grounded gold-plated brass tuning adjusters and are available in the range $0.1 \mu \mathrm{H}$ to 1 mH . Both the FC and VC types have gold contact pads. Aladdin Components, Aladdin Building, Western Avenue, Greenford, Middlesex UB6 8UJ.
WW 308 for further details

Inductance meter

The model 62 A 1 MHz inductance meter has full scale ranges from $1 \mu \mathrm{H}$ to 3 mH with an accuracy of 5%. A digital version, the model 62AD, has programmable range functions or an autoranging capability. Analogue and b.c.d. outputs are provided for driving peripheral equipment and the unit is said to be suitable for systems applications. Euro Electronic Instruments Ltd, Shirley House, 27 Camden Road, London NWI lYE.
WW 309 for further details

Automatic distortion meter

The model DM-153A distortion meters offers automatic fine frequency-tuning and balance adjustment over the frequency range 6 Hz to 600 kHz , and distortion ranges from 100% to 0.1% f.s.d. Fundamental and harmonic outputs are also available for the display of Lissajous figures. The instrument is priced at $£ 540+$ v.a.t. and is available from Lyons Instruments Ltd, Hoddesdon, Herts.
WW 310 for further details

Resistance deviation bridge

Nine resistance ranges on the model 506 deviation bridge from Electro Scientific Industries Inc allow measurements
from 0.1Ω to $50 \mathrm{M} \Omega$ with $51 / 2$ decades per range for setting nominal resistance value and percentage. Deviation can be measured in p.p.m. and up to 200% respectively. The basic accuracy of the, model 506 is 50 p.p.m. Facilities include thermal e.m.f. cancellation, automatic compensation for lead resistance and measurement of resistors in closed-loop and buried-node circuit configurations. Primarily designed as a production tool, the unit can be used in conjunction with a sorting fixture and/or comparator for rapid sorting or checking. Tranchant Electronics (UK) Ltd, Tranchant House, 100a High Street, Hampton, Middlesex.

WW 311 for further details

Circuit breakers

A range of miniature circuit breakers from Belling \& Lee covers load current ratings from 300 mA to 15 A in two series. Devices in the L5400 series are thermally operated for use where a time lag is required. The $L 5500$ series employs a thermal-magnetic trip mechanism which provides a faster action. The units are reset by a push button, and an additional set of change over contacts can be included for remote signalling. Belling \& Lee Ltd, Great Cambridge Road, Enfield, Middlesex EN1 3RY.
WW 312 for further details

Ultrastable Gunn oscillators

Series 6901-1200 Gunn oscillators developed by Trak Microwave Corporation are claimed to be virtually unaffected by voltage, v.s.w.r. and temperature shifts. The oscillators are mechanically tunable over $\pm 0.5 \%$ of a centre frequency, selectable between 8 GHz and 16 GHz , for a thermal stability of $\pm 0.05 \%$ from $-54^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Radio frequency output is between 13 dBm and 19 dBm .

WW 309 for further details

Harmonics are greater than 50 dB down with non-harmonic spurs measured at greater than 80 dB down. REL Equipment and Components Ltd, Croft House, Bancroft, Hitchin, Herts, SG5 IBU.
WW 313 for further details

Microwave signal generator

The model 399/X is a solid-state signal 'generator variable between 8.2 and 12.5 GHz . The instrument uses a high Q broadband coaxial cavity with a plug in Gunn diode. Operating frequency and relative power level are displayed on digital displays. Internal pulse and square wave modulations are applied via a pi.n. modulator in the r.f. output circuit, while internal sawtooth modulation is applied directly to the Gunn diode supply.
Other models in the series provide coverage from 7.5 to 18 GHz in overlapping bands. Flann Microwave Instruments Ltd, Dunmere Road, Bodmin, Cornwall, PL31 2QL.
WW 314 for further details

Synchro/digital display

The synchro/digital display type RDD100 is supplied with synchro, hybrid synchro-to-digital converter, 0.6 in character display, b.c.d. output and connecting cable. Available as a three or four decade display with standard readings, $0-360,0-360.0 \pm 179$ or ± 179.9 degrees. Custom scale factors can also be supplied, e.g. 0-1000. Total system accuracy is 1 part in 1000 . Incremental systems with counts up to 5000 per revolution are also available. Moore Reed and Company Ltd, Walworth Industrial Estate, Andover, Hampshire.
WW 315 for further details

Voltage controlled oscillator

A voltage controlled crystal oscillator, type QC1308D, has an operating frequency of 2048 kHz which can be divided to produce the discrete frequencies for communications systems. The device is compatible with t.t.l. circuitry and requires a 5 V supply. Frequency adjustment is by varactor diodes and a control voltage between 0 and 8.5 V . Once the required frequency has been selected the oscillator stability is around ± 2 p.p.m. over the first year. Salford Electrical Instruments Ltd, Times Mill, Heywood, Lancs.
WW 316 for further details

Tunable L-band magnetrons

The MCV1352 and MCV1353 tunable L-band magnetrons from ThomsonCSF deliver a minimum peak output power of 2.2 MW and together cover the $1270-1370 \mathrm{MHz}$ band. Both magnetrons are suitable for air-search radars, and in particular moving target indicator systems which require stable radio frequency pulses. The magnetrons are cooled by simple tap water circulating. systems. Thomson-CSF Electronic Tubes Ltd, Ringway House, Bell Road, Daneshill, Basingstoke, Hants RG24 0 QG.
WW 317 for further details

Linear displacement transducers

A range of d.c./d.c. linear displacement transducers with stroke lengths up to 150 mm has been introduced by Jackson Brothers (London) Ltd. Standard models are available in three stroke lengths of 50,100 and 150 mm and an output sensitivity of up to 100 mV per

WW 314 for further details
mm is available. The devices can be custom built to meet individual requirements. Jackson Brothers (London) Ltd, Kingsway, Waddon, Croydon.
WW 318 for further details

Low noise toroid transformer

Avel-Lindberg have designed a toroid transformer for use in data-processing video monitors. The toroid construction has no air gap, and is shielded by the windings which go completely around the core. This, say the makers, keeps unwanted magnetic radiation to a minimum. The transformer has a $0-110-120 \mathrm{~V}$ primary winding and 17-0-17V, $8.5-0-8.5 \mathrm{~V}$ secondary windings rated at 1 A and 3 A per side respectively. Dimensions of the toroid are 115 mm outside diameter by 52 mm high. Avel-Lindberg Ltd, South Ockendon, Essex RM15 5TD.
WW 319 for further details

Relay for amusements

A relay designed specifically for vending machine and amusement equipment applications has been introduced by Magnetic Devices Ltd. Designated series 270 C , a push-button, press-tooperate key provides a quick means of checking correct operation without removing the relay from the circuitry under test. Mechanical life is better than ten million operations and electrical life is 100,000 operations at full load. The series 270 C is available in two- and four-pole, same polarity switching versions with coils rated at $1.4 \mathrm{VA}, 50 \mathrm{~V}$ a.c., or $0.9 \mathrm{~W}, 24 \mathrm{~V}$ d.c. Ambient operating temperature is up to $+55^{\circ} \mathrm{C}$ and insulation between coil and contact is proof voltage tested to earth at $1,500 \mathrm{~V}$ r.m.s, 50 Hz . Magnetic Devices Ltd, Exning Road, Newmarket, Suffolk CB8 0AX.
WW 320 for further details

WW $\$ 15$ for further details

Solid State Devices

Names of suppliers of devices in this section are given in abbreviation after each entry and in full at the end of the section.

Power transistors

The BUX46-47-48 switching power transistors are triple diffused devices rated at $850 \mathrm{~V}, V_{\text {ce sat }}$ at less than 1.5 V for up to 9A collector current and a typical fall time of $0.3 \mu \mathrm{~s}$. High voltage power transistors are also available: BU142-3-4, intended primarily for 110° precision-in-line tube applications; BU126 for switching mode power supplies; BU207-8-9 for very high voltage horizontal deflection circuits in colour TV applications. Voltage ratings are up to $1700 \mathrm{~V}, V_{\text {ce sat }}$ current ratings are up to 12 A and a typical fall time is less than $1 \mu \mathrm{~s}$ at up to 8 A collector current. The BUX37 power Darlington transistor is designed specifically for high voltage electronic ignition applications.

Thomson CSF

WW 321 for further details

Limiter diodes

Limiter diodes claimed to handle pulses of up to 4 kW peak power and reduce leakage power to as little as 10 mW have been announced by Alpha Industries, Inc. for protecting sensitive receivers. CLA3131, CLA3132 and CLA3133 series are p-i-n silicon diodes providing passive receiver protection over a range of frequencies from 100 MHz to beyond 20 GHz . Peak input power range (for a pulse of 1μ s maximum duration) is 50 to 66 dBm . The diodes are supplied in basic chip form or encased in a variety of glass or ceramic packages.

Impectron
WW 322 for further details

Memory for v.d.u.

A 512 -line, 512 elements-per-line video image can be stored by the in-477 4 k r.a.m., announced by Intel. The memory is intended to replace the usual shift register, allowing both sequential and random access at 20 M bits $/ \mathrm{sec}$. A single 4 k memory, contained on one 15 in square board, will suffice for a monochrome, alphanumeric or graphic display of any size or shape, while coloured or tonal images will require several memories in parallel. Board selection is built in. The memories require +5 V ,
-5 V and +12 V , dissipate less than 25 W , and are t.t.l.-compatible. An 18-bit address code is used and the standard time for access to the data is 600 ns , which can be reduced by arrangement with the makers.

Intel
WW 323 for further details

High voltage rectifiers

A range of rectifiers from Amex have voltage ratings from 3 kV to 50 kV and power ratings up to $1 W$. The devices are housed in moulded cases or standard epoxy packages.

Amex

WW 324 for further details

Timekeeping circuits

The TA6779 and TA6930 are 4.194 MHz c.m.o.s. clock circuits designed for operation at low voltages (1.1 to 2.2 V for the TA6779 and 1.2 to 2.2 V for the TA6930). The circuits, developed by RCA, can be driven by standard quartz crystals and are suitable for use in both clocks and watches. For a drive voltage of 1.6 V the maximum operating current is $100 \mu \mathrm{~A}$ for no load. The TA6779 has a 32 Hz output (50% duty cycle) and a frequency stability of 1 in 10^{6} per 0.1 V change in drive voltage, while the TA6930 has a 1 Hz motor output and a stability of 0.2 in 10^{6} per 0.1 V change.

RCA
WW 325 for further details

Multi-decade counters

An integrated circuit, the MM74C925, from National Semiconductor combines a four-digit counter, data latches and a seven-segment multiplexed output capable of directly driving a four-digit l.e.d. display. The multiplexing circuit has its own free-running oscillator and requires no external clock. Several other versions of the counter are available with different options. The MM74C926, for example, is similar to the 925 but has a carry-out connexion that is employed for cascading counters in systems with more than four digits, and a display select line that allows either the data in the latch or the data in the counter to be displayed.

National
WW 326 for further details

Power Darlington transistors

Six power Darlington transistors in n-p-n and p-n-p types rated at 100 W , 150 W and 225 W at a $V_{\text {ceo }}$ of 100 V have been introduced by Lambda Electronics. Peak current ratings for the three power levels are 16A, 20A and 40 A respectively. Power de-rating is effective above case temperatures of $50^{\circ} \mathrm{C}$: $h_{F E}$ minimum is 1,000 at $4 \mathrm{~A}, 6 \mathrm{~A}$ and 10 A
respectively and continuous ratings are $8 \mathrm{~A}, 12 \mathrm{~A}$ and 20 A . Designated PMD-10K-100, $11 \mathrm{~K}, 12 \mathrm{~K}, 13 \mathrm{~K}, 16 \mathrm{~K}$, and 17 K , these devices are 100% tested for leakage current stability at $200^{\circ} \mathrm{C}$ junction temperature and are temperature. cycled from -65° to $+200^{\circ} \mathrm{C}$. Each device is tested for secondary breakdown current and they are hermetically sealed in TO-3 packages.

Lambda
WW 327 for further details

Microwave power transistor

Characteristics specified for the Motorola MRF 835 at 870 MHz using a 12.5 V d.c. supply are output power 15 W , minimum gain 7dB and efficiency 50%. A gold metallization system has been used instead of aluminium so that current migration within the device is reduced and the mean time between failures if increased 1,000 to 10,000 times.

Motorola
WW 328 for further details

Instrumentation amplifiers

Two i.c. amplifiers, claimed to be suitable for thermocouple, strain gauge, bridge, and other low-level transducer applications, have been introduced by Burr-Brown. The 3662JP is continuously rated at 96 dB and has a maximum gain non-linearity of 0.1% with a drift of less than $6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at a gain of 1000 . The 3662 KP , rated at 104 dB , has a maximum non-linearity of 0.05% and a drift of less than $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at a gain of 1000 . Both amplifiers have typical common-mode impedances of $2 \times 10^{10} \Omega$ in parallel with 3 pF and require an input bias current of less than 300 nA . The 14 -pin d.i.l. packages include all network resistors, with the exception of the gain setting resistor.

Burr-Brown

WW 329 for further details

Suppliers

Thomson-CSF UK Ltd, Ringway House, Bell Road, Daneshill, Basingstoke, Hants RG24 0QG.
Impectron Ltd, 23 King Street, London W3 9IH.
Intel Corporation UK Ltd, Broadfield House, 4 Between Towns Road, Cowley, Oxford OX4 3NB.
Motorola Semiconductor Products Ltd, York House, Empire Way, Wembley, Middx.
National Semiconductor UK Ltd, 19 Goldington Road, Bedford MK40 3LF. Lambda Electronics, Abbey Barn Road, High Wycombe, Bucks HPll IRW.
RCA Solid State Europe, Sunbury-on-Thames, Middx TW16 7HW.
Amex Electronics Inc., 3198 H. Airport Loop Drive, Costa Mesa, California, 92626, U.S.A.
Burr Brown International Ltd, 17 Exchange Road, Watford, Herts WD 1 7ED.

ELECTRONIC DIGITAL CLOCK with alarm and snooze features

Manufactured to high standards by a major American electronics corporatıon this superbly styled solid-state timepiece is made available to all readers fully guarante $\epsilon \mathrm{d}$

SPECIAL OFFER
 $£ 1$
 .48 +99 pence VAT

Power Supply 230 VAC $\pm 10 \% 50 \mathrm{~Hz}$

FREE TRIAL IN YOUR HOME. Try out the clock in your home. If digital time is not for you return it in orginal condition within ten days and we'll refund your money without question

TM TME Microelectronics
33 WATERIDGE ROAD, BASINGSTOKE HANTS RG21 2RA. Phone (0256) 66961

\lceil Please send \square electronic clocks as illustrated.

 I enclose cheque \square postal order \square money order \square Name Address

The name that means a wider range of electrical instruments.

With P.I.L. fast becoming the most comprehensive instrument stockist in the U.F... offering instruments manufactured by over 60 established world-wide companies, and the expertise of I.E.C. in the repair of virtually any type of electrical as well as many types of electronic measuring instrument, you-will see why you are dealing with companies that are experts in the field of electrical measurement.

So remember, the next time you need our kind of help - take a generous measure of P.I.L. or I.E.C., you can rely on it - always

Precision Instrument Laboratories
Instruments Electrical Company Limited
Insirument House, 212 Ilderton Road, London SEI5 INT
Tel: 01-639 0155 Telex: 8811854

BUY A CASE FROM A SNIALL RANGE, YOU GET A CASE-BUY A CASE FROM A BIG RANGE, YOU GET A SOLUTION
 elther all or PVC steel Buita in slals for PC Lards divider; etc Chalsols or

THIEMIN二MRMM

Instrument cases

 OWer hall, che in feet, 2 screws allow the cover 10 hinge olf cases, 2 mar

OVER 250 DIFFERENT CASES IN STOCK-SIZE RANGE OVER 5000:1 IN VOLUME

Avatatite in 3 sizes Heavily constructid 1 zatec steet, welded corner with heour 3 ses 2 serew , chgs and loam around pre door In the balt
GAEBERFBGMMETE

IS CHILTON'S MIXER THE BEST FOR YOUR USE?

Magnetic tapes Itd make the $10 / 2$ above as well as a $16 / 2$ and a $12 / 4$ with all the inherent flexibility and quality customarily found in big studio mixers. Most of our mixers are constructed to meet the varying demands of the customer, perhaps we can do one for you. Prices start at $£ 400$ for the basic 10/2 + VAT @ 8\%

MAGNETIC TAPES LTD.
Chilton Works, Garden Road, Richmond Surrey TV9 4NS - 01-876 7957

ANALOGUE \& HYBRID COMPUTERS

Illustrated is the C180, one of our standard range of analogue and hybrid computers which offer high
performance and extremely good value for money. This performance and exisemely good value for money. This
model has 18 IC. operational amplifiers all of which may be switched for use as integrators. automatic function selection and meter switching. 3-Four quadrant Multiphers. Individual Por-Set Facitties. 1% accuracy, bull-in Stablised Power Supplies. D.V M. optional extra Many other features at this very low price
of $£ 1,150$ complete with patching leads and instruction of E1,1
IBook

We are specialists in producing computers designed for your own specific research or engineering requrements at prices which are very littie more than those for our standard range
Phone or write for details of our Analogue or Hyybrid apparatus.
PHYSICAL \& ELECTRONIC- LABDRATORIES LTO.
MANUFACTURERS OF PRECISION ELECTRONIC EQUIPMENT
28 Athenaeum Road. Whetstone, London N20 9AE Tel $01.44575 \overline{8} 3$

PRINTED CIRCUIT BOARD TRANSFER SYSTEMS

Acid resistant transfers for direct application to P.C. Board. This is a new approach to printed circuit board manufacture, giving a professional finish with all details that an electronics engineer would require, including all drilling positions automatically marked.
Ideal for single unit boards or small quantities. All at a very low cost-for example an average $6^{\prime \prime} \times 4^{\prime \prime}$ layout would cost less than 30 p , and the time taken under one hour, including etching to complete.
The system is simple, briefly it consists of 10 sheets of self adhesive acid resistant transfers made in required shapes - i.e. edge connectors, lines, pads, dual in line I.C.s, 8-10-12. T.O.5 Cans, 3-4 lead transistors, etc., etc., which only require pressing into the required positions on the printed circuit board before etching.

The printed circuit transfer system is a genuine offer to the public and industry, A full money back guarantee is sent with each order, trade prices on application.
List of Prices
Complete system including post and VAT 2.95
Individual sheets . 30p
Sample sheet . 30p
Ex. U.K. Post Extra . 1.00

E. R. NICHOLLS, 46 LOWFIELD ROAD, STOCKPORT, CHESHIRE TELEPHONE NUMBER 061-480 2179

The Semicon International
 6th EDITION (1975/6) Transistor Index

Easy alpha-numeric reference to the ratings and characteristics of some 24,000 transistors of international origin. European, U.S.A. Japanese. Essential guide for all Engineers, Technicians, and Buyers. Over 450 pages of hasic information. By far the best manual of its kind available anywhere to-day.

* EXTEṄSIVE SUBSTITUTION GUIDE
* CV \& BS DEVICES \& EQUIVALENTS
* TERMINATION DRAWINGS
* ALTERNATIVE SOURCES OF SUPPLY

Remit with order
price. UK only.

- Please send Name

Address

[^3]
HART ELECTRONICS

Audio Kit Specialists since 1961

STEREO BAILEY 30 WATT TUNER AMP.
This complete tuner/amp unit is of the very highest quality and is the amalgam ct our Compact FM Tuner, Bailey 30 watt power amps and the Balley/Burrows/Quiter pre amp The wooden sleeve is available in either teak or sapele finish to blend with existing equipment or furnishings.
*The combination of our excellently designed printed circuits and the high quality components used makes this unit unequalled on the kit market and approached in quallity of performance and durability by few made up tuner amps
Full details are in our free lists.
STUART TAPE CIRCUITS. Our printed circuits and components offer the easy way 10 convert any sutable quality deck into a wery high quality Stereo Tape unit. Input and output levels suit Bailey pre amp Total crost varies but around $£ 35$ is all you need We can offer tape heads as well if you want new ones
Alt above kits have fibreglass PCB's Pricas exclude VAT but P\&P is included
FURTHER-INFORMATION ON ALL KITS FREE if you send us $9 \mathbf{i n} \mathbf{~} \times 4 \mathrm{in}$.
S.A.E.

REPRINTS Post free. no VAT
Bailey 30W 18p.
STUART TAPE RECORDER. All 3 artieles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits, layouts and assembly notes $\mathbf{1 5 p}$.
All prices exclude VAT.

LINEAR I.C. AMPLIFIERS

AA263 - 3 stage low levet amplifier Bandwidth DC to 600 kHz . Supply 724 -lead ko 65
TAA293 - Med freq amplifier up to 600 kHZ - Med freq amplifier up to 10 mW inio 150 ก TO 74 10-lead case $\AA 0.65$
TAA 320^{-}- Most stage followed by a bi-polar transistor Gate-to-source voltage 9.14 V . Power dissipation 200 mW . Drain current $1 \mu \mathrm{~A}$. Io 183 -lead $\ddagger 060$

DIGITAL 7400 SERIES I.C

	Made in USSR			
7400	$\mathbf{£ 0 . 1 4}$	7440	$\mathbf{£ 0 . 1 4}$	
7401	$\mathbf{£ 0 . 1 4}$	7450	$\mathbf{£ 0 . 1 4}$	
7410	$\mathbf{£ 0 . 1 4}$	7453	$\mathbf{£ 0 . 1 4}$	
7420	$\mathbf{£ 0 . 1 4}$	7455	$\mathbf{£ 0 . 1 4}$	
7422	$\mathbf{£ 0 . 2 0}$	7460	$\mathbf{£ 0 . 1 4}$	
7430	$\mathbf{£ 0 . 1 4}$	7472	$\mathbf{£ 0 . 3 0}$	
		7474	$\mathbf{£ 0 . 2 5}$	

TEXAS BC517
Silicon Dartington pair in three-lead plastic case. Average current gain 30.000 Max V cb
40 V Max $1 \mathrm{c}=400 \mathrm{~mA}$. Max $1 \mathrm{co}=10 \mathrm{nA}$

Z \& I AERO SERVICES LTD
Head Office: 44A WESTBOURNE GROVE, LONDON W2 5SF Tel.: 7275641

Retail Branch:
85 Tottenham Court Road
London W1. Tel: 5808403

RADFORD HD250

High Definition Stereo Amplifier

A new standard for sound reproduction in the home! We believe that no other amplifier in the world can match the overall specification of the HD250.

Reted power output: $\mathbf{5 0}$ watts av. continuous per channel into any impedance from 4 to 8 ohms, both channels driven

Maximum power output: 90 watts av, per channel into 5 ohms
Distortion, preamplifier: Virtually zero (cannot be identified or measured as it is below inherent circuit noise.)
Distortion, power amplifier: Typically 0.006% at 25 watts, less than 0.02% at rated output (Typically 0.01% at 1 Khz)
Hum and noise: Disc, -83dBV measured flat with noise band width 23 Khz (ref 5 mV); -88 dBV " A " weighted (ref. 5 mv)

Line - 85 dBV measured flat (ref 100 v)
-88d BV "A" weighted (ref 100 v)
Hear the HD250 at

SWIFT OF WILMSLOW

5 Swan Street, Wilmslow, Cheshire (Tel. 26213) Mail Order and Personal Export enquiries: Witmstow Audio Swan Works Bank Square. Wilmslow (Tel. 29599
Also in stock: All Radford speaker drive units and crossovers, ZD22 preamp, Low Distortion oscillator LD03 and Distortion Massuring set DMS3.

To: Case Systems, 20 Hunt Lane, Chadderton, Lancs. England. Trade Enquires welcome
WW - 025 FOR FURTHER DETAILS

CATRONICS-First with WW TELETEXT

The design is being described in a series of articles being published by 'Wireless World' (from last November). All components are available from Catronics Ltd.

- 00ecoct Mr ap The approved Catronics kit contains all the printed circuit boards and components
necessary to buld the complete decoder. Signal input required is a minimum of 05 V
detected video The output is approximately 4 V of R, G and B drive suitable for driveng most types of colour Television sets. PLUS a luminance output for black and white
sets
mether The power supply and video switching circuitry are normally instalied within the cabinet positioned on top of the television PCBs are now supplied for the power supply
and video switching circuitry. Prices
(£16.00 +VAT Set of 5 PCBs only (inc. PSU and video switching) Add-on Kit for lower case characters
Cabinet and From Panel (styling may vary) $£ 91.45+$ VAT
$(£ 12.95$ + VAT
$(£ 1.35)$ Ready-buity and Tested Decoders add E44.00 + VAT (E11.00) PCBs are post free - but add $£ 1.50$ tor Insured Post 8 Pkg for component kit and $/$ or weeks
A wide range of other components are also available inciuding SL600 series ic.s KVG and MURATA filters. AERIALS for Commercial Mobile and Radio Amateur bands Frequency Counters and Prescalers - including an exclusive 500 MHz version.

Send S.A.E. for current price lists (stating requirements) CATRONICS LTD. (Dept. 625)
atronics
39 Pound Street Carshation, Surre Tel: 01-669 6700

WW - 625 FOR FURTHER DETAILS

ELEGTROALIE
 Wise buyer's first choice
 CATALOGUE 8 ISSUE No. 2
 - 144 pages
 - UP-dATED PRODUCT \& PRICE INFORMATION
 - 40p POST PAID + 40p REFUND VOUCHER
 We have made it just about as comprehensive and up-to-the-minule as possible Thousands of items from vast ranges of semi-conductors including IC C to components tools, accessories, technical information and diagrams are included as well as a refund voucher worth 40 p for spending on orders list value 5 or more SEND NOW FOR YOUR COPY OF CATAIOGUE 8 . ISSUE NO 2 BY RETURN it s an investment in practical COPY OF CATALOGUE 8. I
 +e.V. price stabilization policy
 This is one of reviewing prices every 3 months rather than trying to keep up with day by day changes as they occur. We have on the whole held following this plan. Next review period starts July 1 st
 +E.V. DISCOUNT PLAN
 Applies 10 ath tems except the few where prices a
 + FREE POST R PACKING
 15 p .
 + QUALITY GUARANTEE
 All yoods are sold on the understanding that rejects, seconds or sub-standard merchandis

ELEGTROVALIUE LTD

28 ST. JUDES ROAD. ENGLEFIELD GREEN, EGHAM. SURREY IWZO OHB Telephone Egham 3603. Telex 264475. Shop hours. 9-5 30 daily, 9.7 p.m. So NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 INA Telephone (06) 4324945 . Shop hours Daily $9.5 .30 \mathrm{pm} .9 .1 \mathrm{p} . \mathrm{m}$. Sats.
In U.S.A. You are inviled to conlacl ELECTROVALUE AMERICA. P.O. 337 Pelerborough NH03458

DEM ELEGTRONICS INTERNATIONAL ELECTRONIC COMPONENTS DISTRIBUTOR FOR INDUSTRY AND HOBBYIST

MONTHLY SPECIALS														
CT 500112 Drgit 4 Funct			.59 8		CT 500512 Digit 4 Funct. w/Mem 79									
- Memories Are Madeof These Specials -														
1101256 - Bit Ram Mos. 1103 1024. Bit Ram Mos 5261 1024. Bit Ram L/power			$\begin{aligned} & 1.99 \\ & 1.45 \\ & 1.45 \end{aligned}$						95					
			21021024 - Bit Stutus Ram		75									
$\begin{aligned} & 7 T 4 \\ & \hline 7447 \\ & 7495 \\ & 7490 \end{aligned}$							ICL 8038 Funct. Gen Volt Contr Oscillator Sine Sa 9.Digit LEO display Cormm Cathodes Comp w/8-digit Clk Chips 12° Chas			1.95				
	. 59	${ }_{74123}$			39									
	. 35	74145												
TTL 7400 SERIES														
7401	0.11	7441	2.60		7486	0.24	74156	0.69						
7402	011	744)	0.55		7488	2.50	74157	069						
7403	0 :	7443	0.55		7489	1.50	74158	0.69						
7404	013	7744	0.60		7490	0.40	74160	0.89						
7005	013	7445	0.75		7491	0.55	74162	0.89						
7406	0.22	7446	085		7492	0.43	74163	089						
7407	022	7447	0.75		7493	0.43	74164	105						
7408	014	7448	0.65		7494	049	24165	105						
7409	0.14	7450	012			0.49	${ }^{74166} 7$	${ }^{1.05}$						
7410	011	7451	0.13		7496	0.55	74170	1.65						
7411	016	7453	0.13		74100	0.89	74175	0.90						
7413	0.26	7454	014		74107	027	74180	0.80						
7416	0.22	7460	0.11		74121	027	24181	250						
7417	0.22	7470	0.24		74123	0.37	74182	0.80						
7420	011	7472	0.21		74123	049	74192	0.90						
7426	0.23	7473	025		-74145	- 0.57	24193 74194	0.85 0.85						
7430 7432	0.12 0.22	7474 7475	0.25 0.37 0.37		-74150	0.59 0.59	7494 7495	085 0.80						
7432 747	025	${ }_{7}^{7475} 7$	037 026		${ }_{74} / 153$	${ }_{0} 69$	74.98	170						
7438	025	17483	069		77154	105	[7499	170						
high speed 74m00														
74 HOO	E 016	$74 \mathrm{Hz0}$	E0.16		174452	\&0. 16	${ }^{74 \mathrm{H} 71}$	¢021						
$74 \mathrm{HO1}$	016	$74 \mathrm{H21}$	- 0.16		74453	016	74472	0.26						
${ }^{7} 4 \mathrm{HO4}$	016	74422	[0.16		$\begin{array}{r}74454 \\ 74455 \\ \hline\end{array}$	021	${ }^{74474}$	0.28						
74H 10	$\bigcirc 16$	74450	0016		74461	016								
74411	016	74451	1021		174462	016								
CMOS 4000 SERIES														
4001	019	4015	110		4030	0.50	4072	025						
4002 4006	019 090 090	(4016	155 0667 067		${ }_{\substack{4042 \\ 4043 \\ 404}}$	0.95 120	4073	-0.25						
4007	${ }^{0} 19$	4020	+15		4044	1.20	4078	0.25						
4008	130	4021	110		4049	0.48	4081	0.25						
4009	0.49	4023	019		4050	0.48	4082	029						
4010	049	4024	085		4066	075	4528	085						
4011 4013	019 039	${ }_{4027}^{4025}$	019 075			023 0.83	4585	125						
DTL														
${ }_{932}$	6010 010	$\left.\right\|_{937} ^{936}$	2010		${ }_{996}^{944}$	2010 0	963	- 010						
linears														
Lm300	T099 £	£ 0.45	340 O	TO92	£ 125	739	A $01 p$	065						
301 302	\checkmark V1P	029 045 0 0	380	A cip	$\begin{array}{r}80 \\ 105 \\ \hline\end{array}$	74 747	\checkmark Voip	-0.22 0.48						
304	Tolos	050	546	\checkmark vap	0.51	748	\checkmark Dip	0.27						
305	т099	0.6055	550	A Cup	055	5556 (1956)	V Dip	0.65						
307	\checkmark Dip	03855	555	\checkmark Lip	045	5558114581	Voip	0.65						
	то99	045	556	\% 0 IP	075	ULN3111	A Dip	0.95 0.35 0						
308	A Dip Toga	059 0 079 079	${ }_{561}^{560}$		2.55 255	${ }_{75450}$	A Dip $\checkmark \times 1 /$	0.35 045						
309k	TO3	1455	562	boip	2.55	15451	\checkmark Vip	045						
-		0655	${ }_{565}^{565}$	${ }^{\text {A }}$ Lip	1.25	${ }^{75452}$	\checkmark Dip	0.45						
320 K	TO3NEG	090	567	\checkmark Gip	1.25	${ }_{75454} 7$	$\checkmark \times 19$	0.45						
	52.1215	125	709	A Eip	0.22	75491	A pkg	0.65						
${ }_{339}^{324}$	A DIP	1077	710	A cup	025	75492	A pkg	0.75						
	a dip	149		A	0.30	CLL 8038 F unc	nct Gen							
340 K	${ }_{\text {103 }}^{103}$	2107	723	A 5	0.38			$\begin{array}{r} \text { Sine, } \\ 145 \end{array}$						

PRICES LISTED ARE BRITISH POUNDS \& PENCE SEND CHEQUE WITH ORDER. MASTERCHARGE BANKAMERICARD BARCLAY CARD ACCEPTED. (Card \# and expiration date requested). TERMS OFFERED TO SCHOOLS \& INSTITUTIONS
POSTAL AND HANDLING CHARGES
under 4.99 add 45 £ 10 and ove 5.00-9.99 add 35 No Charge

笽
DEMA ELECTRONICS INTERNATIONAL P.O. Box 407

San Ramon, Ca. 94583 USA
Cable DEMAELINTL

LYNX ELECTRONICS（LONDON）LTD．

${ }^{\text {Acti }} 128$	0.18	${ }^{8 C 301}$	${ }^{0.32}$	8 BY 206	0．15．	in4003 ${ }^{\text {N }}$	${ }^{0.088}$
${ }^{\text {ACCl }} 127$	${ }^{0.18}$	${ }^{8 C 323}$	0.80	${ }^{87207}$	0．20．	1 ${ }^{1} 40004$	0.07 ＂
${ }^{\text {ACL } 128}$	0.13	${ }^{\text {BCC327 }}$	${ }^{0.188^{\circ}}$	${ }_{8}^{8 Y \times 38.300}$	0．12．	${ }^{1}$	${ }^{0.098}$
${ }^{\text {ACP }}$ A 1281	0．25	${ }_{8}^{8 C 3387}$	0．170．	－		（N4006	0.10°
${ }^{\text {AC }}$ A 141 ，	0．18	${ }_{\text {BC3 }}$	${ }_{0} 17$.	8 Brx 36.12		2 24696	${ }_{0}^{0.14}$
${ }_{\text {AC }}{ }^{\text {A }} 122$	0.18	BCY70	0.12	¢Y $\times 38.300$	0.50	2 N 697	0.12
AC142K	0.28	вCY71．	0.18	8Y $\times 38.600$	0.55	$2{ }^{2} 706$	0.10
AC176	0.18.	BCY72	0.12	8Y 338.900		2 N 929	0.14
AC178k	0.25	B0115	${ }^{0.358}$	Brx38－120	0．as	${ }^{2} \times 1330$	0.14
${ }^{\text {ACC187 }}$	0.18	B0131	0.38			$2{ }^{2} 1131$	0.15
${ }^{\text {a Cli }} 8$	0．28	${ }^{80} 135$	${ }_{0}^{0.36}$	${ }_{82 \times 83}$ or		2 N 1304	0.20
	0.25	80136	0.39	Sefies		${ }_{2 N 1305}$	0.20
${ }_{\text {AD }}{ }^{\text {A } 140} 8$	0.80	B0137	${ }_{0.40}$	Zeners	0.11	2N1711	0.18
40142	0.50	B0， 38	0.48	C106A	0.40	2N2102	4
AD143	0.46	B0139		C1068	0.45	2N2369	0.14
AD149	0.45	B0181	0.68	C1060	0.50	89A	14
${ }^{\text {AD1 }} 161$	0.35	B0182	0.92	C106F	0.35	$2{ }^{\text {N2484 }}$	18
${ }_{\text {AD1 }} 162$	0.35	80183	0.97.	CRSI 105	0．28	2 N 2646	0.50
${ }^{\text {ALL }} 102$	${ }^{0.958}$	${ }_{80233}$	${ }^{0.48 .}$	CRS ${ }^{\text {che }}$	${ }^{0.38}$	${ }_{\text {2 }}$	0.22
${ }_{\text {AF } 114}$	0.20	B0237	0．55＊	CrS $1 / 40$	0.40	2N2926R	0．10 ${ }^{\text {c }}$
AF115	0.20	BD238	0.60	CRS 1／60	0.68	2N29260	0.0
AF116	0.20	80184	1.20	Cas3．05	0.34	${ }^{\text {N29267 }}$	0.09
AF117	0.20	Bor20	0.80	CRS3．10	0.48	${ }^{2 N} 2926 \mathrm{G}$	$0.10^{\text {－}}$
AF118	0.50	Borsi	${ }^{0.50}$	CRS3．20		$2{ }^{\text {N3053 }}$	0.15
${ }_{\text {AF }}{ }_{\text {AF } 239}$	${ }^{0.33}$	BOY61	${ }_{0} .65$	CRS3．60	${ }_{0.85}$	－	0.80
ac107	0.14	Bor62	0.65	MJ480	0.80	2 N 3440	0.56
BC1078	0.16	8FF78	0.38	M 4481	1.08	${ }_{2}{ }^{\text {N3442 }}$	1.20
${ }_{8 C 108}$	0.13	8F179	0.30	MJ490	0.90	2 N 3525	0.75
BC109	0.14	8FF94	0.10^{-}	MJ4910	1.15.	2 N3570	0.30.
	－18．	8FF195	${ }^{0} 10^{\circ}$	M	${ }^{0.80}$	2N3702	． 10°
BC125	$0.18{ }^{\text {a }}$	BF197	0.12	MJE520	0.45	2 N 3704	0.10
${ }_{8 C 128}$	0.20°	BE224J	$0.18{ }^{\text {P }}$	MJE52	0.55.	2N3705	0.10°
	${ }^{0.28}$		${ }^{0.17}{ }^{0.30}$	OAS	${ }^{0}$	${ }_{2}$ N3706	0．10．
${ }_{8 C 143}$	0.23	日F 258	0.35	0491	0.08	2×3714	1.08
BC144	0.30	BF337	0.32	OC4：	0.15	2N3715	1.18
${ }^{\text {BC } 147}$	${ }^{0.09}{ }^{\text {．}}$	BFW60	$0.1{ }^{\circ}$	0 C 42	0.15 ．	${ }^{2}$ N3776	1.25
${ }^{81} 148$	${ }^{0.000^{\circ}}$	8	${ }^{0.28}$	OC44	－ 0.12	2N3772	1.80
－	${ }_{0} .28$ ．	88×30	${ }_{0.23}$	OC70	0.10	${ }_{2 \text { N3773 }}$	
${ }_{\text {BC }} 153$	0.18.	Bfx85	0.25	0 C 71	0.10	2 N 3819	0.28
${ }^{\text {BC1 }} 157$	$0.08{ }^{\text {P }}$	日fx88	0.20	OC72	0.22	$2{ }^{2} 3904$	0.16°
${ }^{81} \mathrm{CCH}^{58}$	${ }^{0.09}{ }^{\text {P }}$	BFF50	0．20		${ }_{0}^{0.14}$	－	${ }^{0.15}$
－${ }_{8 \text { 8C159 }}^{8150}$	${ }^{0.092}$	${ }_{\text {Bry } 52}$	0.19	${ }_{5 c}$ S008	0.81		${ }^{2}$
${ }_{\text {BC，}} 161$	0.38	BrF64	${ }^{0.35}$	SCCOOD	0.98	${ }^{2 N 4348}$	1.20
BC1688	0.08	BFF90	${ }^{0.38}$	SCCOF	0.68	${ }^{2} \mathbf{N A 8 8 7 0}$	0.35
${ }^{81} 182$	0.11.	BR100	0.20	Sctia	0．85	$2 \mathrm{Na871}$	${ }^{0.35}$
$\frac{8 C 182 L}{\text { BCi }}$	${ }^{0.10^{*}}$	${ }^{\text {BS } \times 19}$	${ }_{0} .48$	${ }_{\text {SC410 }}$	${ }_{0.85}$	2N4919	${ }_{0} .50$
${ }^{\text {BC1 }} 1836$	0．10＇	${ }_{85 \times 20} 8$	0．16	${ }_{\text {SCT }}$ 1F	0.60	${ }_{2} 2 \times 4922$	0．68：
	${ }^{0.111 .}$	${ }_{\text {BSx }}^{\text {Bra }}$	0.20 0.12	${ }_{\text {TIP }}^{\text {STPA }}$	0．44	2N4923	${ }^{0.64 .}$
	0．11．	B7106	1.00	TIP30A	0.52		$0.25 \cdot$
BC212	0.11.	B71107 BT108	1.60	TTP31A	${ }^{0.54}$	${ }_{2} 215082$	${ }^{0.22^{\circ}}$
	0．11．	8t108	1．60	${ }_{\text {tip }}$	${ }_{1.05}^{0.64}$	（	${ }_{0.65}$
BC2134	$0.12^{\text {－}}$	88116	1.00	TIP44A	0．68		
${ }_{\text {BCO }}$		8u105，	1.80	TiN2069	0．14		
日C237	$0.16^{\text {－}}$	02	${ }^{1.000^{\circ}}$	1 N2070	0.18.		
BC238 BC300	0.16^{+8} 0.34	BU126	1.60	1 N400 1 1 N4002	$0_{0.05}^{0.04}$		

DIGITAL DISPLAYS E LED＇S

$\begin{aligned} & \text { DL704 } \\ & \text { DL707 } \end{aligned}$	$\begin{aligned} & 99 p \\ & 09 p \end{aligned}$	$\begin{aligned} & \text { DL747 } \\ & \text { DL7550 } \end{aligned}$	$\begin{gathered} \mathrm{E} 1.76 \\ \mathrm{E1}, 76 \end{gathered}$	2 RED LED ONLY GREEN CLEAR	${ }_{18}^{13 p}$

VAT－Please add 8% except items marked＊which are 25%

[^4]ALLCARRIAGE QUÖTES GIVEN ARE FOR 50－MILE RADIUS OF LONDON only．

RACAL RA17 Front Panels：$£ 5 . \mathrm{El}$ post
QMETER：$\overline{30} \bar{M} \overline{\mathrm{H}}-20 \overline{0} \mathrm{M} \mathrm{Hz}$ ．$\overline{\mathbf{E} 55}$ ．Carr．$£ 1$ ．
MUIRHEAD PHASEMETER TYPE D729：A．M．E95．00．C̄arr．£3．00．
CT． 420 SIGNAL GENERATOR： $200-8000 \mathrm{c} / \mathrm{s}$ Variable tuning．Two fixed frequencies 9000 and 10,000 ．Internal calibrator $100 \& 500 \mathrm{c} / \mathrm{s}$ ．$£ 75$ each carr．$£ 2$ ． NOISE GENERATOR TF－1106：Frequency 1 to $200 \mathrm{Mc} / \mathrm{s}$ Direct noise factor calibration．Output impedance 70 ohms $\mathbf{£ 6 5}$ each．Carr．$£ 1.50$ ．
MW－59 UNIVERSAL KLYSTRON POWER SUPPLY：£85．Carr．£3．
TF－1278／I TRAVELLING TUBE WAVE AMPLIFIER：$£ 125$ ．Carr $£$
BPL A．C．MILLIVOLTMETER TYPE VM．348－D Mk．3： 2 millivolts－ 2 volts， 6 ranges．£30．Carr．£1．
CAWKELL REMSCOPE TYPE 741 ：Memory scope．＇as new＇cond． $\mathbf{£ 1 5 0 . 0 0}$ ．
MANSON SYNTHESISER Q115－URC： $2-30 \mathrm{mc} / \mathrm{s}$ ．£I75．00．
FIREPROOF TELEPHONES：$£ 25.00$ each，carr．£1． 50.
POWER UNIT： $110 / 230$ volts a．c．input． 28 volts d．c．at 40 amps output． $\mathbf{E 3 0 . 0 0}$ each，carr．£3．00
SMOOTHING UNIT（for the above）：$£ 10.00$ each，carr．$£ 2.00$
X－BAND MODULATOR CALIBRATOR TYPE MC－4420－X：Mnfr．James Scott． £125 each．Carr．£1．
BACKMARD WAVE OSCILLATOR TYPE SE－125： 6.3 heater， 105 V Anode 7.9 mA ．Mnfr．Watkins \＆Johnson． $\mathbf{E 8 5}$ each．Carr．£1

TEKTRONIX TIME MÄRËGENERATOR TYPE 180－S1：5， $10,50 \mathrm{MHz}$ ．$£ 65$ Carr．$£ 2$.
ROTARY INVERTĒRS：TैTPE PE． 218 E －input $24-28 \mathrm{~V}$ d．c．， $80 \mathrm{Amps} .4,800 \mathrm{rpm}$ ． Output 115 V a．c． 13 Amp $400 \mathrm{c} / \mathrm{s}$ ．1Ph．P．F．9．£20．00 each．Carr．£2．50．
FREQUENCY METER BC－22l： $125-20,000 \mathrm{Kc} / \mathrm{s}$ complete with original calibration charts．Checked out，working order $£ 20+£ 1.50$ carr．
COMPUTER STABLĹESÉD PÖWER SUPPLY： $19^{\circ \prime}$ rack fitting．Input 200－240v a．c．Output 6 volts at 25 amps ． $4^{\prime \prime}$ meter $0-8$ volts $0-25$ amps．$£ 35.00$ each，carr E3．00．
SORENSEN VOLTAGE REGULATOR：Input $19 \overline{0} / 260$ volts a．c．Output $220 / 2 \overrightarrow{240}$ volts a．c． 1000 watts．$£ 40.00$ ，carr．$£ 3.00$ ．
EVERSHED SAFETY OHM．METER：Max 10 Ma ．Test pressure 30 v ．Complete in leather case．$£ 25.00$ each．post $£ 1.00$ ．
AVO SIGNAL GENERATOR：200／250 volts a．c．Fréquency range 6 bands 50 Hz to 80 MHz ．$£ 25.00$ ，carriage $\boldsymbol{\ell} 2.00$ ．
FYLDĒ AMPLIFIERSTYPE 154 BDM：Rack mounted $3 v$ d．c．and power supply FE． 500 ．TP．£65．00，carr．$£ 2.00$ ．
STC ATTENUATORS 74600A \＆B：Push－bution selectors 0.9 db 750 hm ．and 0.90 db 75 ohm．Housed in steel case $11^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime}$ ．$£ 25.00$ each，carr．$£ 1.50$ ． AÜTOMATIC VOLTAGE STABILIZERS：Input $207-242 \mathrm{v}$ a．c．Output 230 v a．c． at 2.80 amps．$£ 17.50$ ，carriage $£ 1.50$ ．

ALL U．K．ORDERS：SUBJECT TO，VALUE ADDED TAX．

Builiditrousedf?

THE NATURAL FOLLOW-ON - THE TEXAN FM TUNER KIT!

all the electronic excitement you could wish for! An up-to- The-minute game. Plugs Swich on And vou'te away:
 or hole-in-the wall Absolutely
sate. For you Youi childien. And your TV. Mains powered.
HENRY'S PRICE-ONLY £29.50
WHATEVER YOU DO, DON'T FORGET YOUR LATEST

404/6 EDGWARE ROAD, LONDON W2 01-402 8381

LOWEn SMLES FLOOR, 231.TOTTENHAM CT. RD., LONDON W1 01-636 6881

TRANSFORMERS
ALL EX-STOCK - SAME-DAY DESPATCH

MAINS ISOLATING

VAT 8\% 12 and/or 24-VOLT
\qquad

50 VOLT RANGE
HIGH VOLTAGE
MAINS ISOLATING
PRI $200 / 220$ OA $400 / 440$

PRI $200 / 220$ OR $400 / 440$
SEC $100 / 120$ OR $200 / 240$
SEC 100/120 OR 200/240

VA	Ref.	£.37	P
60	243	4.37	97
350	247	10.93	1.41
1000	250	$\mathbf{2 6 . 3 1}$	BRS
2000	252	$\mathbf{4 4 . 1 2}$	BRS

ON-SITE TOOL ISOLATORS

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS ALDGATE \& LIVERPOOLST

A．Marshall ILondon）Ltd Dept：WW

Telricklewood Broadway London NW2 3ET Tel：01－452 0161／2 Telex． 21492
\＆85 West Regent St Glasgow G2 2QO Tel：041－332 \＆ 133 \＆ 1 Straits Parade Fishponds Bristol BS $1621 \times$ Tel： $0272654201 / 2$
\＆ 27 Rue Danton Issy Les Moulineaux Paris 92 Tel 6442356
Calalogue price 25p Trade and export enquiries welcome
OUR RANGE COVERS OVER 7，000 ITEMS THE LARGEST SELECTION IN BRITAIN

TOP 200 IC＇S TTL CMOS \＆LINEARS

CA 3020 A
CA 3018 A

$4.48 \mathrm{SN} / 448$ －すinwin

POPULAR SEMICONDUCTORS

$2 N 3820$
$2 N 8404$
2
刀口内口内品

P．F．RALFE 10 CHAPEL ST．LONOON NW1． Phone 01－723 8753

SIGNAL GENERATORS
MARCONI TF8OID／IS． $10-480 \mathrm{mHz}$ P．O．A．
 MARCONI TF8OIB／2S．$\quad 10-480 \mathrm{mHz}$ E225． HGN MS3／U．9．7－11．9 and／／－10Y mHz ．AM／FM －ADVANCE SG63D．AM／FM $7.5-230 \mathrm{mHz} \mathbf{£ 1} 25$
RACAL／AIRMEC 201A． $30 \mathrm{kHz}-30 \mathrm{mHz}$ ．As new．P．O．A
ADVANCE SG2I VHF Square－wave generator $9 \mathrm{kHz} \cdot 100 \mathrm{mHz} . £ 25$ ．

T－TC－T－TF995A2／M AM／FM

CO－AXIAL CHANGE OVER sockets（ 3 off ）Suitable Ior frequencies up to 1 GHz ． $48 \mathrm{VD.C}$ coll Plugs available at
$\mathbf{6 5 . 5 0}$ each
PRINTED CIRCUIT MOTORS． Manufactured in S by Photocircuits
Corp 24 V D C 2.000 rpm 14 cms diameter These are quality made．high precision motors offered at a fraction of ist price Only $\mathbf{8 8 . 5 0}$ each
＂WEE MEGGERS＂． 250 V Insulation
Testers Good working condition
$\mathbf{£ 8 . 5 0}$ ．

＇MUFFIN＇INSTRUMENT FANS． Manufactured in Holland by Rotron． Dinis $4.5 \times 45 \times 15$ ins this is a practsion cooling fan，very quiet rurim．g specially designed for the cooling of electronic equipment． amplifiers．etc $115 \vee 50 \mathrm{~Hz}$ uperation drawing only 11 Watts the list pris from Rotrons is over +10 eadeh O_{4} ： price brand new only $£ 4.50$ each

MINIATURE DEAC NI－CADMIUM batterles，type 70 DK 3 cells 11 packagr
making 37 Volts $25 \times 17 \times 15 \mathrm{~mm}$ craly 75 p post pald

ADVANCE type 63A AM／FM R F Signa $\begin{array}{lll}\text { generators } & 75 & 230 \mathrm{mHz} \text { Deviation } \\ \text { and } & 0.75 & \mathrm{kHz}\end{array}$ X－sweep output Crystal calibrator scope output £75．00．

MARCONI TF995A2／M AM／FM R．F．SIGNAL GENERATORS． $1.5-220 \mathrm{mHz} .0-100 \mathrm{kHz}$ Deviation． $1 \mu V-100 \mathrm{mV}$ output．Sold in excel－＇ lent condition．P．O．A． METRIX 210 WOBBULATORS． 025 mHz Sweep width $05-20 \mathrm{mHz}$ Output 100 mV attenuable in steps of 10 to 10 uV Last tew of these left at only $\mathbf{£ 1 5 . 0 0}$ each to callers only． EMI oscilloscopes model WM 16 with type $7 / 1$ WBA plug－in unit Sup－ phed in perfect condition complete with trolley $£ 125.00$ ．

20－way BPO Jack strips to accept 316 type Jack plugs．Also quantity of 316 plugs available．All good condition

Centritugal blowers by wOODS． 8 inch snall type Outlet $23 / 4 \times 21 n 24 \mathrm{~V}$ DC 28 A .2400 rpm Grey stove fimish All brand new Price is $£ 10.50$＋ carriage
GENTS／FRIEDLAND fire alarm befls Operating voltages $12 \mathrm{v} \mathrm{dc} / 24 \mathrm{v}$ dc All in as new condition and tested before despatch．Sizes $6 / 8 / 12$ meh Prices $\mathbf{£ 4 . 8 0}, \mathbf{£ 5} .20$ and $\mathbf{£ 6 . 5 0}$ resp
COMPUTER PERIPHERALS．Tape punches． 8 hole by Westrex and other well known manufacturers Tape readers by Elhot All virtually brand new Prices are better thon one half the maker s Write or phone for quotation
An pxreptronat buy enables us to offer Gdoblisedt and renulated power supplies by APT a1 a very theap proe： 16.24 v dc（a） 10 Amps，and 890 V dc（a） A Both supples are extremely stable with kow nople voltage Price each $£ \mathbf{£ 8 . 5 0}$ + carrage

MISCELLANEOUS TEST EQUIPMENT

MARCONI TF1400S double pulse generator with TM6600／S secondary MARCONI TF791D devıation meter， 4.1024 mHz 0.100 kHz deviation MARCONI 455E Wave Analyser $£ 120$.
MARCONI TF2600 Valve Voltmeter 1 mV －300V Excellent． $\mathbf{£ 7 5}$
ROHDE \＆SCHWARZ USVD calibrated receiver $280-940 \mathrm{mHz}(4600 \mathrm{mHz})$ LEVELL TG200 DM．RC Oscillator，c／w case． $\mathbf{£ 6 5}$. ROHDE \＆SCHWARZ UPV mill－voltmeter BÑIU913（late type）

COSSOR 1453 「ruc RMAS millt voltmeter Excellent， $\mathbf{E} 75$.
AIRMEC TYPL 210 modulation meter Excellent condition
ROHDE \＆SCHWARZ SCP．VHF Signal Generator $1000-1900 \mathrm{mHz}$ MARCONI ty＇se 「FY 30 Impedance Bridge $\mathbf{\$ 8 5 . 0 0}$ ． GERTCH Pli．．A．Alsiov Meters Range 1 mV － 300 V ．in 12 ranges． SOLARTRON w Hutu：type CO $54625 \mathrm{~Hz}-500 \mathrm{kHz}$ ．£30．00． GAMBRELL Precision 4 Decade Resistance Box．1－11， 110 ohms． $£ 24.50$
MARCONI TF329G Q－Meter $£ 95$

THE new WORLD OF AUDIO

1976 INTERNATIONAL AUDIO FESTIVAL \& FAIR OLYMPIA LONDON
13th - 19th September (inclusive)

There is a whole new deal for exhibitors at the
1976 Audio Festival \& Fair. A new deal designed to ensure that participation spells success in every way. The formula has been created by a new management team comprising people with a real understanding of $\mathrm{Hi}-\mathrm{Fi}$ and people possessing deep experience and expertise in staging major exhibitions.

Plans
for the
1976
Audio
Fair
include:-

new - earlier dates
new - extended trade
only period
new - floor plans
new - cost structure
new - Biggest ever
all-media
promotion

plus -
The backing of all the key
IPC Business
Press
publications

IT'S SOUND SENSE FOR YOUR COMPANY TO BE THERE
Complete and post the coupon below for more details

Please send me a brochure with details for intending exhibitors at the 1976 Audio Festival \& Fair.

Address
「elephone number

[^5]

WW-074 FOR FURTHER DETAILS

SINCLAIR CALCULATORS ${ }^{\star}$ Cambridge E7.95. Cambridge $\%$ £8.85. Scientific £11.95. Cambridge Scientific £14.95. Oxiord 100 £6.95. Oxiord 300 £16.95. Programmable Scientific $£ 25.95$ Mains adaptors for programmable and Oxfords $£ 3.19$ for Cambridge and Scientific £3.15.	WATC fully ass strap $\mathbf{£ 2 0}$
S-DECS AND T-DECS* S-DeC E2.24 T-DeC $£ 4.05$ u-DeC A $£ 4.45$ ч.DeC B $£ 7.85$ N -DeC £ 10.45 IC carriers: 16 dil: plain $£ 1.07$ With socket $\mathbf{£ 2 . 2 1}$ 10 T05 plain 99p. With socket £1.95. SSTI 60p. SSUI 60p. SSN + 80p.	display, clock chip and all other pants Displays hours and minutes separated by pulsating colon Kit $£ 12.50$. Buitt $£ 13.50$
	SINCLAIR IC20 IC20 10W + 10W stereo amp kit with printed circuit $£ 4.95$. PZ20 Power supply for above $£ \mathbf{£ . 9 5}$. VP2O Volume tone control and preamp kit f7.95. SP20 10 W 4 Ohm speaker $£ 2.95$. CS20 Case for IC20 $£ 2.95$. Send sae for free leaflet.
BATTERY ELIMINATORS 6.WAY SPECIAL. 3. $41 / 2.6,71 / 2$, at 500 mA with unique 4 -way multi-jack connector and free matching socket $\mathbf{f 5 . 8 0}$. 6-WAY bOUBLE RADIO MODEL. Similar 10 above, but with press stud baltery connectors. $3+3,4 \frac{1}{2}+4 \frac{1}{2}, \quad 6+6$ $71 / 2+71 / 2.9+9,12+12 \mathrm{~V}$ at 250 mA . Can also be used to give 15.18 and 24 V single £6.80. 3-WAY MODEL* Switched output of $6,71 / 2$ and 9 V at 250 mA with 4 way multi-jack connector and free matching socket $£ 2.95$. RADIO MODELS 50 mA with press-siud battery conneciors for radios. etc $6 \mathrm{~V} \quad £ 2.95$. 9v $£ 2.95$. $41 / 2+41 / 2 V £ 4.45 .0-6$ £ $4.45 .9+9 V$ £4.45. Also 9 V 300 mA £3.95. CASSETTE from the on cassette lape recorders plug 50 mA model $£ 3.45,300 \mathrm{~mA}$ model £3.95. CAR CONVERTORS Input 12 V DC Outpui $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC 1 A regulated £3.95*.	SINCLAIR PROJECT 80 FM tuner £13.25. O16 £10.95. PZ5 £3.95. PZ6 £8.70. PZ8 £9.10. Trans for PZ8 £5.60. Z40 £5.75. $\mathbf{Z 6 0}$ discontinued but we stock a similar 30w equivalent anp $£ 10.30$. Stereo 80 £11.95. Project 8050 £18.95. Quadraphonic decoder $£ 14.95$.
	JC12 AMPLIFIER 6 W IC audio amp with free data and printed crcuit £1.95*
	Includes extra pars tor the pcb and volume and tone controls Mono £2.29. Stereo £4.95.
	JC12 POWER KIT Supplies 25 V 1 Amp. $£ 3.25$
	JC12 PREAMP KITS Type ${ }^{1}$ for magnetic pickups. mics and luners. Mono £1.55. Siereo £3.0. Type 2 for ceramic or crystal pickups Mono 85p. Stereo $£ 1.70$.
	LOUDSPEAKERS FOR JC12 8in x 5 in B Ohms. 5 W £2.50. Send SAE for tree leaflet
Post 30 p on orders under $\ddagger 2$. otherwise free Prices include VAT. (Overseas cusiomers deduct 7% on items marked *. otherwise 20%.) Official orders from schools, etc welcome. SWANLEY ELECTRONICS DEPT. WW, PO BOX 68, SWANLEY, KENT BR8 8 TO	

DEPT. WW, PO BOX 68, SWANLEY, KENT BR8 BTO

KINNIE COMPONENTS
10, NELMES WAȲ, HORNCHURCH ESSEX RM11 $20 Z$
HORNCHURCH 45167

CIRCUIT BOARD
P.C.B. 1/16. 1 oz . COPPER

FORMICA
Dim. 8.4×7.7 in 3 pcs., 80p
Dim. 9.4×8.1 in 3 pcs., 90p
Dim. 10.1×7.9 in 3 pcs., $\mathbf{£ 1 . 0 0}$
Dim. 13.1×9.4 in 3 pcs., $£ 1.20$
Dim. 17.0×9.0 in 2 pcs., $£ 1.20$
Post \& Packing 35p each pack
BARGAIN PACK
10 pcs. $10.1 \times 7.9 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals £3.10 P.P. 65p.

FIBRE GLASS P.C.B.

Dim. 6×6 in. 50 p each
Dim. 12×6 in. 75 peach
Dim. 12×12 in. $\mathbf{£ 1 . 3 0}$ each
Equals less than $\mathbf{1 p}$ sq. in.
Post \& Packing 15 p per sheet.
RESIST COATED P.C.B. FORMICA
10.1×7.9 in. 65p ea
13.1×9.4 in 75p ea.
RESIST COATED P.C.B. FIBRE GLASS
6×6 in. 65p ea
12×6 in. $\mathbf{£ 1 . 3 5}$ ea.
$12 \times 12 \mathrm{in} \mathbf{£ 2 . 0 0}$ ea
Post \& Packing 10 p per sheet
BLUE P.C.B. INK
Etch resist use with any pen. Much cheaper than ready loaded pens.
50 c.c. 55p. P.P. 10 p.
FERRIC CHLORIDE ETCHING XTALS
1 lb - 1 litre pack. 70p P.P. 35p
$5 \mathrm{lb}-5$ litre pack, £2.20 P.P. 65 p.

EDGE CONNECTORS. 54 WAY

1 Vero size etc. Can be cut to any length 55p P.P. 10p

BARGAIN PACK FIBRE GLASS P.C.B.

200 sq. in. all usable pieces $£ 1.75$ P.P. 25 p

PRINTED CIRCUIT KIT

The no frilis all value kit. Containing 4 pcs $8 \times$ 7 Formica laminate. 1 pce 6×6 Fibre glass laminate, 1 lb Etching Crystals, 50 ccc
Resist ink, with instructions.
£2.40 P.P. 65p

TELEPHONE DIALS
 (New) E1 P.P. 25p.

EXTENSION TELEPHONES
(Type 706). Various colours £3.95 P.P. 75 p.

12V MINIATURE

UNISELECTOR
11 ways. 4 bank (3 non bridging, 1 homing) £2.50 P.P. 35p.

UNISELECTORS

(New) 25 way. 12 Bank (Non bridging), 68 ohms. £6.50 P.P. 50 p.

MINIATURE UNISELECTOR

(Ex. Equip.). 6 Bank (5 non bridging. 1 bridging) 100 ohms $24-30$ V.D.C. $£ 1.50$ P.P. 50p

1,000 TYPE KEY SWITCHES

Single 2×2 c/o Locking. 50p. P.P. 10p Bank of $4-2 \times 4 \mathrm{c} / \mathrm{o}$ each switch (one biased) £1.20 P.P. 25p.

MULTICORE CABLE

6 -core (6 coiours) $14 / 0076$ Screened P.V.C. $\mathbf{3 0 p}$ per yard: 100 yards at $\mathbf{£ 1 6 . 5 0 ~ P . P . ~ 2 p ~}$ a yard, 7 -core (7 colours) 7/22 mm. Screened P.V.C. 30p per yard; 100 yards £16.50 P.P. 4p per yard

RIBBON CABLE

(8 colours); 10m. £1.65. P.P. 25p. 100m. 8 -core $\times 14 / 0.19 \mathrm{~mm}$. Bonded side by side £11.50 P.P.£1

P.T.F.E. CONNECTING WIRE

1/20 Black or White 100 m . Drum $£ 2.50$ P.P. 30p.

H.D. ALARM BELLS

6 in . Dome $6 / 8 \mathrm{v}$, d.c. Heavy cast housing for exterior/interior use. £3.75 P.P. E1. Connecting wire (twin/twisted) $220 y$ d. reel £3 P.P. 75 p

HIGH CAPACITY ELECTROLYTICS
$250 \mathrm{mfd} / 63$ volt, 20p P.P. 8p. $1,000 \mathrm{mfd} / 100$ volt. 70p P.P. 25p $2.200 \mathrm{mfd} / 100$ volt, 90 p. P.P. 25 p $4.700 \mathrm{mfd} / 25$ volt, 65 p. P.P. 20 p. $6,800 \mathrm{mfd} / 16$ volt, 50p. P.P. 15 p . $10.000 \mathrm{mfd} / 25$ volt, 75p. P.P. 25p. $25,000 \mathrm{mfd} / 40$ volt, $£ 1.25$. P.P. 30 p . $47.000 \mathrm{mfd} / 40$ volt, $£ 2.00$. P.P. 50p $100.000 \mathrm{mfd} / 10$ volt, $\mathbf{£ 1 . 5 0}$. P.P. 50 p $160,000 \mathrm{mfd} / 10$ volt, £2.00. P.P. 50p.

OVERLOAD CUT OUTS

Paner mounting $800 \mathrm{M} / \mathrm{A} 1.8 \mathrm{amp} .10$ amp. 55p ea.

SMITHS GEARED MOTORS 240V AC

3 rev. per min. £1.50. P.P. 25p
4 rev. per min. £1.50. P.P. 25p
6 rev. per min. £1.50. P.P. 25 p.
2 rev . per hour. £1.50. P.P. 25p.
6 rev. per hour. £1.50. P.P. 25p

HIGH-SPEED MAGNETIC COUNTERS

4 digit (non reset) $24 v$ or $48 v$ (state which)
$4 \times 1 \times 1$ in. £1. P.P. 20p
5 digit (non reset) $24 \mathrm{v} £ 1.50$. P.P. 20p.
3 digit $12 v$ (Rotary Reset) $21 / 4 \times 13 / 4 \times 11 / 4$
£1.40. P.P. 15 p
6 digit (Reset) 220v. a.c. $£ \mathbf{3} \mathbf{5 0}$. P.P. 25p
RESET COUNTER (BRAND NEW)
6 digit 24v. 25 I.P.S. £5 P.P. 25p

MINIATURE METERS

500 micro-amp (level stereo beacon, etc) scaled half back/half red. Size 1×1 in. 65 p. P.P. $15 p$

PANEL METERS

$23 / 8$ in. $\times 17 / 8$ T8 500 mA
T1 $50 \mu \mathrm{~A}$ T9 1 Amp
T2 $\quad 100 \mu \mathrm{~A} \quad$ T10 50v.a.c.
T3 $500 \mu \mathrm{~A}$ T11 300v.a.c.
T4 1 mA T12 50/0/50 fla
T5 10mA T13 100/0/100 mA
T6 50mA T14 500/0/500 uA
T7 100 mA All at $£ 3.75$. P.P. $15 p$

PANEL METERS

$41 / 2$ ins. $\times 31 / 4 \quad$ D3 $\quad 200 \mathrm{LA}$
D1 $50 \mu \mathrm{~A}$ D4 $500 \mu \mathrm{~A}$
D2 $100 \mu \mathrm{~A} \quad$ All at $£ 4.60$. P.P. $15 p$

S.T.C. CRYSTAL FILTERS

(10.7Mhz) 445-LQU-901A (50 Khz spacing), £3. P.P. 20 p.
445-LQU-901B (25 Khz spacing). £4. P.P 20p. 10.7 Mhz Canned I.Fs. Size $1 \times 1 / 2 \times 1 / 2$ in. (with data) 65p. P.P. 10p.

3 GANG TUNING CAPACITOR
8.5 PF, to 320 P.F. 80p. P.P. 20p
V.H.F./U.H.F. POWER TRANSISTORS
(type BLY 38). 3 watt output at $100-500$ Mhz. £2.25. P.P. 10p.
SIEMENS MINIATURE RELAYS
$6 \mathrm{v} .4 \mathrm{c} / \circ$ 65p. $24 \mathrm{v} .2 \mathrm{c} / \mathrm{o}$ 50p.
MINIATURE RELAYS
$(13 / 8 \times 11 / 4 \times 1 / 2) 24$ v. $4 \mathrm{c} / \mathrm{o} 35 \mathrm{p}$. P.P. $5 p$
MAINS RELAY 240v.a.c.
$3 \mathrm{c} / \mathrm{o} 10 \mathrm{amp}$. contacts $\mathbf{8 0 p}$. with base P.P 20p
24v a.c. RELAY [PLUG IN]
3 pole c/o 75p. P.P. 15p
2-pole c/o 55p. P.P. 15p
S.C.R

1 amp. 400 P.I.V. 35p
5 amp .400 P.I.V. 40p

MINIATURE "ELAPSED TIME"

INDICATORS
(0.5000 hours) $45 \times 8 \mathrm{~mm}$ 75p. P.P. 15 p.

BULK COMPONENTS OFFER

Resistors/capacitors 600 new components £2.75. P.P. 36p
Trial order 100 pcs 75p. P.P. 20p.

D.C. SUPPLY

Input 240 v . a.c. giving $171 / 2 \mathrm{v}$ d.c. at $11 / 2$ amp (unsmoothed) $23 / 4 \times 21 / 2 \times 21 / 4 \mathrm{in}$. £2.25. P.P. 45p.

MINIATURE REED RELAY

$(1 \times 1 / 4) 12 \mathrm{v} .1 \mathrm{c} / \mathrm{o}$ 50p. P.P. 10 p

S-DECS AND T-DECS

S-DEC £1.90. T-DEC $£ 3.60$
U-DEC A £4.20. U-DEC B £6.90.
Post \& Packing 25p
H.T. TRANSFORMERS. Prim. $110 / 240 \mathrm{~V}$ Sec. $400 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}$ £3. P.P. 65 p
L.T. TRANSFORMER. Prim. 240v. Sec $27-0-27$ at $800 \mathrm{~m} /$ a. £2.35. P.P. 50p.
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$ Sec. 50 v . at 10 amp . £10. P.P. $£ 1.50$ L.T. TRANSFORMER. Prim. 240 v. Sec. 18 v at 1.5 amp . \& 12 v . at 1 amp . £2.25. P.P $65 p$.
L.T. TRANSFORMER. Prim. 240 v . Sec. 18 v 1 amp. £1.10 P.P. 35p.
L.T. TRANSFORMER. Prim. 240v. Sec. 12 v at 1 amp. £1 P.P. 25p.
L.T. TRANSFORMER Prim. $110 / 240 \mathrm{~V}$ Sec. $23 / 24 / 25 v$. at 10 amps £7. P.P.E 1 L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}$ Sec. $20 / 21 / 22 v$. at 8 amp . £6. P.P.£1.

TRANSFORMERS

L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{~V}$ Sec. $0 / 24 / 40 v$. at $11 / 2$ amp. (Shrouded) £1.95. P.P. 500
L.T. TRANSFORMER. Prim. 200/250v Sec. $20 / 40 / 60 \mathrm{v}$. at 2 amp . (Shrouded). £3. P.P. 70p
L.T. TRANSFORMER. (H.D.) Prim $200 / 250 \mathrm{v}$. Sec. 18 v . at 27 amp ; 40 v . at $98 \mathrm{amp}: 40 \mathrm{v}$. at $3.6 \mathrm{amp}: 52 \mathrm{v}$. at 1 amp ; 25 v . at 3.7 amp . $£ 17.50$. P.P. £ 2.50 . L.T. TRANSFORMER. Prim. 240 v . Sec. 20 v at 2.5 amp . £2. P.P. 65 p
L.T. TRANSFORMER ('C' CORE) $200 / 240 \mathrm{v}$. Secs. 1-3-8-9c. All at 1.5 amp 50 v . at 1 amp £2.50. P.P. 50 p .

T TRANSFORMER ("C" CORE) Prim. 120v/120v SECS. 1-3-9-20v. 10 amps £7.50. P.P.£1. 25
L.T. TRANSFORMER ('C' CORE) $200 / 240 v$. Secs. 1-3-9-27v. All at 10 amp . E7.50. P.P.£ 1.50
L.T. TRANSFORMER ('C' CORE 200/240v. Secs. 1-3-9-20v. All at 4 amp. £5.50. P.P. 75p
L.T. TRANSFORMER (' C '" CORE) $120 / 120 \mathrm{v}$. Secs. $1-3-9-9 \mathrm{v}$. All at 10 amp . E6.50. P.P. £ 1.50
L.T. TRANSFORMER (' C' CORE) $110 / 240 \mathrm{v}$. Secs. 1-3-9v. 10 amp. 35 v amp; $50 \mathrm{v} .750 \mathrm{M} / \mathrm{A}$ £6.50. P.P.£1.50

Etergery

Bargains in Semi-Conductors, components, modules \& equipment.

B-P.P Packs

Originated in 1959 by the Company's managing director, his were the first sami-conductor and component packs to be marketed in this country, and Industrial Pre-Packed Components". Today, Bi-Pre-Pak continues to occupy a position of pre-eminence in the supply of packs as well as a vastly extended range of products detailed in our latest 24 -page A. 4 size free catalogue. Send 10 p stamped large addressed

IT'S ALL IN OUR FREE CATALOGUE

Component Packs

YOUR SUPPLIERS FOR:
 Swithes., knobs. Ex.c.p.0. items. Aluminium Boxes. triacs. Thyiainis)
cataono sue and shop

Semi-Gondurtors

- TESTED AND GUARANTEEED PACKS

SN7490 integrated cricuits, 14 pin dual in line TIL iype Decade countet Gel one FREE, these are 60 O each in Singles. all the following are at 60p each pac

$\begin{aligned} & \text { TPG. } 5 \text { SN7400 inlegrated circuits. } 14 \text { pin dual in line TIL type } \\ & \text { Ouad } 2 \text {-input NANO gate Get one FREE, these are } 15 p\end{aligned}$ each dependant resistors 400 ohms light i megohm dark. 1/4"did. 102 and $\times B 112$ equivalent to $A C 126$. AC156. OC81/2. OC72 etc.

TP14 20 OC71 germanium PNP audio pre amp transistor, biack TP15 $20 \begin{gathered}\text { glass type } \\ \text { OC81 Germanium PNP audio oulput transistor white glass }\end{gathered}$

 TP19 100 Unmarked. usetul selection of many types, marked and unmarked TP20 10 Mullard OC45 tansistors. IF amp PNP germanum
TP23 $20 \mathrm{BFY} 50 / 1 / 2$ 2N696/7. 2 N 1613 elc. NPN siticon TP24 20 UnCoded COMPLEMENTARY TO PAK TP 24
BFY $6.2 N 2904 / 5$ etc. PNP silicon TO. 5 uncoded TP30 20 NPN silicon planar transistors. TO. 18 similar to BC108 TP31 20 etc. uncoded silcon planar transistors TO-18 similar to BC178 TP32 $20 \quad$ etc. uncoded 2 N 2926 sition plastic ransistors, yncoded and ungraded

- UNTESTED PACKS - 60p each Specially for keen bargain hunters

UT2 150 Germanium diodes. miniature glass rype
UT5 40 Zener diodes. 250 mW OAZ 240 range, average 50%
$\begin{array}{lll}\text { UT6 } & 25 & \text { Zood } \\ \text { Zener diodes. } 1 / 1 / 2 \text { watl iop hat type. mixed volitages } \\ \text { UT9 }\end{array}$
UT10 15 Power tranistors PNP germanium and NPN silicon. UT13 is inegrated circuits. experimenters pak. dual in fine TO. 5 . bul old types

OR FULI RANGES - SEE CATALOGUE

- Singles

BRIDGE RECTIFIERS Plastic encapsulated

power transistors

	Ve*	Watts	Ic Amps	Price
40p:	15	20	3	30 p
40N2	40	40	4	$3{ }^{3} \mathrm{p}$.
40P2	40	40	4	30 p .
90N1	15	45	4	$25{ }^{\text {P }}$
90 P 1	15	45	4	$25 p^{\text {. }}$
90N2	40	90	8	$35{ }^{\text {a }}$.
$90 \mathrm{P2}$	40	90	8	35p ${ }^{\text {c }}$

integrated circuits

Sundry

SIGNAL GENERATOR

of MW and IF Covers 550 KHz to 1.6 MHz for MW and 400 to
550 KHz for IF Fully portable Invaluable im AM repail and alignment jobs (p/p 40 p)
POCKET SIGNAL INJECTOR
 EX.G.P.O. Sin SIDECUTTERS Not new byi in pertect order. per parr EX.G.P.O. 6' LONG NOSE PLIERS

MAINS TRANSFORMERS		
MT6	6v 0 6v 100ma	E1.22*
MT12	12v012v50ma	E1.22'
SST9/?	9v lamp	£1.67
SS112/1	12 v 1 mp	¢2.05
SST18/1	18 v lamp	¢2.50
SST25/2	25v 2amp	¢3.00
SST30/2	30v 2 mmp	E4.25
SST35/4	35v 4 amp	¢5.50

Type	Sizes	Prich	
SSEC 6 wav	110	156 "	32.
SSEC 10	1140"	$156^{\prime \prime}$	50 p
SSEC 12	$2^{\prime \prime}$	$156^{\prime \prime}$	60p
SSEC 16	21/2"	$156^{\prime \prime}$	75p
SSEC 18	$3^{\prime \prime}$	$156^{\prime \prime}$	$85 p$
SSEC 22	- 31/2"	156 "	1.00

UHF TUNIR UNITS
Brand new by tamous manufacturer 625 lines. Channels $21-65$. Idead
for use as t sound recelvel With data
BоOKS
All free af VAT We carry very large stocks of technical books by Babani \& Bernard Publishers, by Newnes and Bulterwont as well as reference books from the Common Marker Eng/ish/German hiahan. All detalled in our

MONEY SAVER FOR CAR OWNERS
The Supet Spark Capacily Oischarge ignition Unit developed out of
our original ETI model fot which we have sold well over 9 oood enables
yout to enicy this system al a you to enicy this system at a truly economic price Facilities include
stmple adaption 10 pos or neg earih. immediare siwith baty stmple adaption to poss or neg earih, immediate swich back to
conventionat ignition. ant, burglar mmobilisation with all patis in iotality
enclosed strong metal case Very easy to fin and instatl With full enclosed strong, metal case
instructions $\left(\mathrm{P} / \mathrm{P} \mathrm{ad}_{\text {add }} 50 \mathrm{p}\right)$
KIT $£ 7.95$ READY-BUILT $£ 10.50$

X-44 POCKET SIZE R.F. CROSS HATCH GENERATOR nodel of which thousands are in reguta use. Size $150 \times 75 \times 50 \mathrm{~mm}$, strong plastic case with handie/stand, 4 push bution operation. 4 patierns Seit-contained line and frame generator and synchro pulse Synct Uses 4 alkainge type 1600 batis Blank raster tacılity. FOR COLOUR AND MONO. \square $£ 27.50$ \qquad

LOOK OUY NEXT MONTH FOR THE NEW
STERLING
SOUND MODULES

TERMS OF BUSINESS: VAT fates subjeci to alteration if decreed by
VAT at 25% must be added 10 total value of order. except for items marked of (8%), when orders except whete shown otherwise Min mum mail order acceptable - $£ 1$ Overseas orders. add E1 for postage And difterence will beecredted or charged PRICES Subject to alleration

To: BI-PRE-PAK, 220/222 WEST RD. WESTCLIFF-ON-SEA, ESSEX SSO 9DF

Please send
for which I enclose
inc. VAT
NAME
ADDRESS
is made to ensure coureciuess of information

HIGH POWER DC-COUPLED AMPLIFIER

\star UP TO 500 WATTS RMS FROM ONE CHANNEL

* DC-COUPLED THROUGHOUT
* OPERATES INTO LOADS AS LOW AS 1 OHM
* FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth
Power at clip point (1 chan) Phase Response Marmonic Distortion Intermod. Distortion Damping Factor Hum 8 Noise ($20-20 \mathrm{kHz}$) Other models in the range: D60-- 60 watts per channel

At least 110 db below 150 watts

DC-20kHz@ 150 watts +1 db , -0 db 500 watts rms into 2.5 ohms +0 . -15^{\prime} DC to $20 \mathrm{kHz}, 1$ watt 8Ω Below 0.05\% DC to 20 kHz Below $0.05 \% 0.01$ watt to 150 watts Greater than 200 DC to 1 kHz at 8Ω watts per channel

Slewing Rate Load impedance Input sensitivity Input Impedance Protection Power supply Dimensions D150-15

8 volts per microsecond 1 ohm to infinity
1.75 V for 150 watts into 80 ? 10 K ohms to 100 K ohms Short. mismatch \& open cct. protection $120.256 \mathrm{~V}, 50.400 \mathrm{~Hz}$ 19" Rackmount. 7" High. 93" Deep hannel

MACINNES LABORATORIES LTD

MACINNES HOUSE, CARLTON PARK INDUSTRIAL ESTATE, SAXMUNOHAM, SUFFOLX IP17 2NL TEL: (0728) 22622615
WW-056 FOR FURTHER DETAILS

Against fierce competition from American, Scandinavian and German products, Celestion won the Grand Prix award - which is given to only one product in the entire hi-fi component field each year - in the overseas products category of the 5th Japanese Stereo Components Grand Prix Contest with the new "UL 6" speaker system

UL 6 is the smallest speaker in the range of three, which has been developed to offer visual appeal, for those who wish to complement the "true" state-of-the-art experience that the Celestion sound brings,

with an appropriately attractive shape
UL - which means Ultra Linear and represents unlimited quality-gives the generous, open, expansive and "natural" sound that the Celestion Sound reproduction technology and precise engineering capability achieves for the enthusiast who strives for perfection.

Rola Celestion Limbed. Din works. Foxhall Road Ipswich. Suffolk IP38,JP \rightarrow Telephone loswich (O473) 73131

CelestionUL6beats

 the world'sbest inthe Japanese Grand Prix Contest!

EMPOMASOMIE electronics

Dept. 5, 56, Fortis Green Road Muswell Hill, London, N1O 3HN telephone: 01-883 3705

Wireless World Dolby ${ }^{*}$ noise reducer

Tiademark of Dolby Laboratories Inc
We are proud to announce the latest addition to our range of matching high fidelity units.

Featuring

- switching for both encoding (low-level h.f. compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions (as in USA)
- no equipment needed for alignment
- suitability for both open-reel and cassette tape machines
- check tape switch for encoded monitoring in three-head machines

The kit includes
--complete set of components for stereo processor

Typical performance

Noise reduction better than 9 dB weight ed
Clipping level: 16.5 dB above Dolby level (measured at 1\% third harmonic content)
Harmonic distortion 0.1 \% at Dolby level typically 0.05% over most of band, rising to a maximum of 0.12%

Signal-to-noise ratio $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output
Dynamic Range $>90 \mathrm{~dB}$
30 mV sensitivity
--regulated power supply components
--board-mounted DIN sockets and push-button switches
--fibreglass board designed for minimum wiring
--solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

PRICE: £34.40 + VAT

Calibration tapes are available for open-reel use and for cassette (specify which)
Price $£ 1.80+$ VAT*
Single channel plug-in Dolby ${ }^{(\text {TM }}$) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with all components

Price $£ 6.50+$ VAT
Single channel board with selected fet
Price $£ \mathbf{2 . 0 0}+\mathrm{VAT}$
Gold plated edge connector
Price $£ 1.27+$ VAT
Selected FET's $\mathbf{5 4} \mathbf{p}$ each + VAT, $\mathbf{9 6 p}+$ VAT for two, $£ \mathbf{1} . \mathbf{7 6}+$ VAT for four

Please add VAT at 25% unless marked thus*, when 8% applies

IITEEREK

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 20W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier: Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, etc), THD less than 0.1% at 20 W into 8 ohms. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section: uses Mullard LP1 186 module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono $\mathrm{S} / \mathrm{N} @$ $1.8 \mu \mathrm{~V}$. THD typ. 0.4%

PRICE: $£ 48.95+$ VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection- 85 dB . THD typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price
Mono £26.31 + VAT
With ICPL Decoder $£ \mathbf{3 0 . 5 8}+$ VAT
With Portus-Haywood Decoder
$£ 32.81$ + VAT

Sens. 30dB S/N mono @ $1.8 \mu \mathrm{~V}$
THD typically 0.4%
Tuning range 88-104MHz
LED sig. strength and stereo indicator

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the Mullard LP1186 RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE.

PLL stereo decoder IC
PRICE: Mono £25.55 + VAT
Stereo £28.65 + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successful
"TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiring

Typ. Spec. $20+20 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N 72 dB . Headphone output. Tape In / Out facility (for noise reduction unit, etc.). Toroidal mains transformer

PRICE: £30.94 + VAT
ALL THE ABOVE KITS ARE SUPPLIED COMPLETE WITH ALL METALWORK, SOCKETS, FUSES, NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

PUSH-BUTTON UNIT
$\mathbf{£ 3 . 5 0 + V A T}$

The 3001 pocket thermometer. more (Just a little (less for your money.) Big the, mometer capability in a diminutive, take it anywhere
 300 gms package. That is so special about the 3001 - Accuracy at better than +800 C the range $-50^{\circ} \mathrm{C}$ to - Bright-green. 8.2 mm display - Simple front panel thumb switch selection of either continuous or flash display. - Designed for use with - Operates up to 7 hours with either diy batteries or ecnargeable cells Our full colour brochure tells all. Please use our enquiry You'll see how much more you get for your money.

Comark

'WW-107 FOR FURTHER DETAILS

urblaid Alatimins

ICs LINEAR 709 (8 PIN DIL) ${ }^{2}$.40p* 74118 PINDIL. 33 p*		ZENERS 1400 mw BZX83 BZY 88 3V3 9V6 3v9	VOLTAGE		${ }_{125}^{125}$ Red (4.ke THL)	
		3 V 3 9v6 3v9				20p
LM 380	1.29*	$4 \mathrm{~V} 3 \mathrm{VV7}^{5 \mathrm{~V} 1}$	$5 V^{1 / 2}$ A	1.35	125 Gin	1209
NE 555	60p ${ }^{\text {* }}$	$5 \mathrm{~V} 6 \mathrm{VV2} 2 \mathrm{~V} 5$	9 $2 \mathrm{~V} 1 / 2 \mathrm{~A}$	1.35	0125")	27p
SN76013N	1.57p*	7V5. 8V2 9V1	$15 \mathrm{~V} 1 / 2 \mathrm{~A}$	1.35	TIL 200 Red	25p
SN76023N	1.57p*	10 V 12 V 13 V	$5 \mathrm{~V} / \mathrm{A}$	175p	THL 200 Gm	290
TBA 800	1.35p*	15 V 18 V 30 V	12 V 1 A	175p	1258 Red	20p
ZN 414	1.35p*	All at 12p each	15 V 1 A	175p	1254 Amber	27.

RETURN OF POST MAIL ORDER SERVICE

BSR HI-FI AUTOCHANGER STEREO AND MONO
 CARTRIDGE
$\overline{\mathbf{E} 10.95 ~ P o s t ~ 75 p ~}$

PORTABLE PLAYER CABINET

Vynarr tront grille Chrome fittings
Size $17 \times 15 \times 8$ in approx
$£ 4.50$ Post 50 p

HEAVY METAL PLINTHS
With. PVC Cover Cut out for most B S
Garrard decks Silver grey finish Model

COMPLETE STEREO SYSTEM

Two full slze loudspeakers $13^{3 / 4} \times 10 \times 3^{3 / 4} 10$ Player unit chips to loudspeakers making 17 extremely compact overall
szze only $133 / 4 \times 10 \times 8 / 21 n, 3$ watts per channel, plays all
 $\begin{array}{ccc}\text { Attractive } & \text { controls } & \mathbf{E 2 5} \\ \text { Teak finush } & 240 \mathrm{~V} \text { a c } & \text { mains }\end{array}$

WEYRAD P50 - TRANSISTOR COILS

ME	80 Ohm Coax 8p yd.
ONTROLS	
P Transistor 30p.	ideal 625 and colour pd.

ELAC HI-FI SPEAKER 8 in . or $10 \times 6 \mathrm{in}$.
Dual cone plasticised roll surround. Large resonance $55 \mathrm{c} / \mathrm{s} 8 \mathrm{ohm} \mathrm{c}$ mpedance. 10 watts music power. £4.35 post 35

E.M.I. $13^{1 / 2} \times 8$ in.

SPEAKER SALE!

 10×7-Е1.15;
$16 \times 10-\mathbf{E 1 . 7 0}$.
ALUMINIUM PANELS. $6 \times 4-17 p ; 8 \times 6-24 p ; 14$ 6-43p; $14 \times 9-52 p ; 12 \times 12-68 p ; 16 \times 10-75 p$.

ELAC 9×5 in HI-FI SPEAKER TYPE 59 RM
$£ 3.45{ }^{\text {Pos }}$

RCS LOW VOLTAGE STABILISED POWER PACK KITS
All parts and instructions with Zener diode. printed
circuit rectifiers and double wound mains
E2.95 circuit rectifiers and double wound matps Post 45p voltages available, 6 or 75 or 9 or 12 V d c . up to 100 mA or less Size $3 \times 21 / 2 \times 1 \frac{1}{2}$ in Please state voltage required.

RCS POWVER PACK KITT 12 VOLT 750 mA Complete with printed £3.35 ${ }_{30}^{\text {pois }}$ circutt board and assembly instructions
12 VOLT 300 mA KIT. £3.15. 9 VOLT \qquad AMP KIT. £3.35:
R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE Ideal for Mike. Tape, $P U$. Guitar, etc Can be used with Battery
$9-12 \mathrm{~V}$ or $\mathrm{H} T$ tine $200-300 \mathrm{~V}$ c. operation. Size $13 / 4 \times 1 / 4 \times$ 9-12V or HT tine $200-300 \mathrm{~d} \mathrm{c} \mathrm{c}$. operation.
$3 / 4 \mathrm{in}$ Respense $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s} 26 \mathrm{~dB}$ gain. $3 / 4$ in Response $25 \mathrm{c} / \mathrm{s}$ to $25 \mathrm{kc} / \mathrm{s}$. 26 dB gatn.
For use with valve or transistor equipment.
Full instructions suppliea Details S.A.E.

ELECTRO MAGNETIC
 PENDULUM MECHANISM

15 V d c operation over 300 hours contınuous on SP2.
battery, fully adjustable swing and speed Ideal displays. $\begin{array}{lll}\text { battery, fully adjustable swing and speed } & \text { Ideal displays, } \\ \text { teaching electro magnetism or for } & \mathbf{5 S} \\ \text { merronome. strobe, etc } & 30 p\end{array}$
R.C.S. "MINOR" 10 watt AMPLIFIER KIT This kit is suitable for record players, gutars. tape playback.
electronic instruments or small PA systems Two versions electronic instruments or small PA systems Two versions
avalable Mono. $£ 12.50$; Stereo. $£ 20$. Post 45 p. Specification avalable Mono. E12.50; Stereo. \&20. 10 W per channel input 100 mV ; size $91 / 2 \times 3 \times 2 \mathrm{in}$ approx S.A E details. Full instructions supplied. AC mains powered

LOW VOLTAGE ELECTROLYTICS
$1.2458816 .25,30,50,100.200 \mathrm{mF} 15 \mathrm{~V} 10 \mathrm{p}$.
$500 \mathrm{mF} 12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p}: 50 \mathrm{~V} 30 \mathrm{p}$.
$1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
2000mF 6V 25p; 25 V 42p; 50 V 57p.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p}$; 50 V 65p. 5000mF 6V 25p; 12 V 42p; 25 V 75 p ; 35 V 85p; 50 V 95 p . SHORT WAVE 100 pF air spaced gangable tuner, 95 p . TRIMMERS 10 pF 30 pF. 50 pF 5p. 100 pF 150 pF 15p.
 15p; 500 V .0001 to 005 5p; 0110 p ; 025 13p; 04725 p MICRO SWITCH SINGLE POLE CHANGEOVER 20p. SUB-MIN MICRO SWITCH, 25p. Sinale pole change over
TWIN GANG, $0.0208 \mathrm{pF}+176 \mathrm{pF} \mathbf{£ 2 . 0 0} ; 500 \mathrm{pF}$ slandard $75 \mathrm{p}: 365+365+25+25 \mathrm{pF}$. Slow motion drive 50p.
: 20 pF TWIN GANG, 50p; 365 pF TWIN GANG. 50p.
20pF TWIN GANG, 50p; 365pF TWIN GANG, 50p.
NEON PANEL INDICATORS 250 V AC/DC. Amber or red. 30p.
NEON PANEL INW $1 / 2 \mathrm{~W} .1 \mathrm{~W} 20 \%$ 2p; 2W. 10p; 101 to 10 M RESISTORS. $1 / 4 W$, $1 / 2 \mathrm{~W}$. $1 \mathrm{~W} 20 \%$ 2p; 2W. 10p; 10n to
HIGH STABILITY. $1 / 2 \mathrm{~W} 2 \%, 10$ ohms to $6 \mathrm{meg}, 12 \mathrm{p}$. Ditto 5%, Preferred values 10 ohms to 10 meg . $\mathbf{5 p}$. Ditto 5% Preferred values 10 ohms to $10 \mathrm{meg}, 5 p$.
WIRE-WOUND RESISTORS 5 watt. 10 watt. 15 watt, 10 ohms to 100 K 12 peach
TAPE OSCILEATOR
HRLIL Valve type. 35 p .
BRIDGE RECTIFIER $200 \mathrm{~V} \mathrm{PIV} 1 / 2 \mathrm{amp} 50 \mathrm{p}$.

BAKER MAJOR 12" £11.50

NEW MODEL BAKER LOUDSPEAKER, 12 GROUP 50/12, 8 OR 15 OHM HIGH POWE FULL RANGE PROFESSIONAL OUALIT
$£ 14.50$ ALUMINIUM PRESENCE CENTRE DOME

T Post 80p
TEAK VENEERED HI-FI SPEAKERS AND CABINETS For 12 m , or 10 in speaker $20 \times 13 \times 12$ in
E $\mathbf{E 1 2 . 5 0}$ Post 95 p
For 13×8 in or Bin, speaker $16 \times 10 \times 7$ in
$\mathbf{E 6 . 9 5}$ Post 75 p For 13×8 in or Bin, speaker $16 \times 10 \times 7$ in \quad £6.95 Post 75 p
For 8×5 in. speaker $12 \times 8 \times 6$ in. For $8 \times 5 \mathrm{in}$. Speaker $12 \times 8 \times 6 \mathrm{in}$.
LOUDSPEAKER CABINET WADDING 18 in wide 20 p f .

R.C.S. 100 watt
 VALVE
 AMPLIFIER
 CHASSIS

oontres. S. Controls Sunts all speakers This professional quality amplitier
chassis is suitable for all groups. disco. PA. where high quality chassis is suitable for all groups. disco. P A . where high quality
power is required 5 speaker outputs. A/C mains operated Slave output Produced by demand for a quality valve amplifier Send for leaftet Price $\mathbf{£ 8 5}$ cars E2

SPEAKER COVERING MATERIALS. Samples Large S AE Horn Tweeters $2.16 \mathrm{kc} / \mathrm{s}$. 10 W 8 ohm or $15 \mathrm{ohmi} £ 3.60$ De Luxe Horn Tweeters $2.18 \mathrm{kc} / \mathrm{s} .15 \mathrm{~W}, 15 \mathrm{ohm}, \mathbf{£ 4 . 5 0}$. CROSSOVERS. TWO-WAY $3000 \mathrm{c} / \mathrm{s} 3$ or 8 or 15 ohm £1.90. 3.way $950 \mathrm{cps} / 3000 \mathrm{cps}$. 2.20.
LOUDSPEAKERS P.M. 3 OHMS. 7×4 In $£ 1.50$; $61 / 2$!n £1.80; $8 \times 5 \mathrm{in}$., $£ 1.90 ; 8 \mathrm{in}$., $£ 1.95$.
SPECIAL OFFER: $80 \mathrm{ohm} .21 / 4 \mathrm{In}, 23 / 4 \mathrm{~mm}, 35 \mathrm{ohm} .21 \mathrm{n} . .3 \mathrm{~m}$
 3 ohm. $21 / 2$ in, 2 奖in.. $31 / 2 \mathrm{in}$. 5 in . dia. $£ 1.25$ aach ceramic magnet $£ 1.95$
RICHĀRD ALL̄AN TWIN CONE LOUDS̄PEAK̄ERS
8 in dameter 4 W £2.50. 10 in diameter $5 \mathrm{~W} £ 2.95$;
8 in dameter $\mathbf{W W} £ 2.50$. 10 in diameter 12 in diameter $6 \mathrm{~W} £ 3.50 .3 / 8 / 15$ ohms. please state
12in. diameter
VALVE OUTPUT TRANS. 40 ; M MIKE TRANS. $501.40 p$ - Aike trans. mu metal 1001 £1.25.

Loudspeaker Volume Control 15 ohms 10 W with one inch long threaded bush for wood panel mounting. $1 / 4 \mathrm{in}$. spindle. 65p
3AKER 100 WATT

ALL PURPOSE

AMPLIFIER

All purpose tranisistorised
Ideal for Groups. Disco and P.A
4 inputs speech and music. 4
4 inputs speech and music. 4 way
Separate treble and bass controls. $\mathbf{E 5}$
Guaranteed Detalls S.A E.

NEW MODEL MAJOR- 50
$£ 65$ £1.00 each NEW MODEL MAJOR- 50 watt. 4 input. 2 vol $\mathbf{£ 4 9 . 9 5}$
Treble and bass. Ideal disco amplifier. 100 WATT DISCO AMPLIFIER CHASSIS

$$
\begin{aligned}
& \text { volume, treble bass controls } 500 \mathrm{M} . \mathrm{V} \text { input } \\
& \text { vol }
\end{aligned}
$$

$$
\text { folume, treble, bass controls } 500 \mathrm{M} \cdot \mathrm{~V} \text { input }
$$

$$
£ 52
$$

COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE $18 p$.
COAXIAL PLUG 10p. PANEL SOCKETS 10p. LINE $18 p$.
OUTLET BOXES, SURFACE 40p. FLUSH 60p. TWIN 85p. BALANCED TWIN RIBBON FEEDER 300 ohme. 7p yd. JACK SOCKET Std. open-circuit 20p, closed circuit 25 p; Chrome Lead-Socket 45p. Mono or Stereo.
PYono Plugs 8p. Phono Sockat ${ }^{8} \mathrm{p}$.
JACK PLÚGS Std. Chrome 30p; 3.5 mm Chrome $15 p$
DIN SOCKETS Chassis 3 -pin 10p. 5 -pin 10p.
DIN SOCKETS FREE 3 -pin 25p; 5 -pin 25p. DIN PLUGS
3-pin 25p: 5 -pin 25p. VALVE HOLOERS, $10 p$; CANS, 10 p.

[^6]E.M.I. TAPE MOTORS. 240 V ac 1,200 rpm 4 pole 185 mA Spindle 0187×0 75 Size $3^{1 / 4} \times 2^{1 / 2} \times 21 / 4$ in $\mathbf{E 2}$. Post 40 p

337 WHITEHORSE ROAD, CROYDON pon 9-6. Wod. 9-1. Sat. 9-5 (Clos

rully bricied dovices by Toxas, RCA
Motorole, National, Multard, otc.

Minimum Order $\mathbf{\Sigma 2}$
Psp 20p
Please add VAT to total
Mail Oricr Only
Cov., Colleges, otc., ordere necepted.
TECHNOMATIC LTD.
Tol: 01 204 4333

Wilkinsons relays

POST OFFICE TYPE 3000 AND 600 BUILT TO YOUR
OWN SPECIFICATIONS AND REQUIREMENTS. THE BEST KNOWN OF ALL RELAYS WITH A LARGE VARIETY OF CONTACT ARRANGEMENTS. KNOWN
THROUGHOUT THE WORLD COMPLETE BANKS OF CONTACTS MADE TO ORDER AND COMPONENT
PARTS SUPPLIED. HIGHEST QUALITY AT COMPETIPARTS SUPPLIED. HIGHEST QUALITYAT COMPETI-
TIVE PRICES WITH A QUICK DELIVERY SERVICE. TIVE PRICES WITH A QUICK DELIVERY SERVICE.
OUOTATIONS BY RETURN HOME AND OVERSEAS. WE ARE SPECIALISTS IN EXPORT ORDERS.
Excluive offer of a large number of relay sets and selectior unus with a variety of 3000 trpe relays and
assocaled componenis mounted in cases with cover used primarily in BPO 2000 and 4000 -rype telephone exchange equipments and industrial control systems Prices on eques
Five Digit Metera BPO ivpe 150 A 500 ohms operazng current $35 \mathrm{~mA} £ 3$ ea.
Single and Double We have a very exiensive range of electronic goods to be sold ar very low prices. tor example Meters.
Smitches. Rectiters. Resistors. Blower Moiors. Etc Start up your own business. Why not come and see HIGH SPEED COUNTERS $£ 1.75$ each
voltages are available 6 V
TUNING FORKS 125 Hz tor $45 / 50$ band teleprinter speeds. $£ 2.50$ each
LONGLEY ROAD, CROYDONS CRO 3LH - Phone 09.6840236 GILKI HOUS
All prices shown are carriage pard UK only but subject to VAT al the standard rate

COMPUTER APPRECIATION
CAStLE STREET, bLETCHINGLEY, SURREY RH1 4NX

Tel. GODSTONE (088384) 3106

insco electronics scolab

POWER SUPPLY \& TEST EQUIPMENT MANUFACTURERS

78 WHITECRAIGS ROAD WHITHEHILL IND. ESTATE GLENROTHES, FIFE

TELE (0592) 771959

SCOLAB-100 series to provide designers with a complete laboratory capability in one instrument.

0-30V 1A Adjustable Current Limit $\pm 0-30 \mathrm{~V} 0.5 \mathrm{~A}$ Dual Tracking (Fixed Current Limit 0.5A/Output)

Sine / Triangular / Pulse Waveform Generator adjustable between 10 Hz and 1 MHz . THD 2.5% Output $0-10 \mathrm{~V}$.

Pulse output variable from 200 N Sec Via 50 OHM B.N.C. connector
Sine/Triangular continuously variable via 600 OHM . terminals
SCOLAB-200 as above but also contains a digital 16 bit serial word generator. The word selectable from front panel controls and can be supplied internally by a 10 MHz clock or by an external clock
£194.00

WW 110 FOR FURTHER DETAILS

itam

ITAM 805 (8TRACK) MASTER RECORDER

$£ 1790$ + VAT Fult console optional extia Compatible 8-output Mixer available $£ 1260$ + VAT

OTARI DP-4O50
CASSETTE COPIER

deal for one copy or ten thousand Eight times copy speed footproof operation for nonskilled personnel modular construc tion servo-con trolled direct cap stan drive

Immediate delivery

THESE ITEMS ARE INDUSTRIAL PRO-
DUCTS AND SUBJECT TO 8\% VAT

Industrial Tape Applications

Bahrain Singapore Thailand Iceland Brazil Sweden Germany Iran Jamaica St. Kitts Tunisia

POWERTRAN ELECTRONICS HI-FI NEWS 75W/CHANNEL AMPLIFIER
 CS AMBE:rxacousITMS

In H.FI News there was published by Mr Linstey-Hood a series of four anicles (November 1972 -February 1973) and a subsequent follow-up article (Aprit 1974) on a design for an amplifier of exceptional perrormance which has as its principal feature an ability to supply from a direct coupled fully protected output stage. power in excess of 75 watts levels The power amplifier ts complemented by even at very low power discrete component operational amplifier referred to as the $L i n$ based on a employed in the iwo most cfitical points of the system namely is equalization stage and tone controt stage positions where most conventional designs run out of gain at the extremes of the frequency spectrum Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed
Toroidal transtormer

FREE
 teak case with full kits
 кremes ow $£ 62.40$

WIRELESS WORLD FM TUNER

```
Designed in response to demand for a tuner to complement the world-wide
acclamed Linsley Hood 75W Amplifier. this kit provides the pertect match
The Wireless Worid published original circuit has been developed further for
inclusion into this outstanding slimline unit and features a pre-aligned fron
end module. excellent a m refection and temperature compensated vanicap
tuning. which may be controlled elther continuously or by push button
pre-selection Frequencies are indicated by a frequency meter and sliding LED
indicators, attached to each channel selector pre-set The PLL stereo decoder
toroidal transformer and integrated regulator for long term staplled via
iorodal transm are used throughout regulator for long term stability meta
```


Wireless World Amplifier Design

```
kits are not avalable for these propects but component packs and PCBs are stocked io the highly regarded Bailey and 20W class AB Linsley Hood designs. together with an the Balley Burrows pre-amplifier and our circuit board. for the stereo version of it features 6 inputs. scratch and rumble fifters and wide range tone controls which may be either rotary of Slider operating
For those intending to get the best out of thetr speakers, we also ofter an active filter system described by D C Read which splits the output of each channel from the pre-amplifier into three channels each of which is ted to the appropriate speaker by its own power amplifier The Read/Texas 20W or any of our other kits are suitable for these For tape systems a set Stuart icbs have been prepared for the miegrated circult based, high performance stereo Stuart design Detals of component packs are in our free lis1
30W Barley Amplifier
```

BAIL Pk Resistors. Capacitors, Potentiometer se
20W Linsley Hood Class AB
£ 1.00
£ 2.35 $£ 4.70$

LHAB Pk 1 F/Glass PCB
HAB Pk 2 Resistor, Capacitor. Potemtiometer set
LHAB Pk 3 Semiconductor set
Regulated Power Supply
60 VS Pk $1 \mathrm{~F} / \mathrm{Glass}$ PCB
60 VS Pk 2 Resisior Capacitor se
60VS Pk 3 Semiconductor set
60VS Pk 6 A Toroldal 1 ransformer
GOVS Pk 68 Toroddal transformer (tor use with Bailey)
Barley Burrows Stereo Pre-Amp
38PA Pk 1 F/Glass PCB
BBPA Pk 2 Resistor. capacitor semiconductor sel
BBPA Pk 3R Rotary Potentiometer set
B8PA Pk 3S Shder Potentiometer set with knob
Active Filter
FILT Pk $1 \mathrm{~F} / \mathrm{Glass}$ PCB
FILT Pk 2 Resistor Capacitor set (metal oxide 2%, polystyrene $2 \% / 2 \%$)
FILT Pk 3 Semiconductor se
set (metal oxide 2%, polystyrene $2 \% / 2 \%$) off Pks 123 rqd for st
$£ 1.05$
$£ 3.20$
C 3.35
$£ 0.85$
$f 1.95$
$£ 1.95$
$£ 3.10$
£3.10
£7.25
£2.35
£2.40
E 2.70
£1.05

4.20

Read/ Texas 20W Amp
READ Pk 1 F/Glass PCB
READ Pk 2 Resistor Capacitor se
READ Pk 3 Semiconductor set
1.10
£2.40

Stuan Tape Recorder
TRRP Pk 1 Replay Arnp F/Glass PCB
TROS Pk 1 Blas/Erase/Stabilizer F/Glass PCB

Further details of above and additional packs given in our FREE LIST

Pack

1. Fibreglass printed board tor froml end if $\begin{aligned} & \text { Price } \\ & \text { strip. }\end{aligned}$
$\begin{aligned} & \text { Pack } \\ & 9 .\end{aligned}$ Function switch. 10 tarn tuning petentiometer Price demoduator. AFC and mute circuits $£ 2.15 \quad$..................................... $£ 5.30$ 2. Set of metal oxide resisiors. thermisior. capacitors. D. Frequency meter. meter drive components, tibrepliss cermat preset for mounting an pack 1..... $£ 4.80$ primied circuil board Toroidal tral bual E8.60 Primary: $0-1174-234 y$ with electrosiatic scrben.

E2.95
12. Sel any: 0-117v-234V £4.45 12. Set or capaciors. rectifiers. valiage ragulator for power supply 4. Prealigned front end module. coil assembly. three section ceranicic filiso
6. Set pf metal axide resistors Capacitors, $E 1.10$ lor decoder
holder. fuses. imer-connecting wire. els acia parel acric sith song silk screen printed
. Sel of tramistors L.ED. integrated circuil for decoder
Sel of companents for channel selector switc E3.45 including fibreglass printed circuil board, push-button switches. knobs. LEDs. preseit adjusters. elc. E8.30 indicator panel insert. internal screer fixing tunits etc. .. 56.50 15. Construction notes firee with complete kitt . . . \quad £0.25 6. Teak cabmel $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime} \ldots . .$.

One each of packs $1-16$ inclusive are requir ed for complete sleres fM tunner. Total cosi of individually purchased
packs . $£ 76.85$

FREE

TEAK CASE WITH FULL KITS urracemen £66.75

PRICE STABILITY!
Order with confidencel Irrespective of any price changes we will honour all prices in this advertisement for iwo month from issue date provided that this advertisement is quoted with your order E\&OE VAT rate changes excluded All components are brand new first grade full specification devices All resistors rexcep where stated) are low norse carbon fim types All printed circuit boards are fibre-glass, drited, roller tinned and supplied with circuit diagrams and construction layouts
UK Orders Subject to 25% Surcharge for VAT Carriage free MAIL ORDER ONLY (or at current rate if changed)
Securicor Delivery For this optional service (Manland only) add $£ 250$ VAT inc perkit
verseas Orders No VAT Postage charged at actual cost plus $50 p$ packing and
handing

DEPT. WW 05
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NN

Hong Kong Jersey Australia St. Lucia India Barbados Antigua Jordan Spain Israel Mauritius St.

AUDIO KIT SUPPLIERS TO THE WORLD

Pack
Sel al low noise resisiors Sol of amall capacilor Sel of power supply capacitors Sel of sce aneus parts 6. Set of pots, salecior swilch. 1. Set of semiconductors. ICs. skis.

$T 20$	$T 30$
0.95	1.05
1.50	2.10
1.40	
1.90	
1.20	
2.00	
7.25	7.75

PICk
8. Toroidal transtormer -240 V prim. e.s. scrian 10. Set ol matalwork. Ilixing parts II. Sel of cibles. mulna load 12. Handbook firse wilh complate kit) 13 Teak catinel $15.4^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$

T20 $\mathbf{+ 2 0}$ and our new $\mathbf{T 3 0 + 3 0}$ 20W, 30W AMPLIFIERS

Designed by Texas engineers and described in Practical Wireiess the Texan was an immediate success Now developed further in our laboratories 10 include a Toroidal transformer and additiona The design is based on a single F/Glass PCB and features all the normal facilities found on quality amplifiers, including scratch and rumble filters, adaptable input selector and head phones socke1. In a tollow up article in Practical Wireless further modifications were suggested and these have been incorporated into the T30 +30 These include RF interference filters and a tape monitor facility Power Output of this new model is 30W per channel

$4.95 \quad 8.80$	들 TEAK CASE WITH FULL KIts
${ }^{2} 8.2080 .290$	T20 + 20
0.40 0.25 0.40 0.25 0.25	KIT PRICE only $2 \leq 8.20$
	$T 30+30$ KIT PRICE only £32.95

2 NEW TUNERS!

WW SFMT 11

Following the success of our Wireless World FM Tuner kit we are now pleased to introduce our new cost reduced model, designed to complement the T2O and T30 amplifiers The frequency meter of the more advanced model has been omitted and the mechanics simplified. however the circuitry is identical and this new kit offers most exceptiona value for money facilites incluced are swichabie atc. adjustabie, switchable mung. Chan IED tuning indication Individual pack prices in push-bu our free list

POWERTRAN SFMT
This easy to construct tuner using our own circuit design includes a pre-aligned front end module. PLL stereo decoder, adjustable switchable full kits. all components down to the last nut and bolt are supplied together with full constructional details

KIT PRICE

£32.60 - is 0.0.0.0.0000

MORE THAN JUST A CATALOGUE!
 Really good value for money at just 40p.
 132 pages!

 \section*{The 3600 SYNTHESISER}
 The 3600 synthes ser includes the most popular features of the
 patching system athe, than the mattix patchitoard of the large
 unit and is particularly
 suitabie for 1
 performance
 and portable use
 S.A.E. pleas

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCBs. components and PCBs.
of article - price 15 p.

The 4600 SYNTHESISER

We stock all me parts or this

including all the PCBs,
metalwork and a drilled and printed front panel, yiving a
 superb) professional fimish
Opinions of duthonty agree the ETI International Symthesiser is technicatly superior to most of toctay's models. Complete construction details available now in our booklet price $£ 1.50$,
or S.A.E. please tor speciticatio

ELECTRONIC ORGAN

Build vourself an exciting Electronic Organ. Our ieaflet MES51, price $15 p$. deals with the basic theory of electronic organs and descrites the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price $15 p$, describes the extension of the organ to two keyboards each with five voices and the extension
 witue ot the or ban s range. Solid-state switching and new footages along with a pedal board and a further exiension of the organ's range are shown leaflet MES53, price 35p

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you abou: price chanyes in advance to just 30 p a year (refunded on purchases) If you already have out catalogue send us an s.a.e and we'll send you our latest list of
GUARANTEED prices. Send us 30p and we'll pu: you on our maning list you'll receive immediately our tatest price list then every two months from the starting date shown on that list you'll receive detals of our prices for the next GUARANTEED persod before the prices are mplementedl plus details of any new lines special offers interesting projects and coupons to spend on componentsio repay your 30p
NOTE The price list is based on the Order Codes shown in our catalogue so an mestment in our super catalogue is an essential tirst step.
Call in at our shop. 284 London Road, Westclift on Sea, Essex lease actress all mall to

MAPLIN ELECTRONIC

I enclose Cheque/P.O. value
For copy/copies of your Cdtalogue
Name
Address \qquad

Collect wireless world Circards. And build a valuable dossier on

 circuit design.Circards is a unique and comprehensive system, launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design data not available from any other single source.

Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and usually shows a specific tested circuit, a description of the circuit operation; component values and ranges; circuit limitations and modifications; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well protected.

Circard sets (10 cards) come in wallets and cost $£ 2.00$. A subscription for 10 consecutive sets costs $£ 18$.

Start your personal dossier on circuit design by completing and returning the coupon below.

Subjects already covered by Circards 1. Basic active filters. 2. Switching circuits comparators and schmitts.
3. Waveform generators. 4. AC measurements.
5. Audio circuits: preamplifiers, mixers, filters and tone controls.
6. Constant current circuits. 7. Power amplifiers.
8. Astables. 9. Opto-electronics.
10. Micropower circuits. 11. Basic logic gates.
12. Wideband amplifiers. 13. Alarm circuits. 14. Digital counters. 15. Pulse modulators. 16. Current differencing amplifiers - signal processing.
17. Current differencing amplifiers - generation. 18. Current differencing amplifiers measurement and detection.
19. Monostable circuits. 20. Transistor pairs.
21. Voltage to frequency converters.
22. Amplitude modulators. 23. Reference circuits. 24. Voltage regulators
25. RC oscillators - I. 26. RC oscillators - II.
27. Linear C.M.O.S.-I.
28. Linear C.M.O.S. - 11 .
29. Analogue multipliers
30. Non-linear functions

To: General Sales Dept., IPC Business Press Ltd., Room 11 Dorset House, Stamford Street, London SEl 9LU
Please send me set no(s)
@ $£ 2.00$ each
@ $£ 18.00$

I wish to subscribe, starting with no
I enclose cheque/money order for $£$
*Tick as required/Cheques to be made payable to IPC Business Press Ltd.
\qquad
\qquad

D ISPLAYS

FND500
Oustanding Value
Only in 102 each for
his high quality display

C M 0 S

Note TIL322's the Yexas Instiument pin-tor-pin equivalent ot the FNO500 may be supptied instiad of $\mathrm{FND500}$ s - - please state
 For FND 500 or Plit 322.0500

ADD VAT al standard ate (now
ADD VAT at standard ate fnow
SINTEL
53c ASTON STREET, OXFORD TEL. 086549791

RCA 1975 CMOS Databook - 400 pages of data sheets and 200 pages of circurts. applications

 DLZO4E $03^{\prime \prime}$ Common Cathode Red LED Now only 75p

 Advanced Ciock $\mathrm{K}_{11}+\mathrm{C}_{1}$ stala Timebase $\mathrm{K} 1 \mathrm{t}+$ Batery Back up
The clock willkeep correct tume it manns power is disconnected
PE CAR CLOCK wish Joumey Times. 6 digit clocx tor use in any cat with 12 V batiery with an

BENTLEY ACOUSTIC CORPORATION LTD.

7A GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX. TeI. 6743

促

High quality modules for stereo, mono and other audio equipment.

.

$£ 19.95$

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 preselected stations any of which may be altered as often as you choose, by simply changing the settings of the preset controls
Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer 1461.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

STEREO PREAMPLIFIER

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch pro vices a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.
MK. 60 AUDIO KIT: Comprising $2 \times$ AL60's $1 \times$ SPM8O BTM80. $1 \times$ PA 100. 1 front pane and knobs. 1 Kit of parts to include on/ off switch. neon indicator stereo headphone sockets plus instruction booklet COMPLETE PRICE £27.55.
TEAK 60 AUDIO KIT Comprising postage size $16^{3 / 4} 4^{\prime \prime} \times 11^{1 / 2^{\prime \prime} \times 3^{3 / 4} 4^{\prime \prime} \text {, other }}$ parts include aluminium chassis heatsink and front panel bracket plus back panel and appropriate sockets plus 62p plus 62p

Frequency Response 20 KHz Sensitivity of inputs Tape Input 100 mV into 1 100 K ohms

1 dB from 20 Hz to 20 KH Supply - 20.35 V at 20 mA Dimensions

AUDIO
 AMPLIFIER MODULES

are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S
The versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and ca fridge tape players in the home
ts $\mathbf{f}=\mathbf{4} \mathbf{K H z} 02.5 \%$
Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ Harmonic Distortion Po $=3$ wats $\mathbf{~ S i z e : ~} 75 \mathrm{~mm} \times 63 \mathrm{ohm}$ Impedance $8-16 \mathrm{ohm}$
Load

- Frequency response $\pm 3 \mathrm{~dB}$ Po $=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$

Sensitivity for Rated $0 / P-V s=25 v . R L=80 h m f=1 \mathrm{KHz} 75 \mathrm{mV}$. RMS ALI
£2.30
AL20

ALL 25
w R.M.S. $\mathcal{E 2} .65$
Al30

25 Watts (RMS)

* Max Heat Sink temp 90C. * Frequency response 20 Hz to 100 KHz * Distortion better than 0.1 at 1 KHz Supply voltage $15-50 v$ * Thermal Feedback * Latest Design Improvements * Load - 3,4,8, or 16 ohms Signal to noise ratio $80 \mathrm{db} \star$ Overall size 63 mm .105 mm 13 mm .
- FET Input Stage
- VARI-CAP diode tuning

Switched AFC

- Multi turn presets

Typical Specification Sensitivity 3μ volt Stereo separation 30 db Supply required 20-30v at 90 Ma max
 OUR PRICE £13.50

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new
MP A 30 a high quality preamplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only It is provided with a standard DIN input socket for ease of connection. Full instructions supplied
£2.65

Postage \& Packing add $25 p$ unless otherwise shown. Add extra for airmail. Min. £1.00

STEREO 30

COMPLETE AUDIO
CHASSIS R.M.S

The Steren 30 comprises a complete stereo pre-amplifier. power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a ing quality audio unit suitable for use with a wide range of inputs ie. high quality ceramic pick-up stereo tuner. stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs. main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth. cabinets of your own construction or the cabinet available feal for the beginner or the advanced constructor who requires Hi-Fi performance with a minimum of installation difficulty (can be installed in 30 min) TRANSFORMER $\mathbf{E} .45$ plus $62 p p \& p$ TEAK CASE $£ 3.65$ plus $62 p p \& p$

Especially designed to a strict specification Only the
finest components have been used and the latest
solid slate circuitry incorporated in this powerful little enthusiast

Stabilised Power Supply Type SPM80

SPA 80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm . Incorporating short circuit protection.
Transformer BMT80
£2.60 + 62p postage

Input voltage $15-20$ v A.C. Output voltage $22.30 v$ D C Output current 800 mA Max. Size $60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$

NEW PA 12 Stereo PreAmplifier comNEW PA 12 Stereo
PreAmplifier com
pletely redesigned
loruse with Al 10/
$20 / 30$ Amplifier NEW PA 12 Stereo
PreAmplifier com
pletely redesigned
loruse with Al 10/
$20 / 30$ Amplifier Modules. Features include on/ off volume. frequent Response $20 \mathrm{~Hz}-20 \mathrm{KHz}$ (-3dB). Bass and Treble range 12dB. Input Impedance 1 meg ohm.
120 mput Sensitivity 300 m . Supply requirements 24 V .5 mA Size 152 mm $\times 84 \mathrm{~mm} \times 33 \mathrm{~mm}$

RESTRA ELECTRONICS LTD.

ELECTRONIC BROKERS

Electronic Brokers Lid. are one of the leading electronic instrumentation companies in the UK. providing a full range of services to Universities, Industry, Colleges and Governments both at home and overseas.

We have the largest stocks of secondhand test equipment in Europe as well

IETEPHOLE TEST EQUPWENT

 FUTURE ADDITIONS
The following equipment is becoming availabte to us in the near future, should you require prises elc., please contacl us and then we will reserve your
specitic requirements. specitic requirements. HEWLETT PACKARD 52451 Elervoni Count
$626 A$ Sipnel Gencroto 8262 signectrum Anolvier - uf section

935A Powd Mctor
MARCDNI INSTS.
MARCDNI INSTS.
TF $1066 \mathrm{~F} / 6 \mathrm{FM}$ Signol
Fluke
a100A Dightol Muhimerer
s100B Dipital Muhimer
83004 Dipial Muhimerer 332 A Vorege Calibrtor
$31 \mathrm{~A} . \mathrm{M}$.M. Colibrior 341A D.V.M.
TEKTRONIX
$465100 \mathrm{MH2}$ D.T. Scope $957200 \mathrm{MHz} \mathrm{D.T}$ Scope 422 15MM2 D.T. Scope
549 starme Scope sag Storige Scope
1140 Spectiom Analy

STEXAL SOURGES
as a selected range of new products. These are on display at our London showrooms where customers can examine the equipment of their choice and see it working.

Electronic Brokêrs Ltd have fully equipped workshops on the premises to test and report on the majority of equipment we sell.

general radio

 with power Supply Type $1201-\mathrm{Ca18}$ (llustrated
E215.00 Unit Oscllator 1218A $900-2000 \mathrm{MHz}$ Power outpu; $\begin{array}{ll}\text { 200mW across band } & £ 140.00 \\ & \\ \text { Unt oscilla:o } 1363 \text { Spec on reques } & £ 495.00\end{array}$ hewlett packard
FM AM SIInal Genersior 202H FM AM CW \& pulse coverage 54 to $216 \mathrm{MH}_{2}$ RF O/D 0 1,VV O EV Sohrms impedance $£ 450$ UHF Signal Generator $608 E 10.480 \mathrm{MHz}$
(5 bandi

 UHF Signal Generator 616A $18-42 \mathrm{GHz} \quad \mathbf{£ 4 7 5 . 0 0}$ MAPCONI INSTS.

 A M Signal Generator TF801D/15 Military Version
$\left.\begin{array}{l}\text { E450- } \mathbf{E 8 0 0}\end{array}\right]$

Phase $A M$ Signal Generatol TF
$04.12 \mathrm{MH}_{2}$
6150

Portable Receiver Tester TF888 3 Freq
$70 \mathrm{KHz} 70 \mathrm{MH} \mathrm{H}_{2}$ Xtal check 500 KHz \& 5 MHz Output
Phat
70 KHz . 70 MHz Ktal check 500 KHz \& 5 MH \% Output
Phase AM Signal Generatot. TF 2003 B

 MnUsed)

Stereo signal generator SMG1C full spec on requesi
Superb condilion
$\mathbf{E 4 0 0}$
AM FM Generator Type MS27G
RMODE \& SCHWARZ
Frequency Synthesiser Type XUC (BN4.4466) c w
KSU Power Supply \& Calibrator (Brand new COndition) KERR

OSCILLOSCOPES

CDU 110 DC 20 MHz
HEWLETT PACKARD
Oscilloscope 140 m 1415 and

Oscilloscope
Pug-Ins avalable trom 50 MHz single channel 1751 A Time Mark Gen 1783
Aux Plug-try 1780 A Display Scanner 1782 A Sweep
Delay Gen
Delay Ge
HAMEG
Compac: single beam portable scope bandwidt of 8 MHz Compensated Y attenuator it ranges
$50 \mathrm{mV} / \mathrm{cnin}$ to $30 \mathrm{~V} / \mathrm{cm}$ Timebase sweeprange of 10 Hz $50 \mathrm{mV} / \mathrm{cm}$ to 30 V cmn timebase sweep range of 10 H
to 500 kHz and can be tregered rom + Ve or externally or internally Y input can be $A C$ or $D C$
coupled Display area $6 \mathrm{~cm} \times 4 \mathrm{c}$.n Rise thie 44 ns Dimensions 203mm $\times 160 \mathrm{~mm}$
Brand new Type No. HM207
MARCONI

 SOLARTRON
Porrabie Scone DC. 6 MHz D Double Beam GT436 $£ 95$

$10.12 \mu^{\mu}$ Scope Single Beam $50 \mathrm{MV} / \mathrm{cm} A C$ coupled
$B / \mathrm{w}^{4} 5 \mathrm{MHz} 5^{\prime \prime}$ Tube Assembled Refurbisthed Our price
ROBAND
$\begin{array}{lll}25 \mathrm{MHz} \text { Scope } \mathrm{F} \text { O50Ac } W \text { SC Plug in } & £ 200 \\ \mathrm{E} 225\end{array}$ TEKTRONIX $\begin{array}{ll}\text { 453 DC. SOMA } & \text { sid id state \& poitable }\end{array}$

The most comprehen nive
Send 50p towards (Overseas customers E1) and a castago. otc. Ee sent by return.
Electrontic Brokers Lid will then keap the catalogue updated by wirwarding revision
shears tree of charge

SWe:P EEMEMTOAS

 Sween Oscllator 69304 SPECIAL OFFER E325 Sweep OsC
JERROLD
Sweep
Sweep Signal Generato 900 B Cental Freqs
500 KHz

thetestequipment people

 value of sine wave Log voltige scale 0310780810
3 Limear dB scale inpul Impecdance
\qquad
\qquad
\qquad MARCONI Valitive Valer if 1100 100,iv. 300 V AC
 50 mV
TF 2500 urumer
N
 philips

SIGN ELECTRONIC
SOLARTRON

On these pages you will find just the briefest serection from the vast range which we hold in stock at any one time.

If you are seeking a specific item and it is not listed, it will pay you ta ring us first - we believe we offer the best prices and the best service.
WORLD WIDE EXPORT
Enquiries and tenders welcome from any part of the world.
HOW TO REACH US
We are easy to reach, no matter where you live. Minutes away from Kings Cross or St. Pancras main-line stations, and a bus ride from Euston; only just over half an hour from Heathrow Airport. Parking is easy too.

49-53Pancras Road, London NW12QB Tel:O1-837 7781

With $1200 B$ scale HEWLETT PACKARD
 Distortion Analyser 331 A Diytal Reco der 560 A

My lal Recarder 561
Athenuator TF 1073 In 2 S
Out of Limms Indicalor TF 2404 2M1 eadings from electronic counters and other cligital
insis. Locial and temose visual and electrical indication
sulabie for use by Linsk.lled personnel and with $A T E$

RADIOMETER

Price £18.50

ACCESSORIES FOR 680R AND MICROTEST 80 [EXTRA]
$£ 49.50$
TOUCHLESS
RETRO-REFLECTIVE

BROKERSLTD

Carriage and packing charge extra on all items unless otherwise stated.

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated.
$01-$ 8377781

To obtain a brochure and booking form, tick the box against the tours in which you are interested, complete the coupon and post to the exclusively appointed travel agent, Commercial Trade Travel Ltd., Carlisle House, 8 Southampton Row, London WC1. Telephone 01-405-8666 or 01-405-5469.

International Electrical and Electronics Engineers Exhibition - I.E.E.E. ELECTRO. Boston - May 11-14, 1976. 10 nights at the de luxe Statler Hilton Hotel. Fully inclusive price - £283.00. \square

Compec Europe Exhibition - Brussels May 18-20, 1976. 2 nights at the first class Royal Windsor Hotel. Fully inclusive price-£108.60. \square

National Computer Congress - New York June 7-11, 1976. 10 nights at the de luxe Hilton Hotel at Rockefeller Centre. Fully inclusive price - $£ 320.00$. \square

Exhibition of Electrical Equipment - EIEE.
Measurement and Control Exhibition MESUCORA Paris, June 10-17 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price $£ 86.50$, extra nights as required. 1^{-}

Consumer Electronics Show and Video Expo - Chicago - June 13-16, 1976. 10 nights at the de luxe Palmer House Hotel. Fully inclusive price $£ 340.00$.

Western Electronic Show and Convention -WESCON - Los Angeles - September 14-17, 1976. 10 nights at the de luxe Downtown Hilton Hotel. Fully inclusive price-£399.00.7

International Exhibition of Data Processing, Communication and Office Organisation SICOB Paris, September 23-Cciober 1 1976. Two nights at the de luxe Meridien Hotel. Fully inclusive price $£ 86.50$, extra nights as required. -

Hifi International Exhibition and Festival Dusseldorf - September 24-29, 1976. 2 nights at the first class Quality Inn Hotel. Ratingen (8 km from the Fair Ground). Fully inclusive price - $£ 99.90$.

International Trade Fair for Production in the Electronics Industry - ELECTRONICA Munich, November 25-December 1, 1976. Two nights at the first class Hotel Der Konigshof. Fully inclusive price £118.00, extra nights as required.

Please send details of the tours indicated above.

LATCHING RELAY Twin latching retay, thp-flop $2 c / 0$ each retay Maina comeacts 115 volts A.C or 50 volt DC operation or $24 \overline{0}$ volts A C with 2.5 K cesistor. 88p. Pont 200	时
PRECISION CENTRIGUGAL BLOWERS Mlg by Smithe Indusiries Mintolure model Series SF/200 Size 96 mm \% $82 \mathrm{~mm} \times 82 \mathrm{~mm}$ Aperture $38 \mathrm{~mm} \times 31 \mathrm{~mm} 12 \mathrm{ct} \mathrm{m}$ £2.78. Post 50p Mly by Aittlow Developments Lid Pecision made, contunuouly raled, smooth running $230 / 240 \mathrm{~V}$ A.C motor BOc i.m Asillustrated but with round aperture E8.50. Post 750	
MIg by Woods Extremely poweriul $220 / 250 \mathrm{v}$ A C 0.3 amp 2100 omm continuouly rated Capacior start Cast construction. Aperture $66 \mathrm{~mm} \times 50 \mathrm{~mm} 0 / \mathrm{A}$ $200 \mathrm{~mm} . \in 12.00$. Post i 100	
Mig. by Parvalux Type 5038b z20v A C $50 \mathrm{~Hz}, 0.55$ wnp Continuously rated 2800rpm 120 ctm Brand now Fraction of makers price $\mathbf{£ 1 0 . 0 0}$. Postici 00	
230 VOLT FAN ASSEMBLY Continuously rated, removable aluminium blades Price $£ 1.25$. Post 50p VAT 25%	
C/O MICRO SWITCH	
VERY SPECIAL OFFER Migg by C.EM 3 amp 250 volt 10 amp 125 volt 50 lor e3. Post 36 100 tor $\mathbf{E 5}$. Post 50 p 1.000 for $\mathbf{£ 4 5 \text { . Post pard }}$	
DOUBLE POLE C/O or 2 make / 2 brak micro switch 10 amp 250 y A C With delachable roller assembly 10 tor $£ 2.50$. Post 50 p (Min order 10)	
MINIATURE ROLLER M swich OMRON type V15 FL 22-1C 10 for $\mathbf{£ 2 . 0 0}$ post 50p (Min arder 10)	
230-250 VOLT A.C. SOLENOID Similar iri appearance to illustration Approximately $1 \frac{1}{3}$ ib puli size of leet $1 \frac{5}{8}$ 1_{16}^{3} Price £1.00. Post 25p	

SOLENOID HEAVY DUYY MODEL
24 VIGL. £2.50. Post 50 p.

[^7] 600 WATT DIMMER SWITCH

VARIABLE VOLTAGE TRANSFORMERS

AUTO TRANSFORMERS

Step up step downo 115200220240 volis
At 75 watt $£ 3.00$ Post 40 p. 150 watt $£ 4.30$ Post 50 p. 300 Ant $£ 6.20$. Post 60 p. 500 watt $£ 9.20$ Post $75 \mathrm{p} \quad 1000$ walt
wat £13.50 Post 90 p.

RING TRANSFORMERS

* hy-light strobe mk. iv
* Latas type Xerion while light wbe, Soldd stave umung and riggeringil

* ULTRA VIOLET BLACK LIOHT

\# holders for ellher $\theta^{\prime \prime}$ or $12^{\prime \prime}$ tube $£ 1.70$. Post 30 p ($8^{\prime \prime} \times 12^{\prime \prime} \neq$

METERS NEW

 1000 VOLTS 1000 megohms

E 44.00
MAT AT 8\%
MUST BE ADDED
TO ALL ORDERS
FOR THE TOTAL YALUE OF GOODS INCLDDING
POSTAGE UNLESS OTHERWISE STATED

NICKLE CADMIUM BATTERY

GEARED MOTORS

 100 R.P.M.

60 R.P.M. REVERSIBLE

BODINE TYPE N.C.I. GEARED MOTOR

\section*{| (ryou 2) |
| :---: |
| Revernibe |}

\qquad m. iorquele 20 ib. in
 precision made US.A. motors are othered in as new
condition Inpui voltage of motor $115 \times$ A.C. Supplied com plete withor $230 / 240 \vee$ A.C. Input. These motors are idaal for rotating,
dispiay stands. verding mechines. etc.

20 r.p.m. GEARED MOTOR $230 / 240$ volt 20 p.p.m motor £1.00. Post 20 p

REVERSIBLE MOTOR 230V A.C.

BENDIX MAGNETIC CLUTCH	
A superb example of Eliecro-machantes! The main	
has a hin mleeve. The drive section rotain	
bearing concentric with main iectio cog wheel	
When enerazed tranamusion si extromely powertul. 24 V d	
240MA OUR PRIこE JUST ¢3.30. Posi 45p	
ROTARY VACUUM AIR COMPRESSOR AND PUMP	
Carbon vane optiles $100 / 115 \mathrm{~V}$ AC C $1 / 12$ h.p motor 50/60 cycle 2875/3450 r.p.m. $20^{\prime \prime}$ vacuum 1.25 cim .10 p : (approx figures) Now unused surplun atock, with elect connection data. Friction of maker's price 412.00. Postil:.00 Suilable transformer c3.50. Post 50 p	
TIME SWITCH	
Horatmann Type y Mk \|l Time Switch. 200/250 volt	
A.C. Two on/two off every 24 hours, at any manuallypre-set time 30 smp contacts 36 hour spring reserve	
in case of power falure. Day omitting device. Fitted in	
heavy high impect case. with glass observation window. Bull 10 highest Electricily Board spec	
individually	

A.C. MAINS TIMER UNIT

incorporated Ideal for Tape Recorders. Light. Electric Blankers 60 mm Price $\mathbf{£ 2 . 2 5}$. Post 40p. (Totalinc VAT \& Pos: $£ \mathbf{2} \mathbf{8 7}$.)

EXCLUSIVE OFFERS

HIGHEST QUALITY 19" RACK MOUNTING CABINETS \& RACKS

 INSTRUMENTATION-TAPE RECORDER-REPRODUCERS

* Plessey M5500 Digital Unt. 7 tracks

Ampex FRG60. 4 peeds. 14 tracks 1
D.R.1. RM1. 4 speeds.
${ }^{\text {EM1 BTR1 }} 1$. speed. 1 rack ${ }^{1} 4$
Mincom CMP Line. . Speeds. 7 tracks

Prices of above $£ 70$ to $£ 400$

COMPUTER HARDWARE

* LINE PRINTER. High speed 1000 lines * TAPE READER. High-speed $5 / 8$ track 800 c.p.m
* CARD READER 80 col. 600 c.p.m

Prices on Application
please add carriage and V.a.t. at APPROPRIATE RATE TO ABOVE
P. HARRIS

ORGANFORD-DORSET BH16 6BR
BOURNEMOUTH-785051

SPECIAL RESISTOR KITS (CARBON FILM 10E12 $1 / \mathrm{aW}$ or $1 / 4 \mathrm{~W}$ KIT 10 of each E 12 value
$220 \mathrm{hms}-1 \mathrm{M}$ a total or 570 E 5.29 net

MULTIMETER U4323
$2<$ Ranges plus AF IF Oscilato
Var $05-1000 \mathrm{~V}$ in 7 ranges Vac-25-1000V in 6 ranges Idc-0 05-500mA in 5
ranges

Accuracy 5% of FS
OSCILLATOR -1 KHz and 465 KHz IA M ! dt appoox Supphed complete with rarrying case test leads and
battery
MULTIMETER U4324
S4 Ranges High sensilivity
$60000!$ volt
Vdc-0 $6-1200 \mathrm{~V}$ in 4 ranges
vac $-3-900 \mathrm{~V}$ in 8 ranges
ide $-006-3 A$ in 6 ranyen
$\begin{array}{ll}\text { Inc } \\ \text { ar } & -0 \\ 3 & 3 \\ \text { - }\end{array}$
Fifsistance- $-25!2-5 M$? in 5 rander
Accuracy-dc and $R-21 / 2 \%$ of $F S D$

Size-167×98×63mm
Supplied complete with storage case pest
leads, spare drode and battery
PRICE $£ 11.72$ net P $\& P 75$
(WW), LEIGHTON ELECTRONTCS CENTRE. 59
WW), LEIGHTON ELECTRONTCS CENTRE. 59 NERI Leightan Buzzard 2316 (Std code 05253)

Wilmslow Audio
 THE firm for speakers!

Baker Group 25, 3. 8, or 15 onm Baker Deluxe. 8 or 15 ohm Baker Major, 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 hm Celestion HF 13008 or 15 ohm Celestion MH 1000 horn. 8 or 15 ohm Decca London and X over Decca DK30 and X over EMI 5" Mid range EMI $6_{1} 2^{\prime \prime} d /$ cone roll surr. 8 ohm EMI $8 \times 5,10$ watt, d/c, roll/s 8 ohm EMI $14^{\prime \prime} \times 9^{\prime \prime}$ Base 80 . Elac 59RM 10915 ohm .59
Elac 6^{\prime}."d/c roll/s 8 ohm Fane Pop 15 watt $12^{\prime \prime}$.
Fane Pop 50 watt. $12^{\prime \prime}$. Fane Pop 55, 12" 60 watt Fane Pop 60 watt. $15^{\prime \prime}$ Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt, 18^{\prime} Fane Crescendo 12 A or B. 8 or 15 ohm Fane Crescendo 15,8 or 15 ohm Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s. 8 or 15 ohm Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodnians 10P 8 or 15 ohm Goodmans 12P8 or 15 ohm . Goodmans 12P-G 8 or 15 ohms Goodmians Audiom 2008 ohm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom 8" 8 or 15 ohm Goodmans Twinaxiom 10" 8 or 15 ohm Kef T27 Kef T15
Ket B1 10
Kef B200
Kef B1 39
Kef B139
Kef DN8
Kef DN 13
Richard Allan HP8B 8" 45 watt
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
STC 4001 G super tweeter
Baker Major Module, each
Goodnans Mezzo Twinkit, pair.
Goodnians DIN 20, 4 ohm . each
Helme XLK 35, par
Helme XLK40, pair
Helme XLK30, pair
Helme XLK50, paır
Kefkıt 1, paır
Kefkit III, each
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Triple, each.
Richard Allan Super Jriple, each
Richard Allan RA8 kit, pa:r
Richard Allan RA82 kit, pais Wharfedale Linton 2 kut (par) Wharfedale Glendale 3 XP kit, pair £8.64
$£ 10.25$ $£ 10.25$
$£ 13.75$ £13.75
£11.87 £10.00 $£ 10.00$
E18.12 £18.12
.$£ 7.75$ E 7.75
£13.50 £13.50
£ 39.50 ع 24.06

Lowther. Peerless Tannoy units in stock

Prices correct at 1.476

INCLUDING VAT AT 25% ON HI-FI

$$
8 \% \text { ON PRO \& P.A. }
$$

Cabinets for PA AND HiFI. wadding. Vynair, etc FREE with all orders over £10-HiFi Loudspeaker Enclosures Book
All units are guaranteed new and perfect
Carnaye Speakers 50p each. $12^{\prime \prime}$ and up 75 peach weeters and crossovers $30 p$ each. kits $80 p$ sach 1

WILMSLOW AUDIO
 Dept. WW

Loudspeakers \& Export Dept: Swan-Works Bank Square, Wilmslow, Cheshire SK9 1HF Discount HiFi, PA etc: 10 Swan Street, Wilmslow. Radio, Hi Fi, TV: Swift of Wilms low, 5 Swan Street, Wilmsiow. Tol. (Loudspeakers) Wilmslow 29599, (HiFi, etc.) Wilmslow 26213.

Appointments

Advertisements accepted up to
DISPLAYED APPOINTMENTS VACANT: $£ 6.50$ per single col. centimetre (min. 3 cm). LINE advertisements (run on): $£ 1$ per line, minimum three lines.
BOX NUMBERS: 45p extra. (Replies should be addressed to the Box Number in the advertisement, c/o Wireless World, Dorset House, Stamford Street, London SEl 9LU.) PHONE: Owen Bailey on 01-261 8508 or 01-261 8423 .

Radio Officers-now you can enjoy the comforts of home.

Working for the Post Office Maritime Services really makes sense. You still do the work that interests you. but with all the advantages of a shore-based job: more time to enjoy home life, job security and good money. To qualify, you need a United Kingdom Maritime Radiocommunication Operator's General Certificate or First Class Certificate of competence in Radiotelegraphy, or an equivalent certificate issued by a Commonwealth Administration or the Irish Republic.

Starting salaries, at 25 or over, are $£ 2905$ rising to $£ 3704$ after three years service. Between 19 and 24 , the starting salary varies from $£ 2234$ to $£ 2627$
according to age. You'll also receive an allowance for shift duties which at the maximum of the scale averages $£ 900$ a year and there are opportunities to earn overtime. There's a good pension scheme, sick pay benefits and prospects of promotion to senior management.

Right now we have vacancies at some of our coastal radio stations, so if you're 19 or over, write to: ETE Maritime Radio Services Division (L687), ET 17.1.1.2., Room 643. Union House. St. Martins-leGrand, London EC1A 1AR.

Post Offifice Telecommunications

MEDICAL RESEARCH COUNCIL
CYCLOTRON UNIT WESTERN GENERALHOSPITAL, EDINBURGH

The following posts are offered for work on a Nuclear Accelerator in a new Cancer Therapy Unit

OPERATOR

o be responsible for routine operation and mamtenance of accelerator and anciltary plant and some development work Several years experience in Permanent appointment to Technician grade age 2326 and an HNC \& 3738)

ELECTRONICS TECHNICIAN

to be responsible fo namteriance dad developmert of wide rantip of equipnient assciciated with acceletotor ald anciliary plant also providing a service to scientisis concerned with the physical aspects on
the beam Several years practical experience in an electomics laboratory essentat Permanent apuomiment to Techuclat grade age 23.28 HNC Salary according io age and expenienicu $22511-2988$ (scale to:3738)

INSTALLATION MANAGER

Television and Security Systems

Due to rapid expansion we have an immediate requirement for a qualified expefienced and highly competent Insiallation Manager In addition to his technical skills he will need to be an excellent admmistrator. flexible in his approach to solving problems and good at handing a team of hard-pressed engineers
The Company which is situated near Lordon is designing and installing many complex systems both in the UK and abroad we are a leader in the field of advanced security techmology and expect out systems to be installed to the highest standards possible Thereatter we mamtain them providing a fast and efticient service to our customers

A pleasant disposition and efficient manner coupled with a good sense of humour will be essential attributes The Company will pay an excellent salary provide a car did the usual fringe benetit. to the successful candidate Ihis is a loug term career prospect and the opportanity to become a member of a young and enthusiastic team

TEST GEAR ENGINEERS

Rediffusion, a major British company in television manufacture, is developing a new, state of the art receiver at its Chessington leboratories. To support this project we require additional Test Equipment Design and Development Engineers at sentor and intermediate levels to help produce our sophisticated production test equipment. Rediffusion test equipneat leads the industry and uses both analogue and digital techniques along with an up-to-date approach to jigging.

Applications are invited from well qualified and experienced test equipment engineers, who will be offered the opportunity to join a young and energetic team. Our work is usually demanding, often under pressure but alarays stimulating, using new ideas to apeed production testing whilst reducing the demands on our test operators.

Salaries, which will depend on experience, are excelleat and assistance with relocation will be given where appropriate. Some travelling to our production factories in Co. Durham will be necesaary from time to time to assist in the installation and commifsioning of new equipment since our design engineers are expected to be responsible for all aspects of their project.

If you are a high calibre engineer and wish to have your abllity recognised and rewarded, come and join us.

Write or 'phone to:
A. J. Litteck,

Test Equipment Group Leader,
Rediffusion Consumer Electronics Ltd.,
Fullers Way South,
Chessington, Surrey.
Phone 01-397-5411

AUDIO - TAPE - HI-FI Service Engineer

Able to work on own mittative Full range of test gear Good remuneration. excellent conditions. interesting and permanent post Regular hours

JOHN KING 71 Esat Street. Brighton Telephone 25918/27674

C.C.T.V. VIDEO SYSTEMS

We think we are the most success ful company in our field and are seeking people of the right calibre to maintain and increase our market share buld-up over the last 10 years.
To supplement our existing team engaged in installations in UK Turkey. Saudi Arabia and Nigeria we require exceptional Video Sales Engineers capable of selling at high level and supervising installa high level and supervising instalia hons lro Wenception to commis soning. We need ambitious men of proved rechnical ability and unafraid of hard work The rewards are high and this is a genuine. once in a lifetime opportunity for the right people
Please contact in full confidence
Ian Crammond, Managing Director
TELETAPE VIDEO
76 Brewer Street
Tel. 01-439 6336/7/8 (5342)

Systems Test Engineer

Crosfieid Electronics Ltd are leaders in the field of sophisticated electronic equipment for the printing industry. We need engineers to work on the final testing of systems using analogue and digital circuitry with a degree of photographic and optical involvement.

The right people will be aged 20 to 32 and either up to HNC standard with three to five years relevant experience or with a service background. Knowledge and experience of computer software and hardware would be an important advantage

Starting salary depending on experience will be attractive and benefits are commensurate with those expected of a member of an international group of companies

For an application form please contact Linda Geers. Crosfield Electronics Ltd, 766 Holloway Road, London N19 3JG. Telephone 01-2727766

CROSFIELD ELECTRONICS

UNIVERSITY OF EDINBURGH

ELECTRONICS TECHNICIAN

Required for the DEPT. OF RESTORATIVE DENTISTRY. The work is mairily concerned with medical electronics and electromyography. The successful candidate will be concerned with maintenance and modification of a wide range of medical, electronic and allied equipment, and with research and development in electronics as related to dentistry. The post offers challenging dentistry. The post offers challenging
and rewarding work in a new and and rewarding work in a new and
expanding field. Applicants should hold HNC or equivalent in appropriate subjects. Salary will be on scale $\pm 2751 £ 3207$ p.a. Assistance with relocation expenses is available if necessary

Applications, quoting post reference no. A171, and giving full details of age and qualifications, together with the names and addresses of two referees, should be submitted by 30th April, 1976, to the Personnel Officer, University of Edinburgh, 63 South Bridge, Edinburgh EH 1 ILS. Telephone 031.6671011 . ext. $4510-3$.

People with analogue or digital qualifications / experience seeking higher paid posts in TEST - SERVICE - DESIGN - SALES.

Phene Mike Gernat, Ref. W.W
NEWMAN APPOINTMENTS
360 Oxford Street, W.1.
$01-6290501$
(94)
electronics and computer PERSONNEL, QUALIFIED AND experienced all specialities. all areas.

University of Edinburgh
ELECTRONICS TECHNICIAN
A qualified electronics technician experienced in servicing and design modification of sophisticated instrumentation, is required by the DEPT OF CHEMISTRY to take charge of a workshop and four qualified staft from 1st August 1976. The successful applicant will expected to advise statf on design and data collection problems and give technical information on and give techich HNC or equivalent new equipment. HiNC or equivalen qualification required Salary on scale $£ 3156-5762$ p.a
Applications, quoting post reference no. Al75, should be addressed to the Personnel Officer. University of Edinburgh, 63 South Bridge. Edinburgh EH 1 LS Telephone 031.667 1011, ext Telephone
$4510-3$.

HER MAJESTY'S
GOVERNMENT COMMUNICATIONS CENTRE
HANSLOPE PARK MILTON KEYNES, MK19 7BH
has vacancies in the following fields for R\&D work:
(a) VHF/UHF COMMUNICATIONS EQUIPMENT DESIGN
(b) ELECTRO-MAGNETIC COMPATIBILITY
(c) GENERAL CIRCUIT DESIGN ANALOGUE, DIGITAL
(d) OPTICS
(e) RELIABILITY - FROM COMPONENTS TO OVERALL SYSTEMS
(f) DESIGN AND DEVELOPMENT OF SMALL MECHANISMS

Appointments will be made within the grades of:

SCIENTIFIC OFFICER
 £2149-£3527

(Candidates under age 27)
Qualifications:
(a) Scientific or engineering Degree
or (B) Degree standard membership of a Professional Institution
or (c) HNC or HND in a scientific or engineering subject or equivalent

HIGHER SCIENTIFIC

 OFFICER£3254-£4454
(Candidates under age 30)

Qualifications:

As for Scientific Officer, with the following experience since qualifying:
(a) Candidates with 1 st or 2 nd Class honours degree or equivalent qualifications - at least 2 years' postgraduate experience
or (b) Other candidates - at least 5 years of appropriate experience.

For application forms please write to:
Administration Officer
HM Government Communications Centre Hanslope Park
Hanslope
Milton Keynes, MK19 7BH

Looking

 for a new job?
Perhaps we can help!

We have regular contact

 with hundreds of electronics and electrical companies needing qualified electronics engineers and technicians and TV service engineers.We can, therefore, help you to find an interesting and well paid job. All you need to do is to return the coupon below or give us a ring. Our service is confidential and costs you nothing.

TJB Electrotechnical Personnel Services 12 Mount Ephraim Tunbridge Wells, Kent

 Tunbridge Wells (0892) 39388

TJB Electrotechnical \bar{F} ersonnel Services is a division of Technical \& Executive Personnel Ltd. and is solely concerned with job placement in the Electronics and Electrical Industries
Please note that this service is available only for engineers who are (or will be) available in the U.K. for interview.

Please send me an "Application for Registration" form NAME \qquad ADDRESS

FEATURES EDITOR - ELECTRON

ELECTRON, leading fortnightly journal for engineers and management in electronics, requires a Features Editor. Essential requirements are journalistic experience, a good working knowledge of the electronics industry, and knowledge of the latest technological developments in electronic components, equipment and design techniques. Principal functions will include the commissioning of feature articles from specialist experts in industry, and the writing of technical feature articles for an engineering audience. As part of a closely knit team, the Features Editor will also be required to cover press conferences and press visits from time to time. An important function of the position is journal production which involves close adherence to schedule copy dates, and progress of copy through manuscript, galley and page-proof stages.

Salary will be in accordance with NUJ/IPC Business Press Ltd. Grade 5 agreement.

Apply to: W. S. E Mitchell, Editor, Electron, IPC Electrical-Electronic Press Ltd., Dorset House, Stamford Street, London SE1 9LU
(5315)

OMAN

Dhofar Region Television Service

* Very Good Salary
- Free Family Passage
- No Income Tax payable in Oman
- Free Furnished Accommodation
- Special End of Contract Bonus
- We pay Local Education Fees
- Comprehensive Free Insurance Health, Dental etc.
- Hard work is necessary

We are recruiting on renewable one-year contract and have a vacancy for

SOUND SUPERVISOR

FOR

 TELEVISION STUDIOS
INCLUDING O.B.s

Let us discuss with you your abilities for this interesting and important position

Phone: Tony Owers, 01-5738333 for
more information
PERSONNEL \& ELECTRONICS LTD.

AVIONICS IN EDINBURGH

With contracts for a variety of advanced avionic projects in the Tornado (MRCA), Sea Harrier, Nimrod Mk2, Mitsubishi FS-T2, Jaguar and the naval Lynx helicopter, Ferranti in Edinburgh are in a position to offer career conscious engineers a wealth of technological experience. Planned expansion through this year and next now requires the appointment of engineers with experience in the following areas:

Technical Authors

Design/Development

Opportunities exist for electronic and mechanical engineers with qualifications ranging from HND to Honours degree to join our design teams involved in airborne radars, laser range finding and target seeking equipments, inertial navigation systems and their associated test gear.

Test And Support

To support our design teams we need engineers with qualifications from C \& G to HNC, preferably with Test and Quality Assurance experience.

They will become involved in a range of work covering automatic test equipment, fault diagnosis and building special-to-type test equipment.

Development across all our projects requires parallel expansion in our Technical Publications Group. Experienced technical authors will find the close association with project design particularly stimulating and for engineers keen to embark on such a career this is an opportunity to train in one of the most authoritative technical writing teams in the country.

Salaries are negotiable. The Company operates a contributory pension and life assurance scheme and incoming employees will qualify for housing under the Scottish Special Housing Association scheme.

Apply in writing, quoting reference WW/1, with particulars of qualifications and experience to:

Staff Appointments Officer,
Ferranti Limited, Ferry Road, Edinburgh EH5 2XS.

ELECTRONIC TECHNICIAN II

Required for the District Works Department based at St. Mary's Hospital, Eastbourne

Qualifications - HNC Electronics or equivalent

Salary Scale - £3,558 to £4,581 p.a.
This is a newly established post offering an exceptional opportunity for the establishment of a section responsible for the maintenance of Electronic and Bio-medical Equipment within this Health District The holder of the post will be responsible to the District Engineer

Candidates should possess broad experience of electronics together with an understanding of the safety aspects of equipment in relation to both the patient and user

In addition to a sound technical background. applicants should possess the managerial qualities required to organise and supervise, both subordinate staff and contracted work and be capable of developing and maintaining successful working reiationships with all levels and disciplines of hospital staff.

As well as providing a day to day mantenance of equipment the successful applicant will be required to introduce and operate a Planned Preventive Maintenance Scheme

For job description and application form, write to The District Personnel Officer, Eastbourne Health District, Avenue House, The Avenue, Eastbourne Telephone 0323 37121, ext. 21

Further details obtainable by contacting the District Works Officer, St. Mary's Hospital, Eastbourne. Telephone: 032320662.

Test Engineers H.E.Communications

Housing available in Berkshire

The contınuing expansion of Racal Communications Equipment Limited has created vacancies for Test Engıneers and Test Technicians at our Bracknell Factory.
The positions will involve the testing and auditing of a wide range of sophisticated H.F. Communication equipment. including the assessment of new products.
The Company will be prepared to sponsor eligible candidates for housing with the Bracknell Development Corporation. We offer excellent terms and conditions, generous holiday entitlement, pension scheme and sick pay entitlement.
If you are interested then

Communicate with Racal

Please write or telephone for an application form to:
Mr. A. J. Franklin. Personnel Manager,
Racal Communıcations Equipment Limited,
Western Road, Bracknell, Berkshire RG121RG Telephone : Bracknell 3244 Ext. 44

Opportunities for Electronics Engineers

To change to wider fields of electronics - join the EMI Service Team at Hayes.

Vacancies exist on repair and calibration of a wide range of electronic test gear including oscilloscopes, DVMs, pulse generators, power supplies etc

Also

Servicing and commissioning closed circuit television equipment including cameras, VTRs. Monitors etc
Applicants should have at least 5 vears practical experience
These positions offer varied and interesting work Attractive starting salaries, subsidised lunches. 4 weeks holiday and excellent
sick pav and pension schemes
For further detals telephone or write to M Ford 015733888 Ext 2167. EMI Service, 254 Blyth Road, Hayes. Middlesex

8
 North Midland Co-operative Society Ltd.

require

SENIOR AUDIO ENGINEER

A grand opportunity for a suitable, capable engineer to co-ordinate the activities of our Audio service department, which undertake the wide service aspect across the consumer spectrum.
The person appointed will be directly responsible to the Group Service Manager, and would not normally be expected to work on television or other equipment, but will be capable of dealing with customer inquiries and complaints.
The initial wage rate is $£ 58$ per week, and accommodation may be available on rental.
We are situated at the county border of Staffordshire, Cheshire and Derbyshire, which is a very attractive residential environment.
If you desire a change with opportunities, and wish to join an organisation with sales in excess of $£ 34$ million per year, apply in the first instance giving details of career to date by letter to

Personnel Officer
10 Newcastle Street
Burslem
Stoke-on-Trent
ST6 30G

COMMUNICATIONS TECHNICIAN

£4005-£4275 (inclusive) Reigate

For the Surrey Fire Brigade. To be responsible for Plannıng, Repaır and Maıntenance and general administration of the Brigade's Communications Systems comprising VHF/UHF Radio Scheme, Electronic Visual data Transmission System. Call-out Systems at Fire Stations, telephone and teleprinter networks, pocket radıo alerter system for part-tıme Retained Firemen

Will undertake the maintenance and repair of radio equipment and theretore must be an experienced practical engineer $361 / 2$-hour, 5 -day week

Application form and Job Description from the Brigade Personnel Officer, Surrey Fire Brigade Headquarters, St. David's, 70 Wray Park Road, Reigate, Surrey RH2 OEJ. Closing date: 12 April, 1976.

SURREY

COUNTY COUNCIL
(5340)

POWER SEMICONDUCTOR SALES OPPORTUNITIES

International Rectifier is a market-leader in power semiconductors, and need two people for their sales organisation, who match these job specifications.

1. TECHNICAL SALES ASSISTANT/ JUNIOR INTERNAL SALES ENGINEER

A young person (20.25 vears) with experience in technical selling position (ideally in an electrical or electronics company) is required who can liaise with our customers both by telephone and written quotation, and generally assist our internal sales staff in promoting our product range. A technical qualification would be a distinct advantage and promotion to Product Sales Engineer or Field Sales Engineer should be the ultimate aim of the successful applicant.

2. PRODUCT SALES ENGINEER

TRANSISTORS/CONSUMER PRODUCTS

A qualified engineer (HNC electrical/electronics) aged about $25-35$ years, with a commercial bias is required o be responsible to our Product Sales Manager, specifically for technical sales of high voltage TV diodes and other consumer products, and possibly for power and Darlington transistors. Experience in design and /or sales of these particular products is naturally preferred. Customer visits throughout U.K. (and possibly into Europe) will be involved

If you feel you may fit into our organisation, and can convince us, write to or telephone our Personnel Manager - Ron Sutton - or Doug Danitl - General Sales Manager.

SERVICE ENGINEERS

(Electro-Mechanical)

The Company manufactures, develops, designs and services a wide range of X-ray appliances and we are now seekıng to appoint two Service Engineers to cover the Cardiff area Their duties will involve the installation. service and maintenance of our X-ray equrpment

Applicants should be educated to ONC level while previous experience in closed circuit television. logic circuitry and/or electronics will be an advantage

An attractive salary is envisaged and a car will be provided once an acceptable stage of profiency has been reached

Please write or telephone for an application form to

Medical

The Personnel Manager GEC MEDICAL EQUIPMENT LTD. East Lane North Wembiey
Middiesex
Tel: 01-904 1288

Test Engineers

EMI have all kinds of future for you at Hayes

With several different EMI industries concentrated at Hayes, Middlesex, the Company offers you work on a wide variety of equipments - plus opportunities to win promotions in one direction or another without ever having to move out of the Hayes area. And, since the entire EMI Group is constantly expanding - and, indeed, looks likely to continue to expand for years to come - these opportunities may be expected to come up frequently.
Recent practical testing and fault finding experience, either in industry or with HM forces is essential. Ideally, it will have involved work on advanced and complex electronic devices. Certainly you'll need a good technical

background with knowledge equivalent to ONC.
Given these minimum conditions, Test Engineers of all levels are required and you're starting salary will faithfully reflect the experience you have accumulated to date.
Terms and conditions of employment at EMI are everything you would expect of a major international organisation, and assistance towards relocation expenses will be considered where necessary.
To apply, please write to Bill Clark,
Personnel Department EMI Limited, 135 Blyth Road, Hayes, Middlesex.

Or telephone him on 01-573 3888 extension 639 or Record-a-call anytime on 01-5735524.

CLWYD COUNTY COUNCIL EDUCATIONAL TECHNOLOGY CENTRE

SOUND SUPERVISOR

Salary on scale Technical 5 £3825-£4095 per annum

To be responsible for the sound operation in the new television and sound studios which are committed mainly to the production of educa tional materials for schools and are equipped to high standards Main duties involve sound mixing, record ing and editing. Candidates should have practical experience with either a broadcast organisation high standards ETV Service or a recording studio A knowledge of electronics and maintenance tech nique will be an advantage
Application forms obtainable from the Director of Administration. Shire Hall Mold (Tel Mold 2121, Ext 375) to be returned by 18 th May 1976

M H PHILLIPS
Director of Administration
5353

(CA CAPTAL
 apponimentis เto.

FIELD SERVICE ENGINEERS [ELECTRONICS]
If you're not earning over $£ \mathbf{£}, 500$ p a plus a car - then you had better contact us ${ }^{\text {! }}$

MANAGER

Research and Development Laboratory (R.D.E.)

A technical manager is required for an electronic laboratory, primarily concerned with cable television development, which embraces the reception, transmission and distribution on cable of television signals and the design and development of cable T.V. receivers, and similar equipment.
The faboratory is housed in a modern building and is located on the outskirts of Leatherhead. Surrey, in pleasant surroundings
The successful candidate will have

1. A good knowledge of electronic theory. particularly as applied to communications, and a supporting mathematical ability would be an advantage
2. Good experience in communication and /or colour television fields.
3. Up-to-date experience of the practical design and production of electronic equipneent.
4. Some technical management experience
5. The ability to motivate technical personnel and provide an
innovative atmosphere.
The person selected would be responsible for all the
operations, both technical and administrative, required to run the laboratory with approximately $18-20$ personnel. including non-technical support staff, and would be responsible for this directly to the Technical Director.

Please write in confidence to.-

The Technical Director

British Relay Wireless and Television Limited
Overline House
CRAWLEY, West Sussex
enclosing full detalls of education, training, qualificatıons and experience.

RADIO TELEPHONE Service Engineer wanted for work-shops in South London. Must be reliable and experienced with Pye, GEC, and other mobile radio equip. Salary Neg. 680-1010. (5329)

STUDENT REQUIRES work May to October. Qualified as a Test Engineer (C\&G) full Tech. Has had and audio equipment. London/ Surrey area preferred. Box No 5:50. Wireless World, (5350)

[^8]

60 KHz MSF RUGBY RECEIVERS BCD TIME-OF-DAY OUTPUT. High performance. phase locked loop radio recelver. 5V operation with LED indican. kited unit fil 12 assembled and ested Also available low power receiver with signal and audio outputs. Send for details Toulex Sherborne (4359) Dorset.

DISCO CONSOLE consisting of two 100 watt DJ Power Amplifiers with SDL mixer Mk II. 2 Garrard SP25 MKIII Turntables with Shure. Mag. netic cartridges housed in compact mobile unit. 4 speaker units: 2 containing four $12^{\prime \prime} 50$ watt Goodman speakers. 2 containing 18^{\prime} EMI speakers. 100 watt Pluto light projector, microphone fincluding stand and boom). Speaker leads Bank lights. All perfect and ready
for use. $01-8053898$.

ARTICLES FOR SALE
MONOCHROME TELECINE Tlu FLUKE 302 DC Volts standard/Diff
 Philips projectors (iwo 16 mm and one 35 mm): Westrex interlocked magnetic and optical replay units. picture and waveform monitor and is complete with handbooks. spare alves, vidicom elc. Vewing b arrangement: offers in writing to Room 5 fie. Central Otlice of infor mation, Vercules Road. Landon

MOTIVATOR " Curiam Cord ('inn

 rollers. Mans battery models and
 Products Depl WW12. S Hulview
Road, Pinner IIAS + MA. Middeses Road, Pinner $l 1 \AA$ A 4 PA. Middlese.

500 WATT DIMMER SWITCH
Brast Moctule with

whd 3 VAT to all motern the
FRASER-MANNING LTD.
40 TUDDENHAM ROAD, IPS WICH IP4 2 SL

THE SCIENTIFIC WIRE CO
Copper - Nickel - Chrome -- Eureka - Litz - Manganin Wires Enamerings

* No minimum charges or quantities * Trade and export enquiries welcome 5 A E brings List
P.O. BOX 30, LONDON E4 9BW

DIRECT COMMUNICATIONS

Division of Direct Electronics Lid

INTERCOMMS \& TELEPHONES

- New Italidn Designed 2.Way Telephone Intercomm Wall/Desk with 30 metres
 inst Z- to 11 way wall model $£ 1150$ Desk inc term block 11345 per inst (50 p) Colours ivory and grey blue
- Superior 2. to 6 way Siemens \& Halske Wall Intercomm with desk converston kit
term block and cord Per instrument t. 10 (packing and carriage 50 p)
- Push-button Intercomms from 2. 1021 way with multi-channel and conference acintes New 6-way 24 1r way 21 the above prices (i) each unit)
- Entiace Phones Single unt1 + Internal Phone + Electric lock release + Twin Power Suppry
- Transistorised 2-way
- Transistorised batt-op 3-way Intercomm :Master - 2 subsi t. 2395 (E. 1) 4-way
(Master - 3 subs) £28 50 (\& 1) 2 or more into mains - no wires required) $\& 20$ pair (41) Ideal for baby alarm
- Automatic Instruments Strowger-compatible or PAX working New PO Types 706 and 746 \& 15722 (Trimphone) £ 4165 Refurbished from $\mathfrak{E} 500$ (2 1) Also Special
- Ultra Modern Types Gondola (dial in hard set) $£ 3995$ Charieston (Candlestick) moulded black ± 3475 Leather covered red green or brown. £50 95 Electronic bution styles from $£ 88 \quad 100$ other superb Reproduction and Modern styles avalable in wood - leather onyx etc Come and see
- Plan and Key phones for Home and Expor New or refurbished
Telephone amplitier (1 way) $£ 595$ (35 p) Hands-Free Tele Amp (iwo-wdy conversation) 950 (50 p) With recording farlity E 1250 (50p)
- relephone terminal blocks 3 -way 45p. 4way 75 p. 6 -way £ $125 \quad 24$-way $£ 275$

 Telephone cable Per metre 4 -way $18 p$. 6 -way $20 \rho 10$-way 50 p $\quad 13$-way 56 p
(Add 10%) Pared cable also avallable up to 50 pair - Intruder Alarm Microwave space protector Power Supply $\$ 25$ (i) 1)
* Mains Adaptors $6 \quad 75 / 9 v d c$ switched :3 75 (50p) 3/4
(50p) Sut Transistor Radios. Cassette Recorders Intercomms
- Auto Exchange 10 extension +1 circurt Power supply incorporated E 175 (car
- New Transformers Extensive range in stock or quick delivery Auto Isolating HV

Charger Equpment Output eic 12 va to 6000 va (6 Kva) from ti 170 Please enquire Add VAT $=8 \%$ * $=25 \%$ on post pard price

TADE ENQUIRIE'S WELCOMED
Many surplus bargans still avalable at exceptionally low prices All must be cleared 34 LISLE STREET, LONDON, WE2H 7BD - Teł: 01-437 2524

The DIOTESTOR detects faulty diodes and transistors when still in circuit without need for unsoldering.

BRITEC LIMITED

17 Devonshire Road, London SE23 3EN Tel. 01.6998844 Telex: 896161

MICROPHONE PREAMPLIFIER

PRECISION POLYCARBONATE CAPACITORS

\section*{An

ㅃ․․

ㅃ․․

t. \}				
VALLE (num) PRICE 631R				
0 ¢ 1.	27	. 7 Jp 04		
(0.22, ${ }^{\text {a }}$ F	33	Gip 10 mF	2p 62p	
0.254 F		${ }^{67 p} 221 F$	75p	
11474 F	33	20p +7.1 F	. 6220.11 .13	
0.5 , F		87p 6. m_{4}, 5	.96 11.38 cl	¢1.
0.6884 F	50.819	O3p 10ut	.40 $£ 1.93$	1.64
$10.1{ }^{\text {F }}$	50 K 19	c1.03 15, 10	3.24 42.79	L2.
	5.15 254	Cl. 44 22.IF	$4.2 \times 8.3 .68$	
TANTABM BEAD CAPACIIORS - Values avalable: $01.0 .22,04710.22$. 4.N. 6 14t at 15 V 25 V or $35 \mathrm{~V}, 10 \mu \mathrm{~F}$ al $16 \mathrm{~V}, 20 \mathrm{~V}$ or $25 \mathrm{~V}, 22.04 \mathrm{~F}$ al 6 V or $16 \mathrm{~V} ; 33.0 \mathrm{~F}$ a 6 V or $10 \mathrm{~V}, 470 \mu \mathrm{~F}$ at 3 V or 6 V 1000 of at 3 V ALL at 10 peach 10 for 95 p . 50 for C 4 .				
TRANSISTORS \& IC'S				
ACILS	$1+\mathrm{p}$	8С26BA 384.	(17)	
Aclion	16p	BC547 558A12p	2N2926i	
Al149		$\mathrm{BCY} 2 \mathrm{l} \mathrm{l}^{12 \mathrm{p}}$	2N2426,	
AFIT	30p	Bil131 13234 p	2N2926	
AF239		BF15 16722 p	3054	
BC107 \%/9	$9 \mathrm{9p}$	${ }^{\text {BF } 173} \quad 24 \mathrm{p}$	2 N 3055	
BC147/8/9	910 p	BF184 22 p	3704	
BC153 154	12p	- BFis 195-129	TIP30A	
BC157 $8: 9$	${ }^{912 p}$	-BFIN/4/197-12p	TIP31A	
$\mathrm{BCO}^{1 \times 2} \mathrm{l}^{182}$	$\times 2 \mathrm{L19}$		TIPs05.	
		BFYSO_{51}		
	4L12p	BFXW4 $\times 6$.	NE555	
BC212 212	12L14p			
BC213,213	3L11p		143	
BC267	$\begin{gathered} 1+111 p \\ 12 p \\ i x \\ i x \end{gathered}$			
LOW PRICE ZENER DHOULS-4001MW TOl $=5 \%$				
All at 7 p each: 5 for 33p: 10 for 6.9 p . SPE				
OFFFR: 100 Zeners tor E6.041.				
folm 5%. ${ }_{2} \mathrm{~W}$ at 40 CC' 3 w at 70 C F12 yer 				
onity-frum 2 2!! to $22 \mathrm{ME!}$ Al.L al Ip each. Ap for 10 off ans une balue $7 \mathrm{~T}_{\mathrm{p}}$ for tu0 of ans one balue				
SPFC'IAI PACK 10 of each whe 2 2!! to 22 M ?				
(730 resimor) $\mathrm{ES}^{\text {5 }}$.				
(4u4				
Pl b mp (tior 30p).				
1k!! 2 2k!! + $7 \mathrm{k}!$! fixk!. 10k!. 15k!, 22k! 4ik!				
PLL. \uparrow E AIDU (5p P)ST AND PACKING ONALL				
ORD, RS BFLLUW ES ALL EXPORT ORDERS ADI OSTOF SEA AIR MAIL.				
PLEASE ADD 8% VA: to all tems excepl thost marked with - which are 25\%				
and a A I. for that of additiomal ex-stock hemin				
MARCOTRADING				
Dept. D1)				
The Old School, Edstaston. Mr.				
Wem Shropshire				
Tel. Whixall (Shropshire) [STD				
094872) 464/5				
(Proprs Vlmicist Tradinh				

IBM GOLFBALL 735 I/O
 TYPEWRITERS

Coding similar to EBCDIC

will accept normal or sprocketed paper oupplied in working order with photo copy serviced and tested
As above but modified to take office range of golfballs $\varepsilon 118+8 \%$, VAT (including new golfbally
packing i 750 delivery by Securicor
Overseas air freight or packing 2750
surface at cost.

RELAYS

Varley 2 p c/o 185: 65p (12p)

BNC Free SKT BL L1339/J 35p (10p) 8NC Chassis SKT SCRND L1339/FS 35p (10p)

PAPST (or Similar) Fans $41 / 2 \times 41 / \mathrm{s}$
$100 \mathrm{ct} . \mathrm{m} .50 / 60 \mathrm{£3.50}(65 \mathrm{pl} \mathrm{c} / \mathrm{s}$
ELECTROLYTICS
10.00063 v £1 (30p) 2.800~ 100v 70p

25p) $22404100 v 70 p$ 25p (11p) 4000
$70 \mathrm{v} 80 \mathrm{p}(25 \mathrm{p}) 10.000 .16 \mathrm{v} 50 \mathrm{p}$ (20p)
EX COMPUTER PC PANELS $2 \times 4^{\prime \prime} 50$ boards $£ 2.40(62 \mathrm{p})$
CH bulbs 12 v 55 w 60 p (10 p)
250 mixed resistors 60p 18 pp)
-Small electrolytics
22 u 10 v 10 u 35 v 50 u 40 v . 100 L 40 v 100 u 6v. 150 u 10v. 64 u 10 V .300 u 10 v 200」 10 v 12 for 45 p

- PIHER PRESETS 100 mW . $47 \mathrm{~K} \quad 100 \mathrm{~K}$ 220 k . 12 for 50 p (12 p)
Reed relays 6 v coll h/d contacts 5 for $£ 1$
Reed inserts h/d contacts 10 for $\mathbf{£ 1}(12 \mathrm{p}$)
TRANSFORMER $6 v 500 \mathrm{~mA} 75 \mathrm{p}$ (18p) TRANSFORMER 31v 330mA 60p (30p)
Add $\mathbf{2 5} \%$ VAT to tems marked ${ }^{\circ}$ others

KEYTRONICS

Shop open Monday to Saturday
01.5531863 5344)

LAFAYETTE PF 200a VHF/FM RECEIVER. Dual Band fully solid state monitor tunes $30-50 \mathrm{MHz}$ and 144-174 HHz plus any 2 crystal controlled frequencies in each band. Integral speaker, tape re. corder socket. headphone and extension speaker sockets. Sensitivity
 supplies for fixed or mobile opera tion, optional 24 y DC convertor, tion, optional $24 v$ DC convertor Stockion Partners, 20 Dudley St. Grimsby Tel: (0472) 3740. Cables stopart. Importer and Distribu tors.
(5313)

WE INVITE ENQUIRIES from anywhere in the world. We have in stock several million carbon resis. wire wound resistors 5 and 10 watt -1 million capacitors - 1 million electrolytic condensers - $\frac{1}{2}$ million transistors and diodes, thousands of potentiometers. and hosts of other components. Write, phone or call at our warehouse - Broadfields \& Mayco Disposals Lid.. 21 Lodge

16MM B \& H 6:31 sound projectors c/w speaker and transformers £135. Hiltun Cine, 9 Wesi Hill. Dart-
ford $-7,20004$.

Economise on Semiconductors

All prices include VAT - by return service

* Lower price 741C
\star Lower price CMOS

DIGITAL CLOCK CHIP, AY.5-1224 with data and circuit diagram, $£ 3.66$ plus VAT. Jumbo LED digits (16mm high) type econumy DL/f47 only $\mathbf{x 2} 24$ each plus VAT, posi free. Greenbank Electronics. Mi New
Chester Road. Wirral, Merseyside Chester
L62 5 AG .
-
C.R.T, REGUNNING PLANT. New and secondhand reconditioned B/W Barretts Mayo Road Croydon B/W. Barretts, Mayo Koad, Croydon,
Surrey, CRO $2 Q P$.

WIDE BAND OSCILLOSCOPE, 2 plu in amplifiers. D.C. to 40 Meg , Dual trace, Dual timebase, bright up, Delay, single shot E280. Technical manual included. Higgs, 15 Carlisle Avenue, Swindon. 0793 34633. (5335)

DISCO UNIT, consisting of two, KF speakers, output loow. iwo turn tables, one Garrard thi other BSK plus D..J. Disco amplifier with microphone and headphones. $£ 250$ for quick sale. Also comprehensive record sellection available with
unit. Tel: $01-440$ t15: or $01-5 \times 6$ $\begin{array}{lllll}\text { unit. Tel: } \\ 701-440 & 4153 & \text { or } & 01-886 \\ (5284)\end{array}$

FOR SALE: All as found three radar equipments. AEI Escort type 200 vDiC supply. Two complete in 200 vDiC supply. Two complete in-
cluding 12 foot scanners and one complete without scanner. Also mis cellaneous spares and handbooks. Can be seen by arrangement with the Depot Supervisor. Lighthouse Depot, 22 West Harbour Road, Grinn-
Hon Harbour. Edinburgh EHS $1 P N$ ton Harbour. Edinburgh EH5 IPN (0315524239). Removal to be the
responsibility of the purchaser responsibility of the purchaser.
offers should be submitted to the Offers should be submitted tis the
Secretary. Northern Lighthouse Sacretary, Northern Lighthous
Board. 84 George Sreet, Edin burgh. EH2 3DA by 3 May 19,6 The Board do not bind themselve (5327)

MICROPROCESSORS

This book gives you a general overview of the Technology Design ideas and Practical Applications by L. Altman THE ELECTRONIC MUSICAL INSTRUMENT MANUAL by A. THE RADIO AMATEUR'S HANDBOOK, 1976 by A.R.R.L.
PRICE E4. 80 WORLD RADIO TV HANDBOOK, 1976 TTL COOKBOOK by D Lancaster PRICE $£ 5.80$
ELECTRONIC FUNDAMEN TALS \& APPLICATIONS: FOR ENGINEERS \& SCIENTISTS by Millman, Halkiss PRICE $£ 9.55$ 110 COSMOS DIGITAL IC PROJESTS FOR THE HOME $\begin{array}{ll}\text { CONSTRUCTOR by R.M. Mar- } \\ \text { ston } & \text { PRICE } £ 3.00\end{array}$ 99 WAYS TO KNOW \& USE YOUR ELECTRONIC CALCULA YOUR ELECTRONIC CALCULAHANDBOOK OF DATA COMMUNICATIONS by Post Cffice PRICE $£ 9.00$
ELECTRONICS ENGINEER'S REFERENCE BOOK by L W Turner PRICE $£ 25.60$
*PRICES INCLUDE PCSTACE *

THE MODERN BOOK CO
PECIALISTSIN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET
LONDON W2 INP
Phone 1234165
Closed Sat. 1 pm

Alectrotime
 the TIME has araived FOR YOU TO JOIN THE DIGITAL REYOLUTION

ELECTRONIC DIGIT ALARM CLOCK MODEL EC3

* Power interrupt indicato
* Tilt operation alarm cancel \star Pulsing seconds indicato
* Attractive white case
* Large 4 digit display
* Variable display intensity
* AM PM indicator
- 24-hour alarm
* 5 minute repeating snooze alarm

COMPLETE BUILT CLOCK PRICE £14.00 inc. VAT

CONTINUOUS LIQUID CRYSTAL DISPLAY MODEL TLC4

RHODIUM £39.95 GOLD inc VAT
GOLD £41.50 inc VAT GOLD $£ 41.50$

ERNIE

MINICOMP series random number

 selectors use modern logic techruques togenerate purley random numbers within generate purley random numbers within
any specifed range All units are bult to any specified range All units are bult to
meet customer requirements for range and mode of operation which may be
LOCAL and or/REMOTE with or without TTL outpuis The display uses $063^{\prime \prime}$.
747 LED 's Some of the existing basic ranges are given.
-MINICOMP DECIMAL - MINICOMP CENTURIAN 0-99 - MINICOMP RAFFELITE $0-999$ -MINICOMP BOOKMAKER 0.9999 -MINICOMP SWEEPSTAKE 0-99999 $\begin{array}{ll}\text {-MINICOMP MILLIONAIRE 0.9999999 } \\ \text {-MINICOMP GALAXY } & 0-9999999\end{array}$ $\begin{array}{ll}\text {-MINICOMP GALAXY } \\ \text {-MINICOMP POPULATION } \\ \text { EXPLOSION) } & 0-99999999\end{array}$ 240 V 50 HZ or 110 V 60 HZ operation Full one year's guarantee

MICROELECTRONICS
51 Mexfield Road, London SWis
2RG

[^9]COLOUR UHF and TV SPARES. Lists available on request 'Wireless World' TV tuner project. by D. C.
Read. Kits of parts available. New cross hatch kit, Aerial input type. No other connections. Battery UHF Moderator units. $11.00 \mathrm{p} / \mathrm{p}$ 45 p . CRT Reactivator kit for colour and mono $£ 17.48 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Signal strength meter kit £18.00 p/p 60p. 625 TV l.F. Unit, suitable for Hi-Fi amp on lape recording $£ 6.80 \mathrm{p} / \mathrm{p}$
60 p . Bush CTV 25 new convergence panels + yoke and blue lateral $43.60 \mathrm{p} / \mathrm{p} 65 \mathrm{p}$. New Philips single standard convergence panels com plete, incl. 16 controls, coils P.B. switches, leads E3.75 p/p 65p. New colour scan colls. Mullard or Ples sey. plus convergence
blue lateral
$9.20 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$. Mullard at $1023 / 05$ convergence yoke $£ 2.50$ $\mathrm{p} / \mathrm{p} 50 \mathrm{p}$. Mullard or Plessey Blue laterals 75p p/p 25p. BRC CTV25 scan coils, new. $£ 2.50 \mathrm{p} / \mathrm{p}$ 60 p . Delay lines DL20 $£ 3.50$. DL40
$£ 1.50$. DLIE, DLI $£ 1.00 \mathrm{p} / \mathrm{p} 35 \mathrm{p}$. Lum Delay Lines 50 p p/p 20p. EHT colour quadrupler for Bush/Murphy CTV25 $3 / 174$ Series $88.50 \mathrm{p} / \mathrm{p} 60 \mathrm{p}$. Special offer colour triplers: TTT Tripler
ITH $2.00 \mathrm{p} / \mathrm{p} 40 \mathrm{p}$. GEC 2040 triple £i.75 p/p 40 p . Philips G8 panels, part complete, surplus/salvaged. £2.25. T-Base $£ 1.00 \mathrm{p} / \mathrm{p} 50 \mathrm{p}$. CRT base $75 p \mathrm{p} / \mathrm{p} 20 \mathrm{p}$ G.E.C. 204
danels for spares. Decoder
£3.59 panels for $£ 1.00$ p/p 55p. VARICAP TUNERS UHF ELC 1043, new £4.20. ELC 1043/05, £5.00. VHF ELC 1042. ELC 1043/05, $£ 5.00$. Salvaged VHF and UHF Varicap tuners $1.50 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$.
SPECIAL OFFER: RBM 6psn. Varicap control units $£ 1.00 \mathrm{p} / \mathrm{p} 25 \mathrm{p}$ UHF tuners, new, transistorised incl slow motion drive, $£ 3.80$. 41 position and 6-position \quad push-
bution transistorised, $£ 4.20 \quad \mathrm{p} / \mathrm{p}$ button transistorised, ${ }^{24.20 \mathrm{p} / \mathrm{p}}$
60p. Philips, Bush, Decca integrated UHF/VHF transd, tuners $£ 4.50 \mathrm{p} / \mathrm{p}$ 65p. Thorn 850 dual Standard time base panel 50p p/p 50p. Philips
626 1.F. amp. incl. CCT 50 p p/p 50 p. 626 l.F. amp. incl. CCT $50 \mathrm{p} p / \mathrm{p} 50 \mathrm{p}$.
VHF turret tuners at 7650 incl. Valves for K.B. Featherlight. Philips 19TG170. GEC 2010 ETC. £2.50. Pye miniature incremental for 110 to 830 . Pam and INVICTA £1.00. New Fireball tuners, Ferguson, $5 M \mathrm{p}$. Marconi $£ 1.00 \mathrm{p} / \mathrm{p}$ all coils, new,
Mullard 1100 Mono scan coll suitable all standard Philips, Stella. Pye. Ekco, Ferranti, Invicta $£ 2.00$ p/p 55p. Large selection. LoPTs, FOPTs available for most popular
makes. $200+200=100 \mathrm{MFD} 350 \mathrm{~V}$ makes. $200+200=100 \mathrm{MFD} 350 \mathrm{~V}$
Electrolytic $£ 1.00 \mathrm{p} / \mathrm{p} 30 \mathrm{p}$. MANOR SUPPLIES. 172 West End Lane. London. N.W.6. Shop Premises. Callers welcome tNo. 28, Hampsiead-Bakerloo
buses or W. Hamp and Brit. Rail). Mail Order: 64 Gelders 7948751 VAT Please ADD Tel: $01-794$ ALS PRICES (EXCEPT 25% TO ALL PRICES (EXCEPT -
KI'S. VAT 8\%).
VACUUM is our speciality, new and secondhand rotary pumps dif fusion outfits, accessories, coaters etc. Silicone rubber or varnish out gassing equipment from E40. V. N
Barrett (Sales) Ltd.. 1 Mayo Road Barrett (Siales) Ltd..
Croydon. $01-684 \quad 9917$.

BOOKS

START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS This unique instruction manual shows step by step how to rewind motors working par
or full time. without previous experience Everything you need to know easily explained including where to obtan mater als, how to get all the work you need etc A goldmine of information and knowledge Only $£ 365+25 p$ P \& P from
Magnum Publications Dept. WW5 Brinksway Trading Estate
Brinksway, Stockport SK3 OBZ

LOGIC. Reliable step-by-step design techniques for the non-specialist are described in a new oxford
book Problems and Solutions in book, Problems and Solutions in
Logic Design, by D. Zissos (1976). over 50 problems with fully worked out solutions demonstrate the design steps. obtainable from £1.75.

DESIGN. development, repair test and small production of electrontic equipment. Specialist in production YOUNG ELECTRONICS LTD., 184 Royal College Street London NW 9NN. 01-267 0201

AIRTRONICS LTD., for Coil Wind ing - large or small production runs. Also PC Boards Assemblies Suppliers to P.O., M.O.D. etc. Ex port enquiries welcomed, 3a Walerand Road. London SE13 7PE Tel: 01-852 1706.
PRINTED CIRCUIT BOARDS Quick deliveries, competitive prices quotations on request, roller tin ning, drilling, etc., speciality small Jamiesons Automatics Ltd, 1-5 Westesate, Bridlington N. Humber side for the attention of Mr
Harrison. Tel: $(0262) 4738 / 77877$.

DESIGN DEVELOPMENT and small production of electronic equipment. No job too small. - Holts Electronics, 223 Pole Lane Court,
worth, Bury, Lancs, BL9 8QD, (5281)
CAPACITY available to the Elecronic Industry. Precision turned parts, engraving. milling and grind. ing both in metals and plastics. Limited capacity available on Mathey SP33 jig borer. Write for Insts of full plant capacity to C.B. Mackintosh Lane, E9 GAB. Tel: 019857057 .
T.W. ELECTRONIC CONTRACTORS. Wiring and assembly specialists For instrume asy P.C.B. assy, Cableforms etc. For
service. Tel. 01.500 1708.

ARTICLES WANTED

WANTED, all types of communica tions receivers and test equipment.
Details to R. T. \& I. Electronics Details to R. T. \& ${ }^{\text {\& }}$ I. Electronics
Ltd. Ashyille Old Hall. Ashville Ltd., Ashville Old Hall, Ashville
Rd., London, E.11. Ley 4986. 163
B-D ELECTRONICS offer prompt settlement for your surplus components. Our main field of interest is consumer electronics. Please
telephone ur Miss Hughes, Sandy telephone (1114
(0767) 81616 .

REQUIRED
from Minist Derence and other sources Plessey models P.T.R. 371 also 691,692 to John F. Learney. 16 Pine Walk,

TAPE RECORDING ETC

RECORDS MADE TO ORDER

DEMO DISCS

VINYLITE
Single disc 120 . Mono or Stereo delivery
4 days from your tapes Quantily runs 25
01000 records PRESSED IN VINYLITE IN
O 1.000 records PRESSED IN VINYLITE IN
OUR OWN PLANT Detivery 3.4 weeks
OUR OWN PLANT Detivery 3 -. WE Weeks
Sleeves/Labels Finest qually NEUMANN
Sleeves/Labels Finest qualnty NEUMANN
STEREO/Mono Lathes We cut for many
DEROY RECORDS
Box 3. Hawk Street, Carnforth Tel: 2273

EQUIPMENT WANTED

BROADFIELDS AND

 MAYCO DISPOSALS1 Lodge Lane, N. Finchley
London, Ni2
Telephone:
Telephone:
$01-445$
2713
014150749
01-958 7624

MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANT STOCKS?

We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.
\star MINICOMPUTERS

* PERIPHERALS
\star INSTRUMENTATION

COMPUTER APPRECIATION Godstone (088 384) 3106

WANTED: Solid state oscilloscope DC-25 Mhz minimum B/W. Full de tails inc. age
Box No. 5306.

WANTED: operating manual for Mullard high speed valve tester, also test cards for above. Write:
F Murphy, 10 Upton Court, Upton, Wirral.
WANTED. Agent to purchase Mono and Colour T.V's transistor radios, vacuum cleaners, washing secondines, cookers, $\begin{aligned} & \text { end. Box iNio. } 5328 \text {. }\end{aligned}$
SURPLUS COMPONENTS, Equipment and Computer panels wanted for cash. Ring Southampton 772501 .

WANTED - ITT radio telephones type M5, AM7 and SF1. Good prices paid any condition considered. Please 12
$123) \quad 4285$.

TENDERS

TENDERS

FOR SALE BY TENDER SURPLUS
RADIOTELECOMMUNICATION
LOW BAND F.M. EQUIPMENT
3 Storno Type CQF 33C
Trigger Stations
1 Storno Type CQF 31 Base Station
42 Storno Type CQM 39
Mobiles
For further details write
to - The County Surveyor
Northumberland County
Council, Phoenix House. Queen Street. Newcastle-upoil-Tyne Street.
NE1 3AT
 NEI
A.A.A. SERVICE Small batch production wiring assembly to sample or drawings. Specialists in printed circuit assembly. Cableforms to order. Rock Electronics Ltd., 42 Harlow (0279) 33018. Essex. (19:

ELECTRONICS manufacturer has capacity available for PCB assem bly, Harness/Cable forms equip ment wiring Electro/Mechanica assembly, etc. Large or small production runs. At extremely com Avondale Road Industrial Estate Cwmbran Gwent Tel: 0633-5220
5351)

CAPACITY AVAILABLE for assem bing large or small quantities of Mechanical equipment from draw nechanical equipment from draw ings or prototype. Horizon Elec tronics, 100 Sandfield Road. Arnold Nottm. Tel: 0602-606980. (5357)
BATCH Production Wiring and Assembly to sample or drawings Parade Ealing Common London Parade, Ealing common. London
W.5. Tel: $01-992$ (23) 8976 .

from ONE source

SERVICE, you can obtain many other Technical Products including Electrical, Mechanical and Tools in addition to the Electronic components that we have been distributing to Industry for over 30 years.

Large duplicate stocks are kept in LONDON and SCOTLAND to give you quick service.

SERVICE AND REPAIRS

TUBE POLISHING, mono, £5.63, colour £5.94. C.W.O. Return car300 Retube Limited. North Somer. cotes, Lough, Lincs.

LABELS. NAMEPLATES, FASCIAS LABELS. NAMEPLATES, FASCIAS
on aluminium or plastic. Speedy delivery G.S.M. Graphic Arts Ltd.. $1-5$ Rectory Lane, Guisborough (02873-4443), Yorks, $\underset{(5305)}{\text { U.K. }}$ (5305)

AUDIOMASTER BACKGROUND MUSIC programines. service, sales. Tape programmes. P. J. Equipments,

THOR-HOLE

 prototypes plating, roller tinning, All or part service. - ELECTROCIRCUITS (P.C.) LTD., Delamare Road, Cheshunt. Heris. Tel. Waltham Cioss 38600 or 20344 . (84| RECEIVERS AND AMPLIFIERS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| RING YOUR CLASSIFIEDS
 OVVEN BAMLEY
 ON 01-261
 8508
 OR 01-261
 8423 | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | | | | | | |

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors hardware Aluminum sheet and sections Printed curcuit board top quality for individual or published designs
Prompt service
Send $15 p$ for catalogue
RAMAR CONSTRUCTOR SERVICES
Masons Road, Stratford-on-Avon Warwicks. Tel: 4879

Instruments
well worth servicing and worth
servicing well
And now it's even easier because you can bring or send your AVO. MEGGER or SULLIVAN instruments for service or repair direct to the manufacturers' joint service and spares centre. In-house BCS
certification facility.
London Instrument Repair Centre,
Fiepairs
Cunnington Street
A.cton Lane Works

Chiswick, London W4 5HJ
Tel 01-995 9212. Telex 22583 Enqurries
Archcliffe Road
[OVER, Kent CT17 9EN
Tel 0304202620 Telex 96283
AVO-MEGGER-SULLIVAN

NEW GRAM EQUIPMENT

GLASGOW. Hi Fi, Cassette Decks, Tape Recorders, Video Equipment. always available we buy. sell and exchange or MORRIS Audio Visual Lid 340 Aryyle street Glasrow G1, 340 Glixssford Street GIaspow Gi, 8/10 Sauchiehall Street. Tele: 041-221 895 s.

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 139-151

```
Acoustical Mig. Co. .
Aero Electronics Lid.
Alben Engineering Co. Ltd
Arrow-Hart (Europe) Lid.
Aspen Electronics Ltd.
Audio Fair
Audix Lid.
Avel-Lindberg Lid.
Avo Lid.
```

PAGE
13.27
. 18
. 88
88
23
108
108
13
23
5

Bach-Simpson (U.K.) Ltd.
Barr \& Siroud.
Barrie Electronics Lid.
Bayliss. A. D. \& Son Ltd
Belling-Lee
Bentley Acoustic Corp. Lid.
B.H. Component Factors Ltd

B \& W Loudspeakers Ltd.
Bi-Pak Semiconductors Lid.
Bi-Pre Pak Lid.
Brenell Eng.
Buli. J., Electrical Lid.
Burmel International

Cambridge Learning
Case Systems.
Catronics.
Chromasonic Electronics
Colomor (Electronics) Ltd.
Comark Electronics Ltd.
Combined Precision Components Lid
Commercial Trade Travel
Computer Appreciatior
Computer Sales \& Servic
Crysion Electronics Lid.

Danavox (G.B.) Ltd
Datong Electronics Lid.
D.M.W. Associates (Electronics) Ltd

Dema Electronics International
Dolby Noise Unit
Drake Transformers Lid
Dymar Electronics Lid.

Eagle International Ltd
Electronic Brokers Lid.
lectronic Services \& Products Co. Ltd
Electrovalue Ltd.
Electric Windings (Ldn) Lid
Electronics Weekly
EMI Sound \& Vision Equipment Lid.
English Electric Valve Co. Lid.
ERG Components Lid
Excel Elec. Ltd.

30 103

103
Loose Insert
. 8.85
27. 34
13.29

13, 29
Farnell Instruments Ltd.
Fi-Comp Electronics
Future Film Developments Lid
Fvide Electronic Labs. Ltd.
Gardners Transformers
Grampian Reproducers Lid.
Greenwood Electronics Lid.
Guest International Ltd.
PAGE
100 31

Hall Electric Lid.
Harmsworth Townley \& Co. Lid.
Harris Electronics (London) Ltd.
Harris P.
Hart Electronics
Havden Laboratories Ltd 12
Henry's Radio Lories Ltd
Hepworth Electronics.
H/H Electronic
High Fidelity '76
Hoymitz Electronics Ltd.

Icon Designs
mtech Products Lid
Industrial Tape Applications Lid.
Integrex Ltd.
123

Kinnie Components Ltd.
110
Klark Teknik Ltd
Kramer \& Co.

Ledon Insts. Lid
Levell Electronics Lid
Lexor Electronics Ltd.
Limrose Electronics Ltd.
Lynx (Electronics) London Ltd.
Readers Card
10.17
10.17
.$\quad 138$

101
44
105
27
21

MacInnes Laboratories Lid
Magnetic Tapes Lid.
Maplin Electronic Supplies
Maplin Electronic Supplies
McLennan Eng. Lid.
Marconi Instruments Ltd.
London) Lid
Mills, W
Modern Book Co.
Monitor Audio Ltd.
Multicore Soiders Lid.

Naim Audio

Natural Sound Systems
Nicholls. E. R.
Nombrex Lid.
OMB Electronics
Orchard Electronics

Physical \& Elec. Labs. Lid.

PAGE

Powertran Electronics .. 100
Precision Instrument Labs. 99
Precision Petite Lid
99
98

Pulse Flectronics | 28 |
| :--- |
| 29 |

Pye Unicam 43

Radford Laboratories Ltd. 17
Radio Component Specialists 12 I
Ralfe P 121
106
Rank Film Equipmeni .. 26
Rastra Electronics Lid. 132
R.C.S. Electronics . 113
Rola Celestion Ltd.
R.S.T. Valves Ltd . 107
S.C.S. Components 109

Semicon Indexes Lid. 101
Semiconductor Supplies Lid. 107
Service Trading Co. 137
Shure Electronics Lid. 1.
Shure Electronics Ltd. Cover in
Sinclair Radionics Ltd. 129
M.E Lid. .

Special Products Lid. 29
Strumech Eng. Lid. 22
Sugden. J. E. \& Co. Lid. 27
Sugden. J. E. \& Co. Ltd. 109
Swanley Electronics Lid. 109
Swift of Wilmslow . 102

Tandberg (U.K.) Lid. 88
Technomatic Lid
Teledyne/Acoustic Research
88
122
Teleprinter Equipment Lid 55
Teleradio Electronics 107
Time Micro \& Electronics . 99
Trampus Electronics 109
T.O. Supplies (Teonex)

United-Carr Supplies Ltd. 32

Valradio Lid. 20
Vero Electronics . 18

Wavne Kerr. The. Co. Lid. 10
West Hyde Developments Ltd. 100
Whiteley Electrical Radio Co. Ltd. 26
Wilkinson. L. (Croydon) Lid. 122
Wilmslow Audio
Wireless World Circards 127
Wireless World (The Big Four)

[^10]

It's a mod. mod. modular world.

Simplify, simplify! Instead of paying more for bigger, bulkier audio control components, pay less for compact Shure modular components that singly or in combination-handle critical functions flawlessly. Cases in point: (1) the M67 and M68 Microphone Mixers, the original high-performance, low-cost mixers; (2) the M610 Feedback Confroller, the compact component that permits dramatically increased gain before feedback; (3) the M63 Audio Master, that gives almost unlimited response-shaping characteristics; (4) the M688 Stereo Mixer, for stereo recording and multi-source audio-visual work; (5) the M675 Broadcast Production Master, that works with our M67 to create a complete production console (with cuing!) for a fraction of the cost of conventional consoles; and (6) the SE30 Gated Compressor/Mixer, (not shown above) with the memory circuit that eliminates "pumping." For more on how to "go modular," write for the Shure Microphone Circuitry Catalogue.

Telephone: Maidstone (0622) 59881

The life and efficiency of any piece of electronic equipment can rest entirely on the solder used in its assembly. That is why for utmost reliability leading electronic manufacturers in the USA and in 106 other countries throughout the world insist on using Ersin Multicore Solder. It's the solder they have depended on for consistent high quality for more than 30 years

If you are not already using Ersin Multicore Solder it must be to your advantage to investigate the wide range of Specifications which are available. Besides achieving better joints - always - your labour costs will be reduced and subsequently savings in overall costs of solder may be possible

There are well over 1.000 Specifications, made to all International Standards to choose from, and here are just a few of the special solders that we manufacture

Savbit Alloy - dramatically reduces erosion of copper wires and printed circuits and also reduces the wear of soldering iron bits.

96S Silver Solder - highest strength soft solder. Melting point $221^{\circ} \mathrm{C}$. Bright and non-toxic. Replaces high temperature brazing alloys.

95 A alloy - Melting range $236-243^{\circ}$ C. For electrical connections subjected to peak temp. of approx. $240^{\circ} \mathrm{C}$
H.M.P. alloy - Melting range $296-301^{\circ} \mathrm{C}$. Highest melting point soft solder for high service temperature applications
T.L.C. alloy - Melting point $145^{\circ} \mathrm{C}$. Lowest melting point Ersin Multicore solder for making joints on top of other solders and for heat sensitive components
L.M.P. alloy - Melting Point $179^{\circ} \mathrm{C}$. For soldering silver plated surfaces such as ceramic capacitors and soldering gold

Alu-Sol Multicore Solder--for soldering aluminium.
Arax acid-cored solder - for non-electrical applications or pre-tinning of parts of difficult solderability (flux residue must be removed) which can then be assembled with Ersin Multicore Solder

Write for Technical Bulletins, on your Company's letterhead, for products which interest you to

Multicore Solders Ltd.
Maylands Avenue,
Hemel Hempstead, Hertfordshire, HP2 7EP
Tel: Hemel Hempstead 3636 Telex : 82363

[^0]: Guest International Limited.
 Redlands, Coulsdon, Surrey CR3 2HT. Telephone: 01-668 7141. Telex: 946880
 ww - ess FOR FURTHER DETALS

[^1]: C. E. Shannon, "Prediction and Entropy of Printed English." Bell Syst. Tech. Journ. vol. 30 (1951), Engli
 p. 50.

[^2]: \dagger Functions which cannot be Fourier-analysed are mathematical monstrosities such as those having an infinite number of discontinuities or an unbounded range of variation which could not be realised in practice.

[^3]: I enclose cheque/postal orders for $£$. My Access/Barclay/Interbank Card No. is

 Refund it not satisfied and jook is returned within 14 days.
 Semicon Indexes Ltd. 2 Denmark St. Wokıngham. Berks. RG 11 2BB. TEL: WOKINGHAM (0734) 786161 WW - 027 FOR FURTHER INFORMATION

[^4]: ${ }_{2}$
 空
 RACAL L．F．CONVERTER UNIT RA－37B ：£35．Carr．$£ 1$
 RACAI．T．S．R．ADAPTOR RA－95A：£65．Carr．£2
 MUIRHEAD ATTENUATORS： $\mathbf{7 5}$ ohms $\mathbf{0 - 8} \mathrm{Mc} / \mathrm{s} 3 \mathrm{~V}$ MAK 3 ranges $\mathbf{0 - 5}, \mathbf{0} \mathbf{0} \mathbf{2 5}$ ，
 $0-50$ DB $\mathbf{6} .00+75$ p post
 CREED MODEL 54 TELEPRINTER：£37．50 each．Carr．£4
 CREEDMODEL 75 TELEPRINTER：Réeiver only £30．00．C̄är．£3．
 MULLARD VALVE VOLTMETER：E／7555／3 A．C．／D．C． 2 ranges $0-5$ and $0-500 \mathrm{v}$ E35．Carr．£2．
 EDDYSTONE TELEPRINTER ADAPTOR TYPE 937：£45．Carr．£1
 WAVEMETER CLASS＇D＇NO．2： 1.2 to $20 \mathrm{Mc} / \mathrm{s} 12$ volts d．c．input or 240 v a．c． £12．50．C．arr．£3．
 WILD BARFIELD ELECTRIC FURNACE MODEL CCI．22X：With ether indicating temperature controllers Model 990．0－1400 ${ }^{\circ} \mathrm{C}$ ．£250．Carr．£5．
 METROVAC IONIZATION GAUGE MODEL VEC 3 E ESE．Carr．ES，
 AVO VALVE TESTER CT．160：（Portable）similar to Avo Mk． 3 Characteristic meter．Good condition，$£ 45.00$ ．Carr．$£ 2.00$ ．
 ANTENNA MAST： 30 ft ．consisting of $10 \times 3 \mathrm{ft}$ tubular screw sections（ $7 / \mathrm{m}^{\prime \prime}$ dia．） with base，guyropes and stays，etc．$£ 7.50$ each．Carr．$£ 2.00$
 REDIFON TELEPRINTER RELAY UNIT No．12：ZA－41196 and power supply $200-250 \mathrm{~V}$ a．c．Polarised relay type 3 SEITR $80-0 \mathrm{~V}$ 25mA．Two stabilised yalves CV 286．Centre Zero Meter 10－0－10．Size 8 in．x 8 in．x 8 in．New condition．EÍ Carr．75p．
 SOLARTRON PULSE GENERATOR TYPE G1101－2：$£ 75.00$ each．Carr．$£ 2.00$ ．
 TELEPRINTER TYPE 7B：Pageprinter 24 V d．c．power supply，speed 50 bauds per min．second hand cond．（excellent order）no parts broken．$£ 20$ each．Carriage $£ 3$ ． AUTO TRANSFORMER： $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}, 1000$ watts．Mounted in strong steel case $5^{\prime \prime} \times 61 / 2^{\prime \prime} \times 7^{\prime \prime}$ ．Bitumen impregnated．£12．00．Carr．£1．50
 BRIDGE MEGGER： 250 V．（Evershed Vignoles）series 2 ． $\mathbf{E 3 0}$ each．Carr．£1．
 BRIDGE MEGGER： 2.500 V．：series I．E30 each．Carr． $\mathfrak{E} 1$
 CRYSTAL TEST SET TYPE 193：used for checking crystals in freq．range $3000-10,000 \mathrm{KHz}$ ．Mains 230 V 50 Hz ．Measures crystal current under oscillatory conditions and the equivalent resistance．Crystal freq．can be tested in conjunction with a freq．meter．£25．Carr．$£ 1.50$
 SOLARTRON VARIABLE POWER UNIT S．R．S． $1535: 0-500$ volts at 100 mA and 6.3 volts C．T． 3 amps d．c． $110 / 250$ volts a．c．input．$£ 18.50$ ．Carr．$£ 1.50$ ．

 CLASS＇D＇WAVEMETER NO．I：Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$ ．Power supply 6 V d．c．Good secondhand condition． £8．50．Carr．£1．50
 PRECISION PHASE DETECTOR TYPE 205：Freq． $0.1-15 \mathrm{MHz}$ in 5 ranges． Variable time delay microseconds $0-0.1 \mathrm{c}, 115 \mathrm{~V}$ input．$£ 55$ each．Carr．f. Variable time delay microseconds 0－0．1c，115V input．£5

[^5]: Complete and post to: Audio Festival \& Fair, lliffe Promotions Ltd.,
 Dorset House, Stamford Street, London SE1 9LU.
 Tel:01-2618000

[^6]: R.C.S. SOUND TO LIGHT KIT

 Kit of parts to build a 3 channel sound to light unit
 1.000 watts per channel. $£ 12.50$. Post 35 p

 As featured in December Practical Wireless $\mathbf{£ 3}$.

[^7]: (
 Easily fitted. Fully guaranteedi by makers. Will
 control up to 600 watts of all lighting except fluor
 escent at mains voltage. Complete with simple escent at mains voltage Co
 instructions. $£ 275$. Post 25 p

[^8]: CONTENTS OF 35 mm . MAGNETIC RECORDING AND DUBBING THEATRE including simplex projector. Strong arc lamp. Rectifier. R.C.A. Studio nptical soundhead with clover leaf take-up. R.C.A. Master distributor 3 Rank cabinet magnetic reproducers, 1 Rank reproducers Footage counter large mixer desk with fillers tone conmixer desk with fillers. tone con-
 trols. compressor/limiter. echol trols. compressor/limiter. echy
 machine. etc. 8 in-put faders, 2 master faders. Selsyn interlock throughout. Also Selsyn control panel, jack field. various ampli. fiers, microphones. talk back and signal lamp system. All in excellent condition. Ideal for documentary film company, May be seen installed in London Bargain price $£ 4.750$ 0.n.o. for quick sale. Aporoach Moor Park Northwood Middx. Mon (5348) Middx

[^9]: UNUSED SEALED RELAYS GEC
 M1100 and M1092 $2 \times c / o .4 \times \mathrm{c} / \mathrm{x}$. $\begin{array}{lll}4 \times \text { c/o. } 670 \text { Ohns coil } \\ \text { postage } 30 p \text { any quantity. } & \text { each. } \\ \text { (5314) }\end{array}$

[^10]: Pranted in Great Britain by QB Ltd., Sheepen Road, Colchester and Published by the Proprietors IPC ELECTRICAL-ELECTRONIC PRESS LTD.. Dorset House, Stamtord St. London, SET Wm. Dawson Subscription Service, Ltd Gordon \& Gotch Lid. SOUTH AFRICA: Central News Agency Lid.: William Dawson \& Sons (S.A.) Lid. UNiTED STATES: Eastern News
 Distributors Inc., 14th Floor. 111 Eighth Avenue, New York. 1001 i

